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Abstract 
 

This thesis contributes to the knowledge of the evolutionary history and palaeoecology 

of the Ascomycota (sac fungi). The six included papers are based on the investigation of 

Cretaceous and Palaeogene amber inclusions and deal with systematics, taphonomy and 

palaeoecology of newly discovered ascomycetes. Two new fossil ascomycetes of the 

resinicolous genus Chaenothecopsis (Mycocaliciales, Eurotiomycetes) are described 

from Eocene Baltic and Oligocene Bitterfeld ambers and are compared to a new modern 

representative, described as Chaenothecopsis proliferatus. Besides, the anamorphic 

fungal genus Monotosporella (Ascomycota, Sordariomycetes) has been recovered from 

a piece of Early Eocene Indian amber, as well as from the surface of extant resin flows 

in New Caledonia. The newly described fossil Monotosporella doerfeltii represents the 

second fossil record of Sordariomycetes, as well as the first fossil of its particular order 

(either Savoryellales or Chaetosphaeriales). Furthermore, an overview about the fossil 

record of capnodialean sooty moulds fungi is provided. This traces the fossil record of 

this group of fungi from the Early Miocene back to the Early Cretaceous. Another study 

presents the first known fossil ectomycorrhizae from an angiosperm forest. The fossil 

ascomycete mycobiont is associated to an angiosperm of the family Dipterocarpaceae 

and is described as Eomelanomyces cenococcoides. Apart from previously described 

fossil ascomycetes, the new described fossils were used to constrain a molecular clock 

in order to estimate the origin and divergence of Ascomycota lineages with a Bayesian 

approach (BEAST). This is the first study to combine molecular and fossil data solely 

from within the Ascomycota in order to produce a chronogram with multiple calibration 

points throughout the Phanerozoic. According to our results the diversification of the 

ascomycetes started in the Cambrian, followed by a continuous diversification 

throughout the Phanerozoic that was likely unaffected by mass extinctions. This 

suggests that the ecological diversity within each lineages ensured that at least some 

taxa of each group were able to survive global crises and rapidly recovered.  
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Extended Summary 
 

1. Introduction 
 

1.1 What are fungi? - Some facts of delimitation 
 

With an estimated number of 1.5 million species (Hawksworth, 1991; 2001) the fungi 

constitute one of the major eukaryotic groups on earth. Members of this group exhibit a 

tremendous variety of lifestyles and morphologies ranging from microscopic single 

celled organisms/individuals to huge multi-cellular colonies with species that are known 

to be among the largest and oldest organisms on earth (Brazee et al., 2012). There is 

virtually no aquatic or terrestrial ecosystem which is not occupied by a diverse range of 

fungal species. Fungi are important degraders, particularly for persistent organic matter 

such as lignin, and play a significant role in nutrient cycles of present ecosystems. Many 

fungal species live in symbiotic association, from which some such as mycorrhizae or 

lichens, are extremely successful (Heckmann et al., 2001; Brundrett, 2002; Beimforde et 

al., 2011). In particular mycorrhizae, associations between fungi and vascular plant 

roots, are abundant and ubiquitous in terrestrial ecosystems (Beimforde et al., 

2011 [5]1). This symbiosis is considered to be a key innovation that enabled early land 

plants to extensively colonize terrestrial habitats (e.g. Cairney, 2000).   

Fungi neither belong to the kingdom Viridiplantae nor to the Metazoan kingdom. 

Unlike most plants, they exhibit a heterotrophic life style and do not contain any 

chloroplasts or amyloplasts. In contrast to most animals, fungi are sessile and exhibit 

external ingestion, which is followed by the absorption of nutrients. Exceptions to this 

are representatives of the Chytridiomycetes, which produce self-mobile flagellated 

zoospores. Like Chytrydiomycetes, most species that were formerly grouped in the 

Oomycota, produce flagellated zoospores. These species are now treated as protists 

(eukaryotes with a unicellular level of organisation, without cell differentiation into 

tissues) and are as assigned to Peronosporomycetes in the Stramenopiles (Adl et al., 

2005). Thus they even belong to another super group of the Eukaryota and are more 

closely related to brown algae (Phaeophyceae) than to fungi (Adl et al., 2005).  

 However, it is an ongoing debate about how to define the fungi and whether 

particular groups should be included or excluded from the fungal kingdom. So far, no 

general definition exists but, next to phylogenetic classifications, a range (or 

combination) of features delimit fungi from other organisms. The most characteristic 

features are their cell walls that contain chitin. Fungi are never autotrophic and never 
                                                 
1 References to papers included in this thesis are indicated by bold numbers in brackets after the 
year of publication which refers to the respective appendix. 
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contain any plastids. Their unique biosynthetic lysine-pathway, the permeability 

between their cells (hyphae) through septae, their sexual (teleomorphic) or/and asexual 

(anamorphic) life cycles and their unique form of tubulin (involved in nuclear division) 

are some further distinctive characteristics of fungi. 

 

1.2 The state of fungal systematics 
 

Due to their primarily sessile mode of life, early classifications (e.g. Copeland, 1938; 

1956) grouped the fungi together with plants. This is the reason why the field of 

Mycology is still strongly linked to that of Botany. The idea of fungi belonging to a 

separate kingdom was established/or introduced in 1949 by Jahn and Jahn (1949) and 

was advanced by Whittaker (1959). Later on, in the early 1990s molecular methods 

were established and Woese (1987) introduced the three domain system, including 

Bacteria, Archea and Eukaryotes.  

Molecular methods have revolutionized the field of taxonomy during the last two 

decades. Compared to morphological approaches these methods provide many more 

characters for species delimitation, by comparing sequences of homologous genes 

encoding for conserved biological functions or even whole genomes (for fungi e.g 

Fitzpatrick et al., 2006). Nevertheless, molecular approaches are also limited since 

potential sources of errors such as undetected (e.g. homoplasy, Goloboff et al., 2008) or 

wrongly inferred substitutions (e.g. long branch attraction, Bergsten 2005, 1978), 

polymorphisms and gene specific evolution have to be taken into account. Since most 

species are not sequenced and/or even discovered so far (Blackwell, 2011) taxon 

sampling biases have to be considered too (e.g. Cusimano et al., 2012). The field of 

phylogenetics is highly dynamic and many new approaches such as parallel 

pyrosequencing which is referred to as next generations-sequencing (Voelkerding et al., 

2005) and resulting pyhylogenomic studies (Delusc, 2005) will further improve 

resulting phylogenies. Nevertheless, some sources of error such as non-phylogenetic 

signals still exists (Philippe et al., 2011) and the increased quantity of data in 

phylogenomic studies does not necessarily result in more reliable phylogenies if the 

quality of the used data is poor (Jeffroy et al., 2006). However, in any case traditional 

diagnostic features such as morphological and physiological aspects should not be 

disregarded in current classification systems as they serve to provide additional 

information. Nowadays, classifications are often based on variations in homologous 

genes but involve microscopic, ultrastructural and biochemical characters too (e.g. 

Hibbett et al., 2007).  

Many recent studies have shed light on fungal taxonomy. As the studies of 

individual groups of fungi are so numerous, only an overview of some important 

projects is given here. The 'Dictionary of fungi' (Kirk et al., 2008) and the broad work 
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'The Mycota' (McLaughlin et al., 2001a; 2001b) for instance contain a comprehensive 

classification up to genus level. In the project 'Assembling the Fungal Tree of Life' 

(AFTOL, Lutzoni et al., 2004) many mycologist collaborated in order to establish a 

phylogenetic hypothesis containing all major clades of fungi and achieve the aim of a 

public database containing sequence data, ultrastructural and biochemical characters 

(Celio et al., 2006). James et al. (2006) shed new light on early-diverging clades of 

fungi and discussed four independent losses of the flagellum in the kingdom fungi by 

constructing a phylogenetic hypothesis based on six genes and over 200 species. 

Another important work is the 'Deep Hypha' project, which is published in issue 98 

(2006) of Mycologia. Other crucial multigene projects focus on individual groups of 

fungi (e.g. Miadlikowska et al., 2006; Hibbett et al., 2007, Schoch et al., 2009; Matheny 

et al., 2007; Ebersberger et al., 2012; Kumar et al., 2012; Morgenstern et al., 2012). 

Additionally, in the last few years many online resources were established which 

facilitate the exchange and distribution of new data and information throughout the 

mycological community. Examples are a classification of Ascomycota 

(www.fieldmuseum.org/myconet), the coordination of a global fungal nomenclature in 

Index Fungorum (www.indexfungorum.org), the documentation of new mycological 

nomenclature and associated data such as descriptions and illustrations in MycoBank 

(www.mycobank.org), and the general source of sequence data, related publication and 

numerous tools on GenBank (www.ncbi.nlm.nih.gov). All these novelties of the last 

two decades have lead to considerable opportunities in the fungal systematics. In their 

study 'A higher-level phylogenetic classification of the fungi' Hibbett et al. (2007) 

collaborated with numerous other mycologists and proposed a phylogenetic 

classification of the kingdom fungi, which reflects the current knowledge of 

phylogenetic relationships (Fig.1). The major changes in comparison to previous 

classifications are related to groups that traditionally belong to the Chytridiomycota and 

Zygomycota. In the newly proposed system, the phylum Chytridiomycota is retained 

but the Blastocladiomycota and the Neocallimastigomycota represent separate phyla of 

flagellated fungi. The taxa that were traditionally placed in the Zygomycota are now 

distributed among the Glomeromycota and several subphyla. The Ascomycota and 

Basidiomycota were assigned to the subkingdom Dikarya. As a result, six phyla are 

proposed: Blastocladiomycota, Neocallimastigomycota, Chytridiomycota, 

Glomeromycota, Basidiomycota and Ascomycota. Furthermore, four subphyla 

(Mircosporidia, Kickxellomycotina, Zoophagomcotina and Entomophtoromycotina) are 

placed in the category fungi incertae sedis. 
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Figure 1. Phylogeny and classification of Fungi modified after Hibbett et al. (2007). Branch lengths are 

not proportional to genetic distances. 

 

1.3 The origin of fungi 
 

Several lines of evidence indicate that the fungi are a very ancient group of organisms 

that has diverged at a basal stage of the Eukaryota. Although several kingdoms such as 

animals, plants, fungi, and ciliates appear monophyletic, it is challenging to decipher the 

relationships between those kingdoms and various other groups of unicellular protists 

(e.g. Koonin, 2010). Within the eukaryotic supergroups, the fungi are placed in the 

Opisthokonta, making them much more closely related to the Metazoan kingdom than 

to Viridiplantae (e.g. Baldauf et al., 2000; Bapteste et al., 2001; Lang et al., 2002). The 

relationships within the Opisthokonta are not yet resolved and the closest phylogenetic 

relative of the fungi is still controversial. Based on ribosomal information, several 

current studies propose a sister relationship between fungi and the nucleariids, an 

assemblage of amoeboid protists from aquatic environments (Liu et al., 2009; Lara et 

al., 2010). It seems that the amoeboid protist of Nuclearia, a phagotropic member of the 
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nucleariids growing on bacteria and algae, is the closest relative to the fungal kingdom 

(Steenkamp et al., 2006). Another putative sister group could be a member of the 

endoparasitic genus Rozella. With the exception of Rozella coleochaetis (Sparrow et al., 

1965) that infects an alga, representatives of this genus parasitize other zoosporic fungi, 

mainly Chytridiomycetes and species formerly as assigned to Oomycetes (Held, 1981). 

Subsequent studies suggested that the genus Rozella might be the earliest branch within 

the fungal kingdom (Lara et al., 2010). Unlike fungi, members of this group possess 

phagocytosis in their trophic stage, which contradicts the definition of fungi and Jones 

et al. (2011a) further argued that Rozella is lacking chitin in their cells and should not be 

defined as fungi. In contrast, James and Berbee (2011) pointed out that Rozella possess 

a fungal-specific chitin synthase and chitin in walls of resting sporangia. Nevertheless, 

most current studies suggest not defining Rozella as a fungus but as very close sister 

group (e. g. Jones et al., 2011b; 2011). The latter authors placed Rozella into a newly 

defined and highly diverse group, the so called Cryptomycota, formerly described as 

Rozellida (Lara et al., 2010). However, if not Rozella, the enigmatic Microsporidia, 

intracellular parasites that parasitize many other eukaryotes, seems to form the earliest 

diverging branch of the fungal phylogenetic tree (James et al., 2006). Microsporidia are 

now placed in the fungal kingdom (Hibbett et al., 2007) but the phylogenetic position is 

still controversial, since a sister relationship of the Microsporidia to the 

Entomophthorales, the Blastocladialeanchytrids, the zygomycete Dimargaris or to the 

Dikarya also seems possible (James et al., 2006).  

Fungi are likely to be derived from an aquatic environment. The Chytridiomycota 

are a paraphyletic assemblage and, next to Microsporidia, seem to constitute the most 

basal fungal group. Many recent chytridiomycetes and also members of the above 

discussed genera Nuclearia and Rozella share an aquatic mode of life.  

 

1.4 The Ascomycota 
 

The phylum Ascomycota comprises 15 classes and 68 orders and is by far the largest 

and most diverse group of the fungal kingdom. Around 64,000 species of approximately 

6400 genera are described so far (Kirk et al., 2008) and the real number is likely to be 

much higher (Hawksworth, 1991; 2001).  

Appearing a little inconspicuous on the first view, members of the Ascomycota 

actually play a significant role for earth’s ecosystems and diverse aspects of human life. 

Besides comprising unpleasant pathogens, many species are integrated in beneficial 

industrial and agricultural settings and, even more important provide a variety of 

medical substances. Members of the genus Penicillium (Eurotiales) for instance are 

known for their production of antibiotics and are irreplaceable with respect to human 

health care. The aggressive mode of life of some saprophytes like Aspergillus species 
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goes along with the production of diverse enzymes that degrade a wide variety of 

complex molecules and can be utilized for a plenty of industrial processes (Pitt, 1994). 

Apart from that, ascomycetes2 take a significant part in present nutrient cycles on earth. 

Members of the Ascomycota are ubiquitous in aquatic and terrestrial ecosystems and 

occur in numerous ecological habitats. They can live saprotrophically, necrotrophically 

and biotrophically as symbionts (mycobionts) with diverse organisms or as parasites in 

or on plants, animals and humans (Webster and Weber, 2009). Like many other fungi, 

members of the Ascomycota can exist in very exceptional environments such as solid 

rocks (Sterflinger et al., 1999; Beimforde, 2011) or under hypersaline conditions (Kis-

Papo et al., 2003). Some species can adapt their mode of life or morphology to changing 

ambient conditions. Many types of yeasts for instance are dimorphic and can switch 

from yeast to filamentous states or vice versa (Webster and Weber, 2009). Furthermore, 

numerous ascomycetes form lichens if a potential phytobiont is available, but live as 

saprophytes in their absence (Wedin et al., 2004). In fact, lichens cover a huge area of 

the surface on earth and more than two fifths of all ascomycetes live in a lichenized 

association (Grube and Winka, 2002). A special feature of ascomycetes (and 

basidiomycetes) concerns their life-cycles that can involve anamorphic (vegetative) and 

teleomorphic (sexual) modes of reproduction. Both forms can prove to succeed in given 

environmental conditions and may evolve independently over the course of time. In 

fact, a huge variety of ascomycete (and basidiomycete) species are only known from 

their anamorphic state (and vice versa). Species that are only known from their 

anamorphic state and were formerly placed into the phylum Deuteromycota the so  

called 'Fungi Imperfecti'. 

What distinguishes the Ascomycota from other fungi is a sac-like structure, the 

ascus, in which they produce their sexual spores. The ascus consists of a rigid cell wall 

and typically contains eight haploid ascospores. For most members of the Ascomycota 

the ascus resides in a defined fruiting body, called ascoma (or ascocarp) which can have 

various shapes (cleistothecial, apothecial, perithecial or ascolocular, see Webster and 

Weber, 2009). Exceptions are basal members of the Ascomycota such as the 

Saccharomycotina and Taphrinomycotina which do not develop defined ascomata but 

have naked asci. The development of the ascoma, especially the structure of asci and the 

mechanisms of spore release are the most important synapomorphies to denfine groups 

within the Ascomycota. There are three different mechanisms of how asci release their 

spores: prototunicate, unitunicate, and bitunicate (Webster and Weber, 2009). 

Prototunicate asci have a thin, delicate wall and exhibit a passive form of spore release 

                                                 
2 The term ascomycetes is a synonym for members of the subphylum Pezizomycota comprising 
Ascomycota species that produce asci inside fruiting bodies instead of naked asci (Hibbett et al., 
2007).  
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such as dissolving the wall layer. Unitunicate and bitunicate asci actively eject their 

spores by discharge through the ascus tip that can have a lid-like structure (operculum) 

or lack it (inoperculate). The walls of unitunicate and bitunicate asci have two layers. In 

contrast to unitunicate asci in which both layers are attached to each other, the layers of 

bitunicate asci separate from each during dehiscence. Dothideomycetes possess a 

special form of bitunicate asci, termed fissitunicate asci, in which both layers are 

completely separated. Many variations of spore release mechanisms exist, but usually 

they are related to the types of ascomata. Apothecia are typically disk-shaped to cup-

shaped and produce operculate or inoperculate unitunicate asci in a well defined layer 

(hymenium) which is exposed to the environment. Perithecial ascomata are partially 

closed and the ascus production occurs within the central cavity of the ascoma 

(Spartafora et al., 2006). The asci of perithecial ascomata are usually unitunicate and 

lack a lid-like structure (inoperculate). Cleistothecial ascomata are completely closed 

and contain prototunicate asci. Their wall typically dissolves at maturity. Ascolocular 

asomata are characterized by thick-walled asci in preformed openings in the stromatic 

tissue. Their wall layers separate in a fissitunicate manner which is often called a“jack-

in-the-box” manner. The mentioned types of asci and ascomata describe only 

generalized types but additional variants of fruiting bodies and types of asci exist.  

Although there is a broad range of diagnostic structures, the vast number of species 

makes it challenging to classify the phylum Ascomycota. However, due to continuous 

advances of molecular approaches great progress has been made in elucidating deeper 

phylogenetic relationships of this phylum (e.g. Lutzioni et al., 2004; Miadlikowska et 

al., 2006; Schoch et al., 2009). Nevertheless, many families and genera could still not be 

assigned with confidence to any family or higher phylogenetic level (Kirk et al., 2008). 

Due to the numerous species of the Ascomycota and difficulty of excluding potential 

homoplasy of morphological traits, former classification systems that were mainly 

based on morphological and on ecological traits are controversial. Those previous 

systems primarily utilized the type of fruiting bodies and ascus arrangements and 

delimit for instance Hemiascomycetes (yeasts), Plectomycetes (groups that form mainly 

cleistothecia), Pyrenomycetes (groups that form mainly perithecia), Discomycetes 

(groups that form mainly apothecia) and Loculoascomycetes (groups that form 

ascolocular ascomata). Further former terms include Archiascomycetes (which include 

the basal groups Taphrinomycetes, Schizosaccharomycetes and Pneumocystis), 

Euascomycota (which is another term for higher fungi and describes all fungi with 

defined fruiting bodies) and Hymenoascomycetes or Ascohymeniales (which include 

operculate and inoperculate discoycetes and pyrenomycetes). Those terms will be 

avoided in this thesis. Instead, the terms used in this thesis are based on recent 

classifications presented by Hibbett et al. (2007). In several cases the morphological 

data confirm sequence data, but many others have been rearranged in the last few years. 

10 
 



Currently, based on various studies (e.g. Lutzioni et al., 2004; Blackwell et al., 2006; 

Miadlikowska et al., 2006; Hibbett et al., 2007; Schoch et al., 2009), three subphyla are 

accepted: (1) Taphrinomycotina (former Archiascomycetes), (2) Saccharomycotina 

(former Hemiascomycetes) and (3) Pezizomycotina (species that develop defined 

fruiting bodies). The relationships between some Pezizomycotina classes, mainly 

concerning classes comprising the super class Leotiomyceta (Schoch et al., 2009) are 

still unresolved. Fig. 2 represents a Bayesian phylogenetic hypothesis of the 

Ascomycota based on ribosomal (SSU, LSU) and protein coding (RPB1, RPB2). The 

following sections give a short overview of morphological and ecological traits as well 

as progressive relationships within the Ascomycota. More detailed aspects and 

relationships of individual groups can be found in the related publications cited herein. 

The Taphrinomycotina consist of four classes (Schizosaccharomycetes, 

Taphrinomycetes, Neolectomycetes and Pneumocystidomycetes) and comprise species 

that mainly live as parasites in or on plants, animals and humans. Some members may 

cause serious diseases. Pneumocystis for instance infects mammalian lungs and cause 

Pneumocystis pneumonia (PCP) in humans. This subphylum represents the most basal 

group of the Ascomycota. With the exception of Neolecta, constituting the sole genus of 

the Neolectomycetes, all members of the Taphrinomycotina lack defined ascomata but 

produce naked asci. They have been seen as a paraphyletic assemblage (Sugiyama et al., 

2006), but recent molecular studies rather suggest monophyletic affiliations (e. g. 

Spatafora et al., 2006; Wang et al., 2009).  

The sole order Saccharomycetales of the subphylum Saccharomycotina is divided 

into 11 families. Like the Taphrinomycotina, members of the Saccharomycotina build 

naked, free asci either directly following karyogamy or sometimes after a diploid phase 

(Webster and Weber, 2009. The subphylum Saccharomycotina is supposed to represent 

the sister group to all higher fungi (Pezizomycotina/ascomycetes) that develop 

ascomata. The term “true yeast” is a common expression for members of the 

Saccharomycotina. What delimits the “true yeasts” from the Schizosaccharomycetes is 

that they reproduce by budding rather than by fission. Several studies propose an early 

divergence of Saccharomycotina from Schizosaccharomycetes and confirm a close 

relationship between the Pezizomycotina and Saccharomycotina (e. g. Wang et al., 

2009).  

The Pezizomycotina (ascomycetes) is the largest subphylum of the Ascomycota and 

contains the majority of filamentous members that develop ascomata. Ten classes are 

defined within this subphylum: Pezizomycetes, Orbiliomycetes, Dothideomycetes, 

Arthoniomycetes, Eurotiomycetes, Laboulbeniomycetes, Lichinomycetes, 

Lecanoromycetes, Leotiomycetes and Sordariomycetes.  
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Figure 2. The 50% majority Rule consensus phylogram achieved in this study from nuclear ribosomal 

(SSU and LSU) and protein coding data (RPB1 and RPB2) of 142 Ascomycota species by using MrBayes 

3.1.2 (Ronquist and Huelsenbeck, 2003) under GTR+I+G model obtained from jmodeltest (Posada, 2008) 

for two separate partitions (ribosomal and protein coding genes). Two independent runs, with four chains, 

were conducted simultaneously for 20 million generations with trees sampled every 1000th generation. 

25% percent of the sampled trees were discarded as burn in. Numbers above branches indicate Bayesian 

posterior probabilities (BBP).  

_____________________________________________________________________________________ 
 

Most members of the Pezizomycetes and Orbiliomycetes build apothecial ascomata 

(e.g. Spatafora et al., 2006). The Pezizomycetes are considered to represent the sister 

group to all other members of the Pezizomycotina. In contrast to Orbiliomycetes which 

form inoperculate asci, members of the Pezizomycetes exhibit operculate asci. 

Obiliomycetes include saprophytic species and predatory species involving different 

types of trapping devices (Yang et al., 2007).  

Dothideomycetes were formally defined as Loculoascomycetes (Luttrell, 1955). In 

contrast to the ascohymenial development that is found in the majority of other 

Pezizomycotina classes, their asci develop in locules (ascolocular) which are preformed 

within vegetative hyphae. Members of this group live as pathogens in plants, animals or 

fungi, occur as endo- or epiphyts on plants but also as saprophytes degrading 

carbohydrates from plant matter or dung. Dothideomycetes form bitunicate ascus cells 

which consist of a thick extensible inner layer (endotunica) and a thin inextensible outer 

layer (ectotunica). There are numerous variations of spore release mechanisms in this 

group, but most species have fissitunicate asci, ejecting the spores by the extension of 

the inner ascus wall and ripping of the outer wall (Schoch et al., 2006). Schoch et al. 

(2006) established a phylogenetic hypothesis of relationships within the 

Dothideomycetes based on four nuclear loci.  

Arthoniomycetes develop apothecia with bitunicate asci. They live as saprophytes 

on plants or are associated with algae to form lichens. They occur mostly in tropical and 

subtropical latitudes. Although there are clear morphological differences between 

Arthoniomycetes and Dothideomycetes, such as the ascohymenial ascoma development 

in contrast to asolocular ascoma (Henssen and Thor, 1994), a close relationship between 

the Dothideomycetes and Arthoniomycetes was reported and confirmed in this thesis, 

Fig. 2. (Lutzoni et al., 2004; Schoch et al., 2006). 

Eurotiomycetes live as saprophytes, parasites or lichens. They were formerly 

described as Plectomycetes mainly producing closed asomata (cleistothecia) with 

prototunicate asci. However, nowadays two major subclasses are defined, the 

Eurotiomycetidae (cleistothecia with prototunicate asci) and the Chaetothyriomycetidae 

(perithecia with bitunicate asci, Geiser et al., 2006). It has been suggested that the 

Eurotiomycetes evolved by the loss of the bitunicate ascus and the conjugated mode of 
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forcible spore discharge (Berbee, 1996). The Eurotiomycetidae include many species 

such as Aspergillus and Penicillium (Eurotiales) that are of great interest concerning 

industrial and medical issues (Pitt, 1994).   

Laboulbeniomycetes are widespread parasites on insects, mites and millipedes 

(Arndt et al., 2003). They develop perithecial ascoma with prototunicate asci. Two 

orders are defined in the Laboulbeniomycetes, the Laboulbeniales and the 

Pyxidiophorales (Hibbett et al., 2007). Their placement in the Ascomycota has long 

been controversial, and they were either treated as an order, Laboulbeniales 

(Hawksworth et al., 1995) or as a class Laboulbeniomycetes (Barr, 1983). Weir and 

Blackwell (2001) have proposed to handle this group as a separate class of Ascomycota, 

along with Schoch et al. (2009) who were the first to place this insect symbiont class 

with bootstrap support as a sister group to Sordariomycetes.  

Lecanoromycetes comprise the largest class of the Ascomycota containing most of 

the lichen-forming species. Its members exhibit a huge variety of phenotypic natures 

(Miadlikowska et al., 2006). The Lecanoromycetes are divided in to three subclasses 

(Acarosporomycetidae, Ostropomycetidae and Lecanoromycetidae) and in to ten orders. 

The monophyly of the subclasses Acarosporomycetidae and Ostropomycetidae could be 

confirmed, whereas the relationships of the Lecanoromycetidae (the largest subclass) 

are still controversial (Miadlikowska et al., 2006). Members of the Lecanoromycetes 

mainly possess apothecia but they can also develop perithecial ascomata. Different 

mechanisms of spore release appear in this class, with asci having bitunicate, 

inoperculate or prototunicate types. Their lichinized associations involve a broad range 

of algae and cyanobacteria as phytobionts (Cordeiro et al., 2005). There have been 

numerous studies in the last years that focused on individual groups of the 

Lecanoromycetes (parmeloid lichens: Crespo et al., 2007; Arup et al., 2007). Due to a 

conspicuous host specify of some phytobionts they have been suggested as useful for 

classification of some groups (Rambold et al., 1998). Furthermore, many 

Lecanoromycetes produce a variety of unique secondary compounds that are used in 

recent classifications (e.g. Schmitt and Lumbsch, 2004).  

Representatives of the Leotiomycetes produce apothecia with unitunicate 

inoperculate asci or cleistothecia having prototunicate asci. They comprise five orders 

and 19 families (Kirk et al., 2008). Representatives, especially the Helotiales as largest 

non-lichenized group of ascomycetes, display various life styles and live biotropically 

as plant pathogens, endophytes, nematode-trapping fungi, mycorrhizae, fungal parasites, 

but also as saprobes in aquatic and terrestrial niches (Wang et al., 2006). Furthermore 

the class exhibits a high morphological variability that is noticeable, for instance, in 

very different appearances of the apothecia. Wang et al. (2006b) proposed ecological 

characters of some groups of Leotiomycetes as potentially useful diagnostic traits. They 

mention the orders Erysiphales, Cyttariales, Thelebolales and Rhytismatales as showing 
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distinct ecological characters and nutritional modes that are, together with morphology 

characteristics, unique for each group. Phylogenetic analysis of this class of 

ascomycetes have just started and, according to Wang et al. (2006), the current taxon 

and character sampling needs to be enhanced to stabilize internal nodes of the class.   

The Lichinomycetes contain lichen- forming species assembled in two orders 

(Lichinales, Eremithallales). They form apothecia containing bitunicate, inoperculate or 

prototunicate asci (Spatafora et al., 2006). Based on protein coding and ribosomal data 

Reeb et al. (2004) delimited representatives from Lecanoromycetes and described it as 

new class. All species of Lichinales build symbiotic associations with Cyanobacteria 

whereas species of the Eremithallales are associated with algal cells (Trentepohlia). 

Lücking et al. (2008) introduced the order Eremithallales and described the distinct 

mode of lichen forming. Instead of building a thallus that encloses the phytobiont the 

algal cells are located in periderm cells of the tree bark. Pierto (2008) found that 

polysaccharide of Lichinomycetes differ from those of Lecanoromycetes and suggested 

that an ancestor of the Lichinomycetes containing this form of polysaccharide was 

probably part of an early radiation in the ascomycetes.  

Most Sordariomycetes build perithecia with inoperculate unitunicate asci but 

cleistothecial ascomata are also produced (Zhang et al., 2006). According to Eriksson 

(2006) the Sordariomycetes contain 16 orders in three subclasses, constituting the 

largest non-lichinized group of ascomycetes. Many Sordariomycetes live biotrophically, 

often as endogeneous parasites in plants, humans or animals. Others are saprobes 

occupying mainly terrestrial habitats. Species from various groups live in aquatic 

habitats which is considered a derived character that probably evolved several times 

(Samuels and Blackwell, 2001). It is likely that Sordariomycetes and Leotiomycetes 

share a common ancestor. This close relationship was supported by bayesian and 

maximum likelihood analysis (Spatafora et al., 2006; Lumbsch et al., 2005). 

 

2. Fossil fungi 
 

2.1 Taphonomy of fungi  
 

In comparison with organisms that have robust and strong tissues, there is only a rare 

fossil record of soft bodied organisms such as representatives of the fungal kingdom. 

Fungal hyphae and fruiting bodies are delicate and soft, which makes them easily 

degradable. Generally, the most exceptional preservation of organisms in sedimentary 

rocks occurs in fine-grained carbonates of lacustrine and shallow marine settings (e.g. 

Frickhinger, 1994; Martínez-Delclόs et al., 2004). Those conditions may be suitable for 

the preservation of labile soft-tissues, but are still insufficient to preserve very delicate 
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features of microbial organisms such as fungi. In contrast, amber and chert preserve 

those organisms in a greater detail and regardless of their susceptibly to decay. 

Stankiewicz et al. (1998) posed the question why fossils embedded in amber remain in 

such morphologically pristine condition and found that the volatile components of the 

resin have penetrated even the internal tissues, resulting in an extraordinary, three-

dimensional preservation. The diagenesis of enclosed organisms is not yet clear and 

depends on various factors such as the type of resin and the tissue of the inclusion. 

c

 

 
Figure 3. Various resin flows in extant conifers. (a) Resin flow at a wounded tree trunk of Agathis 

lanceolata, New Caledonia (b) Resin produced by roots of A. lanceolata, New Caledonia; flows are 

overgrown by abundant mosses, algae and resinicolous fungi (c) Recently solidified resin lump found at 

the treetop of Agathis ovata from New Caledonia. (d) Sticky resin flow with trapped insects at a wounded 

tree trunk of Pinus sylvestris, Germany (e) Resin drops produced by Araucaria humboldtensis due to 

insect infestation, New Caledonia. 

 

However, several studies indicate that the degree of dehydration of engulfed organisms 

play a significant role for the quality of preservation (Henwood, 1992a, 1992b). Poinar 

and Hess (1982) considered that organic compounds such as sugars and terpenes in the 

resin might react with water from the tissues, which supports the dehydration hypothesis 

of the inclusion tissues. Resin flows are capable of trapping various kinds of organisms, 

depending on the size and location of both resin flows and organisms. Various plant 

species produce different resin flows and amounts (Fig. 3). The study of amber-

enclosed arthropods or remnants of plants from such fossilized resin flows is well 

established, but apart from those macroinclusions, amber even enables insights into 
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microhabitats of Mesozoic and Cenozoic woodlands (e.g., Beimforde et al., 2011 [5]; 

Schmidt et al., 2010a; Schmidt et al.; 2006, Touvila et al., 2013 [2]; Sadowski et al., 

2012 [3]). The fossil resin preserves morphological features of microorganisms with 

extraordinary fidelity; sometimes even cell organelles can be defined (Schmidt et al., 

2006). Besides chert, amber is the only source of such well-preserved fossil soft-bodied 

microorganisms. As a special feature, amber preserved organisms from forest habitats, 

where fossilization processes rarely happened. Thus, the study of amber allows the 

tracing of the evolutionary history of organisms that are otherwise rarely or never 

preserved. Due to the exceptional preservation and hence microscopic fidelity, minute 

diagnostic features are often accessible, allowing a characterization and direct 

comparison of the fossil fungi to determinable extant taxa (e. g. Tuovila et al., 2013 [2]; 

Sadowski et al., 2012 [3]; Dörfelt and Schmidt, 2007).  

Amber represents fossil tree resin that was produced by different conifers and 

angiosperms of the ancient “amber forests” of the Mesozoic and the Cenozoic. It is still 

a matter of debate why those trees produced such large amounts of resin. Different 

reasons have been suggested to explain the extensive resin productions of some former 

trees. As a reaction to physical damage like fire, resin may have been produced to close 

wounds (Meyer and Leney, 1968; Henwood, 1992b). Furthermore resin served as 

defense mechanism against microbial infections and infestations by insects such as 

weevils (True and Snow, 1949; Janzen 1975; Farrell et al., 1991). Storage of waste 

products from cellular metabolism or growth was also discussed (Henwood, 1993). 

Langenheim (1995) discussed a resin production as a protective barrier to reduce 

temperature and water loss. Additionally, an attraction of insect pollinators was 

hypothesized (Langenheim 1994; Gonҫalves-Alvim, 2001).  

However, those sticky flows served as ideal traps for organisms of Cenozoic and 

Mesozoic forest habitats. Arthropods and other organisms got stuck on the resin surface 

and were covered by subsequent resin flows. Diverse microorganisms such as bacteria, 

cyanobacteria, algae and fungi were also trapped in the resin flows. Single amber pieces 

containing various microorganisms are especially interesting for analyses of microbial 

interactions and life cycles of Mesozoic and Cenozoic ecosystems (e. g. Schmidt et al., 

2006; Perrichot and Girard, 2009). 

 

2.2 Fossil ascomycetes from amber and chert  
 

The oldest fossil evidence of probable fungal structures showing septate anastomosing 

hyphae are described from the Proterozoic period and would extend the record of 

putative fungi to 1430 Ma (Butterfield, 2005). Unfortunately, the mode of preservation 

does not allow satisfactory predictions of possible affiliations to recent fungal lineages. 
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As mentioned in chapter 2.1, amber provides the exceptional potential to conserve 

fragile structures, like those of fungi. However, detailed windows into past fungal 

lineages are also provided by cherts, for instance the Devonian Rhynie chert (e. g. 

Krings et al., 2007) and various Carboniferous cherts (e. g. Taylor et al., 1994; Krings et 

al., 2009). So far only one example of ascomycetes, described by Taylor et al. (2005) as 

Paleopyrenomycites devonicus, was discovered from the Rhynie chert, but this fossil 

represents by far the oldest (~400 Ma) fossil ascomycete.  

The following paragraphs give an overview about the most important ascomycete 

fossils. Particulary in the last few years, many new excellently preserved fossil 

ascomycetes were found in Cretaceous to Miocene ambers. Due to the mode of 

preservation, these fossils are assignable to extant lineages and were utilized in this 

thesis to estimate divergence times of Ascomycete lineages by molecular clock models 

(chapter 5). 

 

Fossil Dothideomycetes. Fossils resembling the extant genus Metacapnodium were 

found in ambers from eight Mesozoic and Cenozoic deposits (Schmidt et al., in review 

[4]). The genus Metacapnodium belongs to the ecological group of sooty moulds, a term 

that is commonly used for saprophytic fungi colonizing living plant surfaces by using 

exudates and honeydew of sap sucking insects (compare chapter 3.3). The diverse 

fossils allow to trace the morphological development of these fungi for approximately 

100 million years. The oldest find is enclosed in Early Cretaceous amber (Albian, about 

113 to 100 Ma) from Àlava and clearly represents a metacapnodiaceous sooty mould. 

The specimen (MCNA 9495) is housed in the Museo de Ciencias Naturales de Àlava in 

Spain.  

The fossil parasitic fungus Petropus brachyphylli (NHMM RD 265, 

Natuurhistorisch Museum Maastricht, The Netherlands; see Fig. 1d in Beimforde et al. 

(submitted) [6]) was found in several silicified, detached conifer leaves of 

Brachyphyllum patens (van der Ham et al., 2003) and described by van der Ham and 

Dortangs (2005). The fossil leaves of the host plant are preserved in Late Maastrichtian 

(66.5 Ma) chert. Peteropus brachyphylli is considered a close relative of the extant 

Phaeocryptopus of the Venturiaceae. Species of this genus infect leaves of conifers 

belonging to the families Araucariaceae, Cupressaceae, Pinaceae and Podocarpaceae, 

which are seen as possible amber producing plants. The authors assumed that P. 

brachyphylli may have been closely associated with cheirolepidiaceous conifers, which 

became extinct near the end of the Cretaceous. 

 

Fossil Eurotiomycetes. A fossil specimen of the anamorpic genus Aspergillus 

(Trichocomaceae, Eurotiales) was described as Aspergillus collembolorum (no. 805, 

Hoffeins collection Hamburg) by Dörfelt and Schmidt (2005). The species was growing 
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on an enclosed springtail (Collembola) which is preserved in Eocene amber (50-35 Ma) 

from a Baltic deposit. Numerous extremely well preserved conidiophores with conidia 

are enclosed (see Fig. 1f in Beimforde et al., (submitted) [6]). A. collembolorum 

resembles representatives of the modern Aspergillus flavus group.  

Several fossil species of the genus Chaenothecopsis are described from Oligocene 

and Eocene amber. Rikkinen and Poinar (2000) described a fossil species of 

Chaenothecopsis as C. bitterfeldensis (AF 9-26, Poinars collection, Oregon State 

University) from Bitterfeld amber, which represents an age of ~23Ma. Over 20 stalked 

ascomata clearly represent the genus Chaenothecopsis and reflect the full range of 

ontogenetic stages. Two other species of Chaenothecopsis were described from Eocene 

Baltic (GZG.BST.27286) and Oligocene Bitterfeld amber (GZG, BST. BST.27285) 

dating back to 50-35 and ~23 Ma, respectively (Tuovila et al., 2013 [2]) compare 

chapter 3.2). Both fossils are housed in the Geoscientific Collections of the Georg 

August University in Göttingen. The genus Chaenothecopsis belongs to the order 

Mycocaliciales and mainly contains species that live parasitic on free–living algae and 

lichens or live as saprobes on bark or lignum, but some species grow exclusively live on 

fresh or even on older resin flows (see chapter 3.2 and appendix [2]). The order 

Mycocaliciales is commonly placed in the Eurotiomycetes (Schoch et al., 2009). This 

phylogenetic position could be confirmed in this thesis when using only ribosomal gene 

markers, but differs when protein coding genes were involved. With those genes the 

used representatives of Mycocaliciales rather clustered within the Lecanoromycetes (see 

Fig. 2 in Beimforde et al., (submitted) [6]). 

A plethora of septate, mostly four-celled and slightly curved conidia are enclosed in 

a piece of 93-95 million years old Ethiopian amber (MB. Pb. 2009/201, Museum für 

Naturkunde, Berlin) is described as Paleocurvularia variabilis (Schmidt et al., 2010b; 

see Fig. 1c in Beimforde et al. (submitted) [6]). The structures are most similar to those 

of the extant genus Curvularia (Eurotiales) but may also represent a species of the 

genera Bipolaris, Drechslaria, or Exserohilum. The genus Chochliobolus is recognized 

as the teleomorph of this anamorphic genus. Species of this hyphomycete genus are 

facultative pathogens and live as parasites on vascular plants, mainly in tropical regions 

but also in temperate areas.  

 

Fossil Laboulbeniomycetes. A fossil species of the genus Stigmatomyces is described 

from the 23 million-year-old Bitterfeld amber deposit (Rossi et al., 2005). The fossil S. 

succini clearly resembles the genus Stigmatomyces and is attached to the thorax of a 

stalk-eyed fly (Prosphyracephala succini, Diopsidae). The genera Stigmatomyces 

(Laboulbeniaceae) belongs to the order Laboulbeniales in the class 

Laboulbeniamycetes, all members of which are known to live as ectoparasites on 
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arthropods, mainly on insects. The holotype is located in the Zoologische 

Staatssammlung of Munich (see Fig. 1k in Beimforde et al., (submitted) [6]). 

 

Fossil Lecanoromycetes. A fossil representative of the genus Anzia (Oschin 5/0, 

Michael Oschin's collection, Los Angeles) was described as A. electra by Rikkenen and 

Poinar (2002; see Fig. 1e in Beimforde et al. (submitted) [6]). The specimen is 

preserved in a piece of Eocene Baltic amber (55 – 35 Ma). The fossil appears 

morphologically similar to the extant species A. japonica. However, despite its 

extraordinary preservation and many similarities, the fossil cannot be assigned to A. 

japonica or to any other recent species. A confident assignment of A. electra would 

need to include features of secondary chemistry and for vegetative reproduction. The 

genus Anzia is morphologically very similar to the genus Pannoparmelia (Thell et al., 

2010) an belongs to the family Parmeliaceae (Lecanorales), which is the largest family 

of lichen forming fungi, comprising more than 2000 species (Crespo et al., 2007). Due 

to morphological characteristics (deviating thallus), Anzia was segregated from 

Parmeliaceae as Anziaceae, but recent phylogenetic studies nested Anziaceae within 

Parmeliaceae (Arup et al., 2007). 

Rikkenen (2003a) described a fossil Calicium (no. 1294 of the private collection of 

Volker Arnold, Heide, Germany) from the Baltic amber deposit dating back to 55 – 35 

Ma. The fossil consists of a single detached ascoma and numerous spores (see Fig. 1g in 

Beimforde et al. (submitted) [6]). The species is morphologically very similar to the 

modern species Calicium viride. The genus Calicium belongs to the so called calicioid 

lichens. Although this group is now known to be a paraphyletic assemblage, the term is 

still commonly used for fungi sharing morphological similarities such as stalked fruiting 

bodies and a mazaedium containing a powdery free spore mass (Tibell, 2003). Calicum 

is a genus within the family Caliciaceae which is closely related to the family 

Physciaceae (Wedin et al., 2002; Helms et al., 2003). Tibell (1984) explicitly described 

morphological delimitations of the genus Calicium, but since phylogenetic data are 

available, many species have been removed from the former order Caliciales. In recent 

classifications, the family Caliciaceae is assigned to the order Teloschistales in the 

Lecanoromycetes (Kirk et al., 2008).  

Poinar et al. (2000) described two species of the family Parmeliaceae: Parmelia 

ambra (AF9-17E; (see Fig. 1l in Beimforde et al., (submitted) [6]) and P. isidiiveteris 

(AF9-17B Poinar collection of Dominican amber maintained at Oregon State 

University) from Dominican amber (~17 Ma). Both fossils cannot with confidence be 

assigned to particular genera within the foliose parmelioid lichens (“Parmelia sensu 

lato”). 

A fossil specimen of Phyllopsora, described as Phyllopsora dominicanus (Poinar B 

1–23, Poinar amber collection at the Oregon State University) by Rikkinen and Poinar 

20 
 



(2008) is embedded in 17 million years old Dominican amber (see Fig. 1m in 

Beimforde et al., (submitted) [6]). The morphological features of P. dominicanus 

closely resemble those of modern Phyllopsora species and seem to be most similar to 

recent P. chlorophaea. As many Phyllopsora species are quite phenotypically plastic, a 

reliable identification at species-level would need an additional chemical examination 

of the thallus. Species of the genus Phyllopsora are lichen-forming fungi and belong to 

the family Ramalinaceae in the Lecanoromycetes.  

 

Fossil Sordariomycetes. Another fungal inclusion from Baltic amber (50-35 Ma) was 

found on a fossil spruce seedling and is described as Gonatobotryum piceae (no. 

F129/BB/F/CJW collection of Jörg Wunderlich, Germany) by Dörfelt and Schmidt 

(2007). The fungus infested a remnant of the hypocotyl and the basal parts of the 

cotyledons of the seedling (see Fig. 1j in Beimforde et al., (submitted) [6]). The 

preserved conidiophores show close similarities to the recent species Gonatobotryum 

fuscum. G. fuscum mainly occurs as parasite on bark and wood (Kirk et al., 2008). A 

further fossil species from Baltic amber shows close similarities to G. piceae and was 

describes by Caspary and Klebs (1907) as Gonatobotrys primigenia. Species of the 

anamorphic extant genera Gonatobotrys and Gonatobotryum are mainly mycoparasites. 

The ascomycete genus Melanospora (Ceratostomataceae, Sordariomycetes) is 

recognized as the teleomorph of Gonatobotrys species (Vakili, 1989). In contrast, no 

teleomorphs are currently known for Gonatobotryum species (Arx, 1981). 

 

Fossil Ascomycetes with ambiguous systematic positions. Rikkinen (2003b) 

described a fossil species of the genus Chaenotheca (no. 1285 and 1294 of the private 

collection of Volker Arnold, Heide, Germany) also enclosed in Baltic amber (55 – 35 

Ma). The fossilized lichen has a well developed thallus that was growing over a piece of 

bark (see Fig. 1h in Beimforde et al., (submitted) [6]). Six ascomata (four mature ones) 

have been well preserved in the amber. Even so, the fossil Chaenotheca was not 

assigned to any extant species because of its unknown photobiont identities and 

undeterminable ascus characteristics. The lichen genus Chaenotheca belongs to the 

family Coniocybaceae and is known for its association with four genera of photobionts: 

Dictyochloropsis, Stichococcus, Trentepohlia, and Trebouxia (Tibell, 2001). Like 

Calicium, Chaenotheca is part of the calicioid lichen group. The phylogenetic position 

of Chaenotheca is still enigmatic (Tibell and Koffmann, 2002). Phylogenetic analyses 

of this thesis based on ribosomal and protein coding genes revealed a grouping of 

Coniocybaceae and Lichinomycetes (see Fig. 2 and also Fig.1 in Beimforde et al., 

(submitted) [6]) but a denser taxon sampling would be needed to clarify the 

phylogenetic position of this group. 
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Paleopyrenomycites devonicus is by far the oldest evidence of ascomycetes. It is 

preserved in ~400 million years old Rhynie Chert from Scotland (Taylor et al., 2005). 

The fossil comprises perithecial ascomata with asci containing ascospores (see Fig. 1a 

in Beimforde et al., (submitted) [6]). Its perithecia are located beneath the epidermis in 

the outer cortical tissue of the host plant Asteroxylon. A closer assignment of P. 

devonicus to the Sordariomycetes was assumed by the authors, but its exact systematic 

position is still disputed (Taylor et al., 2005; Eriksson, 2005; Padovan et al., 2005; 

Taylor and Berbee, 2006). An assignment to the Pezizomycotina, the Pezizomycotina 

except Leotiomyceta (Schoch et al., 2009) or to the Pezizomycetes seems also possible 

(e.g. Lücking et al., 2009). 

 

3. Contributions to the systematics, taphonomy and   

    palaeoecology of the Ascomycota  
 

The studies integrated in this section deal with systematics, taphonomy and 

palaeoecology of resin preserved ascomycetes and aim to elucidate the evolutionary 

history of the respective taxa. The respective publications are attached as appendices 1 

to 5. 

 

3.1 Fossil and recent resinous habitats 
 

In this study (Beimforde and Schmidt et al., 2011 [1]) various associations between 

microorganisms and fossil and recent resins are illustrated and discussed with the aim to 

enlighten embedding and conservation processes of microbial organisms in tree resin. 

For this purpose, microorganisms from inside and from the surface of modern and fossil 

resins were examined. The studies revealed three forms of associations between 

microorganisms and resins in which microorganisms (1) were enclosed by resin, (2) 

showed patterns of growth into the resin, and (3) colonized the resin surfaces.  

Various limnetic and terrestrial microorganisms were found entirely embedded in 

modern resin of Pinus elliottii, a species from a Florida swamp forest that exhibits a 

massive natural resin production (Fig. 1a c in Beimforde and Schmidt, 2011 [1]). Those 

single celled limnetic organisms became enclosed, when the resin flowed down the tree 

trunks and reached the humid forest floor. Correspondingly, enclosed limnetic-

terrestrial microorganisms have been reported from Cretaceous ambers (Schönborn et 

al., 1999; Dörfelt and Schäfer, 2000; Schmidt et al., 2004).  

Additionally various fungal hyphae and filamentous bacteria were found in various 

fossil and recent resins (Fig. 2-6 in Beimforde and Schmidt, 2011 [1]). Many 

Cretaceous amber pieces are interspersed with fossil bacterial filaments, especially in 
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their outer parts (Fig. 3 and 4 in Beimforde and Schmidt, 2011 [1]). Most of them are 

sheathed, branched cell chains that morphologically closely resemble the modern genus 

Leptothrix (Schmidt and Schäfer, 2005). Most likely these filamentous bacteria came 

into contact to the resin flows at the forest floor and used it as temporary habitat, 

probably by utilizing compounds of the resin as a nutrient source. Peñalver et al. (2007) 

described similar filamentous structures from Cretaceous amber as "alteration crust" and 

suggested them to be caused by weathering processes. According to the results of this 

study, those "crusts" of Cretaceous ambers are not caused by weathering but by 

microbial colonization. Experiments with living taxa convincingly demonstrated an 

active microbial growth, both bacteria and fungi, inside liquid gum of Cycas revoluta 

and resin of Pinus strobus two or three days after inoculation (Fig. 2e in Beimforde and 

Schmidt, 2011 [1]). Additionally, abundant fungal mycelia colonize recently solidified 

resin flows of Agathis lanceolata from New Caledonia (Fig. 2g-h and Fig. 5 in 

Beimforde and Schmidt, 2011 [1]), and those fungal hyphae most likely represent 

species of the family Mycocaliciaceae, a group of ascomycetes which includes several 

species that exclusively grow on resin and other exudates of vascular plants (Touvila et 

al., 2013 [2], Tibell and Titov, 1995).  

Furthermore, living bacteria, fungi and algae were found at the surface and in cracks 

of amber pieces (Fig. 7 in Beimforde and Schmidt, 2011 [1]). Bacteria and fungi 

preferentially colonized impressions of the amber surface probably due to accumulated 

inorganic and organic matter that serve as a nutrient source. Whether components of the 

amber itself can be utilized as nutrient source is conceivable but has not been examined 

so far. Regarding the degradation of amber, processes of oxidation are probably 

decisive, but an additional microbial colonization may accelerate the degradation 

because chemical, physical and biological processes are triggered due to the microbial 

activity.  

 

3.2 A resinicolous species of Chaenothecopis with proliferating 

      ascomata and its fossil ancestors 
 

In this paper (Tuovila et al., 2013 [2]), an extant species of Chaenothecopsis is decribed 

as C. proliferatus and compared with extant species and two new fossil specimens from 

Eocene Baltic and Oligocene Bitterfeld ambers dating back 35 and 23 Ma, respectively. 

The genus Chaenothecopsis belongs to the order Mycocaliciales (Eurotiomycetes). 

About 10 % of all Chenothecopsis species exclusively grow on resin and other exudates 

of vascular plants (Tibell and Titov, 1995; Rikkinen, 1999; 2003b; Tuovila et al., 2011a; 

b), probably by utilizing compounds of the exudates as nutrient source (Rikkinen and 

Poinar, 2000).  
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Chaenothecopsis proliferatus (Fig. 1-5 in Tuovila et al., 2013 [2]) was collected 

growing on resin of Cunninghamia lanceolata (Lamb.) Hook. (Cupressaceae) from 

Hunan Province, China. The phylogenetic relationship of C. proliferatus was analyzed 

using ribosomal gene regions (ITS, LSU) but its phylogenetic placement remains 

unclear (Fig. 6 in Tuovila et al., 2013 [2]).  

The exquisite mode of preservations of both fossils described in this manuscript 

allowed a detailed comparison with extant relatives. The Oligocene fossil (Fig. 7 in 

Tuovila et al., 2013 [2]) had produced proliferating ascomata that are identical to those 

of C. proliferatus and to other extant species of the same lineage. In contrast, the 

Eocene species (Fig. 8 and 9 in Tuovila et al., 2013 [2]) shows non-proliferating 

ascoma. This fossil is represented by four immature and six mature ascomata which 

derive from a mycelium on the surface of a stalactite-like resin piece which served as 

substrate for the fungus. A subsequent resin flow buried the resinicolous specimen 

which demonstrates that the ability to rapidly exploit new substrates is advantageous, 

but also carries the inherent risk of being buried by its own substrate (Rikkinen and 

Poinar, 2000). The fossils show that resinicolous Chaenothecopsis species were already 

well adapted to their special ecological niche by the Eocene, and that the morphology of 

these fungi has since remained remarkably constant. The Oligocene fossil had produced 

proliferating ascomata identical to those of the newly described species from China and 

its extant relatives. This morphology may represent an adaptation to their life near 

exuding resin making it easy to rejuvenate if they were partly overrun by fresh resin. 

While many extant Chaenothecopsis species live on lichens and/or green algae, the 

fossils and the sporadic occurrence of resinicolous taxa in several distantly related 

extant lineages suggests that the early diversification of Mycocaliciales may have 

occurred on plant substrates. 

 

3.3 A fossil and a recent representative of the anamorphic genus 

      Monotosporella  
 

This paper (Sadowski et al., 2012 [3]) deals with a fossil and recent species of the 

anamorphic ascomycete genus Monotosporella. All species of this genus are 

saprophytic and have a worldwide distribution (e.g., Sivichai et al., 1998; Raja et al., 

2007). They are mostly found on decaying wood that is submerged in water (Sivichai et 

al., 1998, Tsui et al., 2001), but also occur on woody plants (Rao and de Hoog, 1986; 

Raja et al., 2007). Species of Monotosporella are generally distinguished by the size and 

shape of their conidiophores, conidia and conidiogenous cells (Ranghoo et al., 1999, 

Hughes, 1978, Yanna and Hyde, 2002). Since the teleomorph state of Monotosporella, 

Ascotaiwania was discovered (Ranghoo and Hyde, 1998; Sivichai et al., 1998) they are 
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now placed in the Annulatascaceae of the Sordariomycetes. No sequence data of 

Monotosporella can corroborate this placement, so far, and attempts in this thesis to 

obtain sequence data from the extant New Caledonian species failed since too few 

conidia were available for DNA extraction. 

The fossil Monotosporella is described as M. doerfeltii (see Fig. 1 and 2 in Sadowski 

et al., 2012 [3]) and represents the second fossil record of Sordariomycetes, as well as 

the first fossil of its particular order (either Savoryellales or Chaetosphaeriales). It was 

found enclosed in 52 million–year-old amber from the Tarkeshwar Lignite Mine of 

Gujarat State, western India. Inclusions of the Indian amber represent a part of the biota 

of an early tropical angiosperm rainforest. During the Early Eocene India was covered 

by a dense, multi-storied rain forest (Morley, 2000; Collinson, 2003) in which the 

uppermost tree species belonged to the resin-producing family Dipterocarpaceae (Rust 

et al., 2010).It is most likely that M. doerfeltii was growing on a degrading Cladonia-

like lichen thallus in a corticolous or terrestrial microhabitat of this early tropical 

angiosperm rain forest.  

Morphological similarities were drawn between the fossil M. doerfeltii and an extant 

species of Monotosporella which was found on fresh resin flows of Agathis ovata in 

New Caledonia. This recent species could be assigned to Monotosporella setosa. 

Actually, it is the first time that a species of Monotosporella is recorded from resinous 

habitats. So far, resinicolous life styles were exclusively known from members of the 

order Capnodiales and representatives of Mycocaliciales (Tuovila et al., 2013 [2]). It is 

not clear if species of Monotosporella may exhibit the same grade of substrate 

specification as it is proposed for several of the above mentioned species such as 

Cheanothecopsis (Tibell and Titov, 1995; Tuovila et al., 2011a; b). However, our recent 

finds from different resinous habitats demonstrates that the genus is ecologically 

variable, with occurrences of Monotosporella in both early tropical angiosperm forests 

and extant tropical araucarian forests. 

 

3.4 A compilation of fossil sooty moulds  
 

The term sooty moulds is commonly used for saprophytic fungi forming extensive 

subicula with dark brown hyphae on living plant surfaces subsisting from plant exudates 

and honeydew of sap sucking insects (Seifert et al., 2011). This fungal group mainly 

involves capnodialean species (Capnodiales, Dothideomycetes) from the families 

Antennulariellaceae, Capnodiaceae, and Metacapnodiaceae, but also includes other 

species that share ecologically and morphologically similar traits.  

In this manuscript (Schmidt et al., (in review) [4]) a compilation of diverse 

metacapnodian fossils from eight northern hemispheric Mesozoic and Cenozoic 

deposits is presented. These various finds of fossils of capnodialean sooty moulds 
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allowed tracing the fossil record of this fungal group back for approximately 100 

million years, from the Early Miocene (17 million years) back to the Early Cretaceous 

(Albian, about 113 to 100 million years).  

The fossil sooty moulds described in this manuscript are preserved in amber from 

various deposits and most probably grew on different trees. Most of them have probably 

grown epiphytically on the bark or leaves of the amber-producing tree or on 

neighbouring trees. Others lived as hyperepiphytes on corticolous lichens and 

bryophytes, which is also known for extant species (e.g. Braun et al., 2009). The ancient 

fungi were probably trapped in the resin when it exuded over bark or when fragments of 

the fungal subicula became detached and dropped onto fresh resin on the tree trunk or 

forest floor.  

The presence of sooty mould species generally indicates a certain degree of 

humidity. Typically, Cretaceous forests even in the tropics received less rainfall than 

modern angiosperm-dominated rainforests (Boyce et al., 2010). The finding of fossil 

sooty moulds from mid-Cretaceous ambers suggests that those coastal 'amber forests' 

probably received additional moisture in form of frequent coastal fog or local rainfall.  

The oldest founds of sooty moulds come from the Early Cretaceous 110 million 

years ago (Àlava, San Just and Archingeay) which was the time when early 

angiosperms diversified in forest ecosystems (Crane, 1987). The rise of angiosperms 

changed the climate conditions of Cretaceous forests in the form of increasing humidity 

(Boyce et al., 2010) which has probably favoured the growth of metacapnodiaceous 

species. Additionally, the increase of broad-leaved plant species opened up further 

niches and food sources for plant sap sucking insects (aphids and scale insects), which 

consequently created new habitats for sooty moulds (Rikkinen et al., 2003). However, 

the association between plant-sucking insects and sooty moulds may have evolved in 

pre-Cretaceous times, because insect excretions as potential nutrition source were 

available much earlier (Labandeira, 2006; Szwedo and Nel, 2011; Nel et al., 2012). 

Saprobic genera represent the earliest diverging lineages among extant capnodialean 

fungi and this nutritional style is assumed to be an ancestral mode of this group (Crous 

et al., 2009). Additionally, the morphological similarity of Early Cretaceous sooty 

moulds and extant taxa suggests that they might represent an ancient component of 

humid forest ecosystems. The lack of pre-Cretaceous sooty mould fossils may well be a 

sampling artifact because of the limited amounts of pre-Cretaceous amber.   

 

3.5 The first fossil ectomycorrhizae associated with an angiosperm 
 

Fossil ectomycorrhizae (ECM) are preserved in amber from a tropical angiosperm tree 

of the family Dipterocarpaceae of likely Gondwanan origin (Beimforde et al., 2011 [5]). 

The amber was recovered from Early Eocene (52 million year-old) sediments at the 
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Tadkeshwar Lignite Mine in Gujarat, western India (Rust et al., 2010). About 20 

unramified to monopodial-pinnate ectomycorrhizal systems are fossilized adjacent to 

several rootlets and different developmental stages of the ectomycorrhizae are preserved 

in this single piece of amber (Fig. 1 in Beimforde et al., 2011 [5]). Dissolving the 

surrounding amber from parts of the ectomycorrhizal system allowed a detailed study of 

the fossil by scanning electron microscopy (Fig. 2 Beimforde et al., 2011 [5]). The 

exposed fossil hyphae were analyzed by Raman spectroscopy revealing traces of fossil 

melanin in the dark hyphae (Fig. 4 Beimforde et al., 2011 [5]). This was the first time 

that melanin could be detected from a fossil fungus.  

The mycobiont of this fossil symbiosis is considered to be an ascomycete anamorph 

because narrow perforations are present in the septae, while clamp connections are 

absent (Fig. S1H in Beimforde et al., 2011 [5]). The black color of the hyphae is similar 

to the extant ascomycete genus Cenococcum, whose only species, however, forms 

mostly unbranched ECM with modern phytobionts. The fossil ectomycorrhizae was 

therefore described as Eomelanomyces cenococcoides. 

Besides ascomycetes, all glomeromycetes and several basidiomycetes form 

symbiotic cooporations with vascular plant roots. Those mycorrhizial associations are 

ubiquitous in terrestrial ecosystems and constitute a crucial part concerning the 

evolution of terrestrial life on earth, especially in terms of plants. In fact, up to 90 % of 

all vascular plants live in a mutualistic association with fungi (Pirozynski and Malloch 

1975; Malloch et al., 1980; Wang et al., 2010). This symbiosis is considered to be a key 

innovation of early land plants that enabled them to extensively colonize terrestrial 

habitats (e.g. Cairney, 2000; Wang et al., 2010). 

Various forms of mycorrhizae have evolved over the course of time (Brundrett, 

2002). Endomycorrhizae, in which the fungus forms intracellular vesicles and arbuscles, 

are recorded since the Early Devonian (Remy et al., 1994). Ectomycorrhizae, in which 

the fungus does not penetrate living cells, as well as ericoid and orchid mycorrhizae, 

seem to have evolved subsequently in response to changing environments and the 

appearance of possible new fungal symbionts (Cairney, 2000, Hibbett and Matheny 

2009).  

Endomycorrhizae are typically predominant in modern tropical forests, but some 

ectomycorrhizal symbioses are very successful, cover a large portion of the total area 

(e.g. Newbery et al., 1988), and sometimes even dominate tropical rainforests (Connell 

and Lowman, 1989). However, several ecologically important tropical plant families 

including the amber-producing Dipterocarpaceae are obligatorily ectomycorrhizal. The 

paleogeographic and temporal origin of Dipterocarpaceae and their history of 

association with ectomycorrhizal fungi have frequently been discussed (Ducousso et al., 

2004; Moyersoen, 2006). Dipterocarps are likely to have originated in eastern Africa or 
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Madagascar (Dutta et al., 2011). After the Indian landmass separated and drifted 

northward, they reached Asia during the Eocene and spread.  

The fossil Eomelanomyces cenococcoides reveals the occurrence of angiosperm 

ectomycorrhizae in the Paleogene tropics and supports the hypothesis of an ancestral 

ectomycorrhizal stage of the Dipterocarpaceae. In fact, ectomycorrhizae may have 

conferred an evolutionary advantage on dipterocarps, allowing them to become the 

dominant tropical hardwood trees in India as the landmass moved over the equator and 

finally interacted with Asia, so that they subsequently spread into South East Asia, 

where they still predominate today, constituting 80% of the canopy.  

Mycorrhizae are unstable associations and evolved independently within the family 

Pinaceae and several times in the angiosperm clade that includes Rosids and Asterids 

(Fitter and Moyersoen, 1996). This was probably also influenced by changing 

environmental conditions, and by the appearance of possible new fungal symbionts 

(Hibbett and Matheny, 2009; Moyersoen et al., 2001; Cairney, 2000). Consequently, E. 

cenococcoides itself is not necessarily an ancestral mycobiont of its host. 

The basal geographic origins of ectomycorrhizae have remained unclear, but the 

ectomycorrhizal symbiosis that evolved with the exclusively northern hemispheric 

Pinaceae may be one of the earliest; the only previously reported fossil record of 

ectomycorrhizae is actually from roots of Eocene Pinaceae on Vancouver Island 

(LePage et al., 1997). However, our fossil suggests that ectomycorrhizae were 

contemporaneous in tropical angiosperm forests of Gondwanan origin, and that 

ectomycorrhizae may have developed independently in Laurasia and Gondwana. 

 

4. Tracing lineages with molecular methods 
 

4.1 Fossil DNA in amber: is there a chance? 
 

The exceptionally preservation of organisms in amber has often lead to the conclusion 

that DNA molecules of enclosed organisms might be intact and amplifiable. This is a 

very appealing speculation, but unfortunately it could not be confirmed by any study, so 

far. Even an amplification of DNA from copal (semi-fossil resin) failed, whereupon 

Austin et al. (1997) concluded that resin is not capable of the preservation of complex 

molecules such as DNA, although the morphological structures are recorded very well. 

Besides, non-degraded modern molecules are always preferred during the polymerase 

chain reaction, making an amplification of fragments of ancient DNA highly unlikely. It 

is assumed that amplifiable DNA does generally not persist much longer than several 

thousands of years (Hofreiter et al., 2001, Willerslev et al., 2004, Willerslev and 

Cooper, 2005, Allentoft et al., 2012).  
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In the 1990s, several attempts have been made to amplify DNA from amber-

preserved insect and plant inclusions (e.g., Cano et al., 1994; Poinar and Poinar, 1994; 

Lambert et al., 1998; Greenblatt et al., 1999). However, it turned out, that the DNA 

obtained in these studies was modern contamination. Greenblatt et al. (2004) 

demonstrated that it is difficult or almost impossible to get the amber free of modern 

DNA and RNA since bacteria, fungi and other microbes remain in fissures, even after 

surface sterilization by ultrasonic cleaning, H2O2 and ethanol (for protocols see Lambert 

et al., 1998). Greenblatt et al. (1999; 2004) noticed that putative fossil microorganisms 

that were isolated from different ambers were actually much younger than the amber 

itself. Consequently, they suggested that those microorganisms exist as contaminants in 

amber cracks instead of being fossil microinclusions.  

 

4.2 Molecular clock models for fungi 
 

Molecular clock methods have greatly improved over the last few years and serve as a 

remarkable tool that allows more and more accurate predictions about the unrecorded 

prehistory of considered lineages. New methods such as relaxed clocks (Drummond and 

Rambaut, 2007) consider different evolution rates for individual lineages and allow an 

implementation of minimum and maximum age constraints for one or for several 

calibration points (Ho, 2007; Benton et al., 2009; Inoue et al., 2010; Magallon, 2010; 

Heled and Drummond, 2012; Lukoschek et al., 2012). Those studies integrate the 

information that is used for calibration (e.g. from fossils) in form of probability 

distributions. 

So far, various studies have been carried out to estimate the origin and evolution of 

major lineages (e.g. Douzery et al., 2004; Schneider et al., 2004; Magallón and 

Sanderson, 2005; Donoghue and Benton, 2007; Ramírez et al., 2007, Wikström et al., 

2010; Nauheimer et al., 2012) and several attempts have been made to date the temporal 

origin and evolution of main fungal lineages by molecular clock methods (e. g. Simon 

et al., 1993; Redecker et al., 2000; Heckman et al., 2001; Berbee and Taylor, 1993; 

2007; Taylor and Berbee, 2006; Padovan et al., 2005; Lücking et al., 2009; Gueidan et 

al., 2011; Fouldas et al., 2012; Ohm et al., 2012).  

Compared to early molecular evolution studies of fungi, recent studies are much 

more congruent. This is likely to be due to improvements in developing relaxed 

molecular clock models, but also due to more well resolved fungal phylogenies that 

have been established over the last decade (e. g. Hibbett et al., 2007). However, despite 

the improvements in methodology and data sampling, the resulting age estimates are not 

fully consistent across recent studies. Such discrepancies are due to a variety of reasons, 

such as possible inability to properly model evolutionary rates, parameter settings for 
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the applied relaxed clock models, unequal taxon sampling, and choice of genes under 

study. 

Many studies of molecular evolution showed the importance of constraining the 

molecular clocks with reliable fossil evidence (Benton et al., 2009; Hedman, 2010; 

Inoue et al., 2010; Magallon, 2010; Pyron, 2010; Wilkinson et al., 2011; Lukoschek et 

al., 2012; Sauquet et al., 2012, Feldberg et al., 2013). One important requirement for the 

use of fossils as minimum age constrains is their accurate placement to corresponding 

nodes in the chosen phylogeny (Rutschmann et al., 2006; Marshall, 2008; Forest, 2009; 

Praham et al., 2012; Pyron, 2010; Dornberg et al., 2011). This requires information 

about their systematic position and age of selected fossil species/material. In this regard, 

fossils preserved in amber and cherts provide excellent conditions. Amber and cherts 

may conserve delicate structures of organisms regardless of their susceptibility to decay 

(Stankiewicz et al., 1998; Martínez-Delclόs et al., 2004). Even very fragile diagnostic 

features, like those of fungi, are preserved and can be compared to recent species with 

great detail. The following chapter provides an overview of a study (Beimforde et al., 

submitted [6]) in which available fossil ascomycetes from amber and chert are utilized 

to constrain a molecular clock for the Ascomycota. 

 

4.3 Using fossil ascomycetes from amber and chert to estimate the  

      Phanerozoic history of the Ascomycota  
 

In this manuscript (Beimforde et al., (submitted) [6]), all of the oldest available 

ascomycete fossils from amber and chert were reinvestigated with respect to their 

potential use as minimum age constraints for models of molecular evolution. These 

fossils (see Fig. 1 in Beimforde et al., (submitted) [6]) represent several major lineages 

of the ascomycetes (Caliciaceae, Parmeliaceae, and Ramalinaceae of the 

Lecanoromycetes; Laboulbeniaceae of the Laboulbeniomycetes; Metacapnodiaceae and 

Pleosporaceae of the Dothideomycetes; Trichocomaceae and Venturiaceae of the 

Eurotiomycetes, in addition to two smaller groups of uncertain position, i.e., the 

Coniocybaceae and Mycocaliciaceae) and are preserved in amber from various deposits 

spanning an Albian to Miocene age (about 113 to 17 million years old) as well as in 

Devonian and Maastrichtian cherts (about 410 and 66.5 million years old, respectively).  

Six of the reinvestigated fossil specimens were used to constrain a molecular clock 

model for an Ascomycota phylogeny. To combine the fossil data with molecular data, a 

multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) with a total of 145 modern 

taxa representing the main groups of the Ascomycota was assembled. A Bayesian 

approach was used (BEAST) to implement the fossil data as minimum age constraints 

in order to estimate the divergence times of the main ascomycete classes. The 
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extraordinary preservation of the fossil ascomycetes allowed a precise assignment of the 

fossils to particular nodes in the phylogeny under study (see Fig. 1 in Beimforde et al., 

(submitted) [6]). To evaluate the influence of our internal node constraints, two analysis 

with identical parameter settings were performed in which the Devonian fossil 

Paleopyrenomycites devonicus (Tayor et al., 2005) was either used as the sole constraint 

for Pezizomycotina or in addition to further ascomycotan fossils.  

The resulting age estimates (see Fig. 2 and supplementary Fig. 1 in Beimforde et al., 

(submitted) [6]) were exclusively based on internal age constraints (either one or six) 

but largely agree with estimates in recent studies that employed external (non-

ascomycotan and/or non-fungal) constraints (Berbee and Taylor 2006; Lücking et al., 

2009; Gueindan et al., 2010). The results show that minimum age constraints in 

terminal groups of the Ascomycota significantly affect the estimated divergence times 

of both early branching nodes and nodes of terminal groups of Ascomycota lineages by 

pushing them back in time (see table 2 in Beimforde et al. (Table 2) [6]). The results 

indicate that further inclusions of reliable fossil constraints are likely to lead to even 

more accurate estimated ages of individual lineages. According to the resulting age 

estimates from the multiple calibration study, the diversification of the Pezizomycotina 

started in the Cambrian, and was followed by a continuous diversification of 

ascomycetes throughout the Phanerozoic that was likely to have been unaffected by 

mass extinctions. We suggest that the ecological diversity within each lineage ensured 

that at least some taxa of each group were able to survive global crises such as mass 

extinctions and rapidly recovered. 

 

5. Conclusions and outlook 
 

The investigation of amber inclusions has made great advances and many new taxa have 

been described in the last few years. The studies involved in this thesis demonstrate the 

great potential of fossil Ascomycota from amber in order to trace the evolutionary 

history this large group of fungi. The newly described taxa involved in this thesis 

(Beimforde et al., 2011 [5]; Touvila et al., 2013 [2]; Sadowski et al., 2012 [3], Schmidt 

et al., (submitted) [4]) are among the oldest evidence for the respective Pezizomycotina 

lineages and provide the most detailed descriptions of those fossil Pezizomycotina. The 

results contribute to the increasing information about ascomycotan life in Phanerozoic 

ecosystems. They provide information of interactions such as mycorrhizae (Beimforde 

et al., 2011 [5]) between ascomycotan fungi and other organism of the respective 

ecosystems. These results may also provide a template for further research since a large 

amount of material is available for further research. The steady accumulation of newly 

discovered fossils from worldwide amber deposits will allow further enlightenment of 
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the Phanerozoic history of the Ascomycota. The results of this thesis further contribute 

to the knowledge about the taphonomy of amber preserved fungi and other 

microorganisms by investigating associations between microorganisms and fossil and 

recent resins (Beimforde and Schmidt, 2011 [1]). This study emphasizes an active 

growth of microorganisms in liquid resins and on solidified resin surfaces.  

Additionally, the results of this thesis (Beimforde et al., [submitted) [6]) show the 

great potential of amber fossils for constraining molecular clock models. The delicate 

preservation of fossil Pezizomycotina in amber and chert enabled a very precise 

assignment of the fossil specimens in a recent Ascomycota phylogeny. The unresolved 

relationships for some Pezizomycotina classes in the Ascomycota phylogeny restricted 

comparisons of divergence times between some classes belonging to the super class 

Leotiomyceta. Improved phylogenetic studies, larger taxon sampling and the integration 

of a more comprehensive fossil record is likely to lead to more reliable results. For this 

reason a continuous screening of newly discovered ambers and cherts is needed to 

accumulate determinable fossils of fungi which are likely to improve molecular 

evolution models for fungal phylogenies, especially for individual groups of fungi. 
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Abstract 
 

Interactions of microorganisms with fresh and fossil resin may be very diverse and are 

sometimes poorly understood. In this study, we illustrate and discuss various 

associations of microbes and resins. We examined microorganisms from inside and at 

the surface of various modern and fossil resins and found microorganisms that (1) were 

enclosed by resin, (2) showed patterns of growth into the resin, and (3) colonized the 

resin surfaces. Various limnetic and terrestrial microorganisms were found entirely 

engulfed in resins. Furthermore, we observed modern fungal and prokaryotic filaments 

growing into liquid resins until solidification occurred. Correspondingly many amber 

pieces contain fossil filamentous bacteria or fungi which grew into the formerly liquid 

resin. Most likely they used the liquid resin as a temporary habitat and became well 

preserved when the resin solidified. Apart from these fossils, various living bacteria, 

fungi and algae were found at the surface and in cracks of amber pieces. Recent 

microbial colonization of amber pieces may accelerate processes of degradation of 

amber. 

 

Key words: amber, fossil bacteria, fossil fungi, resinicolous microorganisms 
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1. Introduction 
 

Amber can be considered as a window into the past allowing insights into the 

palaeoecology of Mesozoic and Cenozoic woodlands. Insects, spiders, fragments of 

higher plants and even small vertebrates were trapped by resins of conifers and 

angiosperms of the ancient "amber forests". Apart from these macroinclusions, amber 

may contain diverse and well-preserved fossil microorganisms (e.g., Waggoner 1994, 

Schönborn et al. 1999, Schmidt et al. 2006).  Most often they are representatives of 

limnetic or humid microhabitats of the forest floor (Girard et al. 2009b). Although 

microorganisms associated with amber are known for a long time (e. g. Berkeley 1848, 

Caspary & Klebs 1907, Galippe 1920, Blunck 1929) extensive studies were not done 

until the end of the 1980s (e. g. Ting & Nissenbaum 1986, Waggoner 1993, 1994, 

1996). Currently, continuous research on microinclusions is done at several institutions 

(e.g., Schmidt et al. 2006, Rikkinen 2000, Girard et al. 2009b). Various fossil 

microorganisms such as bacteria, cyanobacteria, fungi, algae, protozoans and 

micrometazoans can be found associated in single amber pieces (Schmidt 2006; Girard 

et al. 2008b). Amber preserved organisms from forest habitats where fossilization-

processes rarely happened. Furthermore, besides of chert, amber is the only source of 

well-preserved fossil soft-bodied microorganisms. Because of the excellent preservation 

even of cell organelles, a morphological characterization and a direct comparison to 

determinable recent organisms is often possible (Dörfelt & Schäfer 2000; Dörfelt & 

Schmidt 2007, Schmidt et al. 2006). The reconstruction of microbial life cycles and 

interactions of plants and microorganisms of Mesozoic and Cenozoic ecosystems is of 

special interest in examining amber microinclusions. Furthermore, amber inclusions 

may help to trace the evolutionary history of groups of organisms that are otherwise 

rarely or never preserved. 

Until now, only little research has been done about recent microorganisms that are 

associated with fresh resin and amber. Resinicolous fungi are found on resins and other 

exudates of vascular plants (Tibell & Titov 1995, Rikkinen 1999, 2003) and also 

bacteria can be observed growing into liquid resin (Schmidt & Dilcher 2007, Schmidt & 

Schäfer, 2005). The first researcher who noticed modern microorganisms from fossil 

resin samples was Galippe (1920). He observed bacteria on Cretaceous and Cenozoic 

amber samples from various localities. Recently, a study by Girard et al. (2008a) 

emphasized the occurrence of recent bacteria and diatoms at surfaces and in fissures of 

mid-Cretaceous amber samples that were found at the sea shore and in freshwater lakes 

of southwestern France. 

In the 1990's, several papers dealt with DNA enclosed in amber and from amber-

preserved insect and plant inclusions (e.g., Cano et al. 1994, Poinar & Poinar 1994, 
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Lambert et al. 1998, Greenblatt et al. 1999). However, critical reinvestigations suggest 

that the DNA obtained in these studies was modern contamination. Because even the 

amplification of DNA from copal failed, Austin et al. (1997) concluded that resin is not 

predestined for preservation of complex molecules such as DNA although 

morphological structures are recorded very well. Greenblatt et al. (2004) demonstrated 

that it is difficult or almost impossible to get the amber free of modern DNA and RNA 

since bacteria, fungi and other microbes remain in fissures even after surface 

sterilization by ultrasonic cleaning, H2O2 and ethanol as described by Lambert et al. 

(1998). Greenblatt et al. (1999, 2004) isolated putative fossil microorganisms from 

different ambers but characterisation of the supposed microfossils showed that they 

were actually much younger than the amber itself. Thereupon they suggested that the 

microorganisms exist as contaminants in amber cracks. The estimation of the exact date 

of these supposed microfossils seems to be impossible. Since non-degraded modern 

molecules are always preferred during the polymerase chain reaction, an amplification 

of fragments of ancient DNA is highly unlikely and today it is widely assumed that 

DNA does generally not persist more than thousands of years as amplifiable molecules 

(Hofreiter et al. 2001, Willerslev et al. 2004, Willerslev & Cooper 2005). 

Investigating amber one has to consider that amber is an organic substance and thus 

potentially represents an attractive substrate by itself. Because of their habitat 

specificity, it has been suggested that resinicolous fungi use liquid resin as sole nutrient 

source. Thereby the fungal mycelium penetrates into upper regions of liquid resins 

(Tibell & Titov 1995, Rikkinen et al. 2000, 2003). Greenblatt et al. (2004) postulate, 

that bacteria colonize small cracks of amber and possibly use the amber as a nutrient 

source. 

These previous studies indicate that interactions of microorganisms with fresh and 

fossil resin may be very diverse and are sometimes poorly understood. We therefore 

examined microorganisms from inside and at the surface of various modern and fossil 

resins. In both, modern and fossil resins, we found microbes that (1) were enclosed by 

resin, (2) showed patterns of growth into the resin, and (3) colonized the resin surfaces. 

It is the intent of this study to illustrate and to discuss these various associations of 

microbes and resins. 
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2. Material and methods 
 

We investigated modern and fossil resins of various botanical sources that were 

colonized by microbial communities before and after solidification of the resin. The 

pieces of amber were ground and polished manually with a series of wet silicon carbide 

papers (grit from 600 to 4000, firm Struers, Germany) to minimize light scattering for 

the investigation of the inclusions. The samples of modern and fossil resins and 

fragments thereof were examined under incident-light (Carl Zeiss Stemi 2000) and 

transmitted light microscopes (Carl Zeiss AxioScope A1 with long-distance objectives) 

equipped with Canon 450D digital cameras and under a scanning electron microscope 

(Carl Zeiss LEO 1530). 

In laboratory experiments, fresh resin of Cycas revoluta and Pinus strobus was 

placed on a microscopic slide, coated with a cover slip and stored under humid 

conditions in a Petri dish for two weeks. Growth of microbes was observed daily. 

For sequencing, electrophoresis was carried out on an ABI Prism 3100 Genetic 

Analyser. Sequences were assembled and edited in BioEdit version 7.0.8 

(www.mbio.ncsu.edu/BioEdit/bioedit.html) and ARB version 4.0 (www.arb-home.de). 

 

2.1 Modern resin investigated 
 

Resin of Agathis lanceolata Lindley ex Warburg and Agathis ovata (Moore) 

Warburg (Araucariaceae). The resin samples derive from southeastern New 

Caledonia and were collected by A.R.S. in 2005. These Agathis species have a natural 

massive resin production. Root-resin of A. lanceolata was found solidified at the forest 

floor. Solidified resin of A. ovata was collected at the base of the tree trunks. The 

samples are housed at the Geoscientific Museum of the University of Göttingen 

(GZG.BST 14975 to GZG.BST 14977). 

 

Resin of Pinus elliottii Engelmann (Pinaceae). The resin samples originate from 

‘Dilcher's swamp forest’, a swamp in a warm-temperate mixed forest east of the city of 

Gainesville in north central Florida. The resin samples were collected by A.R.S. and 

David L. Dilcher in 2006 in liquid and solid stage (for methods, see Schmidt & Dilcher 

2007). The sample is housed at the Geoscientific Museum of the University of 

Göttingen (GZG.BST 14974). 

 

Resin of Prunus avium L. (Rosaceae). Resin was collected at a tree trunk near the city 

of Jena in central Germany. The sample is housed at the Geoscientific Museum of the 

University of Göttingen (GZG.BST 14973). 
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Resin of Cycas revoluta Thunberg (Cycadaceae) and Pinus strobus L. (Pinaceae). 

Resin of potted plants was used for laboratory studies on the growth of bacteria, 

cyanobacteria and fungi in liquid resin. 

 

 

2.2 Fossil resin investigated 
 

Cretaceous amber from Golling (Salzburg, Austria). Amber from this famous 

locality is probably Hauterivian in age (for review, see Vávra 2005). Samples were 

kindly provided by Johann Peschl (Laufen) and are housed in the Museum für 

Naturkunde Berlin (MB. Pb 2009/344). 

 

Cretaceous amber from Myanmar (Burma). Both, biostratigraphic data obtained 

from the amber-bearing sediment and the amber inclusions indicate a mid-Cretaceous 

age of the amber (Grimaldi et al., 2002; Cognato & Grimaldi, 2009). Based on a recent 

re-investigation of the amber locality, Cruickshank & Ko (2003) suggest an Upper 

Albian age of the sediment. The samples are housed in the British Natural History 

Museum in London (BNHM In 20206). 

 

Cretaceous amber from Santander (Spain). This Upper Albian amber was found 

north of the village of Ubiarco that is situated about 20 km west of Santander (Wilmsen 

1997).  The samples were kindly provided by Markus Wilmsen (Würzburg) and are 

housed in the Museum für Naturkunde Berlin (MB. Pb 2009/345 and MB. Pb 2009/346) 

and in the Geoscientific Museum of the University of Göttingen (GZG.BST 14973). 

 

Cretaceous amber from Kuji (Japan). This  amber originates from the Late 

Cretaceous Tamagawa Formation near the city of Kuji and is probably Coniacian in age 

(see Krumbiegel & Krumbiegel 2005). The samples are housed in the British Natural 

History Museum in London (BNHM V.65206). 

 

Cretaceous amber from the Cedar Lake (Canada). Cedar Lake amber is considered 

to be Upper Cretaceous (probably Campanian) in age (see McKellar et al. 2008). The 

samples were kindly provided by Ulf-Christian Bauer (Schliersee) and are housed in the 

Museum für Naturkunde Berlin (MB. Pb 2009/347). 

 

Eocene Baltic amber from Russia. The pieces of Baltic amber were found in the 

Kaliningrad (Königsberg) area on the eastern coast of the Baltic Sea (western Russia). 

The sediments containing the majority of Baltic amber in the Kaliningrad area are 47-38 

million years old (Ritzkowski 1999, Standke 2008). One amber piece investigated was 
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kindly loaned from Wolfgang Weitschat (Hamburg; collection number 1805 of the 

amber collection of the Institute of Geology and Palaeontology of the University of 

Hamburg, Germany). Eocene Baltic amber of the collection of the Geoscientific 

Museum of the University of Göttingen was also investigated (GZG.HST 19 and 

GZG.HST 21). These samples are part of the historic Blumenbach collection that was 

collected by Johann Friedrich Blumenbach in (1752-1840). These samples have been 

stored in the Göttingen collection for more than 200 years. During the whole storage 

period the amber was kept in the dark and exposed to low air humidity. Since 40 years 

the ambient conditions of the storage-room are kept at a constant level of 40-60% air 

humidity and 22°C. 

 

3. Results and discussion 
 

Our studies revealed that microorganisms can be associated with plant resins in three 

different ways since (1) enclosure by resin, (2) growth into resins and (3) colonization 

of resin surfaces and fissures may take place.  

 

3.1 Microorganisms enclosed by resin 

 
Various limnetic and terrestrial microorganisms were found engulfed, i.e., entirely 

embedded in resins. Among others, representatives of conjugatophytes (Fig. 1A) and 

testate amoeba (testate lobose amoebae, order Arcellinida, Fig. 1B–C) were found 

inside resin flows of Pinus elliottii from a Florida swamp forest. Single celled limnetic 

organisms became enclosed, when resin flowed down the tree trunks and reached the 

humid forest floor. Some of these inclusions exhibit an excellent preservation of 

detailed structures such as chloroplasts (Fig. 1A). Schmidt & Dilcher (2007) found all 

major groups of limnic microorganisms of the swamp water embedded in resin of Pinus 

elliottii, a species that exhibits a massive natural resin production. Limnetic-terrestrial 

microorganisms have also repeatedly been reported from Cretaceous ambers. Aquatic 

bacteria, microalgae, conjugatophytes, ciliates and testate amoebae described from the 

Cenomanian Schliersee amber from the Bavarian Alps are examples hereof (see 

Schönborn et al. 1999, Dörfelt & Schäfer 2000, Schmidt et al. 2004). 
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Figure 1. Light-microscopical images of modern and fossil microorganisms that became engulfed by 

resin: A Conjugatophyte of the genus Cosmarium enclosed in modern resin from Pinus elliottii. 

B-C Testate amoeba of the genus Arcella in ventral B and lateral C view inside P. elliottii resin. 

D-F Epiphytic cyanobacteria enclosed in modern resin of Prunus avium (GZG.BST 14973). The 

filaments continued to grow for a short time after embedding. The arrow shows a narrow filaments in 

which cross walls are absent. G–H Fossil cyanobacteria in Upper Cretaceous amber from Canada 

(MB.Pb.2009/347). The arrow in (C) indicates a narrow filament without cross walls; the arrow in 

H shows a regular filament. Scale bars represent 30 µm in A-C and E-H, and 200 µm in D. 
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Figure 2. Light-microscopical images of modern microorganisms that grew on and into liquid resin: A-B 

Leptothrix-like sheated bacteria inside modern resin of Pinus elliottii (GZG.BST 14974). C Spiral 

prokaryotic filaments growing in resin of Pinus elliottii. D Fungal hyphae growing in resin of Pinus 

elliottii. E Fungal hyphae growing into liquid resin of Cycas revoluta. F-H Resinicolous fungi grown into  

modern resin of Agathis lanceolata in New Caledonia (GZG.BST 14975). Scale bars represent 10 µm in 

A-B, 50 µm in C-E, 100 µm in F, and 20 µm in G-H.  
 

58 
 



Appendix 1 
 

Cyanobacteria are rarely enclosed in fossil resins. We found modern filamentous 

cyanobacteria inside resin at the trunk of a cherry tree (Prunus avium, Fig. 1D–F). After 

becoming entirely enclosed by the fresh resin, further growth of the filaments took place 

for a short time. During this limited growth, narrow filaments were produced in which 

cross walls were often absent. We discovered similar narrow filaments without cross 

walls in cyanobacterial mats inside Upper Cretaceous amber from the Cedar Lake in 

Canada (Fig. 1 G–H). Therefore, we interpret these fossil cyanobacteria to be alive 

during embedding and a couple of hours to days afterwards in the liquid resin. 

However, generally those entirely embedded organisms died off immediately after 

embedding and correspond to the classic term of inclusions since they do not touch the 

resin surface at all. 

 

3.2 Microorganisms growing on and into the liquid resin 
 

We found many examples of modern and fossil fungal hyphae and filamentous bacteria 

that grew from the surface into the resin bodies until solidification occurred. Despite 

being preserved inside amber and modern resin, these inclusions do not correspond to 

the typical criteria of inclusions because they touch the surface at least at one point. 

Sheathed bacteria occurred sometimes in fresh resin of Pinus elliottii that flowed into 

the ponds of a Florida swamp forest. Their sheaths are about 10 µm in diameter and 

exhibit a central lumen of about 1 µm diameter. Cell chains could sometimes not be 

identified inside the lumen. As in modern Leptothrix specimens, the observed sheaths 

are hyaline, slightly granulated and contain minute gas bubbles which might indicate 

metabolic activity after embedding in the resin (Fig. 2A–B). Spiral prokaryotic 

filaments and branched fungal hyphae were regularly found in P. elliottii resin that had 

contact to the swamp water (Fig. 2C–D).  

Correspondingly, many Cretaceous amber pieces are interspersed with fossil bacterial 

filaments. We found filaments that are composed of rod-shaped cells (Fig. 3A–B), but 

mostly sheathed branched cell chains or empty sheaths that morphologically closely 

resemble modern representatives of the genus Leptothrix occurred in the ambers (Figs. 

3C–I). The random orientation of the sheathed filaments and the absence of broken parts 

thereof suggest that these filaments grew from the surface to the inner parts of the 

formerly liquid resin bodies. In many cases, the densely arranged fossil bacterial 

filaments even cause opacity of the outer parts of the resin pieces. Sometimes, cell 

chains are visible (Fig. 3F). The sheaths of ca 10 µm diameter are mostly hyaline and 

often contain gas bubbles (Fig. 3I). Under the scanning electron microscope, empty 

tubes were visible at the former location of the cell chains and bubble-shaped holes are 

frequently visible inside the resin-preserved sheaths (Fig. 4A–B). Sometimes, possible 

remnants of the former cells were seen attached to the inner face of the tubes. 
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Figure 3. (previous page) Light-microscopical images of fossil microorganisms that have grown into the 

formerly liquid resin: A-B Fossil rod-shaped bacteria in Lower Cretaceous Golling amber from Austria 

(MB.Pb.2009/344). C-E Branched filaments of sheated bacteria in Albian amber from Santander 

(northern Spain; MB.Pb.2009/345 and 346). F Bacterial cell chain with only slightly developed sheath in 

Albian amber from Santander (GZG.BST 14979). G-H Sheated bacteria Upper Cretaceous amber from 

Kuji (Japan; BMNH V.65206). I Minute bubbles are sometimes visible inside the sheaths. Scale bars 

represent 500 µm A and H, 50 µm in B-C, 100 µm in G, and 20 µm in D, F and I. 
 

 

 
Figure 4. Scanning electron microscope images of sheathed bacteria visible at a break surfaces of Albian 

amber from Santander (Spain, GZG.BST 14978):  A Several branched filaments are exposed at the 

surface. The arrows indicate the surface of the fossilized sheaths that are interspersed with minute 

bubbles. B Detailed view. The tubular hole inside the sheath at the former location of the cell chain is 

well visible. Scale bars represent 5 µm. 

 

Modern sheathed bacteria of the genera Leptothrix and Sphaerotilus are 

chemoorganotrophic organisms, using a large number of carbon and nitrogen sources by 

tolerating a wide range of nutrient concentrations. Many carbohydrates, alcohols, 

organic acids and amino acids can be metabolized. Also the utilization of succinate as 

sole nutrient source was reported for modern sheathed bacteria. Resin, as an organic 

material, might be an appropriate habitat in liquid and possibly even in solid stage. 

Greenblatt et al. (2004) postulated, that bacteria of the genus Micrococcus may survive 

long times in cracks of amber pieces and possibly use amber compounds as a nutrient 

source. Most likely the Cretaceous filamentous bacteria that are preserved in amber 

used resin as a temporary habitat and could probably use compounds of the resin as a 

nutrient source. 
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Figure 5. Scanning electron microscope images of resinicolous fungi grown into modern resin of Agathis 

lanceolata in New Caledonia (GZG.BST 14976): A Break surface of hardened resin interspersed by 

minute tubes that resulted by hyphal growth. The arrow indicates a branching. B Detail of the filamentous 

structures. The arrows indicate the sheath-like structure around the hyphae. Scale bars represent 10 µm. 

 

We assume that these filamentous microorganisms came into contact to the resin flows 

at the forest floor and used this temporary microhabitat as long as possible. Peňalver et 

al. (2007) described similar filamentous structures from Cretaceous amber from San 

Just (Spain) as "alteration crust". These authors interpret these structures as non-

biological inclusions and suggest degradation structures caused by weathering of the 

amber pieces. According to our results, most "crusts" of Cretaceous ambers are not 

primarily caused by weathering but by colonization of liquid resin by filamentous 

microorganisms. It is, however, likely that numerous micrometer-sized tubes (see Fig. 

4) that remain in the solidified resin promote subsequent physical-chemical weathering 

of the resin's outer parts. 

Our experiments with living taxa demonstrated an active microbial colonization of 

liquid resin of Cycas revoluta and Pinus strobus (Fig. 2E). Growth of filaments could 

be observed after two or three days. Both, bacteria and fungi grew into the resins as 

long as it was liquid. The filaments stopped growing when the resin solidified. 

Interestingly, the Cycas-resin became darker around the hyphae (Fig. 2E) which might 

indicate some kind of interactions between compounds of the resin and fungal mycelia 

due to metabolic activity. 

We found abundant fungal mycelia on recently solidified extensive resin flows of 

Agathis lanceolata from New Caledonia. In the humid forests of southeastern New 

Caledonia the resin flows were mostly completely overgrown by mycelia, causing a 

grey opaque surface of the translucent resin bodies. The hyphae did not exclusively 

grow at the resin surface but also penetrated the resin up to ca 3 mm deep which caused 

an opaque and fragile surface layer. These fungal mycelia are composed of very thin 

hyphae of only 1.5 to 3 µm diameter that are densely arranged, irregular branched and 

sparsely septated (Fig. 2F–H). The numerous minute tubes caused by the fungal growth 

are shown in the SEM images of Fig. 5A and B. Around some of these tubes, an 

indication of a sheath appears (see Fig. 5B) that is not visible under the transmitted-light 
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microscope. Possibly, this structure is caused by alteration of the surrounding resin due 

to metabolic activity of the hyphae. These resinicolous fungi from New Caledonia are 

probably representatives of the mycocaliciaceae  group of ascomycetes whose 

representatives exclusively grow on resin and other exudates of vascular plants. 

Representatives of the genera Chaenothecopsis, Mycocalicium, Phaeocalicium and 

Stenocybe have been described to be resinicolous (see Tibell & Titov (1995). Rikkinen 

(1999, 2003) described several new recent species from temperate rain forests of 

western North America and one extinct species, Chaenothecopsis bitterfeldensis, from 

24 million-year-old amber from Germany (Rikkinen & Poinar 2000). Because of their 

habitat specificity, it has been suggested that these fungi use liquid resin as sole nutrient 

source (see Rikkinen & Poinar 2000). 

Also many fossil resins contain fungal hyphae which have grown into the formerly 

liquid resin. Mycelia often cover inclusions of arthropods. Fungi that were probably 

attached to the animals when embedded continued growing until the resin solidified 

(Fig. 6A–B). Many amber pieces contain fungal hyphae that are densely arranged 

particularly in outer parts. Correspondingly to filamentous bacteria, fungal growth 

occurred from the surface to inner parts of the amber and the hyphae are orientated in 

many directions (Fig. 6C–D). These fungal hyphae also derived from the ancient 

environment and most likely came into contact with the resin at the forest floor. 

We never found cyanobacteria growing into the resin. In contrast to the filiform 

bacteria illustrated and discussed above, these phototrophic organisms probably did not 

continue to grow extensively after being embedded in the liquid resin. Current reports 

of abundant cyanobacteria from French Cretaceous ambers (Girard et al. 2009a) are 

questionable since these results are mainly based on the putative detection of 

phycocyanin in these resins. These authors used a probe detecting fluorescence of the 

wave lengths that are specific for phycocyanian. However, they did not outline how 

they exclude measuring of the fluorescence of the amber itself. The fact that they often 

got higher signals in those parts of the amber that did not contain microinclusions 

confirms our doubts. 
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Figure 6. Light microscopical images of fossil fungi that have grown into the formerly liquid resin: A-B 

Branched hyphae at the surface of an insect enclosed in Baltic amber (amber collection of the Institute of 

Geology and Palaeontology of the University of Hamburg, coll. no. 1805). Note the darkened amber 

filaments that resembles the structures shown in Fig. 2E from modern resin . C-D Mycelium in 

Cretaceous Burmese amber (BMNH In 20206). The arrow indicates collapsed cells. Scale bars represent 

50 µm in A, B and D, and 500 µm in C. 

 

3.3 Microorganisms colonizing surfaces of solidified resins 
 

Investigating solidified modern resins in the field and ambers stored in collections, we 

found various examples of microbial colonization, too.The New Caledonian resin 

samplesof Agathis lanceolata and Agathis ovata that solidified at the forest floor or 

close to it at the tree trunk exhibited surfaces that were often covered by associations of 

bacteria, fungal mycelia and algae (Fig. 7A–B). These mycelia were distinguished from 

those of the resinicolous fungi mentioned above since their hyphae did not penetrate the 

resin bodies but overgrew their surfaces and bordering microhabitats. 

Both, bacteria and fungi occurred on surfaces of Baltic amber samples of the 

Blumenbach collection. Hereby, fungal growth was predominantly observed. Some of 

these samples were strongly covered by fungal mycelia that sometimes plentiful 

sporulated (Fig. 7G–J). Molecular determination of the isolates revealed affiliations to 

the genus Aspergillus.  
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Figure 7. (previous page) Scanning electron microscope images of modern bacteria and fungi that 

colonize surfaces of solidified modern and fossil resins: A-B Hyphae at solidified resin of Agathis ovata 

(GZG.BST 14977), C-E Rod-shaped bacteria accumulated in deeper regions and fissures of surfaces of 

Baltic amber samples of the Blumenbach collection (GZG.HST 21). F-G Hyphae in cracks and minute 

fissures of Baltic amber samples of the Blumenbach collection (GZG.HST 19). H Sporulating Aspergillus 

sp. isolated from surface of Baltic amber of the Blumenbach collection. I Single spore of Aspergillus sp. 

J Fungal hyphae at the surface of Baltic amber of the Blumenbach collection (GZG.HST 19). Scale bars 

represent 50 µm in A and C, 10 µm in B, D-E and G-H, and 1 µm in I-J. 

 

Associated bacteria were mostly rod-shaped and showed affiliations to various classes, 

such as Betaproteobacteria, Gammaproteobacteria, Bacilli and Flavobacteria (Fig 7C–

E). It is well known that microorganisms, particularly in form of biofilms, can cover 

nearly all surfaces. We found bacteria and fungi preferentially in impressions of the 

amber surface and in fissures. This accumulation might be caused by improved growing 

conditions because of the presence of inorganic and organic matter including nutrients 

that accumulated in deeper regions and fissures. Whether amber as an organic material 

can be utilized as a nutrient source for microorganisms has not been examined so far, 

but it is conceivable. Due to the microbial activity, recent colonization may accelerate 

the degradation of the amber objects. The degradation of amber is probably caused by 

various chemical, physical and biological processes that may act together and 

sometimes trigger or enforce each other. Processes of oxidation are probably most 

important for the degradation of amber. However, when fungal mycelia penetrate into 

present fissures and extent their mycelia, physical forces arise that can break up upper 

amber layers, thus opening new areas for oxidation processes. So far, it is unclear if also 

secretion of metabolic compounds can represent a damaging factor and if the microbes 

may utilize amber compounds as a nutrient source. This should be subject of further 

studies. 

Usually, recent biofilms are easily distinguishable from fossil inclusions using high-

magnification light-microscopy. Also, microorganisms that are situated inside fissures 

that extend into the amber are usually distrainable from microinclusions when tracing 

the refractive micrometre-sized fissures under the microscope. During the study of mid-

Cretaceous amber of southwestern France, Girard et al. (2008a) discovered living 

marine and freshwater diatoms at the amber surface and in micrometre-sized fissures. 

Furthermore, these authors found fungal mycelia, bacteria and cyanobacteria in fissures 

inside the amber samples, showing that not exclusively ambers in collections represent 

habitats of microorganisms. 
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Abstract 
 

Resin protects wounded trees from microbial infection, but also provides a suitable 

substrate for the growth of highly specialized fungi. Chaenothecopsis proliferatus is 

described growing on resin of Cunninghamia lanceolata from Hunan Province, China. 

The new fungus is compared with extant species and two new fossil specimens from 

Eocene Baltic and Oligocene Bitterfeld ambers. The Oligocene fossil had produced 

proliferating ascomata identical to those of the newly described species and to other 

extant species of the same lineage. This morphology may represent an adaptation to 

growing near active resin flows: the proliferating ascomata can effectively rejuvenate if 

partially overrun by fresh, sticky exudate. Inward growth of fungal hyphae into resin 

has only been documented from Cenozoic amber fossils suggesting comparatively late 

occupation of resin as substrate by fungi. Still, resinicolous Chaenothecopsis species 

were already well adapted to their special ecological niche by the Eocene, and the 

morphology of these fungi has since remained remarkably constant. 

 
Keywords. Fossil fungi. Proliferating ascomata. Resin compounds. Ecology. Taxonomy 
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Introduction 
 

Resinous exudates provide plants with protection against pathogens and parasites, but 

some highly specialized fungi are also known to grow exclusively on resin substrates. In 

the Mycocaliciales Tibell & Wedin (Eurotiomycetes, Ascomycota) some ten percent of 

the approximately 150 known species grow on plant exudates (Tibell and Titov 1995; 

Rikkinen 1999, 2003a; Titov 2006; Tuovila et al. 2011a, 2011b). Most of these fungi 

live on conifers and produce perennial, stipitate ascomata on hardened resin and/or 

resin-impregnated wood. Some species are also able to colonize relatively fresh, 

semisolid resin. The ability to rapidly exploit new substrates is advantageous, but also 

carries the inherent risk of being buried by subsequent resin flows. This danger is well 

exemplified, not only by the occurrence of partially or completely submerged ascomata 

in modern resins, but also by submerged specimens in European amber dating back to 

the Oligocene (Rikkinen and Poinar 2000) and Eocene (this study). 

Here, we describe a new resinicolous Chaenothecopsis species from the exudate of 

Cunninghamia lanceolata (Lamb.) Hook. (Cupressaceae) from Hunan Province, China, 

as well as newly discovered Chaenothecopsis fossils from Eocene Baltic and Oligocene 

Bitterfeld ambers dating back to at least 35 and 24 million years ago, respectively. The 

exquisite preservation of the fossils allows a detailed comparison with extant relatives. 

One fossil fungus has produced branched and proliferating ascomata similar to those of 

the newly described species from China, as well as some other extant species of the 

same lineage.  

 

Material and Methods 
 

Extant and fossil fungi 

 
Resinicolous fungi were collected from tree trunks of Cunninghamia lanceolata 

(Cupressaceae), Ailanthus altissima (Mill.) Swingle (Simaroubaceae), Kalopanax 

septemlobus (Thunb.) Koidz (Araliaceae), and Pinus massoniana Lamb. (Pinaceae) in 

warm temperate evergreen broadleaved forests in Zhangjiajie National Forest Park 

(1999), Badagongshan National Nature Reserve (1999, 2000), Daweishan National 

Forest Park (2000), and Shunhuangshan National Forest Park (2001) of Hunan Province 

in south-central China. For more information on the study area, see Koponen et al. 

(2000, 2004). 

The fossils with proliferating ascocarps (Fig. 7) are preserved attached to wood 

debris in a 17 × 13 × 5 mm piece of Bitterfeld amber from the Heinrich Grabenhorst 

collection (collection number Li-83) that is now housed in the Geoscientific Collections 
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of the Georg August University Göttingen (collection number GZG.BST.27285). 

Bitterfeld amber originates from the Goitzsche mine near the city of Bitterfeld (central 

Germany) and was recovered from the “Bernsteinschluff” Horizon in the upper part of 

the Cottbus Formation. The Upper Oligocene amber-bearing sediment has an absolute 

age of 25.3–23.8 million years (Blumenstengel 2004; Knuth et al., 2002). A previous 

notion that Bitterfeld amber either represents re-deposited Eocene Baltic amber, or is at 

least much older than the amber-bearing strata (Weitschat 1997) was disproven by 

recent reconstructions of the sedimentary environment of this huge amber deposit (see 

Standke 2008, and discussion in Schmidt and Dörfelt 2007, and Dunlop 2010). 

The non-proliferating fossil ascocarps (Figs 8 and 9) are enclosed in a 2.5 × 1.5 × 1 

cm piece of Baltic amber from the Jörg Wunderlich collection (collection number 

F1178/BB/FUN/CJW) that is now housed in the Geoscientific Collections of the Georg 

August University Göttingen (collection number GZG.BST.27286). Four immature and 

six mature ascomata derive from a mycelium that directly grew on the surface of a 

stalactite-like resin piece which served as substrate for the resinicolous fungus. These 

were preserved by a subsequent resin flow that had then covered over the material. The 

Eocene sediments containing the majority of Baltic amber in the Kaliningrad area 

(Russia) are 35–47 million years old (Standke 1998). 

 

Microscopy, imaging and microanalysis 

 
Morphological features of the extant fungal specimens were observed and measured in 

water under a light microscope (Leica DMLS) with a 100x oil-immersion objective. 

Potassium-hydroxide (KOH), Lugol´s reagent (IKI), Melzer´s reagent (MLZ), Congo 

Red (CR; CR+ congophilous, coloring strongly red in CR), and nitric acid (N) were 

used when observing some diagnostic structures, like paraphyses and stipe hyphae. 

Ascomata from dried Cunninghamia bark pieces were imaged under a Carl Zeiss 

AxioScope A1 compound microscope using simultaneously incident and transmitted 

light. Spores were imaged on a microscope slide in water using 1600× (oil immersion) 

magnification and Differential Interference Contrast (DIC) illumination.  

For scanning electron microscopy, several dried specimens of C. proliferatus were 

removed from the substrate, placed on a carbon-covered SEM-mount, sputtered by 

gold/palladium and examined under a Carl Zeiss LEO 1530 Gemini field emission 

scanning-electron microscope as described by Beimforde et al. (2011). Energy-

dispersive X-ray spectroscopy (EDX) was performed on some ascomata using an 

INCA-EDX system (Oxford Instruments) with an excitation voltage of 15KV at this 

electron microscope. 
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Fig. 1 Ascomata of Chaenothecopsis proliferatus sp. nov. on resin-impregneted bark of Cunninghamia 

lanceolata. a Proliferating ascomata (JR 990048). b Multiple branching from capitulum (holotype, JR 

990061). c Ascoma with branched stipe (holotype, JR 990061). d Mature non-branched ascoma on resin 

(holotype, JR 990061). e Non-branched ascomata rising from a common stroma; note dense aerial 

mycelium (holotype, JR 990061). Scale bars: 200 µm. 

 

The amber pieces were ground and polished manually with a series of wet silicon 

carbide abrasive papers to remove the weathered crusts and to minimize light scattering 

for the investigation. Prepared specimens were placed on a glass microscope slide with 

a drop of water applied to the upper surface of the amber, and covered with a glass 

coverslip. The inclusions were studied using a Carl Zeiss AxioScope A1 compound 

microscope. In most instances, incident and transmitted light were used simultaneously 

(see Schmidt et al. 2012, for protocols). In order to protect the amber from oxidation 

and breakage, the polished Baltic amber piece was embedded using polyester resin as 

described by Hoffeins (2001). 

Images of Figs 1, 2, and 7 to 9 (except of Figs 2e, 7g, and 9f, g) are digitally-stacked 

photomicrographic composites obtained from several focal planes using the software 

package HeliconFocus 5.0 for a better illustration of the three-dimensional objects. 
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Fig. 2 Capitulum and spores of Chaenothecopsis proliferatus sp. nov. (holotype, JR 990061). a Young 

capitulum and upper section of stipe; note intertwined surface hyphae. b Capitulum with thin mazaedium 

seen from above. c Exciple. d Ascospores. e Spore wall in focus. f Septum in focus. Scale bars: 50 µm (a–

c) and 1 µm (d–f). 
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DNA extraction, PCR amplification and sequencing 

 
DNA was extracted from extant representative specimens of resinicolous fungi collected 

from Hunan Province. Additional resinicolous, lignicolous and parasitic fungi were 

collected from different localities in Finland (2009) and northwestern USA (2006). 

DNA was extracted from 5 to 10 ascomata of each species with the NucleoSpin©Plant 

DNA extraction kit (Macherey-Nagel) with the following modification to the 

manufacturer’s protocol: specimens were incubated for 2 hours to ensure the lysis of the 

ascocarps. The nuclear large subunit ribosomal RNA (LSU) partial gene was amplified 

using the primers LR0R and LR3 (Rehner and Samuels 1994; Vilgalys and Hester 

1990). The ITS region of rDNA was amplified using the primers ITS4 and ITS5 (White 

et al. 1990) or alternatively ITS4 and ITS1F (Gardes and Bruns 1993). PCR 

amplification was conducted using Phusion® High-Fidelity DNA Polymerase (Thermo 

scientific/Finnzymes) according to the manufacturer’s specifications using a 1:4 dilution 

of template DNA. PCR products were purified with GeneJET™ PCR Purification Kit 

(Fermentas). Amplicons were sequenced by Macrogen Inc. (South Korea) in the 

forward and reverse directions using the same primers as during amplification. 

Sequences for each sample were assembled into contigs using Geneious v5.4 

(Drummond et al. 2011) and the consensus sequences used for further analyses. For 

samples that failed to amplify using the Phusion PCR method, amplification was 

conducted using PuReTaq Ready-To-Go PCR Beads (GE Healthcare, Piscataway NJ, 

USA) according to the manufacturer’s instructions with the primers LROR & LR7 

(Vilgalys and Hester, 1990) or ITS1F & ITS4, and 3 µl of template DNA in a total PCR 

reaction volume of 25 µl. These amplicons were then sequenced using an ABI 3100 

automated sequencer (Applied Biosystems Inc., Foster City, CA, USA) with the primers 

ITS1F & ITS4, and LROR, LR3, LR5, and LR7.  

 

Phylogenetic analyses 

 
A concatenated dataset was composed of both the ITS and LSU sequences that were 

generated, and previous accessions from NCBI GenBank. The GenBank sequences were 

selected following two criteria: both ITS and LSU sequences were from the same 

voucher material (with the exception of Mycocalicium sequoiae from which only the 

LSU sequence was available), and sequences were from species with unequivocal 

taxonomic status. The dataset was aligned with MAFFT version 6 (Katoh and Toh 2008) 

and adjusted manually in PhyDE® 0.9971 (Müller et al. 2010). Unequivocal short (1–3 

nucleotides) uninformative insertions were first removed from the alignment, and the 

program Gblocks 0.91 (Castresana 2000) was then used to remove ambiguously aligned 
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regions. Phylogenetic relationships and confidence statistics were inferred using a 

partitioned Bayesian approach in which models of evolution were generated 

independently with jModeltest 1.1 (Posada 2008) for each of the gene regions (LSU, 

ITS1, 5.8S, ITS2). The suggested evolutionary models (TIM2ef+G, HKY+G, 

TIM2ef+G, TIM3ef+G, respectively) were implied for the partitioned dataset analyses. 

Bayesian analyses employing four Markov chain Monte Carlo (MCMC) chains were 

carried out with MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) on the freely 

available computational resource Bioportal at the University of Oslo 

(http://www.bioportal.uio.no; Kumar et al. 2009). The four chains were run 

simultaneously for 10 million generations for the partitioned datasets with trees sampled 

every 100th generation. Average standard deviations of split frequency (ASDSF) values 

lower than 0.01 were taken as an indication that convergence had been achieved. A 

burn-in sample of 5000 trees was discarded for the run and the remaining trees were 

used to estimate branch lengths and posterior probabilities. Additional support values 

were estimated using the same model parameters in Garli 2.0 for maximum likelihood 

(Zwickl 2006) with 1000 bootstrap searchreps. Voucher information and GenBank 

accession numbers of all fungal specimens used in this study are listed in Table 1. 

 

Results 
 

Extant fungus from China 

 
Chaenothecopsis proliferatus Rikkinen, A. R. Schmidt et Tuovila sp. nov.  

Figs 1–5 

MycoBank no.: MB800706 

 

Type: China. Hunan Province. Dayong County, Zhangjiajie National Forest Park. 

Fuqiyan, along trail to view point above Zhangjiajie Hotel; young mixed 

Cunninghamia-angiosperm forest with large remnant Pinus massoniana. On resin, 

resin-soaked bark, and lignum of Cunninghamia lanceolata. 15.IX.1999, 29°19´N, 

110°25´E, elev. 650 m, Rikkinen JR990061 (holotype H). 

 

Etymology: proliferatus refers to the common production of branched and proliferating 

ascocarps in this species. 

 

Description: Apothecia on resin or resin-soaked wood and bark of Cunninghamia 

lanceolata, small to medium, 800–2000 µm high, black with a bluish tinge. Stipe shiny 

black, long and slender, occasionally branching, 30–80 µm wide. Capitulum discoid to 
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lentil-shaped, rarely subspheric or ovoid, bluish black, 170–250 × 300–400 µm. Young 

capitulum shiny, later spores accumulate as agglomerates on top of capitulum, 

appearing as black spots. Old capitulum covered with brown hyphae that possibly 

originate from germinated spores. New apothecia proliferate often from old capitula, 

usually several from the same capitulum. All parts of apothecium N– and MLZ–. Asci 

arise from croziers, cylindrical, 64.0–81.0 × 3.5–4.5 µm (n = 10), apex variously 

thickened and often penetrated by a short canal, mature asci sometimes without 

thickening. Hymenium and hypothecium IKI+, reaction fast and only seen by adding 

fresh IKI to a partly dried water squash preparation while observing through the 

microscope. The blue reaction usually disappears in seconds after the IKI has penetrated 

the material, the speed and the strength of the reaction seems to vary depending on the 

age and pigmentation of the ascocarp. Ascospores uniseriately and periclinally arranged, 

sometimes partly obliquely arranged in asci, brownish green, cylindrical to fusoid, one-

septate, in mature spores septum as thick as spore wall, the spore wall inwardly 

thickened at junction between septum and spore wall; (7.2–) 7.5–11.3 (–11.8) × 3.1–4.3 

(–4.6); mean 10.3 × 3.4 µm (n = 90, from 9 ascocarps, 6 populations); Q = 1.9–3.6 µm, 

mean Q = 3.0. Spores smooth under the light microscope, but each examined ascocarp 

typically had a small ratio (less than 15 %) of young spores with very minute, pointed 

ornamentation. Paraphyses hyaline, filiform, 65–85 × 1.0–1.5 µm, occasionally 

branching from lower sections, commonly branching at the ascus tip level; septate, 

septal intervals 5.0–15.0 µm. Paraphyse tips covered with hyaline, strongly 

congophilous crystals that dissolve with KOH. Hypothecium hyaline to light green. 

Exciple green to brownish green in young apothecia, dark (greenish) brown in older 

ones, hyphae parallel, 3.0–4.0 µm wide, cell wall 0.5–1.5 µm, often with colorless 

crystals between and on top of hyphae of exciple, dissolving in KOH and MLZ; KOH+ 

yellowish brown color leaks into medium and green pigments turn brown. Faint, but 

persisting grayish red to purplish pink IKI+ reaction in thick-walled hyphae of exciple. 

Reaction is often difficult to observe due to the strong pigmentation of hyphal walls. 

Stipe dark green in young apothecia to dark brown in older ones, hyphae more or less 

parallel, partly intertwined, 3.0–5.0 µm wide, cell wall 1.5–2.0 µm, KOH+ dark brown 

color leaks into medium and green colors of stipe turn brown. All parts of exciple and 

stipe covered with dense net of arching and horizontal hyphae 3.0 µm wide, cell wall 

0.5–1.0 µm. Epithecium greenish to yellowish brown, composed of elements from 

exciple and paraphyses. The thick-walled hyphae of exciple cover the asci, intertwine 

and form a tight net that is hard to break, with small holes, on average 3.0 µm × 4.0 µm 

in size. Paraphyses curve at the level of ascus tips to cover the asci, branch repeatedly 

and anastomose with neighboring branches of the same and adjoining paraphyses just 

beneath the net of excipular hyphae, forming an inner layer of the epithecium. This  
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Fig. 3 SEM images of ascomata of Chaenothecopsis proliferatus sp. nov. (holotype, JR 990061). 

a Ascomata. b Detail of epithecium. c Detail of exciple. Scale bars: 100 µm (a) and 20 µm (b and c). 

 

complex contains innumerable colorless, strongly congophilous crystals. Crystals also 

appear between paraphyses and asci, usually as a 15–20 µm thick layer. The crystals 

dissolve and green colors of epithecium turn brown in KOH. Faint, but persisting 

grayish red to purplish pink IKI+ reaction in thick-walled hyphae of epithecium, usually 

difficult to observe due to the dark pigmentation of cell walls.  
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Fig. 4 SEM images showing anatomical details of Chaenothecopsis proliferatus sp. nov. (holotype, JR 

990061). a Stipe surface. b Stipe surface near exciple. c Epithecium. d Ascospores being released through 

the epithecium; note the blade-like crystals. e. Ascospores. Scale bars: 10 µm (a and b), 20 µm (c) and 1 

µm (d and e). 

 

Specimens studied 

 
China. Hunan Province. Resinicolous on basal trunk of Cunninghamia lanceolata. 

Dayong Co., Zhangjiajie National Forest Park. Dense mixed Cunninghamia-angiosperm 

forest along roadside in moist valley, 15.IX.1999. 29°19´N, 110°24´E, elev. 785 m, 

Rikkinen JR990047, JR990048. Fuqiyan, along trail to view point above Zhangjiajie 

Hotel, young mixed Cunninghamia-angiosperm forest with large remnant Pinus 

massoniana, 15.IX.1999, 29°19´N, 110°25´E, elev. 650 m, Rikkinen JR000061. Moist 

evergreen forest with bamboo and conifer stands in valley below Zhangjiajie Hotel, 

18.IX.1999, 29°19´N, 110° 25´E. Elevation 630 m, Rikkinen JR990312, JR990346 

(SKLM). Yaozizhai, along lowest section of trail from valley bottom towards the peak, 

mature Cunninghamia lanceolata plantation along dry stream bed, 20.IX.1999, 29°18´N, 

110°25´E, elev. 610 m, Rikkinen JR990484. Liu Yang Co., Daweishan National Forest 

Park. Xu-Quan Hu, low broadleaved secondary thickets with isolated Cunninghamia 

lanceolata in moist valley, 28.IX.2000, 28°25.30’N, 114°06.95’E, elev. ca. 1300 m, 

Rikkinen JR000470. Lower section of trail from Li-Mu-Qiao to Wu-Zi-Shi crossing, 

secondary mixed evergreen forest with bamboo stands on steep slope of moist river 

valley, 28.IX.2000, 28°25.50’N, 114°05.35’E, elev. ca. 1000 m, Rikkinen JR000594, 

JR000595. Xinning Co., Shunhuangshan National Forest Park. Zheng Jiang Valley. 
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Cunninghamia lanceolata/Trachycarpus fortunei stand in grazed mixed evergreen 

secondary forest, 24.IX.2001, 26°24’35’’N, 110°59’20’’ E, elev. 950 m, Rikkinen 

JR010543. 

 

	
Fig. 5 Line drawings of anatomical details of Chaenothecopsis proliferatus sp. nov. a Paraphyses 

(JR990346, JR000595). b Stipe (JR990048). c Exciple (JR990048). d Ascus tip (JR990061, JR000595). 

e Ascospores (JR990048, JR990061, JR990312, JR000595). f Spore wall (JR990312). g Paraphyses, asci, 

and epithecium (JR000593). Scale bars: 10 µm. 

	

Phylogenetic analysis 
 

The fungal LSU and ITS sequences obtained from extant Chaenothecopsis specimens in 

this study and from GenBank were highly variable. There were no major indels in the 

LSU and 5.8S sequences, so these regions could be unambiguously aligned with Mafft. 

Conversely, the ITS1 and ITS2 sequences of most species had several apparently 

independent indels;, in some cases tens of nucleotides long. Such unambiguous regions 

were removed before analysis. The lengths of sequences used in the phylogentic 

analyses were: ITS1 137 bp (60% of the original 227 positions), 5.8SR 155 bp (99% of 

156 positions), ITS2 130 bp (54% of 238 positions), and partial LSU 534 bp (97% of 

548 positions). The resulting alignment has been uploaded to TreeBase, direct 

accession: http://purl.org/phylo/treebase/phylows/study/TB2:S12780. 
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Fig. 6 Phylogenetic relationship of Chaenothecopsis proliferatus based on analysis of ITS and partial 

LSU sequences. Support values are indicated for nodes that received support from at least one method 

(Bayesian posterior probabilities shown above the nodes; maximum-likelihood bootstrap values shown 

below the nodes). Chaenothecopsis proliferatus and C. hunanesis had a negative effect on the posterior 

probabilities of the tree. The values in parenthesis refer to posterior probabilities when these two species 

were not included in the analysis. The clade corresponding to the Mycocaliciales is shown by a vertical 

bar, and the resinicolous species are indicated by an asterisk. See original publication for accession 

numbers of the used species. Group A species with one-septate ascospores. Groups B species with 

aseptate ascospores from angiosperm exudates 

 

The results of the phylogenetic analysis are shown in Figure 6. The phylogeny is 

broadly consistent and adds to the previous results of Tibell and Vinuesa (2005) and 

Tuovila et al (2011a). It places C. proliferatus in the same clade with several other 

Chaenothecopsis species with one-septate spores. This clade includes taxa that grow on 

conifer resins, a species that grows on conifer lignum, and several species that are either 

lichen-parasitic or associate with free-living green algae.  

Chaenothecopsis proliferatus and the closely related C. hunanesis Rikkinen & 

Tuovila (ined.) had a negative effect on the posterior probabilities of the tree. If these 

species were removed from the dataset, the other species showed qualitatively similar 

groupings with higher posterior probabilities (tree not shown). This is probably 

explained by the fact that only LSU sequences were available for these two new species 

from China; presumably due to the relatively old age of the specimens (over 10 years), 

we were not able to amplify ITS sequences from them. Without information from ITS 
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sequences, there is a level of uncertainty regarding the exact placement of these two 

taxa within their clade. In an analysis based solely on LSU sequences, the sister group 

relationship between the four lichen-parasitic taxa and the clade of C. dolichocephala, 

C. sitchensis and C. fennica gained higher support, but the placement of C. proliferatus 

remained unresolved (tree not shown). 

 

Fossil specimens from European amber 
 

Amber piece GZG.BST.27285 (Bitterfeld amber) contains fossilized remains of over 45 

stipitate fungal ascomata (Figs 7a–b). These represent different developmental stages 

from young initials to mature and senescent ascomata. Individual ascomata erect, 250 –

1100 μm high, forming stacks of up to three ascomata of different ages by proliferating 

and branching (Figs 7a–c). Exciple well-developed, smooth, with partly intertwined 

surface hyphae (Figs 7d–e). Stipe slender, 30–80 μm in diameter, smooth, with partly 

intertwined hyphae (Figs 7b–d). Tufts of anchoring hyphae penetrate the substrate (Figs 

7a–b). Ascospores narrowly ellipsoidal to cylindrical, one-septate, 9–10.5 × 3.5–4.5 μm, 

appearing smooth under the light microscope (Figs 7f–g). 

Amber piece GZG.BST.27286 (Baltic amber) contains fossilized remains of at least 

15 stipitate fungal ascomata (Fig. 8a). These include ten well-preserved ascomata (4 

immature, 6 mature) and at least five degraded ascomata. Many details not visible due 

to weathered crust around the latter inclusions. Ascomata erect and non-branching, 

1500–1840 µm high when mature (Figs 8a, 9a). Immature, developing ascomata with 

sharply pointed apices (Figs 9b–c). Capitula lenticular to subhemispheric, 260–380 μm 

wide and 120–200 µm high, with a well-developed exciple (Fig. 9a). Mature ascospores 

have accumulated on top of epithecium (Fig. 9d). Stipe long and rather robust, 90–160 

μm in diameter, smooth or with a somewhat uneven surface of partly intertwined 

hyphae. (Fine details not visible due to thin film of air around the inclusions) (Figs 9a–

e). Tufts of anchoring hyphae attach the ascomata to the substrate (Figs 9a–b) and 

penetrate deeply into the resin (Figs 8b–c). Ascospores narrowly ellipsoidal to 

cylindrical, one-septate, 8–11 × 3–4 μm, appearing smooth under the light microscope 

(Figs 9f–g). 
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Fig. 7 Fossil Chaenothecopsis from Bitterfeld amber (GZG.BST.27285). a–b Proliferating ascomata. c–

d Young ascoma. e Exciple. f. Epithecium, note the accumulation of ascospores. g Detached ascospore. 

Scale bars: 500 µm (a and b), 50 µm (c and d) and 10 µm (e–g). 

 

Discussion 
 

Taxonomy and evolutionary relationships 
 

In their substrate ecology, general morphology, and in the production of septate 

ascospores, Chaenothecopsis proliferatus and the two newly described fossils closely 

resemble each other, as well as several other Chaenothecopsis species from Eurasia and 

western North-America. The phylogenetic analyses indicate that C. proliferatus is 

closely related to previously known species that live on conifer resin and have one-

septate ascospores (Group A in Fig. 6). In as much as both fossils had produced similar 

spores, and because Baltic and Bitterfeld ambers are fossilized conifer resins, these 

fossils are likely to belong to this same lineage.  
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Fig. 8 Overview of the fossil Chaenothecopsis from Baltic amber (GZG.BST.27286). a Ascomata on a 

stalactite-like piece of solidified resin which was subsequently covered by fresh exudate. Black 

arrowheads point to young developing ascomata, white arrowheads to mature ascomata. b Fungal hyphae 

that grew on and into the stalactite-like resin substrate before it solidified. c Dense mycelium on the old 

resin flow. Scale bars: 1 mm (a) and 100 µm (b and c). 

 

No Chaenothecopsis species with aseptate spores were included in this lineage, and 

the phylogenetic analysis grouped three such species from angiosperm exudates into a 

different well-supported clade (Group B in Fig. 6), as a sister group to the two 

Sphinctrina species. As the substrate preferences of Mycocaliciales are highly 

specialized, and spore septation is an important taxonomic character, only resinicolous 

Chaenothecopsis species with one-septate ascospores are here compared with C. 

proliferatus and the two fossils. Chaenothecopsis sitchensis Rikkinen, C. nigripunctata 

Rikkinen, and C. edbergii Selva & Tibell grow on conifer resin in temperate North 

America and often produce large and robust ascocarps. C. sitchensis lacks the fast IKI+ 

reactions typical of C. proliferatus and has distinctively ornamented ascospores 

(Rikkinen 1999). C. nigripunctata has larger spores than C. proliferatus and a highly 

distinctive appearance due to its gray, compound capitula (Rikkinen 2003b). C. edbergii 

differs from C. proliferatus in having a persisting blue MLZ+ reaction in the hymenium 

and a lime green pruina on the surface of its ascomata (Selva and Tibell 1999). 

Compared to Chaenothecopsis proliferatus, C. eugenia Titov (Titov 2001) and C. 
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asperopoda Titov (Titov and Tibell 1993) both have smaller spores, very thin septa and 

a diagnostic stipe structure and coloration. These two species appear to be closely 

related, but unfortunately we were unable to extract sufficient DNA for sequencing, 

presumably due to the old age (ca. 20 years) of the type material. Both species have a 

fast blue IKI+ reaction of the hymenium and an IKI+ red reaction of stipe similar to C. 

proliferatus. The latter color reaction is more easily observed in these species than in C. 

proliferatus because their stipes are less pigmented.  

Chaenothecopsis dolichocephala (Tibell and Titov 1995), C. golubkovae (Titov and 

Tibell 1993) and C. hunanensis are very similar to C. proliferatus. C. dolichocephala 

often produces branched and proliferating fruiting bodies, has similar colorless crystals 

in the hymenium, and also shares a similar anatomy of the stipe and exciple. However, 

its ascomata are on average smaller, the stipe is shinier and the ascospores are 

ornamented. The blue IKI+ reaction is very faint or non-existing and the red IKI+ 

reaction occurs only in the lower part of exciple and stipe, if at all. The spore size, 

epithecial structure and the IKI+ color reactions of C. golubkovae are more or less 

identical to those of C. proliferatus. However, this C. golubkovae is characterized by the 

highly branched and irregularly shaped hyphae (textura epidermoidea) formed from 

fused cell walls of the exciple and stipe. C. hunanensis has slightly smaller spores with 

thin septa and a different type of epithecium when compared with C. proliferatus.  

The distinction between C. proliferatus, C. dolichocephala, C. golubkovae and C. 

hunanensis requires study of anatomical details and chemical features that cannot be 

observed from fossil specimens embedded in amber. Hence, despite their excellent 

preservation, we do not want to assign the new fossils to any extant species, and we also 

refrain from assigning them to the previously described Chaenothecopsis bitterfeldensis 

Rikkinen & Poinar. However, the four extant species and the three fossils are obviously 

closely related and most probably belong to the same lineage since C. bitterfeldensis 

resembles C. proliferatus and the two newly discovered fossils in ecology and spore 

type (Rikkinen & Poinar 2000).  

The morphological similarities between C. proliferatus and the proliferating fossil 

from Bitterfeld amber are especially striking. The only obvious difference is in the size 

of the fruiting bodies, with the preserved ascocarps of the fossil being distinctly smaller 

than typical ascocarps of C. proliferatus. Both fungi have relatively slender, commonly 

branched and proliferating fruiting bodies. The shape and general appearance of the 

capitula of young fruiting bodies are also identical. The stipes of both fungi are lined by 

a net of arching and horizontal hyphae (compare Fig. 2a, c and Fig. 7d, e), and these 

hyphae extend to the epithecium in a similar way. In both fungi, the one-septate and 

smooth (or minutely punctate) ascospores accumulate on top of the epithecium. All 

these morphological features together indicate that the fossil is closely related to C. 

proliferatus. 
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Fig. 9 Ascomata and anatomical details of the fossil Chaenothecopsis from Baltic amber 

(GZG.BST.27286). a Mature ascoma. b Young, developing ascoma and fungal mycelium. c Tip of 

developing ascoma (compare with Fig. 25 in Rikkinen 2003a). d Capitulum and upper part of stipe; note 

the accumulated ascospores. Numerous abscised spores extend into the amber matrix in the upper left. 

e Closer view of stipe surface. f-g Detached ascospores. Scale bars: 100 µm (a–e) and 10 µm (f and g). 
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The epithecium of Chaenothecopsis proliferatus is, in places, covered by a thin layer of 

small crystals. These blade-like structures are typically 1–3 µm long and sharply 

pointed at both ends (Fig. 4d). While some crystals seem to be partly embedded in the 

extracellular matrix of fungal hyphae, most appear external. Similar crystals are also 

present on the upper section of the stipe (Fig. 4b). In their general appearance, the 

crystals somewhat resemble the needle-like calcium oxalate crystals that cover the 

hyphal surfaces of some fungi. Such crystals are formed when oxalic acid secreted by 

the fungus combines with external calcium to produce calcium oxalate (Dutton and 

Evans 1996). However, only carbon and oxygen were detected from the epithecium 

surface of C. proliferatus in EDX analyses.  

 

Occurrence and ecological role of proliferating ascocarps 
 

The ascomata of many species of Mycocaliciales can occasionally have a capitulum in 

which the apothecial disk is divided into several distinct regions or lobes. Asci tend to 

first mature in the central sections of the hymenia and when more asci mature, the 

hymenium expands and the capitulum surface become increasingly convex. 

Irregularities in ascus production can easily lead to the development of several hymenial 

convexities or lobes per capitulum. Many Chaenothecopsis species can also 

occasionally produce branched ascocarps, and these structures appear to be especially 

common in resinicolous species with long and slender stipes, such as C. diabolica and 

C. oregana. However, ascocarp braching is not confined only to resinicolous species, 

but also occurs in some lichen-associated and lignicolous species such as C. 

haematopus Tibell and C. savonica (Räsänen) Tibell, which typically grow on lignum in 

shaded microhabitats. Branching also occurs in some species of Mycocalicium Vain., 

Phaeocalicium A.F.W. Schmidt and Stenocybe Nyl. ex Körb. For example, Stenocybe 

pullatula (Ach.) Stein can produce several capitula from the same stipe, with the 

youngest at the tip and the older, senescing capitula appearing as a whorl directly below. 

This species produces ascocarps on the bark of Alnus species. 

In the resinicolous Chaenothecopsis nigripunctata branching mainly occurs very 

close to the tip of the stipe, with each short branch forming a separate apothecial head. 

Profuse branching often leads to the development of compound capitula, consisting of 

up to twelve partially contiguous apothecial heads (Rikkinen 2003b). Mycocalicium 

sequoiae also produces clusters of apothecial heads on a common stipe (Bonar 1971). 

However, in this species the stipes tend to branch lower and hence have longer branches 

and less confluent apothecial heads than in C. nigripunctata. Also the related C. 

montana can produce branched ascocarps, but more rarely than the other two species 

(Tuovila et al. 2011b). 

While the ascomata of C. nigripunctata and its closest relatives mainly branch from 
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the upper part of the stipe, their ascocarps do not usually form multi-layered groups via 

branching and proliferation through the hymenium in the way exhibited by the 

proliferating fossil from Bitterfeld amber and many specimens of C. proliferatus. 

However, similar branching is quite common in the resinicolous C. dolichocephala and 

C. sitchensis, both of which usually have very narrow and long stipes. This shared 

morphology might represent an adaptation to growing near active resin flows: the 

perennial ascocarps can effectively rejuvenate in situations where they happen to be 

partly submerged in fresh exudate. All three species commonly live on cankers and 

wounds which exude resin over extended periods.  

It seems unlikely that even resinicolous Chaenothecopsis species could rejuvenate 

after being rapidly and completely submerged in fresh sticky resin. Even the fossil 

specimens had first produced fruiting bodies on hardened resin and then had 

subsequently been covered by a thick layer of fresh exudate (Rikkinen and Poinar 

2000). This raises the question of what then triggers the proliferation in partly 

submerged ascocarps and those ascocarps only growing close to fresh resin. It has been 

shown that some fungi react to the volatile compounds produced by other fungi when 

competing for resources (Evans et al. 2008). It is also known that fresh resin contains 

high levels of volatile compounds, mainly monoterpenes and sesquiterpenes, when 

compared to older, semisolid exudate, and that the hardening of resin is directly related 

to the loss of such compounds (e.g. Langenheim 2003; Ragazzi and Schmidt 2011). An 

ability to detect and respond to the presence of volatile resin compounds in the 

environment would give the Chaenothecopsis species time to prepare for a potential 

burial in freshly exuding resin. It seems feasible that some resinicolous fungi could 

begin to branch when the concentration of volatile resin compounds in their typically 

sheltered microenvironment is sufficiently high as to indicate that a fresh resin flow 

may be imminent. In other fungi the differentiation of fruiting bodies is commonly 

triggered by the perception of some signal of environmental conditions, such as light, 

pH, oxygen etc. (Busch and Braus 2007).  

The hyphae of extant resinicolous fungi commonly penetrate and grow into 

semisolid resin. Evidence of inward growth of fungal hyphae is also preserved in 

numerous worldwide amber fossils since the Paleocene (personal observation), but no 

evidence of a similar capability has yet been found prior to the Cretaceous-Paleogene 

boundary. Cretaceous amber pieces from several different deposits may contain 

abundant filaments that grew from the resin surface into liquid resin, but all of these 

have been identified as filamentous prokaryotes (see Schmidt and Schäfer 2005; 

Schmidt et al. 2006; Girard et al. 2009a, b; Beimforde and Schmidt 2011), not as fungal 

hyphae. This suggests that this special niche was either occupied by prokaryotes in the 

Mesozoic or that Chaenothecopsis species (if already existent) and other ecologically 

similar fungi did not yet exploit resin substrates. 
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Conclusions 
 

Fossil evidence of inward growth of fungal hyphae into plant exudates has not been 

identified from Mesozoic ambers, suggesting a relatively late occupation of such 

substrates by ascomycetes. Even so, resinicolous Chaenothecopsis species were well 

adapted to their niche by the Eocene and the ecology and morphology of these fungi has 

since remained unchanged. The Oligocene fossil had produced proliferating ascomata 

identical to those of the newly described species from China and its extant relatives. 

This morphology may represent an adaptation to life near exuding resin: the 

proliferating ascomata can effectively rejuvenate if partly overrun by fresh exudate. 

While many extant Chaenothecopsis species live on lichens and/or green algae, the 

fossils and the sporadic occurrence of resinicolous taxa in several distantly related 

extant lineages suggests that the early diversification of Mycocaliciales may have 

occurred on plant substrates.  
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Abstract 
 

The anamorphic fungal genus Monotosporella (Ascomycota, Sordariomycetes) has been 

recovered from a piece of Early Eocene Indian amber, as well as from the surface of 

extant resin flows in New Caledonia. The fossil fungus was obtained from the 

Tarkeshwar Lignite Mine of Gujarat State, western India, and was part of the biota of an 

early tropical angiosperm rainforest. The amber inclusion represents the second fossil 

record of Sordariomycetes, as well as the first fossil of its particular order (either 

Savoryellales or Chaetosphaeriales). The fossil fungus is distinguished from extant 

representatives by possessing both short conidiophores and small two-septate pyriform 

conidia, and is described as Monotosporella doerfeltii sp. nov. Inside the amber, the 

anamorph is attached to its substrate, which is likely the degraded thallus of a 

cladoniform lichen. The extant New Caledonian species is assigned to Monotosporella 

setosa. It was found growing on semi-solidified resin flows of Agathis ovata 

(Araucariaceae), and is the first record of Monotosporella from modern resin substrates.  

 

Keywords: Araucariaceae; Ascotaiwania; fossil fungi; lichens; India; New Caledonia. 
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Introduction 
 

Amber (fossil tree resin) preserves its inclusions in submicroscopic detail, including 

cells and organelles, even serving as a medium for the preservation of ephemeral 

structures such as the reproductive anatomy of fungi (e.g., Hibbett et al. 1997; Schmidt 

et al. 2006). During the last two decades, a plethora of fungi has been described from 

Mesozoic and Cenozoic resins (e.g., Rikkinen and Poinar 2000, 2008; Rikkinen et al. 

2003; Schmidt et al. 2007, 2010a), and new preparation methods now allow the same 

detailed morphological investigation of the fossils as is possible with modern 

representatives (Dörfelt et al. 2003; Beimforde et al. 2011). Many morphologically 

determinable amber inclusions represent anamorphic stages of filamentous ascomycetes 

(e.g., Thomas and Poinar 1988; Dörfelt and Schmidt 2005, 2007). Thus far, very few 

fruiting bodies of Ascomycota (Caspary and Klebs 1906; Mägdefrau 1957; Rikkinen 

and Poinar 2000; Rossi et al. 2005) and Agaricomycetes (Poinar and Singer 1990; 

Hibbett et al. 1997, 2003; Poinar and Buckley 2007; Schmidt et al. 2010b) have been 

reported from mid-Cretaceous to Miocene ambers. 

Apart from acting as a preservation medium, tree resins also serve as habitat for 

particular fungal taxa (Beimforde and Schmidt 2011). For example, some extant species 

of the genera Chaenothecopsis and Mycocalicium (Mycocaliciomycetidae, 

Mycocaliciales) are resinicolous (see Tibell and Titov 1995). Rikkinen (1999, 2003) 

discovered several modern species from conifer resins in the temperate rain forests of 

western North America, as well as an extinct species, Chaenothecopsis bitterfeldensis, 

in 24 million-year-old amber from Germany (Rikkinen and Poinar 2000). Meanwhile, 

some extant species live specifically on angiosperm exudates in temperate or tropical 

forests (Tibell and Titov 1995; Tuovila et al. 2011a, 2011b). Because of their habitat 

specificity, it has been suggested that these fungi use liquid resin as their sole nutrient 

source (Rikkinen and Poinar 2000). 

Here, we report on an apparently lichenicolous fossil species of the anamorphic 

genus Monotosporella (Ascomycota) from an Early Eocene tropical angiosperm forest. 

We also describe an extant resinicolous taxon of the same genus from the exudate of 

Agathis ovata (C. Moore ex Vieill.) Warb (Araucariaceae) in New Caledonia. The fossil 

is enclosed in a piece of 52 million-year-old Indian amber produced by a tropical 

angiosperm tree of the family Dipterocarpaceae (Rust et al. 2010). Apart from the huge 

number and diversity of arthropod inclusions, this amber deposit has already yielded the 

first fossil angiosperm ectomycorrhizae (Beimforde et al. 2011). The fossil 

Monotosporella differs from extant species in some morphological attributes. The 

extant taxon from New Caledonia is assigned to M. setosa (Berk. and M.A. Curtis) S. 
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Hughes, but no Monotosporella species (including M. setosa) have been previously 

reported from resin substrates. 

 

Material and methods  
 

Amber specimen 

 
Amber piece AMNH Tad-39 was found in situ in the Tarkeshwar Lignite Mine of 

Gujarat State, western India. The amber-bearing strata are part of the Cambay 

Formation, which has been assigned to the Ypresian (52 million years old, Early 

Eocene) based on shark teeth, dinoflagellates and the index foraminiferan Nummulites 

burdigalensis burdigalensis. The deposition is interpreted as shallow chenier marine 

sediments (Rust et al. 2010). The amber piece contains an elongate sulcate structure 

(Fig. 1A) that serves as the substrate of a conidial fungus. A root tip with root hairs is 

located close to this structure. Arthropod fragments and faeces, as well as two 

angiosperm seeds, are attached to the surface of the elongate structure. 

The original 1.2 x 0.9 x 0.4 cm amber piece was ground and polished manually 

using a series of wet silicon carbide papers [grit from FEPA P 600–4000 (25.8 μm to 5 

μm particle size), firm Struers] and examined under incident (Carl Zeiss Stemi 2000) 

and transmitted light microscopes (Carl Zeiss AxioScope A1) equipped with Canon 

450D digital cameras. Sometimes incident and transmitted light were used 

simultaneously. The images of Fig. 1A–D, 1F, and those of Fig. 2, were obtained from 

several focal planes using the software package HeliconFocus 5.0 to enable a better 

illustration of the three-dimensional inclusions. For permanent preparation, the piece of 

amber was fully embedded in a high-grade epoxy (Buehler Epoxicure) under vacuum 

(see Nascimbene and Silverstein 2001 for protocols). After curing, the resultant epoxy 

plugs surrounding each sample were cut and polished to create clear flat surfaces close 

to the amber and its inclusions. The amber piece is currently housed in the amber 

collection of the Division of Invertebrate Zoology, American Museum of Natural 

History, New York. Indian amber pieces will ultimately be deposited in the amber 

collection of the INSA (Indian National Science Academy) Project Geology at the 

University of Lucknow, India. 
 

Extant specimens 
 

Semi-solidified resin flows with fungi were collected in 2005 and in 2011 from the base 

of tree trunks of Agathis ovata (Araucariaceae) in the southern province of New 

Caledonia (Fig. 3). The sampling site is in an area of maquis scrubland that occurs on 
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ultramafic rocks along the road RP 3 about 5 km west of Yaté in south-eastern New 

Caledonia (22°10'03.63'' S  latitude; 166°54'10.15'' E longitude, elevation 411 m). 

Light microscopy and stacking of single focal planes were performed as earlier 

described for the fossil. The images of Fig. 4 A–C were obtained from several focal 

planes. For scanning electron microscopy, resin fragments with the anamorph were 

placed on a carbon-covered SEM-mount, sputtered with gold/palladium (2 x 120 

seconds at 20 mA, 10 nm coat thickness) using an Automatic Sputter Coater (Canemco 

Inc.), and examined under a field emission scanning-electron microscope (Carl Zeiss 

LEO 1530). 

The resin flows with fungi are housed in the Geoscientific Collections of the Georg 

August University Göttingen (collection number GZG.PB.5003; publication number 

001611). 

 

Results 
 

Fossil anamorph in Indian amber 
 

The anamorphic fungus produced numerous conidiophores, which are arranged in 

groups or arise singly from the substrate (Figs 1A, C, F and 2). The conidiophores are 

straight or arcuate, pale brown to hyaline, and sometimes septate (Fig. 2). The length of 

the conidiophores (measured without conidia) ranges from 15 to 60 μm (average 24.5 

μm, n=18). Hyphal width is 4–5 μm at the base of the conidiophore (average 4.8 μm, 

n=17) and 2–5 μm at the apex (average 4.4 μm, n=17). Two exceptionally long 

conidiophores reach about 60 µm in length and seem to have developed as a result of 

percurrent proliferation, as indicated by the remains of aborted conidia (Fig. 2B, D), and 

thus were excluded from the calculation of the mean value of measurements above. The 

terminal conidiogenous cells are monoblastic and form pyriform conidia that arise 

singly at the apex (Fig. 2). The conidia are dark brown to black with hyaline cells at the 

base, 1–3 septate, usually two-septate (Fig. 2 E). Their length ranges from 17 to 28 μm 

(average 21.7 μm, n=19). They are 10 to 15 μm thick in the broadest part (average 12.9 

μm, n=19) and 2 to 5 μm wide at the base (average 4.5 μm, n=19). The hyphae 

extending from the base of the conidiophores have a width of 2–3.5 μm and taper 

distally (Fig. 2C). Their progression within the substrate is uncertain. Other hyphae 

found on the substrate are pale brown to hyaline with an average width of 2.5 μm (Fig. 

1 B; see Discussion for their affinities).  

The conidial fungus from Indian amber matches the features of the extant 

anamorphic genus Monotosporella. However, since it can be clearly distinguished from 
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all extant species (see Discussion), we propose that the amber inclusion be treated as a 

new species. 

 

Phylum Ascomycota Cavalier-Smith 1998 

Class Sordariomycetes O. E. Eriksson et Winka 1997 

Genus Monotosporella S. Hughes 1958 

 

Monotosporella doerfeltii Sadowski, Beimforde, Gube et A. R. Schmidt sp. nov. 

(Figure 2) 

 

MycoBank No.: MB800370 

 

Etymology: The epithet honours Heinrich Dörfelt, mycologist and ecologist at 

Friedrich Schiller University Jena (Germany), a pioneer of extensive systematic studies 

on amber-preserved fungi. 

 

Description: Colonies scattered, dark brown. Mycelium composed of brown to pale 

brown hyphae, 2–3.5 μm wide. Conidiophores arranged in clusters or singly, straight or 

arcuate, pale brown to hyaline, sometimes possessing one septum, 15–40 (–60) μm 

long, 2–5 µm wide at apex, 4–5 μm wide at base. Conidiogenous cells monoblastic, 

terminal. Conidia solitary, dark brown to black with hyaline cells at the base, pyriform, 

1–3 septate, usually 2–septate, 17–28 μm x 10–15 μm, 2–5 μm wide at the base.  

 

Diagnosis: The amber specimen of Monotosporella is distinct from extant species in 

possessing the combination of short conidiophores and two-septate, pyriform and 

relatively small conidia. Although some extant species show one of these 

characteristics, their combination is unique within the genus Monotosporella (see Table 

S1). 

 

Type location: Tarkeshwar Lignite Mine of Gujarat State, western India (21° 21.400 N 

latitude, 073° 04.532 E longitude). 

 

Type material: American Museum of Natural History, New York, USA; collection 

number AMNH Tad-39. We consider all conidiophores inside this amber piece to be 

derived from a single mycelium, and thus to be parts of a single type specimen. Fig. 2E 

is the validating illustration in fulfilment of Article 38.2 of the ICBN (McNeill et al. 

2006). 
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Figure 1. Substrate of Monotosporella doerfeltii sp. nov. from Indian amber (AMNH Tad-39). A Putative 

sulcate lichen podetium. The arrowheads indicate clusters of conidiophores of M. doerfeltii. The pycnidia 

[P] and soredia [S] are located in the upper part of the podetium. B Pale hyphae at the surface of the 

podetium. C Remains of the lichen’s cortex with a cluster of conidiophores. The arrowhead indicates the 

subjacent hyphal layer. D Pycnidia with dark ostioles (arrowheads). E Soredia. F Dark hyphae of a 

probable further fungus growing on the lichen. The arrowheads indicate tapering hyphal tips. Scale bars = 

1 mm in (A) and 100 μm in (B–F). 
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Substrate of the fossil Monotosporella 

 
The substrate, to which all conidiophores of the fossil Monotosporella are attached, is 

about 7.2 mm long, and 0.9 mm to 2 mm wide. It is composed of fungal hyphae that 

form a somewhat fluffy mycelium. The whole structure is longitudinally ribbed. The 

distance between the furrows ranges from 200 μm in the narrow part to 700 μm in the 

broader part of the substrate (Fig. 1A). The surface of the mycelium is covered by light 

hyphae in the upper and basal parts of the substrate. Exposed along the deep furrows are 

a central cavity and dark-coloured hyphae with an average width of 6 μm and apically 

tapered ends (Fig. 1F). Immersed dark structures protrude from the substrate in its upper 

and basal parts (Fig. 1A, D). They resemble globose pycnidia with dark ostiole-like 

pores at the top. The structures are clustered in groups, and two clearly visible examples 

have a size of 100 μm x 80 μm, and 90 μm x 75 μm, respectively. Scale-like 

microscopic bodies on the surface of the substrate range from 30 µm to 100 µm in size, 

and are reminiscent of soredia (typical morphological features of lichens) (Fig. 1A, E).  

 

Monotosporella from New Caledonian resin 

 
The fungus grows on the surface of resin flows that cover both bark and a leafy 

liverwort species belonging to the genus Bazzania, as well as a second liverwort species 

of the family Lepidoziaceae. The scattered mycelium on the resin’s surface is largely 

restricted to small cavities within the resin, and consists of pale brown to black hyphae, 

and scattered upright conidiophores (Fig. 4A–C). The unbranched and septate 

conidiophores are often arranged in groups, and arise erectly or flexuously (Fig. 4G, H). 

They are dark brown to black in colour and measure 90 μm to 220 μm in length 

(average 135.9 μm, n=12). At the base, the conidiophores are 9 μm to 16 μm wide 

(average 11 μm, n=8), and taper towards the apex, which ranges from 3 μm to 5 μm 

wide (average 4.2 μm, n=11). The conidiogenous cells are cylindrical to barrel-shaped, 

and form pyriform solitary conidia, which arise at the apex (Fig 4H). The conidia are 

dark brown to black, while the lower cells are sometimes pale brown to hyaline and 

two-septate (Fig. 4D–F). They measure 31 μm to 42 μm in length (average 34.6 μm, 

n=17). At the base, the width ranges between 3 μm and 7 μm (average 4.6 μm, n=16). 

The broadest part of the conidia is 17 μm to 26 μm thick (average 22.5 μm, n=19). 

Some conidiophores are elongated with slightly swollen bands in the distal parts, 

probably caused by repeated proliferation (Fig. 4D). Because of these features, this 

specimen is assigned to Monotosporella setosa. 
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Figure  2. Monotosporella doerfeltii sp. nov. from Eocene Indian amber (AMNH Tad-39) under incident 

(A to D) and transmitted (E to G) light. Fig. 2E is the validating illustration to fulfil Article 38.2 of the 

ICBN (McNeill et al. 2006). A Conidiophores with conidia and adjacent hyphae of the mycelium. 

B Group of conidiophores with conidia. The arrowhead indicates the attachment site of a previous 

conidium. C Conidiophores with tapering adjacent hyphae, indicated by the arrowheads. D Single 

elongated conidiophore with a brown band indicating the attachment site of a previous conidium. 

E Group of conidiophores with conidia representing the holotype of Monotosporella doerfeltii. The 

arrowheads indicate the septation of the conidia. F Septate conidiophores. G Single conidiophore. Scale 

bars = 100 μm in (A, B) and 10 µm in (C–G). 

 

Discussion 
 

The genus Monotosporella 
 

The genus Monotosporella S. Hughes 1958 is distributed worldwide (e.g., Sivichai et al. 

1998; Raja et al. 2007). It is usually found growing on decaying wood submerged in 

freshwater (Sivichai et al. 1998; Tsui et al. 2001), but has also been reported from 

woody plants outside of aquatic habitats (Rao and de Hoog 1986; Raja et al. 2007). 

Monotosporella, with M. setosa as its type species, was established to replace 

Monosporella S. Hughes 1953, a junior homonym to Monosporella Keilin 1920, nom 

illeg. (Saccharomycetes). Ellis (1959) regarded Monotosporella as a junior synonym for 

Brachysporiella Batista 1952, a genus with short lateral branches at the apex of the 

 
 

105



Appendix 3 
 

conidiophores. These branches were typically not found on Monotosporella, or only 

rarely found in reexamination (Matsushima 1975), and thus referred to as “rare 

abnormalities” (Hughes 1979). Here, we follow Hughes (1958) in treating 

Monotosporella as distinct from Brachysporiella, since lateral branches have not been 

described in any of the recently published extant Monotosporella species.  
 

Figure 3. Habitat of the New Caledonian Monotosporella setosa. A Trees of Agathis ovata west of Yaté. 

B Resin flows at the tree trunk as microhabitat.  

 

As listed by Index Fungorum (www.indexfungorum.org), nine species have been 

described within Monotosporella. Since then, several species have been transferred to 

other genera (based in part on details of their teleomorph states). Both M. setiformis 

(Wallr. 1833) S. Hughes 1958 and M. sphaerocephala (Berk. et Br. 1859) S. Hughes 

1958 were transferred into Acrogenospora Ellis 1971 (teleomorph Farlowiella, 

Pleosporales), due to the lack of septation of the conidia (Ellis 1971, 1976). 

Monotosporella tuberculata Gönczöl 1976 was transferred to Tumularia tuberculata 

(Gönczöl) Descals et Marvanová  (Marvanová and Descals 1987), since it has conidia 

with 4–6 node-like protuberances. However, subsequent publications tend to follow 

Gönczöl (1976) in the use of M. tuberculata (e.g., Schoch et al. 2009). Monotosporella 

tuberculata was revealed as an anamorph of Melanommataceae, Pleosporales (Zhang et 

al. 2009). Monotosporella microaquatica (Tubaki 1957) Nilsson 1964 was initially 

ascribed as Dactylella microaquatica Tubaki 1957, but was illustrated and redescribed 

as Endophragmia microaquatica (Tubaki 1957) Matsush. 1975. While Dactylella 

anamorphs are typical for Orbiliaceae, Endophragmia (syn.: Phragmocephala E.W. 

Mason and S. Hughes 1951) is currently considered incertae sedis within 

Pezizomycotina, and no teleomorph stages are known. Therefore, and also due to the 

lack of molecular analyses of this species, an assignment to Monotosporella cannot yet 

be excluded. 
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The phylogenetic position of the genus Monotosporella is not fully established. In the 

descriptions of Monotosporella e.g. by Hughes (1953), the genus was regarded as 

belonging to the Hyphomycetes within the Fungi imperfecti. With the discovery of the 

teleomorphs – Ascotaiwania mitriformis (Ranghoo and Hyde 1998) and Ascotaiwania 

sawada (Sivichai et al. 1998) – Monotosporella was placed in the family 

Annulatascaceae within the Sordariales.  

This family placement was analyzed by Ranghoo et al. (1999a), who confirmed the 

monophyletic relationship between Ascotaiwania and Monotosporella. However, their 

results also indicated that the genus Ascotaiwania is unrelated to the Annulatascaceae. 

Evidence for the exclusion of Ascotaiwania and Monotosporella from the 

Annulatascaceae was also given by Campbell and Shearer (2004), based on the 

phylogenetic analysis of 28S rDNA. These authors showed that both genera form a 

monophyletic group, which is widely separated from the Annulatascaceae. Other 

authors (Sivanesan and Chang 1992; Fallah et al. 1999) claimed that Ascotaiwania 

belongs to the Amphisphaeriaceae of the Xylariales. Réblová and Seifert (2004) 

indicate a close relationships between Ascotaiwania and the genera Conioscypha, 

Conioscyphascus and Carpoligna outside of Xylariales, but could not clarify the 

position within Sordariomycetes. In subsequent analyses (Arzanlou et al. 2007; Réblová 

and Seifert 2011), Pleurothecium and Sterigmatobotrys were also assigned to that 

group. All this implies relationships with Chaetosphaeriales. Recently, Boonyuen et al. 

(2011) established a clade of Ascothailandia, Savoryella and Ascotaiwania, including 

Monotosporella setosa, and raised the order of Savoryellales to accommodate them. 

Although Ascotaiwania was not in all analyses revealed to be monophyletic, the 

anamorph-possessing group of A. hughesii and M. setosa remained stable in all 

analyses. The genera that are considered to be relatedto Ascotaiwania by Réblova and 

Seifert (2004, 2011) were not treated in this analysis. Thus, the relations between 

Savoryellales and Chaetosphaeriales remain elusive to date. In any case, all these fungi 

belong to the monophyletic class Sordariomycetes as delimited in Hibbett et al. (2007). 
 

Comparison of the fossil to extant taxa 
 

The genus Monotosporella comprises saprophytic fungi with solitary septate 

conidiophores that proliferate through the conidial scar (Hughes 1953). As a result, the 

length of the conidiophores increases by successive proliferation (Hughes 1953). The 

solitary conidia arise at the apex and are spheroid to pyriform and two-septate. 

According to Ellis (1959), the lower cells of the conidia are much paler than the dark 

brown or black uppermost cells. The mycelium is described as “immersed in the 

substratum,” with “pale brown to brown” hyphae and septate branches (Ellis 1959).  
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For the fossil specimen, the shape and septation of the conidia, as well as the 

characteristics of the conidiophores, conform to the characters provided in the original 

diagnosis of Monosporella by Hughes (1953). Unfortunately, it is not possible to 

analyze percurrent proliferation in the fossil specimen, since the character of the 

conidiogenous cells, i.e. the wall layers or the secession itself, cannot be observed. 

However, the two elongated conidiophores of the amber inclusion (Fig. 2B, D) seem to 

have been produced via successive proliferation, and they even have brown bands, 

which we interpret as attachment sites of previous conidia. Several other extant 

anamorph genera of the Ascomycota also show partial similarities when compared with 

the fossil specimen, such as Endophragmiella, Phragmocephala and Bactrodesmium 

(Ellis 1971; Holubová-Jechová 1972, 1986; Hughes 1979; Palm and Stewart 1982; Kirk 

1985). All these are also characterised by rhexolytic conidium succession and a 

somewhat similar morphology. However, we did not observe sporodochia or fasciculate 

conidiophores. Also, conidia with exclusively basal septation and without darker bands, 

which are borne on relatively long conidiophores, are not seen in combination in these 

genera, but are quite typical for Monotosporella. Some fungal palynomorphs, like 

Brachysporisporites, might also have relationships to Monotosporella (e.g. Ediger 

1981). However, even though such palynomorphs may be preserved in amber (Antoine 

et al. 2006), a concise allocation of these to extant or to better-preserved fossil fungi, 

such as our specimen, is hard to achieve, due to the very limited morphological 

characters preserved. For a detailed comparison of the amber inclusion with extant 

Monotosporella species, all seven presently accepted extant taxa are used (see Table 

S1), as well as the Monotosporella-like anamorphs of Ascotaiwania, and the possibly 

related Dactylella microaquatica.  

Extant Monotosporella species are distinguished according to the size of the 

conidiophores and the conidia, the shape and the septation of the conidia, and the 

presence or absence of conidiogenous cells with lobe-like swellings (see key in 

Ranghoo et al. 1999b and also Hughes 1978; Yanna and Hyde 2002). Further criteria 

are found in the size and shape of the conidiogenous cells, but since these cells cannot 

be directly observed in the fossil specimen, these characteristics are excluded from our 

comparison. The synopsis of the main characters of extant Monotosporella shows the 

most important morphological features of each species (Table S1). With the exception 

of the Monotosporella specimens from New Caledonian resin, all other extant species 

have been collected on decaying or rotten plant material. The teleomorph is only known 

for two such species (the Monotosporella state of Ascotaiwania sawada and 

Ascotaiwania mitriformis). In comparison with modern Monotosporella species, it is 

quite striking that the Monotosporella specimen in Indian amber has very short 
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Figure 4. Light (A-E) and scanning electron (F-H) micrographs of Monotosporella setosa from New 

Caledonia (GZG.PB.5003). A–C Mycelium at the surface of the resin flow showing various numbers of 

conidiophores possessing pyriform conidia. D Conidiophore with conidium. The arrowheads indicate the 

slightly swollen cells in the distal part. E–F Pyriform conidia. G, H Conidiophores with conidia. The 

arrowhead in (H) indicates the conidiogenous cell. Scale bars = 100 μm in (A–C) and 10 µm in (D–H). 

 

conidiophores and small conidia. Concerning the length of the conidiophores, it mostly 

resembles the Monotosporella state of Ascotaiwania mitriformis, but the conidiophores 

of this species are wider at the base, and the shape of the conidia is also different. The 
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Monotosporella state of Ascotaiwania sawada has very short conidiophores, but it too is 

distinguished from the fossil by the shape of the conidia – while the Monotosporella 

states of both extant Ascotaiwania species have obovate to ovate conidia, the fossil 

species has pyriform, relatively narrow conidia. While the size of conidiophores in M. 

clavata is quite similar to that of the fossil, it has clavate conidia with 4–6 septa. 

Monotosporella rhizoidea also produces short conidiophores but has turbinate to 

obovoidal conidia and lobe-like swellings in the conidiogenous cells. Tsui et al. (2001) 

reported a collection of M. rhizoidea without lobe-like swellings and relatively short 

conidiophores (50–80 μm long and 4–5 μm wide). However, the obovoid to pyriform 

conidia of this species are broader and larger (32–35 x 20–25 μm) than those of the 

fossil. Monotosporella setosa sensu stricto and the varieties M. setosa var. setosa as 

well as M. setosa var. macrospora produce relatively large conidia and very long 

conidiophores. The recently described species M. palmicola and M. sphaerica (Yanna 

and Hyde 2002) have clavate, broadly ellipsoidal to spherical conidia and long 

conidiophores. Dactylella microaquatica resembles the fossil Monotosporella specimen 

in the length of the conidiophores but differs in size and shape of the conidia. Thus, all 

presently known extant Monotosporella species can be distinguished from the fossil 

taxon. 

 

Palaeoecology of Monotosporella doerfeltii 

 
During the Early Eocene Climatic Optimum, tropical ecosystems spread globally up to 

palaeolatitudes that ranged from 55 to 65°N and S (Collinson 2003), and India was 

covered by a dense, multi-storeyed rain forest (Morley 2000). The primary overstory 

tree species in these forests belonged to the resin-producing family Dipterocarpaceae 

(Rust et al. 2010). The root tip, arthropod fragments, faecal pellets and plant remains in 

the amber specimen suggest that the resin piece most likely solidified in the leaf litter 

horizon of the forest floor.  
The substrate of Monotosporella doerfeltii is composed of a relatively loose hyphal 

mat with some immersed globose structures. We therefore suppose that the substrate is 

of fungal origin. Regarding the identity of the substrate, we must first consider the 

possibility that the fossil Monotosporella was preserved growing on its teleomorph. 

Until now, there are only two known teleomorphs of Monotosporella, assigned to the 

genus Ascotaiwania (Sivichai et al. 1998; Ranghoo and Hyde 1998). Ascotaiwania was 

first described by Sivanesan and Chang (1992) as an amphisphaeriaceous genus of the 

Ascomycota with solitary to aggregated globose perithecia that are immersed in the 

substrate and do not have a stroma. The globose structures found in the substrate of the 

fossil Monotosporella might represent perithecia because of their form, their 
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arrangement in groups, and the dark centres that might represent ostioles (Fig. 1D). 

However, important characteristics of Ascotaiwania such as the peridium, the asci and 

the ascospores, are not visible, and there is no direct evidence that the conidiophores 

and globular structures would have been produced by the same fungus. Because of the 

relatively loose arrangement of hyphae in the fungal substrate, it is unlikely that it 

would represent a mushroom stalk fragment or comparable fruiting body, since fungal 

mycelia of such structures tend to be dense and regularly arranged.  

On the basis of overall structure, we suggest that the substrate represents a fragment 

of a partly decayed fruticose lichen. Fruticose lichens may have hair-like, strap-shaped 

or shrubby thalli. In most cases, their medulla consists of loosely interwoven hyphae 

forming a cottony layer with abundant internal air space (Büdel and Scheidegger 2008). 

The deep furrows in the fossil substrate actually expose loosely interwoven hyphae 

resembling the fluffy medulla of fruticose lichens. Moreover, the substrate shows pale 

hyphae at its surface that could be interpreted as remains of the lichen cortex (Fig. 1C). 

Other evidence for a lichen affinity are the globose structures that are found slightly  

submerged in the thallus and resemble pycnidia, as well as scale-like microscopic 

bodies that we interpret as soredia (Fig. 1E). Although some characteristics such as 

algae cells or the basal squamules are missing in the fossil, probably due to initial 

decay, the general shape of the lichen body resembles the extant genus Cladonia 

(Lecanorales). Following the genus description by Sandstede (1931), some similarities 

between the fossil inclusion and the genus Cladonia are obvious. The pycnidia of 

Cladonia are located at the top of the podetia or its branches, and sometimes they also 

occur at the edge of the lobes. In the structure inside the amber, the location of the 

assumed pycnidia is nearly the same, since they are submerged at the edge of the upper 

part of the presumed podetium (Fig. 1A). Sandstede (1931) describes the pycnidia of 

Cladonia as cylindric, ovate or spherical with an average size ranging between 60–100 

μm and small black pores (ostioles). These characteristics are very similar to the 

morphological features of the fossil specimen, since the pycnidia are globose and 

possess ostiole-like openings (Fig. 1D). 

Considering the palaeoecological background (Rust et al. 2010), the assumed lichen 

was most likely corticolous, since terrestrial cladoniform lichens are not very abundant 

in the litter horizon of tropical rainforests today due to their high light requirement 

(Sipman and Harris 1989). Nevertheless, some terricolous Cladonia do occur in the 

tropics, sometimes covering rock outcrops or sand fields (e.g. Ahti 2000). Since the 

Indian amber was probably deposited in a near-shore coastal setting (Rust et al. 2010), 

it is possible that the lichen derived from a coastal habitat. However, many other 

Cladonia species grow epiphytically on the bases of trees or on lignum, and some can 

also tolerate moderately shady habitats. In India today, the cladoniform lichens are most 
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common and diverse in alpine and montane environments, but some species occur in the 

Indian tropics as well (Singh 1964).  

While the substrate of the fossil Monotosporella seems to represent a degraded lichen, 

the origin of the prominent dark-coloured hyphae on its surface (Fig. 1F) remains 

unclear. The dark-coloured hyphae have an average width of 6 μm and are apically 

tapered, whereas most surrounding hyphae reach only 2.5 μm and are pale to hyaline in 

colour (Fig. 1B, C). It is not possible to directly link the dark hyphae to the fossil lichen 

podetium, or to Monotosporella doerfeltii. Ellis (1959) reported that the hyphae’s width 

in modern Monotosporella mycelia ranges from 2 to 7 μm, and can vary in colour from 

brown to pale brown. However, no species description of extant Monotosporella species 

mentions tapering hyphae. Consequently, this feature can either be regarded as unique 

for the fossil Monotosporella species, or these tapering and broad hyphae originate from 

another fungus that overgrew the degrading lichen as well.  

We conclude that Monotosporella doerfeltii was likely growing on a degrading 

Cladonia-like lichen thallus in a corticolous or terrestrial microhabitat of an early 

tropical angiosperm rain forest. 

 

New Caledonian Monotosporella 
 

A morphological comparison of the Monotosporella species found on the resin flow of 

Agathis ovata with extant Monotosporella species is provided in Table S1. The 

resinicolous species is not likely to be M. rhizoidea, since lobe-like swellings are 

missing. Although there is one specimen of M. rhizoidea without the lobe-like swellings 

reported from a stream in Hong Kong (Tsui et al. 2001), it also can be excluded on the 

basis of the height of the conidiophores. The species M. clavata, M. sphaerica, M. 

palmicola and Dactylella microaquatica are distinguished from the New Caledonian 

specimen as well, due to the different form, septation and size of the conidia. It also 

seems improbable that the newly found specimen would be identical to the 

Monotosporella state of Ascotaiwania sawada. Although the size of the conidia is very 

similar, the conidiophores of this taxon are shorter than in the New Caledonian 

specimens. The Monotosporella state of Ascotaiwania mitriformis also differs from the 

New Caledonian specimen in possessing obovate to oval conidia with an average height 

of 10–20 μm. Rather, the Monotosporella specimen from the resin flow is 

morphologically assignable to M. setosa var. setosa. Both show significant variation in 

the length of the conidiophores, and they also share the tapering conidiophore 

morphology, similar-sized pyriform conidia and septation. However, no specimens of 

M. setosa var. setosa have been previously reported from resin flows. 

 
 



Table S1. Synopsis of the main morphological characters of Monotosporella species as well as the Monotosporella-like anamorphs of Ascotaiwania, and the possibly 
related Dactylella microaquatica [from Ellis (1959), Hughes (1958, 1978), Matsushima (1975), Ranghoo et al. (1999b), Ranghoo and Hyde (1998), Rao and de Hoog (1986), 
Sivichai et al. (1998), Tsui et al. (2001) and Yanna and Hyde (2002), and own observations]. M. rhizoidea is listed twice since the specimens described by Tsui et al. (2001) from 
Hong Kong differ considerably in relation to the lobe-like swellings and to the size of the conidia and conidiophores. 

 
Species Monotosporella 

setosa (Berk. & 
Curt.) Hughes  
1958 

Monotosporella 
setosa var. 
setosa  

Monotosporella 
setosa var. 
macrospora  

Monotosporella 
rhizoidea Rao & 
de Hoog 1986 

Monotosporella 
rhizoidea Rao & 
de Hoog 1986   

Monotosporella 
state of 
Ascotaiwania 
sawada  

Monotosporella 
state of 
Ascotaiwania 
mitriformis  

Monotosporella 
clavata  Yanna 
& Hyde 2002 

Monotosporella 
palmicola 
Yanna & Hyde 
2002 

Monotosporella 
sphaerica 
Yanna & Hyde 
2002 

Dactylella 
microaquatica 
Tubaki 1957  

Monotosporella 
from New 
Caledonian 
resin 

Monotosporella 
from Indian 
amber 

Reference Ellis (1959) Hughes (1978) Hughes (1978) Rao and de Hoog 
(1986) 

Tsui et al. 
(2001) 

Sivichai et al. 
(1998) 

Ranghoo and  
Hyde (1998) 

Yanna and 
Hyde (2002) 

Yanna and 
Hyde (2002) 

Yanna and 
Hyde (2002) 

Tubaki (1957) this study this study 

Conidiophores              

 
Length [μm] 
 

 
450  

 
130-500 

 
170  

 
3-40  

 
50-80 

 
8-14 

 
25-75 

 
(20-)52-60 

 
120-220  

 
180-200  

 
15-70 
 

 
90-220 

 
15-60  

Width [μm] 
 
 
 
Conidiogenous 
cells with lobe-
like swellings 

6-8 
Base: 9-13 
Apex: 4-6 
 
absent 

 
Base: 12 
Apex: 6 
 
absent 

 
 
 
 
absent 

 
Base: 4-5 
 
 
present 

4-5 
 
 
 
absent  

 
Base: 5-10 
 
 
absent 

 
Base: 6-9 
 
 
absent 

3-4 
 
 
 
absent 

5-8 
Base: 6-10  
Apex: 3-5 
 
absent 
 

5-8 
Base: 18-20 
Apex: 3-6  
 
absent 

1.5-2 
 
 
 
absent 

 
Base: 9-16 
Apex: 3-5 
 
absent 

 
Base: 4-5  
Apex: 2-5  
 
absent 

Conidia 
 

             

Shape pyriform or 
obovoid 

pyriform to 
obovoid 

obpyriform or 
obovoid 

turbinate to 
obovoidal 

obovoid to 
pyriform 

obovate to ovate 
 

obovate to oval 
 

clavate 
 

clavate 
 

broadly 
ellipsoidal to 
spherical 

ovoid 
 
 

pyriform pyriform 

Size [μm] 
(height x diam.)  

20-40 x 15-25 30-50 x 18-30  
 

38-48 x 27-36  
 

35-40 x 27-35 
 

32-35 x 20-25 25-35 x 18-25 10-20 x 30-35  
 
 
 

22-30 x 10-11  48-52 x 20-24  32-36 x 24-28  
 

10-13 x 6.5-8 31-42 x 17-26 17-28 x 10-15  

Septation 1-3 (usually 2)-
septate 

2-septate 2-septate  2(-3)-septate 
 

2-septate 1-4-septate 
 

1-3-septate 
 

4-6-septate 4-6(-7)-septate 3-4-septate 1-septate 2-septate 1-3 (usually 2)-
septate 

Teleomorph unknown unknown unknown unknown unknown Ascotaiwania 
sawada 

Ascotaiwania 
mitriformis 

unknown unknown unknown unknown unknown unkown 

Substrate decayed wood 
in moist places 

dead wood and 
bark 

rotten wood rotten bark of 
Tectona granids 

submerged 
wood in a 
stream 

culture of 
Ascotaiwania 
sawada from 
rotten wood in 
freshwater 
stream 

culture of 
Ascotaiwania 
mitriformis 
from submerged 
wood 

decaying rachis 
of Oraniopsis 
appendiculata 

decaying rachis 
of Oraniopsis 
appendiculata 

decaying rachis 
of Oraniopsis 
appendiculata 

submerged 
leaves of Shiia 
siboldi 

resin flow of 
Agathis ovata 

lichen thallus in 
Eocene amber  

Distribution South Carolina, 
USA 

New Zealand New Zealand India Hong Kong Thailand Hong Kong Northern 
Queensland, 
Australia 

Northern 
Queensland, 
Australia  

Northern 
Queensland, 
Australia 

Japan New Caledonia India  

 



Conclusions 
 

The morphologically defined genus Monotosporella is already known as a cosmopolitan 

taxon from tropical to temperate ecosystems. Lignicolous representatives have been 

collected from rotten wood in terrestrial and aquatic habitats, and recently epiphyllous 

species have been described. Our recent finds from different resinous habitats show that 

the genus is ecologically even more variable, with occurrences of Monotosporella in 

both early tropical angiosperm forests and extant tropical Araucarian forests. The 

apparently lichenicolous M. doerfeltii grew in a resinous Early Eocene dipterocarp 

rainforest, and is morphologically distinct from extant species, while the New 

Caledonian M. setosa is now recorded for the first time from resin flows at the bases of 

Agathis ovata conifers. The amber inclusion represents only the second fossil record of 

Sordariomycetes, the first being Gonatobotryum piceae from Eocene Baltic amber 

(Dörfelt and Schmidt 2007) as well as the first fossil of its particular order (either 

Savoryellales or Chaetosphaeriales). 
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Abstract 
 

Sooty moulds are saprophytic ascomycetes with brown hyphae, often forming extensive 

subicula on living plant surfaces. These fungi grow on plant exudates and honeydew 

secreted by sap sucking insects and are ubiquitous in many humid terrestrial 

ecosystems. Investigation of Mesozoic and Cenozoic ambers from different parts of the 

world revealed sooty moulds from eight northern hemisphere amber deposits. This 

traces the fossil record of these fungi for approximately 100 million years, from the 

Early Miocene (16 million years) back to the Early Cretaceous (Albian, about 113 to 

100 million years). Fragments of superficial subicula composed of smooth brown 

moniliform hyphae with tapering distal ends identical to those produced by extant 

species in the family Metacapnodiaceae (Capnodiales) are recorded since the Albian. 

The fossil fungi originate from tropical to temperate coastal forests where they grew on 

leaves and bark of different conifers and angiosperm trees. This indicates that 

capnodialean sooty moulds have occupied their specialized niche since at least from 

when early angiosperms appeared in the fossil record.  

 

Key words: Capnodiales, fossil fungi, Metacapnodiaceae, Metacapnodium 
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Introduction 
 

The term sooty moulds is used in a vernacular sense for an ecological group of 

epiphytic ascomycetes with dark-colored hyphae that often produce conspicuous black 

growth on the leaves and other surfaces of living plants (Hughes 1976; Seifert et al., 

2011). Sooty moulds are not parasitic but get their nutrition from insect excretions, 

especially the honey dew produced by sap sucking aphids and scale insects, and from 

plant leachates and exudates, such as the nectar secreted by extrafloral nectaries. They 

tend to form diverse assemblages, often also including filamentous taxa that are 

parasites of other fungi. These fungal communities may encompass capnodialean 

(Capnodiales, Dothideomycetes) species within the families Antennulariellaceae, 

Capnodiaceae, and Metacapnodiaceae, but also ecologically and morphologically 

similar fungi from other distantly related groups. For example, some species in the 

Chaetothyriaceae (Eurotiomycetes) share the same niche and convergent morphology; 

they also appear as melanized, usually anamorphic epiphytes (e.g. Chomnunti et al., 

2012a, 2012b). The main differences are in the characteristics of the ascomata, which 

are not necessarily produced in most specimens. As many sooty mould species are 

highly pleomorphic and do not readily grow in culture, their identification is quite 

challenging (e.g. Hughes 1976, 2003, 2007; Reynolds 1986, 1998; Sugiyama and 

Amano 1987; Faull et al., 2002; Crous et al., 2009; Cheewangkoon et al., 2009; 

Chomnunti et al., 2011).  

The Capnodiales, centering on Capnodiaceae, currently contain eight families (Kirk 

et al., 2008; Lumbsch and Huhndorf 2010). Capnodialean sooty moulds produce 

superficial ascomata with fasciculate asci, and have hyaline to dark, septate ascospores. 

Their anamorphs are dematiaceous, and may include both mycelial (phragmo- to 

dictyoconidia), as well as spermatial and pycnidial synanamorphs (Hughes 1976; Crous 

et al., 2009; Chomnunti et al., 2011). Some species within the family Metacapnodiaceae 

produce extensive spongy mycelia of darkly pigmented, densely interwoven and often 

anastamosing, monilioid, distally tapering hyphae, which are strongly constricted at the 

septa. This habit is characteristic enough to have given rise to the descriptive term 

“metacapnodiaceous hyphae” (Hughes 1976). Metacapnodium species are not presently 

available in culture collections and no sequences of species within the 

Metacapnodiaceae have yet been deposited in GenBank. Thus, the exact placement of 

the family among other capnolialean sooty moulds still waits to be confirmed by 

molecular methods.  

The overall prospects for finding fossils of sooty moulds in amber, which is 

fossilized exudate of ancient gymnosperm and angiosperm trees, are good. The brittle 

and often rather loose epiphytic colonies growing on trees, especially those secreting 
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exudates, almost predestine them for preservation in resin. Finding an extant species of 

sooty mould entrapped in fresh resin of Pinus elliottii Engelm. in a Florida swamp 

forest (see Schmidt & Dilcher 2007) demonstrates that also in modern forests sooty 

moulds are entrapped in plant exudates (Plate 1). Indeed, metacapnodiaceous sooty 

moulds have already been reported from several pieces of Eocene Baltic and Oligocene 

Bitterfeld amber (Rikkinen et al., 2003), and recently small hyphal fragments and 

conidia were identified on the cuticle of a thrips in Early Eocene amber from the Paris 

Basin (Nel et al., in press). Other amber inclusions of possible sooty moulds have been 

mentioned from the Albian of France (Girard et al., 2009a) and Myanmar (Hentschel et 

al., 2009) as well as from the Cenomanian of Ethiopia (Schmidt et al., 2010a). 

Here, we describe and discuss a collection of fossils of sooty moulds recovered from 

eight Albian to Miocene amber deposits. These inclusions allow tracing back the fossil 

record of capnodialean fungi to the Early Cretaceous.  

 

Material and methods 
 

The amber pieces investigated originate from eight northern hemispheric amber 

deposits. Plate 1 provides data about provenance, age and deposition of the pieces 

investigated. 

The amber pieces were ground and polished manually using a series of wet silicon 

carbide papers [grit from FEPA P 600–4000 (25.8 μm to 5 μm particle size), firm 

Struers]. A fraction of a millimeter of amber surface was gradually removed from each 

amber piece, while frequently checking the preparation under a stereoscope to ensure 

that the inclusions were not damaged. The flattened surface of the amber was brought to 

about 100 µm of the inclusions, if no valuable syninclusions were affected (see Schmidt 

et al., 2012, for protocols). 

Prepared specimens were placed on a glass microscope slide with a drop of water 

applied to the upper surface of the amber, covered with a 0.06–0.08 mm thick glass 

coverslip (Menzel Inc., Braunschweig). This reduces light scattering from fine surface 

scratches and improves optical resolution. Amber from the Austrian Traunsee locality is 

very brittle and thus fragments of a size of less than 1 mm were placed in water on 

concave glass microscope slides  (Menzel Inc., Braunschweig) and covered by a glass 

coverslip to reduce light scattering. 

The preparations were examined under a Carl Zeiss AxioScope A1 compound 

microscope equipped with a Canon 450D digital camera. Sometimes incident and 

transmitted light were used simultaneously. The images of Plates 1, 2 (2–7), 3 (1–5, 7, 

8) and 4–6 were obtained from several focal planes using the software package 

HeliconFocus 5.0 to enable a better illustration of the three-dimensional inclusions. 
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Plate 1. Fragments of a subiculum of an extant sooty mould in resin of Pinus elliottii in a swamp forest 

east of Gainesville, Florida. Geoscientific Collections of the Georg August University Göttingen, 

Germany; GZG.PB.5003. Scale bars: 20 µm. 

 

Results 
 

Metacapnodiaceous sooty moulds as amber inclusions 
 

Phylum Ascomycota Cavalier-Smith 1998 

Class Dothideomycetes O. E. Erikss. et Winka 1997 

 

Àlava amber. Museo de Ciencias Naturales de Àlava, no. MCNA 9495 (Plate 2, 1). 

Several dark brown moniliform hyphae up to 280 µm in length are attached to spider 

silk. The cells are smooth, globose to subglobose and about 12 µm in diameter with 

apical cells being slightly smaller. Syninclusions are fragments of a spider web and the 

paratype of the stigmaphronid wasp Hippocoon basajauni Ortega-Blanco, Delclòs et 

Engel (Ortega-Blanco et al., 2011). 

 

Charentese amber. Amber collection of Géosciences Rennes at the University Rennes 

1, no. IGR.ARC-115.3b (Plate 2, 2); and Muséum National d’Histoire Naturelle, 

Département Histoire de la Terre, amber piece no. MNHN.F.A30167-30168 (Plate 2, 

3–6). One fragment of branched dark brown superficial (aerial) moniliform hyphae 

(IGR.ARC-115.3b), and a hyphal network of the same dark color (MNHN.F.A30167-

30168) are preserved. The cells of the aerial hyphae are smooth, thick-walled, globose 

(or rarely subglobose) and 7–10 µm in diameter with walls up to 1.5 µm thick (Plate 2, 

2). One dividing stage is preserved with the apical cell being 6 µm in diameter. The 

cells of the hyphal network are largely globose, subglobose and obovate, or rarely 

elongate (Plate 2, 3–6). Globose cells are about 6 µm in diameter, subglobose cells are 

6–9 x 4–6 µm, obovate cells are 4.5–6 x 7.5–11 µm in size; elongate cells are 3–5 wide 

and 6–19 µm long. Bark remains and tracheids are preserved attached to the subiculum. 

Further syninclusions are two sand flies (Diptera: Psychodidae) of the species 
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Eophlebotomus carentonensis Azar, Perrichot, Néraudeau et A. Nel (Azar et al., 2003), 

a diatom of the genus Paralia (Girard et al., 2009b), and the testate amoeba Centropyxis 

perforata A. R. Schmidt, Girard et Schönborn (Schmidt et al., 2010b). These two amber 

preparations represent fragments of one of the most species rich amber pieces ever 

found, containing over 80 arthropods and a plethora of microorganisms (see Perrichot & 

Girard 2009). 

 

 
Plate 2. Sooty moulds in Early Cretaceous ambers from Spain and France, and from the Late Cretaceous 

of Austria. 1. Moniliform hyphae of sooty mould trapped on spider silk in Albian amber from Àlava 

(Peñacerrada, Spain). MCNA 9495. 2 Metacapnodiaceous sooty mould in amber from Archingeay 

(France) IGR.ARC-115.3b. 3–6. Mycelium originally preserved in the same amber piece and possibly 

representing a basal extension of the aerial hyphae shown in (b), (b) MNHN.F.A30167-30168, (d) view 

from the opposite side. 7. Sooty moulds in Traunsee amber from Austria GZG.BST.27295. Scale bars: 

100 µm (a, c and d) and 10 µm (b, e–g). 
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San Just amber. Geoscientific Collections of the Georg August University Göttingen, 

no. GZG.BST.27287 (Plate 3). Several fragmentary brown hyphae are exquisitely 

preserved (Plate 3, 1). The hyphae are sometimes branched (wide angled), 

anastomosing, and distally tapering (Plate 3, 2–3). The cells of superficial (aerial) 

hyphae are smooth, globose to subglobose, thick-walled and 4.5–13.5 x 9–15 μm in 

size. Other hyphae (likely formerly substrate-attached) possess smaller barrel-shaped 

cells, reaching only 6–7.5 x 6–9 μm. One apical dividing stage is preserved (Plate 3, 3). 

Plate 3 (6–9) show the conidial state of the fungus. The conidia are mostly two-celled 

(rarely one-celled), 10.5–12 x 13.5–15 μm (rarely 17 µm) in size, either attached to the 

hypha in clusters or occurring free in the amber. The conidiogenous cells are hardly 

visible due to the location of the inclusion with respect to the polished amber surface. 

However, the detail shown in Plate 3 (7) seems to represent the detachment point of one 

conidium. Syninclusions are numerous prokaryotic filaments resembling Leptotrichites 

resinatus Schmidt (Schmidt & Schäfer 2005). 

 

Traunsee amber. Geoscientific Collections of the Georg August University Göttingen, 

no. GZG.BST.27295 (Plate 2, 7). A dark brown hyphal network and numerous 

detached short dark brown hyphae are preserved in a tiny amber piece. The cells are 

smooth, globose and only 2.3–4 x 3 μm in size. These fungi represent the only 

inclusions described from this small amber deposit, so far. 

 

Oise amber. Muséum National d'Histoire Naturelle de Paris, département Histoire de la 

Terre, no. MNHN-F.A38531 (Plate 4). Numerous dark hyphal fragments are attached to 

the cuticle of the bark-dwelling thrips species Uzelothrips eocenicus P. Nel et A. Nel 

(Thysanoptera, Uzelothripidae; see Nel at al. in press). The cells are mostly globose to 

subglobose and 3 to 6 µm diameter. Few elongate cells reach 8 to 10 µm length and 4 

µm diameter. Four-celled conidia and hyphae with tapering tips with dividing stages are 

preserved. 

 

Baltic amber. Metacapnodium succinum (Dörfelt, A. R. Schmidt et Wunderl.) 

Rikkinen, Dörfelt, A. R. Schmidt et Wunderl. (Rikkinen et al., 2003). Senckenberg 

collection, no. SMF Be 526a (holotype, formerly collection Jörg Wunderlich, no. 

F70/BB/PL/CYA/CJW), Geoscientific Collections of the Georg August University 

Göttingen, no. GZG.BST.27288–27290 (formerly collection Volker Arnold, no. 1368, 

1371, 1906; Plates 5, 1-4, 6), collection Volker Arnold (sine numero), and collection 

Michael Oschin, no. 5/01. Fragments of superficial, spongy subicula consiting of brown 

to dark moniliform hyphae are preserved in several pieces of Baltic amber. The hyphae 

are much branched, with tapering distal ends. They possess wide-angled branchings, 

with most branches arising at more or less right angles and curving upwards. 
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Anastomosing hyphae occur occasionally. The cells are widely cylindrical to 

subglobose, deeply constricted at the septa, usually 9–13 x 8–12 µm in diameter with 

smooth and relatively thick walls; oldest cells are up to 15 (rarely 20) µm wide. A 

Capnosporium conidial state is preserved in specimen GZG.BST.27288 (Arnold 1368). 

The detached hyphal segments are straight, 2–6-septate, 15–53 µm long, 5–9 µm wide, 

cylindrical to obovoid, with smaller cells at both ends, similar to poroconidia of extant 

Metacapnodium species. The conidia were probably produced at the apexes of erect 

hyphal branches. 

 

 
Plate 3. Metacapnodiaceous sooty mould in Albian amber from San Just (Spain) GZG.BST.27287. 

1. Overview of subiculum fragments. The letters in brackets indicate the enlarged views of the other 

panels. 2. Anastomosing hyphae. 3. Tapering hyphal tip, 4. Aerial hypha. 5. Hyphae of the basal 

subiculum, 6. Conidial state. 7. Conidiogenous cells with detachment point (arrowhead).  8. Two-celled 

conidium. 9. Cluster of septate conidia.  Scale bar 100 µm (a) and 10 µm (b–i). 

 

Bitterfeld amber. Metacapnodium succinum (Dörfelt, A. R. Schmidt et Wunderl.) 

Rikkinen, Dörfelt, A. R. Schmidt et Wunderl. (Rikkinen et al., 2003). Geoscientific 

Collections of the Georg August University Göttingen, no. GZG.BST.27291 and 27292 

(formerly collection Volker Arnold, no. 1900, 1908), (Plate 5, 5), Geoscientific 
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Collections of the Georg August University Göttingen, no. GZG.BST.27293 and 27294 

(formerly collection Heinrich Grabenhorst, no. Li-3 and 122. Piece number 1908 of the 

Arnold collection contains networks of hyphae of Metacapnodium that grew on bark 

and on a corticolous Cavernularia-like lichen. The globose to subglobose cells are 10–

13 x 7–10 µm in diameter. One amber piece (GZG.BST.27291) contains a 

Capnophialophora conidial state. The Capnophialophora conidiogenous cells develop 

singly or in groups of 2–4 on subterminal sections of hyphal branches and are 8–10 µm 

in height and 6–8 µm wide. The phialides are pale brown, more or less spherical or 

obpyriform with a flattened base, the distal end possesses a single subhyaline collarette. 

Phialoconidia are not visible.  

 

Dominican amber. Museum für Naturkunde zu Berlin, no. MB.Pb.2009-348 (Plate 6). 

Moniliform distally slightly tapering hyphae with right-angled branching are preserved 

on the surface of a gametophyte of the leafy liverwort Frullania subgen. Diastaloba 

(Heinrichs & Schmidt 2010). The cells are globose to subglobose, thick-walled, 

verrucose to granulate, 3.9–8.3 μm long and 3.9–7.8 µm wide. The size of the warts 

ranges between 0.55 and 1.1 μm. 

 

 
Plate 4. Sooty mould fragments attached to cuticle of the thrips species Uzelothrips eocenicus in Oise 

amber.  1–4. Septate condia and fragments of moniliform hyphae. Scale bars: 20 µm. 

 

Discussion 
 

Two historic references to amber fossils of sooty moulds 

 
The first description of a fossil fungus that can convincingly be assigned to the family 

Metacapnodiaceae was published over 150 years ago. In 1858, Anton Menge, a 

Professor of Botany, Zoology and Geology in Danzig (Gdanzk), described a 'branched 

articulated thallus' that was found attached to the tip of a twig resembling Thuja 

occidentalis L. (Cupressaceae) in Baltic amber. He described the fossil as follows: 
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'Thallus fruticulosus, ramosus, articulates, articulis compresso-globosis, ramis apice 

conicis, furcates, divergentibus. – Planta minima, crustacea, in forma caespitis apicem 

surculi Thuiae occidentalis obtegens, coloris brunei' (Menge 1858). 

 

 
Plate 5. Metacapnodium succinum from Baltic and Bitterfeld ambers. 1. Subiculum in Baltic amber. 

GZG.BST.27289. 2–4. Details showing tapering moniliform hyphae with distal dividing stages. 

5. Phialides of Capnophialophora conidial state from Baltic amber; some phialides indicated by 

arrowheads. GZG.BST.27288, 6. Phragmoconidia of Capnosporium conidial state from Bitterfeld amber. 

GZG.BST.27291. Scale bars 100 µm (a) and 10 µm (b–f). 
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Menge assumed that the fossil would be related to extant lichens in the fruticose genera 

Sphaerophorus or Cornicularia (Lecanorales). As no apothecia were preserved in the 

fossil he avoided establishing a new genus and described it as Sphaerophorus 

moniliformis. Even in the species description Menge expressed doubts about its true 

affinity, especially as modern Sphaerophorus species do not produce minute, articulated 

thalli. He referred to the algae-like habit of the fossil and emphasized the moniliform, 

apically tapering filaments and cone-shaped tips, and concluded that it had grown as a 

hard crust on the conifer leaves. Plate 7 (1) (Plate 1 in Menge 1858) illustrates the tip of 

the Thuja twig with the attached fungus and also includes an enlarged detail showing 

branched and moniliform, apically tapering filaments. Some dividing apical cells can 

even be seen in the accurate drawing (Plate 7, 1). In the early 20th century, Richard 

Klebs reported another obvious sooty mould from Baltic amber. The description and 

illustration of this organism appeared in the famous supplementary atlas of the Baltic 

amber flora of Caspary & Klebs (1906, 1907). The newly found fossil matched Menge's 

earlier description perfectly (Plate 7, 2; Plate 9 in Caspary & Klebs 1907), and again, 

this organism had grown attached to a Cupressaceae twig. The dark brown, globose or 

slightly flattened cells of the fossil were 8.5–11.4 µm in size. While Klebs did not 

reinvestigate Menge's earlier specimen he did not believe that it nor the newly 

discovered fossil were fruticose lichens. Conversely, he identified them as dematiaceous 

hyphomycetes, in reference to two fossil Torula species that had been previously 

described by Caspary (1886). Based on Caspary's earlier descriptions Klebs named the 

newly found fossil Torula mengeanus.  

Menge (1858) did not provide a collection number for the amber piece containing 

the twig with Sphaerophorus moniliformis, consequently this specimen is difficult to 

locate. Menge's amber collection was later housed in the West Prussian Provincial 

Museum in Danzig (Gdańsk). Whereas a major collection part comprising the arthropod 

inclusions was moved to central Germany in World War II (Krumbiegel & Krumbiegel 

2008), the inclusions of plants and fungi are obviously lost without any trace 

(Weitschat, pers. comm. 2012). Most pieces of the famous Künow collection, to which 

the historic specimens of Caspary's Torula species now belong, are housed at Berlin’s 

Museum of Natural History (Museum für Naturkunde zu Berlin). Our recent 

reinvestigation of Caspary's specimens revealed that his two Torula species (Torula 

globulifera and T. heteromorpha) are not sooty moulds. Hence they will not be 

discussed here, but will be returned to in a separate paper. In the early 20th century the 

amber piece containing the type specimen of Klebs' Torula mengeanus is known to have 

been in the private collection of Dr. Sommerfeld in Königsberg (Kaliningrad). Also this 

collection was later housed in the West Prussian Provincial Museum and subsequently 

moved to the geological-palaeontological collection of the Albertus University in 

Königsberg (Hinrichs 2007). We are unaware whether this fossil still exists. In any case,  
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Plate 6. Sooty mould from Dominican amber MB.Pb.2009-348. 1–3. Moniliform, verrucose hyphae with 

right-angled branching. Scale bars 10 µm. 

 

on the basis of the illustration (Plate 7, 2), the fossil organism most probably was a 

metacapnodiaceous sooty mould. 

While Sphaerophorus moniliformis Menge (1858) undoubtedly represents the first 

historical description of a Metacapnodium species in Baltic amber, we refrain from 

making a new combination since Menge's original specimen has been lost. Furthermore, 

an extant species with the name Metacapnodium moniliforme (L. R. Fraser) S. Hughes 

already exists. We rather recommend using Metacapnodium succinum as a fossil 

morphospecies for specimens in Baltic amber since this taxon is based on specimens in 

public collections. 

 

 

 
Plate 7. Historic drawings of metacapnodeaceous sooty moulds. 1. Sphaerophorus moniliformis Menge 

(1858). 2. Torula mengeanus Klebs (Caspary & Klebs 1906, 1907). 
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Cretaceous to Miocene sooty moulds 

 
The Cretaceous ambers from Àlava, San Just (Spain) and Archingeay (France) provide 

the oldest fossils of sooty moulds discovered so far. While not all fungal remains in 

each amber piece necessarily belong to only one fungus, all the specimens include some 

fragments that can with some confidence be assigned to the Metacapnodiaceae in the 

Capnodiales (Plate 2, 1,2 and Plate 3). All these fungi have produced aerial, monilioid 

and apically tapering hyphae with wide-angled branching and smooth, globose to 

barrel-shaped cells. Young, dividing apical cells are seen in the Archingeay (Plate 2, 2) 

and San Just fossils (Plate 3, 3), and also hyphal anastomoses (Plate 3, 2) and a conidial 

state that could possibly be assigned to Capnobotrys (Plate 3, 6–9) have been preserved 

in the latter specimen. While bark remains and tracheids occur close to the extensive 

hyphal network in the Archingeay amber (Plate 2, 3–6), the network itself seems to 

have grown within an amorphous matrix and may even have formed a basal subiculum 

for the aerial hyphae with rounded cells (Plate 2, 2). 

The minute Traunsee amber fossils (Plate 2, 7) also appear to represent moniliform 

hyphae, rather than conidial chains. While they may also represent sooty moulds in the 

wide sense, they cannot be assigned to any one lineage. The same applies to some other 

Cretaceous fossils mentioned in earlier studies. For example, while describing a 

Cretaceous liverwort from Myanmar amber, Hentschel et al., (2009) also reported 

monilioid dematiaceous fungi growing on the leaf surface of the bryophyte (Plate 4 in 

Hentschel et al., 2009). Recent closer preparation of the potential sooty moulds 

mentioned by Schmidt et al., (2010a) from Cenomanian amber of Ethiopia revealed that 

these fossils are more likely to represent verrucose conidial chains than hyphae of sooty 

moulds. 

The Lower Eocene Oise amber from the Paris Basin has provided the oldest 

Paleogene sooty mould fossils. They consist of short moniliform, apically tapering 

hyphal fragments attached to the cuticle of a thrips of the genus Uzelothrips (Nel et al., 

in press). Also phragmoconidia similar to those produced by extant Capnosporium 

species (anamorphic Metacapnodiaceae) have been preserved. 

Fossils of the Metacapnodiaceae from Middle to Late Eocene Baltic and Late 

Oligocene Bitterfeld amber were already described by Rikkinen et al., (2003). The 

taxon Metacapnodium succinum was established for the metacapnodiaceous sooty 

moulds known from these amber deposits as a new combination based on the previously 

described Rosaria succina Dörfelt, A. R. Schmidt et Wunderl. ('Cyanobacteria') from 

Baltic amber (Dörfelt et al., 2000). The extant genus Rosaria was described by Nellie 

Carter in 1922 on the basis of a 'peculiar and beautiful alga which looks like a string of 

glistening pearls under the low power of the microscope' from a tree trunk on Mt. 
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Canala in New Caledonia. Since then, the genus Rosaria has been illustrated in the 

cyanobacteria literature. Carter's drawing of the original description of R. ramosa 

actually suggests a typical metacapnodiaceous hyphal morphology with respect to shape 

and size of the cells, tapering filaments with bottle-shaped apical dividing stages and the 

dark appearance of the filaments. Reinvestigation of the decrepit type specimen of 

Rosaria ramosa by Rikkinen et al., (2003) indicated that R. ramosa could also have 

been a eukaryotic alga, possibly a terrestrial taxon close to Physolinum monilia (De 

Wildem.) Printz of the Trentepohliales (Chlorophyta). 

The dematiaceous fungi from Dominican amber are difficult to study and illustrate 

because of their placement between liverwort leaves. While these fungi may represent 

sooty moulds at least in the wide sense, they cannot be assigned with confidence to any 

particular group (Plate 6). 

 

Palaeoecology and evolution 

 
Most if not all major amber deposits originate from lowland or coastal forests from 

which the resins were re-deposited into fluvial or shallow marine near-shore 

sedimentary basins (e.g., Vonk & Schram 2007; Girard et al., 2008, 2009a, b; Perrichot 

& Girard 2009). Resin, whether fresh or fossilized, is so soft that large amounts could 

hardly have survived the high-energy process of erosion, transport and deposition from 

the inland and from mountain ranges (Schmidt et al., 2001). Most sooty moulds 

described here probably grew epiphytically on the bark or leaves of the amber-

producing or neighboring trees. Others lived as hyperepiphytes on corticolous lichens 

and bryophytes. Also extant sooty moulds can occasionally colonize surfaces of larger 

cryptogamic epiphytes (e.g. Braun et al., 2009). The ancient fungi may have got stuck in 

resin when it exuded over bark or when fragments of fungal subicula became detached 

and dropped onto fresh resin on the tree trunk or forest floor. The sooty moulds 

preserved in the different amber deposits most probably grew on different trees. The 

presence of these fungi in ambers indicates a certain degree of humidity in the ancient 

forests from which the fossils resins derive. Cretaceous forests even in the tropics 

probably received less rainfall than modern angiosperm-dominated rainforests (Boyce et 

al., 2010). However, the fossil sooty moulds from mid-Cretaceous ambers suggest that 

the coastal 'amber forests' were likely to receive additional moisture in the form of 

frequent coastal fog or local rainfall. 

Conifers of the Araucariaceae and Cheirolepidiaceae are the likely resin-producers 

of the Early Cretaceous French (Archingeay) and Spanish (Àlava, San Just) ambers 

(Peñalver & Delclòs 2010). These conifers grew in mixed forests with Podocarpaceae 

and early angiosperms (Perrichot et al., 2007) in estuarine environments in a warm, wet 
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but seasonal subtropical climate (Perrichot et al., 2007, 2010). The botanical origin of 

Traunsee amber remains unclear; it most likely derived from a conifer resin (Vávra 

2005). 

The Lower Eocene Oise amber was probably produced by a Daniellia-like or 

Hymenaea-like plant in the Detarieae of the Fabaceae family (De Franceschi & De 

Ploëg 2003; Jossang et al., 2008) or by a Terminalia-like taxon of the Combretaceae 

(Nel & Brasero 2010). Very few plant or fungal inclusions have been found in this resin 

from a deltaic gallery-forest in a warm, paratropical climate with contrasting wet and 

dry seasons (Nel & Brasero 2010). However, this ancient angiosperm resin recently 

provided fossil evidence of fungus-animal association which still exists today (Nel et 

al., in press). The sole extant species of the monogeneric thrips family Uzelothripidae 

(Thysanoptera), Uzelothrips scabrosus, has been collected from leaf litter and from bark 

in the Palaeotropics and Neotropics . The thrips appear to use the sooty moulds both as 

their microhabitat and as a food source, and hyphal fragments are often seen attached to 

their cuticles. Additionally, one of the two known fossil specimens of Uzelothrips 

eocenicus from Oise amber has moniliform hyphae of capnodialean sooty moulds on its 

cuticle (Nel at al. in press). The fossil thrips is distinguished from the extant species 

only by the absence of the fusion of two antennal segments. Thus, this insect genus, like 

accompanying sooty moulds, shows a remarkable morphological stability. This shared 

stability of uzelothripids and sooty moulds could be partly explained by the long-term 

ecological stability of their specialized habitat, resulting in limited selection pressure. 

The Baltic amber derives from Middle or Late Eocene warm-temperate forests with 

conifers such as Cupressaceae, Pinaceae and Sciadopitaceae, and angiosperms including 

many species of Aceracae, Fagaceae (evergreen oaks), Lauraceae, Magnoliaceae and 

Pittosporaceae (Kohlman-Adamska 2001). Many extant species of Pinaceae produce 

large amounts of resin and a plethora of macrofossils of this family is preserved in 

Baltic amber. However, Pinaceae resins are not likely to turn into amber since they are 

not polymerized and thus degrade easily (Beck 1993). Based on chemical analyses, 

Wolfe et al., (2009) suggested that Sciadopitys would be the most likely source of Baltic 

amber. Identifiable substrates of Metacapnodium succinum from Baltic amber have so 

far included Cupressaceae twigs (Menge 1858, Caspary & Klebs 1907, see Plate 7, 1) 

and a foliose lichen (Rikkinen et al., 2003). Furthermore, an amber piece of the Arnold 

collection shows an 'imprint' of a leaf that had possessed stellate hairs (likely an 

evergreen oak). These hairs were surrounded by the fresh resin whereas the leaf blade 

itself dropped off before a further resin flow enclosed everything. Underneath a stellate 

hair there is a branched Metacapnodium hypha, suggesting that the fungus had grown 

on the surface of the oak leaf. 

One specimen of Metacapnodium succinum (GZG.BST.27292) in Bitterfeld amber 

was found attached to a piece of bark. The Late Oligocene amber derives from coastal 
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forests from which Cupressaceae such as Cryptomeria sp., Cupressospermum 

saxonicum Mai and Taiwania, Pinaceae as well as the angiosperm genera Quercus 

(Fagaceae) and Liquidambar (Hamamelidaceae) were described (Barthel & Hetzer 

1982; Jähnichen 1998).  

Finally, the Dominican amber derives from a highly diverse Caribbean tropical 

rainforest, and the Fabaceae representative Hymenaea protera Poinar was identified as 

the resin-bearing tree. Possibly, the epiphytic liverwort on which the sooty mould grew 

was an epiphyte of a resinous Hymenaea tree (see Penney 2010). 

The Early Cretaceous fossils from Àlava, San Just and Archingeay demonstrate the 

capnodialean sooty moulds have occupied epiphytic habitats for at least 110 million 

years. This was when early angiosperms rapidly diversified in forest ecosystems (Crane 

1987). The rise of angiosperms to dominance may have favored sooty moulds for at 

least two reasons. First, the transpiration capacity of broad-leaved angiosperms with a 

high leaf vein density is much higher than that of gymnosperms or any spore plants 

which dominated terrestrial ecosystems until the Early Cretaceous. Thus, flowering 

plants likely strongly altered the climate by means of increasing humidity and rainfall, 

especially in tropical ecosystems where recycling of transpired water is well known to 

be an important source of rainfall (Boyce et al., 2010). In addition, the tremendous 

increase of broad-leaved plant species in forest ecosystems since about 100 million 

years ago also provided additional food sources and microhabitats for plant sap sucking 

insects such as aphids and scale insects, and consequently also suitable niches for sooty 

moulds (Rikkinen et al., 2003). 

The morphological similarity of some Early Cretaceous sooty moulds to extant taxa 

suggests an even longer evolutionary history and indicates that capnodialean sooty 

moulds might represent a very ancient component of humid forest ecosystems. Insect 

excretions such as honey dew as potential nutrition source were available much earlier 

than the Cretaceous as the oldest aphid record is Middle Triassic in age (Szwedo & Nel 

2011) and hemipterans and palaeodictyopterans with sucking beaks are known from the 

Carboniferous (Labandeira 2006; Nel et al., 2012). Crous et al., (2009) suggested that 

the ancestral nutritional mode of capnodelean fungi would have been saprobic, since 

saprobic genera represent the earliest diverging lineages among the extant taxa. Similar 

suggestions have been made concerning many other lineages in the larger context of 

Ascomycota (Schoch et al., 2009). Hence, the association between plant-sucking insects 

and sooty moulds may already have evolved in pre-Cretaceous times. No sooty moulds 

have so far been recorded from the Berriasian to Aptian Lebanese amber or from older 

ambers. However, Jurassic ambers are typically found only in trace quantities and only 

one Triassic amber deposit has so far produced any fossilized organisms (Schmidt et al., 

2006, 2012). Thus, the lack of pre-Cretaceous sooty mould fossils may well be a 
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sampling artifact related to the very limited amounts of surviving amber and the highly 

unlikely preservation of any fungal fossils inside such resins. 

 

Conclusions 
 

Sooty moulds are recorded as amber fossils from about 110 million years ago, and the 

hyphal morphology of some Cretaceous specimens is indistinguishable from extant and 

Paleogene species of the family Metacapnodiaceae (Dothideomycetes). The 

morphological proximity of some Early Cretaceous specimens to extant taxa suggests 

an ancient history for this group of epiphytic saprophytes. The fossils derive from 

several distinct types of intertropical to warm-temperate 'amber forests', but they all 

indicate a certain degree of humidity in these palaeoecosystems. 
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Abstract 
 

The development of mycorrhizal associations is considered a key innovation that 

enabled vascular plants to extensively colonize terrestrial habitats. Here, we present the 

first known fossil ectomycorrhiza from an angiosperm forest. Our fossils are preserved 

in a 52 million-year-old piece of amber from the Tadkeshwar Lignite Mine of Gujarat 

State, western India. The amber was produced by representatives of Dipterocarpaceae in 

an early tropical broadleaf  forest. The ectomycorrhizas were investigated using light 

microscopy and field emission-scanning-electron microscopy. Dissolving the amber 

surrounding one  of the fossils allowed ultrastructural analyses and Raman 

spectroscopy. About 20 unramified, cruciform and monopodial-pinnate ectomycorrhizas 

are fossilized adjacent to rootlets, and different developmental stages of the fossil 

mycorrhizas are delicately preserved in the ancient resin. Compounds of melanins were 

detectable in the dark hyphae. The mycobiont, Eomelanomyces cenococcoides gen. et 

spec. nov., is considered  to be  an ascomycete; the host is most likely a dipterocarp 

representative. An early ectomycorrhizal association may have conferred an 

evolutionary advantage on dipterocarps. Our find indicates that ectomycorrhizas 

occurred  contemporaneously within both gymnosperms (Pinaceae) and angiosperms 

(Dipterocarpaceae) by the Lower Eocene. 

 

Key words: amber, ascomycetes, Dipterocarpaceae, India, mycorrhizas, melanin 
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Introduction 
 

Mycorrhizas are ubiquitous in terrestrial ecosystems. Up to 90 % of all vascular plants 

live in a mutualistic association with fungi (Malloch et al., 1980). One selective 

advantage of mycorrhizal symbioses is an increase in the plant's uptake of phosphorus 

and nitrogen. Additionally, some fungal partners protect plants against droughts and 

diseases such as microbial soil-borne pathogens. At the same time, the fungus gets a 

relatively constant and direct access to carbohydrates. This symbiotic relationship is 

considered to be a key innovation of early land plants that enabled them to extensively 

colonize terrestrial habitats (e.g. Cairney, 2000; Wang et al., 2010). 

Various classes of mycorrhizas have evolved over the course of time (Brundrett, 

2002). Arbuscular endomycorrhizas are the oldest and most abundant ones (Cairney, 

2000) and are recorded since the Early Devonian (Remy et al., 1994). Presently, more 

than 70% of all angiosperms build such endomycorrhizal associations, while only 2% 

build ectomycorrhizal ones (Brundrett, 2009). Within the gymnosperms, 

ectomycorrhizas are only known from Pinaceae and from the genus Gnetum (Brundrett, 

2009). 

The evolution of different classes of mycorrhizas was influenced not only by 

changing environmental conditions, but also by the appearance of possible new fungal 

symbionts (Cairney, 2000; Hibbett & Matheny, 2009). Genes required for the formation 

of arbuscular mycorrhizas have been found in all embryophyte lineages (Wang et al., 

2010). This suggests that early land plants had the potential to form arbuscular 

endomycorrhizas, and that extant plants that do not form this kind of mycorrhiza have 

either lost or suppressed the genes involved. 

Several studies suggest that various ectomycorrhizas evolved independently, at least 

once in the Pinaceae, and additionally in several disparate lineages of angiosperms 

(Fitter & Moyersoen, 1996; Hibbett & Matheny, 2009). However, the geographic 

origins and subsequent spread of ectomycorrhizal associations are still unclear. Since 

ectomycorrhizas are most widespread today in boreal and temperate forests, Alexander 

(2006) addressed the question of whether ectomycorrhizal associations arose in these 

environments, and only later moved into tropical latitudes, or if ectomycorrhizas arose 

independently in the tropics. Until now, the only fossil evidence for ectomycorrhizas 

had been reported from the roots of Eocene Pinaceae on Vancouver Island (LePage et 

al., 1997), and these fossils may suggest an origin for ectomycorrhizas in the northern 

latitudes. 

Here, we present the first fossil evidence of ectomycorrhizas from an early tropical 

rain forest that has Gondwanan affinities. The fossil ectomycorrhizas are enclosed in 

Early Eocene (52 million-year-old) Indian amber that was produced by a tropical 
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angiosperm tree of the family Dipterocarpaceae (Rust et al., 2010). The Indian amber’s 

chemistry is quite distinct from that of most other fossil resins, and it is weakly cross-

linked by comparison (Dutta et al., 2009; 2011; Mallick et al., 2009). For this reason, 

we were able to dissolve the amber surrounding one mycorrhizal system and to apply 

ultrastructural analyses to the ectomycorrhiza’s surface. Raman spectroscopy revealed 

compounds of melanins in the dark hyphae. 

 

Material and Methods 
 

Amber piece no. TAD 248 was found in situ in the Tadkeshwar Lignite Mine of Gujarat 

State, western India, which outcrops Early Eocene shallow marine sediments. The 

amber-bearing strata have been assigned to the Ypresian (52 million years old) based on 

shark teeth, foraminiferans, and dinoflagellates (Rust et al., 2010).  

The original 4 x 3 x 2 cm piece of amber was divided into two smaller pieces (TAD 

248 a and b) in order to better access the inclusions. The amber pieces were ground and 

polished manually using a series of wet silicon carbide papers [grit from FEPA P 600–

4000 (25.8 μm to 5 μm particle size), firm Struers] and examined under incident (Carl 

Zeiss Stemi 2000) and transmitted light microscopes (Carl Zeiss AxioScope A1) 

equipped with Canon 450D digital cameras. Sometimes incident and transmitted light 

were used simultaneously. Some images were obtained from several optical sections 

using the software package HeliconFocus 5.0 (Kharkov Ukraine) for a better illustration 

of the three-dimensional inclusions. 

For scanning electron microscopy, a ca. 20 mm3 block containing an 

ectomycorrhizal system was removed from amber piece TAD 258a using a dental drill. 

The tiny amber block was placed on a microscopic slide and dissolved using several 

drops of a mixture of toluene and 70% ethanol (10:1) as described by Rust et al. (2010). 

The remaining microfossils were washed several times with a few drops of 70% 

ethanol. The obtained fragments of the hyphal mantle were then placed on a carbon-

covered SEM-mount using a wet hair from a superfine brush, sputtered by 

gold/palladium (2 x 120 seconds at 20 mA, 10 nm coat thickness) using an Automatic 

Sputter Coater (Canemco Inc., Quebec, Canada) and examined under a field emission 

scanning-electron microscope (Carl Zeiss LEO 1530). 

Raman spectra were recorded from extracted dark hyphae using a Horiba Jobin 

Yvon LabRam-HR 800 UV micro-Raman spectrometer. The spectrometer has a focal 

length of 800 mm. For excitation, the 488 nm line of an Argon Ion Laser (IMA 

106020B0S, Melles Griot, Carlsbad, CA, USA) with a laser power of 20 mW was used. 

The laser was dispersed by a 600 l/mm grating on a CCD detector with 1024 x 256 

pixels, yielding a spectral resolution of 0.43 cm-1. An Olympus BX41 microscope 

equipped with an Olympus LMPlanFl 100 x objective with a numerical aperture of 0.8 

 
 

149



Appendix 5 
 

focused the laser light onto the sample. The confocal hole diameter was set to 100 µm. 

The acquisition time was varied between 10 and 300 s for a spectral range of 100 – 

5000 cm-1.  By using different filters, the power of the laser was reduced to 0.1 %, 10 % 

and 50 % of its original power at the laser exit. For calibration of the spectrometer, a 

silicon standard with a major peak at 520.4 cm-1 was used. All spectra were recorded 

and processed using LabSpecTM version 5.19.17 (Jobin-Yvon, Villeneuve d’Ascq, 

France). 

For permanent preparation, the pieces of amber were fully embedded in a high-grade 

epoxy (Buehler Epoxicure, Lake Bluff, IL, USA) under vacuum (see Nascimbene & 

Silverstein, 2001 for protocols). After curing, the resultant epoxy plugs surrounding 

each sample were cut and polished to create clear flat surfaces close to the amber and its 

inclusions. 

Both amber fragments are currently housed in the amber collection of the Division 

of Invertebrate Zoology of the American Museum of Natural History, New York. All 

Indian amber pieces will finally be deposited in the amber collection of the INSA 

Project Geology at the University of Lucknow, India. 

 

Results 
 

Description of the fossil ectomycorrhizas 

 
About 20 unramified, cruciform and monopodial-pinnate ectomycorrhizas are fossilized 

adjacent to rootlets of up to 180 µm in diameter (Fig. 1a–e, Supporting Information Fig. 

S1a–c). The non-mycorrhizal parts of the absorbing roots are 300 µm to 8 mm in length 

and 60 to 130 µm in diameter. Unbranched mycorrhizas are 320 µm to 1.9 mm long and 

90 to 140 µm in diameter (Figs 1b, S1c). Cruciform ectomycorrhizal systems (Figs 1c, 

S1b) are 200 to 310 µm (rarely up to 700 µm) long, and their two branches are 120 to 

220 µm (rarely 500 µm) long and 70 to 100 µm in diameter. Monopodial-pinnate 

ectomycorrhizal systems (Figs 1a,d,e, S1a) mostly range between 350 and 550 µm in 

length, and their finger-like branches are 100 to 300 µm (rarely up to 530 µm) long and 

60 to 90 µm wide. The monopodial-pinnate system in amber fragment TAD 248b (Figs 

1e, S1a) is 1.3 mm in length and bears five finger-like branches, in which both of the 

most basal branches are bifurcated. 

Different developmental stages of the ectomycorrhizas are preserved in the piece of 

amber. Young ectomycorrhizas show dark pseudoparenchymatous mantles from which 

numerous irregularly septate dark pigmented hyphae of 1.2 to 3.3 µm in diameter 

extend (Figs 1b,c,h, 2a–c, S1b,c). Their walls are 0.2 to 0.3 µm thick, and iris 

diaphragms are possessed at the septa (Fig. 2g) whereas clamp connections are absent. 
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Figure 1. Light-microscopic photomicrographs of the ectomycorrhizal systems of Eomelanomyces 

cenococcoides gen. et spec. nov. from Eocene amber of India. (a) Overview of a rootlet with three 

monopodial-pinnate ectomycorrhizal systems and one cruciform system (located on the right) with 

surrounding mycelium (TAD 248a). The system in the middle right represents the holotype (shown in 

greater detail in Fig. 1(d)). (b) An unramified ectomycorrhiza which has been later removed from the 

amber for ultrastructural and Raman analyses (see Figs 2, 3 and Supporting Information, Fig. S2; TAD 

248a). (c) Cruciform ectomycorrhizal system (TAD 248a). (d) Monopodial-pinnate ectomycorrhizal 

system forming microsclerotia. This system represents the holotype of E. cenococcoides gen. et spec. nov. 

(TAD 248a). (e) Large monopodialpinnate ectomycorrhizal system with five finger-like branches forming 

microsclerotia. The arrowheads show additional furcation of the basal branches (TAD 248b). 

(f) Microsclerotia formed at the surface of the basal branch of the system shown in the lower left of Fig. 

1(a) (TAD 248a). (g) Large microsclerotium exposed at the surface of the system shown in Fig. 1(e) 

(TAD 248b). (h) Dark hypha with two septa (arrowheads) extending from the system shown in Fig. 1(b) 

(TAD 248a). Bars, 500 µm (a); 100 µm (b–e); 20 µm (f–h). 
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Figure 2. Scanning electron micrographs of Eomelanomyces cenococcoides gen. et spec. nov. from 

Eocene amber of India (TAD 248a). (a,b) Fragments of the pseudoparenchymatous mantle of the 

ectomycorrhiza shown in Fig. 1(b). (c) Surface of the pseudoparenchymatous mantle showing extending 

hyphae with initial formation of chlamydospore-like inflated distal hyphal ends. (d) Lemon-shaped 

inflated distal hyphal end of a short hypha extending from the mantle. (e) Surface of the 

pseudoparenchymatous mantle with short forked flat hyphae. (f) Hypha showing thick walls at cross-

break. (g) Broken hypha exposing a septum with an iris diaphragm. Bars, 20 µm (a,b); 5 µm (c–e); 1 µm 

(f,g). 

 

Compounds of melanins were detectable in these dark hyphae using Raman 

spectroscopy. Some of the peaks were assignable to the key monomers of eumelanin: 

hydroquinone, indolequinone and semiquinone (Fig. 4). Some of these hyphae form 

chlamydospore-like inflated distal hyphal ends which are clavate or broad fusiform to 

lemon-shaped and 12 to 16 µm long and 6.5 to 9.7 µm wide (Figs 2c,d, S2d). Short 
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forked flat hyphae of 7 to 15 µm length and 2.4 to 5 µm width and about 0.5 µm 

thickness (Figs 2e, S2a), as well as short young hyphae of 2.5 to 3 µm diameter (Fig. 

S2a), are sometimes visible at the surface of the pseudoparenchymatous mantle. Dense 

hyphal systems extend in all directions into the clear translucent amber (Figs 1a,c, 

S1b,c), suggesting that some ectomycorrhizas were still alive when initially embedded. 

Sometimes several hyphae form simple rhizomorphs that are mostly about 10 µm in 

diameter or thinner, seldom reaching 75 µm (Figs 3a,b, S2b). Generally, hyphae exhibit 

thick cell walls (Figs 2f,g, S2e) and are frequently coated by a toluene-insoluble 

substance (Fig. S2b,c). Single hyphae within the rhizomorphs are 1 – 3 µm wide. The 

dark hyphae of the mycelium are often coated by light circular structures possessing a 

rough surface (Fig. S1d). Hyphae are absent around older ectomycorrhizal systems; 

instead, numerous spherical to ovoid microsclerotia (hardened mycelia serving as 

dormant stages) are formed at their surface (Figs 1d–g, S1g). The microsclerotia are 

mostly 35 to 40 µm long and 25 to 30 µm wide, sometimes reaching 55 to 60 µm in 

length and 50 µm in width. Small ones are only 15 to 20 µm in size. Microsclerotia are 

also formed in the nearby hyphal systems (Figs 3d, S1f). Clavate short hyphal ends of 

15 µm to 43 µm in length and 5.5 µm to 6.5 µm in width are regularly formed in the 

mycelium (Figs 3c, S1d,e). Sometimes they appear at regular distances of about 450 to 

550 µm apart at the supporting hyphae. The otherwise thick walls of the hyphae become 

thinner and almost disappear in these branches (Figs 3c, S1e). 

Preservation of the ectomycorrhizas is excellent, allowing description of the 

mycobiont as Eomelanomyces cenococcoides gen. et spec. nov. (see below). E. 

cenococcoides is a fungus containing melanin and developing ectomycorrhizas as black 

pseudoparenchymatous mantles on the surface of absorbing roots of the host. Hyphae 

with iris diaphragms at the septa extend outward from this mantle. In this regard, the 

fossil is similar to the recent anamorphic genus Cenococcum, but distinguished by the 

high variability in the branching of the ectomycorrhizal systems and by the regular 

formation of microsclerotia. 

 

Taxonomic summary 

 
Eomelanomyces cenococcoides Beimforde, Dörfelt et A. R. Schmidt gen. et spec. nov. 

(Figs 1–3, Supporting Information Figs S1,S2) 

 

Descriptio: Fungus anamorphus cum substantia ‘melanin’ et ectomycorrhizam formans 

in plantis. Systema mycorrhizae non ramosa vel cruciformis aut monopodialiter pinnata. 

Rami frequenter situ in dextero angulo. Tunica mycorrhizae in superficie est 

pseudoparenchymatica cum cellulis planis, 60 – 140 µm in diametro, frequenter cum 
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hyphis ramosis, coloratis, non regularibus septis, 1.2 – 3.3 µm in diametro. Ex tunica 

pseudoparenchymaticae hyphae eminentes cum septis. Septa cum simplicibus 

centralibus cavis ut in genere recentem Cenococcum. Nonnullae hyphae apices 

formantes ad similitudinem chlamydosporibus, usque ad 8 x 5 µm in diametro. Hyphae 

conjunctae in chordam myceliae ut in simplicibus rhizomorphis. In aetate mycorrhizae 

sine vividis ramosis hyphis eminentibus autem cum multis microsclerotiis ovoideis, ca. 

35 – 50 x 25 – 35 µm in diametro. 

 

Typus: In resina fossile ex India, collectio numerus AMNH TAD 248; Systema 

ectomycorrhizae est spectata in figura 1d est holotypus. 

 

Etymologia: Eo, eos: Eocaen; melanos: nigrum. Epitheton speciei propter similitudinem 

cum recenti genere anamorpho Cenococcum. 

 

Discussion 
 

Assignment of the Mycobiont 
 

Although the fungal mantle is excellently preserved, the root tissue of the host plant 

decayed in the amber (likely due to taphonomic conditions affecting the preservation of 

woody tissues). Consequently, we could not document the Hartig net in which the 

mycobiont penetrates the intercellular spaces of the host. 

 We assign the ectomycorrhizas of amber piece no. TAD 248 to a single fossil species 

because all (including different developmental stages) are arranged close to each other 

on the rootlets. Some photomicrographs of Fig. 1 and Supporting Information Fig. S1 

may suggest variation in color of the ectomycorrhizas and adjacent hyphae because 

different intensities of transmitted and incident light were used. Lighter color is also 

caused by a refractive nanometre-sized space that sometimes appears between the 

amber inclusion and the surrounding resin. This gas-filled space probably originated by 

shrinkage of solidifying resin and desiccation of the inclusion during fossilization. 

We consider Eomelanomyces cenococcoides to belong to the Dothidiomycetes 

(Ascomycota) because of (1) its dark melanised hyphae, (2) the formation of a 

mycorrhizal mantle, (3) the regular formation of microsclerotia, and (4) the similarity of 

this fossil to the extant anamorphic genus Cenococcum.  

The septal porus is an iris diaphragm, which is not swollen like the dolipore of the 

Agaricomycotina (see Fig. 2g). Furthermore, clamp connections are absent. The dark 

colour of the pseudoparenchymatous mantle’s surface and of the hyphae is similar to the 

extant anamorphic genus Cenococcum, whose teleomorph is a species of the 
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Dothideomycetes. The only extant species of this genus, Cenococcum geophilum Fr., 

forms mostly unbranched mycorrhizas with modern hosts of the Spermatophyta.  

A particular feature of the mycelium surrounding the ectomycorrhizal systems is the 

regular occurrence of clavate short hyphal ends with very thin walls (Figs 3c, S1d,e). It 

remains unclear if these structures were for nutrient uptake. 

 

 
Figure 3. Light-microscopic photomicrographs of the mycelium of Eomelanomyces cenococcoides gen. 

et spec. nov. surrounding rootlets and ectomycorrhizal systems from Eocene amber of India (TAD 248a). 

(a) Branched rhizomorphs. (b) Detail of Fig. 4 (a). Numerous hyphae composing the rhizomorph are 

visible. (c) Two hyphae each forming a clavate short hyphal end. The walls of the hyphae thin and almost 

disappear in these branches. (d) Two microsclerotia formed at a branched hypha. Bars, 100 µm (a, b, d); 

10 µm (c). 

 

Search for fossil melanin in Eomelanomyces cenococcoides 

 
Raman studies of melanin from modern samples are reported by several research groups 

for different melanin-containing substances (e.g. Samokhvalov et al., 2004), as well as 

density-functional calculations of the three melanin monomers (Powell et al., 2004). 

The Raman spectrum of the dark hyphae of Eomelanomyces cenococcoides revealed 

two very broad bands which are centered at 1354 and 1576 cm-1 (Fig. 4). This spectrum 

has a great similarity to the typical spectrum of amorphous carbon, with peaks at 1350 

and 1550 cm-1 (Robertson, 1986). These two peaks are caused by vibrations of carbon 

atoms arranged in a graphitic-like structure. However, due to the molecular structure of 

melanin, other vibrational modes involving oxygen, hydrogen and nitrogen should be 

visible. When analysing the spectrum with a Gauss Lorentz function, several underlying 

peaks could be identified between 1000 and 1600 cm-1. Based on the work of Powell et 
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al. (2004), we were able to assign several of these peaks to hydroquinone, 

indolequinone and semiquinone, the key monomers of eumelanin. In the calculated 

spectrum of Powell et al. (2004) the peaks are very narrow, whereas our spectra, as well 

as those of Capozzi et al. (2005), show broad bands. This may be caused by the high 

fluorescence background, and by the degradation of the melanin molecules due to the 

Eocene age of our sample. Although eumelanins are not identical to fungal melanins 

(Butler & Day, 1998), the vibrational modes detectable with Raman spectroscopy likely 

do not show essential differences (see Cappitelli et al., 2005).  

Previous studies exclusively report fossil melanins or melanosomes from animals, 

e.g. melanin from Triassic ammonites (Mathur, 1996), and fossil melanosomes from 

Jurassic to Eocene feathers (Vinther et al., 2008; Li et al., 2010). Thus, our Raman 

spectrum provides the first indication of fossil fungal melanins in amber, and in fact the 

first record of melanin in a fossil fungus.  

 
Figure 4. Raman spectrum of a single hypha of the ectomycorrhiza shown in Fig. 1(b). The coloured 

pattern underneath the spectrum represents the peaks analysed by Gauss– Lorentz function. The peak at 

1426 cm-1 can be assigned to hydroquinone, those at 1340, 1532 and 1572 cm-1 to indolequinone, and the 

one at 1290 cm-1 to semiquinone. The main peak at 1606 cm-1 represents carbon bonding. 

 

Probable assignment of the host tree 
 

The ectomycorrhizas reported here were fossilized in a single piece of clear translucent 

amber. The only syninclusions of the fossil ectomycorrhizas are several lepidopteran 

scales. We assume that the resin originally filled a small hole inside the litter or soil 

horizon of the forest floor that contained vital ectomycorrhizas. The resin may have 

been released by the roots or dropped from above by one of the trees.  

Today, arbuscular endomycorrhizas typically predominate in tropical forests (Janos, 
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1983; McGuire, 2007). However, several ecologically important tropical plant families, 

notably the amber-producing Dipterocarpaceae, are ectomycorrhizal (Lee, 1998). If 

present, ectomycorrhizal angiosperm trees generally make up a large portion of the total 

forest area, and can sometimes even dominate tropical rainforests (Connell & Lowman, 

1989; McGuire, 2007), as dipterocarps do today in parts of Southeast Asia. The 

chemical analysis of the amber from the Tadkeshwar Mine revealed a class II or 

dammar-type resin (Dutta et al., 2009; 2011; Mallick et al., 2009; Rust el al., 2010), a 

cadinene-based polymer, which is produced primarily by trees in the Dipterocarpaceae 

(Van Aarssen et al., 1994; Anderson & Muntean, 2000). Independent evidence for the 

presence of Lower Eocene Dipterocarpaceae was recently obtained from fossil pollen 

grains that were found in the same sediments (Dutta et al., 2011). In addition, fossil 

wood samples attached to amber pieces showed microanatomical affinity to 

Dipterocarpaceae, including amber-filled resin canals, further substantiating the 

botanical source of this amber (Nascimbene et al., 2010; Rust et al., 2010). 

The Gujarat region of India during the Lower Eocene was characterized by a strong 

occurrence of evergreen angiosperms (e g. Sahni & Kumar, 1974; Willis & McElwain, 

2001). Gymnosperms occurred rarely, and only a few fossils from the families 

Araucariaceae, Podocarpaceae and Ginkgoaceae have ever been recovered (Salujha et 

al., 1967) – their extant representatives are all characterized by arbuscular mycorrhizas, 

like most other gymnosperms. Based on direct fossil evidence, the Cambay amber and 

associated sediments provide one of the earliest unequivocal Asian records of a diverse, 

broadleaf tropical angiosperm forest (Rust et al., 2010). 

We consider the host of Eomelanomyces cenococcoides to be an angiosperm, 

because representatives of the family Pinaceae and the genus Gnetum, the only known 

extant gymnosperms forming ectomycorrhizas (e.g., Brundrett, 2002), have not been 

observed in the Eocene of India. Furthermore, besides dipterocarps, no other 

angiosperms with known ectomycorrhizal associations, past or present, have been 

identified from this deposit. We therefore propose that the amber-producing Dipterocarp 

is the probable host of Eomelanomyces cenococcoides. 

 

Palaeobiogeographical implications 

 
The palaeogeographic and temporal origin of Dipterocarpaceae and their association 

with ectomycorrhizal fungi have frequently been discussed. It is typically suggested that 

dipterocarps originated in eastern Africa or Madagascar and drifted northward on the 

Indian platform, reached Asia during the Eocene and spread (e. g. Dutta et al., 2011). 

Alternatively, an origin in Southeast Asia has been proposed and taken into account 

(Lakhanpal, 1970; Sasaki, 2006). However, the monophyly of the three subfamilies of 
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Dipterocarpaceae and of the Sarcolaenaceae, along with their consistent association 

with ectomycorrhizal fungi, suggest that the potential to form ectomycorrhizas is an 

ancestral character of the Dipterocarpaceae family (Ducousso et al. 2004; Moyersoen, 

2006). Ectomycorrhizal symbioses may have conferred a selective advantage for some 

tropical tree species (e. g. McGuire, 2007), even in early tropical broadleaf rainforests, 

and the high diversity and abundance of Dipterocarpaceae in Asia might be based on 

their potential to associate with ectomycorrhizal fungi. 

Ectomycorrhizal associations are considered to be unstable evolutionarily dynamic 

associations that evolved independently in several major clades of fungi (Hibbett & 

Matheny, 2009) as well as several times within the angiosperm clade that includes 

Rosids and Asterids and within the Pinaceae (Fitter & Moyersoen, 1996; Hibbett & 

Matheny, 2009). Consequently, Eomelanomyces cenococcoides itself is not necessarily 

an ancestral mycobiont of its host. The only previously reported fossil record of 

ectomycorrhizas is actually from the roots of Eocene (ca 50 million years old) Pinaceae 

from Vancouver Island (LePage, 1997). Our find provides evidence that angiospermous 

ectomycorrhizal associations in the Paleogene tropics occurred contemporaneously with 

gymnospermous ectomycorrhizal associations in the Nearctic. 
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Supporting Information: Figs S1 and S2 for 
 

 
Figure S1. Additional light-microscopical photomicrographs of Eomelanomyces cenococcoides gen. et 

spec. nov. from Eocene amber of India. (a) Long absorbing root with three unbranched ectomycorrhizas 

(black arrowheads) and one monopodial-pinnate system forming microsclerotia (left), which is shown 

magnified in Fig. 1e. The white arrowhead indicates the location of the main root (TAD 248b). 

(b) Overview of a rootlet with two cruciform ectomycorrhizal systems. The right system is shown 

enlarged in Fig. 1c; the left system possesses microsclerotia. The long unramified ectomycorrhiza out of 

focus in the middle of the background is shown enlarged in Fig. S1c (TAD 248a). (c) Long unramified-

ectomycorrhiza (TAD 248a). (d) Hypha with two clavate short hyphal ends. The dark supporting hypha is 

coated by light circular structures possessing a rough surface (arrowhead). (e) One clavate short hyphal 

end with immediately thinning cell wall (arrowhead). (f) Microsclerotium at a hypha. (g) Large 

microsclerotium exposed at the surface of the system shown in Figs 1e and S1a (TAD 248b). Scale bars: 

(a,b) 500 µm, (c,d) 100 µm, (e–g) 10 µm. 
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Figure  S2.  Additional scanning electron micrographs of Eomelanomyces cenococcoides gen. et spec. 

nov. from Eocene amber of India (TAD 248a). (a) A flat hypha and budding young hyphae at the surface 

of the pseudoparenchymatous mantle. (b) Four hyphae connected by a toluene-insoluble substance to 

form a simple rhizomorph extending from the ectomycorrhiza. (c) Two hyphae (arrowheads) connected 

by a toluene-insoluble substance. (d) Fusiform inflated distal hyphal ends of short hyphae extending from 

the mantle. (e) Hyphae showing two layers of the outer walls at cross-break. Scale bars: 2 µm.  
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Abstract 
 

The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically 

important mutualistic associations such as mycorrhizae and lichens have evolved in this 

group, which are regarded as key innovations that supported the evolution of land 

plants. Only a few attempts have been made to date the origin of Ascomycota lineages 

by using molecular clock methods. This is primarily due to the lack of satisfactory fossil 

calibration data for the Ascomycota. For this reason we have evaluated all of the oldest 

available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and 

Maastrichtian). The fossils represent four major ascomycete lineages 

(Lecanoromycetes, Laboulbeniomycetes, Dothideomycetes, and Eurotiomycetes). We 

have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a 

total of 145 taxa representing all main groups of the Ascomycota and utilized fossil 

ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian 

approach. This is the first study to combine molecular data with multiple fossil 

calibration points solely from within the Ascomycota. Our results suggest an initial 

diversification of ascomycetes in the Cambrian, followed by repeated splits of lineages 

throughout the Phanerozoic, and indicate that this continuous diversification was 

unaffected by mass extinctions. We suggest that the ecological diversity within each 

lineage ensured that at least some taxa of each group were able to survive global crises 

such as mass extinctions and rapidly recovered. 

  

Keywords: Amber, Ascomycota, BEAST, divergence times estimates, fossil 

constraints, fungi 
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1. Introduction 
 

The fungi constitute a major group of eukaryotic organisms (Hawksworth, 1991, 2001). 

They exhibit a broad variety of lifestyles and morphologies ranging from single celled 

organisms to multi-cellular colonies which can be among the largest and possibly oldest 

organisms on earth (Brazee et al., 2012). Most aquatic and terrestrial ecosystems are 

occupied by a diverse range of fungal species. With over 64,000 described species in 

approximately 6,400 genera, the phylum Ascomycota is by far the largest phylum in the 

fungal kingdom (Kirk et al., 2008; Blackwell, 2011). The autapomorphy of this group is 

a sack-like structure, the ascus, in which the sexual spores are produced. Species of the 

Ascomycota are extremely variable in morphology and ecology, and play important 

roles in many ecosystems. As degraders of persistent organic materials such as lignin 

and keratin, ascomycetes play an important role in nutrient cycling. Additionally, many 

ascomycetes participate in symbiotic associations including mycorrhizae and lichens. 

Phylogenetic relationships among major groups of the Pezizomycotina have been 

the subject of many recent studies (e.g. Spatafora et al., 2006; Schoch et al., 2009, 

Miadlikowska et al., 2006; Hibbett et al., 2007; Eversberger et al., 2012; Kumar et al., 

2012, Morgenstern et al., 2012). Several attempts have also been made to date the origin 

and subsequent evolution of main fungal lineages by molecular clock methods (e. g. 

Heckman et al., 2001; Sanderson, 2003a; Berbee and Taylor, 1993, 2007; Taylor and 

Berbee, 2006, Padovan et al., 2005, Lücking et al., 2009, Taylor and Berbee, 2010; 

Gueidan et al., 2011, Floudas et al., 2012, Ohm et al., 2012). Fungi derived from aquatic 

ancestors and diverged at a relatively early stage during the evolution of the Eukaryota 

(e. g. Steenkamp et al., 2006; Liu et al., 2009; Lara et al., 2010). Their time of 

divergence, however, is still a matter of debate. Simon et al. (1993) were the first to 

apply a molecular clock to a fungal phylogeny. Subsequently, Heckman et al. (2001) 

estimated that fungi had occupied terrestrial habitats for at least 1000 million years, an 

estimate which was revised by Sanderson (2003a). However, theses studies did not 

consider substitution rate variation, a phenomenon now known to be common in many 

organism lineages. The existence of such variation in the fungal phylogeny was 

demonstrated by Berbee and Taylor (1993, 2010) and is a challenging problem, even 

under the assumption of relaxed clock models, which are able to accommodate variable 

substitution rates across individual groups and genes (e. g. Sanderson, 2003b; 

Drummond and Rambaut, 2006, 2007). Considering the number of ascomycete species 

and their broad range of morphologies and life-forms they posses, substitution rate 

heterogeneity is likely to be quite drastic across their phylogeny, even at the class level 

(Lutzoni and Pagel, 1997; Woolfit and Bromham, 2003; Lumbsch et al., 2008). Besides 

improving analytical methods of molecular evolution the integration of fossil evidence 

 
 

167



Appendix 6 
 

of individual fungal lineages would help to partly overcome this problem (Bebree and 

Taylor, 2010). Many other studies of molecular evolution showed the importance of 

constraining molecular clocks with fossil evidence (Benton et al., 2009; Hedman, 2010; 

Inoue et al., 2010; Magallon, 2010; Pyron, 2010; Wilkinson et al., 2011; Lukoschek et 

al., 2012; Sauquet et al., 2012). A crucial requirement for the use of fossil evidence as 

minimum age constrains is their accurate placement to specific nodes in the phylogeny 

under study (Rutschmann et al., 2007; Marshall, 2008; Forest, 2009; Praham et al., 

2012; Pyron, 2010; Dornberg et al., 2011). Reliable assignment of fossil taxa to modern 

phylogenies requires accurate information about their systematic position and age. In 

this regard, fossilized fungi preserved in amber and cherts are excellent material as they 

conserve even delicate micro-structures regardless of their susceptibility to decay 

(Stankiewicz et al., 1998; Martínez-Delclόs et al., 2004). This allows the precise 

assignment of fossil data to specific phylogenetic nodes.  

In order to test their potential use for molecular evolution models of fungi we have 

evaluated 13 extraordinarily well preserved and precisely dated fossil ascomycetes, 

which represent the oldest fossil representatives of their respective lineages in several 

major lineages (Caliciaceae, Parmeliaceae, and Ramalinaceae of the Lecanoromycetes; 

Laboulbeniaceae of the Laboulbeniomycetes; Metacapnodiaceae and Pleosporaceae of 

the Dothideomycetes; Trichocomaceae and Venturiaceae of the Eurotiomycetes, in 

addition to two smaller groups of uncertain position, i.e., the Coniocybaceae and 

Mycocaliciaceae). The fossil fungi are preserved in amber from various deposits 

spanning an Albian to Miocene age (about 113 to 17 million years old) as well as in 

Devonian and Maastrichtian cherts (about 410 and 66.5 million years old, respectively).  

Here we have assembled a multi-gene data set with a total of 145 modern taxa 

representing the main groups of the Ascomycota, and utilized six fossil Pezizomycotina 

from amber and chert to estimate divergence times of the main classes. We have 

exclusively used fossil ascomycetes as minimum age constraints and avoided the use of 

secondary node constraints (age estimates from previous studies). For comparison and 

to evaluate the influence of our internal node constraints, we also performed an analysis 

with identical parameter settings but with Paleopyrenomycites as the sole constraint for 

Pezizomycotina. 

This is the first study to combine molecular and fossil data in order to produce a 

chronogram of the Ascomycota with multiple calibration points solely from within the 

Ascomycota. Our results show that the integration of minimum age constraints in 

terminal groups of ascomycete classes significantly affects the estimated divergence 

times of both early branching nodes and nodes of terminal groups of Ascomycota 

lineages by pushing them back in time. According to our results the diversification of 

the Pezizomycotina started in the Cambrian, followed by a continuous diversification 

throughout the Phanerozoic that was likely unaffected by mass extinctions.  
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2. Material and Methods 
 

2.1 Fossil ascomycetes from amber and chert  
 

Specimens of all available fossil ascomycetes from amber and chert representing the 

oldest fossil evidences of their respective lineages (Table 1) were reinvestigated 

considering their potential use as minimum age constraints in molecular models, 

following the guidelines provided by Praham et al. (2012).  

 

Fossil Lecanoromycetes. Several specimens of Anzia (Rikkinen and Poinar, 2002) are 

preserved in Baltic amber dating back 55–35 Ma (Fig. 1e). Some of these fossils are 

morphologically identical to the extant species A. japonica which may be the closest 

living relative. The genus Anzia belongs to the Parmeliaceae (Lecanorales) the largest 

family of lichen forming fungi and is morphologically very similar to the genus 

Pannoparmelia (Thell et al., 2010). 

Poinar et al. (2000) described two species of Parmelia (P. ambra and P. 

isidiiveteris) from Dominican amber (~17 Ma; Fig. 1l). Both fossils clearly belong to 

the family Parmeliaceae, but they cannot be assigned with certainty to any extant genus. 

However, neither of the two fossil species represents Parmelia sensu stricto. 

A fossil specimen of the genus Phyllopsora (Ramalinaceae, Lecanorales) preserved 

in Dominican amber (~17 Ma; Fig. 1m) was described as P. dominicanus by Rikkinen 

and Poinar (2008). The morphological features of P. dominicanus closely resemble 

those found in modern Phyllopsora species and are very similar to the recent P. 

chlorophaea for example. 

A fossil representative of the genus Calicium (Rikkinen, 2003) is preserved in 

amber of a Baltic deposit dated back 55–35 Ma (Fig. 1g). Species of Calicium 

(Caliciaceae, Teloschistales) are typical “calicioid lichens”, a paraphyletic assemblage 

of fungi sharing morphological similarities such as stalked fruiting bodies and a 

powdery spore mass called the mazaedium (Tibell, 1984).   

Fossil Dothideomycetes. Several fossils from Mesozoic and Cenozoic amber 

deposits closely resemble extant species of the genus Metacapnodium 

(Metacapnodiaceae, Capnodiales; Schmidt et al., in review). These fungi belong to the 

sooty moulds, a term that is commonly used for an ecological group of saprophytic 

fungi that live on the surfaces of living plants. Hyphae of Metacapnodium have a 

characteristic growth form with subglobose cells and gradually tapering apices. The 

oldest fossil representative of the Metacapnodiaceae is enclosed in Early Cretaceous 

Charentes amber of France dating 113–100 Ma (Fig. 1b).  
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Distinctive conidiophores and a plethora of septate, mostly four-celled and slightly 

curved conidia are enclosed in a piece of Ethiopian amber (93–95 Ma; Fig. 1c; Schmidt 

et al., 2010a). The structures are very similar to those of the extant genus Curvularia 

(Pleosporaceae, Pleosporales) but could also represent a species of some other genus in 

the family (e.g. Drechslera, Bipolaris, Exserohilum). For this reason the authors did not 

assign the fossil to a modern genus.   

Fossil Eurotiomycetes. Aspergillus collembolorum (Fig. 1f) is preserved in Eocene 

Baltic amber (50–35 Ma) and was described by Dörfelt and Schmidt (2005). The fossil 

includes numerous well preserved conidiophores very similar to those of modern 

species of the Aspergillus flavus group (Trichocomaceae, Eurotiales).  

Rikkinen and Poinar (2000) described Chaenothecopsis bitterfeldensis from 

Bitterfeld amber (~22 Ma; Fig. 1i). Two further specimens of the same genus were 

described from Eocene Baltic and Oligocene Bitterfeld amber dating back to 50–35 Ma 

and ~23 Ma, respectively (Tuovila et al., 2012). All three fossils clearly belong to the 

order Mycocaliciales, which has usually been placed in the Eurotiomycetes (Schoch et 

al., 2009).  

Fossil Sordariomycetes. Gonatobotryum piceae (Dörfelt and Schmidt, 2007) is 

enclosed in Baltic amber (50–35 Ma; Fig. 1j).  The fossil specimen shows close 

similarities to modern Gonatobotryum fuscum, but developed different conidiophores 

and mature conidia. Teleomorphs are currently unknown for Gonatobotryum species 

(Arx, 1981). 

The fossil parasite Petropus brachyphylli (Fig. 1d) was described from silicified 

conifer leaves (Brachyphyllum patens; van der Ham et al., 2003) of Late Maastrichtian 

chert (66.5 Ma) by van der Ham and Dortangs (2005). P. brachyphylli is considered to 

be closely related to the extant Phaeocryptopus (Venturiaceae, Venturiales).  

Fossil Laboulbeniomycetes. A well-preserved specimen of this highly specialized 

lineage was found in Bitterfeld amber (~23 Ma; Rossi et al., 2005) and described as 

Stigmatomyces succini (Fig. 1k). The fossil fungus is attached to the thorax of a stalk-

eyed fly (Prosphyracephala succini, Diopsidae).  

Fossil ascomycetes of groups with ambiguous systematic positions. Paleopyreno-

mycites devonicus (Fig. 1a) is by far the oldest evidence for ascomycetes. It is enclosed 

in Devonian Rhynie Chert dating back 410 million years (Taylor et al., 2005). P. 

devonicus was often assigned to Sordariomycetes, but its exact systematic position is 

disputed (Taylor et al., 2005; Eriksson, 2005; Padovan et al., 2005; Taylor and Berbee, 

2006). An assignment to the Pezizomycetes seems also possible, since 

Paleopyrenomycites might have produced operculate asci (Lücking et al., 2009). 

A well-preserved specimen of Chaenotheca preserved in Baltic amber (55 – 35 Ma; 

Fig. 1h; Rikkinen, 2003;) clearly belongs the Coniocybaceae, but the phylogenetic 

position of this family remains enigmatic (Tibell, 2001; Tibell and Koffmann, 2002).  
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Table 1. List of ascomycete fossils from amber and chert representing the oldest fossil evidence of their 

respective lineages, including assignment to extant relatives, repository, references for phylogenetic 

analyses and age. The fossils are arranged by their age (from old to young), Asteriks (*) indicate the 

fossils used as minimum age constraints in this study as indicated in Fig 2.   
Fossil taxon Level of 

assignment  
Collection  Reference for 

fossil description 
Material and 
age 

Reference for 
stratigraphy 

Paleopyrenomycites 
devonicus* 

Pezizomycotina PB 3411, W. Remy 
collection, 
Forschungsstelle für 
Paläobotanik, 
Westfälische Wilhelms-
Universität, Münster 

Taylor et al. 
(1999); Taylor et 
al. (2005) 

Devonian 
Rhynie Chert  
410 Ma 

Richardson 
(1967) ; Rice et 
al. (1995) 

Metacapnodiaceae* Capnodiales IGR.ARC-115.3b, Amber 
collection of Géosciences 
Rennes at the University 
Rennes 1 

Schmidt et al. 
(2013) 

Charentes 
amber 
100 Ma 

Néraudeau et al. 
(2002); 
Perrichot et al. 
(2010) 

Paleocurvularia 
variabilis 
 

Dothideomycetes MB. Pb.2009/201, 
Museum für Naturkunde, 
Berlin 

Schmidt et al. 
(2010a); 
Schmidt et al. 
(2010b) 

Ethiopian 
amber 
95–93 Ma  

Schmidt et al. 
(2010b) 

Petropus 
brachiphylii* 

Venturiaceae, 
Venturiales 

NHMM RD 265, 
Natuurhistorisch Museum 
Maastricht, Netherlands 

van der Ham & 
Dortangs (2005) 

Limburg Chert, 
Netherlands 
66,5 Ma 

Jagt et al. 
(1999) 

Anzia electra* Anzia, 
Parmeliaceae, 
Lecanorales 

Oschin 5/0, collection of 
M. Oschin, Los Angeles 

Rikkinen & Poinar  
(2002) 

Baltic amber/ 
55 – 35 Ma 

Standke (2008) 

Aspergillus 
collembolorum* 

Aspergillus, 
Trichocomaceae, 
Eurotiales 

no. 805, private collection 
of C &W Hoffeins, 
Hamburg 

Dörfelt & Schmidt 
(2005) 

Baltic amber/ 
55-35 Ma 

Standke (2008) 

Calicium sp.* Calicium, 
Caliciaceae, 
Lecanorales  

GZG.BST.27296, 
Geoscientific Collections 
of the Georg August 
University, Göttingen 
(formerly Arnold 
collection 1294)  

Rikkinen (2003) Baltic amber/ 
55 – 35 Ma 

Standke (2008) 

Chaenotheca sp.* Chaenotheca, 
Coniocybaceae  

GZG.BST.27297, 
Geoscientific Collections 
of the Georg August 
University, Göttingen 
(formerly Arnold 
collection 1285 ) 

Rikkinen (2003) Baltic amber/ 
55–35 Ma 

Standke (2008) 

Chaenothecopsis sp. 
 

Chaenothecopsis, 
Mycocaliciaceae, 
Mycocaliciales 

GZG.BST.27286,  
Geoscientific Collections 
of the Georg August 
University, Göttingen 

Tuovila et al. 
(2012) 

Baltic amber 
55–35 Ma  

Standke (2008) 

Gonatobotryum 
piceae  
 

Pezizomycotina no. F129/BB/F/CJW, 
collection of J Wunderlich, 
Germany) 

Dörfelt & Schmidt 
(2007) 

Baltic amber  
55–35 Ma 

Standke (2008) 

Stigmatomyces 
succini 

Stigmatomycets, 
Laboulbeniaceae, 
Laboulbeniales 

Zoologische 
Staatssammlung München 

Rossi et al. (2005) Bitterfeld 
amber 
22 Ma 

Blumenstengel 
et al. (1999); 
Dunlop (2010) 

Parmelia  ambra (a) 
Parmelia 
isidiiveteris (b) 

Parmelia, 
Parmeliaceae, 
Lecanorales 

AF9-17E (a) and AF9-17B 
(b), amber collection of 
G.O. Poinar, Oregon State 
University 

Rikkinen & Poinar 
(2000) 

Dominican 
amber  
17 Ma 

Iturralde-Vinent 
& 
Mac Phee 
(1996); 
Iturralde-
Vinent, 2001 

Phyllopsora 
dominicanus 

Phyllopsora, 
Ramaliaceae, 
Lecanorales 

Poinar B 1–23, amber 
collection of G.O. Poinar, 
Oregon State University 

Rikkinen & Poinar 
(2008) 

Dominican 
amber  
17 Ma 

Iturralde-Vinent 
& 
Mac Phee 
(1996); 
Iturralde-Vinent 
(2001) 
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Fig. 1. Fossil ascomycetes from amber and chert representing the oldest known ancestors of respective 

lineages. (a) Perithecia of Paleopyrenomycites devonicus from Lower Devonian (Pragian) Rhynie Chert. 

W. Remy collection PB 3411. Courtesy of Hans Kerp (University of Münster. (b) Moniliform hyphae of 

a Metacapnodiaceae representative from Lower Cretaceous (Albian) Charentes amber. IGR.ARC-115.3b. 

(c) Conidia of Palaeocurvularia variabilis from Upper Cretaceous (Cenomanian) Ethiopian amber. MB. 

Pb. 2009/200. (d) Hypostroma of Petropus brachyphylli from Maastrichtian chert from the Netherlands. 

NHMM RD 265. Courtesy of Raymond W. J. M. van der Ham (Naturalis Biodiversity Center, Leiden). 

(e) Anzia electra from Eocene Baltic amber. Hoffeins 950-1. (Continues below) 
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Continuation Fig. 1.  (f) Sporulating conidiophore of Aspergillus collembolorum on a springtail from 

Eocene Baltic amber. Hoffeins 805. (g) Ascoma of Calicium sp. from Eocene Baltic amber. 

GZG.BST.27296. (h) Ascoma of Chaenotheca sp. on remnant bark in Eocene Baltic amber. 

GZG.BST.27297. (i) Ascoma of a resinicolous Chaenothecopsis sp. from Eocene Baltic amber. 

GZG.BST.27286. (j) Sporulating conidiophore of Gonatobotryum piceae on a conifer seedling from 

Eocene Baltic amber. Wunderlich F129. (k) Three thalli of Stigmatomyces succini on a dipteran from 

Oligocene Bitterfeld amber. Zoologische Staatssammlung München, sine numero. (l) Parmelia ambra 

from Miocene Dominican amber. Poinar AF9-17E. Courtesy of George O. Poinar, Jr. (Corvallis). (m) 

Phyllopsora dominicanus from Miocene Dominican amber. Poinar B 1-23. Scale bars: 10 µm (b–d, f, and 

j), 100 µm (a, g–i, k, and m), and 1 mm (e and l). 

 

2.2 Taxon sampling for phylogenetic reconstruction and molecular  

      work 
 

For this study we used the small and large ribosomal subunit (SSU and LSU 

respectively) and RNA polymerase II protein coding genes RPB1 and RPB2 as 

implemented in a previous study by James et al. (2006). Sequences were obtained from 

cultured strains ordered from the CBS (Centraalbureau voor Schimmelcultures, Utrecht) 

and JMRC (Jena Microbial Resource Collection) and from Genbank. Additional fungi 

were collected from localities in Finland (2009) and New Caledonia (2011). The 

resulting taxon set consists of 145 species representing all the main groups of the 

Ascomycota. Accession numbers of all sequences are provided in Table S1 (see 

Beimforde et al. (submitted) [6]). For protein coding and ribosomal genes, we isolated 

DNA from fungal material using the Invisorb Spin Plant Mini Kit (Invitek, Berlin, 

Germany) and NucleoSpin©Plant DNA extraction kit (Macherey-Nagel) with the 

following modification to the manufacturer’s protocol: some specimens were incubated 

up to 2h to ensure the lysis of the ascocarps. PCR reactions were carried out with fungal 

specific primers: SSU ribosomal genes were amplified with the primers NS1, NS2, 

NS3, NS4 (White et al., 1990) and NS24 (Gargas and Taylor, 1992); LSU ribosomal 

genes were amplified with LR0 (Rehner and Samuels, 1994), LR3R (Mioncalvo et al., 

2000) LR5 and LR7 (Vilgalys and Hester, 1990). Genes coding for the RNA 

polymerase II were amplified with the primers RPB1-AFasc, RPB1-6R2asc, RPB1-

DF2asc, RPB1-GlRasc and RPB1G2R (Hofstetter et al., 2007) for the largest subunit 

and fRPB2-5f, FRPB2-7cf, fRPB2-7cR, fRPB2-11aR and RPB2-11bR (Liu et al., 1999) 

for the second largest subunit. PCR reactions were performed according to the protocols 

listed in respective reference for mentioned primers. In case of melanin inhibiting the 

PCR, the DNA-templates were diluted up to 5000 fold sometimes with the addition of 

200 ng/µl bovine serum albumin (BSA) (Kreader, 1996). PCR products were purified 

using PCRapace (Invitek, Berlin, Germany). All PCR products were sequenced in both 

directions with a MegaBACE 1000 automated sequencing machine and DYEnamic ET 
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Primer DNA Sequencing Reagent (Amersham Biosciences, Little Chalfont, UK). All 

sequences were assembled and edited using Bioedit 5.0.9 (Hall, 1999) and Seaview 4 

(Gouy et al., 2010). 

 

2.3 Initial phylogenetic Analysis 
 

Datasets for each gene (SSU, LSU, RPB1 and RPB2) were aligned separately using 

MAFFT version 6 (Katoh and Toh, 2008) with subsequent manual adjustment to 

minimize the number of possible false homologies using Bioedit 5.0.9. (Hall, 1999) and 

Seaview 4 (Gouy et al., 2010). Unalignable regions and introns were excluded by using 

the mask function in Bioedit 5.0.9. Best fitting substitution model for each gene were 

chosen separately from seven substitution schemes included in the software package 

jModeltest 2.1.1 (Darriba et al., 2012, 2008), and models were chosen according to the 

Bayesian information criterion (BIC, Schwartz, 1939). The Bayesian information 

criterion (BIC, Schwartz, 1978) supported the TrN+G model as the best fit for LSU, the 

SYM+G for SSU, and GTR+G for RPB1 and RPB2. Topological congruence of the 

four datasets was assessed by visual comparison of phylogenetic trees obtained from 

maximum likelihood-based analysis with RaxML (Stamatakis et al., 2008), and all 

genes were subsequently combined in a super matrix using Bioedit 5.0.9. Bayesian 

analyses were carried out using Markov chain Monte Carlo (MCMC) in MrBayes 3.1.2 

(Ronquist and Huelsenbeck, 2003) to generate a reasonable starting tree for subsequent 

analyses of divergence date estimates in BEAST. Analyses were run using four chains 

for 10 million generations each, sampling parameters every 1,000th generation. All 

analyses were performed on the freely available computational resource CIPRES 

(www.cipres.org). Average standard deviations of split frequency (ASDSF) lower than 

0.01 were interpreted as indicative of independent MCMC convergence.  

 

2.4 Fossil calibrations 
 

The placement of the fossil Paleopyrenomycetes (Fig. 1a) is challenging since its exact 

systematic position is not clear (Taylor et al., 2005; Lücking et al., 2009; Taylor and 

Berbee, 2006). The previously discussed possibilities for its placement include 

anywhere in the Pezizomycotina stem lineage, Pezizomycotina crown group, or 

members of the Pezizomycotina building operculate asci (Lücking et al., 2009). For our 

evolutionary model we adopted a conservative view and placed Paleopyrenomycites on 

the crown group of Pezizomycetes, thus assuming the common ancestor of all 

filamentous, sporocarp-producing Ascomycota (Pezizomycotina) to be at least 400 Ma. 

We decided to model the uncertainty of the group by applying a truncated normal 
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distribution with an upper hard bound (truncation) set to 400 Ma, corresponding to the 

mean of the normal distribution with a standard deviation (SD) of 150, providing an 

upper 97.5% credibility interval (CI) of 700 Ma. This mode of calibration associates an 

increased uncertainty with the immediate upper bound, allowing a more generous 

interpretation of the age of a group compared to that of an exponential decay. Based on 

the fossil Petropus brachiphylii (Fig. 1d; van der Ham and Dortangs, 2005) we 

constrain the common ancestor of Venturiaceae to a hard upper bound of 66.5 Ma, 

modeling the uncertainty with a truncated normal distribution (mean = 66.5, SD = 50, 

CI = 166.5 Ma). The fossil Anzia electra (Fig. 1e; Rikkinen and Poinar 2002) was used 

to calibrate the split between Anzia and other groups of parmeloid lichens here 

presented by Canoparmelia constraining the node to 35 Ma with a truncated normal 

distribution to model the uncertainty (mean = 35, SD = 50, CI = 135). Based on the 

fossil Calicium (Fig. 1g; Rikkinen et al., 2003) we constrain the common ancestor of 

Calicium viride and C. salicium, which are both morphologically indistinguishable from 

the fossil to 35 Ma (truncated normal distribution, mean = 35, SD = 50, CI = 135). 

Using the fossil Aspergillus collembolorum (Fig. 1f; Dörfelt and Schmidt, 2005) we 

constrain the common ancestor of Aspergillus to 35 Ma (truncated normal distribution, 

mean = 35, SD = 50, CI = 135). The fossil Metacapnodiaceae (Fig 1b; Schmidt et al., in 

review) gave rise to the hypothesis of the common ancestor of the order Capnodiales to 

be constrained to an age of 100 Ma (truncated normal distribution, mean = 100, SD = 

150, CI = 400). All analyses of divergence time estimates using the above set of 

constraints were first run on empty alignments to check for cross prior influence, while 

constraining all calibrated nodes to monophyly. 

 

2.5 Divergence time estimates 
 

Subsequent divergence time analyses were carried out using BEAST 1.7.4 (Drummond 

et al., 2012). Separate partitions for each included gene were created with BEAUti 1.7.4 

(BEAST package). To accommodate for rate heterogeneity across the branches of the 

tree (e. g. Berbee and Taylor, 2010) we used an uncorrelated relaxed clock model 

(Drummond et al., 2006) with a lognormal distribution of rates for each gene estimated 

during the analyses. A birth/death tree prior accommodating for incomplete sampling 

(Stadler, 2009) was used to model the speciation of nodes in the topology, with uniform 

priors on probability of splits and extinctions. To avoid using uninformative priors on 

the clock models we used vague priors on the substitution rates for each gene 

(exponential decays with mean 0.1 in units of substitutions per site per time unit). To 

ensure congruence we ran the analyses five times for 100 million generations each, 

sampling parameters every 25,000 generations, assessing convergence and sufficient 

chain mixing (Effective sample sizes >200) using Tracer 1.5 (Rambaut and Drummond, 

 
 

175



Appendix 6 
 

2009). After removal of a proportion of each run as burn-in the remaining trees were 

combined using LogCombiner (part of the BEAST-package), and summarized as 

maximum clade credibility (MCC) trees in TreeAnnotator (part of the BEAST-

package), and visualized using FigTree (Rambaut, 2006 – 9, http://tree.bio.ed.ac.uk/ 

software/figtree/). 

 

3. Results 
 

3.1 Topology and divergence times of the Ascomycota phylogeny 
 

The topologies resulting from the BEAST analyses (Fig. 2 and Fig. S1) are generally 

congruent with the results reported by James et al. (2006). Except of the placement of 

Pezizomycetes basal to Orbiliomycetes, which is opposite, in some recent papers 

(Ebersberger et al., 2012) or at least discussed (Kumar et al., 2012). The only difference 

between our two inferred topologies (Fig. 2 and supplementary Fig.1) is the placement 

of Eurotiomycetes, which groups in the single-constrained tree as a sister clade to 

Mycocaliciaceae with 0.99 posterior probability (pp), but in the multi-constraint tree 

groups as sister to a clade consisting of Arthoniomycetes and Dothideomycetes (0.95 

pp). Pezizomycetes constitutes the first order sister clade to remaining representatives of 

Pezizomycotina with strong support (1.0 pp). The next order of sister groups are the 

Orbiliomycetes, but in a position only indicated by the node support (0.91 vs. 0.8 pp). A 

second order sister group consists of the Arthoniomycetes-Dothiomycetes-clade, which 

in the single-constraint analysis receives unanimous support (1.0 pp), but in the multi-

constraint analysis groups together with the ambiguous Eurotiomycetes with strong 

support (0.95 pp). The remaining representatives of the Pezizomycotina split in two 

well-supported clades (1.0 vs. 0.91 pp). The first consists of the Coniocybaceae together 

with Lichinomycetes (1.0 vs. 0.99 pp), with the Geoglossomycetes as sister group (0.99 

vs. 0.98 pp). As sister group to the Geoglossomycetes–Coniocybaceae–Lichinomycetes 

clade, is the Mycocaliciaceae–Lecanoromycetes-alliance, which in the single-

constrained analysis also consists of Eurotiomycetes, then with unanimous support (1.0 

pp). This position is also congruent with previous studies (e.g. Schoch et al., 2009). The 

second clade consists of the Leotiomycetes and Sordariomycetes grouping together with 

unanimous support (1.0 pp). Also, the genus Leotia, believed to be the most basal 

member of the Leotiomycetes, here group together with the sister clade of 

Soradariomycetes with unanimous support (1.0 pp). 
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Fig. 2. Maximum clade credibility (MCC) tree with divergence time estimates for main groups of the 

Ascomycota obtained from a Bayesian approach (BEAST) using six fossil minimum age constraints. 

Numbers at nodes indicate posterior probabilities (pp) for node support. Bars correspond to the 95% 

highest posterior density (HPD) intervals. For estimated median ages of numbered nodes, see Table 3. 

Assignments in the tree of the fossil minimum age constraints are marked with red circles. Geological 

periods are abbreviated as: Cam. = Cambrian, Ord. = Ordovician, Sil. = Silurian, Dev. = Devonian, Carb. 

= Carboniferous, Perm. = Permian, Jur. = Jurassic. 

 

3.2 Divergence time estimations using six internal calibrations 
 

Divergence time estimates using all six fossil calibration points are also shown in Fig. 2, 

with horizontal blue representing the 95% highest posterior density (HPD) intervals for 

each node. Comparable results from both analyses (Fig. 2 and Fig. S1) are listened in 

Table 3. According to our analyses, the Ascomycota diverged from Basidiomycota in 

the Neoproterozoic, about 722 Ma (525–987 Ma, 95% HPD interval). The subphylum 

Pezizomycotina, containing all fruiting body forming members of the Ascomycota split 

from Saccharomycotina around 600 Ma (458–787). The earliest split in the 

Pezizomycotina (Pezizomycetes from the rest of the Pezizomycotina) occurred in the 

Cambrian, around 511 Ma (400–655). Within the Pezizomycotina, the Orbiliomycetes 

diverged 485 Ma (378–632), at the beginning of the lower Ordovician. The 

Sordariomycetes diverged from the lineage of Leotia lubrica by the early 

Carboniferous, around 346 Ma (261–455). Eurotiomycetes and 

Dothideomycetes+Arthoniomycetes diverged in the Upper Ordovician, around 447 Ma 

(344–580). The earliest split in the Eurotiomycetes (Eurotimycetes crown group) 

occurred in the Devonian, around 385 Ma (290–510), and in the Dothideomycetes 

around 395 Ma (301–522). Lecanoromycetes diverged from other Pezizomycotina 

classes 302 Ma (218–417).  Mycocaliciales have arisen in the Carboniferous 346 Ma 

(244–483) and the Lichinomycetes in the Permian, 261 Ma (165–375). The family 

Coniocybaceae diverged from Lichinomycetes approximately 260 Ma (165–375).  

 

4. Discussion 
 

4.1. Systematic assignment of fossil fungi 
 

A crucial issue in molecular dating studies is the interpretation of morphological 

characters used to assign fossils to particular nodes in the phylogenies (Rutschmann et 

al., 2007; Marshall, 2008; Forest, 2009; Praham et al., 2012; Pyron, 2010; Dornberg et 

al., 2010; Feldberg et al., 2013). The use of morphological data to reconstruct the 

evolution of lineages through time can be limited due to homoplasy. Ascomycetes show 
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many cases of parallel evolution in both vegetative and reproductive structures (e.g. 

Lumbsch, 2000; Schoch et al., 2009). In this study we have only used fossils which we 

believe to represent extant families or genera (with the exception of Paleopyrenomycites 

which was assigned to Pezizomycotina). However, some level of uncertainty will 

always remain when working with fossil material. Besides Paleopyrenomycites 

devonicus we ended up using fossils assigned to five extant groups of Ascomycetes 

(Metacapnodiaceae, Anzia electra, Aspergillus collembolum, Calicium and Petropus 

brachiphylii; Table 1, Fig. 1) which provided minimum ages for the split of the lineage 

from its sister group. The remaining seven fossils (Fig. 1; Table 1) did not provide 

suitable minimum age constraints. This was mainly due to insufficient taxon sampling 

of our molecular data. While we could not use all of the twelve available fossils in our 

study, all of them are  potentially of value for further studies in fungi with denser taxon 

samplings, or focus on the evolution of individual groups of ascomycetes. 
 

Table 2. Divergence time estimates of Ascomycota lineages obtained from Bayesian analysis using either 

Paleopyrenomycites as single calibration or together with 5 additional calibrations from amber and chert 

(Metacapnodiaceae, Anzia electra, Aspergillus collembolum, Calicium and Petropus brachiphylii; Table 

1, Fig. 1). For each divergence, the median and the 95% Highest Posterior Density are provided. 

Divergence times are provided in millions of years (Ma). The node numbers correspond to numbers used 

in Fig. 2 to show their placement in the chronogram. Asteriks (*) indicate that the Mycocaliciales are 

included. 
 

One calibration Six calibrations Nodes 

Geological 
Period 

Time 
(Ma) 

Geological 
Period 

Time  
(Ma) 

1 Ascomycota crown group - - Proterozoic 653 (496-864) 
2 Pezizomycotina-

Saccharomycotina 
- - Proterozoic 600 (458-786) 

3 Candida-Saccharomyces - - Triassic 238 (148-345) 
4 Pezizomycotina crown group Ordovician 444 (400-576) Cambrian 511 (400-655) 
5 Pezizomycetes crown group Devonian 408 (262-543) Ordivician 454 (306-629) 
6 Orbiliomycetes-other 

Pezizomycotina 
Devonian 407 (328-534) Ordovician 485 (378-632) 

7 
7* 

Eurotiomycetes crown group 
Eurotiomycetes crown group 
including Mycocaliciales 

Carbon. 282 (215-382) 
311 (240-420)* 

Devonian 
 

385 (290-510) 
 

8 Dothideomycetes crown group Carbon. 385 (263-450) Devonian 395 (301-522) 
9 Dothideomycetes-

Arthoniomycetes 
Carbon. 335 (263-450) Devonian 370 (286-493) 

10 Lichinomycetes-other 
Pezizomycotina 

Permian 246 (164-355) Permian 261 (165-375) 

11 
11* 

Lecanoromycetes crown group  
Lecanoromycetes crown group 
including Mycocaliciales 

Permian 260 (190-356) Permian 
 
Carbon. 

286 (208-397) 
 
302 (218-417)* 

12 Sordariomycetes-
Leotiomycetes 

Permian 287 (234-388) Carbon 346 (261-455) 

13 Sordariomycetes crown group Triassic 233 (182-316) Permian 281 (210-376) 

 

Gueidan et al. (2011) used Paleocurvularia (Fig. 1c; Schmidt et al., 2010a, b) to 

constrain the split between Arthoniomycetes and Dothideomycetes. However, the fossil 

is represented by numerous conidia and related conidiophores, which resemble those 

produced by modern species of Curvularia but also those of Bipolaris, Drechslaria, and 
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Exserohilum. Since fragments of the possible teleomorph are poorly preserved, and the 

fossil conidia are more variable than those of any of the modern genera, Schmidt et al. 

2010b and Gueidan et al. (2011) avoided an assignment of the fossil to any modern 

family. Currently, in order to avoid a false assignment, we had to exclude 

Paleocurvularia from our analyses.  

Gonatobotryum pieceae (Fig. 1j; Dörfelt and Schmidt, 2007) was also excluded, 

because of the ambiguous phylogenetic position of this genus (Arx, 1981). The 

morphologically similar fossil Gonatobotrys primigenia (Caspary and Klebs, 1907) 

likely represents a species of Gonatobotryum rather than Gonatobotrys. As the modern 

genus Melanospora (Ceratostomataceae, Sordariomycetes) is known as the teleomorph 

of Gonatobotrys (Vakili, 1989), this genus could potentially be used for calibration. A 

confident assignment of Gonatobotrys primigenia would require a re-investigation, 

however, this fossil which was part of the Künow collection of Berlin's Museum of 

Natural History is lost without any trace. Both fossils are well preserved and might 

serve as calibration constraints once their position within the ascomycetes has been 

clarified. 

Stigmatomyces succini (Fig. 1k; Rossi et al., 2005) was also not used in our study 

although the fossil is well dated and confidently assigned to the genus Stigmatomyces 

(Laboulbeniomycetes). Species of this ectoparasite class display distinct morphologies 

and their phylogenetic position has long been unclear, but Schoch et al. (2009) have 

recently proposed a sister relationship of Laboulbeniomycetes to Sordariomycetes. 

Primary analyses including sequences of the Laboulbeniomycetes indicated the 

introduction of substantially long branches in resulting phylogenies (data not shown), 

and was therefore excluded from further analyses to avoid introducing unnecessary bias 

into the branch length estimates. 

The fossils Parmelia ambra (Fig. 1l) and P. isidiiveteris (Poinar et al., 2000) cannot 

with confidence be assigned to particular genera within the foliose parmelioid lichens 

(“Parmelia sensu lato”). We were anyway unable to use Parmelia because it would 

imply a constraint on the divergence of Parmelia and Canoparmelia, or Anzia, to a 

minimum of ~17 Ma. As we had already used Anzia electra (55–35 Ma; Rikkinen and 

Poinar, 2002) to constrain the split of Anzia and Canoparmelia, an integration of the 

much younger fossil of parmelioid lichens would introduce redundancy. Similar reasons 

led to the exclusion of Phyllopsora dominicanus (Fig. 1m; Rikkinen & Poinar 2008) as 

an age constraint in our analysis. Our Phyllopsora sequences grouped together with 

Bacidia and constraining the divergence between these two genera to a minimum of  

only ~17 Ma would not have been realistic (Printzen & Lumbsch, 2000; Rikkinen & 

Poinar, 2008).  

The fossils Chaenotheca (Rikkinen, 2003), and Chaenothecopsis (Rikkinen and 

Poinar 2000; Touvila et al., 2013) were discarded from the analyses despite being of 
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good quality. Initial tests for cross-prior influence on the age estimates of nodes 

indicated that the introduction of these constraints resulted in several other constraints 

showing bimodal posterior distributions. Exact explanations of such phenomena can be 

difficult to achieve, but an explanation based on discordance between the fit of the tree 

prior and one or more node constraints is plausible. Removal of the mentioned fossils 

indicated substantial performance improvements across the tree, validating the decision 

for removal. These difficulties might be due to their uncertain phylogenetic positions. 

Several studies deal with the relationships and photobiont association of the genus 

Chaenotheca and family Coniocybaceae. However, the phylogenic position of 

Chaenotheca remains enigmatic. As the family could not be assigned to any group of 

ascomycetes so far and it is treated as incertae sedis (Lumbsch and Huhndorf 2010). In 

our phylogeny Chaenotheca grouped with Lichinomycetes with strong support (0.99 

pp). The Lichinomycetes (Reeb et al., 2004) are also lichen symbiotic and are currently 

thought to include two orders (Lichinales and Eremithallales). Species of Lichinales 

associate with cyanobacteria and Eremithallales with green algae of the Trentepohliales 

(Lücking et al., 2008). Also some species of Chaenotheca and all species of 

Sclerophora are known to associate with Trentepohlia (e.g. Tibell, 2001). Species of 

Eremithallales and many species of Coniocybaceae also tend to associate with 

photobionts that are submerged into the substrate.  

Recent phylogenetic studies have usually indicated that species of Chaenothecopsis 

and other fungi of the Mycocaliciales would be related to the Eurotiomycetes (Schoch et 

al., 2006; Hibbett et al., 2006). Geiser et al. (2006) established the subclass 

Mycocaliciomycetidae as sister group to Eurotiomycetidae and Chaetothyriomycetidae, 

but did not include this group into Eurotiomycetes because of the limited data used to 

infer its phylogenetic placement (only SSU and LSU data). However, this placement 

was later validated by Hibbett et al. (2007). Interestingly, our analyses confirmed a 

relationship with Eurotiomycetes when using only ribosomal genes (data not shown) but 

refuted it when also protein coding genes were used. The analysis based on both 

ribosomal and protein coding genes indicate a relationship of Mycocaliciales 

(Mycocaliciomycetidae) and Lecanoromycetes (Fig. 2). 

  

4.2 The impact of internal node constraints on estimated divergence 

      times of Pezizomycotina classes 
 

Some studies have evaluated the variation resulting from different calibration strategies 

in fungal phylogenies (Berbee and Taylor, 2006; Lücking et al., 2009; Padovan et al., 

2005), but none of them evaluated the impact of internal node constraints on models of 

fungi molecular evolution. Compared to the sole use of the Devonian 
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Paleopyrenomycites, the use of five calibrations from Mesozoic and Cenozoic 

Pezizomycotina crown group fossils (of Dothideomycetes, Eurotiomycetes and 

Lecanoromycetes) in addition to the Devonian fossil resulted in older age estimates 

(Table 2). Using multiple age constraints, the first split in the Pezizomycetes is 

estimated to have occurred in the Cambrian 511 Ma (400–655), rather than in the 

Ordovician 444 Ma (400–576). The divergence of Orbiliomycetes and Pezizomycetes 

occurred about 80 million years earlier when the additional constraints are considered. 

All other Pezizomycotina classes have diverged from the Orbiliomycetes close to the 

Ordovician-Silurian boundary 485 Ma (378–632), rather than in the late Devonian some 

407 (328–534) Ma. The unresolved relationships between Eurotiomycetes, 

Lecanoromycetes, Dothideomycetes and Lichinomycetes prevent a comparison of the 

divergence times of these Pezizomycotina classes, but allow a comparison of 

corresponding crown groups; these divergence estimates are significantly earlier when 

using additional age constraints (Table 2).  

Besides affecting the divergence times of early Ascomycota lineages, the integration 

of additional age constraints resulted in older age estimates of more recent ascomycete 

groups (terminal nodes). These effects are not only restricted to branches associated 

with fossil age constraints, although adjacent branches are slightly stronger affected, 

supporting the observations of Berbee and Taylor (2010).  

Our results show that the use of fossil age constraints (even if relatively young) in 

terminal groups of ascomycetes (genus and species level) significantly affect the 

estimated divergence times of both early branching nodes and terminal groups of 

Ascomycota lineages. This effect was also observed when using different BEAST 

parameters, e.g. unconstrained uniform probability distributions to model age 

uncertainties of groups associated with fossils (data not shown).  

 

4.3 Comparisons to previous studies 
 

Compared to earlier studies our data indicated either much younger (Bebree and Taylor, 

1993) or much older (Heckman et al., 2001), age estimates of Ascomycota lineages. Our 

results are generally more congruent with the estimates of recent studies (Padovan et al., 

2005; Berbee and Taylor; Lücking et al., 2009; Gueidan et al., 2011) (Table 3).  

One likely explanation is that molecular clock methods have improved by developing 

relaxed molecular clock models, which allow for more flexible modeling of rate 

heterogeneity across phylogenetic trees (e. g. Sanderson, 2003b; Drummond and 

Rambaut, 2006, 2012). Additionally, more well resolved fungal phylogenies have 

recently been established (e. g. Spatafora et al., 2006; Schoch et al., 2009, 

Miadlikowska et al., 2006; Hibbett et al., 2007; Eversberger et al., 2012; Kumar et al., 

2012, Morgenstern et al., 2012). Advances in both fields of research have enabled the 
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establishment of increasingly realistic models of evolution for fungi compared to earlier 

studies, resulting in different age estimates (e. g. Simon et al., 1993; Heckmann et al., 

2001). 
 

Table 3. Comparison of divergence time estimates from our analyses with previous studies (Berbee & 

Taylor 1993; Heckman et al. 2001; Douzery et al. 2004; Padovan et al. 2005; Lücking et al. 2009; Taylor 

& Berbee 2006) in millions of years (Ma) which also used Paleopyrenomycites as fossil age constraints. 

For divergence times, only the medians are listed. Node numbers correspond to numbers used in Fig. 2 

and supporting figure 1 to show their placement in the chronogram. triangle (Δ) marks the assignment of 

Paleopyrenomycites; psi (ѱ) indicates studies that also used external (non ascomycotan or non-fungal) 

calibrations; phi (Φ) recalibration study, omega (Ω) study used ascomycotan, non-ascomycotan and non-

fungal calibrations; asteriks (*) show the divergence time of Eurotiomycetes crown or Lecanoromycetes  

crown including Mycocaliciales. 

 

This study  Padovan et al. 
(2005)  

Berbee & Taylor (2006) 
 

Nodes 

1fossil  6fossils 

Heck-
man et 
al. 
(2001)ѱ 

Cali. 
1ѱ 

Cali. 
2ѱ 

Cali. 
  1 

Cali. 
2 

Cali. 
3ѱ 

Cali. 
4 

Lücking 
et al. 
(2009)Φ 

Gueidan 
et al. 
(2010) Ω 

 
 

Ascomycota crown 
group 

- 653 1144 1148 724 1316 745 652 400 Δ - 538 

Pezizomycotina-
Saccharomycotina 

- 600 1085 1072 657 - - - - 400-520 Δ - 

Candida-
Saccharomyces 

- 238 841 - - - - ~140 ~90 - 207 

Pezizomycotina 
crown group 

444  Δ 511 Δ - 972 569 707 400Δ 400 Δ 215 320-400 

Δ 
455 Δ 

Pezizomycetes 
crown group 

408 454 - ~900 ~500 - - - - - ~310 

Orbiliomycetes-
other 
Pezizomycotina 

407 485 - - - - - - - - (455) 

Eurotiomycetes 
crown group 

282 
311* 

385 - - - - - - - 270-350 341 

Dothideomycetes 
crown group 

321 395 - - - - -  - - 338 

Dothideomycetes-
Arthoniomycetes  

335 370 - - -  - - - - 362 

Lecanoromycetes 
crown group 

260 286 
302* 

- 816 453 - - - - 280-330 322 

Sordariomycetes-
Leotiomycetes 

287 347 - - - - - - - 290-280 ~340 

Sordariomycetes 
crown group 

233 281 400  Δ 653 Δ 400  Δ 400 Δ 226 211 122 - 229 

 

Despite these improvements in methodology and data sampling, age estimates are not 

fully consistent across recent studies. Such discrepancies are likely to have various 

reasons such as inability to properly model evolutionary rates, parameter settings for the 

applied relaxed clock models, unequal taxon sampling, and choice of genes under study. 

Such differences make it difficult to compare inferred age estimates of individual 

studies. Another possible source for inconsistent age estimates in earlier studies is the 

assignment of the fossil Paleopyrenomycites devonicus (Taylor et al., 1999, 2005). This 

fossil constitutes a highly influential constraint, and since it became available has been 

used in all studies of fungal molecular evolution (Table 3). In early studies the fossil 
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was interpreted as belonging to the Sordariomycetes (e.g., Heckmann et al., 2001). 

More recent studies used Paleopyrenomycites to calibrate the Pezizomycetes crown or 

stem group (Berbee and Taylot 2006; Lücking et al., 2009), the Ascomycota crown 

group (Berbee and Taylor, 2006), or even as constraint for the split between 

Leotiomyceta and Pezizomycotina (Gueidan et al., 2011) due to the putative operculate 

ascus. However, the apparent operculate opening might also be diagenetic phenomenon 

(Lücking et al., 2009). Lücking et al., (2009) provide a comprehensive discussion 

concerning the placement of this fossil while recalibrating several earlier studies 

(Berbee and Taylor, 1993; Simon et al., 1993; Dolittle et al., 1996; Wang et al., 1999; 

Redecker et al., 2000; Heckman et al., 2001; Hedges et al., 2004; Padovan et al., 2005) 

by reassessing the systematic placement of Paleopyrenomycites. However, Berbee and 

Taylor (2006) convincingly showed the placement of this fossil at different positions in 

the Ascomycota tree (Ascomycota crown group, Pezizomycotina crown group, 

Sordariomycetes crown group) to have a dramatic effect on estimated ages of fungal 

lineages. Therefore our age estimates are best comparable to other studies using 

Paleopyrenomycites as constraint for the Pezizomycotina crown group (e.g., Berbee and 

Taylor et al., 2006; Lücking et al., 2009). Our resulting age estimates from the 

calibrations using Paleopyrenomycites as sole constraint are overall consistent with the 

ages inferred by Lücking et al. (2009; Table 4) and those of Taylor et al. (2006; calib. 2 

and calib. 3 in Table 3).  

Divergence times estimates obtained from the analysis that employed six internal 

calibration points correspond closely to those of Gueidan et al. (2011). They used 

Paleopyrenomycetes to calibrate the Pezizomycetes-Leotiomyceta split (which 

corresponds to the Pezizomycotina crown group with the exception of Orbiliomycetes) 

and Anzia electra for calibrating the split between Anzia and Canoparmelia. 

Additionally, they also utilized the metacapnodiaceous fossil and Paleocurvularia for 

the split of Dothideomycetes and Arthoniomycetes, together with several non-

ascomycotan (Taylor et al., 1994, Redecker et al., 2000, Hibbett et al., 1995, 1997), and 

non-fungal (Crane et al., 1995; Douzery et al., 2004) calibration constraints. Compared 

to their studies, our data include more ascomycotan calibration points and no external 

constraints, which resulted in older ages for some of the ascomycete lineages. However, 

the general congruence of recent studies using comparable parameter settings indicates 

an increase in convergence of age estimates. Our results indicate that further inclusions 

of reliable fossil constraints are likely to lead to even more accurate estimated ages of 

individual lineages.  

 

 

 

 
 

184



Appendix 6 
 

4.3 Reconstruction of the evolutionary history of ascomycete lineages 
 

According to our results (Fig. 2), most Pezizomcotina classes originated in the 

Phanerozoic, while the main diversification began in the Cambrian with the divergence 

of Pezizomycetes (the earliest branching class of Pezizomycotina) from the remaining 

Pezizomycotina.  

It has been assumed that the marine (Spartafora et al., 1998) and fresh water 

ascomycetes (Vijaykrishna et al., 2006) evolved from ancestors that occupied terrestrial 

habitats. Around 530 marine fungal species are known, 424 of which occur in various 

orders of the Pezizomycotina (mostly members of Halosphaeriales, Spartafora et al., 

1998; Jones et al., 2009). Additionally, 511 freshwater fungi are known in three 

Pezizomycotina classes: Leotiomycetes, Dothideomycetes and Sordariomycetes 

(Shearer 2001; Cai et al., 2003). Because marine fungi occur in many distinct 

Ascomycota lineages a marine origin of the Pezizomycotina cannot be excluded (Jones 

et al., 2009), especially if they originated as early as our data suggests (Proterozoic). 

The majority of the Pezizomycetes are terrestrial and live saprotrophically in soil. 

They typically build apothecia with operculate asci and it has been proposed that all 

other ascomata forms and spore release mechanisms have evolved from this type of 

fruiting body with active spore release. According to our results the Pezizomycetes 

diverged from other Pezizomycotina during the Cambrian. Since microbial mats 

including fungi were already present in the Proterozoic and fungal hyphae are known 

from this period (Butterfield, 2005), a Proterozoic origin of the Ascomycota and a 

Cambrian origin of the last common ancestor of the Pezizomycetes is conceivable. Our 

results suggest that the major Pezizomycotina classes (comprising the super class 

Letiomyceta) subsequently diverged during the Devonian. This supports a 

coevolutionary scenario of major land plant lineages and major Pezizomycotina 

lineages in the early Paleozoic. During the Devonian, the main lineages of most 

vascular plants (except angiosperms) appeared, and the terrestrial vegetation changed 

from small plants in the Early Devonian to the progymnosperm forests of Late 

Devonian (Meyer-Berthaud et al., 2010). This entailed the development of soils and 

distinct root systems, which may have onset the formation of new ecological niches of 

ascomycetes. Parasitic Pezizomycotina species may have evolved in aquatic or 

terrestrial Devonian habitats, for example together with the first plants, algae or even 

arthropods that were already present.  

Our results also indicate an initial diversification of lichen-forming fungi 

(Lichinomycetes and Lecanoromycetes) in the early Carboniferous, which proceeded 

continuously, apparently unaffected by mass extinction events and major global climatic 

changes. This scenario correlates with the global development of forest ecosystems 

since the Carboniferous. Beyond this it is difficult to relate the development of distinct 
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Pezizomycotina classes to the evolution of other organisms (plants and/or animals) 

since almost all classes (with the except for Orbiliomycetes and Laboulbeniomycetes), 

comprises a broad range of different life forms such as parasitic, lichen-forming and 

other symbiotic and saprophytic forms.  

According to our results, the origins of many Lecanoromycetes genera reach back to 

the mid-Jurassic. Biatora, for instance, seems to represent an old lineage, which 

diverged from Bacidia and Phyllopsora some 173 million years ago (Fig. 2). The latter 

two genera are closely related and share similar habitat preferences, but are strictly 

allopatric, with Phyllopsora being restricted to tropical habitats and Biatora to 

temperate and cool regions of the Northern Hemisphere. Our results largely correlate 

with an assumed divergence of these genera about 140–170 Ma due to expansion of the 

Tethys Ocean separating Laurasia from Gondwana (Printzen and Lumbsch, 2000).  

If we follow extant fungal lineages from the present and backwards in time we 

inevitably arrive at the question of how old genera could be. According to our data, 

most genera originated in the Mesozoic with some, like Leotia (Leotiomycetes) or 

Peltigera (Lecanoromycetes) extending back to the Triassic period. As the Ascomycota 

represents a vast group (~64,000 species), our data set represents only a fraction of all 

Ascomycota species and does not allow precise interpretations of the appearances of 

particular genera. Additionally, we must assume that the vast majority of Phanerozoic 

species are extinct and thus cannot be considered in molecular analyses. 

 

4.4 Conclusions and Outlook 
 

Amber and cherts have the potential to preserve delicate structures with extraordinary 

quality. In this way fossil inclusions can sometimes be determined to genus level, 

allowing the precise assignment of the fossils to recent phylogenies. In this study we 

used fossil species from amber and chert that are assignable to six extant genera in three 

Pezizomycotina classes in order to constrain a molecular clock for a multi-gene 

Ascomycota phylogeny. This is the first study to evaluate the impact of internal node 

constraints on models of molecular evolution for the Ascomycota. Comparisons of 

analyses performed using multiple-fossil calibration points versus analyses using only a 

sole minimum age constraint (Paleopyrenomycites) show that the use of fossil age 

constraints (even if relatively young) in terminal groups of three Pezizomycotina classes 

(at the genus level) significantly affect the estimated divergence times of basal nodes 

and nodes of terminal groups of all Ascomycota lineages. Our estimated divergence 

times were exclusively based on internal age constrains (either one or six) but largely 

agrees with estimates in recent studies that employed external (non-ascomycotan and/or 

non-fungal) constraints (Berbee and Taylor 2006; Lücking et al., 2009; Gueindan et al., 

2010).  
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According to our results (Fig. 2) the diversification of the Pezizomycotina started in the 

Cambrian, proceeded continuously throughout the Phanerozoic, and was largely 

unaffected by mass extinction events. Lineages of extant ascomycetes typically possess 

a variety of different life forms in each lineage. Classes or even families of ascomycetes 

may comprise both, specialist and generalist species. We suggest that the diverse 

ecological strategies present in ascomycete lineages allowed at least some members to 

survive major extinction events. Such a scenario has already been suggested to explain 

the phenomenon that many species but only a relatively low number of genera became 

extinct at the Cretaceous-Paleocene boundary (Upchurch et al., 2007). Furthermore, 

fungal spores are likely to survive unfavorable environmental conditions at times of 

extinction events.  

Unresolved relationships for some Pezizomycotina classes restricted comparisons of 

divergence times between classes belonging to the super class Leotiomyceta. Further 

phylogenetic studies, increased taxon sampling, and the integration of a more 

comprehensive fossil record will generate more reliable chronograms that will proof the 

hypotheses of a constant diversification of ascomycotan fungi during the Phanorozoic. 

An ongoing screening of newly discovered ambers and cherts (Schmidt et al., 2010a; 

2012) is accumulating determinable fossils of fungi (including lichens) which are likely 

to further improve models of molecular evolution for fungal phylogenies, especially for 

individual groups of fungi.   
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Supporting Information: Figure S1 

 
Fig. S1. Maximum clade credibility (MCC) tree obtained from a Bayesian approach (BEAST) using 

Paleopyrenomycites as minimum age constraint for Pezizomycotina crown group (indicated by a red 

circle). The chronogram pictures a part of the Ascomycota phylogeny showing divergence time estimates 

for Pezizomycotina in millions of years (Ma), with bars indicating the 95% highest posterior densities 

(HPD). Estimated ages for numbered nodes are available in Table 3. Numbers at nodes indicate posterior 

probabilities for node support (pp). Geological periods are abbreviated as: Cam. = Cambrian, Ord. = 

Ordovician, Carb. = Carboniferous, Perm. = Permian. 

[Figure also contains the abbreviations “Prot-Pal.”, “Pal-Mes”, and “Mes-Cen”, plus a few cartooned 

clades. See comments in PDF. Include explanations above, please]  
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