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Abstract

In order to allow robots to act autonomously it is crucial that they do not only describe

their environment accurately but also identify how to interact with their surroundings. While

we witnessed tremendous progress in descriptive computer vision, approaches that explicitly

target action are scarcer. This cumulative dissertation approaches the goal of interpreting vi-

sual scenes “in the wild” with respect to actions implied by the scene. We call this approach

action-oriented scene understanding. It involves identifying and judging opportunities for inter-

action with constituents of the scene (e.g. objects and their parts) as well as understanding

object functions and how interactions will impact the future. All of these aspects are ad-

dressed on three levels of abstraction: elements, perception and reasoning.

On the elementary level, we investigate semantic and functional grouping of objects by

analyzing annotated natural image scenes. We compare object label-based and visual context

definitions with respect to their suitability for generating meaningful object class representa-

tions. Our findings suggest that representations generated from visual context are on-par in

terms of semantic quality with those generated from large quantities of text.

The perceptive level concerns action identification. We propose a system to identify pos-

sible interactions for robots and humans with the environment (affordances) on a pixel level

using state-of-the-art machine learning methods. Pixel-wise part annotations of images are

transformed into 12 affordance maps. Using these maps, a convolutional neural network is

trained to densely predict affordance maps from unknown RGB images. In contrast to pre-

vious work, this approach operates exclusively on RGB images during both, training and

testing, and yet achieves state-of-the-art performance.

At the reasoning level, we extend the question from asking what actions are possible to

what actions are plausible. For this, we gathered a dataset of household images associated with

human ratings of the likelihoods of eight different actions. Based on the judgement provided

by the human raters, we train convolutional neural networks to generate plausibility scores

from unseen images. Furthermore, having considered only static scenes previously in this

thesis, we propose a system that takes video input and predicts plausible future actions. Since

this requires careful identification of relevant features in the video sequence, we analyze this

particular aspect in detail using a synthetic dataset for several state-of-the-art video models.

We identify feature learning as a major obstacle for anticipation in natural video data.

The presented projects analyze the role of action in scene understanding from various

angles and in multiple settings while highlighting the advantages of assuming an action-

oriented perspective. We conclude that action-oriented scene understanding can augment

classic computer vision in many real-life applications, in particular robotics.
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CHAPTER 1
Introduction

1.1 PROBLEM DEFINITION AND MOTIVATION

Throughout the last years we witnessed remarkable progress in intelligent systems. Computers

learned to play Atari games [147], have beaten the world champion in the game of Go [187],

even without ever playing against a human before [188]. The quality of cross-language text

translations improved massively [219], while speech recognition [238] has reached a level that

allows it to be used in many households 1. Images can be classified with an accuracy that is

comparable to humans [95] while realistically looking natural images of fictive subjects can be

synthesized [106, 26].

Although this progress clearly is striking, each achievement is constrained to a compara-

tively narrow domain. All these systems implement a specific interface to master a specific

task: Pixels of a video game are mapped to a fixed set of controls. Text in one language is

mapped to text in another language. Real-valued vectors are mapped to synthetic, yet realis-

tically looking, images. Hence, despite impressive results, such systems are constrained to act

within their individual boundaries and consequently called narrow (or weak) artificial intelli-

gence (AI) [74]. Narrow AI is often contrasted with artificial general intelligence (AGI), which

means exhibiting intelligent behavior over a diverse set of tasks and coping with unknown sit-

uations [74]. Yet it is unclear if building an AGI that is on par with humans is possible at all.

Undoubtedly, if it is possible, there is a long way to go and many technical but also ethical chal-

lenges must be addressed. Arguably, a key requirement for an AGI system is to be able to move

and interact autonomously in an unknown environment to enable discovery and continuous

learning. Therefore, the system must not only be able to accurately describe what it sees but it

must primarily know how to interact with the environment.

1https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-million-
dave-limp
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CHAPTER 1. INTRODUCTION

While we do not address AGI in general, in this thesis we will focus on certain indispensable

technical components of an AGI system, in particular those that are concerned with the deduc-

tion of potential actions in an unknown environment. We focus on the perception of visual cues

that are relevant for reasonable acting and propose to extend the classic descriptive approach

to scene understanding with action-oriented scene understanding.

Organization Next, action-oriented scene understanding will be described in greater detail as

the guiding framework of this thesis. It is put in contrast with classic descriptive approaches

from computer vision. Subsequently, we will motivate our choice of learning from data in

the wild and state why we employ distributed methods to represent knowledge. At the end

of this chapter, contributions encompassed by the individual articles and manuscripts of this

cumulative thesis are presented.

1.1.1 ACTION-ORIENTED SCENE UNDERSTANDING

We define action-oriented scene understanding as the interpretation of a scene regarding oppor-

tunities of interaction, manipulation and locomotion for a (potentially robotic) agent. It is about

identifying and judging potential actions, explicitly involving unnamable constituents of the

scene such as parts of an object or surfaces. Action-oriented scene understanding differs from

traditional scene understanding, which strives to provide an accurate description of a scene.

Descriptive scene understanding asks "what is there?" while action-oriented scene understand-

ing asks "what can be done?" and "what are the consequences?". In Fig. 1.1 we compare descrip-

tive with action-oriented scene understanding on a hierarchy over three levels of abstraction:

Figure 1.1: Descriptive and Action-oriented tasks organized over three levels.
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1.1. PROBLEM DEFINITION AND MOTIVATION

elements, perception and reasoning. Elements represent the foundation of the approaches and

define the entities to be predicted. While elements in descriptive computer vision involve sym-

bols like names and labels, the action-oriented counterpart considers functions, opportunities

to interact and trajectories. Often these latter elements can hardly be expressed symbolically.

The perceptive level comprises components concerned with recognizing occurrences of these

elements in a natural scene, which first and foremost demands pattern recognition capabili-

ties. Building on these earlier levels, at the top level, reasoning is required. Common tasks at

this level in descriptive vision are visual question answering (VQA) and resolving referential

expressions. In action-oriented scene understanding reasoning is executed over actions. Ac-

cordingly, associated tasks involve appraising the presence or plausibility of certain actions and

anticipating future actions.

Descriptive Computer Vision So far, research in semantic computer vision focused mostly on

descriptive approaches, centered around objects, with object recognition, object detection and

object segmentation being ubiquitous tasks. Other tasks include scene recognition [247], fine-

grained recognition [131] or attribute recognition [160]. Recently published datasets, such as

visual genome [116], contain richer information, e.g. visual relationships between objects, but

still remain descriptive. In visual question answering [79], most questions assess descriptive

qualities, too. For example, common question patterns are "what color is . . . " or "is there . . . ". In

action-oriented scene understanding the output should tell us how to act or what to do. Action

recognition from video does not match this criterion as it only seeks to provide a description of

what is shown in the video ignoring what might happen next. This focus on descriptive tasks

is not surprising because such tasks are easy to define and unambiguous when performance

needs to be assessed. Hence, they enable the development, evaluation and comparison of novel

models, for example AlexNet [117] or ResNet [88] that were developed to compete in the Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) [176] to excel at image classification.

However, the ability to conduct straightforward comparisons of descriptive methods does not

imply that practical applications, for instance in robotics, should solely rely on these methods.

In this dissertation, we advocate the use of action-oriented scene description as a complemen-

tary method. In fact, deriving actions would also be possible by building upon descriptive

approaches. Descriptive vision systems map from images to a specification of the status quo of

a scene. To add an action output, a second stage of processing, which involves reasoning on the

obtained object names or attributes that describe the scene, is necessary. In this case, another

mapping from a scene representation to action would need to be learned or defined. This intro-

duces a potentially unnecessary layer of complexity and requires the explicit choice of a scene

representation.

In this work, we pursue a direct approach and produce action-oriented output immediately

3



CHAPTER 1. INTRODUCTION

from images. Although this might also involve learning an implicit scene representation we

do not need to define any properties of this representation a-priori (read more on this in Sec-

tion 1.1.2.1). Instead of reasoning on abstract symbols like object names, action is immediately

generated in an end-to-end manner, effectively implementing a shortcut from perception to

action. In the most extreme form, this could involve generating trajectories and movements.

However, in this thesis we will resort to predicting action labels.

Properties of Action-related Scene Understanding Action-related scene understanding tasks

differ from conventional descriptive tasks in many ways. A key trait of action-oriented scene

understanding is vagueness. Often, action-oriented statements cannot be divided sharply into

wrong and right but rather associated with a plausibility. In these cases, we need to concede

that there is uncertainty involved and take this into account in the design of corresponding

algorithms. It is impossible to drink from an empty cup. However, the chances of drinking

from a filled cup are better expressed by a plausibility depending on the cup’s context instead

of a predicate that can only be true or false. For example, is the environment dirty and the glass

is left-over or is the glass part of a well-laid table? Related to vagueness, statements in action-

oriented scene understanding are often more subjective compared to descriptive approaches.

This means that the judgement of certain qualities differs across various persons. While people

might have different opinions about whether one can eat an apple lying on the floor or whether

it should be disposed, they will agree in describing the object as “cup”. Another important

aspect is temporal context: To accurately describe a scene it does not matter what has happened

before since everything can be seen (apart from occluded objects). However, for anticipating

what actions are likely to be conducted in the future, activities that took place in the past become

relevant. For example, if a person drank coffee a moment ago, the probability for preparing

another one decreases.

1.1.2 CHOICE OF METHODS

Having outlined the problem of action-oriented scene understanding and its properties, next

we will motivate why we employ distributional approaches to represent knowledge and data

in the wild to learn from.

1.1.2.1 Non-symbolic Approaches

This work pursues a non-symbolic approach, sometimes also called distributional or connec-

tionist [68]. Instead of representing knowledge in discrete, atomic units (i.e. symbols), it is

distributed across the weights of synaptic connections or – more general – as learned param-

4



1.1. PROBLEM DEFINITION AND MOTIVATION

eters. This allows us to employ machine learning techniques to learn this implicit knowledge

directly from raw images. This decision in favor of non-symbolic approaches is motivated by

two observations:

1. Some fractions of common-sense knowledge are hard or impossible to express symboli-

cally. This applies in particular for body movements. For example, consider expressing

precisely with words (i.e. symbolically) how to fetch a bottle of milk from the fridge or

how to climb onto a tree. Although these activities are simple to conduct, corresponding

precise descriptions easily become lengthy indicating that words or discrete symbols are

not the optimal language to express these activities.

2. Symbolic approaches would require a universe of discourse, i.e. the definition of a set of

symbols (such as chair, table, cup) and an enumeration of their possible states (full, dirty,

etc.). For a rich scene representation this set would need to be large and its creation would

require substantial efforts, while crucial constituents still might be missed. Non-symbolic

approaches allow us to circumvent this explicit definition by directly processing the non-

symbolic input such as an image, a pointcloud or a video without specific intermediate

representations. Consequently, no space (or universe of discourse) hosting this represen-

tation must be designed which extricates us from making assumptions about the structure

of such space.

1.1.2.2 Data in the Wild

In this thesis we mostly deal with data in the wild. Ang et al. [9] provide an explanation of this

term, for them data in the wild means: “[. . . ] that the datasets are not constructed and designed

with research questions in mind [. . . ]” [9]. They put this in contrast with conventional datasets

that are “generally planned according to conceptual or theoretical interests with articulated

research questions.” [9]. This means that actual photographs of real-life scenes are used as an

input to the proposed methods, which is different from many other approaches in robotics that

rely on a simplified lab setup. Operating on data in the wild is necessary because autonomous

robots have to cope with real-life scenes. The degree of variation is larger than in artificially

set-up scenes. This increase in variation is caused by several factors: Perspectives can change,

object appearances, even within a class, vary strongly and the illumination of scenes might

differ. In lab setups, these factors are often kept constant. Consequently, it is more challenging

to learn and evaluate on data in the wild. We make use of real-life data by using large-scale

real-life datasets such as COCO [130], ADE20K [248], OpenImages [115] or EPIC Kitchens [50].

5



CHAPTER 1. INTRODUCTION

1.2 PAPERS AND MANUSCRIPTS CONTAINED IN THIS THESIS

This thesis encompasses four separate articles of which two are published. The four articles

are indicated by the letters A to D. For completeness, additional articles and posters that were

created during the thesis are listed without being assigned a letter. For the published articles,

the contents are identical to the accepted versions except for formatting and figure enumeration

which we adjusted for this thesis. To enhance the readability, we maintain only a single list of

references at the end of this thesis. Hence, the reference numbers differ from the published

version, too. The two unpublished articles might be submitted to journals or conferences in the

presented or a deviated form in the future. Below, we present all articles in conjunction with

the contributions and grouped by the level of abstraction introduced above. For the articles

contained in this thesis we provide a summary of their contributions. A complete graphical

depiction of the contributions is provided in Fig. 1.2.

Figure 1.2: Overview of the contributions of this thesis, structured by the three levels of abstrac-
tions. Papers contained in this dissertation are denoted by the letters A to D.

6



1.2. PAPERS AND MANUSCRIPTS CONTAINED IN THIS THESIS

1.2.1 OBJECT FUNCTIONS (ELEMENTARY LEVEL)

• Timo Lüddecke, Alejandro Agostini, Michael Fauth, Minija Tamosiunaite and Florentin

Wörgötter

A: Distributional Semantics of Objects in Visual Scenes in Comparison to Text

Artificial Intelligence (2019)

Contribution: Idea, concept, implementation and most of the paper writing (ca. 85%).

Summary: In this paper (Chapter 4) we show that visual context can be used

to generate meaningful vector representations of objects. The novelty is to

use a visual context instead of a textual context which is known to work well.

Furthermore, we show that our vector representations of words do not only

cluster semantically but also encode functional features.

1.2.2 ACTION IDENTIFICATION (PERCEPTION LEVEL)

• Timo Lüddecke and Florentin Wörgötter

Learning to Segment Affordances (ICCV Workshops 2017)

Vision in Practice on Autonomous Robots (ViPAR) Workshop in conjunction with ICCV 2017

Contribution: Idea, concept, implementation and most of the paper writing (ca. 90%).

• Timo Lüddecke, Tomas Kulvicius and Florentin Wörgötter

B: Context-based Affordance Segmentation from 2D Images for Robot Action

Robotics and Autonomous Systems (RAS)

Contribution: Idea, concept, implementation and most of the article writing (ca. 85%).

Summary: In this article (Chapter 5) we propose a system that can densely

(per-pixel) label a set of 12 affordances. Compare to previous work, this

system has multiple novelties: The training algorithm only requires part-

level annotation but no depth or 3d representations of the scene. The number

of considered affordances is larger. Lastly, we outperform the state-of-the-art

approaches.

7



CHAPTER 1. INTRODUCTION

1.2.3 ACTION RATING AND ANTICIPATION (REASONING LEVEL)

• Timo Lüddecke and Florentin Wörgötter

C: Fine-grained Action Plausibility Rating

unpublished

Contribution: Idea, concept, implementation and most of the article writing (ca. 95%).

Summary: In this article (Chapter 6) we address the problem of calculating

the plausibility of conducting certain actions in a scene presented in an im-

age. To the best of our knowledge this is a novel task. Consequently, we

gather a dataset of human plausibility ratings. Then we define expressive

metrics and baselines to assess the performance of various models trained

on this data.

• Timo Lüddecke and Florentin Wörgötter

Scene Affordance: Inferring Actions from Household Scenes.

Poster at the 1st Workshop on Action and Anticipation for Visual Learning in conjunction with

ECCV 2016

Contribution: Idea, concept and poster creation (ca. 90%).

• Alexander Warnecke, Timo Lüddecke and Florentin Wörgötter

Convolutional Neural Networks for Movement Prediction in Videos

German Conference on Patter Recognition (GCPR) 2017

Contribution: Idea and concept. Supervision of the master thesis (ca. 20%).

• Timo Lüddecke and Florentin Wörgötter

D: The Role of Features in Semantic Video Anticipation

unpublished

Contribution: Idea, concept, implementation and most of the paper writing (ca. 95%).

Summary: Our work on semantic video anticipation presented in Chap-

ter 7 is mostly empirical. We investigate how long-term temporal context

can be processed by various video models involving both, recurrent and

3D-convolution-based techniques. For this analysis, we design the Symbol-

Seq dataset which requires keeping track of events that happen over many

frames. Additionally, we conduct experiments on non-synthetic data.
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CHAPTER 2
Foundations

This thesis includes diverse models and techniques with an emphasis on artificial neural net-

works. We do not only adapt methods from computer vision and robotics but also from related

fields such as natural language processing. In this chapter, we introduce the foundations re-

quired to understand the subsequent chapters. We start with machine learning in general and

focus then on neural networks as specific models. Finally, we discuss selected tasks and metrics

which are relevant in context of this thesis. While we cover a broad range of topics, the expla-

nations are kept brief. However, pointers to resources are provided that treat special aspects in

greater detail. For a detailed introduction to the field of machine learning in general we refer to

the books by Murphy [150] and Bishop [23]. This chapter is intended for readers that are new

to machine learning and computer vision. It can be skipped by experienced readers.

2.1 MACHINE LEARNING

The key idea of machine learning is to solve problems by detecting patterns in data through

parameterizing a computational model. Machine learning can be seen as a paradigm that com-

petes with classical programming. Programming requires understanding of the problem at

hand and manually designing rules and sequences of operations, i.e. an algorithm. Machine

learning, on the other hand, eludes stating concrete instructions but requires the specification

of a model, a learning method and data instead. The model defines the space of possible solu-

tions: an overly simple model cannot exhibit complex behavior. In such cases, learning must

necessarily fail as the correct model is not within the space of all possible solutions. The values

of the model’s parameters represent one solution to a machine learning problem specifically

for a model. They can be discovered through learning from data. To solve a problem suc-

cessfully, the correct solution must be within the model’s space of possible solutions and the

learning algorithm must find the correct parameters. In this chapter we will use the simple
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notation ŷ = f(x) to refer to a model f transforming the input x into an output (prediction) ŷ.

For example, if the model is defined as a straight line, ŷ = θx, it cannot represent data with a

non-linear relationship (e.g. a parabola) between input and output.

2.1.1 FORMS OF LEARNING

First, we provide a small overview on the various settings in which machine learning can be

applied. This overview is ordered by the strength of the supervisory signal.

Supervised Learning In supervised learning, N samples in form of input xi and desired out-

put (label) yi pairs are available, with i ∈ {0, N}. Through learning, the model is parameterized

to map each input xi to the corresponding yi. An example is image recognition, where image

pixels represent the input and the desired output is the class of the shown object. If an output

space is discrete (e.g. for objects), we speak of a classification problem. If the output space

is continuous (e.g. a temperature), we speak of regression problem. Conventionally, the data

is split into a training set, a validation set and a test set. Training data is used for the actual

learning while the validation set serves as a control to monitor training progress. For this,

the training error, which is a measure of how bad the network performs on the training data,

and the validation error, which is the same measure calculated on unseen validation data, are

compared. When the model has too many parameters, it becomes susceptible to over-adaption

to the specific training data rather than learning the general principles required to solve the

problem. This phenomenon is called overfitting and can be detected by tracking the valida-

tion error during learning. When overfitting occurs, the validation error starts to increase while

the training error continues to decrease. The test set is meant to be evaluated after concluding

the parameter search on training and validation set. For standard benchmarks it is common

practice to keep the labels of the test set private and restrict the number of evaluations. This

prevents implicit overfitting the test set by the model design [176].

Self-Supervised Learning Recently, self-supervised learning has gained popularity where an

artificial proxy task is created on an unlabeled data collection. This way, labeled training data

pairs (xi,yi) can be automatically generated. Self-supervised learning is primarily employed

to learn meaningful feature extractors (e.g. descriptions of shapes, textures or sounds). These

learned features are then re-used in different target tasks like object classification [58, 10], sound

classification [10] or tracking [222]. For example, Doersch, Gupta, and Efros [58] employed

self-supervised learning on an unlabeled image collection. A supervised task is created by

sampling patches from an image and asking where they were originally positioned relatively to

each other. Arandjelovic and Zisserman [10] trained a two-stream neural network on unlabeled

10
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video data to decide whether a sound corresponds to an image. This way they learn feature

detectors for audio as well as images that are successfully applied in downstream audio and

image classification tasks.

Reinforcement Learning Contrary to supervised learning, in real life scenarios an immediate

signal that tells us if a decision was right or wrong is not always present. Instead, humans

commonly perform a series of actions before receiving any feedback. For example, an unexpe-

rienced chess player conducts a series of sub-optimal moves before being defeated. Reinforce-

ment learning involves an agent that carries out an action at every time step in an environment

(e.g. the chess board). The action selection model is called the policy. After acting, the agent

learns how the environment has changed and sometimes receives a reward signal. This signal

is not only dependent on the previous action but on the sequence of all actions conducted be-

fore [23, Chapter 1]. The goal of reinforcement learning is to find a policy that generates a high

reward in the long term.

Unsupervised Learning In unsupervised learning, no labels yi are available. Hence, no classi-

fication or regression can be performed. However, structure inherent in the data can be learned.

This could involve finding a better data representation (e.g. in terms of size) than the one

provided by the input samples. Classic examples of unsupervised learning are clustering and

dimensionality reduction. For the former, a set of items (e.g. cars) is grouped based on some fea-

tures (e.g. color, weight, mileage) of the items. In dimensionality reduction, high-dimensional

data (e.g. an image) is reduced to low dimensional data (e.g. a compressed image) under preser-

vation of variance [23, Chapter 1]. Mixtures between supervised and unsupervised learning are

possible, too. When only a fraction of the samples is labeled, the problem is denoted as semi-

supervised.

2.2 NEURAL NETWORKS

This section is meant to provide an overview of neural networks as parameterizable models

for machine learning. They can be applied in any of the settings presented above. As they are

central to this thesis, neural networks and associated methods will be explained in greater de-

tail. First common types of neural networks are presented, then more sophisticated architecture

and design patterns are discussed. Finally, an intuition of how the learning of weights works is

provided. Elaborate explanations of the foundations of neural networks for machine learning

can be found in textbooks by Goodfellow, Bengio, and Courville [76] and Murphy [150].

11
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Neural networks are inspired by the organization of the brain: neurons are connected by

synapses to form a network through which neural activity is propagated. Each neuron gener-

ates an output activation depending on accumulated activations from incoming connections.

Neurons integrate incoming currents from adjacent neurons. When the charge exceeds a cer-

tain threshold, a so-called action potential is triggered and propagated along the axon until it

eventually causes the release of neurotransmitters at the neuron’s synapses. These neurotrans-

mitters then travel to connected neurons, where they lead to an ion current by opening specific

ion channels. For a comprehensive discussion of biological neural networks used in compu-

tational neuroscience see the book of Dayan and Abbott [52]. In contrast to these biologically

more accurate models, we rely on rate-based models. These simplify the complex process of

activity propagation by modelling synaptic strength by a scalar called the weight. This enables

learning weights through the backpropagation algorithm [175]. To enable learning of complex

functions, activations are modified by non-linear functions (non-linearities).

Each synaptic weight expresses how well activation is propagated from one neuron to the

other. The weights are the learnable parameters of the model, which encode the knowledge

that has been acquired during training. Not all neurons are necessarily connected, i.e. for some

connections the weight is always zero and no synaptic weight can be learned. The architec-

ture of the neural network determines which synaptic connections have zero weight, i.e. which

neurons are connected. A common way to define an architecture is through layers, which are

groups of neurons. Neurons of a layer can interact with neurons of adjacent layers only. By

stacking multiple layers, deep neural networks can be built, with deep referring to a large num-

ber of layers. Consequently, the field dedicated to training and designing deep neural network

models is called deep learning. Note that there is no necessity of organizing the network into

layers. Yet the concept of layers often simplifies thinking about neural networks. In practice,

neurons between any layer can be connected (skip-connections [134]). The organization into

layers bears some advantages in computational efficiency since some operations (in particular

matrix multiplications) can be carried out in parallel.

Another, crucial building block of neural networks are activation functions. These alter

the neural activation by applying a nonlinear, normally monotonic function. Examples are the

sigmoid (or logistic) function σ or rectified linear units ReLU [73] with

σ(x) =
exp(x)

exp(x) + 1
and ReLU(x) = max(0, x).

Despite their simplicity, neural networks are powerful models. Hornik [92] has shown that

multi-layer perceptrons (see 2.2.1.2) involving only a single hidden layer can approximate any

continuous function given enough hidden units. See Nielsen [155, Chapter 4] for a more intu-

itive explanation.
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2.2.1 NEURAL NETWORK COMPONENTS

Subsequently, we present a selection of the most common components of neural networks. This

includes both layers and networks. These two concepts are sometimes hard to differentiate

because a network can occur as part of a larger network, like a layer. We start with feed-forward

networks before discussing recurrent networks.

2.2.1.1 Fully-Connected Layer

Arguably, the central layer type is the fully-connected layer, which is sometimes also called lin-

ear layer or dense layer. It takes a vector of activations as input and transforms it to a vector

output through a projection, which can be implemented by a matrix multiplication. The corre-

sponding matrix encodes the synaptic weights (or parameters) between pairs of neurons. Since

every input neuron interacts with every output neuron, the layer is called fully-connected.

2.2.1.2 Multi Layer Perceptron

A multi-layer perceptron (MLP) consists of a sequence of fully-connected layers. Neurons of

adjacent layers are connected. After each layer, an activation function can be applied. If no

activation function is used, a deep network is equivalent to using a single fully-connected layer,

because a series of linear projections can be replaced by a single projection.

2.2.1.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are central to the majority of modern computer vision

systems. In contrast to the MLP where activation is represented in form of vectors, a CNN

transforms higher dimensional tensors. In the case of a 2-dimensional CNN (which is typical

for image processing) the tensors have three dimensions: height, width and channels (feature

maps). In the input, channels can represent the RGB colors while they encode more abstract

features in later layers. This distinction between spatial components and channels is important

for weight sharing, which is the central idea of CNNs: Instead of considering each neuron in

isolation, a convolutional layer acknowledges the spatial layout of its input. A bank of filters

(which are composed of weights and are also called kernels) with a fixed spatial extent (called

the kernel size) is applied (multiplied) at multiple locations (e.g. the pixel grid) of the input.

The distance between these locations is called the stride. In conventional CNNs, each filter

generates one output channel. The filter’s coefficients represent the parameters of a CNN.
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Figure 2.1: 2-dimensional convolution with strides of 1, 3 and 1 and dilation of 1, 1 and 2. The
filter indicated in red and encompasses all three input channels to write one output element.

Note, a convolutional layer is a special case of a fully-connected layer. This means we can

construct a fully-connected layer that computes the same function as a convolutional layer.

However, the concept of weight sharing allows a convolutional layer to learn better features

with less data as they encompass a smaller number of parameters (weights).

Receptive Field The receptive field of a neuron refers to the area of the input for which this

neuron is sensitive. This means, the receptive field determines how well spatial context can be

processed by the CNN. Consider a single convolutional layer with a kernel size of 3x3 and a

stride of 1. Each output neuron after applying this layer captures interaction in a 3x3 environ-

ment and therefore has a receptive field size of 3x3. By stacking many convolutional layers,

the receptive field size grows, but not very fast. For a reasonably large receptive field size, we

would need to build a very deep network, which is undesirable due to its high computational

demands and large number of parameters. Therefore, to enable a faster increase of the receptive

field size over a fixed number of layers, different techniques were developed. Subsequently, we

present the most common ones.

Pooling Pooling divides the input into a spatial grid and reduces all activations that fall into

a grid cell of this grid to a single activation. The reduction operation is applied individually

per-channel on all activations that fall in a grid cell, which means that the spatial extent is

reduced while the number of channels remains the same. Common reduction operations are

the maximum function or averaging. The compression of the spatial grid leads to a strong

increase in the receptive field.

Stride In a convolutional layer, filters are multiplied with parts of the input at locations de-

termined by a uniform grid. The distance between these locations is called stride. Similar to
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Figure 2.2: Separable convolution and channel-wise separable convolutions.

pooling, the stride determines the spatial extent of the output. Larger strides lead to a smaller

output size and also a larger increase in receptive field size. In Fig. 2.1 we depicted a stride of 1

(A) and a stride of 3 (B).

Dilation In dilation (also called a-trois), the multiplication of filter and input is not carried on

adjacent pixels but space is added in between. Dilation is equivalent to using a larger kernel

and adding zeros between the original kernel weights. In Fig. 2.1 we show the idea of dilation.

A 2x2 filter is dilated to a size of 3x3 [240].

Separable Convolutions In some cases, convolutions with an n-dimensional filter can be re-

placed by multiple m-dimensional convolutions, with n > m. Depending on the input and

filter size, this can allow a much more efficient implementation. A classic example of such a

separable filter is the Sobel operator, which is a 2-dimensional filter that can be implemented by

two 1-dimensional convolutions.

Separability is neither limited to the spatial dimensions nor to 2-dimensional CNNs. Each

filter of a convolutional layer conventionally encompasses all input channels, i.e. if there are

k input channels, a 3x3 kernel would have 9k parameters. As opposed to this, in depthwise

separable convolutions individual channels are used as input. The Xception architecture by

Chollet [41] heavily relies on depthwise separable convolutions.

3D Convolutions 3D-convolutional layers allow learning kernels with an extent in four di-

mensions (3D + channel) and movement in three directions. A classical application of this

is video, where two spatial dimensions are combined with a temporal dimension, such that
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Figure 2.3: Illustration of a 3D convolution over a three-channel input generating a single output
element. When generating other outputs, the filter moves synchronously in all channels in three
directions.

spatio-temporal filters can be learned. Due to the high dimensionality, the concept of 3D con-

volutions might be hard to imagine. In Fig. 2.3 we show a sketch of a 3D convolution with one

filter location and corresponding output being indicated in red.

Global Average Pooling Earlier convolutional network architectures such as AlexNet [117]

and VGG16 [189] were restricted to operate on fixed size input only. As a consequence, input

images need to be scaled or cropped to match the network’s input size. Activations in all spatial

locations of the tensor yielded by the last convolutional layer are concatenated (lined up) to

obtain a single fixed sized vector. Sometimes this vector is called the feature vector. Then a

fully-connected layer or an MLP (see Sec. 2.2.1.2) is used to transform the feature vector into

the network’s output, which, in classification, typically has as many neurons as the dataset has

classes (e.g. 1000 in ImageNet). The MLP requires feature vectors of a certain size, which in

turn allows only for certain input image sizes of the whole network. If the image is too large or

too small, the resulting feature vector would have a different spatial extent and hence would be

incompatible with the MLP.

In contrast, global average pooling allows to operate on images of (almost) arbitrary size.

Instead of concatenating to generate a single feature vector, features are averaged channel-wise

across all locations to yield a single feature vector (see Pooling in Sec. 2.2.1.3). This way the

output size becomes insensitive to spatial extent of the input, because the resulting feature

vector always has the same size. Hence, a network that uses global average pooling can work

with a large range of image sizes. Note, processing of small images can still fail, e.g. when the
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output size of a layer is smaller than the kernel size of the next layer.

2.2.1.4 Recurrent Neural Networks

While fully-connected layers require a fixed size input, many problems involve an input of

variable length. For example, sentences of a text normally vary in length. Recurrent neural

networks (RNNs) allow operating on this kind of data by maintaining a hidden state that is

updated sequentially for each element of the input. This means, a sequence with n elements

causes n updates of the hidden state. A more detailed explanation of RNNs can be found in

Chapter 7.2.

It was found that conventional recurrent neural networks but also deep MLPs suffer from

the so-called vanishing gradient problem during the learning phase. This means that the gra-

dients computed through backpropagation (see section 2.2.2.2) become very small, essentially

preventing progress in learning. Hochreiter and Schmidhuber [91] propose long short-term

memory (LSTM) to overcome this problem by protecting the internal state via forget and input

gates. The former decides which information of the hidden state should be removed while the

latter decides which information to write. An elaborate explanation of LSTM is provided in this

blog post by Olah 1. Recently, evidence accumulated that sequence modelling can be carried

out with convolutional networks [12] or using attention mechanisms [219] instead of recurrent

units.

2.2.1.5 Residual Connections

Residual connections are an architectural pattern that has proven to improve performance dra-

matically in deep networks. He et al. [88] observed that the training error of networks at a cer-

tain depth starts increasing, which they call the degradation problem. Intuitively, this should

not happen because a deeper network can trivially be transformed into a shallower one by set-

ting some transformations to identity. They infer that training techniques tend to have problems

to learn the identity transformation. To overcome this problem, they suggest to facilitate learn-

ing the identity. This is done by adding connections that bypass blocks of convolutional layers

and merge bypassed activation with the altered activation that went through the block. This

way only changes in activation need to be learned. Their experiments indicate that this enables

training deeper architectures without being affected by the degradation problem, resulting in

the well-known ResNet family [88].

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.4: Attention Mechanism: By stacking query vectors into Q and using corresponding
keys K and values V multiple attention vectors are computed by two projections (1,3) and a
normalization (2).

2.2.1.6 Attention Mechanism

Attention mechanisms have emerged as a central component in many modern network archi-

tectures across various tasks. They allow the network to focus on certain parts of the input

while ignoring others. For example, this could involve a salient image region in a computer

vision model or related words in a language model. A fairly general definition of attention is

provided by Vaswani et al. [219]. Subsequently, we present their definition and follow their

notation. The idea is to attend over a set of values vi. To each value belongs a key ki that might

express some properties about its corresponding value vi. This storage can now be queried by

providing a query vector q. For this, we compute a compatibility between q and all ki and

then use this compatibility (after normalizing) to compute a weighted sum over all values. So

intuitively, the values vi contribute most to the output where the corresponding properties ki

align best with our query q properties. For multiple queries, this algorithm can be efficiently

implemented through matrix multiplications. Multiple queries are stacked into a query vector

Q. Then the attention-weighted vectors Ai are obtained by:

A = softmax(QK)V

with softmax denoting a row-wise softmax followed by a scaling. The softmax assures that each

row sums up to one and does not contain negative values (see 2.2.2.1 for details of softmax). The

scaling is intended to generate more informative gradients for backpropagation.

Fig. 2.4 illustrates the collective computation of attention for multiple queries. A similarity
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matrix is generated from the keys K and the query Q. The matrix expresses how well the

query aligns with the keys. In a second step, the matrix is normalized. Output is generated by

multiplying the normalized matrix with the values V.

The origin of Q, K and V depends on the application, with multiple setups being possible.

In text processing V could represent word vectors of an input sequences and Q and K could

be generated by a recurrent network. Another possibility is to generate all matrices from the

output of one layer which is called self-attention. Furthermore, attention can be used to fuse

two inputs where values and keys are provided by one input and the query is provided by

another input. An example of this is the transformer by Vaswani et al. [219].

2.2.2 LEARNING

So far, we have seen many building blocks of neural networks. But an essential question is

still unanswered: Given a model and data, how do we learn the right parameters? To this end,

we first define a loss function and then optimize the model’s parameters to minimize this loss.

This optimization is normally carried out by sequential updates of the weights while feeding

samples from the training dataset to the network. If the model is differentiable, which is com-

monly the case in deep learning, the computation of the weight updates can be tremendously

accelerated by relying on the gradients of the parameters.

2.2.2.1 Loss Function

The loss function L tells us how good the current parameterization of the network performs

on a given task. It takes a model’s prediction ŷ and the ground truth y and computes a scalar

that expresses the misalignment of both. Note, in this section the loss of a single sample is

considered. In practice, it is common to compute an average loss for multiple samples (batch).

L1/L2-Loss Straightforward choices for the loss function are the L1-norm and L2-norm of the

difference between prediction and ground truth. While both are related, an important difference

is that the L1-norm is more tolerant to outliers while the punishment for extreme differences is

stronger in the L2-norm due to the exponent of two.

Cross Entropy A frequently used loss function is cross entropy which is based on the concept

of entropy from information theory. It requires predictions to be probability distributions. This

can be done by applying a softmax function on the network’s output (prediction) vector ŷ′ of
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length N , given by

ŷi = softmax(ŷ′)i =
exp ŷ′i∑N
j exp ŷ′j

.

Alternatively, the sigmoid function σ(yi) = 1
1+expyi

maps each element to the interval [0,1],

which is useful for binary classification. Let C be the number of classes or categories, then we

can define the cross entropy loss LCE by

LCE(y, ŷ) = −
C∑
i=1

yi log ŷi.

Sometimes predictions are interpreted as individual binary (e.g. presence) probabilities rather

than a probability distribution over many cases. An example is predicting attributes which are

non-exclusive, i.e. more than one attribute can occur at the same time. In this binary case, a

probability distribution can be expressed with a scalar. Hence, here the cross entropy can be

simplified to

LBCE(y, ŷ) = −y log ŷ − (1− y) log (1− ŷ).

Weighted Cross Entropy Often categories are imbalanced. This involves situations where one

category is more frequently represented in the training data than other categories. A possible

solution to this is to assign each category an individual weighting factor wi:

LCEW(y, ŷ) = −
C∑
i=1

wiyi log ŷi.

Note, this will not differentiate between samples within a category as wi only depends on the

category. However, even within a category there might be easier or more difficult samples.

2.2.2.2 Backpropagation

Many optimization methods require the derivative of the loss with respect to each layer’s pa-

rameters, which is a measure of how much this parameter has contributed to the loss. An

efficient way to compute these gradients is through the backpropagation algorithm [175].

A neural network is composed of many functions with at least some having learnable pa-

rameters (especially fully-connected and convolutional layers). The goal of backpropagation

is to determine the partial derivative of the loss with respect to all parameters, which is often

called the gradient. Let L be the loss and θ a parameter vector encompassing N elements. Then

we can write
δL
δθ

=
( δL
δθ0

, . . . ,
δL
δθN

)T
= ∇θ.
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Intuitively, this derivative tells us how the loss would change when we change the parameter.

For this, we start at the scalar loss and then traverse the network in reverse to calculate gra-

dients using the sum-rule and the product-rule. Backpropagation is also called reverse-mode

differentiation 2. For an exhaustive explanation of how backpropagation works, we refer the

reader to this blog post by Olah 2 and Chapter 3 of the book by Nielsen [155].

2.2.2.3 Weight Updating

In the context of the neural networks we discuss here, learning means updating the network’s

synaptic weights, i.e. the network’s parameters, such that the loss L is reduced. Before training

starts, the network’s weights are randomly initialized (here the underlying probability distri-

butions is crucial) or initialized with weights obtained from a previous training round (transfer

learning). Learning can be considered a search for a local minimum of the loss function. This

search is very challenging because it takes place in a high-dimensional space. Luckily, the previ-

ously computed gradients help to guide this search. This is done by multiplying the gradients

obtained through backpropagation with a learning rate λ. In gradient descent the update is

applied individually for each parameter by

θ′ = θ − λ∇θ.

Since the learning rate is not a synaptic weight but still a parameter relevant for learning it is

denoted as a hyperparameter. Common choices for the learning rate range between 0.1 and

0.0001.

In many cases it is not possible to compute the gradient for all samples of the training dataset

at once due to memory constraints. In order to elude these limitations, random subsets of the

dataset are drawn, and the network is updated based on the gradient of these mini-batches.

The mini-batch size is another hyperparameter that influences the success of training. Gradient

descent on such randomly sampled mini-batches is called stochastic gradient descent (SGD). It

can be extended with momentum by using gradients from previous iterations. This introduces

robustness to noise to the optimizer while it travels across the parameter space. For a detailed

discussion of momentum, we refer to the interactive article of Goh [75].

SGD uses the same learning rate for every parameter. However, this is not necessarily a

good idea, because some parts of a model could deal with larger updates leading to faster

learning while other might be more sensitive, requiring small learning rates. The Adam [110]

and RMSprop [203] optimizers address this problem by allowing parameter-wise learning rates.

They differ in how they make use of past gradients to adapt the learning rate for each parameter.

2http://colah.github.io/posts/2015-08-Backprop/
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A comprehensive summary including a large set of optimization methods is provided by Ruder

[174].

2.2.2.4 Normalization

In practice, a neural network’s input and activations between layers are often normalized. The

well-known batch normalization has proven to accelerate convergence and improve on general-

ization while being more robust to initializations of the network’s parameters [98]. A straight-

forward way of normalizing can be applied on the input. By aggregating statistics over the

training dataset, images (or generic features) can be transformed such that the expected value

of groups of neurons is zero with a certain standard deviation. More recent normalization meth-

ods [98, 125, 235] are adaptive, i.e. they involve parameters that are learned in addition to the

actual network weights with the sole purpose of normalizing the input. The normalization can

be carried out over different dimensions, or ranges of features along a dimension. Batch normal-

ization [98] has proven to be an essential component in many networks providing strong boosts

in training speed and accuracy. However, for small batch sizes the calculated statistics become

inaccurate, potentially disturbing the training process. This is particularly important for train-

ing large networks or large input data, where only few samples fit in the memory. Therefore,

more recently, normalization methods encompassing layers [125], instances [216] and groups

[235] were proposed. Layer normalization and instance normalization have shown to improve

sequence modelling tasks while group normalization enhanced visual recognition. The latter

positions it as an alternative to batch normalization when only small batch sizes [235] are pos-

sible.

2.3 TASKS AND METRICS

In addition to the methods discussed above, it is important for understanding the remainder

of this thesis to introduce selected tasks (or problems). In addition, we present metrics that are

employed to assess the quality of models working on these tasks.

2.3.1 LANGUAGE MODELLING

While most of the foundation section deals with topics from computer vision, language mod-

elling originates from the field of natural language processing (NLP). It involves modelling

the probability of word sequences. This means predicting how likely one or more words are,

given a window of contextual words. A simple example is finding a plausible next word for
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the sequence ”tennis is . . . “. Your internal language model will probably tell you that in this

case the words ”fun“ and ”exhausting“ are more likely than "apple“. Making useful predic-

tions requires understanding of both grammar and semantics. Hence, language modelling is a

challenging task. A favorable property is that training data can easily be obtained by removing

words from existing texts.

While neural language models are not new [20], the success of the word2vec method [144]

has revived interest in the topic. The word2vec algorithm, or more precisely skip-gram negative

sampling, proposed by Mikolov et al. [144] learns word representations in form of vectors that

are optimized to predict contextual words. The model is trained on a large-scale text dataset

by differentiating the correct contextual words from randomly sampled “noise” words. The

learned word vectors turn out to capture semantics well, i.e. words with similar meaning are

assigned vectors close to each other. Additionally, analogies are captured in form of basic arith-

metics.

Language models are typically assessed in terms of the perplexity measure. Perplexity [101,

Chapter 3] tells us how well a model predicts missing words from the context. A low perplexity

indicates good predictions of the model. Let Ci denote the contextual words of word wi in the

evaluation text W (having N words). Then we can define perplexity as

PP (W ) =
( N∏

i

P (wi | Ci)
)−1/N

.

While perplexity gives a good estimate of how well the language model works, commonly the

performance for an actual downstream task is measured [101, Chapter 3]. Recently, extended

neural language models, which use attention, were able to generate paragraphs of consistent

text when conditioned on a sentence (e.g. the first sentence of the paragraph) [219, 56]. These

models use the attention mechanism described in Sec. 2.2.1.6 to incorporate information over

already generated text and the conditional text input for the prediction of each new word.

2.3.2 IMAGE AND VIDEO CLASSIFICATION

Classifying an image or a video is a key task in computer vision and requires understanding

contents of the media. Given an image or a video, usually a probability distribution over a fixed

set of classes is generated from which the most likely class is taken. In the context of this thesis

they are important because we borrow many methods that were originally designed to work

on these tasks.

Traditionally, manually-designed features [49, 135] were extracted from images and pro-

cessed [48, 190, 124] to carry out classification. The seminal paper by Krizhevsky, Sutskever,

and Hinton [117] and its successors [189, 88, 201] revolutionized this field by learning features
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Figure 2.5: Illustration of different classi-
fication settings. The output can involve
this scheme once (e.g. image classifica-
tion) or multiple times (e.g. per-pixel in
segmentation).

in a supervised learning setting and outperforming previous approaches significantly. In the

well-known ILSVCR challenge [176] the top-performing systems have matched and exceeded

even some human performance baselines. More recently, video models have undergone a sim-

ilar development as image models with learned feature extractors becoming the standard, too

[30].

Multiclass and Multi-label In the context of classification, it is important to distinguish the

orthogonal terms multiclass and multi-label. Here, each label can assume one class out of the set

of all classes as a value. A classification problem can be binary or multiclass in one dimension

and simultaneosly single-label or multi-label in the other dimension. Multiclass single-label

classification means that, out of all possible classes for a given sample, only one class is correct.

Multi-label classification allows for multiple entities being present in one sample at the same

time. In these cases, often, the number of classes is two, i.e. a label can either be present or

absent. This is called a binary multi-label classification problem. A graphical explanation of

both terms is provided in Fig. 2.5. The number of classes and the number of labels must be

considered in the loss function used for training as well as in the metrics used for evaluation.

Multiclass classification requires a categorical loss function (e.g. cross entropy) while binary

multi-label classification requires a binary loss function that only considers presence of labels

(e.g. binary cross entropy).

2.3.2.1 Metrics

In this section we follow the distinction between multiclass and multi-label explained above.

Binary single-label classification metrics introduced here can be expressed in terms of true pos-

itives (TP), false positives (FP), true negatives (TN) and false negatives (FN). These concepts

are best explained graphically. In Fig. 2.6 a binary ground truth (purple) and binary predic-

tion (green) are depicted. Predictions that do not overlap with ground truth are false positives.

Ground truth elements (e.g. pixels or bounding boxes) that does not overlap with predictions

24



2.3. TASKS AND METRICS

Figure 2.6: Depiction of the calculation of TP/TN/FP/FN (A), intersection over union (B) and
mean average precision (C). R and P denote recall and precision.

are false negatives. At the intersection of ground truth and prediction lie the desired true posi-

tives. The white space indicates absence of both, which means true negatives.

Accuracy In multiclass single-label classification, accuracy is defined as the fraction of correct

classifications within N samples, i.e. where prediction ŷi is equal to the ground truth yi .

Acccat =
|{i | i ∈ {0, . . . N} | yi = ŷi}|

N

In binary multi-label classification, accuracy can be determined by counting the cases in which

prediction and ground truth agree. When the obtained number is divided by the number of all

considered samples, we obtain the accuracy.

Accbin =
TP + TN

TP + TN + FP + FN

In case of imbalanced data, i.e. when there are much more samples for one class than another,

accuracy can be misleading as always predicting the most frequent class (the mode of the labels)

can yield high scores without doing any computations.

Precision and Recall A better way to deal with imbalanced data is to consider precision and

recall. Precision expresses how good the samples accepted by the classifier are, recall tells us

how good the space of all correct samples is covered by the classifier.

P =
TP

TP + FP
, R =

TP
TP + FN
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To combine both metrics in a single score, often the harmonic mean of precision and recall,

denoted as F1 score, is used:

F1 =
2PR

P +R

Class-wise metrics Metrics can be computed over all available samples or specifically over all

samples of a class. The latter is often more insightful as it allows to distinguish between classes

and speculate about the reasons of deviation in the performance. Often, the average over all

class-specific scores is used as a metric because it gives more weight to rare classes.

2.3.3 SEMANTIC SEGMENTATION

While the output in image classification tasks refers to the whole image, in semantic segmenta-

tion a prediction is made densely for each pixel. Hence, the output has the same spatial extent

as the input. Hence, semantic segmentation requires other metrics than image classification. Re-

cently, multiple CNN-based approaches to semantic segmentation were proposed: While some

approaches scale-up the output in a single step [134, 38], others use multiple up-scaling steps

[172, 11]. Dilated convolutions are occasionally used due to their ability to rapidly increase the

receptive field [38, 240].

2.3.3.1 Metrics

Intersection over Union A very common metric in semantic segmentation is intersection over

union (IoU). It has the advantage of punishing over- as well as under-segmentations, i.e. seg-

mentations that capture more than the target or less than the target. For two classes, (binary)

IoU is calculated by the intersection of predicted segmentation and ground truth segmentation

divided by the union of both. As illustrated in Fig 2.6, intersection over union is calculated by

IoU =
TP

TP + FP + FN
.

For computing an IoU for C > 2 classes, we can construct C one-vs.-rest problems. This is done

by transforming all pixels of a class to 1 and pixels of other classes to 0. Now we can compute

IoU as defined above. The mean IoU is calculated by averaging all C class-specific IoU scores.

Mean Average Precision Commonly in neural networks, predictions are expressed in terms

of probabilities over classes rather than crisp true or false decisions. Intersection over union

requires us to binarize these predictions. However, if we binarize them, i.e. pick a threshold

value t and define everything below t as absent and above t as present, we add another param-

eter to the metric. Mean average precision allows to use probabilistic predictions directly. The
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calculation is sketched in Fig 2.6. First, precision is calculated over multiple different threshold

levels. One way to obtain these threshold levels is by considering all occurring prediction scores

as shown in Fig 2.6. The resulting precisions are then averaged to obtain the average precision.

This is roughly equivalent to the area below the precision-recall curve. By averaging multiple

class-specific average precisions the mean average precision (mAP) is obtained. In semantic

segmentation, each pixel is typically considered to be an individual prediction.

2.3.4 TRANSFER LEARNING

Transfer learning refers to the concept of using knowledge acquired in one task to improve

the performance in a second target task. Transfer learning is particularly useful in conjunction

with learned feature extractors. A model that must operate on a small dataset benefits from

pre-training on a large-scale dataset because the learned features are to some degree universal

when the large dataset offers a lot of variety. Currently, it is very common to initialize feature

extractors for visual tasks with features learned on the ImageNet dataset [53].

Zamir et al. [243] investigate practical transfer learning in detail. Concretely, they study the

relationship between 26 tasks concerning transfer learning using a computational approach.

They build a taxonomy that indicates which tasks benefit from transfer learning from which

other tasks. This taxonomy highlights the utility of transfer learning in real world applications.

A method of making use of transfer learning in natural language processing (NLP) are word

vectors. These vectors are generated by training a language model like word2vec [144] or Glove

[161] and are then used in other tasks. Since such vectors encode knowledge from the text, they

facilitate the conduct of other tasks. The effectiveness of this approach has been shown for

tasks such as sentiment analysis of statements [192] or question answering [237]. Recently, a

new generation of approaches that uses conditional word vectors has been proposed [93, 162,

56]. Here the idea is to generate word vectors considering the context, which particularly ad-

dresses polysemes, i.e. words with multiple meanings. E.g. the word ”bank” has a different

meaning, depending on context. Consequently, the corresponding word vectors should differ,

too. This conditioning on the context, along with other enhancements such as the use of atten-

tion, has further improved the performance on language modelling and downstream tasks, e.g.

translation.
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CHAPTER 3
Related Work

Since this thesis is composed of multiple manuscripts, each having a specific discussion on re-

lated work, this section is meant to provide a broad perspective on related work across multiple

fields.

3.1 COMPUTER VISION AND ROBOTICS

Related work within computer vision and robotics is discussed thoroughly in the individual

articles A to D. For a review of methods concerned with object semantics we refer to Section 4.2,

for affordance generation we refer to Section 5.2, for rating action plausibility to Section 6.2 and

for semantic video anticipation to Section 7.2 We constrain this review to work within computer

vision and robotics that is relevant to this thesis from a broader perspective.

There is a large body of research in action recognition [228, 249, 30, 218]. However, as stated

in the introduction, this thesis is about making action-oriented predictions (e.g. what happens

next) and action recognition is only relevant as far as the model design is concerned. For both

anticipation and recognition, we need to process image sequences and carry out a classification.

Moreover, there exist approaches that use action to predict other qualities. For example, Fouhey

et al. [65] used human actions to estimate scene geometry. Gupta and Davis [83] combined

video understanding and object perception in probabilistic framework and showed that object

recognition benefits from information about the ongoing action (and vice versa). There is some

work that falls into the category of action-oriented scene understanding but does not employ

the semantic setting we use in this thesis. Instead, they predicted future dynamics of objects

[149, 230], pursuing the goal of physically accurate predictions.
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Reinforcement Learning Inferring actions is the goal of the policy in reinforcement learning

and indeed some approaches rely on images as an input for the policy. Levine et al. [127] used

a CNN as a policy to generate motor torque. By formulating policy search as a supervised

problem, the perception module and control policy which are implemented by the CNN can be

trained jointly in an end-to-end fashion. The authors demonstrated the success of their method

by multiple robotic experiments. More recently, Pathak et al. [159] introduced a curiosity-driven

approach to learn a policy which does not depend on dense rewards. While both of these

reinforcement learning-based approaches share the goal of deriving actions from images, they

operate in a different scenario and use different methods. They involve low-level motor actions

while we are primarily interested in higher-level actions such as drinking or cutting. In contrast

to reinforcement learning used here, we exclusively make use of supervised learning.

3.2 PSYCHOLOGY AND COGNITIVE SCIENCE

Next, we review selected work from the fields of psychology and cognitive science. Naturally,

this is only related on a coarse scale as it tends to involve more theoretical considerations com-

pared to the computational methods contained in this thesis.

3.2.1 ECOLOGICAL PERCEPTION

J.J. Gibson’s work on affordances [70, 69] is a central inspiration of this thesis. Summed up,

affordances are possible interactions an animal encounters in its environment. They are specific

to the animal and the environment, i.e. the set of present affordances in a given environment is

different for each animal.

Affordances were introduced by Gibson [70] and later refined by Gibson [69, Chapter 8]

as part of an extensive theory of ecological perception, which we briefly present here: Basi-

cally, Gibson argues that animal vision is interconnected with the environment, which consists

of media (transmits light and allows motion, e.g. air), substances (no light transmission and

movement, e.g. rock) and surface (the border between substances and media). The environ-

ment is not measured in physical units but in units that are meaningful to a specific animal. In

his view, perception is direct and all necessary information is provided by ambient light emit-

ted from the environment. An observer perceives this ambient light through the optic array,

which changes when the observer moves. During the motion some properties of the optic array

remain constant, which are consequently called invariants of structure. Examples of invariants

are the horizon and the increase in texture density from close to the horizon. Changes in the

environment are caused by ecological events involving changes in the surface structure which
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are meaningful to animal.

Embedded in this ecological framework, Gibson proposes the term affordance mentioned

above. Any constituent of the environment can afford something to an animal: A substance,

medium, surface, other animal or object. The latter is differentiated between attached and de-

tached. A detached object is entirely surrounded by a medium (e.g. air) and can be moved while

an attached object cannot be moved without causing damage. Affordances must not necessar-

ily imply positive opportunities but also negative ones. For example, a knife affords cutting a

finger. Gibson defines the existing term ecological niches of an animal as a set of affordances

highlighting the complementary relation between animal and environment. Further ideas of

Gibson involve information pickup and visual awareness but are not of central relevance to this

work and are therefore skipped.

In the context of this thesis it is important to note that Gibson’s theory of ecological percep-

tion rejects the existence of intermediate 3D representations of the world and argues in favor

of direct perception. This is to some extent in accordance with our approaches where we infer

actions from 2d sensory input. However, within the networks we employ there exists interme-

diate representations of the input which might not be consistent with Gibson’s radical rejec-

tions of any mental or neural pictures. Gibson rejects static images and argues that information

pickup is a continuous process. While most of our work considers static images only, this prob-

lem is addressed by us in the article on semantic video anticipation in Chapter 7. Moreover,

in Chapter 5 we will show an approach to affordance segmentation. For a review of follow-up

work building on the seminal theory of affordances by Gibson we refer to Chapter 5.2.1. A

more elaborate discussion on the affordance term and a review on the use of affordances in the

context of robotics was conducted by Zech et al. [245]. They discuss different notions of the

term affordance that have emerged over the years and structure existing work on affordances

in the field of robotics according to a novel taxonomy.

While Gibson is a proponent of anti-representationalism (naïve realism), many scholars

argue in favor of the existence of internal representations. A notable example is the action-

oriented representation theory by Mandik [140]. For a more elaborate discussion on these philo-

sophical and psychological questions we refer to Zech et al. [244, Section 2.1 and 2.2].

3.2.2 ACTIVE VISION AND ACTIVE PERCEPTION

The active vision and active perception paradigms acknowledge the fact that human (and an-

imal) vision does not operate on static images but is active. The key idea is that the image

acquisition process can be actively controlled, potentially using information gathered from pre-

vious observations. This requires an agent that is capable of controlling its image acquisition
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parameters through processing previous inputs. It is important to note that active vision is

goal-driven. This means, there exists a target which drives the data acquisition process.

Active Vision While earlier systems implemented similar ideas to active vision, it was for-

malized by Bajcsy [13] and by Aloimonos, Weiss, and Bandyopadhyay [8]. In both articles sim-

ilar concepts are proposed which both fall under the description provided above. The active

perception of Bajcsy [13] involves a controlled and intelligent acquisition of data. Aloimonos,

Weiss, and Bandyopadhyay [8] took a more practical approach and highlighted the benefits of

active vision for a set of low- and intermediate-level problems, such as shape from texture and

structure from motion. An extensive survey on the development of active vision since its in-

ception in the late 1980s until today was recently conducted by Bajcsy, Aloimonos, and Tsotsos

[14]. They compare various approaches to active perception and related topics according to a

five components scheme. Recent implementations of active vision involve answering questions

in simulated 3D environments [51], gradually explore scenes and objects [100] or for feature

learning [166].

Interactive Perception Interactive perception [25] is a paradigm closely related to active vi-

sion. The underlying idea of interactive perception is that physical (forceful) interactions with

the environment are crucial for the interpretation of sensory signals. Bohg et al. [25] argued that

making use of structure in the shared space of multiple sensory inputs and action parameters

over time facilitates many robotic problems. This includes classic tasks like object segmentation,

pose estimation and grasp planning. The difference to active vision is the explicit emphasis on

the usage of the modality of force.

The work contained in this dissertation differs from active vision and related ideas in not

controlling the data acquisition process. Instead of setting up dedicated lab experiments where

control over the acquisition process is possible, we rely on large quantities of pre-recorded data

in the wild. Due to the variety of this data, we expect many diverse situations to be covered.

However, we agree that the action selection mechanism must be driven by perception.

3.3 KNOWLEDGE REPRESENTATION

”Common Sense: The basic level of practical knowledge and judgment that

we all need to help us live in a reasonable and safe way.“

Cambridge English Dictionary [29]

Various aspects of this thesis are related to representing common-sense knowledge: Follow-
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ing the dictionary quotation from the above, the knowledge about functions of objects can be

considered common-sense. Additionally, the ability to judge actions with respect to their plausi-

bility and to anticipate possible futures of a scene is another form of common-sense knowledge.

Common-sense is an essential ingredient in building technical systems that interact with

humans through natural interfaces (e.g. speech and gestures) to master everyday problems.

One way to put this is: Often instructions uttered by humans are vague and as such ill-posed

problems. In these cases, common-sense can act as a regularizer that enables conducting a

specific task. E.g. the instruction “put the knife into the dishwasher” is ambiguous if two or

more knifes are present in a scene. The knowledge that a dirty knife should be cleaned, and

a dishwasher conducts this cleaning is common-sense and allows the correct execution of the

ambiguous instruction.

However, injecting this kind of information to computers is extremely difficult as it is mostly

learned through experience while growing up and rarely written down. Obviously, a technical

system like a robot lacks this experience and must obtain common-sense knowledge through

different means. On the other hand, once such knowledge has been acquired, it can, other than

in humans, simply be copied from robot to robot, given the robot have an identical embodi-

ment. Acquiring and representing action-oriented common-sense knowledge poses one of the

goals of this thesis. Here we review different means to generate and represent common-sense

knowledge in general, distinguishing between declarative and functional knowledge.

3.3.1 DECLARATIVE KNOWLEDGE

The term declarative knowledge refers to information in form of facts (sometimes called “know-

ing that”) [46, descriptive knowledge]. In the following, we discuss several approaches to gath-

ering and representing this form of knowledge. Cyc [126] is an ontology designed to capture

common-sense facts, which are rarely explicitly mentioned in written text or encyclopedias. It

was started in 1984 and successively gathered more knowledge. As a commercial product, Cyc

is (at this writing) not freely available. WordNet [145] is organized as a hierarchy of synsets.

A synset corresponds to one meaning but can include one or more words, which share this

meaning (synonyms). Synsets are linked through relations hypernym (more general) or hy-

ponym (more specific) relations such that hierarchy emerges. WordNet is particularly used in

computational linguistics. The newer ConceptNet [132] is a knowledge database that seeks to

combine the simple use of WordNet with the richness of Cyc, while being openly accessible.

For this, crowd-sourced statements were gathered, automatically processed and inserted into

the ontology.

The field of statistical relation learning (SRL) encompasses many methods that combine
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symbolic knowledge representation with probabilistic approaches. A popular method is the

Markov logic network (MLN) proposed by Richardson and Domingos [170]. It augments first-

order logic with a sense of uncertainty and consists of first-order formulae that are associated

with an importance weight. A larger weight causes a larger increase in the plausibility of a

certain interpretation of the world, if the formula is fulfilled. By combining the MLN with a

set of constraints, a ground Markov network can be constructed with each state corresponding

to one interpretation of the world. Zhu, Fathi, and Fei-Fei [250] learned an MLN-based knowl-

edge base that involves both, object attributes obtained through a visual feature extractor and

affordances. Here, affordances are represented by a name, pose and human-object relative lo-

cation. During inference this knowledge base is used to infer affordances from unseen objects.

As the field of SRL is too large to be covered in its entirety we refer to Koller et al. [112] for a

comprehensive review of existing SRL methods.

In contrast to the presented methods, we do not use symbolic but distributed knowledge

representations. Actions are directly inferred from the image input without relying on interme-

diate representations.

Distributed Representations Knowledge can not only be expressed symbolically but also in

a distributed way. This means the knowledge is not stored at a distinct location but scattered

over the entire model. For factual knowledge, Socher et al. [191] proposed the Neural Tensor

Network, that stores facts implicitly in projection parameters and can generate new relations.

Nickel et al. [154] conducted a study comparing different techniques to generate new facts from

existing knowledge bases through machine learning.

In contrast to these methods, our primary focus is inferring action rather than representing

factual knowledge. Unlike our methods, the presented approaches do not use visual data to

learn from. However, a commonality is that we store knowledge implicitly in the network’s

weights, e.g. in the filters of a CNN.

3.3.2 PROCEDURAL KNOWLEDGE

Procedural knowledge is different from the factual common-sense knowledge reviewed above.

It encodes how procedures are conducted instead of being a collection of plain facts about

the world (see [46, procedural knowledge]). For an extensive review of action representations

specifically in robotics we refer to Zech et al. [244]. They introduce a taxonomy involving many

criteria of action representations including perspective, level of abstraction, prediction type.

This taxonomy is then used to structure an extensive set of 152 approaches that address this

topic. In addition, they contribute to the discussion of what an action constitutes.
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Wörgötter et al. [234] and Krüger et al. [119] proposed Object-Action-Complexes (OACs) as

a mean to represent how objects and actions interact. Each OAC consists of a description of

how the action changes the state of the world (called attribute space) associated with a success

probability. See Section 6.2 for a more detailed explanation. Aksoy et al. [5] represented ac-

tion sequences by a dynamic scene graph, capturing the relations between segments that were

obtained using an arbitrary segmentation method. These relations are touching, non-touching,

overlapping and no relation. Topological transitions of the graph are tracked in a matrix called

the semantic event chain. Recently, Ziaeetabar et al. [251] extended the semantic event chain

with static and dynamic spatial relations. Here relations are defined between hand, main ob-

ject, primary object and secondary object. Note, except for “hand”, the method is agnostic to

the classes of the objects it operates on. They showed favorable performance in early detection

of activities compared to conventional SECs and a hidden Markov model baseline. Following

the assumption of touching being a critical cue in the description of actions, Wörgötter et al.

[233] proposed an ontology for single handed object interactions. They identified a set of only

30 actions to explain (at least) most one-handed manipulation actions.

Feature-based Representations Kjellström, Romero, and Kragic [111] used histograms of ori-

ented gradient-based features [49] to represent objects as well as motion and pose of the hand

as action features to infer object affordances from video. Pirk et al. [167] proposed to represent

objects in terms of interaction landscapes. These capture potential trajectories when interacting

with a second object. They show the utility of their descriptor on various tasks such as shape

classification and saliency estimation.

Our work differs as we mostly deal with static images and do not use touching as an explicit

cue for classification. In the work on anticipation in Chapter 7 we learn relations between frames

of a sequence are learned instead of explicitly designing them.
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CHAPTER 4
Object Semantics in Visual Scenes

The first article in this thesis is positioned at the elementary level by mapping names of object

classes to vector representations. To this end, we introduce a system that uses annotated (seg-

mented) images to generate meaningful vector representations of objects. Objects are central

ingredients of household scenes and many actions can be defined based on certain objects or

aspects of objects. In particular, we show that the generated vector representations do not only

exhibit semantic but also functional properties. While grouping of objects based on their seman-

tic qualities is not action-oriented, grouping according to function is. This is because functions

imply potential interactions with a specific object in the future. Hence object functions give

hints about which actions might be carried out next. Consequently, the article is located at the

intersection between descriptive and action-oriented scene understanding comprising aspects

of both. It represents the lowest step in our abstraction hierarchy by answering fairly generic

questions like: What can I do with a certain object?

Summary Research in linguistics and natural language processing has shown that context can

be used to extract the meaning of words. In the following article, we transfer this idea to the

visual domain and show that the visual context similarly to the textual context can be used to

extract the meaning of objects. Here we define meaningful analogue to recent work in compu-

tational linguistics: Similar objects should be represented by vectors that are close to each other.

The vector representation is obtained by averaging CNN-based context representations of ob-

jects in a scene. We show that this way not only object group according to their super-categories,

but also functional classes emerge. Functional classes can be action-related attributes like "can

fly" or "has wheels". The following article is published as:
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CHAPTER 4. OBJECT SEMANTICS IN VISUAL SCENES

Timo Lüddecke, Alejandro Agostini, Michael Fauth, Minija Tamosiunaite and Flo-

rentin Wörgötter

Distributional Semantics of Objects in Visual Scenes in Comparison to Text

Artificial Intelligence (2019)

https://doi.org/10.1016/j.artint.2018.12.009

The following article’s presentation was adapted to match the format of this thesis, references

are shown at the end of the thesis. The content is identical to the published version.
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Timo Lüddecke, Alejandro Agostini, Michael Fauth, Minija Tamosiunaite and

Florentin Wörgötter

Distributional Semantics of Objects in

Visual Scenes in Comparison to Text
(published in Artificial Intelligence (2019) Volume 274)

Abstract

The distributional hypothesis states that the meaning of a concept is defined through the

contexts it occurs in. In practice, often word co-occurrence and proximity are analyzed in

text corpora for a given word to obtain a real-valued semantic word vector, which is taken

to (at least partially) encode the meaning of this word. Here we transfer this idea from text

to images, where pre-assigned labels of other objects or activations of convolutional neural

networks serve as context. We propose a simple algorithm that extracts and processes object

contexts from an image database and yields semantic vectors for objects. We show empiri-

cally that these representations exhibit on par performance with state-of-the-art distributional

models over a set of conventional objects. For this we employ well-known word benchmarks

in addition to a newly proposed object-centric benchmark.

4.1 INTRODUCTION

It remains a matter of debate, which aspects constitute the meaning of a word or of an object in

a scene and the term meaning is heavily discussed in different fields. Here we are specifically

concerned with the distributional representation hypothesis by Harris [87], which states that

the company of a word determines its meaning (distributional semantics). This study sets out to

test this hypothesis on images.

For the definition of meaning in the above sense, natural language processing (NLP) uses se-

mantic vectors, which represent word-neighborhoods in a sentence. This approach has proven

to be useful in many different applications, e.g. for text translation between different languages

[143], for determining the sentiment of a sentence [192] and for question answering [237]. The-

saurus generation, spelling correction, and query expansion count among further applications

discussed by Turney and Pantel [208].

Analogously, context in visual scenes is also important for defining the meaning of objects.

It might serve as a basis for a variety of approaches in image understanding that involve inter-

actions across multiple objects, e.g. determining useful robotic actions or finding task-relevant
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objects in a scene. Thus, in this work, inspired by NLP approaches, we develop methods to ob-

tain semantic vector representations of objects by considering their respective contexts in real

world scenes that are composed of multiple objects.

Texts and scenes are akin structures, both being composed of many individual but inter-

related constituents: words or objects. The location of a word in a sentence but also that of

an object in a scene is subject to some constraints. On the one hand, these constraints can

be fundamental, e.g. imposed by grammar or physics. The violation of these constrains will

render a sentence wrong or make a scene impossible or nonsensical. E.g., grammar forbids two

subsequent articles as much as a chair can not stand on the ceiling due to gravity.

On the other hand, obeying only grammatical constraints does not guarantee that a sen-

tence will make sense and the laws of physics will also not guarantee that a room has a useful

structure. For making sense also the respective neighborhoods need to be appropriate, i.e. the

context in which words are used or the arrangement of items in a room.

Furthermore, context can help to disentangle multiple meanings of words or objects. For

example in natural language, the meaning of a polyseme depends on its context and, similarly,

multi-functional objects are employed differently depending on the situation. In the same way

that e.g. the word “board” acquires a particular sense (out of many) by contextual words, objects

surrounding a coffee cup in a scene constrain the set of useful actions involving the cup (e.g. at

a coffee klatsch v.s. when the same cup is in the sink with dirty dishes).

However, it is only text analysis where there has been a long history of approaches that ad-

dress the question of distributional semantics and that derive the meaning of a word, at least to

some degree, from context. Interest in these approaches recently revived by the success of large-

scale methods [144, 161] exhibiting remarkable performance in judging similarity or analogy of

concepts. By contrast, little work has been done on obtaining meanings of objects by consider-

ing their scene contexts. This should, however, be possible, in particular due to the large-scale

data-sets that have recently been published in the computer vision community, which allow

now for the investigation of distributed semantics in the domain of objects. Therefore, it seems

justified to investigate the learning of semantic vectors not only of words but also of objects.

In this work we study the hypothesis that the spatial context contributes to the meaning of an

object in a scene, analogously to surrounding words defining the meaning of a word. To gather

evidence we design an algorithm that extracts semantic vectors from scenes as visualized in

Figure 4.1. We aim at analyzing a big enough set of images to arrive at a representation, where

semantic vectors for similar objects would group together. Figure 4.1 schematically shows this

for cake, spoon, fork and knife, which group together (see schema with object names) but

remain separate from bicycle, motorcycle and car, which form a different group. Just from com-

mon sense one would hope to obtain such clustering results, but there are obvious differences
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Figure 4.1: By assessing object co-occurrences and visual features we obtain semantic vectors
for objects (right, actual output).

between sentences and scenes. In contrast to a scene, a text is a linear structure, i.e. each word

has a predecessor and a successor. Thus, while there is the straightforward assumption that the

distributional hypothesis should also hold for images, it remains quite a question whether or

not the more complex 3D layout of the visual world (or its 2D image projections) might not ren-

der context relations too spread out? Hence, we ask: Will scenes provide equally strong context

relations than text? In this paper we address this question comparing a large set of different

NLP as well as image-based methods.

4.1.1 OVERVIEW OF THE APPROACH

A schematic introduction to our approach in comparison to linguistic approaches is presented

in Figure 4.2. Common distributional models (top) take natural language text corpora, deter-

mine word sequences, and generate context vectors by word co-occurrence. A context vector

describes the surrounding of individual entities (such as words) by an array of real numbers.

Different methods are used to combine such vectors so that finally semantic vector representa-

tions emerge for different concepts that can be compared. In essence, our approach (middle)

is similar, but it only considers concepts that are objects. We take scene datasets and extract

different image descriptors, which are (see numbering in the figure): 1) Human-assigned ob-

ject labels, 2) object labels automatically obtained by applying an RCNN [71] to detect objects,

and 3) CNN activations, which are features generated using pre-trained convolutional neural

networks. From all three approaches we extract context vectors for each object in each scene.

Context vectors are then merged together to create the unique semantic vector for a specific

object class. This allows directly comparing not only the three types of descriptors but also

benchmarking our results against automatic NLP-based methods (top) as well as against hu-

man rater-based methods (bottom). This is done by measuring semantic distances between

objects (the inverse of semantic similarity) in the respective semantic vector spaces.
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Figure 4.2: Flow diagrams of the analyzes performed here with standard natural language pro-
cessing, our new approach, as well as based on human labeling. In red, we show the abbrevia-
tion of the different analysis methods used (for descriptions see Methods).

4.1.2 CONTRIBUTIONS

We propose a simple algorithm to compute semantic vectors for object classes in segmented

images and extensively compare this with existing (text-based) methods. This paper is to our

knowledge the first to specifically focus on objects in scenes. In addition to the analysis of

existing data, we also collected a dataset of similarity and relatedness judgments for 250 object

pairs from 20 raters specifically slanted towards everyday objects.

Our analysis shows that the obtained image-based representations are on par with existing

text-based representation methods. Quality can be further improved by concatenating different

context models. These findings indicate that not only text might serve as a basis for distribu-

tional semantics but also visual scenes, which are fundamentally different from text.

The remainder of this paper is structured in the following way. Literature, mostly originat-

ing in the natural language processing community, is reviewed in Section 2. Section 3 introduces

the theoretical background of our approach and section 4 the experimental methods. In order

to assess the validity of the approach, experiments investigating the semantic similarity are

carried out in Section 5. Discussion and outlook are provided in Section 6.

4.2 RELATED WORK

There are many approaches originating from diverse fields that can be related to our work. They

are discussed in this section and ordered according to the field they come from. Most similar

to the idea of this paper are approaches that link distributed semantics from natural language
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processing with images. However, the field of natural language processing arguably has the

largest impact on this work and is consequently discussed next in more detail. Image labeling

is discussed, too, as it links visual with textual data.

Natural Language Processing The idea of representing entities through distributional repre-

sentations has its origins in linguistics. The distributional hypothesis introduced by Harris [87]

established the field of distributional semantics. The idea in distributional semantics is to statis-

tically analyze the distribution of words or other linguistic entities in order to derive a meaning

or simply put: “You shall know a word by the company it keeps.” [63, 208].

Several methods represent contextual concepts as real numbered vectors, either as an inter-

mediate representation to be used in various NLP tasks [20, 45, 16] or, as we do in this work, as

the final output to be assessed with respect to semantic similarity [207].

An elaborate survey has been conducted by Turney and Pantel [208]. The work by Lund

and Burgess [138] is particularly relevant as their co-occurrence-based method is closely related

to our approach but differs with respect to the derivation as well as the data underlying the

methods. A direction of research, which is only laterally addressed by Turney and Pantel [208],

is based on parameterizing more complex statistical models by optimizing from random ini-

tializations. Bengio et al. [20] proposed to condition the probability of a word on the context of

co-occurring words by a neural architecture. This system learns to represent words as vectors

and to employ these representations in order to infer the word probability. Recently, starting

with the word2vec algorithms [144], large scale models have gained a lot of attention due to their

ability to extract synonyms and analogies with remarkable quality for numerous words in an

unsupervised way from text collections. Subsequent papers discussed further ways of obtain-

ing word vectors exhibiting these properties [161] and related them to traditional approaches

[128].

Image Labelling Vector representations are not only employed in natural language process-

ing but also in computer vision. Some image labelling methods learn to map images and labels

(i.e. text) into a joint space. One of these approaches is the WARP model of Weston, Bengio,

and Usunier [232]. Images are mapped to this space by multiplying a bag-of-visual-word rep-

resentation of the image, which can be obtained by quantization of features [48]. Learning is

carried out by an optimization procedure starting from random initializations for the mappings

and then minimizing the hinge rank loss, given ground truth data. Having learned the map-

pings, unknown images can be mapped into the vector space and, by determining the nearest

neighbors, labels can be predicted.

Instead of training from scratch, a more recent approach [67] makes use of transfer learn-
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ing. They learn a mapping for images into the word vector space obtained using the skip-gram

model proposed by Mikolov et al. [144]. The mapping is carried out by a pre-trained convo-

lutional neural network that is fine-tuned to adapt to the task using a hinge rank loss. At test

time, the image is mapped into the joint vector space and its nearest neighbors are evaluated in

order to predict a category.

Both approaches differ from our methods because they aim at attributing labels to images

based on their visual content rather than obtaining general vector representations of objects.

They focus on images presenting a single salient object (which is common in ImageNet) whereas

our work is interested in constellations of multiple objects.

Distributed Semantics and Images Linking distributed semantics from natural language pro-

cessing with images is not a new idea. There has been some work employing labels or tags of

images in order to link textual meaning with visual features extracted from the images.

Feng and Lapata [61] propose a method that works on documents with an associated image

and experiments are conducted on news articles. For both modalities, a bag-of-word represen-

tation is used with the image’s representation being obtained through extracting visual words.

SIFT descriptors [135], which capture local edge orientations, are extracted from images and

matched to visual words, which have been learned previously by k-means clustering of all fea-

ture descriptors from all images. In this way, visual words can be treated like actual words

in a text, i.e. semantic vectors are assigned to words. A topic model, based on Latent Dirich-

let Allocation [24], is trained on documents involving both, textual and visual words. In their

experiments, the model is used to measure similarity between words.

Bruni, Tran, and Baroni [27] also employ visual words descriptions of images. However,

visual features are computed differently: SIFT is extracted densely (without keypoints) with

spatial binning from each channel of a HSV encoded image, making the algorithm sensitive

to color. Also, a simple count model is employed rather than a topic model. Visual words are

used in conjunction with multiple textual labels (tags) to obtain co-occurrence counts for certain

terms. Finally, they are transformed into Local Mutual Information association scores. Multiple

models of fusing representations from the modalities are discussed.

Kádár, Alishahi, and Chrupała [102] propose a model to learn meanings of words using im-

ages and their caption text, relating words to visual features. Similarly to our work, they make

use of pre-trained Deep Convolutional Neural Networks (DCNNs) to extract visual features. A

similar approach is pursued by Kiela and Bottou [108]. Rather than relying on captions, they

concatenate visual features of multiple object classes of ImageNet [53], which have been ex-

tracted using pre-trained DCNNs with the well-known word semantic vectors from Mikolov et

al. [144]. Both assess their models on common word similarity benchmarks. Another example
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of a DCNN-based approach is by Peterson, Abbott, and Griffiths [163]. They extract features

from 120 photographs of animals and observe that the pairwise dot similarity between the fea-

tures only correlate weakly with human similarity judgments. Consequently, a transformation

of the visual features is learned which strongly increases the correlation with human judgments.

All the discussed approaches differ from our work in the aspect that labels or text refer to the

entire image rather than only to regions of it. In our setting, due to availability of segmentations,

we are able to directly access both, object location in the image and class of the object, which

enables us to explicitly focus on the context of objects rather than the features of the object itself

and with this we can evaluate the validity of the distributional hypothesis in images.

4.3 DETERMINING IMAGE-BASED CONTEXT

One of the central assumptions of the approaches discussed above is that context strongly deter-

mines meaning. In this section we will, therefore, first describe how we define object context in

an image and then how we integrate contexts extracted from separate images to obtain context

representations over an image database. We call context obtained for one object in one image

context instance or context instance vector and the context representation of an object integrated

over many instances we call semantic vector. As our main approach for integration is context

averaging, we will also provide a mathematical justification for that. For comparison, we also

use the standard skip-gram method and the median for integration. Finally, we explain how

we concatenate different features to create fused context representations.

4.3.1 CONTEXT INSTANCE DEFINITION

Given a dataset of scenes containing multiple objects, context extraction is applied on each

object in each scene to obtain the set of context instances for each object. In this study we used

two main approaches to define object instance context in an image: label-based context, described

in subsection 4.3.1.1 and visual feature-based context, described in subsection 4.3.1.2.

4.3.1.1 Label-based

Label-based contexts fully rely on image annotations, i.e. image pixels are not taken into con-

sideration. An illustration of a context description for this case is provided in Fig. 4.3. Three

schematic images are shown (left), where objects are represented by abstract shapes. Two ways

of determining context are here defined: For each object in the scene all neighboring objects for

each of the other object classes are counted. The resulting counts are used as the components

45



CHAPTER 4. OBJECT SEMANTICS IN VISUAL SCENES
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Counted
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Figure 4.3: The context averaging method considers each object (illustrated by shapes) in each
image and determines its context. Subsequently, the averaged context is calculated across all
objects and used as a semantic vector. Contextual instances can either be counted (co-count) or
just indexed (co-occurrence) and the reference object can be counted among the context (self) or
not (noself).

of a vector, which is then taken as the instantiation of this object’s context. We call this model

co-count (CC, see column called “Counted Instances” in the left box in Fig. 4.3). Alternatively,

we can neglect the number of objects in the scene and just tick-mark every existing object creat-

ing a binary (there vs. not-there) vector. This model will be referred to as co-occurrence (CO, see

column called “Binary Instances” in the right box in Fig. 4.3). The reference object (the object

we currently consider) can be counted among the context or not, which we call s or n (self or

noself, Fig. 4.3, right vs. left). Hence for a label-based vector v holds: v ∈ NN with N being the

number of object classes in the dataset, in case of co-occurrence even v ∈ {0, 1}N .

4.3.1.2 Visual feature-based

An alternative, yet also image-based, way of describing object context is through visual features.

While multiple approaches to extract visual features from an image are possible, e.g. bag-of-

visual words [48], recent years have been dominated by the success of convolutional neural

networks (CNNs), where activations in specific layers can be considered as an abstract repre-

sentation ("features") of the image that was fed to the CNN. Here we constrained our analysis

to four CNNs which were trained on ImageNet [53]: InceptionV1 (GoogLeNet) [201], InceptionV4

[202], VGG16 [189] and ResNet50 [88]. In contrast to label-based vectors, visual feature-based

vectors are more general. If o is an object with an associated image then the visual feature-based
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context f of o is defined as the result of the sequence of the interleaved matrix multiplications,

non-linearities, and pooling operations performed in the CNN up to the layer from which f

is extracted. Visual-feature-based context is described as a vector of real numbers as opposed

to a vector of natural numbers for the label-based context, above. Technical details of the em-

ployed CNNs are shown in Table 4.1, where Feature Size indicates the number of features we

were actually using.

Network architecture Feature Vector Layer Feature Vector Size reported top5-accuracy

InceptionV1 AvgPool_1a_7x7 1,024 89.6 %
InceptionV4 global_pool 1,536 95.2 %
ResNet50 global_pool 4,096 89.8 %
VGG16 fc7 2,048 92.8 %

Table 4.1: Comparison of the employed pre-trained CNNs. The layer from which features are
extracted, the number of features as well as top-5 accuracy achieved in the ImageNet classifica-
tion challenge are provided.

Following the distributional hypothesis [87], we constrained our analysis to the image re-

gion that pertains to the context of the object but exclude the object itself. In the visual feature-

based case this means that we extract CNN features after covering the reference object with

black box mask, such that not even the shape of the object is visible. In case there are multiple

objects considered all this is done for every one of them.

From a theoretical perspective, we expect a black box in the image to inhibit the features

of the masked area and this way emphasizing the features extracted from the unmasked area

– the context. If the convolution window contains both, mask and contents, there might be

inference. However, this is a bias that affects the “context” of every object and even if "wrong"

features are now introduced, they are canceled out when analyzing the differences (distances)

between two object representations. Actually, we experimented with an object-shaped (instead

of rectangular) black mask, which yielded similar results.

4.3.2 CONTEXT INTEGRATION

Context integration is used to obtain the semantic vectors. Three methods are compared: con-

text averaging, skip gram based context integration, and the use of the median instead of the

average.
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4.3.2.1 Context Averaging

One way to obtain the semantic vector of an object is to calculate the element-wise average of

the context vectors obtained for individual object instances. This seems overly simple but it is

in fact the maximum likelihood estimator of the underlying distribution(s) of objects in images,

as shown below.

Let the set O(k) denote all object instances of class k in the dataset. f is any context extrac-

tion function that considers an object’s context and returns a real-valued vector representing

this context. Examples of such functions are described in 4.3.1.1 and 4.3.1.2. The vector repre-

sentation Λ̂k for concept k is then obtained by this formula:

Λ̂k =
1

|O(k)|
∑

o∈O(k)

f(o) (4.1)

The averaging method is illustrated in Fig. 4.3 for the “black-disk-object” •. Each highlighted

row corresponds to the context vector of the black disk for the corresponding schematic image

on the left side, hence to a vector f(o) in equation 1. In the depicted case k = • the semantic

vector Λ̂• is obtained by averaging the individual context vectors.

For obtaining semantic vectors when using visual-feature-based analysis the real-numbered

context instance vectors are averaged in the same way to obtain object class representations.

Justification for context averaging The averaging of context can be justified by imagining a

scenario where the scene is scanned from the perspective of an object o and considering each

time another object is seen as an event, which is dependent on the object class of o. In the co-

count model (CC), the number of such events (per object class) is described by integer random

variables, while in the co-occurrence model (CO) the random variables refer to the probability

of the event. Consequently, the underlying distributions are for co-count Poisson and for co-

occurrence Bernoulli. For both distributions, averaging all observations is equivalent to the

maximum likelihood estimation of the distribution’s parameters. Hence, we implicitly define

the meaning of objects to be optimal parameters of random distributions over visual features or

object labels of given observations in a large scale dataset.

The theoretical motivation for averaging rests on the following arguments first discussed

for the co-count model. As stated above, scanning a scene under the co-count model renders

that the number of contextual objects of type i given the object class k is Poisson distributed, i.e.

ci | k ∼ Poisson(Λki) with each ci ∈ N0. Hence, the corresponding likelihood function is

L(λki | c̃(0)ki , ..., c̃
(n)
ki ) =

N∏
j=1

λc̃
(j)
ki e−λ

c̃
(j)
ki !
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with {c̃(j)ki | j = 1, ..., Nk} being the observed counts of object i in the context of object class k.

Then the maximum likelihood estimator for each λki is the sample mean.

An alternative model is the co-occurrence model. Here, we only mark object existence.

Hence, we assume that encountering one or more objects of class i in the context of class k has

a certain success probability. This leads to P (ci | o = k) ∼ Bernoulli(pik) with each ci ∈ {0, 1}
and the likelihood function

L(pki | c̃(0)ki , ..., c̃
(n)
ki ) =

N∏
j=1

pc̃
(j)
ki (1− p)(1−c̃

(j)
ki )

Also here a maximum likelihood estimation of the parameters pki is represented by the

sample mean. In the Appendix we provide additional derivations concerning these aspects.

4.3.2.2 Skip-Gram-based Context Integration

In addition to the counting-based averaging described above we implemented a skip-gram-

based context integration method, which originates from natural language processing and is

considered to be state-of-the-art therein. Its goal is to generate representations of words that,

given one word from a corpus, allow for the prediction of contextual (surrounding) words. This

algorithm serves as the basis for the word2vec [144] programs, which have been shown to yield

very good semantic word representations.

We implemented the skip-gram negative sampling algorithm [144], which approximates

the skip-gram target in a computationally efficient way, by using a fixed number of negative-

sample-pairs. This method is only compatible with co-occurrence (CO) context. In our case,

positive samples are obtained from pairs of objects within an image. Training is carried out for

50 epochs with a learning rate of 1. For every positive sample, 25 negative samples are presented

and the dimension of the concept vectors is 64. A detailed exploration of hyperparameters

leading to values reported above is provided in section 4.10.6 in the Appendix.

4.3.2.3 Median-based Context Integration

In general, there would be many more integration methods possible and we had to limit our-

selves to some of the most common ones, where using the median appears another possible

"natural" choice. Results are not impressive and therefore we show this only in the Appendix

to not overburden the main text.
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4.3.3 FUSION OF CONTEXTS

Label-based and visual feature-based contexts encode different information. The former tells us

something about co-occurring object classes using a high-level (symbolic) description, while the

latter addresses visual appearance (features) of the context-objects. Hence, it appears natural

to combine both and see whether the semantic quality improves. While there exist various

possible methods, we will emphasize on concatenation. The advantage of this method is that it

does not require strong assumptions on the structure of the context vectors, i.e. it can be used

to combine any number of real-valued vectors, also in case they have different length.

Concatenation can be applied at two levels: Given a scene and one object in that scene, we

can apply several context extraction methods, e.g. label-based context and visual-feature-based

context and concatenate both context vectors. This procedure we call early fusion. Alternatively,

we can integrate contexts into semantic vectors using the two methods independently and then

concatenate the obtained vectors; e.g., we first average all visual feature-based contexts of "car"

and average all label-based contexts of "car" and then concatenate the resulting two vectors.

This we call late fusion.

Let f and g be two context extraction methods, O(k) the set of all object instances of class k

in the dataset, and φ denote the context integration function (e.g. averaging).

Then we can formally define early fusion as

Λearlyk = φ({f(o) || g(o) | o ∈ O(k)})

with || being the concatenation operation which involves normalization using mean and

standard deviation of each vector:

a || b = (
a− µa
σa

,
b− µb
σb

).

Late fusion is defined by:

Λlatek = φ({f(o) | o ∈ O(k)}) ||| φ({g(o) | o ∈ O(k)}).

with ||| also being a concatenation operation but here normalization is made in a different

way. Let a be the semantic vectors obtained by the first of the two to-be-fused context extrac-

tion methods for each object included in the study. Then we arrange those semantic vectors

into matrix A row-wise (each vector is one row). Analogously, into matrix B semantic vec-

tors obtained using the second context extraction method are arranged. From those matrices

we obtain the vectors of the means: µ(A) and µ(B), and their standard deviations: σ(A) and
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Image Training datasets
Dataset #Classes #Scenes #Instances

COCO 80 82,081 604,907
LM 3,288 28,072 325,288
RCNN 79 111,974 286,835

Text Training datasets
Method Dataset #Words

W2V-Neg GoogleNews 100B
Glove Wikipedia + Gigaword 5 6B

Human-rater datasets
Name #Words #Pairs
Scene250 80 250
Simlex999 1028 999
MEN 751 3000

Table 4.2: Overview of image datasets used to obtain vector representations. LabelMe dataset
abbreviated as LM.

σ(B) now column-wise, so that each semantic vector is zero-centered and normalized. Then the

concatenation operation uses this normalization:

a ||| b = (
a− µ(A)

σ(A)
,
b− µ(B)

σ(B)
)

where subtraction and division operations are performed element-wise.

In section 4.10.2 in the Appendix we introduce and analyze more fusion techniques.

4.4 STANDARD METHODS FROM NLP

One major goal of this study is to compare our new image-based methods against state-of-the-

art text-based methods for the extraction of semantic vectors from NLP (see top in Fig. 4.2).

For this we used Glove [161] (50 dimensions, 6 billion tokens) and the skip-gram negative-

sampling method (part of Word2Vec toolkit, 300 dimensions, 100 billion words, Google News

dataset) [144]. In both cases, we downloaded pre-computed semantic vectors provided by the

authors from the Internet. As these are standard methods, we do not extend explanations here

and instead refer the reader to the respective references [144, 161].

4.5 DATASETS

4.5.1 IMAGE DATASETS

Since our method requires annotated image data, we started our experiments using datasets

offering object bounding boxes as well as object labels for each box. However, to show that our
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method can also be used in case where only raw images are available, we took an additional

dataset that is initially not annotated and we used an advanced off-the-shelf object detection-

and-labeling algorithm to perform automatic labeling. Specifically, we used COCO [130] and

LabelMe [177] as annotated source datasets. We created the additional, automatically labeled

dataset, which we will call RCNN through-out this paper, from a combination of images from

the COCO and ImageNet [53] datasets. Dataset statistics are presented in Table 4.2.

4.5.1.1 Manually annotated datasets

Both, COCO and LabelMe provide annotations in form of object segments with corresponding

object names. The COCO dataset has 7.4 object labels per scene on average and the LabelMe

has 11.6 object labels. The object labels in COCO are very reliable, but the dataset contains

only 80 object classes, while LabelMe provides a more diverse set of classes but has a tendency

to contain wrong or nonsensical labels due to being crowd-sourced. Because of this, we only

consider object labels that occur at least three times in LableMe, which yields 3288 object classes.

4.5.1.2 Automatically annotated dataset, RCNN

We have created the RCNN dataset by applying the object detector Mask R-CNN which is a

pre-trained neural network taken from [89]. Mask R-CNN takes a raw image as input and au-

tomatically generates labeled bounding boxes for objects detected in the scene. This way an

annotated dataset is created, which is analogous to the manually labeled datasets introduced

in the subsection 4.5.1.1 above. We used on purpose the same initial dataset, namely COCO, to

create RCNN, to allow for a direct comparison with the results from the human-labeled data.

We were, however, forced to use the smaller testing set of COCO, because He et al. [89] had

trained Mask R-CNN on the COCO-training set. Thus, to increase the resulting RCNN dataset,

we added a subset of ImageNet images. With this, we processed 160,000 images in total and

Mask R-CNN found objects in 111,974 images therein, because of a high threshold we applied

for reliable object detection. By this procedure, 79 object classes were discovered from the possi-

ble 80 COCO objects classes for which the Mask R-CNN was pre-trained. The average number

of discovered objects per scene is 2.5.

4.5.2 HUMAN RATER-BASED DATASETS (GROUND TRUTH BENCHMARKS)

To compare our scene-based analysis with the corresponding results obtained in natural lan-

guage analysis, we conducted extensive experiments on common human rater-based bench-
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marks from NLP including a newly introduced benchmark specifically targeting everyday ob-

jects.

All these benchmarks rely on word-pair comparisons assessed by human raters. In general,

two relations are measured: similarity and relatedness [90]. Similarity refers to shared properties

between the two words (concepts) in a pair; e.g. a train and a car both have wheels, move on

their own and host passengers. On the other hand, the more general aspect relatedness incorpo-

rates additional relationships [28], like function or meronymy; e.g. a remote control is used to

turn on the TV, hence, both are related but not very similar.

4.5.2.1 Existing word pair-based benchmarks

Here we used the MEN ([27], 3000 word pairs) and SimLex999 ([90], 999 word pairs) bench-

marks. Naturally, we had to restrict all analyses to the intersection of words between benchmark-

and image datasets, which is rather small (for quantification of intersection see section 4.10.3 in

the appendix).

4.5.2.2 Novel object name-based benchmark

Due to the small intersection found for the common benchmarks, we decided to create our

own benchmark dataset, called Scene250, which consists of a randomly sampled subset of 250

pairs from the possible 3160 pairs made by the 80 COCO objects. This way, Scene250 fully

intersects with COCO and also to a large degree with LabelMe (see section 4.10.3). We asked

20 adult raters (10 male, 10 female) to indicate the degree of object similarity and relatedness

in those pairs using a scale from zero to ten. The concepts of similarity and relatedness were

explained to the participants based on definitions and examples. For obtaining the final score

we averaged the scores from all 20 participants. The average pair-wise Spearman correlation

coefficient across raters was 0.544 for similarity and 0.659 for relatedness.

The Scene250 dataset is available for download at:

http://www.dpi.physik.uni-goettingen.de/cns/index.php?page=coco-wordsim.

4.6 MEANS FOR QUANTIFICATION

We introduced two quality measures to evaluate obtained semantic vectors: (1) clustering con-

sistency and (2) system- to-human correlation.
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4.6.1 CLUSTERING CONSISTENCY

This measure is based on the organization of the 80 object classes contained in the COCO dataset

into eleven super-categories, like animal, vehicle, kitchenware, etc [130]. In an ideal case, the

closest neighbors of a given semantic vector would all belong to the same super-category. We

measure to which proportion this is satisfied. Specifically, for every object o in a super-category,

we consider its semantic vector and then find the k nearest neighbor semantic vectors. Of

those k vectors we count the number of objects that fall into the same super-category as o and

normalize the count by k. Then we average results for all o in that super-category, for all super

categories and, finally, we average scores for k = 1 to k = 5 (5 is the size of the smallest super-

category in COCO) to obtain a single scalar score. For COCO we have 80 object classes in an

80-dim semantic vector space. To remain comparable, we are also evaluating LabelMe using

a compatible subset of 60 classes occurring in LabelMe from the 80 COCO classes, but now

the semantic vectors have 3288 instead of 80 dimensions. The clustering consistency measure

is based on similar grounds as the most common standard classification accuracy metrics for

a k-nn classifier, like e.g. precision and recall. To keep the main text concise, we discuss this

relation in more detail in subsection 4.10.4 in the Appendix.

4.6.2 SYSTEM-TO-HUMAN CORRELATION

For this we compared similarity (relatedness) scores of word-pairs determined by human raters,

using the benchmarks MEN, Simlex, and Scene250, with ratings for the same pairs calculated

by the different automatic procedures. This can be best understood by a simple example.

Let us assume that our benchmark dataset consists of five word-pairs, which are here listed

in descending order according to their human-determined similarity (rank-order list):

motorcycle-bicycle, train-motorcycle, car-train, train-orange, orange-airplane.

From the vector representations of our concepts, calculated by – say – VGG16, we can com-

pute the semantic vector distance between word pairs. Semantic distances could be: car-train:

d = 0.2, orange-airplane: d = 0.8, motorcycle-bicycle: d = 0.1, train-orange: d = 0.9 and train-

motorcycle: d = 0.3. For comparison, we – thus – use inverse distance and we get the following

rank-ordered list:

motorcycle-bicycle, car-train, train-motorcycle, orange-airplane, train-orange.

Both lists are not identical but clearly correlated, which we can quantify using the Spearman
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rank correlation coefficient, for which we get in this example a value of 0.8.

This Spearman rank correlation calculation has been performed for COn, CCn, COs, CCs, In-

ceptionV1, InceptionV4, VGG16, ResNet50, Skip-Gram and Random vectors against MEN, Simlex,

and Scene250, whenever there were enough word-pairs existing in both datasets (see section

4.10.3 for quantification of word-pair intersections).

Note that all automatic procedures will calculate only one distance value for any given pair.

Thus, we compared the resulting inverse distance rank list to both, similarity as well as related-

ness, rank lists from the human raters.

4.7 EXPERIMENTS

This section reports the quantitative results of our experiments. Regarding the measure of se-

mantic distance, we found that there are no consistent differences between results obtained with

Euclidean versus cosine distance. Both measures render the same results with usually less than

±10% differences. Therefore, we show only results for the cosine distance, which is the one

commonly used in the relevant literature.

In the following we show that our visual-feature based semantic vectors match the quality of

state-of-the-art text-based methods for everyday objects despite being extracted from different

data with a much smaller number of samples.

4.7.1 COMPARISON OF CONTEXT MODELS

The first experiment (see Fig. 4.4) is used to compare different context models and here first

and foremost label-based context vs. visual feature-based context. Performance is analyzed

using semantic vectors that we had we obtained from the three scene datasets (from top to bot-

tom): COCO, LabelMe and RCNN. Number of classes, scenes and contexts in those datasets are

provided in Table 4.2 in section 4.5.1. Label-based contexts are annotated as CO or CC (corre-

sponding to Co-Occurrence and Co-Count as discussed in section 4.3.1). With subscripts s or

n we indicate whether the reference objects is excluded from the context description (s means

self-included, n means non-self-included). Visual-feature-based contexts are obtained by the

CNNs VGG16, InceptionV1, InceptionV4 and ResNet50. All the mentioned contexts are obtained

using averaging for context integration. Skip-gram performance for the context COn is pro-

vided as a baseline, for comparison with the averaging-based methods. Chance performance is

indicated for each case, too (see label “Random”). For the skip-gram and the chance columns in

Fig. 4.4 the ten samples, from which the average is obtained, are shown by horizontal lines on
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Figure 4.4: Experimental evaluation of different context models (given by different colors, see
legend at the bottom of the figure) on COCO (top), LabelMe (middle) and RCNN (bottom).
On the left side clustering consistency is shown. On the right system-to-human correlation for
Scene250 data measuring similarity (sim) and relatedness (rel) are shown.

the corresponding column. The remaining columns do not rely on any randomized sampling.

All plots on the left show the clustering consistency measure for the different methods and the

ones in the center and to the right show the system-to-human correlation as described above. For

clustering consistency, neighbors in the semantic vector space are analyzed based on the existing

division of the 80 COCO object classes into 11 super-categories as given by the developers of this

dataset. System-to-human correlation is based on our newly introduced Scene250 benchmark.

One can observe that all measures for all contexts show clear above-chance performance. Dif-

ferent measures show similar rank-order for the analyzed contexts, which also holds between

the COCO and LabelMe datasets. RCNN shows a bit lower scores when measuring system-

to-human correlation for label-based contexts. However, RCNN is the one dataset with the
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Figure 4.5: Plot of the Spearman correlation coefficient with similarity ratings in relation to the
number of instances used for training.

sparsest labels: only 2.5 labels per image on average as reported in the method section above.

Apparently, object density is still enough to support visual-feature-based context analysis, but

is too low for reliably analyzing label co-occurrences.

Furthermore, we find that the skip-gram negative sampling baseline (based on COn, see 9-th

column in each plot) is performing almost always worse than the corresponding COn context

obtained through simple averaging (7th column). The exception is the RCNN dataset where

sparsity of labels seem to make evaluation of label-based contexts less stable, as discussed

in the paragraph above. Relatively low skip-gram performance might have several reasons:

In contrast to text corpora where skip-grams are employed on very big datasets, our dataset

have a fairly small amount of labels. Also, negative sampling requires many hyper-parameter

choices (number of negative samples, sampling strategy of negatives) and there is some chance

that there are better configurations which we did not find despite a fairly extensive search (see

subsection 4.10.6 in the Appendix).

Surprisingly we found that visual feature-based contexts (specifically, look at ResNet50) ex-

hibit better performance than label-based ones. Hence, it appears that CNN-generated visual

features have a stronger association with the meaning of objects than manually assigned class

labels, where — in addition — the latter is also more expensive to obtain. In general, best per-

formance is found for context model CO(s and n) and for feature-based model ResNet50 and

VGG16. Thus, for further evaluations we put an emphasis on these methods.

Concerning system-to-human correlation (central and right column) we find that our system
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Clustering Scene250
consistency sim rel

MSCOCO (80 concepts)
COn 0.533 0.467 0.489
VGG16 0.648 0.513 0.593
ResNet50 0.698 0.460 0.533
LateFusionNorm: VGG16+COn 0.680 0.643 0.685
EarlyFusion(norm): VGG16+COn 0.656 0.579 0.645
LateFusionNorm: ResNet50+COn 0.738 0.663 0.696
EarlyFusion(norm): ResNet50+COn 0.702 0.522 0.587

RCNN (79 concepts)
COn 0.472 0.317 0.312
VGG16 0.662 0.547 0.616
ResNet50 0.691 0.494 0.559
LateFusionNorm: VGG16+COn 0.717 0.653 0.704
EarlyFusion(norm): VGG16+COn 0.690 0.614 0.681
LateFusionNorm: ResNet50+COn 0.726 0.686 0.715
EarlyFusion(norm): ResNet50+COn 0.713 0.554 0.614

Table 4.3: Fusion of contexts extracted from COCO and from RCNN.

most of the times produces slightly bigger system-to-human correlations for similarity than

relatedness. We get a maximal correlation of 0.616 for similarity and of 0.550 for relatedness.

Correlation between humans is 0.544 for similarity and 0.659 for relatedness. This is to some

degree remarkable because it shows that this system performs very close to the human level.

An additional, important observation is that the RCCN dataset, which is automatically la-

beled, together with neural net methods (visual-feature-based approaches (VGG16, InceptionV1,

ResNet50, left bars) will lead to scores that are even higher than those from the COCO dataset.

This is quite remarkable as automatic labeling using Mask R-CNN is less reliable than human-

labeling. These findings demonstrate the impressive progress in object detection in recent years

and suggest that applying an object detector as a pre-processing step is a viable solution to-

wards a system that handles a huge number of scenes, beyond a quantity that can annotated

by humans. In the future, performance could be improved simply by plugging-in a more ad-

vanced object detection algorithm. In particular it would be interesting to see a larger set of

objects being covered.
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4.7.2 SCALE: DEPENDENCY ON THE SIZE OF THE DATASET

Under the assumption that quality increases with number of data points, a valid question is to

ask whether quality has already reached ceiling with the here-used number of scenes or whether

we can expect it to further increase given a larger dataset. Since the number of considered object

classes might be a crucial factor, we determine the scaling behavior for the COCO dataset as well

as for the more diverse LabelMe dataset.

Figure 4.5 suggests a different answer for both datasets: the results that have been obtained

from the COCO dataset (80 different objects and 604,907 context instances (see 4.3.1)) reach

ceiling already at 1000 analyzed contexts (not scenes) while, when using LabelMe (3288 differ-

ent objects), there is no clear saturation visible even at 325,288 analyzed instances, which are

all the instances available for this dataset. This can be expected since the number of context

vector dimensions for LabelMe is much larger (due to a higher number of possible contextual

objects) and this allows for more configurations of the context, requiring more examples for

convergence.

4.7.3 FUSION OF CONTEXTS

Table 4.3 reports fusion results on the supervised COCO dataset as well as the automatically

annotated RCNN dataset. We apply fusion of the context COn (which is among the best label

based contexts as shown in Figure 4.4) with visual-feature based contexts VGG16 and ResNet50.

It can be seen that fusing of the two types of contexts improves both clustering consistency

as well as system-to-human correlation both for similarity and relatedness, in both datasets.

Hence, fusion turns out to be an inexpensive yet powerful method to increase quality. Late

fusion provides consistently better scores than early fusion. Thus, we will be using late fusion

further, in comparing our methods to the state-of-the-art.

4.7.4 COMPARISON TO STATE-OF-THE-ART

How does our image-based method compare to automatic text-based methods from NLP such

as Word2Vec, Glove, etc? This comparison is made in two ways: 1) We determine and compare

clustering consistency for the different methods and 2) we ask how do all the methods behave

relative to the human-rater based ground-truth data from the MEN, Simlex999, and Scene250

datasets. Hence, for this we ask specifically, whether the Spearman correlation coefficient be-

tween image-based vs. human rater based is bigger or smaller than the one between NLP-based

vs. human rater-based.
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Clustering Scene250 SimLex999 MEN
Consistency sim rel

COCO 64 concepts 165 pairs 9 pairs 3 pairs
ResNet50 0.682 0.459 0.548 - -
LateFusionNorm: ResNet50+COn 0.670 0.702 0.744 - -
LateFusionNorm: ResNet50+COn+W2V-Neg 0.693 0.726 0.766 - -
VGG16 0.631 0.537 0.626 - -
LateFusionNorm: VGG16+COn 0.654 0.689 0.740 - -
LateFusionNorm: VGG16+COn+W2V-Neg 0.678 0.703 0.754 - -
Glove 0.590 0.666 0.744 - -
W2V-Neg 0.716 0.707 0.742 - -
KielaMax 0.580 0.435 0.494 - -
KielaMean 0.592 0.520 0.574 - -

LabelMe 60 concepts 151 pairs 166 pairs 626 pairs
ResNet50 0.641 0.588 0.617 0.271 0.343
LateFusionNorm: ResNet50+COn 0.647 0.681 0.727 0.230 0.431
LateFusionNorm: ResNet50+COn+W2V-Neg 0.663 0.711 0.755 0.290 0.545
VGG16 0.606 0.567 0.606 0.297 0.354
LateFusionNorm: VGG16+COn 0.614 0.666 0.716 0.241 0.404
LateFusionNorm: VGG16+COn+W2V-Neg 0.622 0.687 0.737 0.268 0.461
Glove 0.587 0.704 0.752 0.289 0.679
W2V-Neg 0.715 0.727 0.751 0.463 0.776
KielaMax 0.589 0.462 0.506 0.430 0.573
KielaMean 0.599 0.549 0.598 0.366 0.608

RCNN 64 concepts 165 pairs 9 pairs 3 pairs
ResNet50 0.631 0.521 0.590 - -
LateFusionNorm: ResNet50+COn 0.677 0.724 0.754 - -
LateFusionNorm: ResNet50+COn+W2V-Neg 0.719 0.743 0.772 - -
VGG16 0.605 0.591 0.661 - -
LateFusionNorm: VGG16+COn 0.677 0.708 0.751 - -
LateFusionNorm: VGG16+COn+W2V-Neg 0.703 0.718 0.763 - -
Glove 0.590 0.666 0.744 - -
W2V-Neg 0.716 0.707 0.742 - -
KielaMax 0.580 0.435 0.494 - -
KielaMean 0.592 0.520 0.574 - -

Table 4.4: Comparison of our representation with state-of-the-art methods on various bench-
marks, from left to right: Clustering consistency, Spearman correlation for relatedness (rel) and
similarity (sim) ratings using the Scene250 benchmark, Spearman correlation for similarity us-
ing SimLex999 and for relatedness using MEN.

For comparison we use the purely text-based approaches Word2Vec skip-gram negative

sampling trained on Google news [144] (W2V-Neg) and Glove 6B [161] trained on Wikipedia

and Gigaword 5 (Glove). We also use multi-modal text- and image-based methods proposed by

Kiela and Bottou [108] (KielaMax and KielaMean).

This is compared to our methods where we use as a basis ResNet50 and VGG16, which are

the best performing methods according to previous experiments and extend the comparisons to

different combinations of these base-methods by using Late Fusion with co-occurrence context

without self-counting (COn) as well as in addition Late Fusion with the NLP-method skip-gram

negative sampling whose vectors were computed on Google News (W2V-Neg).
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Note that any considered comparison could only be made for the smallest common subset

of concepts (or word pairs), which corresponds to the respective intersection of the datasets

used in that comparison. This is always an intersection between three sets, for example COCO

with Scene250 and the data used in Glove, etc. In section 4.10.3 in the Appendix we explain,

how the intersection subsets look like. Due to the fact that RCCN is a descendent of COCO,

their intersections are always the same.

Table 4.4 shows the results.

4.7.4.1 Clustering consistency

We evaluate clustering consistency on the intersection of categories between scene datasets

(COCO, LabelMe, or RCNN) and state-of-the-art implementations (Glove, W2V-Neg and Kiela).

As before, we use the eleven super-categories defined in COCO. Under these assumptions, we

find that there is an intersection of 60 and 64 concepts, respectively, between the datasets for

these cases.

Fusing label-based with feature-based contexts (VGG16+COn) improves results. Adding a

text-based context (VGG16+COn+W2V-Neg) further increases performance, although this im-

provement is sometimes rather small. This confirms our findings about the usefulness of con-

text fusion from above, now also including fusion with text-based contexts.

Concerning pure NLP-based methods we find that W2V-Neg shows a very strong perfor-

mance, which our methods alone do not achieve. But we are not far off and still beat any of the

other NLP-based methods.

4.7.4.2 System-to-human correlation

System-to-human-correlation is measured relative to the Scene250, SimLex999 and MEN datasets.

The table shows that—when considering COCO (or RCNN)—there is essentially no intersection

between the data (9 and 3 pairs, respectively). Scene250 had been purposefully created so that

there was a useful overlap (165 and 151 pairs).

Findings on the Scene250 benchmark are closely following the results obtained using clus-

tering consistency. However here the fusion of visual contexts with the W2V-neg was twice

outperforming pure W2V-neg, which happened for the scene datasets with strictly controlled

object labels (COCO and RCNN).

The overlap between LabelMe and SimLex999 (166 pairs) as well as MEN (625 pairs) was big

enough. This intersection, however, contains a big proportion of very general objects, which do

not have straightforward visual representation (examples of those are art, bedroom, construction,
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game, image, reflection, shoulder, smile, subway, shoulder, sunlight, water). Also, it includes super-

categories, e.g., animal, cloth, container, food, furniture, vehicle the usage of which introduces am-

biguities in image annotations (e.g., is it a bus or a vehicle?). Some pairs in the benchmarks

include words with multiple meanings (homonyms) where specifically the non-object mean-

ing makes the words related, like (guitar, rock) or (card, bridge). As a consequence, here our

image-based methods are worse than the NLP-based ones.

Another reason for this is based on the statistics. LableMe has only 28,072 scenes were—for

robustness reasons—we had considered only objects that were labeled in the scenes three times

or more. Thus, some objects we included into our analysis were fairly infrequent (or appeared

in contexts infrequently). This likely led to too thin data to gain statistically solid scene-based

knowledge about those more abstract objects mentioned above. Furthermore, SimLex999 and

MEN were collected to asses general concepts are therefore not the best to judge object concepts.

Scene250, instead, had been created specifically to judge everyday object pairs. Pairs were

rated by informed subjects who treated word-pairs very thoughtfully. It seems that under this

more rigorous condition differences between image-based and word pair-based assessments

vanish.

Summary Summed up, our methods compare very well to text-based semantic vectors and of-

ten even outperform multi-modal semantic algorithms as long as the evaluation is run over a set

of proper objects. W2V-Neg turns out to exhibit very good scores, but note that the text corpora

that W2V-Neg was trained on are magnitudes larger both in terms of vocabulary size (which

would be similar to our context) and number of words (object instances) than the datasets we

employ.

4.7.5 QUALITATIVE RESULTS

Results can be visualized by reducing their dimensions to two while preserving distances using

multi-dimensional scaling. This way, qualitative insights can be obtained. Here we present

three different types of visualization:

• Super classes (Fig. 4.6 Top): A plot of all vectors corresponding to COCO classes visu-

alized as dots with super-categories (e.g. animal) determining their color. Ideally, object

vectors pertaining to the same super-category should form groups.

• Local space (Fig. 4.6 Bottom): On a more fine-grained scale, object vectors from a pre-

selected set of names are plotted. Instead of a dot, here the respective object name is

plotted.
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Figure 4.6: Qualitative results, top: Plot of 80 object vectors of labels in COCO projected to 2D
using multi-dimensional scaling with color corresponding to super-category. Bottom: Plot of
some belonging word labels.
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Figure 4.7: Qualitative analysis of how well functional concepts are represented. Top: VGG16,
middle: COn, bottom: W2V-Neg. Positive examples for the categories are highlighted in red
while other concepts are gray points.
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• Functional (Fig. 4.7): Instead of grouping based on super-categories, we split the set of

concepts according to a functional trait. Concepts that have this trait are visualized in

color together with their name while concepts that do not have a trait are visualized as

gray dots. We defined the traits larger_than_human, sharp, round, has_wheels

and can_fly.

We observe that concepts indeed cluster according to their super-category and see reason-

able groups of objects in the local space. Furthermore, we find concepts being grouped together

within functional groups, even though they do not share the same super-category. Thus, these

figures provide a visual confirmation of the above reported clustering results.

4.8 DISCUSSION

4.8.1 MAIN CONTRIBUTION

In this study we were asking whether the distributional hypothesis of linguistics [87] would also

hold for images. Text is a linear structure, while images are 2D-projections of 3D scenes and this

higher dimensionallity might lead to a dilution of information. Thus, we specifically wanted to

quantify how powerful a semantic vector representation obtained from scene information still

is. Here, we presented a simple but effective method to approach the problem of understanding

objects in their scene context by extracting semantic vectors. The main result of this study is

that across many experiments, methods and data, text and images appear equally powerful as

sources for context analysis. This is to some degree astonishing, because text-based methods,

like W2V-Neg and GloVe, use more than 1011 words, while we have used on the order of 105

images with 106 labels only.

Taken together this shows that visual context contributes to our cognitive concepts of objects

and should be considered when building semantic vectors. Our evaluations also suggests that

simple integration methods like the one presented in this paper suffice to capture these kind of

semantics. The amount of data is more critical than the (text- or image-based) context method

used.

4.8.2 PROS AND CONS

Why should one analyze images instead of (or together with) text? One aspect seems to be the

above mentioned density of information. Different from our own expectations, it seems that

even a small set of images can already carry substantial amounts of (certain) context informa-
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tion. This holds specifically for context information on aspects, which texts don’t talk about,

like the layout of the utensils in a kitchen drawer or the way a workshop might be arranged.

Arguably, not many texts provide this type of information and in these cases context extraction

should, thus, be easier in images than in text. Action understanding and execution in robotics

has encountered this situation, too. While it is easy to obtain massive higher level action infor-

mation from text sources, some types of information, which can be vital for a household robot,

are missing. For example: Hardly ever one finds a text on how to handle a knife or a spatula,

when cooking. Videos and images, on the other hand, are abundant.

In addition, to this another important beneficial aspect when using image-based context

extraction is that our results on the performance of RCNN-labeled as well as CNN activation-

determined object context indicate that it is also possible to perform automatic semantic as-

sessment of objects in scenes without human labeling, where accuracy is similar to that of the

human-supervised methods.

Furthermore, we found in the small pilot experiment shown in Figure 4.7 that even func-

tional groupings can be extracted. Other visual feature-based grouping might be possibly, too,

but a more detailed analysis is currently not possible mainly because object categories are too

broad (from the category “knife” we cannot tell if it is metallic or not). For a quantitative anal-

ysis it would be interesting to train a classifier or regressor to capture specific aspects of the

semantic vectors. However, this is currently not possible since the set of objects is still too small

and the number of features too large. E.g. training something like “eatable” on maybe tens of

positive samples and hundreds of negative samples while having thousands of features will

likely overfit even with simple classifiers. At the moment, this prevents rigorous quantitative

analyses of this kind, but the results from Figure 4.7 look promising and future work (after

addressing the above mentioned problems) should be possible in this direction.

Image-based context analysis, however, has clear disadvantages, too. For example, abstract

concepts cannot be extracted. Also, longer text-narratives often contain aspects of reasoning.

Images do not. Hence, artificial narrative generation from images, at least so far, remains rel-

atively shallow as compared to the creativity with which – for example – a child describes an

image. This is achieved by humans being able to extract in a generative way complex context

from an image. Modern image analysis methods, including the ones presented here, stop still

short of this.

However, from a practical perspective we are confident that existing methods to extract

word vectors, such as Glove and Word2Vec, that serve as a basis for numerous methods in

NLP, could benefit from the addition of visual, scenic context. This would require either a large

dataset or an object detector capable of handling thousands of classes, but considering the recent

progress in computer vision it is only a matter of time until these become available.
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4.8.3 OTHER ASPECTS AND FUTURE WORK

It may be interesting to discuss these findings also from a different perspective. “Meaning”

cannot be obtained by considering nothing but text. This issue is commonly known as the sym-

bol grounding problem [86] in artificial intelligence: Glenberg and Robertson [72] argue that it

is not possible to assign meaning to an abstract symbol like a word as long as it is expressed

only with respect to other abstract symbols. This is the case for text but also for labels of im-

age annotations. However, these authors suggest overcoming this problem by linking different

modalities, where here we had considered text and images.

Evidently humans often perform co-context analyses of text and image information, too;

for example, where text remains too abstract and opaque without an image. A good example

of this are industrial instruction sheets for small product assembly by human workers. Text-

only instructions are here often quite nontransparent. One example we had worked on in the

context of the European funded ACAT (Action Categories) project had been: “Place the rotor

cap on top of the magnet holder”. This instruction becomes only meaningful when seeing the

actual objects (before and after this assembly step).

Object class vectors, in conjunction with text, might afford this to some degree as they have

been obtained from two complementary modalities. This way, an object’s spatial context be-

comes linked with its textual context. Hence, the process of acquiring meaning would now

stand on two legs. While we cannot directly show this, our results support at least the notion

that context is strengthened by such combinations.

Several additional aspects could be addressed in future work. Currently, the knowledge

captured by the model is expressed by linear translations in a high dimensional feature space.

It might be useful to investigate more complex representations, e.g. to reduce the size of the

feature space. As a starting point hyperbolic geometry could be considered. Additionally, we

have indeed performed some early experiments concerning the combination of vectors spaces

obtained from different modalities. The performance gain in these experiments indicates that

this direction might be promising as it is a fairly cheap way for improving results relative to

single modal semantic vectors.

All this could, for example, lead to an improved identification of task-relevant objects to

suggest tasks and to generate planning problem definitions automatically depending on the

objects in the scene. This is of great use in robotic executions of human-like tasks [3], where, for

instance, the automatic generation of task descriptions can significantly ease the human-robot

interaction.
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4.10 APPENDIX

4.10.1 DERIVATION OF CO-COUNT CONTEXT

This derivation explains the co-count context. Co-occurrence context can be seen as a special

case of this with the frequency of any object class being limited to one. Hence, the argument

following now can be modified accordingly and transferred to these other cases, too.

4.10.1.1 Probabilistic Derivation

A common way to describe events without knowing the number of trials is the Poisson distri-

bution [18]. The choice of the Poisson distribution is justified because the occurrence of objects

can be considered as events in the spatial domain. Furthermore, a Poisson distributed random

variable takes only positive integer values, which is true for co-occurring objects. Hence we will

assume that the frequency of an object m occurring in the context of object k follows a Poisson

probability distribution with rate λmk . This means, to generate a context vector for an object, we

would draw samples from a Poisson distribution with specific parameters for each component.

Following the idea of the distributional hypothesis, as these parameters describe the context,

they will be used to represent the object classes. Subsequently, we show how to obtain these

parameters.

Having observed Nk instances of each object class k, the variable i ∈ [1, Nk] refers to the

context vector ĉki of the i-th instance of class k. We assume a probabilistic model P (c | o) in

which the object class determines the context. The goal is to find parameters Λ = {λmk : k,m ∈
[1,K]} that maximize the likelihood L of these observations.
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L(Λ) = P (c | o; Λ) =

K∏
k=1

Nk∏
i=1

P (c = ĉki | o = k; Λ). (4.2)

Due to monotonicity, a logarithm can be applied. This facilitates further steps and retains the

same maximum.

logL(Λ) =

K∑
k=1

Nk∑
i=1

logP (c = ĉki | o = k; Λ). (4.3)

The Poisson distribution’s mass function is inserted. Due to the assumption of co-occurring ob-

jects being independent, the occurrence probabilities of context objects follow a multiplication:

P (c = ĉki | o = k; Λ) =

K∏
m=1

(λmk )ĉ
m
ki

ĉmki!
e−λ

m
k . (4.4)

In order to find the maximum likelihood, the derivative with respect to λλλk is calculated,

logL(Λ) =

K∑
k=1

Nk∑
i=1

K∑
m=1

ĉmki log λmk − λmk − log ĉmki!, (4.5)

∂ logL(Λ)

∂λmk
=

Nk∑
i=1

ĉmki
λmk
− 1. (4.6)

By setting the derivative zero, we obtain the optimal parameterization for λk which is sim-

ply the average of all context vectors.

λ∗k =

(
arg max

Λ
L(Λ)

)
k

=
1

Nk

Nk∑
i=1

ĉki. (4.7)

4.10.1.2 Geometric Perspective

Rather than considering observations of objects as events, the problem also permits a geometric

perspective, with observations of context vectors involving co-occurrence frequencies being

spread in a high-dimensional (K dimensions) vector space. Every observed context has an

associated class and the goal is to find a representative context for each class. We can interpret

this problem as optimization of a cost function. If the cost is defined as the sum of the mean

quadratic euclidean distances of each class, the minimum again can be analytically derived to

be the mean context:
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Figure 4.8: Comparison between averaging (diagonal hatching) and median (square hatching)
for context integration.

λ∗k = arg min
ck

1

Nk

Nk∑
i=1

(ck − ĉi)
2 =

1

Nk

Nk∑
i=1

ĉi (4.8)

4.10.2 ALTERNATIVE CONTEXT INTEGRATION METHODS

In the main text we had compared average context with Skip Gram context integration. Many

more integration methods would be possible, too. For example, using the median appears a

possible natural choice. Thus, here we take a look at this based on the COCO dataset (Fig.

4.8) and compare its performance with averaging (see Fig. 4.8). In each plot the first four

columns are obtained by averaging, while the columns 5 to 8 are obtained with the median. The

results show that the median sometimes leads to an improvement and sometimes it decreases

performance. In particular in case of VGG16 the median yielded a fairly strong improvement.

However, as the median does not show stable performance (decrease in performance may be

substantial too, e.g. for COn and CCn context methods in the figure), averaging remains a

better method.

4.10.3 COMPARISON OF FUSION METHODS

There are multiple ways for combining different types of context vectors for a concept. In the

main text we analyzed one type of early fusion (concatenating context instances) and one type

of late fusion (concatenating semantic vectors). We applied one specific type of normalization

for early fusion and one type for late fusion. Here we will analyze more such methods.
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Clustering Scene250
sim rel

CCn 0.520 0.375 0.362
COn 0.533 0.467 0.489
EarlyFusion(concat): CCn+COn 0.529 0.385 0.377
EarlyFusion(sum): CCn+COn 0.530 0.395 0.391
EarlyFusion(average): CCn+COn 0.530 0.395 0.391
EarlyFusion(concat): InceptionV1+COn 0.670 0.466 0.550
EarlyFusion(equal): InceptionV1+COn 0.627 0.573 0.611
EarlyFusion(norm): InceptionV1+COn 0.682 0.573 0.637
EarlyFusion(concat): VGG16+COn 0.649 0.513 0.593
EarlyFusion(equal): VGG16+COn 0.639 0.563 0.615
EarlyFusion(norm): VGG16+COn 0.656 0.579 0.645
LateFusionNorm: InceptionV1+COn 0.693 0.643 0.674
LateFusionEqual: InceptionV1+COn 0.627 0.573 0.611
LateFusionNormToOne: InceptionV1+COn 0.535 0.467 0.490
LateFusionNormStdOnly: InceptionV1+COn 0.677 0.419 0.499
LateFusionNorm: VGG16+COn 0.680 0.643 0.685
LateFusionEqual: VGG16+COn 0.639 0.563 0.615
LateFusionNormToOne: VGG16+COn 0.535 0.468 0.490
LateFusionNormStdOnly: VGG16+COn 0.645 0.473 0.556

Table 4.5: Comparison of various fusion methods on COCO.

The investigated methods are concatenation-based (except for sum) and vary in the way

how normalization is carried out prior to concatenation. Let us say a and b stand for two

vectors and || the concatenation operation. We define the following fusion methods of those

vectors:

1) Simple concatenation:

cat(a, b) = a || b, (4.9)

2) Simple averaging:

average(a, b) =
a + b

2
.

Note, however, that this method is fairly limited as it requires the context vectors to have the

same length.

3) Concatenation with length-based normalization:

eq(a, b) =
a

dim(a)
|| b

dim(b)
,

where dim denotes the length of the vectors.
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4) Early fusion with weight normalization (same as in the main text):

normearly(a, b) =
a− µa

σa
|| b− µb

σb
,

where µa, µb and σa, σb are scalar mean and standard deviation of vectors a and b respectively.

5) Late fusion with weight normalization (same as in the main text):

normlate(a, b) =
a− µ(A)

σ(A)
||b− µ(B)

σ(B)
,

considers vectors in their respective embedding (A and B) and computes mean and standard

deviation independently for every dimension, i.e. here µ and σ are vectors

6) A simplified version of weight normalization only considers the standard deviation:

normstd(a, b) =
a

σ(A)
|| b

σ(B)
,

7) Late fusion norm to one concatenates vectors that were normalized to length one.

normone(a, b) =
a

|a|
|| b

|b|
,

Note, when using context averaging as integration method, early fusion and late fusion

are equivalent for concatenation, average and length normalization, because the order of the

operations are commutative.

In Table 4.5 results obtained using different fusion methods are shown. First we compare

results for simple concatenation and averaging between contexts CCn and COn. Note, we

cannot use averaging for other, potentially more interesting context combinations, as for that

vectors shall be of equal length. Here we see that none of the two indicated context fusion

methods is of substantial advantage.

We experimented also with quite a few other fusion methods for different types of context

vectors: label-based and visual-feature-based. In summary this shows that fusion will usually

improve the result, where here the "Late Norm" method is the best. Note however that also for

fusion other methods would be possible and an exhaustive analysis cannot be performed.

4.10.4 INTERSECTIONS OF DIFFERENT DATASETS

When evaluating our method against the state-of-the-art methods on given ground-truth bench-

marks, we needed to consider a tripartite intersection of different datasets (1,2,3, numbering as

in Fig. 4.9, left side). Here we will explain the reasoning behind this and specify coverage for

these intersections.
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Figure 4.9: Intersections between the different data sets.

Concerning similarity ratings (Fig. 4.9 A), we compared (3) conventional NLP text-based

methods with (2) our image-based methods, grounding these comparisons on (1) three human-

rated datasets: Scene250, Simplex999 and MEN. These datasets are named in the top row in

Fig. 4.9 (red). The human rated datasets are a collections of pairs of concepts with similarity

(and relatedness) for each pair indicated. The number of pairs included in each dataset is given

in the figure beneath the datasets’ names. In order to evaluate performance of our methods

against NLP text-based methods, we can only consider pairs that are conjointly contained in

the datasets across all levels 1-3. The next row in the figure (blue) shows the number of pairs

conjointly contained in the human-rater as well the image datasets and the bottom row (black)

shows the final minimal resulting intersection with the NLP datasets. These are the ones used

by W2V-Neg and Glove. Clearly, only large enough intersections, all of which are given in the

bottom row, could be used for our study. Intersection with only 3 or 9 pairs had to be ruled out.

The same procedure is performed on the right side of Fig. 4.9 B, but this time for concepts

and super-categories on which we evaluate clustering consistency. As ground truth in this eval-

uation we take the division of 80 COCO concepts into 11 super-categories as done by humans.

RCNN (2nd row) contains 79 of those, because the Mask R-CNN was not able to find the hair

dryer. LabelMe overlaps with 76 concepts. The final overlap with the NLP datasets is given in

the bottom row of panel B, which are those concepts with which we could perform the compar-

ison.

4.10.5 PRECISION AND RECALL

As an alternative to clustering consistency, the quality of the clustering can be assessed through

a k nearest neighbor classifier. First, we explain how to create such a classifier. Consider the

semantic vectors in Fig. 4.10, involving 12 concepts and three super-categories: Square, circle
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Figure 4.10: Sketch of the precision/recall evaluation: Left concepts with super-category, mid-
dle: square centered view with two-nearest-neighbors of four concepts being indicated, right:
error categories based on the true labels and the classification based on two nearest neighbors.

and triangle. We iterate over all super-categories (in Fig. 4.10 mid, square) and differentiate

between element (square) and non-element (X). Using this binarization, we can decide between

true-positive, false-positive, false-negative and true-negative from which precision and recall

are computed:

precision =
TP

TP + FP

recall =
TP

TP + FN

Since this only involved one super-category, the procedure is repeated for every super-category

and precision and recall scores are averaged, yielding the numbers reported in Figure 4.11.
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Figure 4.11: kNN scores for various context extraction methods.

Results remain consistent in comparison to the ones obtained when using clustering consis-

tency (compare to Figure 4.4 from the main text).
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4.10.6 SKIP-GRAM HYPER-PARAMETER SEARCH

The Skip-Gram negative sampling training has multiple hyper-parameters. To enable a fair

comparison with other methods, we investigate different choices for the number of negative

samples being presented for every positive sample, the number of training epochs and the

dimension of the concept vectors. Regarding the number of negative samples, we find the

algorithm to be fairly stable and choose 25. The scores further suggest that ten epochs are too

few while after 50 epochs the training seems to have converged in all cases and that even 64

dimensions already exhibit a good performance. Hence, we decided to run the training for 50

epochs with 64-dimensional concept vectors.

negative samples epochs dimension clustering consistency similarity relatedness
10 50 128 0.423 (0.015) 0.438 (0.031) 0.397 (0.030)
25 50 128 0.413 (0.016) 0.455 (0.026) 0.433 (0.019)
50 50 128 0.404 (0.013) 0.452 (0.017) 0.441 (0.014)
25 10 128 0.228 (0.044) 0.265 (0.029) 0.258 (0.030)
25 100 128 0.468 (0.015) 0.474 (0.027) 0.441 (0.016)
25 50 64 0.478 (0.020) 0.472 (0.021) 0.451 (0.019)
25 50 256 0.372 (0.018) 0.403 (0.021) 0.386 (0.016)

Table 4.6: Scores for the hyper-parameter search of skip-gram. The number in bracket indicates
the standard deviation over ten runs.
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CHAPTER 5
Affordance Segmentation

In Chapter 4 we have presented an approach that, among other properties, can assign functions

to object classes. However, this method still relies on object names, which are not always precise

concerning possible interactions. Not every part of a chair is sit-able but only its base, the handle

is the only part of a door that is pull-able and not every ground is walk-able. Additionally, the

layout of the scene might alter the presence of some interactions. For instance, it is not possible

sit on chairs that were placed upside down on a table to allow for cleaning the floor. In general,

an important trait of autonomy is to identify possible means of interaction with the world.

This involves questions like these: Which doors can be opened? Where can I pull to open a

container? Where can I walk? When these questions can be reasonably answered, a robotic

system can explore its surroundings without human intervention. In the following article, we

propose a system that is able to answer these questions by identifying potential interactions

with the environment. This means it directly transforms perceptive cues into possible actions.

Summary In the following article, we develop an algorithm that segments a set of 12 affor-

dances from RGB images. For this, we employ a CNN that is trained to directly predict these

affordances. For the training we transform pixel-wise labels from the ADE20K dataset [248] to

affordances. This is carried out using a manually defined transfer table that describes a mapping

from object names or object part names to affordances. When the object/part name does clearly

indicate the presence or absence of an affordance we ignore the respective pixels in the affor-

dance map by using a masked loss function. Our experiments show state-of-the-art results and

good generalization capabilities of the algorithm. Additional to the quantitative experiments,

we demonstrate that the method can be applied in a robotic context. This paper is published as:
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Timo Lüdecke, Tomas Kulvicius and Florentin Wörgötter

Context-based Affordance Segmentation from 2D Images for Robot Action

Robotics and Autonomous Systems (RAS)

https://doi.org/10.1016/j.robot.2019.05.005

The following article’s presentation was adapted to match the format of this thesis, references

are shown at the end of the thesis. The content is identical to the published version.
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Timo Lüdecke, Tomas Kulvicius and Florentin Wörgötter

Context-based Affordance Segmentation

from 2D Images for Robot Action
(published in Robotics and Autonomous Systems Volume 119)

Abstract

Affordances play a crucial role in robotics since they allow developing truly autonomous

robots, which can freely explore and interact with the environment. Most of the existing ap-

proaches for analyzing affordances in a scene consider only one or few types of affordance,

e.g., grasping points, object manipulation or locomotion. In many cases only whole objects

are considered. In our study we include in total 12 affordances of object-related, manipulation

and locomotion affordances, considering affordances of both objects and/or their parts. We

design a system that can densely predict affordances given only a single 2D RGB image. For

this, we propose a method that transfers object class labels to affordances. This enables us to

train convolutional neural networks, a PSPNet-based network and a U-Net-style network, to

directly predict affordances from an image using a selective binary cross entropy loss func-

tion. The method is able to handle (potentially multiple) affordances of objects and their parts

in a pixel-wise manner even in the case of incomplete data. We perform qualitative as well as

quantitative evaluations with simulated and real data including robot experiments. In gen-

eral, we find that frequent affordances are recognized with a substantial fraction of correctly

assigned pixels, while this is harder for infrequent affordances and small objects. In addition,

we demonstrate that our method performs better than a recent competitive approach. As the

proposed method operates on 2D images, it is easier to implement than competing 3D meth-

ods and it could therefore more easily provide useful affordance estimates for robotic actions

as demonstrated experimentally.

5.1 INTRODUCTION

To express opportunities for action of an animal in its environment, the perceptual psychologist

J.J.Gibson [69] coined the term affordances. He defines affordances as opportunities for action

between an animal and the environment. Examples for affordances from the perspective of a

cat are: Shrubbery affords shelter and a mouse affords nutrition. Later, the term was adopted by

the robotics community and extended from animals to robots. Essentially in robotics this term

very often takes the meaning of: “Which actions could a robot perform in a given situation

(with some given objects)?”. This perspective on affordances is adopted in our work, too. We

assume a human-like embodiement of the robot, leading to a set of affordances similar to those
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that humans would encounter. Task-specific refinements of the affordances can be carried out

depending on actual embodiement and application. But even for other systems the capability

to understand affordances can be useful, in particular if interaction with humans is required

such as in a smart home. In this work, we address the problem of segmenting affordances for

(but not limited to) robotic applications.

Segmentation means that the output of the system we propose in this paper consists of ar-

eas (segments) that represent different (sometimes overlapping) affordances. This is done in

a pixel-wise manner by assigning presence-probabilities for all different affordances to every

pixel in the image. Affordance segmentation is more challenging compared to object class seg-

mentation due to three aspects. 1) Affordances are not disjoint, i.e., the presence of an affordance

does not exclude the presence of other affordances. This requires us to make use of multi-class

segmentation. 2) Affordances can refer to very small structures, which are only parts of objects.

3) There are no large-scale datasets available yet. This means that the problem cannot simply

be addressed by training a semantic segmentation model on new data. These challenges in

conjunction with the practical applicability makes affordance segmentation an interesting and

challenging research topic.

There are multiple approaches to identify affordances, each having their own pros and cons.

For example, affordance assignment can be done by considering object geometry [80]. If per-

formed purely in this way, this leaves out all semantic object knowledge which we–humans–

have access to when assigning affordances. Therefore, in this work we pursue a semantic, con-

text dependent approach and show that this is very powerful even when only considering sin-

gle 2D-RGB images. This method leverages knowledge about the relation between affordances

and object parts and employs a convolutional neural network (CNN) to assign action affor-

dances probabilistically to the pixels of a new image. The advantage of this is that it combines a

knowledge-based approach with 2D images making it useful for a wide range of robotic appli-

cations. Naturally, limitations of all single image-based approaches apply to this work as well,

e.g., in the case of 3D to 2D projection inconsistencies. However, such problems can often be

solved by incorporating other methods, e.g., fusing the segmentation with a structured light

sensor output and doing some post-processing.

In summary, the contributions of this work are as follows:

• A method to generate a large set of action affordances from semantic segmentations using

a selective binary cross entropy loss function.

• A method to fuse simulated data with real data to improve generalization and their em-

piric comparison.

• An extensive evaluation of UNet- [172] and PSPNet-like [246] convolutional neural net-
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works for affordance segmentation taking both runtime speed and prediction quality into

consideration.

• Validation of the method in a robotic scenario that consists of images that had not been

part of the training set.

For reproducibility of our proposed approach and as a starting point for using our method in

practice we published the source code and pre-trained models online. 1

5.2 RELATED WORK

In the past affordances have been addressed in multiple studies, both in computer vision and

in robotics. In the following, we will review existing work from psychology before discussing

different approaches for affordance segmentation and relate those to our approach.

5.2.1 AFFORDANCES IN PSYCHOLOGY

The term affordance originates from the field of perceptual psychology. It was originally coined

by J.J. Gibson as part of his direct perception theory. He defined affordances as potential actions

between an animal and its environment, given the capabilities and state of the animal and the

structure of the environment [69]. The set of all affordances of an animal is called its ecological

niche. Based on the seminal work of Gibson [69], later research sought to refine the question

of what constitutes an affordance also addressing philosophical implications. Early theories

considered affordances to be properties of the environment which are used by an animal [209].

Chemero [36] argues against this and proposes to consider affordances not as properties at all

but as relations between particular aspects of animals and situations. Recently, Rietveld and

Kiverstein [171] suggested applying the notion of affordances in a much broader context and on

a higher level: They argue that any skill, not only motoric abilities, that a form of life possesses

establishes a set of affordances. They use form of life instead of animal to emphasize cultural

differences within a species of animals. A review on the historical development of the term

affordance and a discussion of competing models was carried out by [60] and more recently by

[133].

In addition to these theoretical and philosophical aspects, several studies have assessed the

perception of affordances in humans and animals experimentally. Warren [231] suggests dif-

ferentiating the transition between affordances on the basis of critical and optimal points and

finds experimental evidence that the perception is affected by the capabilities of the agents. A

1https://gitlab.gwdg.de/cns-group-public/aff-seg
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mathematical formulation of affordances is obtained by expressing critical points as functions

of ratios of body parts (leg length) and environmental quantities (riser height). Cole et al. [43]

studied differences in perception of the three types of affordances leap, arm-swing and crawl

in humans. They found participants to systematically underestimate their abilities in launch-

ing actions (leap and arm-swing) but improved their judgement after actually performing the

actions.

5.2.1.1 Relation of our work to affordances in psychology

Our approach can be seen as a partial implementation of the direct perception paradigm by

Gibson. Light represented by an RGB image is directly transformed into actions without ex-

plicit intermediate representations (the activations in the layers form implicit representations,

though) in a pure feed-forward fashion. Instead of binary categories, affordances are repre-

sented probabilistically as suggested in [66]. One of the affordances analyzed by our system is

illumination, which does not imply an immediate motor action. This can be seen as an exam-

ple of the richer set of affordances enabled by animal skills as suggested by [171]. Wagman,

Caputo, and Stoffregen [224] studied a multi-affordance environment and found evidence that

humans sense means-end relations between affordances. Our work shares the trait of predicting

multiple affordances simultaneously but does not encompass hierarchies.

5.2.2 AFFORDANCES IN COMPUTER VISION

A common approach for affordance segmentation is to predict affordances of whole objects

[197, 250]. Akin to these is the work of Ye et al. [239] who detect bounding boxes of affordances

using a two-stage approach consisting of region proposal and CNN-feature-based affordance

recognition. Sawatzky, Srikantha, and Gall [182] learn to segment affordances on weakly su-

pervised data. More recently, Sawatzky, Garbade, and Gall [181] address a few-example-setting

using label transfer on images of objects. Given a query image, a similar example is retrieved

from a database. Then the segmentation is transferred to the query and refined by a CNN. It

seems unlikely that this approach generalizes beyond object level as whole scenes vary much

stronger and finding a similar example scene would require an extremely large database.

Affordance datasets have been proposed before. The UMD RGB-D part affordance dataset

[151] focuses on objects only, was captured in a controlled lab environment and is intended for

approaches that rely less on context but on depth information. The IIT-AFF dataset [153] might

seem more applicable for us. However, it involves only 10 object classes which is too limited for

studying whole scene affordances. Furthermore, it is sparse as affordances are only assigned to
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objects but not other parts of the environment (e.g. the floor). Due to these shortcomings we

decided to construct our own dataset that is more suitable for our analysis.

Affordances can also be predicted in form of (human) poses. This scheme is adopted by

Gupta et al. [84] making use of scene geometry and in Grabner, Gall, and Van Gool [80] specifi-

cally for chairs and by Fouhey et al. [65] using video. Similarly, Kjellström, Romero, and Kragic

[111] learn affordances by observing interactions with objects in videos. More recently, Wang,

Girdhar, and Gupta [229] analyze popular sitcoms to learn pose-based affordance prediction.

The idea of “action maps” is closely related to affordance segmentation. However, the for-

mer tends to be more specific, e.g., by referring to very concrete objects and the set of considered

actions is fairly small. Examples of these approaches are Savva et al. [180] who generate seven

different “action maps” by tracking people in RGB-D video footage and Rhinehart and Kitani

[169] who learn 6 action maps through analyzing egocentric video recordings.

The method proposed by Roy and Todorovic [173] is similar to ours as it also generates

pixel-wise maps given an RGB image. Their model learns intermediate representations for

depth, surface normals and object classes, which are then employed to carry out the affordance

map prediction. The learning of these representations is actively enforced during training, i.e.,

the method requires additional data during training, while our method only needs RGB images

and affordance map ground truth. Another difference to our work is the set of considered

affordances.

Concurrently to this work, a similar method is proposed by Do, Nguyen, and Reid [57]. It

deviates from our method as it conducts affordance and object detection jointly and is trained

on the sparse IIT-Aff dataset, while we are interested in entire scenes "in the wild".

A common trait of many approaches is that they are constrained to a specific domain or the

set of considered affordances is small (see Table 5.1). Our dataset consists of 22,000 images,

which is significantly more than IIT-AFF (8,835 images) and UMD RGB-D (more than 10,000

annotated images but only 105 object instances). As stated in the introduction, our approach is

context-based and we do not explicitly consider object geometry (for such approaches see [80]

or [173]).

5.2.3 AFFORDANCES IN ROBOTICS

Affordances play a major role in cognitive and developmental robotics since they are crucial

for a robot allowing it to explore and interact with the environment fully autonomously. Af-

fordance research in robotics has received a lot of attention during the last decade and led to

many contributions. For detailed recent surveys see Min et al. [146] and Zech et al. [245]. In

81



CHAPTER 5. AFFORDANCE SEGMENTATION

Table 5.1: Comparison of related algorithms with # denoting the number of used affordances.

Approach # input output

Grabner, Gall, and Van Gool [80] 1 RGB-D per voxel
Gupta et al. [84] 4 RGB per pixel
Savva et al. [180] 7 Video per voxel
Rhinehart and Kitani [169] 6 Video per grid-cell
Roy and Todorovic [173] 5 RGB per pixel
Our approach 12 RGB per pixel

the following, we will only briefly review main concepts and approaches in affordance-related

research in robotics and relate them to our approach. Also, we will be only concerned with

object/tool related affordances and will not talk about social affordances (e.g., [217]).

There are mainly three categories of object-related affordances [245, 146]: 1) grasping affor-

dances, 2) manipulation affordances, and 3) traversability and locomotion affordances. Grasp-

ing affordances are mainly concerned with how to find a grasp-able point of the object for a

particular object manipulation [183, 55, 54, 210]. Manipulation affordances relate to manipu-

lations of single objects, e.g., push, pull, turn, lift, etc. [82, 81, 204, 119, 242] or to the inter-

action with multiple objects and/or tools, e.g., stack, sort, tool use, etc. [198, 148, 212, 62].

Traversability and locomotion affordances relate to motion affordances for mobile robots, e.g.,

cross, climb, select foot placement, etc. [214, 215, 200, 129]. While most of the studies focus

on one type of affordance or consider only few affordances (mostly in the range of two to four

[245]), in our study we deal with a total of 12 affordances within three categories of affordances:

manipulation-related affordances (break, grasp, pull, tip-push, place-on), traversability- and

locomotion-related affordances (sit, roll, walk, obstruct, support) and two object-related affor-

dances, which do not belong to the three main types of affordances stated above (illuminate

and observe). Also, most of the studies assign affordances to a whole object [146] and only few

studies consider parts of objects [198, 148, 212], whereas in our study we investigate affordances

of both objects and their parts.

Affordances can be acquired or learned in several ways [245]. The most common strategy

to learn affordances is exploration, which is inspired by the cognitive development of children

[17, 21, 15, 31]. Other strategies include supervised learning approaches such as programming

by demonstration [197, 193, 194] or by providing ground truth data to an agent [6, 34, 37]. Some

other approaches do not use learning at all and use hard-coded affordances [118, 103, 104]. In

our study we use a supervised learning approach, which is much easier to implement and is

less time-consuming as compared to exploration.

Different learning strategies have been used to implement affordance learning ranging from
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Figure 5.1: Our approach: We train a neural network to predict a set of affordance maps (Y) from
a single RGB image (X) using a loss function that allows for incomplete data by incorporating a
coverage map. Real (red) and simulated training data is mixed (green), with the real data being
generated from object part segmentations using a manually specified part-affordance table. The
output of the algorithm can serve as an input to many robotic tasks.

unsupervised learning methods such as self organizing maps [4] and K-Means clustering [33,

109], and reinforcement learning techniques [198, 199, 227, 47] to supervised learning tech-

niques such as support vector machines and multi layer perceptrons [32, 6, 213, 211] and recent

approaches using CNNs [173, 37, 152, 153]. In our study we also employ CNNs, however, as

already discussed above, we only rely on single 2D images. In [173, 152, 153] RGB-D images

are used while in [37], in addition to RGB images, motion data were employed being specific to

autonomous-driving applications.

5.2.4 SIMULATED TRAINING DATA

Previous works have studied the effect of training on simulated data. For the related tasks of

stereo matching and optical flow, Mayer et al. [141] discuss several data generation schemes.

However, these tasks are quite different from affordance segmentation as they require align-

ment of image regions instead of semantic understanding. Saleh et al. [178] address semantic

segmentation, but they only consider a scenario where all training data is synthesized while we

explicitly focus on how to merge simulated and real data.

5.3 METHODS

In this section we describe the sub-modules of our method. The general pipeline of our ap-

proach is outlined in Figure 5.1. First, we explain how we transfer object (part) labels to af-

fordance labels. Then the model for generating simulated training data is defined. In section
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5.3.3 we provide an overview of the CNN architectures and the loss function we employ in this

work. Finally it is explained how the system can be used in a robotic framework.

5.3.1 PART LABELS FOR AFFORDANCE DEFINITION

We use real as well as simulated data for training (and testing) our system. In the following, we

will describe how to assign affordances to real scenes, which is the more complicated case. Gen-

eration of simulated scenes is described afterwards, where the same principles for affordance

assignment are employed.

Our method requires access to object and part segmentations, with as fine-grained labels as

possible. From these annotations we derive affordances using a transfer table while obeying

these principles:

1. Affordances should be meaningful (in some sense) for robots or humans.

2. We require that affordance names are specific. For example, open is a very unspecific

multi-action. Tip-push implies a very well defined motion, of approaching a surface (e.g.

a button) with a finger (mostly the index finger). Therefore we consider tip-push to be

specific enough.

3. Actions can have a hierarchy, but lead to the same final outcome: E.g. a house can be

entered, a door, which is a part of the house, can be opened and the door’s handle, as a

part of the door can be pulled. All of this will be done to enter the house, where the pulling

of the door handle is here the action at the lowest semantic hierarchical level. Only this

level will be considered to label affordances in this study.

Considering these guiding principles as well as the underlying dataset (ADE20K), we define

a set of 12 affordances: obstruct, break, sit, grasp, pull, tip-push, illumination, observe, support,

place-on, roll and walk. They are presented along with short descriptions in Table 5.2.

5.3.1.1 Object Parts

An affordance most often refers to only a part of an object. For example, it is the surface of the

table that affords placing an object there, but not the table legs. Thus, we define affordances

part-wise. ADE20K [248] is currently the only sufficiently large dataset that resolves objects

into their parts, hence it is used in this work. Although MsCOCO [130] has many more images,

this dataset is not suitable for our approach as it only provides 80 object classes.
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Table 5.2: Description of the set of affordances used.

Affordance Description
obstruct vertical surface that prevents locomotion. e.g. wall
break detachable objects that can easily be damaged or de-

stroyed e.g. vase
sit surface a human can sit on while having the feet on

the ground e.g. seat cushion
grasp detachable objects that can be encompassed with one

hand or only few fingers and be moved with one
arm.e.g. vase)

pull surfaces that can be pulled through a hook or pinch
movement of the fingers (all directions). e.g. knob,
handle

tip-push surfaces that trigger some action when being
pushed. e.g. button-panel

illumination surfaces that emit visible light.e.g. bulb
observe surfaces that present information or art, i.e. that can

be read or watched. e.g. display
support stable surfaces that provide support for standing (for

the agent) except ground. e.g. wall
place-on raised surfaces where objects can be placed on (this

excludes the ground). e.g. tabletop
roll surfaces that can be used with wheels. e.g. road
walk surfaces a human can walk on. e.g. grass

5.3.1.2 Transfer Table

We manually define a mapping from object and object-part labels to 12-dimensional affordance

vectors. Each dimension in this vector corresponds to one affordance. Each vector element can

have a value between 0 and 1 or can be undefined. The latter is useful if the presence of an affor-

dance cannot be reliably inferred from the object or part name. Clearly, multiple affordances can

be present simultaneously, so, in contrast to semantic segmentation, the vector does not have

to sum to one. This mapping from objects and parts to affordance we call the transfer table.

It consists of round 250 rows that have been manually defined by us. This table serves as the

basis for turning segmentation ground truth data from ADE20K into affordance ground truth

data (which will be later fed to the CNN). Adding a new affordance would require updating

the transfer table with an additional column. For this, compatibility (yes or no) between the

new affordance and all approximately 250 object needs to be defined.

The transformation from an object-part segmentation O into an affordance segmentation A

is carried out pixel-wise. The original label of a pixel is searched in the transfer table T and

replaced with the associated affordance vector from the table, if there is a matching entry in the

table, i.e. Aij = T (Oij). Otherwise we acknowledge that no affordance can be assigned. To

make the latter accessible later on we store a binary mask tensor M, that encodes the validity of
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Figure 5.2: Example usage of the transfer table: Given a set of object-part segmentations (e.g.
from ADE20K), the transfer table is queried to generate 12 affordance maps of which three are
shown (sit (blue), place (green) and illumination (red)). In general, affordances can overlap,
although this is not the case here.
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Table 5.3: Excerpt from the transfer table

the assigned affordances:

Mij =

1 if Oij ∈ T ∧ T (Oij) 6= undef.

0 otherwise

This mask is subsequently leveraged in the cost function to select valid pixels (see section 5.3.4).

A sketch of how the transfer table works is shown in Figure 5.2.

Table 5.3 below shows an excerpt from the transfer table. Each cell can have three values:

Affordance present (1), absent (0) or "unknown" ( ). A door and a swivel chair are always

obstruct-able. However, only some parts of the swivel chair are sit-able and grasp-able so the

corresponding fields are left blank, indicating uncertainty. The same holds for door with break,

illumination and support, because it might be a glass door.

By applying the transfer table to the original segmentation labels of ADE20K we obtain our

affordance maps. The distribution of the different classes is depicted in Figure 5.3.
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train val test

obstruct
break
sit
grasp
pull
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read/watch
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place_on
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walk

Figure 5.3: Occurrence distribution of the 12 affordances on the different splits. The classes are
highly imbalanced, which poses a challenge for training the network. Some classes are so rare
they cannot be seen in the diagram.

5.3.1.3 Data Augmentation

Scene quality in ADE20K substantially varies. This leads to the situation that only a rather small

number of good-quality training samples can directly be generated from ADE20K. Therefore,

we augment the dataset by cropping out image patches from an original image where we then

vary color and contrast within such a patch. For large images, this can lead to multiple non-

overlapping crops, which can be considered individual samples. The augmentation is carried

out online, i.e. therefore in each training epoch completely new samples (new crop, new color,

new contrast) are fed into the network.

5.3.2 SIMULATION MODEL

Transferring labels from real-image object parts has some disadvantages: Maps are incomplete

and some affordances occur rarely. We overcome this problem by generating a new dataset of

simulated images. It relies on a probabilistic scene model of a living room and a kitchen with

several constituents of the scene being randomized. Hence, we can generate strongly varying

images of the scene. More precisely, the randomized variables in our model are object material,

-position, -shape, scene illumination, and perspective.

Object material Objects can have different materials. A table surface, for instance, can be

composed of plastic, wood or glass. Glass can be transparent or opaque. During scene gen-

eration, every object in the scene gets a randomly assigned material, with possibilities being

constrained based on the object name.
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Object positions Several objects are randomly positioned in the scene and relative to other

objects. Examples are a plate on a table, which is dependent on the table’s height and a fork and

knife, which are positioned relative to the plate.

Object shape For some objects we define key model shapes and interpolate between these

key shapes when a scene is generated. E.g. we interpolate between a chair with rounded edges

and a chair with sharp edges.

Scene illumination The world during day-time looks entirely different than at night. We

account for this by varying light from the outside as well the intensity of indoor and outdoor

illumination.

Perspective Having obtained a variable scene model, we still need to simulate the process of

photography by projecting the 3D scene onto a 2D plane from many possible viewpoints. For

this, it is desirable to use viewpoints that sample mostly interesting aspects of the scene (e.g.

multiple objects and sufficient distance), while avoiding irrelevant projections (e.g. view of the

ground only) or invalid perspectives (e.g. taking an image from behind a wall). We address

this challenge by sampling the camera’s position randomly along a fixed heuristically assumed

trajectory and introducing slight variances with respect to the position.

For each object or object part we manually define corresponding affordances and render the

corresponding affordance maps in a second pass by changing the objects’ materials.

This procedure allows us to generate an arbitrary number of training samples each provid-

ing consistent, fully covered affordance maps. This way, we can extend the training set by many

additional images.

The simulation model is implemented in the open source 3D modeling and simulation soft-

ware blender2 using its scripting API and the unbiased, physics-based renderer cycles. Fig-

ure 5.4 gives an impression of the variability of the simulated samples. The dataset obtained

using this method involving 2280 scenes is subsequently denoted by SimT . While we can draw

an infinite number of samples from the simulation, the critical task is to introduce variability.

Hence, the number of artificially generated scenes represents a trade-off between performance

gain and effort we put into designing the simulation environment.

2https://blender.org
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Figure 5.4: Three simulated samples where the perspective is fixed while other variables (e.g.
floor) were randomly sampled.

5.3.3 CNN

Affordances are context dependent. An example makes this clear. We could ask whether a

surface is walk-able or suitable to place things? If we now compare the ground with a table

surface, we find that, locally, both are flat and uniform. Only context may resolve the difference

between them. Walk-able surfaces, for example, may be accompanied by cars and trees, a table

surface, on which we would put things — on the other hand — is often flanked by e.g. chairs.

This leads to the requirement that the receptive field of a pixel should, ideally, cover the whole

image because even distant pixels might be decisive for a local affordance.

This could well be in conflict with the second essential requirement, which demands that

image details must not get lost during the forward pass of the network. Hence, object- and

part-boundaries should be preserved. For example, many affordances concern rather smaller

image aspects (e.g. a knob for pulling) and these aspects should not be lost by the network’s

operation.

With these requirements in mind, we propose and compare multiple neural network archi-

tectures. As it might be advisable to choose the architecture depending on the application we

conduct an experiment to guide this decision in section 5.5.4. Our choice of models can be

divided into two branches: PSPNet-based [246] and U-Net-based [172].

Both are deep convolutional neural networks that predict densely, i.e. per pixel. The former

relies on the work of Zhao et al. [246], which proposed the pyramid pooling module (PPM).

Evolving from the fully-convolutional network (FCN) [134], this model extracts features using a

conventional encoder, applies the PPM on the obtained feature maps and upscales to the output

tensor. In our case, feature maps are extracted using a 102-layer dilated ResNet encoder3, hence

the model will be called P-102. Our implementation of PSPNet focuses on the architecture and

avoids training tricks like an auxiliary loss (see Figure 5.5). The PPM ensures that contextual

cues can be processed, which we believe to be an important trait. Due to the small spatial

3We use this implementation https://github.com/fyu/drn
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Figure 5.5: Architecture of the PPM module in the PSPNet model.

resolution output of the PPM, predictions tend to be blurry, if no further processing (such as

an conditional random field [38]) is applied. Also, the PSPNet-based model is fairly complex,

requires a lot of memory for training, resulting at smaller batch sizes, and is slow at inference.

Therefore we designed an alternative network following the U-Net [172] paradigm, which

has the advantage of being faster to train and to run, compared to [246]. This model is de-

picted in Figure 5.6. The encoder is based on ResNet [88] and the architecture adopts the idea

of refinement modules [165]. It had been shown by these authors that ResNet50 together with

refinement modules successfully generates sharp object proposals, because refinement mod-

ules offer an elegant way for merging local with scene-level information. Thus, here we use a

modified version of the architecture from [165].

This model integrates abstract information from deep layers with the spatially more accurate

representations still present in less deep layers. Here both input layers will deliver maps of the

same image size where they are then first stacked on top of each other (concatenated along

depth) and subsequently convolved with the learned filters to obtain feature maps. While the

base model is fixed to be a ResNet, we experiment with several configurations: The encoder

size is varied from 18 to 152 layers, which heavily influences the execution (and training) speed

of the model. In the decoder, we only vary the number feature maps in the last two refinement

modules: In addition to the normal setting with 32 feature maps each we introduce a "small"

setting involving 16 feature maps each (see DS in Table 5.4). We initialize the ResNet encoder

with features obtained from ImageNet [53] pre-training, but do not freeze any weights.

5.3.4 COST FUNCTION

We propose a novel cost function we call selective binary cross entropy. This cost function deals

with two aspects: 1) affordances are often not unique and for a given pixel multiple affordances

may exist simultaneously. Hence, we imply a binary (present vs not present) probability dis-
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Figure 5.6: Architecture of the U-Net-based model. The ResNet encoder on the left involves four
blocks. The boxes indicate the corresponding intermediate tensor sizes (number of channels and
fraction of the image size).

tribution for each pixel and each affordance. 2) For some parts of the image no affordances

may be defined. For those, we cannot tell whether an affordance is present or not, because the

corresponding object or part is not found in the transfer table. However, since we also generate

the corresponding validity mask, we know the location of the invalid regions. The idea is to

incorporate also this information into the cost function.

This means during optimization we search for a model that agrees with the ground truth,

but only where the latter is defined. For some regions no ground truth is defined. Here the

model is free to predict whatever it considers to fit best and is not falsely punished due to

over-generalizing annotations.

This concerns objects and object parts where no decision about the presence of an affor-

dance can be made based on the object or part name alone. For example consider a bench.

Does it afford placing-on? This depends on whether the bench’s sitting surface is even. Does

a coffee table afford support? Larger tables might but smaller ones do not. In these cases, we
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prefer to ignore those uncertain fractions of the data in order to avoid false annotations. This is

implemented by masking in the loss function.

Both aspects from above lead to the fact that commonly-used cost functions for semantic

segmentation cannot be employed here. Subsequently, we will formally derive the here used

selective binary cross entropy cost function.

We annotate the ground truth matrix of an image for affordance a ∈ A and pixel i ∈ I with

Yai and the associated model prediction is given by Ŷai. Then the binary cross entropy BCE is

defined by: BCE(p, q) = −p log (q) − (1−p) log (1−q). This is summed up to render a scalar loss

(cost), which captures the average binary entropy over all affordances and the image.

L(Y, Ŷ) = (|A||I|)−1
∑
a∈A

∑
i∈I

BCE(Yai, Ŷai)

So far this definition is compatible with non-exclusive classes, but it does not yet account for

incomplete data. To achieve this, we mask the cross entropy matrix, excluding all regions where

no (or indecisive) affordances are present, before averaging. Masking is a very efficient and

simple way for removing the incompleteness ambiguities and we get the following loss:

Lm(Y, Ŷ) = (|A|
∑
i∈I

Mai)
−1
∑
a∈A

∑
i∈I

MaiBCE(Yai, Ŷai)

with Mai ∈ {0, 1} indicating if pixel i is valid, i.e. if a corresponding entry is found in the

transfer table.

Contrary to [137], the maskM (of each image) is defined for every pixel and affordance. This

allows us to specify uncertainties in the mapping from object/part names to affordances in a

more fine-grained way during the learning phase. In test mode, the mask is no longer required.

In Figure 5.7 we highlight how the mask loss leads to a different gradient. It can be seen that

the gradient is zero where the mask is zero. Hence, relevant weights are changed with higher

magnitude while irrelevant weights are ignored.

5.4 EXPERIMENTAL SETUP

5.4.1 EVALUATION DATASETS

The training and validation samples of ADET are generated from the ADE20K training dataset
4. The ADE20K validation dataset is used for testing. It contains 2000 scenes and will be called

4 Here you can use the interactive dataset browser to get an impression of how the samples look like:
http://groups.csail.mit.edu/vision/datasets/ADE20K/dataset_browser/
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prediction ground truth mask CE

Gradients
BCE loss masked BCE loss

Figure 5.7: Illustration of how masking changes the gradient. The top row depicts network
prediction, ground truth, a toy mask and the binary cross entropy computed from prediction
and ground truth. In the bottom row the gradients resulting from conventional CE and masked
CE loss are shown (green indicates negative values). Gradients are used to change the preceding
layer’s weights. We can see that masking leads to stronger changes in relevant regions while
irrelevant weights are ignored (ie. not changed).

ADEE . From this we manually pick 50 high quality (sharp, multi-object) images and transfer the

annotations to affordances using the table. Then we let a person (expert) manually correct this

according to the definitions provided by Table 5.2 by editing each affordance map individually

with an image editor. Due to this manual correction, systematic errors of the part-to-affordance

conversion procedure are punished during evaluation and we obtain a more realistic estimate

of the error. Hence, this metric assesses a stronger form of generalization. This dataset will

be called “Expert50” subsequently. While a number of 50 samples might seem small, note that

the networks outputs probabilities for every pixel and affordance resulting in a few million

predictions even in the expert dataset. Hence we consider this dataset reliable enough to be

used for evaluation. Scores are determined by comparing predictions of our network on the

test set with corresponding ground truth data according to the metrics that will be discussed

next.

5.4.2 METRICS

To quantify the performance, we use the intersection over union (IoU) metric (sometimes re-

ferred to as Jaccard Index), which is defined as follows:

mean IoU(Y, Ŷ) =
1

|A|
∑
a∈A

∑
i∈I 1[Yai = 1 ∧ Ŷai = 1]∑
i∈I 1[Yai = 1 ∨ Ŷai = 1]

,
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following the notation introduced in section 5.3.4 with Y denoting ground truth and Ŷ a

model’s prediction. 1[·] is the indicator function defined as:

1[c] =

1 if c

0 else

Maximal IoU would be 1.0. It is important to note that IoU is measuring the overlap with

the ground truth image segment area and punishes both, lack of overlap in the labeling as well

as false positive outside-of-segment labeling. To compute this, the probabilistic predictions of

the network must be binarized. In our experiments we use two fixed threshold values: 0.1 and

0.5 for this.

Additionally, we report the mean average precision. This metric has the advantage of not

relying on a single threshold level but averages over multiple levels. It is based on the precision

P defined as follows

P(Ya, Ŷa) =

∑
i∈I 1[Yai = 1 ∧ Ŷai = 1]∑

i∈I 1[Ŷai = 1]
,

which is evaluated at several recall levels to obtain an average precision. This is equivalent to

the area below the precision-recall curve. The mean average precision is obtained by computing

an average score over all (affordance) classes.

5.4.3 IMPLEMENTATION DETAILS

The models are trained on a single Geforce 1080 Ti GPU or Titan V with a pytorch backend [158].

Weights are updated using RMSprop [203] with mini batch sizes of 16 (or 8 for large models)

and a learning rate of 0.0001. The training is stopped after 25 epochs.

5.4.4 CONFIGURATION

We assess various components of our model with respect to their impact on the performance.

Encoder Since a large fraction of the computational budget is dedicated to extracting fea-

tures using the encoder, it seems justified to investigate different choices in more detail. For

our U-Net based model, we constrain the analysis to three common ResNets [88] having 18, 50

and 152 layers, since they provide a trade-off between accuracy and speed, which is suitable

for our task. While a larger encoder tends to exhibit a better performance it might also be more

sensitive to overfitting due to its larger number of parameters. Depending on the number of

layers these models will be referred to as R-18, R-50 and R-152. The PSPNet is only evaluated

in one configuration with a 105-layer encoder involving dilated convolutions, it is called P-105.
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Table 5.4: Ablation study. This experiment has been conducted exclusively on R-50 and
ADET as training dataset. DS: decoder size, IMP: importance sampling, SEL: scene selection,
PRE: ImageNet pre-training, M: masked loss, CM: class mean, CW: class weighting. For IoU,
0.1 and 0.5 are binarization thresholds. The expert columns refer to manually corrected samples
as explained in Section 5.4.1.

ADEE Expert50
IoU IoU

DS IMP SEL PRE M CM CW @0.1 @0.5 mAP @0.1 @0.5 mAP

X X 41.5 45.6 61.8 36.5 37.2 53.4
X X X X 35.6 38.8 51.5 35.2 35.1 51.1
X X X 41.8 44.9 54.0 34.5 34.2 52.9

X 42.4 42.3 58.7 33.4 32.9 48.9
X 34.7 36.3 51.4 33.0 28.7 50.9

X X X 35.3 39.1 54.5 31.1 30.0 48.9
X X X 37.7 39.6 53.8 31.0 29.4 48.0

s X 43.0 41.1 58.4 33.4 31.0 48.4
s X X 41.1 44.7 50.5 35.3 34.7 51.3

Decoder size Analogously to the encoder, also the decoder can be configured in different

ways. While we keep the number of 5 skip connections constant, we vary the number of feature

maps each decoder uses.

Masked Loss Above we described how to take care of undefined values in our loss function.

In our experiments we empirically evaluate whether these changes actually lead to an increase

in performance.

Pre-training: Knowledge acquired for recognizing images can be leveraged in affordance

segmentation. Does the model benefit from pre-trained features or is the architecture (ResNet)

good enough as a prior?

5.5 RESULTS

5.5.1 ABLATION AND ADDITIONS

First we conduct an ablation study to identify the best performing configurations and validate

the impact of various modifications (see Table 5.4). The encoder is fixed to be R-50, i.e. a ResNet

with 50 layers.

In Table 5.4 we present our analysis on various modifications regarding sampling, loss and

architecture on the base model R-50. Abbreviations in the text refer to the respective table

columns. The columns of this table indicate different configurations of the respective model as

discussed in Section 5.4.4 and the associated scores on: ADEEand the expert dataset.
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First, we empirically verify the utility of masked loss. With mask, scores tend to be higher by

around 2 to 4 percentage points. Further additions address the problem of infrequent classes,

i.e. those affordances that are rare and cover small areas. One natural way to tackle the unequal

distribution of classes in the dataset is giving less frequent classes more weight. We experiment

with two mechanism to achieve this. Class-specific weights (CW) in the loss and Class-Mean

loss (CM). In the former case we multiply with manually specified, class-specific factors in the

loss tensor before summing it up to a scalar. The factors roughly express how rare a class is

and the idea is to compensate for rare classes. In the latter case, instead of computing the

loss individually for every pixel, we compute a mean over class-specific losses, resulting in

each class being weighted equally. Since both metrics also average over class-specific scores we

would expect them to increase, as rare classes should perform better. However, this is not the

case. We even observe a substantial drop in performance if CM or CW is enabled. An alternative

to manipulating the loss function is to change the data that is fed to the network during training.

Instead of showing a uniformly sampled cropped image exactly once per epoch, we changed

the sampling to include on rare classes in the crop with higher probability (IMP) and even

excluded images that do not contain specific classes (SEL). Also, these modification did not

lead to a better performance but are kept in the paper for completeness. We conclude that data

quantity outweighs data quality at least for this task.

During experimentation we found the choice of the optimizer and its learning rate to be

crucial for the performance of rare classes. High learning rates drive the optimizer into a min-

imum where rare classes are never predicted. Hence, in the presence of highly imbalanced

classes it seems advisable to use dynamic learning rates as conducted by RMSprop and other

more sophisticated gradient descent algorithms.

5.5.2 SIMULATED DATA

With around 20,000 training samples the ADE dataset is fairly small compared to other datasets

which are common in deep learning such as COCO [130] or OpenImages [115]. To compensate

for the small number of training samples we generated simulated scenes. We propose and

assess two methods of integrating simulated data with real world data:

• Joint Training In addition to models trained on individual datasets, we also train models

on both datasets conjointly: The datasets are first concatenated and then randomly mixed.

This way, each mini-batch for training can encompass samples from both datasets and

each update of the network weights through the gradient will reflect this. We will refer to

this training method by +, i.e. A+B means joint training mixing samples from A and B.

• Simulation Pre-Training The network is first trained exclusively on simulated data. Sub-
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Table 5.5: Comparison of combined training strategies. The ’+’ denotes joint training while
→ indicates multiple subsequent training procedures. The expert columns refer to manually
corrected samples as explained in Section 5.4.1

ADEE Expert50

IoU IoU

model train data M @0.1 @0.5 mAP @0.1 @0.5 mAP

R-50 ADET X 41.5 45.6 61.8 36.5 37.2 53.4

R-50 ADET + SimT X 43.9 46.5 58.9 37.4 37.4 54.3

R-50 SimT X 16.1 14.6 20.9 18.1 17.7 24.0

R-50 SimT→ ADET X 42.8 46.2 60.2 37.5 38.8 53.9

R-50 COCO → ADET 45.6 41.7 59.4 34.7 32.1 48.9

R-50 COCO → ADET X 43.4 47.1 54.3 37.1 38.0 53.6

P-105 SimT X 13.6 11.8 16.6 18.6 18.0 24.9

P-105 ADET X 44.3 48.5 62.3 37.9 38.2 52.7

P-105 ADET + SimT X 44.7 47.1 59.8 38.2 39.4 54.1

P-105 SimT→ ADET X 42.7 46.1 59.2 37.7 37.9 54.5

sequently, in a second training stage, the network is fine-tuned to the target dataset. To

reflect the sequential nature of this training we denote it with an arrow (→).

As an alternative to simulated data, we pre-train networks on the COCO dataset [130], too. Our

results are presented in Table 5.5.

The R-50 model seems to take advantage of additional data and improves most scores (with

mAP on ADETbeing the exception). The increase is subtle, though. On P-105, performance

on some scores even decreases when simulated data is used. Regarding the comparison be-

tween joint and pre-training we note that both methods perform on-par. Possibly, this could

be explained by the limited variability in the simulated scenes we employ here. In general,

simulating data seems a promising option if data is scarce but a more sophisticated simulation

model, which is beyond the scope of this paper, would possibly be required.

We also find that pre-training on the COCO dataset yields a similar performance boost as

the simulated dataset. However, considering the enormous annotation efforts of COCO we

still think that simulation is a better option for pre-training. Comparing both scores involving

COCO also confirms the usefulness of the loss masking, which was discussed earlier.

5.5.3 COMPARISON TO STATE-OF-THE-ART MODEL

Although some previous work is akin to the idea of affordance segmentation we only find

the work of Roy and Todorovic [173] to be suitable for a direct comparison. They evaluate
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Table 5.6: Performance on the Oregon dataset. NYU indicates the original roughly 50-50 train-
test split, while OWN uses more samples for training.

IoU

model train dataset @0.1 @0.5 mAP

R-50 OregonNYU 26.0 16.8 34.5

R-50 OregonOWN 29.3 20.5 39.4

P-105 OregonNYU 30.1 22.1 42.6

P-105 OregonOWN 34.2 26.9 50.3

R-50 ADET + SimT→ OregonNYU 53.0 56.4 72.4

R-50 ADET + SimT→ OregonOWN 58.1 65.5 83.5

P-105 ADET + SimT→ OregonNYU 59.0 63.0 82.4

P-105 ADET + SimT→ OregonOWN 58.8 63.0 81.9

Roy and Todorovic [173] 49.6 n/a

Roy and Todorovic [173] using GT cues 53.2 n/a

their system on images of the NYUv2 [186] dataset, which provides depth maps in addition

to RGB images as they rely on 3d scans for training their network. They collected pixel-wise

annotations for a set of five affordances for all images of the NYUv2 dataset. This set does

not directly correspond to our affordances thus we cannot directly run a network, which was

trained with our method on their data. Instead, we make use of transfer learning: We take a

trained model and replace the last layer responsible for classifying with a new one involving

only five classes. The weights of all other layers are maintained. During training all weights are

changed, i.e. the transfer learning only affects initializations.

The experiment involves different models and two different train/validation/test splits.

One is the original NYUv2 split used in [173], which divides the 1,449 training samples in al-

most equally sized halves. The disadvantage of this split it that the training set is very small.

Therefore we incorporate a more training-heavy split into the analysis, involving 1,100 samples

for training and validation leaving the remaining samples for test.

The results reported in Table 5.6 reveal a strong improvement over state-of-the-art by models

that were pre-trained using our method. Baselines, that were trained on the NYUv2 affordance

dataset only but with encoders being pre-trained on ImageNet, performed much worse and

don’t even come close to state-of-the-art. Pre-training, in this case by join-training, on real and

simulated data yields a large performance improvement. All of our models that were trained

using this method outperformed the network of [173]. By switching to a more training-heavy

split, we are able to obtain IoU scores up to 64.5, which is more than 12 percentage points above

state-of-the-art results which used ground truth cues.

Also the qualitative results shown in Figure 5.8 are remarkable. In the bottom row, the P-102
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Figure 5.8: Probabilistic segmentations generated using our method on the NYUv2 dataset
[186]. Columns (left to right): original image, predictions of P105, and ground truth.

network even discovers a place-able surface that was not annotated in the ground truth. Apart

from that, the depicted predictions of walk-able, grasp-able and place-able are close to ground

truth.

5.5.4 MODEL COMPARISON

Following the conclusions we can draw from the previous experiments, we evaluate a set of

specifically tuned models for different purposes and discuss the specific trade-offs. This is nec-

essary as affordance segmentation can be used in a variety of diverse environments, such as a

mobile robot or a fixed installation. Each of these environments has its own requirements with

respect to inference speed and CPU/memory demands. As the encoder carries out a large share

of the computations we compare different encoder sizes, all based on the ResNet architecture.

For comparison, we also report PSPNet scores. Following our nomenclature from above, the

number after R denotes the number of layers. Results are shown in Table 5.7. We find that a

larger encoder does not improve performance, while a smaller one only has a slight impact on

performance.

5.5.5 AFFORDANCE-WISE EVALUATION

Table 5.8 reports individual scores for selected configurations. We can observe a strong varia-

tion in performance across the affordances. For example, obstruct, walk and support are learned
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Table 5.7: Comparison of models. Best performance is achieved by the most complex models,
but even very simple models (R18) can perform well.

ADEE Expert

IoU IoU

model train data @0.1 @0.5 mAP @0.1 @0.5 mAP

R-152 SimT 16.0 13.9 20.8 18.6 17.8 25.5

R-152 SimT→ ADET 39.3 43.2 56.9 36.9 34.9 54.2

R-152 ADET + SimT 43.1 44.6 56.8 35.7 35.0 53.1

R-50 SimT 16.1 14.6 20.9 18.1 17.7 24.0

R-50 SimT→ ADET 42.8 46.2 60.2 37.5 38.8 53.9

R-50 ADET + SimT 43.9 46.5 58.9 37.4 37.4 54.3

R-18 SimT 16.9 14.9 23.0 20.0 17.6 27.5

R-18 SimT→ ADET 41.7 44.1 56.8 35.6 35.6 51.2

R-18 ADET + SimT 43.3 44.8 57.6 36.9 35.6 53.2

P-105 SimT→ ADET 42.7 46.1 59.2 37.7 37.9 54.5

P-105 ADET + SimT 44.7 47.1 59.8 38.2 39.4 54.1

P-105 ADET + SimT 44.1 46.8 58.7 38.5 38.2 53.9

P-105 ADET + SimT 45.3 47.4 63.1 38.4 36.8 53.8

Table 5.8: Performance for individual affordances. The IoU threshold is 0.1. * indicates that
class mean loss is used.

obstruct break sit grasp pull tip-push illum. observe support place-on roll walk mean

model dataset IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP IoU mAP

P-102 SimT→ ADET 87.5 94.1 41.6 71.8 40.4 53.7 19.3 29.5 3.3 1.6 3.1 11.2 7.4 24.9 23.2 40.1 54.4 89.7 29.4 44.6 72.3 96.3 70.8 96.0 37.7 54.5

R-152 SimT→ ADET 86.4 94.1 38.6 69.2 30.6 41.3 19.0 34.2 1.2 0.8 8.6 5.4 5.5 30.4 28.0 47.5 53.5 89.1 24.6 45.9 75.0 96.6 72.1 96.2 36.9 54.2

R-50 SimT→ ADET 87.6 93.5 38.1 73.2 41.4 60.2 17.7 25.0 1.2 1.0 5.3 3.0 12.4 23.7 27.4 40.7 53.3 90.2 27.0 42.7 69.4 96.9 69.2 96.7 37.5 53.9

R-50 SimT 79.4 87.7 14.5 16.9 8.8 11.9 8.0 7.7 0.0 0.4 0.0 0.2 16.0 23.3 3.5 8.4 27.8 50.0 14.4 21.1 22.5 30.5 22.7 29.8 18.1 24.0

R-18 SimT→ ADET 86.6 93.7 36.2 67.1 35.3 46.8 19.3 30.2 2.3 1.0 2.7 1.3 11.1 19.8 24.2 42.4 51.9 88.5 21.0 32.1 69.1 96.1 67.5 95.8 35.6 51.2

R-50* ADET 85.7 93.9 27.1 60.6 27.4 42.0 16.8 23.0 0.0 0.6 0.0 0.5 11.6 30.6 21.6 36.3 49.7 85.3 18.4 27.8 59.8 93.0 54.6 92.9 31.1 48.9

well while grasp, place-on and observe turn out to be more challenging. In particular the small

structures of pull and tip-push seem to be hard to predict as their scores are close to zero. This

is probably due to these structures not only being small but also rare. This means they need to

be learned from less samples than other classes, which is more challenging. Additionally, their

geometry might be harder to learn, in particular as features are more difficult to be recognized

due to their small size. The more complex encoders of PSPNet and R-152 exhibit the best per-

formance on these small classes, which might be due to their higher capacity allowing them

to preserve details of smaller structures while encoding. At the same time, larger networks

are more prone to overfitting, because of their larger number of parameters, which limits their

overall performance.
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Figure 5.9: Speed vs. accuracy trade-off between the models. Note, we use the log scale of
timings for better readability, the execution speed grows exponential with image size.

Note, the scores of zero do not mean that rare affordances are never predicted as we can

see in the qualitative evaluation. Also, due to the cross entropy loss encouraging cautiousness,

the predictions are fairly weak such that false negatives are common if the same threshold

value is used for all affordances. A possible way to overcome this in practice would be to

use a very low threshold (<0.1) to generate candidates and then apply an application-specific

post-processing to remove false detections. Alternatively, false detections could be filtered by

rule-based approaches using heuristics.

As we can see in the last row, modifying the loss to be a mean over class-specific losses

instead of a pixel-wise loss does not improve in rare classes. It seems that, for now, the most

straightforward way to get better performance would be to use more training samples.

5.5.6 SPEED TRADE-OFF

In practice, networks cannot be arbitrarily large and the availability of memory is limited. This

holds in particular if a robotic platform is used, which runs on batteries. To obtain an intuition

on the respective trade-offs of the models we report inference time and memory footprint of se-

lected models in Figure 5.9. Here, we constrain the batch size to one as we expect that responses

of the system are required immediately in realtime systems.
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Original grasp, sit, pull observe, walk, place-on all affordances

Figure 5.10: Probabilistic segmentations generated by the network P-102 jointly trained with
simulated data. From left to right: Original Image; predictions grasp (blue), sit (green), pull
(red); predictions of observe (cyan), walk (pink), place (yellow); all 12 affordance map predic-
tions in their original form with the intensity corresponding to the presence probability of the
affordance. Note, these images are not from the ADE dataset and therefore no ground truth is
shown.

5.5.7 QUALITATIVE EVALUATION

In addition to these quantitative findings we now discuss qualitative output of the models on

various different scenes. In Figure 5.10 we show predictions of network P-102. For these re-

sults we do not use binarization but visualize the probabilistic predictions directly. All colored

pixels encode the probability for the corresponding affordance by color intensity. This renders

an assessment of the degree of confidence the model attains for any given pixel’s affordance.

Mixed colors indicate the presence of multiple affordances. The here used images challenge the

network with difficult situations like front-lighting and transparent materials. We observe that

the network generalizes well to these new situations, even small structures are mostly correctly

predicted, for instance the drawer knobs in the bottom row. There are some false positive cases:

The tissue and soap dispenser and the trash bin in the second row are marked as grasp-able.

However, in order to know that these items are actually fixed one would need to physically

inspect the scene (the trash bin could well be detachable), so, given only an image, these predic-

tions are plausible. Another observation is that the prediction intensity is sometimes weak, as

in the second column for place-on. However, depending on the application, this can overcome
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P-102 R-50 R-50 R-18
Original (joint train-

ing)
(joint train-
ing)

(pre-training) (pre-training)

Figure 5.11: Probabilistic segmentations generated by different networks. Row 1 and 2: grasp,
sit, pull, Row 3: observe, walk, place. Note, image sizes vary as the networks are fully convolu-
tional and there is no need to rescale to a common resolution.

either by scaling the intensities or By some post-processing.

Figure 5.11 features a qualitative comparison showing the same scenes but predictions of

different models. Here we can see that the predictions of the networks look fairly similar, which

could be expected since both were trained on the same data. Furthermore, the subtle differences

between the models are in accordance with the quantitative findings above.

5.5.8 ROBOT EXPERIMENT

In order to demonstrate the potential of the proposed system we performed a robotic experi-

ment using a KUKA LWR robot-arm [121] with a 3-finger Schunk SDH hand [184]. The task for

the robot was to conduct simple manipulation actions based on an affordance segmentation of

the scene.

Execution of robotic actions is based on our previous work and was implemented using a

library of manipulation actions [1, 2], which utilizes modified dynamic movement primitive

(DMP) framework [97, 122], for trajectory generation. DMPs are formalized as stable attractor

dynamic system and can generalize to new start and end points while being robust against per-

turbations. Specifically, here we used “pick-and-place”, “take down” and “push” (to perform
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Sequence 1.1: Picking-up the cup and placing it on the left side of the
cupboard

Sequence 1.2: Picking-up the bottle and placing it on the shelf inside the
cupboard

Sequence 2.1: Opening the door of the cupboard by pulling the handle

Sequence 2.2: Picking-up the cup and placing it on the shelf inside the
cupboard

Figure 5.12: Results of execution of two action sequences based on affordance maps obtained
using R-50. Affordance maps (left) and selected frames of robot action executions (right) are
shown. For the complete experiment see supplementary video. Colors denote grasp (green),
place (blue) and pull (red).
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Figure 5.13: Qualitative Evaluation in a lab setting using R-50. Left: Frames from the experiment
with corresponding affordances, right: the same objects from a different perspective. Colors
denote grasp (green), place (blue) and pull (red).

pull) actions to manipulate an object or an object part in the scene. For simplicity, in our study

we used predefined object poses. In general, this can be done using existing state-of-the-art

methods for pose estimation [157, 44], however, this is out of the scope of our study.

We show how affordance maps enable the robot to select and perform actions that are at that

moment available in a scene. As we are not interested in any kind of planning problem, we let

the robot “decide what to do” on its own, implementing some kind of playful mode. The robot

had to select and perform two actions in a sequence. Hence, affordances need to be re-analyzed

after the first action. However, this does not perturb execution of the second action due to the

speed of affordance computation. Figure 5.9 has already shown that new affordances can be

provided in realtime.

As in all quantification experiments above, affordances are assigned in a pixel-wise manner,

where the color-intensity in the visualization (Figure 5.12) indicates the existence probability of

the affordance. Hence, thresholding the affordance map enables determination of potential tar-

get locations, such that unlikely places, like “placing on the bottom shelf” (faint blue intensity),

are ruled out. No explicit object knowledge is required for this task and – as mentioned – no

planner was used. The general setting is illustrated in Figure 5.1.

We show two such action sequences resulting from this setup given the same initial con-

ditions: 1) pick-and-place a cup and take a bottle down; and 2) pull a handle and take a cup

down. Note that pick-and-place and take down actions consist of a sequence of grasp, place

and release actions. Results of the robot experiment are shown in Figure 5.12, where we show

affordance maps obtained using R-50 and the key frames of the robot action execution (please

see supplementary video for the full experiment). It is important to stress that the network has

not been trained on this kind of the scenes. We can see that the affordances of objects (the bot-
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tle and the cup) and object parts (the door handle and the shelf) were correctly identified and

action sequences successfully executed.

In order to show robustness and generalization abilities of our approach we have also gen-

erated affordance maps for five other scenes with different object configurations and different

perspectives. The scenes and their corresponding affordance maps are presented in Figure 5.13.

Again, note that the training set (same as for Figure 5.12) for these experiments consists of

scenes, which are quite different from the ones shown here. It can be seen that most of the here-

considered affordances are correctly assigned and not many errors are found. Challenging (e.g.

transparent) objects are also correctly identified. The ground plane is usually not considered

for a placing affordance as the system would recognize it rather as “walk-able” (coloring not

shown). Surfaces, which are nearly horizontal, appear in the 2D image with only a few pixels

and the system also considers them not for placing. Furthermore, some other placing-surfaces

are only partially detected. But note, that these results are all based only on single 2D views.

Methods for accumulating knowledge (e.g. based on a voting scheme across a sequence of im-

ages) can without problems be added to further improve on this. However, already these results

demonstrate that our approach can generalize very well to different scenes with variable object

configurations even though the network has not been specifically trained on such scenes.

5.6 CONCLUSION

In this paper we have described a method that labels a comparatively large set of 12 affordances

pixel-wise given only single 2D RGB images. We have shown how to construct an affordance

training dataset from object parts segmentation and apply recent semantic segmentation meth-

ods to learn affordances effectively. An extensive analysis on the impact of modifications to the

loss, sampling and architecture has been carried out. The state-of-the-art method of Roy and

Todorovic [173] is substantially outperformed by adopting features that were obtained using

our method.

A strength of our method is that it is fast (less than 10ms) while operating on 2D images of

arbitrary size. It is applicable on all kinds of scenes, even in presence of light-absorbing, trans-

parent and reflecting materials where structured light cannot be used. Hence, it can easily be

adapted to multiple scenarios. The transfer to a scene that had not been part of any training

set was not a problem in the here-shown robotic test. When our method is to used in practical

applications it can easily be modified: The set of affordances can be adopted according to the

capabilities of a robot or detection thresholds of individual affordances can be modified. The

field of autonomous robotics, for example considering service robots, relies heavily on semantic

scene analysis methods. We think that the here-presented fast and simple 2D-affordance detec-
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tion can be used to provide a machine with good estimates of what to do in a scene using few

computational resources. Given a task (“clean up the room”) and pairing this type of affordance

analysis with planning algorithms would make such a system applicable in different domains

that require autonomous action decisions.
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Action Plausibility Rating

Previously, in Chapter 5, we have seen a system that detects opportunities of interaction with

the environment. However, depending on the situation, these interactions may not be equally

appropriate. Drinking a glass of wine on a laid table is more plausible than drinking a glass

of wine that stands next to a pile of dirty dishes to be cleaned up. Food is normally served

on clean dishes while dirty dishes are put to the dishwasher. Such knowledge is widely appli-

cable. Not only for robotic systems but all systems that interact with humans, it is crucial to

understand these differences in plausibilties to be helpful in everyday use or make reasonable

suggestions. However, when a scene is represented on the object level (e.g. labels and positions

of objects) such differences cannot be considered. In order to make informative guesses about

plausible actions the appearance and context of individual objects must be considered. In the

following article, we implement this idea by directly mapping image input to action plausi-

bilities. Following the motivation from the introduction (Section 1.1.2.1), we explicitly evade

object-based intermediate representations and use a distributed knowledge representation in

form of synaptic weights.

Summary The following article addresses the problem of inferring the plausibility of actions

from object images. For this, we define a set of 10 actions and ask human raters to judge how

likely they consider these actions in a large set of images. We collect annotations from eight

raters using a web-based interface. We train a CNN to predict the distribution of these gathered

ratings, which encode the likelihood of actions. For proper tracking of performance we intro-

duce three metrics as well as meaningful baselines. Furthermore, we investigate various forms

of integrating object context. The results indicate that the system works well and differentiation

of plausibilities is generally possible. Incorporating the context yields only minor performance

gains.
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Abstract

An essential capability of humans is the effortless identification of useful tasks based on

visual cues in everyday situations. Object appearances and contexts are integrated and pro-

cessed to differentiate plausible from implausible actions. In this work, we study how to

teach this ability to robots. In contrast to many tasks in computer vision where the goal is

an accurate scene description (object labels, caption) of the present scene here the challenge

is to make reasonable guesses about the future outcome of an action. To this end, we col-

lect a dataset that associates images with probabilities over a set of actions. A convolutional

neural network is trained to match these ground truth plausibility scores using this dataset.

We compare the performance of state-of-the-art encoder architectures and specifically ana-

lyze the role of contextual cues quantitatively. While the object recognition capabilities of the

encoder have a strong impact on performance, using context did not lead to substantial im-

provements. We show qualitatively the utility of such a system for robotic action selection in

a household setting.

6.1 INTRODUCTION

In a given situation humans often have plenty of action possibilities, but commonly only a tiny

fraction is appropriate. Making such action decisions in everyday life feels effortless, which is

partly due to our common-sense knowledge. The sense of appropriateness that guides the deci-

sion is probably not innate but learned, while growing up. Robotic systems, however, naturally

lack this skill and therefore can exhibit a behavior that is surprising and unexpected for humans

due to the robot’s misinterpretation of a situation. Thus, transferring this kind of common-sense

knowledge to machines would have a great impact on their usability, in particular for situations

where interaction with humans is required.

The problem of representing common-sense knowledge itself is not new and has been ad-

dressed for decades. Most of these past approaches to represent common-sense facts are sym-

bolic, i.e. they assume that knowledge can be expressed in terms of a finite set of discrete sym-

bols and their relations. While this comes with the advantage of interpretability, it is unlikely

that all knowledge can be expressed in this form, especially not inherently continuous facts
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Figure 6.1: Sketch of the idea presented in this paper: Small changes in the image can have a
vast impact on the plausibility of actions.

as the likelihood of eating from this dish decreases with its level of dirtiness. Examples of this kind of

knowledge representation can be found in the psychological literature where action possibilities

(affordances) are modeled as probabilistic functions instead of binary attributes [66]. Symbolic

approaches fail if they only take class labels into account as contextual and appearance details

are crucial for such a task. Of course, with quite some effort these aspects can be incorporated

into symbolic systems, too. However, for this all relevant details need to be known and spec-

ified a-priori. If the fill-level of a cup is critical for drinkability, a logical variable "fill-level"

needs to be added to the system along with an image recognition component that can detect

it. The same is true for each and every such object and situation-dependent aspect leading to a

massive effort in pre-defining all of this in the right way. Different from that, the advantage of

our approach is that there is no need to explicitly model the space of all variables influencing

an action as the system learns these relationships end-to-end.

In this article we address the novel problem of rating how plausible certain actions are. An

illustration of this idea is shown in Fig. 6.1. For this purpose, we develop a hybrid system that

represents common-sense knowledge in a distributed, implicit way but also relies on a hard

coded action compatibility table that defines if actions can in-principle be conducted on differ-

ent object classes. We take images from the OpenImages dataset [115] and then ask humans

to rate how plausible they consider certain actions. Having obtained a such-labeled dataset,

we train a neural network to predict action plausibilities, which relies on the implicit encoding

into the network of the human common-sense knowledge during training. This way rules like if

dirty dishes are close to each other stack them or if room is empty use remote control to turn off TV could

be learned from data. Importantly, after training, the system is able to directly map from pixels

to action plausibility probabilities and a symbolic representation is not any longer needed.
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Simple symbolic mappings (like object labels mapped to actions) would be doomed anyhow,

because commonly object classes are very broad (high variance). For example the class "cup"

contains images of full and empty cups as well as cups with and without handle. However,

actions often depend on the state of the object, which cannot be inferred from the label only.

Often, the state can be much more informative concerning an action than the object label, since

an action can be compatible with a broad range of object classes in a certain state.

6.2 RELATED WORK

We are not aware of any approach that explicitly deals with the problem of rating actions with

respect to their plausibility from observed scenes. However, several related tasks have been

addressed before. Here we present an overview, differentiated by the input data the methods

use.

Video-based Methods A large body of work in anticipation operates on videos, which seems

natural since movies provide a large temporal context to base predictions on. In the work of

Lan, Chen, and Savarese [123], the next action in a TV show is predicted based on previous

frames and object bounding boxes. For this a hierarchical video representation called movemes

is proposed. The anticipation of human activities that is addressed in Koppula and Saxena [114]

can be considered a closely related task. They model human pose, object affordances, object lo-

cations and sub-activities in a graph that changes over time through a temporal conditional

random field. By sampling from this model, prospective activities can be predicted. These

possible futures could also involve actions we are interested in. While their dataset only com-

prises 120 scenes, we prefer a larger number of scenes to allow for more detail within scenes.

Vondrick, Pirsiavash, and Torralba [220] model the development of visual feature representa-

tions (obtained from a CNN) over time in a self-supervised setting. Some video recognition

approaches have been evaluated in an early recognition setting [252, 249]. Given only a certain

fraction (e.g. 20%) of the first frames of an action, the goal is to determine the action, which can

also be seen as a weak form of anticipation.

Our task differs from the tasks addressed in these paper in using only a single RGB image

as input. This implies that models cannot rely on patterns that occur in sequences of actions to

generate predictions but have to identify cues only from the provided single image.

Still Image-based Methods Besides relying on video, anticipations can be made from static

images. For example, Walker et al. [225] predict pixel-wise trajectories. For each pixel a pre-

diction of how it will evolve in the future is conducted using an autoencoder. A similar idea
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is pursued by Chao et al. [35]. Instead of dense pixel trajectories, they specialize entirely on

anticipating pose dynamics. Similar to us, Vu et al. [223] predict distributions over plausible ac-

tions from images for which they collected the SUN Action dataset. While they predict general

actions for whole scenes, we focus on more specific actions considering only individual objects.

Fouhey and Zitnick [64] follow a single image setting, too, but they use abstract scene represen-

tations to learn what might happen next. Instead of predicting specific actions they consider

the dynamics of objects. In the work of Qi et al. [168], interactions between humans and objects

are studied in images as well as in videos. Scenes are parsed into a graph that indicates rela-

tions between objects. In one experiment, this graph is used to anticipate future activities on

the CAD-120 dataset [113].

Psychology and the Concept of Affordances Action plausibility scoring is related to the con-

cept of affordances coined by Gibson [70] and later refined by Gibson [69, Chapter 8]. While

affordances indicate what interactions with the environment are possible for an agent, they do

not come with any notion of preference. No differentiation about what action is more likely to

happen takes place, physical compatibility is the only aspect that matters. Hence, affordances

can be considered to be less-abstract than the plausibilities we propose in this paper. Affor-

dances have been studied in various forms: for whole images [250], as poses [80], bounding

boxes [239, 57], densely for every pixel [151, 173, 169, 137, 136] or from video [113, 229]. How-

ever, existing research is not limited to discovering action possibilities: Mechanisms that drive

the selection of actions have been investigated in neuroscience [7] including the creation of

computational models [42, 185].

Note that the concept of affordances centers strongly on the objects, essentially asking:

which actions are suggested by different objects? Agents, humans or robots, however many

times are rather plan-driven and they ask this question the other way round: which object can I

use for a planned action? To better accommodate both types of queries, recently the concept of

Object-Action Complexes (OACs) had been introduced [234, 119] that assumes that objects and

(planned) actions are inseparably intertwined. Our current study takes this one step further

stating that objects with certain properties and actions are intertwined. For example full cups are

for drinking, dirty cups for cleaning, etc.

6.3 THE PLAUSIBLACT DATASET

In this section, we introduce the PlausiblAct dataset which associates images with a probability

distribution over a set of ten actions. We explain the design of the dataset from the selection

of actions via collecting data to generating probability distributions from the gathered anno-
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tations. The images of PlausiblAct come from the OpenImages dataset [115], which contains

scenes (images) showing multiple objects with corresponding bounding boxes. For our dataset,

we extract individual objects and denote them as instances.

6.3.1 CHOICE OF ACTIONS AND RATINGS

In contrast to object names, it is more challenging to assign actions. Actions are to some degree

subjective, depend on a state (e.g. hungry, tired) or on past actions. Therefore, a key challenge

in this work is to constrain the setting in such a way that actions become less subjective. To

this end, we focus on actions that tend to be unconditional. This involves actions the utility of

which immediately pops up when a scene is perceived without depending on the state of the

observer. We say “tend to” because even under these considerations the here-chosen actions

remain somewhat conditioned on the state but to a smaller extent than many others. Specifically

actions which are either plan-driven (e.g. to hammer a nail to fix something) or mood-driven

(e.g. watch TV, read a book) are excluded. In such cases we would not expect the actions to

be reliably rate-able as raters might assume different states leading to inconsistent ratings. We

identify a set of ten actions A that is compatible with these principles. They are presented in

Fig. 6.2. In addition to actions, we need to define possible ratings for an action instance. In

order to reduce the cognitive load for the raters we follow a simple approach and use only

three possible ratings R = {impossible, implausible,plausible}. While impossible refers to the

physical layout of a scene, plausibility decisions often depend on the context within an image.

For each action of these ten actions, we manually enumerate the complete subset of compat-

ible object classes from all 600 object classes in OpenImages [115] (see appendix). Compatible

means that, based on the object class name, it is potentially possible to conduct the action on

an object of this class. E.g. a glass is potentially compatible with the action drinking (but not

always, as it can be empty). We will implicitly assume that incompatible object-action pairs (as

specified by the table in the appendix) are implicitly rated as impossible. For instance, let us

assume there were only the actions eat and sit on and the object cake. Then defining the set of

eat-able objects to be {cake} implies that the cake is never sit-able.

6.3.2 SCENE AND INSTANCE SELECTION

Having defined compatibility between actions and objects, the next step is to select good scenes

from the set of remaining scenes. Note that people do not take photos randomly. They rather

focus on beautiful and tasty things. E.g. food is most often photographed before and not during

eating. This leads to the fact that image databases are really representative illustrations of reality

but collections of cherry-picked moments. However, to generate reasonable action plausibilities
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we need a good coverage of all situations. In the following we introduce mechanisms that

counteract these biases.

First, scenes are excluded when one of these criteria is met:

• Small coverage (less than 2% of all pixels), as the crop would not be recognizable.

• Large coverage (more than 70% of all pixels), as there would be little room for context.

• Image with humans as this would often require the rater (and later-on also the system) to

infer intention, which we consider beyond the scope of this paper.

Furthermore, we maintain only one bounding box if two bounding boxes overlap with an

intersection over union of over 0.5. Then we use the one for the less frequent class. Lastly, we

manually remove scenes showing humans that were not considered by the labels and hence

slipped through our previous filtering mechanism. Additionally, product photos and images

having poor quality are removed.

Lastly, we put an upper limit on the number of occurrences of each object class. To prefer

larger objects we sort all instances descending by size and then select the first 1000 instances of

each object class which increases the variety of the included object classes.

6.3.3 COLLECTION OF ANNOTATIONS

Annotations are gathered using a web-based interface. After receiving instructions and being

shown example ratings, raters could explore a large number of instances for each action. The

order of instances is shuffled individually for each rater. Instances to be rated (with impossible,

implausible or plausible) can be freely chosen by the users.

Rater instructions All raters received explicit instructions. Pilot experiments suggest that

these are critical for obtaining a reasonable inter-rater reliability as the annotation of actions can

be highly ambiguous. Following our observations from the pilot experiments, we instructed

raters to follow three principles. These are the original instructions presented to the raters:

• Optimism about the Unseen: If you are uncertain about some unseen aspects of the scene,

please assume the most favorable situation for the given action.

• Immediate Acting: Consider the plausibility of conducting the action without delay. Do

not assume that the action execution could wait.
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Figure 6.2: Left: Frequencies of the ratings for each action (note the logarithmic scale). Right:
Screen-shot of the annotation tool.

• Static Scene: Do not assume changes to the scene that make the action possible that go be-

yond the definition of the action. Only consider the presented situation and pay attention

to the action definition.

In addition, we showed to the raters eleven examples of how these principles are supposed to

be interpreted.

Consider rating a scene involving an opaque bottle on a table regarding the action drink.

The principles above mean that the action should be rated by assuming that the bottle contains

drinkable liquid (optimism), the table layout cannot be changed (static scene) and we cannot

conduct other actions before drinking (like filling the bottle first).

While we first experimented with a sequential design, where only one image at a time is

presented to the rater, we finally decided to employ a multi-image paradigm. For a given ac-

tion, multiple scenes are presented and the user can freely select, which instances to annotate.

This allows for faster and more reliable annotations as hard, unclear samples can be skipped.

Furthermore, this paradigm allows us to ask the raters to provide a minimal amount of ratings

for the categories implausible and plausible, which results in a more balanced dataset. The web-

based tool is shown in Fig. 6.2 (right). We discuss inter-rater reliability in Section 6.4.2.4, after

the explanation of the metrics used in this work. We use the split in training, validation and

test data defined by OpenImages [115]. For the training data, we allow choosing annotations

freely as described above. As a consequence, the training procedure has to deal incompletely

annotated instances. For creating the ground truth of the test data, we requested the raters to

label instances completely (i.e. all compatible actions must be rated), which enables computing

meaningful metrics on the test set. For this, indicators of missing instances are shown in the

web-based interface to prompt the rater to complete it.
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Figure 6.3: Rating distributions for all actions and frequent objects. Note, ratings are often not
uniformly distributed for objects. Incompatible combinations of action and object are left blank.

Annotation statistics In Fig. 6.2 (left) and Fig. 6.3 we present distributions of the user-provided

ratings for all actions and selected objects. In total, eight raters provided 28,046 ratings on 18,837

instances. Impossible was chosen 7,219, implausible 8,922 and possible 11,905 times.

6.3.4 FROM ANNOTATIONS TO PLAUSIBILITIES

Having collected a set of annotations, we need to transform it to trainable data. Each instance

may have received ratings for some actions from one or more raters.

The key idea is to train the network to match the plausibility distribution of the raters for

each instance. Not every instance suggests clear actions and often multiple ratings seem plausi-

ble. By modeling the ground truth as a distribution over ratings we can incorporate a notion of

uncertainty. This approach is different from image classification, where the ground truth distri-

bution accumulates all mass on a single label. In our case this happens only if all raters agree.

Moreover, we predict 10 actions per image simultaneously.

Formally, for every instance i ∈ I (i.e. an object in an image) we aggregate all associated

ratings into a matrix R(i) ∈ N|A|×3. Each element R
(i)
a,r denotes the count of ratings r for action

a. In addition, a mask v(i) ∈ {0, 1}|A| is computed that indicates which rows (actions) of R(i) are

valid for an instance. This is necessary because in the training set annotations can be incomplete.

Since raters can freely choose which instances to annotate, there is no guarantee that for a given

instance all possible actions are actually rated. The values of unrated yet compatible actions in

R(i) are not informative and therefore must be excluded from the computation of the loss. Thus,
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later, we will use v(i) to exclude undefined actions from being considered in the loss. Next, the

ground truth plausibility matrix P(i) is generated from R(i).

P(i)
a =


R

(i)
a∑

r R
(i)
a,r

a is compatible with instance i

[1, 0, 0] otherwise

(6.1)

Here the vector [1, 0, 0] is used to assign the rating impossible to all incompatible actions (as

described above).

6.3.5 LOSS

Given an image I, the network f predicts a matrix that assigns a probability to each rating for

all actions. The rating probabilities for an action must sum to one. The loss is calculated by the

cross entropy CE between each action’s predicted rating distribution and the actual distribution

obtained from the raters, denoted by P(i).

L(i) =
1∑

a∈A v
(i)
a

∑
a∈A

CE(f(I(i))a,P
(i)
a )v(i)

a

In case an action is required but not provided the value of P is invalid and should not contribute

to the error expressed by the loss. This is realized by using the validity mask v(i).

Data Augmentation Since we have to cope with limited training data, we apply different

forms of data augmentation. This involves random cropping, adding Gaussian blur, changing

gamma and colors of the image. We control the strength of these operations with a single integer

value. The optimal value of this is determined experimentally (see Table 6.2).

Implementation We employ batch normalization [98] and early stopping after 7 epochs with-

out improvement of the validation loss. Weight updates are carried out with ADAM [110]. The

code is implemented based on the PyTorch [158] framework.

6.3.6 MODELS

We use state-of-the-art convolutional neural networks architectures that have proven to work

well for image recognition tasks. These include different variations of ResNet [88] and Incep-

tionV4 [202]. Instead of training from scratch, we initialize the networks weights from pre-

training on ImageNet [53] unless otherwise stated.
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setting 1st input 2nd input

ignore black image -
img+mask instance image context image with instance being masked
img+full instance image context image (no masking)
only-masked context image with instance being masked -
only-full context image (no masking) -

Table 6.1: Input data for the different context settings

6.3.7 BASELINES

We start our analysis by introducing two baselines:

• The mode baseline always predicts the most common rating for the depicted object. This

is somewhat unfair since the baseline uses object labels other models do not have. How-

ever, it provides us with insights about how strongly the prediction of an action is tied to

the underlying object class.

• The ignore image baseline is identical to a normal model but does not receive any image

as input. Hence, the only way it can minimize loss is to learn the dataset distribution.

This baseline provides us with a reference to relate other scores with. If a model does not

perform better than this baseline it has not learned anything but the biases present in the

dataset.

6.3.8 CONTEXT REPRESENTATIONS

As stated above, instances are objects that are part of larger scenes. Hence, it might be useful to

make the entire scene accessible to the model. For incorporation of this kind of context, we dif-

ferentiate between multiple ways, which we describe in the following. Context representations

that involve a “+” imply two image inputs (instance image + some context) to the model and

thus require two separate image encoder networks.

• The trivial case ignore means ignoring the context entirely and considering only the in-

stance’s object.

• In the img+masked setting, we mask the object bounding box with a black rectangle. Hence,

the network has no access to the object’s visual features but has to rely only on contextual

cues. Additionally, as a second input, the instance image is shown, too.

• In the img+full setting, the entire context is shown (without masking the instance) and the

instance image is provided as a second input.
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Figure 6.4: Illustration of how metrics are computed for one instance. Predictions of the network
and ratings of the annotators are collected in two matrices Q and P. By comparing the most
likely ratings for each, the accuracy is obtained.

• In the only-masked setting, the entire context with the instance being masked is shown.

• In the only-full setting, the entire context is shown.

In Fig. 6.1 we provide an overview of the different input data types in the context settings.

6.3.9 METRICS

Obtaining quantitative scores for performance is a challenging task because the model’s pre-

dictions and the ground truth are proper probability distributions. This is different from image

classification where the ground truth distribution has only one non-zero element. Furthermore,

for each instance, all ten actions are predicted simultaneously. For calculating performance met-

rics, we compare the ground truth P(i) with Q
(i)
a,r, which represents the network’s predictions

for action a and plausibility rating r of an instance i. The rating distribution sums to one, i.e.∑
r∈RQ

(i)
a,r = 1.

All-action Accuracy (Acc) A straightforward choice to assess how well the predictions of a

model are aligned with user annotated ratings is accuracy. If the highest mass rating is identical

for prediction and ground truth an instance is considered to be classified correctly. We consider

accuracy in two settings: Independently for each action as described above and for all actions

of an instance. In the latter case, successful classification requires the correct prediction of all

actions. The disadvantage of accuracy is its sensitive to the maximum. The actual distribution
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of the ratings apart is ignored.

Acca(P(i),Q(i)) =

1 if arg max(P
(i)
a ) = arg max(Q

(i)
a )

0 otherwise

Since we require all actions to be correctly annotated, we apply a min function on all action-wise

accuracies. By averaging over all actions we obtain the single Acc score:

Acc =
1

|I|
∑
i∈I

min
a∈A

Acca(P(i),Q(i))

Accuracy is easy to interpret but fails to represent the whole plausibility distribution. This

means, a close to uniform distribution with most mass on x is treated equally as a low-entropy

distribution that accumulates all mass on a single x.

Cross Entropy (CE) Since we need to compare probability distributions, we can make use

of divergence measures, which express how similar probability distributions are. While many

of such measures exist, a natural choice is to use cross entropy that is also used to train the

network. We compute cross entropy for each action by:

CEa(P(i),Q(i)) = −
∑
r∈R

P(i)
a,r log Q(i)

a,r

Then a single score is obtained by averaging individual cross entropies CEay over all actions:

CE =
1

|I|
1

|A|
∑
i∈I

∑
a∈A

CEa(P(i),Q(i))

A small cross entropy indicates high similarity between prediction and ground truth and is

therefore desirable. In contrast to accuracy, CE is not intuitively interpretable (how good is

a CE of say 0.2?) but it captures differences in the non-maximum parts of the distributions.

Comparison is enabled by considering the CE of one setting relative to others.

Correlation (Corr) The annotated data is ordinal, i.e. there exists an order from impossible

over implausible to plausible. By defining a distance between the three ratings we can transform

a plausibility distribution to a continuous, scalar value. This is done by a linear projection with

a fixed vector l = [−1, 0.2, 0.8] that expresses the distances between the ordinal values. For

correlation, we do not compute action-wise scores but consider instances and actions jointly.

Let the index j iterate over instances as well as actions (hence the mappings i(j) and a(j)), then

scores for an action can be computed by: r(j) = max(0, 〈l,Pi(j)
a(j)〉) and q(j) = max(0, 〈l,Qi(j)

a(j)〉)

Now that predictions and ground truths are mapped to a sequence of scalars, we can access

the quality of the model’s predictions by employing Pearson’s correlation coefficient. The re-

sulting score indicates to which degree predicted and ground truth scores are linearly related.
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We consider this a good measure as it is normalized between -1 and 1 and the top score of 1

or 100% is only attained if scores are identical, except for a scaling factor. In practice, if scores

are normalized, the scaling factor becomes irrelevant. The correlation coefficient is defined as

follows:

Corr =

∑
j(q

(j) − q̄) ∗ (r(j) − r̄)√∑
j(q

(j) − q̄)2
√∑

i(r
(j) − r̄)2

A problem of the correlation score is that it requires variance to be computable. If all predictions

(or all ground truth scores) are identical, the term (r(j)−r̄) is zero and causes division by zero. In

fact, this case rarely occurs in our experiments, we indicate it by “-”. The correlation coefficient

is both easy to interpret and captures differences across distributions. However, one might

argue that the projection vector is somewhat arbitrary.

6.4 EXPERIMENTS

Next we conduct a series of experiments assessing the quality of the trained networks and re-

lating them to meaningful baselines. First, we show some qualitative results, involving both

instance only and context. Quantitatively, we analyze performance concerning context, archi-

tecture and training settings using the metrics defined above.

6.4.1 QUALITATIVE EVALUATION

In Fig. 6.5 we present a set of images with their associated action plausibilities computed using

the single-image InceptionV4-based model as well as the 2xRN50 model which uses the instance

image in conjunction with full context. Note the variety of sample images, ranging from an

outdoor cherry tree to different cup close-ups having vastly different illuminations.

The presented samples indicate that the trained model generates useful predictions of the

plausibilities of the actions on these unseen samples. We observe that the plausibilities are

strongly dependent on the object class. However, this is not true in all cases. For example the

plausibility for drinking is zero for the empty cup while it is the most likely action fpr the filled

cup. Additionally, while the object class often seems to determine the presence of plausible

actions, there are fine-grained differences in the individual plausibilities. These differences rep-

resent a crucial aspect of the visual common-sense knowledge about household scenes that has

been learned. In a robotic context, such differences could be used to compare plausibilities of a

given action across multiple objects and then pick the most suitable object.

The qualitative samples that involve context suggest that the context has an inhibitory ef-

fect on action plausibilities. The predicted plausibilities tend to be smaller. Especially in the
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Training settings / Augmentation

mask MR SR PT aug A-Acc CE Corr

X - - X 2 47.4 0.200 74.2
X 2 - X 2 39.0 0.255 65.0
X 2 X X 2 37.9 0.275 59.8
X - - - 2 29.0 0.295 53.7
- - - X 2 36.9 0.301 42.9

X - - X 0 45.3 0.212 73.4
X - - X 4 43.9 0.213 71.1
X - - X 6 46.3 0.224 71.6

Table 6.2: Ablation of different training settings
(top) and augmentation strengths (bottom). PT: pre-
trained, SR: same ratings only, MR: minimal number
of ratings

Encoders

model A-Acc CE Corr

SqueezeNet 40.0 0.212 66.8
RN18 40.4 0.193 70.7
RN50 42.1 0.191 71.6
RN101 44.4 0.216 68.5
RN152 44.4 0.219 70.0
Xception 44.9 0.208 70.1
Inc3 40.9 0.244 63.9
Inc4 47.4 0.200 74.2

Table 6.3: Comparison of different
encoders.

bottom row that involves the same object on different backgrounds we observe much higher

plausibilities in case of a uniform white background compared to the real world background.

6.4.2 QUANTITATIVE EVALUATION

Based on the previously defined baselines and metrics, we begin our analysis by comparing

various training settings, augmentation strengths, and encoder architectures. In subsequent

experiments we address special questions investigating how many samples are sufficient, the

role of context, the impact of the encoder architecture and several design choices as part of an

ablation. Additionally, human performance using the same metrics is assessed and related to

the computational models.

6.4.2.1 Ablation

Training Setting and Augmentation First we assess the impact of several training parameters,

introduced above, on the performance. The corresponding results are reported in Table 6.2. MR

refers to the minimal number of ratings required for a sample. While this is per default 1, in case

of MR = 2 the dataset size is reduced but samples are more reliable. Same rating (SR) means

that samples are only accepted when the raters agree (which only makes sense for MR > 1).

Moreover, we find that both, pre-training on ImageNet and masking the loss are crucial for per-

formance. In both cases, performance decreases compared to single rater samples. This suggest

that the increased variance introduced by a large dataset weighs more than the increased reli-

ability of multiple ratings per instance. In augmentation we find a moderate strength of 2 to

perform best.
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Figure 6.5: Top two rows: Qualitative samples generated using the InceptionV4-based network.
Bottom row: Samples generated using full context of the 2xRN50 network (the instance image
is indicated in red)
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Table 6.4: Evaluation per action for selected models (right) as well as comparison to baseline
performances (left). The mode baseline does not receive the image as an input but has access to
the name of the object shown. “No inp.” refers to a RN50 network where all input information
is removed by multiplying with zero.
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No Inp. ignore 7.0 0.0 - - - - - - - - - - - - - -
Mode ignore 50.7 0.0 0.350 0.000 75.9 0.0 59.9 88.3 16.8 71.6 86.8 65.5 - 96.7 94.9 73.0

Inc4 ignore 45.9 1.6 0.202 0.007 73.6 1.3 53.2 84.8 18.6 70.6 84.3 77.0 7.9 94.4 91.1 62.6
RN50 ignore 43.5 2.6 0.214 0.005 70.6 1.7 50.9 77.8 19.1 68.8 80.1 71.2 9.3 91.0 88.2 62.8
2xRN50 full 44.6 1.5 0.208 0.007 70.4 2.1 52.0 78.7 20.1 68.3 82.4 65.0 - 91.6 88.0 63.1

Encoder The comparison of different encoder architectures, presented in Table 6.3, indicates

that larger models tend to perform better. We attribute this to two reasons: First, they can

capture more complex features. Second, their object detection performance is better. Given

reliable object detection, it is easier to exploit dataset biases. For a more detailed discussion of

this we refer to Sec. 6.4.2.3.

Besides the shown experiments, we found the batch size to play a critical role for perfor-

mance and thus suggest to keep the batch size as large as possible. Additionally, we tried to

use larger images to improve performance without success. We hypothesize that the reason for

this is that models strongly benefit from the pre-trained ImageNet weights. This pre-training

was done for a fixed image size and the ImageNet dataset is fairly consistent with respect to

scale. Hence, the features encoded by the weights are optimized for this specific size. Possibly,

our dataset is too small to cause substantial changes in the features and hence it benefits from

objects being provided at the original scale.

6.4.2.2 Action-wise Evaluation and Comparison to Baselines

The results shown Table 6.4 show improvement over the ignore-image baseline. This means

the models indeed use information from the image to improve predictions. In fact, the ignore-

image baseline considers all actions implausible, which is the best guess without knowing the

image. However, the mode baseline outperforms our methods in Acc and Corr while our

method achieves better CE. This means that our method has advantages at predicting fine-

grained differences in the rating distribution, while for coarse accuracy that neglects details in
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the distribution, the mode baseline is good enough.

The class-wise scores give more insights. For most action classes, our methods yield a worse

accuracy (Acc) than the mode baseline. However, drink-from is a notable exception as it per-

forms much better than mode. This suggests that for drink-from, the image content is crucial

and must be considered to make a decision.

Considering the good performance of the mode baseline it should be noted that it benefits

from several factors: First, it knows the object class being depicted, an information that other

models have no access to. Evidence for the importance of this is found in the gap between

ImageNet pre-trained and untrained models in the ablation (Table 6.2). Second, it knows the

modes of the rating distributions. Since these distribution are far from being uniform, the mode

alone often is a powerful predictor for the most likely rating. This means that the mode baseline

has an unfair advantage over our method: In practice the information about the object class

being shown is obviously not available as it would require a perfect object recognizer. Plugging

in a sub-optimal object recognizer would diminish the performance. Nonetheless, the mode

baseline serves as a useful anchor to relate scores to.

When we consider all ratings in the CE metric, the mode baseline does not perform as good

anymore. To some extent this is not surprising because the mode baseline always generates

one-hot distributions. Still these fine-grained differences in plausibilities are crucial for many

applications in robotics since they enable the comparison and selection across different potential

actions.

6.4.2.3 Selected Objects and Raters

In many cases the rating distribution is highly dependent on the object class, i.e. given the object

class we can make the correct prediction without having looking at the image. While this is just

a natural phenomenon, it interferes with our analysis since we are particularly interested in

cases where the image content matters. Hence, we conduct an analysis with a subset of objects

whose plausibility rating distribution has a higher entropy. Concretely, these object classes are:

bottle, bowl, wok and box. The corresponding results are shown in Table 6.5. We see that the

mode baseline is strongly outperformed in terms of Acc and slightly outperformed on CE. This

indicates that the good performance of the mode baseline is an artifact of unbalanced rating

distributions.

Similar to picking specific object classes, we can also limit the training data to specific raters.

For this we select a subset of 3 raters having an average pairwise agreement of 73.4. When

we use this set for training and test we obtain the scores reported in Table 6.6. Here we see

substantially better performance in terms of CE. In addition, the gap between mode baseline
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Table 6.5: Performance on four selected ob-
jects: bottle, bowl, wok and box. PT means
pre-training.

Selected Objects

model ign. context PT A-Acc CE Corr

Mode - ignore - 3.0 0.400 62.2
RN50 X ignore X 0.0 - 43.6

Inc4 - ignore X 12.1 0.352 62.2
RN50 - ignore X 15.2 0.412 57.0
2xRN50 - img+full X 18.2 0.356 57.7

Table 6.6: Performance on three selected
raters having high agreement.

Selected Raters

model context ign. PT A-Acc CE Corr

Mode ignore - - 67.1 0.337 83.0
RN50 ignore X X 1.8 1.931 -

Inc4 ignore - X 55.7 0.147 83.2
RN50 ignore - X 58.7 0.179 73.8
2xRN50 img+full - X 56.3 0.160 77.6

and our methods is larger. From these results we conclude that consistency of training and test

data is a crucial property.

6.4.2.4 Rater Reliability

Having only compared scores obtained from different computational methods so far, a natural

question is: How consistent are the ratings provided by humans? For this, we apply the metrics

introduced above on pairs of human raters. By averaging all pairwise scores we obtain the

following: Acc of 42.0, CE of 0.347 and a Corr of 44.8. While Acc is comparable to some models,

in terms of CE and Corr the raters perform significantly worse than the computational methods.

If we require a minimal intersection of 100 instances to compensate for statistically unreliable

data points, we obtain slightly better scores.

We also tracked the self-consistency of the raters by presenting selected instances twice

within the collection of all instances. Since the raters were free to select which samples they

annotate, not all of them annotated these instances. However, across those who did, the self-

consistency varies between 0.77 and 1.0 with an average of 0.90. The number of samples that

were annotated twice ranges from 1 to 26 with an average of 13.1.

6.4.2.5 Scalability

The number of training samples is a quantity that normally has a strong impact on the perfor-

mance. Since we are collecting the data, it is crucial to understand the effect of the training

sample size to avoid an insufficiently small dataset. Fig. 6.6 provides an overview on the rela-

tionship between training samples and performance. It suggests that the dataset is large enough

and no major improvements could be expected from gathering more data. Surprisingly, we find

that already a fairly small amount of annotated scenes allows models to attain a high correlation

with the ground truth probabilities.
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Figure 6.6: Performance for different numbers
of training samples.

Table 6.7: Comparison of different context
representations. BS means batch size.

model context A-Acc CE Corr

RN50 ignore 42.8 0.212 68.3
Inc4 ignore 43.2 0.212 70.5

RN50 only 31.3 0.302 48.3
RN50 only-full 35.5 0.252 65.1
2xRN50 full 42.1 0.207 71.1
2xRN50 masked 44.4 0.208 72.3

6.4.2.6 Context

Not only the appearance of an object is relevant for actions, potentially also the context can give

hints about the status of an object. Having introduced context representations in Sec. 6.3.8, here

we run an explicit comparison of the representations.

From Tab. 6.7 we observe that context with the instance object being masked (only-masked)

helps to predict actions but does not achieve the performance of showing the object itself (ignore

context). When the instance image is combined with a context representation, the Corr scores

slightly improve compared with RN50 ignoring context. However, this improvement is fairly

small. This is probably due to small parts of the context being included in the image itself.

The information that can be extracted from a bigger context is therefore negligible and does not

outweigh the problems of having more parameters. Relying exclusively on the context does not

seem to be a good idea. This is not surprising because the object appearance clearly gives hints

about possible actions.

6.5 CONCLUSION

In this paper, we established a framework of how to gather action plausibility ratings, creat-

ing a dataset called "PlausiblAct", transform them to train neural networks and evaluate the

corresponding results. After defining a set of ten actions and three ratings, we presented our

sparse data collection method relying on web techniques allowing for a fast and comparatively

effortless data annotation. Next these ratings of object instances are transformed into distribu-

tions on which a neural network can be trained to make action-oriented predictions. To assess
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the quality of the predictions we proposed three metrics capturing complementary aspects of

the predictions. In our comparison of state-of-the-art feature encoders, we find the InceptionV4

network to be suited best for the task. The experiments suggest that object-classification perfor-

mance is still a crucial factor for scoring action plausibilities. Combinations with context seem to

improve the performance slightly, while context alone ignoring the actual objects’ appearances

performs quite badly.

We believe such systems are useful in robotics because they allow the comparison and se-

lection of actions in various settings. An advantage of the proposed method is that it can be

combined with other robotic algorithms. For example, assume a scene involving a dirty and a

clean cup and the instruction “put cup to dishwasher”. Although it is obvious to humans that

the instruction is refers to the dirty cup, this common-sense knowledge is not available to the

robot. By using our method, the system can evaluate images of both cups and then pick the one

for which the action “cleanse” is more plausible. Thus, potential applications, where we expect

action plausibilities to be helpful, concern robotic action planning, where our method allows

better disentangling action preconditions needed in the planning operators.

The presented approach has some limitations. So far, the models we employed are simple

image classification models that are not specifically designed for reasoning. Furthermore, the

inter-rater reliability is far from being optimal. Hence, future work might involve reasoning-

oriented models, e.g. the relation network [179] and a more constrained annotation setting to

obtain more consistent and reliable action ratings. So far, we excluded images depicting humans

from the data as far as possible. As a potential next step, showing humans could increase the

complexity of this or similar approaches as intentions would need to be estimated.
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Toothbrush - - - - - X - X - -

Apple - X - X - X - X - -

Chopsticks - - - - - X X - - -

Croissant - X - X - - - X - -

Cucumber - X - X - X - X - -

Radish - X - X - X - X - -

Hot dog - X - X - - - X - -

Waffle - X - X - - - X - -

Pancake - X - X - - - X - -

Pretzel - X - X - - - X - -

Bagel - X - X - - - X - -

Teapot X - - - - X X - - -

Popcorn - - - X - - - X - -

Burrito - X - X - - - X - -

Scissors - - - - - - X - - -

Chair - - X - - - - - - -

Muffin - X - X - - - X - -

Cookie - X - X - - - X - -

Calculator - - - - - - X - - -

Box - - - - - - X X X X

Stapler - - - - - - X - - -

Studio couch - - X - - - - - - -

Zucchini - X - X - X - X - -

Ladle X - - - - X X - - -

Winter melon - X - X - X - X - -

Spatula - - - - - X X - - -

Pencil sharpener - - - - - - X - - -

Eraser - - - - - - X - - -

Tin can X - - - - - X X X -

Mug X - - - - X X - - -

Can opener - - - - - X X - - -

Coffee cup X - - - - X X - - -

Cutting board - - - - - X X - - -

Vase - - - - - X X - - -

Slow cooker - - - - - X X - X -

Whisk - - - - - X X - - -

Salt and pepper shakers - - - - - X X - - -

130



6.6. REFERENCES

French fries - X - X - - - X - -

Tart - X - X - - - X - -

Egg - - - X - - - X - -

Grape - X - X - X - X - -

Mixing bowl X - - - - X X - - -

Hammer - - - - - - X - - -

Sofa bed - - X - - - - - - -

Adhesive tape - - - - - - X - - -

Saucer - - - - X X X - X -

Drinking straw - - - - - X X - - -

Common fig - X - X - X - X - -

Cocktail shaker X - - - - X X - - -

Artichoke - X - X - X - X - -

Knife - - - - - X X - - -

Bottle X - - - - X X X X -

Bottle opener - - - - - X X - - -

Bowl X - - - X X X - X -

Frying pan - - - - X X X - X -

Ring binder - - - - - - X - - -

Plate - - - - X X X - X -

Pitcher X - - - - X X - - -

Pencil case - - - - - - X - - -

Kitchen knife - - - - - X X - - -

Plastic bag - - - - - - X X X X

Potato - X - X - X - X - -

Pasta - - - X - - - X - -

Pumpkin - X - X - X - X - -

Pear - X - X - X - X - -

Infant bed - - X - - - - - - -

Pizza - X - X - - - X - -

Submarine sandwich - - - X - - - X - -

Loveseat - - X - - - - - - -

Coffee table - - X - - - - - - -

Taco - - - X - - - X - -

Strawberry - X - X - X - X - -

Tomato - X - X - X - X - -

Measuring cup - - - - - X X - - -

Paper cutter - - - - - - X - - -

Wok - - - - X X X - X -

Jug - - - - - X X - - -

Pizza cutter - - - - - X X - - -

Bread - X - X - - - X - -

Platter - - - - - X X - - -

Toilet paper - - - - - - X - - -

Lemon - X - X - X - X - -

Banana - X - X - X - X - -

Wine glass X - - - - X X - - -
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Countertop - - X - - - - - - -

Waste container - - - - - - - - - X

Book - - - - - - X - - -

Hamburger - - - X - - - X - -

Asparagus - X - X - X - X - -

Spoon - - - - X X X - X -

Oyster - - - X - - - X - -

Ice cream - - - X - - - X - -

Orange - X - X - X - X - -

Beaker X - - - - - - X - -

Peach - X - X - X - X - -

Fork - - - - X X X - X -

Cabbage - X - X - X - X - -

Carrot - X - X - X - X - -

Mango - X - X - X - X - -

Pineapple - X - X - X - X - -

Stool - - X - - - - - - -

Envelope - - - - - - X X - -

Cake - - - X - - - X - -

Candy - - - X - - - X - -

Salad - X - X - X - X - -

Serving tray - - - - - X X - - -

Kitchen and dining room table - - X - - - - - - -

Cake stand - - - - - X X - - -

Broccoli - X - X - X - X - -

Grapefruit - X - X - X - X - -

Bell pepper - X - X - X - X - -

Pomegranate - X - X - X - X - -

Doughnut - X - X - - - X - -

Pen - - - - - - X - - -

Watermelon - X - X - X - X - -

Cantaloupe - X - X - X - X - -
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CHAPTER 7
Semantic Action Anticipation

In the previous chapter we have presented a method to tell plausible from implausible actions

by considering an image. In a way, this can be seen as a form of anticipation. We reason about

what might happen next. Which actions are more plausible to happen than others? This ques-

tion often can be answered by analyzing static images for the specific set of actions we choose in

the article above. However, in general a static image is not enough because it completely ignores

which events have led to the depicted situation. Such a temporal context often is important to

interpret scenes correctly. For example, from a static image it is hard or even impossible to

tell whether a person puts an object into the fridge or takes out an object. Hence, we count

temporal context among the essential components of action-oriented scene understanding (see

Introduction). By considering the temporal context of a scene, we expect to be able to make

more informative guesses about what might happen next.

Summary In the following article, we specifically address the temporal context. We study the

task of semantic action anticipation which involves making a prediction about which actions

will happen next, given a sequence of images. This requires carefully tracking events over

some time to generate a reasonable prediction about the future. We dedicate a large analysis on

understanding the processing of long sequences and the relation to feature extraction. In this

case, features can be spatio-temporal and encode events. Specifically, for this investigation we

design the synthetic SymbolSeq dataset which can be adapted to different settings answering

different questions. Our experiments suggest that feature extraction in fact is the limiting factor

for better performance. Current datasets do not seem to be large enough to allow for learning

meaningful semantic features. This even holds if models are pre-trained on ImageNet.
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Abstract

Anticipation of upcoming actions in an image sequence (e.g. video) is of importance in a wide va-

riety of applications, for example in surveillance or during human-robot interaction. However, action

anticipation is difficult because the temporal context of events in the past must be considered to make

reasonable predictions. This paper studies how well state-of-the-art video models capture such context

and how temporal context is related to visual feature extraction. First, we introduce the parameteriz-

able synthetic SymbolSeq dataset, which consists of sequences of simple symbols that transform – as

simulated “actions“ – into each other. Based on this dataset, we investigate the impact of distraction,

sequence length, feature quality and pre-training on the performance in predicting these “actions” by

state-of-the-art models. The latter involves both, two stage feature and extraction models as well as

one-stage 3d-convolution-based models. Additional experiments on anticipation from natural images

sequences are conducted using the SomethingSomething and EPIC datasets. For EPIC, visual input is

also compared to a symbolic representation of the data. We find that performance crucially depends on

the feature representation, in particular when the dataset contains few or noisy samples. In these cases,

no rich features are learned, and pre-training becomes indispensable, which is the case for the natural

image datasets included in our work.

7.1 INTRODUCTION

Deep neural networks that operate on video have gained popularity throughout the last years

[105, 59]. However, most work addresses the recognition and description of actions, either

globally for a video as a whole or for temporal segments within a video. In this work, we

go a step further and study the problem of semantic video anticipation. Given a long video

sequence, the goal is to generate a reasonable probability distribution over events that might

happen next. Unlike in action recognition and video forecasting, a wider temporal window

must be considered to make an anticipation. Potentially, all events in the past can influence what

will happen next. Therefore, we carefully analyze how video models behave in the presence of

long-term dependencies under consideration of the interplay between feature extraction and

temporal sequence modeling. The latter is an aspect that is under-explored as common datasets

provide pre-computed features, which evade backpropagating through the feature extractor.



7.1. INTRODUCTION

Note, anticipation is a challenging, often ambiguous problem, so the accuracy of predictions is

commonly smaller than in action recognition.

Beyond semantic video anticipation, aggregation of information from long video sequences

and reasoning on it is a crucial ability for a wide range of applications: The plot of a movie can

be understood, instructional video can be interpreted, and surveillance can be automatized. In

each of these tasks single frames are not necessarily informative, while combinations of frames

are. For instance, the order of the events is relevant for understanding a movie plot. However,

this property is absent from many video datasets where single frames can be expressive enough

to base classification on them [105, 195].

For our analysis, we introduce a synthetic dataset that helps us to study sequence mod-

els in conjunction with feature extraction. It involves sequences of images of moving symbols

that transform into other symbols or stay the same. The visual quality of symbol presenta-

tion and presence of distractive cues can be controlled (among other factors). This allows for

an inspection of the impact of individual factors that would be infeasible with natural image

datasets. Due to the temporal dimension, video modeling is more resource demanding than

image recognition, both in terms of compute and memory. Particularly for long sequences, the

amount of data needed to be processed is large. By relying on a synthetic dataset, we can keep

images small and yet contain all relevant aspects. The central idea is that the synthetic dataset

is sufficient to analyze models with respect to their capacity to keep track of events in the past.

In our SymbolSeq dataset, events involve symbol-to-symbol transitions while in the real-world

events are more complex.

In our experiments, we compare various state-of-the-art models (see Sec. 7.4.1) on this new

dataset. Additionally, experiments on anticipation in the natural image datasets EPIC Kitchens

and SomethingSomething V1 are conducted. As stated above, anticipation is a natural appli-

cation for models dealing with long sequences since it requires to keeping track of what has

happened before to make an informative guess of what will happen next. For example, in the

kitchen setting of EPIC, the preparation of a breakfast takes several walks to the refrigerator. To

make a guess of what will be retrieved next, we need to keep score of the items that were taken

out before. This is different from action recognition where all relevant information is contained

in a short sequence.
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CHAPTER 7. SEMANTIC ACTION ANTICIPATION

7.2 RELATED WORK

7.2.1 LONG-TERM DEPENDENCIES IN RNNS

Capturing long-term dependencies (without visual input) is an old problem [19] in machine

learning. Notable approaches addressing the problem are long short-term memory (LSTM) [91]

and gated recurrent units (GRU) [40], which build upon basic recurrent neural networks. Echo-

state networks [99] make use of randomly connected recurrent networks for which readouts are

trained in a supervised manner. More recently, the statistical recurrent unit was proposed by

Oliva, Póczos, and Schneider [156] and Trinh et al. [206] argue in favor of auxiliary losses to

tackle the long-term dependency problem.

7.2.2 CNN-BASED VIDEO ARCHITECTURES

Recently, multiple neural network-based models to process videos were proposed. One of the

first approaches to apply a CNN for video processing was Karpathy et al. [105] who explored

various architectural designs to fuse frame features. Furthermore, they introduced the Video1M

dataset, which contains videos of a length of more than five minutes on average. The anno-

tated clips refer to much smaller time frames, though. Bilen et al. [22] address video modeling

by mapping videos to 2d intermediate representations from which allows using conventional

2d-CNN for classification. Besides the ubiquitous 2d-convolutions, 3d-convolutions, simulta-

neously operating over space and time, are frequently used, e.g. by Carreira and Zisserman

[30], Hara, Kataoka, and Satoh [85] and Varol, Laptev, and Schmid [218]. The ECO network by

Zolfaghari, Singh, and Brox [252] combines 2d convolution-based feature extraction with tem-

poral processing using 3d-convolutions. The temporal relation network proposed by Zhou et al.

[249] compares multiple tuples containing two or more frame features to classify a video. Xie et

al. [236] explore various architectures involving different positions of 2d- and 3d-convolutions.

A common approach to incorporate the temporal domain of video is to use a recurrent neural

network on top of features extracted using a shared 2d-CNN [196].

The recent work of Varol, Laptev, and Schmid [218] focuses on long-term dependencies, in-

volving videos up to 100 frames. A model using five layers of 3d-convolutions is proposed. For

a comparison of work involving predictions from long sequences see Tab. 7.1. We differentiate

between the number of frames and the actual duration of clips because videos can be sampled

at different frame-rates.

In addition to RGB images, frequently optical flow is used as a second input [228, 30, 218]

and has shown been to improve performance. However, we decided not to use optical flow
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Table 7.1: Comparison of State-of-the-art datasets regarding sequence length in terms of number
of frames and average clip duration.

Paper Frames Time

Donahue et al. [59] 16 6.2s (UCF101)
Yue-Hei Ng et al. [241] 120 2 mins (Sports 1M)
Srivastava, Mansimov, and Salakhudinov [196] 16 3.2 (HMDB), 6.2s (UCF101)
Varol, Laptev, and Schmid [218] 100 3.2 (HMDB), 6.2s (UCF101)
Pigou et al. [164] 60 1 - 2 mins (Montalbano Gesture)
Carreira and Zisserman [30] 64 a 10s (Kinetics)

aat training time

because we are mainly interested in semantic predictions, where we expect complex object

movements not to play a crucial role. Furthermore, optical flow would add another layer of

complexity.

Pre-training In general, pre-training plays an important role for the performance of video

models. Carreira and Zisserman [30] found that pre-training on a large video dataset was bene-

ficial for other classification tasks. Mettes, Koelma, and Snoek [142] pre-train their video model

on the complete ImageNet hierarchy consisting of 21,814 classes and observe an improvement

in video tasks compared to pre-training with only 1000 classes. Hara, Kataoka, and Satoh [85]

found only the Kinetics dataset [30] to be sufficiently large to train a video model. They found

that Kinectics pre-training improved performance on the UCF101 [195] and HMDB-51 [120].

All of these datasets involve actions rather than long-term activities, though.

7.2.3 ANTICIPATION

Vondrick et al. [221] propose a system that represents the future in terms of feature extractor

representations. This has the advantage of allowing training in a self-supervised fashion. In-

stead of predicting future labels, a natural approach is to predict images as a whole. This has

the advantage that data is available in large quantities, as any video can be leveraged for this

task. Walker et al. [226] generate future frames by using a generative adversarial network [77]

that is conditioned on predicted future poses.
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7.3 SYMBOLSEQ DATASET

SymbolSeq is a synthetic video dataset that we specifically designed for the purpose of investi-

gating long sequences. Its images are of size 36x36 pixels and contain randomly moving sym-

bols starting from a random location at a random time. After a while, these symbols transform

to other symbols or stay the same. The goal is to count how often certain symbol-to-symbol

transitions occur. In Fig. 7.1 we present samples from SymbolSeq with different parameters.

The dataset is motivated by the need to simulate real life videos where events might occur at

any time and must be aggregated and processed to infer a meaning. For example, in a house-

hold setting, multiple, subsequent human interactions with various objects must be detected in

order to interpret the conducted activity or to predict what activity might follow.

The dataset is configurable with respect to multiple parameters, allowing the investigation

of different aspects of a model in detail. Specifically, these parameters are:

• Sequence Length The number of frames the sequence involves, denoted by F .

• Number of Symbols The number of symbols to be processes by the network, denoted by

S.

• Number of Distractors The number of distractive cues, denoted by D.

• Symbol Noise The presentation quality of each symbol can be reduced by omitting a

certain amount of pixels making the recognition of this symbol more challenging

The scale range of the symbols is parameterizable, too. However, in all experiments of this work

we randomly sample the point size from {6, 7}.

An important feature is that the recognition of symbols is fairly easy and will not require a

complex feature extractor. This, in conjunction with the small size of the images, enables a fast

conduction of experiments without having to rely on pre-training.

7.3.0.1 Symbolic SymbolSeq

Besides the visual representation described above, we can represent a sequence symbolically in

form of a matrix Xsym ∈ RF×(S+D). An element at index (i, j) in this matrix indicates whether

a symbol or distractor i is present in certain frame j. Using this matrix, no feature extraction is

required. Through comparison with models trained on this matrix, we can analyze the feature

extraction in isolation.
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Figure 7.1: Short sequence samples from the SymbolSeq dataset involving different parame-
terizations. By rows: Base setting with one symbol (1), little symbol noise of 0.1 (2), symbol
noise of 0.4 (3), with distractor (4), simultaneous symbols (5). There are four symbols: X, T,
triangle and square, other letters are distractive cues. The goal is to count symbol transitions
(i.e. 42 numbers). To properly identify the right transition the past trajectory of a symbol must
be considered: In the fifth row, the cube transforms to X and not triangle.

7.3.0.2 Labels

There are two different questions that could be asked for each sequence: Did a certain symbol

transition occur? And how often did each symbol transition occur? For generating labels, we

consider the latter option and use counts of transitions as targets to be predicted because we

consider counting transitions a suitable proxy task for detecting events in natural video. The

dataset is based on four symbols. This means there are 16 possible symbol transitions, including

not changing the symbol. Transitions can occur multiple times, so for each sample 16 transition

counts must be predicted. These counts are discretized into five bins corresponding to counts of

0, 1, 2, 3 and more than 3. This allows us to regard the problem as a classification. The number

of actually present transitions is a parameter of the dataset and can be set individually for each

experiment.

7.3.0.3 Metrics

For each transition, our models output a probability distribution over all five bins, with the bin

having most mass being considered to be the count prediction. We consider a sample to be

correctly classified if all 16 symbol transitions were predicted to be in the right bin. The fraction
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of correctly classified samples within all samples is our accuracy score.

7.4 MODEL

We differentiate between one and two-stage models. The latter consist of two components: A

feature extractor f and a temporal sequence model s: Given a sequence x with each xi being

an image, a feature encoder f converts images into feature vectors. Then, a sequence model

uses these features to make a prediction about the sequence: ŷ = s(x) = s(f(x0), ..., f(xN )). An

advantage of two-stage models is that the feature extractor f can be re-used from other tasks

such as image classification.

One stage models unify both steps into a single function g by processing spatial and tempo-

ral information simultaneously: ŷ = s(x) = g(x0), ...). While this design is more general, it is

harder to transfer knowledge, as pre-training must be carried out on the full model rather than

the feature extractor only.

7.4.1 IMPLEMENTED MODELS

We implement several models covering a broad range of the state-of-the-art techniques avail-

able for long sequence modeling of videos.

7.4.1.1 2d-CNN + RNN (two-stage)

A straightforward way to implement the sequence model s is through a recurrent neural net-

work (RNN). At each time step, an RNN cell receives two inputs, an external input (i.e. a

feature of a frame) and the previous hidden state, and returns an output vector. Let xt be

a frame at time t. For the first frame the previous hidden state is often defined as the zero

vector: y0 = g0(0, f(x0)). The following outputs can then be generated recursively by yt =

gt(gt−1, f(xt)). In a multi layer RNN, the later layers are provided with outputs of previous

layers, i.e. y
(2)
t = g

(2)
t (g

(2)
t−1, g

(1)
t ). The classification is obtained by average pooling all outputs

yt of the latest layer.

In our experiments we consider the classical RNN in addition to bidirectional LSTM [91]

and bidirectional GRU [40] cells, which are designed to capture long-term dependencies. In all

cases we use two hidden layers and an internal state of 512 neurons (unless stated otherwise).
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7.4.1.2 2d-CNN + TCN (two-stage)

Recent research by Bai, Kolter, and Koltun [12] suggests that temporal convolutions can achieve

a similar performance as recurrent networks. For the temporal model s, we follow the approach

of [12] and stack five layers. Each layer has a residual connection and involves two convolutions

with a kernel size of two. Dilation successively increases with each layer, enabling a large

(temporal) receptive field.

7.4.1.3 ECO Lite (two-stage)

ECO Lite [252] is another two-stage approach, particularly designed for long sequences. Here,

the feature extractor f obtains features over various spatial locations (represented by a ten-

sor instead of a vector). These features are then stacked and processed by a 3d-CNN, i.e.

s is a 3d-CNN. We use our own implementation of ECO Lite, which uses the squeeze-and-

excitation ResNeXt 50 model as feature extractor [94]. For further details we refer to the paper

by Zolfaghari, Singh, and Brox [252].

7.4.1.4 FFPool Baseline (two-stage)

Frame feature Pooling (FFPool) is a baseline that has a strongly simplified form of sequence

modeling: s is implemented by pooling over the temporal domain. It applies a feature extrac-

tor, e.g. ResNet50, on each frame. On the resulting tensor, for each dimension, statistics are

calculated and concatenated. Specifically, we calculate maximum, minimum and mean across

all frames. Consequently, the output of FFPool is invariant to permutations of the input se-

quence.

7.4.1.5 3d ResNet (one-stage)

Based on the highly successful ResNet architecture [88], Hara, Kataoka, and Satoh [85] develop

deep video models. Their idea is to take these image processing architectures and extend them

to process video through the use of 3d-convolutions. Here we use their implementation 1 as

well as their weights pre-trained on Kinectics [107].

7.4.1.6 LTC-CNN (one-stage)

We re-implement the long-term temporal convolution network proposed by Varol, Laptev, and

Schmid [218] that involves simultaneous filtering over time as well space with 3d-convolutions.
1https://github.com/kenshohara/video-classification-3d-cnn-pytorch
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Table 7.2: Comparison of different models for transition counting on a sequence length of 100.
SqueezeNet [96] (SN) is used for feature extraction in the two-stage methods LSTM, GRU and
FFPool. Accuracy is measured by counting samples where all 16 transitions were predicted
correctly.

model source Accuracy

SN + FFPool image 0.0

ECO image 89.4
LTC-CNN image 88.4
LTC-CNN (modified) image 93.9
SN + RNN image 87.3
SN + GRU image 87.8
SN + LSTM image 87.1
SN + TCN image 87.4

MLP symbol 0.0
TCN symbol 76.6
LSTM symbol 82.8

Two configurations are compared: The original one proposed by [218] and a modified version.

In the latter case, temporal dimension filter sizes are 1, 1, 3, 3 and 2 and we apply a pooling of

2x2x1 in first two layers instead of only the first one while other pooling sizes are 2x2x2. This

means that this network yields twice as many temporal features. The number of feature maps

of the modified version is 32, 64, 128, 256 and 256.

7.4.1.7 Multi-Layer-Perceptron (MLP) Baseline (only symbolic input)

In the case of symbolic input data, i.e. when no visual feature extraction needs to be carried

out, we can feed the matrix Xsym describing a sequence directly into a multi layer perception.

Here, an MLP is used with three hidden layers composed of 1024 neurons each. After each layer

except for input and output a ReLU non-linearity is applied.

7.5 EXPERIMENTS

We begin our experiments on the synthetic SymbolSeq dataset by investigation relations be-

tween distraction, sequence length, symbol quality and size of the training set.
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7.5.1 DISTRACTION AND SEQUENCE LENGTH

We conduct a more detailed analysis on distraction, starting by determining how strong dis-

tractive cues impact the performance. We configure the dataset to show only a single symbol

at a time while distractors can occur in any frame. Simultaneously, we compare with symbolic

versions of the dataset. Results are shown in Tab. 7.2. We do not expect that images in Sym-

bolSeq require complex feature extraction. Therefore, for two-stage approaches, we rely on the

small and computational efficient SqueezeNet [96].

We observe that FFPool and MLP do not work. The former is expected as the dataset requires

the consideration of order while the FFPool output is invariant to permutations of the input

sequence. In contrast to TCN and LSTM, MLP does not assume the input to be sequential,

which we hypothesize is the reason for MLP’s bad performance. Without such an inductive

bias, learning in MLP might be less efficient and require more samples. Despite their individual

differences, other RNN- or 3d-convolution-based architectures work well but are outperformed

by models involving 3d-CNNs with a modified version of LTC-CNN working best.

Next, we investigate the impact of varying the sequence length and the level of distraction.

While the number of frames varies, the number of symbols scattered over the frames is kept

constant. This means, the expected values of the counts remain the same in each setting while

the sequence length varies. This allows us to study the effects of longer sequences in isolation.

We vary between four different modes of distraction by enabling distractors in the training and

test datasets respectively. The corresponding scores for different models including a baseline

which does not receive visual input (no inp.) are shown in Fig. 7.2. The number of distractors

DF at F frames is sampled from uniform distributions U such that the distraction densitity

remains constant, i.e. D50 ∼ U(0, 1), D150 ∼ U(0, 3) and D300 ∼ U(0, 6).

We find a consistent pattern for all models despite their technical differences. Without dis-

traction or when distraction is present during training, close to perfect performance is obtained.

If distraction only occurs at test time, the performance drops with increasing sequence length

or increasing number of distractors.

7.5.2 THE ROLE OF FEATURES

This section focuses on the feature extractor, which is a crucial component of the model. A

desirable feature extractor detects the symbols at any position while being resilient to distractors

and noise.
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Table 7.3: The effect of pre-training and freezing layers for transition counting on SymbolSeq
for two-stage models.

GRU GRU GRU LSTM LSTM LSTM TCN TCN TCN
Freeze Features X - - X - - X - -
Pre-training X X - X X - X X -

Accuracy 91.8 99.3 98.9 85.8 99.1 99.3 87.3 97.7 88.4

7.5.2.1 Pretraining

Conventionally, in two-stage approaches, feature extractor and sequence model are trained

jointly. However, datasets often provide frame-wise features instead of images, essentially

freezing the feature extraction (i.e. features are not modified during training). Here we in-

vestigate the effects of freezing the feature extractor and pre-training on two-stage models. Pre-

training is carried out in a single image setting: The feature extractor is trained to recognize up

to two symbol simultaneously. This is intended to be a reasonable equivalent to the single im-

age pre-training on ImageNet which is common for many video tasks. We do not pre-train on

the large scale video dataset Kinetics [107] because we expect semantic qualitities learned from

differentiating object classes in ImageNet to be more important than recognizing the motions

prevalent in the actions of Kinetics.

From the scores reported in Tab. 7.3 we learn that fixing weights consistently leads to a

diminished performance. Of course, one might argue that this effect depends on the concrete

pre-training. However, a dependency on the pre-training task exists for natural images, too,

where ImageNet pre-training may not necessarily be the best choice. Pre-training in conjunction
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Figure 7.2: Accuracies of different distraction settings over varying frame-lengths on Symbol-
Seq. Dist. means distraction. The curves for red, orange and green curves overlap.
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with trainable feature encoder weights only seems useful for TCN. This seems to suggest that

the underlying sequence model has an impact of how well (or how fast in terms of iterations)

features are learned. While we used a large training dataset here, next we focus on a setting

where training data is limited.

7.5.2.2 Learning from few samples

Often, training data is scarce. When can feature extractors still be learned without relying on

pre-training? We try to answer this question by training from differently sized training sets

while varying the difficulty of feature extraction. The latter is implemented by omitting random

pixels from each symbol (symbol noise in Sec. 7.3).

In Fig. 7.3, we see that learning meaningful features poses a problem in particular if training

is carried out from few noisy samples. While LTC-CNN fails for smaller dataset sizes, it exhibits

better performance if enough data is provided, especially if the symbol noise is strong. This

might be due to the spatio-temporal kernels allowing for a more robust symbol detection but

requiring more training data.

7.5.3 EARLY RECOGNITION ON SOMETHING

SomethingSomething V1 [78] is a dataset for learning visual common sense from video. It

includes 174 activities such as “pour something into something” or “turning something upside

down”. For each sample only one class is correct. In Tab. 7.4 we report accuracies for early

recognition of actions on this dataset. This means the model has to classify each clip based on

the first 20% of all frames only. This can be seen as a precursor of actual anticipation, because it

requires some intuition of how certain cues are correlated with future actions. We use sequences
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Figure 7.3: Sample efficiency of LSTM, with symbol input on the left and visual input in the
middle, and LTC-CNN with visual input. Blue means no symbol noise, orange and green cor-
responds to symbol noise of 0.2 and 0.4. Dataset-size refers to the number of samples.
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Table 7.4: Early detection (first 20% of frames) on SomethingSomething V1 dataset.
Accuracy@N measure how often the ground truth is within the top N predictions of the model.

model pretraining Accuracy@1 Accuracy@10

No input - 0.9 5.8
RN50 + FFPool X 10.6 43.2
ECO Lite X 7.5 34.6
RN50 + LSTM - 4.3 24.1
RN50 + LSTM X 9.8 41.5
LTC-CNN - 3.8 22.4
LTC-CNN X 4.9 25.2

of ten frames, images are scaled to 110x202px and we train using Adam [110] for 25 epochs with

early stopping after 3 epochs without improvement. The batch size is 24.

7.5.3.1 Pretraining of LTC-CNN

While pre-trained weights are readily usable for the frame-wise image models used in two-

stage models, for one-stage models we must implement our own pre-training. We pre-train

LTC-CNN on ImageNet [53] for 20 epochs. Static images are converted into movie sequences

by moving the image with random speed into a random direction.

7.5.3.2 Results

We find that the sequential processing can be neglected. The order insensitive FFPool model

performs on-par with the LSTM-RN50 model. If not pre-trained on ImageNet, models consis-

tently achieve lower accuracies. This suggests that the crucial features are too complex or noisy

to be learned from the dataset itself, akin to high-noise setting in Fig. 7.3. There might be only

few relevant cues that indicate the video type, otherwise we would expect the order of the cues

to have a positive impact on performance. LTC-CNN performs worse than two-stage methods,

even when pre-trained on ImageNet. We attribute this to the LTC-CNN architecture being not

as deep as the ResNet encoders it competes with and hence not being able to capture as complex

features.

7.5.4 ANTICIPATION IN EPIC KITCHENS

The anticipation ability of the models is evaluated on Epic Kitchens [50]. Actions are divided

into a noun and a verb and can be predicted independently. Hence, for each sample, we obtain

two accuracies, one for verb and one for noun. While most current video datasets contain only
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Table 7.5: Comparison of different models on Epic Kitchens. Batch size varies due to different
memory demand.

model input pretrained batch-size Accuracy verb Accuracy noun

RN50 + FFPool images X 16 21.1 6.8
ECO Lite images X 16 23.0 4.5
ResNet3d images X 16 20.7 5.1
LTC-CNN images - 16 21.5 4.1
LTC-CNN images X 16 22.6 4.5
RN18 + LSTM images - 24 20.5 3.5
RN18 + LSTM images X 24 23.6 7.2

FFPool symbols - 24 27.0 39.2
LSTM symbols - 24 31.1 59.7
TCN symbols - 24 30.3 55.4

fairly short clips, EPIC Kitchens encompasses long sequences with multiple actions being anno-

tated. This enables us to specifically investigate the long-term context setting we are interested

in. Ten frames of a temporal window, ranging from five seconds to one second before the an-

ticipated action takes place, are fed to the network. Images have a size of 140x245px except for

ResNet3d which works with 160x160px input. Note, this is a challenging setting and we would

not expect humans to achieve a 100% accuracy since there often is some level of uncertainty.

Performance for object and verb classification is shown in Tab. 7.5. For LTC-CNN, ImageNet

pre-training using the method described above in Sec. 7.5.3.1 is applied. For the symbolic in-

put, we use annotations (objects and verbs) from the temporal window as input features. Thus,

anticipation is still required but no feature extraction.

7.5.4.1 Results

The conclusion on the visual input is similar to the one of the previous section: Features matter.

This is confirmed when we consider the cases where verb and noun annotations were used as

features (symbolic input), i.e. emulating an extremely good feature extractor, which resulted in

a dramatic increase of performance. Consequently, it seems, in order to carry out sophisticated

anticipation, we need better feature extractors that work well in household scenes, capturing

multiple small objects at the same time and relations to the person acting.
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7.6 CONCLUSION

We presented an empirical evaluation of long-term temporal context integration in state-of-

the-art video models with the objective of conducting anticipation. Specifically, we quantified

the interplay between sample-efficiency and signal quality, sequence length and performance

under distraction and analyzed various forms of pre-training.

Our findings suggest that feature extraction represents a bottleneck in natural video tasks.

While this bottleneck can be reduced using transfer-learning, performance cannot (yet) com-

pete with purely symbolic representations that bypass feature extraction. The latter we have

shown for both, synthetic and natural video. Furthermore, in anticipation from natural video,

we found the frame order to be irrelevant for classification. This appears to be an artifact of

bad features, too, because when provided with symbolic input order mattered. This motivates

more research on approaches for learning meaningful feature extractors particularly for video.

Datasets are required that involve long sequences in diverse environments with an emphasis

on common sense, unlike the focus on action and sports in Sports1M and Kinetics.

We believe that synthetic datasets are a useful tool for conducting future research in video

modeling due to their ability to keep the visual complexity limited and control parameters of

interest.

7.7 REFERENCES

We maintain a single list of references at the end of the thesis.
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CHAPTER 8
Conclusion

In this thesis, we argue in favor of an action-oriented interpretation of visual scenes. Action is

a central target of perception and should therefore be given substantial weight when scenes are

analyzed. We show various ways of designing systems that implement action-oriented scene

understanding on three different levels of abstraction: elementary, perception and reasoning.

All levels share the goal, that functional or action-related aspects of the scene are identified and

predicted. Subsequently, we present the individual contributions of articles contained in this

thesis, structured by the three levels of abstraction.

8.1 CONTRIBUTION SUMMARY

8.1.1 OBJECT FUNCTIONS (ELEMENTARY LEVEL)

Our work on object semantics is, to the best of our knowledge, the first approach to use the vi-

sual context of objects for generating vectors of meaning. We show that visual context, in form

of features extracted by a CNN, allows to generate meaningful vectors which can be combined

with text-based vectors to obtain even better vectors. Quality is assessed in terms of cluster-

ing consistency and correlation with human ratings using the Scene250 dataset. The latter we

collected for this purpose because no dataset existed specifically focusing on object similarity.

Moreover, our findings suggest the emergence of functional groups in semantic vectors. For

example, we found that vector representations of things that can fly form groups.
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8.1.2 ACTION IDENTIFICATION (PERCEPTION LEVEL)

At the perceptive level, we developed a system that can densely predict affordances. The num-

ber of affordances we incorporate is larger than in previous approaches. Additionally, the train-

ing algorithm which relies on object part annotations and does not need 3D scans of the scene

is novel. After training, the system can predict pixel-wise affordance probabilities from an RGB

image. In the experiments, we showed that our networks compare favorably to state-of-the-art

approaches.

8.1.3 ACTION RATING AND ANTICIPATION (REASONING LEVEL)

At the most abstract level, we made two contributions: Action rating from static images and

semantic anticipation from movies. We designed the novel task of action plausibility rating,

where plausible actions must be determined based on a static image of a scene. For this, we

manually gathered a dataset by asking human raters to judge how likely they consider certain

actions in given situations. Then we trained a neural network to predict the distribution of the

human-based ratings. This associates distinct visual cues with actions such that the plausibility

of actions in unknown images can be calculated. In our experiments, we find a strong connec-

tion between action plausibility and object recognition performance. However, contextual cues

seem to be negligible.

A related task is anticipation on videos. As a typical trait of action-oriented scene under-

standing, both have in common that we must work with plausibilities rather than definite true

or false predicates. However, in video anticipation, the input is a sequence of images, which

makes dealing with data more challenging. To this end, we designed the synthetic SymbolSeq

dataset where symbol transitions need to be counted. This dataset allows us to conduct an ex-

tensive evaluation of various models with respect to their ability to capture long-term temporal

context. Additionally, we evaluated anticipation in natural image datasets. A special trait of our

experiments is that we compare symbolic baselines that bypass feature extraction. Our findings

suggest that features are utterly important for anticipation, and for learning features often a

large proxy dataset (such as ImageNet [53] for image classification) is necessary.

8.2 DISCUSSION AND FUTURE WORK

On the long path towards truly autonomous robots, the contributions made in this thesis make

up only a small fraction. Many ideas presented here constitute novel approaches towards solv-

ing their corresponding problems and more research will be needed to advance these methods
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to the level of practical applicability. In general, we show that the space of actions represents

an attractive alternative to classic objects. In the following, we discuss potential avenues for

future work involving general ideas as well as individual improvements on the three levels of

abstraction. A graphical overview is provided by Fig. 8.1.

Since all presented projects rely on machine learning methods, we expect improvements

from larger training datasets. This would enable us to generate semantic vectors for a larger set

of object classes. In fact, it would be interesting to use the Open Images dataset [115] for this

project, which was not available when at the time when we conducted the experiments. On

the perceptive level, a more robust affordance segmentation model could be trained with larger

datasets. In this case, we would require part-level segmentation ground truth, which requires

more annotations efforts than usual segmentation data. In action plausibility rating, we rely on

pre-trained ImageNet features. While this is technically inevitable because our datasets are too

small to learn meaningful features, we expect such feature to introduce a bias. The available

of larger training datasets would enable feature extractors specifically tuned for actions, which

might show different properties than the well-known features extractors for objects. Using

our web-based annotation tool, we gathered around 130 annotations per Euro spent, so data

collection on a large scale is possible but might be expensive. For semantic anticipation, a large

dataset could enable learning strong spatio-temporal features without ImageNet pre-training.

Following the conclusions from the article, we expect this to improve anticipation quality.

A promising solution to evade the cost of labeling a large-scale dataset could be through

simulation. In affordance segmentation we have shown that simulated data can improve train-

ing. Once the simulation model is set up, an unlimited number of samples can be drawn from

it. The key challenge is to design a simulation that has enough variability while generating

samples close enough to the distribution of real data. Recently, the development of simula-

tion environments has become a lot easier due to the availability of modern game engines like

Figure 8.1: Potential future work grouped by the three levels abstraction.
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Unreal 1 and Unity 2 as well as improvements in 3D modelling tools like Blender 3. In fact, War-

necke, Lüddecke, and Wörgötter [230] made use of the latter to simulate physics and render

image sequences. Simulated models do not necessarily need to generate photo-realistic images.

Tobin et al. [205] trained a CNN to detect objects in simulated low-fidelity images and showed

that the model generalizes well to real images. They found variability in the simulation (e.g.

texture randomization) to be a crucial factor for such good performance.

The reinforcement learning paradigm is mostly evaded in this work. This is because house-

hold environments are diverse and expensive to simulate. However, given more sophisticated

interactive environments, it might become feasible to employ reinforcement learning. This is

interesting because it could avoid the dependency on annotated training data which is a conse-

quence of supervised learning.

In many current computer vision systems, transfer learning (Section 2.3.4) plays a pivotal

role. Performance substantially benefits from pre-trained weight initializations that were ob-

tained by classifying ImageNet [53] images. The variety of this dataset allows for learning

fairly generic features. However, recent research suggests that other forms of pre-training can

perform better [139]. For semantic anticipation, we believe that pre-training on multi-object de-

tection could be helpful. Potentially, this pre-training could be formulated as a self-supervised

task which would reduce the costs of gathering labels.

8.2.1 SPECIFIC FUTURE WORK

8.2.1.1 Elementary Level

To represent objects semantically (Chapter 4 / A ), a natural next step is to extend the method

to modalities other than images. Potentially, this could involve sound, haptic or smell. We

expect in particular haptics to be relevant for in robotic contexts as the structure determines to

a large extent how an object can be grabbed and manipulated. Motivation for merging different

sensual percepts can be found in the successful work on combining image and sound carried

out by Arandjelovic and Zisserman [10].

8.2.1.2 Perceptive and Reasoning Level

On the perceptive and reasoning level (Chapters 5, 6 and 7 / B , C and D ), our output

still involves probability distributions over labels. A more natural way to express actions is

1https://www.unrealengine.com
2https://unity3d.com
3https://blender.org
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through trajectories and forces, for example of the hand as a whole or individual fingers. Such

a representation would acknowledge the fact that transitions between actions are continuous.

This means that there exist actions which lie between two classes and yet are proper actions.

Hence, a useful next step could involve directly generating the trajectories that carry out these

actions by training an end-to-end system. However, an obvious problem for this is missing

training data. Hence, this would probably require a more sophisticated training procedure

than supervised training, possibly involving self-supervision and reinforcement learning.

The segmentation of affordances and the rating of plausibilities (Chapters 5 and 6 / B and

C ) could be joined into a single model. This could be implemented by a two-stage process

where the pixel-wise probabilities for affordances are multiplied with the pixel-wise plausi-

bilities for actions. However, this would require compatibility between the classes of the two

approaches, which is not the case in the current form.

In action plausibility rating (Chapter 6 / C ), a natural extension would be to incorporate

humans into scenes, allowing a more realistic setting. We did not consider this setting because

it requires to anticipate the intentions of humans. Furthermore, models which are explicitly

designed for reasoning on relations, such as the Relation network [179], could be used to rate

action plausibilities. Such models could learn relations between pairs of objects that are critical

for actions. For example, the plausibility of cutting bread increases if a knife lies next to it. The

success of semantic action chains [5] which are based on touch relations between objects and

hands suggests that relational features could be useful, too. This refers to features that specifi-

cally encode the interactions between two or more elements of the scene rather than individual

traits. Recent development in natural language processing indicates that attention mechanisms

are powerful tools not only for language-related tasks [219] but also for vision [39]. Often spe-

cific actions have a strong impact on what might happen next. A natural way to incorporate

this into models would be an attention mechanism over the input sequence.

8.2.2 OUTLOOK

All things considered, we believe that computer vision and robotics must grow even closer to

enable a tighter coupling between perception and action. Clearly, first steps have been taken,

such as those papers discussed in Section 3.2.2. However, in general, the topic is under-explored

and many questions remain unanswered. This involves both, the representation and acquisition

of procedural knowledge. The non-symbolic approaches presented in this thesis contribute to

this discussion but cannot give an ultimate answer.

In general, a promising approach for future work is to develop modular neural architec-

tures that enable end-to-end training from perception to action while being decomposable.
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Each module is a separate unit which can receive specific pre-training and encode specific as-

sumptions. Based on such modules, we deem it of paramount importance to introduce transfer

learning to robotics. Transfer learning has caused a massive increase in performance in many

computer vision and natural language processing tasks. In robotics it could evade costly re-

training and systems could be built upon existing knowledge. We are confident that these en-

hancements could pave the way to higher levels of autonomy and cooperation (with humans)

in robotic systems, ultimately relieving us from several unwanted and stressful tasks.
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