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ABSTRACT. This thesis splits into two major parts. The connectiomieen the two parts is the
notion of “categorification” which we shortly explain/rdida the introduction.

In the first part of this thesis we extend Bar-Natan’s cotmrdbased categorification of the Jones
polynomial to virtual links. Our topological complex allsva direct extension of the classical Kho-
vanov complexf = t = 0), the variant of Lee/ = 0,t = 1) and other classical link homologies.
We show that our construction allows, over rings of charéstie 2, extensions with no classical
analogon, e.g. Bar-Natari%/2-link homology can be extended in two non-equivalent ways.

Our construction is computable in the sense that one cae writomputer program to perform
calculations, e.g. we have written a MATHEMATICA based paqg.

Moreover, we give a classification of all unoriented TQFTdalilcan be used to define virtual
link homologies from our topological construction. Furtmere, we prove that our extension is
combinatorial and has semi-local properties. We use thé-leeal properties to prove an applica-
tion, i.e. we give a discussion of Lee’s degeneration ofrgirhomology.

In the second part of this thesis (which is based on joint waitk Mackaay and Pan) we use
Kuperberg'ss[3 webs and Khovanov'sls foams to define a new algebfgg, which we call thesls
web algebra. It is thel; analogue of Khovanov's arc algebfs, .

We prove thatKs is a graded symmetric Frobenius algebra. Furthermore, wegadfy an
instance of;-skew Howe duality, which allows us to prove that is Morita equivalent to a certain
cyclotomic KLR-algebra. This allows us to determine thetsprothendieck groupk’(Ks), to
show that its center is isomorphic to the cohomology ring oEeain Spaltenstein variety, and to
prove thatK g is a graded cellular algebra.
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1. INTRODUCTION

1.1. Categorification. The notioncategorificatiorwas introduced by Crane inh [28] based on an
earlier work together with Frenkel in [29]. We will start bymaining the basic idea in the present
section. Forced to reduce this introduction to one sent¢heeuthor would choose:

Interesting integers are shadows of richer structurestegocaies.

We try to give an informal introduction in this section. Matetails can be found in Sectiéh 4 or
for the main parts of this thesis in the Sectiong .2, 2.1 audiéhd 1.8, 311 respectively.

The basic idea can be seen as follows. Talse&based”structureS and try to find dcategory-
based”structureC such thatS is just a shadow of the categofy If the categoryC is chosen in a
“good” way, then one has an explanation of facts about thettreS in a categorical language,
that is certain facts it¥ can be explained as special instances of natural congtngcti

As an example, consider the following categorification @ tlatural number§ = N. We take
C =FinVecy for a fixed field K, i.e. objects are finite dimension&al-vector space¥’, WV, ...
and morphisms ar&’-linear mapsf: V. — W between them. Note that the set of isomorphism
classes of its objects, i.e. tis&eletonof C, is isomorphic to the natural numbeéXswith 0, since
finite dimensional vector spaces are isomorphic iff theyehtlne same dimension. We call this
decategorification To be more precise, the categahgives a functoklecat: DECAT(C) — N,
whereDECAT(C) denotes the isomorphism classes of objects.

Since categorification can be seen‘gsnembering” or “inventing” information and decate-
gorification is more liké‘forgetting” or “identifying” structure which is easier, it is convenient
to study the latter in more detail, e.g., if we change the thgmaification to be the Grothendieck
group K, (C) of the abelian categorg, then we can say that the categdhyjs a categorifica-
tion of the integers sincé&(((C) = Z. Hence, we can say that the categéipVecy is a cat-
egorificationof N with decategorification=dinor that FinVecy is a categorificationof Z with
decategorificationZ,.

We make the following observations. Analogous statemeamtsigo true for the Grothendieck
group decategorification.

e Much information is lost if we only considé¥, i.e. we can only say that two objects are
isomorphic instead diiowthey are isomorphic.
e The extra structure of the natural numbers is decoded indtegoryFinVecy, €.g.:

— The product and coproduct FinVecy is the direct sun® and the category comes
with a monoidal structure called tensor proddgt and theycategorifyaddition and
multiplication, i.e. we havelim(V ©& W) = dimV + dim W and we also have
dim(V @x W) =dimV - dim W.

— The category ha8 as a zero object and” as an identity for the monoidal structure
and we haved/ ® 0 ~ V andV @ K ~ V, i.e. we carcategorifythe identities.

— We haveV — W iff dimV < dimW andV — W iff dimV > dim W, i.e.
injections and surjectiorsategorifythe order relation.

Moreover, one can write down the categorified statementadi ef following properties and one
can show that all the isomorphisms are natural.

e Addition and multiplication are associative and commugati
e Multiplication distributes over addition.

e Addition and multiplication preserve order.
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Note that categorification isot unique, e.g. we can also go from the categ@ry-FinVecy to
Kom,(C), i.e. thecategory of bounded chain complex@sfinite dimensionali’-vector spaces.
The decategorification changestothat is taking the Euler characteristic of a complex. As we
explain now, this approach leads to a construction thattsobe called a categorification @f.

If we lift m,n € N to the twoK-vector space¥®’, W with dimensionslim V' = m,dim W = n,
then the differencen — n lifts to the complex

0 v—L-w 0,

for any linear mapl andV in even homology degree. More generally, if we #ift n to complexes
C, D with x(C) = m, x(D) = n, then we can liftn —n to I'( f) for any mapf: C' — D between
complexes, wheré& denotes the cone. As before, some of the basic propertideohtegers
can be lifted to the categoom,(C).

This construction is not artificial, i.e. tigetti-number®f a reasonable topological spakecan
be categorified usingomology group$/, (X, Z) and theEuler characteristio (X) of a reasonable
topological space can be categorified usiigin complexe$C(X), c,) - an observation which
goes back to Noether and Hopf in the 1920’s in Gottingenh@udgh of course they never called it
categorification. We note the following observations.

e The space(X,7Z) is a graded abelian group, while the Betti-number is just @lver.
More information of the spac& is encoded. Again, homomorphisms between the groups
tell howsome groups are related.

e Singular homology works for all topological spaces. And le/tihe Euler characteristic is
only defined (in its initially, naive formulation) for spagavith finite CW-decomposition,
the homological Euler characteristic can be defined for gdriglass of spaces.

e The homology extends to a functor and provides informatiooué continuous maps as
well.

e More sophisticated constructions like multiplication iohomology provide even more
information.

Another example in this spirit that we consider in more detathis thesis is the so-callecht-
egorification of the Jones (ail;) polynomialfrom Khovanov[52]. We follow the normalisation
used by Bar-Natan iri [9]. Lefp be a diagram of an oriented link. We denote the number of
positive crossings by, and the number of negative crossingstyas shown in the figures below
respectively.

n, = number of crossing n_ = number of crossing 7
+ N %

Thebracket polynomiabf the diagram’, (without orientations) is a polynomiaLp) € Z|q, ¢ ']
given by the rules.

e (#) =1 (normalisation).

o <X> = () (> - q<:> (recursion step 1).

e (OIILp) = (q+q ') {Lp) (recursion step 2).
Then theKauffman polynomiaK (L) of the oriented diagrani, is defined by a shift and the
Jones polynomial (L p) by a renormalisation, i.e. by

K(Lp) = (=1)"¢""~ (LD>7andK(LD) = (¢+q")J(Lp).



It is well-known that the Jones polynomial is uniquely detared by the property/(O) = 1,
where() denotes the trivial diagram, and the so-caliédskein relations

£ ()~ () = a1 ) )

Khovanov's idea given in_[52] or as explained by Bar-Natarfdhis based on the idea from
the categorification of the Euler characteristicX') explained above, i.e. if one can categorify
a number iny(X) € Z using chain complexes, then one can try to categorify a poiyal in
J(Lp) € Z|q,q"'] using chain complexes afraded vector space®ote that it works oveZ. as
well - Khovanov’s original work useg|c] with ¢ of degree two).

In particular, ifV denotes a two dimension@vector space with a basis elementof degreel
and a basis element of degree-1 (the graded dimensionist ¢—1), then Khovanov categorifies
the normalisation and the recursion-step 2 conditions fabove as

[[@]]ZO%Q—)O, and [[OHLDH:V®Q[[LDH7

where[-] takes values in the category of chain complexes of finite dsiomal, graded)-vector
spaces. Lef'(:) again denote the cone complex. To categorify the recursiep-1 condition
Khovanov propose the rule

PA-r-D 74 -0)

Of course, the differential is a main ingredient here. Details can be for example four[d]in
Note that the shift from [9] is already included in the usafthe cone. Indeed, the appearance of
chain complexes and the rule above suggest an alternatngtraotion by actions of functors on
certain categories. Details can be found for example in thxwf Stroppel[[108].

It is worth noting that again the terminology is that Khovaihas giverONE categorification of
the Jones polynomial and nBHE categorification, e.g. a different categorification is tbecalled
odd Khovanov homologgs described by Ozsvath, Rasmussen and Szabdlin [92].

Notice that one can ask the following question. Given antaddtategoryC, then one can go to
the category of bounded complexes ogatenoted byKom,(C). Now the two approaches above
suggest that we have two notions‘oftural” decategorification

e One can take th&uler characteristic as decategorificatiofhis can be viewed as a sum
of elements in the split Grothendieck gro&jy (C) of the additive categorg.

e The categoryKom,(C) is triangulated and one can therefore takeGtsthendieck group
K& (Kom,(C)) as decategorification

The obvious question is how these two approacheseda¢ed i.e. given this setting, then how
are K¢ (C) and K5 (Kom,(C)) related? The answer is known: The corresponding groups are
isomorphic, see Rosk [98] for example. In particular, the éwamples of categorification that are
discussed in Sectidd 2 and Sectidn 3 follow the “same idedeghtegorification

We provide a list of other interesting examples. This listaisfrom being complete. Much
more can be found in the work of Baez and Dolan [5] and [6] faregles that are related to more
combinatorial parts of categorification or Crane and Ydi3§] and Khovanov, Mazorchuk and
Stroppel [63] for examples from algebraic categorification

e Khovanov's construction can be extended to a categorificaif the HOMFLY-PT poly-
nomial, e.g. in[[64]. Moreover, some applications of Khawaa categorification are listed
below.

— Itis functorial and provides a strictly stronger invariant
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— Kronheimer and Mrowka showed in [69], by comparing Khovahomology to Knot
Floer homology, that Khovanov homology detects the unkAdtis is still an open
guestion for the Jones polynomial.

— Rasmussen obtained his famous invariant by comparing Kiowaomology to a
variation of it. He used it to give a combinatorial proof oktMilnor conjecture,
see[[94]. Note that he in [95] also gives a way to detect ex®tifrom his approach.

e Floer homology can be seen as a categorification of the Casganant of a manifold.
Floer homology is again “better” than the Casson invariag, it is possible to construct
a 3 + 1 dimensional Topological Quantum Field Theory (TQFT) whioh closed four
dimensional manifolds gives Donaldson’s invariants.

e Knot Floer homology can be seen as a categorification of tlexaklder-Conway knot
invariant, see for example [93].

e The Grothendieck group decategorification from above piewianother source of exam-
ples. Namely, the categorification of certain quantum algehlvhich have bases with
interesting positive integrality properties. For examp{@ovanov and Lauda [58], and
independently Rouquier [100], categorified the quantum-Maody algebras with their
canonical bases.

e The so-called Soergel categasycan be seen in the same vein as a categorification of the
Hecke algebras in the sense that the split Grothendieclpgyives the Hecke algebras. We
note that Soergel’s construction shows that Kazhdan-igibases have positive integrality
properties, seé [103] and related publications.

e Ariki gave in [3] a remarkable categorification of all finitextensional, irreducible repre-
sentation ofl,, for all m as well as a categorification of integrable, irreducibleeepn-
tations of the affine versioﬁn. In short, he identified the Grothendieck group of blocks
of so-called Ariki-Koike cyclotomic Hecke algebras with iglet spaces of such represen-
tations in such a way that direct summands of induction astticion functors between
cyclotomic Hecke algebras far, n 4+ 1 act on thek as thee;, f; of sl,,.

e In Conformal Field Theory (CFT) researchers study fusiayebtas, e.g. the Verlinde
algebra. Examples of categorifications of such algebragrayen, e.g. using categories
connected to the representation theory of quantum groupsstof unity [55], and contain
more information than these algebras, e.g. RAmatrix and the quanturéy-symbols.

e The Witten genus of certain moduli spaces can be seen asraer@lefZ[[¢|]. It can be
realised using elliptic conomology, séé [1] and relatedepsp

This thesis deals with two different instances of categmifon. The first was given by the author
in [110], [111] and the second by the author in joint work wilackaay and Pan in [78].

In Section2, with its own introduction in Sectién 1.2, thetar explains the first part of his
thesis, i.e. a categorification of thaértual Jones polynomial. That is an extended version of
Khovanov's construction explained above that works focalbedvirtual links, i.e. links that are
embedded in a thickened, for an orientable surface of genys

In SectionB, with its own introduction in Sectién 1.3, thehar explains the second part of
his thesis, i.e. the construction of a new algebra, calleth algebra providing a connection
betweercategorifiedink invariants in the spirit of Khovanov arzhtegorifiedReshetikhin-Turaev
invariants.

Moreover, we have collected some technical (but “well-kn®wacts in Sectiol 4.



1.2. Virtual Khovanov homology. This part of the introduction is intended to explain the first
part of the thesis, i.e. Secti@h 2, which is based on two prepf110] and[111] of the author. A
summary of the construction and results of Sedtion 2 is diatam, i.e. in Sectioh 2] 1.

In Section 2 we considerirtual link diagramsLp, i.e. planar graphs of valency four where
every vertex is either an overcrossiixg, an undercrossing{ or a virtual crossingxy, which is
marked with a circle. We also allow circles, i.e. closed edg#hout any vertices.

We call the crossings{ and X classical crossingsr justcrossings For a virtual link diagram
Lp we define themirrorimage L of L by switching all classical crossings from an overcrossing
to an undercrossing and vice versa.

A virtual link L is an equivalence class of virtual link diagrams modulo atasotopies and
generalised Reidemeister moysse Figuréll.

e D=
o et
A=

£

FIGURE 1. The generalised Reidemeister moves are the moves plgilue mirror images.

vkmzv

We call the moves RM1, RM2 and RM3 tltassical Reidemeister movdke moves vVRM1,
VRM2 and vRM3 thevirtual Reidemeister moveand the move mRM thenixed Reidemeister
move We call a virtual link diagraml, classicalif all crossings ofL, are classical crossings.
Furthermore, we say a that virtual lirikis classical if the setL contains a classical link diagram.

The notions of amrientedvirtual link diagram and of anrientedvirtual link are defined anal-
ogously. The latter modulo isotopies aodentedgeneralised Reidemeister moves. Note that an
oriented virtual link diagrams a diagram together with a choice of an orientation of tlagim
such that every crossing is of the folnd, \ or X{. Furthermore, we use the short hand notations
c- and v- for everything that starts with classical or vitfieag. c-knot means classical knot and
V-Ccrossing means virtual crossing.

Virtual links are an essential part of modern knot theorywacke proposed by Kauffman in [48].

They arise from the study of links which are embedded in &#ned:, for an orientable surface
10



¥,. These links were studied by Jaeger, Kauffman and Salei#4x Note that for c-links the
surface isX, = S?, i.e. v-links are a generalisation of c-links and they stdol example have
analogous “applications” in quantum physics.

From this perception v-links are a combinatorial intergtieh of projections orx,. It is well-
known that two v-link diagrams are equivalent iff their asponding surface embeddings are
stable equivaleni.e. equal modulo:

e The Reidemeister moves RM1, RM2 and RM3 and isotopies.
e Adding/removing handles which do not affect the link diagra
e Homeomorphisms of surfaces.

For a sketch of the proof see Kauffman|[49]. For an examplé-gpee2.

FIGURE 2. Two knot diagrams on a torus. The first virtual knot is chlieevirtual trefoil.

We are also interested inrtual tangle diagramsndvirtual tangles The first ones are graphs
embedded in a disk? such that each vertex is either one valent or four valent. fobevalent
vertices are, as before, labelled with@rercrossing{, anundercrossing\ or avirtual crossing
. The one valent vertices are part of the boundarf®aind we call thenboundary pointand a
virtual tangle diagram witlk one valent vertices a virtual tangle diagram withhoundary points

A virtual tangle withk-boundary points is an equivalence class of virtual tangigrdms with
k-boundary points modulo the generalised Reidemeister seve boundary preserving isotopies.
We note that all of the moves in Figuré 1 can be seen as virangllé diagrams. Examples are
given later, e.g. in Sectidn 2.2. As before, the notioneméntedvirtual tangle diagrams and
orientedvirtual tangles can be defined analogously, but modulentedgeneralised Reidemeister
moves and boundary preserving isotopies.

If the reader is unfamiliar with the notion v-link or v-tamglwe refer to some introductory
papers of Kauffman and Manturov, e.g.[47] and [50], and #ferences therein.

Suppose one has a crossinig a diagram of a v-link (or an oriented v-link). We call a stitos
tion of a crossing as shown in Figure 3esolutionof the crossing:.

) (X)) (
AN "/
0 1) 0 1

FIGURE 3. The two possible resolutions of a crossing calle@solutionand1-resolution
11



Furthermore, if we have a v-link diagrahy,, aresolutionof the v-link diagram’, is a diagram
where all crossings of., are replaced by one of the two resolutions from Figure 3. Vdeths
same notions for v-tangle diagrams.

One of the greatest developments in modern knot theory veedisicovery oKhovanov homol-
ogyby Khovanov in his famous papér [52] (Bar-Natan gave an eiipaof Khovanov’s construc-
tionin [9]). As explained above, Khovanov homology is a garéication of the Jones polynomial
in the sense that the graded Euler characteristic oKtt@vanov complexvhich we call theclas-
sical Khovanov complexs the Jones polynomial (up to normalisation).

Recall that the Jones polynomial is known to be related tmuarparts of modern mathematics
and physics, e.g. it origin lies in the study of von Neumargehtas. We note that the Jones
polynomial can be extended to v-links in a rather straigitéod way, see e.g. [49]. We call this
extension theirtual Jones polynomiadbr virtual sl, polynomial

As a categorification, Khovanov homology reflects these eotions on a “higher level”. More-
over, the Khovanov homology of c-links is strictly strongjean its decategorification, e.g. seé [9].
Another great development was ttopological interpretatiorof the Khovanov complex by Bar-
Natan in [8]. This topological interpretation is a genesation of the classical Khovanov complex
for c-links and one of its modifications has functorial prdjes [27]. He constructedtapological
complexwhose chain groups are formal direct sums of c-link resohgtiand whose differentials
are formal matrices of cobordisms between these resokition

Bar-Natan’s construction modulo chain homotopy anddal relationssS, T, 47u, also called
Bar-Natan relationssee Figurél4, is an invariant of c-links.

DDA

FIGURE 4. The local relations. A cobordism that contains a splteshould be
zero, a cobordism that contains a tofushould be two times the cobordism without
the torus and the four tubes relation.

It is possible with this construction to classify all TQFT#iah can be used to define c-link
homologies from this approach, seel[56]. Moreover, it i®atgmic, i.e. computable in less than
exponential time (depending on the number of crossings ofemgliagram), se¢ [7]. So itis only
natural to search for such a topological categorificatiotihefvirtual Jones polynomial.

An algebraic categorification of the virtual Jones polynaliver the ringZ/2 is rather straight-
forward and was done by Manturov in |86]. Moreover, he aldaligshed a version over the integers
Z later in [85]. A topological categorification was done by dev and Turner i [113], but their
version does not generalise Khovanov homology, since tieenplex is not bi-graded. Another
problem with their version is that it is not clear howdomputehe homology.

The author gave a topological categorification which gdisas the version of Turaev and

Turner in the sense that a restriction of the version givdh10] gives the topological complex of
12



Turaev and Turner, another restriction gives a bi-gradedptex that agrees with the Khovanov
complex for c-links and another restriction gives the skbleda_ee complexi.e. a variant of the
Khovanov complex that can be used to defineRlasmussen invariawff a c-knot, se€ [94], which
is also not included in the version of Turaev and Turner. Mueg, the version given in [110] is
computable and also strictly stronger than the virtual Sgaodynomial.

Another restriction of the construction from [110] givesifiedent version than the one given by
Manturov [85] in the sense that we conjecture it to be syristtonger than his version. Moreover,
in [111], the author extended the construction to v-tangles“good way”, something that is not
known for Manturov’s construction.

To be more precise, the categorification extends from cktartg v-tangles in a trivial way (by
setting open saddles to be zero). This has an obvious distd)s i.e. it is neither a “good”
invariant of v-tangles nor can it be used to calculate biggenplexes by “tensoring” smaller
pieces. We give a local notion that is a strong invariant tdnvgles and allows “tensoring”.

It is worth noting that the construction for v-links is mordfidult (combinatorial) than the
classical case. Thatis a reason why in |110] the Bar-Natproagh was not extended to v-tangles.
In this thesis, i.e. in Sectidd 2, we combine the preprini€]&and [111] in one text.

The author conjectures that the whole construction can bd as a “blueprint” for acate-
gorification of the virtuakl; polynomial(as explained in Sectidn1.3), since Khovanov published
in [51] a categorification of the classicak polynomial using foams, a special type of singular
cobordisms.

Moreover, the author conjectures that it can also be usedl@dseprint” for a categorification
of the virtualsl,, polynomial if one can find a way to avoid the so-called Kapustin-Li fotanu
used by Mackaay, StoSi¢ and Vaz in[80] to give a foam baséeborification of the classical,
polynomial.

Furthermore, the author wants to point out thairtual analogueof the constructions explained
in Sectior LB could be interesting and would be based ondhstructions of the author given in
his preprints[[110],[111] or Sectidnd 2, but has not been date

1.3. The sl3 web algebra. This part of the introduction is intended to explain the setpart of
the thesis, i.e. Sectidd 3. Note that the results in Seliaredased on a preprint of the author
together with Mackaay and Pan, seel[78].

We note that, because the results of the Seéfion 3 are bagedhbwork, the only things that
we have changed is the introductory part given here, a suynofidine results given in Sectién 3.1,
a part about future work in Sectién 3113 and the appendix8hig’now Sectioh 418. Furthermore,
we have also done some (small) notation changes to make tagamoconsistent with the other
sections of this thesis, e.g. the thesis is in British Eiglis

| have also added an isotopy invariant basis obtained frork tegether with Mackaay and Pan
of which we hope that it has “nice” (i.e. we hope that it is akll) properties given in Sectién 3]12.

We already mentioned the Jones polynomial in Se¢tioh 1.1Saatior 1.P. Shortly after Jones
announced his discovery, several mathematicians founderglsation of his construction, which
is nowadays calletHOMFLY polynomial named after the discoverers Hoste, Ocneanu, Millett,
Freyd, Lickorish and Yetter [36], dHOMFLY-PT polynomialrecognising independent contribu-

tions of Przytycki and Traczyk.
13



All these polynomials can be explained using so-caféein theorywhich has a completely
combinatorial nature. Given an oriented diagram of a c-lipgk(we note that this also works for
v-links, e.g. se€[49]), the HOMFLY polynomid&(Lp) is a polynomial inZ[a*!, b*!| given by
the following recursive rules.

e P(unknot) = 1, whereunknot should be any diagram of the unknot (normalisation).

e aP(L,)—a'P(L_) =bP(Ly),whereL, =7, L_ =X andL, =) { should replace
the corresponding parts of the diagram (recursion rule).

o If L, LY, are two link diagrams, then the polynomial for the split unio,, is given by

P(Lp) = =5 P(L),) P(L},) (union).

We note that the polynomial is uniquely determined by thesesrand is an invariant of the link.

Hence, in the mid of the 1980s, new knot polynomials wereadisted. They were used to solve
open and old problems in knot theory in a very simple fashidnd they are related to different
parts of modern mathematics, like operator algebras, Hgebaas, Lie algebras, Chern-Simons
theory, conformal field theory etc. Moreover, the Skein tigg®combinatorial and makes it “easy”
to compute these invariants.

If you have something obviously interesting, one wants tovkiow this fits into a'bigger
picture” and not justthat” something is true.

An “explanation” how to obtain these invariants in termggbresentation theory of quantum
groupswas given around 1990 by Reshetikhin and Turaev in [96]. Tombee precise, they gave
an explicit construction that works roughly in the followimvay.

e Start by colouring the strings of a tangle diagram in Morssigmn with irreducible repre-
sentationd/; of quantum groups.

e Then at the bottom and top of the tangle diagfBsone has a tensor product of thége

e Then one associates certain intertwiners to cups, capsrassitgs and composition gives
an intertwinerPr, between the bottom and top tensors. This is an invariant.

e In the special case of link diagranis, the intertwiner is a mag’,,: C(¢) — C(q) and
can be seen as a polynomidl ,(1). Note that this polynomial is in fact ifi[¢, ¢ '], i.e.
it has integer coefficients, and note that Reshetikhin amdélM’s construction restricted to
theinvariant tensorgjives the same link invariant.

For example, if we consider the substitutior- ¢, b = ¢—q¢~! withn > 1 for the HOMFLY poly-
nomial, then we can obtain these polynomials usinguhnelamental representatiows$ U, (sl,,) as
colours. Note that the case = 2 gives the Jones polynomial, hence the nafeyolynomial.
Much more details can be found for examplelin [112].

A connection between these two pictures, i.e. the combhii@i@nd the one from representa-

tion theory, is given by the theory ef,, webs where ansl,, web is a graphical presentation of
intertwiners between fundamental representations of éheesponding quantum groupg(sl,,).
In particular, in the case = 2 the calculus of these webs can be described byéneperley-Lieb
algebraand in the case = 3 by a graphical calculus formulated by Kuperberg'inl [70] g<ini-
ented trivalent graphs. Generalisations of these faot all 3 have recently been found, see Cautis,
Kamnitzer and Morrisori [22] and the references therein.

Let us assume for simplicity that = 3 and we restrict to the fundamental representation

and its dualV_ = V. A V.. Then Reshetikhin and Turaev’s construction from abov@asso
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every sign sequence = (si,...,sn), sk € {+, —} (a boundary of such webs is such a sequence)
a tensor product of these representatibgs= V,, ® --- ® V;,, and to each tangle diagram an
intertwiner. Hence, since intertwiners maps invarianstea to invariant tensors, one can restrict
to the spacénvy, ;) (V) for a lot of purposes. Note that the general case, that israrpitensors,

is harder and work in progress.

Recall that Murakami, Ohtsuki and Yamada gave in [91] a veud the skein calculus known
as MOY relationsor asMOY calculus The HOMFLY polynomial P,(-) with the substitution
a=q",b=q—q ' withn > 1 from above can also be calculated by the following recunsiles.
Notice that these rules can be drastically simplified usiagfnan’s calculus if» = 2. Recall

that[m| = qq —¢" denotes thguantum integer

e P, =q¢"'P,() ) — ¢"P,(3X) (recursion rule 1).
e ,(N)=¢""P,0 ) — ¢ "P.(X) (recursion rule 2).
e Thecircle removal @

= [n].

e Thetwo digon removals

=[2]- andD n—1]- }
e Thefirst square removal
e
=[n-2]- \/
N R

e Thesecond square removal

Note that in the case = 3 the two digon removals are the same, the first square remoesl d
not contain any quantum integers any more and can replacetmad square removal, i.e. they
simplify to the so-calleduperberg relations

To summarise, we give the following diagram, ttiassical, uncategorifiedicture.

Intertwiners

sl,-webs U,(sl,,)-Tensors

Kauf%Kuperberg,MOY Reshetikhin,mv
\

sl,-knot polynomials

Kuperberg showed in [70] that the web spa€g of sl; webs with boundarny is isomorphic to

the space of invariant tensaiisvy, .(,) (V) mentioned above. Without giving the details here, by
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so-called;-skew Howe dualitywhich we explain in Sectidn 3.1L0, this implies that
‘/(3k) = @ WSa
S

whereV/;, is the irreducible/, (gl,;.) representation of highest weight= (3*) and, by restriction,
this gives rise to &/, (sls;,) representation.

Hence, we get thtHowe dual picture” to the one from above (we note that the case- 3 or
the case with arbitrary representations is work in progress

Howe duality

sl3-webs U,(sl,,)-Irreducibles

/
Kauffman,Kupe%]\/lOY Luszw&s,Kamnitzer,Licata

sl3-knot polynomials

What about the “categorified world” now? Recall that we expd in Sectiofi 1]1 how Khovanov
in [52] gave acategorificationof the Jones polynomial. Shortly after his breakthroughidie
gether with Rozansky in [64] and [65], gaveategorification of thel,, polynomialusing matrix
factorisations. Others, like Khovanov in [51], Mackaay®t and Vaz, see [82], [83] and [80]
gave acategorificatiorbased on foams in the spirit of Bar-Natan [8]. These homelgre highly
interesting and studied from different viewpoints nowaglay

Other approaches are due to Mazorchuk and Stroppeélin [88Y wophisticated techniques
and constructions in catego€, i.e. techniques from of representation theory, and amathe to
Cautis and Kamnitzer in [21] using constructions from algabgeometry.

As before, one wants to know how all of this fits intdtagger picture” and not just‘that”
somethingis true. Thatis one of the reasons people startedk for categorifications of quantum
groups i.e. if a g-invariant can be obtained by studying the representatitegory ofU,(g) in
the spirit of Reshetikhin and Turaev, there categorificetishould be obtained by studying some
kind of “ 2-representation categorydf the categorification associated(g). In particular, the
“Khovanov like homologies” should be obtained in this way.

Indeed, such an approach follows from Webster [117] and][1@ note that his work utilises
a connection to the picture like,, categorifications indirectly using Mazorchuk and Strofspel
work.

To summarise, we give the following diagram, taegorifiedpicture, the picture we still want
to understand.

??7?

sl,-foams sl,-string diagrams

Khovanov,K hovanov— Rozansky W ebster

sl,-knot homologies

Let us briefly explain instead what we can say about the “Howad dicture”. We defined in [78]
thesl; analogue of Khovanov’s arc algebrés, introduced in[[53]. We call themveb algebrasnd
denote them bys, whereS is a sign string, i.e. a string af and— signs which correspond to the
two fundamental representationsi@f(sl;). Khovanov uses in his paper so-calledt diagrams
which give a diagrammatic presentation of the represemakieory ofU,(sl;). These diagrams

are related to the Kauffman calculus for the Jones polynoméationed above.
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Since we defined asl; analogue, we use the Kuperberg webs, introduced by Kupeib 0],
mentioned above. These webs give a diagrammatic presemtaitithe representation theory of
U,(sl3). And of course, instead &f, cobordisms, which Bar-Natan used |in [8] to give his formu-
lation of Khovanov's categorification, we use Khovanov'§][6l; foams.

To be more precise, in Sectibn 3111, we show the following.Vke= V,, ® - - - @V}, whereV/,
is the basid/, (sl3) representation ankl its dual. Kuperberd [70] proved, as indicated above, that
W, the space ofl; webs whose boundary is determined$yis isomorphic tdnvy, (i) (Vs), the
space of invariant tensors Iry,. Our algebra can be seen asategorificatiorof this, i.e. we show

KO@ (KS-pMOdgr) = WAS’Z?
for any S. Here K, denotes the Grothendieck group and the supersgriggenotes the integral
form and K s-pMod the category of finite dimensional, projecti#g-modules.

In order to obtain this result, we have categorified an irnstanf the g-skew Howe duality
mentioned above, as we explain in Section B.11. Withoutngithe details here, we get the
“categorified Howe dual picture {the general case is again work in progress).

Howe 2-duality

sl;-foams sl, — cyl. KRL algebras

K hovanov,K hovanov— Rozansky Chuang,Rouquier

sl3-knot homologies

But this is only one reason to study theseb algebras Since the Jones polynomial and t1g
polynomial in general are known to be related to differernoches of modern mathematics, the
categorifications should reflect these connections dwigher leveland one has possibly more
sophisticated connections. We explain some connectioasrofiork in the following.

As we showed in our paper, see Section 3.6, the center ofgeb@K ¢ is graded isomorphic to
the cohomology ring of a certaf@paltenstein varietyx ,j an interesting variety from combinato-
rial, algebraic geometry. To be more precise, if one hasptéht endomorphisny : C™ — C™,
then the classicabpringer fiberis the variety given by the flags fixed und&t Generalising to
partial flags gives the Spaltenstein varieties, introdune&paltenstein [104]. Their geometry is
still not well understood.

A related aspect is the following. 10 [33], Fontaine, Kamaeit and Kuperberg study spiders
from the viewpoint of algebraic geometry. Fdg these spiders are exactly the webs that we study.

Given a sign string, the so-calledsatake fiberF'(.5), denotedF(Y) in [33], is isomorphic
to the Spaltenstein variety j mentioned above. Moreover, given a welwith boundary corre-
sponding taS, Fontaine, Kamnitzer and Kuperberg also define a vatgty(w)). They call it the
web variety A question asked by Kamnitzer is how their work is relateduos. We give a more
detailed description of his question later in Secfion 3.1.

Another connection is given in Sectibn 3.11, i.e. we shovt tha algebra iMorita equiva-
lent (it has the “same” representation theory), as a certairotyelic Khovanov-Lauda-Rouquier
algebral? ;»y. By Brundan and Kleshchev graded isomorphism given in {@6]pbtain that our al-
gebra has the “same” representation theory as certainlsacgiclotomic Hecke algebra3hese
algebras, introduced by Ariki and KoiKe [4] and independleoy Broué and Malle [13], are gener-

alisations of Hecke algebras, iguantisedversions of the group ring of symmetric grougg, in
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the sense that the Hecke algebras are cyclotomic Heckerakyeblevel one. One amazing aspect
about these algebras is that they contain the Hecke algebtgge A and B as special cases and
they are therefore useful to study thedularrepresentation theory of finite classical groups of
Lie type. They are studied by varies mathematicians nowsaday introduction to these algebras
can be found for example in a lecture notes of AriKi [2].

It is worth noting that, in the study of the representatiomotly of s(,,, the case: = 3 can be
seen as alueprinthow to tackle the case > 3, while then = 2 case seems to be “too special” to
generalise. Let us explain why we expect something similaur case for the results in Sectldn 3,
although the combinatorics get quite hardfor 3.

For any stringS = (si,...,s,), such thatl < s; < n — 1, Fontaine, generalising work of
Westbury [1189], constructs in [32],, web basisB% by generalising Khovanov and Kuperberg’s
sl growth algorithm[[57]. To anyv € BZ%, one can associate the coloured Khovanov-Rozansky
matrix factorization}/,,, as defined by Wu [121] and Yonezawa [122]. For any € BZ, one can
then define

K" = Ext(M,, M,).

Kg = @ uKZ;L
u,vEBY
is induced by the composition of homomorphisms of matriXxdeeations. Note that fosl;,
the definition using matrix factorizations indeed gives &gelra isomorphic td<g, as follows
from the equivalence between matrix factorizations andnfoéor sl; proved in [83]. While the
author writes this thesis, Mackaay and Yonezawa are prgpampaper[84] on thel,, web algebra
following the ideas explained above.

The multiplication in

The author notes that artual versionof Khovanov’s arc algebra, our web algebra or even
versions form > 3 would be also interesting to study. But this is not done yet.
More details concerning our papér [78] are summarised iti@€8.1.
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2. VIRTUAL KHOVANOV HOMOLOGY

2.1. A brief summary. Let us give a brief summary of the constructions in SedfioM2. will
assume that the reader is not completely unfamiliar withribion of the classical Khovanov
complex as mentioned before[in 1.1, e.g. the constructiohefKhovanov cube (more about
cubes in Sectioh 4.6) based on so-caliesblutions of crossingas shown in Figurgl3. There are
many good introductions to classical Khovanov homology, @. nice exposition of the classical
Khovanov homology can be found in Bar-Natan’s paper [9].eNbat this section is based on two
preprints [110] and [111] of the author. The summary is infal. We hope to demonstrate that
the main ideas of the construction are easy, e.g. the catisinus given by an algorithm, general,
e.g. it extends all the “classical” homologies, but if onerkgoover a ringRR of characteristi,
then, by setting +# 0, one obtains “non-classical” homologies, and has othex pioperties, e.g.
it has, up to a sign, functorial properties.

Let a be a word in the alphabédb, 1}. We denote by, the resolution of a v-link diagram p
with |a| crossings, where thieth crossing ofZp, is resolveds; € {0, 1} as indicated in Figurgl 3.
Beware that wenlyresolve classical crossings. We denote the number of {esirthat is closed
circles with only v-crossings, in the resolutionby |v,|.

Moreover, suppose we have two word® with a;, = b, for k = 1,... |a| = |b],k # i and
a; = 0,b; = 1. Thenwe callS: ~, — =, a(formal) saddlebetween the resolutions.

Furthermore, suppose we have a v-link diagramwith at least two crossings, c;. We call
a quadruple’ = (70, Y01, 710, 711) Of four resolutions of the v-diagramh,, afaceof the diagram
Lp, if in all four resolutionsyg, Y01, 710, 711 all crossings ofL, are resolved in the same way
except thaic; in resolved: andc, is resolved; in ~;; (with i, j € {0,1}). Furthermore, there
should be an oriented arrow from; to vy, if ¢t = 75 =0andk =0,/ =1ork =1,l = 0orif
i=0,j=1landk=1l=1orifi=1,7 =0andk =1 = 1. Thatis faces look like

o1
N

Yoo Y115
N
710

where the * for the saddles should indicate the change 1.
We also considealgebraic face®f a resolution. That is the same as above, but we replace
with @), A, if v, hasn components. Herd is an R-module andR is a commutative, unital ring.
Moreover, recall that the differential in the classical Klnov complex consists of a multipli-
cationm: A® A — A and a comultiplicatiom\: A — A ® A for the R-algebrad = R[X]/(X?)
with gradingsdeg 1 = 1,deg X = —1. The comultiplicatiomA is given by

11 X+X®I1,
X— X®X.

The problem in the case of v-links is the emergence of a new. maps happens, because it is
possible for v-links that a saddte: ~, — ~, between two resolutions does not change the number
of v-circles, i.e.|v,| = |1|. This is a difference between c-links and v-links, i.e. ia flist case

one always hagy,| = || + 1 or || + 1 = |7,].
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So in the algebraic complex we need a new ntapA — A together with the classical multi-
plication and comultiplicatiom:: A ® A — AandA: A - A® A. As we will see later the only
possible way to extend the classical Khovanov complex iakslis to set) = 0 (for R = Z). But
then a face could look like (maybe with extra signs).

A/ZXQQAYAA.
A

We call such a face problematic face With # = 0 and the classical\, m, this face does not
commute (forkR = Z). Therefore, there is no straightforward extension of theanov complex
to v-links. Moreover, in the cobordism based constructibthe classical Khovanov complex,
there is no corresponding cobordism for

(2.1.1)

To solve these problems we consider a certain categorydcal®b®; (), i.e. a category
of (possible non-orientable) cobordisms with boundaryodations{+, —}. Roughly, a punc-
tured Mobius strip plays the role @f and the decorations keep track of how (orientation pre-
serving or reversing) the surfaces are glued together. éJancour category we have different
(co)multiplications, depending on the different decanasi. Furthermore, in order to get the right
signs, one has to use constructions related-froducts (sometimes called skew-products). Note
that this is rather surprising, since such constructioasiat needed for Khovanov homology in the
c-case. And furthermore, such constructions are in these-oalated to so-calleadd Khovanov
homology. But we show that in fact our construction agreesflinks with the (even) Khovanov
homology (see Theorem 2.8.9).

The following table summarises the connection betweenltssical and the virtual case.

Classical Virtual
Objects c-link resolutions v-link resolutions
Morphisms | Orientable cobordismsPossible non-orientable cobordisms
Cobordisms Embedded Immersed
Decorations None +, — at the boundary
Signs Usual Related toA-products

Hence, a main point in the construction of the virtual Khawanomplex is to say which saddles,
i.e. morphisms, are orientable and which are non-orieafdiaw to place the decorations and how
to place the signs. This is roughly done in the following way.

e Every saddle either splits one circle (orientable, catlethultiplication denotedA. See
Figure[12 - fourth column), glues two circles (orientablalled multiplication denoted
m. See Figuré_12 - fifth column) or does not change the numbeirdés at all (non-
orientable, calledMdbius cobordismdenoted). See Figuré 12 - last morphism).

e Every saddleS can be locally denoted (up to a rotation) by a formal symo) ( —
(both smoothings are neighbourhoods of the crossing). giheing numbersi.e. the
decorations, are now spread @lyoosing a formal orientatiofor the resolution. We note

that the construction will not depend on the choice.
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e After all resolutions have an orientation, a saddleould for example be of the form
S:) { — . This is thestandard formi.e. in this case all glueing number will be

e Now spread the decorations as follows. Every boundary compiogets at iff the ori-
entation is as in the standard case and atherwise. Thalegenerateadases (everything
non-alternating), e.g.5: ) ( — —, are the non-orientable surfaces and do not get any
decorations. Compare to Table 1 in Definition 2.3.3.

e The signs are spread based on a numbering of the v-circldginesolutions and on a
special x-marker for the crossings. Note that without theatker one main lemma, i.e.
Lemmd2.3.14, would not work.

Or summarised in Figufg 5. The complex below is the complextatial v-link diagram.

FIGURE 5. The virtual Khovanov complex of the unknot.

To construct the virtual Khovanov complex for v-tangles wed to extend these notions in such
a way that they still work for “open” cobordisms. A first geaksation is easy, i.e. we will still
use immersed, possible non-orientable surfaces with d&oaos, but we allow vertical boundary
components, e.g. the threeReidemeister cobordisms vVRM1, vVRM2 and vRRVEgure®.

4

. +

FIGURE 6. The virtual Reidemeister cobordisms.
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One main point is the question what to do with thpen” saddles i.e. saddles with no closed
boundary. A possible solution is to define them to be zero.tléathas two major problems. First
the loss of information is big and second we would not havallpcoperties as in the classical
case (“tensoring” of smaller parts), since an open saddieaféer closing some of his boundary
circles, become eithen, A or . See Figurél7.

1 A | 0
OO0 CC0K+) (= ZiA0 0~
) O 00K ) (= XA ) 0= X

\ AN . l ~— /
FIGURE 7. All of the closed cases give rise to the unclosed.

Hence, an information mod 3 is missing. We therefore comsit@phisms with anndicator,
i.e. an element of the s¢0,+1, —1}. Then, after taking care of some technical difficulties, the
concept extends from c-tangles to v-tangles in a suitable Waat is, we can “tensor” smaller
pieces together as indicated in the Fidure 8.

FIGURE 8. After we have fixed an orientation/numbering of the circliagram,
we only have to compare whether the local orientations m@ieen) or mismatch
(red) and compose if necessary withh (red). Iff we have a double mismatch at the
top and bottom, then we add a bolt symbol.
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It should be noted that there are some technical points talkerour construction only semi-
local (a disadvantage that arises from the fact that “naentability” is not a local property). Note
that indicators, if necessary, are pictured on the surfaces

The outline of the Sectidd 2 is as follows.

e In Sectior 2.2 we define the category of (possible non-aatde) cobordisms with bound-
ary decorations. First in the “closed” case in Definifion.Z.2nd then more general in the
“open” case in Definition 2.2.10. We also proof/recall sorasib facts in Section 2.2.

e In Section(2.B we define 2.3.4 the virtual Khovanov complaxvdinks. It is a v-link
invariant (Theorerh 2.3/8) and agrees with the construétidhe c-case (Theorem 2.8.9).
There are two important things about the construction. Tis¢ i that there are many
choices in the definition of the virtual complex, but we sha{@i3.13 that different choices
give isomorphic complexes. Second, it is not clear that tmepiex is a well-defined chain
complex, but we show this fact in Theorém 2.3.17 and CorpaB.18. In order to show
that the construction gives a well-defined chain complex axeho use a “trick”, i.e. we
use a move calledirtualisation as shown in Figurie]9, to reduce the question whether the
faces of the virtual Khovanov cube are anticommutative toiefiand small number of
so-calledbasic facegsee Figuré 17).

K= OO W= OX X

FIGURE 9. The virtualisation of a crossing.

e In Sectiorf 2.4 we show that our constructions can be comparsatcalledskew-extended
Frobenius algebra.4.8. With this we are able to classify all possible v-lirdnfologies
from our approach 2.4.19. We note that all the classical Hogies are included. And
we can therefore show in Corolldry 2.41.15 that our consitonds a categorification of the
virtual Jones polynomial.

e The Sectionk2]5 arid 2.6 are analogues of the earlier sechonfor v-tangles.

e The Sectiofi 2]7 uses that our construction is semi-[ocd24s a result, we can still show
that Lee’s variant of Khovanov homology is in some sense niegdéed 2.7.11. This fact is
one of the main ingredients to define Rasmussen’s invanhii classical case.

e The Sectio 2J8 gives some calculation results with a MATHEMA program written
by the author. It is worth noting that we give examples ofnk$ with seven crossings
which can not be distinguished by the virtual Jones polymbnbut by virtual Khovanov
homology.

e We have collected some open questions in the final S€ctidon 2.9

2.1.1. Notation. We call) ( the 0- and — the 1-resolutionof the crossing/ for a given v-link
diagramLp, or v-tangle diagrani’¥. For an oriented v-link diagram, or v-tangle diagranT’;
we call}7 a positiveand\ a negativecrossing. Theaumber of positive crossings denoted by
n, and thenumber of negative crossingsdenoted by: .

For a given v-link diagrani., or v-tangle diagrani’¥ with n-numbered crossings we define a

collection of closed curves and open stringsn the following way. Let: be a word of length in
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the alphabef0, 1}. Then~, is the collection of closed curves and open strings whickeaswhen
one performs a;-resolution at the-th crossing forall = 1, ..., n. We call such a collectiof, the
a-th resolutionof L, or T'%. All appearing v-circles should be numbered with conseeutiimbers
from1,..., k, inthese resolutions, whefg is the total number of v-circles of the resolutign

We can choose an orientation for the different components.diVe call such &, anorientated
resolution i.e. every v-crossing of the resolutiep should look like¥. Then a local neighbour-
hood of a0, 1-resolved crossing could for example look lik¢. We call these neighbourhoods
oriented crossing resolutions

If we ignore orientations, then there a2e different resolutionsy, of L or Tf. We say a
resolution has length if it contains exactlym 1-letters. Thatisn = 3" | a;.

For two resolutions,, and~,  with a, = 0 anda/. = 1 for one fixedr anda; = a, for i # r we
define asaddle between the resolutiofisThis means: Choose a small (no other crossing, classical
or virtual, should be involved) neighbourhodd of the r-th crossing and define a cobordism
betweemy, and~, to be the identity outside aV and a saddle inside o¥. Note that we, by
a slight abuse of notation, call these cobordisms saddibswah they contain in general some
cylinder components.

From now on we considéacesF' = (0o, Y01, 710, Y11) Of four resolutions, as mentioned above,
alwaystogether with the saddldsetween the resolutions. We denote the saddles for example b
Sox: Y00 — 701, Where the position of the indicates the change— 1.

It should be noted that any v-link or v-tangle diagram shdagariented in the usual sense. But
with a slight abuse of notation, we will suppress this omdgion throughout the whole Sectibh 2,
since the afore mentioned oriented resolutions are manedignts of our construction and easy
to confuse with the usual orientations. Recall that thesalusrientations are needed for the shifts
in homology gradings, see for examglé [9].

Sometimes we need a so-callgghnning tree argumeniie. choose a spanning tree of a cube
(as in Figuré_TI0) and change e.g. orientations of resolsisoch that the edges of the tree change
in a suitable way, starting at the rightmost leafs, then nartbem and repeat. Notice that two
cubes together with a chain map between them form again @&baydpe. It is worth noting that
most of the spanning tree arguments work out in the end beczwe®rtain preconditions, e.g. the
anticommutativity of faces.

FIGURE 10. A Khovanov cube and a spanning tree of the cube (greersgdge

Moreover, we have collected some facts from homologicalaig that we need in Sectibh 2 in

the Sectiofi 4]5 and in Sectibn 4.6.
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2.2. The topological category.

2.2.1. The topological category for v-linkdn this section we describe our topological category
which we calluCob® (). This is a category of cobordisms between v-link resoltiorthe spirit
of Bar-Natan[[8], but we admit that the cobordisms are naertable as in[113].

The basic idea of the construction is that the usual pantsog-pantsdown-cobordisms do not
satisfy the relatiomn o A = 2. But we need this relation for the face fram 2]1.1. This is¢hse,
because we need an extra information for v-links, narhelytwo cobordisms are glued together.

To deal with this problem, we decorate the boundary compsrara cobordism with a formal
sign-+, —. With this constructionn; o A, is sometimes= 6> and sometimeg 6%, depending on
i, =1,...,8. The first case will occur iffn; o A; is a non-orientable surface.

One main idea of this construction is the usage of a cobordismetween two circledifferent
from the identityid?. See FiguréJ1.

ot G Oo=

FIGURE 11. Glueing the boundary together as indicated can not be dathout
immersion in the case on the right.

Furthermore, we need relations between the decorateddisbts. One of these relations iden-
tifies all boundary preserving homeomorphic cobordisméirt boundary decorations are all
equal or are all different (up to a sign). Moreover, some efstandard relations of the category
Cob?z (1) (see for example in the book of Kodk [66]) should hold. We derthe category with
the extra signs byCob?x () and the category without the extra signsugob? z((})*. Therefore,
there will be two different cylinders in these categories.

Note that most of the constructions are easienfoob’z(0)* than foruCob® (). That is why
we will only focus on the latter category and hope the readesaot have to many difficulties to
do similar constructions farCob? % ((})* while reading this section.

At the end of this section we will prove some basic relatidrenimd 2.2.6) between the gener-
ators of our category. We also characterise the cobordisthe dace 2.1]1 (Propositidn 2.2.8).

It should be noted that, in order to extend the constructontangle diagrams, we need some
more extra notions. We will define them after Definition 2.lhJan extra subsection in Defini-
tion[2.2.70 to avoid to many notions at once.

We start with the following definition. Beware that we coresig-circles as objects and cobor-
disms together with decorations. We denote the decorabigns, — and illustrate them next to
boundary components. Hefédenotes a commutative, unital ring of arbitrary charasteri

Definition 2.2.1. (The category of cobordisms with boundarydecorations) We describe the
categoryuColr’ z(0)) in six steps. Note that our categoryRsrpre-additiv@. The symboll denotes
the disjoint union.

1sometimes also calleR-category, i.e. the set of morphisms fornRamodule and composition i8-linear.
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The objects:

The objectsOb(uCol?z(0)) are disjoint unions of numberedcircles We denote the objects
by O = II,c;O;. HereO; are the v-circles and is a finite, ordered index set. Note that, by a
slight abuse of notation, we denote the object¥bio point out that the category can be seen as
a 2-category (but it is inconvenient for our purpose). The otgef the category are equivalence
(moduloplanar isotopie¥classes of four-valent graphs.

The generators:

The generatorsof Mor(uCob?z((})) are the eight cobordisms from Figure 12 plus topological
equivalent cobordisms, but with all other possible boupdiacorations (we do not picture them
because one can obtain them using the ones shown after thkimglations below into account).
Every orientable generator has a decoration from thé-set-} at the boundary components. We
call these decorations tlggueing numbefof the corresponding boundary component).

+.+-+ ---
+ ..........
1d

FIGURE 12. The generators of the set of morphisms. The cobordisrh@nght
is the Mobius cobordism, i.e. a two times punctured projegtlane.

We consider these cobordisms up to boundary preserving trorphisms (as abstract sur-
faces). Hence, between circles with v-crossings the (raitipgd) generators are the same up to
boundary preserving homeomorphisms, but immersedifta [—1, 1].

The eight cobordisms are (from left to right):cap-cobordisnand acup-cobordisnmbetween
the empty set and one circle and vice versa. Both are homemedo a discD? and both have a
positive glueing number. We denote them:hyands™ respectively.

Two cylindersfrom one circle to one circle. The first has two positive ghgenumbers and we
denote this cobordism biylT. The second has a negative upper glueing number and a positiv
lower glueing number and we denote it by .

A multiplication-and acomultiplication-cobordismvith only positive glueing numbers. Both
are homeomorphic to a three times punctusédWe denote them by:1, andAT,.

A permutation-cobordisrhetween two upper and two lower boundary circles with onlsifpee
glueing numbers. We denote it by ;.

A two times punctured projective planaso calledMobius cobordism This cobordism is not
orientable, hence it has no glueing numbers. We denoteft by

The composition of the generators is given by glueing thegetirer along their common bound-
ary. In all pictures the upper cobordism is then the compositiorC’ o C. The decorations are
not changing at all (except that we remove the decoratioagsyfconnected component is non-
orientable)beforetaking the relations as in the equatidns 2.2.1, 2[2.2, 12234,[2.2.b[ 2.216
and[2.2.77 into account. Formallgeforetaking quotients, the composition of the generators also
needs internal decorations to remember if the generatoesendiued together alternating, i.e. mi-
nus to plus or plus to minus, or non-alternating. But aftem@g the quotients as indicated, these
internal decorations are not needed any more. Hence, weesgpthese internal decorations to

avoid a too messy notation.
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The reader should keep the informal slogan “Compositioh @it changes the decoration” in
mind.

The morphisms:

The morphismsMor(uCol? z(())) are cobordisms between the objects in the following way.
Note that we call a morphism non-orientable if any of its ceeted components is non-orientable.
We identify the collection of numbered v-circles with caslimmersed int®?. Given two
objectsO,, O, with £, ks numbered v-circles, a morphisé: O; — O, is a surface immersed

in R? x [—1,1] whose boundary lies only ii®* x {—1,1} and is the disjoint union of thé,
numbered v-circles fror®; in R? x {1} and the disjoint union of the, numbered v-circles from
O, in R? x {—1}. The morphisms are generated (as abstract surfaces) byetiegagors from
above. Itis worth noting that all possible boundary dedoretcan occur.

The decorations:

Given aC: O, — O, in Mor(uCob’z(()), let us say that the v-circles @, are numbered
from1, ..., k and the v-circles o0, are numbered froma + 1, ...,1[.

Every orientable cobordism has a decoration onittteboundary circle. This decoration is an
element of the seft+-, —}. We call this decoration of theth boundary component thieth glueing
numberof the cobordism.

Hence, the morphisms of the category are pditsw). HereC': O; — O, is a cobordism from
O, to O, immersed iMR? x [—1, 1] andw is a string of lengtli in such a way that theth letter of
w is thei-th glueing number of the cobordism ar= 0 if the cobordism is non-orientable.

Short hand notation:

We denote a orientable, connected morphiSmby C*. Hereu, [ are words in the alphabet
{+, =} in such a way that théth character of. (of [) is the glueing number of theth circle
of the upper (of the lower) boundary. The construction abeEv&ures that this notation is always
possible. Therefore, we denote an arbitrary orientablephiem(C, w) by

C=CuIl--- G,
k

Here(C}" are its connected components and; are words in{+, —}. For a non-orientable mor-
phism we do not need any boundary decorations.

The relations:

There are two different types of relations, namielgological relationsandcombinatorial rela-
tions The latter relations are described by the glueing numbetdlze glueing of the cobordisms.
The relations between the morphisms are the relationsrpittoelow, i.e. the threeombinato-
rial 2.2.1 for the orientable arid 2.2.2 for non-orientable cdlsons,commutativityand cocom-
mutativity relations2.2.3 associativityand coassociativityrelationg 2. 2B unit and counitrela-
tions[2.2.4 permutationrelationd 2.2.5 and 2.2.6,Frobenius relatiorand thetorus and Mybius
relationd 2.2.J7 and differemommutatiorrelations. Latter ones are not pictured, but all of them
should hold with a plus sign. If the reader is unfamiliar witlese relations, then we refer to the
book of Kock [66] and hope that it should be clear how to trateshis pictures to our context (by
adding some decorations).

Beware that we have pictured several relations in some Sgatrence. We have separated them
by a thick line.

Moreover, some of the relations contain several cases &, @g. in the right part of Equa-
tion[2.2.7. In those cases it should be read: If the conditamound the equality sign are satisfied,

then the equality holds.
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The first combinatorial relations are

SO D)
LRANTT el

and the third for the non-orientable cobordisms is

(2.2.1)

(2.2.2)

Note that the relation 2.2.2 above is not the samé as0, since we work over rings of arbitrary
characteristic. The (co)commutativity and (co)assu'iart'relations are

and the (co)unit relations are
S\ .: o
(224)  Gher=| +- .. + .:
\J ' ' ®+

The first and second permutation relations are

(2.2.3)

—_—"

%7
(10T
‘7

while the third permutation relation is

(2.2.5)

(2.2.6)

The importanfrobenius, torus and Ebiusrelations are

ZNAQJSL””
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A u or al means an arbitrary glueing number and, —[ are the glueing numbetsor [ multiplied
by —1. Furthermore, the bolt represent a non-orientable swsface not illustrated parts are
arbitrary.

It follows from these relations, that the cobordigin ;id7 is the identity morphism betweeé#|
v-circles. The cobordisnt, changes the boundary decoration of a morphism. Hence, thgars
above contains all possibilities for the decorations ofttbendary components.

The categoryiCob®()* is the same as above, but without all minus signs in the oglatjwe
mean “honest” minus signs, i.e. the minus-decorationstdreaise).

Both categories are strict monoidal categories (compaéeXd), since we are working with
isotopy classes of cobordisms. The monoidal structure istheced by the disjoint uniol.
Moreover, both categories are symmetric. Note that theybeasseen ag-categories, as explained
in Exampld4.1J6, but it is more convenient to see them as ahb-category.

It is worth noting that the rest of this section can also beedion the categoryCob®;(0)* by
dropping all the corresponding minus signs.

As in [8], we define the categorylat(C) to be thecategory of formal matricesver a pre-
additive category, i.e. the object®©b(Mat(C)) are ordered, formal direct sums of the objects
Ob(C) and the morphismalor(Mat(C)) are matrices of morphismor(C). The composition
is defined by the standard matrix multiplication. This catggs sometimes called thaedditive
closureof the pre-additive categoxy.

Furthermore, as before in Sectionll.1, we define the cateagomy,(C) to be thecategory of
formal, bounded chain complexeser a pre-additive categoly. Denote the category modulo
formal chain homotopy bitom,(C)". More about such categories is collected in Sedfioh 4.5.

Furthermore, we defin@Cob”;())!, which has the same objects as the categ@@yb’ (1),
but morphisms modulo the local relations from Figure 4. Wéearthe following definition.

Definition 2.2.2. We denote byKoby,((}) , the categorykom,(Mat (uCob?z((}))). Here our ob-
jects are formal, bounded chain complexes of formal direchss of the category of (possible
non-orientable) cobordisms with boundary decorations.dw*in‘e'neKobb(Q))f,iz to be the category
Koby, (), modulo formal chain homotopy. Furthermore, we defifb,, (1)}, andKoby, ()" in

the obvious way. The notation&Cob? () or Koby,(9)”) mean that we consider all possible
cases, namely with or without’aand with or without 4.

One effective way of calculation inCob®x(()) is the usage of th&uler characteristig. It is
well-known that the Euler characteristic is invariant unkdemotopies and that it satisfies
X(C20C1) = X(C1) + x(C2) = x(O2) and x(Cy 1L Cz) = x(C1) 4 x(C)
for any two cobordism§’;: O; — O, andC;: O, — O5. Because the objects oCobzR((Z)) are
disjoint unions of v-circles, we note the following lemmata

Lemma 2.2.3. The Euler characteristic satisfiggC; o Cy) = x(C4) + x(C>) for all morphisms
C}, C, of the categorynCol’ z (). O

Lemma 2.2.4. The generators of the categonColr () satisfyx(id®) = x(idZ) = 0 and
x(P1) = x(®F) = 0andx(AL,) = x(mI*) = x(6) = —1. The composition of a cobordisf
with id} or - does not changg(C). O

2Here we consider our morphisms as surfaces.
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It is worth noting that the Lemmala2.2.3 dnd 2.2.4 ensurettigacategoryaCob*z((}) can be
seen as graded categorythat is the grading of morphisms is the Euler characteri®ecall that
a saddle between v-circles is a saddle for a certain neighbod and the identity outside of it.

Lemma 2.2.5. All saddles are homeomorphic to the following three colsrdi (and some extra
cylinders for not affected components). Hence, after deoay the boundary components, we get
nine different possibilities, if we fix the decorations & ttylinders to ber.

(a) A two times punctured projective plafie= RPP; iff the saddle has two boundary circles.

(b) A pantsup-morphism iff the saddle is a cobordism from two circles to one circle.

(c) A pantsdown-morphist iff the saddle is a cobordism from one circle to two circles.

Proof. We note that an open saddfehasy(S) = —1. Hence, after closing its boundary compo-
nents, we get the statement. O

Now we deduce some basic relations between the basic cebwdiAfterwards, we prove a
proposition which is a key point for the understanding ofghablematic face fron 2.1.1. Note the
difference between the relations (b),(c) and (d),(e). Mwee, (k) and (l) are also very important.

Lemma 2.2.6. The following rules hold.
(@) Lo @ =id] oidl =idL, 7 orff =idIT.
(b) (PTIPT) o AT, = AT =-A}, =-AT 0d.

(€) (P:HidT)o AT, = AT, =—-A7_ = —(d] I &7)o AL, o P7.
(d) miTo (@1 PT)=mi =miT =0 omi™.
(e) mIT o (L IMid) =mi" =mi~ =®Lomit o (id] II O7).

() mIt o AL, = (idT I AL,) o (mI* IIidT) (Frobenius relation).
(@) mito(mIT I idf) = mit o (idf II mi™") (associativity relation).
(h) (AL, IIid}) o AL, = (idTIT AL,) o Al, (associativity relation).
() mI" o7l o (@7 MidT) = mi~ (first permutationd relation).

() (@7 1id}) o7 o AT, = AT_ (second permutatiot relation).
K) o =P 00 =0,0=—0(0relations).

() K = 62. HereK is a two times punctured Klein bottle.

Proof. Most of the equations follow directly from the relations iefihition[2.2.1 above. The rest
are easy to check and therefore omitted. O

The following example illustrates that some cobordismsrafact isomorphisms.

Example2.2.7. The two cylindersd?, ®; are the only isomorphisms between two equal objects.
Let us denot&, andO, two objects which differs only though a finite sequence olMinial Rei-
demeister moves. The vRM-cobordisms from Fiddre 6 indusesorphismg: O; — O,. To
see this we mention that the three cobordisms are isomanghise. there inverses are the cobor-
disms which we obtain by turning the pictures upside dowe &iatement (a) of Lemnia 2.2.6).

Proposition 2.2.8. (Non-orientable faces) et A}, and m}fl“‘/2 be the surfaces from Figufe112.
Then the following is equivalent.
(@) mﬁllué o A}, = K. HereK is a two times punctured Klein bottle.
(b) I} = v} andly = —u) or [} = —u) andly = uj.
Otherwisem;fa“,2 o A}';, is atwo times punctured torus. We call this the Nibius relation.
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Proof. Let us callC the compositior' = m;ff“/? o A} . A quick computation showg(C) = —2.
BecauseC' has two boundary components, is either a 2-times punctured torus or a 2-times
punctured Klein bottle and the statement follows from thras@nd Mobius relations [n 2.2.7 ]

2.2.2. The topological category for v-tangle$n this part of Sectiof 212 we extend the notions
above such that they can be used for v-tangles as well. Asieegul in Sectiol 211, the most
important difference is the usage of an extra decoratiorchvhie call theindicator. The rest is
(almost) the same as above. Again all definitions and statenoan be done for an analogue of
the categoryuCob*;(())*. First we define/recall the notion ofwartual tangle (diagram) called
v-tangle (diagram)

Definition 2.2.9. (Virtual tangles) A virtual tangle diagram with € N boundary points/’% is
a planar graph embedded in a diBR. This planar graph is a collection ofual verticesand
k-boundary verticesWe also allow circles, i.e. closed edges without any vestic

The usual vertices are all of valency four. Any of these eediis either an overcrossif or
an undercrossiny or a virtual crossingsy. Latter is marked with a circle. The boundary vertices
are of valency one and are part of the boundarpéf

As before, we call the crossingg and X classical crossing®r justcrossingsand a virtual
tangle diagram without virtual crossingglassical tangle diagram

A virtual tangle withk € N boundary point<™* is an equivalence class of virtual tangle dia-
grams7’% module boundary preserving isotopies aetheralised Reidemeister moves

We call a virtual tangld™ classicalif the setT* contains a classical tangle diagram. A v-string
is a string starting and ending at the boundary without ataksrossings. Moreover, we call a
v-circle/v-string without virtual crossings@circle/c-string

Theclosure of a v-tangle diagram with *-markéli (7% ) is a v-link diagram which is constructed
by capping of neighbouring boundary points (starting frofixed point marked with the *-marker
and going counterclockwise) without creating new virtualsings. For an example see Fidurk 13.

There are exactly two, maybe not equivalent, closures ofvatangle diagram. In the figure
below the two closures are pictured using green edges.

FIGURE 13. A *-marked v-tangle and two different closures.

The notions of arorientedvirtual tangle diagram and of asrientedvirtual tangle are defined

analogue (see also Section]|1.2). The latter modukntedgeneralised Reidemeister moves and
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boundary preserving isotopies. From now on every v-tardigtam) is oriented. But we suppress
this notion to avoid confusion with other (more importantjations.

We define the category @fpen cobordisms with boundary decoratiorisis almost the same
as in Definitior{ 2.2.11, but the corresponding cobordismddcba open, i.e. they could have ver-
tical boundary components, and are decorated with an eXtvemation, i.e. a number in the set
{0,+1, —1} (exactly one, even for non-connected cobordisms). We ggi¢he numbe# as a bolt.

Definition 2.2.10. (The category of open cobordisms with boundary decorationsLet k € N
and letk be a commutative and unital ring. the categorRispre-additive. The symbal denotes
the disjoint union.

The objects:

The objectsOb(uCol*;z(k)) are numbered v-tangle diagrams wittboundary points without
classical crossings. We denote the object®as [, O,. HereO; are the v-circles or v-strings
and/ is a finite, ordered index set. The objects of the categorgquevalence (modulboudary
preserving, planar isotopigglasses of four-valent graphs.

The generators:

Thegeneratorsof Mor(uCob?z(k)) are the cobordisms in Figurel14. The cobordisms pictured
are all between c-circles or c-strings. As before, we do mte all the other possibilities, but
we include them in the list of generators.

+ + “- H
+ +++

: + - ..'++ + F+ +F
id(1)Te(1)% S+ St ST

id7

FIGURE 14. The generators for the set of morphisms.

Every generator has a decoration from the{8et+-1, —1}. We call this decoration thedicator
of the cobordism. If no indicator is pictured, then itiig. Indicators behave multiplicative.

Every generator with a decoratigr-1, —1} has extra decorations from the get, —} at every
horizontal boundary component. We call these decoratimagltieing numbersf the cobordism.
The vertical boundary components are pictured in red.

We consider these cobordisms up to boundary preserving trowrphisms (as abstract sur-
faces). Hence, between circles or strings with v-crosdinggenerators are the same up to bound-
ary preserving homeomorphisms, but immersed intox [—1, 1].

We denote the different generators (from left to right; tow first) by.. ande*, id} and®Z,
AT, ,mI*andf,id(1)f and®(1);, ST, andS{*, S(1)1L, 6 andid(—1)7.

The composition of the generators formally needs agaimnatelecorations to remember how
they where glued together. But again we suppress them aredthepeader does not get confused.
Moreover, as before, cobordisms with-endicator do not have any boundary decorations, i.e. they

are deleted after glueing.
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The morphisms:

Themorphisms\ior(uCol’z(k)) are cobordisms between the objects in the following way. We
identify the collection of numbered v-circles/v-stringiwcircles/strings immersed intb?.

Given two objectsD,, O, with kq, ks € N numbered v-circles or v-strings, then a morphism
C: O; — O, is a surface immersed iM? x [—1,1] whose non-vertical boundary lies only in
D?*x{—1,1} and s the disjoint union of thie, numbered v-circles or v-strings fro@, in D*x {1}
and the disjoint union of thé, numbered v-circles or v-strings frof¥, in D? x {—1}. The
morphisms are generated (as abstract surfaces) by theagnseérom above (see Figurel 14).

The decorations:

Every morphism has andicator from the set{0, +1, —1}.

Moreover, every morphisnt’: ©O; — O, in Mor(uCob®z(k)) is a cobordism between the
numbered v-circles or v-strings @1, andO,. Let us say that the v-circles or v-strings@f are
numbered € {1,...,1;} and the v-circles or v-strings @, are numbered fore {l;+1,...,[}.

Every cobordism witht 1, —1 as an indicator has a decoration on tith boundary circle. This
decoration is an element of the et, —}. We call the decoration of theth boundary component
the-th glueing numbeof the cobordism.

Hence, the morphisms of the category are pditsw). HereC': O; — O, is a cobordism from
O, to O, immersed intaD? x [—1, 1] andw is a string of length, in such a way that theth letter
of w is thei-th glueing number of the cobordism and the last letter igrideator orw = 0 if the
cobordism ha$ as an indicator.

Short hand notation:

We denote a morphisr@’ with an indicator from{+1, —1} which is a connected surfaces by
C'(in). Herew, [ are words in the alphabét-, —} in such a way that théth character of, (of
1) is the glueing number of theth circle of the upper (of the lower) boundary. The numineis
the indicator. The construction above ensures that thigtioot is always possible. Therefore we
denote an arbitrary morphism as before by'(are its connected components and); are words

in{+,-1})
C(£1) = (G 11 --- TLC*)(£1).

For a morphism with) as indicator we do not need any boundary decorations. Wiliglat abuse
of notation, we denote all these cobordisms as the nontabéncobordisms.

The relations:

There are different relations between the cobordisms, hatopological relationsand com-
binatorial relations The latter relations are described by the glueing numbmasiradicators of
the cobordisms and the glueing of the cobordisms. The tgpedbrelations are not pictured but
it should be clear how they should work. Moreover, we havey gittured the most important
new relations below, but there should hold analogouslticeia as in Definitiof 2.2]1. The reader
should read these relations is the same vein as before.

The most interesting new relations are the three combiiator

TNV 2
SRR v

ab

(2.2.8)

d




and theopenMaobius relations (the glueing in these three cases is diyetie glueing numbers,
i.e. if there is an odd number of different glueing numbengntthe indicator i$ and just the
product otherwise).

(2.2.9)

We define the categonyCob’z(w) to be the category whose objects ajg., Ob(uCob’x(k))
and whose morphisms afg, ., Mor(uCob’x(k)). Moreover, it should be clear how to convert
the Definitio 2.2.P to the open case. Note that this cateigalgo graded, but the degree function
has to be a little bit more complicated (since glueing withitaary behaves different), that is the
degree of a cobordisii: O; — O, is given by

deg(C) = x(C) — g, whereb equals the number of vertical boundary components

The reader should check that this definition makes the categraded, that is the degree of a
composition is the degree of the sum of its factors.

Note the following collection of formulas that follow fronmé relations. Recall thak, and
®(1); change the decorations and thaandid(—1)T change the indicators. With a slight abuse
of notation, we suppress to writéif it is not necessary, i.e. for the indicator changes. Muegp
since® and®(1); satisfy similar formulas, we only write down the equatioos®_ and hope
that it is clear how the others look like.

Lemma 2.2.11.Let O, O’ be two objects imCol’ z(k). LetC: © — O be a morphism that is
connected, ham € {0, +1, —1} as an indicator and: and/ as decorated boundary strings. Then
we have the following identities. We write= C}'(in) as a short hand notation if the indicators
and glueing numbers do not matter. It is worth noting thatslgas in (d) are important.

(@) Coid(—1)f =id(—1)T o C (indicator changes commute).

(b) C o =60oC (f commutes).

(c) C(0) o @ = @ o C(0) (first decoration commutation relation).

(d) Let«’,!" denote the decoration change at the corresponding positadrthe words, [.
Then we have

O+ o (idTIL-- T IT--- ITidT) = C(£1)Y = +C(+1)1
= +(O7 -~ TidT 1T - - - TT &7) o O(£1)

(second decoration commutation relation).

Proof. Everything follows by a straightforward usage of the relas in Definitiof 2.2.70. [
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2.3. The topological complex for virtual links. We note that the present section splits into three
part, i.e. we define the virtual Khovanov complex first and hesthat it is an invariant of v-links
that agrees with the classical Khovanov complex for c-linkfe have collected the more technical
points, e.g. it is not clear why Definitidn 2.8.4 gives a wadifined chain complex independent of
all involved choices, in the last part. It is rather techhead the reader may skip it on the first
reading.

The definition of the complexXn the present section we define the topological complex vhie
call thevirtual Khovanov compleXL ] of an oriented v-link diagranL,. This complex is an
element of our categoryoby,(0) .

By Lemmd2.2.b we know that every saddle cobordisimhomeomorphic té, m or A (disjoint
union with cylinders for all v-cycles not affected by the db). We need extra information for
the last two cases. We call these extra informatiorstga of the saddlend thedecoration of the
saddle(see Definition§ 2.311 aind 2.8.3).

Definition 2.3.1. (The sign of a saddl¢ We always want to read off signs or decorations for
crossings that look like/, but for a crossing in a general position there are two ways to rotate
c until it looks like >{ (which we call thestandard position Since the sign depends on the two
possibilities (see bottom row of Figukel15), we choosexanarkeras in Figure 15 for every
crossing ofL , and rotate the crossing in such a way that the markers match.

9 (X

X/ X
/X_>/5(\x><(

FIGURE 15. Top: The x-marker for a crossing in the standard positi®ottom:
Two possible choices (one denoteddyfor a crossing not in the standard position.

We can say now that every orientable sadsitzn be viewed in a unique way as a formal symbol
S:) (— . Then the saddl§ carries an extra sign determined in the following way.

e Recall that the v-circles of any resolution are numberedrddeer, the x-marker for the
resolutions in the source and target%should be at the position indicated in the top row
of Figure[15.

e For a saddle5: v, — ~, we denote the numbered v-circlesgf v, by a4, ..., ax, and
bi, ..., by, and the v-circles with the x-marker ay, b7

e Since the saddlg is orientable, it either splits one v-circle or merges twaincles. Hence,
the two strings in the resolutions( or — are only different either in the target or in the
source ofS and we denote the second affected v-circléﬁbﬁor a splitand:}, for a merge.

e Then there exists two permutation, o, for S, one for the source and one for the target,
such that alla,, ¢ {af,ay} and allb, ¢ {b7,0],} areordered ascending aftehe (also
ordered), a}, andb?, bf

e Then we define the saddle siggn(.S) by

sgn(5) = sgn(o1) - sgn(o2).
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For completeness, we define the sign of a non-orientabldestmlie0. Thesignsgn(F') of a face
Fis then defined by the product of all the saddle signs of thdlsaafF".

Example2.3.2 If we have a saddl& between four v-circles numbered, us, us, uy and three
v-circlesly, Is, I3 and the upper x-marker is on the v-circle numpand the lower is on numbér
and the second string of the upper part is nunihéhen the sign of is calculated by the product
of the signs of the following two permutations.

01 (u17u27u37u4> = (u27u17u37u4) and 09 <l17l27l3) = <l37l17l2)-

Before we can define the virtual Khovanov complex we need tioel¢he saddle decorations.

Definition 2.3.3. (Saddle decoration} By LemmdZ.2.b again, we only have to define the decora-
tions in three different cases. First choose an x-marken &efinition[2.3.1 for all crossings and
choose orientations for the two resolutiopsy,... We say the formal saddle of the form

Sii: (= 7
is thestandard oriented saddleMoreover, every saddle looks locally like the standaremied
saddle, but with possible different orientations. Now weegg the decorations as follows.

e The non-orientable saddles do not get any extra decoratitostsould be noted that locally
non-alternating saddles, e.§: ) ( — >, are always non-orientable and vice versa.

e The orientable saddles gettadecoration at strings where the orientations agree and a
where they disagree (after rotating it to the standard jposttefined above).

e All cylinders of S areid iff the corresponding unchanged v-circlesypfand~,  have the
same orientation and®, otherwise.

To summarise we give the following table (we also give a wagdaote the decorations for the
saddles). We suppress the cylinders in the Table 1, but veethat the last point of the list above,
i.e. the decorations of the cylinders, is important and aarbe avoided in our context.

In the Tabld L below we write:, A for the corresponding saddl€s

String Comultiplication String Multiplication

) (= 7 AT, ) (= 2 mit

y (= < AT, =0, 0A7, (= T miT=miTo®

y (= 2 Ai_:(bQOALF ) (— T mi_O(I)Q

) (=< AJ_F_:(I)HOALF Y(— 7 m5~ o ®yy
(= = A=A, 00, |J(> | @, om

Y (= T AZ, =P10AT 0@ [V (=] PTomZTody

Y (= | AT =030AT, 0 [[) (=] P omi ody
)(—)Z A:_:(I)QOAI_’_O(I)_T_ )(—)Z (I)_T_Om:_O(I)lg
TABLE 1. The decorations are spread based on the local oriergation

At this point we are finally able to define thvétual Khovanov complexWe call this complex
the topological complex

Definition 2.3.4. (The topological compley For a v-link diagramL, with n ordered crossings

we definethe topological complefkL ] as follows. We choose an x-marker for every crossing.
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e Fori =0,...,nthei —n_ chain moduleas the formal direct sum of afj, of lengthi. We
consider the resolutions as element©f uCob?(0)).

e There are only morphisms between the chain modules of leragtd: + 1.

e If two wordsa, o’ differ only in exactly one letter and. = 0 anda/. = 1, then there is a
morphism between, and~,.. Otherwise all morphisms between components of lenagth
and: + 1 are zero.

e This morphismS is asaddlebetweeny, and~,,.

e We considemumberedandoriented resolutiongwe choose them) and the saddles carry
thesaddle singsnddecorationfrom the Definition§ 2.3]1 arid 2.3.3.

e We consider the saddlésas elements dflor(uCob?®z((})) where we interprete the saddle
signs as scalars iR and the saddle decorations as the corresponding boundzoxadiens.

Remark2.3.5 At this point it is not clear why we can choose the numberinthefcrossings, the
numbering of the v-circles, the x-markers and the orieatatif the resolutions. Furthermore, it is
not clear why this complex is a well-defined chain complex.

But we show in Lemma&_2.3.13 that the complex is independettiesfe choices, i.e. {[{Lp];
and[Lp]- are well-defined chain complexes with different choicesnttiney are equal up to chain
isomorphisms. Moreover, we show in Theorem 2.B.17 and GoydZ.3.18 that the complex is
indeed a well-defined chain complex. Hence, we see that

[[LD]] S Ob(KObb(@)R)

For an example see Figure 5. This figure shows the virtual Khov complex of a v-diagram of
the unknot.

The invariance.There is a way to represent the topological complex of ak-dilmgramL as a
cone of two v-links diagram&!,, L1,. Here one fixed crossing dfy, is resolved) in LY and1 in
L1,. Note that the cone construction, as explained in DefinHi&n3, works in our setting.

It should be noted that there is a saddle between any twoutesad that are resolved equal at
all the other crossings df%, and L},. This induces a chain map (as explained in the proof below)
between the topological complex 6f, and L},. We denote this chain map ky: [L)] — [L5].

Lemma 2.3.6.Let L be a v-link diagram and let be a crossing of.p. Let LY be the v-link
where the crossingis resolved 0 and let}, be the v-link where the crossings resolved 1. Then
we have

[Lo] = T([LB] = [Lp])-

Proof. The proof is analogously to the proof for the classical Kimmxacomplex. The only new
thing to prove is the fact that the map which resolves the crossing, induces a chain map. This
is true because we can take the induced orientation (froraribatations of the resolutions @f),

and L},) of the strings ofp. This gives us the glueing numbers for the morphismg.ofiere we
need the Lemma 2.3.113 to ensure that all faces anticommute. O

Example2.3.7. Let L be the v-diagram of the unknot from Figlide 5. Then we have

[Lo] = T(e: L[] — [(E)]) = D LY — Ly).

If we choose the orientation for the resolutions for the nlta@implexed.},, L} to be the ones from

Figurel$, then the map is of the formy = (0, m7 ™).
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As a short hand notation we only picture a certain part of mk-tliagram. The rest of the
diagram can be arbitrary. Now we state the main theorem sf#ition.

Theorem 2.3.8.(The topological complex is an invariaptLet L, L, be two v-link diagrams
which differs only through a finite sequence of isotopiesgamteralised Reidemeister moves. Then
the complexe§L ] and[L},] are equal inKob, ().

Proof. We have to check invariance under the generalised Reideneisves from Figurel 1. We
follow the original proof of Bar-Natan iri [8] with some diffences. The main differences are the
following.

(1) We have to ensure that our cobordisms have the adequadeatiens. For this we number
the v-circles in a way that the pictured v-circles have thveelst numbers and we use the
orientations given below. It should be noted that Lenimald &nsures that we can use
this numbering and orientations without problems. We noentihat we do not care about
the saddle signs to maintain readability because they dfdgtahe anticommutativity of
the faces. Hence, after adding some extra signs, the enguenants work analogously.

(2) We have to check that the glueing of the cobordisms we lgglew works out correctly.
This is a straightforward calculation using the relatianémmd2.2.56.

(3) The proof of Bar-Natan uses the local properties of hisstmiction. This is not so easy
in our case. To avoid it we use some of the technical tools fnomological algebra, i.e.
Proposition 4.514.

(4) We have to check extra moves, i.e. the virtual Reidemeistoves VRM1, vVRM2 and
VRM3 and the mixed one mRM.

Recall that we have to use the Bar-Natan relations from Eidunere. Note that the Bar-Natan
relations do not contain any boundary components. Thexef@ do not need extra decorations
for them. Because of this we can take the same chain maps dsaBam (the cobordisms are the
identity outside of the pictures). Furthermore, the whalestruction is irkoby, (0) .

The outline of the proof is as follows. For the RM1 and RM2 n®wee has to show that the
given maps induces chain homotopies, using the rules frofimien 2.2.1 and Lemm@a2.2.6 and
the cone construction from Definitidn 4.5.3. We note that \aeehto use the Proposition 4.5.4
to get the required statement for the RM1 and RM2 moves. TherRM3 move follows with
the cone construction form the RM2 move. The vRM1, vRM2 and/@Rnoves follow from
their properties explained in Example 2]2.7. Finally, thhariance under the mRM move can be
obtained by an instance of Proposition 41.5.4.

We consider oriented v-link diagrams. Thus, there are afloases to check. But all cases for
the RM1 and RM2 moves are analogously to the cases shown betovone case for the RM1
move and three cases for the RM2 move. Note that the mirrog@savork similar.

The case for the RM1 move is pictured below. For the RM2 movesia@v that the virtual
Khovanov complexes of

[—=Tand[>=] [=<]and[/=]
are chain homotopic. Here both cases contain two diffeneintases. For the left case the upper
left string can be connected to the upper right or to the Idefér For the other case the upper left

string can be connected to the lower right or to the uppett.right the last case is analogously to

the first. So we only consider the first three cases.
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For the RM1 move we only have to resolve one crossing in theplefure and no crossing in
the right. We choose the orientation in such a way that thdleasd a multiplication of the form
) (— <. Thus itis the multiplicatiomn=~ = mI™.

For the RM2 move we have to resolve two crossings in the letupg and no crossing in the
right. For the first two cases we choose the orientation ih sugay that the corresponding saddles
are of the form) { — 7 for the left crossing and of the forn” — ) { for the right crossing.

= m1" saddles in the possible complexes.

Hence, we only hava®, = —A~_ andm=

For the third case we choose the orientation in such a wayhbatorresponding saddles are of
the form) { — ~ or) { — 7 for the left crossing and of the foriit’ — ) {or =7 — ) { for the
right crossing. Hence, we only hawe ", #, A~_ andd saddles in the possible complexes.

We give the required chain maps G and the homotopyt. Note our abuse of notation, that is
we denote the chain maps and homotopies and their partsivdtbame symbols. Moreover, the
degree zero components are the leftmost non-trivial in tiié Rase and the middle non-trivial in
the RM2 case.

One can prove that these maps are chain maps and'th@t andG o F' are chain homotopic
to the identity using the same arguments as Bar-Natdn im@}lae relations from Lemnia 2.2.6.
We suppress the notatidi{-) in the following. For the RM1 move we have

01 LO1—2 0

SiNg BraEnt
DO DO [0l

We also need to give an extra chain homotapyt is the one from below.

w01 DO h=-[/, .

An important observation is now théto F' = id andh o F' = (0. Beware our abuse of notation
here, i.e. the parts of the homotopyand the chain map’ that can be composed are Thus, we
are in the situation of Definition 4.3.2 and can use Propmd#i.5.4 to get

DO =0 TOD.

For the RM2 move the first two cases are

=1 0 : I . 0

+@++ T "‘+
oo G= I“ o F(ﬁ <I>+) oflo
+ +Q++

=1: L1 Lolle =] [=<1.

++
my

d—1 d°

Here the differentials are eithér’ = (A=_ A*,)" andd® = (mi* m**) inthe second case

ord~' = (idf 11 A=_ m**)" andd® = (mi*I1id* AZ_) in the first case. We can follow
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the proof of Bar-Natan again. Therefore, we need to give andi@motopy. This chain homotopy
is
+@+ +
wt Do =<1~ D=1, 4 = (-[7/] o).
+ T
0 D] - Dl e D=1 1 = (<7, 0)

For the RM2 move the last case is

[=1: 0 - =] ° 0

< [ '
ollo G( jdi) F( idi) ollo
£

[=1I: D= Do e =] =<1

Here the differentials are either' = (A~_ H)T andd’ = (m-" —#0). Furthermore, saddles
of the mapsF, G are alsd saddles. Hence, we do not need any decorations for them. e ¢
homotopy is defined by

h:DolQoeX1- D], b= (—@:@ﬁ: 0>’
=] = Dol(Je[<X], h°= <_E+D: O)T

In all the cases it is easy to check that the given miags are chain homotopies. Furthermo¢e,
satisfies the conditions of a strong deformation retraet(io F' = id, FoG = h®od’ +d toh™!
andh o F' = 0. With the help of Proposition 4.5.4 we get

=T = [=X] and [==<] = D=X].
Because of this we can follow the proof of Bar-Natan agairntoasthe invariance under the RM3

move. We skip this because this time it is completely analsfyoto the proof of Bar-Natan (with
the maps from above).

The invariance under the virtual Reidemeister moves vVRMRMEZ and vRM3 follow from
LemmdZ.3.T4. Therefore, the only move left is the mixed Beidister move mRM. We have

[ 1="0451 5 [45D
[XF1=r5E1 5 159D,

There is a VRM2 move in both rightmost parts of the cones. Trtose can be resolved. Hence,
the complex changes only up to an isomorphism (see LemmB. I herefore, we have

[ 1= P25 15 1=
[%7] = ﬂ%ﬁ“u S =)

and

and



Thus, we see that the left and right parts of the cones ard eguplexes. Hence, the complexes of
two v-links diagrams which differ only through a mRM move ae@morphic. This finish the proof,
because with the obvious chain homotdpy= 0, isomorphisms induced by the v-Reidemeister
cobordisms and Proposition 4.5.4 again gives the desired

[ Lol = [
0

A question which arises from Theorém 2]3.8 is if the topatagcomplex yields any new infor-
mation for c-links (compared to the classical Khovanov ctaxp The following theorem answers
this question negative, i.e. the complex from Definifion.2 i3 the classical complex up to chain
isomorphisms. It should be noted that Theofem 2.3.8 andréh@@.3.9 imply that our construc-
tion can be seen as an extension of Bar-Natans cobordisrd basglex to v-links.

To see this we mention that the cobordism$™, AT, have the same behaviour as the classi-
cal (co)multiplications. Therefore, |8f.,]. denote the classical Khovanov complex, i.e. every
pantsup- or pantsdown-cobordisms are of the farm™, AT, and we add the usual extra signs
(e.g. see[9] or [52]). Beware that this complex is in genadla chain complex for an arbitrary
v-link diagramLp. Butitis indeed a chain complex for any c-link diagram, aeliagram without
V-Crossings.

Theorem 2.3.9.Let L, be a c-link diagram. ThefiL 5] and[L]. are chain isomorphic.

Proof. BecauseL, does not contain any v-crossing, the complex hag#saddles. Moreover,
every circle is a c-circle. Hence, we can orient theror —, i.e. counterclockwise or clockwise.
We choose any numbering for the circles.

Because every circle is oriented clockwise or counterclos, every saddl& is of the form
) (— > or) { — . Hence, every saddle is of the form " = m-~, AT, or AZ_. Thus, these
maps are the classical maps (up to a sign).

We prove the theorem by a spanning tree argument, i.e. clso@bea spanning tree. Start at the
rightmost leaves and reorient the circles in such a way tlatrtaps which belongs to the edges
in the tree are the classical maps ™ or AT, . This is possible because we can use" = m-~
here. We do this until we reach the end.

We repeat the process rearranging the numbering in such @haayhe corresponding maps
have the same sign as in the classical Khovanov complex.i§ psssible because every face has
an odd number of minus signs (if we count the sign from theimia\~_ = —AT.).

Note that such rearranging does not affect the anticommifyabecause of Lemma 2.3.113.
Hence, after we reach the end every saddle is the classdlesmgether with the classical sign.
The change of orientations/numberings does not changeothplex because of Lemnia 2.3.13.
This finishes the proof. U

Remark2.3.10 We could use the Euler characteristic to introduce the siraof a graded cate-
gory onuCob’z((}) (and hence oioby, (1) ).

The differentials in the topological complex from Definiti@d.3.4 have alleg = 0 (after a grade
shift), because their Euler-characteristic is -1 (see LefZ@.4). Then it is easy to prove that the
topological complex is a v-link invariant under graded haoopy.

Remark2.3.11 If one does the same construction as above in the cateoip’;(()*, then the

whole construction becomes easier in the following sensst ¢he does not need to work with the
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saddle signs any more, i.e. the conplex will be a well-defetein complex if one uses the same
signs as in the classical case. Furthermore, most of théraotisns and arguments to ensure that
everything is a well-defined chain complex are not necessainyvial, e.g. most parts of the next
subsection are “obviously” true, and the rest of this secti@an be proven completely analogously.
This construction leads us to an equivalent of the constmucif Turaev and Turnef [113]. Note
that this version does not generalise the classical Khovhomology. In order to get a bi-graded
complex one seems to need a construction relatedgomducts.

The technical points of the constructiomm this subsection we give the arguments why the topo-
logical complex is well-defined and independent of all cksimvolved.

The following lemma ensures that we can choose the x-maricettee order of the v-circles in
the resolutions without changing the total number of sigos infor all faces.

Lemma 2.3.12.Let F' be a face of the v-link diagram,, for a fixed choice of x-markers and
orders for the v-circles of the resolutions bf,. Let F’, I denote the same face, bit with a
different choice of x-markers anfd’ with a different choice for the orderings. Then

sgn(F) = sgn(F") = sgn(F").

Proof. It is sufficient to show the statement if we only change onearkar of one crossing or
the numbers of only two v-circles with consecutive numbara fixed resolutiony,. Moreover,
the statement is clear ifor -, does not affect’ at all or one of the saddles is non-orientable.

Note that a change of the x-marker okffects exactly two saddleS, S’ of I’ and for both
the numbergn(S), sgn(S’) changes since, by definition, we demand that in the defingfdhe
permutationsr;, o, from Definition[2.3.1 the two corresponding v-circles ardeyed. Hence, the
total change for the face is 0 mod 2.

If the numbering of the two v-circles changes)ya, then the sign of the permutatien changes
for both saddles,., S, but no changes fa$,., S.;. Analogously for they;; case.

In contrast, if the numbering of the two v-circles changegjinthen the sign of the permutation
o1 andoy changes forS,; and.Sy, respectively, but no changes 18y, S;.. Analogously for the
10 case. Hence, no change for the face mod 2. O

Lemma 2.3.13.Let L, be a v-link diagram and I€tL ], be its topological complex from Defini-
tion[2.3.4 with arbitrary orientations for the resolutioniset [ L], be the complex with the same
orientations for the resolutions except for one circia one resolutiony,. If a faceF; from[Lp];
is anticommutative, then the corresponding fagdrom [ L], is also anticommutative.
Moreover, if[ Lp]; is a well-defined chain complex, then itis isomorphifig |., which is also
a well-defined chain complex.
The same statement is true if the difference between the dmplexes is the numbering of
the crossings, the choice of the x-marker, rotations/is@® of the v-link diagram or the fixed
numbering of the v-circles in the resolutions.

Proof. Assume that the face) is anticommutative. Then the different orientations of tirele
¢ correspond to a composition of all morphisms of the fésewith this circle as a boundary
component withb .

Hence, the facé, is also anticommutative, because both outgoing (or incgjnmorphisms
of F, are composed with an extr_ if the circle is in the first (or last) resolution of the faces.

If it is in one of the middle resolutions, then we have to userlation®; o &, = id] from
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LemmdZ.2.B. Note that it is important for this argument takitbat cylinders between differently
oriented v-circles ar@_, as in Definitiof 2Z.314.

Thus, if the first complex is a well-defined chain complexntkiee same is true for the second.
The isomorphism is induced (using a spanning tree congin)dty the isomorphisnd .

The second statement is true because the numbering of th&rmye does not affect the cobor-
disms at all. Hence, the argument can be shown analogouti tcassical case (see for exam-
ple [52]), but it should be noted that our way of spreadingisidoes not depend on this ordering.

On the third point: That anticommutative faces stay anticwtative, if one changes between
the two possible choices in Definition 2.8.1, is part of Lenfx@12. The chain isomorphism is
induced (using a spanning tree construction) by a sign ption.

The penultimate statement follows directly from the deiimtof the saddle sign and decora-
tions, while the latter statement is also part of Lenhma 2| 8«ith the isomorphisms again induced
(using a spanning tree construction) by a sign permutation. O

Lemma 2.3.14.Let L, L', be v-link diagrams which differs only by a virtualisationasfe cross-
ing c. If a faceF' is anticommutative iff L], then the corresponding fad€ is anticommutative
in[L].

Moreover, if[Lp] is a well-defined chain complex, then it is isomorphi¢ )], which is also
a well-defined chain complex.

The same statement is truelif, and L/, differs only by a vRM1, vRM2, vRM3 or mRM move.

Proof. The statement about anticommutativity is clear, if one efgaddles which belongs to the
crossinge is non-orientable. This is true because of the relations fEmuatiori 2.2J2 and Propo-
sition[2.2.8. Thus, we can assume that both saddles aretaslen Furthermore, it is clear that
the two composition of the saddles are boundary presenangelomorphic after the virtualisation.
Hence, the only thing we have to ensure is that the decosa#ind signs work out correctly.

We use the Lemmia 2.3113 here, i.e. we can choose the or@mgathd the numberings in such
a way that the saddles which do not belong to the crossihgve the same local orientations
and numberings. We observe the following. The sign and tbal lorientations of a saddle can
only change if the saddle belongs to the crossince. the local orientations always changes (see
Figure[16) and the sign changes precisely if the two strindke bottom picture of Figufe 116 are
part of two different v-circles.

- 070
) (=0 X
RCIX

FIGURE 16. The behaviour of the x-marker and orientations undéuafisation.

A change of the local orientations multiplies an extra signdomultiplication, but no extra

sign for multiplication. This follows from the Tablg 1 andetmelations from Equation 2.2.1.
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Hence, the anticommutativity still holds if the two saddidsch belong to the crossingare both
multiplications or comultiplications, because their detmns and signs change in the same way.

If one is a multiplication and one is a comultiplication, mhee have two cases, i.e. the mul-
tiplication gets an extra sign or not. The comultiplicataways gets an extra sign because the
local orientations change. But the multiplication will clgge its saddle sign iff the comultiplication
does not change its saddle sign. Hence, the number of egtra does not change mod@oThis
ensures that the faces stays anticommutative.

That the faceF” stays anticommutative after a vRM1, vRM2, vRM3 or mRM movkoiws
because neither the local orientations nor the signs of@aingrdism changes. Thus, all decorations
and signs are the same.

The chain isomorphisms are induced by the vVRM-cobordisrowslin Figurd 6, morphisms of
type®. and identities. Recall that all these cobordisms are isphisms in our category. [

For the proof of the next lemma we refer the reader to the pf@idr We call faces of the
following type thebasic (non-)orientable faces

e A A
()0 (T (0

FIGURE 17. Left: The basic orientable faces. Right: The basic noentable faces.

Lemma 2.3.15.Let L be a v-link diagram. Therd, can be reduced by a finite sequence of
isotopies, VRM1, vRM2, vVRM3, mRM moves and virtualisato@asv-link diagramL/, in such a
way that a fixed connected facedf; is isotopic to one of the basic faces from the Fidure 17 (or
to one of their mirror images) up to vVRM1, vRM2, vRM3 movederidce itself. U

Note that these lemmata allow us to check arbitrary orietaton the basic faces with arbitrary
numbering of crossings and components.

Proposition 2.3.16.Let L be a v-link diagram with a diagram which is isotopic to one loé t
projections from Figure 7. Thefl p] is a chain complex, i.e. the basic faces are anticommutative
Moreover, disjoint faces, i.e. faces such that the corresipgy four-valent graph is unconnected,
are always anticommutative.

Proof. Because of Lemmla 2.3113, we only need to check that the faeemnéicommutative for
orientations of the resolutions of our choice with an adsitrnumbering. Then we are left with
three different cases, i.e. the v-link diagram/gf is orientable, i.e. all saddles are orientable, or
the face is non-orientable, i.e. two or four of the saddlesan-orientable or the face is disjoint.
For the first case we see that every resolution contains eaicles. We prove the anticommu-
tativity of the corresponding face for the following oriatibns of the resolutions. All appearing
circles are numbered in ascending order from left to righbwtside to inside. Moreover, the

position of the x-marker does not affect our argument andwp@ess it in this proof.
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Because every resolution contains only c-circles, we ahag®ositive orientation for the circles
except for the two nested circles that appear in two resoiudf a face of type 1a or 1b. Thisis a
clockwise orientation for all the non-nested circles andanterclockwise orientation for the two
nested circles. Hence, all appearing cylinders are idestit

It follows from this convention that everrresolution (orl-resolution)) ( of a crossing/ (or
a crossing\)) is of the form) { and everyl-resolution (or0-resolution)) ( of a crossing{ (or a
crossingX) is of the form ~. Moreover, the only face with an even number of saddle sigo$ i
type la.

All we need to do is compare these local orientations withaies from Tabléll. We see that

we have to check (indicated by tlie) the following equations.

o Attom~ = —A~" om™, (face of type 1a).

e mito AT, =mito AT, (face of type 1b).

o (AT, Iid}) o (idf I mi*) = mT* o AT (face of type 2a).

e mITo(mit I idl) = mi" o (idf I mi") (face of type 2b).
Most of these equations are easy to calculate. The readetdshbeck that the cobordisms
on the left and the right side of every equation are homeohiorfusing Propositioh 2.2.8 and
LemmdZ.ZB).

Furthermore, the second equation is clear and the othex thiews easy using the result of
Lemma2.2.6. Hence, they are all anticommutative becauyelmnfirst face has an even number
of saddle signs.

The non-orientable faces of type 1b, 2a, 2b, 3a and 3b areteatyeck. One can use the Euler
characteristic here and the relations in Equdfion 2.2.2.

The non-orientable face of type 1a is the face ffom 2.1.1ekear have to use Proposition 2J2.8.
We get twod-cobordisms and A- and am-cobordism. Because of the relations in Equafion 2.2.2
we can ignore the saddle signs.

Again we can choose an orientation for the resolutions. Wedmmathis for example in the
following way (compare to Figuid 5).

e The first MObius strips aré: ) ( — ~_andd: ) ( — .
e The pantsdown is\™, : ) { — >~ and the pantsupis;: ) ( — 7.

We use Proposition 2.2.8 to see that this face is anticontimeta

The reader should check that all disjoint faces with onlgmtable saddles have an odd number
of saddle signs. The disjoint faces with two or four non-otédle saddles anticommute because
of the relations in Equatidn 2.2.2 and (k) of Lemima2.2.6. O

This proposition leads us to an important theorem and an@asylary.

Theorem 2.3.17.(Faces commutgLet L, be a v-link diagram. LefLp] be the complex from
Definition[2.3.4 with arbitrary possible choices. Then gvieice of the complel.. ] is anticom-
mutative.

Proof. This is a direct consequence of the Proposifion 2]3.16 amthtee Lemmata2.3.13,2.3114

and2.3.1b. O
Corollary 2.3.18. The complef L] is a chain complex. Thus, it is an object in the category
Kob, (0) . O
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2.4. Skew-extended Frobenius algebrasWe note that this section has three subsections. We
construct the “algebraic” complex of a v-link diagraim, in the first subsection. It is an invariant
of virtual links L, i.e. modulo the generalised Reidemeister moves from Ei@urlt should be
noted that the notion of “homology” makes sense for the algjelzomplex.

We describe the relation between uTQFTs and skew-extenwd@Rius algebras in the second
subsection. A relation of this kind was discovered by Turaey Turner[[113] for extended Frobe-
nius algebras and the functors they use. Even though outraatien is different, their ideas can
be used in our context too. This is the main part of Thedren82But our uTQFT correspond to
skew-extendeBrobenius algebras, i.e. the mé&ps a skew-involution rather than an involution.

In the last subsection we are able to classify all aspheuit&FTs which can be used to define
v-links invariants, see Theordm 2.41.19. It is worth notingttwe get an invariant for v-links which
is an extension of the Khovanov complex fir= Z or R = Q, see Corollary 2.4.13. Note that
this includes that our construction can be seen as a cafiegtian of the virtual Jones polynomial,
see Corollary 2.4.15. Moreover, we also get extension foertlassical link homologies, see e.g.
the Corollarie§ 2.4.16 aind 2.4]17.

The algebraic complexWe denote any v-link diagram of the unknot with the symbplFurther-
more, we view v-circles, i.e. v-links without classical ssings, as disjoint circles immersed into
R2. Recall thatR is always a unital, commutative ring of arbitrary charastér.

Definition 2.4.1. (UTQFT) A (1+1)-dimensional unoriented TQFF (we call thisauTQFT) is a
strict, symmetric, covarianfz-pre-additive functor

F: uCob’x() — R-Mod .

Here 7(() is a finitely generated, freB-module. LetO, O' be two homeomorphic objects from
uCob’z (). ThenF(0O) = F(O') should hold. The functaF should also satisfy the following
axioms.

(1) Let O, O’ be two disjoint objects irOb(uCob?z(())). Then there exists a natural (with
respect to homeomorphisms) isomorphism betwgé@ 11 O') andF(O) @ F(O').

(2) The functor satisfie& () = R.

(3) For a cobordisnC': © — O" € Mor(uCob?z(0)) the homomorphisnF(C) is natural
with respect to homeomorphisms of cobordisms.

(4) Let the cobordisnd’: © — O € Mor(uCob?z(())) be a disjoint union of the two cobor-
dismsC . ThenF(C) = F(C,) ® F(Cs) under the identification from axiom (1).

Two uTQFTsF, F' are calledisomorphicif for each object of® € Ob(uCob’z(0)) there is

an isomorphismF(O) — F'(O), natural with respect to homeomorphisms of the objects and
homeomorphisms of cobordisms, multiplicative with regpedisjoint union and the isomorphism
assigned td is the identity morphism.

Remark2.4.2 There are several things about the definition.
e Recall that our category iR-pre-additive. A uTQFT is &-pre-additive functor. So we
can extend this to a functor
F: Koby,(0), — Kom,(Mat(R-Mod)),

i.e. for every formal chain complefC,, d.) of objects ofuCob?z(0), i.e. v-circles, the

object F((C,,d,)) is a chain complex ofR-modules and for every formal chain map
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f:(Cy,d.) — (C7,d,) of possible non-orientable, decorated cobordisms the nigmp
F(f) is a chain map ofR-module homomorphisms.

e A UTQFT F is a covariant functor. Hence, we see tfid) = id. Furthermore it is
symmetric and henc&(7") = 7. Herer denotes the canonical permutation.

e The permutatiorr is natural. So we can assume that B and B ® A are equal and
not merely isomorphic.

e For the definition of natural (converted to our setting) wier¢he reader td [113].

Definition 2.4.3. (Algebraic compleX Let L, be a v-link diagram. Then thalgebraic complex
of Lp induced by the uTQFTF is the complexF ([Lp]).

We prove the following important result. Hefe,, L, are a v-link diagrams. The proof is a
direct consequence of Theorém 213.8.

Theorem 2.4.4.(The algebraic complex is an invariagt_et 7 a uTQFT which satisfies the Bar-
Natan-relations of Figurél4. Then the algebraic comple¥L]) is a v-link invariant in the
following sense.

For two equivalent (up to the generalised Reidemeister sjoxink diagramsl., L', the two
chain complexe& ([Lp]) and F([L),]) are equal up to chain homotopy. O

This theorem allows us to speak tife algebraic complex ([L]) of any oriented v-linkL.
Furthermore, the categoB+Mod is abelian. Hence, the categdfpm,(Mat (R-Mod)) is also an
abelian category. So unlike in the categiigb,, (() ,, we have the notion of homology. We denote
the homology of the algebraic chain complexByF ([L])).

Skew-extended Frobenius algebras and uTQRWe. continue with the definition of an algebra
that we call askew-extended Frobenius algebr&or a R-bialgebraA with comultiplication A
and counit: we call anR-algebra homomorphisd: A — A askew-involutiorif it satisfies the
following.

(a) ®* = id (involution).

(b) (P ®@P)oAod=—Aande o P = —c (skew-property).

Definition 2.4.5. (Skew-extended Frobenius algebrgsA Frobenius algebrad over R is a unital,
commutative algebra ovdt which is projective and of finite type (asf&module), together with
a module homomorphism: A — R, such that the bilinear forny, -) defined by(a,b) = =(ab)
forall a,b € A is non-degenerate.

An skew-extended Frobenius algeb#aover R is a Frobenius algebra together with a skew-
involution of Frobenius algebrals: A — A and an elemertt € A which satisfy the two equations
below. Note that one can usedo define a comultiplication\.

(1) ®(Aa) = Oa = 6P (a) forall a € A.
(2) (mo (® ®id) o A)(1) = 62,

Notation.Because ot € A, we can define: R — Aby1 +— 1. We can write a Frobenius algebra
uniquely as¥ = (R, A, ¢, A). Moreover, we can write such a skew-extended Frobeniubedge
uniquely asF = (R, A, e, A, ®,0).

Definition 2.4.6. Two skew-extended Frobenius algebras, dendted= (R, A,e, A, ®,0) and
Fo = (RA A D 0, are calledisomorphicif there exists an isomorphism of Frobenius
algebrasf: A — A’, which satisfies (6) = ¢ andf o ® = &' o f.
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We call a Frobenius algebmsphericalif <(.(1)) = 0. Furthermore, we say it is eank2-
Frobenius algebraf A >~ 1- R® X - R asR-modules.

Remark2.4.7. The mape is called thecounitof A. It can be used to define@multiplication
A:A— A A. We will call m: A ® A — A themultiplicationof A. The coproduct and the
product make the two diagrams

A9 A—2 Ao A A A—2o A0 A
A®idl \OK lm@id Al \ld\ lid@a
A®A®Aid®m A®A A®A€®id A

commutative. In a skew-extended Frobenius algebra the-gkaMution ® and the elemerft make
the two diagrams

VAV{A A%@)&A
| N

commutative (it is easy to check that the two equations frogfiriition[2.4.5 already imply the
equationmo (¢®id)oA)(a) = #*afor alla € A). Here the mapd: A — Ais the multiplication
with 6 and the mapn’: A ® A — Ais the map® ® id) o m.

We recognise that the lower right diagram is the problenfatte from2.1.1l. So the second
equation from Definition 2.415 is a key point in the definition

A

The following theorem is inspired by a corresponding theone [113].

Theorem 2.4.8.The isomorphism classes of (1+1)-dimensional uTQFTs &vare in bijective
correspondence with the isomorphism classes of skeweeddfrobenius algebras ovéi.

Proof. First let us consider a uTQFEF over R. We describe a way to get a skew-extended Frobe-
nius algebra from it. Let us denote this algebra By A, ¢, A, &, 0).

We takeA = F(()) as our underlyingz-module. Next we need a skew-involution A — A.
We take the cylinder from Figute1l2. Set= F(P).

The unit. should beF(.,.). There is no further choice because= ._. The counit should be
F(e*). Here we have a choice because# <. But because of * = —¢~, both choices lead to
isomorphic algebras.

Now we need a multiplicatiom» and a comultiplicatiomA. One may suspect, that we have
different choices for either of them, namely the eighf™, AZ. . But the relations of a Frobenius
algebra only allow one option. We discuss this now. It shdaddnoted that the computations
below can be done using Lemiha 2]2.6.

e The lower boundary components &f;, must have the same glueing numbers as the
boundary component aft becauseF (1) should be the counit.

e Because of the relationo mo (id ® 1) = ¢ = e o m o (v ® id), the lower boundary of
m;"""*> must have the same glueing number as the boundary compdnenthe same is

true for the upper boundary (this means we need = mZ-").
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e Because of the relatiofid ® m) o (A®id) = Aom = (m®id) o (id ® A), them;""?
must have the same glueing number on the lower boundary apfie boundary oA},
(the reader should check that this is the only possible ehfmicthe glueing numbers for
m;""* and A} ).

lil2
Therefore, we havé& (1) = ¢, F(e*) = ¢, F(mi") =mand F(AL,) = A.

The last piece missing is the elemént A. Consider a two times punctured projective plane
RP; (a punctured Mobius strip). This &in our notation.

Thenfo., : ) — O is a punctured projective plane (hence a Mobius strip)dSetF (foc, )(1).
Because of the definition, this is an elemenfdf))) = A.

We have to prove the equations needed for a skew-extendeeius algebra, i.e. thatis a
unit,  is a counit,® is a skew-involutionyn (A) is a (co)multiplication and the commutativity of
the faces from Remafk 2.3.7.

This is a straightforward verification bases on the relaimom Lemma 2.216 (we omit it here).
This shows that every uTQFT has an underlying skew-exteRrdgaenius algebra.

For the other direction, i.e. if we assume that we have a skeéended Frobenius algebra, we
note that this algebra has an underlying “classical” Fralsealgebra. Therefore we get a TQFT
F' from this underlying Frobenius algebra. We want to use tiQ$§ T to define a UTQFTF. The
TQFT F' is a covariant functor

F': Cob?*z(0) — R-Mod .

Let © be an object imCob?®z (). This object gives us (modulo homeomorphisms) a correspgnd
object®’ in Cob®(0). We setF(0O) = F/(O'). This assignment clearly satisfies tiatO)) is a
finitely generated, fre&-module andF(O,;) = F(O,) for two homeomorphic objectd,, Os.

Moreover, becausg’ is a TQFT, this satisfies the first two axioms from our Defim{®4.1.
Now we need to defing (C) for morphisms fromiCob?z(0).

First we assume tha: O; — O, is orientable and connected. Then we have a corresponding
morphism inCob?;((), i.e. the same without the boundary decorations, which viledenote by
C': O] — O,

We denote the cap-, cup-, pantsup- and pantsdown-cobsdisthe categonCob®z () by
t,e,m andA respectively. Let us define

Flig) =F' (1), F(e") =F'(e), F(mI") = F(m), F(AL,) = F'(A) andF (D7) = .

The map® is the skew-involution in the skew-extended Frobeniuslaige Thus, we can define
F(C) in the following way. We decompos# into the basic pieces e, m,A. ThenF'(C') is
independent of this decomposition becaifsds a TQFT. If we use the same decomposition for
C (under the identification from above), we get a cobordisnfror this cobordism we can define
F(C). We see that we only have to change some of the boundary diecsrafC to obtainC.
Hence, we have

C=C0CoCy,

whereC;, C, are cylinders of the typel® or .. Hence, we can define

F(C) = F(Cy) o F(C)o F(Cy).
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That this is also independent of the decomposition followsnfthe fact thatd?, ¢ and the cor-
responding maps in the skew-extended Frobenius algeb(alae-)involutions and a “level-by-
level} change of decorations using the relations in Lerhmal?2.2.6ebleer, for a non-connected,
orientable cobordisr@ we extend the definition from above multiplicatively.

For a non-orientable, connected cobordiSwe have to define~(¢) = -0 first. Here the map
0. A — A is the multiplication with the elemertt in our skew-extended Frobenius algebra.
Hence, if we decompos@ = C,.#nRP? into a (non-decorated) orientable pést andn-times a
projective plane we define

F(C)=0"F(Co).
This is again independent of the decompositiorCgf because of the first relation in a skew-
extended Frobenius algebra, namél{fa) = 6a = 0P(a) for all a € A. Furthermore, it is
independent from the decompositiér= C,.#nRP?, because if we replace2a- RP? with a torus
T, we see thaF (C,,) is multiplied by a factofmo (® ®id) o A)(1)6"~2. Hence, using the second
relation of the skew-extended Frobenius algebra, we get

F(Cor#tnRP?) = (0")F (Cor) = 0"*(m o (2 ® id) 0 A)(1)F'(Cor) = F(Cor# T #(n — 2)RP?).

For a non-connected, non-orientable cobordismwe extend the definition from above multiplica-
tively. Hence, we only have to show the remaining axioms ftbeDefinition 2.4.1l. The reader
should check these axioms (one could follow the end of thefpno[113]). O

Classification of v-link homologiedzrom now on we use the notions uTQFT and skew-extended
Frobenius algebra interchangeably.

Proposition 2.4.9. (The universal skew-extended Frobenius algebiavery aspherical rank2-
uTQFT comes from the rank2-uTQFL = (Ry, Av, v, Ay, Py, 0y ) through base change. Here
the ring Ry is Ry = Zla,a™, a, 3,7, t]/Z with Z is the ideal generated by the relations (we use
the notatiomh = a='v — o? — 3%t here)

ay = fy =20 =28 =da’B*h = 0.

Furthermore, the algebra isly = Ry[X]/(X? = t 4+ ahX), the elemend;; € Ry is given by
0y = a + [ - X and the maps will be the ones from Table 2. The table is theviolg.

w:R— A, 1—1. Op: A— A, 1=,
X—=v-X.
ey: A—> R, 1—0, X—a |0y A= A, l=a+f-X,
X — ft+ (a+aph) - X.

1®1l—1,1X— X,
X1—=X, XX —=t+h X

I —h-1®1+a (10X +X®1),
X—=at1el+a ' X ®X.

TABLE 2. The maps for the generators from Figurée 12.

mU:A®A—>A, {

Ap: A= A® A,

30ne can for example verify the statement by induction on timalrer of generators in the decomposition.
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Proof. We start by showing that the data given above give rise to w-gltended Frobenius al-
gebra, i.e. the satisfy the axioms given in Definifion 2.4bte that the algebrd,; is certainly a
rank2-algebra oveRy, 0y = o + X € Ay and(epy o vy (1)) = 0.

Moreover, it satisfies the axioms of an aspherical Frobesgesbra, since it, forgetting the new
structure, coincides with the classical one giveri in [56].

A direct computation verifies thdt;; is a skew-involution, i.e.

Oy o by = idAU, ((I)U & (I)U) o AU ody = —AU andaU o Py = —¢y.

Furthermore, a direct computation shows tifgtand®,; also satisfy the axioms (a) and (b) from
Definition[2.4.5, i.e. the whole data is an aspherical rank@FT.

Now assume that we have a given aspherical rank2-uTBFT (R, A, e, A, @, 0).

First we observe that a skew-extended Frobenius algélbias an underlying Frobenius algebra
of rank two. Hence, has to be of the given form. Because it is also asphericals(€1)) = 0,
we see that(1) = 1 ande(X) = a - 1. The element € R is invertible because of the relation

(e®id)oA=id=(id® €)oo A.

It is known (e.qg.[[56]) that such an algebra is of the form= R[X]/(X? = ¢ + ahX) with
multiplicationm and comultiplicatiom\ from the tablé 2 above.

Next we look at the new structure. Becauses an elementofdA =2 1- R & X - R we find
a, 8 € R suchthat) = o + 3X. Using the multiplication we see thaf> = ¢t + ah - X. So an
easy calculation shows thét X = gt + (a + afh)X which gives us the mag as above.

Because the map: A — A is not only R-linear, but also a skew-involution, we géf1l) = 1
and withe o ® = —= we getd®(X) = v — X. Using the first relation of a skew-extended Frobenius
algebra we get the relationsy = gy = 25 = 0 and2(« + afh) = 2a = 0.

Using the second relation of a skew-extended Frobeniubedgaamely

mo (®Iidy) o A = (-0)?,

we get the last two relationsh = v — aa? — a3*t anda?3?h = 0.
These are all relations we get from the axioms of an aspheaoc&2-uTQFT, i.e. any other
axiom will also lead to one of these relations. O

Remark2.4.1Q The reader familiar with the paper of Turaev and Turher [Mill]recognise that
our universal skew-extended Frobenius algelfa is different from the one from Turaev and
Turner. But this is an advantage (see Corollary 24.13).

As mentioned before in the Remdrk 2.3.11, the version of&uend Turner can be obtained
from our concept too. The difference again are the relations —=~ andAT, = —AZ_. This
forces® = F(®7) from the proof above to senl — v — X instead ofX — ~ + X (but overR
with char(R) = 2 they coincide).

The next corollary allows us to characterise the uTQFTs whead to v-link homology.
Corollary 2.4.11. Every aspherical rank2-uTQFF satisfy the local relations from Figufé 4.

Proof. View a sphere5? as a cobordisns?: §) — (). ThenF(S?) = F(e*) o F(1+). So we calcu-
late F(S?) = 0. Because of the axiom (4) from Definitibn 2.4.1, this is traedvery cobordism

with a sphere. Analogously view a torgsas a cobordisn7 : ) — (. Thus, it is of the form
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F(T) = F(e) o F(mi") o F(AL,) o F(ty). An easy calculation with the maps of Table 2
shows, thatF (7)) = 2. Because of the axiom (4), this is true for every cobordisth &itorus.
The4Turelation is algebraical just the formula

A12OL+A34OL:A130L+A24OL.

HereA;; : A - A® A® A ® A is the map which sends an element= A to an element
a1 ® as ® ag ® aq With a;, = a for k # 4, j anda;, a; the first respectively the second tensor factor
of A(a) (see Figuré18).

=+

FIGURE 18. TherelatiomM\is 0t 4+ Asgyo0t = Ajz300+ Ayy 0.

That this relation is true is also an easy calculation. Agailom (4) gives us the global state-
ment. Because this is true for the universal skew-extendetdrius algebrar;;, we get the
statement for all aspherical rank2-uTQFTs from the PrdjuogP.4.9. O

Because with an aspherical, rank2 skew-extended Frobalgelra we can define a correspond-
ing rank2-uTQFT which satisfies the Bar-Natan relationspate the following two corollaries.

Corollary 2.4.12. Every aspherical, rank2 uTQFT can be used to define a v-lvkriant. O

Corollary 2.4.13. (The virtual Khovanov complexThe above construction enables one to extend
the Khovanov complexti, = Z, Axy, = Z[X]/(X? = 0,t = h = 0)) from c-links to v-links by
settingo = f =~y =0anda = 1. O

From now on we denote biyh(L) = Fg,([L]) thevirtual Khovanov compleaf a v-link L and
by H(Kh(L)) its homology.

Remark2.4.14 It is possible to introduce gradings (by settitg 1 = 1 anddeg X = —1) for
the complex from Corollary 2.4.13. This is true because thp ith = 0. In fact this is the only
possibility where we can introduce gradings, because afismia the Khovanov complex must
decrease the grading by one. And this is only possibkeifA — A is equal zero.

Corollary 2.4.15. (Categorification of the virtual Jones polynomiallhe virtual Khovanov com-
plex[2.4.18 is a categorification of the virtual Jones polyial in the sense that its graded Euler
characteristic gives the polynomial.

Proof. The classical Jones polynomial is uniquely determined leyskkein-relations. The same
is true for the virtual Jones polynomial, see for exampld.[43ne can now easily check that the
virtual Khovanov compleXh(-) satisfies these relations. O

There is also an extension of the Khovanov-Lee complex (sepdper([74]) and two different
extensions of Bar-Natan'’s variam® (= Z/2, h = 1,t = 0) (see his papef [8]).
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Corollary 2.4.16. (The virtual Khovanov-Lee complgxThe above construction enables us to
extend the Khovanov-Lee complé¥.(. = Z and Ay.. = Z[X]/(X? = 0,t = 1,h = 0)) from
c-links to v-links by setting = = v =0 anda = 1. O

Corollary 2.4.17. (The virtual Khovanov-Bar-Natan complexThe above construction enables
us to extend Bar Natan’s variant of Khovanov homology (thithe Frobenius algebra over the
field Rpny = Z/2 with Agy = Z/2[X]/(X? = 0,t = 0,h = 1)) from c-links to v-links in two
different ways by setting = 5 = 0 andy = a = 1 or by settingd = v =0anda = a = 1. The
two extensions are non-isomorphic skew-extended Frobehjebras.

Proof. That these two skew-extended Frobenius algebras can basisdthk homologies follows
from CorollaryZ.4.1P. To see that they are non-isomorpkémsextended Frobenius algebras we
note thatd = 0 in the first case and = 1 in the second case. Because any isomorphism of
skew-extended Frobenius algebras satisfi@s = 1 and f(6) = ¢', they are not isomorphic. [J

We denote these three extensionsBy..(L) = Fre.([L]), Feni(L) = Fpni([L]) and
Fena(L) = Fpy2([L]) respectively.

Proposition 2.4.18.Let L, be a c-link diagram and leF be an aspherical rank2-uTQFT. Then
the complexF([Lp]) is the classical Khovanov complex (up to chain isomorphjisafsch is
obtained by using the underlying TQEA of F.

An similar statement is true for the Khovanov-Lee complekthe two different versions of the
Khovanov-Bar-Natan complex.

Proof. This is just the algebraic version of Theorem 2.3.9. O

It is worth noting that, ifL is a c-link, then these three (and any other of the possés)iare the
classical complexes (up to chain homotopies) due to TheBrdm. Moreover, it should be noted
that Corollany2.4.117 and Propositibn 2.4.18 include thadiak diagramL ,, with

H(Fpni(Lp))s« 2 H(Fpn2(Lbp))«
can not be a v-diagram of a c-link, since a c-link diagram dagseed the mag.

Because Khovanov showed (seel[56]) that every TQFT whichexs the first Reidemeister
move must have an underlyinggmoduleA = 1- R @ X - R for an elementX € A, we also get
the following theorem.

Theorem 2.4.19.(Classification of aspherical uTQFTsThe following statements are equivalent
for an aspherical UTQFT.

(a) It respects the first Reidemeister move RM1.

(b) Itis a rank2-uTQFT.

(c) It can be obtained from the one of Proposition 21.4.9.
(d) It can be used as a v-link invariant.

With the work already done the proof is simple.

Proof. (a)=(b): This was done by Khovanov and stays true.
(b)=-(c): This is just the Propositidn 2.4.9.
(¢)=(d): This is the Corollar{y2.4.12.
(d)=(a): This is clear. O
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Remark2.4.20 We conjecture that Manturov&-version [85] is a strictly weaker invariant than
our extension of the Khovanov complex2.4.13 in the follaywense. A v-link with “lots” of clas-
sical crossings is likely to have “lots” of faces of type 1htemirror image (sele_17). We call these
faces thevirtual trefoil faces In our construction the two multiplications (or comultgations for
the mirror image) are not the same, i.e. they have differenhdary decorations as pictured for
example in Figure 27, since we take extra information of fdi® in account. In contrast, in Man-
turov’s version they are just the same maps. It is worth igotirat we use the extra information
explicitin Sectiori 2.17.

Remark2.4.21 At this state it is a fair question to ask why we use the reteti(l) from Equa-
tion[2.2.1 (or the one without the signs for the variant ofalew and Turner) for our cobordisms,
i.e. why do we assume that], changes its sign under conjugation wity and notmI™ (or
neither of them changes its sign for the variant of Turaeveurder).

So what happens if we assume that™ changes its sign under conjugation wih (or both)?
One can repeat the whole construction from Sed¢tioh 2.2j@g2f3 and this Sectidn 2.4 for these
cases too. But this do not lead to anything new, i.e. if wemssthatm " changes its sign, then
we get an equivalent to the construction above and if we assbat both of them changes their
signs, then we get an equivalent to the variant of Turaev amder again.

Remark2.4.22 Note that the classification of Theorém 2.4.19 and the Talriel@de non-classical
invariants. To be more precise, if we work for example aikler Q, then the relations force us to
setd = 0. But if we work overR = Z/2, then we have different choices fér It should be noted,
since c-links do not require the maj these invariants can not appear in the classical settiote N
that in both of Manturov’s versions [85] and [86] he sgts 0.

2.5. The topological complex for virtual tangles. We will define thetopological complex of a
v-tangle diagrani’¥ in this section. For this construction we use our notationstfesaddle dec-
orationsandsaddle sign®f v-link diagramsL p from Sectiod 2.8. Recall that a crucial ingredient
for the construction of the topological complex were tleeorationsf the saddles. Note that we
work in a slightly different category now, i.e. the one fronefidition[Z.2.10. Hence, we need
signs, glueing numbers and indicators.

It is worth noting that the idea how to solve the problems timaihe with the observation sum-
marised in Figurél7 in a non-trivial way (that is we do not defopen saddles to be zero) is the
following. Take the signs and decorations of a closure ofvit@ngle diagram, since we already
defined how to spread them for v-link diagrams in a “good” wdgte that this convention makes
it easy to show analogous statements as in Selction 2.3.

We note that this section has two subsection. We define tl@dgical complex of a v-tangle
diagram with a *-marker and show that it is v-tangle invariarthe first part, i.e. in Definition 2.5.2
and Theorernh 2.55. In the second part we discuss how thegrositthe *-marker has influence
on the topological complex. We can shbw 215.8 that in gerteeaposition of the *-marker gives
rise to two different v-tangle invariances, but it agreethile classical construction for c-tangles.

The topological complex for virtual tangle$Ve start by explaining how we are going to extend
the important notions of saddle sign and decorations togkadiagrams.

Recall thatT¥, as in Definitiof 2.219, should denote a v-tangle diagranh wit N boundary
points. Moreover, such diagrams should always have a *-enark the boundary and I€ti(7%)

be the closure of the diagram. Recall that such diagrams eathec-markers.
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Definition 2.5.1. (“Open” saddle decorations Let T be a v-tangle diagram with a *-marker on
the boundary and let1(7%) be the closure of the diagram. Thaddle decorationsf the saddles
of T should be the ones induced by the saddle decorations ofdkerel To be more precise.

(a) Thesignsof the saddles of’s should be the same as the signs of the corresponding saddles
of CI(T%) as defined in Definition 2.3.1.
(b) Theindicatorsof the saddles should be obtained from the correspondirdjesdfC1(T%)
as follows.
— Every orientable surface should carry an indicatariff the number of upper bound-
ary components of the saddle is two and hiff the number is one.
— Every non-orientable saddle get$ as an indicator.
(c) Theglueing numbersf the saddles of % should be the same as the glueing numbers of
the corresponding saddles©f(T}) as defined in Definition 2.3.3.

Note that saddles with @indicator do not have any boundary decorations. Evergttogether,
i.e. boundary decorations, the saddle sign and the indjdatcalled thesaddle decorationef S.

Beware again that many choices are involved. But they do mange the complex up to chain
isomorphisms as we show in Lemima 215.3 in an analogon of Leth&ha3.

Definition 2.5.2. (Topological complex for v-tangles) For a v-tangle diagr&fnwith a *-marker
on the boundary and with ordered crossings we defitige topological comple§rs] as follows.

e Fori € {0,...,n} thei — n_ chain modulds the formal direct sum of all resolutiong
of lengthi.

e There are only morphisms between the chain modules of leragid: + 1.

e If two wordsa, o’ differ only in exactly one letter and. = 0 anda/. = 1, then there is a
morphism between, and~,.. Otherwise all morphisms between components of lenagth
and: + 1 are zero.

e This morphism is @addlebetweeny, and~,:.

e The saddles should carry tkaddle decorationsom Definition[2.5.1.

We note again that it is not clear at this point why we can chdlbe numbering of the crossings,
the numbering of the v-circles and the orientation of th@lgsns of the closure. Furthermore,
it is not clear why this complex is a well-defined chain compl8ut we show in Lemma 2.5.3
that the complex is independent of these choices, i.@Ljif], and[Lp], are well-defined chain
complexes with different choices, then they are equal uph&cisomorphisms. The same lemma
ensures that the complex is a well-defined chain complex.

Another point that is worth mentioning is that the signs im oconstruction, in contrast to the
classical Khovanov homology, do not depend on the ordereo€tbssings of the diagram.

Beware that the position of the *-marker is important fomngle diagrams. But Theordm 25.8
ensures that the position is not important for c-tangles\aliks.

If it does not matter which of the possible two different chabmplexes is which, i.e. itis
just important that they could be different, then we denbtet by[75]* and[T5]. for a given
v-tangle diagrant® without a chosen *-marker position.

For an example see Figure|19. This figure shows the virtuavihav complex of a v-tangle

diagram with two different *-marker positions. The vertiearow between them indicates that
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they are (in this case) chain isomorphic. It is worth notibthé point that, as we show in Theo-
rem[2.5.8, they are always isomorphic if the diagram is angieadiagram (as the two diagrams in
the figure below).

FIGURE 19. The complex of the same v-tangles with different *-map@sitions.
The two complexes are (in this case) isomorphic.

Lemma 2.5.3.Let TX be a v-tangle diagram with a *-marker and I§T%], be its topological
complex from Definitiofi 2.5.2 with arbitrary orientationsr fthe resolutions of the closure. Let
[T%]2 be the complex with the same orientations for the resolstextept for one circle in one
resolution~,. If a face F; from [[Tl’g]]l is anticommutative, then the corresponding fd¢efrom
[TF]. is also anticommutative.

Moreover, if[TE], is a well-defined chain complex, then it is isomorphif&§]., which is also
a well-defined chain complex.

The same statement is true if the difference between thedmplexes is the numbering of the
crossings, the choice of the x-marker for the calculatiothefsaddle signs or the fixed numbering
of the v-circles of the closure. Moreover, the same is tru@fy rotations/isotopies of the v-tangle
diagram.

Proof. For v-tangle diagram&% with k& = 0 the statement is the same as the corresponding state-
ments in Lemma2.3.13 and Corolldry 2.3.18. Recall thatttick is to reduce all faces through
a finite sequence of vRM1, vVRM2, vRM3 and mRM moves in Figuren@ artualisations from
Figurel9 to a finite number of different possible faces. Thea does a case-by-case check.
Because the saddles in the two chain complexes are topaldigecsame, we only have to worry
about the decorations. But the decorations are spread bagbé closure of the v-tangle diagram
and the relations from Definitidn 2.2J10 are build in such g weat the open cases behave as the
closed ones.
Hence, we can use the statementifet 0 to finish the proof, since the only possible differences

for k£ > 0 are the indicators, but they only depend on the *-marker. O
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In the same vein as in Sectibn2.3 we obtain the following Camnp

Corollary 2.5.4. The compleX7%] is a chain complex. Thus, it is an object in the category
Kob, (k) 5. O

Hence, we can speak tifetopological complef{7%] of the v-tangle diagram with a *-marker.
The complex is by Corollarly 2.5.4 a well-defined chain comple

The next theorem is very important but the proof itself is @dtnequal to the proof of Theo-
rem[2.3.8. Therefore, we skip the details.

Theorem 2.5.5.Let TX, T/% be two v-tangle diagrams with the same *-marker positionciwhi
differ only through a finite sequence of isotopies and gdiss=@ Reidemeister moves. Then the
complexegT}] and [T}%] are equal inKoby, (k)"

Proof. We can copy the arguments of Theorem 2.3.8. The Leinmal 2.5u&giees that we can

choose the numbering and orientations without changinghamy up to chain isomorphisms.
Beware that the chain homotopiedin 213.8 should all cariyas an indicator. Again, one can

check that the involved chain homotopies satisfy the caoddf a strong deformation retract]

The *-marker and the classical complee need some notions now. Note that they seem to be
ad-hoc, but the main motivation is that in general the positif the *-marker is important. But to
recover at least some local properties, as discussed ilDBELB, we need to identify basic parts
of v-tangle diagrams such that the two complexes are isonnarp

Let T% denote a v-tangle diagram. We call a parti¢gf a connected parif it is connected as
the four-valent graph by ignoring the v-crossings. We calbanected part of a v-tangle diagram
fully internalif it is not adjacent to the boundary. See Figure 20. The leéingle diagram has one
connected part, which is not fully internal, and the righiangle diagram has two connected parts,
one fully internal and one not fully internal.

FIGURE 20. The left v-tangle diagram is not fully internal, but thght diagram
has a fully internal component (the two internal v-circles)

A v-crossing is calleahegligibleif it is part of a fully internal component, e.g. all v-crosgs
of the right v-tangle diagram in Figute]20 are negligible. t&that, by convention, negligible
v-crossings are never part (for all resolutions) of anyngtthat touches the boundary.

We call a v-tangle diagrari®’y niceif there is a finite sequence of vRM1, vRM2, vVRM3 and
MRM moves and virtualisations such that every v-crossimggigible, e.g. every v-link diagram

is nice and every c-tangle diagram is nice.
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An example of a not nice v-tangle diagram is shown in FiguteNdte that the complexes are
not chain homotopic.

B -8 -2

FIGURE 21. A counterexample. The diagram is not a nice v-tanglerdrag

We note that for a v-tangle diagrafi, the chain complexefl’5]* and[T%]. are “almost” the
same, i.e. they have the same vertices, but possible diffedges (which are still in the same
positions). The next lemma makes the observation precise.

It is worth noting that the Khovanov cube of a v-tangle diagnaith n crossings hag" 'n
saddles. We number these saddles and the numbering in theal&elow should be the same for
the two complexes.

Lemma 2.5.6.LetT% be a v-tangle diagram with crossings. LetS(in)* and;S(in), denote the
numbered saddles ¢f%]* and of [TE].. If T% is a nice v-tangle diagram, then we have for all
i=1,...,2" 'n afactorisation of the formS(in)* = a0, S(in), o 3 for two invertible cobordisms

a, (.

Proof. It is clear that the saddles are topological equivalent. oowy need to consider the
decorations. The main point is the following observatiori.tl@@ four outer (two on both sides)
cobordisms in the bottom row of Figurel14, iid(1):, ®(1);, id(0) andid(—1)¥, only the third
is not invertible. The first is the identity, the second andrfo are their own inverses. The third is
not invertible because thirindicator can not be changed tatd-indicator.

Note that neither the vRM1, vVRM2, vVRM3 and mRM moves nor audlisation change the
indicator of a saddle cobordism. Hence, it is sufficient tovethe statement for a v-tangle diagram
with only negligible v-crossings. From the observatiomabibis enough to show that every saddle
gets a)-indicator in one closure iff it gets @indicator in the other closure.

The only possible way that a saddle gets an indicator ffer, —1} for one closure and @
indicator for the other closure is the rightmost case in F8gl But for this case the existence of a
non-negligible v-crossing is necessary. Hence, we gettieraent. O

Proposition 2.5.7.Let 7% be a v-tangle diagram. [T’ is nice, then[T5]* and [T%]. are chain
isomorphic.

Proof. Let 7% be a nice v-tangle diagram. Then Lemma2.5.6 ensures that saddle is the
same, up to isomorphisms, [@%]* and[T%].. Furthermore, Lemma2.35.3 ensures that both are
well-defined chain complexes. Hence, the number of signserfydace is odd (also counting the
ones from the decorations).

Thus, we can use a spanning tree argument to construct the isbanorphism explicit, i.e.
start at the rightmost leafs of a spanning tree of the Khovamde and change the orientations
of the resolutions at the corresponding vertices such tleauhique outgoing edges of the tree
has the same decorations in both cases (Lemma 2.5.3 ensatremthing changes modulo chain
isomorphisms). Continue along the vertices of the spantneeg but remove already visited leafs.

This construction generates a chain isomorphism.
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Next repeat the whole process, but change the indicatorafeavards the signs. It is worth
noting that Lemm&2.5.3 ensures that the two processeseviirrun into ambiguities or problems
and Lemma& 2.516 ensures that they will generate chain igumsms.

The chain isomorphism that we need is the composition offtreetisomorphisms constructed
before. See for example Figure] 19. d

Theorem 2.5.8.(Two different chain complexés_et T be a v-tangle diagram with two different
*-marker positions. Lef7T%5]* and[T%5]. be the topological complex from Definitibn 215.2 for the
two positions. Then the two complexes are equa{dbb(k)’};l if the v-tangle has: = 0 oris a
c-tangle.

Proof. We can use the Propositibn 25.7 above for a v-tangle diagrimi = 0. Moreover, we
can choose a diagram without virtual crossing for a c-tangfleout changing anything up to chain
homotopies, because of Theorem 2.3.8. Then we can use thedition2.5.V again. O

Remark2.5.9 Note that the whole construction can be done witladnitrary closure of a v-tangle
diagram, i.e. cap of in any possible way without creating eewr v-crossings. The direct sum
of all possibilities is then a v-tangle invariant. Or one esxen allow v-crossings and take direct
sums over all possibilities again. But since both is incomet for our purpose, we do not discuss
it in detail here.

Remark2.5.10 Again, we could use the Euler characteristic to introduesstructure of a grading
onuCob’r(k) (and hence oioby, (k) ;). The differentials in the topological complex from Defi-
nition[2.5.2 have allleg = 0 (after a grade shift), because their Euler characteristicli Then it

is easy to prove that the topological complex is a v-tangltariant under graded homotopy.

2.6. Circuit algebras. Inthe present section we describe the notion @feuit algebra A circuit
algebra is almost the same as a planar algebra, but we allvaMirossings.

Planar algebras were introduced by Jones [45] to study stdvfa In our setting, they were for
example studied by Bar-Natan in the case of classical Khmwvaomology([8]. Hence, we can use
most of his constructions in our context, too. A crucial eiffince is that we need ttecorateour
circuit diagrams This is nhecessary because our cobordisms are also detorate

We start the section with the definition of a (decorated)uirdiagram. In the whole section
every v-tangle diagram should have a *-marker. We call angfadiagrandecoratedf it has an
orientation, a number (same numbers are allowed), one i@dgreen and red) dot for each of its
v-circle/v-string and we call a cobordisrdscoratedf it has gluing numbers and an indicator. In
the following we use the notian* to illustrate that we consider all possibilities fore N together.

Definition 2.6.1. Let D? denote a disk embedded iri3, the so-calleautside diskLet I, denote
disks D? embedded int®? such that for all € {0,...,m — 1} the diskl, is also embedded
into D? without touching the boundary db?, i.e. I, ¢ D? c R?, I, NIy = 0 for k # k' and
I, NOD? = (). We denoteD,, = D? — (I, U---UI,,_;). Thesel, are callednput disks

A circuit diagram withm input disksCD,, is a planar graph embedded irfy, with only
vertices of valency one and four in such a way that every xaftgalency one is idD,, and every
vertex of valency four is idnt(D,,). All vertices of valency four are marked with a v-crossing.
Again we allow circles, i.e. closed edges without any vedicA*-marked circuit diagrams the
same, but withn + 1 extra *-marker for every boundary component®f,. Moreover, we call the

vertices ab D? the outer boundary points
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See for example Figufe 22, i.e. the figure shows a *-markedofdéed) circuit diagram with
three input disks.

FIGURE 22. A decorated circuit diagram with three input disks.

A closureof a *-marked circuit diagram with. input disksC1(CD,,,) is a circuit diagram with
m input disks and without any outer boundary points which isstructed fronCD,,, by capping
of neighbouring strings starting from tloaiter *-marker and proceeding counterclockwise. Note
that we only cap of the outside disk and not the small insidkdi

A decorationfor a *-marked circuit diagram is a tuple of a numbering aneeantation of the
strings of the diagram in such a way that its also a numbenmgogientation of the closure. We
call a circuit diagram together with a decoratiomecorated circuit diagram See for example
Figure[22. The decoration of the circuit diagram in this fagisr also a decoration for the closure
(the diagram together with the green lines).

We can realise the definition of (@ecorated) circuit algebravith these notions. Recall that
our v-tangle diagrams should always be oriented with thalustientations but we suppress these
again to maintain readability.

Definition 2.6.2. (Circuit algebra) Let T'(k) be the set of (decorated) v-tangle diagrams with
boundary points and a *-marker and Tetk) denote the quotient by boundary preserving isotopies
and generalised Reidemeister moves.
Furthermore, leCD,, denote a (decorated) circuit diagram with input disks and:’ outer
boundary points in such a way that tjxth input disk has:; numbered boundary points.
Becaus&€D,,, has no c-crossings, this induces operations

CD,y: T' (ko) % -+ X T (kpr) — T'(K') andCDy: T(ko) % -+ - x (k1) — T(K')

by placing thei-th v-tangle diagram fronT)(k;) in the i-th boundary component @fD,,, i.e.
glue the v-tangle inside in such a way that the *-markers mabee the right side of Figulrel23.

There is an identity operation @il (k) (it is of the form (:{') and the operations are compatible
in a natural way (“associative”). We call a set of séts*) with operation€D,,, as above aircuit
algebra provided that the identity and associativity from abovilho

If the operators and elements are decorated, first with ntsrdoed orientations and latter with
any kind of suitable decorations, then we call a set of €¢ts’) as before alecorated circuit
algebra Note that in this case we have to define how the decoraticarsgehafter glueing, e.g. we

can run into ambiguities.
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We should note that Figure 23 below also illustrates howangte diagram induces a decorated
circuit diagram (choices for the decorations are involved)

FIGURE 23. A decorated circuit diagram induced by a v-tangle.

Here are some examples. The reader may also check the aordisg section in[8].

Example2.6.3 The first example is the s€tb(uCob*(w*)) from Definition[Z.2.1, i.e. v-tangles
diagrams withk € N boundary points, an extra *-marker, but without c-crossinghis is a sub-
circuit algebra of the circuit algebra that allows c-crogs..

But we want to view it as a decorated circuit algebra, denbte@b,(uCob?(w*)), i.e. the ele-
ments arelecoratedv-tangle diagram (all possible decorations). We have toddhe operations
in more detail now, since we can run into ambiguities, seedapof Figure 24.

FIGURE 24. The operation in the decorated circuit algebra.

First, we can run into ambiguities if the decorations of therator(s) that are glued together do
not match. In this case we define the new decoration baseceauldtlower first” , i.e. the new
number is the lower and the new orientation is the one fromaver numbered string. See the
two lower rows of Figuré 24. Not all four cases are picturad,we hope that it should be clear
how the other two work. Moreover, it is worth noting that theer of these local steps does not
affect the end result, since, by construction, the lowesthler of all strings that are connected and
its orientation will always determine the output.

Furthermore, if we glue a decorated v-tangle diagram in patidisk, then we run into ambi-
guities if the shared decorations, i.e. the orientatiomsramrmbers, do not match. In this case we
change the decorations of the v-tangle diagram (as above)addf in ared dotr if we have to

change the orientation andgaeen dotg otherwise. This is pictured in the top row of Figlrd 24.
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As above, in order to make it well-defined, one has to allowdibis to change stepwise, i.e. one
uses the “multiplication” ruleg - ¢ = g = r - r andg - r = r = r - g for dots on the same string.

The reader should check that this gives rise to a (well-déf)reiecorated circuit algebra.

Another important example is the whole collectidior;(uCob?(w*)) from Definition2.2.1, i.e.
decorated cobordisms (all possible decorations) with N vertical boundary lines and an extra
*-marker. We want to view this example as a decorated cialggbra again.

Hence, we have to define the operations. The most importanttipdéhe question how to handle
the decorations again, because it should be clear how tagiabordism withn vertical boundary
lines intoCD,, x [—1,1]. This time we have to define the behaviour of two decoratibasthe
glueing numbers and indicators. The glueing numbers aateilleas the orientations before, i.e.
use the “lower-first” rule. The indicators (recall that thene just numbers of0, +1,—1}) are
multiplied. Recall that a cobordism with @&indicator does not get any glueing numbers. We
simply remove them in this case. To be more precise, we noke tha following definition of the
operation ofCD,,, on Oby(uCob?(w*)) andMor,(uCob?(w*)) (compare to Figure 24).

e A cobordism with a+ glueing number (or-) is composed withp_ iff the decorated v-
tangle diagram (short: diagram) gets a red dot (or greefmeatdrresponding position.

e A cobordism is composed with @indicator surface iff the strings of the diagram get
identified at the bottom and top resolution at the correspanplosition.

e A cobordism with al-indicator is composed with &—1-indicator surface iff the strings
of the diagram get identified at the bottom/top resolutiothatcorresponding position.

e A cobordism with a—1-indicator is composed with H—1-indicator surface iff the strings
of the diagram get identified at the top/bottom resolutiothatcorresponding position.

These rules define a new decoration for the new cobordism.r8daer should check again that
this gives rise to a (well-defined!) decorated circuit algefio see this we note that everything
behaves multiplicative as the elementgefl, —1} = Z/2Z or has &-indicator).

We summarise the notions in a definition. Recall that v-tardihgrams are decorated with
orientations, numbers and coloured dots and cobordisnmesdiaeing numbers and an indicator.

Definition 2.6.4. (Dot-calculus) Let CD,, denote a decorated circuit diagram withinput disks
and k£’ outer boundary points in such a way that thth input disk hast; numbered boundary
points. ThenCD,, induces an associative and unital (as above) operation corated v-tangle
diagrams (with a corresponding number of boundary poingshb “lower first™-rule, i.e. if the
orientation does not match, then the lower number inducesi¢w orientation. Put a red dot
on every string that has its orientation changed and a greenatherwise (two dots on the same
v-string are multiplied by the conventign= 1, = —1). We call this thevs-tangle dot-calculus

Moreover,CD,, induces an associative and unital (as above) operationanated cobordisms
(with a corresponding number of boundary lines) by the “lofirst™-rule, i.e. if the orientation
does not match, then the lower number induces the new otiemtdPut a red dot on every string
that has its orientation changed and a green dot otherwise@npose the corresponding bound-
ary with a+ glueing number (or-) with ¢ iff the string has a red dot (or a green dot), multiply
indicators via identity surfaces with corresponding iadics+1/—1 iff the v-tangle numbers get
identified at the bottom/top (or vice versa for surfaces withl-indicator) resolution at the cor-
responding position, multiply with a@-identity iff in both resolutions the strings are identified
(do everything repeatedly using the rules as explainedeggbd®e call this thelot-calculus The

reader should compare the notions above with Figlre 8.
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Recall that we assume that all v-tangle diagrams have alradied *-marker. A v-tangle
diagramT} gives rise to a decorated circuit diagrng as already illustrated in Figurel23. If
the diagram has: crossings, denoted hy, .. ., cr,,, then we choose a neighbourhood of thg
without any other crossings and a *-marker for@ll. We obtain by this procedure v-tangle
diagrams with one crossings and four boundary componeetstdd by an abuse of notation by
cry, ..., cry,, and we call these crossing diagraassociatedo 77%.

Definition 2.6.5. Let Tl’g be a v-tangle diagram with: crossings and Ie(fDTB anderq, ..., cry,
be its associated decorated diagram and crossings. Théentwed complex

CDTg(crl, cosory) = (O, c)

is defined as follows. Le&fC}, ¢;) with j € {1,...,m} be the topological complex of the; and
defined in Definition 2.5]2 such that the unique saddle iseftihmc;: ) ( — — for any suitable
orientation (without a sign). Let;, 5; denote the compositions of the morphisms that we compose
after applying the circuit diagram on cobordisms (see Exaf#®.3 and Definition 2.61.4 above),
i.e. the red dots induce a composition with (or with a0-identity surface in the degenerated case)
and a change in the numbering induces a composition with erdams that changes indicators.
Therefore, we denote the operatiorni’dEPT]z3 on cobordisms, i.e. the dot-calcuIus,dwyCDT];3 of3
to illustrate the difference to the classical case. We ghkip motion for the objects to maintain
readability. The-th chain module is

i=jo+ +Jm—1
and the differentials are

m—1

D (€I - ZQOCDTB(MCSO,..., d ) 0 B.

m—1 - ’HL 1
1=0

Note that this complex does not have any extra signs andmgjéneral not be a chain complex.

|

We call a Khovanov cube of type p, if all its faces are commgatip to a unit ofR, and a
projectivisation of such a cube is given by identifying miagms up to units. We denote the latter
usually with a superscrip?. Details are in Sectidn 4.6.

It should be noted that the choice of the *-markers in the defimof CDTk (cri,...,cry) Or
the choice of the decorations fGiDTk is not important for our purpose (and we will suppress the
difference). To be more precise, we give the following lemmé& should note that it is not clear
at this point why the complexes ame cubes of type p. But we show it in Theorém 216.7 below.

Lemma 2.6.6. LetCDTg(crl, ..., cry) and CD'Tg(crl, ..., cry,) denote two different choices for
the *-markers of ther;. Then the two complexes are equal.

Moreover, if the difference betweénDTk (cri,...,crm) andCDTk (cry,...,cry) is the choice
of decorations, either for the circuit dlagram or for the shes of the complexes of;, then the
two complexes are isomorphic ascubes of type p.

Proof. This is the case because thghas always an indicator1, —1 in the definition of the
complex(C};, ¢;) and never &-indicator. Moreover, the result depends only on the pasitif the
*-marker forT%, since the involved operations only depend how strings aneected.

The second statement can be verified analogously as in Léntnda 2 O
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By a slight abuse of notation, we denote the topological dermpy [7%], although some
choices are involved (but they do “not matter”, see Lerhma3}.5

Theorem 2.6.7.(Semi-locality |) Let 7 be a v-tangle diagram with: crossings. Lef7%] be (one
of) its topological complex(es) from Definitibn 2J5.2 antld@®;x (cr1, . . ., cry,) be its tensored
complex from Definition 2.6.5. ThéDy (cry, . . ., cry,) is am-cube of type p and

CDyx(cr1,. .., crp) = [TE]"
for a suitable choice of orientations for the resolutiong6f;].

Proof. This is true because the dot-calculus is exactly build ilmsueay that the resulting saddles
have some glueing numbers induced by a suitable choice eftations of the resolutions. To
be more precise, it is clear that the construction from D&din[2.6.5 gives rise to a:-cube as
explained in Section 4.6.

Moreover, since we do not spread any formal signs in the oactsin from Definitiod 2.6.5, the
only thing we can expect is that the corresponding cube wibhttype p, i.e. faces commute up to
a sign. So we only have to care that the glueing numbers amnchiiods work out as claimed.

That the glueing numbers work out follows from the definitminthe dot-calculus, since the
orientation of the lowest numbered string will always detiere the result and the decorations of
the circuit diagram are also decorations of the closureyigecan use Theorem 2.3]17 to see that
the glueing numbers work out as claimed (up to a formal sign).

Moreover, the indicators of the saddles are spread basedapolgical information, namely
how certain strings are connected in the closure of the diagt;. Hence, since we have fixed
the *-marker positions, these indicators are the samé®y (cr1, . . ., cr,, ) and any of thdT].
Note that it is important that the indicators at the begigrare all+1, —1, since we can not change
a0 using the conventions above.

This proves the statement, since there is a choice of otientaof the resolutions such that all
saddles o€ Dy (cri, - . ., crm) and[ T3] are equal up to a sign. O

Given a Khovanov cube, then a&aalges assignment (with sigrif)this cube is a choice of ex-
tra signs for some of the saddles. We denote such an assigmsiage as a superscript, see

Definition[4.6.4.
Corollary 2.6.8. There is an edge assignment such Rﬁ@lffg(crl, ..., cry) is a chain complex.

Moreover, there is a chain isomorphism betwé’ﬂh;g (eri,...,cry,) and [TE] (for all possible
choices involved in the definition of latter).

Proof. The first statement follows from Theordm 216.7, TheofemlIZl &and Lemma& 4.6l5. The
second from Lemma2.8.3. O

We note that Theorem 2.6.7 and Corollary 2.6.8 allows us tsloppy” when it comes to signs.

It is a natural question if one can generalise the statenidiitamreni 2.6.7, since in the classical
case one can allow arbitrary c-tangle diagrams as inputfachh we do not know the answer in
general. The main problem is that “non-orientablity” is adbcal property.

We can make an analogously definition as in Definifion 2.6ubwe allow thecr, ..., cr, to
benot nicev-tangle diagrams with one crossing. We denote therarby. . ., ¢/ to illustrate the
difference and we call the corresponding compjexeralised tensored comple&n example is

shown in Figuré 25. Even this slight generalisation hastisfgang properties.
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Theorem 2.6.9.(Semi-locality Il) Let 7% be a v-tangle diagram witi crossings. And let
CDrx(cry, ... ery,) = (Cs, e

be its generalised tensored complex.

(a) The complexC., c,) is a complex of type p, i.e. faces commute up to a unit.of
(b) Let [T%] denote (one of) its topological complex. Then we do not hamgitable choice
for [T%] in general such that

CDpy(crt, ... ery,) = [TET".
(c) The complexe&’,, c.) and [T%] are not p-homotopic (see Definitibn 416.3) in general.

Proof. (a) This statement can be verified analogously to Theérerd, Z#ice, if the corresponding
saddles have an1, —1 indicator, as in Theorein 2.6.7, then one can copy the argtafieym
before. If it has @-indicator, then the arguments are even easier to veriigesive do not need
any decorations in this case.

(b)+(c) This is true, because a surfaces withiadicator can not be changed to a surfaces with

a+1-indicator, since indicators behave multiplicativelyro explicit example see Figurel25, i.e.
the two complexes are not p-homotopy equivalent, since wenoaichange theé-indicator.

><
0’0

FIGURE 25. A counterexample. The diagram is not a nice v-tanglerdrag

Note that this includes that no choice will make them equalaasplexes of type p. O

It should be noted again that the whole discussion in this@ecould be done with oriented
(in the usual sense) v-tangle diagrams and oriented (dechreircuit algebras. But to maintain
readability we only refer ta 8], i.e. the reader can adopgt tiotions there and use them in our
context without any difficulties.

Remark2.6.10Q It should be noted that the constructions presented in ¢t can be extended
relatively easily to work in an even better way if one workgokings of characteristiz, e.g. over
the ringR = Z/27Z.

This is the case because all appearing problems are in sorse ‘stégn problems”. If one works
over R = 7Z/27Z, then, for example, the indicators are not necessary and coastructions will
work analogously to the classical case (see [8]).

Remark2.6.11 One application of the local construction in the classieakcis a way to calculated
the classical Khovanov homology of a c-link withcrossings in approximateB¥™ instead of2™
of the “brute force method”, seel[7]. In the view of Theorer.2, one has to be very careful if
one tries to copy the method given in [7]. Another idea is mgs
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2.7. An application: Degeneration of Lee’s variant. This section splits into three subsections.
We explain the main motivations in the first and we are goinghow that some facts about
the classical Khovanov-Lee link homology are still true hie tontext of v-links (e.g. see Theo-
rem[2.7.111) in the last subsection. In order to do so, we ifyethie two generators with so-called
non-alternating resolutidn 2.7.2 in the second subsecéémnote that these correspond to colour-
ings in the c-case.

The approach (we follow [10]) to show that the degeneratsostiil true is the following. First
we define two orthogonal idempotents in our category, whietcalldown and up Then we can
go to theKaroubi envelopef our category, denoted bgar (Koby, (k) ).

The idea of the Karoubi envelope is to find a “completion” obgegory such that every idempo-
tent splits. It is named after the french mathematician Khradout it already appears in an earlier
work by Freyd [35]. Note that it is sometimes callei@mpotent completioniThen we show that
the topological complex of a simple crossing (as a v-tanglepnsidered irkar (Koby, (0) ,(k)),
is homotopy equivalent to a very simple complex with otdynorphisms. After that we use the
semi-local constructions from Sectibn2.6 to finish the froo

In the whole section lez denote a commutative and unital ring such thas invertible, e.g.
R=17Z [%] Moreover, throughout the whole section, we denote theltgpcal complex byf:]
and its algebraic version b¥([-]) or short byF(-), e.g. we denote Lee’s version by

fLoC(‘) = f([[']]Lco)'

Note that, in order for the signs to work out correct, we haviexx-marker positions. In the whole
section we, by convention, say that the x-markerf0is at the left side and fox is on the top.

Moreover, recall that the topological picture of Lee’s aati is given by thedot-relationsin
Figure[26 witht = 1, while the graded case of the Khovanov complek is 0. Recall (see[9])
that; € R allows us to use thdot-relationin Figure[26 instead of the local relations of Figlile 4.
We give an example of the Lee complex of a v-knot in ExarhplelR.7

E o Caden [on =
0= O 9

FIGURE 26. The dot-relations. A dot is a short hand notation%fd'rmes a handle.

Main observationsRecall (see[[74] for the classical ahd 2.4.13 for the virede) that.ee’s

variantfor v-links is given by the filtered algebrtd = A;.. = R[X]/(X? = 1) and the following
maps.

mi+:A®A—>A, 1®1 w1, X®X—1,

1o X—X X®1—-X

for the multiplication and

1 10 X+X®I1,

X—=11+X®X
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for the comultiplication and). Furthermore, the very important ma&g given by

1 —1,

O A= A,
X — —X.
Lee’s variant has a remarkable property in the classica,¢as Lee showed that her variant just
“counts” the number of components of the c-link, i.e. shengtwbthat (fork = Q) the homology
of an-component linkL is

H(Fre(1) = P Q.
on
So on the first hand this seems to be a “boring” invariant. BagrRussen [94] used this degenera-
tion in a masterfully way to define tHeasmussen invariamtf a c-knot (as in Sectidn 1.1).

Therefore, a natural question is if this degeneration ofd eariant is still true for v-links. In
this section we show that this is indeed the case. It is wooting that this is an unexpected
result, since) = 0 for 2= € R (see the relations in Definitidn 2.2.2). Hence, there arastof
0-morphisms in the complex. But theBemorphisms also come with isomorphisms “in a lot of”
cases.

The following example for the Lee complex of a v-knot is a Ipiiet of this effect. It is very
important, as indicated in Examgle 2]7.1 below, that ourstmction keeps track of thextra
informationhow the cobordisms are glued together depending on thetatiens of the v-circle
diagrams in the resolutions. We note that, even though tleatations can be read of locally, this
information has some “global character”.

Example2.7.1 Consider the diagram of the virtual trefdil, given in Figurd 2I7. In this example
the number of negative crossings is zero, i.e. the leftmigjgtod is theD-degree part.

FIGURE 27. The Lee complex of the v-trefoil. We note that the first nma
0-morphism, but the second is an isomorphism.
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Let us conside? = Q. Thenf = 0 and therefore the first two maps d@renorphisms. But note
that the two right morphisms are not the same, i.e. onklis and the other ig\*,. So on the
algebraic level we get, using the maps from before, thevialig complex, if we fixB; = {1, X'}
asabasisfodlandB; = {1® 1,1 X, X ®1, X ® X} for A® A.

0 0 01 0 -1
0 0 10 1 0
0 0 10 -1 0
0 0 01 0 1
A ADA A® A

An easy calculations shows that the second matrix is an igamsm. Hence, the homology of the
virtual trefoil is only non-trivial fork = 0, i.e.

Qe Q, ifk=0,
0, else

Hk:(fLee(LD)) - {

Another example is the v-knot in Figurel28, e.g. with theyniet orientation and numbering of
the circles from left to right, the three outgoing morphisimesn resolution000 to 001, 010 and
100 are (up to, in this case, not important signs) the morphisms, mi™ andmZ-", i.e. one
alternating and two non-alternating. Hence, the kernelvgat. The reader should check that the
rest also works out in the same fashion as before.

Non-alternating resolutionsWe prove the following interesting result about the numbelezora-
tions of v-link resolutions with the “colours” down and upoté that we call an oriented resolution
Re of a v-link diagramnon-alternatingf it is of the form) { or) ( at the corresponding positions
of the saddles. Recall that all the v-link diagrams shouldtented and that such a diagram with
n € Nyo components hag® different orientation®ry, . .., Orgn.

We note that one can also colour the resolutions with “hdresburs, say red and green, in such
a way that the colour changes at every v-crossing. We calktwlouring of a v-link resolutiorif
at the corresponding saddle-position the colours arerdiftei.e. (red,green) or (green,red). The
reader should compare this with the coloured dots in Figure 8

Theorem 2.7.2.(Non-alternating resolution$ Let L, denote a v-link diagram with € N,
components. There are bijections of sets

{Or | Or is an orientation ofL } ~ {Re | Re is a non-alternating resolution af , }
~ {Co | Cois a coloured resolution of.p }.

If Lp is a v-knot diagram, i.en = 1, then the two non-alternating resolutions are in homology
degree). A similar statement holds for the coloured resolutions.

Proof. With a slight abuse of notation let us denote the first two bgt©r andRe. To show the
existence of a bijection we construct an explicit nyapOr — Re and its inverse.

Given an orientatioOr of the v-link diagramL p, the mapf should assign the resolutidte
which is obtained by replacing every oriented crossing efftirm >7 and \ with } { (and the
same for rotations). This is clearly an injection.

Now, given a non-alternating resoluti®e, we assign to it an orientation éfy in the following
way. At any non-alternating part of the forh{ and) ( replace the non-alternating part with the

corresponding oriented crossilx§ and\ (or a rotation in thg ( case).
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Note that both maps are well-defined and that these two mapsearly inverses for a v-knot
diagram. Moreover, the corresponding non-alternatinglog®ns are in homology degréesince
all n, -crossings are resolveédand alln_-crossings are resolvedn this procedure.

To see the second bijection use a checker-board colouritfzeof-link diagram. Then start at
any point of the non-alternating resolution and use thet+ingimd rule, i.e. the index finger follows
the orientation and the string should get the colour of tiee fan the side of the thumb. As above,
one checks that all , -crossings are resolvédand alln_-crossings are resolved O

Corollary 2.7.3. Let L be a v-link diagram witlh, components. Then it h&8 non-alternating
resolutions.

Proof. Such a diagram hax' possible orientations. Then the bijection of Theofem 2finig8hes
the proof. O

Example2.7.4 Let L be the v-knot diagram in Figufe 28.

000~ -2
100-010.001 -1
S pe |
110-101 ’Q
SN 1
- ‘
X
X X
.

FIGURE 28. There are exactly two non-alternating resolutionsthe one pictured
and the one with all orientations reversed.

Then only the)11 resolution of the v-knot diagram allows a non-alternatiegoiution. More-
over, the orientation of the diagram induces this non-aéteng resolution by replacing the three
crossings with (,) { and) {. The other orientation induces the non-alternating resmiy {,) (
and) (. Note that, by construction, these resolutions are in hogyotlegred). A computation as
in Exampld 2.711 shows that these two non-alternating uésols give the only two generators of
the homology, i.e.

Qe Q, ifk=0,
0, else

Hk<fLoc(LD)) = {

Degeneration.We start by recalling the motivation, definition and someibasoperties of the
Karoubi envelop®f a pre-additive category. We denote the envelope as beforedayr (C).

For any category the notion of an idempotent morphismsairearrow withe o e = e, makes
sense. Moreover, in a pre-additive category the nation e also makes sense. A classical trick
in modern algebra is to use an idempotent, e.duid (V') for a givenK -vector spacé’, to split
the algebra into

Endg (V) = im(e) @ im(id — e).
69



Hence, itis a natural question to ask if on can “split”, gieendempotent, an object of a category
O in the same way, i.e.

O 2 im(e) @ im(id — e).
The main problem is that the notion of an “image” of an arrowldgossibly not exist in an arbi-
trary category. The Karoubi envelope is an extension ofegoay such that for a given idempotent
e the notiondam (e) makes sense. Therefore, one can “split” a given object il#reubi envelope
that could be indecomposable in the category itself.

Definition 2.7.5. Let C be a category and lete’: O — O denote idempotents iklor(C). The
Karoubi envelope of, denoteKar (C), is the following category.

e Objects are ordered paif®, e) of an object® and an idempotentof C.

e Morphismsf: (O,e) — (O',¢') are all arrowsf: O — O’ of C such that the equation

f=foe=¢€ o fholds.

e Compositions are defined in the obvious way. The identitynodlaject ise itself.
It is straightforward to check that this is indeed a categlig denote an obje¢t), e) by im(e),
the imageof the idempotent. Moreover, we identify the objects @f with their image via the
embedding functor

t: C —Kar(C), O (0,id).

Note that, ifC is pre-additive, therid — e is also an idempotent and, under the identification
above, we can finally write
O = im(e) & im(id — e).
The following proposition is well-known (see e.g. [10]). &proposition allows us to shift the
problem if two chain complexes are homotopy equivalent soKlaroubi envelope. Recall that
Kom(C) denotes the category of formal chain complexes.

Proposition 2.7.6.Let (C, ¢), (D, d) be two objects, i.e. formal chain complexesKom(C). If
the two objects are homotopy equivalenKiom(Kar(C)), then the two objects are also homotopy
equivalent inrkom(C). O

We define the two orthogonal idempotentsl now and show some basic, but very important,
properties afterwards.

We call the idempotentslown and up”. The reader should be careful not to confuse them with
the orientations on the resolutions or the colourings ofofee[2.7.P, i.e. latter colours change at
V-Ccrossings, but “down and up” do not change.

Definition 2.7.7. We call the two cobordisms in Figure]29 tfeown and up” idempotentsWe
denote them by andu.

- 4 i 4
d=1/1 +1 u=1 -1
2 + 2 + 2 + 2 +

FIGURE 29. The two idempotents up and down.

Recall that the dot represergstimes a handle.
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It is worth noting that (e) is very important. Moreover, weiterd_ instead o (1).

Lemma 2.7.8. The cobordismd, u satisfy the following identities.

(@) d?> = d andu? = u (idempotent).

(b) dou = 0= uod (orthogonal).

(¢c) d +u =id (complete).

(d) idgot © d = d andidg,; © u = —u (Eigenvalues).

(e) T od =uo®; andd o . = @ ou (change of orientations).
(M) [d, @] = id(1)got = —[u, @] (Commutator relation).

Proof. All equations are straightforward to prove. One has to uselti-relations from Figurie 26
and the relations from Definitidn 2.2.1.

In (d)+(f) the surfaced(1)4.; denotes an identity with an extra dot and as an indicator.

Beware that the dot represerg{etimes a handle. This forces a sign change after composition
with the cobordismd ;. The reader should compare this with the relations in Déin2.2.10. [

Now we take a look at the Karoubi envelope. The discussioivalsbows that there is an
isomorphism

|2d|@|u.
With this notation we get
) (=9 €29 €09 o9 ¢ and T="0 "0 "0

Recall that the standard orientation for the compﬂlje{(]] is (see e.g. Figuid 8)

D= (22,

In order to avoid mixing the notions of the down and up-cod;oannd the orientations we denote
this complex simply a§> 7|11, i.e. standard orientations for all strings. Moreover, emthe
convention left=first superscrlpt right=second supépscbottom=first subscript and top=second
subscript, a notation |Ik@/ + makes sense, i.e. act [y, at the corresponding positions.
The following theorem is a maln observation of this sectitins worth noting again that (e) of
Lemmd2.7.B is crucial for the theorem.

Theorem 2.7.9.1n Kob, (k) ,, there are sixteen chain homotopies (only four are illuida but it
should be clear how the rest works)

DA =) €2) (508X AT =) (e) 5 e,
DA =) 629 €570, DA~ (o) 620

Moreover, similar formulas hold fof\].

Proof. We use the observations from above, i.e. in the Karoubi epeethe differential o[‘/]]

is a4 x 4-matrix of saddles. Hence, fdZ]=1 we get (for simplicity writeS = S(1)11 ande
k2



andSs, for the saddle under the action of down and up)

coon
coo
coo

) fod bay (o9 ¢ e e e

This is true, because all other saddles are killed by thevgdhality relations of the colours down
and up, i.e. (b) of Lemma2.7.8.
Note that both non-zero saddles are invertible, i.e. tieeiises are the saddles
1 ~ 1 ~—
5(5: — =) (q and —5(5: =) Ou
with only + as boundary decorations. To see this one uses Lémma 2.7 ®emeck cutting
relation. Thus, we get

AU N 2
DAL =19 ¢@9 € o 7
u
To prove the rest of the statements one has to use the re(afimi Lemmd2.7]8, i.e. the only
surviving objects change according to the actio®of We note again that this is a very important
observation, i.e. with a different action &f, this would not be true any more.
For []= one can simply copy the arguments from before. O

The following corollary is an application of the semi-logabperties of our construction, i.e.
we use Theorein 2.6.7 and Corollary 216.8 to avoid the usagigo$ and Lemma 2.8.6 to see that
the involved choices do not matter up to chain isomorphisms.

Corollary 2.7.10. Let T% be a v-tangle diagram with: crossings. ThefiT’%] is chain homotopic
to a chain complexC,, c.) with only0-differentials and objects coloured by the orientationthef
resolutions off%, i.e. if a resolution of 7% ] is locally of the form

y(or ) or )y( or )

then(C,, c.) is locally of the form

P by € oor ) €eg e oor ) ey e oor ey ¢

Proof. We note that we work in the Karoubi envelope, but with PropmsZ.7.6 we see that we
are free to do so. Moreover, as stated above, we do not cau sigjas or choices at this place.
Then the statement follows from Theorem 217.9 together thighTheorerh 2.617 in Sectién .6.
To be more precise, we copy the arguments from Thedreml 27 ¢ saddles of the complex
[T5] with a +1, —1-indicator. Note that these saddles have an extra actidn, cdt some of its
boundary components. That is why the part$@f, c,) are locally as illustrated above.
Moreover, the saddles with @indicator are0-morphisms for% € R and there local de-
composition is the one given above, since they will, by camdion, always be between non-
alternating parts of the resolutions and due to the orthalifyrrelations for up and down, i.e. (b)
of Lemmd2.7B, thg (1andy (: parts will be therefore killed (the only possibility how thelose
is as the rightmost case of Figlie 7). O

As an application of the Theorems 2]7.2 and 2.7.9 above, whegelesired statement for v-link

diagrams. That is, we have the following.
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Theorem 2.7.11.(Degeneration Let L, denote an-component v-link diagram. Thdi p] ;.. iS
homotopy equivalent (iKob, () ;) to a chain complex with only zero differentials a2idgenera-
tors given by th@™ non-alternating resolutions.

If n =1, 1.e. Lp is a v-knot diagram, then the two generators are in homolaagrek0.

Proof. We will suppress the notion of the x-markers and the formgihsiof the morphisms to
maintain readability. Moreover, we will choose a specifieotation for the resolutions. We can
do both freely because of Lemina 2.3.13.

The main part of the proof will be to choose the orientations i‘good” way and use Corol-
lary[2.7.70. Moreover, with Theoreim 2.7.9, we see that tmeptex will be homotopy equivalent
to a complex with only-differentials. Hence, the only remaining thing is to shinattthe number
of generators will work out as claimed.

Note that, if a resolution contains a lower part of a multation or a upper part of a comultipli-
cation, then by Corollary 2.7.110, this resolution is kille@cause these will always be alternating,
e.g.) {, but will connect as the-1 cases of Figurel7 (the strings are closed with an even number
of v-crossings). Moreover, we can ignore top and bottomspait), since they will always be
non-alternating.

Now we define thelual graph of a resolutiordenotedD, as follows. Recall that a resolution is
a four valent graph without any c-crossings. Any edge ofdghnégph is a vertex D. Two vertices
are connected with a labelled edge iff they are connectedvbgrassingX{ or a) ( (or rotations)
that is a top part of a multiplication or a bottom part of a cdtiplication. First edges should be
labelledv, the second type of edges should get a labelling that carnelspto the given orientation
of the resolution, that is an “a” for alternating orientatscand a “n” otherwise. We will work with
the simple graph of that type, i.e. remove circles or pdratlges of the same type. See Fidurk 30,
i.e. the figure shows two resolutions from Figlré 28 and ttieal graphs. Note that the leftmost

) (of the 011 resolution is part ofta
{ o ; >V v
InI

R A~
FIGURE 30. The resolutions 000 and 011 and their dual graphs.

V
' ”{4 i —>0&@0

The advantage of this notation is that the question of surgivesolutions simplifies to the
guestion of a colouring of the dual graph, i.e. a colourinthefdual graph is a colouring with two
colours, say red and green, such that adgbelled ora-labelled edge has two equally coloured
adjacent vertices, but amylabelled edge has two equal colours at adjacent verticks.rdader
should compare this to Theorém 2]7.9 and Corollary 217.10.

Then, because of Corollafy 2.7110, a resolution will haweiging generators iff it does not
contain lower parts of multiplication or upper parts of cdtiplications and, given an orientation
of the resolution, it allows such a colouring. For examgie, left resolution in Figure_30 does not
allow such an colouring, but the right does.

Recall that the number of crossings is finite. Hence, we cao$h an orientation of any reso-
lution such that the numben of alternating crossings is minimal. The rest is just a dasease

check, i.e. we have the following three cases.
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(i) The dual graph of the resolution is a tree, i.e. no circles
(i) All circles in the dual graph have an even numbepdébelled edges.
(iif) There is one circle in the dual graph with an odd numbfer-tabelled edges.

If m = 0, i.e. the resolution is non-alternating, we get exactlydla#dmed number of generators,
since there are, by construction, no lower parts of muttgilon or upper parts of comultiplications
and the dual graph is of type (i) or (ii) and in both cases tlaplgrcan be coloured.

So letm > 0 and letc be an alternating crossing in a resolutida. The whole resolution is
killed if the c is a lower part of a multiplication or an upper part of a conplitation. Hence,
we can assume that all alternating crossingB®ére either top components of multiplications or
bottom components of comultiplications.

So we only have to check the three cases from above. If théutesois one of type (i), then it
is possible to choose the orientations in such a way that@dlsings are non-alternating, i.e. this
would be a contradiction to the minimality of.

If the resolution is of type (ii), then the resolution onlyreénes, i.e. the dual graph allows a
colouring, iff the number of other alternating crossingswery circle is even. But in this case one
can also choose an orientation with a lower number of narating crossings. Hence, we would
get a contradiction to the minimality @& again. An analogous argument works in the case of type
(iii), i.e. contradicting the minimality ofn agaiﬁ.

Hence, only non-alternating resolutions generate nolistiarg objects and any non-alternating
resolution will create exactly two of these. Thus, with Tre[2.7.2, the statement follows. [J

Example2.7.12 As an example how the Theordm 2.7.11 works consider the vdiagram of
Exampld 2. 7.4 again.

The theorem tells us that the resolution 000 should not tarte to the number of generators,
i.e. it should get killed. To see this, we first note that in K@oubi envelope there ax€ different
direct summands of coloured (with the idempotents ddvamd upu) versions of the resolution,
i.e. four for each crossing. But most of them are killed bydahbogonality ofd andu, i.e. the two
components of the resolution need to have the same colource;leve have the four remaining
summands as shown in Figulirg 31.

COCo e €30

u (X) (X)
U
NP NP>
< o Mox0 S o
u X X
Moos

FIGURE 31. The remaining four coloured versions of resolution 000.

Let us denote the three multiplications with this resolutjg,, as source by

M00: Yooo — Y100 @nd Mmoo Yooo — Yoro and moox : Yooo — Yoo1-

41t is worth noting that these arguments work because of tHekmewn fact that a graph allows zxcolouring iff
it has no circles of odd length.
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If we choose the orientation fok as indicated in the Figute 28, we see that
Moo ) ( — < and mo.o: ) (= 2 and mgp.: ) ( — <

We can now use Corollafy 2.7]10 to see that the only remaijpamts for the three multiplications
are as follows.

AU N

moos) 669 6 e,

/a\/'\

for m.qo and for the other two

AU N 2
mo*o,m*ooi@ @@t) @%/a\@/u\-

Hence, the pick two distinct coloured versions as illugah Figurd 3lL. Therefore, there are no
surviving generators for the 000 resolution.

It should be noted that changing for example the orientadibthe leftmost v-circle in Fig-
ure[2.7.4 does not affecting the result, since Lerhma 2.%8res that the resulting complexes
are isomorphic.

And in fact such a change leads to

M40 - )(—)Z and Mo+ - ) (—)Z and mMoos - ) (—>Z
Hence, then.q, and the two multiplicationgn.q, m.qo Still pick out different coloured versions

of the resolution 000. Therefore, there will not be any sting generators for this case either.

We finish by using the functafi .. to get the corresponding statement in the categfoiMod.
The reader may compare this to the results in the classisel eag. see Proposition 2.4 in [81].
Proposition 2.7.13.Let L, denote ar-component v-link diagram. Then we have the following.

(@) If R = Z, then there is an isomorphism

H(Free(Lp), @ Z @ Tor,

whereTor is all torsion. Moreover, he only possible torsioreigorsion.
(b) If R = Qor R =Z [3], then there is an isomorphism

H(Firee(Lp),R) = D R.

an

Proof. The statement (b) follows from Theorém 2.7.11 above. Rélatlthe whole construction
requires tha is invertible.
For (a) recall the universal coefficients theorem. i.e.ghgmla short exact sequence

0— H*(fLee(LD)a Z) X7z, R — H*(fLee(LD)y R) — TOI(H*+1(fLee(LD), Z)), R) — 0.

Therefore, (a) follows from (b) witli® = Q, since the Tor-functor will vanish in this case and from
(b) with R = Z [1]. Hence, this shows the proposition. O
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2.8. Computer talk. In this section we show some basic calculations with a coerguiogram
we have written. The program is a MATHEMATICA (see [120]) page called/Kh.m There is
also a notebook calleeKh.nh Both and some calculation results are available onliee,an the
authors homepae

The input data is a v-link diagram in@rcuit notation i.e. the classicgblanar diagram nota-
tion, but we allow v-crossings. Hence, the input data is a strinigleelled X, i.e crossings are
presented by symbolk,;,; where the numbers are obtained by numbering the edges oflthie v
diagram and the edges around the crossing start countingtfre lower incoming and proceeding
counterclockwise. We denote such a diagram by CD[X[i}},k,JX[m,n,0,p]].

After starting MATHEMATICA and loading our package vKh.mgwype in the unknot from
Figure[3, the classical and virtual trefoil. Our notatiofidars the notation of Green in his nice
table of virtual knot&

In[1]:= Unknot:= CD[X[1,3,2,4], X[2,1,3,4]]; Knot21 := CD[X[1,3, 2,41, X[4,2,1,3]];
Knot36 := CD[X[1,5,2,4], X[5,3,6,2], X[3,1,4,6]l;

Let us denote the elementsX € A = Z[X]/X? = 0 by 1=vp[i] and X=vm([i] and tensors of
these elements multiplicatively. Here the moddlshould belong to théth v-circle. Moreover,
we denote by the word, whose letters are from the alphalét 1, «} with exactly onex-entry,
the cobordism starting at the resolution., and going to the resolutiof.—,. Let us check the
different morphisms.

In[2]:= d2[Unknot, "0  *"],d2[Unknot, " *0"], d2[Unknot, "1 *"],d2[Unknot, " *1"]
Out[2]= {{vp[l] -> vm[2] vp[l] - vm[l] vp[2], vm[l] -> vm[1l] vm[2]}, { vp[l] -> O,
vm[1] -> 0}, {vp[1] -> O, vm[1] -> O}, {vp[1] vp[2] -> -vp[1], Vv m(2] vp[1] ->

-vm[1], vm[1] vp[2] -> -vm[l], vm[1] vm[2] -> O}}

We see that the two orientable morphisms Are, and—mZ-~ = —mI". With the command
KhBracket[Knot,r] we generate theth module of the complex (here for simplicity without grad-
ings). Moreover, with d[Knot][KhBracket[Knot,r]] we caltate the image of the-th differential
for the whole module. Let us check the output.

In[3]:= KhBracket[Unknot, 0], KhBracket[Unknot, 1], KhBracket[U nknot, 2]

Out[3]= {{v[0, O] vm[1], v[O, O] vp[1]}, {v[O, 1] vm[1l] vm[2], Vv[O, 1] vm[2] vp[1],
v[0, 1] vm[1] vp[2], v[O, 1] vp[1] vp[2], V[1, O] vm[1], v[1, O ] vp[1]},

{v[1, 1] vm[1], v[1, 1] vp[1]}

In[4]:= d[Unknot][KhBracket[Unknot, 0]], d[Unknot][KhBracket[ Unknot, 1]]

Out[4]= {{v[O, 1] vm[1] vm[2], v[O, 1] vm[2] vp[l] - Vv[O, 1] vm[l] vp[2 1}, {0,

-v[1, 1] vm[1], -v[1, 1] vm[1], -v[1, 1] vp[l], O, O}

It is easy to check that the compositiéno d, is indeed zero.
In[5]:= d[Unknot][d[Unknot][KhBracket[Unknot, O]]]
out[5]= {0, 0}

Let us check this for the other two knots, too.

5http://xwww.uni-math.gwdg.de/dtubben/th.htm

63, Green, A Table of Virtual Knot$itp://www.math.toronto.edu/drorbn/Students/GreenJ/ (2004)
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In[6]:= d[Knot21][d[Knot21][KhBracket[Knot21, O]]]
Out[6]= {0, 0, 0, O}

In[7]:= d[Knot36][d[Knot36][KhBracket[Knot36, O]]], d[Knot36] [d[Knot36]
[KhBracket[Knot36, 1]]]

out[7]= {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, O, 0, O, 0, O, 0, O}

Now let us check for the trefoil how the signs of the morphismask out.
In[8]:= sgn[Knot36, "00  *"], sgn[Knot36, "0 *0"], sgn[Knot36, " *00"]
out8l= {1, -1, 1}

In[9]:= sgn[Knot36, "01  *"], sgn[Knot36, "10 *"], sgn[Knot36, "0 * 1",
sgn[Knot36, "1  *0"], sgn[Knot36, " *01"], sgn[Knot36, " *10"]

Oout[9]= {1, 1, 1, -1, -1, -1}
In[10]:= sgn[Knot36, "11 "], sgn[Knot36, "1 *1"], sgn[Knot36, " *11"]
Out[10E= {1, 1, 1}

We observe that all of the six different faces have an odd rasmobsigns. For example the
face F'1 = (000, Yoo1 © 7010, Y011) 9ets a sign from the morphismd.,. Furthermore, the face
F2 = (7100, Y101 © Y110, 7111) 9€ts a sign from the morphisi.,.

The first face is of type 2b and the second is of type 1b. Herftay, @ virtualisation the latter
should have an even number of signs, but the first should haeeléd number signs. Let’'s check
this. First we define a new knot diagram which we obtain byqgrering a virtualisation on the
second crossing of the trefoil.

In[11]:= Knot36v := CD[X[1, 4, 2, 5], X[2, 5, 3, 6], X[3, 6, 4, 1]
In[12]:= sgn[Knot36v, "00  *"], sgn[Knot36v, "0 *0"], sgn[Knot36v, " *00"]

Out[12}= {1, -1, 1}

In[13]:= sgn[Knot36v, "01  *"], sgn[Knot36v, "10 *"], sgn[Knot36v, "0 * 1",
sgn[Knot36v, "1  *0"], sgn[Knot36v, " *01"], sgn[Knot36v, " *10"]

out[13= {1, 1, 1, -1, -1, -1}
In[14]:= sgn[Knot36v, "11  *"], sgn[Knot36v, "1 *1"], sgn[Knot36v, " *11"]
Out[14}= {1, -1, 1}

Indeed only the sign of the morphisih,, is different now. Hence, the fadél still has an odd
number, but the facé'2 has an even number off signs. This should cancel with the esign of
the pantsdown morphisi.,;.

In[15]:= d[Knot36v][d[Knot36v][KhBracket[Knot36v, 0]]], d[Knot 36V][d[Knot36Vv]
[KhBracket[Knot36v, 1]]]

out[15F {{0, 0, 0, 0, 0, 0, 0, O}, {0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O}
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Let us look at some calculation results for the four knots.e Dltput is Betti[q,t], i.e. the
dimension of the homology group in quantum degre@d homology degree The unknot should
have trivial homology.

In[16]:= vKh[Unknot]

Out[16}= {Betti[-1,-2] = 0, Betti[-1,0] = 0, Betti[0,-2] = 0, Betti[0 A1) = 1,
Betti[0,0]= 0, Betti[0,1] = 1, Betti[0,1] = 0, Betti[1,0] = 0 , Betti[1,2] = 0}

Out[16}= 1/q + q

For the other outputs we skip the Betti-numbers. One cantread off from the polynomial.
The trefoil and its virtualisation have the same output i@y should).

In[17]:= vKh[Knot21]

Out[l7}= 1/q"3 + 1/q + 1/(q6 t2) + 1/(q°2 1)

In[18]:= VvKh[Knot36]

Ooutf18= 1/q°3 + 1/q + 1/(q9 t'3) + /(5 t2)

In[19]:= vKh[Knot36V]

Outf19= /g3 + 1/q + 1/(q9 t'3) + /(5 t2)
Let us check that the graded Euler characteristic is thes]pnkynomieﬂ.

In[20]:= Factor[(vKh[Knot21] /. t -> -1)/(q + g"-1)]

out[20l= (1 - q°2 + q'3)/q°5

In[21]:= Factor[(vKh[Knot36] /. t -> -1)/(q + g"-1)]

OutRll (-1 + q°2 + q'6)/q'8

Another observation is the following. The mdp. sendsl to itself, butX to —X. Hence,
there is a good change for 2-torsion. Let us check. Here Jibdgnotes th& /pZ-rank minus the
Z-rank (both graded) of Betti[q#}Z/pZ. Even the v-trefoil has 2-torsion, but no 3-torsion.

In[22]:= vKh[Knot21,2]

Out[22}= {Tor[-2,-6] = 0, Tor[-2,-4] = 0, Tor[-2,-2] = 0, Tor[-1,-4] = 1,
Tor[-1,-2] = 0, Tor[0,-3] = 0, Tor[0,-1] = 0}

Out[22]= 1/(g"4 t)
In[23]:= vKh[Knot21,3]

Out[23= {Tor[-2,-6] = 0, Tor[-2,-4] = 0, Tor[-2,-2] = 0, Tor[-1,-4] = 0,
Tor[-1,-2] = 0, Tor[0,-3] = 0, Tor[0,-1] = 0}

Out[23= 0
There seems to be a lot of 2-torsion!
In[24]:= Knot32 := CD[X[2, 6, 3, 1], X[4, 2, 5, 1], X[5, 3, 6, 4]];
"To simplify the outputs we have avoided to include the odgoh of the v-links in the input, i.e. every output

needs a grading shift.
78



In[25]:= vKh[Knot32]

Out[25 1/g2 + 1/g + g + /(g5 t2) + 1/(qt) + g2 t
In[26]:= vKh[Knot32,2]

Out[26}= 1/(q3 t) + t

Because the virtual Khovanov complex is invariant undetuaiisation, there are many exam-
ples of non-trivial v-knots with trivial Khovanov complex.

In[27]:= Knot459 := CD[X[2, 8, 3, 1], X[4, 2, 5, 1], X[3, 6, 4, 7], X[5, 8, 6, 7II;
In[28]:= VvKh[Knot32]
Out[28= 1/q + q

Let us try an harder example. We mention that the faces amnattommutative, hence the
composition of the differentials is zero.

In[29]:= Knot53 := CD[X[1, 9, 2, 10], X[2, 10, 3, 1], X[5, 4, 6, 3], X[7, 4 , 8, 5],
X[8, 7, 9, 6]l;

In[30]:= vKh[Knot53]

Out[30]= 2 + 1/q°3 + 1/q2 + 1/q + 1/(q'7 t3) + 1/(q'6 t'2) + 1/(q'5 '2)
+ U362 +2@4 ) + @2t +1(qt)+tUg+Fq2t+ g3t 2

In[31]:= vKh[Knot53,2]

Out[31}= 2/q°2 + 1/(q'5 t2) + 1(q4 1) + L3 1) +t + q t2

In[32]:= {d[Knot53][d[Knot53][KhBracket[Knot53, 0]]], d[Knot53] [d[Knot53][KhBracket
[Knot53, 1]]], d[Knot53][d[Knot53][KhBracket[Knot53, 2 11, d[Knot53][d[Knot53]
[KhBracket[Knot53, 3]]] }

Out[32}= {{o, 0, 0, 0, 0, O, O, O}, {0, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
0,000000O0}{,000000000000000 , 0, 0,
0,000000000 0000} {0 0000000000 , 0, 0,

0,00 00000 000,000, 0}

The virtual Khovanov complex is strictly stronger than theual Jones polynomial. The first
example appears for v-links with seven crossings. Let'sklto examples.

In[33]:= Examplel := CD[X[1, 4, 2, 3], X[2, 10, 3, 11], X[4, 9, 5, 10], X] 11, 5, 12, 6],
X[6, 1, 7, 14], X[12, 8, 13, 7], X[13, 9, 14, 8]]; Example2 := CD [X[1, 4, 2, 3],

X[2, 11, 3, 10], X[4, 10, 5, 9], X[14, 5, 1, 6], X[6, 12, 7, 11], X [13, 7, 14, 8],
X[12, 8, 13, 9]]; Example3 := CD[X[1, 4, 2, 3], X[2, 11, 3, 10], X[4, 9, 5, 10],

X[13, 5, 14, 6], X[6, 11, 7, 12], X[14, 8, 1, 7], X[12, 8, 13, 9] . Example4 :=
CD[X[1, 4, 2, 3], X[2, 11, 3, 10], X[4, 10, 5, 9], X[14, 5, 1, 6], X[6, 13, 7, 14],

X[11, 7, 12, 8], X[12, 8, 13, 9]|;
So let us see what our program calculates.

In[34]:= {vKh[Examplel], vKh[Example2], vKh[Example3], vKh[Examp led] }
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Outf34 2 + 1/g + q + 2 g2 + /(3 t2) +2/(2t +gt+2qgt+2g4t

+q3t2+2q5t2+q7¢t3,2+1lqg+qg+2g2+g3+ 1q31t2) + 2/1(g°2 t)
+gt+2qt+g2t+g3t+2g4t+gq2t2+q3t2+29g5t2+ g6t 2 + g6
3 + g7 t3, 2/q72 + 1/g + 3 q + /(g6 t°3) + 2/(q°5 t'2) + 1/(q" 2 t72) + 2/(q°3 t)
+2[qt)+t+2qg2t+qg4t2 1+ 22+ 2q+3q+ Qg6 t3) + 2/ (g5 t°2)

+ 1/(g4 t°2) + /(g2 t72) + 1/t + 1/(q°4 t) + 2/(°3 t) + 2/(g 1) +t+tg+2qg2t

+q3t+g3t2+ g4 t2}

Good news: Examplel and Example2 have the same virtual poheromial ¢ = —1), but dif-
ferent virtual Khovanov homology, i.e. Example2 has theesitta terms (compared to Examplel)
¢*t, ¢, ¢, ¢°t, ¢°t? and¢®t3. They all cancel if we substitute = —1. An analogously ef-
fect happens for Example3 and Example4. Furthermore, dculedions suggest that this repeats
frequently for v-knots with seven or more crossings.

The command line GausstoCD convesiigned Gauss Code a CD representation. The signed
Gauss code has to start with the first overcrossing. To gemiher image we can use the rule
from below. For example the virtual trefoil and its mirroearot equivalent.

In[35]:= Knot2lgauss := "01-02-U1l-U2-";

In[36]:= GuasstoCD[Knot21gauss]

Out[36}= CD[X[1, 4, 2, 3], X[2, 1, 3, 4]]

In[37]:= GuasstoCD[Knot21gauss] /.  X[i_,j_k_ L] > X[ilk,j]

Out[37}= CD[X[1, 3, 2, 4], X[2, 4, 3, 1]]

In[38]:= {vKh[GausstoCD[Knot21gauss]],

vKh[GausstoCD[Knot21gauss] /. X[i_, j_, k, LT > X][i, I, k |-

Out[38 {g + 3 + g2t + g6 t2, 1/g°3 + 1/q + 1/(q°6 t2) + 1/(q2 t)}
We used this to calculate the virtual Khovanov homology fbd#ferent v-knots with less or
equal five crossings. The input was the list of v-knots froreér's virtual knot table. The results

are available on the author’s website (as mentioned bef@ag could visualise the polynomial
with the functionPloyplot It creates an output as in the figure$[32, 33.

0 1 2 01234
« z
10
. .
8
4 ; -
3 6
2 5
4
d 3
FIGURE 32. Homology FIGURE 33. Homology
of the v-trefoil. of the v-knot 4.1.
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In[39]:= Knot4l := "0O1-02-U1-U2-03-04-U3-U4-"; vKh[GausstoCD[Kn ot41]]
Outf[39 = g3 + g5 + 2 g4 t+qgqb5t2+2qg8t2+ g7 t3
+ q9 t'3 + q11 t74]
The output of this v-knot and of the mirror of the virtual wéfis shown in the figures 32, 83.
In these pictures the quantum degree is on the y-axis andthelbgy degree on the x-axis.

2.9. Open issues.Here are some open problems that we have observed. Noteoivatlays the
results about classical Khovanov homology form a highlgstd and rich field. So there are much
more open questions related to our construction.

e It is quite remarkable that one has to useraproduct like” construction to define even,
virtual Khovanov homology. An interpretation of this fastmissing.

e Our complex is an extension of the classical (even) Khovaoowplex. We shortly discuss
a method which could lead to an extension of odd Khovanov hogyd92]. Even and odd
Khovanov homology differ ove® but are equal over /2.

e Secondly we discuss the relationship between the virtualvidhov complex and the cat-
egorification of the higher quantum polynomials & 3) from Khovanov in [51] and
Mackaay and Vaz ir [82] and Mackaay, StoSi¢ and Vaz in [80].

e The results from Section 2.7 could lead to an extension ofRaemussen invariant to
virtual knots.

On the second point: The reader familiar with the paper ofv@is Rasmussen and Szab6 may
have already identified our map

Frp((®;Mid} ) o AT ): A5 A A
to be the comultiplication which they use.

One main difference between the even and odd Khovanov cangptee usage of this map in-
stead of the standard méafx, (AT, ) and the structure of an exterior algebra instead of direussu
Furthermore, there are commutative and anticommutatoesfan the odd Khovanov complex. But
because every cube has an even number of both types of faees,is a sign assignment which
makes every face anticommute. One major problem is the ignesbw to handle unorientable
faces, because these faces can be counted as commutatitecomanutative. Furthermore, one
should admit that faces of type 1a and 1b can be commutatietmommutative. Hence, there is
still much work to do.

On the third point: The key idea in the categorification of i@ )-polynomial forn > 3 is the
usage of so-called foams. This very interesting approaehtalikhovanov, Mackaay, Stosi¢ and
Vaz (see in their papers [61], [82] arid [80]).

So in the virtual case one should use a topological consbruetith virtual webs and decorated,
possible non-orientable foams (immersed rather than eddshdSo their concept to categorify the
s[(n)-polynomials forn = 3 should lift to v-links. This needs further work (the signigssnent
seem to be the main point), but seems to be very interestimgnT> 3 case is indeed more
complicated. In their paper Mackaay, StoSi¢ and Vaz (869 Lise a special formula, the so-called
Kapustin-Li formula, to find the adapted relations. But t#tisnula only works in the orientable
case and it has no straightforward extension to the nomiatide case. But hopefully the collection
of relations they use is already enough to show invariandewthe vRM1, vRM2, vRM3 and the
MRM moves. At least in the case= 2 the local relations are enough to show the invariance.
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3. THE sl; WEB ALGEBRA

3.1. A brief summary. We summarise the results of Sectldn 3 now. Recall that Se&iis a
slight adaptation of a preprint of Mackaay, Pan and the ay#&j.

It is worth noting that we have collected some facts aboutdrigategories (see Sectionl4.1),
Grothendieck groups (see Sectiéng 4.2[and 4.3) and cedliglabras (see Sectibn #.7) in later sec-
tions. They are far from being complete, but the reader caefutly find some useful information
therein.

Recall that we consider thg; analogue of Khovanov’s arc algebras and we call tiveal
algebrasand denote them bi(s, whereS is a sign string (string of and— signs). We prove the
following main results regarding’s.

(1) Ky is a graded, symmetric Frobenius algebra (Thedrem|3.5.9).

(2) We give an explicit degree preserving algebra isomarptbetween the cohomology ring
of the Spaltenstein varietXﬁ andZ(Kg), where) andy are two weights determined by
S (Theoren 3.8]3).

(3) LetVs =V, ® --- ® V,, whereV, is the basidJ,(sl;)-representation antl_ its dual.
Kuperberg[[70] proved thdf’s, the space ofl; webs whose boundary is determined by
S, is isomorphic tdnvy, si,)(Vs), the space of invariant tensorslia. Choose an arbitrary
k € N and letn = 3k. By ¢-skew Howe duality, which we will explain at the beginning of
Sectior3.B, we know that

Vigey = P Ws.
S

HereV/,, denotes the irreduciblé, (gl,,)-module with highest weighB*). Recall that this
can be restricted to an irreducililg(s(,,)-module. The direct sum on the right-hand side is
taken over alenhanced sign sequenaadengthn, which are in bijective correspondence
to the semi-standard Young tableaux withows and 3 columns.

In Sectior 3.1 we categorify this result. LB{;) be the cyclotomic Khovanov-Lauda-
Rougquier algebra (cyclotomic KLR algebra for short) witlytest weight3*). Brundan

and Kleshche\ [17] (see also [46], [73], [115] ahd [117])yed that
K(?(R(gk)'pMOdgr> = ‘/ék)’

where the latter is the integral form &f;x.
We prove (in Proposition 3.11.7) that there exists an exigtee preserving categorical
U(sl,,)-action on

b Ks-Mod,,,
S

wherel/(sl,,) is Khovanov and Lauda’s diagrammatic categorificationl k(). This
categorical action can be restricted to

b Ks-pMod,,.
S
82



By a general result due to Rouquier [100] (in fact a slighiation of Rouquier’s result,
see Section 414), which we recall in Proposifion 3.4.15, ate g

(3.1.1) Rzr-pMod,, = €P Ks-pMod,,,.
S

(4) In particular, this proves that the split Grothendiecups of both categories are isomor-
phic (Corollan{3.11.9). It follows that we have

K§ (Ks-pMod,,) = W§,

for anyS. Again, the superscrigt denotes the integral form.
(5) As p_roved ?n Corollar@l_I!.Q, the equiva_lencel]E(B) indplies thatR? 3+ and@ 4 Ks are
Morita equivalent (Propositidn 3.11]10), i.e. we have

(3.1.2) Ryzr-Mod,, = P Ks-Mod,.
S

(6) In Corollary(3.11.113, we show th&t (3.11.2) implies that is a graded cellular algebra, for
anyS. This observation relies on several facts, see Sectiorod mére details.

(7) We show that the graded, indecomposable, projedtiyenodules correspond to the dual
canonical basis elementsiinv(Vs) (Theoreni3.11.22).

(8) In a new section we give an isotopy invariant, homogesdasis ofK g (Theoren 3.12.15

and Corollary 3.12.16).

The first result is easy to prove and similar to the casdfgr Some of the other results are much
harder to prove foK g than their analogues are féf, (e.g. see Remafk 3.11]16). In order to prove
the second and the penultimate result, we introduce a “nieW’ti.e. we use a deformation of
Kg, calledGg. This deformation is induced by Gornikls [39] deformatidrikdnovanov’s original

sl; foam relations. One big difference betwe@g and K5 is that the former algebra fdtered
whereas the latter igraded As a matter of facts is the associated graded algebraigf. The
usefulness of7s relies on the fact that's is semisimple as an algebra, i.e. forgetting the filtration
(see Proposition 3.5.1.3).

Let us explain the connection to existing work in the litarat There are two diagrammatic
approaches which givel; link homologies, e.g. there is Khovanov’s original apptoarsing
foams [51] and there is Webster's approach [117], [118]gisimgeneralisation of the cyclotomic
KLR-algebras. In Proposition 4.4 in [118], Webster provieat tboth link homologies are isomor-
phic, but the proof is quite sophisticated and relies on Mamnak and Stroppel’s approach [89] to
link homology using functors and natural transformationscertain blocks of categor§. Our
results of Sectionl3 might help to give an elementary anatpmof that Khovanov and Webster’s
sl3 link homologies are isomorphic. A very recent and relatqoregch is due to Lauda, Queffelec
and Rose in[72].

As we explained in more detail in Sectionl1.3, it should notdzehard to generalise our results
of Sectiori B to the case fet,, with n > 4, using matrix factorisations instead of foams. This could
be helpful to show that Webster$, link homology is isomorphic to Khovanov and Rozansky'’s
link homology [64]. Forn > 4, Webster has conjectured this result to hold, but he hasmwed

it (see his remarks below Proposition 4.4(in [118]).
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Another question is howk's-pMod,, is related to (a subcategory afjs-Mod,,, where R is
Webster's[[117] generalisation of the cyclotomic KLR-ddgewhich categorifie®s. In one of the
later versions of [117], Webster has added a section (SedtR) on the categorification of skew
Howe duality within his framework of generalised cyclota#iLR-algebras.

As mentioned in Sectidn 1.3, in[33], Fontaine, Kamnitzet Kaperberg study so-called spiders
i.e. given a sign string, the Satake fiberF'(.S), denotedF(Y) in [33], is isomorphic to the
Spaltenstein varietyX ,j mentioned above. Here we point out the difference in thegatinos
that otherwise might confuse the reader, i.e. Xha [33] is equal tou in our notation, which is
also equivalent t&. Given a wehw with boundary corresponding t®, Fontaine, Kamnitzer and
Kuperberg also define a variefy(D(w)), called theweb variety One obvious question is the
following (asked to us by Kamnitzer).

QuestiorB.1.1 For any two basis wehs, v € By, does there exist aisomorphism of graded vector
spaces

H*(Q(D(u))) @pesy H(Q(D(v))) = u Ky,
that gives rise to an isomorphisms of graded algebras

P K.= P H(QDW)) @rs H(QD(W))),

u,vEBg u,vEBg

where the left side is the decompositionfof of Sectior 3.b and the product on
D H QD) ®rs) H(Q(D(v)))

u,vEBg
is given by convolution.

If the answer to this question is affirmative, then that wdaddhes(; analogue of the result, due
to Stroppel and Webster [108], relatitif, to the intersection cohomology of ttie, n)-Springer
fiber. Our Theorernh 3.8.3 is a first step towards proving Kanen conjecture. We also note that,
in [54], Khovanov showed that the center Bf, is isomorphic to the ordinary cohomology of the
(n,n)-Springer fiber, before Stroppel and Webster proved the meneral result.

Another related point is to prove similar results as Brunaiae Stroppel [19] showed for thé,
analogues, denoted,,, of our algebrak’s. For example, they showed thét, is a graded cellular
algebra by constructing an explicit cellular basis. Usimg &xplicit basis, they also constructed
the quasi-hereditary cover &f,,. We note that the results of the new section, i.e. SettioB, vk
the first step to generalise their work.

This section is organised as follows.

(1) We recall the definitions and some fundamental propediel; webs in Sectioh 3]12;(3
foams in Sectiof 313 and categorified quantum algebras aiddhtegorical representa-
tions in Section 3]4.

(2) In Sectiori 3.5, we definEs and prove the first of our aforementioned main results.

(3) After recalling some notation in Sectibn 3.6, we firstdstihe relation between column
strict tableaux and webs with flows, i.e. in Section 3.7. ddims relation, we prove our
second main result in Sectibn B.8.

(4) In Sectiori 3.9, we recall Howe duality.
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(5) In the Sections_3.10 amd 3]11, we explain Howe duality (@il Howe duality in Sec-
tion[3.9) in our context and categorify the case relevaneicti®n3. This leads to the other
main results.

(6) The Sections 316, 3.7 ahd B.8 and the three Sediioh5 3®,aBd 3.1l are largely inde-
pendent of each other. However, the proof of Thedrem 13.8)Gires Proposition 3.11.110
and the proof of Proposition 3.11]19, which is a key ingretfer the proof of Theo-
rem[3.11.2R, requires Lemrha 318.2.

(7) Inthe new Section 3.12 we give in Theorem 3.112.6 a metifiode makes certain choices,
to obtain a homogeneous basisgof. We conjecture that certain choices will give a graded
cellular basis (in the sense of Sectlonl4.7)Kf. Furthermore, in Theorem 3.12]15 and
Corollary[3.12.1B, we explain how this procedure can be tisgilve an isotopy invariant
basis.

(8) Note that Sectioh 4.8 replaces the Appendix of our pafgd [

3.2. Basic definitions and background: Webs.In [70], Kuperberg describes the representation
theory ofU,(sl3) using oriented trivalent graphs, possibly with boundaajlecl webs Boundaries

of webs consist of univalent vertices (the ends of orientigks), which we will usually put on a
horizontal line (or various horizontal lines), e.g. suchebvis shown below.

621 NP,

We say that a web hasfree strands if the number of non-trivalent vertices is dyae. In this
way, the boundary of a web can be identified witkign stringS = (s1,...,s,), with s; = =+,
such that upward oriented boundary edges get'aégnd downward oriented boundary edges a
“—"sign. Webs without boundary are calletbsedwebs.

Any web can be obtained from the following elementary webgloging and disjoint union.

(3.2.2) Y Y AN Yan

Fixing a boundarys, we can form theC(q)-vector spacéVs, spanned by all webs with boundary
S, modulo the following set of local relations (due to Kupethi¥Q]).

(3.2.3) () =8
(3.2.4) — > = [2]
N
3.25 =
(3.2.5) >\ T
Recall that B
== =" T eNg g

q—q!
denotes thguantum integer
By abuse of notation, we will call all elements Gfs webs. From relations (3.2.3), (3.2.4)
and [3.2.5) it follows that any element#is is a linear combination of webs with the same bound-

ary and without circles, digons or squares. These are cadiaeelliptic webs As a matter of fact,
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the non-elliptic webs form a basis Ofs, which we callBs. Therefore, we will simply call them
basis webs

Let WZ be the freeZ[q, ¢~ ']-submodule ofVs generated by3s. We call this thentegral form
of the web space.

Following Brundan and Stroppel’s [19] notation for arc d@ms, we will writew* to denote the
web obtained by reflecting a given webhorizontally and reversing all orientations.

(3.2.6) \@ //{:\\

By uv*, we mean the planar diagram containing the disjoint uniom @ind v*, wherewu lies
vertically abovev*.

(3.2.7)

*

v

(.

By v*u, we shall mean the closed web obtained by glueingn top ofu, when such a construction
is possible (i.e. the number of free strands and orientatiorthe strands match).

*

v

(3.2.8)

u

Q)

In the same vein, by;u;viu, we denote the following web.
vy

Uy

(3.2.9)
U3

U2

S0

To make the connection with the representation theory/ 0§l;), we recall that a sign string
S =(s1,...,,) corresponds to

Vs=V,,®---QV,,

whereV, is the fundamental representation avid its dual. The latter is also isomorphic to
Vi AV, afact which we will need later on. Both, andV_ have dimension three. Khovanov and
Kuperberg[[57] use a particular basis fiar, denoted{c]", e5 , e5 }, and also one fol’_, denoted
{e1, €5, €5 }. Inthis interpretation, webs correspond to intertwiners a

WS = IHV(VS).
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Therefore, the elements &f; give a basis ofnv(Vs). However, this basis is not equal to the usual
tensor basis. In Theorem 2 6f[57], Kuperberg and Khovanovean important result concerning
the change of basis matrix, which we will reproduce in ThadB2.5.

Kuperberg showed in [70] (see also [57]) that basis websratexied by closed weight lattice
paths in the dominant Weyl chamber @f. It is well-known that any path in thel;-weight
lattice can be presented by a pair consisting of a sign sffirg (s, ..., s,) and astate string
J = (J1,...,Jn), With j; € {—1,0,1} forall 1 <1i < n. Given a pair(.S, J) representing a closed
dominant path, a unique basis web (up to isotopy) is detexdhioy a set of inductive rules called
the growth algorithm We briefly recall the algorithm as described[inl[57]. In fabe algorithm
can be applied to any path, but we will only use it for closethd@mnt paths.

Definition 3.2.1. (The growth algorithm) Given (S, J), a webw? is recursively generated by the
following rules.

(1) Initially, the web consists of. parallel strands whose orientations are given by the sign
string. If s, = +, then thei-th strand is oriented upwards; i = —, it is oriented
downwards.

(2) The algorithm builds the web downwards. Suppose we hiasady applied the algorithm
k — 1 times. For thek-th step, do the following. If the bottom boundary string t2ns a
neighbouring pair of edges matching the top of one of thealhg webs (called H, arc and
Y respectively), then glue the corresponding H, arc or Y ®rilevant bottom boundary

edges.
1 0 0 0 0 -1 lv-l

FIGURE 34. Top strands have different signs.

1\(0 0\(1 1\(1
1 -1 0

FIGURE 35. Top strands have same sign.

These rules apply for any compatible orientation of the edgdhe webs. Therefore, we have
drawn them without any specific orientations. Below, whemeve write down an equation in-

volving webs without orientations, we mean that the equatiiolds for all possible orientations.
For future use, we will call the rules above tHearc and Y-rule The growth algorithm stops if no

further rules can be applied.

If (S, J) represents a closed dominant path, then the growth algoptibduces a basis web.
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For example, the growth algorithm convefts- (+—+—+++)andJ = (1,1,0,0,—1,0, —1)
into the following basis web.

+ + -+ + 4+
1 1 0 o -1 0 -1

(3.2.10)

In addition, the growth algorithm has an inverse, calledhtir@mal cut path algorithnf57]], which
we will not use here.

Following Khovanov and Kuperberg i [567], we defindlav / on a webw to be an oriented
subgraph that contains exactly two of the three edges intideeach trivalent vertex. The con-
nected components of the flow are called filogv lines The orientation of the flow lines need not
agree with the orientation af. Note that ifw is closed, then each flow line is a closed cycle.
At the boundary, the flow lines can be represented by a stag st. By convention, at the-th
boundary edge, we sgt = +1 if the flow line is oriented upwardj; = —1 if the flow line is
oriented downward angi = 0 there is no flow line. The same convention determines a state f
each edge ob.

Remark3.2.2 Every flow determines a unique 3-colouringwof with colours—1, 0, 1, satisfying
the property that, for any trivalent vertex af, the colours of the three incident edges are all
distinct. These colourings are calladmissiblen [39].

Conversely, any such 3-colouring determines a unique flow oifhis correspondence deter-
mines a bijection between flows and admissible 3-colouromys.

This remark will be important in Sectidn 3]10 and in Seckiohl3

We will also say that any flowf that is compatible with a given state stridgon the boundary
of w extends/.

Given a web with a flow, denoted;, Khovanov and Kuperberg [57] attributeageightto each
trivalent vertex and each arc iny, as in Figure§ 3.2.11 and 3.2112. The total weightefis by
definition the sum of the weights at all trivalent vertices ancs.

TY YT Y Y
AAK%%K

(3.2.12) o/ N N N N

wt=0 t=- wt=-2

For example, the following web has weigh8.

(3.2.11)

(3.2.13)
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We can extend the table ih(3.2111) ahd (3.2.12) to calcwaights determined by flows ofi’s,
so that it becomes easier to compute the weightvpfwhenw is expressed using the growth
algorithm (Definitior{ 3.211).

Definition 3.2.3. [67] (Canonical flows on basis webspiven a basis web expressed using the
growth algorithm. We define theanonical flonon w by the following rules.
1 0

KA
YYY

wt=0 wt=0 wt=0
The canonical flow does not depend on the particular instafite growth algorithm that we have
chosen to obtaim.

0

(3.2.14)

Observe that the definition of the canonical flows impliesfthlewing lemma.
Lemma 3.2.4. A basis web with the canonical flow has weight zero.

Given(S, J), let
eS=el® e
Khovanov and Kuperberg prove the following theorem (Theogein [57]), which will be impor-
tant for us in Section 3.11.

Theorem 3.2.5.(Khovanov-KuperberyGiven(S, J), we have

w§ = e + Z (S, J, e,
JI<J
for some coefficients(.S, J, J') € N|q, ¢~'], where the state stringé and .J’ are ordered lexico-
graphically.

Remark3.2.6 Khovanov and Kuperberg [57] show th&t, is not equal to the dual canonical basis
of Ws. This follows from the fact that(S, J, J') ¢ ¢N[¢!] in general. In their Section 8, they
give explicit counterexamples of elemenis= Bs which admit non-canonical weight zero flows.

We note that the wely shown in Examplé 3.12.18 later in Sectlon 3.12 is relatecheaf the
counterexamples of Khovanov and Kuperbeérd [57].

3.3. Basic definitions and background: Foams.In this section we review the category called
Foam; of sl;-foams introduced by Khovanov in [61]. As a matter of fact, wil also need a
deformation of Khovanov's original category, due to Gorf8R] in the context of matrix factor-
izations, and studied in [82] in the context of foams. Therefwe introduce a parametee C

in Foan;, just as in[[82], such that we get Khovanov’s original catgdor ¢ = 0 and, for any

¢ # 0, the categoryroarnt, is isomorphic to Gornik’s deformation (his original defation was
for c = 1). A big difference between these two specializations i$ Boan; is graded forc = 0
and filtered for any: # 0. In fact, for anyc # 0, the associated graded categoryFolant is

isomorphic toFoan,.
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We recall the following definitions as they appearlin/[82]. k¢ge that the diagrams accompa-
nying these definitions are taken, also, from [82].

A pre-foamis a cobordism with singular arcs between two webs. A singadain a pre-foam
U is the set of points ot/ which have a neighborhood homeomorphic to the letter Y tiares
interval. Note that singular arcs are disjoint. Interpdefs morphisms, we read pre-foams from
bottom to top by convention. Thus, pre-foam compositiorscsis of placing one pre-foam on top
of the other. The orientation of the singular arcs is, by eorion, as in the diagrams below (called
thezip and theunziprespectively).

We allow pre-foams to have dots that can move freely aboutatet on which they belong, but
we do not allow a dot to cross singular arcs.

By afoam we mean a formaC-linear combination of isotopy classes of pre-foams modtléo
ideal generated by the set of relatiohs- (3D, NC, S, ©) and theclosure relation as described
below.

(3D) E =c

(NC)

i
© o
(o

a_... J) = (1, 0) or a cyclic permutation
© B =< —1, 0) = or a cyclic permutation
©) S (0. 9.6) = (2,1,0) or a cyclic p

0, else

Theclosure relationi.e. anyC-linear combination of foams with the same bound-
ary, is equal to zero if and only if any way of capping off thdeams with a
common foam yields &-linear combination of closed foams whose evaluation is
zero.

The relations irf imply the following identities (for detailed proofs sée [h1

—
(Bamboo) :j — @
=
-
(RD) = @ - @

(Bubble) @
NS



(DR)

(SaR)

(Dot Migration) N P R il | =0

Definition 3.3.1. For anyc € C, let Foant, be the category whose objects are wellging inside

a horizontal strip irlR?, which is bounded by the lines= 0, 1 containing the boundary points of
I'. The morphisms oFoant, areC-linear combinations of foams lying inside the horizontaiis
bounded by = 0, 1 times the unit interval. We require that the vertical bougydd each foam is
a set (possibly empty) of vertical lines.

Theg-gradingof a foamU is defined as
q(U) = x(0U) — 2x(U) 4 2d + b,

where xy denotes the Euler characteristitjs the number of dots ofy andb is the number of
vertical boundary components. This mak&sany into a graded category. For amy# 0, this
makesFoant, into a filtered category, whose associated graded categ@sgrnorphic td-oam).

Definition 3.3.2. [51] (Foam homology)Given a webw thefoam homologyf w is the complex
vector spaceF*(w), spanned by all foams

U:0—w
in Foar,.

The complex vector spack“(w) is filtered/graded by the-grading on foams and has rafk),
where(w) is theKuperberg bracketomputed recursively by the rules below.

m<wHC»=BWW
2) (<o) = [2)(——).

@ (L0 =00 +(=)
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The relations above correspond to the decompositioR“0fv) into direct summands. The idem-
potents corresponding to these direct summands are the tarrthe r.h.s. of the relations (NC),
(DR) and (SqR), respectively. For any# 0, the complex vector spacg®(w) is filtered and its
associated graded vector spac&t§w). Seel[51],[[82] for details.

Remark3.3.3 Givenu,v € Bg, the observations above and Theofem 3.2.5 show that thists ex
a homogeneous basis #f (u*v) parametrised by the flows artv. We have, in fact, constructed
such a basis, but it is not unique. See Sedtion|3.12. Theleasa “preferred choice”, unless one
requires the basis to have other nice properties, e.g. ialthease, Brundan and Stroppel prove
that there is a cellular basis &f, (in fact, it is also graded cellular4.7.3). The constructid a
“good” basis of thesl; web algebraiks (and similarly for Gornik’s deformatiorrs) is still work

in progress and will, hopefully, be the contents of a papé&hdugh we do not need such a “good”
basis here, it is important that the reader keep this renmamkimd while reading Sectidn 3.111.

3.4. Basic definitions and background: Quantum 2-algebras.

3.4.1. The quantum general and special linear algebr&#st we recall the quantum general and
special linear algebras. Most parts in this section areetbffibm section two and three in [79].
Note that, in contrast td [79], we work ov€Yq) instead ofQ(q).

Thegl,,-weight lattice is isomorphic t&". Lete; = (0,...,1,...,0) € Z", with 1 being on the
i-th coordinate, and; = ¢; — ¢;.1 = (0,...,1,—1,...,0) € Z",fori = 1,...,n — 1. Recall that
the Euclidean inner product ¢&* is defined by(e;, €;) = 9 ;.

Definition 3.4.1. Forn € N, thequantum general linear algebrid ,(gl,,) is the associative unital
C(q)-algebra generated bl; and K; ', for 1,...,n, and E,; (beware that some authors uBg
instead ofE'_;), fori = 1,...,n — 1, subject to the relations

Kin = Ksz’, KiKi_l = Ki_lKi =1,
E,E_;j— E_jE; =6;; KiKih — [izl K
q—dq
KiEyij = ¢ By K,
E2Ei;—(q+q VEwFejEy + Eg B =0, if |i—j|=1,
Byibyj — Byl = 0, else

Y

Definition 3.4.2. Forn € N, thequantum special linear algebré,(s(,,) C U,(gl,) is the unital
C(g)-subalgebra generated b K", andE;, fori = 1,...,n — 1.

Recall that thdJ (s, )-weight lattice is isomorphic td" . Suppose that is aU,(gl,,)-weight
representation with weights= (\,,..., \,) € Z", i.e.

V%@VA,
A

and K; acts as multiplication by* on Vi. ThenV is also aU,(sl,)-weight representation with
weightsh = (Ay, ..., \,_1) € Z"tsuchthat\; = \; — A\, forj=1,...,n—1.
Conversely, given & ,(sl,,)-weight representation with weights= (1, . .., p,—1), there is not

a unique choice ot (gl,,)-action onV. We can fix this by choosing the action&f, - - - , K,,. In
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terms of weights, this corresponds to the observation thagnyd € 7Z, the equations

(3.4.2) Ai = Aig1 = My
(3.4.2) > Ni=d,
i=1

determine\ = (\,...,\,) uniquely, if there exists a solution to (3.4.1) ahd (3.4123la To fix
notation, we define the maf, ;: Z"~* — Z" U {x} by

Cbn,d(,u) - )\7

if (8.4.1) and[(3.:42) have a solution, and we pyt;(x) = * otherwise.

Note thatU,(gl,,) andU,(sl,,) are both Hopf algebras, which implies that the tensor proofic
two of their representations is a representation again.

Both U,(gl,,) andU,(sl,) have plenty of non-weight representations, but we will nigtdss
them here. Therefore we can restrict our attention to therBen-Lusztig-MacPherson[11] idem-
potent version of these quantum groups, denbligd,, ) andU (sl,,) respectively. Itis worth noting,
as explained in (f) of Example4.1.6, that such algebras essebn ag-categories.

To understand their definition, recall that acts as;® on the \-weight space of any weight
representation. For eache Z" adjoin an idempoterit, to U,(gl,,) and add the relations

1)\1u = 5)\,1/1)\7
Eyily = Izto, By,
KZ‘l)\ = inlA.

Definition 3.4.3. The idempotented quantum general linear algebra is defiped b
Ual,) = €D LU,(gl)1,
A\, LEL™

Let/ = {1,2,...,n — 1}. In the sequel we usgigned sequenceés= («aiiy,.. ., ani,), for any
m € N, o; € {£1} andi; € I. We denote the set of signed sequenceSibyq.
For such an = («ayiy, ..., a,_1i,-1) We define

Ei — Ea1i1 .. 'Ean—lin—l
and we define, € Z" to be then-tuple such that
Eily = Ly, B
Similarly, for U, (sl,,), adjoin an idempotent, for eachu € Z"~! and add the relations
1,1, = 0,15,
Eiil, =1uaEy, Withe = a; — a4,
KK M1, =q"1,.
Definition 3.4.4. The idempotented quantum special linear algebra is defiped b
UGsl,) = @B 1,U,(s)1,.

w,vEeZN—1
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Note thatU(gl,,) and U(sl,,) are both non-unital algebras, because their units woulé tabe
equal to the infinite sum of all their idempotents.

Furthermore, the onlyJ,(gl,) andU,(sl,)-representations which factor througkgl,,) and
U(s[n) respectively are the weight representations. Finallye ribat there is no embedding of
U(sl,,) into U(gl,, ), because there is no embedding of sheweights into they! ,-weights.

Finally, recall theintegral formsof these quantum algebras. Foreach1,...,n — 1 and each
a € N, define thedivided power
@ _ EY
+i T [a]| :

Definition 3.4.5. Let U%(gl,) < U(gl,) and U%(sl,) ¢ U(sl,) be theZ[q, ¢—']-subalgebras
generated by the divided powel”) 1,.

3.4.2. Theg-Schur algebra.Let d € N and letV be the naturah-dimensional representation of
U,(gl,). Define

Afn,d)={NeN"| Y X\ =d} and
i=1
A(nyd)={AeAnd) [d>X > > > )\, >0}
Recall that the weights ilv®? are precisely the elements &fn, d), and that the highest weights
are the elements of*(n, d). The highest weights correspond exactly to the irredusiblethat
show up in the decomposition df*.
We can define the-Schur algebra as follows.

Definition 3.4.6. Theg-Schur algebraS,(n, d) is the image of the representation , defined by
Un.a: Uglgl,) — Ende(VE).

Recall that for\ € A*(n,d), theU,(gl,)-action onV), factors through the projection given by
Yna: Uy(gl,) = S,(n,d). This way we obtain all irreducible representationsSpfn, d). Note
that this also implies that all representationsSgf, d) have a weight decomposition. As a matter
of fact, it is well-known that

Sq(n, d) = H End(c(V)\).
AEAT (n,d)
ThereforeS,(n, d) is a finite dimensional, semisimple, unital algebra andiitsethsion is equal to

S dim(14)? = (“2 i j - 1).

AEAF (n,d)

SinceV ¢ is a weight representatiow,, ; gives rise to a homomorphisb(gl,) — S,(n, d), for
which we use the same notation. This map is still surjectie@oty and Giaquinto, in Theorem
2.4 of [31], showed that the kernel of, ; is equal to the ideal generated by all idempotégrtsuch
that\ ¢ A(n,d). Clearly the kernel of}, 4 is isomorphic taS,(n, d). By the above observations,
we see thab,(n, d) has a Serre presentation. As a matter of fact, by Coroll&@y4n [25], this
presentation is simpler than that Ofgl,), i.e. one does not need to impose the last two Serre
relations, involving cubical terms, because they are iegpby the other relations and the finite

dimensionality.
24



Lemma 3.4.7.5,(n, d) is isomorphic to the associative, unitdl¢)-algebra generated by,, for
A € A(n,d),andE;, fori = 1,...,n — 1, subject to the relations

(3.4.3) 1)1, = oy 1y,
(3.4.4) Y oh=1,
AEA(n,d)
(345) Ei 1, = 1)\:|:aiE:|:i7 with Q; = € — €41 = (0,...,1,—1,...,0),

XeA(n,d)
We use the convention thgfX'1, = 0, if 2 or A is not contained in\(n, d). Again|a] denotes the
g-integer from before.

Although there is no embedding Bf(sl,,) into U(gl,, ), the projection

Yna: Uylal,) — Sy(n,d)

can be restricted t¥J,(sl,,) and is still surjective. This gives rise to the surjection
Yna: Ulsl,) = S,(n, d),

defined by

(3.4.7) Una(Exily) = Exily, 40,
whereg,, ; was defined below equatioris (3J4.1) and (3.4.2). By conventie putl, = 0.

Just for completeness, let us also recall the integral fdrthen;-Schur algebra.

Definition 3.4.8. Define S7(n,d) C S,(n,d) to be theZ[q, ¢~']-subalgebra generated by the di-
vided powersz (V1.

3.4.3. The general and special quantum 2-algebr&ge note that a lot of this section is copied
from [79]. The reader can find even more details there. ‘

Let(sl,) be Khovanov and Lauda’s [60] diagrammatic categorificatiblJ(s(,,). It is worth
noting, as explained in (f) of Exampdle 4.11.6, that such agmiécation has to be a-category.

In [79] it was shown that there is a quotient 2-categorg/@fl,,), denotedS(n, n), which cate-
gorifiesS,(n, n). Note that “categorifies” should be in the sense of Sefidn 4.

We recall the definition of these categorified quantum algeland some notions from above.
As before, letl = {1,2,...,n — 1}. Again, we usesigned sequencas= (ayiy, ..., Qpin),
foranym € N, a; € {£1} andi; € I, and the set of signed sequences is deniBel. For
i=(aiiy,...,aniy,) € SiSeq we defingly, = ay(i1)a + -+ + @ (im)a, Where

(i;)a = (0,0,...,1,—1,0...,0),
such that the vector starts with— 1 and ends wittk — 1 — i, zeros. We also define the symmetric
Z-valued bilinear form orC[/] by i -i =2,7- (i + 1) = —1andi-j = 0, for |i — j| > 1. Recall
that)\Z = )\i — )‘H—l'

~ We first recall the definition, given in [79], of the 2-categavhich conjecturally categorifies

U(gl,). Itis a straightforward adaptation of Khovanov and Laud#s!,,).
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Definition 3.4.9. U (gl,,) is an additiveC-linear 2-category. The 2-categd(gl,,) consists of

e Objects are\ € Z".
The hom-categor¥(gl,, ) (A, \') between two objects, )" is an additiveC-linear category con-
sisting of the following.

o Object§ of U(gl,) (A, X)), i.e. al-morphismid{(gl,) from Ato X, is a formal finite direct
sum of 1-morphisms

EL{t} = Ww&L\{t} = Eariy - - Eain {1t}
for anyt € Z and signed sequence SiSeq such that\' = A +i, and\, N € Z".

e Morphisms o/ (gl,)(A, \'), i.e. for 1-morphismg;1,{t} and&1,{¢'} inU(gl,), the hom
setU (gl,) (L {t}, L. {'}) of U(gl,) (), \) are graded-vector spaces given by linear
combinations of degrele— ' diagrams, modulo certain relations, built from composites
the following.

(i) Degree zero identity 2-morphisms for each 1-morphism: in U(gl,); the identity
2-morphismsl¢, 1, {t} andls 1, {t}, fori € I, are represented graphically by

le a6y le 1,0
A+ i%x A— ¢A+A,
deg O deg O

forany\ + i, € Z" and any\ — i, € Z", respectively.
More generally, for a signed sequence (ajiy, asis, . .. Qi ), the identitylgs, (1)
2-morphism is represented as

192 im

Aty A,

11 12 im
where the strand labelleq is oriented up ifoy, = + and oriented down ify, = —.
We will often place labels with no sign on the side of a strand amit the labels at
the top and bottom. The signs can be recovered from the atiens on the strands.

(i) Recall that— - — is the bilinear form from above. For eaghe Z" the 2-morphisms
Notation: /T\ \¥
i\ i\ 5( 0,5\ K 1,5,
2-morphism: HWT\A A\#AHA /><‘A \><A
i i ' ! é J
Degree: 11 11 —1-J —1-7

8We refer to objects of the categoty(gl,,)(\,\') as 1-morphisms oi{/(gl,). Likewise, the morphisms of
U(gl,,) (A, \) are called 2-morphisms i (gl,,). Compare to Sectidn 4.1.
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Notation: N,

A
2-morphism: | Ny M oS N

7

Degree: 1-— )\z 1+ XZ 1+ )\z 1-— Xz

¢ Bi-adjointness and cyclicity are shown below.
(i) 1,4,&4:1, and1,E_;1,4,, are bi-adjoint, up to grading shifts:

Atip A
(3.4.8) M = AiaAX m = AWVA+iy
A i Atip i
A Atip
(3.4.9 m = AtiaNA u\( = AV A+ia
Atip ( A i

(ii)

)\—i-iA )\+iA
(3.4.10) m - AJ(WA _
A ' A

(i) All 2-morphisms are cyclic with respect to the aboveddjoint structure. This is
ensured by the relations (3.4110), and, for arbitrayy the relations

J i J i
o J//M kd m
i J
i j i J

Note that we can take either the first or the last diagram ahe\vke definition of the
up-side-down crossing. The cyclic condition on 2-morplisexpressed by (3.4110)
and [3.4.111), ensures that diagrams related by isotopgsept the same 2-morphism
inU(gl,).

It will be convenient to introduce degree zero 2-morphissistaown below.

i J

i J
(3.4.12) >§,\ = M,\ = A
J
o j i
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(3.4.13)

where the second equallty in(3.4112) and (3.4.13) follawrfrBEZDL)

(iv) All dotted bubbles of negative degree are zero. That is,

(3.4.14) i@xzo, ifm <X — 1, i@xzo, if m <~ — 1

for all m € Z,, where a dot carrying a label denotes then-fold iterated vertical
composite oﬁp or{( depending on the orientation. A dotted bubble of degree zero

equalstl as |IIustrated below.

(3.4.15) i@A — (1M, for > 1, i@\A = (—1)M for, < —

(v) For the following relations we employ the conventionttalhsummations are increas-
ing, so that a summation of the forE?zo is zero ifm < 0.

i =X~ f Ai Xi—g
(3.4.16) \ = _Z)F i@x and Z O)F

f=0 Ni—1+f —Xi—1+g
Ne/ ._1 f -Xi—1 f %—1 I

(3417)%\\\&_ ZZ,\ and +/}\)\_ § Z
=0 g= Ofg/oN f=0 g=0f %_14‘9

for all A\ € Z" (see [[3.4.12) and (3.4113) for the definition of sidewayssirys).
Notice that for some values of the dotted bubbles appearing above have negative

labels. A composite o/f or}b with itself a negative number of times does not

make sense. These dotted bubbles with negative labelsdtalte bubblesare formal
symbols inductively defined by the equation

gazn  (Cheer Ol )(@t K )=

—Ai—1 —Xi—1+r Ni—1+r
and the additional condition

i~ _
@:( )M+ and O Yl =

—1
Although the labels are negative for fake bubbles, one caclcthat the overall de-
gree of each fake bubble is still positive, so that these falt#bles do not violate the
positivity of dotted bubble axiom. The above equation,azithe infinite Grassman-
nian relation, remains valid even in high degree when mostebubbles involved are

not fake bubbles.
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(vi) NilHecke relations are the following.

(3.4.19)

(3.4.20) /}\4\/\ - z[><z)\ _z[><z)\ :z[><z)\ _z[><z)\

o Fori# j:
(3.4.21) Ez :MA and § :%A
o (i) Fori# j: o -
/f\%\)\ ifi-j=0,
(3.4.22) 5 _ Y

e

Notice that(i — j) is just a sign, which takes into account the standard ottiemtaf
the Dynkin diagram.

(3.4.23) .><\,'\ = '/><\,_\ and '/><\2\ = %?

(i) Unlessi = kandi-j = —

(i) Fori-j =

(3.4.25)

i i i i
e The additive, linear composition functof(gl,,) (A, A) x U(gl,,) (N, N") — U(gl,) (N, A7)
is given on 1-morphisms @f(gl,,) by

(3.4.26) ELv{t'} x &Lt} = EL{t +1'}
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fori, = A — X, and on 2-morphisms @f(gl,,) by juxtaposition of diagrams, e.g.

(RIS

This concludes the definition &f(gl,,)

Note that for twol-morphismse andy in ¢/(gl,,) the 2-hom-spacHomyy )(z, y) only contains
2-morphisms of degree zero and is therefore finite dimemsidfollowing Khovanov and Lauda
we introduce the graded 2-hom-space

HOMu(g[ @ Homu(g[ l’{t} y)

teZ

which is infinite dimensional. We also define theategoryi{(gl,,)* which has the same objects
and1-morphisms a#f(gl,,), but for two1-morphisms: andy the vector space of 2-morphisms is
defined by

(3.4.27) U(gl,)" (2, y) = HOMy(q, ) (2, ).

Note thatt/(sl,) is defined just ag{(gl,,), but labelling all the regions of the diagrams with
sl,-weights, i.e. elements @&"~!. One also has to renormalise the signs of the left cups arsj cap
so that the bubble relations all become dependent osi{heeights. For more details, see [79].

3.4.4. Theg-Schur 2-algebra.The categorification (in the sense of Secfion 4.3ygf, n) is now
obtained froni/(gl,,) by taking a quotient.

Definition 3.4.10. The 2-categorys(n, n) is the quotient ot{(gl,,) by the ideal generated by all
2-morphisms containing a region with a label not\ifr, n).

We remark that we only put real bubbles, whose interior habelloutside\(n, n), equal to
zero. To see what happens to a fake bubble, one first has @ iwiritterms of real bubbles with
the opposite orientation using the infinite Grassmannitation (3.4.18).

A main result of [79], given in Theorem 7.11 in that paperhis following.

Theorem 3.4.11.Let K¥(S(n,n)) denote the split Grothendieck group of the Karoubi envelope
of S(n,n). TheZ[q, ¢']-linear map
vs: Sy (n,n) = K¢ (S(n,n)),
determined by
Vs(Eily) = [E1)]
is an isomorphism of algebras.
Recall also (see Definition 4.1 ih [[79]) that there is an esaky surjective and full additive

2-functor

U, Usl,) = S(n,n),
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whose precise definition is not relevant here. Up to sigraedlto cups and caps, it is obtained by
mapping any string diagram to itself and applyifg, to the labels of the regions. By convention,
any diagram with a region labelledis taken to be zero. It is important to note that

K&(,,.): K&(U(sL,)) 21041 Clg) = KE(S(n, 1)) @441 C(q)
corresponds to the aforementioned surjective homomarphis
Unn: Ulsly) — Sy(n,n).

3.4.5. The cyclotomic KLR-algebradn this subsection, we recall the definition of the cyclotomi
KLR-algebras, due to Khovanov and Laudal[58],/[59] and, peaelently, to Rouquier [100]. We
also recall two important results about them.

Fix v € Z<[I]. LetSeq(r) be the set of all sequenceés= (—iy, —is,- -, —i,), such that
ir, € I for eachk andv; = #{k | iy = j}.

Definition 3.4.12. For anyi, j € Seq(r) and anygl,,-weight\ € Z", let
iR(v); C Endyq, (&1, Eily)

be the subalgebra containing only diagrams which are @iedbwnwards. So, only strands ori-

ented downwards with dots and crossings are allowed. Noddrariented upwards, no cups and

no caps. The relations i(gl,,) involving only downward strands do not depend)orTherefore,

the definition above makes sense.[In [58], the authors dabet the regions of the diagrams.
ThenR(v) is defined as

Rw)= P Rw)
i,j€Seq(v)
The ring R is defined as
R= P R).
veZ<o[I]

As remarked above, the definition &f() does not depend ok. However, when we use a
particular), we will write R(v)1,.

Note thatR(v) is unital, whereag has infinitely many idempotents.

Let R(v)-pMod,, be the category of graded, finitely-generated, projechiye)-modules and
define

R-pMod,, = @ R(v)-pMod,,.
vEL<p[I]
In Proposition 3.18 in[58], Khovanov and Lauda showed fiatMod,, categorifies the nega-

tive half of U(sl,,) and R()-pMod o Categorifies the-root space.

We can now recall the definition of theyclotomic KLR-algebrasThe reader can find more
details in [58] or[100], for example.

Definition 3.4.13. Choose a dominani (g, )-weight A € A(n,n)*. Let R(v; \) be the quotient
algebra ofR(v)1, by the ideal generated by all diagrams of the form

111213 im
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Define

Ry = @ R(v; \).

I/GZSO[H

Recall that\,,, = \,, — A1, them-th entry of thes(,,-weight corresponding ta.

Note that we mod out by relations involving dots on the lastrsd, rather than the first strand as
in [58]. This is to make the definition compatible with the ethlefinitions in Sectionl 3.

It turns out thatrz, is a finite dimensional, unital algebra. L&4-pMod,, be its category of
finite dimensional, graded, projective modules andi§t(R,) = K{ (R\-pMod,,) be the split
Grothendieck group of that category.

There is a graded categorical action (in the sense of Seidid@nof ¢/(sl,,) on Ry-pMod,,
and Brundan and Kleshchev [17] (see alsd [46]] [73], [115] E17]) proved a conjecture by
Khovanov and Lauda, i.e. the following holds.

Theorem 3.4.14.We have
Ky (Ry) = VY
asU?(sl,)-modules. Herd’” is the irreducibleU?(sl,,)-module with highest weight

Rouquier’s showed that, in a certain sendgjs the universal categorification df. For a proof
of the following result, see Lemma 5.4, Proposition 5.6 andoCary 5.7 in [100)].

Proposition 3.4.15.Let V be any additive idempotent complete category, which allawste-
grable graded categorical action liy(sl,,) (for the precise definition sg&00]). Supposé’, is a
highest weight object i, i.e an object that is killed by, ;, for all i € I, andEndy,(V},) = C.
Suppose also that any objectlhis a direct summand oX'V,, for some objecK € U(sl,). Then
there exists an equivalence of categoritddbl,, )-representations

®: Ry-pMod,, — V.

There are some subtle differences between Rouquier’s apprim categorification and Kho-
vanov and Lauda’s, compare to Secfion 4.4. However, PropoB.4.15 holds in both set-ups, as
already remarked by Webster in Section 1.41in [117].

The proof of Proposition 3.4.15 consists of Rouquier’s réman Section 5.1.2 and of the con-
tents of his proofs of Lemma 5.4 and Proposition 5.6 in [1@@Jich only rely on the assumptions
in the statement of our Propositibn 3.4.15 and the fact&éhaand€_; are bi-adjoint irt/(sl,,), for
any: € [.

The precise definition of the units and the counits, i.e. thesand the caps, is not relevant for
the validity of the proof. Note that we have included the hyyesis

EndV(Vh) =C

in Proposition 3.4.75, which is not one of Rouquier’s asstiomg. There are categorifications
of V, without that property, see Conjecture 7.16[in/[79] for ex@ampiowever, in order to get a
categorification which is really equivalent it\-pMod,,, i.e. with hom-spaces of the same graded
dimension, one needs to add that assumption because itihdldslatter category.

We do not need the precise definition ®fhere. In order to contain the length of this thesis

within reasonable boundaries, we will not explain it here.
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3.5. The sl; web algebra)Vg. For the rest of this section, Iétbe a fixed sign string of lengtia.
We are going to define theeb algebra/Vg.

Definition 3.5.1. (Web algebra)Foru, v € Bg, we define
IV = F(uv){n},

where{n} denotes a grading shift upwards in degree:by
Theweb algebrang is defined by

Ws= & I
u,v€Bg
The multiplication onVg is defined by taking
My, @ Wy — IV,
to be zero, ifv; # v,, and by the map to be defined in Definition 315.3;,if= vy = v.

Remark3.5.2 In Propositiorf 3.5]6 we prove that the multiplication foalways has degree,
so the degree shift in the definition above make$ into a graded algebra and, for aay 0, it
makesW¢ into a filtered algebra.

Definition 3.5.3. (Multiplication of closed webs)The multiplication
Wy @ W, — IV,
is induced by thenultiplication foam

e Idpmolde
My v’ WOV W ——— WW,

wherem,,: vv* — Vert,,, with Vert,, being the web of parallel oriented vertical line segments,
is defined by the following inductive algorithm.

(1) Expressv using the growth algorithm, label each level of the growthoakthm starting
from zero. Then formo*.

(2) Atthekth levelin the growth algorithmresolvethe corresponding pair of arc, H or Y-rules
in v andv* by applying the foams.

= =R
Note that at the last level in the growth algorithmwgnly pairs of arcs are present.

Example3.5.4 Letw andv be the following webs.

(3.5.2) \\://w UU
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The multiplication foanm,, ,,, is given by the following steps.

w Vel ]
() @@@

Proposition 3.5.5. The foamm,, in Definition[3.5.8 only depends on the isotopy type.of

Proof. We have to show that, is independent of the way is expressed using the growth al-
gorithm (Definition[3.2.11). Let7; and G, be two different expressions af using the growth
algorithm. We have to compare, andG, walking backwards in the growth algorithm. Note that
we only have to worry about two consecutive steps in the sagiem ofv. Reordering steps in
“distant” regions ofv corresponds to an isotopy which simply alters the heighttion onm,,.
With these observations, the only possible remaining idifiee between the last two step<in
and(@, is the following.

Uy

If the last two steps id-; andG, are equal, we have to go further back in the growth algoritBe.
sides two-step differences of the same sort as above, wencanmter another one of the following
sort.

V]

We have to check that the above two-step differencés iandG, correspond to equivalent foams.
In the first case, the foams in the multiplication algorithma given by

VD 2y
a—1l=n

FIGURE 36. A possible local difference between;, andmg,.

In the second case, we get
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FIGURE 37. The other possible local difference betweegn andmg,.

The two foams in Figure_36 are isotopic - one foam can be predifrom the other by sliding
the red singular arc over the saddle as illustrated below.

L > <7
@50 -I _

The two foams in Figure 37 are also isotopic - one foam can ddymed from the other by moving
the red singular arc to the right or to the left as illustraietbw.

(3.5.7)

The cases above are the only possible ones, so their veafigabvides the proof. O
Proposition 3.5.6. The foammn, hasg-gradingn.

Proof. We proceed by backward induction on the level of the grongb@lhm expressing. Atthe
final level of the growth algorithm, the only possible ruléhis arc rule. Resolving a corresponding
pair of arcs inv andv* results in two new vertical strands and is obtained by a sagdint
cobordism, which hag-grading 2.

Let n,, be the number of vertical strands amd be the foam after resolving the lastrules in
the growth algorithm of.. Suppose that, is equal to the;-degree ofn*. In the next step of the
multiplication we can have three cases.

(1) The resolution of a pair of arc rules. In this case we hayg = n, + 2 andm**! is
obtained fromn” by adding a saddle, which adds 2 to thgrading.

(2) The resolution of a pair of Y rules. In this case we hayg, = n; + 1 andm**! is
obtained fromn” by adding an unzip, which adds 1 to thgrading.

(3) The resolution of a pair of H rules. In this case we haye, = n; andm**! is obtained
from m* by adding a square foam, which adti® theq-grading.

U
There is a useful alternative definition @fs, which we give below. As a service to the reader,

we state it as a lemma and prove that it really is equivaleotitalefinition above. Both definitions
have their advantages and disadvantages, so it is wortltechdatalogue both in this thesis.

Lemma 3.5.7.For anyc € C and anyu, v € Bg, we have a grading preserving isomorphism

Foam(u, v) = ,WV;.
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Using this isomorphism, the multiplication
V5 @ gy We — IV,
corresponds to the composition
Foam;(u, v) ® Foam(v', w) — Foant(u, w),
if v =14/, and is zero otherwise.

Proof. The isomorphism of the first claim is sketched in the follogvfigure.

*

The proof of the second claim follows from analysing whatifenorphism does to the resolution
of a pair of arc, Y or H-rules in the multiplication foam. Thésdone below.

:ﬂﬁ
|

S\

al
fa

A

h

i
2

fi | 2
" h

O

Note that Lemm@a_3.517 implies th&vs is associative and unital, something that is not imme-
diately clear from Definitiof 3.511. For any € Bg, the identityl, € Foamf(u, ) defines an
idempotent. We have

1= 1,€Ws
uEBg
Alternatively, one can se@Vsg as a category whose objects are the elemenfssisuch that the
module of morphisms betweenc Bg andv € Bg is given byFoant(u, v). In this thesis we will
mostly seé/Vg as an algebra, but will sometimes refer to the category pdiview.

In this thesis, we will studyVs for two special values of € C.
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Definition 3.5.8. Let Ks andG s be the complex algebras obtained fra#§ by settinge = 0 and
¢ = 1, respectively. We call thetdhovanov’s web algebrandGornik’s web algebrarespectively,
to distinguish them throughout Sectign 3.

Note that( g is afiltered algebra. Its associated graded algebia isBy Lemmd3.5.7, botli s
and(Gg are finite dimensional, unital, associative algebras. &gy have similar decompositions

as shown below.
KS: @ qu7 GS: @ qu~

u,vEBg u,vEBg
We now recall the definition of complex, graded and filtereobiénius algebras. Let be a finite
dimensional, graded, complex algebra anditetic (A, C) be the complex vector space of grading
preserving maps. Thaual of A is defined by

A = Hhome(A, C{n}),

nez

where{n} denotes an upward degree shift of sizeNote thatA" is also a graded module, such
that

(3.5.8) (AY); = (A)Y,
for any: € Z. ThenA is called agraded, symmetric Frobenius algebra of Gorenstein paramet
¢, if there exists an isomorphism of graded, A)-bimodules

AV = A{-1}.
If Aisacomplex, finite dimensional, filtered algebralein: (A, C) be the complex vector space
of filtration preserving maps. Thiual of A is defined by

A = P home(A, C{n}),

nez

where{n} denotes an upward suspension of sizeNote thatA" is also a filtered module, such
that

(3.5.9) (AY); = (A)Y,
forany: € Z. ThenA is called dfiltered, symmetric Frobenius algebra of Gorenstein parme
¢, if there exists an isomorphism of filteréd, A)-bimodules

AV = A{-1}.
For more information on graded Frobenius algebras,[seq Hridithe references therein, for ex-
ample. We do not have a good reference for filtered Frobetgebeas, but it is a straightforward

generalisation of the graded case. We explain some basitses the character theory of filtered
and graded, symmetric Frobenius algebras in Settidn 4.8.

Theorem 3.5.9.For any sign stringS of lengthn, the algebraks is a graded, symmetric Frobenius
algebra andGy is a filtered, symmetric Frobenius algebra, both of Goreingb@arameter2n.

Proof. First, letc = 0. We take, by definition, the trace form
tr: Kg — C
to be zero on K,, whenu # v € Bg. For anyv € Bg, we define

tr: K, > C
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by closing any foany, with 1, e.g. as pictured below.

Jo

gives

The fact that the trace form is non-degenerate follows imately from the closure relation in
Sectior 3.B.

The fact thatr(gf) = tr(fg) holds follows from slidingf around the closure until it appears
on the other side af, e.g. as shown below.

Note that a closed foam can only have non-zero evaluatioh#s degree zero. Therefore, for any
u € Bg and any two homogeneous elemefits 7°(u*v) andg € F°(v*u), we havetr(fg) # 0
unlessdeg(f) = — deg(g). By the shiftin

K, = F(u*v){n}

and by [3.5.B), this implies that the non-degenerate tracen fon Kg gives rise to a graded
(Kg, Ks)-bimodule isomorphism

(3.5.10) KY = K¢{—2n}.
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Now, letc = 1. Then the construction above also gives a non-degenefatedsiform onGy.
Moreover, it induces a filtration preserving bijectidinear map of filtered G5, Gs)-bimodules

(3.5.11) G {—2n} = GV.
The associated graded map is precisely the isomorphismBal(. By Proposition 4.8.3, this
implies that the map in(3.5.111) is a strict isomorphism @éfeéd(Gs, Gs)-bimodules. O

We now explain some of Gornik’s results, which are relevantds. Recall thatR!. is the
commutative ring associated tdv, generated by the edge variablesu6t and mod out by the
ideal, which, for each trivalent vertex triv, is generated by the relations

(3512) X1+ X9+ X3 = 0, T1To + T1T3 + Toxy = 0, T1X2X3 = 1,

wherez, v, andz; are the edge variables around the vertex. The algghraacts on,G,, in such
a way that each edge variable corresponds to adding a doteondident facet. Seé [39], [61]
or [82] for the precise definition and more details.

In what follows, 3-colourings will always be assumed to benasible and we therefore omit
the adjective. Theorem 3 ih [39] proves the following.

Theorem 3.5.10.(Gornik) There is a complete set of orthogonal idempotents R.. , indexed
by the 3-colouringd” of u*v. The number of 3-colourings afv is exactly equal telim,(,G,).
These idempotents are not filtration preserving, but agan-module (i.e. forgetting the filtra-

tion on,G, and its left, &, and right,G,-module structures) we have
qu = @ CeT.
T

Let us have a closer look at Gorniks idempotents. First ofrathe proof of Theorem 3 ir [39]
Gornik notes that for any edgeand any 3-colouring’ of v*v, we have

(3.5.13) zier = (liep € R}

where( is a primitive third root of unityy; is the edge variable arig the colour of the edge (see
(4) in [82] for this result in the context of foams).

Furthermore, a 3-colouring af‘v actually corresponds to a pair of 3-colourings:@&ndv* that
match at the boundary. Of course, there is a bijective cpomsdence between 3-colourings:of
andv*, so we see that a 3-colouring@fv corresponds to a matching pair of 3-colourings @ind
v. Recall that 3-colourings can be seen as flows.

Recall that, G, is a left,G,,-module and a rightGG,,-module. Letl; andT; be a pair of matching
3-colourings ofu andw, respectively, which together give a 3-colourifigof v*v. Then the action
of ey onanyf: u — v can be written as

er, fer,.
To show that this notation really makes sense, déiomik’s symmetric idempoteassociated to
T, as
6u,T1 = 6T1 1u6T1 .
So we let the Gornik idempotent associated to the symmet@®uring ofu*u, given byT; both
onwu andu*, act onl,,. Then we have

en feTz = €u,Ty er,Tw

where on the right-hand side we really mean composition.
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We immediately see that
e 1u6T2 =0& T1 7& T2
and

6T11u6T1€T2 1u6T2 = (51’261“11“67“1 and E erlyer = 1,
T

where the sum is over all 3-colouringsf This shows that the, r, for all 3-colouringsI” of a
givenu € Bg, are orthogonal idempotents jir, . It also implies that

en 1ueT1 = €n 1u = 1ueT17

so it is enough to label just the source or just the targét,ofor this purpose, we defing! to be
“half” of R.. ,i.e. the subring which is only generated by the edge vatabfu. To be precise,
we have

R Rss R,

where®gs indicates that we impose the relatien® 1 = 1 ® z, for any z corresponding to a
boundary edge af.

If » has no closed cycles, then all the 3-colouringsuti are symmetric, because they are
completely determined by the colours on the boundany. df that case

€T > €y, T

defines an isomorphism of algebr&$ = ,G,,. In particular,, G, is commutative. This is not true
in general, but we can prove the following.

Lemma 3.5.11.For anyu € Bg, the map
T +— xl,
defines a strict embedding of filteré -modules
L: R}L — .G
In particular, we see thatR! ), = Im(1), = C1,,.

Proof. The map is clearly a homomorphism of filtered algebras.

The relations[(Dot Migratign) correspond precisely to thlations inR, because the only sin-
gular edges i, are the ones corresponding to the trivalent vertices. dFhis shows that it is a
strict embedding. d

For anyu € Bg, we define the graded ring
R = E(R}).
This ring is the one which appears in Khovanov’s originalgzdb1]. In R® we have the relations
(3.5.14) r1+ 20+ 23 =0, T1X9 + 1123 + Tox3 = 0, r12223 = 0.

The reader should compare them[fo (3.5.12).
There are no analogues of the Gornik idempotentjn but we do have an analogue of
Lemmd3.5.11.
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Lemma 3.5.12.For anyu € Bg, the map
T +— zl,
defines an embedding of grad&f-modules
E(): R — ,K,.
In particular, we see thatR?), = Im(E(1))y = C1,,.
Another interesting consequence of Theofem 315.10 is flenfimg.

Proposition 3.5.13.As a complex algebra, i.e. without taking the filtration igtoccount,G's is
semisimple.

Proof. For anyu € Bg and any 3-colouring’ of u, define the projectivé/s-module

P,r = (Gs)ewr,

wheree,, 7 is Gornik’s symmetric idempotent ifig defined above. Theordm 3.5110 and our subse-
quent analysis of Gornik’s idempotents show that&he form a complete set of indecomposable
projectiveGs-modules. Furthermore, we have

C, if 7' andT” match atS,

Ho Pu 7PU ) = u G v =
mGs( T ,T) 6,T( s)e,T {{0}7 else

This shows thaP’, » = P, 1+ if and only if 7" and7” match at the common boundary. It also shows
that if Pu,T ?—é Pv,T’u then

Horrbs (Pu,Tu Pv,T’) = HornGs (Pv,T’7 Pu,T) == {O}

Finally, it shows that eack, ;- has only one composition factor, i.&, 1 is irreducible.
It is well-known that this implies that' s is semisimple; see Proposition 1.8.5(inl[12] for exam-
ple. U

By Propositiof 3.5.13, it is clear that for eaghc Bs and each colouring’ of , the corre-
sponding block inGg is isomorphic toEnd (P, 7). In Sectior 3.6, we will determine the central
idempotents ot~ .

3.6. The center of the web algebra and the cohomology ring of the $tenstein variety. For
the rest of this section (and the following two sectionspage arbitrary but fixed non-negative
integersn > 2 andk < n, such thatl = 3k > n. Let

A(n,d) = {ueNn\iui:d}

=1
be the set otompositionsof d of lengthn. By AT (n,d) C A(n,d) we denote the subset of
partitions i.e. allx € A(n, d) such that
1 2> o = 2> iy, 2> 0.

Also for the rest of this section (and the following two sens), choose an arbitrary but fixed sign
string S of lengthn. We associate t§' a unique element = us € A(n, d), such that

o 1, if S; = +,
Fim Yo i s = —
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Let A(n,d);2 C A(n,d) be the subset of compositions whose entries aré atl2. For any sign
string S, we haveus € A(n, d) ».

Let A\ = (3¥) € A(n,d). Let Colz be the set of column strict tableaux of shapand typey,
both of lengthn. It is well-known that there is a bijection betwe@lﬁ and the tensor basis of

Vi=Vu®--- @V,

whereV; = V, andV, = Vi A V] =2 V_ (see Section 3 ir [89], for example). However, we are
interested in tensors as summands in the decompositiorwiegits inBs. Therefore, we prove
Propositior 3.7]2 in Sectidn 3.7. The reader, who is notésted in the details of the proof of
this proposition, can choose to skip Secfiod 3.7 at a firstinggand just read the statement of the
proposition.

3.7. Tableaux and flows. Let ps be the number of positive entries amglthe number of negative
entries ofS. By definition, we have that = ps + 2ns. The key idea in this section is to reduce all
proofs to the case wherg; = 0.

Definition 3.7.1. Fix any state string/ of lengthn, we define a new state strinkjof lengthd by
the following algorithm.
(1) LetoJ be the empty string.
(2) Forl < i < n, let,J be the result of concatenatingto ;_,J if y; = 1. If u; = 2 then
(a) concatenatél,0) to,;_,J if j; = 1.
(b) concatenaté), —1)to,;_,.J if j; = —1.
(c) concatenatél, —1) to,_,J if j; = 0.
We set/ = ,,J. Lastly, for anyc € {—1,0, 1}, we define/¢ to be the number of entries ihthat
is equal toc.

Proposition 3.7.2. There is a bijection betwedholﬁ and the set of state stringssuch that there
exists aw € Bg and a flowf onw which extends.

The proof of Proposition 3.7.2 follows directly from Lemnfa3.3 and 3.7]4.

Lemma 3.7.3.There is a bijection betwee(ﬂolﬁ and state stringg of lengthn such that
(3.7.1) Jh=J=J\

where theJ* are as defined in Definitidn 3.7.1.

Proof. Given a state string satisfying [3.7.11), we first give an algorithm to build a 3tson
tableauY, filled with integers from 1 to. Afterwards, we show that; has shape.
Begin by labelling the three columns with0 and—1, reading from left to right. We are going
to build upY; from top to bottom. Start by taking; to be the empty tableau. Then, from- 1 to
1 = n, do the following.
() If u; = 1, add one box labelledto columny; in Y.
(2) If u; = 2, add two boxes labelledto columns:; andc,, such that; # ¢, andey + ¢, = j;.
We have to show that; belongs toColﬁ. Since the algorithm builds up from top to bottony,
is strictly column increasing. To see thét has shape, we need to show that every row ¥y
has three entries. Observe that the number of filled boxeslimmc of Y is exactly equal to/°.
Since we have assumed conditibn (3.7.1), all three colurame the same length, therefore every

row in Y; must have exactly three entries.
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Conversely, lefl” € Colﬁ. We define a state stringas follows.

Ji = Z C.
i appears in column ¢
Sincey corresponds to a sign string aiids column strict, we see that, for eath< i < n, ¢ can
appear at most twice i’ but never twice in the same column. Thyse {—1,0,1}, i.e. J is
a state string. It follows from the definition of that.J¢ is equal to the length of columnof T'.
SinceT is of shape)\, the number of boxes in each column is the same. Hence, com{7.1)
holds for.J.
It is straightforward to check that the above two constardiare inverse to each other and

therefore determine a bijection. O

Lemma 3.7.4. A state string/ corresponds to the boundary state of a flow on a web By if
and only if condition3.7.1)holds for.J.

Proof. Let w € Bg be equipped with a flow with boundary state strihgWe are going to show
that J satisfies condition (3.7.1) by induction en Forn = 2, w can only be an arc. In this
case it is simple to check that all flows anhave corresponding boundary state strings satisfying
condition [3.7.1).

Forn > 2, we expressv using the growth algorithm in an arbitrary, but fixed way, wihe
restriction that only one rule is applied per level. l.étdenote the boundary state string at the be-
ginning of thek-th level in the growth algorithm angd/ the associated string as in Definition 317.1.
Similarly, let, ;. denote the composition corresponding to the sign stringestth level. Let us
compare,,,J and,J. They can only differ in the following ways.

(1) In case an arc-rule is applied at thth level,,..J can be obtained from,;.J by inserting
the substring1, —1), (0,0) or (—1,1) between the-th and: + 1-th entries in,,,J. u
can be obtained from, ;u by msertlng the substringl, 2) or (2, 1) between theé-th and
i + 1-th entries in, 1 .

372 N\ N

(2) In case a Y-rule is applied,/ can be obtained from,,.J by replacing the-th entry in
x+1J with a length two substring whose sum is equal tosttie entry. ;. can be obtained
from ;.. 1 by replacing the-th entry in, . ¢ with the substrind3 — k+1u,, — fr1fhi)-

NN N

(3) In case an H-rule is appliegy can be obtained from, . by replacing a substringl, 2)
or (2,1), at thei-th and(i+ 1)-th position in, ¢, With (3 — 541145, 3 — k1 44i41)- xJ €N be
obtained from,;.J by replacing a substring of length twoin, J at thei-th and(i + 1)-th
position according to the schema.

MK
(3.7.5) >/>—\< >/_<\< >\_</< >\;/<

(3.7.4)



It is straightforward to check that_;J satisfies condition(3.7.1), with compositign; 1, if and
only if »J does, with compositiopy:.. Take, for example, an instance where a Y-rule is applied;
suppose also that theth entry in, 1 is 2 and the-th entry in,,;J is 0. Thus, the-th entry in
r+1J contributes a paifl, —1) to 1 J. By (3.7.3),..J is obtained from,,,J by replacing the-th
entry in,,,.J with (1, —1) and thei-th entry in,,,x with (1,1). We see thatJ is in fact exactly
equal toy,,J. Therefore,,,.J satisfies conditio{3.7.1) if and only jf/ does. Similar analysis
apply to all cases in(3.1.2), (3.7.3) ahd (31 7.4).

Let k& be the first level in the growth algorithm af where a Y or an arc-rule is applied. From
the (k + 1)-th level down we have a non-elliptic weld with flow, whose boundary state string
x+1J and composition ; u both have length less than Thus, by our induction hypothesis,; /,
with compositiony, 1, satisfies conditiori (3.7.1).

By the above argument, theii also satisfy conditior (3.7.1), for arly< : < k. In particular,

J = oJ satisfies that condition, which is what we had to prove.

Conversely, let/ satisfy condition[(3.7]1), with compositign We show, by induction om,
that there is av € Bg with flow whose boundary state string is exacily More specifically, we
first construct av € Wy and then show that is non-elliptic, i.e.w € Bs.

Forn = 2, thenw must be an arc. It is simple to check that/ikatisfies conditiord (3.7.1)] is
the boundary state of a flow on an arc.

Forn > 2, suppose itis possible to apply an arc or Y-rule to the paind.J, depicted in[(3.7]2)
and [3.7.8). Then we obtain a new pairand.J’ with length less than. Thus, by induction, there
exist a webw’ € W, and flow extending/’. Gluing the arc or Y on top ofv’ results in a web
w € Wy with a flow extending/.

Suppose, then, that it is not possible to apply an arc or &4wj: and.J. This means that one
of the following must hold.

(1) 1 does not contain a substring of type 2) or (2,1) andJ = (1,...,1), J = (—1,...,—1)
orJ = (0,...,0).
(2) u contains at least one substring of the fofin2) or (2,1). For every substring im of
the form(1,2) or (2, 1), the corresponding substring jhis (£1,+1), (0,1) or (1,0). For
every substring in of the form(1,1) or (2, 2), the corresponding substring Jhis (1, 1),
(—1,—1) or (0,0).
Case 1 contradicts the assumption thaatisfies conditiori (3.7.1).

Casd® contains several subcases, each of which contaaiks dettich are slightly different.
However, the general idea is the same for all of them and s siemple, i.e. apply H-moves until
you can apply an arc or a Y-rule and finish the proof by indurctio

We first suppose, without loss of generality, thatontains a substrinQu;, 1;+1) = (1,2) and
that the corresponding substring.inis (j;, ji+1) = (1, 1) (the subcase fofj;, ji+1) = (—1,—1)
is analogous). We see thdt 1) in .J contributes a substring., 0, 1) to .J. Thus, our assumption
that ./ satisfies conditiori{3.7.1) implies thatcontains at least one more entry equaktb This
means that for some+ i,i + 1, 1 < r < n, one of the following is true.

(@) j» = —1, u, = 1, denoted for brevity by
11 -

(3.7.6) T lT
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(b) j. = —1, u, = 2, denoted

@77) T ll

() j» =0, u, = 2, denoted
110

(3.7.8) T ll

Without loss of generality, let us assutinte 1 < r. Consider subcases (a) and (b)j,if # 0 for all
i+1 < m < r,thenitis possible to apply an arc or Y-movetandy, contrary to our assumption
in casé 2. Thus, in all three scenarios above it suffices tlysaéhe following two configurations.

11 0 1 1 0

Leti +1 < r < n be smallest integer wherg = 0. We must have that, ; = 3 — u, and
jr—1 = £1. For any other values qt,._; andj._; we would be able to apply an arc or a Y-
move, contradicting our assumptions for cake 2. In botlasdos, we can apply an H-rule to the
substringgj,_1, 7)) and(u,_1, i) @s shown below.

11«0 )

This results in new sign and state strings, each with lengsatisfying condition[(3.7]1). The
application of the H-rule if(3.7.10) moves the zero attik position to the: — 1 position. Either
we can now apply an arc or Y-rule to the new strings or by regzbatapplying an H-rule in the
manner of[(3.7.10), we obtain one of the following pairs.

1 0 1 0

(3.7.11) l l T T

To either of the above diagrams we can apply a Y-rule, aftechwve can use induction.

To complete our analysis of calsk 2, now suppose, withoutdbgenerality, thaj: contains a
substring(u;, 1iv1) = (1,2) and that the corresponding substring/ins (j;, ji+1) = (1,0) (the
subcases fof0, +1) or (—1,0) are analogous).

We see that1,0) in J contributes a substringl, 1, —1) to J. Thus, our assumption that
satisfies conditior(3.7.1) implies thatcontains at least one more entry equatth This means
that for some-, with 1 < r < n, one of the following is true.

(@) j» = —1, u, = 1, denoted for brevity by
10 -

(3.7.12) T lT
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(b) j. = —1, u, = 2, denoted

(3.7.13)

() j» =0, u,, = 2, denoted

(3.7.14)

For subcases (a) and (b),/if.» = 1 andj;.» = —1, we may apply an H-rule tQu; 1, pti12),
(Jit1, jir2) to Obtain a new paip/ and.J’. Subsequently we can apply a Y-rule to thtéh and
(7 + 1)-th entries ofu’ and.J’ as illustrated below.

1 0 -1

(3.7.15) %

After applying the Y-rule, we can use induction.
Otherwise, we can show, just as before, that all three smenabove reduce to an analysis of
the following two configurations.
10 0 | 0

7.6 RS ] l |-

That is, we can assume thatcontains a substringu;, u;.1) = (1,2) with the corresponding
substring inJ being (j;, ji+1) = (1,0), and for somé) < r # i + 1 < n we havej, = 0. In
particular, this tells us that there exist & r # i + 1 < n such thaj,, = 1 andj, = 0.

10 0

(3.7.17) T lT

This has to hold because otherwig@annot satisfy conditiofi (3.4.1). Let us assurrte be the
smallest integer such that+ 1 < r, 4. = 1 andj, = 0. By our assumption that we cannot apply
an arc or Y-rule to/ andy, we see that,._; = 2 andj,_; = +1. Applying an H-rule ta(j,_1, j,)
and(,ur—la ,ur)

@7.18) T l}{

results in new sign and state strings, also with lengtblatisfying condition[(3.7]11). The applica-
tion of the H-rule in the above case moves the zero at-ttfeposition to ther — 1-th position.
Either we can now apply an arc or a Y-rule to the new sign arté stangs, or by repeatedly apply
an H-rule in the manner of (3.7.]10), we obtain a pair like helo

00

(3.7.19) l T

to which we can apply an arc-rule. Finally, apply induction.
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It remains to show that the web (with flow) produced from the above algorithm is an element
of B,, that is,w does not contain digons or squares. We note that, just agfjnifbthe expression
of w using the arc, Y and H-rules, digons can only appear as thdt @fsapplying an arc-rule to
the bottom of an H-rule, i.e. we have

(3.7.20) @

A square can only result from the following sequence of arend H-rules.

I

Note that in the above, we do not consider the case in whichpply@an H-rule to the bottom of
another H-rule. This is because such a case cannot arise aoostruction ofw.

Recall that in our inductive construction @f we only apply H-rules equipped with the follow-
ing flows.

(3.7.22) >< %

We can immediately see that is it not possible to apply am@ewith flow to the bottom of

such an H-rule as shown below.
0 +1

(3.7.23)

Since we only use the above two H-rules with flow, the induceddlon squares are as follows.

0 0 =1 7l =1 7l 0 0

(3.7.24)

(3.7.25)

(3.7.26)

In each case, one can check that it is possible to apply arubr¢e the state and sign strings (the
same analysis applies to the cases where the faces abovear¢hg opposite edge orientations).

However, recall that an H-rule is used in our constructioty an the case for which it is not
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possible to apply any other rules to the boundary. This iegplhat none of the above faces can
appear during the construction of O

Implicit in the proof of Lemm& 3.714 is a procedure to constrérom a state string satisfying
condition [3.7.11), a non-elliptic wely with flow extendingJ, such thabw = u. Note that this
procedure is not deterministic. Thatis, itis possible twduce different webs with flows extending
J by making different choices in the construction.

Example3.7.5 The procedure is exemplified below. If we choose to replaeestibstrings as
indicated in the right figure, the tableau on the left gives tb the web with flow next to it.

1 0 -1 o o 0 o 0 1 4
2|1
(3.7.27)
413 4
6 | 5| 7

However, for other choices the same tableau generatesltbeifty web with flow.

+ -+ -+ 4+ o+
0 0 0 0 0 1 -1

(3.7.28)

As a matter of fact, we could also invert the orientation @& flow in the internal cycle. The
resulting web with flow would still correspond to the samdéab.

However, when we restrict to semi-standard tableaux, tbegulure gives a unique web with
flow, the canonical flow. One can check that the procedureiampi Lemma3.7.%, restricts to the
same bijection betwee%tdjb and non-elliptic webs as defined by Russellin [101].

3.8. Z(Gs) and E(Z(Gg)). In this section,S continues to be a fixed sign string of length
Moreover, we continue to use some of the other notations andentions from the previous
sections as well, e.gl = 3k > n etc. Lety be the composition associatedSand letS, be the
corresponding parabolic subgroup of the symmetric greup

Let Z(Ks) be the center of{s and IetXﬁ be the Spaltenstein variety, with the notation as
in [18]. If n, = 0, thenX = X*, the latter being the Springer fiber associatedflo

In Theoren{3.813, we are going to prove tht(X;)) and Z(K) are isomorphic as graded
algebras.

Recall the following result by Tanisaki [109]. Lét = C|xy,...,z,4] and let/* be the ideal
generated by

(3.8.1) &Mhmﬁm

m>1,1<ip<---<i,<d
r>M— Agema1 — - — An ’

SWhen comparing to Khovanov’s result fel, the reader should be aware that he labels the Springer fjoef b
the transpose of.
118



wheree,. (i1, . . .,i,) € P is ther-th elementary symmetric polynomial. Write
R» = P/I™
Tanisaki showed that
H*(X*) = RN
Note thatS,, acts onP by permuting the variables, but it map$to itself. LetP* = P9 C P
be the subring of polynomials which are invariant undgr For1 <4, < --- <4, < nand

r > 1, we lete,(u,,...,1,) denote the-th elementary symmetric polynomials in the variables
X;, U---UX, ,where

Xp=Ame [+ +ppa+1<k<pu+-+put.
So, we have
er(fly ity . yipm) = Z ey (1501) -+ € (15 ).
riterm=r
If r = 0, we sete,(u,iy,...,4,) = 1 and ifr < 0, we sete,(u,1,...,7,) = 0. Let Ij be the
ideal generated by
m>1L1<y <<, <d
(382) 67</,L,7;1,...,im) r>m—ml+~-~+uim—)\l+1—-~-—)\n
where | = #{i | u; > 0,0 # i1, ..., 0n}
Note that/;; C I* holds. Write
R, =P/
Brundan and Ostrik [18] proved that
H*(X))) = R).

First we want to show tha’&ﬁ acts onKg. Clearly, P* acts onKg, by converting polynomials
into dots on the facets meetirtgy

Lemma 3.8.1.The ideal]ﬁ annihilates any foam ir’g.

Proof. The following argument demonstrates that it suffices to stisvfor the case when, = 0.
Letu,v € Bg. For eachl < i < n with s; = —, glue aY” onto thei-th boundary edge af andv,
respectively. Call these new websindi, respectively. Note thali = 96 = S, whereS = (+9).
Let f € K, be any foam. For each< i < n with s; = —, glue a digon foam on top of theth
facet of f meetingS. The new foamf, obtained in this way, belongs t0<;. Note that we can
reobtainf by capping offf with dotted digon foams. Any polynomial € Iﬁ C I acting onf

also acts ory. So, if we know thapf = 0, then it follows thap f = 0.

Thus, without loss of generality, assume that = 0. We are now going to show thdt
annihilatesks.

As follows from Definition in [3.8.11)/* is generated by the elementary symmetric polynomials
er(iy, ..., x; ), for the following values ofrn andr.

m=2n+1 ; r>2n—2,
m=2n+2 ; r>2n—4,

m=3n—1 ; r>2
m = 3n ;or>0.
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Note that form = 3n, we simply get all completely symmetric polynomials of pive degree in
the variablesty, ..., z4. Any such polynomiap annihilates any foanf € ,K,, because by the
complete symmetry of, the dots can all be moved to the three facets around onelaimgpge.
The relations[(Dot Migratign) then show thakills f.

Now supposen = 3n — ¢, for ¢ > 0. So we must have > 2/. The argument we are going
give does not depend on the particular choicé,of.. i, C {1,2,...,d}, so, without loss of
generality, let us assume th@t, . .. ,7,,) = (1,...,m).

Let f be any foam in, K.

First assume that= 1, then we have

67«(1’1, Ce ,.I‘d_l)f
= - 6r—1($1, e 7$d—1)$df
:67«_2(1’1, e ,.Td_l)ﬂfzf
=(—1)"xyf.

All these equations follow from the fact that, for ajy- 0, we have
ej(x, ... xq) = ej(x1,. .., xq-1) +ej1(x1, .o, Ta1)Tg,
and the fact that;(z4, ..., 2z4) f = 0, as we proved above in the previous caseifor 3n. Since
in this case we have > 2, we see that
(=1)"zaf =0,

by Relation (3D). This finishes the proof for this case.
In general, for > 1, we get that,.(z1, ..., x4 ) f is equal to a linear combination of terms of
the form

Tgl o1 Tepa g T

with r; 4 --- + r, = r. Sincer > 2/, there exists @ < j < ¢ such that; > 2, in each term. So
each term Kkillsf, by Relation (3D). This finishes the proof. U

Note that Lemm&_3.8.1 shows that there is a well-defined hoonpinism of graded algebras
cs: Ry, — Z(Kg), defined by

cs(p) = pl.
Similarly, there is a filtration preserving homomorphism
Pt — Z(Gs)

defined byp — pl. This homomorphism does not descend%l;‘p because the relations (®y are
deformations of those ii’s, but the associated graded homomorphism ni&@3") to E(Z(Gy))
and we have

E(P*1) = R)1.
Before giving our following result, we recall that BrundamdaOstrik [18] showed that
dim H*(X)) = #Col,,.

They actually gave a concrete basis, but we do not need it here
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Lemma 3.8.2.We have
dim Z(Gs) = #Col.

Proof. Let J be any state-string satisfying condition (317.1). We define
(3.8.3) zy= > > eur€Gs,
ueBg T

where the second sum is over all 3-colourings @xtending./.
First we show that; € Z(Gg). For anyu,v € Bg, let f € ,G,. Choose two arbitrary
compatible colouring®; and7; of v andv, respectively. Assume that, fer, # 0. Then we have

{eT1 fen, if T extends/,

zjer, fer, =
e 0, else

We also have
er, fer,, if T, extends/,
0, else

er, fer,z; = {

This shows that; € Z(Gg), becausd; andT; are compatible, and s extends/ if and only if
T, extends/.
Note that

ZZJ::[ and ZJZJ/:5J7JIZJ.
J
In particular, thez;’s are linearly independent.

For any state-string satisfying condition(3.7]1), the central idempotepbelongs taP*1. In
order to see this, first note that, for amyc Bg, the element

ZJlu = E €u,T,

T extends J

belongs toP*1,. This holds, because only the colours of the boundary edgesace fixed. We
can sum over all possible 3-colourings of the other edges;hwimplies that these edges only
contribute a facton to z;1,. Furthermore, we see thayl, = p,1,, for a fixed polynomial
ps € P* i.e.pyisindependent of. Therefore, we have

zy = Z psl, = ps1 € P*1.

uEBg

It remains to show tha? (Gs)z; = Cz;. Letz € Z(Ggs). By the orthogonality of Gornik’s
symmetric idempotents, we have
z = Z €y, T2CyT-
u,T

By Theoreni3.5.70, we know that

Cu,T2€y,T = )\u,T(Z) €u,T,

for a certain\, r(z) € C. Therefore, we have

z= Z Au1(2)enT € @ Cey .
u,T u, T
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By Lemmd3.7.4, we know that; ## 0. This shows that
{z; | J satisfying condition[(3.7]11)
forms a basis o/ (Gg). By Propositior 3.712, the claim of the lemma follows. O
Theorem 3.8.3.The degree preserving algebra homomorphism
cs: Ry, — Z(Ks)
is an isomorphism.
Proof. In Corollary[3.11.11l it will be shown that
dim H*(X,,) = dim Z(K),
so it suffices to show that; is injective.
Lemmd3.8.11 shows that (as graded complex algebras)
R)1 C Z(Ks).
As already mentioned above, Brundan and Osirik [18] showat t
H*(X)) = R,
as graded complex algebras.
The proof of Lemm& 3.8]2 shows that the filtration preserfiomomorphism
Pt — Z(Gyg),

defined byp — pl, is surjective. Note thé(-) is not a map. However, a filtered algebtaand its
associated gradefi( A) are isomorphic as vector spaces. In particular, they gatisf

dim A = dim E(A).
Therefore, since — pl is a surjection of vector spaces, we have
dim Z(Gg) = dim E(Z(Gg)) = dim E(P*1) = dim P"1.
Recall thatE(P#1) = R)1 anddim Z(G's) = dim R)). This shows
dim R)1 = dim P*1 = dim Z(Gs) = dim R,

which implies that the magps is injective. O
3.9. Web algebras and the cyclotomic KLR algebras: Howe duality.Our main references for
Howe duality are[41] and [42], where the reader can find tloefsrof the results, which we recall
below, and other details.

Let us briefly explain Howe duali@ The two natural actions diL,, = GL(m,C) and of
GL, = GL(n,C) onC™ & C" commute and the two groups are each others commutant. We say

that the actions of:L,, andGL,, areHowe dual
More interestingly, their actions on the symmetric powers

SP(C™ @ C™)
and on the alternating powers
AP (C" o C")

10ne follow Kamnitzer's exposition in “The ubiquity of Howe dlity”, which is online available at
https://sbseminar.wordpress.com/2007/08/10/theuiityiepf-howe-duality/.
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are also Howe dual, for any € N. These are called tr@/mmetricand theskewHowe duality of
GL,, andGL,, respectively. In this thesis, we are only considering kessHowe duality.

The skew Howe duality implies that we have the following daposition into irreducible
GL,, x GL,,-modules.

(3.9.1) AP (Cm @ Ch) = P VAo Wy,
A

where\ ranges over all partitions with boxes and at most: rows andn columns and\’ is the
transpose oA.

HereV), is the unique irreducibl&L,,-module of highest weight andWW), is the unique irre-
ducibleGL,,-module of highest weight'.

Without giving a full proof of [3.9.11), which can be found ie&ion 4.1 of[[41], we note that it
is easy to write down the highest weight vectors in the deasitijpn of

AP (C"eC").
Define
€ij = € @ €5,
foranyl <i < mandl < j < n. Here theg; and thee; are the canonical basis elementsf
andC" respectively. Lef\ be one of the highestL,, weights in [3.911). Write\ = (\y,..., \,)
withn > X\ > Xy >--- >\, > 0. Then
'l})\7)\/ = (611 A A 61)\1) A (621 VANCIRIVAN 62)\2) N (Eml VANCIRIVAN Em)\m)
= (e A Aewr) Alez A Aexa) A (e A+ Aexn)
is a highest:L,,, x GL,, weight. By convention, we exclude factags for which \; = 0 or \’; = 0.
Now restrict toSL,, and assume that = mk, for somek € N. By Schur's lemma, the
decomposition in[(3.911) implies that
(3.9.2) Invgr,, (AP (C™ ® C")) = Homg,,, (C, A? (C™ @ C")) = Wim),
whereC denotes the trivial representation.
Decompose
(C”%(Cel@C@@“ﬂBCGn
into its one-dimensionall, -weight spaces. Then we have
(3.9.3) ACrech 2 @ AT(C AR (C) @@ A (C7)
(P15-+pn) EA(n,p)

asGL,, x T-modules, wheré is the diagonal torus ifxL,,.

This decomposition implies that
(3.9.4) Invgr, (AP (C™) @ AP (C™) @ -+ - @ AP (C™)) Z W (p1, ..., Dn)s
whereW (py, ..., p,) denotes thép,, . .., p,)-weight space ofV(;m.

It is worth noting that Cautis has written dowm-aersion of skew Howe duality in Section 6.1
in [20] (see alsa[22]). We do not recall his general explemalere.
Instead, in the next section, we use Kuperberg’'s webs toaiwgersion of the isomorphism

in (3.9.4), forU,(sl3) andU,(gl,,) with n = 3k andk € N arbitrary but fixed.
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We also categorify this instance gfskew Howe duality, as we will explain after the next sec-
tion.

3.10. Web algebras and the cyclotomic KLR algebras: The uncategdfied story.

3.10.1. Enhanced sign sequencds. this section we slightly generalise the notion of a sigh se
guence/string. We call this generalisatemhanced sign sequenceenhanced sign string\Note
that, with a slight abuse of notation, we uSefor sign strings ands for enhanced sign string
throughout the whole section.

Definition 3.10.1. An enhanced sign sequence/strisga sequencs = (s, ..., s,) with entries
s; € {o,—1,+1,x},foralli = 1,...n. The corresponding weight = 1.5 € A(n,d) is given by
the rules

0, if s; =o,

)1 if s; =1,
Fi= N2, if s =—1,

3, if s; = x.

LetA(n,d)s C A(n,d) be the subset of weights with entries betwéamd3. Recall that\(n, d); »
denotes the subset of weights with omlgnd2 as entries.

Letn = d = 3k. For any enhanced sign strirtfgsuch thatus € A(n,n)s, we defineS to
be the sign sequence obtained fréhiy deleting all entries that are equald@r x and keeping
the linear ordering of the remaining entries. Similarly; &my . € A(n,n)s, let i be the weight
obtained fromu by deleting all entries which are equal@amr 3. Thus, ifu = ug, for a certain
enhanced sign string, thenji = ;. Note thaty € A(m,d);», for a certain0 < m < n and
d=3(k—(n—m)).

Note that for any semi-standard tabl€éBuc Stdf’k), there is a unigue semi-standard tableau

Te Stdff’kf("ﬂ”)), obtained by deleting any cell ifi whose label appears three times and keeping
the linear ordering of the remaining cells within each catum

Conversely, lef// € A(m, d); 2, withm < n andd = 3(k — (n — m)). In general, there is more
than oneu € A(n,n); such thaf: = 4/, but at least one. Choose one of them, ggyThen, given

anyT’ € Stdff?kf(wn)), there is a uniqué’ e Std®") such thatl” = 7".
The construction of is as follows. Suppose thats the smallest number such that); = 3.

(1) In each columrn: of 77, there is a unique vertical position such that all cells a&that
position have label smaller thamnd all cells below that position have label greater than
Insert a new cell labeledprecisely in that position, for each column

(2) In this way, we obtain a new tableau of shape ("~™)*1)_ It is easy to see that this new
tableau is semi-standard. Now apply this procedure realysior eachi = 1, ..., n, such
that(uo)z- = 3.

(3) In this way, we obtain a tableali of shape(3*). Since in each step the new tableau that

we get is semi-standard, we see thidtelongs tctd*".
Note also thaf” = 7". This shows that for a fixed € A(n, n)s, we have a bijection
Stdff’k) 5T «— T e Stdff’ki(nfm)).
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Given an enhanced sign sequengeuch thajus € A(n,n)s, we define
W = We.

In other words, as a vector spaldé; does not depend on theand x-entries ofS. However, they
do play an important role below. Similarly, we define

By = Bg and Kg :KS“

3.10.2. Aninstance of-skew Howe dualityLet V(5 be the irreduciblé/, (gl, )-module of highest
weight(3*). By restriction,V{,x, is also al,(sl,)-module and, since it is a weight representation,
itis a U(sl,)-module, too. It is well-known (se€ [37] ar@ﬂ87]) for exampihat

dim Vigey = > #Std®

peA(n,n)3

Note that a tableau of shagg”*) can only be semi-standard if its filling belongsA¢n, n);, so
strictly speaking we could drop ttsesubscript. More precisely, if

Ve = D V(v

neA(n,n)3

is theU, (gl,,)-weight space decomposition Bf;x, then
dim Vige (1) = #Std)

Note that the action d¥,(gl,,) on V|3, descends t&, (n, n) and recall that there exists a surjective
algebra homomorphism

U U(sl,) = Sy(n,n).

The action ofU(sl,) on Visry is equal to the pull-back of the action 8f(n, n) via ¥, .

Define
W(gk) = @ Ws .
SeA(n,n)s

Below, we will show thatS,(n,n) acts onW k. Pulling back the action via, ,, we see that
Wigky is aU(sl,)-module. We will also show that

Wizey = Vigr)

asS,(n,n)-modules, and therefore also BKsl,)-modules, and that/s corresponds to thes-
weight space oF/3.

Let us define the aforementioned left actionSgfn, n) on Wk, The reader should compare
this action to the categorical action on the objects in $acti2 in [E] Note that our conventions
in this thesis are different from those in [79].

Definition 3.10.2. Let

¢: Sq(n,n) = Ende(g) (W)
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be the homomorphism @ (¢)-algebras defined by glueing the following webs on top of ke e
ments inWV ).

1, —

A1 A2 An
Al A1 Fl

E:I:il)\ — ooo oco

A1 Aic1 A Ait1 Aig2 An

We use the convention that vertical edges labeled 1 aretedarpwards, vertical edges labeled
2 are oriented downwards and edges labeled 0 or 3 are erabedori€ntation of the horizontal
edges is uniquely determined by the orientation of the @redges. With these conventions, one
can check that the horizontal edge is always oriented frgmt tio left for £, and from left to
right for £_,.

Furthermore, let € A(n,n) and letS be any sign string such thal € A(n,n);. For any
w € Wy, we define

o(Lw=0, if pus#A\
By ¢(1,)w we mean the left action af(1,) onw. In particular, for anyA > (3%), we have
¢(1)\) =0in End(c(q) (W(gk)).

Let us give two examples to show how these conventions woekohlly write down the relevant
entries of the weights and only draw the important edges. &Ve h

3 1
E+11(22) — ‘%
2 2

0 2

E sE 11321) —

1 2 1

Remark3.10.3 Note that the introduction of enhanced sign strings is reaggdor the definition
of ¢ to make sense. Although as a vector spdgedoes not depend on the entries¥vhich are
equal too or x, theS,(n, n)-action oniVy does depend on them.

Remark3.10.4 A more general version of the mapwvas studied later in the papér [22] by Cautis,
Kamnitzer and Morrison.

Lemma 3.10.5.The mapy in Definition[3.10.P is well-defined.

Proof. It follows immediately from its definition that preserves the three relations (314.8), (3.4.4)
and [(3.4.5).
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Checking case by case, one can easily showtpatserved (3.4.6) by using the relatidns (3.2.3),
(3.2.3) and[(3.2]5). We do just one example and leave the céises to the reader. The figure below
shows the image of the relation

E\E 1191y — E_1Erlor) = Lian

underao.
2 1 2 1 2 1
YA
2 1 2 1 2 1
This relation is exactly the third Kuperberg relationinX3). O

Lemma 3.10.6.The mapy gives rise to an isomorphism
gb: ‘/(3k) — W(gk)
of S,(n,n)-modules.
Proof. Note that the empty web;, = w3«), which generate®/ .« .2r) = C(q), is a highest weight
vector.
The mapy induces a surjective homomorphism®f(n, n)-modules
¢I Sq(’fl, ’n)l(gk) — W(gk),
defined by
As we already remarked above, we have
dimVigy = Y #8td()
ps€A(n,n)3
= > dimWs = dim W
:U'SGA(”JL)S
Therefore, we have
Vigky = ¢ (Sq(n,n)) wp, = Wiy,
which finishes the proof.

It is well-known that
Vigr) & Sy(n,n) e/ (n > (3%)),
where(p > (3%)) is the ideal generated by all elements of the foripy1 s+, with 2,y € S,(n, n)

andy is some weight greater thd#"). This quotient ofS,(n, n) is an example of a so callétley!
module We see that the kernel gfis also equal tgu > (3%)). O

We want to explain two more facts about the isomorphism inin@f3.10.6, which we will need
later.
Recall that there is an inner product &p). First of all, there is &C-linear andg-antilinear
involution onC(q) determined by
aq" =aq",
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foranya € C. Herea denotes the complex conjugatemofRecall Lusztig’sj-antilinear (antilinear
means w.r.t. to the involution above) algebra anti-inviolut- on S,(n, n) defined by

7-(1)\) = 1)\7 T<1)\+aiEi1>\> = q_l_Xil)\E—il)\—i-ai? T<1AE—i1)\+ai) = q1+Xi1>\+aiEi1)\'

Theg-Shapovalov forng - , - ) onV{3) is the unique;-sesquilinear form such that

(1) (v, ) = 1, for a fixed highest weight vectay,.
(2) (xv,v) = (v, T(2)v"), foranyz € S,(n,n) and anyv, v’ € Vign).
() flv,v') = (vf,v) = (v,v'f), forany f € C(q) and anyv, v’ € Vign).
We can also define an inner product Bng«, using the Kuperberg bracket. Létbe any
enhanced sign string, such thajs € A(n, n)s;. Denote the length of the sign stritsgby ¢(.5).

Definition 3.10.7. Define theg-sesquilineanormalised Kuperberg forray
e (wy,wy) = 1, for a fixed highest weight vectar,.
o (u,v) = ¢"(u*v)Kyp, fOr anyu, v € Bs.
o (f(@)u, g(q)v) = f(a)g(q)(u,v), foranyu,v € Bg andf(q), g(q) € C(q).

The following lemma motivates the normalisation of the Kilgeeg form.

Lemma 3.10.8.The isomorphism df,(n, n)-modules
qb: Vv(gk) — W(3k)
is an isometry.
Proof. First note that
((Exiu) v)kup = (U Ei0)kup,
for anyu,v € Wg and anyi = 1,...,n, which is exactly (2) from above. This shows that the
result of the lemma holds up to normalisation.
Our normalisation of the Kuperberg form matches the nosa#bn of the;-Shapovalov form.

One can easily check this case by case. Let us just do two dégamipeti = 1. Then one has
Eilap,.) = Lat1p-1,.)Er. If (a,b,...) € A(n,n)s such thatt — b = —1, then

—

(({a, b)) = ¢((a+1,b—1)),
where/ indicates the length of the sign sequence. This matches
(B 1ap)) = Liap 1.
If (a,b) = (2,1),thenEi 121,y = 1(30,.)F1. Note that
((21,..)) = €(3,0,.7)) + 2
This +2 cancels exactly with the-2, which appears as the exponengon
T(E1l@a,.)) = q_21(2,1,...)E—1-

]
We will need one more fact about For anyi = 1,...,n and anya € N, let
EY,
E(a) _ i
+i [a]|



denote thelivided poweiin S,(n, n). Recall the following relations for the divided powers.

@101)  BURDL, = { b } B4,
min(a,b) - G—bh+ X — A ' '
(3.10.2) EOEY, = % \i = ikt } B0 ey,
=0 J
min(a,b) - b—a— ()\ Y ) ' -
(3.10.3) EQE91, = \i = A } B oy,
j=0 * J
Here[a]! denotes thguantum factoriabnd Z } denotes thguantum binomial

The images of the divided powers under
¢Z Sq(’fl, ’fl) — End(W(3k))

are easy to compute. For example, we have (for simplicitypnlg draw two of the strands and
write £ = E;)

2 0 — (o] —_ fe)
P(E*1pz) = 1 1= = [2]
0 2 o - o —
Therefore, we get
¢(E(2)1(0’2)) —
Another interesting example is
2 1 — +
o 0e) =1 o= NS/
0 3 o X
which shows that
- +
¢(E(2)1(03)) = gj
o X
The final example we will consider i E®1, 3)). We see that
3 0 X o X o
2 1
¢(E31(0,3)) - 5 @ = [3]!
0 3 o X o X



Thus, we have

¢(E(3)1(0,3)) — ’

[¢] X
which is the unique empty web frofw, x) to (x, o).
Note that[(3.10]2) and (3.10.3) imply that, for ang N, we have
(3.10.4) E(_ai)Egrai)l(...,o,a,...) =1(.04,.) and ESZ)E_?l(...,a,o,...) = 1(.a0,.)
in Sy(n,n). Similarly, letS,(n,n)/I, wherel denotes the two-sided ideal generated by auch

thatu > (3%). Again by [310.R) and(3.10.3), we have
(3.10.5) EE‘”’Eﬁi‘“)l(...,a,s,...) =1(.a3.) and Eﬁ_G)E(j—a)1(...73,a7...) =1(.34a,..)

in S,(n,n)/I. One can check thatmaps the two sides of the equationdin (3.110.4) &nd (3.10.5) t
isotopic diagrams. For examplke maps

EPEP1 92 = 102

to
Remark3.10.9 Let
Z Z
Win= B Wi
MSEA(nvn)B

be the integral form. Then the remarks above show that thereict Definition[3.10.P restricts to
a well-defined action o (n, n) on Wék). Therefore, the isomorphism in Lemima3.10.6 restricts
to a well-defined isomorphism between the integral forms

7 ~ Z
Vigky = Wisn)-

The proof of the following lemma is based on an algorithm, alhive callenhanced inverse
growth algorithm The result is needed later to show surjectivity in Thedrebl 3.

Lemma 3.10.10.Let S be any enhanced sign string such that € A(n,n);. For anyw € Bg,
there exists a product of divided powerssuch that

Proof. Choose anyw € Bg. We considenw &€ fok’o%), i.e. a non-elliptic web with (empty)

lower boundary determined k*, o2*) and upper boundary determined By Expressw using

the growth algorithm, in an arbitary way. Suppose therenasgeps in this instance of the growth
algorithm. The element is built up inm + 2 steps, i.e. an initial step, one step for each step in
the growth algorithm, and a last step. During the constonadf z, we always keep track of thes

and xs. At each step the strandswofare numbered according to their positiorein
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If the H, Y or arc-move is applied to two non-consecutive strands, \seHave to apply some
divided powers, as if(3.10.4) arld (3.10.5), to make thenseautive. Letr;, € S,(n,n) be the
element assigned to theth step and let* be the weight after thé-step, i.e.x, = 101251,
The element: we are looking for is the product of at},.

(1) Takexry = 1,4.

(2) Suppose that thé-th step in the growth algorithm is applied to the stramdsndi +
r, for somer € N.,. This means that the entries pf~* satisfy u; € {0, 3}, for all
j=1i+1,...,i+r—1. Letx) be the product of divided powers which “swap” the
(Mt s fivr—1) @Nd gy, SO, we first swape; ., 1 andp, ., thenp; ., andp; ., etc.
Now, the rule in the growth algorithm, still correspondimgthe k-th step, can be applied
to the strands$ andi + 1.

(3) Suppose that it is ai/-rule. If the bottom of theH is a pair (up-arrow down-arrow),
then taker, = 2} ;. If the bottom of theH is a pair (down-arrow up-arrow), then take
T = X]QE—i-

(4) Suppose that the rule, corresponding to/ké step in the growth algorithm, is¥-rule.

If the bottom strand ot” is oriented downward, then take = ) E_;. If it is oriented
upward, taker, = ) E.;. Note that these two choices are not unique. They depend on
where you pub or 3 in x*. The choice we made corresponds to takinfy 1% ;) = (2,0)

in the first case an:¥, uf, ;) = (1, 3) inthe second case. Other choices would be perfectly
fine and would lead to equivalent elementsSifin, n)1 3t /(1 > (3%)).

(5) Suppose that the rule, corresponding to tki step in the growth algorithm, is an arc-
rule. If the arc is oriented clockwise, takg = x;E(j). If the arc is oriented counter-
clockwise, taker, = x} E_;. Again, these choices are not unique. They correspond to
taking (1%, ¥, ) = (3,0) in both cases.

(6) After them-th step in the growth algorithm, which is the last one, weaobt™, which
Is a sequence dfs andos. Letz,,.; be the product of divided powers which reorders the
entries ofy™, so thatu™ ! = (3*).

(7) Taker = 1,,2172 - - - Tyy11(3r) € S¢(n,n). Note thatr is of the formEi1 55,

From the analysis of the images of the divided powers ungdgrs clear that

¢(r) = w.

We do a simple example to illustrate Lemma 3.10.10. Let

Then the algorithm in the proof of Lemrha3.10.10 gives

r=1lnnE 1F oFE 1130,
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or as a picture (read from bottom to top)

3 0 0
We are now ready to start explaining the categorified story.

3.11. Web algebras and the cyclotomic KLR algebras: And its categafication. Let us denote
with K's-pMod,, the category of all finite dimensional, projective, unitgmadedi’s-modules and

Ky (Ks) = K (Ks-pMod,,) its split Grothendieck group. Recall thatiaitary module is one on
which the identity of(s acts as the identity operator. In what follows, it will somets be useful
to consider homomorphisms of arbitrary degree, so we define

HOM (M, N) = @5 homy (M, N{t}),

for any finite dimensional, associative, unital, grade@hbtgB and any finite dimensional, unitary,
gradedB-modulesM andN. Note that for almost all € Z we have hom (M, N{t}) = {0}, so
HOMjg (M, N) is still finite dimensional.

Moreover, we need the following notions throughout the oéshe section.

Suppose that is an enhanced sign string such thate A(n,n);. For anyu € Bg, let

P, = @ JK.

weBg

Ks= P P,

ueBg
for anyu € Bg. Note that, for any,, v € Bg, we have

HOM(P,, ) = oKy,

where an element in K, acts onP, by composition on the left-hand side.
Similarly, we can define
uP - @ uKun

weBg
which is a right graded, projectiv&s-module.

Then we have

and soP, is an object inkK's-pMod,,,

Remark3.11.1 Just one warning. The reader should not confsevith P, - in Sectior 3.5.

3.11.1. The definition o3V 5+). Recall thatS denotes an enhanced sign string. Define
Kgy= P Ks
ns€A(n,n)3
and
Wi = Kgo-pMod,, = Ks-pMod,,.

ns€A(nn)3
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The main goal of this section is to show that there exists egeaitcall/ (s, )-action onWV, 3+ and
that

W(gk) = V(gk)

asl (sl,,)-2-representations as explained in Sedfionh 4.4.
This will imply that
K5 Wary) = Vigey.
Note that
KfWa) = P K§(Ks).
HSEA(nm’)S

We will show that this corresponds exactly to g gl,,)-weight space decomposition Bf;x. In
particular, this will show that

(3.11.1) K§(Kg) = Wg,
for any enhanced sign sequert¢such thafus € A(n,n)s.

First, we have to recall the definitions ®fveetbimodules.

3.11.2. Sweet bimodulesNote that the following definitions and results are $yganalogues of
those in Section 2.7 in [53].

Definition 3.11.2. Given ringsR; and R,, a (R;, R2)-bimoduleN is calledsweetif it is finitely
generated and projective as a I&ft-module and as a right,-module.

If N is asweetR;, Rs)-bimodule, then the functor
N XR, —: RQ'MOd — Rl'MOd
is exact and sends projective modules to projective mod@e®n a sweetR;, R)-bimodule)M

and a sweetR,, R3)-bimoduleN, then the tensor produdt g, NV is a sweet R, R3)-bimodule.
Let.S andS’ be two enhanced sign strings. Th§§ denotes the set of all webs whose boundary
is divided into a lower part, determined By and an upper part, determined §% Here we mean
one diagram when we say web, not a linear combination of diagr LetBs C ég’ be the subset
of non-elliptic webs.
For anyw € B, define a finite dimensional, gradét s/, K ¢)-bimodulel’ (w) by

Tw)= P J(w.
UEBS/,UGBS
with
J(w), = Fé(uwo){n},
wheren is the length ofS’. The left and right actions ok's onI'(w) are defined by applying the
multiplication foam if3.513 to

K, @ J(w), = T(w), and [(w),®,K, =  J(w),.

Letw € BY. Thenw = cyw; + - - - + ¢, for certainw; € BS ande; € N[g,¢~%]. Since all
relations which are satisfied by the Kuperberg bracket hategorical analogues for foams, this
shows that

[(w) 2 e T(wy) @ - @ el (wi),
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where the multiplication by the; is interpreted in the usual way using direct sums and grading
shifts.
We have the following analogue of Proposition 3[in![53].

Proposition 3.11.3.For anyw € Eﬁ’, the graded Ks/, Kg)-bimodulel'(w) is sweet.

Proof. As a left Ks-module, we have

where

UGBS/

So, as far as the left action is concerned, it suffices to shat(w), is a left projectiveK s/-
module. Note that, as a leffs,--module, we have

[(w), = @ Folwv).

Thenwv = cyuy + - - - + ciu,,, for certainu; € Bs ande; € N[g, ¢7']. By the remarks above, this
means that

Follwv) 2Py, @ - @ cpPy,,
which proves thal'(w) is projective as a leff{s,--module.
The proof thaf(w) is projective as a righk’s-module is similar. O

Itis not hard to see that (see for examplel [53]), for ang B andw’ € B3, we have
(3.11.2) [(ww') = T'(w) @k, T(w').

Lemma 3.11.4.Letw,w’ € Eﬁ’. An isotopy betweew andw’ induces an isomorphism between
['(w) andI'(w’). Two isotopies betweenandw’ induce the same isomorphism if and only if they
induce the same bijection between the connected comparfenisndw’.

Lemma 3.11.5.Letw,w’ € Eﬁ’ and letf € Foam)(w, w’) be a foam of degree Thenf induces
a bimodule map

I'(f): T(w) = T(w')
of degree.
Proof. Note that, for any. € Bg andv € Bg, the foamf induces a linear map
FoULy f1,): Fou*wv) — FO(u*w'v),

by glueingl,- f1, on top of any element itF (v wv) = Foam)((), u*wv). This map has degree
e.g. the identity has degréeéecause the multiplication i s is degree preserving. By taking the
direct sum over all: € Bg andv € Bg, we get a linear map

L(f): T(w) = T'(w').

The shifts in the definition of (w) andI'(w’), given by the length of w and the lengthn of w’,
imply thatdeg I'(f) = t.
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The fact thatl'( f) is a left Ks-module map follows from the following observation. For any
u € Bg andv € Bg/, the linear mapF°(1,- f1,) corresponds to the linear map

Foam)(u, wv) — Foam)(u, w'v)

determined by horizontally composing with,, on the right-hand side. This map clearly commutes
with any composition on the left-hand side.
Analogously, the linear map®(1,- f1,) corresponds to the linear map

Foam)(w*u, v) — Foamb((w')*u, v)

determined by horizontally composing wiffil,, on the left-hand side. This map clearly commutes
with any compaosition on the right-hand side.
These two observations show thdtf) is a(Ks/, Kg)-bimodule map. O

It is not hard to see that, for anfyc Foanm(w, w’) andg € Foam(w’, w"), we have
I'(fg) =TT (g).

Similarly, for any givenu,, u, € BS andui, uj € B3 and any givery € Foam(u;, us) and
f' € Foami(u}, u4), we have a commuting square

T(fof")
[(uqu))

|

[(u1) @ T'(uh)

[(ugub)

E

— T T (uf
rnery (1) @xe T02)

where the vertical isomorphisms are adin (3.11.2).

3.11.3. The categoricalS(n, n)-action onWW;+). We are now going to use sweet bimodules to

define a categorical action f(n, n) on W) in the sense of Sectidn 4.4. For the definition of

this action, we will consideS(n,n) to be a monoidal category rather than a 2-category. Like
always, everything should be strict. The reader should ewenthis to Section 4.1.

Definition 3.11.6. On objects: The categorical action of any objegfl, in S(n,n) on W is
defined by tensoring with the sweet bimodule (see Propo$ginl.B)

' (¢ (Eily))-
Recall thatp: S;(n,n) — Endc,) (W sr) was defined in Definition 3.10.2.

On morphisms: We give a list of the foams associated to the generating nemEhofS(n, n).
Applying I" to these foams determines the natural transformationgiassd to the morphisms of
S(n,n).

As before, we only draw the most important part of the foamsitting partial identity foams.
Note our conventions.

(1) We read the regions of the morphismsdfw, n) from right to left and the morphisms
themselves from bottom to top.

(2) The corresponding foams we read from bottom to top ana front to back.

(3) Vertical front edges labeletlare assumed to be oriented upward and vertical front edges
labeled2 are assumed to be oriented downward.

(4) The convention for the orientation of the back edgesesisely the opposite.
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(5) Afacetis labeled 0 or 3 if and only if its boundary has exligdeled O or 3.

In the list below, we always assume thiak ;. Finally, all facets labeled O or 3 in the images
below have to be erased, in order to get real foams. Foiany(3*), the image of the elementary
morphisms below is taken to be zero, by convention.

i
>\i >\i+1
i
)\L >\i+1
%é .....
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Proposition 3.11.7.The formulas in Definition 3.11.6 determine a well-defineatigd categorical
action ofS(n,n) on Wk in the sense of Section #.4.

Proof. A tedious but straightforward case by case check, for easbrgéng morphism and each
which give a non-zero foam, shows that each of the foams imiiefi[3.11.6 has the same degree
as the elementary morphismdi{n, n) to which it is associated. Note that it is important to erase
the facets labeled 0 or 3, before computing the degree obtnas. We do just one example here.
We have

N | < N=f and deg(N_/ )=2.

i,(12) i,(12)

1 2
We see thaf has one facet labeled 0 and another labeled 3, so those tets faave to be erased.
Therefore,f has 12 vertices, 14 edges and 3 faces, i.e.

X(f)=12—14+3=1.
The boundary off has 12 vertices and 12 edges, so
x(0f) =12 -12=0.

Note that the two circular edges do not belong fo because the circular facets have been removed.
In this section we draw the foams horizontally, s the number of horizontal edges at the top
and the bottom of', which go from the front to the back. Thus, fémwe have

b=4.

Altogether, we get
of)=0—-2+4=2.

In order to show that the categorical action is well-defirets has to check that it preserves all
the relations in Definitiof 3.419. Modulo 2 this was done ia gitoof of Theorem 4.2 in [77]. At
the time there was a small issue about the signs in [60], whiekiented the author to formulate
and prove Theorem 4.2 in [77] ovét. That issue has now been solved (se€e [79] [61] for

more information) and in this thesis we use the sign conwastfrom [79], which are compatible
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with those from[[61]. We laboriously checked all these iiel& again, but now ovet and with
the signs above. The arguments are exactly the same, sonet uspeat them one by one here.
Instead, we first explain how we computed the signs for thegraical action above and why they
give the desired result ovér. After that, we will do an example. For a complete case by case
check, we refer to the arguments used in the proof of Theor@nind[77]. The reader should
check that our signs above remove the sign ambiguities trptioaf.

One can compute the signs above as follows. First check laggores only involving strands of
one colour, i.e. thely-relations. The first thing to notice is that the foams in tagegorical action
do not satisfy relatiori (3.4.20); for all which give a non-zero foam, the sign is wrong. Therefore,
one is forced to multiply the foam associated to

X

1,0,
by —1, for all A.

After that, compute the foams associated to the degree zadiblds (real bubbles, not fake
bubbles) and adjust the signs of the images of the left cugsaps accordingly. This way, most
of the signs of the images of the left cups and caps get detetmiThe remaining ones can be
determined by imposing the zig-zag relationdin (3.4.8) @xd.9).

Of course, one could also choose to adjust the signs of thgasaf the right cups and caps.
That would determine a categorical action that is natuiatynorphic to the one in this thesis.

After these signs have been determined, one can check tlagt-edlations are preserved by the
categorical action.

The next and final step consists in determining the signs of

X,

1,7, A
for i # j. First one can check that cyclicity is already preservede fedations in[(3.4.11) are
preserved by the corresponding foams, which are all isoteyth our sign choices for the foams
associated to the left cups and caps. Therefore, cyclio#gdot determine any more signs.

The relations in[(3.4.21) are preserved on the nose, forj and|i — j| > 1. For|i — j| = 1,
they are only preserved up to a sign. Note that, since thegponding foams are all isotopic, the
signs actually come from the sign choice for the foams aasedito the left cups and caps. Thus,
whenever the total sign in the image bf (3.4.21) becomestivegane has to change the sign of
one of the two crossings (not of both of course). Our choicelieen to change the sign of the
foam associated to 5{

ii4+1,2
whenever necessary. Any other choice, consistent withhallprevious sign choices, leads to a
naturally isomorphic categorical action. It turns out tthe sign has to be equal te-1)*i+1, after
checking for all\.

After this, one can check that all relations involving twdlmee colours are preserved by the cat-
egorical action. Note that we have not specified an imageéhffake bubbles. As stressed repeat-
edly in [60], fake bubbles do not exist as separate entifibgy are merely formal symbols, used
as computational devices to keep the computations invglkéal bubbles tidy and short. As we
are usingl3-foams in this thesis, most of the dotted bubbles are mappeerd. Therefore, under

the categorical action it is very easy to convert the fakebbesin the relations in Definitidn 3.4.9
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into linear combinations of real bubbles, using the infiB@ssmannian relation (3.4118). Thus,
there is no need to use fake bubbles in this thesis.

Finally, let us do two examples; one involving only one celamd another involving two
colours.

The left side of the equation if (3.4]117), for= 1 and\ = (1, 2) (the other entries are omitted
for simplicity), becomes

A=A

This foam equation is precisely the relation (SqR). Note tiasigns match perfectly, because we

have
i’( Z7(12

sign (\/\12)) =+ and sign (N/ )) =—.

The equation in[(3.4.22), fafi,j) = (1,2) and\ = (121) (the other entries are omitted for
simplicity), becomes

2

i

2

O\

e

1

2

0 2
>_.

1 ]
73 ,~{ Lo -/--

1

1

To see that this holds, apply the (RD) relation to the foamhen h.s., in order to remove the disc
bounded by the red singular circle on the middle sheet.

U

Let W}, = C be the unique indecomposable, projective, graligd .»+)-module of degree zero.
Recall thati' . » .2+ is generated by the empty diagram 18y is indeed one-dimensional. Itis the
categorification ofvy, the highest weight vector i s.

Note that we can pull back the categorical actionp: via

U, Usl,) = S(n,n).

We are now able to prove one of our main results. Recall thagd any additive, idempotent
complete category, which allows an integrable, gradedjoaieal action by/(sl,,) in the sense of
Sectior 4.4.

Theorem 3.11.8.There exists an equivalence of categoridés(,, )-representations

(I): V(gk) — W(3k)
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Proof. As we already mentioned above, we have
Endw(gk)(Wh) = C

Let @ be any indecomposable objectiitis+). There exists an enhanced sign strihguch that)
belongs toks-pMod,,,. Therefore, there exists a basis weke Bs and at € Z, such that) is a
graded direct summand &f,{¢}. Without loss of generality, we may assume that 0.

By Lemma3.10.70 and Propositibn 3.71.7, there exists agcbbf X in S(n,n) such that)
is a direct summand ok, This holds, because ifi(n, n), the Karoubi envelope af(n,n),
the divided powers correspond to direct summands of orgipawers. For more details on the
categorification of the divided powers seel[60] dnd [62].

Propositior 3.4.15 now proves the existenc@of O

An easy consequence of Theorem 3.111.8 is the following.
Corollary 3.11.9. By Theoreri 3.111.8, th&”(n, n)-module map
K§(®): K§ (Vigr) = K§ (W)
is an isomorphism.

The following consequence of Theorém 3.11.8 is very impaad we thank Ben Webster for
explaining its proof.

Proposition 3.11.10.The graded algebra&’;») and R 5+, are (graded) Morita equivalent.

Proof. We are going to show that, for each weight which shows up in the weight decompo-
sition of Vi3, the graded algebrass and R(us — A, A) are Morita equivalent. This proves the
proposition after taking direct sums.

Let 15 be a weight which shows up in the weight decompositiolgf). Define

O,= @ &WLe Ks-pMod,,.
i€Seq(pus—A)
In the proof of Theorerh 3.11.8, we already showed that evbjgod in Ks-pMod,, is a direct
summand ofX W, for some objecX € S(n,n). By the biadjointness of th& and&_; in S(n,n)
and the fact thatV, is a highest weight object, it is not hard to see thdt/, itself is a direct
summand of a finite direct sum of degree shifted copie® gf. This shows that every object in
Ks-pMod,, is a direct summand of a finite direct sum of degree shiftedesopf©,,;. Since
Ky is a finite dimensional, complex algebra, every finite din@mel, gradedi s-module has a
projective cover and is therefore a quotient of a finite disean of degree-shifted copies 6f,.
This shows tha®,, is a projective generator df s-Mod,,.
Theoreni-3.17118 also shows that

EndKS (®Ms) = R(NS — A )‘>

holds.
By a general result due to Morita, it follows that the abovee®ations imply that<s and
R(us — A\, \) are Morita equivalent. For a proof see Theorem 5.55 in [38]ekample. O

We can draw two interesting conclusions from Proposi{tidd 3.0.
In [17], Brundan and Kleshchev defined an explicit isomosphbetween blocks of cyclotomic

Hecke algebras and cyclotomic KLR-algebras. Theorem 3J[A4himplies that the center of
140



the cyclotomic Hecke algebra, which under Brundan and Klest's isomorphism correponds to
k
R(us — A, A), has the same dimension B (X ).

Corollary 3.11.11. The center of<’s is isomorphic to the center d¥(us — A, \). In particular,
we have

dim Z(Ks) = dim Z(R(ps — A\, \)) = dim H*(X$)).

Proof. We only have to prove the first statement, which follows frdma tvell-known fact that
Morita equivalent algebras have isomorphic centers. Fopafsee for example Corollary 18.42

in [71]. O

In Theoreni-3.8]3 we used Corolldry 3.11.11 to give an expomorphism

HA (X)) = Z(Ks).
Remark3.11.12 Just for completeness, we remark that the aforementiosedtsen [14] and([1]7]
together with the results in [15], which we have not expldinmply that
H' (X)) = Z(R(us = A, \),

so we have not proved anything new ab&ufz(us — A\, \)).

Another interesting consequence of Proposifion 3.11. iiisi$ollowing.
Corollary 3.11.13. Ky is a graded cellular algebra.

Proof. In Corollary 5.12 in[[43], Hu and Mathas proved th@t..s — A, \) is a graded cellular
algebra.

In [67], Kdnig and Xi showed that “being a cellular algebiia’a Morita invariant property,
provided that the algebra is defined over a field whose chaniatit is not equal to two. Moreover,
as we explained in Sectign 4.7, this is also true in the graeéthg.

These results together with Proposition 3.111.10 proveihais a graded cellular algebra. (]

The precise definition of a graded cellular algebra can beddn [43] or Sectiori 4]7. In
a follow-up paper, we intend to discuss the cellular basiggfin detail and use it to derive
further results on the representation theoryigf. For an isotopy invariant, homogeneous basis
see Section 3.12.

Remark3.11.14 Corollary[3.11.1B is thel; analogue of Corollary 3.3 in[19], which proves that
Khovanov’s arc algebré/,, is a graded cellular algebra. Compare also to the Exampl8.4.7

Itis “easy” to give a cellular basis df,,,. The proof of cellularity follows from checking a small
number of cases by hand. Falg, we tried to mimick that approach, but had to give up because
the combinatorics got too complex.

3.11.4. The Grothendieck group o/ 3. Recall thatiWZ has an inner product defined by the
normalised Kuperberg form (see Definition 3.10.7). Euwder form

defines &[q, ¢~ ']-sesquilinear form o (Ks).
Lemma 3.11.15.Let S be an enhanced sign sequence. Take

ve: W& — K§(Ks)
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to be theZ[q, ¢~']-linear map defined by

s(u) = [P,

foranyu € Bg. Thenyg is an isometric embedding.
This implies that th&[q, ¢~ ']-linear map

w = @ s

w(S): A(n,n)s

defines an isometric embedding

Proof. Note that the normalised Kuperberg form, because of théioaki3.2.8[3.2]4 and 3.2.5,
and the Euler form are non-degenerate. For anypairc Bg, we have

dim, HOM(P,, P,) = dim, oK, = ¢"® (u*v).

The factorg’®®) is a consequence of the grading shift in the definition/sf.
Thus,~s is an isometry. Since the normalised Kuperberg form is negederate, this implies
thatvs is an embedding. O

Remark3.11.16 It is well-known thatK " (Ks) is the freeZ[q, ¢~']-module generated by the iso-
morphism classes of the indecomposable, projedtivenodules (see Example 4.2.5). In Section
5.5 in [90], Morrison and Nieh showed th&}, is not necessarily indecomposable (see also [97]).
This is closely related to the contents of Renfark 3.2.6, agistim and Nieh showed. Therefore,
the surjectivity ofyy, is not immediately clear and we need the results of the pusvéections to
establish it below.

Thesl, case is much simpler. The projective modules analogoust® ttare all indecompos-
able. See Proposition 2 in [563] for the details.

Theorem 3.11.17.The map
i Wiey = Kg W)
is an isomorphism o’ (n, n)-modules.
This also implies that, for each sign stritg the map
vg: WE — K$(Ksg)
is an isomorphism.

Proof. The proof of the theorem is only a matter of assembling ajréadwn pieces.

By Propositio 3. 1117y intertwines thesZ(n,n) = K§ (S(n,n)) actions.

We already know thaty; is an embedding, by Lemnha 3.1171.15.

Note that, by Theorein 3.4.14, Lemma 3.10.6 and Cordllar¥.8,ve have the following com-
muting square

Vi — K5 (Vi)

‘bl lx&am
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We already know thaty, ¢ and K (®) are isomorphisms. Thereforgy, has to be an isomor-
phism. This shows that's indeed categorifies thes-weight space o).

Recall that we have not explained the definitionypfnor Rouquier’s definition ob. However,
for general reasons;, has to send the highest weight vectgre Vék) to the class of the highest
weight object inV5x) and® has to send that highest weight object to the highest weigjecoin
Wsr). This shows that the images of the highest weight vegfcz Vék) around the two sides of

the square are equal. Since all maps involved%(ez, n) intertwiners, it follows that the square
indeed commutes. O

A good question is how to find the graded, indecomposablgegive modules of<s. Before
answering that question, we need a result on the 3-colosinhgebs.

Letw € Bg. Recall that there is a bijection between the flowswoand the3-colourings ofw,
as already mentioned in Remark 312.2. Call the 3-colourorgesponding to the canonical flow
of w, thecanonical 3-colouringdenoted’’,.

Lemma 3.11.18.Letu, v € Bg. If there is a 3-colouring of which matche§’, and a 3-colouring
of v which matche§’, on the common boundassy, thenu = v.

Proof. This result is a direct consequence of Theofem B.2.5. Ré#wllthere is a partial order
on flows, and therefore on 3-colourings by Renfark3.2.2. ©tdering is induced by the lexico-
graphical order on the state-strings.®nwhich are induced by the flows. Note that two matching
colourings ofu andv have the same order, by definition. On the other hand, The@r2rh im-
plies that any 3-colouring of, respectivelyv, has order less than or equal to thatigfand 7,
respectively. Therefore, if there exists a 3-colouring afiatching’,,, the order ofl;,, must be less
or equal than that df,.

Thus, if there exists a 3-colouring ofmatching7,, and a 3-colouring ofi matching7’,, then
T, andT, must have the same order. This implies that v, because canonical 3-colourings
are uniquely determined by their order and the correspgncimonical flows determine the cor-
responding basis webs uniquely by the growth algorithm. O

Proposition 3.11.19.For eachu € Bg, there exists a unique graded, indecomposable, projective
Kg-module@,,, such that

Po=Que @ d(S, Ju, 1) Qu.
J1;<Ju

Here J, is the state string associated to the canonical flowpte coefficientsd(s, J,, J,) belong
to N[g, ¢~'] and indicate direct sums and degree shifts as usual, andtéte strings are ordered
lexicographically.

Note that we need a lot of the results from the Secfions 3Bm@d 3,111 to prove the proposition.

Proof. Let u € Bg. Then there is a complete decompositionlgfinto orthogonal, primitive
idempotents

ly=e 4 +en
By Theoreni 4.8}4 and Corollaky 4.8.5, we can lift this decosifion toGGs. We do not introduce

any new notation for this lift, trusting that the reader witit get confused by this slight abuse of

notation.
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Let z, € Z(Gs) be the central idempotent corresponding/tg as defined in the proof of
Lemmad3.8.R. We claim that there is a unidug i < r, such that

(3113) Zu€j = 5ijzu1u,
foranyl <j <r.
Let us prove this claim. Note that
(3114) Zulu = Cu, Ty
whereT, is the canonical colouring af, i.e. .J, only allows one compatible colouring af which
isT,. Sincee, 1, # 0, courtesy of Lemma3.5.11, this implies that
(3.11.5) 2uuGu = WGuzy = 2uGuzu = ey, Gseur, = C,
by Theoreni 3.5.10.
We also see that there has to exist at leastlofiei, < r such that,e;, # 0. Then, by[(3.11)5),
there exists a non-zery, € C, such that
Zu€iy = )\Zozulu = )\,-Oeu,Tu.
Foranyl <1i,j < r, we have
24€i%uCj = zieiej = 2,0;€;.
This implies thati, is unique and\;,, = 1. In order to see that this is true, suppose there exist
1 <iig # jo < rsuch that,e;, # 0 andz,e;, # 0. By (3.11.5), there exist non-zepg,, \;, € C
such that
Zu€iy = Nigzuly AN 2y, = Aj 2,1y
However, this is impossible, because we get
ZuCigRuCj, = )\Z-O)\jozulu % 0,

which contradicts the orthogonality efe;, andz,e;,.

Thus, for eachu € Bg, there is a unique primitive idempoteat € Endc(P,) that is not
killed by z,, when lifted toGs. We define(),, to be the corresponding graded, indecomposable,
projective K s-module

Qu - Kseua
which is clearly a direct summand &f, = (Kg)1,..

Let us now show that, for any, v € Bg, we have

Qu=0Q, & u=n0.

If v = v, we obviously have), = (),. Let us prove the other implication. Suppage = Q,.
From the above, recall that, ande, can be lifted toZ5. By a slight abuse of notation, call these
lifted idempotents, ande, again. We have

Zyey = €yr, 70 and z.e, = e, #0.
Since@, = Q,, we then also have
zuey 70 and z,e, # 0.

This can only hold ifT}, gives a 3-colouring oft and7), a 3-colouring ofu. By Lemmd3.11.78,
this implies that, = v.
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Since
rkygq- Ko (Ks) = tkyjg /W5 = #Bs,
by Theoreni 3.11.17, the above shows that

{[Qu] | u € Bs}

is a basis of the fre&[q, ¢~'|]-module K’ (Ks). For anyu,v € Bg, we have
2uly = zue, and z,1, =0, if J, > J,.

The second claim follows from the fact that there are no aslivliss 3-colourings of. greater than
Ju. The proposition now follows. U

Remark3.11.20 Proposition 3.11.19 proves the conjecture about the deositign of1,,, which
Morrison and Nieh formulate in their Conjectures 5.14 aridb%n [90] and in the text below them.

Before giving the last result of this section, we briefly iesame facts about theual canonical
basisof WZ%. For more details se€ [34] and [57]. There existsantilinear involutiony> on 1%
(in [34] and [57] this involution is denoted’ and®, respectively). For any sign stringand any
state string/, there exists a unique elemeit, € VZ which is invariant undeg and such that

(3.11.6) by =5+ > oS, J.T)eS,

J'<J

with (S, J, J') € qZ|q]. Note thaty = v~ in [34] and [57]. Thee5 are the elementary tensors,
which were defined in3.2.5. The bagis?, } is called thedual canonical basisf V7. Restriction
to the dominant closed patlt§, J) gives the dual canonical basis bfZ (see Theorem 3 in [57]
and the comments below it). . )

We have not given a definition @f, but we note that’ is completely determined by Proposition
2in [57], i.e. we recall the following.

Proposition 3.11.21.(Khovanov-KuperberlEach basis welw € Bg is invariant under).

The above definition is hard to check directly fdr),] | © € Bs}. Therefore, let us recall
Webster's[[116] very general definition of a canonical basia freeZ[q, ¢~']-module M. Ourq
corresponds tg—! in [116]. A pre-canonical structuren M is a choice of the following.

e A g-antilinear “bar involution”: M — M.
e A sesquilinear inner produgt-, —): M x M — Z((q)).
e A “standard basis{a.}.cc with partially ordered index s€t’, <) such that

(3.11.7) U(ac) € ac+ > Zlg,q Vag.
cd<c
A basis{b.}.cc is calledcanonicalif the following is satisfied.

(1) Each vectob, is invariant undet).
(2) Each vectob, belongs taz. + ._.Z[q, ¢ ']ac.
(3) The vector$, arealmost orthonormain the sense that

(3.11.8) (be,ber) € Oc,r + qZ[g).
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If a canonical basis exists, for a given pre-canonical stimec then it is unique by Theorem 26.3.1
in [76]. In particular, the dual canonical basis is “canatiién the above sense, w.r.t. to a pre-
canonical structure which we will discuss below. We notd tha same basis can be canonical
w.r.t. different pre-canonical structures.

Let us show now how Lusztig’s canonical basisxqﬁ) = KSB(V(gk)) is mapped to a basis in

Wi = Kg (W), which is also canonical according to Webster's definitiéfter doing that,
we will prove that the latter basis is exactly the dual canahasis defined in [33] and [67].
First the pre-canonical structures.
e As Brundan and Kleshchev showed [in[17] and Webster recalldd? in [116], the bar
involution on K (Vzx)) is induced by Khovanov and Lauda’s [60] contravariant fonct

v R(gk) — R(gk),
given by reflecting the diagrams in theaxis and inverting their orientation. On objects
this functor sends;{¢} to F;{—t}.
Using our equivalence
O V(gk) — W(gk)
from Theoreni 3.1718, we get a contravariant functor
’(/)I W(gk) — W(gk)
given by reflecting the foams in the vertigal-plane, i.e. the plane parallel to the front and
the back of the foams in Definitidn 3.11.6, and inverting themtation of their edges.
We have
Y(P,) = P,, forany non-elliptic wehu.
It might seem confusing that, is again a left and not a righit’5x)-module. The reason
is that anyf € K3y acts om)(P,) by multiplication on the right with)(f). Sincey is
contravariant, this gives a left action again.
Using the isomorphism
b Wiy = K5 Wisn))
to pull back K (1), we get a bar involution ofWék) which fixes the non-elliptic webs.

By Propositiod 3.11.21, we see that this bar involution isa o).
e As remarked by Webster in the introduction bf [116], the inpeoduct onK{ (Vsx)) is
given by the Euler form

Pulling back the Euler form via the isomorphism
v: Vi = Kg Vi)
gives theg-Shapovalov form.
Our isomorphism
K3 (®): K§ (Vigry) = K5 (W)
from Theoreni 3.11.17 is an isometry intertwining the Eubenfs. Furthermore, the Euler
form on the latter Grothendieck group corresponds to thenabised Kuperberg form on

Wék), by Lemmd 3.10]8.
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e For our purpose, we are only interested in a standard bagi§'ofV,,)). We take{[P,]},
where theu are the non-elliptic webs iWék). The partial ordering is given by the lexi-
cographical ordering of the state-strings for e&chBy Propositiod 3.11.21, we see that
{[P.]} satisfies[(3.1117).

Now, let us have a look at the canonical base&Jh(V ;) and K§ (W,3x), which both satisfy
Webster’s definition.

(1) The canonical basis elementsfiy (V4 ) are the classes of the indecomposable projective
Rsr-modules, with their gradings swtably normalized (whislall that we need). These
elements correspond precisely to Lusztig’s canonicalsbelsiments i/ % (35 @S shown by
Brundan and KleshcheV [17]. In particular, they satisfyttivee condltlons for a canonical
basis in Webster’s list.

Our equivalence in Theorem 3.111.8 maps the indecompos&lgets in)V ;) to the
indecomposable objects W+, which we had called),. In particular, this shows that
D([Qu]) = ¢ “|Q.] for some suitable value. Since, isomorphisms on Grothendieck groups
intertwine the:), we see that*[Q,] is ¢ invariant. But since, as a consequence of the
Proposition§ 3.11.19 afd 3.11.2@), ] is already: invariant, we see that = 0.

(2) The[®,] also satisfy the second condition in Webster’s list, asfedl from inverting the
change of basis matrix in Proposition 3.11.19.

(3) The third condition in Webster’s list, for the),], follows from the fact that Lusztig's
canonical basis elementB, | satisfy that condition and the fact that the isomorphism

Ky (®): K§(Vigry) = K§ Wisr)),
with ® as in Theorerh 3.11.17, maps Lusztig’s canonical basis isarally onto{Q,, }.

Theorem 3.11.22.The basis
{[Qu] | u € Bs}

corresponds to the dual canonical basidof(VZ), under the isomorphisms
Inv(VE) 2 Wi = K§(Ks).

Proof. The remarks above prove thgt),,| | © € Bs} is a canonical basis in the sense of Webster’s
definition. What remains to be proven, is that it is exactly ttual canonical basis defined by
Frenkel, Khovanov and Kirillov Jrl_[34] (and in Theorem 3-[)

As we demonstrated above, the bar involution/§i()V3+)) is exactly the bar involution for
the dual canonical basis in [34] and [57].

As we will explain below, the normalised Kuperbétfy, ¢~']-sesquilinear form oy’ (W),
given in Definitior{ 3.10.7 and denoted by, —) k., in this proof, is exactly the one corresponding
to the pre-canonical structure used[inl[34] and [57].

Since there is at most one canonical basis for any givengmerical structure oiy (W3r)),
this proves that the two bases are equal.

For completeness, let us explain why, —)x., is exactly equal to thé&[q, ¢~'|-sesquilinear
inner product that is useinplicitly in [34] and [57]. The form that is useexplicitly in [34]
and [57] is actually Lusztig'&|q, ¢~ ']-bilinear form, denoted—, — )1, in this proof and defined
in Section 19.1.1 in[[76] for irreducible modules and extmdactorwise to tensor products in

Section 27.3 of that same book.
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Therefore, we first have to recall how tigq, ¢~']-bilinear forms from above are related to
Zlq, ¢ ']-sesquilinear forms. Given #[q, ¢']-bilinear form (—, —) on VZ, we can define a
Z|q, ¢ ']-sesquilinear form of*Z which isZ[q, ¢~ ']-antilinear in the first variable, by

(3.11.9) (z,y) = (V(x),y),

where ) is the Zlq,q~'] anti-involution mentioned above. This is exactly how Khova and
Lauda defined theiZ[q, ¢~']-sesquilinear form oJ(s,,) in Definition 2.3 in [60].

We do not compute the action @f on the elementary tensoe§ explicitly in this thesis. As
we will show below, thee5 are orthonormal w.r.t.(—, —).,. Therefore, it is easier to show
that(—, — ). iS equal to théZ[q, ¢~']-bilinear form coming from Kuperberg’s bracket, which we
denote by(—, —)kup in this proof, than to compare the correspond#ig, ¢ —!]-sesquilinear forms
directly. Just for the record, we remark that, —) .., IS not equal to the factorwisgShapovalov
form, which is part of the pre-canonical structure for Ligggtcanonical basis dfZ (see Theorem

3.10 in [116]).

Let us recall the definition of—, —);..s, On an irreducible WeighI'JZ(s[g)-moduIeVZ with
highest weight vector;,. We follow Khovanov and Lauda’s normalisation from Propiosi 2.2
in [6Q]. Lusztig'sZ|q, ¢~ ']-bilinear form onV/Z is uniquely determined by the properties below.

4 (Uha Uh)Lusz = 1.
b (UZE, y)Lusz - (ZIZ', ﬁ(u)y)Lusz- )
i (y7 x)LuSZ = (J}’ y)Luszu for anyr,y < VZ and anyu UZ<5[3).

Herep is theZ[q, ¢~']-linear anti-involution orlU%(sl;) defined by
p(E) = q 'K VE_, p(E_) = ¢ ' KGE;, (K = K7

Let (—, —)rus. @lso denote th&|q, ¢~']-bilinear inner product ovZ obtained by taking factorwise
the above form oW, fori =1,...,((S).

Before we can compute the inner product of the elementaigotenwe first have to compute
(=, —)rusz ONVZandVZ. Lete; be the highest weight vector &f., of weight(1,0), and define

68_ = E_l(ef) and 61_1 = E_g(ef{).

Note thate; ande™, are of weight —1, 1) and(0, —1) respectively. Similarly, let; be the highest
weight vector ofi’Z, of weight (0, 1), and define

e = E o(e;) and eZ; = FE_q(ep ).
Note thate] ande™, are of weight(1, —1) and(—1, 1) respectively. Using the rules above, we get
(€7 €5 ) russ = Jiy-
OnVZ, we now get
(3.11.10) (€57, €5 ) Lusa = 60,7,

for any elementary tensoe§, ande$,..
Note that both(—, —)p.s, @and (—, —)xup areZ[q, ¢~ ']-bilinear and symmetric. Therefore, in
order to show that they are equal, it suffices to show that we ha

(w§> w?)LUSZ = (w§> w?)Kum

for anyw? € Bs.
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Letw? € Bs be arbitrary and write
wi =e5 + Z (S, J, J)e5,

JI<J
as in Theoreri 3.2/5. Then, Hy (3.11.10), we get
(3.11.11) (W, W = L+ > c(S, 1T
J'<J

Finally, let us computéw?, w3 k.- By (3.11.9), we see that

(wﬁvwﬁ)Kup = <w§v w§> = qz(s)«wﬁ)*w%Kup'

The first equality follows from Proposition 3.11]21. Now sater the way in which the coefficients
c(S, J,J") change under the symmetry— z*, for = anyY’, cup or cap with flow. Comparing the

corresponding weights if (3.2]11) and (3.2.12), we get
weight (2*) = ¢~ (@)@ weight ().

wheret(z) andb(z) are the top and bottom boundary.af Recall also that the canonical flow on
w5 has weight 0 (see Lemria3.2.4). It follows that

(Wi, 0wk = ¢"F (W) W) kup
_ qm) <q-4(3) n q—Z(S) Z (S, J, J/)2>
J'<J
= 1+ > oS, LJ)
J'<J
This finishes the proof thét-, —)us, = (—, =) Kup- u

3.12. An isotopy invariant basis. In the present section we definenamogeneous, isotopy in-
variant basisof Ks. Note that this section is not part of our pagerl/[78] and thapiits into two
subsections.

To be more precise, we give a method for obtaining severfrdifit homogeneous bases in the
first subsection and explain how one can define at least omewof (by aralgorithm) in anisotopy
invariantway in the second subsection. Note that the method follows@& femoving convention,
motivated by the Kuperberg relatioris [70]. The algorithmkesaa particular, isotopy invariant
choice, that we calpreferred But the procedure that we explain works for dixgdchoice of how
to remove faces as explained in Theofem 3]12.6.

This isotopy invariant basis is parametrised by flow linesya explain later in Theorem 3.12115
and Corollanf3.12.16. Moreover, the whole discussion ia ffection also works for the more
general web algebravg from Definition[3.5.1. And therefore for Gronik’s filteredgabraGs
defined in Definition 3.518.

The question can be explained as follows. Given an algeéliret is only defined by generators
and relation, e.gK s, then it is not obvious what the dimensionfs, how to find a basis ofl and
how to find a basis oft with “good” structure coefficients (for example cellulgréds described in
Sectior{ 4.7, e.g. Theordm 4.17.6).

In this section we answer the second questionifgrand we conjecture that one of the bases

we define is a graded cellular basis related to the basis écyhlotomic KLR-algebra defined
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by Hu and Mathas [43]. Recall thdts and R(us — A, \) are graded Morita equivalent as we
showed in Proposition 3.11110. This, by Theofem 4.7.7 afig@and Xi [67] and the discussion
in Sectior[ 4.7, shows thd{ ,, is a graded cellular algebra.

In the whole section lef denote a sign string of lengtlh Recall that ifu,v € Bg are two
non-elliptic webs with boundary, thenw = u*v is the closed web obtained by glueingon top
of the webv. Moreover, recall that.; denotes a web with a flow f that extents ta.. By a slight
abuse of notation, we use a similar notation for a closed wetith flow f, but in this case the
flow is closed and can be split into two flovfs, f, that extent ta, andv respectively and match
at the boundary. Recall that flows have a weight that can lmeatdocally. In most pictures we
use wt as a short hand notation for the weight.

We need some more terminology before we can start, i.e.srs#ation it is crucial to distinguish
three types of faces.

e Theexternal faceof w, i.e. the unbounded face around the web
e Thefacesof w, i.e. all bounded faces af.
e Theinternal facesof w, i.e. all bounded faces af = «*v not intersecting the cut line.

For completeness, we note the following Proposition and @@y, i.e. the answer of question
one from above. It is important to note that the web algebsatisg-degree shifted byn}.

Proposition 3.12.1.Givenu,v € Bg, then theg-graded dimensiodim, of , kK, is given by the
Kuperberg bracket, i.edim, (,/£,) = ¢" - (4*v)kup-

Proof. This was already implicit in Sectidn 3.3 and Section 3.5, icembine the notes below
Definition[3.3.2, Remark 3.3.3 and Lemina 3]5.7. O

Corollary 3.12.2. Let , B, be any homogeneous basis d@f, and letw = u*v. Then there is a
bijection of sets
{w; | weightoff =k} = ,FF = B *™" ={be B, |deg(b) = —k +n}.

(2

Proof. This follows directly from Proposition 3.12.1 and the dission in Sectiof 3]2. O

Face removing algorithmThe definition below gives a procedure how to obtain for amgislesed
webw = u*v and a flowf of weightk on it an element i K, of degree—k +n. By a slight abuse
of terminology, we call this procedure an algorithm, althbwe avoid to make some necessary
choices at this point. This inductive algorithm is called fice removing algorithm

It is worth noting that the order in which we apply our locdlesimatters, since different orders
give rise to different foams, but can be any fixed order if tbeowise specified.

Definition 3.12.3. (Face removing algorithm)Given a closed basis web = u*v with any flow
[, denotedw;, we define a foany,,, : 0 — w e ,K, by a set of inductive, local rules beginning
with the identity foam ofw. Each rule corresponds to the removal of a circle, digon auae
face by glueing an elementary foam to the bottom of the ptesdoam. This is done in a way that

is consistent with the flow until no more rules can be applied.
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The elementary foams, which determine the local rulesedalircle, digon and square removals,
are depicted below. Tharcle removalgqfor both possible orientations of the web) are

OEOC

wt=0
and thedigon removalsre
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and thehorizontal square removakre
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It should be noted that none of the faces pictured above hiaseisect the cut line, but we still
call the two different square removals usually vertical hodzontal.

Furthermore, we call any fixed way in which this procedurepigli@d aremoval (of the faces)
of the webw.

wt=—1

Proposition 3.12.4.Letw = u*v be a closed web. Légt be a flow onw of weightk. Moreover, fix
an order in which to remove the faces of the web

(@) The foamf,,: ) — w € , K, obtained from the face removing algorithm 3.12.3 has a
g-degree of-k + n.
(b) If w = vand f = cis the canonical flow, thefi,, : ) — w € , K, is the identity foam.

Proof. (a) The algorithm uses three different elementary foanes, a circle removal, a digon
removal and a square removal. It is easy to check thagtiegree of these foams are2, —1
and0 respectively. Note that the change of weight, as indicateide figures in Definition 3.12.3,
correspond exactly to minus tlyedegree of the associated foam. For example, the removal of a
circle with a counterclockwise flow lowers the weight byand the associated foam haslegree
—2. Hence, the resulting foarf),, will be of the¢-degree-k + n.

(b) First we prove that any removal af. is a combination of dot-free removal of circle and
digon faces and vertical removal of square faces (by whichnean a removal which leaves intact
the two sides of the square that lie perpendicular to theicej Each of which intersects the cut
line. That is, faces removed in each step of the removaboére as follows (the dashed line
represents the cut line in each figure).
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We proceed by induction on the number of steps in the remdval.pi.e. we show that before
each step all faces with four or less edges lie on the cut ldetlae removal in each step is either
a dot-free removal of a circle or digon face or a vertical reatof a square face.

Sincew is a non-elliptic web with boundary, at the initial step oéttemoval ofw,, all faces
with four sides or less must lie on the cut line. Hence, the famoved in this step is one which
intersects the cut line. In addition, since the flowon- v*« is canonical, we see that circle faces
in w, carry the following flow.

(3.12.1)
Moreover, digon faces af. must carry one of the following three flows.

(3.12.2)

And finally square faces ab. must carry one of the flows shown below.

(3.12.3)

Thus, at the initial step of the procedure, a removal of aeiand digon face is dot-free and a
removal of a square face is vertical (for both orientatioinhe square).

Assume that in the-th step in the removal, all faces with four sides or lessti¢h® cut line and
the removal is either a dot-free removal of a circle face, tafid® removal of a digon or vertical
removal of a square. In the case that the face removed in-thestep is a circle or a digon, faces
with four sides or less in the: + 1)-th step must again be on the cut line, since removal of aircle
or digons on the cut line clearly do not affect the internaefaofu andu*. Otherwise, if the
face removed in the-th step is a square, we have two possibilities, eitherfthe- F; (i.e. it is
the external face ofv = u*u or connects somewhere by crossing the cut lineyoand F; are
different faces of; andu™* respectively. The result of removing this square face e@ts pictured
below.

F

In the former situation, removal of the square face has rectafin the internal faces afandu*

and thus faces with four sides or less in thet+ 1)-th step must again be on the cut line. In the
latter situation, the removal of the square face resulteéncteation of a new face on the cut line.
Note that no other internal facesofandu* are affected. Here again, faces with four sides or less

in the (n + 1)-th step must be on the cut line.
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Furthermore, beginning with a symmetric web with the cacaliilow, then any removal of a
circle face, a digon face or the vertical removal of a squace on the cut line results in another
web with the canonical flow, due to locality of the removal wemtions above. Thus, we see that
in the (n + 1)-th step, the faces on the cut line are again of the formin.3,212.2 of 3.12]3.
That is, removal of circle and digon faces are dot-free antbkal of square faces are vertical.

In the following, we consider the removal @f as a foam in, K, and denoted it by, . Since in
the removal ofw. consists solely of dot-free removal of digon or circle facesertical removal of
square faces that intersect the cut line, we have fhais composed of the following local foams
(corresponding to one part of circle, digon and square rav@hrespectively). Note that we use
the alternative description of the foam space (see Lemmad fhbexample).

From this we see that,. must be the identity foam ipk,. O

Example3.12.5 We illustrate now that the order of removing faces is impatitan contrast to
the Kuperberg bracket that is independent of the order @& famovals. In particular, if one uses
different orders for different flows, then it can not be guriead that the resulting foams are linear
independent.

(a) Consider the theta web, and the two flows illustrated below.

Then there are two methods to remove the faces, i.e. front tagkeft or vice versa.
Removing the faces from right to left gives the left (righdjpm illustrated below for the

left (right) flow. | __

In contrast, removing faces from left to right gives thedaling result.

Note that (b) of Propositiodn 3.12.4 is therefore not trildatause of the possible existence

of non-trivial idempotents.
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(b) Another example is the following. Consider the wep also called “square with digon
ears” and the two flows om, pictured below.

Removing faces from right to left and from left to right gitbe same foam (up to rotation).
The resulting foams are pictured below.

For the following theorem assume that one héigedway how to remove faces in a fixed order
for anyclosed wehv independent of flow lines. By a slight abuse of notation, wethes a fixed
way to remove webdNe give one isotopy invariant method to assign to eacduch an preferred
face removal later in Definition 3.12J12.

Theorem 3.12.6.The set of flows on a web parametrises a basis foF (w), via the face removal
algorithm, if one uses the given fixed way to remove webs.

Proof. We proceed by induction on the number of facesotn the case that is a set of circles,
it is easy to see that the flows anparametrise a basis fof (w) by applying the cups from the
circle removals in Definition 3.12.3. Moreover, one easlipws that the claim is true for the theta
web (see Example_3.12.5 or Example 3.1P.17). Note that #te tieb has exactly two ways to
remove faces, i.e. from right to left or vice versa.

Suppose the claim is true for all closed webs with at mofstces. Letw be a closed web with
n + 1 faces. Without loss of generality, we can assumedhebntains no circles or theta webs.

Suppose the first step of the face removal algorithm is a digoroval. The web without the
digon is calledw’ and has: — 1 faces. Recall that the order of the facesuhnis the same for all
flows (because we fixed a removal independent of flow lines)wé&show in the pictures below,
given a flowf onw’, there are exactly two flows an which give rise tof. The two possible flows
are pictured in the same column and there are three diffeesgts howf can interact witho'.

7-1 . w/ w/ w/

By induction, the flows om’ parametrize a basis &f(w’) via the face removal algorithm. Given a

flow onw’, the two compatible flows om always give rise to two different digon removals shown
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below, i.e. either without or with a dot.

T = Ty =

w’ w’

From Proposition 8 in [51] we havé(w) =, F(w'){1} & F(w'){—1}, where the isomorphism
is given by

Fw) {1}y 2% Fw) and Fw) {1} 225 Fw),

where F(r;) and F(72) are glued on the top aF (w’). Hence, we conclude that flows an
parametrise a basis fof(w) as desired.

Now suppose that the first step of the face removal algorighesquare removal, resulting in
two new websw?, w” with possiblen — 2 faces (depending on the position of the external face
relatively to the square face).

There are two different square removals, each correspgridieither a vertical or horizontal
square removal in Definition 3.12.3. One checks that every fia w” corresponds to exactly
one onw that is removed vertical and every flow art corresponds to exactly one anthat is
removed horizontal. As can be seen, all eighteen possilis fhmw appear exactly once this way.
By induction and Proposition 9 in [51], i.e. given the two i@rals

P"

one has an isomorphisifi(w) =, F(w ), where the isomorphism is given by
Fw) 2™ Fw) and Fw") 2% Fw),

whereF(;) andF(;) are glued on the top of (w?) or F(w"). This implies that the flows om
parametrise a basis fof(w). O

Colouring of webs.We will proceed by giving a particular isotopy invariant imedl to remove
any closed web. We will call this procedupeeferred We note that “isotopy invariance” is a
rather strong requirement. In order to obtain such a basisegd some technical definitions and
lemmata, but the main idea is rather simple. We shortly exjpi&ere and the reader may skip the
more technical points below on the first reading.

It should be noted that the face removing algorithm 3]12s3explained in Example_3.12.5,
dependson the order how to remove faces, but only fagighbouringfaces, as explained in
Lemmal3.12.74 below. Therefore, it suffices to give a facewnhg of webs such that neigh-
bouring faces get different colours. Moreover, since a vBedb special type of a trivalent graph, it
is possible to give 8-colouring(we call the colourd, 2, 3) of faces. Hence, we can summarise
the rest of the section in three sentences.

e We give in[3.12.7 an isotopy invariant method how to 2-coledges of a closed waeb.
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e This 2-colouring of the edges can be used to give a 3-colgwirthe faces, as explained
inB.12.12.

e Remove all available faces with thewestnumber (colour) in any order using the face
removal conventioh 3.12.3.

We will use the 2-colouring below to fix a way to remove the faocé webs. It is worth noting
that this colouring has a very special property, i.eonty depends on the sign strirt4y There-
fore, it gives rise to a 2-colouring that extendsatwy possible web with the boundary strirtg
It should be noted, as we explain in Remark 3.112.9, that thisl@uring therefore has some-
how “anti-properties” of the canonical 2-colouring (theeanduced by the canonical flow). See
Lemmd311.18.

Using Theorerh 3.1216, we note that this implies the exig@han isotopy invariant basis, since
the face removing algorithin 3.12.3 and the proceflure 32i2elow are both isotopy invariant.

We need some terminology before we can start. Given aweb v*v we can split it into its
connected components’, i.e. we can split a web witlm such components as

w=w*I- Iw™.

We call the connected componentssted of typé > 0 and denote them by,”, using the follow-
ing inductive definition.

e The0-nested components are the webs incident to the exterreafiac

e Fork > 0, we call acomponerit-nested, if it is incident to the external face after remgvin
all £’-nested components féf < k& — 1, but not after removing alt’-nested components
fork/ <k —1.

The picture below illustrates the definition.

c1 [} Cc2
w‘FCXC wo

Moreover, given a 2-colouring (say with colours red and gyed the edges of a closed weah we
call a faceF' of w of typer, if all the edges of the face are red, and of typéat least one edge is
green. We denote them Wy, or F,, respectively. The following pictures illustrate the notio

©01030;

It should be noted that this technical distinction betweested or non-nested is necessary as we
see later in Lemma_3.12.8. Moreover, the same lemma ensaeghe algorithm from Defini-

tion[3.12.7 does not run into ambiguities.
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Definition 3.12.7. (Colouring of closed websYVe give an algorithm to produce a 2-colouring
(say with colours red and green) of the edges of a closedwyednich that at each vertex two red
edges and one green edge meet. We call this colopnefgrred It should be noted that it is not
a priori clear why this procedure does not run into ambigsitiBut this will never happen, see
Lemmd3.12.8. The same lemma ensures that the result atdrdoes not depend on the choices
involved.

The algorithm works as follows. First coloatl 0-nested components,’ by the following
procedure.

(1) Atthe initial stage, colour all edges of the externakfatw,’ red.

(2) Atthei-th stage we complete the colouring of the edges incidemig@eértices ofu;’ with
at least one edge already coloured fromthe 1)-th stage.

(3) At a given vertex, if only one edge_; had already been coloured and it is green, then we
colour the two remaining edges, ¢, red (if one is already red, then colour the remaining
one also red). If two edges_i, ¢;_, had already been coloured and they are red, then we
colour the remaining edge green.

(4) At a given vertex, if only one edge_; had already been coloured and it is is red, then we
colour one of the other incident edges in the following fashi
e Green fore;, if the type of the corresponding face qfis already green.
e The remaining edges incident to this vertex should be red.
Below we have summarised the convention in a picture.

Now, if all k-nested components are coloured, then colour exactly oye @deacht + 1-nested
by first choosing a line that cuts though all the componentsaat once (e.g. the cut line). Then
at least one edge of all+ 1-nested component is neighbouring an already coloured é€tiysose
one such edge for all + 1-nested component and colour it in the following way and trepeat
the procedure from before.

Or in words, use the same colour, iff the orientation of the iis reversed. The algorithm stops if
every edge is coloured.

Lemma 3.12.8.The 2-colouring ofv above is well-defined and it does not depend on the choices

involved.
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Proof. First we prove the second statement, i.e. that the choicestmatter. In fact this can be
easily seen by locally alternating the line that cuts thotinghcomponents as illustrated below.

YFgY \r/FgY YFQ\T/

Note that all three choices above give the same result direcearresponding face is of green type.
We leave it to the reader to check the other possible colgarirlence, since choosing a different
edge can also be seen as rearranging the line, we get thedssatement.

To see that the colouring is well-defined, we proceed by itida®n the numbem of faces of
w. It can be easily checked that it is well-defined for a cirala theta web.

Moreover, one easily checks that every closgdvebw has at least one circle, digon or square
face. Fix one such facg and remove it from the web as explained in the subsectiorrdéeiide
resulting webw’ is, by induction, colourable without ambiguities. If theedaF' is a circle, then
one easily sees that the colouringudfcan be extended without ambiguitiesuitdoy applying the
procedure in Definition 3.12.7.

If F'is either a digon or a square, then one can extend the cotpurihe following way.

w  w Jw jw w W

< < <
— — —

in the case that’ is a digon and iff" is a square, then we use the following.

w w’ w w' w w

-
g

It should be noted that the only ambiguous seeming casethe case where the result of the
square removal oy has two alternating coloured edgesuify does not occur. This is because the
two strings inw’ have a different orientation.

Hence, if they are part of the same connected component,thenhave the same colour,
because the colours and the orientations always alterbhatertaces. If they are not part of the
same connected component, then we have to use the cut pre@dqlained before to see that
they have the same colour. This proves the first statement. O

Remark3.12.9 Note that the Definition 3.12.7 can also be made for half webswebsu with a
given sign stringS at the boundary. An analogue of Lemma 3.12.8 can be shownoas.ab

Moreover, it is easy to show that, given a fixed sign strihgnd two websu, v such that
S = Ou = Owv, then the preferred colourings afand v match at the boundary and the pre-
ferred colourings of.*v andv*u are given by glueing the preferred colouringsugt together.
This is already implicit in Lemm&_3.12.8 because the way howut a web does not affect the
result, i.e. we can take the cut line for non-elliptic webs.
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Example3.12.10 An easy example of how the colouring works is shown below.

Definition 3.12.11. (Preferred flow on closed webs}onsider the subgraph af given by the red
edges. It is easy to see that this subgraph consists of andisgi of closed cycles. By orienting
these edges so that the flows around the parts of the web argeaticounterclockwise and all
other cycles clockwise we obtain a flow an We call this flow thepreferred flonand writew,, for

w with the preferred flow.

Note that, by construction, the preferred flay always consists of flowmsidefaces or flows
around the web. That is, they will never cross through edgesthe case below will never occur.
A good example is the flow pictured in Example 3.12.18.

The following definition of thepreferred face removak given for a connected web. For an
arbitrary web, the whole process should be repeated for amyected component.

Definition 3.12.12. (The preferred face removingfGiven a closed web with a flow denoted as
wy. At each stage of the face removing algorithm let the ordeheffaces be determined in the
following way.

It should be noted that the preferred flow from Definifion 3IMPimplies that any facé’ of w,
is of the following type because every face has an even nuofledges and the closed circles of
the preferred flow are always oriented clockwise except the flows around the Welnote that,
by abuse of notation, we denote a face around a connectedc@mipof the web as,,;, although
this face is not the external face for nested parts.

e Facesf, such that the preferred flow has a componentiokide F;.
e Facesrls, such that the preferred flowhas the same orientation as the edgeg.,of
e Facesrl3, such that the preferred flowis against the orientation of the edgesrgf

To summarise see the figure below. A face of typshould be labelled.

Fy Iy Fy Iy Byl I3 Fy f I

At each stage of the algorithm we continue to call the web Wi w,;. We removew; by the
following algorithm.

(1) Remove all circles im; using the local circle rules of Definitidn 3.12]112, in any erdlf

there are no faces remaining, the algorithm stops. If thexéages remaining and some of
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them are digons, then proceed to step 2. If no remaining fa®edigons, then proceed to
step 3.

(2) Remove all digons with the smallest label using the ldogbn rules of Definition 3.12.12,
in any order. Go back to step 1.

(3) Remove all square faces with the smallest label usindab& square rules of Defini-
tion[3.12.12, in any order. Go back to step 1.

We call the above process of obtaining a foaly) € F(w) the preferred face removaif w; or
shortpreferred resolutiorof w;.

Remark3.12.13 Notice that it is relatively easy to calculate the order @efaemoving since the
preferred colouring of the web’ (and therefore the preferred flow) after removing a pardicul
face ofw can be computed directly as indicated before in the proofeshing 3.12]8.

It is straightforward to check that this recursive procedgives the same answer as if one
calculates the preferred colouringof as in Definitiol3.12]7.

Lemma 3.12.14.The preferred resolution af; is well-defined.

Proof. We note that the labelling of the faces is in such a way thghi®uring faces never have
the same label, i.e. they define a colouring of the faces wiith three colours. Hence, we only
need to show that the consecutive resolution of two nonkieigring faces in two different orders
results in isotopic foams.

A simple illustration shows that the consecutive removifidpe two faces in two different orders
yields isotopic foams.

The above only illustrates the effect of removing both sqdiaces in one particular way, but similar
arguments demonstrate the claim for different removindgpnefstquare faces as well as removing of
digon faces. O

Theorem 3.12.15Given awehv = u*v, the face removing algorithim 3.12.3 together with the pre-
ferred face removdl 3.12.112 gives an isotopy invariant, bgemeous basis of (w) parametrised
by flows onw. If w is symmetric, then the basis contains the identity giveméyanonical flow.

Proof. This is a direct consequence of Theorem 3]12.6, Propo$XibA.4 and the fact that the
procedures explained in the Definitidns 3.12.3[and 3.12 drk\m an isotopy invariant way. [

From Theoreni_3.12.15 we get the following corollary since day fixed sign stringS the
algebrak s was defined as



Corollary 3.12.16. Let S be a fixed sign string. The set of flows on all websvith S = Jw
parametrises an isotopy invariant, homogeneous basidsfgr via the preferred face removing
algorithm.

Example3.12.17 Consider the theta web from Examplé-3.12]5 again. We know that the graded
dimension ofF (w) is given by the Kuperberg bracket and is therefatg] = ¢ 3 +2¢~'+2¢+¢>.
The six possible flows (ordered by weight) @rare illustrated below.

wt=—3

Notice that in this case the canonical flow is also the preteflow. Hence, the order of removal
of the faces is from right to left. This gives the followingdmelements (ordered lgydegree) for
the corresponding flows.

Example3.12.18 The counterexample of Khovanov and Kuperbeérg [57] for thyatiee exponent
property (compare to Theordm 32.5 and the Remark]3.2.65gige to another interesting exam-
ple, i.e. the corresponding foam will be (up to a scalar figa@mon-trivial idempotent of the web

algebra. The preferred flowfrom Definition[3.12.111 onv pictured below (for both orientations
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of w) has weightvt(p) = 12. Thus, the corresponding foam hadegree).

One easily checks that the canonical flewn this web also hast(c) = 12. Thus,F(w) has
two linear independent foams indegree zero. Note that (b) of Proposition 3.12.4 ensugshle
foam obtained from the canonical flow is the identity.

3.13. Open issues.Let us mention some open questions that are hopefully aeswarfuture
work. Note that some other open questions were already slisduin Section 3.1. We will focus
here on four questions the author is currently working omels the ones listed below.

(a) We conjecture that there is an ordering how to resolvesvesbexplained in Sectign 3]12
such that the resulting basis is a graded cellular basis.aRor of constructions involv-
ing graded cellular bases one needs a particular basis irpdicieform (compare to the
discussion in Sectidn 4.7). Hence, it is a future goal to giveh a basis fofg.

(b) A generalisation of the results on Howe duality from 8e8ci3.10. That is a pictorial
version similar to the results in Section 3.10, but for it representations &f,(sl,,). In
order to do so, one would for example consider clasps angethseb spaces as explained
by Kuperberg in[[70]. Note that this is not known at the momentn forn = 2. This
would correspond to the coloured versions of¢hegpolynomials instead of the uncoloured
case.

(c) Instead of a categorification of thevariant tensors, as we have done, one could also
try to give a categorification of th&ull tensor product. Note that in the = 2 case a
categorification is known, e.g. see Chen and Khovahov [243.worth noting that this is
related to the question how to construct the quasi-hemyditaver of Ks. Such a cover for
Khovanov's arc algebra, i.e. thé, case, was studied by Brundan and Stroppel [19], Chen
and Khovanovi[24] and Stroppel [107].

(d) The Question 3.111 asked by Kamnitzer, i.e. how our werelated to the approach from
algebraic geometry by Fontaine, Kamnitzer and Kuperhesj [3
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4. TECHNICAL POINTS

4.1. Higher categories. In the present section we recall some definitions and theorfeom
higher category theory.

Note that we always talk aboustrict (n, n)-categoriesif we sayn-category. Here we allow
n € {0,1,2,...,w}. One can think of a-category as a-dimensional category

We usually drop the “strict”, that is all categories are a&ssd to be strict unless otherwise
mentioned. Informally, the strict refers to the fact thatngmsition of higher morphism is “on the
nose” associative and satisfies some identity laws.

Moreover, an, r)-category (with- < n) is a category with only non-trivial-cells fork < n of
which all ©’-cells forr < k' < n are invertible. For example a strict, 0)-category is a groupoid,
while a strict(1, 1)-category is a usual category.

Note that(n, 1)-categories arise in a lot of examples motivated from togypknd are sometimes
calledn-categories. But we do not need them in this thesis, so werefay to Leinster’s [75] book
for a more detailed discussion.

Moreover, toavoidall set-theoretical question, which are interesting f@irtlown sake, but not
for our purposes, all categories shoulddssentially smalli.e. the skeleton should be small. By a
slight abuse of notation, we always take about sets of ahjembrphisms etc.

We start by recalling some “classical” notions that we neeithe following.
Definition 4.1.1. Let C be a category. The category is call@sdrict) monoidalif it is a monoid

in the categoryCat,, i.e. the category of categories. That is the categbry equipped with a
bifunctor®: C x C — C such that the following is satisfied.

(a) There exists a unit € Ob(C) such that for all” € Ob(C)
IeC=10C=C.
(b) ForallCy, Cy, C5 € Ob(C) the associativity holds, that is
(C1® Cy) ® Cs = Cy @ (Cy @ Cs).
Note that the functoriality implies
(ffeg)@(fog)=(f®f)oly®y)
for suitable morphismg, ', g, ¢'.
A weak monoidatategory is the same as above, but (a) and (b) hold only upttwatégsomor-

phism, denotedc, /- andac, ¢, ¢4, such that the following two diagrams commute.

xCq,1,C9

(C,®1)® Cy @ (1®Cy)
C, @ Cy
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and the so-called pentagram identity

(C1 @ Cy) @ (C3 @ Cy)

AC18C5,C3,Cy QCy,C5,030Cy

((C1 ® Co) ® C3) @ Cy C1®(C2® (O3 ® Cy))

Qg ,Cy,C3®1 1®acy,,cq,04

0401,02®03,C4

(C1®(CoC3))®Cy Cr ® ((Cr ® Cs) @ Cy)

A (weak or strict) monoidal category, @) is calledsymmetridf for all C,,Cy € Ob(C) there
exists natural isomorphismg;, ¢,: C1 ® Cy = Cy ® Cy andvyg, ¢, : Co ® C; = C1 ® Cy such
that’YCQ,Cﬁ o 701,02 = idcl®02 andrYCl,CQ o 702,01 = id02®C1'

Example4.1.2 For a given fieldK the category’ =Vecy together with the usual tensor product
is a weak, symmetric monoidal category.

In general, since one is mostly interested in more than etpnee classes of objects, strict
monoidal categories are rare. But a well-known fact, alsmakmasMac Lane’s coherence theo-
rem allows us to “ignore” the difference between strict and kveenoidal categories, i.e. by Mac
Lane’s coherence theorem we have the following.

Theorem 4.1.3.Every weak monoidal category is equivalent to a strict mdalbcategory.

Note that a monoidal category has alreadydimensional structure, see Example 4.1.6. We are
going to recall the notion of &-dimensional category” now.

Definition 4.1.4. A 2-category¢ is al-category enriched ovélat; .

Informally, a2-category is a category consisting of the following.

e Objects, also called-cells. One can imagine them asdimensional. They are often
pictured as. We denote the class of objects usually®iy(<).

e 1-morphisms, also calleti-cells. One can imagine them aslimensional and they have
therefore one way of composition. They are often picturetth@following way.

f

e ——> 0

We denote the class afcells betweerC, D € Ob(€) usually byMor, (C, D) or without
the subscript if the context is clear. Composition is drawn in the follogiway.

/ g
[ ] [ ] [ ]

e 2-morphisms, also callegtcells. One can imagine them aslimensional and they have

therefore two ways of composition, i.e.vartical o, and ahorizontalo,. The2-cells are
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often pictured in the following way.

f f !
; SONS TN
aoU5:O—B>o aop = Ha ° B e
] NN

e The interchange law, that is

(Oé Oh 7) Oy (5 Op 6) = (Oé Oy 6) Ohp (7 Oy 5)
or in pictures

/U\/u\

'\W/\V/\/

ﬂ&
\/ \/ N2

Again, the notion of aveakQ-category, introduced as a so-call@dategoryby Bénabou, is more
common. Informally, this is like a stri@-category, but some equations should only hold up to
natural2-isomorphisms. We do not recall the formal definition here aafer e.g. to Leinster [75],
since the formal definition is rather complicated and Thedel.% below shows that we can
“ignore” the difference again. A proof of the theorem is algl-known (in the sense that BEnabou
already proved itin the 1960s). For a proof see for examg@g [&n interesting factis that if < n,
then there isi0 corresponding coherence theoremifecategories!

Theorem 4.1.5.Every weak-category is equivalent to a strietcategory.

Example4.1.6 There are a lot of examples of (weak and strictategories.

(a) The category of all categori€at, is a strict2-category with categories ascells, functors
as1-cells and natural transformationsasells.

(b) The category of topological spacEsp can be seen as a wezdcategory, i.e. the-cells are
homotopies of continuous maps. We note that it is a weak)-category, e.g. composition
of homotopies is not associative, but all homotopies areriile. Note that this can be
generalised to a wedk, 1)-category fom € {1,2,...,w}.

(c) The categorBiMod is a wealk2-category. To be more precise.

— TheO-cells are unital ring$z, S, T, . ...
— The1-cells are bimoduleg M, s N and composition of bimodules is defined by

rMg o1 sNp = pMg ®g sNr.
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— The2-cells are bimodule homomorphisms. Vertical and horiziocgenposition are
fovg=fog and fo,g=f®sg,

whereo denotes the standard composition of bimodule maps.
Note that the higher morphisms are not invertible, i.e. & i8eak(2, 2)-category.

(d) An example that is related to our constructions in Sed#@nd Sectiohl3 is the category
Cob,, i.e. the category of two dimensional cobordisms. Thisgatgis a good example
why 2-categories can be seen as two dimensional. To be more @recis

— TheO0-cells are disjoint unions of points y, . .. in a fixed plane.

— Thel-cells f: x — y are one dimensional manifolds with boundary embedded in the
plane whose boundary is exactlyat one side ang on the other. Composition is
given by glueing along the common boundary.

—The2-cellsa: (f: x — y) = (¢9: * — y) are two dimensional manifolds with

boundary whose boundary is exacflyat the top andy at the bottom. Such 2-cell
could look like

Composition is given by glueing along the common boundary.
Note that this is &2, 2)-category, since cobordisms are almost never invertible.
(e) Another important example we need is that a given (weastract) monoidal category

(C,®) can be seen as a (weak or strizyategorye by “pushing up the cells”. To be more
precise.

— We add exactly one-cell calledx.
— We see thd-cells of the category as 1-cells of €. Composition is given by the
monoidal product.
— We see thd-cells of the categor¢ as2-cells of €. The vertical composition is the
composition inC, while the horizontal composition is given by the monoidalguct.
(N Another example we need is the following. Recall thatrayrk is calledidempotetedif
there exists a st of idempotents = {¢; € R | i € I} such that

R = @ €Z‘R€j.

ei,ejEE

Such rings correspond to categori@swhose0-cells are the idempotents and whose
1-cells between;, e; are the elements ef Re,;. Note thate; Re; is an abelian group, i.e.
R is pre-additive. An example of such a ring is Beilinson-LiigsdMacPherson [11] ring
U(sl,,) from Sectiof3H4. In the same vein, an idempotented categaan be seen as a
pre-additive2-categoryc.

Note that Example4.1.6 (e) shows that Theotem #.1.5 insltite Theorern 4.1.3.

4.2. Grothendieck groups of categories.In this section we recall some well-known facts about
the Grothendieck group of abelian, triangulatedr additivecategoryC. Moreover, we explain
how this notion can be categorified such that it makes senskdategories. We closely follow

Mazorchuk [88]. Note that our convention is to writg(C), K (C) or K3(C) for the (usual)
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Grothendieck group, thsplit Grothendieck group or th&iangulated Grothendieck group of a
corresponding suitable (details below) categomgspectively.

The origin of the Grothendieck group lies in abstract algele. it is the most natural way
to extend a commutative monoid/, +,0) to an abelian groupA, +,0), e.g. the well-known
construction of the integef&, +, 0) from the natural number®, +, 0). Let us be more precise.

Definition 4.2.1. The Grothendieck groupf a commutative monoidM, +,0) is a pair(A, ¢) of
an abelian group! and a monoid homomorphist: M — A such that the following universal
property is true.

Given a monoid homomorphism: M — A’ to any abelian group!’, there exists a unique
monoid homomorphisnk: A — A’ such that the following diagram commutes.

¢

Nz

Alternatively, if there exists a funct¢r}: Mon — Abel from the category of monoidgon to the
category of abelian groupgisbel that is a left adjoint to the forgetful functor in the otheratition,
then theGrothendieck groupf a commutative monoidM, +,0) is [M].

M A

To make sense of the definition we only need to construct téh@ndieck group, since unique-
ness up to isomorphisms follows from standard argumentst thie following definition works can
be easily checked, as in the constructitih= Z. For a given monoid}M, +,0) set

A=M x M/ ~, (my,ny) ~ (mg,ny) < Js € M suchthatn; + ny +s=n; +mg+s
for the abelian group and
¢: M — A, ¢(m) = (m,0)
as the monoid homomorphism.

The definition of the Grothendieck group via a functdisuggest that the Definitidn 4.2.1 can
be generalised to categories with small skeleton and sotree@operties. To be more precise, we
recall the following classical definition f@beliancategories.

Definition 4.2.2. Let A be an abelian category with a small and fixed skelétkf4d). The
Grothendieck groups,(.A) of A is defined as the quotient of the free abelian group generated
by all A € Sk(.A) modulo the relation

Ay = A; + A3 & Jan exact sequente— A; — Ay — A3 — 0.
The elements of<,(.A) are denoted byA] for A € Sk(.A).

It is easy to check that for this construction, given an adelfunction¢: A — A’ for an abelian
group A’, there exists a unique group homomorphiémK,(.A) — A’ such that the following
diagram commutes.

L Ko(A)

X N



Hence, one can say that this construction is the “most natueg to make the category into an
abelian groupsy(.A).

Example4.2.3 Let K be an arbitrary field.

(a) We explain the examplé =FinVecy from Sectior 1.1l in detail now. Since two finite
dimensionali-vector space¥®’, W are isomorphic ifidim V' = dim W, we see that

[V] = [K9™Y] € K,(C) forall V € Ob(C).

Form = m; + my we observe that one can construct an injectio®&™* — K™ and a
projectionp: K™ — K™ with im(¢) = ker(p). Therefore, we see that

0— K™ 5 K" %K™ =0 = [K"] = [K™]+[K™] € Ko(C).

Hence, the Grothendieck grouf(C) is isomorphic tdZ and generated byx] € Ky(C).
(b) Given a finite dimensiondk’-algebraA, we can consider the category of its finite dimen-

sional (left) A-modules, denoted b-Mod. Assume thab, ..., S, form a complete set
of pairwise non-isomorphic, simplé-modules. Theri,(A-Mod) is isomorphic to the
free abelian group with the sétS;] | i = 1,...,k} as a basis.

Note that, if we only consider an additive categety, then it makes no sense to speak about ex-
act sequences in general. Hence, one considers the notteespiit Grothendieck group; (A®)
as explained below. Similarly, given a triangulated catgd®, it is more convenient to use another
notion known agriangulatedGrothendieck groug<s* (7). Notice that every abelian or triangu-
lated category is additive, but the split Grothendieck groan be bigger thai, or K2*. We recalll
the following definition.

Definition 4.2.4. Let A, be an additive category with a small and fixed skelétiof4,). Thesplit
Grothendieck groug<{’ (As) of A, is defined as the quotient of the free abelian group generated
by all A € Sk(.A4) modulo the relation

A2:A1+A3<:>A22A1@A2.

Let 7 be a triangulated category with a small and fixed skel&fay). Then thetriangulated
Grothendieck groug<$ (7)) of T is defined as the quotient of the free abelian group genebgted
all '€ Sk(7) modulo the relation

T, =T +T; < Jatrianglely — T, — T5 — Ti[1].

Thesplit Grothendieck grougsy” (A), K5 (T) is defined as before, since every abelian or triangu-
lated category4d or 7 is additive.

An interesting example is the following.

Example4.2.5 Given any fieldK and any finite dimensiondl -algebraA, then we can consider
C = A-Mod or the category of finite dimensional, projective (leftymodulesD = A-pMod.
Notice thatC is abelian and is additive. Moreover, assume th@t, . . ., P, form a complete set
of pairwise non-isomorphic indecomposable, projectlvenodules. Hence, we have the following
set of pairwise non-isomorphic simpfemodules.

S =1{Si = P, /rad(P)), ..., S, = P,/rad(P,)}.

As explained above in Examgle 4.2 B,(A-Mod) is isomorphic to the free abelian group with

the set of all simpled-modules as a basis. In the same vein one can sedsthaA-pMod) is
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isomorphic to the free abelian group with the set of all iraeposable, projectivd-modules as a
basis. Now the obvious embedding functorA-pMod — A-Mod gives rise to an injective group
homomorphism

[t]: K§ (A-pMod) — Ky(A-Mod), [P] — [P].
If A has finite global dimension, i.e. the supremum of all proyectimensions ofA-modules
is finite, then[¢] is an isomorphism giving another basis/gf(A-Mod). Note that the converse
does not apply, e.g. the mé is also surjective for thel, analogue of the algebra we define in
Sectior 3.5, but the algebra itself has infinite global disiem (see Brundan and Stroppel[19]).

Remark4.2.6 The Grothendieck group of an abelian, triangulated or add#ndmonoidalcate-
goryC is infact aring, i.e. the multiplication is induced by the maadal product. In this case one
calls the corresponding Grothendieck group the (usuahdgulated or split}srothendieck ring

It is worth noting that one motivation to introduce and st@ipthendieck groups in the mid
1950s was to give a definition generalised Euler characteristido be more precise.

Definition 4.2.7. Let C be an abelian, triangulated or additive category. Denot&dm,(C) the
category of bounded complexes consisting of

e The(-cells are bounded complexes of the form
00— Cp —> Cppr e Cry —=C 0,
for somek, ! € N andC; € Ob(C) and suitable; € Mor,(C;, C;) such that;, o ¢; = 0.
Note that this makes sense in any abelian, triangulatedditiaelcategory.
e The 1-cells are maps of complexes, consistinglafells of C, together with the standard
requirement of commuting squares.

Denote with(C,, ¢.) € Ob(Kom,(C)) such a bounded complex. Then theler characteristic of
(C., c,) is defined by

1€EZ
with [C;] € Ko(C), if C is abelian,[C;] € K&(C), if C is triangulated, ofC;] € KF(C), if C is
additive. This is well-defined, since the complex is bounded

The question that arise is if the generalised Euler chatatiteis an invariant under homotopy.
Or equivalent, given an additive categatythenKom,(C) is triangulated. Therefore, one can ask
is K& (C) isomorphic toK 5 (Kom,(C)). The answer is yes. We refer to Rose|[98] for a proof.

Theorem 4.2.8.LetC be an additive category and denote the category of boundegblexes by
D = Kom,(C). Let(C,, c.), (D., d.) € Ob(D) be homotopy equivalent.

(1) There exists an isomorphism of groulgs (C) ~ K& (D).

(2) We have(C,) = x(D.).

Now we are able tdcategorify” the definitions above. Lef be an abelian, triangulated or
additive 2-category. Then taking some “Grothendieck group like catsion” should lead to a
1-category byidentifying structure®n the level oR-cells. By a slight abuse of notation, we write
K as a short hand notation for the three different casgsk s and K7, since it should be clear
which definition should be used. Moreover, we write simplptBendieck group instead of usual,

triangulated or split Grothendieck group. We recall théofelng definition.
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Definition 4.2.9. Let € be an abelian, triangulated or addit«ategory, then th&rothendieck
group (or Grothendieclcategory of ¢, denotedX’;(€), is defined as follows.

e The0-cells of K (<) are exactly th&-cells of €.

e Note that for fixedC, D € Ob(¢) the collection ofl-cells Mor$(C, D) and the corre-
sponding2-cells forms a category under vertical compositignof 2-cells. We can take
the Grothendieck group of this category!

e Thel-cells between twd-cellsC, D € Ob(€) = Ob(K;(€)) are precisely the elements
of the Grothendieck group mentioned before. For a gi«eell o: f = ¢, we denote the
corresponding-cell by [a], wheref, g: C'— D arel-cells of¢.

e Composition ofl-cells[«], [5] should be given by

o] o [5] = [aon B].

Note that the Grothendieck grougy;(¢) of € is enriched oveAbel, i.e. it ispre-additive The
following example illustrates the notion from Definitipr£48.

Example4.2.1Q The C-algebra ofdual numberss defined byD = C[X]/(X?). We note that
Khovanov homology as explained in Sectionl 1.1 uses a veptawed” of dimension two which
can be realised as the dual numbers (more about this latesaimld 4.3.5). Consider the category
C = D-Mod and denote by\/ the D-bimoduleM = D ®¢ D. Define a2-category¢ with the
following data.

e The2-category has onl¢ as a0-cell.

e Denote the category of all functofs: C — C by D. The collection ofl-cells and2-cells
should be the full additive subcategorylfof functors isomorphic to direct sums of copies
ofid: C - CorM ®p —: C — C. Since one easily verifies that

M®pM~Mao M,

this collection is closed under composition.
Using the isomorphism above, we see thdtand[M ©, —] form a basis of the-cells of K ().

Note that, given a monoidal categafythen one can see this ag-@ategory, as explained in
ExampldZ4.1l6, theik;(€) can be seen as a ring that is isomorphic to the “classicalti@raieck
ring of RemarkK4.2]6.

4.3. Grothendieck groups and categorification. In this section we define what we mean by a
Grothendieck group categorificatioor decategorification We follow Mazorchuk[[88]. In the
following, as always, all categories are assumed to havea#l skeleton. Note that @rothendieck
decategorificatiorof a categon( is either Ky, if the categonyC is abelian, K2, if the category is
triangulated, oK, if C is additive, as defined in Sectibn¥.2. As before, we wkiteas a short
hand notation for the three different cadég K5 and K and skip the words usual, triangulated
and split.

If Risacommutative ring with € R, then we would like to speak aboufadecategorification
The reader may think of @ategorificationof some algebra ovek.

Definition 4.3.1. Let C be an abelian, triangulated or additive category. Thé@mathendieck)
decategorificatiorof C is the abelian groug;(C) from Definition[4.2.2 or Definition 4.2]4. A

R-decategorificatioior some commutative, unital ring, is defined byK;(C) ®z R.
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One wants to define &-categorificationof an R-module M. If a R-decategorification is an
abelian group, then B-categorification should be an abelian, triangulated oitaedategory. To
be more precise.

Definition 4.3.2. A R-categorificationof an R-module)M is a pair(C, ¢) of an abelian, triangu-
lated, or additive categoiy together with a isomorphism

¢: M — K;(C)®zR.
We say that the pailC, ¢) is a R-precategorification, if we only assume thats a monomorphism.

Example4.3.3 (a) As always, there is no reason to speak about THE categatidfin. Only
the decategorification is uniquely defined. For examples fak= Z and setM = Z". If
Ais any K -algebra, for any field<, such that the categor-Mod has exactlyn simple
modules, then this category is a categorificatiod/bas explained in Example 4.2.3.
(b) Consider th€-algebra of dual numbdp from Examplé 4.2.70 again and $et= D—Mod
as before. Then the monomorphism

¢: 7 — Ko(C), 1 — [D]

iS not surjective since there isumique(up to isomorphisms) simpl®-moduleC (the X
annihilates it) and>(2 C) is its projective cover. But tensoring ov&rwith Q induces an
isomorphism
¢ Q— Ko(C) @z Q.
Hence, the pai(C, ¢') is aQ-categorification of) = Q @, Z.
It is worth noting that in fact in “most interesting” casesttatural” basis of the

Grothendieck group is given by indecomposable, projectieglules, but the example il-
lustrates that the set of indecomposable, projective nesdalnot a basis in general.

One also wants to speak otategory of categorificationsf a module. Hence, what we need is
a 1-cell betweenk-categorifications. Note that the same also workgfecategorifications.

Definition 4.3.4. Let M be anR-module and letC, ¢) and(D, ¢) be two R-categorifications as
in Definition[4.3.2. A morphism of such categorifications isexact, triangular or additive (for
the three cases abelian, triangular or additive) fungto€ — D such that the following diagram

commutes.
[F]

K3(C) K3(D)

N A

Now we have (almost) enough terminologydategorify R-modules using module categories
of finite dimensionalK-algebras. The last technical point we need is to extenddhstactions
above to theéZ-graded setting, since we need a quantum degifee our purposes. We give the
needed terminology now. Graded always meZrgaded and the categories in Definition 4.3.5
should be graded (which implies that its Grothendieck gliswa¥|q, ¢~ ']-module).

Definition 4.3.5. Let ¢: Z[q,q~'] — R a homomorphism with(1) = 1, whereR is a graded,

commutative, unital ring. Hence? can be seen as a (righ&]q, ¢—'|]-module. As before, lef be
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an abelian, triangulated or additive category.-Aecategorificatiorof C is defined by
KLR(C) = K;(C) ®zlq.q-1) -

In the same vein, given a gradétimodule M, then aR-categorificationis a pair(C, ¢) of an
abelian, triangulated or additive categalyvith a fixed, freeZ-action on it and an isomorphism
¢: M — KE(C).

Note that in most examples the homomorphisathe canonical inclusion. In this case we write
for simplicity K instead oK.

Example4.3.6 An interesting example is the following. Tl&algebra of dual numbers from
Exampld4.2.70 has a natural (in the sense that the dual nercée be obtained as a cohomology
ring of certain flag varieties) grading, that X should be of degre2. The reader should also
compare this to Khovanov homology explained in Secfioh WHere the vector spadé has a
basisv, andv_ of degreed and—1 respectively. Now set = D—Mody,, i.e. finite dimensional,
gradedD-modules. HenceZlq, ¢~ '] ~ Ky(C) asZ|q, ¢ ']-modules. Therefore, we see that the
graded categor¢ is a(Z[q, ¢ '], id)-categorification ofZ[q, ¢ '].

Given a graded, commutative and unital riRg one can speak ak-(de)categorification®f a
suitable2-category as in Definition 4.2.9.

Definition 4.3.7. Let R, € be as before. Th&-decategorification ?*(¢) of ¢ is the category
K§(€) = Ki(€) ®z R or Kj(€) = Kj(€) ®zj4-1 R

(ungraded or graded) and, given a categbenriched ovel — Mod (or the graded version), also
called R-linear or graded R-linear, a R-categorificationof C is a pair(¢, ®), where€ denotes a
2-category as before anll: ¢ — KZ£(€) is an isomorphism.

4.4. Higher representation theory. In the present section we are going to recall some definitions
from higher representation theorydere “higher” meang-representation theorylo be more pre-
cise, after recalling some basic notions framepresentation theory, we specify from the general
case to the case of2arepresentation ofi. Roughly speaking, while a “classical” representation of
g is given by an action on & -vector space, a “higher” representatiorya$ given by an action on

a K-linear category. That is, instead of studying linear map®, studies linear functoed nat-

ural transformations between these functors. The lateetimvisible” in classical representation
theory. We denote byx an arbitrary field in the whole section. Recall that we asstiratevery
n-category and every-functor is strict.

We follow Cautis and Lauda [23] in this section. Note that fiin&t systematic study of these
higher representations is due to Chuang and Rouduier [2&]wlorth noting that Rouquier [100]
formalises the notion of 8-Kac-Moody representation, i.e. he defiriesategoriest associated
to Kac-Moody algebras and then he defines sughrgpresentation as&afunctor F': € — © to
an appropriated-category®.

We start by recalling the basic ideas.

Definition 4.4.1. Let €, ® be two 2-categories. A2-representation o€ on ® is a 2-functor

F:¢€—-9.
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The basic question is, given for example a grajpvhat are thesymmetrieshe group acts on,
i.e. its representation theory. In this spitiigher representation theorghould be the study of
the“higher” symmetries(e.g. natural transformations). Usually one has to refininien4.4.1.
For instance, the following definition is more suitable for purposes. First recall the notion of a
Cartan datum.

Definition 4.4.2. A Cartan datunfor an fixed index set consists of the following.

e A weight latticeX and two subsets, A C X called the set afimple rootandfundamental
weightsrespectively. Herev, A are indexed by, i.e. we havex = {a; | i € I} and
A={A;|i e}

e AsetX" = homgy(X,Z) of simple co-rootsAgain, this set is indexed b¥, i.e. we have
XY =A{h;|iel}.

e A bilinear form(—,—): X x X — Z and a canonical pairing—, —): XV x X — Z that
satisfies the following.

— Foralli € I and all\ € X we have) # («;, «;) € 27Z and

(aiv )‘)
(cv, )
— Foralli, j € I with i # j we have(a;, ;) < 0.

— Foralli, j € I we have(h;, Aj) = d;;.
We use the two short hand notatiofi$ = (o, a;) anda™ = (A, a;).

Definition 4.4.3. A strong2-representatiorof g is a graded, additivey -linear 2-category® with
the following data.

e TheO-cells are indexed by the weightsc X.
e The 2-category has identity-cells 1, for all weights. Moreover, for all weights and all
i € I there arel-cellsE;1y: A - A+ a; andE_;1,: A + a; — A such that the following
holds.
— All 1-cells E;1, have left and right adjoints. The right adjoints are thel,.
— We haveE_;1, = E; 1 \{—a" — 1o},
Otherl-cells are obtained by composition, sums, grading shifeedoling images of idem-
potent2-cells.
These data should satisfy the conditions (1)-(5) below.

(1) TheO-cells A + ka; are isomorphic to the zero object for ale [ andk < 0 or k& > 0.
This condition is known amtegrability.

(2) The space oR-cells between any twa-cells is finite dimensional. Moreover, for all
weights we assume thator;(1,, 1,) is one dimensional antilor;(1,, 1,{k}) is zero
for negative shiftg: < 0.

(3) In® there exists isomorphisms

E,EF_ ;1,~FE_E;1,®1, if <h2, )\> > (0 and EF_ ;E1l,~FEFE_ ;1,®1, if <h2, )\> < 0.
(4) In® there exists isomorphisms farj € I andi # j
EiE_jll)\ ~ E_jEZ']L)\.

(5) TheE,,'s carry an action of the Khovanov-Lauda-Rouquier algebea Sectionh 314). Note
that this gives an action on the_;’s, too. More details can be found in [23].
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We are going to recall parts of the definition of theategorieg/(g) and its Karoubi envelope
U(g) also called idempotent completion. We are not going to te¢balrelations in general since
we do not need them for genergl We are giving the full definition in the casgs= gl,, and
g = sl, in Sectior 3.4. For the full list of relations we refer to [23]ote that, for simplicity, we
chose the scalars considered[in|[23] tothe= 1 = t;; ands]{ = 0 for all 4, j € I and suppress
this notion in the following.

Definition 4.4.4. Let us fix a Cartan datum as in Definitibn 4]4.2. Theategoryl{(g) for this
datum is the graded, additiv&,-linear2-category with the following cells.

e The(-cells are the\ € X.

e Thel-cells (defined for alf € I and\ € X) are formal direct sums of compositions of

1, &l =10l = 1o, &l and €1, = 1, €, = 15,1,

e The 2-cells are gradedi -vector spaces generated by compositions of diagrams shown
below. Here{k} denotes a degree shift by Moreover, we use the two short hand notations
'l = (o, ;) anda™ = (X, ;) again.

¢ = ’\+°‘i+_)‘ G2 = ’\+°‘i/T\_)‘ ¢3 = %Jh bs =R/ P5 = M
with ¢; = idg,, ¢2: &Ly = EL{a"}, ¢3: EE1\ = &;€1,{a”} and cups and caps
¢s: EEL = Li{3a" + oM} and¢s: £EL = L{ia" — a*}. Moreover, we have
diagrams of the form

= ’\_ai\% thy = ’\_ai\#k V3 = %f thy = \/i\A Vs = /;NA

(2

with 1p1 = idgﬂ.]_)\, ¢23 E.l = E_il)\{Oéii}, ¢32 8_2‘5_]'1)\ = E_jg_il)\{()éij} and cups
and caps)s: £_;&1, = Li{3a" + o} andys: £E,1, = Li{3a" — o’}

e The convention for reading these diagrams is from right fodad bottom to top. The
2-cells should satisfy several relation which we will notakdere. Details are either in
Cautis and Lauda’s papeér [23] or in the special cgsesgl,, andg = s, in Sectior 3.4.

We denote th&aroubi envelopef 14/(g) by U (g) and of a general catego€yby a slight abuse of
notation byKar (C).

With these definitions we are able to refine Definifion 4.4 dilmgTo be more precise.

Definition 4.4.5. A 2-representation dff(g) in a graded, additive-category® is a graded, addi-
tive, K-linear2-functor/': U(g) — ©. A 2-representation @ (g) in a graded, additive-category
D is a graded, additivey -linear2-functor F': U(g) — ©.

It is worth noting that, if the Karoubi envelog€ar (D) of © is equivalent ta®, then any2-
representation df/(g) extents uniquely to a-representation a¥(g). Note that Definitiol 4.4]3
of g is the same as the definition of artegrable2-Kac-Moody representation by Rouquigr [100]
except that Rouquier does not require (2) from Definition3t.But we need the notions above so
we mention that Rouquier’s universality theorem, which weatl in Sectiorh 314, is true with or
without (2) as Webster remarks In[117]. For completeneasti€ and Lauda proved the following.

Theorem 4.4.6.Any strong2-representation off on® in the sense of Definitidn 4.4.3 extents to a
2-representation in the sense of Definition 4.4.5.
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4.5. Cones, strong deformation retracts and homotopy equivalete. In this section we have
collected some well-known facts from homological algelvawd (mapping) cones, strong defor-
mation retracts and homotopy equivalences. We need theteifaSection 2. In particular, we
need them in the proof of Theordm 2]3.8.

In this section le€ denote any pre-additive category. It should be noted thairtbludes that the
notion “chain complex”, i.edod = 0, makes sense. We denote ttaegory of chain complexes of
C by Kom(C) (in contrast to the category dbundedchain complexe&om,(C)), i.e. the objects
are chain complexes with chain groupsin(C) and differentials inVior(C) and the morphisms
are chain maps, i.e. sequences of elemenid@fC) with the standard requirements.

We denote chain complexes by = (C;,¢;), D = (D;,d;) € Kom(C). With a slight abuse of
notation, we call elements dfor(C) simply “maps”. All appearing indices should be elements of
Z. Moreover, recall the following three definitions.

Definition 4.5.1. Let C, D be two chain complexes with chain grou@s D, and differentials
¢i,d;. Lety, . C — D be two chain maps. Lét;: C; — D,_; be a collection of maps as
illustrated below.

Ci—2 Ci—1 ¢ Cit1
Cia C; Cit1 / ..
hi—1 $i—1||¥i_1 Ry wi | | ¥} hiti Pit1 | | $iyg hite

/diQ /dil / d; /di+1

i—1 i i+1

The two chain mapg, ¢’: C' — D are callecchain homotopicdenoted byp ~;, ', if
Yi — @g =hjy10¢+d;i_0h;foralli e Z.

Two chain complexe€¢’, D are callecchain homotopidf there exists two chain maps: C' — D
andvy: D — C such that

;0@ ~pide and ; o 1; ~y, idp for all i € Z.

Such chain mapg: C' — D andy: C' — D are callechomotopy equivalencegVe denote chain
homotopic complexes by ~;, D.

Definition 4.5.2. Lety: D — C be a homotopy equivalence. Assume thabas a “homotopy
inverse’p: C' — D, thatis

;0 p; =1ide and p; oy ~y, idp foralli € Z,

theny is called adeformation retractionMoreover, if there exists a homotopywith h o ¢ = 0,
theny is called astrong deformation retractioandy is called arninclusion into a strong deforma-
tion retract

A (mapping) cone of two chain complexes is defined below. Befah Some authors use a
different sign convention.

Definition 4.5.3. (The cong Let C, D be two chain complexes with chain grougs D; and

differentialsc;, d;. Lety: C' — D be a chain map. Theoneof C, D along is the chain complex
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['(¢: C — D) with the chain groups and differentials

—C; 0
['i=C; ® D;_; andy; = < o di—l) )

i.e. if the two chain complexes, D look like

ci—1,di—1

ciyd; Cit1,dit1 Cit2,dit2
c,D: - Ci, Di = Cip1, Diyy —— Cigg, Diyog —— -~

then the cone along is generated by direct sums over the diagonal as shown below.

Ci—2 —Ci—1 —c; —Cit1
Cia C; Cita

@ @i 1 @ i @ Pit1 @

di—2 l di—1 L d; l/ dit1
D4 D; Diq

It is easy to check that the cone gives again a chain complere (bne has to use the signs
above). The following well-known proposition concludestection. We need it in order to prove
Theoren 2.318.

Proposition 4.5.4.LetC, D, E, F' be four chain complexes and let

C D
Al ol
E—=F

be a diagram in the categogom(C). Assume thaf is an inclusion into a strong deformation
retract /' andg is a strong deformation retraction with inclusigf Then

D(po f) =n T(p) =n T(gogp).

Proof. In order to maintain readability, we suppress some sulisdrighe following.
To show thatl'(y) ~;, I'(p o f) we denote their differentials by (*°f) andd"(*) respectively.
Consider the following diagram

dr(eof)

L(pof): Cin1 ® F Civa ® Fipy
of | [¢f Wt |
dr(e)
[(ep) : Ei1 @ F; - Eiio® Finy g

where the three maps®, )* andh are given by

£ o C(F 0 hoo
WZ(O id) and :<¢oh' id) a”dw:(o 0)'
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Here the map,;: F; — E;_, should be the homotopy from the inclusionointo f’. One easily
checks that the diagram above is commutative and that ttiisggives rise td'(¢) ~, I'(po f).
The statemerif(g o ) ~; I'(¢) can be verified analogously. O

4.6. Cubes and projective complexesIn this section we define/recall some facts from homolog-
ical algebra about cubes and projective complexes. We hesd in the Sectioh 2.6, since we can
only ensure that our assignment will be a “projective chaimplex”. That means lousily speaking
that face are commutative “up to a sign”.

Let Cu, be a standard unii-cube. We can consider this cube as a directed graph by itadpell
neighbouring vertices by wordsa,, in {0, 1} of lengthn as follows. Choose one vertex and give
it the label0 .. .0 with n-entries. Any of itsn neighbours get a different word of lengthwith
exactly onel. Continue by changing exactly one entry until every vertas & label.

For two verticesy,, 7, that differ by only one entry one assigns a label for the edges between
them by replacing with a x. The edges is oriented from to ~, iff £ = 0 for ~,. We denote such
an edge bys': v, — 7. Recall thatk denotes a commutative, unital ring of arbitrary charasteri

Definition 4.6.1. (Cube) An n-cube in aR-pre-additive categorg is a mapping
Cui: Cu, — C
that associates each vertexwith an element¢ € Ob(C) and each edgé: v, — v, with an
elementSS, e Mor(7S, 75).
A morphisms of cubes: Cu¢ — Cu’¢ is a collection of morphisms for all vertices that is

H C
{SS & | Vas Ve Vertices ofCu, Cu', }.

We denote the category efcubes inC by Cb,,(C) and the category of all cubesdhby Cb(C).

It should be noted that a morphisms betweentacubes can be seen as & 1-cube. Moreover,
from an+1 cube one can define a morphismwtubes by fixing a lettek of the words associated
to the verticesy, and fixing then-subcube€u®; andCu'¢ of Cu¢, | such that the vertices 6fu®’

havek = 0 and the ones dﬂuli havek = 1. The morphism is the given by all edges(ijth1
thatchangé = 0tok = 1.

Definition 4.6.2. (Cube type9 Denote byR* all units in R. The categor¢p, = C/R* is called the
projectivisationof C, i.e. morphisms are identified iff they differ only by a urdt.projectivisation
of a cubeCu’” is given by the composition with the obvious projection.

A face of a cube, denoted kb, is given by (we hope that the notation is clear)

Yao1

v

’ya()() fyall 9

Ya1o

or with an extra superscrigt for a cube inC. Such a face is said to be tfpea, c or p if the
following is satisfied.
(Type a) We havesy, o S¢, = —S¢ o S§, (anticommutativie
(Type c) We haves§, o S¢ =S¢ oSS, (commutativi
(Type p) We haves$, o S¢, = uS¢, o S§, for u € R* (projective.
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Furthermore, a cub€u€ is called oftype g type cor type p if all of its faces are of the corre-
sponding types.

A morphisms between-cubesCu’, Cu’g is called oftype a type cortype pif the corresponding
n + 1-cube is type a, type c or type p respectively.

Two cubesCu’ andCu’® are calledp-equalif

Cp _ /CP
Cu,’ =Cu’,".

We call two morphisms betweetii’ and Cu’fL p-equalif the corresponding: + 1-cubes are p-
equal.

Note that morphisms of type ¢ and type p are closed under csitipts. Hence, the category
Cb(C) has three subcategories, namely the following.

(Type a) The subcatego§b”(C) with cubes of type a and morphisms of type c.
(Type c) The subcategogb®(C) with cubes of type ¢ and morphisms of type c.
(Type p) The subcatego@b”(C) with cubes of type p and morphisms of type p.

It is worth noting that we can see any cub&ias a complexCs, ¢.) (the reader should be care-
ful that we do not saghaincomplex here) by taking direct sums of vertices with the saomaber
of 1 in their labels and matrices of the morphisms associatede@tiges between neighbouring
vertices.

Definition 4.6.3. Let (C.,c.) and (D.,d.) be two cubes of type p. We call two morphisms
v, C — D of type pp-homotopicdenoted byy ~7" ¢/, if

PYi — ng = hi—l—l oc; + uidi—l o hi foralli: e Z,

for a backward diagondl as in Definitiorl4.5]1 and units; € R*.
Two such cube complexes are callpehomotopicif there exists two morphisms of type p
¢: C'— Dandy: D — C such that

;o p; ~1 ide and ¢; o ~1 idp for all i € Z.

Such morphismg: ¢ — D andvy: C — D are calledp-homotopy equivalencesdVe denote
p-homotopic complexes of type p loy ~) D.

Definition 4.6.4. Let Cu,, denote am-cube and let us denote the set of edgeSwf by E(Cu,,).
An edge assignmentof the cube is a map

e: E(Cu,) — {+1,—-1}.

Let C be aR-pre-additive category. Then an edge assignmeithe cubeCu, is callednegative
(or positive, if Cu¢ is a cube of type a (or of type c) after multiplying the morphig of the edge
e € E(Cu,) of the cubeCb(C) with ¢(e).

The following lemma follows immediately from the definition

Lemma 4.6.5.1f Cu’ is a cube of type a (or of type c), then there is a negative (site) edge
assignment of ‘. O
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4.7. Graded cellular algebras. We recall the definition of aellular algebradue to Graham and
Lehrer [40] in the present section. Note that we need the itlefirof a graded cellular algebra
and some facts about these algebras and their represertaiory. We follow the paper of Hu
and Mathas[43]. Moreover, we also need some more facts aetiular algebras, e.g. the notion
is (almost) categorical in the sense that it is Morita irematiiff char(K) # 2. We follow Konig
and Xi in [67] in order to recall these facts.

Note that in the whole sectioA” denotes a field of arbitrary characteristic unless otherwis
specified. Moreover? denotes a commutative, unital, integral domain and our&oton for the
weight poseis that> denotesstrictly bigger Furthermoregradedalways mean@-grade@.

A graded(left) R-module is a module with a direct decompositibh = @, M4, where the
elements of\/, arehomogeneous of degrdeand M {i} denotes a degree shift by Z.

An graded(left) R-algebra is an algebra that is a graded (I&ftinodule withA;Ay C Ag. o
forall d,d’ € Z. A graded(left) A-module is a module wittld My C My, 4 forall d,d € Z,
while the rest is defined in the obvious way. We denote theyoayeof (left) A-modules byA-Mod
and the category of graded (leffymodules byA-Mod.,,.

Definition 4.7.1. SupposeA is a graded free algebra ovBrof finite rank. Agraded cell datunis
an ordered quintuple3, 7, C., 1, deg), where(33, >) is theweight poset7 ()) is a finite set for all
A € P, iis aninvolutionof A andC' is an injection

C: [TTO) x TN = A, (s,1) = ).
AP
Moreover, thedegree functiomeg is given by

deg: [T\ — 2.
AP

The whole data should be such that teform a homogeneouB-basis ofA with i(c),) = ¢, and
deg(c),) = deg(s) + deg(t) for all A € P ands, ¢ € T()\). Moreover, for alla € A

ach, = Z To(s,u)cl, (mod A™?).
ueT (M)

Here A>* is the R-submodule ofd spanned by the sét’, | x> A ands,t € T (u)}.
An algebraA with such a quintuple is calledgraded cellular algebrand thec), are called a
graded cellular basi®f A (with respect to the involutioi).

Example4.7.2 Let A = R[z]|/(2") andi = id. And let’3 = {0,...,n — 1} andT (k) = {1}.
Then the standard basi§, = 2* has a very special property, namely that the coefficients for
multiplication only depend on higher powers:o{moduloz™).

Let A = M, «,(R), i.e. the set ofv x n-matrices oveR. Set = {x} and7 (x) = {1,...,n}.
The standard basis of, i.e. thee;;-matrices, has a very special property, namely that theficoef
cients for multiplication with a matrix from the right onlye@end on the-th row and vice versa
for multiplication from the left only on thg-th column. Moreover, for the involution defined by
I(M) = Mt, we havd(eij) = €jj;.

ysually if we stress that something is graded we mean withnatrigial grading.
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For an example of a graded cellular algebra, we can take M, »(R) with the same data as
above. The degree of the two element§ifx) = {1, 2} should beleg(1) = 1 anddeg(2) = —1.
One can easily check that this a graded cell datum as in Defit7.].

In the same spirit, one can see (using the Artin-Wedderbineoilem) that every semisimple
algebra over a algebraically closed field is a cellular algelt is worth noting that Gornik’s
deformationGs of our web algebraks as defined in_3]5 is by Propositiobn 3.5.13 semisimple.
Hence, we see directly that it is a cellular algebra. Moreotree exampled = My,»(R) can
easily extended tol = M,,..,(R), showing that it is agraded cellular algebra. This implies
that every semisimple algebra is in fact a graded cellulgelada, although the grading f6is is
artificial and does not have connections to ¢Hdtration explained in3J5.

The idea of Graham and Lehrer was to “interpolate” betweentto extremes from Exam-
ple[4.7.2. One main example for our purposes is the following

Example4.7.3 As Hu and Mathas [43] point out, the algebras studied by Bannand Strop-
pel [19], and their quasi-hereditary covers graded cellular algebras in the sense of Defini-
tion[4.7.1. Note that these algebras aresheanalogue of the algebras we defined in Sedtion 3.

Another main example for us is also given by Hu and Mathas 8j, [#e. they showed the
following Theorem.

Theorem 4.7.4.Suppose that) is a commutative integral domain such tlais invertible inO,
e = 0 or e is a non-zero prime number, and I8 be the cyclotomic Khovanov-Lauda-Rouquier
algebra R} over 0. ThenR} is a graded cellular algebra with respect to the dominancgeor
and with homogeneous cellular basis explicitly givefdig].

Using Brundan and Kleshchg#6] graded isomorphism, this includes that the corresponding
cyclotomic Hecke algebra is a graded cellular algebr&iis a field.

Let us recall some facts about (graded) cellular algebras.

Definition 4.7.5. Let A be a graded cellular algebra ovér with a given graded cell datum
(B, T,C,1i,deg). Moreover, fix a weight\ € 3. The graded (left)A-cell module for\ denoted

CNis
=@
deZ

where(C? is the freeR-module with basis
{c}| seT(\) and degs = d}.

The action is given by
ac) = Z To(s,u)C).
u€T(A)
The coefficients should be the ones from Definifion 4.7.1. dt¢ten of the involution is defined
in the obvious way. Note that these modules can be seen ageatisation of the (graded) Specht
modules for the symmetric group and the Hecke algebras efAyp
For fixed A € 3 we can define
D* = C*/rad(C?).
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One main point why (graded) cellular algebras are intergss that they give a lot of informa-
tion about the categories-Mod,, and A-Mod, if one knows a particular (graded) cell datum for
it, i.e. although the existence of a (graded) cell datumoigrivial, as we argue below, agxplicit
(graded) cell datum is preferable. To be more precise, wadlr@atheorem of Hu and Mathas. The
proof can be found in their papér [43] in the Section 2.

Theorem 4.7.6.Supposéy is a field and thatd is a graded cellular algebra ovek” with graded
cell datum(*B, T, C, i, deg). LetR, = {\ € B | D* # 0}. Then we have the following.

(a) The graded4-moduleD" is absolutely irreducible for al\ € 3.

(b) Forall \, u € By we haveD* ~ D#{i} for somei € Z iff i = 0 and\ = p.

(c) A complete set of pairwise non-isomorphic, graded, simplaodules is given by

D ={Di} | A€P, andi € Z}.

(d) Let-: A-Mod,, — A-Mod denote the functor that forgets the grading. Then a complete
set of pairwise non-isomorphic simpfemodules is given by

D={D"|)eR}.

We recall a theorem due to Konig and Xi[67], i.e. that thepamy “being cellular” is Morita
invariant over fields of characteristic nat To be more precise.

Theorem 4.7.7.Let K be a field withchar(K) # 2. Moreover, letA be anK-algebra that is
cellular with respect to an involution Let B be anK-algebra that is Morita equivalent tal.
ThenB is a cellular algebra with respect to a suitable involutitn

It should be noted that their proof of Theorém 41.7.7 reliesaaing theoretical and basis free
definition of the notion cellular algebra usingall filtration of cell ideals It is well-known that
this definition is equivalent to the original one given by am and Lehrer, see [68]. To be more
precise, we recall the following.

Definition 4.7.8. SupposeA is a graded, free algebra ovArof finite rank andi: A — A is an
involution. A two sided ideal/ C A that is fixed by the involution is called acell ideal iff
there exists a left ideah C J that is finitely generated and free as &mmodule together with an
isomorphism ofA-bimodulesy: J — A ®g i(A) such that the following diagram commutes.

J—=A®ri(A)
i lx@yHi(y)@i(m)
J—=A@gi(A)

The algebraA is calledcellular with respect ta if there is a finite chain of two-sided ideals (all
fixed byi),i.e.0=J,C J; C--- C J,_1 C J, = A, such that/,/J,_, is a cell ideal ofA/ J,,_,
with respecttad forall 1 < k& < n.

Theorem 4.7.9.An R-algebra A is (ungraded) cellular in the sense of Definition 417.1 iffsit
(ungraded) cellular in the sense of Definition 417.8.

The Definition[4.7.8 can be copied and applied in the grad&thgetoo. Moreover, a slight

change of the proof of the equivalence givenlin| [68] shows din@ can give an equivalent basis
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free definition of Definitio 4.7]1 usingell filtration of graded cell idealsHence, using a result,
i.e. Theorem 5.4 and Corollary 5.5, of Gordon|[38], one ai#tdhatgradedMorita equivalence
between two algebras over a field of characteristicyaine a cellular algebra with a non-trivial
grading, implies the existence of a non-triviafjyadedcellular basis for the other in the sense of
Definition[4.7.1, although neither the bases elements mointlolution or grading arexplicit

The assumption thathar(K) # 2 is necessary as Konig and Xi showed and the following
example (given in Section 7 ih [67]) shows that one has to befglawith the involution.

Example4.7.10 Let K be field withchar(K') # 2 and letA be theK -algebrad = Matg,o(K).
Define two involutions, i’ by

._abHdband.,.ab)_)d—b
1'cal c a 1'cal —c a )’

One can check that is cellular with respect tdif one sets the corresponding cell module to be

Az{(ZZ)emeﬂKHa:ac:d}

But A is not cellular with respect td, since A is simple and therefore its own cell ideal which
would imply that there exists a cell modutesuch that

but an easy calculation, using the conditions given in D&dinid.7.8, shows that this is impossible.

4.8. Filtered and graded algebras and modulesn this section (note that this was the appendix
in [78]), we have collected some basic facts about filtergdladas, the associated graded algebras
and the idempotents in both. Our main sources|are [102][&0#].[1n this section, everything is
defined over an arbitrary commutative, associative, unitgl R.

Let A be a finite dimensional, associative, unitahlgebra together with an increasing filtration
of R-submodules

{0}CcA,CA_,1C---CAC---CA,1CA,=A
Actually, for anyt € Z we have a subspack, where we extend the filtration above by

&:{mhlft<ﬁu

A, if p>m.

Note that in the language of [102], such a filtratiouliscrete, separated, exhaustive and complete
If 1 € A, and the multiplication satisfied; A; C A,.;, we say thatd is an associative, unital,
filtered algebra Theassociated graded algebra defined by

E(A) =P Ai/Ai,
1€EZ
and is also associative and unital. Althougland E(A) are isomorphid?-modules, they are not
isomorphic as algebras.
A finite dimensionalfiltered A-moduleis a finite dimensional, unitaryl-module M with an
increasing filtration of?-submodules

{0}cM_,CM_ 441 C---CM=M,
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such that4;M; C M, ;, for all i,j € Z, after extending the finite filtration to A-filtration as
above.
We define the-fold suspensiod/{t} of M, which has the same underlyiigmodule structure,
but a new filtration defined by
M{t}T - MT—i—t-
Given a filteredA-module), theassociated graded modukedefined by

E(M) = @ M;/M;_y.
1€EZ
An A-module mapf: M — N is said topreserve the filtrationg f(M;) C N;, foralli € Z. Any
such mapf: M — N induces a grading preservitg A)-module mapt(f): E(M) — E(N)in
the obvious way.
This way, we get a functor

E: A-Modgq — E(A)-Mod,,,

where A-Mody, is the category of finite dimensional, filteredmodules and filtration preserving
A-module maps andél(A)-Mod,, is the category of finite dimensional, gradedA)-modules and
grading preservind’(A)-module maps.

Recall that4d-Modg is not an abelian category, e.g. the identity nidp— M {1} is a filtration
preserving bijectived-module map, but does not have an inverseli#viodg. In order to avoid
such complications, one can consider a subcategory witerfeworphisms. And-module map
f: M — N is calledstrict if

f(M;) = f(M)NN;
holds, for alli € Z. Let A-Mod; be the subcategory of filtered-modules and strici-module
homomorphisms.

Lemma 4.8.1. The restriction ofE to A-Mod,, is exact.

We also need to recall a simple result about bases. A basis. ., z,} of a filtered algebrad
is calledhomogeneous, for eachl < j < n, there exists an € Z such thatz; € A;\A;_;. In
that case{z, ..., 7,} defines a homogeneous basisiif4), wherez; € A;/A,_;. In order to
avoid cluttering our notation, we always write and then specify in which subquotient we take
the equivalence class by saying that it belongd to4; ;.

Given a homogeneous basig, . . ., y,} of the associated gradéd A), we say that a homoge-
neous basi§z, ..., z,} of Alifts {y1,...,y,} if T; = y; € A;/A,_; holds, foreach < j <n
and the corresponding< Z. The result in the following lemma is well-known. Howeverg w
could not find a reference in the literature, so we provideaatgroof here.

Lemma 4.8.2.Let A be a finite dimensional, filtered algebra afig, . . ., v, } be a homogeneous
basis ofZ(A). Then there is a homogeneous bdsis, . . ., z,, } of A which lifts{y,, ..., y.}.

Proof. We prove the lemma by induction with respect to the filtrati@gree;. Supposed, = 0,
forall ¢ < —p, andA, = A, forall¢ > m. ThenE(A_,) = A_,. Since{y:,...,y.} is a
homogeneous basis éf( A), a subset of this basis forms a basisAof,.

For each—p + 1 < ¢ < m, choose elements id, which lift the homogeneous subbasis of
E(A,). We claim that the union of the sets of these elements, for-all< ¢ < m, form a

homogeneous basis df which lifts {y;,...,y,}. Callit{z,...,z,}. By definition, thez; lift
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they;, forall 1 < j < n. It remains to show that the; are all linearly independent. This is true
for ¢ = —p, as shown above.
Let ¢ > —p and suppose that the claim holds far,, ..., z,, ,}, the subset ofz,, ..., z,}
which belongs to4,_;. Let
{1, em = {2, T U AT 41 Ty

be the subset belonging t,. Suppose that
(4.8.1) > N =0,
j=1

with \; € R. Then we have

Z )\jfj = Z )\jfj = Z )‘jyj =0e Aq/Aq—l-
j=1

j=mg_1+1 Jj=mg-1+1
By the linear independence of thg this implies that\; = 0, for all m,_; + 1 < j < m,. Thus,
the linear combination i (4.8.1) becomes

qzl )\jflfj =0.
j=1

By induction, this implies thak; = 0, forall 1 < j <m,_;.
This shows thah; = 0, for all 1 < j < n, so thez; are linearly independent. O

For a proof of the following proposition, see for examplegtrsition 1 in the appendix of [105].

Proposition 4.8.3.Let M and N be filteredA-modules and’: M — N a filtration preservingA-
linear map. IfE(f): E(M) — E(N) is an isomorphism, thefiis an isomorphism (and therefore
strict too).

The most important fact about filtered, projective moduled thheir associated graded, projec-
tive modules, that we need in Sectldn 3, is Theorem 6_in/[182}e that these projective modules
are the projective objects in the categeryMod.;.

Theorem 4.8.4(Sjodin). Let P be a finite dimensional, graded, projecti¥g A)-module. Then
there exists a finite dimensional, filtered, projectd«enoduleP’, such that'(P') = P. Moreover,
if M is a finite dimensional, filteredd-module, then any degree preservihkgA)-module map
P — E(M){t}, for some grading shift € Z, lifts to a filtration preservingA-module map
P — M{t}.

We also recall the following corollary of Sjodin (Corolfein [102] after Lemma 20).

Corollary 4.8.5. Let M be a finite dimensional, filteredd-module, then any finite or countable
set of orthogonal idempotents in

im(¢) C hompga)(E(M), E(M))
can be lifted tdhom 4 (M, M), where¢ is the natural transformation
¢: E(hom (M, M)) — hompa)(E(M), E(M)).
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