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Abstract

Proteins are molecular machines playing almost every fundamental role in activities of life.
Their biological functions are mostly driven through conformational transitions and interac-
tion interfaces with other bio-molecules such as DNA sequences, proteins and other ligands.
In quest of the mechanism underlying protein functions, I conducted two projects aiming,
firstly, to explore the structural change of proteins via identifying their rigid bodies, and
secondly, to devise new sequence-based features to predict DNA-binding sites in proteins.

Despite many previous efforts to calculate rigid domains in proteins, it is still highly
desirable to develop new segmentation algorithms which are able to efficiently segment
high-throughput of proteins, meanwhile to avoid protein-dependent parameters tuning such
as the number of rigid domains. Thus, I introduce a new rigid domain segmentation method
where I use a graph whose vertices are amino acids to represent multiple conformational
states of a protein. This graph is later reduced by a coarse graining such as the Louvain
clustering algorithm. Afterward, the domain-wise relationships among clusters in the re-
duced graph were inferred through a binary labeling of its edges which becomes feasible
thanks to the line graph transformation and generalized Viterbi algorithm. Because of the
binary labeling, our method does not require the number of rigid domains as an input pa-
rameter like other existing methods. I validate our graph-based method on 487 examples
from DynDom database and compare our segments with other methods on several proteins
whose structural changes range from medium to large and their molecular motions have
been studied extensively in the literature. The algorithm code as well as usage instruction
is available at https://github.com/dtklinh/GBRDE.

In the second project, the identification of DNA-binding sites in proteins could be ob-
tained either through structure- or sequence-based approaches. In spite of obtaining good
results, structure-based methods require protein 3D structures which are expensive and
time-consuming. In contrast, the sequence-based ones are efficiently applicable to entire
protein databases, yet demand carefully designed features. Thus, I present a new informa-
tion theoretic feature extracted from the Jensen—Shannon Divergence (JSD) where I harvest
the differences between amino acids distributions of binding and non-binding sites. For the
evaluation, I ran a five-fold cross validation on 263 proteins with Random Forest (RF) clas-
sifier along with features comprising of our new sequence-based feature and several popular
ones such as position-specific scoring matrix (PSSM), orthogonal binary vector (OBV), and
secondary structure (SS). The results show that by concatenating our features, there is a sig-
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nificant improvement of RF classifier performance in terms of sensitivity and Matthews
correlation coefficient (MCC).
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1. Introduction

A protein is a macromolecule folded from a chain of amino acids and kept in shape through
sulfhydryl bonds, hydrogen bonds and van der Waals forces [1]. Proteins
play almost every essential role in molecular activities of life such as binding to
to protect the body [2]]; catalyzing thousands of chemical reactions in cells
(enzymes)) [3| 4]; transmitting signals to orchestrate many processes among cells, tissues
and organs (messenger proteins) [5) |6]]; providing structure for cells and support forming
connective tissues (fibrous proteins) [7, 8]]; and helping to circulate other vital elements
around the body (transport and/or storage proteins) [9].

Thus, with the essential roles of proteins in nature, the quest to understand how proteins
work is the crucial key to decipher how lives function. One important step to have a deep in-
sight of underlying molecular mechanism of proteins is to understand how proteins interact
with[DNA|to maintain and transmit the genetic information. For example, RNA polymerase
and other|transcription factors proteins|bind to a specific region of genome such as enhancer
and promoter to either promote or inhibit a generation of certain proteins. This process of
gene expression enables cells to only produce a certain type of proteins they need for their
metabolism, and thus leads to cells differentiation. In order to have a better understanding
underlying the DNA-protein binding mechanism, I investigate to the following aspects of
proteins. Firstly, I calculate rigid domains in proteins which is the initial step to understand
the underlying motion of proteins. Secondly, I use [Conditional Random Field (CRF)}-based
machine learning technique to improve the prediction of protein-protein interfaces. This
knowledge will assist us to have a better understanding of how proteins team up into a
complex. Nonetheless, this project will not be included in this thesis, but could be found
in our publication [10]. Finally, I propose a new sequence-based feature to improve the
identification of DNA-binding sites in proteins.

Identification of rigid in proteins

For the first research question, I investigate how to calculate rigid domains in proteins. A
protein function is often determined through its large-scale structural transitions [[11]. One
of a reasonable approach to grasp such transitions is to partition proteins into rigid domains
from their structures of various states. Consequently, one could analyze protein movements
through hinge and shear motions (see Section [2.2)) of those domains [12].
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With a growing number of experimental protein structures, there is a need to develop
a method which can automatically identify conserved domains in proteins without tedious
parameters tuning. One can use such software, for instance, to study the trajectories of a
protein motion at the level of rigid domains and consequently obtains a certain insight of
its large-scale dynamic as well as its significant sites located along interfaces among rigid
domains [13]].

There are a few computational methods developed to identify rigid domains in pro-
teins. DynDom [14] calculates protein rigid bodies by clustering its corresponding rotation
vectors. The key idea underneath this method is that a residue rotation vector which de-
scribes the displacement of the residue between two conformations can be represented as a
"rotation-point" in a rotation space. In an ideal situation, all rotation-points associated with
one rigid domain will collapse into a single point. However, due to the unavoidable noise,
those rotation-points instead tend to be in close proximity in rotation space and could be
grouped by a certain clustering algorithm. Another approach to segment proteins into rigid
bodies is to detect hinge residues such as Hingefind [[15]. Given a pair of protein structures,
this algorithm partitions a protein into rigid domains by adaptively select a residue using
the Kabsch least-square fitting [16]. Another algorithm is RigidFinder [17] which itera-
tively calculates rigid domains in a protein via a dynamic programming which optimizes
the rigidity of the segments. The performance of this method is heavily dependent on the
selection of cutoff parameters which are not obvious to be determined. All of the above
methods do not support multiple input structural conformations but instead they support
only two.

Several other approaches have been proposed to overcome the above shortcoming which
imposes the limitation of only two input structures. Ponzoni et al. introduced Spectrus [[18]]
where they applied a spectral clustering algorithm to distance fluctuations. The quality score
is usually used to suggest the number of the domains, which sometimes gives ambiguous
results. Habeck and Nguyen developed a probabilistic approach [19] where they model
protein motion as a combination of rotations and translations. They modeled protein rigid
domains and their motions via parameters which were inferred by the Bayes approach [20]
and the Gibbs sampling method [21]]. Even though those above methods support multiple
input structures, they require users to set up the initial parameters as well as the number
of rigid domains. These methods search in their parameter space only locally and thus are
probably trapped in local optimal points. Consequently, they require many restarts with
various initial parameters set to work with.

Other methods using molecular dynamic simulation or an elastic network model enable
users to predict rigid domains from a single structure. HingeProt [22] and Domain Finder
[23] use elastic network models to predict hinge residues by analyzing the relationship
between two slowest frequency normal modes which represent the global movements of
large domains. However, when a conformational change involves multiple modes, it is, in



general, not clear how strongly those modes contribute to the movement. FlexOracle [24]]
predicts hinge residues by searching split points with minimal energetic impact.

In spite of the rich literature for the detection of rigid domains in proteins, there is still
a need to develop algorithms which are robust, reliable, and able to handle high-throughput
data and do not require parameters tuning in the same time.

Identification of DNA-binding sites in proteins

For the second research question, I investigate the possibility to further extract a sequence-
based feature which is helpful for the prediction of DNA-binding sites in proteins. Tran-
scription factors, the proteins which are able to bind to DNA, play essential roles to under-
take several biological functions of life such as transcription, translation and gene regulation
[25]. Thus, the identification of DNA-binding sites in proteins opens a new perspective to
explore the underlying molecular mechanisms of these interactions. These binding residues
in proteins enable us to understand how proteins work, thus consequently help for new drugs
discovery [26] 27].

The methods developed for detection of DNA-binding sites in proteins are either
structure-based or sequence-based approaches. Though structure-based methods usually
obtain promising results, they require protein structures determined through experi-
ments which are costly and time-consuming. To overcome the burdens of experimental
approaches, it is desirable to develop numerical approaches which are able to handle high-
throughput data while maintaining proper performances. A widely used computational
approach is to construct a profile for each residue and to determine their DNA-binding
properties via a classifier. In order to create an appropriate many sequence-based
features have been created such as amino acid frequency, [position-specific scoring matrix|
BLOSUMG62 matrix, sequence conservation [26, 28, [29/ 30, 31}, [32]]. For instance,
Westhof et al. developed RBscore|'} a|support vector machine (SVM)|approach to identify
DNA-binding sites in proteins using physicochemical and evolutionary features along
with a residue neighboring network [33]. BindN [29] developed by Wang et al. utilized
sequence-based features derived from the side chain pKa value, the hydrophobicity index
and molecular mass of an amino acid. BindN+ [34], an upgraded version of BindN, addi-
tionally added evolutionary information such as into feature space to improve the
performance. DISIS [30] is another method for detection of DNA-binding sites in proteins
which additionally utilized predicted structural features such as [secondary structure (SS)]
solvent accessibility and globularity. DP-Bind [32] detects DNA-binding sites through
[PSSM| empowered by various classifiers such as [SVM] kernel logistic regression and pe-
nalized logistic regression. Many machine learning techniques have been used in order to
predict DNA-binding sites in proteins. Besides [SVME, researchers have deployed other

Uhttp://ahsoka.u-strasbg.fr/rbscore/
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methods such as neural network [35) 136], naive Bayes classifier [31], and Random Forest
classifiers [26) 37, 38]].

1.1. Research Questions

In this thesis, I present the results of several projects aiming to explore the mechanism of
proteins and their DNA-binding sites property. To pursue this aim, I focus on and investigate
into the following research questions.

e RQ 1: Could we calculate protein rigid domains from different conformational states
to infer protein transformation in large scale?

This question hence drives to the following more detailed subquestions, which I also inves-
tigate in this thesis:

e RQ 1.1: Could the number of rigid domains automatically be determined?

e RQ1.2: What are the effects of the[coarse graining|and the[line graph|transformation?

Additionally, I consider a further main research question with a focus on the prediction of
DNA-binding sites in proteins:

o RQ2: Is it possible to develop a new sequence-based feature to predict DNA-binding
sites in protein?

Likewise this leads to more detailed subquestions resolved in this thesis, which are:

e RQ2.1: How could we extract this new feature through the means of information
theory?

e RQ2.2: How could we minimize the negative effect of a class imbalance between
the number of binding and non-binding sites?

1.2. Scope of the Thesis

In this thesis, I firstly present a graph-based method to calculate rigid domains in proteins.
This new method infers a binary labeling encoding whether a pair of amino acids belong to
the same or to different domains. The algorithm consists of two stages. First of all, I create
a constructed from spatial proximity of multiple conformational states. Due
to the computational capacity, I reduce this graph to obtain its coarse-grained version via
Louvain clustering algorithm [39]. Secondly, I label edges of the through a
[line graph|transformation along with generalized Viterbi algorithm [[10]. For the evaluation,
Iillustrate how the algorithm proceeds through a segmentation of Adenylate Kinase. More-
over, | also benchmark this algorithm on 487 protein structures in the DynDom database,
which results in a high agreement to the reference segmentations. Last but not least, I dis-
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cuss detailed analyses of several proteins ranging from different scale transformations and
compare them to other methods.

Regarding to the second project, I present a new feature extraction method to predict
DNA-binding sites in proteins. Despite the rich literature on sequence-based feature ex-
traction, it is useful to develop a new feature which assists the existing ones. In the feature
engineering phrase, I extract a new feature based on the assumption that the amino acid
distributions of binding and non-binding sites in a protein are essentially different. From
the training data set, I compute a null background distribution of non-binding sites. Later,
my new feature for each amino acid is a single value ranging from zero to one, calcu-
lated by a percentile transformation of a set of scores whose values are the weighted sum
of Jensen—Shannon divergence (JSD)| between amino acids distribution of sites as well as
their neighbor sites and the [null background distribution] Afterward, I incorporate the new
sequence-based feature into existing ones and evaluate these via[Random Forest (RF)| clas-
sifier with five-fold cross validation.

1.3. Impact

During the course of this work, the results have been published in the following peer re-
viewed journal articles:

e L. Dang, T. Nguyen, M. Habeck, M. Giiltas and S. Waack, “A graph-based algorithm
for detecting rigid domains in protein structures,” BMC Bioinformatics 22, 66 (2021).
https://doi.org/10.1186/s12859-021-03966-3.

e L. Dang, C. Meckbach, and R. Tacke, S. Waack and M. Giiltas “A Novel Sequence-
Based Feature for the Identification of DNA-Binding Sites in Proteins Using
Jensen—Shannon Divergence,” Entropy, vol. 18, pp. 379, 2016. [Online]. Avail-
able: https://www.mdpi.com/1099-4300/18/10/379

Additionally, I also contribute to the following publication related to protein research topic:

e Z. Dong, K. Wang, L. Dang, M. Giiltas, M. Welter, T. Wierschin, M. Stanke and
S. Waack, “CRF-based models of protein surfaces improve protein-protein interaction
site predictions,” in BMC Bioinformatics, vol. 15, pp. 277, 2014.

Conferences and Seminars

The author have presented research results in the following seminar and conferences:
e Bioinformatics Seminar (Gottingen, December 2019): speaker
e German Conference on Bioinformatics (GCB 2019, Heidelberg): poster presentation
e Structural Biology Conference (2018, Murnau): poster presentation


https://doi.org/10.1186/s12859-021-03966-3
https://www.mdpi.com/1099-4300/18/10/379
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e German Conference on Bioinformatics (GCB 2016, Berlin): poster presentation

1.4. Structure of the Thesis

Following the introduction, I reiterate biological and mathematical backgrounds in chapter
and 3} Next, I present methods utilized to find the rigidity in proteins as well as the new
sequence-based features for DNA-binding sites prediction in proteins. Then, I evaluate my
new methods through multiple experiments. Finally, I summarize and discuss new findings
at the end of this thesis. For more information, the detailed contents of chapters are as

follows:

e Chapter 2] describes the necessary biological backgrounds of this thesis. In this, I
present fundamental concepts such as proteins, protein interactions and bioinformat-
ics resources one retrieves.

In Chapter 3] I describe mathematics-related concepts used in this study, such as in-
formation theory, random forest classifier, the generalized Viterbi algorithm, Louvain
algorithms as well as the outlier detection.

Chapter [ consists of two parts where I present methods to detect important sites in
proteins. In the Section @.1] I describe novel methods to calculate rigid domains in
proteins which is important to understand how proteins move in a large scale. Section
M.2) presents a new sequence-based feature derived from information theory which is
used to predict the DNA-binding sites in proteins.

In Chapter 5] I present the evaluations of my approaches to identify important sites
in proteins. This chapter comprises two subsections. First, I validate the effectiveness
of my graph-based segmentation algorithm by evaluating it through various protein
structures and benchmarking the method with 487 entries in DynDom dataset. In the
second part of the chapter, I present the results of how I improve the DNA-binding
sites in proteins prediction with my new information theoretic feature.

Chapter [6] offers elaborative discussion of the two methods I mentioned above. I
analyze the choice of parameters and their contribution to the overall algorithms.

e Finally, in Chapter|[7] I summarize the thesis and present my outlook for future work.



2. Biological Backgrounds

This chapter contains the biological foundations of molecular processes which are necessary
to fully grasp the motivation of this thesis. I begin by introducing terms related to proteins,
how these are synthesized in the gene expression and the classification of protein domain
motions. After that, I present several sequence-based features for the DNA-binding sites in
proteins prediction. At the end of this chapter, I present bioinformatics tools to obtain the
data.

2.1. Proteins

Proteins are macromolecules made up of hundreds or thousands of smaller subunits called
amino acids connected to one another in long chains. In general, amino acids are organic
compounds consisting of functional groups amine (—NH,) and carboxyl (—COOH) along
with a side chain (R group) specific for each amino acid (Figure 2.1). Sequence of amino
acids are connected to each other via peptide bonds, as illustrated in Figure [2.2]

Even though there are hundreds of different amino acids founded in nature, only twenty
appear in proteins. These kinds of amino acids could be classified according to the structure
and general chemical characteristics of their R groups such as polarity, electrical charge,
aromaticity, and acidity.

Proteins are synthesised in cells through transcription and translation phases [40]. Dur-
ing transcription, a gene - a section of DNA in genome encoding a protein is converted
into a template molecule named mRNA (messenger RNA) which is single stranded by RNA

R Group (Side Chain)

! F .
N Y
N—C—C
/ ‘ N\
H | OH

dnoin [Axoqre)

dnoin ourwry

Figure 2.1.: Chemical structure of an amino acid with R group
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Figure 2.2.: Peptide bond between two amino acids

polymerases. Afterward, the translation phase or the reading of those mRNAs to produce
proteins takes place in a ribosome which is a complex of proteins and RNAs. The order
of amino acids added to a growing protein when it is synthesized depends on each mRNA
comprised of a sequence of nucleotide A, U, C and G. In specific, a three-nucleotide se-
quence or a codon along the mRNA is translated to a specific amino acid through a condon
amino acid mapping [41]]. In addition, there are two extra start and stop codons to navigate
the translation process.

2.2. Conformational Change in Proteins

Even though many static structures of proteins are determined, their biological functions
are ultimately driven by their own motions [[11]. To thoroughly study structural changes,
it is rational to consider such conformational transitions as the combination of hinge and
shear motions of rigid domains in proteins. Hinge motions, which are often occurred in
large structural transformation, include the hinge regions functioning as the linker of sev-
eral rotational protein domains. Those hinge regions consists of many residues which are
involved in significantly structural changes, while other residues in rotating domains remain
largely unchanged [22]. Shear motions, on the other hand, comprise of sliding movement of
protein domains to each other. This sort of motion results in small conformational changes
[22].

2.3. Features Extraction for DNA-binding Sites in Proteins
Prediction

There are several features which could be extracted from sequences. In this thesis, I present
three sequence-based features I utilized for the prediction of DNA-binding sites in proteins.
Those features encode the evolutionary information, the secondary structure and character-
istic properties of amino acids.
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2.3.1. Position-specific Scoring Matrix

Position-specific scoring matrix is a method to encode the evolutionary informa-
tion of amino acid sequences [36l]. For each protein sequence, its corresponding
[sequence alignment (MSA)|is constructed by protein sequence searching tools such as HH-
blits [42] or PSI-BLAST [43]]. A profile of a[MSA|associated with a protein length
N is a N x 20 matrix whose values are integer numbers. A positive score suggests a certain
amino acid occurs more often by chance than the average. In contrast, a negative score
indicates the corresponding amino acid unlikely occurs at that position.

The PSSM-based feature then encodes a statistic indicating the likelihood of certain
amino acids occurred at a certain position. For each amino acid in the protein sequence, its
PSSM-based feature is a 20D vector encoding the frequencies of twenty amino acids of this
site.

2.3.2. Secondary Structure

Wu et al. [27] integrate the secondary structure (SS) information into the feature set for
DNA-binding sites in proteins prediction. The secondary structure information could be
extracted either from PDB files or predicted from a secondary structure prediction program
such as PREDATOR [44]. For each amino acid in a protein sequence, its SS is classified into
three categories involving an alpha-helix, a beta-strand and others which could be encoded
through 3D vectors (0,0, 1), (0,1,0) and (1,0,0) respectively.

2.3.3. Orthogonal Binary Vector

The interfaces in DNA-protein complexes are mainly dominated by hydrogen bonds whose
affinities strongly depend on the dipoles including such bonds and the structural comple-
mentation between amino acids and DNA helix grooves [45]]. For the protein-protein inter-
actions, Shen et al. [46] grouped twenty kinds of amino acids into seven groups according
to their dipoles and volumes of the side chains using density-functional theory and molecu-
lar modeling approach. Wu et al. [27] later reduced this classification to six groups which
was more suitable for the DNA-binding sites in proteins prediction. These classes are:

e Class 1: Ala, Gly, Val;

e (Class 2: Ile, Leu, Phe, Pro;

e Class 3: Tyr, Met, Thr, Ser, Cys;
e Class 4: His, Asn, Gln, Tpr;

e (lass 5: Arg, Lys;

Class 6: Asp, Glu.
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These amino acid groups are encoded as 6D [orthogonal binary vectors (OBV)l Each
vector associated to each class comprises of six binary values such as (0,0,0,0,0,1),
(0,0,0,0,1,0), ---, (1,0,0,0,0,0) respectively.

It is important to note that the encoding method for either[SS|and results in binary
vectors which are orthogonal to each other. This orthogonality would prevent negative

affects of non-orthogonal features [47]] which are the distortion of the metric structure in
original data space [48] and the redundant information [49].

2.4. Biological Information Sources

2.4.1. HH-suite

I ran the stand-alone HHblits, a program in HH-suite [50] (version v2) to create
as well as of proteins for the training and evaluating phases. The
protein database I used to create [MSAk is uniprot20_2016_02 which is available at
http://wwwuser.gwdg.de/ compbiol/data/hhsuite/databases/hhsuite_dbs/old-releases.

2.4.2. Protein Data Bank

The [Protein Data Bank (PDB)|is a leading database for the structural biology research con-
taining all 3D structures as well as functional notations of proteins, nucleic acids, complexes
among proteins and nucleic acids, and other biological molecules which are determined
through experiments. The database is organized and maintained at the Research Col-
laboratory for Structural Bioinformatics (RCSB) and freely available at rcsb.org. In this
database, proteins are indexed via PDB entries which are 4D strings, in each comprising of
either Roman alphabet (A to Z) or Arabic digits (0 to 9) such as "lake" (Adenylate kinase).

All structural information regarding to a protein and its complexes could be retrieved at
the database. One could find a comprehensive format of PDB file via Protein Data
Bank Contents Guide [51]. To summarize, a standard PDB file of a protein entry contains
(i) name of authors, (ii) literature references, (iii) details of experiments to determine protein
structures, (iv) atomic coordinates of the complex, (v) primary and secondary structure such
as a-helix and 3-sheet, (vi) binding and active sites, inter alia. One could either manually
parse the PDB files or use publicly available packages such as BioJava [52] or BioPython
[53]] to access this information.

2.4.3. Non-redundant DynDom Database

The non-redundant database of protein domain movements [54], available at dyn-
dom.cmp.uea.ac.uk/dyndom/, is a collection of protein motions grouped into families


http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/old-releases/
https://www.rcsb.org/
http://dyndom.cmp.uea.ac.uk/dyndom/dyndomDatabases.jsp#NRD
http://dyndom.cmp.uea.ac.uk/dyndom/dyndomDatabases.jsp#NRD
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to remove the redundancy. From this database web-service, users could search and browse
protein families where they could access notations of protein domains in different confor-
mational states.

2.4.4. TM-Score

The template modeling score (TM-score), developed by Zhang and Skolnick 53], is a means
to assess the similarity of two protein structures. In [56], Zhang et al. state that this score
is superior to the traditional metrics such as [root-mean-square deviation (RMSD)| [16] in
two folds : (i) it achieves more sensitivity to the global fold similarity than to the local
structural variations by readjusting weights of small and large distance errors, (ii) it nor-
malizes the distance errors and enables to work with any structure pair by introducing a
length-dependent scale.

Users could run TM-score via standalone software or web-service at zhanglab.ccmb.med.umich.edu/TM-
score.


https://zhanglab.ccmb.med.umich.edu/TM-score/
https://zhanglab.ccmb.med.umich.edu/TM-score/




3. Mathematical Backgrounds

This chapter recapitulates some important mathematical and informatics concepts used in
this thesis. First, I present the information theory and information theoretic-related diver-
gences. Further, I describe some of the machine learning methods such as RF and [CRF
which I applied to my research projects. Finally, I deliver all backgrounds related to the
algorithm developed to calculate rigid domains in proteins.

3.1. Information Theory

Information theory was firstly proposed by Shannon to investigate the limitation on signal
processing and how much redundancy can be removed to achieve the optimal compres-
sion in communication operations [57]]. This field is interdisciplinary among mathematics,
statistics, computer sciences and electrical engineering and has been successfully applied to
bioinformatics in various areas such as DNA-binding sites motif [38], structurally impor-
tant sites in proteins [59]], prediction of protein functional residues [60, (61], and symbolic
sequence analysis [62].

In this section, I recapitulate the fundamental concepts in information theory such as
entropy, conditional entropy and mutual information. More details can be found in [63]]

3.1.1. Shannon Entropy

Given a discrete random variable X and a set of its possible outcomes Dx, a Shannon Entropy
is notated as H(X) and defined as

H(X)=— Y p(x)-logp(x) (3.1.1)

xeDx

This Shannon entropy quantifies the mean of log p(x); or in another words it is the small-
est number of bits needed to eliminate the uncertainty of the associated distribution. This
Shannon entropy is generalized to continuous random variables by replacing the sum nota-
tion with the integral over the set of value of its random variable.
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3.1.2. Conditional Entropy

The conditional entropy of a random variable X given another random variable Y is defined
as

HX|Y)=—=Y Y plxy) logp(xly) (3.1.2)

xeDx yeDy

The conditional entropy tells us how much entropy of a certain random variable is reduced
if we have known the other information from the other random variable. Thus, H(X]|Y)
equals zero if Y implies X and equals to H(X) if X and Y are independent.

3.1.3. Mutual Information

Mutual information between random variables X and Y measures the uncertainty which
could be reduced given the present of another source of information. Formally, it is defined
as

I(X;Y) = H(X) — H(X]Y)

_ H(Y)— H(Y[X) (3.1.3)

Mutual information between two random variables would be zero if they are independent.

3.1.4. Kullback-Leibler Divergence

The [Kullback—Leibler (KL)| divergence is a directed divergence between two probability
distributions. This divergence is asymmetric and could be interpreted as the amount of
information one loses when he or she uses one probability distribution to approximate the
other. Formally, given two probability distributions P and Q defined on the same probability
space X, the divergence from Q to P is defined as:

Dra(PIQ) =~ ¥ ol 1og 267 (3.14)

3.1.5. Jensen-Shannon Divergence

The derived from divergence with substantial changes, measures the similarity be-
tween two probability distributions. Unlike [KL|divergence, JSDJis symmetric and its square
root is a metric. Similar to divergence, the between two probability distributions
over probability space X is defined as:

1

JSD(P||Q) = E'(DKL(PHM)—FDKL(QHM)) (3.1.5)
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where M = %. The result of Equation is a non-negative real number bounded by
+1, occurred when the two distributions are completely different, e.g. P and Q are different
constant random variables.

3.2. Machine Learning Techniques

Machine learning is a study of statistical models which can learn a specific task based on
patterns and inferences. Machine learning techniques mainly consist of supervised and un-
supervised approaches. In the supervised statistical learning, the parameters of the models
are adjusted according to the sample labels in the training set. On the other hand, the training
set in unsupervised learning has no label. In the scope of this study, I present two methods
in supervised learning methods which are Random Forest (RF) and Conditional Random

Field (CRT).

3.2.1. Random Forest

Random Forest is a statistical learning method invented by Breiman which consists of many
substantial modified classification trees [64]]. In this subsection, I firstly review the concept
of tree-based learning methods such as Classification and Regression Tree. Finally, I present
the Random Forest machine learning algorithm.

Classification and Regression Tree

[Classification and Regression Tree (CART)|is a tree-based learning method where a deci-
sion tree is built up according to its training data set. In bioinformatics research, CART
has been successfully applied to detect emerging patterns for cancer diagnosis [65]] and to
improve the analysis of high-throughput genomic data [66]]. For the overview of the appli-
cation of CART in Bioinformatics, readers may have a look at [67, [68]]. The notations and
description of the CART algorithm in this thesis are taken from [69].
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Algorithm 3.1 Pseudo code of CART algorithm.

1: Convention: A pair (p,v): p € Nis an index of a feature dimension and v € R is a value of a
certain sample at this dimension.

2: Input: Sample set S = {X,y}, where X € R¥*P and y € {1,2, ..J}M, M is a number of training
samples, P is the number of features and J is the number of labels.

: // Each row of a matrix X is a training sample along with its binary label in y.

: while not stopping criteria do

/l The stopping criteria will be explained later.

Choose a pair (p,v) such that we achieve the "greatest separate”

// The term "greatest separate" will be explained later.

Split the node according to the threshold value v at the p" feature dimension.

PN AR

9: Apply the procedure to the new left and right nodes.
10: end while
11: Qutput: A classified tree

The stopping criteria indicates the algorithm to stop either if the tree is homogeneous
(all data points have an identical label) or the number of data points is below a certain
threshold.

The key idea of splitting is to obtain the greatest separation, or in another words, to
create child nodes which are the purest. Let us denote i(r) be the impurity function of a
node ¢ in the tree. The main target is to search the split point where the decrease of the
impurity Ai(z) = i(t) — E[i(fchias)] is maximal (¢.;145 consists of the right and left node of
t). That means

p*v = argmax (Ai(r)) (3.2.1)
p=L1..P, veN
where p is the index of a feature dimension and v is the splitting value on that dimension.

For the discrete value of the label y, the impurity of a node could be calculated through
many methods such as entropy, Gini and Twoing [[70]]. I will present the Gini impurity as
an example of how to calculate the impurity.

The Gini impurity, used by the CART algorithm, quantifies the likelihood of incorrectly
labelling a random element in a set based on the class distribution of that set. Mathemati-

cally, the Gini impurity is computed by GI(p) = ¥/, p(i) Yipr(j) = YL, p(i)(1— p(i))
where J is the number of classes in a dataset.

Random Forests Algorithm

The description and notations of [RF| classifiers are taken from the original source [64].
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Algorithm 3.2 Pseudo code of Random Forest classifiers.

1: Input: S = {XV,y() : i =1..M} is a training set containing M samples. X\ € R is an i-th
training instance with P dimensional feature. y() is a label of X (9, typically belong to a
binary set {0,1}.

2: forb=1toB do

3: // B: number of tree in the forest.
4: Randomly draw with replacement N bootstrap samples from S (typically N ~ 2/3M).
5: Recursively construct a tree 7(?) from those bootstrap N samples by the following
procedure:
° Randomly selecting m out of P feature variables,
° Searching the best splitting point (as mentioned in CART algorithm) among those
m features,
° Splitting the node into left and right nodes.
6: end for

7: Outpur: Return {T®)}7)_ .

Given new instances for the class prediction, their predicted labels are the majority vote
of B trees which are the outcome of the [RH classifier.

3.2.2. Conditional Random Field

Suppose we have a site graph G = (V, &) with N vertices V = {1,2,..,N} labeled by an
element from a finite set B (typically B = {0,1}). Let O be a finite set including values
from the observation. & is a set of edges in G. The neighborhood set of a vertex i € V
denoted as N; consists of vertices which link to vertex i. For any subset I C V), y, is a label
sequence of the set / while y without subscript is the sequences of labels for a whole graph.
In addition, for any e € £, y, is a pair of labels of two vertices of e.

A pair (X,Y) consists of observations X € OV and sequence labels Y € BY realizes an
exponential model if the conditional probability p(y|x) of all pairs (x,y) is

p(yIX) = ~ (1X) exp <Z )y (\p(s) (yI,X))> (3.2.2)

s=1I[=s

where Z(X) is the normalization factor and };—, is a sum of cliques I with size of s in
the graph G and ¢ represents the number of nodes of the largest clique. ¥(*) (y1,X) denotes
the feature function of a graph defined on the clique size s. This feature-based exponen-
tial model indeed coincides with the class of [CRF| where every vertex i is conditionally
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independent to other vertices outside N; given the neighborhood set N;.

A pairwise[CRH|is a simplification version of [CRF where one only considers clique size
of one (vertices) and two (edges), i.e. s = 2. Thus, the conditional probability in Equation

(3.2.2) becomes:

1
PO = 75 &P (Z‘P“)(yi,X) + )y v (yilvyin)) (32.3)

S% (il,iz)eg

More precisely, the feature functions defined on vertices and edges could be decomposed as
the linear combination of other functions. Thus, the Equation (3.2.3)) could be rewritten as:

K L
p(yIX) = Z(lx) exp (Z Y wfivi,X)+ Y Zﬁlgl(Yiv)’j,X)> (3.2.4)

i€Vi=1 (i,j)e€ =1

= Z(lx)eXp (Z o fyi,X)+ Y BTg(yi,yj,X)> (3.2.5)

i€V (i.j)e€

where f and g are the vector of feature functions applied on vertices and edges in the graph
respectively. o and B are real-valued parameter vectors and o’ &f3 T are their transpose
vectors.

Inference

Suppose that the vector of parameters (¢, 3) is given, the estimation of labels y for the
whole graph is obtained by solving a following optimization problem

y" = argmax p(y|X) (3.2.6)
yeBN
= argmax (Z ol fyi, X)+ ) BTg<yi,yj,X>> 3.2.7)
yeBY  \iev (i.j)€€

where the term Z(X) can be ignored because it is not a function of y.

If G is a tree-like graph, this inference problem could be solved exactly through a Viterbi
algorithm for tree-like structures [71] or an argmax-version of Felsenstein’s tree-pruning
algorithm [72].

In general, solving the Equation (3.2.7) for an arbitrary graph is infeasible. However,
there are a few approximation methods to resolve such problem such as Loopy Belief Prop-
agation [73]] and the generalized Viterbi algorithm [[10] which I discuss in details in Section

B3l
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Learning

In the learning phrase, we are given a sample learning set { (Xa,y4) }5:1 , our goal is to find
model parameters (o*, %) such as

N
o, B = argmax [ | p(valXa, e, B) (3.2.8)
aB  d=1
N
=argmax Y [ Y &' f(yai X))+ Y, B g(vaiva . Xa) (3.2.9)
af  d=1 \iev (i,))e€

This problem could be solved by taking the derivatives of the likelihood with respective
to a and B. Unfortunately, these computations are intractable because they require an
exponentially large number of summations. To overcome this issue, one could utilize the
pseudo maximum likelihood approximation where one only takes the Markov blanket of
a vertex into account.This results in a convex problem and thus the maximal points could
be found via numerical methods such as gradient decent or online large margin techniques
[74].

3.3. The Generalized Viterbi Algorithm

Let us denote G = (V, £) be a neighborhood graph with a binary labeled vertex set V = {v; :
i=1,2,...,N} and an edge set £. For any assignment/label y € {0, 1}" and a subset V' C V,
we denote y,y be the sub-assignment of y on the subset V. According to the pairwise CRF,
the logarithm of quality function (logquality) defined on G is defined as

Foy, &)=Y ¥V (vy)+ ¥ ¥ (viy,,,) (3.3.1)
vey (V17L’2)€<€

where (1) and W are feature functions defined on vertices and edges respectively.

The generalized Viterbi algorithm is an heuristic approach to determine the most proba-
ble label y;; given a well defined quality function

yg = argmax F(yy|V, &) (3.3.2)
)’QE{O,I}N

The condition of F on set of vertices and edges could be skipped when it is
clear which vertices and edges are involved. Thus, the Equation (3.3.2) becomes
Vg = argmaxy, o, 1}y F(yy). The full description of the generalized Viterbi algorithm
is described in [10]. In this section I present a pseudo code as well as a small example and
explain how this algorithm works step by step.
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3.3.1. Pseudo Algorithm

I denote H, By, T3, N be the history set, boundary set of the history set, interior set of the
history set, and neighborhood set of the boundary set respectively. The history set contains
all vertices that the algorithm has processed. The boundary set is a subset of the history set
containing vertices having neighbors not contain in the history set. The interior set is the
complement of the boundary set in the history set, i.e. Zy; = H \ By. The neighborhood
set consists of vertices which are neighbors of the boundary set but do not belong to the
history set. To avoid the notation cumbersome, I neglect the subscript of the history set
when it is clear in the context. Additionally, I use a table T to store all maximal values of
the logquality function defined on the history set according to the interior set. Follows are
a pseudo code and an example of the generalized Viterbi algorithm.

Pseudo Code

Algorithm 3.3 Pseudo code of the generalized Viterbi algorithm.

1: H < {} // the history set is initialized as an empty set.
2: Thus, By < {}, I3 < {} and N + V.

3: while H #V do

4:
v = argmin ||[Nyuy || (3.3.3)
veNR
where || - || is the cardinality of a set
5: H+—HUV
6: B3,Z4 < updated according to H
7: N3 < updated according to By
8: For every labels of the boundary set £ € 25%, we calculate:
T(yp,, =) = maxF(yy|yg,, =)
YIy
9: end while

Using dynamic programming, the required computational units to calculate the table T
at 7-th iteration requires only twice the size of T in previous iteration. Yet one would need
2/Bl entries to store the results of all possible labels. Thus, the algorithm becomes infeasible
when the boundary set is large. To prevent such exponential growth, the authors just keep a
certain number of entries, for example 10000, whose values are maximal [[10].
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An Example

Suppose we are given a graph with six vertices and nine edges, as shown in the Figure [3.1]

AN
NANAN

Figure 3.1.: An undirected graph.

The values of the feature functions defined on vertices (‘P(l)) and on edges (‘P<2)) are
described in the Table[3.1] and [3.2] respectively.

Label

Vertex 011
a -1 1
b 0
c 1| -1
d -1
e -1
f 1| -1

Table 3.1.: Values of feature function ¥(!) defined on vertices.
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Label

Edge 00 | 01 |10 11
a-b -1 1 1]1-11]0
a-c 0 1 -1 ] -1
b-c 1)1 -1 1
b-d -1|-1]101]0
b-e 0 1 0 1
c-e -1 -1 -1 1
c-f 1 0 1 0
d-e 0O|-1]0 1
e-f 0 |-11]1 0

Table 3.2.: Values of feature function W) defined on edges.

At the initial step, the history set ‘H, boundary set BB and interior set I are set to be
empty.
H + {}, B+ {}. Thus the neighborhood set N + {a,b,c,d,e, f}.

Firstly, the algorithm chooses a vertex with a minimal neighborhood, saying vertex a.
Thus, the history and boundary set are updated as: ‘H < {a}, B < {a}. Consequently, the
neighborhood set of the boundary set becomes N + {b,c}

The values of the logquality function F' defined on the boundary set are:

Hay | o] 1

F({a}) -1 +1

Table 3.3.: Values of the logquality function defined on the boundary set B = {a}.

Afterward, we choose a vertex in set N to add to the history set, saying the vertex b.
Thus, we have H < {a,b}, B < {a,b}, and N < {c,d,e}. The table T becomes:

Yav} | 00 | 01 | 10 | 11
Fab)) |20 0 [+

Table 3.4.: Values of the logquality function defined on the boundary set B = {a,b}.

In the next step, the algorithm chooses a vertex ¢ due to the minimal boundary set re-
quirement. Thus, we have H < {a,b,c}, B < {b,c}, and N < {d,e, f}. The table T
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becomes:

Y{b,c}

00

11

max, F({a,b,c})

—la=)

Ota=)

+1 (a=0)

Table 3.5.: Values of the logquality function defined on the boundary set B = {b,c}.

where "a = -" means vertex a could be assigned to any label.

Then, for instance, we choose the vertex d. Thus we have H <+ {a,b,c,d}, B <+ {b,c,d}
and N < {e, f}. The table T becomes:

y{h,c,d} 000

001

101

110

111

max, F({a,b,c,d}) | =3

~la=n)

3= | ~la=)

~la=)

+1(a:.)

O(a=0)

+2(a=0)

Table 3.6.: Values of the logquality function defined on the boundary set B = {b,c,d}.

It is important to note that we do not need to go through all combination labels of
{a,b,c,d} to calculate max, F ({a,b,c,d}), but instead

max F ({a,b,c,d}) = max F(a,b,c) + ¥V (d) +¥? (b,d)

where we could reuse the value of max, F(a,b,c) in the previous iteration.

In the next iteration, the algorithm adds the vertex e into the history set H according
to the condition in Equation (3.3.3). Thus, we have H < {a,b,c,d,e}, B < {c,e}, and

N « {f}. The table T becomes:

Y{c.e}

00

01

10

11

max,pq F({a,b,c,d,e}) | —2(—0p—14-1)

+2(4=0p=1.d=1)

0(a=0.=1.4=1)

0(a=0.=1.d=1)

Table 3.7.: Values of the logquality function defined on the boundary set B = {c,e}.

Similarly, we calculate values of table T as:

max F({a,b,c.d.e}) = maxF ({a,b,c.d}) + ¥ () + ¥ (b, ) + ¥ (c.e) + ¥ (d. )

where we could reuse the value of max, F ({a,b,c,d}) in the previous iteration.
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Finally, the algorithm adds the vertex f to H. Consequently, we have H <
{a,b,c,d,e,f}, B+« {f}, and N < {}. The table T becomes

Y{r} 0 1

maxa,b,c,d,eF({aabacudveaf}) 9a:0,b:1,c:l,d:l,e:l 5a:0,b:1,c:1,d:1,e:l

Table 3.8.: Values of the logquality function defined on the boundary set B = {f}.

Thus, the maximum value of F(V)is9whena=0,b=1,c=1,d=1,e=1,f=0

3.4. Constant Potts Model in Louvain Algorithm

The Louvain algorithm is a method used to detect communities from the large network
[75)]. The description and insights of Louvain algorithm is out of the scope of this study,
nonetheless one can be found at [39, [75]]. In this section, I will present one of the very well-
known frameworks used in Louvain algorithm and discuss its parameters. The following
notations and models are taken from [39]].

Notation

Let us denote a connected graph as G = (V, ) with |V| = N vertices and || = K edges. A
corresponding adjacency matrix A of graph G is a square matrix where A;; = 1 if there is
an edge connecting vertex i and j, or 0 otherwise. An element w;; of a weight matrix W of
the graph G encodes the (i,j) edge’s weight. Finally, the community or label of a vertex i is
denoted as o;. Similarly, og denotes the label for every vertex in G. In order to keep the
formula short, the notation i could either stand for the vertex or its vertex’s index.

The general assumption is that the connections within communities should be more fre-
quent than those between communities. Thus, we would reward connections within com-
munities and penalize missing links within communities [[76]. Consequently, we define an
identity according to that idea

H(Gg):— Z (aiinj_bij(l_Aij))]l(Gi:Gj) (341)
iJi<j
where ;s and b;;s are non-negative parameters. Additionally, 1(o; = o) is an indicator

function whose value is +1 if 0; = o or 0 otherwise.

The desirable partition of G corresponds to the minimal value of H. Mathematically, it
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is defined as
o; = argminH(og) (3.4.2)
og
The choice of the parameters a;;s and b;;s depends on what type of communities we would
wish to detect. In the scope of this thesis, I only discuss the choice of [Constant Potts Modell

Constant Potts Model

In [39]], they define a;; = w;; — b;; and b;; = . Thus, the Equation becomes:

H(og) =— Y, (wij—bij)Aij—y(1—A;j))1(0; = o))

ij,i<j

=— Y, (wijAi;—7)1(c; = 5)) (3.4.3)
1],1<j

=~ ) (wjAyl(ci=0;) —vl(ci = 0)))
ij,i<j

Suppose that we are given a partition C of G. Instead of summing over vertices i and j in
the whole network, we could rewrite the equation [3.4.3] as the sum over its partition (note
that L1(c=¢')=0if ¢ # ¢):

H(og)=—Y, Y. (wjAil(ci=0;)—vl(0;=0)))

ceC i<jec

==Y ( ), wijAil(o;=0;)~ ) Yl(o;= GJ))

ceC \i<jec i,jec

(3.4.4)
=— Z ( Z wijA;jl(o;=c)l(oj=c)— Z Y]I(Gi:c)]l(cj:c)>

ceC \i<jec i<jec

== (ec—c)
ceC
where e. = Y; jc.wijAij1(0; = c)1(0; = c) is the weighted sum of all edges in a commu-
nity ¢ and n. = 1(0; = ¢) = 1(0; = ¢) is the number of vertices in c. By minimizing #,
the algorithm tries to search for a community with dense internal connections while at the
meantime relative small size [39]. The parameter y balances these two key factors.

Suppose that {r,s} is a partition of ¢ and e, is the weighted sum of edges connecting
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r and s. From Equation [3.4.4] we have the value for a single community c as

H(oe) = —(ec—m7)
((er+es+ere>s) Y(n,+ny)?)
—(ey —yn* +es — yn? + e, — 2yn,ny)
H(O'r) +H(0y) +2yn,n5 — eress

(3.4.5)

It is important to note that if 2yn,ng — e, > 0 or y > 2‘;,;?;', , we have H(o.) > H(o,) +
H(oy). Thus, the community ¢ should be split into r and s. The quantity 5 e"*‘ is indeed
the density links between communities r and s. From that point of view, we could consider
the constant ¥ as a threshold to split a big community into two smaller ones. In short, if
Y = min; ;A;;w;;, the whole network will be never split, and thus the optimal solution is
one big network. On the other hand, if ¥ = max; ;A;;w;;, the algorithm tends to split every
community until all communities have only one vertex. Thus, it is reasonable to choose y

between min; ;A;jw;; and max; ;A;jw;;.

3.5. Outliers Detection

Given a sequence of N real numbers D = [x;,x2, ..,xy], the robust variant of Z score [[77] of

each element is defined as: _ MED
=0. 67457 3.5.1
MAD ( )

where MED is the sample median and MAD the sample median absolute deviation of D
whose formula is MAD = median(|x — MED|),x € D. The constant 0.6745 is the 3 /4 quan-
tile of the standard normal distribution arisen for consistency.

Iglewicz and Hoaglin [[T7)] suggested +3.5 as a cut-off value, yet this is indeed the matter
of choice. In this study, I use this default suggested threshold. Hence, I say an element x;
is an outlier according to D if and only if its absolute value of Z score defined in Equation
3.5.1]is greater than 3.5.



4. Probabilistic Models to Detect Important
Sites in Proteins

In this chapter, I present my methods to identify important sites in proteins in different
levels. In Section[d.1] I present my graph-based method to calculate rigid domains in pro-
teins which is helpful for the study of protein transformations in a large-scale. Afterward,
I describe the sequence-based feature extraction which is able to improve the prediction of
DNA-binding sites in proteins (Section d.2)).

4.1. ldentification of Rigid Domains in Proteins using a
Graph-based Model

As mentioned in the Introduction section, many methods identifying rigid domains in pro-
teins suffer from tuning parameters such as the number of rigid domains in proteins. Here I
propose a new method which does not require the number of rigid domains as the parame-
ter. The key idea is that I devise an algorithm binarily determining if a pair of amino acids
belong to identical or to different rigid domains. The content of this section is organized as
the follows. First, I present[protein graph|construction methods which encode the variability
of multiple conformations of a protein. Second, I reduce the complexity of a protein graph
by grouping vertices which are densely connected. Then, I describe a transfor-
mation method used for the prediction of edges’ labels. Afterward, I explain how to use the
outliers detection mentioned in Section to define the feature functions for vertices and
edges in the framework of conditional random fields. Final, I provide an pseudo code for
the method as well as the post-processing step which is necessary to avoid the advents of
very small fragments.

The terminologies, contents, and structure of this section follow our published paper
[13] (see Appendix [A.T).

4.1.1. Protein Graph Constructions

Given a protein length N with M conformations, I encode each conformational state of
the protein by a N x 3 matrix X € RV>*3, Each row in matrix X is a 3D coordinate of a

representative atom (typically Coc atom). By convention, X,§’“) is a position of the n-th atom
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in the m-th conformation. For each conformational state X "), I calculate a symmetric N x N
distance matrix D"):

(m) _ 1y (m) (m) P
Dy =IX" =Xl (i,j=12,...,N), (4.1.1)
where || - || is the Euclidean norm.
I encode a protein fluctuation across M conformational states through a

PG = (PV,PE) whose vertices PV are representative atoms of amino acids and edges PE
contain the relationship information among vertices. There are several reasonable options
to construct edges in the protein graph. Hereby, I discuss two possibilities in the following
subsections.

Disjunction-based Graph Construction

In this type of construction, I create an edge in the[protein graph|if and only if its two vertices
form an edge in at least one conformation. By this definition, I have PE = {(v;,v;) : v;,v; €

PV s.t ming—12 .M Dg?) < & }, where 0 is an edge cutoff threshold in A. An edge’s weight

is the number of conformations where its distance is less than 8. Formally, the weight of an
edge between vertices v; and v; constructed through this method is defined as:

M
wij = Zln((D§Z?> <§) (4.1.2)

where 1 (x) is an indicator whose value is one if x is true or zero otherwise.

Conjunction-based Graph Construction

In the conjunction-based approach, I construct an edge from two vertices in the
igraph|if and only if those two vertices form an edge in every conformation. Thus, I have

PE = {(vi,vj) 1 vi,vj € PV sit maxmzl,szDEj?) < 6 }. Their weights are calculated
through reciprocally exponential variance over all conformations such that their values ap-
proach one if their corresponding edges’ variability are low. On the other hand, the high-
variance edges have small weights. The mathematical definition of a weight between v; and

v; is the following:

Wij= exp(— ) (4.1.3)

(m)
l7.]

where 5,; ; 1s the empirical average over D

In Discussion section [6.1.1] I assessed the choices of these protein graph constructions
in term of error of inconsistency and found that the conjunction-based graph construction is
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superior to the other. Thus, I only consider the later construction into the overall algorithm.

Rigidity Definition
I quantify the rigidity between two structures via developed by [16]]. To support

multiple input protein structures, I define the average RMSD] over all pairs of structures.
Thus, for any subset S C PV we have

A :
RMSD(S):mZ Z RMSDS( >,X(m>) (4.1.4)

where RMSDgs <X (m) x (”")) is the minimal root mean square between m-th and m'-th con-

formation reduced to atoms in S.

4.1.2. Coarse Graining of the Protein Graph

Due to the thickly connected subsets of nodes in the protein graph, I reduce the size of the
through Louvain algorithm [39], [75| [78]] which partitions the set of vertices
into I determine the resolution parameter of Louvain algorithm such that
the are (i) small enough to consist of, with a few exceptions, amino acids
belonging to the same rigid domain, and (if) big enough to make the calculation of the
generalized Viterbi algorithm possible.

Suppose C be a partition of the I denote its [reduced graph| the [coarse-|

grained graph| as CG = (CV,CE). Two communities (or vertices) in the reduced graph
c1,¢2 € C are linked by an indirected edge (c1,c2) € CE if and only if there exists a pair

of amino acids a; € ¢; & a; € ¢; such that (aj,a;) is an edge in the protein graph.

I calculate the fluctuation between two communities cy,cy according to the distance
matrix D by the means of defined as

1

M 2
Ep(cr,e) = W Z Z Z ( a az—* Z Da] az) 4.1.5)

ajecraxecr m=1

This quantifies the variability between two communities/clusters in the pro-
tein graph. Hence, its value tends to approach zero when these two communities are rigid
to each other which implies they are in the identical rigid domain. Otherwise the value of
mean variance will become large. When the distance matrix D is clear in the context, I
would skip it to keep the notation simple.

Additionally, I also use RMSD(CG) to denote the RMSD| of the corresponding protein
graph of CG.
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4.1.3. Line Graph Transformation

Alline graph|of an indirected graph is a transformation such that edges in the original graph
become vertices in the corresponding line graph [79]]. Two vertices in the line graph are
linked by an edge if two corresponding edges in the original graph are incident (share a

[common vertex). The other two vertices of these two incident edges are called
[vertices/nodes.

In this study, let us denote a line graph of the coarse-grained graph as £LG = (LV, LE)
where a set of vertices £) coincides with the edges set in the coarse-grained graph, i.e.
LY = CE. An edge links two vertices vi,vy € LV, (v],v2) € LE if they share am
and their two ended vertices| are not linked in the coarse-grained graph.

Moreover, the of a vertex in the line graph v € LV, denoted as & (v), is

calculated by applying the Equation (4.1.5)) to its corresponding two vertices in the reduced
graph. Similarly, the mean variance of an edge in the line graph &(e),e € LE is this mean
variance calculation applying to its corresponding two ended vertices in the coarse-grained
graph.

4.1.4. Applying the Outlier Detection

From a line graph derived from a coarse-grained graph, I observed that the bigger the mean
variance of a vertex in the line graph is, the more likely its two corresponding vertices in
the coarse-grained graph belong to different domains. Likewise, the two ended vertices| of
an edge in the line graph tended to belong to two domains if the mean variance of this edge
is high. However, it was not trivial to obtain that mapping which is independently valid
regardless to proteins.

Let us denote a vertex in the line graph be an if its two corresponding ver-
tices in the coarse-grained graph belong to different domains, or be an other-
wise. Similarly, an edge in the line graph was denoted as an [inter edgeffintra edge]if its two
corresponding ended nodes belong to the different or identical domains, respectively.

I noted that the mean variance of inter and intra vertices/edges follow two different
but overlapped distributions which could be estimated through expectation maximization
procedure. Nonetheless, I obtained an unsatisfactory result due to the inadequate number of
inter vertices/edges. Thus, I assumed that the mean variance of intra vertices/edges followed
a distribution and the values of inter vertices/edges were outliers.

I applied the outliers detection|mentioned in the Section[3.5|with the default cutoff value
3.5. Suppose there is a line graph G = (1, £) with N vertices } and M edges £. Without loss
of generality, I denote Ayerrex = [E(v1),E(12), .., (V)] be an ascending array consisting of
mean variance of vertices in the line graph G. Similarly, A.ge. = [§(e1),E(€2),.., & (em)] is
an ascending array of mean variance of edges in G. I introduce an outlier indicator y (though
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I used the same notation, this 7y is not the parameter mentioned in Section [3.4) which
is

—1 ifvisoutlier in A, cyrex;

’}/(V|Avertex) =W = {

+1 otherwise.
and

—1 if eis outlier in Agge;

Y(6|Aedge) =% = {

+1 otherwise.

When the arrays of mean variance of vertices and edges were unambiguous in the context,
I omitted these arrays and put the notations of vertex or edge into subscript. In this study,
the outliers are always the ones whose mean variance are larger than values of non-outliers.
It is also possible to relax the outlier indicator by expanding the outliers set toward the
non-outliers whose values are biggest.

4.1.5. Applying the Generalized Viterbi Algorithm to the Labels Inference

The difficulty of initializing parameters such as the number of rigid domains is one of the
main shortcomings of several existing methods [14} 18} [19]]. I solve this issue by proposing
another method where I represent a protein with different conformational structures as a
where I can reduce the graph size by clustering algorithms such as Louvain.
The fundamental idea is to use the generalized Viterbi algorithm to infer a binary labeling
indicating if a pair of in the reduced graph belong to the identical or different
domains. To have such binary labeling on the vertices in the reduced graph, I ran the Viterbi
algorithm on the line graph of the coarse-grained graph. As a result, I obtained a labeling

on vertices in the which is equivalent to the labels of edges in the
By convention, in the line graph, I label a vertex ” — 17 if it is an or
”+ 17 if it is an [intra vertex]

Let us consider a line graph derived from the coarse-grained graph as the site graph in

[CRE notations (Section[3.2.2)). The or unnormalized probability of the site
graph from Equation (3.2.4) could be rewritten as

py[V,E) ~exp (Z lIj(l)("?)’\/) + Z lP(z)("la"%)’vanz)) (4.1.6)
vey (V] ,Vz)Eg

My goal is to design the feature functions on vertices (‘P(l)) and on edges (‘P(Z)) such that a
labeling which yields the highest score is also the labeling of the true rigid domains.

I define a on a vertex v along with its label y, in such a manner that its
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label would agree with its rigidity signal

lP(l)("va) =Ny 4.1.7)

This feature function would reward the overall when a vertex label agrees
with its outlier indicator’s value, or penalizes otherwise. That means it is preferable to assign
—1 to a vertex v if its mean variance was significantly larger than others, or 41 otherwise.

For every edge e = (vi,v2) € &, I defined a [feature function| on edges along with its
labels y, = (vy,,v,) as ¥ (e, y,) in three different cases:

Case One: "Two values among ¥.,%,, %, are —1" The agreements between the pre-
dicted labels of vertices and their outlier indicators would be rewarded, or penalized other-
wise:

+1 ify, %+, %, =2;
¥ (e,y,) = vt vy B2 4.1.8
(e:3) —1 otherwise. ( )

Case Two: "y, = %, = +1" This seems three corresponding vertices of v; and v, (a
[common vertex|andtwo ended vertices|in the coarse-grained graph) are a part of an identical

rigid domain. However, the might belong to the hinge part between two
rigid bodies which is likely to occur if y, = —1. If this was the case, one could decide of

which rigid body this is part via the comparison between & (v;) and & (v,).

Thus, the feature function on e becomes:

(+1 ify, =-1,y, =+ %=—land§, >&,;

+1 ify, =41y, =—-1%=—land §, <¢,,;

¥ (e,y.) =14 +1 ify, =y, =+landy = +1; (4.1.9)
0 ify,y,=—1L%=—land§, =¢&,;

—1 otherwise.

Case Three: "other combinations of y.,%, and ¥, " The feature function on edge e
becomes:
¥ (e,y,):=0 (4.1.10)

Overall, for any assigned labeling of vertices in the line graph, one could calculate its

via Equations (4.1.8] {.1.9] .1.10). Those values are later the inputs for

the generalized Viterbi algorithm to find the most probable labeling.
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4.1.6. Pseudo Code

Algorithm 4.1 Pseudo code of my graph-based method to calculate rigid domains in pro-
teins.
I: 6+ 3.5
2: PG = (PV,PE) « X" m=1..M // a protein graph PG is constructed from M structural
conformations.
3: CG = (CV,CE) + PG Il A coarse-grained graph CG calculated from PG through the Louvain
algorithm.

4: function: Segment(CG)
5: Final_List < [] // An empty list containing disconnected subgraphs

6: if RMSD (CG) > 6 then

7: LG = (LV,LE) + CG /I A line graph LG is constructed from the coarse-grained graph.
8: ¥rg < Viterbi(LG) // Using the generalized Viterbi algorithm to calculate the most
probable labels of the line graph LG
9: Ye: ecce < Vg !/ Tracing back labels of edges in the coarse-grained graph from the labels
of vertices in the line graph
10: [CG1,..,CGK] < Ye. ecce !/ Obtaining K disconnected subgraphs by removing negative
labels of edges in the coarse-grained graph CG
11: if K > 1 then
12: for all g € [CGy,..,CGk] do
13: if RMSD (g) > 6 then
14: Run Segment(g)
15: else
16: Final_List.add(g)
17: end if
18: end for
19: else
20: if CG| # CG then
21: Run Segment(CG )
22: else
23: Relaxing the outliers detection by enlarging the outliers set toward the top 5%
biggest values of the non-outliers set.
24: Run Segment(CG) with this new relaxation setting.
25: end if
26: end if
27: end if

28: return Final List
29: end function

The above algorithm is not guaranteed to converge, yet when applying to most of my ex-
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periments, the algorithm ended in a few iterations. In the implementation, I use a maximum
number of iteration parameter (typically 10) which determines when to break out the loop.
Overall, this algorithm gave us a list of sub-graphs which is a partition of the coarse-grained
graph.

4.1.7. Finalizing the rigid domain segmentation

After obtaining a list of sub-graphs of the coarse-grained graph, I then trace back to the as-
sociated protein graph. Consequently, I obtain a mutually exclusive partition of the protein
graph, denoted as S = {851, S,,..,S.}. The merging algorithm does the following:

Merging Algorithm
val o max RMSD (s))+rMSD(s;)
S,',SjES RMSD (S,‘USI')
while val > 1 do

(D, D'} ¢ argmax RMSD (D) +RMSD (D)
(p.Djes  RMSD(DuD)

D, « D,UD.

Remove D, from S

e ma RMSD (D) +rMSD (D)
! (DD'}es  RMSD(DuD)

4.2. Identification of DNA-Binding Sites in Proteins Using
Jensen-Shannon Divergence

In the following sections, I present the materials and methods I use to devise a new residue-
wise feature to predict DNA-binding sites in proteins. The contents and terminologies of
this section follow our publication [25] (see Appendix [A.2]).

4.2.1. Materials

In order to train and validate a new feature, I made a training set which consists of 263
protein-DNA complexes and associated MSAk. Those complexes were the selection from
DBP-374 data set published by Wu et al. [27] where I removed any protein whose[MSA]has
less than 125 rows. I then created the through HHblits with the UniProt20 database
(version from June 2015) [42].

Following the line from [27]], I classified a residue in a protein as DNA-binding site if the
Euclidean distance between any atom of this residue and any atom of DNA molecule in the
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DNA-protein complex was less than 3.5 or 5.0A; or non-binding site otherwise. From the
263 DNA-protein complexes with cutoff distance 3.5A, my set comprised 4298 binding sites
and 44805 non-binding sites. With the cutoff distance 5.0A, T obtained 7211 binding sites
and 41892 non-binding sites. I validated my methods through five-fold cross validation.

4.2.2. Methods

Jensen—Shannon divergence (JSD] explained in Section [3.1.5)) is a useful method to ex-
tract a new feature. Grosse et al. [80] used it to distinguish signals from two (or more)
sources. Capra and Singh [[61] carefully examined the effectiveness of several information
theory-based measures such as Shannon entropy, von Neumann entropy, relative entropy,
and sum-of-pair measures to evaluate the sequence conservation and figured out was
the superior candidate for that context. Giiltas et al. [S9] also utilized in context of
quantum information theory to find the coupled mutation in proteins.

Given a protein under study, let M be its[MSA| whose first row is the sequence of amino
acids of this protein. Every k-th column in a matrix M is encoded by a 20 x 20 matrix
C(M.;) whose rows and columns were indexed by 20 amino acids. For every ordered pair
of amino acids (a,d’), the value of matrix coefficient C (M), , is the number of ordered
pairs (i, j) such that My = a, Mjx = d’, and i # j. 7

A null background distribution, denoted as p,,;, encodes a distribution of pairs of amino
acids on the non-binding sites. The calculation of p,; was as follows. For every protein
and its associated multiple sequence alignment M in the training data set, I denoted a set
of non-binding site positions as N/B. For every position k € N'B, I computed its feature
matrix C(M.). Then, I calculated C,; which is the summation over all matrices C(M.),
where M ranged over all training and k ranged over associated non-binding sites set
NB. After that, each row of the matrix C,; were added up, resulting to a vector which was
later normalized to obtain p,,;.

Given a protein and its I denoted p; is an empirical distribution of pairs of amino
acids in k-th column of its The calculation of p, is in similar manner as the calculation
of p,; without the summation all over a protein set and only at a specific k-th column.

From the training data set, I observed that there was a significant difference between
JSD(pygy;Pna) @and JSD(pynpy,Pyq) Where {B} and {NB} were sets of indices of binding
sites and non-binding sites in a protein, respectively. Thus, the main idea is to design a new
sequence-based feature to predict DNA-binding sites in proteins which takes advantage of
Jensen—Shannon divergence.

To extract a new feature from a residue in a protein, I utilized a[sliding window| method
mentioned in [61]] where window size is 2n + 1, with n € N is the window radius. Figure
M.1] shows how sliding windows were applied in this study. For every k-th column of the
MSA matrix M, I denoted A(k) be a set of indices of a window surrounding k, thus A(k) =
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(A) (B) (€)
[DQEPSSKRKAQNRAAQRAFRK  DQEPSEKRKAQNRAAQRAFRK  DQEPSSKRKAQNRAAQRAFRK]

Figure 4.1.: Sliding windows with radius n = 3 in three scenarios. The target residues are
colored in red and their corresponding sliding windows in blue. (A) When the
target residue is close to the beginning of the sequence, the left wing of the
window is partially missed. (B) A full sliding window of a target residue. (C)
A sliding window of an ended residue, resulting in missing its right wing.

{k—nk—n+1,. . k—1,kk+1,..k+n—1,k+n}N{1,2,..,L} where L is the length of
the protein sequence. I defined the score at the k-th column of the matrix M as the weighted
sum over all JSDf between p; and p,;, normalized by the sum of weights

_ Yieatw)(n+1—1[k—i[)JSD(py,ppa)
Yieaw(n+1—lk—i|)
_ Yieaw(n+1—[k—i])JSD(pr,Pua)
- 2+ 1)—|A(k
(n+ 172 — (201 TAR)

Swu (k)

4.2.1)

where the binomial coefficient (3) =x(x—1)/2 and |A(k)| is the cardinality of A(k).

The above formula embedded information from spatial neighbors which was shown use-
ful to predict a residue as functionally important [81]. The usage of sliding windows to
calculate the score has been applied in [60, 61]] and shown positive results. The weighting
pattern for windows was inspired by Janda et al. [82] where I concentrated the biggest
weight to the target residue and linearly reduced weights of other residues in the window
upon to their index distances to the target residue.

The choice of the window radius should not be too big or too small. A big radius could
result in indistinguishable signals between binding and non-binding windows. In contrast,
a too small radius may negatively affect the performance due to lack of neighborhood in-
formation. From the suggestions of [61} [82] and from my own experiments, I noticed that
sliding windows with radius n = 3 obtained the best results.

The window scores associated with each amino acid calculated in Equation (4.2.1)) were
highly dependent on the protein[MSA]| Thus, they were not comparable across proteins. To
eliminate such MSA-dependence, I transferred the window scores via percentile procedure
such as , , /

fM(k> _ Hk ‘1 <k SL? ‘zM(k) > SM(k)H'
This transformation is basically the determination of the percentage of scores below the
current one at position k [23].

4.2.2)
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To evaluate the effectiveness of the new sequence-based feature, I annexed it to existing
features such as and [SS| mentioned in [27] and discussed in Section[2.3] The
new feature along with existing ones would be plugged into random forest (RF) classifier
for training and evaluating. In this study, I used a RF implementation in WEKA data mining
software [83]].

Usually, the number of non-binding sites in a protein significantly outnumbers the num-
ber of binding sites. This created an imbalance between positive and negative samples
which was cumbersome for the training. In order to reduce the effect of this imbalance,
I applied the bagging technique as follows. In a training phrase, I ran eleven sub-phrases
where I constructed a RF classifier from a training samples set consisting of all positive
samples and as twice negative samples as the positive ones, randomly chosen with replace-
ment in the training samples pool. For each instance in the validation, the result was the
majority vote of above eleven RF classifiers.






5. Resulis

Follows in this section I would like to present the outcomes resulting from approaches
discussed in the Methods section ( Section [)). This section is organized as the follow-
ing. Firstly, I investigate the identification of rigid domains in proteins using graph-based
method. Secondly, I present the results of identification of DNA-binding sites in proteins
inferred by Random Forest classifiers utilizing Jensen-Shannon divergence as its feature.

5.1. Identification of Rigid Domains in Proteins using
Graph-based Model

I evaluated my method on three different data sets. First of all, I ran my experiments on
|[Adenylate Kinase (ADK)|protein and described how the workflow proceeded. Secondly, 1
assessed this method on large Dyndom data set comprising of 478 non-redundant proteins.
Finally, I illustrated the comparison between my method and other existing ones on various
structural change proteins.

The content of this section is in our published paper in BMC bioinformatics [13] (see

Appendix [A.T).

5.1.1. Rigid domains of Adenylate Kinase

I first ran my methods on[ADK] protein whose many different conformations were available
[[84]]. This protein is a catalyst assisting the inter-conversion of AD to AT and AMPH
ADK plays an essential role in the creation and storage of chemical energy molecular which
is the key element for cells to grow substantially. For example, the deficiency of
links to moderate to severe hemolytic anemia [85]. In a closed conformation, the NMP-
bidning and LID domains which attach onto the core domain of facilitate the chemical
reaction converting ATP and AMP into two ADP molecules. I investigated the open and
closed conformations of (PDB codes: 4AKE and 1AKE, both chain A).[ADK]protein
comprises of 214 amino acids which are represented as 214 vertices in a protein graph. To

2 Adenosine diphosphate
3 Adenosine triphosphate
4 Adenosine monophosphate



5. Results 40

(A) (B) (c)
°p 2 T
o.‘:p.l.O & ]
7 1 PN
s : 2] 4
T o Construct a & Construct a N W >
P A coarse-grained graph » ° line graph o '. a
o oS _— _—> . . (G)
.,.ﬁ-.'. 3 . ey .
7 ° & P " . @
’ ] - o « e « e -ff.‘.:o
b 14 ‘.‘ d ° ° N . fl.$
can £ s ¢ . o o0
R < D e
i g
S 5 &
Label vertices .la".t: -f i..
F) (E) )} ". *{ﬁ
Y . %) of,
tn‘:ﬁ o0 p, .
Sors . ' P
s Tace bkt w T\ e remebetages gt
o o the protein graph g grapl <
o5 % - -
e ﬂ' .f' ® P s
« L .
e‘ o ° T

& «
o o ° \ Y
bl ™) .”.'. . ° ° *

Figure 5.1.: Graph-based segmentation of ADK into rigid domains. (A) A protein graph
constructed from open and closed ADK conformations. (B) a reduced/coarse-
grained graph obtained by the protein graph. (C) A line graph
of the reduced graph. (D) The line graph with binary vertex labels (black: -1,
white: +1) obtained via the generalized Viterbi algorithm. (E) The injective re-
lation between edges of the reduced graph and vertices of the line graph allows
us to also label the edges of the reduced graph. Edges with negative labels are
removed, resulting to three disconnected subgraphs. (F) A segmented protein
graph derived from disconnected subgraphs in the reduced graph. (G) ADK
graph with domain annotation from literature encoded by colors.

define the neighborhood among vertices, I used the cutoff value ¢ = 7.5A as a threshold.
[ADKJs segmentation in Figure [5.1] summarizes the workflow as the following:

Step 1: I construct a protein graph of ADK where each amino acid is a vertex in a graph
(Section [A-1.T)), resulting to a neighborhood graph with 214 vertices as shown in
Panel 5.1l A.

Step 2: Vertices in the protein graph are grouped together through Louvain algorithm to
create the coarse-grained version of the protein graph, named coarse-grained graph

(Panel [5.1] B).
Step 3: Icalculate a line graph (Panel[5.1]C) from the reduced graph (Section[d.1.3) as well
as compute its scoring function (Section {.1.5).

Step 4: Consequently, I apply the generalized Viterbi algorithm to estimate the most prob-
able labels of vertices in the line graph (Panel[5.1]D).

Step 5: Once the labels of vertices in the line graph are calculated, the labels of edges
in the coarse-grained graph are also implied correspondingly due to the mutual
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transformation between the coarse-grained graph and the line graph. Afterward, I
remove the edges with negative labels, resulting to three disconnected sub-graphs
of the coarse-grained graph (Panel [5.1]E).

Step 6: In each disconnected sub-graph, I trace back to their corresponding protein sub-
graphs. The resulting graph is the protein graph which is segmented into three rigid
domains (Panel [5.1]F).

Step 7: I assess my segmentation by the referenced protein graph whose rigid domains was
found from literature and vertices in different domains encoded by different colors

(Panel [5.1]G).

As shown in Figure[5.1] my segmentation differs from the literature annotation merely
at the hinges between two rigid bodies. The disagreement is mostly due to the vague mem-
bership of amino acids resided at the hinges which are incorrectly blended with other amino
acids from different domains in the

My graph-based algorithm supports users to integrate their own prior knowledge, thus
probably resulting to the improvement. For instance, my above segmentation on [ADK]
produces, according to the literature annotation, fifteen misclassified amino acids of NMP-
binding and LID domains to the core domain. Supposed I was given a segmentation of
[ADK] from another method such as Spectrus [18] with K =4 (K is the number of rigid
domains). I am able to integrate this prior segmentation (or prior label) to the algorithm
as follows. I shrank edge weights in the protein graph by a factor o < 1 (typically 0.75)
if their two vertices belonged to different domains according to the prior segmentation.
This selectively shrinking process helped to reduce the [error of inconsistency|arisen in the
(discussed in the Discussion section) and thus led to the improvement of
the segmentation. I ran the algorithm with the prior segmentation from Spectrus on [ADK]
and observed that it missclassified only five amino acids of LID domain to the core domain.
This demonstrated that one could significantly improve the segmentation even with some
imperfect prior knowledge.

5.1.2. Rigid Segmentation Benchmark

Following the line of Nguyen et al. [19], I assessed my graph-based method on the big
benchmark DynDom data set [86] which is the collection of proteins with two different
conformational states. To remove the redundancy, I filtered out all proteins whose average
TM-score [S5]] with other proteins was greater or equal 0.5, which was a threshold according
to Zhang et al. [87] indicated that these proteins would have similar structure. Moreover,
in the scope of this study, I only investigated into medium to large conformational changes.
Thus, I also removed protein structure pairs whose are less than 5.0 A. As a result,
I obtained 487 proteins for the assessment. Additionally, I removed domains that consisted
of less than ten amino acids.
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For the numeric evaluation, I utilized the two metrics which are error and overlap defined
in [19]]. In the following, I explain and give an example to demonstrate how these two
metrics work.

Error

The error counts how often two segmentations disagree on if their pair of amino acids are
on the same domain. For instance, let us consider a protein comprised of ten amino acids
with two different segmentations described in the Table[5.1]

Table 5.1.: An example of a protein with two segmentations.
1*" segmentation ‘ 0001112200
2" segmentation | 1122200333

The first segmentation has three domains while the second result has four ones. To
present the inter-intra relationship over every pair of amino acids in a segmentation, I
utilized the 10 x 10 square matrix (Tables[5.2]and[5.3).

Table 5.2.: Inter-intra relationships over all pair of amino acids in the 1% segmentation.

0 001 1 1 2 2 00
1 1 1 0
1 1 1 0
1 1 1 0
0 0 1 1
0 1 1
1 1
0 1
1

SO == == =000

SO NN~ == OO0
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Table 5.3.: Inter-intra relationships over all pair of amino acids in the 2"¢ segmentation.

1 1 2 2 2 0 0 3 3 3
1 01 1 1 1 1 1 11
1 11 1 1 1 1 1 1
2 001 1 1 1 1
2 01 1 1 1 1
2 1 1 1 1 1
0 01 1 1
0 1 1 1
3 0 0
3 0
3

Because of the symmetry, I only need the upper triangle tables. The diagonal of those
tables are always zero, thus not interesting to us. An entry value of a table would be 70" if its
two corresponding vertices, according to the segmentation, belong to an identical domain,
or be ’1” otherwise.

The error between these two segmentations is calculated by counting the disagree-
ments between those above tables, normalized by the number of pair of amino acids. In

the other words, the disagreement is calculated by Not-Or-Exclusive operation as follows:

2xsum(Table[54) _ 2x16 __
e = fo0x9 = 0.356.

Table 5.4.: The table contains disagreements between Tables and

—_— 0 O O O = =
O — OO OO~ = =
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Overlap

The overlap takes into account the matches between two segmentations after arrangement
them in a manner that they obtain the maximum agreement which is obtained by solving
a low-dimensional linear assignment problem. Let us consider the same above example to
illustrate how to calculate the overlap between these two segmentations. Firstly, we compute
the overlap matrix which is:

Table 5.5.: The overlap table between two segmentations.

Segmentation 2

p—

Segmentation 1

N = O
—_——_— o O
S| O W
SN N
— O W

The first column and first row in the Table contain the domain indexes of the first
and second segmentation respectively. Consider the first segmentation as a reference, for
each domain index we count how many times amino acids in this domain agree to other
domains in the second segmentation. The highlighted number in each row is the maximum
agreement it can get. Thus, the overlap between those segmentations is the sum of all

maximal agreements divided by the length of the sequence, which is (3+120+1) =0.60.

Though the metrics of error and overlap are calculated differently, they are highly coun-
tercorrelated.

Benchmark Assessment

Figure[5.2] shows the histogram of the error and overlap between mine and DynDom’s seg-
mentations on 487 entries in DynDom data set with the edge cutoff value 7.5 A. The median
error and overlap are 0.038 and 0.972 respectively. Particularly, around 30% of my label-
ings highly agree with annotation provided by DynDom (overlap > 0.99). Yet, occasionally
my method was unable to calculate reasonable segmentations due to two possible reasons.
Firstly, the coarse-graining step failed to produce homogeneity communities, i.e., most of
amino acids in a community belonged to a same domain. Secondly, the mean variance-based
signals calculated from inter and intra vertices/edges in the line graph were indistinguish-
able. This created confusions to the scoring function and thus the most probable label did
not coincide with the actual one.

I investigated examples whose segmentations according to my method disagreed with
DynDom. I observed that sometimes my method suggested a more reasonable labeling
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Figure 5.2.: The histogram of the error and overlap evaluated on 487 proteins in the Dyn-
Dom data set.

than annotations from DynDom. For example, let us consider a human importin subunit
beta-1 protein which is an entry in DynDom data set. Panel (B) in Figure [5.3] represents
my algorithm’s result, run on the open and closed states of this protein (PDB code 3lww,
chain A&C). My method produced two separate rigid domains whose RMSDf were 2.228
and 1.003A. On the other hand, DynDom annotation suggested three rigid domains whose
were 6.843, 4.321, and 2.106A(Pane1 (A) in Figure . It is noticeable that the
first domain of DynDom annotation (dark green) is small, fragmented and have a relatively
large RMSD] In addition, the second domain (dark red) has a significant portion which
is intertwined with the third domain (dark blue). Overall, my segmentation on a human
importin subunit beta-1 protein seems more reasonable than one from DynDom according
to[RMSD| metric as well as pictorial presentations.

I also studied the influence of the edge cutoff used in the construction of protein graphs
through experiments on varying cutoff values. I summarize the results (Table[5.6) reporting
the mean and median of error and overlap on 487 proteins in DynDom data set attained
with various edge cutoff values. The overlap seems to be unaffected by the choice of edge
cutoff, meanwhile the error is slightly dropped with bigger cutoffs. I suggest two probable
explanations. Firstly, a big edge cutoff produces a denser protein graph which seemed to
obtain a better coarse-grained graph (see Discussion section [6.1.1). Secondly, a denser
protein graph eventually results in a denser coarse-grained graph which seems to enhance
the mean-variance driven signals for the scoring function in the line graph. Nonetheless,
I restricted the cutoff to smaller values due to the computational cost of the generalized
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Figure 5.3.: Protein graph of human importin subunit beta-1 protein. (A) Segmentation
suggested by DynDom: three rigid domains colored by dark green, red and
blue. (B) My segmentation: two rigid domains colored by light green and blue.

Table 5.6.: The performance of my graph-based method with varying edge cutoff values
assessed on DynDom data set.

Metric Median overlap | Mean overlap | Median error | Mean error
Cutoff
7.5A 0.972 0.924 0.038 0.086
10.5A 0.977 0.924 0.034 0.083
13.5A 0.972 0.926 0.033 0.081

Viterbi algorithm.

5.1.3. Rigid segmentation on various structural transitions

I evaluated my graph-based rigid domains estimator on various proteins studied by [19].
These proteins dynamic included different types and scales of conformational change. The
PDB codes as well as other information of these proteins are summarized in the Table
Moreover, Figure[5.4]shows my segmentations along with the other methods segmentations.

[Pyruvate phosphate dikinase (PPDK)|is a big complex catalyzing the reversible conver-
sion of PEP, AMP, and Pi to pyruvate and ATP [88]]. I ran the method on two conformations
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Figure 5.4.: Analysis of several proteins undergoing conformational changes on a variety of
scales. Large-scale conformational changes: pyruvate phosphate dikinase, T7
RNA polymerase, GroEL. Medium-scale conformational changes: Aspartate
aminotransferase, Alcohol dehydrogenase. For each protein, the segmentation
found by different methods and in the literature are shown. Same color means
same domain.
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Table 5.7.: Proteins in different scale conformational changes involved in the assessment.

Protein PDB code chainID size
1kc7 A

PPDK 282 A 872
1gln A

T7 RNA polymerase Imsw D 842
laon A

GroEL laon o 524

Aspatate aminotransferase daat A 401
lama A
ladg A

Alcohol dehydrogenase Dohx A 374

of and compared the result to the segmentation from the literature [88] as well as
to the results from other methods such as Nguyen&Habeck’ 16, Spectrus and DynDom. As
illustrated in a first panel of the Figure [5.4] my result strongly agrees with the segmenta-
tion produced by DynDom, yet both methods miss an additional rigid domain reported by
the literature and in [19]. My method typically produces fewer number of rigid domains
than reported in the literature because it only takes advantage of the information of confor-
mational changes from a few structural snapshots but no further experimental information.
Spectrus with K = 3 strongly concurs with my segmentation, except that the first domain is
bigger.

T7 RNA polymerase is an enzyme involving in the commencement and expansion
of RNA transcription. My segmentation along with ones from DynDom and Nguyen &
Habeck’ 16 strongly agree with the rigid domains reported in [89]. Spectrus, however, fails
to detect a refolding loop inserted in the N-terminal domain.

Another big conformational transition, the chaperonin GroEL complex [90] is another
case study. This complex provides a protected environment to help protein folding and
prevent aggregation. In this case, all methods strongly agree with each other.

I also assessed my method on intermediate scale structural change. [Aspartate amino-|
[transferase (AST)|is an enzyme specialized for amino acid metabolism that catalyzes the
reversible transfer of an a-amino group between glutamate and aspartate [91]]. Though my
method identified a small additional rigid domain, its segmenting result mostly agrees with
the other methods. Another medium-sized structural transition complex is
[drogenase (AhD)|[92} 93] which is an enzyme assisting the decomposition of alcohol into
aldehyde. The segmentation of my graph-based method strongly agrees with the estimation
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from DynDom. Spectrus reports an additional domain when obtaining the maximum score
with K = 3. Though Spectrus with K = 2 domains has a lower score value, its segmentation
is more consistent to my result and to DynDom.

5.2. Identification of DNA-Binding Sites in Proteins Using
Jensen-Shannon Divergence

To evaluate my new sequence-based feature, I firstly investigated the new feature along
with three existing ones in the [RF classifier. Secondly, to demonstrate the usefulness of
the new feature, I used the trained to analyzes the proto-oncogenic transcription factor
MYC-MAX complex(PDB-ID: INKP) which does not belong to the training set.

The content of this Section was published in [25], included in this thesis in Appendix
A2l

5.2.1. Cross Validation on Benchmark

I constructed an [RF classifier from 4298 positive and 44,805 negative instances (cutoff dis-
tance 3.5&) or 7211 positive and 41892 negative instances (cutoff distance 5.0A) extracted
from 263 proteins. I conducted the evaluation under five-fold cross validation process where
the samples were randomly divided into five parts. I assessed the performance by iteratively
considering one part as a test set and these other four parts as training set.

To construct features for a [RF classifier, I combined my sequence-based feature (§ysp)
with other widely used features such as fpssy, fopyv and fss. As shown in Tables and
the involving of the new feature significantly boosted the performance of the classifier
utilized to identify DNA-binding sites in proteins. I noticed that by concatenating the new
feature into the existing ones, the RF's sensitivity is substantially increased while its speci-
ficity is slightly decreased. Consequently, the other assessing metrics such as
[correlation coefficient (MCC)|and area under curves which take every true or false predic-
tions into account indicate the new feature provides new informative aspects.

In order to validate the positive effect of the new sequence-based feature, I further ana-
lyzed two additional data sets RBscore [33]] and PreDNA [94]. RBscore and PreDNA data
sets originally consist of 381 and 224 DNA-binding proteins respectively, yet I removed a
few proteins because either a few of them are already included in the old data set or their
multiple sequence alignments are not sufficient to retrieve useful information. Similarly to
previous evaluation, I constructed an [RF classifier from 263 proteins in my previous data
set (the one I used in five-fold cross validation). For testing, I randomly selected 60 proteins
from each data set RBscore and PreDNA respectively and the results in Tables [5.10] and
[5.11]suggest that the new feature add a great complementary effect to the existing ones.
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Table 5.8.: Prediction performance of [RFclassifier on different features using a cut-off of
3.5 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.292 0.963 0.307 0.777 0.313
fpssm + fisp 0.385 0.949 0.349 0.795 0.369
fpssm + fss 0.339 0.958 0.334 0.794 0.338
fpssm + fss + fisp 0.416 0.95 0.378 0.808 0.390
fpssm + foBv + fss 0.367 0.968 0.398 0.838 0.413
fpssm + foBv + fss + fisp 0.422 0.958 0.409 0.837 0.425

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating
characteristics (ROC) curve; AUC-PR: area under the precision-recall curve.

Table 5.9.: Prediction performance of Random Forest (RF) classifier on different features
using a cut-off of 5.0 A. The prediction system was evaluated by five-fold cross

validation.
Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fPssm 0.286 0.966 0.350 0.778 0.425
fpssm + fisp 0.395 0.95 0.407 0.801 0.487
fessm + fss 0.334 0.963 0.386 0.796 0.455
fpssm + fss + fisp 0.424 0.951 0.436 0.814 0.513
fpssm + fomv + fss 0.337 0.975 0.431 0.830 0.517
fpssm + foBv + fss + fisp 0.419 0.958 0.450 0.832 0.535

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating
characteristics (ROC) curve; AUC-PR: area under the precision-recall curve.
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Table 5.10.: Prediction performance of @ classifier on RBscore data set using different
distance cut-offs.

Cutoff Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
frssm 0.458 0.974 0.476 0.866 0.460
fessm + frsp 0.560 0.965 0.514 0.894 0.518
354 fessm + fss 0.512 0.970 0.501 0.878 0.476
' fpssm + fss + fisp 0.581 0.960 0.511 0.899 0.520
frssm + fosv + fss 0.517 0.976 0.534 0.896 0.528
fessm + fov + fss + fisp 0.580 0.967 0.540 0.907 0.543
frssm 0.445 0.977 0.528 0.873 0.589
fpssm + fIsp 0.553 0.968 0.579 0.899 0.643
5.0A fpssm + fss 0.490 0.973 0.547 0.880 0.602
' fpssm + fss + fisp 0.578 0.963 0.583 0.902 0.648
fpssm + fov + fss 0.499 0.980 0.584 0.895 0.641
fpssm + foBv + fss + fisp 0.570 0.968 0.595 0.908 0.661

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating
characteristics (ROC) curve; AUC-PR: area under the precision-recall curve.

The evaluation of the new feature over three different data sets suggests that by adding
the new feature, the RF|classifier significantly detects more true positive, yet the number of
false positive is slightly increased. In order to take both true positive and true negative into
account, I evaluated the results on other metrics such as area under the receiver operating
characteristics curve (AUC-ROC) or under the precision-recall curve (AUC-PR). I noticed
that by adding the sequence-based feature, the classifier consistently achieves better
results. Nevertheless, the positive contribution of the new feature is reduced if the existing
features has expanded to include others.

5.2.2. Position Analysis of the MYC-MAX Protein

I further evaluated the effect of the sequence-based feature on a protein complex MYC-
MAX (PDB-Entry 1NKP), a proto-oncogenic transcription factor, playing a key role in cell
proliferation. This complex is believed over-expressed in many different types of cancer
[95]. A core element of the promoter that consists of six nucleotides is binded by MYC-
MAX transcription factors and consequently activates transcription of the underlying genes
[96].

The MYC protein consists of 88 amino acids, ten of them are considered as DNA-
binding sites due to the fact that their distances to DNA are less than 3.5 A. Theclassiﬁer
with the new feature (fysp) combining to existing ones was able to predict in total seventeen
residues as DNA-binding sites. Seven of them (H906, N907, E910, R913, R914, P938,
K939) are the true DNA-binding sites in MYC protein. I have noticed that while the DNA-
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Table 5.11.: Prediction performance of |[RF|classifier on PreDNA dataset using different dis-
tance cut-offs.

Cutoff Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.378 0.977 0.410 0.840 0.391
fessm + fsp 0.498 0.963 0.448 0.865 0.453
354 fessm + fss 0.393 0.975 0.417 0.847 0.402
' fessm + fss + fisp 0.501 0.966  0.461 0.872 0.463
frssm + foBv + fss 0.428 0.977 0.458 0.867 0.451
fessm + fov + fss + fisp 0.511 0.97 0.488 0.885 0.488
fessm 0.373 0.979 0.463 0.833 0.496
fpssm + frsp 0.485 0.962 0.495 0.858 0.540
504 fpssm + fss 0.389 0.977 0.470 0.839 0.501
' fessm + fss + fIsp 0.490 0.963 0.501 0.863 0.550
fessm + foBv + fss 0.395 0980  0.488 0.858 0.530
fessm + fov + fss + fisp 0.480 0.968 0.511 0.874 0.563

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating
characteristics (ROC) curve; AUC-PR: area under the precision-recall curve.

binding sites R913, R914, P938, and K939 are also detected without my new feature, the
remaining three binding sites can only be detected if I include my sequence-based feature
into the feature extraction.

The second protein in this complex is MAX protein folded by sequence of 83 amino
acids. By expanding my new feature into feature extraction, the [RF classifier was able to
predict fourteen DNA-binding sites, eight of them (H207, N208, E211, R212, R214, R215,
5238, R239) are true positive. It is remarkable to notice that without using my new feature,
the [RF| only detect two true binding sites (S238, R239) out of nine. The result is illustrated
and summarized via Figure[5.5|and Table

The analysis of MYC-MAX complex suggests that including the new feature into the
feature extraction significantly improve the sensitivity, and thus the[MCC|, while the speci-
ficity is moderately reduced. This result is consistent with the other benchmarks I analyzed
above.
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MAX protein ’| ‘ MYC protein

Figure 5.5.: DNA-binding sites in proto-oncobenic transcription factor MYC-MAX pro-
tein complex (PDB-Entry 1NKP). Green spheres denote positions of the DNA-
binding sites in both proteins which are detected by [RF| classifier either using
the existing features (fpssm > foBv, and fss) alone or combining my new fea-
tures with these existing features together. Purple spheres show the localization
of additional binding sites which were only found by [RF classifier using my
new features with existing features. Moreover, there are further three binding
sites in MYC protein and one binding site in MAX protein, shown with yellow
spheres, that could not be identified by the classifier.
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Table 5.12.: Prediction performance of classifier on different features using a cut-off
of 3.5 A for MYC-MAX protein complex (Protein Data Bank (PDB)-Entry

INKP).
Protein Feature Sensitivity Specificity MCC
MYC frssm + fomv + fss 0.300 0.941 0.282
fIP’SSM + f@IBV + fSS + fjg]]) 0.700 0.853 0.448
MAX fessm + foBv + fss 0.222 1.0 0.447
frssm + fomv + fss + fisp 0.888 0.906 0.664




6. Discussion

In the following section, I discuss the methods described in this thesis as well as their
corresponding results. This section comprises two smaller subsections with the aims to
answer the research questions arisen at the commence of this thesis. In each subsection, I
deliver my insights of strengths and limitations of my methods.

6.1. Answers for Research Questions Concerning the Task of
Rigid Domains in Proteins Detection

The results described in Section[5.1]have shown that my graph-based methods are success-
fully able to partition proteins into their rigid domains. To have a better understanding
how the methods work, let us discuss their key features and the impacts of the algorithmic
parameters.

The notations and the content of this discussion is based on the discussion section of our
paper [13] (see Appendix [A.T).

6.1.1. Coarse-graining Procedure

I studied different clustering methods and figured out that the Louvain clustering algorithms
were the most suitable for my approach because they allowed me to integrate the graph
structure into their calculations. In particular, I decided to choose the Louvain algorithm
with Pott models [39] due to its comprehensible interpretation. With the Pott model, the
clustering algorithm tried to maximize the number of internal edges within communities
while keeping their sizes relatively small. In other words, the splitting of a big cluster
into two smaller ones depends on the density of links between those two smaller clusters
(see Section [3.4). Those interpretations of clustering fit my graph-based model where I
also assumed internal connections in rigid domains are more frequent than ones between
domains.

Even though the coarse-graining process on the protein graph occasionally created
wrong clusters, it significantly enhanced the mean variance-driven signals for the quality
function. In the following subsections, I discuss and analyze two main effects of the
which are the advents of [inconsistency error| and [signal| enhancement.
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Inconsistency Error

I introduce a metric, called [inconsistency error, to measure the efficiency of the protein
graph construction and the This metric quantifies the heterogeneity of
communities in the coarse-grained graph weighted by their sizes. For the formal definition,
let G = (V,€) be a graph with a set of N vertices ). For every i-th verex v; € V), its label is
denoted as o;. In addition, let C = {Cy} be a partition of vertices into communities Cy C V

resulted from the |coarse grainingl I define the inconsistency error of the coarse-graining
procedure as

@ijeck |o; # o
N |Gl(C—1)

ZE(CIG) =2 )

CreC

(6.1.1)

where |G| is the cardinality of a community Cy and |o; # 0| is 1 if 0; # o, or 0 otherwise.
This above entity is the average number of labelling mismatches within a cluster weighted
by the cluster size. The entity Z&(C|G) will be zero if the gives us all ho-
mogeneous clusters. However, the zero value of [inconsistency error|is not all what I like to
obtain. It is important to notice that the could easily achieve zero inconsis-
tency by assigning each vertex as its own cluster, yet it does not produce any benefit. Thus,
it is important to control the [coarse graining|in a manner that it produces small inconsistency
while the number of the clusters is significantly smaller than the number of vertices. On the
other hand, this error will approach one if the [coarse graining|totally gives wrong clusters.
This only happens when each vertex has distinguish label, but all are grouped into a single
big cluster.

I firstly study different ways to construct protein graphs from multiple conformations
mentioned in Section f.1.1] In short, in the disjunction-based protein graph construction,
denoted as type (I), I created an edge between two vertices if their distance is smaller than a
cutoff in at least one conformation. The edge weight is the number of such conformations.
In contrast, in the conjunction-based protein graph construction, denoted as type (II), an
edge between two vertices is created if and only if its distance is smaller than a cutoff in all
conformation. Additionally, I assigned a weight to an edge by its reciprocal exponentiated
variance computed over all conformations (see Equation .1.3). Such weight assignment
follows the idea that low-variance edges have a weight close to one and high-variance edges
are assigned to a weight close to zero.

Figure [6.1] shows that the second protein graph construction consistently outperformed
the first type in term of the inconsistency error. A possible explanation is as follows. The
second type of construction rule produces a sparser protein graph where an edge between
two vertices are created only when ones are certain that these two are close in all cases.
Consequently, rigid bodies in a protein graph tend to have more edges than the ones between
bodies. Thus, the coarse-graining procedure obtains less [error of inconsistencyl

Additionally, I examined varying values of edge cutoff, ranging from 7.5 to 13.5A. Ac-
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Figure 6.1.: Histogram of inconsistency error from graph construction type I and II and their
varying cutoff values respectively.

cording to the results from Figure [6.1] there was a small, but not significant improvement
of the inconsistency error for larger cutoff values.

Signal Enhancement

As mentioned in Section [4.1.4] the efficiency of the quality function (Equation de-
pends on the separability between the mean variance values of inter- and intra-vertices or
edges in the line graph.

Given an array of mean-variance values calculated from inter- and intra-vertices in the
line graph, I used the area under the ROC curve (AUC) to measure how well the mean-
variance can distinguish between these two group of vertices. Likewise, to measure the
separability between inter- and intra-edges in the line graph, we apply the AUC in the iden-
tical manner.

The AUCs calculated on vertices and edges in the line graph derived from the coarse-
grained graph (red bars in Panels (A) and (B) of Figure [6.2)) are significantly larger than
the ones calculated on vertices and edges in the line graph derived directly from the protein
graph (blue bars in Panels (A) and (B) of Figure [6.2). Thus, the illustrations in Figure [6.2]

give us a strong evidence of the advantage of using the in my methods.

Overall, in my study, I adjusted the resolution parameter of Louvain algorithm so as to
produce about twenty clusters of medium size. Too big clusters could result in the increase
of the inconsistency error because amino acids in hinge regions tend to be merged together.
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Figure 6.2.: Histograms of area under the ROC curve (AUC) evaluated on 487 proteins in

the DynDom dataset. (A) Histograms of AUC calculated from the inter- and
intra-vertices in the line graphs derived from the protein graph(blue histogram)
and from the coarse-grained graph (red histogram). (B) Histograms of AUC cal-
culated from the inter- and intra-edges in the line graphs derived from the pro-
tein graph(blue histogram) and from the coarse-grained graph (red histogram).
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Too small clusters, on the other hand, tend to have smaller inconsistency errors with the cost
of the insignificance of the mean variance between two clusters.

6.1.2. Line Graph Transformation

Here, I deliver my insights and motivations concerning the line graph transformation. First,
I explain why I need to modify the construction of the line graph as to make it suitable to my
study of rigid domains in protein estimation. Second, I present the motivation beneath the
formula of feature functions defined on vertices in the line graph @M in Equation .
Afterward, I discuss my ideas behind the formula of feature functions defined on edges in
the line graph (¥ in Equations |4.1.8[, |4.1.9[, |4.1.10[) as well as their limitations.

Modified Line Graph Construction

In the old line graph construction [[79], any pair of incident edges in the original will become
an edge in a line graph. In case of the two ended vertices of those pair incident edges
also form an edge, the mean-variance of these two vertices is used twice in the quality
function, one for a vertex feature and one for an edge feature. To avoid such duplication, I
modified the line graph construction by eliminate edges if their two end vertices are linked.
Additionally, such edges pruning in the line graph produces a sparser graph which saves
computational resources in the calculation of the generalized Viterbi algorithm.

Feature functions on vertices in the line graph

Given a protein with known rigid domains, the left panel of Figure [6.1.2] shows that the
mean-variance values of inter-vertices in the line graph constructed from the coarse-grained
graph tend to be bigger than ones of the intra-vertices. This observation fits very well with
the rigidity definition. However, an optimal threshold dividing mean-variance of inter- and
intra-vertices is protein-dependent and there is no such universal threshold. Yet I noticed
that if I consider the mean-variance of inter-vertices as outliers, I could identify almost of
them via outliers detection. Thus, in the feature functions on vertices, I reward the quality
function when either the mean-variance of a vertex is an outlier (probably an inter-vertex)
and the predicted label of that vertex is —1, or the mean-variance of a vertex is non-outlier
(probably an intra-vertex) and its predicted label is +1.

Feature functions on edges in the line graph

With the similar observation, the right panel in Figure [6.1.2] shows that the mean-variance
of inter- and intra-edges in the line graph seems to follow two distinguish but overlapped
distributions. Still, it is problematic to calculate these two distributions because there are not
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Figure 6.3.: The histograms of mean-variance values calculated from vertices and edges in a
line graph. (Left) The left panel shows the frequencies distribution of the mean
variance calculated on intra-vertices (red bars) and inter-vertices (blue bars) in
the line graph. The big red dots the x-axis indicate the outliers according to the
outliers detection. (Right) Similarly, the right panel illustrates the frequencies
distribution of mean-variance for the intra- and inter-edges in the line graph.
The big red dots are also the outliers according to the outliers detection.

enough samples for the maximum likelihood estimator such as expectation maximization
(EM). However, if I applied the outliers detection trick as mentioned above, I could obtain
a decent amount of inter-edges based on their mean-variance. As shown in the right panel
of Figure[6.1.2] outliers indicated via big red dots in the x-axis cover a lot of mean-variance
calculated from the inter-edges.

From such observations, I designed a feature function for an edge in the line graph in a
way that it could be in favor of vertices labels according to the mean-variance of the edge
and its two corresponding vertices. The design of the feature function on edges ¥ is based
on the inferences described on Figure [6.4] From Figures [6.4A to [6.4]D, it is trivial that a
preferable labeling could be obtained directly from the mean-variance of edges and their two
vertices. For instance, in Figure [6.4]A, a high mean-variance of [fwo ended vertices along
with a low and a high mean-variance between a [common vertex| and [two ended vertices|
infer a positive and negative labels of vertices in the line graph, respectively. The labeling
inferences of other cases such as (B), (C) and (D) follow the similar reasoning. However,
there are two cases (6.4]E&F) where the method could not unambiguously infer the labeling.
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Those unambiguous cases happen when signals from two pairs of vertices show they belong
to one domain but the signal from other pair shows that they do not. Nevertheless, when |
examined those two cases, there were substantial differences.

In the case of ¥, = —1 and %, = ¥,, = +1 (Figure[6.4]E), it implies that two end vertices
probably belong to different domains and the common vertex locates on the hinge region.
To decide which domain this common vertex belongs to, two mean-variance of v; and v,
were compared, as shown in the Equation .1.9] On the other hand, Figure [6.4]F shows
another contradictory case where I set the value to zero, thus they could not interrupt to the
labeling inference of the generalized Viterbi algorithm.

6.1.3. Running Time

The algorithm running time depends on several folds. First, the protein size plays a big role
in terms of time for the construction of protein graph, coarse-grained graph as well as the
calculation of mean-variance. Second, the densities of a protein graph and a coarse-grained
graph also affect a lot to the running time. The running time of the generalized Viterbi
algorithm especially depends on how dense a line graph is. In a lot of cases, the exact most
probable labeling was impossible to be obtained and thus heuristics have been applied.
Third, the algorithm running time also heavily depends upon the rigidity of conformational
changes. In the small structural transition, the signals derived from the mean-variance fail to
decisively distinguish between inter- and intra-vertices and edges. Consequently, it required
the algorithm to run on the graph multiple times.

Figure[6.5|summarizes the relationship between protein sizes and their running time. In
general, the running time for proteins smaller than 800 amino acids increases slightly in a
linear manner. Yet it seems to quadratically grow for the large proteins. It is noticeable that
there are a few outlier proteins whose running time are significantly longer than of ones
with similar size. In those cases, the mean-variance between inter- and intra-vertices/edges
in a line graph were totally overlap and thus resulting in bad quality function. This caused
the algorithm run multiple iterations and only broke when it reached the limitation.

6.1.4. Merging Algorithm

The post-process such as merging is necessary in the study of rigid domains in proteins
estimation because it avoids the advents of very small and fragmented domains. One may
reasonably ask whether users could skip the labeling step (the inference of the Viterbi al-
gorithm on a line graph constructed from a coarse-grained graph) and apply the merging
process directly on clusters from the This simplified version of my algo-
rithm has shown good results on proteins with large-scale movements and less flexibility in
their rigid domains, but failed on general cases.
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Figure 6.4.: An edge e = (v1,Vv;) in the line graph represented by a pair of edges in the orig-
inal graph. From (A) to (D): the labels of two vertices in the line graph (edges
in the original graph) are unambiguously determined through mean-variances
of two ended nodes of an edge and two vertices in the line graph. (E) & (F): an
ambiguity of labeling two vertices in the line graph occurs when there are two
signals indicating that three nodes should belong to one domain, but the other
signal suggests the otherwise.
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Figure 6.5.: Protein size versus running time (measured in seconds) evaluated for 487 pro-
teins selected from the DynDom database.

6.2. Answers for Research Questions Concerning the Task of
Novel Sequence-based Feature Engineering

The results from Section [5.2] show that the advent of the information theory-based feature
f1sp clearly boosts the performance of the RF classifier in identifying the DNA-binding sites
in proteins when it is combined with existing features such as fpssy, fopv and fss. This
section is based on the Discussion section in our paper [25]] (see Appendix [A.2)).

In spite of both MSAs derived feature, my new feature and PSSMs are substantially
different because they carry distinct kinds of evolutionary information. The PSSM feature
which is a 20D vector computes a statistic of how likely an amino acid occurs at a certain
position, meanwhile the JSD-based feature takes into account the divergences of a distri-
bution of pairs of amino acids to a null distribution constructed from known non-binding
sites. Even though the JSD-based feature is only a single scalar, it significantly improve the
performance when concatenating with other existing high dimensional features.

In the RF classifier setting, the number m of randomly selected features (see the descrip-
tion of RF classifier in Section[3.2.T]and Algorithm[3.2) depends on the problem and should
be treated as a tuning parameter [97]]. This parameter influences the generalization error of
RF in two ways: strength of an individual tree and the correlations among trees. When m is
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too big (close to the number of total features P), the strengths of trained trees are high, yet
their correlations are also big which negatively affects to the RF performance. On the other
hand, if m is too small, the forest contains all weak but very small correlated trees. Accord-
ing to Breiman [64], the number of used features in the classification problem is about the
square root of the total features (m = | P]) [64,97]. The author of RF [64] also suggested
m = |log, P+ 1] [64]. In the study of DNA-binding sites in proteins prediction, I noticed
that the first option (| P|) offered a better result, meanwhile other values of m around |P|
gave similar results. Thus, I set | P| as the default parameter.

The number of trees in a forest is also an important parameters. As mentioned in [97],
the RF classifier stabilized at about 200 trees. In my study, this classifier began to stabi-
lize around 100 trees which was also the value I used for my study of DNA-binding sites
prediction.

In DNA-protein complexes, only a small portion of proteins are directly responsible
for the interaction with DNA. Thus, the class imbalance is arisen due to the fact that the
number of DNA-binding sites in proteins is significantly less than the number of nonbinding
sites. To deal with such imbalance issue, one could use data-driven techniques, algorithm-
driven techniques, or the combination of these two. The data-driven techniques employ data
sampling methods to limit the affect of the data imbalance, meanwhile the algorithm-driven
techniques use weights, cost schema as well as adapting underlying classifiers and their
outputs as to avoid the bias toward the majority class [98].

In my study of DNA-binding sites in proteins prediction, I used data sampling methods
to reduce the imbalance effect between positive and negative samples. The proportion of
negative samples in each bootstrap sampling depends on how much sensitivity and speci-
ficity of the designed algorithm. I noticed that I obtained the best result (according to MCC)
when the number of negative samples in the training set is from twice to three times than the
number of positive ones. Additionally, the number of RF classifiers in my method could be
any arbitrary odd number. Nevertheless, it reached the stability with eleven RF classifiers
in the method.



7. Conclusion

In this section, I conclude the thesis. For this, I provide a short summary and give an outlook
on my potential future work.

7.1. Summary

In the course of this thesis, I present two methods which I developed aiming to solve the
identifications of rigid domains as well as DNA-binding sites in proteins in a computational
fashion.

In the study of rigid domains in proteins detection, I introduced a new algorithm to char-
acterize structural changes in proteins. The new graph-based algorithm comprises several
stages such as constructing a protein graph from multiple conformations, reducing graph
complexity via the coarse graining, inferring the binary labeling of edges through a line
graph transformation along with the generalized Viterbi algorithm. The crucial feature of
this new method is that the number of rigid domains is learnt automatically. Yet users
could relax the rigidity definition, thus be able to attain the desirable number of rigid do-
mains. Overall, my segmentations and other methods such as DynDom [14], Spectrus [18]],
Habeck&Nguyen [19] have a strong agreement on various medium to large scale structural
transitions.

In the second part of the thesis which studies DNA-binding sites in proteins, I propose
a new sequence-based feature for such binding sites detection. My new feature applies
Jensen—Shannon divergence to quantify the differences between the observed amino acids
distribution of sites and the null distribution constructed from the amino acids distribution
of non-binding sites. The results from several large benchmarks offer a strong evidence
that the combination of existing features with my new sequence-based feature significantly
improve the predictions of the RF classifier.

7.2. Outlook

In regard to the graph-based models of rigid domains in proteins detection, there are many
aspects which are well worth being taken into consideration. First, the quality function con-
sisting of feature functions on vertices and edges (Equations ¥(!), ¥(2)) could be designed
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to integrate relevant information. As mentioned in the Discussion section, users could inte-
grate their prior segmentations to help the coarse graining to reduce the error of inconsis-
tency, thus resulting in the improvement of the rigid domains detection. Additionally, other
useful information such as amino acids charge and secondary structure could be embedded
in the algorithm either by modifying the graph construction (as described in the Discussion
section) or via the designs of feature functions on vertices and edges. Second, instead of
returning binary values, the feature functions could be designed to return continuous values
which are beneficial for the analysis.

Concerning the study of identifying DNA-binding sites in proteins, it has been shown
that a carefully designed doubly stochastic matrix could improve the predictions of DNA-
binding sites in proteins [25]. Moreover, I was able to improve the effect of doubly stochas-
tic matrix by harvesting biochemical signals which distinguishes binding and non-binding
residues. Additionally, the results from Tables[5.8] [5.9] [5.10] and [5.1T| have shown that in-
corporating my new sequence-based feature with one existing feature such as PSSM signif-
icantly improves the performance. Yet this positive effect is gradually faded with the advent
of other features such as secondary structure (SS) and orthogonal binary vector (OBV).
Thus, there is a room to improve the performance by eliminating the redundancy in the
feature space through a careful feature selection.
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Glossary

antibodies
A protein produced by cells of the immune system that binds to 1]
antigens

anything that causes your body to make antigens could be foreign blood
cells, a toxin, bacteria, or the cells of a transplanted organ.. [T]

coarse graining

a procedure to reduce the [protein graph| to [coarse-grained graphl. [} 40| @1}

coarse-grained graph

a reduced version of the original graph where its vertices are groups of vertices in the
original graph.. 29] [31]

common vertex
a vertex shared by two incident edges.. [30} 32} [60] [8T]

communities

groups of vertices in the [protein graph| [29] [31]

DNA

Deoxyribonucleic acid (DNA): The genetic material of organisms, usually double-
stranded; a class of nucleic acids identified by the presence of deoxyribose, a sugar,
and the four nucleobases.. [I]

domain

A region of a protein responsible for a particular function, as recognized experimen-
tally and by the occurrence of similar segments in other proteins sharing that function,
e.g., a DNA binding domain..

enzymes

proteins (or rarely, RNA) that catalyze a chemical reaction.. 1]



Glossary 80

error of inconsistency

the metric quantifies the heterogeneity of communities in the coarse-grained graph
weighted by their sizes.. 41} [56] 80|

feature function

a function defined on a vertex or an edge in the site graph.. [31] [32]

inconsistency error

another name of [error of inconsistency. [55] [56]

inter edge

an edge in a line graph is call inter edge if its corresponding [two ended vertices|in the
original graph belong to different domains..

inter vertex

a vertex in a line graph is called inter vertex if the two corresponding vertices in the
original graph belong to different domains..

intra edge

an edge in a line graph is call intra edge if its corresponding [two ended vertices|in the
original graph belong to an identical domain.. [30]

intra vertex

a vertex in a line graph is called intra vertex if the two corresponding vertices in the
original graph belong to an identical domain.. [30} [31]

line graph
a line graph is a graph resulted in the transformation from the original graph where
edges in the original graph become vertices in the line graph.. @ 27} 30 [31]

mean variance
a means to measure the fluctuation between two groups of vertices in the protein
graph.. 29 0]

null background distribution
a background distribution calculated according to amino acid counts at non-binding
residue positions in[MSA.. [5] [35]

outliers detection

an algorithm detects outliers from a set of real-value numbers.. [30]



81 Glossary

peptide bond

a covalent bond formed by joining the carboxyl group of one amino acid to the amino
group of another, with the removal of a molecule of water.. [1]

profile
A set of input variables used in making predictions..
protein graph

a graph constructed by multiple conformations of a protein where each vertex is an

amino acid.. [ 27H29]

quality function
the unnormalized probability of a given labeling of a site graph in[CRF. [31] [32]

reduced graph
another name of the coarse-grained graph.. 4 29

signal

the separability between the mean variance values of inter- and intra-vertices or edges
in the line graph.. [55]

sliding window

an odd length window whose center is the target amino acid.. [35]

transcription factors proteins

Proteins that have DNA-binding domains and thus have a specific or general affinity
for single- or double-stranded DNA..

two ended vertices

the other vertices (without ajcommon vertex)of two incident edges.. [30} 32] [60} [80]
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Abstract

Background: Conformational transitions are implicated in the biological function of
many proteins. Structural changes in proteins can be described approximately as the
relative movement of rigid domains against each other. Despite previous efforts, there
is a need to develop new domain segmentation algorithms that are capable of analys-
ing the entire structure database efficiently and do not require the choice of protein-
dependent tuning parameters such as the number of rigid domains.

Results: We develop a graph-based method for detecting rigid domains in proteins.
Structural information from multiple conformational states is represented by a graph
whose nodes correspond to amino acids. Graph clustering algorithms allow us to
reduce the graph and run the Viterbi algorithm on the associated line graph to obtain
a segmentation of the input structures into rigid domains. In contrast to many alterna-
tive methods, our approach does not require knowledge about the number of rigid
domains. Moreover, we identified default values for the algorithmic parameters that
are suitable for a large number of conformational ensembles. We test our algorithm on
examples from the DynDom database and illustrate our method on various challeng-
ing systems whose structural transitions have been studied extensively.

Conclusions: The results strongly suggest that our graph-based algorithm forms a
novel framework to characterize structural transitions in proteins via detecting their
rigid domains. The web server is available at http://azifi.tzagrar.uni-goettingen.de/
webservice/.

Keywords: Protein structural transition, Graph algorithms, Generalized Viterbi

algorithm

Background

Proteins are molecular machines that are involved in a large variety of biological pro-
cesses. Protein function is often driven by large-scale structural transitions [1]. Experi-
mental methods for biomolecular structure determination such as X-ray crystallography,
NMR and cryo-electron microscopy have been used to determine thousands of atomic
structures of proteins in different conformational states. A powerful approach to under-
stand structural transitions in proteins is to decompose structures of different states
into rigid domains and classify protein movements by hinge and shear motions of these

structural domains [2].
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use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
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exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
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cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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Given the large number of available protein structures, we need computational meth-
ods that identify structurally conserved domains in a set of alternative structures in an
automated fashion with minimal user intervention. For example, one could use the soft-
ware to study molecular dynamics trajectories at the level of rigid domains to gain an
understanding of large-scale movements, or identify important active sites located at the
interface between rigid domains.

A number of computational methods for detecting rigid domains in protein structures
have been developed. Dyndom [3] identifies rigid domains by clustering a set of rotation
vectors. Hingefind [4] focuses on the detection of hinge residues, which are detected
via differences in bending angles. RigidFinder [5] finds rigid domains via a dynamic
programming algorithm that optimizes the rigidity of structural segments extracted
from two conformational states. These methods are limited to two input structures
and require the selection of a cutoff parameter [5], which can impact the results quite
strongly. Spectrus [6] applies spectral clustering to distance fluctuations and supports
multiple input structures. However, the number of clusters relies on a quality score,
which sometimes gives ambiguous results. Probabilistic approaches [7, 8] segment pro-
tein structures into rigid domains as part of a generative probabilistic model. The model
parameters, including the segmentation, are inferred with expectation maximization or
Gibbs sampling. However, choosing the initial parameters as well as the number of rigid
segments is still a critical issue, because both algorithms explore parameter space only
locally, and can therefore require many restarts from different initial conditions.

A more ambitious goal is to predict rigid domains from a single structure by, for exam-
ple, molecular dynamic simulation or an elastic network model that can both be used
to generate a set of alternative conformational states. HingeProt [9] and Domain Finder
[10] use an elastic network model to predict hinge residues by analyzing the correlation
between selected pairs of eigenvectors of the correlation matrix. However, in general it is
unclear which modes contribute most strongly to the movement, in particular if a con-
formational change involves multiple modes. FlexOracle [11] finds hinge positions by
identifying split points with minimal energetic impact.

Despite the rich literature on methods for rigid-domain detection in protein struc-
tures, all of the existing methods require the initial number of rigid domains in their
calculation. Thus, there is still a need for algorithms that are robust, reliable, able to
handle high-throughput data and yet do not require extensive parameter tunning. Here,
we introduce a graph-based method that infers a binary labeling that encodes if pairs
of amino acids belong to identical or different rigid domains. Our algorithm proceeds
in two stages: first, we construct a protein graph based on spatial proximity, which we
cluster using the Louvain algorithm to obtain a coarse-grained graph of reduced size.
Second, edges in the reduced graph are labeled by applying a line graph transformation
along with the general Viterbi algorithm. We benchmark our algorithm on 487 entries
of the DynDom database and find a high agreement with the reference segmentation. In
addition, we also present a detailed analysis of various proteins that show a large variety
of conformational transitions and compare our results to other methods.
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Fig. 1 Graph-based segmentation of ADK into rigid domains. a Protein graph constructed from open and
closed conformations. b Reduced graph obtained by coarse-graining the protein graph. ¢ A line graph of the
reduced graph. d A line graph with binary vertex labels (black: — 1, white: 4 1) obtained with the generalized
Viterbi algorithm. e The injective relation between edges of the reduced graph and vertices of the line graph
allows us to also label the edges of the reduced graph. Edges having negative labels are removed resulting

in three disconnected subgraphs. f A segmented protein graph derived from disconnected subgraphs in the
reduced graph. g ADK graph with domain annotation from literature encoded by colors

Results

To validate our algorithm, we first segment conformations of Adelynate Kinase (ADK).
We then perform a benchmark on 487 proteins from the DynDom database. Finally, we
compare our method with other domain segmentation algorithms on a number of test
cases ranging from medium to large scale conformational changes.

Rigid segmentation of Adenylate Kinase

We first run our algorithm for rigid domain segmentation on Adenylate Kinase (ADK)
for which multiple experimental structures showing different conformations are avail-
able [12]. ADK catalyzes the interconversion of adenine nucleotides and is composed of
three rigid domains. By closing the NMP-binding domain and the LID domain onto the
CORE domain, ADK binds ATP and AMP which are converted to two ADP molecules.
The PDB codes of ADK open and closed conformations are 4ake and lake (both chain
A) respectively. ADK is composed of 214 amino acids which constitute the vertices of
the initial protein graph. To build the protein graph from both states, we used § = 7.5 A
as cutoff.

Figure 1 illustrates the workflow of our algorithm and intermediate results for ADK
using default values for the algorithmic parameters. Figure la shows ADK’s protein
graph in which each vertex is an amino acid; the construction of edges linking spatially
close amino acids is described in Methods. Amino acids are grouped by running the
Louvain domain detection algorithm [13] and merged into vertices of a coarse-grained
graph. In the case of ADK, the protein graph comprising 214 vertices is transformed
to a coarse-grained graph composed of 20 vertices (Fig. 1b). In the next step, we con-
struct the line graph of the coarse-grained graph (Fig. 1c). We then run the generalized
Viterbi algorithm [14] on a scoring function defined on the line graph. This results in a
binary labeling of the line graph (Fig. 1d) or, equivalently, a labeling of the coarse-grained

Page 3 of 19
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graph. Based on this labeling our method splits the coarse-grained graph into three
disconnected subgraphs (Fig. 1e). Finally, we map the unconnected subgraphs back to
the protein graph to obtain a segmentation of ADK into three rigid domains (Fig. 1f).
Our segmentation agrees strongly with the domain boundaries defined in the literature
[15], which we color-coded in Fig. 1g for visual comparison. Our segmentation deviates
from the literature annotation only in the hinge regions. This discrepancy is due to the
ambiguous membership of amino acids in the hinge region which tend to be merged
with amino acids from different domains in the coarse-graining step.

Unlike DynDom, our method also works with multiple conformational states. To study
this feature, we ran our algorithm again but on 100 ADK conformations generated by
morphing between the open and closed state [16]. The algorithm produces a similar
segmentation.

An advantage of our method is that it allows users to integrate prior knowledge to
improve the segmentation. For example, for the default parameter setting, our method
incorrectly assigned fifteen amino acids of the NMP-binding and LID domain to the
core domain. Yet with some prior knowledge about the rigid domains, we can improve
the rigid-domain segmentation. Suppose we are given ADK’s segmentation calculated
from Spectrus [6] with K = 4 (number of rigid domains). We can integrate this prior
knowledge into our model as follows. The weights of edges in the protein graph whose
vertices belong to different domains according to the prior labeling are reduced by a fac-
tor @ < 1. Here, we choose o = 0.75. This setting helps the coarse-graining process to
reduce the error of inconsistency (mentioned in the Discussion) and thus improve the
performance. We then ran our graph-based method on the new coarse-grained graph
and found that only five amino acids of the LID domain were wrongly assigned to the
core domain. Thus even imperfect prior knowledge can significantly improve the result.

Rigid segmentation benchmark

We benchmarked our method on the DynDom database [17] reduced to those pairs of
proteins whose overall RMSD exceeds 5 A. Moreover, we removed domains that span
less than ten amino acids. To evaluate our method, we use the segmentation error and
overlap defined by [8]. The overlap counts the number of matches between two segmen-
tations after solving a low-dimensional linear assignment problem that maximizes the
agreement between the two labelings. The error assesses how often two segmentations
disagree on whether a pair of amino acids belongs to the same domain. Although both
metrics differ in the details, they are highly anti-correlated.

Figure 2 shows histograms of the error and overlap between our and DynDom’s seg-
mentation evaluated on 487 proteins based on an edge cutoff value of 7.5 A. The median
error is 0.038 and the median overlap 0.972. The error and overlap histograms are highly
skewed to small and large values, respectively. For approximately 30% of the examples,
our method reaches a near perfect agreement with the annotation provided by DynDom
(overlap > 0.99). In only a few cases our method fails to produce a reasonable segmenta-
tion due to errors in the coarse-graining step and/or an indistinguishable signal derived
from the mean variance. Despite of the disagreements between our method and Dyn-
Dom, our segmentation sometimes seems to be more reasonable. We investigate the

open and closed states of human importin subunit beta-1 (PDB code 3lww, chains A and
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Fig. 2 Histogram of the error and the overlap evaluated on 487 proteins in the DynDom database

C) as an example. According to Dyndom, this protein has three rigid domains (Fig. 3a)
whose RMSDs are 6.8, 4.3, and 2.1 A, respectively. We note that the first domain found
by DynDom (dark green) is small, fragmented and shows a large RMSD. A large portion
of the second domain (dark red) is interspersed with the third domain (dark blue). Our
segmentation suggests two separate domains whose RMSDs are 2.2 and 1.0 A (Fig. 3b),
which are much smaller than the RMSDs produced by DynDom’s segmentation.

To study the impact of the edge cutoff used in the definition of the protein graph, we
ran experiments with varying cutoff values. Table 1 reports the mean and median of the
overlap and error obtained with different edge cutoff values. The overlap seems to be
largely unaffected by the specific choice of the cutoff, whereas the error drops slightly
with larger cutoffs. Two possible explanations come to our mind. First, a larger cutoff
results in protein graphs with more connections between amino acid vertices. Denser
graphs seem to be more suitable to coarse graining with the Louvain method (see Addi-
tional file 1: Figure S1 and the Discussion for a demonstration of this claim). Second,
also the coarse-grained graph will be denser with larger cutoft values, which seems to
improve the scoring of the line graph. However, because denser graphs result in larger
line graphs, we need to restrict the cutoff to smaller values to tame the computational

costs of the Viterbi algorithm.

Analysis of various structural transitions
We ran our method on various proteins studied in [8] showing different types and scales
of conformational changes. Table 2 provides the protein name, size and PDB code; Fig. 4
shows a summary of the segmentation analysis. First, we study and compare the perfor-
mance of our algorithm (graph-based method) to other methods by analyzing protein
complexes that undergo large-scale conformational changes.

Pyruvate phosphate dikinase (PPDK) is a large biomolecular complex that catalyzes
the reversible conversion of PEP, AMP, and P; to pyruvate and ATP [18]. We apply our
graph-based method to two PPDK structures and compare the segmentation to the
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Fig. 3 Protein graph of human importin subunit beta-1 protein. a Segmentation suggested by DynDom:
three rigid domains colored in dark green, red and blue. b Segmentation estimated by our method: two rigid
domains colored in light green and blue

Table 1 Performance of the graph-based algorithm for different edge cutoffs evaluated
on the DynDom benchmark

Cutoff (A) Metric
Median overlap Mean overlap Median error Mean error
75 0972 0924 0.038 0.086
10.5 0977 0.924 0.034 0.083
135 0972 0926 0.033 0.081

annotation found in the literature [18] and by other methods such as Spectrus, DynDom
as well as Nguyen&Habeck2016 [8]. Our segmentation agrees strongly with the segmen-
tation provided by DynDom, but fails to detect the additional domain reported in the
literature and by [8]. Typically, our method produces a smaller number of domains than
reported in the literature, because we only take changes in a few structural snapshots
into account and no additional experimental information. For K = 3, Spectrus agrees
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Table 2 Proteins in different scale conformational changes involved in the assessment

Protein PDB code Chain ID Size

PPDK Tke7 A 872
2r82 A

T7 RNA polymerase 1gln A 842
Tmsw D

GroEL Taon A 524
Taon H

Aspatate aminotransferase 9aat A 401
Tama A

Alcohol dehydrogenase Tadg A 374
20hx A

strongly with the segmentation found by our graph-based approach except for the first
domain, which is significantly larger according to Spectrus.

T7 RNA polymerase is involved in the initiation and elongation of RNA transcription.
Our segmentation is highly consistent with the results from DynDom, [8] and the anota-
tion from the literature [19]. Spectrus fails to identify the refolding loop inserted in the
N-terminal domain.

The chaperonin GroEL [20] provides a shielded environment to assist protein folding
and prevent aggregation. For this example, all methods provide very similar segmenta-
tion results.

We also benchmark our method on proteins undergoing medium-scale structural
transitions. Aspartate aminotransferase (AST) is an enzyme involved in amino acid
metabolism that catalyzes the reversible transfer of an a¢-amino group between aspartate
and glutamate [21]. For this example, we find a high agreement between our method
and other segmentations. Another example is the enzyme Alcohol dehydrogenase (AhD)
that decomposes alcohol into aldehyde. Our graph-based segmentation agrees strongly
with the result from DynDom. Spectrus achieves its maximum score for K = 3 domains,
but introduces an additional domain compared to the other methods. For K = 2, the
score is lower, but Spectrus’ segmentation is more consistent to DynDom and our result.

Discussion

Our results demonstrate that segmentation of protein conformations into rigid domains
can be achieved with a graph-based algorithm that solves the rigid segmentation prob-
lem with an edge-labeling strategy. Let us discuss the key features of the algorithm and
the impact of algorithmic parameters. To measure the efficiency of the graph construc-
tion and coarse graining, we use a metric that we call inconsistency error. The inconsist-
ency error quantifies the heterogeneity of clusters weighted by their size. Let G = (V, £)
be a graph composed of N = |V|vertices v; € V with labels o; and C = {Cy} a partition of
the vertices into clusters C; C V obtained by coarse graining. We define the inconsist-
ency error of the coarse graining procedure as error(C|G) = 2261( eC %‘l%
which is the average number of labeling mismatches within each cluster weighted by

cluster size.
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Fig.4 Analysis of several proteins undergoing conformational changes on a variety of scales. Large-scale
conformational changes: pyruvate phosphate dikinase, T7 RNA polymerase, GroEL. Medium-scale

conformational changes: Aspartate aminotransferase, Alcohol dehydrogenase. For each protein, the
segmentation found by different methods and in the literature are shown. Same color means same domain

We first study different ways to construct a protein graph from multiple conforma-
tions. There are many reasonable options for constructing a protein graph. For example,
one possibility is to create an edge if the distance between two vertices is smaller than a
cutoff in at least one conformation, and to assign as a weight the number of such con-
formations. Another possibility (detailed in Methods) is to create an edge if its distance
is smaller than the cutoff in all conformations, and to weight the edge by the reciprocal
exponentiated variance computed over all conformations (such that low-variance edges
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have a weight close to one and large-variance edges are assigned small weights). Addi-
tional file 1: Figure S1 demonstrates that the second graph construction rule consist-
ently outperforms the first rule based on the inconsistency error. We therefore used the
second rule in our benchmark calculations. In addition, we tested different values of the
edge cutoff distance and noticed a minor, but not significant improvement of the incon-
sistency error for larger cutoff values.

We also studied various options for the coarse-graining step. In all tests, we used
the Louvain algorithm for fitting Potts models [13] for coarse graining. The resolution
parameter was adjusted so as to produce about 20 clusters of medium size. Too large
clusters risk to merge amino acids from hinge regions and thus the inconsistency error
is expected to increase. Too small clusters will tend to show a smaller inconsistency
error at the cost of lowering the significance of the mean variance between two clusters.
Large graphs will pose a computational challenge in the Viterbi step, because the num-
ber of vertices of the line graph grows quadratically with the number of vertices in the
original graph. By using our coarse-graining strategy, we save computational resources
and enhance the signal as shown in Additional file 1 (see second section and Additional
file 1: Figure S2).

Moreover, we ran our algorithm on Lysozyme [22], an enzyme contributing to the
innate immune system, to investigate if this graph-based algorithm could produce a
reasonable segmentation given several actual conformations. In this study, we use 100
conformations of Lysozyme whose PDB codes can be found in the Supplementary Infor-
mation. To account for minor differences in the protein sequences, we align all proteins
with Clustal Omega Alignment (https://www.ebi.ac.uk/Tools/msa/clustalo/). Our seg-
mentation on Lysozyme completely agrees with Spectrus [6] and Nguyen&Habeck2016
[8] where all methods suggest two domains whose RMSDs are 1.6 and 4.9 A, respectively.

Our method is also applicable to study rigid domains in membrane proteins. For
instance, the chemokine receptor CCR5 [23] located on the surface of white blood cells
plays an important role in the immune system. Here, we consider various conforma-
tional states of CCR5 (PDB codes: 6aky_A, 4mbs_A, 6akx_A, 5uiw_A). The sequences
of these four conformational states were aligned with Clustal Omega [24, 25]. Our seg-
mentation finds a small (51 amino acids 223-253) and a big (286 amino acids 1-222 &
254-337) rigid domain whose RMSDs are 0.6 and 1.6 A, respectively. This segmentation
is stable against variations in the rigidity threshold and does not require the execution
the merging procedure. When we reduced the threshold to define the protein graph to
4.5 A, we obtained two different domains: a small domain (amino acids 193-246) and a
large domain (amino acids 1-192 and 247-337) whose RMSDs deteriorated to 2.7 and
3.0 A, respectively.

To avoid duplication of features involving vertices and edges, we modify the construc-
tion of the line graph by discarding an edge if its two end vertices are connected as well.
That way, features extracted from edges add new information. Finally, we use a merging
routine with heuristic criteria to merge two domains. One may ask if we could skip the
labeling step (Viterbi algorithm) and apply the merging routine directly to the clusters
found by coarse graining. This simplified version of our algorithm achieves good results
on proteins showing a large-scale movement, but fails on more subtle cases. Overall,
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post-processing via the merging procedure compensates for segmentation errors involv-
ing small fragments.

The running time of our algorithm depends on the size of the protein, the density of
the protein graph, and the rigidity of the conformational change. Additional file 1: Figure
S3 shows the relationship between protein size and the running time of our graph-based
segmentation algorithm. We note that the running time for proteins smaller than 800
amino acids grows slowly in a linear fashion. For the larger proteins, it seems to grow
quadratically. There are a few outlier proteins whose running time is significantly longer
than for proteins of similar size.

Indeed, the running time strongly depends on how often the Viterbi algorithm is exe-
cuted in the recursion and how quickly a big, non-rigid graph is segmented into several
subgraphs. The worst scenario occurs when many Viterbi calculations are required for a
protein with densely connected protein graph and with a high degree of flexibility such
as intrinsically disordered proteins [26]. In these problematic cases, the signal derived
from the mean-variance metric fails to distinguish the labels of inter/intra vertices and
edges in the line graph.

Other segmentation methods and ours all require 3D protein structures which are not
always available. In our graph-based framework, we may resolve this shortcoming by
estimating a protein graph as follows. First, from a given protein primary sequence, we
may use its protein contact map predicted, for example, by AlphaFold [27] to construct
a protein graph. Second, due to the absence of 3D protein structures, the rigidity estima-
tion could not base on RMSD but rather on another quantity which could be inferred
directly from the protein contact map. Final, the rest of the graph-based method is
unchanged and still applicable with above predicted protein graph.

Conclusion

We present a new algorithm to characterize structural transitions in proteins. Our
graph-based algorithm constructs a graph from a set of protein conformations and
detects rigid domains via an edge labeling strategy. A key feature is that the number of
rigid domains is determined automatically. Yet the algorithm allows users to relax the
rigidity definition of domains and thereby increase or decrease the number of rigid
domains. Segmentations produced by our algorithm agree strongly with segmentations
found by other methods such as DynDom [3, 28] and Spectrus [6] on various medium to
large scale structural transitions.

Our approach has several advantages over other rigid segmentation methods. First,
there is no limitation on the number of protein conformations. In fact, a larger number
of conformations should result in a better signal and thereby a superior performance of
the algorithm. Second, by using the graph-based model along with a binary labeling of
edges, we overcome the need to choose the number of rigid domains, which is neces-
sary for many of the existing methods. Moreover, our method performs well with default
parameter settings, which saves the user from parameter tweaking. Another appeal-
ing aspect of our method is that it can be used to produce a good initial segmentation
for other segmentation algorithms. For instance, the Nguyen&Habeck2016 method [8]
requires a good initial guess of the rigid-domain segmentation which could be provided
by our graph-based method. Finally, our graph-based framework is quite flexible in that
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it allows us to integrate into the scoring function additional information such as the
location of hinges or a prior segmentation.

Methods

We organize the “Methods” section as follows. First, we present the notation used
throught the Methods section. Next, we describe several steps in our approach such as
the coarse-graining algorithm used to reduce the graph size, a line graph transformation
that enables inference of edges’ labels , and an outlier-detection method that we use to
define features on the line graph. Moreover, we explain our method from the perspective
of conditional random fields (CRFs) as well as our objective function for labellings of the
line graph. Finally, we present pseudo code for our algorithm as well as a post-processing
procedure.

Notation

Our algorithm aims to infer a rigid-domain segmentation from M > 1 conformational

states of a protein. Each conformational state is encoded by a N x 3 matrix X € RNV*3

whose rows are the 3D coordinates of representative atoms (typically Co atoms), i.e.
™ is the position of the nth atom in the mth conformation. Every conformational state

gives rise to a symmetric N x N distance matrix D"
DY = 1X = X" (k1=1,2,...,N), 1)

where|| - || denotes the Euclidian norm.
We encode the conformational variability across all M structures through a protein

graph
PG =V, (2)
whose vertices V are the representative atoms {1,2,...,N}. An edge between atoms £, [

belongs to the edge set £ if and only if

X DT 53 ®
where § is a cutoff distance. Viloria et al. [29] suggest a cutoff distance of 5 A as opti-
mal value for molecular dynamics simulations. In contrast, HingeProt [9] uses 13 A as
a cutoff to construct a network. Our choice of the cutoff distance is inspired by elastic
network models [30], which also encode protein structures as graphs. We ran tests with
various cutoff values § = 7.5, 10.5 and 13.5 A. We assess the rigidity of a subset S C V
through

-1

2 M
RMSD(S) i= ———— Z

= RMSDg (X, x ")
MM —1) 5( ) (4)

1

e

m=1 m’

where RMSDg (X m X (’”/)) is the root mean square deviation (RMSD) [31] between

conformations X and X" reduced to atoms in S. A subset S is rigid if and only if
RMSD(S) < 6. The rigidity threshold 6 depends on the heterogeneity of the
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conformational states. RigidFinder [5] probes every cutoff between 1.0 and 6.0 A. We
typically set & = 3.5 A in our tests on the DynDom benchmark [28].

Coarse graining of the protein graph

Rigid domains form densely connected subsets of nodes in the protein graph. To reduce
the size of the protein graph, we run the Louvain algorithm [13, 32, 33] that partitions
the nodes V into communities. The parameters of the Louvain algorithm are chosen
such that the communities

« are small enough to include, with a few exceptions, amino acids that are part of the
same rigid domain (i.e. criterion (Eq. 4) is met for every community);
« are large enough to enable the inference of vertex labels (Eq. 9).

If C is a partition found by the Louvain algorithm, the coarse-grained graph
CG =(CV,C&) (5)

links two communities ¢; and ¢ (c1, ¢2 € C) by an undirected edge (c1, ¢p) € CE if at least
one pair of amino acids a; € c¢1, a3 € cy is linked in the protein graph: (a;,a2) € £. In this
context, we use the expressions “vertex in the coarse-grained graph” and “community”
interchangeably.

The mean variance of all distances between two communities ¢j and ¢ is defined by

1
———— X
lexlle2| (M — 1)

M L M / 2 (6)
YT Y (Ds:szn L ZD2T22> |

ajEecy arecy m=1 m'=1

Ep(cr,c) i=

The mean variance is a key quantity of our method. For better readability we skip the
subscript when it does not lead to misunderstandings.
We also use RMSD (CG) to denote the root mean square deviation calculated from the

protein graph of CG according to Eq. (4).

Line graph transformation
Given an undirected graph with defined sets of vertices and edges, its line graph trans-
formation is a graph whose vertices are the edges in the original graph [34]. Two vertices
in the line graph are linked if and only if their corresponding edges in the original graph
are incident (share a common vertex).

In this study, we apply the line graph transformation to the coarse-grained graph with
a small modification. This transformation is an intermediate step that allows us to utilize
the generalized Viterbi algorithm to infer binary labels of edges in the coarse-grained
graph. The line graph derived from the coarse-grained graph is denoted as:

LG(CG) = (LV, LE) (7)

where the edges of the coarse-grained graph become the nodes of the line graph, or
LY = CE. Two vertices are linked if and only if their two corresponding edges in the
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coarse-grained graph are incident and the two end nodes are not connected. Formally,
we denote two adjacent vertices v; = (co,¢1) and vo = (co, c3) where vi,vo € LV, and
¢o, 1, ¢c2 € CV. In this notation, we call ¢y as a common vertex/node between v; and v,
while ¢, ¢z are end nodes. We create an edge e = (v, v9) € LE if and only if ¢g is a com-
mon node and (cy, ¢2) ¢ CE.

Additionally, we define the mean variance of a vertex v in the line graph £ (v) according
to Eq. (6) evaluated on both communities linked by v. Similarly, the mean variance of an
edge e in the line graph is denoted by &(e) and defined via the same equation applied to
the end nodes of e.

Outlier detection

The bigger the mean variance of a line graph vertex, the more likely is it that the corre-
sponding communities belong to two different domains. Likewise, the end nodes of an
edge tend to belong to different domains if the mean variance is large. However, it is not
obvious how to define a mapping that is valid across a diverse set of proteins.

Motivated by these observations, we denote by an inter/intra vertex a line graph node
linking two communities that are part of different domains/the same domain, respec-
tively. Similarly, a line graph edged is an inter edge if its end nodes belong to different
rigid domains; otherwise it is an intra-domain edge. We note that the mean variance of
inter/intra vertices or edges follow two different but overlapping distributions. Both dis-
tributions can be modeled with inverse gamma distributions whose parameters can be
estimated with expectation maximization (EM). However, we obtained very poor results
with this approach due to the small number of inter vertices/edges. Therefore, we only
consider the distribution of values from intra vertices/edges and treat values of inter ver-
tices/edges as outliers.

To identify outliers, we use the algorithm developed by [35] that detects outli-
ers based on the distance from its median normalized by the median absolute devia-
tion (MAD) [36]. MAD is a measure of dispersion estimated via the median of absolute
deviations from the median of the data. We consider a line graph G = (V, ) with P
vertices v; € V (i =1...P) and Q edges ¢; € £ (j =1...Q). Without loss of general-
ity, we enumerate the line graph vertices such that elements in the array of mean vari-
ances Ayertex = [E(v1),E(V2),. .., E(vp)] are sorted in ascending order. Correspondingly,
Aedge = [S (e1),€(e2),..., & (eQ)] is the array of mean variances of all edges indexed such
that their mean variance increases. For both arrays, we define a binary outlier indicator
y € {—1,+1})

_ . J -1 ifvisanoutlier in Ayerex;
J/(V|-Avertex) =Yy = { +1 otherwise.

and

_ . ._ | =1 ifeisanoutlierin A.ge;
J/(€|Aedge) = Ve = { +1  otherwise.

When the ascending mean variance arrays of vertices and edges are unambiguous in the
given context, we omit the array and indicate whether we are considering vertex or edge
arrays by the subscript.
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Outliers are characterized by a mean variance that is larger than any other mean vari-
ance. The set of outliers can be enlarged by including non-outliers located at the end
of the array. By such expanding, it is important to notice that the indices of outliers are
always bigger than ones of non-outliers.

A short introduction into CRFs
Let us consider a graph G = (V, £) whose nodes we call sites and V = {1, 2, ..., N} with-
out loss of generality. Sites are labeled by elements of the finite set 5. Words of length £
over the finite alphabet O are called observations. £ is the set of edges in the site graph
G. The neighborhood A; C V of site i € V consists of all sites j € V,j # i that are linked
to i by an edge in A/ and i ¢ \;. For every label sequence y € BN and subset I C V), y,
denotes the partial labeling of sites in I: y; := {(i,y;) | i € I}. Additionally, for everye € &,
¥, denotes the labels of two vertices of e and y is the labels of all vertices in a graph G.
A pair (X,Y) composed of a random observation X € ON and a random label
sequence Y € BN realizes a feature-based exponential model if the conditional probabil-
ity p (y|x) of all pairs (x, ) is

[4

1 S
POle) = e | > > o |, (8)

s=1 |I|=s

where

4

Z(x) = Z exp Z Z \Il(s)(y},x)

yeBN s=1 |I|=s

Y _j1|=s denotes a sum over all cliques I of size s in G; ¢ is the maximum clique size. For
every clique size s < ¢, the function W (y,, ) is the feature of cliques of size s. Under
very weak assumptions the feature-based exponential models coincide with the class of
conditional random fields where at every site i the label is conditionally independent of
the labels outside ; given the observation and the labels of .

The labeling problem is solved by computing a labeling sequence

* o

y = ary%r;l;x pOlx) )
that achieves maximum posterior probability (MAP prediction). In general, MAP pre-
diction is NP-hard. The generalized Viterbi algorithm detailed in [14] is able to make the
inference for an arbitrary graph, yet has an exponential running time according to the
boundary set of a graph. Only if the underlying site graph is small enough, it can be used
within a feasible time bound.

Label inference via the generalized Viterbi algorithm

A shortcoming of existing rigid-domain detection methods such as [6, 8, 28] is the
requirement to specify the number of rigid domains which is often unknown. To over-
come this issue, we use the generalized Viterbi algorithm to infer a binary labeling which
indicates if a pair of nodes in the coarse-grained graph belongs to identical or different
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rigid domains. It is important to note that we need to infer the binary labels of edges in
the coarse-grained graph, whereas the Viterbi algorithm estimates optimal vertex labels.
Thus, it is not suitable to directly apply the Viterbi algorithm to the coarse-grained
graph. Instead, we apply the generalized Viterbi algorithm on a line graph derived from
the coarse-grained graph. This gives us a binary labeling of line graph vertices, which
equivalent to a binary labeling of edges in the coarse-grained graph.

Thus, we consider a line graph as a site graph described above. In a pairwise CRF, one
only considers cliques formed by vertices and edges. Consequently, Eq. (8) can be rewrit-
ten as

pOWV.E) ~exp | D WPy + > D0,y ,,) (10)

vey (Vl,Vz)E:‘:

where W™ and W are the feature functions defined on vertices and edges respectively.
The term Z(x) can be ignored because it is not a function of y. As a convention, we call
p 0|V, E) “unnormalized probability” or “scoring function” interchangeably.

In our rigid domains detection problem, we define a feature function for a vertex v
along with its label y, by

VD ,y) =ny,. (11)

This function will reward labeling y, that coincide with the outlier indicator value.

Given an edge e = (v1,v2) € &£, we define a feature function on e and its predicted label
¥, by distinguishing three cases:

Case “Two values among Ve, Yv,» Vv, are equal to —17 In this case, the egde feature
rewards an agreement between the predicted vertex labels y, and the outlier indicators:

+1 ify, v +¥,¥v2 =2

—1 otherwise. (12)

VP (e,y,le = (v1,12)) := {
Case “y,, = y», = +1” seems to indicate that three nodes of v; and v, (a common vertex
and two end nodes) belong to the same rigid component. However, the vertex shared by
the two edges may be part of a hinge region between two rigid components. This is likely
to occur if the mean variance value of the edge is outlier, or “y, = —1" If this is the case,
we have to decide to which component the hinge node belongs. This decision is based on

a comparison between £(v;) and £(v7). Thus, U@ becomes:

U@ (e,y,le = (v1,v2))

+1 ify, = -1y, =+l .= —1land§, > &,;

+1 ify, =+Ly,, = -1l ve=—land§, <§,; (13)
=49 +1 ify, =y, =+landy. = +1;

0 ifyvlyv2 =-lLy.=-1 and SV] = évZ;

—1  otherwise.

For any other combination of y,, v, and ye, we set

U@ (e,y,) =0 (14)
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In all three cases above, labelings are rewarded by setting W to 41, penalized by setting
W@ to —1and ignored by setting ¥'® to 0.

Hence, for any labeling of the line graph G, the generalized Viterbi algorithm computes
its unnormalized probability (Eq. 10) via Egs. (11)—(14) and thus gives us the most prob-
able labels of G.

Graph-based prediction of rigid domains
This subsection provides pseudo code for our graph-based prediction of rigid domains
in proteins. We denote the rigidity threshold as 6 (typically 3.5 A).

0+ 3.5
PG = (PV,PE) « X m =1..M: a protein graph is constructed from
multiple conformations.
CG = (CV,CE) « a coarse-grained graph is obtained by running the Louvain
algorithm on PG
function SEGMENT(CG)
Final_List + []: an empty list containing segmented subgraphs
if RMSD (CG) > 6 then
LG = (LV,LE) < CG : aline graph is constructed from the coarse-grained
graph
Yrg & Viterbi(£G) : the most probable labels of the line graph £G are
computed with the gneralized Viterbi algorithm
Yecccg < Yrg : trace back labels of edges in the coarse-grained graph from the
labels of vertices in the line graph
[CG1,..,COK] < Ye.cecg : Obtain K disconnected subgraphs by removing
negative labels of edges in the coarse-grained graph CG
if K > 1 then
for each g € [CG4,..,CGk] do
if RMSD (g) > 0 then
Run Segment(g)
else
Final_List.add(g)
end if
end for
else
if CG; # CG then
Run Segment(CG;)
else
Relax the outlier detection by enlarging the set of outliers toward the top 5%
biggest values of non-outliers
Run Segment(CG) with the new set of outliers
end if
end if
else
return CG
end if
return Final_List
end function

There is no guarantee that this algorithm always converges. However, we experienced
fast convergence within a few iterations in most of our experiments. We also added a
limitation on the number of recursions. The final result of our algorithm is a list of dis-
connected subgraphs of the coarse-grained graph.
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Finalizing rigid-domain segmentation
Our graph-based method for rigid-domain detection described in the Sect. 5.6 produces
a list of disconnected subgraphs of the reduced graph. we can trace back the subgraphs
to the corresponding protein subgraphs and thus obtain a list of disconnected protein
graphs.

Let S = {51,852, ..., S} be a mutual exclusive partition of the protein graph PG. Our
merging algorithm works as follows:

Merging Algorithm
RMSD () +RMSD (5;)
val < max
5,.8;€s  RMSD(suUs;)

while val > 1 do

{D.,D.} + argmax RMSD (D) +RMSD (D)
n (p.Dyes  RMSD(DuDY)

D, + D.UD,

Remove D, from S

val - max  FMSD (p)+rMsD (D)
{D,D/i(es RMSD (DUD')

After termination of the Merging Algorithm, S is returned as rigid-domain prediction.
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IT and their varying cutoff values respectively.



2 Signal enhancement by coarse graining

As in the Methods and Discussion sections, let G = (V, ) denote a graph and
LG = (LV, LE) the line graph derived from G. For each vertex v = (vg,v1) €
LY (vg,v1 € V), £(v) = &(vo,v1) is the mean-variance of v according to the
Equation (6) in the Methods section. The label of v is 0, = +1 (intra-vertex) if
Oyy = 0y, and —1 (inter-vertex) otherwise. For each edge e = (v, v, v,) € LE
(1, Vm, Up € V5 (U1, 0m), (U, vr) € € & (v,v,) ¢ E), its mean-variance £(e) =
&(vy,v,) is calculated as above. The label of an edge in the line graph is o« = +1
(intra-edge) if o,, = 0y,., and —1 (inter-edge) otherwise.

The performance of the CRF scoring function depends on how well the values
of mean-variance of inter and intra-vertices/edges separate in the line graph. We
assess this separability by the mean of the area under the ROC curve (AUC)
through the line graphs derived from the protein graph and from the coarse-
grained graph.

With the thresholding of the mean-variance as a classifier, the Panels S2.A
and S2.B show that inter and intra-vertices/edges in the line graph derived from
the coarse-grained graph significantly achieve bigger separability than the ones
in the line graph derived from the protein graph. Therefore, the coarse-graining
process does not only reduce the graph size, but it also enriches the information
represented by the mean-variance.
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Figure S2: Histograms of area under the ROC curve (AUC) evaluated on 487
proteins in the DynDom dataset. (A) Histograms of AUC calculated from the
inter and intra-vertices in the line graphs derived from the protein graph(blue
histogram) and from the coarse-grained graph (red histogram). (B) Histograms
of AUC calculated from the inter and intra-edges in the line graphs derived
from the protein graph(blue histogram) and from the coarse-grained graph (red
histogram).



3 Lysozyme protein

PDB codes used in the study
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4 Running time
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Figure S3: Protein size versus running time (measured in seconds) evaluated
for 487 proteins selected from the DynDom database.
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Abstract: The knowledge of protein-DNA interactions is essential to fully understand the molecular
activities of life. Many research groups have developed various tools which are either structure- or
sequence-based approaches to predict the DNA-binding residues in proteins. The structure-based
methods usually achieve good results, but require the knowledge of the 3D structure of protein;
while sequence-based methods can be applied to high-throughput of proteins, but require good
features. In this study, we present a new information theoretic feature derived from Jensen-Shannon
Divergence (JSD) between amino acid distribution of a site and the background distribution of
non-binding sites. Our new feature indicates the difference of a certain site from a non-binding site,
thus it is informative for detecting binding sites in proteins. We conduct the study with a five-fold
cross validation of 263 proteins utilizing the Random Forest classifier. We evaluate the functionality
of our new features by combining them with other popular existing features such as position-specific
scoring matrix (PSSM), orthogonal binary vector (OBV), and secondary structure (SS). We notice that
by adding our features, we can significantly boost the performance of Random Forest classifier, with
a clear increment of sensitivity and Matthews correlation coefficient (MCC).

Keywords: entropy; Jensen-Shannon divergence; Random Forest; DNA-binding sites

1. Introduction

Interactions between proteins and DNA play essential roles for controlling of several biological
processes such as transcription, translation, DNA replication, and gene regulation [1-3]. An important
step to understand the underlying molecular mechanisms of these interactions is the identification of
DNA-binding residues in proteins. These residues can provide a great insight into the protein function
which leads to gene expression and could also facilitate the generation of new drugs [4,5].

Until now, several groups have published different studies based on either experimental
or computational identification of DNA-binding proteins [1,6-11] as well as residues in these
proteins [12-23]. However, the usage of experimental approaches for the determination of binding
sites is still challenging since they are often demanding, relatively expensive, and time-consuming.
To overcome the difficulty of experimental approaches, it is highly desired to develop fast and
reliable computational methods for the prediction of DNA-binding residues. For this purpose, several
state-of-the-art prediction methods have been developed for the automated identification of those
residues. Such methods can be assigned into two main categories: (i) based on the information
observed from structure and sequence in a collective manner; (ii) based on the features derived directly
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from the amino acid sequence alone (for more detail see reviews [24] and [25]). Although the first
type of approaches provides promising information about DNA-binding residues in proteins, their
application is difficult due to the limited number of experimentally determined protein structures.
In contrast to structure-based approaches, sequence-based methods have been developed by extracting
different sequence information features, like amino acid frequency, position-specific scoring matrix
(PSSM), BLOSUMS62 matrix, sequence conservation, etc. [3,4,18,19,26,27]. Using these features, several
machine learning techniques have been applied to construct the classifiers for the prediction of
binding residues in proteins. To this end, a variety of support vector machine (SVM) classifiers have
been developed in recent studies [2,17-19,23,26,28]. For example, Westhof et al. have recently used
an SVM classifier approach in their study, named RBscore (http://ahsoka.u-strasbg.fr/rbscore/),
by using the physicochemical and evolutionary features that are linearly combined with a residue
neighboring network [2]. Further, SVM algorithms were also applied for the models proposed in
BindN [18], DISIS [19], BindN+ [23], DP-Bind [27] using different sequence information features
including the biochemical property of amino acids, sequence conservation, evolutionary information
in terms of PSSM, the side chain pKa value, hydrophobicity index, molecular mass and BLOSUM62
matrix. In addition, other machine learning classifiers such as neural network models [13,15], naive
Bayes classifier [26], Random Forest classifiers (RF) [4,29,30] have been developed based on the
features derived from protein sequences. For example, Wong et al. [29] have recently developed a
successful method using RF classifier with both DNA and protein derived features to predict the
specific residue-nucleotide interactions for different DNA-binding domain families.

Despite the rich literature on the sequence-based methods as mentioned above, to date there
is still a need to find suitable feature extraction approaches that can enhance the characteristics of
DNA-binding residues and thus help to improve the performance of existing methods for identification
of DNA-binding residues in proteins. For this aim, we introduce and evaluate a new information
theory-based method for the prediction of these residues using Jensen—-Shannon divergence (JSD).
As a divergence measure based on the Shannon entropy, JSD is a symmetrized and smoothed
version of the Kullback-Leibler divergence and is often used for different problems in the field
of bioinformatics [31-35]. In this study, following the line of Capra et al. [34] we first quantify the
divergence between the observed amino acid distribution of a site in a protein and the background
distribution of non-binding sites by using JSID. After that, in analogy to our previous studies
QCMF [32] and CMF [36], we incorporate biochemical signals of binding residues in the calculation of
JSD that results in the intensification of the DNA-binding residue signals from the non-binding signals.

To demonstrate the performance and functionality of our proposed approach, we apply Random
Forest (RF) classifier using our new JSID based features together with three widely used machine
learning features, namely position-specific scoring matrix (PSSM), secondary structure (SS) information,
and orthogonal binary vector (OBV) information (see review [24]). Our results show that using
JSID based features, RF classifier reaches an improved performance in identifying DNA-binding
residues with a significantly higher Matthews correlation coefficient (MCC) value in comparison
to using previous features alone. Although we only applied RF classifier in this study, both of
our sequence-based features could be used in other classifiers such as SVM, neural networks,
or decision trees.

2. Results

In this study, we introduce new sequence-based features using JSID to improve the performance of
previous machine learning approaches in identification of DNA-binding residues in proteins. For this
purpose, we propose new sequence-based features (fysp and fysp.) using JSD in two different ways.
First, using JSD, we calculate the divergences between observed amino acid distributions in multiple
sequence alignments (MSAs) of proteins under study and the background distribution which is
calculated according to amino acid counts at non-binding residue positions in MSAs. In the second
step, we transform the observed amino acid distributions with a doubly stochastic matrix (DSM) to
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enhance the weak signal of binding sites in proteins which could not be predicted in the first step.
Finally, we calculate for each residue in proteins JSID-based scores and use them for the improvement
of the performance of machine learning approaches.

To evaluate our new features, we use two frequently considered cut-off distances of 3.5 A and
5 A and thus define a residue in a protein as DNA-binding if the distance between at least one atom on
its backbone or side chain and the DNA molecule is smaller than the considered cut-off.

The Results section of this study comprises of two parts. First, we investigate the functionality of
our new features combining them in Random Forest (RF) classifier with three previous features. The RF
classifier is constructed from 4298 positive and 44,805 negative instances extracted from 263 proteins.
The performance of the classifier is evaluated using a five-fold cross validation procedure in which we
randomly divided the samples into five parts. The assessment is performed by choosing each of these
parts as a test set and the remaining four parts as a training set for model selection. Second, to illustrate
the usefulness of our new approach for the prediction of DNA-binding residues, we analyzed the
proto-oncogenic transcription factor MYC-MAX (PDB-ID: 1INKP) which is a heterodimer protein
complex of two proteins. It is important to note that this protein complex is not included in the
training dataset.

2.1. Random Forest Classifier

To apply the Random Forest (RF) classifier, we combine our new features (fjsp and fygp.¢) with
the features fpssv, fopy, and fsg which are widely used for the prediction of DNA-binding residues.
Our results show that using our features RF classifier reaches an improved performance in identifying
DNA-binding sites with clearly higher statistical values (see Tables 1 and 2). Moreover, we individually
evaluated the combination of our features with existing features. The results suggest that the classifier
with fysp.¢ feature has provided better sensitivity and comparable Matthews correlation coefficient
(MCC) values in comparison to fgp feature. However, its specificity is moderately decreased. A further
comparison reveals that the usage of our both features together with other features does not affect the
performance of the classifier. The details are presented for 3.5 A in Table 1 and for 5 A in Table 2 and in
Appendix A with the standard error of each of the performance measures over the values obtained in
the five iterations (see Tables A1 and A2).

Table 1. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 3.5 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity = Specificity MCC AUC-ROC AUC-PR
fpssm 0.292 0.963 0.307 0.777 0.313
fpsam + fsp 0.385 0.949 0.349 0.795 0.369
fpssm + FIsD-t 0.41 0.939 0.35 0.802 0.377
fpssm + fsp + FIsD-t 0.414 0.94 0.348 0.800 0.376
fpssm + fss 0.339 0.958 0.334 0.794 0.338
fpssm + fss + fysp 0.416 0.95 0.378 0.808 0.390
fPSSM + fss + fJSD—t 0.441 0.94 0.372 0.817 0.401
fossm + fas + Fisp + FIsDet 0.439 0.94 0.37 0.814 0.399
fPSSM + fOBV + fss 0.367 0.968 0.398 0.838 0.413
fPSSM + fOBV + fss + fJ]S]D) 0.422 0.958 0.409 0.837 0.425
fpssm + fopv + fss + fsp-t 0.447 0.95 0.403 0.841 0.431
fPSSM + fOBV + fss + f,J]S]D) + fJS]D)—t 0.444 0.947 0.393 0.835 0.423

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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Table 2. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 5.0 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.286 0.966 0.350 0.778 0.425
fpssm + FIsp 0.395 0.95 0.407 0.801 0.487
fpssm + fIsD-t 0.418 0.943 0.411 0.807 0.494
fpssm + fysp + fsD-t 0.426 0.942 0414 0.807 0.497
fposm + fss 0.334 0.963 0.386 0.796 0.455
fPSSM + fss + fJS]D 0.424 0.951 0.436 0.814 0.513
fpssm + fss + Fspt 0.448 0.944 0.438 0.820 0.520
fPSSM + fss + fJg]D) + fJS]D-t 0.445 0.944 0.434 0.819 0.521
fPSSM + fOBV + fss 0.337 0.975 0.431 0.830 0.517
fosem + fomv + fss + fsp 0.419 0.958 0.450 0.832 0.535
fPSSM + fOBV + fss + fJ]S]D)—t 0.439 0.952 0.453 0.836 0.539
fPSSM + fOBV + fss + f,]]S]D) + f,HS]D)—t 0.442 0.949 0.445 0.832 0.535

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

To further investigate the performance of JSID-based features proposed in this study, we analyzed
two additional datasets, namely RBscore [2] and PreDNA datasets [37]. Although the RBscore
and PreDNA datasets initially contain 381 and 224 DNA-binding proteins, respectively, we have
eliminated a few proteins since they are either included in our training dataset or ineligible due to
their MSAs. Consequently, we constructed RF classifier using 263 proteins (which were also used
for cross-validation) and randomly selecting 60 proteins from each dataset for testing, respectively.
The results of these analyses consistently suggest that our new features show great complementary
effect to the previous features which often leads to clear improvement of the classification performance
(see Tables 3 and 4). The detailed performance of classifier on different features using different cut-offs
for each dataset can be found in Appendix A (see Tables A3-A6).

Considering the AUC-ROC and AUC-PR as the only evaluation factor, results indicate that the
RF classifier often achieved its best performance based on both cut-off distances if we combine our
new fysp.¢ feature together with the existing three features (see Tables 1-3). Interestingly, by analyzing
the PreDNA dataset we observed that RF classifier with fjgp or fjsp. features for the cut-off of 3.5 A
showed similar performance. However, regarding to the distance cut-off of 5 A, the classifier with fjsp
feature reached slightly better performance than those with fygp.. feature (see Table 4). After looking at
the overall performances, it is inferred that adding our new features can boost the performance of the
RF classifier in terms of AUC-ROC and AUC-PR.

Table 3. Prediction performance of Random Forest (RF) classifier on RBscore dataset using different
distance cut-offs.

Cut-Off Feature Sensitivity  Specificity MCC AUC-ROC AUC-PR

fPSSM + fOBV + fss 0.517 0.976 0.534 0.896 0.528

3.5 A fPSSM + fOBV + fss + fJ]S]DJ 0.58 0.967 0.54 0.907 0.543

: fpssm + fopy + fos + fismet 0.612 0.963 0.546 0.910 0.551
fPSSM + fOBV + fss + fJ]S]D) + fJSD—t 0.601 0.962 0.531 0.909 0.546

fPSSM + fOBV + fss 0.499 0.98 0.584 0.895 0.641

5.0 A fPSSM + fOBV + fss + f.]]S]D) 0.57 0.968 0.595 0.908 0.661

: fPSSM + fOBV + fSS + f.]]S]D)-t 0.592 0.965 0.60 0.908 0.665
fPSSM + fOBV + fss + f.]]S]D) + f,]]SID)—t 0.594 0.964 0.597 0.907 0.663

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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Table 4. Prediction performance of RF classifier on PreDNA dataset using different distance cut-offs.

Cut-Off Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fpssm + fosv + fss 0.428 0.977 0.458 0.867 0.451

35A fpssm + fopv + fss + frsp 0.511 0.97 0.488 0.885 0.488

) fpssm + fopv + fss + frsp-t 0.539 0.962 0.475 0.888 0.488
fPSSM + fOBV + fss + f_]]S]D) + f.]]S]D)—t 0.539 0.961 0.47 0.886 0.488

fpssm + fov + fss 0.395 0.98 0.488 0.858 0.530

50 A fpssm + fopy + fss + fsp 0.48 0.968 0.511 0.874 0.563

’ fpssm + fopy + fss + fsp-t 0.506 0.962 0.51 0.873 0.560
fPSSM + fOBV + fgs + f‘]]g]n) + f,]]S]D)—t 0.499 0.96 0.498 0.871 0.555

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

2.2. Position Analysis of the MYC-MAX Protein

The proto-oncobenic transcription factor MYC-MAX (PDB-Entry 1NKP) is a heterodimer protein
complex that is active in cell proliferation and is over-expressed in many different cancer types [38].
MYC-MAX transcription factors bind to Enhancer boxes (a core element of the promoter that consists
of six nucleotides) and activate transcription of the underlying genes [39].

The amino acid chain of MYC protein consists of 88 residues, ten of which are known
DNA-binding sites indicating that their distances to DNA are less than 3.5 A. Applying RF classifier,
which takes a majority vote among the random tree classifiers, with our first feature (fysp) combined
with existing features, we predicted in total 17 residue positions to be DNA-binding in MYC protein.
Seven out of these positions (H906, N907, E910, R913, R914, P938, K939) correspond to the true
DNA-binding sites of this protein. While the sites R913, R914, P938, and K939 could also be identified
by RF classifier without using our new JSD-based features, the remaining three binding sites could
only be detected using our features (for details see Table 5 and Figure 1). Interestingly, using fysp.¢
together with fpssy, fopy, and fsg, the RF classifier correctly predicted these seven positions again as
binding sites.

The second protein in the proto-oncobenic transcription factor complex is the MAX protein which
consists of 83 residues including nine DNA-binding sites. Using fjsp or fsp.; together with existing
features individually, we observed 14 and 13 residue positions to be DNA-binding in MAX protein,
respectively. Eight of the predicted positions (H207, N208, E211, R212, R214, R215, 5238, R239) found by
using either of our both features are true DNA-binding sites in MAX protein. However, without using
our new features the RF classifier could only identify two (S238, R239) out of nine true DNA-binding
sites in MAX protein (for details see Table 5 and Figure 1). Further, we observed that, the usage of fysp.¢
leads to the reduction of false positive predictions in identifying DNA-binding sites in MAX protein.

Table 5. Prediction performance of RF classifier on different features using a cut-off of 3.5 A for
MYC-MAX protein complex (Protein Data Bank (PDB)-Entry 1INKP).

Protein  Feature Sensitivity = Specificity MCC
fpssm + fopy + fss 0.30 0.941 0.282

Myc  fpssm +fopy + fss + fsp 0.70 0.853 0.448
fPSSM + fOBV + fSS + fJSD_t 0.70 0.853 0.448

fPSSM + fOBV + fss + fJ]S]D) + fJSIDJ—t 0.70 0.868 0.470

fpssm + fopv + fss 0.222 1.0 0.447

MAX fpssm + foBv + fss + fysp 0.888 0.906 0.664
fpssm + fopv + fss + f1spt 0.888 0.922 0.697

fPSSM + fOBV + fss + fJSD + ij]D-t 0.889 0.922 0.697

MCC: Matthews correlation coefficient.
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MAX protein ,‘ ’ MYC protein

[weo? | (303 ]

Figure 1. DNA-binding sites in proto-oncobenic transcription factor MYC-MAX protein complex
(PDB-Entry INKP). Green spheres denote positions of the DNA-binding sites in both proteins which are
detected by RF classifier either using the existing features (fpsgy, fopy, and fsg) alone or combining our
new features with these existing features together. Purple spheres show the localization of additional
binding sites which were only found by RF classifier using our new features with existing features.
Moreover, there are further three binding sites in MYC protein and one binding site in MAX protein,
shown with yellow spheres, that could not be identified by the classifier.

Moreover, when statistically evaluating both of our features, we observed that using our
sequence-based features RF classifier reaches a significantly improved performance in identifying
DNA-binding sites of both proteins with significantly higher sensitivity and MCC values whereas
the specificity is moderately decreased. The simultaneous usage of both of our features together
with fpsgm, fopy, and fsg could result in the decrement of specificity or MCC values. The details are
presented in Table 5.

3. Materials and Methods

In this section, we describe in particular the data we have used and our new residue-wise features
designed to predict DNA-binding sites in proteins.

3.1. Materials

To compile our data needed for training and test, we started with the DBP-374 data set
of representative protein-DNA complexes from the Protein Data Bank (PDB) [40] published by
Wu et al. [5]. Having performed a comparison with the new PDB version, we calculate for every
remaining protein a multiple sequence alignment (MSA) using HHblits and the UniProt20 database
(version from June 2015) [41]. We eliminated all proteins, the MSA of which has less than 125 rows,
so that we finally ended up with a dataset of 263 protein-DNA complexes and associated MSAs.
To obtain our results we perform a five-fold cross validation.
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As in [5], an amino acid residue is regarded as a binding site, if it contains at least one atom at
distance of less than or equal to 3.5 A or 5 A from any atom of DNA molecule in the DNA-protein
complex. Otherwise it is treated as non-binding site. For the distance cut-off of 3.5 A, our set contains
4298 binding sites and 44, 805 non-binding sites. For the distance cut-off of 5 A, however, our data set
contains 7211 binding sites and 41, 892 non-binding sites.

3.2. Methods

Let M be a multiple sequence alignment, where its first row represents the protein under study.
Every residue of that protein is then uniquely determined by its column. In what follows, we identify
the residues of the protein with their columns of the MSA.

Grosse et al. [35] pointed out that the Jensen-Shannon divergence (JSD) is extremely useful when
it comes to discriminate between two (or more) sources. Capra and Singh [34] carefully discussed
several information theoretic measures like Shannon entropy, von Neumann entropy, relative entropy,
and sum-of-pair measures to assess sequence conservation. They were the first using JSD in this
context and stated its superiority. Giiltas et al. [32] showed that the Jensen-Shannon divergence in the
context of quantum information theory is of remarkable power. These three articles encouraged us to
use JSD in this study. Our first idea is to design a new feature for the prediction of DNA-binding sites
in proteins which leverages the Jensen—Shannon divergence

ISD (pk |pna) == H ((px + Pua) /2) — (H (p) + H (ppa)) /2. (1)

Therein, py is the empirical amino acid distribution of the k-th column of the query MSA M,
and p,,4 is the null distribution taken over all non-binding sites of our training data.

More precisely, we represent every column k of every MSA M considered by a 20 x 20 counting
matrix C (Mk) . The matrix C is symmetric and its rows as well as columns are indexed by the 20 amino
acids. For every ordered pair of amino acids (4,a’), the matrix coefficient C(My) ., is equal to the
number of ordered pairs (i, ) (i # j) of row indices of M such that Mz = a and My = a.

To compute the null distribution p,;, we first set up the 20 x 20 counting matrix C,; using
our training data. C,4 is the sum over all matrices C (M, ), where M ranges over all training MSAs
and k ranges over all non-binding site columns of M. Next, the rows of C,; are added up. Finally,
the resulting row vector is normalized to obtain p,,,.

There is nothing wrong with the idea that a large value JSD (py ||p,g) indicates that k is a
DNA-binding residue. However, no information on binding sites is integrated. Only the non-binding
sites of our training data are used to compute p,;. As we have seen in [32] and [36], transforming
empirical amino acid distributions of MSA columns by a carefully designed doubly stochastic matrix
is an effective way to integrate the binding site signals. To this end, we first set up a counting matrix
Cping in a way similar to that of calculating the matrix C,;. The difference is that the variable column
index k now ranges over all binding site columns of the training MSAs. Taking the counting matrix
Cping as input, the doubly stochastic matrix D is computed by means of the canonical row-column
normalization procedure [42].

Let M be the query MSA having ¢ columns. Compared with [32] and [36], we enhance the effect
of transforming M’s empirical column distributions by means of the doubly stochastic matrix D just
defined. Let k be a column index of M. First, we compute the matrix product C¥) (M) := C(My) - D.
Second, we add up all of C(*) (M)’s rows. Finally, we normalize the resulting row to obtain the
transformed empirical row distribution p,(ct).

We define two window scores scoreysp s (k) and scoregsp.t pr (k) of residue k w.r.t. query MSA
M, where the window w (k) surrounding k formally equals {k — 3,k —2,k— 1,k k+1,k+2,k+3} N
{1,2,...,4}. Clearly, if k € {4,5,...,¢ — 3}, |ro(k)| = 7. Otherwise | (k)| € {4,5,6}. Recapitulate that
for any real x the binomial coefficient (3) equals x(x — 1) /2. We define the scores as follows.
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_ Liew() (4~ [k — 1)) ISD (pry. [[Pra )

scoregsp,um (k) : )
16— (50
2
Lrew( (4 — [k — 1) ISD (p”) ||p,
SCOTEJSD-t, M (k) = Sl g _ |m(k)<| s d) (3)
16— ( )
2

The preceding two score definitions are motivated as follows. Bartlett et al. [43] and
Panchenko et al. [44] pointed out that exploiting conservation properties of spatial neighbors is
useful to predict a residue as functionally important. Since the 3D structures are often unavailable,
Capra and Singh [34] developed a window score for such predictions. The concrete shape of our scores
takes pattern form Janda et al. [45], who in turn refer to Fischer et al. [33]. Our scores are convex
combinations of the Jensen-Shannon terms associated with the residues belonging to the surrounding
window w (k). The weights fall linearly in the distance from k.

In a last step, we transform two window scores according to Equations (2) and (3) with respect to
the query MSA M into final scores using the Equations (4) and (5), respectively. To this end, for every
column index k € {1,2,...,¢} of M we define:

K'|1<k <, scoreg k) > scorejs K
fys,m (k) = <] - DQM( ) ssp.m (k)3 4)

K'|1<k <¥, scoregsp. pm (k) > scoregsp pm (K
b () 1= | e () 2 scoregan ()}, ®

The Equations (4) and (5) are basically the determination of the percentage of scores below the
current one at index k. This transformation procedure is essential because it converts MSA-dependent
window scores to MSA-independent scores.

To demonstrate the benefit of our new features, we adopt the features fpsgy, fopy and fss devised
in [5]. Together with our two new features fjsp and fjsp.t, we plugged them into the Random Forest
(RF) classifier [46] (see Tables 1 and 2 for the combinations we used). For the RF implementation we
used the WEKA data mining software [47].

To deal with the imbalanced data problem, we applied bagging techniques suggested in [48].
Since we make use of five-fold cross validation, we randomly split the dataset into 5 roughly equal-sized
parts. Every training phase performed on 4 parts consists of 11 sub-phases. In each such sub-phase
we randomly draw twice as many non-binding sites as there are binding sites. We then construct a
Random Forest (RF) taking those non-binding sites and all binding sites of the 4 parts as input. Finally,
for each instance of the validation part the majority vote of above 11 RF classifiers was taken.

4. Discussion

Our results show that combining either feature fygp.; or feature fysp with the three features fpggyy,
fopy and fsg we have adopted from [5] clearly boosts the performance of the RF-based classifier in
identifying the DNA-binding sites in proteins, where feature fjsp.; generally reaches a slightly better
performance than feature fygp.

Although our two new features and PSSMs are derived from MSAs, Tables 1 and 2 clearly
demonstrate that these approaches carry distinct information. Thus they capture different kinds of
evolutionary information. The reason for this essential difference can be explained based on the
underlying algorithms. While the PSSM approach consists of statistic which indicates how likely a
certain amino acids occurs at a certain position, our JSID-based approach measures the divergence of a
certain distribution to a known non-binding site distribution.
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The superiority of feature fysp. ¢ to feature fygp deserves an explanation attempt. Feature fysp
does not integrate any information on DNA-binding sites. Only training non-binding sites are used.
In contrast, feature fygp.¢ additionally uses a doubly stochastic matrix gained from the training binding
sites. The effect on empirical amino acid column distributions of the transformation we have devised
using that matrix is the following. The empirical column probabilities of amino acids are merged, if it
is very likely to co-observe them in a binding site column. Since the amino acid content of binding
site columns and non-binding site columns differ, the distance between fysp.; ps (k) and fygp. a1 (k') is
larger and more significant than the distance between fygp a1 (k) and fysp as (k'), where k is a binding
site column of MSA M, and k’ is a non-binding site column.

At first glance it is surprising that adding both feature fjgp.; and feature fjgp to the feature
triplet (fPSSM, fosv, fss) is worse than adding feature fjgp ¢ alone. Taking into account what we have
mentioned in the preceding paragraph, it turns out that if feature fysp., is already there, feature fygp
may increase the noise.

5. Conclusions

In this work, we report a new sequence-based feature extraction method for the identification of
DNA binding sites in proteins. For this purpose, we adopt the ideas from Capra et al. [34] and our
previous studies CMF [36] and QCMEF [32]. Our approach is an information theoretic method that
applies the Jensen—Shannon divergence (JSD) for amino acid distributions of each site in a protein in
two different ways. First, the JSD is applied to quantify the differences between observed amino acid
distributions of sites and the background distribution of non-binding sites. Second, we transform the
observed distributions of sites through a doubly stochastic matrix to incorporate biochemical signals of
binding residues in the calculation of JSID that results in the intensification of the DNA-binding residue
signals from the non-binding signals. The results of our study show that the additional usage of our
new features (fjgp. or feature fjgp) in combination with existing features is significantly boosts the
performance of RF classifier in identifying DNA binding sites in proteins. Our results further indicate
the importance of our second feature (fjsp.;) since taking into account the binding site signals in the
calculation of JSI metric, the characteristics of DNA binding residues are enhanced. As a consequence,
an intensification of the signal caused by DNA binding sites from non-binding sites occurs and thus
the classifier achieves its improved performance.
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Appendix A

The detailed performance of the RF classifier on different features using different cut-offs for
RBscore and PreDNA datasets.
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Appendix A.1. Performance Measures with Standard Error
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Table Al. Prediction performance of Random Forest (RF) classifier on different features using a cut-off

of 3.5 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity = SE(%) Specificity & SE(%) MCC =+ SE(%)
fpsam 29.2 +2.20 96.3 &+ 0.46 30.7 + 0.95
fpssm + Fisp 38.5 + 3.04 94.9 4 0.57 349 +1.7
fpoom + fsp-t 41.0 +£3.23 93.9 + 0.57 35.0 + 1.85
fpssm + £ysp + FisDet 414 + 342 94.0 + 0.51 34.8 +2.07
fpsam + fss 33.9 +£2.32 95.8 & 0.37 334+ 1.36
fPSSM + fSS + fj]S]D) 41.6 + 3.05 95.0 + 0.46 37.8 £2.19
fpssm + fss + Frsmet 441 +3.12 94.0 4+ 0.43 37.2 4237
fpsm + fos + f1sp + fIsDot 43.9 + 3.14 94.0 4 0.40 37.0 +2.25
fPSSM + fOBV + fss 36.7 + 2.07 96.8 4+ 0.27 39.8 +1.58
fPSSM + fOBV + fss + fJSD 422 4+2.70 95.8 +0.42 409 +1.95
fpssm + foBv + fss + fsp-t 447 £+ 3.05 95.0 £ 0.38 40.3 +1.98
fpoom + foBY + fos + fisp + fIspot 444 +3.12 94.7 + 0.39 39.3 +2.02

Table A2. Prediction performance of Random Forest (RF) classifier on different features using a cut-off

of 5.0 A. The prediction system was evaluated by five-folds cross validation.

Feature Sensitivity 4= SE(%) Specificity = SE(%) MCC =+ SE(%)
fpssm 28.6 4+ 2.56 96.6 + 0.47 350+ 1435
fpssm + fsp 39.5+2.89 95.0 £ 0.55 40.7 = 1.99
fpssm + fFISD-t 41.8 +3.02 94.3 4 0.62 41.1 +2.05
fpssm + f1sp + FIspet 426 +3.25 94.2 + 0.54 414 +237
fpssm + fss 334 +2.34 96.3 = 0.38 38.6 =+ 1.90
fPSSM + fss + fJ]S]D) 42.4 +2.97 95.1 £ 0.61 43.6 +2.43
fpssm + fss + Fjspt 44.8 +2.99 94.4 + 0.56 43.8 +2.45
fpssm + fss + Fisp + FIsD-t 445 +3.04 94.4 4 0.50 434 +235
fPSSM + fOBV + fss 33.7 £ 248 97.5 + 0.35 43.1 +2.05
fPSSM + fOBV + fss + fJIS]D) 41.9 +2.89 95.8 + 0.55 45.0 + 2.39
fPSSM + fOBV + fss + fJSH])-t 43.9 + 2.89 95.2 +0.48 453 +£2.32
fPSSM + fOBV + fss + fJS]D) + fJS[D)_f 442 +£291 949 + 0.54 445 +2.24

Appendix A.2. RBscore Dataset Analysis

Table A3. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 3.5 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.458 0.974 0.476 0.866 0.460
fpssm + f1sp 0.56 0.965 0.514 0.894 0.518
fpssm + frsp-t 0.597 0957 0511 0.899 0.523
fPSSM + fﬂg]]) + fJS]DJ—t 0.591 0.958 0.511 0.90 0.526
fpssm + fss 0.512 0.97 0.501 0.878 0.476
fPSSM + fss + fJSD 0.581 0.96 0.511 0.899 0.520
fpssm + fss + f1sp-t 0.611 0.953 0.508 0.903 0.526
fpssm + fss + fysp + fsD-t 0.613 0.953 0.509 0.902 0.528
fpssm + fopv + fss 0.517 0.976 0.534 0.896 0.528
fPSSM + fOBV + fss + f,HS]D) 0.58 0.967 0.54 0.907 0.543
fPSSM + fOBV + fSS + fjgﬂ])-t 0.612 0.963 0.546 0.910 0.551
fPSSM + fOBV + fss + fJSD + fJISD—t 0.601 0.962 0.531 0.909 0.546

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.
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Table A4. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 5.0 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssu 0.445 0.977 0.528 0.873 0.589
fpssm + fsp 0.553 0.968 0.579 0.899 0.643
fpssm + fIsp-t 0.57 0.962 0.572 0.900 0.642
fPSSM + f,]]SID) + fJS]DJ—t 0.569 0.963 0.574 0.895 0.642
fpssm + fas 0.49 0.973 0.547 0.880 0.602
fPSSM + fss + fJS]D) 0.578 0.963 0.583 0.902 0.648
fpssm + fss + Frsmot 0.605 0.958 0.587 0.904 0.652
fPSSM + fss + fJ]S]D) + fJSD—t 0.603 0.959 0.587 0.902 0.653
fPSSM + fOBV + fss 0.499 0.98 0.584 0.895 0.641
fpssm + fopv + fss + fisp 0.57 0.968 0.595 0.908 0.661
fPSSM + fOBV + fSS + f.US]D)-t 0.592 0.965 0.60 0.908 0.665
fPSSM + fOBV + fss + f,]]S]D) + fJS]D)—t 0.594 0.964 0.597 0.907 0.663

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.

Appendix A.3. PreDNA Dataset Analysis

Table A5. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 3.5 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.378 0.977 0.41 0.840 0.391
fpssm + Fism 0.498 0.963 0.448 0.865 0.453
fpoam + frsm-t 0.543 0.953 0.445 0.869 0.451
fpssm + fisp + Fisnt 0.538 0.956 0.453 0.869 0.455
fpssm + fss 0.393 0.975 0.417 0.847 0.402
fPSSM + fss + fJIS]D) 0.501 0.966 0.461 0.872 0.463
fpsam + fss + frsmee 0.545 0.959 0.465 0.876 0.468
fpssm + fss + frsp + Fspot 0.523 0.958 0.449 0.875 0.465
fPSSM + fOBV + fSS 0.428 0.977 0.458 0.867 0.451
fpssm + fopy + fss + fisn 0.511 0.97 0.488 0.885 0.488
fpssm + foy + fss + frspet 0.539 0.962 0.475 0.888 0.488
fPSSM + fOBV + fSS + fJS]DJ + fJS]DJ-t 0.539 0.961 0.47 0.886 0.488

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.

Table A6. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 5.0 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.373 0.979 0.463 0.833 0.496
fpssm + fIsD 0.485 0.962 0.495 0.858 0.540
fpsam + frsm-t 0.496 0.953 0.475 0.858 0.534
fpssm + f1sp + frsD-t 0.495 0.955 0.479 0.857 0.535
fpssm + fss 0.389 0.977 0.47 0.839 0.501
fPSSM + fss + fJ]S]D) 0.49 0.963 0.501 0.863 0.550
fPSSM + fss + fJS]D)—t 0.503 0.957 0.492 0.865 0.547
fpssm + fss + f1sp + fsDt 0.504 0.958 0.497 0.865 0.550
fPSSM + fOBV + fSS 0.395 0.98 0.488 0.858 0.530
fPSSM + fOBV + fss + f,]]S]D) 0.48 0.968 0.511 0.874 0.563
fpssm + fopv + fss + fsp-t 0.506 0.962 0.51 0.873 0.560
fpssm + fopv + fss + fysp + fysp-t 0.499 0.96 0.498 0.871 0.555

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.
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Abstract

performance of which shall be improved.

Background: The identification of protein-protein interaction sites is a computationally challenging task and
important for understanding the biology of protein complexes. There is a rich literature in this field. A broad class of
approaches assign to each candidate residue a real-valued score that measures how likely it is that the residue
belongs to the interface. The prediction is obtained by thresholding this score.

Some probabilistic models classify the residues on the basis of the posterior probabilities. In this paper, we introduce
pairwise conditional random fields (pCRFs) in which edges are not restricted to the backbone as in the case of
linear-chain CRFs utilized by Li et al. (2007). In fact, any 3D-neighborhood relation can be modeled. On grounds of a
generalized Viterbi inference algorithm and a piecewise training process for pCRFs, we demonstrate how to utilize
pCRFs to enhance a given residue-wise score-based protein-protein interface predictor on the surface of the protein
under study. The features of the pCRF are solely based on the interface predictions scores of the predictor the

Results: We performed three sets of experiments with synthetic scores assigned to the surface residues of proteins
taken from the data set PlaneDimers compiled by Zellner et al. (2011), from the list published by Keskin et al. (2004) and
from the very recent data set due to Cukuroglu et al. (2014). That way we demonstrated that our pCRF-based
enhancer is effective given the interface residue score distribution and the non-interface residue score are unimodal.
Moreover, the pCRF-based enhancer is also successfully applicable, if the distributions are only unimodal over a
certain sub-domain. The improvement is then restricted to that domain. Thus we were able to improve the prediction
of the PresCont server devised by Zellner et al. (2011) on PlaneDimers.

Conclusions: Our results strongly suggest that pCRFs form a methodological framework to improve residue-wise
score-based protein-protein interface predictors given the scores are appropriately distributed. A prototypical
implementation of our method is accessible at http://ppicrf.informatik.uni-goettingen.de/index.html.

Background
Protein-protein interactions are constitutive of almost
every biological process. The ability to identify the
residues that form the interaction sites of these complexes
is necessary to understand them. In particular, it is the
basis for new therapeutic approaches to treat diseases
[1,2].

A great deal of work has been done on developing in-
silico prediction methods. As already observed by Zhou
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et al. [3], these methods can be subdivided with respect
to the kind of mathematical foundation invoked and with
respect to the features or characteristics of the protein
used.

Residue-wise score-based prediction methods

Let x; be the data relevant for a residue r in a given protein
chain. These methods then employ a function f (x,, 1),
where A are some coefficients which have been learned
through the training. The value of f (x,,A) then deter-
mines, whether r is rated as an interface or not. The linear
regression method [4,5], the scoring function method
[6-11], the neural network method [12-17], and the sup-
port vector machine method [18-25] are of this kind.

© 2014 Dong et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.
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Probabilistic methods

Let X be the data relevant for a protein chain, where
these data are assumed to stem from a random source
thus obeying a random distribution. X, which alternatively
is called the observation, typically includes the structure.
The label sequence of the residues Y that classifies each
individual residue either as interface or as non-interface is
assumed to be random, too. Typically, probabilistic meth-
ods use the conditional probability distribution P (Y | X)
to determine a classification y* of the residues of maximal
posterior probability P (y* | x). Naive Bayesian meth-
ods [26], Bayesian network methods [27], hidden Markov
models (HMMs) [26], and linear-chain Conditional Ran-
dom Fields taking the backbone as underlying graphical
structure [28] fall in this category. Using posterior decod-
ing on the basis of the forward-backward algorithm, both
HMMs and CRFs are residue-wise score-based prediction
methods, where the binary decision is made by threshold-
ing the posterior probabilities of classifying the residues
as interface.

Notations

We use Latin uppercase letters when referring to random
aspects of the objects denoted by them. In contrast, low-
ercase letters denote arbitrarily chosen but fixed objects.
In this context boldface letters indicate vectors, the corre-
sponding non-boldface letters their coefficients.

The vast majority of methods use the 3D structure
of the target protein chain in form of a PDB file as
input [4-13,15,17-21,23-25]. However, a few methods are
not requiring a 3D structure and rather use sequences
only [14,16,22]. We here consider the problem with a
given 3D structure of the target protein chain. Sequence-
based input may include a multiple sequence alignment
of related proteins from which, for example, sequence
conservation can be inferred. When the 3D structure of
an unbound binding partner is also available, protein-
protein docking methods can be applied. This has also
been exploited to provide feedback from docking to the
more specific problem of interface prediction [29]. We
here consider the case where the binding partner’s 3D
structure is not given. Nor requires the presented method
the sequence of the binding partner. Albeit, we tested on
homodimers only as we here rather focus on our new
method rather than on features or types of proteins. The
protein features used for interface prediction in the litera-
ture are reviewed in the Methods section as far as we make
use of them in this article.

Most of the current studies for predicting interac-
tion sites of proteins that use a probabilistic method
are restricted by treating the residues of the proteins
as independent vertices. Li et al. have taken the back-
bone neighborhood into account thus modeling the pro-
tein as a sequence [28] using what can be called a
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line CRF or linear-chain CRF. The features they define
on the label pair of two backbone neighbors have the
effect of smoothing the predicted labels along the protein
sequence. Decisive is, however, that they were the first
who used conditional random fields (CRFs) for interface
prediction. CRFs in turn have come into use for solving
sequence labeling problems due to Lafferty et al. [30]. See
[31] for an overview. From the mathematical point of view
they take advantage of the fact that they model the condi-
tional probability P (Y | X) rather than the joint probability
P (Y, X). Recently there has been an explosion of interest
in conditional random fields (CRFs) with successful appli-
cations. It has been shown that CRFs have the abilities
for solving sequence labeling problems like part-of-speech
tagging (POST) [32] and natural language processing [33].
Furthermore in the web extraction problem, in which the
web-sites are modeled as two dimensional grid graphs,
CREFs perform well [34]. One of their outstanding benefits
over many other statistical models is that a CRF can easily
describe the dependencies of observations.

As proteins are folded into three dimensional struc-
tures, spatial relationships create dependencies between
residues. For example, we find on the test data described
below that the correlation coefficient between spatial
neighbors that are not also sequence neighbors (dis-
tance < 3.5 A) is 0.45. This is only slightly lower than the
correlation coefficient between residues that are sequence
neighbors (0.49). As there are more than three times as
many spatial pairs of neighbors than sequence neigh-
bors at this threshold it is reasonable from a modeling
standpoint to use a model that respects all dependencies
induced by spatial proximity, not only the dependencies
induced by proximity along the backbone.

There are many papers using spatial neighborhood
information of residues to predict-protein interaction
sites (see e.g. [2,13,21,28]). However, the spatial infor-
mation of proteins was only integrated into the feature
functions, but not represented in the model. For proba-
bilistic models, the difference between the two ways to
integrate spacial information is that in previous models
the label of the i-th residue Y; is conditional independent
from the labels of other residues given data X and — in
the case of linear CRFs or HMMs — given the labels of
Y;—1 and Y;11. Even when neighborhood information is
only used for spatial smoothing of the labels, the intuitive
advantage over, say, an SVM classifier that uses spatial
neighborhood in the features but classifies each residue
independently, is that not-patch-like candidate labelings
are explicitly punished. In contrast, such an independent
classifier-approach may have a tendency to predict indi-
vidual interface residues ‘sprinkled’” around the protein
surface [28].

For this reason, a general CRF seems to be more suit-
able for the task. However, inference for general CRFs
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is intractable. In this paper, pairwise conditional random
fields (pCRFs) are utilized. Specializing general CRFs, only
node cliques and edge cliques are taken into consideration
in pCRFs. A pCRF retains most spatial information of pro-
teins, can be specified with the same number of parameter
as a line CRF and approximate inference remains feasible
with the generalization of the Viterbi algorithm intro-
duced here. Taking pattern from piecewise training meth-
ods [35], we disentangled the labels of nodes and edges to
train the model.

In order to take advantage of a residue-wise score-
based predictor, we model the protein surface by means
of a pCRF, where the observation is solely a sequence of
surface residue scores between 0 and 1 output by the pre-
dictor. We then utilize a generalized Viterbi algorithm and
piecewise training. The resulting tool tries to enhance the
predictor chosen on the surface of the protein under study.
It is the aim of this paper to demonstrate effectiveness of
this approach provided that the interface residue scores
and the non-interface residue scores are appropriately
distributed.

Methods

We address the problem of improving residue-wise score-
based predictors for protein interface residues as a node
labeling problem for undirected graphs using the model
class of conditional random fields (CRFs). Lafferty et al.
[30] were the first who applied CRFs to the problem
of labeling sequence data. Li et al. [28] used line CRFs
to address the interaction site prediction. They have the
advantage that the Viterbi algorithm well-known from
decoding HMMs can be used to efficiently infer the most
likely labeling sequence. Very useful and illustrative pre-
sentations on CRFs are given in [31,32,36,37]. Above CREF-
based models make the assumption that the label of one
residue is conditionally independent of the labels of all
other residues given the labels of the two adjacent residues
in the protein sequence. To the best of our knowledge, we
are the first to employ a graphical model that takes the
spatial neighborhood of residues located on the protein
surface into account.

This section is subdivided into three parts. We first
explain how we model protein surfaces by pairwise CRFs.
Then we introduce our new inference method. Finally, we
elucidate our training method.

Using conditional random fields to model protein surfaces
For every protein under study that has #n surface residues,
a pair of random vectors (X, Y) is considered. The vector
X is the observation that represents the knowledge about
this protein that is utilized in the prediction, e.g. the 3D
structure of the target protein and a multiple sequence
alignment together with homologs.
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The vector Y is a random sequence of length n over
the alphabet {I, N} that labels the index set {1,2,...,n},
which in turn is called the set of positions (of the sur-
face residues). The label I represents interface residues,
whereas the label N represents non-interface residues.
{I, N}" is the set of all label sequences of length n over
{I, N}. We will also call them assignments as the term ‘label
sequence’ may lead to confusion when applied below to
subsets of {1,2, ..., n} that are not contiguous sequences.

Let G = (V, &) be the neighborhood graph, where V =
{1,2,...,n} is the set of positions, £ is the set of edges that
typically results from an atom-distance-based neighbor-
hood definition for positions. We assume for convenience
in notation that G has no isolated nodes. Cases with iso-
lated nodes could trivially be reduced to cases without
isolated nodes. Let C be the set of G’s cliques, which we
refer to as node cliques. For a node clique ¢ € C and an
assignment y we denote by y, the restriction of y to the
positions belonging to the node clique c. For ¢ = {i} and
¢ = {i,j} we write y; and (y;, y,') rather than y(; and y; ;.

The preceding notation is also used in the slightly more
general case of partial label assignments to arbitrarily cho-
sen subsets S of the set of positions V. Formally, let ys
denote {(i, y) | i €S, ye{] N}}. Given two partial
assignmentsys, andys, are identical on §; NSy, the union
Vs, Uys, is well-defined.

The conditional distribution function of our pCRF (X,
Y) with respect to the neighborhood graph G = (V,€) is
defined as follows:

1
P(ylx) = 700 exp

D @i+ D) iy (13)%)

iey {ijle€

p>

ceC\(VUE)

Dy, Xx) |, (1)

where x and y are arbitrarily chosen instances of the
random observation X and the random label sequence
Y, respectively, ®.(y,,x) € e (¢ € C) is the feature
of the CRF located at the node clique ¢ (again ®; and
®;; simplify notation for ®(;; and @), and Z(x) is the
observation-specific normalization factor defined by

Z0= Y exp| Y P+ Y. Dy (5%)

ye{LN}” ey {ij}eg
+ ) Pyex |, (2)
ceC\(VUE)

Let us call In(Z(x)P(y|x)) the score of the label sequence
y given the observation x.

A CREF is called a pairwise CRF (pCRF) if &, = 0,
for all node cliques ¢ larger than two. The remaining
features ®; and ®;; are referred to as node features
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and edge features, respectively. Thus, every position i €
V and every edge (i,j) € & is represented by the
pair (®;(N,x), ®;(I,x)) and by the quadruplet (dD{i,j}
(N,N,x), @13, (I, N, x), @13, (N, I, x), @3, (1, 1, X)).

Following [30], we assume moreover that each node fea-
ture and each edge feature is a sum of weighted base
features. More precisely, for every position i € V and
every edge {i,j} € £ we assume representations

K
Di(yi,) = ) oWk (i, yir X)
k=1
Ky
D (i35 = Y Bidr i) yir 3 X,
k=1

where y € {I,N}” and x is an observation. The two real
vectors

B = (ﬂlnBZw“’,BKz) (3)

need to be calculated in a training phase.

In the most general sense, protein characteristics are
real-valued evaluations of positions and pairs of adjacent
positions (edges of the neighborhood graph), respectively,
that are correlated with our position labeling problem.
We use a standard step function technique to obtain base
features from protein characteristics, rather than taking
the raw values of the characteristics. To make our paper
self-contained, let us describe this technique for short.

A protein characteristic depends on the observation
and either a node or an edge. Each protein character-
istic, such as e.g. the relative solvent-accessible surface
area of a residue, is transformed into several binary fea-
tures by binning, i.e. we distinguish only a few different
cases rather than the whole range of the characteristic.
Assuming the common case of real-valued characteris-
tics, the bins are a partition of the reals into intervals.
The use of this discretization allows to approximate any
shape of dependency of the labels on the characteris-
tics, rather than assuming a fixed shape such as linear or
logarithmic.

From protein characteristics for positions to node fea-
tures. We subdivide the range of the characteristics C into
say y intervals, where y is at least two. Let 57 < s <

. < $y_1 be the corresponding interval boundaries. It
is reasonable to take s, as the (/y-quantile of the empir-
ical distribution of C for non-interface residues, where
C(i,x) € (so,5y]. Then we define for each position i € V
the following 2y base features associated with the position
characteristics C.

o= (0{1,0!2, .. .,C\![(l)

) 1 if y; =y and C(i,x) € (s;,8,+1];
A\ (70, %) 1= L o
0 otherwise;

(4)
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wherey = N,L,andt =0,1,...
00.

From protein characteristics for edges to edge features.
Let D be the characteristics. Analogous to the previous
case, we then obtain for each edge {i,j} € £ the follow-
ing 4y base features associated with D, where 5,5 € {N, I}
andt=0,1,...,y — 1.

,y—landsg := —00,s, =

1if y;=v,yi=9y,and D(,j,x) € (s, S.+1];
¢J(/§/),L(i,j7yi»yf,X)::{ N=RI=Y (6),2) € (50 1]

0 otherwise.

(5)

In both cases we set y = 5.

Devising a generalized Viterbi algorithm for pCRFs

The problem of finding a most probable label sequence
Y* given an observation x is NP-hard for general pCRFs
[31]. In this subsection we present a heuristic that approx-
imately solves this problem.

To this end, we first devise an algorithm, which we
call generalized Viterbi algorithm. It computes an optimal
label sequence, where the posterior probability of y* given
x is maximized. Unfortunately, its run-time is in too many
cases not acceptable. That is why we transform it in a
second step into a feasible, time-bounded approximation
algorithm.

The generalized Viterbi algorithm

Let G = (V, €) be the neighborhood graph underlying the
protein under study. For any assignment (label sequence)
y and any subset V' of V, let yy» denote the partial assign-
ment of y with respect to V. (This is in line with the
notation y, (c a position clique) introduced earlier in this
study).

If V1,V,,...,V, are pairwise disjoint position sets, the
assignment for V1 UV,U. . .UV, canonically resulting from
assignments yy,, v, - - ., Yy, is denoted by yy, Uyy, U. . .U
yv,. For V' C V), the score sV'(yy | x) is defined by

sy(yv 1% =Y @ (X + Y Bij (795,X) -
% ijeV’
{ij)e€
Then the problem of determining a most probable label
sequence y* given an observation x can be reformulated as

y* = argmax sy (y|x).
b4

This is the case, because it suffices to consider the score.

To put this into practice, we devised an algorithm we
call generalized Viterbi. On the one hand, it is analogous
to the classical Viterbi algorithm. On the other hand, there
is a major difference. In our case there is no canonical
order in which the positions of G are traversed. Having
explained our algorithm for any order, we show how to
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calculate a fairly effective one. In what follows, we assume
that the positions not yet touched are held in a dynamic
queue. Those positions having already left the queue form
the history set H C V.

Assume that the subgraph of G induced by H has
connected components Hi,Ha, ..., Hpy. For p =
1,2,...,m, let B, < H, be the so-called bound-
ary component associated with H, defined by B, :=
lieH, |3j¢H, {ij} € E}. The complement H, \ B,
is the interior of the pu-th history component. See Figure 1
for an example.

For assignments yg,,ys,,...,¥8, of the bound-
ary components Bi,Bg,...,B,, the Viterbi variables
vity, (Y8,), Vita, (YB,), - - ., Vity,, (Y5,,) are defined as

max sy, (yu,\5, UYs, |X)

vit =
Hu (YBu) YH\By (6)

X (u=12,...,m).

The Viterbi variables can be represented as a set of
tables, one table of size 284! for each boundary com-
ponent B,,. In the case where a boundary component is
empty the table reduces to a single number.

At any stage, the algorithm stores the connected
components Hi,Hg, ..., Hm of the current history
set H, the corresponding boundary components
Bi,Bs, ..., Bu, and Viterbi variable values vity,
(YB,), Vity, (YB,), - - -, Vity,, (yB,,), where ys,, ¥B,, - - -, YB,,
range over all possible assignments of corresponding
boundary component. We store for every assignment on
the boundary, a maximizing interior assignment. This
assignment is the argmax of (6) but is determined with
the dynamic programming recursions defined below. Let
us call these data the current state of the algorithm. It
mainly consists of record sets indexed by the boundary
labelings.

‘ N\
/

Figure 1 Example history set 4 = {a, b, ¢, d} having boundary
B ={a,d}.
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At the very beginning the queue contains all positions,
the history set H and the corresponding boundary com-
ponent B are empty. As long as the position queue is
not empty, the top element v is extracted and the state is
updated as follows.

Adjoining v to the history set #H, there are two cases to
distinguish. Either position v is not adjacent to any other
position of any old boundary component (see Figure 2) or
adjoining position v to H results in adding it to some con-
nected component of the old history set or even merging
together two or more of them (see Figure 3).

In the first case we simply have to take over all the
old connected components, boundary sets and Viterbi
variables. Moreover, we perform the instructions

Hms1 < Buy1 < (v}, vity,,,, (N) < sy, (N | x),

vity,, (D < sy, T x).

In the second case position v is adjacent to some bound-
ary components, say By, B,/41,..., B, Then the old
history components H,,, Hyy+1, - - - » Hm and the current
position v are merged together:

Htmp < Hm’ @) Hm’+1 U...U Hm U {V}

The other history set components and corresponding
Viterbi variables are not affected.

Forp = m',m +1,...,m,let R, C B, be the set of
all positions out of B, that are no longer boundary nodes
after having adjoined v to the history set. The nodes in
R, are removed from the boundary B,, after the iteration.
Let lg’u be the complement of R, in B,,. By inspecting the
edges incident to the current position v, all these sets can
be computed in linear time.

The new boundary set By, is then either Bm/ U BM/H U
...UB,, or B,y U Bm’+1 U...U B, U {v}, where it can be
checked in linear time whether or not v is a new boundary
position.

We are now in a position to calculate the new Viterbi
variables vity,,, (ys,,,), where yz,, ranges over all

assignments of the new boundary set By.
If v & Byyp then

m
Vitys,,, (thmp) <~ myax D, (yy,x) + Z max

Jp— YRu

X Vit?—lﬂ Yg“ U YR, + Z Dy (Yvs Yws X)
weB
{v,w}lég

Here, any assignment of a node set is assumed to implic-
itly define assignments for any subset thereof. Figure 4
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H, H, ! Hy
e \

_ ]
S / \\“-» e 1

e

i, B \. |

-—‘_/

Figure 2 Computing the connected components of the new history set - case one.

illustrates this case of the recursion step. If, however, v €
Binp, then

VitH[mp (YBtmp) <~ @, (31, x) + Z

weB, U--UB,
(vw)e&

m
+ Z {?}:‘f(ﬂt%ﬂ (YBM U YRM)

u=m'

Dy w (Vs Yws X)

+ Z q)V,W (yvryWr X)
weR,
(vw)e&

Finally, the interior labeling is stored, where the maxi-
mum is attained. The algorithm terminates after the last
node v from V has been processed. In the typical case,
where the graph is connected, at terminationm = 1, H; =
V,B1 =90.

The running time of the algorithm is O(#2%), where b
is the size of the largest boundary set and # is the num-
ber of surface residues. We call this algorithm generalized
Viterbi algorithm as for the case of a graph that is a linear
chain1 — 2 — 3 — --- — x of nodes using the node order
1,2, ..., nthe Viterbi variables we define are the same as in
the standard Viterbi algorithm for HMMs. In the case of a
graph that is a tree, this algorithm specializes to the Fitch
algorithm or an argmax-version of Felsenstein’s pruning
algorithm when a leaf-to-root node order is chosen after
rooting the tree at an arbitrary node. In both special cases

the boundary sets always have size at most 1. The tree
example also motivate the use of several history sets at the
same time: using a single history set only, one would not
be able to achieve a linear running time on trees.

A heuristic based on the generalized Viterbi algorithm

First, it is vital for our generalized Viterbi algorithm to
keep the size of the boundary sets small. A good position
order is here of great importance. The algorithm starts by
choosing a vertex of minimal degree. When determining
the next position to be dequeued, the algorithm selects a
boundary node such that the number of incident edges
leading to nodes not belonging to any current history set
is minimal. In an arbitrarily chosen order these nodes are
dequeued next.

Second, the space demand is reduced by restricting the
number of boundary labelings admitted. Starting from the
available labelings of the current history set, the percent-
age of the reachable boundary labelings of the successor
history that will be discarded is calculated. Then the
corresponding percentile is estimated. To this end, a suf-
ficiently large sample of possible labelings of the new
boundary set is drawn, the Viterbi variables are computed,
and the corresponding sample percentile is taken. Finally,
only those boundary labelings of the new history set are
retained whose Viterbi variables exceed this percentile.

That way we compute near-optimal solutions good
enough for our purposes within feasible computation
time.

) H, H.
/ 6

J €

T @

Figure 3 Computing the connected components of the new history set - case two.
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Figure 4 Viterbi recursion step in case v & Bymp. After adding node v to the history set, H, and H3 will be replaced by Hmp = Ho U Hz U {v}.
In this example, for every assignment of the new boundary Bimp the score of Hmp is maximized by varying over the assignments of v and R3 and

using the Viterbi variables of H;, and .

Piecewise training for pCRFs
Let

D= ((Xu),y(l)) ) (xm,y(z)) . (x(m),y(m)>)

be the independent identically distributed training sam-
ple. For every i = 1,2,...,m, let V,, and &£, be the set
of positions and edges in the neighborhood graph associ-
ated with x,,, let n,, = |V,/| be the number of positions of
the p-th training example and let {I, N}"# be the set of all
possible label sequences of this graph.

This data set is unbalanced as there are many more non-
interface positions as interface positions. As customary
for other machine learning approaches such as support
vector machines and artificial neural networks [28], we
here manipulated the ratio of positive and negative exam-
ple positions for training in order to obtain reasonable
results.

We have amplified the influence of the positive exam-
ples, rather than selecting various sets of training data by
deleting negative ones as done in [28].

Let v;, vy, vy and vy be the number of interface posi-
tions, the number of non-interface positions, the number
of interface-interface edges, and the number of non-
interface-non-interface edges in D, respectively. Then we
define the following two amplifier functions for all posi-
tions i and for all edges {i, j} of the m neighborhood graphs
resulting from the training data D.

N ity =
m@:=\ Y
0 if ;=N
VN—N—llfy, yi =1
vir
n2(,j) = W 1 ifyi 75)//‘;
VI
0 ify; =y =N.

To uniformly govern the influence of the amplifiers, we
introduce an amplifier control parameter n3 < [0, 1].
We set up our two log-likelihood objective function by

(A(s),n3> Z > A+ 3m () Z“klﬁk<l 0, (m)

n=1liey,
Ky
+Z > (14 n3n2i.)) Z,Bk({bk
u=1{ijle&,

x (62",

where ideally foreach u = 1,2,...,m

7, (m) Zlnz< (;n,,]g)

Ky
> exp| Yo+ nem@nY e (i x®)

ye{LN}"# iV, k=1

Z(x(“), 773)::

Ky

+ Z (1+ Ugnz(i,f))z ﬁl(‘f’k(i,jryiryj’x(m)

{ij}e€y k=1

is the training-instance-specific normalization factor.

Unfortunately, maximizing this objective function in
general is algorithmically intractable. Taking pattern from
Sutton et al. [35] who introduced what they called piece-
wise training, we deal with this problem by disentangling
the labels of nodes and edges. For u = 1,2, ...,m, a non-
coherent labeling y € {I,N}Ve*¢u of the neighborhood
graph (V , EM) is any mapping that assigns to every posi-
tionv € V,, and every edge e € £, alabely, € {I, N} and a
pair of labels y, € {I,N}?2, respectively.
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We then replace Z (x(“), 773) by

K

exp[ > A+ nsm)) ot

veVy, k=1

Z(x(u)’ ,73>;: 3
ye{LN}VixEn

Ky

X (nynx®) + 37 A+ mam@) Y e

ee&y k=1
(orx)

as normalization factor. This makes the optimization
problem computationally feasible.

The L-BFGS method [38] is used to solve it. That way we
obtain the coefficient vectors @ and 8 (see Equations 3),
which depend on the amplifier control parameter nz €
[0,1].

To mitigate the negative consequences of disentangle-
ment, we use a correction factor é > 1. For any character-
istics Dand ¢ = 0,1,...,y — 1, the weights of the bases
edge features ¢I(€[) and ¢I(\ID,I)\I, , (see Equation 5) are all multi-
plied by §. Thus a change in classification along an edge is
additionally penalized. The correction factor § is set best
between 1.15 and 1.25.

For our implementation of the training, we used the
Java CRF package from Sunita Sarawagi at http://crf.
sourceforge.net/.

Results and discussion

In this section we demonstrate effectiveness of our pCREF-
based protein surface model to enhance residue-wise
score-based predictions of protein-protein interfaces. For
the sake of ensuring reliability of the methods we used
three data sets. The first one is PlaneDimers due to Zellner
et al. [25], the second one is the list of 1276 two-chain-
proteins published by Keskin et al. [39], which was used by
Liet al. [28] to test their linear-chain CRF. Third, we used
a non-redundant data set containing 22604 unique inter-
face structures very recently compiled by Cukuroglu et al.
and published in [40].

The data set PlaneDimers is less known than the
data due to Keskin et al.. It consists of redundancy-free
homodimers with flat protein-protein interfaces. Zellner
et al. [25] developed an SVM, called PresCont, that assigns
to each residue on the protein surface a score between 0
and 1, which we refer to as PresCont score in the sequel.
The larger the score, the more likely the residue belongs
to the interface. Zellner et al. made the prediction by
thresholding the score. The PresCont server and the data
list PlaneDimers are publicly available (see http://www-
bioinf.uni-regensburg.de/).

In the first subsection we describe two sets of exper-
iments performed with synthetic data, one on PlaneD-
imers [25], the other one on the list published by
Keskin et al. [39]. In both cases we independently
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assign to each surface position a random score drawn
according to two different parametrized sequences of
B-distributions Beta(a;(¢)Bi(¢)) and Beta(an(<)Bn(<)),
one for the interface sites determined by the reference
labeling, the other one for the non-interface positions.
The parametrized values o1(c), an(s), Bi(s) and BN (<)
determining the two sequences of distributions are cho-
sen such that the following conditions are satisfied. The
mean values e; > ey are the average PresCont scores on
interface sites and non-interface sites of all chains from
PlaneDimers. The variances o and o are equal to Gfog
and aﬁmg, where 01%0 and O'I%].O are the corresponding vari-
ances of the PresCont score, and ¢ € {0.8,0.9,1.0,1.1, 1.2}
models the precision of the synthetic score. The deciding
feature of all these distributions is that they are unimodal.
The result of the subsection is that enhancement works
for unimodal score distributions.

The second subsection is about a synthetic data exper-
iment on a new data set due to Cukuroglu [40]. Here we
follow the line of the first subsection except for the fact
that we restrict ourselves to signal precision ¢ = 1.0.

In the third subsection we study the PresCont scores for
two-chain protein complexes from the data set PlaneD-
imers. According to Figure 5, the PresCont score for non-
interface residues is far from being unimodal. However,
if one restrict oneself to the part above a threshold in
the neighborhood of 0.5 and larger, one may ask whether
enhancement restricted to that domain will works. The
subsection answers this question in the affirmative. Hav-
ing chosen a threshold as described above, one can
improve the classification with respect to this threshold
as follows. Take over the prediction for scores below the
threshold and reclassify the residues the scores of which
are above by means of the pCRF-based enhancer.

In general, observations x could encompass a PDB file,
which in particular determines the 3D-structure of the
protein, together with an MSA that models evolutionary

% T prescont Score Distribution of Interface and

Non-interface Residues
2000

8

Frequency

§

Non-interface

Interface

500

)
Prescont Score

Figure 5 The distribution of the PresCont score for complexes
from the data set PlaneDimers.
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aspects. In our case an observation solely consists of the
PresCont score sequence or of the sequence of synthetic
scores for the surface residues. Formally, every observa-
tion x is equal to a vector (¢1, &2, . .., &) € [0, 1]

There are several neighborhood notions for residues,
surface/core definitions and interface determinations in
the literature. When studying the data set PlaneDimers,
we follow [25]. In the case of the list due to Keskin et al.
[39], the definitions according to [28] are used. Finally,
when studying complexes taken from the data set pub-
lished in [40], we take the following definitions. The RASA
value of a surface residue is at least 15% (see [28]). Two
residues are defined as contacting if the distance between
any two of their atoms is less than the sum of the corre-
sponding van der Waals radii plus 0.5 A (see [40]).

Anyway, according to Keskin et al. [39] we define the
distance of two residues on one and the same chain as the
distance of their major carbon atoms. We then say that
one residue is nearby another residue, if they are at dis-
tance below 6 A. (Note that usually residues adjacent on
backbone are at distance of less than or equal to 3.5 A).
This definition in turn is the basis of the neighborhood
graph G = (V, £) underlying the pCRF. Two surface posi-
tions are joined together by an undirected edge if and only
if the corresponding residues are nearby ones.

Our pCRF-based enhancer utilizes one position charac-
teristic and two edge characteristics on the basis of the
standard step function method explained in the Methods
section. If x = (¢1,¢2,...,¢&,) €[0,1]” is the observation
associated with the protein under study, and if G = (V, £)
is the neighborhood graph, then for every position i € V
and every edge (i,j) € £ we set

C(i,x):= & D1(i,j,x):= max{¢;, &} Da(ij,x):=|¢i — &.

To enhance predictions obtained by thresholding, solely
information coming from the residue neighborhood rela-
tions on the surface is additionally used.

In order to be able to calculate the performance measure
of area under the ROC curve (AUC) for our pCRF-based
enhancer on synthetic scores, we proceed as follows. For
each edge {i,j} € &, we replace the local feature value
®;;(L, I, x) by « ®;;(1,1,x), where k € (0, 00).

We enhance residue-wise score-based predictors only
on the protein surface. In our synthetic data experiments
there is no predictor available for core residues. For pro-
teins taken from the data list published by Keskin et al.
[39] it happens that interface sites belong to the core. That
is why we use what we call Surface AUC Ratio I' of the
enhancer as our performance measure for our synthetic
data experiments.
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If I' is greater than 1, the enhancement was successful.
The larger I, the greater success.

To estimate performance measures, we applied 5-fold
cross-validation experiments.

A fully built-out pCREF-based tool box for modeling
protein surfaces needs to comprise all the standard algo-
rithms as e.g. forward-backward techniques, marginal-
ization and posterior decoding known for HMMs and
linear-chain CRFs. To begin with, in the fourth subsec-
tion we explain how to put a variant form of the for-
ward algorithm and posterior decoding for pCRFs into
practice.

Simulating unimodal scores of various precisions
We estimated means e; and exy and variances 0021 and

002N of the PresCont score on interface sites and non-
interface positions of PlaneDimers, respectively, as
follows.

& = 0.61488
&3 = 0.03991

en = 0.40590

. (7)
&ex = 0.04006

We randomly chose 120 instances under the uniform
distribution from the data set published by Keskin et al.
[39] to perform our experiments. Let us refer to this set
as KL-subset in the sequel. (It is accessible at http://ppicrf.
informatik.uni-goettingen.de/index.html).

Zellner et al. [25] used the following determinations. A
residue is defined to be part of the protein surface, if its
relative solvent-accessible surface area is at least 5% [17].
A surface residue is said to constitute an inter-facial con-
tact, if there exists at least one atom of this residue which
has a van-der-Waals-sphere at a distance of at most 0.5 A
from the van-der-Waals sphere to any atom from a partner
chain residue [39].

Based on [3,12,15,20,41], Li et al. [28] assume an inter-
facial contact of a residue on a chain is assumed to be
there, if any heavy atom of this residue is at distance of at
most 5 A from any heavy atom from a partner chain. The
relative solvent-accessible surface area of surface residue
is at least 15%.

We independently assigned to each interface surface
residue of the two data sets a random score between zero
and one according to the §-distribution Beta(a1(¢s)B1(5)),
and to every non-interface surface residue a score accord-
ing to Beta(an(¢)BN(g)), where the score precision ¢
satisfies

¢ €{0.8,09,1.0,1.1,1.2}, (8)

AUC referred to the protein surface of the enhancer

"~ AUC referred to the protein surface of the residue-wise score-based threshold predictor
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and the parameters a1(¢), B1(¢), an(s), BN (g) were cho-
sen such that

3 = ai(s)
ai(s) + Bi(s) )
o a1(s)Bi(s)
0015 = )
(1(s) + Bi(s)” (ar(s) + Bi(s) + 1)
R an(s)
eN= ————
an(s) + Bn(s)
o an(s)Bn(s)
OoNS = 5
(an(s) + Bn(s)” (an(s) + Bi(s) + 1)
(10)

The Surface AUC Ratios of the enhancer compared
with the threshold predictor on PlaneDimers and the KL-
subset are displayed in Table 1. There is an improvement
of 8.4% — 9.3% on PlaneDimers and of 3.2% — 5.0% on the
KL-subset.

Moreover, we compared individual classification results
obtained by thresholding the scores with pCRF-based
enhanced predictions. Because of the fact that the speci-
ficity of the threshold predictor can be easily changed
by manipulating the threshold, we proceeded as follows.
For every score precision, the pCRF-based enhancer has
a well-defined specificity referred to the surface residues.
We then chose the threshold such that the specificity of
the threshold predictor is close to that of the enhancer.
The results are shown in Table 2. The sensitivity is
increased by 53% — 67% on the data set PlaneDimers and
by 14% — 22% on the KL-subset.

Table 1 and Table 2 justify the following conclusion.
Enhancing the threshold prediction by our pCRF works
provided that the distributions of the interface scores
as well as the non-interface scores are unimodal. The
enhancement for the data set PlaneDimers is larger than
for the KL-subset. This might be caused by the plain inter-
face geometry of the complexes taken from PlaneDimers.

Utilizing the new data set due to Cukuroglu [40]

As in the case of the KL-subset, we randomly chose 60
dimers. We refer to the resulting list as CGNK-subset. Hav-
ing assigned synthetic scores according to Equations 7, 9
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and 10, where ¢ = 1.0, we compared individual classi-
fication results obtained by thresholding the scores with
pCRF-based enhanced predictions in exactly the same
way as we did for the KL-subset. The results are shown in
Table 3. The sensitivity is increased by 22%.

A main finding of Cukuroglu [40] relevant to protein-
protein interface prediction is, that the average interface
RASA value is greater than 40%. Since our method is
designed to improve performance of a given residue-wise
predictor, using this result is not in the scope of this paper.
However, a CRF-based predictor integrating features for
cliques of size greater than 2 is not beyond the range of
current algorithmic capabilities. In such a model a fea-
ture set that discretizes the mean RASA value of cliques is
promising.

Enhancing the PresCont server prediction on PlaneDimers
For the sake of completeness, we shortly review the
residue characteristics used by PresCont.

Relative solvent-accessible surface area

For any residue a, the solvent-accessible surface area
asa(a) can be computed by e.g. the software library BALL
[42]. Most of the classifiers known from the literature uti-
lize this characteristic (see [43]). For PresCont the relative
solvent-accessible surface area according to

asa(a)

asamax(a) )

rasa(a) :=

is taken into operation, where asamax(a) is the maximally
possible accessible surface area of residue a [44].

Hydrophobicity

Many interfaces possess a hydrophobic core surrounded
by a ring of polar residues [45,46]. In order to reduce noise,
in [25] the contribution of hydrophobic patches rather
then the influence of individual residues is utilized.

Residue conservation

Measures of this type utilized in [25] are the Shannon
entropy and the relative Shannon entropy of empirical
residue distributions in MSA columns. As an alternative,
empirical expectations of BLOSUM-based similarities are
taken for them.

Table 1 Classification results on PlaneDimers and the KL-subset, where the g-distributions according to which the
synthetic scores were drawn are defined by Equations 7, 8,9 and 10

. Score precision ¢ 0.8 09 1.0 1.1 1.2
PlaneDimers
Surface AUC ratio I’ 1.084 1.091 1.093 1.089 1.093
Signal precision 0.8 0.9 1.0 1.1 1.2
Kl-subset gnatp s
Surface AUC ratio T 1.032 1.039 1.045 1.045 1.050

Depending on the variances determined by ¢, the enhancer increases the AUC referred to the protein surface by 8.4%-9.3%. on PlaneDimers, and by 3.2%-5.0% on the

KL-subset.
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Table 2 Comparing the enhancer with the threshold classifier of approximately equal specificity on synthetic scores
assigned to surface residues of protein complexes taken from the data set PlaneDimers and the KL-subset

Data Set Score Precision ¢ Classifier Specificity Sensitivity MccC
08 Threshold Predictor 0.9672 0.2562 0.3253

Enhancer 0.9666 04281 04911

PlaneDimer 09 Threshold Predictor 0.9618 0.2556 0.3077
Enhancer 0.9624 0.4086 04610

10 Threshold Predictor 09611 0.2428 0.2912

Enhancer 0.9612 0.3872 04379

. Threshold Predictor 0.9681 0.2100 0.2753

Enhancer 0.9677 0.3307 0.4045

5 Threshold Predictor 0.9649 0.2100 0.2648

Enhancer 0.9647 03213 0.3854

08 Threshold Predictor 0.9568 0.2936 0.3549

Enhancer 0.9577 0.3586 04210

KL-subset 09 Threshold Predictor 0.9533 0.2843 0.3369
Enhancer 0.9531 0.3290 0.3820

10 Threshold Predictor 0.9570 0.2559 03152

Enhancer 0.9571 0.2971 0.3591

. Threshold Predictor 0.9615 0.2279 0.2949

Enhancer 0.9614 0.2743 0.3459

5 Threshold Predictor 0.9604 0.2199 0.2828

Enhancer 0.9599 0.2516 03175

Scores of local neighborhoods

They are evaluated by means of log-odd ratios of neigh-
boring residue pair frequencies in interfaces as opposed to
residue pair frequencies on complementary protein sur-
face areas. The resulting scores are averaged both over the
neighborhood of the positions under study and the rows
of the MSA associated with the protein.

On the basis of Figure 5 we enhanced PresCont for
thresholds 6 € [0.500, 0.625]. The decisive factor for this
choice is that the PresCont score distributions for inter-
face sites as well as non-interface positions above 6 are
“sufficiently close to” unimodal distributions. For every
such 6, we set all scores less than or equal to 6 to zero
and then left the classification of all surface residues to the
pCRF modified as follows. The residues of score zero are
not taken into account when it comes to discretizing the
protein characteristics (see Equations 4 and 5). Let us call
this enhancing above 6.

Table 3 Comparing the enhancer with the threshold
classifier of approximately equal specificity on synthetic
scores assigned to surface residues of protein complexes
taken from the CGNK-subset

Classifier Specificity Sensitivity MCC
Threshold predictor 0.9399 0.3782 0.3387
Enhancer 0.9400 03104 0.2767

To evaluate improvements we proceeded as when com-
piling Table 2. For every threshold 6 under consideration
another threshold 6’ was chosen such that threshold-
ing at 6" has the same specificity as enhancing above 6.
The results are displayed in Table 4 and visualized for an
individual protein by Figure 6. According to Table 4 the
increase in sensitivity ranges from 4% to 7%. The true-
positive predictions on the surface of the protein with
PDB-Entry 1QM4 are compared in Figure 6, where again
the specificity of the two classifiers is the same.

Discussing posterior decoding

Asin the case of linear-chain CRFs, the generalized Viterbi
algorithm can be transformed into a variant form of the
forward algorithm. It might be the case that the following
additional problem arises.

Let vi,va, ..., v, be the ordering in which the positions
of G are traversed by the algorithm, and let T denote the
set of position indices i < # such that v; is not an ele-
ment of the boundary B? of the history set H'? at stage
i. If T is not empty, we encounter an obstacle when it
comes to sampling label sequences. For i € T, position
v; is not labeled in the course of the sampling procedure.
That is why we augment the neighborhood graph G so
that those positions no longer exist, all predictions remain
unchanged, and the order of magnitude of the running
time is not increased. To this end, we complement the
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Table 4 Enhancing above various thresholds on PlaneDimers, where PresCont’s threshold was chosen such that the

specificity approximately equals that of enhancing

tp tn fp fn Spec. Sen. MCC

Enhancing above 0.500 2181 23182 4145 1414 0.848 0.607 0.362
PresCont 2100 23197 4130 1495 0.849 0.584 0.346
Enhancing above 0.525 2303 22917 4410 1292 0.839 0.641 0373
PresCont 2206 22912 4415 1389 0.838 0.614 0.353
Enhancing above 0.550 2507 22103 5224 1088 0.809 0.697 0.375
PresCont 2419 22102 5225 1176 0.809 0.673 0.358
Enhancing above 0.575 2560 21992 5335 1035 0.805 0.712 0.380
PresCont 2463 21915 5412 1132 0.802 0.685 0.358
Enhancing above 0.600 2379 22685 4642 1216 0.830 0.662 0.376
PresCont 2253 22780 4547 1342 0.834 0.627 0.356
Enhancing above 0.625 2287 23044 4283 1308 0.843 0.636 0.376
PresCont 2136 23049 4278 1459 0.843 0.594 0.346

The sensitivity increased that way by 4%-7%. For every pair of experiments, the number of true negatives (tn), false negatives (fn), false positives (fp) and true positives

(tp) are displayed.

o~

ordering vi,vy,...,v, as follows. For every i € I, we
insert a new node v; between v; and v;; 1. Having extended
the neighborhood graph by these nodes not being asso-
ciated with residue positions of the protein under study
and by new edges {v;,V;} (i € A), where for i € T and
Yo-y1,Y2 € {N, I}%(}’O; X) = (D{Vi@‘}(yliyZ:x) = 0, the
above mentioned obstacle is eliminated without any influ-
ence on the prediction and the order of magnitude of the
running time.

Proceeding now in a way analogous to the classical case,
in every formula that is a building block of the generalized

Viterbi algorithm the following two steps of replacement
need to be performed.

First, for every position i € V, every edge (i,) € £, every
label yo € {I, N}, and every label pair (y1,2) € {I, N}2, we
replace ®; (yo,x) with exp (®; (y0,%)), and ®y; 3 (y1,y2,%)
with exp (q){l,}} (yl’y2’ x))

Second, we replace sums with products and then max-
ima with sums.

Thus we obtain as analogues of the Viterbi variables
vity, (s, ) defined by Equation 6 what we call component
forward variables cfy, (y5,)-

H244 595

/

enhancer.

Figure 6 Comparison of enhancer and PresCont service of same specificity on the protein with PDB-Entry 1QM4. (A) Green spheres on the
left show the interface surface residues correctly predicted by both tools. (B) Red spheres on the right indicate additional true positives of the
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ifHD, 'Hg), s ’Hﬂ,)l and Bii), B(t), e B% are the con-
nected components of the history set H” and the cor-
responding boundary set B® at stage i € {1,2,...,n},
respectively, then the forward variable at stage i with
respect to a boundary assignment yg is defined as

mj
fi (vs0) = [ [ efyyo (vw) :
=t N

For any assignment yg@ (i > 1), the forward variable
f;(yg®) is a nontrivial linear combination of forward vari-
ables f;_1 (ygi-1)), where ygu-1) ranges over some assign-
ments of the boundary set BY~1 at stage i — 1. Analogous
to the linear-chain case, a random backward walk through
a state graph, with all possible assignments yzw (i = n, n—
1,...,1) being the set of nodes, results in a random label-
ing of the positions, where each labeling is drawn with its
posterior probability.

This sampling technique allows the efficient calcula-
tion of posterior probabilities at nodes and edges in a
straightforward manner.

Conclusions

Residue-wise score-based threshold predictors of protein-
protein interaction sites assign to each residue of the pro-
tein under study a score. The classification is then made by
thresholding the score. In case of using probabilistic data
models, the parameters of the threshold predictor have
been learned on a training data set in advance.

We have demonstrated that such threshold predictors
can be improved by pCRF-based enhancers given the
shape of the interface surface score distribution and the
non-interface surface score distribution with respect to
the training set resemble the shape of unimodal distribu-
tions. Besides the surface residue scores, only the spatial
neighborhood structure between the surface residues of
the protein under study is taken into account. Thus, the
improvement can be attributed to our model. In addition
to the precision of the scores, the amount of improve-
ment depends on the 3D-complexity of the interfaces to
be predicted. To this end, three sets of experiments with
synthetic surface residue scores for protein complexes
randomly chosen from the data set PlaneDimers compiled
by Zellner et al. [25] and from the lists published by Keskin
et al. [39] and Cukuroglu et al. [40].

The enhancement is structurally based on the follow-
ing model property of pCRFs in contrast to residue-wise
predictors. Though the scores of near-by residues may be
correlated, labeling a position as interface or non-interface
by thresholding the score does not influence the classi-
fication of its neighbors. When using pCRFs, this is the
case.

The pCRF-based enhancer is also applicable, if the
score distributions are only unimodal over a certain
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sub-domain. The improvement is then restricted to that
domain. Thus we were able to improve the prediction of
the PresCont server devised by Zellner et al. on PlaneD-
imers [25].

The prediction is made on grounds of a generalized
Viterbi inference heuristic. As for training, we devel-
oped a piecewise training procedure for pCRFs, where the
enhancer needs to be trained on data originating from the
same source as the training data of the threshold predictor
to be improved.

A prototypical implementation of our pCRF-based
method is accessible at http://ppicrf.informatik.uni-
goettingen.de/index.html.
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