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Abstract

Nowadays, business transactions almost exclusively focus on human-to-human transac-

tions. The persistent growth and expansion of the Internet of Things, the ubiquitousness

of so called smart devices, as well as progressing digitalization of our daily life, enables

business transactions without human intervention among autonomously acting machine

agents; a concept referred to as the Machine-to-Machine (M2M) economy. Besides M2M

interactions, machines interact with humans (Machine-to-Human – M2H), or infrastruc-

ture components (Machine-to-Infrastructure – M2I). The term Machine-to-Everything

(M2X) economy represents a more general view on use cases that involve autonomous

smart devices and also encompasses M2M, M2H and M2I scenarios. While the technical

concepts of IoT, Smart Homes, Smart Cities and Industry 4.0 that enable the M2X econ-

omy have been around for a while now, a widespread adoption as well as applications

that use their full potential are still missing. Many isolated applications exist that aim

to solve very specific and simplified use cases that fall within the spectrum of the M2X

economy. However, an interoperable, integrated, scalable model that facilitates the M2X

economy is non-existing. Likewise, concepts for a M2X value transfer and collaborations

among machines to achieve shared objectives within this ecosystem are missing as well.

This work focuses on the emerging M2X ecosystem in the context of Information System

research and makes three contributions: First, it suggests architectural concepts that

encompass a blockchain-based interaction-, transaction- and collaboration model for

M2X use cases, a business collaboration lifecycle and governance structure as well as a

set of modalities for these use cases derived through an exploratory research approach.

Second, it presents a decentralized self-sovereign identity solution in combination with a

validation and authentication mechanism that is suitable for the M2X ecosystem. Sybil

attacks are a common issue of decentralized networks. Thus we present a mechanism to

price the costs of a sybil node attack, thereby providing an easy to use metric for the

sybil resistance of a decentralized M2X system. As a step towards a formal validation

of these novel infrastructural concepts, a Colored Petri Net model is provided covering

the protocol-driven data exchange of the M2X identity solution. The developed identity

protocols are validated using CPN models and proof-of-concept implementations, while

specific aspects of the presented M2X identity solution are evaluated using historical data

to asses its suitability. Finally, the feasibility of the M2X interactions-, transactions- and

collaboration model as well as the identity solution is demonstrated.
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Chapter 1

Introduction

The ubiquitousness of smart devices, the persistent growth and expansion of the In-

ternet of Things (IoT) [1][2] as well as the progressing digitalization of our daily life,

e.g., [3] and [4], foster the development of new technical and economical business mod-

els. While nowadays, business transactions almost exclusively focus on human-to-human

transactions, the IoT enables business transactions without human intervention via au-

tonomously acting machines; a concept that we refer to as the Machine-to-Machine

(M2M) economy. Besides M2M interactions, machines interact with humans (Machine-

to-Human – M2H) or infrastructure components (Machine-to-Infrastructure – M2I). The

Machine-to-Everything (M2X) economy is the result of business interactions, transac-

tions and collaborations among participants of the corresponding ecosystem and rep-

resents a more general view on use cases that involve autonomous smart devices while

also encompassing M2M, M2H and M2I scenarios. In the M2X economy, smart sensors

may offer collected sensor data such as temperature or air contamination to interested

buyers that rely on the aforementioned data for their own computations. In the con-

text of autonomous and self-driving vehicles, scenarios such as automated tollbooth

payments, autonomous battery charging services as well as general Transportation-as-

a-Service (TaaS) applications [5] and business models are among the most discussed use

cases. More complex scenarios focus on Smart Homes and Smart Cities [6] as well as

Industry 4.0 [7]. Even potential successors of Industry 4.0 with fully automated and au-

tonomous smart factories which independently handle supply and demand management

as well as corresponding logistics – including supply-chain management – are part of the

M2X economy.

Besides the technical perspective and the corresponding technical challenges, the up-

coming M2X economy also poses sociotechnical problems and challenges. In an M2X

scenario, we are not only enabling interactions, transactions and collaborations among

1
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machines, or between machines and infrastructure components, but also among ma-

chines and humans. A main requirement is to enable an integration of humans and

smart devices into a well-functioning sociotechnical system that puts the M2X concept

in a human-centered context. When considering collaborations, interactions and trans-

actions of autonomous smart devices, even M2M and M2I can be seen in a sociotechnical

context that is similar to humans interacting with each other, or humans interacting with

machines of the M2X ecosystem. In order to provide non-trivial services or products

smart devices are not only required to interact with their potential clients; they may

also have to collaborate, interact and transact on-demand with other entities to be able

to achieve a shared goal. While providing services or products, they might even mi-

grate to different geographical locations based on supply and demand. The interleaved

on-demand collaborations, interactions and transactions among autonomous, hetero-

geneous and highly dynamic entities (humans, machines, software agents, etc.) lead

to a decentralized, distributed and heterogeneous sociotechnical system consisting of a

large number of micro-services of different vendors and solution as well as infrastructure

providers.

1.1 The M2X Economy

The upcoming M2X economy and the corresponding ecosystem will influence our daily

lives in many ways. Even though minor applications and use cases already exist, more

complex and impactful applications that provide more than marginal value to society

are still missing. Despite technological limitations that are still being researched and

developed, further restrictions arise from missing concepts on how smart devices will

interact and transact in complex collaboration scenarios among each other, with the

infrastructure or with humans. We previously defined the M2X economy as the result

of business interactions, transactions and collaborations among participants of the M2X

ecosystem, while the M2X ecosystem encompasses all M2X entities and their interlinked

relations required to provision its goods and services.

Throughout the subsequent sections we first discuss overlaps and differences between

the concepts of M2X, the IoT, cyber-physical systems (CPS) and more. Afterwards,

example applications are introduced as well as running cases that illustrate concepts of

subsequent chapters.
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1.1.1 Overview and State of the Art

Before going into detail with regards to the M2X scenarios, we first clarify overlaps and

differences to closely related concepts and applications such as wireless sensor network

(WSN), machine-to-machine, cyber-physical system, cyber-physical production systems

(CPPS), the Internet of Things, cybernetics and robotic process automation (RPA). For

each of these terms and concepts, applications and use cases exist that overlap with

those of the M2X economy. Hence, it is necessary to explain the differences, overlaps

and correlations among them.

In 1948, Wiener defined the concept of cybernetics as “the scientific study of control and

communication in the animal and the machine” [8] which is concerned with providing

mathematical means for studying adaptive and autonomous systems while mimicking

information communicated in machines with that of the brain and nervous system [9].

According to [10], an alternative definition of cybernetics is provided by the mathemati-

cian Kolmogorov who defines it as the “science concerned with the study of systems of

any nature which are capable of receiving, storing and processing information so as to

use it for control”. Usually, such systems incorporate closed signaling loops where an

action by a system causes a change in the systems environment once detected via sensors

which – in a circular manner – causes the system to change as well. Actions of a system

are performed to advance from the current state to the desired goal state. Due to the

broad definitions of cybernetics, many of the following concepts somehow overlap.

WSNs “consist of spatially distributed autonomous sensors to monitor physical or envi-

ronmental conditions, and to cooperatively pass their data through a variety of networks

to a main location. WSNs emphasizing the information perception through all kinds of

sensor nodes are the very basic scenario of IoT” [11].

The concept of M2M most commonly refers to the communication capabilities of wireless

and wired systems such as computers, embedded processors, sensors, actuators as well as

mobile devices to facilitate information exchange [11][12]. “The rationale behind M2M

communications is based on two observations: 1) a networked machine is more valuable

than an isolated one; and 2) when multiple machines are effectively interconnected, more

autonomous and intelligent applications can be generated” [11][13].

The term cyber-physical systems refers to systems with integrated computational, phys-

ical and networking capabilities [14][15][16]. Such “CPS are engineered systems that are

built from, and depend upon, the seamless integration of computation and physical com-

ponents. CPS tightly integrate computing devices, actuation and control, networking

infrastructure, and sensing of the physical world” [17].
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The concept of cyber-physical production systems can also be interpreted as the next

evolution of M2M systems. [11] and [18] argue: “Through interfacing with WSNs, M2M

systems can collect a wide range of information by all kinds of sensors. Thus, in addition

to M2M communications, machines also can make action through the collected informa-

tion with the integration with WSNs. From a long-term point of view, M2M systems

with the capabilities of decision-making and autonomous control can be upgraded to

cyber-physical systems”.

Example applications from the field of CPS research may include: Smart electric grids,

autonomous automobile systems, medical monitoring, process control systems, robotics

systems, automatic pilot avionics, precision agriculture and advanced manufacturing

[14][19].

Monostori et al. [20] define CPPS as a collection of “autonomous and cooperative ele-

ments and sub-systems that are connected based on the context within and across all

levels of production, from processes through machines up to production and logistics net-

works. Three main characteristics of CPPS are to be underlined here: 1.) Intelligence

(smartness), i.e. the elements are able to acquiring information from their surroundings

and act autonomously. 2.) Connectedness, i.e. the ability to set up and use connec-

tions to the other elements of the system – including human beings – for cooperation

and collaboration, and to the knowledge and services available on the Internet. 3.)

Responsiveness towards internal and external changes”.

Gubbi et al. [21] defines the Internet of Things as an “interconnection of sensing and

actuating devices providing the ability to share information across platforms through a

unified framework, developing a common operating picture for enabling innovative appli-

cations. This is achieved by seamless large scale sensing, data analytics and information

representation using cutting edge ubiquitous sensing and cloud computing”. From an

architectural perspective, the IoT consists of four main components: i.) Sensing, ii.)

heterogeneous access, iii.) information processing and iv.) applications/services.

“Although M2M, WSNs and CPS are quite similar in many networking aspects, there are

still some major differences from architecture and design philosophy. Generally, M2M is

for supporting communications without or with limited human intervention. WSNs are

particularly designed for delivering sensor-related data. CPS typically involves multiple

dimensions of sensing data, crosses multiple sensor networks and the Internet, empha-

sizes control functions, and aims at constructing intelligence across multiple domains.

Thus, we propose CPS is an evolution of M2M by the introduction of more intelligent

and interactive operations, under the architecture of internet of things” [11].
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Classification Correlations
WSNs, M2M and CPS All belong to IoT from the architecture perspective.
WSNs WSNs are the very basic scenario of IoT and the foun-

dation of CPS, and are regarded as the supplement of
M2M.

M2M Is the main pattern of IoT at the present stage.
CPS Is an evolution of M2M in intelligent information pro-

cessing, and will be an important technical form of IoT
in the future.

Table 1.1: Correlation among M2M, WSNs and CPS – Source: [11] and [13]

CPS

M2MWSNs

Supplement

IoT

EvolutionFoundation

Sensing

Monitoring

Now

Future

Figure 1.1: Correlation among M2M, WSNs, CPS and IoT – Based on [13]

Since WSNs, M2M, CPS (and CPPS as part of CPS) all must have the same components

(on a conceptual level – differences in proportion and design may exist) as listed above,

they belong to the concept of the IoT [11][22]. Table 1.1 briefly summarizes the described

findings above. In addition, Figure 1.1 presents a visual illustration of the correlations

between WSNs, M2M, CPS and the IoT where the the space formed by the three axes

(dimensions) represents the IoT universe. A further time dimension (now ⇒ future)

describes the progressing developments of WSNs and M2M that promote the dimension

of CPS applications [13].

Ivančić et al. [23] define robotic process automation (RPA) “as the application of specific

technology and methodologies which is based on software and algorithms aiming to

automate repetitive human tasks [24][25][26][27]. It is mostly driven by simple rules and
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business logic while interacts with multiple information systems through existing graphic

user interfaces [28]”. Other definitions go even further and specifically include more

advanced use cases that utilize artificial intelligence (AI), cognitive computing, process

mining, and data analytic in order to perform more complex tasks [23][29][28][30].

Finally, smart devices are equipped with software that governs and controls how the

(autonomously acting) machine achieves its objectives. In the context of the concepts

described above this software is executed on the machine itself. However, software

agents might also reside in a cloud environment, or other locations, e.g., a users’ mobile

phone. Franklin and Graesser define an autonomous agent as “a system situated within

and a part of an environment that senses that environment and acts on it, over time, in

pursuit of its own agenda and so as to effect what it senses in the future” [31]. Therefore,

the notion of an agent – no matter whether it is situated in a machine or not – is an

important part within the notion of the M2X ecosystem.

After clarifying the terms and concepts above, the question remains: Where does the

M2X economy fit in? Several publications list and survey CPS and IoT applications

(e.g., [19][32][33][34][35]) as well as the economic value and impact of WSN, M2M, CPS,

CPPS, IoT and RPA (e.g., [20][35][23]). However, the potential economy resulting from

interactions, transactions and collaborations among humans, smart devices, software

agents and physical systems within is rarely considered [36][5][37]. This work fo-

cuses on the emerging M2X economy covering interactions, transactions,

collaborations and business models for machine-to-human (M2H), machine-

to-machine (M2M) and machine-to-infrastructure (M2I) applications.

1.1.2 Running Case – Vehicle-to-Everything (V2X) Applications

We introduce three example use cases of the M2X economy in order to provide the

reader with a better understanding and intuition on the variety as well as the scope of

M2X applications. The selected examples are illustrated in Figure 1.2 and belong to a

sub-set of the vehicle-focused M2X applications, i.e., V2X (Vehicle-to-Everything), and

serve as running cases. These running cases are used throughout this thesis for further

illustration purposes. Examples for V2H (Vehicle-to-Human), V2V (Vehicle-to-Vehicle)

as well as for V2I (Vehicle-to-Infrastructure) are presented, thereby encompassing a

sample of each main subcategory of the M2X ecosystem.
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Figure 1.2: V2X Application Running Cases

1.1.2.1 V2H – Transportation-as-a-Service

In the future, people might not possess their own vehicles any more. Instead, vehi-

cles may own themselves, or they are owned by the government or private corporations

[38][39][40]. The self-owning vehicles are produced by a manufacturer and pay off their

production cost by offering transportation services – Transportation-as-a-Service (TaaS).

As illustrated in Figure 1.2, Alice is issuing a transportation request from location A

to location B via an application interface. She transmits her location, the travel des-

tination, departure time as well as further constraints such as vehicle size, or different

comfort features. Next, Alice negotiates a corresponding transportation contract with

available transportation providers (i.e., the autonomous vehicles) and triggers the ser-

vice enactment after an agreement is reached. In case multiple competing vehicles are

available for the same service, common market mechanisms such as auctions determine

which vehicle services the transportation contract [5]. In the illustrated example, two

vehicles of different price ranges are available. A vehicle that, besides offering more

comfort features, is offering to take the direct route from location A to location B via

the toll road is available. Alternatively, another cheaper vehicle that offers a route via

location C is available too. However, this vehicle is less comfortable and will take longer

due to traffic congestion between location C and location B.

Such a TaaS concept provides several advantages: First, a vehicle-sharing economy

reduces the number of vehicles required to manage the general transportation of entities.

Second, vehicles that own themselves can charge lower prices compared to profit-oriented

companies since they only have to cover their own expenses and not make a profit. In

case a vehicle cannot find a new transportation task, it may search for an empty parking

spot and idle for some time until new job offers are available. Finally, the TaaS concept

is not limited to human transportation and applies to the transportation of goods via

drones, ships, planes and trains as well.



Chapter 1. Introduction 8

1.1.2.2 V2V – Road Space Negotiation and Mitigating Traffic Congestion

Traffic congestion is the result of an over-utilization of a scarce resource, i.e. road space.

V2V communication and collaboration offer new opportunities to mitigate or reduce

traffic congestion. The interconnection of vehicles allows for predictive- and intelligent

traffic flow management by using alternative routes, or by optimizing utilization of

available road capacities [41][42][43][44].

In case even perfect traffic management cannot provide sufficient throughput, road space

may become a tradable resource. Network participants that need to reach a destination

urgently have the option to pay other road users to yield in a traffic jam in order to

arrive faster at their destination [36][45]. Finally, paid priority lanes [46], or congestion

tax systems may be additional options to mitigate traffic congestion [47][48]. Based on

these approaches, the cheaper vehicle from Figure 1.2 may reach its destination faster

using micro-payments for road space, or to utilize priority lanes that circumvent the

traffic congestion. Alternatively, assuming that Alice is not in a hurry, the vehicle could

earn some extra money for giving the rights of way to other vehicles that are willing to

pay. The additionally earned money can be used to reduce Alice’s travel fee.

1.1.2.3 V2I – Automated Payment Services

Toll road payments, paid parking, or related fees are well-established means to fund

road- and infrastructure maintenance. Likewise, minor maintenance fees for the techno-

logical infrastructure of Vehicular Ad Hoc Networks (VANETs) may apply in the future.

Apart from funding road- and infrastructure maintenance, fees also act as incentivization

mechanisms for ecosystem participants, e.g., increased parking costs in the city center

incentivize the use of public transport as a means of transportation. Despite the pro-

gressing digitization, toll road payments still require tedious human interaction. Similar

thoughts apply to traffic mitigation incentive systems such as Singapore’s Electronic

Road Pricing (ERP) system [49] that charges vehicles usage of the road according to

the congestion they are causing. In the context of V2I, payment automation uses a pre-

defined model (traveled distance, time, data consumption, etc.), thereby illustrating one

of the most common examples of V2I transaction and interaction services. Besides such

mandatory fees, Leiding et al. [36] suggest additional infrastructure-enabled optional

applications and services, e.g., traffic jam notifications or platooning services.

In the context of our running cases presented in Figure 1.2, automated payment services

are used by the more expensive vehicle while traveling on the toll road, and by both

vehicles after arriving at the final destination (location B) to recharge their batteries

before serving the next customer.
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1.2 Research Questions

While the technical concepts of IoT, Smart Homes, Smart Cities, Industry 4.0 and so on

that enable the M2X economy have been around for a while now, a widespread adoption

as well as applications that use the full potential of these concepts are still missing. Many

isolated applications exist that aim to solve very specific and simplified use cases which

fall within the spectrum of the M2X economy. However, an interoperable, integrated,

scalable model that allows to establish a new economy is non-existing. Moreover, for

such an economy a transfer of values resulting from interactions and transactions among

smart devices is necessary – the same applies for a model that enables collaborations

among machines to achieve a common objective within this ecosystem. Furthermore,

proper conflict resolution strategies in case of contract violations have to be put in place

– preferably mechanisms that do not require human supervision. In order to unlock the

full potential of a M2X ecosystem, interoperability among all involved entities – which

are often structured in a decentralized manner – is required. Finally, in the context of

autonomously acting smart devices, a variety of requirements such as tamperproof data

processing, transparency, accountability and non-repudiation pose challenges.

This thesis focuses on the M2X economy in the context of Information System (IS)

research and explores key concepts that are essential to the upcoming M2X economy.

As a result of this process, the thesis answers the research question of how to enable

the Digital Transformation of Information Systems in the Context of the

Machine-to-Everything (M2X) Economy? In order to answer this question with

a separation of concerns, the main research question is divided into two sub-questions:

1. RQ-1: How to enable interactions, transactions and collaboration as well as reli-

able value transfer among entities of the M2X ecosystem?

2. RQ-2: How to identify, authenticate and validate entities in a decentralized M2X

ecosystem?

1.3 Research Contributions

This work makes three contributions: First, it suggests architectural concepts that en-

compass an interaction-, transaction- and collaboration model for M2X use cases and

scenarios, a business collaboration lifecycle and governance structure as well as a set of

modalities for these use cases derived through an exploratory research approach.

Second, it presents a decentralized self-sovereign identity solution as well as a validation-

and authentication mechanism that is suitable for the M2X ecosystem. Sybil attacks
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are a common issue of large-scale peer-to-peer (P2P) networks, where hostile or faulty

computing elements threaten the security of the whole network. Single faulty entities

may be able to present multiple identities, thereby controlling a substantial fraction of

the system, consequently undermining its functionality and security [50]. Therefore, we

present a mechanism to price the costs of a sybil node attack, thereby providing an easy

to use metric for the sybil resistance of a decentralized M2X system. As step towards a

formal validation of these novel infrastructural concepts, a Colored Petri Net model is

provided covering the protocol-driven data exchange of the M2X identity solution.

Finally, the feasibility of the M2X interactions-, transactions- and collaboration model

as well as the identity solution is demonstrated. The developed identity protocols are

validated using CPN models and proof-of-concept implementations, while specific as-

pects of the presented M2X identity solution are evaluated using historical data to asses

its suitability.

A majority of the contributions of this work are based on peer-reviewed academic pub-

lications that are listed in Appendix B.

1.4 Research Methodology

This work focuses on the emerging M2X economy in the context of IS research and

contributes a set of architectural concepts for business interactions, transactions and

collaborations within the M2X context as described in the previous Section 1.3. Thus, a

research methodology that supports the development and evaluation of such conceptual

artifacts is required. The design-science research (DSR) paradigm “seeks to extend the

boundaries of human and organizational capabilities by creating new and innovative ar-

tifacts” [51]. According to Hevner et al. [51], artifacts are defined as constructs, models,

methods and utilities. A construct may be a vocabulary, or symbols. Models refer to

abstractions and representations. Algorithms and practices constitute the methods. Fi-

nally, the utility may be an implementation, or a prototype system. “Broadly speaking,

DSR aims to add to knowledge of how things can and should be constructed or arranged

(i.e., designed), usually by human agency, to achieve a desired set of goals” [52]. As a

result, this work follows design-science research in the domain of information systems as

a research methodology.

Figure 1.3 represents the DSR instantiation of the framework as outlined by Hevner

et al. within the context of this thesis. As shown on the left of Figure 1.3, artifacts

have to address a relevant need of the defined environment. The environment consists of

people, organizations, processes and technologies. The existing knowledge base on the
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Figure 1.3: Design Science Research Framework Instantiation – Based on [51]

right side provides foundations (e.g., existing research and theories) and methodologies

(e.g., evaluation guidelines or formalisms). The produced artifact contributes to the

knowledge base and is applied to the environment thereby addressing the initial need.

In addition to the DSR framework depicted in Figure 1.3, Hevner et al. further propose

guidelines for the DSR process. The guidelines consist of seven steps and are illustrated

in Table 1.2. The subsequent sections detail the application of the guidelines within this

work and in relation to the presented DSR framework instantiation.

1.4.1 Design as an Artifact

The artifacts created in this work aim to close the existing gap in the knowledge base

as described previously. The goal is to:

1. Enable interactions, transactions and collaboration as well as reliable value transfer

among entities of the M2X ecosystem.

2. Identify, authenticate and validate entities in a decentralized M2X ecosystem.

The produced artifacts are the M2X model for interactions, transaction and collabora-

tions and the corresponding M2X modalities as presented in Chapter 3. An identity
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Guideline Description
Guideline 1: Design as an Artifact Design-science research must produce a vi-

able artifact in the form of a construct, a
model, a method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science research is to
develop technology-based solutions to impor-
tant and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods.

Guideline 4: Research Contribution Effective design-science research must pro-
vide clear and verifiable contributions in the
areas of the design artifact, design founda-
tions, and/or design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the appli-
cation of rigorous methods in both the con-
struction and evaluation of the design arti-
fact.

Guideline 6: Design as a Search Pro-
cess

The search for an effective artifact requires
utilizing available means to reach desired
ends while satisfying laws in the problem en-
vironment.

Guideline 7: Communication of Re-
search

Design-science research must be presented ef-
fectively both to technology-oriented as well
as management-oriented audiences.

Table 1.2: Design Science Research – Guidelines (Source: [51])

solution for the M2X ecosystem is described in Chapter 4. Moreover, a set of CPN

models covering the protocol-driven data exchange of the M2X identity solution is de-

veloped.

1.4.2 Problem Relevance

The importance and need for solutions that foster the upcoming M2X economy is mo-

tivated and explained in the introduction of this chapter. The growing number of con-

nected (autonomous) smart devices enables a new economy among machines themselves

and also among machines and humans, i.e., sociotechnical systems [53]. As illustrated in

the environment pillar of Figure 1.3, concepts and strategies to structure this economy

as well as the corresponding identity solutions are crucial components in this regards.

The results of this research work are relevant for OEMs (Original Equipment Manu-

facturers), service providers, infrastructure provider and consumers related to the M2X

ecosystem. The same applies to financial institutions and financial service providers (e.g.,

for payment processing), committees for standardization as well as academic-, research-
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and industrial organizations. The produced artifacts support these entities throughout

the requirement elicitation process, the system design process, the implementation and

development work and also while operating M2X services and systems.

1.4.3 Design Evaluation

As illustrated in Figure 1.3, the knowledge base contains methodologies that provide

guidance for the evaluation and justification of new artifacts. Based on Hevner et al.,

Table 1.3 summarizes the available evaluation methods. Evaluation methods must rigor-

Evaluation Method Description
1. Observational Case Study: Study artifacts in depth in business en-

vironment
Field Study: Monitor use of artifact in multiple
projects

2. Analytical Static Analysis: Examine structure of artifact for
static qualities (e.g., complexity)
Architecture Analysis: Study fit of artifact into IS ar-
chitecture
Optimization: Demonstrate inherent optimal proper-
ties of artifact or provide optimality bounds on artifact
behavior
Dynamic Analysis: Study artifact in use for dynamic
qualities (e.g., performance)

3. Experimental Controlled Experiment: Study artifact in controlled
environment for qualities (e.g., usability)
Simulation: Execute artifact with artificial data

4. Testing Functional (Black Box) Testing: Execute artifact in-
terfaces to discover failures and identify defects
Structural (White Box) Testing: Perform coverage
testing of some metric (e.g., execution paths) in the
artifact implementation

5. Descriptive Informed Argument: Use information from the knowl-
edge base (e.g., relevant research) to build a convinc-
ing argument for the artifact’s utility
Scenarios: Construct detailed scenarios around the ar-
tifact to demonstrate its utility

Table 1.3: Design Science Research – Evaluation Methods (Source: [51])

ously demonstrate the utility, quality, and efficacy of design artifacts [54]. The evaluation

of the created artifacts of this work is performed using analytical and descriptive evalu-

ation methods. The resulting system designs and architectures are evaluated based on

an architecture analysis to study the fit of the artifacts into technical IS architecture.

Especially for innovative artifacts – for which other forms of evaluation may not be

feasible – Hevner et al. propose descriptive methods of evaluation.
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Chapter 3 relies on descriptive methods due to the fact that a real-world proof-of-

concept, or even a prototype implementation are out of scope of this work while other

evaluation methods such as a simulation, or quantitative evaluation methods are not

applicable. Several artifacts resulting from this research can neither be analyzed using

observational, experimental, testing, nor even analytical evaluation methods since a real-

world implementation is not feasible (yet). Thus, for the M2X platform a paper-based

feasibility evaluation is performed, which considers existing and planned solutions that

allow for a simplified and minimal proof-of-concept implementation of the M2X platform

based on existing technologies and on-going research. The proposed technology stack

represents a tentative proposal based on available solutions.

In contrast to the previous chapter, Chapter 4 relies on the Petri Net formalism [55]

– more specifically Colored Petri Nets (CPNs) [56] and implementations of proof-of-

concepts for evaluation purposes. CPN is a graphical language for the design, speci-

fication, simulation as well as the verification of systems and describes the states of a

modeled system and the events (transitions) that cause the system to change states.

Moreover, Chapter 4 analyses simulation results by CPN Tools that include visualiza-

tion, scenario-based validation and state-space analysis results. Finally, specific aspects

of the presented M2X identity solution are evaluated using historical data to assess the

suitability of the proposed system based on past events.

1.4.4 Research Rigor

In the context of DSR, “rigor is derived from the effective use of the knowledge base”

(theoretical foundations and research methodologies) and “must be assessed with re-

spect to the applicability and generalizability of the artifact” [51]. To do so, we select

appropriate techniques from the knowledge base to construct and evaluate artifacts that

answer the posed RQs. The produced artifacts extend existing concepts such as M2M,

WSN, IoT, CPS, Cybernetics and RPA to the notion of a M2X ecosystem (see Sec-

tion 1.1). The concept of VANETs is required for this works’ running case. The rigor of

the CPN models is ensured by CPN Tools1 [57] and the CPN modeling language [56].

Furthermore, the concepts of Agent-Oriented Modeling [58] (AOM) is utilized during the

process of requirement elicitation. Business Process Model and Notation (BPMN) [59],

UML and sequence diagram representations [60][61] are used throughout the design

phase and to illustrate key functionalities and architectures.

1http://cpntools.org/

http://cpntools.org/
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1.4.5 Design as a Search Process

DSR is an inherently iterative process with the goal to establish the best, or an optimal

solution. However, due to the complexity of IS research problems, researchers often

simplify problems “by explicitly representing only a subset of the relevant means, ends,

and laws, or by decomposing a problem into simpler subproblems” [51]. In this work,

the goal of enabling the M2X economy for information systems is decomposed into sub-

problems and also simplified. Since this work is describing a solution for an ecosystem

that does not exist yet due to limitations in technical advances, simplifications and

assumptions are made, e.g., assuming certain functionalities of autonomous self-driving

cars that are not yet ready but essential for the widespread adoption of this technology

and hence, the subject of on-going research. In addition, as a result of the complexity and

size of the overall problem, we focus on the two selected challenges of the M2X economy

that we consider most relevant: First, the transaction-, interaction- and collaboration

model. Second, an identity, validation and authentication solution for decentralized

networks of M2X entities.

1.4.6 Communication of Research

Most of the underlying research of this thesis is already published in an academic en-

vironment, either presented at conferences, or as articles in scientific journals (see Ap-

pendix B). The results of this thesis itself will be made available to the public as well.

1.4.7 Demarcations

As mentioned in previous sections, this work focuses on two main challenges that have

to be solved in order to enable the M2X economy. First, presenting an interaction,

transaction and collaboration model for the M2X economy. Second, a decentralized

identity solution for the same ecosystem. Topics such as privacy and security – which

are crucial for information systems – are either excluded from the scope of this work, or

only briefly discussed. Furthermore, instead of tackling technical details and presenting

specific implementations for sub-functionalities, we introduce an overall concept for such

an ecosystem – running cases are utilized solely for illustration and evaluation purposes.

While we discuss some business models and payment solutions, a broader economical

analysis and discussion of the M2X economy is not part of this work. The same applies

to sociological and legal implications of this new economy.
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1.5 Thesis Structure

This thesis is structured as follows: Chapter 2 introduces fundamental concepts and tech-

nologies that are used throughout this work. Next, Chapter 3 deals with M2X use cases

and scenarios to deduce requirements and modalities for an interaction-, transaction-

and collaboration platform. Afterwards, the focus shifts to the interactions and trans-

actions among entities, followed by governance mechanisms for the ecosystem such as

conflict resolution management. Identities are an essential part of each economy that

rely on collaboration and value exchange – hence, Chapter 4 deals with the issues and

challenges of existing validation- and authentication mechanisms in decentralized net-

works. Afterwards, we present a protocol workflow for validation and authentication

that suits the M2X ecosystem and discuss the security guarantees and implications of

binding an identity to a distributed ledger system. Subsequently, Chapter 5 covers the

evaluation of this work as well as a critical discussion of the findings and comparison

with related work. Finally, Chapter 6 concludes the thesis and provides an outlook on

future work.



Chapter 2

Technological Foundations

The following chapter introduces the technological foundations that are used throughout

this work. The specific motivation to select any of the concepts and technologies are

described later in Chapter 3 and Chapter 4 when they are applied in a specific context.

First, Section 2.1 provides a detailed overview on distributed ledger technology (DLT).

Afterwards, Section 2.2 covers the basics of vehicular ad hoc networks (VANETs). Fi-

nally, Section 2.3 presents an overview on decentralized identifiers (DIDs) which provide

a self-sovereign identity mechanism that is controlled by the owning entity instead of an

external party, or a central authority.

2.1 Distributed Ledger Technology – DLT

Over the last decade, distributed ledgers majored and spread in popularity – most no-

ticeably by providing the foundation of the cryptocurrency Bitcoin [62]. Inspired by the

Bitcoin system, several further DLT platforms emerged, e.g., Ethereum1, Hyperledger2,

Corda3, or Tezos4. Moreover, a variety of applications for blockchains have been pro-

posed, e.g., as a platform for IoT applications [63][64], applications in the automotive

sector [36][5], in the finance sector [65][66], as part of supply chains [67], or in security-

and authentication protocols [64][68][69].

Even though DLT and blockchain are often used synonymously, a technical difference

exists. Both, DLT and blockchain, store data in a distributed and highly replicated

manner across several nodes for that each maintains a copy of the complete dataset

1https://ethereum.org/
2https://www.hyperledger.org/
3http://www.corda.net/
4https://tezos.com/
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while updating information through a P2P network without requiring a central authority.

However, the specific nature of blockchains is that data – more specifically transactions

– are grouped in forms of blocks, while each new block is added to the existing chain of

blocks in an append-only structure that is cryptographically secured using hashes and

signatures.

2.1.1 Blocks and Transactions

Figure 2.1 illustrates the classical structure of a blockchain block as used by, e.g., the

Bitcoin [62], or Ethereum blockchain [70]. As the name suggests, a blockchain consists

of a sequentially ordered number of blocks that records transaction events (denoted

as TX ), e.g., transfer of a cryptocurrency from person A to person B. In addition,

each block contains the hash of the previous ancestor block, thereby chaining all blocks

together. Changing a transaction of a block, results in a hash mismatch of the succeeding

block. As a result, tampering with one block requires the recalculation of all succeeding

blocks. Section 2.1.2 provides more details regarding this issue. The exact number of

transactions in a block depends on the maximum block size for the specific blockchain

and varies from platform to platform [62][71][72][73].

Block Header
Parent Block

Hash

Transaction Counter

TX TX TX TX TX

Block Header
Parent Block

Hash

Transaction Counter

TX TX TX TX TX

Block Header
Parent Block

Hash

Transaction Counter

TX TX TX TX TX

Block x-1 Block x Block x+1

Figure 2.1: General Blockchain Structure (Based on [62] and [74])

Each user owns a key pair consisting of a public- and a private key. Owning an asset

(e.g., Bitcoin, or any other tokenized asset) is equivalent to owning the key pair that

corresponds to the signature of the tokenized asset. The subsequent Figure 2.2 further

details the structure of a typical transaction. In the context of Bitcoin, a blockchain

asset is transferred “by digitally signing a hash of the previous transaction and the public

key of the next owner” [62].

A new transaction is broadcast to the participating nodes of the network to be included

in the next block. Still, in order to reach a global consensus on which transaction to

include in the next block as well as the order of the transactions a variety of so-called

consensus algorithms emerged. The following Section 2.1.2 focuses on the fundamentals

of such consensus algorithms.
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Figure 2.2: Blockchain Example Transaction – Based on [62]

2.1.2 Consensus

Participation in a DLT system might be open to all interested entities (public ledger),

or restricted to a specific subset of entities (permissioned ledger). Most cryptocurrencies

are an example for the first option, whereas a supply-chain use case with a supplier, a

transport provider and a receiving party may represent the later option. In public as well

as permissioned blockchains, a consensus among all participants is required to form the

next block and append it to the existing chain. Reaching consensus among distributed

nodes that do not necessarily trust each other (or might even act maliciously) without

a central authority represents an instantiation of the Byzantine Generals Problem as

introduced by Lamport et al. [75]. For example, a malicious node may attempt to

reverse, or redirect a valid cryptocurrency payment to its own benefit by manipulating

a past transaction, or the receiving address of a pending transaction.

Proof-of-Work (PoW) [62], Proof-of-Stake (PoS) [76] and Proof-of-Authority (PoA) [77][78]

are among the most commonly used consensus algorithms for DLT systems. For each of

them, different flavors exists as well as a large variety of alternative protocols. Having

said that, so far all consensus algorithms require trade-offs, or suffer from disadvantage,

e.g., scalability issues, security issues, efficiency issues, etc. [79][80]. Hence, consensus

algorithms within the context of DLT systems remain a topic of on-going research. The

following section briefly introduces the PoW, PoS and PoA consensus algorithms.

2.1.2.1 Proof-of-Work

The Proof-of-Work (PoW) consensus algorithm is most commonly used among blockchain

platforms, e.g., by Bitcoin [62] and Ethereum [70]. The concept of PoW was initially

proposed by Hashcash [81] as a measurement to prevent spam emails by requiring each

email to have a small piece of data attached – a proof of work. On one hand, the proof

should be costly and time-consuming to produce, but on the other hand easy to verify.
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Bitcoin uses the Hashcash PoW approach to reach consensus on the next valid block [62][81].

After broadcasting a new transaction to the network, validator nodes – also referred to as

miners – pick up these transactions and group them into a new block. A PoW is attached

to the block. The PoW resembles a hash-based puzzle. As described in Figure 2.1, each

block contains (simplified) a set of transactions and the hash of the previous block. For

the PoW, a further random seed value is added. Afterwards, the block is hashed using

a pre-defined hash algorithm, e.g., SHA256, SHA-3, or Scrypt. The resulting hash is

required to match a specified structure to be accepted as a valid block. In the context

of Bitcoin, the resulting hash has to start with a number of zero bits. “The average

work required is exponential in the number of zero bits required and can be verified by

executing a single hash” [62]. The varying number of zero bits is used to adjust the

difficulty of finding a valid block depending on the computing power provided by users

searching for a valid hash. By iterating the random seed value, miners eventually find

a valid block that is broadcast to the network. Changing a transaction of an already

existing block changes the hash of the block and thereby breaks the chain of hashes. In

order to successfully tamper with the blockchain, a potential attacker has to recalculate

all successor blocks and the corresponding proofs-of-work at a higher speed than the re-

maining network. By design, creating a PoW requires a certain amount of computation

power and due to the popularity of the Bitcoin cryptocurrency, the energy- and hardware

resources consumed by Bitcoin-related mining activities became a problem [82][83][84].

Hence, alternative consensus algorithms emerged.

2.1.2.2 Proof-of-Stake

Proof-of-Stake (PoS) [76][85] is an alternative consensus algorithm to the commonly

used PoW algorithm. In contrast to PoW, the creator of the next block in PoS is

chosen using a selection algorithm that requires a stake to be deposited. The algorithm

selects the validator of the next block with a probability proportional to the stake in

comparison to the overall stake of all participants. The larger the stake, the higher

the probability to become the next block creator. Including conflicting transactions

into a new block, or other attacks (which are detected by the network participants) are

punished by losing the stake [86]. The absence of a computationally expensive PoW

calculation increases the overall transaction rate of the blockchain and lowering the

required energy- and hardware resources significantly. The popular blockchain platform

Ethereum is planning to switch from its PoW consensus algorithm Ethash [70] to a PoS-

type of algorithm called Casper [87]. However, proper staking, selection and punishment

mechanisms require additional complexity.
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2.1.2.3 Proof-of-Authority

While PoW and PoS are predominantly used and well suited for public ledgers (permis-

sionless), other consensus algorithms focus on permissioned networks where all consensus

participants are known and reputable (not necessarily trusted), e.g., in enterprise busi-

ness applications. Essentially, Proof-of-Authority (PoA) [77][78] is based on a modified

PoS algorithm. Instead of providing a monetary stake, validators put their identity and

reputation at stake. In permissioned systems the approved authorities might be business

partners involved in a shared collaboration process. Alternatively, the POA Network5

requires validators of the core network to obtain an active U.S. public notary license [88].

For a new block to become valid and attached to the chain, a pre-defined number (often

a majority) of elected authorities have to cryptographically sign the new block. Besides

the POA Network, the Ethereum test networks Rinkeby, Kovan [89] and Parity [78] as

well as enterprise chains such as Hyperledger [90] offer PoA-like consensus algorithms.

2.1.3 Smart Contracts

The concept of smart contracts (SCs) is generally perceived to be closely connected with

the emerging popularity of DLTs. However, the idea of SCs was already introduced

in 1994 by Nick Szabo who defined a smart contract as “a computerized transaction

protocol that executes the terms of a contract” [91] in a self-enforcing manner, thereby

minimizing the need for trusted intermediaries among transacting entities [92].

While Bitcoin is only capable of executing a very limited set of scripting commands [62],

most modern blockchain platforms with smart contract capabilities support Turing-

complete programming languages for smart contract development, e.g., Ethereum [70],

or Tezos [93]. In the context of blockchain technology, smart contracts are deterministic

code segments, or scripts that reside on the blockchain. Each smart contract has a unique

address as an identifier. Via this address, the smart contract can be triggered using an

incoming transaction that results in the execution of the smart contract. Since the

network reaches consensus on the transaction via the consensus algorithm (as described

earlier in Section 2.1.2), the smart contract is executed independently and automatically

by all nodes of the network. Hence, smart contracts enable a large variety of general-

purpose computation, even though some practical limitations exist, e.g., storing data

on a blockchain is often expensive, hence computations that deal with large amounts of

data are unusual [94].

Nonetheless, the concept of smart contracts is very well suited for enabling interactions,

transactions and collaborations among network entities that do not trust each other. A

5https://poa.network/

https://poa.network/
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smart contract that is: i.) agreed upon by all involved parties (and cannot be changed

by a single party), ii.) is transparently available on the blockchain, and iii.) provides

accountable verifiable execution of processes based on digital signatures. “The possibility

of a dispute is eliminated (when all possible outcomes are accounted for) since the

participants cannot disagree over the final outcome of this verifiable process they engaged

in” [63].

2.1.4 Blockchain Interoperability

At the time of writing this thesis, more than 2000 cryptocurrencies [95] and a large

variety and quantity of blockchain platforms [96][97] had emerged since the first intro-

duction of the Bitcoin whitepaper in 2008. Even though many cryptocurrencies share

the same underlying platform, e.g., Ethereum, the platforms themselves are rarely inter-

operable among each other and do not allow for cross-platform transactions, or yet alone

value transfer. As a result, not only similar blockchain applications and cryptocurrencies

compete among each other, but also all platforms aim for market domination thereby

fragmenting the ecosystem in so many isolate parts that none of them reaches significant

market adoption.

Therefore, the blockchain ecosystem is in a similar position as the Internet in the 1980s.

Hardjono et al. [98] propose to adopt the Internet architecture and its fundamental goals

as the blueprint for interoperable blockchains. They define the concept of an interopera-

ble blockchain as follows: “An interoperable blockchain architecture is a composition of

distinguishable blockchain systems, each representing a distributed data ledger, where

transaction execution may span multiple blockchain systems, and where data recorded

in one blockchain is reachable and verifiable by another possibly foreign transaction in

a semantically compatible manner” [98]. Moreover, Hardjono et al. propose a set of

design principles for interoperable blockchains and demonstrate how the MIT project

Tradecoin [99] is designed using this interoperability model.

An alternative approach with the same goal is suggested in [100] where the author

proposes the concept of relay-chains that act as hubs between different chains. The

relay-chain itself is a distinct blockchain that relays messages between chains, but may

also tracks the state of connected chains, thereby essentially acting as an interoperability

layer. However, a downside of the relay-chain concept is that in the future we might

end up in a similarly fragmented ecosystem with many relay-chain hubs that all try to

become the most popular platform while still being not interoperable among each other.
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The research on blockchain interoperability is still in its infancy. Besides the approaches

introduced above, further proposals exist, e.g., [101][102] and [103], but a blockchain

interoperability standard comparable to the standards of the Internet is still missing.

2.2 Vehicular Ad Hoc Networks – VANETs

The progressing digitization of current and forthcoming generations of vehicles results

in a demand to manage the communication between vehicles, road infrastructure and

Internet-based services. Vehicular ad hoc networks (VANETs) are an abstract concept

that models the different components that are required for this kind of communica-

tion [104][105][106].

The subsequent Section 2.2.1 introduces the network structures and components of

VANETs. Afterwards, Section 2.2.2 focuses on the different types of communication

among VANET entities. Finally, Section 2.2.3 categorizes VANET application and lists

corresponding examples.

2.2.1 Network Structure and Components

Figure 2.3 illustrates the key building blocks of VANETs: Vehicles – equipped with

on-board-units (OBUs) and application-units (AUs) –, road-side-units (RSUs) as well

as tamper-proof-devices (TPDs). The term vehicle is usually used synonymously with

cars but may also refer to drones, or ships and other devices with transportation capa-

bilities [107][108].

OBUs are typically mounted onto a vehicle and enable data exchange with other OBUs

or RSUs, usually via short-range wireless or radio communication, depending on the

use case [104][105]. “The main functions of the OBU are wireless radio access, ad hoc

and geographical routing, network congestion control, reliable message transfer, data

security and IP mobility” [104].

AUs are typically closely linked to the OBU and might even reside in the same physical

device unit. Alternatively, AUs might reside in a separate mobile device that is regu-

larly removed from the vehicle (e.g smartphones). The vehicles AU offers an execution

environment for applications that utilize and rely on the OBU’s communication capa-

bilities [104][105]. The different types of applications are detailed later in Section 2.2.3.

RSUs are placed “along the road side or in dedicated locations such as at junctions or

near parking spaces. The RSU is equipped with one network device for a dedicated
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Figure 2.3: VANET Model Overview – Based on [36] and [105]

short-range communication based on IEEE 802.11p radio technology, and can also be

equipped with other network devices so as to be used for the purpose of communication

within the infrastructural network” [104]. On one hand, RSUs are used to forward OBU

information to other RSUs or OBUs. On the other hand, they further provide Internet

access to OBUs and may also host safety applications, e.g., relaying traffic jam and

accident warnings via infrastructure-to-vehicle communication (I2V) [105]. The optimal

distribution and deployment of RSUs is crucial for VANETs and discussed for example

in [109].

Vehicles are often assumed to be equipped with a TPD that protects sensitive informa-

tion such as secret key pairs for message signing or the vehicles’ identity. As later detailed

in Chapter 3, the TPD may also be in charge of ensuring a secure execution and boot

environment for firmware components to avoid software manipulations. As the name

suggests, TPDs are constructed in such a way that they detect hardware manipulation

or unauthorized access which triggers a routine to erase all stored information [110]. Ac-

cess to the TPD “should be restricted to authorized people. For example, cryptographic

keys can be renewed at the periodic technical checkup of the vehicle” [110].

2.2.2 Communication

As illustrated in Figure 2.3, communication within VANETs can be divided into three

main categories: i) intra-vehicle communication, ii) vehicle-to-vehicle communication

(V2V) and iii) vehicle-to-infrastructure communication (V2I) [104][111]. Intra-vehicle
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communication concern the data exchange between OBU and AUs. In order to com-

municate among different vehicles (V2V), an ad hoc network is established for decen-

tralized and distributed communication purposes without relying on a fixed infrastruc-

ture [112][113]. V2I communication allows vehicles to communicate with static roadside

infrastructure, i.e., RSUs. Finally, vehicles may utilize a hybrid approach of V2V and

V2I “in order to increase the range of communication by sending, receiving and forward-

ing data from one node to another or to benefit from the ability of the RSU to process

special applications forming vehicle to infrastructure communication (V2I)” [104].

2.2.3 Applications

VANETs enable a large number of applications with varying utilities and goals. Most

commonly, VANET applications are categorized as either safety-applications or com-

fort/entertainment-applications [104][113][114]. Safety applications aim to improve road

safety, avoiding accidents and ensuring a clean environment – e.g, intersection collision

warning, pedestrian crossing information, traffic jam notifications, enforcement of traffic

regulations, and so on. On the other hand, comfort- and entertainment applications

aim to improve the driver’s and passenger’s comfort levels as well as enhancing traffic

efficiency – e.g., road congestion management, location of available parking, or route

navigation [36][104][113][114].

2.3 Decentralized Identifiers – DIDs

The concept of decentralized identifiers (DIDs) has been proposed and is also currently

under development by the W3C [115]. DIDs provide an identity that is controlled by the

owning entity while at the same time being “independent from any centralized registry,

identity provider, or certificate authority” [115]. The design goals of this new type of

digital identifier are outlined in Table 2.1 and comprise decentralization, self-sovereignty,

privacy, security, a proof-based authentication and authorization mechanism, discover-

ability, interoperability, portability, simplicity and extensibility.

A DID (did:example:123456789abcdefghi) consists of three parts. First, the so-called

scheme (did), second the method (example) and last the method-specific identifier

(123456789abcdefghi). The scheme part simply explains that we are handling a DID.

A DID method specification defines how to create, read, update and delete a DID and

its DID document. The last section of the example details the actual unique identi-

fier. The W3C DID specifications propose a distributed network such as blockchains for
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Goal Description
Decentralization DID architecture should eliminate the requirement for

centralized authorities, or single points of failure in iden-
tifier management, including the registration of globally
unique identifiers, public verification keys, service end-
points, and other metadata.

Self-Sovereignty DID architecture should give entities, both human and
non-human, the power to directly own and control their
digital identifiers without the need to rely on external
authorities.

Privacy DID architecture should enable entities to control the pri-
vacy of their information, including minimal, selective,
and progressive disclosure of attributes or other data.

Security DID architecture should enable sufficient security for re-
lying parties to depend on DID Documents for their re-
quired level of assurance.

Proof-based DID architecture should enable the DID subject to pro-
vide cryptographic proof of authentication and proof of
authorization rights.

Discoverability DID architecture should make it possible for entities to
discover DIDs for other entities to learn more about or
interact with those entities.

Interoperability DID architecture should use interoperable standards so
DID infrastructure can make use of existing tools and
software libraries designed for interoperability.

Portability DID architecture should be system and network-
independent and enable entities to use their digital identi-
fiers with any system that supports DIDs and DID Meth-
ods.

Simplicity To meet these design goals, DID architecture should be
(to paraphrase Albert Einstein) ”as simple as possible
but no simpler”.

Extensibility When possible, DID architecture should enable extensi-
bility provided it does not greatly hinder interoperability,
portability, or simplicity.

Table 2.1: Design Goals and Principles of the DID Architecture – Source: [115]

this purpose. Table 2.2 provides an overview on a selection of DID methods and their

underlying blockchains (and/or identity solution based on that blockchain).

2.3.1 DID Documents

A DID itself is essentially an URL that corresponds to an entity and resolves to a so-

called DID Document. DID documents are represented by JSON-LD documents and

describe how to use the corresponding DID. As illustrated in Listing 2.1, DIDs consist

of a reference that links them to the corresponding DID, public keys that can be used
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Method Name Blockchain
did:btcr: Bitcoin
did:sov: Sovrin

did:uport: Ethereum (uPort)
did:selfkey: Ethereum (SelfKey)

Table 2.2: Example DID Methods – Source: [116]

for verification purposes, authentication methods to authenticate a DID or the owning

entity and service endpoints [115]. “Service endpoints enable trusted interactions with

the DID controller” [115].

{

"@context ": "https :// w3id.org/did/v1",

"id": "did:example :123456789 abcdefghi",

"publicKey ": [{

"id": "did:example :123456789 abcdefghi#keys -1",

"type": "RsaVerificationKey2018",

"controller ": "did:example :123456789 abcdefghi",

"publicKeyPem ": "-----BEGIN PUBLIC KEY ...END PUBLIC KEY -----\r\n"

}],

"authentication ": [{

// this key can be used to authenticate as did :... fghi

"id": "did:example :123456789 abcdefghi#keys -1",

"type": "RsaVerificationKey2018",

"controller ": "did:example :123456789 abcdefghi",

"publicKeyPem ": "-----BEGIN PUBLIC KEY ...END PUBLIC KEY -----\r\n"

}],

"service ": [{

"id": "did:example :123456789 abcdefghi#service123",

"type": "ExampleService",

"serviceEndpoint ": "https :// example.com/endpoint /8377464"

}]

}

Listing 2.1: DID Document Example – Source [115]

As illustrated in Listing 2.1, DID documents may contain an authentication property, a

mechanism “by which a DID subject can cryptographically prove that they are associated

with a DID” [115]. The authentication property provides a list of various verification

methods, e.g., public keys. Proving control over a DID document is exerted by resolving

the DID to a DID document according to its DID method specification. Proving con-

trol over the public key specified in a DID document is achieved via a signature-based

challenge-response mechanism using the private key corresponding to the public key.
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2.3.2 Verifiable Claims and Credentials

DIDs and DID documents itself are not sufficient to establish a decentralized identity – a

concept to describe any arbitrary entity is missing. Verifiable claims overcome this issue

and enable an entity to collect selective claims pertaining itself which are then linked to

the DID and the DID document, thereby constituting an identity. Claims are represented

in JSON format, issued by an issuer and can be cryptographically verified [115][117].

In the context of humans, such a claim might be: Alice is older than 21. Hence, she is

allowed to enter any bar and consume alcohol. For the specific purpose of acquiring or

consuming alcohol the exact age is not relevant as long as it is above a certain threshold,

e.g., 21 years in the USA. The bartender simply verifies the claim presented by Alice

and that it is linked to the DID controlled by Alice. Note that the issuer might need

to be a party trusted by the bartender, e.g., a governmental institution and not Alice

herself.

A subset of verifiable claims are verifiable credentials as specified in [117]. Verifiable

credentials are used to structure claims around common credentials from our daily lives

such as academic degrees or licenses. Such credentials provide “a mechanism to express

these sorts of credentials on the Web in a way that is cryptographically secure, privacy

respecting, and machine-verifiable” [117].

In the context of the M2X ecosystem, a DID-based identity solution in combination with

verifiable claims can be used in many ways. First and foremost, to establish identifiers

and corresponding identities for all entities of the M2X ecosystem, e.g., a DID/claim

combination for a car’s vehicle identification number (VIN), or an identifier for a human

using or offering services. DIDs also enable us to create digital twins (digital representa-

tions) of analogue objects or entities for digital business collaborations, interactions and

transactions. Moreover, the DID concept also allows for a secure and privacy-preserving

data sharing concept since each entity is not limited to one identity (DID) and instead

can hold thousands of DIDs, DID documents and claims to be useful in different scenarios

and to share with different entities.
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Nowadays, business collaborations and transactions occur almost exclusively among hu-

mans. However, the M2X economy requires business transactions and collaboration

beyond this specifically human-focused approach. Papazoglou and Kratz [118] define

a business transaction “as a trading interaction between possibly multiple parties that

strives to accomplish an explicitly shared business objective, which extends over a pos-

sibly long period of time and which is terminated successfully only upon recognition of

the agreed conclusions between the interacting parties. A business transaction is driven

by well-defined business tasks and events that directly or indirectly contribute to gen-

erating economic value”. Traditionally, business transactions and further collaboration

platforms are governed by contracts either in the form of an oral or written agreement

that is enforceable by law in which all involved parties voluntarily engage. Such contracts

– usually represented in the form of documents [119] – uniquely identify the participat-

ing parties, specify and define provisioned services or goods, monetary compensations,

eventual penalties, as well as further constraints and requirements that vary depending

on the context. Norta [120] argues that “subsequent transactions are trust-based and

contracting parties usually consider contracts as a symbol for an existing business deal”,

while “the enforcement of traditional contracts [121] proves to be either too complicated,

time-consuming, or impossible, certainly in international circumstances”.

An alternative approach to the traditional oral, or paper written contracts for trans-

actions and collaborations are electronic smart contracts that allow to govern business

transactions in a M2X-compatible manner using a computerized transaction protocol

29
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such as a blockchain. Moreover, smart contracts allow for the automated, globally-

available orchestration and choreography of heterogeneous sociotechnical systems with

a loosely coupled, P2P-like network structure. Additionally, a blockchain-based smart

contract-driven platform enables fact tracking, non-repudiation, auditability and tamper-

resistant storage of information among distributed participants without a central author-

ity. Extending smart contracts to the concept of decentralized autonomous organizations

(DAOs) [122] facilitates the ad hoc integration and coordination of collaborations and

transactions. Finally, it allows for heterogeneous interoperability by using the interop-

erability design principles detailed in Section 2.1.4 in the context of the M2X ecosystem.

Therefore, this chapter addresses the identified knowledge gap by answering the following

research questions:

RQ-1: How to enable interactions, transactions and collaborations as well as

reliable value transfer among entities of the M2X ecosystem?

• RQ-1.1: What are the goals and requirements of a M2X interaction, transaction

and collaboration platform?

• RQ-1.2: What are selected system-engagement processes of a M2X interaction,

transaction and collaboration platform?

• RQ-1.3: What are the modalities of a M2X economy?

In this chapter, we discuss the value exchange, transaction, interaction and collaboration

within the M2X ecosystem as well as governance structures that are applicable. Sec-

tion 3.1 presents an architecture for M2X interactions, transactions and collaborations

based on the running cases introduced in the previous Section 1.1.2. Similarly to the In-

ternet, the entities in the M2X ecosystem are heterogeneous, owned by different entities

and distributed around the globe. Therefore, we detail system-engagement processes as

well as a decentralized governance model. While we created a set of explicit and implicit

rules for transactions, interactions and collaborations among humans, a similar toolset

for autonomous smart devices is missing. Hence, Section 3.2 introduces a set of modal-

ities that we deem to be important aspects of the M2X economy. Finally, Section 3.3

discusses the findings of this chapter.

Please note, the subsequent sections of this work are based on the following publications

of the author in collaboration with varying co-authors: [5][36][37].

3.1 V2X Interaction and Transaction Platform

In Section 1.1.2 we introduce a set of vehicle-focused running cases rooted in the ap-

plication field of the V2X economy. This section outlines the conceptual and technical
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Quality goalGoal

Figure 3.1: Selection of AOM Notation Elements

foundations that enable a V2X platform for the provision of services and goods in such

a V2X ecosystem. Conceptually, the V2X economy is a subset of the more general

M2X economy, limiting the focus on interactions, transaction and collaboration among

vehicles (V2V), vehicles and infrastructures (V2I) as well vehicles and humans (V2H).

When focusing on the V2X economy, we limit the scope to machines and infrastructure

components related to vehicular use cases and activities. However, this simplification

does not prevent the application of this section’s finding to the general M2X economy

since it covers the essential conceptual and technical functionalities and challenges.

Next, Section 3.1.1 captures the requirements of a V2X system and details the system

design. In Section 3.1.2, the requirements are used to derive a corresponding system

architecture. Afterwards, Section 3.1.3 details the system engagement process and the

governance infrastructure.

3.1.1 System Design and Requirements

In order to identify, structure and formalize the critical requirements and stakeholders on

an abstract level, we use one part of an Agent-Oriented Modeling (AOM) method [58],

i.e., goal models. The produced goal model is used in subsequent Section 3.1.2 to derive

the system architecture. The resulting system architecture and specifications serve as

implementation guidelines.

3.1.1.1 AOM Goal Modeling

In system development and software engineering, good requirements follow certain char-

acteristics. According to [123][124], requirements address one issue only and are com-

pletely specified without missing information. Moreover, they have to be consistent

and do not contradict themselves, or in correlation with other requirements. Finally, a

requirement must also be atomic and without conjunctions [125].

The AOM methodology is a sociotechnical requirements-engineering approach used to

model complex systems that consist of humans, devices, and software agents. An AOM

goal model enables both, technical- and non-technical stakeholders, to capture and un-

derstand the functional- and non-functional requirements of a complex system. Fig-

ure 3.1 depicts the three main elements that an AOM goal model comprises in order to
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capture the system requirements and goals. Roles of involved entities are represented

in the form of sticky men, whereas functional requirements are depicted as parallelo-

grams. Note that in the specific context of this work, a sticky man does not exclusively

represent human entities but rather all kinds of entities, e.g., also vehicles (or smart

machines in general), agents and infrastructure. Functional requirements are referred to

as goals. Non-functional requirements are depicted as clouds and refer to quality goals

of the modeled system. The AOM goal model follows a tree-like hierarchy with the root

value proposition of the modeled system at the top. Subsequently, this main goal is

decomposed into sub-goals where each sub-goal represents an aspect for achieving its

parent goal [126]. The goals are further decomposed into multi-layered sub-goals until

the lowest atomic level is reached. Additionally, roles and quality goal may be assigned

to goals and are inherited to lower-level goals.

The following Section 3.1.1.2 introduces the top-level goal model our system, followed

by Section 3.1.1.3 focusing on the non-functional goals of the AOM goal model.

3.1.1.2 Top-Level AOM Goal Model

Figure 3.2 presents the top-level AOM goal model of the system using the modeling

method described above. The main value proposition is to provide a V2X platform and

the corresponding interaction, transaction and collaboration model, thereby representing

the root of the goal model. The complex main value proposition is split into four sub-

goals representing the four main components.

First, a component for managing the V2X platform. This functional goal includes man-

aging certain aspects of the platform itself, e.g., creating, updating, deleting a new

platform, as well as the management of the underlying smart contracts. Each platform

operates a master smart contract and several sub-smart contracts. While the master

contract is in charge of platform management and controlled by the hardware vendor,

the sub-contracts each offer service provision for a specific service.

The second functional goal enables V2X interaction. That mostly covers on-, and off-

chain supply and demand administration. Entities may register offers or requests on-

chain in order to attract business, or collaboration partners, but for other use cases a

local supply-demand management off-chain is more suitable, e.g., road-space negotiation.

Supervising on-, and off-chain auctions is equivalent to the on-, and off-chain supply and

demand management. Besides that, plug-ins and decentralized applications (dApps) of

the ecosystem might use platform’s smart contracts for service enactment and have to

be integrated as well in this context.
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Figure 3.2: Top-Level Goal Model Representation V2X Platform – Based on [5]
and [37]

The third functional requirement, representing the third main component, enables V2X

transactions and collaborations via the blockchain. The most important part here is the

transaction management via a smart contract collaboration lifecycle (detailed later on in

Section 3.1.3.1). Finally, the fourth functional requirement focuses on the enactment of

various plug-ins and dApps. Applications and plug-ins have to be registered, prepared

for enactment, executed and terminated. Moreover, they have to interact with various

entities of the ecosystem depending on the use case. Since nowadays most blockchains

offer Turing-complete smart contract support, the variety of applications and plug-ins

in our ecosystem is quite vast.

3.1.1.3 Non-Functional Requirements

Besides the four sub-goals of the top-level AOM goal model, we further identify thirteen

quality goals, nine of them attached to the main value proposition and subsequently in-

herited to all refining sub-goals. A scalable system design is necessary to provide services

to a large number of users. A further property that supports to achieve this scalability

is the non-functional requirement automated, that refers to a high degree of process au-

tomation eliminating the need for human interaction or intervention, e.g., tedious and
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repetitive tasks. Flexible digital collaboration is a highly dynamic process that involves

the enactment of a multitude of variations of activities, participating partners as well

as the exchange of diverse data [127]. Thus, we must allow diverse collaboration sce-

narios and permit the inter-organizational harmonization of heterogeneous concepts and

technologies between participating entities. Another key property of the system is being

easy to use (Usable) for business collaboration. According to Norta et al. [125], easy

usability also includes the support of proper error avoidance in order to “anticipate and

prevent common errors that occur during a collaboration configuration. Closely related

is error handling, to help with system support a user to recover from errors. Learnability

refers to how quickly users master using the system” [125].

Interoperable hardware and software design is another consequence of the previous qual-

ity goals as well as easy integration (integrable). It is crucial to interoperate at runtime

with information systems supporting other business functions. Furthermore, a secure

service provision is crucial in terms of operational security, e.g., protect user accounts

and personal data from unauthorized access, secure data transfer within the system be-

tween entities, or preventing data- and information leaks as well as preventing accidents.

According to [128], “security is a composite of the attributes of confidentiality, integrity,

and availability”, where confidentiality ensures the absence of unauthorized disclosure

of information, the availability the readiness for correct service and integrity the ab-

sence of unauthorized system manipulations. A reliable enactment of all interactions

and transactions facilitates the previous goals as well. Finally, since cars and similar

vehicles move much faster than humans, a fast service provision is essential for most

tasks.

Further quality goals are assigned to sub-goals. Data communicated internally as well as

externally has to be protected against unauthorized tampering (tamperproof ) in order

to protect business collaborations, but also ensure the safety of participating entities.

Finally, we assign two additional quality goals that ensure a blockchain-agnostic as well

as entity-agnostic design. The solution should be neither limited to a specific blockchain,

nor vehicle hardware of a specific vendor, or infrastructure provider.

The presented goal model is used in the following Section 3.1.2 to derive the system

architecture. We do not list all details of the further refined AOM goal model in this work

due to space constraints and in order to focus on the most relevant system components

and features.
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Figure 3.3: UML-Component Diagram Notation Elements

3.1.2 System Architecture

The abstract system architecture is derived from the functional- and non-function re-

quirements of the AOM goal model presented earlier. The services are powered by a

service-oriented architecture (SOA) that is comprised of different designated compo-

nents. Each of these components is self-contained, well-defined and provides a specific

set of services [129][130]. Dedicated services and components may also consist of other

underlying sub-services [131].

In the following, a technology-agnostic UML-component-diagram representation is used

to illustrate the system architecture [60][61]. The UML notation elements used to model

the architecture are presented in Figure 3.3. In UML, components are represented as

rectangular boxes and labeled either with the keyword component, or with the com-

ponent icon in the right-hand upper corner. A component may consists of further

sub-components and is implemented by one, or more classes, or objects. Moreover,

components are reusable and communicate via two types of interfaces as illustrated in

Figure 3.3. Small squares depict ports that are attached to the border of components

and expose required and provided interfaces. Ports may also specify inputs and outputs

as they operate uni-, or bi-directionally [60][61]. Once more, sticky men are used to

depict entities and their interactions with the system.

The remainder of this section first introduces an abstract high-level overview of the sys-

tem architecture and components. Further illustrations present selected sub-components

of the architecture.

3.1.2.1 High-Level Architecture

The highest architecture abstraction levels of our system are depicted in Figure 3.4

and Figure 3.5. Figure 3.4 presents a five layer model of the V2X system consisting

of the Hardware Layer, the Firmware Layer, the Network and Integration Layer, the

Application Layer and the final Blockchain Layer. Figure 3.5 presents a more technical

UML component diagram that can be mapped to the layer model of Figure 3.4. The

representation is divided into two distinct packages, i.e., the Blockchain package and

the Vehicle package. In UML, packages are used “to group elements, and provide a
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Figure 3.4: V2X System Model – Layer Structure

namespace for the grouped elements” [61]. In the context of this architecture illustration,

packages are used to provide a separation of concerns between the blockchain part and

the vehicle-related system components.

The Vehicle-package consists of five main element groups that match the layer model of

Figure 3.4. The five element groups are: First, the TPD-component and the Hardware

and sensor -component that constitute the Hardware Layer. Second, the vehicle’s man-

ufacturer operating system (OS) (Vendor OS ) and the ROS (Robot Operating System)

[132] and/or the Apollo [133] module that represent the Firmware Layer. This layer

manages the underlying hardware of the vehicle as well as its fundamental functionali-

ties, e.g., driving, navigating, and so on. ROS provides a set of libraries and tools which

help software developers to create robot applications in general. However, ROS is also

often used in the context of self-driving and autonomous vehicles. While ROS is a gen-

eral platform for robot applications, Apollo specifically focuses on software development

for autonomous driving systems1. Third, the Network and Integration Layer maps to

the Communication Manager -component consisting of the vehicles OBU -component and

the V2X Integration Interface-component. As previously mentioned in Section 2.2.1, the

OBU enables data exchange with other OBUs or RSUs, usually via short-range wireless-

or radio communication. The V2X Integration Interface provides a set of standardized

integration interfaces for VANET applications to utilize the OBU, the vehicles hardware

sensors and to interact with vehicles OS. Depending on the application, the interaction

with the vendor’s OS may be mere information exchange, but for more complex appli-

cations (e.g., road-space negotiations) this may be navigation requests to the OS such

as: “Yield to vehicle X as a result of a successful road-space negotiation, but only if the

maneuver can be performed safely”. Next, the Application Unit Manager -component

represents the Application Layer consisting of the applications available/installed on the

vehicle (AU-1 to AU-3). As mentioned in Section 2.2.1 an AU may reside in the same

1Note that Apollo and ROS can be substituted with an arbitrary alternative solution that enables
self-driving and autonomous driving capabilities.
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Figure 3.5: High-Level Architecture Overview of the V2X System Model – Based
on [5] and [37]

physical device as the OBU, e.g., AU-1 to AU-3, or in a separate mobile device that is

regularly removed from the vehicle (e.g., smartphones) as illustrated by AU-4. The later

case uses the Communication Manger Unit to integrate the mobile AU-4 into the system.

Finally, the Blockchain-package comprises the V2X platform itself and the blockchain

utilized to enable service provision thereby representing the Blockchain Layer.

3.1.2.2 Selected Architecture Refinements

The following section outlines selected refinements of the high-level architecture pre-

sented in Figure 3.5. We simplified certain aspects due to space constraints and to

reduce technical complexity.

Figure 3.6 presents a more detailed view of the Vehicle sub-system. At the bottom,

hardware components such as the TPD, communication devices and hardware sensors

are illustrated. Please note that the listed hardware component represent only a small
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illustrative subset of the actual hardware that is part of an autonomous vehicle. The dif-

ferent hardware connectors and the OBU provide a variety of communication interfaces

for external – to the user’s smartphone via Bluetooth or WIFI, the V2X platform via the

Internet, to other vehicles via the WAVE (Wireless Access for Vehicular Environments)

protocol stack [134][135] – as well as internal data exchange, e.g., via the CAN bus.

The CAN bus interface is used to query information from the car such as speed, steer-

ing, breaks and many more. The TPD and other hardware components connect to the

vehicle OS and ROS/Apollo, which again communicate with the upper layer of the Net-

work and Integration Layer (represented by the Communication Manager -component)

as described previously.

The Communication Manager -component consists of two further sub-components, the

OBU -component and the V2X Integration Interface-component. The OBU -component

is merely a communication device, thus we will not further detail its technical struc-

ture. On the other hand, the V2X Integration Interface-component contains a variety

of components relevant for the fundamental functionalities of the V2X system.

Due to the velocity of moving vehicles, most of the time on-chain transactions and

interactions are not an option and instead collaboration negotiations and enactments as

well as auctions on a local level between nearby vehicles are necessary. The Interaction,

Transaction and Collaboration Management-component contains all functionalities to do

so as well as settings that control the auction preferences of a vehicle. More details on the

actual workflow of the off/on-chain auctions are available in Section 3.1.3.2. Finally, the

Reputation System-components maintains trust scores and reputation of other network

participants based on previous interactions, either by the vehicle itself or other trusted

network entities.

Moreover, the V2X Integration Interface-component further hosts several blockchain

clients to connect and operate with the corresponding blockchain platforms, thereby

ensuring a blockchain-agnostic architecture. Furthermore, a Vehicle Wallet-component

exists to enable token transfers to the vehicles as part of the vehicle’s TaaS earnings, or

to pay for electricity and maintenance.

The AU Plugin Management Interface-component is managing the communication of the

underlying components with and via the OBU. In addition, it is the integration point

for all AUs which are handled by the Application Unit Manager and also provides the

OBU communication capabilities to all AUs. Since AUs may be developed by different

vendors, developers and companies, a standardized integration interface – similar to

mobile applications on Android or iOS – is necessary. The Application Unit Manager

may handle blockchain-enabled applications such as the TaaS application, blockchain-

based payment solutions, or road space negotiations. However, not all AUs have to
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Figure 3.6: Refined Illustration of the V2X Vehicle Sub-System – Based on [5] and [37]

communicate with the blockchain or the V2X platform, this applies only to blockchain-

enabled or blockchain-dependent applications. The traffic regulation (TR) AU is not

dependent on any blockchain-related services or endpoints and hence does not require

any interactions with this part of the system. Please note, for simplification reasons

external mobile AUs are not illustrated in Figure 3.6.

Finally, Figure 3.7 presents a detailed view on the V2X platform-component. At the

bottom of the figure, the Application Unit Manager -component of Figure 3.6 is presented

again. Blockchain-enabled AUs communicate with their on-chain smart contract coun-

terparts, e.g., the TaaS smart contract, or the road space negotiation smart contract.

Via the corresponding interfaces such smart contract components can utilize the V2X
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platforms Supply/Demand management-component as well as the On-Chain Auction-

component. The later one manages on-chain auctions for goods and services that do not

occur on a local level as described earlier. Auctions may result based on the supply and

demand management that is conducted in the corresponding component. The on-chain

supply and demand management of values is not as restricted as for example road space

negotiations that can only occur in a specific location, at a specific time among a very

limited set of participants. Such services and goods may include battery charges, TaaS

offer and demand matching, parking spots, and so on. All transactions that occur on

the V2X Platform are included into the underlying blockchain.

We expect the M2X ecosystem to be decentralized and distributed consisting of devices

and entities of different vendors – i.e., a multi-stakeholder system. As a result, not a sin-

gle M2X (respectively V2X) platform exists. Instead, different vendors may operate their

own platforms that ensure interoperability among each other. To manage each of the

platforms, the vendor/operator has access to the Platform Administration-component

that not only allows to manage the platform itself (user management, payment man-

agement, device management, etc.) but also to create so-called master smart contracts

for their products and services. Each V2X platform is represented by a master smart

contract that in return offers the basic fundamentals of each of the V2X platforms – i.e.,

supply- and demand management, on-chain auction management, subscription man-

agement and the on-chain integration interface for the AU (the corresponding smart

contracts for the blockchain-enabled AUs).

Next, in Section 3.1.3 we present the system-engagement processes of the V2X system,

outline the collaboration lifecycle, a distributed governance proposal and the interaction

workflow of the on/off-chain auction algorithm.

3.1.3 System Engagement Processes

The transaction, interaction and collaboration platform automates and simplifies VANET-

based V2X service provision on several levels. A core element of many of the use cases

is a smart contract-based negotiation and contract enactment between entities that are

the result of collaborating tasks and sub-processes. For example, two vehicles conduct a

road-space negotiation auction that results either in a change of positions or is aborted.

This process potentially involves payment processing, further local as well as global com-

munication and local match-making between vehicles. On an abstract level, most of the

use cases presented earlier in this work follow a similar procedure on the smart-contract

level. The same applies for scenarios that involve a price negotiation or auction. In the

following, we introduce these two abstract processes in more detail. The processes and
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Figure 3.7: Refined Illustration of the V2X Platform Sub-System – Based on [5]
and [37]

algorithms are represented using Business Process Model and Notation (BPMN) [59]

and sequence diagrams. Consequently, Section 3.1.3.1 details the BPMN representation

of the abstract collaboration lifecycle and a decentralized governance approach, followed

by Section 3.1.3.2 that details an efficient auction mechanism for V2X and M2X use

cases.

3.1.3.1 Collaboration Lifecycle Management

In [120, 136–138], Norta presents a conceptual smart contract based collaboration lifecy-

cle as illustrated in Figure 3.8. The abstract nature of the proposed conceptual collab-

oration lifecycle allows the utilization of the same approach for all V2X services offered

within our V2X system that involves V2H, V2V, or V2I interactions, transactions and

collaborations. The lifecycle, as illustrated in Figure 3.8, is divided into the following

stages: i.) preparation, ii.) negotiation, iii.) governance distribution iv.) preparation

of collaboration enactment v.) collaboration enactment vi.) rollback, and vii.) termina-

tion stage. While Figure 3.8 presents the collaboration among partners from a lifecycle

perspective, Figure 3.9 depicts the creation sequence of a distributed governance in-

frastructure (DGI) from an infrastructure perspective in comparison to the previously

described lifecycle. During the preparatory stage, based on pre-configured templates,

information regarding the involved entities, such as identifiers and wallet addresses are

incorporated into the contract. In addition, the conditions of the requested contract are
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Figure 3.8: Smart Contract Collaboration and Negotiation Lifecycle – Based
on [120][136][137][138]

formally defined by specifying, e.g, the content and target of the contract. Following the

example of the transport service for a human, this might include the departure location,

final destination and price. The conditions of the requested cab-ride mainly depend on

information such as the travel distance and fuel/energy consumption of the vehicle. In

case the vehicle and the user agree on the negotiated conditions, both parties sign the

contract and express their approval – if no agreement is reached, a contract rollback is

triggered. A smart contract between the involved parties is established and serves as

a DGI-coordinating agent. As part of the governance distribution, each participating

entity receives a local contract copy containing the respective obligations of each party

[120][139], e.g., transporting the user to the correct location. The participants “obliga-

tions are observed by monitors and assigned business-network model agents (BNMA)

that connect to IoT-sensors” [139] such as the vehicle’s GPS-sensor. During the stage of

the contract enactment preparation, the required process endpoints (e.g., for payment

processing) are provided and prepared. “Once the e-governance infrastructure is set up,

technically realizing the behavior in the local copies of the contracts requires concrete

local electronic services. After picking these services follows a creation of communica-

tion endpoints so that the services of the partners are able to communicate with each

other. The final step of the preparation is a liveness check of the channel-connected ser-

vices” [120]. Afterwards, the contract execution phase is triggered and the vehicle picks

up the user. The transportation contract terminates, or expires either after the user

arrives at the final destination, or when the contract is prematurely terminated. Failing

to transport the user to the agreed-up destination might result in an immediate rollback

of the smart contract or invokes some kind of a mediation process that is supervised by

a conflict resolution escrow service that is not depicted in Figure 3.8.

The presented lifecycle and governance infrastructure does not only cover trading nego-

tiation but rather all kinds of contract enactments. The user prepares and negotiates

a contract with a collaboration partner and executes it in case that both parties agree
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Figure 3.9: Distributed Governance Infrastructure – Based on [120] and [140]

on the specifications. That also includes incentives in case the user behaves correctly

as well as punishment of bad behavior, e.g., by paying a penalty. A serious violation

of the contract from any of the involved parties might result in an early termination

or a rollback. While some conflicts may be handled in a calming manner that allows

to continue the collaboration enactment, others may cause an early termination of the

collaboration.

3.1.3.2 Auctions and Negotiations

A further core concept of our V2X system is to support the exchange and provision

of goods and services. When trading goods and services, the buying and the selling

party usually have contrary goals in terms of pricing. The seller’s goal is to maximize

profits while the buyer tries to minimize the costs. Auctions are a common approach to

reach a consensus on a certain price between buyer and seller. We designed an auction

algorithm based on the concept of Vickrey Auctions [141][142]. During a Vickrey auction,

participants exchange sealed bids. Each bidder submits a written and signed bid without

having any knowledge of the bids of the other participants. After submitting all bids,

the sealed bids are opened and subsequently the highest bidder wins. But instead of

paying the price of the highest offer, the price paid is the second-highest bid. Due to

space constraints and the technical nature of this paper we will not cover the economical,

and game theoretical implications of Vickrey auctions and instead refer the reader to

specific supplementary literature, e.g., [141][142][143][144][145].
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Figure 3.10: V2X On/Off-Chain Auction Algorithm with 1 Buyer and 1 Seller –
Based on [5] and [37]

Figure 3.10 and Figure 3.11 present the sequence diagrams of our auction algorithms

that are either run locally (off-chain) between auction participants that reside in close

proximity to each other, or on-chain when interacting on a global scale. As mentioned

in the AOM goal model (Figure 3.2), speed is one of the non-functional goals of our

system – hence, only one auction round is conducted.

For the one-to-one auction – illustrated in Figure 3.10 – with only one buyer and one

seller, we assume that the buyer is not willing to pay more than $3, and the seller is not

selling for less than $2.80. Both participants prepare an encrypted (sealed) and signed

bid before exchanging the bids. As soon as both participants received the other party’s

bid, the encryption keys are exchanged as well. Buyer and seller decrypt the bids and

compare the offers. Given the case that the buyer offered more than $2.80 the auction

is successful and due to the second-price rule of Vickrey auctions, the buyer pays $2.80

to the seller. In case the buyer offers less than the seller’s minimum price the auction

ends without a deal.

In case multiple buyers and sellers participate in an auction, the workflow is very similar

as illustrated in Figure 3.11. In the given scenario buyer one is willing to pay a price of

$1.80, buyer two offers a price of $3.20 and buyer three is offering $3.50. The seller is

not selling for less than $2. We conduct a single auction round and the buyers as well

as the seller all submit their bid in an encrypted and signed envelope that is distributed

and send to all registered participants. As soon as all participants received the bids, the

encryption keys are exchanged as well and the sealed bids are decrypted. Buyer three

wins the auction and pays the seller the price of buyer two that offered $3.20.



Chapter 3. Collaboration, Value Exchange and Governance of the M2X Ecosystem 45

Buyer-1 Buyer-2 Buyer-3 Seller

Request service within
�meframe x

ACK service

Seal price in
envelope

Seal price in
envelope

Seal price in
envelope

Seal price in
envelope

Exchange envelopes

Open 
envelopes

Open 
envelopes

Open 
envelopes

Open 
envelopes

Pay $2.80

Provide service

Exchange encrpy�on keys

Figure 3.11: V2X On/Off-Chain Auction Algorithm with Many Buyers and Many
Sellers – Based on [5] and [37]

In case we have multiple sellers, the sequence diagram is almost identical and the bidding

process follows the same procedure. Except in the end, the highest bidder is paying the

second-highest price to the seller with the highest minimum price, and so on – as long

as the paid price is higher than the matched seller’s minimum price.

Finally, not all use cases benefit from a dynamic auction algorithm as described above.

For example, in the context of continuous data streams, e.g., traffic jam information,

a subscription-based pricing model is more suitable. Alternatively, other applications

such as smart parking spots might benefit from a fixed-price structure, e.g., $1 per hour.

However, also subscription and fixed-price payment models can be combined with a

dynamic auction algorithm, or adaptive price ranges based on demand, e.g., higher toll

road fees during rush hours.

3.2 Modalities

The previous sections demonstrate the general viability and capabilities of a blockchain-

driven M2X/V2X platform using the running case of autonomous self-driving vehicles

in the context of TaaS and road space negotiations where agents act as independent and

autonomous participants. Blockchain technology and smart contracts specifically are an
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essential part the enables the V2X economy that offers a wide range of new business,

and transaction models. Those new models require a variety of context-specific process

modalities such as machine-readable mechanisms to evaluate the reliability of business

partners, or the seamless and accountable transfer of values. In order to detect deviations

from agreed-upon contracts a machine-readable, complete and non-reputable logging of

all interactions and transactions is essential. Such mechanisms allow all involved parties

to prove contract violations and to enforce corresponding sanctions. Enabling trusted

transactions among participants who do not trust each other based on a pre-defined set of

rules is a key enabler for this concept [146]. Moreover, the distributed and decentralized

structure of a blockchain makes an ideal platform for autonomous agents within the

M2X ecosystem.

The following section details how blockchain technology supports and guarantees those

modality concepts. We introduce a set of six modalities that we identified throughout

our work on applications and systems within the research field of the M2X economy.

However, we do not claim completeness and encourage further research in this direction.

3.2.1 Accountability and Logging

To achieve non-reputable accountability a comprehensive logging mechanism for all dig-

ital processes and their corresponding parameters is necessary. Even though such data-

logging is already happening in most IoT systems and use cases, data is usually only

stored locally, or within a specific system instead of being globally available to all in-

volved or interested parties. Hence, a unified overall perspective with access mechanisms

across process and a shared semantic structure as well as protection against local mal-

functions or manipulations are needed.

While the overall perspective on specific business processes is context-dependent and po-

tentially unique to each process, the protection against malfunctions and manipulations

is rather generic and a prime example for the application of blockchain technology. Sim-

ilarly to the tamperproof logging of financial transactions in Bitcoin, processes, events

and parameters are logged, signed by the originator and stored in a tamperproof and

auditable manner. In a blockchain system, such data sets can be stored directly within

a block or using tree-like hash structures such as Merkle trees. The viability of this

approach has already been demonstrated in blockchain-based, or blockchain-enabled

filesystems such as IPFS and Filecoin [147][148].

Moreover, the non-reputable accountability of contractual agreements is another impor-

tant aspect of every business process. An agreed-upon transportation destination, or the

agreed-upon amount of requested/delivered electricity for a specified price are just two
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examples where non-reputable accountability is crucial and can be ensured via compre-

hensive logging mechanisms. The same applies to timely delivery of specified quantities

of goods or services with certain quality parameters.

As briefly described in Section 3.1.3.1, as part of the governance distribution, monitoring

mechanisms are deployed to observe the compliance of each party with the corresponding

obligations. Deviations from the contractual agreement are logged. A transportation

vehicle may exceed the agreed-upon battery charging level, or the battery charging sta-

tions might not be able to deliver sufficient amounts of electricity caused by a shortage in

produced electricity in the corresponding solar power plant due to bad weather. In order

to handle such contract deviations a proper conflict resolution management has to be in

place. We briefly introduced some conflict resolution concepts in Section 3.1.3.1. The

blockchain offers a distributed, replicated, synchronized and tamperproof data structure

to all involved entities that allows for non-reputable and accountable data logging that

cannot be manipulated by a single entity or a minority of malicious users.

3.2.2 Privacy

Protecting privacy-sensitive data and accountable, all-encompassing logging of interac-

tions and transactions is – at first glance – contradicting. However, using a large number

of partial identities, e.g., in combination with pseudonyms, which can only be mapped to

specific entities and their corresponding devices if they wish so, as well as concepts such

as blind signatures [149] and anonymous certificates [150] allow to combine tamperproof

logging, accountability and protection of privacy-sensitive personal data at the same

time. The concepts of fully homomorphic encryption and zero knowledge proof systems

provide further promising mechanisms to process sensitive data in a privacy-preserving

manner [151][152][153].

For many use cases, only the involved contract parties have to be aware of the other

party’s identity. For logging and accountability purposes in the context of payment

solutions, anonymized or pseudonymised identities are often sufficient and even allows

to build reputation systems based on such data. Nevertheless, minimizing the amount of

data that has to be logged is not only desired but actually crucial. Research on Big Data

security and privacy revealed many different techniques to correlate data, de-anonymize

entities, and so on [154][155]. Especially in the context of location data – as might be

used as part of transportation services provided by vehicles – allow for unexpectedly

simple and manifold profiling methods [156].

In the context of autonomous agents or autonomous smart devices, the privacy concerns

become less critical since we can assume that their “personal” data may be less critical
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from a privacy perspective compared to personal data of human entities within the M2X

ecosystem.

3.2.3 Trust

In business collaboration processes, trust is often based on, or the result of previous

interactions evaluated via objective parameters pertaining to the specific context of a

business arrangement, e.g., was the ordered product delivered in sufficient quantity and

quality? Furthermore, subjective trust may be based on reviews of entities, services, or

goods using comparison metrics [157][158][159].

In the TaaS context of human-operated vehicles (e.g., Uber and Lyft), trust is expressed

using a review and evaluation system based on pre-defined performance parameters.

Similar metrics could apply in the future for self-driving and autonomous vehicles that

offer transportation services for persons and goods. In the context of battery charges, the

electricity supplier (charging stations) as well as the consumer (vehicles) are interested

in an objectively measurable parameter of how much electricity is delivered/consumed.

For the consuming party, a timely delivery of sufficient quantities is essential to offer

further services to its own customers, while the supplier favors customers with a superb

and flawless payment history.

While many M2X systems are equipped with sensors and actuators in order to either

sense, or interact with their environment, such information is often not sufficient for

complex M2X use cases. External data feeds are required, that provide machines with

data that they cannot sense or generate on their own, e.g., gas prices, weather forecasts,

or traffic information. In the context of blockchain technology, such services are often

referred to as oracle services [160]. With respect to oracle services, trust is a sensitive

topic and essential to the proper service provision. In order to judge the data-feed

quality of an oracle, the record of previously provided information is an indicator for the

quality of information provided in the future. A FOAM [161] radio beacon or a GPS

sensor that provides false localization data is either faulty or not trustworthy. Similar

assumptions apply to arbitrary domain-specific oracle services.

Comprehensive logging – as described in Section 3.2.1 – enables the setup of trust in-

frastructures. However, bootstrapping a trust system is challenging especially in decen-

tralized systems without a trusted central authority. Nevertheless, different solutions

from other research fields exist and can be applied in this context [162][163]. Moreover,

we can further enhance such existing mechanisms by introducing a staking system (sim-

ilar to PoS as introduced earlier in Section 2.1.2.2), where stakes represent “bounties”.

Each oracle service provider deposits a stake and in case the provided oracle data-feed
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is proven unreliable or faulty by an auditor, the service provider loses its stake. The

consensus mechanisms of the underlying blockchain system ensure that participating en-

tities cannot make false accusations or manipulate data in a malicious manner in order

to game the system.

3.2.4 Market Behavior

This modality pertains to the autonomous negotiation of supply and demand. The goal

of economically viable and stable market behavior is to ensure stable and meaningful

price structures for all market participants and at the same time, avoid risks and issues

that are well known from high-frequency trading on exchanges [164]. This means, for

example, that costs must be taken into account that arise from the provision of large

quantities that are ultimately not purchased. Likewise, actually consumed service units

must be billed reliably and timely. However, the respective microeconomic situations

depend on the respective application and its context. For this purpose, concepts such

as reservations, options and capacities must be developed and mapped to standardized

structures of blockchain smart contracts.

Closely linked to economically viable and stable market behavior is the choice of proper

price models as previously discussed in Section 3.1.3.2. For example, when purchas-

ing localization data with a high-frequency, payment and renegotiation of every single

query is not economically feasible. Pricing structures with time unit-based usage (e.g.

per month) or with larger unit contingents (e.g., price per 1000 queries) and corre-

sponding monitoring mechanisms are more suitable. On the other hand, in the context

of TaaS, specifically tailored negotiations for each service provision seem to be feasible.

Depending on the use case and the service, price models need to be adapted accordingly.

3.2.5 Interoperability

Traditional IT platforms tend to deliberately forced, or functional lock-in effects that

lead to the formation of self-contained data- and service silos such as Facebook, Google,

or Amazon. In the context of traditional IT platforms several Facebooks make lit-

tle sense – neither from a network economic, nor from a profit, or monopoly-oriented

perspective of a corporation. Similar applies to the M2X ecosystem of decentralized

and autonomous smart devices where a one-stop platform is also desirable, but not

a manufacturer-focused platform with deliberately forced, or functional lock-ins. In-

stead, similarly to the blockchain interoperability approaches described in Section 2.1.4,

an interoperability hub/layer that implements the compatibility of different manufac-

turer platforms is a desirable and viable option. Only the resulting interoperability of
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smart devices enables the exploitation of economies of scale and increased efficiency. A

blockchain-based interaction, transaction and collaboration platform as described in pre-

vious sections not only enables an interoperable platform for autonomous smart devices

(e.g., vehicles), but also further reduces dependency on intermediaries. Furthermore,

a blockchain-based solution enables the decentralized settlement of value added in the

form of crypto tokens; these can be created entirely without central instances or interme-

diaries and exchanged directly P2P [165]. Technically, such an interaction, transaction

and collaboration platform could be realized by so-called relay chains. Relay chains

as Polkadot [100] offer a communication interface (hub) over which different heteroge-

neous blockchain platforms can interact with each other. Thus, for example, the specific

blockchain-based services of a manufacturer can also be made accessible outside their

own platform. This not only enables the cross-platform interaction of autonomous smart

devices described above, but also increases customer reach for manufacturers and service

providers.

Besides the software interoperability, interoperability on the hardware level is indispens-

able as well. In the context of battery charging services for vehicles and electricity

trading in general this concerns the line voltage, the frequency, or the compatibility of

the respective connection method for the consumer: Different charger standards for vari-

ous electric car manufacturers exist. Finally, producers and consumers have to carry out

control measurements at the same intervals and log them as described in Section 3.2.1.

3.2.6 Environment Integrity

Environment integrity is the trust of individual entities in the proper configuration

and execution of their runtime environment and partner services required for their own

service provision. However, ensuring the “correct functioning” of a smart device is

difficult to prove and rather abstract. However, for practical purposes it can be broken

down into the sub-processes of configuration, maintenance and update. Each of these

three sub-processes is ensured by establishing a secure boot environment provided by the

system vendor. The correct calibration and potentially even self-calibration of sensors

of smart devices is a sub-category of environment integrity [166][167].

Typically, cryptographically secured chains of trust are used to couple, for example, the

update of a driver function to the keys stored in the boot environment. This approach

is heavily dependent on the cooperation of many manufacturers and has led to multiple

problems in the past, e.g., Windows driver signatures [168]. The problem can be solved

by blockchain technology and thus by flexible, decentralized trust chains. Cap and
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Leiding [169] propose such a solution in the context of modular resources for web pages,

thereby preventing the execution of malicious Javascript files.

Environment integrity may also exceed the limits of physical environments as demon-

strated by the example of autonomous and self-driving vehicles. In addition to software

updates (e.g. control software), many configuration parameters (e.g. road maps, traffic

regulations) need to be updated in a trustworthy manner, sometimes on a very short

notice (e.g. traffic jam information or fuel prices); hardware (engines, brakes, etc.) also

needs to be maintained regularly and in a trustworthy manner.

3.3 Discussion

In this chapter, we outline a M2X/V2X platform for value exchange, transactions, inter-

actions and collaborations in combination with the corresponding governance structure

based on the V2X running cases. Despite the comprehensive description and analysis,

the presented solution only provides a glimpse on the economy due to its social and tech-

nical complexity. While the presented models and architectures may serve as an initial

step, they neither represent a reference architecture, nor a fully-fledged production-ready

solution. Similar applies to the exploratory overview on modalities that we identify dur-

ing on-going research work in the field of blockchain-based M2X use cases. The list of

modalities is neither complete, nor comprehensive. Further research is required to en-

hance the existing list, advance the modality specifications and create a corresponding

conceptual framework that abstracts the modalities from specific use cases.

More than ten years passed since the introduction of blockchain technology as a concept

in the context of Bitcoin. However, the current state of the technology, surrounding

toolsets as well as its suitability as the foundation of complex ecosystems is a topic of

on-going research and development. DLT-enabled electronic smart contracts provide

the foundation to govern business transactions in a M2X-compatible manner using a

computerized transaction protocol. Smart contracts allow for the automated, globally-

available orchestration and choreography of heterogeneous sociotechnical systems with

a loosely coupled, P2P-like network structure. In addition, a blockchain-based smart

contract-driven platform also enables fact tracking, non-repudiation, auditability and

tamper-resistant storage of information among distributed participants without a central

authority. Extending smart contracts to the concept of DAOs facilitates the ad hoc

integration and coordination of collaborations and transactions. Finally, it allows for

heterogeneous interoperability by using the interoperability.
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Despite the benefits of a blockchain technology stack, a variety of disadvantages ex-

ist, e.g., a limitations in quantity and quality of development tools, missing integration

into existing legacy IT-systems, a lack of industry-standards, unclear specifications, un-

finished and inconsistent documentation, fast iteration cycles in software development

(hence, often changing APIs, etc.), and many more. In addition, technical limitations

and issues such as consensus algorithms, scalability and privacy of data are still being

researched. Moreover, despite some initial concepts, most blockchain platforms require a

steady Internet connection and barley allow for asynchronous data processing of offline-

nodes [170]. Finally, while a blockchain-based solution provides a promising foundation,

alternative non-DLT-based approaches such as centralized databases, or general dis-

tributed system concept may be suitable as well despite their own drawbacks.

The M2X modalities presented in Section 3.2 require further additions and refinements.

The concrete starting point for autonomously acting vehicles allows the formulation of

requirements that can be generalized and applied to other applications. Similarly, the

idea of autonomous market participants opens up a series of further conceptual questions

that need to be considered more closely from the point of view of similar applications.

Finally, as a sociotechnical concept, the M2X economy also raises sociotechnical ques-

tions besides the technical and conceptual implications, (dis)advantages and limitations.

Especially the continuous automation of tasks and jobs that were previously performed

by humans is a controversial discussion due to resulting layoffs. However, automation

of existing tedious work in combination with a restructured economic value system may

foster the development of a society that benefits from a progressing automation.



Chapter 4

Validation, Authentication and

Identities in Decentralized

Networks

In Chapter 3 we outline scenarios for the M2X economy, described the interaction and

transaction platform based on the V2X running cases as well as the corresponding sys-

tem engagement processes, discussed the modalities of the M2X economy and finally

focused on the decentralized governance infrastructure and conflict resolution mecha-

nisms. All topics discussed in that chapter share the need for a proper identity solution.

Especially, in the context of hardware devices, humans and software agents that/who

all require a digital representation of their “real-world” identity to conduct digital busi-

ness transaction, or enact digital collaborations – a digital representation mapping to

the analogue identity is necessary. The concept is often referred to as “digital twins”

in the context of IoT applications [171]. In order to enable secure business collabora-

tions, interactions and transactions within a digital economy a digital representation is

required to establish and enable trust, reputation mechanisms, perform verifiable and

accountable transactions and establish reliable as well as auditable data provenance.

Identity management in the M2X ecosystem is a multi-stakeholder issue that involves

not only its users, but also OEMs, infrastructure providers, regulators and various ser-

vice providers. A single central authority that governs the identity management for

all stakeholders is unlikely and poses the risk of a single point of failure. Moreover,

identity data silos raise privacy concerns and suffer from interoperability issues, i.e.,

lock-in effects. Moreover, as previously argued in Chapter 3, a centralized infrastructure

and architecture that powers the M2X economy is neither desirable nor facilitating the

full potential of the ecosystem. In addition, an identity infrastructure that relies on a

53
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centralized certificate authority (CA) is not an option either – especially given the under-

lying security issues and implications, e.g., [172][173][174]. Thus, a centralized identity

solution is not an option and a decentralized and interoperable solution that fosters

an open M2X ecosystem is required. However, decentralized identity-, authentication-

and validation systems and mechanisms pose challenges and issues too. These have to

be solved accordingly before providing a reliable foundation. Therefore, this chapter

addresses the identified knowledge gap by answering the following research questions:

RQ-2: How to identify, authenticate and validate entities in a decentralized

M2X ecosystem?

• RQ-2.1: What are the challenges and issues of validation and authentication in

decentralized networks?

• RQ-2.2: What are the specifics of a protocol for validation and authentication in

decentralized networks?

• RQ-2.3: What are the security guarantees and implications of binding an identity

to a blockchain system?

The chapter is structured as follows: Section 4.1 discusses issues and challenges of de-

centralized identity, authentication and validation mechanism in decentralized networks.

Afterwards, Section 4.2 introduces a blockchain-based protocol for validation and au-

thentication that is applicable to the M2X ecosystem. Next, Section 4.3 proposes a

mechanism to de-incentivize sybil node attacks and provide an exact price tag on the

costs of a sybil node attack, thereby providing a novel mechanism to quantify security

guarantees of a decentralized identity solution within decentralized networks. Finally,

Section 4.4 discusses the findings of this chapter.

Please note, the subsequent sections are based on the following publications of the author

in collaboration with different co-authors: [68][175][176][177].

4.1 Challenges and Issues

Generally, digital user identity, validation and authentication methods are based on an

asymmetric key concept where the key material represents the digital identity of an

entity. Most of these systems rely on a centralized database, or a controlling entity to

manage and store these keys. However, such “information storage presents a single point

of compromise from a security perspective. If this system is compromised it poses a direct

threat to users digital identities” [178]. A further disadvantage of centralized data silos

and identity management is a lack of interoperability among those data silos that results
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in a favorable lock-in effect from the provider perspective and several disadvantages from

the end-user perspective.

Public key infrastructures (PKIs) are not only the most common system for distributing

and managing public keys, but also for ensuring a correct association between a public

key and its owner. The hierarchical trust model for certificate authentication (com-

monly used by CAs and web browsers) relies on hierarchically structured central author-

ities [179], whereas the PGP Web of Trust (WoT) uses a decentralized approach [180].

Instead of relying on central CAs, each user acts as an authority itself and ensures

a number of bindings between users and their public keys. In recent years, several

security incidents have proven that CAs are vulnerable due to their centralized struc-

ture [174][181][182]. On the other hand, the decentralized PGP WoT does not provide

sufficient certainty that the information stated in a public key is correct since users do

not carefully verify other users (missing incentives). In addition, it is trivial for mali-

cious users to generate large numbers of key pairs and create structures that look like

carefully verified keys without much effort.

The centralized system of CAs and its decentralized counterpart the PGP WoT are the

two most commonly used types of PKIs. Both have different advantages and disadvan-

tages which are described in the following sections. In addition, a new generation of

blockchain-based and DID-inspired identity solutions emerged in recent times.

4.1.1 Certificate Authorities

CAs are institutions or organizations inside a network that are treated as trustworthy by

definition. They can sign individuals, organizations or another CA’s certificates. Users

who decide to trust a certain CA (and their decisions), also trust all individuals signed

by this CA. The result is a tree-like, hierarchical structure with the initial CA (Root-CA)

at the top of the system. This tree-like structure is also one of the major weaknesses

of CAs since it introduces a single point of failure. The whole trust-system collapses

as soon as a Root-CA gets compromised, or untrustworthy for any reason. There have

been several security incidents involving CAs in recent years. In 2011, an attacker issued

certificates for domains of large IT-companies such as Google, Yahoo and others using an

access to DigiNotar’s (a Dutch CA) systems [174]. As a consequence, DigiNotar’s root

certificate was removed from most browsers and the company went bankrupt. Another

incident involved Trustwave Holdings which operates a CA and issued a subordinate

root certificate to a customer which enabled the customer to issue certificates on its own.

The customer’s identity was never revealed due to a Non-Disclosure Agreement [181].
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Another certificate incident of 2011 involved the CA Comodo [182], where a compromised

reseller account was used to issue arbitrary certificates.

Similar security problems might also occur in case a national authority forces a CA to

cooperate and grant access to the CA’s root certificates for surveillance reasons.

4.1.2 Web of Trust

Instead of relying on a central authority, each PGP WoT user acts as an authority itself

and ensures a number of bindings between users and their public keys. A successful

verification of a public key results in a unidirectional signature between the public key

of the verifier (Alice) and the verified user’s (Bob) key. Such a signature is interpreted

as a trust relation; Alice successfully verified the authenticity of Bob’s public key and

therefore Alice decides to trust Bob’s public key. Users may decide to trust a key if it

is signed by somebody they trust, or if there exists a chain of trusted signatures from

their key to the target key. Typically, PGP’s WoT regards the following as criteria for

trust: i.) Number of signatures on the subject under investigation. ii.) Centrality of a

node in the entire set of subjects. iii.) Timeline with information when signatures have

been made – typically, signatures should appear during a longer period. iv.) Number of

asymmetric trust relations within the WoT.

In contrast to the centralized CA system, the PGP WoT has no central point of failure.

Nevertheless, it suffers from several other downsides such as missing incentives for key

verification and a lack of punishments in order to motivate its users to adhere to the

verification rules and contribute to the well being of the system. Furthermore, it is

trivial for malicious users to generate large numbers of keys and connect them in such

a way, that the resulting network looks like a group of trustful users. Finally, as shown

in a previous study [183], about 40% of the PGP WoT’s email addresses are dead (not

reachable) which raises questions regarding the trustworthiness of signatures related to

these unreachable email addresses.

A decentralized alternative to the centralized PKI systems are so-called decentralized

PKIs (DPKIs) [184][185][186]. In many DPKIs, a blockchain replaces the centralized

key management and distribution of identity keys in form of a key-value storage. DP-

KIs aim to reduce the risk of centralized single-point-of-failure-systems by making data

more tamper-resistant, preventing MITM attacks and minimizing the control of un-

trusted third parties over the system. The Certcoin project [185][187] is such a DPKI

system that uses “the consistency guarantees provided by cryptocurrencies such as Bit-

coin and Namecoin [188] to build a PKI that ensures identity retention” [185]. Certcoin

does not require a central authority and uses the Bitcoin blockchain and the resulting
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advantages (decentralized, difficult to manipulate, distributed replication, fault toler-

ance, redundancy, transparency, etc.). The protocol provides methods for public key

registration, update, revocation, recovery, verification and lookup. Certcoin has been

implemented 1, but not been used in practical scenarios. Moreover, further development

ceased to exist.

Finally, identity provision in decentralized networks is prone to sybil attacks. This

type of attack is a common issue in large-scale P2P systems, where hostile, or faulty

computing elements threaten the security of the whole network. Single malicious entities

may be able to present multiple identities, thereby controlling a substantial fraction

of the system, consequently undermining its functionality and security [50]. Several

techniques focus on preventing sybil nodes from joining a network at all [189][190]. Other

approaches attempt to detect them while they are already part of the network [191][192].

One of the key enablers of sybil attacks is the absence of a mechanism that prevents

attackers from setting up arbitrary numbers of (virtual) nodes.

4.1.3 Self-Sovereign Identities

Taking the idea of blockchain-based DPKIs in combination with the concept of decentral-

ized identifiers (DIDs), as introduced in Section 2.3, enables a user-centric, self-sovereign

and interoperable identity ecosystem that aims to prevent most of the aforementioned

security flaws. “Self-sovereign identity puts end-users not the organizations that tradi-

tionally centralize identity in charge of decisions about their own privacy and disclosure

of their personal information and credentials” [178]. Similarly to some DPKI solutions,

self-sovereign identity systems that are based on DIDs utilize distributed ledgers – or

blockchains – as distributed storage system which replace centralized and incompatible

data silos with a cooperative shared storage resource. The result is a user-controlled

identity provision model where users control access and sharing of their data based on

a need-to-know-basis using the concepts of DIDs, DID documents and verifiable claims.

In recent times, academic as well as business projects introduced and developed first

prototypes of self-sovereign identity solutions. Among them the Horcrux protocol [178],

Sovrin [193], uPort [194], SelfKey [195], Blockstack [196] and others [197].

While DID-based self-sovereign identity solutions are not specifically focused on humans,

most existing solutions rely on them as a main use case. However, as demonstrated in

the following sections, the concept is also applicable to the general M2X ecosystem. We

1https://github.com/cfromknecht/certcoin

https://github.com/cfromknecht/certcoin
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introduce a DID- and blockchain-based identity solution for validation and authentica-

tion in decentralized networks that aims to prevent many of the downsides of centralized

CAs, the decentralized PGP WoT.

4.2 Authentication and Validation in Decentralized Net-

works

The combination of DIDs, DID documents and verifiable claims allows to establish de-

centralized and distributed networks for identity provision as well as authentication and

validation in decentralized networks. While DIDs globally and uniquely identify entities,

DID documents and verifiable claims describe the entity and provide mechanisms to the

DID subject to authenticate itself and prove its association with the DID.

The following section introduces Authcoin, a challenge-response based protocol for au-

thentication and validation in decentralized networks that is able to: i) prove control

over an asymmetric key pair (validation) linked to a DID document and ii) to produce

verifiable claims that can be used to authenticate an entity. By documenting the com-

munication process of the bidirectional validation and authentication mechanism on a

blockchain system, a transparent and auditable as well as tamper-resistant log is cre-

ated that makes it difficult for adversaries to introduce malicious identities/keys into a

network. While combining Authcoin and the concept of DIDs is most suitable in the

context of its application in the M2X ecosystem, the protocol itself is more abstract and

only relies on the concept of public and private keys. Hence, in subsequent sections, we

spare the association of DIDs, DID documents and corresponding key pairs to ease the

illustration and instead only refer to the asymmetric key pairs. The same applies to all

formal models of the protocol in later sections. Alternatively to DIDs, describing entities

as in PGP [198] is also compatible with Authcoin. Finally, while this work specifically

focuses on the M2X economy and its entities, Authcoin is also applicable in scenarios

exclusively focusing on interactions among humans.

The following sections provide a general overview on Authcoin itself, its challenge-

response-mechanism and further important concepts. The general Authcoin workflow

as illustrated in Figure 4.1 is described step-by-step. First, Section 4.2.1 discusses the

generation of a new key pair and its DID and DID document association. Afterwards,

the formal key validation as well as validation and authentication are introduced in

Section 4.2.2- 4.2.3. Next, Section 4.2.4 and Section 4.2.5 deal with key revocation,

expiration and recovery. More details on the design of appropriate challenges and an

overview on Authcoin’s validation and authentication requests (VARs) are provided in

Section 4.2.6. Finally, we discuss the underlying data storage layer in Section 4.2.7.
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Figure 4.1: General Overview on Authcoin’s Workflow – Based on [68]

4.2.1 Establishing an Initial Key Binding

The first step, according to Figure 4.1, is to create a new asymmetric key pair. An initial

binding between the generated key pair and its owner is established by associating the

key with an identifier. In the context of DIDs, the public key of the key pair is associated

with a DID document. DID documents associated with key pairs and a DID may belong

to a human, machine, or software agent entity. In the context of a PGP system for human

use, basic information such email, or the user’s name are associated with the key pair.

All accumulated information are collected and stored as a transaction on the blockchain

as illustrated in Figure 4.1 and described later in Section 4.2.7.

4.2.2 Validation

Before the actual validation and authentication (V&A), each involved public key is au-

tomatically checked for formal validity. The protocol validates the following properties:

Is the key well-formed (syntax and data format)? Is the key length sufficient? Is the

key still valid or already expired? Has the key been revoked? In case all involved keys

pass the formal validation, the actual V&A process starts. If necessary, the mentioned

example properties can be extended.

Authcoin’s general validation process is similar to the domain validation process deployed

by the automated CA Let’s Encrypt [199] as illustrated in Figure 4.2. In the context of

Let’s Encrypt, the domain owner runs the Let’s Encrypt-Client on the domains machine,

afterwards the client contacts the Let’s Encrypt-Server (LES) and asks for a challenge.
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Put "ed98" at https://example.com/8303
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Figure 4.2: Domain Validation Process as Deployed by Let’s Encrypt – Based on [199]
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Figure 4.3: General Validation and Authentication Process as Deployed by Authcoin
– Based on [68]

Usually, the challenge is to provide a certain resource under a specific URI and sign it

with the private key that corresponds to the public key which is validated. In Figure 4.2,

the client is asked to provide the resource “ed98” at https://example.com/8303 and

sign it with the private key. The client software fulfills the challenge as requested by

the LES, which checks if the challenge’s outcome is satisfying. In case the validation

succeeds, the domain owner has proven that he/she has access to the domain (domain

validation), has access to the public and private key (key validation) and that the cer-

tificate (key pair) corresponds to the tested domain.

In the context of Authcoin, a similar validation process is performed as presented in

Figure 4.3. Alice needs to verify the other parties ownership of the public key (validation

process). To do so, Alice sends a challenge (“this is a challenge”) encrypted with vehicle’s

public key to the vehicle which is asked to fulfill the challenge by signing the response

with its private key and send it back to Alice. Alice checks the results and can deduce (in

case that the process finished successfully) the following three facts from the challenge

and response: i.) The vehicles has access to the communication account used for the

validation (account validation). ii.) The vehicle has access to the public and private key

(key validation). iii.) The key pair corresponds to the tested communication account

(binding). The validation requests and results of the validation processes are stored as

https://example.com/8303
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part of the blockchain. Both, Alice and the vehicle, independently post the challenge

and response to the blockchain.

It is important to keep in mind that in the example above the identity of the owner is

not verified, only that the corresponding entities have access to the specific key pairs.

The authentication process is addressed later in Section 4.2.3. An important difference

between the domain validation process described earlier and the Authcoin validation

example, is that the later process is performed in both directions (bidirectional). Alice

sends a challenge to the vehicle and receives (hopefully) a matching response. In return

the vehicle does the same when receiving Alice’s challenge in order to also verify Alice’s

public key. As a result, it is more difficult for malicious users to introduce fake keys into

the system and maintain introduced malicious keys. A major advantage of Authcoin’s

bidirectional validation procedure is that it can be performed in an automated manner

and even on a large scale. In consequence, keys are validated on a regular basis resulting

in an improved overall security of the network.

4.2.3 Authentication

After the successful key validation, the problem of authentication is addressed. Similar

to the validation procedures described before, Authcoin relies on a challenge-response-

mechanism for authentication. Involved parties may either rely on a direct exchange of

data that allows to authenticate the other party, or using (third-party) verifiable claims

as described earlier in Section 2.3.2.

In the context of the M2X ecosystem, machines, devices and agents may prove their

identity by reproducing a cryptographically secured proof signed by the device’s man-

ufacturer or an eligible party. A proof, e.g., a verifiable claim, concerning a vehicle’s

VIN with a signature of the manufacturer or certified car mechanics could be used for

vehicles. Often, authentication of smart devices, infrastructure components and soft-

ware agents is reduced to reproducing and exchanging (in a challenge-response manner)

a verifiable claim issued by the claim issuer. Which entity is sufficiently trustworthy to

be accepted to issue verifiable claims depends on the context of the specific M2X use

case. For vehicles, a verifiable claim might be a digital proof representing the vehicle’s

VIN. Similar approaches may apply to other machines and hardware components as well

as software agents. For security-critical applications, proofs and identities may reside

within TPDs.

It is important to note that for the V&A mechanisms discussed above a signature be-

tween two keys is only created in case that the validation process (validation signature),

or authentication process (authentication signature) is successful. A failed validation
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or authentication is also documented on the blockchain. In addition, Authcoin requires

validations and authentications to be performed in both directions (bidirectional) in-

stead of unidirectional. Bidirectional V&A results in more frequent examinations of

each key, identity, or certificate and makes it more difficult for malicious entities to stay

undetected. Another advantage of Authcoin’s V&A approach is a lower threshold for

users to participate in V&A since it is not necessarily required to meet the verification

target in person even though this is still possible and just a different type of challenge.

Finally, automating the validation process provides each user with the unique possibility

to validate all existing entities of the Authcoin-system on its own without relying on any

transitive relations. Nevertheless, it is possible for authentications if desired by the user.

As already demonstrated through the examples above, Authcoin is not fixed to a specific

type of challenge. Instead it is meant to be as flexible and extensible as possible and

utilize a flexible challenge-response concept. Therefore, the results of future research

on challenges can easily be integrated in Authcoin, especially new challenges which are

more secure, more reliable and harder to manipulate.

The chosen challenges influence the overall security and reliability of the system. As a

result, adapting the requirements for the deployed challenges leads to a different level

of provided security. In some scenarios, deploying only validation mechanisms might

be sufficient for a given purpose. In other scenarios, it might be necessary to combine

different challenges based on different identifiers in order to provide a maximum level of

security and reliability. Many other scenarios lie in between these two extremes.

A further security improvement utilizes biometric identifiers – only for the human enti-

ties of the M2X ecosystem – which are more difficult to fake. Commonly used biometric

identifiers are fingerprints, eyes (retina or iris recognition), voice, face (facial recogni-

tion systems), or DNA. Biometric identifiers can either be used to derive a new key

pair from the identifier [200], or are included in the new key pair in addition to the

traditional identifiers. Adding biometric identifier to the key pair establishes additional

bindings between the key owner and the key pair. However, biometric identifiers have

disadvantages of their own and are only applicable to a subset of all M2X ecosystem

entities.

4.2.4 Revocation and Expiration

Currently, Authcoin’s key revocation is handled as known from PGP [201]. A key

is revoked by posting a key revocation certificate to the blockchain. Future versions

of Authcoin might extend the protocol with a more sophisticated approach using a

combination of offline and online key pairs, where the offline key pair can be used
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to revoke, update or replace the online key pair. A signature is revoked by adding a

signature revocation certificate to the blockchain. Revoking a signature expresses a total

loss of trust in the signed key.

Both, keys and signatures, have an expiration date. For security reasons, the lifetime of

key pairs used with Authcoin is limited to a maximum of 12 months. Afterwards, a new

key pair has to be created, but users can also decide to use shorter lifespans. Signatures

either expire after a user-defined timespan (max. 12 months), or when the signing key

or the key which got signed expire. An expired key cannot longer be used for V&A in

the context of Authcoin. Using the key outside Authcoin is still possible, even though

it is not recommended.

4.2.5 Key Recovery

Thus far, Authcoin does not support any key recovery mechanisms. Therefore, a lost

private key cannot be recovered. An alternative approach is utilized by Certcoin, which

deploys a shared secret solution [202][203]. A user’s private key is shared among a

number of trusted entities and at least two of them are required to restore the secret

key [185][187]. An advantage of this solution is the availability of a key recovery mecha-

nism, but it comes with the downside of handling additional keys and the requirement of

sufficient trusted persons. Furthermore, for non-technical users, the concept of public-

key-cryptography alone is complicated enough; adding the concept of shared secrets

demands too much from non-security experts.

4.2.6 Automated Validation and Authentication Requests

Decentralized and distributed networks lack central authentication authorities, thereby

leaving them easy targets for sybil attacks. Authcoin implements several restrictions

and mitigation concepts in order to prevent malicious users from harming the system

and identifying them as soon as possible. Similar to the PGP WoT and comparable

solutions, Authcoin cannot prevent the participation of sybil nodes. Nevertheless, due

to the adaptable challenge-response mechanism and the transparent and auditable stor-

age of information, it is much more difficult for an adversary to keep malicious nodes

undetected. Moreover, Section 4.3 details a concept of de-incentivizing sybil node at-

tacks and estimating a clear price per sybil node identity to derive security assumptions

regarding an identity of the network.

The first line of defense is the challenge-response mechanism which can – if used cor-

rectly – detect and identify sybil nodes since they might not be able to pass the proposed
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Figure 4.4: Identify Mismatch on the Blockchain – Based on [68]

challenges successfully. Identifying a V&A mismatch is illustrated in Figure 4.4. De-

signing challenges as tamper-resistant and secure as possible makes it more difficult for

sybil nodes to stay undetected. Deploying a mandatory bidirectional authentication

process is an additional burden for malicious users. It might still be possible to create a

collective of sybil nodes with signatures between the participating entities, but as soon

as nodes outside this collective interact with the collective the probability of exposure

increases. As a result of limiting keys lifespan to a maximum of 12 months, maintaining

such sybil collectives is also time-consuming. In the PGP WoT, it is trivial to create an

arbitrary number of keys with unlimited life span, connect them among each other and

subsequently create outgoing signatures to legitimate nodes and also might receive some

signatures from unreliable verifiers, which finally results in a permanent incorporation of

the sybil collective in the “web of trust”. Moreover, the transparent nature of Authcoin

makes it also easier to identify unreliable verifiers who do not take the V&A process

seriously and identify them (and their actions) as not trustworthy.

Another approach for detecting and mitigating malicious nodes are validation and au-

thentication requests (VARs) which are automatically and randomly created during the

mining process as illustrated in Figure 4.1. The number of generated VARs depends on

the number of existing and still valid (not expired, revoked, etc.) keys in the system.

An automated VAR expresses the desire of the system to validate and/or authenticate

a randomly chosen entity inside the system. VARs are publicly stored as part of the

blockchain and can be fulfilled by Authcoin’s users. Deploying such an automated re-

quest mechanism results in several benefits compared to existing solutions: Firstly, the

approach of automated VARs makes it easier to break into sybil collectives “by accident”

and expose them as such in case they fail the validation, or authentication process. Iden-

tifying one sybil node leads to questioning all other nodes claiming to have successfully

validated and/or authenticated the sybil node, therefore identifying these nodes either
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also as sybil nodes or at least as unreliable verifiers. Due to VARs and the bidirection-

ality of authentications, it is also possible to increase the number of V&As for each key,

resulting in higher probabilities of detecting malicious users.

In order to make it more difficult to misuse the VAR-mechanism, we introduced some

restrictions: VARs cannot be issued by users manually, instead they are generated au-

tomatically once a new block is added to the blockchain. It prevents malicious users

from creating any desired number of requests on their own and fulfill them afterwards

with keys under their control. In order to avoid similar tactics for the automatically

generated VARs, a hash-based selection algorithm decides whether a specific user is

eligible to fulfill the VAR. The selection algorithm simply calculates the hash of the

concatenation of the VAR and the potential verifier’s key. If the binary presentation of

the result starts with a certain combination (e.g. a 1 or a 0; 10 or 11, etc.) the user is

allowed to fulfill the VAR. This decision seems to be random, but that is exactly the

intention. The algorithm is used to increase the effort for malicious users to fulfill VARs

with other keys under their control. Of course this approach may be undermined, but

it increases an attackers cost of not getting exposed. Besides limitations through the

selection algorithm, it is also necessary that the key used to fulfill the VAR itself was

created before the VAR in order to avoid that attackers create keys to fulfill the VAR

after they discovered it.

In future versions of Authcoin, the VAR mechanism might be combined with an incentive

system in order to encourage users to fulfill VARs on a regular base (in case that is even

necessary; besides that, fulfilling validations does not require the user’s interaction at all

and can be performed automatically in the background). The incentive system might

be part of an overall trust metric concept which not only includes the results of V&As,

but also rewards behavior that benefits the system such as fulfilling VARs.

4.2.7 Storing Information

Authcoin utilizes a blockchain-based transaction database as an underlying storage sys-

tem which is used to keep track of keys, challenges, responses, signatures and all other

relevant information. Blockchain-based storage systems provide several desirable prop-

erties such as: decentralization (no trusted central authority), distribution of data, fault

tolerance, transparency and redundancy. Furthermore, it is not possible to manipulate

the blockchain as long as the majority of its users decide to do so. Finally, the design

goals of DIDs – as outlined in Table 2.1 – which are enabled by a blockchain-based plat-

form also apply to our identity solution as presented above. For the ease of explanation,

this paper assumes that Authcoin has its own, independent blockchain. But it is also
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possible to utilize existing blockchains for this purpose. Alternative projects such as

Ethereum [70] maintain their own, independent and customized chain. Moreover, Au-

thcoin does not rely on a specific consensus algorithm such as PoW or PoS and instead

only requires a block creation mechanism.

4.2.8 Protocol Formalization

Preventing design flaws, security and privacy issues as well as incomplete specifications

that pose a risk, is a challenging task during the design and development of new security

protocols in the field of computer science [204][205][206][207]. In a best-case scenario,

issues of a security protocol are inconvenient to users who rely on it, while in other cases,

design flaws and errors are fatal. The broken encryption of a wireless network [208] is

an example for the first case, whereas a broken security protocol that grants an attacker

access to sensible parts of nuclear power plants [209] illustrates a more serious threat.

Formal methods, such as Petri nets [55], π-calculus [210] and communicating sequential

processes [211], are utilized for the design, development and analysis of new as well as

existing protocols, thereby eliminating, or minimizing the security issues of the targeted

protocols [212][213]. Most recently, a formal security analysis on the underlying protocol

of the popular Signal Messenger23 was conducted by Cohn-Gordon et al. [215], resulting

in the demonstration of several standard security properties provided by the protocol.

In the following section, a formal model of the Authcoin protocol is created using Colored

Petri Nets (CPNs) [56][57] in order to detect and eliminate eventual design flaws, missing

specifications as well as security and privacy issues [216]. CPN is a graphical oriented

language for the design, specification, simulation as well as the verification of systems

and describes the states of a modeled system and the events (transitions) that cause

the system to change states. CPN models are represented using a directed bipartite

graph that consists of places, transitions, arcs and tokens. Places are denoted as circles

and transitions as rectangles. Arcs connect places with transitions, or transitions with

places and have inscriptions in CPN-ML expressions [56][57][217][218][219]. CPN ML is

an expression programming language for inscriptions which are used to further specify

data types and operations of the modeled system. Tokens and their colors represent

different data types. The resulting CPN model “of a system describes the states of the

system and events (transitions) that can cause the system to change state. By making

simulations of the CPN model, it is possible to investigate different scenarios and explore

behaviors of the system” [56].

2https://whispersystems.org/
3The same protocol was later adapted by WhatsApp [214]

https://whispersystems.org/
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Besides it general suitability for system formalization, CPNs are especially well-suited

to be applied in the context of blockchain-based systems. Blockchains are discrete state

machines where the most recent block represents the current state of the system. With

each new block the systems’ state transitions to a successor state. Similarly, CPN models

represent discrete state machines and change states via transitions. While in CPN data

structures are represented in form of colored tokens, many blockchains use tokens for

the same reason. Moreover, blockchain transactions can be easily mapped to colored

token data structures. CPN uses CPN-ML expressions to specify and implement data

types and operations of the modeled system which maps to the functionalities of smart

contracts in the context of blockchain technology. Finally, the hierarchical structure of

CPN models can be used to formalize dApp components of interleaved smart contracts.

Therefore, CPN is well-suited as a formalism of choice for blockchain systems.

In the following, CPN-Tools4 is used to design, evaluate and verify the CPN models.

The result is a formal specification of the protocol that is used to guide further imple-

mentation efforts.

4.2.8.1 Modeling Strategy

In order to model the Authcoin protocol using CPN, an appropriate modeling strategy is

required, mapping the existing descriptions of the protocol to the corresponding elements

of a CPN model. Mapping the informal descriptions and requirements of the Authcoin

protocol to a formal model using CPNs, results in a sound model. Based on this model

it is possible to consider concurrency conflicts, dependability issues and detect and

eliminate eventual design flaws as well as security and privacy issues. To do so, we

first outline the modeling strategy used to create the CPN models before presenting the

resulting CPN models.

Authcoin organizes and defines the exchange of information between different entities

that are modeled as agents. In software engineering, various agent-oriented approaches

exist, such as: Tropos [220], Gaia [221], Prometheus [222], MASB [223][224] and MaSE

[225]. In [226], Mahunnah et al. introduce a mapping heuristics from agent models

to CPN models based on Sterling’s and Taveter’s [58] methodology for Agent-Oriented

Modeling (AOM).

Similarly to Section 3.1.1, we utilize AOM to model the functional and non-functional

requirements. However, in case of Authcoin there are two types of AOM models that are

necessary to represent the protocol, i.e., the goal model itself and the behavioral model.

Again, the AOM goal model is used to capture the functional requirements of the system

4http://cpntools.org/

http://cpntools.org/
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Figure 4.5: Top-Level AOM Goal Model of Authcoin – Based on [175] and [176]

in the form of goals, as well as non-functional requirements and roles of involved entities.

Non-functional requirements represent quality goals of the system [58].

Figure 4.5 illustrates the top level goal model of Authcoin. As previously in Chapter 3,

a goal is represented in form of a parallelogram, quality goals in the form of clouds and

sticky men represent roles. Functional requirements of the goal model are structured

in a tree-like hierarchy with the overall objective of the system at the top. The main

objective of Authcoin is to provide a secure and reliable validation and authentication

protocol. The main goal is further decomposed into multi-layered sub-goals until the

lowest atomic sub-goal is reached. In the context of Authcoin, the main goal is further

divided into the following sub-goals: Key generation and establishing a binding, vali-

dation and authentication processing, mining and revocations. The three quality goals

secure, correct and reliable are attached to the overall main goal of the goal model,

meaning they are relevant to all sub-goals and are inherited.

The AOM behavior model refines the previously developed goal model for specific agents

and activities. A behavior model in AOM has two parts: An agent behavior model cou-

pled with a behavior interface model [58]. The former describes the rule-based behavior

of an agent, while the latter focuses on identifying activities with associated triggers,

preconditions and post-conditions [226]. Table 4.1 presents the behavior interface model

of the goals depicted in the top level goal model of Figure 4.5. Each activity is listed

with its corresponding trigger, optional pre-conditions and its post-conditions. The ex-

ecution of an activity is either triggered by an event, or by a pre-condition after the

occurrence of an event [226]. The Mining-activity in Table 4.1 is triggered by receiving

input transactions for the next block of the blockchain - to do so, the precondition has

to be fulfilled. After the activity’s execution, the proposed input transactions are either

available on the blockchain or an error occurred and triggered a failure message.

Complete and detailed listings of all remaining goal models and behavior interface models

are available in Appendix A.1.2 and Appendix A.1.3. All acronyms, names and abbre-

viations as well as a description of the token colors are available in Appendix A.1.4.
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Activity Trigger Pre-Condition Post-Condition

Key generation
and establish
binding

User wants to cre-
ate a new key pair

Identifier list, key
expiration date,
key type, key
length

Key pair, EIR on
blockchain, EIR

V&A Processing Received EIRs for
V&A

Verifier EIR, tar-
get EIR

V&A results on
blockchain or fail-
ure message

Mining Received input
for blockchain

Input transac-
tions

CR, RR and SR
on blockchain and
VARs or failure
message

Revocation User wants to re-
voke an EIR or a
SR

KeyPair, EIR,
SR, CR, RR,
VARs

Revoked EIR or
SR and updated
information on
blockchain

Table 4.1: Exemplary Behavioral Interfaces of Activities for Authcoin – Source: [175]
and [176]

Notation Name

Connecting Arc

Sub-goal or Activity

Trigger or Precondition

Postcondition

Goal

Table 4.2: Notation Mapping
CPN to AOM – Based on [226])

Trigger 1 Activity

Precondition

Postcondition

Figure 4.6: Mapping a Behavior
Interface Model to a CPN Model

– Based on [175] and [176]

4.2.8.2 Mapping AOM Models to CPN Models

Mapping the created AOM models to CPN is the final step to derive the top level CPN

model of Authcoin. Table 4.2 and Figure 4.6 illustrate the mapping heuristic of AOM

goal models to CPN models as well as the mapping of behavior interface models to CPN

models.

Directed arcs connect places and transitions representing the protocol execution through

activities. Transitions represent activities, or sub-goals and CPN modules, depicted in

the form of double-boarded rectangles, illustrate goals derived from the goal model. We

refine the CPN modules into smaller sub-elements of the overall model, mapping to
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Figure 4.7: Authcoin Top-Level CPN Model – Source: [175] and [176]

the same relation between goals and sub-goals as in AOM. As illustrated in Figure 4.6,

places with outgoing arcs either act as triggers, or represent a precondition, whereas

places with incoming arcs represent post-conditions of a given activity in AOM [226].

The final result of the mapping process is illustrated in Figure 4.7, presenting the com-

plete and formalized top level CPN model of Authcoin derived from AOM and imple-

mented using CPN-Tools. The top level CPN model consists of the four sub-modules

derived from the four sub-goals of the top level AOM goal model. A detailed expla-

nation of Figure 4.7, as well as further depictions and the refined implementation of

these sub-modules are available in Section 4.2.8.4. The CPN token color sets, names

and abbreviations used in the model are introduced in the following section.

4.2.8.3 Protocol Semantics

Token colors represent data structures of Authcoin data objects that are used to illustrate

the data flow through the CPN model. Tokens are transferred and manipulated by

CPN transitions and ensure that the data objects adhere to the specified data syntax.

Exemplary some acronyms, names and description of token colors of Authcoin’s top level

module are presented in Table 4.3. The first column specifies the module of the first

occurrence of a certain token, name or acronym. The second column specifies the name,

followed by a short description in column three. The last column provides information

concerning the data types. A complete listing of all acronyms, names and abbreviations

as well as a description of the token colors of the Authcoin CPN model is available in

Appendix A.1.4.
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Module Token color Description Type

Top

Level

PublicKey Public key (KeyFingerprint, Key,

ExpirationDateUTC,

KeyType, KeyLength)

Top

Level

PrivateKey Private key String

Top

Level

ChallengeRecord Contains all infor-

mation of a V&A

challenge

(CR ID, VAE ID, Times-

tamp, ChallengeType,

Challenge, VerifierEIR ID,

VerificationTargetEIR ID)

Top

Level

ResponseRecord Contains all infor-

mation regarding

a V&A response

(RR ID, VAE ID, Times-

tamp, CorrespondCR ID,

Response)

Table 4.3: Exemplary Acronyms, Names and Description of Token Colors of Auth-
coin’s Top Level Module – Source: [175]

4.2.8.4 Refined CPN Models

We presents the further refined sub-modules of the top level CPN model presented in

Figure 4.7. The sub-module refinements are derived from the AOM model using the

same process as outlined for the top-level CPN model in Section 4.2.8.1. For the ease

of illustration, only the first level of module refinements is presented and explained in

detail. The top level CPN model in Figure 4.7 consists of four sub-modules. Each of the

following paragraphs focuses on one of these modules and provides detailed explanations.

For further information on the remaining refined sub-modules and additional explana-

tions, we refer the reader to [175], [176] and [227]. In addition, the CPN-Tool source file

of the presented CPN model is available in Appendix A.1.1.

KeyGenerationEstablishBinding-Module The first sub-module of the Authcoin

top level CPN model is the KeyGenerationEstablishBinding-module. The module is

illustrated in Figure 4.8 and describes the process of generating a new key pair and

establishing a binding between the key pair, the owning entity and the DID document

as previously described. The user provides a list of identifiers, an expiration date, a

key type and the desired key length as input. The input is processed and results in

a new key pair and an EntityIdentityRecord (EIR) that is posted to the blockchain.

An EIR contains all identity related information of an entity. Note that the EIR and
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Figure 4.8: CPN Model of the KeyGenerationEstablishBinding-Module –
Source: [175] and [176]

the DID document are separate data objects on the blockchain since Authcoin does not

necessarily requires to be used in conjunction with DIDs.

V&A-Processing-Module Figure 4.9 illustrates the V&A-Processing-module in more

detail. A set of EIRs is provided as an input, one for the target and one for the verifier of

a V&A procedure. Both EIRs are further processed to create a VAE (V&A Entry) that

consists of an ID for the specific V&A process and the target as well as the verifier EIR.

The VAE is subsequently further processed in the FormalValidation-module. The formal

validation procedure is executed for all involved EIRs. It is checked if the public key of

each EIR is well-formed, has a sufficient key length and has not been expired or revoked

yet. If one test fails, the V&A processing fails. Otherwise the VAE is further processed

in the V&A module. During the V&A process, the verifier and target exchange chal-

lenges (CR – ChallengeRecord), with each other and create the corresponding responses

(RR – ResponseRecord). Both entities evaluate the received responses and create cor-

responding signatures (SR – SignatureRecord) depending on whether they are satisfied

with the received response or not. All information is posted to the publicly available

blockchain. If any of these steps fail, the whole V&A process is terminated and the

specific VAE is marked as failed.

Mining-Module Depending on whether the V&A processing finished successfully,

the corresponding information (CRs, RRs and SRs) are posted to the blockchain, as

illustrated in Figure 4.10. The actual blockchain-mining process is implemented in a

symbolic way, meaning that each input transaction is directly mined into a new block

without actually simulating a blockchain consensus algorithm and further block-building
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Figure 4.9: CPN Model of the V&A-Processing-Module – Based on [175] and [176]

procedures5. In the context of this work, a symbolic implementation is sufficient since

Authcoin can be deployed on top of different blockchain architectures with varying

mining-concepts. Furthermore, the process of mining a new block does not affect the

protocol itself as long as it guarantees that a transaction posted to the blockchain is

processed in a block within a given time span. It is only relevant for Authcoin that with

each new block, a defined number of VARs is generated.

In our CPN model, every time a new EIR, CR, RR or SR is posted to the blockchain,

a new block is produced followed by the creation of new VAR(s) that are also posted

to the chain. The creation of new VAR(s) is triggered when a new block is added to

the blockchain. The presented CPN model is different in two aspects from description

of VARs previously in Section 4.2.6: First, in the model, users do not choose VARs on

their own and instead a user is randomly chosen. Second, the model is limited to process

only two VARs in order to avoid an endless loop during runtime.

The ProcessVAR-module in the Mining-module describes the processing steps of a VAR

chosen by a user. First, the status of the VAR is updated in order to avoid multiple

processing of the same VAR. Afterwards, the EIR of the VAR’s target is retrieved. In

combination with the verifier’s EIR, the V&A process of the V&A-Processing-module is

triggered and executed. The results of the V&A process are used to update the pending

5As mentioned previously, Authcoin does not require a specific consensus algorithms such as PoW
and instead only requires a block creation mechanism. In this section, we use the term mining loosely
equivalent to creating new blocks.
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Figure 4.10: CPN Model of the Mining-Module – Based on [175] and [176]

Figure 4.11: CPN Model of the Revocations-Module – Source: [175] and [176]

VAR and change the status of the VAR to finished. The updates are posted to the

blockchain.

Revocation-Module The Revocation-module is presented in Figure 4.11. In the con-

text of Authcoin, it is possible to revoke either signatures in the form of SRs, or to revoke

entity records in the form of EIRs. An EIR can be revoked if it is no longer required,

or not trustworthy anymore. SRs can be revoked in case that the signing entity has to

remove the expressed trust relationship. The updated revocation information is posted

back to the blockchain.
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4.3 Costs of Sybil Node Attacks

Previous sections combine the concepts of decentralized identifiers (DIDs), DID docu-

ments, verifiable claims as well a blockchain-based challenge-response scheme for valida-

tion and authentication in decentralized networks. Even though the protocol presented

in Section 4.2 incorporates features to detect sybil node attacks, it is still not able to

mitigate them, or quantify the provided security guarantees against sybil node attacks.

Similar applies to a variety of other approaches that focus on preventing sybil node

attacks – or at least detecting sybil nodes – in the context of decentralized networks,

e.g., SybilGuard [228] and SybilLimit [229] as well as [191], [192] and [230] specifically in

MANETs, or [189] and [231] in sensor networks. However, public blockchain platforms

such as Bitcoin and Ethereum – which are also decentralized P2P networks – managed to

circumvent sybil node attacks all together by establishing economic incentives to reward

users participating in the consensus processes.

The following sections present an extended version of the Unchained protocol – as pro-

posed in [177] – called UnchainedX which utilizes the same economic incentive system

to: i) de-incentivize sybil node attacks and ii) provides an exact price tag on the costs

of a sybil node attack, thereby allowing to quantify security guarantees for UnchainedX-

protected identities. To do so, UnchainedX binds an identity to a financial stake that

is deposited on a blockchain and lost in case a node acts maliciously. As a result, intro-

ducing a sybil node is equivalent to investing more financial assets than it would cost to

simply create a genuine network identity.

In the following, Section 4.3.1 and Section 4.3.2 present the UnchainedX protocol it-

self and its parameters. Afterwards, Section 4.3.3 details how difficulty changes of the

underlying proof-of-work consensus algorithm are handled.

4.3.1 Protocol Specification

Similarly to the validation and authentication protocol described in Section 4.2, the Un-

chainedX protocol originally assumed that a simple asymmetric key pair represents an

entities identity. As part of this work, we again extend the key pair approach by using

a DID and DID document based identity representation instead of only an asymmetric

key pair. Whenever we refer to identities in the following sections, we specifically dis-

cuss hardware/machine identities. However, binding an UnchainedX identity proof to a

human, or a software agent via a DID document is also an option.
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An identity, as established in previous sections, uniquely identifies a specific entity. In

the context of business collaborations, interactions and transactions as well as for com-

munication purposes devices have to validate each other’s identities before exchanging

sensitive information. The subsequent sections outline how to establish an UnchainedX

identity and the corresponding validation procedure for communicating devices. Neither

of these steps require a trusted third party apart from a PoW-based blockchain plat-

form. Future protocol versions might be extended to support PoS systems as well. In

the context of this work, the features and functionalities of UnchainedX are illustrated

and explained using the Bitcoin blockchain.

4.3.1.1 Creating an Identity Proof

The process of binding an existing DID-based machine identity is illustrated in Fig-

ure 4.12. It assumes that the identity already exists outside the UnchainedX context

and that a corresponding key pair exists which represents a Bitcoin wallet address. The

wallet is equipped with a minimum amount of Bitcoin (more details on pricing later in

Section 4.3.2.2) which are used as a deposit in the process of binding the identity to the

blockchain.

First, the Bitcoin deposit is made by transferring the tokens to a pre-defined wallet

address. The transaction is mined into a new block by the Bitcoin network and is

credited to the deposit address (step 2 and step 3). Next, an UnchainedX identity

proof is created based on information resulting from the block containing the deposit

transaction. The identity proof consists of the block header (block number, block hash,

target difficulty), the deposit transaction, the block’s Merkle tree to prove that the

deposit transaction is part of the block, the index number of the deposit address in the

block as well as the public key.

Additionally, a unique proofID is created using the Hash Message Authentication Code

(HMAC) as illustrated in Equation 4.1 - 4.3. The PoW hash of the block containing the

deposit address is used as the key for the HMAC in combination with the index number

of the deposit transaction resulting in the proofID. Since the proofID depends on the

PoW hash of the block, predicting a proofID is equivalent to predicting the correct hash

of the next Bitcoin block and therefore not feasible. As a result, a potential attacker

cannot create arbitrary proof IDs.
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linked to

Vehicle A

1.) Send deposit

Deposit Wallet

Identity proof

TX-ID

Block Header

Block #

Block Hash

Difficulty Target

Index of TX-ID

Block Hashtree

proofID = HMAC

Public Key

TX-ID

Amount: $

From: Vehicle Wallet

Receiver: Deposit Address

Wallet

Private key

2.) Receive
deposit

Block
1

Block
X

Block
X-1

3.) Mining

4.) ID on chain

5.) Flash to vehicle

Private Key

Figure 4.12: Creating a New Identity Proof – Based on [177]

kHMAC := BlockPoWHash (4.1)

TXindex := index of deposit TX in Block (4.2)

proofID := HMAC(kHMAC,TXindex) (4.3)

Finally, the resulting identity proof is deployed to the machine in combination with its

DID-based identity and the corresponding asymmetric key pair. In the context of small

IoT devices, this process might be part of the deployment procedure, e.g., a new sensor

network. Alternatively, in the context of our V2X scenarios from Chapter 3 the proof

might be created and deployed to a vehicle by the manufacturer itself.

4.3.1.2 Identity Proof Validation

Upon first contact or when establishing a communication channel among entities of a

decentralized network, entities verify each others’ identity in a bidirectional manner to

secure and protect sensible network data. In order to ensure that none of the parties

is a sybil node, both of them validate the DID-based identity and UnchainedX identity

proof. Figure 4.13 details the proof validation among two vehicles. The process consists

of a sequence of validation checks and in case one of them fails, the whole proof is

considered invalid. In that case, the proof is discarded and no further communication is

initiated.
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Figure 4.13: Overview of the Validation Process – Based on [177]

First, the structure and syntax of the presented proof is validated. As described in the

previous Section 4.3.1.1, a valid proof consists of the block header (block number, block

hash, target difficulty), the deposit transaction, the block’s Merkle tree to prove that our

deposit transaction is part of the block, the index number of the deposit address in the

block as well as the transactions’ corresponding public key. Subsequently, it is verified

that the block’s height is above networkParameterheight (more on protocol parameters in

Section 4.3.2). Next, nodes verify that the Merkle tree of the block contains the deposit

transaction, before comparing the block difficulty to the difficulty target in the block

header. In addition, it is verified that the UnchainedX difficulty target is equal or higher

than networkParameterminDifficulty for the given block height.

Thereafter, the deposit transaction itself is verified to ensure that the deposit was send

to the correct deposit address (networkParameterreceiver) and is greater or equal to the

minimum deposit amount (networkParameteramount). Moreover, the transaction has be

to signed by and with the corresponding key pair contained in the identity proof. Finally,

the proofID is compared to the recalculated result of the formula in Equation 4.3 given

the provided input parameters from the identity proof.

4.3.2 Protocol Parameterization and Pricing

Previous sections reference several protocol parameters of UnchainedX and the pricing

structure of an identity proof. The subsequent Section 4.3.2.1 and Section 4.3.2.2 provide

further details on both topics.

4.3.2.1 Network Parameters

Deposit Address: The parameter networkParameterreceiver specifies the deposit ad-

dress for the identity proof. Funds of the deposit address should be non-recoverable for

a malicious entity orchestrating a sybil node attack. Hence, we have to ensure that the

deposit address is not controlled by the attacker itself or a colluding party. Note that a
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transaction fee-based alternative is not feasible since an attacker could simply mine the

corresponding block itself and hence recover its own transaction fee.

While the specific choice of the deposit address(es) is/are use case dependent, we out-

line two simple approaches. First, funds might be send to an invalid receiving address

following a proof-of-burn strategy [232]. Even though the transferred deposit cannot

be recovered, it might be considered destructive for the remaining network participants

that use the system outside the UnchainedX context. Burning tokens with a limited

supply (e.g., Bitcoin) ultimately changes the underlying economic assumptions for all

network users and also results in a shortage of available tokens at some point in the

future, thereby disabling UnchainedX itself.

Alternatively, deposits can be directed to a pool of (decentralized) network operators

(hardware and software level) to support further development of the network as well as

covering maintenance costs. Since network operators and similar entities are stakeholders

of the network, they have a strong incentive to keep the network secure and prevent sybil

attacks – thus, not act maliciously.

Deposit Amount: networkParameteramount specifies the minimum deposit size re-

quired to create a valid identity proof. The deposit size has to be chosen by the network

operator in such a way that it remains affordable for network participants to establish

new identity proofs, but at the same time economically disincentivizing malicious enti-

ties from creating large numbers of sybil nodes. Networks with a large number of nodes

may allow for lower deposits since the network may also tolerate larger quantities of sybil

nodes without any tangible network service disruptions. Subsequently, Section 4.3.2.2

further elaborates on the pricing of identity proofs.

An alternative approach is to lower the parameter networkParameteramount while at the

same time introducing a new parameter networkParameterlockedAmount which specifies a

deposit that is send back to the identity proof owner. However, the re-transfer is locked

up using the CheckLockTimeVerify output [233] of a transaction or another type of

smart contract6. The locktime should be equivalent or higher than the lifetime of an

identity proof. When leaving the network, genuine users receive the locked amount

back. At the same time, this approach ensures that large scale sybil node attacks

lock up significant amounts of financial assets. Finally, a smart contract based lock up

method also enables a more sophisticated system where users provide proofs of malicious

behavior of nodes, which results in losing the locked up tokens – similar to losing a stake

in PoS consensus systems.

6Note that smart contracts are not supported by Bitcoin but by many other blockchain platforms.
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Minimum Target Difficulty: The target difficulty of PoW-based consensus systems

affects the average amount of computing power required to mine a valid block. Since

UnchainedX depends on only valid blocks being produced, the minimum target diffi-

culty of a valid block also affects the security guarantees provided by UnchainedX. The

networkParameterminDifficulty specifies the minimum target difficulty of the underlying

PoW-based block that is required to create a valid identity proof. While selecting a pre-

defined difficulty level is the simplest available option, it does not allow for adaptions to

the changing difficulty of the underlying PoW blockchain. Difficulty drops may make it

impossible to create new identity proofs since the target difficulty of the blockchain is

always lower than specified in the protocol. Alternatively, significantly increased diffi-

culties might make it unintentionally cheap for an attacker to create large numbers of

sybil nodes. Section 4.3.3 outlines different approaches that allow for dynamic target

difficulty adjustments.

Block Height: The networkParameterheight parameter determines the minimal ac-

ceptable block height of an identity proof. The block height is the number of blocks

preceding a block on the blockchain. As a result, the genesis block of a chain has a block

height of zero [234]. In the context of UnchainedX identity proofs, the block height

corresponds to the block height at the start of a network’s lifetime, thereby allowing to

reject proofs containing lower block heights with potentially lower difficulties.

4.3.2.2 Pricing an Identity Proof

An attacker that aims to introduce a large number of sybil nodes can do so by acquiring

a large number of identity proofs, or calculating a fake blockchain block with a valid

difficulty level containing an arbitrary number of fake identity proofs. However, mining

a block with valid difficulty incurs high opportunity- and energy costs since the attacker

has to pay for the hashing power used to create the block. While the energy costs may

vary depending on the geographical location, the opportunity cost is easy to quantify

and equal to the block reward plus additional transaction fees.

Equations 4.4-4.5 are used to calculate the upper bound of the price amountmax of an

identity proof where it becomes cheaper for an attacker to generate a fake block instead

of simply paying for the identities (disregarding energy costs and transaction fees). The

equations assume the current Bitcoin block size limit of 1MB, a minimum transaction

size of 224B and a block reward of 12.5BTC [232][235][236].
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amountmax = block reward× min TX size

max block size
(4.4)

= 12.5 BTC× 224B

1MB
= 0.0028 BTC (4.5)

Based on the Bitcoin price of $8,574 as of the writing of this work (2019-05-31) [237], the

resulting maximum for amountmax is around $24. In reality, the value amountmax will

likely be lower than 0.0028 BTC in order to make identities affordable and furthermore

anticipate volatility with regards to the Bitcoin price. Moreover, identity proof prices

may vary depending on the device that the proof is fabricated for, e.g., the proof for a

vehicle might be more expensive than the proof for a small temperature sensor based on

the economic value of the entity for the overall network.

4.3.3 Difficulty Adjustments

Changes of the target difficulty of the Bitcoin PoW consensus algorithm directly influence

the security guarantees provided by UnchainedX as well as the process of creating and

validating an identity. Hence, the protocol has to account for such difficulty changes.

The Bitcoin network adjusts the PoW target difficulty every 2016 blocks which is roughly

equivalent to two weeks given an average target block time of ten minutes. To do so,

every UnchainedX entity maintains a list of accepted target difficulties for each 2016

block interval. Receiving an update on a new accepted target difficulty that is greater

than the previous value results in retroactively invalidating identities confirmed based

on blocks with lower difficulty values. In case a lower target difficulty value is accepted,

it might be necessary to retroactively accept discarded peers into the network. In order

to update the list of accepted target difficulties, we propose three approaches – each

with different advantages and disadvantages.

In the context of the M2X ecosystem, we can safely assume that all participating entities

are connected to the Internet most of the time, especially in densely populated areas such

as cities. However, in sparsely populated areas, in buildings, or other locations with a

lack of connectivity, devices have to validate UnchainedX-bound identities without being

able to check the most recent target difficulty level online (even for longer times), e.g., via

an oracle or similar services. Therefore, UnchainedX supports offline verification and is

able to handle the corresponding difficulty adjustments. Even though two weeks without

an Internet connection is rather unlikely for entities of the M2X economy, the mechanism

remains necessary for PoW-based blockchains with lower difficulty adjustment periods

such as Ethereum.
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4.3.3.1 Bundled Oracle and Network Operator Updates

The simplest approach is to provide an oracle service that is queried by the devices

or assume a scenario where network operators publish publicly available and auditable

signed messages containing the target difficulty for each 2016 block range. Such oracle/-

operator messages are appended to each identity proof and used to update the target

difficulty list of all receiving nodes. Despite its simplicity, this approach suffers two

main disadvantages: First, it is rather centralized and relies either on oracle services or

network operators to provide correct difficulty updates. Second, in case a device is not

regularly connected to the Internet, to interact with oracles, or a network operator, new

nodes might not be able to join the network.

4.3.3.2 Majority Vote

The second option extends the approach proposed in the previous Section 4.3.3.1. In-

stead of relying on a single oracle or operator, nodes connect to a multitude of providers

and attach one or more of their messages to an identity proof and maintain a target

difficulty list with multiple difficulty values for each block. In case of a mismatch within

the list or on receiving an update message, the majority value is considered the true dif-

ficulty target. Supposing no majority, the highest difficulty value is considered valid. As

a result, option two mitigates the issue of a single point of failure but it still dependent

on a rather centralized, or at least federated system of data sources.

4.3.3.3 Maximum Difficulty

An alternative option that does not rely on any centralized infrastructure is to deploy

each device either with an empty list or a pre-loaded history of known accepted target

difficulties. The difficulty of each received identity proof is compared to the known

target difficulty of the corresponding block based on the maintained list. A mismatch

or a difficulty that is to low results in rejecting the incoming proof. A target difficulty

that is higher than the value in the maintained list results in an update of the lists’

value assuming that the identity proof itself is valid in its entirety. As long as each

node is connected to at least one honest node, this approach allows to eventually detect

and invalidate forged identities with insufficient difficulty values. However, an attacker

that is able to create an identity proof based on a mined block with a target difficulty

higher than the difficulty of the underlying Bitcoin blockchain, is able to perform a

denial of service attack (DoS attack) on the protocol. Up on receiving the higher target

difficulty value, all connected nodes update their list accordingly and start invalidating
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actually genuine identities which were generated during the timeframe corresponding

to the malicious block. Yet, the attack scenario is rather unlikely since mining a block

with a target difficulty higher than the difficulty of the Bitcoin chain itself is even more

expensive than mining a regular Bitcoin block that is – at the time of writing this thesis

– rewarded with 12.5 Bitcoin. Moreover, the DoS attack can be mitigated by combing

this approach with one of the remaining methods described previously. Simultaneously,

this approach might serve as a fallback solution for the previously described approaches.

4.3.4 Protocol Formalization

Next, we provide a formal model of UnchainedX using the same approach as for the

Authcoin protocol in Section 4.2.8. Again, we first present the AOM goal model of the

protocol, define the behavioral interfaces of activities before mapping these two to a

formal CPN model.

Once more, we utilize the AOM goal model to capture the functional requirements of the

system in the form of goals, as well as non-functional requirements and roles of involved

entities. Non-functional requirements represent quality goals of the system. Figure 4.14

illustrates the top level goal model of the protocol. The main objective of UnchainedX

is to de-incentivize and price the cost of sybil node attacks. The main goal is further

decomposed into multi-layered sub-goals until the lowest atomic sub-goal is reached. In

the context of UnchainedX, the main goal is further divided into the following sub-goals:

Create deposit transaction, Mine transaction, Create identity proof and Validate identity

proof. The five quality goals secure, correct, tamperproof, entity agnostic and automated

are attached to the overall main goal of the goal model, meaning they are relevant and

inherited to all sub-goals and are inherited. The quality goal “reliable” pertains to the

two sub-goals of Mine transaction and Validate identity proof. Furthermore, we list three

different roles. The user – either a human, or machine -, the mining entity that performs

the PoW calculations of the underlying blockchain and the validator who validates an

identity proof once received.

Subsequently, the AOM behavior model refines the previously developed goal model

for specific agents and activities. Table 4.4 presents the behavior interface model of

the goals depicted in the top level goal model of Figure 4.5. Each activity is listed

with its corresponding trigger, optional pre-conditions and its post-conditions. The

Create Deposit Transaction-activity is triggered after providing the required network

input parameters as well as a machine identity and a wallet. Afterwards, as part of the

Mining-activity, the resulting deposit transaction is mined into a new block. During the

Create Identity Proof -activity, the block, the machine identity and the provided wallet
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Figure 4.14: UnchainedX Top-Level AOM Goal Model

Activity Trigger Pre-Condition Post-Condition

Create Deposit
Transaction

User wants to
create a deposit
transaction

Network param-
eters, machine
identity and
machine wallet

Network param-
eter, machine
identity, machine
wallet, deposit
transaction

Mining Received deposit
transaction

Deposit trans-
action, previous
block hash,
deposit wallet
and blockchain
difficulty target

Block, previ-
ous block hash,
blockchain dif-
ficulty target,
deposit wallet

Create Iden-
tity Proof

Deposit transac-
tion mined into
block and user
wants to create
new identity
proof

Block with de-
posit transaction,
machine identity
and machine wal-
let

Identity proof, ma-
chine identity, ma-
chine wallet

Validate Iden-
tity Proof

Incoming identity
proof

Identity proof,
network param-
eter, machine
identity and
machine wallet

Boolean statement
whether the pro-
vided identity proof
is valid, or not

Table 4.4: Behavioral Interfaces of Activities for UnchainedX
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are used to create an identity proof for the machine. Finally, the created identity proof

is validated as part of the Validate Identity Proof -activity which takes an identity proof,

the network parameter, the machine identity and the initial wallet to determine whether

the identity proof is valid.

Token colors represent data structures of UnchainedX data objects that are used to

illustrate the data flow through the CPN model. Exemplary acronyms, names and the

description of token colors of UnchainedX’s CPN model are presented in Table 4.5. The

first column specifies the name, followed by a short description in column two. The

last column provides information concerning the data types. A complete listing of all

acronyms, names and abbreviations as well as a description of the token colors of the

UnchainedX CPN model is available in Appendix A.2.2.

Mapping the created AOM models to CPN is the final step to derive the top level CPN

model of UnchainedX. We rely on the same mapping mechanism as presented earlier in

Table 4.2 and Figure 4.6 which illustrate the mapping heuristic of AOM goal models

to CPN models as well as the mapping of behavior interface models to CPN models.

The final result of the mapping process is illustrated in Figure 4.15, presenting the

complete and formalized CPN model of UnchainedX derived from the AOM model and

implemented using CPN-Tools.

The CPN model consists of four transitions derived from the four sub-goals of the top

level AOM goal model. The protocol flow start on the left-hand side of Figure 4.15 with

the Create deposit transaction-transition. An infrastructure provider, user, or machine

that wishes to create a new identity triggers the transition by providing the required

network parameters as described in previous sections as well as information relating to

the entities identity (in the CPN model, a machine in assumed), i.e., a machine identity

consisting of a DID and a public/private key in addition to a wallet that corresponds

to the used key pair. In case the wallet balance is sufficient to make a deposit, a

matching deposit transaction with the target deposit address is created. Thereafter, the

transaction is mined into a new block of the underlying blockchain platform (Mining-

transition). The resulting block contains a BlockID, the hash of the previous block,

the blockchain’s difficulty target and a list of included transactions. Once the block is

mined, an identity proof is created (Create identity proof -transition) according to the

specifications described in Section 4.3.1. Finally, the resulting identity proof is checked

for validity resulting in a Boolean representation of the validation process’s success, or

failure.
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Token Color Description Type

KeyPair Key pair (pubKey, privKey)

Wallet Blockchain wallet (Address, Balance)

NetworkParameter,
NP

Unchained network parameter (Difficulty, min-
BlockHeight, min-
Deposit, depositAd-
dress)

Difficulty Minimum PoW difficulty for an
identity proof as defined by the
network operator

Integer

minBlockHeight Minimum block height as defined
by the network operator

Integer

minDeposit Minimum deposit to be made for
an identity proof as defined by
the network operator

Integer

depositAddress Deposit address as defined by the
network operator

String

Transaction, TX Structure of a deposit transac-
tion

(ID, from, to,
amount, pubKey,
txSig)

Block Blockchain block (ID, prevBlockHash,
BlockchainDiffTar-
get, txList)

IdentityProof, IP Identity proof (BlockID, Block-
Hash, Blockchain-
DiffTarget, TXID,
BlockTXList,
proofID, proofSig)

proofID proofID as specified by the pro-
tocol

String

MachineIdentity Machine entity identity (DID, KeyPair)

depositWallet Deposit wallet as defined by the
network operator

Wallet

machineWallet Machine’s wallet Wallet

Table 4.5: Exemplary Acronyms, Names and Description of Token Colors of the
UnchainedX CPN Model

4.4 Discussion

While the combination of the concepts of DIDs, Authcoin and UnchainedX provides a

suitable identity-, authentication- and validation mechanism for entities participating

in the M2X economy, it still requires further research in several directions to overcome

limitations and allow for widespread adoption. This section discusses limitations, open

issues as well as advantages and disadvantages of the solution proposed in this chapter.

Since we already discussed the general use and suitability of blockchain technology as
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Figure 4.15: UnchainedX CPN Model

a foundation of the M2X economy in the previous Chapter 3 as well as in Section 2.3,

we will waive further discussions on that topic. However, relying on a blockchain-based

identity solution as described in this work results in certain challenges and limitations.

First, the transparent and auditable design of Authcoin challenges ensures on one hand

the security of the network. On the other hand, depending on the challenge design they

may expose personal information which are meant to be private. Moreover, revealing

information in the process of a challenge renders them unavailable to use for subsequent

challenges. Therefore, further research on privacy-preserving challenges is required.

However, verifiable claims still allow Authcoin users to use them as designed in the

context of DIDs, or in an Authcoin context using encrypted challenges thereby combining

the advantages of DIDs and Authcoin.

Generally, the design of suitable challenges that are standardized and vendor-independent

requires further research. The same applies to the design of user-friendly and tamper-

resistant challenges. The development of standards across industries and hardware ven-

dors via consortia is necessary to ensure an interoperability, compatibility and portability

of a M2X identity solution. This work simplifies M2X identities by not specifically differ-

entiating between humans, machines and software agents, thereby offering an abstract

solution. Future research may result in category-specific implementations of our abstract

identity framework.
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Finally, in the context of business interactions, transactions and collaborations an iden-

tity is the central gatekeeper. Compromising an identity potentially results in subsequent

threats to the M2X ecosystem and its purpose. Hence, a thorough security analysis of

the used protocols is required. While the protocols are already formalized using CPNs,

a formal model does not allow to make statements regarding the security of a protocol.

In case of the Authcoin protocol, a security analysis based on the CPN models was

performed in [176] and [227] using the ISSRM domain model [238][239] and so-called se-

curity risk-oriented patterns SRPs [240]. This resulted in further security improvements

of the Authcoin protocol. The analysis, the application of the SRPs and the updated

CPN models are not part of this work.



Chapter 5

Evaluation

The following chapter evaluates the results and findings of Chapter 3 and Chapter 4. The

different research directions of these chapters require different evaluation approaches for

each of their findings. Hence, the following sections utilize a variety of evaluation con-

cepts, which are explained throughout the corresponding sections. Section 5.1 evaluates

the V2X transaction, interaction and collaboration platform introduced in Chapter 3,

while Section 5.2 and Section 5.3 focus on the proposed solutions for validation, au-

thentication and identities in decentralized networks. The chapter concludes with a

discussion of the findings in Section 5.4.

5.1 V2X Platform – Feasibility Evaluation

Due to the exploratory nature of the artifacts produced in Chapter 3, a real-world

proof-of-concept, or even a prototype implementation are out of scope of this work

while other evaluation methods such as simulations, or quantitative evaluation methods

are not applicable. Thus, for the V2X platform a paper-based feasibility evaluation

is performed which considers existing technology and on-going research that allow for

a simplified and minimal proof-of-concept implementation. The proposed technology

stack represents a tentative proposal based on available solutions. The goal is to i)

demonstrate the general feasibility of a proof-of-concept implementation, ii) identify

technological gaps that require further research and iii) demonstrate the generalizability

of the V2X platform as described in this work.

The evaluation is structured as follows: Section 5.1.1 focuses on the hardware and

infrastructure components, while Section 5.1.2 reviews pre-existing projects and research

for a suitable smart contract platform which serves as the backbone of the V2X platform.

89
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Data sources, data storage and data management are discussed in Section 5.1.3, followed

by the identity and authentication mechanisms in Section 5.1.4. Next, Section 5.1.5

outlines the potential directions of future research efforts which are required to bridge

the gap between an initial proof-of-concept implementation and the deployment of a

production-ready system. Finally, Section 5.1.6 focuses on the generalizability of the

V2X platform.

5.1.1 Hardware and Infrastructure

Despite the lack of availability of autonomous vehicles as well as the lack of widespread

adoption of highly connected vehicles, a minimal testbed for the V2X platform with

vehicles is feasible. The concept of VANETs, as introduced in Section 2.2, provides

the conceptual network architecture, the communication technology and Internet con-

nectivity. Even though a broad deployment of TPDs in vehicles and RSUs along the

roadside is missing, closed testing areas exist. To compensate for the lack of suitable

vehicles with sufficient hardware and a VANET infrastructure, existing vehicles may be

equipped with external hardware devices as limited sensing, computing and connectivity

platforms. The AutoPi1 OBDII (On-Board Diagnostics 2 – a vehicle’s self-diagnostic

and reporting protocol) dongle is based on an embedded Raspberry Pi and allows to

extend the sensing, computing and communication capabilities of all OBDII-compatible

vehicles. Communication via 3G/4G and Bluetooth is supported in addition to the di-

agnostic data provided by the car (e.g., acceleration, steering, braking, etc. – depending

on the vehicle), location data is available via the AutoPi’s GPS. More sensors can be

attached via GPIO sensors [241].

Another option is to utilize the ubiquitousness of mobile phones and their built-in sen-

sors, communication hardware and computing capabilities. These can be connected to a

vehicle via a simple OBDII dongle with Bluetooth connectivity. Nevertheless, the AutoPi

and the mobile phone solution are limited in their capabilities – especially computing

power – and thus only suitable for proof-of-concept implementations. Later hardware

solutions require more computing power, more sensors with high-quality sensing capa-

bilities and VANET-compatible communication hardware. Finally, future developments

of the technology stack will merge the external hardware device into the vehicle itself.

5.1.2 V2X Smart Contract Platform

The V2X smart contract platform is a multi-stakeholder system that requires publicly

available transactions, smart contracts and data as well as their private counterparts

1https://www.autopi.io/

https://www.autopi.io/
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to account for privacy concerns – but also to allow for OEM, or service provider spe-

cific service platforms. Therefore, a complementary setup of public and permissioned

blockchains is required. OEMs and service providers may use Hyperledger Fabric [242]

for permissioned on-chain transactions, data storage and smart contract orchestration

to facilitate their services.

The public counterpart to the permissioned Hyperledger Fabric blockchain may be

Ethereum [70], or the EVM-compatible (Ethereum Virtual Machine) Qtum [139] blockchain.

On top of Ethereum, the Robonomics platform [243][244] acts as an Ethereum network

infrastructure for cyber-physical systems’ integration into limited and simplified M2X

use cases and scenarios. The Robonomics platform allows for the distribution, control

and provision of services by cyber-physical systems using a supply- and demand based

marketplace in combination with a contractual obligation management mechanism.

Orchestration of complex smart contracts requires proper tools for creation, deployment

and management of such. While initial research on management tools exist [245], only a

few tools are available for productive use. Kaleido2 provides an enterprise-grade smart

contract management system for smart contract source code management, compilation

and deployment in combination with smart contract registry and gateway APIs. As of

the writing of this thesis, Ethereum, Quorum and Hyperledger are supported.

Interoperability among blockchains is not only important to integrate the permissioned

and public blockchains, but also to account for a large variety of blockchain platforms

used by different ecosystem entities. In Section 2.1.4 we already discussed the concept of

blockchain interoperability as well as different approaches to achieve it, e.g., Hardjono et

al. [98] propose a set of design principles for interoperable blockchains and demonstrate

how the MIT project Tradecoin [99] is designed using this interoperability model. In

the context of this paper-based feasibility evaluation for a minimal proof-of-concept, the

Polkadot [100] blockchain is selected to enable cross-blockchain transfers of any type

of data, or asset. In Polkadot, relay-chains act as hubs between different blockchains

where the relay-chains themselves are distinct blockchains that relay messages between

chains, but may also track the state of connected chains, thereby essentially acting as

an interoperability layer.

While most blockchain platforms allow for value transfer via tokens, real-world business

transactions are still settled using fiat-currencies. Consequently, a mechanism for the

settlement of fiat-cryptocurrency payments is a necessity. The Corda [246] blockchain

platform recently introduced a proof-of-concept3 that links bank collateral accounts

to tradable asset-backed tokens on the Corda blockchain [247][248]. Moreover, Corda

2https://kaleido.io
3https://github.com/corda/cash-issuer

https://kaleido.io
https://github.com/corda/cash-issuer
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demonstrated an implementation of the Corda Settler4 to handle off-ledger settlements

in other non-Corda payment systems. However, a Polkadot integration does not ex-

ist yet. Alternatively, for proof-of-concept demonstration payment and non-payment

related transactions could be handled by separate systems.

Business interactions, transactions and collaborations are subject to legal compliance.

Additionally, automated business enactment without human intervention or supervision

requires special care. Hence, verifying the soundness of utilized smart contracts before

their enactment is imperative in order to eliminate concurrency-, or dependability con-

flicts [128]. Both, Ethereum and Qtum, use Solidity as a smart contract programming

language. Rudimentary tool-support for Solidity exists, e.g., Securify5, Smartcheck6, or

MythX7, but is still in its infancy compared to major programming languages. Alterna-

tively, the Tezos [249] blockchain platform uses the Michelson programming language for

smart contract development which is designed to facilitate formal verification [250]. The

high-level smart contract programming language Liquidity can be written and compiled

to Michelson [251].

In Section 3.1.3.1 we discussed the academic research concepts of a smart contract

collaboration and negotiation lifecycle based on [120][136], a distributed governance

infrastructure based on [120][140][137] and conflict-related exception- and compensation

management during decentralized collaborations [138]. While the conceptual framework

exists, a practical implementation is missing. Moreover, privacy concerns of mapping

business transactions, interactions and collaborations onto a blockchain system are not

addressed in this work.

5.1.3 Data Sources, Data Storage and Data Management

Analogous to the on-chain transaction information stored on the blockchain platform

itself, the selection of data sources and the stored data itself is separated into publicly

available and private data sets which can be either stored on-chain, or off-chain.

While smart and autonomously acting machines are equipped with sensors themselves

to sense their environment, the perceived information is limited in quantity, quality and

pertains to a specific geographical location. Further data sources are required for com-

plex cross-organizational M2X applications. Ensuring the integrity of external resources

is the topic of on-going scientific research [169]. The Ocean Protocol project [252] of-

fers a decentralized protocol in combination with a marketplace that allows to buy/sell

4https://github.com/corda/corda-settler
5https://securify.chainsecurity.com/
6https://tool.smartdec.net/
7https://mythx.io/

https://github.com/corda/corda-settler
https://securify.chainsecurity.com/
https://tool.smartdec.net/
https://mythx.io/
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data. As a result, machines may monetize their gathered data on the marketplace and

purchase further data which they cannot collect themselves. Similarly, the decentralized

oracle network ChainLink [253] provides reliable, tamper-proof and blockchain-agnostic

inputs and outputs for complex smart contract orchestrations.

On-chain mass data storage and management of the V2X platform is handled by the

InterPlanetary File System (IPFS) [147]. IPFS is a P2P hypermedia protocol and dis-

tributed file system. It utilizes a content-addressed block storage model that allows to

address data sets via hyperlinks, and a generalized Merkle DAG (directed acyclic graph)

to build versioned file systems [147]. Alternatively, StorJ [254] can be used for distributed

cloud storage. While IPFS and StorJ are designed for storing files, BigchainDB [255] is

a suitable solution for complex operations on large data sets and is best suited for stor-

ing, indexing and querying structured data – thus it provides complementary features

to IPFS and StorJ. BigchainDB is a decentralized database with additional blockchain-

enabled features such as immutability as well as the creation, control and transfer of

digital assets. The BigchainDB network is designed to host nodes owned and controlled

by different entities or organization and therefore well suited for a multi-stakeholder

ecosystem that requires interoperable data containers instead of classical data silos.

5.1.4 Identity and Authentication

In Chapter 4 we explain the necessity for an identity solution as well as a validation and

authentication mechanisms in M2X scenarios which enable collaboration, interactions

and transactions among entities of our ecosystem. The solution presented in Chapter 4

is demonstrated via proof-of-concept implementations and provides – despite its early

stage of development – the general mechanisms required for a M2X identity solution.

However, a mechanism to safely store and use key pairs is required. Moreover, recovery

and backup options are missing as well.

Secret sharing [202][203] is a common approach to recover lost keys. To do so, a user’s

(private) key is shared among a number of trusted entities and at least two of them are

required to restore the secret key. An advantage of this solution is the availability of

a key recovery mechanism, but it comes with the downside of handling additional keys

and the requirement of sufficient trusted persons. Furthermore, for non-technical users,

the concept of public-key-cryptography alone is complicated enough; adding the concept

of shared secrets demands to much from non-security experts [256][257].

The M2X ecosystem with different OEMs, service providers and consumers, users, in-

frastructure providers, etc. is a multi-stakeholder system. As a result, multi-signature

transactions in which multiple entities sign a transaction before broadcasting it to the
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blockchain network are also needed. A variety of multi-signature wallets exist, e.g., the

Gnosis Wallet8. Storing the private keys corresponding to the multi-signature transac-

tions on multiple servers further increases security [258].

5.1.5 Existing Gaps

The previous sections focused on the paper-based feasibility evaluation for a minimal

proof-of-concept based on existing technologies and recent research results. Nonetheless,

the current state-of-the-art does not support a full-scale V2X (or M2X) service platform

and application deployment, instead only isolated applications and minimal proof-of-

concept use cases can be demonstrated.

Specifically for the V2X ecosystem, a broad adoption of connected, or even autonomous

vehicles with advanced sensing, computing and communication capabilities is desirable.

Likewise, the deployment of VANETs and the corresponding infrastructure (e.g., RSUs)

is required as well. General 5G coverage accounts for the increased bandwidth require-

ments of M2X applications and reduces the number of required RSUs. Merging the

currently used external hardware boxes (as described in Section 5.1.1) into the vehicle

itself is beneficial and reduces system complexity, the need for extra hardware and fosters

standardization and compatibility.

Instead of acting as an external hardware with external software, OEMs can integrate the

same functionality as part of the vehicle’s software stack, e.g., via the AUTOSAR Adap-

tive [259] platform. AUTOSAR Adaptive is a standard that defines interfaces required

to develop future automotive ECUs (Electronic Control Units) running on multi-core

microprocessors. These interfaces allow automotive OEMs to implement autonomous

driving functionalities and IoT capabilities as well as further services on their vehicles.

Even though blockchain technology as a concept was already introduced in 2008, its

software development, its management tools and the technology itself have still not ma-

tured. Smart contract programming languages such as Solidity are subject to frequent

and often incompatible changes. The available software development tools are rudimen-

tary and not comparable to tool-support of major programming languages like C++ and

Java. Albeit first tendencies to blockchain interoperability are researched, production-

ready solutions, or even an industry-standard are missing. The relay-chain approach of

Polkadot might sound promising – however, instead of having a single relay-chain hub

for all existing blockchain platforms, we might end up in a fragmented ecosystem with

many relay-chain hubs that all aim to become the most popular platform while still being

not interoperable among each other. The issue of blockchain interoperability is closely

8https://wallet.gnosis.pm/

https://wallet.gnosis.pm/
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related to platform interoperability of V2X platforms operated by different OEMs, in-

frastructure operators, or service providers. Only a network of interoperable platforms

allows for an open ecosystem that facilitates the M2X economy. Further challenges arise

in the context of blockchain scalability which is currently limited.

Advancements of the reasoning and decision making proficiency is obligatory to extend

existing IoT and CPS applications to a status where smart devices are capable of acting

as autonomous business entities. Additionally, until that point, (smart) devices are prone

to human actors exploiting the limited capabilities of machines in the M2X ecosystem.

A conflict resolution management system based on existing research is introduced in

previous sections. While the system is well suited for M2M and M2I scenarios that

follow standardized interaction patterns with few ambiguities, conflicts that require hu-

man mediation services occur in M2H scenarios due to the fundamental differences of

machine-readable and precisely defined business contracts and humans understanding

of contractual obligations.

Finally, the M2X economy raises a series of legal questions and concerns. Externally

owned machines, e.g., by a company, or the government, are less challenging from a

legal perspective than machines that own themselves. Assuming that such a legal sta-

tus could exist, further questions regarding liabilities, compliance and litigation follow.

Furthermore, for an economy to exist that bridges between humans and machines, legal

obligations and laws have to be available in human-, and machine-processable format.

5.1.6 Generalizability – V2X to M2X

In the previous sections of this chapter, we demonstrate the technical feasibility of the

V2X platform using a paper-based evaluation method. Moreover, we present a selection

of three V2X running cases in Section 1.1.2 that can be provisioned based on the V2X

platform. Extending the same concept to a generalized M2X economy is more complex

but attainable and allows for production, transport, trading and provision of services and

goods. Nonetheless, we cannot prove that all use cases of the upcoming M2X economy

can be implemented via a system similar to the V2X platform presented in this work.

As mentioned in Section 1.1.2.1, the TaaS concept is not limited to human trans-

portation as described in Chapter 3 and instead applies to transportation of goods via

drones, ships, planes and trains as well. Similarly, the notion of trading road space as a

scarce resource can be extended to further goods, commodities, data and even services.

Blockchain-based electricity trading solutions already exist [260][261] as well as sensor
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data marketplaces [262][263] and may serve as specific illustrations for such exchange

platforms with integrated value transfer.

Finally, autonomously acting smart factories that independently ensure sufficient supply

of required resources for production, a well-organized production process, supply and

demand management as well as the required logistics of transporting resources to the

factory and the final products to the customer are among the most complex applications

of the M2X economy.

Following the provided examples above we conclude the generalizability of the presented

V2X platform to a broader M2X spectrum. Whether all future M2X applications can

be provisioned in this manner is subject to future research.

5.2 Authcoin State-Space Analysis

The proposed protocol for validation, authentication and identity provision in decentral-

ized networks is evaluated in two ways. First we presents the state-space analysis results

of the corresponding CPN models of the protocol. Second, a minimal proof-of-concept

implementation of the protocol is listed in Appendix B.3.6. The proof-of-concept is im-

plemented on the EVM-compatible Qtum [139] blockchain infrastructure does not cover

a fully-fledged implementation and rather tests the general feasibility of the concept.

Note that a further analysis of the CPN models from a security perspective exists, but

is not covered as part of this work. In [227], a risk- and threat analysis based on the

Information Systems Security Risk Management (ISSRM) domain model [264][265] is

performed on the existing CPN models. Afterwards, the identified risks are mitigated

using security risk-oriented patterns [266][267] (SRPs) – a means to mitigate common

security- and privacy risks in business-processes.

The following section focuses on evaluating the created Authcoin CPN model by per-

forming state-space analyses. In order to avoid a state-space explosion [57], the model

is separated into sub-modules and a full state-space is calculated for each. From the

results of the analyses, we derive model properties and explain their implications.

During a state-space analysis, all reachable states and state changes of a given CPN

model are calculated and represented in a directed graph, where the nodes correspond to

the set of reachable markings and the arcs correspond to occurring binding elements [57].

From this graph, it is possible to deduce properties of the CPN models and the systems

presented by the models. The state-space analysis used in this work is generated us-

ing built-in functionalities of CPN-Tools. Besides a full state-space analysis, a SCC

(Strongly Connected Component) graph is calculated based on the directed graph of
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Module Loops Home
mark-
ings

Dead
markings

Dead
transi-
tions

Live
transi-
tions

Key Generation
Establish Binding

No No Yes No No

Formal Validation No No Yes Yes No

Validation & Au-
thentication

No No Yes Yes No

VAR Creation No No Yes No No

Process VAR No No Yes Yes No

Revocations No No Yes Yes No

Table 5.1: Selected State-Space Analysis Results of the Authcoin CPN Models –
Based on [176][175]

the state-space analysis. The nodes of the SCC graph are obtained by making a dis-

joint division of the nodes in the state-space such that two state-space nodes are in the

same SCC if and only if they are mutually reachable, i.e., there exists a path in the

state-space from the first node to the second node and vice versa [57]. The SCC graph

is used to deduce further model properties, e.g., if the SCC graph has fewer nodes than

the state-space graph then at least one cycle exists in the state-space graph of the CPN

model.

Since a full computational verification of the whole CPN model is not feasible for this

size of models and causes a state-space explosion, all parts of the models are tested

independently. As presented in Table 5.1, the CPN model is split into six sub-modules,

that are tested with prepared input statements that aim to cover as many execution paths

as possible without causing a state-space explosion. The KeyGenerationEstablishBinding

module is depicted in Figure 4.8, the FormalValidation module and the V&A module

are depicted in Figure 4.9 and the Revocations module in Figure 4.11. The VARcreation

module refers to a slightly modified version of the SymbolicMining module illustrated

in Figure 4.10. The ProcessVAR module consists of the Mining module in combination

with the V&A module, minus the SymbolicMining module.

A full state-space is calculated for all modules listed above, followed by the calculation of

the SCC graph. During these calculations, all other parts of the CPN models have been

disabled. Relevant results and selected properties derived from the analysis are presented

in Table 5.1. It is important to keep in mind that the properties of the separated modules

might differ from the properties of the whole CPN model itself due to the combination

and influences of the different components on each other. Nevertheless, verifying the

correct execution and behavior of sub-modules strengthens the assumptions that the

overall protocol performs as intended. The complete results of the state-space analyses

are available in Appendix A.1.5.
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As shown in Table 5.1, none of the tested modules contain any loops. Thus, there are

no infinite occurrences of execution paths in the state-space graph which guarantee the

termination of each module. Still, it is possible to deduce from the design of the Authcoin

protocol that there are loops in the complete model, since the blockchain architecture

causes loops when chaining new blocks to the blockchain.

Furthermore, the state-space analysis shows the absence of any home markings. A home

marking is a marking that can be reached from any other reachable marking, meaning

that it is impossible to have an occurrence sequence that cannot be extended to reach

the home marking.

The detected dead markings are caused either by intentionally disabling certain parts

of the CPN models or customized input values that prevent a state-space explosion.

“A dead marking is a marking in which no binding elements are enabled” [57]. The

existence of at least one dead marking guarantees a termination of executable actions

at a certain point, thereby preventing infinite runtime. Since all modules contain a

dead marking, none of them has a live transition. By definition, “a transition is live if

from any reachable marking we can always find an occurrence sequence containing the

transition” [57].

All detected dead transitions are caused by intentionally disabling execution paths and

prepared input statements. A transition is considered dead if there is no reachable mark-

ing that enables the transition. Since all occurrences of dead transitions are artificially

enforced, it means that all transitions of all tested modules can be potentially enabled

at a certain point during the protocol execution [57].

5.3 UnchainedX Evaluation

An evaluation of the UnchainedX protocol is performed as follows: First, we evaluate

the security guarantees – which mainly depend on the target difficulty level as well as the

token price of underlying PoW blockchain – by deploying a fictional network. For this

evaluation, we chose the Bitcoin and the Ethereum blockchain as the most popular and

utilized PoW chains. The combination of evaluation both blockchains covers important

corner cases of changing difficulties and token prices, e.g., increasing and decreasing

difficulty in combination with sudden drops and raises. The evaluation is performed

on a dataset ranging from December 2016 to mid May 2019. While neither future

developments of the underlying cryptocurrency price, nor the target difficulty can be

reliably predicted, the following analysis provides an intuition on the historical worst

case performance of our protocol. A proof-of-concept implementation of UnchainedX on
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Figure 5.1: Average Daily Price of Bitcoin in USD and Block Difficulty Level Between
December 2016 and May 2019 – Partially based on [177], Data Source [268]

the Bitcoin and the Ethereum blockchain is implemented and deployed on a Raspberry

Pi to demonstrate the general feasibility. Finally, we present the state-space analysis of

the UnchainedX CPN model.

5.3.1 Bitcoin Price and Difficulty Analysis

As illustrated in Figure 5.1 the target difficulty level of the Bitcoin blockchain is steadily

increasing with minor decreases in between until October 2018, followed by a major

decrease until January 2019 before increase again for the rest of the evaluation period.

The Bitcoin token price follows a similar pattern, but with a high-price peak at the

end of December 2017. The lowest token price appears around the same time as the

difficulty drop of January 2019, followed by a recovery of the token price until the end

of the evaluation period.

In Section 4.3.2 we discussed the lower bound security guarantees of UnchainedX which

depend on the lowest level of the target block difficulty and the lowest token price

equivalent per block that occurred during the existence of a particular network. In the

context of our hypothetical evaluation network deployed in December 2016, we observe

that all nodes joining later than December 2016 have higher security guarantees than the

initial bootstrap nodes due to an increased block difficulty and token price. Even though

token price and target difficulty decreased heavily between the end of 2017 and the end

of 2018, the lowest price and difficulty levels still remained above the deployment levels.

However, since the actual minimum price per identity is determined by the network

operator the token price and difficulty level only represent a theoretical measurement
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for security guarantees. Nonetheless, a higher token price results in an increased block

price which may result in more expensive identities, thereby raising the costs of sybil

node attacks.

While deploying a network at the lowest price of our evaluation period is not an issue, the

opposite applies to deploying a network at the Bitcoin price high-point in the beginning

of November 2019 – days before the decreasing Bitcoin price as illustrated in Figure 5.1.

As a result of the decreasing price, it becomes generally less expensive to introduce new

identities to the system for a short period of time. Again, the actual pricing structure

depends on the network operator determining the minimum price of an identity. For

practical reasons it is likely that most operators pick minimum values below the current

token price and difficulty level therefore allowing for price/difficulty declines that do

not affect the security guarantees of our example network. However, in case of the

substantial price and difficulty decline between the end of 2017 and the end of 2018 as

illustrated in Figure 5.1, a pricing and difficulty update is probably required.

Next, we analyze the occurrence of substantial token price declines for the chosen eval-

uation period by calculating, for each potential deployment date of our network, the

highest drop in price and thus security level experienced by the network. Table 5.2

presents the proportion of starting dates that would have lead to a decline on any subse-

quent day of at least a given percentage. In 0.0% of possible starting dates the security

level would have at any later point dropped below 10% of the given date while for below

20% it is only 1.3%.

Drop to Affected start dates

< 10% 0.0%
< 20% 1.3%
< 30% 7.4%
< 40% 16.7%
< 50% 32.4%
< 60% 44.8%
< 70% 46.5%
< 80% 54.5%
< 90% 64.9%
< 100% 79.6%

Table 5.2: Affected starting dates after which the Bitcoin price drops below a certain
percentage of the given day’s price between December 2016 and May 2019.

Historically, substantial declines occur very rarely. Smaller declines occur more fre-

quently, with almost 65% of possible starting days experiencing drops of at least 10%

at some point in the future. While most networks are able to tolerate smaller drops in

security level, raising Bitcoin prices can also be an issue, as they can make identities

too expensive for regular users. Considering this for networks intended to exist over
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long time frames, provision of an update mechanism for networkParameteramount should

be made. In case mass adoption occurs, the volatility level of cryptocurrencies and fiat

currency is expected to converge. Hence, UnchainedX’s level of security is supposed to

stabilize similarly.

5.3.2 Ethereum Price and Difficulty Analysis

UnchainedX is blockchain-agnostic and only requires the underlying blockchain platform

to utilize a PoW consensus mechanism. Therefore, besides the Bitcoin blockchain, we

also analyze the changing difficulty levels and token prices of the Ethereum blockchain

and how they would have affected the sybil attack prevention mechanism of our fictional

network deployed in December 2016. Figure 5.2 presents the history of the Ethereum

token price and the Ethereum block difficulty of the same evaluation period as for the

Bitcoin evaluation. Similarly to the Bitcoin token price, the Ethereum token price also

increased heavily between December 2016 and the end of December 2017, followed by a

large drop until April 2018. Afterwards, a price recovery in May 2018 was followed by a

further drop until December 2018 before slowly starting to increase again until the end

of the evaluation period.

The Ethereum difficulty increases steadily until October 16, 2017 before a sudden drop

due to a difficulty adjusting hard-fork of the Ethereum network [269]. In March 2018,

the difficulty surpassed the previous all-time high of October 2017. A significantly lower

difficulty level is achieved in the beginning of 2019, followed by a short term recovery and

a further drop of the difficulty level in March 2019. Despite heavy reoccurring decreases

of the difficulty level, even the reduced difficulty level is far higher than the initial level

in December 2016.

Hence, the security guarantee evaluation results are similar to the Bitcoin evaluation of

the previous Section 5.3.1. Nodes deployed in December 2016 with the initial difficulty

are cheaper and easier to create in terms of identity price and block difficulty. All nodes

deployed at later points in time provide higher security guarantees. When focusing on

the timeframe briefly before and after the difficulty adjustment as well as the difficulty

drop in early 2019, identities created before the adjustment and the drop are less difficult

to create than identities created afterwards. The same applies for the price of identities

both before and after the price declines of Ether in 2018 as illustrated in Figure 5.2.

Finally, assuming that the PoW blockchain target difficulty levels will not increase in-

definitely and remain somehow static (with minor fluctuations) at some point in the

future, UnchainedX’s lower and upper bounds are likely to converge as well and be less

volatile.
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Figure 5.2: Average Daily Price of Ether in USD and Block Difficulty Level Between
December 2016 and May 2019 – Partially based on [177], Data Source [270]

5.3.3 Proof-of-Concept Implementation

While Section 5.3.1 and Section 5.3.2 evaluate UnchainedX with regards to security

guarantees in the context of different PoW blockchain platforms, the applicability and

feasibility within the context of IoT devices has not been covered yet. To do so, a proof-

of-concept implementation of the original Unchained protocol based on the Bitcoin and

Ethereum blockchain was created and is available on Github (see Appendix B.3.5).

The prototypes are relying on public/private key pairs instead of DIDs to simplify the

proof-of-concept. However, this does neither affect provided security guarantees, nor the

performance of the prototypes. In order to evaluate the prototypes in a common IoT

scenario, we choose a Raspberry Pi 3 as an evaluation platform.

For the Bitcoin blockchain, the size of an identity proof varied between 10KB-50KB

depending on the size of the block. The time to verify an identity proof was around two

seconds without further optimizations. In case of Ethereum, a proof consumes around

50KB-150KB of storage depending on the block size, but takes around 60s to be verified.

The slow verification time is caused by a deliberate design choice of the Ethereum hash

function Ethash [271] to achieve ASICS resistance. As a result, deploying the protocol

on a Bitcoin-like PoW blockchain is more practical. However, other PoW blockchain

platforms that do not rely on Ethash or similar algorithms with the same property are

suitable as well.

Since the identities are deployed to networks by the network operators or device manu-

factures, we assume that the proofs itself are not generated on the actual devices – hence,
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Loops Home
mark-
ings

Dead
markings

Dead
transi-
tions

Live
transi-
tions

No No Yes No No

Table 5.3: State-Space Analysis Results of the UnchainedX CPN Model

we did not conduct any performance benchmarks for creating proofs on the Raspberry

Pi 3.

5.3.4 State-Space Analysis

The state-space analysis of the UnchainedX CPN model follows the same approach as

the state-space analysis of the Authcoin CPN model in Section 5.2. However, due to

a lower level of complexity, the mode is not separated into sub-modules. Instead, the

analysis is performed on the complete CPN model. Results and selected properties

derived from the analysis are presented in Table 5.3, while the complete state-space

analysis is available in Appendix A.2.3. As presented in Table 5.3, the CPN model

does not contain any loops. Therefore, no infinite occurrences of execution paths in the

state-space graph exist which guarantees the termination of the model. The analysis also

shows the absence of home markings which implicates that it is impossible to establish a

path that cannot be extended to reach a home marking. The detected dead markings are

caused by customized input values that prevent a state-space explosion. The existence

of at least one dead marking also guarantees a termination of executable actions at a

certain point, thereby preventing infinite runtime. Due to the CPN model containing a

dead marking, it does not have a live transition. No occurrences of dead transitions are

detected, therefore all transitions of the model can be potentially enabled at a certain

point during the protocol execution.

5.4 Discussion

A major limitation of this work is its conceptual nature, which is partially caused by

the fact that sufficiently smart machines, or devices that are able to autonomously act

in a (self-sovereign) business context, are not available yet. Instead of tackling tech-

nical details and presenting specific implementations, we introduce an overall concept.

Therefore, the paper-based feasibility evaluation of Section 5.1 presents a simplified

proof-of-concept based on existing technological solutions. However, as outlined in Sec-

tion 5.1.5, a substantial technical gap exists. Bridging this technological gap touches

not only various related research areas, but also requires further decades of research and
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development. While we extrapolate the generalizability of the V2X platform to further

M2X applications other, yet unknown, or not considered M2X use cases may not be

covered.

While the combination of DIDs, Authcoin and UnchainedX provides a suitable identity-,

authentication- and validation mechanism for entities participating in the M2X economy,

the presented solution still misses a comprehensive integration of the three building

blocks. Moreover, cross-organizational integration across different stakeholders, data

silos and domains is missing. The same applies to industry-standard implementations

within the M2X context. For vehicle-specific use cases, the recently presented vehicle

identity standard might be a suitable candidate [272]. Integrating the vehicle identity

standard – that uses a DID-structure – with the proposed validation and authentication

mechanism of Authcoin and the UnchainedX identity proofs is desirable.

Further limitations of the Authcoin evaluation result from the customized input state-

ments used to prevent a state-space explosion. Even though the input statements are

designed to cover as many executions paths of the state-space graph as possible, cer-

tain places and transitions with minor relevance we omit intentionally in order to avoid

a state-space explosion. For the same reason, the number of iterative executions of

the VARcreation module has been limited artificially in such a manner, that only one

VAR is created. Further limitations result from the modeling process itself: In order

to constrain the modeling complexity, we decided to implement the mining process in

a symbolic way, artificially limit the number of processed VARs to two. Moreover, the

CPN models do not contain limitations with regards to which user can fulfill a VAR, or

not in contrast to the protocol description in [68]. Furthermore, due to the sociotech-

nical nature of the Authcoin protocol, certain aspects of the model are simplified, such

as STRING-based placeholder challenges and randomized variables at different places

and transitions in order to simulate decisions of external entities. Additional limitations

originate from the limited scripting capabilities within CPN Tools, e.g., the implemented

hashing functionality does not provide real hashing properties. Similar applies to the

symbolic implementation of public-key cryptography which only allows for the symbolic

signing of hashed data records.

Comparable constraints apply to the UnchainedX CPN model. These result from the

customized input statements of the model as well as the modeling process itself which re-

quires several simplifications. We did not implement an actual consensus algorithm and

mining process for the underlying blockchain platform. Moreover, we simplified data

structures of the UnchainedX protocol and the blockchain platform, e.g., no Merkle

trees, blocks have no nonce, a simplified calculation of UnchainedX’s proofID calcula-

tion. Again, limitations originate from the restricted scripting capabilities of CPN Tools
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resulting in the same limitations regarding the hashing-functionalities and public-key

cryptography as the Authcoin CPN model.

As a cryptocurrency-based protocol, the UnchainedX concept currently suffers from

volatile cryptocurrency prices that complicate the everyday use of such protocols. More-

over, UnchainedX may allow network operators to determine the cost of a sybil node

attack, but does neither prevent such an attack, nor help to detect sybil nodes. A combi-

nation of Authcoin, UnchainedX and existing sybil node detection methods is desirable.



Chapter 6

Conclusion and Future Work

The following Chapter 6 concludes this work and suggests future research directions

in order to extend as well as to explore its key findings further. First, Section 6.1

summarizes the research results and answers the posed research questions. Afterwards,

Section 6.2 focuses on future work.

6.1 Conclusion

This thesis focuses on the emerging M2X economy in the context of IS research and

makes three contributions: First, it suggests architectural concepts that encompass an

interaction-, transaction- and collaboration model for M2X applications, a business col-

laboration lifecycle and governance structure as well as a set of modalities for these use

cases derived through an exploratory research approach. Second, it presents a decentral-

ized self-sovereign identity solution in combination with a validation and authentication

mechanism that is suitable for the M2X ecosystem. Sybil attacks are a common issue

of large-scale P2P networks, where hostile or faulty computing elements threaten the

security of the whole network. Therefore, we present a mechanism to price the costs

of a sybil node attack, thereby providing an easy to use metric for the sybil resistance

of a decentralized M2X system. As step towards a formal validation of these novel

infrastructural concepts, a Colored Petri Net model is provided covering the protocol-

driven data exchange of the M2X identity solution. The developed identity protocols

are validated using CPN models and proof-of-concept implementations, while specific

aspects of the presented M2X identity solution are evaluated using historical data to

asses its suitability. Finally, the feasibility of the M2X interactions-, transactions- and

collaboration model as well as the identity solution is demonstrated.

106
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6.1.1 Collaboration, Value Exchange and Governance

Based on the TaaS running case from the field of V2X use cases – as a sub-category of

M2X – a blockchain-based, platform- and manufacturer-agnostic interaction, transaction

and collaboration model is developed that enables a V2X platform for goods and services.

We outline and describe the technical foundations and the three running cases of V2X

transactions and interactions, e.g., vehicle-to-vehicle (V2V), vehicle-to-human (V2H),

or vehicle-to-infrastructure (V2I). Based on the running cases, the requirements and

criteria of the proposed solution are identified. Concerning functional and non-functional

requirements, we envision a blockchain and manufacturer agnostic and interoperable

V2X platform with a plug-in interface for external applications. Subsequently, we derive

the service-oriented architecture of the system based on the identified requirements and

goals. We present the system architecture using technology-agnostic UML-component

diagrams that detail the system’s main components and communication interfaces.

A core element of many of the use cases is the smart contract-based negotiation and

contract enactment among entities which are the result of collaborating tasks and sub-

processes. On an abstract level, most of the examples presented in this work follow a

similar workflow. Hence, we decide to integrate a smart-contract negotiation lifecycle

that is divided into five stages (preparatory, negotiation, contract execution, rollback and

contract expiry stage) that we explain in detail. Furthermore, we propose an auction

algorithm for the V2X economy that allows to reach an efficient consensus on a price

between buyer and seller. The auction mechanism can be executed on-, or off-chain.

Blockchain technology and smart contracts specifically are an essential part that enables

the V2X/M2X economy to offer a wide range of new business- and transaction models.

Those new models require a variety of context-specific process modalities. We derive a

preliminary set of context-specific process modalities. In consequence, we identify the

modalities of Accountability and Logging, Privacy, Trust, Market Behavior, Interoper-

ability and Environment Integrity.

The technical feasibility of the proposed platform is evaluated using a paper-based feasi-

bility evaluation method. We demonstrate that a simplified proof-of-concept implemen-

tation is feasible with existing technologies and recent research results. The required

hardware and infrastructure components exist and the Ethereum blockchain is suitable

to serve as the underlying smart contract platform. External data-feeds may be col-

lected via sensors, or data sharing, and trading platforms. The accumulated data is

either stored on-, or off-chain depending on the context and size. While a proof-of-

concept implementation is feasible with existing solutions, a technical gap remains with



Chapter 6. Conclusion and Future Work 108

respect to an industry-ready system. Finally, we demonstrated the generalizability of

the V2X platform to further applications within the M2X spectrum.

6.1.2 Validation, Authentication and Identities

In order to enable secure business collaborations, interactions and transactions within

a digital economy, the digital representation is required to establish and enable trust,

reputation mechanisms, perform verifiable and accountable transactions and establish

verifiable as well as auditable data provenance. Especially in the context of hardware

devices, humans and software agents – that/who all require a digital representation

of their “real-world” identity to conduct digital business transaction, or enact digital

collaborations – a digital representation mapping to the analogue identity is necessary.

Identity management in the M2X ecosystem is a multi-stakeholder issue that involves

not only its users, but also OEMs, infrastructure providers, regulators and various ser-

vice providers. A single central authority that governs the identity management for all

stakeholders is unlikely and poses the risk of a single point of failure. Moreover, iden-

tity data silos raise privacy concerns and suffer from interoperability issues, i.e., lock-in

effects. Thus, a centralized identity solution is not an option and a decentralized and

interoperable solution is required that fosters an open M2X ecosystem. For this purpose,

the concept of DIDs as representations for self-sovereign identities is utilized in combi-

nation with a blockchain-based authentication- and validation mechanism – inspired by

the Authcoin protocol. Authcoin is a challenge-response based protocol for authentica-

tion and validation in decentralized networks that is able to: i) prove control over an

asymmetric key pair linked to a DID document (validation) and ii) to produce verifiable

claims that can be used to authenticate an entity. By documenting the communication

process of the bidirectional validation and authentication mechanism on a blockchain

system, a transparent and auditable as well as tamper-resistant log is created that makes

it difficult for adversaries to introduce malicious identities/keys into a network. The Au-

thcoin protocol is formalized using Colored Petri Nets and an agent-oriented modeling

methodology resulting in a sound CPN model. The utilized modeling strategy is ex-

plained, the top level model and the refined sub-modules are illustrated and described.

We also present the required protocol semantics by defining the necessary token color

sets representing the used data structures. The state-space analysis of the Authcoin

protocol’s CPN model shows no infinite loops and the reachability of a home marking.

To combat the prevalent issue os sybil attacks in decentralized networks, we present a

mechanism to price the costs of a sybil node attack, thereby providing an easy to use
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metric for the sybil resistance of a decentralized M2X system. A protocol for a decen-

tralized blockchain-based identity system is introduced that allows for offline verification

while also raising the cost of introducing high numbers of sybil nodes to a network by

using economic disincentives. Circumventing the protocol and introducing a sybil node

is equivalent to investing more financial assets than it costs to create a malicious block

on the underlying blockchain platform. The protocol uses blockchain technology to bind

identities to blockchain-based wallet addresses, i.e., public/private key pairs.

In order to join the network, for each entity an identity proof is created. The proof is

derived from a deposit transaction that transferred the deposit from the entity’s wallet

address to a pre-defined deposit address. Users validate each others’ identities using the

uniquely generated identity proofs. We discuss the corresponding network parameters,

update mechanisms as well as upper- and lower-bounds of security guarantees. Finally,

specific aspects of the presented M2X identity solution are evaluated using historical data

to assess the suitability of the proposed system based on past events. The evaluation is

performed using data from the Bitcoin, and Ethereum platform to demonstrate the secu-

rity guarantees of binding an identity to a blockchain-system. Once more, the protocol

is formalized using CPNs following the same methodology and evaluation approach as

for the Authcoin protocol. Again, the state-space analysis shows no infinite loops and

the reachability of a home marking. Furthermore, the formal model is suitable to guide

future implementations that go beyond the proof-of-concept implementation presented

in this work.

6.2 Future Work

Since the M2X economy is still in its infancy, the contribution of this work have to be

considered initial research work in this area. Therefore, the limitations and challenges

in this work provide opportunities for future research. In addition to the gaps identified

in Section 5.1.5, this section briefly discusses a selection of open issues and ideas.

Further research directions are derived from the demarcations of this work listed in

Section 1.4.7. This work spared to discuss the privacy and security concerns of the

M2X ecosystem. Blockchain-based smart contract platforms enable inter-organizational

processes in untrusted environments. However, mapping business processes to smart

contracts results in privacy challenges, e.g., [273]. The validation and authentication

mechanism utilized by Authcoin also discards the issue of privacy and requires further

research on how to integrate, design and validate privacy-preserving challenges without
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stating personal information on the blockchain. Still, even if no explicit personal informa-

tion is directly stored on-chain, a lot of information can be deduced from pseudonymous

on-chain data as demonstrated on the Bitcoin blockchain [155][274].

In the information system as well as the technical context, data security and physical

security of involved entities has to be ensured. As part of business transactions and

collaborations, personal information is exchanged, stored and processed. Moreover, as

part of collaborations processes, business partners reveal potentially sensitive business

information to each other. A privacy-preserving and secure process model is required.

While in IT-security the protection goals and the mechanisms that guarantee them are

relatively well understood, the potentials risks that may arise from machines, or agents

acting autonomously are less clear. For example, malicious market participants who

conduct atypical price-, or condition negotiations must be distinguished from genuine

participants. Furthermore, illegal price agreements among agents raise interesting ques-

tions in the context of antitrust laws.

While M2X devices are equipped with a variety of sensors to sense their surroundings,

complex M2X scenarios require information beyond the sensing capabilities of a single

machine. Internet connectivity enables machines to access large amounts of data – either

for free or after performing a payment. However, determining which data-streams, data-

sources, or blockchain oracles are reliable, safe and trustworthy is difficult to predict –

especially in the context of an open and decentralized ecosystem. Thus, a mechanism to

provide reliable, secure/safe and accountable external data-provision for agents in the

M2X ecosystem is necessary.

Finally, several questions arise on a legal and sociological level: Within which boundaries

are machines allowed to (autonomously) conduct business? Who is liable for maliciously

acting machines, or a machine that fails to deliver a service – the owner, the programmer,

the operator, the machine? How does the M2X economy change our economic system?

How does it integrate into our daily lives? This is just a small subset of questions that

may inspire future research. A particular interesting research direction concerns the

influence of a universal M2X economy – where most services and work is provided and

done by machines – on the concepts of job and employments for humans.



Appendix A

Protocol Formalization

A.1 Authcoin Protocol

A.1.1 CPN Model

https://owncloud.gwdg.de/index.php/s/qzwMrcD22iNrBYx

A.1.2 Goal Model

https://owncloud.gwdg.de/index.php/s/UDNj5VX3Yeeq9nf

A.1.3 Behavior Interfaces

https://owncloud.gwdg.de/index.php/s/AKKS4r6Pr1Ifzif

A.1.4 Protocol Semantics

https://owncloud.gwdg.de/index.php/s/4hyBwIhiOsv69ah

A.1.5 State-Space Analysis

https://owncloud.gwdg.de/index.php/s/Kq482ryYVUkIC4D
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A.2 UnchainedX Protocol

A.2.1 CPN Model

https://owncloud.gwdg.de/index.php/s/PZhGh2kvbnm8EBV

A.2.2 Protocol Semantics

https://owncloud.gwdg.de/index.php/s/9f0t3t7dFQM4ZRB

A.2.3 State-Space Analysis

https://owncloud.gwdg.de/index.php/s/jbY9odGt7F1kpAl
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Publications

B.1 Peer-Reviewed

B.1.1 Self-managed and Blockchain-based Vehicular Ad-hoc Networks

Abstract: Combining Vehicular Ad-hoc Networks (VANETs) and Ethereum’s blockchain-

based application concepts enables transparent, self-managed and decentralized system

which are self-regulating and in no need of a central managing authority.

Reference: Benjamin Leiding, Parisa Memarmoshrefi, and Dieter Hogrefe. Self-Managed

and Blockchain-Based Vehicular Ad-Hoc Networks. In Proceedings of the 2016 ACM In-

ternational Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pages

137–140. ACM, 2016. Heidelberg, Germany. doi: 10.1145/2968219.2971409. URL

http://doi.acm.org/10.1145/2968219.2971409.

B.1.2 Authcoin: Validation and Authentication in Decentralized Net-

works

Abstract: Authcoin is an alternative approach to the commonly used public key infras-

tructures such as central authorities and the PGP web of trust. It combines a challenge

response-based validation and authentication process for domains, certificates, email ac-

counts and public keys with the advantages of a blockchain-based storage system. As a

result, Authcoin does not suffer from the downsides of existing solutions and is much

more resilient to sybil attacks.

113

http://doi.acm.org/10.1145/2968219.2971409
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Reference: Benjamin Leiding, Clemens H. Cap, Thomas Mundt, and Samaneh Rashid-

ibajgan. Authcoin: Validation and Authentication in Decentralized Networks. In The

10th Mediterranean Conference on Information Systems - MCIS 2016, Paphos, Cyprus,

September 2016.

B.1.3 Mapping Requirements Specifications into a Formalized Blockchain-

Enabled Authentication Protocol for Secured Personal Identity

Assurance

Abstract: The design and development of novel security and authentication protocols

is a challenging task. Design flaws, security and privacy issues as well as incomplete

specifications pose risks for its users. Authcoin is a blockchain-based validation and

authentication protocol for secure identity assurance. Formal methods, such as Colored

Petri Nets (CPNs), are suitable to design, develop and analyze such new protocols in

order to detect flaws and mitigate identified security risks.

In this work, the Authcoin protocol is formalized using Colored Petri Nets resulting in

a verifiable CPN model. An Agent-Oriented Modeling (AOM) methodology is used to

create goal models and corresponding behavior models. Next, these models are used to

derive the Authcoin CPN models. The modeling strategy as well as the required protocol

semantics are explained in detail. Furthermore, we conduct a state-space analysis on the

resulting CPN model and derive specific model properties. The result is a complete and

correct formal specification that is used to guide future implementations of Authcoin.

Reference: Benjamin Leiding and Alex Norta. Mapping Requirements Specifications

Into a Formalized Blockchain-Enabled Authentication Protocol for Secured Personal

Identity Assurance. In The 4th International Conference on Future Data and Security

Engineering - FDSE 2017, pages 181–196, Ho Chi Minh City, Vietnam, 2017. Springer.

B.1.4 Safeguarding a Formalized Blockchain-Enabled Identity-Authen-

tication Protocol by Applying Security Risk-Oriented Patterns

Abstract: Designing government independent and secure identification- and authen-

tication protocols is a challenging task. Design flaws and missing specifications as well

as security- and privacy issues of such protocols pose considerable user risks. Formal

methods, such as Colored Petri Nets (CPN), are utilised for the design, development

and analysis of such new protocols in order to detect flaws and mitigate identified se-

curity risks before deployment. This paper fills the gap, by applying in a novel way a

set of security risk-oriented patterns (SRP) to the so-called Authcoin protocol that we
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formalise using CPN. The initial formal model of Authcoin facilitates the detection and

elimination of design flaws, missing specifications as well as security- and privacy is-

sues. The additional risk- and threat analysis based on the Information Systems Security

Risk Management (ISSRM) domain model we perform on the formal CPN models of the

protocol. The identified risks are mitigated by applying SRPs to the formal model of

the Authcoin protocol. SRPs are a means to mitigate common security- and privacy

risks in a business-process context by applying thoroughly tested and proven best-practice

solutions. The goal of this work is to test the utility of SRPs outside of the the usual

application domain, to reduce the risks and vulnerabilities of the Authcoin protocol.

Reference: Alex Norta, Raimundas Matulevičius, and Benjamin Leiding. Safeguard-

ing a Formalized Blockchain-Enabled Identity-Authentication Protocol by Applying Se-

curity Risk-Oriented Patterns. Computers & Security, 86:253 – 269, 2019. ISSN 0167-

4048. doi: https://doi.org/10.1016/j.cose.2019.05.017. URL http://www.scie

ncedirect.com/science/article/pii/S0167404818302670.

B.1.5 Unchained Identities: Putting a Price on Sybil Nodes in Mobile

Ad hoc Networks

Abstract: As mobile ad hoc networks (MANETs) and similar decentralized, self-

organizing networks grow in number and popularity, they become worthwhile targets for

attackers. Sybil attacks are a widespread issue for such networks and can be leveraged

to increase the impact of other attacks, allowing attackers to threaten the integrity of

the whole network. Authentication or identity management systems that prevent users

from setting up arbitrary numbers of nodes are often missing in MANETs. As a result,

attackers are able to introduce nodes with a multitude of identities into the network,

thereby controlling a substantial fraction of the system and undermining its functional-

ity and security. Additionally, MANETs are often partitioned and lack Internet access.

As a result, implementing conventional measures based on central authorities is difficult.

This paper fills the gap by introducing a decentralized blockchain-based identity system

called Unchained. Unchained binds identities of nodes to addresses on a blockchain and

economically disincentivizes the production of spurious identities by raising the costs of

placing large numbers of Sybil identities in a network. Care is taken to ensure that

circumventing Unchained results in costs similar or higher than following the protocol.

We describe an offline verification scheme, detail the functionalities of the concept, dis-

cuss upper- and lower-bounds of security guarantees and evaluate Unchained based on

case-studies.

 https://doi.org/10.1016/j.cose.2019.05.017
http://www.sciencedirect.com/science/article/pii/S0167404818302670
http://www.sciencedirect.com/science/article/pii/S0167404818302670
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Reference: Arne Bochem, Benjamin Leiding, and Dieter Hogrefe. Unchained Iden-

tities: Putting a Price on Sybil Nodes in Mobile Ad hoc Networks. In International

Conference on Security and Privacy in Communication Systems - SecureComm 2018,

pages 358–374. Springer, 2018.

B.1.6 Enabling the Vehicle Economy Using a Blockchain-Based Value

Transaction Layer Protocol for Vehicular Ad-Hoc Networks

Abstract: The next generation of tightly interconnected vehicles offers a variety of

new technological as well as business opportunities. Those vehicles form so called vehic-

ular ad-hoc networks (VANETs) in order to enable vehicle-to-vehicle (V2V), vehicle-to-

infrastructure (V2I), vehicle-to-human (V2H), or in general vehicle-to-everything (V2X)

communication and interaction. A variety of manufacturers started implementing spe-

cific use cases, but limited to their own brands and products. However, a platform- and

manufacturer-agnostic default standard for interactions and transaction within this new

economy is still missing.

This paper fills the gap in the state of the art by introducing a novel blockchain-based

V2X platform that enables a transaction and interaction layer for goods and services

required to kick-start the upcoming V2X economy. We present the general functions

and features of the system, outline the requirements and goals as well as the architec-

ture of the V2X platform. Moreover, we detail the system engagement processes of the

identified stakeholders inside the V2X ecosystem and the theoretical foundations of those

interactions and transactions.

Reference: Benjamin Leiding and William V. Vorobev. Enabling the V2X Economy

Revolution Using a Blockchain-based Value Transaction Layer for Vehicular Ad-hoc

Networks. In The 12th Mediterranean Conference on Information Systems - MCIS 2018,

Corfu, Greece, 2018.

B.1.7 Blogchain – Disruptives Publizieren auf der Blockchain

Abstract: Wir stellen ein neues Konzept als Metamodell für das wissenschaftliche

Publikationswesen vor. Unser Konzept ist im Kontext eines dreistufigen Phasenmodells

digitaler Disruption von Geschäftsprozessen angesiedelt. Die erste Phase besteht dabei

aus Technologie ohne Prozessanpassung. Die zweite Phase umfasst eine Prozessanpas-

sung unter der Kontrolle von Intermediären und führt zu unerwünschter aber schwer

vermeidbarer Zentralisierung. Die dritte Phase durchbricht schließlich die Vormacht-

stellung intermediärer Institutionen und nutzt dazu die disruptiven Möglichkeiten der
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Blockchain-Technologie.

Die Anwendung dieser Technologie erlaubt eine Veränderung der Geschäftsprozesse beste-

hender Zeitschriften, macht die Rolle des Verlags als Intermediär überflüssig und ver-

spricht eine Lösung des Problems der Kostenexplosion in der wissenschaftlichen Liter-

aturversorgung. Wir stellen Ergebnisse einer theoretischen Machbarkeitsstudie vor und

präsentieren eine erste Implementierung als Proof-of-Concept. Diese werden als Basis

für ein Feldexperiment dienen.

Reference: Clemens H. Cap and Benjamin Leiding. Blogchain – Disruptives Pub-

lizieren auf der Blockchain. HMD Praxis der Wirtschaftsinformatik, 55(6):1326–1340,

2018. doi: 10.1365/s40702-018-00470-w. URL https://doi.org/10.1365/s40702-018

-00470-w.

B.1.8 Disruptives Publizieren mit der Blockchain

Abstract: Wir stellen ein neues Konzept für das wissenschaftliche Publikationswesen

vor. Unsere Vision ist im Kontext eines dreistufigen Phasenmodells digitaler Disrup-

tion von Geschäftsprozessen angesiedelt. Die erste Phase besteht dabei aus Technologie

ohne Prozessanpassung. Die zweite Phase umfasst eine Prozessanpassung unter der

Kontrolle von Intermediären und führt zu unerwünschter aber schwer vermeidbarer Zen-

tralisierung. Die dritte Phase durchbricht schließlich die Vormachtstellung intermediärer

Institutionen und nutzt dazu die disruptiven Möglichkeiten der Blockchain-Technologie.

Die Anwendung dieser Technologie erlaubt eine Veränderung der Geschäftsprozesse beste-

hender Zeitschriften, macht die Rolle des Verlags als Intermediär überflüssig und ver-

spricht eine Lösung des Problems der Kostenexplosion in der wissenschaftlichen Lit-

eraturversorgung. Wir stellen Ergebnisse einer theoretischen Machbarkeitsstudie vor,

präsentieren eine erste Implementierung als Proof-of-Concept und diskutieren weitere

mögliche Realisierungsformen unseres Ansatzes.

Reference: Clemens H. Cap and Benjamin Leiding. Disruptives Publizieren mit der

Blockchain. In H. Fill, A. Meier (Hrsg.): Blockchain – Grundlagen, Anwendungsszenar-

ien und Nutzungspotentiale, Springer Vieweg, 2019.

B.1.9 Automated Sensor-Fusion Based Emergency Rescue for Remote

and Extreme Sport Activities

Abstract: Even though technological advances changed and improved our daily life

in various ways, the risks and dangers of extreme sport activities (ESAs) still persist

https://doi.org/10.1365/s40702-018-00470-w
https://doi.org/10.1365/s40702-018-00470-w
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and the progress of technology had little impact on them. Existing emergency rescue

devices for ESAs still require manual activation and do not detect emergency situations

autonomously. However, fusing data feeds of simple sensors can easily enhance the

functionalities of those devices and allows for the detection of emergency situations and

subsequent rescue in the case of injuries. We identify the difficulties and challenges

posed by ESAs, the role and potential value of information technology in such activities

and example use cases and scenarios. We further present a prototype device for climbers

that can detect potentially dangerous fall events.

Reference: Benjamin Leiding, Arne Bochem, and Luca Hernandez Acosta. Auto-

mated Sensor-Fusion Based Emergency Rescue for Remote and Extreme Sport Activ-

ities. In IWCMC 2019 Wireless Sensor Symposium (IWCMC-Wireless Sensors 2019),

Tangier, Morocco, 2019. IEEE.

B.1.10 Lowering Financial Inclusion Barriers With a Blockchain-Based

Capital Transfer System

Abstract: Transferring money and gaining access to credit across international bor-

ders, is still complicated, time consuming and expensive. Existing money transfer sys-

tems suffer furthermore from long lines, exchange rate losses, counter-party risks, bu-

reaucracy and extensive paperwork. An estimate two billion adults are unbanked and

with no, or limited access to financial services. Providing workable financial services

to this population is often tagged as a key step towards eliminating world poverty and

bootstrapping local economies. The Everex application focuses on easing the financial

inclusion problem by applying blockchain technology for cross-border remittance, online

payment, currency exchange and micro lending, without the volatility issues of exist-

ing, non-stablecoin cryptocurrencies. Finally, the Everex wallet facilitates a fiat-to-

cryptocurrency gateway that eases access to cryptocurrencies, thereby enabling our users

to instantly buy and sell tokens without having to visit an exchange. This paper fills the

gap in the state of the art by presenting a blockchain-based capital transfer system that

aims to lower financial inclusion barriers and provide financial services to the unbanked.

We present the advantages of the system, outline the requirements and goals, as well as

the architecture of the Everex financial eco-system.

Reference: Alex Norta, Benjamin Leiding, and Alexi Lane. Lowering Financial In-

clusion Barriers With a Blockchain-Based Capital Transfer System. In CryBlock 2019 -

2nd Workshop on Cryptocurrencies and Blockchains for Distributed Systems (co-located

with INFOCOM 2019), Paris, France, 2019. IEEE.
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B.1.11 Ensuring Resource Trust and Integrity in Web Browsers Using

Blockchain Technology

Abstract: Current web technology allows the use of cryptographic primitives as part of

server-provided Javascript. This may result in security problems with web-based services.

We provide an example for an attack on the WhisperKey service. We present a solution

which is based on human code reviewing and on CVE (Common Vulnerabilities and

Exposures) data bases. In our approach, existing code audits and known vulnerabilities

are tied to the Javascript file by a tamper-proof Blockchain approach and are signaled to

the user by a browser extension. The contribution explains our concept and its workflow;

it may be extended to all situations with modular, mobile code. Finally, we propose an

amendment to the W3C subresource recommendation.

Reference: Clemens H. Cap and Benjamin Leiding. Ensuring Resource Trust and In-

tegrity in Web Browsers Using Blockchain Technology. In Advanced Information Systems

Engineering Workshops, pages 115–125, Cham, 2018. Springer International Publishing.

B.1.12 Dead Letters to Alice - Reachability of E-Mail Addresses in

the PGP Web of Trust

Abstract: Over the last 25 years four million e-mail addresses have accumulated in

the PGP web of trust. In a study each of them was tested for vitality with the result

of 40% being unreachable. Of the mailboxes proven to be reachable, 46.77% turn out to

be operated by one of three organizations. In this article, the authors share their results

and challenges during the study.

Reference: Benjamin Leiding and Andreas Dähn. Dead Letters to Alice-Reachability

of E-Mail Addresses in the PGP Web of Trust. In Baltic Young PhD Conference (BaSoTI

2016) and arXiv:1605.03162, Tallinn, Estonia, 2016.

B.1.13 Exploring Classroom Response Systems in Practical Scenarios

Abstract: The increasing number of students per classroom requires new ways of in-

teractions betweens teachers and students. Classroom Response Systems (CRS) aim to

solve this problem by enabling feedback for large audiences. We defined and identified

requirements of a viable solution and present Tweedback as a example of modern Class-

room Response Systems. Tweedback is a web application and provides different types of
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feedback: A chatwall, where the audience can ask questions, a panic-button to provide

immediate feedback on the lecturers presentation and multiple choice questions. Tweed-

back has activeley been used since January 2013. The feedback of our users and our own

practical experiences allowed us to identify several issues of Classroom Response Systems

and develop suitable solutions.

Reference: Benjamin Leiding, Jonas Vetterick, and Clemens H. Cap. Exploring

Classroom Response Systems in Practical Scenarios. In Baltic Young PhD Conference

(BaSoTI 2014), Riga, Latvia, 2014.

B.2 Not Peer-Reviewed

B.2.1 Securing the Authcoin Protocol Using Security Risk-oriented

Patterns (Master’s Thesis)

Abstract: Designing and developing new security and authentication protocols in the

field of computer science is a challenging task. Design flaws and missing specifications

as well as security and privacy issues of such protocols pose risks for its users. Formal

methods, such as Colored Petri Nets, are utilized for the design, development and anal-

ysis of such new protocols in order to detect flaws and mitigate identified security risks.

In this thesis, the Authcoin protocol is formalized using Colored Petri Nets in order to

detect and eliminate eventual design flaws, missing specifications as well as security and

privacy issues. Furthermore, a risk and threat analysis based on the ISSRM domain

model is performed on the formal CPN models of the protocol. Subsequently, the identi-

fied risks are mitigated by applying security risk-oriented patterns to the formal model of

the Authcoin protocol. Security risk-oriented patterns are a means to mitigate common

security and privacy risks in processes by applying thoroughly tested and proven best-

practice solutions. The goal of this thesis is to reduce the risks and vulnerabilities of the

Authcoin protocol using the techniques and approaches mentioned above. In addition, we

share the lessons learned during the novel application of security risk-oriented patterns

to Colored Petri Nets and evaluate the resulting CPN models using state space analyses.

Reference: Benjamin Leiding. Securing the Authcoin Protocol Using Security Risk-

Oriented Patterns. Master’s thesis, University of Göttingen, Göttingen, Germany, 2017.
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B.2.2 Enabling the Vehicle Economy Using a Blockchain-Based Value

Transaction Layer Protocol for Vehicular Ad-Hoc Networks

(Whitepaper Version 1.3)

Abstract: The next generation of tightly interconnected vehicles offers a variety of

new technological as well as business opportunities. Vehicles form so called vehicu-

lar ad-hoc networks (VANETs) in order to enable vehicle-to-vehicle (V2V), vehicle-to-

infrastructure (V2I), vehicle-to-human (V2H), or in general vehicle-to-everything (V2X)

communication and interaction. A variety of manufacturers started implementing spe-

cific use cases that are limited to their own products. However, a default interaction

standard for this new economy is still missing. Chorus Mobility presents a blockchain-

based system that enables a manufacturer agnostic platform solution that allows VANET

participants to enact and transact any kind of services and goods. This whitepaper fills

the gap in the state of the art by introducing a blockchain-based transaction and inter-

action layer that enables our V2X platform for goods and services required to kick-start

the upcoming V2X economy. We present the advantages of the system, outline the re-

quirements and goals, as well as the architecture of the Chorus Mobility V2X platform

and eco-system.

Reference: Benjamin Leiding, and William V. Vorobev. Enabling the Vehicle Econ-

omy Using a Blockchain-Based Value Transaction Layer Protocol for Vehicular Ad-Hoc

Networks - Whitepaper Version 1.3. URL: https://bit.ly/2XMby0L, 2019.

B.3 Supervised Projects

B.3.1 Implementation of a Peer-Reviewing Platform on the Blockchain

(Bachelor‘s Thesis)

Author: Fabiola Buschendorf

Abstract: The blockchain technology offers an infrastructure for decentralized applica-

tions, such as cryptocurrencies. The data structure is shared in a peer-to-peer network,

in which untrusted members can distribute and process information transparently and

verifiable. Modern blockchain platforms allow Turing-complete computation with so-

called smart contracts and data storage for application development. Further, desired

behavior is rewarded with cryptographic tokens, that can be traded for further services.

This thesis takes advantage of those properties and proposes a prototype of an academic

https://bit.ly/2XMby0L
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peer-reviewing platform on the blockchain. Peer-reviewing benefits from decentralization,

as large scientific publishing houses possess a monopole on renowned journals, thus they

control access to and prices of published scientific articles. Further reports reveal that

anonymity and lacking incentivation facilitate fraud within the process and cause poor-

quality reviews. In this work, a requirements engineering process identifies associated

roles and functionalities of an academic peer-reviewing system. An analysis compares

existing blockchain platforms and selects a well suited environment for the system. The

architecture of a decentralized web application is designed. Finally, an open-source proto-

type is implemented using recent tools and frameworks and code examples are explained.

Link: https://github.com/bleidingGOE/fakechair

B.3.2 Distributed Privacy-Preserving Analyses on the Blockchain (Mas-

ter’s Thesis)

Author: Michael Debono Mrden

Abstract: Being able to share data between medical institutions is increasingly impor-

tant for medical research, particularly in areas such as infection prevention and control,

oncology, and rare diseases. Furthermore, big data analytics can take advantage of shared

data to create more value from additional data. However, sharing sensitive data often

encounters bottlenecks because of data privacy, where many times the explicit consent of

patients is needed for any of their data to leave a clinical site. An active research area

is working on solutions for enabling medical analyses across clinical sites in a privacy-

preserving manner, while in another area, blockchain technologies are being embraced to

rethink the privacy model in general.

In this thesis, we examine the current techniques in distributed privacy-preserving anal-

yses in the medical field, as well as privacy-preserving methods on the blockchain, and

aim to combine them. We focus on privacy-preserving methods such as differential pri-

vacy, Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC), and

Software Guard Extensions (SGX).

Inspired by MedCo, a system that uses HE, that enables groups of clinical sites to pri-

vately and securely share patient data and run queries for medical analyses from in-

vestigators, and Enigma, a blockchain platform based on Ethereum that improves data

privacy through SMPC and SGX, we implement and evaluate a prototype that allows

queries for medical analyses to be distributed across clinical sites through a blockchain

without compromising privacy.

https://github.com/bleidingGOE/fakechair
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B.3.3 Distributed Privacy-Focused Driver Scoring System (Bachelor’s

Thesis)

Author: Simon Niklas Schuler

Abstract: Modern vehicles have become so advanced and sophisticated at monitoring

themselves and the driver that they pose a risk to the privacy of the driver by collecting

privacy critical information. Among others especially insurance companies are inter-

ested in the data gathered by the on board computer of the vehicle while on the road.

This enables the insurance companies to monitor individual drivers and to better cal-

culate the risk of insuring them, thus minimizing the overall cost of insurance. Most

current driver surveillance systems are put in place on small scale and by the insurance

companies themselves. This creates an environment where the driver is dependent on

his/her insurance company because it possesses all collected data. Emerging from this

are problems like the possible abuse and leakage of the driver data, the drivers privacy

and centralization around the insurance. In this thesis we propose a decentralized and

privacy preserving system to address the need of the driver for privacy and safety of

his/her data as well as the need of the insurance to monitor the driver to some extent.

To achieve privacy for the driver our system implements a scoring mechanism that veils

privacy critical driving data from the insurance but still accounts for the need to evaluate

drivers in real time. Our system is designed to provide privacy and decentralization on

a large scale and it is based on Blockchain technology to achieve important properties

needed to overcome the challenges.

Link: https://github.com/bleidingGOE/Distributed-Privacy-Focused-Driver-

Scoring-System

B.3.4 A Modular Implementation of a Decentralized Academic Peer-

Review Platform (Master’s Thesis)

Author: Luca Hernandez Acosta

Abstract: The process of scientific publishing has a long history dating back to 1665.

With the idea of peer reviewing submitted manuscripts in 1831, one sought to increase

the quality of publications, and thus to sort out inferior submissions before publication.

Until this day, the peer review process has been deeply manifested in the publishing pro-

cess. Traditional and established publishers benefit from the peer review process, which is

provided free of charge by individuals out of the research community. The current state of

https://github.com/bleidingGOE/Distributed-Privacy-Focused-Driver-Scoring-System
https://github.com/bleidingGOE/Distributed-Privacy-Focused-Driver-Scoring-System
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peer review raises concerns about quality, fairness and costs related to publishing. While

open access publication enables global access to research papers without subscription fees,

it still fails a fair review process. Peer reviewing is an essential part of scientific publi-

cation to validate and evaluate scientific work. However, reviewers are not compensated

neither monetary nor in a form of gaining reputation for qualitative reviews. In this

thesis we are proposing a decentralized platform for peer reviewing conference or journal

submissions. By using distributed technologies like the Blockchain technology and the

Interplanetary File System (IPFS) we provide a transparent review process, a reputation

option for reviewers and the characteristics of open accessible publications.

Link: https://github.com/HernandezAcosta/Master-Project/tree/master/mast

er-webapp

B.3.5 Unchained Identities: Putting a Price on Sybil Nodes in Mobile

Ad hoc Networks (Proof-of-Concept Implementation)

Author: Simon Niklas Schuler

Link 1: https://github.com/bleidingGOE/unchained-cli-btc

Link 2: https://github.com/bleidingGOE/unchained-cli-eth

B.3.6 Authcoin: Validation and Authentication in Decentralized Net-

works (Proof-of-Concept Implementation)

Authors: Rando Mihkelsaar, Gregor Johannson, Marko Mets, Mart Aarma, and Vladislav

Šikirjavõi.

Link 1: https://github.com/bleidingGOE/Authcoin-Qtum

Link 2: https://github.com/bleidingGOE/Authcoin-android

Link 3: https://github.com/bleidingGOE/authcoin-demo-server

B.3.7 Privacy-Preserving Metadata-Queries Using Attribute-Based En-

cryption (Proof-of-Concept Implementation)

Author: Simon Niklas Schuler

Link: https://github.com/SchulerSimon/metadata-queing-using-abe

https://github.com/HernandezAcosta/Master-Project/tree/master/master-webapp
https://github.com/HernandezAcosta/Master-Project/tree/master/master-webapp
https://github.com/bleidingGOE/unchained-cli-btc
https://github.com/bleidingGOE/unchained-cli-eth
https://github.com/bleidingGOE/Authcoin-Qtum
https://github.com/bleidingGOE/Authcoin-android
https://github.com/bleidingGOE/authcoin-demo-server
https://github.com/SchulerSimon/metadata-queing-using-abe
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