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Summary

The day-night recursion generated by rotation of the Earth around its axis imposes 24 hour rhythm of
light and temperature changes on all organisms. To cope with these changes and associated
challenges biological species from bacteria to humans developed an adaptational timer — the
biological clock. In mammals virtually all cells have a cell-autonomous oscillator consisting of clock
genes arranged in transcriptional-translational feedback loops (TTLs). Body array of single-cell clocks
is organized in a hierarchical system with the master pacemaker located in the hypothalamus and
peripheral clocks found in different organs. This setup facilitates an effective anticipation and
synchronization of the physiology to different daily events in order to improve survival. When devoid
of any external time information the circadian system is able to generate sustained oscillations in
behavioral and physiological processes with an endogenous period length of approximately 24 hours

(hence “circa” = approximately and “dies” =day in Latin).

In the first part of the thesis we investigate the circadian biology of the adipose tissue. Using tissue
culture explants taken from transgenic mouse with a circadian luciferase reporter we show that
adipose tissues from various depots of the body bare a self-sustained clock. We found that Atg/ and
Hsl genes involved in the lipid mobilization (lipolysis) exhibit diurnal variations in the expression
which were abrogated in circadian mutant mice. Using cell-based gene reporter techniques and
chromatin immunoprecipitation we convincingly demonstrate that Atgl and Hsl are direct
transcriptional targets of the key clock proteins, BMAL1 and CLOCK. In turn this leads to circadian
variation in lipolysis efficiency as estimated by glycerol excretion rates from fat pads of wild-type
animals. Importantly, circadian changes of lipolysis rate were abolished in adipose tissue of Clock*”’
and Bmall”" mutants. As the result, free fatty acid (FFA) blood content of wild-type animals was
rhythmic, unlike in Clock*”® and Bmal1”" mutants, which had generally low and flat level of FFAs in
the blood. As physiological consequence, impaired lipolysis results in decreased availability of FFAs as
energy substrate and blunted response to prolonged fasting. On the other hand, lipolysis deficiency
triggers accumulation of triglycerides in lipid droplets of adipocytes and thus leads to adiposity and

ultimately to obesity.

In the second part we generated a circadian mutant mouse deleting Bmall gene in the adipose
tissues using the Cre/loxP gene targeting technology. Fabp4-Cre Bmall fl/fl mice showed impaired
expression of Atgl and Hsl, which led to reduction of lipolysis in the adipose tissues accompanied by
lower FFA content in the blood. Consistently, Fabp4-Cre Bmall fl/fl mutants mostly utilized

carbohydrates instead of FFAs during the resting phase. Using this conditional knockout model we
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show that circadian regulation of lipolysis by the adipose clock is also important for body weight
control. Indeed, Fabp4-Cre Bmal1 fl/fl mice became heavier than wild-type controls kept on standard

diet and developed morbid obesity when fed with high-fat diet.

In summary, we found that the adipose tissue clock is responsible for the regulation of lipid
mobilization and their usage as energy source. We conclude that the adipocyte clock is an integral

part of the circadian system, which normal functioning is required for metabolic homeostasis
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Introduction

Biological rhythms

Live forms on Earth exhibit a large variety of cyclic phenomena known as biological rhythms. These
time-dependent variations, occurring in many physiologically important processes, originate
predominantly as an adaptation to recurring changes in the external environment. Period spectra of
biological rhythms range from seconds (beating of the heart) to years (hibernation) or even decades
(for example the population cycle of Magicicada), and often depend on the particular habitat which
an individual populates. Therefore the majority of rhythmic processes is distinct among different

species and is attributed to particular biological forms.

Circadian rhythms are arguably the most prominent regular biological oscillations. The 24-hour
period of day-night changes imposed by the Earth's rotation comprises an extremely universal
environmental parameter which creates inevitable daily variations in the availability of numerous
natural resources such as light, heat, food etc. Thus, circadian rhythms are one of the most common
external conditions shared by all kingdoms of life. As an adaptation to that, organisms developed

circadian clocks — an evolutionally promoted internal timekeeping system.

First documented in plants by the French astronomer Jean-Jaques Dortous de Mairan in 1729,
circadian clocks are found on almost all levels of the phylogenetic tree from cyanobacteria to modern
Homo sapiens. Given such striking conservation, the question as to what evolutionary advantages it
confers becomes extremely interesting. There are several hypotheses which provide an adequate
explanation. It is very likely that ancient unicellular organisms developed circadian clocks to avoid
DNA damage induced by UV during the day, thus restricting DNA replication and cell division to the
night (Pittendrigh, 1993). Some evidence supports this hypothesis. For instance, CRYPTOCHROMES,
circadian clock proteins in insects and mammals, are light sensitive flavoproteins and belong to the
family of light-induced DNA repair enzymes — DNA photolyases (Hoang et al., 2008; Lin and Todo,
2005). This "escape-from-light" theory could explain the clock origin in primitive species, whereas
more complex multicellular organisms possess a shielding layer — skin - which protects cell
proliferation within the body. Yet the circadian clock does not seem to be merely a rudimentary
organ. Clocks confer a clear selective advantage and improve the fitness of the organism on different
organizational levels. Indeed, mutant Arabidopsis strains flower later under long-day (16 hours of
light : 8 hours of dark) conditions and are less viable under very short-day (4 hours of light : 20 hours
of dark) conditions than their wild-type counterparts (Green et al., 2002). Tau-hamsters, which show

an extremely short circadian period, also have decreased longevity when compared to wild-type
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animals (Hurd and Ralph, 1998). Similar effects are also observed in unicellular organisms. Rhythmic
cyanobacterial strains out-compete arrhythmic strains in light/dark conditions, although both show
similar growth rates in a constant environment (Woelfle et al., 2004). Furthermore strains with a
resonating period (close to that of the light/dark cycle) have a selective advantage over
cyanobacteria with diverging periods (Ouyang et al., 1998). Taken together, organisms with impaired
clocks lack one important quality — the reliable anticipation of upcoming daily changes. They cannot
form proper temporal associations with time of food appearance, predator activity or temperature
changes. Not surprisingly all adaptive values of the circadian clock dissipate in constant laboratory
conditions or arctic latitudes. In line with this arctic mammals exhibit much less - if any - circadian

behavior (Lu et al., 2010; van Oort et al., 2005).

Properties of circadian clocks

As mentioned previously, many biological reactions are cyclic in nature. However not all of them
conform with the classical notion of an “oscillator” since they are simply direct reactions to a
repeated stimulus (“masking”). In order to be called a true “clock” the process in question must stay
rhythmic or be sustained even in absence of external cues. For instance, light is the main and most
accessible source of time information (Zeitgeber) for the circadian system. Nevertheless animals still
maintain circadian behavior in constant light conditions. For instance, Jiirgen Aschoff demonstrated
in his famous bunker experiment that humans kept in isolation from any time information show
regular sleep-wake and body temperature rhythms (Aschoff, 1965). Interestingly, under such free-
running conditions individuals express their own genetically programmed internal period (also called
T), which is not exactly 24 hours. Thus, in order to keep the proper phase relationship with respect to
geophysical daytime, the clock needs to be constantly reset or entrained. This allows organisms to
adapt their circadian clocks to seasonal and other environmental changes. Apart from light there are
other types of (non-photic) Zeitgebers which can entrain circadian clocks, such as temperature
(Aschoff and Tokura, 1986; Francis and Coleman, 1997) and food (Honma et al.,, 1983). Another
important aspect of proper clock function — in particular in poikilotherm species — is temperature
compensation. Temperature is known to regulate the frequency of many biochemical reactions (Dutt
and Muller, 1993). However, during warm or cold exposure circadian clocks show only moderate
changes in period (Hastings and Sweeney, 1957; Pittendrigh, 1954). Some theoretical studies suggest
a model in which temperature sensitive counteracting reactions equally slowing or accelerating the
period upon temperature change annul the period differences (Kurosawa and Iwasa, 2005; Ruoff et
al., 1997). In mammals, this process was proposed to be mediated via robust temperature-insensitive
phosphorylation of clock proteins, e.g. by casein kinase | (CKl) (Isojima et al., 2009). Although the
molecular basis for temperature compensation still remains to be elucidated, the value of this

adaptation for the majority of biological species is hard to overestimate.
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Molecular circadian clocks

In the early 1970s Seymour Benzer and Ronald Konopka provided first genetic evidence for circadian
clock function. A direct mutagenesis screen with ethyl methanesulfonate (EMS) allowed them to
isolate mutant lines of Drosophila melanogaster, which had altered rhythms of both locomotor
activity and eclosion. In their seminal work arrhythmic, short and long period mutations were
mapped to one genomic locus named period (per’, per’ and perI respectively) (Konopka and Benzer,
1971). Nevertheless it took another 17 years before the first circadian mutant in hamsters (called
Tau) was identified, thus pioneering circadian genetics in mammals (Ralph and Menaker, 1988).
These findings opened a whole new avenue for behavioral genetics. Soon after, the Clock gene was
discovered in both Drosophila (Dushay et al., 1990) and the mouse (Vitaterna et al., 1994). In 1990
Michael Rosbash proposed the transcriptional feedback loop model as the molecular basis of

circadian timekeeping which is still conventional to this day (Hardin et al., 1990).

According to this model, the heart of the oscillatory mechanism is comprised of a set of interlocking
transcriptional-translational feedback loops (TTLs) composed of bona fide transcription factors
conserved across phyla (Figure 1). In the beginning of the day, positive components of the main loop,
CLOCK/NPAS2 and BMAL1 (official acronym: ARNTL), heterodimerize and bind short consensus DNA
sequences (E-boxes) in the promoters of the negative components Periodl, 2, 3 (Per1-3) and
Cryptochromel, 2 (Cryl/2), activating their transcription. Over the course of the day the
concentration of PER and CRY heterodimers increases in the cytoplasm and eventually reaches a
threshold at which they are translocated into the nucleus to inhibit CLOCK/BMAL1 activity. Thus the
loop is completed and new cycle can start again (Zhang and Kay, 2010). The precise timing of this
mechanism is tightly controlled via extensive phosphorylation of PERs and CRYs by CKI (Meng et al.,
2008) and 5'-adenosine monophosphate-activated protein kinase (AMPK) (Lamia et al., 2009),
respectively, eventually leading to their proteasomal degradation. There are additional loops which
confer robustness and stability to the system. Genes of the orphan nuclear receptor family Rev-erb
a/B and Rora, which are expressed under the control of CLOCK and BMAL1, impinge on the
transcription of a large subset of genes in an antagonizing manner, among them Clock and Bmall
themselves (Preitner et al., 2002; Sato et al., 2004). This loop regulates phasing and amplitude of
clock gene expression and is indispensable for rhythmic behavior (Cho et al., 2012). Other members
of the basic helix-loop-helix (bHLH) transcription factors family, DEC1 and DEC2, were shown to bind
E-boxes and compete with CLOCK/BMAL1, thus modulating their activity during light resetting
(Honma et al.,, 2002; Rossner et al., 2008). There are several output loops which regulate the
circadian transcription of downstream genes. The most prominent among them involves two
transcription factors, D-site aloumin promoter binding protein (Dbp) and E4bp4. These compete for

the binding of another circadian DNA motif, the D-box, on the promoters of some genes (Lopez-
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Molina et al., 1997; Mitsui et al., 2001). This complex system of negative and positive regulators
generates robust molecular oscillations of not only clock genes, but hundreds of clock-controlled

genes (CCGs), bearing the relevant promoter elements.
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Figure 1. A current model of the circadian transcriptional translational loops (TTLs) in mammals.
CLOCK/BMAL1 activate E-boxes in promoters of target genes (Pers, Crys, and CCGs). PER and CRY proteins
form a complex which inhibits CLOCK/BMAL1. Additional loops contain Rev-erba,/8 and Rora which regulate
Clock and Bmall, and Dbp and E4bp4 which regulate other CCGs. CK1le and AMPK phosphorylate PER and CRY

proteins, promoting their degradation. For more details see text.

Similar TTLs have been described for invertebrates, plants and fungi, yet they are not the only form
of circadian oscillators discovered (Harmer et al.,, 2001). For instance, Cyanobacteria utilize more
simple posttranslational modifications as rhythm generators. This remarkable ancient circadian clock
consists of three proteins, KaiA, KaiB and KaiC, which are able to generate circadian rhythms in
absence of any transcription (Tomita et al., 2005). Moreover when mixed in vitro, these recombinant
proteins are able to reconstitute temperature compensated circadian oscillations of KaiC
phosphorylation states (Nakajima et al., 2005). Nonetheless even this expression-independent clock
exploits transcriptional regulation to deliver timing information to its CCGs (Nakahira et al., 2004).

The existence of posttranscriptional clocks led to the hypothesis that such oscillators might exist in
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other more complex species. This idea was supported by recent reports of rhythmic peroxiredoxin
oxidation in human red blood cells and in the alga Ostreococcus tauri under constant darkness
conditions, both of which are devoid of transcription (O'Neill and Reddy, 2011; O'Neill et al., 2011).
Peroxiredoxins are anti-oxidant proteins that scavenge reactive oxygen species (ROS) in the cell. It
appears that they represent a novel biochemically sensitive timekeeping mechanism found in all
major domains of life (Edgar et al., 2012). However, it still remains unclear what the function of a
peroxiredoxin clock is, and whether they have any link to the TTL. In particular, such a link becomes
interesting since the TTL is surprisingly resilient to the inhibition of global transcription rates (Dibner

et al., 2009).
The circadian system of mammals

The master clock

To keep the body clock ticking, the circadian system has a hierarchical structure with a central
pacemaker at the top. Ablation studies revealed that in mammals this master clock resides in the
basal hypothalamus, in the suprachiasmatic nucleus (SCN), and drives locomotor and drinking
rhythms (Stephan and Zucker, 1972). Later, in his famous transplantation experiment, Michael
Menaker demonstrated that SCN-lesioned animals gain the respective behavioral period properties
of mutant SCN grafts (Ralph et al., 1990). Remarkably the SCN is situated directly above the
retinohypothalamic tract (RHT) and is directly innervated by the optic nerves (Figure 2) (Levine et al.,
1991). The major subset of retina cells which send projections to the SCN are intrinsically
photosensitive retinal ganglion cells (ipRGCs), which express the light pigment melanopsin and
constitute a non-image forming photosensitive system regulating circadian timing (Berson et al.,
2002). Additionally they can integrate light information from rods and cones thus making both
systems functionally redundant. Genetic disruption of all three light-sensitive receptors (e.g.
melanopsin, rod-opsin and cone-opsin) or chemical ablation of ipRGCs leads to “circadian blindness”,
a condition when the animal is incapable of entraining its behavior to the external light-dark rhythm
(Guler et al., 2008; Hattar et al., 2003). Upon light stimulation of the retina, RHT termini release the
neurotransmitters glutamate (Glu) and pituitary adenylate cyclase-activating protein (PACAP) which
signal to the SCN. In turn, this activates signaling cascades and the phosphorylation of CREB, which
can activate the transcription of Pers leading to phase-shifts of the molecular clockwork (reviewed in
(Golombek and Rosenstein, 2010)). The SCN also can acquire non-photic entrainment signals via
neuropeptide Y (NPY) and gamma-aminobutyric acid (GABA) containing neurons from the thalamic
intergeniculate leaflet (IGL) and serotonergic termini from raphe nuclei. This combination of photic
and non-photic signals leads to a more differentiated response of the SCN to light (reviewed in

(Dibner et al., 2010)).
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The function of the master pacemaker is to coordinate other rhythms throughout the brain and the
rest of the body. This is achieved via diverse SCN output signals such as sympathetic neuronal
connections and hormones (Balsalobre et al., 2000; Vujovic et al., 2008). The SCN sends efferent

GABAergic and glutamatergic projections to hypothalamic and thalamic areas (Hermes et al., 1996).

g Arousal/Daylengt

Retina

visual (to tectum)

Figure 2. Schematic representation of photic (orange arrows) and non-photic (blue arrows) inputs to the SCN.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) project to the SCN via the retinohypothalamic tract
(RHT) to transmit light information. (Rods (R); cones (Co); horizontal cells (H); bipolar cells (B); amacrine cells
(Am) and regular retinal ganglion cells (RGC); 5-HT, serotonin; MRN and DRN, dorsal and median raphe nuclei;
IGL, intergeniculate leaflet; GABA, gamma-aminobutyric acid; GHT, geniculohypothalamic tract; Glu, glutamate;
NPY, neuropeptide Y; PACAP, pituitary adenylate cyclase-activating peptide; RHT, retinohypothalamic tract;
SCN, suprachiasmatic nuclei). Modified from (Albrecht, 2012).

In contrast, behavior is primarily regulated by SCN-secreted neuropeptides and thus does not require
neuronal connections. Among those SCN factors which may regulate behavioral rhythms are TGFa
(Kramer et al., 2001), prokineticin-2 (Cheng et al., 2002), and cardiotrophin-like cytokine (CLC)(Kraves
and Weitz, 2006). Furthermore the master clock can affect the synchrony among peripheral organs
less directly through the circadian modulation of body temperature (Brown et al., 2002) and feeding

behavior (Stokkan et al., 2001).

Peripheral oscillators

Ubiquitous expression patterns of clock genes indicate that peripheral tissues also contain a circadian
clock (Sun et al., 1997; Tei et al., 1997). Indeed many organs show circadian expression of clock genes
in vivo (Yamamoto et al., 2004). Furthermore peripheral clocks seem to rely on a similar molecular

oscillator mechanism as the SCN (Yagita et al.,, 2001). Experiments with cell lines gave the first
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indication that non-SCN cells also can sustain circadian expression of clock genes ex vivo (Balsalobre
et al., 1998). Subsequently, the development of transgenic animals bearing a circadian promoter
coupled to a luciferase reporter helped to identify sustained rhythms in many tissues such as liver,
lung, kidney, skeletal muscle, pancreas, heart, stomach, spleen, lung, cornea, thyroid and adrenal
glands (Yamazaki et al., 2000; Yoo et al., 2004). Nevertheless, in contrast to the SCN clock where
neurons actively use coupling to maintain phase coherence (Liu et al., 2007), peripheral oscillators
appear to be less robust and become desynchronized over time (Nagoshi et al., 2004). This evidence
led to the re-evaluation of the role of the SCN in circadian regulation. Rather than being a driver of
peripheral rhythms, the SCN is now seen as a whole-body synchronizer, which helps to coordinate
correct phasing amongst peripheral clocks (reviewed in (Dibner et al., 2010)). This hypothesis is
supported by findings that peripheral organs exhibit large internal desynchronization upon SCN-

lesion in mice (Figure 3) (Yoo et al., 2004).
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Figure 3. Phases of peripheral oscillators in SCN-lesioned mice. A. Superimposed bioluminescent traces from

pituitary and lung slice cultures from mPer2"“ control and SCN-lesioned mice kept in LD and DD. B. Phase map

of different clocks in mPer2™¢

control and SCN-lesioned mice. Modified from (Yoo et al., 2004).

It is important to note that other cues can take over this SCN function. For instance, timing of food
intake can uncouple peripheral clocks from SCN control. Upon restricted feeding (RF), when food is
provided only during the rest period, the phase relationship between the central clock and peripheral

clocks is inversed (Damiola et al., 2000; Stokkan et al., 2001).

Circadian clock and metabolism
Day-night variations in food consumption, activity and rest imply daily changes in the body's energy

state. Indeed, accumulating evidence indicates that circadian rhythms and metabolism are tightly
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interconnected. In rodents, many hormones and metabolites responsible for energy homeostasis
have been shown to exhibit circadian oscillation, such as insulin, glucose (La Fleur et al., 1999),
corticosterone (De Boer and Van der Gugten, 1987), leptin (Ahima et al.,, 1998) and triglycerides
(Rudic et al., 2004). Interestingly, circadian rhythmicity of some of these blood parameters is
eliminated upon SCN ablation, suggesting a role for the master pacemaker in metabolic control
(Kalsbeek et al., 2001; La Fleur et al., 1999). Recent studies demonstrate that circadian disruption
increases the risk of metabolic disorders. Human night shift workers show a higher prevalence of
metabolic syndrome and cardiovascular diseases (De Bacquer et al., 2009; Karlsson et al., 2001; Pan
et al., 2011). These epidemiological findings have been replicated under more controlled laboratory
conditions. Human individuals subjected to a forced desynchrony paradigm, dissociating behavioral
rhythms from the circadian system (achieved by enforcing 28-hour periods of sleep—wake and eating
cycles), exhibit hyperglycemia, hyperinsulinemia and hypoleptinemia (Scheer et al., 2009). Moreover,
mice subjected to light exposure during the night or fed exclusively during their rest phase show
increased body weight (Arble et al., 2009; Fonken et al., 2010). Vice versa, metabolic disturbances
can impinge on the circadian system. Some clock genes exhibit altered expression patterns in the
peripheral organs of streptozotocin-induced diabetic animals (Herichova et al., 2005; Qishi et al.,
2004). Moreover genetically obese KK mice and obese diabetic KK-Ay mice show suppressed
expression of clock and adipokine genes in adipose tissues compared to wild-type animals (Ando et
al., 2006). Strikingly, high-fat diet in itself can ameliorate behavioral and molecular rhythms in wild-
type mice (Kohsaka et al., 2007). Tight coupling of the core clock machinery to the physiological
system occurs already on the cellular level (Bass and Takahashi, 2010). AMPK, an intracellular sensor
of AMP/ATP ratios, promotes degradation of CRY1 upon high AMP levels and thus feeds back to the
TTL (Lamia et al., 2009). Another pathway involves the NAD*-dependent deacetylase SIRTUIN 1
(SIRT1) which is present in CLOCK/BMAL1 complexes and modulates their transcriptional activity
(Asher et al., 2008; Nakahata et al., 2008). The circadian clock elicits a feedback on SIRT1 through
transcriptional control of nicotinamide phosphoribosyltransferase (Nampt), the main enzyme of NAD"
regeneration passage (Nakahata et al., 2009; Ramsey et al., 2009). These fuel-sensing pathways can
modulate clock function and thus couple circadian rhythms to the nutritional state of the cell. In
summary, evidence obtained in these studies underpins the intimate relationship between circadian

rhythms and metabolism on different organizational levels.

Metabolic phenotypes of circadian clock mutant mice
Genetic models of circadian disruption in mice provide new tools to study interactions of circadian
and metabolic systems. Targeted deletion or mutation of individual clock components leads to

metabolic abnormalities, as illustrated by examples discussed below and in Table 1.
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Clock
In 2005 Turek et. al. in their seminal work demonstrated that mice carrying a non-sense mutation in

exon 18 of the Clock gene develop obesity and metabolic syndrome (Turek et al.,, 2005). These
animals become arrhythmic when placed in constant darkness (DD) due to the translation of a
dominant negative form of the CLOCK protein which still heterodimerizes with BMAL1, but lacks
transactivation activity (Gekakis et al., 1998; Katada and Sassone-Corsi, 2010; Vitaterna et al., 1994).
Under entrained light-dark (LD) conditions Clock"® mice show disrupted feeding rhythms and
hyperphagy which leads to elevated lipids and glucose in the blood, increased adiposity and hepatic
steatosis. In addition, both orexin and ghrelin transcript levels, neuropeptides regulating food intake,
are reduced in these animals (Turek et al., 2005). Surprisingly Clock”” mice, which have a very mild
behavioral phenotype, still exhibit elevated body weight gain, although their food intake remains

normal (Debruyne et al., 2006; Eckel-Mahan et al., 2012).

Bmall
Disruption of Bmall results in complete behavioral arrhythmicity in DD (Bunger et al., 2000). At the

physiological level this leads to loss of oscillations in glucose and triglycerides in the blood (Rudic et
al., 2004). Moreover Bmal1”" animals suffer from glucose intolerance and increased insulin sensitivity
due to low insulin levels (Lamia et al., 2008; Rudic et al., 2004). As a result, when kept on a high-fat
diet Bmall” mice become obese and show increased fat content when compared to wild-type
animals, albeit this result was not obtained by another study (Guo et al., 2012; Hemmeryckx et al.,
2011; Shimba et al., 2011). Of note, Bmall mutants have reduced lifespans and after several months
succumb to a premature aging phenotype, which does not allow to study their long-lasting metabolic

defects (Kondratov et al., 2006).

Periods
As a member of the negative feedback loop, Per2 is important for the generation of rhythmic

locomotor behavior in DD (Zheng et al., 1999). Consistent with this Per2”” mice show no discernible
circadian corticosterone rhythm, although the glucocorticoid response to stress is intact (Yang et al.,
2009). On standard diet Per2”” mice weigh slightly less than their wild-type controls, although overall
food consumption remains similar (Grimaldi et al., 2010). In contrast, when challenged with high-fat
diet, Per2”" animals become hyperphagic and gain more weight than wild-types. Moreover Per1/2/3
triple-deficient mice are also overweight compared to wild-type controls on high-fat diet (Dallmann

and Weaver, 2010) .
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Bmal1
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Per2

Cryl, Cry2

Rev-erba

Rora

TTL Function
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bHLH-PAS domain containing
transcription factor, positive
regulator

PAS-domain containing negative
regulator

PAS-domain containing negative

regulator

Negative regulator

Nuclear receptor, negative
regulator

Nuclear receptor, positive
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Metabolic defects in mutant mice

Metabolic syndrome (in Clock™” mice)(Turek et al.,
2005)

Higher body weight , reduced arterial blood pressure
and altered renal function (in C/ock'/'mice) (Eckel-
Mahan et al., 2012; Zuber et al., 2009)

Increased adiposity, abolished oscillations in plasma
glucose and triglycerides and premature aging (in
Bma/l'/') (Guo et al., 2012; Kondratov et al., 2006;
Rudic et al., 2004)

Fasting hypoglycemia (in liver-specific KO) (Lamia et
al., 2008)

Diabetes mellitus (in pancreas-specific KO)
(Marcheva et al., 2010; Sadacca et al., 2011)
Increased urinary sodium excretion (Gumz et al.,
2009)

Lower blood pressure (Stow et al., 2012)

Altered lipid metabolism, lower body weight
(Grimaldi et al., 2010)

Higher body weight and adiposity on high-fat diet
(Yang et al., 2009)

Reduced size and body weight (Bur et al., 2009)
Hyperglycemia and glucose intolerance (Lamia et al.,
2011; Zhang et al., 2010)

Salt-sensitive hypertension (Doi et al., 2010)
Increased body weight and adiposity on high-fat diet
(Delezie et al., 2012)

Increased serum triglycerides (Raspe et al., 2002)
Reduced plasma triglycerides and HDL, enhanced
atherosclerosis (Mamontova et al., 1998)

Table 1. Metabolic defects in mice harboring mutations in clock genes. Modified from (Sahar and Sassone-

Corsi, 2012).

Cryptochromes
Other important members of the TTL's negative loop are the Cryptochrome genes. Mice lacking both

Cry genes are arrhythmic in constant darkness and are frequently used as general clock-deficient

model (van der Horst et al., 1999). Not surprisingly, Cryl'/'CryZ'/' mutants also exhibit a large variety

of metabolic disturbances. Cry-deficient animals exhibit a marked reduction in size and body weight

compared with controls (Bur et al., 2009). Nevertheless, Cryl'/'CryZ'/' mice show perturbed sugar

metabolism with hyperglycemia and glucose intolerance, hallmarks of diabetes (Lamia et al., 2011).

Although blood triglyceride levels of Cry-deficient mice are reduced, they still develop hepatic

steatosis indicating defects in triglyceride metabolism (Cretenet et al., 2010).
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Nuclear receptors
Initially thought to be merely clock modifiers, the members of the nuclear receptor family Rev-erb a

and 8 are now accepted as bona fide components of the core clock. Loss of both genes in liver
strikingly affects the hepatic circadian transcriptome, with particular emphasis on clock and
metabolic function (Cho et al., 2012). Behaviorally arrhythmic Rev-erb double knockout mice display
a shift of overall body metabolism to a more oxidative state, with increased blood glucose and
triglyceride levels (Cho et al., 2012). Furthermore, circadian nuclear receptors become an enticing
therapeutic target since the availability of both potent Rev-erb agonists and antagonists provides a
new pharmacological approach to reset a disrupted metabolic balance (Kojetin et al., 2011; Kumar et

al., 2010; Solt et al., 2012).

Peripheral clocks as metabolic regulators

Many physiological processes which take place in peripheral organs show circadian oscillations.
Among them are xenobiotic detoxification (Gachon et al., 2006), sugar and lipid metabolism (Rudic et
al., 2004), and blood pressure and pulse rates (Veerman et al., 1995). According to genome-wide
transcriptome profiling studies up to 12 % of all genes in peripheral tissues display daily oscillations in
their expression (so called CCGs). These include genes encoding rate-limiting enzymes and critical
regulators of many metabolic pathways, thus providing a link between the local circadian system and
metabolism (Panda et al., 2002; Storch et al., 2002). Moreover, many CCGs are transcription factors
that constitute a physiological output of the circadian clock. Kriippel-like factors KIf10 (Guillaumond
et al., 2010) and KIf15 (Jeyaraj et al., 2012a; Jeyaraj et al., 2012b) and orphan nuclear receptors (Yang
et al., 2006) are regulated by clock genes, and in turn convey timing information to their downstream
targets. Therefore the function of peripheral clocks - and in particular their metabolic applications -
represents an interesting objective to study. Employing an transplantation model, Oster and
colleagues showed that the circadian clock in the adrenal gland regulates adrenal sensitivity to ACTH,
and is required for normal corticosterone rhythms in mice (Oster et al., 2006). Disrupting the
essential clock gene, Bmall, in the liver with the Cre-loxP recombination strategy, Lamia et. al.
demonstrated the physiological significance of the hepatic oscillator. Their experiments suggest that
the liver clock contributes to blood sugar homeostasis by driving the circadian export of glucose via
transcriptional control of glucose transporter 2 (Glut2, Sic2a2). The peak of Glut2 expression
coincides with the fasting phase, thereby favoring glucose export into the circulation when no food is
ingested (Lamia et al., 2008). Marcheva et. al. established a role for the pancreatic clock in the
regulation of glucose metabolism. Islets devoid of a B-cell clock become refractory to glucose and are
incapable of secreting insulin, which eventually leads to the development of a diabetic state

(Marcheva et al., 2010).
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Figure 4. Simplified representations of external zeitgebers and clock physiological outputs. Light is the
predominant external cue for the SCN, whereas other clocks in the brain and peripheral tissues can also be
entrained by food. The SCN and peripheral clocks subsequently regulate behavior, feeding, the sleep-wake

cycle, hormone secretion and metabolic homeostasis. Modified from (Green et al., 2008).

Adipose tissue

Traditionally adipose tissue is recognized as the main energy storage compartment of the body. It is
well established that there are two functionally non-redundant types of adipose tissues, although
they both deal with energetically rich lipids as their major substrate. The first type is brown fat, which
is specialized for the production of heat by non-shivering thermogenesis utilizing lipids as a fuel. In
contrast, white adipose tissue (WAT) stores lipids in the form of triglycerides, and therefore serves as
a long-term fuel reservoir. While having considerably higher energetic density than carbohydrates,
triglycerides require far less water and are associated in the form of anhydrous lipids droplets.
Therefore, the conversion of nutrient excess to triglycerides makes the process of energy buffering
more convenient. It is worthwhile to mention that subcutaneous WAT also acts as a heat insulator
owing to its low thermal conductivity. Moreover, due to its mechanical properties and body
distribution, WAT provides additional cushioning and thus protects internal organs from mechanical
damage. On the cellular level, mature adipocytes represent the functional unit of adipose tissue, and
thus constitute the dominant cell population. Nonetheless a certain fraction of WAT is also

comprised of other cell types (fibroblasts, macrophages etc.)(Trayhurn, 2007).

With the increasing prevalence of metabolic disorders and obesity in the modern population, adipose
tissue biology attracts rising research interest. Firstly, obesity is characterized by increasing amounts
and distribution of fat deposits in the body and therefore adipocytes must be in the focus of our
attention. Secondly, adipose tissue is also an important endocrine and signaling organ (Cook et al.,

1987).
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Adipokines

The term adipokine was coined to define cytokine-like proteins secreted from adipose tissue and
encompasses large spectra of functionally different molecules. Adipokines comprise known
inflammatory cytokines and members of the complement system (e.g. TNFa, IL-6, adipsin) as well as
appetite regulators (e.g. leptin). With the discovery of leptin in 1994, a pivotal role for adipose
endocrine function became apparent (Zhang et al., 1994) . Mice mutant for the leptin gene ob and its
receptor db, were first reported in 1950 and 1966 respectively. These mice display morbid obesity
(Hummel et al., 1966; Ingalls et al., 1950). Later it was determined that leptin is secreted from
adipose tissue and signals to the hypothalamus and periphery for the regulation of food intake and
energy balance (Friedman and Halaas, 1998). Considerable scientific attention has been directed
toward another adipokine — adiponectin. Independently characterized by four groups, adiponectin is
specifically expressed by mature adipocytes and circulates at high levels in the blood (Chandran et
al.,, 2003; Hu et al., 1996; Maeda et al., 1996; Nakano et al., 1996; Scherer et al., 1995). Serum
concentrations negatively correlate with adiposity in humans, and lower levels predict an increased
risk of diabetes and cardiovascular disease (Arita et al., 1999; Trujillo and Scherer, 2005).
Furthermore, studies performed over the last decade suggest that adiponectin exerts anti-diabetic,
anti-inflammatory, and anti-atherogenic actions (Wozniak et al., 2009). Another prominent adipokine
is visfatin which was initially identified as pre-B-cell colony-enhancing factor 1 (PBEF1) and has
nicotinamide phosphoribosyltransferase activity (Rongvaux et al., 2002; Samal et al., 1994). Although
it is not clear what the biological action of visfatin is, plasma visfatin levels in humans correlate with

obesity and type 2 diabetes (Chen et al., 2006; Haider et al., 2006).

Metabolism of fatty acids

As was previously mentioned, the vast majority of the body’s lipids are found stored in adipose tissue
depots as triglycerides. Fat contains more than twice as many calories per unit of mass as protein and
carbohydrates, making it an attractive substrate for energy storage. Chemically, triglycerides
represent esters of one glycerol molecule and three fatty acid molecules with polar “heads” and
hydrophobic “tails”. Within adipocytes neutral lipids are organized in large lipid droplets that
comprise a hydrophobic core of triglycerides and sterol esters surrounded by a monolayer of
phospholipids. Triglycerides themselves, however, do not have energetic value, but only their
breakdown products fatty acids and glycerol. In order to be metabolized, triglycerides must undergo
lipolysis — a process of ester bond hydrolysis into free fatty acids (FFAs) and glycerol residues.
Subsequently, both FFAs and glycerol are exported into the circulation where they are transported to
the liver and other organs (summarized in Figure 5). Besides being energy substrates, FFA residues
are precursors for lipid and membrane biosynthesis, or important mediators in cell signaling

processes. Inside the cell the primary site of FFA metabolism is the mitochondrial matrix where FFAs
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are subjected to B-oxidation. During this process long carbon chains of fatty acids are split into
acetyl-CoA, which eventually enters the Krebs cycle to produce ATP. In the case of extensive -
oxidation (e.g. during starvation), excessive acetyl-CoA amounts can be utilized via ketogenesis to
produce ketones (ketone bodies) that serve as an alternative energy substrate (Hasselbalch et al.,

1994).
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Figure 5. Upon hormonal stimulation adipocyte triglycerides are hydrolyzed (lipolysis) into free fatty acids and
glycerol which are released into the bloodstream (left). With the circulation they reach peripheral organs
where, in turn, they can be transformed into other energetic compounds (right) (very low-density lipoproteins
(VLDL)). Fatty acid mobilization. Art. Encyclopaedia Britannica Online. Web. 4 Oct. 2012.
<http://www.britannica.com/EBchecked/media/92256/When-hormones-signal-the-need-for-energy-fatty-
acids-and>.

Adipocyte-derived FFAs are also important substrates for hepatic synthesis of lipoproteins and very
low-density lipoproteins (VLDLs)(Fukuda and Ontko, 1984). Glycerol can enter either gluconeogenesis
or glycolysis to produce glucose or pyruvate respectively. In summary, excess food-derived FFAs are
esterified to chemically neutral triglycerides stored in lipid droplets, whereas upon energy demand,

triglycerides stores are mobilized by hydrolytic cleavage making FFAs available for B-oxidation and

ATP production.
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Regulation of lipolysis
The pool of FFAs in the circulation represents a balance of two counter processes — lipolysis of

triglycerides and FFA re-esterification (Kalderon et al., 2000). Energy demand during fasting shifts this
balance towards lipolysis. As with any biochemical pathway, lipolysis occurs as multistep regulated
process with different enzymes acting at each stage. The first step is catalyzed by adipose triglyceride
lipase (ATGL), converting triglycerides to diacylglycerols. This is followed by hydrolysis of
diacylglycerols to monoacylglycerols catalyzed by hormone sensitive lipase (HSL). The third and final

step involves the degradation of monoacylglycerols to glycerol and FFA residues by monoacylglycerol
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Figure 6. Regulation of adipocyte lipolysis. For details refer to the text (adipocyte fatty acid-binding protein
(aFABP); insulin receptor (IR); insulin receptor substrate (IRS); phosphoinositide 3-kinase (PI3K); protein kinase
B/AKT (PKB/AKT); protein kinase A (PKA); phosphodiesterase (PDE); hormone sensitive lipase (HSL); adipose
triglyceride lipase (ATGL); monoacylglycerol lipase (MGL); triglycerides (TAG); diacylglycerols (DAG);
monoacylglycerols (MAG); parathyroid hormone (PTH); vitamin D3 (VD3)). Modified from (Duncan et al., 2007).

lipase (MGL) (Duncan et al., 2007; Zechner et al., 2012). Although other lipases may be implicated in
lipolysis, ATGL and HSL were reported to facilitate more than 90 % of triglyceride hydrolysis
(Schweiger et al., 2006). Activity of these enzymes is controlled by multiple hormonal pathways that
can stimulate or inhibit lipolysis (summarized in Figure 6). The most potent lipolysis inducers in
adipose tissue are catecholamines that act through B-adrenergic receptors (Lafontan and Berlan,

1993). When catecholamines bind to their G-protein coupled-receptor, they activate adenylate

a*
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cyclase, thus increasing intracellular cAMP levels. This leads to elevation of cAMP-dependent protein
kinase A (PKA) activity. PKA-mediated phosphorylation of lipid droplet-associated proteins - perilipins
- and HSL dramatically boosts lipolysis (Holm et al., 2000). In addition to catecholamines, glucagon
can also induce lipolysis through adenylate cyclase-dependent PKA activation both in human and
mouse adipose tissues (Heckemeyer et al., 1983; Perea et al., 1995). Another positive regulator of
lipolysis is TNFa. This cytokine downregulates perilipin expression via activation of MAPK p44/42 and
JNK (Ryden et al., 2004; Ryden et al., 2002). Caffeine positively regulates lipolysis via inhibition of
phosphodiesterase (PDE), preventing the breakdown of cAMP (Acheson et al.,, 2004; Peers and
Davies, 1971). On other hand, adenosine acting through inhibitory G protein-coupled receptors can
inactivate adenylate cyclase and reduce lipolysis rates (Borglum et al., 1996; Londos et al., 1978).
Insulin has the most potent anti-lipogenic effect. It acts through the insulin receptor (IR) and the
subsequent phosphorylation of insulin receptor substrate (IRS). In turn, activation of
phosphatidylinositol-3 kinase (PI3K) is triggered, followed by an induction of protein kinase B/AKT
(PKB/AKT) which increases PDE activity (reviewed in (Langin, 2006)).

Metabolic consequences of defective lipolysis
The functional importance of lipid mobilization became evident when genetically deficient mutant

mouse models for lipolysis were generated. Surprisingly, Hs/”" mice are not overweight, although
lipolysis rates and blood FFA content are reduced and adipocyte size is increased (Osuga et al., 2000;
Wang et al., 2001). This phenotype is accompanied by extensive accumulation of diacylglycerols in
WAT and compensatory decrease in FFA re-esterification and de novo synthesis, which explains the
reduction in triglyceride accumulation (Haemmerle et al.,, 2002; Zimmermann et al., 2003). In
contrast, Atg/'/' mice display increased adiposity and higher body weight when compared to controls.
Moreover, ATGL-deficiency decreases lipolysis rates from WAT and this results in reduced blood FFA
levels (Haemmerle et al., 2006). This, again, leads to dramatic ectopic lipid accumulation in organs
such as the heart, provoking cardiac failure and premature death (Haemmerle et al., 2006). In line
with this, recently described human mutations of the ATGL gene are associated with decreased
enzymatic activity and triglyceride accumulation in multiple tissues (Akiyama et al., 2007; Fischer et
al., 2007; Kobayashi et al., 2008). The human syndrome of ATGL deficiency was named Neutral Lipid
Storage Disease with Myopathy (NLSDM) and is characterized by systemic lipid accumulation,
muscular weakness and, in some cases, cardiac abnormalities. Another important consequence of
impaired lipolysis is reduced FFA availability in the circulation, which leads to a shift from lipid to
carbohydrate usage as an energy substrate. This in turn negatively impinges on various aspects of
physiology such as exercise performance, fasting responses and cold exposure tolerance (Ahmadian

et al., 2011; Haemmerle et al., 2006; Huijsman et al., 2009; Wu et al., 2012).
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Figure 7. Microarray data demonstrating circadian oscillation of several clock genes in peripheral tissues of
wild-type mice under LD conditions for 2 days (brown adipose tissue (BAT), inguinal white adipose tissue
(IWAT), epididymal white adipose tissue (eWAT)). White and black bars at the bottom indicate 12 hours of light
and 12 hours of dark respectively. Modified from (Zvonic et al., 2006).

The adipocyte circadian clock
Numerous studies imply tight interconnections between adipocyte physiology and circadian rhythms.

In humans, the circulating levels of adipose tissue-derived hormones show diurnal variation,
including leptin, adiponectin and visfatin (Benedict et al., 2012; Gavrila et al., 2003; Sinha et al.,
1996). Indeed, mRNAs of these adipokines exhibit rhythmic expression, which is attenuated in obese
and diabetic animals (Ando et al., 2005). Adipose tissue exhibits rhythmic clock gene expression both
in mice and humans, indicating of the presence of peripheral clocks (Ando et al., 2005; Otway et al.,
2011; Zvonic et al., 2006) (see also Figure 7). Moreover, according to genome wide microarray

profiling data, a large proportion of the WAT transcriptome (up to 20 %) is subjected to circadian
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regulation, and many of these affected genes perform important metabolic functions (Ptitsyn et al.,
2006; Zvonic et al., 2006). Nonetheless, these studies did not address whether this rhythmicity is
controlled by a local circadian oscillator or rather is systemically driven via hormonal and/or

temperature cues.

Cell based experiments indicate that clock genes are important for adipose tissue function. The
expression of Bmall is up-regulated during adipogenesis and Bmall-deficiency perturbs cell
differentiation into mature adipocytes (Guo et al., 2012; Shimba et al., 2005). Similar functions were
also attributed to Rev-erba, which was reported to play a dual role in adipogenesis. Initially it is
required for mitotic cell division and promotes adipocyte differentiation. During later stages,
however, Rev-erba detains triglyceride accumulation via its inhibitory effect on Ppary expression
(Wang and Lazar, 2008). Another clock gene, Per2, was shown to modulate adipocyte physiology by

interacting with PPARy and preventing its binding to target genes (Grimaldi et al., 2010).
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Aims of the work

According to the prevailing hypothesis, the central circadian clock located in the SCN controls
different aspects of physiology via neuronal and humoral synchronization of peripheral clocks. In
turn, peripheral oscillators throughout the body regulate the timing of organ-specific metabolic
functions. This is achieved mainly through transcriptional regulation of clock controlled genes
involved in metabolism, as it has been demonstrated for the glucose transporter gene Glut2 in the
liver (Lamia et al., 2008). White adipose tissue is another essential metabolic organ which regulates
energy homeostasis and maintains the balance between consumed and deposited nutrients.
Although many aspects of adipocyte biology have been shown to be subjected to 24-hour
oscillations, the function of WAT peripheral circadian clocks has not been addressed and remains
elusive. We hypothesize that local adipose tissue clocks regulate triglyceride metabolism in order to

accumulate energy during periods of food consumption and mobilize it during periods of fasting.

We address this issue by investigating the metabolic defects related to adipose tissue in two
previously generated circadian clock mutants, Clock”® and Bmall”" . This approach will help us to
identify the circadian component in the physiological processes which underlie triglyceride metabolic
regulation. Moreover, to determine the molecular bases of adipose circadian biology, we aim to
identify putative clock controlled genes that are responsible for the time-dependent changes in
triglyceride metabolism. Further, we will use a genetic approach to disrupt the circadian clock in
adipose tissue via deletion of Bmall by the Cre/loxP system. Using this animal model in combination
with adipose tissue cultures, we will test if WAT clocks are involved in the regulation of energy

homeostasis.
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Results

Circadian regulation of lipid mobilization in white adipose tissues

In mammals, a network of endogenous circadian clocks regulates 24-hr rhythms of behavior and
physiology. Circadian disruption promotes adiposity and the development of obesity-associated
disorders such as type 2 diabetes and the metabolic syndrome. While behavioral rhythms are
regulated by a central circadian pacemaker, accumulating evidence suggests that peripheral clocks
strongly contribute to the regulation of metabolism and, thus, may be involved in the maintenance of
energy homeostasis.This study focuses on white adipose tissue (WAT) as the primary energy storage
site of the body. We show that local WAT clocks regulate the availability of lipids as energy source via
transcriptional regulation of two major lipolysis genes, adipose triglyceride lipase (Atgl or Pnpla2)
and hormone-sensitive lipase (Hs/ or Lipe). Diurnal variations in lipid mobilization from WAT ensure
an increased availability of free fatty acids (FFAs) and glycerol as energy sources during the daily rest
period. Circadian Clock and Bmall mutant mice show decreased lipolysis rates, correlating with
blunted diurnal FFA and glycerol blood profiles and increased adiposity due to lipid accumulation in
WAT stores. Our data indicate that local WAT clocks regulate lipid mobilization, ensuring the

temporally appropriate availability of lipids as energy source for other tissues.
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Living organisms are influenced by rhythmic changes in a large number of environmental parameters
due to the Earth's rotation around its axis. In an attempt to optimally adapt to such recurring events
most species have evolved circadian clocks - internal timing systems controlling 24-hr rhythms of
behavior and physiology (Harmer et al., 2001). Remarkably, in mammals, most — if not all — cells
harbor their own molecular timer. Synchrony amongst these cellular clocks, and, thus, overt
behavioral and physiological rhythms, are regulated via a hierarchical system of central and
peripheral oscillators. Information about external daytime is perceived by a master pacemaker
located in the hypothalamic suprachiasmatic nucleus (SCN) which conveys timing cues to the rest of
the body. In both the SCN and the periphery the molecular clock machinery is based on interlocked
transcriptional feedback loops comprised of a set of clock genes. The basic helix-loop-helix (bHLH)
transcription factors CLOCK and BMAL1 (ARNTL) induce expression of the negative regulators Per1-3
and Cry1/2 via binding to E-box promoter elements. During the course of the day PER and CRY
proteins accumulate in the cytoplasm, then enter the nucleus and repress activity of CLOCK/BMAL1
heterodimers, thereby shutting down their own transcription. Further loops interact with this E-box-
mediated transcription rhythm and stabilize its characteristic 24-hr periodicity. Clock genes further
regulate the activity of numerous tissue-specific output genes, thereby translating time-of-day

information into physiologically meaningful signals (Storch et al., 2002).

Both rodent and human studies suggest a tight interaction between circadian clock regulation and
energy homeostasis. Circadian disruption, either external (as seen for example in shift workers) or
internal (e.g. in Clock gene mutant mice), promotes obesity and the development of type 2 diabetes
and the metabolic syndrome (Bray and Young, 2007; Rudic et al., 2004; Turek et al., 2005). From a
clinical perspective it is important to understand, which of the numerous tissue clocks contributes to
metabolic homeostasis, in order to develop potent anti-obesogenic drugs, e.g. for night shift
workers. While appetite regulation is mostly centrally controlled recent animal studies indicate an
essential role of peripheral tissue clocks in the control of energy metabolism. For instance, local
circadian oscillators in liver and pancreas where shown to regulate glucose utilization, whereas
cardiomyocyte clocks are involved in cardiac repolarization (Jeyaraj et al., 2012; Lamia et al., 2008;

Marcheva et al., 2010).

White adipose tissues (WATs) play a prominent role in metabolic homeostasis by storing large
amounts of lipids in the form of triglycerides (TGs) that can serve as fuel substrate for other organs.
During extended periods of energy shortage (e.g. during fasting, but also during the daily rest phase)
the release of lipids from WAT mediated by the hydrolysis of TG (lipolysis) to free fatty acids (FFAs)

and glycerol becomes an important energy source. The timing of FFA release from adipose stores has
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to be tightly controlled as excess of circulating lipids may lead to lipotoxicity and promote
cardiovascular disorders (Unger et al., 2010). Previous reports showed that adipose tissues exhibit
rhythmic clock gene expression in mice and man (Ando et al., 2005; Otway et al., 2011; Zvonic et al.,
2006). Cell-based and animal studies suggest that clock genes are positive regulators of adipogenesis
(Grimaldi et al., 2010; Shimba et al., 2005). It remains unclear, however, how circadian disruption
may lead to increased adipose tissue deposition and obesity, as observed in human shift workers and

in various clock gene mutant mice.

In this study we analyze the role of WAT clocks in lipid utilization in mice. We show that self-
sustained local clocks are critical regulators of rhythmic FFA release from WAT stores, thus revealing
a novel and peripherally regulated mechanism by which circadian disruption may impinge on energy

homeostasis.

Circadian Clock*® mutants show increased adiposity and blunted FFA and glycerol rhythms in blood

To gain more insights into the circadian regulation of lipid homeostasis we compared diurnal profiles
of various lipid parameters in serum between circadian clock deficient Clock*”® and wild-type mice.
After entrainment to 12 hrs light: 12 hrs dark conditions (LD) animals were released into constant
darkness (DD) and sacrificed at four different time points over the course of the day. Consistent with
a previous report (Turek et al., 2005), Clock*"® mice had significantly higher cholesterol levels in the
blood, albeit no significant rhythmicity in daily concentrations was observed in either genotype
(Figure 1A). In contrast, serum triglyceride levels were mildly rhythmic, but indistinguishable
between genotypes (Figure 1B). Interestingly, FFA serum levels showed a robust circadian pattern in
wild-type animals. This rhythm was abolished and overall levels were decreased in Clock””® mutants
(Figure 1C), suggesting an involvement of the circadian clock machinery in the regulation of fatty acid
release from TG stores. In line with this hypothesis, serum glycerol concentrations showed robust
variations in wild-type serum, while in Clock”® mutants levels were non-rhythmic and overall low
(Figure 1D). Similar FFA and glycerol changes were also observed under LD conditions (Figure S1A)
and in another clock deficient mouse model, Bmall”" (Figure S1B). Surprisingly, while blood TG and
FFA levels were unaltered or low, Clock’”® mutants at the same time exhibited higher overall body
weight with increased adiposity (Figure 1E and 1F) (Turek et al., 2005). Histological analysis of WAT
revealed increased WAT lipid accumulation and adipocyte hypertrophy in Clock” mutant mice
(Figure 1G), suggesting that the Clock mutation may promote lipid accumulation or inhibit lipid

mobilization in WAT.
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Figure 1. Serum lipid changes and adiposity in Clock™” mice.

(A-D) Diurnal profiles of cholesterol (A), triglycerides (B), FFAs (C) and glycerol (D) in the serum of wild-type
(black line) and Clock™”’ (red line) mice in DD (n=3 per time point). Time points indicate hours spent in constant

darkness (DD) after last “lights off” (*p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA with Bonferroni post-
test).

(E and F) Body weight (E) and adiposity (epididymal fat to body weight ratio) (F) in wild-type (black bars) and
Clock™” (red bars) mice fed a standard diet for 10 weeks (n=12,*p < 0.05, **p < 0.01, ***p < 0.001 by unpaired
t-test).Data for (E) and (F) were provided by Dr. Judit Meyer-Kovac.

(G) Representative sections and adipocyte size of epididymal WAT after 10 weeks of standard diet (scale bar is
100 um; 15 cells per section and 2 section per mouse and 3 mice per genotype were measured), *p < 0.05, by

unpaired t-test). All data are shown as means + SEM.

Circadian regulation of genes involved in WAT lipid metabolism

Circadian clocks regulate local cellular physiology via transcriptional programs involving large
numbers of tissue-specific clock-controlled genes (Panda et al., 2002). To test if molecular clocks are
involved in regulating WAT physiology we analyzed circadian variations in mRNAs of genes involved
in WAT lipid metabolism. Genes were selected using the Gene Ontology database

(http://www.geneontology.org) and expression data assembled on BioGPS (http://biogps.org) and
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compared to published literature (Figure S2A). mRNA levels of each gene were assessed by
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Figure 2. Circadian control of TG metabolism in WAT.

(A) gPCR screen for clock-regulated genes involved in adipocyte TG metabolism from wild-type WAT samples
isolated at two opposite circadian time points, 37 hours and 49 hours in DD (n=3 per time point; *p < 0.05, **p

< 0.01 by unpaired t-test).

(B-D) Circadian expression profiles of genes involved in FFA transport (B), TG synthesis (C) and lipolysis (D) in

A19

WAT samples from wild-type (black line) and Clock™ (red line) mice in DD (n=3 per time point; *p < 0.05, **p <

0.01, ***p < 0.001 by 2-way ANOVA with Bonferroni post-test).
(E) Profiles of glycerol excretion from wild-type (black line) and Clock™™ (red line) epididymal WAT fat pad
explants harvested in DD (n=8-9 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA with

Bonferroni post-test). All data are shown as means + SEM.
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guantitative real-time PCR (qPCR) from wild-type epididymal white adipose tissue sampled at two
time points, at the beginning of the rest phase (37 hours in DD) and in the early subjective night (49
hours in DD). For those genes which showed significant differences in mRNA levels between both
time points we determined full circadian transcriptional profiles in WAT of Clock”*® and wild-type
mice. Of the genes associated with FFA transport and TG biosynthesis (i.e. the conversion of FFAs for
storage in adipose lipid droplets) Calveolin2 (Cav2), the acyl-CoA synthetases Acs/1, Acsl4, and the
phosphatidate phosphatase Lpinl showed significant differences in expression between 37 and 49
hrs in DD (Figure 2A). In Clock""® mutants FFA transport/TG biosynthesis associated circadian mRNA
profiles were either unaffected (Acsl4, Lpl) or dampened and overall down-regulated when
compared to wild-type controls (Figure 2B and 2C; Figure S2B). Such reduced expression of genes
involved in lipid uptake and storage did not correlate well with the increased adiposity observed in
Clock”*® mice (Figure 1). In contrast, of the genes involved in lipolysis (i.e. the hydrolytic mobilization
of lipid droplet TGs) the mRNAs of two rate-limiting enzymes, adipose triglyceride lipase (Atgl or
Pnpla2) and hormone-sensitive lipase (Hs/ or Lipe), exhibited circadian variations in wild-type animals
(Figure 2A). Atgl and Hsl transcription rates (together with that of Mgll) were significantly reduced in
Clock™” mutants (Figure 2D), strongly correlating with the reduced and arrhythmic FFA/glycerol
serum levels observed in these mice. To test TG breakdown from WAT stores more directly we
performed lipolysis assays on epididymal fat pad explants at four different time points in DD and LD.
In both conditions, glycerol excretion showed a rhythmic pattern in wild-type mice, whereas
dampened rhythmicity and a general down-regulation of lipolysis rates were observed in explants of
Clock™*® mice (Figure 2E; Figure S2C). Analogously, Bmal1”" mice also showed lower expression levels
of Atgl and Hs/ (Figure S2D) and Bmal1-deficient fat pads displayed lower lipolysis rates (Figure S2E
and S2F).

Adipose peripheral clocks drive rhythmic expression of Atgl and Hsl

To further specify the circadian regulation of gene expression in WAT we analyzed mRNA profiles of
Bmall, Per2 and the clock output gene Dbp in DD. Expression of Bmall, Per2 and Dbp genes
exhibited strong circadian variations in wild-type animals, which were significantly down-regulated
and arrhythmic (Per2, Dbp) or dampened (Bmall) in Clock™” mutant mice (Figure 3A). To
characterize the sustainability of molecular circadian rhythms in WAT and compare clock function
between different fat depots we cultured epididymal, perirenal, peritoneal, subcutaneous white as
well as intrascapular brown adipose tissue (BAT) fat explants from PER2::LUCIFERASE circadian
reporter mice. All cultures showed sustained bioluminescence rhythms in the circadian range for
several days (Figure 3B; Figure S3A) (Yoo et al., 2004). The phases of luminescent oscillations were

very comparable between different depots and to those reported from other peripheral tissue
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explants (Pezuk et al.,, 2010; Yoo et al., 2004) (Figure S3B). Periodogram analysis revealed
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Figure 3. WAT clocks regulate expression of Atgl and Hsl via CLOCK and BMAL1.

(A) Expression profiles of Bmall, Per2 and Dbp mRNAs in WAT of wild-type (black line) and Clock™*

(red line)
mice in DD (n=3 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA with Bonferroni post-
test).

(B) Representative baseline-subtracted luminescence recordings from epididymal, peritoneal and

subcutaneous WAT explants of PER2::LUCIFERASE circadian reporter mice.

(C) Rhythmic expression of Atgl and Hs/ transcripts in wild-type (black line), but not Clock™”

(red line) cultured
fat pad explants (n=3 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA with Bonferroni
post-test).

(D) Anti-phasic expression of Per2 (green line) and Bmall (black line) mRNAs in cultured wild-type fat pad

explants (n=3 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA with Bonferroni post-test).
(E) Maps of the 5' regions of the genomic loci of murine Atg/ (upper panel) and Hs/ (lower panel) on
chromosome 7. Putative E-box enhancers are indicated by ovals. Black arrows depict the genomic sequences
cloned for promoter studies. Mutated E-boxes are indicated by gray arrowheads.

(F) Luciferase reporter assays in HEK293 cells for wild-type and mutated Atg/ (left) and Hs/ (right) promoters in
response to co-transfection with Clock/Bmall and Cryl (n=3; ***p < 0.001 by 1-way ANOVA with Bonferroni

post-test).
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(G) Time-dependent BMAL1 binding to Dbp, Atgl and Hsl E-boxes and 500 base pairs downstream regions as
identified by ChIP (n=3 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA with Bonferroni

post-test). All data are shown as means + SEM.

endogenous periodicities of around 25 hrs; statistically significant differences in period where only
observed between epididymal WAT and BAT (25.8 + 0.2 vs. 24.7 £ 0.3 hrs) (Figure S3C). Moreover,
rhythm dampening was comparable among all adipose tissues tested, indicating that the clock gene
machinery is similarly regulated between different adipose depots (Figure S3D). To test if Atg/ and Hsl
transcription is clock driven at the tissue level we kept epididymal fat explants in culture for 36 hours.
We observed rhythmic Atgl and Hsl mRNAs expression in wild-type fat pads (p=0.0004 and p=0.006,
respectively). Similar to what was observed in vivo, transcript rhythms were abolished and overall
levels were reduced in explant cultures from Clock**® mice (p>0.8 for both genes) (Figure 3C).
Remarkably, the expression rhythms of the two lipolytic genes were in phase coherence with the E-
box-regulated Per2 and anti-phasic to Bmall (compare Figures 3C and 3D). Taken together, these

data suggest a direct regulation of Atg/ and Hs/ expression by CLOCK and BMAL1.

BMAL1 and CLOCK regulate expression of Atgl and Hsl via E-boxes

We identified two canonical E-box sequences (CACGTG) in the first intron of Atgl (chr7:148642099-
148642104, 148642860-148642866) and in the upstream region of Hs/ (chr7:26181156-26181161,
26181424-26181430). Genomic DNA fragments containing these cis-regulatory elements were
cloned into pGL3/4 vector and used for luciferase-based transactivation assays in HEK293A cells
(Figure 3E). Co-transfection with Clock and Bmall increased the activity of both Atgl/ and Hs/
promoters by 6.5 and 2.3 fold, respectively (Figure 3F). This activation was inhibited in both cases by
co-transfection with Cry1, a negative E-box regulator. Moreover, mutation of the E-box proximal to
the second exon of the Atgl gene (chr7:148642860-148642866) abolished transcriptional activation
by CLOCK/BMAL1 (Figure 3F, left). Similar results were obtained upon mutation of both upstream E-
boxes in the Hsl promoter (Figure 3F, right). To confirm direct BMAL1 binding of these promoters in
vivo, we performed chromatin immunoprecipitation (ChIP) on epididymal adipose tissue sampled at
two different time points. ChIP analysis revealed time-of-day dependent occupancy of BMAL1 on
Dbp, Atgl and Hsl E-boxes, but not on 500 bp downstream regions in wild-type mice. In WAT of
Bmall-deficient animals BMAL1 binding signal was markedly reduced (Figure 3G). Finally, we
transfected Atgl-luc and Hsl-luc constructs into NIH-3T3 cells and recorded bioluminescence for 48
hrs after serum shock synchronization. We observed a rhythmic bioluminescence signal for Atgl-luc

and Hsl-luc anti-phasic to Bmall-luc (Figure S3E and S3F), comparable to what has been reported for
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other E-box controlled genes such as Per2 (Meng et al., 2008). Together, these results strongly
suggest that circadian Atgl and Hs/ transcription is directly regulated by CLOCK/BMAL1 via E-box

activation at the adipose tissue level.
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Figure 4. Aberrant fasting response in Clock”” mice.

(A) Serum FFA and glycerol levels after 24 and 36 hrs of food deprivation (n=3-4 per time point; *p < 0.05, ***p
< 0.001 by 2-way ANOVA with Bonferroni post-test).

(B) Normalized changes in liver glycogen content of wild-type (black bars) and Clock™* (red bars) mice during

12 hrs of fasting (n=3-4; *p < 0.05 by 2-way ANOVA with Bonferroni post-test).
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(C) Rectal temperature in wild-type (black bars) and Clock™ (red bars) animals during 12 hrs of fasting (n=6-12;

*p < 0.05, **p <0.01, by 2-way ANOVA with Bonferroni post-test). All data are shown as means + SEM.

Defective lipolysis and fasting intolerance in Clock"”® mutant mice

Lipolysis becomes an important energy source during the fasting (i.e. rest) phase of the day. In line
with this reduced FFA mobilization provokes aberrant physiological responses under fasting
conditions (Wu et al., 2012). To test if fasting responses are impaired in Clock""’ mutants we food-
deprived mutant and age-matched wild-type mice starting at the end of the light phase (ZT12).
Indeed, both FFA and glycerol levels were upregulated in serum in response to 24 and 36 hr starve
periods in wild-types, whereas the starve-induced lipolytic response was severely dampened in
Clock”*® animals (Figure 4A). Given that WAT FFA release — and, thus, the availability of lipids as
energy source — appeared impaired we speculated that under fasting conditions mutants may rely

more heavily on carbohydrate or protein utilization (Wu et al., 2012). In line with this, liver glycogen
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stores in Clock”™ mice were depleted much faster than in wild-types under fasting conditions (Figure
4B). Moreover, after food removal mutants showed lower rectal temperature when compared to

wild-type controls, implying decreased thermogenesis due to general energy shortage (Figure 4C).

Circadian physiological rhythms are generated by interplay between systemic time cues, e.g.
rhythmic hormones or metabolites, and the orchestration of transcriptional programs by local tissue
clocks. As a result many physiological parameters which exhibit diurnal variations are altered in mice
with perturbed molecular clocks (Marcheva et al.,, 2010; Rudic et al., 2004). Here we report that
blood FFA and glycerol concentrations show strong variations across the day. In humans it has been
shown that this phenomenon is not solely a response to rhythmic food intake since FFA and glycerol
are still rhythmic under constant routine conditions (Dallmann et al., 2012). In an attempt to describe
the underlying mechanisms we focused our attention on circadian clocks of white adipose tissues as

the main lipid stores of the body and, thus, a critical regulator of metabolic homeostasis.

We screened for diurnal rhythms in transcripts involved in adipocyte lipid metabolism. Together with
a few other candidates we identified Atgl and Hsl, which encode for two lipolysis pacemaker
enzymes responsible for more than 95% of TG hydrolysis activity (Schweiger et al., 2006). During
fasting conditions, e.g. during the daily rest phase, adipose-released FFAs become an important
energy source (Ahmadian et al., 2009; Duncan et al., 2007). Therefore mobilization of FFAs is critically
involved in the regulation of metabolic homeostasis. In WAT expression of Atgl and Hsl showed a
robust circadian rhythm in vivo that was down-regulated in Clock’*’ and Bmal1”" mutants, indicating
regulation by the local circadian clock machinery. Rhythmic clock gene expression has been
demonstrated in many tissues in rodents and humans including various adipose depots (Ando et al.,
2005; Otway et al., 2011; Zvonic et al., 2006). Using PER2::LUCIFERASE fat pad explants cultures we
showed that adipose clocks show similar endogenous rhythm sustainment described for other
central and peripheral oscillators. Rhythmic Atgl and Hsl expression was also sustained in fat pads
explants ex-vivo. Moreover reporter gene assay and ChIP indicated that CLOCK/BMAL1 directly bind
the promoter regions of Atgl and Hsl. In summary, our results strongly suggest that both genes are —

at least in part — under local E-box-mediated transcriptional regulation by a WAT circadian clock.

In line with previous studies in rats (Benavides et al., 1998; Tsutsumi et al., 2002), we showed
circadian rhythms in baseline WAT lipolysis rates and FFA levels in the blood of wild-type mice. In
Clock” and Bmal1”" mutants both these parameters were flattened and down-regulated (our data
and (Kennaway et al., 2007; Oishi et al., 2006)), indicating defects in lipid mobilization. It has

previously been demonstrated that Bmal1” mice are heavier than wild-type littermates and exhibit
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higher fat content during the first months before they succumb to a premature ageing phenotype
(Guo et al., 2012; Hemmeryckx et al., 2011; Lamia et al., 2008). Moreover, C57BL/6 Clock™* animals
are obese and are more prone to develop metabolic syndrome under high-fat diet conditions (Turek
et al., 2005). Similar effects have been reported after genetic deletion of Hsl/ and Atgl. Hsl-deficient
mice show hypertrophic adipocytes, reduced lipolysis rates and decreased FFA levels, though their
body weight is normal (Osuga et al., 2000). Atgl conventional and adipocyte-specific mutants display
the same phenotype together with increased body weight (Ahmadian et al., 2011; Haemmerle et al.,
2006; Hoy et al., 2011; Huijsman et al., 2009), suggesting that low lipolysis rates lead to TG
accumulation in WAT and promote obesity. Mice with defective lipolysis exhibit impaired metabolic
compensation during food deprivation (Wu et al., 2012). Consistently, our data reveal that Clock**’
mutants show aberrant fasting responses. During the inactive phase wild-type mice switch their
energy substrate preference to lipids which corresponds to a lower respiratory exchange ratio (RER)
(Satoh et al.,, 2006). Hs/ and Atgl-deficient animals, however, continue to primarily utilize
carbohydrates during that time due to impaired FFA release into the blood (Huijsman et al., 2009).
Remarkably, a similar RER phenotype was already described for Clock” and Bmal1” mice indicating

impaired lipid metabolism (Eckel-Mahan et al., 2012; Shimba et al., 2011).

So far the mechanistic link between circadian disruption and associated metabolic defects is not
clearly understood. Recent reports suggest that alterations in diurnal feeding rhythms may
contribute to the development of obesity after circadian disruption (Barclay et al., 2012; Hatori et al.,
2012; Turek et al., 2005). Here we show that in addition white adipose clocks directly regulate diurnal
lipid homeostasis by controlling FFA/glycerol mobilization from WAT stores via transcriptional
regulation of the lipolysis pacemaker enzymes Atgl and Hs/ (Figure S4). By this adipocyte clock
function may directly impinge on energy homeostasis, thus providing a potential new target for the

treatment of obesity and obesity-associated disorders, e.g. in human shift workers.
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Figure S1. Serum FFA and glycerol levels in Clock™ and Bmal1”" mice.

A19
(

(A) Diurnal profiles of FFAs and glycerol in the serum of wild-type (black line) and Clock™ (red line) mice in LD

(n=3-5 per time point; *p < 0.05, ***p < 0.001 by 2-way ANOVA with Bonferroni post-test).
(B) Time-of-day dependent variations in serum FFA and glycerol levels in wild-type (black bars) and Bmal1”
(grey bars) animals kept in DD (n=2-3 per time point; *p < 0.05 by 2-way ANOVA with Bonferroni post-test). All

data are shown as means + SEM.
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Figure S2. Circadian control of TG metabolism in WAT.

(A) Schematic overview of tested genes involved in WAT TG metabolism (assembled from Gene Ontology and

BioGPS databases and literature studies).
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(B) Circadian expression profiles of genes involved in FFA transport and TG synthesis in WAT samples from wild-
type (black line) and Clock™”’ (red line) mice in DD (n=3 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-
way ANOVA with Bonferroni post-test).

(C) Glycerol excretion (lipolysis) profiles of wild-type (black line) and ClockMg(red line) epididymal WAT fat pad
explants harvested in LD (n=6-14 per time point; ***p < 0.001 by 2-way ANOVA with Bonferroni post-test).

(D) Expression of Atgl and Hsl in WAT of wild-type (black bars) and Bmal1” (grey bars) animals at 37 and 49 hrs
after lights off (n=2-3 per time point; *p < 0.05, **p < 0.01, by 2-way ANOVA with Bonferroni post-test).

(E) Changes in glycerol excretion from wild-type (black bars) and Bmal1” (grey bars) epididymal WAT fat pad
explants harvested at 37 and 49 hrs after lights off (n=8 per time point; *p < 0.05, **p < 0.01, ***p < 0.001 by
2-way ANOVA with Bonferroni post-test).

(F) Glycerol excretion rates (lipolysis) from wild-type (black bars), Bmal1” (grey bars) and Clock™™ (red bars)
epididymal WAT fat pad explants harvested at Zeitgeber time 7 in LD (maximum in wild-type, see also C; n=8-9;

**p < 0.01 by 1-way ANOVA with Bonferroni post-test). All data are shown as means = SEM.
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Figure S3. Sustained circadian clocks in adipose tissues.
(A) Representative PER2::LUCIFERASE recordings from perirenal WAT and interscapular BAT explants.

(B) Phase map (occurrence of the first peak) of PER2::LUCIFERASE oscillations from WAT and BAT depots

relative to the last “lights on” (n=3-4).

(C and D) Period (C) and dampening rates (D) of PER2::LUCIFERASE oscillations from different fat depots (n=4;
*p < 0.05, by 1-way ANOVA with Bonferroni post-test).

(E) Bioluminescence recordings of Atgl-luc, Hsl-luc and Bmall-luc reporters from transiently transfected NIH-

3T3 cells after serum shock. Raw data was 24-h baseline-subtracted and smoothened using a 1-hour running

average.
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(F) Oscillation phase (occurrence of the first peak) of Atgl-luc, Hsl-luc and Bmall-luc luminescence rhythms
from transiently transfected NIH-3T3 cells after serum shock (n=3-4; *p < 0.05, ***p < 0.001 by 1-way ANOVA

with Bonferroni post-test). All data are shown as means + SEM.
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Figure S4. Circadian regulation of lipid mobilization

Scheme illustrating lipid metabolism during rest (light) and active phases (dark) in wild-type and Clock™™ and

Bmal1”" mice. During the active phase wild-type animals take up TGs with the food which is transported by
lipoproteins in the blood and stored as TG in WAT lipid droplets. In the rest phase, when mice eat little, WAT
lipids from WAT energy stores are mobilized by lipolysis and conversion of TG into FFAs, which are released
into the blood to serve as energy substrate for the rest of the body. Impaired lipolysis in circadian mutant mice
prevents efficient FFA mobilization from WAT stores, thus promoting TG accumulation and adipocyte

hypertrophy, which ultimately results in increased adiposity.
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Methods

Animals

Male wild-type (C57BL/6) and congenic homozygous Clock™ (Vitaterna et al., 1994) and Bmal1”
mice (Bunger et al., 2000) of 2-4 months of age were used for all experiments. All animal
experiments were done after ethical assessment and licensed by the Office of Consumer Protection
and Food Safety of the State of Lower Saxony and in accordance with the German Law of Animal
Welfare. Mice were housed in small groups of 5 or fewer under 12 hrs light: 12 hrs dark cycle (LD) or

constant darkness (DD) conditions with food and water access ad libitum.

Fat pad cultures

Wild-type or PER2::LUCIFERASE mice (Yoo et al., 2004) were LD entrained and sacrificed by cervical
dislocation at Zeijtgeber time (ZT) 9 (i.e. 3 hrs before "lights off"). WAT and BAT samples were isolated
and washed with 1x HBSS (Hank's balanced salt solution) (PAA, Colbe, DE). Tissues were divided into
20-30 mg pieces and cultured in colorless DMEM media (Dulbecco's modified Eagle medium)(PAA)
supplemented with 10% FBS (PAA) and 100 nM luciferin sodium salt (Biosynth, Staad, CH). For RNA
extraction fat pads were removed at 6-hr intervals and total RNA was extracted and processed as
described below. Bioluminescence recordings were performed using a Lumicycle luminometer
(Actimetrics, Willmette, IL). Period and damping rate were calculated using the Lumicycle Analysis

software (Actimetrics).

Gene expression analysis using quantitative real-time (q)PCR

Wild-type and homozygous Clock”"’ mice were entrained to LD for at least 2 weeks, released into DD
and sacrificed at 37, 43, 49, and 55 hours after “lights off” (corresponding to circadian times (CT) 1, 7,
13, and 19, respectively). For LD cohorts mice were kept under LD and sacrificed at ZT1, 7, 13, and 19.
Epididymal fat was isolated and total RNA was extracted using TRlzol reagent (Life Technologies,
Darmstadt, DE). cDNA synthesis was performed by reverse transcription (Life Technologies) using
random hexamer primers. qPCR was performed using iQ SYBR Green Supermix on an CFX96
thermocycler (Bio-Rad, Munich, DE) according to the manufacturer’s protocol. Relative gene
expression was quantified using a AACT method and Eefla as reference genes (Oster et al., 2006).

Primer sequences are listed in Materials and Methods.
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Cloning of Atgl and Hsl promoters and PCR mutagenesis

A 4.3 kb fragment containing the murine Atgl/ upstream sequence and the first intron was PCR-
amplified from genomic DNA using Advantage 2 polymerase mix (Clontech, Mountain View, CA). PCR
products were digested with Hindlll (NEB, Ipswich, MA) and Xhol (NEB) and cloned into Hindlll/Xhol-
digested pGL4 vector (Promega, Madison, WI). A 4.5 kb fragment of the murine Hs/ promoter was
PCR-amplified as described for Atgl. PCR products were cloned into pGL3 vector by In-Fusion Cloning
(Clontech, Saint-Germain-en-Laye, FR). E-box mutations to GGATCC were performed using a PCR

mutagenesis kit (Agilent, Santa Clara, CA). Primer sequences were:

Atgl promoter Fw Pr. 5’-CTCGGCGGCCAAGCTTTCAAACCCCAGGATCTTCAACTA-3’
and 1% intron Rev Pr. 5’-TCTTGATATCCTCGAGCAGCATTCCCAGCTTAGTAACCA-3’

cloning
Mutation of the | Fw Pr. 5'-CCGTCTTCCCATGCTAGGCGGATCCCCATACCATGTTAGGCAC-3'
E-box in the Rev Pr.5'-GTGCCTAACATGGTATGGGGATCCGCCTAGCATGGGAAGACGG-3'

Atgl 1* intron

Hsl promoter Fw Pr. 5- GCAGGCATGCAAGCTTCTTTGCGCTGCCCTTATAGT -3’
cloning Rev Pr. 5’- CCGGAATGCCAAGCTTGCCCTCACAGCAGGAATAGT -3’

Mutation of the | Fw Pr. 5'-AAAAAAAAAACAGGGACGACGGATCCAGGGGGCGGAGGAAAAGGC -3'
first E-box in Rev Pr. 5'-GCCTTTTCCTCCGCCCCCTGGATCCGTCGTCCCTGTTTTTITTITTT-3'

the Hsl
promoter

Mutation of the | Fw Pr. 5'- CCCGCCTTTTCCGGGGGGATCCGGCTCCCTCGACTTA -3'
second E-box in | Rev Pr.5'- TAAGTCGAGGGAGCCGGATCCCCCCGGAAAAGGCGGG -3'
the Hsl
promoter

Luciferase promoter assays

HEK293A and NIH-3T3 cells were maintained in DMEM (PAA) supplemented with 10% FBS (PAA) and
antibiotics. One day prior to transfection, cells were plated onto 24-well plates at a density of 10°
cells per well. HEK cells were co-transfected using PEI (Sigma-Aldrich, Hamburg, DE) and 50 ng of
pGL3/4 reporter plasmid in the presence of 200 ng of Bmall, Clock, or Cryl constructs. Empty
pcDNA3.1 vector was used to make up the total amount of DNA to 0.7 pg per well. 10 ng of a pRL-
CMV Renilla luciferase reporter vector (Promega) was added to each reaction as internal control.
Two days later, cells were harvested and assayed using Dual-Luciferase Reporter Assay System
(Promega) on a TriStar LB941 luminometer (Berthold Technologies, Wildbach, DE). NIH-3T3 cells
were transfected using X-fect (Clontech) with 1 ug pGL3-Hsl, pGL4-Atgl or Bmall-luc (Brown et al.,

2005) reporter plasmids. Two days later cells were synchronized by 50% serum shock for 2 hrs. For




Results 45

luminescence recordings cells were kept in colorless DMEM, 10 % FBS, 100 nM luciferin sodium salt

(Life Technologies).

Chromatin immunoprecipitation (ChIP)

Epididymal fat pads from wild-type and Bmal1”" mice were isolated at ZT7 and ZT19, homogenized
and immediately cross-linked in 1 % formaldehyde. Chromatin was sonicated to obtain an average
DNA length of approximately 400 bp (15 s on, 20 sec off cycles for 22 min on high power) using a
Bioruptor (Diagenode Inc.). Samples were incubated overnight at 4 °C with antiBMAL1 antibody (N-
20, Santa Cruz Biotechnology, Inc.). After clearing, samples were incubated with A/G agarose beads
(Thermo Scientific) for 1 hr at 4 °C followed by intensive washings. Afterwards samples were boiled
for 10 min in 10 % Chelex (Bio-Rad, Munich, DE) with proteinase K (150 ug/mL). After centrifugation
the DNA-containing supernatant was collected for qPCR as described above. All values were

normalized to input signal levels. Primer sequences were:

Dbp E-box Fw Pr. 5’-TGGGACGCCTGGGTACAC-3’
Rev Pr. 5'-GGGAATGTGCAGCACTGGTT-3’

Dbp 500bp Fw Pr. 5'-CGTGGAGGTGCTTAATGACCTTT-3'
Rev Pr.5'-CATGGCCTGGAATGCTTGA-3'

Atgl E-box Fw Pr. 5 -GGTGATGGTTGAAGTAGGTCAGA-3’
Rev Pr. 5’-TATTTCCCAACTGCCTGTCC-3’

Atgl 500bp Fw Pr. 5'-TTCAGACGGAGAGAACGTCA-3'
Rev Pr. 5'-GCAGTGCCTACCTGGATGAG-3'

Hsl E-box Fw Pr. 5'-AGCCTAGGACCCTGTCTGG-3'
Rev Pr. 5'-TCACGTGGTCGTCCCTGTT-3'

Hsl 500bp Fw Pr. 5'-AACTTGATCGCTGGAATTGG-3'
Rev Pr. 5'-GGCTCCATCAATTCTTTCCA-3'

Lipolysis assays

Epididymal fat pads from wild-type, homozygous Clock*”® and Bmall”" mice were dissected at the
indicated time points, cut into 10-25 mg samples and incubated at 37 °C in DMEM, 10 % FBS with
antibiotics. Glycerol release was measured from media aliquots using Free Glycerol Reagent (Sigma-

Aldrich) and normalized to fat pad dry weight.
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Blood metabolite measurements

Trunk blood was collected at CT/ZT 1, 7, 13, and 19 and was allowed to clot. Serum was isolated by
centrifugation at 2,000 x g for 20 min at 4°C. Serum FFAs, triglyceride/glycerol and cholesterol levels
were determined using NEFA kit (Zen-Bio, Research Triangle Park, NC), serum triglyceride
determination kit (Sigma-Aldrich), and cholesterol assay kit (Cayman Chemical Company) according

to the manufacturers' protocols.

Adipocyte size determination

Freshly isolated epididymal WAT samples from age-matched wild-type and Clock’* animals were
fixed with 4 % paraformaldehyde (PFA) in 1x phosphate buffered saline (PBS) overnight. Samples
were dehydrated with descending alcohol concentrations and embedded in paraffin. Sections were
cut at 6 um and stained with hematoxylin-eosin. Adipocyte size was determined with Image J

software (NIH, Bethesda, MA).

Statistical Analyses

Statistics were performed using Prism 5 software (GraphPad Software). P-values < 0.05 were

considered significant. Analysis of circadian gene expression was performed with CircWave software.
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Additional Data

Stimulated lipolysis in adipose tissue of ClockA1? mutants

In order to reveal the efficacy of hormonal lipolysis induction in adipose tissue of circadian mutants,
we treated fat pads with the Bi- and B,-adrenoreceptor agonist isoproterenol at the maximum of
wild-type basal lipolysis (Zeitgeber time 7) (Haemmerle et al., 2006). We observed a strong response
for both genotypes, though glycerol excretion rates from Clock*”® fat pads were slightly reduced
compared to wild-type controls. These data indicate that the posttranscriptional mechanism of
lipolysis induction is preserved in Clock’’ mutants. However, due to lower expression levels of Atgl

and Hsl, hormonal induction of lipolysis cannot be fully rescued (Figure 8).
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Figure 8. Isoproterenol induction of lipolysis in Clock™™ and wild-type fat pads at ZT7. Data are presented as

mean = SEM. *, P < 0.05; **, P < 0.01 by 2-way ANOVA with Bonferroni post-test.
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Generation of adipocyte-targeted circadian clock deficient mutant mice.
Fabp4-cre Bmall fl1/fl animals carry a deletion of Bmal1l in adipose tissue

To address the role of adipose tissue clocks in vivo, we generated an adipose-clock deficient mouse
line crossing Fabp4-Cre mice (He et al.,, 2003) with Bmall fl/fl animals (Storch et al., 2007). By
targeting the essential clock gene Bmall (Bunger et al., 2000) one can achieve a selective disruption
of clock function in tissues expressing CRE recombinase (Lamia et al., 2008; Storch et al., 2007). After
two generations of breedings we obtained the desired genotype, Fabp4-Cre Bmall fl/fl. We tested
the efficacy and specificity of the Bmall deletion in different organs by preparing tissue
homogenates at the maximum of Bmall expression (ZT18) and Western blotting with antiBMAL1
antibodies (Honma et al., 1998). As expected, we observed a deletion of BMAL1 protein from both
epididymal and peritoneal fat depots (Figure 9 A and B). In contrast, we could not see any effect in
other metabolically active tissues such as liver and muscle (Figure 9 C and D). However, we
unexpectedly observed a marked reduction of BMAL1 protein in the brain hinting at an ectopic

expression of the CRE recombinase (Figure 9E).
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Figure 9. Western blots showing BMAL1 regulation in epididymal (A) and peritoneal (B) WATs, liver (C), muscle
(D) and brain (E) in Fabp4-Cre Bmal1 fl/fl animals. Tissue protein extracts were prepared at Zeitgeber time 18

and probed with antiBMAL1 antibodies. B-ACTIN antibodies were used as loading control.

Reduction of BMAL1 in the brain of Fabp4-cre Bmall fl/fl mice
Next we wanted to assess the extent of BMAL1 deletion in the brain of Fabp4-Cre Bmal1 fl/fl animals.

Therefore we entrained both genotypes to LD conditions and sacrificed them at ZT18. Freshly frozen
brains were embedded in cryopreservation medium and subjected to cryosectioning with
subsequent immunohistochemistry with antiBMAL1 antibodies. In agreement with Western blot data
we revealed a general reduction of BMAL1 protein levels in brains of Fabp4-Cre Bmall fl/fl mice.
Concentrating our attention on the SCN, as the brain region containing the central clock, we

observed about 70 % decrease of BMAL1-positive cells (Figure 10A). Similar results were obtained for
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other hypothalamic regions such as the arcuate nucleus which is important for appetite regulation

(Figure 10B).
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Figure 10. Quantification of BMAL1 deletion in the SCN (A) and the arcuate nucleus (B) of Fabp4-Cre Bmal1 fl/fl
mice. Immunohistochemistry was performed on frozen sections with antiBMAL1 antibodies. The amount of
BMAL1-positive cells was counted and compared to wild-type. Both regions are highlighted with white dashed

lines. Scale bar: 0.2 mm. Data are presented as mean = SEM. (n=3; **, P < 0.01 by unpaired t-test).

We tested whether such reduction of BMALL provokes changes in rhythmic clock gene expression in
the SCN. For this purpose we entrained two cohorts of animals to LD conditions and sacrificed them
each 6 hours (ZT1, ZT7, ZT13 and ZT19). Paraffin-embedded brains were sectioned and in situ
hybridization with different antisense probes for clock gene transcripts was performed. Surprisingly
we saw largely unchanged rhythmic mRNA levels of Bmall (the probe also detects the recombinant
transcript, reflecting promoter activity) in the SCN of Fabp4-Cre Bmall fl/fl mice (Figure 11A, left).
Moreover, two other clock genes, Dbp and Per2, also did not show any significant changes in their
expression profiles (Figure 11A, right). To exclude the possibility of indirect effects on peripheral
oscillator function in tissues that themselves do not express Cre, we performed gqPCR quantification
of Bmall transcript levels at different time points both in liver and muscles (with primers specific for

the wild-type allele). Consistent with the Western blot data (see Figure 9), we did not observe any
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changes in expression of Bmall (Figure 11B) indicating that clocks in non-adipose peripheral organs

were intact.
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Figure 11. Clock gene expression in the SCN and peripheral tissues. (A) Bmall, Dbp and Per2 diurnal expression
profiles in the SCN region of wild-type and Fabp4-Cre Bmall fl/fl mice as quantified by radioactive in situ
hybridization. Representative sections are shown in the lower panel. Arrows indicate the SCN location (n=3-6
per time point). (B) Expression of Bmall in liver and muscle of mutant and wild-type mice quantified by gPCR

(n=3 per time point). Data are presented as mean + SEM.

Behavioral phenotypes of Fabp4-Cre Bmall fl/fl mice
BMAL1 protein reduction in the brain may lead to detrimental changes in circadian behavior of

Fabp4-Cre Bmall fl/fl mice. Thus, we analyzed circadian locomotor activity with running-wheel cages
under different lighting conditions. Under a 12-hrs light: 12-hrs dark regime (LD) Fabp4-Cre Bmall
fl/fl mutants exhibited normal entrainment with activity bouts occurring mainly during the dark
phase like in the wild-type situation (Figure 12 A and B). After one week in LD mice were transferred

to constant darkness (DD) to investigate their intrinsic periodicities. In this situation, mutant animals
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showed a shorter period when compared to wild-type controls (23.22 + 0.09 hrs vs. 23.59 + 0.05 hrs
respectively) (Figure 12C). Moreover 70% of individuals showed gradual loss of rhythmicity when

kept in DD (data not shown). Nevertheless mutants showed no obvious defects in entraining their

behavior to LD conditions.
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Figure 12. Behavioral characteristics of Fabp4-Cre Bmall fl/fl mice. (A) Representative actograms of wild-type
and Fabp4-Cre Bmall fl/fl animals in LD (days 1-7) and DD (days 8-17). White and black bars indicate light and
dark phases in LD. (B) Wheel-running activity during light and dark phases in LD averaged over 7 days (n=5-9).

(C) Period of locomotor activity rhythms in DD as determined by )(2 periodogram analysis (n=9-11). Data are
presented as mean + SEM. **, P < 0.01 by unpaired t-test.

Fabp4-cre Bmall f1/fl mice show clock disruption in adipose tissue

We focused our attention on epididymal adipose fat pads as the easiest to access and dissect type of
WAT. To characterize local clock function in Fabp4-Cre Bmall fi/fl animals, we performed qPCR
quantification of clock gene expression under LD conditions. As expected Bmall transcript levels
were strongly reduced in adipose tissue of mutant mice. We could, however, detect some residual
Bmall mRNA, probably due to non-adipocyte cells which do not express CRE recombinase (Figure
13A)(Trayhurn, 2007). Similar results were obtained for Dbp, pointing at an adipocyte local clock

disruption (Figure 13B). In contrast, Per2 expression levels remained strongly rhythmic, though
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amplitude was slightly reduced, consistent with its role as systemically driven gene (Figure 13C)

(Kornmann et al., 2007).
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Figure 13. Disrupted circadian clock in WAT of Fabp4-Cre Bmall fl/fl mice. Expression profile of (A) Bmall, (B)
Dbp and (C) Per2 in epididymal fat pads of wild-type and Fabp4-Cre Bmall fi/fl animals under LD conditions
(n=3-5 per time point). Data are presented as mean + SEM. ** P < 0.01; ***, P < 0.001 by 2-way ANOVA with

Bonferroni post-test.
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Figure 14. Lipolysis defects in adipose tissue of Fabp4-Cre Bmall fl/fl mice. (A) Expression profiles of Atg/ and
Hsl in WAT of mutants and wild-types in LD (n=3-5 per time point). (B) Glycerol excretion rates from fat pads of
mutant and wild-type mice sacrificed at Zeitgeber time 7 (n=10-16;*, P < 0.05, by unpaired t-test). (C) Diurnal
FAA concentration profiles in plasma of Fabp4-Cre Bmall fl/fl and control animals under LD conditions (n=3-5
per time point). Data are presented as mean * SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001 by 2-way ANOVA

with Bonferroni post-test.
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Fabp4-cre Bmall f1/fl mice show reduced lipolysis and low FFA concentrations in blood
As suggested by our previous results, the circadian clock in adipose tissue transcriptionally controls

lipolysis though CCGs like Atgl and Hsl. We decided to test this in Fabp4-Cre Bmall fi/fl mice. In line
with previous data, gPCR revealed lower expression levels of Atgl and Hsl in adipose tissue of mutant
mice when compared to wild-type controls (Figure 14A). We wondered whether this affects lipid
mobilization in adipocytes and thus performed lipolysis assays with fat pads from Fabp4-Cre Bmall
fl/fl and control animals. Decreased glycerol excretion rates from WAT were observed in mutant fat
pads at ZT7 (Figure 14B). In line with this, a marked reduction in FFA blood content in Fabp4-Cre
Bmall fl/fl animals at ZT7 was observed (Figure 14C). These data strongly suggest that local adipose
tissue clocks control lipid mobilization and WAT clock disruption leads to lower FFA availability in the

blood.
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Figure 15. Fabp4-Cre Bmall fl/fl mice show higher body weight and increased adiposity. (A) Weight gain of
mutants and wild-types during 8 weeks of HFD and NC (n=7-13). (B) Representative individuals of Fabp4-Cre
Bmal1 fi/fl and wild-type cohorts by the end of 8 weeks of HFD. (C) Food intake normalized to body weight
(n=7-13), (D) epididymal fat pad weight (n=7-10), (E) adiposity (n=7-10) and (F) energy conversion on both diets
(n=7-13). **, P < 0.01; ***, P < 0.001 by 2-way ANOVA with Bonferroni post-test. #, P < 0.001 by unpaired t-

test. Data are presented as mean + SEM.

Fabp4-cre Bmall fl1/fl mice are obese
Impaired lipolysis may provoke metabolic defects and growth of fat mass (Haemmerle et al., 2006).

We studied this possibility challenging mutants and controls with different diet conditions. Under 45

% high-fat diet (HFD) conditions Fabp4-Cre Bmall fl/fl mice showed increased weight gain when
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compared to age-matched wild-type controls, with some of the animals reaching up to 45 g of
bodyweight by the age of 17 weeks (Figure 15 A and B). Interestingly, at the same time mutants did
not consume more food when normalized to body weight (Figure 15C). Similar results, albeit less
pronounced, were also found under normal chow (NC) conditions (Figures 15 A and C). Under both
diets Fabp4-Cre Bmall fl/fl mice showed a higher epididymal fat mass and adiposity (the ratio of
epididymal fat mass to the total body weight), confirming that weight gain was largely attributed to
increased fat content (Figures 15 D and E). Moreover, lower energy to body weight conversion rate

also pointed at a highly anabolic phenotype (Figures 15F).
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Figure 16. Histological analysis of WAT and liver. (A) Adipocyte hypertrophy and quantification of adipocyte size
in epididymal WAT from Fabp4-Cre Bmall fl/fl and control mice. (B) Oil Red O staining for triglyceride content
of liver sections from mutant and wild-type animals (n=4-5). Data are presented as mean = SEM. *, P < 0.05 by

unpaired t-test.

In order to reveal micro-structural changes in metabolic tissues of mutant mice we performed
histological analysis of epididymal fat pads and liver. Consistent with data obtained from Clock*’
mice, hematoxylin-eosin staining of adipose tissue showed increased adipocyte size suggesting
triglyceride over-accumulation (Figure 16A). Remarkably, at the same time Qil Red O staining of liver
sections did not reveal increased hepatic triglyceride deposition (Figures 16B). Of note, the observed
phenotype was not correlated to hypoleptinemia since neither expression of leptin mRNA in adipose
tissue nor its blood concentration were downregulated in weight-matched mutant animals (Figure 17

A and B).
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Figure 17. Circadian expression of Leptin mRNA (n=3-5 per time point) (A) and plasma leptin concentrations
(n=6-10) (B) in Fabp4-Cre Bmal1 fl/fl and control mice. Data are presented as mean + SEM. *, P < 0.05 by 2-way
ANOVA with Bonferroni post-test.

Fabp4-cre Bmall fl1/fl mice exhibit a metabolic shift to carbohydrate utilization
Animals with impaired lipolysis have reduced FFA blood content and thus utilize carbohydrates as

primary energy source. The energy substrate usage can be monitored via measuring the respiratory
exchange ratio (RER) using indirect calorimetry in metabolic cages. RER is a relation between
produced CO, and consumed O, (VCO2 / VO2) and it reflects which fuel is being used to produce
energy. An RER may vary from 0.7 (lipids are the predominant substrate) to 1.0 or higher
(carbohydrates are the substrate). To test for diurnal changes in RER, we put Fabp4-Cre Bmall fl/fl
mice in metabolic cages and measured their CO, production and O, consumption for several days. In
agreement with previous studies, we could observe a clear substrate preference switch from fat
during the inactive (light) phase to carbohydrates during the active (dark) phase in wild-type mice
(Figure 18)(Satoh et al., 2006). In contrast, Fabp4-Cre Bmal1 fi/fl animals did not show such a change
and during the light phase their RER remained high (Figure 18). Similar results were previously
obtained for other clock disrupted mouse models (Bmal1”" and Clock”") as well as for Atgl” and Hsl”"
mutants, which also show impaired lipolysis (Eckel-Mahan et al., 2012; Huijsman et al., 2009; Shimba
et al., 2011). Finally, we assessed the rhythmicity of food intake in Fabp4-Cre Bmal1l fl/fl mice under
LD conditions. During the day mutants tend to eat more than controls yet the overall difference was
not significant by 2-way ANOVA (Figure 19A). Moreover, mutant as well as wild-type animals showed

a diurnal rhythm of food intake (Figure 19B).
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Figure 18. Respiratory exchange ratio (RER) of Fabp4-Cre Bmall fi/fl and control mice kept under LD (n=4-5).
Data are presented as mean + SEM. *, P < 0.05 by 2-way ANOVA with Bonferroni post-test. * P<0.01 by t-test.

Experiment was performed by Dr. Olaf J6hren.
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Figure 19. (A) Diurnal profiles and (D) day-night distribution of food intake of Fabp4-Cre Bmal1 fi/fl and control
mice kept under LD (n=4-5). Data are presented as mean + SEM. *, P < 0.05; **, P < 0.01 by unpaired t-test.

Experiment was performed by Dr. Olaf J6hren.
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Discussion

In summary, the results of my thesis suggest that the circadian clock regulates lipid mobilization. In
particularly, our data strongly argue that this function is attributed to local adipocyte oscillators that
transcriptionally control two pacemaker lipolytic enzymes, Atgl and Hsl. Due to impaired lipolysis,
white adipose tissues of clock gene mutant mice over-accumulate triglycerides. This work underpins

an essential role for peripheral adipose clocks in the maintenance of metabolic homeostasis.

A significant metabolic role for adipocyte clocks

Using an ex vivo culturing technique, we demonstrated that adipocytes harbor self-sufficient
circadian oscillators. While this suggests that adipose tissue is an integral part of the circadian
system, it also raises the question which adipocyte functions may be affected by this local clock. To
address this we concentrated our attention on triglyceride metabolism as a major aspect of adipose
tissue physiology. Interestingly, some counterintuitive observations made from circadian clock gene
mutant mice, such as low FFA — but not triglyceride — blood levels despite increased adiposity (Turek
et al., 2005), already pointed to a potential involvement of adipose clocks in lipid trafficking. As we
could find out, among the genes associated with triglyceride turnover many were potentially clock-
regulated targets, since they showed diurnal variations in transcription, which were abrogated in
Clock”*® mutant mice. However, the down-regulation of most of these in Clock”™ adipose tissue could
not explain the increase in adiposity observed in Clock”*® mice. For instance, animals deficient for the
phosphatidate phosphatase Lipinl show progressive lipid dystrophy (loss of body fat) whereas mice,
lacking long-chain-fatty-acid—CoA ligase 1 gene (Acsl1) in adipose tissues show normal body weight
and fat content, even when kept on a high-fat diet (Ellis et al., 2010; Peterfy et al., 2001). Mice
carrying loss-of-function mutations in genes responsible for FFA transport such as long-chain fatty
acid transport protein 1 (Fatpl or Slc27al) and Calveolin 2 (Cav2) also show decreased or normal
body weight, respectively (Razani et al., 2002; Wu et al., 2006). Deficiencies in genes associated with
triglyceride de novo synthesis such as diglyceride acyltransferases 1 and 2 (Dgatl and Dgat2) and 1-
acylglycerol-3-phosphate O-acyltransferase 2 (Agpat2) also result in lower body weight, reduced fat
content or early postnatal death due to severe lipopenia (Dgat2”") (Smith et al., 2000; Stone et al.,

2004; Vogel et al., 2011).

Thus, for further studies we focused on lipid mobilization since the expression of both pacemaker
enzymes of lipolysis, Atgl and Hsl, was rhythmic in wild-type and arrhythmic and overall low in
Clock””® adipose tissue. We identified functional E-boxes in the promoter regions of both genes,
which were inducible by CLOCK and BMAL1. Moreover the promoters of Atgl and Hsl were bound by

BMAL1 in vivo suggesting that both genes are under direct control of the circadian clock. But what
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does this circadian regulation mean for adipocyte physiology? First, we also could demonstrate that
adipocyte clock function is necessary for rhythmic baseline lipolysis rates and circadian variations in
the abundance of the lipolysis end products FFAs and glycerol in the blood. Second, circadian
disruption results in increased triglyceride accumulation in WAT. Both of these phenomena we
observed in Clock’® and Bmall”" mice (this thesis and (Guo et al., 2012; Turek et al., 2005)). Thus,
clock gene deficient animals recapitulate the phenotype of mutants with impaired lipolysis such as
Atgl”” mice (Haemmerle et al., 2006). FFAs become a major energy source during periods of fasting
(including the diurnal rest phase, i.e. the night in humans and the day in mice). At the same time an
excess of FFAs in the blood is pernicious since FFAs can disrupt the integrity of biological membranes
and exert many other deleterious effects termed lipotoxicity (Unger et al., 2010). Thereby FFA
concentrations have to be tightly controlled and the circadian gating of their release from WAT is
reasonable (Figure 20). In mice FFA levels are high during the day when the animals are normally
inactive and eat very little, whereas, during the active phase, mice rely largely on carbohydrates and

lipids from ingested chow. During that time adipose-derived FFA levels are low.
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Figure 20. A graphical summary of the circadian regulation of basal adipocyte lipolysis. Circadian transcriptional
regulation of Atgl and Hsl regulates hydrolysis of triglycerides (TG) to diacylglycerols (DGs) and

monoacylglycerols (MGs). This leads to a circadian rhythm of glycerol and FFA levels in the blood.

Another manifestation of impaired lipolysis is decreased tolerance to prolonged fasting (Wu et al.,

2012). To test whether circadian mutant mice also show such a disturbance, we starved Clock**’
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animals for 1.5 days. During this period Clock"” mutants showed drastically decreased blood
concentrations of both glycerol and FFAs. Fasting induces activity of ATGL and HSL via
phosphorylation by PKA, thus overriding circadian effects in basal lipolysis (Pagnon et al., 2012; Wu
et al., 2012). We hypothesized that WAT of Clock"*® mice have impaired response to B-adrenergic
lipolysis induction. Indeed, upon stimulation with isoproterenol Clock’™ fat pads showed slightly
reduced lipolysis rates than wild-types. During fasting we also observed a drop in body temperature
as the result of decreased FFA oxidation in brown adipose tissues. To compensate for the lack of lipid
fuel under fasting conditions Clock’”® mutants presumably actively utilize glucose. In line with this
their liver glycogen stores were rapidly depleted. These results do not agree with previous
observations that liver glucose export is subjected to circadian control via transcriptional control of
Glut2 and therefore blood glucose levels should also be reduced in Clock** mice (Lamia et al., 2008).
Low blood glucose could also reflect high glucose utilization by other tissues such as muscle.
Alternatively, under fasting conditions lower GLUT2 levels could be compensated by an increase in

Glutl expression (Thorens et al., 1990)

Feeding vs. clock regulation of lipolysis

Another important aspect of circadian gene expression in peripheral tissues are systemic cues (blood,
autonomic innervation, body temperature, feeding) coming from the body. Kornmann et al. showed
that upon tissue-specific disruption of the liver clock by conditional Rev-erba overexpression in
hepatocytes a subset of clock and clock-regulated genes (e.g. Per2 and Noc) do not show changes in
their circadian expression profiles (Kornmann et al., 2007). This suggested that while expression of
most rhythmic genes is regulated by local clocks, systemic signals can drive rhythms of others
(Kornmann et al., 2007). Such a systemic signal could be feeding since it is a major entraining signal
for peripheral clocks. Under temporally restricted feeding conditions metabolic organs such as liver
and adipose tissue exhibit a phase-shift of clock gene expression independent of the SCN (Damiola et
al., 2000; Zvonic et al., 2006). Moreover, restricted food availability can rescue rhythmic transcription
of many genes in clock-deficient Cryl'/'CryZ'/' mice, suggesting that these transcripts are rather food-
driven than directly controlled by the clock (Vollmers et al., 2009). Therefore blunting the day-night
variations in food intake seen in circadian mutants may reduce the rhythmicity of many output genes
and possibly of Atgl and Hsl/ (Turek et al.,, 2005). To test if local clock function is sufficient for
rhythmic regulation of Atgl and Hsl we utilized ex vivo fat pad culturing in order to eliminate any
rhythmic signal from the body. This way we could confirm that circadian expression of Atgl and Hsl is
regulated by local adipose tissue clocks. Similar results were also obtained from synchronized NIH-
3T3 fibroblasts transfected with Atgl-luc and Hsl-luc reporter constructs. Moreover, In humans
rhythmic food intake is not required for circadian lipolysis since under constant routine conditions

(enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation) blood levels of
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glycerol and FFAs still show circadian variations (Dallmann et al., 2012). However, apart from CLOCK
and BMAL1, Atg/ and Hsl are subjected to direct transcriptional control by food regulated
transcription factors such as PPARy, IRF4 and USF1/2 (Eguchi et al., 2011; Kershaw et al., 2007; Kim
et al.,, 2006; Smih et al., 2002). It is also worth to mention that some circadian processes within
adipocytes might be regulated by rhythmic humoral and neuronal signals. In this study we measured
basal lipolysis rates which reflect the expression of Atgl and Hsl (Ryden et al., 2007). At the same
time lipolysis is post-transcriptionally regulated by hormones such as leptin, noradrenalin and insulin
which also can transmit temporal information (Duncan et al., 2007). Thus, we cannot fully exclude
that feeding plays a role in regulating lipolysis in vivo and the systemic input from the rest of the

body cannot be neglected.

Adipocyte Bmall deficient mice

Bmal1 is the only non-redundant clock gene in the mammalian TTL, evidenced by the finding that
global and SCN-specific deletion of Bmall produces an arrhythmic behavioral phenotype in mice
(Bunger et al., 2000; Husse et al., 2011). To analyze the contribution of Bmall to peripheral clock
regulation Storch and colleagues produced a transgenic mouse line carrying a Bmall gene flanked by
two loxP sites (Storch et al., 2007). When this line is crossed with mice expressing CRE DNA
recombinase under control of a tissue-specific promoter, this results in Bmall gene deletion and
ultimately leads to clock disruption in the given tissue. This approach was already used to generate
liver-, macrophage- and brain-specific clock knock-out mice (Gibbs et al., 2012; Lamia et al., 2008;
Mieda and Sakurai, 2011). For analyzing adipocyte clock function we selected the Fabp4-Cre driver
line as a frequently used model for targeted recombination in adipose tissues (He et al., 2003).
Indeed, we could observe a strong reduction of BMAL1 protein and Bmall transcript in adipose
tissue of Fabp4-Cre Bmall fi/fl mice, which abolished local clock function. We also checked BMAL1
levels in other tissues in order to exclude ectopic recombination. Although liver and muscles did not
show any changes, BMAL1 levels in many brain areas were strongly reduced. Nonetheless, central
pacemaker function seemed only marginally affected since the expression of clock genes in the SCN
was not significantly altered, albeit Fabp4-Cre Bmall fl/fl mice showed some alterations at the
behavioral level. The SCN controls activity indirectly, predominantly via secretion of neuropeptides,
and the target of their action is largely unknown (reviewed in (Welsh et al., 2010)). Thus it is likely
that behavioral defects in Fabp4-Cre Bmall fl/fl mice may stem from Bmall deficiency in brain

regions downstream of the SCN that affect the circadian rhythms of locomotor behavior.

In WAT of Fabp4-Cre Bmall fl/fl mutants, and in agreement with our data from Clock**® and Bmal1”
mice, Atgl and Hsl expression rhythms were blunted and low. This correlated with a reduction of

lipolysis rates and FFA levels in the blood, supporting that adipose tissue clocks are regulators of lipid
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mobilization. Surprisingly, Fabp4-Cre Bmall fl/fl animals also showed similar metabolic abnormalities
as Clock"” mutants. They were heavier than wild-types when fed regular chow and developed
morbid obesity under HFD conditions. Fabp4-Cre Bmall fl/fl mice had double the amount of
epididymal fat due to highly hypertrophic adipocytes. In contrast to our results, cell-based
experiments suggest that Bmall is required for late stages of adipocyte differentiation, while during
early stages Bmal1-defficient pre-adipocytes accumulate more triglycerides than control cells (Guo et
al., 2012; Shimba et al., 2005). Nevertheless, both Bmall” and Clock®* animals show metabolic
syndrome symptoms and higher adiposity, though mature Bmal1”" mice progressively loose adipose
tissue due to premature aging (Guo et al.,, 2012; Kondratov et al.,, 2006; Turek et al., 2005).
Therefore there is certain inconsistence between in vivo and in vitro data, probably due to pleotropic
effects of Bmall deficiency, and these phenomena need to be addressed in future studies. We did
not see any increased lipid accumulation in livers of Fabp4-Cre Bmall fl/fl mice though as was
reported for the Bmall”" mutants (Shimba et al., 2011). We suppose, this effect may be caused by
disruption of the liver clock in conventional Bmall deficient model, while in our conditional mutants

the clock in hepatocytes was intact.

Similar to Clock®” and Bmall”" mice, Fabp4-Cre Bmall fl/fl mutants experienced a state of FFA
deficiency and mostly utilized glucose as energy source as indicated by elevated RER values during
the rest phase. We could observe a slightly attenuated feeding rhythm in Fabp4-Cre Bmall fl/fl mice
in comparison to wild-type animals, yet the overall food intake was not different between both
genotypes. On could speculate that in addition to central regulation this effect might in part be
triggered by lower amount of FFAs in the blood during the resting phase. Indeed, it is conceivable,
that by the end of the day both Fabp4-Cre Bmall fl/fl and Clock"” mutants suffer from energy
deficiency and have to resume eating before the end of their normal sleeping times. Alternatively,
FFAs can signal to the CNS in order to regulate appetite and leptin sensitivity via Toll-like receptor 4
(TIr4), thus disruption of FFA rhythms could interfere with central leptin signaling (Kleinridders et al.,
2009). Some studies proposed that disruption of feeding rhythmicity per se, which is analogous to
night eating syndrome in humans, is responsible for the weight gain in clock deficient mice (Hatori et
al., 2012; Kohsaka et al., 2007; Turek et al., 2005). On the other hand, not all arrhythmic mouse
models show increased body weight, in particular Per2” and Cryl'/'CryZ'/' mutants are known to be
lean (Bur et al.,, 2009; Grimaldi et al., 2010). However one question remains: what metabolic
consequence has the reduction of BMAL1 protein in the brain of Fabp4-Cre Bmall fl/fl mice? A
previous study provided evidence that mice with brain-specific Bmall deletion (Nestin-Cre Bmal1 fl/-)
do not show increased body weight or food intake. This observation becomes even more remarkable
considering the fact that in the brain of Nestin-Cre Bmall fl/- mice appetite-regulating regions such

as dorsal medial nucleus (DMH) and arcuate nucleus show a reduction of Bmall of up to 80 % (Mieda
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and Sakurai, 2011). However, it still possible that some aspects of the observed metabolic phenotype
of Fabp4-Cre Bmall fl/fl animals originates from Bmall recombination in the brain. More specific
genetic tools, such as the newly-developed adipocyte-specific Adiponectin-Cre line, may help to

address this issue in the future (Eguchi et al., 2011).

Physiological importance of peripheral clocks
A major role of circadian clocks is to provide an anticipation of up-coming daily changes and thereby

optimize the performance of the organism (Green et al., 2002). In addition, the body clock helps to
maintain synchrony among myriads of biochemical processes which need to be compartmentalized
from each other both spatially and temporally (Harmer et al., 2000). This is particularly important for
animals with their complex behavior and multi-organ composition of the body. In mammals cellular
self-sufficient circadian oscillators are found throughout the body organized in a defined hierarchy
(Nagoshi et al., 2004; Yoo et al., 2004). However, once reset population rhythms of peripheral cells
eventually dampen due to gradual desynchronization of sustained oscillations of individual cells
(Welsh et al., 2004). Thus, to govern this complexity the central nervous system developed a special
structure - the master oscillator located in the SCN. SCN neurons obtained a superior property of the
intercellular coupling which allowed them to generate robust circadian oscillations and maintain tight
synchronization of the organ (Liu et al., 2007; Yamazaki and Takahashi, 2005). Moreover owing to the
direct retinal innervation, the SCN can incorporate external light-dark information and convey it to
peripheral oscillators (Welsh et al., 2010). Despite the lack of such direct light input and coupling,
tissue clocks are important for the maintenance of physiology and energy homeostasis. According to
the current model, circadian oscillators in peripheral tissues regulate organ-specific functions by
driving physiological reactions at particular times (e.g. liver — glucose export, pancreas — insulin
secretion, heart —repolarization rates) (Jeyaraj et al., 2012; Lamia et al., 2008; Marcheva et al., 2010).
Although genome-wide transcriptome profiling studies show that approximately 12 % of all genes
exhibit diurnal variations in transcription, there is just a small portion of overlapping cyclic genes
common between different tissues (Panda et al., 2002; Storch et al., 2002). Thus, local circadian
clocks exert their control of via extensive rhythms of gene transcription and the identification of
genes which connect timing mechanisms with physiologically meaningful output represents a novel

challenge for circadian biology (reviewed in (Dibner et al., 2010)).

In order to stabilize the circadian system, the master clock can integrate hormonal and neuronal
feedback from peripheral oscillators. Humoral factors such as androgens or estrogens can modulate
clock gene expression in the SCN and affect the period of locomotor behavior (Karatsoreos et al.,

2007; Morin et al., 1977; Nakamura et al., 2005). In addition brain peripheral oscillators in arcuate
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and raphe nuclei may relay metabolic information to the SCN through direct innervation (Malek et

al., 2007; Yi et al., 2006).

In summary, the circadian organization in the body appears to follow a standard top-down paradigm:
central clock — peripheral clocks — physiological reactions. A large-scale network of organ clocks
creates a multilevel highly labile structure which can be entrained by various Zeitgebers. Importantly
such system can simultaneously incorporate temporal information from different external cues, such
as the light-dark cycle and food, even in case when they are in anti-phase from each other (Damiola
et al., 2000). Thus, complex hierarchal organization of the circadian system confers plasticity and

stability against perturbations.

Conclusions & outlook

White spots in adipose circadian biology
We have demonstrated that one of the functions of adipose tissue clocks is the circadian regulation

of lipolysis. In WAT there are many other pathways which show circadian variation and thus are
potentially controlled by local clocks (Zvonic et al., 2006). For example, with the exception of leptin,
we have not yet studied the circadian control of adipokine expression, which may have a substantial
contribution to metabolic regulation. Moreover it is very likely that through humoral signaling
peripheral clocks can feedback to the brain (and maybe the SCN) in order to modulate behavior in
response to energy requirements. Adipocyte clock-deficient mice will be useful to study these

questions.

Nowadays, there is a growing understanding of the function of peripheral circadian clocks in
physiological regulation (Albrecht, 2012). While our study demonstrates such a function for adipose
tissue clocks, the physiological meaning of many other peripheral clocks in different organs as well as
particular brain structures still remains unclear. For instance, the function of circadian clocks within
brown adipose tissue (BAT) has not been studied and we show that ex vivo cultured BAT explants
exhibit circadian gene expression. Brown adipocytes are important for heat production via intensive
FFA oxidation, which also might be subject to circadian control (Ravussin and Galgani, 2011; Redlin et
al.,, 1992; Zvonic et al.,, 2006). With development of suitable transgenic mouse models the

physiological impact of BAT clock disruption can be assessed.

Implications of circadian clocks in human metabolism
Studies conveyed on laboratory animals explicitly demonstrate that disruption of circadian rhythms

can lead to obesity and metabolic disorders. Epidemiological human studies also provide evidence
that synchrony between the light-dark cycle, sleep and eating is required for normal function of

human physiology (reviewed in (Froy, 2010)). Indeed, short sleep duration is associated with
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increased body mass index (BMI) and higher incidence of type 2 diabetes (Gottlieb et al., 2005;
Taheri et al., 2004; Vorona et al., 2005). Sleep loss increases appetite reducing leptin blood levels and
induces visfatin rhythm phase shifts which correlate with elevated blood glucose (Benedict et al.,
2012; Spiegel et al., 2004). Another problem of modern society — shift work — is also associated with
a higher incidence of cardiovascular disease, obesity and metabolic syndrome (Ellingsen et al., 2007;

Karlsson et al., 2001).

In addition to environmental factors, naturally occurring genetic polymorphisms of clock genes in
humans predisposes to metabolic abnormalities. Certain haplotypes of CLOCK and BMAL1 genes
were shown to increase the susceptibility to obesity, type 2 diabetes and hypertension (Scott et al.,
2008; Sookoian et al., 2008; Woon et al., 2007). Genetic variants of PER2 and NPAS2 are associated
with high fasting blood glucose and hypertension, respectively (Englund et al., 2009). Genetic links to
obesity were also demonstrated for some clock regulated adipokines such as NAMPT (visfatin)

(Blakemore et al., 2009).

Adipose tissue clocks potentially represent a novel target for the pharmacological manipulation.
While the SCN clock is very difficult to reach due to its localization, peripheral clocks can be treated
by various agonists and antagonists of clock proteins such as REV-ERBa/B and CRY1/2 in order to

adjust metabolic state of the body (Hirota et al., 2012; Solt et al., 2012).

Given the tight association of clock and metabolism, the comprehension of circadian aspects of
metabolic regulation become critical against the background of an increasing prevalence of obesity in
the modern world. Although obesity is an extremely complex disorder, it is clear that bad dietary
habits and non-regular feeding and sleep schedules are the major contributors. The understanding of
the function of peripheral clocks will help us to disentangle the complex system of circadian and
metabolic interconnections and, thus, will provide novel insights into the circadian component of

obesity development.



Material and Methods 69

Material and Methods

Wheel running analysis
Wheel running experiments were carried out as described previously (Jud et al., 2005). For all

behavioral experiments male mice between 2 and 6 months of age were used. During recording,
mice were kept in individual transparent plastic cages equipped with a running-wheel. Wheel
revolutions were detected via a magnetic switch connected to a computer system. 12 cages were
kept in one isolation chamber, in which lights were controlled via a computer system. Temperature
(20 = 0.5 °C) and humidity (50—60 %) were kept constant. Animals with different genotypes were
always distributed equally between different isolation cabinets. Mice were provided standard chow
food (Ssniff V1126) and water ad libitum. Locomotor activity parameters were analyzed using the

ClockLab analysis software plug-in (Actimetrics) for MatLab (The Mathworks).

Tissue and blood collection
Animals were sacrificed at the indicated time points by cervical dislocation. Mice which had to be

sacrificed during the dark phase were handled under red light and eyes were removed before
dissection of tissues to prevent acute light effects on gene expression (Albrecht et al., 1997). To
prepare serum, blood was collected and allowed to clot on ice. After centrifugation for 20 min at
2,000 g (4 °C), supernatants were collected in fresh tubes. For plasma isolation trunk blood was
collected at ZT 1, 7, 13, and 19 in EDTA-containing tubes (Sarstedt) and centrifuged at 2,000 g for 20
min. Serum/plasma samples were stored at -80 °C. Collected tissue samples were immediately
frozen in liquid nitrogen and transferred to -80 °C for long-term storage. Plasma FFA and leptin levels
were determined using NEFA kit (Zen-Bio) and Leptin ELISA kit (Cristal Chem inc.) according to the

manufacturer's protocol.

Luminescence measurement
Luminescence measurements were performed with a LumiCycle luminometer (Actimetrics). Standard

settings for the LumiCycle were:

o Integration time: 75 sec

o Measurement interval: 10 min

The data from Per2::luc mice was analyzed with the LumiCycle analysis program (Actimetrics) (Figure

21). The raw data were baseline subtracted using a running average of 24 hrs.
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Figure 21 . The interface of the Actimetrics LumiCycle software. The upper and the lower panels show raw data

and baseline subtracted data, respectively. The peak time can be defined using the moveable yellow bar in the

baseline subtracted data panel. The software also allows determining other parameters of oscillations such as

period (h), amplitude, phase (h) and damping (days).
Histological methods

Oil Red O staining

Cryosections (8-10 um) were fixed in 4 % PFA for 20 min. Saturated (approximately 1 %) stock

solution of Oil Red O (Sigma-Aldrich) in 99 % isopropanol was prepared at least 2 days before

staining. 1% dextrin

solution (Sigma-Aldrich) was prepared the day before and stored at RT

overnight, then was filtered through filter paper. The working solution was prepared by mixing 60 ml

of stock solution with 40 ml of 1 % dextrin and filtered through filter paper. Frozen sections were

stained 20 min in Oil Red O staining solution, and then washed in 60 % isopropanol. Sections were

mounted with glycerin jelly prepared as follows: 1 g of gelatin in 6.5 ml distilled water was heated

and 7 ml glycerol was added and mixed. The images were analyzed using the ImageJ software.

Hematoxylin—-eosin staining
Deparaffinization and rehydration of sections:

o 2x5minxylene,
o 2 x5min 100 % ethanol,
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o 2x5min95 % ethanol,
o 5 min 80 % ethanol,

o 5 min deionized water.

While sections were in water, hematoxylin was filtered through filter paper (Whatman). Excess water

was blotted from the slide holder before hematoxylin staining.

Hematoxylin staining:

3 min hematoxylin,

rinsing with deionized water,

5 min tap water,

dipping 8-12 times into acid ethanol (1 mL concentrated hydrochloric acid in 400 ml 70 %

O O O O

ethanol),

rinsing with tap water (2 x 1 min),

rinsing with deionized water (2 min),

excess water was blotted from the slide holder before eosin staining.

Eosin staining and dehydration:

30 sec eosin (1 g eosin Y in 100 ml deionized water),
3 x5 min 95 % ethanaol,

3 x 5 min 100 % ethanol,

3 x 15 min xylene,

o O O O O

slides were mounted with a xylene-based mounting medium (Permount).

Immunohistochemistry with antiBMAL1 antibodies
Brains were embedded in OCT medium (Tissue-Tek) and 10 um sections were cut using a cryotome

(Leica). Sections were pre-treated with 3 % H,0, in methanol for 10 min at room temperature and
washed 3 times with deionized water. Antigen retrieval was performed in 0.01 M sodium citrate
(pH 6.0) for 2 min at room temperature. Then sections were boiled in the same solution for 5 min
and cooled on ice for 20 min. Next, slides were washed 2 times with TNT buffer (0.1 M Tris-HCI pH
7.5, 150 mM sodium chloride, 0.05 % TWEEN 20) for 2 min each. Blocking solution was applied for 2
h at room temperature (Vectastain kit) followed by BMAL1 antibody solution (1:1,000 in TNT buffer)
at 4 °C overnight. On the next day sections were washed in TNT buffer for 5 min, twice in PBS for 5
min and covered with secondary antibody (Vectastain kit) solution for 20 min. After 5-min PBS wash
the ABC reagent (Vectastain kit) was applied for 30 min. Then the ABC reagent was removed and
slides were washed with PBS for 5 min and the DAB reagent (Vectastain kit) was applied until the

color developed. Slides were mounted with Kaiser’s glycerol gelatin (Merck).
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Radioactive in situ hybridization

Radioactive in situ hybridization was performed as described previously (Albrecht et al., 1997; Oster
et al., 2003). The Bmall probe corresponds to nucleotides 654-1290 (AF015953), the Per2 probe
corresponds to nucleotides 229-768 (AF036893), the Dbp probe corresponds to nucleotides 2-951
(NMO016974). PCR Il Topo or PCR script vectors containing templates were prepared with the Maxi
Prep kit (Macherey-Nagel). Plasmids were linearized using the restriction enzymes EcoRI (Per2) and
Notl (Bmall and Dbp) and purified with the PCR purification kit (Qiagen). 1 ug of linearized plasmid
was used to generate **S-UTP (Perkin Elmer) labeled RNA probes, using the MAXIscript® In Vitro
Transcription Kit (Ambion) and T7 (Bmal1), T3 (Per2) or SP6 (Dbp) polymerases. Transcription setup

for *>S-UTP labeled antisense RNA probes for clock gene transcripts were performed as described:

o 1 pglinearized cDNA template,

o 8 ul DEPC water,

o 2 ul 10 x transcription buffer,

o 1 puleachrATP, rCTP and rGTP,

o 1 pl RNase inhibitor,

o 5 ula®®S-UTP (1M/ul; 1Ci/M; 19uCi/ul),

o 1 ul RNA polymerase.

The solution was gently mixed and incubated for 2 h at 37 °C with agitation (400 rpm). Then the

template DNA was degraded:

o 19 pl DEPC water,
o 1.7 ul MgCl, (0.3 M),
o 1 plDNasel(2U).

The solution was gently mixed and incubated for 15 min at 37 °C with agitation (400 rpm). The probe

was precipitated as followed:

o 100 pl DEPC water,
o 100 pl yeast tRNA (1 mg/ml),
o 250 pl ammonium acetate (4 M),

o 1ml 100 % ethanol.

Tubes were vortexed and incubated on ice for 10 min following by centrifugation for 15 min at 4 °C

(14,000 rpm). The supernatant was carefully removed and the pellet was re-suspended in:

o 200 pl DEPC water,
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o 200 ul ammonium acetate (4 M),

o 800 pl 100 % ethanol.

Tubes were again vortexed and incubated on ice for 10 min, and then centrifuged for 10 min at 4 °C
(14,000 rpm) and the supernatant was discarded. The pellets were dissolved in the in situ
hybridization buffer (Ambion) and 1 % dithiothreitol (DTT) was added. Incorporation of radioactive

nucleotides was determined by liquid scintillation and probes were kept at =20 °C overnight.

In situ hybridization was performed on 8-um paraffin brain sections. Sections were deparaffinized in
UltraClear solution (J. T. Baker) and then rehydrated in progressively decreasing concentrations of
ethanol (from 100 % to 30 %). After washing in 1 x PBS, sections were post-fixed for 20 min in 4 %
PFA (in PBS, pH 7.4), washed for 5 min in 1 x PBS, treated with proteinase K (Roche, 40 pg/ml in 50
mM Tris/HCl, 5 mM EDTA, pH 8.5) for 5 min, incubated in 0.2 N HCI for 5 min, washed in 1 x PBS for 5
min, re-fixed for 20 min in 4 % PFA (in PBS, pH 7.4), acetylated in 0.1 M triethanolamine/HCI pH 8.0
(750 pl acetic anhydride per 250 ml solution for 3 min, then another 750 pl acetic anhydride for 7
min), washed in 1 x PBS for 5 min, incubated in 0.9 % NaCl for 5 min and dehydrated in progressively
increasing concentrations of ethanol (30 %, 50 %, 70 %, 90 %, 2 x 100 %) for 30 sec each. Sections
were air-dried in an RNase-free chamber. Slides were covered with 100 pul of probe diluted in ISH
hybridization buffer (Ambion) (+ 0.02 % DTT) and covered with glass cover slips. Hybridization was
performed in humidified chambers (5x SSC, 50 % formamide) in an incubation oven at 55 °C

overnight.

The next day slides were washed in removal wash buffer (5 x SSC/ 20 mM 2-mercaptoethanol (2-ME))
for 30 min at 64 °C in a shaking water bath; after 10 min cover slips were carefully removed.
Formamide washing was performed for 30 min at 64 °C (2 x SSC / 50 % formamide / 40 mM 2-ME).
Sections were incubated in 1 x NTE (50 mM NaCl, 10 mM Tris-HCI, 5 mM EDTA, pH 8.0) for 15 min at
37 °C, treated with RNAse for 30 min at 37 °C (20 pg/ml RNAse A in NTE), washed in 1 x NTE for 15
min at 37 °C, incubated in formamide buffer (2 x SSC / 50 % formamide / 40 mM 2-ME) for 30 min at
64 °C, washed in 0.1 x SSC for 15 min at room temperature and dehydrated in progressively
increasing ethanol concentrations (30 %, 60 %, 80 % ethanol / 0.3 M ammonium acetate, 95 %, 2 x
100 % ethanol). Slides were air-dried before being exposed to x-ray film (Kodak BioMax MS).
Developed films were scanned with a densitometer (BioRad) and quantification of relative expression
levels was performed by densitometric analysis using the Quantity One software (BioRad). Three
sections per brain were analyzed. For background subtraction adjacent hypothalamic areas were

used on the same section.
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Western blotting
For Western blot analyses the following solutions were used. The solutions were filled up with MilliQ

water to the denoted volume:
5 x SDS loading buffer (pH 7.4, 10 ml):

o 2.5ml1M Tris/HCl, pH 6.8 (250 mM),
o 0.771gDDT,

o 0.05 g bromophenol blue,

o 5ml50 % glycerol with 1 g SDS.

RIPA buffer:

o 50 mM Tris-HCl, pH 7.4,

o 150 mM Nadl,

o 1% Triton X-100,

o 1% sodium deoxycholate,
o 0.1%SDS,

o 1mMEDTA,

o protease inhibitors (added freshly).
10 x electrophoresis buffer (1 L):

o 30.2gTris,
o 188 g Glycine,
o 100 ml 10% SDS.

10 x transfer buffer stock (pH 8.3, 1 L):

o 29 gglycine,
o 58gTris,
o 3.7gSDs.

1 x transfer buffer (1 L):

o 100 ml 10 x transfer buffer,
o 200 ml methanol,

o 700 ml MilliQ water,

o 10xTBS(pH7.4,1L),

o 80g Nadcl,
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o 2gKdCl,
o 30gTris.

1x TBS-T (1 L):

o 100 ml 10 x TBS,
o 1mlTWEEN 20.

Tissues were homogenized with a pestle in freshly prepared RIPA buffer and sonicated in an
ultrasonic bath for 5 min at 4 °C. Then samples were centrifuged at 13,000 rpm for 20 min at 4°C and
the liquid phase was transferred into a new tube. Protein concentration was analyzed by Bradford
assay (BioRad) according to the manufacturer’s protocol and measured using a spectrophotometer
(Eppendorf). Aliquots of protein solution were made and stored at -80 °C. A 10 % polyacrylamide gel

was prepared according to the manufacturer’s recommendations (BioRad).

After denaturation at 95 °C for 8 min, samples were loaded on the gel and run for 30 min at 50 V
followed by 90 min at 120 V. Meanwhile the PVDF membrane (Roche) was activated in methanol for
5 min and then kept in ice cold 1 x transfer buffer. The transfer chamber was assembled according
instructions and filled with ice cold 1 x transfer buffer. The gel and the membrane were clamped
between sponges and filter paper (Whatman) and subjected to current for 70 min at 400 mA at 4 °C.
After transfer the membrane was blocked for 60 min in the blocking solution (5 % non-fat dry milk)
and the first antibody solution (1:250 in the blocking solution) was applied at 4 °C overnight. Next
day the membrane was incubated with a secondary antibody labeled with horseradish peroxidase
(HRP) (1:20000 in the blocking solution) for 1 h at room temperature. Afterwards the membrane was
incubated for 5 min in PICO chemiluminescent solution (Thermo scientific) and was exposed to the
Amersham photographic film (GE Healthcare). Exposed films were developed with the X-OMAT 1000
(Kodak) and analyzed with a densitometer (GS-800 calibrated densitometer, BioRad) and the

associated software (QuantityOne).

Molecular biology methods

Genotyping

Tail snips were taken from 3—4 week old weaned mice and were lysed overnight at 55 °C in 400 pl tail
extraction buffer (200 mM Tris-HCI, pH 8.0, 50 mM EDTA (pH 8.0), 100 mM NaCl, 1 % SDS) with 10 pl
proteinase K (10 mg/ml). Afterwards tissue debris was spun down at 13,000 rpm for 10 min and 200
pl DNA-containing supernatant was mixed with 400 pl of ice-cold 100 % ethanol. Precipitated DNA
was washed with 200 pl of 70 % ethanol and air-dried for 10 min. DNA was dissolved in Tris-EDTA (10
mM Tris, pH 8.0, 1 mM EDTA, pH 8.0). Genotyping PCR was carried out with a FlexCycler PCR

machine (Analytik Jena).
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Per2::Luc genotyping:
Setup:

e 0.5 pul DNA (approx. 200 ng/ul),
pul ammonium buffer,

pl dNTP,

e ul forward primer (10 uM),

e ulreverse primer 1 (10 uM),

e ulreverse primer 2 (10 uM),

e ul Amplicon Tag polymerase,

o 7.8 ul PCR-graded water.

Total volume: 10 pl.
Cycling program:

e 3 min95°C,
e 30sec94°C,
e 30sech65°C, 36x,
e 1min72°C,
e 7min72°C,
e keepat4-“C.

DNA length of the wild-type allele is approx. 200 bp, Per2::Luc allele—approx. 720 bp.
Bmallflox genotyping:
Setup:

e 1 plDNA (approx. 200 ng/ul),

e 2.5 ul standard PCR buffer,

e 1 uldNTPs,

o 1 ulMgCl,

e 1 ulforward primer 1 (10 uM),

e 1 ulforward primer 2 (10 uM),

o 2 ulreverse primer (10 uM),

e 0.5 ul Amplicon Taq polymerase,
e 16 pl PCR-graded water.

Total volume: 25 pl.
Cycling program:

e 3min94°C,
e 30sec94°C,
e 1min59°C, 35,
e 1min72°C,
e 5min72°C,
o keepat4°C.

Approximate DNA lengths of the amplified alleles are: wild-type—420 bp, floxed—524 bp,
knockout—726 bp.

Cre genotyping:
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Setup:

1 ul DNA (approx. 200 ng/ul),

2.0 ul standard PCR buffer,

0.4 pl dNTPs,

1.2 pl forward primer (10 uM),
1.2 ul reverse primer (10 uM),
0.15 pl Amplicon Tag polymerase,

e 14.05 pl PCR-graded wat
Total volume: 20 pl.
Cycling program:

e 4 min94°C,

e 30sec94°C,

e 30sec62°C,30x,
e 30sec72°C,

e 5:00 min72°C,

o keepat4-“C.

er.

The amplified DNA is approx. 260 bp.

Clock”* genotyping:

Setup:

e 1 plDNA (approx. 200 ng/ul),

e 10 pul QIAGEN HotStarTaq master mix,
e ul forward primer (10 uM),

o ulreverse primer (10 uM),

e 7.0 ul PCR-graded water.
Total volume: 20 pl.
Cycling program:

e 15min95 °C,

e 1min94°C,

e 1min68°C, 35X,
e 1min72°C,

e 10min72°C,

o keepat4d“°C.

77

After amplification 1 pL Hincll (10,000 U/mL, R0103S, NEB) was added to the reaction, mixed and

incubated at 37 °C overnight. The digested PCR product was detected on 1.0-1.4 % agarose gels.

The DNA length of the Clock mutant allele is 460 bp (no Hincll digestion), of the wild-type allele—

398 bp (after cleavage by Hincll).

Genotyping primer Sequence
Per2::Luc, forward CTGTGTTTACTGCGAGAGT
Per2::Luc, reverse 1 GGGTCCATGTGATTAGAAAC
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Per2::Luc, reverse 2 TAAAACCGGGAGGTAGATGAGA

Bmaliflox, forward 1 GGAGGGTGAGAAAACAGAGGCAGG

Bmaliflox, forward 2 GCAGAGCCTCACATCTGACAGGAG

Bmallflox, reverse GATTAAAGGCGTGTGCCACCACACC

Cre, forward CGATGCAACGAGTGATGAGGTTCG

Cre, reverse AGCATTGCTGTCACTTGGTCGTGG

Clock*”’ Hinc, forward GCAAGAAGAACTAAGGAAAATTCAAGAGCAACTTCAGATGGTCCATGGTCA
AGGGCTACAGTT

Clock™” Hinc, reverse TAGTGCCCTAGATGGCCCTGTTGG

RNA isolation

RNA was isolated from frozen (-80°C) tissues with TRIzol (Invitrogen) according to the
manufacturer’s protocol. Isolated RNA was dissolved in double distilled water and stored at -80 °C.
The concentration was determined with the ND-1000 NanoDrop spectrophotometer (Peqlab). The

RNA integrity was verified by 1.5 % agarose gel electrophoresis.

cDNA synthesis
cDNA was synthesized from RNA samples with the MulitScribe Reverse Trancription Kit including
RNase inhibitor (Applied Biosystems) according to the manufacturer’s protocol using 2—3 ug of total

RNA.

Quantitative real-time PCR (qPCR)
gPCR was performed using the CFX96 Real-Time detection system (BioRad) and iQ-SYBR Green
Supermix (BioRad) or GoTaq qPCR Master Mix (Promega).

Setup:

e 5 ulcDNA (1:20 dilution),
e 5l primer mix (1 uM of each primer),
e 10 pl 2x gPCR mix.

Total volume: 20 pl.
Cycling program:

e 7 min95 °C,

e 10sec95°C,

e 25sec60°C,40x,

e 20sec72°C,

e 5sec65-95 °C +0.5 °C per cycle.

Data analysis was performed by calculation of dC(t) (threshold cycling numbers) values for each curve
using the CFX96 software. Quantification of expression levels was performed by the AAC(t) method

relative to EF1a or Hprt as housekeeping reference genes according to the formula:

Ratio = 2—(CTtarget — CTref)
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Statistical analyses were done with GraphPad Prism software (GraphPad Software). Circadian profiles

of clock gene expression were normalized to the maximum value of the respective wild-type dataset.

Sequences of gPCR primers:

Lpl Forward primer 5'-GGACGGTAACGGGAATGTATG-3'
Reverse primer 5'-ACGTTGTCTAGGGGGTACTTAAA -3'
Fatp1 (Slc27a1) Forward primer 5'-CGCTTTCTGCGTATCGTCTG-3'
Reverse primer 5'-GATGCACGGGATCGTGTCT-3'
Fatp4 (Slc27a4) Forward primer 5'-TGAGATGGCCTCAGCTATCTG-3'
Reverse primer 5'-TGCCCGATGTGTAGATGTAGAA-3'
Cd36 Forward primer 5'-CCGAGGACCACACTGTGTC-3'
Reverse primer 5'-AACCCCACAAGAGTTCTTTCAAA-3'
Acsli Forward primer 5'-ACCACCTTCTGGTATGCCAC-3'
Reverse primer 5'-TGACATCGTCGTAGTAGTACACC-3'
Gpam Forward primer 5'-ACGCACACAAGGCACAGAG-3'
Reverse primer 5'-TGCTGCTCAGTACATTCTCAGTA-3'
Agpat2 Forward primer 5'-CTGGTTCGTTCGGTCCTTCAA-3'
Reverse primer 5'-CTTGGCGATCTGCACACAG-3'
Dgatl Forward primer 5'-TCCGTCCAGGGTGGTAGTG-3'
Reverse primer 5'-TGAACAAAGAATCTTGCAGACGA-3'
Dgat2 Forward primer 5'-TTCCTGGCATAAGGCCCTATT-3'
Reverse primer 5'-AGTCTATGGTGTCTCGGTTGAC-3'
Plin1 Forward primer 5'-AGATCCCGGCTCTTCAATACC-3'
Reverse primer 5'-AGAACCTTGTCAGAGGTGCTT-3'
Atgl Forward primer 5'-CAACGCCACTCACATCTACGG-3'
Reverse primer 5'-TCACCAGGTTGAAGGAGGGAT-3'
Hsl Forward primer 5'-GGCTCACAGTTACCATCTCACC-3'
Reverse primer 5'-GAGTACCTTGCTGTCCTGTCC-3'
Mgll Forward primer 5'-CGGACTTCCAAGTTTTTGTCAGA-3'
Reverse primer 5'-GCAGCCACTAGGATGGAGATG-3'
Lpini Forward primer 5'-CTCCGCTCCCGAGAGAAAG-3'
Reverse primer 5'-TCATGTGCAAATCCACGGACT-3'
Got2 Forward primer 5'-CCTGGGCGAGAACAATGAAGT-3'
Reverse primer 5'-ATGGGCGTGTGATTTCCCC-3'
Cavl Forward primer 5'-GCGACCCCAAGCATCTCAA-3'
Reverse primer 5'-ATGCCGTCGAAACTGTGTGT-3'
Cav2 Forward primer 5'-TCACCAGCTCAACTCTCATCT-3'
Reverse primer 5'-GCCAGAAATACGGTCAGGAACT-3'
Fitm2 Forward primer 5'-TCGGTCGTCAAGGAGCTGT-3'
Reverse primer 5'-CAAAATACACGTTGAGGACGTTG-3'
Nrih2 Forward primer 5'-GCCTGGGAATGGTTCTCCTC-3'
Reverse primer 5'-AGATGACCACGATGTAGGCAG-3'
Nrih3 Forward primer 5'-GTCAACTGGGGTTGCTTTAGG-3'
Reverse primer 5'-GACGAAGCTCTGTCGGCTC-3'
Acsl4 Forward primer 5'-CCTGAGGGGCTTGAAATTCAC-3'
Reverse primer 5'-GTTGGTCTACTTGGAGGAACG-3'
Acsl5 Forward primer 5'- AACCAGTCTGTGGGGATTGAG -3'
Reverse primer 5'- CGTCTTGGCGTCTGAGAAGTA -3'
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Agpat6 Forward primer 5'-AACCTCCTGGGTATCTCCCTG-3'
Reverse primer 5'-CCGTTGGTGTAGGGCTTGT-3'
Agpat9 Forward primer 5'-CGGATTATCCCTGGGTATCTCG-3'
Reverse primer 5'-CGAAGTCCCTTCCTCGAAGAC-3'
Mogatl Forward primer 5'-CTCGTGCAGGTGTGCATTG-3'
Reverse primer 5'-GCGTTTTGACAAGACAGATTGG-3'
Pnpla3 Forward primer 5'-TCACCTTCGTGTGCAGTCTC-3'
Reverse primer 5'-CCTGGAGCCCGTCTCTGAT-3'
Abhd5 Forward primer 5'-TGGTGTCCCACATCTACATCA-3'
Reverse primer 5'-CAGCGTCCATATTCTGTTTCCA-3'
Fabp4 Forward primer 5'-AAGGTGAAGAGCATCATAACCCT-3'
Reverse primer 5'-TCACGCCTTTCATAACACATTCC-3'
Fabp5 Forward primer 5'-TGAAAGAGCTAGGAGTAGGACTG-3'
Reverse primer 5'-CTCTCGGTTTTGACCGTGATG-3'
Leptin Forward primer 5'- GAGACCCCTGTGTCGGTTC -3'
Reverse primer 5'- CTGCGTGTGTGAAATGTCATTG -3'
Efia Forward primer 5'-CACATCCCAGGCTGACTGT-3'
Reverse primer 5'-TCGGTGGAATCCATTTTGTT-3'
Hprt Forward primer 5'-GTTGGGCTTACCTCACTGCT-3'
Reverse primer 5'-TGATGGCCTCCCATCTCCTT-3'
Bmall Forward primer 5'-ATCAGCGACTTCATGTCTCC-3'
Reverse primer 5'-CTCCCTTGCATTCTTGATCC-3'
Per2 Forward primer 5'-GCCAAGTTTGTGGAGTTCCTG-3'
Reverse primer 5'-CTTGCACCTTGACCAGGTAGG-3'
Dbp Forward primer 5'-AATGACCTTTGAACCTGATCCCGCT-3'
Reverse primer 5'-GCTCCAGTACTTCTCATCCTTCTGT-3'

Statistical Analyses

All results are expressed as a mean + S.E.M. For statistical comparison unpaired two-tailed Student’s

t-tests and 1-way or 2-way ANOVAs with Bonferroni post-tests were performed using Prism 5

software (GraphPad Software). P-values < 0.05 were considered significant.
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Context: Animal studies indicate that nicotinamide phosphoribosyltransferase [Namptivisfatin/
pre-B-cell colony-enhancing factor (PBEF)] contributes to the circadian fine-tuning of metabolic
turnover. However, it is unknown whether circulating Nampt concentrations, which are elevated
in type 2 diabetes and obesity, display a diurnal rhythm in humans.

Objective: Our objective was to examine the 24-h profile of serum Nampt in humans under con-
ditions of sleep and sleep deprivation and relate the Nampt pattern to morning postprandial
glucose metabolism.

Intervention: Fourteen healthy men participated in two 24-h sessions starting at 1800 h, including
either regular 8-h-night sleep or continuous wakefulness. Serum Nampt and leptin were measured
in 1.5-to 3-h intervals. In the morning, plasma glucose and serum insulin responses to standardized
breakfast intake were determined.

Main Outcome Measures: Under regular sleep-wake conditions, Nampt levels displayed a pronounced
diurnal rhythm, peaking during early afternoon (P < 0.001) that was inverse to leptin profiles peaking
in the early night. When subjects stayed awake, the Nampt rhythm was preserved but phase advanced
by about 2 h (P < 0.05). Two-hour postprandial plasma glucose concentrations were elevated after
sleep loss (P << 0.05), whereas serum insulin was not affected. The relative glucose increase due to sleep
loss displayed a positive association with the magnitude of the Nampt phase shift (r = 0.54; P < 0.05).

Conclusions: Serum Nampt concentrations follow a diurnal rhythm, peaking in the afternoon.
Sleep loss induces a Nampt rhythm phase shift that is positively related to the impairment of
postprandial glucose metabolism due to sleep deprivation, suggesting a regulatory impact of
Nampt rhythmicity on glucose homeostasis. (J Clin Endocrinol Metab 97: EO000-E0000, 2012)

icotinamide phosphoribosyltransferase (Nampt) isa  and immune cells (1). Circulating Nampt concentrations
N multifunctional protein also known as visfatin and ~ have been reported to be elevated in type 2 diabetes (2, 3)
pre-B-cell colony-enhancing factor (PBEF) that is pro-  and obesity (4, 5), supporting the recent assumption that
duced by adipose tissue as well as skeletal muscle, liver,  the protein may be a marker of low-grade inflammation
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associated with metabolic dysfunction (6). In mice, the
protein has been shown to act as a rate-limiting enzyme in
the regulation of nicotinamide adenine dinucleotide, an
essential coenzyme catalyzing ATP svnthesis (7). Because
the expression of Namprt in rodent adipocytes and hepa-
tocytes shows a rhythmic 24-h pattern, the protein has
been proposed to mediate a circadian feedback loop fine-
tuning the integration of energy storage with the rest-ac-
tivity cycle (7). Recent cross-sectional data from a human
cohort indicate an inverse relationship between sleep du-
ration and serum Nampt levels assessed in the morning (8),
raising the question of whether circulating Nampt con-
centrations display a diurnal rhythm in humans and, if so,
to which extent this rhythm is dependent on the sleep/
wake cycle. Furthermore, in light of the association be-
tween Nampt concentrations and metabolic dysfunctions
(2-5), it might be hypothesized that sleep loss-induced
alterations in Nampt signaling are related to the detrimen-
tal effects that compromised sleep exerts on glucose tol-
erance (9, 10). Against this background, we investigated
the diurnal (i.e. 24-h) profile of serum Nampt in healthy
humans under regular and sleep-deprivation conditions
and assessed whether sleep deprivation-induced changes
in serum Nampt concentrations are linked to impairments
in morning glucose metabolism arising from sleep loss. We
also compared Nampt patterns to those of leptin, an adi-
pocytokine with a circadian secretion rhythm previously
found to be sensitive to sleep loss (11).

Subjects and Methods

Participants

Fourteen healthy nonsmoking male subjects (mean = sgm,
age = 22.6 = 0.8 yr; body mass index = 23.9 = 0.5 kg/m?)
participated in the experiments. All subjects had a regular self-
reported sleep-wake rhythm during the 6 wk before the exper-
iments and were not on medication. Acute illness was excluded
by a physical examination and routine laboratory testing,. In the
week before each experiment, subjects were instructed to go to
bed between 2300 and 2330 h and to get up by 0700 h on the next
morning and not to take any naps during the day. Sleep distur-
bances were excluded by monitoring sleep patterns in a separate
adaptation night that also served to habituate subjects to the
experimental setting. All subjects gave written informed consent
to the study that conformed to the Declaration of Helsinki and
was approved by the local ethics committee.

Experimental protocol

According to a randomized, balanced crossover design, each
subject participated in two 24-h conditions [sleep and total sleep
deprivation (TSD)] separated by 4 wk. Body weight did not differ
between the Sleep and TSD conditions (82.7 = 2.2 vs. 83.0 2.3
kg; P = 0.1). Sessions started with a baseline period at 1800 h
followed by the nocturnal intervention period (2300-0700 h) in
which subjects slept or stayed awake and a postintervention pe-
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riod (0700-1800 h). During each experimental session, subjects
ate standard meals at 1930 h (~1700 kJ), 0830 h (~3800 kJ),
and 1330 h (~4500 kJ). The liquid test breakfast at 0830 h
contained 112.8 g carbohydrate (Fresubin energy drink; Frese-
nius Kabi, Bad Homburg, Germany). To minimize the biasing
influence of spontaneous physical activity on measurements of
energy expenditure conducted by indirect calorimetry (ventilat-
ed-hood system) at 0745 h and on an hourly basis between 0900
and 1300 h (see Ref. 12 for details and results), participants
rested in bed in a supine position until 1300 h on the second day
after which they changed to a sitting position until the end of the
experiment. In the sleep condition, lights were turned off at
2300 h, and subjects were awakened between 0630 and 0700 h
when entering light sleep (i.e. sleep stage 1 or 2). Sleep recordings
were performed according to standard criteria (13). In the TSD
condition, lights were on (~300 lux) and subjects were kept
awake and continuously monitored by the experimenters. They
were allowed to spend the night with a selection of nonarousing
movies, games, and books. Drinking water was provided ad [i-
bitum, but food intake was not allowed.

Assessments

For the assessment of serum concentrations of Nampt, leptin,
and insulin and of plasma glucose, blood was sampled in 1.5- to
3-h intervals across the 24-h period. During sleep, blood was
drawn via an iv forearm catheter connected to a long thin tube
that enabled blood collection from an adjacent room without
disturbing the subject’s sleep. Blood samples were immediately
centrifuged and frozen at —80 C until analysis. Nampt was an-
alyzed using a commercially available enzyme immunoassay
(Human Visfatin ELISA Kit; Enzo Life Sciences, Lorrach, Ger-
many; intr-assay coefficient of variation <<10%). Routine assays
were used for the determination of serum leptin (Linco Research,
St. Charles, MO), serum insulin (Siemens, Los Angeles, CA), and
fluoride plasma glucose (Abbott, Abbott Park, IL). Analyses of
insulin and glucose covered the breakfast period (0730 and
1100 h) to reflect postprandial glucose metabolism in the morn-
ing (for respective 24-h profiles, see Ref. 12).

Statistical analysis

Data are presented as means = seM. CircWave was used for
rhythmicity analyses (14) (see Table 1 for details). Differences in
pre- and postprandial glucose and insulin concentrations were
specified by Student’s # tests. Spearman’s rank correlations were
calculated to detect associations between TSD-induced changes
in Nampt rhythmicity and postprandial glucose concentrations.
A P value <0.05 was considered significant.

Results

The 24-h profiles of serum Nampt and leptin

In the sleep condition, when subjects adhered to a reg-
ular sleep-wake cycle, serum Nampt concentrations fol-
lowed a significant diurnal rhythm peaking in the after-
noon (P < 0.001; Fig. 1A and Table 1). When subjects
stayed awake throughout the night in the TSD condition,
this rhythm was preserved (P < 0.05) but phase advanced
by about 2 h in comparison with the sleep condition and



Additional publications 103
J Clin Endocrinal Metab, February 2012, 97(2):E0000-EQ0Q0Q jcem.endojournals.org E3
TABLE 1. Curve-fitting statistics

Average Amplitude
ANOVA CircWave R? (no R? (one Ftest concentration Peak time (% of
Hormone Condition Pvalue Pvalue harmonics) harmonic) @ (ng/ml) (h) mean)
Visfatin Sleep 0.015 <0.001 0.097 0.107 =>0.05 0.49 =0.02 1553 26.1
TSD 0.020 0.005 0.054 0.103 >0.05 0.64 = 0.037 1337° 215
Leptin Sleep 0.764 0.086 0.027 0.043 >0.05 3.15=0.10 0204 9.2
TSD 0.574 0.035 0.031 0.056 >0.05 3.17 =0.10 0143 9.0

Serum concentrations of visfatin and leptin were measured during 24 h containing a regular sleep-wake cycle (sleep) and 24 h of continuous
wakefulness (TSD), respectively. Circadian rhythmicity analysis was performed using CircWave (14), a modified Fourier method based on a

combination of sine and cosine wave-fitting (equation: f{t) = a + >(i

= 1to=[p;sini2w t)fr + q;cosi(2a t)/v] with a = baseline; i =

number of harmonics; p and g = fit variables for sine and cosine parts of each harmonic; t = time; 7 = period, in this case 24 h) that allows for
inclusion of harmonic oscillations to account for variations in curve shape. F tests were performed to assess the optimal complexity of the best-fit
curve (.e. the number of incorporated harmonic oscillations). The a cutoff was set to 0.05; all datasets showed best fits with a first-order
sine/cosine fit, i.e. without harmonic oscillations. Phase differences in oscillations between sleep and TSD were assessed by comparing the peak
phases for each curve fit. Peak time is shown according to the 24-h dock.

2 P < 0.05 for comparisons between conditions (Wilcoxon signed rank tests).

displayed a higher average concentration (both P < 0.03,
Wilcoxon signed rank test). Serum leptin concentrations
peaked during the first half of the night in the sleep con-
dition but subsequently failed to show a significant
rhythm (P < 0.09; Fig. 1B and Table 1). In the TSD con-
dition, the leptin rhythm reached significance (P < 0.04).
However, this rhythm was not significantly different from
that observed in the sleep condition (P > 0.43). Sleep times
in the sleep condition were typical for laboratory condi-
tions: total sleep, 418 = 8 min; wake, 11 = 3 min; stage 1,
25 * 4 min; stage 2, 242 = 8§ min; slow-wave sleep, 67 =
6 min; rapid eye movement sleep, 72 = 6 min; sleep onset
latency, 32 = 8 min; slow-wave sleep latency, 24 = 4 min;
and rapid eye movement sleep latency, 97 = 12 min.

Association between sleep-loss effects on
postprandial glucose metabolism and on Nampt
Before breakfast intake at 0730 h, neither plasma glu-
cose nor serum insulin concentrations differed between
conditions (TSD ws. sleep: plasma glucose, 5.0 = 0.1 vs.
4.9 = 0.1 mmol/liter; serum insulin, 300 = 33 vs. 263 =
41 pmol/liter; P > 0.38 for all comparisons). Postprandial
plasma glucose concentrations assessed 120 min after
breakfast intake were increased after sleep loss (6.1 = 0.2
vs. 5.5 = 0.2 mmol/liter, P < 0.04; P < 0.03 for TSD/
sleep x time interaction; Fig. 1C). In contrast, postpran-
dial insulin was comparable between conditions (451 =
45 vs. 429 = 45 pmol/liter; P = 0.58; P = 0.30 for TSD/
sleep X time). Correlational analyses of individual differ-
ences between conditions (i.e. TSD minus sleep) revealed
that the increase in postprandial plasma glucose con-
centration (expressed as percent relative to baseline)
was positively associated with the magnitude of the
sleep loss-induced phase shift in the Nampt rhythm
(Spearman’s p = 0.54; P < 0.05; Fig. 1D).

Discussion

We demonstrate in humans that the serum concentrations
of Nampt follow a distinct diurnal rhythm, which peaks
during the early afternoon. TSD in comparison with reg-
ular sleep phase advanced this thythm and increased av-
erage Nampt concentrations, suggesting that sleep ac-
tively down-regulates circulating Nampt levels in humans.
This conclusion is in accordance with recent cross-sec-
tional examinations of more than 500 adults of the Cleve-
land Family Study showing that each hour of total sleep
time reduction was associated with a 14% increase in se-
rum Nampt concentrations (8). The Nampt rhythm per se
was preserved when our subjects remained awake
throughoutthe night. Although the present data do notallow
a definite distinction between internal and external rhythms,
this finding suggests thar factors such as the circadian clock
prevail in the rhythmic regulation of serum Nampt concen-
trations and possibly also of Nampr release (7). Compared
with circulating Nampt concentrations that peaked during
the wake phase (i.e. a period of high metabolic activity), se-
rum leprin displayed an inverse pattern with peak concen-
trations during the inactive, nocturnal phase (i.e. a period
characterized by a low resting metabolic rate), which is in line
with previous observations (15). Leptin is well known to
induce anorexigenic effects (16, 17), and preliminary find-
ings suggest that Nampt/visfatin likewise affects food intake
(18,19). Thus, the inverse 24-h patterns of Namptand leptin,
respectively, might bear some functional significance for the
regulation of ingestive behavior. Unlike in previous studies
(11, 15), sleep loss did not significantly affect leptin rhythms
which most probably was due to the relatively low sample
size of our study.

The phase shift in the 24-h Nampt rhythm induced by
acute sleep deprivation was positively related to the sleep
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FIG. 1. Diurnal rhythms of Nampt and leptin and relation of Nampt to
postprandial glucose. A and B, Average (+sem) levels and sine wave
regressions of serum Nampt (A) and serum leptin (B) concentrations
measured in 14 healthy men during a regular 24-h sleep-wake cycle
starting at 1800 h (sleep; filled circles, solid fine) and during 24 h of
continuous wakefulness (TSD; open circles, dashed line), respectively.
Shaded area indicates nocturnal sleep in the sleep condition. Nampt
concentrations showed a diurnal rhythm in both conditions (sleep,
P < 0.001; TSD, P < 0.005), with a significant phase advancement of
about 2 h in the TSD compared with the sleep condition (P < 0.03).
Leptin concentrations displayed a 24-h rhythm in the TSD (P < 0.04)
but not in the sleep condition (P < 0.09) with no differences between
conditions (P > 0.43). C, Plasma glucose concentrations before and
after the ingestion of 3800 kJ of liquid food containing 112.8 g
carbohydrate at 0830 h after nocturnal sleep (sleep; black bars) and
wakefulness (TSD; white bars), respectively. *, P < 0.05. D, Individual
differences between conditions in postprandial plasma glucose levels
(percent relative to baseline) plotted against individual magnitudes of
the Nampt phase shift between conditions. All differences are TSD
minus sleep. Spearman’s p = 0.54; P < 0.05.
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loss-induced increase in 120-min postprandial plasma glu-
cose concentrations assessed in the morning. This rela-
tionship indicates that the stronger the phase-shifting im-
pact of nocturnal wakefulness on the regulation of Nampt
levels, the more pronounced the impairing effect of sleep
loss on glucose tolerance becomes. This pattern supports
our hypothesis that the detrimental effect of compromised
sleep on glucose homeostasis (9-11) might involve dis-
turbances in the diurnal regulation of Nampt. Such an
interpretation fits with previous experiments indicating
that circulating concentrations of Nampt/visfatin are in-
creased during acute hyperglycemia (20). Moreover, se-
rum Namptconcentrations have been repeatedly shown to
be elevated under conditions of chronically reduced glu-
cose tolerance like type 2 diabetes (2, 3) and obesity (4, 5).
Nevertheless, our results are of correlational nature, and
there is good reason to assume that other factors such as
the activation of neuroendocrine stress axes due to sleep
deprivation (9, 11, 12) may contribute to the effect of sleep
restriction on glucose homeostasis.

In summary, we demonstrate that the circulating con-
centrations of Nampt follow a 24-h rhythm that peaks
during the early afternoon. Sleep deprivation induces a
significant rhythm phase shift in circulating Nampt levels
that is directly related to the sleep loss-associated impair-
ment of postprandial glucose metabolism. Future cause-
effect experiments conducted under free-living conditions
of unrestrained physical activity and also including acute
and subchronic partial sleep loss interventions should re-
veal the potential ramifications of Nampt phase shifts for
the regulation of glucose metabolism.
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Publication: Synaptotagmin10-Cre, a driver to disrupt clock genes in the
SCN
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Anton Shostak performed behavioral characterization of WT, Syt10“* Bmal™ syt10“** Bmal™"

and Syt10“" Bmal”" animals as shown in Figure 5.
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Synaptotagmin10-Cre, a Driver to Disrupt
Clock Genes in the SCN

Jana Husse, Xunlei Zhou,' Anton Shostak, Henrik Oster, and Gregor Eichele®

Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry,
Goettingen, Germany

Abstract  Surgical lesion of the suprachiasmatic nuclei (SCN) profoundly affects
the circadian timing system. A complication of SCN ablations is the concomitant
scission of SCN afferents and efferents. Genetic disruption of the molecular
clockwork in the SCN provides a complementary, less invasive experimental
approach. The authors report the generation and functional analysis of a new
Cre recombinase driver mouse that evokes homologous recombination with high
efficiency in the SCN. They inserted the Cre recombinase cDNA into the
Synaptotagminl0(5yt10) locus, a gene strongly expressed in the SCN. Heterozygous
Synaptotagmin10-Cre (Syt10") mice have no obvious circadian locomotor
phenotype, and homozygous animals show slightly reduced light-induced phase
delays. Crosses of Syt10°" mice with B-galactosidase reporter animals revealed
strong Cre activity in the vast majority of SCN cells. Cre activity is not detected
in nonneuronal tissues with the exception of the testis. The authors demonstrate
that conditionally deleting the clock gene Bmall using the Syt10° driver renders
animals arrhythmic.

Key words

suprachiasmatic nucleus, SCN, circadian, clock, Bmall, Cre driver,
Synaptotagniind()

In the mouse, gene targeting in embryonic stem
(ES) cells as well as N-ethyl-N-nitrosourea (ENU)—
mediated mutagenesis plays a key role in elucidating
the molecular basis of the mammalian circadian clock
(Bungeretal., 2000; van der Horst et al., 1999; Vitaterna
etal., 1994; Zheng et al., 2001; Zheng et al., 1999). The
mammalian circadian clockwork rests on a limited
number of core clock proteins that form interlocked
transcriptional-translational feedback loops creating
a 24-h rhythm. This machinery drives rhythmic
expression of hundreds of clock-controlled genes that
regulate a wide range of rhythmic physiological

functions (Ko and Takahashi, 2006). Clocks have been
found in almost all cells and tissues of the body. They
are equipped with the complete molecular clockwork
and exhibit a self-sustained circadian rhythm even
when kept in explant culture (Balsalobre et al., 1998;
Tosini and Menaker, 1996; Yamazaki et al., 2000; Yoo
et al., 2004). The mammalian circadian system is
organized in a hierarchical manner with the central
pacemaker in the suprachiasmatic nucleus (SCN)
controlling numerous peripheral clocks (Dibner et al.,
2010). Pioneering lesion studies carried out in the
early 1970s established the SCN as the central
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2. To whom all correspondence should be addressed: Gregor Fichele, Genes and Behavior Department, Max Planck Institute
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pacemaker (Moore and Eichler 1972; Stephan and
Zucker 1972).

Over the past decade, mice deficient for each of the
core clock genes have been generated. Typically, such
animals are characterized by smaller or greater defects
in locomotor circadian rhythmicity and, additionally,
may also show a number of phenotypes, including
metabolic defects, changes in the reward system, or
memory impairments (Abarca et al., 2002; Garcia et al.,
2000; Turek et al., 2005). It is as yet unclear whether
these defects are clock mediated and, if they are, which
tissue clocks exert control. In the adrenal, for example,
transplantation experiments have been used to address
the function of a tissue clock (Kiessling et al., 2010;
Oster et al., 2006). An alternative to transplantation
and surgical ablation is the tissue-specific deletion of
core clock genes using the Cre-loxP system (Storch
et al.,, 2007; Lamia et al., 2008; Marcheva et al., 2010).

In view of the overarching role of the SCN in
circadian timekeeping, we attempted to knock-out
clock genes such as Bmall specifically in this nucleus.
To achieve this goal, we generated a SCN Cre driver
that can delete conditional alleles of genes of interest
in this nucleus. The Allen Brain Atlas (Lein etal., 2007)
has uncovered numerous genes that are expressed in
the SCN. However, genes solely expressed therein
were not found. Insitu hybridization on brain sections
identified Synaptotagminl0 (Syt10) as a gene that is
strongly expressed in the SCN with relatively few other
expression sites in the CNS, even during development
(www.genepaint.org, Genepaint ID MHBS808).
Synaptotagmins are involved in regulated exocytosis of
synaptic vesicles and are thought to function as calcium
sensors (Gustavsson and Han, 2009). Most
Synaptotagmins are widely expressed throughout the
nervous system, and Syt1, 2,4,5,9,11,13, 14, and 16
are also found in the SCN, albeit much less enriched
therein than Sytl0. The presence of multiple
Synaptotagmins in the SCN is beneficial for the design
of a Cre driver mouse, as it makes it less likely that
inserting the Cre recombinase gene into the Syt10locus
would result in a major impairment of neuronal
function as paralogs of Syt1() should compensate for
a loss of this particular Synaptotagmin.

Here we report the generation and characterization
of a Syt107" driver line that enables SCN targeting
without targeting of peripheral, nonneuronal clocks.
We verified the usefulness of the Syt10°" driver line
by knocking out a conditional Bmall allele. Depending
on the dosage of Cre recombinase, we obtained mice
with phenotypes ranging from minimal circadian
perturbation to complete arrhythmicity.

MATERIALS AND METHODS

Cloning of Syt10“* Targeting Vector

We replaced the ATG in exon 1 of the Syt10 gene
by a Cre cassette. Nts 92-229 (NM_018803.2) were
replaced with the Cre cassette composed of the iCre
(Shimshek et al., 2002), an internal ribosomal entry
site (IRES), followed by an enhanced green
fluorescent protein (EGFP) reporter cDNA and a
Flippase recognition target (FRT)-flanked PGK-
neomycin selection marker. An 8.7-kb genomic
region (5.3 kb upstream of exon 1 and 3.4 kb down-
stream of exon 1) was cloned by recombineering
(Liu et al., 2003) from a BAC clone (BM(Q295d20).
Exon 1 was then replaced by the Cre knock-in
cassette.

Generation and Genotyping of
Syt10°" Knock-in Mice

Gene targeting of Syt10“" knock-in mice was
performed by GenOway using 129Sv /Pas embryonic
stem cells. DNA from G418-resistant clones was digested
with Sphl and analyzed by Southern blotting. Targeted
cells were identified using a 474-bp probe generated
by PCR (P1; forward primer: 5-CAAGATGGCT
TCTTTAATGACCCCAG-%, reverse primer: 5-AGAGT
TGCACACACTTCGGTGCAC-3) that hybridizes
with the 3" homology arm. Sphl digestion of the
targeted allele resulted in an 8.9-kb band in addition
to the 14.7-kb wild-type band (Fig. 1A). For positive
clones, the 5" homology arm was independently
tested using a suitable PCR probe. Targeted clones
were injected into blastocysts. Chimeric offspring
were backcrossed to C57BL/6. The resulting F1
generation was screened for germline transmission
by Southern blotting as described for ES cells and
PCR genotyping using the following primers: Syt10
F:5-AGACCTGGCAGCAGCGTCCGTTGG-3, Syt10
R:5-AAGATAAGCTCCAGCCAGGAAGTC-3, and Syt10
KI R: 5-GGCGAGGCAGG CCAGATCTCCTGTG-3".
PCR was performed for 38 cycles with an annealing
temperature of 65 °C. A wild-type band of 426 bp and
a mutant band of 538 bp were separated on a 1.5%
agarose gel (Fig. 1C). In order to delete the FRT-flanked
neomycin cassette, mutant mice were crossed to an
ubiquitously expressing Flippase line on C57BL/6
background (Farley et al., 2000). Offspring were tested
for neomycin deletion by PCR. The Flippase allele was
out-crossed in the next generation by back-crossing to
C57BL/6.
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2005) and counterstained with Nuclear
Fast Red or DAPI. Quantification of
recombination efficiency was
performed as follows: 10-um
cryosections were first stained with
DAPI followed by colorimetric
detection of B-galactosidase activity.
The SCN was outlined and the number
of DAPI-stained nuclei (a measure of
cell number) and of B-galactosidase
dots were counted, and the ratio of
p-galactosidase dots/nuclei was
computed. Two sections per SCN region
(rostral, central, caudal) from 4 different
animals were included. An identical
analysis was carried out on SCNs of
animals in which B-galactosidase
activity is seen throughout the SCN
550 bp (see Suppl. Table S1 for further
420 bp information). Finally, the ratio of
these two counts was calculated to
obtain the percentage of SCN cells
expressing Cre recombinase in
Syt109* R26R"* mice.

In Situ Hybridization

Automated in situ hybridization on
25-um frozen sections was performed
as described (Visel et al., 2007; Yaylaoglu
et al., 2005). A 1019-bp Syt10 template
was used for riboprobe generation

_0C.*

Figure 1. Generation of Syt10°* knock-in mice. (A) Schematic of the Syt10 wild-type
locus, the targeting vector, and the resulting targeted locus. Exons are indicated in

(INM_018803, nts 279 to 1298). Riboprobe

concentration was 200 ng/uL.

black. Position of genotyping primers (Syt10 F, Syt10 R, and Syt10 KI R) are depicted

by arrows. Southern fragments are shown as lines. The probe used for Southern
genotyping is marked as P1. (B) Southern genotyping of F1 littermates obtained from
chimera-C57BL/6 crosses. A 474-bp probe (P1) detected a 14.7-kb wild-type and an

Gene Expression Analysis
by Reverse Transcription PCR

8.9-kb mutant Sphl fragment. (C) PCR genotyping of F1 littermates obtained from

Syﬂﬂc“”" intercrosses using the genotyping primers Syt10 F, Syt10 R, and Syt10 KI R. A
420-bp wild-type and a 550-bp mutant band are separated on a 1.5% agarose gel. (D)
Syt10 expression in the SCN as determined by in situ hybridization in wild-type and
Syt10" mice. Scale bar: 0.5 mm. Abbreviations: 3V, third ventricle; Amp, ampicillin
resistance gene; Cre, Cre recombinase; FRT, Flippase recognition target; EGFF, enhanced
green fluorescent protein; IRES, internal ribosomal entry site; Neo, neomycin resistance;
OC, optic chiasm; PGK, phosphoglycerine kinase A promoter; PVN, paraventricular

nucleus of the hypothalamus; SCN, suprachiasmatic nucleus.
B-Galactosidase Staining

Syt10°"** R26R™*“* mice were sacrificed by cervical
dislocation; brains were quickly removed and frozen
in O.C.T (Tissue-Tek). Then, 25-um cryosections were
stained for B-galactosidase as described (Sakurai etal.,

Syt10"* males were sacrificed and
tissues were harvested in RINA Later
solution (Ambion). RNA was Trizol-
extracted (Invitrogen) and DNAse treated
(TURBO DNA-free Kit, Ambion). CDNA
synthesis was performed (Superscript II,
Invitrogen) with the Oligo-dT primer. A
490-bp PCR fragment encompassing the Cre sequence was
amplified using the following primers: Cre RT forward:
5-GTGGATGCTGGGGAGAGAGCCAAGC-3 and Cre
RTreverse:5-CAGACCAGGCCAGGTATCTCTGCCC-3..
From the same samples, Eeflal was amplified as an
internal standard.
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Gene Expression Analysis
by Quantitative Real-Time PCR

Animals were sacrificed at zeitgeber time (ZT) 18,
brains were harvested, and brain punches of the anterior
ventral hypothalamus comprising the SCN were taken
from 1-mm-thick brain sections. RNA and cDNA were
prepared as described above. QPCR was performed
using iQ SYBR Green Supermix on an iCycler
thermocycler (Bio-Rad) according to the manufacturer’s
protocol. Eeflal was used asa standard, and quantification
was performed as described (Kiessling et al., 2010).
Primer sequences were as follows: Bmall forward:
5-TCGACCCTCATGGAAGGTTAGAA-3', Bmall reverse:
5-CACGCCATCCTTAGCACGGCT-¥, Eeflal forward:
E-AATTCACCAACACCAGCAGCAA-Y, and Eeflal
reverse: 5-TGCCCCAGGACACAGAGACTTCA-3".
Sample sizes were 9 animals for wild-type and 3 animals
for each of the other genotypes.

Immunohistochemistry

First, 10-pm frozen sections were fixed in ice-cold
4% PFA for 15 min, washed 3 times in TNT buffer ( 10
mM Tris-HCI, 150 mM NaCl, and 0.05% Tween),
blocked in 10% normal goat serum for 1 h, and
incubated with anti-BMALI1 antibody (1:1000 rabbit
anti-MOP3; Novus Biologicals) overnight at 4 °C. The
next day, sections were washed 3 times with TNT
buffer, incubated with the secondary antibody (1:400
anti-rabbit AF488; Invitrogen) for 2 h at room
temperature, washed again, and mounted with DAPI
containing mounting medium. BMALI-positive cells
in a 240 x 187 um rectangle in 3 medial SCN sections
were counted. For each genotype, 3 animals were
analyzed.

Behavioral Experiments

All animal experiments were carried out in
compliance with the German Law on Animal Welfare.
Breeding strategies can be found in Supplementary
Table S1. Mouse housing and behavioral monitoring
were performed as described (Jud et al., 2005). Males
on a mixed 1295v/C57BL/6 background of 2 to 5
months of age were used. Controls: where feasible,
littermates were used. Mice were kept on a 12:12 light
dark (LD, 350-lux) cycle before transfer to constant
darkness (DD) or constant light (LL, 100 lux). A 15-min
350-lux light pulse was given manually at circadian
time (CT) 14. Behavioral data were analyzed using

ClockLab acquisition and analysis software package
(Actimetrics). Period and amplitude were calculated
using %’ periodogram analysis. Phase shifts in an
Aschoff type I protocol were calculated as described
(Jud et al., 2005). Onset error was calculated as mean
deviation of real onset from a least squares—fit
regression line over a period of 10 consecutive days in
DD. Ultradian (period of 5-10 h) amplitudes were
calculated using y* periodogram analysis of 5
consecutive days of the second week in DD.

Data Analysis

Statistical comparisons were made in GraphPad
Prism, and p values below 0.05 were considered
significant. Normality tests revealed that not all
behavioral data followed a Gaussian distribution, and
hence nonparametric analyses were performed
throughout: Mann-Whitney U test for comparison of
two groups and Kruskal-Wallis test for comparison of
more thantwogroups. QPCRand immunohistochemistry
data were analyzed using f tests.

RESULTS

Generation of Syt10° Mice

The construct used for targeting the Syt10 locus
replaced the endogenous 5yt10 ATG located in exon 1
by the Cre cDNA sequence (Fig. 1A). This targeting
should result in a knock-out of endogenous Syt10. We
generated Syt10°" mice by 129Sv ES cell targeting and
subsequent blastocyst injections. We verified the
genotype of F1 animals by Southern blotting and PCR
(Fig. 1B,C). Subsequently, the FRT-flanked neomycin
resistance cassette was deleted. The deletion of Syt10
was confirmed by in situ hybridization to coronal SCN
sections. Syt10 transcripts were not detectable in
homozygous Syt10““"™ mutants, neither in the SCN
(Fig. 1D) nor in any of the other Syt10 expression sites
in the brain (not shown).

Syt10°" heterozygous and homozygous mice are
viable and fertile with no obvious morphological
abnormalities. Breeding experiments revealed that Cre
is active in the male germline. Hence, offspring of a father
who is Syt10°* positive and also carries a conditional
allele of the gene to be deleted will be completely deficient
in the paternally derived allele of the gene of interest. In
the case of the reporter R26RLacZ, the resulting embryos
will stain for f-galactosidase ubiquitously (for further
information, see Suppl. Table 51).
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Figure 2. Strong Cre activity in the SCN of Syt10* R26R""#*
mice. (A) Syt10 expression and Cre activity at differentlevels along
the rostrocaudal axis of the SCN as determined by in situ
hybridization (upper panels) or B-galactosidase staining (lower
panels). Sections shown for the two techniques are 25 um apart.
Scale bar: 0.2 mm. (B) Percentage of B-galactosidase positive cells
in the SCN. No significant differences were detected between the
3 SCN axial levels (n =4). Abbreviations: 3V, third ventricle; OC,
optic chiasm.

Activity of Cre Is Brain Specific
and SCN Enriched

We crossed Syt10“" mice to the R26RLacZ reporter
line that expresses B-galactosidase after Cre-mediated
excision of a stop cassette (Soriano, 1999). Consistent
with the in situ hybridization data, B-galactosidase
staining was very strong throughout the SCN (Fig. 2A).
To estimate the percentage of SCN cells expressing Cre
recombinase, the number of B-galactosidase dots in
the SCN of Syt10“* R26R“** mice was determined
relative to the SCN of mice that ubiquitously express
B-galactosidase (see Materials and Method). We found
that ~90% of the SCN cells in Syt10“”* R26R"““** mice
were B-galactosidase positive (Fig. 2B). The variation
between rostral, central, and caudal levels (93%, 92%,
and 84% respectively) is not significant. The
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B-galactosidase negative cells could be glia cells that
do not express Syt10 (Zhang et al., 2004).

Cre activity was detected in a variety of other brain
structures. Coronal sections at the level of the SCN
showing Syt10 expression detected by in situ
hybridization (Suppl. Fig. S1A) and Cre activity
detected by B-galactosidase reporter analysis (Suppl.
Fig. S1B) give a good indication of the extent to which
Creis active in non-SCN areas. Supplementary Figure S2
shows B-galactosidase staining in a variety of brain
tissues. We observed that Cre-expressing cells are
embedded in numerous non-Cre-expressing cells. By
contrast, in the SCN, the majority of cells are
B-galactosidase positive (Fig. 2A). The B-galactosidase
reporter expression pattern was also seen using the
human alkaline phosphatase reporter line (Lobe et al.,
1999). Phosphatase staining pattern in these mice was
very similar to that of B-galactosidase (data not shown).

To examine whether Cre-induced recombination
occurred outside the CNS, we performed B-galactosidase
staining on sections of various tissues isolated from
Syt10°* R26RLacZ"““* mice (Fig. 3A). We did not
detect any Cre activity in peripheral tissues except for
the seminiferous tubules of the testis, an expression
site presaged by the breeding experiments (Suppl.
Table S1). To further confirm the lack of Cre expression
in peripheral tissues, we performed Cre-specific reverse
transcription PCR reactions on RNA isolated from 19
tissues of Syt10** mice. A Cre PCR product was
detected only in neuronal tissues, including the eye
and the spinal cord, and in testis (Fig. 3B). Insummary,
the Syt10™ driver is highly active in the SCN and, to
a somewhat lesser extent, in other brain regions.
Importantly, we did not detect any Cre activity in
nonneuronal tissues with the exception of testis.

A Minor Light-Resetting Phenotype
in Syt10°'“* Homozygous Mice

We analyzed the circadian behavior of heterozygous
and homozygous Syt10* mice. Male wild-type,
Syt10°** andSyt10°“c" littermates were tested for
wheel-running behavior in a standard experimental
setup. In a 12:12 LD cycle, Syt10°* as well as
Syt10*“"* mice entrained normally (Fig. 4A). Total
activity levels as well as onset variability were not
different between genotypes. When released into DD,
all genotypes showed a similar endogenous period
(Fig. 4B;23.5h,23.4 h, and 23.7 h in wild-type, Syt10°",
and Syt10°%c", respectively). Locomotor activity onset
error as a measure of rhythm instability was also not
different between genotypes (Fig. 4C).
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both the endogenous circadian period and
the light responsiveness of the circadian
system (Daan and Pittendrigh, 1976). We
did not find differences in the period
between wild-type and heterozygous
littermates. Homozygous mutants,
— however, showed a slightly shortened
period in LL (Fig. 4E; 25.1 h and 24.6 h in
wild-type and Syt10°/“", respectively; p =

0.03).
Therefore, the Syt10° driver line even
in the homozygous state seems suitable for
== circadian experiments as it shows only a
minor light-resetting phenotype. Both the
circadian period and the stability of
locomotor activity rhythms under LD and
DD conditions are normal. Heterozygous
mutants do not show any impairment in
the tested circadian behavioral paradigms.

Cre Dosage-Dependent Circadian
Phenotype in Conditional
Bmall-Deficient Mice

The only single-gene knock-out
identified so far that produces a complete
arrhythmic locomotor phenotype is Bmall
(Bunger et al., 2000). Hence, we crossed
the Syt10°" line with a mouse line carrying
a conditional allele of Bmall that allows
Cre-mediated deletion of the exon
encoding the BMALL1 basic helix loop-
helix (bHLH) domain (Bmal1*) (Storch etal.,

Figure 3. Cre activity is detected only in neuronal tissues and in testis. (A)
B-galactosidase staining of various organs isolated from Syt10™* R26RLacZ*" mice.
No Cre-mediated recombination resulting in B-galactosidase expression is detectable
in peripheral organs with the exception of the seminiferous tubules of the testis.
Scale bar: 0.1 mm. (B) Cre-specific reverse transcription PCRs on RNA isolated from

various tissues of Syt10* mice.

Next, we investigated the light response of the
circadian system in all 3 genotypes by giving a 15-min
light pulse at CT14. Wild-type as well as heterozygous
mice showed the expected phase delay of approximately
140 min (Benloucif and Dubocovich, 1996). Syt10<"
mice, however, displayed a reduced phase delay of 90
min (Fig. 4D; wild-type vs. Syt10°“"; p=0.006). Given
this slightly reduced light response of the circadian
system in homozygous mice, we determined their free-
running period in LL. This parameter is influenced by

2007). We analyzed wheel-running
behavior in 12:12 LD and DD conditions.

Syt10"* Bmall"! mice showed a
shortened period in DD (Fig. 5A,B;23.5h
and 229 h in wild-type and Syt10“*
Bmall™, respectively; p = 0.002). These
mice were still rhythmic under both LD
and DD conditions (Fig. 5A and Suppl.
Fig. S3). However, rhythmicity in DD was less stable,
and quantification of the onset error revealed increased
onset variability in Syt10°** Bmal1"" mice compared
to wild-type controls (Fig. 5C; 0.38 hand 0.78 h in wild-
type and Syt10“”* Bmal1™”, respectively; p = 0.038). It
appears that in Syt10“%* Bmal1"" mice, the amount of
Cre activity was insufficient to fully delete Bmall in all
SCN cells.

Next we used a Bmual1%- background that, based on
previous work, should in itself not produce a circadian
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Figure4. No major circadian locomotor impairments in Syt10®
mice. (A) Representative double-plotted actograms of wild-type,
Syt105", and Syt10°™' mice kept in a 12-h light/12-h dark cycle
(LD) and sequentially released in constant darkness (DD) followed
by constant light (LL). The day of a 15-min light pulse is indicated
with a star. (B) Magnitude of period in constant darkness by j*
periodogram analysis. (C) Onset error in constant darkness. (D)
Magnitude of phase shift after a 15-min light pulse at CT14. (E)
Magnitude of period in constant light by 3* periodogram analysis.
All data are shown as mean and SEM and analyzed using a Mann-
Whitney test, * indicates p < 0.05 tested against wild-type, # =8

per genotype.

phenotype (Bunger et al., 2000; Storch et al., 2007) but
would clearly require less Cre activity since one Bmall
allele is already mutated. Such Sy#10%* Bmal 1" animals
have a shorter period in DD compared to wild-type (Fig.
5A,B, Suppl. Fig. 53; 23.5 h and 22.6 h in wild-type and
Syt107" Bmall™, respectively; p = 0.0004). Onset
variability analysis revealed that Syt10“™* Bmal1"" animals
have higher onset errors than wild-type controls (Fig. 5C;
0.38 h and 1.31 h in wild-type and Syt10°** Bmall?",
respectively; p=0.0024). Overall, Syt10°** Bmal1" animals
display impaired activity rhythms but are not completely
arrhythmic. This led us to conclude thata single Cre allele
is insufficient to produce enough Bmall-deficient cells in
the SCN to result in total circadian arrhythmicity.

We next examined Syt10“" Bmal 1" mice and did
get a fully arrhythmic phenotype (Fig. 5A and Suppl.
Fig. 53). Ten of 11 animals were totally arrhythmic in
DD; a y* periodogram analysis did not reveal any
significant circadian rhythmicity. In LD conditions,
these mice were still rhythmic; however, in the light
phase, they were more active than wild-type controls
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(5.3% and 18.2% light activity in wild-type and Syt10“<"
Bmal1%-, respectively; p = 0.046). One best appreciates
the extent of the arrhythmic phenotype of Syt10-“"
Bmal1"- mice by a comparison with pan-Bmall knock-
out animals (Syt10°7“"" Bmall*). The phenotype of
Syt10°<" Brnal 17 is indistinguishable from the Syt10°%<"
Bmall” phenotype in LD and in DD (Fig. 5 and Suppl.
Fig. S3). Periodograms of both genotypes show no clear
circadian peak (Fig. 5A). Thus, the Syf10°“" Bmal 17"
model is a very efficient SCN knock-out and completely
mimics the circadian behavioral phenotype of pan-
Bmall knock-out mice. Overall, the onset variability,
a measure for rhythm instability, was progressively
increasing with increasing likelihood that both Bmall
alleles were deleted (Fig. 5C). Ithas been shown before
that in arrhythmic clock mutants, ultradian rhythms
can become more prominent (Abraham et al., 2006).
We therefore analyzed the periodogram amplitude in
the ultradian range (5-10 h) in the different genotypes.
Decreasing circadian amplitudes (Fig. 5A) clearly
correlated with increasing ultradian amplitudes (Fig. 5D).
In summary, the Syt10°" evokes a variety of circadian
phenotypes ranging from normal rhythmicity to totally
arrhythmic phenotypes in a Cre dosage-dependent
manner. Increasing the probability of a recombined
Bmall allele by either using 2 Cre alleles or by working
with a fl/~ background increases the severity of the
phenotype, eventually leading to a complete loss of
circadian locomotor rhythmicity in Syt10¢<cr
Bmall"~ mice.

To examine whether the Cre dose-dependent
circadian defects correlate with the amount of Bmall
expression in the SCN, we quantified Brmall mRNA and
BMALI protein levels in wild-type, Syt10“%* Bmall"",
and Syt10°*“" Bmal1" mice at ZT18, which is the time
point of maximal Bmall expression in the SCN (Oishi
etal., 2000). QPCR analysis of SCN punches revealed a
significant reduction of Bmall mRNA levels to less than
50% of wild-type levels in both conditional genotypes
(Fig. 6A; 47% and 40% in Syt10°" Bmal1"-and Syt10
& Bmall'; t test; p = 0.0081 and p = 0.004, respectively).
Differences between Syt10““* Bmall™" and Syt107“"
Bmall" genotypes were not significant. This analysis
may underestimate the degree of knock-out in the SCN
since SCN punches contain non-SCN tissue in which
Bmall expression is normal. We thus performed
immunohistochemistry with an anti-BMALI antiserum
(for validation of the anti-BMAL1 immunoreactivity,
see Suppl. Fig. 54). A progressive reduction of BMAL1
immunoreactivity with increasing Cre dosage was seen
(Fig. 6B). Relative to wild-type, the SCN of Syt10"*
Bmal1"- mice had a reduction of BMALI1-positive cells
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A significant benefit of a knock-in
strategy is that it avoids typical problems
seen with transgenics such as positional or
copy number effects that might complicate
an analysis of Cre-mediated effects. By
expression of Cre from the Syt10 locus, we
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Figure 5. Circadian phenotypes in Syt10“*-driven Bmall knock-outs. (A)
Representative double-plotted actograms and periodograms of wild-type, SyfIOc”"
Bmal 17, S_r,rfl'l?f"’h Bmal1®-, Syi‘IOC"fC" Bmal1™, and Syi‘lﬂfmf"’ Bmall™ mice. (B)
Magnitude of period in DD determined by y* periodogram analysis. In Syt10°¢
Bmal " and Syt10°¥%* Bimall” mice, no circadian rhythmicity was detected (n.d.).
(C) Onset error was determined for consecutive 10 days in DD. (D) Amplitudes in
the ultradian range (5-10 h) were calculated from 5 days in DD. All data are shown
as mean and SEM and analyzed using a Mann-Whitney test; * indicates p < 0.05

tested against wild-type.

to 35%, and in the SCN of Syt10°"“** Bmal1"- animals,
merely 17% of the cells expressed BMALI (Fig. 6C;  test;
p =0.0012 and p = 0.0005, respectively, tested against
wild-type). The number of BMALI-positive cells in
Syt10°“ Bmall" animals was significantly reduced
compared to Syt10% Bmall"~ animals (Fig. 6C; t test;
p = 0.0077). The expression of BMALI thus correlated
with the behavioral phenotypes of these conditional
mutants (see Fig. 5).

DISCUSSION

The Syt10~* driver mouse line will be useful to delete
conditional alleles of clock or other genes that are
expressed in the SCN. Cre activity is found only in
neuronal tissues and seminiferous tubules of the testis.
Cre activity is strong in the vast majority of SCN cells.
We demonstrate that knocking out a conditional allele
of the essential clock gene Bmall using the Syt10-" driver
renders animals arrhythmic as expected from an efficient
SCN clock knock-out. Additionally, we show that the
number of BMALI-positive cells in the SCN correlates
with the severity of the behavioral phenotype.

magnitude of light-induced phase delays
and a slight decrease in the period in
constant light. The fact that circadian
impairments in Syt10" mice are minor may
be due to the expression of several other
Synaptotagmins in the SCN. The lack of a
pronounced circadian phenotype in Syt107"*
mice is a prerequisite for making the Syt10-"*
driver line suitable for circadian research.
We observed drastic effects on circadian rhythmicity
when the Syt107* driver line is used to delete Bmall.
This result is in line with transplantation experiments
and inducible expression of dominant negative CLOCK
protein, both of which show that the genotype of the
SCN determines locomotor period (Hong et al., 2007;
Ko et al., 2010; Ralph et al., 1990; Sujino et al., 2003).
Germline deletion of Bmall and restoring Bmall
expression under the Secretogranin2 promoter in the
brain causes not only circadian defects but also a
reduction in life span, body weight, and overall activity
levels (Bunger et al., 2005; Bunger et al., 2000;
McDearmon et al., 2006). Such deficiencies are not seen
in Syt10°““" Bmal1"~ animals, an advantage that will
facilitate further analysis of the circadian phenotype
of these mice. Lesion and transplantation experiments
led to one of the major advances in chronobiological
research, the discovery of the SCN as the master
pacemaker of the mammalian brain (Moore and
Eichler, 1972; Ralph et al., 1990; Stephan and Zucker,
1972). The chief difference between deleting Bmal1 in
the SCN and SCN lesion experiments is that in the
former case, the SCN afferent and efferent neuronal
connections are not impaired. The fact that SCN
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stepwise reduction of Bmall in the SCN
affects oscillations of SCN neuronal
networks.

The currently known canonical clock
genes are not required for viability.
However, it would not come as a surprise
if yetunknown clock genes existed that are
also required for a range of noncircadian
functions, including viability. Potential
examples are Creb or Glycogen synthase
kinase-3p (litaka et al., 2005; Obrietan et al.,
1999). In such cases, the Syt10°" driver
mouse can be useful to overcome lethality
and produce mice suitable for circadian
analysis.

When using the Syt10°" driver line, one
should consider the following points: First,
the efficiency of Cre-mediated homologous

Syt 10t Bmalfr

Figure6. Quantification of Brnall/BMALI levels in the SCN. (A) Relative expression
levels of Bmall in SCN punches. (B) Representative images of SCN sections
immunostained with anti-BMAL1 antibody (top row) and counterstained with DAPI
(center). The lower row shows the overlay of BMAL1 immunoreactivity (green) and
DAPI (red). Scale bar: 75 um. (C) Percentage of BMALI-positive cells in mutant SCN
relative to wild-type. All data are shown as mean and SEM and analyzed using a

t test; * indicates p < 0.05.

afferents and efferents are destroyed in such lesion
experiments may complicate experiments investigating
the role of neuronal connections between the SCN and
the periphery.

We found gene dosage effects in that the number
of BMALI-positive cells in the SCN correlated with
behavioral rhythmicity. This is reminiscent of what
has been shown for the CLOCK mutation. It was found
that the ratio of CLOCK mutant and wild-type cells in
the SCN correlated with behavioral rhythmicity (Low-
Zeddies and Takahashi, 2001). The ability to evoke
gene deletion in a graded manner should be informative
when examining how clock gene dosage in the SCN
affects circadian rhythmicity or the expression of other
(clock) genes. The benefit of such titrating experiments
has also been demonstrated in a recent elegant in vitro
study (Baggs etal., 2009). These authors downregulated
clock genes in a dose-dependent manner by adding
different amounts of small interfering RNAs to human
osteosarcoma cells. This led them to uncover novel
network features of the circadian timing system. In the
context of a recent study showing stochastic rthythmicity
in complete Bmall knock-out mice (Ko et al., 2010), it
will be interesting to investigate whether and how a

recombination might vary depending on
the targeted allele used. It has been shown
that the exact location and distance between
two loxP sites can affect recombination
efficacy (Zheng et al., 2000). Thus, deletion
of other conditional gene alleles might
require less Cre to elicit a full penetrance of
phenotype than in the case of Bmall™7.
Hence, Syt10°** and Syt10““* should be compared with
respect to their recombination efficiency. Second, only
females (and not males) that are carriers for Syt10~" and
the conditional allele of interest must be used for
breeding. Otherwise, germline deletion of the conditional
allele will occur, and all cells in the body will be deficient
for the gene of interest. A guide for breeding strategies
using the Syt10" is found in Supplementary Table S1.
A caveat with using Syt10°" in combination with a mouse
in which one of the targeted alleles has already been
removed (e.g., Bmal1"") is that the heterozygous targeted
animal may already have a phenotype. In summary, we
believe that our Syt10°" line will be a helpful tool to
investigate the complexity of the mammalian circadian
network.
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Abstract In most species—from cyanobacteria to humans

endogenous clocks have evolved that drive 24-h rhythms of
behavior and physiology. In mammals, these circadian
rhythms are regulated by a hierarchical network of cellular
oscillators controlled by a set of clock genes organized in a
system of interlocked transcriptional feedback loops. One of
the most prominent outputs of the circadian system is the
synchronization of the sleep—wake cycle with external (day-)
time. Clock genes also have a strong impact on many other
biological functions, such as memory formation, energy
metabolism, and immunity. Remarkably, large overlaps exist
between clock gene and sleep (loss) mediated effects on these
processes. This review summarizes sleep clock gene inter-
actions for these three phenomena, highlighting potential
mediators linking sleep and/or clock function to physiological
output in an attempt to better understand the complexity of
diurnal adaptation and its consequences for health and disease.

Keywords Circadian clock - Clock genes - Sleep -
Metabolism - Immunity - Memory
Introduction

Almost 40 years have passed since the first clock gene,
period, was discovered by Ronald Konopka and Seymour
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Benzer in a forward genetic screen on fruit flies [75].
Starting from this landmark finding, N-ethyl-N-nitrosourea
(ENU) mutagenesis phenotypic screens became a powerful
tool to unravel the genetic basis of circadian rhythms. In the
mid-1990s, the first mammalian clock gene, circadian
locomotor output cycles kaput (Clock), was identified and
cloned by Martha Vitaterna in the lab of Joseph Takahashi
[71, 156]. In mammals—as in most organisms studied so
far—circadian rhythms are controlled by a set of clock
genes forming a network of positive and negative auto-
regulatory feedback loops [57, 120]. These clock genes are
expressed in most tissues. A circadian pacemaker located in
the suprachiasmatic nuclei (SCN) of the hypothalamus is
reset by external light stimuli and synchronizes peripheral
oscillators throughout the body with each other and with the
light-dark cycle via humoral, neuronal, and behavioral cues
[120]. At its heart, the cellular circadian clockwork consists
of a main (or core) and an auxiliary (or accessory)
transcriptional-translational feedback loop (TTL; Fig. 1, left
side). The former is composed of the positive components
brain and muscle ARNT-like 1 (BMALI or ARNTL),
CLOCK and neuronal PAS domain protein 2 (NPAS2), as
well as the negative components CRYPTOCHROME 1/2
(CRY1/2) and PERIOD 1-3 (PERI1-3). BMALI, CLOCK,
and NPAS2 are members of the basic helix-loop-helix
(bHLH) Per-Arnt-Sim (PAS) family of transcription factors.
In the SCN, CLOCK/NPAS2 and BMALI form heterodimers
that bind to specific circadian E-box elements on the
promoters of their targets, thereby activating Cry and Per
transcription during the (subjective) day. In the late afternoon,
PER and CRY protein levels reach a critical concentration
and, now forming complexes themselves, translocate into the
nucleus. There, they interact with CLOCK/NPAS2-BMALI
and, by repressing the transcription of their own genes, form
a negative feedback loop. Progressive degradation of negative
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Fig. 1 Transcriptional-translational feedback loops regulate cellular
circadian rhythms in mammals and flies. Both vertebrate and
invertebrate clockworks are based on similar mechanistic concepts
and share a number of genetic components. In mammals (/eff), a core
loop is composed of PER and CRY proteins that inhibit their own
transcription by inhibition of CLOCK (NPAS2YBMALIL. An acces-
sory loop involves REV-ERBx and ROR« that regulate Bmall
transcriptional rhythms. In Drosophila (right), CLC/CYC activate
PER/TIM that feedback on CLC/CYC activity. VRI and PDP1 form
an accessory loop that regulates Clc transcriptional rhythms

regulators towards the end of the subjective night starts a new
cycle by the re-activation of Per/Cry transcription. Posttran-
scriptional modifications are heavily involved in clock
oscillations and impart precision and robustness to the TTL.
In particular, members of the casein kinase family (e.g.,
CKle, CKId) are known to phosphorylate PER proteins at
conserved residues and promote degradation, thereby delay-
ing PER nuclear entry [48, 83]. The auxiliary loop comprises
two genes of the orphan nuclear receptor family, Rev-erbor
(Nrldl) and Rorce (Rora). REV-ERBo and ROR ox repress or
activate, respectively, the transcription of genes with ROR
elements in their promoters, such as Bmall and Npas2.
Rev-erbar and Rorar are considered to be dispensable for
cellular rhythm generation, yet they were shown to
regulate phasing and amplitude of clock gene expression
rhythms [116, 127]. Further ancillary loops have been
described. The CLOCK/NPAS2-BMAL [ -regulated bHLH
transcription factors DEC1 (BHLHE40) and DEC2
(BHLHE41) were shown to bind E-box elements and
modulate CLOCK/NPAS2/BMALI-driven circadian tran-
scription [62, 124]. Another TTL involves the two
transcription factors D-site albumin promoter binding
protein and E4BP4 (NFIL3) that compete for binding of
D-boxes, a third circadian regulatory DNA motif, at the
promoters of Perl-3, Rev-erbc, Rorc, and various clock-
controlled genes (CCGs) [90, 101]. Similarly, in Drosophila,
CYCLE (CYC) and CLOCK (CLK), the orthologs of
BMALI and CLOCK, form heterodimers and activate
transcription of the circadian repressor genes Timeless (Tim)
and Period (Per) via E-boxes (Fig. 1, right side). TIM is a
substitute for mammalian CRYs as the major core TTL
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inhibitor, whereas in the fly, CRY functions primarily as a
photoreceptor and helps to synchronize the clock to the light

dark cycle [142]. TIM/PER complexes are transported to the
nucleus to repress CYC/CLK-mediated transcription [56].
DOUBLETIME, a homolog of casein kinase I, phosphor-
ylates PER, assigning it for sequestration via the proteasomal
pathway [72, 117]. Similar to mammals, the fly clock
contains at least one auxiliary loop consisting of VRILLE
(VRI) and PAR-domain protein-1 (PDP1). The former
inhibits, whereas the latter activates Clk transcription [26].

Interaction between circadian and homeostatic sleep
components

The current model predicts that sleep is regulated by two
principle mechanisms [13, 27]. The first, termed process c,
determines the appropriate timing of sleep. Nocturnal
animals experience sleep mostly during the day, while
diurnal species such as humans rest predominantly during
the night. The SCN, as master circadian pacemaker, sends
projections to important sleep regulatory nuclei such as the
ventrolateral pre-optic area, the dorsomedial nucleus of the
hypothalamus, and the hypocretin/orexin neurons of the
lateral hypothalamus. Process ¢ is complemented by a
homeostatically controlled sleep drive, process s, which
builds up an increased need for sleep in response to
extended wake periods, independent of the time of day.
So far, the anatomical substrate of process s remains
elusive. Of note, sleep in mammals and birds is quantified
primarily by electro-encephalography (EEG). In contrast,
characterization of sleep in insects, where rhythm and
homeostasis appear to be as robust as in mammals, relies
mostly on measurements of rest/activity periods and arousal
thresholds [60, 131]. SCN-lesioned rats and mice show
disrupted sleep timing and consolidation, though the overall
time spent asleep each day and the delta response to sleep
deprivation remain uncompromised [67, 100, 147]. Previous
studies conveyed on humans under forced desynchrony
protocols demonstrated that slow wave activity was largely
mdependent of internal circadian phase, though distribution
of REM sleep and spindle activity in non-rapid eye
movement (NREM) sleep correlated with body temperature
rhythms [34]. At the same time, homeostatic sleep compo-
nents can modify circadian pacemaker function. Sleep states
affect activity of SCN neurons with decreasing firing rates
during NREM phase and after sleep deprivation [30, 31].
Moreover, prolonged awaking effects the expression of clock
genes in the cerebral cortex, upregulating both of Perl
and Per2 [161, 162]. This body of evidence suggests that
the circadian clock regulates sleep—wake timing and
opposes process s in order to gate consolidated bouts of
sleep and waking.
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Clock genes and sleep timing

In humans, naturally occurring polymorphisms in clock genes
correlate with early or late chronotype. A PER3 gene length
polymorphism is linked to extreme diurnal preferences [4].
The longer allele, which carries five repetitions (PER3?) of
a variable number tandem repeat, is associated with early
morning type, whereas the shorter allele (PERSM) correlates
with eveningness and delayed sleep phase syndrome
(DSPS). Recently, it was demonstrated that a polymorphism
in the PER3 promoter is also associated with DSPS [6].
Similar correlations of polymorphic alleles with diumal
preferences are observed for PER/ and the S'untranslated
region of PER2 [18, 19].

Circadian control of sleep can be better demonstrated on
disorders associated with extremely shifted sleep—wake
time. In familiar advanced sleep phase syndrome (FASPS),
genetic studies identified mutations in the PER2 (S662G)
and CKI5 (T44A) genes in some families [148, 164].
Remarkably, both mutations affect an evolutionary con-
served process, the phosphorylation of the PER2 protein by
CKI. Xu et al. [164] have shown that a single amino acid
substitution (T44A) in the human CKJ/$ protein decreases
its enzymatic activity in vitro. The corresponding mutation,
when reproduced in mice, causes a shortened circadian
period length, which is consistent with symptoms of FASPS
patients. Surprisingly, a miss-sense mutation in the same
conserved residue of the Drosophila CKI ortholog Dbt
leads to an increase in the free-running period [164], as

Table 1 Clock gene mutant mice with sleep abnormalities

would be expected from DSPS patients. These findings
highlight the different organization of circadian/sleep
regulatory mechanisms in insects and mammals, despite
the fact that individual components share a great similarity
between vertebrate and invertebrate systems (see also
Fig. 1). In another study, transgenic mice expressing human
PER2 with the S662G mutation on a Per2-deficient
background display a shorter period resembling humans
with FASPS. Conversely, an aspartate substitution at the
same residue (S662D), mimicking a constitutively phos-
phorylated state, correlates with a longer period [165].

Clock genes and sleep homeostasis

A number of recent studies suggest that clock genes,
besides regulating circadian sleep—wake timing, also con-
tribute to sleep homeostatic control (reviewed in [47] and
summarized in Table 1). Naylor et al. [105] demonstrated
that mutations in Clock have effects on a varety of sleep

wake parameters in the mouse. Clock mutant animals show
a reduction in total sleep time (around 2 h) under light/dark
(LD) conditions, mostly due to reduced NREM sleep. In
constant darkness (DD), homozygous mutants spend more
time of their circadian cycle awake, mostly sacrificing
NREM sleep, even when the results are normalized to their
longer endogenous circadian period of 28.8 h. The response
to sleep deprivation is also altered in these mice with
decreased REM sleep rebounds, though the effects on

Mouse mutant  Circadian Sleep phenotype
phenotype
Sleep amount, REM, light/ NREM, light/ Delta power in Response to sleep  References
light/dark phase  dark phase dark phase NREM, light/ deprivation
dark phase

Bmall ™" Arrhythmic ~ Normal/elevated  Normal/elevated Normal/elevated  Elevated/reduced  Attenuated NREM/ [81]
REM

Npas?k Short period Normal/reduced Normal/reduced Normal/reduced Normal/normal Attenuated NREM, [39, 46]
reduced delta
power

Clock™"* Long period Reduced/reduced Normal/normal Reduced/reduced - Attenuated REM [105]

Perl/2™™ Arrhythmic  Reduced/normal ~ Normal/normal Reduced/mormal  Normal/normal Increased delta [135]
power

Cryl/27" Arrhythmic  Normal/elevated  Reduced/elevated Normal/elevated  Elevated/elevated Attenuated NREM/ [161]
REM, reduced
delta power

Dbp™"~ Short period Normal/normal Reduced/normal  Normal/normal Normal/reduced  Attenuated REM [45]

Dec2™ %k Normal Reduced/normal  Reduced/normal  Reduced/mormal ~ Normal/normal Attenuated NREM/ [59]
REM, reduced
delta power

PK27 Attenuated  Reduced/normal  Normal/elevated  Reduced/mormal  Normal/normal Attenuated NREM/ [65]

amplitude REM, reduced

delta power

Vipr2™" Arrhythmic  Reduced/elevated Reduced/elevated Reduced/elevated Normal/normal - [133]
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NREM and total sleep are unchanged [105]. Gene
association studies performed on two independent popula-
tions of humans report links between sequence variants of
CLOCK and sleep duration [1]. In the clock machinery,
Npas2 acts as a functional paralog of Clock, yet their
expression in the brain rarely overlaps [2, 50, 71].
Consistent with this, Npas2-deficient mice show about
25% reduction in NREM and REM sleep as well as reduced
sleep consolidation [39]. Subjected to 8 h of prolonged
waking, Npas? mutants display a smaller compensatory
mcerease in NREM sleep and in delta activity [46].

Bmall-deficient mice are to date the only reported
mouse strain in which the deletion of a single gene
totally disrupts circadian molecular and behavioral
rhythms [17]. Consistent with their arrhythmic behavior,
homozygous Bmall™" mice show attenuated sleep—wake
rhythms and increased sleep fragmentation. In contrast to
Clock mutants, Bmall™~ animals exhibit longer REM and
NREM periods under LD and DD conditions. Further-
more, during the light phase delta power is constantly
high, indicating that these animals are persistently under
elevated sleep pressure. Paradoxically, when actively sleep
deprived, Bmall mutants show an attenuated homeostatic
response. This might be due to a lesser amount of sleep
lost during sleep restriction when compared to wild-type
animals [81].

Mice lacking both Cry/l and Cry2 genes are frequently
used as a genetic model of circadian arrhythmicity [152,
157]. In Cryl/2" mice, sleep parameters do not differ
between light and dark phases, indicating a non-circadian
distribution of sleep. Both NREM sleep and EEG delta
power are increased during the light phase, and Cryl/2
mutants also show attenuated responses to sleep restriction
[161]. Of note, single Crv! or Cry2 fknockouts do not
display any significant differences in sleep parameters
consistent with their—at least partially—redundant role in
the circadian clock [162]. Similarly, Per gene mutations
have only modest effects on sleep homeostasis. Studies
done on both Per! and Per2 single mutant mice reveal
altered 24-h distribution of sleep but normal responses to
sleep deprivation [76, 135, 162]. However, behaviorally
arrhythmic Per//2 double mutant animals show decreased
REM and NREM sleep periods during the light phase and
moderately increased delta power after prolonged waking
[135]. Remarkably, in rats, expression of Per/ in the
dorsomedial SCN was correlated with timing of REM
sleep occurrence, pointing to a function of the central
pacemaker itself in sleep architecture regulation [84]. In
humans, the PER3 gene also plays a role in sleep
homeostasis. Individuals bearing the gene length variant
PER3*” show longer durations of NREM sleep bouts,
higher delta power, and an exaggerated response to sleep
deprivation [155].
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In Drosophila, mutants of mammalian clock gene
orthologs also exhibit profound changes in sleep homeo-
stasis. In particular cl¥"*, per”, and im” flies show
increased sleep rebounds after 7, 9, and 12 h of sleep
deprivation and recover 100% (compared to 30-40% in
wild-type Canton-S flies) of sleep lost within 12 h [132]. In
turn, more tremendous sleep rebound and even lethality in
response to 12 h of sleep deprivation have been observed in
cve™ mutants [132]. Interestingly, this phenotype differs
between genders with stronger effects seen in females [61].

Dbp knockout mice were the first animal model
mvestigated for the role of clock genes in sleep homeostasis
[45]. In constant darkness, Dbp-deficient mice exhibit a
slightly shorter free-running period and decreased overall
activity [90]. On EEG recordings Dbp mutants show
reduced REM sleep during the light phase as well as less
delta power activity in the dark. After 6 h of sleep
restriction, significantly attenuated REM responses are
observed [45]. In a recent study, He and co-workers [59]
found DEC?2 to regulate sleep length in humans. They
identified a miss-sense mutation in the human DEC2 gene
that is associated with a sleep phenotype (6 vs. 8 h sleep
duration in control subjects). When this point substitution is
reproduced in mice, it decreases total sleep time via both
REM and NREM without affecting circadian period [59]. A
targeted deletion of Dec2, however, does only produce a
mild sleep phenotype in mice [59]. Interestingly, in the fly
homolog of DEC2, CLOCKWORK ORANGE (CWO)
[87], the affected amino acid residue (P385) is not
conserved, but flies expressing a mutant mouse Dec?2 show
a similar sleep phenotype [59].

Of note, some of the genes known to mediate transcrip-
tional output from the circadian clock machinery have also
been implicated in sleep regulation. For instance, targeted
deletion of Prokineticin2 (Pk2), encoding a peptide secreted
from the SCN and critical for the maintenance of robust
circadian behavioral thythms [24, 86], produces profound
alterations in sleep homeostasis. Pk2 mutants show a 20%
reduction in total sleep time, mostly due to a decrease in
NREM sleep in the light phase, whereas REM sleep is
increased. Delta power and REM sleep rebound after sleep
deprivation are also attenuated in these mice [65]. A recent
study on the VPAC2 subtype of the VIP receptor (VIPR2)
implicated in the coupling of cellular oscillators within the
SCN pacemaker demonstrates the significance of synchro-
nization of electrical activity in SCN neurons on sleep
regulation. Consistent with locomotor activity data, an
attenuated diurnal rhythm of sleep and wakefulness 1s seen
in Vipr2-deficient mice, although total sleep time and other
homeostatic parameters are not affected [58, 133]. Interest-
ingly, in flies, a disruption of the VIP analog neuropeptide
pigment dispersing factor (PDF) increases sleep and causes
reduced responsiveness to external stimuli [25]. Together,
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these studies clearly show that circadian and homeostatic
regulatory circuits show a high degree of interaction. It
remains unclear, however, how this cross-talk 1s mediated at
the molecular level and which neuronal circuits are
involved.

Clock genes and sleep-associated functions

Clock genes do not only mfluence sleep architecture and
quality. They might also be involved in sleep and sleep-
correlated functions within an organism [51]. In many
cases, clock gene mutations and sleep disorders share the
same symptoms and phenotypes. Sleep loss, for example,
has been correlated to numerous metabolic symptoms,
which are also observed in circadian clock-deficient animal
models. Clock genes affect synaptic plasticity in learning
and memory formation and modulate immune functions
during the course of the day. In the same way, sleep—or the
lack thereof—has a strong impact on these processes.

Energy metabolism

The efficient regulation of energy homeostasis is an
essential factor for an organism’s survival. It comprises
a range of different processes, including energy uptake
(i.e. eating), storage (mostly as lipids, glycogen or tissue
protein), and expenditure (energy usage for biosynthetic
processes, heat production or locomotion). Energy is
taken up in the form of macronutrients—carbohydrates,
fat, or protein. In most species, nutrient ingestion
follows a strict circadian rhythm, and several clock
genes have been shown to be involved in the regulation
of metabolic homeostasis. Clock mutant mice show
blunted diurnal activity rhythms resulting in elevated food
intake during the usual resting phase (day) and less
ingestion during the active phase (night). These mice
become hyperphagic and obese [151]. Another study
showed that daytime high fat diet (HFD) in mice leads
to a significant higher weight gain than nighttime HFD
[3]. This is a possible explanation for the clock mutants’
obese phenotype. Similarly, Per2 mutant mice show
arrhythmic feeding behavior and eat significantly more under
(HFD) conditions. These effects are based on a decreased
level of alpha melanocyte-stimulating hormone (x-MSH), a
well-known appetite suppressor, at the beginning of the light
phase. Constant administration of «-MSH to Per? mutants
leads to reduced food uptake, revealing o-MSH as a direct
target of the clock gene Per2, independent of rhythmicity
[167]. Interestingly, some of these effects are also seen after
sleep restriction in rodents and in humans. In the latter, a
restriction of sleep time to 4 h for only a few consecutive

nights is enough to significantly increase appetite [139, 140].
Rats that are kept awake for 2 weeks using the classic disc-
over-water technique show hyperphagy—although they lose
weight under these conditions [119]. Of note, a number of
other animal studies failed to confirm an increase in food
uptake in response to sleep restriction, indicating that small
variations in experimental procedures may have a significant
mmpact on these processes [9, 170]. A straight-forward
mechanistic explanation for a sleep-loss-mediated mcrease
In energy uptake remains elusive. It was suggested that a
temporal deregulation of peripheral orexigenic and anorex-
igenic hormones could underlie this effect. The most
promising candidates are the gastrointestinal peptide ghrelin
[29, 73] and the adipokine leptin secreted by white
adipocytes [89]. In humans as well as in animals, sleep
restriction or total sleep deprivation cause significant
decreases in circulating leptin and increased ghrelin, thus
promoting appetite and hunger [11, 44, 140, 145]. Human
leptin plasma levels are partially dependent on meal time
[128] and also on the circadian time and sleep state. Under
un-stressed and constant feeding conditions, leptin shows a
marked nocturnal rise in humans [ 128]. When sleeping time
is shifted by 8 h, leptin levels are differentially regulated by
both the circadian system and sleep, resulting in a short
period rhythm with peaks in the night and around mid-sleep
phase [136]. In contrast, the diumal expression of ghrelin
seems not to be directly clock-regulated. Under ad libitum
feeding conditions ghrelin shows a bimodal rhythm with
peaks in the afternoon and towards the end of the dark phase
in rats, correlating with gastric emptying and filling [103].
However, in humans, sleep triggers ghrelin release during
night. Comparable to rats, humans also show a bimodal
ghrelin rhythm with one peak in the afternoon and one peak
during night. The peak during night is absent when test
persons were sleep deprived [40]. Ghrelin signaling seems to
have a strong influence on the circadian system. In cultured
mouse brain slices containing the SCN, ghrelin administra-
tion increases firing rate of individual SCN neurons. Ghrelin
receptor activation phase shifts SCN bioluminescence
rhythms in culture and resets locomotor activity rhythms in
intact mice [168]. Another agent connecting the circadian
system, sleep, and food uptake is the neuropeptide orexin
(or hypocretin/HCRT). Its two isoforms, orexin A and B,
are exclusively expressed in neurons of the lateral
hypothalamus. Both have potent wake-promoting effects
and at the same time stimulate food intake [126]. Orexin
release is circadian clock-controlled and Hert transcription
rhythms are abolished in Clock mutant mice [151]. The
SCN directly innervates orexigenic neurons [104]. Under
starvation conditions, the sleep duration of rats is
shortened [28], while sleep deprivation increases energy
uptake [119]. The orexin system constitutes a potential
candidate linking both processes.
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Similar to food uptake, energy metabolism is influenced
by the circadian system and sleep. Both sleep and clock
disruptions have strong effects on glucose and lipid
metabolism. Several clock gene mutant mouse strains show
phenotypes resembling aspects of the type Il diabetes
pathology. The overexpression of mutant Cry/ protein
results in polydipsia, polyuria, and hyperglycemia [109].
Clock mutant mice show hyperglycemia and hypoinsuline-
mia [151]. Moreover, Clock mutant and Bmall™™ mice
exhibit impaired glucose liberation from the liver. Under
HFD conditions, these mice show deficient insulin
regulation and beta cell in the pancreas
[125]. A liver-specific deletion of Bmall promotes
hypoglycemia and deregulated expression of genes
involved in glucose metabolism, such as phosphoenol-
pyruvate carboxykinase | (Pckl), glucokinase (Gek), and
glucose-6-phosphate translocase 1 (Goptl/Sic37a4) [79].
The fact that polymorphisms in the Clock gene are
associated with metabolic syndrome in man and that
several Bmall haplotypes in rats are connected to type Il
diabetes underlines the connection between circadian
genes and metabolism [130, 163]. CCG mutations can
also cause diabetic symptoms. Nocturnin is a clock-
controlled deadenylase involved in post-transcriptional
regulation of gene expression. Loss of Nocturnin

function

(Ccernl4) has strong effects on insulin sensitivity and
clucose tolerance [53]. Other examples are the orphan
nuclear receptor peroxisome proliferator-activated recep-
tor « (Ppara) and tumor necrosis factor alpha (TNF-x)
[54, 108]. Strikingly similar effects on metabolism have
been attributed to sleep (or the lack thereof). The global
trend towards shorter sleep times during the last decades
was suggested as one of the factors underlying the
alarming increase in the prevalence of the metabolic
syndrome and type Il diabetes [52, 106]. In line with this,
poor sleep quality is a risk factor for type II diabetes
[146]. Experimentally, restriction of sleep to 4 h per night
for less than a week increases blood glucose levels while
at the same time decreasing insulin sensitivity [139],
suggesting that a chronic reduction of sleep time raises
the risk of developing diabetes.

Other processes associated with clock gene function are
lipid metabolism in adipocytes and energy expenditure in
the muscles. Clock mutant mice suffer from hyperlipidemia
[151], and Bmall 1s necessary for adipocyte differentiation
from mouse embryonic fibroblast cultures. Restoration of
BMALl-expression in Bmall-deficient 3T3-L1 precursor
cells rescues adipogenesis. A treatment with PPARy ligands
reconstitutes the differentiation potential of these cells. In
addition, many other lipid metabolism-related genes, like
aP2, SREBP-lo, and perilipin, are effected by Bmall
restoration, mdicating that all these genes are direct targets
of Bmall [134]. Interestingly, Bmall™™ mice exhibit no
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alterations in body weight gain under a variety of diet
conditions. However, a possible obesity phenotype in these
animals might be confounded by their premature aging
[74]. The Bmall regulator ROR« promotes fatty acid
oxidation via its targets, caveolin-3 and CPT-1, lipogenesis,
and lipid storage in skeletal muscles [82], while Nocturnin-
deficient mice show resistance to diet-induced obesity [53].
Although the molecular mechanisms are less well under-
stood, several studies suggest that shortened sleep also has
a strong influence on lipid metabolism. A chronic lack of
sleep, either shortened sleep time or poor sleep quality, is a
strong risk factor for obesity and the development of the
metabolic syndrome [49, 69]. In a large longitudinal study
on nurses, Patel et al. [112] observed a cross-sectional U-
shaped association between sleep duration and body mass
index (BMI) development over several years. It was
suggested that sleep effects on lipid metabolism are
mediated by endocrine factors, such as cortisol, prolactin,
or insulin, as well as by sympathetic hyperactivity, which
had previously been linked to obesity and
resistance. In this manner, sleep restriction represents a

insulin
minor form of chronic stress, thus activating the
sympathicus and elevating epinephrine and norepinephrine
secretion from the adrenal medulla. In line with this,
sympathetic activation and catecholamine administration
inhibit leptin expression and secretion [137], increase free
fatty acid levels [66], and decrease insulin sensitivity [94].
Restricted sleep and sleep deprivation elevate glucocorti-
coid levels [85], further promoting visceral fat deposition
and insulin resistance [122].

Several endocrine factors have been suggested as
potential modulators of clock and sleep regulated
aspects of energy metabolism, including adrenal gluco-
corticoids, pituitary hormones, as well as the “night
hormone” melatonin. In most mammals and birds,
melatonin is produced in the pineal gland during the
night. The pineal receives direct and indirect signals
from the SCN and is, therefore, rhythmically locked to
the circadian master clock. Bi-directional links have
been described between melatonin production and the
regulation of glucose metabolism. In diabetic Goto-
Kakizaki (GK) rats, melatonin levels are significantly
reduced, while melatonin receptor expression in the
pancreas 1s increased [113]. In line with this, melatonin
signaling has a strong influence on insulin secretion from
the pancreatic beta cells [102].

Neuronal plasticity
Clock gene-sleep interactions have also been reported in

the context of neuronal plasticity and learning processes
[51]. These include both short and long-term memory
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(LTM) formation and recall. The latter is thought to depend
primarily on hippocampal long-term potentiation (LTP), a
form of synaptic plasticity [96]. LTP efficiency is time-of-
day dependent in the hippocampus and in the SCN [10, 22,
107]. Several studies show that circadian core clock genes
are involved in long-term memory formation. Mutations of
Npas2 cause impaired LTM in a fear conditioning paradigm
[50]. Several clock output factors also have a role in
memory formation. Inhibition of melatonin or deletion of
the gene encoding the SCN-secreted peptide vasoactive
intestinal polypeptide (VIP) disrupts memory formation
[23, 159]. These phenotypes are often connected to cAMP
signaling [158, 169]. MAPK phosphorylation and cAMP
and CREB phosphorylation are clock gene controlled in the
hippocampus. The nadir of these events corresponds to the
time when the strongest learning deficits are observed and
pharmacological inhibition of MAPK phosphorylation
during a learning task impairs memory formation [41].
Like memory formation, memory recall is under direct
influence of clock genes. erv]/_?*/* mice show normal
spatial memory and perform well in simple avoidance tasks.
They are, however, unable to efficiently learmn in a more
complex time-place context [153]. Similar findings were
reported from Per? mutant animals [160]. In a food-
rewarded hippocampus-dependent spatial memory task
(eight-arm radial maze) [129], Per!™" mice fail more
frequently than wild-type littermates [70]. Various publica-
tions show strong influences of sleep on memory. For
instance, individuals carrying homozygous Per3™ alleles
exhibit an interesting connection among their clock
genotype, sleep, and regional brain response patterns to an
exceutive task. In contrast to PER3Y? participants, sleep
deprivation correlates to changes in brain activity only in
PER3*” participants [154].

Although the influence of sleep on memory processes
has primarily been studied in a neurophysiological
rather than in a molecular context, there are several
common features of sleep and clock gene impact on
memory processes. The hypothesis that sleep has a
positive influence on memory formation is not new
[68]. Numerous studies provide evidence that both
declarative and procedural memory processes benefit
from proper sleep [95, 138]. Even very short naps of a
few minutes have been shown to improve declarative and
procedural memory formation and recall [77, 78, 99,
150]. Re-entrainment of sleep patterns can restore
cognitive functions either in transgenic mice carrying
the Huntington’s disease mutation [111] or in elderly
patients showing symptoms of dementia [121]. However,
until now, it is not fully clarified whether sleep has, like
clock gene function, an influence on the formation of LTP.
LTP can occur during REM sleep [15], and REM
deprivation impairs LTP in the rat hippocampus [123].

On the other hand, REM deprivation does not necessary
lead to disturbed memory formation [118]. Total sleep
deprivation can lead to problems in learning [32], but this
effect seems to be highly dependent on the subjects’
general cognitive capacity [33]. In animals, current sleep
deprivation protocols always include a certain stress
component, which in itself can interfere with memory
formation [63].

Immune functions

Similar to the brain, the immune system acts as a
bidirectional interface between the organism and its
environment. From a more general perspective, it also
functions in a very similar way in terms of detection of,
reaction to, and memorization of information. Sleep has a
strong influence on the immune system and vice versa [93].
Inflammation state affects sleep time and quality in animals
and humans [16, 30, 38], while sleep restriction leads to
higher mortality rates upon infection or sepsis [42, 43, 149].
Several immune parameters show circadian rhythmicity in
the blood of humans and other mammals [80]. Clock gene
expression is rhythmic in peripheral leukocytes [5].
Moreover, the secretion of important neuroendocrine
immune modulators is under circadian as well as under
sleep control. The activities of the hypothalamus pituitary
adrenal (HPA) axis and the sympathetic nervous system,
both stress activated, are influenced by the circadian system
and sleep. In arrthythmic Per2/Cryl double mutant mice, HPA
axis regulation is strongly affected. The responsiveness of
the adrenal to adrenocorticotropin stimulation and, thus, the
production of glucocorticoids are regulated by adrenocortical
circadian clocks [110]. Humans show elevated cortisol and
norepinephrine levels in response to sleep deprivation while
epinephrine levels become arrhythmic [80]. These effects
will likely give rise to changes observed in leukocyte
production. For leukocytes, strong diurnal rhythms have
been reported [14, 144], some of which seem to directly
respond to cortisol secretion during night time and to
epinephrine during the day [36, 37]. Moreover, sleep loss
affects levels of lymphocytes, monocytes, natural killer (NK)
cells, and T-cell proliferation in humans [12, 14, 35, 97]. Not
only the appearance of immune cells is circadian as well as
sleep-controlled but also the levels of several cytokines [93].
While interleukin (IL)-6 production seems to primarily
depend on clock function, rhythmic TNF-«, IL-10, and IL-
12 release from monocytes as well as [L-12 production
by dendritic cells depend critically on sleep—wake
conditions [80].

Circadian rhythm disruption has been shown to severely
weaken the immune system. Mice exposed to four
consecutive weekly 6-h phase advances of the light/dark
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schedule (a repetitive jet lag paradigm) show increased
mortality in response to lipopolysaccharide (LPS) injection
[20]. Likewise, the clock gene Per2 has been identified to
play a direct role in the activation of macrophages by
controlling the expression of interferon-y (IFN-y), a
macrophage activating factor, in the mouse spleen [7].
The same 1s true for the natural killer (NK) cell receptors
LY49C and NKG2D [91]. NK cell-specific knockdown of
Per2 leads to decreased protein levels of the mmune
factors granzyme B and perforin in rats, but not of [FN-y
[8]. Interestingly, LPS administration in Per2-deficient mice
provokes attenuated immune responses and yields
considerable higher survival rates than in wild-type
animals [88]. Bmall™™ mice show significantly reduced
levels of B cells in peripheral blood, spleen and bone marrow
[143]. PER3™” individuals show elevated TL-6 concentra-
tions compared to those with the PER" genotype [55]. As
for metabolism, melatonin secretion might be one of the
messengers linking sleep, circadian system, and immune
function. Chemical inhibition of melatonin secretion leads to
decreased antibody responses in mice. This effect is reversed
by melatonin administration [92]. Melatonin further pro-
motes the production of macrophage and granulocyte
progenitor cells and affects the production of cytokines,
such as IL-1, TL-2, IL-6, TL-12, TGF-f3, M-CSF, and TNF-¢
[141]. Vice versa, cytokines might have influence on clock
gene expression. TNF-a and IL-1f suppress the expression
of Perl-3 and Rev-erbav in fibroblasts and liver of mice [21]
in a p38 MAP kinase and calcium-dependent way [114].
This impairment of clock genes might lead to increased
fatigue seen after infections.

Both sleep deprivation and clock mutations deregu-
late the production of pro-inflammatory cytokines, and
low-grade systemic inflammation is a known patholog-
ical component of obesity and metabolic syndrome [64,
98]. Moreover, the production of IL-1 is increased in
humans with self-reported poor sleep quality. Remarkably,
this correlation of sleep debt and IL-1 levels does not
apply for obese humans (BMI>30) [115]. Elderly people
with metabolic syndrome and systemic inflammation
show a higher risk of cognitive impairment compared
with those without metabolic syndrome or with metabolic
syndrome but without inflammation [166]. This leads to
the suggestion of a direct connection between sleep,
circadian clock genes, metabolism, cognition, and the
immune system.

Conclusions
Although it seems clear that sleep and clock genes have
strong influences on various physiological processes, it is

often technically difficult to disentangle clock gene,

@ Springer

circadian rhythm, and sleep-specific influences because of
their mutual dependency and because only little so far is
known about the underlying mechanisms and circuits
(summarized m Fig. 2). While, in this paper, we have
independently evaluated the impact of both processes, it is
well conceivable that some of the physiological functions
of one might be mediated via regulation of the other, 1e.,
sleep regulates clocks regulate physiology or clocks
regulate sleep regulate physiology—and vice versa. While
tremendous progress has been made in deciphering the
molecular machinery of circadian clocks, little is still
known of how different tissue oscillators communicate
with each other to synchronize behavior and physiology.
Even less understood are the processes underlying sleep. In
fact, the tight interaction between clocks and sleep
processes and the surprisingly strong effect that clock gene
mutations have on both processes ¢ and s might provide
new inroads into mapping the sleep circuitry of the brain
and into identifying molecular substrates of sleep within
neuronal cells. With the advent of conditional genetics in
mice and functional brain imaging techniques in humans,
new tools have been developed to more specifically address
these i1ssues in the living organism. On the other hand,
improved experimental paradigms need to be developed to
resolve some of the conflicting findings from animal and
human studies. The pathological long-term effects of the
progressing sleeplessness and circadian desynchrony of
modern societies will be in the focus of future research. A
better understanding of the underlying mechanisms might
well become a key for advanced therapeutic strategies
against some of the most pressing health issues such as
diabetes and neuropsychiatric disorders.

Plasticity
Clock genes
& sleep
) ANS
Melatonin Melatonin
Corticoids Corticoids
Prolactin Food uptake
Cytokines A(gior:‘iir:les
Immunity Metabolism

Fig. 2 Interaction of sleep and clocks in the regulation of
cognitive and physiological processes. A reciprocal interactivity
exists between sleep and circadian clock function. Both neuronal
and blood-borne factors have been proposed to mediate clock—
sleep and sleep—physiology communication. On the other hand,
peripheral humoral factors have been shown to provide feedback
about the physiological state to sleep and clock regulatory
circuits. The local regulation of physiology by tissue clocks
may serve to integrate sleep state and timing signals at the
cellular level. For details, see text
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