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1. Summary 
 

Cytokinesis is a fundamental cellular process essential for cell proliferation of unicellular and 

multicellular organisms. The molecular pathways that regulate cytokinesis are highly complex and 

involve a large number of components that form elaborate interactive networks. The fungal 

septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression 

with the initiation of cytokinesis and control septum formation. Miss-regulation of the homologous 

Hippo pathway in animals results in excessive proliferation and formation of tumors, underscoring 

the conservation and importance of these kinase networks. While septum formation is essential for 

proper growth and differentiation of molds, the regulation of septation and the composition of the 

SIN in filamentous fungi are only beginning to be unraveled.  

The in silico analysis of the genome of the model mold Neurospora crassa identified homologs for 

most SIN network components. Analysis of these predicted SIN proteins allowed the characterization 

of the SIN kinase cascade consisting of CDC-7, SID-1 and DBF-2 together with their regulatory 

subunits CDC-14 and MOB-1, respectively. It was determined that SID-1 activates DBF-2 through 

hydrophobic motif phosphorylation and that SID-1-stimulated DBF-2 activity is further enhanced by 

CDC-7, providing the first biochemical evidence for a stepwise activation of the tripartite SIN kinase 

cascade in fungi. The entire SIN cascade localizes in a constitutive and cell cycle independent manner 

to spindle pole bodies and all SIN proteins accumulated at forming septa. Thus, in contrast to 

unicellular fungi the SIN localization and activity regulation is cell-cycle independent in syncytial 

ascomycetes. Moreover, the characterization of DBF-2 variants harbouring mutations in the two 

regulatory sites (Ser499 and Thr671) suggest that a dynamic phosphorylation/dephosphorylation 

cycle of Ser499 may be critical for N. crassa DBF-2 activity and function. These data have implications 

for NDR kinase activity regulation in general, because the sequential phosphorylation of both 

regulatory sites has been so far predicted for NDR kinases of higher eukaryotes. 

The Ste20-related kinase MST-1 was identified as SIN-associated kinase acting in parallel to SID-1. 

SID-1 and MST-1 were both regulated by the upstream SIN kinase CDC-7, yet in an opposite manner, 

suggesting that MST-1 is required for fine-tuning the SIN. Lifeact- and formin-GFP reporter constructs 

revealed the formation of aberrant cortical actomyosin rings in ∆mst-1, which resulted in miss-

positioned septa and irregular spirals. These defects phenocopy those of mutants defective in a NDR 

kinase pathway required for cell polarization called MOR, and it was determined that MST-1 also 

interacted with the central MOR kinases POD-6 and COT-1. MST-1 functions as promiscuous enzyme 

by activating the SIN and MOR effector kinases DBF-2 and COT-1. Moreover, crosstalk of the SIN and 

MOR pathways is also achieved by heterodimer formation between DBF-2 and COT-1. The multiple 

levels of cross-communication between the SIN and MOR identified in this study and other model 

systems such as S. pombe or D. melanogaster, suggest the possibility that the antagonistic 

interactions between homologous NDR kinase networks may be a general mechanism to coordinate 

these pathways in higher organisms.  

The annotation of multiple fungal genomes revealed the presence of several genes homologous to 

the bud site selection genes of budding yeast. Epistasis and biochemical analysis revealed that the 

MOR functions as negative regulator upstream of the BUD complex and COT-1, but not DBF-2 

phosphorylates BUD-3/BUD-4 landmark proteins. Thus, regulation of BUD-3 (and possibly also BUD-

4) by COT-1 may be one mechanism of the MOR pathway to inhibit septum formation in N. crassa. 
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2. Zusammenfassung 
 

Die Zellteilung/Zytokinese ist ein grundlegender zellulärer Prozess und essentiell für das Wachstum 

von einzelligen und mehrzelligen Organismen. Reguliert wird dieser Prozess durch komplexe 

molekulare Mechanismen sowie einer Vielzahl von interaktiven Netzwerken. In Pilzen koordiniert 

eine Kinase-Kaskade, das Septierungs-Initiierungs Netzwerk (SIN) das Fortschreiten des Zellzyklus mit 

dem Beginn der Zellteilung und kontrolliert die Septenbildung. Fehlregulation des homologen Hippo 

Netzwerks in Tieren führt zu Gewebewucherungen und Tumorbildung, was die konservierte 

Bedeutung dieser Regulationsnetzwerke in verschiedenen Organismen unterstreicht. Obwohl die 

Septenbildung essentiell für das Wachstum und die Differenzierung von Schimmelpilzen ist, bleibt die 

Frage wie die Septierung reguliert wird und aus welchen Komponenten sich das SIN Netzwerk in 

filamentösen Pilzen zusammensetzt bisher noch unbeantwortet.  

Mit Hilfe von in silico Analysen konnten homologe Proteine für fast alle SIN Netzwerk Komponenten 

im Modellorganismus Neurospora crassa identifiziert werden. Die Analyse dieser vorhergesagten SIN 

Komponenten ermöglichte die Charakterisierung der SIN-Kinase-Kaskade, bestehend aus CDC-7, SID-

1 und DBF-2 sowie den entsprechenden, regulatorischen Untereinheiten CDC-14 und MOB-1. Es 

konnte gezeigt werden, dass DBF-2 durch SID-1 am hydrophoben Motiv phosphoryliert und aktiviert 

wird und dass eine SID-1 abhängige Stimulation von DBF-2 durch Zugabe von CDC-7 weiter gesteigert 

wird. Diese Daten liefern den ersten biochemischen Nachweis für die schrittweise Aktivierung einer 

dreistufigen SIN-Kinase-Kaskade in Pilzen. Es wurde weiterhin gezeigt, dass die gesamte SIN Kaskade 

konstitutiv und Zellzyklus unabhängig an den Spindelpolkörpern akkumuliert und dass alle SIN 

Proteine an kontrahierenden Septen lokalisieren. Demzufolge ist im Gegensatz zu den einzelligen 

Pilzen die Lokalisation und Aktivität der SIN Komponenten in Synzytium-bildenden Ascomyzeten 

Zellzyklus unabhängig. Darüber hinaus deutet die Charakterisierung von DBF-2 Mutanten, in denen 

die beiden regulatorischen Aminosäuren (Ser499 and Thr671) mutiert sind, darauf hin, dass ein 

dynamischer Phosphorylierungs-/Dephosphorylierungszyklus des Ser499 entscheidend für die 

Aktivität und Funktion von DBF-2 in N. crassa ist. Diese Daten haben Einfluss auf das allgemeine 

Verständnis der Aktivierung von NDR Kinasen, denn bisher wurde für NDR Kinasen höherer 

Eukaryonten eine folgegebundene Phosphorylierung beider regulatorischer Reste angenommen.  

Der Ste20-verwandten Kinase MST-1 konnte eine Funktion als SIN-assoziierte Kinase, die parallel zu 

SID-1 agiert, zugeordnet werden. SID-1 und MST-1 werden auf entgegengesetzte Weise von der 

oberhalb agierenden SIN Kinase CDC-7 reguliert, was nahelegt, dass MST-1 für die Feinabstimmung 

des SIN erforderlich ist. Lifeact- und Formin-GFP Reporter Konstrukte zeigten, dass in der Δmst-1 

Mutante abnormale, kortikale Actomyosin-Ringe gebildet werden, was eine Fehlpositionierung der 

Septen und die Bildung von unregelmäßigen Spiralen zur Folge hat. Diese Defekte entsprechen 

partiell jenen der MOR Mutanten. Diese Mutanten weisen ein defektes NDR Kinase Netzwerk auf, 

welches für das polare Wachstum verantwortlich ist (MOR). Es stellte sich heraus, dass MST-1 mit 

den zentralen MOR Kinasen POD-6 und COT-1 interagiert und sowohl die SIN Effektor Kinase DBF-2 

als auch die MOR Effektor Kinase COT-1 aktiviert. Somit fungiert MST-1 als dual-spezifisches Enzym. 

Eine weitere Vernetzung beider Signalwege ist durch die Bildung von Heterodimeren gegeben.  

Die in dieser Studie identifizierten verschiedenen Ebenen der Vernetzung des SIN und MOR, sowie 

entsprechende Daten aus anderen Modellorganismen wie S. pombe und D. melanogaster, lassen 

vermuten, dass antagonistische Interaktionen zwischen homologen NDR Kinase Netzwerken ein 

genereller Mechanismus zur Koordination beider Signalwege darstellt und auch in höheren 

Organismen konserviert ist. 
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Durch die Annotierung mehrerer Pilzgenome wurden zahlreiche Gene mit einer Homologie zu den S. 

cerevisiae BUD Genen auch in filamentösen Pilzen identifiziert. Epistatische und biochemische 

Analysen ergaben, dass das MOR Netzwerk als negativer Regulator der Septenbildung oberhalb des 

BUD komplex fungiert und dass COT-1 im Gegensatz zu DBF-2, die beiden Septierungsmarkerproteine 

BUD-3/BUD-4 phosphoryliert. Folglich könnte die Regulation von BUD-3 (und eventuell auch BUD-4) 

durch COT-1 ein Mechanismus des MOR Netzwerks sein, um die Septenbildung in N. crassa zu 

inhibieren.  
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3. Introduction 
 

Cytokinesis is a fundamental cellular process essential for cell proliferation of unicellular and 

multicellular organisms. It is the final stage of the cell cycle, during which a cell is physically divided 

into two daughter cells that contain a full set of chromosomes and other cellular organelles. 

Research on eukaryotic cytokinesis using advantageous model systems like Drosophila melanogaster, 

Caenorhabditis elegans and yeasts are continuously enlarging our understanding of most aspects of 

the process. Cytokinesis is a crucial step in cell proliferation, and remarkably, it is also an important 

mechanism for developmental regulation in the generation of diverse cell types in eukaryotic 

organisms. In all eukaryotic species except plants, successful cytokinesis relies on the assembly and 

activation of an actomyosin-based contractile ring and membrane deposition/fusion in a spatially and 

temporally precise manner. The molecular pathways regulating cytokinesis are highly complex and 

involve a large number of components forming elaborate interactive networks. The complexity of 

this system, however, may have also provided a rich platform for evolutionary variation to achieve 

specific morphogenetic and developmental outcomes. As an irreversible event, defective cytokinesis 

can alter cell geometry or size, prevent the accurate transmission of the genetic material, causing 

polyploidy, which can affect the survival of unicellular species or favor cancer and tumor progression 

in animal species. Thus, spatial and temporal regulation of cytokinesis is important for cell fate 

establishment in several developmental contexts across kingdoms. 

 

3.1 The spatial cue - mechanisms specifying the position of the division plane 

Spatial regulatory pathways define the position of the division plane depending on the position of 

the nucleus at mitotic entry, the cell divisional history or the mitotic apparatus. Moreover, in many 

eukaryotic organisms, cytokinesis is strictly coordinated with mitotic progression in order to 

successfully fulfill chromosome segregation. The regulatory pathways that control the spatial aspects 

of division plane positioning are poorly conserved among different organisms (Laporte et al., 2010, 

Pollard & Wu, 2010, Balasubramanian et al., 2012). For instance, in animal cells, the division site is 

determined by the orientation of the mitotic spindle, while in the budding yeast Saccharomyces 

cerevisiae, the division site positioning mechanism is based on the cell divisional history. In contrast, 

the selection of the division site in the fission yeast Schizosaccharomyces pombe depends on the 

position of the nucleus and inhibitory signals generated from the cell ends.  
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In S. cerevisiae the division site of the previous cell cycle (bud scar) is used as a cue to determine the 

position for initiating growth and cytokinesis. Distinct landmark proteins mark the axial (Bud3p, 

Bud4p, Axl1p and Axl2p/Bud10p) and bipolar (Bud8p, Bud9p, Rax1p and Rax2p) division sites 

(Casamayor & Snyder, 2003, Balasubramanian et al., 2004, Oliferenko et al., 2009). The axial 

landmark Bud4p contains the conserved anillin-homology (AH) domain, which is located adjacent to 

the putative pleckstrin homology (PH) domain as in other anillin-related proteins such as Mid1 and 

Mid2 in S. pombe (Berlin et al., 2003, Tasto et al., 2003). The AH domain of Bud4p is important for its 

association with Bud3p and other components of the axial landmark (Kang et al., 2013). Thus, based 

on the cell divisional history, the bud-site-selection machinery predefines the position of the future 

division site and serves to recruit other components to the CAR. In contrast, CAR assembly in fission 

yeast relies on the position of anillin-containing nodes as precursors of the CAR (Wu et al., 2006, 

Vavylonis et al., 2008). Nodes distribution is restricted to the medial cortex by negative signals from 

the cell ends and a positive local influence provided by the nuclear position (Laporte et al., 2011, 

Martin, 2009, Moseley et al., 2009, Almonacid et al., 2009). Both, positive and negative regulatory 

mechanisms promote the specific association of the anillin-like protein Mid1 to the medial cortex, 

where it predefines the position of the division site and serves to recruit other components for CAR 

assembly, thereby establishing the division site (Bahler et al., 1998, Paoletti & Chang, 2000, Moseley 

et al., 2009, Almonacid et al., 2009).  

In animal cells, the orientation of the mitotic spindle dictates the position of the division site. In 

smaller cells, such as somatic cells, the midzone of the mitotic spindle signals to the cortex to 

promote cytokinetic furrow assembly (Cao & Wang, 1996, Bonaccorsi et al., 1998, Giansanti et al., 

2001). By contrast, in larger cells, such as in embryos, the cleavage furrow is positioned by astral 

microtubules, which originate from the spindle poles, and are thought to transport signals that 

promote cytokinetic furrow formation (Rappaport, 1961, Rappaport, 1985, Barr & Gruneberg, 2007). 

Moreover, microtubule asters have been shown to inhibit myosin recruitment at cell poles, 

promoting contractility at the cell equator (Werner et al., 2007). Moreover, recent studies suggest 

that anillin might act early in cytokinesis as scaffolding protein to recruit other components of the 

CAR to the division site (Oegema et al., 2000, Piekny & Glotzer, 2008, D'Avino, 2009, Zhang & 

Maddox, 2010). Thus, while using conserved components, different strategies of controlling division 

plane positioning have emerged to ensure the successful segregation of the genetic material in the 

two cellular compartments generated during cytokinesis. 



6 

 

Figure 1: Division site selection and contractile ring assembly in S. pombe, S. cerevisiae and mammals 

(modified from Pollard, 2010). 

 

3.2 Assembly and constriction of the contractile actomyosin ring (CAR) 

Animal and fungal cells use an actin/myosin-based contractile ring (CAR) placed at a chosen division 

site to accomplish cytokinesis (Figure 1). Although the majority of proteins that contribute to CAR 

assembly are evolutionary conserved from yeast to animals, their specific use during the 

establishment of the CAR is distinct (Park & Bi, 2007, Pollard & Wu, 2010). Research on fungal model 

organisms has led to the functional characterization of many proteins involved in CAR assembly. Both 

yeasts establish a CAR during mitosis and its assembly is well understood in the fission yeast S. 

pombe and occurs in the medial cortex by the ordered recruitment of the anillin-like protein Mid1 

and other ring components (Laporte et al., 2011, Wu et al., 2003, Wu et al., 2006, Vavylonis et al., 

2008, Pollard & Wu, 2010). Mid1 accumulates prior to spindle pole body separation at the future 

division site, forming a broad band of nodes that defines the site for recruitment of ring components. 

Subsequently, most ring components arrive at the division site within minutes of each other. Type II 

myosin Myo2 is anchored at the medial cortex through its interaction with Mid1, which is followed 

by cortical accumulation of the two myosin light chains Cdc4 and Rlc1. Next, the IQGAP protein Rng2 

and the F-BAR protein Cdc15 join the broad band of nodes. Cdc15 interacts through its F-BAR domain 

with the formin Cdc12 and type I myosin Myo1, thereby coordinating medial F-actin nucleation 

(Carnahan & Gould, 2003, Roberts-Galbraith et al., 2009, Laporte et al., 2011, Padmanabhan et al., 

2011).  

The basic composition of the S. cerevisiae actomyosin ring is very similar but the order of assembly of 

the ring components is different and CAR components accumulate over long time periods (Luo et al., 
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2004, Shannon & Li, 2000, Wloka & Bi, 2012, Balasubramanian et al., 2004, Bi et al., 1998, Lippincott 

& Li, 1998). In budding yeast the CAR assembles at the bud neck (the constriction site between 

mother and daughter cells) and depends on a family of small GTPases called the septins (Gladfelter et 

al., 2001, McMurray & Thorner, 2009). In contrast, fission yeast septins localize to the division plane 

only after the CAR has formed. They serve as positional markers to target secretory vesicles for the 

dissolution of the primary septum (Longtine et al., 1996, Berlin et al., 2003, Tasto et al., 2003, An et 

al., 2004, Martin-Cuadrado et al., 2005). The second anillin homologue Mid2 in fission yeast, 

organizes the septin ring during late mitosis and thereby promotes cell separation as the final step of 

cytokinesis (Berlin et al., 2003, Tasto et al., 2003, An et al., 2004).  

Less is known about CAR assembly in animal cells, but the overall impression is that the strategy is 

similar to fission yeast. Myosin-II concentrates in cortical node-like patches, followed by formin 

assembling actin filaments around the equator (Zhou & Wang, 2008, Noguchi & Mabuchi, 2001). The 

Rho-family GTPase RhoA plays a central role in the CAR assembly in animal cells. The RhoGEF Ect2 

activates RhoA which in turn activates mDia formins and ROCK and Citron kinases, promoting F-actin 

polymerization and myosin II contractility at the equatorial cortex, leading to CAR assembly and 

constriction (Somers & Saint, 2003, Nishimura & Yonemura, 2006). Furthermore, the RacGAP 

stabilizes the contractile ring by binding to anillin, which also interacts with other components of the 

CAR, myosin-II, F-actin and septins, thereby acting as scaffold for RhoA signalling and CAR assembly 

(Gregory et al., 2008, Field & Alberts, 1995, Straight et al., 2005, Oegema et al., 2000). This dual 

function of anillin is very reminiscent of S. pombe Mid1, which takes part in division-plane signalling 

and scaffolding CAR components during assembly. 

 

3.3 The temporal cue - the SIN/MEN network coordinates mitosis and cytokinesis 

While the position of the anillin-related proteins (Mid1 nodes and cortical Bud4 landmark complexes) 

provides the spatial cues for cytokinesis in fission and budding yeast, respectively, the temporal 

coordination of mitosis and cytokinesis is mediated by a signalling cascade known as the septation 

initiation network (SIN) (Gould & Simanis, 1997, Simanis, 2003, Wolfe & Gould, 2005). This network is 

analogous to the mitotic exit network (MEN) of budding yeast with two differences; first, the MEN 

lacks a homolog of the fission yeast Ste20-related kinase Sid1, thus the effector kinase Dbf2p is 

directly phosphorylated by Cdc15p (Mah et al., 2001). Second, budding yeast MEN mutants arrest 

late in the mitotic cell cycle, while the fission yeast SIN is not essential for mitotic exit, and SIN 

mutants generate one of two phenotypes: multinucleate cells or multiseptated cells that fail in cell 

cleavage. The former phenotype is caused by SIN inactivation; the latter phenotype results from SIN 

hyperactivity (Minet et al., 1979, Fankhauser & Simanis, 1994, Ohkura et al., 1995, Schmidt et al., 
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1997). Both scenarios uncouple cell division from nuclear division; thus, the SIN coordinates 

cytokinesis with other cell cycle phases. Also mammals utilize a highly conserved signalling module 

(Hippo) analogous to the central components of the yeast SIN/MEN, but the regulatory mechanisms 

and the involvement of the Hippo core cassette in mitotic exit, cytokinesis and morphogenesis are 

not yet fully understood. 

 

3.3.1 Composition and regulation of the SIN 

The SIN consists of a cascade of three kinases that associate with spindle pole bodies (SPB; the yeast 

counterpart of the centrosome), via the scaffolding proteins Sid4 and Cdc11 (Krapp & Simanis, 2008). 

The central sensor of the SIN is the GTPase Spg1, which is activated by the kinase Plo1 that 

phosphorylates and thereby likely inhibits the bipartite GTPase activating protein (GAP) Cdc16–Byr4 

at the end of mitosis (Tanaka et al., 2001, Krapp & Simanis, 2008). Spg1 activation triggers the 

localization of the Ste20-related kinase Cdc7 (homologue of budding yeast Cdc15p), resulting in the 

assembly and activation of the downstream kinases Sid1 and Sid2 and their respective regulatory 

subunits Cdc14 (no relation to its S. cerevisiae namesake) and Mob1 at the SPB. Active Sid2 (the 

homologue of budding yeast Dbf2p) phosphorylates and activates the phosphatase Clp1, thereby 

promoting mitotic exit and cytokinesis by counteracting the function of Cdk1 (cyclin dependent 

kinase 1) (Reynolds & Ohkura, 2003, Chen et al., 2008).  

So far, no biochemical evidence for direct targets of the Ste20-related kinases Cdc7 and Sid1 are 

provided, although by analogy to the S. cerevisiae homologs, the NDR (nuclear Dbf2-related) kinase 

Sid2 is a potential candidate. NDR kinases represent a subcategory of the AGC group of protein 

kinases, and possess the typical features of this kinase family; the activation segment (AS) and the C-

terminal hydrophobic motif phosphorylation site (HM), both essential for catalytic activity (Millward 

et al., 1999). NDR kinases are regulated by autophosphorylation within the AS, resulting in basal 

kinase activity (Bichsel et al., 2004, Tamaskovic et al., 2003). For full catalytic activity, a second 

phosphorylation event within the HM is required, which is targeted by an upstream kinase. In 

budding yeast, Cdc15p’s direct phosphorylation of Dbf2p’s C-terminal HM site is a key part of MEN 

activation (Hergovich & Hemmings, 2009, Emoto, 2011). 
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Figure 2: Highly conserved signalling components of the septation initiation network (SIN) in S. pombe and 

the homologous mitotic exit network (MEN) in S. cerevisiae. For details see text. 

 

3.3.2 Functions of the SIN in cytokinesis 

In addition to the importance of the SIN for providing the temporal cue for CAR constriction, the SIN 

is also essential for CAR assembly. In the absence of Mid1, fission yeast cells can assemble a 

functional CAR, though inefficiently and at random locations (Sohrmann et al., 1996, Chang & Nurse, 

1996). In this case, CAR assembly is strictly dependent on the activity of the SIN, suggesting that both 

pathways cooperate in parallel to regulate CAR assembly (Balasubramanian et al., 1998, Wu et al., 

2003). mid1 mutants assemble ectopic rings in anaphase when the SIN becomes active, implying that 

the major function of Mid1 is to direct CAR assembly to the correct location (Chang & Nurse, 1996, 

Sohrmann et al., 1996). In contrast SIN-defective mutants form a CAR in early mitosis, which 

dissolves again in anaphase, suggesting that SIN signalling is required for CAR maintenance/assembly 

in late mitosis (Balasubramanian et al., 1998). Disrupting both mid1 and the SIN blocks CAR assembly 

completely, indicating that each pathway makes important contributions to CAR assembly (Hachet & 

Simanis, 2008, Huang et al., 2008).  

The only SIN component that localizes to the SPBs and the CAR is the terminal SIN kinase Sid2. One 

reported Sid2 target at the CAR is the Cdc14-like phosphatase Clp1 (Chen et al., 2008). In addition to 

the essential function of Clp1 in regulating cell cycle progression by inhibition of mitotic CDK activity , 

Clp1-dependent dephosphorylation of the S. pombe PCH-family protein Cdc15 is essential for CAR 

assembly (Clifford et al., 2008, Roberts-Galbraith et al., 2010, Trautmann et al., 2001). The budding 

yeast MEN is also required for CAR constriction, yet not its assembly (Vallen et al., 2000, Lippincott et 
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al., 2001). Several studies suggested that the MEN promotes cytokinesis by influencing multiple 

pathways involved in CAR constriction and septum formation. For instance, the MEN is involved in 

targeting the Chitin synthase Chs2p to the bud neck (Meitinger et al., 2010) and also directly 

regulates the late cytokinetic components Hof1p/Cyk2p and Inn1p (both are PCH proteins and 

homologs of S. pombe Cdc15; Figure 2; (Sanchez-Diaz et al., 2008, Nishihama et al., 2009, Meitinger 

et al., 2010, Meitinger et al., 2011). 

 

3.3.3 Crosstalk between the SIN and MOR NDR kinase pathways  

Another fundamental mechanism by which the SIN promotes cytokinesis is the inhibition of a 

competing polarity pathway called the MOR (morphogenesis-related NDR kinase network), which is 

required for initiation of polarized growth following completion of cytokinesis (Gupta & McCollum, 

2011, Ray et al., 2010). Mutants in any of the MOR components fail to grow in a polarized manner 

resulting in a round morphology of the cells. The MOR signalling pathway represents the second NDR 

kinase network with an analogous organization similar to the SIN. The MOR includes the NDR kinase 

Orb6 with its binding partner Mob2 and its upstream activator the Ste20-related kinase Nak1 (Figure 

3; (Verde et al., 1998, Hou et al., 2003, Kanai et al., 2005, Kume et al., 2007, Leonhard & Nurse, 2005, 

Huang et al., 2003). The scaffolding protein Mor2 is thought to promote the activation of Orb6 by 

Nak1 (Hirata et al., 2002). Also, Pmo25 has been identified as a binding partner of Nak1 and is 

essential for the activities of both kinases in the pathway (Kanai et al., 2005). In a recent study Lrp1 

(budding yeast Sog2 homolog) was also identified as a MOR component and suggested to form a 

complex with Nak1 and to act upstream of Orb6 (Kume et al., 2013).  

Mutual antagonism between the two NDR kinase pathways, the SIN and MOR, is required to 

coordinate cell growth and division. To promote polarized growth, actin is confined to the cell ends 

where it is required for cell wall deposition. As cells enter mitosis, actin relocalizes to site of cell 

division to form the CAR (Marks et al., 1986). Since, both processes involve restructuring of the actin 

cytoskeleton, coordination is presumably important to keep competing actin polarity programs from 

interfering with each other. This view is supported by a recent study, which indicated that 

phosphorylation of Nak1 by Sid2 (SIN-associated NDR kinase) promotes SIN activation and inhibits 

MOR-mediated polarized growth by blocking interaction of Nak1 with the scaffold protein Mor2 

(Gupta et al., 2013). In addition, it has been reported that S. cerevisiae MEN and RAM networks 

(Regulation of Ace2p and morphogenesis; homologous to S. pombe MOR) function together to 

regulate the Ace2 transcription factor during cell separation (McCollum & Gould, 2001, Maerz & 

Seiler, 2010, Weiss et al., 2002).  



11 

 

Figure 3: Highly conserved signalling components of the morphogenesis-related NDR kinase network (MOR) 

in S. pombe. For details see text. 

 

3.4 Septation in filamentous fungi 

Filamentous fungi represent the vast majority of the fungal kingdom. However, despite the 

importance of septum formation for growth and differentiation of molds, our understanding of 

septum formation and its regulation in molds is highly fragmentary. In contrast to unicellular yeast, 

mitosis is not evidently linked with cytokinesis/septation in filamentous fungi, resulting in the 

formation of multinuclear hyphal compartments (Harris, 2001, Gladfelter, 2006). In conformity with 

both yeasts, the CAR presumably guides deposition of the septal wall material, but unlike in yeasts, 

the septum is subsequently not degraded and cells remain attached. Furthermore, in most 

filamentous fungi, a small pore is retained to enable intercellular communication and transport of 

cytoplasm and organelles between adjacent hyphal compartments (Gull, 1978, Madhani & Fink, 

1998, Pringle & Taylor, 2002). The controlled partitioning of hyphal units through septal cross-walls in 

a multicellular context is the basis for the morphological complexity achieved by filamentous fungi. 

Moreover, septation in molds is required for certain developmental processes, such as conidiation 

(asexual spore production) and protoperithecial (female sexual structure) development (Gull, 1978). 

 

3.4.1 Division site selection and CAR assembly in filamentous fungi  

At the beginning of this thesis work, not much was known about how filamentous fungi select the 

division site and control assembly of the CAR. The annotation of multiple fungal genomes revealed 

the presence of several genes homologous to the S. cerevisiae BUD genes. The functional analysis of 

these BUD genes in various filamentous fungi like Ashbya gossypii (AgBud3), Candida albicans (Int1) 
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and Aspergillus nidulans (Bud3 and Bud4) indicate a general function of anillin-related proteins 

during septum formation (Gale et al., 2001, Walther & Wendland, 2003, Kaufmann & Philippsen, 

2009, Si et al., 2010). However, considerable differences exist in the specific use of BUD proteins 

during the establishment of the future septation site and CAR assembly in organisms from different 

ascomycete clades.  

The N. crassa proteins BUD-3 and BUD-4 are essential for septum formation. BUD-4 appears prior to 

the formation of a detectable septum by forming motile cortical dots in internal regions of the hypha 

that subsequently coalesce into a cortical ring. In bud-3 and bud-4 mutants no CAR is formed, and 

consequently hypha lack septa (Justa-Schuch et al., 2010). Septum formation in N. crassa and A. 

nidulans is at least partially controlled by the small Rho-type GTPases Rho4 which is activated by its 

specific guanine nucleotide exchange factor (GEF) Bud3 (Rasmussen & Glass, 2005, Rasmussen & 

Glass, 2007, Justa-Schuch et al., 2010, Si et al., 2010). In A. nidulans and N. crassa, AnBud3/BUD-3 

and AnRho4/BUD-4 were recently defined as essential components of a GTPase module that direct 

CAR assembly during septation (Si et al., 2010, Justa-Schuch et al., 2010). Coinciding, the localization 

of BUD-3 prior to septum formation depends on the presence of BUD-4 and both proteins recruit 

RHO-4 to the division site. Deletion of either BUD-3 or RHO-4 result in aseptated strains indicating 

the indispensable function of both proteins during septation (Justa-Schuch et al., 2010, Seiler & 

Justa-Schuch, 2010).  

 

3.4.2 The SIN and MOR pathways in filamentous fungi 

Intriguingly, recent studies confirmed that most components of the fission yeast SIN are also present 

in the filamentous fungi A. nidulans and N. crassa (Figure 4). Deletion of any positive network 

component results in aseptate strains, indicating that SIN function is essential for septum formation 

(Bruno et al., 2001, Harris, 2001, Harris et al., 1994, Kim et al., 2009, Dvash et al., 2010, Maerz et al., 

2009). A. nidulans SidB and its co-activator MobA (orthologues of S. pombe Sid2 and Mob1) localize 

to the SPB and the forming septum and function upstream of CAR assembly in response to unknown 

mitotic signals (Bruno et al., 2001, Kim et al., 2006). Furthermore, AnBud3 is not recruited to 

incipient septation sites in conditional SepH1 (homolog to S. pombe Cdc7) mutants at restrictive 

temperature, suggesting a SIN function upstream of the AnBud3–AnRho4 module (Si et al., 2010). 

However, despite the essential role of the SIN in CAR assembly and septum formation, no function in 

mitosis is described for the SIN in A. nidulans (Bruno et al., 2001, Kim et al., 2006, Kim et al., 2009).  

In addition to these positive regulators of septum formation, several negative regulators were 

identified in filamentous fungi. Most notably are N. crassa POD-6, COT-1 and MOB-2A/B (orthologues 

of S. pombe Nak1, Orb6 and Mob2), the central elements of the N. crassa MOR network, which 

controls maintenance of cell polarity (Yarden et al., 1992, Seiler et al., 2006, Maerz et al., 2009). 
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Deletion of any negative MOR component results not only in loss of polarity, but also in 

hyperseptation, indicating that the MOR is involved in septum formation and antagonizes SIN 

function (Seiler & Plamann, 2003). In addition to the pathway-specific accumulation of MOR proteins 

at the site of polarization, all MOR components localize to forming septa, further supporting MOR 

function during septation (Vogt & Seiler, 2008, Richthammer et al., 2012, Maerz et al., 2012, 

Dettmann et al., 2012). 

 

3.5 Aims of this work 

Proper cell division is essential for growth and development of uni- and multicellular organisms. In 

unicellular yeasts, spatial regulatory pathways define the position of the division plane, while the 

temporal coordination of mitosis and cytokinesis is mediated by the SIN. A mechanistic picture how 

SIN proteins transmit signals through the cascade to trigger CAR assembly and constriction is only 

beginning to be understood. Moreover, our understanding of septum formation and its regulation in 

filamentous fungi is highly fragmentary. However, the functional connection between the competing 

SIN and MOR pathways and the mechanisms that define septum placement are poorly understood. 

Thus, the aim of this study was to establish a relationship between both NDR kinase pathways and 

the essential landmark proteins BUD-3 and BUD-4. This aim further implied the characterization of 

the SIN network and the analysis of key regulatory phosphorylation sites of the NDR kinase DBF-2. 
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Figure 4: Comparison of highly conserved NDR signalling pathways in S. pombe, N. crassa and mammals. D. 

melanogaster orthologous Hippo core components are shown in brackets. See text for details. 
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4. Materials and Methods 

 

4.1 Media and growth conditions 

Standard chemicals and culture media components used in this study were obtained from AppliChem 

GmbH, Carl Roth GmbH & Co. KG, Invitrogen GmbH and Sigma-Aldrich Chemie GmbH (all Germany). 

General handling of growth and genetic manipulation of Neurospora crassa was accomplished as 

described in (Davis, 1970) or in protocols provided by the Fungal Genetics Stock Center at 

http://www.fgsc.net. 

Escherichia coli DH5α cells were grown on solid (with 1.5% agar) or in liquid LB medium (1% NaCl, 

0.5% yeast extract, 1% tryptone) modified from (Bertani, 1951). For selection media 100 μg/ml 

ampicillin or 50 μg/ml kanamycin were added (all from Sigma-Aldrich, Taufkirchen, Germany). 

Cultures were incubated at 37°C. 

Saccharomyces cerevisiae was grown at 30°C under non-selective conditions in Yeast Extract Peptone 

Dextrose (YEPD) medium (2% peptone, 1% yeast extract, 2% glucose, for solid medium 2% agar was 

added) or in Synthetic Defined (SD) minimal medium lacking several amino acids for selection of 

plasmid expression or interaction in the yeast two-hybrid assay (0.17% yeast nitrogen base (w/o 

amino acids, w/o ammonium sulphate), 0.5% ammonium sulphate, 10mg L-adenine sulphate, 10mg 

L-argenine, 10mg L-histidine, 15mg L-isoleucine, 50mg L-leucine, 15mg L-lysine, 10mg L-methionine, 

25mg L-phenylalanine, 100mg L-threonine, 10mg L-tryptophane, 15mg L-tyrosine, 10mg uracil and 

75mg L-valine, 2% glucose, 2% agar)(see also section 4.6). 

Neurospora crassa strains were cultured on solid (with 2% (w/v) agar) or in liquid Vogel ’s Minimal 

Medium (VMM) (Vogel, 1956, Vogel, 1964) with 2% (w/v) sucrose. Crosses were made on solid 

medium containing 2% corn meal agar (Sigma, St. Louis, USA) and 0.1% glucose (w/v) to induce 

protoperithecia formation in the female parent before inoculation with the male parent. For 

auxotrophic strains, culture media were supplemented with 150 μg/ml histidine, and for selection of 

resistant strains, 200 μg/ml hygromycin B (InvivoGen, USA), 15 μg/ml nourseothricin (Werner 

BioAgents, Jena, D) and 200 μg/ml glufosinate-ammonium (Sigma-Aldrich, Taufkirchen, Germany) 

were used. Cultures were grown at 37°C, whereas temperature sensitive strains were usually 

propagated at 20-25°C unless stated otherwise. 
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4.2 Plasmid construction 

4.2.1 General procedure 

DNA sequences of predicted genes were obtained from the Broad Neurospora crassa Database 

www.broadinstitute.org. Cloning procedures were designed and documented using the DNASTAR® 

SeqBuilder (Version 8.0.3(1); DNASTAR, Inc., USA). DNA fragments amplified by polymerase chain 

reaction (PCR) were first subcloned into vector pJet1.2 blunt of the CloneJET™ PCR Cloning Kit 

(Fermentas GmbH, Germany). Accuracy of resulting plasmids was ensured by restriction digests and 

complete sequencing of inserts. After ligation of inserts into the respective end vector, plasmids 

again were checked by restriction digests and inserts were reconfirmed by sequencing.  

Primers and plasmids used in this study are listed in Table 1 and Table 2, respectively. 

Table 1: Primers used in this study. Restriction enzyme recognition sites are bold and underlined, 

mismatched nucleotides for insertion of mutations are depicted in lower, italic letters. 

Primer name Sequence 5‘- 3‘ 

Point mutation constructs: 
 

YH-DBF2-T2E-forw GAG CTT GTT TGT CGG ATT Cga gTT CCG TCA TCG CAA GCC GG 

YH-DBF2-T2E-rev CCG GCT TGC GAT GAC GGA Act cGA ATC CGA CAA ACA AGC TC 

YH-DBF2-T2A-forw GAG CTT GTT TGT CGG ATT Cgc cTT CCG TCA TCG CAA GCC GG 

YH-DBF2-T2A-rev CCG GCT TGC GAT GAC GGA Agg cGA ATC CGA CAA ACA AGC TC 

YH-DBF2-S2E-forw GAT ACC AAC TAC GCC AAG gag ATT GTT GGA TCT CCA GAC TAC 

YH-DBF2-S2E-rev GTA GTC TGG AGA TCC AAC AAT ctc CTT GGC GTA GTT GGT ATC 

YH-DBF2-S2A-forw GGA TAC CAA CTA CGC CAA Ggc gAT TGT TGG ATC TCC AGA CTA C 

YH-DBF2-S2A-rev GTA GTC TGG AGA TCC AAC AAT cgc CTT GGC GTA GTT GGT ATC C 

YH-DBF2-D2A-forw CTG GGT TAC ATT CAT CGC gca CTC AAG CCG GAG AAC TTC C 

YH-DBF2-D2A-rev GGA AGT TCT CCG GCT TGA Gtg cGC GAT GAA TGT AAC CCA G 

YH-CDC7-D2A-forw ATG GCA CCG TCA AGT TAG CAg ccT TTG GCG TGT CAA CCA GCA C 

YH-CDC7-D2A-rev GTG CTG GTT GAC ACG CCA AAg gcT GCT AAC TTG ACG GTG CCA T 

YH-BUD3-S2A-f GGC CAT AAG CGC TCA CAA gcc GCG TCC CCC GTC AAG TTG 

YH-BUD3-S2A-rev CAA CTT GAC GGG GGA CGC ggc TTG TGA GCG CTT ATG GCC 

YH-BUD3-S2E-f GGC CAT AAG CGC TCA CAA gag GCG TCC CCC GTC AAG TTG 
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Primer name Sequence 5‘- 3‘ 

YH-BUD3-S2E-rev CAA CTT GAC GGG GGA CGC ctc TTG TGA GCG CTT ATG GCC 

YH-BUD4-S2A-1-f GGT GCA TCC CCT ccg CCT TGC CAA GGG CAA CAC TAT GCC 

YH-BUD4-S2A-1-rev GGC ATA GTG TTG CCC TTg gcA AGG CGG AGG GGA TGC ACC 

YH-BUD4-S2A-2-f GTG GCC ATG GGA GGA GCC AAg ccA GCA CCA GCA TCC CCG TC 

YH-BUD4-S2A-2-rev GAC GGG GAT GCT GGT GCT ggc TTG GCT CCT CCC ATG GCC AC 

YH-BUD4-S2A-3-f CGC CAC CGT AGC CGT ATC gcg AAA GAC ATG GAG CCA GAA C 

YH-BUD4-S2A-3-rev GTT CTG GCT CCA TGT CTT Tcg cGA TAC GGC TAC GGT GGC G 

YH-BUD4-S2A-4-f GTA CAC TCG AGA ACG AAG gcc AGT CTT GTA TTA ATT AAC 

YH-BUD4-S2A-4-rev GTT AAT TAA TAC AAG ACT ggc CTT CGT TCT CGA GTG TAC 

3xHA-tag constructs:  

YH-4096-SpeI-ATG act agt ATG GCC GAC GAA GGA GTC G 

YH-4096-PacI-Stopp tta att aaC TAA GAT CCC GCA ACG GGT CCC 

3xmyc-tag constructs:  

YH-DBF2-AscI-ATG ggc gcg ccg ATG TCT AGC TAC 

YH-DBF2-PacI-Stopp GGt taa tta aCT ACA GCA TCG TAC C 

GFP-fusion constructs: 
 

YH-DBF2-AscI-ATG ggc gcg ccg ATG TCT AGC TAC 

YH-DBF2-PacI-Stopp GGt taa tta aCT ACA GCA TCG TAC C 

YH-4096-SpeI-ATG act agt ATG GCC GAC GAA GGA GTC G 

YH-4096-PacI-Stopp tta att aaA GAT CCC GCA ACG GGT CCC 

YH-Pod6-ATG-SpeI act agt ATG GCG ACC CTA TCG 

YH-Pod6-Stop-PacI tta att aaG ACA CTC GTG TCC AC 

YH-6636-SpeI-ATG act agt ATG GAG TCC CTA CTA TC 

YH-6636-PacI-Stopp tta att aaG CTC AAC ACA CCC CC 

YH-1335-XbaI-ATG tct aga ATG GCG CCG AAC C 

YH-1335-PacI-Stopp tta att aaC GAC CAC CTC ATG TCC G 

YH-BUD3-Helix-ATG act agt CCC ACT TGG ACT TTG C 
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Primer name Sequence 5‘- 3‘ 

YH-BUD3-Helix-Stopp tta att aag cCT TTA CGA GCC TG 

Endogenous-GFP-fusion 
constructs: 

 

DJ_DBF2_ATG_PacI_f  tta att aaA TGT CTA GCT ACT TGA CAA AC 

DJ_DBF2_Stopp_PacI_r tta att aaC AGC ATC GTA CCA AAA TTG TTG 

DJ_3UTR_DBF2_KpnI_f  ggt acc AGC CAG CAC CGG CAA CAA C 

DJ_3UTR_DBF2_KpnI_r ggt acc GCT GGT GTG GTG TAA GAG C 

 

Table 2: Plasmids used in this study. Construction intermediates (DNA fragments inserted into the pJet1.2 

blunt for subcloning) are not listed. 

Plasmid Short description Source 

pJet1.2 blunt  Cloning vector for subcloning of PCR fragments Fermentas GmbH, 
Germany 

pGBKT7 Yeast two-hybrid vector for expression of N-
terminal GAL4 DNA binding domain fusion 
proteins under control of truncated PADH1; 
carrying TRP1 

Clontech, USA 

pGBKT7-53 pGBKT7; murine p53aa72-390 cDNA Clontech, USA 

pGBKT7-Lam pGBKT7; human laminin C cDNA Clontech, USA 

pGBKT7-9071 pGBKT7; NCU09071 (dbf-2) cDNA kind gift of S. Maerz 

pGBKT7-7296 pGBKT7; NCU07296 (cot-1) cDNA (Maerz et al., 2009) 

pGBKT7-7296-short pGBKT7; NCU07296-short cDNA (Maerz et al., 2009) 

pGBKT7-7296-long pGBKT7; NCU07296-long cDNA (Maerz et al., 2009) 

pGBKT7-0772 pGBKT7; NCU00772 cDNA Kind gift of A. Dettman
n 

pGADT7 Yeast two-hybrid vector for expression of N-
terminal GAL4 activation domain fusion 
proteins under control of full-length PADH1; 
carrying LEU2 

Clontech, USA 

pGADT7-T pGADT7; SV40 large T-antigenaa86-708 cDNA Clontech, USA 

pGADT7-9071 pGADT7; NCU09071 (dbf-2) cDNA kind gift of S. Maerz 

pGADT7-11235 pGADT7; NCU11235 (pod-6) cDNA (Maerz et al., 2009) 

pGADT7-7296 pGADT7; NCU07296 (cot-1) cDNA (Maerz et al., 2009) 

pGADT7-7296-short pGADT7; NCU07296-short cDNA (Maerz et al., 2009) 

pGADT7-7296-long pGADT7; NCU07296-long cDNA (Maerz et al., 2009) 

pGADT7-0772 pGADT7; NCU00772 cDNA Kind gift of A. 
Dettmann 

pFLAGN1 Fungal expression vector for N-terminal 3xFLAG 
fusion proteins under control of Pccg-1; target to 
his-3 locus 

(Kawabata & and 
Inoue, 2007) 

pFLAGN1-1605 pFLAGN1; NCU01605 (mob-1) kind gift of S. Maerz 
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Plasmid Short description Source 

 

pHAN1 

Fungal expression vector for N-terminal HA 
fusion proteins under control of Pccg-1; target to 
his-3 locus 

(Kawabata & and 
Inoue, 2007) 

pHAN1-0772 pHAN1; NCU00772 (mst-1) kind gift of A. 
Dettmann 

pHAN1-4096 pHAN1; NCU04096 (sid-1) this study 

pCCG::N-3xMyc Fungal expression vector for N-terminal 3xmyc 
fusion proteins under control of Pccg-1; target to 
his-3 locus 

(Honda & Selker, 2009) 

pCCG::N-3xMyc-9071 pCCG::N-3xMyc, NCU09071 (dbf-2) this study 

pCCG::N-3xMyc-9071 

S499A 
pCCG::N-3xMyc, NCU09071 S499A this study 

pCCG::N-3xMyc-9071 
S499E 

pCCG::N-3xMyc, NCU09071 S499E this study 

pCCG::N-3xMyc-9071 
T671A 

pCCG::N-3xMyc, NCU09071 T671A this study 

pCCG::N-3xMyc-9071 
T671E 

pCCG::N-3xMyc, NCU09071 T671E this study 

pCCG::N-3xMyc-9071 
S499A T671A 

pCCG::N-3xMyc, NCU09071 S499A T671A this study 

pCCG::N-3xMyc-9071 
S499A T671E 

pCCG::N-3xMyc, NCU09071 S499A T671E this study 

pCCG::N-3xMyc-9071 
S499E T671A  

pCCG::N-3xMyc, NCU09071 S499E T671A this study 

pCCG::N-3xMyc-9071 
S499E T671E 

pCCG::N-3xMyc, NCU09071 S499E T671E this study 

pCCG::N-3xMyc-9071 
D422A 

pCCG::N-3xMyc, NCU09071 D422A this study 

pCCG::N-GFP Fungal expression vector for N-terminal GFP 
fusion proteins under control of Pccg-1; target to 
his-3 locus 

(Honda & Selker, 2009) 

pCCG::N-GFP-9071 pCCG::N-GFP, NCU09071 (dbf-2) this study 

pCCG::N-GFP-9071 T671E pCCG::N-GFP, NCU09071 T671E this study 

pCCG::N-GFP-9071 
D422A 

pCCG::N-GFP, NCU09071 D422A this study 

pMF272ATGtoATC Fungal expression vector for C-terminal GFP 
fusion proteins under control of Pccg-1; target to 
his-3 locus; start codon ATG was mutated to 
ATC 

(Freitag et al., 2004),  
modified by A. 
Dettmann 

pMF272ATGtoATC-
4096 

pMF272ATGtoATC; NCU04096 (sid-1) this study 

pMF272ATGtoATC-
0772 

pMF272ATGtoATC; NCU00772 (mst-1) kind gift of A. 
Dettmann 

pMF272ATGtoATC-
11235 

pMF272ATGtoATC; NCU11235 (pod-6) this study 

pMF272ATGtoATC-
6636 

pMF272ATGtoATC; NCU06636 (cdc-14) this study 

pMF272ATGtoATC-
1335 

pMF272ATGtoATC; NCU01335 (cdc-7) this study 

pMF272ATGtoATC-
1335 D195A 

pMF272ATGtoATC; NCU01335 D195A this study 
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Plasmid Short description Source 

pMF272ATGtoATC-
6579 

pMF272ATGtoATC; NCU06579 (bud-3) Kind gift of D. Justa 
Schuch 

pMF272ATGtoATC-
6579 S798A 

pMF272ATGtoATC; NCU06579 S798A this study 

pMF272ATGtoATC-
6579 S798E 

pMF272ATGtoATC; NCU06579 S798E this study 

pMF272ATGtoATC-
6579-helix 

pMF272ATGtoATC; NCU06579-helix (bud-3-
helix) 

this study 

pMF272ATGtoATC-
6579-helix S798A 

pMF272ATGtoATC; NCU06579-helix S798A (bud-
3-helix S798A) 

this study 

pMF272ATGtoATC-
6579-helix S798E 

pMF272ATGtoATC; NCU06579-helix S798E (bud-3-
helix S798E) 

this study 

pMF272ATGtoATC-
0152 

pMF272ATGtoATC; NCU00152 (bud-4) this study 

pMF272ATGtoATC-
0152 S13A;S167A;S796A;S1411A 

pMF272ATGtoATC; NCU00152 
S13A;S167A;S796A;S1411A  

this study 

pGFP::hph::loxP Fungal expression vector for C-terminal GFP 
fusion proteins under control of the 
endogenous promotor 

(Honda & Selker, 2009) 

pGFP::hph::loxP-9071 pGFP::hph::loxP; NCU09071 (dbf-2) this study 

 

4.2.2 Plasmids of epitope-tagged fusion proteins for in vitro kinase assays and co-

immunoprecipitation experiments 

For construction of a plasmid encoding N-terminally 3xmyc-tagged DBF2 protein, the corresponding 

coding region was amplified from genomic DNA using primers YH-DBF2-AscI-ATG/YH-DBF2-PacI-

Stopp and ligated with pCCG::N-3xMyc (Honda and Selker, 2009). The generated plasmid was 

linearized by digestion with NdeI for transformation by electroporation. 

A N-terminally HA-tagged version of SID1 was expressed from pHAN1-4096. The plasmid was created 

by amplifying sid-1 from genomic DNA using primers YH-4096-SpeI-ATG/YH-4096-PacI-Stopp and 

inserted into pHAN1 (Kawabata & and Inoue, 2007) via SpeI/PacI sites. For electroporation, plasmid 

was digested with SspI. 

4.2.3 Plasmids for analysis of subcellular fusion protein localization 

For generation of a plasmid allowing expression of N-terminally green fluorescent protein (GFP)-

tagged DBF-2 protein, the construct originally amplified for insertion into pCCG::N-3xMyc (see 

section 4.2.3) was used and ligated with pCCG::N-GFP (Honda & Selker, 2009) via AscI/PacI sites. The 

resulting plasmid pCCG::N-GFP-9071 was routinely prepared for use in electroporation of N. crassa 

by linearization with NdeI. 
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Vectors for expression of C-terminally GFP-tagged fusion proteins of SID-1 (NCU04096), CDC-7 

(NCU01335), POD-6 (NCU11235) and CDC-14 (NCU06636),  were created by amplifying the genomic 

sequence using primers YH-4096-SpeI-ATG/YH-4096-PacI-Stopp, YH-1335-XbaI-ATG/YH-1335-PacI-

Stopp, YH-Pod6-ATG-SpeI/YH-Pod6-Stopp-PacI and YH-6636-SpeI-ATG/YH-6636-PacI-Stopp. The PCR 

products were cleaved with corresponding restriction enzymes and ligated into the adapted plasmid 

pMF272ATGtoATC. Resulting plasmids were linearized using suitable restriction enzymes for use in 

electroporation of N. crassa. 

To generate a C-terminal GFP-tagged dbf-2 construct under the endogenous promoter, the ORF was 

amplified by PCR using wild type DNA and the primer pairs DJ_DBF2_ATG_PacI_f and 

DJ_DBF2_Stopp_PacI_r. After subcloning into the pJet1.2 blunt vector, sequencing and digestion with 

the respective restriction enzyme PacI, the PCR fragment was introduced into the pGFP::hph::loxP 

vector. 1kb fragment of the 3’UTR was also amplified by PCR using the primer pairs 

DJ_3UTR_DBF2_KpnI_f and DJ_3UTR_DBF2_KpnI_r to ensure homologous recombination at the 

endogenous locus in the fungus. 

4.2.4 Point-mutated constructs of DBF-2, BUD-3 and BUD-4 

To establish point-mutated versions of DBF-2 (NCU09071), BUD-3 (NC06579) and BUD-4 (NCU00152) 

site-directed mutagenesis PCRs using primer pairs YH-DBF2-S2A-forw and YH-DBF2-S2A-rev; YH-

DBF2-S2E-forw and YH-DBF2-S2E-rev; YH-DBF2-T2A-forw and YH-DBF2-T2A-rev; YH-DBF2-T2E-forw 

and YH-DBF2-T2E-rev; YH-BUD3-S2A-f and YH-BUD3-S2A-rev; YH-BUD3-S2E-f and YH-BUD3-S2E-rev, 

YH-BUD4-S2A-1-f and YH-BUD4-S2A-1-rev; YH-BUD4-S2A-2-f and YH-BUD4-S2A-2-rev; YH-BUD4-S2A-

3-f and YH-BUD4-S2A-3-rev; YH-BUD4-S2A-4-f and YH-BUD4-S2A-4-rev were performed according to 

manufacturer’s manuals. The plasmids pCCG::N-3xMyc-9071, pMF272ATGtoATC-6579 and  

pMF272ATGtoATC-0152 were used as templates. The resulting plasmids pCCG::N-3xMyc-9071S499A, 

pCCG::N-3xMyc-9071S499E, pCCG::N-3xMyc-9071T671A, pCCG::N-3xMyc-9071T671E, pCCG::N-3xMyc-

9071S499A;T671A, pCCG::N-3xMyc-9071S499A;T671E, pCCG::N-3xMyc-9071S499E;T671A, pCCG::N-3xMyc-

9071S499E;T671E, pMF272ATGtoATC-6579S798A and pMF272ATGtoATC-0152S13A;S167A;S796A;S1411A were 

linearized with respective restriction enzymes and electroporated into N. crassa. 

To generate kinase-dead constructs of DBF-2 and CDC-7 site-directed mutagenesis PCRs using 

plasmids pCCG::N-3xMyc-9071 and pMF272ATGtoATC-1335 as templates and primer pairs YH-DBF2-

D2A-forw/YH-DBF2-D2A-rev and YH-CDC7-D2A-forw/YH-CDC7-D2A-rev were performed. The 

resulting plasmids were electroporated into N. crassa. Loss of kinase activity was verified by an in 

vitro kinase assay (see section 4.5.4).  
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4.2.5 BUD-3-Helix constructs 

Truncated versions of BUD-3 i.e. the BUD-3-Helix (aa 739-816) constructs were amplified using 

plasmids pMF272ATGtoATC-6579,  pMF272ATGtoATC-6579S798A and pMF272ATGtoATC-6579S798E as 

templates, primer pair YH-BUD3-Helix-ATG and YH-BUD3-Helix-Stopp and inserted into the vector 

pMF272ATGtoATC. Resulting plasmids pMF272ATGtoATC-6579-helix, pMF272ATGtoATC-6579-

helixS798A and pMF272ATGtoATC-6579-helixS798E were digested with NdeI and electroporated in N. 

crassa. 

4.3 Strains 

N. crassa strains used in this work are listed in Table 3. Strains provided by the Fungal Genetics Stock 

Center (FGSC) at the University of Missouri, USA are indicated. Single deletion strains used in this 

study were generated within the framework of the Neurospora genome project hosted at Dartmouth 

Medical School, Great Britain, following the procedure described in (Dunlap et al., 2007). Detailed 

descriptions are available at http://dartmouth.edu/~neurosporagenome/protocols.html. The full-

length open reading frames were replaced by a hygromycin resistance cassette and targeted 

integration was verified by Southern hybridization. Δdbf-2, Δsid-1, Δcdc-7, Δbud-3 and Δbud-4 were 

deposited at the Fungal Genetics Stock Center as heterokaryotic strains carrying two types of nuclei: 

one harbouring the deletion (marked by the hygromycin resistance) and a second wild type nucleus 

which suppresses the deletion defect. Homokaryotic deletion strains were obtained by back-crossing 

heterokaryotic deletion strains with wild type and selecting for progeny carrying the deletion nucleus 

i.e. the hygromycin resistance cassette. 

N. crassa strains expressing epitope tagged fusion proteins (e.g. GFP, HA, myc) were generated by 

transformation of the auxotrophic his-3 strain applying plasmids targeted to the his-3 locus (Table 2). 

These constructs contain the expression cassette flanked by the regions for homologous 

recombination to the his-3 locus and restoration of a functional his-3 allele (Margolin et al., 1997, 

Aramayo & and Metzenberg, 1996). Transformants were selected for histidine prototrophy i.e. on 

minimal medium. Expression of all fusion proteins was verified by Western blotting (see 4.5.2) using 

respective epitope tag antibodies. Functionality of expressed fusion proteins was tested by crossing 

resulting strains with the respective hygromycin-resistant deletion mutant. Suppression of 

phenotypic defects and hygromycin resistance were used as evidence for functionality. 

N. crassa strains expressing HA-, GFP- and myc-tagged fusion proteins for co-immunoprecipitation 

studies were generated by transforming auxotrophic strains trp-3; his-3 or nic-3; his-3. Histidine-

prototrophic transformants were selected and expression of fusion proteins was verified. Growth of 

resulting strains is still dependent on medium supplemented with tryptophane or nicotinamide. For 
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co-immunoprecipitation studies, combinations of these strains were fused to generate prototrophic 

heterokaryotic strains expressing both fusion proteins. Therefor, conidia of the respective strains, 

one nic-1, second trp-1 were fused on VMM (Kawabata & and Inoue, 2007). 

The strain mus52::bar his-3 was used to transform GFP-tagged fusion proteins at the endogenous 

locus by homologous recombination. Transformants were selected by their ability to grow on 

hygromycin and the expression level was checked by Western blotting. To remove the mus52 

mutation the resulting strains were crossed with wild type or his-3 strain, verification by Southern 

analysis was performed. 

Table 3: N. crassa strains used in this study. Genetic features are marked as (EC) for ectopical integration. 

Heterokaryotic fusion strains used in co-immunoprecipitation analysis are not listed. 

Strains Genotype Source 

wild type 74 OR231 Mat A FGSC #987 

wild type ORS SL6 Mat a  FGSC #4200 

his-3 A  his-3 Mat A  FGSC #6103  

his-3 a  his-3 Mat a  FGSC #718  

trp-1;his-3  trp-1- his-3- (Maerz et al., 2009) 

nic-3;his-3  nic-3- his-3- (Maerz et al., 2009) 

∆dbf-2 hph::dbf-2∆ his-3- (Maerz et al., 2009) 

∆mob-1 hph::mob-1∆ + mob-1+ bar::mus-51∆ (Maerz et al., 2009) 

∆cdc-7 hph::cdc-7∆ + cdc-7+ bar::mus-51∆ FGSC #16741 

∆sid-1 hph::sid-1∆ + sid-1+ bar::mus-51∆ FGSC #11317 

∆cdc-14 hph::cdc-14∆ FGSC #12648 

∆bud-3 hph::bud-3∆ + bud-3+ bar::mus-51∆ (Justa-Schuch et al., 

2010) 

∆bud-4 hph::bud-4∆ + bud-4+ bar::mus-51∆ (Justa-Schuch et al., 

2010) 

∆mst-1 hph::mst-1∆ FGSC #11478 

∆mst-1 his-3 hph::mst-1∆ his-3- A. Dettmann 

∆pod-6 Δpod-6::natR (Seiler et al., 2006) 

∆cot-1 Δcot-1::hphR + cot-1+ Δmus51::barR a FGSC #14525 

cot-1(ts) cot-1(H351R) (Seiler & Plamann, 

2003) 

gfp-dbf-2 Pccg-1-sgfp-dbf-2::his-3 hph::dbf-2∆ This study 
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Strains Genotype Source 

gfp-dbf-2(D422A) Pccg-1-sgfp-dbf-2(D422A)::his-3  This study 

gfp-dbf-2(T671E) Pccg-1-sgfp-dbf-2(T671E)::his-3 hph::dbf-2∆ This study 

sid-1-gfp Pccg-1-sid-1-sgfp::his-3 hph::sid-1∆ This study 

cdc-14-gfp Pccg-1-cdc-14-sgfp::his-3 hph::cdc-14∆ This study 

cdc-7-gfp Pccg-1-cdc-7-sgfp::his-3 hph::cdc-7∆ This study 

cdc-7-gfp-(D195A) Pccg-1-cdc-7-sgfp-(D195A)::his-3  This study 

cot-1-gfp Pccg-1-cot-1-sgfp::his-3 hph::cot-1∆ (Maerz et al., 2012) 

pod-6-gfp Pccg-1-pod-6-sgfp::his-3 natR::pod-6∆ This study 

bud-3-gfp Pccg-1-bud-3-sgfp::his-3 hph::bud-3∆ (Justa-Schuch et al., 

2010) 

bud-4-gfp Pccg-1-bud-4-sgfp::his-3 hph::bud-4∆ (Justa-Schuch et al., 

2010) 

bud-3-gfp(S798A) Pccg-1-bud-3(S798A)-sgfp::his-3 This study 

bud-4-gfp(4xS2A) Pccg-1-bud-4(S2A-4)-sgfp::his-3  This study 

bud-3-helix-gfp Pccg-1-bud-3-helix-sgfp::his-3 This study 

bud-3(S798A)-helix-gfp Pccg-1-bud-3(S798A)-helix-sgfp::his-3 This study 

bud-3(S798E)-helix-gfp Pccg-1-bud-3(S798E)-helix-sgfp::his-3 This study 

lifeact-gfp Pccg-1-lifeact-egfp::his-3 (Delgado-Alvarez et 

al., 2010) 

h1-rfp Pccg-1-rfp-h1::his-3 mat A M. Freitag, USA 

h1-rfp Pccg-1-rfp-h1::his-3 mat a A. Dettmann 

myc-dbf-2 Pccg-1-myc-dbf2-2::his-3 hph::dbf-2∆ This study 

myc-dbf-2(D422A) Pccg-1-myc-dbf2-2(D422A)::his-3 hph::dbf-

2∆ 

This study 

myc-dbf-2(S499A) Pccg-1-myc-dbf2-2(S499A)::his-3 hph::dbf-2∆ This study 

myc-dbf-2(S499E) Pccg-1-myc-dbf2-2(S499E)::his-3 hph::dbf-2∆ This study 

myc-dbf-2(T671A) Pccg-1-myc-dbf2-2(T671A)::his-3 hph::dbf-2∆ This study 

myc-dbf-2(T671E) Pccg-1-myc-dbf2-2(T671E)::his-3 hph::dbf-2∆ This study 

myc-dbf-

2(S499A/T671A) 

Pccg-1-myc-dbf2-2(S499A/T671A)::his-3 

hph::dbf-2∆ 

This study 

myc-dbf-

2(S499A/T671E) 

Pccg-1-myc-dbf2-2(S499A/T671E)::his-3 

hph::dbf-2∆ 

This study 

myc-dbf-

2(S499E/T671A) 

Pccg-1-myc-dbf2-2(S499E/T671A)::his-3 

hph::dbf-2∆ 

This study 
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Strains Genotype Source 

myc-dbf-

2(S499E/T671E) 

Pccg-1-myc-dbf2-2(S499E/T671E)::his-3 

hph::dbf-2∆ 

This study 

myc-cot-1 Pcot-1-myc-cot-1 (Ziv et al., 2009) 

myc-cot-1(T589E) Pcot-1-myc-cot-1(T589E) (Ziv et al., 2009) 

myc-cot-1 his-3 Pcot-1-myc-cot-1 his-3- (Ziv et al., 2009) 

myc-cot-1; bud-3-gfp Pcot-1-myc-cot-1; Pccg-1-bud-3-gfp::his-3 This study 

myc-cot-1; bud-4-gfp Pcot-1-myc-cot-1; Pccg-1-bud-4-gfp::his-3 This study 

myc-cot-1; HA-mst-1 Pcot-1-myc-cot-1; Pccg-1-HA-mst-1::his-3 A. Dettmann 

myc-cot-1; dbf-2-gfp Pcot-1-myc-cot-1; Pccg-1-dbf-2-gfp::his-3 This study 

myc-cot-1; HA-mob-2a Pcot-1-myc-cot-1; Pccg-1-HA-mob-2a::his-3 This study 

HA-sid-1 Pccg-1-HA-sid-1::his-3 hph::sid-1∆ This study 

HA-mst-1 Pccg-1-HA-mst-1::his-3 hph::mst-∆ A. Dettmann 

HA-pod-6 Ppod-6-HA-pod-6; his-3- (Maerz et al., 2012) 

myc-dbf-2 trp-1 Pccg-1-myc-dbf-2::his-3 trp-1- This study 

myc-dbf-2(D422A) trp-

1 

Pccg-1-myc-dbf-2(D422A)::his-3 trp-1- This study 

myc-dbf-2(S499A) trp-

1 

Pccg-1-myc-dbf-2(S499A)::his-3 trp-1- This study 

myc-dbf-2(S499E) trp-

1 

Pccg-1-myc-dbf-2(S499E)::his-3 trp-1- This study 

myc-dbf-2(T671A) trp-

1 

Pccg-1-myc-dbf-2(T671A)::his-3 trp-1- This study 

myc-dbf-2(T671E) trp-

1 

Pccg-1-myc-dbf-2(T671E)::his-3 trp-1- This study 

FLAG-mob-1 nic-1 Pccg-1-FLAG-mob-1::his-3 nic-1- (Maerz et al., 2009) 

HA-sid-1;trp-1 Pccg-1-HA-sid-1::his-3 trp-1- This study 

sid-1-gfp;nic-1 Pccg-1-sid-1-sgfp::his-3 nic-1- This study 

cdc-7-gfp;nic-1 Pccg-1-cdc-7-sgfp::his-3 nic-1- This study 

HA-mst-1;trp-1 Pccg-1-HA-mst-1::his-3 trp-1- A. Dettmann 

myc-cot-1; HA-pod-6 Pcot-1-myc-cot-1; Pccg-1-HA-pod-6::his-3 (Maerz et al., 2012) 

 

For amplification of DNA the Escherichia coli strain DH5α [F–, Φ80dΔ(lacZ)M15-1, Δ(lacZYA-

argF)U169, recA1, endA1, hsdR17 (rK–, mK+), supE44, λ–, thi1, gyrA96, relA1] (Woodcock, 1989) was 

used.  
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For yeast two-hybrid analyses the Saccharomyces strain AH109 [MATa, trp1-901, leu2-3, 112, ura3-

52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-

MEL1TATA-lacZ] (James et al., 1996); Clontech , USA) was used. 

4.4 General molecular biological methods 

Standard molecular methods were performed as described in (Sambrook & and Russell, 2001, 

Ausubel et al., 2002) with minor modifications. 

4.4.1 Polymerase chain reaction (PCR) 

Phusion® High Fidelity polymerase (Finnzymes AG, Espoo, FIN) was used for amplification of DNA by 

polymerase chain reaction in accordance with standard protocols (Ausubel et al., 2002) or to 

manufacturer’s manual. For analytical PCRs Taq DNA polymerase was used. Oligonucleotides used as 

PCR primers were synthesized by Eurofins MWG Operon (Ebersberg, Germany). Plasmid or genomic 

DNA served as templates for the reactions. In case of colony PCRs (Zon et al., 1989) which were 

performed to identify positive E. coli transformants, E. coli cells of a single colony were directly used 

as templates. 

A standard PCR reaction consisted of an initial template denaturation step (2 min , 94°C) followed by 

30 cycles each consisting of 30 s denaturation at 94°C, primer annealing (30 s, 50-60°C depending on 

primer used), product elongation at 72°C (1 min/1kb template length), and a final elongation step of 

3 min at 72°C. 

Site-directed mutagenesis was performed with Phusion® High Fidelity polymerase (Finnzymes AG, 

Espoo, FIN) according to the QuickChangeR Site-Directed Mutagenesis Kit protocol (Stratagen, La 

Jolla, USA). Amplified PCR products were directly digested with DpnI to separate mutated non-

methylated output plasmid DNA from non-mutated methylated input plasmid DNA. The digested 

DNA was subsequently transformed into E. coli.  

4.4.2 DNA agarose gel electrophoresis and isolation 

DNA was separated by horizontal agarose gel electrophoresis using the Mini Sub-Cell System (Bio-

Rad Laboratories GmbH, Germany). Gene Ruler™ 1 kb DNA ladder (Fermentas GmbH, Germany) 

served as DNA molecular weight marker, DNA was stained with ethidiumbromide and visualized by 

using the Molecular Imager Gel Doc XR System (Bio-Rad Laboratories GmbH, Germany). 
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DNA gel extraction was performed using the peqGOLD Gel Extraction Kit (PeqLab GmbH, Erlangen, 

Germany) and E. coli plasmid DNA was purified using peqGOLD Plasmid Miniprep Kit II (PeqLab 

GmbH, Erlangen, Germany) according to manufacturer’s manuals. 

4.4.3 Modification and enzymatic digestion of DNA  

Restriction enzymes and buffers for endonucleolytic digestion of DNA were obtained from Fermentas 

GmbH (Germany) and New England Biolabs GmbH (USA) and used in accordance to product manuals. 

4.4.4 Ligation  

DNA ligation reactions were performed in 20 µl reaction volumes using T4 DNA ligase (Fermentas 

GmbH, Germany) in a 2 fold concentrated quick ligation buffer (50mM HEPES pH7.6, 10mM MgCl2, 

2mM DTT, 2mM ATP and 7% (v/v) PEG4000) for 20 min at room temperature (RT). 

4.4.5 DNA Transformation 

Preparation and transformation of chemically competent E. coli cells were performed as described in 

(Inoue et al., 1990).  

Transformation of N. crassa was done by electroporation of plasmid DNA into conidia as mentioned 

in (Margolin et al., 1997) with minor modifications. N. crassa conidia were harvested after 9-11 days 

and electroporation was performed in cuvettes obtained from PEQLAB Biotechnologie GmbH 

(Germany) using a Bio-Rad Gene Pulser® II (Bio-Rad Laboratories GmbH, Germany) with well-

established settings (voltage 1.5 kV; capacitance: 50 µF; resistance: 200 Ω). Conidia were 

resuspended in 1M sorbitol and plated on minimal medium. For selection of transformants with 

dominant markers, conidia were resuspended in VMM, incubated for 3 hours at room temperature 

and plated on selective medium. 

4.4.6 Sequence analysis 

DNA was sequenced by the Göttingen Genomics Laboratory at the Institute of Microbiology and 

Genetics, University of Göttingen (G2L, Göttingen, Germany) and GATC Biotech AG (Germany). 

Sequences were analysed using 4Peaks (version 1.7.2; Mekentosj B.V., The Netherland), Lasergene 

(DNASTAR, Inc., Madison, USA) and GATCViewerTM (GATC Biotech AG, Germany) software. 

Alignments of sequences were performed with BLAST searches at NCBI 

(http://www.ncbi.nlm.nih.gov/). 
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4.5 Biochemical and immunological techniques 

4.5.1 N. crassa protein isolation 

N. crassa strains were grown in liquid minimal medium, harvested by filtration using a Büchner 

funnel and ground in liquid nitrogen. The pulverized mycelium was homogenized in protein 

extraction buffer (50mM Tris pH 7.5, 100mM KCl, 10mM MgCl2, 0.1% NP40; freshly added 2mM 

benzamidine, 2mM DTT, 1mM Pefabloc SC). After centrifugation (14000 g) at 4°C for 10 min the clear 

supernatant was mixed with 3x Laemmli sample buffer (10% glycerol, 5% β-mercaptoethanol, 15% 

SDS, 12,5% upper-buffer (0,5M Tris-HCl pH 6.8), 0,75% bromophenol blue, 3M urea; modified from 

(Laemmli, 1970) and boiled at 98°C for 10 min. 

4.5.2 Separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blotting 

Protein samples were separated by a vertical discontinuous polyacrylamide gel electrophoresis 

(PAGE) (Davis, 1964, Ornstein, 1964) in the presence of sodium dodecyl sulfate (SDS) (Laemmli, 1970) 

using the Mini-Protean® 3 Cell System (Bio-Rad Laboratories GmbH, Germany). Electrophoretic 

separation was performed by a constant current of 15mA per gel submerged in running buffer 

(2.5mM Tris base, 19.2mM glycine and 0.1% SDS). For molecular weight determination of proteins 

PageRuler™ Prestained Protein Ladder (Fermentas GmbH, Germany) was used. Proteins were 

visualized by staining with Coomassie Brilliant Blue (0.1% Coomassie Brilliant Blue, 40% methanol, 

10% acetic acid; (Merril, 1990) or alternatively by Western blotting. 

For Western blot analysis, proteins were transferred electrophoretically from polyacrylamide gels to 

Protran® nitrocellulose membranes (Whatman GmbH, Germany) using Mini Trans-Blot® Cells (Bio-

Rad Laboratories GmbH, Germany). After electroblotting for 1 hour at 100 V in cooled transfer buffer 

(2.5mM Tris, 19.2mM glycine, 20% methanol), the nitrocellulose membrane was stained with 

Ponceau S (0.1% Ponceau S in 5% acetic acid; (Salinovich & Montelaro, 1986). The immunological 

detection was based on the method described by (Towbin et al., 1979). For initial blocking and 

incubation with antibodies 5% Sucofin milk powder (TSI GmbH & Co. KG, Germany) in PBS solution 

(10mM sodium phosphate, 150mM NaCl, pH 7.4) was used. Unbound antibodies were washed off 

with PBS. Mouse monoclonal Anti-c-myc antibody 9E10 (Santa Cruz Biotechnology, Heidelberg, 

Germany), Anti-GFP (B-2) (Santa Cruz Biotechnology, Heidelberg, Germany), Anti-HA (clone HA-7) or 

Anti-FLAG® M2 (both Sigma-Aldrich, Taufkirchen, Germany) were used as primary antibodies and 

were detected by peroxidase-coupled goat anti-mouse IgG (Dianova Gesellschaft für biochemische, 

immunologische und mikrobiologische Diagnostik GmbH, Germany). Detection was performed using 
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Immobilon™ Chemiluminescent Western HRP Substrate (Millipore, USA) in combination with 

Amersham™ Hyperfilm™ ECL (GE Healthcare Europe GmbH, Germany).  

4.5.3 Immunoprecipitation 

For immunoprecipitation N. crassa strains were grown in liquid minimal medium and mycelium was 

harvested by filtration and ground in liquid nitrogen. All buffers used contained following additives: 

25mM β-glycerophosphate, 10 ng/µl leupeptine, 10 ng/µl aprotinine, 2 ng/µl Pepstatin A, 2mM DTT, 

1mM PEFAbloc SC, 2mM benzamidine, 5mM NaF and 1mM Na3VO4. The pulverized mycelium was 

homogenized in lysis buffer (50mM Tris pH 7.5, 100mM KCl, 10mM MgCl2, 0.1% NP40) and 

centrifuged two times at 4°C (15 min at 4500g and 30 min at 14000g). The cleared lysate was 

incubated on a rotation device for one hour with 4 µl/ml lysate monoclonal mouse Anti-c-myc (Santa 

Cruz Biotechnology, Inc., USA), 2 µl/ml GFP trap beads (Chromotek, Germany) or 2 µl/ml monoclonal 

mouse Anti-HA antibody (Sigma-Aldrich Corporation, USA) and with 5 mg/ml Protein-A-Sepharose™ 

CL-4B beads (GE Healthcare Life Sciences, USA) for an additional hour at 4°C. Subsequently, the 

suspension was centrifuged (2 min at 4000g) to remove supernatant and washed twice with lysis 

buffer. Immunoprecipitated proteins were recovered by boiling sepharose beads for 10 min at 98°C 

in 3x Laemmli buffer. 

4.5.4 Kinase assays 

For peptide-based in vitro activity determinations using the peptide KKRNRRLSVA as an artificial 

substrate, myc-tagged DBF-2 and COT-1 were purified as described in 4.5.3. Total protein levels of 

cell extracts were determined by Bradford analysis with bovine serum albumin standard solutions as 

a reference, using Roti®-Quant (Carl Roth) and a Tecan Infinite® M200 microplate reader (Tecan) and 

adjusted with IP buffer. The resulting antigen-antibody-bead complexes were washed once with lysis 

buffer, twice with lysis buffer containing 0,5M NaCl followed by two times with kinase reaction 

buffer (20mM Tris pH 7.5, 10mM MgCl2, 1mM DTT, 1mM benzamidine, 1mM Na3VO4, 5mM NaF). The 

kinase reaction was started by resuspending the beads in 50 µl kinase reaction buffer containing 

2mM synthetic substrate peptide, 0.5mM ATP and 1 µCi [32P]-ATP. After incubation for 1 h at 37°C, 

samples were centrifuged for 2 min at 4000g and the supernatant was spotted onto P81 phospho-

cellulose paper circles (Whatman, UK). Dried circles were washed two times with 1% phosphoric acid 

before incorporation of phosphate into the substrate peptide was measured by liquid scintillation 

counting. The remaining protein-sepharose pellet was boiled for 10 min at 98°C in 3x Laemmli buffer 

and used to determine equal protein concentration by SDS-PAGE and Western blot (see section 

4.5.2). 
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For in vitro kinase assays with two or more kinases (using DBF-2 or COT-1 kinase activity as readout), 

all proteins were purified seperately and mixed during the washing procedure, just before kinase 

reaction.  

To determine 32P incorporation into BUD-3/BUD-4 by DBF-2 and COT-1, kinase assays were 

performed as described above with minor modifications. The kinase reaction was started by 

resuspending the beads of analyzed kinase and substrate in 50 µl of kinase reaction buffer containing 

0.5mM ATP and 1 µCi [32P]-ATP. After incubation for 1 h at 37°C, samples were centrifuged for 2 min 

at 4000g and the supernatant was discarded. The protein-sepharose pellet was boiled for 10 min at 

98°C in 3x Laemmli buffer and used to determine 32P incorporation and equal protein concentration 

by SDS-PAGE/autoradiography and Western blot, respectively (see section 4.5.2). 

For analysis of phosphopeptides, purified proteins were washed once with lysis buffer, twice with 

lysis buffer containing 0,5M NaCl followed by two times with kinase reaction buffer (20mM Tris pH 

7.5, 10mM MgCl2, 1mM DTT, 1mM benzamidine, 1mM Na3VO4, 5mM NaF). A "cold" kinase reaction 

was started by resuspending the beads in 50 µl of kinase reaction buffer containing 0.5mM ATP. 

After incubation for 1 h at 37°C, samples were centrifuged for 2 min at 4000g and the supernatant 

was discarded. The protein-sepharose pellet was boiled for 10 min at 98°C in 3x Laemmli buffer and 

used for SDS-PAGE followed staining with Coomassie Brilliant Blue (0.1% Coomassie Brilliant Blue, 

40% methanol, 10% acetic acid; (Merril, 1990). For further procedure see section 4.5.5 and 4.5.6. 

4.5.5 Displacement assays 

For displacement assays, immunoprecipitation of CDC-7-GFP from cell extracts co-expressing CDC-7-

GFP and HA-SID-1 was separated and the resulting two samples were washed once with lysis buffer 

to remove non-co-purified HA-SID-1 (50mM Tris pH 7.5, 100mM KCl, 10mM MgCl2, 0.1% NP40). 

Separately purified MST-1-GFP was added to one of the two samples while the other one was treated 

with lysis buffer. Both samples were incubated for 30 min at RT and subsequently, the suspensions 

were centrifuged (2 min at 4000g) to remove supernatant and washed once with lysis buffer to 

remove displaced/unbound HA-SID-1. Immunoprecipitated proteins were recovered by boiling 

sepharose beads for 10 min at 98°C in 3x Laemmli buffer. A similar approach was performed to test 

for displacement of HA-MST-1 by SID-1-GFP, using precipitated CDC-7-GFP from cell extracts co-

expressing CDC-7-GFP and HA-MST-1. Further displacement assay followed the same procedure. 

4.5.6 Mass spectrometry and database analysis  

For protein identification by mass spectrometry, peptides of in-gel trypsinated proteins were 

extracted from Commassie-stained gel slices. Peptides of 5 μl sample solution were trapped and 
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washed with 0.05% trifluoroacetic acid on an Acclaim® PepMap 100 column (75 μm x 2 cm, C18, 3 

μm, 100 Å, P/N164535 Thermo Scientific) at a flow rate of 4 μl/min for 12 min. Analytical peptide 

separation by reverse phase chromatography was performed on an Acclaim® PepMap RSLC column 

(75 μm x 15 cm, C18, 3 μm, 100 Å, P/N164534 Thermo Scientific) running a gradient from 96 % 

solvent A (0.1 % formic acid) and 4 % solvent B (acetonitrile, 0.1% formic acid) to 50% solvent B 

within 25 min at a flow rate of 250 nl/min (solvents and chemicals: Fisher Chemicals). Peptides 

eluting from the chromatographic column were on-line ionized by nano-electrospray using the 

Nanospray Flex Ion Source (Thermo Scientific) and transferred into the mass spectrometer. Full scans 

within m/z of 300-1850 were recorded by the Orbitrap-FT analyzer at a resolution of 60.000 at m/z 

400. Each sample was analyzed using two different fragmentation techniques applying a data-

dependent top 5 experiment: collision-induced decay with multistage activation and readout in the 

LTQ Velos Pro linear ion trap, and higher energy collision dissociation and subsequent readout in the 

Orbitrap-FT analyzer. LC/MS method programming and data acquisition was performed with the 

software XCalibur 2.2 (Thermo Fisher). Orbitrap raw files were analyzed with the Proteome 

Discoverer 1.3 software (Thermo Scientific) using the Mascot and Sequest search engines against the 

N. crasssa protein database with the following criteria: peptide mass tolerance 10 ppm, MS/MS ion 

mass tolerance 0.8 Da, and up to two missed cleavages allowed. 

4.5.7 Enrichment of phosphopeptides  

Based on the method developed by Mazanek et al. (2007), phosphopeptides were enriched using 

TiO2 columns (TopTip TiO2 10-200 μl Glygen Corporation, Columbia, USA). Trypsin-digested peptide 

samples were dissolved in loading solvent (420mM 1-octanesulfonic acid (OSA), 50 mg/ml 

dihydroxybenzoic acid (DHB), 0.1% heptafluorobutyric acid (HFBA), 20% acetic acid) and applied onto 

a TiO2 column equilibrated by wash solution I (80% acetonitrile) and loading solvent. After the 

peptide sample had entered the column, the column was washed with loading solvent and two times 

wash solution II (80% acetonitrile, 0.1% trifluoric acid). For elution two times elution buffer (50mM 

ammonium dihydrogen phosphate adjusted to pH 10.5 with ammonium hydroxide) was applied onto 

the column. The eluates were acidified by addition of formic acid. Dried eluates were dissolved in 

sample buffer (95% H2O, 5% acetonitrile, 0.1% formic acid) for mass spectrometric analysis. 

4.6 Yeast two-hybrid assays 

For yeast two-hybrid analysis (Fields & Song, 1989), the Matchmaker™ Two-Hybrid System 3 

(Clontech, USA) was used according to manufacturer’s manuals. Plasmids encoding proteins fused to 

the GAL4 activation domain (cDNA constructs inserted into pGADT7) or the DNA-binding domain 

(cDNA constructs inserted into pGBKT7), respectively, were co-transformed into S. cerevisiae AH109 

cells as described in protocols of (Schiestl & Gietz, 1989). Co-transformants were selected by their 
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restored ability to grow on SD medium lacking leucine and tryptophane. Interaction of fusion 

proteins was shown by activation of the reporter genes HIS3 and ADE2. For a yeast drop test, single 

colonies were collected, suspended in water and serial dilutions were plated on SD medium. To 

exclude autoactivation of the fusion proteins each plasmid was tested with the empty vector of the 

counterpart. 

4.7 Microscopy 

Low magnification documentation of fungal hyphae or colonies was performed using an SZX16 

stereomicroscope, equipped with a Colorview III camera and CellD imaging software (Olympus 

SoftImaging Solutions GmbH, Germany). Images were further processed using Photoshop CS2 

(Adobe). An inverted Axiovert Observer Z1 microscope (Carl Zeiss AG, Germany) equipped with a 

CSU-X1 A1 confocal scanner unit and a QuantEM 512SC camera (Photometrics, USA) was used for 

spinning disk confocal microscopy (Araujo-Palomares et al., 2011). Slidebook 5.0 software (version 

5.0; Intelligent Imaging Innovations GmbH, Germany) was used for image/movie acquisition, 

deconvolution and image analysis. The "inverted agar block" method (Hickey et al., 2002) was used 

for live cell imaging. Cell wall and plasma membrane were stained with Calcofluor White (2 µg/ml-1) 

and FM4-64 (1 µg/ml-1), respectively. Time-lapse imaging was performed at capture intervals of 20-

120 s for periods up to 18 min using the oil immersion objective 100x/1.3. 
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5. Results 
 

5.1 Functional analysis of the SIN kinase cascade in Neurospora crassa 

5.1.1 A tripartite SIN cascade is important for septum formation and localizes 

constitutively to SPBs and septa 

The fission yeast septation initiation network (SIN) has been identified as a tripartite kinase cascade 

that connects cell cycle progression with the initiation of cytokinesis (Krapp & Simanis, 2008). This 

network is analogous to the mitotic exit network (MEN) of budding yeast with two differences; first, 

the MEN lacks a homolog of the fission yeast Ste20-related kinase Sid1, thus the effector kinase 

Dbf2p is directly phosphorylated by Cdc15p (Mah et al., 2001). Second, budding yeast MEN mutants 

arrest late in the mitotic cell cycle, while the fission yeast SIN is not essential for mitotic exit (Minet 

et al., 1979, Fankhauser & Simanis, 1994, Ohkura et al., 1995, Schmidt et al., 1997). BLAST searches 

of the N. crassa genome using S. pombe and S. cerevisiae SIN proteins identified homologs for all SIN 

network components except one scaffold protein, which is slightly conserved among different 

species (Table 4).  

 

Table 4. (Predicted) SIN components in yeasts and filamentous fungi 

Protein feature S. pombe S. cerevisiae N. crassa * A. nidulans * 

Polo kinase Plo1 Cdc5p NCU09258 PLKA 

GTPase Spg1 Tem1p NCU08878 AN7206 

two component GAP Cdc16 Bub2p NCU03237 BUBA 

 Byr4 Bfa1p NCU11967 BYRA 

STE kinase Cdc7 Cdc15 NCU01335 SEPH 

GC kinase Sid1 / NCU04096 AN8033 

GC kinase adaptor Cdc14 / NCU06636 AN0655 

NDR kinase  Sid2 Dbf2p DBF-2 SIDB 

NDR kinase adaptor Mob1 Mob1p MOB-1 MOBA 

Leucin-rich scaffold Cdc11 Nud1p NCU03545 SEPK 

Coiled coil scaffold Sid4 ? ? SNAD 
 

* Generic NCUxxxxx and ANxxxx nomenclature indicates uncharacterized proteins 
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As part of the Neurospora Genome project, mutants defective in predicted components of the 

tripartite kinase cascade were available as heterokaryotic strains. Those strains, ∆NCU01335, 

∆NCU04096, ∆NCU06636, ∆dbf-2 and ∆mob-1 carry two types of nuclei: one harbouring the deletion 

(marked by a hygromycin resistance) and a second wild type nucleus, which suppresses the deletion 

defect. Analysis of deletion phenotypes was performed using homokaryotic strains which were 

obtained by back-crossing heterokaryotic deletion strains with wild type. Crosses of ∆NCU01335 and 

∆NCU04096 with wild type resulted in the expected segregation of the hygromycin cassette (Colot et 

al., 2006), and the hygromycin-resistent progeny produced thin and aseptate hyphae, which 

frequently lysed (Figure 5 A, B). This led to the conclusion that NCU01335 and NCU04096 function as 

part of the SIN, and the proteins were designated CDC-7 and SID-1, respectively, corresponding to 

their S. pombe homologs.  

As previously described for ∆dbf-2 and ∆mob-1 (Maerz et al., 2009), within 1-2 days the vegetative 

growth defects of ∆cdc-7 resulted in the frequent appearance of suppressor mutations that regained 

the ability to form septa and subsequently the ability to conidiate. Back-crosses of septum-forming 

∆cdc-7 colonies (and of ∆sid-1 or ∆cdc-14 colonies; see below) with wild type resulted in two types of 

hygromycin-resistent progeny: aseptate germlings that produced septa only at later stages of colony 

development and germlings with septation rates that were similar to those of wild type germlings. 

The comparison of the frequency of suppressor occurrence between the different strains, revealed 

that ∆sid-1 behaved differently than ∆cdc-7, ∆dbf-2 and ∆mob-1. In this mutant septa appeared 

much faster, resulting in the fast generation of abundant aerial mycelium and abundant sporulation 

(Figure 5 A, B). Therefore, a deletion strain of the predicted regulatory subunit NCU06636/CDC-14, 

which is essential for Sid1 function in fission yeast (Krapp & Simanis, 2008) was analyzed. ∆cdc-14 

germlings were initially aseptate, but produced septa with frequencies comparable to ∆sid-1 and 

faster than the other SIN deletion strains (Figure 5 A, B). In support of the different vegetative 

defects caused by ∆sid-1 and ∆cdc-14 versus ∆cdc-7, ∆dbf-2 and ∆mob-1, the morphology of sexual 

progeny generated in wt x ∆sid-1 crosses was normal, while wt x ∆cdc-14 crosses did not result in 

mature perithecia (Figure 5 C). These sexual defects were different compared to the generation of 

large, banana-shaped ascospores produced in wt x ∆ crosses with ∆cdc-7 and as previously shown for 

∆dbf-2 and ∆mob-1 (Maerz et al., 2009). 
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Figure 5: N. crassa SIN components are required for septum formation but display distinct mutant 

characteristics (A) Deletion strains defective in the indicated SIN components generated thin and aseptate 

hypha in young colonies (18 h time point). In older colonies, the septation defects were suppressed in ∆sid-1 

and ∆cdc-14 strains (36 h time point). Cell wall and septa were labeled with Calcofluor White. (B) SIN 

mutants showed cytoplasmic leakage (magnified inserts), but, due to the fast ability to septate, ∆sid-1 and 

∆cdc-14 generated abundant aerial mycelium and asexual spores (conidia; plate morphology). (C) SIN 

mutants displayed distinct abnormalities during sexual development. wt x ∆ crosses with ∆cdc-7(het) and 

∆dbf-2(het) resulted in the frequent formation of large, banana-shaped ascospores. In contrast, wt x ∆sid-

1(het) progeny morphology was normal, while crosses of wt x ∆cdc-14(het) produced no mature perithecia. 

 

To investigate the cellular distribution of the SIN proteins, N. crassa strains expressing GFP-fusion 

proteins of CDC-7, SID-1, CDC-14 and DBF-2 were generated. All constructs were expressed under the 

control of the ccg-1 promoter and targeted to the his-3 locus in the respective deletion strain to 

confirm functionality of the fusion proteins. To exclude potential effects of ectopic overexpression, 

also the endogenous locus of dbf-2 was modified to allow expression of DBF-2-GFP under the control 

of its endogenous regulatory elements. Although the ccg-1 driven GFP-DBF-2 protein expression level 

was ca. 3-fold higher and resulted in enhanced cytoplasmic fluorescence (Figure S1), no differences 

in the localization pattern of GFP-DBF-2 in the two strains was observed (data not shown).  

All three N. crassa SIN kinases and CDC-14 displayed identical localization patterns in that they all are 

associated with septa (Figure 6 A). DBF-2, SID-1 and CDC-14 accumulated first as cortical ring at the 

cell cortex prior to the initiation of septum constriction and remained associated with the septal pore 

after completion of the septation process. CDC-7-GFP was only visible at the septal pore of the 
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mature septum, but the failure to observe CDC-7 at early stages of septum formation is consistent 

with the low expression level of ccg-1 driven CDC-7-GFP (Figure S1). Moreover, all SIN components 

associated with spindle pole bodies (SPBs) in a constitutive manner and independently of the cell 

cycle state (Figure 6 B). 

 

 

Figure 6: N. crassa SIN components localize to SPBs and septa (A) Functional GFP fusion proteins of CDC-7, 

SID-1, CDC-14 and DBF-2 localized to spindle pole bodies (arrows) and as constricting rings at forming septa. 

Nuclei were labeled with histone H1-RFP, the cell wall was stained with Calcofluor White. (B) The localization 

of the three SIN kinases CDC-7, SID-1 and DBF-2 to SPBs is constitutive and cell cycle independent. The three 

SIN kinases associated with SPBs of interphase nuclei as well as during early and late mitotic stages (as 

indicated by nuclear morphology). Nuclei were labeled with histone H1-RFP. 

 

5.1.2 CDC-7-dependent activation of DBF-2 occurs through SID-1 

The S. cerevisiae MEN cascade lacks a homolog of the fission yeast kinase Sid1, and the activation of 

Dbf2p involves direct phosphorylation by the Cdc7 homolog Cdc15p (Mah et al., 2001). In contrast, 

the S. pombe SIN likely follows a stepwise activation pattern of Cdc7, Sid1 and Sid2, but biochemical 

evidence for this gradual phospho-regulation is still missing (Hou et al., 2004, Johnson et al., 2012).  

In order to determine the functional relationship between the three N. crassa SIN kinases, reciprocal 

co-immunoprecipitation (co-IP) experiments were performed to test if CDC-7 interacted with SID-1 

and/or DBF-2. Strains expressing functionally tagged proteins of either CDC-7-GFP and HA-SID-1 or 
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CDC-7-GFP and myc-DBF-2 were constructed. Precipitation of CDC-7-GFP allowed detection of HA-

SID-1 and vice versa, which verified the stable interaction of these two kinases (Figure 7 A). In 

contrast, in co-IP experiments performed under identical conditions no interaction between CDC-7 

and DBF-2 and between CDC-7 and SID-1 could be observed (data not shown), suggesting that these 

proteins may interact in a more dynamic manner.  

In addition, to preserve a mechanism for activation of the SIN effector kinase DBF-2 several in vitro 

kinase activity assays were performed. Wild type DBF-2 precipitated from N. crassa extracts 

displayed activity towards a synthetic peptide (KKRNRRLSVA) encompassing the consensus NDR 

kinase target motif, which was previously used for in vitro activity assays with the related NDR kinase 

COT-1 (Ziv et al., 2009). Incubation of precipitated SID-1 with separately purified DBF-2 enhanced the 

activity of DBF-2 (Figure 7 B). If the N. crassa SIN functions as a predicted tripartite and stepwise 

kinase cascade, CDC-7 should further increase the SID-1-dependent stimulation of DBF-2 activity. To 

test this assumption all three kinases were purified individually and combined in an in vitro kinase 

assay, which showed that addition of CDC-7 to a SID-1 ─ DBF-2 mixture resulted in a continuing 

increase of stimulated DBF-2 kinase activity (Figure 7 B). This continuing increase was not observed 

by addition of a catalytically inactive version of CDC-7. Moreover, individually precipitated CDC-7 was 

unable to stimulate purified DBF-2, and control approaches using SID-1 and CDC-7 precipitates 

proved the specificity of this assay for the NDR kinase and established that SID-1 is required to 

transmit CDC-7-dependent signals towards DBF-2.  

Activation of NDR kinases requires phosphorylation of a specific C-terminal hydrophobic motif 

(Stegert et al., 2005, Jansen et al., 2006, Maerz et al., 2012). To determine whether SID-1-dependent 

stimulation of DBF-2 occurs at the predicted hydrophobic motif of DBF-2, a DBF-2(T761A) variant, 

which contains a threonine to alanine substitution of the predicted hydrophobic motif 

phosphorylation site, was used. These assays showed that the specific stimulation of DBF-2 by SID-1 

is only possible with purified wild type DBF-2, but not with DBF-2(T761A) (Figure 7 C). In addition, 

phosphorylation experiments coupled with mass-spectrometric analysis further supported Thr671 

phosphorylation of DBF-2 by SID-1: phosphopeptides of the hydrophobic motif of DBF-2 precipitated 

under high-stringency conditions were only identified when DBF-2 was co-incubated with separately 

purified SID-1 in in vitro kinase reactions (Figure S2). Collectively, the data show that SID-1 transmits 

CDC-7-dependent signals towards the effector kinase DBF-2 through phosphorylation of DBF-2 at 

Thr671. 
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Figure 7: CDC-7-dependent activation of DBF-2 occurs through SID-1 (A) Reciprocal co-immunoprecipitation 

experiments of CDC-7-GFP and HA-SID-1 from cell extracts co-expressing both functionally tagged proteins 

indicated a stable interaction of the two kinases. (B) In vitro DBF-2 activity assays revealed that addition of 

individually purified SID-1 stimulated DBF-2 activity. SID-1-dependent stimulation of DBF-2 was further 

enhanced by addition of CDC-7 to the reaction, while addition of the kinase dead variant CDC-7(D195A) did 

not. As control, CDC-7 did not stimulate DBF-2 and approaches using SID-1 and CDC-7 precipitates proved the 

specificity of this assay for the NDR kinase. (C) SID-1 was able to stimulate DBF-2, but not DBF-2(T671A). 

Western blot analysis of the precipitated proteins was used to determine comparable kinase levels (n = 5). 

 

5.1.3 Dual phosphorylation of DBF2 is required for kinase activity and septum formation 

NDR kinase activity is regulated through interaction with adaptor proteins of the MOB family, auto-

phosphorylation in the activation segment, and phosphorylation of the C-terminal hydrophobic motif 

by an upstream-acting germinal centre (GC) family kinase (Hergovich et al., 2006, Maerz & Seiler, 

2010). In order to further dissect the phospho-regulation of DBF-2, strains expressing DBF-2 variants 

harboring point mutations in the predicted auto-phosphorylation and hydrophobic motif sites Ser499 

and Thr671, respectively, were characterized. Both, the Ser499 to alanine (non-phosphorylated, 

inactive mimic) and to glutamate (phosphorylated, active mimic) substitutions were nonfunctional, 

and these kinase variants were unable to complement the septation defects of ∆dbf-2 (Figure 8 A). 

Mutations of the Thr671 to alanine/glutamate revealed that DBF-2(T671E), but not DBF-2(T671A) 

was functional and complemented the deletion strain.  

In vitro kinase assays using DBF-2 variants harboring either of the two Ser499 substitutions displayed 

activities reduced to ca. 1/3 of the wild type DBF-2 control (33±6% and 30±12% for DBF-2(S499A) and 

DBF-2(S499E), respectively; n = 5; Figure 8 B). In contrast, the kinase activity of DBF-2(T671A) was 

slightly increased (200±7%; n = 5), while DBF-2(T671E) displayed >30-fold increased activity 

(3300±240%; n = 5). Although modification of homologous residues affected the interaction of the S. 

pombe NDR kinase Sid2 with Mob1 (Hou et al., 2004), MOB-1 binding was not affected by these 

modifications in N. crassa, and equal MOB-1 levels co-precipitated with each DBF-2 variant (Figure 8 

B). To confirm Ser499 as auto-phosphorylation site, in vitro phosphorylation experiments coupled 

with mass-spectrometric analysis of DBF-2 kinase variants precipitated under high-stringency 
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conditions were performed. Tryptic peptides generated from wild type DBF-2 and hyperactive DBF-

2(T671E) showed strong phosphorylation of S499, while a catalytically inactive DBF-2(D422A) variant 

did not, indicating that Ser499 is the primary site of DBF-2 auto-phosphorylation (Figure S2). 

Moreover, phosphorylation of multiple S/T residues in the N-terminal, non-catalytic region of the 

DBF-2(T671E) variant was identified. 

Based on the fact that both Ser499 modifications exhibited reduced DBF-2 activity in vitro and were 

nonfunctional in vivo may suggest that dynamic modification of the activation segment (i.e. the 

regulated phosphorylation/dephosphorylation) could modulate DBF-2 function. To further explore 

this possibility strains carrying various combinations of both S499 and T671 to alanine/glutamate 

substitutions were generated (Figure 8 B). None of these double modifications resulted in functional 

protein, and complementation of the ∆dbf-2 defects failed with all constructs (data not shown). 

Kinase assays revealed that the two Thr671 to alanine variants DBF-2(S499A;T671A) and DBF-

2(S499E;T671A) displayed reduced activities, which were similar to the individual Ser499 mutations 

(34±4% and 31±13% of wild type DBF-2, respectively; n = 5). Furthermore, substitution of the 

hydrophobic motif threonine with glutamate in a S499A and S499E background increased kinase 

activity 3.6- and 5.3-fold compared to the respective Ser499-modified protein (n = 5). Thus, 

phosphorylation of Thr671 can partly overcome the lack of activation segment modification, but the 

stable modification of Ser499 prevented full activation of DBF2. 

Figure 8: Dual phosphorylation of DBF-2 is required for kinase activity and septum formation. (A) Functional 

characterization of two conserved phosphorylation sites of DBF-2. The phosphomimetic DBF-2(T671E) 

variant complemented Δdbf-2, while substitution of Ser499 to alanine and glutamate and Thr671 to alanine 

did not. Cell wall and septa were labeled with Calcofluor White. (B) Kinase activity and MOB-1 interaction 

pattern of the indicated DBF-2 variants. Hydrophobic motif phosphorylation of Thr671 was required for 

maximal kinase activity, while modification of Ser499 within the activation segment reduced DBF-2 activity 

to ca. 30% of the wild type DBF-2 control. Phospho-site double mutant analysis indicated that substitution of 

Thr671 to glutamate in a S499A and S499E background could only partly restore kinase activity. Precipitated 

DBF-2 variants were assayed in vitro using the synthetic NDR kinase peptide (KKRNRRLSVA) as substrate (n = 
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5). Western blot analysis indicated equal precipitation of the co-activator protein MOB-1 with DBF-2 

activation segment and hydrophobic motif variants. 

 

5.2 MST-1 controls proper CAR formation and connects the SIN and MOR pathway during 

septum formation   

5.2.1 MST-1 displays features reminiscent of SIN as well as MOR components 

The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has 

been implicated in a wide variety of cellular processes including cell growth, proliferation and 

polarity (Boyce & Andrianopoulos, 2011, Dan et al., 2001). A phylogenetic analysis of the three N. 

crassa germinal centre (GC) kinases proposed a classification into functionally distinct subgroups 

(Figure 9 A). N. crassa POD-6 and the related budding and fission yeast kinases Kic1p and Nak1 

clustered together, in line with their conserved function as upstream components of the MOR 

pathway (Huang et al., 2003, Nelson et al., 2003, Seiler et al., 2006). The second phylogenetic 

subgroup is composed of S. pombe Sid1, N. crassa SID-1 and A. nidulans SEPM, supporting a 

conserved function during septation (Guertin et al., 2000, Kim et al., 2009). Proteins of the third 

subgroup are most closely related to animal group III GC kinases and the fission yeast member Ppk11 

was recently characterized as auxiliary factor of the MOR pathway that supports cell separation 

(Goshima et al., 2010). However, the N. crassa protein NCU00772/MST-1 had been implicated as part 

of the SIN in a preliminary analysis (Dvash et al., 2010).  

In order to determine the potential role of N. crassa MST-1 as a component of the SIN/MOR 

pathways, the localization pattern and deletion mutant characteristics of mst-1 were compared to 

those of SIN and MOR components. As previously shown N. crassa sin mutants are aseptate (Maerz 

et al., 2009), while mor-defective cells produce multiple, closely spaced septa (Seiler et al., 2006, 

Maerz et al., 2009). Analysis of ∆mst-1 revealed the formation of multiple, closely spaced septa and 

the presence of abnormal cross walls in the form of cortical spirals in older hyphal segments (Figure 9 

B). Next, the localization of a functional MST-1-GFP fusion construct showed the constitutive 

association with spindle pole bodies (SPBs) independently of the cell cycle state and also with 

constricting septa, a localization pattern characteristic for fungal SIN components (Guertin et al., 

2000, Kim et al., 2006, Kim et al., 2009). In contrast, a GFP fusion construct of the MOR GC kinase 

POD-6 localized at the hyphal tip in a dot-like structure in the distal region of the Spitzenkörper, as 

membrane-associated apical crescent and at forming septa (Figure 9). This localization pattern is 

consistent with the reported localization of the morphogenesis pathway complex COT-1 ─ MOB-2A 

(Maerz et al., 2012, Dettmann et al., 2012). Due to the weak expression level of POD-6-GFP, the 

detection as cortical ring during the initial stages of septum constriction was impossible. 
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Nevertheless, POD-6-GFP strongly labeled septa at later stages of septum constriction and 

accumulated around the mature septal pore. Neither POD-6 nor COT-1 associated with SPBs (Figure 9 

C and Figure S3). 

 

Figure 9: The germinal centre kinase MST-1 reveals characteristics of SIN as well as MOR components (A) 

Phylogenetic comparison of fungal GC kinases. The tree was generated by the neighbour-joining method 

based on a ClustalW alignment of the indicated S. cerevisiae, S. pombe and N. crassa proteins. HsMst3 and 

DmGck3 were used as examples for animal group III GC kinases, DmHippo was used as GC kinase II outgroup 

(multiple alignment parameters: open gap penalty 10.0, extend gap penalty 0.0, delay divergent 40%, gap 

distance 8, similarity matrix blosum). (B) Phenotypic characteristics of ∆mst-1, cot-1(ts) and ∆dbf-2 during 

septum formation. Note the presence of closely spaced septa (second panel) and abnormal spirals (third 

panel) of ∆mst-1. Also cot-1-defective cells produce multiple, closely spaced septa, whereas ∆dbf-2 cells are 

aseptate. Cell wall and septa were labeled with Calcofluor White. (C) Functional GFP fusion proteins of DBF-

2, MST-1 and COT-1 localized as constricting rings at forming septa, while DBF-2 and MST-1 also localized to 

spindle pole bodies (arrows). Nuclei were labeled with histone H1-RFP, the cell wall was stained with 

Calcofluor White and plasma membrane and Spitzenkörper with FM4-64. (D) MST-1-GFP associated with 

SPBs of interphase nuclei as well as during early and late mitotic stages (as indicated by nuclear 

morphology). Nuclei were labeled with histone H1-RFP. 
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5.2.2 MST-1 controls proper CAR formation 

It was recently shown that components of the S. cerevisiae mitotic exit network (MEN) play a direct 

role in promoting cytokinesis by acting upon components of the contractile actomyosin ring (CAR) 

and cell separation machineries (Meitinger et al., 2012). For instance, localization of Dbf2p to the 

future site of septum formation is required for the assembly and constriction of the CAR (Meitinger 

et al., 2012, Weiss, 2012). Due to the formation of abnormal cross walls in the form of cortical spirals 

in the ∆mst-1 mutant the dynamics of septum constriction in wild type and ∆mst-1 by monitoring the 

behavior of the formin BNI1 (Justa-Schuch et al., 2010) were analyzed. A functional BNI-1-GFP fusion 

construct formed cortical rings with equal signal intensity in wild type cells, and septum constriction 

was concentric, resulting in centrally positioned septal pores (Figure 10 A). In contrast, BNI-1 

frequently (i.e. in 38 of 47 septation events analyzed) formed asymmetric rings and open circles that 

led to acentric constriction and asymmetric septal pores in ∆mst-1. Furthermore, BNI-1 also 

associated with extensive cortical Calcofluor white-labeled spirals (Figure 10 B). Moreover, a lifeact-

GFP construct, which was recently developed for N. crassa (Delgado-Alvarez et al., 2010) was utilized 

to directly monitor actin dynamics during CAR assembly and constriction. Lifeact-GFP labeled a mesh 

of F-actin cables and patches named the septal actin tangle (SAT) around the future septation site in 

wild type cells, which subsequently coalesced to form the CAR (Figure 10 C). However, in a ∆mst-1 

mutant the F-actin meshwork was miss-organized and the actin cables were irregularly distributed. 

The SAT to CAR transition lasted 2:48(±0:36) min in wild type (n = 15), but 8:42(±2:00) min (n = 12) in 

∆mst-1. The failure of correct CAR assembly resulted in acentric constriction and asymmetric position 

of septal pores or the formation of open actin spirals, which were unable to constrict (Figure 10 D). 
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Figure 10: MST-1 is required for proper contractile actin ring formation. (A) 4D reconstruction of z-stacks in 

time lapse series revealed cortical, concentrically constricting BNI-1-GFP rings in wild type cells, which 

resulted in centrally positioned septal pores. In contrast, BNI-1 formed asymmetric and frequently open BNI-

1-GFP rings in ∆mst-1 that led to acentric CAR constriction and asymmetric septal pores. (C) 3D 

reconstruction of z-stacks illustrates BNI-1-GFP association with extensive cortical Calcofluor white-labeled 

spirals in ∆mst-1. (D) Comparison of actin dynamics during CAR assembly and constriction in wild type and 

∆mst-1. Lifeact-GFP labeled a dynamic meshwork of actin cables and patches around the future septation 

site in wild type cells, which subsequently coalesced to form the CAR. The actin meshwork was miss-

organized and irregularly distributed in ∆mst-1 (E) 4D reconstruction of z-stacks in time lapse series 

visualized open actin spirals labeled by lifeact-GFP, which were unable to constrict. Cell wall, septa and 

cortical spirals were labeled by Calcofluor White. 

 

5.2.3 Genetic interactions connect ∆mst-1 with SIN, but not MOR mutants 

Besides the described septation defects observed in ∆mst-1, this mutant displayed only minor 

vegetative abnormalities. Hyphal growth rates, colony behavior and conidiation pattern were similar 

to wild type (data not shown). However, sexual development of ∆mst-1 was affected in that mutant x 

wild type crosses resulted in ca. 50% of round (yet fully viable) ascospores, in contrast to the typical 
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pea-shaped progeny generated in wild type x wild type crosses (Figure 11 A). Moreover, ∆ x ∆ crosses 

resulted in the formation of empty perithecia lacking asci, and the formation of ascospores was 

abolished.  

In order to test for genetic interactions between ∆mst-1 and the SIN/MOR mutants, several double 

mutants were generated (Figure 11 B). Crosses of the MOR mutants ∆cot-1 or ∆pod-6 with ∆mst-1 

resulted in the expected segregation of round and normally shaped ascospores, although the total 

number of generated ascospores was reduced. In contrast, double mutants of ∆mst-1 and the SIN 

mutants ∆dbf-2 or ∆sid-1 showed a synthetic effect represented by empty perithecia and no 

ascospore formation (Figure 11 B). 

 

 

Figure 11: ∆mst-1 displays synthetic interactions with SIN, but not MOR pathway mutants. (A) ∆mst-1 x wild 

type crosses produced a large number of round ascospores, in contrast to the typical pea-shaped ascospores 

generated in wild type crosses. ∆mst-1 x ∆mst-1 crosses were blocked after perithecium formation, resulting 

in fruiting bodies that lacked most asci and all ascopores. (B) Synthetic defects were observed in crosses of 

∆mst-1 with SIN but not MOR mutants. ∆mst-1 x ∆dbf-2 and ∆mst-1 x ∆sid-1 crosses generated empty 

perithecia. In contrast, ∆mst-1 x ∆cot-1 and ∆mst-1 x ∆pod-6 crosses resulted in the expected segregation of 

round and normally shaped ascospores. 
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5.2.4 The SIN kinase CDC-7 regulates SID-1 and MST-1 in an antagonistic manner 

The distinct localization of MST-1 at SPBs and the genetic interaction of ∆mst-1 with SIN mutants 

identified MST-1 as a regulatory SIN component. Thus, GFP-trap affinity purification experiments 

coupled with mass spectrometry were performed to determine the composition of the N. crassa SIN 

and MST-1 interacting proteins (Figure 12 A). Precipitates of CDC-7-, SID-1- and DBF-2-GFP fusion 

proteins recovered the central components of the SIN, including the three kinases, the predicted 

GTPase SPG-1/NCU08878 and the GC and NDR kinase adaptors CDC-14 and MOB-1, respectively. The 

Ste20-like GC kinases SID-1 and MST-1 only co-purified together, when CDC-7 was used as bait, while 

only one of the two GC kinases was detected in the other purifications. Furthermore, the interaction 

of CDC-7 with MST-1 was confirmed in vivo by reciprocal co-immunoprecipitation experiments 

(Figure 12 B). In order to prove distinct CDC-7 ─ MST-1/SID-1 complexes, GC-kinase displacement 

assays were performed. For this purpose a N. crassa strain, co-expressing functionally tagged 

proteins of CDC-7-GFP and HA-MST-1 was used. Precipitation of CDC-7-GFP allowed detection of co-

purified HA-MST-1, whereas addition of seperately purified SID-1-GFP to a CDC-7-GFP precipitation 

resulted in a reduced abundance of co-purified HA-MST-1 (Figure 12 C). Due to the fact that 

precipitation of CDC-7-GFP also allowed detection of co-purified HA-SID-1 (Figure 7), the same 

approach was performed using a N. crassa strain expressing functionally tagged proteins of CDC-7-

GFP and HA-SID-1. Addition of individually precipitated MST-1-GFP to a CDC-7-GFP purification 

resulted in a reduced abundance of co-purified HA-SID-1 (Figure 12 D). Thus, the CDC-7 occurance is 

distributed to individual complexes, either CDC-7 ─ MST-1 or CDC-7 ─ SID-1. As already described in 

section 5.1.2 purified SID-1 stimulated DBF-2 in vitro through phosphorylation of the hydrophobic 

motif of DBF-2 and the SID-1-dependent activation of DBF-2 is further enhanced by addition of 

separately purified CDC-7. Analogous, in vitro kinase assays, using precipitated MST-1 instead of SID-

1 indicated that also MST-1 is able to stimulate DBF-2 activity (Figure 12 E). However, addition of 

purified CDC-7 to a MST-1-DBF-2 mixture resulted in a decrease of MST-1-dependent stimulation of 

DBF-2 activity. A similar decrease of MST-1-mediated DBF-2 activity could be observed by addition of 

a catalytically inactive version of CDC-7 (Figure 12 E).  
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Figure 12: The SIN kinase CDC-7 regulates SID-1 and MST-1 in an opposite manner. (A) AP-MS data from two 

independent biological replicates were used for identification of predicted SIN components. (B) Co-

immunoprecipitation experiments of CDC-7-GFP with HA-SID-1 or HA-MST-1 in extracts of forced 

heterokaryons expressing the labeled proteins.  (C) GC-kinase displacement assay showed that precipitation 

of CDC-7-GFP allowed detection of HA-MST-1, whereas addition of seperately purified SID-1-GFP to a CDC-7-

GFP precipitation resulted in a reduced abundance of co-purified HA-MST-1 to 15,1±6,3% (n= 3) (D) GC-kinase 

displacement assay showed that precipitation of CDC-7-GFP allowed detection of HA-SID-1, whereas addition 

of seperately purified MST-1-GFP to a CDC-7-GFP precipitation resulted in a reduced abundance of co-

purified HA-SID-1 to 12,1±3,5% (n= 3) (E) In vitro DBF-2 activity assays revealed that addition of individually 

purified MST-1 stimulated DBF-2 activity. In contrast, MST-1-dependent stimulation of DBF-2 was decreased 

by addition of CDC-7 to the reaction. The same decrease was observed by addition of a kinase dead variant 

of CDC-7, CDC-7(D195A). As control, CDC-7 and the CDC-7(D195A) did not stimulate DBF-2 (n = 4). Western 

blot analysis of the precipitated proteins was used to determine comparable kinase levels. 

 

5.2.5 MST-1 coordinates SIN and MOR functions during septum formation 

The biochemical analysis of MST-1 and its localization strongly suggest a function of MST-1 in fine-

tuning the SIN. However, ∆mst-1 also partly phenocopied MOR mutants in that the formation of 

multiple, closely spaced septa was observed (Figure 9). In order to determine if MST-1 may regulates 
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both NDR kinase pathways, SIN and MOR, and accordingly whether MST-1 was capable of activating 

the MOR kinase COT-1 in vitro, it was found that precipitated MST-1 stimulated DBF-2 as well as COT-

1 (Figure 13 A, B). In contrast SID-1 only stimulated DFB-2, while POD-6 was specific for COT-1. Thus, 

SID-1 and POD-6 are pathway-specific activators of the SIN and MOR, respectively, consistent with 

the phenotypic characteristics of the respective mutants and the SIN/MOR-specific localization 

patterns (Seiler et al., 2006, Maerz et al., 2009, Dettmann et al., 2012). MST-1 on the other hand 

functions as promiscuous activator of both pathways. Next, it was tested if the three GC kinases use 

similar mechanisms of NDR kinase activation by phosphorylating the hydrophobic motifs of DBF-2 

and COT-1 (Figure 13 A, B). In vitro kinase assays showed that MST-1 was unable to stimulate DBF-2 

and COT-1 variants (DBF-2 T671A; COT-1 T589A), in which their hydrophobic motif phosphorylation 

site was modified. Thus, all three GC kinases activate their target NDR kinase(s) by phosphorylating 

their hydrophobic motif(s). To further dissect the function of MST-1 during MOR signalling, 

interaction studies and biochemical analysis were performed. Yeast two-hybrid experiments showed 

the interaction of MST-1 with the MOR components POD-6 and COT-1 and both interactions were 

confirmed by in vivo co-immunoprecipitation experiments (Figure 13 C/D/E). Since it was shown that 

CDC-7 reduced the MST-1-dependent stimulation of DBF-2 activity (Figure 12 E), a similar approach 

was performed using precipitated COT-1 instead of DBF-2 in in vitro kinase assays. These assays 

revealed that addition of purified CDC-7 to a MST-1 ─ COT-1 mixture resulted in a decrease of MST-1-

dependent stimulation of COT-1 activity (Figure 13 F). Next, GC-kinase displacement assays showed 

that addition of purified MST-1 to a separately precipitated POD-6/COT-1 complex (Seiler et al., 2006, 

Dettmann et al., 2012) completely displaced POD-6 (Figure 13 G). 
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Figure 13: SID-1 and POD-6 are pathway-specific activators of the SIN and MOR, while MST-1 regulates both 

NDR kinase pathways. (A) MST-1 and SID-1 function in concert to regulate the activity of the SIN effector 

kinase DBF-2. In vitro kinase assays of precipitated MST-1 and SID-1 specifically stimulated DBF-2, but not 

DBF-2(T671A) (n= 3). (B) COT-1 was specifically phosphorylated by the upstream GC kinases POD-6 and MST-

1, but not by SID-1 (n=3). Western blot analysis of the precipitated proteins was used to determine 

comparable kinase levels. (C) Yeast two-hybrid experiments showed the interaction of COT-1/POD-6 with 

MST-1. (D) Reciprocal in vivo co-immunoprecipitation experiments of myc-COT-1 and HA-MST-1. (E) 

Reciprocal in vivo co-immunoprecipitation experiments of MST-1-GFP and HA-POD-6. (F) Addition of CDC-7 

to a COT-1 ─ MST-1 mixture decreased COT-1 activity in in vitro kinase assays. In contrast a CDC-7 ─ MST-1 

mixture, inhibited NDR kinase activity (n = 4). Western blot analysis of the precipitated proteins was used to 

determine comparable kinase levels. (G) GC-kinase displacement assay showed that precipitation of myc-

COT-1 allowed detection of HA-POD-6, whereas addition of seperately purified MST-1-GFP to a myc-COT-1 

precipitation resulted in a complete displacement of co-purified HA-POD-6 (n= 3). 
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5.3 The SIN antagonizes the MOR, which in turn inhibits BUD-3 localization 

5.3.1 Genetic relationship between SIN, MOR and BUD mutants 

The mechanisms of determining the site of cell division are poorly understood in filamentous fungi. 

The anillin BUD-4 marks septum placement by organizing the RHO4-BUD3-BUD4 GTPase module in N. 

crassa (Justa-Schuch et al., 2010). In addition to the importance of the SIN for providing the temporal 

cue for CAR constriction, the activity of the network is also important for CAR assembly (Hachet & 

Simanis, 2008, Huang et al., 2008, Roberts-Galbraith & Gould, 2008). In A. nidulans SidB and its co-

activator MobA are members of the SIN and localize to SPBs, the forming septum and function 

upstream of the AnBud3-Rho4 complex (Si et al., 2010, Bruno et al., 2001, Kim et al., 2006). 

In order to determine the genetic relationship between SIN/MOR and BUD components, several N. 

crassa double mutants were generated (Figure 14). N. crassa SIN as well as BUD mutants are 

aseptate (Maerz et al., 2009, Justa-Schuch et al., 2010), while MOR-defective cells produce multiple, 

closely spaced septa (Seiler et al., 2006, Maerz et al., 2009). Crosses of the MOR mutant cot-1(ts) 

with the SIN mutants ∆dbf-2 or ∆mob-1 resulted in progeny that regained the ability to form septa at 

restrictive temperature. On the contrary progeny of crosses of cot-1(ts) with ∆bud-3 or ∆bud-4 

showed thin and aseptate hyphae, which frequently lysed. This epistasis analysis revealed that 

septum formation in a MOR deletion background does not require a functional SIN cascade and 

furthermore indicates a function of DBF-2 upstream of COT-1, which in turn inhibits the BUD 

complex.  
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Figure 14: DBF-2 functions upstream of COT-1, which in turn inhibits the BUD complex. Epistasis analysis of 

the indicated SIN/MOR deletion mutants. N. crassa SIN as well as BUD mutants are aseptate, while MOR-

defective cells produce multiple, closely spaced septa. Double deletion mutants of cot-1(ts) and ∆dbf-2 or 

∆mob-1 regained the ability to form septa at restrictive temperature, whereas progeny of crosses of cot-1(ts) 

with ∆bud-3 or ∆bud-4 showed thin and aseptate hyphae. Cell wall and septa were labeled with Calcofluor 

White. 

 

5.3.2 DBF-2 inhibits COT-1 activity through formation of kinase-kinase heterodimers 

Due to the functional relationship between the SIN kinase DBF-2 and the MOR kinase COT-1 both 

kinases were tested for interaction by in vivo co-immunoprecipitation experiments. Purification of 

GFP-DBF-2 allowed the co-precipitation of myc-COT-1 and vice versa, which confirmed the 

interaction of DBF-2 with COT-1 in vivo (Figure 15 A). NDR kinases contain a conserved basic region, 

which functions as dimerization domain and binding platform for other regulatory proteins (Maerz et 

al., 2009, Millward et al., 1998, Hou et al., 2004, He et al., 2005a, Hergovich et al., 2006, Ponchon et 

al., 2004). In order to determine whether the conserved dimerization domain of COT-1 is sufficient to 

interact with DBF-2, several yeast two-hybrid experiments were performed (Figure 15 B). Specific 

interactions were detected between DBF-2 and full length COT-1 and two truncated variants of COT-

1 (amino acids 1–212 and 119–212; designated long and short, respectively), indicating that region 

119–212 of COT-1 is sufficient to interact with DBF-2. Moreover, DBF-2 (as other NDR kinases) is able 

to interact with itself.  
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Figure 15: The NDR kinases DBF-2 and COT-1 form kinase-kinase heterodimers. (A) Reciprocal in vivo co-

immunoprecipitation experiments of GFP-DBF-2 and myc-COT-1. (B) Yeast two-hybrid experiments showed 

that region 119–212 of COT-1 is sufficient to interact with DBF-2. (C) General domain structure of the NDR 

kinases DBF-2 and COT-1 and illustration of constructs used for yeast two-hybrid analysis. 

 

Next, it was tested if the interaction of DBF-2 with the COT-1 dimerization domain has an impact on 

COT-1 kinase activity. Therefore, in vitro kinase assays using individually purified COT-1 and DBF-2 

were performed and revealed that incubation of COT-1 with DBF-2 resulted in a decrease of COT-1 

kinase activity to 70±5% (Figure 16 A). Due to the fact that both kinases displayed activity towards 

the synthetic peptide encompassing the consensus NDR kinase target motif, the same approach was 

performed using a catalytically inactive variant DBF-2(D422A). By mixing precipitated COT-1 with 

separately purified DBF-2(D422A), a further decrease (correlating with the activity of wildtype DBF-2) 

of COT-1 kinase activity was observed, indicating that DBF-2 inhibits COT-1 activity by formation of 

hetero-dimers (Figure 16 A). Western blot analysis of the precipitated proteins was used to 

determine equal kinase levels. To further dissect the mechanism of COT-1 inhibition by DBF-2 

analogous in vitro kinase assays with increasing DBF-2(D422A) amounts (from 0 ml up to 4 ml) were 

performed. The results showed a DBF-2(D422A)-dependant, continuing decrease of COT-1 activity 

(Figure 16 B). 
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Moreover, it was recently shown that the N-terminal region directly preceding the kinase domain of 

N. crassa COT-1 is also responsible for the interaction with MOB-2 adaptor proteins, which in turn is 

crucial for COT-1 activity and stability (Maerz et al., 2009). In order to determine if the formation of 

COT-1 ─ DBF-2 hetero-dimers results in a MOB-2 displacement, thus decreasing COT-1 activity, a 

MOB-2 displacement assay was performed. For this purpose a N. crassa strain co-expressing 

functionally tagged myc-COT-1 and HA-MOB-2A proteins was constructed. Precipitation of myc-COT-

1 allowed detection of HA-MOB-2A. The addition of seperately purified GFP-DBF-2 to such a myc-

COT-1/HA-MOB-2A precipitate resulted in a reduced abundance of co-purified HA-MOB-2A (Figure 

16 C). Thus, DBF-2 presumably functions as competitive inhibitor of COT-1 by forming hetero-dimers. 

 

 

Figure 16: DBF-2 functions as competitive inhibitor of COT-1 by forming kinase-kinase heterodimers. (A) In 

vitro kinase assays using individually purified COT-1 and DBF-2(D422A), incubation of COT-1 with DBF-

2(D422A) resulted in a decrease of COT-1 kinase activity to 60±1% (n= 5). (B) In vitro kinase assays with 

increasing DBF-2(D422A) amounts showed a DBF-2(D422A)-dependant, continuing decrease of COT-1 activity 

to 28±4,5% (n=4). (C) MOB-2 displacement assay showed that precipitation of myc-COT-1 allowed detection 

of HA-MOB-2A, whereas addition of seperately purified GFP-DBF-2 to a myc-COT-1 precipitation resulted in a 

reduced abundance of co-purified HA-MOB-2A to 43,2±9,8% (n= 3). 
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5.3.3 COT-1, but not DBF-2 phosphorylates BUD-3/BUD-4 landmark proteins  

As mentioned in section 5.3.1 epistasis analysis revealed that septum formation in a MOR deletion 

background does not require a functional SIN cascade and furthermore a function of DBF-2 upstream 

of COT-1, which in turn inhibits the BUD complex. To further determine the functional relationship 

between both NDR kinases and the BUD-3 ─ BUD-4 complex, co-immunoprecipitation (co-IP) 

experiments were performed to test if DBF-2 and/or COT-1 interacted with BUD-3 and/or BUD-4. 

Purification of BUD-3-GFP as well as BUD-4-GFP allowed co-precipitation of myc-COT-1, which 

confirmed the interaction of both BUD proteins with COT-1 in vivo (Figure 17 A). Analogous 

experiments were done using strains expressing functionally tagged proteins of either BUD-3-GFP or 

BUD-4-GFP and myc-DBF-2, but no interaction could be observed (data not shown).  

The in silico inspection of BUD-3/4 sequence revealed the presence of one and four putative NDR 

kinase consensus phosphorylation sites (RXXS) located within BUD-3 and BUD-4, respectively (Figure 

17 B). Therefore, it was tested whether BUD-3/4 are direct substrates of any of the two NDR kinases. 

In vitro phosphorylation assays using individually purified BUD-3/4 and hyperactive variants of DBF-

2(T671E) and COT-1(T589E) showed that BUD-3 as well as BUD-4 were phosphorylated by COT-

1(T589E), but not by DBF-2(T761E) (Figure 17 C). In a next step, the predicted NDR kinase consensus 

sites were mutated to alanine (BUD-3(S798A); BUD-4(4xS2A) to create nonphosphorylatable 

mutants. In vitro kinase assays showed a reduced phosphorylation of precipitated BUD-3(S798A) and 

BUD-4(4xS2A) by COT-1(T589E) compared to the phosphorylation of wild type BUD-3/4 variants 

(Figure 17 D). Collectively, these data show that BUD-3 and BUD-4 are in vitro substrates of the NDR 

kinase COT-1, and confirmed the predicted NDR kinase consensus phosphorylation sites located in 

BUD-3/4. 

To obtain better insight into the functional consequences of BUD-3/4 phosphorylation by COT-1, the 

phenotype of nonphosphorylatable (BUD-3(S798A); BUD-4(4xS2A) and phosphomimetic (BUD-

3(S798E); BUD-4(4xS2E) variants was analyzed. While both BUD-4 mutants displayed no significant 

abnormalities (data not shown), the BUD-3(S798A) and BUD-3(S798E) mutants revealed the 

formation of multiple, closely spaced septa and moreover, the presence of abnormal cross walls in 

the form of cortical spirals. However, both BUD-3 variants restored the inability of the Δbud-3 

mutant to form septa. 
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Figure 17: BUD-3 and BUD-4 are in vitro substrates of the NDR kinase COT-1. (A) Purification of BUD-3-GFP as 

well as BUD-4-GFP allowed co-immunoprecipitation of myc-COT-1, which confirmed the interaction of both 

BUD proteins with COT-1 in vivo. (B) General domain structure and predicted NDR kinase phosphorylation 

sites of BUD-3 and BUD-4 (AHD= anillin homology domain, PH= pleckstrin homology domain). (C) In vitro 

phosphorylation assays showed that BUD-3 as well as BUD-4 were phosphorylated by the hyperactive 

variant of COT-1(T589E), but not by DBF-2(T761E). The activity of COT-1 was determined by 

autophosphorylation and of DBF-2 by phosphorylation of maltose binding protein (MBP). (D) In vitro kinase 

assays showed a reduced phosphorylation of BUD-3(S798A) and BUD-4(S2A)-4 by COT-1(T589E) compared to 

the phosphorylation of wild type BUD-3/4 variants. Western blot analysis of the precipitated proteins was 

used to verify equal protein levels. (E) Mutation of the COT-1 phosphorylation site S798 of BUD-3 results in 

misregulated septation. Cell wall and septa were labeled with Calcofluor White. 

 

5.3.4 COT-1 phosphorylation inhibits BUD-3 localization 

BUD-3 is a large protein of 1604 amino acids and except for the Rho-GEF domain it lacks recognizable 

domains that can provide clues for its function (Figure 17 B). Sequence alignment with BUD-3 
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orthologs present in budding yeast and other filamentous ascomycete fungi also failed to identify 

highly homologous sequences. However, there are two short sequences, 748LSRRIIQLL756 and 

802VKLLSNFL809, that resemble amphipathic helices (Figure 18 A) (Bernstein et al., 2000, Szeto et al., 

2002). When projected on a helical wheel, one half of the helix is highly hydrophobic, consisting of 

leucine, phenylalanine and isoleucine residues, whereas the other half is hydrophilic and contains at 

least one positively charged lysine or arginine residue (Figure 18 A, lower panel). In addition, multiple 

positively charged residues are present in the sequences flanking the left side of the second helix 

(basic-rich region - BR). Interestingly, Ser798, which was identified as COT-1 phosphorylation site in 

BUD-3 is located between this BR motif and the second amphiphatic helix. It is known that 

amphipathic helices facilitate plasma membrane targeting to some proteins (Szeto et al., 2002, 

Antonny et al., 1997, Takahashi & Pryciak, 2007), thus BUD-3’s localization to the site of septation 

could be mediated by these identified amphipathic helices. To determine this possibility, BUD-3-

Helix-GFP fusion proteins carrying both helices including their flanking regions (aa 739-816) as well as 

mutated BUD-3-S798A-Helix-GFP and BUD-3-S798E-Helix-GFP constructs were generated (Figure 18 

B). Only the BUD-3-S798A-Helix-GFP construct localized at constricting septa, while the wild type 

variant and the BUD-3-Helix-S798E construct did not. Thus, mimicing the constitutive 

nonphosphorylation of the putative NDR kinase consensus phosphorylation sites Ser798 of BUD-3 

allowed localization at forming septa. 
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Figure 18: Ser798 of BUD-3 is located between two amphiphatic helices and regulates localization of BUD-3. 

(A) Upper panel, schematic model and amino acid sequence of the amphipathic helices with flanking regions 

of BUD-3. Positively charged and hydrophobic residues are indicated with + and o, respectively. Lower panel, 

a helical wheel projection of the amphipathic helices. (B) Only the constitutive non-phosphorylated BUD-3-

Helix-S798A-GFP variant allowed localization at forming septa. Nuclei were labeled with histone H1-RFP, the 

cell wall was stained with Calcofluor White. 
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6. Discussion 
 

6.1 The N. crassa SIN functions as hierarchical, stepwise kinase cascade 

Septum formation is essential for growth and development of uni- and multicellular organisms. The 

temporal coordination of mitosis and cytokinesis is mediated by a signalling cascade known as the 

septation initiation network (SIN) in fission yeast and the mitotic exit network (MEN) in budding 

yeast (Meitinger et al., 2012, Johnson et al., 2012). In contrast to these unicellular yeasts, regulation 

of septum formation and the composition of the SIN in filamentous fungi is only beginning to be 

unraveled. An in silico analysis using S. pombe and S. cerevisiae SIN proteins identified homologs for 

all SIN network components except one scaffold protein in the model mold N. crassa. The phenotypic 

and biochemical analysis of these predicted SIN components allowed (a) the characterization of the 

SIN kinase cascade consisting of CDC-7, SID-1 and DBF-2 together with their regulatory subunits CDC-

14 and MOB-1, respectively, and (b) the establishment of their hierarchical relationship and (c) 

provided a mechanism of DBF-2 effector kinase activation. 

A first aspect of characterization of the N. crassa SIN was to determine the activation mechanism of 

the SIN effector kinase DBF-2 in in vitro activity studies. Based on these assays it was determined that 

DBF-2 is regulated by dual phosphorylation: Ser499 within the activation segment (AS) is auto-

phosphorylated, while the hydrophobic motif (HM) site Thr671 is targeted by the upstream kinase 

SID-1. Current models for NDR kinase activity regulation predict the formation of inactive, competent 

and active conformations, which correspond to non-phosphorylated, auto-phosphorylated and dual-

phosphorylated states, respectively (Maerz & Seiler, 2010, Hergovich et al., 2006). In this study, the 

full complement of kinase variants harboring individual as well as double mutant substitutions in the 

two regulatory sites was analysed. While DBF-2(S499A) displayed in vitro activity reduced to ca. 1/3rd 

of the wild type control, DBF-2(T671A) exhibited activities in the range of wild type DBF-2. Thus, 

auto- but not HM phosphorylation is required for basal kinase activity. However, alanine substitution 

of both sites resulted in nonfunctional protein, indicating that phosphorylation of both sites is 

essential for the in vivo functionality of DBF-2. This conclusion is supported by the DBF-2(T671E) 

variant, which showed maximal in vitro activity and was the only DBF-2 variant functional in vivo. It 

was further determined that glutamate substitution of the HM site in glutamate- and alanine-

substituted Ser499 backgrounds only partially recovered in vitro activities and that these kinase 

variants were nonfunctional in vivo. The fact that phosphorylation of Thr671 can only partly 

overcome a permanent AS modification might suggest that dynamic modification of the AS may be 

required for full activation and functionality of DBF-2. Another possibility could also be that Ser499 

modification might simply impair the functionality of the protein. However, analogous substitutions 
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of this conserved serine within the AS have successfully been used for the analysis of several fungal 

(Mah et al., 2001, Jansen et al., 2006, Ziv et al., 2009, Maerz et al., 2012, Liu & Young, 2012) as well 

as animal (Stegert et al., 2005, He et al., 2005b) NDR kinases. Thus, combined in vitro and in vivo 

characterization of these DBF-2 variants suggest that a dynamic phosphorylation/dephosphorylation 

cycle of the autophosphorylation site rather than the simple sequential phosphorylation of both sites 

may be critical for N. crassa DBF-2 activity and function. 

In vitro kinase activity assays provided the first biochemical evidence that SID-1 activates DBF-2 

through hydrophobic motif (HM) phosphorylation, analogous to the activation of related fungal and 

animal NDR kinases by upstream Ste20-related kinases (Stegert et al., 2005, He et al., 2005b, Jansen 

et al., 2006, Liu & Young, 2012). A direct targeting of DBF-2 by CDC-7 was not observed, but SID-1-

dependent stimulation of DBF-2 was further enhanced through CDC-7. Strikingly, this enhanced SID-

1-dependent stimulation of DBF-2 was not observed by using a catalytically inactive variant of CDC-7, 

indicating that CDC-7 transmits signals towards DBF-2 by phosphorylation of SID-1. This hypothesis is 

further supported by reciprocal in vivo co-immunoprecipitation experiments showing that SID-1 co-

precipitated with CDC-7 while DBF-2 did not. Although a direct phosphorylation of DBF-2 by CDC-7 

might be a prerequisite for HM phosphorylation of DBF-2 by SID-1, this interpretation appears to be 

unlikely. It was previously shown that the budding yeast kinase Cdc15p phosphorylates Dbf2p on the 

HM analogous to the phosphorylation of DBF-2 by SID-1, presented in this study (Stegert et al., 2005, 

He et al., 2005b, Jansen et al., 2006, Liu & Young, 2012). Thus, these data strongly suggest that the N. 

crassa SIN functions as hierarchical, stepwise kinase cascade (Figure 19). 

The cellular distribution of the three SIN kinases showed that functional GFP-fusion constructs of 

CDC-7, SID-1 and DBF-2 localize to spindle pole bodies (SPBs) and septa. In both unicellular yeasts, all 

components of the SIN/MEN cascade localize to the SPBs, while only the effector kinases Sid2/Dbf2p 

translocate to the division site, just prior to CAR constriction and septation (Johnson et al., 2012, 

Meitinger et al., 2012, Chen et al., 2008, Hwa Lim et al., 2003). It was determined that N. crassa SID-

1, CDC-14 and DBF-2 localize to the cell cortex prior to septum constriction and to the forming 

septum. CDC-7 was only detected at the septal pore of the mature septum, possibly indicating that 

this kinase only associates with the septum after constriction. Alternatively, CDC-7 levels below 

imaging resolution may associate with the other SIN kinases during early stages of septation. The 

latter is supported by expression analysis of the used GFP fusion constructs that revealed that ccg-1 

driven CDC-7-GFP is significantly lower expressed than the other SIN kinases. Thus, in contrast to the 

situation in yeast (Meitinger et al., 2012, Johnson et al., 2012), all SIN components associated with 

SPBs in a constitutive manner in N. crassa. Moreover, SPB association of the N. crassa SIN cascade is 

not cell cycle dependent. Together with the finding that SIN activation in A. nidulans does not require 
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SPB association of the NDR kinase SIDB (Kim et al., 2009), these data indicate major differences in the 

regulation of the SIN in unicellular versus syncytial ascomycetes.  

In contrast to a previous report (Dvash et al., 2010), defects of SIN mutants in proper completion of 

the cell cycle was not observed. This is in line with the fact that cell cycle progression was also 

unaffected in A. nidulans SIN mutants (Bruno et al., 2001, Kim et al., 2006, Si et al., 2010). Moreover, 

meiotic cell divisions are also not affected in N. crassa SIN mutants. Re-sequencing of an old 

laboratory strain identified a mutant called Banana as dbf-2 deletion strain (Baker SE et al., 2012). Its 

previous characterization had revealed that the eight nuclei derived from the two meiotic and one 

mitotic divisions are formed in a normal manner in Ban+/Ban asci, but that the resulting nuclei are 

then enclosed in a single giant ascospore (Raju & Newmeyer, 1977, Freitag et al., 2004). This is 

consistent with data obtained for budding and fission yeasts, where the SIN is largely dispensable 

during meiosis, but required for spore wall formation and ascospore morphology (Krapp et al., 2006, 

Attner & Amon, 2012). Taken together, the results support an essential, but cell cycle-independent 

function of the SIN during septum formation in vegetative cells in the filamentous ascomycete N. 

crassa. 

 

 

Figure 19: Comparison of highly conserved NDR signalling pathways in S. pombe, N. crassa and mammals. D. 
melanogaster orthologous Hippo core components are shown in brackets. See text for details. 
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6.2 Proper actin ring formation and septum constriction requires the SIN-associated Ste20-

related GC kinase MST-1 

Analysis of SIN deletion phenotypes revealed that Δsid-1 and Δcdc-14 strains behaved differently 

than ∆cdc-7, ∆dbf-2 and ∆mob-1 in that the frequency of appearance of suppressor mutations was 

much higher in both mutants. The result of suppressor appearance was evident by the increased 

ability of Δsid-1 and Δcdc-14 to form septa and to conidiate when compared to other SIN mutants 

(although all SIN mutants regain the ability to form septa at some point). In line with this 

observation, sexual progeny of ∆sid-1 and ∆cdc-14 x wt crosses did not form the large, banana-

shaped ascospores as described for ∆cdc-7, ∆dbf-2 and ∆mob-1 containing crosses (Maerz et al., 

2009). This indicated that the hypothesis of the SIN as a linear kinase cascade may represent a 

simplified model. One possibility could be that CDC-7 might also be able to directly target DBF-2 in 

vivo, in parallel to the proven activation of DBF-2 by SID-1, although such a dependency was not 

determined in vitro. Alternatively, additional uncharacterized kinases may function in concert with 

SID-1 to regulate DBF-2. Intriguingly, the localization at SPBs and constricting septa as well as 

interaction studies identified MST-1 as SIN-associated kinase. Moreover, crosses of SIN mutants with 

∆mst-1 showed a synthetic effect reinforcing a functional relationship of MST-1 and SIN components. 

Based on in vitro kinase assays it was shown that – similar to SID-1 – MST-1 is able to stimulate DBF-2 

through phosphorylation of the HM. Analysis of ∆mst-1 revealed the formation of multiple, closely 

spaced septa and the presence of abnormal cross walls in the form of cortical spirals in older hyphal 

segments. By monitoring the behavior of the formin BNI-1 (Justa-Schuch et al., 2010) and lifeact-GFP 

in the ∆mst-1 mutant, it was shown that the failure of correct CAR assembly resulted in acentric 

constriction and asymmetric position of septal pores and the formation of open actin spirals, which 

were unable to constrict. These data, strengthen the assumption that MST-1 is part of the SIN and 

required for fine-tuning SIN signals during septation. GFP-trap affinity purification experiments 

coupled with mass spectrometry were performed to determine the composition of the N. crassa SIN 

and MST-1 interacting proteins. Precipitates of CDC-7-, SID-1- and DBF-2-GFP fusion proteins 

recovered the central components of the SIN, while SID-1 and MST-1 were only co-purified together, 

when CDC-7 was used as bait. Furthermore, the interaction of CDC-7 with MST-1 was confirmed in 

vivo by reciprocal co-immunoprecipitation experiments, and the presence of distinct CDC-7/MST-1 

and CDC-7/SID-1 complexes was proven by reciprocal GC-kinase displacement assays. Intriguingly, 

although both GC kinases MST-1 and SID-1 activate DBF-2 through hydrophobic motif 

phosphorylation, they are regulated by CDC-7 in the opposite manner. While SID-1-dependent 

activation of DBF-2 is further enhanced by CDC-7, addition of purified CDC-7 to a MST-1 + DBF-2 

mixture resulted in a decreased stimulation of DBF-2. This decreased activation was also observed 

using a kinase-dead variant of CDC-7, suggesting an inhibition mechanism that depends on protein-
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protein interaction rather than phospho-regulation of MST-1 by CDC-7. In summary, these data 

indicate that MST-1 is a SIN-associated kinase that functions in concert with SID-1 to regulate the SIN 

effector kinase DBF-2. Given that both GC kinases stimulate DBF-2 by HM-phosphorylation, but are 

regulated by CDC-7 in an opposite manner, it might be conceivable that distinct input signals guide 

the specific action of each GC kinase. 

The Ste20-related kinase family includes the p21 activated kinases (PAKs) and the germinal centre 

kinases (GCKs). Both groups can be distinguished by the localization of their kinase domains, which is 

located in the C-terminal half of PAKs and in the N-terminal region of GCKs. In addition, PAKs possess 

a conserved N-terminal domain (Cdc42/Rac interactive binding, CRIB), which is required for binding 

to the Rho GTPases Cdc42 and Rac. Unlike PAKs, GCKs lack the CRIB domain and can be further 

subdivided into eight groups (I to VIII) based on their structure (Dan et al., 2001). The S. cerevisiae 

genome encodes two group II GCKs with strong sequence similarity to Ste20p (Sps1p and Kic1p), and 

one with weaker homology (Cdc15p). In contrast, the S. pombe genome encodes three group II GCKs 

(Nak1, Ppk11 and Sid1) besides a Cdc15p ortholog (Cdc7). Nak1 shows homology to S. cerevisiae 

Kic1p whereas S. pombe Ppk11 and Sid1 are in different GCK subgroups (Boyce & Andrianopoulos, 

2011). Mammalian GCKs MST1 and MST2 are also members of the GCK II subfamily, while MST3 and 

MST4 belong to the GCK III subfamily (Ling et al., 2008). The phylogenetic analysis of the three N. 

crassa GCKs allowed the classification of fungal GC kinases into functionally distinct subgroups. N. 

crassa POD-6 and the related budding and fission yeast kinases Kic1p and Nak1 clustered together, in 

line with their conserved function as upstream components of the MOR pathway (Huang et al., 2003, 

Nelson et al., 2003, Seiler et al., 2006). The second subgroup is composed of S. pombe Sid1, N. crassa 

SID-1 and A. nidulans SEPM, supporting a conserved function during septation (Guertin et al., 2000, 

Kim et al., 2009). Fission yeast Ppk11 and the N. crassa protein MST-1 are members of the third 

subgroup, which is most closely related to animal group III GC kinases. Ppk11 was recently 

characterized as auxiliary factor of the MOR pathway that supports cell separation (Goshima et al., 

2010), while the N. crassa protein MST-1 had been implicated as part of the SIN in a preliminary 

analysis (Dvash et al., 2010). Several studies have shown that Ste20-like kinases genetically interact 

with and phosphorylate members of the NDR family. The yeast Ste20-like kinases Kic1p, Nak1, Sid1 

and Cdc15p function genetically upstream of the Cbk1p, Orb6, Sid2 and Dbf2p NDR kinases (Boyce & 

Andrianopoulos, 2011), but only Cdc15p has been shown to activate its corresponding NDR kinase by 

direct phosphorylation (Mah et al., 2001). In addition to yeasts, in a recent study it was shown, that 

the N. crassa NDR kinase COT-1 (homologous to yeast Cbk1p and Orb6) is phosphorylated and 

stimulated by the upstream GCK POD-6 (Maerz et al., 2012). Furthermore, in D. melanogaster, one 

Ste20-like kinase, Hippo (Hpo), can regulate both NDR/LATS kinase family members (Emoto et al., 

2006). Similar findings have been reported for the mammalian Ste20-like (MST) kinases. Whereas the 
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Hpo homologs MST1 and MST2 can regulate all NDR/LATS kinases, (Chan et al., 2005, Vichalkovski et 

al., 2008), another MST kinase family member, MST3, has been shown to specifically regulate 

NDR1/2 (Cornils et al., 2011, Stegert et al., 2005). Collectively, the close interplay between NDR 

kinases and Ste20-related GCKs points to conserved pathways that regulate several cellular processes 

like cytokinesis, mitotic exit and morphological changes (Figure 19). 

 

6.3 MST-1 connects the SIN and MOR pathway during septum formation 

The fungal SIN and MEN networks orchestrate mitotic exit and cytokinesis. One fundamental 

mechanism by which the SIN/MEN promote cytokinesis is by inhibiting a competing polarity pathway 

called the MOR/RAM, which is required for initiation of polarized growth following completion of 

cytokinesis (Ray et al., 2010, Gupta & McCollum, 2011, Weiss, 2012). N. crassa MOR mutants display 

hyperseptation defects (Seiler & Plamann, 2003, Seiler et al., 2006, Maerz et al., 2009), indicating 

that the MOR inhibits septum formation at predetermined sites. Intriguingly, the phenotypic 

characteristics of the mst-1 deletion strain mirror the defects of MOR mutants in that the formation 

of multiple, closely spaced septa was observed, suggesting a possible function of MST-1 during MOR 

signaling. Based on this hypothesis it was determined in in vitro kinase assays that MST-1 can 

regulate both NDR kinase pathways by stimulating the SIN kinase DBF-2 as well as the MOR kinase 

COT-1 through phosphorylation of their hydrophobic motifs. In contrast SID-1 only stimulated DFB-2, 

while the MOR-associated GCK POD-6 was specific for COT-1. Thus, SID-1 and POD-6 are pathway-

specific activators of the SIN and MOR, respectively, consistent with the phenotypic characteristics of 

the respective mutants and the SIN/MOR-specific localization patterns (Seiler et al., 2006, Maerz et 

al., 2009, Dettmann et al., 2012). MST-1 on the other hand functions as promiscuous activator of 

both pathways. Interestingly, the two Drosophila NDR kinases Trc and Wts (N. crassa COT-1 and DBF-

2 homologs, respectively) share the same upstream regulator Hippo (Hpo), which may help 

coordinate their roles in the establishment and maintenance of dendritic tiling in neuronal cells 

(Emoto et al., 2006, Emoto, 2011). In mammals the MST1/2 ─ LATS1/2 pathway (homologous to SIN) 

plays a role in tumor suppression and growth inhibition but several recent reports now implicate 

MST1/2 in the additional regulation of NDR1/2 kinases (homologous to MOR) to control various 

cellular processes like centrosome duplication, mitotic chromosome alignment, and apoptotic 

signalling (Vichalkovski et al., 2008, Hergovich & Hemmings, 2009, Chiba et al., 2009). Therefore, the 

regulation of NDR kinases that function in separate pathways by a common upstream kinase of the 

STE20-like kinase family appears to be a conserved in fungal and animal NDR pathways.  

The accessory function of the SIN-associated GC kinase MST-1 during MOR signaling was further 

supported by yeast two-hybrid and in vivo co-immunoprecipitation experiments that revealed the 

interaction of MST-1 with the MOR components POD-6 and COT-1. However, GC-kinase displacement 



63 

assays showed that addition of purified MST-1 to a separately precipitated POD-6/COT-1 complex 

completely displaced POD-6, suggesting a competitive regulation of COT-1 by both GC kinases. 

Intriguingly, in vitro kinase assays showed that addition of purified CDC-7 to a MST-1 + COT-1 mixture 

resulted in a decrease of MST-1-dependent stimulation of COT-1 activity. Thus, besides stimulation of 

COT-1 by MST-1 another mechanism of COT-1 regulation by MST-1 may exist: CDC-7-dependent 

inactivation of MST-1 may be followed by displacement of active POD-6 through inactive MST-1 

resulting in down-regulation of COT-1. Down-regulation of the MOR effector kinase COT-1 through 

inhibition of MST-1 by CDC-7 may be one mechanism to overcome MOR-dependent negative 

septation signals and to allow SIN-dependent septum initiation. Possible mechanisms for COT-1 

inhibition might include displacement of active POD-6 through inactive MST-1 and/or hetero-

dimerization of MST-1 and POD-6. However, additional experiments are required to confirm this 

hypothesis. For instance, addition of a kinase-dead variant of MST-1 to a POD-6 + COT-1 mixture 

should decrease the POD-6-dependent stimulation of COT-1. Moreover, this potential decrease in 

COT-1 activity should be titratable in order to confirm POD-6 displacement by inactive MST-1. 

Collectively, in addition to its function in SIN signalling, MST-1 regulates the MOR pathway and the 

predicted antagonistic relationship between the SIN and MOR during septum formation might be, at 

least in part, coordinated through MST-1. The observed defects in actin ring formation in ∆mst-1 may 

be the result of disturbed crosstalk and/or miss-regulation of the two networks. 

 

6.4 Cosstalk between SIN and MOR effector kinases DBF-2 and COT-1 is mediated by 

heterodimerization of the NDR kinases 

In the last years it became evident that the SIN and MOR NDR kinase pathways have contrasting 

functions in various cellular processes. For instance, a recent study in S. pombe indicates that 

phosphorylation of Nak1 (MOR component and homolog of N. crassa POD-6) by Sid2 (SIN-associated 

NDR kinase and homolog of N. crassa DBF-2) promotes SIN activation and inhibits MOR-mediated 

polarized growth by blocking interaction of Nak1 with the scaffold protein Mor2 (Gupta et al., 2013). 

Furthermore, in D. melanogaster the NDR kinases, Trc (N. crassa COT-1 homolog) and Wts (N. crassa 

DBF-2 homolog) have opposing roles in regulation of cell shape and timing of hair morphogenesis in 

wing cells [Fang, Adler 2010 Dev Biol]. Also, various studies in mammalian systems have shown that 

their SIN and MOR counterparts, namely, the MST1/2-LATS1/2 and MST3-NDR1/2 signalling 

pathways have contradictory effects on cell proliferation (Cornils et al., 2011, Visser & Yang, 2010, 

Hergovich et al., 2008). These observations suggest the possibility that an antagonistic crosstalk 

similar to the one observed in N. crassa may exist between homologous NDR kinase pathways in 

higher organisms. Alternatively, the two NDR pathways work in concert to promote common cellular 
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functions. In the budding yeast S. cerevisiae, the MEN and RAM signaling networks function together 

to regulate the Ace2p transcription factor in daughter cell separation (Weiss et al., 2002). 

In order to determine the genetic relationship between SIN and MOR components in N. crassa, 

several double mutants were generated. N. crassa SIN mutants are aseptate (Maerz et al., 2009), 

while MOR-defective cells produce multiple, closely spaced septa (Seiler et al., 2006, Maerz et al., 

2009). Double mutants between the MOR mutant cot-1(ts) and SIN mutants ∆dbf-2 or ∆mob-1 

showed that the cot-1(ts) mutation was able to rescue the septum formation defect in both SIN 

mutants at restrictive temperature. Thus, septum formation in a MOR deletion background does not 

require a functional SIN cascade and reduction in MOR pathway activity likely enhances the ability of 

weak SIN signalling to septum formation. This data support the idea of the MOR component COT-1 as 

negative regulator of septation and thus the predicted mutual antagonism between the two NDR 

kinase pathways.  

NDR kinases contain a conserved N-terminal regulatory motif (NTR), known as the MOB association 

domain, which is crucial for interaction with co-activator Mps-one binder (MOB) proteins and 

functions as dimerization domain (Bichsel et al., 2004, Maerz et al., 2009, Millward et al., 1998, Hou 

et al., 2004, He et al., 2005b, Hergovich et al., 2006, Ponchon et al., 2004). In vivo co-

immunoprecipitation experiments revealed an interaction between the SIN kinase DBF-2 and the 

MOR kinase COT-1. Moreover, yeast two-hybrid experiments showed that region 119–212 of COT-1 

is sufficient to interact with DBF-2, indicating a NTR-mediated formation of kinase-kinase 

heterodimers. In recent studies it was demonstrated that the N. crassa NDR kinase COT-1 forms 

inactive homodimers and the NTR of COT-1 is responsible for the interaction with MOB-2 adaptor 

proteins, which in turn is crucial for COT-1 activity and stability (Maerz et al., 2009, Maerz et al., 

2012). In S. pombe, it was also shown that Sid2 homodimers (DBF-2 homolog) are inactive (Hou et al., 

2004). Based on these facts, it was tested if the DBF-2 ─ COT-1 heterodimerization has an impact on 

COT-1 kinase activity and COT-1 ─ MOB-2A complex formation. Strikingly, displacement assays and in 

vitro kinase assays revealed a titratable DBF-2-dependent decrease of COT-1 activity and a reduced 

abundance of HA-MOB-2A in the COT-1 ─ DBF-2 heterodimer complex. Collectively, DBF-2 

presumably functions as competitive inhibitor of COT-1 by forming heterodimers and displacing MOB 

adaptor proteins. Thus, the interaction of DBF-2 and COT-1 may provide an additional mechanism for 

MOR inhibition by the SIN pathway (and vice versa). This predicted interdependent mechanism of 

NDR kinase pathway regulation is presumably triggered through protein abundance at sites of 

septum formation. The antagonism between the two pathways may both enhances the efficiency of 

each pathway by removing a competitor, and may ensure that cytoskeletal rearrangements occur at 

the correct site and time point. Given the multiple levels of cross-communication identified in this 

study (SIN and MOR coordination by MST-1 and interaction of DBF-2 and COT-1) and other model 
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systems (S. pombe, D. melanogaster) in recent years, suggest the possibility that the antagonistic 

crosstalk between homologous NDR kinase pathways might be a general mechanism by which these 

pathways are coordinated in higher organisms. Thus, a detailed comprehension of crosstalk between 

the NDR pathways will likely have important implications for the understanding of how cells regulate 

both growth and proliferation. 

 

6.5 COT-1 regulates the BUD-3 ─ BUD-4 landmark complex during septum formation 

Epistasis analysis revealed that the MOR functions as negative regulator upstream of the BUD 

complex. In order to determine the genetic relationship between MOR and BUD components, several 

N. crassa double mutants were generated. N. crassa BUD mutants are aseptate (Justa-Schuch et al., 

2010), while MOR-defective cells produce multiple, closely spaced septa (Seiler et al., 2006, Maerz et 

al., 2009). Progeny of crosses of cot-1(ts) with ∆bud-3 or ∆bud-4 showed thin and aseptate hyphae, 

which frequently lysed, indicating that the MOR functions upstream of the BUD complex. Moreover, 

the biochemical analysis revealed that COT-1, but not DBF-2 phosphorylates BUD-3/BUD-4 and that 

COT-1-dependent phosphorylation inhibits BUD-3 localization. Finally, it was determined that BUD-3 

as well as BUD-4 co-precipitated with COT-1, which confirmed the interaction of both BUD proteins 

with COT-1 in vivo. In contrast, no interaction of the BUD complex was observed with DBF-2 (data not 

shown). The in silico inspection of BUD-3/4 sequences revealed the presence of putative NDR kinase 

consensus phosphorylation sites (R-X-X-S) located within BUD-3 and BUD-4, respectively. Therefore, 

it was tested whether BUD-3/4 are direct substrates of any of two NDR kinases. In vitro 

phosphorylation assays showed that BUD-3 as well as BUD-4 were phosphorylated by COT-1, but not 

by DBF-2. Next, the predicted NDR kinase consensus sites within BUD-3 and BUD-4 were mutated to 

alanine to create nonphosphorylatable mutants. Strikingly, both mutants showed reduced 

phosphorylation by COT-1. Moreover, BUD-3 and BUD-4 are likely also phosphorylated by other co-

purifying kinase(s), since both BUD proteins showed significant incorporation of phosphate without 

addition of a kinase. Preliminary in vitro phosphorylation experiments coupled with mass-

spectrometric analysis of BUD-3/4 identified predicted CDK1 (cyclin dependent kinase 1) 

phosphorylation sites (data not shown). This result may provide a possible connection between cell 

cycle progression and regulation of septum formation, but further experiments are required to 

confirm these predicted CDK1 sites located within BUD-3 and BUD-4. 

To obtain better insight into the functional consequences of BUD-3/4 phosphorylation by COT-1, the 

phenotype of nonphosphorylatable (BUD-3(S798A); BUD-4(4xS2A) and phosphomimetic (BUD-

3(S798E); BUD-4(4xS2E) variants was analyzed. While both BUD-4 mutants displayed no significant 

abnormalities (data not shown), the BUD-3(S798A) and BUD-3(S798E) mutants revealed the 

formation of multiple, closely spaced septa and moreover, the presence of abnormal cross walls in 
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the form of cortical spirals. However, both BUD-3 variants restored the inability of the Δbud-3 

mutant to form septa, indicating that neither mutation resulted in non-functionality of the protein. 

BUD-3 is a large protein of 1604 amino acids and except for the Rho-GEF domain it lacks recognizable 

domains that can provide clues for its function. Sequence alignment with BUD-3 homologs present in 

budding yeast and other filamentous ascomycete fungi also failed to identify highly homologous 

sequences. However, there are two short sequences, 748LSRRIIQLL756 and 802VKLLSNFL809, that 

resemble amphipathic helices (Bernstein et al., 2000, Szeto et al., 2002). Interestingly, Ser798, which 

was identified as COT1 phosphorylation site in BUD-3 precedes the second amphiphatic helix. It is 

known that amphipathic helices facilitate plasma membrane targeting to several proteins (Szeto et 

al., 2002, Antonny et al., 1997, Takahashi & Pryciak, 2007), thus BUD-3’s localization to the site of 

septation might be mediated by these identified amphipathic helices. Supporting this hypothesis, the 

helix and the positively charged residues in the flanking sequences appear to be evolutionarily 

conserved in Bud3p homologs found in other fungi including C. albicans, A. nidulans and S. pombe. 

Moreover, it was recently shown that S. cerevisiae Bud3p mutants that carry alanine substitutions for 

the hydrophobic residues in the amphipathic helix, failed to localize to the bud neck (Guo et al., 

2011). Analysis of the cellular distribution of three helix constructs (BUD-3-Helix-GFP; BUD-3-S798A-

Helix-GFP; BUD-3-S798E-Helix-GFP) revealed that only the BUD-3-S798A-Helix-GFP construct 

localized at constricting septa. Thus, mimicking the constitutive nonphosphorylation of the putative 

NDR kinase consensus phosphorylation sites Ser798 of BUD3 allowed localization at forming septa. 

These data suggest that COT-1-dependent phosphorylation of BUD-3 might prevent its correct 

localization to sites of septation, thereby presumably inhibiting septation. Although other BUD-3 

regulatory and localization mechanisms must exist, the N. crassa MOR pathway seems to be directly 

involved in CAR assembly by regulating BUD-3 (and possibly also BUD-4).  

 

6.6 Outlook 

Overall, this study identified that proper septum formation in N. crassa requires a stepwise phospho-

regulation of a tripartite SIN cascade, as well as an antagonistic interaction between the two NDR 

pathways SIN and MOR, that is in part coordinated by MST-1 and the formation of heterodimers of 

the NDR kinases DBF-2 and COT-1. Moreover, a mechanistic link between the MOR and BUD proteins 

is provided by the regulation of BUD-3 by COT-1. 

Despite recent progress in our understanding of septum formation in filamentous fungi, major open 

questions and tasks remain:  
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(a) Is septation cell cycle dependent in N. crassa? 

In S. pombe the temporal coordination of mitosis and cytokinesis is mediated by the septation 

initiation network (SIN) (Gould & Simanis, 1997, Simanis, 2003, Wolfe & Gould, 2005) and cortical 

actomyosin ring assembly and septum formation is clearly controlled through cell cycle progression 

in A. nidulans (Harris et al., 1994, Harris, 2001, Wolkow et al., 1996). This may potentially also apply 

to N. crassa, although the connection between nuclear cycle and septum positioning is difficult to 

detect due to its nuclear asynchrony. Moreover, this study revealed that the SIN localization and 

activity regulation is cell cycle independent and SIN mutants showed no strict block in mitosis in N. 

crassa. Despite the essential role of the SIN in CAR assembly and septum formation, no function in 

mitosis is described for the SIN in A. nidulans (Bruno et al., 2001, Kim et al., 2006, Kim et al., 2009). 

This is reminiscent of the situation observed in S. pombe, where mutations in positive SIN 

components lead to growth arrest after multiple rounds of mitosis in non-dividing cells, (Krapp & 

Simanis, 2008). However, preliminary in vitro phosphorylation experiments coupled with mass-

spectrometric analysis of the essential septation landmark proteins BUD-3/4 identified predicted 

CDK-1 (cyclin dependent kinase 1) phosphorylation sites. This result may provides a possible 

connection between cell cycle progression and regulation of septum formation, but further 

experiments are required to confirm these predicted CDK-1 sites located within BUD-3 and BUD-4. 

Interestingly, septum formation depends on a threshold level of NimX activity, the sole mitotic cyclin-

dependent kinase in A. nidulans (Harris & Kraus, 1998, Harris, 2001, Kraus & Harris, 2001). 

Nevertheless, how NimX regulates nuclear division and septum formation in A. nidulans remains 

unclear, since no septation-relevant targets of cyclin-dependent kinases are known in fungi.  

(b) One additional important aspect will be to identify the effectors of the SIN that are currently 

largely undefined. 

One reported SIN target is the Cdc14-like phosphatase Clp1 (Chen et al., 2008). In addition to the 

essential function of Clp1 in regulating cell cycle progression by inhibition of mitotic CDK activity, 

Clp1-dependent dephosphorylation of the S. pombe PCH-family protein Cdc15 is essential for CAR 

assembly (Clifford et al., 2008, Roberts-Galbraith et al., 2010, Trautmann et al., 2001). In addition, 

the budding yeast MEN is involved in targeting the Chitin synthase Chs2p to the bud neck (Meitinger 

et al., 2010) and also directly regulates the late cytokinetic components Hof1p/Cyk2p and Inn1p 

(both are PCH proteins and homologs of S. pombe Cdc15; (Sanchez-Diaz et al., 2008, Nishihama et al., 

2009, Meitinger et al., 2010, Meitinger et al., 2011). Thus, Cdc14p/Clp1 and Hof1p/Cdc15 may also 

be promising candidates to be targeted by the SIN in N. crassa. Moreover, proteomic approaches 

would allow to identify multiple substrates of the SIN, but so far this method is not established for N. 

crassa. 
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(c) Further definition of the antagonistic crosstalk between the SIN and MOR pathways  

The multiple levels of cross-communication between the SIN and MOR identified in this study and 

other model systems such as S. pombe or D. melanogaster, suggest the possibility that the 

antagonistic crosstalk between homologous NDR kinase networks may be a general mechanism to 

coordinate these pathways. In this study MST-1 was identified as SIN-associated kinase that also 

regulates the antagonistic MOR pathway, thereby functioning as promiscuous activator of both 

pathways. Preliminary data suggest that besides stimulation of COT-1 by MST-1 another mechanism 

of COT-1 regulation by MST-1 may exist, suggesting that the antagonistic relationship between the 

SIN and MOR during septum formation might be, at least in part, coordinated through MST-1. 

However, further investigation will be required to confirm this hypothesis, thus, a project for the 

near future is to define if MST-1 regulates COT-1 by different mechanisms.  

Crosstalk of the SIN and MOR pathways is also achieved by heterodimer formation between DBF-2 

and COT-1, thereby displacing MOB adaptor proteins. However, this finding implies that the DBF-2 ─  

COT-1 heterodimerization might also be a conceivable mechanism of the MOR pathway to inhibit the 

SIN, and that this predicted interdependent NDR kinase mechanisms is presumably triggered through 

protein abundance. Future work is needed to clarify if a vice versa mechanism of crosstalk between 

the SIN and MOR pathways exist. 

(d) What are the function(s) of the anillin scaffold and GTPase module(s) during CAR positioning and 

assembly and how are they regulated?  

Anillin-related proteins are among the earliest septation markers in all fungal groups, and their 

potential function as Rho GTPase scaffold is also conserved in animals (Gregory et al., 2008, Field & 

Alberts, 1995, Straight et al., 2005, Oegema et al., 2000). A detailed analysis of RHO-4 and the 

interaction with the proposed anillin scaffold BUD-4 will shed light on their function during septum 

initiation and CAR constriction. 

The answers to these questions will not only improve our understanding of septum formation in 

vegetative hyphae, but also cell differentiation during ascomycete development. Since the SIN and 

MOR are conserved in mammalian cells (Hippo and Ndr1/2 pathways, respectively), this study and 

future work on this topic may provide important insights into how the activities of these essential 

pathways are coordinated.  
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7. Supplemental material 
 

 

Figure S1: Expression analysis of the used GFP fusion constructs. Anti-GFP Western blot of normalized cell 

extracts of strains expressing GFP fusion proteins under the control of the indicated promotors (left panal). 

Quantification of the relative expression levels of the indicated proteins. Protein levels are normalized to 

DBF-2 (Pdbf-2) abundance (n=3) and anti-tubulin Western blot was used to determine equal protein levels. 
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Figure S2: In vitro phosphorylation experiments coupled with mass-spectrometric analysis. (A) Ser499 was 

phosphorylated in wild type DBF-2 and hyperactive DBF-2(T671E), but not DBF-2(D422A), identifying this 

residue as primary site of auto-phosphorylation. Multiple additional S/T phosphorylation sites were detected 

in the N-terminal region of DBF-2(T671E). Mass-spectrometric analysis of SID-1-dependant DBF-2 

phosphorylation sites identified T671 as primary site of phosphorylation and additional S/T phosphorylation 

sites are variously distributed. (B) Tryptic peptides generated from wild type DBF-2 displayed HCD-

fragmentation spectrum of the peptide SIVGSPDYMAPEVLR with Ser499 phosphorylated. Fragment b-ions 

(yellow) and y-ions (blue) with an asterisk indicate neutral loss of ammonia (–17 Da), and ions labeled with a 

circle neutral loss of water (–18 Da), charge states are in brackets. The peptide cross-correlation score for 

Sequest (XCorr) was 4.9 and the Mascot IonScore was 77. The probability of Ser499-phosphorylation was 

calculated by the pRS algorithm to be 99.99% [J Proteome Res 10: 5354-5362]. (C) Representative 

fragmentation spectrum of the peptide SLFVGFtFR with phosphorylation at T671. Fragment ions b* and y* 

are ions with loss of ammonia (–17 Da), and fragment ions bo and co are ions with loss of water (–18 Da). The 

number in brackets indicates the charge state of the fragment ion. The peptide was fragmented by CID and 

fragment ions were detected in the linear ion trap. The peptide was identified with Mascot and Sequest 

search engines (peptide IonScore of 30 and XCorr of 3.45, respectively).  pRS score for phosporylation at 

tyrosine was 100% [J Proteome Res 10: 5354-5362]. 
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Figure S3: (A) A GFP fusion construct of POD-6 localized at the hyphal tip in a dot-like structure in the distal 

region of the Spitzenkörper and as membrane-associated apical crescent. (B) POD-6-GFP strongly labeled 

septa at later stages of septum constriction and accumulated around the mature septal pore. Nuclei were 

labeled with histone H1-RFP, the cell wall was stained with Calcofluor White and the plasma membrane as 

well as the Spitzenkörper with FM4-64. 
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