
Neural Network Potential Simulations of

Copper Supported on Zinc Oxide Surfaces

Dissertation

for the award of the degree

“Ph.D."

of the Georg-August-Universität Göttingen

within the doctoral program Chemistry

of the Georg-August University School of Science (GAUSS)

submitted by

Martín Leandro Paleico

from Buenos Aires, Argentina

Göttingen, 18. März 2021

Thesis Committee
Supervisor:
Prof. Dr. Jörg Behler
Theoretische Chemie
Institut für Physikalische Chemie

Second Supervisor:
Prof. Dr. Ricardo A. Mata
Computerchemie und Biochemie
Institut für Physikalische Chemie

Examination Board
Reviewer:
Prof. Dr. Jörg Behler
Theoretische Chemie
Institut für Physikalische Chemie

Second Reviewer:
Prof. Dr. Ricardo A. Mata
Computerchemie und Biochemie
Institut für Physikalische Chemie

Further Members of the Examination Board
Prof. Dr. Burkhard Geil
Biophysikalische Chemie
Institut für Physikalische Chemie

Jun. Prof. Dr. Daniel Obenchain
Physikalische Chemie
Institut für Physikalische Chemie

Prof. Dr. Martin Suhm
Physikalische Chemie II
Institut für Physikalische Chemie

Prof. Dr. Alec Wodtke
Physikalische Chemie I
Institut für Physikalische Chemie

Date of the oral examination: 20.05.2021

iii

Oath

I hereby declare that I have prepared this thesis all by myself, did not use any sources or tools except
for those explicitly stated, and marked all quotes, be it in literal or analogous form, accordingly.
I declare that this thesis has not, nor in excerpts, been submitted to this or any other university in the
context of a failed examination.

Göttingen, 18. März 2021

(Martín Leandro Paleico)

Quotes

There are more things in Heaven and Earth, Horatio,
Than are dreamt of in your Philosophy.

(Hamlet, Shakespeare)
They have a curse. They say: May you live in interesting times.

(Apocryphal quote)
Give me an algorithm and a point of fulcrum and I will move the world.

(An Archimedes for the informatic age)
The story so far:
In the beginning the Universe was created.
This has made a lot of people very angry and been widely regarded as a bad move.

(The Restaurant at the End of the Universe, Douglas Adams)
Much human ingenuity has gone into finding the ultimate Before. The current state of knowledge
can be summarized thus: In the beginning, there was nothing, which exploded.

(Lords and Ladies, Terry Pratchett)
“All right," said Susan. "I’m not stupid. You’re saying humans need... fantasies to make life
bearable."
REALLY? AS IF IT WAS SOME KIND OF PINK PILL? NO. HUMANS NEED FANTASY TO
BE HUMAN. TO BE THE PLACE WHERE THE FALLING ANGEL MEETS THE RISING APE.

(Hogfather, Terry Pratchett)
By and large, the only skill the alchemists of Ankh-Morpork had discovered so far was the ability
to turn gold into less gold.

(Moving Pictures, Terry Pratchett)
Windle shook his head sadly. Five exclamation marks, the sure sign of an insane mind.

(Reaper Man, Terry Pratchett)
And therefore education at the University mostly worked by the age-old method of putting a lot of
young people in the vicinity of a lot of books and hoping that something would pass from one to the
other, while the actual young people put themselves in the vicinity of inns and taverns for exactly
the same reason.

(Interesting Times, Terry Pratchett)
Strange events permit themselves the luxury of occurring.

(Fads & Fallacies in the Name of Science, Martin Gardner)
(Economists are known to admire theoretical proofs; thus the old quip: Sure, it works in practice,
but does it work in theory?)

(Levitt and Dubner)
There are now many invisible people on stage.

(Stage directions in The Chairs, Eugène Ionesco)

Abstract

Heterogeneous catalysis is an area of active research, because many industrially relevant reactions
involve gaseous reactants and are accelerated by solid phase catalysts. In recent years, activity in the
field has become more intense due to the development of surface science and simulation techniques
that allow for acquiring deeper insight into these catalysts, with the goal of producing more active,
cheaper and less toxic catalytic materials.

One particularly crucial case study for heterogeneous catalysis is the synthesis of methanol from
synthesis gas, composed of H2, CO and CO2. The reaction is catalyzed by a mixture of Cu and ZnO
nanoparticles with Al2O3 as a support material. This process is important not only due to methanol’s
many uses as a solvent, raw material for organic synthesis, and possible energy and carbon capture ma-
terial, but also as an example for many other metal/metal oxide catalysts. A plethora of experimental
studies are available for this catalyst, as well as for simpler model systems of Cu clusters supported on
ZnO surfaces. Unfortunately, there is still a lack of theoretical studies that can support these experi-
mental results by providing an atom-by-atom representation of the system.

This scarcity of atomic level simulations is due to the absence of fast but ab-initio level accurate
potentials that would allow for reaching larger systems and longer simulated time scales. A promising
possibility to bridge this gap in potentials is the rise of machine learning potentials, which utilize the
tools of machine learning to reproduce the potential energy surface of a system under study, as sampled
by an expensive electronic structure reference method of choice. One early and fruitful example of
such machine learning force fields are neural network potentials, as initially developed by Behler and
Parrinello.

In this thesis, a neural network potential of the Behler-Parrinello type has been constructed for
ternary Cu/Zn/O systems, focusing on supported Cu clusters on the ZnO(101̄0) surface, as a model for
the industrial catalyst. This potential was subsequently utilized to perform a number of simulations.
Small supported Cu clusters between 4 and 10 atoms were optimized with a genetic algorithm, and
a number of structural trends observed. These clusters revealed the first hints of the structure of the
Cu/ZnO interface, where Cu prefers to interact with the support through configurations in the contin-
uum between Cu(110) and Cu(111). Simulated annealing runs for Cu clusters between 200 and 500
atoms reinforced this observation, with these larger clusters also adopting this sort of interface with the
support. Additionally, in these simulations the effect of strain induced by the support can be observed,
with deviations from ideal lattice constants reaching the top of all of the clusters. To further investigate
the influence of strain in this system, large coincident surfaces of Cu were deposited on ZnO supports.
Due to the lattice mismatch present between the two materials, this requires straining the Cu overlayer.
This analysis confirmed once again that Cu(110) and Cu(111) are the most stable surfaces when de-
posited on ZnO(101̄0). During this thesis a number of new algorithm and programs were developed.
Of particular interest is the bin and hash algorithm, which was designed to aid in the construction and
curating of reference sets for the neural network potential, and can also be used to evaluate the quality
of atomic descriptor sets.

Table of Contents

Abstract vii

List of Abbreviations (alphabetical order) xiii

I Introduction and Methods 1

1 Introduction 3
1.1 The Copper and Zinc Oxide Catalyst . 3
1.2 Outline of this Work . 7

2 Methods and Theory 9
2.1 Density Functional Theory . 9
2.2 Neural Network Potentials . 11

2.2.1 Introduction and Historical Development . 11
2.2.2 Feed Forward Neural Networks as Potentials 12
2.2.3 High-Dimensional Neural Networks . 14
2.2.4 Environment Decomposition . 19
2.2.5 Sampling . 19

2.3 Genetic Algorithm Global Optimization Search . 21
2.4 Simulated Annealing . 22

2.4.1 Introduction . 22
2.4.2 Size-dependent Melting Point . 24

2.5 Coincidence Lattice Match . 27
2.5.1 The Coincidence Lattice Match Algorithm 27
2.5.2 Strain Theory . 30

2.6 Structural Methods and Tools . 33
2.6.1 The Cut Cube Method . 33
2.6.2 Cumulative Distance Metric . 34
2.6.3 Lindemann Parameter . 34
2.6.4 Polyhedral Template Matching . 35

3 Computational Details 37
3.1 Density Functional Theory . 37

3.1.1 Settings . 37
3.1.2 k-point Grids for Non-orthogonal Cells . 37

3.2 Construction of the Neural Network Potential . 38
3.3 Generation and Composition of the Reference Dataset 38

3.3.1 Introduction . 38
3.3.2 Phase I: Systematic Modification of Known Structures 39
3.3.3 Phase II: Simple Simulations . 40
3.3.4 Phase IIIa: Genetic Algorithm Optimization of Small Clusters 41
3.3.5 Phase IIIb: Simulated Annealing of Large Supported Clusters 41

x Table of Contents

3.3.6 Phase IIIc: Large Coincident Surfaces . 43
3.4 Genetic Algorithm Search Settings . 44
3.5 Simulated Annealing Settings . 47
3.6 Coincidence Lattice Match . 47

3.6.1 Settings and Implementation . 47
3.6.2 Starting Surfaces . 47

II Results 51

4 The Bin and Hash Algorithm 53
4.1 Motivation . 53
4.2 The Bin and Hash Method . 54

4.2.1 Description of the Algorithm . 54
4.2.2 Analysis of the Algorithm . 56
4.2.3 Scaling . 59
4.2.4 Implementation . 60

4.3 Results . 60
4.3.1 Performance and Timings . 60
4.3.2 Analysis of the Distance in Symmetry Function Space 63
4.3.3 Results for Different Symmetry Functions . 65
4.3.4 Curating a Dataset . 66
4.3.5 Effective Number of Subdivisions . 71
4.3.6 Conflicting Information . 71

4.4 Conclusions . 72

5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters 73
5.1 Motivation . 73
5.2 Results . 74

5.2.1 Global Optimization Results . 74
5.2.2 Interface Structure . 79
5.2.3 Properties . 82

5.3 Conclusions . 86

6 Simulated Annealing of Large Supported Copper Clusters 87
6.1 Motivation . 87
6.2 Results . 88

6.2.1 Energy . 88
6.2.2 Average Structural Property Plots . 89
6.2.3 Structure of the Clusters . 95
6.2.4 Polyhedral Template Matching . 98
6.2.5 Coordination Numbers and Nearest Neighbor Distances 101
6.2.6 Lindemann Parameter and Melting Point . 106
6.2.7 Structure at the Interface . 110
6.2.8 Facets . 113

6.3 Conclusions . 113

7 Study of Large Copper-Zinc Oxide Coincident Surfaces 115
7.1 Motivation . 115
7.2 Results . 116

7.2.1 Behavior of the Coincidence Lattice Match Algorithm 116

Table of Contents xi

7.2.2 Results from Geometry Minimizations . 118
7.2.3 Translations in the XY Plane . 129
7.2.4 Selected Structures . 129

7.3 Conclusions . 134

III Summary and Bibliography 137

8 Summary 139

9 Acknowledgments 143

Bibliography 145

IV Appendices 161

A Notes on the Coincidence Lattice Match Algorithm and Strain Theory 163
A.1 Some notes on Linear Algebra . 163
A.2 Worked CLM Example for Cu(111) and ZnO(101̄0) 165
A.3 Strain Theory . 171

A.3.1 Deformation Tensor . 172
A.3.2 Infinitesimal Strain Tensor . 172
A.3.3 Finite Strain Tensor . 175
A.3.4 Strain for Rotated Systems . 176
A.3.5 Principal Stretches and Principal Strain Directions 176
A.3.6 Worked Example . 177

B RuNNer Settings 178

C VASP Settings 180

D Symmetry Functions for Ternary CuZnO Systems 181

E Neural Network Dispersion Plots 182

F Structural and Energetic Parameters for Cu and ZnO 183

Curriculum Vitae 185

List of Abbreviations (alphabetical order)

ACSF Atom-Centered Symmetry Function
ASE Atomic Simulation Environment (Python library)

BAH Bin and Hash algorithm
BHMC Basin Hopping Monte Carlo

CLM Coincidence Lattice Match algorithm

DFT Density Functional Theory

fcc Face Centered Cubic

GA Genetic Algorithm
GM Global Minimum
GO Global Optimization

hcp Hexagonal Close Packed
HDNNP High-Dimensional Neural Network Potential

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LM Local Minimum

MC Monte Carlo
MD Molecular Dynamics
ML Machine Learning
MLP Machine Learning Potential

NN Neural Network
NNP Neural Network Potential

PES Potential Energy Surface
PHTM Polyhedral Template Matching

RMSE Root-Mean Square Error

SA Simulated Annealing
SF Symmetry Function

VASP Vienna Ab-initio Simulation Package

Part I

Introduction and Methods

Chapter 1

Introduction

1.1 The Copper and Zinc Oxide Catalyst

Heterogeneous catalysis [1–5] occurs when the reagents and the catalyst accelerating the reaction re-
side in different or immiscible phases. Many industrially relevant synthesis are possible thanks to the
activity of this type of catalysts, and already in 2006 it was estimated that 80% of the reactions in in-
dustrial chemistry depend on catalysts of every type, contributing to up to 35% of the world’s GDP [6].
One of the more emblematic examples of the progress of heterogeneous catalysis is the nitrogen fixa-
tion process into ammonia developed by Haber and Bosch in the first half of the 20th century [3]. In
the preceding century, ammonia and nitrates were extracted from non-renewable and quickly depleting
sources such as niter mineral deposits and bird guano. This latter source was particularly devastating
to the ecology of many tropical islands at the time. The advent of the Haber-Bosch process meant not
only that these sources could be abandoned, but also lead to an explosive increase in the production of
fertilizer, explosives, and many products from organic chemistry, with the associated benefits to human
life and economic and industrial progress.

Study of these catalysts is therefore of relevance, with the goal of discovering new catalytic materials
and pathways, or of improving those already existing catalyst by replacing them with more active,
cheaper, or less toxic components [2]. The field of heterogeneous catalysis has advanced exponentially
since the days of Mittasch and Bosch, who in the first half of the 20th century while working for BASF
tested thousands of catalyst combinations for the nitrogen fixation process until the most adequate one
could be found. This is thanks to the development over the last century of a multitude of experimental
techniques [7], including among them many surface microscopy methods, ultra-high-vacuum study
chambers, surface spectroscopy techniques, techniques to follow the course of a reaction in real time
with devices such as mass spectrometers, structural determination with X-ray diffraction, as well as
many other specific solid materials and surface science techniques.

In spite of this abundance of experimental tools, solid catalysts present a number of challenges that
make them hard to probe at the atomic level, such as the presence of a variety of morphologies and
preparations methods for the industrial version of the catalyst, different behaviors between industrial
and experimental conditions, the necessity for most of these techniques to work in high vacuum and
low temperature situations, among others. To overcome some of these limitations and to gain more
insight into the catalytic process, increasingly in the last years contributions from the simulation com-
munity have become more and more important [8]. This has been guided by the rapid improvement of
computer power in the last decades, as well as the continuous development of new electronic structure
and classical algorithms, and simulation setups [5, 8] that attempt to mimic reaction conditions.

The production of methanol follows a similar historical development to that of ammonia: originally
produced inefficiently by pyrolysis from large amounts of wood, an industrial scale process involving
heterogeneous catalysts was developed in the first half of the 20th century (coincidentally, also with
the involvement of Mittasch at BASF). The current industrial synthesis of methanol requires a catalyst
composed of intermixed Cu and ZnO nanoparticles with an Al2O3 (alumina) support [9, 10]. The
reaction for the synthesis of methanol starts from a readily available mixture of H2, CO2 and CO

4 Chapter 1 Introduction

known as synthesis gas, and can be summarized as

2 ·H2 +CO→ CH3OH (1.1)

The available experimental evidence points to the formation of CO2 as an intermediate species in the
reaction, and thus synthesis gas mixtures that already contain CO2 are preferred [9]. This reaction takes
place at high temperatures (200-400 ◦C) and pressures (50-200 atm.) [9, 10], depending on the specific
version of the catalyst and gas mixture utilized. The catalyst is also utilized in other similar reduction
reactions, such as the water gas shift reaction or production of higher order organic alcohols [11].
This catalyst is of great interest, not only due to the specific importance of methanol at the industrial
scale as a solvent, synthetic raw material for other organic molecules and potential as an energy and
atmospheric carbon storage material, but also in general as a model for heterogeneous catalysis and
metal/metal-oxide catalysts.

The industrial catalyst itself is usually prepared [12–14] by mixing the inorganic nitrate salts of Cu
(in the highest proportion), Zn, and Al, co-precipitating with sodium carbonate, followed by steps of
ageing, drying, calcination, reduction, and annealing at high temperature. Many atomic microscopy
images of the commercial catalyst with techniques such as transmission electron microscopy (TEM)
and scanning tunneling microscopy (STM) are available [15–19], revealing a complex mixture of Cu
and ZnO nanoparticles. Most of the nanoparticles can be distinctly identified as being either copper or
zinc oxide, but the particles are often stuck to one another, and even at this scale the structure of the
interface between the materials is hard to discern.

Copper plays a key role in the catalyst, being the likely active component for the reaction, with
non-copper based versions presenting lower activity but better stability [20]. The alumina prevents
sintering and poisoning of the catalyst and thus extends its active life. The role of the zinc oxide is
more complicated. It is an important component since copper or zinc oxide on their own do not present
a high catalytic activity [21], and substitution with other metal oxides leads to reduced activity [22]. A
variety of hypotheses [9, 10, 23–26] regarding its actual function and the identity of the catalytic active
site have been presented in the literature. To mention a few of the more relevant theories, it has been
proposed that ZnO:

i. serves as a storage of hydrogen that then reacts on the copper [21]

ii. induces and stabilizes strain and defects on the copper which enhances the catalytic activity of
the copper phase [16, 17, 27], while also preventing coalescence of the nanoparticles and thus
increasing the Cu surface area [10]

iii. provides oxygen atoms to form a mixed copper oxide phase that is assumed to be the active
material [28]

iv. stabilizes reactive Cu+ species that substitute Zn atoms in the ZnO lattice [9, 11, 29]

v. induces shape changes on supported Cu particles under reaction conditions, which are responsi-
ble for catalytic behavior [30–32]

vi. provides Zn atoms to form brass alloy [33, 34], but yet other sources [30] mention that this was
only observed under extremely reducing conditions

A number of recent papers further illustrate the difficulty of assigning a unique source to the activity
of Cu/ZnO. Kuld et al. [35] suggested in 2016 that, once again, the catalytic activity is due to brass
alloying on the external facets of copper nanoparticles, with Zn atoms migrating originally from the
ZnO nanoparticles. Later in 2017, Kattel et al. [36, 37] proposed that this Zn is easily oxidized to ZnO,
in which case brass is no longer the relevant species. Both papers are then somewhat contradicted
by a previous 2015 paper by Lunkenbein et al. [19] in which they detected a thick graphite-like ZnO

1.1 The Copper and Zinc Oxide Catalyst 5

overlayer on catalyst nanoparticles under industrial conditions. Due to the large number of possible
reaction pathways for the formation of methanol from the gaseous reagents [38], and all the possible
material combinations of a ternary Cu/Zn/O system, it is likely that many if not all of these proposed
hypotheses are in the end partially responsible for the catalytic activity of the mixture.

Due to the complexity of the commercial catalyst, much more information is available for simpler
systems and models. Copper and zinc oxide have of course been extensively studied on their own. Zinc
oxide is interesting as an example of a widely available and utilized metal oxide model. Janotti and
Van de Walle [39] explored the semiconductor characteristic of the material and presented an in-depth
view of its electronic structure. With regards to ZnO surfaces, Wöll [40] presented an excellent review
of experimental and theoretical results, while an earlier paper by Meyer and Marx [41] serves a useful
reference for the in-detail structure of such surfaces and the challenges related to DFT calculations
involving them. On the experimental side, Dulub et al. [42] presented an extensive study of the common
low index surfaces of ZnO with a variety of surface science techniques. Wang [43] showed how zinc
oxide exhibits a wide variety of nanoparticle shapes and behaviors, while Moezzi et al. [44] provided
a good review of their synthesis, characterization and uses. To highlight the complexity of zinc oxide
at the small cluster level and the general difficulty of cluster optimization, Wang et al. [45] calculated
and provided structures for clusters between 2 and 18 formula units of ZnO. Finally, Kołodziejczak-
Radzimska and Jesionowski [46] presented an even wider list of the available synthetic pathways for
zinc oxide materials, and describe many of its industrial applications. For a general overview of metal
oxides, their interfaces, and interactions with molecules and metals, the book “The Surface Science of
Metal Oxides” by Henrich and Cox [47] is a good but outdated resource.

The literature for copper is naturally prolific, due to copper’s historical, chemical, biological and
industrial significance. The main reference for copper as a material is a 2001 ASM review book [48]
centering on copper and its alloys, with most of the rest of the available literature concentrating on
copper in combination with other materials or reagents. Of interest to the Cu/ZnO catalyst system are
multiple papers on the synthesis and characterization of copper nanoparticles, with specific examples
such as those presented by Dhas et al. [49] and Khanna et al. [50]; and more general reviews produced
by Khodashenas and Ghorbani [51], and Din and Rehan [52].

Combined models of both components usually consist of copper deposited on zinc oxide, most com-
monly the polar surfaces ZnO(0001) and ZnO(0001̄), and the non-polar ZnO(101̄0) surface. Many of
these studies report the formation of clusters even at low monolayer coverages, and go on to describe
the morphology of these clusters and their growth modes, such as the initial presence of 2D flat islands
that then transition into 3D clusters or full Cu overlayers at larger coverage proportions, depending on
the particular surface and conditions involved [53–55]. But many studies have also reported a number
of interesting behaviors even for such a simple model system, such as the preferential nucleation of
clusters on steps and kinks [56], formation of trenches and valleys at large coverages when a contin-
uous sheet would be expected [56, 57], disappearance of a proportion of the deposited copper when
annealing at high temperatures, presumably because of diffusion into the support or possible formation
of an alloy [18, 56, 58], changes in the shape of the clusters when exposed to reaction gases [31, 59],
and entrenching of the clusters into the ZnO support, deep enough to leave an imprint when the clusters
are removed with a STM tip [60].

Many of the surface science techniques utilized to study these model systems present a number
of limitations [7] that make it also necessary to rely on theoretical approaches. To mention a few
problems, most surface science techniques need to be performed under ultra-high vacuum conditions
and at low temperatures, have trouble imaging mobile atoms, cannot distinguish Cu and CuZn due
to the similarity in lattice constants [61], nuclear charge and electronic density, which are properties
on which many of these techniques rely. Thus insights can also be gained from theoretical studies
and simulations [8], but this is difficult for the Cu/ZnO case due to the absence of cheap and accurate
force fields capable of treating this system. This is apparent from the available theoretical literature
for the catalyst. Because of this limitation, theoretical studies have been limited to small ab-initio

6 Chapter 1 Introduction

calculations containing a few Cu atoms or pre-designed clusters, a small ZnO support, and sometimes
a handful of gas molecules [24, 62, 63]; or to simplified thermodynamical approaches such as ab-initio
thermodynamics to explore the formation of vacancies and defects and the presence of adatoms on the
ZnO substrate [24, 64, 65]. The few papers that attempt to simulate larger systems rely on ad hoc
parameterized potentials [66, 67]. To mention a few recent relevant theory papers, Hellström et al. [68]
deposited multiple pre-designed small clusters on ZnO and studied their electronic structure and charge
distribution. Cheng et al. [66] performed a parametric fit with the COMB3 (third-generation Charge
Optimized Many Body) potential [69]), and then deposited copper clusters on ZnO slabs, studying
the distribution of Cu atoms on the surface, being able to reach systems with more than 500 atoms
in the simulation. Beinik et al. [59] studied the wetting of supported continuous Cu overlayers with
electronic structure methods, and how this changes when defects are introduced into the ZnO layer,
but used small periodic cells for this purpose. Another later paper by Hellström et al. [70] studied
the behavior of very small supported Cu clusters in the presence of water molecules. Mora-Fonz et
al. [67] developed a parameterized force field, and utilized this in an attempt to globally optimize small
deposited clusters and to study the interaction of larger, nanometer scale clusters with steps on a ZnO
surface. Wan et al. [71] deposited vacuum optimized Cu clusters on a CeO2 support and studied their
interaction with CO including single atom diffusion, utilizing electronic structure calculations. More
recently, Higham et al. [72] presented a study of the structure of copper clusters on the polar surfaces
of ZnO by combining parameterized potentials (which seem to be the same from Mora-Fonz et al.) and
electronic structure calculations.

For direct atom-per-atom simulations, a potential is required that is both accurate, but fast enough
to be able to simulate either thousands of atoms or long simulation times. This has led to a lack of
large-scale atomistic level studies. Electronic structure calculations can give the accuracy required, but
are restricted to single point calculations, calculations with no support (which are thus of dubious use),
or very short dynamic runs. Classical simulations, on the other hand, are constrained by the lack of
a potential that can accurately treat this system. A force field is required that is not only reactive, but
that can treat two very different materials together (one a conducting metal, the other a semiconductor
metal oxide), and in a variety of configurations.

Commonly utilized and widely available force fields and parameterization methods are not suitable
for the Cu-ZnO system or supported clusters in general, and only a few potentials for general met-
al/metal oxide systems are available [73, 74]. A particular strong requirement is that no fixed bonds
should be present in the model, which already discards a large majority of simple force field setups.
Force fields designed for solids, suffer from either being too simple (for example, the Stillinger-Weber
potential [75]), or being able to only handle a limited number of configurations or phases (for exam-
ple, the EAM method [76]), whereas a potential for the system under study requires handling different
environments such as solids, surfaces and clusters. More complex force fields such as ReaxFF [77],
which do allow for bond breaking, are available. Although originally intended for molecules, it can
also be used to treat metals and metal oxides (see for example, refs. 74 and 78), but still requires care-
ful parameterization and selection of reference structures. Another common parameterization scheme,
particularly suited to density functional theory calculations and solids, is the DFTB (Density Functional
Tight Binding) [79, 80] method. Potentials for ZnO [81] as well as for Cu [82, 83] are available in the
literature, but no parameterization for ternary CuZnO appears to be available. DFTB is notoriously
difficult to parameterize [84], and also rather computationally demanding.

As a specific example of parameterized potentials for Cu and ZnO, ref. 66 presents a parameteriza-
tion with the COMB3 potential, and ref. 67 presents an ad hoc parameterization based on Buckingham
and Morse terms. Ideally, a generally applicable solution is desired. Most of the parameterizable force
fields available function best with one particular system (molecules, or metals, or metal oxides, or
solids, or clusters) but not multiple systems at the same time. Worse still, the potentials need to be
parameterized for each individual case, carefully selecting which particular potential is applicable to
the problem at hand, and introducing new species into a parametrization can be difficult or in some

1.2 Outline of this Work 7

cases impossible given the particular construction of the potential.
For this purpose, machine learning potential and in particular neural network potentials [85–87] have

appeared in the last few years as an attractive option. These potentials can reproduce ab-initio data
with high accuracy but also high computational efficiency. More importantly for this system, no hard-
coded concept of bonds is present in the NNP ansatz, which makes them naturally reactive, and they
can contain a multitude of chemical environments. NNPs are parameterized directly on information
about the potential energy surface (PES) of the system, as sampled by high-quality reference electronic
structure calculations. They can work for a variety of systems, combining information from solids
and molecules, and adding additional elemental species into the potential is much easier than in many
parameterized potentials which might require new ad hoc potential terms or extra parameters. NNPs
have been already found success in being applied to a series of related systems such as copper [88]
and zinc oxide [89] on their own, as well as the interface between water and copper [90], and water
and zinc oxide [91]. More recently, as part of research related to this thesis, also brass nanoparticles
have been investigated [61, 92]. Finally, Artrith et al. [93] demonstrated that an accurate NNP was also
possible for the ternary Cu/ZnO system.

The goal of this thesis is then to generate a neural network potential for Cu and ZnO, and utilize
this potential to gain new insights into the structure of the combined Cu and ZnO system, with a focus
on taking advantage of the power of NNPs to go beyond the capabilities of the previously available
simulation-based studies. It seeks to address the following questions:

• Can we provide a framework for reliably generating reasonable structures for supported small
clusters? Previous studies have centered on depositing pre-optimized or pre-designed clusters, or
on optimizing supported clusters with parameterized potentials. Such small clusters would not
only provide the first insights into the structure of the combined catalyst, but could also function
as templates for future catalytic studies by addition of reactant molecules.

• Can we perform simulations reaching the experimental scale? All previous theoretical studies
have centered either on very small clusters, coarse or abstracted simulations, or used parameter-
ized potentials to simulate larger clusters. Can we utilize a NNP to approach ab-initio quality,
but also simulate experimental scale systems in the nanometer range?

• Can we provide new information regarding the Cu and ZnO interface? This is difficult to access
experimentally with surface science techniques since it is of course covered by both materials.
Of particular interest is the presence of a mismatch between the two materials, which restricts
the kind of interfaces that are energetically favorable and thus possible/observable.

1.2 Outline of this Work

This thesis is organized into four parts. Part I contains this introduction (chapter 1), a methods and
theory chapter (chapter 2) describing the theory of electronic structure calculations, neural network
potentials, and a variety of other simulation algorithms utilized in the course of this work; and finally
a computational details chapter (chapter 3) detailing the setting and parameters utilized for a variety
of methods as well as describing the generation of the reference structures for the Cu/ZnO potential.
Part II contains the main results portion of this thesis. First (chapter 4), a new algorithm for analysing
structural databases and atomic environment descriptors known as the bin and hash algorithm (BAH)
is described and examples of its application are provided. Then (chapter 5) a genetic algorithm global
optimization algorithm is utilized to generate small Cu clusters (between 4 and 10 atoms) deposited on
ZnO(101̄0). This is extended in the following chapter (chapter 6), with an analysis of larger Cu clusters
(up to 500 atoms) as obtained from simulated annealing runs. Finally, the interface between Cu(100),
(110), and (111) and ZnO(101̄0) is studied from the point of view of the coincidence lattice match

8 Chapter 1 Introduction

algorithm. Part III includes a summary and conclusions (chapter 8), acknowledgements (chapter 9),
and a bibliography. Finally, a series of appendices are included in part IV, labeled A through F.

Chapter 2

Methods and Theory

2.1 Density Functional Theory

As the method of choice for generating the reference electronic structure data in this work density
functional theory (DFT) has been chosen. Here the necessary fundamentals of electronic structure
calculation and DFT are introduced.

The state of a quantum system can be described by a wave function ψ(R,r), which depends on the
position of all nuclei (R) and electrons (r) in the system, as obtained from the solutions to Schrödinger’s
time-independent, non-relativistic differential equation

Hψ = Eψ, (2.1)

where E is the energy associated to that wave function, and H is the Hamiltonian operator, which
contains kinetic and potential energy terms. For a system of nuclei (also known as ions) and electrons,
the Hamiltonian can be expressed in atomic units as

H =−1
2

Ne

∑
i=1

∇
2
i−

1
2

NN

∑
A=1

1
MA

∇
2
A+

Ne

∑
i=1

Ne

∑
j>i

1
ri j
−

Ne

∑
i=1

NN

∑
A=1

ZA

riA
+

NN

∑
A=1

NN

∑
B>A

ZAZB

RAB
(2.2)

= Te +TN +Vee +VNe +VNN, (2.3)

where the terms represent the kinetic energy of electrons (Te) and nuclei (TN), and the electrostatic
Coulomb interaction between electrons (Vee), electrons and nuclei (VNe), and between nuclei (VNN).
Ne and NN are the number of electrons and nuclei in the system, ∇2 is the Laplacian differential oper-
ator, MA and ZA are the mass and charge of a given nucleus A, and ri j, riA, RAB represent the distances
between the corresponding particles.

With the exception of a few simple cases, it is not possible to solve this differential equation exactly
and directly. A first approximation to aid in this endeavor was provided by Born and Oppenheimer [94],
by separating the nuclear and electronic degrees of freedom by

ψ = ψ(R,r)≈ ψN(R) ·ψe(r). (2.4)

In this approximation, the electrons are said to respond immediately to changes in the positions of the
much heavier nuclei, and as such Hamiltonian terms that depend on ion positions can be considered
constant, with the exception of VNe where now the nuclei position enter parametrically. This gives rise
to the concept of a potential energy surface (PES): a function that uniquely correlates, for a given elec-
tronic state, atomic positions with the energies and forces in the system. The Hamiltonian associated
to the electronic wave function thus becomes

Helec = Te +Vee +VNe. (2.5)

Computationally, the electronic Schrödinger equation can be solved with the Hartree-Fock [95] (HF)
approach by making use of the variational principle, which states that the correct proposed wave func-

10 Chapter 2 Methods and Theory

tion minimizes the energy of the system, expressing the trial wave function as a Slater determinant of
basis functions, and solving a series of linear algebra equations.

A disadvantage of this approach is that the wave function depends on 3Ne coordinates. Since the
square of the wave function can be interpreted as the probability of finding an electron in a given
region of space, which can be related to the more classical concept of electronic density, a possibility
emerges of developing a quantum framework based only on the electronic density. This is the goal of
density functional theory.

The relationship between wave function and electronic density is given by

ρ(r) = Ne

∫
...
∫
|ψ(r1,r2, ...,rNe)|dr2dr3...drNe , (2.6)

where the integral is over all electron spatial coordinates except for one, and the equation can be
interpreted as the probability of finding any of the electrons in the volume dr1 while the system is in
state ψ . Integrating over dr1 returns the total number of electrons in the system,∫

ρ(r)dr1 = Ne. (2.7)

The advantage of approaching the problem from the point of view of the electronic density is that
this quantity only depends on 3 spatial coordinates, adopting a given value for every point in space, and
thus its dimensionality remains constant regardless of system size. The theorems required for utilizing
the electron density were proved by Hohenberg and Kohn [96]. They proved that i) the electronic
density in fact uniquely determines a Hamiltonian, and consequently all other properties of the system;
and ii) the variational theorem is also valid for the electronic density, that is, the “correct” electronic
density for a system is also the one that minimizes the energy of the system.

With these theorems, the energy of the system can be expressed as a “functional” of the electronic
density

E = E[ρ] = Te[ρ]+Vee[ρ]+VNe[ρ]. (2.8)

Now the problem becomes finding a functional form for each of the terms on the right hand side
with respect to ρ . The classical Coulomb electrostatic contributions can be easily expressed as:

Vclassical
ee [ρ] =

1
2

∫ ∫
ρ(ri)ρ(r j)

ri j
dridr j (2.9)

VNe[ρ] =
∫

ρ(ri)
NN

∑
A=1

ZA

riA
dri (2.10)

which are just the classical expressions of an electron density interacting with another electron density
or a nucleus, but given the relationship between electronic density and wave function, can also be
expressed in terms of a wave function.

But this leaves some unknowns: the electron kinetic energy term, and non-classical electron contri-
butions such as exchange (due to the required anti-symmetry of fermion/electron wave functions) and
correlation (due to the fact that wave functions cannot actually be expressed as a single Slater deter-
minant as in the HF approximation). These remaining terms are not as trivial to evaluate. Kohn and
Sham [97] (KS) proposed the following ansatz for the unknown terms, as well as a series of equations
that allow to solve the electronic density quantum problem computationally [98]. In the KS approach,
the kinetic energy of the electrons is approximated as that of a non-interacting system of electrons,
described by orbitals, which is known exactly and given by

TS =−1
2

Ne

∑
i=1

∫
φ
?
i ∇

2
φidri, (2.11)

2.2 Neural Network Potentials 11

where φ is the orbital of the non interacting system, and φ ? is its complex conjugate. An extra unknown
term TC covers the gap between the non interacting and the interacting system. TC, together with
the non classical electron-electron interactions (Encl), is gathered into a single term, the exchange
correlation functional EXC. Notice that despite its name, it includes not only “potential” energy terms,
but also a part of kinetic energy.

The final open question in density functional theory is, then, the expression for this exchange and
correlation functional. The functional needs to fulfill a number of conditions such as reproducing
exchange and correlation holes [98], and many possible forms have been proposed which can be orga-
nized in a hierarchical ladder [99] of increasing accuracy but also complexity and computational cost.
The simplest approach, known as the local density approximation (LDA), obtains the exchange from
an electron gas of uniform density, equal to that of the real system at a given point in space; while
the correlation part still needs to be numerically estimated [98]. Due to their simplicity, LDA meth-
ods are nowadays mostly obsolete. Generalized gradient approximation (GGA) methods include terms
that depend on the gradient of the electronic density. Meta-GGA methods include further derivatives
of the electronic density. Hybrid functionals combine parts of the exchange energy from HF calcula-
tions, where it can be exactly calculated, with a concomitant increased computational cost. Due to the
good compromise between computational cost and accuracy found in GGA functionals, they are the
functional of choice in this work.

2.2 Neural Network Potentials

2.2.1 Introduction and Historical Development

Neural networks (NN) are one method within the ever-growing field of machine learning [100] (ML),
which seeks to develop algorithms that can learn from experience and excel at tasks such as classifica-
tion and prediction. Neural networks have been particularly successful, with applications ranging from
image classification [101] to game playing such as Go [102], to cite only a few impressive examples.
Of interest for this work, neural networks are also capable of reproducing functions, such as potential
energy surfaces. Neural networks have found applications in chemistry and physics not only as poten-
tials, but also as tools for NMR spectra classification [103] and drug design [104], to once again cite
only a few examples. Other ML methods have also found success in these fields.

As their name implies, neural networks started as an analogy to biological neurons with the work of
McCulloch and Pitts in 1943 [105], where they first formalized a system of individual artificial neurons
that take an input, and yield a given output when a threshold is reached. In 1958, Rosenblatt [106]
further developed neural networks by introducing input and output layers to create a binary classifier,
the perceptron. In 1969 Minsky and Papert [107] introduced further layers into the network, called
hidden layers, with the goal of reproducing all possible logic functions, a presumed requirement for
general computability. Werbos in 1975 [108] developed the theory of backpropagation, allowing for
the training of arbitrary, multi layer networks. Still, other methodological problems and the substantial
computational effort required to train and implement neural networks delayed the field until better
computers and algorithms were developed in the 80’s and 90’s, giving rise to the recent explosive
growth of the machine learning field.

Of interest here is the use of neural networks as machine learning potentials (MLP), also known as a
neural network potential (NNP). That is, utilizing neural networks not as classifiers but as interpolators,
that can learn to reproduce the complex potential energy surface (PES) of a system of atoms. It can be
proven [109] that a neural network of arbitrary size can reproduce any “well behaved” function from
known values of that function, making neural networks a class of universal approximators. Here, the
target function is the PES as a function of atom coordinates. That such a function linking coordinates
and energies and forces exists is suggested by the Born-Oppenheimer approximation [94]. NNPs are
usually constructed by sampling the PES with an “expensive” but accurate electronic structure method,

12 Chapter 2 Methods and Theory

and then utilizing the forces and energies predicted by a NNP trained on this data to perform any num-
ber of classical simulations. The first potentials with NNs at their core were published in the 90’s (see
86, 110, 111 for comprehensive reviews), starting with the work of Doren et al. in 1995 [112], but most
of these consisted of simple feed-forward NNPs with methodical limitations. They constitute the first
generation [113] of NNPs, which could only treat low dimensional molecular systems. A breakthrough
in the field appeared in 2007, with the introduction of high dimensional neural network potentials by
Behler and Parrinello [114–116] (HDNNP), inaugurating the second generation of NNPs, which al-
lowed for the construction of a NNP for systems of arbitrary size and composition while respecting
all the necessary invariants required for a force field. More recently, third and fourth generation NNPs
have been introduced, the former ones capable of predicting local charges and thus electrostatic inter-
actions [89] for long range interactions, and the latter making use also of non-local information for a
similar purpose [113].

Research in the field of MLPs is highly active, with many new methods and algorithms introduced
since the advent of HDNNPs. This includes developments that adopt other forms of NNs, such as
convolutional [117] or deep [118, 119] networks. Others still rely on simpler NNs but adopt differ-
ent atomic environment descriptors such as permutation invariant polynomials (PIPs) [120], smooth
overlap of atomic positions (SOAPs) [121], spherical harmonics [122], electronic structure based de-
scriptors [123], weighted atom centered symmetry functions (wACSFs) [124], and many others [125–
127]. It has recently been shown that the predictive power for many of these descriptors is com-
parable [128]. Other methods from machine learning, not based on NNs, have also increasingly been
adopted as PES replicators. Among them we can find Gaussian approximation potentials (GAPs) [129],
spectral neighbor analysis (SNAP) [130], moment tensor potentials [131], and kernel ridge regression
(KRR) [125, 126].

The following sections describe in more detail first simple feed forward neural networks in their
roles as potentials, discussing their limitations, and then the development of the more complex high
dimensional potentials that solve these problems.

2.2.2 Feed Forward Neural Networks as Potentials

A simple feed-forward neural network potential is presented in fig. 2.1. The network is divided into
layers: the input layer, where the coordinates of the system under study are entered into the network,
pre-processed in the form of for example internal coordinates; one or more hidden layers, which process
the values obtained from the previous layer and pass the results forward to latter layers; and an output
layer, which outputs the prediction of the NNP, in this case the energy.

G
1

y1
1

y2
1

G
2

y1
2

y2
2

E

INPUT HIDDEN OUTPUT

x a01
11

x a12
22

BIAS

+ b2
1

Figure 2.1: Diagram of a simple feed forward neural network potential, with an input layer, two hidden
layers, and an output layer, each respectively with two, two, two and one node. This makes
up a 2-2-2-1 architecture.

2.2 Neural Network Potentials 13

Each layer is made up of individual nodes or neurons, with each node usually standing in for a given
mathematical operation or function. Each node outputs a value, and is fully connected to all nodes
in the next layer. Each node in a given layer receives a value from all nodes in the previous layers,
and takes them as an input to its own function, combined with weights and biases. Nodes in the input
layer usually consists of functions of the atomic coordinates, the output node consists of a linear sum
of the incoming nodes in the last hidden layer to prevent constraining the possible output values in the
network, and the nodes in the hidden layers contain so called activation functions. The total number of
layers and the number of nodes in each layer define the architecture of the NNP.

Weights and biases are present between the connections of every node. Weights are multiplicative
and biases are additive modifications to the values going from one node to another. NNPs with the
same architecture will have the same number of weights and biases, but their value depends on the
training of the NNP. The objective of weights and biases is to moderate the response between nodes:
trivially, if a weight is zero, the connection between two corresponding nodes will be severed, while if
the weight is positive/negative, there will be a positive/negative correlation between those nodes.

The goal of the activation functions is to moderate the response of each node in the network, and
introduce non-linearity into the NN ansatz, since otherwise the network could be reduced to a simple
series of linear equations that would not be effective as a universal function approximator. Many types
of activation functions are available, which in general share an asymptotic behavior for extreme input
values (very positive or negative), and a non-linear region between the asymptotes. One of the more
commonly used ones is the hyperbolic tangent, plotted in fig. 2.3 and given by the equation

f =
ex− e−x

ex + e−x , (2.12)

where, in the context of a NN, x is the sum of outputs from nodes in a previous layer modified with
weights and biases, and f is the output from this node to the next layer. Due to its behavior, the
hyperbolic tangent models a threshold function, with a binary output (the asymptotes), at both sides of
the turning point of the function.

For feed forward neural network potentials it is possible to express the network also as a closed
analytic equation. For a NNP with one input layer, two hidden layers and an output layer (the energy
E), numbered in that order from 0 to 3, and with NI,NH1,NH2, and 1 node respectively, this expression
looks like

E = b3
1 +

NH2

∑
k=1

a23
k1 · f 2

k

(
b2

k +
NH1

∑
j=1

a12
jk · f 1

j

(
b1

j +
NI

∑
i=1

a01
i j ·Gi(R)

))
, (2.13)

where f α
c is the activation function of node c in layer α , bα

c are additive biases on the input of node
number c in layer α , aαβ

cd are multiplicative weights connecting node c in layer α , with node d in layer
β , R are the coordinates of the atoms in the system, Gi are functions of these input coordinates, and
i, j,k count over the nodes in the input layer, first, and second hidden layers, respectively.

As described, these first generation neural networks are capable of reproducing target sampled PESs.
Their form is analytic, which enables not only the use of backpropagation for fitting, but also the use of
derivatives of the output energy to also predict forces. The method also exhibits a number of limitations:
many of the early neural networks did not exhibit the invariances required for a more universal potential
(translation, rotation, and permutation invariance) that could be applied to any system, had a fixed
system size (that is, they would only work for the exact number and type of atoms that the NNP
was trained for), and would scale badly if applied to larger systems due to the increasing number of
input nodes. To overcome these limitation, the second generation of high-dimensional neural network
potentials was introduced.

14 Chapter 2 Methods and Theory

2.2.3 High-Dimensional Neural Networks

The Behler-Parrinello second generation potentials, depicted in fig. 2.2, solve the limitations of the first
generation methods in two main ways. The first modification is that the total energy of the system is
partitioned into individual, fictitious atomic energies, and the energetic contribution from each atom is
calculated by an individual NNP. These individual NNPs are shared across atoms of the same element,
but since each atom will exhibit different chemical environments, their predictions will differ even for
atoms of the same element. This solves in part the problem of system size, since adding atoms to a
system just means adding more individual networks and adding another term to the total energy of the
system.

The second big modification is the change to a symmetry function (SF) based approach for the
input layer of each elemental NNP. These symmetry functions take into account the local environment
around each atom up to a given cutoff radius, and are constructed in such a way to respect translational,
rotational and permutational invariance. This approach not only fixes the problem with invariances, but
also further solves the size problem, since now the networks only look at the environment around each
atom instead of the system as a whole.

Symmetry functions achieve spatial invariance by utilizing internal coordinates (distances and angles
between atoms), permutation invariance by summing over contributions from pairs or triplets of atoms,
and locality by including only atoms up to a given cutoff radius RC. Due to the presence of a cutoff
radius, continuity of the SFs functional form for the purpose of derivation needs to be ensured. For this
purpose, a cutoff function is included in every SF. This cutoff function can have multiple expressions
as long as it is continuous and differentiable, and goes to zero for values of RC > Ri j, with Ri j the
distance between a given atom j and the atom i at the center of the symmetry function. One possible
example is a split function based on the cosine

fC(Ri j) =

{
0.5
[

cos(πRi j
RC

)+1
]

Ri j ≤ RC,

0 Ri j > RC.
(2.14)

Many types of SFs exist [110], but two of the simpler ones are commonly used, referred as radial
(G2) and angular (G4) symmetry functions. These are plotted in fig. 2.3, and their functional form for
a given central atom i is

G2
i = ∑

j
e−η(Ri j−Rs)

2 · fc(Ri j), (2.15)

G4
i = 21−ζ

∑
j,k
(1+λ cos(θi jk))

ζ · e−η(R2
i j+R2

jk+R2
ik) · fc(Ri j) · fc(R jk) · fc(Rik), (2.16)

where j,k are the indices of all atoms within the cutoff radius of the central atom, Ri j is the distance
between atoms i and j, θi jk is the angle between atoms i, j,k, and η ,Rs,ζ ,λ are parameters that in
effect generate different symmetry functions out of the same initial functional form. These parameters
are defined before a fit takes place, and in a way also form part of the architecture of the NNP. The
collection of symmetry functions generates a set of descriptors for the atomic environment around each
atom, usually called a symmetry function vector, or the atomic environment fingerprint. For radial SFs,
one SF is present for each elemental pair present in the system (for atomic NNPs of element A, G2

AA,
G2

AB, G2
AC, etc., if the first element mentioned is considered the central atom of the SF), which may or

may not share parameters. The same applies to angular SFs, but with more copies of the SF present
due to relying on two neighboring atoms (for atomic NNPs of element A, G4

AAA, G2
AAB, G2

ABB, G2
AAC,

G2
ABC, G2

ACC, etc., if the first element mentioned is the central atom of the SF).
The goal of the SF set is to generate a unique input vector to the NNP for each possible atomic

2.2 Neural Network Potentials 15

environment, so that the NNP can differentiate the various atomic configurations and assign a unique
energy and force to each one. In a sense, NNP are not only working as universal approximators,
but also still as classifiers, associating an energy “label” to each SF vector. Generating these sets of
symmetry functions is often a trial and error process that takes into account as a starting point the usual
geometries of the system under study, although some more automated processes to aid in SF selection
have appeared in recent years (see sec. 4.1).

As mentioned in the previous section, forces can be obtained as a derivative of the output node of the
network, since the whole network can be expressed analytically into a closed equation. For a HDNNP,
this is given by

Fk,x =−
∂Etot

∂Rk,x
=−

Natoms

∑
i=1

∂Ei

∂Rk,x
, (2.17)

where Fk,x is the force on atom k in the Cartesian direction x, Etot is the total energy output by the
neural network, Rk,x is the x coordinate of atom k, Natoms is the total number of atoms in the system,
and Ei is the partial energy contribution of the individual atom i to the total NNP energy. Since only
atoms in the cutoff radius of atom k actually see this atom, only their individual atomic networks have
a functional dependence on the position of k through the symmetry functions. As such, the sum can be
constrained to only atoms within one cutoff radius of k. Then, the chain rule can be applied to separate
into derivatives containing the symmetry functions as terms. Since these symmetry functions depend
on atoms neighboring those atoms in the first neighbor shell of k, force calculation depends actually on
atoms up to two cutoff radii away from k

Fk,x =−
NRC

∑
i=1

∂Ei

∂Rk,x
=−

NRC

∑
i=1

Mi

∑
j=1

∂Ei

∂Gi, j

∂Gi, j

∂Rk,x
, (2.18)

where atom i is a neighbor of k, NRC is the number of neighbors to atom k within a cutoff radius of RC,
Mi is the number of symmetry functions of atom i, and Gi, j is symmetry function number j of atom i,
which might depend on the coordinates of atoms up to 2RC away from k.

The fitting procedure for a NNP begins by proposing an error function, which for the case of the
energy prediction of a HDNNP is

Γ =
1

Nstructs

Nstructs

∑
i

(ENNP
i −EREF

i)2, (2.19)

where Nstructs is the number of structures in the training data, i counts over these structures, ENNP is
the energy predicted by the NNP with a given architecture and utilizing the current set of weights and
biases, and EREF is the reference target energy as provided by some electronic structure method. The
goal then is to minimize the quantity ∂Γ

∂a with a standing in for the weights and biases in the network,
which results in equations that give the necessary updates to weights and biases given the current error
in predictions. Weights and biases are initialized in a range utilizing the Nguyen-Widrow scheme [132],
and the update to these weights is improved by utilizing the Kalman filter [133] procedure. Training
of the network proceeds in distinct epochs, where within one epoch all relevant pieces of information
(energies and forces) have been used a maximum of once, or have not been used if the prediction for
that particular quantity is already good enough within a threshold. A simple quality measurement for
the fit is the root mean square error (RMSE), which can be calculated for energies and forces and as the
name implies, calculates the current mean error in a predicted quantity. For the energy, this quantity is

RMSE(E) =

√
1

Nstructs

Nstructs

∑
i

(ENNP
i −EREF

i)2. (2.20)

16 Chapter 2 Methods and Theory

Unsurprisingly, this looks similar to the error function Γ. As the fitting epochs progress, overfitting
can occur: the NNP fits the known data points with ever increasing accuracy at the cost of losing
interpolation capacity and prediction capability between the known data. To avoid this, a portion of
the data is reserved as a testing set. The fit is only performed with information from the training set,
but errors are still calculated for the testing set. If no overfitting is present, the RMSE for both the
training and testing set should be similar. Overfitting can be detected when the error for testing set
is significantly higher than that for the training set: the NN reproduces the learned data better but
predictive power for new data is lost in the process. In practice, during a fitting procedure, the errors
for both data sets are tracked, and the training can thus be stopped before the errors start diverging,
or the training can be allowed to continue for a set number of epochs and the weights and biases of
the best fitting epoch chosen. This “best epoch” should be a combination of the lowest error for the
training data, but also with low divergence between this error and the testing set error.

As described, HDNNPs are capable of learning the PES of a wide variety of chemical systems,
without the need for crafting specific coordinate systems for each case and without a size limit. They
are thus highly transferable and expandable. They of course also exhibit some limitations: due to still
being nonphysical, without an underlying physical expression or safe physical limits, care should be
taking to avoid unsampled configurations or extreme distances when performing simulations. For ex-
ample, the energy and forces of a dimer that comes too close together should increase, but if this region
is not sampled, the NNP does not have an infinite energy limit for overlapping dimers. Due to the local
construction of the SFs, the NNP cannot capture all long range interactions. That said, it is possible to
fit NNPs to data with dispersion corrections for systems where these interactions are important, such
as in water [90, 91, 134–136]. In those cases, the NNP has been successful in reproducing properties
that depend on these long range interactions, although there is no explicit long range term in the basic
HDNNP ansatz. Long range interaction capabilities are currently being solved with the recent advent
of third and fourth generation [113] NNPs, where charges are also predicted and thus long range charge
interactions are taken into account explicitly.

2.2 Neural Network Potentials 17

A
2

B
1

y1
1

y2
1

{G
A1

}

y1
2

y2
2

E
atom

BIAS

E
tot

R cutoff

A
1

y1
1

y2
1

{G
A2

}

y1
2

y2
2

E
atom

BIAS

B
1

y1
1

y2
1{G

B1
}

y1
2

E
atom

BIAS

R cutoff

A
1

A
2

R cutoff
A

1

B
1

A
2

INDIVIDUAL ATOMIC
NEURAL NETWORKS

ELEMENT A

ATOM 2

ATOM 1

ELEMENT BELEMENT B

ATOM 1

Figure 2.2: Diagram of an example high dimensional neural network potential for a system with two
elements. The energy contribution of each atom to the total energy is based on atomic neural
networks, which depend on a series of local symmetry function which include neighbors up
to a given cutoff radius. The atomic networks are different (different architecture, weights,
symmetry functions) for different elements.

18 Chapter 2 Methods and Theory

Figure 2.3: Different functions relevant for the construction of NNPs: a) Hyperbolic tangent activation
function with different parameters showing its functional flexibility. b) Radial SF including
cutoff function modifier, with different parameters. c) Angular part of the angular SF with
different parameters.

2.2 Neural Network Potentials 19

2.2.4 Environment Decomposition

Due to the locality of the HDNNPs, it is possible to employ an environment decomposition approach,
where information from smaller systems can be utilized in simulations containing larger configurations,
both for fitting and simulation purposes. In a way, the local environments described by vectors of
symmetry functions values can be thought of as building blocks, that can be put together to construct
a larger system, adding up to configurations that might not have even been explicitly present in the
sampled dataset. This facilitates the sampling required to construct a NNP potential.

The environment decomposition approach has been successfully utilized for both molecular [137]
and atomistic [61, 93] systems. In the case of molecular systems, the approach was successful even
when cutting through bonds between atoms, although it of course requires saturating the split bonds to
avoid dangling bonds. This behavior could in principle be exploited in the future to construct a dataset
that actually consists of a library of atomic environments, with the help of other algorithms that can
curate the database (see sec. 4.1 for more on this).

Two problems arise with this approach for the study of copper deposited on ZnO. The first is that the
simulation code of choice, VASP (see sec. 3.1), is a strictly periodic code, due to utilizing planewaves
as its basis set for performing DFT calculations. Non-periodic structures can be approximated by
allowing for enough vacuum in the non-periodic direction so that interactions between periodic images
are minimized. This works well in the case of slabs, and for clusters with atoms of very similar
elements [61], but presents problems of non-convergence of the electronic calculation for materials
where a net dipole or charge distribution can be expected. An example of such a material is of course,
zinc oxide: two of the main ZnO facets, the (0001) and (0001̄) Miller cuts, present an inherent dipole
moment in the direction perpendicular to the surface; and for the other non-polar ZnO surfaces, any
attempt at extracting an environment by performing spherical cuts around a central atom will inevitably
result in a mismatched sphere, with section where either zinc or oxygen atoms prevail.

This is related to the second problem: for such a ionic material, irregular cuts can lead to forces that
do not converge as the size of the spherical cut increases, electronic structure problems notwithstanding.
Small scale tests with a ternary system consisting of Cu deposited on ZnO show that this is the case.
As the radius of the spherical cut increases, different layers of Zn and O are cut through, resulting in
very different looking environments, and a force on the central atom that oscillates. This force also
never reaches the same value as compared to a calculation with the full system included.

To solve these problems in the case of ZnO slabs, the cube cut algorithm was developed and utilized,
as described in sec. 2.6.1. This allows for cutting environments around a central atom, while maintain-
ing correct periodicity for VASP calculations. Figure 3.2 in the computational details section shows an
example of environment decomposition applied to large supported copper clusters on zinc oxide.

2.2.5 Sampling

A central problem in the construction of NNPs is that of sampling. Relevant regions of the PES need
to be sampled, but these can not always be known a priori, without already running simulations that
require a NNP. At the same time, wasting computational time on repeated configurations or physically
not accessible or irrelevant sections of the PES is to be avoided. A random sampling of configurations
(for example, for an atomic cluster), would be inefficient, since a majority of the visited configurations
would correspond to high-energy, irrelevant positions of the PES. A NNP trained on this data would
not be able to reproduce the behavior of lower energy, thermally accessible configurations. Another
possibility would be to sample the PES with a simple and fast method, such as an already available
force field. The problem with this is of course that for most systems, force fields might not be available,
or they might only be available for certain phases (e.g.: bulk but not surfaces) of the material, or they
might be much less accurate than feasible ab-initio calculations. A final option would be to run,
for example, ab-initio molecular dynamics simulations to sample directly the PES. The problem here
is that although the obtained data would already have the required ab-initio quality, the generated

20 Chapter 2 Methods and Theory

configurations would be highly correlated, that is, they would only cover a small portion of the PES for
a significant investment in computational time.

Instead, an iterative sampling procedure is adopted [88]. An initial NNP is created from known
experimental structures thus sampling known points on the PES; this potential is utilized to perform
simulations, these simulations return new relevant and (hopefully) physically correct structures that
center around the accessible sections of the PES, which are utilized to fit a new NNP, and so on until
the network achieves the desired convergence level for the target PES. More detail is given in the
computational methods sec. 3.3.

In this iterative approach, a method is required to detect new configurations that actually need to be
recalculated with an expensive reference method. This is also sometimes known as “active learning”,
where the machine learning algorithm actually influences which data is to be taken into consideration
instead of only passively accepting all the available information. A first indication is found when
a symmetry function in a simulations adopts a value that is higher or lower than the known range
present in the available reference dataset. This is known as an extrapolation [116], and it is simple to
detect. Unsampled areas within the known symmetry function range, also known as “holes”, are not
as easy to detect since here a continuum of values is present. Additionally, such holes can appear in
multidimensional space [116], since what is important is not any single value of a SF but the whole
SF vector. As such, an approach that takes the whole simulation structure or atomic environment at
once is preferred, such as utilizing an ensemble of NNPs [88, 115], or the bin and hash method (BAH)
described in chapter 4, or other methods also described in the introduction to that section.

2.3 Genetic Algorithm Global Optimization Search 21

2.3 Genetic Algorithm Global Optimization Search

This section is adapted from Reference [138] M. L. Paleico and J. Behler, “Global optimization of
copper clusters at the ZnO(101̄0) surface using a DFT-based neural network potential and genetic al-
gorithms,” J. Chem. Phys. 153, 054704 (2020), with the permission of AIP Publishing.

Evolutionary and genetic algorithms [139, 140] (GA) belong to the wide family of global optimization
(GO) methods. As their name implies, these algorithms attempt to emulate biological evolution as a
way of optimizing the solution to a given problem. For chemical systems [141–146], the algorithm
encodes the structure of the system into “genes”, a fitness value is assigned to the structure (usually
a function of the energy, but other targeted properties are possible [147]), and finally these genes and
structures are combined and variability introduced in the form of mutations, with the goal of generating
better and fitter candidates. In this way, the configuration space is quickly explored and evaluated at
specific points. Fitter candidates are chosen more often for crossover operations, so the configuration
space around well-scored structures gets explored in more detail. Thus, GA searches provide a good
balance between exploration of the PES at large, and exploitation of known good candidates [148]. In
this work, a GA is utilized to search for the global minimum structures of small Cu clusters on ZnO.

In the particular case of atomistic systems, the GA operates directly on the coordinates of the atoms.
This is often described more precisely as an evolutionary algorithm (since it operates directly on the
“phenotype” of the configuration), but the names are often used interchangeably in the literature and
the genetic algorithm nomenclature will be the preferred one in this text. Crossovers in coordinate
space are performed by dividing the two candidate clusters with a random plane [140], and combining
one half from each cluster while ensuring that system size and stoichiometry is maintained. After
crossover, a geometry minimization is performed, to relax the high-energy configurations that might
arise from this sort of random recombination and to be able to evaluate all candidates under the same
conditions. This is reminiscent in some ways of basin hopping Monte Carlo [149] (BHMC), and it has
been long acknowledged that both algorithms in fact sample the same transformed PES and thus lead to
similar results [149]. Mutations for atomistic systems consist in large scale modifications of the atomic
coordinates, reminiscent of Monte Carlo (MC) trial moves, which attempt to jump into different areas
of the PES.

Furthering the biological analogy, some GA implementations make use of the idea of a generation:
candidates are generated from pairings, mutated, evaluated and ranked in batches. Only the fittest
candidates in one generation give rise to the next generation. This approach is useful for GA searches
that rely on electronic structure calculations, since all the batched structures can be calculated slowly
at the same time. Otherwise the first structures generated and available would dominate the generation
of future structures. This ansatz has been shown to not be required [150] for a successful search, and
here we adopt a continuous generation and evaluation of structures, that is made possible by the speed
of the NNP.

Mutations should apply large changes to the atomic structure of the system, allowing for sideways
jumps in configuration space, but still generate “reasonable” structures so time is not wasted calculating
hopeless candidates. For supported clusters, moves only affect the atoms defined as belonging to the
cluster, while the support is only affected by geometry minimizations and its direct interaction with
the cluster. The mutation moves implemented for this case are: rattle (a proportion of the atoms is
displaced a random amount), twist (the whole cluster is rotated a given angle, with the rotation axis
perpendicular to the surface), angular (atoms are moved to positions at the surface of the cluster), mirror
(a random plane is used to mirror the whole cluster), molecular dynamics (MD) (a short MD run at
high temperature followed by a rapid cooling). Moves have been inspired by a variety of sources [151],
including basin hopping [149], simulated annealing [152] and minima hopping [153]. More detail of
the implemented moves can be found in ref. 138.

Given the setup of GA optimization, it is possible to repeatedly encounter the same configurations,

22 Chapter 2 Methods and Theory

particularly for smaller systems. This is problematic because it can lead to the same structural pat-
tern “poisoning” the breeding population, and efficient exploration of the PES stops. To avoid this,
some structural diversity needs to be enforced [150]. Here we utilize a simple comparator based on
interatomic distances [141], further detailed in sec. 2.6.2.

The breeding population is a fixed size collection of the fittest, structurally distinct configurations at
any given point. Fitness is defined as [154]

fi = 0.5∗ (1− tanh(2 · (Emax−Ei)/(Emax−Emin)−1)), (2.21)

where fi is the fitness of a particular candidate, Ei, Emin and Emax correspond to the energies of the
candidate and the minimum as well as maximum energies in the whole population. This creates a
fitness distribution that falls sharply as we get away form the optimal candidate and has a constant low
value for the worst candidates.

A random roulette wheel algorithm [155] is utilized to extract breeding pairs from this restricted
population, by evaluating the criterion

fi > fmax · ran(0.0,1.0) (2.22)

to decide if a candidate is kept, where fi is the fitness of the randomly chosen candidate, fmax is the
fitness of the fittest candidate, and ran generates a random number between 0.0 and 1.0. With this
equation, fitter candidates will tend to get chosen more often since their ratio of fi/ fmax will be closer
to 1.0, but all candidates in the active population have a non-zero chance of being picked.

2.4 Simulated Annealing

2.4.1 Introduction

Simulated annealing [152, 156] (SA) is a method for global optimization. A system is given enough
kinetic energy to overcome potential energy barriers, and slowly cooled so that it can find its way into
lower energy configurations. In this work, SA is utilized to optimize large copper clusters on ZnO,
which are too large for global optimization with other approaches.

A simulated annealing optimization run can be divided into three sections: the heating up phase,
the temperature hold or randomization phase, and the cooling down phase. Figure 2.4 a) shows a
scheme of a planned SA run, and b) the real temperature profile obtained from simulations with a
Cu300 cluster. The heating phase is intended to take the system from its initial configuration (which
will just be a guess) up to beyond the melting temperature. The speed with which this phase can
be completed depends mostly on the structural and numerical stability of the system: a completely
periodic system might have problems with a sudden increase in temperature from 0 K (starting from a
geometry minimization) past 1000 K. In the case of the supported copper clusters, this is not really a
problem, and the heating phase can be safely skipped.

The temperature hold phase allows for the atomic configuration to be randomized. If this phase is
not long enough, the resulting cooled down clusters will depend on the starting conditions. Since the
starting conditions are just a guess, this would not be ideal. Additionally, this phase allows for different
clusters to be obtained: since molecular dynamics simulations are actually deterministic, if we were to
cool down starting from the same point we would obtain the same configurations. One could change
this by randomly resetting the temperature/atomic velocities before the cooling down, but it is safer to
invest more steps into the hold phase.

The cool down phase is the critical part of the simulation, and usually the one that takes the longest.
Instead of performing a linear temperature ramp down, it is better to slowly reduce the temperature
in constant temperature steps. This makes it easier to assign a defined temperature to each step, and
allows for a better analysis of the system as the simulated annealing progresses. Here there are two

2.4 Simulated Annealing 23

Figure 2.4: a) Scheme of a simulated annealing simulation. In the heating phase, the system is brought
up to the target temperature for the randomization phase. During this phase, the system is
maintained at a high temperature, beyond the melting point, to randomize atomic positions
for tskip time. Finally, in the cooling phase, structures are extracted from the high tempera-
ture simulation and slowly cooled down in temperature steps. b) Real temperature profiles
from 5 SA runs for a Cu300 cluster. No heating phase is required, the system is randomized
for 0.25 ns, and afterwards sampled every 0.25 ns a total of 5 times. Each cooled down
cluster also has its own randomization period.

critical points: the melting temperature of the system, and the “glass temperature”: the temperature
below which atomic jumps between crystal lattice positions become vanishingly rare. If the system
is cooled down too fast below the melting temperature, an amorphous configuration will result, since
the atoms are “frozen” into a liquid-like configuration. Between the melting and the glass temperature
atomic jumps are still often observed, which help the system optimize further, so the temperature ramp
should still be slow in this section. Once the glass temperature has been reached, the system can be
cooled down more quickly, and finally a geometry relaxation performed if the minimized structure of
the obtained local minimum is required.

This setup is somewhat complicated by the fact that these temperatures are not known beforehand,
but they can be estimated. The melting temperature depends on the potential being utilized, and can
be modified by parameters such as cluster size [157–159], but we can usually predict that it will be
below the experimental value. The glass temperature can be estimated by observing previous simula-
tions, and detecting when atomic movements beyond vibrations cease to take place. Estimating these
temperatures precisely beforehand is not critical, but can save on computation time since we can cool
rapidly before the melting point and after the glass point.

Figures 2.5 and 2.6 show the trajectory of a single copper atom in a Cu500 cluster during the cool
down process. The atom starts at the bottom of the cluster in a), and at the high temperature of 1400 K
quickly travels the whole length of the cluster (b) through e)). As the temperature decreases, atom

24 Chapter 2 Methods and Theory

mobility also decreases, and between subfigures n) and o), the atom finds its final position. The move-
ments of the atom between a) and e) show that our randomization period is long enough, since the
highlighted atom (and others in the cluster) has had enough time to travel through the cluster multiple
times. Figure 2.6 allows for a better visualization of the atom going up and down in the layers of the
cluster, as well as the regular disposition of the Cu atoms in the cluster in the final subfigure o).

2.4.2 Size-dependent Melting Point

It is well known that due to the increasing influence of surface atoms as the size of a nanoparticle
decreases, many properties depend on the nanoparticle size [157–159]. In particular, the melting tem-
perature is lower for smaller systems, since the under-coordinated atoms at the surface melt before the
corresponding fully coordinated atoms in a bulk. The result is that the melting temperature follows the
relationship

Tm = T bulk
m

(
1− β

R

)
, (2.23)

where Tm is the melting temperature at a given size, T bulk
m is the melting temperature of the bulk (or

more precisely, a corresponding infinite size nanoparticle), β is a complex constant that depends on
the nanoparticle shape, the elements involved, etc. Thus a plot of observed melting temperature vs.
1/R will result in a line, whose intercept it the melting temperature at infinite size. If we assume that
the nanoparticle can be replaced by an equivalent sphere of volume V = 4/3πReffective and density
δ = N/V , the equation becomes

Tm = T bulk
m

(
1− β ′

N−1/3

)
, (2.24)

β
′ = β

(4
4πδ

)−1/3
. (2.25)

This second version is easier to work with since the radius of the nanoparticle can be hard to estimate,
particularly for supported nanoparticles where the nanoparticle has a specific contact angle with the
support, which means we have to define an effective radius from the observed height and diameter of
the nanoparticle [160]

Reffective =

√
(D/2)2 +H2

H
, (2.26)

where D is the diameter of the particle and H its height when deposited on the support.

2.4 Simulated Annealing 25

Figure 2.5: 0.1 ns trajectory line for a selected atom in a simulated annealing cycle for a Cu500 clus-
ter. The titles in each figure show the corresponding target temperature in this step of the
simulation, and elapsed time since beginning of simulation. a) Initial configuration, atom
starts at the bottom of the cluster in contact with the support. d) Temperature is above the
melting point of the cluster, so the atom easily manages to travel through the whole cluster.
n) and o) Atom finds its final position, as the temperature is now below the melting point
and atomic movements become rare.

26 Chapter 2 Methods and Theory

Figure 2.6: As in fig. 2.5, but viewed from the side. Here the height changes of the atom within the
cluster can be appreciated, as well as the regular arrangement of Cu atoms in o).

2.5 Coincidence Lattice Match 27

2.5 Coincidence Lattice Match

2.5.1 The Coincidence Lattice Match Algorithm

A problem arises when attempting to investigate the Cu and ZnO interface. Due to the values of their
equilibrium lattice constants and lattice geometry, as with many other pairs of materials, any common
interface between them presents a mismatch. That is, it is not possible to easily find a single, periodic
structure that can encompass both materials at the same time. This becomes a problem for extended
surfaces, and is an issue that not only the system has to solve physically in the real world, but also an
impediment to carrying out calculations in a computer within the constraints of a simulation box. As
an algorithm for finding possible coincident surfaces we have adopted the coincidence lattice match
(CLM) algorithm as described in ref. 161. Here follows a brief explanation of the steps involved, and
the limitations of the algorithm. As a helpful guide to understanding the procedure, we also present
a detailed worked example of matching two surfaces in the appendix (A.2). In this work, the CLM
is utilized to generate matching Cu and ZnO surfaces, and study the effect of lattice mismatch on the
different Cu low Miller index surfaces.

The CLM algorithm attempts to find a common supercell to the two-dimensional surface lattices that
generate the interface of a pair of slabs. It additionally takes into account possible rotations between
the lattices by including a rotation matrix. If both lattices are described by 2×2 matrices (the extension
to 3×3, if required, is trivial, but in this case all the third vectors of the lattices are perpendicular to
the X-Y plane) containing the lattice vectors as columns, any point in space belonging to the lattice is
given by the equation

P = A~m, (2.27)

where P is a point in space that belongs to the periodic lattice, that is, it can form a vertex of a parallel-
ogram corresponding to a supercell of the original lattice; A contains the lattice vectors as columns (the
procedure can also be carried out with row vectors by transposing where appropriate, but vectors as
columns is the conventional approach); and ~m is a column vector containing a pair of integer numbers.
In effect, P is a linear combination of the lattice vectors contained in A.

This equation is still valid if the orientation of the lattice changes by being multiplied with the usual
rotation matrix,

Arot = M(θ)A, (2.28)

M(θ) =

[
cosθ −sinθ

sinθ cosθ

]
, (2.29)

where θ is an anti-clockwise rotation angle of the lattice vectors in the X-Y plane.
To generate a pair of coincident lattices, eq. 2.27 needs to be valid for at least three points simultane-

ously for both lattices. These three points are enough to define a parallelogram, by describing an origin
and the two end points of two vectors composing the sides of the lattice parallelogram. Since we can
arbitrarily and without loss of generality match both lattices at the Cartesian origin (the trivial solution
to this equation with all the integers in ~m equal to 0), we need two further coincident points, which
will form the generating vectors of a superlattice parallelogram. This results in the following equation,
where the rotation matrix has been added to cover any possible rotations between the two generating
lattices

P(A) = P(B), (2.30)

M(θ)A~m = B~n, (2.31)

28 Chapter 2 Methods and Theory

where B and~n are the lattice matrix and integer vector corresponding to the second material. The rota-
tion angle θ and the matrices describing each lattice are already known or provided, and the challenge
is to find integer solutions for the vectors ~m,~n that make the equation valid. Non-integer solutions cor-
respond in principle to strained (see sec. 2.5.2) lattices. This type of linear equation requiring integer
solutions is known as a linear Diophantine equation [161, 162], and despite its apparent simplicity the
requirement for the solutions to be integer values makes their behavior quite complex.

As mentioned, each integer solution of this equation corresponds to one side of a coincident su-
perlattice parallelogram. To obtain the desired matching superlattice, two such solutions are required.
Additionally, many solutions need to be filtered out by testing for linear dependency between the
generated vectors, and for equivalent lattices (for more details on this, see the solved example in the
appendix).

Three problems with this approach appear. The first is that it is not possible to directly solve this
equation just for integer numbers, although it is of course exactly and easily solvable for real based
results. We need to try all possible combinations of 4 integers, positive, negative and zero, with higher
integers resulting in larger matching supercells. This combinatory approach to finding solutions ex-
plodes quickly, so we limit our analysis to integers with absolute value up to 10.

Related to this, the second problem is that we need to try every possible rotation matrix (although
this number can be reduced taking into account the rotational symmetries present in the slabs). We
limit our analysis to rotations spaced 1 degrees from one another. This ensures we cover a reasonable
configuration space without making such small rotations that we in effect always find the same matches.
If the angle change is too small, sometimes the same match is repeatedly generated.

The third and final problem is that a match with arbitrary proposed integer solutions will, for a
majority of cases, not be exact (the left and hand sides of eq. 2.31 will not be the same). The paired
surfaces, except for cases where one lattice is an exact integer multiple of the other, will always be
slightly mismatched. This means that one of the two materials needs to be deformed to adapt to the
final configuration (or both materials need to be deformed a certain amount). Thus the matches need
to be evaluated for quality (minimum of deformation/best matching) by a given parameter. Ideally
this parameter should be quick to evaluate (that is, it should not depend on any energy evaluations),
descriptive, and be based on the resulting match geometry.

Two such parameters can be defined. The first is the quality of the solution, as defined in the original
CLM implementation with

δQOS = M(θ)A~m−B~n, (2.32)

which in effect asks how close are the proposed integer numbers to generating an exact solution to
2.31, in which case δQOS is zero. The farther away this is from zero, the more the materials will have
to deform when actually matching them.

This δQOS parameter is a good measure for single solutions, but it obviates the extra deformation
that happens when combining two solutions into a superlattice. For this reason in this work we also
concurrently utilize the degree of lattice distortion [163–165], as obtained from the eigenvalues ε1,2 of
the strain tensor (see sec. 2.5.2)

εDOLD =

√
(ε2

1 + ε2
2)

2
. (2.33)

Notice that if the strain is to be calculated for a 3D case, this needs to be divided by 3 instead of
2. In effect, εDOLD measures an average deformation for the generated superlattice. This quantity is
related to the second invariant of the strain tensor, and is one half of the spontaneous strain [165].
Alternative measures are for example the von Mises strain/yield criterion, which is also related to the
second invariant of the strain tensor. Any particular global measure can be used, as long as it is clear
which one in particular is being applied.

2.5 Coincidence Lattice Match 29

The original CLM paper also utilizes strain at some point, but due to the geometry of their lattices
(only combining hexagonal lattices with the exact same intra-lattice angle but different lattice con-
stants), only uniaxial strain was considered. The definition of degree of lattice distortion utilized here
also takes into account any possible shear generated by the deformation, since ε1,2 depend on γxy, the
shear component of the strain tensor.

As a result from this algorithm, for every starting pair of lattices, hundreds to thousands of matching
candidates can be obtained. To be able to analyze this in an ab-initio approach in a reasonable amount
of time, the candidates can be first filtered out by the mentioned strain (assuming that larger strains/de-
formations correspond to larger stresses/forces and thus more unstable configurations) or number of
atoms in the supercell (since larger systems will be more expensive to calculate).

In summary, the CLM procedure is as follows:

1. Determine:

a) Materials involved

b) Miller index cuts of those materials, and also which particular geometry of the lattice cell to
take. For example, for Cu(111) we can use the usual hexagonal cell or the orthogonal rect-
angular supercell. The latter will lead to a subset of matches, but might be more convenient
for some purposes.

c) Angle between the materials

d) Maximum integer allowed in the match search

e) Number of layers for each material

2. Find all matches up to the selected integer, discard those that are linearly dependent (see ap-
pendix)

3. Pair the matches together, discard those new lattices that are supercells of others (see appendix)

4. Filter and discard matches by:

a) Strain: with for example a global measure such as εDOLD

b) Number of atoms: If there is a limit for the simulation method of choice, can also be a
minimum limit to avoid highly strained structures

c) Aspect ratio of the generated cell: The algorithm sometimes generates structures with ex-
treme, needle-like aspect ratios, which can be inconvenient for simulations or lead to nu-
merical stability problems (due to the majority of the atoms lying too close to the edge of
the periodic boundary). These structures can be filtered out, or supercells constructed to
make the cell more orthogonal, at the cost of increased number of atoms.

5. Fill in the matches with atoms, distort one (or both) materials

6. Simulate and analyze

A result of this procedure is that larger interfaces tend to show lower values of strain. Infinite surfaces
of course posses a geometrical strain of zero, since they do not have to share a common boundary.
Large enough supercells can also exhibit a strain of zero, since it is always possible to eventually find
a common multiple for rational numbers. For example, if we try to match two square cells, one with
sides of 2.55 Å and the other 3.2 Å, we need to find an integer expression of the ratio 3.2/2.55, which
is 64/51. This means that the lattices match if we repeat the smaller one 64 times, and the other one 51
times. But, this supercell might be in the order of thousands of repeats (642 = 4096 in our example),
and thus thousands of atoms per layer per material, impractical for any simulation purposes (hard even
for classical force fields).

30 Chapter 2 Methods and Theory

Lower strain usually implies a lower stress and thus a more stable configuration. The problem then is
that larger cells are hard to fit into electronic structure calculations, with cells easily reaching hundreds
or thousands of atoms due to the number of layers required to reach any well converged results. As is
well known, ab-initio methods scale very poorly with the number of atoms in the system. In contrast,
the NNP scales linearly since each extra atom means an extra individual atomic neural network is added
to the calculation, so larger cells are a manageable problem.

A limitation from this approach is that it is purely geometrical. Only the lattice vectors of the 2D cells
forming the interface are relevant. If one were to follow this line of thought, the best matching surfaces
would be those which generate the least geometric strain and thus least stress. But this approach
obviates many structural and atomistic details that could also compensate the generated stress. In
particular, the energy loss induced by straining one of the materials might be compensated by a better
interaction between both of them.

The generated matched cells have a number of degrees of freedom still available to them that are
important to consider, and are not covered by the CLM procedure which is purely geometrical. The
first degree of freedom is the distance between the interfaces. This is simple to find (by relaxing the
two slabs that constitute the interface or scanning across multiple distances), and expected to be similar
for different configurations. Thus it is the simplest characteristic to simulate and analyze.

A second relevant degree of freedom is the translation of the atomic lattices within the lattice vec-
tors, with respect to each material. To a given lattice match correspond an infinite number of atomic
dispositions between the materials (although many of them related by symmetry, of course). This can
lead to different stacking of atoms at the interface level and thus potentially very different energy lev-
els for different matching surfaces. This requires checking all possible translations, as restricted by the
symmetry of the system. This is easiest done with a grid pattern search, but the number of points to
test can grow rapidly. According to experience, after relaxation, many close points in the grid relax to
the same configuration, so dense grids are not required.

The third degree of freedom is the possibility of surface reconstructions as the two systems come into
contact and relax. The strain from being compressed/expanded in the periodic direction can be relieved
by plane shifting in the direction perpendicular to the surface. Additionally, surfaces might relax to
better accommodate the atomic level surface roughness of each other (the surfaces are not perfectly
flat). Some surfaces might interconvert while remaining atomically flat. These kinds of reconstructions
are easy enough to simulate with geometry relaxations, as long as the initial configuration corresponds
to some sort of saddle point in the potential energy surface of the system, which will then find a path
and relax to another configuration. It is not guaranteed that such a path will exist, and if a more complex
reconstruction study is desired, global optimization techniques need to be utilized.

Finally, gross reconstructions can take place in the interface region, with atoms migrating across the
interfacial plane to relieve stress and achieve a better mixing (if such interaction is favorable). This
would require some sort of simulation that can optimize the atomic structure at the interface and jump
over the large energy barriers present for atoms to come out of their ideal lattice positions, such as
simulated annealing [152] or a genetic algorithm [140], which is beyond the scope of this work, but
could be easily achieved with a NNP.

Analyzing these degrees of freedom is where the NNP capabilities are useful, since hundreds of
single point evaluations and relaxation steps are required for each matching candidate. This would
become expensive to perform with an ab-initio approach, but the myriad of very similar configurations
that appear in such an analysis are ideal for a NNP.

2.5.2 Strain Theory

Strain theory attempts to codify the behavior of deformed materials. Strain theory is quite complex,
combining notions of tensors, derivatives, material properties and stress. Here a short introduction into
the topic is presented, and a more detailed explanation is provided in the appendix (see sec. A.3).

2.5 Coincidence Lattice Match 31

Our requirements from strain theory concentrate on obtaining the strain for a deformed lattice start-
ing from the matrices containing the initial and final lattice vectors, which is not the usual approach to
strain. Previous attempts at this exist [166, 167] for cells described in the crystallographic convention
of three angles and three vectors, but here we want to extend this to cells described by arbitrary vectors.
Additionally, some tools already exist that provide strain calculation and operation facilities. The Bil-
bao Crystallographic Server [165] provides the STRAIN tool, but this seems to be available only online
(with no stand alone program), and relies on the crystallographic convention. The Pymatgen [168, 169]
library for Python allows for straining already known cells, but not for the reverse of calculating strain
from a pair of related cells. Despite their missing features, these tools can be and have been used for
testing and validating our implementation of strain calculations.

To begin this analysis, the deformation tensor e is defined connecting the initial and final configura-
tions

Ã = A+ eA (2.34)

= (I+ e)A, (2.35)

where A is a matrix containing the vectors of our lattice cells as columns, Ã is the same but for the
deformed lattice, and I is the identity matrix. This definition proposes that the deformed configuration
is equal to the original configuration plus some disturbance, the deformation tensor. Alternative defini-
tions are possible, depending on whether one post or pre-multiplies with e, or whether the undeformed
or deformed configurations are taken as starting points, but all the definitions tend to be equivalent for
small strains, and any of them can be used as long as it is clear which particular one is the starting
point. From this equation we can extract a definition of e from known quantities as

e = ÃA−1− I. (2.36)

From this deformation tensor, a symmetric tensor corresponding to the strain tensor can be con-
structed. There are actually several definitions for the strain tensor, each one convenient for different
applications. The two easiest to work with, and the ones we will make use of, are the infinitesimal
strain tensor ε (also known as the linear, Cauchy, or small strain tensor) and the finite strain tensor η

(also known as the Green-Lagrange strain tensor), as given by

ε = 0.5(e+ eT), (2.37)

η = 0.5(e+ eT + eT e), (2.38)

where eT indicates the transpose of the deformation tensor.

The disadvantage of the infinitesimal strain tensor is that it becomes affected by rigid body rotations
between the starting and final configurations. This is fixed in the finite strain tensor [166, 167], at the
cost of this tensor no longer being linear in the generated strain (second order terms appear on the
diagonal and off-diagonal). For more information, please see the appendix.

The degree of rigid body rotation between starting and ending configurations can also be estimated
from a skew-symmetric tensor ω with

ω = 0.5(e− eT) =

[
0.0 ω

−ω 0.0

]
, (2.39)

which is related to the rotated angle. Notice that e = ε +ω .

32 Chapter 2 Methods and Theory

The components of the strain tensor (either infinitesimal or finite) are

ε or η =

[
εxx γxy

γyx εyy

]
, (2.40)

where εxx and εyy are the relative increase or decrease in distance for a pair of points initially lying on
the x- or y-axis, identified with the uniaxial strain; and γxy = γyx = γ is related to the angle change of
an originally orthogonal pair of lines and is identified with the shear strain. Importantly, these are all
unitless quantities, and as such do not depend on the units or the size of the lattice cells involved, they
are relative changes. An εxx of ±0.01 for example indicates that distances in the x-direction have been
increased or decreased by 1%.

The eigenvalues of the strain tensor allow us to express it as a diagonalized matrix. As such, the
eigenvalues can be interpreted as the uniaxial strain experienced in a coordinate system where no shear
strain is present (since the off diagonal terms in this basis are zero). This coordinate system corresponds
to the eigenvectors of the tensor. These are sometimes also known as principal strain directions. The
eigenvalues for a 2×2 matrix can be easily calculated from its components, and for the strain tensor
(either infinitesimal or finite) are

ε1, 2 = εmax, min =
εxx + εyy

2
±
√(

εxx− εyy

2

)2
+ γ2

xy, (2.41)

Notice that the eigenvalues combine information from both uniaxial strain directions and the shear
strain. As such they are a useful quantity for extracting an “average deformation” from the strain tensor,
as in the previously defined εDOLD (eq. 2.33).

A problem is that the strain tensor as defined actually measures strain with respect to the x- and
y-axis. This causes unexpected behavior (see appendix) if our lattice vectors are not aligned with the
Cartesian coordinate axis. To solve this, we can project into our lattice vectors material basis [170]
utilizing a cosine matrix

ε
′ or η

′ = CT (ε or η)C, (2.42)

C =

[
cosα cosβ

sinα sinβ

]
=

[
â1 · x̂ â2 · x̂
â1 · ŷ â2 · ŷ

]
, (2.43)

where ε ′,η ′ are the versions of the strain tensors in material coordinates, C is the so-called cosine
matrix, measuring the cosine of the angle between our lattice vectors and the Cartesian axis, α and β

are the angles between the lattice versors (â1, â2) and the x-axis versor x̂. In effect, this measures the
dot product projection between the Cartesian unit versors and the unit versors parallel to our lattice
vectors. In our case, this misalignment occurs when rotating one of the materials to match the other
through the use of M(θ). If the misalignment is not removed, the interpretation of the components of
the strain tensor is no longer straightforward, but the eigenvalues and other related derived properties
of the tensor should remain invariant.

This coordinate conversion also gets rid of the problem of the rotation between our initial configura-
tion and the Cartesian axis, which is not solved in the finite strain tensor. Another possible solution to
this is to align every lattice the same way. This is done implicitly in those derivations that begin from
a conventional crystallographic cell definition, which is always aligned (see appendix).

In this work it has been decided to make use of the finite version of the strain tensor, and to report
all strains after projecting into material coordinates as in eq. 2.43. If the strain tensor and values are
required in Cartesian coordinates, they can easily be recovered from the data.

2.6 Structural Methods and Tools 33

2.6 Structural Methods and Tools

2.6.1 The Cut Cube Method

Extracting periodic substructures from another structure is not a trivial task, considering that the orig-
inal structure might include distortions due to for example thermal movements, or the presence of
ad-atoms or vacancies. To cut a sub-slab form a large slab configuration, the key realization is that
cuts with the same size as the original lattice vectors that generated the slab, or a supercell of these,
will still maintain the periodicity of the slab at its side, no matter where the cut is applied, due to the
translational periodicity of the solid. If the cut is larger than the cutoff radius of the NNP, the atomic
environment around a target atom can be preserved.

Due to the mentioned possible deviations from the perfect crystal structure, the algorithm needs
to take into account the following points: i) the stoichiometry of the cell needs to be preserved, for
example, for a pure ZnO slab the ratio of Zn and O needs to be 1:1; ii) distances at the PBC of the new
configuration need to be carefully checked, so that they are not too large or too small compared to the
original structure, which would indicate a bad configuration that does not correctly tile periodically.

Fulfilling these two requirements is not always possible. For this purpose, the algorithm can center
the cut on different atoms of the structure, for example in the case of supported clusters, different atoms
of the cluster. The cut attempts are repeated until one is successful. To help this, the lattice vectors are
slightly modified, up to 3% of their original lengths. With all of this, it is possible to obtain periodic
substructures with a minimum of mismatch across the PBC, and that are small enough to be calculated
with the electronic structure code of choice. The atomic environment is in this way slightly modified
due to removing atoms beyond the cutoff and the possible modifications to the lattice vectors, but the
resulting environment should still be close enough to the configuration that it samples from. The whole
algorithm is exemplified in fig. 2.7 for a small copper cluster supported on zinc oxide.

Figure 2.7: Periodic cut algorithm. a) Initial configuration. b) Resulting structure. 1) The atom closest
to (or farthest from) the center of geometry (COG) of the cluster is chosen. 2) A superlattice
of the original lattice vectors bi is created that completely contains the cutoff radius (rcut)
around the chosen atom. Ticks on the superlattice show multiples of the original lattice
vectors. 3) The created structure is checked for consistent stoichiometry, and reasonable
interatomic distances at the periodic boundary. 4) If rejected, modify lattice vectors slightly
by a factor fi (f1 = 0.97, f2 = 1.03) and try again. If the factor is already too large/small,
pick the next atom according to the distance from the COG and repeat the procedure.

34 Chapter 2 Methods and Theory

2.6.2 Cumulative Distance Metric

At two points in this work, first for the comparison of small clusters obtained by GA optimization, and
second for the comparison of the initial and final structure of relaxed CLM matches, it is necessary to
measure the structural distance between an initial and final configuration. This measure needs to be
objective, quantitative and significant (larger value means a larger distance between configurations),
while also being fast and simple to calculate. For this purpose, the cumulative difference distance,
as defined in 141 and implemented in the ASE [171] Python library has been chosen. This distance
measure makes use of internal atom to atom distances as

δCD(1,2) =
elements

∑
α=O,Cu,Zn

∑i, j |Dα
i (1)−Dα

i (2)|
∑i Dα

i (1)
Nα

Natoms
, (2.44)

where δCD(1,2) is the cumulative distance (CD) factor between configurations 1 and 2, the first sum
is over the elements present in the system, Nα is the number of atoms of a given element α , Natoms
is the total number of atoms in the system, Dα(1,2) is a sorted list of interatomic distances for atoms
of element α in configurations 1 or 2, and Di is the distance at position i of that sorted list. Thus the
numerator of the first term calculates the difference between the sorted lists of interatomic distances,
and the denominator sums over all the interatomic distances of structure 1. Notice that thanks to
the factors in the denominators, the value is effectively normalized, so δCD can also be compared
across different system sizes. The interatomic distances can be calculated taking the minimum image
convention [156] into account or not, as needed.

The parameter δCD is simple to interpret, easy and fast to calculate, and gives a good enough measure
of structural change in a given relaxation. As implemented it unfortunately only takes into account
distances for atoms of the same element, so care needs to be taken and the algorithm may need to be
modified if elements end up mixing between parts in the system (for example, a brass cluster on ZnO).

2.6.3 Lindemann Parameter

The Lindemann parameter is a structural factor often utilized to estimate the melting point of clusters
and nanoparticles [172]. Since melting is a first order transition, discontinuities in the potential energy
and specific heat would be expected at the transition point. This fact is exploited in experiments to per-
form differential scanning calorimetry [173–176] to measure melting points. However, in simulations,
due to the small size of finite systems such as clusters, this discontinuity in potential energy is hard
to observe and is usually covered by the normal potential energy fluctuations in the NV T canonical
ensemble. One could make the system larger, thus making thermodynamic fluctuations smaller, but
this is of course not useful if the goal is to estimate the melting point of clusters of a specific size.

The Lindemann parameter is purely structural, and is defined as

qi(T) =
1

N−1

N

∑
j 6=i

√
< r2

i j >T −< ri j >2
T

< ri j >T
=

1
N−1

(
σ

ri1
T

< ri1 >T
+

σ
ri2
T

< ri2 >T
+ ...

)
, (2.45)

< q >N (T) =
∑

N
i qi

N
, (2.46)

where qi(T) is the Lindemann parameter for the ith-atom in the system at a given temperature T , N
is the number of atoms under consideration, ri j is the distance between atoms i and j, < ri j >T is
the average of this value across a simulation at a temperature T , and the denominator is the standard
deviation of ri j, (σ ri j

T). Notice that the division is by N− 1 since the sum does not consider the case
where j = i, so there are only N − 1 sum terms. Since this value is only for one atom, we define
< q >N (T) as the system average Lindemann value at a given temperature, which is just an average of
the Lindemann value of all the atoms in the system.

2.6 Structural Methods and Tools 35

Here we see the advantage of performing a SA run with defined temperature steps instead of a ramp,
since the Lindemann averages need to be performed at a specific (average) temperature, which would
not be well defined in a ramp.

The Lindemann parameter for a single atom can be interpreted as the average relative fluctuation of
the interatomic distances between the given atom and all other atoms in the simulation. If the system
is in a solid state, atoms will be stuck vibrating in their lattice positions, and interatomic distances will
fluctuate little. When the system melts, atoms are no longer bound to a point in space, and interatomic
distances fluctuate much more. The parameter generally increases with temperature, as atom mobil-
ity always increases with increasing kinetic energy. However, right at the melting point the system
experiences a sudden increase of the parameter.

The behavior of the parameter can be modeled and fitted to a sigmoid or logistic function plus a
linear term as in

< q > (T) = H +
L

1.0+1.0 · e(−k·(T−Tm))
+ l ·T, (2.47)

where H defines the lower asymptote of the sigmoid (when T << Tm), L+H is the upper asymptote
(when T >> Tm), k defines the curvature/steepness of the curve, Tm is the turning point of the sigmoid,
and l defines the linear term due to the normal increase in atom mobility as temperature rises. It is
important to understand the meaning of each fit parameter, since this is a non-linear fitting procedure
which is highly sensitive to the initial guesses of each value. In particular, L,H, and Tm need to be
guessed with at least the correct order of magnitude or the fit result will not be good, but this can be
easily done by inspecting the < q> vs. T plot. The melting temperature for the cluster can be extracted
from the fitted Tm parameter.

2.6.4 Polyhedral Template Matching

Polyhedral template matching [177] (PHTM) is a member of a family of algorithms [178, 179] that
attempt to automatically classify crystal structures into one of the main known crystal patterns. This is
a non-trivial task, since the algorithms have to take into account possible deviations from the perfect
crystal structure, such as thermal distortions, grain boundaries, different orientations, etc.

The core of the PHTM relies on matching the set of points corresponding to the nearest neighbors
of an atom, with the set of points corresponding to the neighbors of an atom in a given lattice crystal
(face-centered cubic, hexagonal close packed, etc.). This match is achieved by minimizing the distance
between the points, taking into consideration translations between the sets of points (which is simple
by just operating on the center of geometry of the set of points), all possible rotations around a central
point, as well as scalings (for example, due to thermal distortions or different lattice constants). The
best matching pattern is the one with the smallest possible root mean square deviation (RMSD) between
the set of points, considering all possible rotations and scalings. This is expressed in the equation

RMSD(v,w) =

√
1
N

N

∑
i=1
|s(vi− v̄)−Q(vi− v̄)|, (2.48)

where N is the number of points being tested, v is the set of points being tested, w is the reference set
of points, v̄ and w̄ is the center of geometry of both sets, s is a scaling factor of the test points, and Q is
a rotation matrix.

The main problem with this equation is that the number of possible matches to try grows rapidly
with the number of points. In PHTM, this is solved by utilizing a convex hull (generating a polyhedron
that contains all the points in the set), and graph theory to reduce the number of matches that need to
be tested. The results is a fast identification algorithm, that is also robust to deviations from the perfect
match. The algorithm is conveniently implemented in the OVITO [180] visualization software.

Chapter 3

Computational Details

3.1 Density Functional Theory

3.1.1 Settings

Density functional theory [96, 97] (DFT) is the method of choice for sampling the PES of the Cu-ZnO
system, as implemented in the Vienna Ab-initio Simulation Package (VASP) [181, 182] version 5.4.4.
With this program it is possible to perform periodic, planewave-based calculations with PAW (Projector
Augmented Wave) [183, 184] to treat the core electrons. This algorithm is required to efficiently
simulate the rapidly changing orbital probability distributions of the core electrons, which would be
computationally expensive to describe with a planewave basis set. The related pseudopotentials for the
different elements were selected according to the VASP manual recommendations. The generalized
gradient approximation as proposed by Perdew, Burke, and Ernzerhof (PBE) [185] has been chosen as
the exchange and correlation functional.

Convergence tests have been run for the number of k-points and the maximum energy of the planewaves
basis functions, to achieve an energy and force convergence below the usual NNP RMSE of approx.
1 meV/atom for total energies and 100 meV/Bohr for forces. Testing with a 3.61 Å cubic unit cell of
fcc Cu containing 4 atoms yields a planewave cutoff of 500 eV with a k-point grid of 12×12×12. For
larger cells, the number of k-points has been scaled to maintain at least the same k-point density and
thus the same level of convergence. For finite systems such as slabs and isolated clusters, at least 13 Å
total vacuum has been used in the cell directions that are meant to be non-periodic. This means that for
example, for a slab, 6.5 Å of vacuum are allowed above and below the slab. Tests have shown that this
amount of vacuum is enough to minimize the interaction between periodic images, while at the same
time it does not excessively increase the computational cost of the simulations. The Fermi level has
been treated with a Gaussian smearing method, with a σ factor of 0.1 eV. An example input file for
VASP with a complete list of the settings is provided in appendix C.

According to initial tests, adding dispersion corrections to the generated DFT data results in overbind-
ing, with lattice constants being smaller than in the experiment. In particular, the charge density depen-
dent Tkatchenko-Scheffler [186] method as implemented in the VASP program was utilized. This is a
known property of the PBE functional [187–190]. If required, data with dispersion corrections is also
available, and it has been shown in the past that the NNP is capable of reproducing dispersion corrected
results [90, 136, 191] in spite of the locality of its atomic environment descriptors. Since predicting
the bulk properties of Cu and ZnO is a minimum requirement for the NNP, all simulations in this work
have been performed with uncorrected potentials.

3.1.2 k-point Grids for Non-orthogonal Cells

A problem arises when attempting to calculate the slabs generated with the CLM algorithm utilizing
periodic DFT. Since these slabs are not just simple supercells of the original slabs, the usual method of
scaling down the number of k-points as a cell is replicated in that direction is no longer applicable. To
solve this, one can either utilize a larger than required k-point grid (leading to much slower calculations,
particularly for large slabs such as those generated with the CLM algorithm in sec. 7); or adopt one

38 Chapter 3 Computational Details

of the automatic k-point grid generation algorithms available. The latter approach has been chosen,
utilizing the algorithm of generalized regular k-point grids as described in refs. 192, 193 and 194,
which also conveniently provides a server (and a stand-alone version) to calculate a k-point grid for
arbitrary slab structures. The key parameter in this algorithm is rmin, which sets the density of points in
reciprocal space. Larger rmin corresponds to a denser grid, and thus also to a slower calculation. This
parameter has been tested against calculations for more “normal” shaped slabs, and a value of 55 Å
results in a similar convergence level as obtained with the initial 12×12×12 point grid.

3.2 Construction of the Neural Network Potential

The NNP utilized in this work was trained on a reference dataset containing a total of 73,136 structures
covering about 5 million atomic environments. Therefore, in total 73,136 energies and about 15 million
force components are available for training the NNP. As explained in sec. 3.3, this library contains
multiple configurations of copper, zinc oxide, and ternary systems.

The NNP is constructed with the in-house program RuNNer [115, 116], which is made available
under GPL3 license. The hyperbolic tangent activation function has been used for all layers, except the
output layer which consists of a linear function. Each element in the system presents the same archi-
tecture and symmetry functions, which simplifies the structure of the NNP. Other cases where atoms
exhibit very different typical distances, such as water, might require different per-element symmetry
functions. The parameters of the symmetry functions have been derived from previous work on this
system [93], and are presented in appendix D.

The root mean squared errors between the predicted and reference energies and forces are presented
in table 3.1 for 4 different NN architectures. Architecture number 1 exhibits the smallest errors, with
a 2.5 meV/atom RMSE for the training energies and 59.7 meV/Bohr for the training forces, with
very similar values for the testing data not included in the fitting process indicating the absence of
significant overfitting. This architecture and fit was thus selected to perform the simulations presented
in this work. Figure E.1 in the appendix shows a comparison between reference and predicted energies
and force components for this NNP architecture, in which the degree of accuracy of the selected NNP
can be appreciated.

Architecture
Training Set RMSE Test Set RMSE

E (meV/atom) F (meV/Bohr) E (meV/atom) F (meV/Bohr)
15-15 2.5 59.7 3.1 59.6
20-20 2.7 70.5 3.5 69.4

15-15-15 7.4 254.3 9.5 257.3
20-20-20 2.6 73.5 3.4 74.4

Table 3.1: NNPs obtained for different architectures (neurons per hidden layer are given) and root
mean square errors (RMSE) for the predicted energies E and forces F . In bold, the chosen
architecture for the simulations in this work is highlighted.

3.3 Generation and Composition of the Reference Dataset

3.3.1 Introduction

A reliable NNP reference structure set needs to cover all the sections of configuration space that are
relevant to the simulation method of choice, while at the same time, due to the cost of electronic
structure calculations, remaining as small as possible.

3.3 Generation and Composition of the Reference Dataset 39

Tuning the sampling of the PES to the simulation algorithm of choice is thus vital. For example,
Monte Carlo simulations will more often visit high energy configurations due to the behavior of the
usual trial moves, when compared to a Molecular Dynamics simulations that follow the trajectory of
the atoms step by step and can avoid high energy states. If possible simulation and sampling should
be integrated together [88]. A good sampling strategy will cover a wide section of the PES, without
sampling randomly generated, irrelevant, or high-energy configurations. Structures should also contain
a restricted number of atoms so that they can fit into the required electronic structure calculations, about
200-300 maximum atoms for the current DFT setup. Additionally, recalculating already well-sampled
environments should be avoided.

All in all, a sampling strategy needs to take into account three main points:

1. A way to generate structures: Structure generation should be as automated as possible due to
the sheer amount of sampling points required, but at the same time being careful not to generate
“bad”, nonphysical or high-energy configurations.

2. A way to extract smaller configurations from larger structures: Due to the locality of the NNP
and the proven principle of environment decomposition [61, 137], it is possible to perform sim-
ulations for larger systems and then extract smaller structures for electronic structure programs
to process. This is easy for some systems and some ab-initio codes, where a sphere of atoms
around a central atom can be extracted, thus preserving the atomic environment. From test sim-
ulations this is not the case with supported clusters on ZnO and with the VASP code: spherical
cuts around a target atom results in layers of dangling Zn and O atoms in the support, which re-
sults in calculations that have trouble converging the self-consistent iteration steps, or the force
on the central atom never converging because it is affected by unbalanced Zn/O atoms further
away than the NNP cutoff radius. For this purpose, the cube cut algorithm (see sec. 2.6.1) has
been developed.

3. A way to identify repeated configurations: The utilized structure generation methods result in
the same configurations being visited repeatedly, particularly genetic algorithm simulations. To
avoid repeatedly recalculating already well-sampled configurations, some sort of filtering needs
to be applied. One possibility is the NNP ensemble approach [88, 115], where new structures
are tested with already fitted potentials, expecting the predicted energies and forces to differ
for those structures in poorly sampled configuration space. Another possibility, not requiring
pre-fitted potentials, is presented in sec. 4.

With these requirements in mind, a sampling procedure in three phases has been adopted throughout
this work. In the first phase, structures are generated systematically by modifying known configura-
tions such as bulk structures. In a second phase, more configurations are generated by utilizing basic
simulations methods such as MC or MD. The final phase depends on the specific final purpose of the
NNP, and is tailored to obtaining desired results. This last phase is different for example when sam-
pling GA structures for global optimization of small clusters, when compared to structures for large
supported clusters obtained from simulated annealing.

3.3.2 Phase I: Systematic Modification of Known Structures

For phase I, well-known and -determined configurations are generated and then systematically mod-
ified. For the case of Cu (and brass [61]) and ZnO, this consists of generating bulk structures, low
Miller index surfaces, and Wulff [195] shaped nanoparticles. All of these are well characterized from
experiments, or are simple to generate by following geometric and energetic rules from other known
configurations.

These base structures can then be modified systematically: experimental lattice constants are con-
tracted and expanded to sample a range of possible crystal lattices, atomic positions shifted randomly

40 Chapter 3 Computational Details

to emulate thermal distortions, different number of layers are utilized for slabs, and so on. Once these
structures are calculated with the reference method of choice and a NNP trained, this results in a po-
tential that has sampled and can accurately predict the behavior of a system around its equilibrium
position for a variety of specific configurations. At this point the NNP can reproduce or predict simple
structural and energetical parameters [93], such as lattice constants, bulk moduli, and surface energies.

3.3.3 Phase II: Simple Simulations

In phase II, the systems are evolved beyond these simple equilibrium conditions by making use of sim-
ple simulation procedures, such as molecular dynamics in the NV T and NPT ensembles, utilizing the
NNP generated in phase I. The systems can also be molten and cooled to generate high temperature
configurations, liquid and amorphous structures, all of which would not be simple to systematically
generate following the procedure of phase I. Structures are sampled at regular intervals, utilizing tech-
niques such an ensemble of NNPs [88, 115] or the bin and hash algorithm (sec. 4) to scan for new,
unsampled configurations. After phase II, the NNP is usually able to perform long NV T and NPT MD
simulations without visiting unsampled regions of the PES. For many projects this is enough, but in
this work further simulations targeting specific simulation methods have been necessary, as detailed in
the following sections. Other simulation methods that allow the NNP to explore reasonable sections
of configuration space are also useful, such as Monte Carlo atom swaps [61] that exchange elements,
simulated annealing [152], and semi-grand canonical ensemble simulations [196].

3.3 Generation and Composition of the Reference Dataset 41

3.3.4 Phase IIIa: Genetic Algorithm Optimization of Small Clusters

This section is adapted from Reference [138] M. L. Paleico and J. Behler, “Global optimization of
copper clusters at the ZnO(101̄0) surface using a DFT-based neural network potential and genetic al-
gorithms,” J. Chem. Phys. 153, 054704 (2020), with the permission of AIP Publishing.

For the genetic algorithm optimization of small clusters, high-energy configurations are also required,
since these often appear when crossing over candidates or performing mutations on known candidates.
As such, phase III for these simulations consists of two parts.

First, random supported clusters are generated and processed with DFT, taking care to not generate
configurations where atomic distances are below 20% of the usual nearest neighbor distance. Below
this threshold, problems can arise in DFT calculations and NNP fitting due to huge repulsive forces.

From this a provisional NNP can be obtained with which trial GA runs can be performed. In an
iterative approach, as detailed in fig. 3.1, GA searches are performed for different cluster sizes. Mini-
mized and unrelaxed structures generated by crossovers or mutations are extracted, filtered with a NNP
ensemble or the bin and hash algorithm, calculated with VASP, introduced into the reference dataset for
a new NNP fit, and the process repeats until no more new low-energy configurations can be detected.
With this procedure, hundreds of new configurations per GA run can be easily extracted.

Figure 3.1: Phases followed in the construction of the NNP dataset for the GA optimization of small
supported Cu clusters, as described in more detail in the main text. Phase I corresponds
to generating known structures with small modifications, in phase II we perform simula-
tions with these structures with the usual simulation methods such as MD and MC, and in
phase III we proceed to perform a cyclical GA search for new structures. Reproduced from
Reference [138], with the permission of AIP Publishing.

To avoid the supported clusters interacting with themselves through the PBC, which results in wires
or sheets instead of distinct clusters, large ZnO slab surfaces need to be utilized. To fit these struc-
tures into DFT, they are extracted utilizing the cut cube algorithm (see sec. 2.6.1). This preserves the
immediate environment of the clusters, as well as the periodicity of the ZnO slab.

3.3.5 Phase IIIb: Simulated Annealing of Large Supported Clusters

The initial NNP trained on distorted base structures is utilized to run SA simulations. Structures are
extracted from these large SA configurations with the cube cut algorithm (see sec. 2.6.1). Since it is not
always possible to extract periodically and stoichiometrically correct cubes, the algorithm was applied
to every frame of the simulation twice: once starting from the atoms farthest away from the center of
geometry of the cluster, and once from the closest atoms. If the algorithm cannot find a safe cube, it

42 Chapter 3 Computational Details

moves on to the next atom in the list, until a good cut is found or the structure is exhausted. This results
in a collection of extracted structures that sample either the core or the edges of the supported clusters,
following the spirit of the environment decomposition process (see sec. 2.2.4). Figure 3.2 shows a
possible environment decomposition approach for this system, comprised of structures obtained as
described here, and information from structures from other simulations presented in this work. To avoid
recalculating every extracted configuration, they are pre-filtered by the NNP ensemble procedure [88,
115], and/or by utilizing the BAH algorithm (see sec. 4) to rapidly evaluate their possible presence in
the available dataset. The structures that pass this filtering are recalculated with the electronic structure
method of choice, a new NNP is fitted with the expanded dataset, and the process can then start anew.
This procedure was repeated a total of three times.

Figure 3.2: Possible environment decomposition for large copper clusters on zinc oxide: Central figure:
Target system. a) Information for cluster atoms far away from the surface can be obtained
from simulations of free-standing clusters [61]. b) Information for atoms deep inside the
cluster can be obtained from simulations of bulk copper. c) Information for atoms on sur-
face facets can be obtained by simulating copper surfaces. d) Information for the ZnO
support far away from the cluster can be obtained from simulations of clean ZnO slabs. e)
Information for deep layers of the ZnO support can be obtained from simulations of bulk
ZnO. f) Information for atoms right at the interface between the two materials can be ob-
tained from CLM structures, and also from structures obtained with the cut cube algorithm.
g) Information from atoms at the edge of the cluster near the support can be obtained from
the cube cut algorithm.

3.3 Generation and Composition of the Reference Dataset 43

3.3.6 Phase IIIc: Large Coincident Surfaces

Figure 3.3: Proposed CLM and NNP fitting scheme for the search of coincident surfaces: After a pair
of materials is chosen, structures up to a given number of atoms (NDFT) are calculated with
the electronic structure method of choice. A NNP is fitted, and the fit checked for predictive
capabilities by comparing results from different fits. If the fit is deemed not sufficient, extra
structures are generated with good PES exploration methods and recalculated until the fit is
satisfactory. Once the fit is good enough, it is used to predict the behavior of larger matches
(NNNP).

For coincident surfaces, a number of structures have been generated and calculated as detailed in
fig. 3.3. Two materials and specific Miller indices are chosen (in this case, ZnO(101̄0) with any of
the low index Cu surfaces). Matches are generated with a thickness of 2 to 6 layers per material
and a total maximum of NDFT = 250 atoms (which as shown in sec. 7.2.1, fairly restricts the number
of possible structures). Additionally for some structures the atoms are rattled to generate thermally
distorted structures. These structures are calculated with DFT (taking into account k-point generation
as described in sec. 3.1.2), and afterwards a number of NNPs are fitted to this data. A NNP ensemble
test [88, 115] is performed on larger structures, and if the fit is found to be satisfactory, larger matches
are generated and analyzed with the NNP. If not, further structures can be generated with a variety of
other simulation algorithms that can produce new “reasonable” looking structures and are applicable
to slabs: relaxing the available slabs, performing molecular dynamics (MD), basin hopping Monte
Carlo [149] (BHMC), simulated annealing [152] (SA), minima hopping [153] (MH), and evolutionary
or genetic algorithms [140, 197] (GA).

44 Chapter 3 Computational Details

3.4 Genetic Algorithm Search Settings

This section is adapted from Reference [138] M. L. Paleico and J. Behler, “Global optimization of
copper clusters at the ZnO(101̄0) surface using a DFT-based neural network potential and genetic al-
gorithms,” J. Chem. Phys. 153, 054704 (2020), with the permission of AIP Publishing.

The supporting slab for the global optimization of small copper clusters consists of a ZnO(101̄0) sur-
face with a size of 23.03 × 21.19 Å2, or a 6 × 4 supercell, which is large enough that cluster atoms
in this size range do not interact across the PBC. The slab is generated with enough layers to have a
minimum thickness of 7 Å, so atoms at the top of the slab cannot detect the other side as this is beyond
the NNP cutoff radius. In total the slab has 448 atoms. At least 13Å of vacuum are added in the di-
rection perpendicular to the slab, also taking into account the top of the deposited cluster, once again
to avoid self-interactions. The slab is pre-optimized at the beginning of the GA search, and then is
optimized again with each generated cluster. In many DFT-based GA simulations the supporting slab
is left frozen because of the added computational costs, but as explained further elsewhere [138], this
can lead to different minimized structures.

For geometry relaxations the LBGFS algorithm (limited memory BFGS [198]) is used, with a max-
imum force criterion of 0.005 eV/Å and a limit of 1000 evaluation steps, as implemented in the ASE
library [171]. This optimizer was chosen mainly for being the fastest for our particular setup and being
rather robust. Care should be taken that all structures are completely relaxed, otherwise false local
minima can find their way into the candidate pool, that then relax into other different local minima if
reoptimized.

The GA runs are seeded by generating 15 structures with random geometries while maintaining a
minimum distance between cluster atoms, that are then geometrically relaxed. These structures are
rapidly abandoned by the search due to their relatively high energy.

The active breeding population is kept at 50 structures. Using an interatomic distance compara-
tor [141] (see also sec. 2.6.2), the breeding population is kept structurally distinct. Three criteria are
required for the comparator: first the energy of the structures is compared, taking into account a thresh-
old for minimum total energy difference of 0.1 eV. If the energy difference between two structures is
larger than this value, they are assumed to be different. A maximum correlation distance of 0.7 Å,
and a maximum cumulative difference of 0.025 Å are also utilized for the comparison of interatomic
distances. The larger these two values are, the less “strict” the comparator is. If the comparator is too
strict, small differences between optimized clusters are deemed significant and the breeding population
might become poisoned with the same structural motif. If too lax, structures that are evidently differ-
ent are falsely detected as similar. The values mentioned here were suitable to keeping the breeding
population varied.

Each search for each cluster size is repeated 4 times, until 3000 structures have been evaluated in
each run, for a total of 12.000 structures for each size. Clusters at each cluster size are then merged
into a single dataset before continuing with the analysis performed in Sec. 5.2.1. The same structures
are usually found in each run (see fig. 3.4 a), described below), but the independent runs are kept as a
consistency check, and we can expect this situation to be different for larger clusters where finding a
given putative global minimum (GM) becomes more difficult [199].

The GA search has been implemented taking as a base the routines already present in the ASE
(Atomic Simulation Environment) Python library [171], version 3.17.0. Some mutations needed to be
modified (rattle and mirror), or implemented from scratch (the rest). The mutation moves employed
have a number of parameters that can be adjusted. These parameters are detailed in ref. 138. Energy
and force evaluations were provided by the n2p2 neural network library [200] in combination with
LAMMPS [201].

The typical course of a GA search is illustrated in figure 3.4 a), for four GA searches for the GM of
Cu10. The putative GM is quickly found in fewer than 300 attempts for all four independent searches,

3.4 Genetic Algorithm Search Settings 45

with no lower energy structure found in the subsequent 2700 steps of the search. Figure 3.4 b) shows
how the different mutations (or no mutation, just crossover between two parent structures) affect the
energy of the generated relaxed candidates, for two GA searches for Cu10. The energy is expressed
relative to the parents’ average energy, as given by

P = 100∗
(Ecandidate

(Eparent 1 +Eparent 2)/2
−1
)
, (3.1)

where Ecandidate,Eparent 1 and Eparent 2 are the energies of the relaxed candidate and its two parents,
respectively. If the relaxed candidate has a lower energy than the average of its parents, P is negative,
and we can say that the mutation was “successful” in progressing the GA search.

Performing only pairing shows no particular energy improvement or worsening, centering the energy
changes around the 0% mark. In contrast, angular mutation moves tend to generate clusters with high
energies, probably due to moving copper atoms from their favorable positions interacting with the
support to on top of the cluster. Short molecular dynamic runs seem efficient at generating lower
energy configurations, being the only mutation with an average energy change below 0%. The other
mutations exhibit a similar behavior between them, sometimes improving the energy of the offspring
cluster, but with a long tail towards higher energies.

46 Chapter 3 Computational Details

Figure 3.4: a) Energy progression of seven GA searches for the Cu10 cluster. Lines indicate the energy
of the lowest energy configuration found in a given GA search until that point, with respect
to the putative GM. All runs find the minimum in less than 300 structures, and no lower
energy configuration is observed for the following 2700 structures for a total of 3000 struc-
tures in each independent run. Arrows and inserts show selected cluster structures for the
red run. b) Percentage energy changes compared to the average energy of the parent struc-
tures (see Eq. 3.1), for different mutations for two GA searches on the Cu10. “None” means
that only a cut and splice pairing has been performed, with no added mutation. “MD” is the
molecular dynamics move described in sec. 2.3. The lines inside the boxplots shows the
median energy change, the boxplots extend from the lower to the upper quartile of the data,
whiskers extend from the 5th to the 95th percentile of the data, circles show data points
outside of the whisker range. Reproduced from Reference [138], with the permission of
AIP Publishing.

3.5 Simulated Annealing Settings 47

3.5 Simulated Annealing Settings

Copper atoms are initially deposited on a simple regular cubic grid on top of the ZnO support. For
simplicity and to avoid biasing the initial configurations, an fcc grid was not chosen. The size of this
cube is pre-calculated taking into account copper’s density (4 atoms in a 3.6 Å side cubic cell). The
ZnO slab consists of 4 layers (enough so that taking into account the NNP’s cutoff radius, atoms at the
top of the slab do not see the vacuum at the bottom of the slab), and sized to be as big as the initial
copper cube, plus at least an extra 10 Å. This extra lateral size adds more atoms to the simulation
and results in a slower computation, but it is vital to avoid the cluster merging with itself through the
periodic boundary conditions of the simulation.

The ZnO slab is relaxed before depositing the copper atoms, and the atoms in the slab are held in
place by adding a soft spring potential binding them to their relaxed positions. Although the melting
point of ZnO is much higher than that of copper (experimental values: 2248 K vs. 1358 K [202]), the
surface of the slab can melt at a lower temperature, which risks atoms from the support incorporating
into the cluster. The goal of the simulations is to study simple supported clusters. Dissolution of the
support into the cluster is also of interest as mentioned in the introduction, but would be a much more
complex topic.

The molecular dynamics part of the simulation was performed with a Nosé-Hoover [203, 204] ther-
mostat, and a timestep of 0.004 ps. The clusters are initially randomized at 1400 K, above the copper
bulk melting temperature. Configurations are sampled starting 37.500 steps (0.15 ns) every 62.500
steps (0.25 ns). Five configurations are extracted in this way and then cooled down. The cool down
process begins with another small randomization phase of 0.3 ns at 1400 K, and then the clusters are
cooled down to 300 K in 50 K steps of 0.1 ns, for an average cooling rate of approx. 500 K/ns and
a total simulation time of 2.6 ns. Slower cooling rates were tested, but the structures of the obtained
clusters do not seem to change significantly with more cooling time below this value.

3.6 Coincidence Lattice Match

3.6.1 Settings and Implementation

As mentioned in sec. 2.5.1, some parameters need to be defined for a successful CLM run. Here all the
relevant parameters are summarized. The angle between the two materials has been swept by 1 degree
at a time, from 0 degrees up to when the results start repeating due to the geometry of the surfaces
involved (see sec. 7.2.1). The maximum allowed solution tolerance has not been used, and instead
εDOLD is the deciding criterion for accepting matches, with a maximum allowed value of 0.1. Each
slab has been generated with 6 layers per material, since this ensures that the atoms at the bottom of
the material do not feel the effects of the interface, due to the cutoff of the NNP (slab thickness of at
least 6 Å). The thickness of each material is different, particularly for the different Cu surfaces, so the
required amount of layers needs to be checked for each case. The maximum number of atoms for DFT
calculations has been limited to 250, and for NNP calculations to 2000 (in principle a larger limit is
possible for the NNP, but this number already allows for thousands of valid matches for each material
pair).

The CLM algorithm has been implemented in Python version 3.5, with some helper functions from
the Atomic Simulation Environment (ASE) [171] library, version 3.17. In particular, heavy use is made
of the database functionality of the library, as well as the structure generation functions. These new
functions will hopefully be made available in a public repository in the future.

3.6.2 Starting Surfaces

The resulting matches are strongly dependent on the structure of the initial materials taken into consid-
eration. As such, in fig. 3.5, the structure of the 4 materials of interest is presented: ZnO(101̄0), and the

48 Chapter 3 Computational Details

three low index surfaces of Cu(100), (110), (111). The structures were obtained utilizing as a starting
point the bulk structures of the respective materials. The bulk structures have been optimized with the
NNP and DFT, obtaining comparable results in both cases (see table F.2). For Cu the 1 atom cell has
been chosen as a starting point instead of the more usual 4 atom cubic orthogonal cell, since this is the
smallest possible cell, thus maximizing the amount and type of matches obtained with CLM. A 4 Cu
atom basis cell would seem in principle to be equivalent to the smaller basis, but in fact the range of
possible geometric matches it can generate is constrained to a subset of the matches of the smaller cell.
As a simple example, if we consider the Cu1 cell as the base 1×1 cell and Cu4 as 2×2, it is not possible
to generate a 3×3 cell from the latter utilizing integer combinations of lattice vectors. A 6×6 cell is
possible from both and in some ways equivalent to the desired 3×3 cell, but unnecessarily larger.

Figure 3.5: Lattice cells and relevant interatomic distances for the main surfaces utilized in the match-
ing algorithm. a) ZnO(101̄0) b) Cu(100) c) Cu(110) d) Cu(111)

Attempting to create a match between these cells requires finding rectangles in the Cu configurations
that can be matched to the rectangle in ZnO. As it can be seen from the figure, there is no way of
creating this matching cell for the involved lattices without straining one (or both), and without creating
a huge coincident cell where the numbers match. For Cu(100), a long Cu-Cu distance that is twice that
of the unit cell almost matches the rectangle in the ZnO cell, but the remaining direction is too short
to match with the corresponding vector in ZnO (2,57 Å in Cu vs. 3.29 Å in ZnO). In Cu(110), the
opposite problem can be found, with a long Cu-Cu distance of 5.14 Å once again almost matching the
5.3 Å distance in ZnO, but in contrast to the previous case, the remaining direction is too long (3.64 Å
in Cu vs. 3.29 Å in ZnO). The rectangular cell of Cu(111) is not so easy to detect at first glance, since
the usual representation for this surface is a hexagonal configuration. The rectangular cell in this case
is similar to that of Cu(110), but with a longer distance between the Cu atoms at the long edge of the
rectangle. Due to this, this second distance is once again too long to match with the corresponding
distance in ZnO.

The previous analysis shows that all the cells are close to matching, but one direction is always

3.6 Coincidence Lattice Match 49

too long or too short. The advantage of the CLM algorithm is that it performs this analysis, but for
every possible supercell (up to a given maximum integer), which means we are no longer matching
just rectangles but many possible parallelograms; and for every possible angle between the mentioned
parallelograms, instead of only in the default orientation.

Part II

Results

Chapter 4

The Bin and Hash Algorithm

This chapter is adapted from Reference [205] M. L. Paleico and J. Behler, “A Bin and Hash Method
for Analyzing Reference Data and Descriptors in Machine Learning Potentials”, Mach. Lean.: Sci.
Technol., accepted, (2021), with the permission of IOP Publishing.

4.1 Motivation

The quality of machine learning potentials is dependent on the availability of reference data obtained
from electronic structure programs. These datasets can become quite large, with hundreds of thousands
of single structures and millions of atomic environments contained within them. This is required in
order to be certain that the structures in the dataset cover the necessary sections of configuration space.
Handling such datasets can be problematic, both when they are being generated by a human, in which
case it can be complicated to keep track of which structures are already present in the collection; or by
an algorithmic automatic exploration of a PES [206–208], in which case repeated or bad configurations
can find their way into the structure library due to lack of human supervision.

In this chapter the bin-and-hash (BAH) algorithm is presented. The algorithm is based on the widely
utilized hash table [209] data structure. The goal of this algorithm is the rapid identification and
comparison of large number of vectors containing atomic environment descriptions, such as the data
present in the usual MLP datasets. Such an algorithm can be utilized to detect redundant information
in the dataset, thus reducing the need for costly repeated electronic structure calculations or fitting onto
redundant data. As will be shown, the algorithm can also be used as a rough qualitative measure of the
description of a given dataset by the selected descriptors corresponding to a ML method. Finally, the
algorithm can be utilized to identify unreliable derived values associated with the atomic fingerprint
vectors (such as forces or charges).

Here the BAH algorithm is applied to the atom-centered symmetry functions (ACSF) [110] that form
the basis of the Behler-Parrinello HDNNP approach as a descriptor of the local atomic environment,
but can in general be applied to any method based on well-behaved, meaningful and ordered atomic de-
scriptors [121–127], and it has recently been shown that many descriptors perform equally well [128].
The analysis allowed by the BAH method can be applied before a NNP has been trained, and even
before reference ab-initio calculations have been performed, which results in a large time save when
compared with other methods that require one or the other.

One example of previous methods that attempt to process structural datasets include SketchMap [210,
211], which is a complex dimensionality reduction algorithm that groups structures by similarity, from
which structures can be discarded or added to the obtained clusters. Other algorithms attempt to find
meaningful measures of distance in structural space [212, 213]. This distance can once again be used to
prune large datasets if structures that are too similar are detected. Methods relying on ML descriptors
to establish similarity measures are also available [214]

The mentioned methods are in the end versions of the well known problem of finding distances and
nearest neighbors in multi-dimensional data. More basic approaches rely on complex binary tree data
structures such as kDtrees [209, 215], that can efficiently store data points according to their mutual

54 Chapter 4 The Bin and Hash Algorithm

distance in multi-dimensional space and rapidly reduce a search space due to their binary structure;
and other dimensionality reduction algorithms such as principal component analysis (PCA) [216, 217]
that reduce the size of the space under consideration. These algorithms are often too complex and slow
when applied to the typical MLP reference dataset sizes and dimensionality.

Being the cornerstone of most MLP methods, automatic atomic fingerprint selection has also been
an area of research interest. Hyperparameter optimization [218–220] can be used for simpler forms of
machine learning, but they are usually too complex and slow for MLPs with large datasets, relying on
multiple fitting rounds. The MLP community itself has developed some methods, for example relying
on genetic algorithm based optimization searches [124, 221] to find the best descriptor configuration,
or dimensionality reduction through importance estimation with CUR decomposition [222] to discard
those descriptors less relevant to the overall training process.

Dataset maintenance has also been an area of focus. Active learning [88, 223–226] has been the tool
of choice in this regard, which attempts to reduce the size of a dataset by the relative importance of
each structure to the overall description of the PES.

This chapter is structured as follows. The algorithm is described in Sec. 4.2. The first step of
the algorithm is binning the vector of ACSF corresponding to a given atomic environment. This is
described in Sec. 4.2.2. After binning, a hash function (sec. 4.2.2) is relied upon to create a numerically
unique representation of each environment, and by combining this with a hash table, searches for
representations become fast and do not scale with the number of environments being studied. The
procedure is contrasted with a naive direct comparison approach in Sec. 4.2.2, with big O notation [209]
scaling discussed in Sec. 4.2.3.

In Sec. 4.3, results from the application of the algorithm are shown. Concrete timings are pre-
sented in Sec. 4.3.1, confirming the scaling expected based on theoretical considerations. Section 4.3.2
demonstrates how the BAH algorithm reproduces distances in ACSF vector space, while Sec. 4.3.3
shows the behavior of the algorithm when changing the number of binning subdivisions and the ACSF
set description of the dataset, and how this can be utilized to qualitatively evaluate the quality of a given
ACSF set, without requiring a previous potential fit. Finally, Sec. 4.3.6 shows how the method can be
applied to find similar atomic environments and contradicting or unreliable information in a dataset.

4.2 The Bin and Hash Method

4.2.1 Description of the Algorithm

1 d i v s = number o f s u b d i v i s i o n s in ACSF s p a c e
2 f o r a tom_env_i in d a t a s e t
3 f o r a c s f _ j in a c s f _ s e t
4 c a l c u l a t e symmetry f u n c t i o n v e c t o r Gi={Gj }
5 f i n d Gjmax and Gjmin a c r o s s each a c s f component Gj
6 i n i t i a l i z e empty hash t a b l e Ht
7 f o r each Gi v e c t o r
8 b i n Gi v e c t o r Bi ={ Bj } ,
9 Bj= d i v s ∗ (Gjmax−Gj) / (Gjmax−Gjmin)

10 c a l c u l a t e hash Hi= hash (Bi)
11 i f Hi not in Ht
12 s t o r e i t Ht [Hi]= j i n d e x
13 e l s e
14 c o u n t a s c o l l i s i o n n c o l l s +=1
15 add t o e x i s t i n g r e c o r d in hash t a b l e
16 Ht [Hi] append (j i n d e x)

Code Block 4.1: Pseudocode for the bin and hash algorithm

The bin and hash algorithm is explained in pseudocode in code block 4.1. Here follows a brief

4.2 The Bin and Hash Method 55

Figure 4.1: Stacked histogram plot of the values of the first 10 radial ACSFs in the ZnO dataset de-
scribing the atomic environments of the oxygen atoms. Reproduced from Reference [205],
with the permission of IOP Publishing.

description of the procedure, and then sections detailing the different parts of the algorithm.
As a test dataset structures representing a zinc oxide slab have been chosen. A typical distribution

of ACSFs for such a dataset is presented in Fig. 4.1 in the form of a stacked histogram plot, for the first
10 ACSFs of a small dataset containing 1192 configurations of a ZnO(101̄0) surface slab with in total
75360 atomic environments. The structures included in the dataset consist of bulk cut slabs, relaxed
slabs, and configurations extracted from MDs, with different number of layers. The same 58 atom-
centered symmetry functions per elements utilized in the rest of this work (see appendix D) describe
this dataset. Even for such a relatively small and simple dataset describing just one structural motif,
the distribution of the ACSFs already has a rather complex form.

The individual steps of the BAH algorithm are illustrated in Fig. 4.2. Here the system is described
by two arbitrary ACSFs, represented by the histograms in Step 1. The range of each ACSF is split
into a predefined number of subdivisions, typically between 101 and 107 bins, taking into account the
maximum and minimum values present in each range. The purpose of this is to transform the ACSF
vector Gi for a given atomic environment i, from a float-based continuous representation to an integer-
valued binned vector Bi of the same dimensionality (Step 2). This binned vector is then processed with
a hash function, resulting in a one-dimensional hash key Hi (Step 3), which is then used for indexing
into a hash table (Ht) (step 4).

The binning solves two problems at once: it does away with the need for a floating point representa-
tion, which does not allow for an accurate calculation of a hash, since the hash would be numerically
unstable to the round-off errors of the floating point values; and it bins similar ACSF vectors (whose
floating point representation is close) to the same Bi vector, ultimately resulting in the same hash key.
Hashing this binned vector makes it possible to construct a hash table, where the advantage of such a
data structure is that each vector carries in itself, after hashing, its position in the table. Binning and
hashing are thus central for the performance and functioning of the method. In each bucket the ID of
the corresponding environments is stored, which makes it easier to retrieve information on the results
inside each bucket and to export the hash table for other uses.

Gi vectors that end up in the same hash table bucket, are said to be in a hash collision. These vectors
are by necessity similar, and depending on the number of subdivisions, even exactly the same save for
floating-point round off noise. The number of such collisions in general and for each bucket can be

56 Chapter 4 The Bin and Hash Algorithm

Figure 4.2: Illustration of the BAH approach: Each atomic environment in this example is characterized
by a two-dimensional ACSF vector G = (G1,G2). In step 1, the histograms corresponding
to the ACSFs are generated as a visualization aid. The values of G1 and G2 are highlighted
by the crosses for one particular example environment. This ACSF vector is then binned
to a pair of integer values, forming the binned vector B = (B1,B2) in step 2. In step 3 the
hash H(B) of this binned vector is calculated. Finally, in step 4 this hash is used (directly
or indirectly) to index into the hash table, and add the atomic environment to a counter
for similar environments. Reproduced from Reference [205], with the permission of IOP
Publishing.

kept track of, and this is a measure of how many similar environments are present in the dataset.
The usefulness of different subdivision values will be shown later, but at this stage different subdivi-

sion attempts can be justified as the solution to a predictable problem. It is possible for one component
of the ACSF vector for two environments to fall at either side of a subdivision boundary. If this is the
case, the binned version of the ACSF vector will be off by one, resulting in different hash value and
different position in the hash table. If the original environments where actually similar, this is undesir-
able behavior. Multiple binning solves this problem by moving the bin boundaries around. In this way,
it can be avoided that very similar environments are converted to different hash keys. Despite the need
for multiple bin subdivisions, the algorithm is so fast that it remains efficient.

4.2.2 Analysis of the Algorithm

Here the scaling of each section of the algorithm is discussed and estimated. Scaling is often ignored
by the more sophisticated algorithms mentioned in the motivation section, resulting in algorithms that
are in practice too slow given the typical size of ML reference sets. As reference algorithms, neighbor
lists and naive approach brute force comparison are presented. Finally, binning and hashing operations
are explained in more detail and the scaling in big O notation [209] is derived.

Cell-Based Neighbor Lists

A simple approach to efficiently calculating distances is commonly present in molecular dynamics,
where cell lists [156] are implemented. Here they are useful because most force fields depend in some

4.2 The Bin and Hash Method 57

way on the distance between atoms. The system is divided into smaller cubic cells, and atoms are
assigned to these cells according to their coordinates. If the size of the cells is chosen properly with
respect to the cutoff radius of the potential, finding neighbors becomes simple: only the current cell the
atom occupies and the adjacent cells need to be checked.

How could one extend this procedure to atomic environment descriptors? Cells would be created not
in coordinate space but in the higher-dimensional ACSF space. Unfortunately, this procedure would be
unfeasible as the computational costs scale badly with dimensionality: in a one-dimensional system we
need to check the central cell plus two neighbor cells, in two dimensions it is the central cell plus eight
cells organized in a square, and so on with the total number of cells to be checked scaling as 3D with
D the dimensionality of the space. Since the typical ACSF set has at least 20 descriptors, the method
is not useful at all.

The binning step in BAH is similar to this cell-based approach, and has a similar goal of reducing the
degrees of freedom of the problem. In BAH however, we only look at neighbors within one cell, avoid-
ing the scaling problem as dimensionality increases. Additionally, hash tables allow for performing
this check within one cell very fast.

The Naive Approach

Naively, atomic environment vectors could be compared one by one against each other, taking into
account the need to only compare atoms of the same element. This approach scales linearly with
the number of descriptors in a given atomic environment, but quadratically with the total number of
environments present in the dataset. To see why this is, consider that for environment number N, we
need to compare it with the previous N−1 environments that have already been compared.

This poor scaling of lookup times is avoided in BAH by utilizing a hash table, where finding a
member of the table is, in principle, a constant time operation [209] that does not scale with the amount
of data already present in a hash table.

Binning

The BAH proper starts with binning of the available data. The range of each ACSF in the dataset is
known beforehand, and the space between the maximum and minimum values of the ACSF is divided
into bins whose borders are given by

B j = nint
(

divs∗ ACSFmax−ACSFval

ACSFmax−ACSFmin

)
, (4.1)

where B j is the bin value for the j-th ACSF, nint is the nearest integer function, i.e., a round-off to the
closest integer; and ACSFmax, ACSFmin, and ACSFval are the maximum, minimum, and current value
of the ACSF under consideration, respectively. The number of subdivisions is kept the same for all
ACSF, although some of them might have larger or smaller ranges. A possible modification would be
to change the number of subdivisions to obtain a uniform density of values for each ACSF.

As mentioned previously, the binning serves various purposes. It converts floating point numbers,
whose representation is imprecise due to limited prevision round-off errors during mathematical oper-
ations or due to limited precision when outputting data to a text format, into integers which are much
more robust. Due to their imprecise nature, floats cannot (or rather, should not) be hashed directly,
since small variations in the number will result in wildly different hashes.

Binning, in a way, also preserves a notion of distance between ACSF vectors. Although Euclidean
distances in multi-dimensional space tend to lack significance [227], it can still be assumed that ACSF
vectors that are close enough correspond to similar atomic environments. As the number of subdi-
visions increases, only more and more similar vectors bin to the same representation, increasing the
sensitivity of the BAH process until only those vectors that are exactly the same (barring the limitations
of floats mentioned in the previous paragraph) remain.

58 Chapter 4 The Bin and Hash Algorithm

Binning is not enough for a full rapid identification of environments on its own, since binned vectors
would still need to be compared one by one against each other. The solution to this come from the
adoption of a hash table.

Hashing and Hash Tables

Hash functions [209] are a family of functions that can map data of arbitrary size to data of fixed size.
They are one-way functions, that can assign a single numerical value to arbitrary data. Since the output
space of a hash function is smaller than its input space, the assignment is not unique. Two different
objects can result in the same hash value, an event known as a hash collision. Due to this domain
reduction and the use of operations such as modulo and per-byte logic functions that result in loss of
information, the hash function operation is not usually reversible other than by brute force. If well
designed, the output space of a hash function is uniformly covered, and the behavior of the hash is not
continuously smooth. That is, if a collision occurs, the hashed objects are either exactly the same, or
completely different; small modifications to the input results in very different outputs. On their own,
thus a hash value cannot be used to measure distance in input space. All of these properties make
hash functions useful in a variety of fields, such as cryptography (e.g.: password storage) where the
non-reversibility is taken advantage of, or in the realm of data validation (e.g.: checksums, credit card
numbers, blockchain), where the discontinuity with respect to input data is exploited.

The properties of hash functions also give rise to the hash table data structure. A hash table behaves
like an array, but the index of an object into an array is “contained” by the object itself, instead of being
arbitrary or following some sort of numerical or lexicographical ordering. The index is “extracted”
from the object by the hash function, and thus the position of an object in the hash table “buckets” is
always known. The index is calculated as

index = hash%array_size, (4.2)

where “index” is the index to be used when accessing the hash table array, “hash” is the hash function
value of the object of interest, “array_size” is the size of the array holding the hash table, and % is the
modulo operator. If constructed in this way, the hash will always index an array position, no matter the
size of the array.

One question appears at this point: How is it possible to map the 107 integers possible for a single
ACSF value into an array of finite space? Or even worse, the multitude of combinatorial arrays that
arise when increasing the size of the ACSF vector. As mentioned before, hash functions already map
larger domains into smaller ones, so collisions are bound to happen. Various implementation dependent
solutions exist for solving this problem [209]. In separate chaining, all collided keys are kept in the
same bucket in the form of a list. Attempting to assign to the hash table then consists of finding
the corresponding bucket as in eq. 4.2, and afterwards looking through the list of collisions stored in
the bucket for the exact match in a naive comparison approach. This of course incurs an overhead,
but the collision list will usually be small enough that the hash table efficiency is maintained. In
another implementation, known as open addressing, if the current bucket is already occupied, objects
are assigned to the next free bucket. Assignment now becomes a fast search utilizing eq. 4.2, followed
by testing each occupied bucket following it. This of course also has an extra computational overhead
associated with it. Since MLP datasets usually correspond to well-structured data and not to completely
random numbers, the worst case scenario of maximum collisions is avoided and the hash table can be
predicted to exhibit optimal behavior.

As described, when collisions do not become a burden, search, assignment and insertion in a hash
table are constant time operations that do not depend on the amount of data already stored in the table.
Instead of requiring the algorithm to perform a naive one by one comparison until the target object is
found as with an array, in a hash table the object already carries its index and can thus be immediately
located.

4.2 The Bin and Hash Method 59

This desirable behavior comes with some associated overhead: if the table is constructed in sequen-
tial memory, space will be wasted since buckets might be empty due to the spread output of hash
indexes, hashes need to be pre-computed for each new operation on the table (but they are usually
fast), and extra care needs to be taken to avoid hash collisions. This overhead is usually justified by the
advantages the data structure provides, and as such it is often utilized for efficient storage and retrieval
of data.

Hash tables can easily be stored in text form for post-processing or to compare future structures
without the need for reprocessing the whole dataset. For BAH, this is implemented by outputting to a
file every bucket, with its associated binned vector and the numerical ids of the atomic environments
contained in the bucket. The whole table can be reconstructed by reading these binned vectors and ids
and populating a new table with them.

4.2.3 Scaling

Algorithm Scaling
Naive Comparison O(M ∗N2)

Binning O(M ∗N)
Hashing O(M ∗N)

Hash Table Lookup O(N)

Table 4.1: Big O notation scaling of the different algorithms under consideration. N is the number of
atoms corresponding to the number of atomic environments in the dataset. M is the number
of functions in the atom-centered symmetry function vector.

Here the expected big O notation [209] scaling for the relevant algorithms is discussed. The expected
formulas are summarized in Table 4.1. The operation performed here is searching once through a whole
dataset, attempting to find repeated atomic environments.

In the following discussion, N is the number of environments in the dataset, which is also the total
number of atoms across all structures. M is the number of functions in each ACSF vector, and also the
dimensionality of our problem. The scaling with respect to N can be more important than regarding M,
since the number of ACSF in a HDNNP is usually less than 100 per element for most systems, while
the number of atomic environments can reach millions and has no upper bound.

The following scaling is predicted:

• Naive comparison and lookup: Comparison scales at worst as O(M), since we need to compare
each element in one ACSF vector to the corresponding element in another ACSF vector, but
we might end early if a mismatch is detected. We then need to compare environment 1 with
the next N− 1 environments, environment 2 with the next N− 2 environments and so on until
environment N− 1 for the last single comparison with environment N. This is a mathematical
series that in the end scales as O(N2). Both parts of the algorithm together scale as O(M ∗N2).

• Binning: Binning scales with both the number of elements in each ACSF vector – since we need
to bin each element individually – as O(M). Additionally, it has to be done for each of the N
atomic environments (O(N)). Combined it scales as O(N ∗M). This operation is usually fast.

• Hashing: Hashing scales weakly with the size of the object being hashed (O(M)). There is some
dependence on the specific implementation of the hash function (see Sec. 4.3.1) and the hashing
needs to be repeated for each ACSF to be compared (O(N)). It is a relatively fast operation but
highly implementation dependent since there are many possible hashing functions.

60 Chapter 4 The Bin and Hash Algorithm

• Hash tables: Addition of data to a hash table and lookup are constant with respect to the size of
the stored dataset (except for hash collisions) so this scales as O(1) (no scaling/constant scaling).
This is where the main time saving for the whole algorithm comes from. We have to repeat this
N times, once per hashed array, resulting in a scaling of O(N).

From these, we can calculate the total time for the described operation. For the naive, we need
to compare M ∗N2 elements to process the whole library of environments. In the case of BAH, first
all environments in the dataset are binned, then hashed, and finally stored into a hash table, detecting
repeated environments if present. These operations are independent and sequential, so their times are
additive. Thus, the timings of each algorithm are

tnaive = kcomp and lookup ∗O(M ∗N2),

tbah = kbinning ∗O(M ∗N)+

+ khashing ∗O(M ∗N)+ khash lookup ∗O(N),

(4.3)

where each k is the timing constant to perform that operation once, which depends on the actual im-
plementation of each algorithm, the programming language of choice, and the CPU architecture. As
expected the naive approach shows a polynomial O(N2) scaling, which is usually undesirable. In con-
trast, BAH consists of three linearly scaling sub algorithms. These scalings are tested in Section 4.3.1
for the case of random data (worst case scenario for all the algorithms), and the different scaling con-
stants are estimated.

4.2.4 Implementation

The algorithm has been implemented in Python 3.5, using the dict [228] (short for dictionary) data
structure, which is a hash table with the possibility to associate arbitrary data to each hash bucket. Hash
tables are easy to implement in many languages, since all that is needed are pointers and allocatable
arrays. The dict object in Python already hashes the data, so no explicit hash function has been defined
or implemented nor is required.

The BAH algorithms can be ported to a parallel implementation for the processing of very large
datasets, or in the case asynchronous operation is required, such as a compute cluster associated with
a database. A master process can hold a central copy of the hash table at the core of the BAH method,
and relegate binning and hashing to slave processes; or each process can hold its own copy of the hash
table, update it as new chunks of data are read, and periodically combine the results into a master table.

4.3 Results

4.3.1 Performance and Timings

For illustrative purposes, we present the timings and scalings of the naive and BAH algorithms on
randomly generated values, as obtained from Python3.5 on a Intel Core i5-5300U CPU 2.30GHz.
Fig. 4.3 plots the behavior of the different algorithms for increasingly large amounts of said data.

As previosuly predicted, the naive algorithm scales as N2 (fig. 4.3a), while BAH scales a N (fig. 4.3b).
The logarithmic plot in fig. 4.3c combines the data of both previous subfigures, and here it can be seen
that the naive algorithm rapidly becomes unfeasible while the BAH timing only increases at much
larger data sizes. We define a speedup as the relative time gain for any algorithm in BAH when com-
pared with the naive approach, as talgo/tnaive. This is plotted in fig. 4.3d. As the size of the data
increases, the speedup become larger, because the naive approach scales polynomially compared to the
linear scaling of BAH. The larger the data becomes, the more advantage is gained from utilizing BAH
over the naive approach.

4.3 Results 61

Naive
Constant Value (s/op2) op2/s

kcomp and lookup 8.8E-8 11.000.000
BAH

Constant Value (s/op) op/s
kbinning 3.0E-6 336.000
khashing 1.8E-7 5.500.000

khash lookup 2.9E-7 3.400.000
kBAH global 4.2E-6 238.000

Table 4.2: Estimated scaling constants for the different parts of the naive and BAH algorithms, at a
constant M = 10 (scaling is assumed linear for other M values, in the cases where relevant).
Units are in seconds required per operation (s/op). The inverse constant is also given pro-
viding the number of operations per second (op/s). Note that the naive algorithm only seems
“faster” because it is expressed in terms of op2.

The final two subfigures, e and f, show the behavior of the hash table itself. In this implementation,
hashing scales linearly with the size of the ACSF vector under consideration, but is extremely fast
for the size of vectors considered here. As expected, operations regarding the hash table, such as
assignment and lookup, do not depend on data size.

From these plots the different scaling constants of eq. 4.3 can be calculated. The values are gathered
in table 4.2, where the naive and BAH halves of the table are expressed with different units. The
fastest part of the BAH algorithm is the hash calculation (khashing), while the bottleneck in the current
implementation seems to be the binning (kbinning). This is probably due to the division and rounding
nearest integer operations involved in binning, and it could probably be improved with some vector-
ization or better numerical libraries. Not considered here is the required I/O to read ACSF data from a
file, which might become a more serious bottleneck for larger datasets, but is however common to both
algorithms. The values obtained here represent only an approximate order of magnitude since this will
change significantly for different implementations and computer architectures.

62 Chapter 4 The Bin and Hash Algorithm

Figure 4.3: Plots of the timing of the different algorithms with increasing system size. a) Naive lookup
vs. squared size of dataset. b) Different parts of the BAH algorithm vs. size of dataset.
c) All algorithms together in log scale for comparison. d) Relative speedup or time gain
of the different parts of the BAH algorithms compared to the naive approach, calculated as
talgo/tnaive, with talgo the timings of the different parts of the algorithm from b). e) Scaling
of the hash calculation with ACSF vector size, per 100.000 operations. f) Behavior of hash
table operations with dataset size, per 100.000 operations. Reproduced from Reference
[205], with the permission of IOP Publishing.

4.3 Results 63

4.3.2 Analysis of the Distance in Symmetry Function Space

Figure 4.4: a)-d) Histograms for the typical intra-bucket ACSF relative distance (δ) values for different
subdivisions (101,103,105,107) in the ZnO slab dataset. Other intermediate subdivisions
(102,104,106) exhibit similar behaviors. The counts axis is logarithmic for better visual-
ization. Reproduced from Reference [205], with the permission of IOP Publishing.

Since hash functions cannot be utilized directly to measure distances in ACSF space, and information
is otherwise lost in the process of binning and hashing, the question arises whether the BAH algorithm
is even capable of reproducing distances between atomic environment descriptions. Certainly ACSF
vectors that are exactly the same will land in the same integer representation and thus bucket, but what
happens with vectors that are just close?

To investigate this, a relative distance in ACSF space is defined as

δi j =
|Gi−G j|

0.5(|Gi|+ |G j|)
, (4.4)

where Gi and G j are a pair of symmetry function vectors corresponding to atomic environments that
ended up in the same bucket, and which are thus similar for the BAH algorithm. This distance is
calculated between atoms i and j of the same element.

This distance is calculated on the same dataset for different number of subdivisions, from which a
histogram can be produced, as appears in fig. 4.4. As expected from environments in the same bucket,
most of the distances calculated are zero. As the number of subdivisions increases, the maximum intra-
bucket distance (right-most bar of the histogram) rapidly becomes smaller, because the binning imposes
a stricter criterion for similarity. For the maximum number of subdivision in the plot, the maximum
distance corresponds to numerical noise inherent in the floating point representation. The behavior
of the maximum and average intra-bucket distance surprisingly follows a linear relationship with the
number of subdivisions in a double logarithmic plot (fig. 4.5). Changing the number of subdivisions

64 Chapter 4 The Bin and Hash Algorithm

Figure 4.5: Maximum and average intra-bucket relative distances for the histograms in Fig. 4.4 versus
number of subdivisions, in log scales. Notice that they follow approximately linear rela-
tionships, and trendlines with corresponding fitting equations are included. Reproduced
from Reference [205], with the permission of IOP Publishing.

therefore allows for tuning how strict the BAH algorithm is, and what the maximum distance between
two ACSF vectors can be before a similarity is no longer detected.

Given this behavior of the distances in ACSF space, it is also of interest to study the corresponding
distances in associated property space, such as forces. In fig. 4.6 the difference in force magnitude 1

vs. the ACSF relative distance δ is plotted, for different subdivisions. It can be seen in a) that there
is a relationship between both quantities, albeit weak. This is expected, since atoms with similar
environments and thus similar ACSF vectors should also exhibit similar properties, such as forces.
Distances in “force space” do not necessarily transfer linearly into ACSF space [128], which makes the
dependence weak, once again highlighting the problems with distances in high dimensional spaces. As
the number of subdivisions increases and only atoms with more and more similar atomic environments
are considered, the distance in force space also decreases. In the final subfigure, d), the force distance
corresponds only to DFT noise, since the detected environments are the same for all practical purposes.

1When comparing force components directly, care should be taken. ACSF vectors are invariant with respect to rotations and
translations in coordinate space, but forces are not. This is due to the derivatives involved in going from energy to forces,
which add a direction component. The result is that with the same ACSF vector, one can have different force vector
orientations, that is, the components of the force vector might not match. The predicted magnitude of the force vector
should on the other hand remain consistent since it is directionless. A trivial example of this is an unrelaxed unmodified
slab with two interfaces: atoms in the top and bottom surfaces will have identical environments as described by their
ACSFs, but the Z-component of their force vectors will necessarily, due to symmetry, be opposite. This becomes more
complicated for more homogeneous systems such as liquids and amorphous solids, where the same atomic environment
might be found in a variety of orientations. Thus only force vector magnitudes should be compared, or a consistent
orientation of the environments should be achieved in some way.

4.3 Results 65

Figure 4.6: Difference in force magnitude vs. the ACSF relative distance, δ , for different subdivisions
of the BAH algorithm applied to the ZnO slab dataset. The points present in each subplot
are not always the same, since the plots are generated from environments that collided for
a given number of subdivisions. Notice the difference in the scale of the x- and particularly
the y-axis for a) when compared to b)-d); the force spread for structures with δi j ≈ 0 is due
to remaining numerical noise in the DFT data. Reproduced from Reference [205], with the
permission of IOP Publishing.

4.3.3 Results for Different Symmetry Functions

In the previous section it was shown how the resolution power of the algorithm changes as the number
of subdivisions is altered. The question is then, what happens if we instead change the ACSF descriptor
set? For this purpose, the number of total bucket collisions and the number of collisions in the largest
bucket was counted for different subdivisions and different ACSF sets.

It is expected that as the number of subdivisions and ACSF functions increases, the number of
collisions should go down. More divisions means that environments need to be more similar in ACSF
space to collide (see Sec. 4.3.2) and more ACSFs lead to a more granular and precise description
of each environment. This count should eventually converge since datasets sometimes include, by
necessity, environments that are exactly the same. For example, this happens in a slab for atoms in
the center of the slab or at the top and bottom of the slab, which have by symmetry the same atomic
configurations. This rough prediction is confirmed in fig. 4.7. For this plot the ACSF set has been
systematically increased in the order listed in the appendix.

In subfigures a) and b), collisions initially go down quickly as the number of members of the ACSF
set increases, across all subdivision numbers. After this initial fall, the number of collisions plateaus
with a slightly downward trend. The line with 105 divisions offers the highest sensitivity, showing
changes across the whole ACSF range. Being able to differentiate chemical environments in this way
is a necessary (but not sufficient) condition for a good HDNNP fit, in which case the BAH algorithm
could be utilized to identify a floor to the size of the ACSF set.

66 Chapter 4 The Bin and Hash Algorithm

Figure 4.7: Panels a) and b) show the total and maximum number of hash table collisions, i.e., config-
urations that hash into the same bucket due to similarity of their ACSF vectors, vs. number
of ACSFs, for different binning divisions. Panels c) and d) show the same properties as a
function of the number of binning divisions, for different numbers of ACSFs. Reproduced
from Reference [205], with the permission of IOP Publishing.

Going a step further, fig. 4.8 illustrates the three-way relationship between number of ACSF utilized
for a fit, number of detected collisions, and the fitting accuracy as measured by the root-mean squared
error (RMSE) of energies and forces. Subfig. a) shows that, as expected, increasing the number of
atomic descriptors improves the fit accuracy, up to about 30 ACSF where the error plateaus. Subfigs.
b) and c) show that RMSE can also be correlated to the number of detected collisions, since these in
turn depend on the number of ACSF. The curve for 105 subdivisions exhibits the greatest sensitivity,
that is, it covers the largest range in the x-axis. These series of plots demonstrate that the number of
collisions can indeed be utilized as a rough measure of the final quality of a given descriptor set, with
the benefit that no actual fit is required. The approach is then to propose different sets of ACSFs, and
find those that minimize the number of detected collisions, and then perform expensive fits for only the
best few.

4.3.4 Curating a Dataset

An important goal for the BAH algorithm is to be able to “curate” a dataset, that is, detect and remove
repeated structures or atomic environments that do not provide new information about the PES of the
system. This can be used to remove structures already in a dataset, making future fits faster; or to filter
new configurations before processing them with an expensive electronic structure reference method,
saving computational time.

4.3 Results 67

To demonstrate how this would work with BAH, structures were removed from the ZnO dataset with
two different methods and the resulting predictive power of NNPs trained on these datasets compared.
The first method was a random removal of structures, as a control comparison. This method was
repeated multiple times to average out effects from randomly selecting structures. The second method
utilized the BAH algorithm as a guide: structures in the dataset were ranked according to the number of
shared environments, structures with the highest number removed, then this number was recalculated
(since removing one structure means all those who shared environments with it change their ranking),
and the procedure repeated until a predefined percentage of the dataset had been removed. The random
selection method also removed this same amount of structures for a fair comparison. All removed
structures were placed in the testing set of each fit, with fitting errors then available for the removed
structures and the remaining dataset (the training set).

The results from this procedure are presented in figs. 4.9 and 4.10. The first figure compares the
fitting error for energies and forces for the BAH or random (RAN) approach. Up to 8% of removed
structures, the BAH approach overperforms (smallest predictive error for the testing set/removed struc-
tures) most or all of the random removals, particularly for forces. Beyond this point, BAH still usually
performs averagely when compared to random removal. The second figure shows a more detailed view
of the fitting process, comparing the RMSE between the methods for forces and energies, for both train-
ing (remaining dataset) and testing (removed structures) sets. As can be seen in subfig. a), the training
RMSE for energies is similar for both removal methods (∆RMSEBAH−RAN as defined remains around
zero), but favors the BAH approach for the removed structures in the testing set. A similar behavior
can be appreciated in subfig. b). This shows that both removal procedures lead to the same quality of
fit on the training data, and so the effect of the quality of fit of the testing data can be attributed to the
BAH approach. Subfigs. c) and d) show a similar result, but with a relative error. The properties of the
structures removed with the BAH method can be predicted 20-40% better than with a random removal
approach, showing once more that BAH is capable of detecting those atomic environments that are
repeated and do not have new information that is required for a robust fit.

68 Chapter 4 The Bin and Hash Algorithm

Figure 4.8: a) Root mean squared error (RMSE) for energy and forces for the ZnO dataset with different
number of ACSFs as descriptors. b) and c) Energy RMSE at different ACSF numbers
vs. number of collisions at the same ACSF number detected by the BAH algorithm with
different numbers of divisions. Plots of force RMSE have a similar shape. The dependence
of the number of collisions and RMSE on the number of ACSF descriptors is made more
explicit in c) for the 105 divisions curve. Reproduced from Reference [205], with the
permission of IOP Publishing.

4.3 Results 69

Figure 4.9: RMSEs for a) energies and b) forces, for structures removed from the ZnO dataset utilizing
the BAH algorithm at different numbers of divisions, or a random selection approach. A
reference point for the accuracy of the NNP on the whole dataset is also presented. BAH
performs similar or better to random sampling for energies, and better than random until 8%
of removed structures for forces. Reproduced from Reference [205], with the permission
of IOP Publishing.

70 Chapter 4 The Bin and Hash Algorithm

Figure 4.10: Comparison of the accuracy of a NNP trained on a modified dataset by removing 5% of the
structures with a BAH (with 105 divisions) or a random approach. The removed structures
are put into a test dataset. a) and b) Absolute difference in energy and force RMSE vs.
training epoch (∆RMSEBAH−RAN = RMSEBAH−RMSERAN, negative values mean that
BAH is more accurate). Both approaches result in a similar accuracy for the training set,
but BAH is favored in the removed/test set. c) and d) As in the previous subfigures, but a
percentage difference (with < RMSEBAH−RAN >= 0.5 · (RMSEBAH +RMSERAN), once
again negative values mean BAH is more accurate). Once again both methods perform
similarly for the train data, but BAH performs up to 20% better on the test set. Reproduced
from Reference [205], with the permission of IOP Publishing.

4.3 Results 71

4.3.5 Effective Number of Subdivisions

After all these results, the question is what is the best number of subdivisions to utilize for the BAH
analysis. The number and type of ACSF will usually be fixed beforehand for a given dataset, but the
number of subdivisions is intrinsic to BAH. As can be seen from fig. 4.5, the number of subdivisions
roughly reproduces the symmetry function space distance between atomic environments. As such the
“right” subdivision range depends on the distance that we need to detect between environments, and
as such multiple ranges are valid. A lower number of subdivisions (in the range of 102 to 104) appears
to provide a more granular behavior in the number of collisions vs. symmetry functions utilized. For
detecting contradictions (see sec. 4.3.6) we require environments that are either extremely similar or
exactly the same, in which case the higher number of subdivisions (106 to 107) is better suited.

Whether the number of subdivisions required depends on the specific dataset is harder to evaluate.
Since MLP datasets are derived from physically “reasonable” configurations, they share roughly the
same distribution of data, with some differences depending on the involved elements, states of matter
present, energy ranges covered, etc. The parameters of the trendlines in Fig. 4.5 might depend on the
specific composition of the data in the dataset, but as long as the relationship with ACSF space distance
remains, the specific parameters are not crucial.

In the end the specific number of subdivisions needs to be tested with each dataset and adapted to
each desired analysis, but the BAH process is so fast that binning a dataset multiple times is not a
problem. From the results presented here, the recommendation is to test three widely separated orders
of magnitude of subdivisions (103− 105− 107 for example), and refine the algorithm following the
results.

4.3.6 Conflicting Information

Figure 4.11: Force components and force vector magnitude for 22 environments found in a collision
bucket. Note that although the ACSF vector for all environments is similar, there are
slight differences in force values arising from numerical noise in the DFT calculations.
Reproduced from Reference [205], with the permission of IOP Publishing.

Contradictions arise in a MLP dataset when atoms are described by similar environments, but the
derived predicted properties such as force, spin, charge, etc. differ by more than a reasonable threshold
(that is, beyond the error inherent to the calculation method). These contradictions can arise due
to small ACSF sets or cutoff radius, in which case the environment around atoms is not sufficiently

72 Chapter 4 The Bin and Hash Algorithm

described and factors beyond the environment alter the derived properties. Another possible source
is bad electronic structure data, such as non-converged calculations that can appear when calculating
the thousands of structures required for a dataset. Contradictions are detrimental to the fitting process,
since in case of conflicting data the HDNNP cannot reach a high fitting accuracy [110].

With 105 binning divisions on the ZnO dataset, the most populated bucket contains 22 environments.
The ACSF vector of these configurations is identical, but plotting their DFT force components 2 and
magnitude results in fig. 4.11. The forces for the central atoms in these environments are not ex-
actly equal due to the limited accuracy of DFT forces, but is within the expected error margin for the
HDNNPs [61], about 100 meV/Bohr. In this case, no contradiction is detected. For larger datasets, the
points within buckets can be automatically analyzed, and a contradiction warning raised if a specified
property differs more than a certain threshold.

4.4 Conclusions

The BAH method allows for a simple and efficient comparison of large amounts of atomic environ-
ments, such as those required in the rest of this work. The sensitivity of the algorithm can be system-
atically tuned by changing the number of subdivisions of the ACSF space.

The speed of the algorithm allows for processing millions of atomic environments in minutes, per-
mitting many different analysis and operations on a dataset. Redundant atomic environments can be
detected and thus repeated electronic structure calculations or fits with bloated reference data can be
avoided. New configurations obtained from validation simulations employing an initial HDNNP can
be screened with the algorithm, to see if they are sufficiently distinct form those structures already
present in the reference training set, and decide whether it is worth it to employ resources on per-
forming new electronic structure calculations. For the purpose of maintaining reference datasets, the
BAH algorithm is complementary to the use of other procedures such as active learning, which present
the disadvantage of requiring already trained potentials. Searching for repeated environments can also
lead to identification of conflicting information in the dataset, where atoms identified by the same de-
scriptor vector posses different derived properties. This can be due to errors at the electronic structure
calculation level, which due to the amount of calculations needed would otherwise be hard to single
out.

Finally, the number of similar environments is a way to validate a given descriptor set, and a three
way correlation can be found between detected number of collisions, number of descriptors utilized,
and quality of a fit as quantified by the RMSE. Poor descriptor sets will results in a large number
of erroneously identical environments, but as the set grows, it should be able to differentiate more
and more environments. This is a minimal (but certainly not sufficient) condition for a good fitting
procedure.

2See previous footnote regarding force comparisons.

Chapter 5

Genetic Algorithm Global Optimization of
Small Supported Copper Clusters

This chapter is adapted from Reference [138] M. L. Paleico and J. Behler, “Global optimization of
copper clusters at the ZnO(101̄0) surface using a DFT-based neural network potential and genetic al-
gorithms,” J. Chem. Phys. 153, 054704 (2020), with the permission of AIP Publishing.

5.1 Motivation

Supported clusters, due to their relevance for the study of more complex catalytic models, are an active
area of research [43, 229–232], both from the theoretical [233–235] and experimental [236–239] point
of view. It is not trivial to determine the structure of such clusters with simulations, since even for the
smallest cluster sizes, there is a large number of available degrees of freedom and the PES dictating
the interaction between cluster and support can be quite complex. For this purpose, often global op-
timization techniques are utilized. In this chapter, the goal is to utilize a genetic algorithm [139, 140]
(GA) (see also sec. 2.3 and 3.4 for a more in-depth explanation of the GA approach) search to optimize
copper cluster with 4 to 10 atoms, deposited on ZnO(101̄0).

Global optimizations of such small deposited clusters face a number of challenges. The complexity
of the PES for the system demands an ab-initio level of accuracy, but the number of degrees of freedom
and consequent cost of global optimization techniques makes such searches very expensive. Addition-
ally, since the clusters are supported, atoms from the slab material have to be taken into consideration,
and the simulation cell needs to be large enough that periodic images of the cluster do not interact
with themselves. This adds a large amount of “dead weight” atoms that need to be there for structural
stability reasons, but do not really provide much to the simulation. NNPs are ideal in this case, since
the extra atoms are cheap to calculate, the structures generated by the GA search are all closely related
(and thus ideal for NNP training), and as pointed out recently in the literature [207, 208], the GA search
can be combined with a NNP to generate a self-training algorithm which learns the PES “on the fly”
by studying the candidates generated by the GO search.

Previous GO searches in the literature for the Cu-ZnO system utilized either parametrized force
fields [67], or worked with ab-initio calculations by first pre-optimizing the clusters in an isolated
configuration in vacuum [71] before depositing them on the target surface for further study. Here,
results are based directly on DFT data of supported clusters, as reproduced by the NNP. As mentioned,
this allows for easy inclusion of the support, but also allows to extend the number of independent GA
searches, and how many candidates are generated in each search.

Other GO methods were implemented and tested before arriving at GA as the ideal candidate. Grid-
based searches [240] would seem ideal for such small systems, but the grid needs to be known or
guessed beforehand, and as seen from our results a fixed grid approach would not work for this system
since small clusters strongly deviate from a perfect face centered cubic grid. A flexible grid approach
as developed in the course of this thesis (see reference 199) could work in this case. A grid is intro-
duced into the system, whose sites can be either occupied or unoccupied by atoms in the cluster. The

74 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

grid points interact among themselves with a simple potential, which guides the grid into regular ar-
rangements without over-biasing the system. Occupied and empty positions in the grid are exchanged
following a BHMC approach (see next paragraph), and successful exchanges are following by an op-
timization of the empty grid points around the new system configuration. This approach combines the
advantages of BHMC with the dimensionality reduction of a grid, without needing to assume a given
shape for said grid.

BHMC [149] is often utilized for small clusters, but is according to personal experience too slow,
since it attempts to perform a linked Monte Carlo simulation. GAs inherently parallelize their search,
and additionally utilize information from previous structures to bias future ones, which greatly speeds
up PES exploration when compared with basic BHMC. Either way it, has been suggested by the cre-
ators of BHMC themselves that both approaches actually produce similar results [149].

This chapter is organized as follows: Section 5.2 presents results addressing the global minimum
(GM) and low-energy local minima (LM) from Cu4 to Cu10 (5.2.1), the interface structures (5.2.2), and
the geometric properties of the optimized clusters (5.2.3). Finally, conclusions are drawn in Section 4.4.

5.2 Results

5.2.1 Global Optimization Results

Figure 5.1 shows the results of running the GA algorithm for Cu clusters between 4 and 10 atoms
on ZnO(101̄0). The results from independent runs have been combined to obtain this collection of
structures. Cluster atoms appear to interact strongly with the oxygen atoms of the support, with most
copper atoms making contact at positions on top of oxygen atoms. The clusters exhibit a rich variety
of patterns. A number of geometrical families can be detected that are consistently present among the
lower energy configurations at each cluster size.

Starting at the smallest cluster size of Cu4, clusters already exhibit 3D growth instead of laying flat
on the surface of the ZnO. The same is true for larger cluster sizes, with completely flat configurations
where every cluster atom is directly in contact with the support only observed at high energies, and as
such are not depicted in this ranking. Trivially, the clusters do in fact form a cluster and are not spread
across the support, in agreement with experimental results even at low monolayer coverage [42] and
theory [241]. Due to the applied GA mutations, clusters sometimes do separate, but these configura-
tions end up in the high energy range. For no size range are extended periodic structures across the PBC
observed such as wires and sheets, as has been proposed in other studies [67] based on parametrized
potentials. These kinds of structures only appear in cases where the simulation cell is too small for the
amount of copper deposited, and the cluster atoms start interacting with themselves across the PBC.

Due to the reduced number of atoms in the Cu4 cluster, it appears to form only two main structural
patterns at low energies. The first pattern is a truncated square pyramid with only 3 atoms making
contact with the support, which is found in the GM in Fig. 5.1 and in LM 5. Notice that the GM and
LM 5 are in fact different with respect to the support, as the adsorption footprint on the ZnO(101̄0)
surface is not symmetric because of the orientation of the ZnO dimers corresponding to the [0001]
and [0001̄] directions. In this direction, two characteristic distances are present, a short Zn-O distance
within the dimers, and a long distance between different dimers. This leads to a different interaction
pattern with the surface: in the GM, two copper atoms interact with the oxygen at the end of a dimer
and one lies between the Zn and O of a dimer, while for LM 5 the bonding pattern is the other way
around. The cluster-surface interaction thus exhibit a preferential direction, since rotating the cluster
180◦ results in a non-equivalent environment. The second pattern for the Cu4 clusters found in the
rest of the LM consists of small, more or less distorted tetrahedra. These structures also exhibit this
preferential direction.

For Cu5, many of the structures are continuations of the Cu4 structures. The GM completes the
square pyramid of the previous GM, and LM 1 is a distortion of this pyramid. LM 2 contains an added

5.2 Results 75

atom on top of the LM 1 of Cu4. LM 3 is a flattened version of the GM, and is reminiscent of the
rectangular patterns found in Cu(111). LM 4 and 5 are similar to the GM of Cu4, with an extra atom
on top instead of on the basis of the pyramid.

For Cu6, the GM now corresponds to the previous LM 3 with an atom on top, a pattern that will be
known as a saddle. LM 3 is the first cluster with a five-fold symmetry, and LM 2 and 5 show some
of the few examples of flat clusters at low energies. LM 2 is also the first cluster to extend beyond
a (1× 1) surface cell. This growth happens in the “short” direction of the surface, perpendicular to
the direction of the Zn-O dimers. Since this direction is shorter, it is easier to cover the gap without
straining the cluster excessively, until the cluster gains enough atoms to grow in the long direction.

For Cu7, once again we can find many repeated structural patterns from the previous cluster size.
The GM continues the trend of the saddle configuration, with an atom on top and to the side. LM 5
also belongs to the saddle family, but with the extra atom on top and at the end of the cluster. LM 1 and
4 are related to the five-fold symmetry cluster at the LM 3 of Cu6, and LM 3 continues the previous
triangular flat conformation, showing that the clusters prefer not remaining flat.

For Cu8, the GM is a moderately distorted version of the cluster at the LM 1 or LM 4 of Cu7, with an
extra atom added at the corner. LM 1 and 5 show new modifications of the saddle, and the first cluster
with a hexagonal interface contact pattern appears at LM 4, related to the LM 5 of Cu6. For Cu9, the
saddle-based pattern once again becomes the GM. Finally, for Cu10, by attaching an additional atom
the previous LM 1 of Cu9 becomes the GM, with the saddle configuration falling to LM 2.

The different structural families could be categorized more formally in a couple of different ways.
Previous GA works [207] make use of the nudged elastic band [156] (NEB) algorithm to find the
energy barrier between clusters within the same size category. From this a a map can be built, where
clusters with low energy barriers will be close together, implying they belong to the same family. A
number of problems are present with this approach i) it requires a NNP that has also been trained
with data from transition path searches; ii) the approach is limited, as mentioned, to clusters of the
same size, so families cannot be followed across different atom numbers; and, iii) as opposed to the
case with molecules, atoms in a cluster are indistinguishable, which means it is not trivial to assign a
correspondence between atoms in the initial and final configurations of the NEB.

A possible solution to this is to utilize an algorithm similar to the one in PHTM (see sec. 2.6.4), in
particular eq. 2.48, to measure the structural distance distance between clusters. This of course would
obviate the need for an extended NNP. It could also be applied to clusters of different size, by removing
one atom from the larger cluster, finding the structural distance, and then testing again by removing a
different atom, and so on until the best mapping is found. This aspect requires more development, as it
would be of great interest to obtain a general classification of the structural families present in the GA
results and their behavior as cluster size increases.

Another simpler but less robust algorithm is possible, which could be implemented easily with the
available tools. The idea is to take a cluster of size N + 1, remove one atom, minimize the resulting
cluster with the NNP, and compare this structure one by one against all clusters of size N, using any tool
that does not depend on atom identity (for example, the interatomic distance comparator in sec. 2.6.2).
Then, start again with the original cluster, remove a different atom, compare again against all the
smaller clusters, and repeat until a “best” match has been found. This approach is computationally
expensive due to the extra minimizations required and the number of comparisons that scales as O(N2),
but should be fast enough thanks to the NNP. It remains to be seen if this approach is robust enough, or
how to define a “best” match under the circumstances.

From the structural patterns present across the different sizes a general conclusion can be derived:
there is a compromise between the interactions of the cluster and the support, which would cause the
clusters to lay flat and spread out onto the support at the cost of straining the Cu lattice; and the self-
interactions of Cu, which tend to grow the cluster in a 3D fashion at the cost of reducing the contact
area with the ZnO. This is complicated by the preferred adsortion positions at the support, as well as
the atom-level roughness of the ZnO and the symmetries present on the surface.

76 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

In Fig. 5.2 the binding energies of the GM structures as a function of the cluster size are plotted.
The binding energy is defined as

Ebinding(N) = Ecluster + slab+

−EZnO slab clean relaxed−N ·ECu atom, (5.1)

where N is the number of Cu atoms in the cluster under consideration, Ecluster + slab is the energy of the
whole system, including cluster and slab; EZnO slab clean relaxed is the energy of the initial supporting slab,
relaxed and without cluster atoms, and ECu atom is the energy of an isolated Cu atom as obtained from
DFT calculations, since the NNP has not been trained with this information. All other energies can
be obtained from NNP calculations. Since the only term that changes between clusters is Ecluster + slab,
this plot also shows the relative energies between all the clusters. As expected, a stronger binding
is observed as a more negative binding energy with increasing number of copper atoms. As usually
observed, the spread in energies within a cluster size becomes smaller as the clusters contain more
atoms.

5.2 Results 77

Figure 5.1: Global minimum (GM) and first five local minima (LM) for different copper cluster sizes
from GA search on the ZnO(101̄0) surface. Each row corresponds to a cluster size with a
number of atoms as indicated on the left, each column corresponds to the ranking within
a size. For each structure the relative energy per copper atom with respect to the GM is
given. Reproduced from Reference [138], with the permission of AIP Publishing.

78 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

Figure 5.2: Binding energy per copper atom (see Eq. 5.1) for the GM and first 5 LM for the Cu4−10
clusters. Reproduced from Reference [138], with the permission of AIP Publishing.

5.2 Results 79

5.2.2 Interface Structure

Since the presence of the ZnO support is the symmetry breaking object in the system, it is interesting
to examine what the structure of atoms right at the interface between both materials is. For very large
clusters, atoms far away from the interface should adopt the same configuration as in a free standing
nanoparticle or as in bulk copper. However, right at the interface, a number of conflicting trends influ-
ence the disposition of atoms. Finite solids tend to adopt shapes that minimize their surface energy, as
proposed by the Wulff construction [195]. This theory in principle only applies to mono-elemental par-
ticles in a vacuum, although extensions exist for interacting materials [241] and alloys [242]. Wulff’s
theory was proposed for the macro-scale, but it can be assumed as a starting point even for clusters of
this small size.

The interaction between the cluster and the support can also induce new preferred geometries, due
to the presence of strong adsortion sites and their distribution on the support. This can be inter-
preted in various forms, such as strong metal-support interaction[243–245], or the theory of lattice
mismatch [161, 246]. Such a lattice mismatch is present for Cu and ZnO, since it is not possible to
contain the low Miller index surfaces of each materials within a common supercell, without deforming
one or both surfaces. This is solved by the system generating defects and strain, which can lead to en-
hanced catalytic effects [247–249]. For finite structures such as clusters this is still a problem, although
somewhat alleviated by the fact that the clusters are finite.

The interfacial atoms of the minimized clusters of fig. 5.1 are shown in fig. 5.3. Here interfacial
atoms are defined as those within a 1.6 Å vertical distance of the lowermost Cu atom of each cluster.
This interval was chosen as it is thick enough to potentially contain a monolayer of all the low index
Cu surfaces, and also include the sub-layer of Cu(110) which has a thickness of about 1.275 Å, i.e.,
one-half of the nearest neighbor distance, d0. The distance criterion has been chosen about 0.3 Å larger
than this value to accommodate also distorted positions of Cu atoms on top of the support, with vertical
distances falling in the range of 1.3 to 1.6 Å. Atoms farther away from the substrate are displayed in
a perspective view with larger radii, providing a sense of the 3D structure of these interface atoms.
Identifying surface structures for such distorted configurations is not trivial, but a comparison can be
attempted with the low Miller index surfaces of copper, (111), (100) and (110), which are known to
be the most stable ones [250] for the material in vacuum, in the given order [251]. Surface energy
calculations obtained with DFT and the NNP (see table F.2) show that Cu(111) is still the most stable
with this particular DFT setup, but the other 2 surfaces are very close in energy.

Cu4 clusters are too small to exhibit any easily identifiable surface pattern, presenting instead strange
triangular patterns. Instead, starting with Cu5, the GM shows an interface configuration reminiscent of
the Cu(100) surface, organized in approximately square units of Cu atoms. This surface, despite being
close to Cu(110) in energy terms, only appears for the smallest clusters.

In LM 3 of Cu5 we observe the first example of a structural pattern that repeats for many of the
larger clusters: five interfacial atoms, structured as a rectangle with an atom in the center that is slightly
above the plane formed by the other atoms. This corresponds in fact to a configuration between that
of Cu(110) and Cu(111). These two surfaces are related for fcc crystals. The (111) surface is usually
described as planar and with atoms in a hexagonal configurations, but the pattern can also be interpreted
as consisting of 4 atoms in a rectangular configuration with a fifth atom in the center. This rectangle
has two characteristic distances: a short one equal to d0, the nearest neighbor distance of 2.55 Å, and a
long one equal to

√
3a0, with a0 the lattice constant of bulk copper, for a length of 4.42 Å.

The (110) surface, in contrast, is usually depicted as four atoms in the top layer in a rectangular
configurations, with a fifth exposed atom in the center of the rectangle belonging to the next subsurface
layer. In a similar fashion as for (111), the (110) surface can be thought as consisting of asymmetrical
tilted hexagons, i.e., they are longer in one dimension than the other one. The distances in the rectangle
consist of: a short one, which is again equal to d0, 2.55 Å, and a long one equal to a0, 3.64 Å. This
shows that both surfaces are actually related: take the top two layers of the (110) surface, compress
them in the vertical direction, and the (111) surface can be obtained. As such there is a continuum

80 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

between both surfaces.
This justifies why, for larger clusters, an intermediate behavior is actually obtained. Some of the

interfaces of the clusters are flatter, with longer directions forming the long direction of the rectangle,
which makes them closer to Cu(111). Others are less flat, with a central atom that is slightly above the
other atoms in direct contact with the ZnO, forming a configuration closer to Cu(110). This can even
change within one cluster, such as the GM at Cu10, which exhibits two parts with the two different
extremes.

5.2 Results 81

Figure 5.3: Interfacial Cu atoms of the optimized clusters in Fig. 5.1, with the number indicating the in-
terface area per cluster atom as calculated with the convex hull algorithm. We have defined
as interface atoms all those atoms belonging to the cluster that are within 1.6 Å vertical
distance of the lowermost atom of the cluster, enough to encompass up to one monolayer
of Cu(110) plus a margin of error. The radius for Cu atoms has been scaled by distance to
the surface (larger as the distance increases) for visualization purposes. Reproduced from
Reference [138], with the permission of AIP Publishing.

82 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

5.2.3 Properties

Figure 5.4: Various structural and geometrical properties of the clusters in Fig. 5.1 versus cluster size.
Each plot contains two curves: the full line shows the values of the given property for the
GM, the dashed line shows the average for the GM plus the 5 LM, with vertical bars indi-
cating the minimum and maximum values within the group. In each subplot the following
properties (explained in more detail in the main text) are plotted vs. cluster size: a) average
fractional coordination number b) cluster height c) average nearest neighbor distance d)
maximum distance to the COM of the cluster e) interfacial area as obtained from the QHull
algorithm f) ratio of interfacial area to cluster volume, also from QHull. Reproduced from
Reference [138], with the permission of AIP Publishing.

A number of structural properties have been analyzed for the obtained clusters, in an attempt to
identify possible structural trends in the putative GM. These are:

• The fractional coordination number [252] of the atoms in the cluster. The fractional coordination
number converts the usual integer-valued coordination number into a continuous value. Atoms
beyond the nearest neighbor distance are considered as partially coordinating, instead of supply-
ing a coordination of 0 as in the normal coordination analysis. This is a better measurement for
such small clusters, and avoids coordination numbers varying wildly due to only being able to
adopt integer values.

• The height of the cluster, as given by the difference in z coordinates of the top and bottom-most
atoms in the cluster.

• The maximum distance of any atom to the center of geometry (COG) of the cluster. This shows
the maximum extent of the cluster, and would be equivalent to the radius for spherical clusters.

• The average nearest neighbor distances, for each atom and for the whole cluster, with neighbors
in the cluster up to 3.0 Å away.

5.2 Results 83

• The volume of the cluster as obtained from the QHull convex hull algorithm library [253]. The
convex hull algorithm returns the smallest convex polyhedron that encompasses a collection of
points, which in this case are the positions of the cluster atoms. From this one can derive the
properties of a polyhedron such as volume and surface area, but also other properties, for instance
if an arbitrary point is inside or outside the constructed polyhedron.

• The area of the atoms at the interface, also using QHull. Interface atoms are chosen following
the definition in sec. 5.2.2, i.e., within 1.6 Å vertical distance of the lowest cluster atom.

The values of these properties are plotted in fig. 5.4, showing the values for the GM, and the average
value for the GM plus the first 5 LM, with error bars indicating the minimum and maximum values of
the property within this group.

The average coordination number of the clusters (a) does not reach its saturation value, since all
cluster sizes explored are smaller than the fcc coordination sphere of 12 atoms. Cluster height (b)
for the GM shows no clear trend with cluster size, but the average across the GM and first few LM
does exhibit an increasing trend. Average nearest neighbor distance (c) is well below the bulk value
of 2.55 Å, but as expected trends upwards as cluster size increases. The cluster distance to the COG
(d) is the only property where all GM exhibit the same behavior, being at the average or below which
indicates a more compact shape. Interface area per atom (e) initially grows rapidly but becomes more or
less constant starting at Cu6 and Cu7, indicating that extra atoms go to grow the cluster in height instead
of expanding the area with the support. This could be related to a requirement for a minimum number
of atoms in order to gap over the distances between oxygen atoms in the ZnO support, and sudden
jumps in interface area could be expected for clusters beyond Cu10 at specific sizes. The interface area
to volume of the cluster ratio (f), remains rather constant except for Cu4.

Figs. 5.5 and 5.6 show the clusters colored by the per atom fractional coordination number and the
shift from the bulk nearest neighbor distance, respectively. The first fully surrounded Cu atom with 8
other nearest neighbor Cu atoms at the center of the GM of Cu9. This is of course the first size that can
present such a coordination, but for this cluster size it also happens to be the GM. The only other fully
coordinated cluster appears as a LM for Cu10. Although it would be expected for fully coordinated
structures to be energetically favored, this does not seem to be the case at these small cluster sizes. As
for the nearest neighbor distances, only two clusters present positive deviations from the bulk value,
LM 2 of Cu4 and LM 3 of Cu9.

84 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

Figure 5.5: Minima from Fig. 5.1 colored by their fractional coordination number. Average coordina-
tion numbers are given as insets. Reproduced from Reference [138], with the permission
of AIP Publishing.

5.2 Results 85

Figure 5.6: Minima from Fig. 5.1 colored by their shift from the bulk Cu nearest neighbor distance
(2.55 Å), with average shift indicated in the insets. Red indicates atoms that have a negative
shift from this distance, that is, atoms that are closer together than in the bulk. Blue (only
visible in Cu4 c and Cu9 d) indicates the opposite. White indicates no shift. Reproduced
from Reference [138], with the permission of AIP Publishing.

86 Chapter 5 Genetic Algorithm Global Optimization of Small Supported Copper Clusters

5.3 Conclusions

A successful genetic algorithm global optimization search on the most stable structures of copper clus-
ters with 4 to 10 atoms on the (101̄0) surface of zinc oxide has been performed, making use of a
high-dimensional neural network potential. The search can be performed at a fraction of the compu-
tational cost of electronic structure based searches, and with the presence and concurrent relaxation of
very large surface cells which are vital to obtaining the correct results [138]. A number of consistently
present structural families can be detected across the cluster sizes The energy differences within a given
cluster size are often very small, and thus clusters are expected (and in fact are observed during MD
mutation simulations) to interconvert at moderate temperatures.

Of particular interest is the interface between both materials. It is found that the clusters favor inter-
acting with the oxygen atoms of the ZnO surface. This, plus the competition between cluster-cluster
and cluster-interface interactions restricts the possible footprints and shapes of the clusters. The inter-
face itself adopts configurations in the continuum between Cu(111) and (110) structures. This kind of
strong dependence between cluster morphology and support properties is already well known in the lit-
erature. Studies are available both for theoretical coarse models [241, 246], and more specific atomistic
simulations and experimental results [243–245], and is known as strong metal-support interaction.

The presented tools and algorithms could in principle be utilized to expand the analysis to larger
clusters. The available literature presents many examples of global optimizations with clusters con-
taining up to hundreds of atoms, but this is usually performed with either no support or with a very
simple potential that is fast to calculate. Personal experience has shown that it should be possible to
optimize supported clusters of up to 20 to 30 atoms, which is still beyond the size range usually accom-
plished with electronic structure calculations. As system size increases, the local minima landscape of
the clusters becomes more complex, and minimizations also become more computationally expensive.
Each generated GA candidate samples a smaller portion of this landscape while also consuming more
time. Eventually the combination of these two effects means that the GA approach becomes ineffi-
cient, and other algorithms with some sort of dimensionality reduction (such as the use of grids [199])
might perform better. More interesting than increasing cluster size is the possibility of optimizing bi-
nary brass and ternary Cu-Zn-O clusters which can be done without increasing the size of the clusters.
With this, the distribution of atoms in the brass alloy could be studied [61, 92], as well as the possible
formation of disordered ZnO phases enveloping the Cu clusters.

Chapter 6

Simulated Annealing of Large Supported
Copper Clusters

6.1 Motivation

Although global optimization of small deposited Cu clusters reveals interesting information about the
structures between the two materials at the small scale, and enables further simulations such as testing
of adsorbate sites, it is hard to compare with experimental results and to extract trends for the larger
scale. Deposited copper clusters rapidly and naturally coalesce into larger clusters [18] in a process
known as Ostwald ripening, and it does not seem possible to study such small, size-selected clusters
deposited on a support. This is a trend with many materials and obtaining small clusters is a challenge
more often than not [254], exceptions being those cases in which the clusters can be trapped some-
how [255, 256], or when clusters are previously generated in vacuum where they can be size selected
and then deposited on the target substrate [257, 258].

Test molecular dynamics simulations also show a tendency for the supported clusters to coalesce
into larger clusters: if a large ZnO slab is sparsely populated with Cu atoms and the system is given
enough kinetic energy for atoms to be mobile, the clusters quickly combine until a number of large
clusters are present and no single atoms or clusters below 5-10 atoms are present. Then the evolution
of the system stops, since the process of further coalescing (be it through single atom detachment and
attachment, or whole cluster migration) is extremely slow at the MD scale. Simulation methodologies
exist that attempt to progress the Ostwald ripening process through kinetic Monte Carlo [259], coarse
grain modeling [260], or grand canonical ensemble Monte Carlo [261]; all of which present their own
technical and implementation difficulties.

Larger copper clusters are easier to compare with experiments, but on the other hand due to the
increased degrees of freedom, it is hard to find the structure of a putative global minimum as the
presumed most relevant structure. Global optimization techniques such as genetic algorithms have been
used for clusters with hundreds of atoms [145, 262–264], but they usually make use of very simple,
fast potentials, and/or only optimize the clusters in a vacuum without the added computational effort
of an interface. From preliminary simulations and test GA searches with the current potential, 20 to 30
Cu atoms seems to be the limit for this system where “reasonably” shaped clusters can be observed.
Beyond this size, the GA approach appears to become inefficient and generates only partially optimized
clusters.

Another approach would be a grid-based Monte Carlo search [240], but as observed in sec. 7 with
mismatched interfaces and as will be shown later, a fixed fcc grid would fail due to the changes induced
in the cluster by the support (or rather, would lead to an artificial minimum that is constrained by the
proposed atomic grid). Flexible grid approaches [199, 265, 266] would fare better in this regard.

The question arises whether the global minimum at this scale is even actually relevant: as size
increases, so does the amount of structures with very similar energy levels but different atomic config-
urations. That is, at larger numbers of atoms, the configuration space (entropy) wins over the energy
differences present between structures (energy/enthalpy). At this scale, the properties of the system are
better described as an average of the collective ensemble of structures accessible at a given tempera-
ture. Now the problem turns from finding the global minimum to generating this set of structures. At

88 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

higher temperatures, past the melting point of the system, these structures are easy to obtain since the
system has enough kinetic energy to sample all possible configurations in the timeframe allowed by an
MD simulation. The problem is present below the melting point, where a simple MD will result in a
solid structure (crystalline or amorphous) where atoms just vibrate in their equilibrium positions, with
rare events where an atom might jump a lattice position.

Monte Carlo [156] is a possible solution to this new problem, but presents problems for condensed
phases. For such a system, normal displacement Monte Carlo results in most atoms either jumping
into the vacuum or into the repulsive zone in the vicinity of other atoms, in which case most of the
trial moves are rejected and computational time is wasted. Basin hopping Monte Carlo [149] performs
a geometry minimization after every trial move, which increases the acceptance ratio at the cost of
increased computational cost, but would still not solve situations where an atom from the cluster tries to
jump inside the support, for example. Another approach would be to simulate the equilibrium between
the cluster and a gas reservoir with grand canonical Monte Carlo [156]. This has been successfully
utilized in the past to study the surface equilibrium for solids such as ice with an appreciable quasi-
liquid surface layer [267], but for a metallic system such as copper where such layer is practically
non existent, it leads to unstable equilibrium simulations. According to preliminary simulations, a
very low partial reservoir pressure/reservoir chemical potential needs to be utilized which can lead to
numerical stability problems; and the equilibrium is unstable: for liquid systems a range of reservoir
potentials can be found where the system neither grows nor shrinks in size [268], that is, the liquid and
the reservoir are in equilibrium. For copper it has not been possible to find this point, with the system
either filling completely or evaporating rapidly.

A simpler solution is to employ simulated annealing [152]: the system is given kinetic energy past its
melting temperature and then slowly cooled down past its glass point, where no more reconstructions
of the atomic structure can take place. The high temperature allows the cluster to reconstruct by
jumping over the potential energy barriers present between atomic positions, while the slow cooling
down allows the cluster to recrystallize slowly, into lower energy configurations. In this way, instead of
simulating a long time at a low temperature hoping to observe structural changes, time is “accelerated”
by providing kinetic energy, and then cooling down the system to observe the results at the desired
lower temperature. If we perform this operation multiple times, we obtain a collection of cluster
structures at low temperatures, from which we can attempt to extract general trends and properties.
Since the simulated annealing ansatz is just a molecular dynamics simulation in the end, we can also
make use of the usual MD analysis tools, which would not be possible in other algorithms such as MC
where the trajectory of the cluster is broken up.

6.2 Results

6.2.1 Energy

Since the stated goal of simulated annealing is to find low energy configurations, it is of interest to look
at the potential energy behavior of the clusters. Figure 6.1 a) shows the potential energy profile for
one cluster of each size between Cu200 and Cu500 every 50 Cu atoms, during a simulated annealing run
sweeping a temperature between 1400 K and 300 K. In each case, the energy of a relaxed ZnO slab of
the same size has been subtracted from the absolute energy value, and then divided by the number of
atoms in the Cu cluster. The black bars mark where the target simulation temperature changes, which
are accompanied by potential energy drops. Notice that as cluster size increases (darker lines), the
temperature fluctuations as well as the difference in potential energy steps becomes smaller. Subfigure
b) shows the result for the 5 clusters at each size, after a geometry minimization has taken place. The
resulting energies for each cluster size are clustered together, which shows that the SA has managed
to optimize all the clusters of a given size to the same degree. As expected, the energy differences
between cluster sizes decrease as the cluster sizes increase.

6.2 Results 89

Figure 6.1: a) Potential energy profile of one selected cluster per cluster size during the SA run. The
black bars mark where a target temperature change has taken place. b) Energy distribution
vs. cluster size for the final, geometry minimized configurations of clusters between Cu200
and Cu500, with 4 examples per cluster size.

As mentioned in sec. 2.6.3, melting points can sometimes be determined by discontinuities in the
potential energy. Notice that no real potential energy discontinuity is visible in this case, except for
maybe towards the middle of the Cu500 curve, and the steps seem to uniformly decrease with each
temperature change. Even if such a drop where present, it would be hard to distinguish it from the
fluctuations present in the energy values. This shows the problem with relying on potential energy to
detect first order transitions in this kind of simulation.

6.2.2 Average Structural Property Plots

Figures 6.2 through 6.5 plot a number of average structural properties within each cluster’s SA run.
For each plot, one data point represents the average of that properties across all atoms in the cluster (or
for the whole cluster if it is a global property such as its height), and also averaged within the given
temperature window. So a point at 500 K averages the given property across all the configurations
obtained in the 500 K window.

Figure 6.2 show the average volume and surface area (including the area in contact with the ZnO
slab at the interface) per atom of the clusters as obtained with the QHull [253] algorithm. In a), the
volume per atom decreases uniformly as temperature decreases, with a sharp decrease between 800
and 600 K, which as will be seen later, is around the melting point of the clusters. As expected, the
volume per atom increases non-linearly with cluster size. The surface area of the clusters in c) behaves
more erratically above the melting temperature, but stabilizes after 600 K and steadily decreases past

90 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

that point. As opposed to the volume, in d) the surface area per atom decreases as the cluster increases.
That is, the clusters roughly maintain their shape (volume to area ratio) as they grow in size. As can be
seen in b) and d), the spread of the properties within a given cluster size is large, when compared to a
similar spread for the energy. This can mean that either the SA procedure has not properly optimized
the clusters and as such many different structures are obtained, or that there is a large fluctuation in
structural patterns at these sizes, in which case many more simulations (e.g. 100) at each cluster size
are required for a proper ensemble average.

Figure 6.3 shows some simpler global cluster structure parameters. In a) and b), the height of the
cluster is plotted, estimated as the maximum difference in Z position components between atoms in the
cluster. In c) and d) the diameter of the cluster is plotted, estimated as the maximum distance between
cluster atoms in the X-Y plane. Finally, in e) and f), the effective radius [160] is plotted. The effective
radius is useful in some cases where the contact angle between the cluster and the substrate is extreme,
so that the measured and actual radius of the particle do not coincide. In this case, Reffective and D are
close, so the effective radius is not necessary. All 3 properties behave in a similar way, fluctuating
somewhat above 600 K and then adopting a constant value below this temperature. All three increase
non-linearly with cluster size, and exhibit also a large dispersion of values.

Figure 6.4 shows the average of per atom properties, the fractional coordination number (as ex-
plained in 138) in a) and b), and the nearest neighbor distance (as explained in 138). Both properties
exhibit distinct behaviors around the melting point: the fractional coordination number increases uni-
formly as temperature decreases, but presents a jump at around 800 K. The nearest neighbor distance
remains constant at around 2.65 Å above 800 K, but then sharply decreases past this point. This shows
why the Lindemann parameter, although it depends only on the structural parameter of interatomic
distances, is such a good estimator of the melting point. When plotted against cluster size for the mini-
mized clusters, the coordination number steadily increases with cluster size, while the nearest neighbor
distance seems to already have stabilized close to the bulk values (approx. 2.55 Å) for the 200 atom
cluster.

Finally, fig 6.5 shows the behavior of the interface between the cluster and the support. Interface
atoms are defined as those within 1.6 Å of the lowest Cu atom of the cluster. In a) and b), the proportion
of interface to whole cluster atoms is plotted. The proportion fluctuates at higher temperatures, and it is
larger there than for lower temperatures. For lower temperatures, the proportion slowly decreases, and
for the minimized configurations, larger clusters exhibit a similar ratio of 0.10 to 0.15. Subfigures c)
and d) show the interface area per interface atom, as obtained with QHull. The interface area per atom
presents large fluctuations within each cluster size. Subfigures e) and f) show the proportion between
interface area and surface area of the cluster. For all sizes this remains at around 0.34.

All of these plots illustrate the complexity of the liquid to solid transition for the supported clusters.
In particular, it can be appreciated that there is quite the spread in the behavior of different cluster even
for the same size category, but the expected rough trends with system size are maintained. This makes
it evident that at this system size multiple clusters are needed to achieve a converged average property,
and the 5 clusters per size presented here might not even be enough. Thanks to the NNP, it should be
possible to obtain up to one hundred sampled clusters per size, which would allow for a comparison of
properties with experimentally observed clusters.

6.2 Results 91

Figure 6.2: Subfigures on the left show properties averaged in each temperature window plotted against
temperature, while subfigures on the right show those properties for the minimized clusters
plotted against cluster size. a) and b) volume per atom as obtained with QHull. c) and d)
surface area per atom, as calculated also with QHull.

92 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.3: Subfigures on the left show properties averaged in each temperature window plotted against
temperature, while subfigures on the right show those properties for the minimized clusters
plotted against cluster size. a) and b) height of the cluster. c) and d) diameter of the cluster.
e) and f) effective radius of the cluster, a function of the height and diameter.

6.2 Results 93

Figure 6.4: Subfigures on the left show properties averaged in each temperature window plotted against
temperature, while subfigures on the right show those properties for the minimized clusters
plotted against cluster size. a) and b) fractional coordination number. c) and d) nearest
neighbor distance.

94 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.5: Subfigures on the left show properties averaged in each temperature window plotted against
temperature, while subfigures on the right show those properties for the minimized clusters
plotted against cluster size. a) and b) Proportion of interface to total cluster atoms. c) and
d) interface area per interface atom. e) and f) proportion between interface area and the
whole surface area of the cluster.

6.2 Results 95

6.2.3 Structure of the Clusters

Figures 6.6 and 6.7 show the structure of the obtained minimized clusters, from the top and with a
side cut view respectively. For convenience, the clusters have been sorted according to energy, but as
shown in a previous section, the energy differences in this case are very small. The clusters in general
look similar, exhibiting facets of all three low Miller index Cu interfaces, and with a vaguely hexagonal
footprint on the substrate, particularly noticeable for Cu450 a). Two orientations are present between
the clusters and the support, the cluster can be either parallel to the oxygen rows in the ZnO slab (Cu450
a)), or at a slight angle (Cu450 b)). As will be seen later, these patterns also repeat if only the interface
atoms are observed. From the sliced clusters, we can see how the Cu atoms have arranged themselves
into an ordered pattern.

96 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.6: Top view of all the generated clusters for each cluster size, sorted by energy from left to
right.

6.2 Results 97

Figure 6.7: Clusters from fig. 6.6 are presented cut in half and from a side view, to highlight the inner
structure and the interaction at the interface.

98 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

6.2.4 Polyhedral Template Matching

Using the PHTM algorithm as explained in sec. 2.6.4, it can be confirmed that the clusters have crys-
tallized into the appropriate fcc configuration. Figure 6.8 shows the results of the PHTM analysis from
a top view. The analysis has been performed taking into account only the cluster atoms. Atoms on the
surface of the cluster, which cannot be properly classified by PHTM since their coordination sphere
is not complete, have been colored white and their size reduced to make it possible to see inside the
cluster.

The clusters here exhibit a similar crystallization pattern to that observed for unsupported clusters
in the vacuum [61, 92]. Most of the cluster is fcc (green color), with atom planes colored as hcp
indicating planes where a stacking fault has taken place. These hcp planes seem to be present in
two types: perpendicular to the ZnO support (clearest examples is in Cu450 a)) which are also more
abundant; and planes parallel to the cluster layers and at an angle with the support, such as at the top
of Cu450 d). Also in some cases, particularly for Cu250, some bcc (body centered cubic) atoms seem
to be detected. Notice that these sections also coincide with positive deviations from the bulk nearest
neighbor distance (see fig. 6.11), instead of the usually expected negative deviations for surface atoms.
This can be either due to a problem with the PHTM algorithm (since these only appear at the edges of
clusters, where interatomic distances are different from those in the core of the nanoparticle) or with
the SA procedure (which has not been able to optimize these atoms into a better stacking). In contrast
with the free standing clusters [61, 92], no hcp patterns radiating from the center of the cluster in an
icosahedral shape appear. The presence of hcp stacked layers also seems to roughly coincide with
higher energy for the cluster.

The PHTM results can also be utilized to track the process of cluster crystallization. Figure 6.9
shows top and side views of a Cu500 cluster at a cool down step with a target temperature of 850 K,
which is right below its melting temperature. Fcc structures develop rapidly, radiating from the bottom
and center of the cluster. Initially (a) and d)), these structures are small and quickly appear and melt
completely away. Eventually (b) and e)), their size starts increasing, but they also fluctuate in extent.
Finally (c) and f)), the fcc structure becomes permanent, and in subsequent frames grows to fill the
whole cluster.

6.2 Results 99

Figure 6.8: Top view of the clusters, colored by their PHTM classification. Atoms on the surface of
the cluster are not classifiable, and they have been rendered small for better visualization.
Legend: Unclassified: Not possible to classify, belonging to the surface of the cluster or
to the support (white). FCC: Face centered cubic (green). HCP: Hexagonal close packed
(red). BCC: Body centered cubic (blue). ICO: Icosahedral (purple). SC: Simple cubic
(yellow).

100 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.9: PHTM results close to the melting/crystallization temperature, for Cu500 at a 850 K target
temperature step. Top figures show a top view of the cluster, while the bottom figures show
a side view. Timestamps correspond to time since the start of this temperature step. a) and
d) At the beginning of the crystallization, fcc areas appear and disappear quickly, at the
center and bottom of the cluster. b) and e) As the crystallization progresses, the fcc areas
grow in size and become more permanent. c) and f) A permanent fcc core has now formed,
that will eventually grow to encompass the whole cluster.

6.2 Results 101

6.2.5 Coordination Numbers and Nearest Neighbor Distances

Figure 6.10 shows the cluster atoms colored by their fractional coordination numbers. The coloring
facilitates recognizing facets, edges and loose atoms, although other structural parameters could be
used for this such as the centrosymmetry parameter [269] or the orientational order parameter [270].

More interesting is to analyze the changes in nearest neighbor distance in the clusters, as shown in
figures 6.11 and 6.12 for top, and side and sliced views respectively. Here atoms are colored according
to the nearest neighbor shift with respect to the bulk nearest neighbor distance of 2.55 Å, with red
indicating a contraction of this distance and blue a larger average distance than in the bulk. In the top
view figures, we can recognize that the atoms belonging to large planar facets are mostly white (close
to bulk distances), while the atoms marking the edges of these facets are colored red: since they are
under-coordinated, they tend to bind stronger and closer to the few neighbors available. The slice view
presents a more revealing image: for the clusters, most of the atoms at the interface are farther apart
than in the bulk due to the strain induced by the support, and this disturbance propagates upwards in
the layers of the cluster. This is particularly noticeable for the larger clusters.

Figure 6.13 combines both views by showing a layer by layer rendition of Cu500 a). Layers have
been sampled every 1.65 Å from the surface, atoms in layers below the one being considered are made
transparent, and atoms in the current layer have their radius changed to exaggerate their size from the
camera view point. As suggested in the previous paragraph, atoms at the interface (a)) have mostly
been strained in the positive direction. As we move up the layers, the atoms at the edge of the layer
remain in a nearest neighbor distance deficit (as explained before, due to their under-coordination), but
towards the center of the layer the opposite is true and atoms present an excess in distance. This effect
attenuates as we reach the final not fully exposed layers (f) and g)), where atoms are finally almost at
the bulk neighbor distance but still present a small excess. This is remarkable considering that this is
the largest cluster size and the layers at f) and g) are 10 Å away from the lowest Cu atom in contact
with the support. That is, it takes almost 4 nearest neighbor distances and 6 or 7 layers for the effects
of the substrate to disappear.

102 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.10: Top view of the optimized clusters, colored by coordination number. Coordination number
scale ends at 10 to exaggerate the colors at the surface, but atoms inside the cluster are
fully coordinated (12). This coloring scheme facilitates recognition of facets and facet
edges.

6.2 Results 103

Figure 6.11: Top view of the minimized clusters, colored by the shift from the nearest neighbor distance
in bulk copper (2.55 Å). As expected, most surface atoms of the clusters present a negative
deviation from the bulk nearest neighbor distance, particularly at facet edges.

104 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.12: Clusters from fig. 6.11 are presented cut in half and from a side view, to highlight the
inner structure. Atoms are colored by the shift from the nearest neighbor distance in bulk
copper (2.55 Å).

6.2 Results 105

Figure 6.13: Per layer view of Cu500 a) in fig. 6.11, colored by the shift from the nearest neighbor
distance in the bulk. The caption in each subfigure shows the ceiling height used to de-
fine the layer, with the floor corresponding to the lowest Cu atom in the cluster, spaced
every 1.65 Å. Atoms in lower layers are made transparent, and atoms in the current layer
have their radius changed according to the distance to the view point, to highlight the
differences in atom position.

106 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

6.2.6 Lindemann Parameter and Melting Point

Figure 6.14 a) shows the Lindemann curve for supported clusters of different size. These curves were
obtained by heating up one result from the SA runs at each size, and heating up particularly slowly
around the critical melting point in increments of 10 K. It is better to estimate melting points from
heating rather than cooling curves due to the possibility of hysteresis [271], which can manifest as
overcooling and undershooting of the melting point, that can appear in phase transition simulations of
nanoparticles. The Lindemann curves seem to be noisy, and somewhat overlap due to the small differ-
ence in atom counts (±50 atoms), but it can be clearly seen that as expected, the melting temperature
increases with cluster size. Longer simulations at each temperature or averaging results from multiple
simulations might be required to obtain cleaner Lindemann curves.

These plots were fitted with eq. 2.47, and the inflection point of the sigmoid curves, Tmelt, thus
estimated. Subfigure b) shows the linear fit of an average Tmelt vs. N−1/3 plot. From this it is possible
to estimate a melting temperature of 1405 K for infinite nanoparticle size, which is in the same order of
magnitude as the experimental value for copper of 1358 K [202]. Considering the minimum 10 K error
in the estimation of inflexion points due to the temperature jumps in the simulation, the noise apparent
in the Lindemann curves, and any deviations from the experimental melting point due to DFT, this is
still quite a close result.

Figure 6.14: a) Lindemann curves for the heating and melting of clusters between Cu200 and Cu450. As
size increases, the turning point of the Lindemann curves appears at higher temepratures.
b) Melting temeprature against cluster size (N−1/3), as extracted from fitting the curves in
a) to a sigmoid function. A linear fit of the values is also presented.

Obtaining the correct extrapolated infinite size melting temperature is not necessarily assured, since
there is some theoretical and experimental results available that suggest that stron cluster-support in-
teractions could lead to alterations in melting point [272, 273]. Analyzing the results of the nearest
neighbor distance shifts presented in figures 6.11, 6.12 and 6.13, a mechanism for a possible melting
point alteration could also be suggested. The distance between atoms in the cluster is heavily affected
by the presence of the support, which leads to a destabilized solid cluster when compared with a proper
bulk copper configuration. From this destabilized structure, the liquid phase would be easier to reach,

6.2 Results 107

which could translate into an altered melting point when extrapolating the cluster results to bulk.
The Lindemann index per atom can also be utilized to show the behavior of atom mobility as the

clusters cool down. Figures 6.15 and 6.16 show the accumulated average Lindemann parameter value
for each atom in a Cu500 cluster at the end of each temperature step. To better appreciate the mobility
within each temperature window, the color scale range in each subfigure is different.

From a) through c) (1000 to 900 K), the Lindemann index of all the atoms in the cluster is high
and randomly distributed. At these temperatures the cluster is molten, and all atoms exhibit similar
mobility. Between d) and f) (850 to 750 K) the cluster crystallizes, and regions of lower Lindemann
index can be observed starting from the bottom center of the cluster and growing upwards (particularly
from the side views). Below this temperature, atoms inside the cluster present the lowest Lindemann
value due to their frozen state, while atoms on the surface of the cluster present slightly larger mobility
(side view m), n) and o)), and finally atoms that do not belong to well formed facets and thus are more
free to move also exhibiting large mobilities at middle temperatures (top views g), h) and i)).

108 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.15: Top view of a Cu500 at the end of each temperature step in the SA run, colored by the
average Lindemann parameter of each atom during that temperature step. The scale in
each subfigure is different.

6.2 Results 109

Figure 6.16: Cut-in-half and side view of a Cu500 at the end of each temperature step in the SA run,
colored by the average Lindemann parameter of each atom during that temperature step.
The scale in each subfigure is different.

110 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

6.2.7 Structure at the Interface

As discussed in previous sections, the interface between both materials is crucial due to the inherent
lattice mismatch present between them. To study the structure of this interface, figures 6.17 and 6.18
present the atoms considered to be at the interface, with the second figure coloring them by the nearest
neighbor distance shift as explained in a previous section.

In figure 6.17 the rough polygonal shape of the clusters can be confirmed, with many presenting
a hexagonal shape (particularly Cu350 d), Cu400 b) and Cu450 a)), but with other shapes also present
such as a square with rounded corners in Cu300 d). This behavior is also due to the interactions be-
tween atoms and support, since the edges of the polygons follow along principal directions of the ZnO
support.

Another noticeable difference between the clusters is the presence of two orientations between them
and the support, with the Cu rows either parallel to the oxygen rows (the more common pattern), or at
an angle. This also affects the intra-layer structure of the interface atoms. Where the atom rows are
oriented parallel to the support rows, the cluster alternates rows of atoms directly in contact with the
support and rows above the other rows. In the case where the cluster forms an angle, these rows turn
into ascending lines of atoms.

Why do these raised rows of atoms appear? As discussed in other sections, the closest Cu interfaces
in structure with the ZnO(101̄0) support are Cu(111) (flat) and Cu(110) (not flat). Both structures are
actually related to one another, with the difference being whether the fifth copper atom at the center
of a copper rectangle is in the same plane as the edges (Cu(111)), or raised (Cu(110)). Here we can
clearly see that the clusters exhibit both structures, and also some structures in-between the perfect Cu
surface extremes. For this reason, clusters alternate rows of Cu atoms flush with the support and those
above the other rows.

This alternation can be used as a way to relieve the strain imposed by the pattern of the support.
Instead of leaving a larger gap, or forcing more atoms to be in contact with the support, the cluster
bridges the gaps between Cu rows with an out of plane Cu row. Additional strain relief defects appear
sometime in the form of missing Cu atoms in a row, particularly close to the edges of the cluster.

This picture of the cluster-support interface is confirmed by looking at the nearest neighbor distance
shifts of figure 6.18. Interface atoms mostly exhibit enlarged nearest neighbor distances, but defects
usually show a return to the expected nearest neighbor distance(for example, Cu200 b), Cu300 b) and
Cu400 b)).

6.2 Results 111

Figure 6.17: Interface structures of all minimized clusters. The caption shows the calculated inter-
face area. Atoms have been resized by their distance to the viewpoint to better show the
position of each atom within the layer.

112 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

Figure 6.18: Interface structures of all minimized clusters, colored by their shift from the bulk nearest
neighbor distance. The caption shows the calculated interface area. Atoms have been
resized by their distance to the viewpoint to better show the position of each atom within
the layer.

6.3 Conclusions 113

6.2.8 Facets

Figure 6.19 shows the three low Miller index surfaces of copper present in Cu350 e) from fig. 6.6,
colored by the fractional coordination of each atom to highlight the boundaries between facets. All
clusters across sizes show a similar behavior, with mainly Cu(100) and Cu(111) facets present, since
these are the surfaces with the lowest surface energy (according to our NNP and DFT, see F.2). Cu(110)
facets are rarely present on the outside of the clusters, and when found they usually form the boundary
between two other facets, as in the figure. This makes it all the more surprising that the interface
between clusters and support does indeed present atoms in the Cu(110) configuration.

Figure 6.19: Low Miller index surfaces of copper present in Cu350 e) from fig. 6.6. a) Cu(100) surface
at an angle. b) Row of Cu(110) rectangles, flanked at the top and bottom by Cu(111) and
to the sides by Cu(100). c) Cu(111) surface with Cu(100) facets marking the sides of the
hexagon.

It would be interesting to quantify the number of atoms belonging to each type of facet and test
whether the proportion reproduces the ratio between the surface energies of each facet. This can
also be done in experiments when analyzing microscopy images from nanoparticles. For this, some
automated method of identifying structures would be required, since a manual assignment would be
tedious and error-prone. A cursory review of the bibliography did not manage to find any specific
method for classifying surface atoms, but many methods are available for classifying crystal structures.
Some simple configuration based methods are available [178, 179], such as the PHTM algorithm [177]
explained and utilized in previous sections. From an analysis of the available structural methods, it
should in principle be possible to modify one of these to identify previously defined surface atom
patterns corresponding to the low Miller index surfaces, but such modification would not be trivial.
Thus this remains an open question, but such a tool would be useful for nanoparticle simulations in
general.

6.3 Conclusions

The SA runs have successfully generated clusters with internal fcc structures and presenting facets cor-
responding to the low index surfaces of copper. The effects of the strong interaction with the support as
exemplified in previous global optimization and coincidence lattice match simulations are reproduced
at this scale. The interface between the cluster and the support presents a configuration corresponding
to Cu(111), Cu(110) or structures in-between those two. This agrees with the results for small clusters
(sec. 5), where all small clusters starting from a given size showed interfaces intermediate between
Cu(111) and Cu(110); and the results for matching interfaces (sec. 7), where Cu(111) was shown to
be the most stable of the three low index Cu surfaces when strained, followed by Cu(110). This also
agrees with the suggestion by Kohler et al. [60], which from observations of the facets of deposited

114 Chapter 6 Simulated Annealing of Large Supported Copper Clusters

large Cu clusters posited that the structure at the interface would correspond to Cu(110). These inter-
faces are distorted by the need to match with the ZnO support, with atoms at the interface in general
being farther apart than in bulk copper. A new behavior is that for some cases the lattices are not
aligned in the same way, which for the coincident surfaces was simulated by allowing a rotation angle
between the matched lattices.

The generated clusters finally enter the nanoparticle range, with the Cu500 clusters possessing and
average diameter of 2.85 nm. This opens the possibility of comparing the results against experimentally
generated clusters, for properties such as cluster shape and size, orientation between the cluster and the
support, or melting temperature.

Chapter 7

Study of Large Copper-Zinc Oxide
Coincident Surfaces

7.1 Motivation

An interesting feature of the Cu-ZnO system is that like many other materials, the pair presents a lattice
mismatch. That is, the vectors that describe the periodic surface structures of both materials are not
exact integer multiples of each other. They cannot be arranged in such a way that common supercell
can be found, without distorting one or both materials. This is of course also the case with most
materials, and this effect is of theoretical and experimental interest in many fields such as the study of
thin films [274–277] and epitaxial layer growth [278], of Moiré patterns on mismatched materials [279,
280], 2D heterostructures [281–283], among many others. The effect of lattice mismatch is of more
interest than just a technicality, since it can decide the electronic structure and stability of catalytic
heterolayers [284, 285], or form structures that can capture metallic clusters or other molecules, such
as in graphene [255, 286] which buckles under the induced mismatch strain, or hBN [256] which forms
pores when deposited on certain metals.

This mismatch has consequences for any interface between the two materials. In real systems this
is solved by either the appearance of non-continuous interfaces (cluster-vacuum interfaces where the
strain between a cluster and its mismatched support can be relieved) or defects (strain/stress, missing
atoms, atomic plane shifts). This induced strain and related defects can lead to interesting or enhanced
catalytic properties [287–290], with particular examples for Cu/ZnO presented in refs. 17 and 27. But
even in those cases, the mismatch restricts the possible energetically favorable interfaces and configu-
rations. The mismatch also has consequences in silico, since if we want to simulate the interface of the
two materials we need to find a common periodic system that encompasses both structures.

In this section the mismatched Cu and ZnO interface is studied, for (initially) flat and large slabs
with multiple layers and hundreds of atoms. First all the low strain matches up to a given size are
generated utilizing the coincidence lattice match algorithm [161] (CLM), which results in a library of
thousands of configurations. Then the NNP is employed to quickly evaluate and minimize all of these
configurations, and to reach larger configuration sizes than possible with ab-initio methods.

In previous chapters, the CLM algorithm is explained (section 2.5.1), and the necessary concepts
from strain theory are presented (section 2.5.2). The search parameters for the CLM algorithm are
provided in sec. 3.6, and the NNP sampling methodology is described in section 3.3.6. This chapter
contains section 7.2.1, which shows the behavior of the chosen lattice match finding algorithm for our
particular Cu and ZnO surfaces; and section 7.2.2, where the relative stability and reconstructions of
the generated structures are investigated.

The goal of this study is to observe the general trends in the coincident surfaces and their corre-
sponding energies, find the best matching surfaces, and deduce consequences for nano-scale clusters.
This will also show the utility of such an analysis for any type of material, and how a NNP eases the
investigation of such a system.

116 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

7.2 Results

7.2.1 Behavior of the Coincidence Lattice Match Algorithm

Figure 7.1 shows the results of a CLM search for the three low index copper surfaces on ZnO(101̄0).
Subfigure a) shows the behavior of the geometrical distortion parameter or degree of lattice distortion
(εDOLD) as a function of the number of atoms in a 1 layer per material matching cell 3, for the three Cu
surfaces. In this subfigure a crescent moon shaped distribution can be observed, with larger coincident
cells tending to correspond with lower distortion and strain values (although there are small cells that
also have low distortion values). The lowest distortion values are only reached starting at 200 atoms
per 1 layer per material.

Subfigure b) shows the distribution of sizes with respect to the absolute value of the maximum
allowed integer in equation 2.31. As expected, allowing a larger value for the possible integer combi-
nations results in larger coincident lattices.

Figure 7.1: a) Geometrical distortion/degree of lattice distortion (δDOLD) vs. number of atoms (at 1
layer per material) for the CLM algorithm results. Notice the crescent-shaped distribution.
b) Size of the matched surfaces (1 layer per material) as a function of maximum allowed
integer in the CLM algorithm.

Figure 7.2 shows histogram distributions of various properties across the obtained matches. a)
presents a histogram of the sizes of the resultant matches, where it can be seen that most matches
have at most 200 atoms (remember that this is only for 1 layer per material), with very few beyond
the 300 atom mark. In b) an angle distribution histogram is plotted, which shows that the matches
are roughly equally distributed across the swept angles. The surfaces cover different angle ranges due
to the symmetries involved: the results for Cu(100) start repeating after 45 degrees, 90 degrees for
Cu(110), and 30 degrees for Cu(111). This is related to the fact that ZnO(101̄0) has a rectangular
geometry (see sec. 3.6.2), while for Cu, depending on the surface, exhibits a square, rectangular, and

3There is a one-to-one relation between the size of the supercells in a match, as expressed in terms of supercell with respect
to the original lattice or with area, and the number of atoms contained in the match. They both have the same meaning.
The two descriptions will be used interchangeably in the following discussions when referring to system size.

7.2 Results 117

hexagonal geometries respectively. Finally, in c), the distribution of the strain values seems to behave
like a Poisson distribution (i.e., it is not symmetrically distributed around it’s maximum and has a long
tail towards higher distortions). No matches appear beyond εDOLD = 0.10 since this was used as a limit
to filter the generated matches. Most matches have a distortion of only 0.01-0.03.

In total, 2169 matches have been found for Cu(100), 3797 for Cu(110), and 1128 for Cu(111). Some
of these matches are redundant, since sometimes very similar supercells are found when matching with
angles that are only one degree apart. These similar structures have not been filtered out. Under the
current settings, the average amount of matches per angle covered is not uniform, with 48.2 match-
es/degree for Cu(100), 42.2 matches/degree for Cu(110), and only 37.6 matches/degree for Cu(111).

Figure 7.2: Bar plot distribution of various properties for the matched surfaces a) Number of atoms of
each coincident surface (one layer per material). b) Angle of the match. c) Geometrical
strain distortion of the resulting match.

Finally, figure 7.3 shows a more detailed per-angle view. In this case, for clarity, only results with
up to 200 atoms (1 layer per material) have been included. The plots show for each copper surface,
the number of atoms in each coincident lattice as a function of the angle between the original lattices,
colored by the average distortion εDOLD (eq. 2.33) of each match.

As a general trend, what was already shown in figure 7.1 is observed here: matches with low strain
(lighter color) are present higher in the graph because they contain more atoms/require larger cells. For
the (100) copper surface in a), the smallest cells are achieved in the angle ranges of 2-6, 19-24, 30-35
and 42-45 degrees; but these cells unfortunately have a rather high strain. For the (110) surface in b), an
area with only single matches at 2 and 3 degrees can be noticed (presumably any other matches present
in this region are above our strain cutoff of 0.10 or require larger supercells), which also coincides with
the region with the smallest matching cells at between 1-8 degrees. Other areas with small coincident
matches are present around 60 and 73 degrees. Once again, these small cells correspond to rather high
strains. This trend changes somewhat for the (111) surface in c): the smallest cells with medium strain

118 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

are present at around 20 degrees, but at 29 and 30 degrees only one solution is present, which has only
twice the number of atoms of the previous solutions but an extremely low strain.

Figure 7.3: Size of the matched cell (one layer per material) as a function of the angle between the
matched lattices, colored by the geometric distortion of the match, for the three low index
Cu surfaces. a) Cu(100) b) Cu(110) c) Cu(111)

7.2.2 Results from Geometry Minimizations

After allowing the matched cells to relax together utilizing the NNP as a force field, an even more
complicated picture emerges. In the following the energy of the relaxed cells is defined as Erelaxed,
which is given by

Erelaxed(Nlayers, Miller Index) =
1

Natoms
[ENNP(Nlayers, Miller Index) (7.1)

−NCu ·ENNP(Cu, Nlayers, Miller Index)

− (NZn +NO) ·ENNP(ZnO, Nlayers, (101̄0))],

where NXX is the number of atoms of a given species in the matched cell, ENNP(Nlayers, Miller Index) is
the absolute energy calculated by the NNP for a matched cell after relaxation, ENNP(Cu, Nlayers) is the
energy per atom as calculated with the NNP of a relaxed Cu slab with a given Miller index and number
of layers , and ENNP(ZnO, Nlayers, (101̄0)) is the equivalent for ZnO. Thus each match is referenced to
the relaxed, isolated and not distorted/not strained slabs, that correspond to its surface cut and number
of layers.

Figures 7.4, 7.5, and 7.6 show the first series of results from the matched slab relaxations. In these
and following figures, care should be taken when analyzing the points with lowest Erelaxed, since they
usually correspond to reconstructed interfaces (see sec. 7.2.4), and thus do not follow the trend of the
unreconstructed surfaces that still correspond to the original Cu slabs.

In these figures, a) shows a view of Erelaxed as a function of the matching angle, colored by εDOLD.
There does not appear to be a pattern between energy and angle of the matched interfaces, except for

7.2 Results 119

Cu(111), where the two solitary matches observed at 29 and 30 degrees in 7.3 also end up correspond-
ing to rather stable configurations.

Subfigure b) presents a plot of Erelaxed vs. δCD, the distance metric between initial and final con-
figurations explained in section 2.6.2. The larger this value is, the more interatomic distances have
shifted in the relaxation process, which can be associated with a larger reconstruction of the Cu slab.
Each dot is also colored by the initial εDOLD, the degree of lattice distortion. Points further to the
right (larger reconstruction) usually correspond to darker colors, that is, larger values of εDOLD: not
surprisingly, matches with a larger initial strain tend to reconstruct more. Across the three surfaces
we observe clustering of points to the left (small reconstruction) with lighter colors (smaller εDOLD),
which likely correspond to structures that do not suffer any reconstruction beyond the shifting of some
layers in the direction perpendicular to the slabs. Going to the right we observe other point separated
from these main clusters with large reconstruction values: these two facts seem to imply there is not
a continuum between the reconstructions that the slabs undergo, but rather a break between slabs that
reconstruct little (i.e.: a shift in layer height) and those that reconstruct more (i.e.: a change in Miller
index). Not surprisingly, many reconstructed structures also achieve a more stable configuration than
the unreconstructed slabs, except for the case of Cu(111).

In subfigure c), we now color by Erelaxed and use εDOLD as the y-axis. As a complement to subfigure
b), we once again notice a cluster of structures at low values of both εDOLD and δCD, and also a some-
what linear relationship between two properties that breaks at large values of εDOLD. This is the rough
break in reconstruction modes mentioned for subfigure b). The εDOLD limit can be estimated visually
from the figure to be between 0.04 and 0.06, where the linear clustering between both properties starts
to break. From this, we can also estimate that a δCD of between 0.025-0.050 is the limit for small
reconstructions. All three Cu interfaces seem to show the same tendency.

Finally, subfigures d) and e) show a pair of “butterfly plots”, where the eigenvalues of the strain
tensors are plotted, and colored by either Erelaxed or δCD. The plots are in principle mirrored along the
x-y axis since ε1 and ε2 are interchangeable. In general the matches combine positive and negative
values of the eigenvalues, with few or no matches in the regions where both are positive (upper right
quadrant of the plots) or negative (lower left quadrant). This plus the mirroring gives the plots their
butterfly shape. If we remember that the eigenvalues of the strain tensor are the stretches experienced
along the directions where no shear is present (the eigenvectors, the principal strain directions), we can
try to explain why this is. As mentioned in sec. 3.6.2, attempting to match Cu slabs and ZnO(101̄0)
directly usually results in one direction being too short and another too long. This would result in a
stretch and a compression being required to generate good matches between the lattices. Additionally,
the butterfly plots seem to present a group of structures arranged in a line, of uncertain origin. This
is most notable for Cu(110). A possible explanation is that these correspond to a specific geometric
matching pattern that only appears in a small angle range.

Looking now into the colored properties of each butterfly plot, from subfigure d) we can observe
more stable matches (more negative relaxation energy, lighter color) towards the center of the plot (both
eigenvalues close to 0.0) and towards the bottom and left of the plots (one eigenvalue close to 0.0, the
other one negative), while worse matches (less stable) are present towards the top and right (particularly
noticeable for Cu(110)). Subfigure e) suggests that larger reconstructions occur at negative eigenvalues
(darker coloring towards the left and bottom of the plots). This also explains the behavior of the relaxed
energy in d): compressive repulsion usually destabilizes a system more than an equivalent expansion
in interatomic distance (energy vs. volume plots for a solid are not symmetrical), so we would expect
the structures at high compression to be more unstable. This is indeed the fact, and they are so unstable
that they end up reconstructing into different, lower energy configurations (see sec. 7.2.4).

120 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Figure 7.4: For the Cu(100) and ZnO(101̄0) matches: a) Erelaxed vs. angle colored by εDOLD, the degree
of lattice distortion, larger values correspond to initially more strained lattices. b) Erelaxed
vs. δCD, a measurement of the amount of reconstruction of the slab, where a higher value
indicates a larger reconstruction, colored by εDOLD. c) εDOLD vs. δCD, colored by Erelaxed.
d) and e) Eigenvalues of the strain tensor associated with a particular match, ε1,2, plot-
ted against each other, and colored by Erelaxed or δCD (similarity between initial and final
configuration).

7.2 Results 121

Figure 7.5: For the Cu(110) and ZnO(101̄0) matches. For description of panels, see fig. 7.4.

122 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Figure 7.6: For the Cu(111) and ZnO(101̄0) matches. For description of panels, see fig. 7.4.

7.2 Results 123

Further energy and structural relationships are presented in figures 7.7, 7.8, and 7.9. Subfigure a)
plots Erelaxed vs. εDOLD, coloring by number of atoms in the match. As shown in fig. 7.1, lower strains
correspond to larger number of atoms. This subplot also shows that for Cu(100) and Cu(110), the
lowest energy matches correspond to structures with small number of atoms and rather large distortions.
This implies that these structures have probably rearranged under the influence of the large distortion
to lower their energy. This is not the case with Cu(111), where the low energy configurations are also
large and with low εDOLD, implying only minor rearrangements.

Figure 7.7: For the Cu(100) and ZnO(101̄0) matches: Erelaxed vs εDOLD, colored by the total number of
atoms in each cell. b) ∆Erelaxed vs εDOLD, colored by δCD. ∆Erelaxed shows how much energy
was gained by the match in the relaxation. c) and d) Erelaxed vs elements of the strain tensor
(uniaxial strain εxx and εyy, shear γxy), colored by εDOLD. For c), each match is represented
twice, once for εxx and once for εyy. e) and f) are similar to c) and d), but plotting now δCD
vs. the strain tensor components, and coloring again by εDOLD.

In subplot b), instead of the previously defined Erelaxed, ∆Erelaxed is plotted, which is given by

∆Erelaxed = Erelaxed−Einit, (7.2)

where Erelaxed is as previously defined, and Einit is the same but with the initial, unrelaxed energy of the
matched slabs, and referenced to the unrelaxed, isolated, non-deformed slabs. In effect, ∆Erelaxed is the
energy gain due to the geometry minimization performed with the NNP.

124 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Figure 7.8: For the Cu(110) and ZnO(101̄0) matches. For description of panels, see fig. 7.7.

The points in b) are also colored by δCD. Unsurprisingly, high values of δCD tend to correspond with
large relaxation energy gains: these are structures that have undergone reconstruction. This subplot
reinforces the break in reconstruction levels noticed in the previous figures: between an εDOLD of 0.04
and 0.06 we observe a rapid increase of bot ∆Erelaxed and δCD.

The few next subplots (c) through f)) show the behavior of Erelaxed and δCD as a function of the
components of the strain tensor. Since care has been taken to rotate the strain tensor into the original
lattices, these can be understood as acting on the lattice cells shown in 3.5. In the case of the plots
involving uniaxial strains (εxx and εyy), since there are two values per strain tensor and they are not
interchangeable (compared to the eigenvectors), each match has been plotted twice, once for each
direction.

In c) and d), each dot is colored by εDOLD. As expected from the relationship between εDOLD and the
components of the strain tensor, darker colors and larger εDOLD are observed as we go away from 0.0
in each plot. Negative εii values result in lower energies for Cu(100) and Cu(110), once again probably
due to the induced reconstructions. Otherwise, as seen from the plots for Cu(111), deviations from
strain component 0.0 result in higher energies.

In e) and f), δCD is plotted vs. the strain tensor components. As before, negative values of uniaxial
strain εii result in the larger reconstructions.

7.2 Results 125

Figure 7.9: For the Cu(111) and ZnO(101̄0) matches. For description of panels, see fig. 7.7.

126 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Finally, figures 7.10, 7.11, and 7.12 show different views of Erelaxed. Subplots a) and b) explore
the relationship between Erelaxed and the number of atoms in the system. For Cu(100) and Cu(110),
smaller cells appear to be more stable, but this is once again due to these cells reconstructing, as can
be deduced from the high values of δCD and εDOLD for these matches, as well as their absence from the
plots for Cu(111).

In these subplots we can clearly see the most stable, lightly reconstructed matches for each Cu
surface, by looking at the lowest energy achieved by the largest structures. The line lies at -0.025
eV/atom for Cu(100), -0.03 eV/atom for Cu(110) and -0.023 for Cu(111). That Cu(110) and Cu(111)
are respectively the most and least stable when compared to the undeformed, separated slabs is not
surprising. Cu(110) is the most unstable of the three surfaces (highest surface energy) to begin with,
which means it can gain extra energy by interacting with the ZnO layers. Cu(111) is the most stable
surface already, so not as much energy is gained by interacting with the ZnO. If we instead reference
Erelaxed to bulk Cu and Zn, in which case the three Cu surfaces have the same reference energy, the order
for Erelaxed(bulk) becomes: Cu(111)=0.087 eV/atom < Cu(100)=0.102 eV/atom < Cu(110)=0.117
eV/atom.

Figure 7.10: For the Cu(100) and ZnO(101̄0) matches: a) and b) Erelaxed vs. number of atoms in the
match, colored by εDOLD and δCD. c) and d) Erelaxed vs. the proportion of Cu and ZnO in
the match (xCu/xZnO = 1 means one Cu atom per ZnO formula unit in the system), colored
by εDOLD and δCD.

7.2 Results 127

Figure 7.11: For the Cu(110) and ZnO(101̄0) matches. For description of panels, see fig. 7.10.

Subplots c) and d) present another interesting difference between the matches: due to the different
contractions and expansions suffered by the Cu layer, its density gets modified, which means that
also the proportion between Cu and ZnO in the system changes. Due to the different initial lateral
densities of the Cu lattices the matches can reach different proportions of Cu and ZnO. For the original
unstrained materials, the xCu/xZnO ratio is: Cu(100) 1.32 Cu(110) 0.93 Cu(111) 1.52. Clearly the plots
in c) and d) are centered around these values, but the energy minimum for unreconstructed slabs seems
to be shifted to slightly larger ratios. For Cu(100) and Cu(111), we once again observe structures with
lower energies at higher Cu/ZnO ratios. These correspond as before to compressed structures that tend
to reconstruct in the relaxation.

128 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Figure 7.12: For the Cu(111) and ZnO(101̄0) matches. For description of panels, see fig. 7.10.

7.2 Results 129

7.2.3 Translations in the XY Plane

As mentioned in the introduction, one degree of freedom remaining to the matches is the translation
between the atomic basis of both materials. In the relaxations described above atoms can also move
laterally, but the question now is what would happen with larger shifts that can result in moving from
one adsortion position to another. It would be easy to assume that this has a large influence in the
final energy of the slab, since atoms can lie on top of more or less favorable positions. In our tests,
the result is that the effect is not that large, and this is something that was also found in the original
CLM study [161]. Although there is an energy difference when shifting the Cu layer around parallel to
the ZnO surface, this difference is usually in the order of 0.1 meV/atom or below, far below the NNP
accuracy, and much smaller than the Erelaxed energies calculated in the previous section. We do not
expect this level of energy gain to alter the general trends observed in our analysis, and since shifting
every single match around to find the best position would be an expensive process (although possible
with the NNP), it has been decided to not perform shifts in the XY plane. For the unstable structures
that reconstruct this might also change the reconstruction path, but once again this would not alter the
general trend.

As to the reason for this behavior, the interactions between atoms at the interface might be “satu-
rated”. Since the slabs are matched leaving no gaps, all atoms of one material present more or less the
same environment. Shifting one atom out of a preferred position just means that the neighboring atoms
are now shifting towards that same position, which in the end means that the energy gains and losses
balance out. This behavior might be different if the layers have more features that break the 2D planar
symmetry, such as vacancies right at the interface, or higher Miller index surfaces that present kinks
and steps, which then would need to match correctly like building blocks to attain a minimum energy
level.

7.2.4 Selected Structures

For illustrative purposes, here a number of relaxed structures are presented, consisting of both recon-
structed and not reconstructed surfaces, for each of the three Cu slabs. Table 7.1 shows a summary of
the properties of the selected structures.

Cu Number Natoms Erelaxed (eV/atom) εDOLD δCD xCu/xZnO

(100) 1 168 -0.040 0.051 0.077 1.500
(100) 41 726 -0.026 0.012 0.006 1.366
(110) 1 150 -0.049 0.076 0.077 1.125
(110) 239 714 -0.031 0.019 0.011 0.975
(111) 1 1278 -0.023 0.007 0.002 1.550
(111) 37 228 -0.022 0.077 0.113 1.800

Table 7.1: Summary of the properties of the selected structures in figures 7.13, 7.14 and 7.15. Number
is the order in the structure list for that particular material sorted by Erelaxed.

Cu(100)

Reconstructed (a and b) and stable (c and d) Cu(100) slabs are presented in fig. 7.13. Interestingly,
some Cu(100) surfaces convert to Cu(111) under the influence of stress and the interaction with the ZnO
support. Notice that for the structure in a), the proportion of Cu to ZnO approaches that of Cu(111) (see
table 7.1 and figures 7.11 and 7.12), which might explain why this conversion takes place. Cu(111) is
the more stable configuration at this density, while the induced strain and the presence of ZnO allow
the minimization to find a path between both structures.

130 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Cu(110)

A reconstructed (a) and b)) and stable (c) and d)) Cu(110) slabs are presented in fig. 7.14. As opposed to
the Cu(100) case, the reconstructed slab has transformed into a surface with kinks and steps instead of
devolving into a Cu(111) surface. When compared to Cu(100), Cu(110) is farther away from Cu(111)
in terms of lateral density and Cu to ZnO ratio. Additionally, the structure of Cu(110) is more “open”,
with atoms in the first layer farther apart from each other and atoms in the first subsurface layer (at the
center of the rectangle that defines the surface) almost uncovered. Moreover, as explained in sec. 3.6.2
comparing the different candidate structures, Cu(110) already presents a geometry very similar to that
of ZnO(101̄0). All these factors together could explain why Cu(100) reconstructs into Cu(111), while
Cu(110) instead tends to develop kinks and steps.

Cu(111)

A stable (a) and b)) and reconstructed (c) and d)) Cu(111) slabs are presented in fig. 7.15. As opposed
to the previous two cases, the configuration that remains as Cu(111) is the more stable one (see table
7.1). The reconstructed surface once again appears when the slab surpasses a certain density/Cu to
ZnO ratio, beyond the apparent stability range of Cu(111). Cu(111) is already the most stable surface
of isolated copper, and as such appears to behave as an “attractor” point in the PES, with Cu(100) easily
interconverting into Cu(111) when compressed enough.

7.2 Results 131

Figure 7.13: Two matches for Cu(100) and ZnO(101̄0), corresponding to structures 1 and 41 from the
energetically ordered relaxed interfaces for the two materials, as detailed in table 7.1. a)
The Cu surface reconstructs from (100) to (111) b) Presents a view of a) with smaller
Cu atoms, which allows to observe the Moiré pattern between the materials. c) A stable
Cu(100) configuration. d) Same as b) but for the structure in c).

132 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

Figure 7.14: Two matches for Cu(110) and ZnO(101̄0) corresponding to structures 1 and 239 from the
energetically ordered relaxed interfaces for the two materials, as detailed in table 7.1. a)
The Cu surface reconstructs by atoms shifting in the Z-direction, forming a new inter-
face with steps and kinks. b) Side view of a). c) A seemingly unreconstructed Cu(110)
surface, but notice that the distances between the edges of the Cu(110) rectangles do not
remain constant, forming a sort of zipper effect, as a way to alleviate strain. d) Presents a
view of a) with smaller Cu atoms, which allows to observe the Moiré pattern between the
materials.

7.2 Results 133

Figure 7.15: Two matches for Cu(111) and ZnO(101̄0) corresponding to structures 1 and 37 from the
energetically ordered relaxed interfaces for the two materials, as detailed in table 7.1. a)
A stable Cu (111) configuration. b) Presents a view of a) with smaller Cu atoms, which
allows to observe the Moiré pattern between the materials. c) A reconstructed slab, with
atoms shifting in the Z-direction to form a surface with steps and kinks. d) Side view of
c).

134 Chapter 7 Study of Large Copper-Zinc Oxide Coincident Surfaces

7.3 Conclusions

An exhaustive, high-throughput search for the coincident interfaces between ZnO(101̄0) and the three
low Miller index surfaces of Cu has been performed. Analysis of the behavior of the matching algo-
rithm shows that low levels of strain in the matched surfaces can only be achieved starting from a given
slab size. This is a disadvantage since if simulations of low strain configurations are desired, structures
with a large number of atoms are required.

Relaxing the matched structures leads to a number of interesting results. The described εDOLD and
δCD parameters appear to be highly helpful in summarizing the strain suffered by each slab as well
as the degree of reconstruction each one goes through. What at first seems to be the expected result,
that structures with larger strain will result in higher energy configurations, is not actually observed.
Low strain configurations are indeed stable, but large strains (in particular, large negative strains, which
correspond to a reduced lattice size or equivalently a higher atom density than in normal conditions)
tend to induce large reconstructions that stabilize the Cu structure into other configurations. This is
particularly the case for Cu(100) and Cu(110), while Cu(111) appears to be more stable with fewer
reconstructions. In fact, some Cu(100) structures with density overlapping that of Cu(111) transform
into that surface. Two theories can be proposed as to why Cu(111) seems to be so resistant to recon-
structions: it is well known that this Miller cut is already the most energetically stable Miller cut of
copper (in isolation); and Cu(111) is also the densest Cu slab (in terms of surface density, that is, atoms
per unit of surface area of the slab), which makes it harder for atoms to move past each other in a
relaxation to reconstruct. That is, although the structure could represent an unstable maximum in the
PES, there is no simple path to another local minimum that does not require atoms overlapping each
other.

From these results a question that might arise: How can the “best” match for a given simulation be
generated? Ideally, without the need to actually perform a relaxation on all the possible candidates.
The results presented give us some rules of thumb that can be used to choose such a structure from the
results of the CLM procedure. If we want our structure to not reconstruct (because we are trying to
simulate a specific interface), one needs to pick a match:

1. with a low εDOLD, ideally close to 0.0 but values below 0.03-0.04 seem to be safe in general

2. with expansive rather than compressive strain

3. with the largest amount of atoms that can be simulated with the method of choice

How do these interfaces compare with results for supported Cu clusters on ZnO? Global optimization
of small Cu clusters show that they exhibit a preference for forming Cu(111) and (110) interfaces
(actually a continuum between both surfaces) with the supporting oxide. Large coincident Cu(111)
surfaces also exhibit in these results a large degree of stability, by usually not reconstructing, and are the
most stable energetically if we refer the energy of the matches to the bulk configuration of the materials.
Although the coincident Cu(110) matches tend to reconstruct, the unreconstructed configurations are
the most stable of the three under study when compared to the free-standing slabs. Of course the
comparison to clusters is not that straightforward. Small cluster have extra relaxation paths, since
the interatomic distances in the X-Y direction are allowed to change when compared with the periodic
matching lattices where this is not possible, and clusters present more interfaces to the vacuum, whereas
the coincident interfaces only have one such interface. Even large clusters, where atoms far away from
the edge of the cluster-support interface have a similar environment to that of the coincident cells, have
other way of releasing strain. Results from simulated annealing runs of such large clusters show that
every so often positions at the interface are “skipped”, resulting in holes in the pattern of Cu atoms.
This releases strain by relaxing the condition of having a uniformly strained material.

7.3 Conclusions 135

It would be interesting to study the behavior of different surfaces, such as the other stable low Miller
index cut of ZnO(112̄0), or stepped surfaces of Cu. These might also exhibit different results in terms
of X-Y lateral scans.

The NNP is a good tool for treating this kind of system. Neural networks are also heavily and
successfully used as classifiers [291, 292], where tags are assigned to a collection of objects. We can
think of the structures generated by the CLM algorithm as a collection of closely related slabs that can
be completely determined (classified) by a finite and unique number of parameters (initial materials,
Miller indices, number of layers, distances between slabs, angle between materials, inflicted strain,
atomic basis, etc.). These properties can be contained in a vector, and each match thus represents one
point in this multi-dimensional configuration space. This space is much simpler than the one that could
be created for a liquid or a cluster, for example. As such, this space is simple to sample and predict
with a NNP based approach, due to its limited degrees of freedom. Of course the NNP approach does
not have direct access to these tags, but they are implicitly encoded in the atomic structure of the slabs.
In effect the generated structures are close in configuration space, but still easily distinguishable, an
ideal case for a NNP fit.

Given the recent abundance of computational power and cloud storage, and the development of au-
tomated potential building tools such as NNPs, it is now possible to move towards hands-off construc-
tion of material databases. Previous examples include generating cluster collections with GA [199,
207, 208], evolutionary algorithms for solid structures [293] or automatic potential energy surface ex-
ploration combined with relevant structure selection [294]. For such a database an algorithm that is
capable of generating physically relevant and “correct” structures is required. We propose that CLM in
combination with a HDNNP (or other ML algorithms) is another strong candidate for such databases.
The structures generated by CLM are usually “well behaved” (if the maximum allowed strained is
limited), and such a database could help with the discovery of new 2D materials or interesting inter-
faces or new reconstructions. The MLP would be trained on the information from small matches (plus
other known distortion methods as illustrated in 3.3), and then utilized to predict properties for larger
matches.

Part III

Summary and Bibliography

Chapter 8

Summary

A neural network potential for the ternary copper-zinc-oxygen system has been constructed. This po-
tential has been utilized to perform a variety of different simulations, from global optimization searches
with a genetic algorithm (sec. 5), to partial optimization with simulated annealing molecular dynamics
(sec. 6), and high-throughput analysis of matching Cu-ZnO surfaces (sec. 7). This covers the range
from small clusters, via large macroscopic nanoparticles, to continuous interfaces, with the analysis of
the results focusing on the interface between both materials. With this the goals set out by the project
have been accomplished: to perform simulations beyond the simple small models that can fit within the
computational limitations of an ab-initio calculation, and with this, to surpass what has been available
until now in the literature for Cu/ZnO and better understand this catalyst.

The first set of results (sec. 5) corresponds to the global optimization of small copper clusters on
the ZnO(101̄0) surface. Previous studies on deposited copper clusters relied either on pre-designed
clusters [68], clusters optimized in the vacuum [71], or parametrized force fields [67]. As such this is
likely the first study generating unbiased cluster structures due to the utilized genetic algorithm, and
based on reference DFT data. For this to be possible a number of methodological developments were
necessary. GA optimization was not the first chosen tool, and previous attempts with basin hopping
Monte Carlo [149] proved too inefficient to obtain converged results. For this purpose, the GA library
for the ASE Python library has been extended, and linked to the N2P2 library for LAMMPS that
provides force and energy calculations for the NNP. Two new algorithms related to configurational
sampling were also required. The first one was the cube cut algorithm (sec. 2.6.1), designed to help
with extracting smaller configurations that can fit into affordable electronic structure calculations, from
the larger configurations required for properly periodic simulations. The second one was the bin and
hash algorithm (sec. 4), intended to facilitate atomic environment selection and filtering. The BAH
algorithm is complementary to the query by committee [88] approach of comparing the results of two
NNPs trained on the same data, when presented with new data. BAH takes advantage of the hash table
data structure to quickly find repeated (or unique) atomic environments in a dataset, as described by a
given set of ACSF. This may seem trivial at first glance, but it is a subset of the well known problem
of efficiently finding distances in multi-dimensional spaces. Despite the simplicity of the algorithm, it
has been shown to be capable of effectively curating a structural database without loss of fit accuracy
(sec. 4.3.4), estimating the quality of sets of atomic descriptors without requiring a costly fit (sec. 4.3.3),
and finding potentially contradictory information in a dataset (sec. 4.3.6).

In spite of the small size of the optimized clusters, the first hints of trends in the interaction be-
tween Cu and the ZnO support can already be extracted. Besides revealing that small clusters prefer
to interact with the support at oxygen positions through the Cu(110) and (111) surfaces (sec. 5.2.2),
many structural growth patterns and families can be identified for the clusters across the different sizes
(sec. 5.2.1). Being able to perform unbiased searches for supported clusters addresses the first question
posed in the introduction to this thesis. For such small clusters, the cluster-interface interactions dom-
inate over the cluster-cluster interactions. It is thus risky to extrapolate the observed trends to larger
systems with only these results. For this reason, simulations with larger systems were also required,
leading to the CLM and SA results. As shown in this work and previous research [207, 208], organized
PES exploration algorithms such as GA are good candidates as tools for the generation of automated
NNP datasets. The algorithms and examples developed in this work should help to advance this goal.

140 Chapter 8 Summary

The second results section in this work presents the simulated annealing partial optimization of large
supported Cu clusters on ZnO(101̄0) (sec. 6), which expands on the results obtained from small clus-
ters. Replicating the trends from the previous and following sections, large clusters are also found to
interact mainly through forming intermediate Cu(111) and (110) surfaces (sec. 6.2.7), while exhibiting
mostly Cu(111) and (100) facets on the cluster-vacuum interface (sec. 6.2.8). This agrees with pre-
viously reported experimental results such as those in ref. 60. Structural analysis reveals how much
the ZnO support strains the clusters (sec. 6.2.5), by showing changes in the inter-atomic distances that
reach the uppermost layers of the clusters far from the interface even for the largest sizes. The straining
of the clusters could have consequences on the behavior of the supported clusters in experimental and
reaction conditions, since many experimental studies of the industrial catalyst highlight the correlation
between strain and reactivity [16, 17, 27]. The simulations also reveal the formation of multiple fcc
domains separated by hcp regions (sec. 6.2.4), which was also observed in simulations of freestanding
copper and brass nanoparticles utilizing the same potential [61, 92]. These partially optimized clus-
ters finally reach the nanometer size range, which would make them good candidates for comparison
against atomic deposition experiments such as those presented in refs. 18 and 60, in regards to shape,
size, orientation, faceting, etc. For such a comparison it is necessary to look at the behavior of an
ensemble of clusters and not just singular examples. Generation of multiple representative clusters
has been facilitated in this case by the NNP, and the SA setup. This completes the second question
proposed in the introduction.

To extend the analysis of the interface between Cu and ZnO to a continuous scale, high-throughput
coincidence lattice match simulations were performed (sec. 7). Through an elaborate algorithm based
on the geometry of the involved materials known as the coincidence lattice match [161], it was possible
to generate thousands of candidate matching structures. This algorithm needed to be implemented from
scratch in Python, in close association with the structure generation and database capabilities of the
ASE library. In the future these scripts will be made available in a public code repository, with a goal
of turning the code into an extra module for ASE.

From the trends across the three low Miller index surfaces of Cu matched with ZnO(101̄0), it can
be concluded that the (111) surface remains the most stable when put into contact with ZnO(101̄0)
(sec. 7.2.2), but also that Cu(110) is stabilized in combination with the ZnO support when compared
to the freestanding surface. This is in accordance with the results observed from small and large
clusters, where the Cu(110) and Cu(111) interfaces were preferred when interacting with the support.
Additionally, this study has revealed interesting trends in how Cu reconstructs under high strain levels
and deformations of the ideal Cu lattice (sec. 7.2.4). Here, Cu(111) is still the most stable configuration,
rarely reconstructing except for high levels of strain, probably due to its relative stability and high atom
density per surface area which prevents the Cu atoms from moving away from their lattice positions.
Cu(100) often reconstructs into Cu(111) when subjected to high levels of strain, probably due to its
relative instability after being deposited on ZnO when compared with the other two interfaces, and due
to its proximity in terms of atom surface density to Cu(111). In this way, Cu(111) seems to act as an
“attractor” in the Cu strain “phase diagram”. Cu(110) also tends to reconstruct, but more often exhibits
out-of-plane shifts of the Cu layers, instead of turning into Cu(111). A possible explanation for this is
how exposed atoms in the first subsurface layer of Cu(110) are, which can lead to them easily slipping
past neighboring lattice positions. Also once again looking at densities per surface area, Cu(110) is far
away from Cu(111). This analysis of the interfaces rounds up the third question of the introduction,
and is backed by results from the previous two simulation approaches.

Analyzing closely related slab configurations is another simulation ansatz ideal for NNPs, since the
generated structures are all rather similar but still energetically distinct, and easy to generate programat-
ically. Once again it is possible to draft a simulation approach that could automatically cycle through
pairs of materials, attempting to discover new interfaces with interesting properties while automatically
constructing a NNP for these materials.

To summarize, the more concrete results from the simulations presented in this work are:

141

• The interface between Cu clusters and ZnO(101̄0) has a structure between that of Cu(111) and
Cu(110), as proposed by some experimental results [60]. This is evident for both small clusters,
large clusters, and initially flat interfaces.

• Related to the previous point, from the coincident surfaces results it can be derived that ZnO(101̄0)
stabilizes the Cu(111) and Cu(110) surfaces the most, to the point that Cu(110) becomes more
stable than Cu(100). This could also be a factor for other metal/metal oxide interfaces.

• Strain and deviations from the equilibrium neighbor distance of Cu is present even for large sup-
ported nanoparticles, and for multiple layers. This is important since the experimental literature
often reports a relationship between strain and catalytic activity [16, 17, 27].

Two other projects were developed in the course of this thesis, but are not detailed here. The first
project is a new flexible grid based global optimization algorithm, shortly described in the introduction
to sec. 5 and further explained in ref. 199. It would be interesting to compare in the future the per-
formance of these grids when compared to the GA approach for the optimization of small supported
clusters, particularly for sizes beyond 10 atoms. The second project is the study of the structure and
composition of freestanding brass nanoparticles developed in the context of student practicals and a
Master’s thesis, and detailed in refs. 61 and 92. Results from this project showed how to successfully
apply SA to partially optimized large clusters, and also evidenced that for brass alloys Zn tends to
accumulate at the vacuum interface (the surface of the system) and at defects. This analysis could be
contrasted in the future with the behavior of small supported globally optimized brass clusters, and
large supported clusters simulated with a semi-grand canonical ensemble, for which some preliminary
simulations are already available. The behavior of brass in these circumstances is important, since
there are many experimental reports that brass may form in reaction conditions and thus be important
for catalytic activity [33–35].

Much work can still be performed with the currently developed tools by extending the NNP dataset
to different degrees. Some results are available for the global optimization of clusters beyond 10 atoms,
up into the 20 to 30 atom range, where GA optimization appears to stop being as effective as could be
desired. Preliminary simulations for global optimization and coincident lattice match analysis on the
ZnO(112̄0) surface have already been performed. Given the different geometries between this surface
and the ZnO(101̄0) surface analyzed in this work, these results could lead to a deeper understanding
of the role of cluster and support interaction as mediated by support geometry and lattice mismatch.
Similarly, some very early data is available for the global optimization of small ternary clusters, which
could provide information on the formation of amorphous ZnO overlayers over Cu clusters [19]. Fi-
nally, some simulations are also available studying the formation of brass on large supported copper
clusters utilizing the semi-grand canonical ensemble, as has already been tested in adjacent works with
free-standing clusters [61, 92].

Chapter 9

Acknowledgments

First of all, I am particularly grateful to my supervisor Prof. Dr. Jörg Behler for giving me the oppor-
tunity to complete this work, and guiding me in its completion. Thanks also to Prof. Dr. Ricardo Mata
in his role as second supervisor of this thesis.

I am particularly grateful for the many office and scientific conversations with Sebastian Wille, Tsz
Wai Ko, and former group guest Dr. Nathan Daelman. I am also grateful to the students who I have
collaborated with, and who have helped this and other projects with their work and knowledge: Jan
Weinreich, Anton Römer, and Sebastian Thurm. I extend my thanks to the rest of the Behler and Mata
groups at the Georg-August University Göttingen, as well as former members of the Behler group from
the Ruhr University Bochum. I am beholden to Dr. Rainer Oswald for his technical support, and to the
administrative staff of the university for multiple instances of help.

I would like to thank the Leibniz Rechenzentrum (LRZ) during the project Summer of Simula-
tion 2016 and the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen (HLRN) under the
project number nic00046 for providing computation time to generate much of the reference calcula-
tions contained in the NNP dataset. I am also grateful to the Deutsche Forschungsgemeinschaft (DFG)
for funding as part of projects Be3264/10-1, project number 289217282 and INST186/1294-1 FUGG,
project number 405832858.

Finally, I also thank Dr. Thorsten Teuteberg for providing the LaTeX template that forms the basis
for the current document.

Bibliography

[1] F. Zaera, “New Challenges in Heterogeneous Catalysis for the 21st Century,” Catalysis Letters
142, 501–516 (2012).

[2] I. Fechete, Y. Wang, and J. C. Védrine, “The past, present and future of heterogeneous catalysis,”
Catalysis Today Catalytic Materials for Energy: Past, Present and Future, 189, 2–27 (2012).

[3] J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis (John
Wiley & Sons, 2014).

[4] J. K. Nørskov, F. Studt, F. Abild-Pedersen, and T. Bligaard, Fundamental Concepts in Hetero-
geneous Catalysis (John Wiley & Sons, 2014).

[5] R. Schlögl, “Heterogeneous Catalysis,” Angewandte Chemie International Edition 54, 3465–
3520 (2015).

[6] Z. Ma and F. Zaera, “Heterogeneous Catalysis by Metals,” in Encyclopedia of Inorganic Chem-
istry (American Cancer Society, 2006).

[7] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An
Introduction (Springer Science & Business Media, 2013).

[8] L. Grajciar, C. J. Heard, A. A. Bondarenko, M. V. Polynski, J. Meeprasert, E. A. Pidko, and
P. Nachtigall, “Towards operando computational modeling in heterogeneous catalysis,” Chemi-
cal Society Reviews 47, 8307–8348 (2018).

[9] K. C. Waugh, “Methanol Synthesis,” Catalysis Letters 142, 1153–1166 (2012).
[10] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgs-

dies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, and R. Schlögl, “The Active
Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts,” Science 336, 893–897
(2012).

[11] J. Hu, W.-P. Guo, X.-R. Shi, B.-R. Li, and J. Wang, “Copper Deposition and Growth over ZnO
Nonpolar (101̄0) and (112̄0) Surfaces: A Density Functional Theory Study,” The Journal of
Physical Chemistry C 113, 7227–7235 (2009).

[12] E. B. M. Doesburg, R. H. Höppener, B. de Koning, X. Xiaoding, and J. J. F. Scholten, “Prepa-
ration and Characterization of Copper/Zinc Oxide/Alumina Catalysts for Methanol Synthesis,”
in Studies in Surface Science and Catalysis, Preparation of Catalysts IV, Vol. 31, edited by
B. Delmon, P. Grange, P. A. Jacobs, and G. Poncelet (Elsevier, 1987) pp. 767–783.

[13] J. Słoczyński, R. Grabowski, A. Kozłowska, P. K. Olszewski, and J. Stoch, “Reduction kinet-
ics of CuO in CuO/ZnO/ZrO2 systems,” Physical Chemistry Chemical Physics 5, 4631–4640
(2003).

[14] M. Kurtz, N. Bauer, C. Büscher, H. Wilmer, O. Hinrichsen, R. Becker, S. Rabe, K. Merz,
M. Driess, R. A. Fischer, and M. Muhler, “New Synthetic Routes to More Active Cu/ZnO
Catalysts Used for Methanol Synthesis,” Catalysis Letters 92, 49–52 (2004).

[15] T. Ressler, B. L. Kniep, I. Kasatkin, and R. Schlögl, “The Microstructure of Copper Zinc Oxide
Catalysts: Bridging the Materials Gap,” Angewandte Chemie International Edition 44, 4704–
4707 (2005).

[16] I. Kasatkin, B. Kniep, and T. Ressler, “Cu/ZnO and Cu/ZrO2 interactions studied by contact
angle measurement with TEM,” Physical Chemistry Chemical Physics 9, 878–883 (2007).

[17] I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, and R. Schlögl, “Role of Lattice Strain and
Defects in Copper Particles on the Activity of Cu/ZnO/Al2O3 Catalysts for Methanol Synthesis,”
Angewandte Chemie International Edition 46, 7324–7327 (2007).

http://dx.doi.org/ 10.1007/s10562-012-0801-9
http://dx.doi.org/ 10.1007/s10562-012-0801-9
http://dx.doi.org/10.1016/j.cattod.2012.04.003
http://dx.doi.org/https://doi.org/10.1002/anie.201410738
http://dx.doi.org/https://doi.org/10.1002/anie.201410738
http://dx.doi.org/10.1002/0470862106.ia084
http://dx.doi.org/10.1002/0470862106.ia084
http://dx.doi.org/10.1039/C8CS00398J
http://dx.doi.org/10.1039/C8CS00398J
http://dx.doi.org/10.1007/s10562-012-0905-2
http://dx.doi.org/10.1126/science.1219831
http://dx.doi.org/10.1126/science.1219831
http://dx.doi.org/10.1021/jp809517f
http://dx.doi.org/10.1021/jp809517f
http://dx.doi.org/ 10.1016/S0167-2991(08)65452-X
http://dx.doi.org/ 10.1039/B306132A
http://dx.doi.org/ 10.1039/B306132A
http://dx.doi.org/10.1023/B:CATL.0000011085.88267.a6
http://dx.doi.org/ https://doi.org/10.1002/anie.200462942
http://dx.doi.org/ https://doi.org/10.1002/anie.200462942
http://dx.doi.org/10.1039/B616795K
http://dx.doi.org/ https://doi.org/10.1002/anie.200702600

146 Bibliography

[18] M. Kroll, T. Löber, V. Schott, C. Wöll, and U. Köhler, “Thermal behavior of MOCVD-grown
Cu-clusters on ZnO(100),” Physical Chemistry Chemical Physics 14, 1654–1659 (2012).

[19] T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, and M. G. Willinger, “Formation of a
ZnO Overlayer in Industrial Cu/ZnO/Al2O3 Catalysts Induced by Strong Metal–Support Inter-
actions,” Angewandte Chemie 127, 4627–4631 (2015).

[20] S. Sá, H. Silva, L. Brandão, J. M. Sousa, and A. Mendes, “Catalysts for methanol steam re-
forming—A review,” Applied Catalysis B: Environmental 99, 43–57 (2010).

[21] R. Burch, S. E. Golunski, and M. S. Spencer, “The role of copper and zinc oxide in methanol
synthesis catalysts,” Journal of the Chemical Society, Faraday Transactions 86, 2683–2691
(1990).

[22] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, J. Nakamura, and T. Uchijima, “The
role of metal oxides in promoting a copper catalyst for methanol synthesis,” Catalysis Letters
25, 271–276 (1994).

[23] M. Spencer, “The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the wa-
ter–gas shift reaction,” Topics in Catalysis 8, 259 (1999).

[24] L. Martínez-Suárez, J. Frenzel, D. Marx, and B. Meyer, “Tuning the Reactivity of a Cu/ZnO
Nanocatalyst via Gas Phase Pressure,” Physical Review Letters 110, 086108 (2013).

[25] M. Behrens, “Heterogeneous Catalysis of CO2 Conversion to Methanol on Copper Surfaces,”
Angewandte Chemie International Edition 53, 12022–12024 (2014).

[26] M. Behrens, “Promoting the Synthesis of Methanol: Understanding the Requirements for an
Industrial Catalyst for the Conversion of CO2,” Angewandte Chemie International Edition 55,
14906–14908 (2016).

[27] P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schlögl, and T. Ressler, “Microstruc-
tural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming - A comparative
study,” Applied Catalysis A: General 348, 153–164 (2008).

[28] B. S. Clausen, B. Lengeler, and B. S. Rasmussen, “X-ray absorption spectroscopy
study of Cu-based methanol catalysts. 1. Calcined state,” J. Phys. Chem. 89:11 (1985),
https://doi.org/10.1021/j100257a035.

[29] K. R. Harikumar and C. N. R. Rao, “Interaction of CO with CuZnO catalyst surfaces prepared
in situ in the electron spectrometer: evidence for CO2- and related species relevant to methanol
synthesis,” Applied Surface Science 125, 245–249 (1998).

[30] J. D. Grunwaldt, A. M. Molenbroek, N. Y. Topsøe, H. Topsøe, and B. S. Clausen, “In Situ
Investigations of Structural Changes in Cu/ZnO Catalysts,” Journal of Catalysis 194, 452–460
(2000).

[31] P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, and H. Topsøe,
“Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals,” Sci-
ence 295, 2053–2055 (2002).

[32] M. Duan, J. Yu, J. Meng, B. Zhu, Y. Wang, and Y. Gao, “Reconstruction of Supported Metal
Nanoparticles in Reaction Conditions,” Angewandte Chemie 130, 6574–6579 (2018).

[33] T. Fujitani and J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis
catalysts,” Applied Catalysis A: General 191, 111–129 (2000).

[34] Y. Choi, K. Futagami, T. Fujitani, and J. Nakamura, “The role of ZnO in Cu/ZnO methanol
synthesis catalysts - morphology effect or active site model?” Applied Catalysis A: General
208, 163–167 (2001).

[35] S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, and J. Sehested,
“Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis,” Science 352, 969–
974 (2016).

[36] S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, and P. Liu, “Active sites for CO2 hydro-
genation to methanol on Cu/ZnO catalysts,” Science 355, 1296–1299 (2017).

[37] S. Kattel, P. Liu, and J. G. Chen, “Tuning Selectivity of CO2 Hydrogenation Reactions at the

http://dx.doi.org/10.1039/C2CP22901C
http://dx.doi.org/ https://doi.org/10.1002/ange.201411581
http://dx.doi.org/10.1016/j.apcatb.2010.06.015
http://dx.doi.org/ 10.1039/FT9908602683
http://dx.doi.org/ 10.1039/FT9908602683
http://dx.doi.org/10.1007/BF00816307
http://dx.doi.org/10.1007/BF00816307
http://dx.doi.org/10.1023/A:1019181715731
http://dx.doi.org/ 10.1103/PhysRevLett.110.086108
http://dx.doi.org/https://doi.org/10.1002/anie.201409282
http://dx.doi.org/ https://doi.org/10.1002/anie.201607600
http://dx.doi.org/ https://doi.org/10.1002/anie.201607600
http://dx.doi.org/10.1016/j.apcata.2008.06.020
http://dx.doi.org/https://doi.org/10.1021/j100257a035
http://dx.doi.org/https://doi.org/10.1021/j100257a035
http://dx.doi.org/10.1016/S0169-4332(97)00589-8
http://dx.doi.org/ 10.1006/jcat.2000.2930
http://dx.doi.org/ 10.1006/jcat.2000.2930
http://dx.doi.org/ 10.1126/science.1069325
http://dx.doi.org/ 10.1126/science.1069325
http://dx.doi.org/10.1002/ange.201800925
http://dx.doi.org/10.1016/S0926-860X(99)00313-0
http://dx.doi.org/10.1016/S0926-860X(00)00712-2
http://dx.doi.org/10.1016/S0926-860X(00)00712-2
http://dx.doi.org/10.1126/science.aaf0718
http://dx.doi.org/10.1126/science.aaf0718
http://dx.doi.org/ 10.1126/science.aal3573

Bibliography 147

Metal/Oxide Interface,” Journal of the American Chemical Society 139, 9739–9754 (2017).
[38] L. Martínez-Suárez, N. Siemer, J. Frenzel, and D. Marx, “Reaction Network of Methanol Syn-

thesis over Cu/ZnO Nanocatalysts,” ACS Catalysis 5, 4201–4218 (2015).
[39] A. Janotti and C. G. V. d. Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on

Progress in Physics 72, 126501 (2009).
[40] C. Wöll, “The chemistry and physics of zinc oxide surfaces,” Progress in Surface Science 82,

55–120 (2007).
[41] B. Meyer and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces,”

Physical Review B 67, 035403 (2003).
[42] O. Dulub, L. A. Boatner, and U. Diebold, “STM study of Cu growth on the ZnO(101̄0) surface,”

Surface Science 504, 271–281 (2002).
[43] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of

Physics: Condensed Matter 16, R829–R858 (2004).
[44] A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: Synthesis, properties

and applications,” Chemical Engineering Journal 185-186, 1–22 (2012).
[45] B. Wang, S. Nagase, J. Zhao, and G. Wang, “Structural Growth Sequences and Electronic

Properties of Zinc Oxide Clusters (ZnO)n (n=2-18),” The Journal of Physical Chemistry C 111,
4956–4963 (2007).

[46] A. Kołodziejczak-Radzimska and T. Jesionowski, “Zinc Oxide - From Synthesis to Application:
A Review,” Materials 7, 2833–2881 (2014).

[47] V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press,
1996).

[48] J. R. Davis, Copper and Copper Alloys (ASM International, 2001).
[49] N. A. Dhas, C. P. Raj, and A. Gedanken, “Synthesis, Characterization, and Properties of Metallic

Copper Nanoparticles,” Chemistry of Materials 10, 1446–1452 (1998).
[50] P. K. Khanna, S. Gaikwad, P. V. Adhyapak, N. Singh, and R. Marimuthu, “Synthesis and char-

acterization of copper nanoparticles,” Materials Letters 61, 4711–4714 (2007).
[51] B. Khodashenas and H. R. Ghorbani, “Synthesis of copper nanoparticles : An overview of the

various methods,” Korean Journal of Chemical Engineering 31, 1105–1109 (2014).
[52] M. I. Din and R. Rehan, “Synthesis, Characterization, and Applications of Copper Nanoparti-

cles,” Analytical Letters 50, 50–62 (2017).
[53] L. V. Koplitz, O. Dulub, and U. Diebold, “STM Study of Copper Growth on ZnO(0001)-Zn and

ZnO(0001̄)-O Surfaces,” The Journal of Physical Chemistry B 107, 10583–10590 (2003).
[54] O. Dulub, M. Batzill, and U. Diebold, “Growth of Copper on Single Crystalline ZnO: Surface

Study of a Model Catalyst,” Topics in Catalysis 36, 65–76 (2005).
[55] K. Ozawa, T. Sato, Y. Oba, and K. Edamoto, “Electronic Structure of Cu on ZnO(101̄0): Angle-

Resolved Photoemission Spectroscopy Study,” The Journal of Physical Chemistry C 111, 4256–
4263 (2007).

[56] M. Kroll and U. Köhler, “Small Cu-clusters on ZnO(0001)–Zn: Nucleation and annealing be-
havior,” Surface Science 601, 2182–2188 (2007).

[57] M. Ay, A. Nefedov, A. Remhof, and H. Zabel, “Structural properties of Cu clusters on the
O-terminated ZnO (0001̄) surface,” Applied Surface Science 226, 405–411 (2004).

[58] H. Qiu, F. Gallino, C. Di Valentin, and Y. Wang, “Shallow Donor States Induced by In-Diffused
Cu in ZnO: A Combined HREELS and Hybrid DFT Study,” Physical Review Letters 106,
066401 (2011).

[59] I. Beinik, M. Hellström, T. N. Jensen, P. Broqvist, and J. V. Lauritsen, “Enhanced wetting of Cu
on ZnO by migration of subsurface oxygen vacancies,” Nature Communications 6, 8845 (2015).

[60] U. Köhler, M. Kroll, T. Löber, A. Birkner, V. Schott, and C. Wöll, “The thermally induced
interaction of Cu and Au with ZnO single crystal surfaces,” physica status solidi (b) 250, 1222–
1234 (2013).

http://dx.doi.org/10.1021/jacs.7b05362
http://dx.doi.org/ 10.1021/acscatal.5b00442
http://dx.doi.org/ 10.1088/0034-4885/72/12/126501
http://dx.doi.org/ 10.1088/0034-4885/72/12/126501
http://dx.doi.org/ 10.1016/j.progsurf.2006.12.002
http://dx.doi.org/ 10.1016/j.progsurf.2006.12.002
http://dx.doi.org/ 10.1103/PhysRevB.67.035403
http://dx.doi.org/ 10.1016/S0039-6028(02)01107-X
http://dx.doi.org/ 10.1088/0953-8984/16/25/R01
http://dx.doi.org/ 10.1088/0953-8984/16/25/R01
http://dx.doi.org/ 10.1016/j.cej.2012.01.076
http://dx.doi.org/10.1021/jp066548v
http://dx.doi.org/10.1021/jp066548v
http://dx.doi.org/10.3390/ma7042833
http://dx.doi.org/10.1021/cm9708269
http://dx.doi.org/10.1016/j.matlet.2007.03.014
http://dx.doi.org/10.1007/s11814-014-0127-y
http://dx.doi.org/10.1080/00032719.2016.1172081
http://dx.doi.org/10.1021/jp0352175
http://dx.doi.org/10.1007/s11244-005-7863-5
http://dx.doi.org/10.1021/jp066296y
http://dx.doi.org/10.1021/jp066296y
http://dx.doi.org/10.1016/j.susc.2007.03.013
http://dx.doi.org/ 10.1016/j.apsusc.2003.10.041
http://dx.doi.org/10.1103/PhysRevLett.106.066401
http://dx.doi.org/10.1103/PhysRevLett.106.066401
http://dx.doi.org/ 10.1038/ncomms9845
http://dx.doi.org/ https://doi.org/10.1002/pssb.201248447
http://dx.doi.org/ https://doi.org/10.1002/pssb.201248447

148 Bibliography

[61] J. Weinreich, A. Römer, M. L. Paleico, and J. Behler, “Properties of alpha-Brass Nanoparticles.
1. Neural Network Potential Energy Surface,” The Journal of Physical Chemistry C 124, 12682–
12695 (2020).

[62] B. Meyer and D. Marx, “Density-functional study of Cu atoms, monolayers, films, and coadsor-
bates on polar ZnO surfaces,” Physical Review B 69, 235420 (2004).

[63] S. A. French, A. A. Sokol, C. R. A. Catlow, and P. Sherwood, “The Growth of Copper Clusters
over ZnO: the Competition between Planar and Polyhedral Clusters,” The Journal of Physical
Chemistry C 112, 7420–7430 (2008).

[64] K. Reuter and M. Scheffler, “First-Principles Atomistic Thermodynamics for Oxidation Catal-
ysis: Surface Phase Diagrams and Catalytically Interesting Regions,” Physical Review Letters
90, 046103 (2003).

[65] B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equi-
librium with oxygen and hydrogen,” Physical Review B 69, 045416 (2004).

[66] Y.-T. Cheng, T. Liang, X. Nie, K. Choudhary, S. R. Phillpot, A. Asthagiri, and S. B. Sinnott,
“Cu cluster deposition on ZnO (101̄0): Morphology and growth mode predicted from molecular
dynamics simulations,” Surface Science 621, 109–116 (2014).

[67] D. Mora-Fonz, T. Lazauskas, S. M. Woodley, S. T. Bromley, C. R. A. Catlow, and A. A. Sokol,
“Development of Interatomic Potentials for Supported Nanoparticles: The Cu/ZnO Case,” The
Journal of Physical Chemistry C 121, 16831–16844 (2017).

[68] M. Hellström, D. Spångberg, K. Hermansson, and P. Broqvist, “Small Cu Clusters Adsorbed
on ZnO(1010) Show Even-Odd Alternations in Stability and Charge Transfer,” The Journal of
Physical Chemistry C 118, 6480–6490 (2014).

[69] J. Martinez, T. Liang, S. B. Sinnott, and S. R. Phillpot, “A third-generation charge optimized
many body (COMB3) potential for nitrogen-containing organic molecules,” Computational Ma-
terials Science 139, 153–161 (2017).

[70] M. Hellström, D. Spångberg, P. Broqvist, and K. Hermansson, “Water-Induced Oxidation and
Dissociation of Small Cu Clusters on ZnO(101̄0),” The Journal of Physical Chemistry C 119,
1382–1390 (2015).

[71] Q. Wan, F. Wei, Y. Wang, F. Wang, L. Zhou, S. Lin, D. Xie, and H. Guo, “Single atom de-
tachment from Cu clusters, and diffusion and trapping on CeO2(111): implications in Ostwald
ripening and atomic redispersion,” Nanoscale 10, 17893–17901 (2018).

[72] M. Higham, D. Mora-Fonz, A. A. Sokol, S. M. Woodley, and C. R. A. Catlow, “Morphology
of Cu clusters supported on reconstructed polar ZnO (0001) and (0001̄) surfaces,” Journal of
Materials Chemistry A 8, 22840–22857 (2020).

[73] X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, and M. N. Neurock, “Modified charge transfer–
embedded atom method potential for metal/metal oxide systems,” Physical Review B 69, 035402
(2004).

[74] A. C. T. van Duin, V. S. Bryantsev, M. S. Diallo, W. A. Goddard, O. Rahaman, D. J. Doren,
D. Raymand, and K. Hermansson, “Development and Validation of a ReaxFF Reactive Force
Field for Cu Cation/Water Interactions and Copper Metal/Metal Oxide/Metal Hydroxide Con-
densed Phases,” The Journal of Physical Chemistry A 114, 9507–9514 (2010).

[75] F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of
silicon,” Physical Review B 31, 5262–5271 (1985).

[76] M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen
Embrittlement in Metals,” Physical Review Letters 50, 1285–1288 (1983).

[77] K. Chenoweth, A. C. T. van Duin, and W. A. Goddard, “ReaxFF Reactive Force Field for Molec-
ular Dynamics Simulations of Hydrocarbon Oxidation,” The Journal of Physical Chemistry A
112, 1040–1053 (2008).

[78] I. G. Shuttleworth, “Development of the ReaxFF Reactive Force-Field Description of Gold Ox-
ides,” The Journal of Physical Chemistry C 121, 25255–25270 (2017).

http://dx.doi.org/10.1021/acs.jpcc.0c00559
http://dx.doi.org/10.1021/acs.jpcc.0c00559
http://dx.doi.org/10.1103/PhysRevB.69.235420
http://dx.doi.org/10.1021/jp709821h
http://dx.doi.org/10.1021/jp709821h
http://dx.doi.org/10.1103/PhysRevLett.90.046103
http://dx.doi.org/10.1103/PhysRevLett.90.046103
http://dx.doi.org/10.1103/PhysRevB.69.045416
http://dx.doi.org/10.1016/j.susc.2013.10.025
http://dx.doi.org/10.1021/acs.jpcc.7b04502
http://dx.doi.org/10.1021/acs.jpcc.7b04502
http://dx.doi.org/10.1021/jp412694y
http://dx.doi.org/10.1021/jp412694y
http://dx.doi.org/10.1016/j.commatsci.2017.07.019
http://dx.doi.org/10.1016/j.commatsci.2017.07.019
http://dx.doi.org/10.1021/jp509501z
http://dx.doi.org/10.1021/jp509501z
http://dx.doi.org/ 10.1039/C8NR06232C
http://dx.doi.org/10.1039/D0TA08351H
http://dx.doi.org/10.1039/D0TA08351H
http://dx.doi.org/10.1103/PhysRevB.69.035402
http://dx.doi.org/10.1103/PhysRevB.69.035402
http://dx.doi.org/10.1021/jp102272z
http://dx.doi.org/ 10.1103/PhysRevB.31.5262
http://dx.doi.org/10.1103/PhysRevLett.50.1285
http://dx.doi.org/10.1021/jp709896w
http://dx.doi.org/10.1021/jp709896w
http://dx.doi.org/10.1021/acs.jpcc.7b08832

Bibliography 149

[79] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and
G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of
complex materials properties,” Physical Review B 58, 7260–7268 (1998).

[80] T. Frauenheim, G. Seifert, M. Elsterner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, and
R. Scholz, “A Self-Consistent Charge Density-Functional Based Tight-Binding Method for Pre-
dictive Materials Simulations in Physics, Chemistry and Biology,” physica status solidi (b) 217,
41–62 (2000).

[81] N. H. Moreira, G. Dolgonos, B. Aradi, A. L. da Rosa, and T. Frauenheim, “Toward an Accu-
rate Density-Functional Tight-Binding Description of Zinc-Containing Compounds,” Journal of
Chemical Theory and Computation 5, 605–614 (2009).

[82] M. Gaus, H. Jin, D. Demapan, A. S. Christensen, P. Goyal, M. Elstner, and Q. Cui, “DFTB3
Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of
Hubbard Parameters,” Journal of Chemical Theory and Computation 11, 4205–4219 (2015).

[83] M. Van den Bossche, “DFTB-Assisted Global Structure Optimization of 13- and 55-Atom Late
Transition Metal Clusters,” The Journal of Physical Chemistry A 123, 3038–3045 (2019).

[84] G. Zheng, H. A. Witek, P. Bobadova-Parvanova, S. Irle, D. G. Musaev, R. Prabhakar, K. Mo-
rokuma, M. Lundberg, M. Elstner, C. Köhler, and T. Frauenheim, “Parameter Calibration of
Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional
Tight-Binding (DFTB) Method: Sc, Ti, Fe, Co, and Ni,” Journal of Chemical Theory and Com-
putation 3, 1349–1367 (2007).

[85] C. M. Handley and P. L. A. Popelier, “Potential Energy Surfaces Fitted by Artificial Neural
Networks,” The Journal of Physical Chemistry A 114, 3371–3383 (2010).

[86] J. Behler, “Perspective: Machine learning potentials for atomistic simulations,” The Journal of
Chemical Physics 145, 170901 (2016).

[87] V. Botu, R. Batra, J. Chapman, and R. Ramprasad, “Machine Learning Force Fields: Construc-
tion, Validation, and Outlook,” The Journal of Physical Chemistry C 121, 511–522 (2017).

[88] N. Artrith and J. Behler, “High-dimensional neural network potentials for metal surfaces: A
prototype study for copper,” Physical Review B 85, 045439 (2012).

[89] N. Artrith, T. Morawietz, and J. Behler, “High-dimensional neural-network potentials for mul-
ticomponent systems: Applications to zinc oxide,” Physical Review B 83, 153101 (2011).

[90] S. Kondati Natarajan and J. Behler, “Self-Diffusion of Surface Defects at Copper–Water Inter-
faces,” The Journal of Physical Chemistry C 121, 4368–4383 (2017).

[91] V. Quaranta, M. Hellström, and J. Behler, “Proton-Transfer Mechanisms at the Water–ZnO
Interface: The Role of Presolvation,” The Journal of Physical Chemistry Letters 8, 1476–1483
(2017).

[92] J. Weinreich, M. L. Paleico, and J. Behler, “Properties of alpha-Brass Nanoparticles. 2: Struc-
ture and Composition,” The Journal of Physical Chemistry C 125, 14897–14909 (2021).

[93] N. Artrith, B. Hiller, and J. Behler, “Neural network potentials for metals and oxides – First
applications to copper clusters at zinc oxide,” physica status solidi (b) 250, 1191–1203 (2013).

[94] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln,” Annalen der Physik 389,
457–484 (1927).

[95] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic
Structure Theory (Courier Corporation, 1996).

[96] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review 136, B864–B871
(1964).

[97] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Ef-
fects,” Physical Review 140, A1133–A1138 (1965).

[98] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (John Wiley
& Sons, 2015).

[99] J. P. Perdew and K. Schmidt, “Jacob’s ladder of density functional approximations for the

http://dx.doi.org/ 10.1103/PhysRevB.58.7260
http://dx.doi.org/ https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
http://dx.doi.org/ https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
http://dx.doi.org/10.1021/ct800455a
http://dx.doi.org/10.1021/ct800455a
http://dx.doi.org/10.1021/acs.jctc.5b00600
http://dx.doi.org/ 10.1021/acs.jpca.9b00927
http://dx.doi.org/10.1021/ct600312f
http://dx.doi.org/10.1021/ct600312f
http://dx.doi.org/10.1021/jp9105585
http://dx.doi.org/ 10.1063/1.4966192
http://dx.doi.org/ 10.1063/1.4966192
http://dx.doi.org/ 10.1021/acs.jpcc.6b10908
http://dx.doi.org/10.1103/PhysRevB.85.045439
http://dx.doi.org/10.1103/PhysRevB.83.153101
http://dx.doi.org/10.1021/acs.jpcc.6b12657
http://dx.doi.org/10.1021/acs.jpclett.7b00358
http://dx.doi.org/10.1021/acs.jpclett.7b00358
http://dx.doi.org/10.1021/acs.jpcc.1c02314
http://dx.doi.org/10.1002/pssb.201248370
http://dx.doi.org/ 10.1002/andp.19273892002
http://dx.doi.org/ 10.1002/andp.19273892002
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133

150 Bibliography

exchange-correlation energy,” AIP Conference Proceedings 577, 1–20 (2001).
[100] T. M. Mitchell, Machine Learning (McGraw-Hill, 1997).
[101] W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classification: A

Comprehensive Review,” Neural Computation 29, 2352–2449 (2017).
[102] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of Go without human knowledge,” Nature 550, 354–359
(2017).

[103] K.-H. Ott, N. Aranibar, B. Singh, and G. W. Stockton, “Metabonomics classifies pathways
affected by bioactive compounds. Artificial neural network classification of NMR spectra of
plant extracts,” Phytochemistry Plant Metabolomics, 62, 971–985 (2003).

[104] J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design: An Introduction
(Wiley, 1999).

[105] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics 5, 115–133 (1943).

[106] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization
in the brain,” Psychological Review 65, 386–408 (1958).

[107] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Computational Geometry (MIT
Press, 2017).

[108] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences, Ph.D. thesis, Harvard University (1975).

[109] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks,” Neural Networks 3, 551–560 (1990).

[110] J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural net-
work potentials,” The Journal of Chemical Physics 134, 074106 (2011).

[111] J. Behler, “Representing potential energy surfaces by high-dimensional neural network poten-
tials,” Journal of Physics: Condensed Matter 26, 183001 (2014).

[112] T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, “Neural network models of potential
energy surfaces,” The Journal of Chemical Physics 103, 4129–4137 (1995).

[113] T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, “General-Purpose Machine Learning
Potentials Capturing Non-local Charge Transfer,” Submitted (2020).

[114] J. Behler and M. Parrinello, “Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces,” Physical Review Letters 98, 146401 (2007).

[115] J. Behler, “Constructing high-dimensional neural network potentials: A tutorial review,” Inter-
national Journal of Quantum Chemistry 115, 1032–1050 (2015).

[116] J. Behler, “First Principles Neural Network Potentials for Reactive Simulations of Large Molec-
ular and Condensed Systems,” Angewandte Chemie International Edition 56, 12828–12840
(2017).

[117] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, “SchNet – A
deep learning architecture for molecules and materials,” The Journal of Chemical Physics 148,
241722 (2018).

[118] O. T. Unke and M. Meuwly, “PhysNet: A Neural Network for Predicting Energies, Forces,
Dipole Moments, and Partial Charges,” Journal of Chemical Theory and Computation 15, 3678–
3693 (2019).

[119] J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural network potential with
DFT accuracy at force field computational cost,” Chemical Science 8, 3192–3203 (2017).

[120] B. Jiang and H. Guo, “Permutation invariant polynomial neural network approach to fitting
potential energy surfaces,” The Journal of Chemical Physics 139, 054112 (2013).

[121] A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments,” Physical
Review B 87, 184115 (2013).

http://dx.doi.org/10.1063/1.1390175
http://dx.doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/ 10.1016/S0031-9422(02)00717-3
http://dx.doi.org/ 10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/10.1088/0953-8984/26/18/183001
http://dx.doi.org/10.1063/1.469597
http://dx.doi.org/ 10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1002/qua.24890
http://dx.doi.org/10.1002/qua.24890
http://dx.doi.org/ 10.1002/anie.201703114
http://dx.doi.org/ 10.1002/anie.201703114
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1063/1.5019779
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://dx.doi.org/10.1039/C6SC05720A
http://dx.doi.org/10.1063/1.4817187
http://dx.doi.org/10.1103/PhysRevB.87.184115
http://dx.doi.org/10.1103/PhysRevB.87.184115

Bibliography 151

[122] S. Jindal, S. Chiriki, and S. S. Bulusu, “Spherical harmonics based descriptor for neural network
potentials: Structure and dynamics of Au147 nanocluster,” The Journal of Chemical Physics 146,
204301 (2017).

[123] J. Jenke, A. P. A. Subramanyam, M. Densow, T. Hammerschmidt, D. G. Pettifor, and R. Drautz,
“Electronic structure based descriptor for characterizing local atomic environments,” Physical
Review B 98, 144102 (2018).

[124] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand,
“wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning po-
tentials,” The Journal of Chemical Physics 148, 241709 (2018).

[125] W. Pronobis, A. Tkatchenko, and K.-R. Müller, “Many-Body Descriptors for Predicting Molec-
ular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in
Molecules,” Journal of Chemical Theory and Computation 14, 2991–3003 (2018).

[126] F. A. Faber, A. S. Christensen, B. Huang, and O. A. von Lilienfeld, “Alchemical and struc-
tural distribution based representation for universal quantum machine learning,” The Journal of
Chemical Physics 148, 241717 (2018).

[127] E. Kocer, J. K. Mason, and H. Erturk, “A novel approach to describe chemical environments
in high-dimensional neural network potentials,” The Journal of Chemical Physics 150, 154102
(2019).

[128] B. Parsaeifard, D. S. De, A. S. Christensen, F. A. Faber, E. Kocer, S. De, J. Behler, A. von
Lilienfeld, and S. Goedecker, “An assessment of the structural resolution of various fingerprints
commonly used in machine learning,” arXiv:2008.03189 [cond-mat, physics:physics] (2020).

[129] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian Approximation Potentials: The
Accuracy of Quantum Mechanics, without the Electrons,” Physical Review Letters 104, 136403
(2010).

[130] A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic potentials,” Journal
of Computational Physics 285, 316–330 (2015).

[131] A. V. Shapeev, “Moment Tensor Potentials: A Class of Systematically Improvable Interatomic
Potentials,” Multiscale Modeling & Simulation 14, 1153–1173 (2016).

[132] D. H. Nguyen and B. Widrow, “Neural networks for self-learning control systems,” IEEE Con-
trol Systems Magazine 10, 18–23 (1990).

[133] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic
Engineering 82, 35–45 (1960).

[134] S. K. Natarajan, T. Morawietz, and J. Behler, “Representing the potential-energy surface of
protonated water clusters by high-dimensional neural network potentials,” Physical Chemistry
Chemical Physics 17, 8356–8371 (2015).

[135] S. K. Natarajan and J. Behler, “Neural network molecular dynamics simulations of solid–liquid
interfaces: water at low-index copper surfaces,” Physical Chemistry Chemical Physics 18,
28704–28725 (2016).

[136] V. Quaranta, J. Behler, and M. Hellström, “Structure and Dynamics of the Liquid–Water/Zinc-
Oxide Interface from Machine Learning Potential Simulations,” The Journal of Physical Chem-
istry C 123, 1293–1304 (2019).

[137] M. Eckhoff and J. Behler, “From Molecular Fragments to the Bulk: Development of a Neural
Network Potential for MOF-5,” Journal of Chemical Theory and Computation 15, 3793–3809
(2019).

[138] M. L. Paleico and J. Behler, “Global optimization of copper clusters at the ZnO(101̄0) surface
using a DFT-based neural network potential and genetic algorithms,” The Journal of Chemical
Physics 153, 054704 (2020).

[139] Z. Michalewicz and C. Z. Janikow, “Genetic algorithms for numerical optimization,” Statistics
and Computing 1, 75–91 (1991).

http://dx.doi.org/10.1063/1.4983392
http://dx.doi.org/10.1063/1.4983392
http://dx.doi.org/ 10.1103/PhysRevB.98.144102
http://dx.doi.org/ 10.1103/PhysRevB.98.144102
http://dx.doi.org/10.1063/1.5019667
http://dx.doi.org/10.1021/acs.jctc.8b00110
http://dx.doi.org/10.1063/1.5020710
http://dx.doi.org/10.1063/1.5020710
http://dx.doi.org/10.1063/1.5086167
http://dx.doi.org/10.1063/1.5086167
http://arxiv.org/abs/2008.03189
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1137/15M1054183
http://dx.doi.org/10.1109/37.55119
http://dx.doi.org/10.1109/37.55119
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1039/C4CP04751F
http://dx.doi.org/10.1039/C4CP04751F
http://dx.doi.org/10.1039/C6CP05711J
http://dx.doi.org/10.1039/C6CP05711J
http://dx.doi.org/10.1021/acs.jpcc.8b10781
http://dx.doi.org/10.1021/acs.jpcc.8b10781
http://dx.doi.org/10.1021/acs.jctc.8b01288
http://dx.doi.org/10.1021/acs.jctc.8b01288
http://dx.doi.org/10.1063/5.0014876
http://dx.doi.org/10.1063/5.0014876
http://dx.doi.org/ 10.1007/BF01889983
http://dx.doi.org/ 10.1007/BF01889983

152 Bibliography

[140] D. M. Deaven and K. M. Ho, “Molecular Geometry Optimization with a Genetic Algorithm,”
Physical Review Letters 75, 288–291 (1995).

[141] L. B. Vilhelmsen and B. Hammer, “Systematic Study of Au6 to Au12 Gold Clusters on
MgO(100) F Centers Using Density-Functional Theory,” Physical Review Letters 108, 126101
(2012).

[142] L. B. Vilhelmsen and B. Hammer, “Identification of the Catalytic Site at the Interface Perimeter
of Au Clusters on Rutile TiO2(110),” ACS Catalysis 4, 1626–1631 (2014).

[143] P. Huang, Y. Jiang, T. Liang, E. Wu, J. Li, and J. Hou, “Structural exploration of AuxM- (M =
Si, Ge, Sn; x = 9–12) clusters with a revised genetic algorithm,” RSC Advances 9, 7432–7439
(2019).

[144] F. Buendía, J. A. Vargas, R. L. Johnston, and M. R. Beltrán, “Study of the stability of small
AuRh clusters found by a Genetic Algorithm methodology,” Computational and Theoretical
Chemistry 1119, 51–58 (2017).

[145] S. Heydariyan, M. R. Nouri, M. Alaei, Z. Allahyari, and T. A. Niehaus, “New candidates for
the global minimum of medium-sized silicon clusters: A hybrid DFTB/DFT genetic algorithm
applied to Sin, n = 8-80,” The Journal of Chemical Physics 149, 074313 (2018).

[146] E. Bozkurt, M. A. S. Perez, R. Hovius, N. J. Browning, and U. Rothlisberger, “Genetic Algo-
rithm Based Design and Experimental Characterization of a Highly Thermostable Metallopro-
tein,” Journal of the American Chemical Society 140, 4517–4521 (2018).

[147] P. B. Jensen, S. Lysgaard, U. J. Quaade, and T. Vegge, “Designing mixed metal halide am-
mines for ammonia storage using density functional theory and genetic algorithms,” Physical
Chemistry Chemical Physics 16, 19732–19740 (2014).

[148] M. S. Jørgensen, U. F. Larsen, K. W. Jacobsen, and B. Hammer, “Exploration versus Exploita-
tion in Global Atomistic Structure Optimization,” The Journal of Physical Chemistry A 122,
1504–1509 (2018).

[149] D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping and the Lowest Energy
Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” The Journal of Physical
Chemistry A 101, 5111–5116 (1997).

[150] L. B. Vilhelmsen and B. Hammer, “A genetic algorithm for first principles global structure op-
timization of supported nano structures,” The Journal of Chemical Physics 141, 044711 (2014).

[151] G. G. Rondina and J. L. F. Da Silva, “Revised Basin-Hopping Monte Carlo Algorithm for Struc-
ture Optimization of Clusters and Nanoparticles,” Journal of Chemical Information and Model-
ing 53, 2282–2298 (2013).

[152] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science
220, 671–680 (1983).

[153] S. Goedecker, “Minima hopping: An efficient search method for the global minimum of the
potential energy surface of complex molecular systems,” The Journal of Chemical Physics 120,
9911–9917 (2004).

[154] L. B. Vilhelmsen, K. S. Walton, and D. S. Sholl, “Structure and Mobility of Metal Clusters in
MOFs: Au, Pd, and AuPd Clusters in MOF-74,” Journal of the American Chemical Society 134,
12807–12816 (2012).

[155] R. L. Johnston, “Evolving better nanoparticles: Genetic algorithms for optimising cluster ge-
ometries,” Dalton Transactions , 4193–4207 (2003).

[156] D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic Press, 2002).
[157] R. A. Andrievski, “Size-dependent effects in properties of nanostructured materials,” Reviews

on Advanced Materials Science 21, 107–133 (2009).
[158] R. L. Johnston, “Chapter 1 - Metal Nanoparticles and Nanoalloys,” in Frontiers of Nanoscience,

Metal Nanoparticles and Nanoalloys, Vol. 3, edited by R. L. Johnston and J. P. Wilcoxon (Else-
vier, 2012) pp. 1–42.

[159] J. P. Wilcoxon, “Chapter 2 - Nanoparticles—Preparation, Characterization and Physical Proper-

http://dx.doi.org/ 10.1103/PhysRevLett.75.288
http://dx.doi.org/ 10.1103/PhysRevLett.108.126101
http://dx.doi.org/ 10.1103/PhysRevLett.108.126101
http://dx.doi.org/10.1021/cs500202f
http://dx.doi.org/10.1039/C9RA01019J
http://dx.doi.org/10.1039/C9RA01019J
http://dx.doi.org/10.1016/j.comptc.2017.09.008
http://dx.doi.org/10.1016/j.comptc.2017.09.008
http://dx.doi.org/ 10.1063/1.5037159
http://dx.doi.org/10.1021/jacs.7b10660
http://dx.doi.org/10.1039/C4CP03133D
http://dx.doi.org/10.1039/C4CP03133D
http://dx.doi.org/10.1021/acs.jpca.8b00160
http://dx.doi.org/10.1021/acs.jpca.8b00160
http://dx.doi.org/10.1021/jp970984n
http://dx.doi.org/10.1021/jp970984n
http://dx.doi.org/10.1063/1.4886337
http://dx.doi.org/10.1021/ci400224z
http://dx.doi.org/10.1021/ci400224z
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/ 10.1063/1.1724816
http://dx.doi.org/ 10.1063/1.1724816
http://dx.doi.org/10.1021/ja305004a
http://dx.doi.org/10.1021/ja305004a
http://dx.doi.org/10.1039/B305686D
http://dx.doi.org/http://www.ipme.ru/e-journals/RAMS/no_22109/andrievski.pdf
http://dx.doi.org/http://www.ipme.ru/e-journals/RAMS/no_22109/andrievski.pdf
http://dx.doi.org/ 10.1016/B978-0-08-096357-0.00006-6

Bibliography 153

ties,” in Frontiers of Nanoscience, Metal Nanoparticles and Nanoalloys, Vol. 3, edited by R. L.
Johnston and J. P. Wilcoxon (Elsevier, 2012) pp. 43–127.

[160] F. Ding, A. Rosén, S. Curtarolo, and K. Bolton, “Modeling the melting of supported clusters,”
Applied Physics Letters 88, 133110 (2006).

[161] D. S. Koda, F. Bechstedt, M. Marques, and L. K. Teles, “Coincidence Lattices of 2D Crys-
tals: Heterostructure Predictions and Applications,” The Journal of Physical Chemistry C 120,
10895–10908 (2016).

[162] M. Hazewinkel, ed., Encyclopaedia of Mathematics: Volume 3, Encyclopaedia of Mathematics
(Springer Netherlands, 1989).

[163] E. Tasci, G. de la Flor, D. Orobengoa, C. Capillas, J. Perez-Mato, and M. Aroyo, “An intro-
duction to the tools hosted in the Bilbao Crystallographic Server,” EPJ Web of Conferences 22,
00009 (2012).

[164] G. d. l. Flor, D. Orobengoa, E. Tasci, J. M. Perez-Mato, and M. I. Aroyo, “Comparison of
structures applying the tools available at the Bilbao Crystallographic Server,” Journal of Applied
Crystallography 49, 653–664 (2016).

[165] “Strain Tensor Calculation,” (2020), https://www.cryst.ehu.es/cryst/strain.html.
[166] J. L. Schlenker, G. V. Gibbs, and M. B. Boisen, “Strain-tensor components expressed in terms

of lattice parameters,” Acta Crystallographica Section A 34, 52–54 (1978).
[167] M. Catti, “Calculation of elastic constants by the method of crystal static deformation,” Acta

Crystallographica Section A 41, 494–500 (1985).
[168] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier,

K. A. Persson, and G. Ceder, “Python Materials Genomics (pymatgen): A robust, open-source
python library for materials analysis,” Computational Materials Science 68, 314–319 (2013).

[169] “pymatgen.analysis.elasticity.strain module — pymatgen 2020.9.14 documentation,” (2020),
https://pymatgen.org/pymatgen.analysis.elasticity.strain.html?highlight=
strain#module-pymatgen.analysis.elasticity.strain.

[170] X. Peng and J. Cao, “A continuum mechanics-based non-orthogonal constitutive model for wo-
ven composite fabrics,” Composites Part A: Applied Science and Manufacturing 36, 859–874
(2005).

[171] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis,
M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode,
J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Max-
son, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S.
Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, “The atomic sim-
ulation environment—a Python library for working with atoms,” Journal of Physics: Condensed
Matter 29, 273002 (2017).

[172] Y. Zhou, M. Karplus, K. D. Ball, and R. S. Berry, “The distance fluctuation criterion for melting:
Comparison of square-well and Morse potential models for clusters and homopolymers,” The
Journal of Chemical Physics 116, 2323–2329 (2002).

[173] M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder,
J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures:
Nanocalorimetric measurements,” Physical Review B 62, 10548–10557 (2000).

[174] H. Jiang, K.-s. Moon, H. Dong, F. Hua, and C. P. Wong, “Size-dependent melting properties of
tin nanoparticles,” Chemical Physics Letters 429, 492–496 (2006).

[175] J. Sun and S. L. Simon, “The melting behavior of aluminum nanoparticles,” Thermochimica
Acta Chemical Thermodynamics and Thermal Analysis, 463, 32–40 (2007).

[176] G. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry
(Springer Science & Business Media, 2013).

[177] P. M. Larsen, S. Schmidt, and J. Schiøtz, “Robust Structural Identification via Polyhedral Tem-
plate Matching,” Modelling and Simulation in Materials Science and Engineering 24, 055007

http://dx.doi.org/10.1016/B978-0-08-096357-0.00005-4
http://dx.doi.org/10.1063/1.2187950
http://dx.doi.org/10.1021/acs.jpcc.6b01496
http://dx.doi.org/10.1021/acs.jpcc.6b01496
http://dx.doi.org/10.1007/978-94-009-5994-1
http://dx.doi.org/10.1051/epjconf/20122200009
http://dx.doi.org/10.1051/epjconf/20122200009
http://dx.doi.org/10.1107/S1600576716002569
http://dx.doi.org/10.1107/S1600576716002569
https://www.cryst.ehu.es/cryst/strain.html
https://www.cryst.ehu.es/cryst/strain.html
http://dx.doi.org/ 10.1107/S0567739478000108
http://dx.doi.org/10.1107/S0108767385001052
http://dx.doi.org/10.1107/S0108767385001052
http://dx.doi.org/ 10.1016/j.commatsci.2012.10.028
https://pymatgen.org/pymatgen.analysis.elasticity.strain.html?highlight=strain#module-pymatgen.analysis.elasticity.strain
https://pymatgen.org/pymatgen.analysis.elasticity.strain.html?highlight=strain#module-pymatgen.analysis.elasticity.strain
https://pymatgen.org/pymatgen.analysis.elasticity.strain.html?highlight=strain#module-pymatgen.analysis.elasticity.strain
http://dx.doi.org/10.1016/j.compositesa.2004.08.008
http://dx.doi.org/10.1016/j.compositesa.2004.08.008
http://dx.doi.org/10.1088/1361-648X/aa680e
http://dx.doi.org/10.1088/1361-648X/aa680e
http://dx.doi.org/10.1063/1.1426419
http://dx.doi.org/10.1063/1.1426419
http://dx.doi.org/ 10.1103/PhysRevB.62.10548
http://dx.doi.org/10.1016/j.cplett.2006.08.027
http://dx.doi.org/ 10.1016/j.tca.2007.07.007
http://dx.doi.org/ 10.1016/j.tca.2007.07.007
http://dx.doi.org/ 10.1088/0965-0393/24/5/055007
http://dx.doi.org/ 10.1088/0965-0393/24/5/055007

154 Bibliography

(2016).
[178] A. Stukowski, “Structure identification methods for atomistic simulations of crystalline materi-

als,” Modelling and Simulation in Materials Science and Engineering 20, 045021 (2012).
[179] A. Stukowski, “Computational Analysis Methods in Atomistic Modeling of Crystals,” JOM 66,

399–407 (2014).
[180] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open

Visualization Tool,” Modelling and Simulation in Materials Science and Engineering 18, 015012
(2009).

[181] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set,” Physical Review B 54, 11169–11186 (1996).

[182] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave
method,” Physical Review B 59, 1758–1775 (1999).

[183] P. E. Blöchl, “Projector augmented-wave method,” Physical Review B 50, 17953–17979 (1994).
[184] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and

transition elements,” Journal of Physics: Condensed Matter 6, 8245–8257 (1994).
[185] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,”

Physical Review Letters 77, 3865–3868 (1996).
[186] A. Tkatchenko and M. Scheffler, “Accurate Molecular Van Der Waals Interactions from Ground-

State Electron Density and Free-Atom Reference Data,” Physical Review Letters 102, 073005
(2009).

[187] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,”
The Journal of Chemical Physics 132, 154104 (2010).

[188] A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, “Accurate and Efficient Method for
Many-Body van der Waals Interactions,” Physical Review Letters 108, 236402 (2012).

[189] T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, “Extending the applicability of the
Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning,” The Journal of
Chemical Physics 141, 034114 (2014).

[190] J. Antony and S. Grimme, “Density functional theory including dispersion corrections for in-
termolecular interactions in a large benchmark set of biologically relevant molecules,” Physical
Chemistry Chemical Physics 8, 5287–5293 (2006).

[191] T. Morawietz, A. Singraber, C. Dellago, and J. Behler, “How van der Waals interactions deter-
mine the unique properties of water,” Proceedings of the National Academy of Sciences 113,
8368–8373 (2016).

[192] P. Wisesa, K. A. McGill, and T. Mueller, “Efficient generation of generalized Monkhorst-Pack
grids through the use of informatics,” Physical Review B 93, 155109 (2016).

[193] W. S. Morgan, J. J. Jorgensen, B. C. Hess, and G. L. W. Hart, “Efficiency of Generalized Regular
k-point grids,” Computational Materials Science 153, 424–430 (2018).

[194] W. S. Morgan, J. E. Christensen, P. K. Hamilton, J. J. Jorgensen, B. J. Campbell, G. L. W. Hart,
and R. W. Forcade, “Generalized regular k-point grid generation on the fly,” Computational
Materials Science 173, 109340 (2020).

[195] G. Wulff, “Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krys-
tallflächen,” Zeitschrift für Kristallographie - Crystalline Materials 34, 449–530 (1901).

[196] D. A. Kofke and E. D. Glandt, “Monte Carlo simulation of multicomponent equilibria in a
semigrand canonical ensemble,” Molecular Physics 64, 1105–1131 (1988).

[197] C. W. Glass, A. R. Oganov, and N. Hansen, “USPEX-Evolutionary crystal structure prediction,”
Computer Physics Communications 175, 713–720 (2006).

[198] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,”
Mathematical Programming 45, 503–528 (1989).

[199] M. L. Paleico and J. Behler, “A flexible and adaptive grid algorithm for global optimization

http://dx.doi.org/ 10.1088/0965-0393/24/5/055007
http://dx.doi.org/ 10.1088/0965-0393/24/5/055007
http://dx.doi.org/10.1088/0965-0393/20/4/045021
http://dx.doi.org/10.1007/s11837-013-0827-5
http://dx.doi.org/10.1007/s11837-013-0827-5
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/ 10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1088/0953-8984/6/40/015
http://dx.doi.org/ 10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1063/1.3382344
http://dx.doi.org/10.1103/PhysRevLett.108.236402
http://dx.doi.org/10.1063/1.4890003
http://dx.doi.org/10.1063/1.4890003
http://dx.doi.org/10.1039/B612585A
http://dx.doi.org/10.1039/B612585A
http://dx.doi.org/ 10.1073/pnas.1602375113
http://dx.doi.org/ 10.1073/pnas.1602375113
http://dx.doi.org/10.1103/PhysRevB.93.155109
http://dx.doi.org/10.1016/j.commatsci.2018.06.031
http://dx.doi.org/ 10.1016/j.commatsci.2019.109340
http://dx.doi.org/ 10.1016/j.commatsci.2019.109340
http://dx.doi.org/10.1524/zkri.1901.34.1.449
http://dx.doi.org/10.1080/00268978800100743
http://dx.doi.org/10.1016/j.cpc.2006.07.020
http://dx.doi.org/10.1007/BF01589116

Bibliography 155

utilizing basin hopping Monte Carlo,” The Journal of Chemical Physics 152, 094109 (2020).
[200] A. Singraber, J. Behler, and C. Dellago, “Library-Based LAMMPS Implementation of High-

Dimensional Neural Network Potentials,” Journal of Chemical Theory and Computation 15,
1827–1840 (2019).

[201] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Com-
putational Physics 117, 1–19 (1995).

[202] D. R. Lide, Handbook of Chemistry and Physics, 89th ed. (CRC Press, 2009).
[203] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” The

Journal of Chemical Physics 81, 511–519 (1984).
[204] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review

A 31, 1695–1697 (1985).
[205] M. L. Paleico and J. Behler, “A Bin and Hash Method for Analyzing Reference Data and

Descriptors in Machine Learning Potentials,” Machine Learning: Science and Technology 2,
037001 (2021).

[206] L. B. Pártay, A. P. Bartók, and G. Csányi, “Efficient Sampling of Atomic Configurational
Spaces,” The Journal of Physical Chemistry B 114, 10502–10512 (2010).

[207] E. L. Kolsbjerg, A. A. Peterson, and B. Hammer, “Neural-network-enhanced evolutionary al-
gorithm applied to supported metal nanoparticles,” Physical Review B 97, 195424 (2018).

[208] P. C. Jennings, S. Lysgaard, J. S. Hummelshøj, T. Vegge, and T. Bligaard, “Genetic algorithms
for computational materials discovery accelerated by machine learning,” npj Computational Ma-
terials 5, 1–6 (2019).

[209] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (MIT
Press, 2009).

[210] M. Ceriotti, G. A. Tribello, and M. Parrinello, “Simplifying the representation of complex free-
energy landscapes using sketch-map,” Proceedings of the National Academy of Sciences 108,
13023–13028 (2011).

[211] S. De, F. Musil, T. Ingram, C. Baldauf, and M. Ceriotti, “Mapping and classifying molecules
from a high-throughput structural database,” Journal of Cheminformatics 9, 6 (2017).

[212] A. Sadeghi, S. A. Ghasemi, B. Schaefer, S. Mohr, M. A. Lill, and S. Goedecker, “Metrics for
measuring distances in configuration spaces,” The Journal of Chemical Physics 139, 184118
(2013).

[213] L. Zhu, M. Amsler, T. Fuhrer, B. Schaefer, S. Faraji, S. Rostami, S. A. Ghasemi, A. Sadeghi,
M. Grauzinyte, C. Wolverton, and S. Goedecker, “A fingerprint based metric for measuring
similarities of crystalline structures,” The Journal of Chemical Physics 144, 034203 (2016).

[214] S. De, A. P. Bartók, G. Csányi, and M. Ceriotti, “Comparing molecules and solids across struc-
tural and alchemical space,” Physical Chemistry Chemical Physics 18, 13754–13769 (2016).

[215] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communi-
cations of the ACM 18, 509–517 (1975).

[216] K. Pearson, “On lines and planes of closest fit to systems of points in space,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 559–572 (1901).

[217] H. Hotelling, “Analysis of a complex of statistical variables into principal components,” Journal
of Educational Psychology 24, 417–441 (1933).

[218] F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond Manual Tuning of Hyperparameters,” KI
- Künstliche Intelligenz 29, 329–337 (2015).

[219] G. Luo, “A review of automatic selection methods for machine learning algorithms and hyper-
parameter values,” Network Modeling Analysis in Health Informatics and Bioinformatics 5, 18
(2016).

[220] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast Bayesian Optimization of
Machine Learning Hyperparameters on Large Datasets,” in Artificial Intelligence and Statistics
(2017) pp. 528–536.

http://dx.doi.org/10.1063/1.5142363
http://dx.doi.org/10.1021/acs.jctc.8b00770
http://dx.doi.org/10.1021/acs.jctc.8b00770
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/ 10.1103/PhysRevA.31.1695
http://dx.doi.org/ 10.1103/PhysRevA.31.1695
http://dx.doi.org/ 10.1088/2632-2153/abe663
http://dx.doi.org/ 10.1088/2632-2153/abe663
http://dx.doi.org/ 10.1021/jp1012973
http://dx.doi.org/10.1103/PhysRevB.97.195424
http://dx.doi.org/ 10.1038/s41524-019-0181-4
http://dx.doi.org/ 10.1038/s41524-019-0181-4
http://dx.doi.org/10.1073/pnas.1108486108
http://dx.doi.org/10.1073/pnas.1108486108
http://dx.doi.org/10.1186/s13321-017-0192-4
http://dx.doi.org/10.1063/1.4828704
http://dx.doi.org/10.1063/1.4828704
http://dx.doi.org/ 10.1063/1.4940026
http://dx.doi.org/10.1039/C6CP00415F
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/ 10.1080/14786440109462720
http://dx.doi.org/ 10.1080/14786440109462720
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1007/s13218-015-0381-0
http://dx.doi.org/10.1007/s13218-015-0381-0
http://dx.doi.org/10.1007/s13721-016-0125-6
http://dx.doi.org/10.1007/s13721-016-0125-6
http://proceedings.mlr.press/v54/klein17a.html

156 Bibliography

[221] N. J. Browning, R. Ramakrishnan, O. A. von Lilienfeld, and U. Roethlisberger, “Genetic Op-
timization of Training Sets for Improved Machine Learning Models of Molecular Properties,”
The Journal of Physical Chemistry Letters 8, 1351–1359 (2017).

[222] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, and M. Ceriotti, “Automatic selection of
atomic fingerprints and reference configurations for machine-learning potentials,” The Journal
of Chemical Physics 148, 241730 (2018).

[223] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in Proceedings of the fifth
annual workshop on Computational learning theory, COLT ’92 (Association for Computing
Machinery, New York, NY, USA, 1992) pp. 287–294.

[224] E. V. Podryabinkin and A. V. Shapeev, “Active learning of linearly parametrized interatomic
potentials,” Computational Materials Science 140, 171–180 (2017).

[225] L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly accurate inter-
atomic potentials for materials simulation,” Physical Review Materials 3, 023804 (2019).

[226] C. Schran, J. Behler, and D. Marx, “Automated Fitting of Neural Network Potentials at Coupled
Cluster Accuracy: Protonated Water Clusters as Testing Ground,” Journal of Chemical Theory
and Computation 16, 88–99 (2020).

[227] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the Surprising Behavior of Distance
Metrics in High Dimensional Space,” in Database Theory — ICDT 2001, Lecture Notes in
Computer Science, edited by J. Van den Bussche and V. Vianu (Springer, Berlin, Heidelberg,
2001) pp. 420–434.

[228] “Python 3.8.5 documentation - 5. Data Structures,” (2020), docs.python.org/3/tutorial/
datastructures.html.

[229] B. C. Gates, “Supported Metal Clusters: Synthesis, Structure, and Catalysis,” Chemical Reviews
95, 511–522 (1995).

[230] A. K. Santra and D. W. Goodman, “Oxide-supported metal clusters: models for heterogeneous
catalysts,” Journal of Physics: Condensed Matter 15, R31–R62 (2002).

[231] U. Heiz and E. L. Bullock, “Fundamental aspects of catalysis on supported metal clusters,”
Journal of Materials Chemistry 14, 564–577 (2004).

[232] W. Yu, M. D. Porosoff, and J. G. Chen, “Review of Pt-Based Bimetallic Catalysis: From Model
Surfaces to Supported Catalysts,” Chemical Reviews 112, 5780–5817 (2012).

[233] I. Cabria, M. J. López, and J. A. Alonso, “Theoretical study of the transition from planar to
three-dimensional structures of palladium clusters supported on graphene,” Physical Review B
81, 035403 (2010).

[234] R. Robles and S. N. Khanna, “Oxidation of Pdn (n=1-7, 10) Clusters Supported on Alumina/-
NiAl(110),” Physical Review B 82, 085428 (2010).

[235] Y. Tang, Z. Yang, and X. Dai, “A theoretical simulation on the catalytic oxidation of CO on
Pt/graphene,” Physical Chemistry Chemical Physics 14, 16566–16572 (2012).

[236] U. Heiz, F. Vanolli, L. Trento, and W.-D. Schneider, “Chemical reactivity of size-selected
supported clusters: An experimental setup,” Review of Scientific Instruments 68, 1986–1994
(1997).

[237] G. Haas, A. Menck, H. Brune, J. V. Barth, J. A. Venables, and K. Kern, “Nucleation and
growth of supported clusters at defect sites: Pd/MgO(001),” Physical Review B 61, 11105–
11108 (2000).

[238] A. Yamaguchi and E. Iglesia, “Catalytic activation and reforming of methane on supported pal-
ladium clusters,” Journal of Catalysis 274, 52–63 (2010).

[239] S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, and M. Al-Hada, “Size-dependent XPS spectra
of small supported Au-clusters,” Surface Science 608, 129–134 (2013).

[240] J. M. Rahm and P. Erhart, “Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle
Shapes for Any Size,” Nano Letters 17, 5775–5781 (2017).

[241] C. R. Henry, “Morphology of supported nanoparticles,” Progress in Surface Science 80, 92–116

http://dx.doi.org/ 10.1021/acs.jpclett.7b00038
http://dx.doi.org/ 10.1063/1.5024611
http://dx.doi.org/ 10.1063/1.5024611
http://dx.doi.org/10.1145/130385.130417
http://dx.doi.org/10.1145/130385.130417
http://dx.doi.org/ 10.1016/j.commatsci.2017.08.031
http://dx.doi.org/ 10.1103/PhysRevMaterials.3.023804
http://dx.doi.org/ 10.1021/acs.jctc.9b00805
http://dx.doi.org/ 10.1021/acs.jctc.9b00805
http://dx.doi.org/10.1007/3-540-44503-X_27
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
docs.python.org/3/tutorial/datastructures.html
docs.python.org/3/tutorial/datastructures.html
http://dx.doi.org/ 10.1021/cr00035a003
http://dx.doi.org/ 10.1021/cr00035a003
http://dx.doi.org/ 10.1088/0953-8984/15/2/202
http://dx.doi.org/ 10.1039/B313560H
http://dx.doi.org/10.1021/cr300096b
http://dx.doi.org/10.1103/PhysRevB.81.035403
http://dx.doi.org/10.1103/PhysRevB.81.035403
http://dx.doi.org/10.1103/PhysRevB.82.085428
http://dx.doi.org/ 10.1039/C2CP41441D
http://dx.doi.org/ 10.1063/1.1148113
http://dx.doi.org/ 10.1063/1.1148113
http://dx.doi.org/10.1103/PhysRevB.61.11105
http://dx.doi.org/10.1103/PhysRevB.61.11105
http://dx.doi.org/10.1016/j.jcat.2010.06.001
http://dx.doi.org/10.1016/j.susc.2012.09.024
http://dx.doi.org/10.1021/acs.nanolett.7b02761
http://dx.doi.org/10.1016/j.progsurf.2005.09.004
http://dx.doi.org/10.1016/j.progsurf.2005.09.004

Bibliography 157

(2005).
[242] E. Ringe, R. P. Van Duyne, and L. D. Marks, “Wulff Construction for Alloy Nanoparticles,”

Nano Letters 11, 3399–3403 (2011).
[243] S. J. Tauster, “Strong metal-support interactions,” Accounts of Chemical Research 20, 389–394

(1987).
[244] C.-J. Pan, M.-C. Tsai, W.-N. Su, J. Rick, N. G. Akalework, A. K. Agegnehu, S.-Y. Cheng, and

B.-J. Hwang, “Tuning and exploiting Strong Metal-Support Interaction (SMSI) in Heteroge-
neous Catalysis,” Journal of the Taiwan Institute of Chemical Engineers 74, 154–186 (2017).

[245] W. T. Figueiredo, G. B. Della Mea, M. Segala, D. L. Baptista, C. Escudero, V. Pérez-
Dieste, and F. Bernardi, “Understanding the Strong Metal–Support Interaction (SMSI) Effect in
CuxNi1−x/CeO2 (0 < x < 1) Nanoparticles for Enhanced Catalysis,” ACS Applied Nano Materi-
als 2, 2559–2573 (2019).

[246] M. Eckhoff, D. Schebarchov, and D. J. Wales, “Structure and Thermodynamics of Metal Clus-
ters on Atomically Smooth Substrates,” The Journal of Physical Chemistry Letters 8, 5402–5407
(2017).

[247] M. Mavrikakis, B. Hammer, and J. K. Nørskov, “Effect of Strain on the Reactivity of Metal
Surfaces,” Physical Review Letters 81, 2819–2822 (1998).

[248] K. Amakawa, L. Sun, C. Guo, M. Hävecker, P. Kube, I. E. Wachs, S. Lwin, A. I. Frenkel,
A. Patlolla, K. Hermann, R. Schlögl, and A. Trunschke, “How Strain Affects the Reactivity of
Surface Metal Oxide Catalysts,” Angewandte Chemie International Edition 52, 13553–13557
(2013).

[249] M. A. Bissett, S. Konabe, S. Okada, M. Tsuji, and H. Ago, “Enhanced Chemical Reactivity of
Graphene Induced by Mechanical Strain,” ACS Nano 7, 10335–10343 (2013).

[250] W. R. Tyson and W. A. Miller, “Surface free energies of solid metals: Estimation from liquid
surface tension measurements,” Surface Science 62, 267–276 (1977).

[251] R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K. A. Persson, and S. P. Ong, “Surface
energies of elemental crystals,” Scientific Data 3, 1–13 (2016).

[252] M. Iannuzzi, A. Laio, and M. Parrinello, “Efficient Exploration of Reactive Potential En-
ergy Surfaces Using Car-Parrinello Molecular Dynamics,” Physical Review Letters 90, 238302
(2003).

[253] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,”
ACM Transactions on Mathematical Software 22, 469–483 (1996).

[254] A. Halder, L. A. Curtiss, A. Fortunelli, and S. Vajda, “Perspective: Size selected clusters for
catalysis and electrochemistry,” The Journal of Chemical Physics 148, 110901 (2018).

[255] F. Düll, U. Bauer, F. Späth, P. Bachmann, J. Steinhauer, H.-P. Steinrück, and C. Papp, “Bimetal-
lic Pd–Pt alloy nanocluster arrays on graphene/Rh(111): formation, stability, and dynamics,”
Physical Chemistry Chemical Physics 20, 21294–21301 (2018).

[256] F. Düll, M. Meusel, F. Späth, S. Schötz, U. Bauer, P. Bachmann, J. Steinhauer, H.-P. Steinrück,
A. Bayer, and C. Papp, “Growth and stability of Pt nanoclusters from 1 to 50 atoms on h-
BN/Rh(111),” Physical Chemistry Chemical Physics 21, 21287–21295 (2019).

[257] M. W. Thompson, J. S. Colligon, R. Smith, C. Xirouchaki, and R. E. Palmer, “Deposition of
size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress
review,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 362, 117–124 (2004).

[258] S. Kunz, K. Hartl, M. Nesselberger, F. F. Schweinberger, G. Kwon, M. Hanzlik, K. J. J.
Mayrhofer, U. Heiz, and M. Arenz, “Size-selected clusters as heterogeneous model catalysts
under applied reaction conditions,” Physical Chemistry Chemical Physics 12, 10288–10291
(2010).

[259] S. Lucas and P. Moskovkin, “Simulation at high temperature of atomic deposition, islands co-
alescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo

http://dx.doi.org/10.1016/j.progsurf.2005.09.004
http://dx.doi.org/10.1016/j.progsurf.2005.09.004
http://dx.doi.org/ 10.1021/nl2018146
http://dx.doi.org/10.1021/ar00143a001
http://dx.doi.org/10.1021/ar00143a001
http://dx.doi.org/ 10.1016/j.jtice.2017.02.012
http://dx.doi.org/10.1021/acsanm.9b00569
http://dx.doi.org/10.1021/acsanm.9b00569
http://dx.doi.org/10.1021/acs.jpclett.7b02543
http://dx.doi.org/10.1021/acs.jpclett.7b02543
http://dx.doi.org/ 10.1103/PhysRevLett.81.2819
http://dx.doi.org/ 10.1002/anie.201306620
http://dx.doi.org/ 10.1002/anie.201306620
http://dx.doi.org/10.1021/nn404746h
http://dx.doi.org/10.1016/0039-6028(77)90442-3
http://dx.doi.org/ 10.1038/sdata.2016.80
http://dx.doi.org/10.1103/PhysRevLett.90.238302
http://dx.doi.org/10.1103/PhysRevLett.90.238302
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1063/1.5020301
http://dx.doi.org/ 10.1039/C8CP03749C
http://dx.doi.org/10.1039/C9CP04095A
http://dx.doi.org/10.1098/rsta.2003.1306
http://dx.doi.org/10.1098/rsta.2003.1306
http://dx.doi.org/10.1039/C0CP00288G
http://dx.doi.org/10.1039/C0CP00288G

158 Bibliography

code,” Thin Solid Films 518, 5355–5361 (2010).
[260] S. G. Kim, “Large-scale three-dimensional simulation of Ostwald ripening,” Acta Materialia 55,

6513–6525 (2007).
[261] M. C. Gimenez, A. J. Ramirez-Pastor, and E. P. M. Leiva, “Monte Carlo simulation of metal

deposition on foreign substrates,” Surface Science 600, 4741–4751 (2006).
[262] G.-F. Shao, N.-N. Tu, T.-D. Liu, L.-Y. Xu, and Y.-H. Wen, “Structural studies of Au–Pd bimetal-

lic nanoparticles by a genetic algorithm method,” Physica E: Low-dimensional Systems and
Nanostructures 70, 11–20 (2015).

[263] M. Chen, T. P. Straatsma, Z. Fang, and D. A. Dixon, “Structural and Electronic Property Study
of (ZnO)n, n ≤ 168: Transition from Zinc Oxide Molecular Clusters to Ultrasmall Nanoparti-
cles,” The Journal of Physical Chemistry C 120, 20400–20418 (2016).

[264] G. Shao, Y. Shangguan, J. Tao, J. Zheng, T. Liu, and Y. Wen, “An improved genetic algorithm
for structural optimization of Au–Ag bimetallic nanoparticles,” Applied Soft Computing 73,
39–49 (2018).

[265] X. Shao, L. Cheng, and W. Cai, “A dynamic lattice searching method for fast optimization of
Lennard–Jones clusters,” Journal of Computational Chemistry 25, 1693–1698 (2004).

[266] K. Yu, X. Wang, L. Chen, and L. Wang, “Unbiased fuzzy global optimization of Lennard-Jones
clusters for N ≤ 1000,” The Journal of Chemical Physics 151, 214105 (2019).

[267] I. Pickering, M. Paleico, Y. A. P. Sirkin, D. A. Scherlis, and M. H. Factorovich, “Grand Canoni-
cal Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?” The Journal of Physical Chem-
istry B 122, 4880–4890 (2018).

[268] M. H. Factorovich, V. Molinero, and D. A. Scherlis, “A simple grand canonical approach to
compute the vapor pressure of bulk and finite size systems,” The Journal of Chemical Physics
140, 064111 (2014).

[269] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation nucleation and defect structure
during surface indentation,” Physical Review B 58, 11085–11088 (1998).

[270] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Bond-orientational order in liquids and
glasses,” Physical Review B 28, 784–805 (1983).

[271] M. Hou, “Solid–liquid and liquid–solid transitions in metal nanoparticles,” Physical Chemistry
Chemical Physics 19, 5994–6005 (2017).

[272] C. Mottet and J. Goniakowski, “Melting and freezing of Pd nanoclusters: effect of the MgO(100)
substrate,” Surface Science Proceedings of the 22nd European Conference on Surface Science,
566-568, 443–450 (2004).

[273] W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia, “Substrate effect on the melting temperature
of gold nanoparticles,” The Journal of Chemical Physics 136, 234704 (2012).

[274] V. Srikant, J. S. Speck, and D. R. Clarke, “Mosaic structure in epitaxial thin films having large
lattice mismatch,” Journal of Applied Physics 82, 4286–4295 (1997).

[275] R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, “Effects of film thickness and
lattice mismatch on strain states and magnetic properties of La0.8Ca0.2MnO3 thin films,” Journal
of Applied Physics 85, 4794–4796 (1999).

[276] X. Chen and J. Yin, “Buckling patterns of thin films on curved compliant substrates with appli-
cations to morphogenesis and three-dimensional micro-fabrication,” Soft Matter 6, 5667–5680
(2010).

[277] J. Gazquez, S. Bose, M. Sharma, M. A. Torija, S. J. Pennycook, C. Leighton, and M. Varela,
“Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-
delta thin films,” APL Materials 1, 012105 (2013).

[278] A. Koma, “Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-
mismatched system,” Thin Solid Films Papers presented at the International Workshop on Sci-
ence and Technology of Thin Films for the 21st Century, Evanston,IL, USA, July 28-August 2,
1991, 216, 72–76 (1992).

http://dx.doi.org/10.1016/j.tsf.2010.04.064
http://dx.doi.org/ 10.1016/j.actamat.2007.07.058
http://dx.doi.org/ 10.1016/j.actamat.2007.07.058
http://dx.doi.org/10.1016/j.susc.2006.07.050
http://dx.doi.org/ 10.1016/j.physe.2015.02.008
http://dx.doi.org/ 10.1016/j.physe.2015.02.008
http://dx.doi.org/ 10.1021/acs.jpcc.6b06730
http://dx.doi.org/10.1016/j.asoc.2018.08.019
http://dx.doi.org/10.1016/j.asoc.2018.08.019
http://dx.doi.org/ 10.1002/jcc.20096
http://dx.doi.org/10.1063/1.5127913
http://dx.doi.org/ 10.1021/acs.jpcb.8b00784
http://dx.doi.org/ 10.1021/acs.jpcb.8b00784
http://dx.doi.org/10.1063/1.4865137
http://dx.doi.org/10.1063/1.4865137
http://dx.doi.org/10.1103/PhysRevB.58.11085
http://dx.doi.org/ 10.1103/PhysRevB.28.784
http://dx.doi.org/ 10.1039/C6CP08606C
http://dx.doi.org/ 10.1039/C6CP08606C
http://dx.doi.org/10.1016/j.susc.2004.05.083
http://dx.doi.org/10.1016/j.susc.2004.05.083
http://dx.doi.org/10.1063/1.4729910
http://dx.doi.org/ 10.1063/1.366235
http://dx.doi.org/10.1063/1.370484
http://dx.doi.org/10.1063/1.370484
http://dx.doi.org/10.1039/C0SM00401D
http://dx.doi.org/10.1039/C0SM00401D
http://dx.doi.org/10.1063/1.4809547
http://dx.doi.org/10.1016/0040-6090(92)90872-9
http://dx.doi.org/10.1016/0040-6090(92)90872-9
http://dx.doi.org/10.1016/0040-6090(92)90872-9

Bibliography 159

[279] S. Tiefenbacher, C. Pettenkofer, and W. Jaegermann, “Moiré pattern in LEED obtained by van
der Waals epitaxy of lattice mismatched WS2/MoTe2(0001) heterointerfaces,” Surface Science
450, 181–190 (2000).

[280] C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, “Inter-
layer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers,”
Science Advances 3, e1601459 (2017).

[281] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[282] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials and van der

Waals heterostructures,” Science 353 (2016), 10.1126/science.aac9439.
[283] D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostruc-

tures,” Nature Materials 16, 170–181 (2017).
[284] E. Fako, A. S. Dobrota, I. A. Pašti, N. López, S. V. Mentus, and N. V. Skorodumova, “Lattice

mismatch as the descriptor of segregation, stability and reactivity of supported thin catalyst
films,” Physical Chemistry Chemical Physics 20, 1524–1530 (2018).

[285] L. Ge, H. Yuan, Y. Min, L. Li, S. Chen, L. Xu, and W. A. Goddard, “Predicted Optimal Bifunc-
tional Electrocatalysts for the Hydrogen Evolution Reaction and the Oxygen Evolution Reaction
Using Chalcogenide Heterostructures Based on Machine Learning Analysis of in Silico Quan-
tum Mechanics Based High Throughput Screening,” The Journal of Physical Chemistry Letters
11, 869–876 (2020).

[286] J. Wintterlin and M. L. Bocquet, “Graphene on metal surfaces,” Surface Science Special Issue of
Surface Science dedicated to Prof. Dr. Dr. h.c. mult. Gerhard Ertl, Nobel-Laureate in Chemistry
2007, 603, 1841–1852 (2009).

[287] M. Huang, Y. Jiang, C. Jin, J. Ren, Z. Zhou, and L. Guan, “Pt–Cu alloy with high density of
surface Pt defects for efficient catalysis of breaking C–C bond in ethanol,” Electrochimica Acta
125, 29–37 (2014).

[288] S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, and S. Sun, “Tuning Nanoparticle
Structure and Surface Strain for Catalysis Optimization,” Journal of the American Chemical
Society 136, 7734–7739 (2014).

[289] A. Khorshidi, J. Violet, J. Hashemi, and A. A. Peterson, “How strain can break the scaling
relations of catalysis,” Nature Catalysis 1, 263–268 (2018).

[290] D. Kopač, B. Likozar, and M. Huš, “Catalysis of material surface defects: Multiscale model-
ing of methanol synthesis by CO2 reduction on copper,” Applied Surface Science 497, 143783
(2019).

[291] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial neural network classifica-
tion models: a methodology review,” Journal of Biomedical Informatics 35, 352–359 (2002).

[292] A. A. M. Al-Saffar, H. Tao, and M. A. Talab, “Review of deep convolution neural network in
image classification,” in 2017 International Conference on Radar, Antenna, Microwave, Elec-
tronics, and Telecommunications (ICRAMET) (2017) pp. 26–31.

[293] E. V. Podryabinkin, E. V. Tikhonov, A. V. Shapeev, and A. R. Oganov, “Accelerating crystal
structure prediction by machine-learning interatomic potentials with active learning,” Physical
Review B 99, 064114 (2019).

[294] N. Bernstein, G. Csányi, and V. L. Deringer, “De novo exploration and self-guided learning of
potential-energy surfaces,” npj Computational Materials 5, 1–9 (2019).

[295] V. Fiorentini and M. Methfessel, “Extracting convergent surface energies from slab calcula-
tions,” Journal of Physics: Condensed Matter 8, 6525–6529 (1996).

http://dx.doi.org/ 10.1016/S0039-6028(00)00297-1
http://dx.doi.org/ 10.1016/S0039-6028(00)00297-1
http://dx.doi.org/ 10.1126/sciadv.1601459
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/ 10.1126/science.aac9439
http://dx.doi.org/10.1038/nmat4703
http://dx.doi.org/10.1039/C7CP07276G
http://dx.doi.org/10.1021/acs.jpclett.9b03875
http://dx.doi.org/10.1021/acs.jpclett.9b03875
http://dx.doi.org/10.1016/j.susc.2008.08.037
http://dx.doi.org/10.1016/j.susc.2008.08.037
http://dx.doi.org/10.1016/j.susc.2008.08.037
http://dx.doi.org/ 10.1016/j.electacta.2014.01.085
http://dx.doi.org/ 10.1016/j.electacta.2014.01.085
http://dx.doi.org/10.1021/ja5030172
http://dx.doi.org/10.1021/ja5030172
http://dx.doi.org/ 10.1038/s41929-018-0054-0
http://dx.doi.org/10.1016/j.apsusc.2019.143783
http://dx.doi.org/10.1016/j.apsusc.2019.143783
http://dx.doi.org/10.1016/S1532-0464(03)00034-0
http://dx.doi.org/ 10.1109/ICRAMET.2017.8253139
http://dx.doi.org/ 10.1109/ICRAMET.2017.8253139
http://dx.doi.org/10.1103/PhysRevB.99.064114
http://dx.doi.org/10.1103/PhysRevB.99.064114
http://dx.doi.org/ 10.1038/s41524-019-0236-6
http://dx.doi.org/ 10.1088/0953-8984/8/36/005

Part IV

Appendices

Appendix A

Notes on the Coincidence Lattice Match
Algorithm and Strain Theory

A.1 Some notes on Linear Algebra

At the core of the CLM method, we need to find at least two solutions to the equation

AM~m = B~n, (A.1)

where A and B are 2×2 matrices containing the lattice vectors of the 2D lattices for materials A and
B in their columns; M is the usual 2D rotation matrix, and ~m and ~n are column vectors (although in
the text we will express them also as row vectors when this notation is more comfortable). Equivalent
expressions are available if we want to express A and B as containing the lattice vectors in their rows
instead. A “solution” here is a pair of vector~n and ~m that satisfy the conditions of the equation.

This equation always has solutions in the real domain. To see this, we can think of a fixed, given
vector ~n, and a given fixed rotation matrix M. In this case, the right hand side of the equation is
constant, and we are presented with a regular inhomogeneous linear equation system. The solution to
such a system exists if any of the following equivalent statements is true:

1. the columns of AM are linearly independent

2. det
(

AM
)
6= 0

3.
(

AM
)−1

exists

The first statement is the easiest one to prove: since the columns of A correspond to the lattice vectors
of 2D lattice, they are always linearly independent (LI). This is required, otherwise the two vector
cannot tile and cover the whole 2D plane. Additionally, in 2D, vectors are only linearly dependent
(LD) if they are parallel, that is, one is a multiple of the other. Two parallel vectors clearly do not form
any good lattice vector set. Since pure rotations do not affect the LI relationship of the columns of A,
AM is still a matrix with LI columns. Thus eq. A.1 has an exact real-valued solution that is trivial to
find by inverting AM for given values of ~n. Since it has a solution for arbitrary ~n, it has solution for
every possible value of~n.

Another property is that given a vector~n1, and a multiple of it~n2 such that

~n2 = k ·~n1, k ∈ R, (A.2)

the solution corresponding to~n2 is also the same multiple of the solution for~n1

~m2 = k ·~m1. (A.3)

164 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

This is trivial to prove. If ~m1 and ~m2 are solutions to eq. A.1, then

~m1 =
(

AM
)−1

B~n1, (A.4)

~m2 =
(

AM
)−1

B~n2. (A.5)

(A.6)

Using these equivalences, eq. A.2, and the commutative property for scalars in matrix and vector
multiplication, we obtain

~m2 =
(

AM
)−1

B(k.~n1), (A.7)

~m2 = k ·
[(

AM
)−1

B~n1

]
, (A.8)

~m2 = k ·~m1. (A.9)

This is related to the fact that if we find a coincident supercell or vector, any other supercells (i.e.
multiples or linear combinations) of this supercell will also be coincident. Equivalently, sums of solu-
tions are also solutions, for the same reason.

The problem then arises in the integer domain, when we attempt to find an integer solution ~m to a
given pair of integers ~n. The treatment of linear Diophantine equations like this is rather complex, so
it is not trivial to determine under which conditions this equation has exact integer solutions for the
general case.

One specific case where an exact integer solution is always present (if not necessarily desirable) is the
case where ~m and~n are composed of rational numbers. Since as mentioned before any multiples of the
initial~n and ~m are also solutions, we can multiply both solutions by their common integer denominators
until the decimal parts of both ~m and~n are gone and thus obtain an exact integer solution. The problem
in this case is that it might require a large supercell, too large for any practical computations.

One such case is if we have any pair of orthogonal lattices, with the rotation matrix at 0◦. For
example, for ZnO(101̄0) and Cu(100), our equation A.1 looks like the following, with~n = (1,0),

[
dCu 0
0 dCu

][
1 0
0 1

]
~m =

[
aZnO 0

0 cZnO

][
1
0

]
(A.10)

~m =

[
1/dCu 0

0 1/dCu

][
aZnO 0

0 cZnO

][
1
0

]
(A.11)

~m = (aZnO/dCu,0) = (3.29 Å/2.55 Å,0) = 329/255≈ 1.290..., (A.12)

where dCu is the nearest neighbor distance in bulk fcc Cu, and aZnO,cZnO are the lattice constants for
bulk ZnO. Since the solution for ~m is a vector composed of rational numbers, we can multiply both it
and the original proposed~n by the denominator and obtain a new, exactly valid, integer solution

~m = 255 · (329/255,0) = (329,0), (A.13)

~n = 255 · (1,0) = (255,0). (A.14)

(A.15)

It can be confirmed that this solution is correct

A.2 Worked CLM Example for Cu(111) and ZnO(101̄0) 165

[
dCu 0
0 dCu

][
1 0
0 1

][
329
0

]
−
[

aZnO 0
0 cZnO

][
255
0

]
= 0 (A.16)

329dCu−255aZnO = 0 (A.17)

329 ·2.55 Å = 255 ·3.29 Å (A.18)

838.95 = 838.95 . (A.19)

Now we can apply the same procedure for~n′ = (0,1) to obtain the other point of the new supercell,
with a result of ~m′ = cZnO/dCu = 5.30 Å/2.55 Å = 529/255 ≈ 2.075.... Scaling both to obtain an
integer, our result is ~m′ = (0,529),~n′ = (0,255). This creates a coincident supercell equivalent to
~n×~n′ = 255 · 255 = 65.025 cells of ZnO(101̄0) and ~m×~m′ = 329 · 529 = 174.041 cells of Cu(100),
which is a huge system

In the general case this huge exact integer solution might not even be available, since the rotation
matrix itself can easily introduce irrational square roots (or other irrational numbers from sine and
cosine operations) into the equation, or one of the components of the lattice vectors might be also
irrational if obtained geometrically. We just need approximate integer solutions, that is, any value can
be proposed, and then we need to grade the solutions with a given error.

A.2 Worked CLM Example for Cu(111) and ZnO(101̄0)

Here we present a worked example for a more complicated case, involving Cu(111) and ZnO(101̄0) at
a 20◦ rotation. Here, only one of the lattices is orthogonal, and we also include a rotation. Eq. A.1 for
this pair looks like

[
dCu 0.5 dCu

0
√

3/2 dCu

][
cos20◦ −sin20◦

sin20◦ cos20◦

][
m1
m2

]
−
[

aZnO 0
0 cZnO

][
n1
n2

]
= 0 . (A.20)

(A.21)

We then need to propose solutions in the form of 4 different integers (including zero, but not all zero
at the same time) m1,m2,n1,n2. These solutions are evaluated and a δ error value is obtained, equal
to the left hand side of eq. A.20. Of course, the closer to zero this δ is, the better the solution is. The
results for integer values between -5 and 5 (to limit the amount of results) and their errors are presented
in table A.1.

These solutions represent single points where linear combinations of the lattice vectors of both lat-
tices coincide. From these solutions, we now need to select at least two that are linearly independent
(otherwise, we cannot form a proper superlattice). Testing for linear independence in a computer pro-
gram is simple, by calculating the determinant of a matrix containing ~m,~m′ or ~n,~n′ as its columns. If
this determinant equals zero, the vectors that form the matrix are linearly dependent and thus one of
them needs to be discarded. Since the numbers involved correspond to integers, the determinant can
be calculated exactly with integer variables and compared exactly to zero, so no float comparison is
required. A growing list of unique solutions is kept, and all further solutions are compared against this
list, with solutions that have successfully tested as LI against all previous unique solutions being added
to the list.

This process leaves us with 4 solutions in this case, which we can combine in unique pairs to form 6
candidate coincident lattices. These lattices are shown in tables A.2 and A.3. The pairs of solutions are
indicated as ~m,~n and ~m′,~n′. From these lattices, some are still linear combinations of other solutions,
so they need to be discarded. For example, notice that for lattice b

166 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

Index m1 m2 n1 n2 δ

a 2 1 2 0 0.2524
b -2 -1 -2 0 0.2524
c 4 2 4 0 0.5048
d -4 -2 -4 0 0.5048
e -1 3 1 1 0.5844
f 1 -3 -1 -1 0.5844
g 2 4 4 1 0.6192
h -2 -4 -4 -1 0.6192
i 1 4 3 1 0.6195
j -1 -4 -3 -1 0.6195

Table A.1: Proposed integer solutions to eq. A.20 for integers between -5 and 5, organized by quality
of the solution δQOS. Bold text indicates the selected unique, linearly independent solutions
(a, e, g and i). Notice that for example b, c, and d are multiples of a.

~n(b) = 1 ·~n′(a)−1 ·~n(a), (A.22)

(2,0) = (3,1)− (1,1)

~n′(b) = 1 ·~n(a)+0 ·~n′(a), (A.23)

and the same applies to the ~m’s, which means that b and a are actually equivalent solutions. This arises
when the two vectors of a solution can be expressed as integer linear combinations of the vectors of
another solution (for the shown example, 1, −1 and 0 are the integer factors). As a counter example,
lattices c and d are not equivalent since although~n(c) =~n(d),

~n′(d) = 0.5 ·~n(c)+1 ·~n′(c), (A.24)

which has non integer factors. This can be tested for in a program by calculating the equation

x = b ·A−1, (A.25)

where x are the components of vector b (~n or ~n′ of the lattice being tested) in the basis A (a matrix
containing ~n and ~n′ of the reference lattice as columns), and testing if the obtained components are
integer valued. This is done for both vectors of a given candidate superlattice against all known unique
superlattices. If at least one coordinate is non-integer, then a new unique lattice has been detected and
is added to the unique lattice list.

Noticed that the calculated strain εDOLD (explained in the next paragraphs) is also identical for the
non-unique configurations, as well as some other properties such as the number of atoms or the mul-
tiplicity from the original lattice. This procedure leaves us with only 4 unique lattices: a, d, e and
f.

Natoms is the number of atoms in the resulting superlattice. This is calculated from the base number
of atoms for one layer of each material (4 for ZnO, 1 for Cu), multiplied by the area of the superlattice
compared to the original lattice, which is obtained from |m×m′| and |n×n′|.

Table A.3 shows the new proposed vectors for the resulting superlattices, which are obtained by
multiplying the original lattice vectors of each material with the corresponding~n or ~m. As was desired

from the algorithm, ~̃a1,2 ≈
~̃b1,2, that is, the vectors for the new superlattices for each material almost

coincide.
We can visualize the coincidence between the lattices when utilizing these solutions in figure A.1.

A.2 Worked CLM Example for Cu(111) and ZnO(101̄0) 167

Index m1 m2 m′1 m′2 n1 n2 n′1 n′2 |m×m′| |n×n′| Natoms δ (m,n) δ (m′,n′) εDOLD
a -1 3 1 4 1 1 3 1 7 2 15 0.5844 0.6195 0.0511
b 2 1 -1 3 2 0 1 1 7 2 15 0.2524 0.5844 0.0511
c 2 1 1 4 2 0 3 1 7 2 15 0.2524 0.6195 0.0511
d 2 1 2 4 2 0 4 1 6 2 14 0.2524 0.6192 0.0735
e -1 3 2 4 1 1 4 1 10 3 22 0.5844 0.6192 0.0753
f 2 4 1 4 4 1 3 1 4 1 8 0.6192 0.6195 0.2265

Table A.2: Resulting superlattice candidates, from combining candidates in table A.1, ordered by strain
(ε). |m×m| shows which multiple of the original lattice for material A the superlattice is.
This is useful for calculating the area or number of atoms (Natoms) of the new superlattice.
In bold, those candidates that are completely LI.

Index m1 m2 m′1 m′2 n1 n2 n′1 n′2 ã1x ã1y ã2x ã2y b̃1x b̃1y b̃2x b̃2y

a -1 3 1 4 1 1 3 1 3.496 5.844 10.305 5.737 3.290 5.297 9.870 5.297
b 2 1 -1 3 2 0 1 1 6.809 -0.106 3.496 5.844 6.580 0.000 3.290 5.297
c 2 1 1 4 2 0 3 1 6.809 -0.106 10.305 5.737 6.580 0.000 9.870 5.297
d 2 1 2 4 2 0 4 1 6.809 -0.106 12.724 4.857 6.580 0.000 13.160 5.297
e -1 3 2 4 1 1 4 1 3.496 5.844 12.724 4.857 3.290 5.297 13.160 5.297
f 2 4 1 4 4 1 3 1 12.724 4.857 10.305 5.737 13.160 5.297 9.870 5.297

Table A.3: Continuation of table A.2, showing the resulting new superlattice vectors for each material.
~̃a1 = (ã1x, ã1y) is one lattice vector of the new superlattice for material A, and so on for the
other components.

Here, we represent both lattices with their lattice points, that is, all possible linear integer combinations
of the lattice vectors. These lattice points tile 2D space continuously, filling it in. Where lattice points of
one lattice are close to the ones from the other lattice, we have found a match. For example, coincident
lattice d from table A.2, has ~n = (2,0). This means one side of the new superlattice is found if we
move 2 times along the first lattice vector of ZnO(101̄0), and 0 times along the second lattice vector.
This corresponds to starting at the origin where the red and blue lattices meet, and displacing two blue
points to the right, which in effect is shown as one of the sides of the black coincident superlattice
parallelogram. The other side of this parallelogram is given by ~n′ = (4,1). once again, if we move
4 blue dots horizontally from the origin and 1 vertically, we will find the other coincident point. A
similar approach is followed for the Cu lattice, but it is slightly more difficult to follow given that the
Cu(111) lattice is rotated, and not orthogonal.

As can be seen, since the original solutions are not exact, the generated superlattices are close but not
exactly on top of each other. At each edge of the black parallelograms, we have red crosses and blue
dots that almost but not quite overlap (except at the origin, where the overlap is exact). We need a way
of evaluating how good each of these matches is, that is, how large the deviation between coincident
dots really is.

To evaluate this, we proceed to the last step in the algorithm: deforming one of the materials. To
make the solution exact, one of the materials needs to be deformed, by contraction, expansion, or
change of the angle between the lattice vectors. Alternatively, both materials can be deformed to some
sort of intermediate solution. We choose to expand only the Cu layer, by setting its lattice vectors to
those of the ZnO superlattice and displacing atoms into the new lattice by maintaining their fractional
coordinates in the new reference frame, maintaining the structure given by the ZnO layer. This is
shown in fig. A.2. Notice that now the superlattices match exactly, at the cost of having altered the
Cu(111) lattice. Notice that now the red cross patterns are not the same across the images, and that the
red cross lattice is highly deformed in the case of f. Figure fig. A.3 shows the resulting atomic system
corresponding to each of these coincident lattices.

168 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

Figure A.1: Dot plots of the unique lattices from table A.2. Red crosses represent the Cu(111) lattice,
rotated 20◦ clockwise, filling in all of 2D space. Blue dots represent ZnO(101̄0). Both
lattices coincide at the origin. The coincident superlattice for ZnO is marked with black
lines.

A.2 Worked CLM Example for Cu(111) and ZnO(101̄0) 169

Figure A.2: As in fig. A.1, but with the Cu lattice strained to match the ZnO lattice exactly.

170 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

Figure A.3: As in fig. A.2, but now adding the corresponding atoms to 1 layer of each material.

A.3 Strain Theory 171

A.3 Strain Theory

The deformation inflicted in the previous section can be interpreted through the lens of the theory of
geometric strain, to obtain a numeric quality indicator in the form of the average strain εDOLD. Another
advantage of utilizing the strain is that if the finite version is used, any rigid body rotations (that is,
any pure rotations that would not affect interatomic distances) between the initial and final lattices are
removed.

The topic of strain (and associated stress and elastic constants) is treated extensively in many me-
chanics and engineering textbooks, but this treatment is usually too complex, or based on derivatives
or time evolution of a system. This appendix is intended to clarify and simplify the available literature.
Here we develop the theory from the point of view of two lattice cells, one initial and one deformed,
which are described by their lattice vectors. For simplicity we will work in 2D, but the extension to 3D
is trivial.

Many derivations [166, 167] are available for the case of a lattice cell described in the crystallo-
graphic convention of 3 lengths and 3 angles, but this description is incomplete since it does not take
into account possible translations or rotations of the lattices with respect to each other. In the crystallo-
graphic convention, the lattices are always centered on the origin, with the first lattice vector pointing
in the direction of the x-axis (that is, only its x-component is different form zero and positive), the
second in the x-y plane (no z component) with positive y component, and the third vector not restricted
to a plane but with positive z component. In this case the only allowed lattice vector matrices can be
expressed as

(a,b,c) =

 ax bx cx

0.0 by cy

0.0 0.0 cz

 , (A.26)

where each lattice vector is a column of the matrix, ai,bi,ci are the components of each vector, and
ax,by,cz are strictly positive (not 0.0).

This convention limits the range of possible cells and is more inconvenient to work with, but in the
end the results with the vector matrix utilized here are exactly the same as for the crystallographic
definition and conversions are possible if cumbersome.

Some of the available tools for calculating strain, such as the Bilbao Crystallographic Server’s
STRAIN tool [165] are based on the crystallographic definition, and can be used as a comparison
tool. The Pymatgen [169] library for Python offers tools for calculating a deformed cell given an initial
cell and a strain/deformation tensor, but what is usually lacking is the reverse: calculating a strain from
a given set of lattice vectors. For this reason, to aid in understanding the behavior of strain, this section
explains how certain modifications to the initial lattice vectors result in specific strain modes (pure
normal strain, pure shear strain, etc.).

For an arbitrary set of lattice vectors, we can calculate two other matrices/tensors. The metric tensor
G provides all the projections (dot products) between the vectors describing the lattice cell

G =

[
~a1 ·~a1 ~a1 ·~a2
~a2 ·~a2 ~a2 ·~a2

]
, (A.27)

=

[
|~a1|2 |~a1| · |~a2| · cos(θ)

|~a1| · |~a2| · cos(θ)· |~a1|2
]
, (A.28)

= AT A, (A.29)

(A.30)

where A is a matrix containing the lattice vectors as columns, ~a1,~a2 are the lattice vectors of our cell

172 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

and θ the angle between them. G is symmetric, that is, equal to its own transpose

GT = (AT A)T = AT (AT)T = AT A = G, (A.31)

where we have used the following property of matrix multiplication and transpose

(AB)T = BT AT . (A.32)

This tensor has the property that it is not sensitive to rotations of the original matrix describing the
cell, a property which we will make use of later. Since it is symmetric and also positive definite (a
property of any AT A matrix), it can also be decomposed into a root matrix. If we use the Cholesky
decomposition algorithm for this, we obtain a lower triangular tensor R such that:

G = RRT . (A.33)

Notice that here the matrix multiplication is the other way around from the metric tensor. This tensor
is utilized by the reference papers [166, 167] for the STRAIN tool [165], where they are known as the
“standard root tensor”, and we will also make use of it. It provides a convenient triangular description
of any given cell, that is also independent of rotations of the original matrix.

A.3.1 Deformation Tensor

Now, to calculate the strain, we first build the matrices corresponding to the original and deformed
lattice vectors, with the vectors as columns

A =

[
a1x a2x

a1y a2y

]
Ã =

[
ã1x ã2x

ã1y ã2y

]
. (A.34)

From these we can calculate a deformation (sometimes also known as distortion or displacement)
tensor, by first proposing that Ã is equal to A plus the distortion

Ã = A+ eA = (I+ e)A, (A.35)

where I is the identity matrix. Multiplying both sides to the right by the inverse of A (which as
described before, always exists) yields

ÃA−1 = (I+ e)AA−1 (A.36)

e = ÃA−1− I. (A.37)

A similar tensor can be constructed if we switch around the initial and final matrices (initial vs.
deformed coordinate reference frame), or if we change the order of the right hand side in A.35. As
the magnitude of the distortion to the initial and final lattices decreases these tensors all tend to be the
same, and the results are in any case equivalent as long as it is clear which version of the tensor we are
working with.

A.3.2 Infinitesimal Strain Tensor

To obtain a useful strain tensor that fulfills the expected properties of strain (more on this later), we
build a symmetric tensor out of e, which is called (under many other names) the infinitesimal, Cauchy,

A.3 Strain Theory 173

small or linear strain tensor ε , as

ε = 0.5(e+ eT) =

[
εxx γxy

γyx εyy

]
, (A.38)

where εxx and εyy are the linear strains in the direction of the x- and y-axis (that is, how much a line
that was originally lying on the x- or y-axis gets stretched or contracted by the deformation), and
γxy = γyx = γ is the shear strain (related to the change in angle for a pair of lines that were originally
orthogonal and parallel to the Cartesian axis). That this is symmetric is easily proven for any arbitrary
matrix added to its transpose (replace with a,b,c,d coefficients and calculate). Notice that sometimes
γ is taken to be 2 times the γ in this matrix, depending on conventions.

Another related useful tensor measures the degree of rigid body rotation in a given deformation

ω = 0.5(e− eT) =

[
0.0 ω

−ω 0.0

]
. (A.39)

ω is always antisymmetric, that is, ωi j = −ω ji. Once again, this is easily proven by proposing an
arbitrary matrix with given coefficients a,b,c,d and calculating.

Notice that e is actually the sum of the other two tensors

e = (0.5+0.5)e+0.5(eT − eT) = 0.5(e+ eT)+0.5(e+ eT) = ε +ω. (A.40)

The typical examples of basic deformation are i) normal strain, ii) pure shear and iii) a small rigid
body rotation. The following figure A.4 shows all the possible basic strains, wit subfigure a) containing
an example of uniaxial strain for a perpendicular set of lattice vectors (the case is more complicated if
they are not perpendicular).

In the subfigure, L is the original length in the direction of the first lattice vector (which coincides
with the x-axis) and L+∆L is the length after straining. This setup results in the matrices

A =

[
L 0
0 C

]
Ã =

[
L+dL 0

0 C

]
e =

[L+dL
L −1 0

0 0

]
(A.41)

ε =

[1.0dL
L 0
0 0

]
ω =

[
0 0
0 0

]
. (A.42)

As expected, the rotation tensor is zero, and the only component for the strain tensor is in the diago-
nal. This component, ∆L/L, is the fractional increase (or decrease) in length due to the strain. Notice
that this component is linear in L, hence the name of the linear strain tensor (as opposed to the finite
tensor we will use later).

For a pure shear, we apply a deformation parallel to one or both of the Cartesian axis. This changes
the angle between lattice vectors of our cell. Two types of shear are presented in fig. A.4. The shear
in b) includes partly a rigid body rotation which is equal to half of the initial shear. For a pure proper
shear with no rigid body rotation, we need to shear the initial square equally from both sides, as in c).

For the shears in fig. A.4, we have the following resulting tensors. For b), shear with rotation, we
obtain

A =

[
C 0
0 L

]
Ã =

[
C D
0 L

]
e =

[
0 D

L
0 0

]
(A.43)

ε =

[
0 0.5D

L
0.5D

L 0

]
ω =

[
0 0.5D

L
−0.5D

L 0

]
. (A.44)

174 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

Figure A.4: Example of the basic strains: a) Pure uniaxial strain b) Shear strain, with ∆θ , the angle
change, marked c) Pure shear d) Rigid body rotation, with rotation angle θ marked

Notice that γ = 0.5D/L = 0.5tan(∆θ) in fig. A.4 b), and that for small ∆θ , the tangent approaches ∆θ ,
which means that γ is approximately equal to half the change in angle between the original orthogonal
axis, as desired.

For the other shear with no rotation, we obtain

A =

[
C 0.0

0.0 L

]
Ã =

[
C D
CD
L L

]
e =

[
0 D

L
D
L 0

]
(A.45)

ε =

[
0 1.0D

L
1.0D

L 0

]
ω =

[
0 0
0 0

]
. (A.46)

Notice that if C and L are of different lengths, we need to scale the distortion to the length of each
side to obtain a pure shear with no axial strain or rotation.

For a pure rotation as shown in fig. A.4d), we just need to multiply with a rotation matrix. We obtain
the following equations

A.3 Strain Theory 175

A =

[
C 0
0 L

]
M =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(A.47)

Ã = MA =

[
C cos(θ) −Lsin(θ)
C sin(θ) Lcos(θ)

]
e =

[
cos(θ)−1 −sin(θ)

sin(θ) cos(θ)−1

]
(A.48)

ε =

[
1.0cos(θ)−1.0 0

0 1.0cos(θ)−1.0

]
ω =

[
0 −1.0sin(θ)

1.0sin(θ) 0

]
. (A.49)

Notice that although we expected ε to be just zero, we actually have a component that depends on
the cosine of the rotation angle. For small angles, this cosine approaches 1, and ε is exactly zero. This
is the disadvantage of using the infinitesimal strain tensor: any rotation between the initial and final
lattice affects the measure of the strain. This not a desired behavior since such a rigid rotation does
not affect the energy of the system (interatomic distances remain constant), so it is not modifying the
system in a relevant way. This is the real limitation of the small strain tensor: it is inaccurate for large
rotations. For rotations of 90 or 180 degrees for example, it is completely wrong with strains being the
opposite of what they should be, or exchanged in axis.

A.3.3 Finite Strain Tensor

To solve the rotation problems of the linear strain tensor, the finite or Lagrange-Green strain tensor is
introduced, defined as

η = 0.5(e+ eT + eT e) =
[

εxx γxy

γyx εyy

]
, (A.50)

where we still identify the components of η wit the linear and shear strains, but as we will see later,
they are slightly different from the ones obtained for the infinitesimal strain tensor.

This new tensor is immune to rotation between the initial and deformed conditions, since

η = 0.5(e+ eT + eT e) = 0.5(A−T ÃT ÃA−1− I) = 0.5(A−T GÃA−1− I), (A.51)

where GÃ is the metric tensor of Ã, which as explained before does not depend on the orientation of
the lattice orientation. In this way, we get rid of rigid rotations between the initial and deformed lattice,
but not of rotation between the initial lattice and the Cartesian axis (see next section).

A disadvantage of this tensor is that it is no longer linear with strain, and second order terms start
appearing when calculating normal and shear strains. For the strains calculated before, we have, for
eq.A.42 (pure linear strain), the result

η =

[
∆L
L + (0.5∆L)

L2 0
0 0

]
. (A.52)

Notice the appearance of the additive 0.5∆L/L2 term that was not present before. This is a consequence
of utilizing the finite tensor, the introduction of quadratic higher order terms, and the reason why the
infinitesimal tensor is known as “linear”. As the magnitude of the strain decreases this term goes to
zero and the two strain tensors coincide.

For eqs. A.44 and A.46 (shear with and without rotation), the result is

176 Appendix A Notes on the Coincidence Lattice Match Algorithm and Strain Theory

η =

[
0 0.5D

L
0.5D

L
0.5D2

L2

]
(A.53)

η =

[
0.5D2

L2
1.0D

L
1.0D

L
0.5D2

L2

]
. (A.54)

Notice that now quadratic terms have been included in the diagonal where we would expect to see the
axial strain. Once again, these terms go to zero as the deformation becomes small. These extra terms
of the finite tensor are not a problem, since they are usually small, and in either case as long as the
notation being used is clear and explicit they are well defined.

Eq.A.49 (only rigid body rotation) results in

η =

[
0 0
0 0

]
, (A.55)

which gives us the expected zero strain tensor.

A.3.4 Strain for Rotated Systems

In the cases inspected until now, the original lattice cell coincided with the Cartesian axis. If we have an
initial configuration where the lattice vectors form an angle with the Cartesian axis, the interpretation of
the strain tensor becomes more complicated. The strain we have studied until now is expressed with
respect to the Cartesian axis coordinates, and NOT with respect to the lattice matrices provided.
That is, εxx measures the stretch or compression of a line originally parallel to the X vector, and not
necessarily parallel to the lattice vectors of our cell.

To recover the strain as expressed in our lattice coordinate system, we need to perform a coordinate
basis change on the strain tensor, using a normalized version of the lattice matrix (equivalent to turning
our lattice vectors into directional unit versors and multiplying by the Cartesian versors)

ε
′ or η

′ = CT (ε or η)C (A.56)

C =

[
cosα cosβ

sinα sinβ

]
=

[
â1 · x̂ â2 · x̂
â1 · ŷ â2 · ŷ

]
, (A.57)

where C is the so called cosine matrix, α and β are the angles between the first lattice vector and the
x-axis, and the second lattice vector and the x-axis, respectively; x̂ and ŷ are the unit versors associated
with the Cartesian axis; and â1 and â2 are the versors of the lattice vectors (unitary lattice vectors).

With this cosine matrix we can undo the rotation originated by M, to recover the strain tensor in
the original Cartesian coordinates. This makes it easier to interpret the components of the strain tensor
(εxx,εyy,γ), but derived properties such as the eigenvalues remain the same with or without this rotation.

A.3.5 Principal Stretches and Principal Strain Directions

As the strain tensor is just a 2 by 2 matrix, we can easily calculate its eigenvalues, a.k.a. principal
stretches, as

ε1, 2 = εmax, min =
εxx + εyy

2
±
√(

εxx− εyy

2

)2
+ γ2

xy, (A.58)

A.3 Strain Theory 177

for either the finite or infinitesimal versions. As with any matrix, the eigenvalues allow us to diagonalize
the strain matrix. This gives an interpretation for the associated eigenvectors as the principal strain
directions: these are the directions that suffer only pure stretch with no shear strain.

We can calculate the spontaneous strain from these eigenvalues to obtain a measure of general dis-
tortion, εDOLD, as

ε = 0.5
√
(ε2

1 + ε
2
2). (A.59)

The eigenvalues are associated with the invariants of the strain tensor, properties that remain constant
no matter the orientation of the coordinate system

I1 = Θ = tr(η) = ∑
i

ηii = ∑
i

εi, (A.60)

I2 = Φ = 0.5(tr2(η)− tr(η2)) = ∑
i 6=j

ηiiηjj−∑
i 6=j

ηijηji = ∑
i6=j

εiεj, (A.61)

I3 = Ψ = det(η) = η11η22−η12η21 = ∏
i

εi, (A.62)

where tr is the trace of a matrix, ηi j are the components of the η tensor, εi are the eigenvalues of
said tensor; I1, the first invariant, is associated with the hydrostatic strain (diagonal elements), I2, the
second strain invariant, is associated with the deviatoric strain, and global strain measures such as the
von Mises strain or εDOLD, and I3, the third strain invariant, is not so simple to interpret physically but is
just the determinant of the strain tensor. The determinant in I3 is of course only valid for a 2 by 2 strain
tensor. For large tensors the expressions in terms of the tensor components becomes more complicated,
for this reason it is usually easier to work directly with the eigenvalues if available. Since they do not
depend on the coordinate system, we can calculate them for the diagonalized strain tensor (where the
eigenvalues are in the diagonal), or for the original, non diagonalized version, with the results of course
being the same.

A.3.6 Worked Example

The following shows the values for all these matrices and eigenvalues for coincidence lattice a of
table A.2.

A =

[
3.4964 10.3054
5.8437 5.7375

]
Ã =

[
3.2900 9.8700
5.2969 5.2969

]
(A.63)

e =
[
−0.0339 −0.0151
0.0140 −0.1019

]
ε =

[
−0.0339 −0.0005
−0.0005 −0.1019

]
(A.64)

η =

[
−0.0332 −0.0010
−0.0010 −0.0966

]
η
′ =

[
−0.0400 0.0196
0.01963 −0.0898

]
(A.65)

ω =

[
0.0 −0.0145

0.0145 0.0

]
(A.66)

From η ′ (or η , since these are invariant under rotations, save some round-off errors), the eigenvalue
related quantities are

ε1 =−0.0332 ε2 =−0.0966 (A.67)

εDOLD = 0.0511 . (A.68)

Appendix B

RuNNer Settings

1 ##
g e n e r a l keywords
##
#Commented l i n e s have been d e a c t i v a t e d , b u t a r e k e p t

5 # t o show t h a t t h a t o p t i o n has been e x p l i c i t l y d i s a l l o w e d
n n _ t y p e _ s h o r t 1 # 1= Behle r−P a r r i n e l l o
runner_mode 1 / 2 # 1 : SF G e n e r a t i o n 2 : F i t t i n g
number_o f_e l emen t s 3
e l e m e n t s O Cu Zn

10 random_seed 1000 # seed f o r i n i t i a l random we ig h t p a r a m e t e r s
and t r a i n / t e s t s p l i t t i n g

random_number_type 1 # 1= ran0 , 2= ran1 , 3= ran2 , 4= ran3
r e m o v e _ a t o m _ e n e r g i e s # remove a t omi c e n e r g i e s b e f o r e f i t t i n g
e n e r g y _ t h r e s h o l d 0 . 0 0 # e n e r gy t h r e s h o l d f o r f i t t i n g d a t a i n Ha p e r atom

15 b o n d _ t h r e s h o l d 0 . 5 d0 # t h r e s h o l d f o r t h e s h o r t e s t bond i n s t r u c t u r e
f o r c e _ t h r e s h o l d 1 0 . 0

##
NN s t r u c t u r e o f t h e s h o r t−r a n g e NN

20 ##
u s e _ s h o r t _ n n # use NN f o r s h o r t r a n g e i n t e r a c t i o n s
g l o b a l _ h i d d e n _ l a y e r s _ s h o r t 2
g l o b a l _ n o d e s _ s h o r t 20 20
g l o b a l _ a c t i v a t i o n _ s h o r t t t l

25
##
symmetry f u n c t i o n g e n e r a t i o n (mode 1) :
##
t e s t _ f r a c t i o n 0 .20000 # t h r e s h o l d f o r s p l i t t i n g between f i t t i n g and t e s t s e t

30
##
symmetry f u n c t i o n d e f i n i t i o n s (a l l modes) :
##
INFO : s y m f u n c t i o n f o r m a t : r e f e r e n c e atom , type , n e i g h b o r e l e m e n t 1

35 #(and n e i g h b o r e l e m e n t 2) , s y m f u n c t i o n p a r a m e t e r s
#
GLOBAL SYMMETRY FUNCTIONS FOR SHORT RANGE NN
SAMPLE TYPE 2 : g l o b a l _ s y m f u n c t i o n _ s h o r t 2 7 .14214 0 . 0 11 .338
! t y p e e t a r s h i f t f u n c c u t o f f

40 # SAMPLE TYPE 4 : g l o b a l _ s y m f u n c t i o n _ s h o r t 4 7 .14214 11 .338
! t y p e e t a f u n c c u t o f f
#−−−
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .0010 0 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .0100 0 .0000 12 .00000

45 g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .0200 0 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .0500 0 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .1000 0 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .2000 0 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .050 3 .0000 12 .00000

50 g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .100 3 .0000 12 .00000

179

g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .200 3 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .500 3 .0000 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 2 0 .900 3 .0000 12 .00000

55 g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 1 . 0 1 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 1 . 0 2 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 1 . 0 4 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 1 . 0 1 6 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 −1.0 1 . 0 12 .00000

60 g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 −1.0 2 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 −1.0 4 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0010 −1.0 1 6 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0030 1 . 0 1 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0030 1 . 0 4 . 0 12 .00000

65 g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0030 −1.0 1 . 0 12 .00000
g l o b a l _ s y m f u n c t i o n _ s h o r t 3 0 .0030 −1.0 4 . 0 12 .00000

##
f i t t i n g (mode 2) : g e n e r a l i n p u t s f o r s h o r t r a n g e :

70 ##
epochs 15 # number o f f i t t i n g epochs
po in t s_ in_memory 2500 # max number o f s t r u c t u r e s i n memory
m i x _ a l l _ p o i n t s # mix o r d e r o f t r a i n i n g p o i n t s
s c a l e _ s y m m e t r y _ f u n c t i o n s # s c a l e symmetry f u n c t i o n s

75 f i t t i n g _ u n i t eV # u n i t f o r e r r o r o u t p u t i n mode 2 (eV or Ha)
n o r m a l i z e _ n o d e s # n o r m a l i z e incoming v a l u e s t o node t o a v o i d s a t u r a t i o n
p r e c o n d i t i o n _ w e i g h t s # p r e c o n d i t i o n i n i t i a l w e i g h t s
p r i n t _ m a d # p r i n t o t h e r e r r o r measurements
check t h a t f o r c e s i n a s t r u c t u r e add up t o z e r o / a g i v e n t h r e s h o l d

80 c h e c k _ i n p u t _ f o r c e s 0 . 1

###
f i t t i n g o p t i o n s (mode 2) : s h o r t r a n g e p a r t :
###

85 # o p t i m i z a t i o n mode s h o r t r a n g e e n e r g i e s (1= Kalman f i l t e r ,
2= c o n j u g a t e g r a d i e n t , 3= s t e e p e s t d e s c e n t)
o p t m o d e _ s h o r t _ e n e r g y 1
o p t m o d e _ s h o r t _ f o r c e 1 # o p t i m i z a t i o n mode s h o r t r a n g e f o r c e s (same)
s h o r t _ e n e r g y _ e r r o r _ t h r e s h o l d 0 . 1 # t h r e s h o l d o f a d a p t i v e Kalman f i l t e r s h o r t E

90 s h o r t _ f o r c e _ e r r o r _ t h r e s h o l d 1 . 2 # t h r e s h o l d o f a d a p t i v e Kalman f i l t e r s h o r t F
k a l ma n _ l am b da _s h o r t 0 .98000 # Kalman p a r a m e t e r s h o r t E / F
k a l m a n _ n u e _ s h o r t 0 .99870 # Kalman p a r a m e t e r s h o r t E / F

s h o r t _ e n e r g y _ g r o u p 1 # group e n e r g i e s f o r u p d a t e
95 s h o r t _ e n e r g y _ f r a c t i o n 0 . 7 5 # p e r c e n t a g e o f e n e r g i e s used f o r f i t t i n g 100%=1.0

s h o r t _ f o r c e _ g r o u p 2 # group f o r c e s f o r u p d a t e
s h o r t _ f o r c e _ f r a c t i o n 0 . 0 3 # p e r c e n t a g e o f f o r c e s used f o r f i t t i n g 100%=1.0
u s e _ s h o r t _ f o r c e s # use f o r c e s f o r f i t t i n g

100 weigh t s_min −0.5 # minimum v a l u e f o r i n i t i a l random s h o r t r a n g e w e i g h t s
weights_max 0 . 5 # maximum v a l u e f o r i n i t i a l random s h o r t r a n g e w e i g h t s

max_force 0 . 2 5 # do n o t use l a r g e r f o r c e s i n Ha / Bohr f o r u p d a t e
max_energy −0.09245

105 s c a l e _ m i n _ s h o r t 0 . 0 # minimum v a l u e f o r s c a l i n g (s c m i n _ s h o r t)
s c a l e _ m a x _ s h o r t 1 . 0 # maximum v a l u e f o r s c a l i n g (s c m a x _ s h o r t)
f o r c e _ g r o u p i n g _ b y _ s t r u c t u r e # group a l l f o r c e s w i t h i n one s t r u c t u r e f o r f i t t i n g

Listing B.1: Example RuNNer input settings file for a NSF-20-20-1 architecture NNP, with the SF listed
in sec. D

Appendix C

VASP Settings

SYSTEM=VASP CALCULATION

#INITIALIZATION
ISTART = 0 # r e s t a r t from s c r a t c h
ICHARG = 2 # i n i t i a l c h a r g e : from a t om ic c h a r g e d e n s i t i e s
INIWAV = 1 # random i n i t i a l i z a t i o n f o r wf
NELM = 100 # maximum of NELM e l e c t r o n i c s t e p s
NELMIN = 2 # minimum of NELMIN c o n v e r g e n c e s t e p s
NELMDL = −5 # no u p d a t e o f c h a r g e f o r NELMDL s t e p s
EDIFF = 1 . 0 0 E−06 # a c c u r a c y f o r e l e c t r o n i c m i n i m i z a t i o n
PREC = A c c u r a t e # p r e c i s i o n l e v e l f o r v a r i o u s o t h e r s e t t i n g s
GGA = PE #x−c p o t e n t i a l
ALGO = F a s t # d i a g o n a l i z a t i o n a l g o r i t h m

ENCUT = 500 # e ne r gy c u t o f f o f p l anewaves
ISMEAR = 0 ; SIGMA = 0 . 1 ; # Fermi l e v e l t r e a t m e n t
G a u s s i a n (0)

#MISC
LREAL = A # p r o j e c t i o n i n r e a l o r r e c i p r o c a l s p a c e
NSIM = 8
LASPH = . TRUE . # a s p h e r i c a l c o n t r i b u t i o n s

Listing C.1: VASP input settings utilized in this work

Appendix D

Symmetry Functions for Ternary CuZnO
Systems

Based on the SF values presented in 93. The SF set described here applies to all element pairs and
triplets.

Number η (eta) (1/Bohr2) Rshift (Bohr) Cutoff (Bohr)
1 0.001 0.0 12.0
2 0.010 0.0 12.0
3 0.020 0.0 12.0
4 0.050 0.0 12.0
5 0.100 0.0 12.0
6 0.200 0.0 12.0
7 0.050 3.0 12.0
8 0.100 3.0 12.0
9 0.200 3.0 12.0
10 0.500 3.0 12.0
11 0.900 3.0 12.0

Table D.1: Parameters for radial symmetry functions G2 for all element combinations.

Number η (eta) (1/Bohr2) ζ (zeta) λ (lambda) Cutoff (Bohr)
1 0.001 1.0 1.0 12.0
2 0.001 2.0 1.0 12.0
3 0.001 4.0 1.0 12.0
4 0.001 16.0 1.0 12.0
5 0.001 1.0 -1.0 12.0
6 0.001 2.0 -1.0 12.0
7 0.001 4.0 -1.0 12.0
8 0.001 16.0 -1.0 12.0
9 0.003 1.0 1.0 12.0

10 0.003 4.0 1.0 12.0
11 0.003 1.0 -1.0 12.0
12 0.003 4.0 -1.0 12.0

Table D.2: Parameters for angular symmetry functions G4 for all element combinations.

Appendix E

Neural Network Dispersion Plots

Figure E.1: Comparison of reference (DFT) and predicted (NNP) quantities. a) Energy b) Force com-
ponent (due to the amount of force components in the dataset, only a portion of the total is
shown).

Figure E.1 shows the predicted and reference energies and forces for the selected NNP utilized in this
work, for both training and testing data. Both energies and forces are predicted with high accuracy, as
can be seen from most of the data lying on the X=Y line. The predicted energy shows slight deviations
at very high and very low energy values, while the force prediction shows a somewhat wider spread
with some outliers.

Appendix F

Structural and Energetic Parameters for Cu
and ZnO

Tables F.1 presents the solid lattice constants of Cu and ZnO, as calculated with the NNP, the reference
DFT method, and experimental values. Table F.2 contains the surface energies for the three low-index
surfaces of Cu, as calculated with the NNP and the reference DFT method.

Parameter (Unit) NNP DFT Exp. [202]
fcc Cu a (Å) 3.64 3.64 3.61

wurtzite ZnO a (Å) 3.29 3.30 3.25
wurtzite ZnO c (Å) 5.35 5.38 5.21

wurtzite ZnO u (frac. dist. Zn-O) 0.385 0.385 0.382

Table F.1: Equilibrium lattice constants for Cu and ZnO, as obtained with DFT (reference data for the
NPP) and the NNP.

Parameter (Unit) NNP DFT
γCu(100) (meV/Å2) 166.0 166.0
γCu(110) (meV/Å2) 164.6 164.8
γCu(111) (meV/Å2) 120.9 121.2

Table F.2: Surface energies for the different Cu low index Miller surfaces, as obtained with the usual
algorithm by Fiorentini and Methfessel [295] method, with DFT and the NNP.

	Abstract
	Table of Contents
	List of Abbreviations (alphabetical order)
	Introduction and Methods
	Introduction
	The Copper and Zinc Oxide Catalyst
	Outline of this Work

	Methods and Theory
	Density Functional Theory
	Neural Network Potentials
	Introduction and Historical Development
	Feed Forward Neural Networks as Potentials
	High-Dimensional Neural Networks
	Environment Decomposition
	Sampling

	Genetic Algorithm Global Optimization Search
	Simulated Annealing
	Introduction
	Size-dependent Melting Point

	Coincidence Lattice Match
	The Coincidence Lattice Match Algorithm
	Strain Theory

	Structural Methods and Tools
	The Cut Cube Method
	Cumulative Distance Metric
	Lindemann Parameter
	Polyhedral Template Matching

	Computational Details
	Density Functional Theory
	Settings
	k-point Grids for Non-orthogonal Cells

	Construction of the Neural Network Potential
	Generation and Composition of the Reference Dataset
	Introduction
	Phase I: Systematic Modification of Known Structures
	Phase II: Simple Simulations
	Phase IIIa: Genetic Algorithm Optimization of Small Clusters
	Phase IIIb: Simulated Annealing of Large Supported Clusters
	Phase IIIc: Large Coincident Surfaces

	Genetic Algorithm Search Settings
	Simulated Annealing Settings
	Coincidence Lattice Match
	Settings and Implementation
	Starting Surfaces

	Results
	The Bin and Hash Algorithm
	Motivation
	The Bin and Hash Method
	Description of the Algorithm
	Analysis of the Algorithm
	Scaling
	Implementation

	Results
	Performance and Timings
	Analysis of the Distance in Symmetry Function Space
	Results for Different Symmetry Functions
	Curating a Dataset
	Effective Number of Subdivisions
	Conflicting Information

	Conclusions

	Genetic Algorithm Global Optimization of Small Supported Copper Clusters
	Motivation
	Results
	Global Optimization Results
	Interface Structure
	Properties

	Conclusions

	Simulated Annealing of Large Supported Copper Clusters
	Motivation
	Results
	Energy
	Average Structural Property Plots
	Structure of the Clusters
	Polyhedral Template Matching
	Coordination Numbers and Nearest Neighbor Distances
	Lindemann Parameter and Melting Point
	Structure at the Interface
	Facets

	Conclusions

	Study of Large Copper-Zinc Oxide Coincident Surfaces
	Motivation
	Results
	Behavior of the Coincidence Lattice Match Algorithm
	Results from Geometry Minimizations
	Translations in the XY Plane
	Selected Structures

	Conclusions

	Summary and Bibliography
	Summary
	Acknowledgments
	Bibliography

	Appendices
	Notes on the Coincidence Lattice Match Algorithm and Strain Theory
	Some notes on Linear Algebra
	Worked CLM Example for Cu(111) and ZnO(10bar10)
	Strain Theory
	Deformation Tensor
	Infinitesimal Strain Tensor
	Finite Strain Tensor
	Strain for Rotated Systems
	Principal Stretches and Principal Strain Directions
	Worked Example

	RuNNer Settings
	VASP Settings
	Symmetry Functions for Ternary CuZnO Systems
	Neural Network Dispersion Plots
	Structural and Energetic Parameters for Cu and ZnO

