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Non-standard abbreviations 

4pMI  4 weeks after (post-) MI (see also “MI”) 

4pTAC  4 weeks after (post-) TAC (see also “TAC”) 

8pMI  8 weeks after (post-) MI (see also “MI”) 

8pTAC  8 weeks after (post-) TAC (see also “TAC”) 

AP  action potential 

BCS  bovine calf serum 

CaV1.2  voltage gated L-type Ca2+ channel (also known as dihydropyridine receptor) 

Cav3  caveolin-3 

CICR  calcium induced calcium release 

E-C  excitation-contraction 

EF  ejection fraction 

EM  electron microscopy 

FWHM  full width at half maximum 

GAPDH  glyceraldehyde-3-phosphate dehydrogenase 

HF  heart failure 

HW/BW heart weight to body weight ratio 

JPH2  junctophilin-2 

LAD  left anterior descending 

LSM  laser scanning microscope 

LVID,d  left ventricular inner diameter in diastole 

MI  myocardial infarction 

NA  numerical aperture 

NCX  sodium calcium exchanger 

PSF  point spread function 

PWTh,d  posterior wall thickness in diastole 

ROI  region of interest 

RyR2  ryanodine receptor type 2 (cardiac isoform) 

SERCA  sarco/endoplasmic reticulum calcium ATPase 

SR  sarcoplasmic reticulum 

STED  stimulated emission depletion 

TAC  transverse aortic constriction 

TT  transverse tubule, T-tubule 

Vold  heart volume in diastole 

Vols  heart volume in systole 
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Abstract 

Transverse tubules (T-tubules, TTs) are continuous invaginations of the plasma membrane which 

form a complex network of excitable membranes inside mammalian ventricular cardiomyocytes. The 

TT network couples electrical with chemical signals in the relatively large cardiomyocytes and enables 

the synchronous rise of intracellular Ca2+ concentrations in response to membrane depolarization 

during systole. It is assumed that the functional coupling of voltage-dependent Ca2+ channels in the 

TT membranes and ryanodine receptor Ca2+ release channels in the junctional sarcoplasmic reticulum 

is essential to assure Ca2+ induced Ca2+ release. Previous studies reported changes of the TT structure 

in cardiomyocytes from diseased hearts. However, the methods used to visualize TTs were either 

diffraction limited (confocal microscopy) or restricted to fixed samples (electron microscopy). 

In this thesis, Stimulated Emission Depletion (STED) microscopy, a super-resolution technique, was 

used to quantitatively characterize TT membrane structures in living cardiomyocytes. Applying 

different image analysis strategies, the properties of individual TTs and the TT network in living 

healthy and diseased cardiomyocytes were quantified. Pathological TT changes were analyzed in two 

different mouse disease models, which were induced either by myocardial infarction (MI) or by 

transverse aortic constriction (TAC). Imaging and analysis of the TT nanostructure were 

complemented by functional measurements of intracellular Ca2+ transients and by the analysis of 

proteins which might play a role in TT remodeling. 

During heart failure (HF) development after MI, a progressive and heterogeneous enlargement of 

individual TT cross-sections was observed. In addition, length and complexity of the TT network 

progressively increased after MI. A significant increase of longitudinal TT elements was identified 

4 weeks after MI representing an early time point of disease development. The observed TT 

remodeling was accompanied by differential expression changes of caveolin-3 and junctophilin-2. 

Furthermore, the differential spatial reorganization of TT elements correlated with a loss of 

intracellular Ca2+ release synchrony. Increased TT dimensions and proliferative TT network 

remodeling were also observed during HF development in the TAC model. These data suggest that TT 

remodeling after TAC may occur over a shorter period of time than TT remodeling after MI. 

This thesis introduces STED microscopy for imaging of intact TT membranes in living cardiomyocytes. 

Importantly, relatively early during HF development, individual TT elements and the cell-wide 

network properties are significantly altered through proliferative mechanisms. The data obtained 

here further suggest that TT remodeling during HF development might lead to excitation-contraction 

uncoupling, which can directly contribute to electrical and contractile dysfunction of diseased hearts. 
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1 Introduction 

1.1 The mammalian heart 

Every cell in the mammalian organism is supplied with oxygen and nutrients due to the specific pump 

function of the heart. 

The mammalian heart is comprised of four chambers, two atria which collect blood and two 

ventricles which accelerate the blood into the pulmonary and the systemic circulation. Deoxygenated 

blood is collected by the right atrium. The right ventricle pumps it into the lungs, where it is 

oxygenated. Oxygenated blood from the lungs is then collected in the left atrium. From the left 

ventricle, oxygenated blood is pumped into the systemic circulation in order to meet the metabolic 

needs of all organs and their cell components. 

Contractile heart muscle cells, termed cardiomyocytes, are essential to guarantee the blood flow and 

thereby continuous oxygen and nutrient supply throughout an organism’s lifespan. In particular, 

ventricular cardiomyocytes ensure rapid and synchronous contraction of the ventricles. This is 

facilitated by their specialized membrane structure. 

 

1.2 Transverse Tubules 

The plasma membrane of mammalian ventricular cardiomyocytes (sarcolemma) is comprised of the 

surface sarcolemma and of continuous invaginations into the cell interior. These invaginations were 

named transverse tubules (TTs, T-tubules) because TTs were initially observed as transverse 

membrane elements occurring in regular intervals along the long cell axis [2-5]. In mammalian 

ventricular cardiomyocytes, TTs have first been described in 1957 by Lindner who applied electron 

microscopy (EM) [6]. Subsequent EM studies confirmed that TTs are indeed invaginations of the 

cardiomyocyte sarcolemma [7, 8]. Also in skeletal muscle cells, TTs were characterized as 

invaginations of the sarcolemma by EM. The continuity of the skeletal TT system with the 

extracellular space has been demonstrated by a ferritin diffusion method [9]. Numerous early EM 

studies of skeletal TTs from different species have been performed by Franzini-Armstrong and 

colleagues [10-15]. Subsequent EM studies showed that TTs form a complex membrane network 

inside cardiomyocytes [16]. 

The complex three-dimensional morphology of the TT system in living rat ventricular cardiomyocytes 

was revealed by Soeller and Cannell applying an extracellular dye solution together with two-photon 

microscopy [1]. They described the TT system as a “sarcolemmal Z rete”, a network with regularly 
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spaced transverse elements connected through longitudinal elements. Figure 1.1 shows a three-

dimensional TT network reconstruction from a z-stack of two-photon images. The average TT 

diameter in rat cardiomyocytes was determined as 255 nm based on deconvolved two-photon 

images [1]. 

 

 

 

TTs provide a close proximity between the electrically excitable cell membrane and specialized 

terminals of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. TTs rapidly propagate 

depolarizing action potentials (APs) inside cardiomyocytes [17, 18] and thereby facilitate a 

synchronous contraction of the cell through a process known as excitation-contraction (E-C) coupling 

(see 1.3). 

TTs contain all major membrane ion transport proteins in the heart (reviewed in [19]). Particularly 

the key proteins involved in E-C coupling occur predominantly at TTs. The density of voltage-gated L-

type Ca2+ channels (CaV1.2s, also known as dihydropyridine receptors), which enable Ca2+ influx into 

the cell, is actually higher in TTs than in the surface sarcolemma [20, 21]. The Na2+/Ca2+ exchanger 

(NCX), which facilitates relaxation through extrusion of Ca2+ to the extracellular site, is also more 

abundant in TTs than in the surface sarcolemma [22]. 

The regular distance between the transverse TT elements in muscle cells is specified by their 

sarcomeric structure. Early EM studies of cardiac muscle showed that TTs are found at the Z-line, the 

end of each sarcomere and therefore, they occur at intervals of approximately 2 µm along the 

longitudinal axis of a ventricular myocyte [7, 23]. 

 

 

Figure 1.1 Three-dimensional TT network in a rat 
ventricular cardiomyocyte. Reconstruction of a z-stack 
imaged with a two-photon microscope. The TT system was 
visualized by extracellular application of a dextran-linked 
fluorescein solution. Scale bar: 5 µm. From Soeller and 
Cannell (1999) [1]. 
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1.3 The role of TTs in excitation-contraction coupling 

Every heartbeat is initiated by tissue wide AP propagation. APs are conducted from the sinoatrial 

node over the atrioventricular node to the ventricular myocardium where contraction of the 

ventricles is triggered [24]. The physiological process of converting an electrical stimulus to a 

chemical signal and ultimately to a mechanical response has been defined as excitation-contraction 

(E-C) coupling [25]. 

Figure 1.2 shows a simplified scheme of cardiac E-C coupling. During an incoming cardiac AP, Ca2+ 

enters the cell through the depolarization-activated L-type Ca2+ channels CaV1.2. CaV1.2 is located in 

the sarcolemma, primarily at junctions between sarcolemma and SR. On the SR-side of these 

junctions, SR Ca2+ release channels (ryanodine receptors type 2, RyR2s) are found [26, 27]. Upon 

entry of Ca2+ through CaV1.2, RyR2s open and release Ca2+ from the SR into the cytosol. This process 

is known as “Ca2+ induced Ca2+ release” (CICR) [28, 29]. The rise of intracellular Ca2+, the systolic Ca2+ 

transient, then activates the contractile proteins [30]. Cardiac troponin C acts as the sensor which 

confers Ca2+ sensitivity to muscle contraction [31, 32]. Relaxation in diastole is caused by removal of 

Ca2+ from the cytosol. The two main ion transporters that remove Ca2+ from the cytosol are the SR 

Ca2+ ATPase (SERCA) and the Na2+/Ca2+ exchanger (NCX) [30]. While SERCA pumps Ca2+ back into the 

SR, NCX is predominantly located in the TT membrane and exchanges intracellular Ca2+ against 

extracellular Na2+ in its “forward” mode (3 Na+ in, 1 Ca2+ out) [33]. 

 

Figure 1.2 Cardiac E-C coupling. Upon depolarization of the membrane due to an incoming action potential 
(AP), Ca

2+
 enters the cell through voltage-dependent L-type Ca

2+
 channels (CaV1.2). Ca

2+
 influx leads to the 

opening of ryanodine receptors type 2 (RyR2s) which release a large amount of Ca
2+

 from the sarcoplasmic 
reticulum, a mechanism called “calcium induced calcium release” (CICR). Intracellular Ca

2+
 binds to the 

myofilaments through troponin C, which activates contraction during systole. In diastole Ca
2+

 is removed from 
the cytosol mainly by the SR Ca

2+
 ATPase (SERCA) and the Na

2+
/Ca

2+
 exchanger (NCX) in its “forward” mode. 
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The regular TT spacing is thought to permit the large mammalian ventricular cardiomyocytes to 

nearly synchronously trigger the release of Ca2+ from the SR in response to depolarization [19]. 

Accordingly, TTs are an important determinant of cardiac cell function, especially as the main site of 

E-C coupling, ensuring spatially and temporally synchronous Ca2+ release throughout the cell [20]. In 

addition, the rapid and synchronous extrusion of Ca2+ through NCX might be facilitated by TTs, which 

exhibit an approximately threefold higher NCX density than the surface sarcolemma [22]. 

 

1.4 Nanodomains in the heart: Couplons and calcium release units 

1.4.1 Composition of couplons and calcium release units 

E-C coupling in mammalian ventricular cardiomyocytes depends on the local subcellular signaling 

between CaV1.2 and RyR2 [19]. The functional grouping of RyR2 and CaV1.2 (and other junctional SR 

proteins) which may act in concert during E-C coupling is referred to as “couplon” [34]. The ratio of 

CaV1.2s to RyR2s in a couplon is species dependent. For the cardiac dyad in rat for example, it is 

approximately one CaV1.2 per seven RyR2s [35]. 

The junctional gap between the SR and the plasma membrane in a couplon, termed subspace (the 

dyadic subspace is illustrated in Figure 1.2), measures approximately 12 nm, which classifies the 

couplon as a Ca2+ nanodomain [36, 37]. Peter Jonas defines Ca2+ nanodomains as domains of 

elevated Ca2+ concentration that extend over less than 100 nm [38]. 

A calcium release unit (CRU) refers to a cluster of Ca2+ release channels such as RyR2s [39]. 

Functionally, a CRU includes the Ca2+ release channels, the SR cistern on which the channels reside 

and associated regulatory proteins [36]. 

It is known that cardiac myocytes contain three categories of CRUs, all bearing clusters of RyR2, the 

cardiac RyR isoform. These CRUs form either (1) peripheral couplings which are constituted of an 

association of the junctional SR (jSR) with the surface sarcolemma, (2) dyads, which are associations 

between the jSR and TT membranes or (3) they are located at internal extended junctional SR (EjSR, 

also termed corbular SR), which is not associated with the surface sarcolemma or with TTs [36, 40]. 

 

1.4.2 Ca2+ sparks 

The local event of Ca2+ release from a single CRU is termed “Ca2+ spark” [39, 41]. Ca2+ sparks can be 

visualized by confocal microscopy applying fluorescent Ca2+ indicators [42]. In confocal images, 
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typical Ca2+ sparks result in a bright and short fluorescent signal corresponding to a transient 

(~30 ms) and local (~2 µm) elevation of Ca2+ that reflects the activation of an estimated group of 10 

or more RyR2s [41, 43]. Ca2+ sparks constitute the elementary events of Ca2+ release which control 

cardiac E-C coupling. Stochastic summation of Ca2+ sparks produces a whole cell Ca2+ transient, the 

global intracellular rise of the Ca2+ concentration [39, 44, 45]. 

In summary, efficient coupling of membrane depolarization to SR Ca2+ release requires precise spatial 

arrangements of RyR2s and CaV1.2s and associated proteins. Therefore, disruption of CRUs, for 

example through reorganization of TT membranes, might lead to a loss of E-C coupling gain, which is 

defined as the efficacy of the Ca2+ influx to activate SR Ca2+ release [46]. 

 

1.5 TTs in atrial cardiomyocytes 

It is well accepted that the TT system in ventricular cardiomyocytes ensures a spatially and 

temporally homogenous Ca2+ release throughout the large cell volume. In contrast, atrial 

cardiomyocytes exhibit a different, less pronounced TT system [47, 48]. Thus, coupling between 

CaV1.2 and RyR2 occurs mainly at the cell periphery through peripheral couplings. Nevertheless, 

similar to ventricular cardiomyocytes, RyR2s in atrial cardiomyocytes are uniformly distributed along 

Z-lines [27, 49]. Accordingly, atrial cardiomyocytes exhibit a different, less homogenous form of Ca2+ 

release than ventricular cardiomyocytes. During electrical stimulation, Ca2+ release starts at focal 

regions at the cell periphery and spreads towards the center of the cell [49, 50]. This atrial Ca2+ 

signaling occurs through propagated CICR due to Ca2+ diffusion between adjacent RyR2 clusters [51]. 

It has been shown that a high proportion of adult mammalian atrial cardiomyocytes (> 50 % in rat 

[52]) possess a rudimentary TT system. In particular, atrial cardiomyocytes with large diameters and 

cells from the left atria, which generate higher pressures, exhibited TTs. These atrial TTs seem to 

influence Ca2+ transients and their presence might also lead to a more rapid and coordinated 

contraction [52, 53]. Although TTs may have an effect on Ca2+ transient generation in atrial 

cardiomyocytes, detubulation does not affect Ca2+ signaling as dramatically as detubulation in 

ventricular cardiomyocytes [24]. 

In summary, TTs are present but less abundant in atrial cardiomyocytes than in the larger ventricular 

cardiomyocytes. TTs might play a role in atrial Ca2+ transient generation, but their role is currently 

little understood. 
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1.6 Cardiomyocytes without TTs 

TTs are present in ventricular cardiomyocytes of all mammalian species so far investigated [20]. 

Other species like birds [54], reptiles [55], amphibians [55] and fish [56] [57] [58] lack TTs, indicating 

that the presence of TTs in ventricles first appeared in mammals. 

Furthermore, there is evidence that TT density is related to cell size. Additionally, there seems to be a 

correlation with species. The mouse heart for example with a heart rate of 600 – 800 beats/min has a 

higher TT density than the pig heart, which beats less than 100 times per minute [59, 60]. These 

correlations suggest that TTs are more abundant in hearts which depend on faster Ca2+ cycling rates. 

A current study extended the investigation of CRUs in birds (finch and chicken) and reptiles (lizard) 

[61]. This study confirmed that ventricular cardiomyocytes in the three investigated species do not 

contain TTs. While CRUs in the form of peripheral couplings were present in all species, only bird 

cardiomyocytes also exhibited corbular SR, which contains a large number of RyR2s which are not 

associated with the sarcolemma. Lizard compensates for the lack of TTs and internal CRUs by small 

diameters of its ventricular cardiomyocytes. In chicken and finch cardiomyocytes, the distance 

between internal CRUs seems to correlate with cell size and heart rate. The structure of the relatively 

large and rapidly beating finch cardiomyocytes (500 beats/min, diameter 6.9 µm; lizard: 140 

beats/min, diameter 2.7 µm; chicken: 275 beats/min, diameter 4.6 µm) seems to be optimized to 

ensure an effective spread of Ca2+ throughout the cell. Peripheral couplings that are responsible for 

the initial Ca2+ release are strictly positioned at Z-lines. Corbular SR elements are also exclusively 

distributed along Z-lines with close proximity to allow an effective activation through propagated 

CICR. Less sophisticated conditions are found in the smaller and less rapidly beating chicken 

cardiomyocytes. Corbular SR elements are more widely spaced which reduces the probability of an 

effective Ca2+ signal transmission [62] and peripheral couplings are not closely aligned with the 

corbular SR [61]. 

From this it follows that there are ventricular cardiomyocytes without TTs which ensure contraction 

through propagated CICR. Nevertheless, TTs seem to be essential to enable synchronous Ca2+ release 

and rapid contraction in the large mammalian ventricular cardiomyocytes, particularly in species 

which depend on fast Ca2+ cycling rates. 

 

1.7 TT biogenesis 

In the majority of mammalian species, TTs are absent in the embryonic and to some degree also in 

the early neonatal heart where they mature progressively after birth [63, 64]. The exact mechanism 
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of TT biogenesis is still unknown. However, it has been shown that TT formation occurs inward driven 

through invaginations of the surface sarcolemma and by intracellular addition of membrane lipids 

and specific proteins [65]. 

Several proteins have been associated with TT biogenesis. Among these, amphiphysin-2, caveolin-3 

(Cav3) and junctophilin-2 (JPH2) seem to play a fundamental role in cardiac TT formation and 

organization [59, 66].  

Amphiphysin-2 has primarily been investigated in skeletal muscle. There it is specifically localized to 

TTs [67, 68]. It has been shown that amphiphysin-2 knockout in drosophila leads to a severely 

disorganized TT system [68]. Misregulated alternative splicing of BIN1, the gene encoding 

amphiphysin-2, also leads to TT alterations in skeletal muscle and to muscle weakness in humans and 

mice [69]. Additionally it has been shown that expression of amphiphysin-2 in non-muscle cells, such 

as Chinese hamster ovary (CHO) cells, leads to TT formation [66]. Muller et al. defined BIN1 to play a 

critical role in cardiac muscle development. While targeted disruption of BIN1 in mice resulted in 

perinatal lethality, severe cardiomyopathies (markedly increased ventricular wall thickness resulting 

in occlusion of both ventricles) were observed in BIN1-/- embryos [70]. 

In 1968 is has been suggested for the first time that TTs might be generated through repeated 

caveolae formation [71]. Caveolae are flask-shaped invaginations of the plasma membrane with 

dimensions of 50 to 100 nm [72]. They are classified as lipid rafts, structures enriched in a variety of 

signaling molecules, which serve as platforms to organize signal transduction [73]. Caveolin proteins 

are the structural components of caveolae and moreover serve as scaffolding proteins. Cav3 is the 

muscle specific caveolin isoform [74]. Cav3 associates with developing TTs during differentiation of 

primary cultured muscle (C2C12) cells and of mouse skeletal muscle in vivo and is therefore thought 

to play a role in the early development of the TT system in skeletal muscle [75]. In skeletal muscle, 

knockout of Cav3 leads to disruption of the TT system, characterized by abnormally dilated and 

longitudinally oriented TTs [76]. 

Junctophilin proteins are membrane binding proteins which are believed to bridge the physical gap 

between the plasma membrane and the terminal SR. JPH2 is the major junctophilin isoform in the 

heart [77], where it promotes the formation of local junctions between SR and TTs [78]. While TTs 

are absent in neonatal cardiomyocytes, RyR2s are already positioned along the Z-line very early in 

development [64, 79]. Ziman et al. showed that during development, JPH2 colocalizes with Cav3 at 

the developing TTs. Not until JPH2 also colocalized with RyR2s, E-C coupling efficiency increased 

dramatically [64]. This finding provided further evidence for the involvement of JPH2 in the 

functional maturation of couplons. Moreover, it has been shown that cardiac-specific JPH2 
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knockdown in adult mice leads to a reduced number of junctional membrane complexes and an 

increased variability in the plasma membrane-SR distance, which results in a loss of the physiological 

E-C coupling gain [80] (for the definition of E-C coupling gain please refer to chapter 1.4.2). 

 

1.8 Heart Failure 

In 2010, cardiovascular diseases were the most frequent cause of death in Germany (353,000, 

Statistisches Bundesamt, https://www.destatis.de/). According to the International Statistical 

Classification of Diseases and Related Health Problems (10th revision, ICD-10), the most frequent total 

causes of death in 2010 were chronic ischaemic heart disease (8.5 %), followed by acute myocardial 

infarction (6.5 %) and heart failure (5.6 %). 

Heart failure (HF) is a progressive and chronic disease, which is characterized by the inability of the 

diseased heart to meet the metabolic demands of organs and cells throughout the organism [81]. HF 

is the final common pathway of a variety of initial diseases including acute myocardial infarction (MI) 

or ischaemic heart disease. Hypertension is another very common risk factor for HF [82]. 

Depressed cardiac contractility is at least in part due to defective cardiomyocyte Ca2+ handling [81, 

83]. In failing cardiomyocytes, systolic SR Ca2+ release is decreased due to a lower SR Ca2+ content 

[84]. Additionally, the ability to trigger CICR, the E-C coupling gain, is reduced in failing 

cardiomyocytes, which could be explained by a change in the relation between RyR2s and CaV1.2s 

[85]. An increasing number of studies indicate that impaired Ca2+ signaling might at least in part 

result from alterations of the TT system. 

 

1.9 TTs in heart failure 

TT changes have been demonstrated both in samples from failing human hearts and in animal 

models of HF. But so far, depending on the model and the method used, the results are very 

divergent. The two main concepts for TT changes described in HF are (1) a reduced TT density (“loss 

of TTs”) and (2) a disorganization of the TT network. 

 

1.9.1 Reduced TT density in failing cardiomyocytes 

Applying confocal microscopy, initial studies found a reduced density of TTs in failing cardiomyocytes 

that had been stained with the membrane dye di-8-ANEPPS [86, 87]. Subsequently, Heinzel et al. 

https://www.destatis.de/
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investigated a post-MI pig model and suggested that the observed reduced TT density was associated 

with a reduced synchrony of Ca2+ release and less efficient E-C coupling [88]. Indeed, studies in failing 

mouse and human cardiomyocytes by Louch et al. supported the observation that delayed Ca2+ 

release occurs close to regions with disrupted TT structures [89, 90]. 

Lyon et al. (2009) confirmed a “loss of TTs” in failing human and rat cardiomyocytes [91]. Confocal 

microscopy of stained TT membranes was complemented by scanning ion conductance microscopy 

(SICM), a method that produces a topographic representation of the cell surface. SICM revealed a 

loss of TT openings at the surface in addition to the decreased TT density inside failing ventricular 

cardiomyocytes [91]. 

Again, Kemi et al. (2011) found a significantly decreased TT density in rats with mild cardiac 

pathological remodeling which were artificially selected and bred for low fitness as well as in a model 

of severe cardiac remodeling after MI. Interestingly, exercise induced physiologic cardiac 

hypertrophy in healthy rats did not lead to detectable changes in TT density [92]. As for the 

previously described studies, TT density was determined in confocal images of di-8-ANEPPS stained 

cardiomyocytes. 

A possible causal role of TT loss in reduced E-C coupling gain and reduced contractility in HF is 

supported by experiments where TTs were artificially disrupted. Detubulation, either by prolonged 

cell culture or osmotic shock, led to qualitative changes in Ca2+ handling which to some degree 

resemble the changes observed in HF [93, 94]. 

 

1.9.2 Disorganization of the TT network in failing cardiomyocytes 

Applying confocal microscopy to fixed heart tissue sections from patients with tachycardia induced 

HF, Cannell et al. observed a deranged TT network structure [95]. In a non-quantitative approach, 

they compared failing with healthy control samples. Based on selected images, Cannell et al. 

described that TTs in failing cardiomyocytes were preferentially oriented in the longitudinal direction. 

Additionally, they observed dilated and bifurcated TT elements in failing cardiomyocytes. Using a 

computational model of CaV1.2 gating (Monte-Carlo model with a Markov gating scheme, for 

detailed description refer to [95]), Cannell et al. showed that alterations of the TT system leading to a 

small increase in the mean CaV1.2-RyR2 distance might already result in a marked decrease of E-C 

coupling gain [95]. 

Song et al. described a disorganization of the TT network in 19 week old spontaneously hypertensive 

rats (SHRs) that had developed HF [96]. Confocal images of failing cardiomyocytes exhibited a high 
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degree of spatially dispersed TTs which were not well aligned with Z-lines. The spatially remodeled 

TTs left behind RyR2 channels which were functionally less coupled to CaV1.2s and were therefore 

termed “orphaned RyRs”. Song et al. concluded that increased spatial dispersion of TTs and 

orphaned RyR2s might lead to a HF-associated loss of local E-C coupling control and intracellular Ca2+ 

instability at CRUs [96]. 

Wei et al. investigated TT network remodeling in a rat model of increased pressure overload due to 

transverse aortic constriction (TAC). To analyze the regular alignment of TTs with Z-line striations, 

Wei et al. used the so called TT power which is determined by Fourier transformation of confocal 

images and analysis of the resulting power spectra as described previously [96]. Disease groups were 

classified based on heart function (ejection fraction). The TT power was decreased in the disease 

groups and correlated with disease severity. The decrease of TT power was accompanied by a 

reduction of JPH2 expression [97]. 

 

1.10 Limitations of previous TT studies 

As mentioned in section 1.2, Soeller and Cannell provided early insight into the network morphology 

of TTs in living rat cardiomyocytes [1]. Using two-photon microscopy and image reconstruction, they 

visualized the three-dimensional organization of the TT membrane system. The great advantage of 

two-photon or confocal microscopy is that light microscopy allows the investigation of structures in 

living cells. Even thick samples can be imaged non-invasively and in three dimensions. 

However, the resolution of light microscopes is significantly limited due to the diffraction of light (for 

detailed explanation see 1.11). For the imaging of di-8-ANEPPS stained membranes (using a 1.4 NA 

objective), a light microscope provides a resolution not better than approximately 230 nm. 

Therefore, structures which are smaller than 230 nm will necessarily appear blurred both in confocal 

and two-photon images. Soeller and Cannell calculated the average diameter of TTs in rat ventricular 

cardiomyocytes as 255 nm based on deconvolved images obtained with a two-photon microscope 

that yielded a lateral resolution of 400 nm [1]. Depending on the species and the method used for TT 

quantification, estimated average TT diameters vary between 100 and 300 nm [17]. This implies that 

conventional light microscopy is not suitable to investigate morphological details of TTs since in most 

cases they are smaller than the attainable resolution. Furthermore, associated nanodomains like 

caveolae or small changes that might occur during HF development are most likely not visualized if 

conventional light microscopy is applied for quantitative evaluation. 
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In comparison to conventional light microscopy, electron microscopy (EM) yields nanometric 

resolution. Particularly, the EM studies of Franzini-Armstrong and colleagues resulted in detailed 

descriptions of CRUs and couplons in cardiac as well as in skeletal muscle [36, 98]. But in contrast to 

light microscopy techniques, EM cannot be applied to living samples and is typically restricted to 

single imaging planes. Moreover, sample preparation for EM requires invasive histochemical 

protocols including fixation, staining and dehydration as discussed by Soeller and Cannell [1]. 

Furthermore, slicing of delicate samples might lead to problems like knife artifacts, uneven thickness 

or folded sections [99]. 

Alternatively, scanning ion conductance microscopy (SICM), as already mentioned in 1.9.1, is a non-

optical method that produces a topographic representation of the cell surface. While detailed 

imaging of the cardiomyocyte surface reveals features like TT openings, SICM is clearly limited and 

cannot be used to characterize TTs inside cardiomyocytes [91, 100]. 

Still light microscopy is the only method that allows the non-invasive imaging of µm-thick samples 

under physiological conditions and in three dimensions. In order to investigate TTs and potential 

morphological changes in living cardiomyocytes, it would be eligible to combine the advantages of 

light microscopy with nanometric resolution. This strategic combination has been accomplished with 

the development and application of STED microscopy. 

 

1.11 STED microscopy 

In microscopic studies, the resolution of the microscope directly determines how detailed the 

resulting images are and hence, how much information can be gained about the structure of interest. 

Resolution has been defined as the minimal distance between two objects which a microscope can 

discriminate [101, 102]. The resolution of conventional light microscopes is limited due to the 

diffraction of light. According to Abbe (1873, [101]), the minimal resolvable distance between two 

objects is given by dmin = 
 

        
 with   denoting the wavelength of the emitted light, n the refractive 

index and   half the aperture angle of the objective lens (n · sin  denotes the numerical aperture, 

NA). In practical terms this means that confocal imaging of any membrane structure stained with di-

8-ANEPPS (the dye used in this study with an emission maximum at 635 nm) using a 1.4 NA objective 

cannot be expected to provide a lateral resolution better than 230 nm. 

In a conventional laser scanning confocal microscope, the sample is scanned point wise. Light is 

focused onto the sample and fluorescence is detected from the same spot. Due to diffraction, 
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focusing of light always results in a blurred spot. Accordingly, the lateral full width at half maximum 

(FWHM) of this focal spot is given by 
 

        
 [103]. 

Not until the early 1990s, new concepts now referred to as reversible saturable optical fluorescence 

transitions (RESOLFT) were developed, which aimed to break the diffraction barrier. These concepts 

take advantage of the fact that certain fluorescent molecules can be reversibly switched between 

two optically distinguishable states. These can for example be the fluorescent (S1) and the non-

fluorescent ground-state (S0) [102, 104]. 

One of the developed concepts is Stimulated emission depletion (STED) microscopy, first described in 

1994 [105, 106]. The basic idea behind STED microscopy is to minimize the lateral size of the focal 

spot in a point-scanning system by switching off fluorescent molecules in its periphery. Switching off, 

which in physical terms corresponds to the transition from the fluorescent S1 to the ground state S0, 

is accomplished by stimulated emission. Stimulated emission has first been mentioned by Albert 

Einstein in 1917 [107]. It describes the phenomenon that an excited molecule can be forced back to 

its ground state through interaction with a photon, thereby emitting an additional photon of the 

same phase and frequency. In contrast to spontaneous emission, stimulated emission does not result 

in visible fluorescence. Figure 1.3 illustrates the different energy levels of a fluorophore and the 

different types of transitions involved in STED microscopy. 

 

 

Figure 1.3 Jablonski diagram representing the different energy levels and transitions involved in STED 
microscopy. Fluorophores can be excited from their ground state S0 to their fluorescent state S1. Molecules can 
return to S0 by spontaneous emission, thereby emitting visible fluorescence (green). Return to S0 may also be 
enforced through stimulated emission. Stimulated emission does not result in visible fluorescence (red). 

 

Spontaneous emission can be suppressed via stimulated emission by optically forcing the molecule to 

its ground state S0 directly after excitation. To increase resolution in a STED microscope, the 

excitation focus is overlaid with a de-exciting (STED) laser beam of toroidal (“donut”) shape. So the 

fluorophores in the periphery of the excitation focus are switched off by stimulated emission and 

Excitation
Spontaneous

Emission

(Fluorescence)

Stimulated

Emission

E
n

e
rg

y

S0

S1



Introduction                                                                                                                                            13 
 

only molecules in the center stay fluorescent. With increasing intensity of the de-excitation beam, it 

becomes more likely that the excited S1 state is depleted by stimulated emission. Saturated depletion 

by the de-exciting (STED) laser beam leads to an effective fluorescent spot with subdiffraction 

dimensions as illustrated in Figure 1.4 [105, 108, 109]. To stimulate emission, typically red light is 

used [110, 111]. Due to the high wavelength of red light, the STED laser does not excite the 

fluorophores and allows the spectral separation of spontaneous and stimulated emission. 

 

 

Figure 1.4 Configuration of foci in a STED microscope. Figure modified from Lauterbach, 2009 [112]. The 
excitation focus is overlayed with a de-excitation (STED) laser beam of toroidal shape. De-excitation probability 
increases with increasing power of the STED laser. This results in the small effective point spread function (PSF) 
of a STED microscope. 

 

De-excitation of the fluorophores in the periphery of the excitation focus by stimulated emission in a 

STED microscope leads to increased resolution, which can be described by: 

    
 

         
     
     

 

With   denoting the wavelength of the emitted light, NA the numerical aperture of the objective, 

ISTED the intensity of the STED laser beam and Isat the saturation intensity at which half of the 

fluorophores are forced to their ground state [113]. 

In summary, STED microscopy combines a theoretically unlimited resolution with the advantages of 

conventional light microscopy. This allows the non-invasive imaging of living samples under 

physiological conditions and can be conducted in three dimensions even deep inside a specimen. 

  

Excitation STED Effective PSF
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1.12 Aim of this thesis 

The overall aim of this thesis was to quantitatively analyze the nanostructure of intact TT membranes 

in living healthy and diseased cardiomyocytes. The expectation was that a super-resolution 

technique like STED microscopy could reveal new insight about potential mechanisms during TT 

remodeling in disease. For this purpose, I established protocols for STED imaging of TTs in living 

cardiomyocytes and developed new strategies for quantitative image analysis to proof superiority to 

conventional imaging methods like confocal microscopy. These strategies were initially applied to 

determine the morphology of TTs in healthy cardiomyocytes. In order to quantitatively analyze TT 

changes particularly during the development of HF, two different disease models were investigated 

(myocardial infarction and transverse aortic constriction). To correlate the observed TT changes with 

Ca2+ signaling, a combination of TT and Ca2+ imaging was used. In addition, proteins that are 

potentially involved in TT biogenesis or directly associated with TTs were analyzed in diseased and 

healthy cardiomyocytes. Protein localization and expression levels were analyzed by 

immunofluorescence and Western blot respectively. Finally, TT membrane imaging by STED was 

extended towards three dimensions in order to gain further insight into the morphology, spatial 

distribution and reorganization of TTs in healthy and diseased cardiomyocytes. 
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2 Methods 

Chemicals, drugs, dyes, antibodies as well as consumables, general equipment and the respective 

manufacturers are listed in the supplement (6.1 – 6.8). The software used for data acquisition, image 

analysis and processing with the according providers is also listed in the supplement (6.9). 

 

2.1 Mouse disease models 

All animal procedures were reviewed and approved by the institutional animal care and use 

committee at University Medical Center Göttingen and by the veterinarian state authority LAVES 

(Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit) in compliance with 

the human care and use of laboratory animals. 

In this study, two different mouse disease models were investigated. To examine the consequences 

of myocardial infarction (MI), the left anterior descending (LAD) coronary artery was proximally 

ligated. To generate pressure overload, transverse aortic constriction (TAC) was performed. For both 

interventions, 9 week old female C57Bl/6N mice (Charles River, Sulzfeld, Germany) were used. Pain 

management involved a predefined protocol including treatment with 1.33 mg/ml metamizol in the 

drinking water starting 3 days before the intervention. Before the surgical intervention and as 

needed, additionally buprenorphin (0.12 µg/mg body weight) was applied by subcutaneous injection. 

 

2.1.1 Proximal LAD ligation to induce large myocardial infarction (MI) 

A proximal LAD ligation was performed to induce a large MI following previously described protocols 

[114, 115]. Control mice underwent a Sham operation. During surgery, mice were anesthetized with 

2 % isoflurane in O2 ventilated with a tidal volume of 0.15 ml and a frequency of 150 strokes per min 

using a custom-made mouse tubus and a mouse respirator. A left lateral thoracotomy was 

performed. For MI, the LAD coronary artery was proximally ligated with a permanent 9-0 polyamide 

suture. The MI was directly confirmed by permanent distal tissue blanching and the approximate 

infarct size was estimated as percentage of the left ventricle. Infarct sizes averaged approximately 

35 % of the left ventricle as previously confirmed by histology. For Sham operations, mice underwent 

the same procedure except that the LAD coronary artery was not ligated. Subsequently, the chest 

was closed with a 6-0 suture, the lungs were inflated and mice were closely monitored until 

spontaneous, regular breathing occurred. After surgery, the metamizol pain medication was 
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continued for 7 days or longer if necessary. During postoperative recovery, the health status and 

body weight of the operated mice were checked at least daily. 

4 or 8 weeks after the MI operation, the hearts were used for isolation of ventricular cardiomyocytes. 

Before cardiomyocyte isolation, mice were phenotyped by echocardiography (see 2.1.3). To exclude 

variability in the mouse age, the Sham data presented here were all generated 8 weeks after the 

intervention. 

 

2.1.2 Transverse aortic constriction (TAC) to generate pressure overload 

To increase afterload, the transverse aorta was constricted by a minimally invasive surgery approach 

as described previously [116]. During surgery, mice were anesthetized with 1.5 % isoflurane in O2. A 

horizontal incision at the jugulum was used to display the transverse aorta. A 27 gauge needle was 

tied against the aorta using a 5-0 non-absorbable suture. After removal of the 27 gauge needle, the 

skin was closed with a 6-0 suture and the mice were monitored until full recovery from anesthesia. 

Sham animals underwent the same procedure except for constriction of the transverse aorta. After 

surgery, the metamizol pain medication was continued for 7 days or longer if necessary. During 

postoperative recovery, the health status and body weight of the operated mice were checked at 

least daily. 

4 or 8 weeks after the TAC operation, the hearts were used for isolation of ventricular 

cardiomyocytes. Before cardiomyocyte isolation, mice were phenotyped by echocardiography (see 

2.1.3). To exclude variability in the mouse age, the Sham data presented here were all generated 

8 weeks after the intervention. 

 

2.1.3 Echocardiography of mouse hearts 

Either 4 or 8 weeks after MI, TAC or the according Sham operations, mice were characterized by 

rodent echocardiography (Vevo 2100, VisualSonics) using a 30 Hz transducer (MS400 MicroScan™ 

transducer). For echocardiography, mice were anesthetized with 1.5 % isoflurane in O2. Body 

temperature was kept at 37°C. Left ventricular dimensions and wall thicknesses were determined by 

parasternal long and short axis views. Ejection fraction (EF, in %) was calculated as EF = (Vold -

 Vols) / Vold · 100 with Vold = heart volume in diastole and Vols = heart volume in systole. Heart 

volumes were calculated as Vold = 5/6 · Aread ·Ld and Vols = 5/6 · Areas ·Ls with Area denoting the area 

of the endocardium and L denoting the long heart axis in diastole and systole respectively. 
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The pressure gradient in TAC and the according Sham mice was measured by pulsed wave Doppler 

ultrasound of the transverse aorta at the site of constriction using a 20 Hz transducer (MS250 

MicroScan™ transducer). Initially, the maximal blood flow velocity (in m/s) was determined as 

average of three independent values per mouse. The maximal velocity was then converted into the 

pressure gradient (in mmHg) by applying the “simplified Bernoulli equation” [117, 118]: 

gradient (mmHg) = (maximal velocity (m/s))2 · 4 

 

2.2 Isolation of ventricular cardiomyocytes 

The protocol for isolation of adult ventricular cardiomyocytes was modified from O’Connell et al. 

[119]. Adult female C57Bl/6N mice (Charles River, Sulzfeld, Germany) were anesthetized with 3 % 

isoflurane in O2 and sacrificed by cervical dislocation. Hearts were quickly extracted and the proximal 

aorta was immediately connected to a 21 gauge cannula. Using a modified Langendorff system [120] 

at a flow rate of 4 ml/min, hearts were perfused with Ca2+ free perfusion buffer (formulation below) 

for 4 min at 37°C. Following confirmation of relaxation, perfusion was switched to digestion buffer 

containing 2 mg/ml collagenase type II (~300 units/mg) and 40 µM CaCl2 for another 9 min at 37°C. 

Following perfusion, ventricles were manually dissected in digestion buffer. Scar tissue from post-MI 

hearts was carefully excised and discarded. Collagenase II digestion was stopped with perfusion 

buffer containing 10 % bovine calf serum (BCS) and 12.5 µM CaCl2. Isolated ventricular 

cardiomyocytes were washed two times with the stopping buffer containing 10 % BCS and 12.5 µM 

CaCl2. In order to wash the isolated cells, they were sedimented by gravity for 8 min at room 

temperature. The supernatant was discarded and the sedimented cells were again resuspended in 

stopping buffer. All experiments were conducted within 6 h after cardiomyocyte isolation and 

following quality assessment of the isolated cardiomyocytes (no membrane blebs, no aberrant 

contractions, regular striations). 
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Perfusion buffer 

 MW (g/mol) Final concentration (mM) 

NaCl 58.44 120.4 

KCl 74.56 14.7 

KH2PO4 136.09 0.6 

Na2HPO4 · 2 H2O 177.99 0.6 

MgSO4 · 7 H2O 246.48 1.2 

HEPES 238.31 10 

NaHCO3 84.01 4.6 

Taurin 125.2 30 

2,3-Butanedione monoxime 101.1 10 

Glucose 180.16 5.5 

pH 7.4 at 37°C   

 

 

2.3 Preparation of living cardiomyocytes for imaging 

2.3.1 Membrane staining with di-8-ANEPPS 

The plasma membrane (surface sarcolemma + TTs) of living isolated cardiomyocytes was stained with 

the styryl dye di-8-ANEPPS. Before staining of isolated cardiomyocytes, glass cover slips (Ø 42 mm) 

were placed into an imaging chamber and coated with laminin (2 mg/ml) diluted 1:10 in perfusion 

buffer. Freshly isolated ventricular cardiomyocytes were resuspended in Ca2+ free perfusion buffer 

and sedimented for 8 min by gravity. The supernatant was discarded and the cells were resuspended 

in perfusion buffer containing 50 µM di-8-ANEPPS. In the dye-containing buffer, cardiomyocytes 

were plated on the laminin coated cover slips. After 10 min incubation in the dark at room 

temperature, cells were washed two times with perfusion buffer in order to remove unbound dye 

molecules. For microscopy, the imaging chamber was filled with freshly prepared perfusion buffer. 

 

2.3.2 Preparation of cardiomyocytes for combined TT and Ca2+ imaging 

For combined imaging of TTs and Ca2+ transients, the plasma membrane was stained with di-8-

ANEPPS and cells were additionally loaded with the Ca2+ indicator fluo-4/AM. Before staining, 

custom-made imaging chambers were coated with laminin (2 mg/ml) diluted 1:10 in physiological 

buffer (formulation below). 
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Since Ca2+ imaging requires a physiological Ca2+ containing buffer and cardiomyocytes are isolated 

under conditions with artificially low Ca2+ concentrations, cell isolation was followed by a stepwise 

Ca2+ introduction. For this purpose, cells were resuspended in perfusion buffer containing 10 % BCS 

and 100 µM CaCl2 after the first washing step. Cells were sedimented by gravity for 8 min at room 

temperature, the supernatant was discarded and cells were resuspended in perfusion buffer 

containing 10 % BCS and 400 µM CaCl2. After further 8 min, cells were washed in the last Ca2+ 

introducing buffer containing 900 µM CaCl2. Finally, cardiomyocytes were transferred into 

physiological buffer (formulation below) and again sedimented for 8 min by gravity before use. 

In order to stain TTs and load isolated cardiomyocytes with the Ca2+ indicator fluo-4/AM, the 

supernatant was discarded and cells were resuspended in physiological buffer containing 10 µM di-8-

ANEPPS and 10 µM fluo-4/AM. In the dye-containing buffer, cells were plated on the laminin coated 

imaging chambers. After 15 min incubation in the dark at room temperature, the dye solution was 

replaced by physiological buffer containing only 10 µM fluo-4/AM. After further 15 min in the dark, 

cells were washed once with physiological buffer. For microscopy, the imaging chambers were filled 

with fresh physiological buffer. 

 

Physiological buffer for combined TT and Ca2+ imaging 

 MW (g/mol) Final concentration (mM) 

NaCl 58.44 140 

KCl 74.56 5.4 

Na2HPO4 · 2 H2O 177.99 0.33 

MgCl2 · 6 H2O 203.3 1.2 

HEPES 238.31 10 

Glucose 180.16 10 

CaCl2 110.98 1 

pH 7.4 at 37°C   
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2.4 Preparation of fixed cardiomyocytes for imaging 

2.4.1 Immunostains 

For immunofluorescence imaging, a fraction of cardiomyocytes was immediately fixed after isolation. 

For this purpose, glass coverslips (Ø 18 mm) were coated with laminin (2 mg/ml) diluted 1:10 in 

perfusion buffer (for formulation see 2.2). In perfusion buffer, cells were plated on the laminin 

coated coverslips for 30 min at room temperature. Afterwards, cardiomyocytes were fixed with 4 % 

paraformaldehyde (PFA) in phosphate buffered saline (PBS, pH 7.4, without Ca2+ and Mg2+) for 5 min 

at room temperature. After two PBS washing steps, cells were permeabilized with 0.2 % Triton X-100 

and blocked with 10 % BCS in PBS. Overnight, cells were incubated with primary antibodies diluted in 

the permeabilizing and blocking buffer at 4°C (primary antibodies and dilutions used for 

immunostains are listed in Table 6.8.1, Supplement). 

The next day, the cardiomyocytes were washed three times with the permeabilizing and blocking 

buffer and incubated for 90 min with the secondary antibodies diluted in the same buffer at room 

temperature and in the dark (secondary antibodies and dilutions used for immunostains are listed in 

Table 6.8.1, Supplement). 

After three PBS washing steps, cells were embedded in mounting medium, cured overnight and 

imaged the next day. 

 

2.4.2 Preparation of cardiomyocytes for size determination 

For determination of cell sizes, a fraction of cardiomyocytes was immediately fixed after isolation. 

For this purpose, glass coverslips (Ø 18 mm) were coated with laminin (2 mg/ml) diluted 1:10 in 

perfusion buffer. In perfusion buffer, cells were plated for 30 min at room temperature. Afterwards, 

cardiomyocytes were fixed with 4 % PFA in PBS (pH 7.4, without Ca2+ and Mg2+) for 5 min at room 

temperature. After two PBS washing steps, the fixed cardiomyocytes were embedded in mounting 

medium, cured overnight and imaged the next day. 

 

2.5 Preparation of isolated cardiomyocytes for protein analysis 

To prepare freshly isolated ventricular cardiomyocytes for Western blot analysis, cells were 

resuspended in perfusion buffer and sedimented by gravity for 8 min at room temperature directly 
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after isolation. The supernatant was discarded, cells were immediately snap-frozen in liquid N2 and 

stored at -80°C until further used for analysis. 

 

2.6 Confocal microscopy 

Confocal microscopy was used to image double stained cell samples1. Imaging of co-immunostains as 

well as combined TT and Ca2+ imaging were performed with a LSM 710 confocal laser scanning 

microscope (Carl Zeiss, Jena, Germany) using a 63x 1.4 NA oil objective. The transmitted light mode 

of the LSM 710 was used to obtain images for the determination of cell sizes. Images were recorded 

with the appropriate software provided by the manufacturer (ZEN 2009) and saved as “.lsm” files. 

For further analysis “.lsm” images were converted into “.tif” images using ImageJ. 

 

2.6.1 Confocal imaging of immunostains 

AlexaFluor®514 was excited at 514 nm (2 % laser power) and detected at 520 – 620 nm. Pinhole 

opening of 1 Airy unit resulted in an optical slice thickness of 800 nm. 

AlexaFluor®633 was excited at 633 nm (2 % laser power) and detected at 640 – 740 nm. Pinhole 

opening of 1 Airy unit resulted in an optical slice thickness of 1 µm. 

The pixel size for imaging of (co-)immunostains was 80 nm x 80 nm. 

 

2.6.2 Transmitted light imaging for determination of cell sizes 

For determination of their size, cardiomyocytes were prepared as described in 2.4.2. Fixed 

cardiomyocytes were imaged by the transmitted light mode of the LSM 710 with a pixel size of 

0.38 µm x 0.38 µm. Using ImageJ, the border of the isolated ventricular cardiomyocytes was marked 

manually in the transmitted light images. Area, length and width were then determined 

automatically by the program using the “ROI manager”. 

 

                                                           
1
 At the time of this study, the STED setup used here was limited to single color imaging. 
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2.6.3 Combined confocal TT and Ca2+ imaging 

The imaging protocol for combined imaging of TTs and Ca2+ transients was modified from Louch et al. 

[89]. Initially, a di-8-ANEPPS image was recorded with a pixel size of 80 nm x 80 nm. Subsequently, 

either a longitudinal line crossing transverse TT elements, or a transverse line crossing longitudinal 

elements was selected. Lines for either direction measured 20 µm (100 pixels, pixel size 0.2 µm). To 

record Ca2+ transients along the selected lines, cells were field stimulated at 0.5 Hz (23 V, 3 ms 

duration) using a platinum electrode. Lines were imaged with the settings for fluo-4/AM every 

1.53 ms (total: 6000 cycles). Afterwards, the same lines were imaged with the settings for di-8-

ANEPPS in order to correlate TT signals with the previously recorded Ca2+ signals during offline 

analysis. 

Di-8-ANEPPS was excited at 458 nm (5 % laser power) and detected at 550 – 740 nm. Pinhole 

opening of 1 Airy unit resulted in an optical slice thickness of 900 nm. 

Fluo-4/AM was excited at 488 nm (2 % laser power) and detected at 490 – 540 nm. Pinhole opening 

of 1 Airy unit resulted in an optical slice thickness of 700 nm. 

 

2.7 STED microscopy 

STED microscopy was used to examine the nanostructure of TTs in living cardiomyocytes. 

The custom STED setup used here was built around an inverted microscope (Leica, Heidelberg, 

Germany). Excitation and de-excitation were performed with synchronized pulsed lasers, using the 

STED pulses to trigger the excitation laser. Di-8-ANEPPS stained cardiomyocytes were excited with a 

pulsed diode laser at a wavelength of 490 nm (3 µW for confocal images, 10 µW for STED images). 

De-excitation pulses at 750 nm (~180 mW) were delivered by a Ti:Sapphire laser operating at 

80 MHz. Both laser beams were spatially filtered with separate single-mode fibers (SMF). A dichroic 

mirror (DM2) combined the excitation and de-excitation beams which were then focused through a 

100x 1.4 NA oil objective. To generate the toroidal focus (“donut shape”), the de-excitation (STED) 

laser was passed through a vortex phase plate. 

In the detection path, two dichroic mirrors (DM1, DM2) separated the fluorescence signal from the 

incoming laser beams. Fluorescence was then filtered by a 675 ± 30 nm bandpass and detected by an 

avalanche photodiode. 
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The images were recorded by resonant mirror scanning (16 kHz) along the first lateral axis and by 

piezo stage scanning along the second lateral axis. The pixel size was 20 nm x 20 nm and pixel dwell 

time was 20 µs. 

A schematic of the STED setup is shown in Figure 2.1. The individual parts of the STED setup and the 

respective manufacturers are separately listed in Table 6.7 (Supplement). 

 

 

Figure 2.1 The experimental STED microscopy setup. Di-8-ANEPPS stained cardiomyocytes were excited at 
490 nm. De-excitation (STED) was performed at 750 nm. For confocal imaging, only the excitation laser was 
used. For STED imaging, the excitation laser was triggered by the STED pulses. Green: excitation laser beam. 
Red: STED laser beam. Orange: resulting fluorescence signal. SMF: single-mode fiber, APD: avalanche photo 
diode, BP: band pass, DM: dichroic mirror, PP: phase plate, RSM: resonant scanning mirror 

 

 

 

In order to document the resolution of the STED and the confocal mode and to exclude day-to-day 

variability, custom-made fluorescent 20 nm sized beads were imaged before measuring the actual 

samples. As shown in Figure 2.2, under the given conditions (excitation at 490 nm, STED at 750 nm), 

STED increased the average lateral resolution nearly fourfold (FWHM x: confocal 191 nm, STED 

58 nm; FWHM y: confocal 203 nm, STED 52 nm). As expected, STED did not improve the axial 

resolution (FWHM z: confocal 455 nm, STED 479 nm). 
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A                                                   B 

 

C 

Confocal  STED 

 FWHM (nm) n   FWHM (nm) n 

x 191 ± 11 10  x 58 ± 8 25 

y 203 ± 21 10  y 52 ± 8 25 

z 455 ± 51 10  z 479 ± 112 20 
 

Figure 2.2 Imaging of fluorescent 20 nm beads to document resolution. (A) Averaged image of n (numbers 
given by tables in (C)) fluorescent beads imaged in xy and corresponding line profiles along the x axis. (B) 
Averaged image of n (numbers given by tables in (C)) fluorescent beads imaged in xz and corresponding line 
profiles along the z axis. (C) Tables summarize the average full widths at half maximum (FWHM) of fluorescent 
beads imaged either by the STED or the confocal mode in all three imaging axes. Data are presented as 
mean ± SD. n = number of measured beads. Scale bars: 100 nm. 

 

 

2.8 Analysis of confocal images 

2.8.1 Analysis of protein patterns in immunostains 

To analyze the striation associated periodicity of Cav3, JPH2 and RyR2 signal patterns, the fast Fourier 

transformation plugin (“FFT”) of ImageJ was used on ROIs measuring 30 µm x 10 µm. This plugin 

computed the Fourier transform and displayed the power spectrum for each ROI. Analysis of power 

spectra was modified from Song et al. [96] and Wei et al. [97]. Power spectra were analyzed by line 

profiles with a width of 100 pixels. Line profiles of all power spectra in one group were averaged and 

displayed as a function of spatial frequency. 

Confocal STED Confocal STED

x

y

x

z

Confocal

STED
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In this analysis, the dominant frequency at ~0.5 µm-1 resulted in the first peak corresponding to a 

spatial distance of 2 µm, the average Z-line spacing of cardiomyocytes. The amplitude of this first 

peak was measured independently for each power spectrum as the difference between the highest 

value of the peak and the smallest value directly before the peak. Peak amplitudes were then 

averaged per group and displayed as bar graphs. 

 

2.8.2 Analysis of Ca2+ transients 

Using ImageJ, the variability of Ca2+ transients was analyzed according to Louch et al., 2006 [89]. 

Initially, fluo-4/AM line scan images (recorded as described in 2.6.3) were smoothed applying the 

“Smooth” function. The half-maximal fluorescence (F50) of the spatially averaged line scan was then 

used as the threshold level. The leading edge of the thresholded image was outlined to create a 

profile of the earliest time at which F50 was reached. The standard deviation of these values was 

defined as the dyssynchrony index. Images were only analyzed, when F50 was reached along the 

entire length of the line scan (20 µm). 

 

2.9 Analysis of STED images 

Before quantitative analysis, all images were linearly deconvolved (Wiener filter) using a two-

dimensional Lorentz function (Kernel: corresponding FWHM as determined in Figure 2.2, MATLAB 

R2009b) [121]. 

 

2.9.1 Quantitative analysis of the TT network 

2.9.1.1 Skeleton analysis of the TT network 

Skeletons of the TT network were extracted from STED images using the image processing program 

Fiji [122]. At first, ROIs that enclosed the TT network, but not the surface sarcolemma were defined 

in intracellular STED images. These ROIs were processed with the following plugins: 

1. (“Enhance Local Contrast (CLAHE)”, “blocksize=29 histogram=256 maximum=5 mask=*None*”) 

2. (“Smooth”) 

3. (“Statistical Region Merging”, “Q=15 showaverages”) 
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4. (“Median…”, “radius=3”) 

5. (“Robust Automatic Threshold Selection”, “noise=25 lambda=3 min=50”) 

Binary images of the processed ROIs were then skeletonized using the plugin ”Skeletonize”. 

Exemplary skeletons that have been extracted from STED images are shown in Figure 3.14. 

Quantitative skeleton properties like length and the number of junctions were automatically 

analyzed with the plugin “Analyze Skeleton (2D/3D)”. 

(For detailed description of Fiji plugins please refer to http://fiji.sc/wiki/index.php/Category:Plugins.) 

 

2.9.1.2 Orientation analysis of the TT network 

To analyze the orientation of individual TT elements, the Fiji plugin “Directionality” 

(“method=[Fourier Components] nbins=180 histogram=0 display_table”) was applied on the 

skeletonized image data. This plugin computed a histogram for each image indicating the frequency 

of structures oriented in a given direction with a bin size of 1°. The histogram data of all images per 

treatment group were averaged and presented as the relative amount of TT elements oriented in a 

specific angle in relation to the longitudinal cell axis. Accordingly, longitudinal TT elements had an 

angle of 0°. Transverse TT elements corresponded to the 90° bin. Due to symmetry, the histograms 

only included values from 0° to 179° (orientations of 0° and 180° were considered to be equal as well 

as 90° and 270° and so on). In order to illustrate the two-peak behavior, orientation histograms are 

displayed ranging from -45° to 135° with -45° ― -1° corresponding to 135° ― 179°. 

To additionally obtain the absolute amount of TT elements oriented in a certain direction, the 

relative histogram data described above were related to the total skeleton length within each ROI 

(obtained as readout of the “Analyze Skeleton (2D/3D)” plugin). The absolute amount of longitudinal 

TT elements within one image was calculated as the total skeleton length in that image multiplied by 

the percentage of longitudinal elements in the orientation histogram. Only for this purpose, the 

percentage of longitudinal elements was defined as the sum of 0° ± 3°. For the absolute amount of 

transverse TT elements, the same calculation strategy was used, but with the percentage of 

transverse elements being defined as the sum of 90° ± 3°. Finally, a third group of TT elements with 

neither longitudinal nor transverse orientation was defined as oblique elements. The percentage of 

oblique TT elements was calculated as the sum of 45° ± 3° and -45° ± 3°. 

http://fiji.sc/wiki/index.php/Category:Plugins
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2.9.2 Quantitative analysis of TT cross-sections 

2.9.2.1 Determination of TT dimensions by 2D Gauss fitting 

Using MATLAB (R2009b) a 2D Gauss function was fitted to the fluorescence signal of individual TT 

cross-sections both in the STED and in the corresponding confocal image. The orientation of one fit-

axis was fixed and aligned with the longitudinal cell axis (X). Accordingly, the second fit-axis was 

perpendicular to the longitudinal cell axis (Y). Full widths at half maximum (FWHM) of the fitted data 

were determined along both axes. The TT cross-section area was determined by A = ∏ · (½ X) · (½ Y) 

(ellipse formula). 

 

2.9.2.2 Contour analysis 

Contour lines of individual TT cross-sections were computed using the MATLAB (R2011b) command 

“contourc” applying a threshold of half the maximal fluorescence intensity per image. All contour 

lines had a resolution of 120 points. The circumference of each individual TT cross-section was 

directly computed by this analysis. 

To allow comparison of TT contours from different cells and experimental groups, all contours were 

equally aligned by rotation around their center of mass. After rotation, for each contour the X axis 

corresponded to the longitudinal cell axis (X). 

For comparison of different TT populations (e.g. from different treatment groups), all contour lines 

from one treatment group were superimposed in space at their center of mass. The results were 

displayed as color coded 2D probability histograms (see figure 3.6 for example) with a pixel size of 

8.3 nm x 8.3 nm. 

The radius of individual TT cross-sections was determined as the mean of the 120 radii on its contour 

line. 

 

2.9.3 Presentation of z-stacks and 3D reconstruction 

Before reconstruction, all z-stacks were linearly deconvolved using a 3D Wiener filter and the 

appropriate FWHM as determined in Figure 2.2 as kernel (MATLAB R2009b). 
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Applying the “3D Viewer” plugin of Fiji [122], z-stacks were presented with the appropriate z-distance 

either as “volume” (single imaging planes remain distinguishable) or as “surface” (only the surface of 

the object is reconstructed). 

 

2.10 Determination of protein levels by Western blot analysis 

Using a micropestle attached to a drill, ventricular cardiomyocytes (prepared as described in 2.5) 

were homogenized in homogenization buffer (formulation below). Following 30 min incubation at 

4°C for solubilization, lysates were centrifuged at 8,000 g for 15 min at 4°C. The supernatant was 

aliquoted (30 µg of protein each) and immediately snap-frozen in liquid N2 

Protein concentrations were determined with a commercial protein detection kit (BCA protein assay 

kit) according to the manufacturer’s instructions. 

Proteins were separated on 4 – 12 % gradient gels (NuPAGE®) using 1x MOPS running buffer as 

recommended by the manufacturer. A prestained protein molecular weight marker was used as size 

standard. Electrophoresis was performed at 150 V until the first marker band reached the lower end 

of the gel. 

In a wet blotting apparatus, proteins were transferred to nitrocellulose membranes. The blotting 

module containing (from bottom to top) 2 layers of filter paper, nitrocellulose membrane, the 

protein gel and 2 layers of filter paper, was incubated in transfer buffer (formulation below) for 

30 min. Blotting was performed in transfer buffer at 100 V for 1 h. Uniform protein transfer was 

confirmed by Ponceau stain of the membrane. 

To block unspecific binding, membranes were incubated in TBST (Tris-buffered saline and Tween 20, 

formulation below) containing 5 % milk powder for 1 h at room temperature. 

Primary antibodies were diluted in TBST containing 5 % milk powder (all primary antibodies and 

dilutions used for Western blots are listed in Table 6.8.1, Supplement). Membranes were incubated 

with the diluted primary antibodies over night at 4°C. The next day, membranes were washed three 

times for 10 min with TBST and were then incubated for 1 h with the secondary antibodies diluted in 

TBST containing 5 % milk powder at room temperature (secondary antibodies and dilutions used for 

Western blots are listed in Table 6.8.1, Supplement). 

After four 10 min washing steps with TBST, proteins were detected by chemiluminescence using the 

Immobilon™ Western horse raddish peroxidase substrate. Chemiluminescence was recorded and 
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analyzed by an image station with the appropriate imaging software (Image Station 4000R PRO, 

Carestream). 

 

Homogenization buffer 

 MW (g/mol) Final concentration 

HEPES 238.31 10 mM 

Sucrose 342.30 300 mM 

NaCl 58.44 150 mM 

Triton X-100 - 0.5 % 

EGTA 380.35 1 mM 

CaCl2 110.98 2 mM 

PhosSTOP 

(phosphatase inhibitor cocktail) 

- 1 tablet / 10 ml 

cOmplete 

(protease inhibitor cocktail) 

- 1 tablet / 10 ml 

 

Transfer buffer 

 MW (g/mol) Final concentration 

Tris 121.14 65 mM 

Glycine 75.07 380 mM 

Methanol 32.04 20 % 

 

TBST (Tris-buffered saline and Tween 20) 

 MW (g/mol) Final concentration 

Tris 121.14 10 mM 

NaCl 58.44 170 mM 

Tween 20 - 0.05 % 

pH 7.5   
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2.11 Statistics 

Data are presented as mean ± standard error of the mean (SEM) unless indicated differently. 

Differences between groups were tested for statistical significance using an unpaired 2-tailed T-test 

(Microsoft Office Excel 2007). In cases a paired T-test was used, this is indicated. Only P values < 0.05 

were considered significant. 
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3 Results 

3.1 STED imaging of TTs in healthy cardiomyocytes 

To establish STED imaging of TT membranes in living cardiomyocytes, five different dyes were initially 

tested. The fluorescently labeled phosphoglycerolipids Atto647N-PE and Atto647N-PE1 as well as the 

labeled sphingolipid Atto647N-SM had previously been described as suitable dyes for STED imaging 

of membranes in living PtK2 cells [123]. However, the staining protocols for all three dyes require 

relatively long incubation (30 min) on ice, followed by imaging at room temperature or even at 37°C. 

This staining procedure significantly affected living isolated cardiomyocytes as documented by (1) 

formation of membrane blebs, (2) aberrant contractions and (3) cell death. Alternatively, di-4-

ANEPPS is a well established membrane dye, which is often used for voltage imaging in excitable 

cells. However, Loew, who developed the ANEP dyes, stated that in some cell types di-4-ANEPPS 

becomes rapidly internalized [124]. Dye internalization was also observed in di-4-ANEPPS stained 

isolated cardiomyocytes. The resulting unspecific signal did not allow the visualization of the TT 

system. Exemplary confocal and STED images of a cardiomyocyte stained with di-4-ANEPPS are 

shown in Figure 3.1. Due to internalization and the failing TT stain, di-4-ANEPPS was not used for 

further studies. 

 

 

Figure 3.1 Di-4-ANEPPS internalizes in living cardiomyocytes. Exemplary confocal and STED images of the 
same ROI in a di-4-ANEPPS stained cardiomyocyte (20 µM, 10 min, room temperature). During staining, the dye 
already internalized. The TT system was not specifically stained. Color bar on the right illustrates the look-up 
table of fluorescence intensity. Scale bars: 2 µm. 

 

In contrast, staining with di-8-ANEPPS (Methods 2.3.1) did not affect freshly isolated ventricular 

cardiomyocytes. The majority of stained cells exhibited regular sarcomeric striations, no membrane 

blebs and did not contract. The fluorescence signals were considered sufficiently bright and STED 

successfully resulted in images with better resolution. Therefore, all subsequent TT imaging studies 

were performed using di-8-ANEPPS. The right side of Figure 3.2 shows a successfully di-8-ANEPPS 

Confocal STED
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stained cardiomyocyte. Compared to the di-4-ANEPPS example in Figure 3.1, the TT system is clearly 

visualized. 

The region of interest (ROI, 9 µm x 18 µm) for TT imaging was routinely selected in quiescent cells 

exhibiting regular striations and no membrane blebs. Using the bright field mode of the STED 

microscope, the status of cardiomyocytes used for TT imaging was documented. The selected ROI 

was sequentially imaged by the STED and by the confocal mode. Imaging depth was documented for 

every image as the distance between cell surface and actual imaging plane. Subsequently, I will 

discriminate between intracellular images that have been taken more than 3 µm inside the cell and 

submembrane images that have been taken less than 3 µm inside the cell. 

 

 

Figure 3.2 Confocal and STED images of the same ROI in a living di-8-ANEPPS stained cardiomyocyte. Left: 
Bright field image showing a regular striated living ventricular cardiomyocyte and the ROI that was imaged by 
the confocal and the STED mode (white box, increased contrast). Yellow arrows indicate orientations of the 
longitudinal (X) and the transverse (Y) cell axis. Right: Intracellular confocal and STED images of the ROI 
indicated in the bright field image. White triangles highlight an exemplary TT cross-section. Color bars on the 
right illustrate the look-up table of fluorescence intensity. Scale bars: 2 µm. 

 

The left side of Figure 3.2 shows a bright field image of the central part of a cardiomyocyte and the 

appropriate ROI. Orientations of the longitudinal (X) and transverse (Y) cell axes are indicated by 

yellow arrows. The right side shows a confocal and a STED image of the ROI. The fluorescence images 

show typical intracellular TT network structures inside a healthy cardiomyocyte. Besides the surface 

sarcolemma, there are TT elements in parallel to the major (longitudinal) cell axis. These are termed 

Confocal

STED

Bright field

X

Y
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“longitudinal TT elements”. TT elements which are perpendicular to the major cell axis are termed 

“transverse TT elements”. Optical sections of TTs running perpendicular to the imaging plane are 

referred to as “cross-sections”. One cross-section is highlighted by a white triangle each in the 

confocal and in the STED image in Figure 3.2. 

 

3.1.1 STED resolves individual TT elements 

Sequential imaging of the same ROI by the STED and by the confocal mode allows for direct, 

quantitative comparison of the same structures imaged by the two different modes. Figure 3.2 

already showed that the STED mode provides sharper images with increased detail information 

compared to the confocal mode. This observation is further illustrated in Figure 3.3, which shows 

examples of three different types of TT elements. The TT cross-section that has already been 

highlighted in Figure 3.2 appears clearly smaller in the STED image. Furthermore, images of the 

transverse and longitudinal TT elements show the underlying hollow membrane structure, the 

“tubule”, which is only resolved by the STED mode. 

 

 

Figure 3.3 STED images show details of different TT elements. Left: Magnified detail of figure 3.2. Yellow 
arrows indicate orientations of the longitudinal (X) and the transverse (Y) cell axes. Right: “Cross-section” 
denotes the optical profile of a TT that runs perpendicular to the imaging plan. A transverse TT element runs 
perpendicular to the major (longitudinal) cell axis and a longitudinal TT element is in parallel to the major cell 
axis. Scale bars: 200 nm. 
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3.1.2 Quantitative analysis of TT cross-sections by 2D Gauss fitting 

Since an improvement of resolution in the STED mode was already apparent by direct comparison 

with confocal images (Figures 3.2 and 3.3), the next goal was to quantitatively analyze the differences 

between TT structures in STED and confocal images. For that purpose, initially dimensions of TT 

cross-sections were determined by 2D Gauss fitting (Methods 2.9.2).  

The same set of TT cross-sections was analyzed in STED and confocal images of healthy di-8-ANEPPS 

stained cardiomyocytes. Intracellular and submembrane images were analyzed separately. 

 

 

Figure 3.4 Distribution of intracellular TT diameters determined by 2D Gauss fitting. Histograms for diameters 
of 205 TT cross-sections (43 cells, 3 mice) determined in intracellular images. The same set of TT cross-sections 
was analyzed in STED and confocal images. Diameters were determined as FWHM by 2D Gauss fitting in parallel 
to the longitudinal cell axis (X) and perpendicular to the longitudinal cell axis (Y). Red dashed lines mark the 
confocal resolution limit. 

 

In the intracellular group, dimensions of 205 TTs (in 43 cells from 3 different mice) were determined. 

Figure 3.4 shows the distribution of TT diameters determined in parallel to the longitudinal cell axis 

(X) and perpendicular to it (Y) in intracellular confocal and STED images. For X and Y the confocal 

histograms abruptly end at 220 nm and 210 nm respectively. These values approximately represent 

the confocal resolution limit (red dashed line). The STED histograms are not restricted to that limit. 

For X and Y the histograms are broader and contain values down to 120 nm. 

STED

Confocal
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Clear shifts towards smaller diameters in STED histograms as well as abruptly ending confocal 

histograms were also observed for dimensions of TTs in submembrane images. Histograms 

representing the distribution of TT diameters in submembrane images are shown in Figure 6.1 

(Supplement). 

Table 3.1 summarizes the mean TT diameters in X and Y as well as the mean TT areas that have been 

calculated from these diameters by the ellipse formula (A = ∏ · ½X · ½Y). In both groups – 

intracellular and submembrane –all determined parameters are significantly smaller for TTs analyzed 

in STED images. The mean TT cross-section area for example appears approximately 44 % smaller in 

STED images than in confocal images. 

 

Table 3.1 Dimensions of TT cross-sections in healthy cardiomyocytes. The same TT cross-sections were 
analyzed in STED and confocal images. Differences between STED and confocal dimensions were tested for 
statistical significance by a paired T-test. Mean TT diameters and areas were determined by 2D Gauss fitting. 
Mean circumferences were determined by contour analysis. Data are presented as mean ± SEM. Intracellular: 
205 TTs in 43 cells derived from 3 different mice. Submembrane: 182 TTs in 55 cells derived from 3 different 
mice. *: p < 0.001 vs. confocal (paired T-test). 

Imaging mode 
Diameter X 

(nm) 

Diameter Y 

(nm) 

Area 

(nm2) 

Circumference 

(nm) 

Intracellular 

Confocal 265.9 ± 2.1 261.1 ± 2.0 54,696.8 ± 696.0 918.9 ± 5.9 

STED    198.7 ± 2.8 *    195.2 ± 2.6 *   30,899.5 ± 740.0 *    672.9 ± 8.7 * 

Submembrane 

Confocal 273.1 ± 2.7 266.1 ± 2.1 57,245.9 ± 789.9 945.3 ± 6.7 

STED    206.0 ± 3.5 *    194.6 ± 2.7 *   31,810.2 ± 769.6 *    708.6 ± 9.8 * 

 

 

TT cross-sections appeared smaller in STED images. Additionally, morphological details were revealed 

and in some cases even the underlying hollow structure was resolved. Figure 3.5 A shows an 

exemplary TT cross-section whose hollow structure was only resolved by STED but not by the 

confocal mode. Assuming that all TT elements are hollow structures, it has to be concluded that only 

some are resolved under the given conditions.  
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3.1.3 Quantitative analysis of TT cross-sections by contour analysis 

To further investigate the morphology of individual TT cross-sections, contours were quantitatively 

analyzed. Contour lines were computed at half the maximal fluorescence intensity of one TT cross-

section (Methods 2.9.2). Figures 3.5 B and D show contours of the cross-sections in 3.5 A and C 

respectively. For the same TT cross-section contours were extracted from the STED and the confocal 

image.  

 

A                                                                 B 

 

C                                                                 D 

 

Figure 3.5 STED and confocal images of individual TT cross-sections and corresponding contours. (A) Confocal 
and STED image of a hollow TT cross-section imaged 5.9 µm inside the cell. (B) Contours of the TT cross-section 
shown in A extracted from the STED (red line) and from the confocal image (black line). (C) Confocal and STED 
image of a TT cross-section imaged 3.9 µm inside the cell. (D) Contours of the TT cross-section shown in C 
extracted from the STED (red line) and from the confocal image (black line). Scale bars (200 nm) represent the 
orientation of the longitudinal cell axis. 

 

Besides being a little smaller, the contour of the hollow TT cross-section extracted from the STED 

image in Figure 3.5 A showed more details of the TT morphology than the contour extracted from the 

confocal image. The contours of the TT cross-section in Figure 3.5 C confirmed the observation that it 

appeared clearly smaller in the STED image. 
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In order to compare contours from different groups of TT cross-sections, 2D contour histograms 

were generated (Methods 2.9.2). Contours were extracted from STED and confocal images of the 

same TT cross-sections. For each group – STED and confocal – 2D histograms were generated by 

superposition of all corresponding contours. Again, intracellular and submembrane images were 

analyzed separately. The same sets of TT cross-sections that had been analyzed by 2D Gauss fitting 

(Results 3.1.2) were additionally used for contour analysis. Figure 3.6 shows the 2D histograms for 

intracellular TT cross-sections analyzed in confocal and STED images. 

 

 

Figure 3.6 2D contour histograms of intracellular TT cross-sections. 2D histograms for 205 TT contours 
extracted from intracellular STED and confocal images. + indicates the point where contours were 
superimposed (their center of mass). The x-axis corresponds to the orientation of the longitudinal cell axis. The 
color bar on the right illustrates the probability that a contour hits a pixel: black (min) = low probability, white 
(max) = high probability. 

 

The STED 2D contour histogram in Figure 3.6 looks significantly different compared to the confocal 

histograms. While the superposition of contours extracted from confocal images resulted in a narrow 

circular distribution with an average radius of about 150 nm, the superposition of contours extracted 

from STED images provided a broader distribution with an average radius of less than 100 nm. A 

broader distribution composed of contours with smaller radii was also observed when TT cross-

sections from submembrane images were analyzed. This is shown in Figure 6.2 (Supplement). 

Another parameter resulting from contour analysis was the radius of each TT cross-section calculated 

as the mean of the 120 radii on its contour line. Radius distributions of the before described sets of 

TT cross-sections are shown in Figure 3.7. As already observed for TT diameters determined by 2D 

Gauss fitting (Figure 3.4), distributions of TT radii determined by contour analysis in STED images 
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were broader and clearly shifted towards smaller values compared to distributions of radii 

determined in confocal images. 

 

A Intracellular                                             B Submembrane 

 

Figure 3.7 Distributions of radii determined by contour analysis. The same sets of TT cross-sections were 
analyzed in STED and confocal images. (A) Histograms for radii of 205 TT cross-sections determined in 
intracellular images. (B) Histograms for radii of 182 TT cross-sections determined in submembrane images. Red 
dashed lines mark the lower end of the confocal radius distributions. 

 

Mean circumferences determined by contour analysis are summarized in Table 3.1. Like diameters 

and area determined by 2D Gauss fitting, also the mean circumference of TT cross-sections 

determined by contour analysis was significantly smaller when analyzed in STED images. 

Taken together, imaging of TT structures in healthy living cardiomyocytes showed that STED 

improves resolution and results in sharper, more detailed images. The morphology of individual TT 

cross-sections was uncovered by STED and could be quantitatively analyzed by two different and 

independent methods. 

  

Confocal

STED

Confocal

STED
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3.2 Remodeling of TTs and associated proteins after MI 

3.2.1 The post-MI mouse model 

To investigate TTs during progressive HF in mice, a previously established post-MI mouse model was 

used [114]. To induce a large MI, the LAD coronary artery was proximally ligated (Methods 2.1.1). 

Cardiomyocytes were isolated and analyzed 4 weeks after MI (4pMI) or 8 weeks after MI (8pMI). As 

control, cardiomyocytes from Sham operated mice were isolated, analyzed and compared to 4pMI 

and 8pMI cells (the Sham operation is also explained in Methods 2.1.1). Mouse operations were 

performed by Julia H. Steinbrecher (Dept. of Cardiology and Pulmonology, University Medical Center, 

Göttingen). 

The post-MI in vivo phenotype was characterized by echocardiography. Mouse echocardiography 

was performed by Kirsten Koschel (Dept. of Cardiology and Pulmonology, University Medical Center, 

Göttingen). Figure 3.8 shows that the left ventricular inner diameter in diastole (LVID,d) was 

progressively increased post-MI, indicating cardiac dilation (Figure 3.8. A). The posterior wall 

thickness in diastole (PWTh,d) was also progressively increased, indicating hypertrophy (Figure 

3.8. B). A progressive loss of heart function was shown by a decreased ejection fraction (EF) post-MI 

(Figure 3.8. C). Hypertrophy was further confirmed by determination of the heart weight to body 

weight ratio (HW/BW) directly before cardiomyocytes were isolated. Figure 3.8 D summarizes 

HW/BW for all MI and Sham operated mice that have been used for cardiomyocyte isolation and 

further analysis. HW/BW was progressively increased post-MI. 

 

A                             B                               C                              D 

 

Figure 3.8 Echocardiographic parameters and HW/BW following MI. (A) Left ventricular inner diameter in 
diastole (LVID,d) (B) Posterior wall thickness in diastole (PWTh,d) (C) Ejection fraction (EF). Parameters in (A) – 
(C) were determined by echocardiography. (D) Heart weight to body weight ratio (HW/BW) determined directly 
before cardiomyocyte isolation. Data are presented as mean ± SEM from the following number of mice: 
Sham 9, 4pMI 8, 8pMI 7. *: p < 0.001 vs. Sham (unpaired T-test). 

*
* * *

*
*

*
*
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A third parameter confirming hypertrophic remodeling post-MI was the size of isolated 

cardiomyocytes. To determine cell dimensions, fixed cardiomyocytes were used (Methods 2.4.2 and 

2.6.2). Figure 3.9 shows that cardiomyocytes became progressively wider and longer post-MI and 

that consequentially their cross-section area was also increased. 

 

                A                               B                            C 

 
Figure 3.9 Cardiomyocyte dimensions increase progressively post-MI. Dimensions were manually determined 
in fixed isolated ventricular cardiomyocytes. (A) Cardiomyocyte length. (B) Cardiomyocyte width. (C) 
Cardiomyocyte cross-section area. Data are presented as mean ± SEM from the following number of cells: 
Sham 36, 4pMI 42, 8pMI 46. n.s.: not significant. *: p < 0.001 vs. Sham. 

#
: p < 0.05 vs. 4pMI (unpaired T-test). 

 

3.2.2 TT remodeling after MI 

Sham, 4pMI and 8pMI cardiomyocytes were stained with di-8-ANEPPS and a ROI was imaged by the 

confocal and the STED mode as described in 3.1. Regular striations and the absence of membrane 

blebs were documented in bright field images. Figure 3.10 A illustrates that STED images of Sham 

cardiomyocytes showed regularly aligned TTs with rectangular transverse and longitudinal 

components. 4pMI cardiomyocytes showed enlarged TT structures and minor changes in regularity, 

whereas the TT network was severely misaligned 8pMI and exhibited strongly enlarged TT structures. 

Figures 3.10 B and C illustrate that even strongly enlarged TT structures were only resolved by the 

STED mode. Confocal imaging resulted in blurred images that did not resolve the underlying TT 

morphology. 
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Figure 3.10 STED shows progressive membrane remodeling post-MI. (A) STED images of intracellular TT 
structures in Sham, 4pMI and 8pMI cardiomyocytes. (B) Confocal and STED image of the same enlarged 
intracellular 4pMI TT structure. (C) Confocal and STED image of the same enlarged intracellular 8pMI TT cross-
section. Scale bars (1 µm) represent the orientation of the longitudinal cell axis. 

 

3.2.3 MI leads to enlarged TT cross-sections 

In order to quantitatively analyze dimensions of TT cross-sections post-MI, the methods described in 

3.1.2 and 3.1.3 were applied. Cross-section diameters and area were determined by 2D Gauss fitting. 

Circumferences were determined by contour analysis. Intracellular and submembrane STED images 

of Sham, 4pMI and 8pMI cardiomyocytes were analyzed. 

Table 3.2 summarizes the dimensions of TT cross sections determined in intracellular STED images. 

2D Gauss fitting revealed that 4pMI intracellular cross-sections were enlarged by 12 % and 8pMI 

even by 22 % (Sham: 30,604 nm2, 4pMI: 34,354 nm2, 8pMI: 37,292 nm2). Contour analysis showed 

that also the cross-section circumference was increased by 5 % 4pMI and by 14 % 8pMI 

(Sham: 657 nm, 4pMI: 693 nm, 8pMI: 749 nm). 
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Table 3.2 Intracellular TT cross-section dimensions increase progressively post-MI. Dimensions of TT cross-
sections were determined in intracellular STED images of Sham, 4pMI and 8pMI cardiomyocytes. Mean TT 
diameters and areas were determined by 2D Gauss fitting. Mean circumferences were determined by contour 
analysis. *: p < 0.05 vs. Sham. 

#
: p < 0.05 vs. 4pMI (unpaired T-test). Data are presented as mean ± SEM from 

the following numbers of TT cross-sections (cells) per treatment group: Sham 627 (90), 4pMI 237 (44), 8pMI 
290 (46). 

Treatment 

group 

Diameter X 

(nm) 

Diameter Y 

(nm) 

Area 

(nm2) 

Circumference 

(nm) 

Sham 198.4 ± 1.9 195.5 ± 1.9 30,603.9 ± 439.0 656.5 ± 5.6 

4pMI    205.7 ± 2.9 *    210.1 ± 3.2 *    34,353.8 ± 854.8 *    692.6 ± 9.5 * 

8pMI    213.0 ± 3.4 *     219.9 ± 3.3 *#     37,291.9 ± 948.5 *#     748.9 ± 11.2 *# 

 

 

In submembrane STED images, only 8pMI TT cross-sections were enlarged. Dimensions of 

submembrane TT cross-sections are summarized in Table 3.3. While diameters, area and 

circumference were not changed 4pMI compared to Sham, 8pMI cross-section area was enlarged by 

15 % (Sham: 30,389 nm2, 8pMI: 35,090 nm2) and circumference by 7 % (Sham: 656 nm, 

8pMI: 701 nm). 

 

Table 3.3 Submembrane TT cross-section dimensions increase 8pMI. Dimensions of TT cross-sections were 
determined in submembrane images of Sham, 4pMI and 8pMI cardiomyocytes. Mean TT diameters and areas 
were determined by 2D Gauss fitting. Mean circumferences were determined by contour analysis. n.s.: not 
significant. *: p < 0.05 vs. Sham. 

#
: p < 0.05 vs. 4pMI. Data are presented as mean ± SEM from the following 

numbers of TT cross-sections (cells) per treatment group: Sham 683 (92), 4pMI 343 (61), 8pMI 253 (48). 

Treatment 

group 

Diameter X 

(nm) 

Diameter Y 

(nm) 

Area 

(nm2) 

Circumference 

(nm) 

Sham 201.0 ± 2.0 190.5 ± 1.8 30,388.9 ± 465.5 656.0 ± 5.6 

4pMI      199.5 ± 2.7 n.s.      190.3 ± 2.6 n.s.      29,853.1 ± 567.1 n.s.     649.4 ± 7.5 n.s. 

8pMI     214.7 ± 3.3 *#     205.7 ± 3.3 *#     35,089.9 ± 884.5 *#     701.0 ± 10.4 *# 

 

 

As described before, TT cross-section contour data were summarized in 2D histograms for each 

treatment group. 2D contour histograms for intracellular TT cross-sections are shown in Figure 3.11. 

The 2D histogram for contours extracted from Sham TTs shows a symmetrical, circular distribution 



Results                                                                                                                                                     43 
 

with only little deviation. The distribution of contours extracted from 4pMI intracellular images in 

already shows alterations in the circular crest and more signals in the periphery representing larger 

TT cross-sections. Heterogeneity, especially in the periphery, further increased 8pMI. An increasing 

number of TT cross-sections with large diameters correlates well with the observed progressive 

increase of mean TT dimensions post-MI (as summarized in Table 3.2). 

2D contour histograms for TT cross-sections in submembrane images are shown in Figure 6.3 

(Supplement). In submembrane 2D histograms, only 8pMI the distribution differed from Sham. It 

showed a less uniform circular crest and more heterogeneous signals in the periphery. This is again in 

good correlation with the observation that mean TT dimensions in submembrane images are 

significantly increased only 8pMI (as summarized in Table 3.3). 

 

 
Figure 3.11 2D contour histograms of intracellular TT cross-sections. 2D histograms for the following number 
of TT contours (cells) extracted from intracellular images: Sham 627 (90), 4pMI 237 (44), 8pMI 290 (46). 
+ indicates the point where contours were superimposed (their center of mass). The x-axis corresponds to the 
orientation of the longitudinal cell axis. The color bar on the right illustrates the probability that a contour hits 
a pixel: black (min) = low probability, white (max) = high probability. 

 

As another parameter resulting from contour analysis, radii of TT cross-sections were calculated. 

Radius distributions of intracellular Sham, 4pMI and 8pMI TT cross-sections are shown in Figure 

3.12 A. To clarify the difference between distributions of two treatment groups, histograms were 

subtracted from each other (Figure 3.12 B). Difference histograms show that the 4pMI group 

contains fewer cross-sections with radii smaller than 100 nm but more cross-sections with radii larger 

than 100 nm compared to the Sham group. This difference is even more pronounced in the direct 

comparison of 8pMI with Sham TTs. Accordingly, subtraction of the 4pMI from the 8pMI histogram 

shows that the 4pMI group contains more cross-sections with radii smaller than 100 nm and less with 

a radius larger than 100 nm. 
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A                                                                     B 

 

Figure 3.12 Distributions of radii determined by contour analysis in intracellular images. Radii were 
determined as the mean of 120 radii in one contour line. (A) Histograms for the following number of TT cross-
sections (cells) extracted from intracellular images: Sham 627 (90), 4pMI 237 (44), 8pMI 290 (46). (B) 
Differences between the radius distributions were calculated by subtraction of histograms from the indicated 
treatment groups. 

 

Radius distributions of TT cross-sections in submembrane images are shown in Figure 6.4 

(Supplement). As for the previous analyses of TT cross-section dimensions in submembrane images, 

there was no measureable difference between the distribution of radii from 4pMI and Sham TTs. 

Changes in the radius distribution of submembrane TTs occurred only 8pMI. The 8pMI histogram 

contains clearly less TTs with a radius smaller than 100 nm and more with a radius larger than 

100 nm compared to the Sham and hence also to the 4pMI group. 

In summary, quantitative analysis of TT cross-sections showed a homogenous population of TT cross-

sections with a mean diameter of approximately 200 nm in Sham cardiomyocytes. Post-MI this 

population was replaced by an increasingly heterogeneous population of cross-sections which were 

in part strongly enlarged. Post-MI changes were more pronounced in intracellular images where they 
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8pMI

4pMI - Sham

8pMI - Sham
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were already detectable 4pMI. In submembrane images changes were less pronounced and not 

detectable until 8pMI. 

 

3.2.4 STED reveals proliferative TT network remodeling after MI 

As further properties of TTs after MI, complexity and composition of the TT network were 

investigated. To be able to quantify changes in the TT network, skeletons were extracted from STED 

images of Sham, 4pMI and 8pMI cardiomyocytes (Methods 2.9.1). Figure 3.14 shows exemplary STED 

images of all groups and the corresponding skeletons that have been extracted from these images. 

Skeletons were only extracted from intracellular images, because submembrane TT images usually 

showed a more fractured, punctate pattern without intact networks that could be analyzed. Typical 

submembrane TT images of a Sham and an 8pMI cardiomyocyte are shown in Figure 3.15. 

 

 

Figure 3.14 Skeletons reveal progressive TT network remodeling post-MI. Upper row: Representative STED 
images of TT networks in Sham, 4pMI and 8pMI cardiomyocytes. Grayscale look-up table: white represents 
pixels without fluorescence and black represents the brightest pixels. Middle row: Overlay of STED images with 
the extracted skeletons. Lower row: Skeletons that have been extracted from the STED images in the upper 
row. Scale bars (2 µm) represent the orientation of the longitudinal cell axis. 
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STED

Overlay

Skeleton
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Figure 3.15 Typical submembrane TT images in Sham and 8pMI cardiomyocytes. Submembrane images do 
usually not exhibit an extensive TT network that could be used for extraction of skeletons. (A) TTs imaged 2 µm 
inside a Sham cardiomyocyte. (B) TTs imaged 1 µm inside an 8pMI cardiomyocyte. Several TT cross-sections 
appear clearly enlarged compared to the Sham example. Scale bars (1 µm) represent the orientation of the 
longitudinal cell axis. 

 

The exemplary STED images of TTs in Sham, 4pMI and 8pMI cardiomyocytes in Figure 3.10 already 

showed a progressive loss of regularity post-MI accompanied by an increasing number of enlarged 

structures. This observation is confirmed by the STED images and the extracted skeletons in Figure 

3.14. Skeletons illustrate that extremely enlarged TT structures are made up of bifurcating TT 

elements. In order to characterize complexity of a TT network, the number of triple junctions – or the 

number of bifurcating TT elements – was counted and normalized to the corresponding area. 

Another determined parameter was the total length of TT network elements in a defined area. 

Both parameters, number of triple junctions and total network length were analyzed in Sham, 4pMI 

and 8pMI images. The results are summarized in Figure 3.16. Figure 3.16 A shows a significant 

increase of the total skeleton length post-MI, which is slightly longer 4pMI than 8pMI 

(Sham: 0.38 µm/µm2, 4pMI: 0.52 µm/µm2, 8pMI: 0.50 µm/µm2). The number of triple junctions 

(Figure 3.16 B) progressively increased post-MI up to almost twofold 8pMI compared to the Sham 

group (Sham: 0.20/µm2, 4pMI: 0.33/µm2, 8pMI: 0.38/µm2). 

 

 

 

 

 

Sham 8pMI
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Figure 3.16 TT network length and complexity increase after MI. As a measure of TT network complexity the 
total network length per area and the number of triple junctions per area were calculated from skeletonized 
STED images of Sham, 4pMI and 8pMI cardiomyocytes. (A) Total network length per area. (B) Number of triple 
junctions per area. *: p < 0.01 vs. Sham. Data are presented as mean ± SEM from the following number of cells 
per treatment group: Sham 23, 4pMI 19, 8pMI 19. 

 

Besides complexity, the composition of TT networks in the different treatment groups was analyzed. 

Therefore, the orientation of all elements in a TT network was determined. As already defined in 3.1, 

TT elements in parallel to the longitudinal cell axis are termed “longitudinal elements”. TT elements 

perpendicular to the longitudinal cell axis are termed “transverse elements”. In rotated images 

whose horizontal axis corresponds to the longitudinal cell axis, longitudinal elements have an 

orientation of 0°. Transverse TT elements have an orientation of 90°. Figure 3.17 A shows how TT 

elements in the different treatment groups were oriented. Orientations of all TT elements in images 

of one treatment group were summarized in histograms. The Sham histogram shows a distribution 

with two similar peaks at 0° (longitudinal elements) and at 90° (transverse elements). This confirms 

the observation that TT networks in healthy cardiomyocytes are mainly composed of regular 

longitudinal and transverse elements.  

4pMI the longitudinal peak is clearly larger compared to the Sham group. This finding is consistent 

with the 4pMI example in Figure 3.14 which contains more longitudinal elements than the Sham 

example. The transverse peak in the 4pMI histogram decreases compared to Sham.  

8pMI both the longitudinal and the transverse peak are decreased compared to Sham. But while the 

amplitude at 0° is smaller, the peak becomes wider, indicating an increase of oblique elements. This 

finding is also consistent with Figure 3.14, where the 8pMI example is mainly composed of TT 

elements which are neither exactly longitudinal nor transverse. 

 

*
*

*
*
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Figure 3.17 Orientation of TT network elements changes differentially post-MI. Histograms summarize 
orientations of all TT elements in images of one treatment group. 0° represent a longitudinal orientation of TT 
elements. 90° represent a transverse orientation. (A) Orientation histograms for the following number of cells 
per treatment group: Sham 23, 4pMI 19, 8pMI 19. (B) Differences between the distributions were calculated by 
subtraction of histograms from the indicated treatment groups. 

 

Since a presentation of datasets as histograms only displays relative values and changes, orientations 

of TT network elements were additionally determined as absolute values. For this purpose the total 

network lengths per treatment group already described in Figure 3.16 (Sham: 0.38 µm/µm2, 

4pMI: 0.52 µm/µm2, 8pMI: 0.50 µm/µm2) were used as reference values (for detailed description see 

Methods 2.9.1). The absolute amount of longitudinal TT elements in one image was defined as the 

total network length in that image multiplied by the sum of histogram values for 0° ± 3° for the same 

image. For the absolute amount of transverse TT elements, the total network length was multiplied 

by the histogram values for 90° ± 3°. The sum of 45° ± 3° and -45° ± 3° was defined as the percentage 

of oblique elements, which are neither longitudinally not transversely oriented. 

Figure 3.18 summarizes the absolute values of the different components of the TT network for each 

treatment group and the differential changes between groups. While the relative amount of 

transverse TT elements shown in Figure 3.17 clearly decreases post-MI, the absolute amount is only 

slightly decreased 4pMI but not 8pMI (Sham: 0.025 µm/µm2, 4pMI: 0.018 µm/µm2, 

8pMI: 0.021 µm/µm2). 

Sham 4pMI 8pMI

8pMI – 4pMI8pMI - Sham4pMI - Sham
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The strong relative increase of longitudinal TT elements 4pMI is confirmed by the analysis of absolute 

values. Compared to Sham, 8pMI the absolute amount of longitudinal TT elements is only slightly 

increased (Sham: 0.025 µm/µm2, 4pMI: 0.047 µm/µm2, 8pMI: 0.032 µm/µm2). 

While relative values suggested a stronger increase of oblique TT elements 8pMI than 4pMI, the 

analysis of absolute values showed an increase of oblique elements for both 4pMI and 8pMI to 

almost the same extend (Sham: 0.019 µm/µm2, 4pMI: 0.029 µm/µm2, 8pMI: 0.028 µm/µm2). 

 A B C 

 
Figure 3.18 Components of the TT network change differentially post-MI. Absolute amount of TT network 
components per area in Sham, 4pMI and 8pMI cardiomyocytes. (A) 90° ± 3° are referred to as the transverse 
component. (B) 0° ± 3° are referred to as the longitudinal component. (C) ±45° ± 3° are defined as the oblique 
component. n.s.: not significant. *: p < 0.05 vs. Sham. 

#
: p < 0.05 vs. 4pMI. Data are presented as mean ± SEM 

from the following number of cells per treatment group: Sham 23, 4pMI 19, 8pMI 19. 

 

In summary, analysis of TT networks showed proliferative remodeling after MI characterized by a 

progressive increase of complexity and by the most pronounced increase of network length 4pMI. 

Regularity of TT alignment was lost post-MI as shown by a significant increase of oblique TT elements 

4pMI and 8pMI. Most strikingly, the relative as well as the total amount of longitudinal TT elements 

was strongly increased 4pMI. 

These results are contrary to the studies of Heinzel [88], Lyon [91] or Kemi [92] who observed a “loss 

of TTs” in failing cardiomyocytes from different species (Introduction 1.9.1). But these findings are in 

agreement with reports of TT disorganization [96, 97] (Introduction 1.9.2). 

3.2.5 Remodeling of TT associated proteins 

STED imaging of TTs in failing cardiomyocytes showed that TT remodeling after MI seems to be a 

proliferative mechanism. This finding gave rise to the hypothesis that proteins, which are thought to 
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play a role in the TT biogenesis like JPH2 and Cav3, might also be involved in TT remodeling during 

the development of HF (Introduction 1.7). In a rat model of increased pressure overload it has 

already been shown that JPH2 expression is reduced during the development of HF [97]. Increased 

Cav3 expression has been shown in a dog model of pacing-induced HF [125]. 

Expression levels of Cav3 and JPH2 in isolated Sham, 4pMI and 8pMI cardiomyocytes were 

determined by Western blot (Methods 2.10). Western blots were produced by Brigitte Korff (Dept. of 

Cardiology and Pulmonology, University Medical Center, Göttingen). 

 

 A B 

 

 C 

 

Figure 3.19 Expression of JPH2 and Cav3 after MI. Protein expression in cardiomyocytes was determined by 
Western blot. Values were normalized to the mean of Sham values. (A) Normalized JPH2 expression. (B) 
Normalized Cav3 expression. n.s.: not significant. *: p < 0.001 vs. Sham. Data are presented as mean ± SEM 
from 4 independent Western blots per protein with at least 3 samples per treatment group. (C) Exemplary 
Western blot images for JPH2, Cav3 and the reference protein GAPDH. Samples from 3 different mice per 
treatment group were applied. Boxes on the left side show the corresponding marker bands imaged by 
transmitted light. Sizes of the marker bands are given in kilodalton (kDa). 

 

The results of Western blot analysis are shown in Figure 3.19. 4pMI the expression of Cav3 was 

increased 1.4-fold compared to Sham cardiomyocytes. 8pMI the Cav3 expression was almost 

unchanged compared to Sham. Analysis of the JPH2 Western blot data revealed a significant 
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decrease of protein expression 4pMI and 8pMI to approximately 40 % of the expression in Sham 

cardiomyocytes. 

 

Besides expression levels, also the localization of Cav3 and JPH2 was analyzed and compared to the 

localization of RyR2. As part of the CRU, RyR2 is located in the SR membrane and shows a punctate 

pattern, regularly aligned along Z-lines. Figure 3.20 A compares the distribution of Cav3 and RyR2 

signals in Sham and 4pMI cardiomyocytes. In the Sham example, Cav3 and RyR2 signals are regularly 

aligned along Z-lines. Both proteins show an alternating punctate pattern. In contrast, 4pMI 

numerous longitudinal Cav3 positive signals are visible. 

A comparison of JPH2 and RyR2 signals in Sham and 8pMI cardiomyocytes is shown in Figure 3.20 B. 

In the Sham as well as in the 8pMI example, both proteins appear fully colocalized. While JPH2 and 

RyR2 show similar signal intensities in the Sham example indicated by yellow pixels, 8pMI the JPH2 

signal decreases in relation to the RyR2 signal. Therefore, pixels appear greener 8pMI. This finding is 

consistent with the decreased expression of JPH2 8pMI as confirmed by Western blot (Figure 3.19). 

Furthermore 8pMI, RyR2 and JPH2 signals appear less regular than in Sham cardiomyocytes. 
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Figure 3.20 Cav3, JPH2 and RyR2 immunostains in Sham and post-MI cardiomyocytes. (A) Cav3 (red) and RyR2 
(green) co-immunostains in Sham and 4pMI cardiomyocytes. (B) JPH2 (red) and RyR2 (green) co-immunostains 
in Sham and 8pMI cardiomyocytes. Scale bars (1 µm) represent the orientation of the longitudinal cell axis. 
White squares correspond to the magnifications. Overlapping red and green signals appear yellow. 

 

Regularity of protein patterns was analyzed by Fourier transformation and analysis of the resulting 

power spectra (Methods 2.8.1). In the power spectrum analysis, the first periodic peak at ~0.5 µm-1 

corresponded to a spatial distance of 2 µm, the average Z-line spacing. So the regular distribution of 

one protein along Z-lines could be determined by measuring the amplitude of the first periodic peak. 

Figure 3.21 A summarizes the analysis of Cav3 power spectra in Sham and 4pMI cardiomyocytes. 

Compared to Sham, the Cav3 power spectrum is upward shifted 4pMI while the amplitude of the first 

peak is significantly decreased. These findings indicate increased heterogeneities between Z-lines – 

at frequencies different from 0.5 µm-1 – and a decreased alignment of Cav3 at Z-lines. Decreased 

regularity 4pMI is also confirmed by a missing 2nd harmonic component, which is only present in the 

Sham power spectrum. 

In Figure 3.21 B the same tendency is shown for the distribution of RyR2. The RyR2 power spectrum 

is also upward shifted 4pMI while the amplitude of the first peak is significantly decreased. This 

suggests a relative loss of RyR2 clusters at Z-lines accompanied by increased heterogeneities 

between Z-lines 4pMI. 
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JPH2 power spectra were analyzed for Sham and 8pMI cardiomyocytes. In contrast to Cav3 and RyR2, 

the JPH2 power spectrum is lower post-MI. Still the amplitude of the first peak is decreased 8pMI 

compared to Sham. As with Cav3 and RyR2, the 2nd harmonic component is only present in the Sham 

power spectrum. 

A Cav3                              B RyR2                             C JPH2 

 

Figure 3.21 Regularity of Cav3, RyR2 and JPH2 signals. Upper row: Averaged profiles of power spectra as a 
function of the spatial frequency. The first peak at ~0.5 µm

-1
 corresponds to the average Z-line spacing of 2 µm. 

The 2
nd

 peak corresponds to the 2
nd

 harmonic component. Lower row: Averaged amplitudes of the first peak at 
~0.5 µm

-1
. (A) Cav3 power spectra and peak amplitudes. (B) RyR2 power spectra and peak amplitudes. (C) JPH2 

power spectra and peak amplitudes. *: p < 0.05 vs. Sham. Data are presented as mean ± SEM from the 
following number of images (cells): Cav3 Sham 9, Cav3 4pMI 6, RyR2 Sham 6, RyR2 4pMI 5, JPH2 Sham 9, JPH2 
8pMI 11. 

 

In summary, expression of JPH2 was significantly decreased 4pMI and 8pMI as confirmed by Western 

blot and immunofluorescence. While colocalization of JPH2 and RyR2 did not change post-MI, 

regularity in the alignment of both proteins along the Z-lines decreased. Expression of Cav3 was 

significantly increased 4pMI, but not 8pMI. Increased expression was accompanied by an increase of 

Cav3 positive longitudinal structures. The increased presence of Cav3 positive longitudinal structures 

4pMI correlated with the already described strong increase of longitudinal TT elements 4pMI (3.2.4). 
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3.2.6 Influence of longitudinal TT elements on Ca2+ signaling 

To investigate the influence of different types of TT elements on Ca2+ signaling, TT and Ca2+ imaging 

were combined as previously described by Louch et al. [89]. Cardiomyocytes were stained with the 

membrane dye di-8-ANEPPS, loaded with the Ca2+ indicator fluo-4/AM and imaged with a confocal 

microscope (Methods 2.3.2 and 2.6.3). Based on a two-dimensional di-8-ANEPPS image, either a 

transverse line or a longitudinal line was selected. Transverse lines (perpendicular to the major cell 

axis) cross longitudinal TT elements between Z-lines. Longitudinal lines (in parallel to the major cell 

axis) cross transverse TT elements at Z-lines. Cardiomyocytes were field-stimulated at 0.5 Hz and Ca2+ 

transients were recorded along the selected scan lines. 

Figure 3.22 shows examples of combined TT and Ca2+ imaging in a Sham and a 4pMI cardiomyocyte. 

In Figure 3.22 A a transverse line scan was performed in a Sham cardiomyocyte with a regular TT 

network. This line crossed 4 independent longitudinal TT elements as illustrated by the di-8-ANEPPS 

line scan and its corresponding profile. The measured Ca2+ transient along the same scan line showed 

an almost uniform onset which was confirmed by a low dyssynchrony index of 2.2 ms. The 

dyssynchrony index is determined as the standard deviation of the values for the earliest time at 

which F50 was reached along the scan line. Less synchronous Ca2+ transients would be expected to 

have a greater variation in time to reach F50
 (the half-maximal fluorescence of the entire spatially 

averaged line scan) at different points along the cell and would therefore yield a higher dyssynchrony 

index [89]. 

The 4pMI example in Figure 3.22 B exhibited a less regular TT network with more longitudinal TT 

elements than the Sham example. The selected scan line crossed at least 10 different longitudinal TT 

elements as illustrated by the di-8-ANEPPS line scan and its corresponding profile. At the same time a 

clearly dyssynchronous rise of local Ca2+ along the scan line was observed. This missing synchrony is 

characterized by a high dyssynchrony index of 15.6 ms. 

A direct correlation between a high number of longitudinal TT elements and a loss of synchrony in 

the onset of Ca2+ transients was not proven. However, average dyssynchrony indices were largest in 

transverse line scans of 4pMI cardiomyocytes; the group with the highest proportion of longitudinal 

TT elements (as shown in 3.3.2). The average dyssynchrony index of 4pMI transverse line scans 

(crossing longitudinal TT elements) measured 6.7 ± 1.3 ms (n=11 cells) and was significantly larger 

(p < 0.01) than the average dyssynchrony index of Sham transverse line scans (2.5 ± 0.3 ms, n=4 

cells). A reduced synchrony of Ca2+ transients was also observed in longitudinal line scans (crossing 

transverse TT elements) of 4pMI cardiomyocytes. The average dyssynchrony index in longitudinal line 

scans measured 5.0 ± 1.5 ms (n=9 cells) in 4pMI and 2.2 ± 0.1 ms (n=4 cells) in Sham cardiomyocytes. 
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A Sham 

 

B 4pMI 

 

Figure 2.22 Combined confocal TT and Ca
2+

 imaging in Sham and 4pMI cardiomyocytes. Left: Cartoon of a 
ventricular cardiomyocyte indicating the directions of the line scans on the right. Right: Normalized profile of 
the di-8-ANEPPS line scan image. Di-8-ANEPPS line scan. Fluo-4/AM line scan starting approximately 10 ms 
before one pacing pulse. Time to F50 profile of the fluo-4/AM line scan image. (A) Transverse line scan in a 
Sham cardiomyocyte results in a low dyssynchrony index of 2.2 ms (B) Transverse line scan in a 4pMI 
cardiomyocyte results in a high dyssynchrony index of 15.6 ms. 
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3.3 TT remodeling due to pressure overload 

3.3.1 The TAC mouse model 

Transverse aortic constriction (TAC) is a commonly used experimental model to induce pressure 

overload (increased afterload) in mouse hearts. Initially, TAC leads to compensated hypertrophic 

remodeling of the heart. During later stages, maladaptative processes result in cardiac dilation and 

HF [116, 126, 127]. The TAC operations were performed by Julia H. Steinbrecher (Dept. of Cardiology 

and Pulmonology, University Medical Center, Göttingen). The pressure gradient at the site of the 

aortic constriction was determined by pulsed wave Doppler echocardiography three days after the 

intervention (for a detailed description please refer to 2.1.3, Methods). The average pressure 

gradient in TAC mice measured 85 ± 5 mmHg (mean ± SEM, n = 8 mice). As expected, in Sham mice 

the pressure gradient measured only 3 ± 0.2 mmHg (mean ± SEM, n = 8 mice). To investigate the 

influence of pressure overload on TTs, cardiomyocytes were isolated and analyzed either 4 weeks 

after TAC (4pTAC) or 8 weeks after TAC (8pTAC) and were compared to cardiomyocytes from Sham 

operated mice. 

4pTAC and 8pTAC mice were characterized by echocardiography. Mouse echocardiography was 

performed by Kirsten Koschel (Dept. of Cardiology and Pulmonology, University Medical Center, 

Göttingen). LVID,d and EF determined by echocardiography are summarized in Figure 3.23 A and B. 

While diastolic LVID progressively increased after TAC, EF decreased indicating progressive cardiac 

dilation and loss of function after TAC. 

HW/BW ratios determined directly before cardiomyocyte isolation progressively increased after TAC 

(Figure 3.23 C). An increased HW/BW ratio indicates hypertrophy. Hypertrophy was further 

examined by determining the sizes of isolated cardiomyocytes as described in Methods 2.6.2. 

Strongly increased cardiomyocyte cross-section areas particularly 8pTAC confirmed progressive 

hypertrophy after TAC (Figure 3.23 D). 

 

 

 

 

 

 



Results                                                                                                                                                     57 
 

A                              B                              C                            D 

 

Figure 3.23 Heart and cellular phenotype after TAC. (A) Left ventricular inner diameter in diastole (LVID,d) 
determined by echocardiography. (B) Ejection fraction (EF) determined by echocardiography. (C) Heart weight 
to body weight ratio (HW/BW) determined directly before cardiomyocyte isolation. (D) Cardiomyocyte cross-
section area. Data are presented as mean ± SEM from the following number of mice (cells): Sham 6 (45), 
4pTAC 7 (45), 8pTAC 5 (45). *: p < 0.05 vs. Sham. 

#
: p < 0.05 vs. 4pMI (unpaired T-test). 

 

 

 

3.3.2 Remodeling of TT cross-sections after TAC 

As already described for the analysis of TTs in healthy and post-MI cardiomyocytes, dimensions of TT 

cross-sections after TAC were determined by two different and independent methods. TT diameters 

and areas were determined by 2D Gauss fitting. TT circumferences were determined by contour 

analysis. Mean TT dimensions were determined separately in intracellular and submembrane images. 

Table 3.4 summarizes the mean TT cross-section dimensions determined in intracellular images of 

Sham, 4pTAC and 8pTAC cardiomyocytes. While intracellular cross-section dimensions increased 

progressively after MI (+12 % 4pMI and +22 % 8pMI compared to Sham), TTs were enlarged 4pTAC 

but not 8pTAC. The intracellular TT cross-section area 4pTAC was enlarged by 17 %. 8pMI no changes 

were observed compared to Sham. 

Dimensions of submembrane TT cross-sections are summarized in Table 3.5. Both 4pTAC and 8pTAC 

submembrane TT dimensions increased to the same extend. The mean TT cross-section area for 

example was almost 11 % larger in 4pTAC and 8pTAC submembrane images compared to Sham. 

Again, these findings differ from the observations made in the post-MI model where 4pMI TT 

dimensions were not changed in submembrane images. 8pMI submembrane TT cross-sections were 

enlarged by 15 %. 

*
*

*
*

*

* *

*#



58                                                                                                                                                     Results 
 

Table 3.4 Intracellular TT cross-section dimensions are increased 4pTAC but not 8pTAC. Dimensions of TT 
cross-sections were determined in intracellular STED images of Sham, 4pTAC and 8pTAC cardiomyocytes. Mean 
TT diameters and areas were determined by 2D Gauss fitting. Mean circumferences were determined by 
contour analysis. *: p < 0.01 vs. Sham. 

#
: p < 0.05 vs. 4pTAC (unpaired T-test). Data are presented as 

mean ± SEM from the following numbers of TT cross-sections (cells) per treatment group: Sham 194 (43), 
4pTAC 268 (51), 8pTAC 161 (41). 

Treatment 

group 

Diameter X 

(nm) 

Diameter Y 

(nm) 

Area 

(nm2) 

Circumference 

(nm) 

Sham 195.1 ± 3.0 185.5 ± 2.6 28,685.2 ± 682.1 653.2 ± 9.5 

4pTAC    208.3 ± 3.1 *    202.2 ± 3.0 *    33,648.8 ± 811.4 *    721.4 ± 10.7 * 

8pTAC    196.5 ± 3.7 #    185.5 ± 3.2 #    29,122.8 ± 870.4 #    664.6 ± 12.0 # 

 

 

Table 3.5 Submembrane TT cross-section dimensions are increased 4pTAC and 8pTAC. Dimensions of TT 
cross-sections were determined in submembrane STED images of Sham, 4pTAC and 8pTAC cardiomyocytes. 
Mean TT diameters and areas were determined by 2D Gauss fitting. Mean circumferences were determined by 
contour analysis. *: p < 0.01 vs. Sham. n.s.: not significant. (unpaired T-test). Data are presented as mean ± SEM 
from the following numbers of TT cross-sections (cells) per treatment group: Sham 242 (52), 4pTAC 260 (56), 
8pTAC 234 (50). 

Treatment 

group 

Diameter X 

(nm) 

Diameter Y 

(nm) 

Area 

(nm2) 

Circumference 

(nm) 

Sham 197.8 ± 2.5 183.9 ± 2.1 28,704.4 ± 515.3 651.0 ± 7.4 

4pTAC      199.0 ± 3.1 n.s.    199.0 ± 3.0 *    31,741.5 ± 830.2 *    694.8 ± 10.5 * 

8pTAC      199.5 ± 3.0 n.s.    199.0 ± 3.4 *    31,537.9 ± 817.2 *    703.4 ± 11.8 * 

 

 

3.3.3 TT network remodeling after TAC 

Like in post-MI cells, TT remodeling in cardiomyocytes from TAC mice was additionally investigated 

on the network level. As described before, skeletons were extracted from intracellular STED images 

of Sham, 4pTAC and 8pTAC TTs. The total TT network length and the number of triple junctions in a 

defined area were determined in order to quantify TT network complexity.  

Figure 3.24 summarizes the changes observed in network length and complexity after TAC. While 

8pTAC the parameters were almost comparable to the Sham group, 4pTAC both total network length 

and number of triple junctions were significantly increased. In contrast to these findings, in the post-

MI model network complexity increased progressively. 



Results                                                                                                                                                     59 
 

 A B 

 

Figure 3.24 TT network length and complexity increase 4pTAC. The total network length per area and the 
number of triple junctions per area were determined in skeletonized STED images of Sham, 4pTAC and 8pTAC 
cardiomyocytes. (A) Total network length per area. (B) Number of triple junctions per area. *: p < 0.001 vs. 
Sham. 

#
: p < 0.001 vs. 4pTAC Data are presented as mean ± SEM from the following number of cells per 

treatment group: Sham 36, 4pTAC 43, 8pTAC 43. 

 

Finally, the amount of different TT components was analyzed in the TAC model. As described in 3.2.4, 

the total amount of transverse, longitudinal and oblique TT elements was determined in Sham, 

4pTAC and 8pTAC cardiomyocytes. For that purpose, TT elements with an orientation of 90° ± 3° in 

relation to the longitudinal cell axis were defined as transverse. Elements with an orientation of 

0° ± 3° were defined as longitudinal. And TT elements with an orientation of 45°± 3° or -45°± 3° were 

termed oblique.  

Figure 3.25 A summarizes the total amount of different TT components for all treatment groups. As 

reference value for the calculations, the total network length described in Figure 3.24 was used. In 

Figure 3.25 B the relative proportion of each component is shown as percentage of the overall 

amount of TT elements. 4pTAC and 8pTAC, the relative amount of transverse TT elements decreased. 

The relative amount of longitudinal TTs increased 4pTAC while the relative amount of oblique TT 

elements remained almost unchanged after TAC. These observations were modified by calculating 

the total amount of the different TT components for each treatment group. Since the total TT 

network length which was highest 4pTAC was used as reference value for calculation, differential 

changes seen in total component length were different from the relative changes. Considering their 

total amount, transverse, longitudinal and oblique TT elements were increased 4pTAC but not 8pTAC. 

Nevertheless, the increase of longitudinal TT elements 4pTAC was the most prominent change. 
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A 

 

B 

 

Figure 3.25 Components of the TT network change differentially after TAC. (A) Absolute amount of TT 
network components in Sham, 4pTAC and 8pTAC cardiomyocytes. *: p < 0.05 vs. Sham. 

#
: p < 0.05 vs. 4pTAC. 

(B) Relative proportion of each component calculated as percentage of the overall amount of TT elements. 
None of the changes shown in (B) is statistically significant. Data are presented as mean ± SEM from the 
following number of cells per treatment group: Sham 36, 4pTAC 43, 8pTAC 43. 

 

In summary, TT remodeling can also be observed during the development of HF after TAC. On the 

level of individual TT cross-sections as well as on the TT network level, remodeling seems to be more 

pronounced 4pTAC than 8pTAC. Dimensions of TT cross-sections are most strongly increased in 

intracellular images 4pTAC. This effect seems to be reversed during further progression of HF. Even 

the strong increase of TT network complexity and length observed 4pTAC is no longer apparent 

8pTAC. These results differ from those observed in the post-MI model which showed progressive and 

proliferative TT remodeling. 
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3.4 Three-dimensional STED imaging of TTs in healthy and post-MI cardiomyocytes 

As a further step towards understanding of the TT morphology in living healthy and diseased 

cardiomyocytes, STED imaging was performed 3-dimensionally (3D). For that purpose, the same ROI 

was imaged sequentially in different imaging depths. Using the “3D Viewer” plugin of the image 

processing program Fiji (http://fiji.sc/) [122], z-stacks were arranged with the appropriate z-distance 

and presented as 3D objects (Methods 2.9.3). 

The reconstructed z-stack of one TT in a healthy cardiomyocyte in different views is shown in Figure 

3.26. For that z-stack, the same ROI was imaged 19 times with a z-distance of 200 nm. The 

intracellular part of the reconstructed TT exhibited an evagination, which spanned several slices of 

the stack. In size and shape this evagination is reminiscent of a caveolus (for description of caveolae 

see Introduction 1.7). 

 

 

Figure 3.26 Reconstructed z-stack of one TT in a healthy cardiomyocyte. z-stack of 19 images with a z-distance 
of 200 nm. Left: Selected images of the same TT in different imaging depths. Middle: 3D “Volume” presentation 
of the reconstructed z-stack. Triangles mark the positions of the images on the left. Right: 3D “Surface” 
presentation of the reconstructed z-stack. Compared to the “Volume” presentation, this view has been slightly 
rotated. Arrows show from the cell surface towards the center. 

 

TTs of post-MI cardiomyocytes were also 3D STED imaged. In Figure 3.27 3D surface reconstructions 

of Sham and 8pMI TTs are compared. Both examples show two neighboring TTs. The two TTs in the 

Sham example keep their distance of 2 µm, the regular Z-line spacing, along the entire z-stack. The 
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two TTs in the 8pMI example are not absolutely in parallel. They are connected through a continuous 

longitudinal TT element. TT junctions appear as strongly enlarged hollow structures. 

 

A B 

 

Figure 3.27 3D reconstructions of TTs in Sham and 8pMI cardiomyocytes. (A) “Surface” presentation of two 
parallel TTs in a Sham cardiomyocyte. TTs are 2 µm apart from each other, the regular Z-line spacing. (B) 
“Surface” presentation of two neighboring TTs in an 8pMI cardiomyocyte, connected through a longitudinal TT 
element. Junctions appear strongly enlarged. Both 3D reconstructions represent 7 images with a z-distance of 
300 nm. Scale bars (1 µm) represent the orientation of the longitudinal cell axis. 

 

In summary, 3D STED imaging provides further information on the morphology of TTs in healthy and 

diseased hearts. The same TT can be tracked over several micrometers inside the cell, substructures 

like potential caveolae can be observed in successive slices and TT elements can be spatially assigned 

to the junctions they lead to. 
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4 Discussion 

4.1 Brief summary of the results 

In this thesis, STED microscopy was used for the non-invasive super-resolution imaging of intact TT 

membranes deep inside living cardiomyocytes. Novel quantitative image analysis strategies were 

developed to investigate the TT morphology in healthy and diseased cardiomyocytes. Two different 

mouse disease models (MI and TAC) were employed to examine the intervention-dependent TT 

remodeling over time during the development of HF. 

The major TT changes detected in the post-MI model were (1) a progressive and heterogeneous 

enlargement of intracellular and submembrane TT cross-sections and (2) proliferative TT network 

remodeling, particularly characterized by a significant increase of longitudinal TT elements 4pMI. 

These changes were accompanied by a progressive decrease in JPH2 expression and an increased 

expression of Cav3 4pMI. Additionally, the increased number of longitudinal TT elements 4pMI 

seemed to influence Ca2+ transients. In the TAC model, intracellular TT cross-sections were selectively 

enlarged four but not eight weeks after the intervention, whereas submembrane cross-section 

dimensions were increased 4pTAC and 8pTAC. TT network length and complexity were only 

increased 4pTAC. The major quantitative findings concerning TT remodeling after MI and TAC are 

summarized in Table 4.1 below. 

 

Table 4.1 Quantitative changes of TT properties after MI and TAC. Data are presented as mean values (the 
complete datasets and numbers of analyzed TT cross-sections and networks are given in Tables 3.2 – 3.5 and 
Figures 3.16 and 3.24 in the Results section). *: p < 0.05 versus the corresponding Sham group. n.s.: not 
significantly changed compared to the corresponding Sham group. 

MI model  4pMI 8pMI 

TT cross-section area 
intracellular 34,354 nm2 * 37,292 nm2 * 

submembrane 29,853 nm2 n.s. 35,099 nm2 * 

TT network length  0.52 µm/µm2 * 0.50 µm/µm2 * 

Triple junctions  0.33 /µm2 * 0.38 /µm2 * 

    

TAC model  4pTAC 8pTAC 

TT cross-section area 
intracellular 33,649 nm2 * 29,123 nm2 n.s. 

submembrane 31,742 nm2 * 31,538 nm2 * 

TT network length  0.49 µm/µm2 * 0.32 µm/µm2 n.s. 

Triple junctions  0.28 /µm2 * 0.19 /µm2 n.s. 
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4.2 STED microscopy for the investigation of TT membranes in living cardiomyocytes 

Previous studies provided important insight about the structure of the TT system in different species 

(e.g [1]). Nevertheless, due to methodological limitations, individual TT elements have so far not 

been resolved in living cardiomyocytes, particularly not in species with small TT diameters like 

mouse. For rabbit TTs, Savio-Galimberti et al. estimated an average diameter of 448 ± 172 nm based 

on diffraction limited confocal images [128]. Still, no individual tubular structures were resolved. 

Particularly with regard to the investigation of transgenic mouse models, the analysis of murine TTs 

becomes increasingly important. Since it is assumed that mouse TT diameters are much smaller than 

those in rabbits, super-resolution techniques are needed to resolve their dimensions and 

nanostructure [129].  

Microscopy techniques that overcome the resolution limit of conventional light microscopy by at 

least a factor of two are considered as super-resolution techniques [130]. As already mentioned in 

the introduction, EM is not applicable to living samples and is usually restricted to one imaging plane. 

Furthermore, it has been shown that different methods of sample preparation for EM can lead to 

variable results concerning dimensions of TTs (e.g. a fourfold difference in TT volume fraction [8]). 

Therefore, super-resolution light microscopy techniques offer significant advantages for the 

investigation of TT membranes in living cardiomyocytes. Besides STED microscopy, other super-

resolution techniques were considered, for example stochastic optical reconstruction microscopy 

(STORM [131]), photoactivated localization microscopy (PALM [132]) or fluorescence photoactivation 

localization microscopy (FPALM [133]). STORM, PALM and FPALM use a stochastic readout instead of 

the targeted readout that is known from STED microscopy [109]. For the stochastic readout, 

fluorescent molecules are switched on and off randomly in space by photomodulation and are 

localized individually. After repeated signal detection from different random subsets of individual 

fluorophores, individual fluorophore positions are determined. The coordinates of all localized 

fluorophores are used to mathematically reconstruct an image. The main weaknesses of these 

methods are the relatively slow image acquisition and the required extensive data postprocessing 

[134]. 

Using STED microscopy, long image acquisition times and extensive image processing could be 

avoided. Short image acquisition times are particularly advantageous for delicate living samples. 

Furthermore, after careful selection and testing, di-8-ANEPPS, an established dye for imaging of 

membranes in living cardiomyocytes [24, 88, 89, 96, 135] could be used for STED microscopy. It is 

conceivable that a diffusible membrane dye like di-8-ANEPPS might encounter limitations for a 

stochastic readout imaging approach. As a major advantage, STED images can be directly compared 

to confocal images of the same ROI and differences can be quantified. A direct quantitative 
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comparison of STED and confocal images helps to explain possible differences between the newly 

obtained results from STED images and previously published data obtained from confocal images of 

TTs stained with the same dye (see next chapter). 

 

4.2.1 Exploiting the properties of di-8-ANEPPS for STED imaging of TT membranes 

ANEP (aminonaphtylethenylpyridinium) dyes have originally been developed by Leslie Loew and 

colleagues. Among those, di-8-ANEPPS belongs to the structural class of styryl dyes [136, 137]. These 

are amphiphilic membrane dyes containing both a lipophilic part acting as membrane anchor and a 

hydrophilic part which aligns the chromophore perpendicular to the membrane bilayer [124, 138]. In 

the case of di-8-ANEPPS a pair of octyl hydrocarbon chains (8 carbons) anchors the dye in the outer 

leaflet of the membrane bilayer [139, 140]. The alkyl chains are attached to the amino group of the 

ANEP chromophore. A propylsulfonate (PS) head group assures the orientation perpendicular to the 

membrane [138, 141]. The structure of di-8-ANEPPS and its alignment with the membrane bilayer 

are illustrated in Figure 4.1. 

 
A B 

 
 
Figure 4.1 Structure and membrane alignment of di-8-ANEPPS. (A) Structure of the amphiphilic di-8-ANEPPS 
molecule. (B) Cartoon indicating the membrane alignment of di-8-ANEPPS. If the dye solution is applied 
extracellularly, the octyl hydrocarbon chains anchor di-8-ANEPPS in the outer leaflet of the membrane bilayer. 

 

In the context of STED imaging, the membrane visualization is expected to benefit from the 

perpendicular orientation of di-8-ANEPPS relative to the membrane. Volker Westphal (Dept. of 

NanoBiophotonics, MPI for Biophysical Chemistry, Göttingen) kindly supported mathematical 

modeling of the influence of dye orientation on the probability to resolve a TT which is in parallel to 

the imaging plane (e.g. the exemplary TT element shown in Figure 4.2 B). The model used a virtual 

regular cylindrical TT with variable radii. Fluorescence intensity was calculated along a simulated scan 

line through the center of this TT, considering the known PSFs for excitation and STED laser beams 
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(radius excitation PSF: 130 nm, radius STED PSF: 300 nm, dimensions of both PSFs in z: 350 nm). A 

threefold increase of resolution was assumed for STED imaging compared to regular confocal 

imaging (  
     

    
  = 3). 

The interaction between a light wave with a circular polarization and the molecular dipole of a 

fluorophore goes with cos2( ), with   being the angle between polarization and the molecular dipole 

of the fluorophore. The same relation holds for the detection probability, therefore the total 

brightness of a molecule with circular excitation and unpolarized detection depends on cos4( ). This 

means that maximal fluorescence occurs when molecular dipole and polarization are in parallel to 

each other (cos4(0°) = 1, dye molecule exactly perpendicular to the optical axis). No fluorescence 

occurs, if they are perpendicular to each other (cos4(90°) = 0, dye molecule in parallel to the optical 

axis). Similar to above, the interaction between the STED light and the dipole (and hence the STED 

efficiency) depends on the orientation of the dye molecule by cos2( ) [142, 143]. 

The mathematical modeling performed here included (1) the calculation of fluorescence intensity 

along the virtual scan line considering dye orientation, thus including the factors cos4( ) for 

fluorescence intensity and cos2( ) for STED efficiency (solid lines in Figure 4.2 D – F) and (2) the same 

calculations only without consideration of the dye orientation and thus without inclusion of the 

angle-dependent factors (dashed lines in Figure 4.2 D – F). 

Figure 4.2 summarizes exemplary calculations performed for virtual TTs with different radii (50 nm, 

100 nm, 200 nm). Furthermore, in Figure 4.2 D it was assumed that all dye molecules are invariably 

aligned perpendicular to the TT membrane (solid lines). In Figure 4.2 E it was calculated, how a 

variability of 25° in this perpendicular alignment would influence resolution of the hollow TT 

structure. In Figure 4.2 F a variability of 50° in the perpendicular alignment was assumed. All virtual 

line scans that considered dye orientation were compared to those, which did not consider dye 

orientation (dashed lines). 

 

 

Figure 4.2 Influence of dye orientation on the STED image of a transverse TT element. (A) Simulated TT 
element with a variable radius. STED imaging was simulated along the x–axis through the center of the TT. (B) 
STED image of a TT element in the imaging plane and the measured line profile along the x-axis. White line 
marks the position of the line profile. (C) Exemplary simulated line profile through a virtual TT. This example 
illustrates how contrast is defined (D) – (F): Simulated line profiles representing fluorescence intensity in an 
optical section of a virtual TT element with different radii and graph showing the dependence of the contrast 
on the TT radius. The contrast was calculated as the normalized difference between the signal in the center 
(x = 0 nm) and the maximal intensity. Simulations were performed by Volker Westphal (Dept. of 
NanoBiophotonics, MPI for Biophysical Chemistry, Göttingen). 
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E dye molecules perpendicular to the TT membrane with a variability of 25° 

 
 

F dye molecules perpendicular to the TT membrane with a variability of 50° 
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Figure 4.2 shows that TTs with a radius of 50 nm or 100 nm which are in parallel to the imaging plane 

cannot be resolved as hollow structures if the dye is not oriented perpendicular to the membrane 

(gray dashed lines in (D) – (F)). For TTs with a radius of 200 nm, the underlying hollow structure 

becomes apparent as shown by two visible peaks and the calculated contrast of 0.35 between the 

fluorescence in the center of the TT (x = 0 nm) and the maximal fluorescence intensity on the scan 

line (1 represents a maximal contrast, 0 represents no contrast and thereby no resolution of the 

hollow structure). 

In case all dye molecules are invariably aligned perpendicular to the TT membrane, TTs with a radius 

of 100 nm can be resolved (contrast 0.55, Figure 4.2 D). TTs with a radius of only 50 nm cannot be 

resolved, even with ideally aligned dye molecules under the assumed conditions with a threefold 

resolution improvement compared to confocal imaging (  
     

    
  = 3). The contrast between TT 

membrane and TT center becomes worse with increasing variability of the dye orientation. A 

variability of 25° (Figure 4.2 E) still allows seeing the tubular structure of a TT with a radius of 100 nm 

(contrast 0.42). With a variability of 50° (Figure 4.2 F) only larger TTs can be resolved as hollow 

structures (contrast for a TT with a radius of 200 nm: 0.48). 

This mathematical simulation shows that the properties of di-8-ANEPPS optimally contribute to the 

ability to resolve individual TTs structures using STED microscopy. Besides that beneficial effect, 

staining of cardiomyocytes with di-8-ANEPPS did not result in formation of membrane blebs, 

aberrant contractions, cell death or detectable dye internalization as it was clearly the case for the 

other tested dyes (Chapter 3.1, Results). 

In summary, it was shown that STED super-resolution imaging of intact TTs in living cardiomyocytes is 

not necessarily limited by imaging depth. Even 3D STED imaging of TTs was realized in healthy and 

diseased cardiomyocytes. Under the given conditions, a resolution of 50 – 60 nm could be obtained. 

Furthermore, resolution was sufficient to determine the dimensions of individual TT elements with 

an average diameter of ~200 nm. TT substructures with dimensions smaller than 100 nm, particularly 

caveolae, could not be resolved in detail. However, the presence of TT membrane evaginations which 

might represent caveolae could be visualized (Figure 3.26, Results). The approximately 3.5-fold 

resolution improvement we obtained relative to confocal imaging enabled the detection of subtle 

changes in the TT architecture that would otherwise have remained unrecognized. 
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4.3 MI and TAC as models for progressive cardiac remodeling 

MI due to ligation of the LAD coronary artery and increased afterload due to TAC are the most widely 

studied rodent models of HF development [144]. An important advantage is that these models are 

reproducible and that HF development is therefore to some degree predictable. 

LAD coronary artery ligation has first been described in rat (1960, [145]). With the advent of 

transgenic mouse models, the MI surgery technique was successfully conducted in mice (1978, 

[146]). LAD ligation leads to necrosis of the myocardium which is usually perfused by the LAD due to 

the acute loss of metabolic supply. After the initial necrosis and healing processes, the infarct 

degrades into scar tissue over weeks. As a compensatory response, the surviving myocardium 

undergoes hypertrophic adaptation and ultimately the left ventricle dilates. Over a period of weeks 

to months and dependent on the infarct size, the heart function becomes progressively impaired as 

the acute compensatory response (e.g. hormonal stimulation) cannot overcome the loss of cardiac 

tissue [147]. Alterations in cardiac structure and function after coronary ligation in mice resemble 

important pathophysiologic milestones in human ischemic heart disease [148]. In humans, acute MI 

and the consequent loss of contractile myocardium are a very frequent cause of chronic HF [147]. 

The second model, constriction of the transverse aorta in mice to induce cardiac hypertrophy, has 

first been described in 1991 [126]. Left ventricular hypertrophy develops rapidly after TAC and the 

initially impaired left ventricular function is compensated over the first two weeks, indicating a 

powerful compensatory response to pressure overload [149, 150]. However, over time this response 

becomes maladaptive, ultimately resulting in a phenotype of left ventricular dilation and HF [116, 

151]. While constriction of the aorta somewhat resembles an aortic stenosis in humans, it is 

important to state that the acute onset of a severe pressure overload (~80 mmHg) lacks direct clinical 

relevance [152]. 

Mirotsou et al. conducted one of the very rare studies which directly compared the MI and the TAC 

model [153]. They compared gene expression profiles of mice one week after MI or TAC and 

hypothesized that several genes would exhibit differential expression patterns in both models, which 

might play a causal role in the hypertrophic response. Indeed, in both models they identified gene 

expression changes that have previously been reported to be associated with hypertrophic 

remodeling, like atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), actin and collagen 

[153]. 

For this study, it has to be considered that the MI model might reflect a phenotype that is more 

closely related to human ischemic heart disease, whereas the artificial TAC model allows the 

investigation of changes due to a rapid onset of maladaptive hypertrophic remodeling. It is possible 
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that intervention-induced TT changes might occur earlier during HF development in the TAC than in 

the MI model. 

 

4.4 A comparison of the present results with previous studies 

As already outlined in the introduction, previous results concerning remodeling of TT structures in HF 

are variable and sometimes even contradictory. Only few studies investigated early TT changes in 

mice after MI and super-resolution imaging of TTs has so far only been performed by EM of 

extensively treated, fixed samples. Furthermore, TT studies in human samples have been limited to 

singular examples or samples from explanted hearts representing end-stage HF [91, 154-156]. 

In 1975, Maron et al. imaged left ventricular biopsies from human patients with different cardiac 

pathologies by EM [157]. This study differentiated between mildly altered cells which showed 

proliferation of TTs and moderately and severely degenerated cells which showed a loss of TTs. The 

cellular phenotype appeared dependent on the severity of the disease [157]. Furthermore, Wei et al. 

showed a significant correlation between a decreasing TT power (a measure for regular alignment 

with Z-line striations based on Fourier transformation) and left ventricular function in a rat TAC 

model [97]. 

Based on the newly obtained results and with regard to previous studies, I suggest a model which 

includes the different aspects of TT remodeling during development of HF as summarized in Figure 

4.3. The early phase includes an increase of intracellular TT dimensions along with an increase of TT 

network length and complexity. This early phase of intracellular remodeling is followed by an 

increase of submembrane TT dimensions. The initial remodeling processes might represent a 

compensatory mechanism in order to preserve the surface to volume ratio in hypertrophied 

cardiomyocytes. During later stages of HF, this compensatory mechanism appears to fail, as 

evidenced by a relative reduction of the TT system compared to an increased cell size. 

As described in the previous chapter, intervention-induced TT changes are likely to occur earlier in 

the TAC than in the MI model. This idea is supported by the findings in this thesis. In the MI model, a 

progressive increase of intracellular TT dimensions as well as of TT network length and complexity 

were observed in the first eight weeks after the intervention. An increase of submembrane TT 

dimensions was not observed until 8pMI. In the TAC model, an increase of intracellular TT 

dimensions, network length and complexity were only observed within the initial four weeks after 

the intervention. 8pTAC no significant increase of intracellular TT dimensions, TT network length and 

complexity were detectable. Instead, increased submembrane TT dimensions were observed 4pTAC 
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and 8pTAC. The quantitative changes of TT properties after MI and TAC mentioned here are 

summarized in Table 4.1 (Chapter 4.1). 

To sum up, the present results suggest that the different stages of TT remodeling are reached earlier 

after the TAC intervention than after MI. In order to confirm differences in the time-dependent 

reorganization of TT elements after the different interventions, it would be necessary to investigate 

an even earlier time-point after the TAC intervention (e.g. 1pTAC) and a later time-point after MI 

(e.g. 12pMI). 

 

Figure 4.3 Suggested time course of TT remodeling during the development of HF. Initially, remodeling of 
intracellular TTs occurs. Dimensions of individual TTs as well as TT network length and complexity increase. 
Later during the development of HF, also the dimensions of submembrane TTs increase. Finally, these 
membrane-additive mechanisms are stopped or even reversed. 

 

Louch et al. conducted a TT study on isolated mouse cardiomyocytes after MI applying confocal 

microscopy [89]. They imaged TTs in living di-8-ANEPPS stained cells and reported a progressive TT 

disorganization in the first three weeks after the intervention. This observation fits into the 

suggested time course of TT remodeling during the development of HF. Nevertheless, the study by 

Louch et al. was limited by the use of a conventional confocal microscope (LSM510, Carl Zeiss with a 

40x objective) that did not allow a detailed description of TT changes. Furthermore, image analysis 

was restricted to a categorization of TT structures by eye as “organized, somewhat disorganized and 

markedly disorganized” [89]. 

Lyon et al. reported a “loss of TTs” in isolated rat cardiomyocytes 16 weeks after MI and in end-stage 

failing human cardiomyocytes [91]. Since these observations correspond to late time-points during 

HF development, they are not immediately relevant to the earlier observations reported here. 

In summary, the TT remodeling processes observed in this study applying STED microscopy in 

cardiomyocytes from two different disease models significantly extend already existing studies. 

Development of HF

progressive increase of intracellular TT dimensions

progressive increase of submembrane TT dimensions

progressive increase of TT network length

progressive branchingof the TT network

failure to keep the cellular surface to

volume ratio constant

Injury

(MI/TAC)
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Furthermore, for the first time significant disease-related changes at the nanometric scale are 

quantified in living cardiomyocytes. These observations justify a reinterpretation of earlier TT studies 

in different disease models which did not identify proliferative or differential changes. 

 

4.5 Potential consequences of proliferative membrane remodeling 

In 1973, Page and McCallister hypothesized that an addition of TT membranes may compensate for a 

decrease in the surface to volume ratio of enlarged cells during hypertrophy. They speculated that an 

extreme degree of myocardial hypertrophy might lead to a failure to maintain the total surface to 

volume ratio of the cell. Furthermore, essential metabolic functions which depend on the plasma 

membrane might break down and contribute to the critical transition from myocardial hypertrophy 

to HF [40]. 

Both the documented proliferative (additive) TT network remodeling and increased TT dimensions 

indicate mechanisms which may contribute to an increased cardiomyocyte surface. On the one hand, 

a constant surface to volume ratio might sustain nutrient supply to a large hypertrophied cell. On the 

other hand, additional TT membranes might propagate APs throughout the hypertrophied cell and 

ensure a spatially and temporally synchronous Ca2+ release. 

 

4.5.1 Increased dimensions of individual TTs 

Increased TT sizes in HF have been occasionally described as accidental findings. In an EM image of a 

fixed explanted heart sample from a patient with end-stage dilated cardiomyopathy, enlarged TTs 

were observed [158]. With the same method, Maron et al. reported irregularly shaped and 

occasionally enlarged TTs in human hypertrophied cardiomyocytes [157]. Also using EM for the 

investigation of cardiomyocytes from end-stage HF patients, Crossman et al. described enlarged 

peripheral TTs [155]. However, the potential consequences of TT enlargement were not considered. 

Furthermore, data from human samples were typically derived from explanted hearts of end-stage 

HF patients. Therefore, these samples were additionally exposed to invasive protocols of surgical 

organ handling, prior to preparation of EM slices and histochemical fixation. 

Savio-Galimberti et al. discussed the physiological meaning of the TT diameter in healthy 

cardiomyocytes. They speculated that variations in TT diameter might contribute to the supply of 

nutrients and Ca2+ ions for cell signaling. Furthermore, they assumed that during cardiomyocyte 
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contraction and relaxation the TT might be squeezed and the compartmentalized extracellular fluid 

would be pumped in and out of the TT system to accelerate and augment diffusional transport [128]. 

Shorten et al. constructed a mathematical model of insulin transport within the TT network of frog 

skeletal muscle fibers [159]. With a diameter of ~18 nm, frog skeletal TTs are much smaller than TTs 

in murine cardiomyocytes [160, 161]. Shorten et al. calculated that the small diameter has a 

significant effect on insulin diffusion within the TTs. In addition, they suggested that insulin diffusion 

is faster in muscle fibers whose TT system is less tortuous. Considering additional factors like insulin 

binding to insulin receptors, interstitial fluid viscosity and hydrodynamic wall effects, the model 

predicted that, depending on the fiber type, there is a 2 to 15 min delay in the arrival time after 

insulin injection between the surface sarcolemma and inner TTs (located 20 µm from the surface 

sarcolemma). Therefore, Shorten et al. stated that the dense TT network with small diameters in frog 

skeletal muscle impedes insulin transport into the TTs and consequently delays the glucose uptake by 

the muscle cells [159]. These findings confirm the relevance of the TT network properties with regard 

to glucose uptake and nutrient supply in general. 

Whether in turn the increased TT dimensions observed in this study improve and accelerate the 

cellular nutrient supply, needs to be further investigated. Computational modeling of TTs with 

varying diameters might support the understanding of a potential influence of TT dimensions on 

nutrient exchange. 

 

4.5.2 Increased amount of longitudinal TTs 4pMI 

Several studies have shown that regions devoid of TTs may exhibit irregular Ca2+ transients [88-90]. 

However, it is unclear if the amount of TT membranes correlates with Ca2+ release synchrony. In 

healthy rat cardiomyocytes, Asghari et al. showed that longitudinal (“axial”) TTs form junctions with 

the SR. RyR2 channels on axial junctions colocalized with CaV1.2, suggesting that these junctions play 

a functional role in E-C coupling [162]. 

Strikingly, in this study the number of longitudinal TT elements was significantly increased 4pMI 

suggesting a potential functional role. To investigate the potential influence of the increased number 

of longitudinal TTs on Ca2+ signaling, TT and Ca2+ imaging were combined (for the detailed protocol 

please refer to 2.6.3, Methods). Indeed, the increased number of longitudinal TT elements 4pMI 

correlated with a significant decrease of Ca2+ release synchrony (Figure 2.22, Results). In contrast, 

healthy cardiomyocytes showed fewer longitudinal TT elements which did not seem to influence Ca2+ 

release synchrony. Despite the heterogeneous onset of Ca2+ release in 4pMI cardiomyocytes, not 
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every longitudinal TT element appeared to colocalize with a region of delayed Ca2+ release. 

Therefore, I conclude that the approximately twofold increase of longitudinal TT elements 4pMI 

might represent a partial attempt to ensure Ca2+ release synchrony. However, the profound TT 

reorganization may lead to a disruption of functional CRUs. A dysfunction of individual CRUs can be 

further explained by a significant reduction of JPH2 (as discussed in 4.5.3 and 4.6), which would 

cause a loss of spatial proximity between RyR2 and Cav1.2 in diseased cardiomyocytes. 

 

4.5.3 Reorganization of the regular TT system 

TT network analysis in this thesis showed a progressive loss of TT regularity in both investigated 

disease models. Additionally, the regular alignment of RyR2 channels along the Z-line striations 

decreased significantly after MI. These findings are consistent with the previously hypothesized 

“orphaning” of RyR2s in spontaneously hypertensive rats (SHRs) with advanced HF [96]. Song et al. 

concluded that the increased spatial dispersion of TTs and orphaned RyR2s lead to a loss of local Ca2+ 

release control and Ca2+ release instability in HF. Both the decreased JPH2 expression after MI 

described here and the reorganized JPH2 and RyR2 localizations suggest alterations of the molecular 

CRU organization. 

To assess the impact of an increased CRU spacing due to the heterogeneous remodeling of the TT 

system in HF, our collaboration partners from the University of Maryland, Baltimore, USA and the 

George Mason University, Manassas, USA (W.J. Lederer, B. Hagen, G.S.B. Williams, H.-T. M. Tuan and 

M.S. Jafri) applied a mathematical model of 20,000 individual CRUs [163], a realistic estimate for 

ventricular cardiomyocytes. HF was modeled by implementation of previously observed changes in 

ion transport proteins: reduction in fast and slow K+ currents, increased NCX expression, decreased 

Serca2a expression and increased RyR2 sensitivity. [163]. An increased spacing between TTs and 

RyR2s (30-fold increase in subspace volume, equivalent to a RyR2-TT distance of 300 nm) was 

implemented at only 25 % of the considered CRUs to simulate heterogeneous spatial changes. 

Under steady-state conditions, the model revealed that spatial reorganization of TTs and RyR2s 

aggravates delays and dyssynchrony of SR Ca2+ release in HF and thereby leads to further AP 

prolongation. This promotes severe Ca2+ leak in diastole, which may contribute to 

afterdepolarizations and Ca2+-triggered arrhythmias in HF [164]. 

Taken together, advanced computational modeling showed that relatively small changes in the CRU 

nanostructure can have severe consequences for E-C coupling, leading to contractile dysfunction. 
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4.6 Consideration of TT biogenesis with regard to TT remodeling 

During the early development of HF TT membranes were significantly added and the dimensions of 

individual TTs increased. These findings are consistent with membrane-additive mechanisms, which 

might be related to mechanisms of TT biogenesis. It has been shown that certain molecules and 

mechanisms that regulate growth of the embryonic heart are reactivated in the adult heart in 

response to stress signals that provoke cardiac enlargement and HF [165]. 

One mechanism that has been suggested for TT biogenesis is the repetitive generation and fusion of 

caveolae [8, 166]. It has been shown that the expression of Cav3, an essential protein of caveolae, is 

induced during differentiation of rat cardiomyocyte [72]. Cav3 associates with developing TTs in 

skeletal muscle [75] and Cav3 knockout mice exhibit TT abnormalities in skeletal muscle [76]. 

Furthermore, overexpression of Cav3 in skeletal muscle leads to a dramatic increase in sarcolemmal 

caveolae [167]. All these findings correlate well with the observation that Cav3 expression is 

significantly increased 4pMI, the specific time-point where a strong increase of longitudinal TT 

elements was observed (Figures 3.18 and 3.19, Results). Through immunostaining it could further be 

shown that the additional longitudinal TTs 4pMI are positive for Cav3. These findings are in 

agreement with the known role of Cav3 during TT biogenesis and further suggest that Cav3 may 

directly contribute to the formation of additional TT elements during the early development of HF. 

Most studies on TT biogenesis have been conducted in skeletal muscle. In the literature it seems well 

accepted for skeletal muscle that TT formation occurs by two complementary mechanisms: (1) 

through invagination and tubulation of the surface sarcolemma and (2) through intracellular addition 

of membranes by fusion with preformed vesicles [65, 168]. It has been described that during skeletal 

muscle development TTs are predominantly longitudinal [169, 170]. According to few observational 

studies on TT biogenesis in cardiomyocytes, in the heart other mechanisms may be involved. The 

studies by Ziman et al. and Sedarat et al. did not find the initial longitudinal orientation of developing 

TTs, but rather structures at the cell periphery which moved into the cell during development [64, 

79]. Therefore, follow-up studies of TT biogenesis in cardiomyocytes may consider the critical 

question what differences occur between the development in cardiac and skeletal muscle. 

Besides Cav3, the expression of JPH2 has been analyzed in this thesis. JPH2 promotes the formation 

of junctions between TTs and the SR and seems to be involved in the functional maturation of 

couplons [64, 78]. JPH2 expression is up-regulated during heart development and down-regulated in 

hypertrophic or dilated cardiomyopathy mouse models [171]. Wei et al. also described a decrease of 

JPH2 expression in different stages of HF in rat after TAC [97]. These findings correlate closely with 

the observed decrease of JPH2 expression after MI in this study. It would be interesting to see if at an 
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earlier time-point after MI or TAC, JPH2 expression was sufficient to enable the formation of 

functional couplons. This would support the hypothesis that in the early compensatory hypertrophic 

phase additional TTs might sustain a synchronous Ca2+ release throughout the cardiomyocyte. 

In summary, the differential expression of Cav3 and JPH2 during early development of HF suggests 

similarities between the biogenesis of the TT system after birth and the observed proliferative TT 

remodeling during the onset of HF. 

 

4.7 Summary and outlook 

In summary, this thesis demonstrated that STED microscopy provides significantly new insight into 

the TT morphology in living cardiomyocytes which was previously unattainable due to 

methodological limitations. Novel quantitative image analysis strategies allowed the characterization 

of individual TTs and of TT network properties in healthy and diseased cardiomyocytes. Applying 

STED microscopy, a mechanism of proliferative TT remodeling was uncovered during the early 

development of HF. This study further considered a potential role of Cav3 in the observed additive 

membrane remodeling. In addition, decreased JPH2 expression, TT disorganization and RyR2 

rearrangement during HF development indicated an increased CRU spacing in failing cardiomyocytes 

which might impair E-C coupling and lead to contractile dysfunction. 

Recent experimental studies showed a restoration of the pathologically remodeled TT system. These 

very different attempts included cardiac resynchronization therapy in a canine model of pacing-

induced HF [172], AAV9.SERCA2a gene therapy in failing rat cardiomyocytes [173], interval training in 

a mouse model of diabetic cardiomyopathy [174] or mechanical unloading in a rat model of HF 

following MI [175]. However, before therapeutic interference to inhibit TT remodeling can become a 

therapeutic strategy for patients with HF, the mechanisms underlying TT remodeling have to be 

better understood. For that purpose, an extension of this study may involve the investigation of 

additional time-points, particularly during the early development of HF. Especially the identification 

of stages where remodeling is still compensatory might be important to delineate potential 

therapeutic interventions. Furthermore, TT biogenesis could be investigated with the developed 

imaging and analysis strategies and with regard to proteins that might be implicated in TT formation. 

Genomewide expression and transcriptome analyses in developing as well as in failing 

cardiomyocytes might identify further proteins that could play a role in the developmental, the 

compensatory or the maladaptive TT formation. 
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In the future, STED microscopy and other super-resolution strategies might be used for functional 

measurements in living cardiomyocytes, e.g. for nanometric imaging of Ca2+ release events in 

combination with structural stainings. Such studies might be extended to the behavior of TTs or 

other structures during stretch. Ultimately, interventions that may prevent TT remodeling can be 

tested with high sensitivity using super-resolution techniques. Furthermore, the analysis of human 

cardiomyocytes from patients with different types of heart disease will become an important area of 

investigation. 
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6 Supplement 

6.1 Supplementary figures 

 

Figure 6.1 Distribution of submembrane TT diameters determined by 2D Gauss fitting. Histograms for 
diameters of 182 TT cross-sections (55 cells, 3 mice) determined in submembrane images. The same set of TT 
cross-sections was analyzed in STED and confocal images. Diameters were determined as FWHM by 2D Gauss 
fitting in parallel to the longitudinal cell axis (X) and perpendicular to the longitudinal cell axis (Y). Red dashed 
lines mark the confocal resolution limit. 

 

 

Figure 6.2 2D contour histograms of submembrane TT cross-sections. 2D histograms for 182 TT contours 
extracted from submembrane STED and confocal images. + indicates the point where contours were 
superimposed (their center of mass). X corresponds to the orientation of the longitudinal cell axis. Color bar on 
the right illustrates the probability that a contour hits a pixel: black (min) = low probability, white (max) = high 
probability. 
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Figure 6.3 2D contour histograms of submembrane TT cross-sections. 2D histograms for the following number 
of TT contours (cells) extracted from submembrane images: Sham 683 (92), 4pMI 343 (61), 8pMI 253 (48). + 
indicates the point where contours were superimposed (their center of mass). The x-axis corresponds to the 
orientation of the longitudinal cell axis. Color bar on the right illustrates the probability that a contour hits a 
pixel: black (min) = low probability, white (max) = high probability. 

 

A B 

 

Figure 6.4 Distributions of radii determined by contour analysis in submembrane images. Radii were 
determined as the mean of 120 radii in one contour line. (A) Histograms for the following number of TT cross-
sections (cells) extracted from submembrane images: Sham 683 (92), 4pMI 343 (61), 8pMI 253 (48). (B) 
Differences between the radius distributions were calculated by subtraction of histograms from the indicated 
treatment groups. 
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6.2 Chemicals 

Chemical Company Order no. 

2,3-Butanedione monoxime Sigma-Aldrich, Munich, Germany B0753 

Bovine calf serum HyClone via 

Thermo Scientific, Schwerte, Germany 

SH30073 

CaCl2 Sigma-Aldrich, Munich, Germany C2661 

Collagenase type II Worthington via 

Cell Systems, Troisdorf, Germany 

on request 

cOmplete (protease inhibitor cocktail) Roche, Grenzach , Germany 11836170001 

EGTA Sigma-Aldrich, Munich, Germany E3889 

Glucose Carl Roth, Karlsruhe, Germany HN06.1 

Glycine Carl Roth, Karlsruhe, Germany 3908.3 

HEPES Carl Roth, Karlsruhe, Germany 9105.4 

KCl Carl Roth, Karlsruhe, Germany 6781.3 

KH2PO4 Carl Roth, Karlsruhe, Germany 3904.2 

Laminin (2 mg/ml) BD Biosciences, Heidelberg, Germany 354232 

Methanol Carl Roth, Karlsruhe, Germany 8388.6 

MgCl2 · 6 H2O Carl Roth, Karlsruhe, Germany 2189.2 

MgSO4 · 7 H2O Carl Roth, Karlsruhe, Germany 8283.2 

Milk powder Carl Roth, Karlsruhe, Germany T145.2 

Na2HPO4 · 2 H2O Carl Roth, Karlsruhe, Germany 4984.2 

NaCl Carl Roth, Karlsruhe, Germany HN00.2 

NaCl Carl Roth, Karlsruhe, Germany HN00.2 

NaHCO3 Carl Roth, Karlsruhe, Germany HN01.1 

Paraformaldehyde  Sigma-Aldrich, Munich, Germany 158127 

Phosphate buffered saline 

(pH 7.4, w/o Ca2+ and Mg2+) 

Gibco® via 

Life Technologies, Darmstadt, Germany 

10010 

PhosSTOP 

(phosphatase inhibitor cocktail) 

Roche, Grenzach , Germany 4906837001 

Sucrose Sigma-Aldrich, Munich, Germany S0389 

Taurin Carl Roth, Karlsruhe, Germany 4721.2 

Tris Carl Roth, Karlsruhe, Germany 4855.2 

Triton X-100 Sigma-Aldrich, Munich, Germany T9284 

Tween 20 Sigma-Aldrich, Munich, Germany P1379 
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6.3 Drugs 

Agent Name Company 

Buprenorphin Temgesic® Reckitt Benckiser Healthcare, Slough, UK 

Isoflurane Forene® Abbott, Libertyville, IL, USA 

Metamizol Novaminsulfon 500 mg Lichtenstein Zentiva, Paris, France 

 

6.4 Dyes and mounting medium 

Product Company Order no. 

di-8-ANEPPS Molecular Probes®, Life Technologies, Darmstadt, Germany D-3167 

di-4-ANEPPS Molecular Probes®, Life Technologies, Darmstadt, Germany D-1199 

fluo-4/AM Molecular Probes®, Life Technologies, Darmstadt, Germany F-14201 

ProLong® Gold 

antifade reagent 

Molecular Probes®, Life Technologies, Darmstadt, Germany P36934 

 

6.5 Consumables 

Consumable Company 

5-0 suture (Polyviolene) Angiotech, Vancouver, Canada 

6-0 suture (Prolene) Ethicon 

part of Johnson & Johnson, Norderstedt, Germany 

9-0 (Ethilon) Ethicon 

part of Johnson & Johnson, Norderstedt, Germany 

BCA protein assay kit Thermo Scientific, Schwerte, Germany 

filter paper (, #FP598) Hahnemühle, Dassel, Germany 

glass cover slips (Ø 18 mm) Thermo Scientific,  Schwerte, Germany 

glass cover slips (Ø 42 mm) Thermo Scientific,  Schwerte, Germany 

Immobilon™ Western horse raddish 

peroxidase substrate 

Merck Millipore, Darmstadt, Germany 

NuPAGE® MOPS SDS Running Buffer, Novex® Life Technologies, Darmstadt, Germany 

NuPAGE® Novex® 4 - 12 % Bis-Tris Gels Life Technologies, Darmstadt, Germany 

peqGOLD Protein-Marker V Peqlab, Erlangen, Germany 

Protran™ nitrocellulose membrane Whatman 

part of GE Healthcare, Buckinghamshire, UK 
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6.6 General equipment 

field stimulator (MyoPacer EP) IonOptix, Milton, MA, USA 

Image Station 4000R PRO Carestream Health Inc., Rochester, NY, USA 

imaging chamber (POC-R2 chamber system) PeCon, Erbach, Germany 

LSM710 Carl Zeiss, Jena, Germany 

micropestle Carl Roth, Karlsruhe, Germany 

mouse respirator Hugo Sachs Electronics, Hugstetten, Germany 

Vevo 2100 VisualSonics Inc., Toronto, Canada 

wet blotting apparatus Life Technologies, Darmstadt, Germany 

 

6.7 Parts of the STED setup 

100x 1.4 NA oil objective Leica, Wetzlar, Germany 

675 ± 30 nm bandpass AHF Analysentechnik, Tübingen, Germany 

avalanche photodiode (APD) Perkin Elmer, Waltham, MA, USA 

piezo stage scanner Physik Instrumente GmbH, Karlsruhe, Germany 

pulsed diode laser Toptica, Munich, Germany 

resonant mirror scanner Electro-Optical Products Corp., Glendale, NY, USA 

single-mode fibers (SMF) Schäfter + Kirchhoff GmbH, Hamburg, Germany 

Ti:Sapphire laser (MaiTai) Spectra-Physics, Darmstadt, Germany 

vortex phase plate RPC Photonics, Rochester, NY, USA 

 

6.8 Antibodies 

6.8.1 Primary antibodies 

Antibody Company Order no. Application Dilution 

Mouse anti-GAPDH Biotrend, Cologne, Germany 5G4MAB6C5 Western blot 1:80,000 

Mouse anti-RyR2 Pierce antibodies via Thermo 

Scientific, Schwerte, Germany 

MA3-916 immunostain 1:500 

Rabbit anti-JPH2 Life Technologies, Darmstadt, 

Germany 

40-5300 immunostain 

Western blot 

1:500 

1:500 

Rabbit anti-Cav3 Abcam, Cambridge, UK ab2912 immunostain 

Western blot 

1:500 

1:500 
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6.8.2 Secondary antibodies 

Antibody Company Order no. Application Dilution 

AlexaFluor®514 

goat anti-mouse 

Molecular Probes®, Life Technologies, 

Darmstadt, Germany 

A31555 immunostain 1:1000 

AlexaFluor®633 

goat anti-rabbit 

Molecular Probes®, Life Technologies, 

Darmstadt, Germany 

A21071 immunostain 1:1000 

ECL™-HRP-linked 

sheep anti-mouse 

GE Healthcare, Munich, Germany NA9310 Western blot 1:10,000 

ECL™-HRP-linked 

donkey anti-rabbit 

GE Healthcare, Munich, Germany NA9340 Western blot 1:10,000 

With ECL-HRP = enhanced chemiluminescence horse raddish peroxidase. 

 

6.9 Software 

Program Application Provider 

Endnote X3 Reference management Adept Scientific GmbH, Frankfurt, Germany 

Fiji Image analysis and processing http://fiji.sc/ 

ImageJ Image analysis and processing http://imagej.nih.gov/ 

Imspector STED microscopy MPI bpc, Göttingen, Germany  

http://www.imspector.de/ 

MATLAB R2009b Image analysis and processing MathWorks, Natick, MA, USA 

MATLAB R2011b Image analysis and processing MathWorks, Natick, MA, USA 

Molecular Imaging 

Software 

Western Blot Analysis 

(Image Station 4000R PRO) 

Carestream Health, Rochester, NY, USA 

Office2007 Text and data processing Microsoft Inc., Redmont, WA, USA 

ZEN 2009 Confocal microscopy (LSM710) Carl Zeiss, Jena, Germany 

http://fiji.sc/
http://imagej.nih.gov/
http://www.imspector.de/
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