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Chapter 1

Introduction

Cortical networks are confronted with ever-
changing conditions, whether these are imposed
on them by a natural environment, or induced
by the actions of the subjects themselves. For
example, when a predator is lurking for a prey
it should detect the smallest movement in the
bushes anywhere in the visual field, but as soon
as the prey is in full view and the predator moves
to strike, visual attention should focus on the
prey. Optimal adaptation for these changing
tasks requires a precise and flexible adjustment of
input amplification and other properties within
the local, specialized circuits of primary visual
cortex: strong amplification of small input while
lurking, but quenching of any irrelevant input
when chasing. These are changes from one task
to another. However, even the processing within
a single task may require the joint contributions
of networks with diverse computational prop-
erties. For example, listening to spoken lan-
guage involves the integration of phonemes at
the timescale of milliseconds to words and whole
sentences lasting for seconds. A similar integra-
tion of information overmultiple timescales is re-
quired for visual stimuli. Such temporal integra-
tion might be realized by a hierarchy of temporal
receptive fields, a prime example of adaption to
different processing requirements of each brain
area (Murray et al., 2014; Hasson et al., 2015).

Basic network properties like sensitivity, am-
plification, and integration timescale optimize
different aspects of computation, and hence a
generic input-output relation can be used to
infer signatures of the computational proper-
ties, and changes thereof (Kubo, 1957; Wilt-
ing and Priesemann, 2018a). Throughout this
manuscript, we refer to computation capability

in the following two, high-level senses. First,
the integration timescale determines the capabil-
ity to process sequential stimuli. If small inputs
are quenched away rapidly, the network may
quickly be ready to process the next input. In
contrast, networks that maintain input for long
timescales may be slow at responding to novel
input, but instead they can integrate information
and input over extended time periods (Boedecker
et al., 2012; Del Papa et al., 2017; Lazar, 2009;
Bertschinger and Natschläger, 2004). This is at
the heart of reservoir computing in echo state
networks or liquid state machines (Buonomano
and Merzenich, 1995; Maass et al., 2002; Jaeger
and Haas, 2004; Schiller and Steil, 2005; Jaeger
et al., 2007; Boedecker et al., 2012). Second, the
detection of small stimuli relies on a sufficient
amplification (Douglas et al., 1995). However, in-
creased sensitivity to weak stimuli can lead to in-
creased trial-to-trial variability (Gollo, 2017).

These examples show that local networks that
are tuned to one task may performworse at a dif-
ferent one, and there is no one-type-fits-all net-
work for all environmental and computational
demands. How does a neural network manage to
both react quickly to new inputs when needed,
but also maintain memory of the recent input,
e.g. when a human listens to language? Did the
brain evolve a large set of specialized circuits, or
did it develop a manner to fine-tune its circuits
quickly to the computational needs?

In order to understand how each cortical cir-
cuit or network processes its input, it would be
desirable to first know its basic dynamical prop-
erties. For example, knowing which impact one
additional spike has on the network (London
et al., 2010) would give insight into the amplifica-
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tion of small stimuli (Douglas et al., 1995; Suarez
et al., 1995; Miller, 2016). Knowing how much
of cortical activity can be attributed to external
activation or internal activation (Reinhold et al.,
2015) would allow to gauge howmuch of cortical
activity is actually induced by stimuli, or rather
internally generated, for example in the con-
text of predictive coding (Rao and Ballard, 1999;
Clark, 2013). Knowing the intrinsic network
timescale (Murray et al., 2014) would inform how
long stimuli are maintained in the activity and
can be read out for short term memory (Buono-
mano and Merzenich, 1995; Wang, 2002; Jaeger
et al., 2007; Lim and Goldman, 2013). However,
not even these basic properties of cortical net-
work dynamics are generally known with cer-
tainty.

To describe network responses, two contra-
dicting hypotheses have competed for more than
a decade, and are the subjects of ongoing scien-
tific debate: One hypothesis suggests that col-
lective dynamics are “asynchronous-irregular”
(AI) (Burns and Webb, 1976; Softky and Koch,
1993; Stein et al., 2005), i.e. neurons spike inde-
pendently of each other and in a Poisson man-
ner, which may reflect a balanced state (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000).
The other hypothesis proposes that neuronal net-
works operate at criticality (Beggs and Plenz,
2003; Levina et al., 2007, 2009b; Muñoz, 2018;
Beggs and Timme, 2012; Plenz and Niebur, 2014;
Tkačik et al., 2015; Humplik and Tkačik, 2017).
Criticality is a particular state at a phase transi-
tion, characterized by high sensitivity and long-
range correlations in space and time.

These hypotheses have distinct implications
for the coding strategy of the brain. The typ-
ical balanced state minimizes redundancy (Bar-
low, 2012; Atick, 1992; Bell and Sejnowski, 1997;
van Hateren and van der Schaaf, 1998; Hyväri-
nen and Oja, 2000), supports fast network re-
sponses (van Vreeswijk and Sompolinsky, 1996),
and shows vanishing autocorrelation time or
network timescale. In contrast, criticality in
models optimizes performance in tasks that
profit from extended reverberations of activity
in the network (Bertschinger and Natschläger,
2004; Haldeman and Beggs, 2005; Kinouchi and

Copelli, 2006; Wang et al., 2011; Boedecker et al.,
2012; Shew and Plenz, 2013; Del Papa et al., 2017).

Surprisingly, there is experimental evidence
for both AI and critical states in cortical net-
works, although both states are clearly distinct.
Evidence for the AI state is based on characteris-
tics of single neuron spiking, resembling a Pois-
son process, i.e. exponential inter spike inter-
val (ISI) distributions and a Fano factor 𝐹 close
to unity (Burns and Webb, 1976; Tolhurst et al.,
1981; Vogels et al., 1989; Softky and Koch, 1993;
Gur et al., 1997; de Ruyter van Steveninck et al.,
1997; Kara et al., 2000; Carandini, 2004). More-
over, spike count cross-correlations (Ecker et al.,
2010b; Cohen and Kohn, 2011) are small. In
contrast, evidence for criticality was typically
obtained from a population perspective instead,
and assessed neuronal avalanches, i.e. spatio-
temporal clusters of activity (Beggs and Plenz,
2003; Pasquale et al., 2008; Priesemann et al.,
2009; Friedman et al., 2012; Tagliazucchi et al.,
2012; Shriki et al., 2013), whose sizes are expected
to be power-law distributed if networks are crit-
ical (Bak et al., 1987). Deviations from power-
laws, typically observed for spiking activity in
awake animals (Bédard et al., 2006; Hahn et al.,
2010; Ribeiro et al., 2010; Priesemann et al., 2014),
were attributed to subsampling effects (Priese-
mann et al., 2009; Ribeiro et al., 2010; Priesemann
et al., 2013; Girardi-Schappo et al., 2013; Priese-
mann et al., 2014; Ribeiro et al., 2014; Levina and
Priesemann, 2017). Hence, different analysis ap-
proaches provided evidence for one or the other
hypothesis about cortical dynamics.

Evidence supports even more diversity of dy-
namical states across studies in vivo and in
vitro. Collective spiking activity clearly differs
between in vitro cultures and in vivo cortical
networks. Cultures in vitro typically exhibit
stretches of very little spiking activity, inter-
rupted by strong bursts of highly synchronized
or coherent activity (Robinson et al., 1993; Van
Pelt et al., 2004; Chiappalone et al., 2006; Wage-
naar et al., 2006; Orlandi et al., 2013; Vardi et al.,
2016; Beggs and Plenz, 2003). In contrast, spiking
activity recorded from cortex in awake animals in
vivo lacks such pauses, and instead shows con-
tinuous, fluctuating activity. These fluctuations
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show a dominant autocorrelation time that was
proposed to increase hierarchically across cere-
bral cortex, from sensory to frontal areas (Mur-
ray et al., 2014). Moreover, depending on ex-
perimental details such as brain area, species
and vigilance state, one also observes evidence
for asynchronous-irregular (AI) dynamics (Burns
and Webb, 1976; Softky and Koch, 1993), oscil-
lations (Gray et al., 1989; Gray, 1994; Buzsaki,
2004), or strong fluctuations associated with crit-
icality, bistability or up-and-down states (Break-
spear, 2017; Priesemann et al., 2009, 2013; Bellay
et al., 2015; Wilson, 2008; Stern et al., 1997; Cos-
sart et al., 2003). These states differ not only in
strength and structure of fluctuations, but also
in synchrony among neurons, from uncorrelated
to fully synchronized spiking. The observation
of such a vast range of dynamic states is puz-
zling, considering that the dynamics of all net-
works presumably originate from similar single-
neuron physiology and plasticity mechanisms.

In the past, insights about network properties
have been strongly hampered by the inevitable
limitations of spatial subsampling, i.e. the fact
that only a tiny fraction of all neurons can be
recorded experimentally with millisecond preci-
sion. Such spatial subsampling fundamentally
limits virtually any recording and hinders infer-
ences about the collective response of cortical
networks (Priesemann et al., 2009; Ribeiro et al.,
2010; Priesemann et al., 2014; Ribeiro et al., 2014;
Levina and Priesemann, 2017). Because of sub-
sampling, it has been impossible to conclusively
distinguish AI and critical dynamics in cortical
recordings, even though these states are funda-
mentally different on the population level.

This manuscript addresses the following ques-
tions: (i) How can one assess the dynamical state
of cortical networks even under strong subsam-
pling? (ii) What is the dynamical state of cortical
networks in vivo? (iii) How can one explain the
striking differences between dynamical states in
vivo and in vitro? (iv) How can the dynami-
cal state support rapid adaptation of computa-
tional requirements to changing environments?
This manuscript is structured as follows. It is
a compilation of four publications* (Wilting and

*On each of these publications, I am either first author or

Priesemann, 2018a; Wilting et al., 2018; Zieren-
berg et al., 2018; Wilting and Priesemann, 2019b).
Each of these manuscripts addresses one of the
questions above.

In Chap. 2 (Wilting and Priesemann, 2018a),
we show that subsampling leads to a strong over-
estimation of stability in a large class of time
evolving systems, which include epidemic spread
of infectious diseases (Farrington et al., 2003), cell
proliferation, evolution (see (Kimmel and Axel-
rod, 2015) and references therein), neutron pro-
cesses in nuclear power reactors (Pazy and Rabi-
nowitz, 1973), spread of bank-ruptcy (Filimonov
and Sornette, 2012), evolution of stock prices (Mi-
tov et al., 2009), or the propagation of spiking
activity in neural networks (Beggs and Plenz,
2003; Haldeman and Beggs, 2005). However, cor-
rect risk prediction is essential to timely initiate
counter actions to mitigate the propagation of
events. We introduce a novel estimator that al-
lows correct risk assessment even under strong
subsampling.

In Chap. 3 (Wilting and Priesemann, 2019b)
we build on the subsampling-invariant approach
presented in Chap. 2 in order to resolve the con-
tradictory results about cortical dynamics. We
establish an analytically tractable minimal model
for in vivo-like activity and estimate the dynam-
ical state of cortical activity. The model re-
produces a number of dynamical properties of
the network, which are experimentally accessi-
ble and enable us to validate our approach. We
then predict a number of yet unknown network
properties.

Both Chaps. 2 and 3 address a general read-
ership and contain a minimum of mathemat-
ical formulae. The corresponding mathemati-
cal derivations are presented in the appendix in
Chaps. A and B. These appendices also contain
details on the used models and simulations, ex-
perimental setups, data analysis. Finally, they
present supplementary figures with extended re-
sults.

In Chap. 4 (Zierenberg et al., 2018), we pro-
pose that the input strength is the defining dif-

shared first author. Each of the publications has been pub-
lished with open access and is subject to a Creative Com-
mon License.
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ference between in vitro and in vivo dynamics.
In vitro systems are completely isolated, whereas
in vivo networks receive continuous input from
sensory modalities and other brain areas. Un-
der these different conditions, we propose that
homeostatic plasticity is a sufficient mechanism
to promote self-organization to a diverse set of
dynamic states by mediating the interplay be-
tween external input rate and neural target spike
rate. Thereby, our framework offers testable pre-
dictions for the emergence of characteristic but
distinct network activity in vitro and in vivo.
Chapter C presents additional derivations and
extended results.

In Chap. 5 (Wilting et al., 2018), we pro-
pose that cortex operates in a particular dynamic
regime, the “reverberating regime” identified in
Chap. 3, specifically because in this regime small
changes in neural efficacy can tune computa-
tional properties over a wide range – a mecha-
nism that we propose to call dynamic adaptive
computation. In this regime a cortical circuit can
interpolate between the asynchronous-irregular
and the critical state.

In Chap. 6 we recapitulate the results and
draw connections between them. We discuss
how the presented results relate to other scien-
tific work and how they advance the research in
cortical networks. Finally, we outline future re-
search questions that arise from the presented re-
sults, or are made possible through our findings.
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Chapter 2

Inferring collective dynamical states from
widely unobserved systems†

Abstract

When assessing spatially-extended complex systems, one can rarely sample the states of all compo-
nents. We show that this spatial subsampling typically leads to severe underestimation of the risk
of instability in systems with propagating events. We derive a subsampling-invariant estimator, and
demonstrate that it correctly infers the infectiousness of various diseases under subsampling, making
it particularly useful in countries with unreliable case reports. In neuroscience, recordings are strongly
limited by subsampling. Here, the subsampling-invariant estimator allows to revisit two prominent
hypotheses about the brain’s collective spiking dynamics: asynchronous-irregular or critical. We iden-
tify consistently for rat, cat and monkey a state that combines features of both and allows input to
reverberate in the network for hundreds of milliseconds. Overall, owing to its ready applicability, the
novel estimator paves the way to novel insight for the study of spatially-extended dynamical systems.

†The content of this chapter is identical in wording and figures to the publication Wilting and Priese-
mann (2018a): J. Wilting & V. Priesemann. Inferring collective dynamical states from widely unobserved
systems. Nature Communications 9(1):2325 (2018). The article is published under the terms of a Cre-
ative Common License (http://creativecommons.org/licenses/by/4.0/). The corresponding Appendix A
of this monograph is identical in wording and figures to the online supplementary material of the same
publication. To this publication, I contributed all presented analytical derivations, simulations of the
models, and data analysis, as well as drafting all figures and creating all figures except for panel 2.1a. I
drafted, wrote, and reviewed the manuscript jointly with V. Priesemann. V. Priesemann designed the
study.

2.1 Introduction

How can we infer properties of a high-
dimensional dynamical system if we can only
observe a very small part of it? This problem of
spatial subsampling is common to almost every
area of research where spatially extended, time
evolving systems are investigated. For example,
in many diseases the number of reported infec-

tions may be much lower than the unreported
ones (Papoz et al., 1996), or in the financial sys-
tem only a subset of all banks is evaluated when
assessing the risk of developing system wide
instability (Quagliariello, 2009) (“stress test”).
Spatial subsampling is particularly severe when
recording neuronal spiking activity, because the
number of neurons that can be recorded with
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ms precision is vanishingly small compared
to the number of all neurons in a brain area
(Priesemann et al., 2009; Ribeiro et al., 2010,
2014) (Fig. 2.1a).

Here, we show that subsampling leads to a
strong overestimation of stability in a large class
of time evolving systems (Sec. A.1), which in-
clude epidemic spread of infectious diseases (Far-
rington et al., 2003), cell proliferation, evolution
(see Kimmel and Axelrod (2015) and references
therein), neutron processes in nuclear power re-
actors (Pazy and Rabinowitz, 1973), spread of
bank-ruptcy (Filimonov and Sornette, 2012), evo-
lution of stock prices (Mitov et al., 2009), or the
propagation of spiking activity in neural net-
works (Beggs and Plenz, 2003; Haldeman and
Beggs, 2005) (Fig. 2.1b). However, correct risk
prediction is essential to timely initiate counter
actions to mitigate the propagation of events. We
introduce a novel estimator that allows correct
risk assessment even under strong subsampling.
Mathematically, the evolution of all these sys-
tems is often approximated by a processwith a 1st
order autoregressive representation (PAR), e.g.
by an AR(1), branching, or Kesten process (Fig.
A.1, Sec. A.2). For these processes, we derive first
the origin of the estimation bias and develop a
novel estimator, which we analytically prove to
be consistent under subsampling. We then ap-
ply the novel estimator to models and real-world
data of disease and brain activity. To assure that
a PAR is a reasonable approximation of the com-
plex system under study, and to exclude contam-
ination through potential non-stationarities, we
included a set of automated, data-driven tests.

2.2 Model

In a PAR, the activity in the next time step, 𝐴𝑡+1,
depends linearly on the current activity 𝐴𝑡. In
addition, it incorporates external input, e.g. drive
from stimuli or other brain areas, with a mean
rate ℎ, yielding the autoregressive representation

⟨𝐴𝑡+1|𝐴𝑡⟩ = 𝑚𝐴𝑡 + ℎ, (2.1)

For the mathematically inclined reader we recommend
the detailed derivation in Secs. A.1 – A.4.

where ⟨⋅ | ⋅⟩ denotes the conditional expectation.
The stability of 𝐴𝑡 is solely governed by 𝑚, e.g.
the mean number of persons infected by one dis-
eased person (Heathcote, 1965). The activity is
stationary if 𝑚 < 1, while it grows exponentially
if 𝑚 > 1. The state 𝑚 = 1 separates the sta-
ble from the unstable regime. Especially close to
this transition, a correct estimate of 𝑚 is vital to
assess the risk that 𝐴𝑡 develops a large, poten-
tially devastating cascade or avalanche of events
(e.g. an epidemic disease outbreak or an epilep-
tic seizure), either generically or via a minor in-
crease in 𝑚.

2.3 Results

2.3.1 Subsamling bias of established esti-
mators

A conventional estimator (Heyde and Seneta,
1972; Wei and Winnicki, 1990) �̂�C of 𝑚 uses lin-
ear regression of activity at time 𝑡 and 𝑡 + 1, be-
cause the slope of linear regression directly re-
turns 𝑚 owing to the autoregressive representa-
tion in Eq. (2.1). This estimation of 𝑚 is con-
sistent if the full activity 𝐴𝑡 is known. How-
ever, under subsampling it can be strongly bi-
ased, as we show here. To derive the bias quan-
titatively, we model subsampling in a generic
manner in our stochastic framework: We assume
only that the subsampled activity 𝑎𝑡 is a random
variable that in expectation it is proportional to
𝐴𝑡, ⟨𝑎𝑡 |𝐴𝑡⟩ = 𝛼𝐴𝑡 + 𝛽 with two constants 𝛼
and 𝛽 (Sec. A.3). This represents, for example,
sampling a fraction 𝛼 of all neurons in a brain
area. Then the conventional estimator is biased
by 𝑚(𝛼2Var[𝐴𝑡] /Var[𝑎𝑡] − 1) (Corollary 6). The
bias vanishes only when all units are sampled
(𝛼 = 1, Figs. 2.1c–e), but is inherent to sub-
sampling and cannot be overcome by obtaining
longer recordings.

Kalman filtering (Hamilton, 1994; Shumway
and Stoffer, 1982; Ghahramani and Hinton, 1996),
a state-of-the-art approach for system identifica-
tion, cannot overcome the subsampling bias ei-
ther, because it assumes Gaussian noise for both
the evolution of 𝐴𝑡 and the sampling process for
generating 𝑎𝑡 (see Sec. A.7). These assumptions
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Figure 2.1: Spatial subsampling. a. In complex networks, such as the brain, often only a small subset of all units
can be sampled (spatial subsampling); figure created using TREES (Cuntz et al., 2010). b. In a branching network
(BN), an active unit (e.g. a spiking neuron, infected individual, or defaulting bank) activates some of its neighbors
in the next time step. Thereby activity can spread over the system. Units can also be activated by external drive.
As the subsampled activity 𝑎𝑡 may significantly differ from the actual activity 𝐴𝑡, spatial subsampling can impair
inferences about the dynamical properties of the full system. c. In recurrent networks (BN, Bak-Tang-Wiesenfeld
model (BTW)), the conventional estimator (empty symbols) substantially underestimates the branching ratio 𝑚
when less units 𝑛 are sampled, as theoretically predicted (dashed lines). The novel multistep regression (MR)
estimator (full symbols) always returns the correct estimate, even when sampling only 10 or 1 out of all 𝑁 = 104
units. d. For a BN with 𝑚 = 0.99, the conventional estimator infers �̂� = 0.37, �̂� = 0.1 or �̂� = 0.02 when sampling
100, 10, or 1 units respectively. Kalman filtering based estimation returns approximately correct values under
slight subsampling (𝑛 = 100), but is biased under strong subsampling. In contrast, MR estimation returns the
correct �̂� for any subsampling. e. MR estimation is exemplified for a subcritical branching process (𝑚 = 0.9,
ℎ = 10), where active units are observed with probability 𝛼. Under subsampling (gray), the regression slopes 𝑟1
are smaller than under full sampling (blue). f. While conventional estimation of 𝑚 relies on the linear regression
𝑟1 and is biased under subsampling, MR estimation infers �̂� from the exponential relation 𝑟𝑘 ∝ 𝑚𝑘, which remains
invariant under subsampling.
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are violated under typical subsampling condi-
tions, when the values of 𝑎𝑡 become too small,
so that the central limit theorem is not applica-
ble, and hence Kalman filtering fails (Figs. 2.1d,
A.7). It is thus applicable to a much narrower set
of subsampling problems and in addition requires
orders of magnitude longer runtime compared to
our novel estimator (Fig. A.7).

2.3.2 A novel, unbiased estimator

Our novel estimator takes a different approach
than the other estimators (Sec. A.4). Instead of
directly using the biased regression of activity at
time 𝑡 and 𝑡+1, we performmultiple linear regres-
sions of activity between times 𝑡 and 𝑡 + 𝑘 with
different time lags 𝑘 = 1,… , 𝑘max. These return
a collection of linear regression slopes 𝑟𝑘 (note
that 𝑟1 is simply the conventional estimator �̂�C).
Under full sampling, one expects an exponential
relation (Statman et al., 2014) 𝑟𝑘 = 𝑚𝑘 (Theorem
2). Under subsampling, however, we showed that
all regressions slopes 𝑟𝑘 between 𝑎𝑡 and 𝑎𝑡+𝑘 are
biased by the same factor 𝑏 = 𝛼2Var[𝐴𝑡] /Var[𝑎𝑡]
(Theorem 5). Hence, the exponential relation
generalizes to

𝑟𝑘 = 𝛼2Var[𝐴𝑡]
Var[𝑎𝑡]

𝑚𝑘 = 𝑏𝑚𝑘 (2.2)

under subsampling. The factor 𝑏 is, in general,
not known and thus 𝑚 cannot be estimated from
any 𝑟𝑘 alone. However, because 𝑏 is constant, one
does not need to know 𝑏 to estimate �̂� from re-
gressing the collection of slopes 𝑟𝑘 against the ex-
ponential model 𝑏𝑚𝑘 according to Eq. (2.2). This
result serves as the heart of our new multiple re-
gression (MR) estimator (Fig. 2.1f, Figs. A.1, A.2,
Corollary 3 and Theorem 5).

In fact, MR estimation is equivalent to esti-
mating the autocorrelation time of subcritical
PARs, where autocorrelation and regression 𝑟𝑘
are equal: We showed that subsampling de-
creases the autocorrelation strength 𝑟𝑘, but the
autocorrelation time 𝜏 is preserved. This is be-
cause the system itself evolves independently of
the sampling process. While subsampling bi-
ases each regression 𝑟𝑘 by decreasing the mu-
tual dependence between subsequent observa-
tions (𝑎𝑡, 𝑎𝑡+𝑘), the temporal decay in 𝑟𝑘 ∼ 𝑚𝑘 =

𝑒−𝑘 𝛥𝑡 / 𝜏 remains unaffected, allowing for a con-
sistent estimate of 𝑚 even when sampling only a
single unit (Fig. 2.1d). Particularly close to𝑚 = 1
the autocorrelation time 𝜏 = −𝛥𝑡 / log𝑚 diverges,
which is known as critical slowing down (Schef-
fer et al., 2012). Because of this divergence, MR
estimation can resolve the distance to criticality
in this regime with high precision.

The MR estimator is consistent under subsam-
pling, because the system itself evolves inde-
pendently of the sampling process: While sub-
sampling biases each regression 𝑟𝑘 by decreasing
the mutual dependence between subsequent ob-
servations (𝑎𝑡, 𝑎𝑡+𝑘), the temporal decay in 𝑟𝑘 ∼
𝑚𝑘 = 𝑒−𝑘 𝛥𝑡 / 𝜏 remains unaffected. Here, 𝜏 =
−𝛥𝑡 / log𝑚 refers to the autocorrelation time of
stationary (subcritical) processes, where autocor-
relation and regression 𝑟𝑘 are equal, and 𝛥𝑡 is the
time scale of the investigated process. Thus for
subcritical PARs, subsampling decreases the au-
tocorrelation strength 𝑟𝑘, while the autocorrela-
tion time 𝜏 is preserved. Making use of this result
allows for a consistent estimate of 𝑚 even when
sampling only a single unit (Fig. 2.1d).

PARs are typically only a first order approxi-
mation of real world event propagation. How-
ever, their mathematical structure allowed for an
analytical derivation of the subsampling bias and
the consistent estimator. To show that theMR es-
timator returns correct results also formore com-
plex systems, we applied it to more complex sim-
ulated systems: a branching network (Haldeman
and Beggs, 2005) (BN) and the non-linear Bak-
Tang-Wiesenfeld model (Bak et al., 1987) (BTW).
In contrast to generic PARs, these models (a) run
on recurrent networks and (b) are of finite size.
In addition, the second model shows (c) com-
pletely deterministic propagation of activity in-
stead of the stochastic propagation that charac-
terizes PARs, and (d) the activity of each unit de-
pends on many past time steps, not only one.
Both models approximate neural activity propa-
gation in cortex (Beggs and Plenz, 2003; Halde-
man and Beggs, 2005; Priesemann et al., 2009;
Ribeiro et al., 2010; Priesemann et al., 2013, 2014).
For both models the numerical estimates of 𝑚
were precisely biased as analytically predicted,
although the models are only approximated by
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Figure 2.2: Disease propagation. In epidemic models, the reproductive number 𝑚 can serve as an indicator
for the infectiousness of a disease within a population, and predict the risk of large incidence bursts. We have
estimated �̂� from incidence time series of measles infections for 124 countries worldwide (Sec. A.9); as well
as noroviral infection, measles, and invasive meticillin-resistant Staphylococcus aureus (MRSA) infections in
Germany. a. MR estimation of �̂� is shown for measles infections in three different countries. Error bars here and
in all following figures indicate 1SD or the corresponding 16% to 84% confidence intervals if asymmetric. The
reproductive numbers �̂� decrease with the vaccination rate (Spearman rank correlation: 𝑟 = −0.342, 𝑝 < 10−4).
b. Weekly case report time series for norovirus, measles and MRSA in Germany. c. Reproductive numbers �̂� for
these infections. d. When artificially subsampling the measles recording (under-ascertainment), conventional
estimation underestimates �̂�C, while MR estimation still returns the correct value. Both estimator return the
same �̂� under full sampling.

a PAR (dashed lines in Fig. 2.1c, Eq. A.4). The
bias is considerable: For example, sampling 10%
or 1% of the neurons in a BN with 𝑚 = 0.9 re-
sulted in the estimates �̂�C = 𝑟1 = 0.312, or
even �̂�C = 0.047, respectively. Thus a process
fairly close to instability (𝑚 = 0.9) is mistaken as
Poisson-like (�̂�C = 0.047 ≈ 0) just because sam-
pling is constrained to 1% of the units. Thereby
the risk that systems may develop instabilities is
severely underestimated.

MR estimation is readily applicable to subsam-
pled data, because it only requires a sufficiently
long time series 𝑎𝑡, and the assumption that in ex-
pectation 𝑎𝑡 is proportional to 𝐴𝑡. Hence, in gen-
eral it suffices to sample the system randomly,

without even knowing the system size 𝑁 , the
number of sampled units 𝑛, or any moments of
the underlying process. Importantly, one can ob-
tain a consistent estimate of 𝑚, even when sam-
pling only a very small fraction of the system, un-
der homogeneity even when sampling only one
single unit (Figs. 2.1c,d, Fig. A.6). This robust-
ness makes the estimator readily applicable to
any system that can be approximated by a PAR.
We demonstrate the bias of conventional estima-
tion and the robustness of MR estimation at the
example of two real-world applications.

17



2.3.3 Application to disease case reports.

We used the MR estimator to infer the “repro-
ductive number” 𝑚 from incidence time series of
different diseases (Diekmann et al., 1990). Dis-
ease propagation represents a nonlinear, com-
plex, real-world system often approximated by
a PAR (Earn, 2000; Brockmann et al., 2006).
Here, 𝑚 determines the disease spreading behav-
ior and has been deployed to predict the risk
of epidemic outbreaks (Farrington et al., 2003).
However, the problem of subsampling or under-
ascertainment has always posed a challenge (Pa-
poz et al., 1996; Hauri et al., 2011).

As a first step, we cross-validated the novel
against the conventional estimator using the
spread of measles in Germany, surveyed by the
Robert-Koch-Institute (RKI). We chose this refer-
ence case, because we expected case reports to
be almost fully sampled owing to the strict re-
porting policy supported by child care facilities
and schools (Hellenbrand et al., 2003; Wichmann
et al., 2009), and to the clarity of symptoms. In-
deed, the values for �̂� inferred with the conven-
tional and with the novel estimator, coincided
(Fig. 2.2d, Sec. A.9). In contrast, after applying
artificial subsampling to the case reports, thereby
mimicking that each infection was only diag-
nosed and reported with probability 𝛼 < 1, the
conventional estimator severely underestimated
the spreading behavior, while MR estimation al-
ways returned consistent values (Fig. 2.2d). This
shows that the MR estimator correctly infers the
reproductive number 𝑚 directly from subsam-
pled time series, without the need to know the
degree of under-ascertainment 𝛼.

Second, we evaluated worldwide measles case
and vaccination reports for 124 countries pro-
vided by the WHO since 1980 (Fig. 2.2a, Sec.
A.9), because the vaccination percentage differs
in each country, and this is expected to impact
the spreading behavior through 𝑚. The repro-
ductive numbers �̂� ranged between 0 and 0.93,
and in line with our prediction clearly decreased
with increasing vaccination percentage in the re-
spective country (Spearman rank correlation: 𝑟 =
−0.342, 𝑝 < 10−4).

Third, we estimated the reproductive numbers
for three diseases in Germany with highly dif-

ferent infectiousness: noroviral infection (Hauri
et al., 2011; Bernard et al., 2014), measles, and
invasive meticillin-resistant Staphylococcus au-
reus (MRSA, an antibiotic-resistant germ clas-
sically associated with health care facilities
(Boucher and Corey, 2008), Figs. 2.2b,c), and
quantified their propagation behavior. MR es-
timation returned the highest �̂� = 0.98 for
norovirus, compliant with its high infectiousness
(Teunis et al., 2008). For measles we found the
intermediate �̂� = 0.88, reflecting the vaccina-
tion rate of about 97%. For MRSA we identified
𝑚 = 0, confirming that transmission is still minor
in Germany (Köck et al., 2011). However, a future
increase of transmission is feared andwould pose
a major public health risk (DeLeo et al., 2010).
Such an increase could be detected by our esti-
mator, even in countries where case reports are
incomplete.

2.3.4 Reverberating spiking activity in
vivo

We applied the MR estimator to cortical spiking
activity in vivo to investigate two contradictory
hypothesis about the collective spiking dynam-
ics. One hypothesis suggests that the collective
dynamics is “asynchronous irregular” (AI) (Burns
andWebb, 1976; Softky andKoch, 1993; de Ruyter
van Steveninck et al., 1997; Ecker et al., 2010a), i.e.
neurons spike independently of each other and
in a Poisson manner (𝑚 = 0), which may reflect a
balanced state (van Vreeswijk and Sompolinsky,
1996; Brunel, 2000; Renart et al., 2010). The other
hypothesis suggests that neuronal networks op-
erate at criticality (𝑚 = 1) (Beggs and Plenz, 2003;
Priesemann et al., 2009; Chialvo, 2010; Tkačik
et al., 2015; Humplik and Tkačik, 2017), thus in a
particularly sensitive state close to a phase tran-
sition. These different hypotheses have distinct
implications for the coding strategy of the brain:
Criticality is characterized by long-range correla-
tions in space and time, and in models optimizes
performance in tasks that profit from long rever-
beration of the activity in the network (Halde-
man and Beggs, 2005; Kinouchi and Copelli, 2006;
Boedecker et al., 2012; Shew and Plenz, 2013;
Del Papa et al., 2017). In contrast, the typical
balanced state minimizes redundancy (Hyväri-
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Figure 2.3: Animal spiking activity in vivo. In neuroscience,𝑚 denotes the mean number of spikes triggered by
one spike. We estimated �̂� from spiking activity recorded in vivo in monkey prefrontal cortex, cat visual cortex,
and rat hippocampus. a. Raster spike plot and population rate 𝑎𝑡 of 50 single units illustrated for cat visual
cortex. b. MR estimation based on the exponential decay of the autocorrelation of 𝑟𝑘 of 𝑎𝑡. Inset: Comparison
of conventional and MR estimation results for single units (medians �̂�C = 0.057 and �̂� = 0.954 respectively). c
�̂� estimated from from further subsampled cat recordings, estimated with the conventional and MR estimator.
Error bars indicate variability over 50 randomly subsampled 𝑛 out of the recorded 50 channels. d Avalanche size
distributions for cat visual cortex (blue) and the networks with AI, reverberating and near-critical dynamics in
panel f. e. For all simulations, MR estimation returned the correct distance to instability (criticality) 𝜖 = 1 − 𝑚
(Sec. A.8). In vivo spike recordings from rat, cat, and monkey, clearly differed from critical (𝜖 = 0) and AI (𝜖 = 1)
states (median �̂� = 0.98, error bars: 16% to 84% confidence intervals, note that some confidence intervals are too
small to be resolved). Opaque symbols indicate that MR estimation was rejected (Fig. A.5, Sec. A.5). Green, red,
and yellow arrows indicate 𝜖 for the dynamic states shown in panel f. f. Population activity and raster plots for
AI activity, reverberating, in vivo-like, and near critical networks. All three networks match the recording from
cat visual cortex with respect to number of recorded neurons and mean firing rate.

nen and Oja, 2000) and supports fast network re-
sponses (van Vreeswijk and Sompolinsky, 1996).

Analyzing in vivo spiking activity from
Macaque monkey prefrontal cortex during a
memory task, anesthetized cat visual cortex with
no stimulus (Figs. 2.3a,b), and rat hippocampus
during a foraging task (Sec. A.10) returned �̂� to
be between 0.963 and 0.998 (median �̂� = 0.984,
Fig. 2.3e, Fig. A.5), corresponding to autocorre-
lation times between 100ms and 2000ms. This
clearly suggests that spiking activity in vivo
is neither AI-like (𝑚 = 0), nor consistent with
a critical state (𝑚 = 1), but in a reverberating
state that shows autocorrelation times of a few
hundred milliseconds. We call the range of the
dynamical states found in vivo reverberating,
because input reverberates for a few hundred
millisecond in the network, and therefore

enables integration of information (Murray
et al., 2014; Chaudhuri et al., 2015; Jaeger and
Haas, 2004). Thereby the reverberating state
constitutes a specific narrow window between
AI state, where perturbations of the firing rate
are quenched immediately, and the critical state,
in which perturbations can in principle persist
infinitely long (for more details, see Wilting and
Priesemann (2018a)).

We demonstrate the robustness to subsam-
pling for the activity in cat visual cortex: we
chose random subsets of 𝑛 neurons from the to-
tal of 50 recorded single units. For any sub-
set, even for single neurons, MR estimation re-
turned about the same median �̂� (Fig. 2.3c). In
contrast, the conventional estimator misclassi-
fied neuronal activity by strongly underestimat-
ing �̂�: instead of �̂� = 0.984, it returned �̂�C =
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0.271 for the activity of all 50 neurons. This un-
derestimation gets even more severe when con-
sidering stronger subsampling (𝑛 < 50, Fig. 2.3c).
Ultimately, for single neuron activity, the con-
ventional estimator returned �̂�C = 0.057 ≈ 0,
which would spuriously indicate dynamics close
to AI instead of the reverberating state (inset of
Fig. 2.3b, Fig. 2.3c and Fig. A.6). The underes-
timation of �̂�C was present in all experimental
recordings (𝑟1 in Fig. A.5).

On first sight, �̂� = 0.984 may appear close to
the critical state, particularly as physiologically
a 1.6% difference to 𝑚 = 1 is small in terms of
the effective synaptic strength. However, this
seemingly small difference in single unit prop-
erties has a large impact on the collective dy-
namics and makes AI, reverberating, and critical
states clearly distinct. This distinction is read-
ily manifest in the fluctuations of the population
activity (Fig. 2.3f). Furthermore, the distribu-
tions of avalanche sizes clearly differ from the
power-law scaling expected for critical systems
(Beggs and Plenz, 2003), but are well captured
by a matched, reverberating model (Fig. 2.3d).
Because of the large difference in the network
dynamics, the MR estimator can distinguish AI,
reverberating, and critical states with the neces-
sary precision. In fact, the estimator would allow
for 100 times higher precision when distinguish-
ing critical from non-critical states, assuming in
vivo-like subsampling and mean firing rate (sam-
pling 𝑛 = 100 from 𝑁 = 104 neurons, Fig. 2.3e).
With larger 𝑁 , this discrimination becomes even
more sensitive (detailed error estimates: Fig. A.4
and Sec. A.6). As the number of neurons in a
given brain area is typically much higher than
𝑁 = 104 in the simulation, finite size effects are
not likely to account for the observed deviation
from criticality 𝜖 = 1 −𝑚 ≈ 10−2 in vivo, support-
ing that in rat, cat, and monkey the brain does
not operate in a critical state. Still, additional
factors like input or refractory periods may limit
the maximum attainable 𝑚 to quasi-critical dy-
namics on a Widom line (Williams-García et al.,
2014), which could in principle conform with our
results.

2.4 Discussion

Most real-world systems, including disease prop-
agation or cortical dynamics, are more compli-
cated than a simple PAR. For cortical dynamics,
for example, heterogeneity of neuronal morphol-
ogy and function, non-trivial network topology,
and the complexity of neurons themselves are
likely to have a profound impact onto the pop-
ulation dynamics (Marom, 2010). In order to test
for the applicability of a PAR approximation, we
defined a set of conservative tests (Sec. A.5) and
included only those time series, where the ap-
proximation by a PAR was considered appropri-
ate. For example, we excluded all recordings that
showed an offset in the slopes 𝑟𝑘, because this off-
set is, strictly speaking, not explained by a PAR
and might indicate non-stationarities (Fig. A.3).
Even with these conservative tests, we found the
exponential relation 𝑟𝑘 = 𝑏𝑚𝑘 expected for PARs
in themajority of real-world time series (Fig. A.5,
Sec. A.9). This shows that a PAR is a reasonable
approximation for dynamics as complex as cor-
tical activity or disease propagation. With using
PARs, we draw on the powerful advantage of an-
alytical tractability, which allowed for valuable
insight into dynamics and stability of the respec-
tive system. It is then a logical next step to re-
fine the model by including additional relevant
parameters (Eckmann et al., 2007). However, the
increasing richness of detail typically comes at
the expense of analytical tractability.

By employing for the first time a consistent,
quantitative estimation, we provided evidence
that in vivo spiking population dynamics reflects
a stable, fading reverberation state around 𝑚 =
0.98 universally across different species, brain ar-
eas, and cognitive states. Because of its broad
applicability, we expect that besides the ques-
tions investigated here, MR estimation can sub-
stantially contribute to the understanding of real-
world dynamical systems in diverse fields of re-
search where subsampling prevails.
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Chapter 3

Between perfectly critical and fully
irregular: a reverberating model captures
and predicts cortical spike propagation†

Abstract

Knowledge about the collective dynamics of cortical spiking is very informative about the underlying
coding principles. However, even most basic properties are not known with certainty, because their
assessment is hampered by spatial subsampling, i.e. the limitation that only a tiny fraction of all neurons
can be recorded simultaneously with millisecond precision. Building on a novel, subsampling-invariant
estimator, we fit and carefully validate a minimal model for cortical spike propagation. The model
interpolates between two prominent states: asynchronous and critical. We find neither of them in
cortical spike recordings across various species, but instead identify a narrow “reverberating” regime.
This approach enables us to predict yet unknown properties from very short recordings and for every
circuit individually, including responses tominimal perturbations, intrinsic network timescales, and the
strength of external input compared to recurrent activation – thereby informing about the underlying
coding principles for each circuit, area, state and task.

†The content of this chapter is identical in wording and figures to the publication Wilting and
Priesemann (2019b): J. Wilting & V. Priesemann: Between perfectly critical and fully irregu-
lar: a reverberating model captures and predicts cortical spike propagation. Cerebral Cortex
29(6):2759–2770 (2019). The article is published under the terms of a Creative Common License
(http://creativecommons.org/licenses/by/4.0/). The corresponding Chap. B is identical in wording and
figures to the online supplementary material of the same publication. To this publication, I contributed
all presented analytical derivations, simulations of the models, and data analysis, as well as drafting all
figures and creating all figures. I drafted, wrote, and reviewed the manuscript jointly with V. Priese-
mann.

3.1 Introduction

In order to understand how each cortical circuit
or network processes its input, it would be desir-
able to first know its basic dynamical properties.
For example, knowing which impact one addi-

tional spike has on the network (London et al.,
2010) would give insight into the amplification
of small stimuli (Douglas et al., 1995; Suarez et al.,
1995; Miller, 2016). Knowing how much of cor-
tical activity can be attributed to external activa-

23



tion or internal activation (Reinhold et al., 2015)
would allow to gauge how much of cortical ac-
tivity is actually induced by stimuli, or rather in-
ternally generated, for example in the context of
predictive coding (Rao and Ballard, 1999; Clark,
2013). Knowing the intrinsic network timescale
(Murray et al., 2014) would inform how long
stimuli are maintained in the activity and can
be read out for short term memory (Buonomano
and Merzenich, 1995; Wang, 2002; Jaeger et al.,
2007; Lim and Goldman, 2013). However, not
even these basic properties of cortical network
dynamics are generally known with certainty.

In the past, insights about these network prop-
erties have been strongly hampered by the in-
evitable limitations of spatial subsampling, i.e.
the fact that only a tiny fraction of all neurons
can be recorded experimentally with millisecond
precision. Such spatial subsampling fundamen-
tally limits virtually any recording and hinders
inferences about the collective response of cor-
tical networks (Priesemann et al., 2009; Ribeiro
et al., 2010; Priesemann et al., 2014; Ribeiro et al.,
2014; Levina and Priesemann, 2017).

To describe network responses, two contra-
dicting hypotheses have competed for more than
a decade, and are the subjects of ongoing scien-
tific debate: One hypothesis suggests that col-
lective dynamics are “asynchronous-irregular”
(AI) (Burns and Webb, 1976; Softky and Koch,
1993; Stein et al., 2005), i.e. neurons spike inde-
pendently of each other and in a Poisson man-
ner, which may reflect a balanced state (van
Vreeswijk and Sompolinsky, 1996; Brunel, 2000).
The other hypothesis proposes that neuronal net-
works operate at criticality (Beggs and Plenz,
2003; Levina et al., 2007, 2009b; Muñoz, 2018;
Beggs and Timme, 2012; Plenz and Niebur, 2014;
Tkačik et al., 2015; Humplik and Tkačik, 2017).
Criticality is a particular state at a phase transi-
tion, characterized by high sensitivity and long-
range correlations in space and time.

These hypotheses have distinct implications
for the coding strategy of the brain. The typ-
ical balanced state minimizes redundancy (Bar-
low, 2012; Atick, 1992; Bell and Sejnowski, 1997;
van Hateren and van der Schaaf, 1998; Hyväri-
nen and Oja, 2000), supports fast network re-

sponses (van Vreeswijk and Sompolinsky, 1996),
and shows vanishing autocorrelation time or
network timescale. In contrast, criticality in
models optimizes performance in tasks that
profit from extended reverberations of activity
in the network (Bertschinger and Natschläger,
2004; Haldeman and Beggs, 2005; Kinouchi and
Copelli, 2006; Wang et al., 2011; Boedecker et al.,
2012; Shew and Plenz, 2013; Del Papa et al., 2017).

Surprisingly, there is experimental evidence
for both AI and critical states in cortical net-
works, although both states are clearly distinct.
Evidence for the AI state is based on characteris-
tics of single neuron spiking, resembling a Pois-
son process, i.e. exponential inter spike inter-
val (ISI) distributions and a Fano factor 𝐹 close
to unity (Burns and Webb, 1976; Tolhurst et al.,
1981; Vogels et al., 1989; Softky and Koch, 1993;
Gur et al., 1997; de Ruyter van Steveninck et al.,
1997; Kara et al., 2000; Carandini, 2004). More-
over, spike count cross-correlations (Ecker et al.,
2010b; Cohen and Kohn, 2011) are small. In
contrast, evidence for criticality was typically
obtained from a population perspective instead,
and assessed neuronal avalanches, i.e. spatio-
temporal clusters of activity (Beggs and Plenz,
2003; Pasquale et al., 2008; Priesemann et al.,
2009; Friedman et al., 2012; Tagliazucchi et al.,
2012; Shriki et al., 2013), whose sizes are expected
to be power-law distributed if networks are crit-
ical (Bak et al., 1987). Deviations from power-
laws, typically observed for spiking activity in
awake animals (Bédard et al., 2006; Hahn et al.,
2010; Ribeiro et al., 2010; Priesemann et al., 2014),
were attributed to subsampling effects (Priese-
mann et al., 2009; Ribeiro et al., 2010; Priesemann
et al., 2013; Girardi-Schappo et al., 2013; Priese-
mann et al., 2014; Ribeiro et al., 2014; Levina and
Priesemann, 2017). Hence, different analysis ap-
proaches provided evidence for one or the other
hypothesis about cortical dynamics.

We here resolve the contradictory re-
sults about cortical dynamics, building on a
subsampling-invariant approach presented in
a companion study (Wilting and Priesemann,
2018a): (i) we establish an analytically tractable
minimal model for in vivo-like activity, which
can interpolate from AI to critical dynamics (Fig.
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Figure 3.1: Reverberating versus critical and irregular dynamics under subsampling. a. Raster plot and
population rate 𝑎𝑡 for networks with different spike propagation parameters or neural efficacy 𝑚. They exhibit
vastly different dynamics, which readily manifest in the population activity. b. When recording spiking activity,
only a small subset of all neurons can be sampled with millisecond precision. This spatial subsampling can
hinder correct inference of collective properties of the whole network; figure created using TREES (Cuntz et al.,
2010) and reproduced from Wilting and Priesemann (2018a). c. Estimated branching ratio �̂� as a function of
the simulated, true branching ratio 𝑚, inferred from subsampled activity (100 out of 10,000 neurons). While the
conventional estimator misclassified 𝑚 from this subsampled observation (gray, dotted line), the novel multistep
regression (MR) estimator returned the correct values d. For a reverberating branching model with 𝑚 = 0.98, the
conventional estimator inferred �̂� = 0.21 or �̂� = 0.002 when sampling 50 or 1 units respectively, in contrast to
MR estimation, which returned the correct �̂� even under strong subsampling. e. Using the novel MR estimator,
cortical network dynamics in monkey prefrontal cortex, cat visual cortex, and rat hippocampus consistently
showed reverberating dynamics, with 0.94 < �̂� < 0.991 (median �̂� = 0.98 over all experimental sessions, boxplots
indicate median / 25% – 75% / 0% – 100% over experimental sessions per species). These correspond to intrinsic
network timescales between 80ms and 2 s.

3.1a); (ii) we estimate the dynamical state of
cortical activity based on a novel, subsampling-
invariant estimator (Wilting and Priesemann,
2018a) (Figs. 3.1b – d); (iii) the model repro-
duces a number of dynamical properties of the
network, which are experimentally accessible
and enable us to validate our approach; (iv)
we predict a number of yet unknown network
properties, including the expected number of
spikes triggered by one additional spike, the
intrinsic network timescale, the distribution

of the total number of spikes triggered by a
single extra action potential, and the fraction
of activation that can be attributed to afferent
external input compared to recurrent activation
in a cortical network.

3.2 Material and Methods

We analyzed in vivo spiking activity from
Macaque monkey prefrontal cortex during a
short term memory task (Pipa et al., 2009),
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anesthetized cat visual cortex with no stimu-
lus (Blanche and Swindale, 2006; Blanche, 2009),
and rat hippocampus during a foraging task
(Mizuseki et al., 2009b,a) (Chap. B).We compared
the recordings of each experimental session to re-
sults of a minimal model of spike propagation,
which is detailed in the following.

Minimal model of spike propagation

To gain an intuitive understanding of our math-
ematical approach, make a thought experiment
in your favorite spiking network: apply one ad-
ditional spike to an excitatory neuron, in anal-
ogy to the approach by London et al. (2010). How
does the network respond to that perturbation?
As a first order approximation, one quantifies the
number of spikes that are directly triggered ad-
ditionally in all postsynaptic neurons. This num-
ber may vary from trial to trial, depending on the
membrane potential of the postsynaptic neurons.
However, what interests us most is 𝑚, the mean
number of spikes triggered by the one extra spike.
Any of these triggered spikes can in turn trigger
spikes in their postsynaptic neurons in a similar
manner, and thereby the perturbation may cas-
cade through the system.

In the next step, assume that perturbations
are started continuously at rate ℎ, for exam-
ple through afferent input from other brain ar-
eas or sensory modalities. Together, this leads
to the mathematical framework of a branch-
ing model (Harris, 1963; Heathcote, 1965; Pakes,
1971; Beggs and Plenz, 2003; Haldeman and
Beggs, 2005; Ribeiro et al., 2010; Priesemann et al.,
2013, 2014). This framework describes the num-
ber of active neurons 𝐴𝑡 in discrete time bins of
length 𝛥𝑡. Here, 𝛥𝑡 should reflect the propaga-
tion time of spikes between neurons. Formally,
each spike 𝑖 at the time bin 𝑡 excites a random
number 𝑌𝑡,𝑖 of postsynaptic spikes, on average
𝑚 = ⟨𝑌𝑡,𝑖⟩. The activity𝐴𝑡+1, i.e. the total number
of spikes in the next time bin is then defined as
the sum of the postsynaptic spikes of all current
spikes 𝐴𝑡, as well as the input ℎ𝑡:

𝐴𝑡+1 =
𝐴𝑡
􏾜
𝑖=1

𝑌𝑡,𝑖 + ℎ𝑡. (3.1)

This generic spiking model can generate dynam-
ics spanning AI and critical states depending on
the input (Zierenberg et al., 2018), and hence is
well suited to probe network dynamics in vivo
(see Sec. B.3 for details). Most importantly, this
framework enables us to infer 𝑚 and other prop-
erties from the ongoing activity proper. Mathe-
matical approaches to infer 𝑚 are long known if
the full network is sampled (Heyde and Seneta,
1972; Wei, 1991). Under subsampling, however,
it is the novel estimator described in Wilting and
Priesemann (2018a) that for the first time allows
an unbiased inference of 𝑚, even if only a tiny
fraction of neurons is sampled.

A precise estimate of 𝑚 is essential, because
the dynamics of the model is mainly governed by
𝑚 (Fig. 3.1a). Therefore, after inferring𝑚, a num-
ber of quantities can be analytically derived, and
others can be obtained by simulating a branching
model, which is constrained by the experimen-
tally measured 𝑚 and the spike rate.

Simulation

We simulated a branching model by mapping a
branching process (Eq. (3.1) and Sec. B.3) onto a
random network of 𝑁 = 10, 000 neurons in the
annealed disorder limit (Haldeman and Beggs,
2005). An active neuron activated each of its
𝜅 = 4 postsynaptic neurons with probability
𝑝 = 𝑚/𝜅. Here, the activated postsynaptic neu-
rons were drawn randomly without replacement
at each step, thereby avoiding that two different
active neurons would both activate the same tar-
get neuron. The branching model is critical for
𝑚 = 1 in the infinite-size limit, and subcritical
(supercritical) for 𝑚 < 1 (𝑚 > 1). We modeled in-
put to the network at rate ℎ by Poisson activation
of each neuron at rate ℎ/𝑁 . Subsampling (Priese-
mann et al., 2009) was applied to the model by
sampling the activity of 𝑛 neurons only, which
were selected randomly before the simulation,
and neglecting the activity of all other neurons.
Thereby, instead of the full activity 𝐴𝑡, only the
subsampled activity 𝑎𝑡 was considered for obser-
vation.

If not stated otherwise, simulations were run
for 𝐿 = 107 time steps (corresponding to ∼11 h).
Confidence intervals were estimated according
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to Wilting and Priesemann (2018a) from 𝐵 = 100
realizations of themodel, both for simulation and
experiments.

We compared the experimental recordings to
three different models: AI, near-critical, and re-
verberating. All three models were set up to
match the experiment in the number of sam-
pled neurons 𝑛 and firing rate 𝑅 = ⟨𝑎𝑡⟩/(𝑛 ⋅
𝛥𝑡). The AI and near-critical models were set
up with branching ratios of 𝑚 = 0 or 𝑚 =
0.9999, respectively. In addition, the reverber-
ating model matched the recording in 𝑚 = �̂�,
where �̂�was estimated from the recording using
the novel subsampling-invariant estimator (see
below). For all models, we chose a full network
size of 𝑁 = 104 and then determined the appro-
priate input ℎ = 𝑅𝛥𝑡𝑁 (1 − 𝑚) in order to match
the experimental firing rate. Exemplarily for the
cat recording, which happened to represent the
median �̂�, this yielded �̂� = 0.98, 𝑛 = 50, and
𝑅 = 7.25Hz. From these numbers, ℎ = 290,
ℎ = 5.8 and ℎ = 0.029 followed for the AI, rever-
berating, and near-critical models, respectively.

In Fig. 3.2, the reverberating branching model
was also matched to the length of the cat
recording of 295 s. To test for stationarity, the
cat recording and the reverberating branching
model were split into 59 windows of 5 s each, be-
fore estimating 𝑚 for each window. In Fig. 3.1c,
subcritical and critical branching models with
𝑁 = 104 and ⟨𝐴𝑡⟩ = 100 were simulated, and
𝑛 = 100 units sampled.

Subsampling-invariant estimation of �̂�

Details on the analysis are found in Sec. B.2.
For each experimental recording, we collected
the spike times of all recorded units (both single
and multi units) into one single train of popula-
tion spike counts 𝑎𝑡, where 𝑎𝑡 denotes how many
neurons spiked in the 𝑡𝑡ℎ time bin 𝛥𝑡. If not in-
dicated otherwise, we used 𝛥𝑡 = 4ms, reflecting
the propagation time of spikes from one neuron
to the next.

From these experimental time series, we es-
timated �̂� using the multistep regression (MR)
estimator described in all detail in Wilting and

Priesemann (2018a). In brief, we calculated the
linear regression slope 𝑟𝑘 𝛥𝑡, which describes the
linear statistical dependence of 𝑎𝑡+𝑘 upon 𝑎𝑡, for
different time lags 𝛿𝑡 = 𝑘𝛥𝑡 with 𝑘 = 1,… , 𝑘max.
In our branching model, these slopes are ex-
pected to follow the relation 𝑟𝛿𝑡 = 𝑏 ⋅ �̂�𝛿𝑡/𝛥𝑡 (or
𝑟𝑘 𝛥𝑡 = 𝑏 ⋅ �̂�𝑘), where 𝑏 is an unknown parameter
that depends on the higher moments of the un-
derlying process and the degree of subsampling.
However, it can be partialled out, allowing for an
estimation of𝑚without further knowledge about
𝑏. Throughout this study we chose 𝑘max = 2500
(corresponding to 10 s) for the rat recordings,
𝑘max = 150 (600ms) for the cat recording, and
𝑘max = 500 (2000ms) for the monkey recordings,
assuring that 𝑘max𝛥𝑡 was always in the order of
multiple intrinsic network timescales. In order
to test for the applicability of a MR estimation,
we used a set of conservative tests (Wilting and
Priesemann, 2018a). The exponential relation
can be rewritten as an exponential autocorrela-
tion function 𝑟𝛿𝑡 = 𝑏𝑚𝛿𝑡/𝛥𝑡 = exp(ln𝑚𝛿𝑡/𝛥𝑡) =
exp(−𝛿𝑡/𝜏), where the intrinsic network timescale
𝜏 relates to 𝑚 as 𝑚 = exp(−𝛥𝑡/𝜏). While the pre-
cise value of 𝑚 depends on the choice of the bin
size 𝛥𝑡 and should only be interpreted together
with the bin size (𝛥𝑡 = 4ms throughout this
study), the intrinsic network timescale is inde-
pendent of 𝛥𝑡. Therefore, we report both values
in the following.
3.3 Results

3.3.1 Reverberating spiking activity in
vivo

We applied MR estimation to the binned popu-
lation spike counts 𝑎𝑡 of the recorded neurons
of each experimental session across three differ-
ent species (see methods). We identified a lim-
ited range of branching ratios in vivo: in the ex-
periments �̂� ranged from 0.963 to 0.998 (median
�̂� = 0.98, for a bin size of 𝛥𝑡 = 4ms), which is
only a narrow window in the continuum from AI
(𝑚 = 0) to critical (𝑚 = 1). For these values of �̂�
found in cortical networks, the corresponding 𝜏
are between 100ms and 2 s (median 247ms, Fig.
3.1e, Fig. B.1). This clearly suggests that spik-
ing activity in vivo is neither AI-like, nor consis-
tent with a critical state. Instead, it is poised in a
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regime that, unlike critical or AI, does not maxi-
mize one particular property alone but may flexi-
bly combine features of both (Wilting et al., 2018).
Without a prominent characterizing feature, we
name it the reverberating regime, stressing that
activity reverberates (different from the AI state)
at timescales of hundreds of milliseconds (differ-
ent from a critical state, where they can persist
infinitely).

3.3.2 Validity of the approach

There is a straight-forward verification of the va-
lidity of our phenomenological model: it predicts
an exponential autocorrelation function 𝑟𝛿𝑡 for
the population activity 𝑎𝑡. We found that the ac-
tivity in cat visual cortex (Figs. 3.2a,a’) is surpris-
ingly well described by this exponential fit (Fig.
3.2b,b’). This validation holds to the majority of
experiments investigated (14 out of 21, Fig. B.1).

A second verification of our approach is based
on its expected invariance under subsampling:
We further subsampled the activity in cat vi-
sual cortex by only taking into account spikes
recorded from a subset 𝑛′ out of all available 𝑛
single units. As predicted (Fig. 3.2c), the esti-
mates of �̂�, or equivalently of the intrinsic net-
work timescale �̂�, coincided for any subset of
single units if at least about five of the avail-
able 50 single units were evaluated (Fig. 3.2c’).
Deviations when evaluating only a small sub-
set of units most likely reflect the heterogene-
ity within cortical networks. Together, these re-
sults demonstrate that our approach returns con-
sistent results when evaluating the activity of
𝑛 ≥ 5 neurons, which were available for all in-
vestigated experiments.

3.3.3 Origin of the activity fluctuations

The fluctuations found in cortical spiking ac-
tivity, instead of being intrinsically generated,
could in principle arise from non-stationary in-
put, which could in turn lead to misestimation
of 𝑚 (Priesemann and Shriki, 2018). This is un-
likely for three reasons: First, the majority of
experiments passed a set of conservative tests
that reject recordings that show any signature of
common non-stationarities, as defined in Wilt-

ing and Priesemann (2018a). Second, recordings
in cat visual cortex were acquired in absence of
any stimulation, excluding stimulus-related non-
stationarities. Third, when splitting the spike
recording into short windows, the window-to-
window variation of �̂� in the recording did not
differ from that of stationary in vivo-like rever-
berating models (𝑝 = 0.3, Figs. 3.2d,d’). For
these reasons the observed fluctuations in the
estimates likely originate from the characteris-
tic fluctuations of collective network dynamics
within the reverberating regime.

3.3.4 Timescales of the network and sin-
gle units

The dynamical state described by 𝑚 directly
relates to an exponential autocorrelation func-
tion with an intrinsic network timescale 𝜏 =
−𝛥𝑡/ ln𝑚. Exemplarily for the cat recording, 𝑚 =
0.98 implies an intrinsic network timescale of 𝜏 =
188ms, with 𝛥𝑡 = 4ms reflecting the spike prop-
agation time from one neuron to the next. While
the autocorrelation function of the full network
activity is expected to show an exponential de-
cay (Fig. 3.3a, blue), this is different for the auto-
correlation of single neurons – the most extreme
case of subsampling. We showed that subsam-
pling can strongly decrease the absolute values
of the autocorrelation function for any non-zero
time lag (Fig. 3.3a, gray). This effect is typically
interpreted as a lack of memory, because the au-
tocorrelation of single neurons decays at the or-
der of the bin size (Fig. 3.3a, red). However, ig-
noring the value at 𝛿𝑡 = 0, the floor of the auto-
correlation function still unveils the exponential
relation. Remarkably, the autocorrelation func-
tion of single units in cat visual cortex displayed
precisely the shape predicted under subsampling
(compare Figs. 3.3a and b).

3.3.5 Established methods are biased to
identifying AI dynamics

On the population level, networks with different
𝑚 are clearly distinguishable (Fig. 3.1a). Surpris-
ingly, single neuron statistics, namely interspike
interval (ISI) distributions, Fano factors, conven-
tional estimation of 𝑚, and the autocorrelation
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Figure 3.2: Validation of the model assumptions. The top row displays properties from a reverberating model,
the bottom row spike recordings from cat visual cortex. a/a’. Raster plot and population activity 𝑎𝑡 within bins
of 𝛥𝑡 = 4ms, sampled from 𝑛 = 50 neurons. b/b’. Multistep regression (MR) estimation from the subsampled
activity (5min recording). The predicted exponential relation 𝑟𝛿𝑡 ∼ 𝑚𝛿𝑡/𝛥𝑡 = exp(−𝛿𝑡/𝜏) provides a validation of
the applicability of the model. The experimental data are fitted by this exponential with remarkable precision.
c/c’. When subsampling even further, MR estimation always returns the correct timescale �̂� (or �̂�) in the model.
In the experiment, this invariance to subsampling also holds, down to 𝑛 ≈ 10 neurons (shaded area: 16% to 84%
confidence intervals estimated from 50 subsets of 𝑛 neurons). d/d’. The estimated branching parameter �̂� for 59
windows of 5 s length suggests stationarity of 𝑚 over the entire recording (shaded area: 16% to 84% confidence
intervals). The variability in �̂� over consecutive windows was comparable for experimental recording and the
matched model (𝑝 = 0.09, Levene test). Insets: Exponential decay exemplified for one example window each.

Figure 3.3: MR estimation and intrinsic network timescales. a. In a branching model, the autocorrelation
function of the population activity decays exponentially with an intrinsic network timescale 𝜏 (blue dotted line).
In contrast, the autocorrelation function for single neurons shows a sharp drop from 𝑟0 = 1 at lag 𝛿𝑡 = 0 to
the next lag 𝑟±𝛥𝑡 (gray solid line). We showed previously that this drop is a subsampling-induced bias. When
ignoring the zero-lag value, the autocorrelation strength is decreased, but the exponential decay and even the
value of the intrinsic network timescale 𝜏 of the network activity are preserved (inset). The red, dashed line
shows a potential, naive exponential function, fitted to the single neuron autocorrelation function (gray). This
naive fit would return a much smaller 𝜏. b. The autocorrelation function of single neuron activity recorded in cat
visual cortex (gray) precisely resembles this theoretical prediction, namely a sharp drop and then an exponential
decay (blue, inset), which persists over more than 100ms. A naive exponential fit (red) to the single neuron data
would return an extremely short 𝜏.
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strength 𝑟𝛿𝑡, all returned signatures of AI activity
regardless of the underlying network dynamics,
and hence these single-neuron properties don’t
serve as a reliable indicator for the network’s dy-
namical state.

First, exponential interspike interval (ISI) dis-
tributions are considered a strong indicator of
Poisson-like firing. Surprisingly, the ISIs of
single neurons in the in vivo-like branching
model closely followed exponential distributions
as well. The ISI distributions were almost in-
distinguishable for reverberating and AI models
(Figs. 3.4a,a’, Fig. B.2). In fact, the ISI distribu-
tions are mainly determined by the mean firing
rate. This result was further supported by coeffi-
cients of variation close to unity, as expected for
exponential ISI distributions and Poisson firing
(Fig. B.2).

Second, for both the AI and reverberating
regime, the Fano factor 𝐹 for single unit activity
was close to unity, a hallmark feature of irreg-
ular spiking (Tolhurst et al., 1981; Vogels et al.,
1989; Softky and Koch, 1993; Gur et al., 1997; de
Ruyter van Steveninck et al., 1997; Kara et al.,
2000; Carandini, 2004) (Fig. 3.5g, analytical re-
sult: Eq. (B.9)). Hence it cannot serve to distin-
guish between these different dynamical states.
When evaluating more units, or increasing the
bin size to 4 s, the differences became more pro-
nounced, but for experiments, the median Fano
factor of single unit activity did not exceed 𝐹 = 10
in any of the experiments, even in those with the
longest reverberation (Figs. 3.4b,b’, Fig. B.3). In
contrast, for the full network the Fano factor rose
to 𝐹 ≈ 104 for the in vivo-like branching model
and diverged when approaching criticality (Fig.
3.5g, analytical result: Eq. (B.5)).

Third, conventional regression estimators
(Heyde and Seneta, 1972; Wei, 1991) are biased
towards inferring irregular activity, as shown
before. Here, conventional estimation yielded a
median of �̂� = 0.057 for single neuron activity
in cat visual cortex, in contrast to �̂� = 0.954
returned by MR estimation (Fig. B.9).

Fourth, for the autocorrelation function of an
experimental recording (Fig. 3.3b) the rapid de-
cay of 𝑟𝛿𝑡 prevails, and hence single neuron ac-
tivity appears uncorrelated in time.

3.3.6 Cross-validation of model predic-
tions

We compared the experimental results to an in
vivo-like model, which was matched to each ex-
periment only in the average firing rate, and in
the inferred branching ratio �̂�. Remarkably, this
in vivo-like branching model could predict sta-
tistical properties not only of single neurons (ISI
and Fano factor, see above), but also pairwise and
population properties, as detailed below. This
prediction capability further underlines the use-
fulness of this simple model to approximate the
default state of cortical dynamics.

First, the model predicted the activity distri-
butions, 𝑝(𝑎𝑡), better than AI or critical models
for the majority of experiments (15 out 21, Figs.
3.4c,d,c’,d’, Figs. B.5, B.6), both for the exemplary
bin sizes of 4ms and 40ms. Hence, the branch-
ing models, which were only matched in their
respective first moment of the activity distribu-
tions (through the rate) and first moment of the
spreading behavior (through 𝑚), in fact approx-
imated all higher moments of the activity distri-
butions 𝑝(𝑎𝑡).

Likewise, the model predicted the distribu-
tions of neural avalanches, i.e. spatio-temporal
clusters of activity (Figs. 3.4e,f,e’,f’, Figs. B.7,
B.8). Characterizing these distributions is a clas-
sic approach to assess criticality in neuroscience
(Beggs and Plenz, 2003; Priesemann et al., 2014),
because avalanche size and duration distribu-
tions, 𝑝(𝑠) and 𝑝(𝑑), respectively, follow power
laws in critical systems. In contrast, for AI activ-
ity, they are approximately exponential (Priese-
mann and Shriki, 2018). The matched branching
models predicted neither exponential nor power
law distributions for the avalanches, but very
well matched the experimentally obtained distri-
butions (compare red and blue in Figs. 3.4e,f,e’,f’,
Figs. B.7, B.8). Indeed, model likelihood (Clauset
et al., 2009) favored the in vivo-like branching
model over Poisson and critical models for the
majority experiments (18 out of 21, Fig. B.7). Our
results here are consistent with those of spik-
ing activity in awake animals, which typically
do not display power laws (Priesemann et al.,
2014; Ribeiro et al., 2010; Bédard et al., 2006). In
contrast, most evidence for criticality in vivo, in
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Figure 3.4: Model validation for in vivo spiking activity. We validated our model by comparing experimental
results to predictions obtained from the in vivo-like, reverberating model, which was matched to the recording
in the mean rate, inferred 𝑚, and number of recorded neurons. In general, the experimental results (gray or
blue) were best matched by this reverberating model (red), compared to asynchronous-irregular (AI, green) and
near-critical (yellow) models. From all experimental sessions, best examples (top) and typical examples (bottom)
are displayed. For results from all experimental sessions see Figs. B.2 to B.9. a/a’. Inter-spike-interval (ISI)
distributions. b/b’. Fano factors of single neurons for bin sizes between 4ms and 4 s. c/c’. Distribution of spikes
per bin 𝑝(𝑎𝑡) at a bin size of 4ms. d/d’. Same as c/c’ with a bin size of 40ms. e/e’. Avalanche size distributions
𝑝(𝑠) for all sampled units. AI activity lacks large avalanches, near critical activity produces power-law distributed
avalanches, even under subsampling. f/f’. Same as e/e’, but for the avalanche duration distributions 𝑝(𝑑). g/g’.
Spike count cross-correlations (𝑟sc) as a function of the bin size.

particular the characteristic power-law distribu-
tions, has been obtained from coarse measures of
neural activity (LFP, EEG, BOLD; see Priesemann
et al. (2014) and references therein).

Last, the model predicted the pairwise spike
count cross correlation 𝑟sc. In experiments, 𝑟sc

is typically between 0.01 and 0.25, depending on
brain area, task, and most importantly, the anal-
ysis timescale (bin size) (Cohen and Kohn, 2011).
For the cat recording the model even correctly
predicted the bin size dependence of 𝑟sc from
�̄�sc ≈ 0.004 at a bin size of 4ms (analytical result:
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Eq. (B.12)) to �̄�sc ≈ 0.3 at a bin size of 2 s (Fig.
3.4g). Comparable results were also obtained for
some monkey experiments. In contrast, corre-
lations in most monkey and rat recordings were
smaller than predicted (Fig. 3.4g’, Fig. B.4). It
is very surprising that the model correctly pre-
dicted the cross-correlation even in some experi-
ments, as 𝑚 was inferred only from the temporal
structure of the spiking activity alone, whereas
𝑟sc characterizes spatial dependencies.

Overall, by only estimating the effective
synaptic strength 𝑚 from the in vivo record-
ings, higher-order properties like avalanche size
distributions, activity distributions and in some
cases spike count cross correlations could be
closely matched using the generic branching
model.

3.3.7 The dynamical state determines re-
sponses to small stimuli

After validating the model using a set of statis-
tical properties that are well accessible exper-
imentally, we now turn to making predictions
about yet unknown properties, namely network
responses to small stimuli. In the line of Lon-
don et al. (2010), assume that on a background
of spiking activity one single extra spike is trig-
gered. This spike may in turn trigger new spikes,
leading to a cascade of additional spikes 𝛥𝑡 prop-
agating through the network. A dynamical state
with branching ratio 𝑚 implies that on average,
this perturbation decays with time constant 𝜏 =
−𝛥𝑡/ log𝑚. Similar to the approach in London
et al. (2010), the evolution of the mean firing
rate, averaged over a reasonable number of tri-
als (here: 500) unveils the nature of the underly-
ing spike propagation: depending on 𝑚, the rate
excursions will last longer, the higher 𝑚 (Figs.
3.5a,b,c, Fig. B.11). The perturbations are not
deterministic, but show trial-to-trial variability
which also increases with 𝑚 (B.11b).

Unless 𝑚 > 1, the theory of branching models
ensures that perturbations will die out eventually
after a duration 𝑑𝛥, having accumulated a total of
𝑠𝛥 = ∑𝑑

𝑡=1 𝛥𝑡 extra spikes in total. This perturba-
tion size 𝑠𝛥 and duration 𝑑𝛥 follow specific dis-
tributions (Harris, 1963), which are determined
by 𝑚: they are power law distributed in the crit-

ical state (𝑚 = 1), with a cutoff for any 𝑚 < 1
(Fig. 3.5f, Figs. B.11c,d). These distributions im-
ply a characteristic mean perturbation size ⟨𝑠𝛥⟩
(Fig. 3.5d), which diverges at the critical point.
The variability of the perturbation sizes is also
determined by 𝑚 and also diverges at the critical
point (inset of Fig. 3.5d, Fig. B.11e).

Taken together, these results imply that the
closer a neuronal network is to criticality, the
more sensitive it is to external perturbations, and
the better it can amplify small stimuli. At the
same time, these networks also show larger trial-
to-trial variability. For typical cortical networks,
we found that the response to one single extra
spike will on average comprise between 20 and
1000 additional spikes in total (Fig. 3.5e).

3.3.8 Thedynamical state determines net-
work susceptibility and variability

Moving beyond single spike perturbations, our
model gives precise predictions for the network
response to continuous stimuli. If extra action
potentials are triggered at rate ℎ in the network,
the network will again amplify these external ac-
tivations, depending on𝑚. Provided an appropri-
ate stimulation protocol, this rate response could
be measured and our prediction tested in exper-
iments (Fig. B.11g). The susceptibility 𝜕𝑅/𝜕ℎ di-
verges at the critical transition and is unique to a
specific branching ratio 𝑚. We predict that typ-
ical cortical networks will amplify a small, but
continuous input rate by about a factor fifty (Fig.
B.11h, red).

While the input and susceptibility determine
the network’s mean activity, the network still
shows strong rate fluctuations around this mean
value. The magnitude of these fluctuations in re-
lation to the mean can be quantified by the net-
work Fano factor 𝐹 = Var[𝐴𝑡] / ⟨𝐴𝑡⟩ (Fig. 3.5g).
This quantity cannot be directly inferred from ex-
perimental recordings, because the Fano factor of
subsampled populations severely underestimates
the network Fano factor, as shown before. We
here used our in vivo-like model to obtain esti-
mates of the network Fano factor: for a bin size of
𝛥𝑡 = 4ms it is about 𝐹 ≈ 40 and rises to 𝐹 ≈ 4000
for bin sizes of several seconds, highlighting that
network fluctuations probably aremuch stronger
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Figure 3.5: Predictions about network dynamics and propagation of perturbations. Using our in-vivo-like,
reverberating model, we can predict several network properties, which are yet very complicated or impossible
to obtain experimentally. a – c. In response to one single extra spike, a perturbation propagates in the net-
work depending on the branching ratio 𝑚, and can be observed as a small increase of the average firing rate
of the sampled neurons, here simulated for 500 trials (as in (London et al., 2010)). This increase of firing rate
decays exponentially, with the decay time 𝜏 being determined by 𝑚. The perturbation a is rapidly quenched
in the asynchronous-irregular state, b decays slowly over hundreds of milliseconds in the reverberating state,
or c persists almost infinitely in the critical state. d. The average perturbation size ⟨𝑠𝛥⟩ and Fano factor 𝐹𝑠𝛥
(inset) increase strongly with 𝑚. e. Average total perturbation sizes predicted for each spike recording of mam-
malian cortex (errorbars: 5% – 95% confidence intervals). f. Distribution 𝑝(𝑠𝛥) of total perturbation sizes 𝑠𝛥. The
asynchronous-irregular models show approximately Poisson distributed, near critical models power-law dis-
tributed perturbation sizes. g. Bin size dependent Fano factors of the activity, here exemplarily shown for the
asynchronous-irregular (𝑚 = 0, green), representative reverberating (𝑚 = 0.98, red), and near critical (𝑚 = 0.9999,
yellow) models. While the directly measurable Fano factor of single neurons (dotted lines) underestimates the
Fano factor of the whole network, the model allows to predict the Fano factor of the whole network (solid lines).
h. The fraction of the externally generated spikes compared to all spikes in the network strongly decreases with
larger 𝑚. i. Fraction of the externally generated spikes predicted for each spike recording of mammalian cortex
(errorbars as in e).

than one would naively assume from experimen-
tal, subsampled spiking activity.

3.3.9 Distinguishing afferent and recur-
rent activation

Last, our model gives an easily accessible ap-
proach to solving the following question: given a

33



spiking neuronal network, which fraction of the
activity ⟨𝐴⟩ is generated by recurrent activation
from within the network, and which fraction can
be attributed to external, afferent excitation ℎ?
The branchingmodel readily provides an answer:
the fraction of external activation is ℎ/⟨𝐴⟩ = 1−𝑚
(Fig. 3.5h). In this framework, AI-like networks
are completely driven by external input currents
or noise, whereas reverberating networks gener-
ate a substantial fraction of their activity intrin-
sically. For the experiments investigated in this
study, we inferred that between 0.1% and 7% of
the activity are externally generated (median 2%,
Fig. 3.5i).

While our model is quite simplistic given the
complexity of neuronal network activity, keep in
mind that “all models are wrong, but some are
useful” (Box, 1979). Here, the model has proven
to provide a good first order approximation to a
number of statistical properties of spiking activ-
ity and propagation in cortex. Hence, it promises
insight into cortical function because (i) it relies
on simply assessing spontaneous cortical activ-
ity, (ii) it does not require manipulation of cor-
tex, (iii) it enables reasonable predictions about
sensitivity, amplification, and internal and exter-
nal activation, (iv) this analysis is possible in an
area specific, task- and state-dependent manner
as only short recordings are required for consis-
tent results.

3.4 Discussion

3.4.1 Our results resolve contradictions
between AI and critical states

Our results for spiking activity in vivo suggest
that network dynamics show AI-like statistics,
because under subsampling the observed corre-
lations are underestimated. In contrast, typi-
cal experiments that assessed criticality poten-
tially overestimated correlations by sampling
from overlapping populations (LFP, EEG) and
thereby hampered a fine distinction between crit-
ical and subcritical states (Pinheiro Neto et al.,
in prep). By employing for the first time a con-
sistent, quantitative estimation, we provided ev-
idence that in vivo spiking population dynamics

reflects a reverberating regime, i.e. it operates in
a narrow regime around 𝑚 = 0.98. This result
is supported by the findings by (Dahmen et al.,
2016): based on distributions of covariances,
they inferred that cortical networks operate in
a regime below criticality. Given the general-
ity of our results across different species, brain
areas, and cognitive states, our results suggest
self-organization to this reverberating regime as
a general organization principle for cortical net-
work dynamics.

3.4.2 The reverberating regime combines
features of AI and critical state

At first sight, �̂� = 0.98 of the reverberating
regime may suggest that the collective spiking
dynamics is very close to critical. Indeed, phys-
iologically a 𝛥𝑚 ≈ 1.6% difference to criticality
(𝑚 = 1) is small in terms of the effective synap-
tic strength. However, this apparently small
difference in single unit properties has a large
impact on the collective dynamical fingerprint
and makes AI, reverberating, and critical states
clearly distinct: For example, consider the sen-
sitivity to a small input, i.e. the susceptibility
𝜒 = 𝜕𝑅 / 𝜕ℎ = 1

1−𝑚 . The susceptibility diverges at
criticality, making critical networks overly sensi-
tive to input. In contrast, states with𝑚 ≈ 0.98 as-
sure sensitivity without instability. Because this
has a strong impact on network dynamics and
putative network function, finely distinguishing
between dynamical states is both important and
feasible even if the corresponding differences in
effective synaptic strength (𝑚) appear small.

We cannot ultimately rule out that cortical net-
works self-organize as close as possible towards
criticality, the platonic ideal being impossible to
achieve for example due to finite-size, external
input, and refractory periods. Therefore, the re-
verberating regime might conform with quasi-
criticality (Williams-García et al., 2014) or neu-
tral theory (Martinello et al., 2017). However, we
deem this unlikely for two reasons. First, in sim-
ulations of finite-size networks with external in-
put, we could easily distinguish the reverberat-
ing regime from states with 𝑚 = 0.9999 (Wilt-
ing and Priesemann, 2018a), which are more than
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one order of magnitude closer to criticality than
any experiment we analyzed. Second, operat-
ing in a reverberating regime, which is between
AI and critical, may combine the computational
advantages of both states (Wilting et al., 2018):
the reverberating regime enables rapid changes
of computational properties by small parameter
changes, keeps a sufficient safety-margin from
instability to make seizures sufficiently unlikely
(Priesemann et al., 2014), balances competing
requirements (e.g. sensitivity and specificity
(Gollo, 2017)), and may carry short termmemory
and allow to integrate information over limited,
tunable timescales (Wang, 2002; Boedecker et al.,
2012). For these reasons, we consider the re-
verberating regime to be the explicit target state
of self-organization. This is in contrast to the
view of “as close to critical as possible”, which
still holds criticality as the ideal target.

3.4.3 More complex network models

Cortical dynamics is clearly more complicated
than a simple branching model. For exam-
ple, heterogeneity of single-neuron morphology
and dynamics, and non-trivial network topology
likely impact population dynamics. However, we
showed that statistics of cortical network activ-
ity are well approximated by a branching model.
Therefore, we interpret branching models as a
statistical approximation of spike propagation,
which can capture a fair extent of the complexity
of cortical dynamics. By using branchingmodels,
we draw on the powerful advantage of analytical
tractability, which allowed for basic insight into
dynamics and stability of cortical networks.

In contrast to the branching model, doubly
stochastic processes (i.e. spikes drawn from an
inhomogeneous Poisson distribution) failed to
reproduce many statistical features (Fig. B.10).
We conjecture that the key difference is that dou-
bly stochastic processes propagate the underly-
ing firing rate instead of the actual spike count.
Thus, propagation of the actual number of spikes
(as e.g. in branching or Hawkes processes, Kos-
sio et al. (2018)), not some underlying firing rate,
seems to be integral to capture the statistics of
cortical spiking dynamics.

Our statistical model stands in contrast to

generative models, which generate spiking dy-
namics by physiologically inspired mechanisms.
One particularly prominent example are net-
works with balanced excitation and inhibition
(van Vreeswijk and Sompolinsky, 1996, 1997;
Brunel, 2000), which became a standard model of
neuronal networks (Hansel and van Vreeswijk,
2012). A balance of excitation and inhibition
is supported by experimental evidence (Okun
and Lampl, 2008). Our statistical model repro-
duces statistical properties of such networks if
one assumes that the excitatory and inhibitory
contributions can be described by an effective
excitation. In turn, the results obtained from
the well-understood estimator can guide the re-
finement of generative models. For example,
we suggest that network models need to be ex-
tended beyond the asynchronous-irregular state
(Brunel, 2000) to incorporate the network re-
verberations observed in vivo. Possible candi-
datemechanisms are increased coupling strength
or inhomogeneous connectivity. Both have al-
ready been shown to induce rate fluctuations
with timescales of several hundred milliseconds
(Litwin-kumar and Doiron, 2012; Ostojic, 2014;
Kadmon and Sompolinsky, 2015).

Because of the assumption of uncorrelated,
Poisson-like network firing, models that study
single neurons typically assume that synaptic
currents are normally distributed. Our results
suggest that one should rather use input with re-
verberating properties with timescales of a few
hundred milliseconds to reflect input from corti-
cal neurons in vivo. This could potentially change
our understanding of single neuron dynamics,
for example of their input-output properties.

3.4.4 Deducing network properties from
the tractable model

Using our analytically tractable model, we could
predict and validate network properties, such as
avalanche size and duration, interspike interval,
or activity distributions. Given the experimen-
tal agreementwith these predictions, we deduced
further properties, which are impossible or dif-
ficult to assess experimentally and gave insight
into more complex questions about network re-
sponses: how do perturbations propagate within
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the network, and how susceptible is the network
to external stimulation?

One particular question we could address is
the following: which fraction of network activity
is attributed to external or recurrent, internal ac-
tivation? We inferred that about 98% of the activ-
ity is generated by recurrent excitation, and only
about 2% originates from input or spontaneous
threshold crossing. This result may depend sys-
tematically on the brain area and cognitive state
investigated: For layer 4 of primary visual cortex
in awake mice, (Reinhold et al., 2015) concluded
that the fraction of recurrent cortical excitation
is about 72%, and cortical activity dies out with a
timescale of about 12ms after thalamic silencing.
Their numbers agree perfectly well with our phe-
nomenological model: a timescale of 𝜏 =12ms
implies that the fraction of recurrent cortical ex-
citation is 𝑚 = 𝑒−𝛥𝑡/𝜏 ≈ 72%, just as found experi-
mentally. Under anesthesia, in contrast, they re-
port timescales of several hundred milliseconds,
in agreement with our results. These differences
show that the fraction of external activation may
strongly depend on cortical area, layer, and cog-
nitive state. The novel estimator can in future
contribute to a deeper insight into these differ-
ences, because it allows for a straight-forward
assessment of afferent versus recurrent activa-
tion, simply from evaluating spontaneous spik-
ing activity, without the requirement of thalamic
or cortical silencing.
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Chapter 4

Homeostatic plasticity and external input
shape neural network dynamics†

Abstract

In vitro and in vivo spiking activity clearly differ. Whereas networks in vitro develop strong bursts
separated by periods of very little spiking activity, in vivo cortical networks show continuous activity.
This is puzzling considering that both networks presumably share similar single-neuron dynamics and
plasticity rules. We propose that the defining difference between in vitro and in vivo dynamics is the
strength of external input. In vitro, networks are virtually isolated, whereas in vivo every brain area re-
ceives continuous input. We analyze a model of spiking neurons in which the input strength, mediated
by spike rate homeostasis, determines the characteristics of the dynamical state. In more detail, our
analytical and numerical results on various network topologies show consistently that under increas-
ing input, homeostatic plasticity generates distinct dynamic states, from bursting, to close-to-critical,
reverberating and irregular states. This implies that the dynamic state of a neural network is not fixed
but can readily adapt to the input strengths. Indeed, our results match experimental spike recordings
in vitro and in vivo: the in vitro bursting behavior is consistent with a state generated by very low
network input (< 0.1%), whereas in vivo activity suggests that on the order of 1% recorded spikes are
input-driven, resulting in reverberating dynamics. Importantly, this predicts that one can abolish the
ubiquitous bursts of in vitro preparations, and instead impose dynamics comparable to in vivo activity
by exposing the system to weak long-term stimulation, thereby opening new paths to establish an in
vivo-like assay in vitro for basic as well as neurological studies.

†The content of this chapter is identical in wording and figures to the publication Zierenberg et al.
(2018): J. Zierenberg*, J. Wilting* & V. Priesemann: Homeostatic plasticity and external input shape
neural network dynamics. Physical Review X 3:031018 (2019). The article is published under the terms
of a Creative Common License (http://creativecommons.org/licenses/by/4.0/). The original publication
contains the appendix within one manuscript. For consistency throughout this monograph, it has been
moved to Chap. C. To this publication, I made the following contributions. I jointly derived a majority
of the analytical results together with J.Z. (Eqs. (4.1) – (4.8), (C.1) – (C.5)). I co-drafted all figures except
for Figs. 4.2 and 4.5. I preprocessed the experimental data from rat hippocampus and cat visual cortex
and provided the analysis toolbox (cf. Chap. 2). V. Priesemann designed the study and provided first
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4.1 Introduction

Collective spiking activity clearly differs be-
tween in vitro cultures and in vivo cortical net-
works (see examples in Fig. 4.1). Cultures in
vitro typically exhibit stretches of very little
spiking activity, interrupted by strong bursts of
highly synchronized or coherent activity (Robin-
son et al., 1993; Van Pelt et al., 2004; Chiappalone
et al., 2006; Wagenaar et al., 2006; Orlandi et al.,
2013; Vardi et al., 2016; Beggs and Plenz, 2003).
In contrast, spiking activity recorded from cor-
tex in awake animals in vivo lacks such pauses,
and instead shows continuous, fluctuating activ-
ity. These fluctuations show a dominant autocor-
relation time that was proposed to increase hi-
erarchically across cerebral cortex, from sensory
to frontal areas (Murray et al., 2014). Moreover,
depending on experimental details such as brain
area, species and vigilance state, one also ob-
serves evidence for asynchronous-irregular (AI)
dynamics (Burns and Webb, 1976; Softky and
Koch, 1993), oscillations (Gray et al., 1989; Gray,
1994; Buzsaki, 2004), or strong fluctuations asso-
ciated with criticality, bistability or up-and-down
states (Breakspear, 2017; Priesemann et al., 2009,
2013; Bellay et al., 2015; Wilson, 2008; Stern et al.,
1997; Cossart et al., 2003). These states differ not
only in strength and structure of fluctuations, but
also in synchrony among neurons, from uncorre-
lated to fully synchronized spiking. The observa-
tion of such a vast range of dynamic states is puz-
zling, considering that the dynamics of all net-
works presumably originate from similar single-
neuron physiology and plasticity mechanisms.

One particular plasticity mechanism that reg-
ulates neural activity on a long time scale is
homeostatic plasticity (Turrigiano et al., 1998;
Lissin et al., 1998; O’Brien et al., 1998; Turri-
giano and Nelson, 2004; Davis, 2006; Williams
et al., 2013). Homeostatic plasticity can be imple-
mented by a number of physiological candidate
mechanisms, such as redistribution of synaptic
efficacy (Markram and Tsodyks, 1996; Tsodyks
andMarkram, 1997), synaptic scaling (Turrigiano
et al., 1998; Lissin et al., 1998; O’Brien et al.,
1998; Fong et al., 2015), adaptation of membrane
excitability (Davis, 2006; Pozo and Goda, 2010),

or through interactions with glial cells (De Pittà
et al., 2016; Virkar et al., 2016). All these mech-
anisms have in common that they implement a
slow negative feedback-loop in order to main-
tain a certain target spike rate and stabilize net-
work dynamics. In general, they reduce (in-
crease) excitatory synaptic strength or neural ex-
citability if the spike rate is above (below) a target
rate, allowing compensation against a potentially
unconstrained positive feedback-loop through
Hebbian-type plasticity (Bienenstock et al., 1982;
Miller and MacKay, 1994; Abbott and Nelson,
2000; Turrigiano and Nelson, 2000; Zenke et al.,
2013; Keck et al., 2017; Zenke et al., 2017). Recent
results highlight the involvement of homeostatic
plasticity in generating robust yet complex activ-
ity dynamics in recurrent networks (Naude et al.,
2013; Hellyer et al., 2016; Gjorgjieva et al., 2016).

To understand the physiological mechanisms
behind this large set of dynamic states, different
model networks have been proposed that repro-
duce one or a set of states. To name a few exam-
ples, deafferentiation in combination with home-
ostatic scaling can generate bursts (Frohlich et al.,
2008); the interplay between excitation and in-
hibition may lead to oscillations, synchronous-
regular activity, or asynchronous-irregular activ-
ity (Wilson and Cowan, 1972; Vogels et al., 2005;
Fries et al., 2007; Brunel, 2000), where switch-
ing between dynamic states can be induced by
varying the input (Brunel, 2000; Lerchner and
Latham, 2015; Muñoz, 2018); synaptic facilita-
tion and depression promote regular and irregu-
lar network dynamics (Tsodyks et al., 1998; Lev-
ina et al., 2007, 2009a); plasticity at inhibitory
synapses can stabilize irregular dynamics (Vo-
gels et al., 2011; Effenberger et al., 2015), whereas
specific types of structural (Bornholdt and Rohlf,
2000; Tetzlaff et al., 2010) or synaptic (Levina
et al., 2007, 2009a; de Arcangelis et al., 2006;
Bonachela et al., 2010; Costa et al., 2015; Michiels
van Kessenich et al., 2016; Campos et al., 2017;
Hernandez-Urbina and Herrmann, 2017; Mill-
man et al., 2010; Muñoz, 2018; Del Papa et al.,
2017) plasticity foster strong temporal fluctua-
tions characteristic for a critical state; last but
not least, homeostasis is necessary to achieve sta-
ble dynamics in recurrent networks with spike-
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timing dependent plasticity (STDP) or Hebbian-
type synaptic plasticity (e.g. Lazar, 2009; Litwin-
Kumar and Doiron, 2014; Zenke et al., 2015;
Miner and Triesch, 2016; Tosi and Beggs, 2017;
Keck et al., 2017). Overall, the dynamic state de-
pends on all aspects: single-neuron properties,
synaptic mechanisms, network topology, plas-
ticity rules, and input characteristics. Recall-
ing that the single-neuron properties, synaptic
mechanisms, as well as plasticity rules are pre-
sumably very similar in vitro and in vivo, these
factors are unlikely to explain the observed dif-
ferences.

In this study, we propose that the input
strength is the defining difference between in
vitro and in vivo dynamics. In vitro systems are
completely isolated, whereas in vivo networks
receive continuous input from sensory modali-
ties and other brain areas. Under these different
conditions, we propose that homeostatic plastic-
ity is a sufficient mechanism to promote self-
organization to a diverse set of dynamic states
by mediating the interplay between external in-
put rate and neural target spike rate. Treating the
external input as a control parameter in our theo-
retical framework, allows us to alter the network
dynamics from bursting, to fluctuating, to irregu-
lar. Thereby, our framework offers testable pre-
dictions for the emergence of characteristic but
distinct network activity in vitro and in vivo.

Based on our theory, we derive explicit exper-
imental predictions and implications: (1) The di-
rect relation between dynamic state, spike rate
and input rate enables us to quantify the amount
of input the neural network receives, e.g., in
mildly anesthetized cat V1, we estimate an input
rate of 𝒪(0.01Hz/neuron). (2) This implies that
about 2% of cortical activity in cat V1 are im-
posed by the input, whereas 98% are generated
by recurrent activation from within the network.
(3) Our results suggest that one can alter the dy-
namic state of an experimental preparation by al-
tering the input strength. Importantly, we pre-
dict for in vitro cultures that increasing the input
rate to about 𝒪(0.01Hz/neuron) would be suffi-
cient to induce in vivo-like dynamics.

4.2 Experimental observations

To demonstrate characteristic neural activity in
vitro and in vivo, we analyzed exemplary record-
ings of spiking activity. Data sets included cul-
tures of dissociated cortical neurons (Wagenaar
et al., 2006; Wagenaar), as well as hippocampus
of foraging rats (Mizuseki et al., 2009b,a) and vi-
sual cortex of mildly anesthetized cats (Blanche
and Swindale, 2006; Blanche, 2009) (see Sec. C.1
for details). Note that all preparations were in-
evitably subsampled, as spikes were recorded
only from a small number of all neurons. For
illustrative purposes, we focus on the average
(subsampled) spiking activity 𝑎𝑡 and the (subsam-
pled) avalanche-size distribution 𝑃sub (see Ap-
pendix C.2 for details).

The spiking activity in vitro shows bursting
behavior (Fig. 4.1), i.e., stretches of very low
activity interrupted by periods of synchronized
activity. The subsampled avalanche-size distri-
butions 𝑃sub(𝑠) exhibits partial power-law be-
havior resembling 𝑃(𝑠) ∼ 𝑠−3/2 as expected
from a critical branching process (Harris, 1963),
and conjectured for the synchronous-irregular
regime (Touboul and Destexhe, 2017). How-
ever, in addition 𝑃sub(𝑠) also shows a peak at
large avalanche sizes, which may indicate either
finite-size effects, supercriticality, or characteris-
tic bursts (Levina and Priesemann, 2017).

In contrast, the spiking activity in vivo shows
fluctuating dynamics (Fig. 4.1). These have
been described as reverberating dynamics, a dy-
namic state between critical and irregular dy-
namics (Wilting and Priesemann, 2018a), char-
acterized by a finite autocorrelation time of
a few hundred milliseconds. The subsampled
avalanche-size distributions 𝑃sub(𝑠) can be ap-
proximated by a power-law for small 𝑠 but show
a clear exponential tail. The tails indicate slightly
subcritical dynamics (Priesemann et al., 2014), es-
pecially because deviations in the tails are ampli-
fied under subsampling (Priesemann et al., 2009,
2013; Levina and Priesemann, 2017).

In sum, the spiking activity and the cor-
responding avalanche-size distributions clearly
differ between in vitro and in vivo recordings.
Remarkably, however, the average neural firing
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Figure 4.1: Examples of dynamic states observed in experiments. In vitro spike recordings are from cultures
of dissociated rat cortical neurons (Wagenaar et al., 2006). In vivo recordings are from right dorsal hippocampus
in an awake rat during an open field task (Mizuseki et al., 2009b) and from primary visual cortex in a mildly
anesthetized cat (Blanche, 2009). Top row shows population spiking activity (Sec. C.2.1) from 30–60 single or
multi-units (𝛥𝑡 = 4ms) with average neural firing rate 𝑟; bottom row shows subsampled avalanche-size distri-
butions (Sec. C.2.2). Solid lines indicate the power-law behavior 𝑠−3/2 expected for a critical branching process.
Dashed lines correspond to distributions obtained from branching networks matched to the experiments of rat
CA1 (𝜏 = 2 s, 𝑟∗ = 11Hz, ℎ = 5.5 × 10−3 Hz, 𝑛 = 31, 𝑁 = 104, 𝛥𝑡 = 1ms, 𝜏hp = 105 s) and cat V1 (𝜏 = 0.2 s,
𝑟∗ = 7Hz, ℎ = 3.5 × 10−2 Hz, 𝑛 = 50, 𝑁 = 104, 𝛥𝑡 = 1ms, 𝜏hp = 105 s). For details and a definition of parameters
see Sec. C.2.4.

rate 𝑟 is similar across the different experimental
setups.

4.3 Model

To investigate the differences between in vitro
and in vivo, we make use of a branching net-
work, which approximates properties of neural
activity propagation. We extend the branching
network by a negative feedback, which approxi-
mates homeostatic plasticity.

4.3.1 Branching network

In the brain, neurons communicate by sending
spikes. The receiving neuron integrates its in-
put, and if the membrane potential crosses a cer-
tain threshold, this neuron fires a spike itself. As
long as a neuron does not fire, its time-varying
membrane potential can be considered to fluctu-
ate around some resting potential. In the follow-
ing, we approximate the complex time-resolved
process of action potential generation and trans-
mission in a stochastic neural model with proba-
bilistic activation.

Consider a network of size 𝑁 . Each node

corresponds to an excitatory neuron, and spike
propagation is approximated as a stochastic pro-
cess at discrete time steps 𝛥𝑡. If a neuron, de-
scribed by the state variable 𝑠𝑖,𝑡 ∈ {0, 1}, is acti-
vated, it spikes (𝑠𝑖,𝑡 = 1), and immediately returns
to its resting state (𝑠𝑖,𝑡+1 = 0) in the next time
step, unless activated again. Furthermore, it may
activate post-synaptic neurons 𝑗 with probability
𝑝𝑖𝑗,𝑡 = 𝑤𝑖𝑗𝛼𝑗,𝑡, where 𝑤𝑖𝑗 ∈ {0, 1} indicates whether
two neurons are synaptically connected, and 𝛼𝑗,𝑡
is a homeostatic scaling factor. In addition, each
neuron receives network-independent external
input at rate ℎ𝑖, representing external input from
other brain areas, external stimuli, and impor-
tantly also spontaneous spiking of single neurons
generated independently of pre-synaptic spikes
(e.g. by spontaneous synaptic vesicle release,
Kavalali (2014); Lenz et al. (2015)). The uncorre-
lated external input homogeneously affects the
network at rate ℎ𝑖 = ℎ, modeled as Poisson pro-
cesses with an activation probability 1 − 𝑒−ℎ𝛥𝑡 ≃
ℎ𝛥𝑡.

This model can be treated in the framework of
a branching process (Harris, 1963), a linear pro-
cess with a characteristic autocorrelation time 𝜏
(see below). The population activity is charac-
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terized by the total number of spiking neurons,
𝐴𝑡 = ∑𝑁

𝑖=1 𝑠𝑖,𝑡. Each spike at time 𝑡 generates on
average 𝑚 postsynaptic spikes at time 𝑡 + 1 such
that on average 𝔼(𝐴𝑡+1|𝐴𝑡) = 𝑚𝐴𝑡, where 𝑚 is
called branching parameter. The branching pa-
rameter can be defined for each neuron individ-
ually: neuron 𝑖 activates on average

𝑚𝑖,𝑡 =
𝑁
􏾜
𝑗=1

𝑤𝑖𝑗𝛼𝑗,𝑡 (4.1)

of its post-synaptic neurons (Haldeman and
Beggs, 2005). This local branching parameter
𝑚𝑖,𝑡 thus quantifies the impact of a spike in neu-
ron 𝑖 on the network. The network average (de-
noted in the following with a bar) of 𝑚𝑖,𝑡 gener-
ates the (time-dependent) network branching pa-
rameter (Millman et al., 2010)

𝑚𝑡 =
1
𝑁

𝑁
􏾜
𝑖=1

𝑚𝑖,𝑡. (4.2)

The external input generates on average 𝑁ℎ𝛥𝑡
additional spikes per time step, resulting in
a driven branching process (Heathcote, 1965;
Pakes, 1971). The expected activity at time 𝑡 + 1
is then 𝔼(𝐴𝑡+1|𝐴𝑡) = 𝑚𝐴𝑡 + 𝑁ℎ𝛥𝑡. For 𝑚 < 1 the
process is called subcritical, meaning that indi-
vidual cascades of events will eventually die out
over time. In this case, the temporal average (de-
noted in the following as ⟨⋅⟩) of network activity
𝐴𝑡 converges to a stationary distributionwith av-
erage activity

⟨𝐴⟩ = 1
𝑇

𝑇
􏾜
𝑡=1

𝐴𝑡 ⟶
𝑇→∞

𝑁ℎ𝛥𝑡
1 − 𝑚 . (4.3)

Considering a homogeneous neural spike rate
𝑟𝑖 = 𝑟 = ⟨𝐴⟩/𝑁𝛥𝑡 this implies

𝑟 = ℎ
1 − 𝑚. (4.4)

A constant mean spike rate 𝑟, which can be con-
sidered a biological constraint, is thus realized by
adjusting either 𝑚 ∈ [0, 1) or ℎ ∈ [0,∞).

The subcritical branching process (𝑚 < 1)
is stationary with the autocorrelation function
𝐶(𝑙) = 𝑚𝑙. The autocorrelation time can be iden-
tified by comparing with an exponential decay

𝐶(𝑙) = 𝑒−𝑙𝛥𝑡/𝜏, yielding (Wilting and Priesemann,
2018a)

𝜏 = −𝛥𝑡/ ln(𝑚), (4.5)

which diverges as 𝑚 → 1. At this divergence
(𝑚 = 1) the process is critical and the activity
𝐴𝑡 grows linearly in time with rate ℎ. At criti-
cality, assuming ℎ → 0, the number of events 𝑠
in an avalanche triggered by a single seed event,
is distributed according to a power law 𝑃(𝑠) ∼
𝑠−3/2 (Harris, 1963). For a non-vanishing ℎ in
the subcritical regime (𝑚 < 1), the avalanche-
size distributions show a rapid decay, if they
can be measured at all under persistent activ-
ity (Sec. C.2.2). Finally, for 𝑚 > 1, the pro-
cess is called supercritical and 𝐴𝑡 can in princi-
ple grow to infinity. For a finite network, this
of course is not possible and will manifest in a
peak of the avalanche-size distribution at large
avalanche sizes.

For the computational model, we consider a
network of 𝑁 = 104 neurons, which represents
the size of in vitro cultures and in vivo cortical
hypercolumns. The time step of the branching
process has to reflect the causal signal propa-
gation of the underlying physiological network.
Since realistic propagation times of action po-
tentials from one neuron to the next range from
1ms𝑡𝑜4ms, we choose 𝛥𝑡 = 1ms. We consider
three network topologies:

Directed Erdős-Rényi (ER) network: As a
standard model of network topology, we con-
sider a network with random directed connec-
tions. Each connection 𝑤𝑖𝑗 = 1 is added with
probability 𝑝con, excluding self-connections (𝑖, 𝑖).
Then, the degree distribution of outgoing as well
as incoming connections follows a binomial dis-
tribution with average degree 𝑘 = 𝑝con(𝑁 − 1) ≃
𝑝con𝑁 . We require 𝑝con > ln(𝑁)/𝑁 to ensure that
the graph is connected (Erdos and Rényi, 1960).
The connectivity matrix 𝑤𝑖𝑗 is fixed throughout
each simulation, such that averaging over sim-
ulations with different network realizations re-
sults in a quenched average. A cutout from an
example graph is shown in Fig. 4.2a.

Spatially-clustered (SC) network: In order to
consider amore detailed topologywith dominant
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a b

Figure 4.2: Cutouts of two random network topolo-
gies. (a) Subset of randomly spaced nodes in an Erdős-
Rényi (ER) network with 𝑝 = 10−3. Note that con-
nections cross the window also from neurons out-
side of the field of view, such that single connections
cannot be distinguished visually in the sketch. (b)
1.4 × 1.4mm2 subset of spatially-clustered (SC) topol-
ogy generated by axonal-growth rules (Orlandi et al.,
2013; Hernández-Navarro et al., 2017).

short-range connections, we follow Orlandi et al.
who developed a model based on experimental
observations of in vitro cultures (Orlandi et al.,
2013; Hernández-Navarro et al., 2017). Neural
somata are randomly placed as hard discs with
radius 𝑅𝑠 = 7.5𝜇m, to account for the minimal
distance between cell centers, on a 5 × 5mm2

field. From each soma an axon grows into a ran-
dom direction with a final length 𝑙 given by a
Rayleigh distribution 𝑝(𝑙) = (𝑙/𝜎2𝑙 ) exp(−𝑙2/2𝜎2𝑙 )
with 𝜎𝑙 = 900𝜇m and average axonal length ̄𝑙 ≃
1.1mm. The axonal growth is a semiflexible path
with segments of size 𝛥𝑙 = 10𝜇m and orientation
drawn from a Gaussian distribution relative to
the previous segment with 𝜎𝜃 = 15 ∘. A connec-
tion with another neuron is formed with proba-
bility 1/2 if the presynaptic axon intersects with
the dendritic tree of a postsynaptic neuron (Wen
et al., 2009). The dendritic tree is modeled as
a disc around the postsynaptic neuron with ra-
dius 𝑅𝑑 drawn from a Gaussian distribution with
mean �̄�𝑑 = 300𝜇m and 𝜎𝑑 = 20𝜇m. A cutout
from an example graph is shown in Fig. 4.2b.

Annealed-average (AA) network: We con-
sider in addition a network with 𝑘 dynamically
changing random connections (annealed aver-
age). The connections are distinguishable, ex-
clude self-connections, and are redrawn every

time step. This model approximates the other-
wise numerically expensive fully connected net-
work (ER with 𝑝con = 1) with a global 𝑚𝑡 by
choosing 𝛼𝑗,𝑡 = 𝑚𝑡/𝑘. In practice, we chose 𝑘 = 4,
which produces analogous dynamics to the fully-
connected (𝑘 ≈ 104) network as long as 𝑚𝑡 < 4.

Error bars are obtained as statistical errors
from the fluctuations between independent sim-
ulations, which includes random network real-
izations {𝑤𝑖𝑗} for ER and SC.

4.3.2 Homeostatic plasticity

In our model, homeostatic plasticity is imple-
mented as a negative feedback, which alters
the synaptic strength on the level of the post-
synaptic neuron (the homeostatic scaling factor
𝛼𝑗,𝑡) to reach a target neural firing rate 𝑟∗𝑗 . We con-
sider a linear negative feedback with time con-
stant 𝜏hp, which depends solely on the (local) ac-
tivity of the postsynaptic neuron 𝑠𝑗,𝑡

𝛥𝛼𝑗,𝑡 = (𝛥𝑡𝑟∗𝑗 − 𝑠𝑗,𝑡) 􏿶
𝛥𝑡
𝜏hp

􏿹 , (4.6)

i.e., adapting a neuron’s synaptic strength does
not rely on information about the population ac-
tivity 𝐴𝑡. Since 𝛼𝑗,𝑡 is a probability, we addi-
tionally demand 𝛼𝑗,𝑡 ≥ 0. Equation (4.6) con-
siders homeostatic plasticity to directly couple
to all postsynaptic synapses of any given neu-
ron 𝑗. This can be implemented biologically as
autonomous synaptic processes or somatic pro-
cesses, such as translation and transcription. In
order to further reduce complexity, we assume
a uniform target rate 𝑟∗𝑗 = 𝑟∗, while in fact ex-
periments show a broad (log-normal) spike-rate
distribution (Buzsáki and Mizuseki, 2014; Hen-
gen et al., 2016). Preliminary tests for a log-
normal target rate distribution in ER networks
(𝑝con = 0.1) showed consistent results. In our
simulations, we typically consider a biologically
motivated target rate 𝑟∗ = 1Hz and a homeostatic
timescale of the order of an hour, 𝜏hp = 103 s.

4.4 Results

Including homeostatic plasticity in our model
generates a broad range of dynamic states, de-
pending on the external input. Figure 4.3
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Figure 4.3: Homeostatic plasticity induces diverse dynamic states by regulating recurrent network interactions,
mediating input rate ℎ and target neural firing rate 𝑟∗. The annealed-average network reproduces bursting (𝑚 > 1,
ℎ/𝑟∗ ≤ 10−3, purple-red), fluctuating (𝑚 ≈ 0.99,ℎ/𝑟∗ ≈ 10−2 and 𝑚 ≈ 0.9, ℎ/𝑟∗ ≈ 10−1, orange-yellow), and irregular
(𝑚 ≈ 0, ℎ/𝑟∗ = 1, green) dynamics. The top row shows examplary spiking activity 𝑎𝑡 = 𝐴𝑡/𝑁𝛥𝑡 (Sec. C.2.1); the
bottom row shows avalanche-size distributions 𝑃(𝑠) (𝑛 = 𝑁 , circles) and subsampled avalanche-size distributions
𝑃sub(𝑠) (𝑛 = 100, triangles) averaged over 12 independent simulations (Sec. C.2.2). Solid lines show the power-law
distribution 𝑃(𝑠) ∝ 𝑠−3/2 (Harris, 1963), dashed lines show the analytical avalanche-size distribution of a Poisson
process (Priesemann and Shriki, 2018). Parameters: 𝑁 = 104, 𝜏hp = 103 s, 𝑟∗ = 1Hz, 𝛥𝑡 = 1ms.

shows qualitatively representative results ob-
tained for AA networks. For strong input
(ℎ = 𝒪(𝑟∗)), the network organizes itself into
a dynamic state where neural firing is solely
driven by the input fluctuations, resembling an
asynchronous-irregular state (green). Here, tem-
poral and pairwise spike count cross-correlations
approach zero, and the avalanche-size distribu-
tion matches the analytic solution for a Pois-
son process (Priesemann and Shriki, 2018) shown
as dashed lines. For weaker input (ℎ < 𝑟∗)
the system tunes itself towards fluctuating dy-
namics (orange-yellow). The average neural rate
and sub-sampled avalanche-size distributions are
qualitatively similar to reverberant in vivo dy-
namics with autocorrelation times of several
hundred milliseconds (Fig. 4.1). In this regime,
the temporal correlations increase when weak-
ening the input, approaching close-to-critical dy-
namics, characterized by a power-law distribu-
tion 𝑃(𝑠) = 𝑠−3/2 (Harris, 1963), at the lower end
of the regime. Decreasing the input even fur-
ther (ℎ ≪ 𝑟∗) leads to bursting behavior, char-
acterized by silent periods which are interrupted
by strong bursts. These bursts are apparent as
peak in the avalanche-size distribution at large
avalanche sizes (purple-red). In this regime, the
network steadily increases its synaptic strengths

during silent periods until a spike initiates a
large burst, which in turn decreases the synap-
tic strengths drastically, and so on (cf. Sec. C.3).
This regime captures the qualitative features of
bursting in vitro dynamics (Fig. 4.1).

In the following, we derive a quantitative de-
scription of the three regimes sketched above.
To quantify the dynamic state, we consider the
temporal average of the branching parameter
𝑚 = ⟨𝑚⟩, as well as the associated autocorrela-
tion time 𝜏 of the population activity.

4.4.1 Mean-field solution

If we assume that 𝜏hp is sufficiently large (i.e.
slow homeostatic plasticity), then 𝛥𝛼𝑗 ≈ 0 and
the dynamics of the network is fully determined
by the approximately constant branching param-
eter 𝑚𝑡 ≈ 𝑚. In this regime, (4.4) holds and com-
bined with (4.5) and (4.6) we obtain the mean-
field solution

𝑚 = 1 − ℎ/𝑟∗ and 𝜏 = −𝛥𝑡/ ln(1 − ℎ/𝑟∗). (4.7)

Hence, with decreasing input rate ℎ, recurrent
network activation (𝑚) increases, i.e., perturba-
tions cause a stronger network response and
the autocorrelation time increases (Fig. 4.4, solid
lines).
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Figure 4.4: Quantitative distinction between dynamic states induced in neural networks of different topologies
by homeostatic plasticity as a function of normalized input rate ℎ/𝑟∗. Data points are averages over 12 independent
simulations (𝑁 = 104, 𝜏𝛼 = 103 s, 𝑟∗ = 1Hz, 𝛥𝑡 = 10−3 s) with connections generated according to annealed-
average (AA), Erdős-Rényi (ER) or spatially-clustered (SC) topologies with average number of connections 𝑘.
Solid lines show the mean-field solution (4.7), dashed lines represent (semi-analytical) approximations of the
bursting regime. (a) Branching parameter 𝑚 = ⟨𝑚⟩ varies from irregular (𝑚 ≈ 0), to fluctuating (𝑚 ⪅ 1), to
bursting (𝑚 > 1) dynamics. The behavior in the bursting regime strongly depends on the network timescale
𝜏′ = 𝜏hp/𝑘. (b) Integrated autocorrelation time of the network population activity (Sec. C.2.3) shows a crossover
from irregular (𝜏 = 𝒪(𝛥𝑡)), over fluctuating (𝜏 = −𝛥𝑡/ ln[1 − ℎ/𝑟∗]) to bursting (𝜏 ≈ 𝜏′) dynamics.

In the light of this mean-field solution, we dis-
criminate the three characteristic regimes as fol-
lows. First, we define the input-driven regime
by 𝑚 ≤ 0.5 and 𝜏 ≈ 𝛥𝑡. Here, the network activ-
ity is dominated by input (ℎ = 𝒪(𝑟∗)), and thus
the dynamics follows the input statistics and be-
comes irregular. Second, we define the fluctuat-
ing regime for 0.5 < 𝑚 < 1 with a non-vanishing
but finite autocorrelation time 𝛥𝑡 < 𝜏 < ∞. Here,
the network maintains and amplifies input as re-
currently generated fluctuations. In these two
regimes the mean-field solution (4.7) matches
numerical data on different network topologies
(Fig. 4.4). Third, the mean-field solution predicts
that in the limit ℎ → 0 the dynamics become crit-
ical with divergent autocorrelation time (𝑚 → 1,
𝜏 → ∞). However, we observe a clear deviation
from the mean-field solution, which defines the
bursting regime with 𝑚 > 1 and a finite autocor-
relation time, as discussed below.

4.4.2 Bursting regime

Deviations from the mean-field solution (4.7)
emerge when the assumption of “sufficiently
large 𝜏hp” breaks down. We will derive a bound
for 𝜏hp, below which the (rapid) homeostatic
feedback causes notable changes of the network
branching parameter 𝑚𝑡 around its mean 𝑚 =
⟨𝑚⟩, which in turn jeopardize the stability of the
network dynamics.

To estimate the change of the network branch-
ing parameter, we first consider the change in
local branching parameter 𝛥𝑚𝑖,𝑡, which depends
on each neurons out-degree 𝑘𝑖 = ∑𝑁

𝑗=1 𝑤𝑖𝑗 and is
given by

𝛥𝑚𝑖,𝑡 =
𝑁
􏾜
𝑗=1

𝑤𝑖𝑗𝛥𝛼𝑗,𝑡 =
⎛
⎜
⎜
⎝
𝑘𝑖𝛥𝑡𝑟∗ −

𝑁
􏾜
𝑗=1

𝑤𝑖𝑗 𝑠𝑗,𝑡
⎞
⎟
⎟
⎠
􏿶
𝛥𝑡
𝜏hp

􏿹 .

On the network level, we make the assumption
that the state of each neuron is approximated
by the network average 𝑠𝑖,𝑡 ≈ 𝐴𝑡/𝑁 , such that
∑𝑁

𝑗=1 𝑤𝑖𝑗 𝑠𝑗,𝑡 ≈ 𝑘𝐴𝑡
𝑁 . Then, the change in network
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branching parameter can be approximated as

𝛥𝑚𝑡 = 𝛥𝑚𝑡 ≈
⎛
⎜
⎝
𝑘𝛥𝑡 𝑟∗ − 𝐴𝑡

𝑘
𝑁
⎞
⎟
⎠
􏿶
𝛥𝑡
𝜏hp

􏿹

≈ 􏿶𝛥𝑡 𝑟∗ −
𝐴𝑡
𝑁 􏿹 􏿶

𝛥𝑡
𝜏′ 􏿹 , (4.8)

where we have introduced an effective homeo-
static network timescale 𝜏′ = 𝜏hp/𝑘, for which
(4.8) recovers the form of (4.6). Using 𝜏′ allows
one to semi-analytically approximate the devia-
tion of 𝑚 from the mean-field solution (Fig. 4.4a,
dashed lines, and Sec. C.3).

We next show that the stability of network
dynamics requires the autocorrelation time of
the dynamic process 𝜏 to be smaller than the
timescale of homeostasis 𝜏′. Stability demands
that the homeostatic change in autocorrelation
time 𝛥𝜏 is small compared to the autocorrelation
time itself, i.e., 𝛥𝜏 ≪ 𝜏. We approximate 𝛥𝜏 by
error propagation in (4.5), yielding

𝛥𝜏 ≃ |(𝜏2/𝛥𝑡)𝑒𝛥𝑡/𝜏| 𝛥𝑚 ≃ (𝜏2/𝛥𝑡 + 𝜏)𝛥𝑚, (4.9)

where we expanded the exponential for small
𝛥𝑡/𝜏. For large 𝜏, the leading term in (4.9)
dominates and inserting (4.8) yields 𝛥𝜏 ≃
|𝛥𝑡 𝑟∗ − 𝐴𝑡/𝑁| 􏿴𝜏2/𝜏′􏿷. Thus, the dynamics can
be described as a stationary branching process
(mean-field solution) only as long as

𝜏 ≪ 𝜏′ |𝛥𝑡 𝑟∗ − 𝐴𝑡/𝑁|−1 . (4.10)

Violation of (4.10) results in bursting behavior
(Figs. 4.3 &C.1). For 𝐴𝑡 = 𝒪(𝑁) the right hand
side of (4.10) is minimal, because 𝛥𝑡 𝑟∗ ≪ 1,
which implies a maximal attainable autocorre-
lation time 𝜏 ≃ 𝜏′ = 𝜏hp/𝑘. This is in perfect
agreement with the saturation of measured auto-
correlation time in the bursting regime (Fig. 4.4b,
dashed lines).

The transition from the fluctuating to the
bursting regime occurs when the mean-field so-
lution (4.7) equals the maximal attainable auto-
correlation time, i.e., 𝜏 = −𝛥𝑡/ ln(1 − ℎ/𝑟∗) ≈
𝜏′. Hence, the transition occurs at ℎ/𝑟∗ ≈ 1 −
𝑒−𝛥𝑡/𝜏′ ≈ 𝛥𝑡/𝜏′. For even lower input rate, the
dynamics become more and more bursty, and
the avalanche-size distribution exhibits a peak at
large avalanche sizes (Fig. 4.3 for ℎ/𝑟∗ < 10−2,

where 𝜏′ = 102 ms, 𝛥𝑡 = 1ms). At the transition,
the dynamics can be considered close-to-critical,
because the (fully sampled) avalanche-size distri-
bution is closest to a power-law with exponent
−3/2.

4.4.3 Distributions of spiking activity

The different dynamical regimes imply charac-
teristic distributions of neural network activity
𝑃(𝑎𝑡). Figure 4.5 shows an example of 𝑃(𝑎𝑡) for
ER networks with 𝑝con = 10−2, where the tran-
sition from fluctuating to bursting dynamics is
expected for ℎ/𝑟∗ ≈ 𝛥𝑡/𝜏′ = 10−4. In the irreg-
ular regime (green) 𝑃(𝑎𝑡) is a unimodal distribu-
tion. In the fluctuating regime (yellow-red), the
peak in 𝑃(𝑎𝑡) shifts towards quiescence and the
distribution develops a power-law tail with ex-
ponential cutoff, expected for a critical branch-
ing process. In the bursting regime (purple-blue),
𝑃(𝑎𝑡) is a bimodal distribution, reflecting network
changes between quiescence and bursty activity.
The position and sharpness of the high-activity
maximum depend on the network connectivity
and hence the heterogeneity in the single-neuron
input.

4.4.4 Reproducing experimental results

Using the insight from our theory, we can re-
produce experimental results. Spiking activity
recorded in vivo resembles dynamics of the fluc-
tuating regime. In this regime, the dynamic
state is consistent for all topologies we consid-
ered (Fig. 4.4). Therefore, already a branching
network on an AA topology suffices to quantita-
tively reproduce the avalanche-size distributions
by matching model parameters with experimen-
tally accessible estimates (Fig. 4.1 dashed lines).
To match the branching network to recordings
from cat V1 and rat CA1, we first estimated
the spike rate 𝑟 and autocorrelation time 𝜏 from
the recordings of spiking activity (Wilting and
Priesemann, 2018a); we then chose biologically
plausible parameters for the network size 𝑁 , the
homeostatic timescale 𝜏hp, as well as the simula-
tion time step 𝛥𝑡; and finally derived the exter-
nal input ℎ using (4.7) (for details see Sec. C.2.4).
The resulting subsampled avalanche-size distri-
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Figure 4.5: Distribution of spiking activity inweakly
connected Erdős-Rényi networks (𝑝con = 10−2, 𝛥𝑡 =
1ms, 𝑟∗ = 1Hz, 𝜏′ = 104 ms) averaged over 12 inde-
pendent simulations. For irregular dynamics (ℎ/𝑟∗ ≈
100) the distribution is clearly unimodal. For fluc-
tuating dynamics (10−4 < ℎ/𝑟∗ < 100) the distribu-
tion broadens and shifts the maximum towards qui-
escence. In addition towards the lower bound of the
regime, the distribution develops a power-law tail
with an exponential cutoff. At the crossover to burst-
ing dynamics (ℎ/𝑟∗ ≈ 10−4) the distribution becomes
bimodal.

butions are in astonishing agreement with the
experimental results, given the simplicity of our
approach. Close inspection of the avalanche-size
distribution for rat CA1 recordings still reveals
small deviations from our model results. The de-
viations can be attributed to theta-oscillations in
hippocampus, which result in subleading oscil-
lations on an exponentially decaying autocorre-
lation function (Wilting and Priesemann, 2018a).
While this justifies our approach to consider a
single dominant autocorrelation time, theta os-
cillations slightly decorrelate the activity at short
times and thereby foster premature termination
of avalanches. Thus, the tail in the avalanche-
size distribution is slightly shifted to smaller
avalanche sizes (Fig. 4.1).

The in vitro results are qualitatively well
matched by simulations in the bursting regime,
with avalanche-size distributions showing a
characteristic peak at large avalanche sizes
(Fig. 4.3). It is difficult to quantitatively match
a model to the data, because a number of param-
eters can only be assessed imprecisely. Most im-
portantly, the autocorrelation time in the burst
regime is not informative about the external in-

put rate ℎ and depends on the average number
of connections (Fig. 4.4). Likewise, the time-
dependence of the branching parameter 𝑚𝑡 can-
not be assessed directly. Finally, system size
and topology impact the network dynamics more
strongly in this regime than in the fluctuating
or input-driven regime. This yields a family of
avalanche-size distributions with similar qualita-
tive characteristics but differences in precise lo-
cation and shape of the peak at large sizes.

4.5 Discussion

We propose the interplay of external input
rate and target spike rate, mediated by homeo-
static plasticity, as a neural mechanism for self-
organization into different dynamic states (cf.
sketch in Fig. 4.6). Using the framework of a
branching process, we disentangled the recurrent
network dynamics from the external input (e.g.
input from other brain areas, external stimuli and
spontaneous spiking of individual neurons). Our
mean-field solutions, complemented by numeric
results for generic spiking neural networks, show
that for high input the network organizes into
an input-driven state, while for decreasing in-
put the recurrent interactions are strengthened,
leading to a regime of fluctuating dynamics, re-
sembling the reverberating dynamics observed
in vivo. Decreasing the input further induces
bursting behavior, known from in vitro record-
ings, due to a competition of timescales between
homeostatic plasticity and the autocorrelation of
population activity. Thereby our framework pro-
poses a generic mechanism to explain the promi-
nent differences between in vivo and in vitro dy-
namics.

Our theory suggests that also differences
within the collective dynamic state observed in
vivo can be explained by considering differences
in input strength. For cortex, it was shown that
layer 2/3 exhibits critical dynamics (Bellay et al.,
2015) and presumably deeper layers show rever-
berating dynamics (Priesemann et al., 2014; Wilt-
ing and Priesemann, 2018a). We propose that
this can be caused by different input strength:
layer 2/3 is more recurrently connected, while
layer 4 is the main target of thalamic input (Har-
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Figure 4.6: Sketch of bursting, fluctuating and input-
driven network states, classified by the branching pa-
rameter and the autocorrelation time. We propose
(solid lines) that homeostatic plasticity tunes the dy-
namic state depending on the ratio of external input
rate (including spontaneous neural firing) and target
neural firing rate. Data points and example activity
traces stem from Erdős-Rényi networks (𝑁 = 104,
𝑝 = 10−1, 𝜏hp = 103 s). In the bursting regime, the
homeostatic timescale 𝜏hp influences the resulting dy-
namics (dashed lines).

ris and Mrsic-Flogel, 2013), hence receiving the
stronger input. The dynamic state varies also
across different cortical areas, where autocorre-
lation times of network activity reflect a hier-
archical organization (Murray et al., 2014; Has-
son et al., 2015): Cortical areas associated with
higher-order function show a larger autocorrela-
tion time. In the light of our results, a larger au-
tocorrelation time implies less afferent input for
the area in question. The hierarchical organiza-
tion is further supported by our analysis of spik-
ing activity in vivo (Fig. 4.1): the autocorrelation
times in visual cortex (𝜏 ≈ 0.2 s) and hippocam-
pus (𝜏 ≈ 2 s) precisely reflect that visual cortex
is almost at the bottom, whereas hippocampus
is at the top of the hierarchy of visual process-
ing (Felleman and Van Essen, 1991).

Our theory provides an approach to experi-
mentally infer the fraction of spikes generated
recurrently within a network and generated by
external input. For an average spike rate 𝑟, equa-
tion (4.7) implies ℎ/𝑟 = (1 − 𝑒−𝛥𝑡/𝜏). The external
input rate can then be directly calculated from
the autocorrelation time and by assuming a bio-
logically plausible signal-propagation time, e.g.,

𝛥𝑡 ≈ 4ms. We estimate for recordings from vi-
sual cortex in mildly anesthetized cat that about
2% of the network activity is generated by the in-
put, whereas the majority of 98% are generated
recurrently within the network. From autocorre-
lation times measured across the cortical hierar-
chy (50ms to 350ms) in macaque monkey (Mur-
ray et al., 2014), the fraction of spikes generated
by external input decreases from ∼ 8% to ∼ 1%
from lower to higher cortical areas. This is con-
sistent with perturbation experiments in rat bar-
rel cortex, where after triggering an extra spike
the decay time of population rate was at least
50ms (London et al., 2010) indicating at most
about 8% external input (for a detailed discussion
see also Wilting and Priesemann (2018b)). Last,
experiments on visual cortex of awake mice di-
rectly after thalamic silencing found a decay time
of 𝜏 = 12(1)ms (Reinhold et al., 2015), fromwhich
we would estimate about 70% recurrent activa-
tion. This is in perfect agreement with the ex-
perimentally measured 72(6)% of recurrent acti-
vation in the same study. This result thus vali-
dates our derived relation between ℎ/𝑟 and 𝜏.

One can interpret our findings in the light of
up and down states (Wilson, 2008; Stern et al.,
1997; Holcman and Tsodyks, 2006; Millman et al.,
2010). Because the membrane potential was
found to correlate with network activity (Cos-
sart et al., 2003; Vardi et al., 2016), our results
for the distribution of spiking activity in the
bursting regime may correspond to the bimodal
distributions of membrane potentials during up
and down states (Fig 4.5). It has already been
shown that negative feedback can stabilize up
and down states (Holcman and Tsodyks, 2006;
Millman et al., 2010). In our theory, negative
feedback leads to similar results in the low-input
regime. Moreover, we predict that decreasing
network input further, prolongs the quiescent
periods or down states.

Our theory unifies previous numerical ap-
proaches of self-organization in neural networks,
which typically considered a negative feedback
mechanism but made very different choices on
a (fixed) network input. For example, bursting
dynamics have been generated by homeostatic
build-up upon loss of network input (Frohlich
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et al., 2008) or by self-organized supercritical-
ity through dynamic neuronal gain (Costa et al.,
2017). Adding weak input, self-organized crit-
icality (Bak et al., 1987; Zapperi et al., 1995)
has been achieved by local rewiring (Bornholdt
and Rohlf, 2000; Tetzlaff et al., 2010) and synap-
tic depression (de Arcangelis et al., 2006; Lev-
ina et al., 2007, 2009a; Bonachela et al., 2010;
Costa et al., 2015; Michiels van Kessenich et al.,
2016; Campos et al., 2017; Hernandez-Urbina and
Herrmann, 2017). In contrast, asynchronous-
irregular network activity typically requires
comparably strong input, assuming a balanced
state (van Vreeswijk, 1996; Brunel, 2000; Renart
et al., 2010), and a self-organizedAI network state
can be promoted by inhibitory plasticity (Vo-
gels et al., 2011; Effenberger et al., 2015). While
all these studies provide mechanisms of self-
organization to one particular dynamic state, our
theory highlights the role of input in combina-
tion with a negative feedback (Naude et al., 2013;
Brunel, 2000; Lerchner and Latham, 2015;Muñoz,
2018) and provides a unifying mechanism of self-
organization covering bursting, fluctuating and
irregular dynamics.

From a broader perspective, we characterized
driven systems with a negative feedback as a
function of the input rate. The negative feedback
compensates the input by regulating the system’s
self-activation to achieve a target activity. In
this light of control theory, the bursting regime
can be understood as resonances in a feedback
loop, where feedback dynamics are faster than
system dynamics (cf. Harnack et al. (2015)). This
qualitative picture should remain valid for other
connected graphs subject to external input with
spatial and temporal correlations. In this case,
however, we expect more complex network re-
sponses than predicted by our mean-field theory,
which assumes self-averaging random networks
subject to uncorrelated input.

Our results suggest that homeostatic plasticity
may be exploited in experiments to generate in
vivo-like dynamics in a controlled in vitro setup,
in particular to abolish the ubiquitous bursts in
vitro. Previous attempts to reduce bursting in
vitro (Wagenaar, 2005) and in model-systems of
epilepsy (Lian et al., 2003; Chiang et al., 2014; Co-

volan et al., 2014; Ladas et al., 2015) used short-
term electrical and optical stimulation to attain
temporal reduction in bursting. Alternatively,
one can reduce bursting pharmacologically or by
changing the calcium level, however, typically
at the cost of changing single-neuron proper-
ties (Morefield et al., 2000; Shew et al., 2009; Penn
et al., 2016). We propose a different approach,
namely applying weak, global, long-term stim-
ulation. Mediated by homeostasis, the stimula-
tion should alter the effective synaptic strength,
and thereby the dynamic state while preserv-
ing single-neuron dynamics. In particular, we
predict that inducing in every neuron additional
spikes with ℎ = 𝒪(0.01Hz) is sufficient to abol-
ish the ubiquitous bursts in vitro and render the
dynamics in vivo-like instead. If verified, this
approach promises completely novel paths for
drug studies. By establishing in vivo-like dy-
namics in vitro, fine differences between neuro-
logical disorders, which are otherwise masked
by the ubiquitous bursts, can be readily identi-
fied. Altogether this would present a compa-
rably cost-efficient, high-throughput, and well-
accessible drug assay with largely increased sen-
sitivity.
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Chapter 5

Operating in a reverberating regime
enables rapid tuning of network states to
task requirements†

Abstract

Neural circuits are able to perform computations under very diverse conditions and requirements. The
required computations impose clear constraints on their fine-tuning: a rapid andmaximally informative
response to stimuli in general requires decorrelated baseline neural activity. Such network dynamics
is known as asynchronous-irregular. In contrast, spatio-temporal integration of information requires
maintenance and transfer of stimulus information over extended time periods. This can be realized at
criticality, a phase transition where correlations, sensitivity and integration time diverge. Being able
to flexibly switch, or even combine the above properties in a task-dependent manner would present a
clear functional advantage. We propose that cortex operates in a “reverberating regime” because it is
particularly favorable for ready adaptation of computational properties to context and task. This re-
verberating regime enables cortical networks to interpolate between the asynchronous-irregular and
the critical state by small changes in effective synaptic strength or excitation-inhibition ratio. These
changes directly adapt computational properties, including sensitivity, amplification, integration time
and correlation length within the local network. We review recent converging evidence that cortex in
vivo operates in the reverberating regime, and that various cortical areas have adapted their integration
times to processing requirements. In addition, we propose that neuromodulation enables a fine-tuning
of the network, so that local circuits can either decorrelate or integrate, and quench or maintain their
input depending on task. We argue that this task-dependent tuning, which we call “dynamic adaptive
computation”, presents a central organization principle of cortical networks and discuss first experi-
mental evidence.

†The content of this chapter is identical in wording and figures to the publicationWilting et al. (2018): J.
Wilting, J. Dehning, J. Pinheiro Neto, L. Rudelt, M. Wibral, J. Zierenberg & V. Priesemann: Operating in
a reverberating regime enables rapid tuning of network states to task requirements. Frontiers in Systems
Neuroscience, 12(November):55 (2018). The article is published under the terms of a Creative Common
License (http://creativecommons.org/licenses/by/4.0/). All authors, including me, contributed to the
conception and review of the manuscript. I wrote the manuscript jointly with J. Zierenberg and V.
Priesemann. I derived the presented derivations jointly with J. Zierenberg and V. Priesemann. I drafted
all figures jointly with J. Pinheiro Neto and V. Priesemann, and created Figs. 5.1A and 5.2. Figs. 5.1B,C
were created by J. Pinheiro Neto. The final edit of Fig. 5.2 was performed by Viola Priesemann.
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5.1 Introduction

Cortical networks are confronted with ever-
changing conditions, whether these are imposed
on them by a natural environment, or induced
by the actions of the subjects themselves. For
example, when a predator is lurking for a prey
it should detect the smallest movement in the
bushes anywhere in the visual field, but as soon
as the prey is in full view and the predator
moves to strike, visual attention should focus
on the prey (Fig. 5.1C). Optimal adaptation for
these changing tasks requires a precise and flexi-
ble adjustment of input amplification and other
properties within the local, specialized circuits
of primary visual cortex: strong amplification
of small input while lurking, but quenching of
any irrelevant input when chasing. These are
changes from one task to another. However,
even the processing within a single task may re-
quire the joint contributions of networks with
diverse computational properties. For example,
listening to spoken language involves the inte-
gration of phonemes at the timescale of millisec-
onds to words and whole sentences lasting for
seconds. Such temporal integration might be re-
alized by a hierarchy of temporal receptive fields,
a prime example of adaption to different pro-
cessing requirements of each brain area (Murray
et al., 2014; Hasson et al., 2015, Fig. 5.1B).

Basic network properties like sensitivity, am-
plification, and integration timescale optimize
different aspects of computation, and hence a
generic input-output relation can be used to
infer signatures of the computational proper-
ties, and changes thereof (Kubo, 1957; Wilt-
ing and Priesemann, 2018a). Throughout this
manuscript, we refer to computation capability
in the following two, high-level senses. First,
the integration timescale determines the capabil-
ity to process sequential stimuli. If small inputs
are quenched away rapidly, the network may
quickly be ready to process the next input. In
contrast, networks that maintain input for long
timescales may be slow at responding to novel
input, but instead they can integrate information
and input over extended time periods (Boedecker
et al., 2012; Del Papa et al., 2017; Lazar, 2009;

Bertschinger and Natschläger, 2004). This is at
the heart of reservoir computing in echo state
networks or liquid state machines (Buonomano
and Merzenich, 1995; Maass et al., 2002; Jaeger
and Haas, 2004; Schiller and Steil, 2005; Jaeger
et al., 2007; Boedecker et al., 2012). Second, the
detection of small stimuli relies on a sufficient
amplification (Douglas et al., 1995). However, in-
creased sensitivity to weak stimuli can lead to in-
creased trial-to-trial variability (Gollo, 2017).

These examples show that local networks that
are tuned to one task may perform worse at a
different one, and there is no one-type-fits-all
network for every environmental and computa-
tional demand. How does a neural network man-
age to both react quickly to new inputs when
needed, but also maintain memory of the recent
input, e.g. when a human listens to language?
Did the brain evolve a large set of specialized
circuits, or did it develop a manner to fine-tune
its circuits quickly to the computational needs?
A flexible tuning of response properties would
be desirable in the light of resource and space
constraints. Indeed, in experiments one of the
most prominent features of cortical responses
is their strong dependence on cognitive state
and context. For example, the cognitive state
clearly impacts the strength, delay and duration
of responses, the trial-to-trial variability, the net-
work synchrony, and the cross-correlation be-
tween units (Kisley and Gerstein, 1999; Goard
and Dan, 2009; Curto et al., 2009; Marguet and
Harris, 2011; Scholvinck et al., 2015; Harris and
Thiele, 2011; Kohn et al., 2009; Poulet and Pe-
tersen, 2008; Massimini et al., 2005; Priesemann
et al., 2013). Transitions between different cog-
nitive states have been described by phase tran-
sitions (Steyn-Ross and Steyn-Ross, 2010; Steyn-
Ross et al., 2010; Galka et al., 2010).

While a phase transitions can be very useful to
realize cognitive state changes, we here want to
emphasize a particular property of systems close
to phase transitions: without actually crossing
the critical point, already small changes in 𝑚 can
have a large impact on the network dynamics
and function. Hence a classical phase transi-
tion may not be necessary for adaptation. In ad-
dition to the well-established phase transitions,

50



adaptation could be realized as a dynamic pro-
cess that regulates the proximity to a phase tran-
sition and allows cortical networks to fine-tune
their sensitivity, amplification, and integration
timescale within one cognitive state, depending
on the specific requirements. In order to allow
efficient adaptation, cortical networks must evi-
dently satisfy the following requirements. (i)The
network properties are easily tunable to chang-
ing requirements, e.g. the required synaptic or
neural changes should be small. (ii) The network
is fully functional in its ground state, and also in
the entire vicinity, i.e. the adaptive tuning does
not destabilize or dysfunctionalize it. (iii) The
network receives, modifies and transfers infor-
mation according to its needs, e.g. it amplifies or
quenches the input depending on task. (iv) The
network’s ground state in general should enable
integration of input over any specific past win-
dow, as required by a given task.

We propose that cortex operates in a particu-
lar dynamic regime, the “reverberating regime”,
because in this regime small changes in neural
efficacy can tune computational properties over
a wide range – a mechanism that we propose
to call dynamic adaptive computation. In this
regime a cortical circuit can interpolate between
two states described below, which both have
been hypothesized to govern cortical dynamics
and optimize different aspects of computation
(Burns and Webb, 1976; Softky and Koch, 1993;
Stein et al., 2005; van Vreeswijk and Sompolin-
sky, 1996; Brunel, 2000; Beggs and Plenz, 2003;
Beggs and Timme, 2012; Plenz and Niebur, 2014;
Tkačik et al., 2015; Humplik and Tkačik, 2017;
Muñoz, 2018; Wilting and Priesemann, 2018a,b).

In the following, we recapitulate the compu-
tational properties of these two states and then
identify recent converging evidence that in fact
the reverberating regime governs cortical dy-
namics in vivo. We then show how specifically
the reverberating regime can combine the com-
putational properties of the two extreme states
while maintaining stability and thereby satisfies
all requirements for cortical network function
postulated above. Finally, we outline future the-
oretical challenges and experimental predictions.

5.2 Hypotheses on cortical spiking
dynamics

One hypothesis suggests that spiking statistics in
the cortical ground state is asynchronous and ir-
regular (Burns and Webb, 1976; Softky and Koch,
1993; Stein et al., 2005), i.e. neurons spike inde-
pendently of each other and in a Poisson man-
ner (Fig. 5.1A). Such dynamics may be generated
by a “balanced state”, which is characterized by
weak recurrent excitation compared to inhibition
(van Vreeswijk and Sompolinsky, 1996; Brunel,
2000). The typical balanced state minimizes
redundancy, has maximal entropy in its spike
patterns, and supports fast network responses
(Denève and Machens, 2016; van Vreeswijk and
Sompolinsky, 1996). The other hypothesis pro-
poses that neuronal networks operate at critical-
ity (Bienenstock and Lehmann, 1998; Beggs and
Plenz, 2003; Levina et al., 2007; Beggs and Timme,
2012; Plenz and Niebur, 2014; Tkačik et al., 2015;
Humplik and Tkačik, 2017; Muñoz, 2018; Kos-
sio et al., 2018), and thus in a particularly sen-
sitive state at a phase transition. This state is
characterized by long-range correlations in space
and time, and in models optimizes performance
in tasks that profit from extended reverbera-
tions of input in the network (Bertschinger and
Natschläger, 2004; Haldeman and Beggs, 2005;
Kinouchi and Copelli, 2006; Wang et al., 2011;
Boedecker et al., 2012; Shew and Plenz, 2013;
Del Papa et al., 2017). These two hypotheses,
asynchronous-irregular and critical, can be inter-
preted as the two extreme points on a continu-
ous spectrum of response properties to minimal
perturbations, the first quenching any rate per-
turbation quickly within milliseconds, the other
maintaining it for much longer. Hence the two
hypotheses clearly differ already in the basic re-
sponse properties they imply.

A general first approach to characterize the
response properties of any dynamical system is
based on linear response theory: When apply-
ing a minimal perturbation or stimulation, e.g.
adding a single extra spike to neuron 𝑖, the ba-
sic response is characterized by 𝑚𝑖, the number
of additional spikes triggered in all postsynaptic
neurons (London et al., 2010), which can be inter-
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Figure 5.1: Collective dynamics of cortical networks. A. Examples of collective spiking dynamics represent-
ing either irregular and uncorrelated activity (blue), reverberations (green), or dynamics close to a critical state
(yellow). Population spiking activity 𝑎(𝑡) and raster plots of 50 neurons are shown. B. Hierarchical organization
of collective cortical dynamics. In primary sensory areas, input is maintained and integrated only for tens of
milliseconds, whereas higher areas show longer reverberations and integration. The purple arrow represents
any input to the respective area, the spirals the maintenance of the input over time (inspired from Hasson et al.
(2015)). C. Dynamic adaptation of collective dynamics in local circuits. When a predator is lurking for prey, the
whole field of view needs to be presented equally in cortex. Upon locking on prey, attention focuses on the prey.
This could be realized by local adaptation of the network dynamics, which amplifies the inputs from the receptive
fields representing the rabbit (“tuning in”), while quenching others (“tuning out”).

preted as efficacy of the one neuron. If the effi-
cacy is sufficiently homogeneous across neurons,
then the average neural efficacy 𝑚 represents a
control parameter, and quantifies the impact of
any single extra spike in a neuron on its post-
synaptic neurons, and thus the basic network re-
sponse properties to small input. In the next step,
any of these triggered spikes in turn can trig-
ger spikes in a similar manner, and thereby the
small stimulation may cascade through the net-
work. The network response may vary from trial
to trial and from neuron to neuron, depending
on excitation-inhibition ratio, synaptic strength,
andmembrane potential of the postsynaptic neu-
rons. Thus 𝑚 does not describe each single
response, but the expected (average) response
of the network, and thereby enables an assess-
ment of the network’s stability and computa-
tional properties. Themagnitude of the neural ef-

ficacy 𝑚 defines two different response regimes:
If one spike triggers on average less than one
spike in the next time step (𝑚 < 1), then any stim-
ulationwill die out in finite time. For𝑚 > 1, stim-
uli can be amplified infinitely, and 𝑚 = 1 marks
precisely the transition between stable and un-
stable dynamics (Figure 5.2B). In addition, 𝑚 di-
rectly determines the amplification of the stim-
ulus, the duration of the response, the intrinsic
network timescale and the response variability,
among others in the framework of autoregres-
sive processes (Wilting and Priesemann, 2018a,b;
Harris, 1963). Although details may depend on
the specific process or model, many results pre-
sented in the following are qualitatively univer-
sal across diverse models that show a (phase)
transition from stable to unstable, from ordered
to chaotic, or from non-oscillatory to oscilla-
tory activity. These include for example AR(1),
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Figure 5.2: The neural efficacy 𝑚 determines
the average impact any spike has on the net-
work. Depending on 𝑚, network dynamics
can range from irregular (𝑚 = 0) to critical
(𝑚 = 1) and unstable (𝑚 > 1) dynamics. A. In
a logarithmic depiction of 𝑚, the “reverberat-
ing regime” (green) observed for cortex in vivo
is well visible. It has clearly a larger 𝑚 than
the irregular state (blue), but maintains a safety
margin to criticality (yellow) and the instability
associated with the supercritical regime (red in
B and C). B,C. Sketch to illustrate the diver-
gence of dynamical and computational prop-
erties at a critical phase transition, at the ex-
ample of the network timescale and the sensi-
tivity, respectively. B. The network timescale
determines how long input is maintained in
the network. While any rate change is rapidly
quenched close to the irregular state (𝑚 = 0),
input “reverberates” in the network activity for
increasingly long timescales when approach-
ing criticality (𝑚 = 1). In the reverberating
regime, the network timescale is tens to hun-
dreds of milliseconds. For 𝑚 > 1, input is
amplified by the network, implying instabil-
ity (assuming a supercritical Hopf bifurcation
here for illustration). The reverberating regime
keeps a sufficient safety margin from this in-
stability. C. The reverberating regime found
in vivo allows large tuning of the sensitivity
by small changes of the neural efficacies (e.g.
synaptic strength or excitation-inhibition bal-
ance), in contrast to states further away from
criticality (insets).

53



Kesten, branching, and Ornstein-Uhlenbeck pro-
cesses, systems that show a Hopf bifurcation, or
systems at the transition to chaos (Huang and
Doiron, 2017; Harris, 1963; Wilting and Priese-
mann, 2018a,b; Camalet et al., 2000; Boedecker
et al., 2012). Hence the principle of dynamic
computation detailed below can be implemented
and exploited in very diverse types of neural net-
works, and thus presents a general framework.

The neural efficacy 𝑚 is a statistical descrip-
tion of the effective recurrent activation, which
takes into account both excitatory and inhibitory
contributions. We here use it to focus on the
mechanism of dynamic adaptive computation in
an isolated setting, instead of including as many
details as possible. We take this approach for
two reasons. First, this abstraction allows to
discuss possible generic principles for adapta-
tion. Second, our approach enables us to as-
sess the network state 𝑚 and possible adaptation
𝑚(𝑡) from experiments. The abstract adaptation
principles we consider here can be implemented
by numerous physiological mechanisms, includ-
ing top-down attention, adaptation of synaptic
strengths or neuronal excitability, dendritic pro-
cessing, disinhibition, changes of the local gain,
or up-and-down states (Ramalingam et al., 2013;
Hirsch and Gilbert, 1991; London and Häusser,
2005; Karnani et al., 2016; Piech et al., 2013; Wil-
son, 2008).

Inferring the neural efficacy 𝑚 experimen-
tally is challenging, because only a tiny frac-
tion of all neurons can be recorded with the re-
quired millisecond precision (Priesemann et al.,
2009; Ribeiro et al., 2014; Levina and Priesemann,
2017). In fact, such spatial subsampling can
lead to strong underestimation of correlations
in networks, and subsequently of 𝑚 (Wilting
and Priesemann, 2018a,b). However, recently, a
subsampling-invariant method has been devel-
oped that enables a precise quantification of 𝑚
even from only tens of recorded neurons (Wilt-
ing and Priesemann, 2018a,b). Together with
complementary approaches, either derived from
the distribution of covariances or from a heuris-
tic estimation, evidence is mounting that 𝑚 is
between ≈ 0.9 and ≈ 0.995, consistently for
visual, somatosensory, motor and frontal cor-

tices as well as hippocampus (Wilting and Priese-
mann, 2018a,b; Priesemann et al., 2014; Dahmen
et al., 2016). Hence, collective spiking activity is
neither fully asynchronous nor critical, but in a
reverberating regime between the two, and any
input persists for tens to hundreds of millisec-
onds (Wilting and Priesemann, 2018a,b; Priese-
mann et al., 2014; Murray et al., 2014; Dahmen
et al., 2016; Hasson et al., 2015). In more detail,
both Dahmen and colleagues as well as Wilting
& Priesemann estimated the neural efficacy to
be about 𝑚 = 0.98, ranging from about 0.9 to
0.995 when assessing spiking activity in various
cortical areas (Figs. 5.1A, 5.2A). This magnitude
of neural efficacy 𝑚 implies intrinsic timescales
of tens to hundreds of milliseconds. Such in-
trinsic timescales were directly estimated from
cortical recordings in macaque by Murray and
colleagues, who identified a hierarchical organi-
zation of timescales across somatosensory, me-
dial temporal, prefrontal, orbitofrontal, and ante-
rior cingulate cortex - indicating that every cor-
tical area has adapted its response properties to
its role in information processing (Murray et al.,
2014). These findings are also in agreement with
the experiments by London and colleagues, who
directly probed the neural efficacy by stimulat-
ing a single neuron in barrel cortex. They found
the response to last at least 50 ms in that primary
sensory cortex, implying𝑚 ≳ 0.92 (London et al.,
2010; Wilting and Priesemann, 2018a,b).

We will show that this reverberating regime
with median𝑚 = 0.98 (0.9 < 𝑚 < 0.995) observed
in vivo is optimal in preparing cortical networks
for flexible adaptation to a given task, and meets
all the requirements for dynamic adaptive com-
putation we postulated above.

5.3 Rapid adaption of functional
properties

The reverberating regime allows tuning of com-
putational properties by small, physiologically
plausible changes of network parameters. This
is because the closer a system is to criticality
(𝑚 = 1), the more sensitive its properties are to
small changes in the neural efficacy 𝑚, e.g. to
any change of synaptic strength or excitation-
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inhibition ratio (Fig.5.2C). In the reverberating
regime the network can draw on this sensitiv-
ity: inducing small overall synaptic changes al-
lows to adapt network properties to task require-
ments over a wide range. Assuming for exam-
ple an AR(1), Ornstein-Uhlenbeck, or branching
process, increasing 𝑚 from 0.94 to 0.99 leads to
a six-fold increase in the sensitivity of the net-
work (Figure 5.2C). Here, the sensitivity 𝜕𝑟/𝜕ℎ ∼
(1−𝑚)−1 describes how the average network rate
𝑟 responds to changes of the the input ℎ (Wilting
and Priesemann, 2018a). In contrast, the same ab-
solute change from 𝑚 = 0.5 to 𝑚 = 0.55 only
increases the sensitivity by about 11%. Simi-
lar relations apply to the network’s amplification
and intrinsic timescale (Wilting and Priesemann,
2018b). Thereby, any mechanism that increases
or decreases the overall likelihood that a spike
excites a postsynaptic neuron can mediate the
change in neural efficacy 𝑚. Such mechanisms
may act on the synaptic strength of many neu-
rons in a given network, including neuromodula-
tion that can change the response properties of a
small population within a few hundred millisec-
onds, and homeostatic plasticity or long term po-
tentiation or depression, which adapt the net-
work over hours (Rang et al., 2003; Turrigiano
and Nelson, 2004; Zierenberg et al., 2018). An al-
ternative target could be the excitability of neu-
rons, either rapidly by modulatory input, den-
dritic processing, disinhibition, changes of the lo-
cal gain, or up-and-down states (Larkum, 2013;
Ramalingam et al., 2013; Hirsch andGilbert, 1991;
London and Häusser, 2005; Karnani et al., 2016;
Piech et al., 2013; Wilson, 2008); or by changes of
the intrinsic conductance properties over hours
to days (Turrigiano et al., 1994).

5.4 Retaining stability

While states even closer to the phase transition
than 𝑚 = 0.98 would imply even stronger sen-
sitivity to changes in 𝑚, being too close to the
phase transition comes with the risk of crossing
over to instability (𝑚 > 1), because synapses are
altered continuously by a number of processes,
ranging from depression and facilitation to long-
term plasticity. Hence, posing a system too close

to a critical phase transition may lead to insta-
bilities and potentially causes epileptic seizures
(Priesemann et al., 2014; Meisel et al., 2012; Wilt-
ing and Priesemann, 2018a). In the following,
we estimate that the typical synaptic variabil-
ity limits the precision of network tuning, and
thereby defines an optimal regime for functional
tuning that is about one percent away from the
phase transition. Typically, single synapses ex-
hibit about 50% variability in their strengths 𝑤,
i.e. 𝜎𝑤 ≈ 0.5𝑤 over the course of hours and
days (Statman et al., 2014). If these fluctuations
are not strongly correlated across synapses, the
variance of the single neuron efficacy 𝑚𝑖 ≈ 𝑘⟨𝑤⟩
scales with the number 𝑘 of outgoing synapses,
Var[𝑚𝑖] ≈ 𝑘Var[𝑤] and gives

𝜎𝑚𝑖 ≈ 0.5𝑚𝑖/√𝑘. (5.1)

Assuming the network keeps a ”safety margin”
from instability (𝑚 > 1) of three standard devi-
ations renders the network stable 99.9% of the
time. The remaining, transient excursions into
the unstable regime may be tolerable, because
even in a slightly supercritical regime (𝑚 ⪆
1), runaway activity occurs only rarely (Harris,
1963; Zierenberg et al., 2018). Thus assuming on
average 𝑘 = 𝒪(10, 000) synapses per neuron (De-
Felipe et al., 2002) yields that a safety margin
of about 1.5% from criticality is sufficient to es-
tablish stability. The safety margin can be even
smaller if one assumes furthermore that the vari-
ability of 𝑚𝑖 among neurons in a local network
is not strongly correlated, because the stability
of network dynamics is determined by the av-
erage neural efficacy 𝑚 = ⟨𝑚𝑖⟩, not by the in-
dividual efficacies. Furthermore, network struc-
ture might also contribute to stabilizing network
activity (Kaiser and Simonotto, 2010). The result-
ingmargin from criticality is compatible with the
𝑚 observed in vivo.

The generic model reproduces statistical prop-
erties of networks where excitatory and in-
hibitory dynamics can be described by an effec-
tive excitation, e.g. because of a tight balance
between excitation and inhibition (Sompolinsky
et al., 1988; van Vreeswijk and Sompolinsky,
1996; Ostojic, 2014; Kadmon and Sompolinsky,
2015; Huang and Doiron, 2017). In general, mod-
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els should operate in a regime with 𝑚 < 1 to
maintain long-term stability and a safety-margin.
However, transient and strong stimulus-induced
activation is is key for certain types of compu-
tation, such as direction selectivity, or sub- and
supra-linear summation, e.g. in networks with
non-saturating excitation and feedback inhibi-
tion (Murphy and Miller, 2009; Lim and Gold-
man, 2013; Hennequin et al., 2014; Rubin et al.,
2015; Hennequin et al., 2017; Miller, 2016; Dou-
glas et al., 1995; Suarez et al., 1995). These net-
works show transient instability (i.e. 𝑚(𝑡) > 1)
until inhibition stabilizes the activity. Whether
such transient, large changes in 𝑚(𝑡) on a mil-
lisecond scale should be considered a “state” is
an open question. Nonetheless, experimentally
a time resolved 𝑚(𝑡) can be estimated with high
temporal resolution, e.g. in experiments with a
trial-based design. This measurement could then
give insight into the state changes required for
computation.

5.5 Balancing competing func-
tional requirements

Besides the sensitivity, a number of other net-
work properties also diverge or are maximized
at the critical point and are hence equally tun-
able under dynamic adaptive computation. They
include the spatial correlation length, amplifi-
cation, active information storage, trial-to-trial
variability, and the intrinsic network timescale
(Sethna, 2006; Wilting and Priesemann, 2018a;
Barnett et al., 2013; Boedecker et al., 2012; Har-
ris, 1963). Some of these properties, which di-
verge at the critical point as (1−𝑚)−𝛽 (with a spe-
cific scaling exponent 𝛽), are advantageous for a
given task; others, in contrast, may be detrimen-
tal. For example, at criticality the trial-to-trial
variability diverges and undermines reliable re-
sponses. Moreover, in the vicinity of the criti-
cal point convergence to equilibrium slows down
(Scheffer et al., 2012). Thus, network fine-tuning
most likely is not based on optimizing one sin-
gle network response property alone, but repre-
sents a trade-off between desirable and detrimen-
tal aspects. This tradeoff can be represented in

the most simple case by a goal function

𝛷𝛼 = 𝛷+ − 𝛼𝛷− ∝ (1 − 𝑚)𝛽+ − 𝛼′(1 − 𝑚)𝛽− , (5.2)

which weighs the desired (𝛷+) and detrimental
(𝛷−) aspects by a task dependent weight factor
𝛼, and might be called free energy in the sense of
Friston (2010). Close to a phase transition, the de-
sired and detrimental aspects diverge and depend
on the critical scaling exponents 𝛽+ and 𝛽−. In
this case, the normalization constants of 𝛷+ and
𝛷− are taken into account by the rescaled weight
𝛼′. Maximizing the goal function then yields an
optimal neural efficacy 𝑚∗, which is here given
by

𝑚∗ = 1 − 􏿶
𝛼′ 𝛽−
𝛽+

􏿹
− 1
𝛽+−𝛽−

. (5.3)

This optimal neural efficacy (i) is in a subcriti-
cal regime unless 𝛼 = 0 (i.e. detrimental aspects
do not matter) and (ii) depends on the weight
𝛼′ and the exponents 𝛽+ and 𝛽−. In the simpli-
fied picture of branching processes, the result-
ing 𝑚∗ determines a large set of response prop-
erties, which can thus only be varied simultane-
ously. An “ideal” network should combine the
capability of dynamic adaptive computation with
the ability to tune many response properties in-
dependently. To which extent such a network is
conceivable at all and how it would have to be
designed is an open question.

5.6 Fine-tuning temporal “win-
dows of integration”

One particularly important network property is
the intrinsic network timescale 𝜏. In many pro-
cesses this intrinsic network timescale emerges
from recurrent activation and is connected to the
neural efficacy as 𝜏 = −𝛥𝑡/ log(𝑚) ≈ 𝛥𝑡/(1 − 𝑚)
(Wilting and Priesemann, 2018a), where 𝛥𝑡 is a
typical lag of spike propagation from the presy-
naptic to the postsynaptic neuron. Input rever-
berates in the network over this timescale 𝜏, and
can thereby enable short-term memory without
any changes in synaptic strength (Fig. 5.2B).
It has been proposed before that cortical com-
putation relies on reverberating activity (Herz
and Hopfield, 1995; Buonomano and Merzenich,
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1995; Wang, 2002). Reverberations are also at the
core of reservoir computing in echo state net-
works and liquid state machines (Maass et al.,
2002; Jaeger et al., 2007; Boedecker et al., 2012).
Here, we extend on this concept and propose
that cortical networks not only rely on reverber-
ations, but specifically harness the reverberating
regime in order to change their computational
properties, in particular the specific 𝜏, amplifica-
tion, and sensitivity depending on needs.

We expect dynamic adaptive computation to
fine-tune computational propertieswhen switch-
ing from one task to the next, potentially me-
diated by neuromodulators, but we also expect
that with development every brain area or cir-
cuit has developed computational properties that
match their respective role in processing. Exper-
imentally, evidence for a developmental or evo-
lutionary tuning has been provided by Murray
and colleagues, who showed that cortical areas
developed a hierarchical organization as detailed
above, with somatosensory areas showing fast
responses (𝜏 ≈ 100ms), and frontal slower ones
(𝜏 ≈ 300ms) (Murray et al., 2014). This hierar-
chy indicates that the ground-state dynamics of
cortical circuits is indeed precisely tuned, and it
is hypothesized that the hierarchical organiza-
tion provides increasingly larger windows for in-
formation integration for example across the vi-
sual hierarchy (Hasson et al., 2008; Chen et al.,
2015; Hasson et al., 2015; Badre and D’Esposito,
2009; Chaudhuri et al., 2015). In addition to that
backbone of hierarchical cortical organization,
dynamic adaptive computation enables the fine-
tuning of a given local circuit to specific task
conditions. Indeed, experimental studies have
shown that the response properties of cortical
networks clearly change with task condition and
cognitive state (Kisley and Gerstein, 1999; Goard
and Dan, 2009; Curto et al., 2009; Marguet and
Harris, 2011; Scholvinck et al., 2015; Harris and
Thiele, 2011; Kohn et al., 2009; Poulet and Pe-
tersen, 2008; Massimini et al., 2005; Priesemann
et al., 2013). Relating these changes to specific
functional task requirements remains a theoreti-
cal and experimental challenge for the future.
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Chapter 6

Discussion

This manuscript aimed at answering the fol-
lowing questions: (i) How can one assess the dy-
namical state of cortical networks event under
strong subsampling? (ii) What is the dynami-
cal state of cortical networks in vivo? (iii) How
can one explain the striking differences between
dynamical states in vivo and in vitro? (iv) How
can the dynamical state support rapid adapta-
tion of computational requirements to changing
environments? Each of these questions was ad-
dressed in one of the previous chapters.

In Chap. 2, we showed that subsampling
may lead to a severe underestimation of event
propagation in complex systems. In our study,
we explicitly demonstrated this underestimation
in two different real-world applications, which
have both been modeled in terms of propagating
dynamics: epidemic spread of infectious diseases
(Farrington et al., 2003) and the propagation of
spiking activity in neural networks (Beggs and
Plenz, 2003; Haldeman and Beggs, 2005). In both
systems, classical estimators underestimate even
propagation. Beyond these two examples, our re-
sults may affect a multitude of further scientific
disciplines, investigating, for example, cell pro-
liferation, evolution (see (Kimmel and Axelrod,
2015) and references therein), neutron processes
in nuclear power reactors (Pazy and Rabinowitz,
1973), spread of bank-ruptcy (Filimonov and Sor-
nette, 2012) or evolution of stock prices (Mitov
et al., 2009).

We introduced a novel, multistep regression
estimator (MR estimator) that overcomes the
subsampling bias. This estimator is based on a set
of multiple autoregressive analyses with increas-
ing time lags. A subsampling-invariant estimate
for event propagation can then be derived from

the relative decay of the slopes of these autore-
gressive analyses. This method essentially cor-
responds to estimating the autocorrelation time
of the underlying process, ignoring zero lag. In
fact, we showed that (i) propagation dynamics is
directly linked to a certain exponential autocor-
relation time and (ii) this autocorrelation time is
preserved under subsampling. The autocorrela-
tion time is preserved, because the sampling pro-
cess itself does not interfere with the underly-
ing system evolution. Thereby, subsampling de-
creases the autocorrelation strength at different
lags by the same factor, preserving the relative
decay of the autocorrelation function.

The novel estimator overcomes limitations of
previous estimators. In our stochastic frame-
work, subsampling can essentially be understood
as a filtering process. This idea of filtered observ-
ables has been used in Kalman filtering before.
Expectation-Maximization based on Kalman fil-
tering is state-of-the-art in system identifica-
tion with noisy observations (Hamilton, 1994;
Shumway and Stoffer, 1982; Ghahramani and
Hinton, 1996). However, we showed that this
method fails under strong subsampling, in con-
trast to our novel MR estimator. The MR estima-
tor ismore versatile for the estimation of subsam-
pled propagation dynamics compared to meth-
ods based on Kalman filtering, because: (i) It puts
no restrictions on the specific distributions of the
underlying process, as long as it has an autore-
gressive representation. (ii) It puts very soft re-
strictions on the sampling filter and in particu-
lar is applicable even if the sampling filter is not
Gaussian. (iii) The computational cost of multi-
ple regressions is much smaller that Expectation-
Maximization.
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Our method complements other approaches
to infer properties of collective dynamics from
subsampled recordings. Levina and Priese-
mann (2017) used a similar, yet more restrictive
stochastic description of subsampling. They con-
structed a scaling relation under subsampling,
called subsampling scaling, which is different
from thewell-established finite-size scaling. Sub-
sampling scaling provided a powerful method to
identify criticality from avalanche size distribu-
tions, even under subsampling.

However, the extraction of avalanches from
recordings of neural networks may be ambigu-
ous. Subsequent avalanches are identified by
pauses in the activity, but neural activity does
not show a separation of timescales, which
would allow for an unambiguous identification of
avalanches. Instead, in awake cortex avalanches
are continuously initialized, merge, and split up
(Priesemann et al., 2014). Hence, empty bins
are only found if (i) the bin size tends towards
zero, (ii) the system is heavily subsampled, or (iii)
thresholding is applied to the activity (Del Papa
et al., 2017; Poil et al., 2012; Priesemann et al.,
2014). This dependence on the experimental set-
ting and analysis parameters renders the defini-
tion of avalanches ambiguous. As a consequence,
the resulting avalanche distribution depends on
the choice of the bin size, threshold, and the num-
ber of analyzed neurons or channels.

Our novel estimator overcomes this ambigu-
ity, because it builds on a minimal model that
does not require a separation of timescales. This
minimal model of spike propagation is defined
in terms of branching processes, which have
been used to describe spiking dynamics in neural
networks before (Beggs and Plenz, 2003; Halde-
man and Beggs, 2005; Ribeiro et al., 2010; Priese-
mann et al., 2013, 2014). However, these previous
models incorporated a separation of timescales,
whereas we now explicitly include drive in the
model. This allows the estimator to infer the dy-
namical state from ongoing neural activity. It
can quantify the distance from criticality on a
continuous spectrum (Wilting and Priesemann,
2018a), and is easy to apply to data: It requires
only a few tens of multi-unit spike recordings,
is subsampling-invariant, and does not require a

separation of timescales, or spike sorting.
Most real-world systems, including cortical

dynamics, are more complicated than our min-
imal branching model. For cortical dynamics, for
example, heterogeneity of neuronal morphology
and function, non-trivial network topology, and
the complexity of neurons themselves are likely
to have a profound impact onto the population
dynamics (Marom, 2010). However, we showed
that statistics of cortical network activity are well
approximated by a branching model. Therefore,
we interpret branching models as a statistical
approximation of spike propagation, which can
capture a fair extent of the complexity of cortical
dynamics. By using branching models, we draw
on the powerful advantage of analytical tractabil-
ity, which allowed for basic insight into dynam-
ics and stability of cortical networks.

We used the novel estimator in order to in-
fer propagation properties of collective spiking
dynamics in cortical networks in Chap. 3. We
identified a reverberating regime, which suggests
that spiking activity in vivo is neither AI-like,
nor consistent with a critical state. Instead, it is
poised in a regime that, unlike critical or AI, does
not maximize one particular property alone but
may flexibly combine features of both (Wilting
et al., 2018). These results may resolve contradic-
tions between AI and critical states. They sug-
gest that network dynamics show AI-like statis-
tics, because under subsampling the observed
correlations are underestimated. In contrast,
typical experiments that assessed criticality po-
tentially overestimated correlations by sampling
from overlapping populations (LFP, EEG) and
thereby hampered a fine distinction between crit-
ical and subcritical states (Pinheiro Neto et al., in
prep).

The reverberating regime is supported by
complementary approaches. First, Priesemann
et al. (2014) and Dahmen et al. (2016) identi-
fied a similar reverberating regime, either de-
rived from the distribution of covariances or
from a heuristic estimation. Across all these
studies, this regime is consistently found for vi-
sual, somatosensory, motor and frontal cortices
as well as hippocampus (Wilting and Priese-
mann, 2018a, 2019b; Priesemann et al., 2014; Dah-
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men et al., 2016). This reverberating regime im-
plies intrinsic timescales, which allow any input
to persist for tens to hundreds of milliseconds
(Wilting and Priesemann, 2018a, 2019b; Priese-
mann et al., 2014; Murray et al., 2014; Dahmen
et al., 2016; Hasson et al., 2015). Such intrin-
sic timescales were directly estimated from cor-
tical recordings in macaque by Murray and col-
leagues, who identified a hierarchical organiza-
tion of timescales across somatosensory, medial
temporal, prefrontal, orbitofrontal, and anterior
cingulate cortex - indicating that every corti-
cal area has adapted its response properties to
its role in information processing (Murray et al.,
2014). These findings are also in agreement with
the experiments by London et al. (2010), who di-
rectly probed the neural efficacy by stimulating
a single neuron in barrel cortex. They found the
response to last at least 50 ms in that primary
sensory cortex (London et al., 2010; Wilting and
Priesemann, 2018a, 2019b). Altogether, the gen-
erality of these results across different analysis
techniques, species, brain areas, and cognitive
states, suggests self-organization to this rever-
berating regime as a general organization prin-
ciple for cortical network dynamics.

Using our analytically tractable model, we
could link the dynamical state of the network to
functional properties. Inferring the precise dis-
tance from criticality with our novel estimator
allowed to predict and validate network proper-
ties, such as avalanche size and duration, inter-
spike interval, or activity distributions for each
network individually. These predictions agreed
with experimental results. We hence deduced
further properties, which are impossible or dif-
ficult to assess experimentally and gave insight
into more complex questions about network re-
sponses: how do perturbations propagate within
the network, and how susceptible is the network
to external stimulation? First, we found that one
additional spike elicits between 20 and 1000 addi-
tional spikes on average, thereby yielding char-
acteristic amplification of small stimuli (Douglas
et al., 1995; Suarez et al., 1995; London et al., 2010;
Miller, 2016). Second, we inferred that about 98%
of cortical activity is generated by recurrent ex-
citation, and only about 2% originates from in-

put or spontaneous threshold crossing (Reinhold
et al., 2015). This may indicate that a large pro-
portion of spiking activity is generated in the
context of predictive coding (Rao and Ballard,
1999; Clark, 2013). Third, we estimated that corti-
cal spiking activity is self-similar over timescales
between tens of milliseconds and a few seconds,
indicating that stimuli are maintained in the ac-
tivity and can be read out for short term mem-
ory over similar time spans (Buonomano and
Merzenich, 1995; Wang, 2002; Jaeger et al., 2007;
Lim and Goldman, 2013; Murray et al., 2014).

The reverberating regime may come with par-
ticular functional benefits (Wilting et al., 2018;
Wilting and Priesemann, 2019b). First, instead
of solely maximizing singular properties, the re-
verberating regime can balance competing re-
quirements, e.g. sensitivity vs. specificity (Gollo,
2017), quality of representation vs. integration
time (Shriki and Yellin, 2016), or stimulus de-
tection vs. discrimination (Tomen et al., 2014;
Clawson et al., 2017). Second, the reverber-
ating regime supports flexible adaption to task
requirements, because small parameter changes
can induce rapid, strong changes of computa-
tional properties (Wilting et al., 2018). Third,
the reverberating regime promotes amplification
of small stimuli, while keeping a safety margin
from the instability associated with supercriti-
cality (Priesemann et al., 2014). Last, it offers a
substrate for short-term memory, as information
about the input is maintained for well-defined
time-spans ranging from tens of milliseconds to
several seconds, which has been exploited in
echo state networks (Maass et al., 2002; Jaeger
et al., 2007; Boedecker et al., 2012).

In Chap. 4 we proposed a mechanism to es-
tablish and maintain different dynamical states,
ranging from asynchronous to the reverberat-
ing to critical to transiently supercritical states.
Namely, we demonstrated that the interplay of
external input rate and target spike rate, medi-
ated by homeostatic plasticity, can promote self-
organization into different dynamic states. Using
the framework of driven branching processes,
we disentangled the recurrent spike propagation
from external input. We showed analytically and
numerically that for high input the network or-
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ganizes into an input-driven state. For decreas-
ing input the recurrent interactions are strength-
ened and lead to a regime of fluctuating dynam-
ics. This regime resembles the reverberating dy-
namics observed in vivo. Decreasing the input
even further induced bursting behavior due to a
competition of timescales between homeostatic
plasticity and the autocorrelation of population
activity. This bursting behavior resembles the
bursting activity found in in vitro recordings.
Therebywe proposed a generic mechanism to ex-
plain the prominent differences between in vivo
and in vitro dynamics.

Our framework does not only explain differ-
ences between in vivo and in vitro dynamics,
but suggests that also differences between col-
lective dynamic states observed in vivo can be
explained by differences in input strength. It
was shown that cortical layer 2/3 exhibits critical
dynamics (Bellay et al., 2015), whereas presum-
ably deeper layers show reverberating dynam-
ics (Priesemann et al., 2014; Wilting and Priese-
mann, 2018a). This difference agrees with our
proposed framework: layer 2/3 is more recur-
rently connected, while layer 4 is the main target
of thalamic input (Harris andMrsic-Flogel, 2013),
hence receiving the stronger input. The dynamic
state also varies across different cortical areas: it
was shown that intrinsic network timescales re-
flect a hierarchical organization (Murray et al.,
2014; Hasson et al., 2015), where cortical areas
associated with higher-order function show a
larger autocorrelation time. As input presumably
gets more and more filtered, i.e. weaker, from
sensory modalities to higher order brain areas,
this hierarchy aligns with our framework.

The hierarchy of intrinsic timescales provides
first evidence for dynamic adaptive computation
on an evolutionary scale. In Chap. 5 we proposed
that cortex operates in the reverberating regime,
particularly because in this regime small changes
in neural efficacy can tune computational prop-
erties over a wide range. The hierarchy of in-
trinsic timescales indeed shows that with devel-
opment every brain area or circuit has devel-
oped computational properties that match their
respective role in processing, with somatosen-
sory areas showing fast responses (𝜏 ≈ 100ms),

and frontal slower ones (𝜏 ≈ 300ms) (Murray
et al., 2014). This hierarchy indicates that the
ground-state dynamics of cortical circuits is in-
deed precisely tuned, and it is hypothesized that
the hierarchical organization provides increas-
ingly larger windows for information integration
for example across the visual hierarchy (Hasson
et al., 2008; Chen et al., 2015; Hasson et al., 2015;
Badre and D’Esposito, 2009; Chaudhuri et al.,
2015). Hence, the hierarchy of intrinsic timescale
provides evidence for dynamic adaptive compu-
tation on a developmental or evolutionary scale.

On top of this evolutionary backbone, we ex-
pect that dynamic adaptive computation modu-
lates computational properties when switching
from one task to the next. Thereby, dynamic
adaptive computation enables the fine-tuning of
a given local circuit to specific task conditions.
One then expects that a modulation of the hierar-
chical backbone can be observed in various con-
texts, depending on vigilance state and task. In-
deed, experimental studies have shown that the
response properties of cortical networks clearly
change with task condition and cognitive state
(Kisley and Gerstein, 1999; Goard and Dan, 2009;
Curto et al., 2009; Marguet and Harris, 2011;
Scholvinck et al., 2015; Harris and Thiele, 2011;
Kohn et al., 2009; Poulet and Petersen, 2008; Mas-
simini et al., 2005; Priesemann et al., 2013). There
is also evidence that the power-law nature of
avalanche size distributions changes with cogni-
tive states, for example across the sleep-wake cy-
cle (Ribeiro et al., 2010; Priesemann et al., 2013;
Meisel et al., 2017b,a) or under changes of con-
sciousness (Tagliazucchi et al., 2016; Bellay et al.,
2015; Fagerholm et al., 2016, 2018; Fekete et al.,
2018; Lee et al., 2019). Markers of criticality have
been shown to transiently change depending on
the behavioral state (Hahn et al., 2017), attention
(Fagerholm et al., 2015), and stimuli (Arviv et al.,
2015; Yu et al., 2017). These studies provided ev-
idence that the brain is capable of flexible self-
organization to different states. Precisely link-
ing the changes in the reverberating regime to
the specific task at hand remains a challenge for
future work.

Where do we go from here? The series of pub-
lications presented in this monograph has laid
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the foundation for consecutive research ques-
tions (Wilting and Priesemann, 2019a). Some of
these are already being investigated in the work
group of Viola Priesemann.

First, the subsampling problem illuminated in
Chap. 2 is only one complication faced when
assessing critical dynamics (Priesemann et al.,
2019). A different challenge is imposed by
recordings from LFP, EEG,MEG, or BOLD, which
are typically coarse sampled, i.e. the recorded
activity represents the cumulative, filtered sig-
nal of many individual contributors. This coarse
sampled signal will indeed produce the hallmark
power laws in the distributions of avalanche sizes
and durations if the underlying dynamics is crit-
ical (Yu et al., 2014). However, the more inter-
esting question is if power laws can even arise
in these signals in the absence of criticality. In-
deed, preliminary results by Pinheiro Neto et al.
suggest that depending on the placement of elec-
trodes, power laws can be found even if the un-
derlying dynamics is not critical. Understanding
the possiblemisinterpretations of coarse sampled
avalanche size distributions may help shed light
on the contradictory past results on the dynami-
cal state of cortical network.

Second, the estimator presented in Chap. 2 is
based on processes with an autoregressive rep-
resentation, i.e. strictly speaking dimensionless
processes. Strictly speaking, this class of pro-
cesses represents mean field dynamics in an infi-
nite population in the limit of vanishing activity.
This representation is limited, as it (i) does not
allow to explicitly model network topology and
(ii) does not reflect coalescence, i.e. the fact hat
two neurons might activate the same postsynap-
tic neuron simultaneously. In Chaps. 3 and 4, the
dimensionless process was heuristically mapped
onto a branching network, i.e. a network model
with probabilistic activation. It is an open ques-
tions, how the two models map onto each other
precisely, and if they experience the same type of
phase transition at the critical point. These ques-
tions are addressed by Zierenberg et al. (2020b)
and Zierenberg et al. (2020a).

Third, the establishment of a robust tool to
infer the dynamical state motivates its applica-
tion to experimental recordings. de Heuvel et al.

present an extension of the estimator, which
allows to infer the dynamical state even from
recordings with nonstationary input rate, as long
as the experimental setup comprises similarly
structured, repetitive trials. This extension is al-
ready included in an estimator toolbox (Spitzner
et al.), which is at the heart of two experimental
studies. Dehning et al. are probing a possible hi-
erarchical organization of cortical areas, and the
reorganization of this hierarchy under different
states. Finding such a reorganization would be
an indicator for the dynamic adaptive computa-
tion postulated in Chap. 5. Finally, Hagemann
et al. are investigating possible systematic differ-
ences between epileptic and healthy hemispheres
in spike recordings of epilepsy patients.

Overall, these studies demonstrate the useful-
ness of the multistep regression estimator, which
can be helpful to analyze collective dynamics in
cortical networks under a variety of experimen-
tal conditions. These studies represent steps to-
wards a deeper understanding of collective cor-
tical dynamics and its changes under different
tasks. They form the basis for future research to
refine this knowledge even further.
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Appendix A

Supplementary material for “Inferring
collective dynamical states from widely
unobserved systems”†

†The content of this chapter is identical in wording and figures to the online supplementary material
of the publication (Wilting and Priesemann, 2018a): J. Wilting & V. Priesemann. Inferring collective
dynamical states from widely unobserved systems. Nature Communications 9(1):2325 (2018). Part of the
supplementary material was previously included or included in similar form in my Bachelor Thesis
in mathematics (Jens Wilting: Estimation of Branching Process Parameters. Bachelorarbeit in Mathe-
matik, Georg-August-Universität Göttingen, 2015).

A.1 Applicability of MR estimation

We here analytically derive the novel MR estimator for branching processes (BP) (Harris, 1963; Heath-
cote, 1965; Pakes, 1971). We expect that analogous derivations apply to any process with a first order
autoregressive representation (PAR) (Ispány and Pap, 2010), because these processes fulfill Eq. (A.5).
Beside BPs, PARs include autoregressive AR(1) processes, integer-valued autoregressive INAR(1) pro-
cesses (Alzaid and Al-Osh, 1990) rounded integer-valued autoregressive RINAR(1) processes (Kachour
and Yao, 2009), and Kesten processes (Kesten, 1973).
We emphasize that the MR estimator only requires the subsampled recording 𝑎𝑡 of a system with full
activity𝐴𝑡 conforming with the definition below. It is not necessary to know either the full system size,
the number of subsampled units, nor any of the moments of the full process 𝐴𝑡.

A.2 Branching processes

In a branching process (BP) with immigration (Harris, 1963; Heathcote, 1965; Pakes, 1971) each unit 𝑖
produces a random number 𝑦𝑡,𝑖 of units in the subsequent time step. Additionally, in each time step
a random number ℎ𝑡 of units immigrates into the system (drive). Mathematically, BPs are defined
as follows (Harris, 1963; Heathcote, 1965): Let 𝑦𝑡,𝑖 be independently and identically distributed non-
negative integer-valued random variables following a law 𝒴 with mean 𝑚 = ⟨𝒴⟩ and variance 𝜎2 =
Var[𝒴]. Further, 𝒴 shall be non-trivial, meaning it satisfies P[𝒴 = 0] > 0 and P[𝒴 = 0] + P[𝒴 = 1] <
1. Likewise, let ℎ𝑡 be independently and identically distributed non-negative integer-valued random
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variables following a law ℋ with mean rate ℎ = ⟨ℋ ⟩ and variance 𝜉2 = Var[ℋ ]. Then the evolution
of the BP 𝐴𝑡 is given recursively by

𝐴𝑡+1 =
𝐴𝑡
􏾜
𝑖=1

𝑦𝑡,𝑖 + ℎ𝑡, (A.1)

i.e. the number of units in the next generation is given by the offspring of all present units and those
that were introduced to the system from outside.
The stability of BPs is solely governed by the mean offspring 𝑚. In the subcritical state, 𝑚 < 1, the
population converges to a stationary distribution𝐴∞ with mean ⟨𝐴∞⟩ = ℎ/(1−𝑚). At criticality (𝑚 = 1),
𝐴𝑡 asymptotically exhibits linear growth, while in the supercritical state (𝑚 > 1) it grows exponentially.
We will first show results that further specify the mean and variance of subcritical branching processes.

Theorem 1. The stationary distribution of a subcritical BP satisfies

⟨𝐴∞⟩ =
ℎ

1 − 𝑚, Var[𝐴∞] =
1

1 − 𝑚2 􏿶𝜉
2 + 𝜎2 ℎ

1 − 𝑚􏿹 ,

where 𝑚, 𝜎2, ℎ, and 𝜉2 are defined as above.

Proof. The first result was stated before (Heathcote, 1965; Heyde and Seneta, 1972) and follows from
taking expectation values of both sides of Eq. (A.1): ⟨𝐴𝑡+1⟩ = 𝑚⟨𝐴𝑡⟩ + ℎ. Because of stationarity
⟨𝐴𝑡+1⟩ = ⟨𝐴𝑡⟩ = ⟨𝐴∞⟩ and the result follows easily. For the second result, observe that by the theorem
of total variance, Var[𝐴𝑡+1] = ⟨Var[𝐴𝑡+1 |𝐴𝑡]⟩ + Var[⟨𝐴𝑡+1 |𝐴𝑡⟩], where ⟨⋅⟩ denotes the expected value,
and 𝐴𝑡+1 |𝐴𝑡 conditioning the random variable 𝐴𝑡+1 on 𝐴𝑡. Because 𝐴𝑡+1 is the sum of independent
random variables, the variances also sum: Var[𝐴𝑡+1 |𝐴𝑡] = 𝜎2𝐴𝑡 + 𝜉2. Using the result for ⟨𝐴∞⟩ one
then obtains

Var[𝐴𝑡+1] = 𝜉2 + 𝜎2 ℎ
1 − 𝑚 + Var[𝑚𝐴𝑡 + ℎ] = 𝜉2 + 𝜎2 ℎ

1 − 𝑚 + 𝑚2Var[𝐴𝑡]. (A.2)

Again, in the stationary distribution Var[𝐴𝑡+1] = Var[𝐴𝑡] = Var[𝐴∞] and hence the stated result follows.

A.3 Subsampling

To derive the MR estimator for subsampled data, subsampling is implemented in a parsimonious way,
according to the following definition:

Definition 1 (Subsampling). Let {𝐴𝑡}𝑡∈ℕ be a BP and {𝑎𝑡}𝑡∈ℕ a sequence of random variables. Then
{𝑎𝑡}𝑡∈ℕ is called a subsampling of {𝐴𝑡}𝑡∈ℕ if it fulfills the following three conditions:

(i) Let 𝑡′, 𝑡 ∈ ℕ, 𝑡′ ≠ 𝑡. Then the conditional random variables* (𝑎𝑡|𝐴𝑡 = 𝑗) and (𝑎𝑡′ |𝐴𝑡′ = 𝑙) are
independent for any outcome 𝑗, 𝑙 ∈ ℕ of 𝐴𝑡, 𝐴𝑡′ . If 𝐴𝑡 = 𝐴𝑡′ then (𝑎𝑡|𝐴𝑡 = 𝑗) and (𝑎𝑡′ |𝐴𝑡′ = 𝑗) are
identically distributed.

(ii) Let 𝑡 ∈ ℕ. Conditioning on 𝑎𝑡 does not add further information to the process: The two random
variables (𝐴𝑡+1 |𝐴𝑡 = 𝑗, 𝑎𝑡 = 𝑙) and (𝐴𝑡+1 |𝐴𝑡 = 𝑗) are identically distributed for any 𝑗, 𝑙 ∈ ℕ.

(iii) There are constants 𝛼, 𝛽 ∈ ℝ, 𝛼 ≠ 0, such that ⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝛼𝑗 + 𝛽 for all 𝑡, 𝑗 ∈ ℕ.
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Thus the subsample 𝑎𝑡 is constructed from the full process 𝐴𝑡 based on the three assumptions: (i) The
sampling process does not interfere with itself, and does not change over time. Hence the realization
of a subsample at one time does not influence the realization of a subsample at another time, and the
conditional distribution of (𝑎𝑡|𝐴𝑡) is the same as (𝑎𝑡′ |𝐴𝑡′) if 𝐴𝑡 = 𝐴𝑡′ . However, even if 𝐴𝑡 = 𝐴𝑡′ , the
subsampled 𝑎𝑡 and 𝑎𝑡′ do not necessarily take the same value. (ii) The subsampling does not interfere
with the evolution of 𝐴𝑡, i.e. the process evolves independent of the sampling. (iii) On average 𝑎𝑡 is
proportional to 𝐴𝑡 up to a constant term.
It will be shown later, that the novel estimator is applicable to any time series 𝑎𝑡 that was acquired from
a BP conforming with this definition of subsampling. We will demonstrate possible applications at the
hand of two examples:

A.3.1 Diagnosing infections with probability 𝛼.

For example, when a BP 𝐴𝑡 represents the spread of infections within a population, each infection may
be diagnosed with probability 𝛼 ≤ 1, depending on the sensitivity of the test and the likelihood that
an infected person consults a doctor. If each of the 𝐴𝑡 infections is diagnosed independently of the
others, then the number of diagnosed cases 𝑎𝑡 follows a binomial distribution 𝑎𝑡 ∼ Bin(𝐴𝑡, 𝛼). Then
⟨𝑎𝑡|𝐴𝑡 = 𝑗⟩ = 𝛼 𝑗 is given by the expected value of the binomial distribution. This implementation of
subsampling conforms with the definition above, with the sampling probability 𝛼 and the constant in
(iii) being identical here.

A.3.2 Sampling a subset of system components.

In a different application, assume a high-dimensional system of interacting units that forms the sub-
strate on which activation propagates. Often, the states of a subset of units are observed continuously,
for example by placing electrodes that record the activity of the same set of neurons over the entire
recording (Fig. 2.1b). This implementation of subsampling in finite size systems is mathematically ap-
proximated as follows: If 𝑛 out of all 𝑁 model units are sampled, the probability to sample 𝑎𝑡 active
units out of the actual 𝐴𝑡 active units follows a hypergeometric distribution, 𝑎𝑡 ∼ Hyp(𝑁, 𝑛,𝐴𝑡). As
⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝑗 𝑛 /𝑁 , this representation satisfies Def. 1 with 𝛼 = 𝑛 /𝑁 . Choosing this special imple-
mentation of subsampling allows to evaluate Var[𝑎𝑡] further in terms of 𝐴𝑡:

Var[𝑎𝑡] = ⟨Var[𝑎𝑡 |𝐴𝑡]⟩ + Var[⟨𝑎𝑡 |𝐴𝑡⟩]

= 𝑛⟨𝐴𝑡
𝑁

𝑁 − 𝐴𝑡
𝑁

𝑁 − 𝑛
𝑁 − 1 ⟩ + Var[ 𝑛𝑁𝐴𝑡]

= 1
𝑁

𝑛
𝑁

𝑁 − 𝑛
𝑁 − 1

􏿴𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴2
𝑡 ⟩􏿷 +

𝑛2
𝑁2Var[𝐴𝑡]

= 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1

􏿴𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2􏿷 + 􏿶
𝑛2
𝑁2 − 𝑛

𝑁2
𝑁 − 𝑛
𝑁 − 1􏿹Var[𝐴𝑡]. (A.3)

This expression precisely determines the variance Var[𝑎𝑡] under subsampling from the properties ⟨𝐴𝑡⟩
and Var[𝐴𝑡] of the full process (which for BPs are known from Lemma 1), and from the parameters of
subsampling 𝑛 and 𝑁 . Using Eq. (A.3), we could predict the linear regression slopes �̂�𝑘 under subsam-
pling (Theorem 5, Eq. (A.17)) in more detail:

𝑟𝑘 = 𝛼2Var[𝐴𝑡]
Var[𝑎𝑡]

𝑚𝑘 = 𝑛(𝑁 − 1)Var[𝐴𝑡]
(𝑁 − 𝑛)(𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2) + (𝑛𝑁 − 𝑁)Var[𝐴𝑡]

𝑚𝑘 =∶ 𝑏(𝑁, 𝑛, ⟨𝐴𝑡⟩,Var[𝐴𝑡])𝑚𝑘. (A.4)

*Throughout this manuscript, the conditional random variable (𝑎𝑡|𝐴𝑡 = 𝑗) is to be read as “𝑎𝑡 given the realization 𝐴𝑡 = 𝑗 of
the random variable 𝐴𝑡”.
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The term 𝑏 = 𝑏(𝑁, 𝑛, ⟨𝐴𝑡⟩,Var[𝐴𝑡]) is constant when subsampling a given (stationary) system, and
quantifies the factor by which �̂�C is biased when using the conventional estimate for 𝑚. It depends on
𝑁 , 𝑛 and the first two moments of 𝐴𝑡 and is thus known for a BP. This relation was used for Fig. 2.1c.

A.4 MR estimation

We here derive an estimator for the mean offspring 𝑚 based on the autoregressive representation of
the BP,

⟨𝐴𝑡+1 |𝐴𝑡 = 𝑗⟩ = 𝑚 𝑗 + ℎ. (A.5)

This novel estimator is based on multistep regressions (Statman et al., 2014) (MR estimator), which
generalize (A.5) to arbitrary time steps 𝑘. From iteration of Eq. (A.5), it is easy to see that

⟨𝐴𝑡+𝑘 |𝐴𝑡 = 𝑗⟩ = 𝑚𝑘 𝑗 + ℎ1 − 𝑚𝑘

1 − 𝑚 . (A.6)

Definition 2 (Multistep regression estimator). Consider a subsampled BP {𝑎𝑡} of length 𝑇 . Let 𝑘max ∈
ℕ, 𝑘max ≥ 2. Then multistep regression (of 𝑘max-th order) estimates 𝑚 in the following way:

1. For 𝑘 = 1,… , 𝑘max, estimate the slope �̂�𝑘 and offset �̂�𝑘 of linear regression between the pairs
{(𝑎𝑡, 𝑎𝑡+𝑘)}𝑇−𝑘𝑡=0 , e.g. by least square estimation (Fig. 2.1e), i.e. by minimizing the residuals

𝑅𝑘(�̂�𝑘, �̂�𝑘) = 􏾜
𝑡
(𝑎𝑡+𝑘 − (�̂�𝑘 ⋅ 𝑎𝑡 + �̂�𝑘))2 . (A.7)

2. Based on the relation (Statman et al., 2014) 𝑟𝑘 = 𝑏 ⋅ 𝑚𝑘, estimate �̂� and �̂� by minimizing the sum of
residuals

𝑅(�̂�, �̂�) =
𝑘max
􏾜
𝑘=1

􏿴�̂�𝑘 − �̂� ⋅ �̂�𝑘􏿷
2
, (A.8)

with the collection of slopes {�̂�𝑘}
𝑘max
𝑘=1 obtained from step 1 (Fig. 2.1f).

Then �̂� is the multistep regression (MR) estimate of the mean offspring 𝑚. For the application to
experimental data, we further applied tests to identify nonstationarities (Sec. A.5).

We first prove that the MR estimator is consistent in the fully sampled case, and will then show the con-
sistency under subsampling. First, we need the following result about the individual linear regression
slopes �̂�𝑘 under full sampling:

Theorem 2. The slope �̂�𝑘, obtained from 𝐴𝑡 under full sampling, is a consistent estimator for 𝑚𝑘. If the
process is subcritical, then the offset �̂�𝑘 is also a consistent estimator for ℎ 1−𝑚𝑘

1−𝑚 .

Remark. For 𝑘 = 1, these results were already obtained by Heyde and Seneta (1972); Venkataraman
(1982); Wei and Winnicki (1990), and details can be found in these sources. Based on their proofs, we
here show the generalization to 𝑘 timesteps.

Proof. Let 𝑘 ∈ ℕ, 𝑖 ∈ {0, … , 𝑘−1}. Construct a new random process by starting at time 𝑖 and taking every
𝑘-th time step of the original process 𝐴𝑡. This new process is given by 𝐴(𝑘,𝑖)

𝑡′ = 𝐴𝑖+𝑘⋅𝑡′ with the index
𝑡′ ∈ ℕ. Hence, the “time” 𝑡′ of this new process relates to the time 𝑡 of the old process as 𝑡 = 𝑖 + 𝑘 ⋅ 𝑡′.
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For a time series of length 𝑇 , let 𝑟(𝑘,𝑖) be the least square estimator for the slope and �̂�(𝑘,𝑖) the least
square estimator for the intercept of linear regression on all pairs (𝐴(𝑘,𝑖)

𝑡′+1, 𝐴
(𝑘,𝑖)
𝑡′ ) from the time series

{𝐴(𝑘,𝑖)
𝑡′ }⌊(𝑇−1)/𝑘⌋𝑡′=0 . We will derive that 𝑟(𝑘,𝑖) is a consistent estimator for 𝑚𝑘. According to Wei and Winnicki

(1990), it is sufficient to show that the evolution of 𝐴(𝑘,𝑖)
𝑡′ can be rewritten as

𝐴(𝑘,𝑖)
𝑡′ = 𝑚𝑘 ⋅ 𝐴(𝑘,𝑖)

𝑡′−1 + ℎ1 − 𝑚𝑘

1 − 𝑚 + 𝜖(𝑘,𝑖)𝑡′ (A.9)

with a martingale difference sequence 𝜖(𝑘,𝑖)𝑡′ , as this is a stochastic regression equation. Hence, consider

𝜖(𝑘,𝑖)𝑡′ = 𝐴(𝑘,𝑖)
𝑡′ − 𝑚𝑘 ⋅ 𝐴(𝑘,𝑖)

𝑡′−1 − ℎ1 − 𝑚𝑘

1 − 𝑚 = 𝐴𝑖+𝑘𝑡′ − 𝑚𝑘 ⋅ 𝐴𝑖+𝑘 (𝑡′−1) − ℎ1 − 𝑚𝑘

1 − 𝑚 . (A.10)

We now show that (𝜖(𝑘,𝑖)𝑡′ )𝑡′∈ℕ is a martingale difference sequence for all 𝑘. From iteration of Eq. (A.6),
it is easy to see that

⟨𝐴(𝑘,𝑖)
𝑡′ |𝐴(𝑘,𝑖)

𝑡′−1 = 𝑗⟩ = ⟨𝐴𝑘𝑡′+𝑖|𝐴𝑘𝑡′−𝑘+𝑖 = 𝑗⟩ = 𝑚𝑘𝑗 + ℎ1 − 𝑚𝑘

1 − 𝑚 (A.11)

holds. Hence, ⟨𝜖(𝑘,𝑖)𝑡′ |𝐴(𝑘,𝑖)
𝑡′−1 = 𝑗⟩ = 0 for any 𝑗 and {𝜖(𝑘,𝑖)𝑡′ } is indeed a martingale difference sequence.

Therefore, {𝐴(𝑘,𝑖)
𝑡′ }⌊𝑇/𝑘⌋𝑡′=0 satisfies a linear stochastic regression equation with slope𝑚𝑘 and intercept ℎ 1−𝑚𝑘

1−𝑚 .
The least square estimators return unbiased and consistent estimates for the slope and intercept in the
subcritical case, i.e. the estimators converge in probability (Heyde and Seneta, 1972; Venkataraman,
1982; Wei and Winnicki, 1990):

�̂�(𝑘,𝑖)
p
−→ 𝑚𝑘 �̂�(𝑘,𝑖)

p
−→ ℎ1 − 𝑚𝑘

1 − 𝑚 .

In the critical and supercritical cases, only �̂�(𝑘,𝑖)
p
−→ 𝑚𝑘 holds following (Wei andWinnicki, 1990). Hence,

we obtain �̂�𝑘
p
−→ 𝑚𝑘 for all 𝑚 and �̂�𝑘

p
−→ ℎ(1 − 𝑚𝑘)/(1 − 𝑚) if 𝑚 < 1.

Corollary 3. As least square estimation of �̂� and �̂� from minimizing the residual (A.8) is consistent,
multistep regression is a consistent estimator for 𝑚 under full sampling, �̂�

p
−→ 𝑚.

These results were obtained for BPs. However, the derivation is here only based on the autoregressive
representation (A.5), motivation the following proposition:

Conjecture 4. Multistep regression is a consistent estimator for 𝑚 for any PAR satisfying Eq. (A.5).

Numerical results for AR(1) and Kesten processes support this conjecture (Statman et al., 2014) (Fig.
A.1).
Next, we show that MR estimation is consistent in the subcritical case even if only the subsampled 𝑎𝑡
is known:

Theorem 5. Let 𝐴𝑡 be a PAR with 𝑚 < 1 and a stationary limiting distribution 𝐴∞ and let the PAR be
started in the stationary distribution, i.e. 𝐴0 ∼ 𝐴∞. Let 𝑎𝑡 be a subsampling of 𝐴𝑡. Multistep regression
(MR) on the subsampled 𝑎𝑡 is a consistent estimator of the mean offspring 𝑚.

Proof. The existence of a stationary distribution 𝐴∞ was shown by Heathcote (1965). The least square
estimator for the slope of linear regression is also given by (Kenney and Keeping, 1962)

�̂�𝑘 = �̂�𝑎𝑡 𝑎𝑡+𝑘
�̂�𝑎𝑡
�̂�𝑎𝑡+𝑘

(A.12)
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with the the estimated standard deviations �̂�𝑎𝑡 and �̂�𝑎𝑡+𝑘 of 𝑎𝑡 and 𝑎𝑡+𝑘 respectively. In the subcritical
state, 𝜎𝑎𝑡 = 𝜎𝑎𝑡+𝑘 because of stationarity. Thus estimating the linear regression slope is equivalent to
estimating the Pearson correlation coefficient �̂�𝑎𝑡 𝑎𝑡+𝑘 = �̂�𝑎𝑡(𝑘) (which is identical to the autocorrelation
function of 𝑎𝑡). In the following, we calculate the Pearson correlation coefficient for the subsampled
time series by evaluating ⟨𝑎𝑡 𝑎𝑡+𝑘⟩. We use the law of total expectation in order to express ⟨𝑎𝑡 𝑎𝑡+𝑘⟩ not
in dependence of 𝑎𝑡, but in terms of 𝐴𝑡:

⟨𝑎𝑡 𝑎𝑡+𝑘⟩ = ⟨⟨𝑎𝑡 𝑎𝑡+𝑘 |𝐴𝑡, 𝐴𝑡+𝑘⟩⟩𝐴𝑡+𝑘,𝐴𝑡 , (A.13)

where the inner expectation value is taken with respect to the joint distribution of 𝑎𝑡+𝑘 and 𝑎𝑡, and
the outer with respect to the joint distribution of 𝐴𝑡+𝑘 and 𝐴𝑡. Through conditioning on both 𝐴𝑡
and 𝐴𝑡+𝑘, (𝑎𝑡 |𝐴𝑡) and (𝑎𝑡+𝑘 |𝐴𝑡+𝑘) become independent due to Def. 1. Hence, the joint distribution of
(𝑎𝑡, 𝑎𝑡+𝑘 |𝐴𝑡, 𝐴𝑡+𝑘) factorizes, and the expectation value factorizes as well. By definition, ⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ =
𝛼 𝑗 + 𝛽 and hence

⟨𝑎𝑡 𝑎𝑡+𝑘⟩ = ⟨(𝛼𝐴𝑡+𝑘 + 𝛽) (𝛼𝐴𝑡 + 𝛽)⟩𝐴𝑡+𝑘,𝐴𝑡 (A.14)

Without loss of generality, we here show the proof for 𝛽 = 0 which is easily extended to the general
case. We express ⟨𝑎𝑡 𝑎𝑡+𝑘⟩ in terms of Eq. (A.6) using the law of total expectation again:

⟨𝑎𝑡 𝑎𝑡+𝑘⟩ = 𝛼2⟨𝐴𝑡𝐴𝑡+𝑘⟩
= 𝛼2⟨⟨𝐴𝑡𝐴𝑡+𝑘 |𝐴𝑡⟩⟩𝐴𝑡

= 𝛼2⟨𝐴𝑡 􏿶𝑚𝑘𝐴𝑡 + ℎ1 − 𝑚𝑘

1 − 𝑚 􏿹⟩𝐴𝑡

= 𝛼2 􏿴𝑚𝑘 ⟨𝐴2
𝑡 ⟩ + (1 − 𝑚𝑘) ⟨𝐴𝑡⟩2􏿷 ,

where the first expectation was taken with respect to the joint distribution of 𝐴𝑡 and 𝐴𝑡+𝑘. We then
used that ⟨𝐴2

𝑡 ⟩ and ⟨𝐴𝑡⟩ = ℎ/(1 − 𝑚) exist, which follows from stationarity of the process. By a similar
argument,

⟨𝑎𝑡+1⟩ = ⟨𝑎𝑡⟩ = ⟨⟨𝑎𝑡 |𝐴𝑡⟩⟩𝐴𝑡 = 𝛼⟨𝐴𝑡⟩ = 𝛼 ℎ
1 − 𝑚 (A.15)

and combining these results the covariance is

Cov[𝑎𝑡+𝑘, 𝑎𝑡] = ⟨𝑎𝑡+𝑘 𝑎𝑡⟩ − ⟨𝑎𝑡+𝑘⟩⟨𝑎𝑡⟩ = 𝛼2 􏿴𝑚𝑘 ⟨𝐴2
𝑡 ⟩ + (1 − 𝑚𝑘) ⟨𝐴𝑡⟩2􏿷 − 𝛼2⟨𝐴𝑡⟩2 = 𝛼2𝑚𝑘Var[𝐴𝑡]. (A.16)

Therefore, we find that the estimator �̂�𝑘 converges in probability:

�̂�𝑘
p
−→ 𝜌𝑎𝑡𝑎𝑡+𝑘 =

Cov[𝑎𝑡+𝑘, 𝑎𝑡]
Var[𝑎𝑡]

= 𝛼2 Var[𝐴𝑡]
Var[𝑎𝑡]

𝑚𝑘. (A.17)

Hence, the bias of of the conventional estimator �̂�C = �̂�1 is precisely given by the factor 𝑏 =
𝛼2Var[𝐴𝑡] /Var[𝑎𝑡]. However, importantly the relation �̂�𝑘 = �̂� �̂�𝑘 still holds for the subsampled 𝑎𝑡. Given
a collection of multiple linear regressions �̂�1, … , �̂�𝑘max , the least square estimation of �̂� and �̂� from mini-
mizing the residual (A.8) yields a consistent estimator �̂� for the mean offspring 𝑚 even under subsam-
pling and only requires the knowledge of 𝑎𝑡.
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This proof also showed that the conventional estimator (Heyde and Seneta, 1972) is biased under sub-
sampling:

Corollary 6. Let {𝑎𝑡} be a subsampling of a subcritical PAR {𝐴𝑡}. Then the conventional linear regression
estimator �̂�C = �̂�1 by Heyde and Seneta (1972) is biased by 𝑚(𝛼2 Var[𝐴𝑡]

Var[𝑎𝑡]
− 1). Equivalently, it is biased by

the factor 𝛼2 Var[𝐴𝑡]
Var[𝑎𝑡]

.

A.4.1 Nonstationarity, criticality and supercriticality.

The consistency of the estimator in the fully sampled case is included in our proof of Lemma 2 and
follows from the results by Heyde and Seneta (1972); Wei and Winnicki (1990). Our proof for the sub-
sampled case (Theorem 5), in contrast, strictly requires stationarity (𝐴𝑡 ∼ 𝐴∞ for any 𝑡) and the existence
of the first two moments of 𝐴𝑡. We expect that the MR estimator is also consistent if the subcritical
process is not started in the stationary distribution, 𝐴0 ≁ 𝐴∞, because the results by (Heathcote, 1965)
show that it will converge to this stationary distribution as 𝑡 → ∞ (Fig. A.2). Furthermore, numerical
results suggest that the MR estimator is also consistent for critical and supercritical cases, where no
stationary distribution exists (Fig. 2.3d).

A.5 Identifying common non-stationarities and Poisson activity.

In many types of analyses, non-stationarities in the time series can lead to wrong results, typically
an overestimation of �̂�. We developed tests to exclude data sets with signatures of common non-
stationarities. The different non-stationarities, their impact on the 𝑟𝑘 and the rules for rejection of time
series are outlined below.
First, transient increases of the drive ℎ𝑡, e.g. in response to a stimulus, lead to a transient increase
in ⟨𝐴𝑡⟩. These transients induce correlations or anti-correlations, which prevail on long time scales
(Figs. A.3c,d). The autocorrelation function is therefore better captured by an exponential with offset,
𝑟𝑘 = 𝑏offset ⋅ 𝑚𝑘

offset + 𝑐offset. If the residual of this exponential with offset 𝑅2
offset was smaller than the

residual of the MR model 𝑅2
exp by a factor of two, 𝐻offset = (2 ⋅ 𝑅2

offset < 𝑅2
exp), then the data set was

rejected. The factor two punishes for the differences in degree of freedom: The residuals of a model
with two free parameters (exponential with offset) instead of one (exponential only) can only be smaller.
Second, ramping of the drive can lead to overestimation of 𝑚 (Fig. A.3e). The comparison of the two
models with andwithout offset introduced above serves as a consistency check able to identify ramping:
if the data are captured by a BP, both models should infer identical �̂�. Thus, a difference between �̂�exp
and �̂�offset hints at the invalidity of MR estimation. Instead of �̂�, we compared the autocorrelation
times �̂�offset = −𝛥𝑡/ log �̂�offset and �̂�exp obtained from both models, as the logarithmic scaling increases
the sensitivity. If their relative difference was too large, then the data are inconsistent with a BP and
MR estimation is invalid: 𝐻𝜏 = (|𝜏exp − 𝜏offset| / min{𝜏exp, 𝜏offset} > 2).
Third, when a system changes between different states of activity, e.g. up and down states, the drive
rate ⟨ℎ𝑡⟩ may experience sudden jumps. These can lead to spurious autocorrelation (Fig. A.3f). To
identify these trends resulting from non-stationary input ℎ𝑡 or from choosing too short data sets, we
tested whether the sequence of 𝑟𝑘 was fit better by a linear regression 𝑟𝑘 = 𝑞1𝑘 + 𝑞2 on the pairs (𝑘, 𝑟𝑘),
than by the exponential relation (A.8). If the residuals 𝑅2

lin were smaller than 𝑅2
exp: 𝐻lin = (𝑅2

lin < 𝑅2
exp),

data were rejected.
Apart from non-stationarities, even Poisson activity (𝑚 = 0, 𝐴𝑡 = ℎ𝑡) with stationary rate may lead
to a spurious overestimation of �̂� as well: for subsampled branching processes of finite duration, the
Poisson case and processes close to criticality (𝑚 = 1) can show very similar autocorrelation results,
because the sequence of 𝑟𝑘 is expected to be absolutely or almost flat, respectively. Moreover, for 𝑚 = 0
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𝐻offset 𝐻𝜏 𝐻lin 𝐻�̄�≤0 (𝐻𝑞1=0) interpretation
× × × × – BP with 𝑚 = �̂� explains data MR estimation valid
✓ – – – –

data not explained by BP MR estimation invalid– ✓ – – –
– – ✓ – –
– – – ✓ ×
– – – ✓ ✓ Poisson activity (𝑚 = 0) explains data MR estimation valid

Table A.1: Consistencychecks for MR estimation. In order to assess if the results obtained fromMR estimation
are consistent with a BP with stationary parameters, we perform five tests (Sec. A.5). We discriminate the
following cases in this order: A BP with 𝑚 = �̂� is only considered to explain the data, if the four tests 𝐻offset, 𝐻𝜏,
𝐻lin, and 𝐻�̄�≤0 are negative (×). If any of 𝐻offset, 𝐻𝜏, or 𝐻lin is positive (✓), the data cannot be explained by a BP
with any 𝑚, regardless of the other tests (–), and MR estimation is invalid. If 𝐻�̄�≤0 is positive, the additional test
𝐻𝑞1=0 becomes relevant: if it is negative, the data cannot be explained by a BP with any 𝑚. If it is also positive,
the data are consistent with Poisson activity (BP with 𝑚 = 0).

any solution on the manifold with 𝑏 = 0 minimizes the residuals in Eq. (A.8). Hence, the estimator for
�̂� may yield any value depending on the initial conditions of the minimization scheme. To distinguish
between 𝑚 = 0 and 𝑚 > 0, we used the fact that for 𝑚 = 0, all slopes 𝑟𝑘 are expected to be distributed
around zero, ⟨𝑟𝑘⟩ = 0. In contrast, for processes with 𝑚 > 0, all slopes are expected to be larger than
zero ⟨𝑟𝑘⟩ = 𝑏 ⋅ 𝑚𝑘 > 0. Thus to identify stationary Poisson activity, we tested (using a one-sided t-test)
if the slopes obtained from the data were significantly larger than zero, yielding the 𝑝-value 𝑝�̄�≤0 and
the following test (Fig. A.3b): 𝐻�̄�≤0 = (𝑝�̄�≤0 ≥ 0.1). The choice of the significance level should be guided
by the severity of type I or II errors here: if it is set too liberal, Poisson activity may be mistaken for
correlated activity, potentially even close-to-critical. On the other hand, if the significance level is too
conservative, activity with long autocorrelation times may be spuriously considered Poissonian under
strong subsampling (when 𝑏 is small and all slopes only slightly differ from zero). For this study, we
chose a significance level of 𝑝�̄�≤0 < 0.1 in order to not underestimate the risk of large activity cascades.
To confirm candidates for Poisson activity identified through positive 𝐻�̄�≤0, we assured that the 𝑟𝑘 did
not show a systematic trend, i.e. that linear regression of 𝑟𝑘 as a function of 𝑘 (see 𝐻lin above) yielded
slope zero: 𝐻𝑞1=0 = (𝑝𝑞1=0 ≥ 0.05). The according significance level for this two sided test is then given
by 𝑝𝑞1≠0 < 0.05.
We discriminate the following cases in the order indicated in Tab. A.1: �̂� obtained from MR estimation
is only valid if none of the tests (except 𝐻𝑞1=0, which is ignored here) is positive. A positive result
for any of 𝐻offset, 𝐻𝜏, or 𝐻lin indicates non-stationarities, the data are not explained by a stationary
BP, and MR estimation is invalid. If 𝐻�̄�≤0 is positive, the data are potentially consistent with Poisson
activity (𝑚 = 0). This is only the case if𝐻𝑞1=0 is also positive. If otherwise𝐻𝑞1=0 is negative, the Poisson
hypothesis is also rejected and MR estimation invalid. This strategy correctly identified the validity
of MR estimation for all investigated cases: stationary BPs with 𝑚 = 0.98 and 𝑚 = 0.0 were accepted,
while nonstationary BPs with transient changes, ramping, or sudden jumps of the drive were excluded
(Fig. A.3).

A.6 Variance of the estimates.

The distribution of �̂� is consistent with a normal distribution 𝒩(𝑚, 𝜎2�̂�) centered around the true mean
offspring 𝑚 (Fig. A.4a; numerical results). The variance 𝜎2�̂� depends on the branching ratio 𝑚, the
mean activity ⟨𝐴𝑡⟩, the length 𝐿 of the time series, and the sampling fraction 𝛼. Each of these factors
affects 𝜎2�̂� mainly by changing the effective length of the time series, i.e. the number of non-zero entries
𝑙 = |{𝐴𝑡 |𝐴𝑡 > 0}|. Thus, regardless of the actual time series length 𝐿 or the mean activity ⟨𝐴𝑡⟩, the
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variance scales as a power-law in 𝑙, Var[�̂�] ∝ 𝑙−𝛾 (Fig. A.4b). The exponent of this power-law depends
on 𝑚. The closer to criticality the process is, the larger the exponent 𝛾, i.e. the larger the benefit from
longer time series length 𝑙. For 𝑚 = 0.99, we found 𝛾 ≈ 3/2. The performance of the estimator is in
principle independent of the mean activity: Small ⟨𝐴𝑡⟩ only affect the variance of the MR estimator
through a potential decrease of 𝑙.
Similarly, the degree of subsampling only affects the variance of the estimator through a decrease of the
effective length of 𝑎𝑡. While there may be a significant rise in 𝜎2�̂� when reducing the sampling fraction 𝛼,
this increase can be explained by the coincidental decrease in 𝑙, as the rescaled variance 𝜎2�̂� ⋅ 𝑙𝛾 remains
within one order of magnitude over four decades of the sampling fraction 𝛼 (Fig. A.4c).
How does the variance change close to the critical transition? We found that the answer to this question
highly depends on the specific choice of the parameters: if 𝑚 is varied, one can either keep ⟨𝐴𝑡⟩ or ℎ
constant, not both at the same time. If the mean activity ⟨𝐴𝑡⟩ is fixed by choosing ℎ = ⟨𝐴𝑡⟩ (1 − 𝑚),
then the variance of the process scales as Var[𝐴𝑡] ∝ 1/(1 − 𝑚) (Theorem 1). As 𝑚 → 1, the activity will
inevitably get into a regime, where bursts of activity (𝐴𝑡 > 0) are disrupted by intermittent quiescent
periods (𝐴𝑡), thereby reducing 𝑙. In turn, the variance of the estimator increases as detailed before.
If however, the drive ℎ is kept constant, we found that the variance scales linearly in the distance to
criticality 𝜖 = 1 − 𝑚 over at least 5 orders of magnitude of 𝜖: 𝜎2�̂� ∝ 𝜖 (Fig. A.4d). Thus, the variance
decreases when approaching criticality, while the relative variance 𝜎2�̂�/𝜖 is constant. Note, however,
that even though the standard deviation also decreases when approaching criticality (𝜎�̂� ∝ √𝜖), the
relative standard deviation increases (𝜎�̂�/𝜖 ∝ 1/√𝜖).
For other measures of variation (e.g. quadratic (like the mean squared error MSE) and linear (like the
inter-quartile range IQR)), we obtained scaling laws with the same exponents.

A.6.1 Confidence interval estimation.

We used a model based approach to estimate confidence intervals for both simulation and experimental
data (for Figs. 2.1c,d, 2.2c,d, and 2.3d), because classical bootstrapping methods underestimate the
estimator variance by treating all slopes 𝑟𝑘 independently, while they are in fact dependent. We found
that our model based approach constructs more conservative and representative confidence intervals.
For simulations, we simulated 𝐵 ∈ ℕ independent copies of the investigated model and applied MR
estimation to each copy, yielding a collection of 𝐵 independent estimates {�̂�(𝑏)}𝐵𝑏=1.
For experimental time series 𝑎𝑡 with length 𝐿, mean activity ⟨𝑎𝑡⟩, and number of sampled units 𝑛, MR
estimation yields an estimate �̂�. We then simulated 𝐵 copies of branching networks {𝐴(𝑏)

𝑡 }𝐵𝑏=1 (for sim-
ulation details see Sec. A.8) with 𝑁 = 10, 000 units, 𝑚 = �̂� as inferred by MR estimation, and length
𝐿 and rate ⟨𝑎𝑡⟩ to match the data. The rate was matched by setting the drive to ℎ = ⟨𝑎𝑡⟩ (1 − �̂�)𝑁/𝑛.
Thereby, after subsampling 𝑛 units, the mean activity of each resulting time series 𝑎(𝑏)𝑡 matched that of
the original time series 𝑎𝑡, ⟨𝑎

(𝑏)
𝑡 ⟩ = ⟨𝑎𝑡⟩. This procedure gives 𝐵 copies of a BN that all match 𝑎𝑡 in terms

of the mean activity, the branching ratio, time series length, and number of sampled units. Applying
MR estimation to these BNs yields a collection of 𝐵 independent estimates {�̂�(𝑏)}𝐵𝑏=1. For both simula-
tion and experimental data, the distribution of �̂� and confidence intervals can be constructed from this
collection.

A.7 Expectation maximization based on Kalman filtering

Kalman filtering is a method to predict the original time series 𝐴𝑡 given a measurement 𝑎𝑡, defined for
AR(1) processes and affine measurement transformation
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𝐴𝑡+1 = 𝑚 ⋅ 𝐴𝑡 + ℎ𝑡
𝑎𝑡 = 𝛼 ⋅ 𝐴𝑡 + 𝛽𝑡 (A.18)

where ℎ𝑡 and 𝛽𝑡 are independent Gaussian random variables ℎ𝑡 ∼ 𝒩 (ℎ, 𝜉2) and 𝛽𝑡 ∼ 𝒩 (𝛽, 𝜁2) and 𝑚 and
𝛼 constant real numbers. Assuming that 𝐴0 ∼ 𝒩 (𝐴,𝜓), Kalman filtering infers the original time series
𝐴𝑡 | 𝑎𝑡,ℳ given a measured time series 𝑎𝑡 and the known model ℳ = (𝑚, ℎ, 𝜉2, 𝛼, 𝛽, 𝜁2, 𝐴, 𝜓). Based on
an iterative expectation maximization algorithm which incorporates Kalman filtering (Hamilton, 1994;
Shumway and Stoffer, 1982; Ghahramani and Hinton, 1996), the model parametersℳ can be estimated
from a time series 𝑎𝑡. We used this algorithm to infer 𝑚. Because of the mutual dependence of the
model parameters, we also needed to infer ℎ, 𝜉2, 𝛼, 𝛽, and 𝜁2. In order to reduce the dimensionality
of the maximization step, we disregarded 𝐴 and 𝜓, as the influence of the initial value decreases if the
time series gets long. For initial values, we chose 𝑚 = 0.5 in the center of the range of interest for 𝑚,
ℎ𝑡 = ⟨𝑎𝑡⟩ ⋅ (1 − 𝑚) (see Sec. A.2), 𝜉 = 0.1 ⋅ ℎ𝑡, 𝛼 = 1, 𝛽 = 0, and 𝜁 = 0.1. We further chose 𝐴 = ⟨𝑎𝑡⟩ and
𝜓2 = Var[𝑎𝑡] for the two model parameters that were not optimized.
We considered two termination criteria for the EM algorithm: First, it is recommended to restrict the
EM algorithm to 10 – 20 cycles in order to avoid overfitting, a common problem with likelihood-based
fitting methods for multidimensional model parameters. Therefor we considered �̂� inferred after 20
EM cycles. Second, we considered �̂� after the results of two subsequent EM cycles did not differ by
more than 0.01%.
We used the publicly available Python implementation of the Kalman EM algorithm, pykalman. All
parameters were chosen as detailed above. The analysis was performed on a computer cluster, and
reached runtimes of several days up to projected runtimes of weeks. In fact, this computational demand
was a limiting factor in terms of widespread application. In contrast, MR estimation terminated within
half a second on the same CPUs.

A.8 Simulations

A.8.1 Branching process.

We simulated BPs according to Eq. (A.1) in the following way: Realizations of the random numbers 𝑦𝑡,𝑖
and ℎ𝑡 describing the number of offsprings, and the drive, were each drawn from a Poisson distribution:
𝑦𝑡,𝑖 ∼ Poi(𝑚) with mean 𝑚, and ℎ𝑡 ∼ Poi(ℎ) with mean ℎ, respectively. Here, we used Poisson distribu-
tions as they allow for non-trivial offspring distributions with easy control of the branching ratio 𝑚 by
only one parameter. For the brain, one might assume that each neuron is connected to 𝑘 postsynaptic
neurons, each of which is excited with probability 𝑝, motivating a binomial offspring distribution with
mean 𝑚 = 𝑘 𝑝. As in cortex 𝑘 is typically large and 𝑝 is typically small, the Poisson limit is a reasonable
approximation. For the performance of the MR estimator and the limit behavior of the BP, the partic-
ular form of the law 𝑌 is not important such that the special choice we made here does not restrict the
generality of our results.
The mean rate ⟨𝐴𝑡⟩ depends on 𝑚 and ℎ (Lemma 1). In the simulation we varied 𝑚 and fixed ⟨𝐴𝑡⟩ = 100
by adjusting ℎ accordingly if not stated otherwise. For subsampling the BP, each unit is observed in-
dependently with probability 𝑝 ≤ 1 . Then 𝑎𝑡 is distributed following a binomial distribution Bin(𝐴𝑡, 𝑝),
and subsampling is implemented by drawing 𝑎𝑡 from 𝐴𝑡 at each time step. As ⟨𝑎𝑡⟩ = 𝑝𝐴𝑡, this imple-
mentation of subsampling satisfies the definition of stochastic subsampling with 𝛼 = 𝑝, 𝛽 = 0.
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A.8.2 Branching network.

In addition to the classical branching process, we also simulated a branching network model (BN) by
mapping a branching process (Harris, 1963; Haldeman and Beggs, 2005) onto a fully connected network
of 𝑁 = 10, 000 neurons. An active neuron activated each of its 𝑘 postsynaptic neurons with probability
𝑝 = 𝑚/𝑘. Here, the activated postsynaptic neurons were drawn randomly without replacement at each
step, thereby avoiding that two different active neurons would both activate the same target neuron.
Similar to the BP, the BN is critical for 𝑚 = 1 in the infinite size limit, and subcritical (supercritical) for
𝑚 < 1 (𝑚 > 1). As detailed for the BP, ℎ was adjusted to the choice of 𝑚 to achieve ⟨𝐴𝑡⟩ = 100, which
corresponds to a rate of 0.01 spikes per neuron and time step. Subsampling (Priesemann et al., 2009)
was applied to the model by sampling the activity of 𝑛 neurons only, which were selected randomly
before the simulation, and neglecting the activity of all other neurons.

A.8.3 Self-organized critical model.

The SOC neural network model we used here is the Bak-Tang-Wiesenfeld (BTW) model (Bak et al.,
1987). Translated to a neuroscience context, the model consisted of 𝑁 = 10, 000 (100 × 100) non-leaky
integrate and fire neurons. A neuron 𝑖 spiked if its membrane voltage 𝑉𝑖(𝑡) reached a threshold 𝜃:

If 𝑉𝑖(𝑡) > 𝜃, 𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) − 4. (A.19)

Note that the choice of 𝜃 does not change the activity of themodel at all, sowe set 𝜃 = 0 for convenience.
The model neurons were arranged on a 2D lattice, and each neuron was connected locally to its four
nearest neighbors with coupling strength 𝛼𝑖𝑗 = 𝛼:

𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) +􏾜
𝑗
𝛼𝑖𝑗𝛿(𝑡 − 𝑇𝑗) + ℎ𝑖(𝑡), (A.20)

where 𝑇𝑗 denotes the spike times of neuron 𝑗, and ℎ𝑖(𝑡) is the Poisson drive to neuron 𝑖with mean rate ℎ
as defined for the BP above. Note that the neurons at the edges and corners of the grid had only 3 and 2
neighbors, respectively. This model is equivalent to the well-known Bak-Tang-Wiesenfeld model (Bak
et al., 1987) if ℎ → 0 and 𝛼 = 1. Subsampling (Priesemann et al., 2009) was implemented in the same
manner as for the BN.

A.8.4 Parameter choices.

If not stated otherwise, simulations were run for 𝐿 = 107 time steps or until 𝐴𝑡 exceeded 109, i.e.
approximately half of the 32 bit integer range. If not stated otherwise, confidence intervals (Sec. A.6)
were estimated from 𝐵 = 100 samples, both for simulation and experiments.
In Figs. 2.1c,d, BNs and the BTW model were simulated with 𝑁 = 104 units and ⟨𝐴𝑡⟩ = 100. In Fig.
2.1e, BPs were simulated with 𝑚 = 0.9 and ⟨𝐴𝑡⟩ = 100.
In Fig. 2.3c, subcritical and critical BNs with 𝑁 = 104 and ⟨𝐴𝑡⟩ = 100 were simulated, and 𝑛 = 100 units
sampled. Because of the non-stationary, exponential growth in the supercritical case, here BPs were
simulated with ℎ = 0.1 and units observed with probability 𝛼 = 0.01.

A.9 Epidemiological recordings

A.9.1 WHO data on measles worldwide.

Time series with yearly case reports for measles in 194 different countries are available online from the
World Health Organization (WHO) for the years between 1980 and 2014. MR estimation was applied
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to these time series. Because they contain very few data points and potential long-term drifts, we
applied the consistency checks detailed above for every country (Tab. A.1). After these checks, 124
out of the 194 surveyed countries were accepted for MR analysis and included in our analysis. Yearly
information on approximate vaccination percentages (measles containing vaccine dose 1, MCV1) for
the same countries and time span are also available online from the WHO.

A.9.2 RKI data on norovirus, measles and MRSA in Germany.

For Germany, the Robert-Koch-Institute (RKI) surveys a range of infectious diseases on a weekly basis,
including measles, norovirus, and invasive meticillin-resistant Staphylococcus aureus (MRSA). Case
reports are available through their SURVSTAT@RKI server (Robert-Koch-Institute). Because of possible
changes in report policies in the beginning of surveillance, we omitted the data from the first 6 months
of each recording. Moreover, we omitted the incomplete week on the turn of the year, thus evaluating
52 full weeks in each year.
The MRSA recording showed a slow, small variation in the case reports that can be attributed to slow
changes in the drive rates. To compensate for these slow drifts, we corrected the time series by sub-
tracting a moving average over 3 years (156 weeks). We then applied MR estimation to the obtained
time series. The recordings for measles and norovirus showed strong seasonal fluctuations of the case
reports, resulting in a baseline oscillation of the autocorrelation function. We therefore used a modified
model

𝑟𝑘 = 𝑏 ⋅ 𝑚𝑘 + 𝑐 ⋅ cos(2𝜋𝑘/𝑇) (A.21)

with a fixed period of 𝑇 = 52weeks, and estimated �̂�, �̂�, and �̂� from minimizing the residual of this
modified equation.
In order to obtain the naive estimates using the conventional linear regression estimator �̂�C = �̂�1, we
used the following correction for seasonal fluctuations. Each incidence count 𝑎𝑡 was normalized by
the incidence counts from the same week, averaged over all years of recording (�̄�𝑤 = ⟨𝑎𝑤+52⋅𝑦⟩𝑦 with
the average taken over the years 𝑦 for any week 𝑤 = 1,… , 52), yielding the deseasonalized time series
𝑎′𝑡 = 𝑎𝑡/�̄�𝑡mod 52. Linear regression was performed on this time series 𝑎′𝑡 .
For Fig. 2.2d, subsampling was applied to the original time series assuming that every infection is diag-
nosed and reported with a probability 𝛼, yielding the binomial subsampling described in Sec. A.3. MR
estimates were obtained from this subsampled time series according to Eq. (A.21), for the conventional
estimator the subsampled time series was processed as described above.

A.10 Animal experiments

We evaluated spike population dynamics from recordings in rats, cats andmonkeys. The rat experimen-
tal protocols were approved by the Institutional Animal Care and Use Committee of Rutgers University
(Mizuseki et al., 2009a,b). The cat experiments were performed in accordance with guidelines estab-
lished by the Canadian Council for Animal Care (Blanche, 2009). The monkey experiments were per-
formed according to the German Law for the Protection of Experimental Animals, and were approved
by the Regierungspräsidium Darmstadt. The procedures also conformed to the regulations issued by
the NIH and the Society for Neuroscience. The spike recordings from the rats and the cats were ob-
tained from the NSF-founded CRCNS data sharing website (Blanche and Swindale, 2006; Blanche, 2009;
Mizuseki et al., 2009a,b).
In rats the spikes were recorded in CA1 of the right dorsal hippocampus during an open field task.
We used the first two data sets of each recording group (ec013.527, ec013.528, ec014.277, ec014.333,
ec015.041, ec015.047, ec016.397, ec016.430). The data-sets provided sorted spikes from 4 shanks (ec013)
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or 8 shanks (ec014, ec015, ec016), with 31 (ec013), 64 (ec014, ec015) or 55 (ec016) channels. We used
both, spikes of single and multi units, because knowledge about the identity and the precise number
of neurons is not required for the MR estimator. More details on the experimental procedure and the
data-sets proper can be found in Mizuseki et al. (2009a,b).
For the spikes from the cat, neural data were recorded by Tim Blanche in the laboratory of Nicholas
Swindale, University of British Columbia (Blanche, 2009). We used the data set pvc3, i.e. recordings in
area 18 which contain 50 sorted single units (Blanche and Swindale, 2006). We used that part of the
experiment in which no stimuli were presented, i.e., the spikes reflected spontaneous activity in the
visual cortex of the anesthetized cat. Because of potential non-stationarities at the beginning and end
of the recording, we omitted data before 25 s and after 320 s of recording. Details on the experimental
procedures and the data proper can be found in Blanche (2009); Blanche and Swindale (2006).
The monkey data are the same as in Pipa et al. (2009); Priesemann et al. (2014). In these experiments,
spikes were recorded simultaneously from up to 16 single-ended micro-electrodes (⌀ = 80𝜇m) or
tetrodes (⌀ = 96 𝜇m) in lateral prefrontal cortex of three trained macaque monkeys (M1: 6 kg ♀; M2: 12
kg ♂; M3: 8 kg ♀). The electrodes had impedances between 0.2 and 1.2M𝛺 at 1 kHz, and were arranged
in a square grid with inter electrode distances of either 0.5 or 1.0 mm. The monkeys performed a visual
short term memory task. The task and the experimental procedure is detailed in Pipa et al. (2009). We
analyzed spike data from 12 experimental sessions comprising almost 12.000 trials (M1: 4 sessions; M2:
5 sessions; M3: 3 sessions). 6 out of 12 sessionswere recordedwith tetrodes. Spike sorting on the tetrode
data was performed using a Bayesian optimal template matching approach as described in Franke et al.
(2010) using the “Spyke Viewer” software (Pröpper and Obermayer, 2013). On the single electrode data,
spikes were sorted with a multi-dimensional PCA method (Smart Spike Sorter by Nan-Hui Chen).

A.10.1 Analysis.

For each recording, we collapsed the spike times of all recorded neurons into one single train of pop-
ulation spike counts 𝑎𝑡, where 𝑎𝑡 denotes how many neurons spiked in the 𝑡𝑡ℎ time bin 𝛥𝑡. We used
𝛥𝑡 = 4ms, reflecting the propagation time of spikes from one neuron to the next. Note that 𝑚 scales
with the bin size (bs) as 𝑚(bs = 𝑘𝛥𝑡) = 𝑚(bs = 𝛥𝑡)𝑘, while the corresponding autocorrelation times
are invariant under bin size changes. For Figs. 2.3b and A.6, we investigated single neuron activity by
applying similar binning to the spike times of each neuron individually.
From these time series, we estimated �̂� using the MR estimator with 𝑘max = 2500 (corresponding to
10 s) for the rat recordings, 𝑘max = 150 (600ms) for the cat recording, and 𝑘max = 500 (2000ms) for
the monkey recordings, assuring that 𝑘max was always in the order of multiple autocorrelation times.
Experiments were excluded if the tests according to Sec. A.5 detected potential nonstationarities.

A.11 Code availability

Python code for MR estimation and branching process simulation is available from github and will be
extended in the future.
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A.12 Supplementary Figures
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Figure A.1: MR estimation for PARs. Although derived for branching processes (BPs), we conjectured that
MR estimation is applicable to any process with a first order autoregressive representation (PAR). We here show
exemplary results for three different classes of PARs: In AR(1) processes, additive noise ℎ𝑡 is drawn independently
at each time step. Here, we considered a uniform distribution ℎ𝑡 ∼ 𝒰(0, 2ℎ). In a Kesten process, additive and
multiplicative noise is drawn at each time step, both 𝑚𝑡 and ℎ𝑡 being i.i.d. for all 𝑡. Here, 𝑚𝑡 ∼ 𝒩 (𝑚, 𝜎2) with
𝜎 = 𝑚/10 and ℎ𝑡 ∼ 𝒩 (ℎ, 𝑏2) with 𝑏 = ℎ/10 are normally distributed. In a BP, each unit 𝑖 at time 𝑡 generates 𝑌𝑡,𝑖
offspring, which are i.i.d. for all 𝑡 and 𝑖. In addition, a random number ℎ𝑡 of units are introduced at each time
step. Here, 𝑌𝑡,𝑖 ∼ Poi(𝑚) and ℎ𝑡 ∼ Poi(ℎ) are Poisson distributed, 𝜎2 and 𝑏2 denote the variances of 𝑌𝑡,𝑖 and ℎ𝑡
respectively. All three processes satisfy the first-order statistical recursion relation ⟨𝐴𝑡+1 |𝐴𝑡⟩ = 𝑚𝐴(𝑡) + ℎ (Eq.
(A.5)). Parameters are chosen such that for all simulations the average activity is identical, ⟨𝐴𝑡⟩ = 100. a. Fully
sampled and subsampled (binomial subsampling 𝑎𝑡 ∼ Bin(𝐴𝑡, 𝛼) with 𝛼 = 1/10) time series are shown for 𝑚 = 0.9
and ℎ = 10. b. The three classes show the same first-order statistics according to Eq. (A.5). However, their
second order statistics Var[𝐴𝑡+1 |𝐴𝑡] differ as indicated. c. Conventional linear regression underestimates �̂� for
all three processes under subsampling. d. MR estimation is applicable to all three processes under full sampling
and subsampling, i.e. 𝑟𝑘 ∝ 𝑚𝑘 holds. e. While MR estimation returns consistent estimates of 𝑚 even under
subsampling, the conventional estimator underestimates �̂� for all three processes.

78



0 500 1000

Time t

101

102

103

104

A
ct

iv
ity
A
t

0 50

101

102

103

104

Tra
ns

ien
t o

nly

L
= 50

, 1
00

tria
ls

Stat
ion

ar
y on

ly

L
= 50

, 1
00

tria
ls

Full
re

co
rd

ing

L
= 10

00

Full
re

co
rd

ing

L
= 10

00
0

Full
re

co
rd

ing

L
= 10

00
00

0.8

0.9

1.0

E
st

im
at

ed
m̂

0 500 1000

0

50

100

150

200

250

300

a b

c d

0 50

0

150

Tra
ns

ien
t o

nly

L
= 50

, 1
00

tria
ls

Stat
ion

ar
y on

ly

L
= 50

, 1
00

tria
ls

Full
re

co
rd

ing

L
= 10

00

Full
re

co
rd

ing

L
= 10

00
0

Full
re

co
rd

ing

L
= 10

00
00

0.8

0.9

1.0

Figure A.2: MR estimation with transients. A branching process (BP) with 𝑚 = 0.9 and expected activity
⟨𝐴𝑡⟩ = 100 is started far from the stationary distribution, namely with 𝐴0 = 10, 000 (top) or 𝐴0 = 0 (bottom).
Using MR estimation, �̂� is inferred from: (i) only the first 50 data points of 100 independent trials, i.e. only
transient parts of the activity in each trial (gray); (ii) 50 data points of 100 independent trials after the activity
was allowed to relaxate to the stationary distribution in each trial (green); (iii) from one single trial comprising
both transient and stationary parts, using 103, 104, or 105 time steps (blue). a, c. Activity 𝐴𝑡 of one single trial
of 103 time steps as a function of time 𝑡. Insets show magnified transient period where 𝐴𝑡 converges to the
stationary distribution. Shaded areas indicate transient (gray) and stationary (green) parts taken into account for
estimates (i) and (ii) respectively. b, d. Boxplots (derived from 1000 independent realizations) for the result �̂� of
MR estimation, based on the data specified above.
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Figure A.3: Excluding nonstationary data. Each left panels shows the time series 𝑎𝑡 of the activity from one
single trial (light blue) and averaged activity from 100 trials (dark blue), recorded from 𝑛 = 50 out of 𝑁 = 104
neurons. Each right panels shows the corresponding MR estimation from one single trial. We investigated the
following, generic cases for the temporal evolution of the drive rate ⟨ℎ𝑡⟩: a, b. The drive is stationary (⟨ℎ𝑡⟩ identical
for all 𝑡, red), so are the mean rates ⟨𝑎𝑡⟩. c, d. The drive exhibits a transient increase centered around half of the
simulation time. The mean rate ⟨𝑎𝑡⟩ is therefore also time-dependent and follows the temporal evolution of ⟨ℎ𝑡⟩.
e. The drive shows a linear increase over the simulation. f. The drive exhibits a step function after half the
simulation. Nonstationarities (c – f) typically lead to an overestimation of �̂�, which is particularly severe if the
underlying dynamics is Poissonian (𝑚 = 0). The tests defined in Sec. A.5 (see Tab. A.1) were able to exclude time
series where the investigated nonstationarities were present, while accepting the stationary cases a, b.
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Figure A.4: Variance of the MR estimates. This figure shows numerical result for the distribution and vari-
ability of the estimate �̂� as a function of multiple parameters. a. Distribution of the estimate �̂�, estimated from
5000 independent copies of a branching process (BP) with 𝑚 = 0.99, ⟨𝐴𝑡⟩ = 100 and length 𝐿 = 105: normalized
histograms of the probability of estimating �̂� for full sampling (blue) and binomial subsampling with 𝛼 = 0.001
(red), together with normal distributions 𝒩(𝑚, �̂�2�̂�). Inset: 𝑄-𝑄-plot for the quantiles of 𝒩(𝑚, �̂�2�̂�) and the quan-
tiles of the estimated �̂� under both samplings. The estimated �̂� are found to be distributed normally in both
cases (fully sampled: 𝑟2 = 0.9995, subsampled: 𝑟2 = 0.998). b. The variance 𝜎2�̂� of the estimate �̂� is estimated from
100 independent copies of a BP. Results for different 𝑚, mean activities ⟨𝐴𝑡⟩ and time series lengths 𝐿 are plotted
as a function of the effective time series length 𝑙 = |{𝐴𝑡 |𝐴𝑡 > 0}|, the number of nonzero entries. For any given
𝑚, the variance of �̂� shows algebraic scaling 𝜎2̂𝜖 ∝ 𝑙𝛾. The exponent of this scaling depends on 𝑚, with higher 𝛾
the closer 𝑚 is to unity. Hence, the benefit from longer time series is larger the closer a system is to criticality.
Importantly, the variance does not directly depend on the mean activity ⟨𝐴𝑡⟩, this number only influences the
accuracy of MR estimation via the potential change in 𝑙. c. The variance of the estimate �̂� is estimated from 100
independent copies of a BP with 𝑚 = 0.99, ⟨𝐴𝑡⟩ = 100, and 𝐿 = 105 and plotted as a function of the sampling
probability 𝛼 under binomial subsampling. While the variance appears to increase dramatically under stronger
subsampling, this increase can be attributed to the according decrease of the effective time series length 𝑙. After
rescaling by (𝑙/𝐿)3/2 (cf. panel b), the rescaled variance remains within one order of magnitude over four orders of
magnitude in 𝛼. Hence, the accuracy of the estimator is not directly influenced by the degree of subsampling. d.
The variance 𝜎2�̂� is estimated from 100 independent copies of a BP with 𝑚 = 0.99, ℎ = 1, and 𝐿 = 105 and plotted
as function of the distance to criticality 𝜖 = 1−𝑚. The variance is found numerically to scale as 𝜎2�̂� ∝ 𝜖, hence the
standard deviation scales as 𝜎�̂� ∝ √𝜖. Similar scaling results were found for other linear (like the interquartile
range) and quadratic (like the mean squared error) measures of variation.
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Figure A.5: MR estimation for individual animals. MR estimation is shown for every individual animal (see
A.10). The consistency checks are detailed in Sec. A.5 (see Tab. A.1). a. Data from monkey prefrontal cortex dur-
ing an working memory task. The third panel shows a oscillation of 𝑟𝑘 with a frequency of 50 Hz, corresponding
to measurement corruption due to power supply frequency. b. Data from anesthetized cat primary visual cortex.
c. Data from rat hippocampus during a foreaging task. In addition to a slow exponential decay, the slopes 𝑟𝑘
show the 𝜗-oscillations of 6 – 10 Hz present in hippocampus. Dashed lines indicate results for an exponential
model with offset, solid lines results for the model without offset (compare Sec. A.5).
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Figure A.6: MR estimation from single neuron activity (cat). MR estimation is used to estimate �̂� from the
activity 𝑎𝑡 of a single neurons in cat visual cortex. a. Each panel shows MR estimation for one of the 50 recorded
neurons. Autocorrelations decay rapidly in some neurons, but long-term correlations are present in the activity
of most neurons. The consistency checks are detailed in Sec. A.5 (see Tab. A.1). b. Histogram of the single neuron
branching ratios �̂�, inferred with the conventional estimator and using MR estimation. The difference between
these estimates demonstrates the subsampling bias of the conventional estimator, and how it is overcome by MR
estimation.
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Figure A.7: Kalman EM estimation. Expectation maximization (EM) based on Kalman filtering and MR esti-
mation are used to infer �̂� from BPs with 𝑚 = 0.99 and different degrees of subsampling. Left column: inferred
�̂� as a function of the EM runtime for 100 independent copies of the BP. The EM algorithm is terminated after
20 cycles (green dots) or after the inferred �̂� changed only marginally (blue dots, see Sec. A.7). The median
runtime of MR estimation for the same BPs is also indicated. Right column: estimated �̂� for all three methods.
a. Under 1% subsampling, the EM algorithm converged after runtimes of about 80 h, compared to 0.43 s for MR
estimation. b. Under 0.1% subsampling, �̂� inferred by the EM algorithm reaches a steady state after 10 h, but is
severely biased. The slow rise of �̂� might lead to a convergance to the proper 𝑚 after several weeks of projected
runtime (ignoring common termination criteria). c. Under 0.01% subsampling, �̂� inferred by the EM algorithm
converge to a biased value. In contrast, MR estimation returns a correct �̂� in all three cases, and outperforms the
EM algorithm by a factor of 105 to 106 in terms of the runtime.
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Appendix B

Supplementary material for “Between
perfectly critical and fully irregular: a
reverberating model captures and predicts
cortical spike propagation”†

†The content of this chapter is identical in wording and figures to the online supplementary material of
the publicationWilting and Priesemann (2019b): J. Wilting & V. Priesemann: Between perfectly critical
and fully irregular: a reverberating model captures and predicts cortical spike propagation. Cerebral
Cortex 29(6):2759–2770 (2019). It has some overlap with Chap. A, as both chapters correspond to the
online supplementary material of two independent publications, respectively.

B.1 Experiments

We evaluated spike population dynamics from recordings in rats, cats andmonkeys. The rat experimen-
tal protocols were approved by the Institutional Animal Care and Use Committee of Rutgers University
(Mizuseki et al., 2009a,b). The cat experiments were performed in accordance with guidelines estab-
lished by the Canadian Council for Animal Care (Blanche, 2009). The monkey experiments were per-
formed according to the German Law for the Protection of Experimental Animals, and were approved
by the Regierungspräsidium Darmstadt. The procedures also conformed to the regulations issued by
the NIH and the Society for Neuroscience. The spike recordings from the rats and the cats were ob-
tained from the NSF-founded CRCNS data sharing website (Blanche and Swindale, 2006; Blanche, 2009;
Mizuseki et al., 2009a,b).

B.1.1 Rat experiments.

In rats the spikes were recorded in CA1 of the right dorsal hippocampus during an open field task.
We used the first two data sets of each recording group (ec013.527, ec013.528, ec014.277, ec014.333,
ec015.041, ec015.047, ec016.397, ec016.430). The data-sets provided sorted spikes from 4 shanks (ec013)
or 8 shanks (ec014, ec015, ec016), with 31 (ec013), 64 (ec014, ec015) or 55 (ec016) channels. We used
both, spikes of single and multi units, because knowledge about the identity and the precise number
of neurons is not required for the MR estimator. More details on the experimental procedure and the
data-sets proper can be found in Mizuseki et al. (2009a,b).
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B.1.2 Cat experiments.

Spikes in cat visual cortex were recorded by Tim Blanche in the laboratory of Nicholas Swindale, Uni-
versity of British Columbia (Blanche, 2009). We used the data set pvc3, i.e. recordings of 50 sorted single
units in area 18 (Blanche and Swindale, 2006). We used that part of the experiment in which no stimuli
were presented, i.e., the spikes reflected spontaneous activity in the visual cortex of the anesthetized
cat. Because of potential non-stationarities at the beginning and end of the recording, we omitted data
before 25 s and after 320 s of recording. Details on the experimental procedures and the data proper
can be found in Blanche (2009); Blanche and Swindale (2006).

B.1.3 Monkey experiments.

The monkey data are the same as in Pipa et al. (2009); Priesemann et al. (2014). In these experiments,
spikes were recorded simultaneously from up to 16 single-ended micro-electrodes (⌀ = 80𝜇m) or
tetrodes (⌀ = 96 𝜇m) in lateral prefrontal cortex of three trained macaque monkeys (M1: 6 kg ♀; M2: 12
kg ♂; M3: 8 kg ♀). The electrodes had impedances between 0.2 and 1.2M𝛺 at 1 kHz, and were arranged
in a square grid with inter electrode distances of either 0.5 or 1.0 mm. The monkeys performed a visual
short term memory task. The task and the experimental procedure is detailed in Pipa et al. (2009). We
analyzed spike data from 12 experimental sessions comprising almost 12.000 trials (M1: 5 sessions; M2:
4 sessions; M3: 3 sessions). 6 out of 12 sessionswere recordedwith tetrodes. Spike sorting on the tetrode
data was performed using a Bayesian optimal template matching approach as described in Franke et al.
(2010) using the “Spyke Viewer” software (Pröpper and Obermayer, 2013). On the single electrode data,
spikes were sorted with a multi-dimensional PCA method (Smart Spike Sorter by Nan-Hui Chen).

B.2 Analysis

B.2.1 Temporal binning.

For each recording, we collapsed the spike times of all recorded neurons into one single train of popu-
lation spike counts 𝑎𝑡, where 𝑎𝑡 denotes howmany neurons spiked in the 𝑡𝑡ℎ time bin 𝛥𝑡. If not indicated
otherwise, we used 𝛥𝑡 = 4ms, reflecting the propagation time of spikes from one neuron to the next.

B.2.2 Multistep regression estimation of �̂�.

From these time series, we estimated �̂� using the MR estimator described in Wilting and Priesemann
(2018a). For 𝑘 = 1,… , 𝑘max, we calculated the linear regression slope 𝑟𝑘 𝛥𝑡 for the linear statistical depen-
dence of 𝑎𝑡+𝑘 upon 𝑎𝑡. From these slopes, we estimated �̂� following the relation 𝑟𝛿𝑡 = 𝑏 ⋅ �̂�𝛿𝑡/𝛥𝑡, where
𝑏 is an (unknown) parameter that depends on the higher moments of the underlying process and the
degree of subsampling. However, for an estimation of 𝑚 no further knowledge about 𝑏 is required.
Throughout this study we chose 𝑘max = 2500 (corresponding to 10 s) for the rat recordings, 𝑘max = 150
(600ms) for the cat recording, and 𝑘max = 500 (2000ms) for the monkey recordings, assuring that 𝑘max
was always in the order of multiple intrinsic network timescales (i.e., autocorrelation times).
In order to test for the applicability of a MR estimation, we used a set of conservative tests (Wilting
and Priesemann, 2018a), which found the expected exponential relation 𝑟𝛿𝑡 = 𝑏𝑚𝛿𝑡/𝛥𝑡 in the majority of
experimental recordings (14 out of 21, Fig. B.1).

B.2.3 Avalanche size distributions.

Avalanche sizes were determined similarly to the procedure described in Priesemann et al. (2009, 2014).
Assuming that individual avalanches are separated in time, let {𝑡𝑖} indicate bins without activity, 𝑎𝑡𝑖 = 0.
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The size 𝑠𝑖 of one avalanche is defined by the integrated activity between two subsequent bins with zero
activity:

𝑠𝑖 =
𝑡𝑖+1
􏾜
𝑡=𝑡𝑖

𝑎𝑡. (B.1)

From the sample {𝑠𝑖} of avalanche sizes, avalanche size distributions 𝑝(𝑠) were determined using fre-
quency counts. For illustration, we applied logarithmic binning, i.e. exponentially increasing binwidths
for 𝑠.
For each experiments, these empirical avalanche size distributions were compared to avalanche size
distributions obtained in a similar fashion from three different matched models (see below for details).
Model likelihoods 𝑙({𝑠𝑖}) |𝑚) for all three models were calculated following Clauset et al. (2009), and we
considered the likelihood ratio to determine the most likely model based on the observed data.

B.2.4 ISI distributions, Fano factors and spike count cross-correlations.

For each experiment and corresponding reverberating branching model (subsampled to a single unit),
ISI distributions were estimated by frequency counts of the differences between subsequent spike times
for each channel.
We calculated the single unit Fano factor 𝐹 = Var[𝑎𝑡]/⟨𝑎𝑡⟩ for the binned activity 𝑎𝑡 of each single
unit, with the bin sizes indicated in the respective figures. Likewise, single unit Fano factors for the
reverberating branching models were calculated from the subsampled and binned time series.
From the binned single unit activities 𝑎1𝑡 and 𝑎2𝑡 of two units, we estimated the spike count cross corre-
lation 𝑟sc = Cov(𝑎1𝑡 , 𝑎2𝑡 )/𝜎𝑎1𝑡 𝜎𝑎2𝑡 . The two samples 𝑎1𝑡 and 𝑎2𝑡 for the reverberating branching models were
obtained by sampling two randomly chosen neurons.

B.3 Branching processes

In a branching process (BP) with immigration (Harris, 1963; Heathcote, 1965; Pakes, 1971) each unit 𝑖
produces a random number 𝑦𝑡,𝑖 of units in the subsequent time step. Additionally, in each time step
a random number ℎ𝑡 of units immigrates into the system (drive). Mathematically, BPs are defined
as follows (Harris, 1963; Heathcote, 1965): Let 𝑦𝑡,𝑖 be independently and identically distributed non-
negative integer-valued random variables following a law 𝑌 with mean 𝑚 = ⟨𝑌⟩ and variance 𝜎2 =
Var[𝑌]. Further, 𝑌 shall be non-trivial, meaning it satisfies P[𝑌 = 0] > 0 and P[𝑌 = 0] + P[𝑌 = 1] <
1. Likewise, let ℎ𝑡 be independently and identically distributed non-negative integer-valued random
variables following a law 𝐻 with mean rate ℎ = ⟨𝐻⟩ and variance 𝜉2 = Var[𝐻]. Then the evolution of
the BP 𝐴𝑡 is given recursively by

𝐴𝑡+1 =
𝐴𝑡
􏾜
𝑖=1

𝑦𝑡,𝑖 + ℎ𝑡, (B.2)

i.e. the number of units in the next generation is given by the offspring of all present units and those
that were introduced to the system from outside.
The stability of BPs is solely governed by the mean offspring 𝑚. In the subcritical state, 𝑚 < 1, the
population converges to a stationary distribution𝐴∞ with mean ⟨𝐴∞⟩ = ℎ/(1−𝑚). At criticality (𝑚 = 1),
𝐴𝑡 asymptotically exhibits linear growth, while in the supercritical state (𝑚 > 1) it grows exponentially.
We will now derive results for the mean, variance, and Fano factor of subcritical branching processes.
Following previous results, taking expectation values of both sides of Eq. (A.1) yields ⟨𝐴𝑡+1⟩ = 𝑚⟨𝐴𝑡⟩+ℎ.
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Because of stationarity ⟨𝐴𝑡+1⟩ = ⟨𝐴𝑡⟩ = ⟨𝐴∞⟩ and the mean activity is given by

⟨𝐴∞⟩ =
ℎ

1 − 𝑚. (B.3)

In order to derive an expression for the variance of the stationary distribution, observe that by the
theorem of total variance, Var[𝐴𝑡+1] = ⟨Var[𝐴𝑡+1 |𝐴𝑡]⟩ +Var[⟨𝐴𝑡+1 |𝐴𝑡⟩], where ⟨⋅⟩ denotes the expected
value, and𝐴𝑡+1 |𝐴𝑡 conditioning the random variable𝐴𝑡+1 on𝐴𝑡. Because𝐴𝑡+1 is the sum of independent
random variables, the variances also sum: Var[𝐴𝑡+1 |𝐴𝑡] = 𝜎2𝐴𝑡+𝜉2. Using the previous result for ⟨𝐴∞⟩
one then obtains

Var[𝐴𝑡+1] = 𝜉2 + 𝜎2 ℎ
1 − 𝑚 + Var[𝑚𝐴𝑡 + ℎ] = 𝜉2 + 𝜎2 ℎ

1 − 𝑚 + 𝑚2Var[𝐴𝑡].

Again, in the stationary distribution Var[𝐴𝑡+1] = Var[𝐴𝑡] = Var[𝐴∞] which yields

Var[𝐴∞] =
1

1 − 𝑚2 􏿶𝜉
2 + 𝜎2 ℎ

1 − 𝑚􏿹 , (B.4)

The Fano factor 𝐹𝐴𝑡 = Var[𝐴𝑡] / ⟨𝐴𝑡⟩ is easily computed from (B.3) and (B.4):

𝐹𝐴𝑡 =
𝜉2

ℎ(1 + 𝑚) +
𝜎2

1 − 𝑚2 . (B.5)

Interestingly, the mean rate, variance, and Fano factor all diverge when approaching criticality (given
a constant input rate ℎ): ⟨𝐴∞⟩ → ∞, Var[𝐴∞] → ∞, and 𝐹𝐴𝑡 → ∞ as 𝑚 → 1.
These results were derived without assuming any particular law for 𝑌 or 𝐻 . Although the limiting
behavior of BPs does not depend on it (Harris, 1963; Heathcote, 1965; Pakes, 1971), fixing particular
laws allows to simplify these expressions further.
We here chose Poisson distributions withmeans𝑚 and ℎ for𝑌 and𝐻 respectively: 𝑦𝑡,𝑖 ∼ Poi(𝑚) and ℎ𝑡 ∼
Poi(ℎ). We chose these laws for two reasons: (1) Poisson distributions allow for non-trivial offspring
distributions with easy control of the branching ratio 𝑚 by only one parameter. (2) For the brain,
one might assume that each neuron is connected to 𝑘 postsynaptic neurons, each of which is excited
with probability 𝑝, motivating a binomial offspring distribution with mean 𝑚 = 𝑘 𝑝. As in cortex 𝑘 is
typically large and 𝑝 is typically small, the Poisson limit is a reasonable approximation. Choosing these
distributions, the variance and Fano factor become

Var[𝐴𝑡] = ℎ / ((1 − 𝑚)2(1 + 𝑚)),
𝐹𝐴𝑡 = 1 / (1 − 𝑚2). (B.6)

Both diverge when approaching criticality (𝑚 = 1).

B.4 Subsampling

A general notion of subsampling was introduced in Wilting and Priesemann (2018a). The subsampled
time series 𝑎𝑡 is constructed from the full process 𝐴𝑡 based on the three assumptions: (i) The sampling
process does not interfere with itself, and does not change over time. Hence the realization of a subsam-
ple at one time does not influence the realization of a subsample at another time, and the conditional
distribution of (𝑎𝑡|𝐴𝑡) is the same as (𝑎𝑡′ |𝐴𝑡′) if𝐴𝑡 = 𝐴𝑡′ . However, even if𝐴𝑡 = 𝐴𝑡′ , the subsampled 𝑎𝑡 and
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𝑎𝑡′ do not necessarily take the same value. (ii) The subsampling does not interfere with the evolution
of 𝐴𝑡, i.e. the process evolves independent of the sampling. (iii) On average 𝑎𝑡 is proportional to 𝐴𝑡 up
to a constant term, ⟨𝑎𝑡 |𝐴𝑡⟩ = 𝛼𝐴𝑡 + 𝛽.
In the spike recordings analyzed in this study, the states of a subset of neurons are observed by placing
electrodes that record the activity of the same set of neurons over the entire recording. This imple-
mentation of subsampling translates to the general definition in the following manner: If 𝑛 out of all
𝑁 neurons are sampled, the probability to sample 𝑎𝑡 active neurons out of the actual 𝐴𝑡 active neurons
follows a hypergeometric distribution, 𝑎𝑡 ∼ Hyp(𝑁, 𝑛,𝐴𝑡). As ⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝑗 𝑛 /𝑁 , this representation
satisfies the mathematical definition of subsampling with 𝛼 = 𝑛 /𝑁 . Choosing this special implemen-
tation of subsampling allows to derive predictions for the Fano factor under subsampling and the spike
count cross correlation. First, evaluate Var[𝑎𝑡] further in terms of 𝐴𝑡:

Var[𝑎𝑡] = ⟨Var[𝑎𝑡 |𝐴𝑡]⟩ + Var[⟨𝑎𝑡 |𝐴𝑡⟩]

= 𝑛⟨𝐴𝑡
𝑁

𝑁 − 𝐴𝑡
𝑁

𝑁 − 𝑛
𝑁 − 1 ⟩ + Var[ 𝑛𝑁𝐴𝑡]

= 1
𝑁

𝑛
𝑁

𝑁 − 𝑛
𝑁 − 1

􏿴𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴2
𝑡 ⟩􏿷 +

𝑛2
𝑁2Var[𝐴𝑡]

= 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1

􏿴𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2􏿷 + 􏿶
𝑛2
𝑁2 − 𝑛

𝑁2
𝑁 − 𝑛
𝑁 − 1􏿹Var[𝐴𝑡]. (B.7)

This expression precisely determines the variance Var[𝑎𝑡] under subsampling from the properties ⟨𝐴𝑡⟩
and Var[𝐴𝑡] of the full process, and from the parameters of subsampling 𝑛 and 𝑁 . We now show that
the Fano factor approaches and even falls below unity under strong subsampling, regardless of the
underlying dynamical state 𝑚. In the limit of strong subsampling (𝑛 ≪ 𝑁) Eq. (A.3) yields:

Var[𝑎𝑡] ≈
𝑛
𝑁2 􏿴𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2􏿷 +

𝑛2 − 𝑛
𝑁2 Var[𝐴𝑡]. (B.8)

Hence the subsampled Fano factor is given by

𝐹𝑎𝑡 =
Var[𝑎𝑡]
⟨𝑎𝑡⟩

≈ 1 − ⟨𝐴𝑡⟩
𝑁 + 𝑛 − 1

𝑁
Var[𝐴𝑡]
⟨𝐴𝑡⟩

= 1 −
⟨𝐴𝑡⟩ − (𝑛 − 1)𝐹𝐴𝑡

𝑁 . (B.9)

Interestingly, when sampling a single unit (𝑛 = 1) the Fano factor of that unit becomes completely
independent of the Fano factor of the full process:

𝐹𝑎𝑡 = 1 − ⟨𝐴𝑡⟩/𝑁 = 1 − ⟨𝑎𝑡⟩/𝑛 = 1 − 𝑅, (B.10)

where 𝑅 = ⟨𝑎𝑡⟩/𝑛 is the mean rate of a single unit.
Based on this implementation of subsampling, we derived analytical results for the cross-correlation
between the activity of two units on the time scale of one time step. The pair of units is here represented
by two independent samplings 𝑎𝑡 and �̃�(𝑡) of a BP 𝐴𝑡 with 𝑛 = 1, i.e. each represents one single unit.
Because both samplings are drawn from identical distributions, their variances are identical and hence
the correlation coefficient is given by 𝑟sc = Cov(𝑎𝑡, �̃�(𝑡)) /Var[𝑎𝑡]. Employing again the law of total
expectation and using the independence of the two samplings, this can be evaluated:

Cov(𝑎𝑡, �̃�(𝑡)) = ⟨⟨𝑎𝑡 �̃�(𝑡) | 𝐴𝑡⟩⟩𝐴𝑡 − ⟨⟨𝑎𝑡 |𝐴𝑡⟩⟩2𝐴𝑡 =
1
𝑁2Var[𝐴𝑡], (B.11)
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with the first inner expectation being taken over the joint distribution of 𝑎𝑡 and �̃�(𝑡). Using Eq. (B.8),
one easily obtains

𝑟sc =
Var[𝐴𝑡]

𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2
=

𝐹𝐴𝑡

𝑁 − ⟨𝐴𝑡⟩
=

𝐹𝐴𝑡

𝑁 (1 − 𝑅) (B.12)

with the mean single unit rate 𝑅 = ⟨𝐴𝑡⟩/𝑁 . For subcritical systems, the Fano factor 𝐹𝐴𝑡 is much smaller
than 𝑁 , and the rate is typically much smaller than 1. Therefore, the cross-correlation between single
units is typically very small.
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B.5 Supplementary Figures
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Figure B.1: MR estimation for individual recording sessions. Reproduced from Wilting and Priesemann
(2018a). MR estimation is shown for every individual animal. The consistency checks are detailed in Wilting
and Priesemann (2018a). Data from monkey were recorded in prefrontal cortex during an working memory task.
The third panel shows a oscillation of 𝑟𝑘 with a frequency of 50 Hz, corresponding to measurement corruption
due to power supply frequency. Data from anesthetized cat were recorded in primary visual cortex. Data from
rat were recorded in hippocampus during a foraging task. In addition to a slow exponential decay, the slopes 𝑟𝑘
show the 𝜗-oscillations of 6 – 10 Hz present in hippocampus.
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Figure B.2: Interspike interval distribution for individual recording sessions. Interspike interval (ISI) dis-
tributions are shown for individual units of each recording (gray), for the average over units of each recording
(blue), as well as for the matched models, either AI (green), in vivo-like (red), or near critical (yellow). The in-
sets show the corresponding coefficients of variation (CV). For every experiment AI and in vivo-like models are
virtually indistinguishable by the ISI distributions.
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Figure B.3: Fano factors for individual recording sessions. Fano factors are shown for individual single or
multi units of every recording (gray boxplots, median / 25% – 75%, 2.5% – 97.5%), as well as for the matched
models, either AI (green), in vivo-like (red), or near critical (yellow).

93



0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

Bin size / ms

−1

0

1

C
ro

ss
co

rr
el

at
io

n

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

0 1000 2000

−1

0

1

Experiment (neuron pairs)
Experiment (mean r̄sc)

In vivo-like BN

AI network
Critical BN

M
on

ke
ys

R
at

s
C

at

Figure B.4: Cross correlations for individual recording sessions. Spike count cross correlations (𝑟sc) are shown
for every neuron pair (gray) and the ensemble average (blue) of each recording, for bin sizes from 1 ms to 2s.
Cross correlations are also shown for the matched models, either AI (green), in vivo-like (red), or near critical
(yellow).
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Figure B.5: Activity distributions (4 ms bin size). Activity distributions are shown for every recording for a
bin size of 4 ms (blue). Activity distributions for the matched models, either AI (green), in vivo-like (red), or near
critical (yellow) are also shown. The color of the asterisk indicates which of the three models yielded the highest
likelihood for the data following Clauset et al. (2009).
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Figure B.6: Activity distributions (40 ms bin size). Activity distributions are shown for every recording, for
a bin size of 40 ms (blue). Activity distributions for the matched models, either AI (green), in vivo-like (red), or
near critical (yellow) are also shown. The color of the asterisk indicates which of the three models yielded the
highest likelihood for the data following Clauset et al. (2009).
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Figure B.7: Avalanche size distribution for individual recording sessions. Avalanche size distributions are
shown for every recording (blue) and for matched models, either AI (green), in vivo-like (red), or near critical
(yellow). The color of the asterisk indicates which of the three models yielded the highest likelihood for the data
following Clauset et al. (2009).
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Figure B.8: Avalanche duration distribution for individual recording sessions. Avalanche duration distribu-
tions are shown for every recording (blue) and for matched models, either AI (green), in vivo-like (red), or near
critical (yellow).
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Figure B.9: MR estimation from single neuron activity (cat). Modified from Wilting and Priesemann (2018a).
MR estimation is used to estimate �̂� from the activity 𝑎𝑡 of a single units in cat visual cortex. a. Each panel
shows MR estimation for one of the 50 recorded units. Autocorrelations decay rapidly in some units, but long-
term correlations are present in the activity of most units. The consistency checks are detailed in Wilting and
Priesemann (2018a). b. Histogram of the single unit branching ratios �̂�, inferred with the conventional estimator
and using MR estimation. The difference between these estimates demonstrates the subsampling bias of the
conventional estimator, and how it is overcome by MR estimation. c. Histogram of single unit timescales with
their median (gray dotted line) and the timescale of the dynamics of the whole network (blue dotted line).
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Figure B.10: Doubly stochastic model. Instead of a branching model, we here matched a doubly stochastic
process to the data. The rates evolved according to 𝑅𝑡+1 = 𝑚𝑅𝑡+ℎ𝑡 where ℎ𝑡 is drawn from a Poisson distribution.
The actual activity is then drawn from a Poisson distribution according to 𝐴𝑡 ∼ Poi(𝑁 𝑅𝑡). Here, results for the
experiment in cat visual cortex are shown. a Time evolution of 𝑅𝑡 and 𝐴𝑡. As the activity is not fed back into the
evolution of 𝑅𝑡, the second step effectively adds measurement noise to the underlying process. bThe subsampled
activity (50 out of 10,000, as in the branching models) shows the expected autocorrelation function. c Any of the
doubly stochastic processes underestimated the spike count cross correlations. d Any of the doubly stochastic
processes underestimated the single unit Fano factors.
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Figure B.11: Further predictions about network activity. a. The model predicts that the perturbation decays
exponentially with decay time 𝜏 = −𝛥𝑡/ log𝑚. b The variance across trials of the perturbed firing rate has a
maximum, whose position depends on 𝑚. c. Depending on 𝑚, the model predicts the distributions for the total
number of extra spikes 𝑠𝛥 generated by the network following a single extra spike. d. Likewise, the model
predicts distributions of the duration 𝑑 of these perturbations. e. Variance of the total perturbation size as a
function of 𝑚. f. Variance of the total perturbation duration as a function of 𝑚. g. Increase of the network firing
rate as a function of the rate of extra neuron activations for different 𝑚. h. Amplification (susceptibility) d𝑟/dℎ of
the network as a function of the branching ratio 𝑚.
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Appendix C

Appendix for ”Homeostatic plasticity and
external input shape neural network
dynamics”†

†The content of this chapter is identical in wording and figures to the appendix of the publication
(Zierenberg et al., 2018): J. Zierenberg*, J.Wilting*&V. Priesemann: Homeostatic plasticity and external
input shape neural network dynamics. Physical Review X 3:031018 (2019). The original publication
contains the appendix within one manuscript. For consistency throughout this monograph, it has been
moved to this chapter. It has some overlap with Chap. A, as both chapters correspond to the online
supplementary material or appendix of two independent publications, respectively.
*J.Z. and J.W. contributed equally to this work.

C.1 Experimental details

C.1.1 Dissociated dense cultures of cortical rat neurons:

The spike-time data from dissociated cortical rat neurons of mature dense cultures was recorded by
Wagenaar et al. (2006) and was obtained freely online (Wagenaar). The experimental setup uses multi-
electrode-arrays (MEA)with 𝑛 = 59 electrodes. Cortical cells were obtained from dissecting the anterior
part of the cortex of Wistar rat embryos (E18), including somatosensory, motor, and association areas.
For details, we refer to Wagenaar et al. (2006). Measurements were performed every day in vitro (DIV).
We here focus on the dense casewith 50 000 cells plated initiallywith a density of 2.5(1.5)×103 cells/mm2

at 1 DIV, which is compatible with standard in vitro experiments in the field that claim to observe critical
dynamic behavior. We selected the representative recordings 8-2-34 (exp 1) and 7-2-35 (exp 2) at mature
age (34/35 DIVs) for Fig. 4.1.

C.1.2 Rat hippocampus:

The spiking data from rats were recorded by Mizuseki et al. (2009b,a) with experimental protocols
approved by the Institutional Animal Care and Use Committee of Rutgers University. The data was
obtained from the NSF-founded CRCNS data sharing website (Mizuseki et al., 2009a). The spikes were
recorded in CA1 of the right dorsal hippocampus during an open field task. Specifically, we used the
data set ec013.527 with sorted spikes from 4 shanks with 𝑛 = 31 channels. For details we refer to
Mizuseki et al. (2009b,a).
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C.1.3 Primary visual cat cortex:

The spiking data from cats were recorded by Tim Blanche in the laboratory of Nicholas Swindale,
University of British Columbia, in accordance with guidelines established by the Canadian Council for
Animal Care (Blanche and Swindale, 2006; Blanche, 2009). The data was obtained from the NSF-founded
CRCNS data sharing website (Blanche, 2009). Specifically, we used the data set pvc3 with recordings
of 𝑛 = 50 sorted single units (Blanche and Swindale, 2006) in area 18. For details we refer to Blanche
(2009); Blanche and Swindale (2006). We confined ourselves to the experiments where no stimuli were
presented such that spikes reflect the spontaneous activity in the visual cortex of mildly anesthetized
cats. In order to circumvent potential non-stationarities at the beginning and end of the recording, we
omitted the initial 25 s and stopped after 320 s of recording (Wilting and Priesemann, 2018a).

C.2 Analysis details

C.2.1 Spiking activity:

In order to present the spiking activity over time, we partition the time axis of experimental or numeri-
cal data into discrete bins of size𝛥𝑡. For the time-discrete simulations the time bin naturallymatches the
time step. For experimental data we set 𝛥𝑡 = 4ms. In each time bin we count the total number of spikes
𝐴𝑡 and normalize with the number of neurons 𝑁 to obtain the average spiking activity 𝑎𝑡 = 𝐴𝑡/𝑁𝛥𝑡.
Note that experimental preparations were inevitably subsampled, as spikes were recorded only from a
small number of all neurons.

C.2.2 Avalanche-size distribution:

We define the avalanche size 𝑠 as the number of spikes enclosed along the discrete time axis by bins
with zero activity (Beggs and Plenz, 2003). To test for criticality in terms of a branching process, one
compares 𝑃(𝑠) to the expected 𝑃(𝑠) ∼ 𝑠−3/2. This is a valid approach in the limit ℎ → 0, where avalanches
can be clearly identified, and for fully sampled systems (Priesemann et al., 2014). However, experiments
are limited to record only from 𝑛 out of𝑁 neurons. As a result, the distributions for subsampled activity
𝑃sub(𝑠) differ due to subsampling bias (Priesemann et al., 2009, 2013). Therefore, we numericallymeasure
both full (𝑛 = 𝑁) and subsampled (𝑛 < 𝑁) avalanche-size distributions to qualitatively compare 𝑃(𝑠) to
the theory and 𝑃sub(𝑠) to experimental data.

C.2.3 Integrated autocorrelation time:

We measure the autocorrelation time of spiking activity 𝑎𝑡 in terms of the integrated autocorrelation
time 𝜏int, for details see, e.g., Janke (2002). In brief, we sum over the normalized autocorrelation
function 𝐶(𝑙) = 𝐶𝑜𝑣[𝑎𝑡, 𝑟𝑡+𝑙]/𝑉𝑎𝑟[𝑎𝑡] until the sum converges. Following conventions, we define 𝜏int =
𝛥𝑡[ 12 +∑𝑙max

𝑙=1 𝐶(𝑙)], where 𝑙max is self-consistently obtained as the minimal 𝑙max > 6𝜏int(𝑙max).

C.2.4 Reproducing experimental results:

We use a branching network with AA topology subject to homeostatic plasticity to quantitatively re-
produce in vivo subsampled avalanche-size distributions. We chose networks of size 𝑁 = 104 with suf-
ficiently large homeostatic timescale 𝜏hp = 105 s. The following model parameters can be obtained from
experimentally measured values: In the chosen recordings, we measured the average rate (𝑟cat ≈ 7Hz
and 𝑟rat ≈ 11Hz) as well as the subsampling corrected branching parameter (Wilting and Priesemann,
2018a) (𝑚cat ≈ 0.98 and 𝑚rat ≈ 0.997 for 𝛥𝑡 = 4ms). In fact, the branching parameter is not suitable to
identify the input rate via (4.7), because it refers to a process in discrete time steps. Since we are treating
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Figure C.1: Temporal fluctuations in an
annealed-average network with homeo-
static plasticity subject to different external
input rates. (a) Spiking activity 𝑎𝑡 shows
small fluctuations for large input rates (yel-
low) and bursts for small input rates (pur-
ple), cf. Fig. 4.3. (b) Branching parame-
ter fluctuates around predicted value (black
horizontal lines) and develops distinct saw-
tooth pattern for small input rates.

a continuous process, the invariant quantity is the autocorrelation time (𝜏cat ≈ 0.2 s and 𝜏rat ≈ 1.6 s).
According to our theory, we can then calculate the input rate per neuron ℎ = (1−exp(−𝛥𝑡/𝜏))𝑟. In order
to avoid convergence effects, we need to choose a sufficiently small time step 𝛥𝑡 = 1ms of signal prop-
agation (resulting in ℎcat ≈ 3.5 × 10−2 Hz and ℎrat ≈ 5.5 × 10−3 Hz), while we record in time bins of 4ms
to match the analysis of the experiments. Subsampled avalanche-size distributions are estimated by
randomly choosing 𝑛 < 𝑁 neurons, where we approximated 𝑛 by the number of electrodes or channels
(𝑛cat = 50 and 𝑛rat = 31).

C.3 Approximating the dynamic state in the bursting regime

We showed in Sec. 4.4 that decreasing the external input to recurrent networks with homeostatic plas-
ticity leads to bursting behavior (Fig. C.1a). This is directly related to the network branching parameter
𝑚𝑡 = 𝑚𝑡 no longer showing small fluctuations around the predicted value but instead exhibiting a
prominent saw-tooth pattern (Fig. C.1b), a hallmark of the homeostatic buildup in the long pauses with
no input.
We here show a semi-analytical approximation of the network branching parameter in the bursting
regime. For sufficiently small external input we may assume separation of timescales, i.e., every exter-
nally induced spike drives one avalanche with periods of silence in between. Let us first consider the
periods of silence, i.e., no activity per site. This holds during the entire growth period 𝑇 such that (4.8)
yields

𝑚𝑡 − 𝑚𝑡−𝑇 = (𝛥𝑡𝑟∗) 𝑇𝜏′ . (C.1)

The situation becomesmore involved within the bursts, where the behavior of𝑚𝑡 is nonlinear. Consider
an external spike that triggers an avalanche at 𝑡 = 𝑠 which ends at 𝑡 = 𝑒. Due to the separation of
timescales we can assume 𝐴𝑠 = 1. There are two possible scenarios: (i) The avalanche dies out before a
burst can develop and (ii) the input triggers a proper burst with a macroscopic activation.
We first estimate the probability that an avalanche dies out before a burst develops. For 𝜏hp ≫ 𝛥𝑡
we approximate 𝑚𝑡 ≈ 𝑚𝑠 = const. Then, the probability of ultimate extinction 𝜃 can be calculated as
the solution of 𝜃 = 𝛱(𝜃) with 𝛱(𝜃) the probability generating function (Harris, 1963). In the onset
phase, the branching process is described by a Poisson process per event with mean 𝑚𝑠, such that
𝛱(𝜃) = 𝑒−𝑚𝑠(1−𝜃). We are thus looking for a solution of

𝜃 = 𝑒−𝑚𝑠(1−𝜃), (C.2)

which can be rewritten to

−𝑚𝑠𝜃𝑒−𝑚𝑠𝜃 = −𝑚𝑠𝑒−𝑚𝑠 . (C.3)
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Figure C.2: Inter-burst-interval (IBI) distribu-
tion for annealed-average networks averaged
over 12 independent simulations. Intervals are
measured as times between proper burst onsets
(𝑎𝑡 > 20𝑟∗). Dashed lines show the exponen-
tial inter-spike-interval distribution of the Pois-
son external drive.
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We identify the Lambert-W function 𝑊(𝑧)𝑒𝑊(𝑧) = 𝑧 (Corless et al., 1996) with 𝑊(𝑧) = −𝑚𝑠𝜃 =
𝑊(−𝑚𝑠𝑒−𝑚𝑠) and find for the probability that no burst develops

𝑝no−burst(𝑚𝑠) = 𝜃 = − 1
𝑚𝑠

𝑊 (−𝑚𝑠𝑒−𝑚𝑠) . (C.4)

If a proper burst develops, the strong activity diminishes𝑚𝑡 until the burst dies out again. We cannot an-
alytically estimate the branching parameter𝑚𝑒 after burst end, but we can use a deterministic numerical
approximation to obtain𝑚𝑒(𝑚𝑠). Instead of stochastically generating new (discrete) events according to
some distribution 𝑃(𝑚𝑡) with average 𝑚𝑡, we approximate the branching process as deterministic (con-
tinuous) evolution 𝐴𝑡+1 = 𝑚𝑡𝐴𝑡. For a finite network, we need to consider convergence effects when
one neuron is activated by two or more neurons at the same time. In the absence of external input, this
introduces for an AA (i.e. approximating fully connected) network the activity-dependent branching
parameter (Zierenberg et al., 2020b,a)

𝑚𝑡(𝐴𝑡) =
𝑁
𝐴𝑡

􏿶1 − 􏿵1 − 𝑚𝑡
𝑁

􏿸
𝐴𝑡
􏿹 , (C.5)

which we need to consider for the activity propagation within the burst, i.e., 𝐴𝑡+1 = 𝑚𝑡(𝐴𝑡)𝐴𝑡. In
addition, we introduce an upper bound 𝐴𝑡 ≤ 𝑁 . The upper limit on 𝐴𝑡 puts a lower bound on 𝛥𝑚𝑡
according to (4.8) and thus extends the duration of avalanches. Evolving𝑚𝑡+1 = 𝑚𝑡+(𝛥𝑡𝑟∗−𝐴𝑡/𝑁)(𝛥𝑡/𝜏′),
with 𝑚𝑡+1 ≥ 0, we iterate until 𝐴𝑒 < 1. This is a quick and numerically robust iterative scheme to
estimate 𝑚𝑒(𝑚𝑠).
Putting everything together, we numerically approximate the average network branching parameter𝑚
under homeostatic plasticity in the bursting regime of low external input for an AA network. For this,
we sample the external spikes (drive) as 104 inter-drive intervals 𝑇𝑠 from an exponential distribution
𝑃(𝑇) = (1/ℎ𝑁)𝑒−𝑇/ℎ𝑁 , corresponding to 𝑁 Poisson processes with rate ℎ. The remaining part can be
interpreted as an event-based sampling with approximate transformations: Starting with 𝑚0 = 0, we
evolve 𝑚𝑡 for each inter-drive interval 𝑇𝑠 according to (C.1). If 𝑚𝑡 > 1, we keep 𝑚𝑡 with probability
𝑝no−burst(𝑚𝑡) or else initiate a burst by setting 𝑚𝑡 = 𝑚𝑒 (𝑚𝑡). Afterwards we continue evolving 𝑚𝑡.

C.4 Characteristic duration of inter-burst-intervals in burst regime

In the bursting regime of low external input, the spiking activity suggests a characteristic time between
bursts. In order to test for periodicity, we analyzed the distribution of inter-burst-intervals (IBI), where
intervals are measured as the time between two consecutive burst onsets, defined as a spiking activity
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𝑎𝑡 > 20𝑟∗. We find (Fig. C.2) that large IBI are suppressed by the exponentially distributed inter-drive
intervals (dashed lines), while short IBI are suppressed by the probability 𝑝no−burst(𝑚) that a given ex-
ternal spike does not trigger a proper burst (Appendix C.3). This gives rise to a characteristic duration
of inter-burst-intervals in the burst regime, although the dynamics are not strictly periodic.
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