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Abstract 

Human-caused ove rgrazing and drought periods have led to the land degradation which 

might cause an eventual loss of biodiversity in rangeland ecosystems of Iran. Therefore, 

assessment of the current condition of rangelands and suggesting efficient strategies for 

conservation, rehabilitation, improvement, and consequently sustainable management of 

rangelands are essential. To reach the mentiond purposes, creating the environmental 

variable (e.g. topography, climate, and soil) maps, monitoring vegetation dynamics, and 

determining the relations between the vegetation and environmental variables are the firs 

steps.  

This research was conducted in rangelands of Poshtkouh area of the Yazd province in 

central Iran. The main aims were assessment of the current condition and suggesting 

efficient strategies for conservation, rehabilitation, improvement, and consequently 

sustainable management of the rangelands. In addition, evaluating the capability of remote 

sensing, GIS, geostatistics, and ecological modeling in rangeland assessment and 

improvement. 

In the first step, available data such as topography, geology, and vegetation type maps as 

well as satellite images were collected and then soil and vegetation samples were taken in 

the study area. As the first part of the data analyses, three geostatistical methods were 

applied for soil mapping and the satellite and environmental data were considered as 

ancillary data. In the next stage, the relationship between precipitation variation and 

vegetation dynamic was determined using NOAA AVHRR NDVI and climatic maps, as 

well as the effect of environmental factors on the strength of the relations between the 

precipitation and NDVI was determined. Then, vegetation cover percentage of the study 

area was created and the best time interval of the satellite images for vegetation studies 

was determined. In the last part of the data analyses, using the Maxent model, habitat 

distribution of A. sieberi and A. aucheri species were assessed and mapped. In addition, 

the most effective environmental variables on these habitats were determined.  

The results have shown that, taking the ancillary data (satellite images and environmental 

variables) into account in geostatistical estimations (cokriging and regression kriging 

methods) has increased the accuracy of the created maps.  

Selecting the suitable time interval of satellite images to study the vegetation during its 

growth period has prominent effect on the results. The best satellite data to study the 
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vegetation cover in the arid rangelands of the study area can be taken from the images 

recorded in the month May.  

NDVI derived from NOAA AVHRR satellite images is a prominent tool for monitoring 

the effect of precipitation variation on vegetation dynamic. The strength of the relationship 

between the precipitation and NDVI depends on species’ composition, and some 

environmental variables like soil available moisture.  

Successful modeling of A. sieberi and A. aucheri has proven that Maxent is a powerful 

model for species distributions mapping. Furtheremore, this model can efficiently find the 

environmental variables correlation with the geographic distribution of species. Moreover, 

the results of this research have demonstrated that using the soil data in addition to the 

climatic and topographic data can improve the predictive capability for habitat distribution 

mapping of plant species using the Maxent model. 

Finally, it can be concluded that remote sensing, GIS, geostatistics, and ecological 

modeling are the efficient tools for rangelands assessment and sustainable management. 

Furthoremore, as the overgrazing and climate change are the main threats of Iran’s 

rangelands, monitoring the relations of soil, topography, and climate with vegetation as 

well as the impact of climate change on rangelands represents basic information for 

finding the proper strategies of rangeland improvement. Moreover, implementing 

conservation plans together with planting the suitable endemic species based on the results 

of the ecological modeling would be of tremendous value in rangeland rehabilitation. 

 

Key words: 

Remote sensing, GIS, geostatistics, ecological modeling, rangeland assessment and 

improvement, environmental variables, soil mapping, precipitation-vegetation relations, 

habitat distribution. 
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Chapter 1. General introduction 

1.1. Overview 

Biodiversity patterns of Iranian rangelands have been significantly changed in recent 

decades, mainly due to the anthropogenic and climatic effects. Human-caused overgrazing 

and drought periods have led to the land degradation and desertification which might 

cause an eventual loss of biodiversity in rangeland ecosystems of Iran.  

Regarding the mentioned importance of rangeland conservation and rehabilitation in Iran, 

monitoring of these areas and suggesting some conservation and rehabilitation strategies 

were among the objectives of the present study.  

In this chapter the aims and research questions of the present study have been explained. 

Then the ecosystem of drylands and rangelands of Iran have been described briefly. In 

addition, based on the objectives and the required analyses that have been worked out in 

this study, some general information about remote sensing, geostatistics, and ecological 

modeling and their application in rangelands management, assessment and development 

have been introduced. 

 

1.2. Research Objectives 

1.2.1. General Objectives 

The general objectives of this research are:  

- To develop an assessment and improvement procedure for rangelands using 

environmental variables (e.g. soil parameters, climatic and topographic data) and their 

relations with vegetation. 

- To evaluate the simultaneous application of remote sensing, GIS, geostatistics and 

ecological niche modeling for rangeland assessment and improvement. 

- To suggest some plans for sustainable management, effective conservation, and 

rehabilitation of the degraded rangelands. 
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1.2.2. Specific Objectives 

In order to achieve the above mentioned general objectives of the research, the following 

specific objectives are proposed: 

- To map different soil parameters in rangelands using geostatistics, remote sensing, and 

environmental variables. Moreover, to compare the accuracy of different geostatistical 

approaches for soil properties mapping in rangelands and determine the benefits of using 

secondary data in geostatistical predictions. 

- To map the vegetation cover percentage in rangelands using remote sensing and find the 

best annual time intervals of satellite images for vegetation studies and vegetation cover 

percentage mapping. 

- To find the relation between precipitation variation and vegetation dynamics using 

remote sensing and GIS. Furthermore, evaluating the effect of some environmental 

variables on precipitation-vegetation relations. 

- To model and map the habitat distribution of Artemisia sieberi (A. sieberi) and Artemisia 

aucheri (A. aucheri) as the two endemic and vital species of Iran’s rangelands using 

Maxent model and find the differences between A. sieberi and A. aucheri habitats (more 

information about the importance of these species has been represented in sections 1.10 & 

6.1). 

 - To determine the most important environmental variables affecting the distribution of 

both mentioned species in relation to rangeland quality. 

 

1.3. Research Questions 

The research has tried to answer the following questions in the framework of future 

rangeland assessment, improvement, and suitable management: 

- What is the current condition of the rangelands of the study area? 
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-Which strategies could be useful for sustainable management and improvement of the 

rangelands? 

- What is the efficiency of using satellite images and environmental factors as secondary 

data in geostatistical predictions of soil properties? 

- What is the strength of relations between the vegetation dynamic and the precipitation 

variation in arid and semi-arid rangelands? 

- What is the impact of environmental variables on NDVI-precipitation relations? 

- What is the best annual time interval of the satellite images for vegetation studies? 

- Which places in the study area are the potential habitats for the mentioned species? 

- Which environmental variables are the most effective for the habitat distribution of A. 

sieberi and A. aucheri? Are there significant differences between these species? 

- Are there significant associations of both A. sieberi and A. aucheri to common land cover 

classes (habitats)? 

 

1.4. Organization of dissertation 

This dissertation is designed into seven chapters as follows: 

In chapter 1, an overview of the research, objectives and aims, research questions, 

flowchart of the thesis, connection of the different chapters, and finally a general 

introduction about the different parts of the thesis are presented. 

Chapter 2 presents the detailed information about the study area. This chapter includes the 

description about the general location, topography, climate, geology, vegetation, and soil. 

Chapters 3 to 6 have been written in the structure of scientific manuscripts and have been 

either published or are in press in different international journals. Since the information 

about the study area has been very briefly addressed in these chapters, the detailed 

descriptions have been firstly represented in the chapter 2. 
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In chapter 3, three geostatistical methods for soil mapping have been compared. To create 

the soil properties maps of the study area, the satellite images and environmental variables 

such as topographic data, precipitation and soil data have been applied. Efficiency of using 

the remote sensing and environmental data as a secondary variable in the geostatistical 

predictions was tested. Finally, different soil parameter maps have been created for 

ecological modeling. Created soil-property maps have made the basis for further 

environmental evaluations in the chapters 5 and 6. 

Chapter 4 investigated the best annual time intervals of the satellite images for vegetation 

studies and vegetation cover percentage mapping. The created map is one of the required 

data for the next analyses in chapters 5 and 6. 

Chapter 5 evaluates the relationship between the precipitation variations and vegetation 

dynamics using the time series of satellite images in which the precipitation maps were 

evaluated. In addition, the impacts of some environmental variables in precipitation-

vegetation relations were assessed. 

Chapter 6 focuses on the ecological niche modeling. Maximum entropy (Maxent) model is 

employed to examine the effect of environmental variables on the habitat distribution of A. 

sieberi and A. aucheri as well as predicting, assessing, and mapping the habitats of these 

speciase. To reach these purposes, resulted maps of the previous chapters (e.g vegetation 

cover percentage and soil properties maps) with some extra information especially 

coordinate of the points that the mentioned species are exist will be the inputs of the 

maxent model. 

Finally, in chapter 7 the important points of the achieved results have been summarized 

and concluded. The strengths and weaknesses of different techniques such as remote 

sensing, GIS, geostatistics, and ecological modeling also have been discussed. In addition, 

some suggestions for the future studies are presented. 
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1.5. Flowchart of the dissertation and the connection of the different chapters 

As the main aims of this research were assessment of the Poshtkouh rangelands and 

suggesting some planning strategies for improvement, sustainable management, 

conservation and restoration of this area, preparing the environmental variable maps is a 

critical step before any ecological modeling analysis. The results of Maxent model would 

be a base for the mentioned decisions. Created habitat distribution map of this model 

represents the ecological suitability of the study area for planting the target species that 

could be useful for the future plans for improvement and development of the rangelands 

with similar ecological conditions.  

 

Species occurrence map 

Climatic data 

Climatic 
maps 

Soil & vegetation 
sampling 

Determining environmental 
variables affecting species 

habitat distribution 

Monitoring the relations between 
precipitation variation and 
vegetation dynamic (part 3) 

NOAA 
AVHRR NDVI 

Habitat distribution 
map 

Determining the 
degraded areas 

Suggesting efficient strategies for suitable rangelands assessment & improvement  

Height, slope & 
aspect maps 

Digital elevation model 

Geostatistics,  
GIS & 

 remote sensing 

Vegetation type map 

Geology 
map 

Maxent modeling 
using selected 

variables (part 4) 
 

Reducing the 
number of variables 

using statistical 
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Figure 1.1. Flowchart of the thesis (Framework for an assessment and improvement approach of rangelands 

using ground truth data, GIS, remote sensing, geostatistics, and ecological modeling. 
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The connection among different thesis chapters has been illustrated in figure 1.1 which 

also has been mentioned in section 1.4 (organization of dissertation). Soil properties maps 

resulted from chapter 3 have been used in chapter 5 to detect the effect of soil available 

moisture on the strength of relations between precipitation and NDVI. Moreover, these 

soil maps have been used as the inputs for the Maxent model (chapter 6). The vegetation 

cover percentage map created in chapter 4 has been used in chapters 5 and 6. Finally, 

some strategies for sustainable management and rehabilitation of the rangelands of the 

study area have been suggested based on the results of the chapters 5 and 6. 

 

1.6. Dryland ecosystems 

Drylands contain areas that receive less amount of rainfall than the potential                  

evapotranspiration. FAO has defined drylands as those areas with a length of growing 

period of 1-179 days (FAO, 2000). 

About 45 percent of the land surface is occupied by dry lands. Also around 30 percent of 

the world's total carbon in above and below ground biomass occurs in drylands (Mainguet, 

1999). In addition, they consist of grasslands, shrublands, savannas, xerophytic 

woodlands, and hot and cold deserts (Figure 1.2). Rangelands located in drylands provide 

forage for wildlife and domestic animals and support nearly 50 percent of the world's 

livestock. 

Drylands classification is based on the value of an aridity index. This index is calculated 

as the ratio of annual precipitation to annual potential evapotranspiration. According to 

this method dry lands are classified into hyper-arid (<0.05), arid (0.05-0.20), semi-arid 

(0.20-0.50), and dry sub-humid (0.50-0.65). Yearly rainfall patterns of drylands are 

characterized by a dry period which is different from 2 to 10 months in different regions 

(Propastin, 2006). 
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Figure 1.2. Distribution of drylands throughout the world (UNEP, 2000). 

 
One of the typical climatic features in dry lands is seasonal precipitation. In fact, the 

vegetation in drylands suffers from the water shortage while it can develop adaptations to 

cope with this phenomenon. Soil dryness and plant transpiration increase, result from the 

high evaporation of soils and the surrounding atmosphere due to the high temperatures and 

high air dryness (Propastin, 2006). 

Moreover, the climate and soil characteristics greatly affect the composition and 

distribution of plants in drylands. Due to the moisture deficit throughout the growing 

period of vegetation, drylands plant species show a high degree of adaptation to aridity. A 

large variety of grasses, shrubs, and forbs present in dry lands. Generally, in dry regions 

ecosystem, dynamics are affected by natural hazards such as drought and desiccation. 

Ecologists emphasize on high dependency of arid and semi-arid rangelands ecosystem 

dynamics on climatic perturbations (Vetter, 2005; Robinson et al., 2002).  

The high variability of climatic conditions in drylands resulted mostly from the high 

precipitation variations; the coefficient of variation of rainfall is between 25-40 %. 

Numerous studies in dry regions have demonstrated that long-term ecosystem behavior 

could be explained better by rainfall variation than by the mean values (Shepherd & 

Caughley, 1987; Ellis et al., 1993).  
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In the last two decades, environmental monitoring with the use of remote sensing has 

provided good facility for monitoring ecosystem variations and ecosystem changes, land 

degradation as well as their causal relationships. In fact, satellite data detect patterns of 

inter-annual and seasonal variations in land surface features that are resulted by climatic 

changes and human activities (Propastin, 2006). Basically, ecosystem variations affect by 

drought and desiccation (Lambin & Ehrlich, 1996), fluctuations in rainfall (Anymba et al., 

2001; Olsson et al, 2006), and temperature growth (Xiao & Moody, 2004). Many of the 

former researches about ecosystem dynamics in dry regions proved that monitoring of 

land degradation and desertification need to analyze climatic data and satellite images of a 

long period of time (Robinson et al., 2002; Propastin and Kappas 2008a,b). 

 

1.7. Importance of rangelands in Iran 

Over the past few decades rangelands have been defined in several ways. According to 

Heady (1975) rangelands are defined as “shrub lands, grasslands and open forests, where 

dry, saline or wet soils, steep topography and rocks preclude the growing of commercial 

farm and forest crops”. American society for range management has defined the 

rangelands as the “lands on which the native vegetation is predominantly grasses, grass 

like plants, forbs or shrubs suitable for grazing or browsing use which includes lands 

revegetated naturally or artificially to provide a forage cover that is managed like native 

vegetation” (McGuire, 1978).  

Several estimations have been done to estimate the total rangeland area in Iran. Based on 

recent studies, approximately 54.6% of the total land area and 65% of natural resources in 

Iran are occupied by rangelands (Badripour, et al. 2006). Rangelands are major terrestrial 

ecosystem in the country and have essential role in the economy of the country 

(Moghaddam, 2006). Rangelands provide medical plants, as well as herbs for animal 
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feeding and meat production. For many pastoralists, rangelands are the major or only 

source of income (Farahpour 2002).  

In Iran, in the semi-arid zones adjoining the desert, animal husbandry has been considered 

as the most productive use for rangelands (Farahpour, 2002; Moghaddam, 2006). 

Although rangelands have been degraded in the recent decades, important parts of fodder 

are still provided by rangelands. Rangelands with 10 million tons of annual dry matter 

production produce 31 percent of the country‘s meat and 11 percent of milk production in 

Iran (Farahpour, 2002). 

Population of livestock in Iran is about 124 million animal units. 83 million of the total 

livestock population depends entirely on the rangelands for seven months (Badripour et 

al., 2006). 

In arid and semi-arid areas, the rangelands plant-cover conserves the soil against erosion 

caused by flooding, and wind (Moghaddam, 2006). Furthermore, Iranian rangelands are 

important in terms of bio-diversity and rare species including Stipa barbata, Artemisia 

sieberi, Poa bulbosa, Carex stenophylla and Noea macronat (Moghaddam, 2006). In 

addition, rangelands’ vegetation serves as a carbon sink. 

Due to untimely grazing (late grazing and early grazing), overgrazing, overstocking, and 

climate change, the rangelands of Iran have been degraded in recent decades (Eskandari & 

Chavoshi 2002; Hedjazi 2007; Badripour et al. 2006). 

 
1.8. Investigation of vegetation changes based on remote sensing  

Spatial distribution of environmental variables especially precipitation strongly affects 

distribution of vegetation cover. In arid regions, the climatic factors variations depend 

meaningfully on the topographic characteristics. Hence, topography can be the most 

important predicting factor for the vegetation distribution and condition in drylands where 
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lack of moisture exists during the most time of the year. It should be considered that the 

impact of the topography on vegetation is indirect; it acts through the climatic factors. 

Topography is also one of the factors affecting the soil variability. 

 Remotely sensed data frequently are used to map land surface cover for use in a variety of 

resource assessment, vegetation mapping, land management, and modeling applications 

(Jones & Vaughan, 2010; Booth, & Tueller, 2003; Hosseini et al., 2004).  Relationship of 

satellite images and ground-based data depends on the satellite imagery precision, time of 

recording, biological factors (growth forms, the amount of litter and phonological stages), 

and non-biological factors such as land form, slope, direction and height (Wang et al., 

2005; Wylie et al., 2002). 

Normalized Difference Vegetation Index (NDVI) derived from satellite images is an 

appropriate tool for vegetation cover monitoring from global to local scales. It can show 

seasonal and inter-annual changes in vegetation. This index has effectively been applied in 

several studies related to the vegetation assessment and desertification (Tucker et al., 

1999; Wessels et al., 2004; Symeonakis and Drake, 2004), drought monitoring (Kogan, 

1997; Song et al., 2004), and vegetation cover mapping (Booth & Tueller, 2003; Jafari et 

al., 2007; Wang et al., 2005). 

Several studies have reported temporal and spatial correlations between NDVI and 

climatic factors in different climatic conditions particularly in arid regions (Propastin & 

Kappas, 2008 a,b; Weiss et al, 2004; Tateishi & Ebata, 2004; Hively et al., 2009). Strong 

effect of precipitation on the inter-annual variability of vegetation activity especially in 

dry regions has been demonstrated in other research works (Wang et al, 2005; Li et al., 

2002).  

Many studies proved that the relationship of NDVI with precipitation and temperature 

depends on geographical and environmental condition specially vegetation type. In forest 
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and woodland areas, correlation of NDVI and precipitation is lower, while in shrubs and 

desert vegetation patterns is stronger. In steppe grassland and savanna the highest 

correlation has been reported (Li et al, 2002; Wang et al, 2005, Li et al, 2004). According 

to Nicholson & Farrar (1994), the effect of soil types on the NDVI-precipitation 

relationships is significant.  

 

1.9. Soil properties mapping in rangeland areas using geostatistics and remote 

sensing 

One of the most important issues in natural ecosystems sustainable management especially 

for rangelands is soil quality. Therefore, soil mapping is a very essential step in landscape 

ecology, and rangelands rehabilitation (Burke, 2001; Etema, & Wardle, 2002; Kavianpoor 

et al., 2012; Zhang & McGrath, 2004).  

In rangeland areas, spatial and temporal variability of soil properties affect by physical and 

biological factors such as topography, vegetation cover, soil microclimate, grazing 

systems and management method (Chaneton & Avado, 1996; Rogerio et al., 2006; Zhao et 

al., 2007). Hence, detecting the temporal and spatial changes in the soil characteristics is 

necessary in rangeland management and rehabilitation (Chaneton and Avado, 1996). 

Vegetation distribution patterns and diversity depend on different environmental variables 

especially soil properties such as soil moisture, texture, depth, salinity, organic matter, etc. 

(Noy-Mire, 1973; Burke, 2001). 

Numerous studies have proved the relation between soil and vegetation (Etema & Wardle, 

2002; Covelo et al., 2008; Zhao et al., 2007). Therefore, awareness about spatial and 

temporal variability of soil is in tremendous value for natural resources management and 

ecological modeling (Hangsheng et al., 2005; Wang et al., 2009).  
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Many studies have been done to determine the effect of soil properties and characteristics 

such as salinity (Sharma and Shankar, 1991; Abbadi and El Sheikh, 2002), pH, calcium 

and organic carbon (Abd El-Ghani et al., 2002) on plant species composition. Abd El-

Ghani et al., (2002) reported low species richness in an area with high level of salinity and 

CaCO3. Increasing soil depth, organic matter and water-holding capacity, as well as 

decreasing pH and CaCO3 amount of the soil have a positive effect on plant growth and 

species richness (Shaukat et al., 1981). 

Among different approaches that have been used for mapping soil parameters, 

geostatistics and remote sensing seem more efficient and cost-effective. Geostatistics 

analyzes the soil samples data that have spatial structure (Goovaerts, 1997). Basically, 

geostatistics is a confident, strong and powerful method that considers spatial variance, 

location and distribution of samples to determine spatial variability using mathematical 

and statistical functions (Sauer et al., 2006). Early principal of geostatistics is that the 

similarity between near samples decreases when the distance increases (Isaak & Srivastava 

1989; Goovaerts 1997).  

Creating an accurate soil map in a rangeland ecosystem due to the necessity for taking and 

analyzing a big number of samples is very challenging. Therefore, the application of cost-

effective and easily-measurable variables such as elevation and satellite images is 

suggested as secondary data for soil mapping in large areas (Eldeiry & Garcia, 2008), 

Several authors have pointed out that remote sensing data is a suitable tool for mapping 

soil properties with a reduced number of samples. To reach this goal, the existence of 

meaningful correlation between soil data collected from field and satellite images is 

necessary (Metternicht and Zink., 2003; Metternicht and Zink., 2009). 
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 1.10. Ecological niche modeling 

In recent decades, economic development, climate change and overgrazing have caused 

considerable pressure on rangeland ecosystems that has led to habitat fragmentation and 

eventual loss of biodiversity. Determining the status of species has specific importance for 

ecologists (Hecnar & M’closkey, 1996). Management of rangeland ecosystems is 

essentially based on a correct understanding of ecological concepts. Measuring ecological 

and environmental requirements of plant species to determine vegetation patterns, 

distribution, and richness is very essential towards this understanding. Rangeland 

ecologists aware that the environmental variables such as; the climate, soil, and 

topography, can affect the vegetation dynamics, composition, and geographical 

distribution, considerably. Modeling the distribution of the endemic species in its natural 

habitat could be useful for the conservation and rehabilitation of degraded rangeland areas.  

Prediction of the potential spatial distribution of a species or vegetation type would be 

possible by using ecological niche modeling. This kind of model analyses species 

occurrence data and environmental variables to predict suitable or unsuitable areas for 

survival of target species. This could be an adequate methodology to extrapolate the 

ecological habitats of species based on the collected data to a larger space in desert and 

mountainous area where the sampling in the whole area is not possible. 

Ecological niche models can be used as suitable tools for conservation planning, modeling 

habitat distribution of single plant species or vegetation types and determining 

environmental variables affecting habitat distribution of species (Bachman, 2011).  

To suggest the best method for ecosystem management and species conservation, 

ecologist should increasingly rely on predictive models to find information about species 

distributions (Ferrier, 2002; Loiselle et al., 2003). Inaccessible georeferenced data is a 

critical problem for ecological modelling. Therefore, in the first step, it is necessary to 
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identify where the species prefer to live and what they require to exist, i.e. their ecological 

niche (Hutchinson, 1957). 

Typically, for this mission, a list of present points that represent where the species have 

been observed and the locations where the species are surely absent is required. 

Additionally, information about the environmental variables such as elevation, slope, 

aspect, precipitation, temperature, soil parameters, vegetation type, geology, etc, which 

have been measured in the field or in laboratory is necessary. The purpose is to assess 

which areas have the requirements of the target species’ niche and therefore could be part 

of the species’ potential distribution (Anderson & Martínez-Meyer, 2004).  

The distribution map demonstrates where the environmental conditions are appropriate for 

existence of the target species, and has great importance for conservation. By excluding 

the areas where it has been recognized that the species is absent because of deforestation, 

desertification or other habitat destruction, the map could also be used to assess the 

species’ real distribution (Guisan, and Zimmermann, 2000). 

Generally, statistical models employ empirical data to assess the relationships between 

current species distributions and environmental variables. Incorporating these models into 

a geographic information system (GIS) could facilitate the mapping of potential 

distributions. All of the prediction models are either strictly mathematical or based on 

certain ecological theories (Elith et al., 2006; Graham & Hijmans, 2006). 

 Some examples of the mapping methods are; generalized linear models (Guisan et 

al.1998), regression trees (Moore et al., 1991; Iverson & Prasad, 1998), generalized 

additive models (Yee and Mitchell 1991), multivariate adaptive regression splines 

(Leathwick et al., 2005), GARP (Stockwell, 1999), Maxent (Phillips et al., 2006; Phillips 

& Dudik, 2008), BIOCLIM (Busby, 1986).  
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In the present study, the distributions of two sagebrush species (A. sieberi and A. aucheri) 

have been modeled. These species have been selected because both of them are endemic 

of Iran’s rangelands. A. aucheri occurs only in mountainous areas, while A. sieberi occurs 

in most parts of arid and semiarid rangelands of Iran and recognized as the main plant 

species of Iran’s rangelands. Furthoremore, both of the mentioned species are considered 

not only for the animal feeding due to the high grazing tolerance but also in nature 

conservation and degraded land restoration planning. Furthermore, multiple uses of these 

species especially as medicinal plant may also be taken into account (Moghaddam, 2006; 

Moghimi, 2006; Mozaffarian, 2010). 

The diversity in topography, climate, and soil in the study area can add more potential 

capability for more satisfactorily and validly mapping the distribution patterns. To reach 

this purpose, the maximum entropy (Maxent) model (Phillips et al., 2006) was used. Using 

this model, the environmental factors and geographical point locality data were integrated 

to assess the current distribution of two sagebrush species.  

 
1.11. Maximum entropy (Maxent) model 

Maxent is an approach for modeling habitat distribution of species using only the existing 

records of target species. Coordinates of occurrence points of species (where the species 

have been observed) should be used as georeferenced pair of latitude and longitude 

(Figure 1.3). 

Environmental variables of the study area (e.g. topography, climatic, and soil parameters) 

should be mapped as raster maps with latitude and longitude coordinate (other kinds of 

coordinate systems cannot be used in Maxent). 

Through finding the probability distribution of maximum entropy, the model analyzes the 

data and assesses the probability distribution of the target species. 
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There is a restriction for target probability distribution. Expected value of each 

environmental variable in the estimated probability must be same as its empirical average. 

Therefore, the target probability distribution could be reliable (Phillips et al., 2006). 

The resulted continuous map with the probability values ranging between 0 and 1 shows 

the suitability of each pixel for occurrence of the target species based on the 

environmental variables data (Phillips et al., 2006). The higher the probability value, the 

higher the suitability of adequate environmental conditions for the species at the pixel. 

(Phillips et al., 2006; Phillips & Dudik, 2008). It also has been proved that Maxent can 

analyze the low numbers of the recorded occurrence data powerfully (Elith et al. 2006; 

Phillips et al. 2006; Hernández et al. 2006).  

 

Figure 1.3. An illustration of a workflow for the Maxent model.  

 

Different applications of the Maxent approach are; modeling the distribution of the single 

species (Buermann et al., 2008), species richness (Guisan & Rahbek 2011), endemism 

Escalante et al. 2009), and the sensitivity of species to environmental change (Thuiller et 

al. 2005).  

In this study, Maxent was selected due to the following advantages (Phillips et al., 2006): 

- It needs presence-only data rather than presence/absence data. 

- The model can analyze both of the continuous and categorize environmental variable 

maps and combine interactions between different predictors. 
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- Outputs of the Maxent can show contribution of each predictor in the model. 

- Maxent is robust to size of samples as low as 10. 
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Chapter 2. Study area 

The diversity in environmental variables (e.g. topography, climate, vegetation, soil, 

geology, etc.) was the main reason for choosing Poshtkouh rangelands as the study area. 

Although, in each of the next chapters, the characteristics of the study area have been 

explained very briefly, detailed information in this regard has been presented in this 

chapter. 

 

2.1. General location: 

Poshtkouh rangelands are located in the south-west of Yazd province, in the central Iran 

with an area of 170000 ha. In the northern parts of the area, Shirkouh highlands are 

located and Kavir-e-Chahbeygi is in the southern parts. The coordinate of this area is: 

Latitude: 31° 04′27″to 31°33′11″N.  

Longitude: 53°40′06″to 54°15′ 19″E.  

A number of roads connect several villages (e.g. Kahdouieh, Nir, Banadkouk, Ernan, 

Mortazieh, Sakhvid, Dehshir, Garizat) and farmlands to each other. Figure 2.1 shows the 

general location of Poshtkouh ranglands. 

 

 

Figure 2.1. General location of the study area 
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2.2. Topography 

Topography (elevation, slope, and aspect) is an important factor which has a significant 

effect on the climatic factors. It has an influence on spatial patterns of vegetation. Among 

the topographic factors, elevation is the most influential on the ecosystem (Agren and 

Anderson, 2011, Odum, 1983). 

According to the Digital Elevation Model (DEM) and topographic maps, the maximum 

elevation of the study area is 3990m in Shirkouh Mountain and the minimum is 1400m in 

Kavir-e-Chahbeygi. Therefore, the elevation variation is 2590m. Figure 2.2 illustrates the 

hillshade map of the study area. 

 

 

Figure 2.2. Hillshade map of the study area 
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2.3. Climate 

One of the important factors influencing the rangeland soil and vegetation communities is 

the climatic condition (Odum, 1983; Barbour et al., 1987; Abd El-Wahab et al., 2008). In 

recent decades, climatic and other environmental factors are used to describe the 

vegetation distribution patterns in different studies (Brezeziecki et al., 1993; Brovkin       

et al., 1997; Thuiller et al, 2004; Varges et al, 2004). 

Based on the above introduction, to determine the climatic condition in the study area, 

climatic data of 9 stations were used. Some characteristics of the climatic stations have 

been summarized in Table 2.1. The relationship between precipitation and temperature 

with elevation were determined and the maps of climatic parameters were created.  

 

Table 2.1. Climatic stations in the study area 

  

 

 

 

 

 

 

 

 

 

2.3.1. Precipitation: 

Usually the amount of precipitation increases with the increase of altitude to a specific 

height named optimum elevation. The optimum elevation for Iran is estimated 3500 m 

Station Name X Y 
Height 

(m) 

Mean annual 

precipitation 

(mm) 

Mean annual 

temperature 

(ºC) 

Abarkouh 53°28′ 31°13′ 1506 39 19.1 

Dehshir 53°44′ 31°28′ 1900 100.2 16.3 

NasrAbad 53°52′ 31°47′ 2264 194.4 12.8 

Taft 54°14′ 31°49′ 1680 131 18.2 

Manshad 54°13′ 31°32′ 2250 323 13.3 

Mehriz 54°48′ 31°57′ 1520 66.7 19 

Nir 54°18′ 31°22′ 2470 268.9 11.1 

Tezerjan 54°11′ 31°26′ 2120 288.8 13.1 

Gariz 54°06′ 31°18′ 2420 121.1 15 
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(Mahdavi, 2011). In this study, based on the climatic station data (Table 2.1) and 

regression analysis, the relationship between the mean annual precipitation and elevation 

was calculated as following: 

Y = -0.0005X2 + 2.0155X - 1930.9                                                (2-1) 

According to the mean annual precipitation map of the study area (Figure 2.3), average 

annual precipitation varies from 298 mm in Shirkouh Mountains to 43 mm in margin of 

Kavir-e-Chahbeygi.  

 

 

Figure  2.3. Mean annual precipitation map 

 

2.3.2. Temperature: 

In present study, the relationship between temperature and elevation was approximated by 

the following equation:   

Y = -0.0069X + 29.408                                                  (2-2) 
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Temperature varies in different parts of the region (Figure 2.4). The southern parts have 

the maximum temperature (average annual: 18.2ºC), while the northern parts have the 

minimum temperature (average annual: 9.7 ºC).  

Climate type was determined based on the Domartin method. This method gives an 

empirical relationship between the mean annual temperature (T) and mean annual 

precipitation (P) to calculate drought index (I) as below (Mahdavi, 2011):  

I = P/(T+10)                                              (2-3) 

Table 2.2 summarizes climatic classification based on the Domartin method. 

 

Table 2.2. Climate classification in Domarten method 

Climate type Arid Semi-arid Mediterranean Semi-humid Humid Very wet  

Drought index 0-10 10-20 20-24 24-28 28-35 35-55 

 

Climate type for Nir station in the northern parts and Abarkouh station in the Southwest of 

the study area were determined based on table 2.2. The climate of the North and 

Southwest of the area are indicated as semi-arid (I=12.16) and arid (I=1.34), respectively. 

Figure 2.5 shows Amberotermic curve for Nir station that is located in the northern part 

and Abarkouh station in the Southwest of the study area. According to the figure, for the 

Abarkouh station, the drought season happens between the months April to November, 

whereas for the Nir station, the drought season is between May to October. Hence, for the 

whole study area a long drought season happens. Basically, the central part of Iran has a 

Mediterranean precipitation regime, which means that most of the annual rainfall occurs at 

the end of autumn and during winter, there is a low amount of precipitation in spring, and 

summers are mostly dry. This means that there is not enough precipitation during the 

growing season of vegetation. 

 



28 

 

 

Figure  2.4. Mean annual temperature map 

 

  

Figure 2.5. Ambrotermic curves of Nir station (right) and Abarkouh station (left) 

 

2.4. Vegetation: 

Generally, there are three plant communities in this area; the first community consists of 

Artemisia aucheri, Astragalus, and other cushion species is in the northern part of the area 

on Shirkouh elevations and mountain-foots. Due to the good humid conditions, some 

natural limitations for animal grazing, and consequently less utilization, some palatable 

grasses such as Bromus, Festuca, and some annual forbs exist in this part. 
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The second community named Artemisia sieberi is located on the alluviums at the central 

part of the study region. There are some Pterophyte and Gypsophyte species such as 

Salsola kerneri, Salsola tomentosa, Ephedra strobilacea and Zygophyllum eurypterm in 

this part. Artemisia sieberi has a high adaptability to this community.  

The last community which presents on the saline alluvial sediments of the margin of kavir 

has been affected by high level of ground water. Some Halophyte species such as 

Seidlitzia rosmarinus and Tamarix ramosissima occur in this community.  

Figure 2.6 illustrates the vegetation type map and Table 2.3 lists the most important 

vegetation species in each vegetation type. According to the figure and table, 13 

vegetation types exist in the study area. Furthermore, Table 2.4 summarizes some 

vegetation types characteristics. 

 

 

Figure 2.6. Vegetation types map in the study area 

 



30 

 

 

Table 2.3. List of the vegetation types and most important species in Poshtkouh rangelands  

Vegetation type Symbol Plant species 

Artemisia aucheri Ar.au 

Artemisia aucheri,Astragalus ochrochlorus, Astragalus 

calliphysa, Astragalus myriacanthus, Acanthophyllum spp., 

Bromus spp.,Stipa hohenackeriana, Acantholimon spp. 

Scariola orientalis-

Astragalus albispinus 
Sc.or-As.al 

Scariola orientalis, Astragalus albispinus, Launaea 

acanthodes, Acanthophyllum spp., Stipa barbata, Noaea 

mucronata, Euphorbia heterandena, Echinops orientalis. 

Scariola orientalis-

Artemisia sieberi 
Sc.or-Ar.si 

Scariola orientalis, Artemisia sieberi, Stipa barbata, 

Euphorbia heterandena, Astragalus albispinus, Launaea 

acanthodes, Noaea mucronata, Hertia angostifolia. 

Artemisia sieberi-Scariola 

orientalis 
Ar.si-Sc.or 

Artemisia sieberi, Scariola orientalis, Euphorbia 

heterandena, Launaea acanthodes, Astragalus albispinus, 

Stipa barbata, Acanthophyllum spp., Noaea mucronata 

Artemisia sieberi1 Ar.si1 

Artemisia sieberi, Launaea acanthodes, Scariola orientalis, 

Iris songarica, Salsola spp., Euphorbia heterandena, 

Astragalus albispinus, Noaea mucronata, Stipa barbata 

Artemisia sieberi2 Ar.si2 
Artemisia sieberi, Salsola kerneri, Salsola tomentosa, 

Astragalus albispinus. 

Artemisia sieberi-

Zygophyllum eurypterum 
Ar.si-Zy.eu 

Artemisia sieberi, Zygophyllum eurypterum, Ephedra 

strobilacea, Astragalus albispinus, Salsola spp., Dorema 

ammoniacum 

Artemisia sieberi-

Ephedra strobilacea 
Ar.si-Ep.st 

Artemisia sieberi, Ephedra strobilacea, Zygophyllum 

eurypterum, Salsola spp. 

Ephedra strobilacea-

Zygophyllum eurypterum 
Ep.st-Zy.eu 

Ephedra strobilacea, Zygophyllum eurypterum, Salsola 

spp., Dorema ammoniacum, Artemisia sieberi 

Rheum ribes-Artemisia 

sieberi 
Rh.ri-Ar.si 

Rheum ribes, Artemisia sieberi,Zygophyllum eurypterum, 

Scariola orientalis, Stipa barbata, Astragalus albispinus. 

Cornulaca monacantha Co.mo 
Cornulaca monacantha, Calligonum comosum, Stipagrostis 

plumose,Salsola spp., Ephedra strobilacea. 

Seidlitzia rosmarinus Se.ro Seidlitzia rosmarinus, Salsola spp., Haloxylon aphyllum. 

Tamarix ramosissima Ta.ra Tamarix ramosissima Phragmites communis. 
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Table 2.4. Some characteristics of the vegetation types 

Vegetation 

type 

Cover 

Percentage 

% 

Slope%  Altitude (m) 
Annual 

Precipitation (mm) 

Ar.au 25.5 20-30 >2500 >290 

Sc.or-As.al 26.5 8-12 2300-2400 200-240 

Sc.or-Ar.si 20 5-8 2200-2300 180-200 

Ar.si-Sc.or 12.1 5-8 2000-2100 130-160 

Ar.si1 16 5-8 2100-2200 160-180 

Ar.si2 10.5 5-8 1900-2100 120-150 

Ar.si-Zy.eu 8.2 5-8 1600-2100 100-150 

Ar.si-Ep.st 6.5 5-10 1700-2000 75-120 

Ep.st-Zy.eu 10.2 5-8 2050-2100 150-160 

Rh.ri-Ar.si 12.5 8-12 2100-2300 160-220 

Co.mo 9 5-8 1500-1700 50-75 

Se.ro 10.2 2-5 1400-1500 45-50 

Ta.ra 5 0-2 1400 45 

 

In this study, due to the coarse spatial resolution of NOAA AVHRR satellite images 

which were used for the vegetation cover percentage mapping and determining the NDVI-

precipitation relations (see next chapters), the vegetation types with the similar plant 

species were merged and the number of types was reduced to four types including; alpine 

plants, sagebrush, gypsophyte, and halophyte.  Moreover, for modeling habitat distribution 

of Artemisia aucheri and Artemisia sieberi (chapter six) this map was used. 
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Artemisia aucheri Scariola orientalis-Artemisia 

sieberi 
Artemisia sieberi-Scariola 

orientalis 

   
Artemisia sieberi1 Artemisia sieberi2 Rheum ribes-Artemisia 

sieberi 

   
Artemisia sieberi-Zygophyllum 

eurypterum 
Artemisia sieberi-Ephedra 

strobilacea 
Ephedra strobilacea-

Zygophyllum eurypterum 

   
Seidlitzia rosmarinus Cornulaca monacantha Tamarix ramosissima 

Figure 2.7. Some pictures from different vegetation types 

 

2-5- Geology and geomorphology 

Poshtkouh area is located in the borders of the Central Iran and Uromia-Dokhtar 

geological structural zones. In terms of morphology the area can be divided to north 

highlands, southern hills, more or less single dacitic domes, and plains. 
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The northern highlands are the highest part of the area and often consist of intrusive 

Shirkouh granites, cretaceous limestones, and first and second geological period rocks. In 

these areas cretaceous limestone are deposited over the huge Shirkouh granitic mass and 

created high cliffs whereas granitic Shirkouh rocks caused more flat elevations. 

The majority of the southern mountains comprise of geological third-period volcanic rocks 

whereas south eastern elevations mainly consist of geological third-period clastic rocks 

which are the result of the erosion of older mainly volcanic rocks. 

Distributed dacitic domes are the most beautiful scene of the area among which Ernan 

mountain with elevation of 2892 m is the highest. Chahtorsh, Bonakouh, and Hajizamani 

are among the other crests. In terms of the ages, these domes are related to Pliocene from 

the late third-geological period. These domes are with two different geomorphology; one 

with an uneven surface and the other with hill and high grounds-like surface. 

The plains are mostly sandy-clayey and include alluvial deposits. These plains were 

formed from alluvial runoffs, strong-winds eluvials, and clastic or disintegrated materials 

solution and deposition of them at the lower elevations causing desertification and 

saliniation.  

The vast northern plain expanded around Shirkouh Mountain includes Shirkouh granite 

disintegrated alluvials. The alluvial particles are fined from elevations and hillsides toward 

the lower plain and finally end to silt and clay in deserts (Ernan and Chahbeygi). 

The geological map of the study area was prepared using Nir and Dehshir sheets with the 

scale of 1:50000 (Figure 2.8). In the study area thirteen geological units were 

distinguished those area and characteristics have been summarized in table 2.5. According 

to the table the biggest area consist of the old alluvial sediments (58.6%), and 14.7% of 

area Sandstone and Conglomerate.  

 



34 

 

Table 2.5. Geological units in Poshtkouh rangelands 

Number Unit Area (%) Geological description 

1 gsh 4.7 Shirkouh granite 

2 Qt1 1.8 Young alluvial terraces 

3 Qt2 58.6 Old alluvial terraces 

4 QSf 1.2 Salt crust 

5 Qtr 0.2 Travertine 

6 td 0.50 Dacite-andesite 

7 Pec 0.4 Kerman conglomerate 

8 Mur 14.7 Red to Brown Sandstone 

9 PLC 5.7 Non Consolidated Conglomerate 

10 Cm 5.4 Color mélange 

 

11 OMr 

 

3.8 

Horizon of Red marl, Non Consolidated 

Conglomerate and Red Sandstone that are 

Consolidated in some parts by bicarbonate solutions 

12 E1m 2.6 Gypsum Ferrous Marl 

13 KTL 0.2 Marl and limestone 

  

 

Figure 2.8.  Geology map of the study area 
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Other geological units such as chalky marns, clayey limestones, salt crust, young alluvial, 

and Shirkouh granite. There is special vegetation cover over each of the aforementioned 

geological units.  

 

2-6- Soil and landscape 

The area of study has five dominant physiographic units: mountain, alluvial fans, plateau, 

piedmont plain, and low land. As mentioned before, the geology of the mountain is 

granite, reddish limestone, conglomerate and marl. Alluvial fans, plateau and piedmont 

plain are developed on alluvial deposits of Quaternary. Low land has a salty clay flat 

foundation.  

As stated before, the environmental variables such as elevation, precipitation and 

temperature have a high variability in the study area, causing a high spatial variability of 

soil classes and properties in the region. According to the Soil Taxonomy (Soil Survey 

Staff, 2010), the soil moisture regimes of the area are aridic and aquic, and temperature 

regime of the area is thermic. The taxonomic classification (Soil Survey Staff, 2010) of the 

major soils found in the study area respectively identified Entisols and Aridisols as the 

smallest and largest in relative abundance. Entisols are located in the mountain 

physiographic unit of the study area. Typic Torriorthents are the dominant soil in this unit. 

Aridisols contain several soils which are Typic Calcigypsids, Typic Haplocalcids and 

Typic Aquisalids. Typic Calcigypsids and Typic Haplocalcids are the dominant soils 

which have developed in plateaux and piedmont plain units whereas Typic Aquisalids are 

located in the lower part of the region, called low land or playa. Alluvial fans have a 

complex soil that include Typic Torriorthents and Typic Calcigypsids. As expects the soils 

which have formed in the upper part of the region have a high content of gravel and sand 
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whereas the soils which have developed in the lower part of the study area have a high 

content of clay and salt.  

Table 2.6. summarizes some soil characteristics in each of the vegetation types. 

 

Table 2.6. Soil characteristics in different vegetation types 

Vegetation 

type 

Soil 

Texture 

Gravel 

(%) 

EC 

(ds/m) 

Soil available 

moisture (%) 

Limestone 

(%) 

Organic 

matter 
pH Gypse (%) 

Ar.au Sandy-Lom 27 0.2 3.5 <0.5 0.1 7.3 - 

Sc.or-As.al Sandy-Lom 12.3 0.17 3.82 14.2 0.85 7.6 - 

Sc.or-Ar.si Lomy-Sand 10 0.31 2.5 13.8 0.42 7.7 - 

Ar.si-Sc.or Lomy-Sand 10.5 0.41 2.7 15 0.8 7.8 - 

Ar.si1 Lomy-Sand 15.3 0.42 3.7 2.3 0.5 7.8 - 

Ar.si2 Lomy-Sand 11 0.55 3.8 15.2 0.3 7.7 - 

Ar.si-Zy.eu Lomy-Sand 17 0.6 5.7 10.2 0.3 7.9 0.05 

Ar.si-Ep.st Lomy-Sand 12.2 0.9 5.7 9.6 0.2 7.6 0.9 

Ep.st-Zy.eu Lomy-Sand 12 
Surface 1.2 

Depth 2.4 
6.2 8.1 0.1 7.5 

Surface 1.4 

Dِepth 39.4 

Rh.ri-Ar.si Sandy-Lom 19 0.5 3.7 12.7 0.4 7.45 0.2 

Co.mo Sandy-Lom 21 1.1 1.8 19.1 0.06 7.96 0.4 

Se.ro Sandy-Lom 18.2 4.8 4.2 39.1 0.2 8.2 4.9 

Ta.ra Clay  - 51.8 12 15.7 0.35 7.9 6.6 
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Chapter 3. Comparison of different geostatistical methods for soil mapping using 

remote sensing and environmental variables in rangelands of Poshtkouh area, 

central Iran  

 

Abstract 

The aims of this study were; 1) to map the different soil parameters using three 

geostatistical approaches including; ordinary kriging (OK), cokriging (CK), and regression 

kriging (RK), 2) to compare the accuracy of maps created by mentioned methods, and 3) 

to evaluate the efficiency of using ancillary data such as satellite images, elevation, 

precipitation, and slope to improve the accuracy of estimations. In the rangelands of 

Poushtkouh area, central Iran, totally 112 soil samples were collected. The maps of 

different soil parameters were created using the mentioned methods. To assess the 

accuracy of these maps, cross-validation analyses were conducted. The cross-validation 

results were assessed by the root mean square error (RMSE) and normal QQ-plot together 

with sum and average error to suggest the best estimation approach for mapping each soil 

parameter. The results have shown that, in most of the cases, taking the ancillary data into 

account in estimations has increased the accuracy of the created maps. Except for Clay 

that the OK method was suggested as the best estimation method, the RK and CK were the 

best recommended estimation methods for the rest of the parameters. The results suggest 

the application of the framework of this study for similar areas. 

 

Keywords 

Ordinary kriging, cokriging, regression kriging, soil parameters, ancillary data. 
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3.1. Introduction 

The quality, quantity and type of vegetation in arid rangelands are usually affected by soil 

properties. Since soil mapping is a critical step in landscape ecology, and rangelands 

rehabilitation, there is an increasing need to measure and map soil properties in natural 

ecosystems (Kavianpour et al., 2012; Burke, 2001; Chaneton and Avado, 1996; Zhang and 

Mc Grath, 2004; Etema and Wardle, 2002).  

Geostatistics and remote sensing are among the tools which have been successfully used 

for soil mapping at large scales (Webster, 1997; Eldeiry et al., 2010; McBratney et al., 

2003). Geostatistical approaches in which environmental variables and remote sensing 

data correlations are taken into account have become increasingly popular. This is because 

of employing secondary information that is often available at finer spatial resolution than 

that of the sampled target variable. Such techniques generally generate more accurate 

results than those of the univariate methods (for example ordinary kriging) when the 

correlation between primary and secondary variables is significant (Goovaerts, 1997; 

McBratney et al., 2000; Odeh et al., 1994; Triantafilis et al., 2001). The application of 

hybrid methods for soil mapping has represented considerable success in several 

documented studies (Odeh et al., 1995; Bishop and McBratney, 2001; Hengl et al., 2004; 

Sullivan et al., 2005). 

Several ancillary data can be used for digital soil mapping. Digital elevation model 

(DEM), slope, precipitation, remotely sensed images, and measured soil properties are 

potential ancillary data for such applications (Adamchuk et al., 2004; Bishop and 

McBratney, 2002; Hengl et al., 2004; McBratney et al., 2003). It should be evaluated that 

which ancillary data increase the estimation accuracy of a primary variable at unsampled 

locations in each study area (Hengl et al., 2004). 
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Examples of geostatistical hybrid methods that account for environmental correlation are 

cokriging and regression kriging (Goovaerts, 1997; Odeh et al., 1994; Tajgardan et al., 

2010). The difference among these methods is in the assumptions of the way that the 

primary and ancillary data are related and how the estimation of primary data is inferred 

from the secondary data (Goovaerts, 1997; McBratney et al., 2003). Various studies have 

proven the existence of spatial correlation in different soil parameters (Kavianpour et al., 

2012; Odeh et al., 1994; Eldeiry et al., 2010; Iqbal et al., 2005; Simbahan et al., 2006).  

The main purposes of this research were; 1) mapping different soil parameters using three 

geostatistical approaches (OK, CK, and RK), 2) evaluating the benefit of using ancillary 

data such as satellite images, elevation, precipitation, and slope in improving the accuracy 

of estimation maps, and 3) comparing the accuracy of the maps created by the mentioned 

approaches. 

 

3.2. Materials and Methods 

3.2.1. Study area 

This research was conducted in Poshtkouh rangelands, located at southern slopes of the 

Shirkouh mountains of the Yazd province in central Iran (31°33′ 1″ N, 53°40′06″ E - 

31°04′27″ N, 54°15′19″ E). Figure 3.1 displays the general location of the study area. The 

area is characterized by very diverse terrain conditions. The maximum elevation of the 

region is 3990 m and the minimum elevation is 1400 m. Thus, average annual 

precipitation is about 300 mm in Shirkouh Mountain in the northern part of the study 

region whereas in margin of Kavir_e_Abarkouh (in the southern part of the region) it 

decreases to 45 mm. Similarly, average annual temperature shows large differences in the 

study region ranging from 17.1 in the southern part to 10.8°C in the northern part, with 

absolute minimum and maximum temperatures of 0.2 and 29.4°C.  
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Figure 3.1. General location of the study area 

 

3.2.2. Soil classification and landscape 

This area has five dominant physiographic units: mountain, alluvial fans, plateaux, 

piedmont plain and low land. The geology of the mountain is granite, reddish limestone, 

conglomerate and marl. Alluvial fans, plateaux and piedmont plain are developed on 

alluvial deposits of Quaternary. Low land has a salty clay flat foundation.  

As mentioned before (2-1- study area) the environmental variables such as elevation, 

precipitation and temperature have a high variability in the study area, causing a high 

spatial variability of soil classes and properties in the region. According to the Soil 

Taxonomy (27), the soil moisture regimes of the area are aridic and aquic, and temperature 

regime of the area is thermic. The taxonomic classification (27) of the major soils found in 

the study area respectively identified Entisols and Aridisols as the smallest and largest in 

relative abundance. Entisols are located in the mountain physiographic unit of the study 

area. Typic Torriorthents are the dominant soil in this unit. Aridisols contain several soils 

which are Typic Calcigypsids, Typic Haplocalcids and Typic Aquisalids. Typic 

Calcigypsids and Typic Haplocalcids are the dominant soils which have developed in 
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plateaux and piedmont plain units whereas Typic Aquisalids are located in the lower part 

of the region, called low land or playa. Alluvial fans have a complex soil that include 

Typic Torriorthents and Typic Calcigypsids. As expects the soils which have formed in 

the upper part of the region have a high content of gravel and sand whereas the soils which 

have developed in the lower part of the study area have a high content of clay and salt.  

 

3.2.3. Soil data collection and examination 

In order to take samples from homogeneous units, hypsometric, aspect, slope and geologic 

maps were overlaid. Then 3-5 parallel transects with 300-500 m length were located in 

each unit. Totally 112 soil samples were collected in depth 0-30 cm (Figure 3.2). In the 

next step, all of the required soil parameters such as available moisture (AM), Clay, 

electrical conductivity (EC), Gravel, gypsum (Gyps), Sand, and Lime were measured in 

soil laboratory. 

 
Figure 3.2. Location of sample points in the study area 

 

3.2.4. Ancillary data  

In this study, satellite images (Landsat ETM+) and some environmental variables (e.g. 

elevation, slope, and precipitation together with soil parameters) were used as ancillary 
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data. ETM+ images contained three visible bands (blue, green, and red), one near infrared 

band, two shortwave infrared bands (MIR-1 and MIR-2), a thermal infrared band, and a 

panchromatic band. Using the digital topographic maps, the images were geo-referenced. 

Then, digital number (DN) values converted to reflectance. In the next step, the 

normalized difference vegetation index (NDVI) was calculated based on red and near 

infrared bands. The NDVI added as an additional band to the bands set. All of the remote 

sensing analyses were done in ENVI 4.8. The Digital Elevation Model (DEM) and slope 

map of the study area were created by the means of digital topographic maps with scale of 

1:10000 in Arc GIS 10. Based on climatic data of the study area, precipitation map was 

created using the cokriging method in combination with the DEM as the secondary 

variable. 

 

3.2.5. Descriptive statistics 

The descriptive statistical evaluation is an important step prior to any geostatistical 

analysis. One of the essential univariate statistics is variance which is usually applied in 

estimating the semivariogram sills. It is especially important in recognizing the existence 

of any considerable trend in each variable when the semivariogram is consistently 

exceeding the predicted sill. 

Bivariate statistical analysis, as the next step, is usual to distinguish the integration 

capability of secondary data in estimation problems. Among bivariate analyses, regression 

and correlation analyses have become popular to quantify the relationship between soil 

parameters and other environmental variables. Regression technique is a useful means to 

select the variables correlated with soil parameters. The SPSS statistical software can be 

used for this purpose. In the stepwise regression the best combination of ancillary 

variables which give the highest R2 and acceptable significance level would be selected.     
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In order to use ancillary variables for soil parameters mapping, the following process was 

done: 

- Using the geographic information system, data set of each soil parameter was combined 

with the ancillary variables of the field samples. Then, the pixel values of the related 

points were extracted. 

- To prepare data for statistical analysis, a matrix was constructed. In this matrix, the X- 

and Y-coordinates were recorded in the first two columns. The measured soil parameter 

values were placed in the next columns, and the different ancillary data of pixel values 

were put in the rest of columns. The rows of the matrix represent the number of sample 

points. This is in accordance with the method was used by Eldeiry and Garcia (2010). 

- Pearson correlation coefficient was used to identify the correlation coefficient between 

the measured soil parameters and ancillary data (Table 3.4) that should be used in 

cokriging.  

- To select suitable parameters and model for predicting and mapping of the soil 

parameters, the simple and the stepwise regression were applied. Finally, regression 

models that had the highest correlation with the measured soil parameters data were 

selected to be used in the regression kriging. 

SPSS and Excel software were used for the mentioned statistical analysis. 

 

3.2.6. Geostatistical Analyses 

Geostatistical analyses have been conducted in three stages of variography, model 

evaluation, and estimations. A more comprehensive explanation about each step comes 

below.  
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3.2.6.1. Variography 

Semivariogram is one of the most essential tools in geostatistical analyses to quantify and 

model the spatial variability degree of data. These models can later be used to make 

estimations using kriging, cokriging, and etc. 

The experimental semivariogram ( )(* hγ ) for a regionalized variable of Z  can be defined 

as following: 
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where N (h) is the number pairs of data locations separated by the vector h (Isaaks 1989). 

 To deduce the semivariogram values in all points and all directions and to smooth out the 

effects of fluctuations and ensure the positive definiteness property of semivariograms, 

analytical models should be fitted to the experimental (or sample) semivariograms. 

This analysis of semivariogram behavior and fitting analytical model is termed 

variography (Goovaerts 1997; Deutsch 2002).   

Stationarity is one of the most essential presumptions in geostatistical analyses. It implies 

that the statistics (such as mean, variance, and so on) is independent of the location of its 

calculation. Accordingly, the first- and second-order-moment rules should remain 

invariant. 

 In the cease of non-stationarity, in which the relevant statistical moments show a 

dependence on the location, a characteristic so-called trend exists in data-set. 

One of the most practical tools to indicate the existence of a trend in a data-set is its 

semivariogram. The sample semivariogram and its theoretical sill should be plotted and 

the general behavior of the semivariogram plot relative to the theoretical sill should be 

evaluated. If the sample variogram increasingly exceeds the expected sill (
2σ ), the 

existence of a trend can be inferred.  



46 

 

In this study, using semivariogram analyses, spatial variability structure of each attribute 

was determined and proper semivariogram models (e.g., spherical, Gaussian, exponential) 

were fitted (Table 3.2). 

 The mentioned analyses were conducted using ArcGIS 10, and GS+ 5.1.1 software. 

 

3.2.6.2. Model evaluation or accuracy assessment: 

To ensure that the variogram models being applied in the estimation stages are reliable and 

appropriate, the variogram models have to be validated first. The validation of the 

variogram models was done using the cross-validation technique. 

 Cross-validation is a “leave-one-out” technique in which each sample (with the known 

variable) is omitted once and its value is estimated using the rest of the samples with 

different semivariogram models and parameters (Goovaerts 1997).  

In order to evaluate the cross validation results, in the first step, scatter plots of measured 

vs. estimated were evaluated. Then, root mean square error (RMSE), sum errors, average 

errors, and QQ-plots of cross-validations were simultaneously applied to decide about the 

best estimation method. 

Each of the above mentioned criteria reflects a side of estimation accuracy. For example, 

RMSE can describe the distance between measured and estimated values. Furthermore, 

sum errors, average errors, and QQ-plots represent the normality of estimation errors 

distribution. 

3.2.6.3. Estimation methods 

The kriging method is applied to estimate the values at unsampled locations by a weighted 

linear combination of nearby samples. The kriging equations, guarantee the two main 

characteristics of unbiasedness and minimum errors in estimations. To achieve the 

mentioned weights for this estimation, semivariogram models are required (Miller et al. 
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2007).  Based on the variation of mean value, the kriging methods can be classified into 

several techniques such as ordinary kriging, simple kriging, and universal kriging. 

Cokriging is an extension of kriging method in which the correlation between a primary 

and secondary data is taken into account. The application of this method can enhance the 

quality of estimations.  

In this study, three estimation approaches including OK, CK, and RK were applied. 

 

3.2.6.3.1. Ordinary Kriging (OK) 

In OK the mean value of regionalized variable is considered constant and unknown 

thought the study area. The application of OK is proper when the stationarity condition is 

nearly fulfilled. 

 

3.2.6.3.2. Cokriging (CK) 

CK makes the estimations based on probable correlation between the variable of interest 

and other measured variables such as remote sensing and elevation data (Odeh et al., 

1995). CK is among the useful techniques which can be used in estimation when both 

primary and secondary variable exist and has been used widely in soil science (Vauclin et 

al., 1983; Trangmar et al. 1987; Yates and Warrick 1987).   

In present research, the variables which represented the highest significant correlation 

coefficient with the variable of interest which generated the most accurate CK maps were 

selected as ancillary variable for the application in CK method. The RMSE was employed 

as the criteria to evaluate which CK map was the most accurate. 
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3.2.6.3.2. Regression Kriging 

Regression kriging (RK) is an estimation method that makes use of the combination of a 

regression predictor (of a primary variable, using ancillary variables) with kriging of the 

regression residuals. The advantage of RK method is using ancillary variables such as 

elevation and remote sensing data to improve the accuracy of estimation for primary 

variable. This method is equivalent to universal kriging and kriging with external drift, 

where ancillary predictors are used to estimate the mean of the primary variable in kriging 

equations (Hengel et al., 2004; Pebesma, 2006). It uses the ancillary data to characterize 

the spatial trend of the primary variable in a regression step before carrying out the simple 

kriging on the residuals and adding back the trend value to the estimation of residuals 

(Goovaerts, 1997).  

In this research, in order to perform RK, the regression analysis was performed to estimate 

the trend of primary variables and residuals. Then, simple kriging on the residuals was 

carried out. The final estimate of every soil variable was achieved by adding the 

approximated trend to the estimate of the residuals calculated by simple kriging 

(Goovaerts, 1997; Vanderlinden, 2001). 

The estimation parameters such as cell size and number of neighboring data were the same 

for all of the methods (OK, CK, and RK) applied in this study. 

                                                                                                                                                                                                

3.2.6.4. Soil texture map 

In rangeland management and landscape ecology, in addition to the aforementioned soil 

maps, soil texture map is also beneficial for different applications such as to investigate 

the relation between soil and vegetation as well as rehabilitation of the area. In this step, 

the created maps of Clay and Sand were integrated in GIS environment to create the soil 
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texture map. To do so, a script in ILWIS software was created and employed. The resulted 

map represents homogeneous soil texture units. 

 

3.3. Results and discussion 

Prior to any geostatistical analysis, it is of vital importance to evaluate some general 

statistical characteristics of data, such as data distribution and variance. In addition, some 

characteristics of important measures such as semivariogram sills can be approximated by 

the variance of related data (
2σ ). Table 3.1 represents some descriptive statistics of soil 

parameters. Based on the table, EC and Gyps demonstrate the highest and lowest 

variances, respectively. It is expected that across the study area these parameters would 

also represent the highest and lowest variation, respectively. 

 

Table 3.1. Descriptive statistics of soil parameters 

Lime Sand Gyps Gravel EC Clay AM Descriptive         Soil parameter 
statistics 

0.42 26.40 0 0 0.1 6.2 0.20 Min 

46.35 88.80 4.19 28.65 136.32 30.5 15.12 Max 

14.36 71.67 .570 11.67 11.64 13.57 3.38 Mean 

10.72 14.34 1.16 5.9 26.87 6.02 2.84 Std. Deviation 

115.06 205.91 1.35 34.88 722.28 36.27 8.07 Variance 

 

According to the discussion in the material and methods, the stationarity condition of data 

has been evaluated by examining the general behavior of the semivariograms relative to 

their theoretical sills. This evaluation does not reflect the existence of any considerable 

trend in the soil parameters (Figure 3.3). 
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The spatial dependence of each soil attribute was modeled using analysis of semivariance. 

Parameters of semivariogram analysis for various soil attributes have been represented in     

Table 3.2. 

In this stage, the quality of each semivariogram model was assessed and the model 

semivariogram parameters improved by cross-validation method and RMSE criterion for 

different estimation methods (OK, CK, and RK). The semivariogram interpretations have 

also been considered during this variography stage. Table 3.5 and Figure 3.5 illustrate the 

cross-validation results. 

 

Table 3.2. Parameters of semivariogram analysis for soil parameters 

Soil 

parameter 

Semivariogram 

model 

Nugget effect 

(C0) 

Sill 

(C0+C) 

Structured part  

to sill ratio 

(C/[C0+C]) 

Effective 

Range 

AM Spherical 0.01 7.22 0.99 19770 

Clay Spherical 0.1 35.1 0.99 21420 

EC Exponential 1 587.50 0.99 20400 

Gravel Spherical 0.01 31.26 1 18090 

Gyps Spherical 0.001 1.18 0.99 25950 

Sand Spherical 105 620 0.83 94600 

Lime Spherical 21.30 243.50 0.91 97920 

    C0: Nugget effect         C: Structured part of the semivariogram (=sill- C0) 

Figure 3.3 shows experimental semivariograms of each soil parameter and their 

corresponding models. Each variogram shows and evaluates the spatial structure of data. 

One of the most essential considerations in semivariogram modeling is bearing in mind 

the semivariogram interpretation and the expert’s knowledge and experience about the 

study area.  Usually, there could be a big uncertainty in semivariogram modeling since the 

data from soil samples can rarely reflect the existing soil condition sufficiently. Hence, the 

linkage between the soil characteristics and the semivariogram behavior should be 

understood very well before and during the semivariogram modeling by considering the 
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parameters such as nugget effect, range, and anisotropy. Conversely, the semivariograms 

and their models can be employed to understand the behavior of the data structure.  

Figure 3.3. Semivariogram of different soil parameters 
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It is clear in the semivariograms (Figure 3.3) that all of the parameters have spherical 

model except EC that has exponential model. The exponential model usually represents 

the quick variation in data. The field observations in this study and previous reports (e.g. 

Zare Chahouki, 2006) from this area confirm this variability behavior of the EC. 

The ratio of structured part of the semivariogram to sill (C/ [C0+C]) was considered as a 

criterion to evaluate the strength of the spatial variability structure of each semivariogram. 

Hence, the bigger this ratio, the stronger the spatial autocorrelation of the variable would 

be. According to the Table 3.2, most of the parameters have a similar structured to sill 

ratio. Based on this ratio Gravel has represented slightly a stronger spatial variability 

structure compared to the others.  

Semivariograms of Sand and Lime have demonstrated the highest effective range among 

the all soil parameters, showing the higher degree of continuity for these variables. Gravel 

semivariogram has the shortest effective range representing that the change of this 

parameter in very short-distance is higher than others.  

Among the investigated variables, the semivariogram models of Sand and Lime have 

represented the highest nugget effect. This might be interpreted to the existence of rather 

high spatial variations of Sand and Lime in very short-distances (lower than average 

sample spacing) compared to those of the others. 

Table 3.3 summarizes the best regression equations between soil target parameters and 

ancillary data. As it can be seen from this table, most of the models have high R2 values, 

demonstrating good prediction power of the regression model for related soil properties. 
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Table 3.3. Best regression equations between soil parameters and ancillary data 

   

 

 

 

 

Referring to the table, EC, Gyps, and Lime have negative relationship with elevation. This 

could be due to the fact that leaching causes the salts move from highlands and 

mountainous areas to the lowlands. Consequently, the lower the elevation, the higher the 

concentration of salts. This feature has also been reflected in the corresponding estimation 

maps (Figure 3.4). 

The results of Pearson correlation coefficient were used to select proper secondary 

variables in CK analysis so that the selected variables (as secondary) had the highest 

significant correlation coefficient with the target variable. Among the mentioned 

secondary variables, the ones which produced the CK maps with the lowest RMSE were 

suggested to be used in estimation of the target variables using CK. Table 3.4 summarizes 

the selected variables for CK based on the mentioned method and the corresponding 

correlation coefficient with each target variable. 

 

Table 3.4. Pearson correlations between target and secondary variables used in CK 

 Target variable AM Clay EC Gravel Gyps Sand Lime 

Secondary variable Band1 AM AM Band2 Band1 Clay Precipitation 

Correlation coefficient 0.55* 0.82** 0.69** 0.62* 0.47** 0.87** 0.69** 

* Statistically significant at p > 0.05          ** Statistically significant at p > 0.01 

 

R2 Regression equation 

0.86 AM = -7.58*Band7-0.12*Band62+0.22*Clay+1.14*Gyps+8.32 

0.67 Clay = 15.8*Band5-0.43*Gravel+1.17*AW+9.91 

0.83 EC = 229.73*Band4-283.82*Band7-0.015*Elevation+3.26*AW+37.35 

0.78 Gravel = -0.79*Clay+22.46 

0.84 Gyps = -6.98*Band1-0.23*Band61-0.002*Elevation+0.27*AW+12.77 

0.81 Sand = -0.006*Elevation-0.23*EC-1.49*Clay+106.74 

0.59 Lime = -0.22*EC1-0.02*Elevation+64.88 
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As the table shows, ancillary data are significantly correlated to the target variables. These 

significant correlations can suggest the ancillary data which could be cooperated in CK 

estimation to improve the prediction accuracy. 

 

Table 3.5. Error measure for the compared prediction methods 

Error measure 

      Soil parameter 
 
Estimation  
method 

AM Clay EC Gravel Gyps Sand Lime 

RMSE 

OK 0.89 2.38 11.40 1.96 0.34 12.73 7.59 

CK 0.74 1.85 11.47 1.8 0.33 9.32 7.22 

RK 0.92 1.72 14.29 1.12 0.38 5.90 6.32 

Sum error 

OK 1.20 3.18 20.59 -4.22 0.11 -10.66 1.15 

CK 0.70 4.55 21.92 -2.74 0.25 6.53 -2.47 

RK -1.25 -6.54 5.33 3.20 1.77 -4.64 1.17 

Average error 

OK 0.01 0.02 0.18 -0.03 0.009 0.16 0.01 

CK 0.006 0.04 0.19 -0.02 0.002 0.10 -0.03 

RK -0.01 -0.05 0.04 0.02 0.01 -0.007 0.01 

RK 6.32 5.90 0.38 1.12 14.29 1.72 0.92 

 

Table 3.5 demonstrates the root mean square error (RMSE), along with the sum and 

average error for the compared prediction methods when estimating the soil parameters. 

As the table shows, the mentioned criteria for different soil parameters are different in 

different prediction approaches. 

Table 3.6. The suggested method for mapping each soil parameter based on different criteria. 

                                          

Suggested                    Soil parameter                                                            

method  based on       

AM Clay EC Gravel Gyps Sand Lime 

only sum/average error CK OK RK CK OK RK RK 

only RMSE CK RK OK RK CK RK RK 

sum/average error, RMSE, & QQ-plot CK OK RK RK CK RK RK 
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As mentioned in the material and methods, RMSE and QQ-plots (Figure 3.6), together 

with the sum and average errors were considered to suggest the best estimation methods 

(Table 3.5 and Table 3.6). About AM, Sand, and Lime, all the aforementioned criteria 

suggest the same method as the best estimation approach. For Clay and EC, because the 

QQ-plots as well as the sum and average errors represented more acceptable values, in 

spite of their lower RMSE, OK and RK were suggested as the best estimation methods, 

respectively. Even though, RMSE values for estimating these two soil parameters were not 

notably different. For suggesting the best estimation method for Gyps, QQ-plot was the 

determining factor (Figure 3.6). This is because the sum error for estimating the Gyps by 

the RK was rather larger than those of the OK and CK methods, while the sum error and 

RMSE values were not dramatically different. About Gravel, the difference in RMSE for 

the RK with those of the OK and CK approaches was rather considerable, whereas the 

QQ-plots (Figure 3.6) along with the sum and average errors of them do not represent 

remarkable differences. 

Figure 3.4 illustrates the best estimation soil attribute maps selected from different 

estimation methods (OK, CK, and RK). This selection was based on the aforementioned 

criteria (Table 3.6). 

Table 3.7 summarizes the abbreviations of soil texture map legend. According to the maps 

the highest values of AM, Clay, EC, and Gypsum are related to the south-west of study 

area. This part of the area is located in lowlands with lowest elevation, highest level of 

ground water, and high concentration of salts (Zare Chahouki, 2006). Other studies also 

suggested similar results (e.g. Esfandiarpoor et al., 2010; Bagheri Bodaghabadi et al., 

2011). Hydrologic processes can be suggested as one of the main factors that can affect 

the soil properties in the study area. These processes can directly influence the weathering, 
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decalcification, and clay illuviation. Consequently, soil properties would represent notable 

variations from the mountainous areas to the lowlands. 

 

Table 3.7. Legend of the soil texture map 

 

 

 

 

 

 

 

 

 

Figure 3.5 shows the scatter plot of estimated versus measured soil parameters data using 

OK, CK, and RK Models. Generally, scatter plot is a tool for quality control and accuracy 

assessment of predictions. It is also useful when there are large numbers of sample points 

and can provide information about the strength relationship between two variables. Based 

on the Figure 3.5 all the scatter plots confirm the results of RMSE (Table 3.5). The 

strongest relationship between measured and estimated for AW, Clay, EC, Gravel, Gyps, 

Sand, and Lime are observed in CK, RK, OK, RK, CK, RK, and RK models, respectively.  

 

Abbreviation Description 

SL Sandy Loam 

SL-L-SCL Sandy Loam-Loam-Sandy Clay Loam 

SCL Sandy Clay Loam 

LS-SL Loamy sand-Sandy Loam 

LS Loamy Sand 

L-SCL-CL Loam-Sandy Clay Loam-Clay Loam 

L-SCL Loam-Sandy Clay Loam 

L Loam 

L-CL Loam-Clay Loam 

SCL-CL Sandy Clay Loam-Clay Loam 

CL Clay Loam 
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Figure 3.4. Created maps of different soil parameters with highest accuracy 
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Figure 3.5. scatter plot of estimated versus measured different soil parameters in different estimation 

methods. Points (diamond symbols) represent the observed values and solid line shows the fitted 

least square regression line. 
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Figure 3.6. Normal QQ-plot of standardized estimation errors of different soil parameters in different 

estimation methods. Points (diamond symbols) represent the observed standardized error values and 

solid line shows the ideal standard normal distribution line. 
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3.4. Summary and conclusions 

Creating soil maps with the high accuracies is of vital importance in landscape ecology 

and rangeland management. In this study, soil data and some ancillary variables including 

ETM+ images, elevation, slope, and precipitation of Poshtkouh rangelands were collected. 

The estimation maps of relevant soil parameters were created and compared to each other 

using different geostatistical methods as the next step. Based on the cross-validation 

analyses, the results suggest that the application of the ancillary data (ETM+ images and 

environmental variables) have increased the estimation accuracy in most cases. 

The better efficiency of RK over OK and CK for estimating most of the soil attributes 

might be due to the better capturing of the variations of the residuals of these parameters 

in the RK framework.  

Although with very low differences, for estimating the EC, OK has represented the lowest 

estimation RMSE compared to those of the CK and RK. However, according to the Table 

3.6, considering the QQ-plots along with the sum and average errors besides the RMSE 

criterion, RK could be suggested as the best estimation approach for EC. This implies the 

positive role of remote sensing and environmental variables as ancillary variables in 

improving the estimations. 

In the majority of parameters, taking the secondary variables into account has increased 

the estimation accuracy. Therefore, it is revealed that to improve predictions of soil 

attributes, it would be very beneficial to use the cheap and easily available ancillary data 

such as satellite images and elevation data. To achieve the best mapping performance, the 

secondary variables such as environmental variables and satellite images should be present 

for the whole study area. Several studies have suggested the use of satellite images and 

environmental variables in the framework of CK and RK to improve the accuracy of 

estimations (e.g. Goovaerts, 1999; Bishop and McBratney, 2001; Eldeiry and Garcia, 
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2008; McKenzie & Ryan, 1999; Triantafilis et al., 2001). The success of this idea depends 

on the strength of relationships between soil and the ancillary data.   

Characterization of soil parameters such as texture, available moisture, and salinity, etc., is 

a vital step in rangeland rehabilitation, management, and ecological modelling, these 

methods are considerably useful. In the mentioned applications, a detailed map of soil 

properties can be more efficient than traditional soil maps. These continuous soil maps 

will also benefit rangeland scientists to describe the distribution of soil patterns. The 

created soil attribute maps could be used as input for the ecological models such as species 

distribution models.  

Finally, it can be concluded that the geostatistical approaches can successfully model the 

spatial variability of different soil properties in rangelands. This is specifically because the 

geostatistical methods not only take the spatial variability of target parameters into 

account but they also offer estimation reliability measures such as estimation error and 

cross validation analyses parameters. The applied framework in this study which is fast 

and automated in Arc GIS software can be recommended for the similar cases. Using 

satellite images with higher spatial and spectral resolution as ancillary variable can be 

suggested to increase the estimation accuracies.  
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Chapter 4. Best annual time intervals of satellite images to create vegetation cover 

percentage map in arid rangelands of Poshtkouh area  

 

Abstract 

The aim of this study is to determine the best annual time intervals of the recorded satellite 

images in order to investigate and map the vegetation cover percentage in arid rangelands. 

For this purpose, the relations between vegetation cover percentage and Normalized 

Difference Vegetation Index (NDVI) as well as the variation in their correlation 

coefficient for four different vegetation types in Poshtkouh rangeland of Yazd province, 

Iran, were investigated. To calculate the relationships between vegetation and NDVI, the 

ground data and six series of NOAA AVHRR images in the time interval of growing 

season were used. To create the related map, the relationship between the best images and 

cover percentage of the data were modelled. Finally, the created map was reclassified and 

based on overall accuracy criterion, its accuracy was assessed. Results showed that the 

correlation coefficient between NDVI and vegetation in different phenological stages 

within each vegetation type as well as among different vegetation types are different. 

Depending on the vegetation type, at the end of the growing period, correlation coefficient 

between vegetation and NDVI decreases. The highest and lowest variation in NDVI and 

its correlation with vegetation were observed in Alpine plants and Halophyte, respectively. 

This investigation demonstrates that the best data to study the vegetation cover in arid 

rangelands can be taken from the images recorded in May. This indicates that, selecting 

the suitable time interval to study the vegetation during its growing period has prominent 

effect on results.  

 

Keywords:  

Vegetation cover percentage, arid rangelands, NOAA AVHRR, NDVI, study time.  
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4.1. Introduction 

In recent decades the use of remote sensing, as a tool to measure, evaluate, and map 

vegetation is significantly increased (Booth and Tueller 2003; Jafari et al., 2007; Sabins 

1978; Jones and Vaughan 2010). Depending on the type of the plant, plant age, growth 

stage, percentage of coverage, amount of biomass, amount of water in the Cell etc, the 

plant has different spectral reflections (Tueller 1989; Moleele and Ringose 2001; Jones 

and Vaughan 2010). Investigation on the plant spectral characteristic shows that the 

normal plant has the maximum absorption in the red and blue spectral area and maximum 

reflection in the green and infrared region. Changes in the leaves characterizations and the 

amount of Chlorophyll play the main role in their spectral reflections. Any factor, like 

diseases or stress, that changes the leaves characteristic, have direct influence in the plant 

spectral reflection which is more pronounced in the infrared channel of the spectrum. 

Scientist express that moisture stresses or leaves maturity cause the changes in the leaf 

cavity and therefore reflection decreases in the near infrared region (Sabins 1978; 

Lillesand and Kiefer 1994; Jones and Vaughan 2010). Likewise, the seasonal changes and 

reduction in the photosynthetic activity are one of the main factor affecting the plant 

spectral reflections and correlation between the vegetation coverage (Behrens et al., 2002; 

Xie et al., 2008; Jones and Vaughan 2010).  

Several studies have demonstrated that the relation between satellite images and ground-

based data depends on the satellite imagery precision, time of recording, biological factors 

(growth forms, the amount of litter and phonological stages) and non-biological factors 

such as land form, slope, direction and height (Wang et al., 2005; Douglas Ramsey et al., 

2004; Fontana et al., 2008; Wylie et al., 2002).        

Vegetation cover percentage map is one of the base maps in natural resources 

management, soil conservation, and rangeland management (Hosseini, et al., 2004; 
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Rafieyan et al., 2008; Tueller 1989). Mapping the vegetation cover percentage based on 

traditional methods and field surveying in major part of the study area needs a lot of costs 

and also is time consuming. Remotely sensed data frequently are used to map vegetation 

cover needed for a variety of resource assessment, land management, and modeling 

applications (Loveland, 2000; Booth and Tueller 2003; Bastin and Ludwig 2006; Sabins 

1978).      

The Normalized Difference Vegetation Index (NDVI) is a commonly used remote sensing 

vegetation index in vegetation studies (Propastin 2007; Myneni et al., 1997, Zhou et al., 

2001, White et al., 1997, Reed et al., 1994, and Stöckli and Vidale., 2004). The NDVI is 

calculated from the reflectance in the red and near infrared (NIR) bands of the 

electromagnetic spectrum and is a measure of the photosynthetic activity within the area 

covered by a pixel (Moleele and Ringose 2001; Hosseini et al., 2012; Tucker and Sellers., 

1986).   

NDVI is highly correlated with green biomass (Tucker et al. 1985; Propastin 2007; Xie et 

al., 2008). During the past years this index has been broadly used for vegetation mapping 

and monitoring (Sannier et al. 1998; Hosseini et al., 2004; Freitas et al., 2005; Jafari et al., 

2007), land-cover change detection (Lambin 1996; Lambin and Ehrlich 1997; Wang et al., 

2005; Rafieyan et al., 2008; Wylie et al., 2002), crop area estimation, and primary 

productivity analysis (Gilabert et al. 1995; Moleele et al., 2001).  

The main purposes of this research were to determine the best annual time intervals of the 

recorded satellite images in order to investigate the vegetation cover percentage and to 

create the related map in arid rangelands. 
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4.2. Material and methods 

4.2.1. Study area 

This research was conducted in Poshtkouh rangelands, located at southern slopes of the Shirkouh 

mountains of the Yazd province in the central part of Iran (31° 33′ 1″ N, 53°40′ 06″ E - 31° 04′ 27″ 

N, 54°15′ 19″ E). 

The maximum and minimum elevations of the region are 3990 m and 1400 m, respectively. 

Average annual precipitation of the study area ranges from 300mm in Shirkouh Mountain to 

45mm at the margin of Kavir_e_Abarkouh. Average annual temperature ranges from 17.1 to 

10.8°C, with absolute minimum and maximum temperatures of 0.2 and 29.4°C. Figure 4.1 shows 

general location of the study area. 

 
Figure 4.1. General location of the study area 

 

4.2.2. Vegetation types 

The variation in climate and topography causes considerable diversity in vegetation that explains 

the assorted vegetation patterns in the study region (Figure 4.2).   

In this study vegetation map produced by Zare Chahouki (2006) was used, that presents the 

existing of thirteen vegetation types. This map was created based on the homogeneous map of the 

study area taking from hypsometric, aspect, slope and geologic maps overlaying. Considering the 
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spatial resolution of NOAA AVHRR satellite images, the vegetation types with similar plant 

species were merged and number of types was reduced to four (Table 4.1. and Fig 4.2). 

As Table 4.1 and Figure 4.2 demonstrate the northern mountainous part of the study region is 

covered by alpine plants consist of bushes and grasses such as Astragalus and Stipa. Coming from 

northern mountain (toward the center) vegetation type is dominated by sagebrush containing dwarf 

shrubs and short grasses like Artemisia sieberi, Launaea acanthodes, Stipa barbata, and different 

species of Salsola. Some Gypsophyte plants such as Salsola, Calligonum and Artemisia present in 

the lowlands of the central part of the study region having Gypsi soils. Seidlitzia rosmarinus, 

Salsola spp., and Haloxylon aphyllum are the main halophyte species covering saline lands of the 

southern part. Table 4.1 summarizes the main plant species present in each of the vegetation types.  

 

 
Figure 4.2. Vegetation map of the study area 

 

 

 

 



70 

 

Table 4.1. Vegetation types in the study area  

Plant species Vegetation Types 

Artemisia aucheri, Scariola orientalis, Astragalus ochrochlorus, Astragalus 

calliphysa, Astragalus myriacanthus, Acanthophyllum spp., Bromus spp., Stipa 

hohenackeriana, Stipa barbata, Acantholimon spp., Launaea acanthodes, Noaea 

mucronata, Euphorbia heterandena, Echinops orientalis 

Alpine Plants 

Artemisia sieberi, Launaea acanthodes, Scariola orientalis, Iris songarica, Salsola 

spp., Euphorbia heterandena, Astragalus albispinus., Noaea mucronata, Stipa 

barbata, Salsola kerneri, Salsola tomentosa, Astragalus albispinus, Rheum ribes 

Sagebrush 

Salsola spp., Zygophyllum eurypterum, Dorema ammoniacum, Artemisia sieberi, 

Cornulaca monacantha, Calligonum comosum, Stipagrostis plumose 
Gypsophyte 

Seidlitzia rosmarinus, Tamarix ramosissima, Salsola spp., Haloxylon aphyllum.  Halophyte 

 

4.2. 3. AVHRR NDVI data 

In this study we used monthly NDVI data of NOAA AVHRR. The GIMMS NDVI data 

have been preprocessed and corrected for post-launch sensor degradation and atmospheric 

noises using methods described by Pinzon et al (2002 & 2004) and Tucker et al (2005). 

The NOAA AVHRR NDVI is defined as: 

 
NDVI =

ρNIR − ρred

ρNIR + ρred

                    (4.1)    

where ρNIR represents near infrared reflectance (channel 2 of AVHRR) and ρred red 

reflectance (channel 1 of AVHRR). Among vegetation indices, NDVI is the most widely 

used index to monitor and model vegetation (Propastin 2007; Jones and Vaughan 2010; 

Xie et al., 2008). 

 

 4.2.4. Field data collection  

As mentioned before, there are four major vegetation types in the study area (Table 4.1 

and Figure 4.2). In order to estimate the vegetation cover percentage in the rangelands of 

the study area 64 random sample sites were selected and in each site at least 20 quadrates 

were put. The percentage vegetation cover of each quadrate was estimated and the 
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dominant species were also recorded together with the position of the sampling points 

(using Global Positioning System (GPS)). To get the final value of the cover percentage, 

the average of each sample site was taken. Figure 4.3 illustrates location of sample points 

in the study area. 

 
Figure 4.3. Location of sample points in the study area 

 

4.2.5. Statistical analyses 

Using the coordinate of the sampling sites recorded by GPS, a vector point map was 

created in geographic information system (GIS) and the digital number (DN) values of 

sampling points were extracted.  In the next step, a matrix was constructed to prepare data 

for statistical analysis. In this matrix, the measured vegetation cover percentage values 

were placed in the first columns, and NDVI of different months were put in the rest of 

columns. The rows of the matrix show number of the sampling sites. Then, Pearson 

correlation coefficient between field data and relevant pixels values of the NOAA 

AVHRR NDVI data of different months were computed to identify the monthly NDVI 

that demonstrate the highest correlation with vegetation in each of the vegetation types 
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(Table 4.2). Finally, in order to model the relationship between vegetation data and NDVI, 

regression models between field data and the NOAA AVHRR NDVI of each month were 

calculated for the whole study area (Table 4.3).  

The mentioned statistical analyses were done in SPSS, and Excel software.  

 

4.2.6. Mapping vegetation cover percentage using NOAA AVHRR NDVI 

Based on the results of correlation and regression analyses, the best time interval of NOAA images 

(monthly NDVI) to study and map the vegetation was determined. Then the related regression 

model (with the highest R2) was used to map the vegetation cover. In the last step, the created map 

was reclassified and its accuracy was assessed based on overall accuracy criterion. 

In this study, Arc GIS 10 and ENVI 4.8 software were used for remote sensing and GIS analyses.  

 

4.2.7. Results and discussion 

The correlation coefficients of the percentage vegetation cover and NDVI for different 

months are shown in Table 4.2. The result shows that, based on growing season and 

different phenological stages, in different vegetation types as well as inside each of them, 

the rate of correlation changes. Based on the vegetation species and formations, in each 

type the variation of NDVI and the correlation between NDVI and the cover percentage do 

differ. 

 

Table 4.2. Correlation coefficient between NDVI and cover percentage for different months. 

Month Alpine plants Sagebrush Gypsophyte Halophyte 

April 0.44* 0.78* 0.74* 0.62* 

May 0.46* 0.83* 0.76* 0.68* 

June 0.32* 0.81* 0.74* 0.62* 

July 0.11** 0.73* 0.71* 0.68* 

August 0.09 0.75* 0.69* 0.59* 

September 0.09 0.68 0.69* 0.60** 

                      * Statistically significant at P = 5% and ** statistically significant at P = 1% 



73 

 

 

  

  

Figure 4.4. Fluctuations in NDVI and its correlation coefficient with  

cover percentage during growing season. 
 

 As illustrated in Figure 4.4, the variation between NDVI and the vegetation cover 

percentage depends mostly on the variation in NDVI itself. Among the investigated 

vegetation types, Alpine plants showed the most decrease in NDVI. This is due to the high 

dependency of this type on soil moisture. However, in the other types, especially 

Halophytes, a minor decrease in above mentioned quantities is seen. Since Alpine plants 

are grown in highlands area with the highest rainfall, the highest correlation between 

NDVI and vegetation cover is observed in the month of May (Table 4.1).  

According to Table 4.1, there are several forb and grass species, such as Scariola 

orientalis and Bromus tomentolus, in which are categorized in the Alpine type. These 

species are sensitive to the fluctuations in rainfall and temperature during the growing 
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season as well as different years. Therefore, after May, due to decrease in rainfall, the 

climate humidity and soil moisture as well as increasing in temperature, there will be a 

significant reduction in plant greenness and hence a lower correlation between plants and 

NDVI. 

Fluctuations between vegetation and NDVI in Sagebrush are seen to be higher than that of 

Gypsophyte. Because, the plant species in Sagebrush are mostly forbs, while in 

Gypsophyte are shrub (Table 4.1). 

Figure 4.5 illustrates scatter plots of NDVI vs. vegetation cover percentage for different 

months and Table 4.3 represents regression models between NDVI of different months and 

vegetation cover percentage. As shown, the regression model with the highest R2 is related 

to May. This is in agreement with results of Pearson correlation coefficient. Therefore, the 

NDVI of May was used to map the vegetation cover percentage. Figure 4.6 shows the 

created map. The accuracy of this map is 78.4%. 

 

Table 4.3. regression models between NDVI of different  
months and vegetation cover percentage 

Month Regression model R2 

April Y = 259.13X - 13.77 0.56 

May Y = 123.51X - 2.1123 0.63 

June Y = 114.02X - 0.6924 0.61 

July Y = 133.82X - 1.4934 0.59 

August Y = 145.72X - 3.1909 0.58 

September Y = 154.87X - 3.9007 0.57 

Y = vegetation cover percentage       X = NDVI 
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Figure 4.5. Scatter plots of NDVI vs. vegetation cover percentage for different months 

 

 

Figure 4.6. Vegetation cover percentage map of the study area 
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4.2.8. Summary and conclusion 

The results show that the relation between greenness and NDVI as well as the correlation 

between vegetation cover and NDVI are changed based on the growing season (Table 4.2, 

Table 4.3 and Figure 4.4). These changes will also differ depending on the vegetation type. 

The fact is that the vegetation coverage plays an important role in the reflection from the 

plant (more than 50%). The rate of this reflection depends on the amount of water in plant, 

cell structure, amount of chlorophyll, and the structure of the plant itself (Sabins 1978; 

Jones and Vaughan 2010; Xie et al., 2008). Therefore, the amount of water has a 

significant influence in spectral reflection from the plant in Red and Near Infrared bands. 

However, the amount of water varies depending on the ecosystem and therefore the 

seasonal changes will change it in photosynthesis of plants (Jones and Vaughan 2010; 

Lillesand and Kiefer 1994; Zhau et al., 2001; Propastin 2007). There would be difference 

between plants in different types, based on the growing period and sensitivity of the plant 

with soil moisture (Hosseini et al., 2012; Tueller 1989; Jafari 2007). That is because the 

trees compare to grass and forbs are less sensitive to the moisture. Because grasses and 

forbs have the most dependency on the precipitation, the highest fluctuation in greenness 

as well as correlation between vegetation coverage and NDVI is seen in Alpine Plants 

(Figure 4.3, Table 4.2 and Table 4.3). . In the other hand, they have shorter lifetime and 

less stability than shrubs and trees.  

In Halophyte, we have less fluctuation in correlation between vegetation coverage and 

NDVI as well as NDVI itself. Since trees and shrubs have longer roots, they are able to 

use moisture available in the deeper layers of the soil. That enables them to be more stable 

during the growing season.  

An increase in NDVI from beginning until maturity of the plant life is observed, but it will 

be decreased at the end of the growing season (Chang et al, 2007 and Senseman et al, 
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1996).  In different seasons the plant spectral reflection shows changes in different 

frequency channels (Prigent, 2001 and Hively et al, 2009). The current study confirms 

these achievements. 

The relationships between vegetation and NDVI and also created vegetation cover 

percentage map in this research would be beneficial to improve rangeland management 

and natural resources conservation. Predicting and monitoring vegetation cover percentage 

can be achieved by relating the field data with a satellite derived vegetation index. The 

results would be useful for natural resources and rangeland managers to detect land 

degradation in order to rehabilitate the degraded areas. In addition, the results of this 

research represent the successful application of AVHRR NDVI images on vegetation 

studies in dry rangelands of Iran. The methodology of this research can be applied to other 

areas to assess vegetation cover and resources management. 

As a general conclusion the date of recorded images to study the forbs and grasses is in a 

particular importance. While in vegetation types covered with bush, shrub and tree the 

timing does not play a significant role. Therefore, in order to reach the most accurate 

results, it is necessary to have knowledge about the vegetation type and satellite data in 

advance. Furthermore, considering the interaction between different vegetation species 

and types, climatic factors, especially precipitation and temperature, are suggested. It 

could lead to the better understanding of the vegetation reflectance in different 

phonological stages. This would be useful to select the best time interval of satellite 

images for the vegetation studies. 
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Chapter 5. Using remote sensing and a geographic information system to monitor the 

relationship between vegetation dynamics and precipitation in the Poshtkouh 

rangelands, central Iran  

 

Abstract: 

This study investigates the relationship between the inter-annual and intra-annual 

dynamics of vegetation and precipitation variations in the Poshtkouh area rangelands in 

Yazd province, central Iran. The analysis was built on a monthly time series of the 

Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High 

Resolution Radiometer (AVHRR) onboard the meteorological satellite of the National 

Oceanic and Atmospheric Administration (NOAA) and precipitation data from 

meteorological stations across the area for the period 1996-2008. Seasonal and annual 

precipitation maps were created using a combination of co-kriging interpolation and the 

digital elevation model (DEM). The inter-annual and intra-annual relationships between 

precipitation variation and vegetation dynamic were examined using non-linear and linear 

regressions. We assessed the impact of certain environmental variables on the relationship 

between precipitation and the NDVI. These variables are the mean annual precipitation 

(MAP), vegetation cover percentage (VCP), soil available moisture (SAM), and 

topographic wetness index (TWI). To achieve this, we created maps of the mentioned 

variables using geostatistics and remote sensing. Our results show that the strength of the 

relationship between precipitation and NDVI depends on species’ composition, MAP, 

VCP, SAM, and the TWI. Vegetation was found to have a strong response to precipitation 

in the northern and eastern parts of the study area where forbs and grasses are considerably 

dominant. The non-significant correlation between precipitation and the NDVI in the 

southwestern parts of the study area are due to the dominance of hardy shrubs and bushes.  
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Keywords: vegetation dynamic, precipitation variations, AVHRR, NDVI, DEM, 

environmental variables. 

 

5.1. Introduction 

Vegetation responds to different ecological factors, especially climate (Hosseini, et. al 

2003). Precipitation has a direct effect on the vegetation composition. Precipitation’s 

effect on vegetation is particularly pronounced in drylands, which occupy more than 40% 

of the whole land area and represent one of the world’s biggest carbon pools (Lal, 2004). 

Drylands’ ecosystems are generally characterized by high inter-annual variation in 

precipitation,  making them susceptible to land degradation and desertification (Veron et 

al., 2006). Recent studies on land degradation and desertification (LDD) in different arid 

regions have emphasized the importance of assessing the relationship between vegetation 

and precipitation (Li et al., 2004; Symeonakis & Drake, 2004). Studies of different regions 

have shown the magnitude of vegetation’s response to precipitation (Wessels et al., 2004; 

Propastin & Kappas, 2008b). Therefore, it is important to assess the inter-relations 

between vegetation and climate dynamics (especially precipitation) in drylands.   

Researches have recently demonstrated that coarse-resolution satellite sensors, such as the 

National Oceanic and Atmospheric Administration (NOAA) and Advanced Very High 

Resolution Radiometer (AVHRR), provide image data that are perfectly designed for 

broad-scale monitoring vegetation conditions (Loveland et al. 1995, Ehrlich et al. 1994, 

Running et al. 1994, Goward 1989, Propastin and Kappas, 2008a,b). Such studies often 

use satellite-derived vegetation indices (VI). The Normalized Difference Vegetation Index 

(NDVI) is one of the most commonly used vegetation indices for vegetation monitoring. 

NDVI is highly correlated with green biomass and vegetation structure characteristics, 

such as vegetation cover and the fraction of absorbed photosynthetically active radiation 
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(Tucker et al. 1985; Myneni & Williams, 1994; Zeng et al., 2000). Recent studies have 

demonstrated this index’s suitability for investigating vegetation conditions with respect to 

primary production and crop area assessment (Gilabert et al. 1995). Other application 

fields of NDVI include the detection of land cover change and mapping vegetation cover 

(Lambin 1996; Lambin and Ehrlich 1997; Sannier et al., 1998).  

Over the last two decades, NOAA AVHRR NDVI has proven to be one of the most 

effective tools for investigating climate-vegetation inter-relationships. Numerous studies 

have used NOAA AVHRR NDVI and climate data to quantify  differences between 

regions’ vegetation-climate responses   (Farrar et al., 1994; Yang et al., 1998; Wang et al., 

2003; Propastin and Kappas, 2008b). For example, a 20-year NDVI time series was used 

to examine the spatio-temporal dynamics of the Northeast Region of Brazil (Barbosa et al., 

2006). Foody (2005) examined photosynthetic activity’s response to inter-annual rainfall 

variations using 20 years’ (1981-2000) NDVI AVHRR data from the south of the Sahara. 

Olsson et al. (2005) used NDVI AVHRR to indicate greening trends in the Sahel zone 

over the last two decades.  

Prior researches have mostly used statistical analyses, including regression and correlation 

techniques, to quantify the vegetation-climate relationships. However, determining how a 

vegetation type responds to climate remains a challenge. Recent studies have found that 

the correlation between vegetation and climatic parameters is mostly weaker in woodland 

and forest vegetation. It has been reported that shrubs and desert vegetation have a weaker 

correlation with the spatio-temporal dynamics of climatic parameters. Steppe grassland 

vegetation areas are associated with the most rainfall and highest temperatures (Li et al., 

2004; Wang et al., 2003; Richard & Poccard, 1998). However, the response of the NDVI 

to rainfall and temperature varies geographically (Richard Y. & Poccard, 1998; Schultz & 

Halpert, 1995). Considering LDD studies, it was also shown that the correlation between 
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vegetation and precipitation in similar cover classes strongly depends on the degree of 

degradation (Li et al., 2004; Evans & Geerken, 2004).    

Several studies have focused on soil moisture’s role in determining the properties of 

vegetation (e.g., Farrar et al. 1994; Mendez-Barroso et al, 2009; Walker and Noy-Meir, 

1982.; Zare Chahouki, 2006). Tinley (1982) found that soil moisture determines the spatial 

distribution of forests, savannas, and grasslands. Other studies have demonstrated that the 

soil moisture and soil porosity affect vegetation parameters (Eagleson's, 1982 & 1985; 

Mendez-Barroso et al, 2009; Okitsu, 2005). 

Although soil moisture is one of the most important factors affecting vegetation 

composition and greenness, it is very difficult to measure. Scientists have used various 

proxies for soil moisture, such as the topographic wetness index (TWI) derived from the 

DEM within geographic information system (GIS) environments. This index is a relative 

measure of the long-term soil moisture availability of a given site (Bagheri, 2011; Gruber 

& Peckham 2008; Iverson et al. 1997).  

Iran is the eighteenth largest country in the world (area of 1648195 km²) and is entirely 

occupied by drylands. Iranian arid, semi-arid, and sub-humid ecosystems represent very 

large reservoirs for carbon accumulation and play an important role in the continental and 

global carbon circle (Mesdaghi, 2004). Despite the potential importance of Iranian biomes 

in global change, only few studies have been conducted on the vegetation-climate 

relationships in this country.  

This study’s objective is to make a small (but important) contribution to closing the 

existing research gap. We analyzed the within-season and inter-seasonal influences of 

precipitation on vegetation conditions in various arid and semiarid rangeland biomes in 

central Iran. In addition to rainfall data, we used NOAA/AVHRR-NDVI, which is an as 

indicator of vegetation conditions, to analyze the spatial and temporal relationship 
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between these variables for different vegetation types. We focused on finding differences 

between how vegetation types in various cover classes respond to precipitation. The 

response differences were then discussed with respect to MAP, VCP, SAM, and TWI. 

Finally, we concluded this study by making suggestions for improving the application of 

precipitation-NDVI relationships in rangelands’ management. 

 

5.2. Material and methods 

5.2.1. Study area 

This research was conducted in the Poshtkouh rangelands on the southern slopes of the 

Shirkouh mountains in the Yazd province, central Iran (31°33′ 1″ N, 53°40′06″ E - 

31°04′27″ N, 54°15′19″ E) (Figure 5.1). The area is characterized by jagged terrain 

conditions. The maximum elevation is 3990 m and the minimum elevation is 1400 m. The 

high spatial variability of the Poshtkouh rangelands’ climate is due to this large elevation 

variability. The average annual precipitation is about 300 mm in the Shirkouh mountains 

in the northern part of the study region whereas it decreases to 45 mm at the edge of 

Kavir-e-Abarkouh in the southwestern part of the region. Similarly, the average annual 

temperature shows large fluctuations ranging from 17.1°C in the southern part to 10.8°C 

in the northern part of the study region, with absolute minimum and maximum 

temperatures of 0.2 and 29.4°C respectively.  

 

Figure 5.1. General location of the study area 
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5.2.2. Vegetation types 

The diverse climate and terrain conditions determined the vegetation patterns in the study 

area (Figure 5.2). The northern part is covered by alpine bushes and mixed grasslands; the 

dominant species are Astragalus and Stipa (Table 5.1). The vegetation cover in the pre-

montane zone is presented by sagebrush dwarf shrubs and short grasses of which 

Artemisia sieberi, Launaea acanthodes, Stipa barbata, and Salsola are the dominant 

species. The ypsic soils of the lowland in the central part of the study region are covered 

by gypsophytic plants of which Salsola, Calligonum and Artemisia are the dominant 

species. The saline areas in the southern part of the region are covered by dense halophytic 

vegetation, namely Seidlitzia rosmarinus, Salsola spp., and Haloxylon aphyllum.  

Using Zare Chahouki’s (2006) vegetation map, we included thirteen vegetation types in 

this study (Zare Chahouki, 2006). Owing to the coarse spatial resolution of NOAA 

AVHRR satellite images, which were used in this research, vegetation types with similar 

plant species were merged and the number of types was reduced to four (Table 5.1 and 

Figure 5.2). 

Table 5.1. Vegetation types in the study area 

Plant species Vegetation types 

Artemisia aucheri, Scariola orientalis, Astragalus ochrochlorus, Astragalus 

calliphysa, Astragalus myriacanthus, Acanthophyllum spp., Bromus spp., Stipa 

hohenackeriana, Stipa barbata, Acantholimon spp., Launaea acanthodes, Noaea 

mucronata, Euphorbia heterandena, Echinops orientalis 

Alpine Plants 

Artemisia sieberi, Launaea acanthodes, Scariola orientalis, Iris songarica, Salsola 

spp., Euphorbia heterandena, Astragalus albispinus., Noaea mucronata, Stipa 

barbata, Salsola kerneri, Salsola tomentosa, Astragalus albispinus, Rheum ribes 

Sagebrush 

Salsola spp., Zygophyllum eurypterum, Dorema ammoniacum, Artemisia sieberi, 

Cornulaca monacantha, Calligonum comosum, Stipagrostis plumose 
Gypsophyte 

Seidlitzia rosmarinus, Tamarix ramosissima, Salsola spp., Haloxylon aphyllum.  Halophyte 
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Figure 5.2. Vegetation map of the study area 

 

5.2.3. AVHRR NDVI data 

The NOAA AVHRR NDVI is defined as: 

                                       NDVI =
ρNIR − ρred

ρNIR + ρred  
(5-1)     

Where ρNIR represents near-infrared reflectance (Channel 2 of AVHRR) and ρred 

represents red reflectance (Channel 1 of AVHRR). Among the vegetation indices, NDVI 

is the most widely used for monitoring and modeling vegetation dynamics (Tucker et al. 

1985; Sannier et al., 1998; Propastin, 2006). 

In this study, we used the 8 km spatial resolution NDVI data set, which the Global 

Inventory Modeling and Monitoring Studies (GIMMS) group produced from the raw 

NOAA AVHRR NDVI (Pinzon et al., 2004). Using Pinzon et al.’s (2002&2004) and 

Tucker et al.’s (2005) methods, we corrected for post-launch sensor degradation and 

atmospheric noises during the pre-processing of the GIMMS NDVI data. The NDVI 
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images used to produce the GIMMS NDVI data set represent 15-day maximum value 

composites (Holben, 1986). The GIMMS NDVI data for the period 1996-2008 covering 

the whole area of Eurasia were downloaded from the GIMMS archive at 

ftp://pengimms.gsfc.NASA.gov. The originally 15-day composites were compounded to 

monthly composites. The territory of Iran was extracted from the Eurasian GIMMS NDVI 

data and used for further analysis.  

 

5.2.4. Precipitation data 

We used the Iran Meteorological Organization’s monthly rainfall data (January-

December) that was collected from nine climatic stations in the study area and adjacent 

areas between 1996 and 2008. From these data we prepared gridded maps for seasonal and 

annual precipitation distribution over the study area. The preparation of maps based on 

interpolation of data between the climate stations. We tested different interpolation 

techniques (Inverse Distance Weighting, Nearest Neighbor, Thin Plate Spline, Multiple 

Regression, Polynomial Surfaces, etc.) in order to find the best one. Accuracy of the 

produced gridded maps was assessed by the lay-one-out cross-validation method. All the 

tested interpolation approaches produced comparable results distinguishing only a little in 

their accuracy. However, we selected one of the most robust and accurate – the 

polynomial multiple regression – and used it for retrieval of all gridded precipitation maps 

in our study. Since the relief of the study area is well structured and demonstrates close 

relationships to spatial distribution of climate parameters, additionally to geographic 

coordinates of the climate stations, the interpolation approach used relief elevation as an 

external predicative variable.   

For this a digital elevation model (DEM) was used. The DEM was extracted from the 
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 Global 30 arc Second Elevation Data Set (GTOPO30) (www1.gsi.go.jp/geowww/ 

globalmap-gsi/gtopo30/gtopo30.html). To match the GIMMS NDVI data set, the produced 

precipitation maps were resampled to 8 km resolution and co-registered with the 

composites of the GIMMS NDVI data.     

 

5.2.5. Data analysis   

5.2.5.1. Analyzing the relationship between precipitation data and NDVI 

We present the data flow and general analysis steps in Figure 5.3. After acquiring the data 

sets and extracting the study region as described above, both the GIMMS NDVI and 

gridded precipitation maps of the individual months were composed to the 1996-2008 time 

series and co-registered in a GIS environment. We moreover inputted the vegetation cover 

map into GIS and co-registered it with the NDVI and precipitation data sets. Further 

analyses were also carried out in GIS. In this study, we used SAGA GIS software Version 

2.0, which was developed in the Department of Geography at the University of Göttingen, 

Germany (www.saga-gis.org/en/index.html), to create precipitation maps and analyze 

vegetation-precipitation relations. ENVI 4.8 was used to process NOAA AVHRR NDVI, 

and Arc GIS Version 10 was used to conduct some extra analyses. 

Linear and non-linear regressions were used to examine the inter-annual and intra-annual 

relationships between the precipitation amount and NDVI dynamics. We computed the 

correlation coefficients between NDVI and precipitation to determine the strength of the 

relationships between these variables, which is indicative of the vegetation’s response to 

the climate. We conducted both spatial and temporal data analyses. Regarding the 

temporal relationship between variables, the NDVI’s response to precipitation was 

analyzed using both annual and seasonal scales. We used inter-annual analyses to compare 
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the mean annual NDVI concurrent time series and annual precipitation values for the 

whole study period 1996-2008.  

We compared the mean NDVI of individual seasons with the precipitation sums of 

corresponding seasons (at the concurrent basis) or with the precipitation sums of previous 

seasons (with time lag). Time lags were implemented into the seasonal analyses to account 

for the antecedent influence of precipitation on vegetation growth.  

Temporal analyses were carried out for each pixel showing spatial patterns in NDVI’s 

response to precipitation. We subsequently used this information to detect differences in 

the NDVI-precipitation response among various vegetation classes.   

Moreover, we examined the spatial relationship between NDVI and precipitation by 

deriving correlation coefficients for all pixels of NDVI maps and all pixels of 

corresponding precipitation maps. In order to investigate the differences in the NDVI-

precipitation correlation between the vegetation types, we also calculated correlation 

coefficients for each vegetation type.  

 

5.2.5.2. Using NOAA AVHRR NDVI to map the vegetation cover percentage (VCP)  

We selected 90 sample sites with different vegetation types to estimate the vegetation 

cover in the field. At least 20 quadrates of each site were randomly located. We estimated 

each quadrate’s vegetation cover percentage and recorded the dominant plant species 

therein. The average cover percentage of each site was considered the final value. We used 

Arc GIS 10.0 software to create a map from the sampling points we recorded using a 

global positioning system (GPS). Next, the digital numbers (DNs) of sampling points were 

extracted from NOAA AVHRR NDVI images. We then computed a regression model 

between the field data and relevant DNs using SPSS 17.0 software. Finally, we calculated 
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the vegetation cover percentage map (Figure 5.7) based on the following regression 

model:  

Cover % = 207.24*NDVI – 8.69                 (R2 = 0.69)                                      (5-2) 

 

5.2.5.3. Using geostatistics to map soil available moisture (SAM)  

We collected 112 soil samples from different homogeneous units (vegetation types) to 

create a soil available moisture (SAM) map. The sampling method we used was similar to 

the one we used to calculate the vegetation cover percentage. We used a weighting method 

to measure the SAM in a laboratory and a semivariogram analysis to assess its spatial 

dynamics (Trangmar et al. 1985, Bailey and Gatrell 1998, Mc Bratney and Pringle 1999). 

Before running the geostatistical tests, we tested the assumptions of normality and trend. 

A semivariogram (Goovaerts 1997) was used to estimate the degree of spatial variability 

between neighboring areas’ SAM, and then a model function was used to fit the 

semivariogram. We tested several model functions, including spherical, exponential, and 

Gaussian functions to determine the best function of the semivariogram and its parameters 

(Table 5.2). Finally, a SAM map was created using ordinary kriging. We used ArcGIS 10, 

and GS+ 5.1.1 to perform a geostatistical analysis.  

Table 5.2. Parameters of variogram analysis for SAM 

Semivariogram model Lag distance Nugget effect Range Sill R2 

Spherical 3800 0.36 36262.9 7.44 0.94 

 

5.2.5.4. Using DEM to map a topographic wetness index (TWI)  

This index is defined as TWI=ln(As/tan b), where As represents the specific catchment 

area (the cumulative upslope area draining through a cell divided by the contour width) 

and b denotes the local slope (Beven & Kirkby 1979). The specific catchment area is a 

parameter describing the site’s tendency to receive water from an upslope area and the 
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local slope is a parameter describing the tendency to evacuate water (Gruber & Peckham 

2008). This index is therefore a relative measure of a given site’s long-term soil moisture 

availability. 

 We used Ilwis 3.7 software to create the TWI map of the study area based on the DEM. 

Subsequently, we calculated the mean value of this index for each of the vegetation types. 

 

5.2.5.5. Analyzing environmental variables’ effect on the relationship between NDVI 

and precipitation 

This section focuses on measuring the strength of the correlation between NDVI and 

precipitation versus some environmental factors, such as the vegetation cover percentage 

(VCP), mean annual precipitation (MAP), soil available moisture (SAM), and topographic 

wetness index (TWI). To conduct this analysis, we  created maps of the VCP, MAP, SAM, 

and TWI using SAGA GIS Version 2.0.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Flowchart of the methodology. 
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5.3. Results  

5.3.1. Spatial distribution of NDVI and precipitation in the study area  

Figure 5.4 illustrates the spatial distribution of precipitation and NDVI. The spatial trend 

in precipitation across the study area closely resembles the area’s topography, especially 

elevation. The amount of precipitation is the highest in the mountains in the northern area 

and decreases towards the saline lands in the southwestern part of the study area. The 

mean annual NDVI patterns approximately coincide with those of precipitation. But, there 

are some important differences. For instance, due to the rocky mountains, there is not an 

strict correspondence between precipitation and NDVI maps in the northern part of the 

area (figure 5.2 and 5.4). 

The NDVI value is characterized by a strong decreasing gradient from the northern to 

southwestern areas. Figure 5.4 reveals that, in a small part of the southwestern area, the 

amount of precipitation is very low but the amount of NDVI is high. The vegetation map 

(Figure 5.2 and Table 5.1) shows that halophyte species dominate this part of the study 

area. As will be shown in the analyses below (see Tables 5.4, 5.5, 5.6 and Figures 5.6 and 

5.8), the growth of halophytes, such as Haloxylon aphyllum and Tamarix ramosissima, 

does not depend on precipitation. This shows that the NDVI’s spatial distribution does not 

correspond to precipitation in the whole area. Spatial variation in the NDVI may be due to 

spatial variability in some environmental variables, such as precipitation, topography, 

edaphic factors, and type of vegetation.  

Some characteristics of different vegetation types have been summarized in Table 5.3. The 

table reveals that alpine receives the most precipitation and has the highest vegetation 

cover percentage and NDVI, followed by sagebrush, gypsophytes, and halophytes. Soil 

available moisture, on the other hand, is the highest for halophytes, followed by 

gypsophytes and sagebrush, and is the lowest for alpine. In addition, based on some 
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collected information of the study area, the level of groundwater in halophyte communities 

(southwest of the study area) is very high (Zare Chahouki, 2006). 

  

  

Figure 5.4. Spatial distribution of mean annual precipitation (left) and 

 spatial distribution of mean annual NDVI (right). 

 

5.3.2. The spatial relationship between precipitation and NDVI 

Tables 5.4 and 5.5 show a summary of the average correlation coefficients between 

precipitation and the NDVI in different vegetation categories that represent the 

relationship between annual and seasonal precipitation (Table 5.4) and the NDVI and 

annual maximum NDVI (Table 5.5). According to the tables, correlations between annual 

precipitation and annual mean/maximum NDVI are significant in the alpine, sagebrush, 

and gypsophyte classes. The relationship was not significant for the halophyte class (p < 

0.05). This indicates that the annual moisture regime of forbs, grasses, and shrubs mostly 

depends on the atmospheric precipitation, whereas halophytic vegetation uses soil water. 

Plants’ dependence on atmospheric precipitation is higher in the vegetation classes with a 

larger cover percentage that require a higher average rainfall, such as grasses and forbs 

species. There is a significant correlation between alpine plant habitats’ annual 
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precipitation and annual maximum NDVI (Table 5.5). Averaged over the hydrologic year, 

groundwater has a slight influence on alpine plants. As shown in Table 5.6, winter 

precipitation is the greatest contributor to plant growth, while precipitation in other 

seasons plays a less important role. This is indicated by correlation coefficients between 

winter precipitation and the spring/summer NDVI for alpine and sagebrush vegetation. 

However, precipitation did not have a pronounced influence on gypsophytes during any 

season, even though there was a slight correlation between the average annual 

precipitation and the annual NDVI (Table 5.5). In halophyte communities, there is mostly 

a negative correlation between seasonal precipitation and the annual NDVI, which 

indicates that the growth of shrubs and bushes is less dependent on precipitation. 

 

Table 5.3. Some characteristics of different vegetation types  

 

Table 5.4. Spatial correlation coefficient between annual NDVI and annual precipitation  

Vegetation type Alpine  Sagebrush Gypsophyte Halophyte 

Precipitation-NDVI correlation 0.64* 0.61* 0.55* -0.34 

* statistically significant at the p-level < 0.05                 

 

5.3.3. The temporal relationship between precipitation and the NDVI  

A comparison of the mean annual precipitation and mean annual NDVI trends illustrate 

precipitation’s inter-annual effects on vegetation. Figure 5.5 shows the precipitation and 

NDVI trends between 1996 and 2008 in the study area. According to this figure, annual 

Vegetation type Alpine   Sagebrush Gypsophyte Halophyte 

Mean annual  precipitation 231.33 159.50 121.75 53.50 

Mean annual NDVI 0.12 0.09 0.07 0.08 

Mean vegetation cover percentage % 24 12.78 8.48 7.60 

Mean soil available moisture 4.30 4.28 3.28 8.10 

Mean topographic wetness index 14.81 16.09 15.50 17.60 
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NDVI and annual precipitation trends roughly correspond with each other. Moreover, the 

amount of precipitation and NDVI reduced from 1996 to 2008. The calculated coefficient 

of determination (R²) between both variables is 0.67 (p < 0.01), which indicates that 

precipitation has a strong effect on the inter-annual dynamics of NDVI. 

The annual NDVI and annual precipitation trends in each of the vegetation types are 

shown in Figure 5.6 and the precipitation-NDVI correlations for each of the vegetation 

types are represented in Table 5.5. As the figure and table show, the NDVI strongly 

correlates to the precipitation trends for alpine plants, sagebrush, and gypsophytes, but not 

for in halophytes.  

Figure 5.5 Graph of the regression between NDVI and precipitation trend (left) and  

between mean annual precipitation and  NDVI (right) 

 

Table 5.5. Correlation coefficients of annual maximum NDVI with annual and seasonal precipitations 

 

 

 

 

 

 
                                *statistically significant at the p-level < 0.05 

 

5.3.4. The effect of precipitation time lag on NDVI 

Table 5.6 shows that spring and winter precipitation correlates with spring and summer 

NDVI, which  illustrates the influence of precipitation time lag on NDVI. The correlation 

  

Vegetation type Alpine  Sagebrush Gypsophyte Halophyte 

Annual precipitation  0.72* 0.57* 0.36* -0.15 

Winter  precipitation 0.51* 0.42* 0.29 0.18 

Spring  precipitation 0.60* 0.54* 0.32 -0.13 

Winter-Spring  precipitation 0.67* 0.57* 0.36 0.04 

Autumn  precipitation -0.10 0.11 0.20 0.32 
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coefficients between winter precipitation and the spring NDVI are mostly positive and 

higher than those of spring precipitation and the spring NDVI. This indicates that there is a 

time lag between NDVI and precipitation. 

 

Figure 5.6. Trend of precipitation & NDVI in different vegetation types 

 

Table 5.6. Correlation coefficient of precipitation time lag on NDVI 

Vegetation type Alpine  Sagebrush Gypsophyte Halophyte 

Spring precipitation and spring NDVI -0.20 0.01 -0.17 -0.18 

Winter precipitation and spring NDVI 0.25 0.42* 0.28 -0.06 

Winter-Spring precipitation and spring NDVI 0.40* 0.27 0.07 -0.14 

Winter precipitation and summer NDVI 0.41* 0.40* 0.30 0.31 

* statistically significant at the p-level < 0.05 

 

  

  



98 

 

5.3.5. The effect of some environmental variables on the NDVI-precipitation 

relationship  

Figure 5.7 shows the maps we created of the SAM and VCP. Figure 5.8 presents the effect 

of the MAP, VCP, TWI, and SAM on the precipitation-NDVI relationship. The SAM has 

a negative effect on the NDVI-precipitation relationship. We observed a non-significant 

correlation between the NDVI and precipitation in halophytes as they grew in areas with 

higher SAM than other plant types. The MAP and VCP have a positive effect on the 

NDVI-precipitation relationship.  

 

  

Figure 5.7. Soil available moisture map (left) and vegetation cover percentage map (right) 

 

5.4. Discussion 

According to the results, there is a significant correlation between the annual precipitation 

and annual NDVI in most of the vegetation habitats, while the correlation between 

seasonal precipitation and the NDVI is usually lower and in some cases negative (Table 

5.5). The central part of Iran has a Mediterranean precipitation regime, which means that 

most of the annual rainfall occurs at the end of autumn and during winter, there is a low 

amount of precipitation in spring, and summers are mostly dry. This means that there is 
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not enough precipitation during the growing season. Hence, in most parts of the study 

area, the relationship between seasonal precipitation and NDVI is lower than the yearly 

precipitation.  

 

Figure 5.8. Effect of MAP, VCP, SAM, and TWI on the precipitation-NDVI relationship 

 

The significant correlation between seasonal precipitation and the NDVI of some 

vegetation types is due to their location on the lowlands. Precipitation from surrounding 

areas is drained to the lowlands (redistribution of water). These vegetation types use the 
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precipitation of adjacent areas; therefore, the growth of vegetation in these parts indirectly 

depends on seasonal precipitation (Mesdaghi, 2004).  

The time lag between precipitation and the NDVI is due to the lower amount of 

precipitation in spring than in winter. Furthermore, due to heat and evaporation, vegetation 

cannot use the total spring precipitation. This study’s results thus verify similar studies’ 

findings (Mingjun et al. 2007).  

The correlation coefficients in this study could not fully explain vegetation variations. 

Therefore, it can be inferred that the vegetation distribution is driven by precipitation 

distribution as well as some other environmental variables.  

The annual and seasonal correlation coefficients for halophytes is usually lower than for 

other types. Moreover, according to Figure 5.6, this NDVI habitat trend does not 

correspond to the precipitation trend. Detailed ground information will likely help explain 

this weak relationship (Eklundh, 1998). In this habitat, the groundwater level is higher 

than in other parts of the study area (Zare Chahouki, 2006) and the soil available moisture 

is also more prevalent than other environmental variables (Table 5.3). This means that the 

vegetation growth in this area does not depend on precipitation but on groundwater 

(Figure 5.8). 

As Figure 5.8 illustrates, the MAP, VCP, and SAM affect the correlation between 

vegetation dynamics and rainfall variations. This is similar to results of Nightingale and 

Phinn (2003). Nevertheless, we did not quantitatively measure these factors’ degree of 

influence on the NDVI-precipitation relationship.  

The results demonstrate that the strength of the relationship between precipitation and the 

NDVI is dependent on environmental variables, especially the species composition, MAP, 

SAM, VCP, and TWI. Vegetation in the northern and eastern parts of the study area was 

found to respond strongly to precipitation. In these areas forbs and grasses, such as 
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Scariola orientalis, Launaea acanthodes, Stipa barbata, Euphorbia heterandena, and 

Echinops orientalis, are considerably dominant. The correlation between the NDVI and 

precipitation is higher in the alpine habitat  due to the area’s higher mean annual 

precipitation and vegetation cover percentage. On the other hand, the non-significant 

correlation in the southwestern parts of the study area can be explained by the dominance 

of some hardy shrubs and bushes, such as Tamarix ramosissima, Cornulaca monacantha, 

Seidlitzia rosmarinus, Ephedra strobilacea, Haloxylon aphyllum, and Calligonum 

comosum. 

 

5.5. Conclusions 

The results of our comparisons of NDVI and precipitation during the study period revealed 

that the NDVI data is a powerful tool for quantifying the strength of relationships between 

vegetation patterns and climatic conditions.  

We suggest that future studies consider the effects of environmental factors. These include 

the amount and distribution of precipitation, precipitation regime, amount of precipitation 

during the growing season, vegetation cover percentage, type of vegetation, physiology, 

and phenology of plant species, groundwater level, topographic wetness index, soil 

available moisture, soil properties, and anthropogenic effects.  

Our findings on the relationship between precipitation and the NDVI will be useful to 

improve the grazing management and to improve and develop rangelands. We need timely 

data on rangeland conditions in order to monitor herbivore distributions. Forage 

availability can be predicted by investigating established relationships between climatic 

variables and vegetation indices. Our findings on climate-NDVI relationships may also be 

helpful in assessing land degradation.  
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 The predictive models for the relationship between vegetation and precipitation are very 

useful for understanding vegetation growth constraints (both climatic and anthropogenic). 

These models provide valuable information on vegetation cover’s sensitivity to climate 

variations and can serve as guidelines for refining the climatological limits of vegetation 

growth.  
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Chapter 6. Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in 

Poshtkouh area, central Iran using the maximum entropy model and geostatistics 

 

Abstract 

Predicting potential habitats of endemic species is a suitable method for biodiversity 

conservation and rehabilitation of rangeland ecosystems. The present study was conducted 

to estimate the geographic distribution of Artemisia sieberi (A. sieberi) and Artemisia 

aucheri (A. aucheri), find the most important environmental predictor variables and seek 

for similarities and differences in habitat preferences between the two species for 

Poshtkouh rangelands in Central Iran. Maps of environmental variables were created by 

means of Geographic Information System (GIS) and geostatistics. Then predictive 

distribution maps of both species were produced using the Maximum Entropy modeling 

technique (Maxent) and presence-only data. Model accuracy is evaluated by using the 

Area Under the Curve (AUC).  Lime1, gravel1, lime2 and elevation most significantly 

affect habitat distribution of A. aucheri, while, habitat distribution of A. sieberi is affected 

by elevation, lime1, am1, lime2, and om2. For both species, elevation has an influence on 

their potential distributions. However, A. aucheri depends more on elevation, and 

consequently climate in comparison to A. sieberi. Finally, it is revealed that the potential 

distribution of A. aucheri is limited mostly to mountainous landscapes while A. sieberi is 

present in wide ranges of environmental conditions. 

 

Keywords: 

Maxent, geostatistics, environmental variables, habitat distribution, A. sieberi, A. aucheri.  
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6.1. Introduction 

Terrestrial ecosystems and global biodiversity patterns have been significantly changed in 

recent decades, mainly due to anthropogenic and climatic effects. Human caused 

overgrazing and dry periods have led to land degradation and will cause an eventual loss 

of biodiversity in rangeland ecosystems of Iran. For conservation and rehabilitation of 

natural ecosystems especially rangelands monitoring of vegetation dynamic and 

determination of suitable plant species for planting in different parts with different 

environmental conditions is necessary. 

In recent years, species distribution models have been increasingly used in ecology (Elith 

et al., 2006; Peterson et al., 2006). These models evaluate relations between existences of 

species and environmental conditions. Several species distribution models are offered for 

predicting potential suitable habitats of plant species (Guisan and Zimmermann, 2000; 

Guisan and Thuiller, 2005; Elith et al., 2006; Guisan et al., 2007a,b; Wisz et al., 2008; 

Anderson et al., 2003). Generalized Linear Model (GLM) is one of the famous and 

frequently used methods (e.g. Pearce & Ferrier, 2000; Guisan & Zimmermann, 2000; 

Beck et al., 2005; Guisan et al., 2002). Some others are neural networks (Manel et al., 

1999), and models using presence only data such as Ecological Niche Factor Analysis 

(ENFA) (Chefaoui et al., 2005; Santos et al., 2006; Martinez et al., 2006), Genetic 

Algorithm for Rule-set Production (GARP) (Stockwell & Peterson, 1999; Sweeney et al., 

2007) and Maximum Entropy (Maxent) (Phillips et al., 2006). Several research papers 

showed that Maxent is superior in performance (e.g. Sergio et al., 2007; Phillips et al., 

2006) compared to ENFA and GARP methods. Phillips et al., (2006), stated Maxent 

model presents good results even for small sample size. Therefore, Maxent is used in this 

research. 
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Artemisia sieberi and Artemisia aucheri are endemic in Iran’s rangelands. These species 

distributed only in Iran and surrounding areas. A. aucheri occurs only in mountainous 

areas with high slope, sandy soils and mean annual precipitation of 300-450 mm. Hence, 

this species has limited ecological distribution. A. sieberi occurs in most parts of arid and 

semiarid rangelands of Iran and recognized as the main plant species of Iran’s rangelands. 

Mean annual precipitation in A. sieberi habitats is 50-250 mm (mostly 100-200 mm) and 

the species grows on different soil types. Therefore, this species has vast ecological 

distribution. In this research both of the mentioned species are considered not only for 

animal feeding due to high grazing tolerance but also in nature conservation and degraded 

land restoration planning. Furthermore, multiple uses of these species especially as 

medicinal plant may also be taken into account (Moghaddam, 2006; Moghimi, 2006; 

Mozaffarian, 2010). 

The main objectives of the present study are: (1) to estimate the geographic distribution of 

 A. sieberi and A. aucheri for Poshtkouh rangelands in Central Iran, (2) to find the most 

important environmental predictor variables and (3) to seek for similarities and differences 

in habitat preferences between the two species. 

 

6.2. Material and Methods 

6.2.1. Study Area 

In order to select an appropriate area for the study, three criteria were considered:      

Variation in landscapes, high biodiversity, and presence of endemic species. The area of 

interest is Poshtkouh rangelands, located at southern slopes of the Shirkouh mountains of 

the Yazd province in central Iran (31°33′ 1″ N, 53°40′06″ E - 31°04′27″ N, 54°15′19″ E). 

Figure 6.1 shows the general location of the study area. 
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Figure 6.1. General location and vegetation types map of the study area (right) 

 and location of sampling sites in the study (left) 
 

The area is characterized by very diverse terrain conditions. The maximum elevation of 

the region is 3990 m and the minimum elevation is 1400 m. The large elevation variability 

is reflected in the high spatial variability of climate elements in the region. Thus, average 

annual precipitation is about 300 mm in Shirkouh Mountain in the northern part of the 

study region whereas at the margin of Kavir_e_Abarkouh (in the southern part of the 

region) it decreases to 45 mm. Similarly, average annual temperature shows large 

differences in the study region ranging from 17.1 °C in the southern part to 10.8°C in the 

northern part, with absolute minimum and maximum temperatures of 0.2 °C and 29.4°C.  

The diverse climate and terrain conditions explain the assorted vegetation patterns in the 

study region (Figure 6.1). The northern part is occupied by alpine vegetation composed by 

bushes and mixed grassland with domination of several species of Artemisia aucheri, 

Astragalus and Stipa. In the pre-montane zone, the vegetation cover is presented by 

Artemisia composed by dwarf shrubs and short grasses with dominating species such as 

Artemisia sieberi, Launaea acanthodes, Stipa barbata, and different species of Salsola. 

Gypsi soils of the lowland in the central part of the study region are occupied by 

gypsophyte plant associations with domination of species of Salsola, Calligonum and 

Artemisia. The salinized areas in the southern part of the region are covered by dense 
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vegetation composed by halophyte species presented by Seidlitzia rosmarinus, Salsola 

spp., and Haloxylon aphyllum.  

 

6.2.2. Species Occurrence Data 

Due to the lack of accurate and reliable data on absence of species, presence only data 

were used (Brotons et al., 2004; Anderson et al., 2003). To collect species occurrence data 

field work was carried out at more than 100 sampling sites. The position of sampling 

points was recorded using Global Positioning System (GPS). 

  

6.2.3. Geo-database for environmental predictor variables 

Previous studies have shown a relationship between environmental variables especially 

climate, topography, and soil with species distribution, (e.g.O’Brien, 1998; Lennon et al., 

2000; Badgley & Fox, 2000; Abdel El-Ghani and Amer, 2003 and Moghimi, 2006). The 

selected environmental predictors can be classified in three groups: 1) topographical 

variables, 2) climatic variables, and 3) soil variables. All environmental maps were 

produced using geostatistical methods with same spatial resolution and stored in a GIS 

environment. Due to the high precision of the recorded data, all environmental attribute 

maps were assembled at a resolution of 30 by 30 m. For geostatistical analysis and 

creating the maps ArcGIS 10 and GS+ 5.1.1 were used. 

 

6.2.4. Topographic maps 

Digital topographic maps of the study area at a scale of 1:25000 were used for creating a 

digital elevation model (DEM). Slope and aspect layers were calculated from the DEM 

data layer using ArcGIS 10 spatial analyst. 
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6.2.5. Climatic maps 

The climatic data used in this research consist of monthly data (January-December) 

collected by the Iran Meteorological Organization for 9 climatic stations placed in the 

study area and around it for the period of 1996-2008. Monthly, seasonal and annual 

precipitation maps were produced using the co-kriging interpolation approach in 

combination with a digital elevation model (DEM). Considering the fact that climatic 

maps and elevation usually demonstrate a high correlation, the elevation could be 

suggested as a representative for climatic factors Table 6.1 summarizes the mentioned 

correlations in the study area. The table proves the existence of high correlation between 

all climatic factors and elevation. Therefore, the climatic maps were not used in Maxent 

model.  

Table 6.1. Correlation between climatic data and elevation 

Climatic factor Correlation with elevation 

Precipitation 99.7** 

Temperature 99.2** 

Humidity 93.2** 

Evapor transportation 99.7** 

Wind speed 95.6** 

Frost days 99.7** 

** Statistically significant at the p-level < 0.01  

 

6.2.6. Soil mapping using geostatistics 

In order to take samples from homogeneous units, hypsometric, aspect, slope and geologic 

maps were overlain and map of the homogeneous units was created. Then 3-5 parallel 

transects with 300-500 m length were located in each unit and sampling was done along 

the transects (random-stratified sampling). At each of the sampling points, soil samples were 

taken in two depths (0-30 and 30-80 cm) in order to cover the root depth of A. sieberi and A. 

aucheri  which can be more than 60 cm. In total, 112 soil samples were collected in depths 0-
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30 and 30-80 cm (figure 6.1). Samples of the first and second depths have been labeled 

with 1 and 2, respectively (e.g. EC1, EC2, Gravel1, and Gravel2). In the next step, all of 

the required soil parameters as mentioned in part 6.2.7 were measured in the soil 

laboratory. 

Using semivariogram analyses the degree of spatial variability for each soil attribute was 

determined. In addition, normality and trend of data were tested. In the next step for 

ascertaining the degree of spatial variability between neighboring observations for each 

variable a semivariogram was determined and then appropriate model function was fitted 

to the semivariogram (Goovaerts 1997). Through analysis of the semivariogram, the best 

model (e.g., spherical, exponential, or Gaussian) and its parameters were determined.  

Finally the maps of soil parameters were created using the kriging method  

To ensure that the determined variogram models are appropriate, the models were validated using 

the cross-validation technique. The average error was considered for evaluating the cross 

validation results, (Table 6.2). The lower the average error the higher the accuracy of estimation 

model. 

Table 6.2. Average error for different soil parameters  

Soil parameter AM Clay EC Gravel Gyps Sand Lime 

Average error 0.01 0.02 0.18 -0.03 0.009 0.16 0.01 

 

6.2.7. Using Principal Component Analysis (PCA) to reduce number of variable in 

Maxent model 

Principal component analysis (PCA) was conducted on vegetation and environmental 

variables matrix using the program PC-ORD. This analysis is used to reduce the number 

of input for Maxent model. Below is a list of variables that were implemented as input for 

the PCA: 
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Precipitation, temperature, elevation, slope, aspect, vegetation cover percentage, grazing 

intensity, and a number of soil parameters such as gravel, silt, clay, sand, lime, organic 

matter (OM), available moisture (AM), gypsum (gyps), Electrical Conductivity (EC), 

acidity (pH), potassium (K), magnesium (Mg), calcium(Ca), sodium (Na), carbon trioxide 

(Co3), Chlorine (Cl), bicarbonate (Hco3), and sulfur dioxide (So2). 

Finally, based on the result of PCA the following environmental variables were selected as 

input for Maxent model: 

Elevation, aspect, slope, gypsum (gyps), lime, available moisture (AM), electrical 

conductivity (EC), clay, gravel, organic matter (OM), and acidity (pH). 

 

6.2.8. Modeling habitat distribution of A. sieberi and A. aucheri using Maximum 

Entropy (Maxent) model 

There are several modeling techniques for predicting the potential habitat of plant species 

using the environmental variables. In this research prediction of the potential distribution 

of two sagebrush species was based on the Maximum Entropy (Maxent)  modeling 

technique using the program Maxent 3.3.3 (Phillips et al. 2004, 2006; Phillips & Dudik 

2008, AT&T Labs-Research, Princeton University). 

Maxent is a general-purpose model with a precise mathematical formulation (Phillips et 

al., 2006). The basic idea of Maxent is “to estimate (approximate) unknown probability 

distribution of a species” (Phillips et al., 2006). Maxent (Phillips et al., 2006) is an 

approach for estimating species distribution by presence only data, that has been proved to 

work well in practice (e.g. Elith et al., 2006). In the first step, the model assesses 

environmental layers based on the training data location and then selects the probability of 

occurrence of each species in the whole study area (Buehler & Ungar, 2001). 

Fundamentally, when a pixel in the studied region has equal environmental conditions of 
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the training data, higher values are assigned to this pixel. On the other hand, pixels with 

different environmental conditions are assigned lower values (Negga, 2007). 

 

6.2.9. Presence-absence maps 

As output of Maxent model is a continuous map, to determine the presence or absence of 

the target species a threshold must be set (Negga, 2007). Phillips et al., 2006), used the 

minimum cumulative value of training sample points as a threshold. However, in this 

research, predictive continuous maps were classified to binary (1 or 0) or presence-

absence maps using equal test sensitivity and specificity.  

 

6.2.10. Model evaluation 

Assessing the prediction results is an essential step for validation of any approach in 

ecological modelling (Verbyla & Litvaitis, 1989). Generally, to develop and test a model, 

two independent datasets are required as ‘training’ and ‘testing’ data (Fielding & Bell, 

1997). Verbyla & Litvaitis, 1989 suggested jackknife as an efficient accuracy assessment 

method. Nevertheless, in the case of insufficient number of samples, data partitioning can 

be challenging (Negga, 2007).   

 

6.2.11. Receiver operating characteristics (ROC) curves 

The Maxent simulation results can be assessed by analyzing the area under the curve 

(AUC) of receiver operating characteristics (ROC) graph. The ROC curve is a graph 

consisting of two axes; the X axis representing the false positive fraction so called 1-

specificity, and the Y axis showing the true positive fraction named sensitivity (Fielding & 

Bell, 1997). The model would be regarded appropriate when the ROC curve represents the 

maximum values of sensitivity for low values of the false positive fraction. This quality 
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can be measured using the AUC value (Hernández et al., 2006). According to Bachman, 

2011 and Segurado & Aráujo 2004, the AUC which reflects the quantity of overall 

accuracy of the model is independent of thresholds (Deleo, 1993). The AUC ranges 

usually from 0.5 in the case of no difference in the scores of two groups (true positives and 

false positives) to 1.0 in the case of no overlap in the distribution of the group scores (= 

perfect differentiation). 

 

6.2.12. Predictor variable importance 

In order to evaluate the importance of each environmental predictor variable, the jackknife 

operation was used. Jackknife sequentially excludes one environmental variable from the 

analysis and runs the model using the rest of the variables. Once again, the model would 

be run separately using the excluded variable only. Therefore, the share of each 

environmental variable on the total gain of the model (containing all of variables) can be 

calculated. In the next step, two variables can be selected as the most important ones; the 

one which reduces the total gain of the model more than all the other variables when 

omitted, and the one which shared the maximum gain when employed alone (Negga, 

2007).  More explanation in this regard can be found in the Maxent tutorial 

(http://www.cs.princeton.edu). 

 

6.3. Results 

In this paper the main results consist of species distribution maps, importance of predictor 

variables, and model evaluation within the Maxent model. 
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6.3.1. Species distribution maps 

The species distribution maps of the two species which were derived using training 

sensitivity and specificity threshold (A. aucheri = 0.278 & A. sieberi = 0.384) show 

broadly different predictions (Figure 6.2). For A. aucheri northern parts of the study area 

(mountainous area) are predicted as presence whereas A. sieberi is predicted presence 

mostly in the central and south parts. For both species the south-western part of the study 

area is predicted absence. 

 

  

Figure 6.2. Species distribution maps for A. aucheri and A. sieberi 

 

6.3.2. Predictor variable importance 

Based on the jackknife operation results (Figure 6.3) lime1 and gravel1 significantly 

affects habitat distribution of A. aucheri when used individually followed by lime2 and 

elevation.  Figure 6.3 also indicates that habitat distribution of A. Sieberi meaningfully is 

influenced by elevation, lime1followed by am1, lime2, ph1 and om2. Therefore the 

mentioned variables have the most useful information. Other parameters have low gain 

when used in isolation. For both of the species if Maxent uses only aspect it achieves 

almost no gain, so that this variable is not (by itself) useful for estimating the distribution 
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of Sagebrush species. Moreover, gyps2 and om1 are not useful for predicting the habitat 

distribution of A. aucheri and ph2 is not valuable for predicting A. sieberi habitat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Jackknife results of variable importance 
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6.3.3. Response curves 

There is a response curve for each of the environmental variables used in the Maxent 

model. These response curves represent relationships of environmental variables and the 

distribution of the species’ suitable habitat (Figures 6.4 and 6.5). Lime1, gravel1, lime2 

and elevation were the main variables influencing potential A. aucheri habitat, while A. 

sieberi habitat distribution was affected by gravel2, OM2, gravel1, gyps1, AM1 and 

elevation. 

The response curves associated with these factors show that there may be environmental 

thresholds for the ideal growth of both species (Figures 6.4 and 6.5). Based on figure 4 

considering lime1, habitat suitability of A. aucheri was highest around 1-2 while 

dramatically decreasing at higher values showing A. aucheri has a strong relationship with 

low-lime soils. This species has also high habitat suitability in the areas with elevation 

more than 2500 m and consequently higher elevation and lower temperature. The figure 

also represents that A. aucheri grows in areas with high gravel (22-25% and more). 

 

  

  

Figure 6.4. Response curves of the most influential predictors for A. aucheri. 
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Figure 6.5. Response curves of the most influential predictors for A. sieberi. 

 

Figure 6.5 represents that for suitable habitat of A. Sieberi maximum elevation is about 

2300 m, optimum percentage of lime1 and lime2 are about 10, optimum am1 is about 10. 

This species also reveals positive relations with organic matter and tolerates wide ranges 

of ph1. 
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6.3.4. Receiver operating characteristics (ROC) curves 

Figure 6.6 shows ROC curves for both of the study species. According to the figure, area 

under the curve (AUC) for A. aucheri is bigger than A. sieberi. Therefore, the model 

accuracy for prediction of A. aucheri habitat (0.95) is higher than for A. sieberi (0.71). This 

is due to the adaptability of A. sieberi to diverse habitat conditions (as has been described in the 

introduction). Hence, A. sieberi habitat could not be separated with high accuracy by the Maxent 

model. 

 

  

Figure 6.6. ROC curves of sensitivity vs. specificity 

 

6.4. Discussion and conclusion 

According to the results elevation is one of the common predictors for both models. 

Comparing suitable habitat distribution maps of A. aucheri and A. sieberi (Figure 2) and 

response curves of these species (Figures 6.4 and 6.5) represent that with respect to 

elevation there is a significant difference between the species. Furthermore, based on 

jackknife graphs (Figure 6.3) for both species, the effect of elevation is stronger on A. 

aucheri. As the elevation has direct effect on climate it is revealed that climatic conditions 
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in habitats of these species are significantly different. Therefore, the potential distribution 

of A. aucheri depends more on elevation, and consequently climate in comparison to A. 

sieberi. In other words, the predicted distribution map of A. sieberi demonstrates high 

tolerance of this species to topography and climate, whereas, the habitat of A. aucheri is 

restricted to mountainous areas of the northern part with low temperatures, and high 

precipitation. Azarnivand et al (2002) reported that elevation is one of the most important 

factors for separating habitats of A. aucheri and A. sieberi in rangelands of Vardavard, 

Garmsar and Semnan. 

Since the study area mostly is located at the southern slopes of Shirkouh, using only aspect 

variable, the Maxent model cannot achieves any gain (Figure 6.3).  

Some soil parameters such as lime, gravel, organic matter (OM), and soil available 

moisture (AM) have an influence on distribution of A. aucheri and A. sieberi (Figure 6.4 

& 6.5). Abdel El-Ghani and Amer (2003), Moghimi (2006), and Wilson et al (2004) 

reported that soil is one of the most important environmental variables affecting vegetation 

communities in arid lands. Zare Chahouki et. al., (2012) stated that A. sieberi has direct 

relation with soil available moisture. This is due to the impact of soil available moisture on 

the occurrence of vegetation types (Barnes and Harrison , 1982).   

Lime1 is another common predictor for both models. Based on the response curves 

(Figure 6.4 & 6.5) A. sieberi occurs in wide ranges of soil parameters, whereas habitat of 

A. aucheri is restricted to mountainous area of the northern part with low soil lime and 

high soil gravel. Therefore, considering soil conditions it is concluded that A. aucheri has 

limited tolerance to soil parameters and there is a significant difference between A. 

aucheri and A. sieberi in mean suitable soil parameters ranges. This is in accordance with 

results of Akbarpour (1994), Zare Chahouki (2010) and Moghimi (2006). 
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The results revealed that in addition to using climatic and topographic data which have 

been used in most of the previous researches in the field of ecological modelling, soil data 

improve the predictive ability for habitat distribution mapping of plant species in central 

Iran. 

Comparison of the vegetation types (Figure 6.1) and the Artemisia species distribution 

maps (Figure 6.2.) represent that the produced potential distribution maps are highly 

correspondent with an actual land cover map of the study area. Hence, it is revealed that 

Maxent modeling is very effective at determining habitat distribution for different species. 

Because it relies only on presence data, it lacks many of the complications associated with 

presence-absence analytical methods (Phillips et. al., 2006). Moreover, the results of 

Maxent modeling provided key information about the environmental tolerances of the 

Artemisia species in the study area that can be used for protecting susceptible habitats 

from future invasion and impacts of climate change. Also conservation planners and 

rangelands managers of Iran could use the outputs of this research as base information for 

grazing management and rangelands rehabilitation. 
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Chapter 7. General summary and conclusion 

This chapter highlights and summarizes the major parts of the thesis and represents an 

overview about the knowledge obtained from the present and a number of other studies. 

Furthermore, some ideas that could be useful in future studies will be suggested. 

- The main current threats to the Iranian rangelands are desertification due to the         

over-grazing, climate change, and human activities. Therefore, a continuous and consistent 

monitoring program of these ecosystems is suggested as a prerequisite for an effective 

conservation and development strategy.  

- Vegetation cover is a good measurable factor that can be considered as an indicator of 

rangeland ecosystems. Monitoring of this factor by remote sensing is easily possible. 

Selecting the best annual time intervals of satellite images for this purpose seems an 

essential factor in accuracy of vegetation mapping and monitoring. More details have been 

explained in chapter 4. 

- As reported in the present and a number of other studies, NDVI has a high sensitivity to 

inter-annual rainfall anomalies. Hence, it can be used as a suitable tool for monitoring 

climate variability, vegetation dynamic and land degradation on regional and global scales 

(Propastin and Kappas 2008a,b; Evans & Geerken, 2004). Taking the effect of 

environmental variables like soil available moisture into account can help for a better 

interpretation of NDVI-precipitation relations. In other words, depending on the type and 

composition of vegetation as well as environmental conditions, the precipitation-NDVI 

relations vary in different parts of the study area. 

- As mentioned in chapter 5, different factors such as climate, topography, soil, and human 

activities significantly affect vegetation changes and dynamic in rangelands. Typically, 
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discrimination between different causes of change in vegetation is very difficult. But, to 

evaluate rangelands condition, it is necessary to consider all of the factors and determine 

and distinguish contribution of each factor in vegetation changes. Recently, a few studies 

have used some methods to separate anthropogenic effects on vegetation changes using 

time series of satellite images and climatic data (Evans & Geerken, 2004; Li et al., 2004; 

Propastin, 2006).  

- The accuracy of the environmental variable maps has a direct effect on the accuracy of 

the Maxent model outputs. Therefore, these maps should be created as much precisely as 

possible. According to results of this research, geostatistics, GIS and remote sensing 

techniques have represented good capability for mapping environmental variables.  

- In this study three geostatistical approaches (ordinary kriging, cokriging, and regression 

kriging) have been used for mapping the soil properties. The reason for choosing the 

geostatistical methods was not only improving the estimation accuracy by taking the 

spatial variability of soil properties into account but also reflecting the estimation 

uncertainty for these soil parameters. The success of these methods has been reported in 

several studies (Eldeiry et al., 2010; Odeh et al., 1994; McBratney, 2000; Hengl et al., 

2004). In most of the cases, a significant difference in the accuracy of soil attribute maps 

created by different geostatistical methods has been observed. Usually, taking the 

secondary variables into account has increased the accuracy of estimations. Therefore, the 

application of cheap and easily accessible ancillary data such as satellite images and 

elevation has been suggested to improve the predictions quality of soil properties (more 

details in this regard has been elaborated in chapter 3). 

- Selecting the suitable environmental variable predictors for Maxent model input would 

be of tremendous value in ecological modeling. Basically, due to the correlation between 
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different variables, reducing the number of model inputs is essential. Principal component 

analysis (PCA) is a sound method that can reduce the number of model inputs based on 

the correlation between different environmental variables. As mentioned in chapter 6 the 

climatic variables (i.e. precipitation and temperature) have not been selected as the inputs 

of the Maxent model by PCA. Nevertheless, due to the high correlation between the 

elevation and climatic factors (table 6.1), it can be concluded that the climatic variables 

affect the habitat of the A. sieberi and A. aucheri species as well. 

- In most of the previous researches which have been done in the field of ecological 

modelling, climatic and topographic data were employed as inputs of the ecological 

models. But, results of this research have been revealed that soil data can improve the 

predictive ability for habitat distribution mapping of plant species. Therefore, using the 

soil data together with topographic and climatic data for species distribution modeling is 

suggested. 

- Determining the effective environmental factors and assessing the habitat distribution of 

the A. sieberi and A. aucheri were the main aims of chapter 6. The results have proven that 

Maxent is an efficient model for species distributions mapping despite the small sample 

sizes or scattered species distributions. In addition, this model can efficiently find the 

environmental variables correlation with geographic distribution of species. Furthermore, 

the wide variety of successful applications of this model reported in numerous studies 

suggests the high potential of this model in ecological studies. Nevertheless, using the 

other ecological niche models that may represent better accuracies as well as the 

comparison of different models efficiency is suggested for future studies.  

- It should be taken in account that the Maxent model creates the fundamental target 

species habitat map (the places that the target species free of interference from other 
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species could use the full range of conditions and resources to survive and reproduce) 

using environmental variables. Hence, the realize habitat (as a result of pressure from, and 

interactions with, other species (competition), that forced to occupy a niche that is 

narrower than this, and to which they are mostly highly adapted) may be overpredicted in 

some areas (Pearson 2007; Murienne et al., 2009). 

- Produced distribution map of the Maxent model led to the search for the target species at 

inaccessible areas which are far from villages and access roads. In the other word, based 

on predictions, some new presence localities might be found with different ecological 

conditions. These results can be useful for conservation and restoration of the area (Al-

Duais, 2009). 

- Global warming is hazardous for biodiversity, since it may worsen the vulnerability of 

endemic species with restricted ecological range (Malcolm et al., 2006; Thomas                    

et al., 2004). Many studies demonstrated that the ecological models can analyze climatic 

data and investigate the impact of climate change on vegetation niches to predict future 

potential distribution of the habitats (Hijmans and Graham, 2006; Ruegg et al., 2006; 

Thuiller, 2003; Williams et al., 2003). Hence, the prediction of the future of rangelands 

vegetation types using this model could be useful for conservation planning.  

- Several authors have pointed out that the invasion process slowly changes the position 

and shape of fundamental ecological niche (Broennimann & Guisan, 2009; Medley, 2010). 

Therefore, considering the invasive plants threats, study of invasive species in their native 

and invaded ranges by the Maxent model would be beneficial for rangelands conservation 

and management. 
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- A. aucheri occurs in highlands of the northern part (Shirkouh Mountain). Among the 

environmental variables, soil texture and elevation have higher correlation with this 

species. Generally, the habitat of A. aucheri starts from 2500m to higher elevations with 

the annual precipitation of more than 290 mm, slope between 20-30%, and soil depth of 

more than 50 cm. In such area, the amount of soil salts is not considerable. Due to the 

suitable humidity condition and inaccessibility to animal grazing, plant biodiversity is 

higher than other parts of the area (figure 2.6 and table 2.3). According to the literatures, 

in other parts of Iran, A. aucheri presents in the areas with the elevation of 1700-2800m 

and mean annual precipitation of 300-450 mm (Moghimi, 2006; Zare Chahouki, 2006). 

- A. sieberi occurs in the areas with 1900-2100 elevation. Depending on elevation and 

amount of precipitation, various plant compositions exist in different parts of A. sieberi 

habitat. Several studies have reported the occurrence of this species at the areas with the 

elevation range of 600-2000m (Akbarpour Yasaghi, 1996; Zare Chahouki, 2006, 

Moghimi, 2006). Elevation and soil salinity are the most important limiting factors for 

distribution of A. sieberi and Ar. sieberi (Azarnivand et al., 2006).  
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