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Chapter 1

Introduction

The brain has been described as “the most sophisticated and complex organ
that nature has devised” (Bear et al., 2007) and even as the “most complex
piece of active matter in the known universe” (Koch, 2020)1. A number of
seemingly simple, biophysical processes, including the flow of ions through cell
membranes (Hodgkin & Huxley, 1952) and chemical messengers that transmit
signals between cells (Elliott, 1904; Loewi, 1921; Katz, 1969), give rise to
all of our sensations, perceptions, thoughts, emotions, decisions, and actions.
Running billions of these biophysical processes in parallel makes the brains of
highly evolved animals capable of remarkable achievements. Especially when
thinking of the human brain, a wide range of impressive mental performances
come to mind: chess grandmasters who can remember hundreds of games
and calculate dozens of possible outcomes of a series of moves; artists who
write, compose, or paint masterpieces that move people to tears; scientists
who attempt to “learn what, deep within it, binds the universe together”2,
often paving the way for revolutionary new technologies; or political leaders,
who inspire their followers with grand ideas and great charisma.

And yet, all modern brains – human and nonhuman – were not designed
to play chess, compose symphonies, or ponder the relation of mass and energy,
but are simply the product of millions of years of natural selection that favors
evolutionary fitness. And while the memory of a chess player or the creativity
of an artist might improve one’s chance of procreating in at least part of

1Statements such as the ones cited here typically refer to the human brain. While
humans are capable of cognitive feats that exceed anything seen in the animal kingdom,
the complexity of the monkey, cat, and even mouse brain is equally staggering. With that
in mind, “brain” shall here refer mostly to the mammalian brain, in full acknowledgment
that many other animals have similarly complex brains, the detailed treatment of which,
however, exceeds the scope of this thesis.

2Goethe, Faust I, Vs. 382-383, translated by Stuart Atkins.

11



12 Introduction

today’s world, these highly specific skill sets are certainly not what guaranteed
survival generations ago3. For most of history, reproductive success depended
on the sheer ability to survive long enough to find a suitable mate4. Survival,
in turn, depends on one’s ability to approach and make use of beneficial
stimuli (such as food), while avoiding harmful and dangerous ones (such as
predators). The purpose of a nervous system, with the brain as its centerpiece,
can thus be summarized as follows:

• Gather information about the environment by registering physical signals
and transducing them into a form that can be processed by the nervous
system (typically referred to as “sensation”).

• Evaluate these signals as (potentially) beneficial or (potentially) harmful
and decide on the appropriate course of action.

• Perform the selected action.

The first and the last of these three points have become two more or less
self-contained subfields of research within neuroscience, commonly referred
to as “sensory neuroscience” and “motor neuroscience”5. The second point
is often referred to as “decision making”, “cognitive control”, “executive
functions”, or simply “cognition” and has a large overlap with at least
one of the other two points6. Furthermore, the process of evaluating the
sensory input must assign emotional valence (the degree to which something
is pleasurable or aversive) to stimuli, which affects the organism’s motivation
to perform different actions (Tye, 2018). It should be obvious that a complete
understanding of the brain will need to encompass and integrate all three
of these points (e.g., Panzeri et al., 2017). And indeed, the last 10 years

3Of course, memory and creativity are mental capacities that have always been advan-
tageous, and it is likely that such skills could have been put to use for other purposes in
a society that does not know about chess or does not value art. I merely mean to point
out that the specific ability to excel in chess or composing are not what brains have been
optimized for by evolution.

4For most animals, this still holds true today.
5For example, two of the most widely used neuroscience textbooks dedicate large parts

to “Perception” and “Movement” (Parts V and VI in Kandel et al., 2013) or “Sensory
and Motor Systems” (Part II in Bear et al., 2007). Of the 10 “Themes” the Society for
Neuroscience uses to structure its annual meeting, one is called “Sensory Systems” and
one is called “Motor Systems”.

6For example, “decision making” as it has been studied by the labs of Bill Newsome and
Michael Shadlen (Britten et al., 1992, 1996; Shadlen & Newsome, 1996; Gold & Shadlen,
2007), is intimately related to motion perception, i.e., sensation. “Decision making”, as it
has been studied by the labs of Paul Cisek and John Kalaska, is intimately related to the
planning of motor actions (Cisek & Kalaska, 2005, 2010; M. Wang et al., 2019).
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have seen a shift towards a more holistic approach of studying the brain,
which has been made possible by new technologies, such as two-photon
Ca2+ imaging (Helmchen & Denk, 2005; Grewe et al., 2010; Allen et al.,
2017) and high-density recordings with silicon probes (Jun et al., 2017;
Steinmetz et al., 2019). These new approaches have clearly demonstrated
that dividing the brain into independent regions that perform isolated tasks
is an oversimplification. The activity of brain areas in rodents that were once
considered to be purely sensory is, in fact, modulated by actions (Niell &
Stryker, 2010; Saleem et al., 2013). High-density recordings have confirmed
that neurons whose activity varies according to visual input, decision making,
or action are distributed widely across the rodent brain (Steinmetz et al.,
2019). However, these large-scale recordings also pose a problem: how are we
to interpret brain-wide activity patterns without at least a rough reference
frame to differentiate incoming (sensory) from outgoing (motor) signals? In
other words, if every aspect of behavior and cognition is encoded by every
part of the brain, how can we make sense of it all? The answer lies, as always,
in the middle. Scientific progress is never achieved by one individual solution
but relies on the collaboration of a large community with diverse approaches.
Holistic, integrative methods and specialized, targeted experiments are not
two opposing ideas, but two parallel paths that complement one another.

With this in mind, the work presented in this dissertation follows the
second, more reductionistic way; not because I believe this to be the one true
way forward, but because this focus on one small aspect of the brain can
serve as a puzzle piece that contributes to the proverbial bigger picture. I
have chosen “my puzzle piece” from the field of sensory neuroscience, more
specifically, the perception of visual motion. As I highlight in the remainder
of this introduction (and throughout the dissertation), this topic is highly
important and serves well as a model for sensory processing and, indeed,
neural processing more generally. The bulk of the dissertation (chapters
2-6) is concerned with how neurons in the medial superior temporal area
(MST) – a high-level, extrastriate area of the primate visual cortex – represent
information about visual motion. Additionally, a psychophysics experiment
(chapter 7) investigates how different physical stimulus features affect motion
perception in a way that suggests differential involvement of specific parts of
the brain’s motion processing pathway. To motivate this research, I will first
briefly review some general topics of sensory neuroscience, before turning to
vision as one of the best-studied sensory systems. After a brief interlude to
discuss how information can actually be represented by neural activity, I will
then describe how motion is processed in areas of the primate brain leading
up to MST and why MST itself is an excellent model to study sensation,
cognition, and neural processing.



14 Introduction

1.1 Sensory neuroscience

As pointed out in the previous section, one of the fundamental purposes of
the nervous system is to gather information about the environment. The goal
is not to create the most accurate description of the physical world as it is,
but to generate an internal representation of those aspects that are relevant
for survival. A complete, perfectly accurate description of the world must
necessarily contain all the relevant aspects (along with additional, less relevant
bits and pieces) and might therefore seem desirable. However, one need to
keep in mind that the biophysical processes that are required to generate this
internal representation cost energy (Attwell & Laughlin, 2001; Lennie, 2003).
Therefore, a more cost-effective, “sparse” representation of only the relevant
elements of the environment is preferable (Olshausen & Field, 2004).

Of the external7 senses that provide information about the world, the
ones that offer the most direct evidence of harm or benefit are probably the
somatosensory and the gustatory system: the sense of touch can immediately
alert an organism to damage that is being done to the body (e.g., through
extreme pressure or temperature) and the sense of taste offers valuable
information about the nutritious value of food (e.g., sweetness is an indication
for the presence of carbohydrates) or potential danger from poisons (which
often have a bitter taste). However, both these systems suffer from a weakness:
they require direct physical contact between the organism and the object of
interest, which is highly dangerous if the object is harmful and only of limited
use when the object is desirable.

In contrast, the visual, auditory, and olfactory systems provide information
about objects in the external world without direct physical contact. Different
species across the animal kingdom have optimized different sensory systems (or
combinations of systems), depending on their ecological niche, to maximize
their evolutionary fitness. Primates, both human and nonhuman, have
adapted to deal with a variety of environments with very different requirements.
Their dexterity allows them to physically interact with all kinds of objects and
use them to their advantage, which gives a special role to vision for sensory
input: whether it is plucking a fruit from a tree, climbing said tree while
fleeing from a predator, or throwing a speer at a prey animal, none of these
actions would be possible without accurate visual perception. And indeed,
about 50% of the cerebral cortex in macaque monkeys and 20-30% of the
human cortex are dedicated to the processing of visual information (Orban et
al., 2004). The intuitive importance of vision – the loss of which probably

7I will forgo a discussion of interoception, which would exceed the scope of this disserta-
tion.
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affects our everyday lives more than the loss of any other sense – has led
generations of neuroscientists to explore this sensory system in more detail
than any other.

1.2 Vision

The ability to see seems like the most natural thing in the world: “We just
open our eyes and look!” (Palmer, 1999). However, problems quickly arise
when thinking about the details of visual perception. The first question is
how what we see in the external world becomes accessible to the brain.

The physical signal that serves as the basis of vision is light that is
reflected by objects in the world. This reflected light enters the eye through
the cornea, pupil, lens, and vitreous humor before it has its first contact with
the nervous system, the retina. The photoreceptor cells of the retina contain
transmembrane proteins, so-called opsins, which react to photons by means
of the chromophore retinal (Wald, 1968). Two types of photoreceptors, rods
and cones, transmit graded potentials on to bipolar cells which, in turn, pass
the signal on to retinal ganglion cells (RGCs). Two additional cell types,
horizontal cells and amacrine cells, modulate the signal transmission from
photoreceptors to bipolar cells and from bipolar cells to RGCs, respectively.
A complex network of excitatory and inhibitory synapses between these
six classes of cells – most of which have multiple types – distributes the
light signal into multiple parallel pathways (Wässle, 2004) and performs
an impressive amount of signal processing, such as temporal filtering and
thresholding (Gollisch & Meister, 2010). The axons of RGCs make up the
optic nerve which, in mammals with forward-facing eyes, transmits the output
of the retina to the optic chiasm. Here the optic nerve fibers coming from the
medial (nasal) side of each retina cross over to the other hemisphere while
those fibers originating from the lateral (temporal) part of the retina stay
within their respective hemisphere. These merged bundles of axons relaying
information from one half of the visual field to the contralateral hemisphere
continue as the optic tract to the lateral geniculate nucleus (LGN) of the
thalamus. Neurons in the primate LGN are arranged in 6 layers that each
receive information about the contralateral hemifield from one eye. These
signals are then passed on through the optic radiation to the equally six-
layered striate or primary visual cortex (V1) (Henderickson et al., 1978).
From here on the signals that have so far been transported by tightly packed,
parallel fibers through a single pathway8 are split into spatially separated

8In addition to the geniculostriate pathway described here, a second, retinotectal pathway
sends part of the optic tract to the superior colliculus (May, 2006; Wilson & Toyne, 1970),
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pathways consisting of dozens of specialized brain regions (Felleman & Van
Essen, 1991). The most important organizational scheme in the primate visual
cortex is that of two distinct processing streams: a ventral pathway, including
area V4 and the inferior temporal (IT) cortex, that is predominantly concerned
with visual recognition of objects, including features such as orientation and
color; and a dorsal pathway, including the middle temporal (MT) and medial
superior temporal (MST) areas, that is involved in the perception of spatial
relationships, including motion (Mishkin et al., 1983; Maunsell & Newsome,
1987; Goodale & Milner, 1992) (Figure 1.1).

The coarse anatomical structure of the visual system that has been de-
scribed until now suggests a processing pipeline in which a series of stages –
RGCs, LGN, V1, higher cortical regions – transform the visual signal that
was received by the retinae to extract behaviorally relevant information. The
following paragraphs highlight some of these processing steps, as they provide
the basis for the results described in subsequent chapters.

RGCs are among the best studied cells of the brain. Hartline (1938) first
noted that RGCs can be classified based on how they respond to changes in
the conditions of illumination. “On” cells respond with an initial burst of
action potentials when light is turned on and then continue to fire at a steady,
but much lower rate; “off” cells show the opposite pattern, where no action
potentials are fired during illumination, but they discharge vigorously when
the light is turned off; “on-off” cells, at last, respond to any change (light
on or light off) with a brief burst of action potentials, but remain mostly
quiet during steady levels of illumination. Hartline (1938) also introduced
the term receptive field to visual neuroscience9 to describe “the region of the
retina which must be illuminated in order to obtain a response”. Today this
is often used to refer to the part of the visual field (rather than the retina)
that can modulate a visual neuron’s activity. The receptive fields of RGCs
were explored in more detail by Kuffler (1953), who found that they typically
had an antagonistic structure: stimulation of one part of the receptive field
led to a strong “on” response (as described above), whereas stimulation of
other parts of the receptive field led to a strong “off” response. In many
RGCs, these “on” and “off” regions were arranged in a concentric manner
with an excitatory (or inhibitory) area in the center of the receptive field and
an inhibitory (or excitatory) area surrounding it (see also Wiesel, 1959).

A different way of classifying RGCs is based on their morphology: small
midget cells with compact dendritic arbors, and larger parasol cells form

a midbrain structure that is involved in eye movements (Gandhi & Katnani, 2011) and
will not be discussed here.

9The term had previously been used by Sherrington (1906) to describe an area of skin
that, when stimulated, will lead a neuron to respond.
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Chapter 25 / The Constructive Nature of Visual Processing  571

layer IVCα. From there a sequence of interlaminar con-
nections, mediated by the excitatory spiny stellate neu-
rons, processes visual information over a stereotyped 
set of connections (Figure 25–15).

This characterization of parallel pathways is only 
an approximation, as there is considerable interaction 
between the pathways. This interaction is the means 
by which various visual features—color, form, depth, 
and movement—are linked, leading to a uni!ed vis-
ual percept. One way this linkage, or binding, may be 
accomplished is through cells that are tuned to more 
than one attribute.

At each stage of cortical processing pyramidal neu-
rons extend output to other brain areas. Super!cial-layer 

Intrinsic Cortical Circuits Transform  
Neural Information

Each area of the visual cortex transforms information 
gathered by the eyes and processed at earlier synap-
tic relays into a signal that represents the visual scene. 
This transformation is accomplished by local circuits 
formed by excitatory and inhibitory neurons.

The principal input to the primary visual cortex 
comes from two parallel pathways that originate in 
the parvocellular and magnocellular layers of the lat-
eral geniculate nucleus (see Figure 25–12). Neurons in 
the parvocellular layers project to cortical layer IVCβ, 
whereas those in the magnocellular layers project to 
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Figure 25–14 Parallel processing in visual pathways. The 
ventral stream is primarily concerned with object identi!cation, 
carrying information about form and color. The dorsal pathway 
is dedicated to visually guided movement, with cells selective 
for direction of movement. These pathways are not strictly 

segregated, however, and there is substantial interconnec-
tion between them even in the primary visual cortex. (LGN, 
lateral geniculate nucleus; MT, middle temporal area.) (Retinal 
ganglion cell images from Dennis Dacey, reproduced with 
permission.)

Figure 1.1: The visual processing pathway: light enters the eye and is
transduced into electrical signals by photoreceptors in the retina. Two types
of retinal ganglion cells, midget cells and parasol cells, pass the signal on to
the parvocellular and magnocellular layers of the lateral geniculate nucleus
(LGN). These two pathways and in layers 4Cβ and I4Cα of the primary
visual cortex (V1). After V1 and V2, the processing pathway is split into the
ventral pathway that includes V4 and the dorsal pathway, which includes MT
(reprinted, with permission, from Kandel et al., 2013).
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the two main categories, but many more anatomically distinct cell types
exist (Callaway, 2005). Two classes of RGCs that vary in their contrast
sensitivity have been shown to project to the four parvocellular (P) layers
and to the two magnocellular (M) layers of the LGN (Kaplan & Shapley,
1986), and the evidence suggests that these two classes are in fact identical
(or at least largely overlapping) with the midget and parasol cells, respectively
(Callaway, 2005, Fig. 1.1)10. Neurons in the P and M layers of the LGN differ
not only in their contrast sensitivity (low for P cells, high for M cells), but also
in their receptive field size (smaller for P cells, larger for M cells) and in their
sensitivity for color (color-opponent receptive fields in P cells, achromatic
receptive fields in M cells) (Wiesel & Hubel, 1966). A third class of LGN
neurons, koniocellular or K neurons (not shown in Fig. 1.1), lie within the
intralaminar zone between P and M layers, but have received less attention
than the M and P pathway (Casagrande, 1994; Callaway, 1998). All of this
shows a surprising degree of segregation in how visual features are represented,
even at the earliest stages of visual processing.

As the primary visual cortex (V1) receives input from the LGN, it needs
to keep track of three pairs of pathways by which signals can arrive: from the
left or the right LGN (which represents information about the right and left
visual hemifields respectively); from the parvo- or magnocellular layers of the
LGN; and from the left or right eye.

The first distinction is straightforward, as the left and right LGN project
to V1 of the left and right hemisphere, thus passing their representation of the
contralateral hemifield on to the visual cortex. Importantly, this representation
of the contralateral hemifield is not random, but retinotopically organized,
meaning that neighboring cells in the brain typically have neighboring, or
even overlapping receptive fields.

Projections from the parvo- and magnocellular layers end in separate
layers of V1, namely layers 4Cβ and 4Cα (Fig. 1.1). Layer 4C sends its main
projections to layers 2-4B which are connected by a feedback circuit with
layer 5, but also project to extrastriate areas, such as V2 and MT (Fig.1.1;
see Callaway, 1998, for a review). The idea that two distinct pathways that are
specialized for color/form (parvocellular layer of LGN – layer 4Cβ – superficial
V1 layers – ventral cortical pathway) and motion (magnocellular layer of LGN
– layer 4Cα – layer 4B of V1 – dorsal cortical pathway) was further supported
by the finding that inactivation of the magnocellular, but not the parvocellular,
layers of the LGN strongly affects responses in extrastriate area MT (part of

10One cannot ignore the irony in midget cells being associated with the parvocellular
pathway and parasol cells being associated with the magnocellular pathway, a choice of
terminology that must have driven generations of neuroscience students mad.
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the dorsal pathway) (Maunsell et al., 1990). However, later research showed
that the superficial layers of V1, which constitute the beginning of the ventral
cortical pathway, receive substantial contributions from both parvo- and
magnocellular pathways, suggesting that a strict segregation all the way from
the retina to extrastriate cortex is oversimplified (Nealey & Maunsell, 1994).

The third distinction – which eye the signal is coming from – was ad-
dressed as part of the seminal work by Hubel and Wiesel. They found that
neurons in the primary visual cortex of both cats (Hubel & Wiesel, 1962)
and primates (Hubel & Wiesel, 1968) varied in how much their responses
were dominated by stimulation of one eye or the other, a feature referred
to as ocular dominance. Moreover, they found that cells with similar ocular
dominance were clustered together in vertical slices through the six layers of
the striate cortex that are now known as ocular dominance columns.

In addition to layers and ocular dominance columns, Hubel and Wiesel also
discovered what is today the most widely known and investigated feature of
the primary visual cortex: V1 neurons respond selectively to the orientation of
a bar of light or a luminance edge. Whereas the receptive fields of RGCs and
LGN neurons are well described by a concentric circular arrangement of an
excitatory (“on”) or inhibitory (“off”) center and an antagonistic surround (see
above), the receptive fields of many V1 neurons have excitatory or inhibitory
regions that are elongated and flanked by antagonistic regions and can be
oriented vertically, horizontally, or obliquely (Hubel & Wiesel, 1959). While
this might seem mundane at first glance, the sharp emergence of selectivity
for a feature that was absent in the input from the LGN has become the
quintessential example of cortical computation (see Priebe & Ferster, 2012,
and Priebe, 2016, for reviews). Hubel & Wiesel (1962) themselves suggested
a basic model, in which a number of LGN cells with appropriately aligned
receptive fields project to a V1 neuron that is then selective for the orientation
of this alignment (Fig. 1.2). Such a model was supported by simultaneous
thalamic and cortical recordings in cats that showed monosynaptic connections
between LGN and V1 neurons with overlapping receptive fields (Tanaka, 1983;
Reid & Alonso, 1995).

What has been fiercely debated in the decades after this model was
proposed is whether the input coming from the LGN is sufficient by itself to
generate orientation selectivity, or whether additional mechanisms within the
circuits of V1 are necessary. On the one hand, applying an antagonist
to the inhibitory neurotransmitter GABA broadens V1 neurons’ tuning
curves (Sillito, 1975), suggesting that intracortical cross-orientation inhibition
plays an important role in sharpening orientation tuning. On the other hand,
recordings of synaptic potentials in V1 neurons while inactivating the cortex
by cooling it, showed that orientation tuning was mostly unaffected (Ferster
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Figure 1.2: Proposed scheme for explaining the emergence of orientation
selectivity in V1, based on input from the LGN. A large number of LGN cells,
of which four are illustrated in the upper right in the figure, have receptive
fields with “on” centers arranged along a straight line on the retina. All of
these project upon a single V1 cell with excitatory synpases. The receptive
field of the V1 cell will then have an elongated “on” center indicated by
the interrupted lines in the receptive-field diagram to the left of the figure.
Crosses indicate excitatory regions, while triangles indicate inhibitory regions
of the receptive fields (reprinted, with permission, from Hubel & Wiesel,
1962).

et al., 1996), suggesting that the LGN input, that was left intact by the
cooling, is sufficient to generate this selectivity. A third possibility is that
LGN cells themselves show an orientation bias which is then sharpened by
non-specific inhibition (Vidyasagar et al., 1996; Viswanathan et al., 2011).
These conflicting explanations show that even for a seemingly simple and
“well-behaved” part of the visual pathway, such as V1, the question of how
receptive field structure and tuning arise is not yet fully understood. As
later chapters will demonstrate, characterizing neural response functions only
becomes more difficult in higher visual areas.

Whatever the exact mechanisms underlying orientation selectivity may be,
the emergence of more complex selectivities from unselective input has become
an essential building block for models of cortical computation (Riesenhuber
& Poggio, 1999) and will come up again in later chapters of this dissertation
(compare, for example, Fig. 1.2 with Fig. 2.5). As a matter of fact, the
very next stage in the cortical processing pipeline that adds another layer
of abstraction was also discovered by Hubel & Wiesel (1962)11: while most

11Given the modern obsession with quantifying research output by means of impact
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cells in V1 are orientation selective, not all of them respond in the same
way to oriented bars and edges. So-called simple cells have receptive fields
with clearly separated “on” and “off” regions and their responses to visual
stimuli can be predicted from a convolution of this “on/off” arrangement
with the stimulus. Complex cells, on the other hand, show position invariant
responses to luminance edges, meaning that they respond equally well to their
preferred direction anywhere in the receptive field, irrespective of the exact
arrangement of light and dark areas. This means that, unlike simple cells, they
cannot be described by a single linear filter, instead relying on multiple filters
that need to be combined (Rust et al., 2005; Vintch et al., 2015). Whether
simple and complex cells really form two distinct populations (Skottun et al.,
1991) or rather the two ends of a continuum (Mechler & Ringach, 2002) has
been debated; but either way the representation within the primary visual
cortex quickly shifts to a more abstract level. Both simple and complex
cells respond more strongly to moving than to stationary stimuli, and about
half of the complex cells in primate V1 appear to be direction selective in
that they respond better to movement in one direction than in the opposite
direction (Hubel & Wiesel, 1968).

Before moving to the topic of visual motion in more detail, I would like to
take a brief detour to address an issue that has so far been touched upon in a
rather informal manner: the question of how information about anything in
the external world is actually encoded in neural activity.

1.3 The neural code

The previous sections made frequent use of the words “signal” and “informa-
tion” that is being transmitted by a signal, without discussing these terms
further. While it is quite difficult to find meaningful, non-circular definitions
of these words, I loosely define signal as any change in a physical quantity that
conveys information, and information as anything that reduces uncertainty12.
The physical quantity that constantly changes in the brain is the distribution
of ions inside and outside of individual neurons, which can be measured as an
electric potential difference across cell membranes. These voltage differences
come in two forms: as a continuous, oscillating voltage signal that can be
measured intracellularly (“membrane voltage”) or extracellularly (“local field

factors, citations, H-indices, and publication counts, it seems mind-boggling that Hubel &
Wiesel published their discoveries of ocular dominance, the simple/complex cell distinction,
and their model of orientation selectivity in a single paper.

12The difficulty in defining these terms quickly becomes obvious when trying to define
“uncertainty” without using the words signal and information.
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potential”, LFP); and as a series of all-or-nothing events known as action
potentials or spikes, that occur when the voltage signal crosses a threshold
(see Hodgkin & Huxley, 1952, for biophysical details). By isolating large parts
of neuronal axons with myelin, the conduction velocity of action potentials
can be increased drastically (“saltatory conduction”), which makes them a
highly efficient signal for rapid information transmission. Spikes, which have
been described as the “neural code” (Rieke et al., 1999), can be recorded from
individual or small clusters of neurons in living and even awake mammals.
How information is encoded in spike trains (i.e., sequences of spikes in a finite
time window) is one of the central questions in neuroscience. The fact that
one and the same spike train can be associated very different experiences has
been described as early as the 19th century:

Denn dieselbe Ursache kann auf alle Sinnesorgane zugleich ein-
wirken, wie die Elektricität; alle sind dafür empfänglich, und
dennoch empfindet jeder Sinnesnerve diese Ursache auf eine an-
dere Art; der eine Nerve sieht davon Licht, der andere hört davon
einen Ton, der andere riecht, der andere schmeckt die Elektricität,
der andere empfindet sie als Schmerz und Schlag13 (Müller, 1838).

Today, this is referred to as labeled line coding : the reason why one train
of spikes leads to the percept of a tone, while another, maybe even similar
train of spikes leads to the percept of the color red, is that the first spike
train comes from an auditory neuron that receives its input from hair cells
in the cochlea, while the second spike train comes from a visual neuron that
receives its input from photoreceptors in the retina. Similarly, within one
sensory modality, the reason why one spike train signals the color red (or
upward motion, or a square), while another, maybe similar spike train signals
the color green (or downward motion, or a circle) is because the first spike
train comes from a red-sensitive neuron that receives its input from cone
photoreceptors that are selective for a specific wave length of light, while the
second spike train comes from a green-sensitive neuron that receives its input
from cone photoreceptors that are selective for a different wave length. Useful
information about the environment can then, of course, only be represented by
a population of neurons that are specialized for certain stimulus attributes14.

13The same cause, such as electricity, can simultaneously affect all sensory organs, since
they are all sensitive to it; and yet, every sensory nerve reacts to it differently; one nerve
perceives it as light, another hears its sound, another one smells it; another tastes the
electricity, and another one feels it as pain and shock. (Translated by Edwin Clarke and
Charles Donald O’Malley)

14Note that neither this “labeled line” code, nor any of the other coding schemes
described here actually explain how (or why) exactly a series of action potentials in
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Labeled line coding, however, does not answer the question of what features
of a spike train convey information. Given that a spike train is nothing more
than a sequence of all-or-nothing events that occur within a finite time window,
there are really only two measures that can vary: the number of spikes within
the time window and their exact timing (or, equivalently, the periods of
silence between spikes, the so-called interspike intervals, ISI).

The idea that information about features of a stimulus is carried by the
number of spikes a neuron fires in a certain time window is known as rate
coding. Like the labeled line code, rate coding has been known for a long
time:

The message which a nerve fibre can transmit must consist of
one or more discrete impulses and a continuous transmission of
the excited state is impossible. In fact the only way in which
the message can be made to vary at all is by a variation in the
total number of the impulses and in the frequency with which they
recur (Adrian, 1928).

Rate coding is probably the best-explored neural code and forms the basis for
a number of frameworks that attempt to characterize the relation between
neural activity and external stimuli. The obvious problem of rate coding is
that the counting of multiple spikes (e.g., by a downstream neuron) requires
integration over time. Depending on the duration of the time window in
which spikes are counted, this could slow down the processing of information.
One way to address this problem is to use the response of several neurons
with similar response properties in a short time window as an estimate of the
firing rate (Shadlen, 2006).

Another solution to this problem is offered by the other major coding
scheme, commonly referred to as temporal coding, in which information is
conveyed through the exact timing of spikes. Because the measurement
of exact spike times requires more advanced equipment, this idea has only
been explored recently. In salamander retinal ganglion cells, for example, it
has been shown that the latency of the first spike in response to a briefly
presented stimulus varies across different stimuli (Gollisch & Meister, 2008).
Recordings from the cat LGN have shown that spike time precision depends
on the timescale of the stimulus, and information-theoretic approaches suggest
that “relative”, though not necessarily “absolute” precision (with regard to
the stimulus) represents stimulus attributes (Butts et al., 2007). Even in an

a number of neurons lead to subjective experiences or qualia. This “hard problem of
consciousness” (Chalmers, 1995) falls outside the scope of neuroscience and into the realm
of philosophy (Dennett, 1991; Searle, 2004).
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extrastriate area of the macaque visual cortex, such as MT, neurons have been
shown to respond with very high temporal precision to repeated presentations
of the same stimulus (Bair & Koch, 1996).

Whether neurons act as “integrate-and-fire” devices that rely on the
number of spikes in a given time window to transmit information, or whether
the exact timing of spikes and the ISIs define the neural code, has been the
topic of a long and ongoing debate.

In a classic study, Softky & Koch (1993) analyzed the variability of
spike trains recorded from primate visual cortex and compared the data to
biophysically plausible models of how pyramidal cells integrate synaptic input.
They found that, given the large number of synaptic inputs typically observed
in the brain, an integrate-and-fire mechanism would even out all irregularities
of the input and lead to a highly regular, nearly periodic output. In contrast,
the actual data showed highly irregular output, which led to the conclusion
that these neurons work as “coincidence detectors” that only fire when many
postsynaptic potentials coincide at the millisecond scale and that precise
spike times and the ISIs carry meaningful information (Softky & Koch, 1993).
Shadlen & Newsome (1994) countered that this approach ignored the role
of inhibitory postsynaptic potentials, which, when balanced with excitatory
potentials, can lead to the highly irregular spike trains typically observed.
Furthermore they argued that neuronal membrane time constants on the order
of 8 to 20 ms speak strongly against coincidence detection at the millisecond
timescale.

The distinction between rate coding and temporal coding becomes blurred,
and even downright paradoxical, when describing a neuron’s firing rate not
as the actual number of spikes in a predefined time window (the “spike-count
rate”), but as is often done, as a time-dependent probability function of a
spike occurring in a very small time window (typically written as r(t), Dayan
& Abbott, 2001; Brette, 2015). The paradox was beautifully shown by Rieke
and colleagues (1999) by using the phase-locking of a neuron’s time-dependent
firing rate to a periodic stimulus as an example (such as auditory neurons in
response to low-frequency, pure tone, e.g. Rose et al., 1967). In such cases,
the firing rate follows the oscillation of the stimulus (typically with a short
lag), which means that spike times tend to occur at a specific phase of the
stimulus. Therefore, the timing of spikes provides important evidence about
a feature of the stimulus (namely its phase), even though this example was
supposed to show that the firing rate is modulated by the stimulus. As Rieke
et al. (1999) point out, this paradox stems from the fact that “firing rate”
is not as easily defined as one would think, and always depends on a time
window in which spikes are counted or for which the probability of a spike
is expressed. Making this time window arbitrarily small brings a rate code
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closer and closer to a temporal code (Rieke et al., 1999; DeCharms & Zador,
2000).

Thus, the apparent dichotomy between rate coding and temporal coding
is not as clear as it might seem at first. Evidence that information about
a stimulus can be decoded from either exact temporal patterns of spikes or
from the number of spikes in a fixed time window does not mean that the
other coding scheme is useless. Some more recent examples in the primate
somatosensory cortex even suggest that rate and temporal codes can both be
used to represent different aspects of a stimulus (Harvey, Saal, Dammann,
& Bensmaia, 2013; see also Zuo et al., 2015 for a similar example from rat
somatosensory cortex).

More recently, it has been argued that “coding” (in the information theo-
retic sense of whether firing rates provide any information about a stimulus)
is misleading, as it makes no statement about the causal role of the spike train
in processing the stimulus (Brette, 2015, 2019). Specifically, the firing rate (in
the probabilistic sense that is calculated based on data from multiple trials)
of a presynaptic neuron cannot have a direct effect on a postsynaptic neuron
because the postsynaptic neuron only has access to a single spike train, which
is the realization of a random point process that is based on the presynaptic
neuron’s firing rate. While this is true, of course, I would argue that this does
not invalidate the usefulness of firing rates for trying to understand neural
processing. This is similar to arguing against any attempt of relating the
activity of V1 neurons to a visual stimulus on the grounds that V1 neurons
have no direct access to the actual stimulus, but only indirect access through
spike trains coming in from the retina and the LGN. This is also true, but it
does not mean that one cannot learn about cortical computation by observing
how a V1 neuron’s activity is modulated systematically due to changes in
the stimulus. Similarly, a presynaptic neuron’s firing rate clearly has an
indirect effect on a postsynaptic neuron, in that the actual spike train that
is instantiated at any given time depends (stochastically) on the firing rate.
The trial-averaged firing rate is an abstraction and a simplification, but a
useful one, and a large part of what is known about the brain today is the
result of attempts to relate firing rates to sensory stimuli and behavior.

When it comes to deciphering the neural code, two broad classes of
approaches have been used. What I call the “forward” approach presents
the nervous system with a specific stimulus and asks “How does a neuron
(or multiple neurons) respond to this stimulus?” This approach can be used
to determine a neuron’s response to repeated presentations of a stimulus. If
the response varies systematically with a feature of the stimulus, the neuron
is considered to be tuned for this feature. Famous examples for such a
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tuning include the aforementioned orientation tuning in V1 cells (Hubel &
Wiesel, 1962) and the tuning for the direction of arm movements in motor
cortex (Georgopoulos et al., 1986).

Alternatively, what I call the “reverse” approach records the spiking
responses to noisy, random input with particular statistical properties and
asks “What features of the stimulus make the neuron fire an action potential?”
These approaches make less assumptions about the relevant stimulus features
that drive a neuron’s activity. Instead they attempt to find these relevant
features by exploring how stimuli that elicited a response (the so-called “spike-
triggered stimulus ensemble”, STE) differ from those that did not elicit any
response. For example, a neuron could spike whenever one or several stimulus
features deviate from the average of those features across all stimuli. In that
case the STE would be shifted in the high-dimensional stimulus space with
respect to the raw stimulus ensemble. The difference in the mean of the STE
and the mean of the raw stimulus ensemble is called the spike-triggered average
(STA). If the underlying stimulus distribution is radially symmetric and if the
neuron’s response function to this stimulus ensemble can be described by a
linear filter (the spatiotemporal receptive field), possibly with the addition of a
nonlinearity, the STA provides an unbiased estimate of this filter (Chichilnisky,
2001). Additional filters can be detected by investigating whether the STE
differs from the raw stimulus ensemble in terms of the relation between
different stimulus features. Such changes in the variance of the STE can be
explored through spike-triggered covariance (STC) analysis (Rust et al., 2005;
Touryan et al., 2002). Together, these methods have allowed to describe the
functional relationship between external stimuli and neuronal responses in
much more detail and complexity than one-dimensional tuning curves, albeit
at the cost of much more data that is required to fit such models (see Schwartz
et al., 2006 and Sharpee, 2013, for reviews).

Having established the elementary principles of how visual information is
processed in the primate brain, how information can be encoded in spiking
activity, and how this neural code can be deciphered, I will now address
that subset of visual neuroscience that is the focus of this dissertation: the
representation and processing of visual motion.
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1.4 Motion perception

Our world is highly dynamic, which is best summarized by the famous phrase
attributed to Heraclitus:

“The only constant is change.”

Motion, defined as a change in position over time, is ubiquitous and an
essential part of our environment. A famous case study of motion blindness
(or akinetopsia) is that of patient L.M., who suffered bilateral damage in
the posterior brain. This case illustrates how severely one’s everyday life is
affected by the inability to see how objects in the environment change their
position: “She had difficulty, for example, in pouring tea or coffee into a
cup because the fluid appeared to be frozen, like a glacier. In addition, she
could not stop pouring at the right time since she was unable to perceive the
movement in the cup (or a pot) when the fluid rose” (Zihl et al., 1983). As
illustrated by this example, perception of motion, more than shape or color,
is intimately related to action: when objects of interest move, this movement
often requires some sort of behavioral reaction, such as moving one’s hand
to stop pouring tea. Eye movements in particular are important to follow
behaviorally relevant moving targets. The neural circuits that underlie motion
perception and those that are involved in the planning and execution of eye
movements therefore form a “microcosm” of the perception-cognition-action
loop that was outlined previously. In addition to its relevance for everyday life
and direct connection to action outcomes, motion can also be easily defined
with two parameters that provide all of the essential information that needs
to be encoded: direction and speed. All of these points make the processing
of visual motion an ideal model for neural computation.

From the visual system’s point of view, motion means that light that is
reflected by one and the same stimulus falls on different photoreceptors at
different points in time. Thus, a comparison has to be made in both space
and time. The spatial comparison can be done by comparing the activity of
cells with neighboring receptive fields. To account for the temporal aspect
(“Which cell was activated first?”), a short delay needs to be incorporated
into the comparison. A detailed implementation of such a comparison has
first been proposed by Hassenstein & Reichardt (1956) (Fig. 1.3A).

Whether and how such “Reichardt detectors” are implemented in the
nervous system has been investigated in both the mammalian retina, inspired
by the description of direction-selective RGCs in the rabbit (Barlow & Hill,
1963), and in the optic lobe of flies (see Mauss, Vlasits, Borst, & Feller, 2017,
for a review).
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Figure 1.3: Models for motion detection. A. Reichardt-Detector. The output
of two units (U1 and U2) is multiplicatively combined by unit M, but the
signal from unit U1 is delayed. Therefore, M will be maximally activated if
U2 is activated shortly after U1. B. Motion Energy Model, adapted from
Adelson & Bergen (1985). A vertical bar moving from left to right appears as
a slanted strip in an x− t plot where one spatial dimension (horizontal axis)
and one temporal dimension (vertical axis) are shown (right side of panel B).
A fixed spatiotemporal filter (left side of panel B) that is convolved with a
spatiotemporal stimulus that moves beneath it will respond strongly when
motion lies within its receptive field. Panel B adapted with permission from
Adelson & Bergen (1985), c©The Optical Society

A seemingly alternative framework for the emergence of direction selec-
tivity was proposed by Adelson & Bergen (Adelson & Bergen, 1985). Their
“Motion Energy” model describes motion as an orientation in spacetime (with,
for ease of visualization, a single spatial dimension), similar to normal ori-
entation in ordinary 2D space. Analogous to spatial orientation selectivity
described by Hubel & Wiesel (Hubel & Wiesel, 1962), a cell with spatiotem-
poral orientation selectivity, or, in other words, a cell with a spatiotemporally
separable impulse response function, would be motion sensitive (Fig. 1.3B).
Spatiotemporal impulse functions are frequently observed in visual neurons
(e.g., DeAngelis et al., 1993a, 1993b), and such units can be described as
filters of spatiotemporal energy. The model as it is presented in Fig. 1.3B is
only motion sensitive, but not direction selective (i.e., it cannot differentiate
between leftward and rightward motion). Direction selectivity can easily be
added by replacing the impulse response with a Gabor function that is ori-
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ented in spacetime. Because such filters are still flawed in that they are phase
sensitive, the final part of the Motion Energy model consists of summing the
squared output of two spatiotemporal filters that differ only in their phase.
Although the Reichardt-detector and the motion energy model initially seem
to differ, Adelson & Bergen (1985) pointed out that it is possible to construct
motion energy models that are functionally equivalent to Reichardt detectors.

The similarity of the the spatiotemporally oriented filters in the Motion
Energy model with the spatially oriented receptive fields described by Hubel
& Wiesel (1962, 1968) is no coincidence. In primates, contrary to other
mammals (Barlow & Hill, 1963; Taylor & Vaney, 2003), direction selective
responses are first observed in V1 (Hubel & Wiesel, 1968). However, these
cells suffer from the “aperture problem”: they can only detect motion in a
direction that is orthogonal to any edge or border that extends beyond its
receptive field (Adelson & Movshon, 1982; Movshon et al., 1985; Simoncelli &
Heeger, 1998; Pack & Born, 2001). A more general representation of velocity,
that is less dependent on the exact physical features of the visual input,
emerges in the extrastriate area MT (also known as V5). MT, located on the
posterior bank of the superior temporal sulcus, was first described by Allman
& Kaas (1971) in the owl monkey (Aotus trivirgatus), who coined the name
“MT”, and by Dubner & Zeki (1971) in the rhesus macaque (Macaca mulatta),
who described the direction selective responses. It receives most of its input
from V1 layer 4b (Figure 1.1) and additional inputs from V1 layer 6, V2,
and V3 (Maunsell & Van Essen, 1983a). Neurons in MT are retinotopically
organized (Van Essen et al., 1981) and also show columnar organization,
similar to V1, based on preferred direction (Zeki, 1974; Albright et al., 1984)
and preferred binocular disparity (DeAngelis & Newsome, 1999). MT neurons’
tuning for motion direction has been confirmed by a large number of studies
in different primate species (Zeki, 1974; Van Essen et al., 1981; Maunsell &
Van Essen, 1983c; Albright, 1984; Felleman & Kaas, 1984; Snowden et al.,
1992; Movshon & Newsome, 1996; Treue & Andersen, 1996; Pack & Born,
2001; Pack, Berezovskii, & Born, 2001; Rust et al., 2006; Wallisch & Movshon,
2019). Furthermore, MT neurons are also tuned for speed (Maunsell & Van
Essen, 1983c; Lagae et al., 1993; Perrone & Thiele, 2001, 2002; Priebe et al.,
2003), for binocular disparity (Maunsell & Van Essen, 1983b; DeAngelis &
Newsome, 1999; DeAngelis & Uka, 2003), and for stimulus size by means of
the suppressive surround structure of their receptive fields (Raiguel et al.,
1995; Born, 2000).

A series of studies by the Newsome lab have provided evidence that the
selective responses for motion direction in MT are strongly linked to motion
perception. Consequently, this evidence has established MT as a prominent
model for visual processing, perceptual decision making, and the relation of
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neural activity and behavior. The task that is used in many of these studies
presents a monkey with a random dot pattern (RDP) in which a certain
percentage of dots move coherently in one direction, while the remaining
dots move in random directions. The monkey signals which of two possible
directions it perceived by making an eye movement to one of two choice
targets that are associated with the two possible directions. The difficulty
of the task and the monkey’s performance depend on the strength of the
motion signal, which is defined by the percentage of coherently moving dots
(or simply coherence). Evidence that MT is necessary to perform this kind of
task first came from a lesion study, which showed that motion thresholds (i.e.,
the coherence level that is necessary for the monkey to complete the task with
a certain performance level) were elevated after lesioning MT with injections
of ibotenic acid (Newsome & Paré, 1988). Microstimulation of a small patch
of MT with current pulses of 10µA biases a monkey’s motion perception
towards the preferred direction of the stimulated neurons (Salzman et al., 1990,
1992), suggesting that changes in MT activity are also sufficient to modulate
perception. To further quantify the relation between neuronal activity and
behavior, Newsome and colleagues developed the concept of a neurometric
function (Newsome et al., 1989; Britten et al., 1992): They measured an
MT neuron’s response to RDPs of varying coherence levels moving in the
neuron’s preferred or anti-preferred direction. Then they calculated a receiver
operating characteristic (ROC) curve by plotting for a range of threshold
values (e.g., 0 - 120 spikes/s) the probability that a neuron’s response to its
preferred direction exceeds each threshold versus the probability that the
response to the anti-preferred direction exceeds the same threshold. The
area underneath this curve (“area under the ROC curve”, auROC), which
falls between 0.5 and 1, can be considered the probability of the neuron
correctly identifying the presented motion. Plotting these auROC values
for a range of coherences results in a “neurometric” function, which can be
compared to the monkey’s psychometric function (i.e., the probability of
correctly identifying the direction of motion as a function of coherence). The
authors found that direction discrimination thresholds of individual neurons
were surprisingly similar to the behavioral threshold of the monkey and
sometimes even better (Newsome et al., 1989). This might be explained by
the fact that the analysis is based on single neuron responses to stimuli that
were optimized to drive these very neurons, whereas in reality decisions have
to be made based on the pooled output of many neurons with heterogeneous
response properties (Britten et al., 1992). While this line of research showed
that MT neurons represent motion direction with great sensitivity, it does
not provide any information about how this representation is related to
behavior. To address this question, another measure was developed, based on
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the ROC approach outlined above, that specifies the probability that an ideal
observer could tell, based on the firing rates from two trials, on which trial the
monkey made which choice (Britten et al., 1996). This choice probability can
theoretically vary between 0.5 and 1 (with 0.5 meaning chance performance
and 1 meaning perfect prediction of behavior based on neural responses), with
typical average values for sensory areas falling in the range of 0.52 (Gu et al.,
2008) to 0.67 (Dodd et al., 2001) (see Crapse & Basso, 2015, for a review).

How does the motion selectivity of MT neurons arise? Based on the
Motion Energy model, Simoncelli & Heeger (1998) proposed a two-stage
model of motion processing in areas V1 and MT of the primate cortex that
can explain a series of psychophysical and electrophysiological findings. The
V1 stage contains both simple cells, which are rectified and normalized linear
filters of the input image, and complex cells, which pool over simple cells
with identical spatiotemporal orientation in a small spatial region, similar
to the Adelson & Bergen (1985) model. In the second, MT-like stage, the
output of direction-selective V1 complex cells is combined to construct an
“intersection-of-constraints” scheme, which can solve the aperture problem
that V1 cells are faced with (Adelson & Movshon, 1982; Movshon et al.,
1985). This arrangement of direction selective V1 cells providing input to MT
cells is motivated by the finding that even though not all V1 complex cells
are direction selective, the ones that project to MT typically are (Movshon
& Newsome, 1996). The model is able to replicate properties of both, V1
and MT neurons, such as direction and speed tuning and the relation of
response to signal strength. Fitting this model to actual data from MT
further confirmed that it predicted responses to gratings and plaids (Rust et
al., 2006), and even to more naturalistic movies (Nishimoto & Gallant, 2011)
very well.

One of the main projection targets of MT is the medial superior temporal
area (MST). Neurons in area MST are also motion sensitive and direction
selective, but have even larger receptive fields than MT neurons and respond
to more complex motion patterns (Tanaka et al., 1986; Saito et al., 1986; Duffy
& Wurtz, 1991a, 1991b; Graziano et al., 1994; Mineault et al., 2012). The
functional relationship between these neurons’ activity and external stimuli is
much more difficult to characterize than for V1 or MT neurons, as it cannot
be described as a simple tuning for one or two stimulus features. The exact
response properties of MST neurons are the main topic of this dissertation
and will be covered in detail in the following chapters.
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1.5 Overview of chapters

The main part of the dissertation consists of six manuscripts (chapters 2 - 7).

Chapter 2 provides an extensive review of the scientific literature on
macaque cortical area MST. We highlight this area’s prominent role at the
intersection of low-level, bottom-up, sensory processing and high-level, top-
down mechanisms that ultimately guide behavior. This review has been
published in the Journal of Neurophysiology (Wild & Treue, 2021b).

Chapter 3 is a short, more focused review of an article by Sasaki et
al. (2017) that discusses how information about self-motion and object motion
can be decoded from a population of MSTd neurons with an algorithm that
approximates the mathematical process of marginalization. This article has
been published in the Journal of Neuroscience’s “Journal Club” section (Wild,
2018).

Chapter 4 is a manuscript that accompanies a published dataset of MST
neurons’ responses to a series of different motion stimuli. This manuscript is
under review at Scientific Data.

Chapter 5 describes a project that explores the response properties of single
MST neurons using a variety of different stimuli and analysis approaches.
This project was originally developed by Amr Maamoun and parts of the
results have been described previously in his doctoral thesis (Maamoun, 2018).
This previous work has been extended to include additional analyses.

Chapter 6 presents preliminary physiological data, simulations, and a
proposal for a different approach to characterizing the response functions of
MST neurons.

Chapter 7 describes a behavioral experiment with human subjects that
aims to explore how different stimulus features affect motion perception.

Chapter 8 summarizes and discusses the findings of the previous chapters
and provides an outlook to further questions.

For each chapter a detailed description of the contributions of each person
involved in the respective project is provided at the beginning of the chapter.
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1.6 Choice of model organism and animal wel-

fare

As most of the research described in this dissertation is based on animal
experiments, I would like to briefly discuss the topic of ethics.

Progress in neuroscience – as in all biomedical research – has relied on
the use of animal models for centuries. Nevertheless, some people oppose this
kind of research on moral grounds. The arguments against animal research
typically fall into one of two categories: the utilitarian approach argues that
the benefits (knowledge and treatment for diseases) need to outweigh the
harm (suffering that is inflicted on the animal) in order to justify animal
research. Proponents of this approach (e.g., Singer, 1975) argue that animals’
capacity for suffering needs to be taken into account when deliberating the
ethics of animal research, and typically come to the conclusion that the
animals’ suffering outweighs the benefits. The deontological approach argues
that animals are subjects-of-life that have inherent value and therefore must
not be used in experiments (T. Regan, 1983).

The critical point in both arguments is whether “human interests should
be given greater significance than animal interests” (Brody, 2017), a question
that lawmakers in many countries have answered with “yes” (e.g., European
Union Directive 2010/63/EU on the Protection of Animals used for Scientific
Purposes). This decision does not mean, of course, that animal interests are
ignored. The legal framework that regulates animal research is based on the
so-called “3R”-principles that had first been formulated by Russell & Burch
(1959):

• Replacement : the substitution for conscious living higher animals of
insentient material;

• Reduction: reduction in the numbers of animals used to obtain informa-
tion of a given amount and precision;

• Refinement : any decrease in the incidence or severity of inhumane
procedures applied to those animals which still have to be used.

How these principles are interpreted (and ultimately implemented in laws,
but also in the laboratory) is in constant flux. One trend in recent years
has been to describe “animal research ethics”, especially when they concern
nonhuman primates (NHPs), as a subfield of research ethics, not only of
animal ethics (Arnason, 2020). This shifts questions of autonomy or self-
determination into the focus of the debate. Examples of this changed approach
to interacting with laboratory NHPs include attempts to assess stress levels
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in response to different procedures (Pfefferle et al., 2018) and to provide
automatized training protocols with minimal human interaction that provide
more freedom and choices to the animals (Calapai et al., 2016; Berger et al.,
2018).

The research presented here uses rhesus monkeys for a number of reasons:
first, they have a hierarchically structured visual cortex that offers a unique
opportunity to investigate how sensory information is processed into more
and more abstract internal representations that ultimately guide complex
behavior. Second, their brains (especially the visual cortex) share many
similarities with the human brain, which allows to draw conclusions that
can ultimately be applicable to address neurological and psychiatric diseases.
Third, even though the experiments described in chapters 3 and 4 require
nothing more of the animal than to keep its gaze on a point on the screen
(a task that could potentially also be done by a “lower animal”), they are
embedded in a bigger project. The ultimate goal of this project is to explore
the effects of cognitive functions, such as attention, on neural activity and
therefore requires a model organism that is capable of such functions.

Conscious of the responsibility that is entailed in the privilege of working
with NHPs, I believe that the use of rhesus macaques as model organisms for
these types of experiments is justified.



Chapter 2

Primate extrastriate cortical
area MST: a gateway between
sensation and cognition

Benedict Wild & Stefan Treue

Journal of Neurophysiology, Vol. 125 (2021)

As outlined in Chapter 1, the medial superior temporal area (MST) sits at
a crucial point in the visual processing hierarchy of the primate brain. This
chapter presents an extensive review of the scientific literature on MST.
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Abstract

Primate visual cortex consists of dozens of distinct brain areas, each providing
a highly specialized component to the sophisticated task of encoding the
incoming sensory information and creating a representation of our visual
environment that underlies our perception and action. One such area is
the medial superior temporal cortex (MST), a motion-sensitive, direction-
selective part of the primate visual cortex. It receives most of its input from
the middle temporal (MT) area, but MST cells have larger receptive fields and
respond to more complex motion patterns. The finding that MST cells are
tuned for optic flow patterns has led to the suggestion that the area plays an
important role in the perception of self-motion. This hypothesis has received
further support from studies showing that some MST cells also respond
selectively to vestibular cues. Furthermore, the area is part of a network that
controls the planning and execution of smooth pursuit eye movements and
its activity is modulated by cognitive factors, such as attention and working
memory. This review of more than 90 studies focuses on providing clarity of
the heterogeneous findings on MST in the macaque cortex and its putative
homolog in the human cortex.

From this analysis of the unique anatomical and functional position in
the hierarchy of areas and processing steps in primate visual cortex, MST
emerges as a gateway between perception, cognition, and action planning.
Given this pivotal role, this area represents an ideal model system for the
transition from sensation to cognition.
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2.1 Introduction

Primate cortex consists of well over 100 different areas that can be differ-
entiated on anatomical as well as physiological grounds (Felleman & Van
Essen, 1991; Markov et al., 2013, 2014; Paxinos et al., 2000; Van Essen et
al., 2012). Around one third of these areas in the human cortex and as much
as half of them in the macaque cortex contribute to the processing of visual
sensory information (Orban et al., 2004; Orban, 2008). These visual areas are
highly interconnected and form a rich network of feedforward and feedback
connections between “lower” and “higher’ areas. Once visual information
coming from the lateral geniculate nucleus (LGN) has arrived in layer 4C of
the six-layered primary visual cortex (V1), a hierarchy of brain areas can be
determined based on the cortical layers from which projections originate and
in which they terminate. Feedforward projections start in superficial layers of
the lower area and terminate in layer 4 of the higher area, whereas feedback
connections project from deep and superficial areas in the higher area to layers
outside of layer 4 in the lower area (Felleman & Van Essen, 1991; Maunsell &
Van Essen, 1983a). As one ascends this visual hierarchy, what is represented
by the activity within different areas shifts from a representation of low-level
features of the 2D retinal image (“sensation”) to a high-level interpretation
of the multi-dimensional environment and the organisms relationship to it
(“cognition”) (Treue, 2003).

Areas at the intersection of sensation and cognition are at the heart of a
fundamental question of neuroscience: how can the brain extract information
about the environment to create an internal representation and subsequently
guide behavior? One such area is the medial superior temporal (MST) of the
macaque cortex (see section 2.2 for anatomical location and connection to
other areas). It is predominantly a visual area that processes information
about complex motion patterns, which is typically described in terms of its
cells tuning for features of visual motion, such as direction and speed (see
section 2.3). But it also uses this information to determine the direction
in which the organism is currently moving (section 2.4). Furthermore, it
integrates vestibular cues with visual information to improve this represen-
tation of self-motion and to tell it apart from the motion of objects in the
environment (section 2.5). However, activity in MST neurons reflects not
only the integration of sensory input but is also modulated by oculomotor
information (section 2.6) and cognitive processes like attention or working
memory (section 2.7). Thus, MST is an ideal model system to study the
selectivity of individual neurons for complex stimuli, multisensory integration,
and sensory-motor transformations and how these processes are modulated by
behavioral signals. While this information comes from studies of non-human
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primates, there is overwhelming evidence that the human brain contains an
anatomically and functionally homolog area (section 2.8).

2.2 Anatomy of the medial superior temporal

area (MST)

In the macaque cortex, the MST is located “medial to [the middle temporal
area (MT)], along the fundus of the superior temporal sulcus and in places
extending several millimeters onto the anterior bank” (Maunsell & Van
Essen, 1983a) (Fig. 2.1). An anatomical landmark is a densely myelinated
zone (DMZ) that serves to mark the areas border on the upper bank of
the superior temporal sulcus (STS) (Boussaoud et al., 1990; Ungerleider &
Desimone, 1986). Using anterograde and retrograde tracers, Maunsell and
Van Essen (1983a) showed that connections from MT ended primarily in
layer IV of MST, which constitutes a feedforward projection (see Fig. 2.2 for
a visualization of MST connectivity). The reciprocal connection originated
mostly in layers V and VI of MST, which is consistent with a typical feedback
projection and is in line with the connectivity patterns of other areas in
the hierarchy of extrastriate visual cortex. Boussaoud and colleagues (1990)
established many additional cortical connections of MST and the adjacent
and highly interconnected fundus of the superior temporal sulcus (FST):
MST receives input from hierarchically lower areas V1, V2, V3, the parieto-
occipital area (PO), the dorsal prelunate area (DP), and MT. MST has
reciprocal connections with area V6 (Galletti et al., 2001), which overlaps
with PO (Galletti et al., 2005), and with the dorsal and ventral subdivisions of
area V6A (Gamberini et al., 2009; Passarelli et al., 2011). Further reciprocal
connections with areas that rank on the same or a similar hierarchical level
as MST itself include the ventral and lateral intraparietal areas (VIP and
LIP). And it also receives feedback from hierarchically higher areas such
as the frontal eye field (FEF; Barbas & Mesulam, 1981) and parts of the
inferior parietal lobule (IPL) that have traditionally been referred to as visual
area 7a (Andersen, Asanuma, Essick, & Siegel, 1990) and more recently been
specified as the “Opt” field and, to a lesser degree, the “PG” field of the
IPL (Rozzi et al., 2006). All of these connections are reciprocal: MST sends
feedback to the areas from which it receives input and it forwards its output
to the areas from which it receives feedback (see Felleman & Van Essen, 1991,
Tables 3, 5, and 7 for an overview of all connections, hierarchical constraints,
and lists of references).

A study investigating the subcortical connections of MST found reciprocal
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Figure 2.1: Anatomical location of the medial superior temporal cortex (MST)
and the middle temporal area (MT) within the superior temporal sulcus (STS).
A. MST and MT lie within the STS. B. MST is located on the anterior bank
of the sulcus, medial to MT. C. MST is most commonly subdivided into
MSTd and MSTl, the exact location of which can be seen in the flattened
view of one hemisphere.
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based on Boussaoud et al. (1992). See main text for details.
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connections with the pulvinar, the reticular nucleus of the thalamus, and the
claustrum. In addition, Boussaoud et al. found that there were non-reciprocal
connections from MST to the striatum and the pontine nuclei (Boussaoud,
Desimone, & Ungerleider, 1992). Curiously, the same study reported that
injection of anterograde tracers in MST did not show any label in the superior
colliculus (SC) which is known to play an important role in eye movements
and attention (Gandhi & Katnani, 2011; Krauzlis, Lovejoy, & Zénon, 2013)
and is well connected to MT (e.g., Maunsell & Van Essen, 1983a). Apart
from the DMZ that marks the areas border on the upper bank of the STS,
MSTs boundaries are not sharply defined, which has led to different ways
of segmenting the area into subsections. Boussaoud et al. (1990, 1992)
differentiate between a more posterior part where cells have receptive fields
(RFs) close to the center of the visual field (MSTc) and a more anterior part
with cells whose RFs cover the periphery (MSTp). An alternative scheme
for dividing MST has been proposed by Wurtz and colleagues, referring
to a dorsal-medial subsection on the anterior bank of the STS as MSTd
and a lateral-anterior part on the floor of the posterior bank of the STS as
MSTl (Duffy & Wurtz, 1991a; Komatsu & Wurtz, 1988b; Newsome, Wurtz,
& Komatsu, 1988; Komatsu & Wurtz, 1988a). The counterpart to MSTd has
sometimes been labeled the ventral part of MST (MSTv) (Kolster et al., 2009;
Pack, Grossberg, & Mingolla, 2001; Tanaka, Sugita, Moriya, & Saito, 1993).
Using a variety of different stains, Lewis and Van Essen (2000) differentiate
three zones within MST: a dorsal anterior zone (MSTda) that corresponds to
what Desimone and Ungerleider (1986) called the DMZ, a dorsal posterior
zone (MSTdp) that is located posterior and medial to MT, and a medial zone
(MSTm). As of this writing in 2021, a consensus has not yet been reached on
how to name the subsections of MST, however the majority of the literature
focuses on MSTd. For this review, we will use the naming convention of the
respective original publication.

Of the 94 empirical research studies reviewed in the first 6 sections, 69
used rhesus monkeys (Macaca mulatta), 18 were conducted with cynomolgus
monkeys (M. fascicularis), 6 with Japanese monkeys (M. fuscata), and 4 with
Southern pig-tailed macaques (M. nemestrina) .
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2.3 Visual response properties of MST cells

Comparison to MT

Given that MST was originally defined as the main projection target of the
middle temporal area (MT), it is not surprising that the two areas share many
similarities. MT is a small region located at the posterior bank of the STS and
it contains a large number of direction- and disparity-selective neurons that
are retinotopically organized, have RFs which are approximately 10 times
larger than those of V1 neurons but, like V1 neurons RFs, increase in size
with eccentricity (Albright, 1984; Maunsell & Van Essen, 1983c; see Born
& Bradley, 2005, for a review). Early studies confirm that MST neurons
are also direction-selective, albeit with much larger RFs than MT neurons,
often covering substantial parts of the contralateral visual field (Desimone &
Ungerleider, 1986; Tanaka et al., 1986). Some respond only to movements
of individual luminance bars and not to the movement of wide dot patterns
covering a large part of the screen (“figure type cells”). Others show the
opposite pattern of responses (“field type cells”) or they responded equally
well to both types of stimuli (Tanaka et al., 1986). Presumably, figure type
cells play a role in detecting the difference between the movements of an
object and its background or even in perceiving the boundaries of the object
with respect to its environment. Field type cells, on the other hand, which are
absent in MT, are involved in the perception of motion of a large part of the
visual field, irrespective of individual, smaller objects within that field, such as
the motion of the background as one moves through the environment (Tanaka
et al., 1986).

Distinct cell types for different motion patterns

However, the most striking difference to MT is that MST contains neurons,
which selectively respond to much more complex motion patterns than move-
ment along a straight line. Saito and colleagues (1986) were the first to report
three distinct types of cells in MSTd: those that are similar to MT cells and
respond preferentially to unidirectional straight movement (“D cells”, around
50% of MSTd neurons); cells that respond selectively to radial motion, i.e.,
an expanding or contracting stimulus (“S cells” for “size change”, around
16% of MSTd neurons); and cells that respond selectively to clockwise or
counterclockwise rotation in the frontoparallel plane or in depth (“R cells”,
around 14% of MSTd neurons), leaving 20% unclassified cells. S and R cells
are almost exclusively found in the dorsal part of MST whereas the ventral
part contains neurons that prefer linear motion of a smaller stimulus and are
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presumably more relevant for the perception of object motion (Tanaka et al.,
1993). This has led Tanaka and colleagues to suggest that the ventral and
dorsal parts are functionally distinct subregions of MST. The selectivity for
radial motion in MSTd remains of note since these types of motion patterns
are also experienced as one moves through the environment, a phenomenon
known as “optic flow” (Gibson, 1950). Importantly, MT cells do not show
selectivity for optic flow stimuli (Lagae, Maes, Raiguel, Xiao, & Orban, 1994),
suggesting that this property is generated de novo in MST. How MST is
involved in the perception of ones own translational movement through the
world will be reviewed in detail in the following two sections. For the remain-
der of this section we focus on general visual response properties, i.e., the
neural responses to passively viewed visual stimuli.

Tuning in spiral space instead of distinct cell types

The idea of distinct types of cells (Saito et al., 1986; Tanaka & Saito, 1989)
responding selectively to radial, rotational, or translational motion was chal-
lenged by Graziano and colleagues (1994). Inspired by the finding that MSTd
cells often respond not only to radial, rotational, or translational motion, but
to two or all three types (Duffy & Wurtz, 1991a), they hypothesized that
these cells might in fact prefer an intermediate form of motion. They defined
a continuous circular spiral motion space in which expansion, contraction,
clockwise rotation, and counterclockwise rotation can be thought of as the
cardinal directions. Intermediate spiral motion patterns can be thought of as
a combination of rotational and radial components (e.g., adding a clockwise
rotational component to an expanding motion pattern creates an outward
clockwise spiral motion pattern, see x-axis in Fig. 2.3 for 8 evenly spaced
directions in spiral space). They found that indeed a large majority of neurons
had Gaussian tuning curves in spiral space (see Fig. 2.3 for an example),
similar to the direction and orientation tuning curves typically found for MT
and V1 neurons. A similar study confirmed the selective responses to radial,
rotational, and spiral motion and additionally found that almost no MST
neurons were selective for deformation (Lagae et al., 1994), thus providing
further evidence for a tuning in spiral space. The preferred directions of all
tested neurons in Graziano et al. (1994) covered the whole range of directions
in spiral space but with a clear bias for stimuli containing an expanding
component. Again, this speaks for a role of MSTd in the perception of
self-motion, as a forward movement through the environment results in an
optic flow pattern that is dominated by an expanding component (explored
more in depth in sections 2.4 and 2.5). This tuning is independent of the
exact shape of the stimulus, i.e., the preferred direction in spiral space is the
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Figure 2.3: Gaussian tuning curve of a cell tuned to a spiral motion that is
moving clockwise and contracting simultaneously. The icons on the x-axis
indicate the type of stimulus. The error bars show the standard error across
10 trials (Figure reprinted with permission from Graziano et al., 1994).

same for random dot patterns (RDPs) and filled or empty squares (Geesaman
& Andersen, 1996). These results suggest that MSTd contains a population
of cells tuned to spiral motion directions with their respective preferred direc-
tions distributed in spiral space, similar to linear motion preferences in earlier
visual areas. There is no evidence for the alternative hypothesis of three
distinct subpopulations of cells that decompose complex stimuli into radial,
rotational, and translational components. This raises the question whether
cells in MSTd are topographically organized according to their preferred
direction, similar to the orientation columns in V1 (Hubel & Wiesel, 1962)
and direction columns in MT (Albright, 1984). Indeed, both electrophysi-
ological recordings (Britten, 1998; Lagae et al., 1994) and 2-deoxyglucose
labeling (Geesaman, Born, Andersen, & Tootell, 1997) indicate that neurons
tuned to similar directions in spiral space are clustered in columns in MSTd.
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Receptive fields: size, shape, and structure

A recurring theme of this review is that MST neurons generally show more
variability and less structure compared to lower areas, such as V1 and MT. In
particular, whereas cells in the lateral geniculate nucleus (LGN) and primary
visual cortex (V1) are often described as filters that perform relatively simple
operations on the visual input (Carandini et al., 2005), this does not hold
true for MST, as will be discussed in more detail in the following sections. An
antagonistic center-surround structure, which is typically observed in RFs of
earlier areas and still present to some degree in MT (Perge, Borghuis, Bours,
Lankheet, & van Wezel, 2005; Raiguel et al., 1995), does not seem to be
present in MST. Instead, the observation that large stimuli (4̃0 in diameter)
are necessary to evoke a MSTd neuron’s maximal response suggests that most
cells simply spatially sum across their entire RFs (Graziano et al., 1994; Lagae
et al., 1994; Tanaka et al., 1993; Tanaka & Saito, 1989). Some studies do
report a decrease in firing rate for stimuli that exceed a certain size in some
MST cells (Eifuku & Wurtz, 1998; Lagae et al., 1994; Tanaka et al., 1993) and
others describe excitatory and inhibitory “zones” of MST neuronal RFs (Duffy
& Wurtz, 1991b). Komatsu & Wurtz (1988a) found a reversal in preferred
direction in some MST neurons once the stimulus exceeded a critical size,
but the preferred direction of a small stimulus did not reverse across different
locations within the RF. Instead, the reversal seems to depend on spatial
summation over the total RF area that is stimulated. In conclusion, the
evidence suggests that any inhibitory mechanisms in MST RFs could provide
some form of gain control but do not follow the classical antagonistic center-
surround structure. Whereas the size and structure of RFs in early visual
areas is well described by simple models, such as a difference-of-Gaussians
for LGN cells (Rodieck, 1965), RFs of MST neurons are not only larger, but
also more variable in their shape. Fitting receptive fields to a 2-dimensional
Gaussian showed MST RFs to be more elliptical or at least less regular than
those of MT neurons (Raiguel et al., 1997). Note that forcing RFs into a
predefined shape (such as a 2D Gaussian) means that some irregularities in
the RF shape get automatically smoothed out. Thus, more elliptical fits could
also be a sign that the RF shapes are generally more irregular in MST than
in MT.

The relation between RF eccentricity and RF size in the MST is weaker (Ta-
naka et al., 1986; Desimone & Ungerleider, 1986; Komatsu & Wurtz, 1988b;
Luo et al., 2019; Raiguel et al., 1997; Tanaka & Saito, 1989) than that found in
the neurons of lower areas (see, for example, Fig. 1 of Freeman & Simoncelli,
2011). Tanaka et al. (1993) even found a negative relation between size
and eccentricity for MSTd and a positive one for MSTv. What is generally
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agreed upon, however, is that RF sizes in MSTd are much bigger than in
MSTl/MSTv (Sasaki et al., 2019). Lastly, electrophysiological recordings of
individual cells have not confirmed a well-structured retinotopic organization
in MST, as is documented for V1 and MT, in MST. A number of studies report
at least crude visual topography (Desimone & Ungerleider, 1986; Komatsu
& Wurtz, 1988b; Tanaka, 1983)) while others specifically mention that they
found no topography at all (Saito et al., 1986; Tanaka et al., 1986). More
recent fMRI studies, however, do provide evidence for a cluster of retinotopic
visual field maps in the posterior section of the STS, one of which can be
attributed to MSTv, based on its anatomical location (Kolster et al., 2009).
Acute single cell recordings and functional imaging both have advantages and
disadvantages when it comes to determining the structure of brain regions
in visual cortex: the former offers fine-grained information about individual
units but samples randomly from the area with high variability between
individual recording sessions. The latter can measure the activity across
the entire brain within a single recording session, but the spatial resolution
is limited as each fMRI voxel represents the blood-oxygen-level-dependent
(BOLD) response that is associated with the activity of thousands of neurons,
potentially averaging out the variability within this population. The groups of
Tsao and Freiwald have had remarkable success in functionally dissecting the
inferotemporal cortex by combining fMRI with electrophysiological recordings
(e.g., Bao, She, Mcgill, & Tsao, 2020; Freiwald & Tsao, 2010; Schwiedrzik
& Freiwald, 2017) and similar methods may be necessary to get a better
understanding of the exact structure of MST. Of course, when the receptive
fields of single neurons cover as much as a quarter of the visual field, one
cannot expect a tessellation of the visual field that is as apparent as it is
in earlier areas. At least for those neurons in MSTd with large RFs, the
question of whether there is a retinotopic organization or not seems futile.
In summary, the size, shape, arrangement, and structure of MST neurons
receptive fields cannot be adequately described by simple models or linear
relationships. However, recent work looking at more complex models of
nonlinear integration of the input that MST receives from MT has shown
promising results (Mineault et al., 2012, see below for details) and work along
those lines may be helpful in the future.

Speed selectivity

Speed is an integral parameter of motion and how MST neurons respond
to different speeds provides important insights about spatial integration of
inputs and how complex motion pattern selectivities arise. Specifically, a
major question is whether MST neurons simply integrate over local speed
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and direction patterns or respond selectively to the overall, global motion
patterns inside their RFs. Most cells increase their firing rate with speed until
a maximum response is reached and then saturate. A few cells, however, are
truly tuned for speed variation; they decrease their firing rate once the stimulus
exceeds their preferred speed (A. K. Churchland, Huang, & Lisberger, 2007;
Duffy & Wurtz, 1997; Orban, Lagae, Raiguel, Xiao, & Maes, 1995; Tanaka
& Saito, 1989). As speed increases, response latency typically decreases in
MST and is a bit lower than in MT (Lagae et al., 1994). There is evidence
for spatial integration of speed distribution: rotational stimuli normally have
a speed gradient, as points on the outer edge of a stimulus need to cover
a larger distance to make one full rotation than points close to the center.
One study reports that removing this gradient has little effect on the neurons
selectivity, suggesting that it is the average speed across the RF, rather than
the exact distribution of speeds, that determines its selectivity (Orban, Lagae,
et al., 1995). Such a purely spatial speed integration across the RF might be
too simplistic, though, as another study did find substantial changes in the
responses of up to two thirds of their recorded neurons when removing the
gradient (Duffy & Wurtz, 1997). The fact that MT neurons, which provide
the main input to MST, are tuned for speed gradients (Martinez-Trujillo et
al., 2005; Treue & Andersen, 1996), also makes it likely MST makes use of
the additional information about structure that is provided by such gradients.
This is one example for the more general question of whether MST neurons
analyze motion by parceling complex motion patterns out into smaller, more
elementary units, or whether they process them as a unified whole. The
contradicting results show that this question has not been fully solved yet
and we consider it in more detail below in the context of models of receptive
field organization.

Disparity selectivity

Similar to MT (Maunsell & Van Essen, 1983b), a large proportion of neurons
in MST is disparity selective (Roy et al., 1992). In other words, their response
to a stimulus moving in the preferred direction with the preferred speed
(as determined for 0 disparity) varies depending on whether the stimulus
is closer (negative disparity, “near cells”), farther (positive disparity, “far
cells”) or at the same distance (zero disparity) as the fixation point (the
“horopter”). Interestingly, Roy and colleagues (1992) report that most cells
prefer a non-zero disparity, i.e., only a minority prefers stimuli along the
horopter, with the numbers of near and far cells being approximately equal.
In around 40% of the investigated cells, the preferred direction switched
to the opposite when disparity switched from positive to negative and vice
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versa (“disparity-dependent direction-selective” or DDD cells). This feature
contributes to determining one’s own direction from the motion of stationary
objects on the retina caused by the viewers self-motion (Roy & Wurtz, 1990).

Position invariance and receptive field organization

A compelling feature of MSTd cells, first described by Saito et al. (1986), is
that of position invariance (Duffy & Wurtz, 1991b; Graziano et al., 1994; Lagae
et al., 1994): the observation that a neurons preferred complex motion pattern
does not invert, even when local linear motions are inverted (see Fig. 2.4A
for an illustration). To test this, Graziano and colleagues (1994) presented
stimuli in up to five carefully selected locations within the RF, arranged in
an overlapping cloverleaf (to create reversals in local direction) (Fig. 2.4A),
to test for preference inversions at these locations. Figure 2.4 shows two
cells that preferred clockwise over counterclockwise rotation (Fig. 2.4B) or
expansion over contraction (Fig. 2.4C) and retained this preference polarity in
all five locations. Graziano and colleagues (1994) found that most responses
recorded from MST neurons were position invariant. Using a similar approach,
Lagae et al. (1994) found only 40% of their recorded MST neurons to be
position invariant; however, they report that nearly all their position invariant
cells were located in MSTd, where Graziano and colleagues had also recorded
most of their cells, suggesting that position invariance is a dominant (and
possibly unique) feature of the dorsal part of MST.

Position invariance is highly informative concerning one if not the most
intriguing issue about MST neurons: how can their specific selectivities be
generated from their input? The general question of how selectivity for
particular features arises has been at the heart of visual neuroscience at
least since Hubel and Wiesel (1962) proposed their model of how orientation
selectivity in V1 can arise from LGN input. Applying this approach to MT
and MST would suggest that several MT cells with properly aligned receptive
field locations and preferred directions project onto a single MST neuron
which is then selective for that particular arrangement of linear directions
(Fig. 2.5). This would be in line with what Duffy & Wurtz (1991b) dubbed the
“direction mosaic hypothesis”, suggesting that a MST neurons RF consists of
properly aligned subfields with translational direction preferences (presumably
these subfields would be identical with the RFs of MT neurons projecting onto
the MST neuron). And indeed it has been shown that the spatial arrangement
of direction components is the most important factor in determining MST
selectivity (Tanaka & Saito, 1989). However, this idea is incompatible with
the local direction reversals that come with position invariance (Fig. 2.4A):
it would mean that for any part of the RF, input needs to be provided by
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Figure 2.4: Position invariance test used by Graziano and colleagues (1994).
A. On each trial, the stimulus appeared at one of five locations within the
receptive field (left). As shown in the magnified view (right), in the regions
of overlap the direction of motion depended on position. A similar test was
used for expanding and contracting stimuli. Black bar = preferred direction,
white bar (minimal) = anti-preferred direction. B. Response of a clockwise
rotation-tuned cell to clockwise and counterclockwise rotation at the five
retinal locations. C. Response of an expansion-tuned cell to expansion and
contraction at the five retinal locations. Note that both B and C show
responses to the preferred (black bars) and the anti-preferred direction (white
bars), but that responses to the anti-preferred direction are close to zero
and therefore difficult to see in most plots (reprinted with permission from
Graziano et al., 1994).
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MST

MT

Figure 2.5: A simple architecture to create a clockwise rotation selective
receptive field: the receptive fields of MT cells (8 of which are shown here in
blue with their preferred directions) are spatially arranged in a way that their
preferred directions line up to form a clockwise rotational pattern. If they all
project to a single MST neuron (shown in orange) with excitatory synapses,
the receptive field of that MST neuron (orange circle) will have a selectivity
for clockwise rotation. This model cannot, however, explain position invariant
response properties (Fig. 2.4 and text).

multiple MT neurons with different preferred directions. If all of them have
excitatory projections to the same MST neuron, the MST neuron would not
be selective for one particular direction in spiral space anymore. Several
suggestions have been made to address this issue. A “compartment model”
divides an MST neuron’s RF into overlapping compartments, each of which
is constructed from similarly organized MT inputs independently of the other
compartments. MT cells whose input creates one such compartment all project
onto one branch of a dendrite of the MST cell so that each dendritic branch
can be described as a subunit whose activity represents one compartment of
the cells RF (Saito et al., 1986).

The alternative “overlapping gradient hypothesis” posits that the RF
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consists of excitatory and inhibitory response gradients. The particular
arrangement of excitatory and inhibitory gradients with different preferred
directions is claimed to account for the selectivities for complex motion
patterns (Duffy & Wurtz, 1991b). With a similar idea in mind, Mineault et
al. (2012) devised a promising model that can account for the response patterns
of a heterogeneous population of MST neurons. They developed a continuous
optic flow stimulus that consisted of randomly evolving combinations of
translational, spiral, and deformational motion and fitted a neurons response
to this pattern to a number of different models, which they then used to
predict the neurons response to new stimuli. Not surprisingly, a simple linear
receptive field model that compares the stimulus to an internal template
was not successful in accounting for the more complex response properties of
MST neurons. Instead, a hierarchical model in which an MST neuron linearly
integrates the input of several subunits with properties similar to those of MT
neurons was able to describe some cells very well, but across the population
the predicted responses often deviated substantially from recorded responses.
A third model, finally, where the input of the subunits was transformed by
a static nonlinear operation with just one free parameter before integration
(Fig. 2.6), resulted in remarkably good fits to the data. Such a nonlinear
operation could be implemented biologically through inhibitory interactions
among MT neurons or synaptic depression between MT and MST. The
model found between 2 and 45 subunits for each MST neuron which were
mostly excitatory and often had overlapping RFs. It is, of course, likely that
each MST neuron receives many more projections from MT than that, but
the model convincingly shows an architecture that can explain many of the
features of MST neurons.

We would like to reemphasize that the focus of our review lies on studies
that include physiological recordings. As is apparent from the examples
introduced above, there is also a multitude of pure modeling studies that
explore this issue (e.g., Beardsley & Vaina, 1998; Grossberg, Mingolla, &
Pack, 1999; Layton & Fajen, 2016; R. Wang, 1995; Zemel & Sejnowski, 1998),
which exceed the scope of this review.

Relation of MST activity to perception and behavior

The last question we want to address in this first section is how the activity
of MST neurons is related to motion perception on the behavioral level. Two
measures based on Signal Detection Theory have been developed to compare
behavioral performance in simple discriminations tasks to the responses of
single neurons: first, constructing a “neurometric” curve (Britten et al., 1992)
allows to compute a discrimination threshold for each neuron, which can be
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Figure 2.6: Model where a stimulus is processed by groups of MT-like filters.
The output of these filters is passed through a nonlinearity and then weighted,
summed, and transduced to a firing rate. For each MST cell, the nonlinearity
can vary from compressive to expansive and was identical across all subunits
(reprinted with permission from Mineault et al., 2012).

compared to the psychophysical threshold of the monkey. Second, choice
probability (CP) (Britten et al., 1996; see Crapse & Basso, 2015, for a review,
but also Cumming & Nienborg, 2016, and Zaidel et al., 2017, for limitations
of CP) is a measure of how the activity of individual neurons is related to the
monkeys decision on a trial-by-trial basis. For this measure, one compares
the distribution of responses from trials where the monkey chose the neurons
preferred feature (here: direction) to the distribution of responses from trials
where it chose the anti-preferred feature (here: the opposite or null direction)
and calculates the probability that a randomly chosen value from the first
distribution is higher than a random value from the second one. Thus, CP
values indicate the accuracy with which a neuron’s response predicts the
monkey’s choice, with values around 0.5 representing chance performance
and values close to 1 representing nearly perfect prediction accuracy. Both of
these measures have been developed to investigate the role of MT in a simple
two-alternative forced choice (2AFC) task where the monkey has to report
whether a low coherence RDP is moving to the left or to the right (Newsome
et al., 1989). This experiment was later repeated to investigate the role of
MST in this kind of task (Celebrini & Newsome, 1994). The results were
typically quite similar for MT and MST: for most cells, neuronal thresholds
were very similar to behavioral thresholds, suggesting that an observer could
rely on only a very small group of neurons to make its decision. Similarly,
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CP values were significantly above 0.5 in both areas, but did not differ sig-
nificantly between areas. Furthermore, microstimulation of MST biased a
monkeys choice behavior towards the preferred direction of the cells around
the stimulation site (Celebrini & Newsome, 1995), again showing a similar
pattern of results as MT (Salzman et al., 1992). This suggests that MST does
not contribute more or less to this type of simple behavioral task than MT.
Interestingly, CP values were not significantly above 0.5 when the monkey
had to choose between two opposing directions in spiral space, suggesting
that the relationship between spiral motion perception and MST activity is
weaker than that between linear motion perception and MST activity (Heuer
& Britten, 2004). In contrast, Williams and colleagues (2003) did find a
difference in the relation between neural activity and perception between MT,
MST, and LIP (lateral intraparietal area): monkeys reported the direction of
an apparent motion stimulus, which, on some trials, was constructed so that it
could be perceived to move either in a neuron’s preferred or its anti-preferred
direction. Almost half of LIP neurons and 22% of MST neurons, but no MT
neurons showed a difference in activity depending on whether the monkey
reported the neurons’ preferred or anti-preferred direction. The authors
concluded that neuronal activity becomes more aligned with the subjective
perception of apparent motion as one ascends through the three hierarchically
organized areas. To investigate whether the contributions of MT and MST
are necessary for motion perception, Rudolph & Pasternak (1999) lesioned
both areas by injecting ibotenic acid. This caused pronounced deficits in
motion perception. For stimuli not masked by noise, the monkeys were
eventually able to recover some of the impaired perceptual abilities, suggest-
ing that other areas can compensate for the lost function. However, the
ability to extract motion signals from noise remained impaired even after
extensive training, indicating that MT and MST play an irreplaceable role
for challenging motion perception. Lesioning of MT and MST also impaired
speed discrimination (Orban, Saunders, & Vandenbussche, 1995). However, a
later study showed that very precise lesions of the STS affecting MT, while
leaving MST intact, have similar behavioral effects as larger STS lesions
that also affect MST. This suggests that the relation of MST activity to
behavior is largely inherited from MT, at least for direction discrimination
tasks (Lauwers, Saunders, Vogels, Vandenbussche, & Orban, 2000). Yet a
different approach to comparing perception with neuronal activity is to exam-
ine neural responses during visual illusions where perception diverges from
physical stimulus properties. Neural populations, whose activity parallels the
illusory perception rather than the physical stimulus, can be considered to
be more closely related to behavior than populations whose activity is only
related to the stimulus but not to perception. An example of such an illusion
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is the “apparent motion” of an RDP whose dots are displaced by a spatial
and a temporal separation with successive flashes of each dot. Small temporal
separations create “smooth motion”, but with increasing temporal (and spa-
tial) separation between flashes (keeping the speed constant), the quality of
motion is degraded. Interestingly, observers experience an illusory increase in
speed with increasing temporal and spatial separation, but single MT neurons
do not parallel this illusion, but rather decrease their firing rates as a function
of increasing temporal separation (M. M. Churchland & Lisberger, 2001).
However, averaging the responses of a subset of MST neurons allowed to
estimate the speed in a way that maps onto the illusion (A. K. Churchland
et al., 2007), suggesting that MST activity is closer related to perception in
this particular setting than MT activity. In a similar vein, a recent study
provided further support for a direct role of MST in motion perception by
showing that a subgroup of MSTd neurons respond to illusory rotational or
radial motion (Luo et al., 2019). This suggests that MSTd might contribute
directly to the perception of these illusions. The exact role that MST plays in
motion perception is still not fully understood. The idea that a small, local-
ized set of neurons form the immediate substrate, or “bridge locus” (Teller,
1984), for perception is oversimplified and the neural correlate of any sort
of perceptual experience is more likely to be distributed across a number of
brain areas (Movshon, 2013). In the case of motion perception, this probably
includes areas such as V1, V3, MT, and LIP. Existing detailed models of
motion processing typically focus on V1 and MT (Rust et al., 2006; Simoncelli
& Heeger, 1998), proposing that MT extracts motion information from V1
and represents velocity in a way that is invariant to other stimulus features,
such as spatial frequency or orientation. MST plays an important role within
such a multistage model and might perform additional computations that go
beyond MT’s focus on simple linear motion and extract the corresponding
feature-invariant velocity information (Khawaja, Liu, & Pack, 2013). Thus,
future work on the neural underpinnings of motion perception should embrace
the idea of a network of areas, rather than a unidirectional processing pipeline.

This first section focused on MST with regard to features that are typically
discussed in other visual areas, such as receptive field size, tuning for direction
and speed, or relation to behavior in simple discrimination tasks. Many of
these points will be revisited in later sections. MST cells are not just a slightly
more complex step in a one-directional processing pipeline and differ from
cells in earlier visual areas in a number of important features, namely

1. highly complex stimulus preferences,

2. no clear retinotopic organization,
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3. lack of a suppressive surround structure and

4. questionable relation of receptive field size to eccentricity.

MST seems to be an interface where physical properties of the environment
processed by earlier areas are represented in a way that is more directly linked
to perception and subsequent action. In that sense, the MST can be thought
of as the dorsal pathways analog to the inferior temporal (IT) cortex in the
ventral pathway (Graziano et al., 1994). In the next section, we discuss how
MSTs unique combination of response properties makes it a central player
for the neural processing of self-motion information.

Takeaway:

1. The receptive fields of MST neurons are larger that those of its main
input area MT and can cover as much as half of the entire visual field,
predominantly on the contralateral side.

2. MSTd neurons are tuned to motion in “spiral space”, i.e., they respond
preferentially to motion patterns composed of radial and/or rotational
directions.

3. Interestingly, this preference for spiral motion is often position invariant,
i.e., a neuron’s preferred complex motion pattern remains the same in
different regions of its receptive field, even if the change in stimulus
position causes local motion directions to inverse.

4. How MST neurons integrate the input they receive from MT neurons
to create such a position invariant selectivity is not well understood.
Evidence so far points to a nonlinear integration of MT responses that
are tuned to translational motion, but this is an important area for
future research, since it could offer fundamental insights into the neural
computation underlying complex stimulus preferences.

5. Elucidating the role that MST plays in motion perception remains a
central focus of current research. Understanding how MST works in
conjunction with other areas of the dorsal pathway, while taking on a
special role as the neural underpinning of at least some motion percepts
would help to decipher the role of areas at the interface of sensation
and cognition.
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2.4 The role of MST in self-motion percep-

tion based on optic flow

In both, the ventral and the dorsal visual pathway, the neural representation of
the environment gradually shifts from one that (A) primarily reflects low-level
stimulus attributes (V1) to (B) a highly specialized representation of selected
stimulus features (ventral: V4; dorsal: MT), to (C) a representation that
selectively focuses on complex stimulus descriptions of high ecological, social or
behavioral relevance (ventral: IT; dorsal: MST). For IT in the ventral stream,
prominent examples for species interacting with a complex environment are
object recognition (DiCarlo & Cox, 2007; DiCarlo, Zoccolan, & Rust, 2012)
and, given the rich social life of primates, facial processing (Freiwald & Tsao,
2010; Kanwisher et al., 1997; Kanwisher & Yovel, 2006; Tsao et al., 2006).
What, then, is the equivalent to object representation and face selectivity in
the motion domain that leverages the high-level representation in MST? It
must be the kind of motion patterns that primates routinely encounter and
that require immediate decision making and complex responses. This is the
case for optic flow, i.e., the radial patterns that are projected onto the retina
during translation of an observer through the environment (Gibson, 1950)
and are a major contributor of self-motion perception. Thus, self-motion
perception based on optic flow (and separating this self-motion from object
motion, which is discussed in chapter 2.5) can be considered MST’s core
task, in a similar way as object and facial recognition are IT’s core tasks.
Correspondingly, just like lesions in IT create specific effects on the perception
of faces (Barton, Press, Keenan, & O’Connor, 2002; Busigny et al., 2014),
and stimulation of face-selective sites biases categorization of noisy images
towards a face category (S.-R. Afraz, Kiani, & Esteky, 2006), lesions and
stimulation of MST would be expected to impair or bias self-motion perception.
Already, the first studies to describe MST neurons selectivity for radial and
rotational motion discussed the possibility that these neurons are involved in
the processing of optic flow and the analysis of self-motion (Duffy & Wurtz,
1991a; Saito et al., 1986; Tanaka & Saito, 1989). Early psychophysical studies
have shown that humans are very good at determining the direction of self-
motion from such optic flow patterns, even when the pattern is confounded
by eye movements (W. H. Warren, Morris, & Kalish, 1988; W. H. Warren
& Hannon, 1988). Since general mechanisms of self-motion perception have
been reviewed comprehensively (Britten, 2008; Lappe, Bremmer, & Van Den
Berg, 1999), we will focus here on how MST’s response properties make it a
key area within the brain for solving this problem.
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Figure 2.7: A. Nine 76◦× 76◦ visual motion stimuli (box) containing outward
radial optic flow (arrows) with FOEs (open spot at origin of arrows) at
the fixation point (black dot) or shifted by 30 from the center. B. spike
density histograms derived by averaging the responses of a medial superior
temporal area (MST) neuron to 6 presentations of the stimulus shown at the
corresponding position in A. Vertical bar indicates the 100 spikes/s activity
level and the onset of the 1-s visual stimulus the duration of which is marked
by the horizontal bar (reprinted with permission from Page & Duffy, 1999).

Tuning for heading direction

To specifically test whether MSTd neurons represent the current heading
direction, Duffy & Wurtz (1995) presented monkeys with radial and rotational
stimuli that differed in the location of their center of motion. They found that
in most neurons the response varied with the location of the center of motion
(Fig. 2.7) and that the preferred centers of motion were topographically
distributed across the visual field (see also Gu et al., 2006; Lappe et al., 1996;
Page & Duffy, 1999; Pekel et al., 1996, for similar findings). This provides
strong evidence that the population of MSTd neurons as a whole can encode
the position of the center of motion (also called the “focus of expansion”,
FOE, in the case of expanding stimuli). Thus, presumably, MSTd represents
the current direction of heading very well, even if we are not looking where
we are heading. Note that variations in firing rate with the location of the
center of motion do not contradict the position invariance described in the
previous section: position invariance merely states that a neuron’s preferred
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direction stays the same across different locations within the RF. In other
words, a position-invariant neuron that prefers expansion to contraction will
do so in every part of the RF. The absolute firing rate, however, can still vary
across locations and thus allow a neuronal population to represent different
centers of motion.

Population coding of heading instead of decomposition
of optic flow patterns

It is mathematically possible to decompose any optic flow field into so-
called “elementary flow components” (EFC), such as rotation, divergence (i.e.,
expansion and contraction), or deformation (Koenderink, 1986; Koenderink
& van Doorn, 1975). Thus, an early hypothesis was that MSTd performs
such a decomposition into EFCs to compute heading direction. However,
two findings speak against the decomposition hypothesis: neurons which
are selective for one EFC decrease their response when their preferred EFC
is mixed with another EFC (e.g., clockwise rotation mixed with expansion
from outward clockwise spiral motion) (Orban et al., 1992). Furthermore, as
described in the previous section, many MSTd neurons are tuned along a single
dimension of spiral motion patterns, rather than representing EFCs (Graziano
et al., 1994). If neurons were representing the presence of an EFC, they
should respond strongly as long as this EFC is present in the stimulus, even
when mixed with other EFCs (Orban et al., 1992). As an alternative, Lappe
& Rauschecker (1993a, 1993b) suggest a model consisting of two layers of
neurons (such as MT and MST) that can represent heading direction through
the population response of the output layer. More specifically, their MST-like
output layer represents each possible heading direction with a population
of neurons, the summed activity of which provides the likelihood that the
respective direction is in fact the current heading direction. This model has
received strong support from physiological data (Lappe et al., 1996). In
conclusion, the available evidence clearly favors such a population encoding of
heading direction, rather than individual MSTd neurons computing heading
based on a decomposition.

Effects of microstimulation and inactivation on heading
perception

The gold standard for linking neural activity with cognition is to show a
causal relationship. Stimulation and inactivation are the methods of choice
to document that neural activity is sufficient or necessary for perception or
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behavior. To test whether altering the activity of MST neurons is sufficient to
modulate heading perception, Britten & Van Wezel (1998, 2002) electrically
stimulated the area in monkeys performing a visual heading discrimination
task. The monkeys were presented with an optic flow pattern consisting of
random dots moving away from a FOE and had to report whether the FOE,
which is considered the direction of heading, was to the left or to the right of
straight ahead. In a large proportion of experimental sessions, stimulating
MST significantly biased the monkeys reports about their heading perceptions,
in some cases by more than 5 degrees. Gu et al. (2012) confirmed that
microstimulation of MSTd neurons biased behavior in a heading discrimination
task and additionally showed that reversible inactivation of MSTd led to
strong increases in discrimination thresholds.

Effect of pursuit eye movements on heading representa-
tion

So far, we have discussed the highly artificial scenario where a monkey keeps
its eyes still by fixating one particular point on the screen for an extended
period of time. Only in those cases does the FOE correspond to the direction
of self-motion. Eye movements add linear components to the optic flow field,
thus shifting the FOE. For example, moving one’s eyes to the right (Fig. 2.8E)
shifts the retinal image to the left and if this is combined with the expanding
optic flow that is associated with forward movement (Fig. 2.8B), it results in
an expanding optic flow pattern whose FOE is shifted to the right (Fig. 2.8E,
C vs A). Psychophysical experiments have shown that humans can account
for these eye movement-induced shifts, but require extraretinal information
about eye position to do so (Royden et al., 1992). Since MST also receives
and encodes information about eye movements (section 2.6), it is well suited
to solve the problem of estimating heading direction from shifted optic flow
patterns. It is possible that the tuning of MSTd neurons for heading in fixating
monkeys (e.g., Duffy & Wurtz, 1995) could simply represent the position of
the FOE on the retina, rather than actual heading. To test this, Bradley
and colleagues (1996) observed that monkeys either fixate or perform smooth
pursuit eye movements while they were presented with expanding RDPs whose
FOE position varied along an axis parallel to the neurons preferred smooth
pursuit direction. The authors found different types of cells: “heading cells”
showed the same tuning during fixation and pursuit eye movements, whereas
“retinal cells” seemed to be responding primarily to the pattern of retinal
image motion. Simulating eye movements by adding a linear shift to the RDP
while the monkey was fixating made “heading cells” react like “retinal cells”:
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Figure 2.8: Pursuit eye movements shift the retinal image of the focus of
expansion (FOE) in the direction of the pursuit, complicating the task of
determining heading direction from optic flow. A. Outward radial optic flow
with the FOE centered over the fixation point. Directions of motion in the
visual field are indicated (→). B. Overhead view of forward self-movement
(↑) with forward gaze (—) causing the visual stimulus in A. C. radial optic
flow with the FOE shifted to the right. D. Overhead view of right-forward
self-movement (↑) with forward gaze (—) that would cause the visual stimulus
in C. E. Visual stimulus in C also occurs with forward self-movement (↑)
during rightward pursuit (→) (reprinted with permission from Page & Duffy,
1999).



Primate extrastriate cortical area MST 61

their tuning curves shifted along with the eye movement. This suggests that
heading cells have access to information about the eye movement and can
use this information to adjust for shifts in the retinal image that are caused
by the eye movements. A subsequent study (Page & Duffy, 1999) tested
heading tuning during pursuit eye movements in 8 different directions, not
just along each neurons preferred pursuit direction. They found that for most
neurons, selectivity for a particular heading direction (as simulated by the
location of the FOE) was affected by pursuit eye movements (Fig. 2.9). From
that, Page and Duffy concluded that individual neurons cannot account for
heading detection during eye movements and found instead that a population
vector across 196 recorded neurons represents heading well, both during
fixation and pursuit (Page & Duffy, 1999). Importantly, the FOE position
in head-centered coordinates can be decoded from the population activity
even at the single-trial level at an accuracy close to behavioral discrimination
thresholds in humans and monkeys (Ben Hamed et al., 2003). This further
supports the idea that MST plays a key role in heading perception. However,
Bremmer and colleagues (2010) reported slightly different findings: they
found that about half of their recorded neurons preserved their selectivity for
one heading direction across fixation, simulated eye movements, and real eye
movements, similar to Bradley et al.s (1996) heading cells and in contrast
to Page and Duffys (1999) findings. But, it should be noted that their
measurement of heading selectivity was much more coarse with only three
different directions being compared, as opposed to nine different directions in
Page and Duffys (1999) study. Furthermore, Bremmer et al. (2010) report
that neurons retained their selectivity when the monkey fixated, but the
optic flow field was disturbed by adding another flow field that simulated
eye movements, which is in contrast to the findings of Bradley et al. (1996)
described above. This difference might be explained by the different visual
stimuli used in the two studies: whereas Bradley et al. (1996) used classical
expanding random dot patterns (white dots moving away from an FOE
in all directions), Bremmer et al.’s (2010) stimulus simulated self-motion
over a horizontal plane and is more realistic and natural. A recent study
attempted to elucidate the relative importance of purely visual, retinal signals
and extraretinal efference copy signals for the brains ability to discount the
distortions caused by eye movements. Manning & Britten (2019) compared
tuning for heading direction in three ways: a normal pursuit, a “simulated
pursuit” (during which the monkey fixated, but the stimulus was shifted as
if the monkey had made a pursuit eye movement), and a newly developed
“stabilized pursuit” (eye movements were compensated by stabilizing the
stimulus on the retina based on instantaneous eye velocity). The simulated
pursuit condition isolates the effects of retinal signals, as there is no efference



62 Primate extrastriate cortical area MST

Figure 2.9: Studies of a single MST neuron showing that pursuit shifts which
FOE is preferred. Each polar plot shows responses to 8 directions of pursuit
(see key at top left) across the FOE located at the position of that polar
plot. Solid circles show the response to that FOE during fixation; dashed
line circles show the control activity. This neuron preferred the centered
FOE in fixation (compare solid circles for each FOE, largest circle is at FOE
0). During right-downward pursuit, this neuron preferred FOE 4 (compare
right-down polar limbs for FOE 0 and FOE 4, marked as bold lines, largest is
at FOE 4). Vast majority of neurons (93%, 136/146) preferred an FOE, other
than the fixation-preferred FOE, during 1 direction of pursuit (reprinted with
permission from Page & Duffy, 1999).
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copy from the eyes, whereas the stabilized pursuit conditions isolates effects
of extraretinal signals, as the eyes are moving but the retinal image does not
change. They found that tuning curves shifted very little during stabilized
pursuit compared to a fixation condition, which supports the hypothesis that
retinal mechanisms alone can explain response stability as these two conditions
produce the same retinal image. Furthermore, tuning curves during real and
simulated pursuit, which lead to the same, shifted retinal image, were both
displaced in a similar manner. All of this suggests that the relative importance
of efference copies is rather small compared to the retinal contributions. The
differences between these four studies (Bradley et al., 1996; Bremmer et al.,
2010; Manning & Britten, 2019; Page & Duffy, 1999) show that heading
selectivity during eye movements depends on a complex interaction of the
type and direction of the eye movement, the exact stimulus configuration,
and the task at hand. There is strong evidence that a population of MSTd
neurons can represent the current direction of self-motion even as the visual
input is disturbed by eye movements. The exact computational mechanisms
that render this possible, as well as their neural implementation, remain an
active field of research.

Effect of saccadic eye movements on heading represen-
tation

In addition to pursuit eye movements, everyday vision is characterized by
ballistic eye movements, so called saccades, which occur multiple times
per second during natural behavior. They pose a challenge for heading
representation because motion perception is suppressed around the time of
saccades (Frost & Niemeier, 2015; Shiori & Cavanagh, 1989). Bremmer
and colleagues (2017) showed that a linear decoder that can accurately
determine heading direction from a population of MST and VIP neurons,
makes systematic errors when analyzing activity during saccades. The decoded
heading direction would be compressed towards straight ahead when analyzing
the population activity in the time period from just before saccade onset to
around 160 ms after. The authors conducted a psychophysical experiment
with human subjects who were presented with a short optic flow stimulus
and had to perform a heading discrimination task while making an upward
saccade. Just like the decoder, the human observers’ judgment was biased
towards straight ahead when the optic flow stimulus was presented peri-
saccadically. This provides strong evidence that the saccade-induced bias
in the decoder is not a peculiarity of the decoding approach, but that the
information represented in the population activity is truly impaired.
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In conclusion, it is clear that MST, together with other, adjacent areas
(such as VIP: A. Chen et al., 2011c), plays an essential role in the perception
of the direction of self-motion. In fact, this can be considered MST’s core
task, akin to object recognition in IT, without discounting the possibility that
MST may have other core tasks. If it is in fact true, that MST computes
and represents ones movement through the environment, it should be able to
integrate nonvisual sensory information about self-motion. In the following
section, we review evidence that this is indeed the case.

Takeaway:

1. MST’s selectivity for “spiral motion” makes it an ideal candidate to
process optic flow, the retinal motion patterns during translation.

2. Electrophysiological recordings have confirmed that MST neurons are
tuned for heading direction and that this can be decoded from the
activity of a population of MST neurons.

3. MST can also represent heading direction when retinal optic flow pat-
terns are distorted by eye movements and the latest results suggest that
this representation is based on the retinal input and does not require
efference copy information about the eye movements.

4. Elucidating the causal link between neural activity in MST and per-
ception remains a challenge. While the effects of microstimulation and
reversible lesioning of MST on heading discrimination support an impor-
tant role of this area for self-motion perception, the unique contribution
of MST to our perception remains to be determined.

2.5 Vestibular tuning and multisensory inte-

gration

As outlined in the previous section, the response properties of MST make
it an ideal candidate for the neural substrate of self-motion perception. A
big question remains: does MST encode purely visual signals about self-
motion and passes this information on to downstream areas, which integrate
it with information from other modalities to represent heading direction or
is it the final, integrated representation of heading direction? If the latter
is the case, these neurons should be able to encode heading information
based on nonvisual, e.g., vestibular input. It is by no means obvious that



Primate extrastriate cortical area MST 65

MST might respond to vestibular input, as it had been described as a purely
visual area for the first 15 years after its discovery. The literature reviewed
in this section show that MST neurons do integrate vestibular information
with the visual input. This is further evidence that these neurons reflect an
internal representation of the environment that can guide behavior, rather
than isolated features of the physical stimulus.

Tuning for vestibular input

Duffy (1998) was the first to test the responses of rhesus monkey MST
neurons to optic flow stimuli simulating self-motion and to real motion, both
in darkness and in combination with visual stimulation. The real movement
was achieved by means of a motorized sled on which the monkeys could
be moved in any direction on a horizontal plane. The study confirmed
that MST neurons were selective for heading direction in response to visual
optic flow stimuli. More importantly, around one quarter of the neurons
studied were also selective for the direction of a translational movement in
darkness, although the responses were typically smaller in magnitude and less
selective than responses to optic flow stimuli. Most surprising, however, was
that MST neurons varied widely in how they responded to simultaneously
presented visual and vestibular input: Some neurons were strongly tuned
for one modality (visual or vestibular) and only responded weakly to the
other modality; in that case the response to bimodal stimulation was typically
similar to that of the preferred modality alone. In other neurons the response
to bimodal stimulation was an additive combination of responses to either
modality alone. In a third group of neurons, adding vestibular input to
visual input suppressed the response to the optic flow. Notably, the preferred
directions for translational movement and optic flow were not related and
a substantial proportion of neurons altered their directionality in response
to non-congruent bimodal stimulation, i.e., translational movement in one
direction and optic flow simulating movement in another direction. The
groups of DeAngelis and Angelaki have expanded upon this work, and in a
remarkable series of studies, they have explored the integration of visual and
vestibular information in MSTd in great detail. Instead of a sled moving on
a plane, they have developed a six degrees-of-freedom motion platform which
allows for moving a monkey along any arbitrary axis in 3D-space (Fig. 2.10;
see Gu et al., 2006, for a detailed description of the setup). Because of
the comprehensive reviews of their work (Angelaki, Gu, & DeAngelis, 2009;
Fetsch, DeAngelis, & Angelaki, 2010, 2013), we will only briefly summarize
their most important results up to 2013 and review newer research published
since then in more detail.
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C. R. Fetsch, G. C. DeAngelis, and D.E. Angelaki
Visual-vestibular cue integration for heading perception:

Applications of optimal cue integration theory
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Figure 2.10: Experimental setup used to study visual-vestibular integration
by the groups of Angelaki and DeAngelis (e.g., Gu et al. (2006, 2008), Fetsch
et al. (2009)). A. The monkey and the display are placed on a six degrees-
of-freedom motion platform that can independently provide vestibular (real
motion) and visual (optic flow) stimuli. B. Example of an expanding optic
flow stimulus (reprinted with permission from Fetsch et al., 2010).

Gu et al. (2006) replicated most of Duffy’s (1998) (1998) findings, includ-
ing the fact that the preferred directions for visual and vestibular stimulation
often differed, and found an even higher proportion of MSTd neurons respond-
ing to vestibular stimulation (64%, compared to 98% responding to visual
stimulation). The reason for this higher proportion of neurons responding to
vestibular stimuli is probably the 3D motion, compared to 2D motion on a
plane in Duffy’s (1998) study. Neurons that were tuned for vestibular stimu-
lation were usually also tuned for visual stimulation so that there were almost
no exclusively vestibular neurons and visual responses tended to dominate
over vestibular responses in most bimodal neurons (Gu et al., 2006, 2007).
Similar to previous findings that MSTd neurons are clustered according to
their preferred direction in the visual domain (Britten, 1998; Geesaman et
al., 1997; Gu et al., 2012; Lagae et al., 1994), it was found that cells with
similar translational or rotational directional preference in the vestibular
domain also tended to cluster together (A. Chen, Gu, Takahashi, Angelaki, &
DeAngelis, 2008; Gu et al., 2012). Preferred directions in both the visual and
the vestibular domain are not uniformly distributed, but bimodal with peaks
at 90◦ to the left and to the right of straight ahead (Gu et al., 2006). Because
a neuron is most sensitive at the steepest point of its tuning curve, these
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neurons with preferred directions to the left or to the right are hypothesized
to be better able to encode heading differences that deviate very little from
straight ahead (Gu, Fetsch, Adeyemo, DeAngelis, & Angelaki, 2010).

Multisensory integration on the neuronal and the be-
havioral level

How is this peculiar set of response properties related to heading behavior?
Gu et al. (2007, 2008) trained monkeys to perform a heading discrimination
task, similar to the one Britten & Van Wezel (1998) used in their stimulation
studies: the animals experienced either real or visually simulated forward
motion that had a small rightward or leftward component, or a combination of
both (Fig. 2.11), and reported the perceived direction by means of a saccade
to the right or to the left. Performance was quantified by constructing
psychometric functions (proportion of rightward responses as a function
of heading direction) and calculating a discrimination threshold, defined
as the deviation from straight ahead that was necessary for the animal to
provide reliably correct responses. They found that perceptual thresholds
were similar for visual and vestibular stimulation alone (between 1.2◦ and
4.0◦) and improved significantly in the combined condition (Gu et al., 2008).

Neuronal thresholds, determined as described in the first section, were
generally worse than the psychophysical threshold for all three conditions
(visual, vestibular, combined), suggesting that the animal relies either on the
pooled responses of a large population of neurons or gives more weight to the
most sensitive neurons (Parker & Newsome, 1998).

To establish a functional link between the activity of MSTd neurons
and heading perception, Gu et al. (2007) calculated choice probability (CP)
values of MSTd neurons in a heading discrimination task. They found
them to be significantly larger than 0.5 in the vestibular-only condition (Gu
et al., 2007) and the combined condition (Gu et al., 2008). Additionally,
behavioral thresholds for a heading discrimination task predicted from the
activity of a population of MSTd neurons were in good agreement with actual
psychophysical thresholds that were measured under similar conditions (Gu
et al., 2010). Importantly, however, CP values in the combined condition (Gu
et al., 2008) depended on the congruency between the preferred visual and
vestibular directions of the neurons. Whereas congruent neurons (same
preferred direction for visual and vestibular stimulation) had CP values
significantly above 0.5, incongruent cells (different preferred directions for
visual and vestibular stimulation) had an average CP value slightly below
0.5. This suggests that the monkey relies more heavily on the congruent cells
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Figure 2.11: Top view of the three stimulus conditions used in the heading
discrimination task by the Angelaki and DeAngelis groups (e.g., Gu et al.,
2008): visual (optic flow only, indicated by the red expanding optic flow
pattern), vestibular (platform motion only, indicated by the black arrows),
and combined (optic flow and platform motion). In all conditions, the monkey
was required to fixate a central target during the stimulus and then saccade to
a rightward or leftward target at the end of each trial to indicate its perceived
heading relative to straight forward (one interval version) or relative to the
first interval (two interval version). The heading depicted in this schematic is
straight forward (0), and thus there would be no correct answer (monkey was
rewarded randomly) (reprinted with permission from Fetsch et al., 2009).

during its decision making process and at the same time raises the question
of what the purpose of the noncongruent cells is. It should be noted that
the interpretation of CP values is complex and a more recent study provided
evidence that these values are modulated by both sensory and top-down
choice-related signals (Zaidel et al., 2017).

Congruent and opposite cells

The difference between the preferred visual and the preferred vestibular
direction in incongruent cells is not random. While Duffy (1998) found
no evident relation between the preferred visual and vestibular directions,
later studies reported that they tended to be either aligned or pointed in
opposite direction, thus classifying cells as “congruent”, “opposite”, and
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“unclassified” (Fetsch, Wang, Gu, Deangelis, & Angelaki, 2007; Gu et al., 2006;
Sasaki et al., 2017; Takahashi et al., 2007). Furthermore, congruent and
opposite cells appear to be arranged in clusters within MSTd (A. Chen et al.,
2008). What then could be the purpose of these “opposite cells”, considering
that their discrimination thresholds get worse and their relevance for behavior
(as quantified by choice probability) decreases when visual and vestibular
cues are combined, i.e., more information about the environment becomes
available (Gu et al., 2008)?

Importance of opposite cells for dissociating self-motion
and object motion

It turns out that objects moving through the environment and thereby
disrupting the full-field optic flow, can bias heading perception, apparently
because the visual systems struggles to dissociate self-motion from object
motion. Adding vestibular signals to the optic flow reduces this bias (Dokka,
DeAngelis, & Angelaki, 2015). Logan & Duffy (2006) had already shown
that an object that disturbs the optic flow pattern (thus suggesting that it’s
moving independent from the environment) alters responses in MSTd cells
that are sensitive to both, optic flow and object motion. In such situations,
where visual input is altered and possibly in conflict with vestibular input,
opposite cells could help to decompose the overall input into components due
to self-motion and components due to object motion. To test this, Sasaki
et al. (2017) presented monkeys with the combined visual and vestibular
stimulation described above. A cluster of nine spheres, defined by increased
dot density (the “object”) and moving in one of eight possible directions,
was added to the optic flow pattern. They found that indeed, adding a
moving object to the optic flow pattern altered the joint tuning for self- and
object motion of congruent and opposite cells. In congruent cells, heading
tuning was more consistent across different directions of object motion in the
bimodal than in the visual condition. In other words, if a cell prefers the
same direction for visual and vestibular stimulation, then adding vestibular
information can counterbalance the disruption in the visual input caused by
the moving object. Tuning for the direction of the moving object, however,
was more consistent in the visual than in the bimodal condition, meaning that
the addition of vestibular information makes it more difficult for the cell to
encode the object’s direction. For opposite cells, the pattern reversed: heading
tuning was more consistent in the visual than in the bimodal condition, but
tuning for the direction of the objects was more consistent in the bimodal
than in the visual condition. Importantly, they found that a linear decoder
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provides good estimations of heading direction in the presence of object
motion (and vice versa) through an approximation of a type of probabilistic
inference. This worked only, however, on a population of mixed, i.e., congruent
and opposite cells (Kim, Pitkow, Angelaki, & DeAngelis, 2016) and only in
MSTd. In MSTl, on the other hand, there are generally fewer cells showing
heading selectivity, fewer cells showing vestibular tuning, cells are less able
to discriminate directions, and the effects of object motion on self-motion
representation are weaker (Sasaki et al., 2019).

Detailed mechanisms of visual-vestibular integration

After establishing that crossmodal information is brought together, a number
of studies have investigated how MSTd neurons integrate sensory signals
from the two modalities. A number of findings clearly show that visual
and vestibular information arrive in MSTd by separate pathways: first, a
majority of MSTd neurons are tuned for visual information in an eye-centered
reference frame, but in a head-centered reference frame for vestibular infor-
mation (Fetsch et al., 2007). Second, a bilateral labyrinthectomy eliminates
vestibular, but not visual tuning (Gu et al., 2007; Takahashi et al., 2007),
which also provides strong evidence that the tuning in absence of visual input
is really due to vestibular input and not some unaccounted for additional
input (e.g., auditory noise from the motion platform). Third, MT, which
provides the major input of visual information to MSTd, does not carry
vestibular information (Chowdhury, Takahashi, DeAngelis, & Angelaki, 2009).
Instead, Chen et al. (2011a) propose a hierarchical processing pathway for
vestibular information, based on the temporal dynamics of direction selectiv-
ity, which starts at the parietoinsular vestibular cortex (PIVC), and sends
information through the ventral intraparietal area (VIP) to MSTd. But how
is the information from these two separate pathways integrated? Morgan
et al. (2008) presented monkeys with 64 combinations of visual (8 evenly
spaced directions) and vestibular (8 evenly spaced directions) cues. They
found that a simple linear combination rule where the response in the bimodal
condition was the weighted sum of the corresponding visual and vestibular
responses, could account very well for the data. Manipulating the reliability
of the visual cue, by changing the coherence of the optic flow RDP, showed
that the weights assigned to each modality varied with cue reliability: the
visual weight increased and the vestibular weight decreased with increasing
visual motion coherence. As mentioned before, monkeys’ performance in a
heading discrimination task improved substantially in the combined condition
compared to visual or vestibular stimulation alone. Similarly, the neuronal
threshold (as derived from the neurometric curve) for congruent cells also
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decreased in the combined condition, but it increased for opposite cells (Gu
et al., 2008). Importantly, both the behavioral and the neuronal threshold in
congruent cells in the combined condition were very close to the statistically
optimal value. An important prediction of optimal multisensory integration is
that different modalities are weighted according to their relative reliabilities.
While Morgan et al. (2008) had shown that the relative weights can vary with
the coherence of the visual stimulus, this occurred outside of a behavioral
task and thus they could not directly test whether the re-weighting is in
accordance with optimal integration. Fetsch and colleagues (2009) showed
that monkeys performing a heading discrimination task using visual and
vestibular cues, are indeed able to weight cues according to reliability in
a near-optimal manner. In a follow-up study (Fetsch, Pouget, Deangelis,
& Angelaki, 2012) they tested whether a population of MSTd neurons can
predict the observed behavioral reweighting and what kind of computations
needed to be performed by individual multisensory neurons to account for this.
Using maximum likelihood decoding (e.g., Jazayeri & Movshon, 2006), they
converted the population response of all recorded neurons into perceptual
choices for every trial and calculated psychometric curves based on these
calculated responses. The weighting of visual and vestibular cues by this
simulated observer matched the monkeys behavior very well if only congruent
cells were decoded, suggesting that this subpopulation of MSTd neurons is
indeed where the integration and weight adjustment are happening. As in
the study by Morgan et al. (2008) the weights of individual neurons varied
with coherence and the ratio of vestibular to visual weights was significantly
correlated with the statistically optimal weights ratio. More importantly,
deviations from optimality matched slight deviations from optimal integration
observed on the behavioral level, thus providing further evidence that MSTd
is the neural substrate of this integration process. The fact that neurons
appeared to be able to change their weights on a trial-by-trial basis indicates
that this reweighting does not rely on changes in synaptic weights, as these
take place on a slower timescale. A recent model (Ohshiro, Angelaki, & Dean-
gelis, 2011) showed that divisive normalization (Carandini & Heeger, 2012)
can account for several empirical findings of multisensory integration, e.g.,
that multisensory enhancement is stronger for weak stimuli and decreases with
increasing stimulus strength (“inverse effectiveness”) and that multisensory
enhancement works best if cues from different modalities are congruent in
space and time. In the model multisensory neurons integrate the responses
of two primary neurons, which are sensitive to different modalities but have
overlapping response, as a weighted sum. The activity of each multisensory
neuron is then divided by the net activity of the pool of multisensory neurons.
This normalization can account for the changes in weights assigned to visual
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and vestibular cues that were observed when the reliability of the visual cue
was altered by changing the coherence of the dot patterns. The authors
hypothesize that this is caused by changes in the activity of the normalization
pool, which strongly depends on coherence (see Fetsch et al., 2013, for a
detailed review). The crossmodal interaction effects predicted by the model
have recently been confirmed through recordings of MSTd neurons (Ohshiro,
Angelaki, & DeAngelis, 2017). Furthermore, the crossmodal suppression
effects predicted by the model were similar in strength for both congruent
and opposite cells, indicating that divisive normalization is a general principle
of multisensory integration in MSTd and not directly related to a particular
behavior, such as heading discrimination or dissociation of self- and object
motion. An even more convincing finding in favor of divisive normalization is
that unisensory neurons that respond only to visual, but not to vestibular
cues show slightly suppressed responses to combined visual and vestibular
stimulation (Ohshiro et al., 2017). This can be explained by the model
because the normalization pool contains many multisensory neurons and its
overall activity is thus influenced by the vestibular stimulation.

This line of research has provided overwhelming evidence that MSTd,
which has traditionally been considered a visual area, also processes vestibular
information and integrates it with visual cues to represent the current direction
of self-motion, or heading. A diverse population of cells that have the same
(“congruent”) or different (“opposite”) preferred directions for visual and
vestibular cues allows to optimize heading discrimination on the one hand and
to tell self- from object motion on the other hand. The weighting of visual and
vestibular cues is flexibly adjustable, depending on cue reliabilities, probably
by means of divisive normalization. This line of research has established
MSTd as an excellent model system for the study of multisensory integration.
Thus, MSTd could, for example, be used to study the neural substrates of
age-related changes in multisensory integration, as a recent psychophysical
study in humans (Alberts, Selen, & Medendorp, 2019) provided evidence that
the weighting of vestibular and visual cues changes with age to compensate
for sensory deterioration of the vestibular system.

Note that additional brain areas, other than MSTd, also contribute to
heading perception and integration of visual and vestibular information, such
as VIP (Bremmer, Klam, Duhamel, Ben Hamed, & Graf, 2002) or the visual
posterior Sylvian area (VPS; A. Chen, DeAngelis, & Angelaki, 2011b). We
did not discuss these areas extensively, not because we consider them less
important, but because our goal here is to review how MST contributes to
different functions, such as heading perception, rather than how one specific
function is implemented in the brain. The finding that microstimulation and
reversible lesioning of MSTd affects behavior in a purely visual task much
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more than in a vestibular or a multimodal task (Gu et al., 2012) strongly
suggests that other areas can compensate for deficiencies in MSTd. We
refer the reader again to Britten (2008) for a comprehensive review about
self-motion perception and the different brain areas involved in it.

Role of MST in path integration and spatial cognition

Self-motion and the accompanying change in an organisms position are im-
portant aspects of spatial navigation. The neural basis of navigation has been
well established in rodents; here, place cells and grid cells in the hippocampus
and entorhinal cortex play an important role in the representation of space
and ones own position (Moser et al., 2008). Recent studies suggest a simi-
lar representation of space and current position by the entorhinal cortex of
macaques (Killian et al., 2012) and humans (Jacobs et al., 2013). Ones current
position is achieved by previous self-motion. How does the information about
self-motion that is encoded by MST neurons contribute to spatial cognition
more generally? There is evidence that at least some MSTd neurons can

Figure 2.12: Spike-density polar plots (spikes/s) and net vectors (radial lines)
with respect to heading. A. Responses of a neuron with similar heading
preferences on both paths (clockwise (CW): 237◦, counterclockwise (CC):
276◦). B. A neuron with opposite heading preferences (CW: 67◦, CC: 262◦);
a place preference for the right front of the room (reprinted with permission
from Froehler & Duffy, 2002).
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respond differently to the same heading direction depending on the path on
which the monkey is moving: when monkeys are moved with a motorized sled
on a circular path, so-called “path selective” neurons show larger responses
to the same heading when the sled is moved in either clockwise or counter-
clockwise directions (Fig. 2.12; Froehler & Duffy, 2002; Page, Sato, Froehler,
Vaughn, & Duffy, 2015).

This is particularly interesting, because a previous study found no evi-
dence for temporal integration when measuring responses to a continuously
changing optic flow field (Paolini, Distler, Bremmer, Lappe, & Hoffmann,
2000). Either the vestibular input from actual movement is necessary for
path integration on the single cell level or path integration only occurs during
heading sequences that represent a natural path, which might not have been
the case for the artificial setting of a changing optic flow field (Froehler &
Duffy, 2002). This suggests that MSTd could be part of a larger navigation
and spatial cognition network. Direct connections from the superior temporal
gyrus to the entorhinal cortex (Amaral et al., 1983) and a functional MRI
study in humans (Wolbers, Wiener, Mallot, & Buchel, 2007) provide addi-
tional evidence for such a network.

Takeaway:

1. In addition to visual motion, a subset of MST neurons also responds
selectively to vestibular input that provides information about self-
motion.

2. Cells that respond to both visual and vestibular information can be
“congruent”, meaning that they prefer the same heading direction for
visual and vestibular cues, or “opposite”, meaning that the two preferred
heading directions differs by roughly 180◦.

3. A population of mixed, i.e., congruent and opposite cells in MSTd
appears to play an important role in dissociating self-motion from
object motion.

4. The integration of visual and vestibular information has proven to be
an excellent model to study multisensory integration and the available
evidence supports a flexible weighting of the two modalities, possibly
based on divisive normalization, based on cue reliabilities. How the
representation of self-motion in MST is combined, with the representa-
tion of space and ones own position in the hippocampus and entorhinal
cortex, is an important open question.
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2.6 Modulation of MST activity by eye move-

ments

In primates and other species with forward-facing eyes and foveal vision
systems, perception of motion and eye movements are tightly coupled: When
an object that we are looking at moves, we have to move our eyes in order to
keep foveating it. How is activity in MST related to these eye movements?
Is it modulated by eye movements, and if so: how? What role does it
play for the planning or execution of eye movements or both? We already
noted that MST neurons representing heading direction can compensate for
eye movements, which suggests that they have some information about eye
position. The question is whether the contribution of MST to eye movements
is mostly perceptual, delivering information about the motion of objects to
other areas that compute the actual action plan? Or is MST itself involved
in the computation of an action plan?

The first studies of how eye movements are related to the activity of
MT and MST neurons occurred in the context of basic motion perception:
Newsome et al. (1985) wanted to test whether MT is necessary for the cortical
analysis of visual motion. They did this by showing that small, chemical
lesions of MT affected a monkeys ability to follow a moving target (“smooth
pursuit eye movement”) as well as its ability to saccade towards a moving
target, but not the ability to saccade to a stationary target. Similar lesioning
of MST also suggests that a lesion impairs estimation of the moving stimulus
speed and affects targets in the visual hemifield contralateral to the lesioned
hemisphere (“retinotopic deficit”) or targets moving towards the visual field
ipsilateral to the lesioned hemisphere (“directional deficit”) (Dürsteler &
Wurtz, 1988). These results suggest that the information about the stimulus’
motion represented in MT and MST is necessary for the planning of eye
movements towards moving targets, but not for computing action plans in
general, as saccades to stationary targets were unimpaired. Komatsu &
Wurtz (1988b) found that about a third of MT and MST neurons are active
during pursuit of a small target in an otherwise dark room so-called “pursuit
cells”. These pursuit cells also show direction-selective responses to visual
motion stimuli during foveation and their RFs typically include the fovea,
which is to be expected, since pursuit eye movements will normally start
from a point that is currently being foveated. The preferred direction of
a moving large-field RDP is opposite to the preferred pursuits direction in
a majority of MST pursuit cells (Komatsu & Wurtz, 1988a), which is not
surprising, given that as one moves ones eye in one direction (e.g., to the
right), the retinal image moves in the opposite direction (in the example, to
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the left). To test whether this pursuit signal comes from visual or extraretinal
(e.g., corollary discharge or proprioceptive sources) input, Newsome, Wurtz
& Komatsu (1988) turned off the pursuit target for a short time interval (the
“blink”) during the eye movement. While most pursuit cells in MT and some
in MSTl show a reduction in firing rate during the blink, suggesting that their
pursuit response can be accounted for by visual stimulation from the pursuit
target, pursuit cells in MSTd and the remaining cells in MSTl keep their firing
rates at a high level during the blink, indicating another, extraretinal source
of the signal. In both cases, however, the pursuit-related discharge typically
started after pursuit onset, indicating that the activity is not causally involved
in pursuit initiation, but rather involved in maintenance of the eye movement.
Similar results were reported by Ilg & Thier (Ilg & Thier, 2003) who found
that MST, but not MT, pursuit cells responded equally well during pursuit of
an “imaginary” target, defined by peripheral cues outside the RF, as during
pursuit of a regular target. Microstimulation of MT and MSTl during pursuit
movements increases eye velocity when a monkey moves its gaze towards the
hemifield that is ipsilateral to the stimulated hemisphere (i.e., leftward pursuit
during stimulation of the left hemisphere), but decreases velocity when the
eye moves away from the stimulated side (i.e., rightward pursuit during left
hemisphere stimulation) (Komatsu & Wurtz, 1989). However, this effect can
still be explained by changes in the visual perception of the monkey and does
not prove that MT and MST play a causal role in planning or execution
of the eye movement. To explore the nature of the pursuit-related signal,
Ono & Mustari (2006) recorded MSTd responses during normal pursuit,
during pursuit with target blinks (similar to Newsome et al., 1988), and
during vestibular ocular reflex (VOR) in complete darkness. As in previous
studies, neurons continued their discharge during the blink, but they were
not modulated during VOR. The authors interpret this as evidence that the
extraretinal signal reflects smooth pursuit or gaze commands, rather than
proprioceptive feedback or efference copies, which should also be affected by
VOR. However, an alternative explanation that does not assign a motor role
to MST could be that efference copies from motor areas are sent to MST only
during volitional movements, but not during more automated eye movements,
like the VOR.

Sensitivity to eye position

During both fixation and pursuit eye movements, a clear majority of MST
single-cell responses to identical stimuli vary with eye position (Bremmer,
Ilg, Thiele, Distler, & Hoffmann, 1997). Interestingly, almost all eye position
sensitive neurons had their maximum response at eccentric fixation locations.
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This could be part of a coordinate transformation computation where infor-
mation about the environment that has been represented in retinocentric
coordinates by earlier visual areas is transformed into different frames of
reference (e.g., head-, body-, or space-centered) (Ilg, Schumann, & Thier,
2004). And indeed, Bremmer et al. (1998) have shown that eye position infor-
mation can be extracted with an optimal linear estimator from the activity of
neural populations in different parietal areas, including LIP, 7A and MST. In
line with this, Lisberger (2015) suggested that MST plays a similar role for
sensorimotor transformation during pursuit eye movements as LIP does for
saccades and the medial (MIP) and anterior (AIP) intraparietal cortices do
for arm movements. Lisberger’s (2015) assessment that the exact role of MST
in pursuit remains unknown, still holds true. It is nevertheless clear that
MST is the first area along the visual processing pathway that plays a central
role for the integration of motion perception and eye movement planning.

Takeaway:

1. The so-called “pursuit cells” in MST are active during smooth pursuit
eye movements.

2. In a majority of MST neurons, responses to identical visual stimuli are
modulated by eye position.

3. The exact contributions of MST to the integration of motion percep-
tion and the planning and execution of eye movements remains to be
clarified, potentially offering fundamental insights as to the mechanisms
of multimodal integration in higher visual cortex.

2.7 Modulation of MST activity by cognitive

processes

The previous section showed that the activity of MST neurons does not solely
reflect processing of sensory (visual and vestibular) input in a bottom-up
manner, but is also influenced by internal, extraretinal signals, such as eye
movements. It is well established that neuronal activity throughout macaque
visual cortex is modulated by cognitive factors, such as attention (see Treue,
2001, for a review) and working memory (see Pasternak & Greenlee, 2005,
for a review). In this section we review how activity in MST is modulated
by attention and (working) memory and how this modulation is similar or
different to that of other visual areas.
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Attention in visual cortex

Attention is a mechanism that allows the prioritized processing of some
sensory stimuli at the cost of impaired processing of other, non-attended
stimuli. Visual attention can be either directed towards a certain location
(“spatial attention”) or towards a specific feature of a stimulus, such as its
shape, color, or direction of motion (“feature-based attention”). The neural
signatures of visual attention include changes in firing rates (e.g., McAdams &
Maunsell, 1999; Treue & Martinez-Trujillo, 1999) and modulated trial-to-trial
correlations between neurons (Cohen & Maunsell, 2009; Ruff & Cohen, 2014).
Another type of brain activity that has been investigated in the context of
attention are local field potentials (LFPs), which can represent the synchro-
nization of neural populations across (low LFP frequencies) or within (high
LFP frequencies) brain areas (Buzsáki & Draguhn, 2004). Attention increases
synchronization of spikes and LFPs in the gamma frequency band (Fries,
Reynolds, Rorie, & Desimone, 2001), changes the phase-amplitude coupling
of different LFP frequency bands (Esghaei, Daliri, & Treue, 2015), and de-
couples spike times from the phase of specific LFP frequency bands (Esghaei,
Daliri, & Treue, 2018). There is strong evidence from studies in the ventral
pathway that most of these top-down modulatory effects depend on feedback
connections (see Squire et al., 2013, for a review) and preliminary evidence
suggests that this is also true for area MT in the dorsal pathway (Hüer, 2017;
Hüer et al., 2018). MST receives such top-down input from a number of areas
in the temporal, parietal and frontal lobes, including the frontal eye field
(FEF) (Boussaoud et al., 1990). FEF in particular is considered to be a major
source of the modulatory activity that is associated with attention (Buschman
& Miller, 2007; Moore & Armstrong, 2003; Moore & Fallah, 2001; Zhou &
Desimone, 2011) and its reciprocal connection with MST makes the latter an
excellent model to study different effects of attention.

Attention: modulating firing rates

The modulatory effects of attention on individual neurons firing rates increase
along the hierarchy of the primate visual system (Maunsell & Cook, 2002;
Treue, 2001). As early as in the LGN (O’Connor et al., 2002) and in V1,
responses to attended stimuli are higher than those to unattended stim-
uli (Chalk et al., 2010; Luck et al., 1997; Motter, 1993; Roelfsema et al., 1998).
Such gain effects become more prominent along both, the ventral (Cohen &
Maunsell, 2011; Fries et al., 2001; McAdams & Maunsell, 1999; Moran &
Desimone, 1985; Nandy et al., 2017; Verhoef & Maunsell, 2016) as well as
the dorsal visual pathway (Martinez-Trujillo & Treue, 2002, 2004; Mehrpour,
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Martinez-Trujillo, & Treue, 2020; Treue & Martinez-Trujillo, 1999; Treue &
Maunsell, 1996, 1999).

Given the well-understood sensory characteristics of neurons along the
dorsal visual pathway and their midlevel position between early visual cortex
and higher association areas, MT and MST in rhesus monkeys have been
prime targets for studies assessing the attentional modulation of neuronal
responses. In a typical spatial attention paradigm, monkeys are presented
with two stimuli, one of which is placed inside the RF of the recorded neuron
and the other one at an equal eccentricity, but outside the RF. In a given
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Figure 2.13: Effect of feature-based attention on an MST neuron. A. Behav-
ioral paradigm: The monkeys initiated each trial by directing and maintaining
their gaze on a centrally presented fixation point and holding a touch-sensitive
lever. After trial initiation a static cue appeared for 67 ms at an eccentric
location, cueing the animal to covertly shift attention towards this target
location, either within the receptive field (yellow dotted circle added to figure
for illustrative purposes) or in the opposite hemifield. The cue presentation
was followed by a blank period for 400 ms to measure baseline activity. To
reduce transient motion onset responses, random motion, both inside and
outside the receptive field, was presented briefly (375 ms) prior to the on-
set of coherent motion stimuli (either spiral or linear motion). In order to
obtain a liquid reward, the monkeys had to respond to a transient speed
increment (250-2500ms after onset) of the target stimulus by releasing the
lever, ignoring any speed changes in the distractor. B. Stimulus configuration
for the feature-based attention condition with spiral motion. Attention was
always directed to the stimulus outside the receptive field (opposite hemifield
of yellow dotted circle) to either preferred direction (red) or anti-preferred
direction (blue dotted). Inside the receptive field (yellow dotted circle) the
stimulus always moved in the preferred direction to ensure a strong sensory
response. The right panel shows an example neurons spike density and raster
plot for responses while the target stimulus was moving either in the preferred
(red) or anti-preferred direction (blue dotted). C. Feature-based attention
example for the linear motion configuration. This panel is identical to panel
B, except that linear motion stimuli were presented. The right panel shows
the neuronal response for the same neuron as shown in panel B, but for linear
motion stimuli (adapted from Baloni, 2012).

trial, the animals are cued to attend to one of the two stimuli (the “target”,
Fig. 2.13A). Importantly, the physical stimulus configuration is identical
on trials where the stimulus inside the RF is the target (“attend-in”) and
those on which the target is the stimulus outside the RF (“attend-out”).
Thus, any differences in neural activity represent an internal, attentional
signal. Feature-based attention, on the other hand, is typically investigated
by presenting a neurons preferred feature (e.g., its preferred direction) inside
the RF and cueing the monkey to attend to another stimulus outside the
RF that either has the same feature (“attend pref”) or the anti-preferred
feature (“attend anti-pref”) (see left panels of Fig. 2.13B and C for examples
of feature-based attention paradigms with spiral and linear motion). To
ensure robust sensory responses, attentional studies in MT and MST employ
moving stimuli. Across many such studies a multitude of attentional effects
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on neuronal responses have been identified and quantified, most notably a
carefully orchestrated combination of gain increases for neurons encoding
the target stimulus and its features and gain decreases for neurons encoding
all other stimuli and features (Malek et al., 2017; Treue & Maunsell, 1996,
1999). Using such an approach, a study (Baloni, 2012) compared the effects
of spatial and feature-based attention on linear and spiral motion stimuli
for MST neurons tuned to both of these motion patterns (Fig. 2.13). While
spatial attention enhanced the responses to these two stimuli in the same
way (data not shown), these preliminary results showed that feature-based
attention only boosted responses to spiral motion stimuli (Fig. 2.13B), but
not to linear motion stimuli (Fig. 2.13C). The authors suggest that their
findings provide evidence that the linear motion selectivity observed in MST
is not “inherited” from MT (whose responses are affected by feature-based
attention to linear motion, Treue & Martinez-Trujillo, 1999) but is generated
de novo in MST. The results suggest that spatial and feature-based attention
take on complementary roles in MST to combine an unimpeded high gain
pass-through processing for sensory information from attended locations in
the visual field with an additional feature-based modulation of neuronal
responses. This ensures that only those responses to attended features that
contribute to perception are boosted by the allocation of attention. This
study is the first demonstration of a loss of attentional modulation along
the cortical hierarchy and of a selective lack of attentional modulation for
just one of the features a given neuron is tuned for. All the studies on
attention reviewed so far used highly controlled settings to isolate the effects
of attention on elementary sensory processing capabilities of the brain. A
different approach was taken by Page and Duffy (2018), who investigated
how the neuronal responses to optic flow and real motion are affected when
monkeys are engaged in different tasks that require them to focus on either
the visual input, or the vestibular input, or a task that is unrelated to the
motion stimuli. Monkeys were presented with circular motion by means of
either optic flow, or movement of a sled, or both and had to report either a
perturbation in the optic flow, or a perturbation in the sled movement, or
an unrelated auditory tone via button press. On the single cell level MSTd
neurons showed a variety of response patterns that depended on stimulus
condition (optic flow alone, sled movement alone, or both) and task (attend
to optic flow, attend to sled movement, or attend to auditory tone). On the
population level responses were diminished when monkeys attended to the
optic flow or the sled movement as compared to when they attended to the
tone detection task. While this finding could potentially be explained by
the tone detection task being easier, as indicated by faster reaction times, it
does suggest that MST responses to heading stimuli are modulated by task
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demands. It is an open question: can such a reduction modulation induce
systematic biases or misjudgments of self-motion, which would be highly
relevant, for example, in the context of driving a car?

For a proper understanding of MST, it is crucial to determine what part
of the attentional modulation of activity in MST is inherited from MT, and
what part is caused by direct projections from higher areas. Given that there
are direct connections between frontal regions, such as FEF and MST, it is
plausible to assume that at least part of the enhancement comes directly from
a top-down signal to MST itself. To resolve this question, one would have
to measure MST responses during an attention task while shutting off the
modulation of MT neurons by higher areas. This is difficult to achieve as MT
and MST lie next to each other in the cortex and most methods that will
affect MT are likely to affect MST as well. However, optogenetics can be used
to selectively affect individual cells and some preliminary results suggest that
it can be used to selectively shut down the influence of FEF on MT (Hüer et
al., 2018).

Attention: reduced burstiness

The attentional increases in firing rates observed in MST are stronger but
qualitatively similar to effects found in other visual areas. A recent study
found an additional neural signature of attention in MST: spatial but not
feature-based attention reduces the occurrence of multiple consecutive action
potentials with very short interspike intervals, so-called “bursts” in response
to spiral stimuli (Xue et al., 2017). This was particularly surprising as both
spatial and feature-based attention increased firing rates in agreement with
previous studies (e.g., Treue & Martinez-Trujillo, 1999). Even though the
firing rate enhancement was weaker for feature-based than for spatial attention,
this difference could not account for the absence of an effect of feature-based
attention on the burstiness of MST neurons. Furthermore, the reduction in
burstiness could be dissociated from the increase in firing rates, suggesting
that they are caused by two different mechanisms. Additional research is
necessary to determine to what extent these results are specific for MST or
can be generalized to other visual areas. But they strongly suggest that the
detailed mechanisms by which attention modulates activity in sensory areas
is complex and possibly relies on more than just unidirectional connections
from FEF to the respective area.

An open question that, to our knowledge, has not been addressed at all
on the neurophysiological level so far is how attention to visual or vestibular
cues can modify multisensory integration and heading computation in MST.
A psychophysical study (Royden & Hildreth, 1999) showed that allocating
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attention across different aspects of the visual input affects object motion
perception more than self-motion perception, suggesting that this is a question
well worth investigating in more detail.

Working Memory: influence of memory content on sen-
sory responses

The ability to keep a limited amount of information available for a few seconds
is essential for any type of goal-directed behavior. It is well established that
the prefrontal cortex is an important neural substrate for orchestrating task
relevant information and holding stimuli in memory ( Miller & Cohen, 2001;
Miller et al., 1996; see Constantinidis et al., 2018, and Lundqvist et al., 2018,
for a recent debate on the exact mechanisms). A less clear question, however,
is to what extent sensory cortical areas are involved in the short term storage
of information (see Pasternak & Greenlee, 2005, for a review). An early
study recorded the activity of different mid- and high-level visual areas in the
ventral and dorsal pathway during a delayed match-to-sample task (Ferrera,
Rudolph, & Maunsell, 1994). Monkeys were presented with a sample RDP
that was either moving in one of 4 cardinal directions or did not move but
had one of four colors. After a short delay period, a sequence of up to four
test RDPs, either moving in different directions or with different colors was
shown, and the monkey had to respond to the one that matched the sample
in either direction or color. In the condition where direction of motion had
to be matched, the responses of MT neurons to the four test stimuli were
largely independent of the sample stimulus that was kept in memory. In
MST and area 7a, in contrast, directional selectivity for the test stimuli
became weaker, but activity was more influenced by sample stimulus kept in
memory, suggesting that these areas contribute to the maintenance of direction
information. This study clearly showed that the memory representation of
motion information is by no means trivial: areas outside the PFC appear
to be involved, but not necessarily in the same way as they are involved in
sensory processing.

Working memory: necessity of MT/MST contributions

Bisley and Pasternak (2000) tried to determine the contributions of MT and
MST to working memory by investigating the effects of unilateral lesions on
encoding, retention, and retrieval of motion information in a delayed match-
to-sample task. They found that monkey performance was impaired, but the
exact nature of this impairment depended on the properties of the stimulus
and on the task. When presented with a noisy stimulus (a low coherence
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RDP) that had to be compared to a coherent stimulus moving in the same
or the opposite direction, encoding and retaining was generally impaired
by the lesion. This was not the case, however, if the to-be-remembered
stimulus contained a strong signal (i.e., a coherent RDP). Comparison of the
memorized stimulus with a test was only impaired when the task required
the discrimination of similar directions of two coherent RDPs. This suggests
that MT/MST is necessary for two tasks: integrating local motion signals
across a noisy stimulus for encoding (and possibly retaining) and accurate
discrimination of directions. Encoding and retaining of coherent motion
for a categorical (left vs. right) task, on the other hand, does not seem to
require MT/MST. It is possible that the information can be encoded by
direction-selective neurons in earlier visual areas (e.g., V1 and V3) and then
be retained as a categorical decision in frontal areas without the involvement
of MT/MST. Whether this really is the case could be tested by instructing
subjects to maintain either a mental image of the remembered sample or
to save the information in an abstract manner (e.g., by verbalizing “up and
left”). However, this would be impossible in non-human primates.

Working memory: activity during the delay period

The study by Bisley & Pasternak (2000) was limited in its ability to dissociate
the roles of MT and MST in a working memory task as it is very difficult to
confine the effects of artificial lesions to one single brain area without affecting
surrounding areas. Mendoza-Halliday and colleagues (2014) attempted to find
the exact point along the motion processing stream, where direction-selective
memory activity emerged by recording simultaneously from areas MT or
MST, and the lateral prefrontal cortex (lPFC). Monkeys performed a delayed
match-to-sample task similar to the one by Ferrera et al. (1994), where they
had to memorize the direction of a sample RDP and, after a short delay
report which one of two sequentially presented test RPDs was moving in the
same direction (Fig. 2.14A). Neurons were classified as “sensory selective”, or
as “delay selective” when their firing rates varied as a function of direction
during the sample stimulus presentation or the delay period respectively. As
expected, nearly all MT and MST neurons as well as 70% of lPFC neurons
were sensory selective (i.e., while a sample RDP was shown on the screen,
see Fig. 2.14B, D, for example neurons). However, only a third of MST and
half of lPFC neurons, but hardly any MT neurons were delay selective (i.e.,
their firing rate varied with memorized direction in the absence of a visible
stimulus, see Fig. 2.14C, E, for example neurons). Furthermore, some MST
and lPFC neurons showed strong delay selectivity but weak or no sensory
selectivity for direction, suggesting that there is a subpopulation of neurons
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Figure 2.14: Firing rate across task periods for example neurons in MT and
MST. A. Visual display during all task periods. B.-E. Mean firing rate
(±s.e.m.; n ≥ 50) over time in trials with each of the four sample directions
(color-coded arrows) for neuron examples in MT (B, C) and MST (D, E).
Each neuron’s preferred direction is shown in red. Gray area shows the
corresponding area under the ROC curve (auROC) over time (right axis
label). In C, the test stimuli, but not the sample, were placed inside the
neuron’s receptive field, and colors during the test period represent test
directions (reprinted with permission from Mendoza-Halliday et al., 2014).
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in these two areas that is primarily concerned with representing a memorized
direction rather than the direction of a present stimulus. The delay selectivity
in MST and lPFC neurons was also linked to task performance. This result
suggests that sustained activity during a short delay period arises quite
suddenly between two brain areas that are very strongly connected. Further
research will be necessary to investigate how such a pattern can emerge in
a presumably small and highly interconnected network. An open question
is whether aspects of motion other than direction, such as speed, are also
maintained in MST, but not in MT. As was the case for attention, working
memory for vestibular information has also been investigated much less than
that for visual information and there are, to our knowledge, no studies on
the involvement of MST in vestibular memory.

Takeaway:

1. Like in most other areas of the primate visual cortex, firing rates of
MST neurons are increased when monkeys direct spatial attention to
stimuli inside the neurons’ receptive fields.

2. In contrast to the typical effects of spatial attention, feature-based
attention was found to only affect neuronal responses to spiral, but
not linear motion, suggesting that these two motion preferences play
different functional roles.

3. Spatial, but not feature-based attention was found to reduce the occur-
rence of “bursts” of multiple action potentials with very short interspike
intervals.

4. Stimulus-selective activity during the delay period of a memory task
appears to be absent in MT, but to emerge in MST, suggesting that
this is an important change in the representation of motion from MT
to MST.

5. The complex integration of visual information with vestibular signals
and their modulation by memory and attentional influences performed
in MST underscores this area’s potential as an ideal model system and
future research focus for the transition from sensation to cognition.
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2.8 Human homologs of MST

A main reason why the macaque monkey is such a suitable model organism
for cortical information processing is that its brain structure is very similar to
that of humans (Orban et al., 2004). Compared to rodent species, non-human
primates are more similar to humans in terms of behavior (e.g., the coherence
thresholds for motion perception are 2-3 times worse in rats and mice than
in primates, Douglas et al., 2006), anatomy (e.g., forward-facing eyes that
allow for binocular processing or the multilevel processing pathway for motion
processing V1-MT-MST that has no equivalent in the rodent brain) and
physiology (e.g., a larger part of motion processing occurring in the retina
and V1 in rodents, as compared to primates, Marques et al., 2018). Findings
about the non-human primate brain are therefore thought to be more directly
relevant for an understanding of the human brain (Buffalo, Movshon, &
Wurtz, 2019; Mitchell et al., 2018; Roelfsema & Treue, 2014). In this section,
we review the evidence that the human cortex contains a homolog to macaque
cortical MST. The interspecies similarities that we describe below underscore
the relevance of understanding macaque MST for our understanding of human
vision and cognition.

Psychophysics

Visual psychophysics in healthy human subjects can be used to determine
processing “channels” (Campbell & Robson, 1968; Lee, 2011) or “detec-
tors” (Ringach, 1998) for specific visual features, such as orientation, lumi-
nance, or motion direction. While it is not always straightforward to exactly
map such channels onto neural structures, they clearly suggest specialized
modules in the human brain that underlie the processing of these features.
The existence of such channels can be demonstrated by showing that per-
formance in visual detection or discrimination tasks depends critically on
individual features of a stimulus. For example, a classic study showing that
adaptation depends on the spatial frequency of a stimulus suggests that there
are processing channels in the human visual system that are selective for
spatial frequency (Blakemore & Campbell, 1969). In a similar way, Regan and
Beverley (1978) provided evidence for “looming detectors”, i.e., processing
channels in the visual system that selectively respond to changes in size
(which can be described as expansion and contraction), separate from motion
information. It was not clear, however, that their adaptation paradigm probes
a putative human homolog of MST, rather than earlier areas, such as V1 or
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MT1 (Burr & Thompson, 2011). Therefore, Morrone and colleagues (1995)
tested the integration across local motion signals by measuring coherence
thresholds in a direction discrimination task. They showed that motion
sensitivity increases with the area of a random dot pattern, suggesting a
processing channel that integrates signals across the visual field. Importantly,
for circular or radial motion, such a spatial summation cannot be explained
by channels that are tuned to local linear motion, as different subsections
contain motion in orthogonal or even opposing directions. Instead, there must
be a neural mechanism that integrates different motion signals across sectors
(a putative MST-like channel). Furthermore, sensitivity is lower when sectors
of the RDP that contain no signal dots are filled with noise dots as compared
to when they are empty, providing additional evidence that this integrating
mechanism sums signals across the entire stimulus. In a second experiment,
contrast was varied for the entire stimulus while coherence was held constant.
Only a small effect of stimulus area on contrast sensitivity was observed,
suggesting that no summation takes place and sensitivity is limited by an
earlier stage with a contrast threshold (e.g., V1). A follow-up study (Burr,
Concetta Morrone, & Vaina, 1998) using annuli confirmed the summation
across large regions of space (as far as 72) and provided evidence that the
integrator mechanism relies on neurons with large receptive fields. Based on
these results, Morrone, Burr, and colleagues suggest a two stage process of
complex motion processing in the human brain: The first stage is a number
of independent local motion detectors (e.g., V1 or MT cells) that respond
to motion in a small part of the visual field and that limit overall stimulus
visibility through a contrast threshold. The second stage is an integrator
mechanism over the local motion detectors (presumably a human homolog
of MST) that is able to analyze more complex motion patterns across an
extended region (see also Vaina, 1998, for a review on the physiology and
psychophysics of complex motion perception). Further similarities between
the response properties of MST cells in the macaque cortex and an optic
flow channel in the human visual system were demonstrated by Snowden
and Milne (1996). They showed that adapting to a spiral motion RDP (as
described in section 1) elicited aftereffects that were selective for the adapting
direction and position invariant, which agrees well with the properties of MST
neurons described by Graziano and colleagues (1994). We have highlighted a
few selected psychophysics experiments that specifically aimed at providing
evidence for an MST-like processing channel in the human brain. To review

1It should be noted, in all fairness, that when the study by Regan & Beverley that Burr
& Thompson refer to was published, MST had not been described yet, MT had not been
explored in great detail yet and even the concept of a dorsal pathway had not yet been
proposed.
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the entire field of motion psychophysics would clearly exceed the scope of this
review and we refer the reader to existing reviews covering this field in more
detail (Burr & Thompson, 2011; Nishida, 2011; Nishida, Kawabe, Sawayama,
& Fukiage, 2018).

Functional Imaging

Positron emission tomography (PET) and functional magnetic resonance
imaging (fMRI) provide a more direct measure of motion perception in the
human cortex (always keeping in mind that while BOLD activity is highly
correlated with neural activity (Logothetis et al., 2001), the two are not
identical). A motion-sensitive area in the inferior temporal sulcus (ITS) of
the human cortex, considered a homolog to macaque cortical areas specialized
for motion processing, has been established quite early (Tootell et al., 1995).
This complex is often referred to as hMT/V5 (“human MT”, e.g., Orban et
al., 1998), MT+ or hMT+ (“human MT” with the “+” suggesting additional
areas being included; e.g., Beauchamp, Cox, & DeYoe, 1997), or simply
“MT-MST” (e.g., O’Craven, Rosen, Kwong, Treisman, & Savoy, 1997). All
of these names acknowledge that this complex probably contains multiple
areas and a number of different fMRI studies strive to differentiate these
areas, each leveraging one specific difference between MT and MST. Morrone
et al. (2000) made use of the fact that MST, but not MT neurons respond
selectively to circular and radial motion trajectories. They found a part of the
V5/MT complex along the sulcus that separates Broadmanns area 19 (V3,
V4, V5) and 37 (fusiform gyrus) that showed activation when contrasting
responses to circular, radial, and spiral RDPs with responses to randomly
moving noise RDPs. This area was distinct and on average more than 1 cm
removed from another area in the V5/MT complex that was selectively
activated by contrasting translational motion with noise RDPs. Dukelow and
colleagues (2001) made use of the fact that MST, but not MT receptive fields
extend into the ipsilateral visual field and MST, but not MT neurons receive
extraretinal smooth pursuit eye movement signals (as reviewed in section
4). They found that ipsilateral optic flow stimuli produced activation at the
anterior end of the MT+ complex (putative MST) while the posterior part
of the MT+ complex (putative MT) was only activated by contralaterally
presented stimuli. Nonvisual smooth pursuit eye movements in darkness
activated a small volume in the anterolateral section of the MT+ complex
that responded only weakly to contralateral or ipsilateral motion. The authors
thus conclude that the human MT+ complex can be divided in three areas:

1. an anterior part that responds to contra- and ipsilateral optic flow and



90 Primate extrastriate cortical area MST

can be considered a homolog of macaque MSTd,

2. an anterolateral part, slightly inferior to the first, that is selectively ac-
tivated during nonvisual pursuit which shares similarities with macaque
MSTl, and

3. a posterior part that only responds to contralateral motion stimuli and
can be considered a homolog of macaque MT.

Peuskens and colleagues (2001) investigated brain regions involved in heading
estimation by presenting observers with ground plane optic flow patterns.
Contrasting activity in a heading task with a control condition, they found
that the heading task activated hMT/V5 as well as a more ventrally located
region, which they called the “inferior satellite of hMT/V5”. They suggest
this region to be a likely candidate for the human homolog to macaque
MSTd. Huk et al. (2002) made use of the fact that MT has a much more fine-
grained retinotopic map than MST and that MST receptive fields are much
larger than MT receptive fields and often extend into the ipsilateral visual
field. They assessed retinotopy with a motion defined wedge that rotated
through the visual field and compared ipsi- and contralateral responses to
stimuli restricted to one hemifield. A subregion of the hMT+ complex on the
posterior (or ventral) bank of the ITS showed response modulations to the
rotating wedge consistent with a retinotopic organization (presumably MT)
and a separate subregion on the anterior (or dorsal) bank of the ITS showed
strong activation in response to to ipsilateral, peripheral stimuli (presumably
MST) (Fig. 2.15). This division of the hMT+ complex in two areas based
on retinotopic organization, responses to ipsilateral stimuli, and responses to
optic flow stimuli was also confirmed by Smith and colleagues (2006).

To differentiate between brain areas that are selective for optic flow from
those that respond to complex motion more generally, Wall & Smith (2008)
compared responses to a single, large patch of optic flow or an array of
nine similar patches that did not indicate egomotion. They found that
MST responded well to both types of stimuli, but significantly better to
the egomotion-consistent, single optic flow stimulus. Similar findings in the
macaque brain, using the same stimuli (2017), provide further evidence for
the similarities between human and macaque MST. More recent approaches in
functional imaging have moved beyond trying to isolate individual areas and
instead focus on networks of areas. A retinotopic mapping in combination with
stimuli designed to test motion and shape sensitivity identified 18 retinotopic
occipital regions, including 4 regions that constitute the human MT/V5
complex (Kolster, Peeters, & Orban, 2010). Comparison with similar fMRI
studies in macaques (Kolster et al., 2009) suggests that one of these four
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Figure 2.15: Position of MT and MST, viewed on a 3D cortical reconstruction,
for one subject (left hemisphere). MT (green) falls on the posterior bank of
the occipital continuation of the ITS, whereas MST (turquoise) falls on the
anterior bank. The STS is indicated for reference. Other visual areas are
shown for reference: V1, red; V2, purple; V3, blue; V3a/b, yellow (reprinted
with permission from Huk et al., 2002).

regions of the MT/V5 complex is a putative homolog of MSTv (but not MSTd)
as they share similar topographic organization and topological neighborhood
and in accordance with other studies, this putative MSTv is located anterior
to MT/V5. In conclusion, while the overall location of the hMT+ complex
differs slightly from the location of the MT/MST complex in the macaque
cortex, fMRI studies provide overwhelming evidence for a posterior and an
anterior area within the hMT+ complex that show strong anatomical and
functional similarities with macaque MT and MST, respectively.

Transcranial magnetic stimulation

Strong et al. (2017) selectively disrupted neural activity in human MT or
MST using transcranial magnetic stimulation (TMS) to test how these two
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areas differ in their contribution to the perception of different types of motion.
Participants had to discriminate the translational (up vs. down), radial
(expansion vs. contraction) or rotational (clockwise vs. counterclockwise)
direction of a low coherent RDP presented in the periphery while MT or MST
in the hemisphere contralateral to the stimulus were stimulated with 5 TMS
pulses during stimulus duration. Stimulation of either area impaired perfor-
mance for the translational direction discrimination, but only stimulation of
MST impaired performance in the radial and the rotational direction discrimi-
nation tasks. The authors argue that this indicates a serial processing stream
where information is passed from MT on to MST, which then integrates this
information to represent more complex forms of motion. This reflects a broad
consensus on how the larger receptive fields in MST are built from a mosaic
of receptive fields, representing individual MT neuron input. On the other
hand, studies like the one cited above (Baloni, 2012) suggest that neuronal
tuning aspects in MST could also be generated from V1, V2, and V3 inputs,
bypassing MT. This is supported by the lack of impairments in perceptual
performance for radial and rotational movements when MT is interrupted by
TMS.

Functional similarities between human fMRI and mon-
key physiology in studies of higher cognition

Additional studies suggest that some of the MST properties that have been
described in the previous sections for the macaque apply to the human as well:
Using fMRI, OCraven et al. (1997) showed increased activity in MT/MST
when subjects attended to moving dots compared to when they attended
to simultaneously presented stationary dots. This suggests that attention
modulates MT/MST activity in humans in a similar manner as it does in
macaques (Treue & Maunsell, 1996). Thus, a human homolog of macaque
cortical MST that is distinct from a homolog of MT has been established
by making use of a number of ways in which the two areas differ, such as
receptive field size and responses to linear vs. spiral motion. A third example
for a categorical difference between MT and MST is the activity during the
memory period of a delayed match-to-sample task that was described in the
previous section (Mendoza-Halliday et al., 2014). It is an interesting open
question whether this finding can be replicated in humans as well. Answering
the question requires a high spatial resolution to distinguish between MT and
MST, but does not rely on a millisecond temporal resolution, as the delay
period can last for several seconds. Therefore, fMRI would be a suitable
method to investigate this question.
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In conclusion, there is overwhelming evidence that macaque cortical MST
has a homolog in the human cortex. Thus, MST is not only suitable as a
model area for studying a variety of general sensory and cognitive mecha-
nisms, but also allows us to draw strong conclusions about neural mechanisms
underlying human vision.

Takeaway:

1. Psychophysical experiments suggest that the human visual system
contains specialized processing “channels” or “detectors” for rotational
and radial motion patterns that share similarities with the processing
in macaque MST neurons.

2. Functional MRI studies have identified areas within the human MT+
complex that share similarities with macaque MST, such as selective
responses to optic flow and large receptive fields and therefore constitute
a likely homolog.

3. Transcranial magnetic stimulation (TMS) applied to the putative human
homolog of MST, but not to putative human MT, selectively impaired
performance in a discrimination task with radial and rotational motion
patterns, providing further evidence for a division of the human MT+
complex that is similar to macaque MT/MST.

2.9 Conclusion

All of the information about the visual world that is available to an organism
must be encoded in the neural responses that leave the two retinae. As
David Marr (2010) pointed out, different representations of information will
produce different aspects of reality. In that sense, one can think of the
areas of visual cortex and their activity patterns as partial representations
of the visual world, each emphasizing a facet. Information about edges,
texture, color, and motion is all contained within the activity that reaches V1,
but only after being processed by specialized brain areas with very specific
connectivity patterns will this information be made explicit within the firing
rates of individual neurons or small groups thereof. Correspondingly, much
of modern cortical electrophysiology has been focused on identifying the
distinguishing characteristics of the plethora of areas and their respective
partial representations of the sensory environment. As we have reviewed here,
these approaches have identified MST as a key area for integrating multimodal
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information: information about motion, both linear and more complex, about
heading, eye movements or memorized motion. All are explicitly encoded
in its population activity. We argue that MST is more than just another
processing step along the visual hierarchy that represents information about
the visual world in yet another way. Once information reaches MST, it has
undergone enough changes to be “ready for use”. Especially with regard to
self-motion perception, the evidence suggests that MSTd (likely in cooperation
with surrounding areas, such as VIP) represents the information in a way
that can be used by decision and motor areas to react. In other words, there
is likely no need for further reshaping of its representations of visual features
by downstream areas.

One aspect that needs to be kept in mind is that MST is composed of sub-
regions, which we have alluded to multiple times throughout this review. Even
within a subregion, individual neurons often show a wide array of behaviors:
they respond better to the motion of individual objects or to the wide-field
motion of the background; they do or do not respond to vestibular cues; they
have congruent or incongruent preferred directions for visual and vestibular
cues; they encode an optic flow fields focus of expansion in retinal or in real-
world coordinates. As Bradley et al. (1996) pointed out, this could mean that
only some MSTd neurons are actively involved in heading perception, while
other MSTd neurons are contributing to other perceptual tasks. Alternatively,
these differences in response patterns could be a sign that a lot of computation
is happening within the area and that these different cell types represent
different stages of these computations. It is probably because these complex
response patterns in MST defy an easy description of its function that this
area has received less prominence as a model system for sensory, cognitive,
and motor planning processes than MT2. Comparatively simple approaches
for characterizing a visual cortical area, such as tuning curves, work well in
early and midlevel areas, such as MT or V4. Higher level areas, such as IT and
MST, require more complex methods, such as adaptive sampling of complex
stimuli (Yamane, Carlson, Bowman, Wang, & Connor, 2008) or hierarchical
convolutional neural networks (Yamins & DiCarlo, 2016). But now, the time
might be ripe to embrace the challenge and appreciate the role of MST at
the intersection of sensation and cognition. The overarching goal should
be to get a better understanding of MSTs role in everyday behavior. This
requires the combination of different methodologies, such as psychophysics,
functional imaging, electrophysiology and disruptive methods like TMS and
optogenetics. They should be applied across different experimental paradigms

2A Google Scholar search for middle temporal lists 160,000 hits, compared to slightly
more than 6,400 for medial superior temporal (as of Jan. 19, 2021)
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that aim at simulating more natural behavior, such as free-viewing (Bremmer
et al., 2017) and combined visual and vestibular stimulation in the face of self-
and object motion (e.g., Sasaki et al., 2017). The combination of functional
imaging, electrophysiological recordings, microstimulation, and artificial neu-
ral networks emerged as a fruitful approach for discovering new principles
that govern the organization of IT cortex (Bao et al., 2020) and could be
useful in advancing our understanding of MST. Recent advances in wireless
recording techniques in freely moving animals (e.g., Berger, Agha, & Gail,
2020) in combination with improved behavioral tracking methods (A. Mathis
et al., 2018) might open many new opportunities in the near future. It is
precisely because of its unique position as a gateway between perception and
cognition that we believe MST to be an ideal model system of a core feature of
higher nervous systems: the transformation of sensation into multidimensional
internal representations of a dynamic environment, enabling cognition and
sophisticated action planning.
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Chapter 3

How does the brain tell
self-motion from object
motion?

Benedict Wild

The Journal of Neuroscience, Vol. 38 (2018)

Chapter 3 is a short review of an article by Sasaki, Angelaki, and DeAngelis
(2017) entitled “Dissociation of Self-Motion and Object Motion by Linear
Population Decoding That Approximates Marginalization”. In this paper,
the authors show that information about self-motion and object motion can
be decoded from a population of multisensory neurons in macaque cortical
area MSTd with an algorithm that approximates the mathematical process
of marginalization.

This review was published in the Journal of Neuroscience’s “Journal Club”
section (Wild, 2018), which allows students or postdoctoral fellows to write
scholarly reviews, without their respective supervisors, of papers that have
recently been published in the journal.
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Imagine a football player who has to run across the field, evade opponent
players, and eventually catch the ball that is passed to him by his teammate.
As he does this, his retinal image is a hodgepodge of moving components. The
position of background objects (e.g., yard lines, goal posts, the cheering crowd)
changes relative to the runner as he runs across the field, creating a so-called
“optic flow” pattern on his retina; the opposing team’s players move toward
him from different angles; and, most importantly, the football eventually
appears in his field of vision. To navigate and act within this ever-changing
environment, the player must be able to distinguish retinal motion resulting
from his own movements from the motion caused by moving objects. But how
can the relevant motion components be selected and confounding components
be discarded, given that all the information the visual system receives is the
jumble of movements across the retina?

The dorsal part of the medial superior temporal area in the macaque cortex
(area MSTd) has long been known to play an important role in motion percep-
tion in general (Graziano et al., 1994) and selfmotion perception in particular
(Britten, 2008). Individual neurons in this part of the brain are typically tuned
for the direction of a moving stimulus or for a particular heading direction, as
measured with stimuli that simulate optic flow (e.g., a field of random dots
that move away from a single point, which determines the direction of the
simulated self-motion). Furthermore, the area contains multimodal neurons
that integrate visual information with vestibular information (Duffy, 1998,
Gu et al., 2008) for a joint representation of selfmotion. Interestingly, some
multimodal MSTd neurons have the same preferred direction for visual and
vestibular input (“congruent cells”), whereas others prefer different or even
opposing directions (“opposite cells”) (Gu et al., 2008). During simultaneous
visual and vestibular stimulation, the neuronal sensitivity for discriminating
heading directions (calculated based on signal detection theory) (see Britten
et al., 1992) is decreased in such opposite cells compared with either visual
or vestibular stimulation alone. Congruent cells, on the other hand, show
an increased sensitivity in this “bimodal condition” compared with either
unimodal condition (Gu et al., 2008). This raises the question of what the
purpose of opposite cells may be.

In a recent publication in The Journal of Neuroscience, Sasaki et al. (2017)
suggested that opposite cells play an important role in parsing object motion
and self-motion-components from the overall retinal image motion. To inves-
tigate this, they recorded the activity of individual neurons in area MSTd
in 2 macaque monkeys who were placed in a virtual-reality setting. The
monkeys were seated on a platform that could passively be moved in 3D
space, thus providing vestibular stimulation. Simultaneously, visual optic flow
stimuli were presented through a 3D field of stars that simulated translational
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selfmotion in one of eight directions in the frontoparallel plane. Additionally,
a cluster of nine spheres, defined by increased dot density (the “object”),
moved in one of eight possible directions through the visual world on some of
the trials (Sasaki et al., 2017, their Fig. 1).

Sasaki et al. (2017) found that the influence of object motion on heading
tuning (and the influence of heading direction on object motion tuning)
differed between cell types: for congruent cells (50 % of recorded cells),
heading tuning was more consistent in the bimodal condition (vestibular
and visual stimulation) than in the visual-only condition, but object motion
direction tuning was more consistent in the visual-only condition. Conversely,
for opposite cells (∼18% of recorded cells), heading tuning was stronger in
the visualonly condition, whereas object-motiondirection tuning was more
consistent in the bimodal condition. This makes intuitive sense: if a cells
preferred heading direction is the same for visual and for vestibular stimuli
(i.e., congruent cells), then adding vestibular information will help the cell to
maintain its normal tuning curve in the face of visual input that is confounded
by a moving object. For cells that have opposing preferences for visual and
vestibular heading information (i.e., opposite cells), bimodal stimulation
flattens the tuning curve, thereby decreasing the selectivity for heading
direction. Furthermore, the preferred direction for moving objects typically is
opposite to the preferred heading direction because selfmotion in one direction
(e.g., to the left) means that the retinal image, including individual objects,
moves in the opposite direction (e.g., to the right). A cell that is tuned for
heading to the left should therefore also be tuned for an object moving to the
right. Thus, in opposite cells, vestibular heading tuning is aligned with object
motion direction tuning, as both are the opposite of visual heading tuning.

How do these different cell types influence the way that heading direction
and object motion direction are represented by a population of MSTd neurons?
To determine which specific stimulus most likely elicited a given neural
population response, the authors first computed the joint probability of a
specific heading and a specific object motion given the population response.
Despite some simplifying assumptions, this decoder was able to accurately
estimate both the heading and the object motion. However, this strategy
would become computationally expensive if there were several objects moving
through the scene (which is often the case in reallife scenes), as this would
require the brain to calculate a multidimensional probability distribution.

This problem can be solved, however, by a mathematical procedure called
marginalization, which determines the probability of one event (e.g., a specific
heading direction) independent of a second event (e.g., object motion) that
modulates the probability of the first event. While models have previously
suggested that this process can be implemented in the brain (Beck et al., 2011),
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Sasaki et al. (2017) considered an approximation of marginalization, which,
they claimed, would be more intuitive in terms of neuronal implementation.
To this end, they first tried to decode heading direction from the responses of
bimodal neurons by calculating the likelihood of a given heading direction
(or object motion direction) as the sum of each neuron’s response, weighted
by either its visual or its vestibular tuning curve (Jazayeri & Movshon,
2006). This approach was not successful, however, possibly because of the
diversity of tuning properties across the neuronal population. Approximate
linear marginalization (ALM) (Kim et al., 2016) differs from the traditional
likelihoodcomputation in that it uses a regression model to find the optimal
weights with which each neuron influences the overall likelihood of a specific
heading direction. Applying this procedure to either a subset of the recorded
MSTd neurons (all opposite cells and an equal number of randomly selected
congruent cells) or to the whole sample resulted in a much better decoding
performance. The decoding error was also smaller in the bimodal condition
than in the visual-only condition, showing that the algorithm uses vestibular
information to improve its decoding accuracy. The profile of the decoding
weights across the population was similar to the neurons tuning curves,
suggesting that the brain uses information it already has when determining
how much each cell contributes to the populations representation of the
stimulus. However, the ALM algorithm appeared to apply a gain factor to
the neurons that was not inherent to the neurons’ tuning properties.

In summary, Sasaki et al. (2017) showed that a new algorithm, which
had previously been developed for a population of simulated MSTd neurons
(Kim et al., 2016), can be applied to a population of real MSTd neurons
to distinguish self-motion from object motion. These findings raise the
question of whether such an algorithm can actually be implemented by the
brain and, if so, how the brain could learn the weights that are assigned to
each neuron. ALM learned the weights by being trained on 500 simulated
trials for each stimulus condition, attempting to minimize the difference
between the true probability distribution and the algorithms estimation of
this distribution. During development, the brain does not have direct access
to the true probability distribution to quickly learn the correct decoding
weights. Instead, it acts based on its own estimation and then has to infer
correct and incorrect judgments based on feedback to the actions it took.
This should in principle allow decision-making areas in the brain to learn how
to optimally read out the population response of MSTd.

Another point in question is why the authors put so much emphasis on
marginalization being implemented through a linear decoder, at the cost of
being only an approximation. They state that, for the purpose of modeling,
they assume the brain to be “limited to processing neural responses linearly”
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(Kim et al., 2016) and that nonlinear transformations “may be difficult for
the brain to implement” (Sasaki et al., 2017). However, there is evidence
that marginalization can be implemented in neural circuits through divisive
normalization (Beck et al., 2011), a widespread nonlinear computation where
neuronal responses are inhibited, and thus effectively normalized, by the
summed activity of a pool of neurons (for review, see Carandini & Heeger,
2012). Furthermore, area MST has been suggested to integrate its visual input
from the middle temporal area in a nonlinear manner (Mineault et al., 2012),
raising additional doubts as to why decoding of the output of MST would
have to be a linear approximation. Thus, although ALM can decode heading
and object motion from a population response in area MSTd, this does not
guarantee that the brain actually implements this specific computation.

What additional strategies could the brain use to distinguish self-motion
from object motion? In many cases, self-motion is caused by actions of the
individual, such as walking or running, and these actions provide extraretinal
information, such as the stimulation of proprioceptive sensors in moving body
parts, or efference copies of motor commands to other parts of the brain.
These can be used to compensate for the effects of self-motion on the retinal
image flow (e.g., Crowell, Banks, Shenoy, & Andersen, 1998), so that any
uncompensated retinal motion is likely due to moving objects (Wallach, 1987).
But even when being moved passively (e.g., while riding a train and looking
out of the window), eye movements can provide additional information about
object motion during self-motion (P. A. Warren & Rushton, 2007). This
is particularly interesting, as MSTd neurons also carry signals about eye
movements (Newsome et al., 1988).

In conclusion, Sasaki et al. (2017) provided evidence that area MSTd can
help our football player achieve his goal. Information that is encoded by
MSTd neurons can be used to compute the players own movement running
across the field, even as his perceived optic flow patterns are disrupted by the
movements of other players and the football. Similarly, MSTd can represent
the balls trajectory, even though its motion on the retina is distorted by the
players own movements. This can be achieved by a neuronal population of
congruent and opposite multisensory cells, whose responses can be decoded
in a way that approximates the mathematical process of marginalization
to accurately estimate a single variable of interest. Whether this is the
computation actually performed by the brain needs to be investigated in more
detail. Showing that decision-related brain areas higher up in the cortical
processing hierarchy represent heading or object motion information in a
manner that is consistent with the read-out predicted by ALM would provide
evidence in favor of this hypothesis.
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Chapter 4

Electrophysiological dataset
from macaque visual cortical
area MST in response to a
novel motion stimulus

Benedict Wild, Amr Maamoun, Yifan Mayr, Ralf Brockhausen,
Stefan Treue

under review at Scientific Data

Chapter 4 describes a published comprehensive dataset from a neurophysiol-
ogy study in macaque monkey visual cortex that includes a complete record
of extracellular action potential recordings from the extrastriate medial su-
perior temporal (MST) area, behavioral data, and detailed stimulus records.
Analyses of the data described here are presented in chapter 5.
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Abstract

Establishing the cortical neural representation of visual stimuli is a central
challenge of systems neuroscience. Publicly available data would allow a
broad range of scientific analyses and hypothesis testing, but are rare and
largely focused on the early visual system. To address the shortage of open
data from higher visual areas, we provide a comprehensive dataset from a neu-
rophysiology study in macaque monkey visual cortex that includes a complete
record of extracellular action potential recordings from the extrastriate medial
superior temporal (MST) area, behavioral data, and detailed stimulus records.
It includes spiking activity of 172 single neurons recorded in 139 sessions
from 4 hemispheres of 3 rhesus macaque monkeys. The data was collected
across 3 experiments, designed to characterize the response properties of MST
neurons to complex motion stimuli. This data can be used to elucidate visual
information processing at the level of single neurons in a high-level area of
primate visual cortex. Providing open access to this dataset also promotes
the 3R-principle of responsible animal research.
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4.1 Background & summary

Determining and quantifying the relation between physical stimuli and the
neuronal responses they evoke is the most widely taken approach in sensory
neuroscience, resulting in a variety of modeling and analysis approaches
(Paninski, Pillow, & Lewi, 2007; Schwartz et al., 2006; Wu, David, & Gallant,
2006) for determining the neural representation of stimulus parameters. Most
studies focus on early, low-level visual areas, such as the retina (L. D. Liu &
Pack, 2017; Maheswaranathan, Kastner, Baccus, & Ganguli, 2018; Pillow et
al., 2008), lateral geniculate nucleus (LGN) (Cai, Deangelis, & Freeman, 1997;
Dan, Alonso, Usrey, & Reid, 1998; Solomon, Tailby, Cheong, & Camp, 2010),
or primary visual cortex (V1) (Jones & Palmer, 1987; Park & Pillow, 2011;
Rust et al., 2005; Touryan et al., 2002) of the mammalian brain. In primates,
however, the visual system is hierarchically structured (Felleman & Van Essen,
1991) with neurons in “higher” areas – downstream of V1 – progressively
showing more complex stimulus preferences (Treue, 2003). For example,
stimulus representations tend to become more “tolerant” or “invariant” for
position, scale, and context from mid- to high-level areas in the ventral (Rust
& DiCarlo, 2010) and dorsal (Wild & Treue, 2021b) pathways of the primate
cortex. It has been proposed that conscious visual perception begins at the
top of the processing hierarchy and that the quick, categorical recognition
of objects (“forest before trees”) that guides most of our behavior relies
predominantly on activity in the higher areas (Hochstein & Ahissar, 2002).
Therefore, a better understanding of the functional relationship between
stimulus features and neuronal responses in mid- and high-level areas is
essential for our understanding of sensation and brain function more broadly.
Nevertheless, much fewer studies have focused on stimulus representations in
mid-level or higher visual areas as compared to the rich literature on neural
encoding of stimulus features in the early visual system (but see Rust et al.,
2006; Yamane et al., 2008; Rust & DiCarlo, 2010; Mineault et al., 2012 for
examples). Even fewer such studies provide access to their data. For example,
the Collaborative Research in Computational Neuroscience (CRCNS) website
(crcns.org) offers 13 data sets with recordings from V1, but only 3 data
sets of MT recordings (Cui et al., 2013; Nishimoto & Gallant, 2018; Niknam
et al., 2018), one of V4 recordings (M. Smith, 2020), and one of MST/VIP
recordings (Gu et al., 2018)

To address this shortage we provide a freely accessible and well curated
comprehensive dataset from a neurophysiology study in macaque monkey
visual cortex that includes a complete record of extracellular action poten-
tial recordings from the extrastriate medial superior temporal (MST) area,
behavioral data, and detailed stimulus records. MST is a key area in the
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dorsal visual pathway that receives its major input from motion-sensitive
area MT (Born & Bradley, 2005) and is involved in the processing of complex
motion as well as self-motion perception (Graziano et al., 1994; Mineault
et al., 2012; Saito et al., 1986; Tanaka et al., 1986; Wild & Treue, 2021b).
Notably, MST neurons have a number of complex features, such as position
invariance (Graziano et al., 1994), and modeling work suggests that they
perform a nonlinear integration of the output of MT neurons (Mineault et al.,
2012). Models that include a nonlinearity are typically much more difficult
to fit to data and require iterative procedures (as compared to, for example,
simple linear-nonlinear (NL) cascade models for which the spike-triggered
average corresponds to the maximum likelihood estimator of the neuron’s
spatiotemporal receptive field (Pillow, 2007). We hope this dataset, which
contains neuronal responses to different well-parameterized motion stimuli,
can serve as a starting point to develop such models.

We provide the spiking activity of 172 MST neurons that were recorded
across three different experiments. The datasets from the first two experi-
ments (“Spatial Mapping” and “Tuning”) result from an elaborate and more
systematic version of previous approaches (similar to, e.g., (Graziano et al.,
1994; Saito et al., 1986; Tanaka et al., 1986)) and can be used to determine
the neurons’ spatial receptive fields as well as their tuning for direction and
speed. For the “Spatial Mapping” experiment, small random dot patterns
(RDPs) were sequentially presented in different locations across the screen,
thus probing a neuron’s response to random motion across the visual field.
The “Tuning” experiment presented RDPs that were moving at different
speeds in different directions in linear motion and spiral motion space in
multiple locations across each neuron’s spatial receptive field. As these two
experiments take the standard approach for acquiring the stimulus-response
function they can be considered the “ground truth” about visual response
properties of MST neurons. The third experiment (“Reverse Correlation”)
recorded spiking responses to a newly developed random dot motion stimulus
which consists of a grid of positions, each with a direction and speed seed
that determine the motion of dots in the vicinity of each grid location. Each
seed has a Gaussian weighting field that determines its influence on the
motion of surrounding dots. This creates an overall smooth, wave-like motion
pattern. Each seed was assigned a new direction and speed every 100 ms,
thus creating a temporal structure of the stimulus that makes it well-suited
for spike-triggered analysis approaches (Schwartz et al., 2006). We believe
that providing this dataset to the scientific community will be of high value
to theoretical, computational, and systems neuroscientists who are interested
in visual processing beyond retina, LGN, and V1.
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4.2 Methods

Animal welfare statement

Research with non-human primates represents a small but indispensable
component of neuroscience research (Buffalo et al., 2019; Treue & Lemon,
2021). The scientists in this study are aware and are committed to the
responsibility they have in ensuring the best possible science with the least
possible harm to the animals (Roelfsema & Treue, 2014). Providing the data
collected in this study in a well-curated format and with open access to the
scientific community contributes to this commitment. Such datasets ensure
maximal transparency about study results and promote the accessibility
of data, ensuring its best use. This is in line with the 3R-principle and
international efforts to improve the reporting an accessibility of biomedical
research data (Percie du Sert et al., 2020).

All animal procedures of this study have been approved by the responsible
regional government office (Niedersaechsisches Landesamt fuer Verbrauch-
erschutz und Lebensmittelsicherheit, LAVES) under the permit numbers
3392 42502-04-13/1100 and 33.19-42502-04-18/2823. The animals were group-
housed with other macaque monkeys in facilities of the German Primate
Center in Goettingen, Germany in accordance with all applicable German
and European regulations. The facility provides the animals with an enriched
environment (including a multitude of toys and wooden structures (Berger et
al., 2018; Calapai et al., 2016)), natural as well as artificial light, exceeding
the size requirements of the European regulations, and access to outdoor
space. We have established a comprehensive set of measures to ensure that
the severity of our experimental procedures falls into the category of mild
to moderate, according to the severity categorization of Annex VIII of the
European Unions directive 2010/63/EU on the protection of animals used for
scientific purposes (Pfefferle et al., 2018). Surgeries were performed asepti-
cally under gas anesthesia using standard techniques, including appropriate
perisurgical analgesia and monitoring to minimize potential suffering. The
German Primate Center has several staff veterinarians who regularly monitor
and examine the animals and consult on procedures. During the study, the
animals had unrestricted access to food and fluid, except on the days where
data were collected or the animal was trained on the behavioral paradigm.
On these days, the animals were allowed unlimited access to fluid through
their performance in the behavioral paradigm. Here the animals received
fluid rewards for every correctly performed trial. Throughout the study, the
animals’ psychological and veterinary welfare was monitored by the veterinar-
ians, the animal facility staff and the labs scientists, all specialized in working
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Figure 4.1: Implant locations of the recording chambers. The figure shows
coronal (top row) and axial (bottom row) slices of MRI scans, displaying the
location of the recording chamber in each of the 3 monkeys. Monkey igg was
already implanted with a recording chamber over the left hemisphere when
he joined the project (second column), but was re-implanted with another
chamber over the right hemisphere (third column) during his participation in
the project.

with non-human primates. The three animals were healthy at the conclusion
of our study and were subsequently used in other studies.

Animals

Three male rhesus macaque monkeys (Macaca mulatta) contributed to this
dataset. All animals had previously participated in other projects and were
implanted with a titanium head holder to minimize head movements during
the experiment, as well as with a recording chamber implanted over the
parietal lobe based on a magnetic resonance imaging (MRI) scan. The
recordings chambers were cylindrical with a diameter of 24 mm. Surgeries
were conducted under general anesthesia and post-surgical care using standard
techniques.

Monkey sun

Monkey sun was 14 - 16 years old and weighed between 9.9 and 12.8 kg during
the period of data collection. The monkey had previously participated in
other projects and was already implanted with a head-post and a chamber
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over the left hemisphere (stereotactic coordinates: mediolateral (ML): 15 mm
left; anteroposterior (AP): 11 mm posterior, Fig. 4.1). The chamber was
angled posterior with an inclination of 30◦ from the vertical. 82 of the 138
(59%) recordings included in this dataset come from Monkey sun.

Monkey igg

Monkey igg was 10 - 13 years old and weighed between 10.4 and 13.4 kg
during the period of data collection. The monkey had previously participated
in other projects and was already implanted with a head-post and a chamber
over the left hemisphere (coordinates: ML: 8 mm left; AP: 5 mm posterior,
Fig. 4.1). The chamber was angled medial with an inclination of 18◦ from
the vertical. During his participation in the project, the recording chamber
over the left hemisphere was removed and a new vertically oriented chamber
was implanted over the right hemisphere (coordinates: ML: 17 mm right ;
AP: 1 mm anterior, Fig. 4.1). 54 of the 138 (39%) recordings included in
this dataset come from Monkey igg (26 from the left and 28 from the right
hemisphere).

Monkey edg

Monkey edg was 14 years old and weighed between 8.0 and 9.2 kg during the
period of data collection. The monkey had previously participated in other
projects and was already implanted with a head-post and a vertically oriented
chamber over the left hemisphere (coordinates: ML: 13 mm left; AP: 0 mm,
Fig. 4.1). 2 of the 138 dataset (2%) recordings included in this dataset come
from Monkey edg.

General experimental setup

Data were collected from two different experimental setups (setup A: Monkeys
sun and edg as well as some data from Monkey igg; setup B: most data from
Monkey igg). In both setups eye position was recorded binocularly with
an Eyelink 1000 system (SR-Research, Ottawa, ON, Canada) at a sample
rate of 500 Hz. The experiments were controlled by the open-source software
MWorks (mworks-project.org) running on two Apple Macintosh computers
(Apple Inc., Cupertino, CA, USA), a client and a server.

Setup A

During recordings a monkey was seated in a custom-built primate chair
and viewed a 27” LCD monitor (XL2720T, BenQ, Taipei, Taiwan) from a
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Stimulus Type Setup A Setup B
Background 17.3 cd/m2 1.0 cd/m2

White dots 82.7 cd/m2 31.3 cd/m2

Fixation point (bright) 13.4 cd/m2 1.9 cd/m2

Fixation point (dim) 8.9 cd/m2 0.6 cd/m2

Table 4.1: Luminance values of all stimuli in the two recording setups.

fixed distance of 57 cm in a dark room. The monitor had a resolution of
1920×1080 pixels, a refresh rate of 120 Hz, and covered 60◦×30◦ of the visual
field. The luminance values of the background and the different stimuli are
listed in Table 4.1.

Setup B

The conditions in this setup were the same as in setup A, except that
a 171.5 × 107.2 cm back projection screen (dnp Black Bead, Karlslunde,
Denmark) was viewed from a fixed distance of 102 cm. Stimuli were displayed
via a projector (projection design, Fredrikstad, Norway) with a a resolution
of 1920× 1200 pixels and a refresh rate of 60 Hz.

Task

Throughout all three experiments, monkeys performed a simple luminance
change detection task. At the beginning of each trial a red fixation square (size:
0.2◦ × 0.21◦) appeared. To make sure the different stimuli described below
did not occlude the fixation square, a circular “mask” with a diameter of 1.5◦

of the same color as the background surrounded the fixation square. Monkeys
could initiate the stimulus presentation by keeping their gaze within a square
window of side length 3◦ around the fixation point (“fixation window”) and
pressing a button attached to their primate chair. The luminance of the
fixation point changed within a time window that was randomly selected
from a uniform distribution ranging from 3 to 4.6 s after stimulus onset. The
monkey had to respond to this luminance change within 600 ms (“reaction time
window”) in order to receive a fluid reward (juice, tea, or water, depending
on each monkey’s preferences). Monkeys sun and edg initiated a trial by
briefly pressing the button and responded by pressing it again; Monkey igg
kept the button pressed throughout the duration of the trial and responded
by releasing it (these were the response patterns that the respective monkeys
had been trained on in previous experiments). The exact luminance values
before and after the change are listed in Table 4.1 for each setup. A trial
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could end in one of three ways: with a juice reward and a distinct sound if
the monkey kept its gaze within the fixation window throughout the trial and
responded to the luminance change within the reaction time window; with no
reward and a different sound signaling an error if the monkey responded too
early or too late (i.e., outside the reaction time window); or with no reward
and a third sound if the monkey’s gaze moved outside the fixation window
during the trial. The position of the fixation point was optimized in each
recording session to ensure that as much of the receptive field as possible was
covered by the display (within the constraints that fixation points too far out
in the periphery made it difficult for the monkey to keep its gaze within the
fixation window for a prolonged period of time).

Experiments

On a given day the animal had to complete the experiments in the order
“Spatial Mapping”, “Tuning”, “Reverse correlation”. The sum of all recordings
on a given day are called one “recording session”. Given that the animal
determined the number of trials performed each day, not all recording sessions
contained complete recordings for all three experiments. Table 4.2 shows the
number of recording sessions as well as the number of recorded neurons for
each of the three experiments.

Spatial
Mapping

Tuning Reverse
Correlation

Number of sessions: 139 139 119
Number of recorded neurons: 172 172 150

Table 4.2: Numbers of recording sessions and recorded units for each of the
three experiments.

Experiment 1 (Spatial Mapping)

In Experiment 1, a small random dot pattern (RDP) was presented sequen-
tially in different locations. The RDP consisted of white dots (cf. Table 4.1
for luminance values) with a radius of 0.2◦ that were randomly placed in
a circular aperture with a radius of 1.5◦. The dot density was 4 dots/deg2.
Dots moved independently along linear trajectories in random directions and
dots that moved out of the aperture were replotted at a random location
within the aperture. Each presentation of the RDP for 50 ms constitutes one
“sample”. For every sample, the location of the RDP was updated by assigning
a random x-position in the range covering the entire width of the display
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(-28◦ to 28◦ in setup A, -30◦ to 30◦ in setup B) in steps of 2◦ and a random
y-position in the range covering the entire height of the display (-16◦ to 16◦

in setup A, -20◦ to 20◦ in setup B) in steps of 2◦, where the location [0◦, 0◦] is
the center of the screen. The speed of the dots was randomly chosen from a
range of 4◦/s 24◦/s for every sample. On trials that were not interrupted by
fixation breaks or incorrect responses (see Task), more than 80 samples could
be presented. In 76 cells, 10% of the sample presentations were blank (i.e.,
no stimulus other than the fixation point was shown on the screen for 50 ms).
The purpose of these “blank presentations” was to calculate the baseline
firing-rate of the cell in this task and to explore the cells’ responses to the
random and quick location changes of the RDP on a longer timescale.

Experiment 2 (Tuning)

In Experiment 2, an RDP was presented sequentially in up to 5 different
locations overlapping with the spatial receptive field as it had been determined
by an online analysis of Experiment 1. The RDP consisted of white dots
(cf. Table 1 for luminance values) with a radius of 0.2 that were randomly
placed in a circular aperture with a radius ranging from 5◦ to 10◦, depending
on the size of the spatial receptive field. The dot density was 2 dots/deg2.
The location, direction, and speed of the RDP were updated every 100 ms,
the time period that constitutes one “sample” in Experiment 2. For most of
the cells, the 5 locations were arranged in a cloverleaf, similar to a previous
study (Graziano et al., 1994). In a minority of cells whose receptive field
was on the edge or corner of the screen, the arrangement was different to
ensure maximal coverage of the receptive field by the 5 RDP positions. For
the position overlapping with the center of the receptive field, direction was
chosen randomly from a set of 8 different translational and 8 spiral directions
(see Table 4.3). For the other 4 locations, direction was randomly chosen
from the 8 spiral directions. “Spiral space” is a one-dimensional space that
includes radial, rotational, and spiral motion patterns. A direction in spiral
space can be specified in degrees or radians, similar to translational directions.
For an RDP that is moving in direction α in spiral space, the displacement
of each dot is determined by updating its polar coordinates r (radius) and θ
(angle) (with respect to the RDP’s center) as

r = r + s ∗ cos(α)

θ = θ + s ∗ sin(α)

where s is a constant that depends on speed. Thus, for α = 0◦, the distance
of each dot from the RDP’s center (i.e., it’s radius, r) increases maximally
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(because cos(0) = 1) and the angle does not change at all (because sin(0) = 0),
which results in expansion (all dots moving away from the center). For
α = 90◦, each dot’s radius remains the same (because cos(90) = 0) and the
angle increases maximally (because sin(90) = 1), which results in clockwise
rotation. Table 4.3 shows an overview of the 8 directions in translational and
spiral space.

Direction in
degrees

Linear Motion Spiral Motion

0◦ Up Expansion
45◦ Diagonal up and right Clockwise outward spiral
90◦ Right Clockwise rotation
135◦ Diagonal down and right Clockwise inward spiral
180◦ Down Contraction
225◦ Diagonal down and left Counterclockwise inward

spiral
270◦ Left Counterclockwise rotation
315◦ Diagonal up and left Counterclockwise outward

spiral

Table 4.3: Definitions of translational and spiral motion directions. Note that
the definition for translational motion deviates from the geometric convention
where 0◦ is rightward and angle increases in counterclockwise direction; instead
0◦ is defined was upward motion and angle increases in the clockwise direction.

The speed of each RDP was randomly selected for every sample from one
of six discrete values evenly spaced from 4◦/s 24◦/s. During spiral motion,
RDPs had a speed gradient with the specified speed determining the speed of
dots at a distance of 1◦ from the RDP’s center. As in Experiment 1, 10% of
samples were “blank samples” (i.e., no RDP was shown) in 76 cells.

Experiment 3 (Reverse Correlation)

In Experiment 3, a newly developed large, rectangular RDP was presented,
which we call RC stimulus (“reverse correlation stimulus”). What the monkey
sees is a smooth, wave-like pattern of moving dots (a video of an example trial
is provided in the repository, see below for detailed information). Technically,
the stimulus consists of 10 × 15 square segments, each with a side length
of 3◦, resulting in an overall size of 30◦ × 45◦. Each segment is assigned a
random translational direction and a random speed from 0◦/s 20◦/s every
100 ms, the time period that constitutes one “sample” in Experiment 3. The
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center of each segment provides a Gaussian weighting field which determines
its influence on the dots. Each dot’s direction and speed are calculated as

f(x, y) =
1
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with the following variables:
n number of neighboring segments ranging from 3 to 9
pi parameter (direction or speed) in question of segment
x, y coordinates of the dot in degrees relative to the fixation point
xi,yi coordinates of center of segment i relative to the fixation point
σ1 standard deviation of the Gaussian filter along its first axis
σ2 standard deviation of the Gaussian filter along its second axis

The standard deviations of the Gaussian filter σ1 and σ2 were both set to a
value of 1.2◦ in all experiments. Each segment contained 10 dots with a radius
of 0.2◦ that were randomly placed inside the segment (cf. Table 1 for luminance
values), resulting in a dot density of 1.1 dots/deg2 and a total number of 1500
dots for the entire stimulus. For 47 recording sessions conducted with Monkey
igg, parts of the RC stimulus were masked with rectangles of the same color
and luminance as the background, so as to effectively reduce the size of the
stimulus to 6× 9 square segments (overall stimulus size of 18◦ × 27◦).

Neural recording setup

For each recording session, between one and three microelectrodes (Thomas
Recording, Giessen, Germany) were advanced into the bank of the superior
temporal sulcus, targeting area MST using microdrives. The microdrive was
mounted at the beginning of each session onto the recording chamber and a x-
position (on the medio-lateral axis) and a y-position (on the anterior-posterior
axis) of the single or central electrode were determined. For most of the
recording sessions, electrode depth position was controlled with a 3 electrode or
a 5 electrode “Mini Matrix” system (Thomas Recording, Giessen, Germany),
where electrodes are advanced using a rubber tube mechanical system. For a
small subset of recordings from the left hemisphere of Monkey igg (a total of
22 recordings), we used the Model 650 single electrode Micropositioner (David
Kopf Instruments, Tujunga, CA, USA), where the electrode is advanced using
a hydraulic system. Signals from the electrodes were amplified and recorded
with a sampling rate of 40 kHz and 16-bit precision using an Omniplex
acquisition system (Plexon, Dallas, TX, USA).
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Data preprocessing

Action potentials (“spikes”) were identified using OfflineSorter V4 (Plexon,
Dallas, TX, USA). The raw data was filtered with a 6-pole Bessel high-pass
at a cut-off frequency of 250 Hz and spike waveforms were detected based
on a manually determined threshold. These waveforms were then manually
split into clusters based on different features as implemented in the software,
including the first three principal components of the waveforms, the maximum
and minimum voltage amplitude across the entire waveform length (“peak”
and “valley”), or the waveform energy. For each recording, features were
chosen according to the best separation between clusters. Note that for
the large majority of recordings, there was only unit recorded so that this
procedure predominantly served the purpose to separate the signal from
background noise. Only in 29 sessions 2 units and in 2 sessions 3 units
were recorded simultaneously, which required actual sorting of waveforms
as belonging to different units. Behavioral and stimulus parameters of each
recording session were originally stored in the MWK format as a stream
of MWorks events (mworks-project.org). The lists contain the time, the
name of the event, and data associated with the event. To increase data
accessibility, the relevant parameters of each experiment, together with online
and offline sorted spikes, were converted into the HDF5 format (see Usage
Notes).

4.3 Data records

All data and supplementary material are publicly available via the German
Neuroinformatics Node (G-Node, http://www.g-node.org). We provide a
complete set in a permanently archived format (∼ 27 GB), and in addition
maintain a repository1 for possible future updates of the data and the sup-
plementary material (Wild, Maamoun, Mayr, Brockhausen, & Treue, 2021).
The datasets are provided in the Hierarchical Data Format 5 (HDF5). We
chose the HDF5 format because it is a portable and self-describing file format
where data and metadata can be passed along in one file, in accordance with
the FAIR guiding principles for scientific data management (Wilkinson et
al., 2016). The file structure of HDF5 files includes only two major types
of object - datasets and groups. Datasets are homogeneous n-dimensional
arrays, and groups are container structures which hold datasets and/or groups.
Metadata can be added to datasets and groups as attributes. The HDF5
data model, file format, API, library, and tools are open and distributed with-

1this repository will be made public once we have addressed potential reviewer comments
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out charge (https://www.hdfgroup.org/solutions/hdf5) and the content
of HDF5 files can be directly viewed in the freely available HDF Viewer
(https://www.hdfgroup.org/downloads/hdfview/). Furthermore, the for-
mat can easily be converted and is therefore accessible using multiple widely
used programming languages, such as MATLAB, Python, R, and Julia. Be-
cause of these advantages this format has seen increased popularity in recent
years for the storage of neuroscience data (Brochier et al., 2018; Diggelmann,
Fiscella, Hierlemann, & Franke, 2018; Herz, Meier, Nawrot, Schiegel, & Zito,
2008; Zehl et al., 2016; Stoewer, Kellner, Benda, Wachtler, & Grewe, 2014).

Data from each of the three experiments are organized in three folders:
MSTm contains data from Experiment 1 (“Spatial Mapping”), MSTt con-
tains data from Experiment 2 (“Tuning”), and MSTn contains data from
Experiment 3 (“Reverse Correlation”). For each recording session there
are two files: a ’task.h5’ file contains the stimulus parameters, online and
offline sorted spikes, and trial descriptions; an ’eye.h5’ file stores gaze po-
sition and pupil size. For some recording sessions, no data is available for
Experiment 3 because of technical issues during the recording, because the
recorded neuron was lost partway through the recording session, or because
the monkey would not do enough trials on that day. Metadata about each
recording session is provided as a separate tab separated value (tsv) file.
Information is provided in a table, where each row describes one recording
session and the columns are explained in Table 4.4. An additional table
(data description) provides definitions of all the variables. Lastly, the reposi-
tory contains three videos in the .mp4 format of example trials from each of
the three experiments (Exp1 spatial mapping.mp4, Exp2 tuning.mp4, and
Exp3 reverse correlation.mp4).

Column heading Description
format Format version of the meta data table (“1.0” in call

cases in this project)
recording session A running index of recording sessions
experimenter The experimenter who recorded the data (“amm” for

A.M. or “bew” for B.W.)
date The date of the recording
monkey The monkey (“sun”, “igg”, or “edg”)
hemisphere The hemisphere from which the data was recorded

(“left” or “right”)
chamber A numerical identifier of the recording chamber on a

hemisphere (“1” in all cases in this project)
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session number A running counter of recording sessions for a given
monkey (recorded as strings to include leading zeros
which are needed to specify filenames)

daily count A running counter of separate recording attempts on
a given day

hardware The recording setup in which the file was recorded (“A”
or “B”) and the micropositioner that was used for the
recording session (either “MM1” for the 5 electrode
mini matrix, “MM2” for the 3 electrode mini matrix or
“Kopf” for the hydraulic Model 650 Micropositioner,
see Neural recording setup)

offline units n n (here: n = 3) columns with an identifier for up
to n offline-sorted single cells. The digits before the
decimal point specify the electrode while digits after
the decimal point specify different offline sorted units
recorded on the same electrode. For example, 34.1
and 34.2 are two units recorded on the same electrode
that were sorted offline, whereas 34.1 and 35.1 are two
units that were recorded on separate electrodes

ML n n (here: n = 3) columns with the stereotaxic coordi-
nates on the mediolateral axis of the electrode for up
to n offline-sorted single cells that were identified in
the columns “offline units n” (in mm)

AP n n (here: n = 3) columns with the stereotaxic coordi-
nates on the anteroposterior axis of the electrode for
up to n offline-sorted single cells that were identified
in the columns “offline units n” (in mm)

depth n n columns (here: n = 3) with depth positions of the
electrode for up to n offline-sorted single cells that
were identified in the columns “offline units n”, where
0 is the surface of the dura mater (in µm)

Exp MSTm tt,
Exp MSTt tt,
Exp MSTn tt

One column for each experiment (MSTm, MSTt,
MSTn) that specifies the total number trials in this
file (tt = total trials)

Exp MSTm st n,
Exp MSTt st n,
Exp MSTn st n

n columns (here: n = 3), for each combination of
experiment (MSTm, MSTt, MSTn) and up to n units
that specify the range of trials on which spikes were
recorded (st = spike trials)
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notes Additional information about a recording session that
is not recorded in any of the previous columns.

Table 4.4: Description of the meta data as provided in a
separate tsv file

4.4 Technical validation

We performed a number of plausibility checks to ensure the quality of the
data and to rule out some potential problems that could bias the analysis of
the data. First, we verified that the following is true:

• There are no negative spike times.

• Trial end times are always later than trial start times, i.e., all trials
have a positive duration.

• The number of timestamps for every event is identical to the number of
event values (see Usage Notes for a detailed description of event values
and timestamps).

Trial duration

Individual trials can be arbitrarily short, because a trial was aborted immedi-
ately if the monkey’s gaze exited the fixation window or the monkey made a
premature response (see Methods). Trials can also be arbitrarily long, when
the monkey pressed a button in response to the luminance change of the
fixation point (see Methods) and then kept it pressed, rather than releasing it
quickly. We therefore checked the time from trial start until the assignment
of a trial outcome (hit, failure, or fixation break) in “hit”-trials, as these were
not interrupted by fixation breaks or premature responses. The durations of
these trials ranged from 3112 ms to 4604 ms (mean ± SD: 3832 ± 313 ms),
which is in accordance with the values that had been specified (3.0 to 4.6 s).

Firing rate

In each of the three experiments, trials consist of rapidly changing presenta-
tions of randomly selected stimuli. On any given trial this includes stimuli
that drive the cell’s spiking activity strongly as well as stimuli that drive
it hardly at all, so that the firing rate within a trial is expected to remain
stable on average, without any systematic deviation over time. We do expect



120 Electrophysiological dataset from macaque visual area MST

the firing rate per trial to be higher in the “Tuning” experiment than in
the “Spatial Mapping” experiment, because all stimuli were presented in-
side the receptive field and the stimuli were typically larger and contained
coherent motion (compared to the small, incoherent motion RDPs used for
“Spatial Mapping”, see Methods). And indeed, a paired t-test showed a highly
significant difference in the average firing rate of “Spatial Mapping” trials
(16.11 spikes/s) and “Tuning” trials (19.91 spikes/s) (t(138) = 6.21, p < .001).
Across all recordings and all experiments, 1972 trials that last at least 500 ms
have 0 spikes. Across all units, all experiments, and all trials that last at
least 500ms, the average firing rate (calculated per trial) is 16.60 spikes/s (SD:
13.30 spikes/s) and the highest firing rate calculated for one individual trial
is 162 spikes/s. This value seems quite high and came from a trial that was
quite short (833 ms) but contained a very large number of spikes (135). As
we note in the next paragraph, some of these outliers might be caused by
incorrectly classified waveforms during spike sorting, but across the entire
data set, they are very rare.

Interspike intervals

The longest interspike interval across all files is less than 4 s, which we
consider realistic and plausible. Across all recordings and experiments, there
were 6996 interspike intervals (0.07%) that were longer than 2 s. 12216
interspike intervals (0.11%) were shorter than 1 ms. Because of small shifts
in the position of the electrode over time, the quality of the voltage signal
can change drastically. If the waveform changes too much, spike sorting
might miss some spikes, misclassify them as belonging to a different unit, or
incorrectly classify waveforms as belonging to the unit event though they do
not. While it is nearly impossible to rule out misclassifications for sure, we
believe that the information we provide here about firing rates and interspike
intervals strongly suggests that this issue is negligible in our dataset. However,
it should be kept in mind that each individual spike has a certain, albeit very
low, probability of being misclassified which might be relevant for certain
types of analyses.

In summary, we believe that these tests provide ample evidence for the
quality of the data.

4.5 Usage notes

Our dataset is organized by experiment. Within each experiment folder there
are two files for every recording session. Files ending in ’-task.h5’ contain
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information about the stimuli, behavior, and electrophysiological recordings;
files ending in ’-eye.h5’ contain eye tracking data. Each of these file pairs
contains the complete data from all the trials the monkey completed. Here,
we provide a general overview of this data structure and how variables of
interest can be accessed. More specific examples for how this can be achieved
in MATLAB are given by the example code (see Code availability). In both
files the data is structured as a series of “events”. There are five types of
events that can be recognized by their names (the first four types only occur
in -task.h5 files and the last type only occurs in -eye.h5 files):

• events that describe stimulus features (e.g., the direction or speed of a
random dot pattern) start with STIM
There are 10 different stimuli with distinct prefixes:

– STIM background describes features of the background (all three
experiments)

– STIM fixationPoint describes features of the fixation square (all
three experiments)

– STIM MappingProbe describes features of the RDP in the Spatial
Mapping experiment (Experiment 1 only)

– STIM mask describes features of the circular mask around the
fixation square (all three experiments)

– STIM nDimRDP describes features of the RC stimulus (Experi-
ment 3 only)

– STIM RecmaskBottom, STIM RecmaskLeft, STIM RecmaskRight,
and STIM RecmaskTop desribe features of the four rectangular
masks that covered part of the RC stimulus in some of the record-
ings as described in the section Experiment 3 (Reverse Correlation)
(Experiment 3 only)

– STIM TuningProbe describes features of the RDP in the Tuning
experiment (Experiment 2 only)

• events that describe input/output variables (e.g., button press or reward
delivery) start with IO

• events that describe trial parameters (such as trial start or trial type)
start with TRIAL

• events that relate to action potential recordings start with SPIKE

• events that describe eye tracking data start with EYE
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More detailed definitions of all events can be found the file data description
in the repository. Each event has a value and a timestamp, specifying the
time in microseconds since the MWorks server was started on the day of
the recording session. Each task-file (i.e., files ending in task.h5) includes
two structures – event value, and event time – of equal length that contain
a field of values or timestamps for every event. As a concrete example, in
the recording session “amm-MSTm-sun-120-01+01” the first value that is
assigned to the event TRIAL start is the integer 1 at 59453797µs (about
1 minute) after the MWorks server had been started. This information is
saved in amm-MSTm-sun-120-01+01-task.h5 as event value/TRIAL start[0]
= 1 and event time/TRIAL start[0] = 59453797 (note that if reading the
data into Matlab, the index needs to be 1, rather than 0). In other words,
event time/TRIAL start is an array whose length equals the number of
trials and whose entries specify the start time of each trial. Correspond-
ingly, event value/TRIAL start is an array of the values of TRIAL start
at each timestamp. In the case of TRIAL start, these values are the trial
numbers. For events that describe stimulus attributes, such as the event
STIM MappingProbe posX – which describes the x-coordinate of the random
dot pattern that was presented in Experiment 1 (see Methods) – this would
be a list of x-positions. A description of events is included in each file in
the form of attributes and additionally provided as a separate table in the
repository for easy reference. The eye-files are structured in the same way,
with event value/EYE x dva, for example, specifying the x-coordinate of the
monkeys gaze and event time/EYE x dva specifying the corresponding time
stamps, which are synchronized with the time stamps of the corresponding
task-file.

4.6 Code availability

We provide MATLAB code that serves two purposes: (a) to give examples
of how the data can be accessed; and (b) to perform some elementary data
validation analyses. The code is available along with the data in the repository.
We briefly summarize the MATLAB scripts that we provide along with the
data.

h5 extract

h5 extract() is a function that takes as its input the name of an HDF5
file, a cell array of strings that specify the parameters of the experiment
that are to be extracted (typically event value, and event time), and a cell
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array of strings that specify the events that are to be extracted (typically
the list of event names that can be extracted from the HDF5 itself, as
demonstrated in the example scripts). The output of the function are two
MATLAB structure arrays event value and event time which correspond
to the groups in the HDF5 file of the same name. Each field name of
the structure arrays is the name of an event and the content in the field
corresponds to the values and times associated with the event, respectively.
The names of stimulus parameters begin with ’STIM ’, descriptions of the trial
properties begin with ’TRIAL ’, and input/ouput variables (such as button
presses and rewards) begin with IO . Once extracted, the data are ready for
visualization and analysis. The scripts technical validation, example raster fr,
and example trial histogram demonstrate the use of the h5 extract() function
to read in all events saved in an HDF5 file.

technical validation

The technical validation script was used to perform all the plausibility checks
described in the section “Technical Validation”. The script prints all the
statements from that section of the manuscript that contain quantitative
information about the data (such as, for example, average firing rate) to the
console.

example raster fr

To demonstrate how individual spike times can be accessed and visualized,
the script creates a raster plot of spike trains and a scatter plot of firing rates
per trial (for trials lasting at least 500 ms), colored by trial outcome, for one
example file. The example file is specified in the first line of the script and
can easily be changed by the user. The raster plot also includes the time of
reward delivery and the end of each trial.

example trial histogram

To demonstrate how multiple files can be accessed for population analyses, a
histogram of the number of trials across recording sessions is produced for
each of the three experiments and color-coded by monkey.

example probe time

This script contains a function, probe time(), which extracts the values of all
events at a given time point, as well as some additional code that illustrates
the use of the function.
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example rc stim extraction

This script demonstrates how the direction and speed values of the RC
stimulus can be extracted and in particular, how those segments that were
masked in some of the files (see Methods) can be determined.

example eye data

To demonstrate how the eye tracking data can be accessed, this function plots
the x- and y-position of the monkey’s gaze as well as the size of the right
and left pupil for the first n timesteps (where n can be specified by the user,
default is 100).

example spatial mapping analysis and example tuning analysis

To demonstrate how spiking activity can be related to stimulus features, these
two functions plot firing rate as a function of probe location in the Spatial Map-
ping experiment (example spatial mapping analysis) or as a function of motion
direction and speed in the Tuning experiment (example tuning analysis).
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Abstract

Describing the functional relationship between neural activity and the fea-
tures of external sensory stimuli is one of the fundamental goals of systems
neuroscience. For neurons in many visual areas of the primate cortex, such
a relationship has been established either by means of tuning functions,
or through more complex models of the neural response profile based on
cross-correlations between spike trains and a random stimulus. However, few
attempts have been made to apply these latter methods to areas beyond
early visual cortex. We present three experiments that apply both of these
approaches to single neurons in the medial superior temporal cortex (area
MST) of the macaque brain. Using classical tuning curve approaches, we
confirm that these neurons have large, but well-defined spatial receptive fields
and are independently tuned for linear and spiral motion, as well as speed.
We also confirm that the tuning for spiral motion is position invariant in a
majority of MST neurons. Because measurements with a restricted stimulus
set risk missing important aspects of the neuronal response function, we
developed a new stimulus that generates smooth, complex motion patterns
(nevertheless described by a limited number of parameters), for a bias-free
characterization of receptive field profiles. While these profiles are predictive
of some of the tuning properties of MST neurons, they are generally less
informative than in earlier visual areas and tend to miss features, such as
position invariance. Thus, MST emerges as a model system for studying more
complex relations of neural activity and external stimuli.
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Significance Statement

Understanding how stimuli and behavior are encoded by neural activity is a
central goal of systems neuroscience. In the visual domain, this question of
neural coding can be phrased as, “How are visual features (such as color or
motion) represented in the spiking activity of cortical neurons?”. Substantial
progress has been made to answer this question for early parts of the visual
system, such as the retina or early visual cortex. However, there are only few
cases of applying such approaches to more specialized mid- and high-level
visual areas. Here we employ a variety of approaches to explore how complex
visual motion is encoded by neurons in the medial superior temporal area of
the macaque cortex.
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5.1 Introduction

Characterizing the relationship between a neurons activity and external
stimuli is a central goal of visual neuroscience. Over the past 60 years, two
different approaches have emerged to address this challenge: First, stimuli that
are parameterized by one or two dimensions (such as orientation, direction
of motion, speed, spatial frequency, or color) have been used to describe a
neurons “tuning” for these features. This approach was particularly successful
in demonstrating tuning for a luminance bars orientation in V1 (Hubel &
Wiesel, 1968), for the direction of a moving stimulus in the middle temporal
(MT) area (Albright, 1984; Maunsell & Van Essen, 1983c; Snowden et al.,
1992), or for color in extrastriate area V4 (Kusunoki, Moutoussis, & Zeki, 2006)
of the primate cortex. However, using a highly restricted stimulus set raises
the risk of missing out on essential aspects of the neuron’s response function.
Thus, an alternative approach that makes less assumptions about the stimulus
subspace that a neuron responds to has been developed based on triggered
correlation (De Boer & Kuyper, 1968). Such “reverse correlation” approaches
describe a neurons response to stimuli by a linear filter (Ringach & Shapley,
2004), followed by a non-linearity and a spike generation process, such as a
Poisson process (linear-nonlinear Poisson (LNP) models, e.g., Chichilnisky,
2001) or an integrate-and-fire process (Paninski, Pillow, & Simoncelli, 2004;
Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky, 2005). The linear filters
have been successfully estimated in cat in primate V1 using the spike-triggered
average (STA; e.g., DeAngelis et al., 1993a, 1993b; Jones & Palmer, 1987)
or spike-triggered covariance (STC; e.g., Rust et al., 2005; Touryan et al.,
2002). However, nearly all of the studies using such approaches recorded
spiking activity in the early stages of the visual processing pipeline, such
as retinal ganglion cells (RGCs), the lateral geniculate nucleus (LGN) of
the thalamus, or primary visual cortex (V1). Mid- and high-level areas of
the primate cortex, such as V4 and IT in the ventral pathway and MT
and MST in the dorsal pathway, have larger receptive fields, which allows
them to integrate over larger parts of the visual field, and respond to more
complex aspects of stimuli. This transformation of response functions along
the cortical hierarchy has been described as a change from “sensation to
perception” (Treue, 2003). Here we used both tuning curves and spike-
triggered analyses to characterize the neuronal response function in one
higher visual area, the medial superior temporal cortex (MST). Neurons in
this area are motion sensitive and direction selective (Tanaka et al., 1986). In
contrast to neurons in area MT, which provide the major input to MST, they
also respond to more complex motion patterns, such as rotation and radial
motion (contraction and expansion) (Duffy & Wurtz, 1991a, 1991b; Saito et
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al., 1986). These response preferences for different motion patterns can be
integrated in Gaussian tuning curves within a 1-dimensional “spiral motion
space” (Graziano et al., 1994). The motion patterns that make up this spiral
space are similar to the “optic flow” patterns that are experienced by an
observer moving through the environment (Gibson, 1950) and based on their
tuning for these optic flow patterns, MST neurons have been suggested to play
an important role in self-motion perception (Britten, 2008; Duffy, 1998; Duffy
& Wurtz, 1995). This has been supported by the finding that microstimulation
of MST neurons systematically biases monkeys heading perception (Britten,
1998). MST, but not MT neurons also show direction selective delay activity
in a working memory task (Mendoza-Halliday et al., 2014) and represent
illusory flow motion (Luo et al., 2019), suggesting that activity in MST is more
closely related to behavior than activity in earlier areas. Thus, MST combines
features of early, sensory areas and higher areas involved in perception and
cognition (Wild & Treue, 2021b). To explore the response functions of
MST neurons in more detail, we conducted three experiments. In the first
experiment (“Spatial Mapping”) we explored neurons’ spatial receptive fields.
The second experiment (“Tuning”) used the classic tuning curve approach
to test how neurons’ firing rates depend on linear (translational) and spiral
direction as well as speed. In the last experiment (“Reverse Correlation”) we
recorded neuronal responses to a newly developed motion stimulus that is
well suited for spike-triggered analyses. This approach allowed us to estimate
the response function of MST neurons in an unbiased manner which can then
be used to predict a neuron’s response to any arbitrary stimulus. To test
this, we used the response functions determined in the Reverse Correlation
experiment to predict the responses in the Tuning experiment.

5.2 Methods

Research with non-human primates represents a small but indispensable
component of neuroscience research (Buffalo et al., 2019). The scientists
in this study are aware and are committed to the great responsibility they
have in ensuring the best possible science with the least possible harm to the
animals (Roelfsema & Treue, 2014).

Ethics statement

All animal procedures of this study have been approved by the responsible
regional government office (Niedersaechsisches Landesamt fuer Verbrauch-
erschutz und Lebensmittelsicherheit [LAVES]) under the permit numbers
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3392 42502-04-13/1100 and 33.19-42502-04-18/2823. We have established
a comprehensive set of measures to ensure that the severity of our experi-
mental procedures falls into the category of mild to moderate, according to
the severity categorization of Annex VIII of the European Unions directive
2010/63/EU on the protection of animals used for scientific purposes (see
also (Pfefferle et al., 2018)). The animals were group-housed with other
macaque monkeys in facilities of the German Primate Center in Goettingen,
Germany, in accordance with all applicable German and European regulations.
The facility provides the animals with an enriched environment (including
a multitude of toys, wooden structures, and other enrichment; Berger et al.,
2018; Calapai et al., 2016), natural as well as artificial light, and a space
exceeding the size requirements of the European regulations, including access
to outdoor space. The German Primate Center has several staff veterinarians
that monitor and examine the animals and consult on procedures. During the
study, the animals had unrestricted access to food and fluid, except for the
days when data were collected or the animal was trained on the behavioral
paradigm. On these days, the animals were allowed unlimited access to fluid
through their performance in the behavioral paradigm. Here, the animals
received fluid rewards for every correctly performed trial. Throughout the
study, the animals psychological and medical welfare was monitored by the
veterinarians, the animal facility staff, and the lab’s scientists, all specialized
in working with nonhuman primates. The three animals were healthy at the
conclusion of our study and were used in follow-up studies.

Subjects

Three male rhesus monkeys (Macaca mulatta) were tested in the experiments:
Monkeys S (age and weight during participation in experiment: 14-16 years;
9.9-12.8 kg), monkey I (10-13 years; 10.4-13.4 kg), and monkey E (14 years;
8.0-9.2 kg). All animals had previously participated in other projects and
were implanted with a titanium head holder to minimize head movements
during the experiment, as well as with a recording chamber implanted on
top of a craniotomy over the parietal lobe based on a magnetic resonance
imaging (MRI) scan. Recordings were performed from the left hemispheres
of monkeys S and E, as well as from both hemispheres of monkey I. Surgeries
were conducted under general anesthesia and post-surgical care using standard
techniques.
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Task

In all three experiments, monkeys performed a simple eye fixation task to keep
their gaze stable throughout stimulus presentation. A red fixation point was
presented on the screen and the monkey initiated the stimulus presentation by
pressing a button attached to the primate chair. The location of the fixation
point was chosen so as to ensure maximal coverage of the spatial receptive
field by the screen (typically this meant that the fixation point was placed
in the visual hemifield ipsilateral to the recording chamber as most neurons
had spatial receptive fields in the contralateral hemifield). The luminance of
the fixation point changed within a time window that was randomly selected
from a uniform distribution ranging from 3 to 4.6 s after stimulus onset, to
which the monkey had to respond within 600 ms in order to receive a fluid
reward (juice, tea, or water, depending on each monkeys preferences). Eye
positions were sampled binocularly at 500 Hz with an Eyelink 1000 system
(SR-Research, Ottawa, ON, Canada). Gaze direction was controlled during
the recordings to stay within a square window of 3◦ side length around the
fixation spot. Trials on which the monkeys gaze went outside this window
were aborted without reward. Stimuli were presented on a 27” LCD monitor
(XL2720T, BenQ, Taipei, Taiwan) or projected onto a 171.5× 107.2 cm back
projection screen (dnp Black Bead, Karlslunde, Denmark) using a projector
(projection design, Fredrikstad, Norway) with a resolution of 1920×1200 pixels
and a refresh rate of 60 Hz. All experiments were controlled by the open
source software MWorks (mworks-project.org) running on an Apple Mac
Pro (Apple Inc., Cupertino, CA, USA).

Neural data acquisition

Action potentials (“spikes”) were recorded extracellularly with single tungsten
electrodes (Thomas Recording, Giessen, Germany) that were advanced using
either a hydraulic micropositioner (David Kopf Instruments, Tujunga, CA,
USA) or a mechanical microdrive (“Mini Matrix”, Thomas Recording, Giessen,
Germany). Neural signals were digitized at 40 kHz at 16-bit precision using an
Omniplex acquisition system (Plexon, Dallas, TX, USA). The raw signal was
filtered with a 6-pole Bessel high pass filter, spike waveforms were detected
based on a manually determined threshold, and were then manually sorted into
clusters based on different features as implemented in the Plexon OfflineSorter
V3 (Plexon, Dallas, TX, USA).
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General data analysis

All data analysis was performed in Matlab (The Mathworks, Natick, MA). All
analysis steps requiring circular statistics were performed using the CircStat
toolbox (Berens, 2009). More details about the analysis steps for each of the
three experiments are provided in the following sections.

Experiment 1: Spatial Mapping

Stimuli and procedure

A small, circular random dot pattern (RDP) of radius 1.5◦ was presented
sequentially in different locations across the screen. The RDP consisted of
28 white dots with a radius of 0.2◦ that were randomly placed and moved
independently along linear trajectories in random directions at a speed that
was randomly chosen from a range of 4◦/s 24◦/s. Each presentation of the
RDP for 50 ms constitutes one “sample”. For every sample, the location of
the RDP was updated by assigning a random x- and y-position in the range
covering the entire width and height of the display in steps of 2◦. On trials
that were not interrupted by fixation breaks or incorrect responses (see Task),
more than 80 samples could be presented.

Data analysis

The goal of the “Spatial Mapping” experiment was to determine the size
and location of a neuron’s receptive field. To do so, we extracted the spiking
response to every sample, i.e., the number of spikes that a neuron fired during
an analysis window of the same length as the sample presentation time (50 ms)
that could be shifted in time by a latency period with regard to the sample
presentation (Fig. 5.1).For a latency of 75 ms, for example, we would count
the spikes that the neuron fired in the time period from 75 ms after sample
onset until 125 ms after sample onset (75 ms after sample offset). For each
possible sample location, we averaged the number of spikes across repeated
presentations in that location and converted the number of spikes to a firing
rate in spikes/s (i.e., we multiplied the average number of spikes by 20). We
argue that the optimal latency, i.e., the 50 ms time window during which the
spiking activity is most likely to reflect a neurons response to the visual input,
would lead to the highest variability across the different locations, because
at the optimal latency, there should be strong responses to probes presented
inside the receptive field and very weak responses to probes presented outside
the receptive field. Thus, we calculated the variance in firing rate across all
possible probe locations for latencies from 0 to 150 ms in steps of 1 ms and
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Figure 5.1: Definition of “latency”. In each trial, multiple samples of the
stimulus are presented. For each sample, the parameters that define the
stimulus (e.g., x- and y-coordinate of the mapping stimulus, or x- and y-
coordinate, direction, and speed for the tuning stimulus) are updated. The
momentary parameters of the stimulus are abstractly symbolized here by
each stack of shades of gray. The analysis window has the same length as
a sample and is shifted in 1-ms increments in time (the “latency”), relative
to the stimulus sample. We consider all spikes that occur during an analysis
window as the neuron’s response to that sample.

defined the optimal latency as the latency that led to the largest variance
(Fig. 5.3A). Visual inspection of the resulting receptive field maps confirmed
that this approach identified the latency for which the spatial receptive field
was most clearly defined. We then fit a two-dimensional elliptical Gaussian
function to the data, using the formula

f(x, y) = B + A exp(−a(x− x0)2 + 2b(x− x0)(y − y0) + c(y − y0)2) (5.1)

with
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where B is the baseline firing rate, A is the amplitude of the 2D Gaussian, x0
and y0 are the coordinates of the center of the 2D Gaussian, θ is the angle of
rotation of the ellipse, and σ2

x and σ2
y are the x and y spreads of the ellipse.

We defined the receptive field size as the area of an ellipse with width 2σ2
x



Response properties of MST neurons 135

and height σ2
y and the eccentricity as the distance from the fixation point

to the receptive field center defined by x0 and y0. Thus, for every cell we
extract 3 values from the Spatial Mapping experiment: an optimal latency, a
receptive field size, and a receptive field eccentricity. Across the population of
all recorded neurons, we explored the distribution of optimal latencies as well
as the relation between receptive field eccentricity and size using standard
descriptive statistics. We used the coefficient of determination (R2) to assess
the goodness-of-fit and excluded all cells from further analysis that had a R2

value of less than 0.22.

Experiment 2: Tuning

Stimuli and procedure

A circular RDP was presented sequentially in up to 5 different locations
covering the spatial receptive field as it had been determined by an online
analysis of Experiment 1. The RDP’s radius varied from 5◦ to 10◦, depending
on the size of the receptive field and the dot density was 2 dot/deg2. across
the screen. Each presentation of the RDP for 100 ms constitutes one “sample”.
For every sample, the location of the RDP was updated by assigning an x-
and y-position, one of 8 possible linear or spiral directions (from 0◦ to 315◦

in steps of 45◦), and one of 6 speeds (from 4◦/s to 24◦/s in steps of 4◦/s).
The 8 spiral directions were expansion, outward clockwise spiral, clockwise
rotation, inward clockwise spiral, contraction, inward counterclockwise spiral,
counterclockwise rotation, and outward counterclockwise spiral. For most
of the cells, 5 locations were arranged in a cloverleaf, similar to a previous
study (Graziano et al., 1994). For cells whose receptive field was on the
edge or in the corner of the screen, the arrangement was different to ensure
maximal coverage of the receptive field by the 5 RDP positions and in some
cells less than 5 locations were probed. Spiral directions were presented in
all (up to 5) locations to test for position invariance (see “Data Analysis”
below), but linear directions were only presented in the center location. Data
analysis The goal of the “Tuning” experiment was to explore MST neurons’
tuning for linear and spiral direction of motion, as well as speed. To do so, we
extracted the spiking response to every stimulus presentation, i.e., the number
of spikes that a neuron fired during an analysis window of the same length
as the sample presentation time (100 ms) that could be shifted in time by a
latency period with regard to the sample presentation, similar to the “Spatial
Mapping” experiment (Fig. 5.1). We argue that at the optimal latency, a
well-tuned neuron should show a high variance in its responses to different
directions, but a low variance to repeated presentations of the same direction.
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In order to determine the optimal latency we calculated the variance across
repeated presentations of the same direction for each one of the 8 directions (8
“within-variance” values) as well as the variance across the averaged responses
to each of the 8 different directions (1 “across-variance” value) and divided the
“across-variance” by the mean “within-variance”. Calculating this quotient of
across-variance and averaged “within-variance” for every latency from 0 to
150 ms in steps of 1ms, we defined the latency at which this value reached
its maximum as the optimal latency. While it is possible that the optimal
latency would differ for different locations (e.g., because the neuron receives
input from different subpopulations of MT neurons), manual inspection of
optimal latencies calculated for each location separately did not show any
systematic relation between these two variables. Similarly, there was no
systematic effect of speed so that we combined data points from all speeds.
For direction tuning we followed the sampling-based, Bayesian approach
described by Cronin, Stevenson et al. (2010) for estimating the parameters of
the curve and error bars, as well as hypothesis testing. In brief, we estimated
the posterior probability distribution of the tuning curve parameters for a
circular Gaussian, given the stimulus and the spiking responses. We assumed
Poisson spiking to describe the relationship between the response predicted
by the tuning curve and the observed data. Markov chain Monte Carlo
(MCMC) sampling was used to estimate the posterior parameter distribution.
Following the default values suggested by Cronin, Stevenson et al. (2010) in
their paper and their toolbox, we us 10,000 burn-in samples, drew 20,000
samples from the posterior and kept only every 50th sample (400 samples) in
total to reduce correlations between the samples. These 400 samples were
used to correlation 95% confidence intervals. For each cell we fitted up to
42 direction tuning curves based on linear motion presented in one location,
spiral motion presented in up to 5 locations, each at six different speeds and
one tuning curve that ignored speed. We consider parameter estimates of
these fits for our analysis if the following criteria are fulfilled:

• The coefficient of determination (R2) as a measure of goodness-of-fit is
higher than 0.7;

• The 95% confidence interval of the estimated preferred direction covers
less than 90◦ i.e., a quarter of the range of all possible directions;

• The 95% confidence interval of the amplitude does not cross 0;

• The amplitude of the tuning curve is at least 3 spikes/s;

• The maximum firing rate is larger than the baseline firing rate + 10%;
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• The maximum firing rate is at least 10 spikes/s.

We considered a cell tuned for linear motion or tuned for spiral motion at
one of the tested locations if at least 2 out of the 6 fits (for 6 different speeds)
met these criteria. For the cells that survived these criteria, we first tested
whether the preferred direction in linear or spiral space depended on speed.
We considered a neuron to show speed-dependent direction selectivity (SDDS)
if the preferred directions across 6 speeds cover a range of more than 45◦. To
assess the neurons tuning for speed, we followed the procedure by Churchland
et al.(A. K. Churchland et al., 2007) and fit the data with a cubic-smoothing
spline using the Matlab function csaps with the smoothing parameter set to
0.04. We interpreted the maximum of the fitted curve as a neurons preferred
speed. To explore whether responses to spiral motion were position invariant,
as had previously been reported (Graziano et al., 1994), we first attempted to
reproduce Graziano et al.’s results by following their approach. We included
all cells that showed tuned responses to spiral motion in at least 4 locations.
Only responses to the preferred and the anti-preferred direction at the center
location were considered (in cases where RDP locations were not arranged in
a cloverleaf, the location at which linear motion had also been presented was
considered the “center location”). Directional selectivity (DS) was calculated
as

1− (Ranti−pref/Rpref )

where Rpref is the response to the preferred direction at the center location
and Ranti−pref is the response to the direction 180◦ away from the preferred
direction at the center location. For each cell, three or four position invariance
indices (PI) were calculated by dividing the DS at the surrounding locations
by the DS at the center location. PI values close to 1 indicate position
invariance while negative PIs indicate a reversal in preferred direction at that
location. To take information from the full tuning curve into consideration, we
also calculated the range of preferred directions across all locations for these
cells. A position invariant cell should have very similar preferred directions
in all locations and therefore a small range, whereas a range close to 180◦

indicates a reversal in preferred direction in at least one location.

Experiment 3: Reverse Correlation

Stimuli and procedure

A newly developed, large, rectangular random dot pattern (“RC Stimulus”)
was presented. The stimulus consists of 10× 15 square segments, each with a
side length of 3◦, resulting in an overall size of 30◦× 45◦. For some recordings,
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a smaller version of the stimulus with 6× 9 segments (overall size: 18◦ × 27◦)
was used; for the sake of readability, we describe all analysis steps for the
10× 15segments case, but all steps can equally be performed for the smaller
version of the stimulus. Each segment is assigned a random linear direction
from 0◦ to 360◦ and a random speed from 0◦/s 20◦/s and contains 10 dots
(1500 dots in total, dot density of 1.11 dots/deg2). The direction and speed
of each dot is determined by Gaussian weighting fields of all segments in
its vicinity: A dot that is positioned right in the center of a segment will
move in the direction and with the speed assigned to that segment, whereas
a dot that is positioned at the intersection of four segments will move in a
direction and with a speed that is the average of the values assigned to these
four segments. The influence of each segment on the dots in its vicinity is
defined as a 2D-Gaussian that has its mean at the center of the segment
and a standard deviation of 1.2◦. The direction and speed values assigned to
each segment are updated every 100 ms, the duration that constitutes one
“sample”. Overall, what the observer perceives is a smooth, wave-like pattern
of moving dots. On trials that were not interrupted by fixation breaks or
incorrect responses (see Task), more than 40 samples could be presented.

Data analysis

In order to reduce the number of parameters that need to be fitted, we ignored
the different speeds in all analyses presented here and represent each sample of
the RC Stimulus as a vector of 150 directions (Fig. 5.6A). The stimulus for an
entire recordings session is then a number-of-samples ×150 matrix. Analysis
thus becomes a regression problem where we try to predict the spike count
from the stimulus vector. Because regression analysis is problematic with
circular data, we converted the 150 directions to 300 x- and y-components by
taking the cosine and sine of each direction. The final version of the research
problem is thus to predict the [number-of-samples ×1] spike counts vector (y)
from a [number-of-samples ×300] design matrix (X). We test five models of
increasing complexity. To assess the performance of each model, we simulated
the stimuli used in the “Tuning” experiment (see above) by calculating for
each segment of the RC Stimulus the local direction that the “Tuning” RDP
would have had in that location (Fig. 5.6B). For recordings on which the
“Tuning” RDP had been presented in 5 locations, we would thus generate
48 such stimuli: 8 spiral directions in 5 locations plus 8 linear directions in
one location. To quantify each models ability to predict a neurons response
to the “Tuning” stimuli, we calculated four measures: (1) the coefficient of
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determination (R2) of the model, calculated as

1−
∑

i(ŷi − yi)2∑
i(yi − ȳ)2

where ŷi is the predicted response for sample i, yi is the measured response
for sample i and ȳ is the mean across all measured responses; (2) the correlation
between the predicted and the real responses from the “Tuning” experiment
(using the responses from the “Tuning” experiment that were calculated across
all speeds); (3) the difference in preferred direction between tuning curves
fitted to the predicted responses and tuning curves fitted to the real responses;
and (4) the difference in tuning width (defined as 1 standard deviation of a
Gaussian tuning curve) between tuning curves fitted to the predicted responses
and those fitted to the real responses. The first model we tested is a General
Linear Model with Gaussian noise, i.e., standard linear regression. We added
a column of 1s to the design matrix as an offset parameter and calculated a
whitened spike-triggered average (STA) by multiplying the inverted covariance
matrix of the design matrix with the normal STA (design matrix multiplied
with response vector):

(XTX)−1XTy

The second model was a Poisson Generalized Linear Model (GLM) with
an exponential nonlinearity that was fitted using Matlab’s glmfit function.
The third model differed from the second only in that we replaced the default
exponential nonlinearity with a nonparametric estimate by binning the output
of the linear filter, computing the average number of spikes for each bin and
using Matlabs interp1 function to extend these individual points to a full
function that can be evaluate at any arbitrary point. The fourth model was a
variant of the second model in which we added ridge regularization by adding
a penalty on the sum of squared regression coefficients that was multiplied
with a ridge parameter λ. We chose the value of λ by splitting the data for
each recording in a training (80%) and a test (20%) set, fitting the model with
varying values of λ to the training data, and selecting the value that had the
lowest error on the test data. For the fifth and final model we employed the
information-theoretic generalization of spike-triggered average and covariance
analysis (iSTAC) suggested by Pillow & Simoncelli (2006). Using the code
they provide, we calculated the STA and spike-triggered covariance (STC),
three “iSTAC filters”, i.e., orthogonal basis vectors that are sorted in order
of their informativeness, and fitted an exponentiated-quadratic nonlinearity
using direct maximum-likelihood estimation of the quadratic parameters.
This nonlinearity can then convert the convolution of the three filters with the
stimulus into a firing rate. To determine the optimal latency for the Reverse
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Correlation experiment, we extracted spike counts for latencies from 0 to
200 ms in steps of 5 ms, fitted the first model (linear Gaussian) to each spike
count vector, and defined the latency for which R2 was largest as the optimal
latency. All cells for which responses to at least 5000 samples were recorded
and that met the inclusion criteria for “Spatial Mapping” and “Tuning” (see
above) were included in the analysis of the “Reverse Correlation” experiment.

Data availability

The fully annotated raw data underlying the analyses in this manuscript
are publicly available (Wild et al., 2021) and detailed information on how
to access and analyze the data is provided in an accompanying manuscript
(Chapter 4).

5.3 Results

The aim of our study was to elucidate the functional relationship between
neural activity across neurons in area MST and the complex moving stimuli
these neurons respond to. We characterized MST single neuron response by
conducting three experiments to focus on

• the spatial profile of the receptive fields in MST,

• the neurons tuning to complex motion patterns and

• to assess the responsivity and selectivity for a novel class of multi-
dimensional motion patterns through reverse correlation.

We analyzed 171 cells that had been recorded in 138 recording sessions from
4 hemispheres of 3 monkeys. Out of these 171 cells, 29 were excluded from
all analyses, because they did not provide interpretable data in any of the 3
experiments (i.e., they did not have a clear spatial receptive field, showed no
tuning for linear or spiral direction, and did not respond selectively to the RC
stimulus). Table 5.1 shows the distribution of cells across the 4 hemispheres.
Recordings that were not included (i.e., the difference between rows 2 and 3
in Table 5.1) were either too noisy for spike sorting or cells were lost before a
sufficient number of trials could be collected

General neural activity statistics

Aspects of neuronal activity, such as baseline firing rate, maximum firing rate,
or firing rate variability, can vary across different areas of the primate brain.
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Figure 5.2: General statistics of neural activity. A. Changes in mean firing
rate and firing rate variability in the “Tuning” experiment after stimulus
onset. The mean rate (top panel in gray) and the Fano factor (bottom
panel, black with flanking standard error) were computed using a 50 ms
sliding window. The Fano factor was computed after mean matching and the
resulting stabilized means are shown in black (see Churchland et al. (2010)
for details). Note the similarity to the results for other brain areas shown
in Churchland et al. (2010). B. Distribution of baseline firing rates in the
“Spatial Mapping” experiment. C. Distribution of maximum firing rates in
the “Spatial Mapping” experiment. D. Distribution of baseline firing rates
in the “Tuning” experiment. E. Distribution of maximum firing rates in the
“Tuning” experiment. See main text for details. Color of the bars in panels
B-E indicates the monkey and hemisphere.



142 Response properties of MST neurons

Before we describe the results of our three experiments, we provide general
statistics about neuronal activity measures in our recordings of MST neurons.
Churchland and colleagues (2010) showed that across many cortical areas
of the primate brain such as V1, V4, MT, the lateral intra-parietal areas
(LIP), dorsal premotor cortex (PMd), the parietal reach region (PRR), and
orbitofrontal cortex (OFC) firing rate variability, as measured via the Fano
Factor, decreased after stimulus onset. We applied their analysis code1 to our
“Tuning” data, which is most comparable to the kind of data they analyzed,
and confirmed that this decrease in neural variability can also be observed
in MST, resulting in a plot that is noticeably similar to the plots in Fig. 3
of Churchland et al. (2010) (Fig. 5.2A). We also show distributions of the
baseline and maximum firing rate in both the “Spatial Mapping” and the
“Tuning” experiment (Fig. 5.2B-E). A paired-sample t-test for the 113 cells
that were included in both, the Spatial Mapping and the “Tuning” analysis

1https://churchland.zuckermaninstitute.columbia.edu/content/code

Monkey S Monkey I Monkey I Monkey E Total
LH LH RH LH

Recording
attempts

225 126 77 18 446

Recorded
files

193 36 29 5 263

Included
files

82 26 28 2 138

Cells 108 26 35 2 171

Included in
analysis

89 21 30 2 142

Included
in Spatial
Mapping
analysis

76 19 28 2 125

Included
in Tuning
analysis

78 21 26 1 126

Included
in Reverse
Correlation
analysis

55 9 22 0 86

Table 5.1: Distribution of cells across the 4 hemispheres of three monkeys.
LH: left hemisphere; RH: right hemisphere.
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showed that the baseline firing rate was significantly higher for the “Tuning”
experiment (t(112) = 2.96, p < .01), which can be explained by the difference
in how the values were calculated (see “Methods”). Importantly, however,
both approaches show that some MST neurons show quite high levels of
baseline activity, with 9 out of 113 cells showing a baseline firing rate larger
than 20 spikes/s in both experiments. Similarly, the maximum firing rate was
significantly higher in the “Tuning” than in the “Spatial Mapping” experiment
(t(112) = 6.77, p > 0.001), which is not surprising, given that larger stimuli
with coherent motion were presented inside the receptive field. Seven out of
113 cells reached a maximum firing rate of more than 100 spikes/s in both
experiments and 10 cells had a firing rate larger than 100 spikes/s in the
tuning experiment.

Spatial Mapping

In the “Spatial mapping” experiment, a small random dot probe was presented
sequentially for 50 ms at different locations across the visual field. We averaged
the spiking response at each location to estimate the spatial receptive field.
By repeating this procedure for a range of latencies between stimulus onset
and analysis window and comparing the variance in firing rates across different
locations, we determined the optimal latency at which the neuron’s activity
best reflected its response to the stimulus. We estimated spatial receptive
field size and eccentricity by fitting a 2D Gaussian to the data (see “Methods”
for details). 17 cells were excluded from the analysis because they did not
have a clearly defined spatial receptive field, leaving 126 cells to be included in
the analyses (Table 5.1). Fig. 5.3A illustrates that the variance in firing rates
across the different locations was indeed a good measure to determine the
optimal latency between stimulus and analysis window. Plotting variance as
a function of latency (Fig. 3A, left panel) shows an increase in variance with
latency up to a maximum at a latency of 59 ms for this cell before decreasing
again. Plotting the firing rates as a function of location confirms that the
spatial receptive field is much more clearly defined at this optimal latency
(Fig. 5.3A top right panel) as compared to a randomly chosen control latency
(Fig. 5.3A bottom right panel). The distribution of optimal latencies across
all cells shows a wide range, from 12 ms to 102 ms (Fig. 5.3B). An independent
t-test showed that the average optimal latency differed significantly between
Monkey I (77.9 ms, pooled across both hemispheres) and Monkey S (54.7 ms),
t(122) = 8.95, p < 0.01, d = 1.66); we did not perform any statistics on the
data from monkey E, as there were only 2 cells included. Fig. 3C shows a
2D Gaussian fitted to the data from the same example cell as in Fig. 5.3A.
The receptive field size was defined as the area of an ellipse with width and
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Figure 5.3: Results from the “Spatial Mapping” Experiment. A. Definition
of the optimal latency. Left panel shows the variance in firing rate across
locations plotted as a function of latency. The two right panels show the
receptive field map at the optimal latency (top, red box) and at a randomly
chosen control latency (bottom, blue box). The two latencies are also marked
in the left panel (see main text for details). B. Distribution of optimal latencies
across all cells. Color of the bars indicates the monkey and hemisphere. C.
2D Gaussian fitted to the example cell that was shown in panel A. The white
dashed line shows the receptive field outline, defined as an ellipse with height
and width set to 2 times the standard deviations of the Gaussian. The red
dot at location [-15,10] marks the fixation point. The black dot marks the
receptive field center. The line connecting the fixation dot and receptive field
center is the eccentricity. D. Receptive field size (square-root of the area)
as a function of eccentricity across all cells. The black line shows the linear
regression line.
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height set to two times the standard deviations of the 2D Gaussian (outlined
with the white dashed line). Eccentricity (marked with a black line) was
defined as the distance from the fixation point (marked in red) to the center
of the 2D Gaussian (marked in black). Before exploring the relationship
between receptive field size and eccentricity across the population of neurons,
we excluded an additional 41 cells whose receptive field center lay more
than 2 degrees outside the screen. While the fitting procedure might still
be able to find parameters that describe the data well for these cells, the
size and eccentricity estimates provided by the 2D Gaussian fit becomes very
unreliable when only a small part of the receptive field is covered by the
screen. For the remaining 85 cells we found a highly significant correlation
between eccentricity and receptive field size (quantified by the square-root of
the area), r = .67, p < .01. The slope of a linear regression line was 0.85 and
the intercept was 17.23.

Tuning

In the “Tuning” experiment, a random dot probe was presented sequentially
for 100 ms at up to 5 different locations covering the receptive field. For
each presentation, one of 8 possible spiral motion directions and one of 6
possible speeds was chosen. Additionally, for the location covering the center
of the receptive field, one of 8 possible linear directions could be presented.
Fig. 5.4A and 5.4C show the ratio of the variance in the responses to different
directions to the variance in the responses to the same direction for different
latencies (see “Methods” for details). The clear peak, which we use to define
the optimal latency, suggests that our measure is valid. Among all cells
that were tuned for linear motion (N = 100), the average optimal latency
for responses to linear motion was 80.3± 2.8 ms (mean ± SEM, Fig. 5.4B).
Among all cells that were tuned for spiral motion (N = 122), the average
optimal latency for responses to spiral motion was 91.2± 2.6 ms (Fig. 5.4D).
Across the population of cells that were tuned to both, linear and spiral
motion, and included in the “Spatial Mapping” analysis (N=84) the optimal
latency for spiral motion was significantly larger than the optimal latency
for linear motion (paired t-test, t(83) = 2.62, p < .05) and optimal latencies
were larger for both linear and spiral tuning than for spatial mapping (linear
tuning vs. mapping: t(83) = 5.35, p < .001; spiral tuning vs. mapping:
t(83) = 8.59, p < .001).

We fitted tuning curves for direction and speed to extract preferred
parameters and tuning strength (see “Methods” for details). Out of 5901
direction tuning curves we excluded 3385 curves (57.4%) from further analysis
based on the criteria outlined in “Methods”: 2924 curves (49.6%) had an
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insufficient fit quality, 321 curves (5.4%) had a confidence interval for their
preferred direction larger than 90◦, 0 curves (0%) had a confidence interval for
their amplitude that crossed 0, 812 curves (13.8%) had an amplitude of less
than 3 spikes/s, 741 curves (12.6%) had a maximum firing rate of less than
10% above their baseline firing rate, and 888 (15.1%) had a maximum firing
rate of less than 10 spikes/s. Note that many curves met multiple criteria
which is why the numbers add up to more than 3385. This led to 17 cells
being completely excluded from the analysis as we found them to be tuned
neither for linear nor for spiral motion (Table 5.1). Of the remaining 126 cells,
4 were tuned only for linear motion, 26 were tuned only for spiral motion,
and 96 were tuned for both, linear and spiral motion. Figure 5.4E and G
shows an example of tuning curves for linear and spiral motion, respectively.
We first tested whether a neuron’s preferred direction varied with speed
(speed-dependent direction selectivity, SDDS). Only 23 out of 100 cells (23%)
tuned for linear motion showed SDDS. 60 out of 122 cells (49%) tuned for
spiral motion showed SDDS in at least one location, but only 23 cells (19%)
showed SDDS in more than 1 location and only 8 cells (7%) showed SDDS
in more than 2 locations. Overall, these results suggest that MST neurons’
preferred direction does not change with speed. We will therefore conduct our
further analyses based on the preferred direction that was calculated across
all speeds.

The distribution of preferred linear directions across all cells tuned for
linear motion did not differ significantly from a uniform distribution (p = 0.57,
Hodges-Ajne test for non-uniformity of circular data, Fig. 5.4C). For spiral
motion, we tested the distribution of preferred directions at the location where
linear motion had also been presented for those neurons that were tuned
for spiral motion in that location (63 neurons). This distribution also did
not differ significantly from a uniform distribution (p = 0.68, Hodges-Ajne
test, Fig. 5.4F). However, when including the preferred directions from all
locations that at which significant tuning curves had been measured, (280
preferred Directions from 95 neurons), the distribution did differ significantly
from a uniform distribution (p < 0.001, Hodges-Ajne test) with a bias towards
expansion and contraction, similar to previous reports (Graziano et al., 1994).
With regard to speed tuning, we focused on tuning curves that were fitted
across directions as visual inspection suggested that the effect of direction
on speed tuning was a change in gain but did not change speed preferences
(similar to how speed affected the amplitude, but not preferred direction
of direction tuning curves). We found that most cells preferred either the
slowest (4 ◦/s: 28% for linear motion and 29% for spiral motion) or the
fastest speed (24 ◦/s: 56% for linear motion and 50% for spiral motion) that
was presented. Only a minority of cells showed a tuning curve that had its
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Figure 5.4: Results from the Tuning Experiment. Panels A.-B., E.-F., and I.
show results for linear tuning, panels C-D, G-H, and J show results for spiral
tuning.

peak somewhere within this range (16% for linear motion and 21% for spiral
motion). Next, we looked at cells that were tuned for both, spiral and linear



148 Response properties of MST neurons

Figure 5.4: (continued) A. Optimal latency for linear motion in one example
cell was determined by calculating the variance in spiking responses for
repeated presentations of the same direction (“within variance”) and across
the 8 different directions (“across variance”) for every latency (gray dashed
lines, left y-axis). Optimal latency (indicated by dashed line) was defined as
the maximum of “across variance” divided by “within variance” (solid black
line, right y-axis) (see “Methods” for details). B. Distribution of optimal
latencies for tuning to linear motion across all cells. Color of the bars indicates
the monkey and hemisphere. C. Like A, but for spiral motion. D. Like B,
but for spiral motion. E. Example direction tuning curve for linear motion.
Colors indicate speed. Black points and line show data across all speeds.
Error-bars show standard error of mean. F. Example speed tuning curve for
linear motion. Colors indicate direction. Black points and line show data
across all direction. Error-bars show s.e.m. G. Like E., but for spiral motion.
H. Like F., but for spiral motion. I. Distribution of preferred directions
(angle) and speeds (radius) across all cells. Dot color indicates the monkey
and hemisphere. J. Like I., but for spiral motion. K. Scatter plot of linear and
spiral directionality index. Dot color indicates the monkey and hemisphere.
Black line is a linear regression (slope: 0.52).

motion, specifically on those that were tuned for linear motion and for spiral
motion at the location at which linear motion had been presented (49 cells).
We found that in these cells the directionality indices for linear and spiral
tuning were significantly correlated (r = .60, p < .001), indicating that cells
that are strongly tuned in one motion space are also strongly tuned in the
other space. However, the circular correlation between the preferred linear
and spiral directions was not significant (r = .10, p = .48).

We assessed position invariance for cells that were tuned across multiple
locations (see Methods for details). Fig. 5A shows tuning curves for one
example cell that had been presented with spiral motion in five different
locations covering the receptive field (Fig. 5B). As can be clearly seen, the
tuning curves are very similar across the different locations and speeds that
were tested, with the preferred directions (averaged across speeds) for the
5 locations ranging from 233 to 273. A distribution of Position Invariance
Indices (PIs) was clearly centered on 1 (the value that indicates position
invariance) and the mean PI was 0.94. A one-sample t-test indicated that
this value was significantly different from 1 (t(200) = −2.57, p < 0.05), but
note that the PI does not need to be 1 to indicate position invariance: a
reversal in preferred direction would actually lead to negative numbers (which
was the case for only 1 PI out of 206). A small decrease in PI can simply
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Figure 5.5: Results for position invariance tests. A. Tuning curves at 5
locations for one example cell. B. Stimulus positions for which responses
were recorded, plotted on top of the receptive field map. C. Distribution of
position invariance (PI) indices. Values close to 1 indicate perfect position
invariance. D. Cumulative distribution of the range of preferred directions
across locations. For 80% of cells (indicated by horizontal dashed line) the
preferred direction across locations fell within an interval of 62 (indicated by
vertical dashed line).
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be explained by weaker tuning as stimuli are placed towards the edge of the
RF. Lastly, we calculated the range of preferred directions for all cells that
showed significant tuning for spiral motion in at least 3 locations. As shown
in Fig. 5D, 80% of cells had preferred direction within a relatively narrow
window of 62◦. A cell that would reverse its direction preference would have
a range of 180◦.

Reverse Correlation

In the “Reverse Correlation” experiment, a newly developed random dot
stimulus was presented, which consists of a grid of direction and speed seeds
that determine the motion of dots in the vicinity of each seed (Fig. 5.6A).
Each seed is assigned a new random speed and direction every 100 ms so that
the stimulus at any time can be described as a vector of direction and speed
values. In the analyses presented here we ignore speed and aim to predict
spiking responses from the vector of directions that define the stimulus at
any point in time.

We tested 5 regression models and assessed the performance of each model
using 4 metrics: the proportion of variance in the data explained by each
model (R2), the correlation between the responses recorded in the “Tuning”
experiment and the responses predicted by the model, the difference in the
preferred direction of tuning curves fitted to the real and to the predicted
data, and the difference in the tuning curve width. Fig. 5.6C shows a scatter
plot of the 48 recorded responses to 8 linear directions and 8 spiral directions
in 5 locations and responses predicted by the 4th model (Poisson GLM with
regularization) for one example cell. Fig. 5.6D shows the tuning curves fitted
to the real data (black) and the simulated data (red). As in this example, all
five models generally predicted firing rates that were overall lower and also
had a lower amplitude than the actual firing rates. This is likely due to the
fact that the models were trained to predict the spike-count in response to
the RC stimulus, which is less coherent than the random dot patterns used
in the Tuning experiment and therefore generally elicits lower spike counts.
For the example cell shown in Fig. 5.6, for example, only 6 out of 19743
samples (0.03%) elicited more than 8 spikes in 100 ms. In contrast, during
the “Tuning” experiment 36 out of 1455 presentations of linear motion (2.5%)
and 422 out of 7421 presentations of spiral motion (5.7%) elicited more than
8 spikes in 100ms. Apart from the changes in the absolute magnitude of
the response, Fig. 5.6D shows that the model follows the data quite well in
some cases (Spiral, Location 5), but diverges quite a bit in other cases (e.g.,
Spiral, Location 4). The summary for each models performance in the four
different performance metrics we used is shown in Fig. 5.6E-H. Repeated
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Figure 5.6: . Results of the “Reverse Correlation” experiment. A. Illustration
of the “RC stimulus”, defined by a 10×15 grid of independently and randomly
chosen directions, overlaid with the receptive field map from the “Spatial
Mapping” experiment (cf. Fig. 5.3).
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Figure 5.6: (continued) B. Example for how expanding motion (direction 90◦

in spiral space) at the central location from the “Tuning Experiment” was
simulated in the framework of the RC stimulus. The grid in the background
shows the positioning of the RC stimulus, the red circles show the locations
that had been probed during the “Tuning” experiment (cf. Fig. 5.5B), and the
arrows indicate the motion assigned to each segment to simulate the “Tuning”
motion pattern. C. Responses recorded during the “Tuning” experiment
(x-axis) plotted against responses predicted by Model 2 (Poisson GLM). D.
Tuning curves from the “Tuning” experiment in black and tuning curves fitted
to the simulated responses in red. Note the difference in scale for real and
simulated responses in panels C and D. E.-H. Performance of the 5 models
(color coded) in 4 different metrics. Dots show individual cells; horizontal,
colored bars show the mean; horizontal black lines show the mean of 1000
samples in which the matching of stimulus samples and spiking responses
were shuffled. E. R2 of the model fit to the data; F. correlation between real
and simulated responses (as illustrated by the example in panel C); G. mean
difference in preferred direction; H. mean difference in tuning width across
all tuning curves.

measures ANOVAs indicate that the 5 models differed significantly in their
R2 values (F (4, 340) = 60.78, p < .01) and in the difference between tuning
widths (F (4, 340) = 31.87, p < .01), but not in the correlation between real
and simulated responses (F (4, 340) = 1.40, p = .23) or in the differences
between preferred directions (F (4, 340) = 0.20, p = .94). Surprisingly, the
Poisson GLM (model 2) with a standard exponential nonlinearity and without
any regularization appeared to perform best, with the highest average R2
value and the lowest average difference in tuning width. Generally, R2 and
correlation values were relatively low across all models tested, with some
outliers reaching R2 values above 0.05 and correlation coefficients above 0.5.
We therefore asked whether there was anything that set these neurons, for
which the models were able to predict responses well, apart from the rest
of the population. We found no significant correlation between either R2
or the simulated/real response correlation of model 2 with the number of
samples recorded, indicating that better performance could not be explained
by more data. There were, however, significant correlations between model 2s
R2 values and both, the linear directionality index (DI) (r = 0.42, p < .001)
and the spiral DI (r = 0.25, p < .05), as well as between the correlation of
simulated and real responses and linear DI (r = 0.38, p < .001) and spiral DI
(r = 0.30, p < .01), suggesting that responses of cells that are more strongly
tuned can be better predicted.



Response properties of MST neurons 153

5.4 Discussion

We present a series of three experiments that explore the response properties
of neurons in macaque extrastriate area MST. In particular, our third experi-
ment used a novel random motion stimulus that allows to apply the type of
regression analyses that have been very successful in describing early visual
areas (e.g., Pillow et al., 2008; Pillow & Simoncelli, 2006; Rust et al., 2005;
Touryan et al., 2002) to a high-level visual area, such as MST.

MST combines attributes of low- and high-level visual
areas

Our first two experiments (“Spatial Mapping” and “Tuning”) replicate findings
that MST neurons share properties of typical sensory areas, such as the
relation of receptive field eccentricity and area (Fig. 5.3D; see also Desimone
& Ungerleider, 1986; Komatsu & Wurtz, 1988b) or the tuning for simple
stimulus features, such as direction and speed (Fig. 5.4). However, we also
found properties such as position invariance (Fig. 5.5; see also Graziano et
al., 1994), which suggest that the representation of motion stimuli in MST is
not dominated by low-level physical stimulus features, but more global and
abstract.

An interesting finding are the large latencies of close to 100 ms in both the
“Spatial Mapping” and “Tuning” experiment (Figures 5.3 and 5.4). Event-
related EEG potentials in the human brain reveal activity related to image
recognition as early as 150 ms after presentation of a 20 ms stimulus (Thorpe
et al., 1996) and reaction times for a simple discrimination task can be as low
as 120 ms (Kirchner & Thorpe, 2006). In a simple discrimination task that
presumably relies on MST activity (“expansion vs. contraction” or “clockwise
vs. anticlockwise rotation”) with a low-coherence RDP, subjects responded
manually with reaction times of around 600 ms (Strong et al., 2017), but
could do so presumably much faster for higher coherence. It seems unlikely
then, that 100 ms should be needed simply for the visual signal to reach MST.
However, our measure of optimal latency attempts to determine the time
window for which the response maximally differentiates between preferred
and non-preferred stimuli. This does not mean that basic information about
the stimulus cannot be processed much earlier. And indeed, as can be seen
in the example in Fig. 5.3A, even though the spatial receptive field is much
more clearly defined at the optimal latency (red box), its outline is already
visible at an earlier latency (blue box). The fact that the latency at which
the response best differentiated between stimuli was significantly delayed
for spiral motion, as compared to linear motion, suggests that additional
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processing steps are necessary to optimally represent these more complex
spiral motion patterns.

One surprising finding in our experiment was the correlation between
tuning strength for linear and spiral tuning (Fig. 5.4K). One could well
imagine that a cell tuned for linear motion might appear to be tuned for spiral
motion as well (and vice versa), because the linear motion resembles local
aspects of the spiral motion pattern (Fig. 5.7). In that case, one would expect
a negative correlation for tuning strength (because it is not real tuning, but
rather spurious tuning based on similarity). Instead, we find the opposite: a
strong correlation in tuning strength with no correlation in preferred direction,
suggesting that these cells are independently tuned in both, spiral and linear
space. This has interesting consequences for decoding (by a human observer
or by downstream areas in the brain): how would the decoder know whether
a response was elicited by spiral or linear motion? The lack of correlation in
preferred direction can actually be helpful here. Any decoding by downstream
areas in the brain would rely not on single unit responses, but on a population
of neurons with diverse direction preferences. In fact, many computational
decoding approaches in MST rely on population activity (e.g., Ben Hamed et
al., 2003; Gu et al., 2010; Lappe et al., 1996). From a population of strongly
tuned neurons with decorrelated preferred directions in linear and spiral space,
one can easily decode whether linear or spiral motion was presented by looking
at the correlations of those neurons that share similar preferred directions in
one motion space, but not in the other.

Spike-triggered analysis

Quantitative characterization of visual receptive fields using random stimuli
and spike-triggered analyses has a long history in systems neuroscience. The
spike-triggered average (STA) has successfully been used in the salamander
retina (Meister, Pine, & Baylor, 1994), in the primate LGN (Reid & Shapley,
1992), and in simple cells of cat primary visual cortex (DeAngelis et al.,
1993a, 1993b; Jones & Palmer, 1987). Spike-triggered covariance (STC) has
been used to extract multiple filters and nonlinear combination functions to
characterize more complex receptive fields, such as complex cells in cat and
monkey V1 (Rust et al., 2005; Touryan et al., 2002). However, few attempts
have been made to apply these methods to extrastriate visual areas of the
primate cortex. Richert et al. (2013) calculated the STA for responses to a
stimulus with 300 independently moving dots that changed direction every
200 ms to characterize receptive fields in area MT. They found, contrary to
the classical assumption of a single preferred direction in a single region of
space, that many MT neurons had multiple preferred directions, depending on
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Figure 5.7: Illustration of how a cell that is tuned for linear motion might
appear to be tuned for spiral motion. The receptive field of a hypothetical
neuron that is only tuned for linear motion (here preferring upward motion)
is shown in red. Spiral stimuli are presented in 5 locations (black circles,
numbered 1-5). Because of the positioning of the stimuli with regard to the
receptive field, stimuli in all 5 locations will evoke responses that appear to
show spiral tuning. The gray circles show for each of the 5 locations which
spiral pattern has optimally placed local upward relative to the receptive
field (red arrows), evoking the strongest response. In locations 1, 3, and
4 only the bottom left part of the stimulus covers the receptive field and
therefore clockwise inward spiral will evoke the strongest response. In location
2 contraction would evoke the strongest response. In location 5 expansion
or clockwise outward spiral would evoke strong responses. Thus, the cell
might appear to be tuned for spiral motion (although not position invariant),
but the tuning would be weak because the stimulus never fully matches the
neuron’s true preference and therefore evokes weaker responses.
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stimulus location, and spatial response profiles with multiple peaks. Perge and
colleagues (2005) used a motion reverse correlation approach (see Borghuis
et al., 2003, for methodological details) to study the temporal dynamics of
direction sensitivity in MT and found a temporal biphasic filter with neurons
responding best when motion in the antipreferred direction was followed
by motion in the preferred direction. Finally, Chen et al. (2008) used an
approach not unlike ours to obtain receptive fields maps for MSTd neurons.
Their stimulus consisted of a 4× 4 or 6× 6 grid of subfields, each of which
contained dots moving in one of 8 directions that were updated every 100 ms.
Thus, the stimulus was much lower in dimensionality compared to ours, which
has 10× 15 (or 6× 9) segments and dots moving in any random direction.
They used this approach mainly to compare direction tuning and spatial
receptive field profiles between single unit and multiunit activity to study the
clustering of tuning properties.

In contrast to these previous attempts, the purpose of our experiments
was to explore whether reverse correlation can be used to characterize MST
receptive fields in a way that allows to account for the tuning to complex
motion patterns and for position invariance while possibly revealing additional
features of the response profile that could not be detected with a more
restricted stimulus set. This is not trivial, as position invariant responses to
spiral motion patterns suggest that neurons respond to global motion patterns
and do not integrate linearly across local patches (see Wild & Treue, 2021b,
for a detailed discussion of the issue). The STA treats every segment of our
RC stimulus as independent and does not consider dependencies between
neighboring segments. It is therefore not surprising, that this approach is
limited in its ability to predict responses to spiral stimuli across different
locations (Fig. 5.6 E-H). Another problem is the large number of parameters
that define our stimulus (up to 10 × 15 local direction seeds, resulting in
a 150-dimensional vector of directions) and serve as input for the models.
Regularization, which we included in our 4th model (Poisson GLM with
regularization), is typically used to address such as “parameter explosion” by
reducing weights in order to avoid overfitting and to reduce error rates in
high-dimensional inference problems (Park & Pillow, 2011). In our study, one
would expect this to bias weights outside the spatial receptive field towards
zero. However, our tests of the models performance relied on predicting
responses to stimuli that had been presented inside the receptive field, so that
any reduction in weights outside the receptive field would have little effect on
our performance measures. This could explain why there was no improvement
in the performance of model 4 (light blue in Fig. 5.6E-H). The model that is
most different from the others is model 5 (Spike-triggered covariance model),
which incorporates STC, a measure that does take the covariance between
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stimulus segments into consideration. We arbitrarily decided to extract 3
filters for each cell because the additional variance explained by each additional
filter falls off quickly (Rust et al., 2005; Schwartz et al., 2006; Touryan et al.,
2002). The fact that this did not lead to any critical improvement compared
to the other four models (dark blue points in Fig. 5.6E-H) suggests that even
more filters would not have made a meaningful difference, as they would have
contributed even less.

An alternative approach are hierarchical models that describe a neurons
response not as a function of the stimulus, but instead filter the stimulus with
multiple subunits and then combine the output of these subunits to predict
the neurons response. Such an approach has been successful in modeling
responses of position invariant complex cells in primate V1 (Vintch et al.,
2015) as well as responses of MST neurons (Mineault et al., 2012). The study
by Mineault and colleagues (2012) found MST responses were much better
predicted when the output of the subunits (which were modeled to be similar
to MT neurons) was transformed by a nonlinear operation before integrating
them. This evidence for the importance of nonlinear integration offers another
possible explanation why our approaches, which are all inherently linear, were
not more successful.

A potential reason why our approach was not more successful is that our
stimulus is very complex and high-dimensional. As shown by the “Tuning”
experiment, MST neurons respond very strongly to linear and spiral motion;
the chance that our “RC stimulus” would randomly show a motion pattern
that resembles any of these more structured stimuli is very low and even if it
did happen, it would be hidden between thousands of other, unstructured
samples. A more fruitful approach for future experiments could be to find a
middle ground between the highly limited stimulus set used in the “Tuning”
experiment and the high-dimensional, random stimulus used in the “Reverse
Correlation” experiment. Adaptive, “closed-loop” methods, in which the
neural responses are analyzed “online” as the experiment is going on and
stimuli are modulated based on what has already been learned about the
cell offer such an alternative (Benda, Gollisch, Machens, & Herz, 2007; Lewi,
Butera, & Paninski, 2009) and have successfully been employed in the ventral
visual pathway (Yamane et al., 2008).

Conclusion

We provide a detailed description of the response properties of neurons in
macaque extrastriate area MST. Most of these neurons have large, but still
clearly defined receptive fields and are strongly tuned to linear and spiral
motion. A majority also showed position invariant tuning for spiral motion,
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suggesting that this tuning is not a byproduct of improper stimulus placement.
However, analyzing responses to a restricted stimulus set always runs the risk
of missing important aspects of a neuron’s response profile. Regression-based
analyses of responses to high-dimensional, random stimuli are less biased and
can detect previously unknown features of a response profile. Combining
such methods with a novel random motion stimulus allowed us to predict
some of the tuned responses of MST neurons, albeit generally less successful
than in earlier visual areas. Thus, future experiments would benefit from
the combination of unbiased high-dimensional stimuli and adaptive sampling
methods that take into consideration what is already known about a cells
tuning to avoid the “parameter explosion”.
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Characterizing MST receptive
fields with adaptive sampling
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As the previous chapter showed, regression methods that have been very
successful in describing response properties of neurons in the early visual sys-
tem were less effective when applied to MST neurons. This chapter provides
an alternative approach for characterizing receptive fields of neurons in a
high-level visual area such as MST.
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Abstract

Characterizing the receptive fields of neurons in high-level visual areas poses
a number of challenges. Neuronal activity in these areas typically depends on
the interactions of many different stimulus features, which span a stimulus
space that is too large to sample completely. Adaptive sampling methods
offer a way of exploring this high-dimensional stimulus space in an efficient
manner that makes use of prior knowledge about a neuron’s tuning properties.
We present two tools that can be used in such an adaptive sampling approach
to characterizing the response properties of neurons in the motion sensitive
medial superior temporal area (MST) of the primate visual cortex. The first
tool is a newly designed random dot pattern that consists of hexgonal segments,
each of which can be assigned independent values for direction of motion,
speed, number of dots, and coherence. We compare neuronal responses to
this stimulus to responses to conventional random dot patterns and find them
to be very similar. The second tool is an implementation of the Nelder-Mead
optimization algorithm for an online analysis of neurophysiological recordings
in awake, behaving nonhuman primates. In simulations we show that this
algorithm estimates a neuron’s preferred stimulus in as few as 15 trials. The
combination of these two tools offers great potential in the exploration of
MST responses by providing information about neuronal characteristics in a
more efficient, detailed and reliable way.
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6.1 Introduction

The visual system of the primate cortex is hierarchically organized (Felleman
& Van Essen, 1991). As information ascends through this hierarchy of different
brain areas, the representation in each of these areas becomes less and less
determined by physical attributes of the external world, and more and more
an abstract, perceptual interpretation (Treue, 2003). This poses significant
challenges for describing how responses of neurons in the later stages of this
processing hierarchy depend on external stimuli. While neurons in early
visual cortex (retinal ganglion cells, lateral geniculate nucleus, and primary
visual cortex, V1) can be well-described as linear filters (e.g., Rodieck, 1965),
possibly with the addition of a simple nonlinear function of the filter output
(e.g., (Heeger, 1992)), neurons in high-level areas, such as the inferotemporal
(IT) and the medial superior temporal (MST) cortex, elude such a simple
description. Cells in IT cortex have large receptive fields, often extending
into the ipsilateral hemifield, and respond strongly to complex shapes, such
as objects, scenes, body parts, and faces (Gross, Rocha-Miranda, & Bender,
1972; Desimone, Albright, Gross, & Bruce, 1984; Hung, Kreiman, Poggio,
& DiCarlo, 2005; Freiwald & Tsao, 2010; Bao et al., 2020, see Gross, 2008,
and DiCarlo et al., 2012, for reviews). Cells in area MST have similarly large
receptive fields and respond selectively to complex motion patterns, including
the kind of optic flow motion that plays an important role in self-motion
perception (Graziano et al., 1994; Duffy & Wurtz, 1995, see Wild & Treue,
2021b (chapter 2), for a review). Importantly, neurons in both areas are more
selective for the identity of a stimulus, but also more “tolerant” or “invariant”
for changes in low-level stimulus features than their respective input areas
(MT for MST, V4 for IT) (Lagae et al., 1994; Rust & DiCarlo, 2010), which
makes it difficult to describe their response as a function of such stimulus
features.

A promising approach to address this issue are so-called adaptive sampling
methods, in which data is analyzed as it is collected and stimuli for subsequent
trials are chosen based on the responses to previous trials (Benda et al., 2007).
Such an on-line analysis can be computationally quite expensive, however, and
has therefore become a viable method only in recent years. An early suggestion
for such an approach in the domain of visual neuroscience was the Alopex
algorithm (Harth & Tzanakou, 1974; Tzanakou et al., 1979), which updates
each pixel across the screen based on whether the neural response has changed
consistently with the pixel’s luminance in the previous two iterations. This
suggestion was rarely adapted in actual experiments, however (see Micheli-
Tzanakou, 1983, for an exception). In the auditory domain, Nelken and
colleagues (1994) used the Nelder-Mead simplex method (Nelder & Mead,
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1965; Press et al., 2002), which will be described in detail below, to find the
combination of frequencies in a complex tone that are most efficient in driving
neurons in cat primary auditory cortex. Yamane et al. (2008) developed
an “evolutionary stimulus strategy” to investigate how complex 3D shapes
are encoded by neurons in primate IT cortex. Starting out with an initial
“generation” of 50 random 3D shapes, the probability that each member of this
generation would produce probabilistically morphed descendants depended
on the neuronal response to the “parent”.

All these methods are optimization procedures that try to find a sin-
gle “best” stimulus or a highly effective subspace of the virtually infinite
stimulus space. In contrast, a method based on maximizing the mutual
information between stimulus and response can estimate an optimal distribu-
tion of inputs (Machens, 2002). This approach was successfully used in the
grasshopper auditory system to search for stimuli that could be described
by a two-dimensional probability distribution over the mean and standard
deviation of the amplitude of white noise snippets (Machens et al., 2005). In
a similar vein, Lewi et al. (2009) used Generalized Linear Models (GLMs) to
describe a neuron’s response as a function of the current stimulus, the stimulus
history, and the neuron’s spiking history. They also maximize the mutual
information between the collected data and the parameters of the GLM and
rely on approximations to make this process computationally efficient and
feasible for real experiments.

However, such methods become more difficult to apply if the neuronal
response depends on multiple parameters with different distributions and
constraints and different functional relations to the neuronal response. MST
neurons, for example, are tuned for location (through their spatial receptive
field), motion direction, speed, binocular disparity, and possibly other, as
of yet unknown variables. Their tuning for location and direction can be
described by a 2D and circular Gaussian respectively, which are well suited for
many estimation methods. The tuning for speed, however, cannot easily be
described by such a “well behaved” function and has been approximated using
smoothing splines (e.g., A. K. Churchland et al., 2007; also see chapter 3). It is
likely because of this complexity that no one has so far actually implemented
such model-based approaches to characterize the response properties of high-
level visual areas in awake, behaving nonhuman primates.

Therefore, we focus here, as a first step, on the simpler optimization
approach and present tools that allow to quickly find the optimal stimulus
that maximally drives a MST neuron. The first of these tools is a newly
developed stimulus that is made up of individual, hexagonal segments, which
allows for control of local aspects, but can also create coherent motion patterns,
similar to those that are typically shown with classic random dot patterns (see
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chapter3). The second tool is an implementation of the Nelder-Mead simplex
method for a receptive field mapping experiment in awake, behaving animals.
Due to technical issues we have not yet been able to test the combination
of these two tools in animals. We therefore separately present preliminary
results from recordings with the new stimulus, as well as computer simulations
of the adaptive sampling approach.

6.2 Methods

6.2.1 Physiological recordings

Subject

One male rhesus monkey (Macaca mulatta) was tested in the experiments.
The monkey was 10-11 years old and weighed between 9.8 and 11.4 kg during
the period of data collection. He was implanted with a titanium head holder to
minimize head movements during the experiment, as well as with a recording
chamber implanted on top of a craniotomy over the left parietal lobe based on
a magnetic resonance imaging (MRI) scan. Surgeries were conducted under
general anesthesia and post-surgical care using standard techniques.

Task and neural data acquisition

Both the task and the neural recording procedures were identical to those
described in chapters 4 and 5. Briefly, the monkey was required to keep its
gaze within a small window around a fixation dots and respond to a change
in the fixation dot’s luminance by releasing a button. Spikes were recorded
single tungsten electrodes or tetrodes (Thomas Recording, Giessen, Germany)
that were advanced into the recording chamber using a mechanical microdrive
(“Mini Matrix”, Thomas Recording, Giessen, Germany). The recorded signal
was digitized, filtered, and spike waveforms were manually sorted into clusters.

Experiments

We ran the same “Spatial Mapping” and “Tuning” experiments described
in chapter 3 as a “ground truth” of each recorded cell’s response properties.
The only differences to the procedures described previously were that in the
“Tuning” experiment, spiral motion, like linear motion, was presented in only
one location and the probe duration lasted 167 ms instead of 100 ms.

In addition, we recorded responses to a newly developed random dot
pattern that consists of hexagonal segments (“hex-stimulus”, Fig. 6.1). The
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Figure 6.1: Six example motion patterns of the newly developed hex-stimulus.
A. linear rightward; B. expansion; C. outward clockwise spiral; D. shearing;
E. deformation; F. saddle point.

motivation behind this stimulus was two-fold: on the one hand, a stimulus
consisting of individual segments offers fine-grained control of local features;
on the other hand, using hexagons allows to generate the kind of motion
patterns that are typically used to probe MST neurons, such as radial and
rotational motion. The hex-stimulus combines both of these features: by
using more and more, smaller and smaller hexagons, one can create arbitrarily
complex and random motion patterns, but the motion in every segment is
under the control of the experimenter. At the same time, already 18 hexagons,
arranged in two concentric circles, are sufficient to create motion patterns
that resemble expansion, contraction, rotation, or spiral motion very well
and can also create additional patterns, such as shearing and deformation
(Fig. 6.1.

For the data presented here we used a version of the stimulus with 19
hexagonal segments arranged in 2 concentric circles and created a total of 22
motion patterns:

• 8 linear motion patterns in which all 19 segments showed dots moving
in the same direction (0◦ to 315◦ in steps of 45◦) with the same speed
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(e.g., Fig. 6.1A).

• 8 spiral motion patterns: expansion (Fig. 6.1B), outward clockwise spiral
(Fig. 6.1C), clockwise rotation, inward clockwise spiral, contraction,
inward counterclockwise spiral, counterclockwise rotation, and outward
counterclockwise.

• 2 shearing motion patterns (Fig. 6.1D as well as the opposite directions).

• 2 deformation motion patterns, in which dots move towards the center
along either the horizontal or the vertical axis and away from the center
along the other axis (Fig. 6.1E).

• 2 saddle point motion fields (e.g., Koenderink & van Doorn, 1975),
in which the dots move towards the center along either the vertical
(Fig. 6.1F) or the horizontal axis and then are “deflected” away from
the center along the other axis.

Note that for all but the 8 linear motion patterns, the segment in the center
of the stimulus was left blank (dot density of 0 dots/deg2) because no local
linear motion would fit the overall motion pattern. The stimulus was updated
to a new configuration of location directions every 167 or 200 ms throughout
the duration of a trial. In the early recording sessions only one or two speeds
were tested, but in later recording sessions, the same speeds as in the “Tuning”
experiment were used. For spiral motion, the 12 outermost segments moved
with a faster speed to simulate the speed gradient that is used in spiral RDPs
(see chapter 4).

6.2.2 Simulation

We simulate single MST neurons based on our measurements of real neurons.
A simulated neuron is defined by

• A baseline firing rate (randomly chosen between 2 and 14 spikes/s).

• A maximum amplitude (randomly chosen between 10 and 100 spikes/s).

• A spatial receptive field, defined as a difference-of-two-2D-Gaussian
with randomly chosen center coordinates, standard deviations (between
11◦ and 20◦ along one axis and between 9◦ and 18◦ along the other
axis), and rotation angle. We used a difference-of-Gaussians surface to
simulate an inhibitory surround (even though this is not necessarily the
case for MST neurons, see Chapter 2), because otherwise the optimal
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Figure 6.2: Example of the tuning functions that define our model neurons:
each neuron has a spatial receptive field and direction and speed tuning
curves in linear and spiral space. What is not shown in this illustration are
the remaining two parameters that define a simulated neuron, it’s baseline
firing-rate and it’s maximum amplitude.

stimulus size would have no upper bound. The “inhibitory surround”
had the same coordinates and rotation angle as the “excitatory center”,
but standard deviations that were 20% larger and an amplitude that
was 20% of the “excitatory center”

• Two circular Gaussian direction tuning curves (one in linear and one in
spiral motion space);

• Two speed tuning curves (one in linear and one in spiral motion space).

The speed tuning curves are modeled as normal distributions with a mean
chosen from a uniform distribution between 16 and 32 ◦/s. As we only define
speed tuning in a space between 4 and 24 ◦/s, most simulated neurons show a
monotonically increasing speed tuning (because the mean of the underlying
normal distribution lies beyond the range of tested values) and only a small
minority show a preferred speed slower than 24 ◦/s and decrease their response
if the speeds exceeds this preferred speed, which is in accordance with our
observations of real MST neurons (see Chapter 5). The spatial response
functions is normalized so that all values sum to 1 and the direction and speed
response functions are normalized to values between 0 and 1. An example for
the spatial receptive field and direction and speed tuning curves that define
our model neurons is shown in Figure 6.2.

A stimulus is defined by an x- and y-coordinate, a radius, a direction, a
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speed, its motion space (linear, spiral, or non-coherent), and its duration (in
seconds).

The response r of a neuron to stimulus presentation is drawn from a
Poisson distribution with rate parameter λ.

r = Poiss(λ)

This parameter, which can be interpreted as the neuron’s average response to
that stimulus, is defined as the neuron’s baseline firing rate plus a product of
the maximum amplitude A and a scaling factor α:

λ = FRbaseline + αA with α ∈ [0, 1]

This scaling factor consists of a spatial (αspatial), a directional (αdirectional),
and a speed (αspeed) component.

The spatial component is the sum of the part of the spatial receptive
field that is covered by the stimulus. Because this value was so low for small
stimuli that it led to unrealistically low firing rates, the square root is taken
(which, as it is a fraction between 0 and 1, scales it up).

αspatial =

√∫∫
f(x, y)I(x, y) dx dy

where f is the receptive field and I the stimulus

The directional and speed compoenents are simply the values of the
direction and speed tuning curve (which are already normalized to range from
0 to 1). The three components are multiplied and the square root is taken
again to avoid unrealistically low firing rates.

α =
√
αsptial ∗ αdirectional ∗ αspeed

To this rate parameter, random noise with mean 0 and standard deviation
λ
2

is added1. Finally, the resulting value is half-wave rectified to avoid a
negative response.

All these values and procedures were chosen so as to result in simulated
data that was similar to the recorded data.

Simulated mapping and tuning experiments

To test whether our modeled neuron was able to generate responses similar
to real neurons, we simulated both the “Spatial Mapping” and the “Tuning”

1We found that this made the simulated data more similar to real data in terms of
noisiness



168 Characterizing MST receptive fields with adaptive sampling

experiment. As we wanted to compare whether our adaptive approach can
lead to similar results in fewer trials, we simulated all experiments with
“trials” with a random length between 3.5 and 4.5 s in which samples were
sequentially presented, as in the real experiments. After every sample there
was a 5% chance of a “fixation break” that immediately ended the trial to
account for the fact that in real recordings, trials that end in fixation breaks
by the monkey are shorter and provide fewer samples. As in the physiological
recordings, a maximum number of samples (6000 for “Spatial Mapping” and
1200 for “Tuning”) was set and “trials” were simulated until this number of
samples was reached.

Simplex optimization

The Nelder-Mead simplex algorithm was originally developed to minimize
functions with n independent variables without the need for derivatives (Nelder
& Mead, 1965; Press et al., 2002). This makes it well suited for our purpose
where we try to maximize2 an MST neuron’s firing rate which we assume to
be a function of stimulus parameters, such as location, direction, and speed.
The basic algorithm as originally described works like this (translated to
maximization):

1. To maximize a function with n parameters, choose (n+ 1) points P0,
P1, ..., Pn in n-dimensional space that form a simplex (i.e., a triangle
in 2D, a tetrahedron in 3D, etc.).

2. P ∗ is the reflection of the point that has the lowest function value
(Pl) across the centroid of all other points. If the function value of P ∗

lies between the function values of Pl and the point with the highest
function value, Ph, then replace Pl with P ∗.

3. If the function value of P ∗ is higher than the function value of Ph, then
expand P ∗ to P ∗∗ (i.e., Pl is reflected across the centroid and expanded
by the same distance again). If P ∗∗ is larger than Ph, replace Pl with
P ∗∗. Otherwise replace Pl with P ∗.

4. If the function value of P ∗ is smaller than all other P except Pl (i.e.,
P ∗ would be the worst point of the new simplex), contract Pl to P ′ (i.e.,
the point halfway between Pl and the centroid of all other points). If
the function value of P ′ is larger than that of Pl, replace Pl with P ′.

2Whereas Nelder and Mead originally described the algorithm to minimize a function,
we want to maximize a function, which trivially means exchanging “highest” for “lowest”
and vice versa in all steps of the algorithm
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5. If the P ∗, P ∗∗, and P ′ are all smaller than the smallest point of the
simplex, shrink the simplex by keeping its highest point Ph and reducing
the distance between all other points and Ph by 50%.

There are two difficulties in applying this algorithm to neural recordings
from awake behaving animals. First, because the function we are trying to
maximize (i.e., the neuron’s response function) is subject to noise, we cannot
simply “evaluate” it, but need to take the average of multiple “evaluations”
(i.e., stimulus presentations). Second, the algorithm often requires conditional
function evaluations (i.e., if P ∗ > Ph, then evaluate P ∗∗). This is not trivial
in a case where every “evaluation” (i.e., stimulus presentation) is expensive,
in the sense that the overall number of “evaluations” we can perform depends
on the animal’s motivation to work and is, in fact, the very thing that we
want to reduce.

We address these issues as follows: For every trial (which lasts 3500 to
4000 ms or until a fixation break) we follow the procedure from the “Spatial
Mapping” and “Tuning” experiments and present a rapid succession of 100 ms
samples that are randomly drawn from the n+ 1 possible stimuli that define
the current simplex. We keep drawing from the same stimuli until we have
at least 10 samples for each one of the n+ 1 stimuli, repeating the process
across multiple trials, if necessary. Then we interrupt the normal sampling
procedure to do an “REC”-trial (Reflection, Expansion, Contraction), in
which we “evaluate” the function at all three potential points. We can then
choose the appropriate stimulus from the REC-trial to replace the weakest
stimulus of the previous regular trial and return to the regular sampling
procedure. Figure 6.3 demonstrates the first three regular and first three
REC trials of this procedure for the simple and graphically intuitive case of
maximizing a visual neuron’s firing rate as a function of 2 parameters: the x-
and y-coordinate of a stimulus (similar to our “Spatial Mapping” experiment).
Because there are 2 parameters we use 3 stimuli (i.e., 3 combinations of a x-
and a y-coordinate) that are initially placed randomly (Trial 1 in Fig. 6.3).
The stimulus in each regular trial that elicited the weakest response (marked
in blue) needs to be replaced. On REC trials a reflected, an expanded, and a
contracted option are presented and the option that will replace the weakest
stimulus from the previous regular trial is selected based on the rules of the
algorithm outlined above (selected option is marked in cyan in Fig. 6.3).
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6.3 Results

6.3.1 Physiological recordings

We analyzed 54 cells that had been recorded in 50 sessions. Out of these 54
cells, one was excluded from all analyses because it did not provide inter-
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Figure 6.3: The first 3 regular (left column) and REC (right column) trials for
a simulation of the simplex method with 2 parameters (x- and y-coordinate).
The simulated neuron’s spatial receptive field is shown as a grayscale map
in the background. In the regular trials, the blue stimulus is the one that
elicited the weakest response and needs to be replaced. In the REC trials,
the cyan stimulus is the one that is selected to replace the weakest stimulus
from the previous regular trial.
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pretable data in either the “Spatial Mapping”, nor the “Tuning experiment”
(i.e., it did not have a clear spatial receptive field and showed no tuning for
linear or spiral direction).
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Figure 6.4: Population results for “Spatial Mapping” and “Tuning” exper-
iment. A. Receptive field size (square-root of the area) as a function of
eccentricity across all cells. B. Scatter plot of linear and spiral directionality
index. C. Distribution of preferred directions (angle) and speeds (radius)
across all cells for linear motion. D. Like C, but for spiral motion.
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Spatial Mapping and Tuning

We followed the same analysis steps as described in chapter 5. Out of 53
cells that entered the analysis, 3 were excluded from the “Spatial Mapping”
analysis because the coefficient of determination (R2) of the fit was less than
0.22, and another 4 cells were excluded because their receptive field center
lay more than 2 degrees outside the screen. For the remaining 46 cells, we
found a highly significant correlation between eccentricity and receptive field
size (quantified by the square-root of the area) (r = .68, p < .001), similar to
the data described in chapter 5. The slope of a linear regression line was 0.78
with an offset of 12.1 (Fig. 6.4).

For the “Tuning” experiment, 7 cells were excluded because they were
tuned neither for linear, nor for spiral motion (see chapter 5 for criteria).
Of the remaining 46 cells, 16 were tuned only for linear motion, 2 were
tuned only for spiral motion, and 28 were tuned for both, linear and spiral
motion. Figure 6.4C and D show the distribution of preferred directions and
speeds for linear (panel C) and spiral (panel D) motion. As for the data
described in chapter 3, the distribution of preferred linear directions did not
differ significantly from a uniform distribution (p = .78, Hodges-Ajne test
for non-uniformity of circular data), but the distribution of preferred spiral
directions did differ significantly from a uniform distribution (p < .001) with
a bias towards outward spiral motion (average preferred direction: 41.25◦

where 0◦ is clockwise rotation and 90◦ is expansion, Fig. 6.4D). Figure 6.4B
shows the relation of linear and spiral tuning strength, quantified through a
directionality index (DI = 1− Rpref

Ranti−pref
). Again, tuning strength for linear

and spiral motion was significantly correlated (r = 0.43, p < .05).

Hex-stimulus

Our analysis of the neuronal responses to the newly developed hex-stimulus
had two goals: First, we wanted to test whether motion patterns created with
the hex-stimulus that resemble linear and spiral motion (e.g., Fig. 6.1A-C)
evoke similar responses as classic random dot patterns (RDPs). Second, we
wanted to test whether neurons’ responses to other motion patterns, such as
shearing and deformation (e.g., Fig. 6.1D-F) are of a similar magnitude or
even in excess of responses to linear and spiral motion. This would suggest
that the underlying response function of these neurons is more complex than
two tuning curves in linear and spiral motion space.

Figure 6.5 shows responses of one example neuron to the RDPs used in the
“Tuning” experiment (panels A and B), responses to motion patterns generated
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Figure 6.5: Comparison of an example neuron’s responses to the RDPs from
the “Tuning” experiment and the hex stimulus. A. Direction tuning curve
for linear motion with RDPs. B. Like A, but for spiral motion. C. Direction
tuning curve for linear motion with hex-stimulus. D. Like C, but for spiral
motion. E. Responses to other motion patterns tested with the hex stimulus:
Shear 1 (Fig. 6.1D) and Shear 2 (opposite motion of Fig. 6.1D); Deformation
(Def) 1 (Fig. 6.1E) and Deformation 2 (opposite motion of Fig. 6.1E); and
Saddle point motion (Sad) 1 (Fig. 6.1F) and Saddle point motion 2 (opposite
motion of Fig. 6.1F)
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Figure 6.6: Comparison of tuning curve parameters for curves fitted to
responses to RDPs and the hex-stimulus. The 83 points in each plot show
the individual comparisons, the thick lines show the mean of the distribution.

with the hex-stimulus that try to simulate these these RDPs (panels C and
D), and responses to 6 additional motion patterns that were not part of the
“Tuning” experiment (two types of shearing motion, two types of deformation
motion, and two types of saddle point motion, panel E). For linear motion
(panels A and C), the responses are almost indistinguishable. For spiral
motion (panels B and D), response patterns differ a bit more, but the tuning
with a preference for expansion is present for both stimulus types. Finally,
the neuron responds to deformation motion type 1 with responses that are
similar in magnitude to those for the preferred linear direction. Thus, the
data of this example neuron suggest that motions patterns created with the
hex-stimulus do evoke similar responses as RDPs, and that motion patterns
outside the linear and spiral motion space can also evoke strong responses,
hinting at a more complex underlying response function.

To compare responses to RDPs and the hex-stimulus across the population,
we compared the four parameters that define each tuning curve (baseline firing
rate, amplitude, preferred direction, and tuning width) for each pair of RDP
and hex-stimulus tuning curves in which both curves met our inclusion criteria
across 15 cells for which we had tested both stimulus types with the same speed
values. Out of a total of 180 pairs of tuning curves (15 cells with tuning curves
for 6 speeds for both linear and spiral motion), 83 pairs of tuning curves (46%)
entered into the comparison. For 11 pairs, only the responses to the RDP
resulted in satisfactory tuning curves, for 28 pairs, only the responses to the
hex-stimulus resulted in satisfactory tuning curves, and for 58 pairs responses
to neither stimulus resulted in satisfactory tuning curves. Thus, surprisingly,
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responses to the hex-stimulus could be better described with tuning curves
than the responses to the RDP. The comparison of the four tuning curve
parameters for 83 curves is shown in Figure 6.6. We always subtracted values
from curves fitted to hex-stimulus data from values from curves fitted to
RDP data, so that values larger than 0 mean a higher baseline firing rate,
or larger amplitude, or wider tuning width, or a preferred direction shifted
in anticlockwise direction for responses to the RDP as compared to the hex-
stimulus. We performed 4 t-tests with a Bonferroni-corrected significance level
α of 0.05/4 = 0.0125 to test whether each distribution differed significantly
from 0. Differences in preferred direction (t(82) = 0.67, p = .51) and tuning
width (t(82) = −0.33, p = .74) did not differ from 0. Differences in amplitude
(t(82) = 3.71, p < .01) and baseline firing rate (t(82) = 3.1, p < .01) did
differ significantly from 0. The result for the baseline firing rate is surprising
because it was calculated based on spiking activity in the 200 ms before
stimulus onset on each trial and there should not differ between the two
stimuli. This suggests that the difference in baseline activity (in possibly in
amplitude as well) is not caused by the different stimuli. Instead, it could be
explained by a general decline in firing rate or in signal quality throughout the
recording session, because responses to the hex-stimulus were always recorded
after the “Tuning” experiment.

All together these results provide strong evidence that motion patterns
created with the hex-stimulus evoke similar responses as random dot patterns.

To compare responses to the six new motion patterns with responses to
linear and spiral motion across the population, we calculated the average
response with a 95% confidence interval (1.96× standard error of the mean)
and define a significant difference in responses to two motion patterns as non-
overlapping confidence intervals. We had responses to all 22 motion patterns
from 45 cells (30 with 1 speed and 15 with 6 speeds) and only compared
motion patterns with the same speed, for a total of 120 comparisons (15 cells
with 6 speeds plus 30 cells with one speed). In 2 of these cells, at least one of
the six new patterns elicited a significantly larger response than the largest
response to one of the 16 linear and spiral patterns. In 16 of these cells, at
least one of the new patterns elicited a response larger than the 4th largest
response to linear and spiral motion. And in 33 cells, at least one of the new
patterns elicited a response larger than the median (i.e., the 8th largest) of
the 16 responses to linear and spiral patters.

While further analyses are necessary to investigate these response behaviors
in more detail (see also Discussion), this strongly suggests that MST neurons
not only respond selectively to linear and spiral motion, but also to more
complex patterns, such as shearing, deformation, and saddle point motion.
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Figure 6.7: Results for the simulated “Spatial Mapping” and “Tuning” exper-
iments with the model neuron that was depicted in Fig. 6.2. A. Receptive
field map. B. 2D Gaussian fit to the data in panel A. C. Tuning curves for
linear motion. Color indicated different speeds. D. Like panel C, but for
spiral motion.

6.3.2 Simulation

To test whether the model is able to replicate the data recorded from real MST
neurons, we repeated the “Spatial Mapping” and “Tuning” experiments with
a simulated neuron. Fig. 6.7 shows the results. Based on visual inspection,
the noise level of the spatial receptive field map (Fig. 6.7A) is similar to that
of real neurons, suggesting that the parameters we selected result in responses
that are comparable to real neurons. The 2D Gaussian fit (Fig. 6.7B) resulted
in estimates of the receptive field parameters that were all very close to the
real parameters (Table 6.1).

For the tuning experiment, the fitted tuning curves (Fig. 6.7C and D)
described the preferred direction very well, but overestimated the tuning
width (Table 6.1). Overall these results indicate that our model neuron’s
responses are comparable to real neurons and it is therefore well suited to
explore the optimization algorithm.
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Parameter Real value Estimated value

Spatial Mapping
X-coordinate 9 9.015
Y-coordinate 7 7.039
Std. Dev. 1 14 13.57
Std. Dev. 2 13 11.68
Tuning
Preferred linear direction 45 46
Linear tuning width 35 49
Preferred spiral direction 225 220
Spiral tuning width 45 55

Table 6.1: Real parameters of the simulated neuron and estimated parameters
based on the simulated “Spatial Mapping” and “Tuning” experiments.
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Figure 6.8: Difference between the stimulus that elicits the strongest response
and the true parameters as a function of trial number for the simplex opti-
mization simulation. A. Simulation with 2 parameters (x- and y-coordinate);
y-axis shows distance from best stimulus to true receptive field center in
degrees. B. Simulation with 5 parameters (x-coordinate, y-coordinate, radius,
direction, speed); y-axis shows summed normalized difference between best
stimulus and true values, which can range from 0 to 5.

We first ran the implementation of the Nelder-Mead simplex optimization
on the 2D example described in Methods, where we attempt to maximize
the model neuron’s firing rate as a function of stimulus position. The radius
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(2◦), direction (incoherent), speed (randomly chosen for each sample), and
sample duration (100 ms) of the stimulus remained the same and only x-
and y-location were updated. This is most similar to the “Spatial Mapping”
experiment. While the simulated “Spatial Mapping” experiment ran for 93
trials (which is comparable to the amount of trials used in the electrophysiology
experiment), the simplex version of the experiment converged towards the
center of the receptive field within as few as 10 trials (regular and REC trials
combined). To quantify how close the algorithm came to the true receptive
field center, we simulated 80 trials and after every trial (starting from trial 3)
calculated the distance between the stimulus that had elicited the strongest
average response up to that point and the receptive field center. As can be
seen in Fig. 6.8A, the distance decreased to less than 3◦ within less than
20 trials but kept oscillating and reached values as large as 15◦ even after
60 trials. It should be noted that this model neuron’s receptive field had
standard deviations of 13◦ and 14◦ so that all distance values below 13◦ fall
within one standard deviation of the 2D Gaussian receptive field, which can
be considered a good estimate.

While this result is promising, it is of limited use. This approach allows a
good estimate of the receptive field center (within one standard deviation of
the true value) with few trials, but it offers no information about the spatial
receptive field other than its center.

For the second simulation we attempted to optimize all 5 parameters that
define our stimulus: x-coordinate, y-coordinate, radius, direction, and speed.
Because our model, based on our findings in the physiological recordings, is
tuned in both linear and spiral space with no connection between the two, we
ran the simulation separately for linear and spiral motion. We normalized all
values to range from 0 to 1 to ensure that changes in each parameter would
be of similar size. Again, we ran the simulation for 80 trials and calculated
the the sum of the normalized differences between the 5 attributes of the
most effective stimulus and the true parameters of the model neuron after
every trial (Fig. 6.8B). In contrast to the 2-parameter example, a clear drop
in the difference can be observed after 15 trials. From then on the value
oscillates around a stable, low value. This indicates that with as few as 15
trials, the algorithm comes very close to the optimal stimulus that is defined
by 5 parameters. Note that with 5 parameters, several trials are necessary
in the beginning of the simulated experiment until 10 samples have been
collected for every stimulus configuration. After this initial data collection,
however, the algorithm will switch between regular and REC trials on almost
every trial, because only one stimulus is replaced after every iteration.
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6.4 Discussion

Responses to the hex-stimulus

We have established a new motion stimulus, the hex-stimulus, that evokes
responses similar to widely used random dot patterns, but also allows to
create complex compositions of local motion. For the results we presented
here, we only used a configuration of 19 hexagons arranged in 2 concentric
circles with one hexagon in the center. This allowed us to simulate commonly
used optic flow patterns, such as expansion and contraction, to a degree that
they evoked similar responses as random dot patterns. While the overall
motion pattern can be made even more similar to random dot patterns by
using more and smaller hexagons, this does not seem to be necessary.

This stimulus opens a range of possibilities, only some of which have been
explored here. First, it can be used to create complex motion patterns, such
as shearing and deformation. We have tested only 6 such patterns, but by
rotating the stimulus or by using more segments, even more complex patterns
can be created. For the six patterns that we tested, we found that neurons
responded strongly to them, suggesting that one dimensional tuning curves
for translational or spiral motion might miss some of these neurons’ truly
preferred stimuli. Because we did not test for position invariance in this
experiment, we cannot rule out that responses to the new motion patterns
(shearing, deformation, saddle point motion) might have been an artifact
of badly positioned stimuli. If, for example, the shearing pattern shown
in Figure 6.1D is positioned so that only its upper right half falls into the
receptive field, a neuron that is tuned for downward/rightward linear motion
would respond very strongly. Future recordings should explore the responses
to these new motion patterns in more detail to confirm whether responses are
selective for these specific arrangements. Two previous papers also recorded
MST neurons’ responses to deformation Lagae et al., 1994; Mineault et al.,
2012, but provided little information about how common selective responses
to such stimuli are in a population of MST neurons.

A second possibility opened up by the hex-stimulus is to create “patchy”
optic flow patterns by leaving some of the segments empty. This approach was
used in a recent study that explored the ability of different primate species
(human, macaque, and marmoset) to track the focus of expansion (FOE) in a
large random dot pattern that also consisted of hexagonal segments (Knöll et
al., 2018). Given that MST neurons appear to respond mostly to the overall,
global motion pattern of a stimulus, rather than summing over local patterns,
it would be interesting to explore to what degree a motion pattern can be
degraded before a neuron stops showing tuned responses.
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Finally, the stimulus can also be used to easily test different speed gradients,
as the speed of each segment can be individually adjusted. A potential
extension of the stimulus would be to add different binocular disparity levels,
which MST neurons are also selective for (Roy et al., 1992).

Adaptive sampling

We presented an application of the Nelder-Mead simplex algorithm for char-
acterizing the tuning of simulated MST neurons for up to 5 parameters. We
were able to find a good approximation of a model neuron’s preferred stimulus
within approximately 15 trials. This is a huge saving in trials compared
to the “Spatial Mapping” and “Tuning” experiments, which together take
way beyond 100 trials to provide good data. However, as mentioned in the
introduction, like all optimization algorithms, this one also only searches for
the one single best stimulus. Often it is desirable, however, to know about the
full response function. In the case of a direction tuning curve, for example,
which is defined by at least two parameters (preferred direction and tuning
width), the ability of a neuron to discriminate between two directions depends
on its steepness, which makes the tuning width as important as the preferred
direction. An optimization algorithm that attempts to maximize the neuron’s
firing rate will only search for the preferred direction. Furthermore this is
problematic if there is not one single best stimulus. As a matter of fact this
is the case for our simulated neuron, which has independent direction and
speed tuning curves for linear and spiral motion. Nevertheless, the approach
presented here offers valuable benefits. First, our simulation shows that a
flexible approach in which trials are repeated until enough data has been
collected to reduce noise (in our case: 10 repetitions per stimulus) is feasible.
Second, with taking less than 20 trials to find a highly effective stimulus (even
a single “best” stimulus might not exist), this approach can serve to quickly
find a starting point for more elaborate procedures. Rhesus macaques can
do several hundred trials per recording session for experiments like the ones
described here and in chapters 4 and 5. Investing 20 of these trials to get a
rough idea about a neuron’s tuning can certainly be considered time well spent.

The interesting question is, of course, whether the optimization approach
can be combined with the hex-stimulus. We did not test this here, because it
would require a more complex model of neuronal responses than the one we
used to generate responses to the hex-stimulus. However, we showed that 5
parameters can be optimized with as few as 15 trials. It seems reasonable to
assume that a small version of the hex-stimulus (e.g., with only 7 segments
arranged in a circle) where only the direction of each segment is fed into the
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optimization algorithm should also converge quickly.

In conclusion, we present two tools – a new stimulus and an adaptive
sampling approach – that can help to efficiently search the virtually infinite
stimulus space that MST neurons respond to. These tools will be helpful to
characterize the response properties of MST neurons more efficiently, and
thus make it possible to investigate whether these properties are stable or
depend on factors such as attention or adaptation.
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Chapter 7

Comparing the influence of
stimulus size and contrast on
the perception of moving
gratings and random dot
patterns
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The previous chapters highlighted the importance of MST as the final stage
of the motion processing pathway in the primate visual cortex. This chapter
presents results from two psychophysics experiments with human subjects
that explore how different stimulus features affect motion perception. The
results suggest that the contributions of different areas along this motion
processing pathway are flexible and depend on stimulus features.
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Abstract

Modern accounts of visual motion processing in the primate brain emphasize
a hierarchy of different regions within the dorsal visual pathway, especially
primary visual cortex (V1) and the middle temporal area (MT). However,
recent studies have called the idea of a processing pipeline with fixed con-
tributions to motion perception from each area into doubt. We address the
idea in more detail in two experiments with human subjects that compare
motion perception of two commonly used stimulus types: drifting sinusoidal
gratings and random dot patterns (RDPs). Varying size and contrast levels,
we confirm previous findings that increasing stimulus size impairs performance
for high-contrast gratings. However, using our paradigm we did not observe
a reversal of the size effect for low-contrast gratings. Furthermore, we did
not find an effect of stimulus size on performance for RDPs with any contrast
level. We conclude that the specific effects of stimulus size on performance
observed previously do not easily generalize, limiting the fundamental insights
about brain function that can be derived from this phenomenon.
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7.1 Introduction

Our visual world is highly dynamic and the ability to perceive motion is
essential for surviving and striving in an ever-changing world. In addition to
its everyday relevance, motion processing is also an excellent and well-studied
model system for visual neuroscience more generally. Motion is defined by
only a few parameters (most importantly direction and speed) and a large
number of studies have attempted to describe how these parameters are
linked to fundamental neuronal properties (Block, 2005; Britten et al., 1992;
Mauss et al., 2017). Furthermore, a limited number of well-defined regions in
primate visual cortex are known to respond selectively to these parameters.
The often implicitly assumed “standard model” of motion processing assigns
key roles to the primary visual cortex (V1) and the middle temporal (MT)
area (Albright, 1984; Born & Bradley, 2005; Maunsell & Van Essen, 1983c).
Visual area 3 (V3) (Gegenfurtner, Kiper, & Levitt, 1997) and the medial
superior temporal cortex (MST) (Mineault et al., 2012; Saito et al., 1986;
Tanaka et al., 1986; Wild & Treue, 2021b) are further regions that play
important roles for the processing of motion information. The importance
of area MT in particular has been highlighted by a great number of studies
suggesting that it is both necessary and sufficient for motion perception.
Lesions in area MT lead to increased motion thresholds (Newsome & Paré,
1988; Rudolph & Pasternak, 1999) while micro-stimulating neurons in this
area can bias a monkeys judgments of motion direction (Salzman et al., 1990,
1992), suggesting a direct link between MT activity and motion perception.
This “standard model” has been questioned, however, in a recent study
which suggests that alternate perceptual pathways bypassing area MT can be
accessed under special circumstances (L. D. Liu & Pack, 2017). Monkeys were
trained over several weeks to indicate the direction of a briefly presented Gabor
grating of varying contrast levels. Recordings in MT confirmed that cells in
that area were tuned to the direction of the gratings and that neuronal activity
was correlated to behavior. Surprisingly, however, reversible inactivation of
MT had little effect on behavioral performance, indicating that MT is not
always necessary for motion perception and that other motion-sensitive areas
(e.g., V1) can compensate for the disruption. Monkeys were then trained
for several weeks on a similar task that used random dot patterns (RDPs)
of varying coherence levels rather than gratings of varying contrast levels.
Again, MT activity was correlated with behavioral performance, but this time
MT inactivation did affect performance. When the grating experiment was
repeated after the training with RDPs, MT inactivation, which had previously
had very little effect on behavior in the grating task, led to a large performance
impairment. The authors conclude that prolonged training with random dot
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stimuli increased the contribution of area MT to perceptual decisions about
motion, even for other types of motion stimuli. In addition to the effects
that inactivating area MT had on motion perception, Liu & Pack (2017) also
report a behavioral signature for a shift of perceptual processing between
different brain regions: when testing the monkeys motion discrimination
performance on high-contrast gratings of varying sizes, performance increased
with stimulus size up to a certain point (the “optimal stimulus size”), before it
declined for even bigger stimuli. This finding was first described by Tadin and
colleagues (Tadin, Lappin, Gilroy, & Blake, 2003) and has been repeatedly
replicated in humans (Betts et al., 2005, 2009; Serrano-Pedraza et al., 2011;
Tadin & Lappin, 2005; Tadin et al., 2011; Yazdani et al., 2015, 2017) and
monkeys (L. D. Liu et al., 2016). Originally it had been hypothesized that this
effect is caused by the suppressive surround of receptive fields of individual
MT neurons which is stimulated by gratings exceeding a certain size (Tadin
et al., 2003). Physiological recordings and modeling, however, suggest that it
is the surround suppression of several neurons and the correlation in activity
between these neurons rather than suppression of individual neurons that
causes the psychophysical suppression effect (L. D. Liu et al., 2016). In their
more recent study, Liu and Pack (2017) found that the “optimal stimulus
size” for gratings increased after training with RDPs, which they interpret
as evidence that the prolonged training with the RDPs shifted perceptual
processing to an area with larger receptive fields (e.g., from V1 to MT).
Together, these results suggest that there is not a single processing pipeline
for visual motion that works in the same way for all types of stimuli. Instead,
the contributions of different motion-sensitive brain areas seem to be highly
flexible and features of stimuli appear to play a role in determining which
areas or local neuronal networks are recruited for the task at hand. This
is in line with the “Reverse Hierarchy Theory” (Ahissar & Hochstein, 2004;
Hochstein & Ahissar, 2002) which suggests that neurons at different levels of
the sensory processing pathways are recruited as needed to optimize perception
and perceptual learning. To provide additional evidence for the existence
of alternate motion processing pathways, we performed two experiments in
which human subjects discriminated the motion of briefly presented grating
and random dot stimuli of varying contrast levels and sizes. We find a clear
effect of stimulus size for high contrast gratings, but inconsistent results
for low contrast gratings. In contrast, we find no effect of size on RDPs at
any contrast levels. We conclude that linking the effects of stimulus size
on performance to something as fundamental as the surround structure of
receptive fields in visual cortex has to be reconsidered.
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7.2 Experiment 1

7.2.1 Methods

Participants

A total of 18 subjects were recruited for the experiment. Data from one
subject had to be excluded due to technical problems during the experiment.
Two further subjects were not invited back for the main experiment after
an initial training session (see below for detailed description) because they
described the task as extremely difficult and were not able to reliably report
motion direction at stimulus durations below 166 ms. Of the remaining 15
subjects (9 female, 6 male; ages 20-34 years, mean age = 24.1 years), all were
right-handed, had normal (N = 8) or corrected-to normal (N = 7) vision, and
were näıve to the purpose of the experiment. All participants gave informed
written consent prior to participating in the study. The study adhered to
institutional guidelines for experiments with human subjects, was approved
by the Ethics Committee of the Georg-Elias-Müller-Institute of Psychology,
University of Göttingen (GEMI 17-06-06 171), and was in accordance with
the principles of the Declaration of Helsinki.

Experimental setup

Subjects were seated in a dimly-lit room and viewed all stimuli on an LCD
screen (SyncMaster 2233, Samsung) with a refresh rate of 120 Hz and a
background luminance of 36 cd/m2 at a distance of 57 cm. The experiment
was controlled with the open-source software MWorks (mworks-project.org)
running on an Apple MacPro computer. Subjects responded on a gamepad
(Precision, Logitech). All stimuli were presented at the center of the screen
(see the following section), and subjects were provided with a central fixation
point between trials. Eye movements were not tracked.

Stimuli and procedure

Subjects were presented with either a horizontally drifting sinusoidal grating
with a 2D Gaussian envelope (“Gabor patch”) or a random dot pattern
(RDP) and had to report whether a stimulus was moving to the left or to the
right. Matching Tadin et al. (2003), the grating had a spatial frequency of
1 cycle per degree of visual angle. The radius of each grating was defined
as twice the standard deviation of the Gaussian envelope (2σ). We used σ
values of 0.4◦, 1.0◦, 1.6◦, 2.2◦, and 2.8◦, resulting in gratings of radius 0.8◦,
2.0◦, 3.2◦, 4.4◦, and 5.6◦. The phase of the grating at stimulus onset varied
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randomly from trial to trial and moved with a speed of 3.5◦/s to the left or
the right. Three different contrast levels were presented in different blocks
by changing the gratings’ transparency. Michelson contrasts, calculated as
Imax−Imin

Imax+Imin
(where Imax is the highest luminance (i.e., the brightest white) and

Imin is the lowest luminance (i.e., the darkest black) of the grating) for what
we call the “high”, “intermediate”, and “low” contrast condition were 99.2%
[Imax: 70 cd/m2, Imin: 0.3 cd/m2], 8.3% [Imax: 39 cd/m2, Imin: 33 cd/m2],
and 2.8%. [Imax: 37 cd/m2, Imin: 35 cd/m2]. We chose a relatively low
contrast value (8.3%) for “intermediate” because Tadin et al. (2003) showed
the effect of size change to lie between 2.8% and 11%, with little qualitative
difference between higher contrast levels. Random dot patterns had radii of 1◦,
2.5◦, 4◦, 5.5◦, and 7◦ (which, perceptually, resembled the size of our gratings)
and a dot density of 4 dots/deg2 (i.e., between 12 and 615 dots). All dots
were placed randomly within the aperture and moved either to the left or to
the right with a speed of 2 ◦/s. Again, three different contrast levels (Imax and
Imin now being the luminance of the dots and of the background, respectively)
were used in different blocks: 32% [Imax: 70 cd/m2, Imin: 36 cd/m2], 13.3%
[Imax: 47cd/m2, Imin: 36 cd/m2], and 5.3% [Imax: 40 cd/m2, Imin: 36 cd/m2],
termed “high”, “intermediate”, and “low” contrast, respectively. Our two
stimulus types differed in a number of parameters: speed (3.5 ◦/s for gratings,
2 ◦/s for RDPs; (Tadin et al. (2003): gratings: 2 ◦/s; RDPs: 8 ◦/s)) was chosen
based on pilot studies so as to achieve an intermediate performance for each
stimulus type at an intermediate stimulus size. Contrast levels differed, to
keep a fixed background luminance across the two stimuli and because contrast
depends on the difference in luminance within the stimulus for gratings, but
on the difference between stimulus luminance and background luminance for
the RDPs. Finally, the exact size of the Gabors cannot be determined, as
their contrast fades out with increasing distance from the stimulus center
and perceived size depends on the standard deviation and peak-contrast of
the grating (Fredericksen, Bex, & Verstraten, 1998). However, we are not
comparing absolute performance between stimulus types for a given contrast
level and size, but rather investigating the effects of varying these parameters
on the performance for a given stimulus type. In other words, we are making
claims of the type “Increasing stimulus size effects performance for gratings,
but not RDPs”, rather than “A grating of size X and contrast Y is perceived
better than a RDP of size X and contrast Y”. Subjects were asked to foveate
the center of the screen and started each trial with a button press. The fixation
dot then disappeared and the stimulus was presented for a brief duration that
had been adjusted for each subject individually based on a training session
(see below for further information). Subsequently, the stimulus was masked
for 220 ms with an RDP of radius 15 that had 2,000 black and 2,000 white
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Mask	(220	ms)	

Fixation/
Trial	Start	

Stimulus	(33-166	ms)	

Response	

Figure 7.1: Example trial sequence in Experiment 1: subjects initiated each
trial with a button press. Either a drifting grating or a random dot pattern
moving to the left or to the right was then briefly presented for a duration
that was adjusted for each subject individually to ensure a significant but
not perfect performance of about 75% for the intermediate stimulus size. A
large, high-contrast random dot pattern with black and white dots moving in
random directions was used as a mask. Note that these are not screenshots
of the actual stimuli and that this figure has been optimized (e.g., in terms
the grating’s Gaussian envelope or the RDPs dot-size and number of dots) to
illustrate the sequence of events.

dots (density: 5.7 dots/deg2), all moving in random directions at 15 ◦/s. After
the mask disappeared and the fixation point reappeared subjects reported
their perceived direction (left vs. right) by pressing the corresponding trigger
button on the gamepad (see Fig. 7.1).

The experiment comprised 18 blocks of 100 trials each: For each stimulus
type (grating and RDP) and every contrast level (high, intermediate, low),
subjects completed 3 blocks (300 trials). Within a block, every stimulus size
was presented 20 times in random order. Thus, each subject saw every possible
combination of a specific stimulus type, contrast, and size 60 times. Blocks
with the same stimulus type and blocks with the same contrast level were
presented after one another: the three blocks with a high-contrast grating were
followed by three blocks of the intermediate-contrast and three blocks of the
low-contrast gratings and then a total of nine blocks of high-, intermediate-,
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and low-contrast RDPs. To familiarize subjects with the task, they underwent
a training session that took place 1-7 days before the actual test session. Each
subject practiced with at least 1,000 trials, using gratings and RDPs of varying
sizes and contrast levels (though not necessarily the exact values that were
used during the experiment). The presentation duration of the stimulus was
varied during the training session, starting with long durations until subjects
had understood the task well. Towards the end of the training session, one
stimulus duration for gratings and one for RDPs of the highest-contrast level
was determined manually for which the subjects achieved approximately 75%
correct responses for a stimulus of the intermediate size of the 5 sizes used
in the main experiment. Due to technical problems, stimuli were randomly
presented for one frame (∼8.3 ms) longer or shorter than specified on some
trials. As this error occurred randomly across the different sizes it should
have no systematic influence on the results. Indeed, excluding trials in which
the stimulus duration differed by more than 8 ms from the most common
stimulus duration for a given subject and condition (i.e., the one that had
originally been specified) did not qualitatively change the results or alter the
conclusions of our study.

Data analysis

Relevant data for the analysis (subject ID, stimulus type and contrast level,
stimulus size, motion direction, button press, response correctness, stimu-
lus duration) were extracted from the MWorks files using custom Matlab
(MathWorks, Natick, MA) scripts. All further analyses were carried out in
Python.For each combination of stimulus type, contrast level, and size we
calculated the percentage of correct responses (out of 60 presentations) for
each subject as a measure of how well they were able to perceive the stimulus
direction. To investigate whether performance was affected by stimulus size
and how this size-effect was influenced by contrast, we employed two analysis
steps: First, we wanted to determine whether a subject’s performance was
influenced by stimulus size for a given combination of stimulus type and
contrast level. For this purpose, we calculated Pearson’s correlation coeffi-
cient between stimulus size and performance for each subject for each of the
six combinations of stimulus type and contrast level. For each correlation
coefficient we calculated a 95% confidence interval (CI) using a bootstrapping
method in which we drew 2000 random samples with replacement, calculated
the correlation coefficient for each sample, sorted the 2000 coefficients, and
took the 50th and the 1950th value as the borders of the CI. We considered
a subject to show a “negative size effect” (i.e., performance decreases with
increasing stimulus size) if the entire 95% CI was smaller than 0 and a “posi-
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tive size effect” (i.e., performance increases with increasing stimulus size) if
the entire 95% CI was larger than 0. If a confidence interval crossed 0, we
considered the subject not to show a significant size effect for that condition.

Second, we calculated a three-way repeated-measures analysis of variance
(rmANOVA), with “stimulus type” (grating or RDP), “contrast” (“high”,
“intermediate”, or “low”) and “stimulus size” (5 levels) as within-subject
factors.

7.2.2 Results

We tested how stimulus size and contrast affect the perception of direction
of moving sinusoidal gratings (“Gabor patches”) compared to random dot
patterns (RDPs) as measured by the percentage of correct choices in a direction
discrimination task. Stimulus durations were adjusted for each subject and
each stimulus type (grating or RDP) individually. But the average stimulus
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Figure 7.2: Effect of stimulus size on direction discrimination performance
for an example subject in six different conditions: the top row shows data
for the drifting grating, the bottom row for the random dot pattern. The
three columns show data for three different contrast levels of the respective
stimulus. This subject fulfilled our criteria for a negative size effect (negative
correlation with a 95% confidence interval that lies entirely below 0) for all
contrast levels for the grating, but not for any contrast level for the random
dot pattern. Pearsons correlation coefficient and the 95% confidence interval
are shown in each graph.
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Figure 7.3: The number of subjects that showed a negative size effect (black
bars), no size effect (gray bars) or a positive size effect (white bars) in each
of the six conditions. See Methods for a definition of size effect.

duration across subjects did not differ significantly between gratings (M =
77.2 ms, SD = 33.85 ms) and RDPs (M = 73.3 ms, SD = 40.73 ms) (paired
t-test: t(14) = 0.76, p = .46). We had manually determined a duration for
each stimulus type for which observers should achieve a performance level of
approximately 75% for high-contrast stimuli of the intermediate size. Indeed,
one-sample t-tests confirmed that performance levels across all subjects did
not differ significantly from 75% for the 4◦ high-contrast RDP (t(14) =
−0.15, p = .88) or the 3.2◦ high-contrast grating (t(14) = 0.17, p = .87).

Figure 7.2 plots the results of a representative subject. For the grating
(top row) the subject meets our criterion for a negative size effect for all
three contrast levels: the correlation coefficient between stimulus size and
performance is negative and the 95% confidence interval is entirely below 0.
For the random dot patterns (bottom row) the subject shows no size effect
for either contrast level according to our criteria: for all three cases, the
95% confidence interval crosses 0. Note also that the absolute values of the
correlation coefficients are much lower than for the gratings.

Across our 15 subjects, at least six show a negative size effect for each of
the three contrast levels of the grating and none shows a positive size effect.
For RDPs, on the other hand, less than a third show a negative size effect
and most subjects show no size effect at all (Fig. 7.3).

There is a significant main effects of “stimulus type”, based on a three-way
repeated measures ANOVA (F (1, 14) = 11.89, p < .01) and “stimulus size”
(F (4, 56) = 30.87, p < .001), but no main effect of “contrast” (F (2, 28) =
1.30, p = .29). The interactions between “stimulus type” and “stimulus
size” (F (4, 56) = 20.81, p < .01) and between “contrast” and “stimulus size”
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Figure 7.4: Effect of stimulus size on direction discrimination performance
across all 15 subjects. The large black dots and lines show the mean across
subjects, the thin gray lines show data from individual subjects. All other
information is depicted as in Fig. 7.2.

(F (8, 112) = 6.95, p < .01), as well as the three-way interaction between
“stimulus type”, “contrast”, and “stimulus size” (F (8, 112) = 3.47, p < .01)
were significant, but not the interaction between “stimulus type” and “contrast”
(F (2, 28) = 1.64, p = .20). In other words, the effect of stimulus size depends
on the stimulus type and on contrast. This can be clearly seen in the averaged
data of all subjects for all six conditions, which show impaired performance
with increasing stimulus size across all contrast levels for gratings (Fig. 7.4,
top row), but not random dot patterns (Fig 7.4, bottom row).
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7.2.3 Interim discussion

We observed two surprising differences compared to previous studies: first,
while we were able to replicate the detrimental effect of increasing stimulus
size on performance for high-contrast gratings, we observed no such effect
for random dot patterns. Second, we could only replicate the finding that
performance decreases with increasing stimulus size for high-contrast gratings,
but we did not observe the reverse effect for low contrast gratings that had
previously been described (Tadin et al., 2003). There are a few, potentially
important issues that could explain the difference between our results and
those reported in the literature: One major difference of our study, compared
to previous experiments (Tadin et al., 2003; Yazdani et al., 2015; Serrano-
Pedraza et al., 2011), is the use of a mask right after the moving stimuli.
Visual persistence, i.e., the extended perception of a visual stimulus after
the stimulus has been terminated, has been shown to be inversely related to
stimulus duration and luminance (Bowen et al., 1974). Therefore, it is likely
that visual persistence varied across the different contrast-levels, stimulus
sizes, and stimulus durations of other and our studies. Second, we presented
the different stimulus types and contrast levels in a blocked design with the
order of blocks being identical across subjects. Thus, differences between
gratings and RDPs (and potentially between different contrast levels) could
be due to training effects. Third, our two stimulus types (gratings and RDPs)
differed in a number of features, such as speed and the overall luminance
(which is kept at the level of the background for sinusoidal gratings, but
increases above the background for RDPs with white dots).

To address all these issues, we conducted a second experiment in which
we presented all combinations of stimulus type, contrast, and size randomly,
used RDPs that consisted of black a white dots, to ensure an overall stable
luminance level, and used a mask only on half of all trials.

7.3 Experiment 2

7.3.1 Methods

Participants

Our aim is to collect data from 16 participants. Previous studies that
addressed the same research questions had between 4 and 6 participants (Tadin
et al., 2003; Serrano-Pedraza et al., 2011; Tadin et al., 2019). However, we are
aiming to investigate effects that are likely to be smaller (such as differences
between gratings and random dot patterns) and therefore chose a 3-fold larger
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Mask (220 ms)
Fixation/
Trial Start

Stimulus (33-166 ms)

Response

Figure 7.5: Example trial sequence in Experiment 2: the two main differences
to Experiment 1 are that the mask was replaced with flickering white noise
and that the mask was only presented on 50% of trials.

sample size, increasing the sensitivity for small effect sizes. Currently datasets
from 8 subjects (4 female and 4 male) have successfully been recorded. Six
subjects were right-handed, the mean age was 25.6 years (range: 22-31) and
all had normal (N = 6) or corrected-to normal (N = 2) vision. Two subjects
were actively involved in the design of the experiment, two further subjects
were familiar with the basic research question behind the experiment, and the
remaining four subjects were näıve to the purpose of the experiment. The
six participants not involved in the design of the experiment gave informed
written consent prior to participating in the study. The study adhered to
institutional guidelines for experiments with human subjects, was approved
by the Ethics Committee of the Georg-Elias-Müller-Institute of Psychology,
University of Göttingen (GEMI 17-06-06 171), and was in accordance with
the principles of the Declaration of Helsinki.

Experimental setup

The setup was identical to Experiment 1, except that eye movements were
tracked and trials on which the subject’s gaze left a 3◦ × 3◦ square window
around the fixation point were aborted and repeated later in the experiment.
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Stimuli and procedure

The stimuli and procedure were the same as in Experiment 1 expect for the
following changes:

• The RDP consisted of 50% white and 50% black dots to keep the average
luminance across the screen stable.

• The grating and the RDP moved with the same speed (2.5 ◦/s).

• The contrast levels for both stimuli were the same: “high”: 99% (Imax:
78 cd/m2, Imin: 0 cd/m2); “intermediate”: 8% (Imax: 19 cd/m2, Imin:
16 cd/m2); “low”: 3% (Imax: 18 cd/m2, Imin: 17 cd/m2).

• The mask was presented on only half of the trials and instead of a
random dot pattern, flickering white noise across the entire screen was
used as a mask (see Fig.7.5).

• Every subjects completed 12 blocks of 240 trials (2880 trials in total) so
that every combination of 2 stimulus types, 3 contrast levels, 5 stimulus
sizes, and 2 masking conditions (with and without mask) was presented
48 times.

• Most importantly, the different conditions were presented in random
order, rather than in blocks as had been the case in Experiment 1.

Subjects still underwent a training session 1-7 days before the actual
test session and completed at least 1000 trials of training. In contrast to
Experiment 1, we determined a single stimulus duration for each subject that
was used for all conditions.

Data analysis

Data analysis was similar to Experiment 1: For each combination of stimulus
type, contrast level, size, and masking condition we calculated the percentage
of correct responses (out of 48 presentations) for each subject as a measure
of how well they were able to perceive the stimulus direction.

We again defined a “size effect” (same definition as in Experiment 1) for
every combination of stimulus type, contrast, and masking conditions, and
calculated a four-way repeated-measures analysis of variance (rmANOVA),
with “stimulus type” (grating or RDP), “contrast” (“high”, “intermediate”,
or “low”), “masking condition” (with or without mask) and “stimulus size”
(5 levels) as within-subject factors.
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Figure 7.6: Effect of stimulus size on direction discrimination performance
for an example subject in 12 different conditions: the top row shows data
for the drifting grating, the bottom row for the random dot pattern. The
three columns show data for three different contrast levels of the respective
stimulus. The color indicates the performance on trial with (red) or without
(blue) a mask. This subject fulfilled our criteria for a negative size effect
(negative correlation with a 95% confidence interval that lies entirely below
0) only for the high contrast grating condition in both masking conditions.

7.3.2 Results

Because we used a single stimulus duration for both gratings and RDPs in
Experiment 2, it was more difficult to find a value that ensures an interpretable
performance without any floor or ceiling effects across all conditions. Whereas
for gratings, the average performance across subjects for the high-contrast
stimulus of the intermediate size in the “with mask” condition did not differ
significantly from 75% (t(14) = 1.87, p = .10), for RDPs performance was
significantly better than 75% (t(14) = 40.39, p < .001).

Figure 7.6 plots the results of a representative subject. The plot is
structured the same way as Fig. 7.2, but the two masking conditions are
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Figure 7.7: The number of subjects that showed a negative size effect (black
bars), no size effect (gray bars) or a positive size effect (white bars) in each of
the six conditions in trials without (top plot) or with (bottom plot) a mask.

shown in red (with mask) and blue (without mask). For the grating (top
row) the subject meets our criterion for a negative size effect only for the
high-contrast condition (top left plot), in both, the “with mask” (red) and
“without mask” (blue) conditions. For the other combinations of stimulus type
and contrast (remaining 5 plots) the subject shows no size effect for either
masking condition: for all ten cases, the 95% confidence interval crosses 0.

The data from all 8 subjects confirms that a negative size effect was
prevalent for the high contrast condition and present in some subjects for
the intermediate contrast gratings, but that there were no consistent effects
of stimulus size in any of the other conditions (Fig. 7.7). Interestingly, the
presence or absence of a mask seemed to have little to no effect (compare top
and bottom panel of Fig. 7.7)
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Figure 7.8: See next page for legend.
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Figure 7.8: (continued) Effect of stimulus size on direction discrimination
performance across all 8 subjects. The large dots and thick lines show the
mean across subjects, the thin lines show data from individual subjects. First
two rows (red) show data from trials without a mask, bottom two rows (blue)
show data from trials with mask. All other information is depicted as in
Fig. 7.2.

The average performance across all subjects for all conditions is shown
in Fig. 7.8. A four-way repeated measures ANOVA revealed main effects of
“size” (F (4, 28) = 11.99, p < .001), “contrast” (F (2, 14) = 122.96, p < .001),
and “masking condition” (F (1, 7) = 32.10, p < .001), but not “stimulus
type” (F (1, 7) = 0.02, p = .89). Most importantly, the four-way interaction
“stimulus type” × “contrast” × “masking condition” × “size” was significant
(F (8, 56) = 3.64, p < .01), indicating that each of the main effects depends on
the other variables. To explore these relations in more detail, we performed
4 2-way repeated measures ANOVAS with factors “size” and “contrast” for
each combination of stimulus type and masking condition with a Bonferroni
corrected significance level of 0.05/4 = 0.0125. For the sake of readability, we
only report significant main effects and interactions.

For gratings without a mask, we found a significant main effect of “size”
(F (4, 28) = 11.47, p < .001) and a significant interaction between “size” and
“contrast” (F (8, 56) = 9.24, p < .001). The results for gratings with a mask
were similar, except that the main effect of contrast was also significant
(F (2, 14) = 10.18p < .01) in addition to the main effect of “size” (F (4, 28) =
11.96, p < .001) and the interaction (F (8, 56) = 10.91, p < .001). In both
cases (with and without mask), post-hoc Tukey HSD tests showed that there
were no significant differences (at a significance level of 0.0125) in performance
between different stimulus sizes in the low contrast condition1 (see the top
right panels in the top (blue) and bottom (red) half of Fig. 7.8), but in the
high and intermediate contrast performance was better for the smallest than
for the two largest sizes.

For RDPs, we found only a significant main effect of “contrast” (without
mask: F (2, 14) = 77.50, p < .001; with mask: F (2, 14) = 142.00, p < .001),
but no effects of “size” an no interaction, suggesting that stimulus size does
not modulate performance. Post-hoc Tukey HSD tests showed that in trials
with a mask performance was better in the “high” than in the “intermediate”
or “low” contrast condition and better in the “intermediate” than in the “low”

1The difference between the smallest and the second-smallest stimulus is significant at
a significance level of 0.05, but not at the significance level of 0.0125 that we use here to
account for multiple comparisons
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contrast condition, whereas in trial without a mask, there was no difference
between “high” and “intermediate” contrast levels, but for both performance
was better than for “low” contrast (all p < .01).

7.3.3 Interim discussion

Experiment 2 supported the three main findings of Experiment 1.
First, for high contrast gratings, increasing stimulus size leads to decreases

in performance, in agreement with previous studies (e.g., Tadin et al., 2003;
Yazdani et al., 2015; Serrano-Pedraza et al., 2011).

Second, this effect disappears for low contrast gratings. We did not
find evidence for a reversal of the effect, as originally reported by Tadin
and colleagues (2003). In Experiment 2, there seemed to be a trend for an
increase in performance from the smallest to the second-smallest stimulus
size, but more statistical power (i.e., more subjects) is necessary to determine
whether this effect is significant. As the statistical power needed to detect
an effect depend on the effect size, we can conclude that a potential increase
in performance, which our experiment was unable to detect, would be much
smaller than the detrimental effect of size on performance for high contrast
gratings.

Third, we found no evidence for an effect of stimulus size on performance
in a motion discrimination task with random dot patterns (see General
Discussion).

The presence of absence of a mask appeared to have little effect other
than to decrease performance for intermediate contrast RDPs. The major
difference in the results between Experiment 1 and the trials of Experiment 2
with a mask (i.e., Figures 7.4 and bottom half of 7.8) is the effect of contrast
on performance with RDPs: whereas performance is very stable across all
three contrast levels in Experiment 1 (blocked design), it decreases with
decreasing contrast in Experiment 2 (randomized design). Note however,
that in Experiment 1 for low contrast RDPs (bottom right panel of Fig. 7.4),
roughly half of the subjects show consistent performance above the average
and the other half show consistent performance below average. This could
indicate that subjects used different strategies to deal with this difficult
condition, but further research is needed to explore this in more detail.
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7.4 General discussion

Drifting sinusoidal gratings and random dot patterns are popular and powerful
stimuli to investigate motion perception in psychophysics (Tadin et al., 2003;
Adelson & Movshon, 1982; Busse et al., 2008; Curran et al., 2019; Morrone et
al., 1995; Treue et al., 1993), functional imaging (Castelo-Branco et al., 2002;
Mikellidou et al., 2018; Sack et al., 2006), and electrophysiology (Britten
et al., 1992; Pack, Berezovskii, & Born, 2001; Snowden et al., 1992; Treue
& Martinez-Trujillo, 1999; Treue & Maunsell, 1996). The popularity of
these stimuli is due to the fact that they can be carefully created to isolate
features of interest (e.g., direction of motion), with little confounding by other
features (e.g., color, or emotional associations) (see Rust & Movshon, 2005,
for a discussion of the advantages of artificial, synthetic stimuli). However,
little research has been dedicated to investigating whether there are relevant
differences in how these two stimulus types are processed and perceived.

Our study compared the effects of size and contrast on how well the
direction of motion of those two stimulus types can be discriminated. We
observed two surprising differences compared to previous studies: first, while
we were able to replicate the effect of stimulus size on performance for high-
contrast gratings, we observed no such effect for random dot patterns. Second,
we could only replicate the finding that performance decreases with increasing
stimulus size for high-contrast gratings, but we did not observe the reverse
effect for low contrast gratings that had previously been described (Tadin et
al., 2003).

Differences between gratings and random dot patterns

We found that performance systematically decreased for increasing stimulus
size for gratings, but not for RDPs (Fig. 7.4 and 7.8). In the original study
that first reported the effect of stimulus size on motion discrimination (Tadin
et al., 2003), a random-dot stimulus consisting of light and dark pixels, half of
which shifted in one direction while the other half was randomly regenerated,
showed the same size effect and the same contrast dependence as gratings.
This differs from our “classical” RDP with isolated dots that all move in
the same direction. A recent study replicated the effect for random-texture
patterns consisting of light and dark elements (Tadin et al., 2019), which
combine the individual elements of RDPs and the dense structure of gratings.
Our experiment, on the other hand, found no effect of stimulus size for 100%
coherent RDPs with a dot density of 4 dots/deg2. Together, these results
indicate that coherence, i.e., the percentage of dots moving in the same
direction, as well as overall dot density are important factors that determine
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whether size has an effect on the perceivability of RDPs. These differences
suggest that previous findings do not easily generalize, but might depend on
a limited set of stimulus parameters.

Only a few other studies have systematically manipulated the size and
contrast of random dot patterns in a simple discrimination task. Morrone
and colleagues (1995, Burr et al., 1998) varied the contrast and the overall
area of RDPs by manipulating the number of visible sectors, rather than
the radius. Their results support a two-stage model of motion processing:
an initial stage consisting of contrast-sensitive local motion detectors and
a second stage that integrates across the detectors and is tuned for more
complex motion patterns. It should be noted that these studies used not
only translational but also radial (expansion and contraction) and rotational
motion patterns, which are presumably processed in area MST (Graziano et
al., 1994; Wild & Treue, 2021b), an area in which center-surround antagonism
is much less prominent than in MT or V1 (Tanaka et al., 1986; Lagae et al.,
1994). Nevertheless, the consequences of the hypothesis that different areas
along the motion processing pathway are particularly well suited to encode
different stimulus features such as contrast, density, or direction deserve
some further investigation.

It is a broadly accepted idea that early motion-sensitive areas of the
primate cortex (e.g., V1) are predominantly concerned with local motion
information, whereas later areas (e.g., MT) respond preferentially to global
motion information (Curran et al., 2019; Castelo-Branco et al., 2002; Movshon
et al., 1985). This increase in spatial integration can be explained, at least
partly, by the increase in receptive field size along the processing pathway from
V1 to MT (e.g., Mikami, Newsome, & Wurtz, 1986). Gratings require little
spatial integration as all the available motion and orientation information can
be extracted from any small portion of the stimulus. For RDPs, on the other
hand, a small part of the stimulus might not contain any dots (depending on
the dot density) or have a low signal-to-noise ratio (depending on coherence)
so that spatial integration is necessary to perceive a well-defined motion
direction. Thus, a plausible (but presumably oversimplistic) hypothesis would
be that perception of gratings relies primarily on activity in V1 whereas
that of RDPs requires activity in area MT. As Neri & Levi (2006) have
pointed out, different stages along the visual hierarchy can impose different
constraints upon further processing which sometimes can be observed in the
final behavioral output. It is in that sense that we suggest V1 and MT to have
different roles in the processing of RDP and grating motion. The hypothesis
that different areas of the dorsal visual pathway vary in their contribution
to the perception of different stimuli receives further support from a recent
study that investigated the effects of stimulus complexity on the specificity of
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perceptual learning (Bakhtiari, Awada, & Pack, 2020). The authors found
that training with RDPs (which are presumably processed primarily in area
MT) reduced the spatial specificity of a direction discrimination task with
drifting gratings and training with optic flow patterns (which are presumably
processed primarily in area MST) reduced the spatial specificity of a direction
discrimination task with translational RDPs. These results could be well
explained by a computational “reweighting” model in which the readout from
areas MT and MST shifted depending on training history (Bakhtiari et al.,
2020).

No effect of contrast on the size-effect in gratings

Another result from Tadin et al.’s original study (2003, see also Yazdani
et al., 2015; Serrano-Pedraza et al., 2011; L. D. Liu et al., 2016) that we
did not observe is the effect of contrast. These previous studies reported
that performance improves with increasing stimulus size for low-contrast
gratings (presumably because of spatial summation) but deteriorates with
increasing stimulus size for high-contrast gratings (presumably because of
surround inhibition). In contrast, our data show a negative relationship
between stimulus size and performance for high and intermediate contrast
gratings and no effect for low contrast gratings. There was a trend for the
average performance across subjects to increase slightly from the smallest to
the second-smallest stimulus size (Fig. 7.8). But even this slight hint at an
increase in performance for low contrast gratings might simply be due to the
fact that a very small low contrast grating is difficult to see, and not be a
specific effect on motion perception. We did not observe a positive size effect
for any subject for any of the contrast-levels, as one would have expected
based on Tadin et al.’s (2003) results. There are a few, potentially important
differences between the previous studies (Betts et al., 2005; Serrano-Pedraza
et al., 2011; Tadin & Lappin, 2005; Yazdani et al., 2017) and ours: first,
whereas the previous studies measured the threshold exposure duration that
was necessary for subjects to reach a certain performance level, we measured
performance with a stimulus duration that was fixed for each subject. Thus,
the results are difficult to compare directly without knowing the evidence
accumulation process that is underlying the decision. The previous studies
report that subjects needed a certain amount of time to reach a specified
performance level for a given stimulus size. Assume in our experiment subjects
have 20 ms more time than the threshold duration determined by Tadin and
colleagues, but we find, unexpectedly, that their performance is not better
than the level that the staircase in Tadin et al. (2003) was aiming for. This
could mean that sensory evidence is accumulated very quickly up to a certain
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level, but then it takes proportionally more time to improve upon this level.
Unfortunately, it is impossible to investigate this hypothesis in more detail
with the available data, as the exact stimulus sizes and durations vary between
the two studies.

Second, there were a number of technical differences between the studies,
such as in background luminance or the use of a temporal Gaussian window
in most of the previous studies (Tadin et al., 2003; Tadin & Lappin, 2005;
Serrano-Pedraza et al., 2011), compared to a rectangular window in our
study. Differences in the temporal window can change the energy in different
temporal frequencies, which is well-known to affect perception (Robson, 1966).
However, as mentioned before, if this is a decisive factor, it calls into question
the generalizability of the effect, instead suggesting that it depends on very
specific parameters.

Effects of lesions and training

Our current experiment does not address the question what the visual system
can do when forced to compensate for failures of certain subsystems or after
prolonged training. In our experiment, all subjects did at least 1,000 trials
of training to fully familiarize them with the task, but it is unclear whether
this had any effect on the results we obtained. Two recent studies from Pack
and colleagues have demonstrated a high degree of plasticity in the motion
processing system: monkeys that originally showed little impairment for the
grating discrimination task after MT inactivation, were clearly impaired in
the same task after prolonged training with RDPs. In other words, training
with RDPs changed the role that MT plays in motion perception, even for
stimuli that the brain could previously perceive without MT (L. D. Liu &
Pack, 2017). Training human observers with complex motion stimuli led
to perceptual learning effects that are in line with a shift of the perceptual
readout to higher brain regions in the dorsal visual pathway (such as from V1
to MT or from MT to MST) (Bakhtiari et al., 2020). As mentioned above,
a possible interpretation of these results is that motion perception does not
rely on a single, fixed processing pipeline, but rather on a flexible network
where alternative processing paths vary their contributions depending on
stimulus features and perceptual experience. It is then all the more surprising
that such a network that demonstrates high flexibility in some cases is not
able to compensate for the loss of MT after prolonged exposure to RDPs.
The exact mechanisms that lead to this loss of flexibility and adaptability
will have to be the subject of additional research. The currently available
results suggest that the ability to flexibly shift between different processing
modules is ironically not that flexible and that we should be cautious that
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the effects of stimulus size on performance are not as universal and clear-cut
as previously suggested.



Chapter 8

General discussion

8.1 Summary and interpretation

The overarching goal of this thesis was to gain new insights into how motion –
especially complex motion with more than one linear direction – is represented
in the primate brain.

Chapters 2 and 3 highlighted the medial superior temporal area (MST) of
the extrastriate cortex as one key region for the processing of visual motion.
An extensive review of the scientific literature showed that MST is a high-level
visual area that encodes information about optic flow patterns and combines
this information with vestibular signals to represent self-motion and object
motion. Furthermore, MST plays an important role in cognitive processes,
such as attention and working memory, and can thus be seen as a gateway
between sensation and cognition.

Chapters 4 and 5 described a series of experiments that investigated
the responses of MST neurons to visual motion in more detail. Automated
mapping and tuning procedures confirmed that neurons in this area have well
defined spatial receptive fields that are similar in their structure to receptive
fields of lower visual areas. Neurons are tuned in both linear and spiral motion
space and their tuning strength in both motion spaces is correlated. The
position invariance of tuning for spiral motion confirmed that this tuning is
not an artifact of local motion patterns being covered by the receptive field,
but that the neurons really respond selectively to the global motion pattern.
To understand the receptive field structure in more detail, a reverse correlation
approach was used to analyze responses to a newly developed random motion
stimulus (the “RC stimulus”). However, this approach was only partially
able to predict neuronal responses to other stimuli. A potential reason
why this method was not more successful could be that the unstructured
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stimulus did not elicit strong responses from neurons that are tuned for global
motion patterns. Therefore, chapter 6 introduced a second new stimulus (the
“hex-stimulus”) that also consisted of separate segments. In contrast to the
stimulus from chapter 5, however, these segments could be independently
controlled, which allows to simulate motion patterns similar to the kind of
stimuli traditionally used to drive MST neurons.

Finally, chapter 7 provided results in support of the hypothesis that motion
perception does not rely on a single processing pipeline, but that different
areas, such as V1 and MT, vary in their importance and contribution to
perception, depending on stimulus features.

How do these results fit into our current understanding of motion percep-
tion and vision more broadly? A recurrent theme throughout all the chapters
of this dissertation has been the hierarchical structure of the primate visual
system and the transition “from sensation to cognition”. One can think of
the primate visual cortex as having, roughly speaking, three stages: the first,
“early” stage is essentially the primary cortex (V1), whose neurons respond
to changes in low-level physical attributes of stimuli, such as luminance,
contrast, and spatial frequency. The second, “mid-level” stage consists of
areas V4 and MT in the ventral and dorsal pathway respectively. Neurons
in these areas represent what I call the “building blocks” of perception. In
the ventral pathway, for example, color constancy (rather than wavelength
selectivity) is more prominent in V4 neurons than in earlier areas (Zeki, 1983).
In the dorsal pathway, MT neurons respond to pattern motion (rather than
component motion) similar to what observers report in psychophysical experi-
ments (Movshon et al., 1985). In other words, what is represented by neurons
in these two areas corresponds well to the colloquial terms that are used to
describe components of visual images. The third, “high-level” stage consists
of IT cortex in the ventral and area MST in the dorsal pathway. Neurons
in these areas are concerned with global percepts, such as recognizing the
faces of people around us (IT), or determining the direction we are currently
moving in (MST).

Over the last seven decades, researchers have amassed a very good (though
certainly not complete) understanding of the early processing of stimulus
features in V1. The transition from V1 to the middle stage (V4 and MT) has
seen some progress, with relatively simple, hierarchical models being able to
account for responses in these areas (e.g., Simoncelli & Heeger, 1998; Rust
et al., 2006; Nishimoto & Gallant, 2011). In what terms we should think
about the high-level areas, however, is less clear. Chapter 5 in particular
has attempted to describe MST with the same tools that have been used for
low and mid-level areas, such a tuning curves and regression analyses. While
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some light is shed on the response properties of MST neurons, it is clear that
our results do not form a complete picture. The finding of correlated tuning
strength for linear and spiral tuning in chapter 5 and strong responses to
motion patterns outside the linear and spiral space reported in chapter 6,
strongly suggest that neurons in this area are not easily described by a simple
model with few parameters.

Perry and Fallah (2014) pointed out that the ventral pathway is often
described as creating an integrated representation of perceptual objects. The
dorsal pathway’s role, on the other hand, has classically been described as
representing individual motion features, such as direction and speed. These
authors review evidence for an alternative point of view in which areas along
the dorsal pathway also integrate individual features into intermediate object
representations that might also incorporate information from the ventral
visual pathway (Perry & Fallah, 2014). This idea, that the whole (i.e., the
representation in high-level areas like MST) is greater than the sum of its parts
(i.e., the representation of individual features in low- and mid-level areas), fits
well with our results. For example, our findings of position invariance (chapter
5), which means that a neuron responds selectively to a global motion pattern
(“the whole”), not to a specific arrangement of local motion patterns (“the
sum of its parts”), is consistent with such a framework. Furthermore, the
limited success of our regression analyses, which quite literally try to describe
a neuron’s response to a motion pattern as the sum of its responses to parts
of the motion pattern, also agrees with this theory.

The big question that remains is how representations of individual features
in low- and mid-level areas are integrated into the larger perceptual units
that appear to be represented by high-level areas like MST. The approaches
that were introduced in chapter 6 might prove to be fruitful to address this
question. The hex-stimulus allows to create stimuli that are perceptually
similar to integrated, “whole” stimuli (even though, technically, it is made
up of individual parts). The adaptive sampling approach allows for such
integrated stimuli to be flexibly constructed, based on the neuron’s responses.
Together, these two tools offer great potential to explore the representation
of complex motion in MST.

It is important to note that this three-stage framework is a simplification
that offers guidance for thinking about the visual system, but has its limita-
tions. First, ascribing simple concepts such as “motion processing” or “color
perception” to areas like MT or V4 ignores the heterogeneity of neurons in
these areas. In V4, for example, estimates of the proportion of color-selective
cells range from 20% (Schein et al., 1982) to 100% (Zeki, 1973). In MT, the
proportion of direction selective neurons that have been reported range from
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76% (Zeki, 1980) to 100% (Albright, 1984). The experiments presented in
chapters 5 and 6 of this dissertation also excluded a significant number of
cells from the analyses because they did not show any selective responses to
motion (see Table 5.1). In general, many acute single electrode recordings
in nonhuman primates suffer from a selection bias, in that often only well
isolated neurons showing desirable properties (such as direction selectivity
in MT) are investigated further. Because of this bias, the true proportion of
neurons that show “typical” response properties may well be overestimated
for many areas. Zeki (1983) himself notes: “No one should, however, read
into this evidence the supposition that all the cells of the V4 complex are
colour-coded [sic] as opposed to being wavelength-selective or that all cells
of V1 are wavelength-selective.” The role of neurons in these areas that
do not share the typical features is not yet understood. The existence of
non-motion sensitive neurons in MT and non-color coding neurons in V4
clearly shows that ascribing such one-dimensional roles to these areas is an
oversimplification.

The second caveat for the three-stage model is that these stages do not
form a one way street where an image is passed on from early to mid-level to
high-level visual areas culminating in a percept of the world. Instead, there
are extensive feedback connections from higher to lower areas. The Reverse
Hierarchy Theory (RHT, Hochstein & Ahissar, 2002) proposes that visual
perception starts with “vision at a glance”, where what is first perceived is
the output of the last stage of the visual hierarchy. “Vision with scrutiny”
relies on traveling back along the visual hierarchy to reach more specialized
cells with smaller receptive fields (Hochstein & Ahissar, 2002). For example,
when seeing a house, we can immediately recognize it as a house (“vision at
a glance”). But to perceive fine-grained details, such as an ornament on the
front door (“vision with scrutiny”), activity in lower visual areas needs to
be reactivated (Ahissar et al., 2009). This theory is supported by findings
that for low contrast, barely visible stimuli to be perceived, they must elicit
activity in frontal areas that then “ignites” a sustained pattern of activity (van
Vugt et al., 2018). Our results in chapter 7 fit well into this scheme, as they
indicate that the visual system is able to flexibly recruit visual areas based on
stimulus features and task demands. How exactly the brain knows whether
to rely on activity from one area versus another is an open question.

8.2 Limitations and future directions

All the different analysis approaches used in this dissertation – spatial receptive
fields, tuning curves, reverse correlation, adaptive sampling – attempt to
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describe a neuron’s firing rate as a function of external stimuli. In reality,
however, the only cells in the visual pathway that have direct access to the
external world are the photoreceptors of the retina. All subsequent neurons,
from retinal ganglion cells through the LGN, V1, and MT, all the way to
MST only receive the neural activity of the preceding stage as their input.
The further up one moves in the visual hierarchy, the further the recorded
activity is removed from the actual stimulus. This distance between neurons
in high-level visual areas and the external world could be one reason why the
attempt to describe MST responses with a linear-nonlinear-Poisson (LNP)
model in chapter 5 was not more successful. A number of recent papers have
addressed this issue through subunit models in which a neuron’s receptive
field is divided into several subunits that can be thought of as distinct input
channels to the neuron (e.g., smaller receptive fields of neurons that provide
input to the recorded neuron). For retinal ganglion cells Liu et al. (2017)
developed a method called spike-triggered non-negative matrix factorization
that decomposes high-dimensional data, such as the spike-triggered stimulus
ensemble, into a set of modules with corresponding weights. This method was
able to retrieve the receptive fields of simultaneously recorded bipolar cells
from the spike trains of retinal ganglion cells alone. A different approach with
a similar outcome, also in the retina, uses cascaded linear-nonlinear (LN-LN)
models where the stimulus is processed by multiple filters. The output of
each filter is fed into a nonlinearity (first LN stage) and the outputs of the
nonlinearities are linearly summed and put through another nonlinearity
(second LN stage). This method led to a 53% improvement in predicting the
resposnes of RGCs as compared to a one-layer LN model (Maheswaranathan
et al., 2018). In V1 such a LN-LN cascade model similarly outperformed
a one-layer LN model, an energy model (Adelson & Bergen, 1985), and
a spike-triggered covariance (STC) model (Rust et al., 2005) in terms of
efficiency and accuracy (Vintch et al., 2015). The MT model by Simoncelli
and Heeger (1998) that was described in the introduction similarly describes
MT as receiving input from V1-like units, rather than from the stimulus.
Finally, and most relevant to the work presented here, such a cascade model
has also been successfully applied to MST (Mineault et al., 2012). From
a purely statistical point of view, any improvement in a model’s ability to
predict neural responses can be considered a success in itself. From a biological
perspective, however, such models raise the question of how the subunits
can be interpreted. For RGCs, it is reasonable to think of the subunits as
the receptive fields of bipolar cells that provide the input to RGCs. In fact,
simultaneous recordings have confirmed an overlap of subunits and bipolar
cell receptive fields (2017). For a high-level visual area like MST, however,
the interpretation is less clear-cut. Mineault et al. (2012) designed their
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hierarchical model in a way so that the subunits resembled MT neurons in
terms of tuning for motion direction and speed. However, the authors admit
that they “cannot say that the subunits recovered by our model correspond
exactly to the anatomical inputs received by each MST neuron”. Of course
MT neurons do not have direct access to the stimulus either, but would need
to be characterized based on a cascade of models (e.g, receiving input from
complex cells in V1 (Simoncelli & Heeger, 1998), which receive input from
simple cells (Vintch et al., 2015), and so on). Ideally one would then describe
neurons in high-level visual areas with five or six-layered models. However,
such models would have many parameters that would require unrealistic
amounts of data to it adequately.

A promising development along these lines in the ventral visual pathway
has been inspired by the advances in computer vision that have been made
possible by deep convolutional neural networks (CNNs; e.g., Krizhevsky,
Sutskever, & Hinton, 2012). For example, the DiCarlo lab investigated how
such networks, which are optimized for performance based on goal-driven
learning, compared to neural activity. These models are not designed to
simulate the neural pathways of the visual system but only optimized for
performance in an ethologically valid task, such as image recognition. Thus,
the problem of collecting adequate neural data to which the parameters could
be fitted is avoided. Nevertheless, Yamins et al. (2014) found that such a
model’s mid- and late-stage layers were highly predictive of responses in
primate visual areas V4 and IT (see Yamins & DiCarlo, 2016, for a review).
These authors conclude that such performance-optimized models might offer
a valuable tool in understanding neural processing (also see Kriegeskorte,
2015).

To my knowledge no comparable efforts have been made for models of
the dorsal visual pathway. While the motion processing system poses some
additional problems, such as constantly changing input, the computer vision
community should be highly interested as motion is an important issue in
one of the most exciting applications of computer vision, self-driving cars.

Another limitation of the experiments presented in this dissertation is the
lack of ethological validity. As mentioned in the discussion of chapter 5, our
“Reverse correlation stimulus” evoked much weaker responses than optic flow
dot patterns. Given the results about multisensory integration reviewed in
chapters 2 and 3, one can speculate that even the responses to optic flow
dot patterns might still not be representative of “real life” MST activity in
response to actual self-motion. On the other hand, natural stimuli are much
more difficult to parameterize and might modulate neural activity in ways
that are difficult to control for. The advantages and disadvantages of using
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synthetic, highly-controlled versus natural, ethologically valid stimuli in visual
neuroscience have been discussed at great length (see, for example, Rust &
Movshon, 2005 and Olshausen & Field, 2005 for two opposing views). One
of the major challenges in deciphering the neural code of MST will be to
reconcile the opposing ends of this debate, which will, at least partially,
rely on new technology (see last section). Closed-loop, adaptive sampling
methods, like the one outlined in chapter 6, will be very useful in combining
the complexity of natural stimuli with the statistical requirements of advanced
analysis methods.

8.3 Concluding remarks

It is often recommended that scientific writing follows a “broad-narrow-
broad” structure (e.g., Mensh & Kording, 2017) that starts by outlining
the overarching, “big picture” problem to which the writing attempts to
contribute; then describes the actual contribution in detail; and ends by
embedding the findings into the big picture and providing an outlook on the
open questions that are yet to be addressed in the field. I would like to end
this dissertation with the “biggest” picture perspective and some ideas where
the field might go in the coming years. I have alluded to these ideas in section
2.9, but would like to use this space to expand upon them in a slightly bolder
and more speculative manner.

For many (though certainly not all) neuroscientists, the ultimate goal is
to have a complete understanding of the human brain, both to unravel its
remarkable computational power, and to have a foundation on which cures for
neurological and psychiatric diseases can be built. The “perfect” experiment
to achieve this would require a number of ingredients, the combination of
which is, at the current point in time, unfeasible:

1. we would like to record the activity of thousands of individual neurons
simultaneously during natural behavior;

2. we would like to have full information about genetically, anatomically,
and physiologically defined cell types;

3. we would like to be able to manipulate neural activity at fine temporal
and spatial resolution (ideally at the single cell level);

4. we would like to have perfect, quantitative measurements of all be-
havioral outcomes, such as limb movements and (especially in visual
neuroscience) direction of gaze;
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5. we would like to do all this non-invasively in human subjects.

The last point is easiest to address as non-invasive single cell recordings are
simply not possible. We will therefore rely on animal models for many years to
come. And while much is to be learned from simpler model organisms, there
is no way around nonhuman primates when it comes to complex cognitive
tasks and comparability to the human brain.

As for the other four points, great progress has been made in each of them
individually: high-density microelectrode arrays already make it possible to
record hundreds of neurons simultaneously (e.g., M. M. Churchland et al.,
2010; Dann et al., 2016; Michaels et al., 2020) across several areas of the
primate cortex. Unfortunately, such electrode arrays can only be used on the
cortical surface, but not in areas like MT and MST that are located inside a
sulcus, or subcortical structure. Linear electrode arrays can be inserted into
the brain’s sulci, but have much fewer channels. However, recently developed
high-density NeuroPixel probes (Jun et al., 2017) allow many more neurons to
be recorded simultaneously across brain structures in rodents (Steinmetz et al.,
2019) and are beginning to be used in nonhuman primates as well (Trautmann
et al., 2019; Shenoy & Kao, 2021).

It has long been known that all neurons are not created equal. The most
obvious differentiation in the mammalian cortex is between glutamatergic
pyramidal neurons and GABAergic interneurons, but even this is a gross
oversimplification (Zeng & Sanes, 2017). Genetically encoded indicators of
specific molecules, such as calcium (Ca2+) (T.-W. Chen et al., 2013; Dana et
al., 2019) or neurotransmitters (Feng et al., 2019; Jing et al., 2018; Marvin et
al., 2013) can help to target genetically defined cell types and explore their
specific roles.

Traditional interventional approaches in neuroscience include microstimu-
lation and pharmacological inactivation. While microstimulation has a very
high temporal precision, it affects all neurons around the tip of the stimulating
electrode equally, with no regard for cell type or connectivity patterns among
neurons. Neuropharmacology can, by definition, be used to target specific
pharmacological reactions (e.g., specific neurotransmitter systems), but often
works on the timescale of at least several seconds, if not minutes or hours
(depending on the exact techniques being used), which is far removed from the
millisecond precision with which neural circuits operate. Optogenetics com-
bines the advantages of both methods, as it allows the excitation or inhibition
of genetically defined cell populations at a millisecond timescale (Boyden et
al., 2005; Deisseroth, 2011, 2015). As with NeuroPixel probes, this technique
has been successfully applied by numerous labs in rodents, but has taken
more time to be adapted for use with nonhuman primates (A. Afraz et al.,
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2015; Acker et al., 2016; Fortuna et al., 2020; Tremblay et al., 2020).
Even simultaneous recordings and stimulations of thousands of genetically

defined cells will not be able to fully explain the brain without taking behavior
into consideration (Krakauer et al., 2017). However, to add behavior to the
equation (and I mean this both metaphorically and literally by, for example,
including measures of behavior in regression analyses) it needs to be quantified.
Ideally this should be done in an automated, unbiased manner. Powerful
computer vision algorithms have successfully been employed in order to track
research animals’ position and pose (e.g., DeepLabCut by A. Mathis et al.,
2018 and MoSeq by Wiltschko et al., 2015, see M. W. Mathis & Mathis, 2020,
for a review).

I want to highlight two recent publications that have combined several of
these new approaches to bring us closer to the “perfect experiment” outlined
above. Berger et al. (2020) combined wireless recordings from chronically
implanted microelectrode arrays in three areas of the primate motor cortex
with automated pose estimation in unrestrained monkeys to investigate the
planning and execution of walk-and-reach movements. Even more relevant to
the topics investigated in this dissertation is the work presented in a recent
preprint by Mao and colleagues (2021): to explore spatial navigation, they
combined chronically implanted tetrodes and single electrodes, maker-based
tracking of head position, and wireless eye tracking to measure the activity of
neurons in the hippocampal formation during free foraging in an open arena.
As described in chapter 2, self-motion perception and spatial navigation
are intimately connected and the possibility to record neural activity and
track eye movements in freely moving animals will open new possibilities for
investigating an area like MST.

Considering that many of the tools I have described in this section, such
as optogenetics, NeuroPixels, and DeepLabCut, have only been developed
in the last 15 years, there can be no doubt that these are exciting times in
neuroscience.
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