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Abstract 

 

Sound intensity is encoded as action potential firing rates by spiral ganglion neurons. These 

neurons show different rate-level functions with different auditory thresholds, and are 

thought to collectively encode the large dynamic range of the auditory stimuli. Hair cell 

ribbon synapses drive the action potential firing in spiral ganglion neurons through release of 

glutamate that is triggered by voltage-gated Ca2+ channels. Therefore, the investigation of 

presynaptic Ca2+ signaling and its relationship to synaptic ribbons might help to explain how 

inner hair cells (IHCs) decompose auditory information at their heterogeneous ribbon 

synapses thereby driving neurons with different rate-level functions. 

 

In this study, patch-clamp and Ca2+ imaging by spinning disk confocal microscopy were 

performed to investigate the presynaptic Ca2+ signaling at all active zones of a given IHC. 

Presynaptic Ca2+ microdomains and ribbons varied in their properties within and among 

cells. Moreover, their fluorescence intensities were positively correlated. Additionally, we 

assessed the spatial distribution of the properties of synaptic ribbon and Ca2+ microdomain 

relative to the circumferential position of the inner hair cell. Larger ribbons and low 

voltage-sensitivity Ca2+ microdomain exhibit the preference to localize to the modiolar 

(neural) side. 

 

Our results imply that larger synaptic ribbons are associated with more Ca2+ channels, which 

is expected to enhance neurotransmitter release at those synapses. Interestingly, previous 

studies (Merchan-Perez & Liberman, 1996) on cat cochlea suggested that high spontaneous 

rate auditory nerve fibers mainly innervate the pillar (abneural) face of inner hair cells. If 

conserved among species, our finding of high voltage-sensitivity Ca2+ microdomains on the 
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pillar face seems support the high spontaneous-rate neuron innervating this face.  

Therefore, the hair cell ribbon synapses might utilize different voltage-sensitivities of their 

Ca2+ channels to determine the sound coding by the postsynaptic spiral ganglion neurons. 
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Introduction 
 

Cochlear mechanics  

The mammalian cochlea is a very elaborate organ containing several active mechanisms for 

processing the incoming sensory stimuli conferring it with sensitivity. The ear can process 

acoustic stimuli that largely range in frequency and amplitude. The human cochlea, for 

example, can identify sound frequencies from 0.1 to 20 kHz (Fettiplace and Hackney, 2006) 

and, surprisingly, distinguish between 2 tones with only a 0.5% difference of frequency 

(Hudspeth, 2008). Likewise, mammals can encode sounds with six orders of difference, 

which have a trillion-fold difference in energy (Hudspeth, 2008).  

 

Several ingenious mechanical designs are utilized in the cochlea to accomplish these tasks. 

The organ of Corti is the core structure for sound processing in the cochlea. In the organ of 

Corti, the sensory cells, inner (IHCs) and outer (OHCs) hair cells are sandwiched between 

two accellular membranes, i.e., the basilar and tectorial membranes, whereby the stereocilia 

of OHCs are attached to the tectorial membrane. The propagating sound wave in the 

perilymph of the scala tympani vibrates the basilar membrane, thereby leading to relative 

movements of the tectorial membrane and the hair cells resulting in the deflection of the 

stereocilia of IHCs and OHCs.  

 

The micromechanical properties of the cochlea enable a decomposition of the frequency 

components of an acoustic stimulus along the basilar membrane, which is narrow and stiff at 

the base and wide and soft at the apex of the cochlea. These anatomical characteristics 

determine the inertia (M) and stiffness () of different cochlea partitions thereby defining the 

impedance of them (Geisler, 1998; Hudspeth, 2008). The characteristic frequency (CF) 0 

which equals the √( / M) of the specific partition manifest the lowest impedance for this 
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partition and results in the resonance of the basilar membrane, thereby amplifying the 

intensity of this CF.  The tonotopic map of the cochlea is established according to the 

increase of  and decrease of M along the cochlear axis from base to apex.  

  

In addition to the basilar membrane, the active movement of bundles of stereocilia and the 

somatic electromotility of OHCs furthermore amplify the vibration synergistically. The 

stereocilia of both IHCs and OHCs contain mechanoelectrotransduction (MET) channels, 

which are gated by the movement of the stereocilia. The gating spring model was proposed 

to explain the gating of MET channels (Howard and Hudspeth, 1988). The tip links between 

stereocilia were suggested to work as springs ruled by Hook’s law. When the stereocilia are 

deflected, this force compresses or extends the springs, which then push or pull the gate of 

MET channels, resulting in channel gating. Indeed, the displacement of stereocilia causes 

the MET channels to open; however, it also causes the gating springs to relax. This 

relaxation greatly reduces the stiffness of the stereocilia, and causes the opening of 

additional MET channels (Fettiplace, 2006). This active mechanical mechanism thereby 

amplifies mechanoelectrical transduction when the stimulus amplitude is weak. The 

electromotility of OHCs serves as a further means of mechanical amplification. OHCs 

contain a particular motor protein, prestin that is arrayed in high density in the lateral 

plasmalemma (Zheng et al., 2000). Prestin adjusts the length of OHCs in response to the 

fluctuation of membrane potential that result from mechanotransduction (Cheatham, 2004). 

Finally, the synergistic action of active bundle movements and electromotility in a specific 

cochlear partition greatly amplifies the vibration of the basilar membrane for soft sounds with 

high frequency selectivity. 

 

The dynamic range for sound-intensity encoding spans over six orders of magnitude. 

However, the velocity of the vibration of the basilar membrane exhibits a nonlinear 



5 
 

relationship with sound amplitude (Robles and Ruggero, 2001) and thereby compresses the 

range of inputs to MET. The velocity increases monotonically for weak sounds until a certain 

level, whereafter, the increase slows down (Ruggero et al., 1997). The reduction of moving 

velocity compresses the intensity of the sound by means of reducing the displacement of the 

basilar membrane to three orders of magnitude. This nonlinear compression is thought to 

enable the auditory system to grade the output of the cochlea (spike rate) for changes in 

input despite the limited dynamic range of sensory and neural mechanisms. The impeding 

force is considered to arise from the tectorial membrane, which is located above the OHCs 

and IHCs and behaves as the roof of the organ of Corti. Knocking out the key molecules 

composing the tectorial membrane, i.e., - and -tectorin, deteriorates the nonlinearity of the 

basilar membrane, in which the velocity of movement rises monotonically and linearly with 

the sound pressure level (Legan et al., 2000). Furthermore, removal of the tectorial 

membrane also attenuates amplification by OHCs (Legan et al., 2000). These observations 

demonstrate the mechanical function of the tectorial membrane in nonlinear compression. 

 

After this complex processing of the mechanical signal the frequency is selected, loud 

sounds are compressed whereas weak sounds are amplified and finally, the IHCs are 

stimulated and form a receptor potential. IHCs innervate 10–30 spiral ganglion neurons 

(SGNs) (Matthews and Fuchs, 2010), which compose the auditory nerve. These SGNs are 

the first afferent neurons of the auditory system, and convey the signals via action potentials. 

Unlike SGNs, mature IHCs do not generate an action potential (AP). Instead, the fluctuating 

receptor potential of IHCs manifests the voltage changes caused by mechanotransduction. 

The graded receptor potential governs the Ca2+ dependent release of neurotransmitter from 

hair cells that in turn drives spiking of the SGNs. In other words, the function of afferent 

synapse between IHC and SGN is similar to an analog-digital converter, in which an analog 

sensory signal is encoded as a digital code. Interestingly, the synaptic ribbon, a special 
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presynaptic structure dominates the hair cell afferent synapse, i.e., hence given the name 

“ribbon synapse.”  

 

Ribbon synapses 

Ribbon synapses are structurally distinct and exist in cells that process environmental 

signals into the nervous system. These cells, including retinal photoreceptors and bipolar 

cells, electroreceptor cells, and cochlear hair cells, share a very important functional feature: 

release is controlled by a graded potential instead of an action potential (Juusola et al., 

1996). These sensory cells must detect instantaneous changes in the environment and, 

most importantly, convey the signal faithfully to their downstream neurons. Moreover, 

compared with active zones of conventional synapses, ribbon-type active zones, both in 

retina and cochlea, possess more synaptic vesicles than conventional synapses (Sterling 

and Matthews, 2005). Likewise, vesicle recycling is necessarily efficient and indefatigable to 

support the incessant stimulation of these receptors by the environment (Moser and Beutner, 

2000; Griesinger et al., 2005). Nevertheless, the detailed mechanism by which ribbon 

synapses organize this process is not clear. 

 

Ribbon synapses have multiple shapes in different organs. In mouse IHCs, the synaptic 

ribbon is identified as a spherical, ellipsoidal, or bar-shaped electron-dense body under 

electron microscopy (Moser et al., 2006a; Nouvian et al., 2006). The size of these 

electron-dense bodies varies within and among the cell types. In addition, the size of the 

synaptic vesicle pool was reported to be also varied in different synapses  (Moser et al., 

2006a; Graydon et al., 2011) where larger ribbons tend to hold a larger pool of vesicles. 

There is great morphological heterogeneity in ribbon synapses, even within a single hair cell. 

The synaptic vesicles are either tethered to plasma membrane or to the synaptic ribbons via 

a 20-nm filament-like structure (Lenzi et al., 1999). Different from conventional synapses, 
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the presence of synaptic ribbons sorts the docked vesicles into three populations. In addition 

to the vesicles docked directly onto or out of the active zone (AZ), one exceptional 

population of vesicles is sandwiched between the plasma membrane and the synaptic 

ribbons, and these are considered to be docked onto the plasma membrane (Lenzi et al., 

2002; Sterling and Matthews, 2005). In frog saccular hair cells, the docked vesicles tethered 

to the synaptic ribbon are depleted before the other docked vesicles (Lenzi et al., 2002). This 

observation suggests that synaptic ribbons might play an important role in facilitating the 

release of synaptic vesicles through the interaction between the ribbons and the vesicles; 

however, how the ribbons promote vesicle recycling is still not clear.  

 

RIBEYE, an alternative splice variant of the transcriptional repressor of dehydrogenase, C 

terminal binding protein 2 (CtBP2), is the main molecular component of the ribbon and is 

only expressed in ribbon synapses (Schmitz et al., 2000; Khimich et al., 2005). The 

homologous polymerization of RIBEYE constructs the body of the ribbon (Magupalli et al., 

2008). RIBEYE has two different domains, i.e., an N-terminal A domain and a C-terminal B 

domain. The A domain is thought to have a structural role, whereas the B domain is probably 

exposed in the cytosol, and is therefore suggested to have a metabolic function (Schwarz et 

al., 2011). With respect to vesicle tethering, Rab3-interacting molecule (RIM) was also 

identified on synaptic ribbons with its counterpart molecule, the synaptic vesicle protein 

Rab3 (Sterling and Matthews, 2005; Uthaiah and Hudspeth, 2010a). The interaction of RIM 

and Rab3 is supposed to facilitate the docking of vesicles to the ribbon (Sterling and 

Matthews, 2005). Two isoforms of RIM, RIM1 and RIM2, were identified in the chick cochlea; 

however, in mouse IHCs, it was recently suggested that RIM1 and RIM2 are only expressed 

before hearing onset (Gebhart et al., 2010). The movement of tethered and docked synaptic 

vesicles requires some motor proteins to drive their motion on the ribbons. KIF3a, a kinesin 

motor, is also reportedly a component of both retinal and cochlear ribbons (Muresan et al., 
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1999). However, interrupting the polymerization of microtubules using low temperatures did 

not change ribbon morphology (Usukura and Yamada, 1987). Recently, myosin VI (myo6), 

an actin-based protein expressed on the synaptic ribbons and active zones of IHCs, was 

found to affect the maturation of synaptic ribbons as well as Ca2+ signaling (Roux et al., 

2009). Therefore, myo6 could be a candidate motor protein, although there is still no 

evidence to indicate that it can function as a molecular motor. 

 

Four scaffold proteins, Bassoon, Piccolo, CAST and ELKS have also been identified in 

synaptic ribbons (Dick et al., 2001; Khimich et al., 2005; tom Dieck et al., 2005; Uthaiah and 

Hudspeth, 2010a). Disruption of Bassoon impairs the auditory function and exocytosis of 

IHCs; the number of anchored ribbons is reduced in the mutant mouse, and floating ribbons 

were also observed in the cytosol, indicating the essential anchoring function of Bassoon 

(Khimich et al., 2005). Moreover, the fast component of exocytosis was also reduced in 

mutant hair cells in terms of membrane capacitance measurement. Whether the reduction of 

the exocytosis is directly cause by the disruption of Bassoon or caused by the loss of ribbon 

still needs to be clarified to understand the regulation of the ribbon on the exocytosis. By 

virtue of superresolution stimulating emission depletion microscopy, we can observe the 

misalignment of Ca2+ channel clusters, even in the ribbon-anchored synapses of Bassoon 

mutant mice. The results from this technique are consistent with observations made using 

freeze-fracture of frog saccular cells. In both cases, the line-like alignment of Ca2+ channels 

was observed (Roberts et al., 1990).  

 

Encoding of sound intensity in SGNs   

Sound is encoded as the rate and timing of firing of SGNs in response to hair cell transmitter 

release. Synaptic transmission at the hair cell ribbon synapse is very special. Changing the 

release probability modulates the rate of release and the EPSC amplitude at conventional 
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synapses while the EPSC amplitude in SGNs remains nearly unchanged (Glowatzki and 

Fuchs, 2002; Goutman and Glowatzki, 2007; Grant et al., 2010) and its distribution matches 

that for spontaneous release. EPSCs vary dramatically in size which has been interpreted to 

reflect different extents of synchronized multivesicular release (Glowatzki and Fuchs, 2002; 

Grant et al., 2010). The mean of the EPSC is comparably much larger than that of the 

conventional synapse such as the auditory synapse in the brainstem e.g. calyx of Held 

(Meyer et al., 2001). The mechanism underlying the release process of the hair cell synapse 

is still not yet resolved. 

      

In the postsynaptic end, the SGNs also have several specific features to transmit the 

information from IHCs. SGNs have a low threshold for generate an action potential and 

show a phasic response (Rutherford et al., 2012). Comparing with conventional central 

neurons, some SGNs were shown to exhibit higher spontaneous firing rate, which could 

even reach 100 Hz (Sachs and Abbas, 1974; Winter et al., 1990). Surprisingly, more than 

80% of the spontaneous excitatory postsynaptic potential (EPSP) can generate an action 

potential (Siegel, 1992; Rutherford et al., 2012), which generally does not happen in 

conventional neurons. Voltage-clamp recording from the postsynaptic boutons and the 

immunostaining about spike generators reveals several important inherent features of SGNs. 

The first heminode of SGNs resides just beneath the IHCs (Hossain et al., 2005), suggesting 

that the action potential is triggered in close proximity of the postsynaptic bouton. In addition, 

the small size of the bouton lowers the membrane time constant, which can shortens the 

duration of membrane charging to the threshold of spiking (Rutherford et al., 2012). These 

characteristics ensure that SGNs can respond to the presynaptic stimulus with high 

accuracy. The other important feature of SGNs is their phasic excitability. SGNs only spike 

few times, mainly once in respond to long-duration stimulation, such as step-depolarization. 

This allows SGNs to filter out some other EPSP which is not elicited by the well-timed 
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presynaptic releasing of neurotransmitters, thereby enhancing the precision of signal 

transferring in SGNs (Rutherford et al., 2012). 

 

The spike rate of SGNs increases up to hundreds of Hz in response to sound stimuli and is 

essentially limited by the neuron’s refractoriness. However, the mammalian auditory system 

can signal sound pressures that differ by 6 orders of magnitude. Even despite the nonlinear 

compression of basilar membranes, SGN still need to be able to respond to sound pressures 

that vary over thousand fold. In mammalian cochlea, SGNs show different acoustic 

thresholds. In vivo recordings from SGNs revealed heterogeneous response patterns 

(Sachs and Abbas, 1974). Therefore, SGNs work as different channels to the brain to enable 

the response of wide ranges of sound pressure. Different SGNs respond to sound intensity 

differently. Three response patterns for sound levels of the SGNs were identified: 

“saturating,” “sloping-saturation,” and “straight” modes (Figure I.1) (Winter et al., 1990). The 

SGNs for the saturating mode have the lowest acoustic threshold (~10–30 dB) to fire action 

potentials but their firing rate does not increase after a certain level. The fibers for 

sloping-saturation and straight mode have higher thresholds; however, their firing rate does 

not saturate, even for very loud sounds. The firing rate increases monotonically in the 

straight mode, whereas it becomes slower in the sloping-saturation mode when the sound is 

louder than a certain level. Different types of auditory nerve fibers work together to cover 

different ranges of sound with different sensitivities; thereby broadening the total dynamic 

range of amplitude encoding in the auditory system. 

 

Abbas and Sachs first tried to explain these patterns through the acoustic threshold of each 

individual fiber from mathematical modeling. They concluded that the pattern changes as a 

function of the threshold; in other words, the threshold determines which type of response     
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patterns the auditory nerve generates (Sachs and Abbas, 1974). This hypothesis points out 

that the auditory threshold of a SGN is important in the determination of the dynamic range it 

can respond to; namely, the sensitivity of the SGNs. Interestingly, the auditory nerve fibers of 

nearby CF regions have quite diverse thresholds, from 10 to 100 dB. These SGNs innervate 

neighboring IHCs, and probably some of them even innervate the same IHC.  

 

What determines the acoustic threshold of SGNs? Current-clamped recording from the 

postsynaptic bouton of SGNs reported neurons with lower spontaneous EPSP rate, however 

with high possibility to cause to the action potential successfully (Rutherford et al., 2012). 

The electric properties of SGNs, which is also mentioned above, are developed to be 

efficient to respond to the stimulus (Grant et al., 2010). The other possibility might arise from 

the presynaptic regulation. Voltage-gated Ca2+ channels expressed in IHCs respond to the 

Figure I.1  

The relationship between rate-level functions, spontaneous rates and auditory thresholds

(A) Different rate-level functions measured from different SGNs. Line 1,2 and 3 display different modes of 

rate-level functions: “saturating”, “slope-saturation” and ”straight” respectively. (from Geisler, 1998) (B) The 

SGNs with high spontaneous rates tend to have lower auditory thresholds and vice versa. Notice that the 

different symbols represent for different rate-level functions. This figure also indicates the “saturating” 

SGNs tend to have low auditory threshold and high SR and the “straight” SGNs tend to have higher 

threshold with low SR (figure from Winter et al. 1990).   

A B

1 

2 3 
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graded potential and thereby control the neurotransmitter release by means of Ca2+ 

dependent exocytosis. Ca2+ imaging studies demonstrated both the heterogeneous intensity 

of synaptic Ca2+ influx and  their voltage-dependent activation (Frank et al., 2009). Such 

heterogeneity might contribute to diversities of presynaptic regulation about acoustic 

threshold.  

 

Ca2+ signaling within hair cells 

Ca2+ plays many important roles in cells (Berridge et al., 2003). Neurons rely on the influx of 

Ca2+ to trigger the release of neurotransmitter that results in information transfer in the 

nervous system. The hair cell afferent synapse, which is the first synapse to transfer sound 

information, is equipped with a sophisticated mechanism to regulate the Ca2+-triggered 

release of neurotransmitter. Unlike conventional synapses, the ribbon synapses in hair cells 

must process a graded potential and transduce it faithfully into neurotransmission by means 

of the precise regulation of voltage-gated Ca2+ channels (Moser et al., 2006b). The major 

molecules to form Ca2+ conductance in IHCs is the low voltage-activated L-type Ca2+ 

channel Cav1.3 (Platzer et al., 2000). Hair cell Cav1.3 exhibits some particular 

characteristics, i.e., it has weak Ca2+-dependent inactivation (CDI) (Yang et al., 2006; Cui et 

al., 2007), a more negative activation threshold (Koschak, 2001), and fast activation and 

deactivation (Zampini et al., 2010). Some of these features are not observed when studying 

Cav1.3 channels in heterologous expression systems and, hence, the Cav1.3 channels must 

be subject to specific regulation in hair cells.  

 

Acquiring the synaptic Ca2+ influx by means of the confocal Ca2+ imaging technique revealed 

submicrometer-size, spot-like fluorescence hotspots, which were colocalized with the 

fluorescently stained presynaptic ribbons. The intensity, spatial spread and 

voltage-dependence of the Ca2+ hotspots have been observed to exhibit great heterogeneity 
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(Frank et al., 2009). The heterogeneity is reminiscent of the diverse rate-level functions of 

the different SGNs, which can originate from different ribbon synapses as well as their Ca2+ 

channels. Hence, understanding the mechanisms of the Ca2+ heterogeneity might be the 

key to explain the different patterns of the rate-level functions. Several presynaptic 

mechanisms can cause the heterogeneity. The Ca2+-induced Ca2+ release appeared not to 

contribute much to the heterogeneity of Ca2+ hotspots (Frank et al., 2009). The most 

promising mechanisms of Ca2+ hotspot heterogeneity include varying Ca2+ channel numbers, 

different modulatory impact of auxiliary subunits of Ca2+ channels, different splice variants of 

Cav1.31D or the varying regulatory function of other proteins or lipid.   

 

A number of proteins have been shown to interact with Ca2+ channels and to manipulate 

their function. Increasing the Ca2+ concentration can enhance the interaction of Ca2+ 

channels with numerous Ca2+ binding proteins and result in CDI or facilitation (CDF) 

(Calin-Jageman and Lee, 2008). The mechanisms by which calmodulin generates CDI and 

CDF have been well investigated. Calmodulin attaches to the IQ domain of the C-terminal of 

L-type calcium channels after binding Ca2+ to its C lobe, resulting in CDI (Peterson et al., 

1999). Deletion of the IQ domain of Cav1.3 reportedly hampers CDI (Shen et al., 2006). Ca2+ 

and calmodulin-dependent inactivation has been reported in cochlea hair cells (Yang et al., 

2006; Cui et al., 2007). In addition to calmodulin, members of the calmodulin-like 

Ca2+-binding protein (CaBP) family also affect CDI; however, in the opposite way. The 

overexpression of CaBP1 and CaBP4 in human embryonic kidney (HEK) cells eliminates 

CDI (Yang et al., 2006; Cui et al., 2007). It is supposed that CaBPs might perturb the normal 

binding of calmodulin to Cav1.3, probably by competing with binding to the IQ domain and 

causing the attenuation of CDI (Yang et al., 2006). Such a phenomenon also occurs in IHCs. 

IHCs display considerably weak CDI in comparison with neurons or cell lines. In mouse 

IHCs, multiple CaBPs have been detected, including CaBP1, CaBP2, CaBP4, and CaBP5. 
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However, knocking out CaBP4 did not impair auditory function; instead, CaBP1 has been 

shown to colocalize with synaptic ribbons and might be a potential interacting partner with 

Cav1.3 in IHCs (Cui et al., 2007). Besides CaBP1 and CaBP4, CaBP2 was proven to be a 

deafness gene (Schrauwen et al., 2012); therefore, it might also contribute to the inhibition of 

CDI in IHCs. Other molecules such as Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

(Jenkins et al., 2010) and A-kinase anchoring protein (AKAP79/150) (Oliveria et al., 2007) 

reportedly regulate the activity of L-type Ca2+ channels through binding to the channels, but 

their effect on cochlear hair cells has not yet been examined.  

   

The behavior of the CaV1.3 Ca2+ channels is also determined by the choice of the specific 

splice variant of their pore-forming  subunit and the precise composition of the channel 

complex (auxiliary subunits). An intrinsic C-terminal modulator (CTM) of the Cav1.3 subunit 

interacts intermolecularly and intramolecularly to induce the modulation of gating and the 

inactivation of Cav1.3 (Koschak, 2010; Tan et al., 2011a). The C-terminus of Cav1.3 

constitutes approximately 25% of the total channel protein, and is encoded by 11 exons from 

exons 39 to 49. Interestingly, numerous alternative splice variants of the Cav1.31 subunit 

have been identified in the nervous system. Alternative splicing of these exons can vary the 

intermolecular or intramolecular interactions of the  subunit (Lipscombe et al., 2002). For 

example, a frame-shift occurring between exons 41 and 42 causes the termination of 

transcription and generates a short isoform, Cav1.342A. In HEK cells, Cav1.342A expression 

shows a negative shift of activation voltage and enhances CDI (Singh et al., 2008). 

Alternative splicing of exon 43 (Cav1.343s) caused a similar effect to Cav1.342A (Tan et al., 

2011a); however, the phenotype of the full-length isoform could be restored with both splice 

variants by the additional expression of the most distal 116 amino acids (C116) (Singh et al., 

2008; Tan et al., 2011a). Moreover, experiments using FRET (fluorescence resonance 

emission transfer) further proved the interaction of C116 to the PCRD (proximal C-terminal 
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regulator domain), in which several amino acids in the most distal C-terminus of Cav1.342A 

and Cav1.343S are included (Singh et al., 2008). This result implicated intramolecular 

interactions in Cav1.3. Besides, alternative splice variants of the IQ domain at the C-terminus 

of 1D have been identified in the cochlea, especially in OHCs (Shen et al., 2006). The 

endogenous expression of this alternative splice variant is expected to impact on CDI in 

OHCs. In addition to the numerous splice variants in the C-terminus, other alternative splice 

variants of domain linkers have been found in chick cochlear hair cells (Kollmar et al., 1997). 

These variants were also shown to affect the activation kinetics of the channels (Koschak, 

2001; Xu and Lipscombe, 2001); however, the function of these three splicing variants has 

not been examined in hair cells. 

 

Beside the  subunit, the  subunit reportedly governs the trafficking and function of L-type 

Ca2+ channels. Knocking out the Cav2 subunit in IHCs greatly attenuated the Ca2+ current, 

and a reduced intensity of Cav1.3 staining was observed (Neef et al., 2009). The reduction of 

Ca2+ influx might be attributed to the degradation of Ca2+ channels because the 2 subunit 

could prevent the ubiquitination of L-type Ca2+ channels (Altier et al., 2010). Other auxiliary 

subunits, such as the 2 subunit, also regulate the abundance of Ca2+ channels (Hoppa et 

al., 2012).   

 

Cav1.3 colocalizes at the submicrometer range with synaptic ribbons in mature hair cells 

indicating their clustering at the presynaptic active zone (Brandt et al., 2005; Frank et al., 

2009). This close association greatly reduces the distance that incoming Ca2+ has to travel 

to the Ca2+ sensors on the synaptic vesicles (Naraghi and Neher, 1997), and thus allows for 

high sensitivity to changes in membrane potential. Distinct vesicle pools can be separated 

by Ca2+ chelators with different binding kinetics. Confining the spreading ranges of Ca2+ 

influx by fast kinetic Ca2+ chelator, i.e. BAPTA, can cause stronger attenuation of membrane 
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capacitance increase than that of EGTA, which suggests a fast pool exists in several tens of 

nanometer proximity to Ca2+ channels (Moser and Beutner, 2000; Graydon et al., 2011). 

Similar phenomenon was observed in the pair recording of IHCs and the boutons of SGNs 

where application of BAPTA can cause more reduction of EPSC rate than that of EGTA 

(Goutman and Glowatzki, 2007).  Furthermore, altering the opening numbers of Ca2+ 

channels by the application of dihydropyridine revealed a positive linear relationship 

between charges of Ca2+ influx and the exocytic increase of membrane capacitance. In 

contrast, altering the single channel conductance revealed a nonlinear relationship while the 

enhancement of exocytosis is saturated after certain level of influx Ca2+ (Brandt et al., 2005). 

This result further implicated that few opening Ca2+ channels can govern the release of near 

synaptic vesicles whereby support the regulation of Ca2+ nanodomains instead of 

microdomains. In physiological conditions, the abundant endogenous buffers calbindin-28k 

and parvalbumin- have roles in the control of Ca2+ diffusion from the open mouths of the 

channels which is analog to the effect of applying 0.1~0.5 mM EGTA, and thereby separate 

the different releasing characteristics and pool recycling (Hackney et al., 2005). 

 

Aims of this work 

To understand the synaptic mechanisms of sound amplitude encoding, it is crucial to 

understand the origin of the heterogeneous firing properties of SGNs. As mentioned above, 

the diversity of the Cav1.3 can cause different functional properties of Ca2+ signaling. Hence, 

this work aims to characterize the heterogeneity of synaptic Ca2+ signaling in IHCs. The 

intensity of Ca2+ influx among different synapses will be examined and compared. Besides 

that, the voltage-dependent properties of Ca2+ channels activation are also an interesting 

hypothesis to explain this heterogeneity, and will be investigated. 

 

As a relationship between site of insertion at the IHC and function of a given SGN was 
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indicated previously, I will also analyze the spatial dependency of the properties of the 

synaptic Ca2+ microdomains and relate the results to in vivo recordings of SGNs. 
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Materials and Methods 
 

Animals 
C57BL/6 mice (ages 14–18 days) were used for experiments. 

Preparations of the organ of Corti 

Mice were euthanized and the heads were transferred onto ices. After removing the skin, the 

skull was cut sagitally in half and transferred into a Petri dish containing ice-cold 

HEPES-buffered Hanks’ balanced salt solution (see “Solutions” in Material & Method). The 

brain tissue was removed and the cochlea together with the rest of the bony labyrinth was 

gently pulled out of the skull with a pair of No.3 forceps. After the bony walls of the cochlea 

were carefully peeled off piece by piece from the apex, the first-half apical turn of the organ 

of Corti was explanted from the modiolus and transferred to the next step by a fire-polished 

Pasteur’s pipette. 

After isolating the organ of Corti as described above, the whole-mount preparation was 

transferred to a recording chamber and fixed with a grid of nylon threads, with the basilar 

membrane down and the tectorial membrane up. During recordings, modified Ringer’s 

solution (see “Solutions”) was constantly perfused at a rate of at least 0.5 ml/min. The 

tectorial membrane was first removed from the spiral limbus with a large-opening (Ø ~20-40 

μm) pipette and thereby revealed the IHCs and other tissues. To access the IHCs from the 

side of modiolus, the other cleaning pipettes with medium opening size (Ø ~ 3-5 μm) were 

used to clean the supporting cells and compress the spiral limbus. The supporting cells, i.e. 

inner border cells, inner sulcus cells and phalangeal cells, were deteriorated by removing 

their nucleus. After a minute, a gentle negative pressure was applied to drain their debris. 

Then, to obtain a clean, patchable membrane at the IHC, another cleaning pipette with small 
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opening (Ø ~ 1-2 μm) was used to clean the surface of IHCs by either sucking or blowing 

gently, and finally revealed the patchable IHCs. 

 

Whole-cell patch-clamp recordings 

Patch pipettes were pulled from GB150-8P borosilicate glass capillaries (Science Products, 

Hofheim, Germany) with a Sutter P-2000 laser pipette puller (Sutter Instrument Company, 

Novato, USA). The opening size of the pull pipette was around 1 m. The pulled pipettes 

were then polished by the custom-made microforge to smooth the tip of the pipettes thereby 

to improve the quality of “giga-seal”.  

The patch-clamp setup was shielded by custom-made Faraday cage and assembled on 

hydraulic air table for vibration isolation (TMC, Peabody, USA). Experiments were performed 

with a Zeiss Axio microscope (Carl Zeiss microscopy GmbH, Göttingen, Germany) equipped 

with Zeiss 63x water immersion objective “W Plan-Apochromat 63x/1,0 M27” (1.0 NA). The 

objective was mounted on a piezoelectric focusing motor (MIPOS 100 PL, Piezosystem 

Jena, Jena, Germany), and was controlled by the piezo controller (NV 40/1 CLE, 

Piezosystem Jena, Jena, Germany). Patch pipettes were approached towards the 

preparation with a motorized micromanipulator (MP-285, Sutter Instrument, Novato, USA). 

Patch-clamp recordings were performed with EPC-10 USB amplifiers (HEKA, 

Lambrecht/Pfalz, Germany) operated by PatchMaster software (HEKA). 

Patch pipettes approached the IHCs with a gentle positive pressure around 5 cm H2O. Right 

after the appearance of a small dimple on IHCs, the positive pressure was released thereby 

resulting in an increasing seal resistance (Rseal). After the sealing resistance rose above 5 

G, the clamping voltage was tuned to -70 mV (before the correction of liquid junction 

potential), and the fast capacitance (Cfast) caused from patch pipette was compensated by 
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the automatic routines in PatchMaster and EPC-10 USB. Afterwards, a series of gentle 

suction pulses applied by mouth were used to rupture the patch membranes. After 

successful rupture, the series resistance (Rseries) from the junction between the pipette and 

the cell was cancelled together with the cell membrane capacitance (Cslow) simultaneously 

by the automatic routines. 

The quality of patched cells was judged by the Rseal and Rseries. The Rseal was mostly above 1 

G, and Rseries was always below 15 M before the compensation of series resistance. 

Liquid junction potential of patch pipettes was calculated by Patcher’s Power Tools macros 

in Igor Pro (Wavematrics, Lake Oswego, USA), and the value was around -17 mV. The 

voltage shift caused by the ion current flowing through the Rseries was corrected together with 

the liquid junction potential to obtain the real clamped voltage of cell membranes. 

  

Spinning disk confocal microscopy 

Fluorescently labeled IHCs were imaged using spinning disk confocal scanning. Detailed 

function and specification is described in the review (Gräf et al., 2005). The spinning disk 

scanner (CSU22, Yokogawa Electric Cooperation, Tokyo, Japan) was mounted on the Zeiss 

Axio microscope, and fixed mechanically with custom-made metal bar (fig III.2) to reduce the 

vibration from the disk spinning. 

Fluorescence images were acquired by a back-illuminated CCD camera with 80x80 pixels 

(NeuroCCD, Redshirt Imaging, Decatur, GA, USA ) of which acquired images were 

magnified by an 2.5x after-magnification tube (VM Lens C-2.5x, Nikon, Tokyo, Japan). The 

tube and camera were mounted on top of the CSU22 accordingly. The pixel-resolution of the 

acquired image was 164 nm, and the lateral and axial resolution of the optics were 

determined by 100 nm fluorescence beads (Fluospheres, Invitrogen, Grand Island, NY, 
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USA), and were ~300 nm and 1.6 m respectively.  Image data were acquired and 

processing by the Neuroplex software (Redshirt Imaging). 

Images were acquired in 10 ms/frame, 5 ms/frame and 50 ms/frame depending on the 

experiment requirements. Synchronizing the disk spinning speed to the camera frame rate is 

necessary to avoid the uneven illumination (fig III.1). In these conditions, the spinning speed 

was set to be 2000 rpm. 

The green fluorescence from the Ca2+ indicator Fluo-8FF was excited by the 491 nm 

diode-pump solid-state laser (Calypso, Cobolt AB, Solna, Sweden), and the red 

fluorescence from TAMRA was excited by the 561 nm diode-pump solid-state laser (Jive, 

Cobolt AB). Gating of the laser was operated by the electro-programmable shutter system 

(LS6 and VCM-D1, Uniblitz Co., Rochester, NY, USA). The laser was guided into the 

single-mode optic fiber (Oz optics, Ottawa, Ontario, Canada) through the coupler (KineFLEX, 

Qioptiq, Luxembourg).The pathway of laser in the scanner is demonstrated as fig II.1. The         

 

Figure II.1 Pathway of light in the spinning disk scanner 

The blue dash line is the excitation beam, and green dash line is the emission light. Other units are represented 

as the labels.  
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491 nm excitation was transmitted by a short pass dichroic mirror (Di01-T488, Semrock Inc, 

Rochester, NY, USA) and the resulting green emission was reflected by this dichroic mirror 

to the CCD camera. An additional long-pass emission filter (BLP01-488R-25, Semrock Inc.) 

was used to clean up the remaining 491 excitations light in front of the camera.  The 561 

nm excitation was transmitted by a multi band-pass dichroic mirror (Di01-T405/488/568/647, 

Semrock Inc) and resulting red fluorescence was reflected by it. The other additional 

band-pass emission filter (HQ608/60m BP, Chroma, Bellows Falls, VT, USA) was used to 

pass the light of the wavelength of 578–638 nm and block the 561 nm laser.  

 

Ca2+ imaging of IHCs 

After the formation of whole-cell patch and break-in, the 800 M Ca2+ indicator Fluo-8FF 

(AAT Bioquest, Sunnyvale, CA, USA) was subsequently dialyzed into the cell with the 

Cs+-based intracellular solution (for the recipe see “Solutions”) for more than 4 minutes to 

reach a steady-state concentration. In addition to Fluo-8FF, 20 M TAMRA-conjugated 

C-terminal binding protein 2 (CtBP2) binding peptide was also contained in the intracellular 

solution and diffused into the IHCs to visualize the synaptic ribbons. This dimeric peptide 

was described by the Zenisek lab (Francis et al., 2011). The sequence of this peptide is as 

follows: 

(TAMRA)-EQTVPVDLSARPR-(PEG6-PEG6)-EQTVPVDLSARPK-(TAMRA)-amide 

After 5 minutes of perfusion, the position and fluorescence intensity of the labeled ribbons 

were first scanned from the basal end of IHCs to the top of nucleus, the step size of each 

movement was 0.5 m. Ca2+ imaging was subsequently performed in the range determined 

by the first scanning of ribbons. To avoid the errors caused by bleaching of fluorescence in 

the later sections, imaging acquisitions were applied in jumping order among sections. 
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Patched IHCs were first voltage clamped in -87 mV. To evoke the fluorescent Ca2+ hotspots, 

50 ms depolarizations of square pulse to -7 mV were applied in every scanned section 

during acquisitions. The interval between 2 sequential sections was 2 s to eliminate the 

effect of CDI. After the first scanning of Ca2+ imaging, ramp depolarizations from -70 mV to 

+30 mV in 100 ms were applied to investigate the activation of Ca2+ hotspots in every 

section, and the images were acquired with 5 ms per frame. This protocol was run at most 3 

times depending on the stability of the Ca2+ current and the viability of the cells.  

 

3D reconstruction of IHCs 

After all the Ca2+ imaging experiments, IHCs were then scanned in the red channel to 

acquire the morphology. Scanning began in the section which was 1m below the 

fluorescence-visible basal end to ensure full scanning of IHCs, and then images were 

acquired in the direction toward the apical end of IHCs. However, owing to the small size of 

CCD camera, scanning in fixed field of view was usually not sufficient to include an entire 

cell. The field of view was therefore shifted in-between to include all the portion of the given 

IHC. The acquired image stacks were then processed in Igor Pro software (Wavemetrics) to 

assemble into an entire 3D image of IHC.  

To transfer the images from canonical Cartesian coordinates into self-defined cylindrical 

coordinates, 3 orthogonal reference axes and one reference point are required to be defined. 

In the previous study (Meyer et al., 2009), the information of the cochlear axial axis, 

“tonotopical” axis, was taken from confocal images of immunostained IHCs. However in the 

current patch-clamp and Ca2+ imaging experiments, this information could not be reliably 

obtained because of inevitable pipette-manipulation of cells and the small image frame. 

Instead of tonotopical axis, we adopt the inherent characteristics of cell shape, the plane of 
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symmetry and its vector (Vsym), as a surrogate of tonotopical axis (fig III.8). Vsym was 

obtained from the cross product of 2 vectors. These 2 vectors were determined by the center 

of mass (C.M.) of the IHC cytosolic fluorescence in confocal sections. The first vector 

connected the C.M. of 2 sections along the Cartesian Z axis. One of them was close to the 

basal end, and the other is close to the nucleus. The second vector also connected the C.M. 

of 2 sections along the y axis. Cross products of these 2 vectors produce the Vsym, the 

quality of Vsym was then judged by eye such as in the visualized cell of fig III.8a. to exclude 

obviously unsymmetrical cases  

After obtaining the plane of symmetry, the second axis and the reference point were 

specified on this plane.  I used the pillar cell contact of the IHC as second axis.  Because 

this line lay on the plane of symmetry, it was orthogonal to Vsym.  Next step the cell was 

resampled the along the axis of this pillar line, Vz, by self-made macros in Igor Pro. Then I 

specified the center of mass of the largest cross-section of the IHC in the resampled images 

as the center point (reference point) of the cell (fig III.8b). The third axis Vmp was the cross 

product of Vsym and Vz. By Vz, Vsym, Vmp, and the center, the Cartesian (x,y,z) coordinate can 

be transferred to cylindrical (r,,H) coordinate. The r represents as the distance between the 

spot and the center of mass (green dot with red ring in fig III.8c) of the section that contains 

the spot. “” is the angle from Vsym to r, and H is the distance from spot-containing section to 

the center point section. In the polar chart of results,  from 0 to 180 degrees represents the 

modiolar face of the IHC, and 180 to 360 degrees the pillar face of the IHC. 90 to 270 

degrees are apical 270 to 90 degrees are basal with respect to tonotopic axis. 

 

Data analysis 

The Ca2+ imaging and patch-clamp data were analyzed in Igor Pro with numerous custom 

macros. The 3D images of IHCs were visualized by Fiji software (open source software). 
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6 images preceding the depolarization were averaged to be the reference images for the 

resting conditions. When using square pulse depolarizations, the 4 frames between 10 ms to 

50 ms after the onset of depolarization were averaged as an image of the stimulation.  

Subtracting the resting from the stimulated image produced the F image, where the evoked 

Ca2+ indicator fluorescence change can be seen by eye. In F images, intensities of the 8 

pixels surrounding the central pixel of the fluorescence punctum were averaged with that of 

the central pixel, the mean of this calculation was taken as the measured intensities (Favg) 

of the fluorescent Ca2+ hotspots. 

To obtain the fluorescence intensity of the stained ribbons, 9 images excluding the 1st image 

from the same scanning section were averaged then subsequent estimation of the 

fluorescent-ribbon intensity was performed on this averaged image. The intensities of ribbon 

stains were the intensities of the central pixel of visible fluorescence puncta from this 

averaged image.     

Fluorescence-voltage (FV) relationships were estimated also from ramp depolarization 

experiments. In those experiments, the region to estimate the intensity of each Ca2+ 

microdomain was similar to the method described in the previous paragraph. The intensity 

was measured in every frame and the resulting values were then related to their 

corresponding voltages to produce the FV curves.  

The raw FV curves were afflicted with noise such as readout noise or shot noise from the 

CCD camera. Hence, the following equation was used to fit then to optimize the raw traces:  

 

The fitting result is demonstrated in figure II.2. All the fitting parameters were automatically 

generated by the Igor Pro software, which were only used for obtaining a good fitting result. 

The fits to the FV curves (FV-fits) were then used for further analysis. The goodness of fitting 
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was judged by overlapping the raw trace to the fitting curve. Few curves were not fit properly, 

for example, the gray curve in figure II.2. The ill-fitted data were not used for further analysis. 

 

   

The FV-fits were subsequently divided by a line, which approximated the decline of 

fluorescence at depolarized voltages which results from the declining driving force despite 

full activation (Line “1” in figure II.3). These lines were obtained by connecting the intensity of 

+10 mV (before the correction of LJ potential) from the FV-fits to the reversal potential of 

Ca2+ measured by the IV of the patch-clamp data. Then these lines were extended to all the 

voltage of the corresponding FV traces to estimate the assumed fluorescence intensity of 
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Figure II.2  Refining raw FV curves 

The dots represent for the raw data points and 

the lines represent for the corresponding fitting 

result. 4 FV curves obtained from different Ca2+ 

microdomains are listed in this figure in different 

colors. Notice that the gray curve, FV_#3 was 

fitted poorly and thereby was not used for 

subsequent analysis. 

Figure II.3  

Analysis routine of the voltage-dependent 

activation of fluorescent Ca2+ indicator 

hotspots. 

The fractional activation curve was obtained by 

dividing the FV trace (“2” in the figure) by the 

full-activation line (“1” in the figure).The resulting 

fractional activation curve was then fitted by the 

Boltzmann function as the equation in this figure to 

obtain the fitting parameter V0.5 and k. 
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every voltage in the full activation condition. The resulting curves were the fractional 

activation curves. The fractional activation curves were then fitted by the Boltzmann function 

to obtain the parameters (Figure II.3): voltages for half activation (V0.5) and slope-factor (k).  

Solutions 
Modified Ringer’s solution with 5 mM Ca2+  

NaCl 102.2 mM, KCl 2.8 mM, MgCl2 1.0 mM, CaCl2 5.0 mM, CsCl 1.0 mM, TEA-Cl 35.0 mM, HEPES 10.0 mM, 

glucose 2 g/. pH was adjusted to 7.2-7.3 by 1 M NaOH solution. The osmolarity was around 300 mmol/.  

HEPES-buffered Hank’s balanced salt solution 

NaCl 141.7 mM, KCl 5.36 mM, MgCl2 1.0 mM, CaCl2 0.1 mM, MgSO4·6H2O 0.5 mM, HEPES 10.0 mM, glucose 

1 g/, L-Glutamine 500 mg/. pH was adjusted to 7.2-7.3 by 1 M NaOH solution. The osmolarity was around 

300 mmol/. 

Cs+-based Intracellular solution 

L-glutamate 123.0 mM, MgCl2 1.0 mM, CaCl2 1.0 mM, EGTA 10.0 mM, TEA-Cl 13.0 mM, HEPES 20.0 mM, 

Mg-ATP 2.0 mM, Na-GTP 0.3 mM. pH was adjusted to 7.2-7.3 by 1 M NaOH solution. The osmolarity was 

around 310 mmol/.  Right before every experiment, the stocked solution of 10 mM Fluo-8FF was diluted into 

the intracellular solution to be 0.8 mM. The stock solution of 10 mM TAMRA-conjugated CtBP2 peptide was 

diluted as well, and the final concentration was 20 M.  After the dilution of Fluo-8FF and peptide, the 

osmolarity was reduced to be around 300 mmol/.  
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Results 

 
Spinning disk confocal microscopy 

During our physiological experiments, IHCs were embedded in the organ of Corti. When 

observing the fluorescence of indicators, the depth of the tissue and cell would cause blur 

images because the fluorescence of the non-focal plane were also sampled. Therefore, 

confocal microscopy was employed to reduce the out-of-focus fluorescence and to better 

resolve individual synapses in an IHC. In my PhD project, I aimed examine the behavior of 

several evoked fluorescent Ca2+ indicator hotspots simultaneously in several ten to hundred 

milliseconds. To study synaptic functions, acquiring a frame in very short duration such as 10 

ms or shorter is necessary. However, the conventional point scanning confocal microscopy 

(PSCM) needs longer duration to acquire a full section. Moreover, the laser scans on the 

sample point-by-point and one-by-one, thereby result in time difference between different 

pixels in an image. This much reduces the temporal precision for fast events, i.e., the evoked 

fluorescent Ca2+ indicator hotspots in this experiment. Therefore, time resolved analysis with 

laser-scanning microscopes typically employs line and/or spot scans (Frank et al., 2009), 

thereby sacrificing spatial information. In order obtain spatial and temporal information on 

IHC synapses I chose to acquire the full-frame confocal images using spinning disk confocal 

microscopy (SDCM). 

 

The spinning disk confocal scanner contains a Nipkow disk where has thousands of pinholes. 

The laser beam passes through these pinholes and accomplishes multi-pinhole scanning. 

The emitted fluorescence also traversed through the same pinholes and thereby confocal 

images can be obtained at an attached camera. The Yokogawa CSU22 which was used in 

this study even contains 2 Nipkow disks where the pinholes of them can almost perfectly 

map to each other. The pinholes of upper disk were mounted by microlens which can focus 
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more laser onto the pinhole of the second disk thereby enhance the efficiency of laser 

passing.  

 

While the disk is spinning, the pinholes sweep over the sample. Every 30 degrees of the 

scanning composes a full scanning on the samples and hence completes a full-frame image 

(Gräf et al., 2005). How fast the disk can spin determines the temporal resolution of the 

sampling. The spinning disk confocal scanner CSU22 can spin up to 5000 rounds per 

minutes (rpm). As mentioned, a full scanning requires the disk to spin 30 degrees, in the 

other words, turning one round of the disk can form 12 full-frame images. 5000 rpm therefore 

can reach 1 frame per ms (1000Hz).  

 

To realize the high speed acquisition, a camera with fast readout speed and low noise is 

necessary. Long readout time between frames would limit the sampling rate. In addition, 

since short exposure and imaging periods reduce the total amount of collected fluorescent 

light decreasing the signal, reducing the noise is critical for enabling fast imaging at 

acceptable signal to noise ratio. Hence the camera should have low noise, high quantum 

efficiency, and short readout time. The quad-chip CCD camera “NeuroCCD” consists of 4 

chips, each of which composed of 20 by 20 pixels. The quantum efficiency of these chips is 

more than 80% at 550 nm. The readout time can reach 40 s, which only decrease the 

acquisition rate from 200 Hz to 198.4 Hz for the sequential images with 5 ms frame interval. 

 

To complete a full scanning of a spinning disk confocal image, one pinhole should move to 

the position of the next pinhole, thereby ensures the complete illumination/ scanning of the 

samples. Therefore the frame interval of the camera should be certain constant values of 

time which are determined by the spinning speeds. If the frame interval is shorter than these 

constant durations, inhomogenous illumination can result with several parallel dark stripes in 
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the image (Figure III.1). In contrast, if the frame intervals are larger than the fixed duration, it 

can causes parallel bright stripes because these areas are scanned one more time than 

others. 

 
Figure III.1  

Non-synchronized images and the synchronized image  

This figure shows the stripes caused by the non-synchronizing of the spinning speed and the acquisition rate of 

the camera. In this figure, the camera acquisition rate was 5 ms which can be synchronized by setting the 

spinning speed to 2000 rpm. Top three pictures show the stripes when the spinning speed is slower than 2000 

rpm, middle three pictures show the stripes when the spinning speed is faster than 2000 rpm. The bottom 

picture is the synchronized image. The background of these pictures is an organ of Corti.   

 

Besides the synchronization of the camera frame rate to the spinning speed, the physical 

position of camera relative to the spinning disk apparatus is also crucial. In the architecture 

and operation of a frame-transfer CCD, the acquired image, which is integrated in the image 

2000 rpm 

1950 rpm 1850 rpm1700 rpm

2300 rpm 2150 rpm 2050 rpm 
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array, is shifted vertically, row-by-row, to the masked storage array. However, pixels still keep 

on collecting photons during the vertical shift. When the movement of pinhole is parallel to 

this vertically, row-by-row shifting, some columns of the chip always pass through the same 

moving pinholes and the pixels of the column would collect photons from the same pinholes. 

In the end, these columns collect more photons from the pinholes than others, and result in 

bright stripes. In contrast, when the movement of pinholes is perpendicular to the frame 

shifting, pinholes sweep through several columns during frame transfer. This can also 

reduce the duration for a pixel to collect photons from the moving pinholes. Hence, the 

orientation of the frame transfer of a CCD camera should be perpendicular to the movement 

of pinhole. In the NeuroCCD, the 40 s frame-transfer duration is sufficiently short compared 

to 5 ms frame interval, such that we did not have to take actions towards a specific 

orientation.  

 

The high speed spinning can introduce vibrations into the entire microscope and 

patch-clamp apparatus, compromising the image quality and potentially interfering with the 

patch-clamp recordings. In my experiments, I assessed the vibration by measuring the laser 

intensity at the output port of spinning disk scanner. Comparing to the analysis of images, 

the signal of the output laser does not contain the noise from camera readout, fluorescence 

and synchronization, which can report the noise of the disk spinning more straightly. The 

frequency spectrum of the output power exhibited peak frequencies in consistent with the 

frequencies of disk spinning (the red trace, Figure III.2B). I tried to reduce this vibration by 

back-mounting the scanner to the custom-made metal framework (Figure III.2A) which was 

fixed on the table together with the microscope. This construction mostly eliminated the 

oscillating signal when the spinning speed was lower than 2500 rpm (the black trace, Figure 

III.2B). In figure III.2B, little coherent noise was left after the fixation. This remaining 

oscillating noise might arise from imperfect alignment or manufacture of these 2 spinning 
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disks. A small deviation of mapping of the pinholes between two disks can result in the 

coherent noise of spinning frequencies because each specified mapping of pinholes only 

passes once by spinning per round. In spite of the fixation, it cannot totally eliminate the 

vibrating noise when spinning faster than 2500 rpm. The vibration even can be observed in 

the live imaging of samples.  Therefore, in order to get the lowest noise images, I decided 

to use the 2000 rpm spinning speed, which equals 400 Hz frame rate to acquire images.  

                                        

           A                                  B          

                                              
 

Figure III.2    

Mechanical construction of the microscope equipped with spinning disk scanner 

(A) shows how the setup was fixed. The left picture: frontal view of the setup. The scanner was mounted on the 

microscope. The right picture: side view of the setup. The scanner was back-fixed by the metal bar clamped 

onto the metal framework behind the setup. (B) The magnitude of fast Fourier transform (FFT) of the signal 

which measured the laser intensity at the output of the scanner. The spinning speed was 2000 rpm, which 

equals 33.33 Hz. A peak of 33.33Hz was observed in the result of FFT. The red line is the signal before fixing 

the setup onto the frame work. The black line represents the signal after fixation. The magnitude of the 33.33 

Hz was greatly reduced.   

 

Observing the Ca2+ microdomain in SDCM  

In this experiment, confocal imaging was conducted simultaneously with whole-cell 

voltage-clamp recording. After forming a giga-seal, the IHCs patch was ruptured and the 
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recording was subsequently performed. Ca2+ indicators fluo-8FF, TAMRA-conjugated, 

ribbon-binding peptide, and 10 mM EGTA were perfused into the cells. The membrane 

potential was then clamped at certain voltages to activate the voltage-gated Ca2+ channels 

Cav1.3, thereby revealed the evoked fluorescent Ca2+ indicator hotspots. These 

voltage-evoked Ca2+ hotspots appeared immediately after the depolarization of the 

membrane potential. The diffusion distance of the incoming Ca2+ was restricted by the Ca2+ 

chelator EGTA. Therefore the Ca2+ indicator fluorescence should be only observed in the 

vicinity of Ca2+ channels. The observed Ca2+ hotspots were around 1 micrometer (Figure 

III.3B), therefore these Ca2+ hotspots were also called “Ca2+ microdomains”. The Ca2+ 

microdomains almost colocalized to the labeled ribbons in my experiments (Figure III.3C). 

Rarely, there were very few Ca2+ hotpots observed at the places without the labeled ribbon. 

These result supported the previous experiments on both Ca2+ imaging and immunostaining 

of Ribeye and Cav1.31D (Brandt et al., 2005; Frank et al., 2009) arguing that several Cav1.3 

were clustered nearby synaptic ribbons. 

 

Ca2+ microdomains within single IHCs vary in intensity 

Regulation of neurotransmission relies on sophisticated control of vesicular exocytosis by 

spatially coupled Ca2+ channels at presynaptic active zones. Presynaptic active zones are 

electron dense structures containing many molecules such as SNARE to regulate and 

operate presynaptic function (Südhof, 2012). However, functional and structural 

characteristics vary even for the same kind of synapses. In auditory hair cells, several kinds 

of the presynaptic heterogeneity have been reported. There, the size of synaptic ribbons has 

been shown to be positively correlated to the vesicle number of these synapses in cats 

(Merchan-Perez and Liberman, 1996) and frogs (Graydon et al., 2011). Additionally, Ca2+ 

imaging studies in the mouse cochlea have shown that the intensity of presynaptic Ca2+        
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microdomains in IHCs as reported by fluorescent Ca2+ indicators display a high degree of 

heterogeneity (Frank et al., 2009; Meyer et al., 2009).  

 

Interestingly, patterns of rate-level functions in different auditory neurons as well as their SR 

Figure III.3    

Depolarization evoked Ca2+ microdomains colocalize with synaptic ribbons 

(A) A section of an IHC contained the fluorescence of Ca2+ indicators. This cell was voltage-clamped at 

-87 mV. (B) The cell was then depolarized to -7 mV. The Ca2+ hotspots were then evoked which are 

labeled by asterisks. Different colors of the asterisks refer to the traces in the upper half part of (D). The 

sizes of these hotspots range from sub-micrometer to 1 micrometer. (C) The corresponding image of (A) 

and (B) in the channel display the stained ribbons. Notice that every Ca2+ hotspot in (B) can be assigned 

to a fluorescent puctum in (C). These pucta are supposed to be synaptic ribbons. (D) Upper traces 

demonstrate the temporal changes of the Ca2+ hotspot fluorescence. Different colors refer to different 

hotspots labeled in (B). The lower trace shows the corresponding whole-cell ion current. 
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and acoustic threshold are quite distinctive. It is interesting to investigate whether the 

properties of presynaptic evoked-Ca2+ elevation determine the acoustic threshold of 

postsynaptic auditory neurons. Here, I applied SDCM to record the depolarization-evoked 

Ca2+ influx and resulting fluorescent intensity of Ca2+ microdomains in patch-clamped IHCs. 

In comparison with a previous study (Frank et al., 2009) which acquired images of Ca2+ 

microdomains by means of the PSCM, SDCM is able to acquire a whole image of a confocal 

section in shorter time (10 ms and shorter vs. typically 100 ms per frame in SDCM). The 

SDCM enabled us to characterize all synapses in less time and with shorter duration of 

stimulation and therefore to assess AZ size, Ca2+ microdomain maximal intensity and 

voltage-dependence. The Ca2+ microdomains usually resided in 10~15 m of the basal part 

of IHCs. To reveal these Ca2+ microdomains, images were acquired in every confocal 

section in the basal part and in each section the cells were depolarized and fluorescence 

changes were recorded. The scanned regions were first determined by scanning the labeled 

ribbons by searching for the upper and lower bound of the ribbon-exhibiting sections. The 

Ca2+ imaging was subsequently performed. Maximal presynaptic Ca2+ influx was evoked by 

50 ms long depolarization from -87 mV to -7 mV (Figure III.3D). The fluorescence change of 

the central strongest pixel (Fmax) in x, y, and z, and of the mean of 9 pixels in x and y 

surrounding the central strongest pixel (Favg), were used to assess the strength of Ca2+ 

microdomains.  Normalized intensities of fluorescence increase, Rmax (Fmax/F0) and Ravg 

(Favg/F0), were also used to avoid errors of fluorescent intensity caused by variance of dye 

concentration or incomplete loading of the cell.  

 

The distribution of the fluorescence intensities of all Ca2+ hotspots from 28 cells showed 

large variability (figure III.4A). The coefficients of variation (C.V.) of Favg and Ravg were 0.70 

and 0.59, respectively. The C.V. of Favg is in accordance with previous findings (Frank et al., 

2009). However, the distribution of F0 of each spot also showed considerable variability (C.V. 
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= 0.37, figure 1.1B) and the variability of F0 existed within individual cells too (figure III.4D).  

Hence, instead of Favg, Ravg was preferred to estimate the intensity of Ca2+ hotspots.  

 

The heterogeneity of F0 might result from variance in the loading of dye or in washing out of 

endogenous Ca2+ buffers among hair cells. Therefore, I also inspected the mean and 

standard deviation (S.D.) of every hair cell (Figure III.4C, D).  The C.V. of Favg and Ravg in 

individual cells ranged from 0.14 to 1.0 for the Favg and 0.15 to 0.81 for the Ravg (table III.1). 

The grand averages of the mean Favg and Ravg of all examined cells were 124.458.9 a.u. 

and 0.720.25, respectively. These results further confirmed that Ca2+ microdomains exhibit 

a heterogeneous intensity both within individual hair cells as well as between different hair 

cells. 
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Figure III.4 

Variable intensity of hotspots of Ca2+ indicator fluorescence 

(A) Distribution of Favg and Ravg of all examined Ca2+ microdomains. Both variables show a wide distribution 

with a C.V. of 0.70 and 0.59, respectively. (B) A certain heterogeneity is also apparent in the distribution of the 

individual microdomains’ background fluorescence at resting potential F0 (C.V. of 0.37). (C), (D) Those 

histograms display the mean + SD of individual cells’ Favg (red bars, C) and Ravg (blue bars, C) as well as F0 

(D). The green bars show the average of all examined Ca2+ microdomains.     

 

 
Table III.1 

Summary of the average intensities of Ca2+ microdomains in all measured cells 

 

Cell Nr. of spots ICa (pA) Favg C.V. of Favg Ravg C.V. of Ravg

#01 14 -214.2 182.61 0.42 1.05 0.44
#02 14 -394.6 108.33 0.74 0.48 0.75
#03 13 -297.7 106.81 0.68 0.69 0.64
#04 15 -149.6 145.79 0.72 1.14 0.49
#05 7 -104.4 135.72 0.31 0.71 0.34
#06 14 -340.7 81.22 0.62 0.30 0.56
#07 14 -243.9 76.40 0.29 0.53 0.32
#08 12 -178 126.92 0.63 0.78 0.44
#09 13 -170.5 134.51 0.37 0.59 0.35
#10 10 -151.6 48.24 0.89 0.35 0.81
#11 15 -233.6 104.80 0.54 1.05 0.52
#12 12 -187.2 67.92 0.46 0.59 0.33
#13 16 -202.3 98.20 0.69 0.67 0.62
#14 12 -166.5 141.51 0.39 0.93 0.47
#15 10 -142.3 151.89 0.78 0.66 0.81
#16 13 -174.9 139.97 0.32 0.63 0.20
#17 9 -163.9 80.58 0.66 0.63 0.54
#18 6 -130.2 66.96 0.21 0.27 0.18
#19 11 -168.6 54.77 0.82 0.58 0.67
#20 12 -203 68.16 0.75 0.55 0.58
#21 14 -187.6 116.48 1.00 0.53 0.67
#22 11 -157.8 130.30 0.48 0.72 0.45
#23 11 -231.9 188.67 0.39 1.08 0.37
#24 6 -110.1 176.24 0.35 1.08 0.27
#25 12 -205.4 274.34 0.43 1.16 0.37
#26 7 -161 293.51 0.14 1.00 0.15
#28 14 -180.2 83.96 0.61 0.74 0.38
#29 14 -223.6 98.74 0.53 0.58 0.49

Mean 12 -195.55 124.41 0.54 0.72 0.47  
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Voltage dependence of activation varies among different Ca2+ 

microdomains 

In addition to the Ca2+ microdomain intensity, in this study I also investigated the 

voltage-activation properties of Ca2+ microdomains. Ca2+ currents mediated by different 

alternative splice variants of the 1D subunit of Cav1.3 have been shown to vary in their 

voltage dependence of activation (Singh et al., 2008; Juhasz-Vedres et al., 2011; Tan et al., 

2011b). If an IHC synapse contains an isoform of Cav1.3 that activates at more negative 

voltages, weaker stimulation/sound intensity is capable to evoke neurotransmission from 

this synapse. I argue that the voltage-dependence of synaptic Ca2+ influx determines the 

rate-level function of the postsynaptic spiral ganglion neurons. Heterogeneity in the voltage 

dependence of Ca2+ influx between the synapses of a given IHC is then a plausible 

candidate mechanism for causing the different spontaneous rates and acoustic sensitivities 

of SGNs, which are evident from comparing their rate-level functions. To investigate the 

heterogeneity of the voltage-dependent activation among the presynaptic Cav1.3 channel 

clusters the voltage-dependent activation of all individual Ca2+ microdomains was examined 

by fast confocal 3D Ca2+-imaging in IHCs. Since numerous repeated depolarizations of IHCs 

can deteriorate the health of IHCs, it is problematic to apply a complete step-IV protocol on 

every confocal section through a cell. Instead, I adopted a ramp-IV protocol to evoke the 

Ca2+ influx instead of the step-IV. Unlike the step-IV protocols, in the ramp-IV protocol, full 

activation of the Ca2+ microdomains could be acquired in 100 ms within a single 

depolarization protocol, which greatly reduced the overall amount of stimulation.     

 

The membrane potential was ramped from -87 mV to +13 mV within 100 ms (Figure III.5A). 

One drawback of the ramp-IV protocol is the requirement for the ramping speed to 

accommodate the time needed for the gating of ion channels. Therefore, it is necessary to 

confirm that the used ramping speed is adequate to achieve activation like that obtained in 
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the steady state current during depolarizing steps. If the ramping speed is too fast, the 

number of opening channels at a given voltage would be underestimated, especially for low 

depolarizations because of the slow activation rate at these potentials. In figure III.5B, the 

current-voltage (IV) and FV relationships acquired with voltage ramp were compared to 

those of the step depolarization. The FV trace overlapped largely between both voltage 

protocols. The IV trace also overlapped well before -10 mV whereas the IV from step 

depolarizations had larger inward (negative) current than the ramp IV. This difference of the 

ion currents between two protocols might attribute to the contribution of other ions such as 

Cs+ and K+. Nevertheless, the overlapping of both IV and FV traces before -10 mV, where 

more than 90% of the Ca2+ current is usually activated, ensured sufficient time for the 

voltage-dependent activation of the Cav1.3 in this ramp protocol (1 mV/ms). Therefore, we 

used a speed of 1 mV/ms for the subsequent experiments.  

 

Figure III.5A demonstrates the experimental protocol and an example of recorded FV and IV 

traces. They were subsequently divided by the traces which estimate the full activated 

current/fluorescence by extrapolate the linear portion between 0 mV to +20 mV in the FV or 

IV trace to every corresponding voltage and thereby obtain their fractional activation traces. 

(See material and method for details). These fractional activation trace were fitted by 

Boltzmann equation to estimate two fitting parameters, the half-maximal activation voltage 

(V0.5) and the slope-factor (k).  

 

The comparison of average fractional activation curves for current and Ca2+ indicator 

fluorescence is displayed in figure III.5C. The activation properties of Ca2+ microdomains 

(225 Ca2+ microdomains in 21 cells) differed than those of the whole cell Ca2+ currents of the 

same cells. The V0.5 of Ca2+ microdomains was -23.6 mV, which was about 6 mV more 

positive than that of the Ca2+ current (-29.8 mV) (P<0.001). The slope factor (k) of Ca2+ 
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microdomains was about 1 mV lower than whole cell Ca2+ current (6.7 mV for hotspots, 7.5 

for current, P<0.001) (Figure III.5C). Furthermore, voltage-activation of Ca2+ microdomains 

was more variable, the standard deviation of V0.5 and k were ±4.2 and ±1.2 mV, respectively 

in comparison with ±2.3 and ±0.5 mV in the activation of Ca2+ currents (Figure III.5D,E). 

Since the whole cell current simply discloses the response of all Ca2+ channels in an IHC, 

the jitter of the V0.5 of ion current among cells is expected to be lower than that of V0.5 of the 

individual Ca2+ microdomains. I conclude that there is substantial variability in the 

voltage-dependence of Ca2+ current activation among the active zones of an IHC. 

 

In order to inspect whether the maximal intensity of a Ca2+ microdomain is correlated with its 

voltage-dependence of activation, I related the V0.5 and k acquired in the ramp-IV protocol 

(Figure III.5A) to the baseline-normalized fluorescence change in the Ca2+ microdomain 

center in response to step depolarization to -7 measured in the experiment of figure III.4. 

-7mV instead of the maximum intensity of depolarization (around -17mV) was used to 

ensure the full activation of Ca2+ channels at the active zone.  As shown in figure III.5F and 

III.5G, the V0.5 and k of the strong Ca2+ microdomains were mainly close to the mean of the 

population, whereas weaker ones had higher or lower V0.5 and k. 

  

The relation of V0.5 and k is displayed in figure III.5H. V0.5 and k exhibited a moderate 

positive correlation (correlation coefficient: 0.47). This result indicates that active zones that 

activate at the most negative V0.5 also display the steepest voltage dependence of activation, 

suggesting that they drive the most sensitive synapses.    
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Figure III.5 

Properties of the activation of Ca2+ microdomains 

Ca2+ microdomains were activated by the ramp depolarization from -87 mV to +13 mV in 100 ms, and the 

images were acquired at a frame rate of 200 Hz (5 ms exposure per frame). (A) Demonstration of a 

representative cell. The grey and light red traces represent the individual Ca2+ currents and Ca2+ fluorescence 

traces (of the individual hotspots), and the black and red traces are the respective averages. (B) Comparison of 

the IV and FV traces of step and ramp depolarization protocol. Both the ramp and step depolarized the cell 

from -87 to +63 mV. The voltage step size in step protocol was 5 mV, and the frame rate of ramp protocol was 

200 Hz.  (C) Black and red traces are the mean IV from 21 cells and FV from 225 hotspots, respectively. Both 

V0.5 and k of the activation of Ca2+ microdomain were significantly different to the Ca2+ current (P<0.001). The 

shaded areas represent the standard deviation of IV and FV. The detailed distribution of V0.5 and k are shown in 

(D) and (E).  (F), (G) Plots of the relationship between V0.5 and k to intensity of Ca2+ microdomains, Ravg. The 

intensities of Ca2+ microdomains were taken from the step depolarization which is shown on figure III.4.  (H) 

Plot of V0.5 vs. k for all Ca2+ microdomains showing a moderate linear correlation with the correlation coefficient 

Pr = 0.47. The color codes for the intensity of Ca2+ microdomains.  
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Table III.2  

Summary of the activation analysis in all individual cells 

Columns “V0.5” and “k” show the average of the V0.5 and k of within a cell. Notice that the value in “Nr of Spot” is 

different from table III.1 because in the activation experiments, some spots could not be detected owing to 

dimmer signal and shorter frame acquisition time (5 ms).   

 

Cell Nr. Of Spots Ravg V0.5 (mV) S.D. of V0.5 k (mV) S.D. of k

#01 14 1.05 -19.53 2.50 6.57 0.59
#02 10 0.48 -25.86 2.12 6.37 0.80
#03 13 0.69 -25.94 1.41 5.47 0.38
#04 14 1.14 -22.79 2.30 7.39 0.52
#05 6 0.71 -21.64 2.62 6.45 0.94
#06 14 0.3 -24.47 1.78 5.67 0.60
#08 12 0.78 -24.28 2.87 6.40 0.65
#10 3 0.35 -18.77 1.87 7.42 0.61
#11 13 1.05 -24.77 2.09 6.20 1.08
#12 12 0.59 -26.68 3.58 7.39 1.17
#14 12 0.93 -18.50 3.04 6.52 0.58
#15 6 0.66 -18.68 1.40 7.83 0.83
#17 13 0.63 -23.27 2.37 6.68 0.82
#18 5 0.27 -19.02 5.51 7.78 1.96
#19 9 0.58 -17.83 2.46 6.30 1.92
#20 8 0.55 -19.83 5.66 6.86 2.05
#21 14 0.53 -25.17 2.51 7.35 0.95
#23 10 1.08 -21.22 3.08 7.22 0.38
#25 12 1.16 -21.27 3.12 7.18 0.75
#28 12 0.74 -30.87 2.65 5.91 1.88
#29 13 0.58 -23.70 2.87 6.56 1.27  
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Heterogeneous size of synaptic ribbons in single inner hair cell 

The structure of synapses has been found to be related to their physiological performance 

(Holderith et al., 2012). Moreover, Calcium channels are highly colocalized with the 

presynaptic ribbon structure (Brandt et al., 2005; Frank et al., 2010). It’s would be interesting 

to investigate the relationship between ribbon sizes and their strength of 

depolarization-evoked Ca2+ microdomains. Indeed, in a previous study the fluorescence 

intensity of peptide-bound synaptic ribbons, which were utilized to approximate the size of 

ribbon, was shown to vary among active zones (C.V. of approximately 0.7) and to correlate 

with strength of the Ca2+ signal (Frank et al., 2009), suggesting that the strength of Ca2+ 

microdomains increases with the number of Ca2+ channels at the larger active zones. To 

further test this hypothesis, we also used a similar ribbon reporter (TAMRA-conjugated 

C-terminal binding protein 2 (CtBP2) binding peptide) to identify the ribbons and 

approximate their size in ruptured-whole cell patch clamp recordings and performed 

confocal Ca2+ imaging as described above. CtBP2 is the major component of synaptic 

ribbons (Schmitz et al., 2000; Uthaiah and Hudspeth, 2010b). Larger ribbons are supposed 

to have more CtBP2 thereby should bind more peptides. Therefore, it is reasonable to 

estimate the size of ribbons by measuring the intensities of the fluorescent puncta which 

were revealed by ribbon-binding peptides. These puncta were further confirmed to be 

synaptic ribbons by their corresponding evoked Ca2+ microdomains. The benefit of this 

method is that peptide labels the ribbon in the living cell in comparison with 

immunohistochemistry or electron microscopy, which needs to fix tissues. However, due to 

the diffraction-limited resolution of confocal microscopy the structure of the small IHC 

ribbons could not be investigated. 

 

Figure III.6A demonstrates an image of a cell filled with the TAMRA-conjugated 

CtBP2-binding peptide. The bright puncta represent synaptic ribbons. Both measured 
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intensity (Fribbon) of fluorescence and the background-normalized intensity (Fribbon/Fnearby) of 

fluorescence were used to estimate the intensity of ribbon staining. Pixels which were 2 to 3 

pixels (around 500 nm) away from the border of visible brighter puncta toward the 

intracellular direction were averaged (the left arrowhead in figure III.6A) as a background for 

individual staining puncta. In figure III.6B, the fluorescence intensity of labeled ribbons is 

displayed versus their corresponding background fluorescence (Fnearby), which was 

positively correlated Fnearby. Hence, the fluorescence intensity of the ribbon was divided by 

their background to obtain the normalized intensity (Fribbon/Fnearby). 

 

Figure III.6C and III.6E showed the population distribution of 217 spots from 19 cells. Both 

the distribution of Fribbon and Fribbon/Fnearby displayed strong heterogeneity, but still less than 

that of Ca2+ microdomain (figure III.4A). This heterogeneity also exists within single cells 

(figure III.6D,F). The extent of heterogeneity was different among cells, some cells had 

strong heterogeneity (#21, C.V. is 0.64 in D and 0.48 in E), but there were also less 

heterogeneous cells, of which the C.V. were not larger than 0.2 (#24 in III.6D).  
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Figure III.6 

Population properties of the ribbon fluorescence  

(A) Demonstration of one sample image of TAMRA-conjugated CtBP2-binding peptide. The brighter spots 

identified here are recognized as synaptic ribbons. The intensity of ribbon staining was picked up from the 

intensity of brightest pixel in the center of every individual punctum (Fribbon), which is pointed by right arrowhead. 

Every punctum was specified a reference background region containing 9 pixels, which is pointed out by the 

left arrowhead. These background regions were located 2 to 3 pixels away from the visible area of puncta in 

the direction toward the center of the cell. The average of these 9 pixels was taken as the background intensity 

(Fnearby). (B) The relationship of Fribbon and its Fnearby. Linear fitted to the plot indicates moderate positive 

relationship with correlation coefficient Pr=0.52. (C), (E) The distribution of measured (Fribbon) and the 

normalized (Fribbon/Fnearby) intensity of ribbons across 217 puncta. (D),(F) show the mean+S.D. of ribbon puncta 

in 19 cells. 

 

Positive correlation of ribbon fluorescence and Ca2+ microdomain 

intensity 

The intensities of Ca2+ microdomains were compared to the fluorescence of the 

corresponding ribbons in order to investigate the relation of the strength of Ca2+ 

microdomains with the size of corresponding synaptic ribbons. Because other Ca2+ 

indicators were reported to bind the presynaptic dense body in frog hair cells (Issa and 

Hudspeth, 1996), it is crucial to inspect whether the Ca2+ indicator Fluo-8FF also gathered 

on presynaptic synaptic ribbons of mouse IHCs. Figure III.7A displays the correlation of the 

ribbon intensity with the stimulation-free fluorescence of Fluo-8FF (F0,Ca
2+) at the place 

where the Ca2+ microdomains appeared. The positive correlation indicates that the resting 

Fluo-8FF fluorescence was unevenly distributed probably due to binding of Ca2+ indicator to 

the synaptic ribbon. Other possible explanation includes the position of focus plane in the 

cell. Illumination on the apical plane can collect more photons because the longitudinal point 

spread function of excitation light excited fluorophores in both upper and lower juxta-focal 

planes. On the other hand, in the basal end of hair cell, the upper juxta-focal plane contained 

fluorophores but lower juxta-focal plane did not, so it resulted to weaker cumulative intensity 
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of emission light. To further examine these ideas, I compared the F0 to the Fnearby (Figure 

III.7B), which was defined in figure III.6.  In figure III.7B the weak positive correlation of 

F0,Ca
2+ to Fnearby implied that the possible mechanism of the uneven F0 might result from the 

binding of Ca2+ indicators to the synaptic ribbons. Certainly, to avoid this problem, the 

normalized F/F0 was preferred to be used to estimate the intensity of Ca2+ hotspots.             

 

Figure III.7C-F demonstrate the relationship of ribbon fluorescence and the 

background-normalized intensity of the Ca2+ microdomains (Ravg, Rmax). Both the measured 

intensity (Fribbon) (Figure III.7C,E) and normalized intensity (Fribbon/Fnearby) (Figure III.7D,F) of 

ribbon were compared to Ravg and Rmax. The Ravg was more strongly positive correlated to 

Fribbon/Fneraby (correlation coefficient (Pr) = 0.55) than to the measured intensity Fribbon (Pr = 

0.33). I further checked the Pr in all individual cells. The red dots in figure III.7C to E are the 

synapses of the cell with strongest positive correlation and the blue dots are those of the 

weakest positive-correlated cells. Among all of the cells, only one cell was observed to 

exhibit negative correlation between the intensity of the Ca2+ microdomain and that of the 

stained ribbons, all others showed positive correlation, although the correlation was variable 

among cells. Ca2+ microdomains always resided on the border of a cell. The fluorescent 

point spread functions of the excitation light might excite the volume inside and outside of a 

cell. Hence, the averaged intensity Ravg might underestimate real intensities of Ca2+ 

microdomains, therefore the intensities of central pixel (Rmax) were compared too. As shown 

in panels E and F, the result was similar to that found with Ravg (panels C and D).    

 

Regarding the positive correlation shown in figure III.6B, the result of Fribbon/Fnearby was 

favored to be used because it might avoid the plane effect mentioned above. In conclusion, I 

propose that the larger ribbons might have stronger Ca2+ microdomains probably due to the 

presence of more Ca2+ channels.         
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Figure III.7 

Relationship of the “size” of synaptic ribbons and the corresponding Ca2+ microdomains 

(A) The relationship of intensity of ribbons and their respective Ca2+ microdomains before depolarization. The 

fluorescence intensity (F0,Ca
2+) of the region where Ca2+ microdomains reveal was positive correlated with the 

intensity of the labeled ribbon  (Fribbon) with Pr=0.59, whereas (B) the relationship with nearby background 

fluorescence (Fnearby) did not display any obvious correlation with F0,Ca
2+ (Pr=-0.05). (C) and (D) The 

relationship of Ravg of Ca2+ microdomains with related ribbon staining.  The fluorescent intensity of stained 

ribbon was estimated by measured intensity Fribbon in (C) and normalized intensity Fribbon/Fnearby in (D). The red 

points and text demonstrate every hotspots and correlation coefficient from strongest positive correlative cell 

among all. The light blue points and text demonstrate the weakest positive-correlating cell among all. (E) and 

(F) show the same concept of (C) and (D) instead that the normalized maximum intensity of Ca2+ (Rmax) was 

taken rather than the normalized mean intensity.   

 

 

The properties of microdomains and ribbons exhibit polar gradient 

Functional and structural heterogeneity extensively exist in hair cell afferent synapses. 

Measuring the response of the SGNs to sound amplitude in vivo and their spontaneous 

action potential firing rate also manifested various characteristics. Interestingly, Liberman 

indicated the SR of auditory nerves changed around the circumstance of IHCs (Liberman, 

1982; Merchan-Perez and Liberman, 1996). He also pointed out that the auditory nerve 

fibers with larger caliber tended to have high SR (Liberman, 1982) and the high SR fibers 

were further reported to have lower auditory threshold for sound-evoked AP firing. One 

might think that this phenomenon could be reasonably explained by cable theory: a thicker 

fiber has higher conductance to efficiently transmit the depolarizing potential, thereby has 

lower failure rate of AP firing. However, both the first seminodes of Ravier located nearby the 

IHCs and the small membrane area (Hossain et al., 2005) of the postsynaptic bouton 

(Rutherford et al., 2012) enable that the AP can fire proximal to the IHCs. Therefore, the 

caliber of fiber might not be the most important factor to determine the efficiency of AP firing. 

On the other hand, forward masking experiments indicated that the availability of readily 
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releasable vesicles at the IHC AZ influences the efficiency of AP firing (Harris and Dallos, 

1979; Spassova et al., 2004). The variability of the auditory threshold as well as SR may be 

releated to the heterogeneity of evoked Ca2+ microdomains.  Different characteristics of 

Ca2+ microdomains could result in different sensitivities of synaptic transmission to the 

membrane potential changes thereby contribute the various auditory thresholds. Based on 

the observed hair cell polarity of SR, it is certainly feasible to examine whether the 

heterogeneous Ca2+ microdomains have the spatial preference around the IHC.  

 

The primary goal of my PhD work was to study the position-dependence of synapse 

properties in functional imaging experiments. In case I found spatial gradients, these should 

be compared to previous findings on position-dependent active zone morphology and 

functional properties of auditory nerve fibers (see introduction). While direct optical assays of 

transmitter release or postsynaptic firing have not yet been established, I argue that imaging 

the presynaptic Ca2+ signal is instrumental, because its results can be interpreted within the 

straight forward framework of stimulus-secretion coupling at this synapse (Brandt et al., 

2005; Frank et al., 2010).  

 

To understand the position-dependence of the synapse in IHCs, the positions of every 

synapse should be first determined. The circumferential position of every IHC thereby 

should be clarified in order to assign the orientations of the IHCs. According to the 

circumferential positions, the IHC can be partitioned by 2 orthogonal axes, the 

modiolar-pillar axis and the tonotopical axis whereby the polarities “modiolar side”, “pillar 

side” or “tonotopical apical”, “tonotopical basal” side are given to the cell. This definition was 

widely used in previous studies (Liberman, 1982; Merchan-Perez and Liberman, 1996; 

Meyer et al., 2009). By means of this definition, the position of the synapses can be 

demonstrated as a polar chart in cylindrical coordinates because of the cylinder-like basal 
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part of the cell. The advantage of this polar demonstration is that it can faithfully represent 

these “modiolar-pillar” and “tonotopical apical-basal” polarity by the coordinate of angle.   

 

To follow this definition of cell’s position, the shape of every IHC is required to describe the 

relative position of every Ca2+ microdomain/synaptic ribbon inside a cell. Therefore, after the 

acquisition of all evoked Ca2+ microdomains, the morphologies of IHCs were depicted by the 

cytosolic fluorescence of TAMRA-conjugated ribbon-staining peptides. Comparing to the 

previous studies where the organ of Corti was fixed and mechanically constrained by the 

coverslip in immunostaining experiments, observing the morphologies of alive IHCs during 

patch-clamp can provide both physiological and morphological information, and it might also 

better preserve the original shapes of IHCs.  

 

The main difficulty to define the cell’s geometry in this study is that the membrane of the 

patched IHCs was affected by the patch pipette to some extent (pulling or twisting). In 

addition, during the cleaning procedure of the organ of Corti before patch-clamp, removal of 

supporting cells could also cause drifting, shifting or twisting IHCs, which changed the 

relative circumferential position of these IHCs in the tissue. Therefore, the cell’s geometry 

could not be easily and generally assumed. Therefore, I established a new procedure to 

define the geometry based on the morphology of individual patched IHCs. The basic concept 

of this method is to find the “plane of symmetry” which can divide the 3D images of acquired 

IHCs to two mapping images. Because this plane was supposed to be perpendicular to the 

alignment of the stereocilia, the normal vector of this “plane of symmetry” (Vsym) (Figure 

III.8A) can be used to be the surrogate of the tonotopical axis. 

 

To transfer the acquired images from canonical Cartesian coordinate into self-defined 

cylindrical coordinate, 3 orthogonal reference axes and one reference point are required to 
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be defined. After obtaining the plane of symmetry, the second axis and the reference point 

were assigned on this plane.  The contacting outline of the pillar cell to IHC was then used 

to be second axis (Vz) (Figure III.8B).  Because this line lay on the plane of symmetry, it 

was orthogonal to Vsym. Then the IHC was resampled into sequential parallel sections along 

the axis of the Vz. Then the center of mass of the largest fluorescent section (Figure III.8B) in 

the resample images was assigned as the center point (reference point) of the cell. The third 

axis Vmp (Figure III.8C) was then the cross product of Vsym and Vz. By Vz, Vsym, Vmp, and the 

center point, the Cartesian (x,y,z) coordinate can be transferred to cylindrical (r,,h) 

coordinate where r represents the radius of the synapse, represents the polarity as 

described above, and h represents the altitudinal position of the synapses (Figure III.8C). 

 

Figure III.8  

The definition of the cylindrical coordinate within IHCs 

(A) The dot plane is the plane of symmetry, which should separate the cells into 2 equal half parts. The yellow 

vector “Vsym” is the vector for the plane of symmetry. The right part is the modiolar view of the cell.  This panel 

simply visualizes the goodness of the separation.  (B) The view at the plane of symmetry. The blue line 

represents for the contact of IHC to the pillar cell. The orange arrow is the central axis “Vz”. The thick green 

dashed line represents for the largest cutting section. The central purple dot is the center of mass of the largest 

section. (C) Three orthogonal axes of IHCs are Vz, Vsym and Vmp. The transferred coordinate r, H, and  are 

represented by their symbols in this figure. The right part represents the convention of polar charts used in 

figure III.9. 
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Figure III.9B demonstrates the spatial distribution of the intensity of stained ribbon. The 

Fribbon/Fnearby had stronger intensities in modiolar parts, which might mean that the ribbon 

size is larger in the modiolar surface of IHC. This result is also consistent with previous study 

which estimated the size of the synaptic ribbons by measuring the intensity of labeled 

ribbons in immunostaing experiments (Liberman et al., 2011).  Despite the modiolar part 

displays stronger intensities of stained ribbons, there were still quite some numbers of 

stained ribbons with weak and middle intensities.  

 

Figure III.9A demonstrates the spatial distributions of Ca2+ microdomain intensity. The 

intensity was stronger in modiolar part than in pillar part when examining the Favg (Figure 

III.9A7). In contrast, the Ravg did not exhibit a significant spatial preference in the 

modiolar-pillar direction (Figure III.9A3). However, in figure III.9A2, the distribution in modiolar 

part shows comparably obvious more microdomains in strong intensities in than those in the 

pillar part. Therefore, I tried to judge whether the variation of distribution was different in 

modiolar-pillar direction. The Kruska-Wallis test was therefore applied to test the differences. 

However the result still did not report significant differences either.  Because the intensities 

of resting Ca2+ indicator fluorescence (F0,Ca
2+ in figure III.7A) in the place where the Ca2+ 

microdomain appeared were linearly positive to the intensities (Fribbon) of the labeled ribbons 

(Figure III.7A), and the size of synaptic ribbons (Fribbon/Fnearby) were larger in modiolar part as 

well, the statistical difference in III.9A7 might attribute to the stronger resting fluorescence of 

Ca2+ indicator in the synapses of the modiolar part thereby resulting more fluorescence 

when the Ca2+ microdomain was evoked.  

 

The spatial distribution of voltage-activation properties, V0.5 and k, are demonstrated in 

figure III.9C and D. V0.5 was shown to be statistically more negative in pillar part than in 

modiolar part. This result might imply stronger voltage sensitivity of Cav1.3 in the pillar part 
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which is possible to result in lower acoustic threshold when the connected SGN is stimulated 

by sound levels.  As well, even though the statistical difference was observed, there were 

still a considerable number of the Ca2+ microdomains with moderate V0.5 both in modiolar 

and pillar parts.  Combining the result of figure III.9A3, B3, and C3, although the spatial 

preferences of ribbon size and voltage-activation of Ca2+ microdomains were observed, 

there is no clear division in IHC to spatially identify different groups of these synaptic 

properties according to their intensities. This observation is different from what were 

observed of previous studies where an obvious division can be found to spatially separate 

different intensities of the stained ribbons into two groups (Liberman et al., 2011; Lin et al., 

2011). Spatial comparison of the rate constant k was examined (Figure III.9D3), however 

there was no spatial preference exhibiting. In figure III.9D1 and D2 the k of modiolar part also 

displays similar distribution with pillar parts. 

 

The spatial preference in the direction of tonotopical axis was also investigated in this study, 

which has not yet been examined before. In figure III.9A4, B4, C4 and D4, I compared the 

distribution in tonotopical apical and basal part of Ca2+ microdomain intensity, stained ribbon 

intensity, V0.5 and k respectively. However, no any statistical differences were observed, and 

the distributions of these properties in both parts look similar too.   



58 
 

0

3

6

 neural

 abneural

 b
a

sa
l

 a
p

ic
al

210

RCa,avg

15

10

5

0

#
 o

f 
e

v
e

n
ts

3210
RCa,avg

 Abneural
 Neural

3

2

1

0

R
C

a
,a

v
g

ab
n

eu
ra

l

n
e

u
ra

l

20

10

0

# 
o

f 
ev

en
ts

3210

RCa,avg

 Apical
 Basal

A
1
 A

2
 A

3
A
4
 

Ravg 
Ravg Ravg 

R
a

vg
 

0

3

6

3002001000

 neural

 abneural

 a
p

ic
a

l

 b
as

a
l

 Favg (a.u.)

16

12

8

4

0

# 
o

f 
ev

en
ts

6004002000

FCa,avg  (a.u.)

 Abneural
 Neural

600

400

200

0


F

C
a

,a
vg

  (
a

.u
.)

a
b

n
e

u
ra

l

n
e

u
ra

l
*

p=5x10
-4

A
5
 A

6
A
7

　Favg  (a.u.) 

　


F
a

vg
  

(a
.u

.)
 

0

3

6

 abneural

 neural

 a
p

ic
al

 b
as

al

5432

Fribbon/Fnearby

15

10

5

0

# 
o

f 
ev

en
ts

630
Fribbon/Fnearby

 Abneural
 Neural

 

8

6

4

2

0

F
ri

b
b

o
n
/F

n
ea

rb
y

ab
n

eu
ra

l

n
eu

ra
l

*
p=0.015

15

10

5

0

# 
o

f 
ev

en
ts

840
Fribbon/Fnearby

 Apical
 Basal

B
1
 B

2
 B

3
B
4
 

　 Fribbon/Fnearby 　 Fribbon/Fnearby 



59 
 

 

 

                     

0

3

6

 abneural

 neural

 b
as

al

 a
p

ic
al

-30 -25 -20 -15

Vh  (mV)

20

10

0

#
 o

f 
e

ve
n

ts

-35 -25 -15 -5

Vh  (mV)

 Abneural
 Neural

-35

-25

-15

-5

V
h

  (
m

V
)

a
b

n
e

u
ra

l

n
e

u
ra

l

*
p=2x10

-5

20

10

0

#
 o

f 
ev

en
ts

-35 -25 -15 -5

Vh  (mV)

 Apical
 Basal

V
0.5 (mV) V

0.5 
(mV) V

0.5 
(mV)

V
0
.5
 (m

V
) 

C
1
 C

2
 C

3
C
4
 

0

3

6

 abneural

 neural

 a
p

ic
al

 b
as

al

10864

k  (mV)

20

10

0

#
 o

f 
e

v
e

n
ts

12963
k  (mV)

 Abneural
 Neural

 

12

8

4

 k
 (

m
V

)

a
b

n
e

u
ra

l

n
e

u
ra

l

20

10

0

#
 o

f 
e

v
en

ts

12963

k  (mV)

 Apical
 Basal

D
1
 D

2
 D

3
D
4
 



60 
 

Figure III.9 

Polar distribution of properties of Ca2+ microdomains and ribbons 

(A) illustrates the polar distribution of the Ca2+ microdomain intensities. A1 to A4 list different distributions of 

normalized intensity Ravg. A5 to A7 list those of measured intensity Favg. A1 an A5 display the overview of the 

spatial distribution of Ca2+ microdomain intensity in polar charts. A2 and A6 display the distribution in both 

modiolar and pillar parts. A3 and A7 compare their statistics. Notice that the statistical difference only exists in 

A7. A4 display the distribution in both tonotopical apical and basal part. There is no statistical difference for the 

Ca2+ microdomain intensity tonotopically so the statistical comparison is not shown here. From (B) to (D) 

illustrate the polar properties of the intensities of labeled ribbons (Fribbon/Fnearby), V0.5, and k respectively.  B1, C1, 

and D1 display the overview of spatial distribution these properties. B2, C2 and D2 display the distribution of 

them in both modiolar parts and pillar parts. B3, C3, and D3 compare the difference of these properties from 

modiolar part to pillar part. B4,C4 and D4 display the distribution of these properties in tonotopical axis. The box 

plot in A3, A7, B3, C3 and D3 represent for 0, 25%, 50%, 75% and 100% of the distribution in A2, A6, B2, C2, and 

D2 respectively. The red lines in these box plots represent for the mean of these distributions. Notice that the 

statistical differences exist in B3 and C3, and  the statistical difference were confirmed by nonparametric 2 tail 

Wilcoxin-Rank test under the confidence level P<0.05. There is also no statistical difference for all the 

properties tonotopically in B4, C4, and D4.    

 

 

Longitudinal properties of microdomains and ribbons do not show 

differences 

Previous work had identified anatomical differences among the postsynaptic boutons of 

spiral ganglion neurons which innervate the IHC at different positions (Francis et al., 2004). 

Simple and smaller boutons were located basally whereas larger boutons with folded 

structure resided more apically. Except for that, little is known about the characteristics of 

synaptic ribbons, Ca2+ microdomains and the physiological properties of postsynaptic SGNs 

along the long axis a hair cells. Here all four properties, maximum intensity (Ravg), ribbon 

fluorescence, V0.5 and k were inspected as a function of position on the long axis of the IHC. 

FigureIII.10A to D displays the respective relationships: none of the four properties showed a 

significant correlation with the long axis.  
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Figure III.10  

Altitudinal distribution of properties of Ca2+ microdomains and ribbons 

(A),(B),(C),(D) list the relationship between altitude and relative properties, Ravg, Fribbon/Fnearby, V0.5, k 

respectively. According to the cylindrical definition of cells, the 0 in altitude axis was set to be the center of 

mass of the largest section along longitudinal axis Vz (Figure III.8B), and negative value indicated the position 

more basal than largest section. In this figure all four variables do not show a significant positive or negative 

relationship with the altitude.             
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Discussion 

Heterogeneity of presynaptic Ca2+ signals within and across IHCs 

In this study, I demonstrated diversity of Ca2+ microdomains in numerous properties. 

Comparing to the previous study (Frank et al., 2009), which displayed heterogeneous 

maximal intensities and voltage-dependencies of Ca2+ microdomains across several cells 

and indicated heterogeneity also within individual cells, my work extended this notion by 

observing all Ca2+ microdomain of an individual cell.  Indeed, using a different imaging 

approach and focusing on “within cell” comparisons I found marked heterogeneity of 

maximal intensities and voltage-dependencies of Ca2+ microdomains. The C.V. of the F 

distribution among all spots was comparable to the previous study (0.70, figure III.4A, as 

compared to 0.66 (Frank et al., 2009)). However, the F variance differed between the 

individual IHCs. The grand average of the C.V. of all cells was 0.54, whereby the largest and 

smallest C.V. were 1.00 and 0.14, respectively. Different extents of heterogeneity among the 

cells may imply that, in addition to the most likely comparable external regulation, cells may 

also use cell-autonomous mechanisms to determine the heterogeneity among their 

synapses.  

In addition to the F, the ratio of F to rest fluorescence, Ravg, of evoked Ca2+ microdomains 

needed to be assessed, because background fluorescence in resting conditions differed 

among the active zones. This variable background might result from slight deviations of dye 

concentration, incomplete loading of the cell or inhomogeneous dye concentration within the 

cytosol, or different contributions of out-of-focus fluorescence. The Ca2+ indicator Fluo-3 was 

found to accumulate at synaptic ribbons (Issa and Hudspeth, 1996). The Ca2+ indicator used 

in these experiments (Fluo-8FF) is a derivate of Fluo-3, so it appears possible that Fluo-8FF 

also attached to the synaptic ribbon. Indeed, the resting Ca2+ indicator’s fluorescence at the 
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synapse was positively correlated to the fluorescence of the corresponding peptide-stained 

ribbons (Fig III.7A), but not to the fluorescence of the nearby regions which surrounded the 

corresponding ribbons in the colour channel of the fluorescent peptide (Fnearby, fig III.7B). 

Hence, Ravg instead of Favg was preferred for assessing the intensity of Ca2+ microdomains.  

Although the global variability of Ravg is smaller than Favg, the distribution of Ravg still 

displayed high diversity with a C.V. of approximately 0.6. Again C.V.s varied among the cells 

(mean: 0.47, largest: 0.81 smallest: 0.15), but not as much as for Favg. In summary, 

spinning disk confocal Ca2+ imaging corroborates the previous finding of a stark 

heterogeneity of the intensity of presynaptic Ca2+ microdomains.  

Several plausible mechanisms can be considered to contribute the heterogeneous 

intensities of Ca2+ microdomains. First of all, variable numbers of Cav1.3 at individual ribbon 

synapses can result in different intensities of Ca2+ influx. Measuring the ion current on the 

small presynaptic membrane patch can obtain an estimate of the channel number. However, 

the active zone is usually covered by postsynaptic boutons. Moreover, without the 

information of the position of synaptic ribbons even makes it more difficult to precisely 

patch-clamp the Ca2+ channel cluster at the active zone. Instead, in the ruptured whole-cell 

patch-clamp condition, the positions of synapses can be confirmed by the ribbon staining 

peptide. Subsequent measurement of the reduction of whole-cell Ca2+ current while 

selectively blocking the Ca2+ influx at a single microdomain is probably practical to estimate 

the numbers of channels on site. 

Mechanisms for the heterogeneity of voltage-dependent activation of 

Ca2+ microdomains 

Besides the different maximal intensities of Ca2+ microdomains, I also found the voltage 

dependence of activation to differ among the Ca2+ microdomains (Fig. III.5). Interestingly, 



64 
 

the mean V0.5 of the evoked Ca2+ microdomains in fig. III.5 is around 6 mV more positive 

than that of the whole cell Ca2+ current (Fig III.5C). The more positive V0.5 might be due to 

the high [Cs+] inside the patch pipette. Cs+ has been shown to permeate L-type Ca2+ 

channels in cardiomyocytes (Hess et al., 1986). In my experiments, the ratio of internal to 

external [Cs+] is larger than 100, which can result in a negative shift of the current’s reversal 

potential. In addition, the slow-activated Ca2+ dependence K+ channels (SK), which cannot 

be blocked thoroughly by Cs+ and tetraethlyammonium (TEA), might also be activated in the 

later part of the ramp-depolarization protocol because of the Ca2+ influx thereby increasing 

K+ conductance in the whole cell ion current.  Hence, the whole-cell currents measured in 

the patch-clamp experiments might not be carried by Ca2+ alone, but it is also possible that 

an additional Cs+ or K+ current were measured.  As a result, the whole-cell V0.5 could be 

negatively shifted because of the negative reversal potential of Cs+, while the V0.5 measured 

by Ca2+ imaging is not affected by K+ and Cs+ currents In this point of view, the 

voltage-dependent activation of Ca2+ channels can be better estimated by measuring the 

evoked fluorescence of Ca2+ microdomain than by the whole-cell ion current. 

In addition to the reason described above, the estimation of V0.5 could also have deviated 

owing to the error in determining the reversal potential of Ca2+ for the estimation of the 

voltage dependence of the activation of Ravg. The reversal potential should have been 

determined empirically by linear extrapolation. The fluorescence/current traces in the range 

from 0 to 15 mV were usually linear. We estimated the reversal potential from the crossing of 

the extrapolated line with the resting signal. However, the ramp depolarization protocol used 

here only went up to potentials of maximally +13 mV, which is not sufficiently positive to 

estimate the reversal potential through the extrapolation. Therefore in this experiment the 

reversal potential was estimated in the step IV curves, which were recorded in the beginning 

of the whole-cell patch-clamp recording. The difference of the resulting reversal potentials 
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between cells was not larger than 5 mV. In addition, the noisy background fluorescence in 

resting (stimulation-free) condition can cause uncertainty in the estimation of the true 

fluorescence change.  Both reasons can also result in the deviation of the estimation of V0.5 

from the Ca2+ fluorescence. Despite the difference of V0.5 between ion current and Ca2+ 

fluorescence, since the reversal potential was fixed in the range between +37 mV to +42 mV 

among cells, analyzing the variability of V0.5 and k is still practical in this study.  

This difference in V0.5 might originate from different molecular mechanisms regulating the 

properties of Cav1.3. As mentioned in the introduction, numerous alternative splice variants 

of Cav1.3 were identified in the nervous system as well as the organ of Corti (Tan et al., 

2011b). In HEK cells, most of these splice variants have been shown to affect the activation 

and inactivation of Cav1.3. For example, one variant of Cav1.3 with a deletion of the IQ 

domain in the C-terminal region has been observed in OHCs, and suggested to be 

responsible for the reduced amount of CDI (Shen et al., 2006). Hence, concomitant 

expression of several splice variants within a single IHC and their specific 

trafficking/stabilization at the various active zones might be a mechanism to explain the 

heterogeneity of channel activation.  

The characteristics of voltage-dependent activation of one single splice variant should be 

conserved, which means a stable coefficient of V0.5 and k. So if a Ca2+ microdomain uses a 

single splice variant but splice variants differ between the microdomains in an IHC, 

observation of a multi-Gaussian distribution of the V0.5 and k could be expected, whereby the 

different modes of the distribution may resemble the characteristic V0.5 values of the Cav1.3 

splice variants. However, a single normal distribution was observed (Fig. III.5D,E). Therefore, 

I favor the view that the Ca2+ channel cluster of each ribbon synapse is composed of a 

combination of several splice variants of the 1D subunit. 
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Those Ca2+ microdomains with stronger intensities tend to manifest moderate V0.5 and k. 

Weaker Ca2+ microdomains exhibit more extreme V0.5 and k, either more negative/faster or 

positive/slower (Fig. III.5F,G). The majority of the Ca2+ microdomains presented with 

moderate V0.5 and k, which might mean that there is one main splice variant of the 1D 

subunit with moderate V0.5 and k expressed in IHCs. Assuming that the probability of 

expressing a specific isoform of 1D in a Ca2+ channel cluster is independent to other 

isoforms or channels, the expression of this main isoform would dominate the characteristics 

of the voltage-dependent activation of every Ca2+ channel cluster and thereby reduce the 

variability of the V0.5 and k of the evoked Ca2+ microdomains. It is more difficult than to 

explain why the weaker Ca2+ microdomain tend to have extreme V0.5 and k in figure III.5F,G.  

On the contrary, the other possible mechanism could be that there are two major spice 

variants of which one exhibits extremely negative V0.5 and small k and the other one is 

opposite. The composition of a single microdomain could thereby be interpreted by the 

binomial distribution 

    																																																											݂ሺݔሻ ൌ ൫௡௫൯݌
௫ሺ1 െ  .  ሻ௡ି௫݌

Here, n represents for the total channel number of a Ca2+ channel cluster, which could be 

estimated by the intensity of Ca2+ microdomain. x represents the number of one specific 

splice variant of the n channels thereby the number of the other variant is n-x. The 

parameter p should be interpreted as expression probability of one variant. If the expression 

probability of both variants is the same, the value p would be 0.5. f(x) thereby represents for 

the probability to observe a Ca2+ channel cluster containing x number of one isoform from 

the cluster containing n channels. In this distribution, the weaker microdomains which are 

supposed to have fewer channels (small n) would exhibit a broad distribution where the 

microdomains with extreme V0.5 have high chances to be manifested. In contrast, a stronger 
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Ca2+ microdomain which has large n would present a narrow distribution whereby fewer 

chances to observe a cluster nearly composing of one specific variant. Therefore, the 

binominal distribution is consistent with the finding that the Ca2+ microdomain with extreme 

V0.5 and k has are associated with low intensity. To accomplish the observation of figure 

III.5F,G, the expression of both isoforms (p) should be nearly the same to comply with the 

symmetric pattern in figure III.5F,G.  

 

What if the expression of one channel splice variant in a cluster is not independent from the 

expression of other splice variants?  In figure III.9C, the spatial distribution of V0.5 displays a 

gradient which has more negative V0.5 in pillar end and the value of the V0.5 increase toward 

modiolar end. This observation indicates that the expression of specific isoforms of 

Cav1.31D might be under control of external mechanisms or be regulated by the polarity of 

cell. Both environmental and intracellular regulation of the expression of splice variants 

would influence and determine where and how one Ca2+ channel will be expressed and 

result in the variability of the characteristics of the ribbon synapse and its Ca2+ microdomain. 

The concentration gradient of growth factors has been suggested to regulate organ growth 

(Chisholm and Firtel, 2004; Schwank and Basler, 2010). This spatial gradient of channel 

activation characteristics could also be explained by the concentration gradient of some 

growth factors which exhibit the gradient along the modiolar-pillar axis of IHCs.  

 

Additionally, there is still no detailed investigation about the single-channel properties of 

different splice variants of the 1D subunit.  Whether the opening probability or single 

channel conductance is different also determine the intensity of Ca2+ influx and thereby 

could result in different intensities of Ca2+ microdomains. Therefore, detailed investigations 

of the diversity of Cav1.3 are necessary to understand the mechanisms of Ca2+ microdomain 

heterogeneity. 
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Finally, the difference of V0.5 could explain the wide dynamic range of the sound-intensity 

encoding of the auditory system. A sound with an amplitude of around 100 dB can increase 

the receptor potential of IHCs to approximately 20 mV (Dallos, 1985, 1986). The 4 mV 

differences found for the V0.5 values in Ca2+
 microdomains from different synapses are 

sufficiently high to endow the synapses with different operation ranges to collectively encode 

wide ranges of sound amplitude. Therefore, different synapses might utilize different 

operational ranges of the voltage activation of their presynaptic Ca2+ influx to encode 

different sound intensity ranges in the postsynaptic SGNs.    

 

The sizes of synaptic ribbons correlate with the intensities of Ca2+ 

microdomains 

The size of the synaptic ribbon dominates the function of the ribbon synapses. A big ribbon 

can hold more readily releasable vesicles (Khimich et al., 2005; Graydon et al., 2011), and 

probably more Ca2+ channels which was demonstrated by measurements of Ca2+ 

microdomains (Fig.III.7) and fluorescent-peptide labeling of the ribbons in this study. While I 

cannot provide a direct investigation of the relationship between the Ca2+ channel number 

and the RRP pool size in this study, it is very likely that the output of the synapse is governed 

by the number of functional release sites (“slots”) composed of vesicular release sites and 

few nearby Ca2+ channels (Brandt et al., 2005; Goutman and Glowatzki, 2007; Graydon et 

al., 2011). Therefore, a positive correlation of the Ca2+ microdomain with the ribbon size 

likely also predicts more exocytosis at the larger ribbon synapses. I used the fluorescent 

CtBP2-binding peptide (Zenisek et al., 2003; Francis et al., 2011) to infer ribbon size. This 

seems valid because the number of RIBEYE molecules available for binding the peptide is 

expected to increase with size of the ribbon. Our results display a positive correlation of the 
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intensity of ribbon staining to the fluorescence intensity of evoked Ca2+ microdomains at that 

synapse with Pr=0.55 (Fig.III.7D). This result suggests a larger ribbon could cluster more 

Ca2+ channels. Although this positive correlation is basically exhibited in most cells, the 

extent differed of the correlation between the cells. Potential reasons for these differences 

include i) the possibility that the some of the Ca2+ microdomain may have resulted from Ca2+ 

influx at neighboring ribbon-type active zones, of which only one was included into the 

intensity analysis, ii) that the fluorescent peptide binding did not always faithfully predict the 

active zones area or number of Ca2+ channels and iii) a contribution of mechanisms such as 

Ca2+ induced Ca2+ release to the Ca2+ microdomain (Frank et al., 2009).  

 

Nevertheless, our current result does not provide information on how release of synaptic 

vesicles relates to the strength of Ca2+ microdomains. Visualizing synaptic vesicle numbers 

is difficult in the normal light microscopy where Ca2+ imaging and patch-clamp recording are 

performed. Applying electron microscopy subsequent to the Ca2+ imaging and the 

patch-clamp recording might be a possible solution to compare the physiological features 

with the corresponding presynaptic ultrastructure. In addition to the RRP, the application of 

the Ca2+ chelators EGTA or BAPTA were also proven to affect the rate of slow exocytosis in 

the measurement of cell membrane capacitance changes (Moser and Beutner, 2000; 

Goutman and Glowatzki, 2007), which implicated the Ca2+ also play some roles to influence 

the other vesicle pools or the sustained vesicle supplying in the ribbon synapses.  The 

positive correlation shown in figure III.7 in this viewpoint might be able to suppose robust 

vesicle recruitment at large ribbons due to their stronger Ca2+ microdomains.  

 

Properties of Ca2+ microdomains exhibit spatial preference within IHCs 

A spatial preference of the SGNs with different functional properties has been revealed for 

the cat cochlea (Liberman, 1982; Merchan-Perez and Liberman, 1996) related to a spatial 
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segregation of morphological synapse features: SGNs with high SR are more likely to 

innervate the pillar (neural) surfaces of IHCs, and to have larger diameters of the dendritic 

neurites but smaller synaptic ribbons (Merchan-Perez and Liberman, 1996). In agreement 

with the notion of smaller ribbons on the pillar side, immunostainings of IHC synaptic ribbons 

displayed lower fluorescence intensities on the pillar side of IHCs than on the modiolar side 

(Liberman et al., 2011).  

In my experiments, I estimated the size of the synaptic ribbons by analyzing the 

fluorescence of peptide-labeled ribbons and reconstructed the shapes of living IHCs. Owing 

to my experimental requirement, I generated a definition based on the morphology of the cell 

to elucidate the orientation of the tested IHCs (Fig.III.8). The definition used in previous 

studies establishes the orientation of an IHC based on the circumferential landmarks 

(Liberman, 1982; Merchan-Perez and Liberman, 1996; Liberman et al., 2011). However, 

because the shape and position of each hair cell could be changed cell by cell and sample 

by sample, the resulting orientation of every IHC could be different from each other. A gentle 

movement of the cell can cause the deviation of the position determination from it should 

have been. How to deal with this error seemed not be clear described in those previous 

studies, however, in my study they were considered cell-by-cell. 

In my analysis, stronger intensities of stained ribbons and more depolarized V0.5 of the Ca2+ 

microdomains were found on the modiolar surfaces (fig III.9B,C). While stronger Ca2+ 

microdomains have been shown at the modiolar side in a previous study (Meyer et al., 2009), 

I did not find a significant spatial gradient in my experiments but there was a corresponding 

trend. As described in the result, the distribution of the Ca2+ microdomain intensity on the 

modiolar side displays more events with large intensity than on the pillar side (Fig.III.9A2). 

The stronger intensity of stained-ribbons in the modiolar side (Fig.III.9B3) and the positive 

correlation of the ribbon intensity with the Ca2+ microdomain intensity (Fig.III.7) indicate that 

the larger ribbons on the modiolar side are likely having stronger Ca2+ microdomain.  
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In spite of the observed spatial preference of ribbon size and V0.5, a clear separation like 

Liberman et al., 2011 were not seen in this study, for either synapse property: there are still 

quite some weak-intensity ribbons and low-V0.5 Ca2+ microdomains at the modiolar side and 

vice versa.  

 

Presynaptic and postsynaptic mechanisms of diverse spontaneous rate 

in SGNs 

Spontaneous firing of SGN is likely driven by Ca2+ influx driven exocytosis of IHCs (Sewell, 

1984; Robertson and Paki, 2002). However, as mentioned, those SGNs with high SR have 

been suggested to preferentially innervate the pillar side, which is in contradiction with the 

spatial distribution of the intensities of Ca2+ microdomains in my study as well as our 

previous study (Meyer et al., 2009) where the stronger Ca2+ microdomain preferred to 

appear in modiolar side and probably did not present a clear cut of spatial segregation of 

Ca2+ microdomain intensity (Fig.III.9A). Interestingly, my findings now revealed a more 

negative V0.5 of the activation of Ca2+ microdomains on the pillar side which probably results 

in higher Ca2+ influx at the same membrane potential and thereby seems able to attribute the 

lower threshold of voltage-dependent channel activation and resulting high SR to the 

presynaptic voltage sensitivities.   

Liberman et al. tried to explain the heterogeneity of spontaneous activities as well as the 

acoustic threshold of SGNs by the observation of larger sizes of postsynaptic glutamate 

receptor clusters and of thicker calibers of the fibers of SGNs (Liberman, 1982; Liberman et 

al., 2011). They also observed that the degeneration of SGNs following noise trauma was 

mostly affecting the SGNs innervating the modiolar side of IHCs and might be the cause of 

the elevation of the acoustic threshold in auditory brainstem response (Lin et al., 2011). 

However, the small size of the SGNs’ postsynaptic boutons and the close position from the 

IHC to the heminode of Ranvier are probably more important to determine the generation of 
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action potentials (Hossain et al., 2005; Rutherford et al., 2012) than the size of nerve fibers. 

Furthermore, spontaneous EPSPs were shown to be easily capable to evoke action 

potentials, which also indicates a low threshold and high accessibility for action potentials 

(Siegel, 1992). Similar results were also shown in patch-clamp recordings at the dendritic 

boutons of SGNs with slow spontaneous firing rates (Rutherford et al., 2012).  

 

Does the number of glutamate receptors determine the spontaneous rates? Given the same 

amount of presynaptic glutamate release, the bouton with fewer glutamate receptors is likely 

to fire slower because these receptors are saturated and cannot respond to more released 

glutamate. However, every synapse can certainly fire faster than the SR, which means more 

availability of receptors for neurotransmitters. On the other hand, given the same volume of 

synaptic cleft, the bouton with more glutamate receptors is likely to result in more ion influx 

than that with few receptors. However, Liberman et al. demonstrated stronger glutamate 

receptor staining with weaker ribbon staining. The latter likely translates into fewer synaptic 

vesicles released at this synapse, which might attenuate the AP firing rate. 

 

Furthermore, the different sizes of stained glutamate receptor clusters might indicate 

differences in the volume or surface area of boutons. As mentioned before, the size of the 

bouton might influence the membrane charging speed which can determine the AP firing 

rate. Indeed, there are two different morphologies found in electron microscopy studies of 

SGN boutons (Francis et al., 2004). Those boutons with smaller volume and simple structure 

have been found to innervate the basal part of IHCs, and those with larger volume as well as 

folded structure innervate the apical parts. No comparison has been made between these 

two morphologies in the immunostaining of glutamate receptors, and more detailed studies 

regarding the function of this difference are still absent. Is the size of synaptic ribbon related 

to the size of the postsynaptic bouton?  In this study, I found no differences in the intensities 
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of Ca2+ microdomains and the stained ribbons along the altitudinal axis of the IHC 

(figIII.10A,B). The current result thereby cannot relate the size of the ribbon to that of the 

bouton.  

 

In summary, my study indicates a role of different presynaptic voltage dependence of Ca2+ 

channel activation for determining the spontaneous firing of the postsynaptic SGN. Moreover, 

I observed a preference of larger ribbons to reside on the modiolar face of the IHC and a 

corresponding tendency of Ca2+ microdomain strength. Future experiments will need to 

directly assess postsynaptic firing in combination with measurements and manipulations of 

presynaptic properties to directly probe the relationship between presynaptic Ca2+ signaling 

and SGN function.  

 

Mechanism for the encoding of sound amplitude in IHCs 

My finding of a more hyperpolarized voltage-dependent activation of the presynaptic Ca2+ 

channels at the pillar side indicated that the acoustic threshold of the postsynaptic SGN may 

be lower. Indeed, manipulating the L-type Ca2+ channel by applying its blocker nimodipine or 

its agonist BayK8644 can result in changes of acoustic threshold and spontaneous rates in 

SGNs (Robertson and Paki, 2002) and forward masking paradigms also can cause a brief 

elevation of the acoustic threshold in single fiber recordings (Harris and Dallos, 1979; 

Spassova et al., 2004). These results all implicate the importance of the regulation of 

Ca2+-dependent exocytosis in the determination of acoustic thresholds. Furthermore, a 

linear relationship has been demonstrated between V0.5 and k in this study (Fig.III.5H). The 

Ca2+ microdomains with more negative V0.5 also exhibit smaller k, which indicates that those 

microdomains with lower thresholds also are more sensitive to changes in membrane 

potential.  
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Although the dynamic range of a SGN could be explained by its acoustic threshold, as well 

as the basilar membrane nonlinearities (for detail, see Sachs and Abbas, 1974), the 

variability of slope-factor of voltage-dependent activation of Ca2+ channels, k, and the 

number of functional release sites seem to be the other mechanisms to regulate the 

sensitivity of the sound amplitude encoding in SGNs. 

 

In summary, the voltage sensitivity of the presynaptic Ca2+ channel cluster might play an 

important role to determine the auditory threshold as well as the dynamic range of its 

connecting auditory nerve.  
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AKAP79/150 A-kinase anchoring protein  
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AZ Active zone 

BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid 

C.M. Center of Mass 

C.V. Coefficient of variation 

CaBP calmodulin-like Ca2+-binding protein  

CaMKII Ca2+/calmodulin-dependent protein kinase II  

CCD Charge-coupled device 

CDF Ca2+ dependent facilitation 

CDI Ca2+ dependent inactivation 

CF characteristic frequency 

Cfast fast-kinetic capacitance 

Cslow slow-kinetic capacitance 

CtBP2 C terminal binding protein 2  

CTM C-terminal modulator  

EGTA ethylene glycol tetraacetic acid 

EPSC evoked postsynaptic current 

EPSP evoked postsynaptic potential 

FRET Fluorescence resonance energy transfer 

FV Fluorescence-voltage relationship 

HEK Human Embryonic Kidney 293 cells 
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IV Current-voltage relationship 

k slope factor of voltage dependent activation 
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myo6 Myosin VI 
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Rseal Seal resistance 
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S.D. Standard deviation 

SDCM Spinning disk confocal microscopy 
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SK Slow-activated Ca2+ dependence K+ channel  

SR Spontaneous rate 

TAMRA Tetramethylrhodamine 
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