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1 | Introduction

1.1 | Summary & Motivation

A constant challenge for the insect’s nervous system is the omnipresence of diverse 

stimuli. These external cues trigger the organisms behavioural patterns to alternating 

environmental conditions. Therefore insects are endowed with specialized sense 

organs. These sensory neurons respond adequately to specific stimulation, as specific 

behaviour is only evoked by specific sensory stimuli.

	 The basis for specific behavioural patterns of insects is modulated by the senses 

of photoreception, proprioreception, chemoreception, thermosensation, touch and 

hearing. In Drosophila, specific sounds entail courtship (Spieth et al., 1952, Shorey et al., 

1962, Narda et al., 1966). It is ascertained that Drosophila does hear with its antennae via 

scolopidia,  which are arranged in a chordotonal organ called Johnston´s Organ (JO) 
(Johnston 1855; Boekhoff-Falk G et al., 2005; Yack et al., 2004). The JO in the antenna is the largest 

chordotonal organ in Drosophila followed by the femoral chordotonal organ (FCO) 

in the leg of Drosophila. Insect legs are endowed with mechanoreceptors, the femoral 

chordotonal organs (FCOs) (Göpfert et al., 2005; Nishino et al., 2003; Field et al., 1998; Büschges et 

al., 1994), that detect angular changes between the femur and the tibia. In Drosophila, 

little is known about the function of the FCO (Shanbhag et al., 1992). 

	 Here I show that functional properties of the Drosophila FCO can be dissected 

by use of the Gal4-UAS system in combination with transcuticular in vivo Calcium 

imaging. As sinusoidal stimulation at relative small stimulus amplitudes elicited 

changes in intracellular ionic calcium (Ca2+) concentration in the FCO, the effect of 

substrate vibration on Drosophila walking behaviour was proposed. But lately developed 

fly tracking software for high-throughput ethomics (Branson et al., 2009) showed that 

substrate vibrations have no specific effect on Drosophila walking behaviour. Instead 

present evidence suggests that Drosophila compensates for substrate vibration by 

detection via the FCO and therefore is able to control its body posture. A modification of 
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transcuticular in vivo Calcium imaging was used to locate the neuronal activity region of 

Inactive, a protein involved in Drosophila hearing and a mechanotransduction channel 

candidate. I could show that inactive mutants still respond to sound like stimulation 

with ciliary calcium currents. 

1.2 | Sensory Neurons of Insects

The peripheral nervous system of insects comprises two major classes of sensory organs: 

Type I neurons are monodendritic and ciliated, bearing a single ciliated dendrite (Tracey 

et al., 2003), whereas type II neurons are multidendritic neurons (MD) whose dendrites 

form no ciliar structures (Keil et al., 1997).

	 Type I organs are further subclassified into photoreceptors, external sensory 

organs (ES) (involving gustatoric, olfactoric neurons and mechanoreceptive sensilla 

like bristle and campaniform sensilla) and mechanosensitive chordotonal organs 

(CHO) (Kernan et al.,  2007). These types of sensory neurons specialize from sensory 

organ precursor cells (SOP) (Jan & Jan, 1994). The specialization of the SOP cells is 

defined by proneuronal genes of the achaete-scute complex and atonal. ES and MD 

neurons develop from solitary precursor cells by transcription factors of the achaete-

scute complex, whereas photoreceptors and CHOs develop from clusters of SOP cells 

by the gene atonal. Drosophila mutant for the gene atonal totally lack CHO’s and show 

disrupted eye development (Jarman, 1995), which highlights the eminent function of 

atonal in sense organ development (Kernan 2007) (FIG1.2). 

1.2.1 | External Sense Organs

The ciliated Type I ES sensory units are composed of four specialized cell types: one to 

several bipolar neurons and three different accessory cell types: trichogen (attachment 

cell), thecogen (sheath cell) and tormogen (socket cell). The trichogen cell forms 

the cuticular hair of tactile hair bristles or the analogous structures of the cap in 

campaniform sensilla or the scolops of chordotonal organs. Mechanical forces deflect 

this structures. The leverage of these structures is transmitted via the dendritic cap on 
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to the dendrites of the actual neurons. The dendritic cap, an extracellular structure 

of the trichogen cell is attached to the distal part of the sensory neurons dendrite. 

The dendrite is segmented into the proximal “inner segment” and the distal “outer 

segment”. The “outer segment” is a modified stereocilium with an 9 × 2 + 0 arrangement 

of microtubule in the axoneme (McIver et al., 1985). The “outer segment” is floating in an 

endolymph filled space formed by the trichogen and tormogen cell. High K+ and low 

Ca2+ concentration are characteristic for the endolymph of Type I neurons (Grünert 

und Gnatzy, 1987). The tormogen cell forms a cuticular joint with the trichogen cell. The 

thecogen cell sheaths the neurons soma and most of the dendrites “inner segment”.

These cell types form the stimulus receiving structures around the dendritic part of the 

neuron (Field et al., 1998, Bang et al., 1992). 

1.2.2 | Chordotonal Organs

Chordotonal Organs are internal stretch receptor organs that, monitoring relative 

movements between body parts, primarily serve proprioreception. The organ is usually 

attached to the cuticle and connected to the hypodermis, often by a special ligament. 

In adult flies chordotonal organs routinely bridge the joint between two limb segments 
(Field et al., 1998).

	 Chordotonal Organs are composed of multicellular units called scolopida, which 

feature an analogous organisation and composition as ES organs. Each scolopidium 

consists of three supporting cells (a cap cell, the scolopale cell and a ligament cell) and 

one (monodynal scolopidia) to four (heterodynal scolopidia) neurons. The eponymous 

structure for the scolopidium is the scolops. The scolops, scolopale tube or dendritic 

cap is secreted by the trichogen or attachment cell and connects the distal part of the 

dendritic cilium with force receiving extracellular structures. 

	 Scolopidia can be subclassified by distinct cap structures according to their 

connection with the cilium. The cilium of amphinematic scolopidia (JO) is enclosed 

and loosely attached by an electron dense scolopale tube that extends into a thread that 

can be either connected to the cuticle or to sub-epidermal structures. In monenematic 

scolopidia (FCO) the cilium is surrounded by the dendritic cap and is attached to it 
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(Graber et al., 1882, McIver et al., 1985, Yack et al., 2004, Eberl  et al., 2007). 

	 The neurons are bipolar and monodendritic, bearing a proximal axon and one 

distal dendrite each. The neurons are supported apically by the cap cell and proximally 

by the ligament cell. The dendrite is subdivided into an inner and an outer segment, with 

the latter representing a primary cilium with a 9x2+0 axoneme (nine outer microtubule 

doublets (“9x2”) and no central microtubules (“+0”)). This structure is anchored via 

the basal bodies to ciliary rootlets in the inner segment (McIver et al., 1985) (see FIG 1.1). 

The Drosophila neurons of the JO and the FCO show a swelling at the outer segment. 

This ciliary dilation is always characterised by the presence of electron-dense material 

in its centre (Field et al., 1998). Another characteristic of the dilation is a clear connection 

between each microtubule doublet and the ciliary membrane (Field et al., 1998). 

	 The whole cilium is enclosed by the scolopale cell, giving room to a scolopale 

space at the outer segment. The scolopale cell tightly encloses the dendritic “inner 

segment” and attaches to it by desmosomes on the inner surface of each scolopale rod. 

The scolopale rods are actin rich and support the scolopale space arround the dendritic 

“outer segment”. 

	 This space is filled with an endolymph assumed to contain similar high K+ and 

low  Ca2+ concentration as in other type I neurons (Grünert und Gnatzy, 1987). Proximally 

the scolopidium is connected by the ligament cell to extracellular structures such as the 

hypodermis (Snodgrass 1926, Young et al., 1970, Chu-Wang et al., 1972, Zacharuk et al., 1978, Altner 

et al., 1984, Mclver  et al., 1985). The scolopidia layout, composed of extracellular scaffolds, 

intercellular junctions, cyto skeletal and ciliary structures, facilitates the transduction 

of mechanical forces (see FIG 1.1).
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FIG 1.1 | Insect Mechano Sensory Neurons

Scolipidium			   Asscociated Structures	 Proteins involved in Mechanotransduction

 Sensory Neurons			   	 Scolopale rods		  	 NAN / IAV
 Tormogen   | Socket | Ligament Cell     	  CAP			    DCX-EMAP
 Thecogen  | Sheath | Scolopale Cell	   Cuticule		   NOMPC
 Trichogen  |  Attachment Cell 	   			    
 Glial Cell
 Epithelial Cells						       Direction of Mechanical Forces

 
 Several proteins are known to locate to the distal part of the scolopidium:
The TRPV’s NAN & IAV, which form a heteromultimeric channel and NOMPC, a TRP channel, are 
essential for Drosophila auditory transduction.  DCX-EMAP carrying two doublecortin domains is 
likely to be required for mechanotransduction and amplification as well.
TRP(V): Transient Receptor Potential (Vanilloid) Channel
EMAP: Echinoderm Microtubule Associated Proteins

[Modified from: Shigekazu UG 1965, Field& Mattheson 1998, Walker et al 2000, Yack et al 2004, Eberl et al 2007, 
Bechstedt et al 2010, Cheng, 2010; Liang , 2010] 

Receptor Lymph

Basal bodies

Ciliary Dilation

Cilium (9+0)

Ciliary rootlet

Cuticule
Epithelial Cells

Bristle

Amphinematic
(JO)

Mononematic
(FCO)

1µm

Scolopidium Ciliary Region
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1.3 | The Drosophila Femoral Chordotonal Organ

1.3.1 | Morphology of the Femoral Chordotonal Organ

The Drosophila adult leg houses the relative small tibial chordotonal organ (TCO) and 

the FCO. The FCO is located dorso-rostral proximal in the femur with a length of ~ 

175µm (FIG. 1.2| a)). The FCO consists of about 74 mononematic scolopidia arranged 

in three morphological distinct subgroups (Shanbhag et al., 1992). During my diploma 

thesis I could show that certain Gal4 - driver lines (F-Gal4 & NP0761; Wiek, 2009; Kamikouchi 

et al., 2006 ; chapter 2.1.5) expressed in the JO also label the FCO. Confocal imaging of 

flies expressing GFP under control of NP0761 in the FCO and image processing with 

Amira revealed that the FCO consists of 134 Neurons. Three subgroups could be 

morphologically distinguished by the arrangement and number of their neurons (FIG. 

1.2| b)). 

FIG 1.2 |  The Drosophila FCO 
a) Sketch of the leg with FCO and TCO  (3D Cursors showing orientation and position of the FCO )
[modified from Shanbag (1992)]
b) FCO amira®4 3D reconstructions of +/+;UAS-Cam2.1; NP0761flies 
subgroups colour code: I grey ≈ 64 neurons; II red ≈ 42 neurons; III  blue ≈ 28 neurons 
Shanbhag et al proposes that the largest subgroup (I) is attached to the cuticule at the femur tibia joint and that the 
two smaller groups (II+III) insert onto muscles.				              [modified from Wiek, 2008]
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1.3.1 | Morphology of the Femoral Chordotonal Organ

Observation of the FCO revealed that its a) b) UAS-GFPt2 green
Alexa Fluor 546 red

10µm 5µm

FIG 1.3 |  Glomerulus

FCO and Glomerulus 3C11-Antibody Staining 
(Alexa Fluor® 546) of UAS-GFPT2;NP0761 
Confocal Image of  Leg Whole -Mount. 
a) FCO overview b) Glomerulus
[modified from Wiek 2008]

axons run into a structure called 

glomerulus. Shanbhag (1992) observed 

by electron microscopy that all FCO 

axons run into the glomerulus and form 

synapses connecting between each other. 

Consistent with this observation, 

immunostaining with 3C11 antibody 

(anti SYNORF 1), which detects synapsin 
(Klagges et al.,1996), and the reporter fusion 

construct UAS-nsyb::GFP,  which locates 

to presynapses (Ito et al., 1998), both label 

the glomerulus  (FIG 1.3). 

The afferent nature of the glomerulus was 

proven by the fact that synaptobrevin 

expression was driven by a chordotonal 

organ specific driver line. In atonal 

hemizygous mutant flies, in which no 

chordotonal organs are present, Antibody 3C11 does not label any peripheral synapses. 

	 Peripheral synapses as in the glomerulus are rarely described in insects. Afferent 

peripheral synapses are only found between inter-and moto-neurons of spiders (Foelix 

et al., 1975; Hayes et al., 1982; Rajashekhar et al., 1989; Igelmund et al., 1991) and efferent peripheral 

synapses are described for the Arachnid Cupenius salei (Fine et al., 1999) and the chelicerate 

Limulus (Fahrenbach et al., 1975; Hartline et al., 1972). In Limulus peripheral synapses increase 

contrast in vision by lateral inhibition. Serial and reciprocal synapses of glomerular or 

neuropile structures are said to be the basis for presynaptic inhibition(Bullock et al., 1977). 

Except for the glomerulus, the only other efferent synapses described in Drosophila 

are between inter- and moto- neurons (King and Wyman, 1980). Shanbhag (1992) proposes 

that the glomerulus in the Drosophila leg is integrating and preprocessing sensory 

information of the FCO. While the morphology of the FCO could be revealed by these 

techniques, its function remains unclear.
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1.3.2 | Function of the Femoral Chordotonal Organ

The coordination of movement depends on the interplay of internal cues of the central 

nervous system (CNS), muscles and information of the peripheral nervous system 

(PNS). So called central pattern generators (CPG) generate the rhythms of movement.

The CPGs rhythms are triggered and altered by intrinsic and extrinsic input of the 

PNS’s sensory neurons (Pearson et al., 1995; Orlovsky et al., 1999; Büschges et al., 2005). In 

stick insect walking the transition between swing and stem phase are modulated by 

mechanosensory organs in the legs. 

	 Next to bristle hair fields and campaniform sensilla,  the FCO of the stick insect 

Cunicuilina impigria is mainly responsible for feedback control of the femur tibia joint 

posture, which is a hinge joint (Kernan et al., 1994; Bässler et al., 1988; Burrows et al., 1996; Zill 

et al., 2004). The position of the tibia relative to the femur is sensed by the FCO. The 

FCO’s general function is described as monitoring the position, angular velocity and 

acceleration of the tibia (Hofmann et al., 1985 & 1985; Büschges et al., 1994; Nishino et al., 2003). The 

joint movement is controlled by the extensor and flexor tibia muscle (Bässler et al., 1993). 

	 Apart from its well-established role in proprioception, an involvement of the 

FCO in vibration sensing has been proposed (Kernan et al., 2007). CHO in Orthopterans 

and Hemipterans detect substrate vibrations (Field et al., 1998). In Orthopterans the leg 

scolopidial tympanal organ functions as an ear. In Drosophila it is not known if the 

FCO is detecting intrinsic signals such as changes of position, angular velocity and 

acceleration of the tibia or if it detects extrinsic signals such as airborne or substrate-

borne vibrations. It is known that airborne and substrate vibrations have an effect on 

Drosophila walking behaviour. Fabre et al. (2012) show that substrate vibrations affect 

Drosophila walking behaviour, as female flies stops walking due to substrate vibrations 

generated by male shaking their abdomen during courtship. They suggest that in 

Drosophila tremulations of the abdomen are transmitted via the male legs and that 

females perceive the substrate vibrations carried through the legs (Fabre et al., 2012).

Lehnert (2013) shows that walking behaviour is altered by airborne vibrations (low 

intensity sound at 300 Hz) and that the Drosophila JO is essential for the behavioural 

response (Lehnert et al., 2013). 
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1.4.1 | The Johnston`s Organ

Drosophila mating success does not only rely on olfactory and visual cues but also on 

sound perception (Göpfert et al., 2002). During courtship the male fly, in close proximity 

to a female, extends one of its wings and vibrates it emitting species-specificsounds 

called courtship songs (Schilcher et al., 1976; Hoy et al., 1988; Hall et al., 1994). The two 

discriminable types of courtship songs, sine (Schilcher et al., 1976) and pulse songs (Ewing 

et al., 1968), are dominated in the range of 150 to 200 Hz. Drosophila senses sound as 

particle velocity that acts on its antenna. The antenna consists of three segments. The 

scapus, the 1st antennal segment and part of the antenna that comprises muscles, 

enables the fly to orientate the antenna. The pedicelus, the 2nd segment, houses the 

auditory organ, the Johnston’s organ (JO) (Johnston et al., 1855; Boekhoff-Falk et al., 2005; Yack 

et al., 2004). The funiculus, the 3rd antennal 

segment, is the sound perceiving structure 
(Göpfert et al., 2001). It bears the arista, a 

feather-like appendage which functions 

together with the funiculus as a sound 

receiver (Göpfert et al., 2002). The funiculus, 

rotating due to sound particle velocity, 

is anchored via a hook in the pedicelus. 

The 3rd segment’s hook connects to the 

scolopidial attachment cells of the JO. 

The JO, a chordotonal organ, is formed by 

approximately 227 of these amphinematic 

scolopidia (Kamikouchi et al., 2006). Only 10-

15% of the JO scolopidia hold three and 

the rest two sensory neurons (Todi et al., 

2004; Caldwell et al., 2002). 

Ro
ta

tio
na

l a
xi

s

Arista

JO
Hook

funiculus

pedicelus

scapus

FIG 1.4 | Drosophila Antenna
A1 | 1st  segment: scapus; A2 | 2nd segment pedicelus;  
A3 | 3rd segment: funiclus 
In response to sound the 3rd segment rotates along its 
longitudinal axis. This rotational force is passed onto 
the JO, located in the 2nd segment, by the 3rd seg-
ment’s hook, thereby stretching and compressing the 
scolopidia. The antenna can be actively positioned by 
the 1st segment the only segment endowed with mus-
cles.                          rotational axis
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1.4.2 | Auditory Transduction in Drosophila  

The sound receiver, the 3rd segment and its arista, rotate back and forth as a rigid 

body when stimulated by sound. The hook couples this movement into stretch and 

compression of JO scolopida, which are arranged in two opposing groups around 

the hook, which leads to opening and closing of mechanically gated ion channels. 

These channels transduce the applied mechanical force into changes of the membrane 

potential (Albert et al., 2007; Nadrowski et al., 2009). 

The sensitivity of the Drosophila antennae is achieved by the organ’s structure and 

intrinsic processes of the JO. The JO neurons actively generate motions that nonlinearly 

amplify the sound-induced antennal vibration when the sound intensity is low (Göpfert 

et al., 2006). This amplification is frequency-specific, maximally enhancing vibrations at 

the antenna’s mechanical best frequency. 

Two different approaches were used to examine the intrinsic processes of 

mechanotransduction in Drosophila hearing (Göpfert et al., 2002). One was to analyse the 

transducer mechanics by monitoring the arista displacement, the other was to record 

antennal nerve responses (see FIG 1.5). 

Until now several proteins are known to affect Drosophila hearing (Senthilan et al., 2012), 

although it still remains unclear which channel or protein complex is the primary 

transducer. Candidate transdution channels for hearing in Drosophila are NOMPC 

(No mechano receptor potential C; also called TRPN1) and the proteins of the 

heteromultimeric TRPV channel formed by Nanchung & Inactive (NAN/IAV). 

They belong to the transient receptor potential (TRP) superfamily of ion channel families. 

TRP channel functions are implicated in a variety of sensory processes (Ernstrom et al., 

2002; Tracey et al., 2003 ;Voets et al., 2005; Rosenzweig et al., 2005; Xu et al., 2006; Liu et al., 2007; Damann 

et al., 2008). The TRP superfamily comprises several subgroups: TRPA (Ankyrin), 

TRPC (Canonical), TRPM (Melastatin),TRPML (Mucolipin), TRPN 

(NompC), TRPP (Polycystin), TRPV (VANILLOID) (Montel et al., 2002). 

All members of this superfamily are cation permeable, share some sequence homology 

and show 6 transmembrane domains, predicted by their DNA sequence. Members of 

these channel families are also found in vertebrate auditory hair cells (Göpfert et al., 2006). 
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Several findings suggest that NOMPC is the transduction channel: 

	 First, NOMPC is required for mechanical amplification by JO neurons, as 

mutants do not show feedback amplification (see FIG 1.5 | a) ( Göpfert et al., 2006). This 

requirement may reflect a role in transduction as amplification is mechanistically linked 

to transduction and requires information about the intensity, frequency, and phase of 

the incoming sound (Nadrowski et al., 2008). By contrast, NAN/IAV reportedly facilitate 

amplification, suggesting that transduction continues in the absence of TRPVs (see 

FIG 1.5 | a). The nerve response of the mutants on the other hand show that iav mutants 

do not elicit any measurable potentials whereas nompC mutants shows reduced sound 

evoked potentials (see FIG 1.5 | b) (Göpfert et al., 2006). 

	 Second, NOMPC is distinct to the other TRP channels by a special structural 

feature, its N-terminal ankyrin repeats. In NOMPC 29 ankyrins form one turm of a 

functional spring (Howard et al., 2004; Liang et al.,  2011). The predicted gating spring stiffness 

of  hair cell transduction channels matches the stiffness of this spring (Howard et al., 2004; 

Lee et al., 2006; Sotomayor et al, 2005).

FIG 1.5 | Antennal Response Characteristics
a)Nonlinear amplification: Log-log coordinates of the displacement of the fly’s antennal sound receiver as a 
function of the stimulus particle velocity. Displacements and particle velocities are given as Fourier amplitudes at 
the stimulus frequency, which was adjusted to the individual best frequency of each receiver. Red lines, nonlinear 
regimes; marker, gain in sensitivity due to nonlinear amplification.
b) Nerve response: Normalized compound action potential plotted against log scaled antennal displacement. The 
stimulus was played at the antenna best frequency. The best frequency maximum nerve response is at ~ 1000nm 
stimulus amplitude.  [modified from data of David Piepenbrock and Göpfert et al., 2006] 	
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A proposed model of TRP-channel function by these findings is that NOMPC is an 

auditory transducer, required for feedback amplification, which is negatively controlled 

by NAN/IAV. As loss of NOMPC reduces but does not totally abolish sound evoked 

potentials, additional transduction channels “X” must exist (Göpfert et al.,  2006; Lu et al., 2009) 

(see FIG 1.6). This model is in consistency with the localisation of the afore mentioned 

channels. In the JO NOMPC is located at the most distal part of the scolopidial cilium 

that is directly attached to the sound receiver (Cheng et al., 2010 ; Lee et al., 2010; Liang et al., 

2011) (see FIG 1.1 & FIG 1.6). 

NAN/IAV on the other hand is located proximal to NOMPC between the ciliary 

dilation and the basal body (Gong et al., 2004; Bechstedt et al., 2010; Cheng et al., 2010; Liang et al., 

2010) (see FIG 1.1 & FIG 1.6). The model is further underlined by the fact that ablation 

of the sound receptors leads to the same effects ensued from mutations in nompC. The 

residual nerve responses in sound receptor ablated and nompC mutants flies match 

each other. In addition ablation of the gravity wind receptors has no effect on active 

amplification and the nerve response resembles those of wild-type flies (Effertz, Wiek & 

Göpfert, 2011). 

Transcuticular Ca2+ imaging (Kamikouchi et al., 2009; Kamikouchi & Wiek et al., 2010) revealed 

that gravity wind receptors are responsible for the remaining nerve potential of nompC 

mutants and that nompC mutant flies show no Ca2+ response in sound receptors (Effertz, 

Wiek & Göpfert, 2011). 

A recent study modifies this model for auditory transduction suggesting that NOMPC, 

through active amplification processes, rather modulates than mediates transduction 

in auditory receptor cells (Lehnert et al., 2013). Lehnert et al propose that NAN/IAV are 

components of the transduction complex (Lehnert et al., 2013). Their modification of the 

model is based on non-invasive recordings of giant fibre neurons, as neuronal signals 

generated by auditory receptor neurons are propagated through gap junctions to giant 

fibre neurons. Hereby they show that signals are not propagated in iav1 and nan36a 

mutants and that nompC3/nompC1 mutant fly show decreased sensitivity of generator 

currents to antennal rotations but on the other hand adaptation to static forces is not 

prevented. By the latency and speed of the generator currents recorded they imply that 

NAN/IAV is directly gated by mechanical force, as proposed amplification (Göpfert et 
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al., 2006; Kamikouchi et al., 2009; Lee, 2010) through second messengers for NAN/IAV would 

occur in microseconds. They further underline this by the fact that NAN/IAV does 

not colocalize with NOMPC in the JO dendrite ruling out direct protein-protein 

interactions between these components.

FIG 1.6 | Model of TRP-channel function in the Drosophila ear. 

NOMPC may be an auditory transduction channel, as loss of these channels abolishes active amplification. Additional 
transduction channels “X” must exist, as reduced but not totally abolished  sound evoked antennal nerve potentials 
are recorded in flies lacking NOMPC. The NAN/Iav heteromultimeric channel acts downstream of NOMPC and 
negatively controls amplification in a NOMPC dependent way. Loss of this control leads to excess amplification, 
resulting in self - sustained oscillations of the receiver. As judged from the complete loss of nerve potentials in nan 
and iav mutants, NAN/Iav  is additionally required for propagating electrical signals from the transduction site to 
the antennal nerve.

[modified from Göpfert et al. (2006) & Lu et al (2009)]
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1.5.1 | Ca2+ Imaging as a Means of Monitoring Neuronal Activity

Neuronal activity comprises various processes that are associated with the excitation 

of neurons such as calcium influx, altered metabolism rates, release of synaptic 

vesicles or most prominently changes in the membrane potential. To investigate the 

activity characteristics of neurons extra- and intra cellular recording techniques and 

combinations of these are widely used.  Drawbacks of these techniques are constraints 

in spatial  resolution, as for instance with extracellular recordings, whereas intracellular 

recordings are limited to one to several cells. Other major disadvantages are the integrity 

as well as the neuronal size. 

	 The model organism Drosophila melanogaster is an example in which typical 

recording techniques reach their limits. For example, to record from chordotonal 

organs, the cuticula and the suporting cells of the scolopidial organ have to be harmed. 

This would probably lead to no true response, as CHOs depend on the integrity of their 

supporting cells and the cuticle to which they are connected (Kamikouchi & Wiek et al.,  

2010). A solution for the above mentioned constraints is the visualisation of neuronal 

activity by special sensors. Voltage gated sensors such as genetically-encoded voltage 

indicators (GEVIs) can be used. But only recently their drawback for signal to noise 

ratio has been solved (Kralj et al.,  2012). 

	 Ca2+ imaging has been proved to be a solid technique (Berridge et al., 1998; Grienberger 

et al., 2012). Calcium is a key player in regulating neuronal processes. Changes in Ca2+ 

concentration lead to neurotransmitter release or alter the excitability of neurons. Ca2+ 

can be either released from internal stores like the endoplasmatic reticulum or it can 

influx through voltage, receptor and mechanic gated ion channels (Berridge et al., 1998; 

Montell, 2005). Different genetically encoded Ca2+ indicators (GECI) are used to monitor 

neuronal activity in Drosophila melanogaster. For instance Cameleon 2.1 (Cam 2.1), a 

ratiomeric calcium sensor, was used to investigate the function of JO sub populations 

(see chapters 2.1.1, 2.2.1 & 3.1) through expression of driver lines that labelled distinct 
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auditory sensory projections of the JO (Kamikouchi et al.,  2006). One sub population could 

be identified as sound sensitive (AB neurons) and the other as gravity/wind sensitive 

(CE neurons) (Kamikouchi et al.,  2009). 

1.5.2 | Ca2+ Indicator Cameleon 2.1 

Cameleon 2.1 (Cam2.1) is a genetically encoded Ca2+ indicator (GECI). It bears the 

fluorescent proteins enhaced Cyan Fluorescent Protein (eCFP) and  the enhanced 

Yellow Fluorescent Protein (eYFP) that are genetically modified versions of the Green 

Fluorescent Protein (GFP ), which is a native protein derived from the jellyfish Aequorea 

victoria. GFP  has a barrel shaped structure composed of 238 amino acids. It has a 

major excitation peak  at 395 nm and an emission peak at 509 nm (Chalfie et al., 1994).

From N- to C-Terminus the fusion protein Cam2.1 consists of mutant eCFP,  a Ca2+ 

binding domain of calmodulin (Cam), the calmodulin-binding peptide M13 and eYFP 

(see FIG 2.4| c).  Binding of up to 4 Ca2+ molecules to Cam leads to enclosing of the 

M13 domain (see FIG 2.4| b-d). This conformational change brings the two fluorescent 

proteins in close proximity for Förster Resonance Energy Transfer (FRET) (Miyawaki et 

al., 1997 & 1999). FRET occurs when two fluorescent dyes are in the Förster radius of 0.5-

10 nm and have overlapping emission and excitation wavelength (see FIG 2.4| a).  The 

so called donor (eCFP) is then directly transferring energy, without photon emission, 

to the acceptor (eYFP). In the case of Cam2.1 the excitation wavelength of eCFP is 440 

nm and the emission wavelength is 476nm, which is near the eYFP peak excitation 

wavelength of 480 nm. When Cam2.1 is excited at 440nm, in the absence of calcium the 

eCFP emission wavelength of ca. 480 nm is dominant. When the  Ca2+ concentration 

rises the binding of calcium leads to a conformational change reducing the eCFP and 

eYFP distance allowing FRET. This shifts the dominant emission wavelength to ca. 

540 nm (see FIG 2.4| b-c). Therefore Cam2.1 is an ideal ratiomeric sensor to measure 

changes in  Ca2+ concentration. The transgenic construct of UAS-Cam2.1 allows the 

expression in Drosophila melanogaster where it is used as a sensor of neuronal activity 
(Kamikouchi & Wiek RJ  et al., 2010; Fiala A et al., 2002 & 2003; Effertz T, Wiek RJ, Göpfert MC, 2011).
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FIG 2.4 | Cameleon 2.1

Cameleon 2.1 is a calcium dependent FRET sensor. It consists of eCFP and eYFP linked by Cam and M13. In 
absence of calcium the eCFP emission wavelength of ca. 480nm is dominant. Binding of calcium leads to a 
conformational change reducing the eCFP and eYFP distance. As a result Förster resonance energy transfer occurs 
and shifts the dominant emission wavelength to ca. 540nm.
a| Scheme of Förster radius 0.5-10 nm; b| change in Ca2+ concentration;  c| Scheme of Cam2.1 changing its 
conformation of binding up to four Ca2+-Ions;  d| Shift of eCFP and eYFP intensities and ratio over time 
according to Cam2.1 conformation, corrected for bleaching.

[modified from Riemensperger T et al. (2012)]
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2.1.1 | The Model Organism Drosophila melanogaster  

Flies are often used for biological studies due to their fast reproduction cycles and, 

connected to this, low maintenance costs. 
	 The fruit fly Drosophila melanogaster is one of the oldest and best studied model 
organisms, described as early as 1830 by Johann Wilhelm Meigen (Meigen, 1830). In 1901 
first used as a model organism by William Ernest Castle it only took nine years until 
Thomas Hunt Morgan started his fundamental works on the structure of Drosophila 
Chromosomes (Castle et al., 1906; Morgan, 1913). His chromosome theory of inheritance 
underlined the just rediscovered work of Mendel and became the fundament of clas-
sical Genetics. With over 700 hundred other fruitfly species Drosophila melanogaster 
belongs to the family of Drosophilidae. The whole genome is sequenced since 2000 (Ad-

ams et al., 2000). Of the 13.600 genes discovered, a huge number shares not only sequence 
homology with human and vertebrate genes, but has also the same function. 
	 For example the Drosophila melanogaster gene atonal fully rescues the pheno-
type of Math1 (mouse atonal homologue 1) null mice, which are shown to die shortly 
after birth (Wang et al., 2002). Nowadays several genetic tools, like the GAL4/UAS (Brand & 

Perrimon, 1993) system, help to manipulate gene expression in Drosophila melanogaster. 
For example the use of randomly created GAL4 driver lines helped to visualize and 
cartograph different subpopulations in the JO and its corresponding projection areas 
in the Drosophila brain (Yoshihara and Ito, 2000; Kamikouchi et al., 2006). Due to this relatively 
easy genetic accessibility of the Drosophila melanogaster genome, studies combining 
the physiological properties, like response and tuning of mechanosensoric cells, with 
genetic screens help to understand the evolution, development, function and patholo-
gy of mechanoreceptors like hair cells in Homo sapiens (Senthilan et al., 2012).
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2.1.2 | Fly Husbandry

Fly stocks were kept in cylindric plastic vials of 64 mm height and 26 mm width (FIG 

2.1; greiner bio-one:PS TUBE flat bottom). These vials were enclosed with foamy ceapren mite 

protection plugs (greiner bio-one: Kat.-Nr. 205 101). These vials are filled up to a quarter with 

the nutrition medium (see 2.1.3) on which the female fly also deposits its eggs. For new 

crosses at least 3 virgin females and 2 males of different genotype were collected under 

CO2 - anaesthesia and placed into the nutrition bottled vials. The flies were 

kept at two different temperatures. At least three copies of every stock line, 

at different stages, were kept at 18°C to create a slower generation period 

of about 14-20 days in contrast to flies kept at 25°C. Crosses and weak fly 

stocks were kept at 25°C with an average reproduction cycle of 9-10 days, 

as 25 °C is the healthiest temperature for flies (Greenspan, 2004). The humidity 

at both temperatures was levelled to 60% and the day and night cycle was 

12h :12 h. Stocks were switched to new vials ca. every three weeks. 

2.1.3 | Nutrition Recipe

125g agar was soaked in 10 litre of water and cooked over night. On the next day soy 

bean flour, yeast, maize meal, treacle and malzin were separately mixed and dissolved 

(see chart 2.1). These ingredients were mixed into the agar and the whole mixture was 

cooled down under constant stirring for 1h until 55°C were reached. Then the fungicide 

propionic acidand the bactericide Nipagin (15% in 70 % Ethanol) were stirred in. The 

fly vials were then filled to a fourth with the still hot fluid medium.
chart 2.1 | Nutrition Ingredients

125 g agar soak over night

100 g soy bean flour dissolve in 1litre H2O

180 g yeast

800 g maize meal dissolve in 2litre H2O

220 g treacle dissolve in 1litre H2O

800 g malzin dissolve in 1litre H2O

63 ml propionic acid

15 g Nipagin dissolve in 50 ml EtOH

64
m

m

26mm
FIG 2.1 | Fly Vial
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2.1.4 | Transposable Elements: P- Elements, PiggyBac, Minos

A transposable element or transposon is a small DNA segment which is able to change 

its genomic position, by jumping through the genome and generating mutations. A 

distinction is drawn between RNA (Retoransposons / Class-I-transposons) and DNA 

dependent transposons (DNA-transposon / Class-II-transposons).

	 Retrotransposons transcribe their code from DNA to RNA. Reverse 

transcriptase, often coded by the retrotransposon itself, creates a DNA copy from the 

RNA, which is then inserted at a new position in the genome (“Copy & Paste”). 

	 DNA transposons, on the other hand, do not depend on an RNA agent, 

their transposition depends on the enzyme transposase (“Cut & Paste“). There are 

autonomous transposons, encoding for the transposase itself, and non-autonomous 

transposons that either have deletions in the transposase gene or miss it.
	 Today it is possible to choose between different transposons for targeted and 
untargeted manipulations of the genome. The most common transposon in Drosophila 
genetics are the P-Elements, followed by PiggyBac and Minos elements.
P-Elements have been described in the 1970’s in a comparison of wild-type (wt) 
Drosophila melanogaster strains and strains held under laboratory conditions since 
1905 (Kidwell et al., 1977). As only wt strains carried P-Elements, they must have entered 
the Drosophila melanogaster genome posterior to the isolation of laboratory strains 
(Ryder E & Russell S, 2003). 

	 The autonomous wt P-Element, flanked by terminal inverse repeats, is cut out 

at these repeats by P transposase, forming sticky ends. The palindromic sticky ends are 

fused by the P transposase, forming a circular double strand of genomic DNA. As the 

excision process is imprecise to a certain level, DNA flanking the P-Element can be co-

excised as well, causing deletions of the host genome. The circular form is “pasted” by 

the P transposase at another genomic region (see FIG 2.2). In somatic cells P transposase 

is not transcribed, as a splicing event is inhibited, so that only germ line cells express 

P transposase (Amarasinghe et al., 2001). Female wt strains carrying the P-Element express 

an inhibitor of P transposase, so that P-Element mobility is restricted to wt females 
(Ryder E & Russell S, 2003). To use P-Elements as a genetic tool P-Elements were engineered 
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missing the sequence for P transposase, inhibiting their mobility. To cause mutations 

in the genome circular forms of this nonautonomous P-Elements were injected into 

the posterior part of embryos, before cell formation. The embryos for this must carry 

the gene for the transposase and not express the wt-inhibitor. For fly transformation 

the P-Element is replaced by a Plasmid carrying a reporter gene and a gene of interest 

flanked by the transposase recognition targets (Rubin & Spradling, 1982; Bier et al., 1989).

	 Due to the P-Element’ s preference to insert into some specific genes (hotspots) 

and against insertion into others (coldspots) (Metaxakis et al., 2005), the PiggyBac and the 

Minos system offer an alternative.
	 The lepidopteran PiggyBac system, is another „Cut & Paste“ transposon system 
used in Drosophila genetics (Thibault et al.,  2004). The Minos transposon system derived 
from Drosophila hydei of the „Copy & Paste” type is also fully established in Drosophila 
melanogaster as a genetic tool (Metaxakis et al., 2005).

P-Elements are commonly used to create specific Gal4 driver lines. The NP lines for 

example used in this study are Gal4 enhancer trap lines (P{GawB} element-insertion 

lines).

5’ 3’ORF 0 ORF 1 ORF 2 ORF 3

P transposase

genomic insertion

genomic excision

FIG 2.2 | P-Element

The wt P-Element consists of four open 
reading frames (ORF) which are flanked by 
5’ and 3’ inverse terminal repeats. 

These 31 bp long repeats connect when the 
P-Element is excised from the genome by 
the transposase. 

The motile circular form is reinserted at 
another position in the genome.

[modified from Ryder & Russel (2003)]
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The GAL4/UAS system (Brand & Perrimon, 1993) facilitates the aimed expression of 

arbitrary transgenic constructs in certain tissues, cells or at certain stages during 

development. The system consists of two yeast specific genes, Gal4 and UAS (upstream 

activating sequence). The gene Gal4 encodes for the transcription factor GAL4. The 

binding of a GAL4 homodimer to UAS, an enhancer region, starts translation of 

downstream genes. To use the GAL4/UAS System as a genetic tool in Drosophila Gal4 

and UAS constructs are randomly or specifically inserted into the Drosophila genome 

by P-Element insertion. If the gene Gal4, under control of a weak promotor, is inserted 

next to an endogenous enhancer or promotor region, for example a cell specific gene, 

GAL4 is only expressed in those cells. 

	 Fly lines carrying such constructs are called “driver lines”. The “responder lines” 

carry constructs of a reporter gene X downstream to UAS, which for example can be 

the gene for GFP. Crosses of transgenic Drosophila driver and responder lines are used 

to investigate problems from genetics to behaviour (see FIG 2.3). 

	 The Gal4/UAS system was used in this study to express Ca2+ sensors specifically 

in Drosophila CHOs. For crossings always 3 virgin females and 3 male flies of either 

the responder or the driver line were used. Different markers of balancer chromosomes 

were used to identify the desired offspring. Balancer chromosomes do not recombine 

with homologous chromosomes and mostly carry a mutation with a phenotype easy to 

identify.

X
♂

GAL4

genomic enhancer

♀

reporter gene XUAS 

FIG 2.3| Scheme of the Gal4/UAS system

Driver lines expressing GAL4 and responder lines  
carrying a reporter gene downstream of UAS are 
crossed to activate a reporter gene in a cell or tissue 
dependent manner.  

In flies of the F1 progeny, the GAL4 homodimer 
binds to UAS, activating the reporter gene X.

[modified from Brand & Perrimon (1993)]
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The following Drosophila melanogaster fly strains were used for the experiments:

Chart 2.2 | Fly strains
Name Class Genotype

1st / 1st ; 2nd / 2nd ; 3rd / 3rd  

(chromosome)

FlyBase ID

vel Donor

EMAP: 

dsRed2

UAS - 

marker

+/+; Sp/Cyo ; 

UAS-DCX-EMAP:dsRed2  / TM6b

S. Bechstedt

Cam2.1 UAS -

 Ca2+sensor

+/+; UAS-Cameleon2.1 / Cyo ; 

NP0761-Gal4 / TM6b

A. Fiala

NP 0761 GAL4 w- ; Sp/SM1 ; NP0761/TM65bTb Nippon 

Consortium

NP 1046 GAL4 NP1046-Gal4 / FM7c(Sn+) ; +/+ ; 

Sb / TM3 Ser

Nippon 

Consortium

NP 6250 GAL4 +/+ ; NP6250-Gal4 / Cy ; MKRS / 

TM6b

Nippon 

Consortium

JO15 GAL4 w- / w- ; +/+ ; Jo15-Gal4  / TM3-830 Nippon 

Consortium

ato- mutant +/+ ; +/+ ; ato[1] / Df(3R)p[13] FBgn0010433

FBab0002853

iav1 mutant iav1 / FM7c(sn+) ; +/+ ;

NP0761-Gal4 /TM3 Ser 

FBst0300199

Canton S wt +/+ ; +/+ ; +/+ FBst0000001
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2.1.7 | Crossing Scheme for Johnston’s Organ Experiments

Starter lines
+/+; Sp/cyo ; DCX-EMAP:dsRed2  / TM6b |  +/+; Cameleon2.1 / Cyo ; NP0761 / TM6b | iav1 / FM7c(sn+) ; +/+ ; NP0761/TM3 Ser

 

Crossing Scheme
iav1 / FM7c(sn+) ; +/+ ; NP0761/TM3 Ser

X 
+/+; Cameleon2.1 / Cyo ; NP0761 / TM6b

=
+/FM7c(sn+) ; +/Cy ; NP0761/TM6b        X        +/FM7c(sn+) ; +/ Cameleon2.1  ; NP0761/TM6b

=
+/FM7c(sn+) ; Cameleon2.1  /Cy ; NP0761/TM6b ;  

iav1 / FM7c(sn+) ; +/+ ; NP0761/TM3 Ser
X 

+/+; Sp/cyo ; DCX-EMAP:dsRed2  / TM6b
=

+/ FM7c(sn+) ; +/Cyo + ; NP0761/ DCX-EMAP:dsRed2        X        +/ FM7c(sn+) ; +/Sp + ; NP0761/ DCX-EMAP:dsRed2 

=
 

FM7c(sn+) ; Sp/Cyo + ; NP0761/ DCX-EMAP:dsRed2  
X 

iav1 / FM7c(sn+) ; +/+ ; NP0761/TM3 Ser
=

iav1/ FM7c(sn+) ; +/Cyo + ; NP0761/ DCX-EMAP:dsRed2        X         iav1/ FM7c(sn+) ; +/Sp + ; NP0761/ DCX-EMAP:dsRed2  
=

iav1/ FM7c(sn+) ; Sp/Cyo + ; NP0761/ DCX-EMAP:dsRed2
X 

FM7c(sn+) ; Cameleon2.1  /Cy ; NP0761/TM6b 
=

iav1 / FM7c(sn+) ; Cameleon2.1/ Cyo ; NP0761/ DCX-EMAP:dsRed2

♂ = male  ♀ = female virgins

♂

♀

♀

♂
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2.2.1 | Calcium Imaging Setup

The setup was built on an actively damped optical 

table. The Ca2+ imaging setup was composed 

of a microscope, a polychromator, a beam 

splitter and a CCD camera (see FIG 2.5). Ca2+ 

imaging experiments were realized on a bright 

field microscope (Zeiss Axio Examiner D1, Visitron 

Systems) (see FIG 2.5| 6) modified for fluorescence 

microscopy. A prism based polychromator was 

used for fluorescence illumination, producing 

user selectable monochromatic wavelengths 

between 350 nm and 600 nm with an accuracy 

of ~4 nm (Visichrome High-Speed Polychromator System, 

Visitron Systems)(see FIG 2.5| 2) In all Ca2+ imaging 

experiments the polychromator was tuned to 

438 nm, as all specimen used in the experiments 

expressed Cam2.1 (see 2.1.6). The emitted light of 

the fluorescent specimen was split by a DiChroic 

Long Pass filter (515 nm DCLP) creating two 

identical images of different wavelengths (Dual 

View 2 imaging system, MAG Biosystems) (see FIG 2.5| 

4). Specific filters (485/40 nm [CFP] & 535/30 nm [YFP] 

bandpass filter; 520 - ∞ nm [YFP /dsRED2] long pass filter, 

Chroma Technology) narrowed the wavelengths of 

both image pathways (see FIG 2.5| 5). The aligned 

images were detected side by side on a single 512 x 

512 pixel CCD camera (Cascade II:512, Photometrics). 

Examiner D1

DV2

Cascade II

1

2
4

3

5

6

FIG 2.5 | Scheme Ca2+ - Imaging-Setup

1| Zeiss Axio Examiner D1 2| Polychromator 3| Objective 
4| 515nm DCLP  5| Bandpass Filter  6| CCD Camera

[modified from manufacturers manuals] 
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2.2.2 | FCO: Leg Preparation and Experimental Procedure

The average intensity of regions of interest (ROI) for each wavelength channel were 

recorded online by MetaFluor Software (Molecular Devices) (Fiala A, 2003). The data was 

post processed in Excel and Matlab  (chapter 2.2.5). 

2.2.2 | FCO: Leg Preparation and Experimental Procedure

To measure neuronal activity in the chordotonal sensilla of the Drosophila FCO I de-
veloped a measurement chamber (Kamikouchi & Wiek  et al., 2010). 
	 The chamber was made of transparent acrylic glass. A cavity was carved out, 
which is 3mm in length and 1mm in width and depth. A parallel running cavity, with 
a quadratic diameter of 0.9 mm, works as a rail for a small acrylic rod connected to a 
piezo electric actuator (P-841.10 PZT/Driver, Physik Instrumente) (see FIG 2.6| 3). 
	 For experiments flies expressing Cam2.1 under control of chordotonal organ 
specific driver lines NP1046, NP6250, NP0761 & JO15  were used (Kamikouchi et al., 2006). 
All flies were under CO2 anaesthesia during preparation. The left wing and all legs, 
but the right metathoracic leg, were removed from the flies. These flies were quickly 
transferred to the cavity and fixated with dental UV-glue (Kentoflow, Kent). The femur of 
the remaining leg was positioned parallel to the rod. The femur-tibia joint was free to 
move. The tarsae and the distal part of the tibia were glued to the rod. A drop of glycerol 
was put directly on top of the region that houses the FCO. Then a coverglass was placed 
over the cavities in a way that only the femur is bathed in the glycerol and the rod with 

FIG.2.6 | FCO Setup
1| Tibia & Tarsus glued to the acrylic rod;  2| Image of the FCO in MetaFluor;  3| Piezo actuator;  4| PC & A/D 
converter; 5| Objective;  The red arrows indicate the linear movement of the Piezo actuator and the angular 
deflection of the tibia towards the femur.

3

54

1 2
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the tibia and tarsus attached was not touching it. The measurement chamber was then 
placed under the Ca2+ imaging setup, in a way that the whole FCO was directly under 
the objective (see FIG 2.6| 5 & 2). The tibia was deflected by a piezoelectric actuator 
with step, ramp, staircase and sinusoidal stimuli. The actuator was controlled by Spike2 
software via an A/D converter (micro 1401 MKII, Cambridge Electronic Devises) (see FIG 2.6| 
4). In MetaFluor one ROI was set enveloping the whole organ (see FIG 2.6| 2). For Data 
processing and analysis see chapter 2.2.5.

2.2.3 | JO: Antennae Preparation and Experimental Procedure

For experiments iav1 mutant and non mutant wt-flies were used. To specifically 

localize the region of the ciliary dilation, the flies expressed DCX-EMAP:dsRed2, a 

fusion protein of Emap and the red fluorescent molecule DsRed2 (Bechstedt et al., 2010). 

DCX-EMAP:dsRed2 localizes to the ciliary dilation. Before preparation, the flies were 

either chilled on ice for 5min or shortly anaesthetized with CO2. Then all legs were 

dissected. A cover slip was prepared with a line of dental glue (Kentoflow, Kent), in the 

length of the wingspan. Then the dorsal part of the thorax and the wings stretched to 

the sides were placed on this line. The head was glued to the thorax and the leg stumps 

were sealed with glue to prevent dehydration. The left antenna was glued to the left 

eye. To avoid movement of the pedicellus a small amount of glue was put between it 

and the left antenna. Glycerine was then used to close the gap between the pedicellus, 

covering the JO. The cover slip was then transferred to an acrylic glass device with 

two unidirectional micromanipulators, both holding sharpened tungsten electrodes.  

One electrode, used for grounding and charging the animal, was in the thorax. The 

other electrode was placed behind the free rotating arista of the right antenna. The 

acrylic glass device was then placed under the Ca2+ imaging setup so that the JO was 

visible through the objective (see FIG 2.7| 1,3,4,8).  Before experiment start the free 

fluctuations best frequency of the flies antenna was monitored. The displacement of 

the arista was detected by a laser-doppler-vibrometer (LDV; OFV-534 Polytec) (see 

FIG 2.7| 1,6 & chapter 2.3). Then a charge of -42 V was applied through the thoracic 

electrode to the animal (see FIG 2.7| 3). The actuator electrode was connected to a non 
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commercial amplifier. The arista was then displaced, by changing the voltage of the 

actuator electrode, alternating back and forth from negative to positive at the fly’s best 

frequency (see FIG 2.7| 4).  The stimulus form was set by Spike2 and created by an A/D 

converter (micro 1401 MKII, Cambridge Electronic Devises). This signal was amplified by the 

self build amplifier with the factor 1000. As wt-flies show the highest antennal nerve 

response at best frequency stimulation with displacement amplitudes of ~1000nm (see 

chapter 1.3.2), the displacement was levelled to this amplitude.  This was done by de- 

or in-creasing the actuator electrode and arista inter-distance. After all settings are 

set the LDV is turned off to prevent crosstalk of the laser beam with the channel set 

for DCX-EMAP:dsRed2  (520 - ∞ nm [YFP /dsRED2] long pass filter, Chroma Technology). The 

polychromator was tuned to 557 nm. Pictures of DCX-EMAP:dsRed2  were acquired 

by MetaFluor. A ROI was set around the region of the ciliary dilations which were 

marked by DCX-EMAP:dsRed2. Then the excitation wavelength was changed to 438 

nm and ROIs were set enveloping the distal part of the cilium, the proximal part of 

the cilium, the nerve cell bodies and a control region without fluorescence. For data 

processing and analysis see chapter 2.2.5.

1 28
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FIG 2.7 | JO Setup
1| Scheme of arista displacement by the actuator electrode  2| Fusion image of the JO (green: Cam2.1, red: Dcx-
Emap-Dsred2);  3| loading electrode;  4| actuator electrode; 5|voltage amplifier; 
6| LDV: OFV-534 Polytec; 7| PC & A/D converter 8| objective;  The red arrows indicate the movement of 
the arista and the third segment. 
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2.2.4 | Data Processing and Analysis

The time traces for fluorescence intensities of eCFP and eYFP were recorded with 

MetaFluor. The ratio of the two corresponding fluorescent signals of Cam2.1 was 

calculated as acceptor / donor for every time point. For the FCO experiments, just one 

ROI was analysed, whereas 5 ROIs were analysed separately for the JO experiments. 

For FCO experiments data was processed in Excel by a self written macro. First the data 

was normalized as percental change in fluorescence intensity. This is done by calculating 

ΔI/I0 (%) for each stimulus repeat, where I0 is the baseline before stimulation and ΔI is 

the change in fluorescence intensity I from baseline I0.

 	                                                                                                   
ΔI/I0 (%) I(t)-I0 

 I0

	 In the FCO experiments I0 was calculated as the average from a time range 

before stimulation which was as long as the stimulation itself. As the ratio represents the 

relative strength of FRET and therefore changes in  Ca2+ concentration, ΔR/R0 (%) was 

calculated like ΔI/I0 (%). As the recording frequency of the CCD camera had a jitter, 

all ΔI/I0 (%) and ΔR/R0 (%) values were binned to 5Hz. The original frame rate varied 

from 6 to 10 Hz between experiments. For direct analysis and staircase like stimulation 

all responses to a certain stimulus repeat were then averaged and plotted over time (see 

chapter 3.3.2). For further analysis binned data points obtained for baseline corrected 

Ratio change (∆R/R0) of repetitions for a certain stimulus were pooled (see chapter 

3.3.1).

	 For JO experiments the data was processed and analysed with Matlab  (Version 

R2010b, Mathworks, Waltham, MA, USA). The baseline was the time range before 

stimulation, which was as long as the stimulation itself. These data points were fitted 

with a linear fit. This fit was used to create a time dependent baseline I0(t). 

			                                                                                        ΔI/I0(t)(%) 
I(t)-I0(t)

I0(t)

In the same way ΔR/R0(t) (%) was calculated. The use of a time dependent baseline 

corrected for bleaching. As the recording frequency of the CCD camera had a jitter, 

all ΔI/I0 (%) and ΔR/R0 (%) values were down sampled to a resolution of 5.95Hz. All 

responses to a certain stimulus repeat were then averaged and plotted over time.
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2.2.4 | Data Processing and Analysis

2.3 | Laser Doppler Vibrometer

A Laser Doppler Vibrometer (LDV) allows contactless measurement of an object’s 

surface vibrations. The LDV produces a laser beam which is aimed at a surface of 

interest. The object’s surface vibrations lead to a doppler shift in the reflected laser 

beam frequency. From this doppler shift the frequency and the amplitude are extracted. 

This frequency shift can be described as         fD = 2 * v/λ  , 

where v is the velocity of the target and λ is the wavelength of the light.

	 To calculate the velocity of an object the frequency shift has to be measured at 

a known wavelength. Therefore the LDV uses an interferometer. The interferometer 

superimposes the intensities of a reference beam I1 and a measurement beam I2. This 

intensity is modulated by the formula:

		  Itot = I1 + I1 + 2 √(I1 * I2 cos * [2π * (r1 - r2)/λ]

This formula holds an interference term that relates to the path length difference of 

reference and measurement beam. If this difference is an integer multiple of the laser 

wavelength, the overall intensity is four times a single intensity. Correspondingly, the 

overall intensity is zero if the two beams have a path length difference of half of one 

wavelength (Basic Principles of Vibrometry; polytec.com). The LDV’s used can precisely record 

velocities in the mm/s to nm/s range. 

	 For experiments PSV-400 and OFV-534 were used. The OFV-534 was used for 

all Calcium Imaging experiments as well as for the locomotion assay and posture control 

experiments. Changes in free fluctuation and sound induced intensity characteristics 

of mutant iav1 flies were measured by PSV-400.

OFV-534

[Sketch of PSV-400 used on the authority of Dr. Christian Spalthoff]FIG 2.8 | Laser Doppler Vibrometer

PSV-400 OFV-534
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2.4 | Mechanical Measurements of Sound Receiver Movement

2.4.1 | Setup

CO2 anaesthetized flies were fixated with hot wax on a Teflon rod. The left antenna 

was glued to the left eye with UV-glue. To avoid movement of the pedicelus a small 

amount of glue was put between it and the left antenna. The rod was attached to a 

micromanipulator and the fly was oriented so that the arista of the right antenna was in 

the focal point and perpendicular to the LDV (PSV-400) laser beam (see FIG 2.9| 8). A 

loudspeaker (Visaton W130S) 10 cm behind the fly was used for acoustical stimulation 

and a microphone was used as reference (see FIG 2.9| 4). The microphone was placed 

~ 5mm in distance to the arista and the sound receiving element perpendicular to 

the loudspeaker. The microphone voltage output was converted to m/s. To record the 

compound action potential (CAP, [µv]) of the antennal nerve response a tungsten 

recording electrode was inserted into the head and a ground electrode was placed in 

the thorax (see FIG 2.7| 3,4). The CAP was amplified (Extracellular amplifier: MA102) 

and recorded by an A/D converter (micro 1401 MKII, Cambridge Electronic Devises) and Spike2 

software.

6
1 4

32

7 5

8
FIG 2.9 | Mechanical Measurement Setup

1| Fly fixated on Teflon rod

2| recording electrode

3| ground electrode

4| loudspeaker

5| mircophone

6| LDV(PSV-400

7| Laser beam pointed at rotating arista tip
	

8| Johnston’s Organ

     The red arrows indicate the movement of the arista and the third segment.

[Modified sketch on the authority of Dr. Christian Spalthoff] 
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2.4.2 | Free Fluctuation Recordings

The LDV was used to record free fluctuations at the tip of the arista. In absence of 

stimulation the free fluctuations of the arista were recorded for 100 seconds. Therefore 

only thermal energy and internal sound receiver processes can contribute to sound 

receiver movements, recorded as free fluctuations. The LDV software performed online 

a Fast Fourier Transform (FFT) of the velocity time trace. FFT was calculated as :

            

This FFT shows the frequency dependent velocity of the arista reflecting the sound 

receiver specific movement properties. Also the power spectral densities of displacement 

and velocity were computed by the LDV, for frequencies between 100 and 1500 Hz 
(Göpfert & Robert, 2003; Göpfert et al., 2006).

To find the best frequency, that means the frequency at which the sound receiver has 

its maximum deflection amplitude the FFT time trace for velocity can be used or the 

power spectra were fitted with a simple harmonic oscillator function (Göpfert et al., 2005). 

2.4.3 | Antennal Sound Response Characteristics 

To asses the specific nerve response of the sound receiver the antenna was stimulated 

with sound. The stimuli applied were sinusoidal pure tones at the best frequency of the 

sound receiver. The sound amplitude was modulated over a 90 dB range by an attenuator. 

16 different intensities were applied randomly. Stimulus signals were generated via the 

A/D converter by Spike2 and broadcasted by a loudspeaker. 

	 As described in chapter 2.4.2 the Arista displacement was recorded by the LDV. 

CAP and microphone output were recorded simultaneously by LDV software and 

Spike2. Only LDV recordings were used.

	 The stimulus lasted 1 second and responses to 10 stimulus repeats were averaged. 

The CAP recordings were normalized to 1 ((V-Vmin)/(Vmax-Vmin)) and plotted 

against arista displacement and against arista frequency (Effertz T, Wiek RJ, Göpfert MC, 

2011). 
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Both relations were fitted with a Hill-equation to calculate the lower (10% of the Hill-

fit) and the upper threshold (90% of the Hill-fit) of the dynamic range (Senthilan et al., 

2012) .

y0 = minimal y value (> 0), 
a = difference of maximum and minimum y value (CAP), 
b = sensibility factor (the higher the more sensitive is the system), 
c = ymin + ½ (ymax – ymin)

 

The gain meaning the amplification of the sound receiver in response to a certain 

stimulus amplitude is calculated as arista displacement over microphone recording. 

The sensitivity gain was given by dividing the maximum by the minimum gain. 
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2.5 | Locomotion Assay

2.5.1 | Walking Arena and Experimental Procedure

For studying the effect of substrate vibrations on walking behaviour of Drosophila 

melanogaster, I constructed a walking arena. 

	 The arena was circular and had an inner diameter of 65mm and a height of 2mm 

(see FIG 2.10| 3). It was made out of white plastic to achieve a maximum contrast towards 

the flies during recording. To prevent flies from flying away, the arena was covered with 

translucent acrylic lid. Drilled holes granted air supply. A single LED attached to the lid, 

was used as visual trigger, emitting 100 ms pulses prior and subsequent to stimulation 

(see FIG 2.10| 2). Since the spectral sensitivity of all Drosophila photoreceptors steeply 

decrease above 600 nm, a red LED was used (600-700 nm) (Heisenberg & Wolf , 1984; Harris 

et al., 1976) (see also 2.5.2). 

	 A mini shaker, a magnet based machine applied for the dynamic excitation 

of light objects, was used to move the arena up and down, thus emulating substrate 

vibrations. A mini shaker (Type 4810, Brüel&Kjær, Nærum, Danmark) was connected 

by a thread to a screw at the centre of the Arena undersurface (see FIG 2.10| 4).  The 

stimulus pulse duration and 

amplitude were controlled by 

Spike2 and applied to the mini 

shaker by the A/D converter 

via a specific signal amplifier 

(Power Amplifier type 2706, 

Bruel & Kjaer). LED signalling 

start and stop of stimulation 

was controlled by Spike2 and 

the A/D converter. For each 

trial 15 flies were conveyed 

from a vial via a mouth pipette 

FIG 2.10 | Walking arena

1 | Camera

2 | Lid + Trigger LED

3 | Plastic arena 

4 | Minishaker
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to the arena. Combinations of vibration frequencies (15, 30, 60 & 120 Hz) and vibration 

amplitudes (1, 5 & 10 µm) were chosen for behavioural experiments. Each stimulus 

lasted ~500 ms and was repeated 5 times with a 4s interval. Every single fly was only 

tested once for one specific stimulus setting. Each stimulus combination was tested 5 

times. The arena was washed with ethanol and rinsed for every trial. 

2.5.2 | Fly Visualization and Tracking

Fly movements were recorded by a digital camera (640 * 480 pixel resolution, Hercules 

Optical Glass Deluxe) above the arena centre (see FIG 2.10| 1). Since the contrast 

between flies and background is essential for detecting body axis and orientation, 

the whole setup was isolated from external light. Four LEDs coupled to the camera 

illuminated the arena with constant ambient white light. As the photoreceptor adapted 

to white light the effect of the red trigger lamp can be neglected. The camera frame rate 

was set to 30 Hz. The recorded trial videos were reviewed in Image J (http://rsbweb.

nih.gov/ij/). 

	 This allowed identification of frame numbers for start and end point of stimulus 

via the red LED flashes. The frame numbers were noticed for further analysis and the 

video format was changed to RAW. From these videos position and orientation of 

each fly in every frame were calculated by Ctrax (http://www.dickinson.caltech.edu/

ctrax). Ctrax is an automated, quantitative and high – throughput system for analysis 

of behaviour in freely moving fruit flies (Branson et al., 2009).

	 The system relies on machine vision techniques enabling automatic tracking 

of large groups of unmarked flies while simultaneously maintaining their distinct 

identities. Further processing of the acquired data comprised manual assignments of the 

exact vibratory stimulation phases, thereby dividing each stimulus trail into three sub 

periods of equal length (~500 ms), pre – stimulus period, the exact stimulation period 

and period after stimulation (annotated prestim, peristim, poststim respectively).
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2.5.3 | Analysis of Drosophila Walking Behaviour 

Thrust, slip, yaw, and overall velocities calculated for each video frame were used 

for analysis. To detect changes in walking velocity the median thrust velocity was 

calculated for each fly. Flies with walking speeds below 2mm s-1 where previously 

defined as stopping (Martin et al., 2004; Robie et al., 2010).  To rule out stopping flies, all flies 

were neglected with a prestim median thrust velocity below 2mm s-1. Also all fly traces 

which did not last for the whole experiment were not used for analysis. The medians 

of all flies for a certain stimulus was calculated and plotted over time. All calculations 

were performed with Matlab.

2.6 | Posture Control Experiments

To test if Drosophila is compensating for substrate vibrations and therefore holds its 

posture, wild type flies (Canton S) and controls were tested. As controls atonal mutant 

flies (ato-) that lack the FCO (Jarman et al., 1995), were used (see chapter 1.1). 

	 For the experiments the flies were waxed with a soldering iron to a rod. Motion 

to the sides, front and backwards was limited by insect pins pushed into the wax. 

Therefore the fly was able to move itself up and down. The rod was attached to a mini 

shaker (see chapter 2.5.1), displacing it with a sinusoidal stimuli of 3 cycles at a certain 

frequency and amplitude. Each of this frequency and amplitude combinations was 
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FIG 2.11 |Posture Control Setup 

1 | Mini Shaker

2 | Rod

3 | The fly is fixated at its tarsae to the rod.
    For better reflection of the LDV laser  
    beam an alloy foil is attached to the
    thorax.

4 | Laser Doppler Vibrometer centred over 
    the thorax.

5 | Insect Pins preventing side movements

  The red arrows indicate the direction of mini shaker movement. 
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applied ~400 times, for noise compensation. The inter stimulus interval was set to 2 sec.  

	 Before experimental trials the displacement of the rod alone to specific stimuli 

was recorded by LDV (OFV-534, see 2.3) and Spike2. This recordings were used as 

reference to displacement of tested flies. For experiments the LDV was placed over the 

center of the thorax. For better reflection of the LDV beam and to limit effects of the 

curvature of the thorax a flat piece of alloy foil was glued to the thorax. 

	 Live observation during experiments via a highspeed camera (Casio Exilim 

EX-FH20) were used to control for impairment of the fixation as well as the integrity of 

the specimen itself. 

	 The average displacement maxima were calculated online by Spike2 and used 

for subsequent analysis. The median of the maxima for ato- and Canton S of different 

experiments were calculated by MatLab and then compared with the maxima of 

the stimulus unit. The difference of median maxima towards the stimulus unit were 

represented as the percentage difference.
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2.5.3 | Analysis of Drosophila Walking Behaviour 

3 | Results 

3.1 | Ca2+ Activity of the Femoral Chordotonal Organ

The effect of different stimuli combinations on the FCO was tested.  The FCO response 

towards these stimuli was monitored as changes in  Ca2+ concentration via transcuticular 

Ca2+ imaging. Therefore a measurement chamber and a protocol for measurement and 

data analysis was developed (Kamikouchi & Wiek et al., 2010; see Chapter 2.2). 

Different driver lines are known to specifically label subpopulations of the JO 
(Kamikouchi et al., 2006).  These subpopulations were identified by the projection patterns 

of the labelled JO neurons. Neurons of these subpoluations differ in their response 

characteristics (Kamikouchi et al., 2009) and we found that these functional differences are 

associated with different activation properties of force-gated ion channels (Effertz, Wiek 

& Göpfert, 2011). 

	 The driver line NP0761-Gal4 labels all subpopulations of the JO which are: A, 

B, C, D & E. Subpopulation AB responds to sound and seems to require the NOMPC 

channel for its mechanosensory function (AB: JO15-Gal4, B: NP1046-Gal4).

Subpopulation CE mediates wind and gravity sensing (Kamikouchi et al. 2009, Yoruzu et al., 

2009) and seems NOMPC-independent (Effertz, Wiek & Göpfert, 2011)(CE: NP6250-Gal4). 

These driver lines that label AB and CD neurons in JO are also expressed in the FCO. 

During my Diploma thesis I could show that NP0761 labels all three subpopulations 

of the FCO but the expression pattern of the driver lines JO15 and NP1046 do not 

correspond specifically to any FCO subpopulation (Wiek,  2008). 

Ca2+ imaging  was established using the FCO driver line NP0761, which labels virtually 

all the FCO neurons and the GECI Cam2.1. Subsequently the other mentioned driver 

lines were tested.  These driver lines (JO15, NP1046 & NP6250) were tested for distinct 

and/or specific response patterns. No Ca2+ responses could be monitored with these 

driver lines. Thus all Ca2+ imaging experiments on the FCO were performed with flies 

expressing Cam2.1 under the pan FCO driver line NP0761.
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3.1.1 | Ca2+ Responses Towards Sinusoidal Stimulation

Sinusoids with different frequencies and amplitudes were used to actuate the FCO. The 

piezoactuator working range limited the maximum peak to peak deflection amplitude 

to  7.5 µm and and the stimulation frequency to 240 Hz. The intensities of the Cam2.1 

FRET pairs eCFP and eYFP and the corresponding ratio change obtained by Metafluor 

software were postprocessed in Excel (see chapter 2.2.5). Ratio changes (∆R/R0) were 

corrected for baseline drifts and pooled for 5 stimulus repetitions.

Pooled responses were fitted with single [f=a*(1-exp(-b*x))] and double exponentials 

[f = a*(1-exp(-b*x))+c*(1-exp(-d*x))] (see FIG 3.1). Both functions did fit the data. 

Akaikes information criterion (AIC) (Akaike, 1973), a measure of the goodness of fit 

was used to select the best model. AIC showed that a single exponential suffices to fit 

the data. Maxima and time constants of the single exponential were used for further 

analysis.  

	 To characterize the response characteristics towards sinusoidal stimulation the 

tibia was deflected at 6 µm peak to peak amplitude and sinusoidal frequencies of 1, 

15, 30, 60, 120, 240 Hz. Each frequency was applied five times for 5 sec with a 20 

sec repetition interval. Ca2+ responses could be monitored for all stimulus frequencies 

except for 1 Hz since baseline noise was as high as response (see FIG 3.2 | a+b  left). 

The maxima for different frequencies at 6 µm peak to peak amplitude show that higher 

frequencies lead to a higher calcium response (see FIG 3.2 |b  left). Time constants 

and standard deviation decrease at increasing frequencies (see FIG 3.2 |a left), but all 

data are in the range of standard deviation. To find a threshold for sensibility of the 

FCO the tibia was deflected with different peak to peak amplitudes (0.219, 0.4375, 

0.875, 1.75, 3.5, 7 & 14 µm) at a certain frequency. Sinusoidal stimulation at 60 Hz  was 

chosen due to the fact that at lower frequencies the detection of calcium signals was 

often camouflaged by baseline noise and that at higher frequencies the calcium signal 

seems to saturate. Data was acquired and analysed in the same manner as described 

for varying frequencies. The maxima of single exponential fit show that peak to peak 

amplitudes even in the submicrometer range can evoke calcium signals (see FIG 3.2 

|a  right) and that higher stimulus amplitudes lead to higher Ca2+ response. The time 



43

3 | Results 
3.1 | Ca2+ Activity of the Femoral Chordotonal Organ

3.1.1 | Ca2+ Responses Towards Sinusoidal Stimulation

FIG 3.1 |  FCO Ca2+ Responses to Sinusoidal Stimulation
The tibia was deflected with sinusoidal stimuli of varying frequency and amplitude combinations. 
a) FCO Ca2+ response of five stimuli repeats pooled. (5 sec 120 Hz sine stimulation 6 µm peak to peak amplitude).
b) The pooled data were fitted by a single and a double exponential. The residuals are evenly distributed for single 
and double exponential, but AIC shows that the single exponential does fit the data best.
Akaike Information criterion:
AICR2=n ln (1-R2/n)+2k
R2=compares the explained variance (variance of the model’s predictions) with the total variance (of the data).  
(R2=SSreg/Sstot) SSreg=Σ(fi-y)2, SStot=Σ(yi-y)2;  n=number of data points; k=parameters
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constants are in the range of standard deviation for all amplitudes applied and therefore  

not trend for changes in response onset can be observed (see FIG 3.2 |b  right).
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FIG 3.2 |  Single Exponential Fit Values of FCO Ca2+ Response
a) Mean time constants for frequency (left) and amplitude (right) series.
b) Mean maxima values for frequency (left) and amplitude (right) series.
blue: mean + standard deviation; green: median
Left: The tibia was deflected at 1, 15, 30, 60, 120 & 240 Hz at 6µm  stimulus amplitude.
Right: The tibia was deflected at 60 Hz with stimulus amplitudes of 0.219, 0.4375, 0.875, 1.75, 3.5, 7 & 14 µm. 
All stimuli were applied 5 times. N = number of specimen
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3.1.2 | Ca2+ Responses Towards Staircase Like Stimulation

FIG 3.3 | Staircase Like Stimulation of the FCO
FCO Ca2+ responses of ten stimuli repeats binned (Binwidth 0.2 
sec). (0.5µm *  4ms * 30steps; 1µm * 4ms * 15steps;  0.5µm *  5ms 
* 30steps; 1µm *  5ms * 15steps) All stimuli applied had an overall 
amplitude of 15µm. Staircase stimuli at different step amplitudes 
and interstep length elicit Ca2+ responses  in the FCO. All stimuli 
applied had an overall amplitude of 15µm.  
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To disentangle the effect of 

position, velocity and acceleration 

single step and ramp stimuli were 

applied. No settings allowed by 

the limitations of the piezoactuator 

used evoked any measurable Ca2+ 

responses  in the FCO. 

As single steps and single 

ramps did not elicit any calcium 

response, combinations of both 

were applied. These staircase like 

stimulation only evoked relative 

small calcium reponses when 

interstep length was in the time 

range of action potentials (FIG 

3.3). The limiting factor was the 

maximum deflection amplitude 

of the piezoactuator (<15 µm).

 

3.2 | Drosophila Walking Behaviour Towards Substrate Vibrations

To test the effect of  substrate vibrations on Drosophila walking behaviour, a locomotion 

assay was developed (see chapter 2.5). The involvement of the FCO in sensing substrate 

vibration  should be investigated by the use of wild type flies and flies missing the FCO.  

First Canton S wild type flies were tested to see if substrate vibrations have any effect 

on walking behaviour, but a clear response pattern could not be detected. At 15 and 30 

Hz, with any amplitude, no change in walking behaviour could be observed. At 60 Hz 

and at all stimulus amplitudes the median velocity decreases after stimulus onset. For 
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1 µm and 10 µm stimulus amplitude the walking velocity remains decreased during 

the peristimulus and the poststimulus period. For 5 µm stimulus amplitude the flies 

increase their velocity to the prestimulus velocity during the peristimulus period and 

keep this velocity during poststimulus period. At 120 Hz flies decrease their walking 

velocity only slightly after stimulus onset. Flies stimulated with 5 and 10 µm stimulus 

amplitude increase their walking velocity to higher speeds as prestimulus walking 

velocity. Flies stimulated with 1µm at 120 Hz only slightly increase their walking 

velocity after peristimulus period. All sub phases are not significantly different by 

their confidence intervals.  These findings show an incoherency in Drosophila walking 

behaviour towards substrate vibrations.
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FIG 3.4 | Substrate vibration effect Drosophila walking behaviour

Median thrust velocities and confidence interval of walking flies at pre-, peri- & post- stimulus periods for 
different stimulus amplitudes (1, 5 & 10µm) and frequencies (15, 30, 60, 120 Hz). The stimulus lasted ~ 500ms 
and was repeated 5 times for each experiment. Flies not tracked by Ctrax for the whole experiment and flies not 
walking were not analysed (see chapter 2.5.3). No trend can be observed at frequencies 15 & 30 Hz. After stimulus 
onset at 60 Hz stimulus frequency the flies thrust speed seems to decrease down to the walking threshold of 2mm 
s-1 (see chapter 2.5.3). After a short stop phase flies seemed to start walking again during peristimulus period. 
At 120 Hz these effects can be only monitored for 5 and 10µm stimulus amplitude, but not for 1µm stimulus 
amplitude.
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3.3 | Drosophila Compensates for Substrate Vibrations 

To assess  if the FCO is required for control of body posture during substrate vibration 

like displacements, the thoracic displacement of Canton S and ato- to vertical 

movements, emulating substrate vibrations, were recorded (see chapter 2.6). Stimuli 

combinations of different peak to peak amplitudes (1 µm, 10 µm, 50 µm, 100 µm, 500 

µm) and frequencies (15 Hz, 30 Hz, 60 Hz, 120 Hz) were tested. The single experiment 

average maximum displacement (see FIG 3.5) was used for analysis. FIG 3.5  exemplifies 

a single experiment for sine displacements, at 60 Hz and 1 mm amplitude, of a Canton 

S wild type fly and an ato- mutant fly. The maximum displacement of the ato- mutant 

and the stimulus unit is in the range of standard deviation.  The Canton S maxima are 

smaller then the maxima of the ato- mutant fly and the stimulus unit. The standard 

deviations of Canton S  and ato- mutants do not overlap at the maximum displacement. 

The time difference between the stimulus and the specimen maximum is smaller than 

1 msec.

 

FIG 3.5 | Single experiment for Drosophila displacement due to substrate vibrations
Displacement average of the stimulus unit, for an ato-  mutant fly and a wt  fly plotted  over time. The stimulus, 
consisting of three sine cycles at 60 Hz and 1mm peak to peak vertical displacement, was repeated with an inter 
stimulus interval of 2 sec. The coloured dots on the averages tag the positive maximum displacements. N= number 
of specimen; n= number of stimulus repeats
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For further analysis the median of the average maximum displacements was calculated. 

The percentage difference between the stimulus displacement and the thoracic  

displacement of the specimen reflects the differences between Canton S and ato- flies 
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(FIG 3.6 & 3.7). At deflection amplitudes of 1 µm the thoracic displacement of Canton 

S and ato- flies is higher than the displacement of the stimulus unit (see Fig. 3.6, 15 Hz). 

At these small amplitudes the flies move themselves up and down independent of the 

stimulus, as shown by live observation (see chapter 2.6). At 10 µm displacement, the 

thoracic displacement of Canton S and ato- converge to the stimulus units displacement 

(see Fig. 3.6 & 3.7|a+b)). 

Starting at these displacement values it could be observed that at higher amplitudes 

the thoracic displacements of the specimen is smaller than the stimulus displacement 

(see Fig. 3.6 & 3.7). Interestingly the thoracic displacement of Canton S is smaller than 

the displacement of ato-  flies (see Fig. 3.7| c)). This applies for all frequencies and for 

all amplitudes higher than 50 µm, except for stimulation at 120 Hz & 50 µm amplitude 

(see Fig. 3.6 & 3.7). The displacements for Canton S and ato- are significantly different 

for all stimulus amplitudes at 60 Hz stimulation (see Fig. 3.7| c+d)).
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3.4 | Ca2+ Imaging of JO Neurons in iav1 Mutant Flies

As mentioned in the introduction the role of TRPN & TRPV channels in Drosophila 

auditory transduction is controversial: Whether NOMPC or NAN/IAV is the primary 

transduction channel or a direct part of the transduction machinery remains unclear. 

Missing nerve potentials and altered hyperamplifictaion of iav and nan mutant flies 

indicate that transduction is modulated by NOMPC and mediated by NAN/IAV. To 

unveil if iav mutants generate ciliary transduction currents, Ca2+ imaging was used. 

	 To image calcium signals in JO neurons in the iav1 mutant background , the 

following line was generated: iav1/FM7c;Cam2.1,Cam2.1;NP0761/DCX-EMAP:dsRed2 

(see chapter 1.3.7 & 2.2.3; chart 2.2). Here, DCX-EMAP:dsRed2, which labels the 

ciliary dilation (Bechstedt et al., 2010), is used as a landmark.

	 Male iav1/- or homozygous female iav1 flies (mutants) and heterozygous iav1/

FM7c (controls) were analysed, and their antennal mechanics were measured prior to 

the imaging of calcium signals (see FIG.3.7). 

The antennal best frequency was ca. 200 Hz for iav1/FM7c controls and ca. 100 Hz for 

the iav1 (Figure 3.7| a) (Göpfert et al., 2006; Lu et al., 2009).  The power spectral density for 

iav1 flies is also ~ 150 times higher than in wildtype and iav1/FM7c flies (Figure 3.7| 

a) (Göpfert et al., 2006). The nerve responses of iav1/FM7c and iav1 flies also resemble the 

reported responses for wildtype and iav mutant flies. The iav1/FM7c flies respond to 

antennal displacements in the nm range and have a maximum nerve response at around 

1000 nm and at even higher displacements show decreased response (Figure 3.7| b) 
(Effertz, Wiek & Göpfert, 2011). In the iav1 mutants for contrast, no sound evoked nerve 

response towards antennal displacements were detected (Figure 3.7| b). Recordings of 

the antennal displacement of iav1 flies also resemble the known characteristic features 

of increased nonlinear amplification of iav mutant flies (Figure 3.7| c) (Göpfert et al., 2006; 

Lu et al., 2009). 

	 Since the antennal response characteristics of the generated fly strain for iav1/

FM7c & iav1 flies concur with the characteristics described for wildtype flies and iav 

mutant flies, respectively, the generated fly strains (chapter 1.3.7 ) were used for the 

Ca2+ imaging experiments. Confocal imaging showed that the Ca2+ sensor Cam2.1 was 
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3.1.2 | Ca2+ Responses Towards Staircase Like Stimulation

expressed in JO neurons and that DCX-EMAP:dsRed2 located to the ciliary dilation 

(see FIG. 3.7| a)). Before Ca2+ imaging experiments were performed a ROI (R2) was 

set around the region of DCX-EMAP:dsRed2, to distinguish between the most distal 

part and the proximal part of the JO dendrites (see FIG. 3.7| d)). Then ROIs were set 

around the regions of NOMPC (R1), NAN/IAV (R3) location and around the NCBs 

(R4) (see FIG. 3.7| a),c)). A control region (R5) was set where no fluorescence could 

be observed. Subsequently the flie’s antenna were stimulated at their best frequency 

( ~100 Hz for iav1 and ~200 Hz for iav1/FM7c ; see chapter 2.2.3) with displacement 

amplitudes of 1000 nm, which corresponds to the maximum amplitude of the nerve 

response in wildtype flies. (see FIG.2.6). 

	 The stimulus was applied for 5 seconds and repeated ~ 50 times. Average Ca2+ 

responses, given as ΔR/R%, were recorded from iav1 mutants and iav1/FM7c controls. 

The maximum response increases for iav1/FM7c from R1 to R4. In the control region 

R5 of iav1/FM7c flies a signal was detected, which is about two times smaller then the 

response in R1 (see FIG 3.7 | e). In iav1 flies the signal does not increase from region R1 

to R4 (see FIG 3.7 | f). In the control region R5 only noise is detected. The maximum 

response in iav1 mutants is around 0.07 ΔR/R% for all regions (see FIG 3.7 | f). This 

value is around 4 times smaller than the maximum response in region R1 and around 

11 times smaller than the maximum response in region R4 of  iav1/FM7c flies. 

	 Single and double exponentials approximate the average Ca2+ response of iav1/

FM7c and iav1 obtained from all regions (see FIG 3.7 | e) &  f ); see chapter 3.1). AIC 

weights provide a measure of the probability that one model serves as a more sufficient  

approximation to the data than the other. AIC weights can assume figures between 0 

and 1, whereas in this case 0 is low probability and 1 is high probability that the double 

exponential fits the data better than the single exponential. AIC weights are equal for 

all regions in iav1 flies and for regions R1 to R3 in iav1/FM7c flies, with an AIC weight 

of 0.12. Only in region R4 iav1/FM7c flies the AIC weight is higher with a value of 0.43. 

By this, one can assume that a secondary process alters Ca2+ response in -or proximally 

of- region R3, to which Iav localizes.
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4 | Discussion

According to the results, the femoral chordotonal organ selectively responds to vibratory 

stimuli and is necessary for control of body posture during substrate vibrations. Next 

to this the results indicate a slight effect of substrate vibrations on walking behaviour.

The results also show that JO neurons still  display sound-evoked calcium signals in the 

absence of TRPVs.

4.1| Functional Properties of the Drosophila FCO

4.1.1 | The FCO Detects Frequency Dependent Stimuli 

The observation that the FCO responses to sinusoidal stimulation at amplitudes down 

to about 100 nm is highly remarkable. This leads to the assumption that the FCO or 

part of the FCO’s scolopida, might be a detector for substrate vibrations. 

The stair case like stimulations support this, as the frequency with which the steps 

were ramped was 200 to 250 Hz. This corresponds to the frequencies of the sinusoidal 

stimuli applied. It has been reported that substrate vibrations provide information 

used in different behavioural aspects such as courtship, predator prey interactions, 

recruitment of food and (Hill, 2001; Fabre et al., 2012). Therefore an behavioural assay 

investigating Drosophila’s response to different substrate vibrations was established 

during this thesis.

The results presented here indicate that the femoral chordotonal organ neither responds 

to step nor ramp actuation. Two possible explanations exist:  

	 First changes in calcium concentration could be so small that the change in 

FRET ration is masked by the baseline noise of the calcium sensor Cam2.1. Also it could 

be that only certain neurons respond to step or ramp stimuli and that their response is 

overlaid by the baseline fluorescence, as all FCO neurons express Cam2.1.
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Second, the FCO does not respond to steps and ramps, or the deflection amplitude is 

too small to account for a sufficient response. This Theory seems feasible regarding 

the size of the Drosophila leg and the way it is moved by the piezoactuator. The tibia is 

about 400 µm in length which is deflected between 0.219 µm and 14 µm which leads 

to angular changes at the femorotibial joint of 0.03° and 2°. It was shown in a previous 

study that the stick insect’s FCO responds to ramp stimuli with 10°- 60° angular changes 

of the femorotibial joint (DiCaprio et al., 2002). The limitation in stimulus amplitude in the 

experiments described here may explain the inability to detect Ca2+ changes of step or 

ramp stimuli. Also the changes in calcium concentration can be masked by the baseline 

noise of the calcium sensor Cameleon2.1. To overcome this obstacle a wider range in 

angular deflection of the tibia or a mathematical approach to reduce signal to noise 

ratio would be needed.  

4.1.2 | Substrate Vibrations Slightly Affect Drosophila Walking Behaviour

The effect of substrate vibrations on Drosophila walking behaviour can were observed 

at 60 and 120 Hz At 60 Hz, the flies transiently decreased their walking velocity upon 

stimulus onset but speed up again at midst of  the stimulus. The primary response 

and the following acceleration could indicate a reflex based startle response. For 120 

Hz a similar trend was observed, but the videos revealed that some flies lost contact 

to the ground and were spun around. The assumption that substrate vibrations have 

an effect on Drosophila walking behaviour could not be finally confirmed. Responses 

indicating either fright or flight behaviour,  meaning stopping or an increase in 

walking velocity could not be identified. There are no significant differences in walking 

behaviour between the defined stimulus sub phases (prestim,  peristim, poststim) even 

for stimulation at 60 Hz. Possible explanations for these findings include: 

	 First it is obvious that the mean velocity recorded at the prestim phase is with ca 

6 mm/sec around 3 times smaller than the values observed by Branson et al. and Robie 

et al for walking flies. (Branson et al., 2009; Robie et al. 2010). This reduced walking velocity 

could result from the fact that a lid was used to prevent escape by flight. Branson et 

al instead performed their experiments with wing clipped flies in an open arena. The 



57

4 | Discussion
4.1| Functional Properties of the Drosophila FCO

4.1.3 | The FCO is Necessary for Posture Control

relative small space between the thorax and the lid possibly disrupted normal walking 

behaviour, as flies could touch the lid with their thoracic bristles. As it is known that 

Drosophila, if given a choice approaches the closest object (Robie et al. 2010), the arena 

design itself could distract normal walking behaviour. Branson et al used a heat barrier 

to prevent flies from walking at the arena edges  (Branson et al., 2009). 

	 Secondly the stimulus itself could be in adequate to elicit a behavioural response, 

as it simulates substrate vibrations as a pure vertical displacement on all legs at the 

same moment. 

It is known for insects that they detect substrate vibrations as traveling waves (Bell, 1980). 

Recently discovered abdominal substrate tremulations causing stopping in females 

during courtship, show that substrate vibrations have an effect on Drosophila walking 

behaviour (Fabre et al., 2012). The fact that these substrate vibrations are transmitted via 

the legs (Fabre et al., 2012) provide further evidence that the FCO could be a detector 

for substrate vibrations. The relative small amplitudes of around 200 nm (deduced from 

velocity traces in Fabre et al., 2012) at around 200 Hz for the abdominally created substrate 

vibrations are in the Ca2+ response range of the FCO. Adjustments of the experimental 

setup and the stimuli, as well as observing flies during courtship and the use of flies 

which lack the FCO could clear if Drosophila detects substrate vibrations via the 

FCO. If a significant response can be detected with these adjustments, it could also 

help to distinguish if the response is PNS or CNS based. The presence of peripheral 

synapses emanating from the FCO in form of the glomerulus point out to reflex based 

effects of the FCO. It has to be identified if the glomerulus has efferent inputs from 

moto-neurons or afferently contacts these. The technique of GFP reconstitution across 

synaptic partners (GRASP) (Feinberg et al., 2008), by expressing split GFPs from sensory 

and motoneuronal side, could answer this question. 

4.1.3 | The FCO is Necessary for Posture Control

Drosophila does compensate for substrate vibrations by control of its body posture. 

Drosophila controls its body posture by pulling its legs to the body to compensate 

for upward displacement and accordingly stretching its legs away when displaced 
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downwards. This leads to a relative stable body position during displacement. The 

significant differences of thoracic displacement of wildtype flies and atonal mutants 

that lack the FCO, at 60 Hz stimulation, shows that the FCO is necessary for the control 

of body posture during substrate vibrations. The time differences between stimulus 

vibration and the body vibration of 0.26 msec for wildtype and 0.3 msec for atonal 

mutant flies are, which leaves no time for synaptic transmission. This means it is a 

passive feature, probably resulting from the recording of a non even surface, which are 

the specimen compared to the even surface of the stimulus unit. The fact that there 

is no phase shift with a longer duration between the stimulus unit and the specimen, 

raises the question how the FCO controls compensation for substrate vibrations. The 

previously mentioned influence of the glomerulus is also to long for direct synaptic 

transmission (~ 5ms)  (see chapter 1.3.1 & 4.1.2), but a transmission could be achieved 

by for example dendro-dendritic electric excitation/shunting, as can be found in the fly 

lobula (Henning et al. 2008),  
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4.2| Ciliary  Ca2+ Currents In the Johnston’s Organ 

4.2.1 | iav1 Mutants Show Auditory Ca2+ Responses 

The expression of a ciliary dilation marker advanced the recently developed technique 

of transcuticular Ca2+ imaging of chordotonal organs (Kamikouchi & Wiek et al.,  2010). 

The marker, DCX-EMAP:dsRed2,  was used as an optical landmark, by which certain 

regions of  the JO scolopidia were identified and distinguished. This allowed to image 

mechanically evoked Ca2+ responses in subregions of the distal cilium (see FIG 3.7 

&  4.1). As the main protagonists of auditory transduction are known to locate to the 

cilium, I characterized the Ca2+ response properties of iav1 mutant flies. Flies with 

wt antennal response characteristics show that the Ca2+ level rises from the tip of the 

cilium towards the NCB. Data approximation by a single and a double exponential rise 

to max indicates that a secondary process effects the Ca2+ response at the region of IAV 

localisation. Ca2+ responses in iav1 mutant flies suggests, that mechanotransduction 

does not depend on IAV. Ca2+ responses in iav1 mutant flies were 4 to 11 times smaller 

then in wildtype flies and the Ca2+ level is constant for all regions, seems consistent 

with the idea that IAV plays a role in signal amplification downstream of transduction 
(Göpfert et al., 2006).

4.2.2 | Ca2+ Responses in iav1 Mutants underline the Model of TRP-channel 

function by Göpfert et al.

These evidences underline the model for TRP-channel function in the Drosophila 

ear proposed by Göpfert et al (2006). (see FIG 4.1). The modification of this model, 

suggested by Lehnert et al., posits that NAN/IAV are part of the transduction complex 

and that NOMPC is responsible for signal amplification (Lehnert et al., 2013). Lehnert et 

al also rule out direct protein-protein interaction between NOMPC and NAN/IAV, as 

they are spatially divided by the ciliary dilation. Mechanotransduction is thought to 

work via ion channels that are directly gated mechanically. 
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Kim et al propose that NAN/IAV  are gated by stretch and bending of the ciliary axoneme, 

as ciliary bending has been reported for the grasshopper FCO (Liedtke et al ., 2005; Kim et 

al., 2007; Moran et al., 1977). NAN and IAV have been reported to be activated mechanically  

in vitro (Kim et al., 2003, Gong et al., 2004 ), but further evidence is needed to confirm these 

results (Lehnert et al., 2013). The evidences presented here and the previously reported loss 

of  Ca2+ response in nompC mutants (Effertz, Wiek & Göpfert, 2011) support the assumption 

that NOMPC is a more promising candidate for the primary transduction channel than 

NAN/IAV.

Nan -Iav

NompC

Ampli�cation

Receiver vibration

Sound

Nerve Response

+ „ X “
+

+

wt iav1

Ca2+ Ca2+

Nerve response
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FIG 4.1 | Models of TRP-channel function in the Drosophila ear. 
Left: Scheme of wildtype and iav mutant auditory response characteristics: iav1 mutant flies show increased active 
amplification. Stimulation at the best frequency does not elicit any nerve potential, but evokes Ca2+ currents in the 
cilium and the NCB.

Göpfert Model: NOMPC might be an auditory transduction channel, as loss of these channels abolishes active 
amplification. Additional transduction channels “X” must exist, as reduced but not totally abolished  sound evoked 
antennal nerve potentials are recorded in flies lacking NOMPC. The NAN/IAV heteromultimeric channel acts 
downstream of NOMPC and negatively controls amplification in a NOMPC dependent way. Loss of this control 
leads to excess amplification, resulting in self - sustained oscillations of the receiver. As judged from the complete 
loss of nerve potentials in nan and iav mutants, NAN/IAV  is additionally required for propagating electrical signals 
from the transduction site to the antennal nerve.

Modified Model: Lehnert et al imply by the latency and speed of generator currents, recorded in giant fibre neurons,  
that the transduction complex is directly gated by mechanical force rather then a 2nd messenger cascade. They also
propose that NAN/IAV is needed for sound evoked antennal field potential response and is therefore part of the 
transduction machinery and that NOMPC is modulating transduction.
Recordings of Ca2+ responses towards stimulation at the best frequency in iav1 mutant flies contradict this 
proposition and underlines the model for auditory transduction suggested by Lu et al. 
(see chapter 1.4.2 and 3.4 and FIG 1.5 & 1.6).     [modified from Göpfert et al (2006) & Lu et al (2009)]
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4.2.2 | Ca2+ Responses in iav1 Mutants underline the Model of TRP-channel function by Göpfert et al.

4.3 | Closing Remarks & Peroration

The method of in vivo transcuticular Ca2+ imaging I established and improved during 

the time of this thesis facilitates the dissection of functional properties of Drosophila 

neurons (Kamikouchi & Wiek et al., 2010). Compared to electrode based nerve recordings 

this technique is less invasive and can be performed on intact animals. The unscathed 

nature of the specimen is especially important for the analysis of mechanosensory 

neurons, as their proper function depends on  their suspension and the surrounding 

tissue. 

I was able to show that neuronal responses of different organs can be monitored by this 

technique. During the time of this thesis I adjusted this technique to analyse specific 

properties of JO subsets and the effect of mutations on JO neurons (Effertz, Wiek & Göpfert, 

2011). By use of marker proteins expressed parallel to the Ca2+ sensor I could show 

that not only subsets of a sensory organ can be functionally dissected but also intrinsic 

functions of neurons can be monitored. 

First evidence for FCO function was collected by in vivo transcuticular Ca2+ imaging 

and lead to behavioural experiments concerning the FCO function.

The behavioural experiments I designed suggest that Drosophila is sensitive to substrate 

vibrations and that the FCO is responsible for this sensitivity.

Higher spatial and time resolution provided for Ca2+ imaging are currently established 

by two photon microscopy and improved Ca2+ sensors. This would allow to identify 

the region of primary transduction in CHO’s and to identify the functional properties 

of single scolopida in specific CHO.

Next to analysing mechanosensory cells in Drosophila I designed a recording Setup 

for a collaborative work with April Marrone, to analyse hyperthermic seizures and 

aberrant cellular homeostasis in Drosophila dystrophic muscles (Marrone, Kucherenko, 

Wiek, Göpfert & Shcherbata, 2011).
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5 | Abbreviations   

AIC | 					     Akaikes information criterion 			 
Cam |					     Ca2+ binding domain of calmodulin 			 
Cam 2.1 |				    Cameleon 2.1 					   
CNS | 					     central nervous system 					   
CPG | 					     central pattern generator 				  
CHO | 					     chordotonal organ 					   
eCFP |					     enhanced Cyan Fluorescent Protein 			 
eYFP | 					     enhanced Yellow Fluorescent Protein	
ES |					     external sensory organ 					   
EMAP |			    		  Echinoderm Microtubule Associated Proteins	
FFT | 					     Fast Fourier Transform 					   
FCO | 					     femoral chordotonal organs 				  
FRET |					     Förster Resonance Energy Transfer 				 
GECI | 					     genetically encoded Ca2+ indicators			 
GEVI | 					     genetically-encoded voltage indicator
GFP  |					     Green Fluorescent Protein
IAV /  iav |				    Inactive  					   
iav1 |					     iav1/ iav1;Cam2.1,Cam2.1;NP0761/DCX-EMAP:dsRed2 
iav1/FM7c | 				    iav1/FM7c;Cam2.1,Cam2.1;NP0761/DCX-EMAP:dsRed2 	
Ca2+ |					     intracellular ionic calcium 					  
JO | 					     Johnston´s Organ 					   
LDV |					     Laser Doppler Vibrometer	 				  
Math1 | 					    mouse atonal homologue 1 				  
MD |					     multidenditic neurons 					   
NAN / nan |				    Nanchung 					   
NCB | 					     Nerve Cell Body
NOMPC | 				    No mechano receptor potential C; also called TRPN1 		
∆R/R0 | 					    Ratio change 						    
ROI |					     regions of interest 					   
SOP | 					     sensory organ precursor cells 				  
TRP |					     transient receptor potential				  
TRPV |			    		  transient receptor potential vanilloid			 
UAS | 					     upstream activating sequence				  
wt |					     wild-type 

|| Genes are written in italic and proteins are written in caption letters ||



63

5 | Abbreviations   
*
*

*

*



64

6 | Literature  
* 
*

6 | Literature  

A

Adams et al (2000)
	 Review:The Genome Sequence of Drosophila melanogaster

	 Science, Vol. 287 no. 5461 : 2185-2195

Akaike H (1973)

	 Information theory and an extension of the maximum likelihood principle. 

	 In: B. N. Petrov (Hrsg.) u.A.: 

	 Proceedings of the Second International Symposium on 

	 Information Theory Budapest: Akademiai Kiado 1973. S. 267-281

Albert JT, Nadrowski B, Göpfert MC (2007) 

	 Mechanical signatures of transducer gating in the drosophila ear. 

	 Curr Biol Vol 17:1000–1006.

	

Albert JT, Nadrowski B, Göpfert MC (2007) 

	 Drosophila mechanotransduction–linking proteins and functions. 

	 Fly (Austin) Vol 1:238–241.

Altner H and Thies G.(1984)

	 Internal proprioceptive organs of the distal antennal segments in Allacma 		

	 fusca (L.)(Collembola : Sminthuridae): proprioceptors phylogenetically 

	 derived from sensillum bound exteroceptors. 

	 Int. J. Insect Morphol. Embryol., Vol 13: 315-30



65

6 | Literature  
*
*

Amarasinghe AK, MacDiarmid R, Adams MD, Rio DC (2001) 

	 An invitro-selected rna-binding site for the kh domain protein psi acts as a 		

	 splicing inhibitor element. 

	 RNA Vol 7:1239–1253.

B

Bang AG & Posakony JW(1992)
	 TheDrosophila gene Hairless encodes a novel basic protein that controls alter	
	 native cell fates in adult sensory organ development. 

	 Genes Si Dev. vol 6: 1752-1769.

Bässler U (1993)

	 The femur – tibia control system of stick insects – a model system for the 

	 study of the neural basis of joint control. 

	 Brain Res Rev 18, 207-226 

Bässler U (1986)

	 Afferent control of walking movements in the stick insect Cuniculina impigra. 	

	 II. Reflex reversal and the release of the swing phase in the restrained foreleg.

	 J.Comp.Physiol.A Vol 158: 351–362.

Bässler U (1988)

	 Functional principles of pattern generation for walking movements of stick 	

	 insect forelegs: the role of the femoral chordotonalorgan afferences.

	 J. Exp. Biol. Vol 136: 125–147.

Bechstedt S, Albert JT, Kreil DP , Müller-Reichert T, Göpfert MC & Howard J(2010)
	 A doublecortin containing microtubule-associated protein is implicated in 		
	 mechanotransduction inDrosophila sensory cilia.

	 Nature Communications 1,Article number:11



66

6 | Literature  
* 
*

Bell PD (1980)

	 TRANSMISSION OF VIBRATIONS ALONG PLANT STEMS:

	 IMPLICATIONS FOR INSECT COMMUNICATION

	 NewYORK ENTOMOLOGICAL SOCIETY, VOLLXXXVIII(3):210-216

	

Berridge MJ (1998)

	 Neuronal Calcium Signaling

	 Neuron, Vol 21: 13-26,

Boekhoff-Falk G (2005) 
	 Hearing inDrosophila: development of johnston’s organ and emerging 		
	 parallels to vertebrate ear development. 

	 Dev Dyn Vol 232:550–558.

Brand AH & Perrimon N (1993)

	 Targeted gene expression as a means of altering cell fates and generating 

	 dominant phenotypes.

	 Development Vol 118:401–415.

	

Branson K, Robie A A, Bender J, Perona P, Dickinson M (2009)
	 High – throughput ethomics in large groups ofDrosophila. 

	 Nature Methods Vol 6: 451-457 

Büschges (1994)

	 The physiology of sensory cells in the ventralscoloparium of the stick insect 	

	 femoral chordotonal organ. 

	  J. exp. Biol. Vol 189:285–292



67

6 | Literature  
*
*

Büschges A (2005)

	 Sensory control and organization of neural networks mediating coordination 	

	 of multisegmental organs for locomotion.

 	 Journal of neurophysiology Vol 93(3):1127-35

C

Castle WE, Carpenter FW, Clark AH, Mast SO & Barrows WM (1906)

	 The effects of inbreeding, cross-breeding, and selection upon the fertility and 	

	 variability of Drosophila.

	 Proc. Am. Acad. Arts Sci., Vol 41:729-86.

Caldwell JC & Eberl DF (2002) 
	 Towards a molecular understanding of Drosophila hearing. 

	 Journal of Neurobiology 53: 172-189.

Chalfie M , Tu Y, Euskirchen G, Ward WW, and Prasher DC (1994)

	 Green fluorescent protein as a marker for gene expression

	 Science, Vol 263, Issue 5148: 802-805.

Cheng Li E. , Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan, (2010)

	 The Role of the TRP Channel NompC in Drosophila Larval and Adult 

	 Locomotion, 

	 Neuron, Vol 67(3): 373-380

D

DiCaprio, Wolf and Büschges A (2002)

	 Activity-Dependent Sensitivity of Proprioceptive Sensory Neurons in the 		

	 Stick Insect Femoral Chordotonal Organ

 	 J Neurophysiol , Vol 88: 2387–2398



68

6 | Literature  
* 
*

E

Eberl DF & Boekhoff-Falk G (2007)
	 Development of Johnston’s organ in Drosophila. 

	 Int. J. Dev. Biol., Vol 51: 679-687.

Effertz T, Wiek R, Göpfert MC (2011) 
	 Nompc trp channel is essential for Drosophila sound receptor function. 

	 Curr Biol Vol 21:592–597.

Ewing A, Bennet-Clark H (1968) 

	 The courtship songs of drosophila.

	 Behaviour Vol 31:288–301.

Ewing AW, Miyan JA (1986) 

	 Sexual selection, sexual isolation and the evolution of song in the Drosophila	

	 repleta group of species. 

	 Animal Behaviour Vol 34:421 – 429.

F

Fabre CG, Hedwig B, Conduit G, Lawrence PA, Goodwin Sf, Casal J (2012)

	 Substrate-Borne Vibratory Communication during Courtship in 			 

	 Drosophila melanogaster

	 Curr Biol Vol 22 (22): 2180–2185



69

6 | Literature  
*
*

Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, 

Shen K, Bargmann CI (2008)

	 GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts 	

	 and synapses in living nervous systems.

	 Neuron. Vol 57(3): 353-63

Fiala A & Spall T (2003)
	 In vivo calcium imaging of brain activity inDrosophila by transgenic cameleon 

	 expression. 

	 Sci. STKE Vol 174, PL6 

Fiala A, et al. (2002) 
	 Genetically expressed cameleon in Drosophila melanogaster is used to visualize 

	 olfactory information in projection neurons.

	 Curr Biol Vol 12:1877–1884.

Field LH, Matheson T.(1998)

	 Chordotonal organs of insects

	 Advances in Insect Physiology Vol 27:1-230

G

Gong Z et al (2004)

	 Two Interdependent TRPV Channel Subunits, Inactive and Nanchung, 

	 Mediate Hearing in Drosophila

	 The Journal of Neuroscience, Vol 24(41):9059 –9066

 

Göpfert MC, and RobertD (2001) 

	 Biomechanics. turning the key on Drosophila audition. 

	 Nature, Vol 411:908.



70

6 | Literature  
* 
*

Göpfert MC, and RobertD (2002)
	 The mechanical basis ofDrosophila audition.

	 The Journal of Experimental Biology Vol 205: 1199–1208.

Göpfert MC, and RobertD (2002)

	 Motion generation by Drosophila mechanosensory neurons. 

	 PNAS, Vol 100 (9): 5514–5519.

Göpfert MC, Humphris ADL, Albert JT , Robert D and Hendrich O (2005) 
	 Power gain exhibited by motile mechanosensory neurons inDrosophila ears 

	 PNAS, Vol 102 (2) : 325-330

Göpfert MC, Albert JT, Nadrowski B, & Kamikouchi A (2006). 

	 Specification of auditory sensitivity by Drosophila TRP channels. 

	 Nat Neurosci, Vol 9(8): 999–1000. 

GraberV (1882)

	 Die chordotonalen Sinnesorgane und das Gehör der Insekten

	 Arch. mikr. Anat., Vol 20: 506–640

Greenspan RJ (2004)

	 Fly pushing 2nd Edition 

	 Cold Spring Harbor Laboratory Press

Grienberger C, Konnerth A (2012)

	 Imaging Calcium in Neurons

	 Neuron Vol 73: 862 - 885

Grünert U & Gnatzy W(1987)

	 K+ and Ca2+ in the receptor lymph of arthropod cuticular mechanoreceptors. 

	 J. Comp. Physiol., Vol 161:329–333.



71

6 | Literature  
*
*

H

Hall JC (1994)

 	 The mating of a fly. 

	 Science Vol 264(5166): 1702–1714.

Harris WA, Stark WS, Walker JA (1976)

	 Genetic dissection of the photoreceptor system in the compound eye of 

	 Drosophila melanogaster.

	 J Physiol (london) Vol 256: 415-439

Heisenberg M & Wolf R (1984)

	 Vision in Drosophila (Genetics of Microbehavior)

	 Springer -Verlag (Berlin, Heidelberg, NewYork, Tokio):ISBN 3-540-136851

Hennig M, Möller R, Egelhaaf M (2008)

	 Distributed Dendritic Processing Facilitates Object Detection: 

	 A Computational Analysis on the Visual System of the Fly

	 PLoS ONE Vol 3(8): e3092.

Hill PSM (2001)

	 Vibration and Animal Communication: A Review.

	 Amer,Zool., Vol 41:1135-1142

Hofmann T und Koch UT (1985)

	 Acceleration receptors in the femoral chordotonal organ of the stick insect, 	

	 Cuniculina impigra.

	 J. exp. Biol. Vol 114:225–237



72

6 | Literature  
* 
*

Hofmann T, Koch UT und Bässler U (1985)

	 Physiology of the femoral chordotonal organ in the stick insect, 

	 Cuniculina impigra.

	 J. exp. Biol. Vol 114, 207–223.

Howard J, Bechstedt S (2004) 

	 Hypothesis: a helix of ankyrin repeats of the nompc-trp ion channel is the 		

	 gating spring of mechanoreceptors. 

	 Curr Biol Vol 14: R224–R226.

Hoy RR, Hoikkala A, Kaneshiro K (1988)

	 Hawaiian courtship songs:

	 evolutionary innovation in communication signals of drosophila. 

	 Science Vol 240:217–219.

I

Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ (1998)

	 The organization of extrinsic neurons and their implications in the 			

	 functional roles of the mushroom bodies in Drosophila melanogaster Meigen.

	 Learn. Mem., Vol 5:52–77.

J 

Jan YH & Jan LY (1994)
	 Genetic control of Cell fate specification inDrosophila peripheral 

	 Nervous System. 

	 Annu.Rev.Genet., Vol 28:373-93.



73

6 | Literature  
*
*

Jarman AP, Yan S, Jan LY and Jan YN (1995)
	 Role of the proneural gene, atonal, in formation ofDrosophila chordotonal

 	 organs and photoreceptors. 

	 Development, Vol 121:2019-2030.

Johnston (1855) 

	 Auditory apparatus of the culex mosquitoes.

	 Q.J.Microsc 3:97–102.

K

Kamikouchi A(2006)

	 Comprehensive Classification of the Auditory Sensory Projections in 
	 the Brain of the Fruit Fly Drosophila melanogaster. 

	 The Journal of comparative Neurology, Vol 499:317–356.

Kamikouchi A et al (2009)
	 The neural basis ofDrosophila gravity-sensing and hearing.

	 Nature Vol 458(7235):165-71.

Kamikouchi A, Wiek RJ, et al (2010)
	 Transcuticular optical imaging of stimulus-evoked neural activities in the		
	 Drosophila peripheral nervous system.

	 Nature Protocols Vol 5: 1229 - 1235 

Keil TA (1997)

	 Functional morphology of insect mechanoreceptors. 

	 Microsc. Res. Tech., Vol 39:506-31.

Kernan M., Cowan D., Zuker C. (1994)

	 Genetic dissection of mechanosensory transduction: 				  

	 mechanoreception-defective mutations of Drosophila.



74

6 | Literature  
* 
*

	 Neuron Vol 12:1195–1206.

Kernan MJ (2007) 
	 Mechanotransduction and auditory transduction inDrosophila. 

	 Pflugers Arch - Eur. J. Physiol. Vol 454: 703-720.

Kidwell MG, Kidwell JF, Sved JA (1977) 
	 Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits 	
	 including mutation, sterility and male recombination. 

	 Genetics Vol 86: 813–833.

Kim C (2007)

	 Chapter 17: 

	 TRPV Family Ion Channels and Other Molecular Components 			 

	 Required for Hearing and Proprioception in Drosophila

	 TRP Ion Channel Function in Sensory Transduction and 

	 Cellular Signaling Cascades.

	 Liedtke WB, Heller S, editors.

	 Boca Raton (FL): CRC Press; 2007.	

Klagges B. R. E., Heimbeck G., Godenschwege T.A., Hofbauer A., Pflugfelder G.O., 

Reifegerste R., Reisch D., Schaupp M., Buchner S., Buchner E.(1996)

	 Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila.

	 The Journal of Neuroscience, Vol 16:3154-3165.

Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D & Cohen AE	 (2012)

	 Optical recording of action potentials in mammalian neurons using a 		

	 microbial rhodopsin

	 Nature Methods  Vol 9: 90–95



75

6 | Literature  
*
*

L

Lee G, et al. (2006) 

	 Nanospring behaviour of ankyrin repeats. 

	 Nature Vol 440:246–249.

Lee J, Moon S, Cha Y, Chung YD (2010) 

	 Drosophila trpn(=nompc) channel localizes to the distal end of 

	 mechanosensory cilia. 

	 PLoS One 5: e11012.

Lehnert BP, Baker AE, Gaudry Q, Chiang AS, Wilson RI (2013)

	 Distinct roles of TRP channels 							     

	 in auditory transduction and amplification in Drosophila.

	 Neuron. Vol 77(1): 115-28

Liang X, Madrid J, Saleh HS, Howard J (2011) 

	 Nompc, a member of the trp channel family, localizes to the tubular body and 	

	 distal cilium of drosophila campaniform and chordotonal receptor cells. 

	 Cytoskeleton (Hoboken) Vol 68: 1–7.

Liedtke W, Kim C (2005)

	 Functionality of the TRPV subfamily of TRP ion channels: 

	 add mechano-TRP and osmo-TRP to the lexicon!

	 Cell Mol Life Sci. Vol 62(24): 2985-3001.

Lu Q, Senthilan PR, Effertz T, Nadrowski B, Göpfert MC (2009)

	 Using Drosophila for studying fundamental processes in hearing 

	 Integr. Comp. Biol. Vol 49 (6): 674-680.



76

6 | Literature  
* 
*

M

McIver SB (1985)

	 Mechanoreception. 

	 Comprehensive Insect Physiology, Biochem. and Pharmacology. Vol 6:71-132

Meigen JW (1830). 

	 Systematische Beschreibung der bekannten europäischen zweiflügeligen 		

	 Insekten. 

	 Sechster Theil mit zwölf Kupfertafeln. - pp. I-XI [= 1-11], 1-401, [3]. 		

	 Hamm. (Schulz).

Metaxakis A, Oehler S, Klinakis A & Savakis C (2005)
	 Minos as a genetic and genomic tool in Drosophila melanogaster.

	 Genetics, Vol 171(2): 571-81

Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, and Tsien RY (1997)

	 Fluorescent indicators for Ca2+ based on green fluorescent proteins and 

	 calmodulin.

	 Nature, Vol 388: 882–887

Miyawaki A, Griesbeck O, Heim R, and Tsien, RY (1999)

	 Dynamic and quantitative Ca2+ measurements using improved cameleons.

	 Proc. Natl. Acad. Sci. USA, Vol 96: 2135–2140.

Montell C, et al. (2002) 

	 A unified nomenclature for the superfamily of trp cation channels.

	 Mol Cell  Vol 9: 229–231.

Montell  C (2005)

	 The TRP Superfamily of Cation Channels 



77

6 | Literature  
*
*

	 Sci. STKE (272), re3. [DOI: 10.1126/stke.2722005re3]

Morgan TH (1913)

	 Heredity & Sex, The Jesup Lectures 

	 Columbia University Press

Moran DT, Varela FJ and Rowley JC 3rd (1997)

	 Evidence for active role of cilia in sensory transduction.

	 Proc Natl Acad Sci USA. Vol 74(2): 793–797. 

N

Nadrowski B, Göpfert MC (2009) 

	 Modeling auditory transducer dynamics. 

	 Curr Opin Otolaryngol Head Neck Surg Vol 17:400–406.

Narda RD (1966)
	 Analysis of the stimuli involved in courtship and mating in d. malerkotliana 	
	 (sophophora, Drosophila). 

	 Animal Behaviour, Vol 14: 378 –383.

Nishino H, Field LH (2003)

	 Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, 	

	 the New Zealand tree weta Hemideina femorata: II. complex tibial organ

	 The Journal of Comparative Neurology, Vol 464 (3): 327–342

O

Orlovsky GN, Deliagina TG, Grillner S (1999) 

	 Neuronal control of locomotion.

	 Oxford: Oxford UP.



78

6 | Literature  
* 
*

P

Pearson KG (1995)

	 Proprioceptive regulation of locomotion. 

	 Curr. Opin. Neurobiol Vol 5: 786–791

Polytec Homepage

	 Basic Principles of Vibrometry

	 http://www.polytec.com/int/solutions/vibration-measurement/

	 basic-principles-of-vibrometry/

R

Robie AA, Straw AD, Dickinson MH (2010)
	 Object preference by walking fruit flies, Drosophila melanogaster, is mediated 	
	 by vision and graviperception.

	 J Exp Biol. ,Vol 213(Pt 14):2494-506.

Ryder E & Russell S (2003) 

	 Transposable elements as tools for
	 genomics and genetics in Drosophila. 

	 Brief Funct Genomic Proteomic, Vol 2:57–71.

Riemensperger T, Pech U, Dipt S & Fiala A (2012) 
	 Optical calcium imaging in the nervous system of Drosophila melanogaster

	 Biochimica et Biophysica Acta (BBA) Vol 1820:1169–1178



79

6 | Literature  
*
*

S

Schilcher F (1976)

	 The behavior of cacophony, a courtship song mutant in 

	 Drosophila melanogaster. 

	 Behav Biol, 17(2), 187–196.

Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, 	

	 Winkler M, Möbius W, Howard J, Göpfert MC (2012)

	 Drosophila Auditory Organ Genes and Genetic Hearing Defects

	 Cell Vol 150 (5): 1042 - 1054) 

Shanbhag SR, Singh K & Singh N (1992)

	 Ultrastructure of the FEMORAL CHORDOTONAL ORGANS and their 
	 novel synaptic Organization in the Legs ofDrosophila melanogaster Meigen 	
	 (Diptera : Drosophilidae). 

	 Int. J. Insect Morphol. & Embryol., Vol 21: 311-322.

Shorey HH (1962) 
	 Nature of the sound produced byDrosophila melanogaster during courtship. 

	 Science, Vol 137:677–678.

Snodgrass RD(1926)

	 The morphology of insect sense organs and the sensory nervous system. 

	 Smithson. Misc. Collect., Vol 77: 1-80.



80

6 | Literature  
* 
*

Sotomayor M, Corey DP, Schulten K (2005) 

	 In search of the hair-cell gating spring elastic properties

	 of ankyrin and cadherin repeats. 

	 Structure Vol 13: 669–682.

Spieth H (1952) 
	 Mating behavior within the genus Drosophila. 

	 Bulletin of the American Museum of Natural History, Vol 99: 401–474.

T

Thibault ST et al (2004)
	 A complementary transposon tool kit for Drosophila melanogaster 

	 using P and piggyBac

	 Nature Genetics, Vol 36: 283 - 287 (2004) 

Todi SV, Sharma Y, Eberl DF (2004)
	 Anatomical and molecular design of the Drosophila antenna as a flagellar 

	 auditory organ. 

	 Microsc Res Tech Vol 63:388–399.

Tracey WD Jr, Wilson RI, Laurent G, Benzer S.(2003)
	 Painless, aDrosophila gene essential for nociception. 

	 Cell, Vol 113(2):261-73.



81

6 | Literature  
*
*

W

Chu-Wang IW and Axtell RC (1972)

	 Fine structure of the terminal organ of the house fly larva, 

	 Musca domestica (L). Z. Zellforsch., Vol 127: 287-305.

Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002)
	 Drosophila atonal fully rescues the phenotype of Math1 null mice: 

	 new functions evolve in new cellular contexts.

	 Curr Biol., Vol 12(18):1611-6.

 Wiek RJ (2008) (Matrikel. Nr.: 3606899)

	 Funktion und Morphologie chordotonaler Sensillen im Bein der Taufliege

	 Drosophila melanogaster

	 Als Diplomarbeit vorgelegt dem Vorsitzenden des Prüfungsausschusses für die

	 Diplomprüfung im Fach Biologie. 

	 Angefertigt bei Prof. Dr. rer. nat. Martin C. Göpfert

	 Universität zu Köln.

Y

 Yack JE (2004)

	 The structure and Function of Auditory Chordotonal Organs in Insects. 

	 Microscopy Research and Technique, Vol 63:315-337. 

Yannoni YM and White K (1999)
	 Domain necessary forDrosophila ELAV nuclear localization: 

	 function requi	res nuclear ELAV. 

	 Journal of Cell Science, Vol 112:4501-4512.



82

6 | Literature  
* 
*

Young D (1973)

	 Fine structure of the sensory cilium of an insect auditory receptor. 

	 J. Neurocytol., Vol 2:47-58. Chu-Wang and Ax-tell, 1972; 

Yoshihara M, Ito K

	 Improved Gal4 screening kit for large-scale generation of enhancer-trap strains.

	 Drosoph. Inf. Serv. 2000, Vol 83:199–202.

Z

Zacharuk RY and Albert PJ (1978)

	 Ultrastructure and function of scolopophorous sensilla in the mandible of an 

	 elasterid larva (Coleoptera). 

	 Can. J. Zool., Vol 56:246-59. 

Zill S, Schmitz J, Büschges A (2004)

	 Load sensing and control of posture and locomotion. 

	 Arth. Struct. Dev., Vol 33: 273–286.



83

6 | Literature  
*
*



84

7 | Acknowledgements
* 
*

7 | Acknowledgements

First of all I have to thank Martin Göpfert who allowed me to leave the beaten path and 

work independently. He encouraged me to design my own experiments and helped 

me with a different point of view when I got stuck in a one way road. Next to scientific 

issues he always had an ear for personal concerns. 

I have to thank Thomas Effertz, with whom I worked on several projects and who was 

always critic so that I had to improve myself.  

I have to thank Björn Nadrowski, who helped me to think out of the box and to address 

problems with a mathematical approach.

I have to thank Simon Lu who introduced me to data analysis and was always fun to 

talk to.

I want to thank David Piepenbrock for friendship and competition, in science and 

sports ( and partying).

I have to thank Bart Geurten, whom I could always ask for help and cologne-gossip.

I have to thank all who provided the Laboratories backbone, like Gudrun Mathes, Steffi 

Pauls, Heribert Gras, Ralf Heinrich, Christian Spalthoff and Andreas Stumpner.

I also thank all my desk neighbours: Pingkalai Senthilan, Georg Raiser, Philip Jähde, 

Krissy Corthals and all the Bachelor and Master students.

I especially have to thank the new friends I found in Göttingen, as there are Simone 

Michalek, Sebastian Wagner, Tinki Severs, Alexander Dirk, Mona, Robin and all the 

others I can not mention here.

A special thank goes to Lena who always supported me and with whom I went 

through thick and thin.  I also have to thank Lenas parents Marion and Wolfgang who 

accommodated me and Lena when we jumped out of the frying pan into the fire.

At least I have to thank my parents Henny Schwartkopff- Wiek and Eberhard Wiek, my 

Grandmother  Jutta Peters and my sister Nora who always supported and comforted 

me. I also have to thank my lately departed uncle Prof.Dr. Bodo Schwartzkopff, who 

was the first scientist I knew.   



85

7 | Acknowledgements
*
*

 



86

8 | Personal Information
8.1 | Curriculum Vitae 
*

8 | Personal Information

8.1 | Curriculum Vitae

Name: 			  Robert Jago Wiek

Date of birth:		  20.04.1982

Place of Birth: 		 Münster, NRW, Germany

Education

2009- present: 		 PhD Student, Georg-August University Göttingen

			   Department for Cellular Neurobiology

Supervisor:		  Prof. Dr. Martin C. Göpfert

Thesis title:		  A Functional Characterization 

			   of Drosophila Chordotonal Organs

2007-2008:		  Diploma Thesis, University of Cologne

			   Institut for Zoology

Supervisor:		  Prof. Dr. Martin C. Göpfert

Diploma title:		  Funktion und Morphologie chordotonaler Sensillen 			

			   im Bein der Fruchtfliege Drosophila melanogaster

2002-2008		  Diploma Studies  in Biology, University of Cologne

2001-2002		  Diploma Studies  in Chemistry, University of Cologne

		

2001			   Allgemeine Hochschulreife (A level), 

			   Gymnasium Rodenkirchen, Cologne					  

	  



87

8 | Personal Information
8.2 | Conferences & Symposia

*

8.2 | Conferences & Symposia

2012 - 2013		  Organisation Committee Neuro Dowo 2013, 

			   University Göttingen

13. - 16. 03 2013      	 NWG, Göttingen 2013 (Poster)

01.-04.08.2012 	 Neuro Dowo, University Marburg (Presentation)

23. - 27. 03 2011	 NWG, Göttingen 2011 (Poster)

26.- 27.08.2010	 Regional Drosophila Meeting, Göttingen (Poster)

March 2010		  Neurobiological Practical Course - HEARING 

			   (University Tübingen)

04.-05.02.2010		 Crossroads in Biology, Univerität zu Köln (Poster)

2009-2010   		  Organisation Committee

			   `Neuroprosthetics: 							     

			   From Sensorimotor Research to Applications´, 

			   GGNB, Göttingen 

8.3 | Publications

Effertz T, Wiek R, Göpfert MC (2011) 
	 Nompc trp channel is essential for Drosophila sound receptor function. 

	 Curr Biol Vol 21:592–597.

AK Marrone, MM Kucherenko, R Wiek, MC Göpfert, HR Shcherbata (2011)
	 Hyperthermic seizures and aberrant cellular homeostasis 
	 in Drosophila dystrophic muscles
	 Scientific reports 1

Kamikouchi A, Wiek RJ, et al (2010)
	 Transcuticular optical imaging of stimulus-evoked neural activities in the		
	 Drosophila peripheral nervous system.

	 Nature Protocols Vol 5: 1229 - 1235 



88

8 | Personal Information
8.3 | Publications 
*



89

8 | Personal Information
8.3 | Publications

*



90

8 | Personal Information
8.3 | Publications 
*



91

8 | Personal Information
8.3 | Publications

*



92

8 | Personal Information
8.3 | Publications 
*



93

8 | Personal Information
8.3 | Publications

*



94

8 | Personal Information
8.3 | Publications 
*



95

8 | Personal Information
8.3 | Publications

*



96

8 | Personal Information
8.3 | Publications 
*


	1 | Introduction
	1.1 | Summary & Motivation
	1.2 | Sensory Neurons of Insects
	1.2.1 | External Sense Organs
	1.2.2 | Chordotonal Organs

	1.3 | The Drosophila Femoral Chordotonal Organ
	1.3.1 | Morphology of the Femoral Chordotonal Organ
	1.3.2 | Function of the Femoral Chordotonal Organ

	1.4 | Drosophila Hearing
	1.4.1 | The Johnston`s Organ
	1.4.2 | Auditory Transduction in Drosophila  

	1.5 | Ca2+ Imaging
	1.5.1 | Ca2+ Imaging as a Means of Monitoring Neuronal Activity
	1.5.2 | Ca2+ Indicator Cameleon 2.1 


	2 | Material & Methods
	2.1 | Drosophila melanogaster & Genetic tools
	2.1.1 | The Model Organism Drosophila melanogaster  
	2.1.2 | Fly Husbandry
	2.1.3 | Nutrition Recipe
	2.1.4 | Transposable Elements: P- Elements, PiggyBac, Minos
	2.1.5 | GAL4 / UAS SYSTEM
	2.1.6 | Fly Strains
	2.1.7 | Crossing Scheme for Johnston’s Organ Experiments


	2.2 | Calcium Imaging
	2.2.1 | Calcium Imaging Setup
	2.2.2 | FCO: Leg Preparation and Experimental Procedure
	2.2.3 | JO: Antennae Preparation and Experimental Procedure
	2.2.4 | Data Processing and Analysis

	2.3 | Laser Doppler Vibrometer
	2.4 | Mechanical Measurements of Sound Receiver Movement
	2.4.1 | Setup
	2.4.2 | Free Fluctuation Recordings
	2.4.3 | Antennal Sound Response Characteristics 

	2.5 | Locomotion Assay
	2.5.1 | Walking Arena and Experimental Procedure
	2.5.2 | Fly Visualization and Tracking
	2.5.3 | Analysis of Drosophila Walking Behaviour 

	2.6 | Posture Control Experiments

	3 | Results 
	3.1 | Ca2+ Activity of the Femoral Chordotonal Organ
	3.1.1 | Ca2+ Responses Towards Sinusoidal Stimulation
	3.1.2 | Ca2+ Responses Towards Staircase Like Stimulation

	3.2 | Drosophila Walking Behaviour Towards Substrate Vibrations
	3.3 | Drosophila Compensates for Substrate Vibrations 
	3.4 | Ca2+ Imaging of JO Neurons in iav1 Mutant Flies

	4 | Discussion
	4.1| Functional Properties of the Drosophila FCO
	4.1.1 | The FCO Detects Frequency Dependent Stimuli 
	4.1.2 | Substrate Vibrations Slightly Affect Drosophila Walking Behaviour
	4.1.3 | The FCO is Necessary for Posture Control

	4.2| Ciliary  Ca2+ Currents In the Johnston’s Organ 
	4.2.1 | iav1 Mutants Show Auditory Ca2+ Responses 
	4.2.2 | Ca2+ Responses in iav1 Mutants underline the Model of TRP-channel function by Göpfert et al.

	4.3 | Closing Remarks & Peroration

	5 | Abbreviations   
	6 | Literature  
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J 
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Y
	Z



	7 | Acknowledgements
	8 | Personal Information
	8.1 | Curriculum Vitae
	8.2 | Conferences & Symposia
	8.3 | Publications


