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Summary 
 
Located in the western half of New Guinea, Papua is facing rapid and poorly-

planned social and economic development, increasing habitat degradation and 

threatening its high level of species richness and endemicity. Freshwater 

ecosystems, more than any other biotope in Papua, face the worst consequences 

from human development through sedimentation, habitat alteration, pollution, 

and the introduction of exotic species. However, little research has been 

conducted on the impact of human activities on aquatic species, and specifically 

fish in lentic and lotic ecosystems, in Papua.  

Lake Sentani is located in northern Papua, near Jayapura, the capital of 

Papua Province. It is the largest lowland lake in Papua, and plays a critical role in 

the survival of the humans and organisms living in and around it. Human 

activities are negatively affecting its local flora and fauna, especially those with 

very narrow distributions, such as the rainbowfishes, Chilatherina sentaniensis 

and Glossolepis incisus, and the Sentani Goby (Glossogobius sp.). The lake is 

located close to an urban center and heavy development occurs in the north, 

east, and northeast, while other threats include non-point pollution of human 

activities, habitat alteration along the shoreline, and introduced species. Despite 

these concerns, and its proximity to the local government, the lake has received 

no attention in terms conserving its ecosystem. Moreover, although there is 

some research on the mollusks, phytoplankton, limnological aspects, and water 

quality of the lake, none exists specifically on the correlation between human 

activities and the lake’s inhabitants. Therefore, the aim of this study was to 

document the ecology of the Red Rainbowfish (Glossolepis incisus), one of the 

threatened endemic fishes in Lake Sentani, and the impact of human activities on 

its habitats. Specifically, this study was designed to focus on the impact of human 

activities on the abundance of the Red Rainbowfish, its body length, and sex 

ratio, and the abundance of introduced fishes and correlation between their 

abundance and Red Rainbowfish abundance. Assessing the impact of human 
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activities was done by measuring eight water physicochemical parameters that 

were reported to have the most potential influence on the abundance of the Red 

Rainbowfish, in nine locations from three zones. The zones were predetermined 

based on visual assessments of the level of human activities, where higher 

numbers of people were assumed to have higher impacts on the environment. 

Zone I’s locations had heavy human activity, Zone II’s locations had medium 

human activity, and Zone III’s locations had the lowest human activity and was 

considered a “control area”. These zones’ locations were later regrouped 

following analyses of the water physicochemical parameters.  

Fish and water samples were collected along the shoreline, at depths of 

up to two meters. Fish were sampled in the morning at each sampling site of a 

single location, and replicated three times on alternate days, yielding 27 data 

sets for each zone, or 81 data sets for all three zones within a year, and a total 

243 data sets in three years. Collected rainbowfish were differentiated by sex, 

counted, measured, and released. Water parameters were measured in the 

same sites in which fish sampling was conducted, three times a day—morning 

(06.00–09.00 am), midday (11.00 am–13.00 pm), and afternoon (16.00–18.00 

pm)—and repeated three times in each sampling site on three alternate days. 

Thus, a total of 81 water parameter data sets were collected. Water parameters, 

including nitrate, nitrite, phosphate, biological oxygen demand, and chemical 

oxygen demand were analyzed in a laboratory, while water temperature, pH, and 

dissolved oxygen were directly measured in the field. Then, the ecology of the 

rainbowfish was descriptively analyzed to assess the preferred habitat of the fish, 

including substrate type, water depth, turbidity, and vegetation. The R statistical 

analysis program was used to analyze the water physicochemical parameters in 

order to determine the level of pollution in the water, abundance of Red 

Rainbowfish in each sampling group, and correlation between water 

physicochemical parameters and Red Rainbowfish abundance and body size. 

After the level of water pollution was determined, fish samples were arranged 

into three groups based on the level of pollution in their location. The Analysis 
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Toolpak in Microsoft Excel 2007, and SPSS version 17.0 were used to calculate 

Red Rainbowfish body length for each group, as well as the difference between 

groups, correlation between Red Rainbowfish abundance and introduced fish 

abundance, and Red Rainbowfish abundance and nitrate concentration.  

Based on the aforementioned water physicochemical parameters, the 

sampling sites were distinguished into three groups: Groups 1 and 2 indicated 

heavy pollution (human impact) and Group 3 indicated low pollution (human 

impact) with fairly good water quality. There were significant differences in 

certain physicochemical parameters between groups, specifically in nitrate, 

nitrite, phosphate, BOD, and COD. Group 1 had the highest concentrations of 

nitrate and nitrite, while Group 2 had the highest concentrations of phosphate, 

BOD and COD. Group 3 had the best water quality of the three groups, with low 

to medium concentrations of each parameter. Phosphate levels in all three 

groups exceeded the Indonesian government’s phosphate limit in drinking water 

and fisheries, with BOD and COD. Nitrate and nitrite were both still within the 

limit. No area with zero human impact was found, even in sites with a  

population as low as two people. These results indicate that Lake Sentani already 

suffers from a high level of organic matter, which enters the lake as the result of 

human activities around it.  

Red Rainbowfish abundance was not different between groups, except 

when fish were counted based on their sex. Male abundance remained similar 

across groups, whereas female abundance was similar in Groups 1 and 2, but 

much lower in Group 3.  Nitrate was the only water parameter significantly 

correlating negatively with Red Rainbowfish abundance, suggesting that 

increased nitrate levels had an effect in decreasing fish abundance in Lake 

Sentani, although the impact was still low. 

Red Rainbowfish body length was significantly different between groups, 

with Group 3 having the longest mean body length. Phosphate was the only 

parameter found to contribute to Red Rainbowfish body length, albeit non-

significantly.  
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Introduced fish abundance correlated weakly with Red Rainbowfish 

abundance. While Group 2 showed a weak negative correlation, Group 1 and 

Group 3 revealed a weak positive correlation, suggesting that, whether positive 

or negative, introduced fish species had a very low influence on the abundance 

of the Red Rainbowfish.  

Male Red Rainbowfish were more abundant than females in the shallow 

waters along the shoreline, the latter being found more commonly in deeper 

waters. This ratio was similar in Groups 1 and 2, whereas Group 3, whose 

habitats were the least polluted, had a higher ratio of males. The disparity in sex 

ratio was possibly caused by their different habitat preferences, as well as light 

and temperature preferences.  

The overall habitat preference of the Red Rainbowfish was clear, shallow 

water, sand, gravel, and cobble substrate, and shoaling amidst Hydrilla 

verticillata, Valisneria americana, Eichhornia crassipes, Metroxylon sagu, and 

grasses. The availability of food also attracted fish to certain areas, such as under 

traditional stilt houses, roots of some plants, litter, and wood debris. The pollen 

of terrestrial plants, as well as terrestrial insects, also served as a food source for 

the fish, along with the larvae of aquatic insects and algae. Roots of plants were 

also important for refuge, and as nursery and playing grounds. Moreover, the 

fish avoided high light intensities by moving to shaded areas or deeper water. 

These factors influenced the Red Rainbowfish’s distribution and habitat 

selection, and consequently, its abundance.  

Human activities in and around Lake Sentani have impacted the quality of 

its habitats and water. Although water quality did not have a significant influence 

on the Red Rainbowfish, owing to its ability to adapt to changes in water quality, 

changes to its habitat will have a significant impact on its ability to survive in Lake 

Sentani. The outcome of the present rate of pollution of its water will be further 

and more serious deterioration of its ecosystem, force its inhabitants to compete 

for increasingly fewer resources, and ultimately result in the extinction of its 

endemic species, of which the Red Rainbowfish is just one example. Therefore, 
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Lake Sentani should be made a priority in Papuan conservation and management 

efforts, especially for native and endemic species.  

The results of this study provide baseline data for Red Rainbowfish 

conservation in Lake Sentani, and will allow policy-makers to pursue the 

protection of its habitats, create a strategy to control pollutants, and encourage 

community-based environmental management. Further research is needed on 

the correlation between the Red Rainbowfish and its preferences, and its 

susceptibility to certain types and concentrations of pollutants. Different 

strategies of pollution control should also be investigated. Other parts of Lake 

Sentani that were beyond the scope of this research should also be surveyed, 

along with a lake-wide program examining the exact condition of Lake Sentani’s 

ecosystem, whether it be the quality of its water or the response of its flora and 

fauna to ongoing anthropogenic disturbance, after which a more comprehensive 

rehabilitation program may follow. 
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Zusammenfassung 
 
Das in der westlichen Hälfte der Insel Neuguinea liegende Papua unterliegt einer 

raschen, unzureichend geplanten sozialen und ökonomischen Entwicklung. 

Zunehmende Umweltzerstörung (Habitatdegradierung) bedroht den hohen 

Artenreichtum und die einheimische Biodiversität. Süßwasserökosysteme sind 

sehr stark bedroht durch Umweltverschmutzung, Habitatsveränderung und das 

Einschleppen von fremden Arten. Bisher wurde dieser menschliche Einfluss an 

den Süßwasserarten unzureichend erforscht, speziell an den Fischen in 

stehenden und fliessenden Gewässern in Papua. 

Der Sentani See liegt in Nordpapua, in der Nähe von Jayapura, der 

Hauptstadt der Provinz Papua. Es repräsentiert das größte Süßwasserökosystem 

in Papua und spielt somit eine wichtige Rolle für das Überleben der Menschen 

und anderer Lebewesen in dieser Gegend. Menschliche Aktivitäten beeinflussen 

die lokale Flora und Fauna, insbesondere solche mit engem 

Verbreitungsgebieten wie z.B. Regenbogenfische  Chilatherinasentaniensis und 

Glossolepisincisus, und der Sentani Goby. (Glossogobius sp.) Der See liegt nahe 

an urbanen Zentren, sodass in allen Himmelsrichtungen 

Umweltverschmutzungen aller Art stattfinden., dies betrifft insbesondere 

Veränderungen im Uferbereich und das Einschleppen fremder Arten. Trotz dieser 

Bedenken und der Bedeutung für die lokale Regierung findet das Thema kaum 

Beachtung im Hinblick auf Erhalt des Ökosystems. Trotz einiger Forschung in 

Richtung Mollusken, Phytoplankton und Limnologie, und Wasserqualität des 

Sees gibt es keine spezifischen Untersuchungen über die Korrelation zwischen 

menschlichen Aktivitäten und der Artenveränderung im See. Deshalb ist das Ziel 

dieser Arbeit die Ökologie des roten Regenbogenfisches als einem der 

meistbedrohten endemischen Fischarten im Sentanisee sowie den menschlichen 

Einfluss auf sein Habitat zu dokumentieren. Im Speziellen beschreibt diese Arbeit 

den Einfluss auf die Häufigkeit, Größe, Geschlechterverteilung und 

Populationsveränderung nach Einführung fremder Arten. Um den menschlichen 



xi 
 

Faktor zu messen, wurden acht physiochemische Parameter untersucht, von 

denen der größte Einfluss auf die Häufigkeit des Vorkommens beschrieben wird 

in neun verschiedenen Gegenden dreier verschiedener Zonen. Die Gegenden 

wurden nach Kriterien unterschiedlicher menschlicher Aktivität ausgesucht unter 

der Hypothese, dass eine höhere menschlicher Population einen entsprechenden 

Einfluss auf die Fischpopulation hat. Zone I beschreibt hohen menschlichen 

Einfluss, Zone II mittelmäßige menschliche Aktivität, Zone III hat die niedrigste 

menschliche Aktivität und wurde als „Kontrollgegend“ genutzt. Diese Gegenden 

wurden später neu eingeteilt gemäß der physiochemischen Parameter des 

Wassers. 

 

Fisch und Wasserproben wurden entlang des Ufers gesammelt, in bis zu zwei 

Meter Tiefe. Fisch wurde morgens in jeder Zone gefangen. Dies wurde dreimal 

an anderen Tagen wiederholt, sodass 27 verschieden Daten für jede Zone 

zusammenkamen, insgesamt 81 Daten für drei Zonen innerhalb eines Jahres, und 

somit 243 Daten in drei Jahren. Die gesammelten Regenbogenfische wurden 

nach Geschlecht gezählt, gemessen und wieder freigelassen. Wasserproben 

wurden nach dem gleichen Muster entnommen, dreimal täglich; morgens (6.00 – 

9.00am), mittags (11.00 bis 13.00pm) und nachmittags (16.00 – 18.00pm) und 

dreimal in jeder Zone an drei weiteren Tagen gesammelt. So wurden ebenfalls 81 

Wasserproben gewonnen. Die Wasserparameter, Nitrate, Nitrite, Phosphate, der 

biologische Sauerstoffbedarf und der chemische Sauerstoffbedarf wurden in 

einem Labor analysiert, während Wassertemperatur, PH Wert und gelöster 

Sauerstoff direkt vor Ort gemessen wurden. Dann wurde das Umfeld des 

Regenbogenfisches beschreibend analysiert, um die Habitatpräferenzen 

einschliesslich Substrat, Typ, Wassertiefe, Wasserbewegung und Vegetation 

kennezulernen. Um die physiochemischen Parameter des Wassers zu 

analysieren, wurde das RStatistikanalyse Programm benutzt., um somit 

Verbreitung und Größe des Regenbogenfisches in jeder Probe, und somit eine 

Korrelation zwischen den Wasserparametern und der Größe und Verteilung des 



xii 
 

Regenbogenfisches zu entdecken. Nachdem der Grad der Wasserverschmutzung 

bestimmt worden war, wurden die Fischproben in drei Gruppen eingeteilt, je 

nach Verschmutzungsgrad der Gebiete. Das Analysetool in Excel 2007 und die 

Version von SPSS 17.0 wurden genutzt, um die Fischgröße jeder Gruppe, sowie 

den Unterscheid der Gruppen zueinander, das Verhältnis der Anzahl der Fische 

zur Zahl der eingeführten fremden Fische, sowie die Korrelation der Zahl der 

Regenbogenfische zur Nitratkonzentration zu bestimmen. 

 

Basierend auf den bereits erwähnten Wasserparametern wurden die 

Untersuchungsgebiete in drei Gruppen geteilt. 1 und 2  mit hohem menschlichen 

Einfluss, 3 mit geringem menschlichem Impact. Es gab signifikante Unterschiede 

bei bestimmten Wasserparametern innerhalb der Gruppen, insbesondere bei 

Nitraten und Nitriten, Phosphate, biologischem Sauerstoffbedarf und 

chemischen Sauerstoffbedarf. Die erste Gruppe hatte die höchste Konzentration 

an Nitraten und Nitriten, Gruppe II hatte die höchste Konzentration an 

Phosphaten, biologischem, sowie chemischen Sauerstoffbedarf . Gruppe drei 

hatte die beste Wasserqualität und niedere bis mittlere Konzentration der 

obengenannten Parameter. Die Phosphatlevel übersteigen den in Indonesien 

staatlich zugelassenen Grenzwert von  Phosphat  in Trinkwasser und 

Fischereiwasser. Nitrat und Nitritbelastung liegen unter den zulässigen 

Grenzwerten. Es wurde kein Bereich ohne nachweisbaren menschlichen Einfluss 

gefunden,  nicht mal bei so geringer Bev.dichte wie 2Menschen /km2;  

Diese Ergebnisse zeigen die deutliche Verschmutzung des Sentani Sees durch die 

Menschen. 

Die Anzahl des roten Regenbogenfisches war in allen Gruppen gleich, 

ausser es wurde nach Geschlecht getrennt gezählt. Die männlichen Fische war in 

allen Gruppen ähnlich, während die Anzahl weinblichen Fische in der Gruppe drei 

niedriger war. Nitrat war der einzige Parameter, dem ein direkter inverser 

Zusammenhang mit der Anzahl der Regenbogenfische nachgewiesen werden 

konnte.  
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Die Körperlänge der Fische war signifikant unterschiedlich in den einzelnen 

Gruppen. Gruppe drei hatte das durchschnittlich größte Körpermass. Phosphat 

war der einzige Parameter mit Einfluss auf die Körperlänge, obwohl nicht 

signifikant. Die Anzahl der Fremdfische korrelierte schwach mit der Anzahl der 

Regenbogenfische. Gruppe zwei hatte eine leicht negative Korrelation, Gruppe 

eins und drei waren leicht positiv korreliert. Das bedeutet, dass die Anzahl der 

Fremdfische keinen Einfluss auf die Zahl der Regenbogenfische hat.  

Die Zahl der männliche Regenbogenfische war in der Flachwasserzone am 

Ufer höher, während die weiblichen mehr in den tiefen Wassern gefunden 

wurden. Diese Korrelation war ähnlich in Gruppe eins und zwei, während in der 

dritten weniger verschmutzten Gruppe eine höhere Anzahl männlicher Fische 

war. Die unterschiedliche Geschlechterverteilung war abhängig von Habitat, Licht 

und Temperaturpräferenzen.  

Grundsätzlich bevorzugen rote Regenbogenfische klares, flaches Wasser 

mit Sand, Kiesel und Steinsubstrat und halten sich gerne auf zwischen Hydrilla 

verticillata, Valisneria americana, Eichhornia crassipes, Metroxylon sagu und 

Gräsern. Das Angebot von Futter war ebenfalls attraktiv für die Fische, 

insbesondere unter traditionellen Pfahlhäusern, den Wurzeln einiger Pflanzen, 

Schmutz, Abfall und Holzresten.  Pollen und Insekten waren ebenfalls eine 

bedeutende Nahrungsquelle für die Fische, sowie auch die Larven von 

Wasserinsekten und Algen.  Pflanzwurzeln waren ebenfalls  als Rückzugs- und 

Aufzuchtsgebiet sowie als Spielplatz attraktiv für die Fische. Die Fische  

vermieden Bereiche mit hohen Lichtintensitäten und zogen schattige Gebiete in 

tiefem Wasser vor. Diese Faktoren beeinflussten die Verbreitung der 

Regenbogenfische in den Habitaten und konsequenterweise auch ihre Anzahl.  

Menschliche Aktivitäten haben Einfluss auf die Qualität des Habitats und 

des Wassers in und um den Sentanisee. Obwohl die Wasserqualität keinen 

signifikanten Einfluss auf die Verbreitung der Regenbogenfische hat, dank seiner 

Fähigkeit, sich auch an schlechtere Konditionen anzupassen, wird eine 

zunehmende Verschmutzung doch als Bedrohung gewertet.  Zunehmende 
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Verschmutzung des Wassers wird sich in einer Verschlechterung des Ökosystems 

zeigen und wird dazu führen, dass die Arten um geringere Ressourcen 

konkurrieren müssen. Das wird ultimativ zum Aussterben von endemischen 

Arten führen, von denen der rote Regenbogenfisch nur ein Vertreter ist. Deshalb 

sollte der Sentani See prioriär als Naturschutzgebiet in Papua behandelt werden, 

um einheimische und endemische Arten zu schützen. 

 

Die Ergebnisse dieser Studie liefern Grundlagen Daten für den Schutz des roten 

Regenbogenfisches im Sentani See. Somit erhalten Politiker Strategien zum 

Erhalt des Habitats, Möglichkeiten Verschmutzung einzudämmen, und 

Kommunen zum Naturschutz zu motivieren. Weitere Studien werden benötigt, 

um das Verhältnis des roten Regenbogenfisches und seine Vorlieben, sowie seine 

Anfälligkeiten bestimmten Noxen gegenüber  zu erforschen. Verschiedene 

Möglichkeiten der Kontrolle der Verschmutzung sollten ebenfalls erforscht 

werden. Andere Regionen des Sees, die in dieser Studie nicht erforscht werden 

konnten, sollten überwacht werden. Unabhängig von den bearbeiteten 

Untersuchungen am Ökosystem des "Sentani Sees" als Teil eines ganzheitlichen 

"Sentani See Programms" sollten weitere Studien zur Wasserqualität und 

insbesondere zum Einfluß anthropogener Umweltverschmutzung auf Flora und 

Fauna angestellt werden. Eine Überwachung des gesamten Sees zur Bestimmung 

der Ökologie wäre sinnvoll, damit ein Gesamtprogramm zur ökologischen 

Rehabilitation folgen kann. 
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1 Introduction 
 

1.1 Introduction to Papua’s Biodiversity 
 
Papua is known to harbor extraordinary biological diversity, with many native 

and endemic species. It has a large track of pristine and diverse ecosystems, 

including vast freshwater swamps, lowland rainforests, and alpine ecosystems. 

Biological surveys revealed that the Raja Ampat Islands and Cenderawasih Bay 

area in Papua formed the center of the Coral Triangle—the most diverse coral 

reef on Earth. Recent surveys across the province of Papua also discovered many 

new species (Beehler et al., forthcoming). 

Papua supports a rich and diverse fauna that includes at least 3,764 

vertebrates, constituting 81% of the vertebrates found on the island of New 

Guinea (4,665 species) and probably more than 200,000 invertebrates. Marine 

fishes make up 62% of the Papuan fauna, while freshwater and brackish fishes 

comprise nearly 8%. Birds make up nearly 15% of Papuan vertebrates, followed 

by amphibians and reptiles with a combined 10%. The smallest number of 

Papuan fauna known so far belongs to the mammals, which comprise 5% of the 

total. If we focus on land and freshwater vertebrates (i.e., exclude marine and 

brackish water fishes as well as other exclusively marine vertebrates such as sea 

turtles and sea snakes), there are 1,240 species known from Papua, but only 250 

of these (20%) are endemic. In comparison, there are a total of 1,674 land and 

freshwater vertebrates found throughout the entire island of New Guinea, 1,130 

(69%) of which are endemic (Allison 2007). Besides being rich in terms of number 

of species and diverse natural ecosystems, Papua also has a high level of species 

endemism compared with the rest of Indonesia. It was estimated that Papua 

contributes 30–50% of Indonesia’s biodiversity (Conservation International 

1999). 

New Guinea Island as a whole has a complex geological history. Its 

relative isolation from continental areas with similar climates and greater 

topographic diversity are known to be factors in the evolutionary diversification 
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of species in the island (Beehler 2007). In terms of ecosystem diversity, Petocz 

(1987) classified Papua into six major ecosystem types: mangrove, wetland, 

lowland rainforest, mid-mountainous forest, mountainous forest, and alpine 

ecosystem, while others have classified Papua into as high as 12 different 

ecosystem types (Marshall 2007). Moreover, the World Wildlife Fund for Nature 

classified New Guinea into 15 forest and aquatic ecoregions, each with its own 

characteristics (BAPPENAS 2003). Therefore, the island has more diverse 

ecosystems than any other region in Indonesia. 

 
However, Papua is facing rapid and poorly-planned social and economic 

development, which greatly accelerated when the central government granted 

special autonomy to Papua in 2001. This rapid and often unplanned 

development has increased habitat degradation in Papua, negatively impacting 

its unique biodiversity and natural ecosystems, as well as the developments 

themselves.  

From 2001 to 2003, Papua saw a significant increase in its number of 

regencies, from just 12 to 26 (BP3D Provinsi Papua 2003). In 2006, two separate 

provinces were created within Papua, named Papua and Papua Barat. Since then, 

there has been an increase in the number of regencies in Papua Province to 28, 

along with the addition of a single municipality (BPS Provinsi Papua 2012). Papua 

Barat, meanwhile, has increased from three regencies to 10, along with 

establishing one municipality (BPS Provinsi Papua Barat 2012). This means the 

two provinces have a combined 38 regencies and two municipalities. 

Development of new regencies results in new land and forest clearings for 

development infrastructure, new roads, and new urban centers. Some new 

regencies have been built in areas designated as protected areas or priority areas 

for biological conservation. One example is Tamrau Regency in Papua Barat 

Province, of which a part belongs to Tamrau Mountain Nature Reserve.  

A study in 2001-2002 on deforestation in Papua revealed that Papuan 

forests had degraded significantly since special autonomy was granted. From 

1986 to 1998, the size of Papua’s forests was reported to have decreased by 



  3 

0.2% (67,000 ha), or approximately 0.01% (5,500 ha) per year (Sumantri 2002). 

From 1998 to 2000, this increased nearly sixtyfold to 11.7% (4.9 million ha), or 

5.8% (2.45 million ha) per year (Sumantri 2002). Another important factor that 

threatens Papuan biodiversity and natural ecosystems is population growth. The 

average rate of population growth in Papua Province from 1971–1980 was 2.6%. 

This increased to 3.46% in 1980–1990, while from 1990–2000, it was 3.18% 

(BP3D and BPS Provinsi Papua 2003). There was a significant increase from 2000–

2010, to 5.46%, the highest in Indonesia (BPS 2010). Population growth creates 

pressure on the environment, causing further habitat destruction.  

 
The Indonesian government has made conservation efforts to protect Papua’s 

natural ecosystems since the early-1980s, through the National Conservation 

Plan for Indonesia. Through this plan, at least 54 areas that cover about 20% of 

Papua’s terrestrial and aquatic habitats have been designated as conservation 

areas and managed by various management regimes (de Fretes 2007).  

 However, the 1980 National Conservation Plan was designed to address 

habitat threats at that time, and the data and proposed management strategies 

have since become outdated. The areas determined as protected areas were 

based only on the most popular taxa, such as plants, mammals, and birds. Since 

then, only a handful of protected areas have been effectively managed. It is 

arguable that the plan is not sufficient to address the current threats to Papua’s 

biodiversity.  

If the current trend of habitat degradation in Papua continues, future 

research on the biology and ecology of Papua’s species will be hindered. This 

includes species found in both remote or isolated areas and urban centers. Based 

on various assessments of conservation prioritization in Papua by Conservation 

International (1999) and Polhemus et al. (2004), many endemic species with very 

narrow distribution ranges were observed near urban centers, such as some 

rainbowfish species (Chilatherina sentaniensis, Glossolepis incisus, Melanotaenia 

ajamaruensis, Melanotaenia boesemani). Thus, the current governmental 

development that is centered in urban areas has directly threatened many 
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endemic species, especially those with a narrow distribution area. Species like 

endemic freshwater fishes are among the most threatened groups in Papua, with 

very limited distribution and low dispersal ability. Furthermore, these freshwater 

fishes are sensitive to habitat alteration, making them particularly vulnerable to 

further unplanned development. 

 
The rainbowfishes (family Melanotaeniidae) are one of the endemic freshwater 

fish groups with some members identified to be threatened species (IUCN 2012). 

Two such species are the Red Rainbowfish (Glossolepis incisus) and the Sentani 

Rainbowfish (Chilatherina sentaniensis), whose distributions are known to be 

limited to Lake Sentani in Jayapura and its tributaries. Both species have become 

threatened as a result of human activities around Lake Sentani. The IUCN Red 

List assessment in 1996 listed the conservation status of the Red Rainbowfish as 

Vulnerable and the Sentani Rainbowfish as Critically Endangered (Allen 1996a, 

1996b). Both species were determined to be the two out of four most-

threatened endemic rainbowfish species in Papua (Ohee 2005). 

 The impact of human activities is not only limited to the species, but their 

habitat, as well: Lake Sentani. Despite the fact that Lake Sentani has been 

identified as an important ecosystem for species conservation (Conservation 

International 1999; Polhemus et al. 2004), the area remains under no protection. 

Meanwhile, human activities surrounding the lake have led to noticeable 

deforestation around it, water pollution, and the introduction of exotic species. 

 The Red Rainbowfish was discovered in 1907, and there has been very 

limited information on the species since then. Allen in 1996 reported the most 

recent information on the species as a base for the IUCN conservation 

assessment. As this information was general, however, no detailed ecological 

information on the species exists, let alone the impact of human activities on its 

fate, despite the fact that the Red Rainbowfish (along with other endemic 

species found in the lake) is located in Jayapura, the capital city of Papua 

Province. Furthermore, the Sentani Rainbowfish is the most threatened 

rainbowfish according to the IUCN Red List because of habitat pollution and the 
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introduction of exotic species. This fish was found in one of the tributaries of 

Lake Sentani—Jembatan II Creek, around 12 km southwest of Jayapura—until 

approximately the early-2000s, when the habitat became turbid because of 

small-scale gold mining in its headwaters. In 2006, it was found in another 

tributary, Mekaye creek, around 14 km east of Jayapura, but has not been found 

there recently. It is believed to be extinct in Lake Sentani. Therefore, our 

research was on the Red Rainbowfish in Lake Sentani, only. 

 
1.2 Research Objectives 

 
Freshwater fish in Papua are an example of the spectrum of threats and 

vulnerabilities; they are endemic and sensitive to a broad array of environmental 

deteriorations, have low dispersal ability, have their habitats encroached upon 

by urban development, and are attractive for trade. Therefore, research on the 

ecology of freshwater fishes and strategies on their conservation is urgently 

required. Papua has a high level of freshwater fish species diversity and 

endemicity, making it important to document the various aspects of these 

species, one of which is the rainbowfish. 

 This study aims to document the ecology of the Red Rainbowfish, one of 

the less known species, and the impact of human activities on its habitats in Lake 

Sentani, Papua. The decision to study the impact of habitat degradation on 

rainbowfishes in Papua was based on these considerations: 1) the rainbowfish 

has conservation appeal because of its wide variation in color and body shape; 2) 

it is vulnerable to extinction (because it has restricted range); and 3) it is believed 

to be sensitive to water pollution. 

 Specifically, this study was designed to focus on the impact of human 

activities on: 1) the presence and absence of the Red Rainbowfish; 2) the sex 

ratio of the species; 3) the fish body length; 4) the presence and absence of 

introduced species; and 5) the fish abundance (rainbowfish vs. introduced 

species) in various parts of the lake based on the level of human impact.  
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2 Ecology of the Red Rainbowfish and the Impact 
of Human Activities on Its Habitats 

 
2.1 The New Guinea Freshwater Fishes 

 
2.1.1 Biodiversity of Freshwater Fishes in New Guinea Island 

 
Although New Guinea has been acknowledged to have one of the most diverse 

marine fish fauna on Earth, only about 329 freshwater fish species have been 

recorded. Of this total, 13 species are introduced and about 102 are marine-

originated species. The 102 species are secondary division fishes, with 

distribution limited to New Guinea and its satellite islands, while the other 214 

are primary division fishes, with a wide distribution outside of New Guinea (Allen 

1991). The total number of freshwater fish species in New Guinea remains 

unknown. A field survey in 2002 increased the species number to 385 (Allen et al. 

2002). New Guinea has a high level of freshwater fish endemism (about 60%) 

(Allen et al. 2002). Around 35 freshwater species are shared with Northern 

Australia, indicating that these two areas were once connected. The freshwater 

fishes of New Guinea and Australia are very unique, and are mostly secondary 

division fishes, having evolved from marine species, whereas other continents’ 

freshwater fishes are primary division fishes (Allen 1991).  

 The freshwater fishes of New Guinea are distributed in various habitats, 

including lowland rivers, floodplain lakes, swamps, upland lakes, torrential 

mountain streams, and coastal streams (Allen 1991).  

 
2.1.2 Status and Conservation Measures of Freshwater Fishes 

 
As with many parts of Indonesia, fish habitats in New Guinea are facing rapid 

habitat degradation as the result of rapid human population growth, large-scale 

infrastructure development, pollution, domestic waste, and deforestation. Papua 

still has extensive natural ecosystems, but between 1993 and 1997, forests and 

other natural ecosystems were reduced significantly (Conservation International 

1999). Habitat loss because of larger-scale developments such as plantations, 
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mining, introduction of new regencies, and logging have threatened much of 

Papua’s unique biological ecosystems, including its freshwater ecosystems. 

Polhemus et al. (2004) stated that there are three main threats to freshwater 

ecosystems in New Guinea: 1) habitat alteration; 2) use of biotic resources; and 

3) invasive species. As a result of these threats, some freshwater fishes have 

been listed in the IUCN Red List with various conservation statuses, and some 

have become very rare. One example is Pristis microdon, which is distributed in 

the tropical Indo-West Pacific, and commonly observed in the Digul, middle Fly, 

middle and lower Sepik, and Ramu Rivers, as well as Lake Sentani, where FAO 

(1972) reported it to have become rare. The species is listed in the IUCN Red List 

as Critically Endangered (Compagno et al. 2006), along with being listed as a 

protected species in Indonesia. Many freshwater fish groups with restricted 

distribution ranges have suffered, such as the rainbowfishes (Melanotaeniidae) 

and blue-eyes (Pseudomugilidae). For instance, Chilatherina sentaniensis, which 

is listed as Critically Endangered in the IUCN Red List, meaning it is at high risk of 

extinction (Allen 1996a), is a striking example of the described threats. The 

species was reported to occur only in Lake Sentani and its tributaries. It was 

collected in a tributary stream flowing into the northeastern end until early-

2000, as well as in a tributary about 14 km east of Jayapura until 2006. Recent 

surveys, however, have failed to observe the species in these locations. It is likely 

that habitat degradation is the cause. Another species, Melanotaenia boesemani, 

is found in the Ayamaru Lakes region in the center of the Bird’s Head Peninsula, 

and is listed as Endangered (Allen 1996c). Both C. sentaniensis and M. boesemani 

are the most threatened rainbowfish species in Papua. Many other species are 

listed as Vulnerable, but their proper conservation status cannot be determined 

because of a lack of data. These are Glossolepis incisus (Allen 1996b), 

Chilatherina bleheri (Allen 1996d), and Melanotaenia parva (Allen 1996e).  

In an effort to conserve Papua’s biodiversity, Conservation International 

(1999) determined 23 freshwater habitats as a priority for freshwater 

conservation in Papua. Polhemus et al. (2004) determined about 40 areas of 
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freshwater endemism in New Guinea and nearby islands, and grouped them into 

six broad regions based on three groups of freshwater biota: fish, crayfish and 

aquatic insects. Genus Melanotaenia was used as an indicator for the 

classification of endemic freshwater fishes in New Guinea. Generally, 

rainbowfishes have a restricted and well-defined distribution area. The smallest 

known distribution area ever recorded is less than one ha in Lake Kurumoi in 

Bintuni Bay (Kadarusman et al. 2010), belonging to Melanotaenia parva, where it 

is only found. Meanwhile, the largest distribution area is approximately 2.6 

million ha, located in the Bird’s Head and Bomberai Peninsulas, and the known 

habitat of Melanotaenia irianjaya (Ohee 2005).  

A gap analysis on the designated conservation areas and rainbowfish 

distribution in Papua revealed that the distribution area of 30 endemic 

rainbowfish species of Papua is part of 11 out of 23 conservation priorities of 

freshwater ecosystems that were identified by Conservation International in 

1999 (Ohee 2005; Conservation International 1999). Further gap analysis also 

showed that many of the distribution areas of the rainbowfish were located 

outside of the protected areas in Papua. Only 16 out of 30 endemic species 

distribution areas were covered under the existing designated conservation 

areas in Papua. However, only a small proportion (27%) of the distribution areas 

was inside the existing designated conservation areas, while 73% of the 

distribution areas were outside of the conservation areas. One concern is that 

some of these protected areas still have “proposed” statuses (meaning they are 

not legally protected), and therefore can be threatened by habitat conversion. 

Furthermore, some rainbowfish habitats are found in exploited forested regions, 

whether for mining, plantation, logging, or road development. Habitats 

belonging to many endangered rainbowfish species are located outside of 

existing protected areas. Examples include Lake Sentani, which is the habitat of 

Chilatherina sentaniensis and Glossolepis incisus, and Kurumoi Lake, which is the 

habitat of Melanotaenia parva (Ohee 2005).  
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2.1.3 New Discoveries 
 
Freshwater fish fauna—and rainbowfishes in New Guinea in particular—were 

poorly understood until the past decade, after an increase in field surveys in 

Papua (Allen et al. 2002; Mack and Alonso 2002; Richards and Suryadi 2000; 

Watson and Allen 1999; Allen and Renyaan 1995, 1996a, 1996b, 1998a, 1998b, 

2000a, 2000b). The most recent discoveries of other fish species are Sicyopterus 

sp. (Gobiidae), discovered in 1998 in Wapoga, Northern New Guinea (Allen and 

Renyaan 2000a), and Lentipes multiradiatus (Gobiidae), which was discovered in 

2000 in a small pond in Yongsu village, in the foothills of the Cyclops Mountains 

(Allen et al. 2002, Allen 2001).  

Prior to 1975, family Melanotaeniidae (rainbowfish) contained only 26 

species (Allen 1998), and by 2011, 79 species were known. A year later, a further 

five species were identified, namely Chilatherina pagwiensis (Allen and Unmack 

2012), which is only found in Papua New Guinea, and Melanotaenia arguni, M. 

urisa, M. veoliae, and M. wanoma (Kadarusman et al. 2012), which are only 

found in Papua. Allen, the leading freshwater fish taxonomist, recorded at least 

43 species in his book in 1991; eight of them Chilatherina species, six Glossolepis 

species, one Iriatherina species, and 28 of them Melanotaenia species. Five more 

unnamed species were later recorded (Allen 1995). Between 1980 and 1998, 23 

rainbowfish species were discovered in New Guinea (Allen 1998). More recently, 

four Melanotaenia species from Papua and one Chilatherina species from Papua 

New Guinea were identified (Kadarusman et al. 2012; Allen and Unmack 2012). 

New species of rainbowfish continue to be discovered in New Guinea, and 

especially in Papua (Allen and Hadiaty 2011; Kadarusman et al. 2010, 2011, 2012; 

Allen et al. 2008; Allen and Unmack 2008). 

 

2.2 The Ecology of the Red Rainbowfish 

 

The rainbowfishes belong to family Melanotaeniidae and are restricted to New 

Guinea and eastern and northern Australia. They are one of the ornamental 
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fishes because of their attractive colors, harmlessness to other fish, and ease 

with which they are bred in captivity (Allen 1991, 1995; Allen and Cross 1980, 

1982). Melanotaeniidae belongs to the Atheriniformes order (Nelson 2006), and 

has a close relationship to Pseudomugilidae as the sister group (Saeed et al. 

1989). They evolved from a marine atherinid ancestor (Allen 1980). 

Melanotaeniidae consists of 84 species in seven genera, the largest of which is 

Melanotaenia, with 60 species (Fig. 2.1). 

 
2.2.1 Distribution 

 
New Guinea is a geologically young island, with mountains that cut across it, 

separating the north from the south and consequently creating an effective 

barrier that has isolated rainbowfish populations. The species on each side are 

also very distinctive. Only Chilatherina campsi is found on both sides of the 

Central Dividing Range (Allen 1991, 1995).  

Rainbowfish distribution is differentiated into three biogeography 

provinces: northern, western, and southern New Guinea/Australia. Northern 

New Guinea is believed to be a distinct biogeographic region for freshwater 

fishes (McGuigan et al. 2000; Allen and Cross 1982). Western New Guinea 

consists of the Bird’s Head Peninsula and the nearby islands of Waigeo and 

Batanta. This province was identified as a center of rainbowfish diversity (Allen 

1995). The northern and western biogeographic regions are not part of the 

Australian craton, while the third biogeographic region’s two parts, southern 

New Guinea and Australia, have a close biogeographic relationship, and thus 

some species found in southern New Guinea are also found in northern Australia 

(McGuigan et al. 2000; Allen 1991, 1995; Allen and Cross 1982). Allen (1991) also 

classified the rainbowfishes, and in particular the largest genus, Melanotaenia, 

into four different areas: Melanotaenia from the Bird’s Head and Bomberai 

Peninsulas, Melanotaenia from the islands off Papua, Melanotaenia from 

Northern New Guinea, and Melanotaenia from Southern New Guinea.  
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There are seven rainbowfish genera distributed in New Guinea Island and 

Australia (Fig. 2.1, Table 2.1). The largest genus, Melanotaenia, is found in New 

Guinea and Australia, along with Iriatherina. Genera Chilatherina, Glossolepis, 

and Pelangia are restricted to New Guinea. Cairnsichthys and Rhadinocentrus are 

only found in Australia.  

 
 
 

 
 
There are 84 species currently recognized as Melanotaeniids; 16 of them found 

only in Australia, 65 in New Guinea, and three (Iriatherina werneri, Melanotaenia 

maccullochi, and M. rubrostriata) in both Australia and New Guinea (Allen and 

Cross 1982). Of the 65 Melanotaeniids in New Guinea, 47 are found in Papua (40 

of which are endemic) and 27 are found in Papua New Guinea (20 of which are 

endemic; Fig. 2.2, Table 2.1). The 40 rainbowfish species found only in Papua 

were discovered mostly in the north, west, and Bird’s Head Peninsula, with 

distributions restricted to one lake, and some ponds, rivers, and tributaries. They 

encompass four species of genus Chilatherina, five species of genus Glossolepis, 

30 species of genus Melanotaenia, and one species of genus Pelangia (Allen 

1991, 1995, 1998; Allen et al. 2008; Allen and Hadiaty, 2011; Allen and Unmack 

2008; Kadarusman et al. 2010, 2011, 2012; Table 2.1, Appendix 1).  

60 

11 

9 

1 1 1 1 

Melanotaenia 

Chilatherina 

Glossolepis 

Iriatherina 

Pelangia 

Cairnsichthys 

Rhadinocentrus 

Fig. 2.1. The distribution of number of rainbowfishes species per genus. 
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A previous study by Ohee (2005) found that of Papua’s 30 endemic 

rainbowfish species, the distribution area of 13 species ranged from 0.1 to 2.6 

million ha, and six species from 10,000 to 100,000 ha, while the remaining 11 

species had the smallest distribution area with less than 10,000 ha. Most of them 

were restricted to a single lake. For instance, Melanotaenia parva was restricted 

to Lake Kurumoi in the Bird’s Head Peninsula; Melanotaenia ajamaruensis and 

M. boesemani was known only from the Ayamaru Lakes, also located in the Bird’s 

Head Peninsula; and Chilatherina bleheri was discovered only in Lake Holmes 

(Danau Bira) in the lower Mamberamo River (Allen 1991). There were few 

species known to be widespread in Papua, such as Melanotaenia vanheurni, 

which occurred in creeks, tributaries, and streams in Buare, and was also 

observed in Mamberamo River (Tim Peneliti Biologi UNCEN 2008). 

 

 

 

Twenty-one rainbowfish species in Papua can be divided into two groups: a 

northern and a southern group. The northern group comprises 19 species from 

four genera. Three genera, Glossolepis, Chilatherina, and Pelangia, are unique to 

this region, while genus Melanotaenia can also be found in Australia. The 

southern group consists of two species, one each belonging to Melanotaenia and 

Iriatherina. The 26 species, which belong to genera Melanotaenia and 

16 
1 

1 

6 

40 

20 
Australia 

Australia&New Guinea 

Australia&Papua New Guinea 

New Guinea  

Papua 

Papua New Guinea 

Fig. 2.2. Numbers of rainbowfish species in New Guinea and Australia. 
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Chilatherina, are known to inhabit Western New Guinea, including the Bomberai 

and Bird’s Head Peninsulas and Raja Ampat Islands (Allen 1991, 1995). The 

distribution of rainbowfish species in Papua can be seen in Appendix 1. The Bird’s 

Head region (including the nearby Raja Ampat Islands and the Bomberai 

Peninsula) is believed to be a center of diversity for Melanotaenia species 

(McGuigan et al. 2000; Allen 1995). Currently, 15 species have been described 

from this region: Melanotaenia ajamaruensis Allen and Cross, 1980, M. ammeri 

Allen, Unmack & Hadiaty, 2008, M. angfa Allen, 1990, M. arfakensis, Allen, 1990, 

M. batanta Allen & Renyaan, 1996, M. boesemani Allen and Cross, 1980, M. 

catherinae De Beaufort, 1919, M. fasinensis Kadarusman, Sudarto, Paradis & 

Pouyaud, 2010, M. fredericki Fowler, 1939, M. irianjaya Allen, 1985, M. 

kokasensis Allen, Unmack & Hadiaty, 2008, M. misoolensis Allen, 1982, M. parva 

Allen, 1990, M. salawati Kadarusman, Sudarto, Slembrouck & Pouyaud, 2011, 

and M. synergos Allen & Unmack 2008 (Kadarusman et al. 2012).  

 
2.2.2 Habitat 

 
Rainbowfishes are usually less than 12 cm SL (standard length) in body length. 

They occur mostly in freshwater habitats below an elevation of 1500 m a.s.l. 

(Allen 1991). They are found in a variety of habitats, including streams of all sizes, 

lakes, ponds, reservoirs, and swamps, but many species are often restricted to a 

single, isolated lake, or small section of a particular river system (Allen 1995; 

Allen and Cross 1982).  

Lake-dwelling species reside in the lake edge, shoaling amongst the 

submerged grass, water plants, dead wood, and leaves. Some species prefer 

creeks, streams, or rivers with fast-flowing and clear water, living on a boulder or 

gravel substrate, while some occupy a sand and silt substrate. Other species 

prefer estuaries, especially in the mouth of a river that flows into the sea. Along 

the water body, the riparian vegetation varies, with many kinds of trees, shrubs, 



  14 

Table 2.1. Rainbowfish genera and number of species per genus. 

No. Region 

Genus Total Number 

of Species Remarks Carinsichthys Chilatherina Glossolepis Iriatherina Melanotaenia Pelangia Rhadinocentrus 

1 Australia and 
New Guinea 

0 0 0 1 1 0 0 2 Iriatherina werneri, 
Melanotaenia rubostriata 

2 Australia and 
Papua New 
Guinea 

0 0 0 0 1 0 0 1 M. macculochi 

3 New Guinea 0 3 0 0 2 0 0 5 Chilatherina crassispinosa,  
C. fasciata,  
C.lorentzi,  
M. affinis,  
M. goldiei 

4 Australia 1 0 0 0 14 0 1 16  

5 Papua 0 4 5 0 30 1 0 40  

6 Papua New 
Guinea 

0 4 4 0 12 0 0 20  

 

Total 1 11 9 1 60 1 1 84  

Sources: Allen 1991, 1995, 1998; Allen and Renyaan 1995, 1996a, 1996b, 1998a, 1998b, 2000a, 2000b; Allen et al. 2008; Allen and 
Hadiaty 2011; Allen and Unmack 2008; Kadarusman et al. 2010, 2011, 2012; Mack and Alonso 2000; Richards and Suryadi 2002.  
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Fig. 2.3. Distribution of 47 rainbowfish species in Papua, which includes 40 species endemic to 
Papua, five New Guinean species, and two New Guinean and Australian species. 
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and grasses, shading the habitats of the fish, and serving as a food source for the 

fish (Allen 1995).  

 The Red Rainbowfish is a lake-dwelling species, and found along the edge 

of Lake Sentani, around riparian and aquatic vegetation. It mostly occupies water 

less than two meters deep, but can be found in deeper parts of the lake. The 

species can also be observed a few meters into some of Lake Sentani’s 

tributaries. It occupies the same habitat as some other species, such as 

Chilatherina fasciata (Barred Rainbowfish), Giurus margaritaceus (Snakehead 

Gudgeon), as well as some juveniles of introduced species like Oreochromis 

mossambicus (Mozambique Tilapia).  

 
2.2.3 Diet 

 
The rainbowfishes’ diet includes a variety of plant and animal items including 

algae, ants, aquatic insect larvae, tiny fruits, filamentous algae, and small 

crustaceans (Allen 1991; Allen and Cross 1982). They are also known to be 

opportunistic feeders (Hieronimus 2002).  

The specific diets of most New Guinean rainbowfishes are presently 

unknown. As there is more and better data on the biological aspects of 

Australian rainbowfishes, however, their diets are more well-known. Examples 

include the Ornate Rainbowfish (Rhadinocentrus ornatus), which is a microphagic 

carnivore, and the Eastern Rainbowfish (Melanotaenia splendida splendida), 

which is omnivorous. Much of the Ornate Rainbowfish’s diet comprises aquatic 

insects and their aerial forms, terrestrial invertebrates, such as Diptera, 

Hymenoptera, and Hemiptera, micro and macrocrustaceans, and fragments of 

terrestrial vegetation. The Eastern Rainbowfish, meanwhile, feeds on small 

aquatic invertebrates, aerial forms of aquatic insects (ants, in particular), and 

aquatic macrophytes. Its major diet, however, is algae, with diatoms and 

filamentous algae being the most important components (Pusey et al. 2004). 

Unlike some other rainbowfish species, little information or records exist 

on the diet of the Red Rainbowfish. Field studies and observations in aquariums 
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report that genus Glossolepis is omnivorous (Allen 1991, Hieronimus 2002). The 

Red Rainbowfish is only known to feed on aquatic insects and algae; in captivity, 

the species is fed commercial flake food, frozen daphnia, mosquito larvae, and 

pellet food (Johannes Graf, pers. comm.). 

 
2.2.4 Reproduction 

 
Rainbowfishes spawn throughout the year, with the highest rate of birth 

occurring during the early rainy season. Eggs are deposited daily on the 

upperside of the leaves of aquatic vegetation, hatching within 7–18 days. Based 

on an aquarium study, a rainbowfish generally reaches sexual maturity within 

the first year (Allen 1991). Other aquarium studies revealed that most species 

spawned in the morning, while a minority of them spawned at other times. 

Larger individuals are known to spawn more eggs than smaller individuals 

(Hieronimus 2002). 

 
2.2.5 Ecological Roles 

 
Rainbowfishes play an important role in the freshwater communities of Australia 

and New Guinea. The family is a food source for bigger fish, and, more 

importantly, a controlling agent of mosquito larvae, which carry malaria, a very 

common disease in New Guinea. In the 1970s, the Indonesian government 

introduced exotic guppies into some freshwater ecosystems in Papua for 

mosquito control. Instead of controlling mosquito populations, however, the 

guppies were less effective than rainbowfishes and competed with them for 

available space and food resources (Allen and Cross 1982). 

 
2.3 Human Impact around Lake Sentani and Its Threats to the 

Rainbowfish 
 

Lake Sentani, with its high endemism of freshwater biota (Polhemus et al. 2004), 

is listed as a priority area for the conservation of freshwater ecosystems by 

Conservation International (1999). Lake Sentani is approximately 9,360 ha in size 
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and 2–24 km wide. The greatest recorded depth is 51.8 m, in the western part of 

the lake. The lake is located in Jayapura Regency (2033’-2041’S, 140023’–

140038’E), 70–90 meters above sea level. About 14 creeks flow through the lake 

with a watershed size of around 600 km2 and it has only one outlet, the Djafuri 

Stream, which is located in the southern part of the lake (Puay area). The 

substrate of the lake consists of mud and sand, and water plants grow in shallow 

areas to cover 25% of the lake’s area. Pandanus and Sago (Metroxylon sp.) grow 

on the shore (Umar et al. 2005; Bapedalda Provinsi Papua dan LPPM-ITB 2004; 

Howard 1987; FAO 1972).  

The organisms living in the lake comprise water plants, mollusks, 

crustaceans, and fish. The latter three are commonly caught and sold in the 

market, and consumed for their protein. Hydrilla, Elodea, Ceratophyllum, 

Myriophyllum, Potamogeton, and Vallisneria are some aquatic plants found in 

the deeper parts of the lake, while water lilies (Nymphae), Bulrushea, and 

floating aquatic plants Pistis and Lemna are found in the shallow parts (FAO 

1972). There is a lack of data on the crustacean species in the lake. FAO (1972) 

recorded at least three species of crustaceans: shrimp, crayfish, and freshwater 

crab. Br. Surbakti and Ramandey (2010) recorded 14 species of mollusks in Lake 

Sentani, six inlet streams, and Djafuri Stream. Fish communities from Lake 

Sentani include endemic, native, anadromous, and introduced species. 

Chilatherina sentaniensis, Glossolepis incisus (family Melanotaeniidae), and 

Glossogobius sp. (family Gobiidae) are three endemic fishes, while Oxyeleotris 

heterodon, Giurus margaritaceus (family Eleotridae), Glossamia wichmanni and 

G. beauforti (family Apogonidae) are some indigenous species. Pristis microdon 

(familiy Pristidae) and Mugil cephalus (family Mugilidae) are two out of eight 

species that are anadromous; that is, they are born in freshwater, but spend 

most of their life in marine water, before returning to freshwater to spawn.  

 

Approximately 60% of the lake area is inhabitated by humans, most of which are 

fishermen. There are 24 villages spread around the shore and the small islands 
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found in and around the lake (Umar et al. 2005; Bapedalda Provinsi Papua dan 

Lembaga Penelitian dan LPPM-ITB 2004). The people living around the lake used 

it for their daily needs, both as a water source and for subsistence actvities like 

fishing. These activities polluted the lake and changed its biota, however. 

Simbala (2002) studied the level of water pollution in Lake Sentani and found 

that the major sources of pollution sources were human settlements, livestock, 

and the traditional market. Other pollution sources included outboard motors, 

chemicals from washing, and some small-scale organic materials from the 

settlements surrounding the lake. These pollutants have decreased Lake 

Sentani’s water quality and resulted in the water not being suitable for drinking 

without proper treatment.   

Other serious threats come from introduced species, and exotic 

freshwater fishes, in particular. Sukarwo (1990) recorded at least 39 species of 

aquatic plants in Lake Sentani, six of which were aquatic weeds (Eichhornia 

crassipes, Hydrilla verticillata, Ceratophyllum demersum, Salvinia molesta, 

Scirpus grossus, and Panicum repens). These noxious species can grow very fast 

to occupy shallow shorelines, competing for space with both humans and lake-

dwelling organisms. Eichhornia crassipes is the most common plant and is found 

throughout the entirety of Lake Sentani, often disturbing water-based 

transportation. As early as 1937, small numbers of fish had been stocked in 

several lakes in Papua, including Lake Sentani. The non-native species were first 

introduced to provide more protein options for the local population. The early 

fish species introduced to the lakes in Papua were Cyprinus carpio, Pontius 

gonionotus, Trichogaster pectoralis, Helostoma temmincki, Osphronemus 

goramy, and Tilapia spp. (FAO 1972). The introduction of exotic fish species in 

Lake Sentani continues to this day, both intentionally and accidentally. It has 

been reported that approximately 17 out of the 34 fish species in Lake Sentani 

are introduced species (Renyaan 1993; Allen 1991; Allen, pers. comm.), as shown 

in Table 2.2. These species negatively affect the native species by competing with 

them for space and food, or by directly feeding on them (Allen 1991).  
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Table 2.2. Fishes in Lake Sentani. 

Group No. Family Species (as of December, 2011) Local name 

Remarks 

* ** *** 

1 2 3 4 5 6 7 8 

Endemic 1 Melanotaeniidae Chilaterina sentaniensis Hew/ikan kaskado/ikan pelangi X   

  2 Melanotaeniidae Glossolepis incisus Hew/ikan kaskado/ikan pelangi    

  3 Gobiidae Glossogobius sp. 10 Himem    

Indigenous 4 Ariidae Arius velutinus Kanseli    

  5 Plotosidae Neosilurus novaeguineae Holiya X   

  6 Eleotrididae Oxyeleotris heterodon Kayou (gabus hitam)    

  7 Eleotrididae Giuris margaritacea Kahe (gabus merah)    

  8 Chandidae Glossamia wichmanni Kandei/gete-gete    

  9 Apogonidae G. beauforti Kandei/gete-gete    

  10 Melanotaeniidae Chilatherina fasciata Hew/ikan kaskado/ikan pelangi    

Anadromes 11 Anguillidae Anguilla australis Kahilo   X 

  12 Anguillidae A. bicolor Belut/kahilo   X 

  13 Anguillidae A. marmorata Belut/kahilo   X 

  14 Anguillidae A. obscura Belut/kahilo   X 

  15 Pristidae Pristis microdon Pari Sentani  X  

  16 Carangidae  Caranx melampygus  Barra   X 

  17  Carangidae  C. ignobilis Barra   X 

  18 Mugilidae Mugil cephalus Kaijoko   X 

Introduced 19 Clariidae Clarias batracus Lele   X 

  20 Channidae Channa striata Gabus toraja    

  21 Cyprinidae Cyprinus carpio Mas    

 
22 Cyprinidae Cyprinus spp. Mas   X 

 
23 Cyprinidae Puntius gonionotus Tawes    
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Table 2.2. Fishes in Lake Sentani (continued). 
1 2 3 4 5 6 7 8 

  24 Cyprinidae Systomus orphoides Mata merah    

  25 Cyprinidae Osteochilus hasseltii Nilem hijau   X 

  26 Cyprinidae Osteochilus sp.  Nilem merah   X 

  27 Helostomatidae Helostoma temminkii Tambakan    

  28 Belontiidae Trichogaster pectoralis Sepat siam    

  29 Osphronemidae Osphronemus goramy Gourami    

  30 Cichlidae Oreochromis mossambica Mujair    

  31 Cichlidae Oreochromis spp. Mujair   X 

  32 Cichlidae Oreochromis nilotica Mujair   X 

  33 Poeciliidae Xiphophorus sp. Ekor pedang   X 

  34 Cichlidae Amphilophus citrinellus Lohan merah    

  35 Cichlidae Amphilophus longimanus Lohan hitam    

*Assumed extinct in the wild. 
**Not found anymore in Lake Sentani. 
***Needs confirmation. 
Sources: Renyaan 1993; Allen 1991; Allen, pers. comm. 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=1499


 
 

22 

2.4 The Red Rainbowfish: Status and Conservation Efforts 
 
Glossolepis incisus is an omnivorous (Allen 1991), lake-dwelling rainbowfish from 

northeastern Papua. First described by Max Weber as early as 1907 (Graf 2010), 

it is found only in Lake Sentani and small creeks around the edge of the lake 

(Allen 1995). The Red Rainbowfish shares its habitat with the Sentani 

Rainbowfish (Chilatherina sentaniensis). 

Males have a unique, bright red coloration, often with flecks of silver, 

while non-active males are brackish red; females and juveniles are drab brown or 

olive with silvery reflections on the head and sides (Fig. 2.4). In some parts of the 

lake, the body color is dull or discolored, perhaps because of the water quality. 

The maximum size of males reaches about 120 mm SL, while females are usually 

around 100 mm SL, although they can grow to about 145 mm in the wild and 150 

mm in aquariums (Graf 2010; Allen 1991, 1995).   

Based on threats to its habitat (in the form of habitat degradation), the 

IUCN Red List has listed the species as Vulnerable (Allen 1996b). 

 
 

 

 

 

 

 

 

Fig. 2.4. Male (left) and female (right) Glossolepis incisus 
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3 Research Methods 
  

3.1 Study Area 
 

This study was conducted in Lake Sentani (Fig. 3.1). The lake is situated in 

Jayapura Regency of Papua Province, Indonesia, partly surrounded by the main 

road leading into Jayapura, the capital of Papua Province, and to Sentani, the 

capital of Jayapura Regency. There are many human settlements scattered 

around the lake, either belonging to local communities, who mostly occupy the 

small islands within the lake, or immigrants from the rest of Indonesia, who live 

further out from the lake. Human activities around the lake vary, from fishing, 

bathing, and travelling, to nature tourism and fish farming. The majority of the 

local communities still use traditional means to fulfill their daily needs, such as 

fishing. Other activities, such as tourism and fish farming, are mostly conducted 

by non-locals.  

Settlers have impacted the lake significantly and have caused problems 

with organic and non-organic household wastes, lake sedimentation, and the 

introduction of non-native species that threaten native species. Some areas of 

the lake are heavily populated, especially areas near the main road along the 

east, northeast, and north of the lake, while other areas in the south, west, and 

northwest have no or low numbers of humans. There are a number of villages of 

various sizes scattered along the east and northeast end of the lake. Waena 

Village, for example, is found on the eastern side of the lake, and is 14,024 

hectares in size, with a population of 15,738. Meanwhile, Yabansai Village, also 

located east of the lake, has a population of 13,000. Sentani District, on the 

northeastern end of the lake, comprises 10 small villages that, in total, make up 

an area of 51,950 hectares and population of 42,259 people. Other smaller 

villages include Asei Village, located on a small island in the northern part of the 

lake, 2,160 hectares in size (including some of the shoreline), and with around 

400 inhabitants; and Yakonde Village, which is found in the northwest, and is 

2,658 hectares in size, with another 400 inhabitants. The average human 
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population density around the lake is 6.78 people/km2, with the greatest density 

found in the east, northeast, and north of the lake. In Sentani District, the 

population density is 81.35 people/km2, while in East Sentani District, the density 

is 49.15 people/km2 (BPS Kabupaten Jayapura 2010).   

 

3.2 Sampling Protocols  
 
In this study, simple stratified random sampling was used to sample fish and 

measure water parameters. The study sites were categorized (stratified) into 

three zones: high level of human activity, medium level of human activity, and 

low level of human activity. Three locations in each zone were then selected 

based on their corresponding level of human activity. In each location, three 

sampling sites with a maximum depth of 1.5 m were randomly selected. Thus, 

there were a total nine sampling sites per zone (Fig. 3.2). 

 

 

Fig. 3.1. Lake Sentani, one of a number of freshwater ecosystems found in 
Northern New Guinea Island.  
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3.2.1 Sampling Sites 
 
Based on the level of human activity, the lake was categorized into three zones. 

The zone with a low level of human activity (Zone III) was regarded as a 

reference site. Human population density and type of household (traditional vs. 

modern) were the main considerations when classifying zones. The main criteria 

for each sampling site were that it had a maximum depth of 1.5 m and was 

inhabited by the Red Rainbowfish. Thus, any site exceeding that depth or where 

no Red Rainbowfish was found was excluded prior to random selection.   

 
3.2.1.1 Zone I 

 
Zone I was defined as a high human impact area, containing the largest villages 

of the three zones and the highest level of infrastructure. These locations are 

Waena (AW) as the first location, Jembatan II (AJ) as the second location, and 

Yoka (AY) as the third location. All three locations are situated in the 

northeastern part of Lake Sentani (Appendix 2; Appendix 3). 

 
3.2.1.2 Zone II 

 
Zone II was defined as a medium human impact area. The locations of this zone 

consisted of villages that have been inhabited by traditional communities for 

over a century, many of whom live in traditional stilt houses. Many families still 

depend on the lake and its surrounding areas for sustenance. This zone 

comprised Ayapo (BAy) as the first location, Asei (BAs) as the second location, 

and Puay (BP) as the third location (Appendix 2; Appendix 3). All but one location 

is in the northeast of the lake. 

 
3.2.1.3 Zone III 

 
Zone III was defined as a “control area”, where the lowest level of human impact 

was found. Many areas along the lake shoreline remained uninhabited, but 

contained no rainbowfish populations, and therefore were unsuitable for this 

research. As a result, unlike Zone I and most of Zone II, locations were situated 
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outside of the northeast of the lake; two were in the southeast and one was in 

the western end, which is much less populated than the northeast. These 

locations are in Yakonde (CY) as the first location, Rimiyebei (CR) as the second 

location, and Kanale (CK) as the third location (Appendix 2; Appendix 3). 
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Fig. 3.2. Maps of the research locations. The red circles are the locations of Zone I in the east, the yellow circles are the 
locations of Zone II in the north and south, and the blue circles are the locations of Zone III in the south and west. 
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3.3 Study Period 
 

The field study was completed in three years. The first fieldwork was conducted 

in November–December, 2009; the second July–November, 2010; and the third 

fieldwork was conducted in October, 2011.  

Physicochemical parameters were measured only in the second year 

(2010). Each location was measured on three different days, resulting in nine 

data sets per location (Table 3.1).  

 
3.4 Data Collection 

 
3.4.1 Red Rainbowfish Abundance 

 
Fish were collected along the shoreline at very shallow depths (up to 1.5 m) of 

the lake and mouths of two creeks, namely Waena Creek in AW and Jembatan II 

Creek in AJ, both of which were in Zone I. One seine net, 3.6 m length, 1.23 m in 

height, and with a mesh size of less than 0.5 cm, was used to collect the fish. 

With one person holding each end, half of the net was submerged in the water, 

while four people drove the fish into the net. Fishes were sampled in the 

morning at each sampling site of a single location. Thus, sampling was conducted 

a total of three times in one day. Samples were replicated three times on 

alternate days, yielding 27 data sets for each zone, or 81 data sets for all three 

zones within a year, and a total 243 data sets in three years (Table 3.1). Sampled 

Red Rainbowfish were counted and determined by sex. Physical measurements 

of the standard body length (SL) were from the tip of the upper lip to the 

posterior end of the vertebral column (Allen 1991), using a manual and digital 

caliper, before the fish was released.  
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Table 3.1. Fish and water sampling periods.  

Location 

Years/months/activities 

2009 2010 2011 

November-December July-November  October 

Fish sampling 
Fish 

sampling 
Water 

sampling Fish sampling 

Zone I     

1 9 9 9 9 

2 9 9 9 9 

3 9 9 9 9 

Zone II 
    

1 9 9 9 9 

2 9 9 9 9 

3 9 9 9 9 

Zone II 
    

1 9 9 9 9 

2 9 9 9 9 

3 9 9 9 9 

Total 81 81 81 81 

 
3.4.2 Physicochemical Parameters 

 
Water parameters were measured in each location of each zone where fish were 

sampled. Sampling was conducted three times a day: morning (06.00–09.00 am), 

midday (11.00 am–13.00 pm), and afternoon (16.00–18.00 pm). Water 

parameter measurement was repeated three times in each sampling site on 

three alternate days. Thus, a total of 81 water parameter data sets were 

collected (Table 3.1). The measured physicochemical parameters included water 

temperature, water pH, dissolved oxygen (DO), biological oxygen demand (BOD), 

chemical oxygen demand (COD), nitrate (NO3
-), nitrite (NO2

-), and phosphate 

(PO4
3-). Water temperature, water pH, and DO were measured in the field, while 

the other parameters were measured in the Environmental Laboratory of the 

Regional Health Laboratory of Papua Province in Jayapura, Papua.  

Water samples were collected in Winkler bottles. The water 

temperatures were measured with the Voltcraft K101 digital thermometer, 

water pH using a Hanna HI 98107 pH tester, and DO was measured using a 

Lutron DO-5510 oxygen meter. Dissolved oxygen levels in natural and 
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wastewaters depend on the physical, chemical, and biochemical activities in the 

water body (APHA, AWWA, and WPCF 1980). The chemical parameter BOD5 was 

measured by incubating a water sample in the Aqualytic Liebherr Incubator for 

five days, at a temperature of 20°C, with the initial oxygen content having been 

measured before incubation. The BOD test measures the amount of oxygen 

required for the biochemical degradation of organic material (carbonaceous 

demand) and the oxygen used to oxidize inorganic material such as sulfides and 

ferrous iron (APHA, AWWA, and WPCF 1980). Furthermore, the COD test is a 

measure of the oxygen equivalent of the organic matter content that is 

susceptible to oxidation by a strong chemical oxidant (APHA, AWWA, and WPCF 

1980). Chemical oxygen demand, as well as nitrate and phosphate, were 

measured using a Hach DR 2010 spectrophotometer, while nitrite was measured 

with a GBC UV-Visible spectrophotometer.   

 
3.4.3 Red Rainbowfish Habitat Characteristics 

 
The study of Red Rainbowfish habitat characteristics included measuring water 

quality, water depth, and water turbidity. Substrate types and vegetation were 

also recorded in the habitats. Water quality was measured as previously 

described (3.4.2). Water depth was measured in three to four different locations 

of the sample areas, using a rope that was marked every 50 cm. Results were 

grouped into three ranges: 0–30 cm, 30–60 cm, and 60–120 cm. Water turbidity 

was measured with a turbidity tube (Myre and Shaw 2006), where water was 

collected and poured into the tube, before the turbidity was read on the scale. 

Turbidity was rated on a scale from 1 to 2; “1” represented water that was very 

clear and “2” water that was discolored or turbid. Substrate composition was 

determined in a 10 × 10 m2 area. The substrate was collected and classified 

based on the Wentworth particle scale (Moyle and Senanayake 1984), using the 

following categories: (1) detritus, (2) mud, (3) silt, (4) sand, (5) gravel, (6) rubble, 

(7) boulder, and (8) bedrock. In a minority of instances, water and terrestrial 

vegetation were identified by genus or species, while the majority were 
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identified by their family names, or common names in the case of the more 

ubiquitous species.  

 
3.5 Data Analyses 

 
R versions 2.14.1 (R Development Core Team 2011) and 2.15.2 (R Development 

Core Team 2012) were employed to analyze the water physicochemical 

parameters in order to determine the level of pollution in the water, abundance 

of Red Rainbowfish in each sampling group, and correlation between 

physicochemical parameters and Red Rainbowfish abundance and body size. 

Following water pollution determination, fish were arranged into three groups 

based on the level of pollution in their location. The Analysis Toolpak in 

Microsoft Excel 2007, and SPSS version 17.0 were used to calculate Red 

Rainbowfish body length for each group and the difference between groups, as 

well as the correlation between Red Rainbowfish abundance and introduced fish 

abundance, and Red Rainbowfish abundance and nitrate and nitrite 

concentration.  

 
3.5.1 Impact of Human Activities on the Red Rainbowfish  

 
Eight water parameters were used to determine the pollution levels in Lake 

Sentani, based on the samples taken from the predetermined zones. This 

analysis also established whether our zonation based on approximations of 

human impact was concurrent with the level of pollution in the zones’ water.  

In order to associate locations with water parameters, eight data 

variables in each location were reduced to a single variable, which was then used 

to differentiate each group. A dissimilarity matrix was created using the daisy 

algorithm (Kaufman and Rousseeuw 1990). Then, the partitioning around 

medoids (PAM) algorithm was used to identify the k-clusters of the data. The 

maximum average width of the resulting silhouette was used to identify the 

optimal number of clusters in the R file, which turned out to be 3. In order to 

analyze the difference between clusters, the results were visualized using 
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CLUSPLOT (Pison, Struyf, and Rousseeuw 1999). Then, means of each group of 

variables were produced to compare the difference between groups.    

Analysis of variance (ANOVA) and Tukey’s HSD test were conducted to 

assess groups’ differences in water physicochemical parameters. Moreover, 

means of the parameters were produced for each group in each variable. 

Human activities in each location were recorded, including the kind of 

activity in the lake and terrestrial area, as well as the kinds of houses in the area. 

Secondary data of the local populations were collected from Jayapura’s Statistic 

Regency Office (BPS Kabupaten Jayapura 2010), as well as from districts and 

villages in the research locations.  

 
3.5.2 Red Rainbowfish Abundance 
 

Only samples from Lake Sentani, itself, were included In the Red Rainbowfish 

abundance analyses; thus, samples from Waena and Jembatan II Creeks were 

excluded. After Red Rainbowfish populations were counted, they were placed 

into three groups that corresponded with the level of pollution in their location. 

The Red Rainbowfish abundance in each group was then analyzed using a 

generalized linear mixed-effects model using AD Model Builder, which is able to 

count zero-inflated Poisson count data (Hilbe 2011). The differences in Red 

Rainbowfish abundance between groups were analyzed with Tukey’s HSD test. 

 
3.5.3 Red Rainbowfish Abundance and Its Correlation with 

Physicochemical Parameters and Introduced Fish. 
 
To analyze whether there was a correlation between Red Rainbowfish 

abundance and water physicochemical parameters, a linear mixed-effect model 

was used. For logistical reasons, water parameters were measured a month after 

fish sampling. Determining the correlation between abundance and 

physicochemical parameters was based on the assumption that the water 

parameters did not change significantly between fish sampling and parameter 

analysis, and no change in human activities in any location during that period 

was observed. 
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Pearson’s correlation coefficient was used to analyze the correlation 

between Red Rainbowfish abundance and introduced fish abundance.  

 
3.5.4 Body Length of the Red Rainbowfish and Its Correlation with Water 

Physicochemical Parameters. 
 

Determining the correlation between Red Rainbowfish body length and water 

physicochemical parameters was based on the same assumptions as determining 

the correlation between abundance and water parameters.  

One-way ANOVA was used to calculate the mean body length of each 

group, and Tukey’s HSD test was performed to determine the difference in fish 

length between groups. Habitat quality, and especially water quality, is believed 

to impact fish body length. Therefore, a linear mixed-effect model was applied to 

analyze the correlation between fish body length and water physicochemical 

parameters.  

 
3.5.5 Sex Ratio of the Red Rainbowfish Between Groups  

 
The ratio of males to females of Red Rainbowfish was determined by dividing the 

number of males and females by the total number of fish in the same group, 

then multiplying the number by a hundred.  

 
3.5.6 Red Rainbowfish Habitat Characteristics 

 
The habitat characteristics of fish include water quality, substrate type, turbidity, 

water depth, and vegetation. These variables were assessed to identify the 

habitat preferences of the Red Rainbowfish. Substrate types and vegetation were 

qualitatively described, turbidity and water depth were measured visually, and 

water quality was analyzed with the PAM algorithm in R.  
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4 Results 

 
4.1 Impact of Human Activities on Rainbowfish Habitats in Lake Sentani 

 
From the PAM-based analyses of the water physicochemical parameters 

(Kaufman and Rouseeuw 1990), the sampling sites were distinguished into three 

groups (Fig. 4.1). The test indicated two groups where heavy impacts were 

recorded (henceforth referred to as Group 1 and Group 2); and one with lower 

impact (Group 3). Group 1 included sampling sites located in Waena (AW) and 

Yoka (AY), Group 2 included sampling sites located in Yakonde (CY) and Jembatan 

II (AJ), while Group 3 included all the remaining sampling sites, which were 

located in Ayapo (BAy), Asei (BAs), Puai (BP), Rimiyebei (CR), and Kanale (CK) 

(Appendix 4).  

 

 

Fig. 4.1. Grouping of sampling sites based on water physicochemical  
parameters.  
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Tukey’s HSD test revealed that water physicochemical parameters between 

groups were significantly different (Table 4.1), in particular with regards to the 

Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), phosphate 

(PO4
3-), nitrate (NO3

-), and nitrite (NO2
-). However, no significant differences in 

water temperature, water pH and Dissolved Oxygen (DO) were found. Group 1 

had the highest level of NO3
- and NO2

-. Group 2 had the highest concentration of 

BOD, COD, and PO4
3-. Meanwhile, Group 3 had low to medium levels of all the 

parameters. These results indicate that there were significant pollutants 

recorded in all sampling sites within Groups 1 and 2. 

 
Table 4.1. Means of water physicochemical parameters in different groups. 
Standard deviations are given in parentheses.  
Water 
Phsycochemical 
Parameters 

Group 1 Group 2 Group 3 

Temperature (°C) 30.22 (1.29) 31.06 (2.22) 30.33 (1.58) 

pH 7.25 (0.10) 7.14 (0.17) 7.06 (0.10) 

DO (mg L-1) 4.98 (0.93) 4.99 (1.31) 4.80 (0.87) 

BOD (mg L-1) 5,11 (3.69) 8.23 (2.92) 3.11 (1.01) 

COD (mg L-1) 24.29 (10.26) 83.60 (15.65) 23.29 (9.68) 

NO3
- (mg L-1) 0.71 (0.32) 0.004 (0.0009) 0.18 (0.22) 

NO2
- (mg L-1) 0.01 (0.02) 0.001 (0.0004) 0.002 (0.0019) 

PO4
3- (mg L-1) 0.41 (0.32) 0.88 (0.30) 0.30 (0.26) 

 
 

4.2 Differences between Groups in Water Physicochemical Parameters 
 

The results of the Tukey HSD test show that most water physicochemical 

parameters differed between groups; those parameters were PO4
3-, NO3

-,, NO2
-, 

BOD, and COD. Conversely, there were no differences in water temperature, pH, 

and DO, which were recorded at levels that hovered around 30–31 °C, 7 pH, and 

5 DO mg L-1, respectively (Fig. 4.2 to Fig. 4.4).  
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 The highest levels of NO3
- and NO2

- were recorded in Group 1, where the means 

were 0.71 mg L-1 (s = 0.32) and 0.01 mg L-1 (s = 0,02), respectively. The lowest 

mean of NO3
-, found in Group 2, was 0.004 mg L-1 (s = 0.0009), while Group 3’s 

level was in between, with 0.18 mg L-1 (s = 0.22). Furthermore, Groups 2 and 3’s 

NO2
- means were similar, with 0.001 (s = 0.0004) and 0.002 mg L-1 (s = 0.0019), 

respectively (Fig. 4.5 and Fig. 4.6).  

Fig. 4.4. Mean Dissolved Oxygen (DO) of the 
three groups.  

 

Fig. 4.5. Mean NO3
- 
of the three groups.  

Fig. 4.2. Mean water temperature of the 
three groups. 

Fig. 4.3. Mean water pH of the three groups. 
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Table 4.1 shows that the highest levels of PO4
3-

, BOD, and COD were found in 

Group 2 (Fig. 4.7 to Fig. 4.9), while the lowest levels of these parameters were in 

Group 3. PO4
3- concentration in Group 2 was the highest of the three groups, 

with 0.88 mg L-1 (s = 0.30), followed by Group 1 with 0.41 mg L-1 (s = 0.32), and 

Group 3 with 0.30 mg L-1 (s = 0.26). Group 2 also had the highest mean BOD with 

8.23 mg L-1 (s = 2.92), similarly followed by Groups 1 and 3 with 5.11 mg L-1 (s = 

3.69) and 3.11 mg L-1 (s = 1.01), respectively. Group 2 had a significantly higher 

mean of COD than the other groups, with 83.60 mg L-1 (s = 15.65). In comparison, 

Group 1’s mean was 24.29 mg L-1 (s = 10.26), while Group 3’s was 23.29 mg L-1 (s 

= 9.68).  

In all water parameters, Group 3 was shown to have low to medium 

levels. Meanwhile, Group 1 had the highest levels of NO3
- and NO2

-, while Group 

2 had the highest levels of BOD, COD, and PO4
3-. 

 
 
 

Fig. 4.7. Mean PO4
3-

 of the three 

groups. 

 

Fig. 4.6. Mean NO2
- 

of the three 
groups. 
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4.3 Impact of Pollutants on the Red Rainbowfish 

 
4.3.1 Impact of Pollutants on Red Rainbowfish Abundance 

 
A generalized linear mixed-effect model using AD Model Builder was employed 

to examine rainbowfish abundance between groups (Hilbe 2011). No significant 

difference between the groups in Red Rainbowfish abundance was found (Table 

4.2). 

 
Table 4.2. Means of fish captured in each sampling site within group per 

sampling. Standard deviations are given in parentheses. N = 243.  

 
Group 1 Group 2 Group 3 

Mean 22.71 (21.65) 25.29 (34.64) 23.69 (28.07) 

 

While the difference in overall abundance between groups was not significant, 

female Red Rainbowfish abundance showed significant differences between 

groups, with Group 1 and Group 2 having significantly higher abundances than 

Group 3 (Table 4.3). 

 
Table 4.3. Female Red Rainbowfish abundance. 

 
Estimate  Std. Error  z value  Pr(>|z|)     

Group 1           0.414 0.174 2.38 0.0174 
Group 2 0.407 0.184 2.21 0.0273 
Group 3 0.038 0.148 0.26 0.7970 

Fig. 4.8. Mean BOD of the three 
groups.  

 

Fig. 4.9. Mean COD of the three 
groups.  
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Using a linear mixed-effect model to analyze Red Rainbowfish abundance and its 

correlation to water physicochemical parameters revealed that only nitrate 

influenced Red Rainbowfish abundance (Table 4.4). Nitrate concentration had a 

significant negative correlation with fish abundance (p < 0.05). Increased nitrate 

levels had an effect on decreasing fish abundance in Lake Sentani (Fig. 4.10).  

Table 4.4. Correlation between Red Rainbowfish abundance and the water 

physicochemical parameter, Nitrate.  

 

Value Std. error DF t-value p-value 

Nitrate     -15.82 7.50 66 -1,947774 0.039 

 
Fig. 4.10 also shows that nitrate had a very weak negative correlation with Red 

Rainbowfish abundance in Lake Sentani (r = -0.231). 

 

  

Fig. 4.10. Pearson’s correlation coefficient of nitrate to Red Rainbowfish 
abundance in Lake Sentani. 

 
4.3.2 Impact of Pollutants on Red Rainbowfish Body Length 

 
Mean body lengths (SL) of the Red Rainbowfish were 65.52–70.72 mm. Table 4.5 

shows the differences between Groups 1, 2, and 3 in terms of body length. 

Group 3 had the highest mean body length as well as the longest fish. Contrarily, 

Group 1 had the lowest mean body length, while its longest fish was the shortest 

of the three groups. Group 3 had the shortest fish. 
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Table 4.5. Body length (mm SL) of the Red Rainbowfish. Standard deviations are 

given in parentheses. 

 Group 1 Group 2 Group 3 

Mean body length 65.52 (7.24) 66.03 (9.44) 70.72 (6.93) 

Longest 92.60 98.74 101.67 

Shortest 40.40 26.19 25.01 

N 2017 2449 2768 

 

ANOVA revealed that the mean Red Rainbowfish body length was significantly 

different at p < 0.001 between groups [F(2,7231) = 330.79, p < 0.001)] (Table 

4.5). 

Based on Tukey’s HSD test, Group 3’s fish body length was significantly 

different from that of Group 1 (x = 5.20) and Group 2 (x = 4.70), each at p < 0.001 

(Table 4.6).  

 
Table 4.6. Results of Tukey’s HSD test on Red Rainbowfish body length. 

Groups Mean Difference 
between groups (mm) 

Std. 
Error 

Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

1 – 2 -0.50 0.24 .091 -1.06 0.060 

1 – 3 -5.20* 0.23 .000 -5.75 -4.66 

2 – 3 -4.70* 0.22 .000 -5.22 -4.19 

 

The linear mixed-effect model revealed that almost all the physicochemical 

parameters had no impact on Red Rainbowfish body length, except for 

phosphate. However, as is shown in Table 4.7, the impact of phosphate on Red 

Rainbowfish body length was not significant (p = 0.15).  

 
 Table 4.7. Correlation between phosphate and Red Rainbowfish body length.  

Water Parameter Value Std. error DF t-value p-value 

Phosphate   1.87   1.28 66 1.46       0.15 
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4.4 Impact of Introduced Species on Red Rainbowfish Abundance 
 

Fig. 4.12 to Fig. 4.14 present the correlations between number of introduced 

species and Red Rainbowfish abundance in Lake Sentani. Fish found swimming 

alongside Red Rainbowfish included Tilapia (Oreochromis mossambicus), Hard-

lipped Barb (Osteochilus hasselti), Midas Cichlid (Amphilophus citrinellus), Red 

Breast Cichlid (A. longimanus), Striped Snakehead (Channa striata), Snakeskin 

Gourami (Trichogaster pectoralis), and Silver Barb (Puntius javanicus). Figure 4.11 

shows the abundance of each species collected during three years’ observations.  

 

 

Fig. 4.11. Numbers of the seven introduced fishes collected in the same habitat of 
Red Rainbowfish. Pooled from all three years of sampling. 

 

Pearson’s correlation coefficient resulted in all three groups having a weak 

correlation between number of Red Rainbowfish and number of introduced fish. 

Group 1 and Group 3 had a weak positive correlation, r = 0.154 and r = 0.285, 

respectively, while Group 2 (r = -0.068) had a weak negative correlation. These 

figures suggest that introduced fish species had a very low influence on the 

abundance of the Red Rainbowfish in Lake Sentani.  
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Fig. 4.13. Pearson’s correlation coefficient of Red Rainbowfish abundance 
to introduced fish abundance in Group 2. 

 

 

 

Fig. 4.12. Pearson’s correlation coefficient of Red Rainbowfish abundance to 
introduced fish abundance in Group 1. 
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4.5. Sex ratio of Red Rainbowfish 
 

4.5 Sex ratio of Red Rainbowfish 
 

Differences between the three groups in Red Rainbowfish sex ratio were 

examined to understand whether habitat quality (for instance, level of pollutants 

or number of introduced species) had an effect on sex ratio (Table 4.7).  

 
Table 4.8. Sex ratio of the Red Rainbowfish. 

Group Male Female Ratio 

Group 1 1795 294 6.14:1 
Group 2 1760 306 5.67:1 
Group 3 6656 806 8.10:1 

 

Table 4.7 shows that sex ratios between Group 1 and Group 2 were similar, while 

Group 3 had the highest sex ratio. In a previous study in Lake Sentani, Siby (2009) 

found that the Red Rainbowfish had a sex ratio of 1:1 in the months of 

December, April, and May, and 1:2.5 or 1:3 in the months of January and 

February. Her results were similar to those of Red Rainbowfish found in captivity, 

which is 1:1, although different from ratios of other rainbowfish species, such as 

the Lake Tebera Rainbowfish (Melanotaenia herbertaxelrodi), which could have 
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Fig. 4.14. Pearson’s correlation coefficient of Red Rainbowfish abundance to 
introduced fish abundance in Group 3.  
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100% males or females, depending on water temperature (Johannes Graf, pers. 

comm.). Higher water temperature resulted in more males, while lower water 

temperature produced more females.   

 
4.6 Substrate types 

 
Mostly, the fish were distributed along the shallow parts of Lake Sentani’s 

shoreline. The fish were observed in all habitat types along the shoreline or up to 

100 m from creek mouths, including mud, silt, sand, gravel, cobble, and boulder. 

The fish, however, are known to prefer sand, gravel, cobble, and boulder more 

than mud or silt. The highest fish abundance was found in gravel and cobble, 

while fish found in mud and silt were more rare (Fig. 4.15, Fig. 4.16). The 

substrate types in each sampling site can be seen in Appendix 5. 

 

 

Fig. 4.15. Red Rainbowfish abundance in different substrate types. Pooled from  
all three years of sampling. 
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Fig. 4.16. Red Rainbowfish abundance in different substrate types, from 2009–2011. 

 
 

4.7 Vegetation 
 

Red Rainbowfish are known to prefer habitats with submerged plants, roots, and 

wood debris, which are all commonly found along shorelines. In Lake Sentani, 

various types of terrestrial vegetation were also found along the shoreline. The 

vegetation grows naturally, or is planted by people who reside in the area. 

Generally, the fish were abundant amongst the roots of some plants, such as 

Sago Palm, or large trees, such as Ficus spp., as well as grasses. Large trees also 

provided shade for the fish. Hydrilla verticillata was the most ubiquitous water 

plant, being found in every location of Groups 1 and 2. Vallisneria americana was 

observed in one sampling site of a location in Group 1 (AY). One type of Water 

Lily (Nymphaeaceae) was found in one site in AJ (Group 2), and Water Hyacinths 

(Eichhornia crassipes) were found in four locations, namely AW (Group 1), BAy, 

BAs, and BP (Group 3). No Hydrilla verticillata in BAy, BAs, BP, CR, and CK were 

found (Appendix 5). Water and terrestrial plants, and their relation to Red 
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Rainbowfish abundance in the different sampling locations, is shown in Fig. 4.17. 

Terrestrial plants, which serve as a food source for insects that are eaten by the 

fish, were more common than water plants, in terms of both number and range 

of families, which included Arecaceae, Moraceae, Sapindaceae, Fabaceae, 

Combretaceae, and Bambusaceae. There were also some families of herbs and 

grasses, the latter of which provided a playing ground, nursery ground, and food 

source for the fish.  

 

 

Fig. 4.17. Red Rainbowfish abundance and its relation to the water and terrestrial plants 
in each location. Pooled from all three years of sampling.  
 

4.8 Water depth 
 

The highest Red Rainbowfish abundance was found at water depths of 0–60 cm 

and in the early morning, 06.00–09.00 am, and afternoon, around 16.00–18.00 

pm. Some fish were also detected at around a depth of two meters, as well as 

some at depths exceeding two meters. Local spearfishermen reported seeing 

Red Rainbowfish in even deeper water, while seine fishermen were observed 

catching them. However, the low number of individuals found in both cases 
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suggests that although they can be found in such deep water, the occurrence is 

rare. 

The Red Rainbowfish usually avoided high light intensities. Therefore, fish 

were rarely found in shallow waters during periods of high light intensity, such as 

from late-morning to mid-afternoon, having dived to deeper waters and shoaled 

near food sources. In cases where they remained near the surface, they had 

moved to shadowed areas, such as under stilt houses or submerged plants. 

Water turbidity along the shoreline was very low. However, habitat 

degradation was observed in some locations, particularly in inlets, increasing 

water turbidity. Water turbidity in most of the sampling sites along the shoreline 

of the lake was measured to be 5 NTU. This was determined as level 1, where the 

water was very clear and fish sampling was conducted without any difficulty. The 

two exceptions were sites in the mouths of AJ Creek (Group 2) and AW Creek 

(Group 1). AJ Creek had a turbidity of 240 NTU and AW Creek had a turbidity of 

14 NTU. These two sites were determined as level 2, where fish were difficult to 

find. A compiled list of all relevant ecological parameters measured at each 

sampling site is given in Appendix 5.  
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5 Discussion  
 
5.1 Sampling methods 

 
When dealing with rapid ecosystem degradation and habitat loss, 

conservationists or natural scientists have to deal with difficulties in finding 

sampling methods that can provide “quick data sets” to answer problems. These 

problems intensify in studies taking place in the field and especially when study 

sites are not immune to human interaction. These were conditions in the case of 

this study. Along with the very nature of the study, few similar studies have been 

conducted and widely published, and many of those that have were conducted 

by undergraduate students. Another disadvantage is the lack of periodic data on 

the lake’s water conditions from local environmental agencies, and thus any 

intention to study the habitat changes (or degradation) in Lake Sentani is limited 

to being based solely on the few available studies with various sampling 

methods. Many studies on the rainbowfishes have focused more on the fish 

themselves than their habitats.  

This study was designed with the assumption that the parts of Lake Sentani 

near less populated areas can serve as baseline data for its water as well as the 

Red Rainbowfish. Presumably, areas with lower human populations have fewer 

human activities, and thus will be less polluted than heavily-populated areas. 

This idea can be applied to other aquatic ecosystems in Papua, of which data and 

sources of ecological research on certain species are limited.  

Conducting research, such as that on species ecology or inventorying of 

species diversity, in Papua is a costly endeavor, particularly if a long study period 

and large sample size are required, or funds for transportation, labor, food, 

accommodation, and other needs in locations that are almost always remote or 

isolated. Additionally, limited research on biodiversity conservation, along with 

limited research tools and facilities, also contribute to the need for high financial 

support. For instance, there is to our knowledge only one good environmental 

laboratory in Papua, located in Jayapura and belonging to the Health Department 
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of the government of Papua Province. This laboratory is central to water 

research in Papua, as it is used for most of the water quality analysis taking place 

in the province. Another continuing hindrance is apprehension amongst local 

tribes to outsiders; permission to conduct research in remote areas is often 

granted only after a lengthy period of acquaintance with the tribes, which can 

last as long as a week.  Nevertheless, despite the lack of present research on 

Papua’s biodiversity, the number of studies has increased steadily since the 

1980s, and the trend is that this will continue. 

 
5.1.1 Zonation of Sampling Sites 

 
No data on Lake Sentani’s water quality were available from the local 

government, and although there has been some research on it, the results have 

not been reliable. Moreover, the studies in question were not carried out in the 

same locations as those in this survey. For this reason, lake zonation in our study 

was based on population number.  

Location regroupings were based on water quality, which is a more 

accurate indicator than population number and household type. In addition, 

human activities are probably a better determinant of different water qualities 

than population density, as different activities have different effects on water 

quality. Future research to differentiate the locations in Lake Sentani where 

water quality data is lacking and levels of water quality are presumably different 

(based on observations of the level of human activity) should be based on the 

kind of human activity taking place (for example subsistence or modern 

agriculture, manufacturing or other industrial activities, and logging), in addition 

to the number of people. Nevertheless, analysis of water physicochemical data 

remains the best pollution identification tool.  
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5.1.2 Water sampling 
 

Because of logistical constraints during field sampling, water parameters were 

not sampled at the same time as Red Rainbowfish. If possible, water samples 

should be measured at the same time as fish sampling. Moreover, to record the 

variability of water quality and its impact on the Red Rainbowfish, we 

recommend that water quality measurement take place in both dry and rainy 

seasons, which is optimally July–August (dry season) and November–January 

(rainy season). 

 

5.1.3 Fish sampling 
 

Active gear, specifically a beach seine, which is typically used in freshwater fish 

sampling in very shallow waters (Portt et al. 2006), and always used in 

rainbowfish sampling, was used for fish sampling during the survey. The seine 

net was held by two people, one on each end, who walked in parallel through 

the water with the seine forming a U-shape behind them (Portt et al. 2006, 

Sutherland 1996). Fish were driven into the net by four people. The number of 

people will depend on net length and drag, where is hauling usually done by at 

least two people (Sutherland 1996). This method was effective for counting the 

relative abundance of the Red Rainbowfish. However, one factor specific to the 

Red Rainbowfish should be considered when using this gear and sampling 

procedure, namely its high sensitivity to any disturbance in the water, as the fish 

will swim away from disturbances in or near the water. To overcome this 

problem, fish sampling should be postponed for at least 15 minutes until Red 

Rainbowfish return to the area, while care is taken to cause no further 

disturbances in the area. In the meantime, net holders and fish drivers could stay 

in or out of the water. Those holding the net should enter the water first from an 

area adjacent to the sampling site, heading toward the shore. Then, while 

moving slowly to the sampling site, the fish-drivers may move in the direction of 

the net. Two net-holders and four fish-drivers were suitable for covering the 

catchment area of the 3.6 meter long net. However, three net–holders would be 
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more ideal, with two people holding each end of the net and one holding the 

middle part of the lead line. Using only two net-holders may result in inadequate 

control of the lead line, resulting in it lifting up from the lake floor. A third person 

would thus be able to prevent fish from escaping by holding the lead line on the 

lake floor while moving with the other two holders. The net should be hauled in 

medium speed (Sutherland 1996). Additionally, more (five people) fish-drivers 

covering the area would also improve sampling, with more people being able to 

compensate for longer nets.  

 

Fish sampling was conducted in very shallow water along the shoreline, less than 

1.5 meters, as it is the preferred depth of the Red Rainbowfish. The assumption 

was that males and females would be found in the same ratio along the 

shoreline. However, males were far more abundant than females. Overall 

abundance of female Red Rainbowfish was very low in all locations. Siby (2009) 

found that female Red Rainbowfish prefer deeper water, shoaling amongst water 

plants. Using four different mesh sizes of gill nets placed in the lake’s deeper 

waters, she found a male/female ratio of 1:1. Therefore, the different habitat 

preferences between males and females are the likely cause of the different sex 

ratios. As a consequence, different sampling sites should be used to cover male 

and female Red Rainbowfish. Moreover, different fish sampling gear should be 

considered for sampling in different habitats. A beach seine cannot be used in 

deeper waters. Siby (2009) did experiment with five different gill net mesh 

sizes—0.5 inches (1.27 cm), 1 inch (2.54 cm), 1.25 inches (3.175 cm), 1.5 inches 

(3.8 cm), and 2 inches (5.08 cm)—sampled male and female Red Rainbowfish in 

deeper water in Lake Sentani. Therefore, a combination of active and passive 

gears should be used in male and female Red Rainbowfish sampling; these would 

include a beach seine with a mesh size of ≤ 0.5 cm, hoop, fyke and trap nets, gee 

or minnow traps (Portt et al. 2006; Hill et al. 2005; Sutherland 1996), pot traps, 

and purse seine (Sutherland 1996). Fish sampling using a gill net will kill the Red 

Rainbowfish, and therefore is not recommended for Red Rainbowfish sampling. 
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Future Red Rainbowfish sampling using a seine net should employ our 

aforementioned method, while sampling using the passive gears should take 

place at incremental depths: 2, 3, 4, 5, and 6 meters toward the lake’s center. 

These different gears and depths could more effectively cover male and female 

abundance of the Red Rainbowfish in Lake Sentani. Moreover, for monitoring 

purposes, we suggest that future research be located in the same parts of Lake 

Sentani, thus enabling a more comprehensive understanding of the lake’s water 

quality and the status of the Red Rainbowfish.  

 

5.2 Impacts of Human Activities on Red Rainbowfish Habitats in Lake 
Sentani  

 
This study revealed that the habitats of the Red Rainbowfish in Lake Sentani have 

been degraded by increasing nitrate (NO3
-), nitrite (NO2

-), and phosphate (PO4
3-) 

levels. This was the case in all sampling sites, and especially so in areas with high 

human population densities (Groups 1 and 2). 

During the study design, the lake was categorized into three different 

zones (study sites) based on human population density, with the assumption that 

higher population density will have higher human impact. Statistical analyses of 

water parameters revealed similar zoning. Only a small number of sampling sites 

did not match the predetermined zones. The analyses also revealed that, along 

with population density, different human activities affected the habitats 

differently. Based on the water parameter analyses, all the sampling sites were 

newly categorized into three groups. Two groups (Groups 1 and 2) had high 

levels of pollutants, while the third group (Group 3) had only a low level of 

detected pollutants. 

The highest levels of nitrate and nitrite were found in the most populated 

areas, such as AW and AY Villages in Group 1 (Table 4.1). These locations were 

found in the heavily-populated districts in the eastern part of the lake. 

Communities in these areas produced both organic waste, including discarded 

food, oil, dead animals and plants, and human, pet, and livestock feces, and 
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inorganic waste, including detergent and litter. All these wastes were dumped 

untreated into the lake, which is a major problem in many other parts of the 

world, as well (Søndergaard and Jeppesen 2007). In this area, there were small-

scale tofu factories, restaurants, and carwash facilities, all of which discharged 

their waste directly into creeks, which then washed it into the lake during the 

rainy season.  

Notably, AJ and CY (Group 2), with their lower population densities 

compared with AW and AY Villages (Group 1), had high levels of PO4
3-, BOD 

(Biological Oxygen Demand), and COD (Chemical Oxygen Demand) (Table 4.1). 

Many residents in these villages worked as fishermen, and factories or other 

more pollutive facilities were nonexistent. Thus, the high level of phosphate in 

the water, which tripled the BOD and COD levels in these locations, was likely the 

result of residents’ use of the lake, which was mainly for bathing, washing, or 

eliminating waste. AJ is located along a major provincial road that intersects the 

village’s creek. As a result of the heavy traffic passing the village and creek, a 

great number of non-residents use the creek to wash their clothing or vehicles, 

releasing large amounts of detergent into the creek, and hence Lake Sentani. CY 

is located close to a major road serving Sentani Regency’s more remote districts, 

and human activity was very limited, except by local residents, who would 

establish caged fish farms and use pelleted feed that causes sedimentation, as 

well as raise pigs and cows. Fish pellets are one of the main sources of nutrients 

to the aquatic ecosystems in which they are used (Troell and Berg 1997), and 

may have contributed to the increased phosphate and nitrogen (nitrate, nitrite, 

and ammonia) in Lake Sentani.  

Group 3 consists of a zone with traditional villages, mostly occupied by a 

local tribe (Sentani). Generally, they live in traditional stilt houses, using Lake 

Sentani for fishing, washing, bathing, and elimination, and its water for cooking. 

They also produced small amounts of litter; lower than both Group 1 and Group 

2. Although these areas had better water quality than those in Groups 1 and 2, 

some pollutants were recorded at levels that violated the Indonesian 
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government’s water quality regulations (Sekretaris Negara Republik Indonesia 

2001). For instance, at CR and CK Villages, which had populations of less than 10 

people, phosphate was recorded at 0.3 PO4
3-mg L-1, above the limit of 0.2 PO4

3-

mg L-1 for humans and fisheries.  

 
This study revealed that the habitats of Lake Sentani face serious threats from 

the pollution caused by human activities around the lake. Water parameter 

analyses showed that decomposition of organic matter by microorganisms led to 

increased concentrations of NO3
- (0.0035–0.70 mg L-1), NO2

- (0.0013-0.01 mg L-1), 

PO4
3- (0.30–0.88 mg L-1), BOD (3.10–8.23 mg L-1), and COD (23.29–83.60 mg L-1), 

and expectedly, decreased DO (4.80–4.99 mg L-1). These levels indicate that Lake 

Sentani received a large amount of biodegradable organic matter (Gray 1989; 

Hellawell 1986).  

Decreasing habitat or water quality may negatively influence fish diversity 

and distribution (Tawari-Fufeyin and Ekaye 2007), and in turn cause biodiversity 

loss (Søndergaard and Jeppesen 2007; Orrego et al. 2009). Moreover, human 

disturbances in stream and lake ecosystems impact fish assemblage structure 

(Vila-Geispert et al. 2002), distribution and diversity (Tawari-Fufeyin and Ekaye 

2007; Kouamélan et al. 2003), and habitat quality and fish community patterns 

(Orrego et al. 2009).  

 
5.3 Water quality changes in Lake Sentani  

 
This study showed that concentrations of BOD, COD, and phosphate in Lake 

Sentani exceeded the government’s limits. The pollutants mostly originated from 

untreated organic and inorganic wastes from households surrounding the lake, 

as well from small-scale farming. The increased phosphate was likely the result of 

the large amounts of detergent and animal and human feces being deposited 

into the lake. Another nutrient source was the prevalence of caged fish farms, 

some of which were found along the shoreline and in the lake’s islands.  

 A previous study in eleven different locations of Lake Sentani found that 

the total nitrogen (nitrate, nitrite, and ammonia) was within acceptable limits, 
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0.5–1.5 mg TN L-1 (the standard is 10 mg TN L-1), whereas phosphate was very 

high, 0.5–3.8 mg PO4
3- L-1 in November 2005 (Bapedalda Kabupaten Jayapura 

2005). BPSDALH Provinsi Papua (2009) similarly recorded phosphate levels in 

very high concentrations and nitrate and nitrite levels again within acceptable 

limits in six different locations in August–December, 2009. And exception was 

nitrate in BP, which reached the maximum standard, 10 mg NO3
-. L-1, in 

December, 2009. Phosphate levels were 0.2–4.95 mg PO4
3- L-1, nitrate levels 

were 0.045–10 mg NO3
- L-1, and nitrite levels were 0.001–0.095 mg NO2

- L-1. Both 

studies indicated that the lake had been polluted, most likely by sewage.  

 

A previous study by BPSDALH Provinsi Papua (2009) found an uncertain pattern 

of water quality change between seasons in Lake Sentani. The dry season had a 

high level of pollutants, because of the decreasing water level, while the rainy 

season had better water quality, after the water level rose again. Nevertheless, 

the rainy season is not always beneficial to lake ecosystems. Rain transfers 

pollutants from the terrestrial environment to the lake, increasing the level of 

pollutants such as phosphate, nitrate, and nitrite. For instance, the institution 

found certain pollutants to have lower levels in the rainy season than in the dry 

season, whereas other pollutants were lower in the dry season than in the rainy 

season. Nitrite and nitrate levels in AJ, BP, and Bay are two examples. Nitrite 

levels decreased or stay steady between the dry month (August) and wet month 

(December) in those three locations, 0.018 and 0.003 mg NO2
- L-1, 0.014 and 0.06 

mg NO2
- L-1, and 0.017 and 0.018 mg NO2

- L-1, respectively. Nitrate levels were 

higher in the dry season and lower in the rainy season in AJ and Bay, 1.4 and 0.6 

mg NO3
-. L-1, and 2.7 and 0.2 mg NO3

-. L-1, respectively; while they were lower in 

the dry season but increased in the rainy season in BP, 2.3 and 10 mg NO3
-. L-1. 

These data indicate that pollutants in Lake Sentani could increase, decrease, or 

show no significant change between dry and rainy seasons, and results will vary 

depending on water sampling time (morning, noon, or afternoon), location, lake 

column measured (surface, middle, or bottom of the lake), and which part of the 
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lake is measured (littoral or pelagic zone), along with season. Therefore, these 

data were not comparable to our own data in showing whether the lake’s water 

quality has trended positively or negatively.  

 

The highest levels of nitrate and nitrite were in AW and AY (Group 1), while AJ 

and CY (Group 2) had the highest levels of phosphate. In all sampling sites, 

phosphate concentration exceeded the Indonesian government’s water quality 

standard for fisheries of 0.2 PO4
3-mg L-1, with the highest concentration being 

recorded in Group 2 (0.88 PO4
3-mg L-1).  

 Based on the government’s regulations on water quality, the maximum 

levels of nitrate and nitrite in water should be 10 mg NO3
- L-1 and 0.06 mg NO2

-  

L-1, respectively. In this study, nitrate was recorded at levels between 0.0035 and 

0.70 NO3
- mg L-1, with the highest level found in Group 1 and the lowest level in 

Group 3. Nitrite levels were 0.001–0.01 mg NO2
- L-1, with the highest level 

measured in Group 1 and lowest in Group 3. Both levels were still within 

acceptable limits for fisheries. Nitrite is naturally found in levels much lower than 

those we recorded, however, less than 5 µg L-1 N. NO2 (Lewis and Morris 1986). 

Thus, it can be concluded that most of the sampling sites were polluted by 

sewage (Eddy and Williams 1987). 

This study also recorded higher BOD in Groups 1 and 2, although both groups 

had significantly different levels, 5.11 mg BOD L-1 in Group 1 to 8.23 BOD mg L-1 

in Group 2, while group 3 had 3.11 mg BOD L-1. All three groups failed to meet 

the government’s standard for BOD, which is 3 mg BOD L-1. In terms of COD, 

Group 2 also had significantly higher levels of COD compared with the other two 

groups, with 83.60 mg COD L-1, while Group 3 had the lowest, with 23.29 mg COD 

L-1. While Groups 1 and 3 hovered near the government’s limit of 25 mg COD L-1, 

Group 2’s COD greatly exceeded it. High concentrations of BOD and COD in water 

may decrease the level of dissolved oxygen (DO), in turn making difficult for 

water biota to breathe. 
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In all three groups, the average DO levels were almost 5 mg L-1. Levels of 

DO fluctuate throughout the day, with the highest level of DO occurring during 

the afternoon. Other factors that contribute to the level of DO are shading, 

turbidity, depth, temperature, and nutrient richness, which usually correlate 

negatively with DO concentrations in stagnant water bodies, ice-covered ponds, 

tropical swamps, polluted streams, deep oceanic layers, or high tidal pools filled 

with decaying seaweed (Kramer 1987). BPSDALH Provinsi Papua’s (2009) study 

taking place between August and December, 2009, recorded higher DO levels in 

AJ, BP, and BAy, 6–8 mg DO L-1. A follow-up study in April–October, 2010, 

however, recorded concentrations closer to our own results, 4–6 mg DO L-1 

(BPSDALH Provinsi Papua 2010). This fluctuation of DO in Lake Sentani might be 

related to time, season, and the aforementioned factors described by Kramer 

(1987). The distribution of DO in freshwater has a significant effect on fish 

assemblage (Matthews 1998). A concentration as low as 5 DO mg L-1 is still safe 

for fish, but most have been shown to avoid concentrations that approach or 

drop below 4 DO mg L-1 (Wannamaker and Rice 2000; Spoor 1990). According to 

Burleson et al. (2001), Largemouth Bass (Micropterus salmoides) avoided water 

below 2.4 mg DO L-1, although juveniles and smaller fish could tolerate or even 

prefer lower levels, while Wannamaker and Rice (2000) found that juvenile 

Brown Shrimp (Penaeus aztecus), Croaker (Micropogonias undulatus), Atlantic 

Menhaden (Brevoortia tyrannus), Mummichog (Fundulus heteroclitus), Pinfish 

(Lagodon rhomboides), Spot (Leiostomus xanthurus), and White Mullet (Mugil 

curema), would detect and respond to low levels of DO, either by avoiding the 

hypoxic area or performing aquatic surface respiration (in the case of the 

Mummichog). All of the species were able to detect concentrations as low as 1 

DO mg L-1, whilst showing a preference for higher concentrations when available, 

with the exception of the Croaker, Mummichog, and White Mullet, which 

preferred a concentration of 4 DO mg L-1 to 6 DO mg L-1.Fish behavior is affected 

by reduced oxygen availability in water, including (1) a change in activity, such as 

feeding, avoidance, and ventilation frequency, (2) increased use of air-breathing, 
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(3) increased use of aquatic surface respiration, and (4) vertical or horizontal 

movement within a habitat (Kramer 1987).  

This study clearly shows that human activities around the lake led to a 

disturbance in its water quality. This was observed in all sampling sites in Groups 

1 and 2. As has been noted elsewhere, increasing phosphate and nitrogen will 

enrich nutrients in water, supporting water plant and algae growth. Astuti and 

Satria (2009) found phytoplankton abundance in Lake Sentani to be 28.168–

246.464 individuals L-1, and suggested that phytoplankton abundance was 

correlated with nutrient enrichment, and Lake Sentani was categorized as 

eutrophic. A dense plankton population is one characteristic of a eutrophic lake, 

along with algal blooms (Odum 1971). Therefore, eutrophication would be the 

result of these characteristics. Nutrient enrichment in the lake during dry 

seasons was reported by the local communities to cause algal blooms and 

massive fish death. High nutrient concentrations in Group 1 and Group 2 led to 

increased Hydrilla verticillata (Esthwaite Waterweed) growth, along with 

Eichhornia crassipes (Water Hyacinth) in Group 1 and 3. In the past, the Water 

Hyacinth has caused serious problems for local community members using the 

lake for transportation.  

 
5.4 Red Rainbowfish Abundance in Lake Sentani and the Impact of 

Pollutants on Abundance 
 

The physicochemical analyses showed that, across all groups, there was a 

significant level of pollutants in Lake Sentani, in particular phosphate, nitrate, 

and nitrite. However, abundance analyses revealed no significant difference 

between the groups. That is to say, the pollutants seemed to have no significant 

impact on Red Rainbowfish abundance. The Red Rainbowfish has managed to 

cope with the pollution in Lake Sentani through its ability to adapt to changes in 

water quality. This ability supports its existence in the lake, in contrast to that of 

another endemic rainbowfish species, the Sentani Rainbowfish (Chilatherina 

sentaniensis), which appears to be more sensitive to habitat alteration, as it is no 

longer found in Lake Sentani, as well as in its last known habitat, Carwash Creek 
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(AJ’s Creek). Lake Sentani is a large water body, with a 10,400 ha surface area, 

and maximum depths of 52 and 43 meters, in the western and eastern halves, 

respectively (Howard 1987). Because of current turbulence created by 

temperature and wind exposure, which mixes the oxygen and food of different 

parts of a water body, aquatic environments are far more homogenous than 

terrestrial environments (Brönmark and Hansson 2005). In Lake Sentani, the 

turbulence likely also mixes water with high pollutant concentrations with water 

with lower concentrations, decreasing the effect of pollutants on the Red 

Rainbowfish. However, linear mixed-effect model analyses of each main 

pollutant revealed that only nitrate showed a significant (negative) impact on 

Red Rainbowfish abundance. Pearson’s correlation coefficient further showed 

that an increase in nitrate caused a decline in abundance (Fig. 4.10), although the 

correlation was weak (r = -0.231).  

 

When analysis was based on sex, the results indicated that female fish had a 

different abundance between groups, with Groups 1 and 2 having significantly 

higher abundance than Group 3.  

Nitrate is one of the significant components supporting lake enrichment, 

along with phosphate, which is mostly utilized by water plants and algae. Despite 

being responsible for nutrient enrichment, nitrate is harmful to water organisms 

in high concentrations, impacting the oxygen-carrying capacity of their blood and 

causing decreased oxygen consumption (Camargo et al. 2005; Tilak et al. 2007). 

Freshwater organisms are more sensitive to nitrate toxicity than marine 

organisms. Amongst freshwater fish, invertebrates, and amphibians, long 

exposures to nitrate at concentrations higher than 10 mg L-1 is potentially lethal, 

whereas marine animals are able to tolerate concentrations as high as 20 mg 

NO3
- L-1 (Camargo et al. 2005). Based on the Indonesian government’s water 

quality regulations, 10 mg NO3
- L-1 is the maximum permissible level of nitrate in 

drinking water and fisheries. The highest level we found was 0.71 mg NO3
-L-1, 

well below the government’s limit, as well as the limit of 2 mg NO3
-L-1 found by 
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Camargo et al. (2005) for the most sensitive freshwater species. Nevertheless, 

Red Rainbowfish abundance declined when concentrations of nitrate increased, 

albeit with a weak correlation.  

 

Although nitrate was the only water parameter to impact the Red Rainbowfish in 

this survey, the uncontrolled input of pollutants into Lake Sentani’s water in the 

future will increase its level of pollutants, including nitrate, nitrite, and 

phosphate. Nitrite and phosphate also have adverse effects on aquatic 

organisms. Nitrite is more toxic than nitrate, impacting the diet, oxygen 

transportation, and physiology of fish (Eddy and Williams 1987). It decreases 

hemoglobin and increases methemoglobin, the former of which results in 

lowered oxygen-carrying capacity in blood, and consequently decreased oxygen 

consumption (Tilak et al. 2007). After high nitrite exposure, Chinook Salmon 

(Oncorhynchus tshawytscha) and Rainbow Trout (Oncorhynchus mykiss) 

displayed behavioral signs of oxygen deprivation (Westin 1974), while nitrite was 

found to be far more toxic to Milkfish juveniles (Chanos chanos Forsskal) in 

freshwater, at a concentration of 12 mg NO2-N/l, than in 16 ppm brackish water, 

at a concentration of 675 mg NO2-N/l (Almendras 1987), and reduced Silver 

Perch (Bidyanus bidyanus) growth in concentrations above 1.43 mg L-1 NO2–.N 

(Frances et al. 1998). Furthermore, phosphate and nitrogen are responsible for 

over-enrichment in lakes and rivers. Agriculture and urban activity, including 

industry, are a major source of phosphate and nitrogen. These compounds cause 

eutrophication, which has many negative impacts on aquatic ecosystems, such as 

water-use interference from increased algae and aquatic weed growth and 

increased fish kills from the oxygen depletion caused by their senescence and 

decomposition (Carpenter et al. 1998), as well as decreasing species diversity 

rapidly (Seehausen et al. 1997).  

 Increased nitrogen and phosphate in the future will threaten the Red 

Rainbowfish and its co-inhabitants in Lake Sentani. The likely consequence of 

their continued increase will be a decreasing Red Rainbowfish population, and 
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eventually its extinction. Other fish species, as examples of the possible fate of 

the Red Rainbowfish, have been impacted by phosphate and nitrate and nitrite 

toxicity. Juvenile Channel Catfish (Ictalurus punctatus) showed reduced growth 

rates and increased mortality at ≥1.60 mg NO2
-L-1 and ≥3.71 mg NO2

- L-1, 

respectively (Colt et al. 1981). High nitrite caused a decrease in hemoglobin and 

increase in methemoglobin in the Common Carp (Cyprinus carpio), along with 

reduced oxygen consumption (Tilak et al. 2007). A nitrate concentration of 10 mg 

NO3
- L-1 had a negative impact on the Rainbow Trout, Chinook Salmon, and 

Salmo clarki (Camargo, et al.  2005). It can be expected that fish will die after a 

long period of exposure to nitrate and nitrate. Meanwhile, in Udasaigar Lake in 

India, dissolved oxygen depletion because of effluents, sewage, and phosphate 

mining led to fish mortality (Das 1999). Agricultural waste—specifically 

fertilizer—sewage, and other human sources encouraged algal blooms, which 

exacerbated the process of euthropication. This process, and another threat 

factor, exotic fish species, contributed to the extinction of some native fish 

species in Lake Victoria (Primack 1998). 

Human activities in terrestrial and aquatic ecosystems contribute to the 

increase of phosphate, nitrate, and nitrite in the latter ecosystem. Although the 

Red Rainbowfish was largely unaffected by the present concentrations of those 

pollutants in Lake Sentani, the continuing human population growth around the 

lake will result in concentrations that will be hazardous to the Red Rainbowfish 

and its co-inhabitants.  

 
5.5 Red Rainbowfish Body Length and the Impact of Pollutants on Body 

Length 
 

Water pollutants can have an effect on fish body growth. In this survey, however, 

we did not find a strong correlation between the pollutants and Red Rainbowfish 

body length. The longest Red Rainbowfish body size, with 70.72 mm SL, was 

observed in Group 3 (Table 4.5), which had better water quality than the other 

groups. Allen (1991) stated that Red Rainbowfish lengths reach 120 mm SL for 

males and 100 mm SL for females, but fish of these lengths were rarely found in 
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this study. Our inability to record fish with lengths matching those in Allen’s 

findings may be due to our samples only being collected in shallow water. 

Analyses revealed a significant difference between groups in mean Red 

Rainbowfish body length, with Group 3 having the longest mean body length of 

the three groups. Better water quality in Group 3’s locations may be the cause of 

the longer body lengths. Further analyses, however, showed that of all 

pollutants, only phosphate had a correlation with Red Rainbowfish body length 

(Table 4.7). Nonetheless, the correlation was not significant (p = 0.15). The other 

water parameters—temperature, pH, DO, BOD, COD, nitrate, and nitrite—made 

no contributions to body length. Thus, it could be concluded that the pollutants 

had no significant impact on the body length of the Red Rainbowfish. 

 

With more than 30 individuals per site per visit during the three-year survey, the 

overall abundance of the Red Rainbowfish was high in Lake Sentani. However, 

physicochemical analysis of the water was conducted only in one sampling site 

per location, which is likely not adequate for a full analysis of its correlation with 

fish abundance and body length. Thus, the relatively low amount of water 

physicochemical parameter data may be the reason for the lack of a strong 

correlation between Red Rainbowfish abundance and body length, along with 

water physicochemical fluctuation throughout the year.  

 
5.6 Correlation between Red Rainbowfish and Introduced Fish  

 
Although there are many exotic fish in Lake Sentani and new species continue to 

be introduced, introduced fish abundance had a weak correlation with Red 

Rainbowfish abundance (Fig. 4.12–Fig. 4.14). Seven species of introduced fish 

were recorded during the survey: Tilapia (Oreochromis mossambicus), Hard-

lipped Barb (Osteochilus hasselti), Midas Cichlid (Amphilophus citrinellus), Red 

Breast Cichlid (A. longimanus), Striped Snakehead (Channa striata), Snakeskin 

Gourami (Trichogaster pectoralis), and Silver Barb (Puntius javanicus). Each 

species was rarely found in shallow waters (Fig. 4.11), except the Cichlids, 
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 A. citrinellus and A. longimanus, in some locations, particularly BAy and CR, in 

which they were abundant. Most of them were observed as juvenile individuals, 

suggesting that adult individuals occupied deeper areas of the lake. These 

species therefore had no significant impact on the abundance of the Red 

Rainbowfish.  

There was a weak positive correlation between introduced species 

abundance and Red Rainbowfish abundance, especially in Group 1 and Group 3 

(Fig. 4.12, Fig. 4.14). Red Rainbowfish abundance increased equally if the 

abundance of introduced fishes increased, although the increase was very small. 

Contrarily, a very weak negative correlation was found in Group 2 (Fig. 4.13). The 

exact reasons for the increase and decrease in Red Rainbowfish abundance in 

relation to an increase in introduced fish is beyond the scope of this study. 

However, it is possible that these species occupied different habitats vertically 

and different ecological niches. The preferred habitat of each species still 

provides sufficient resources, adequately supporting their population.  

Generally, introduced fishes have adverse effects on native fishes, 

including predation, increased competition for resources, hybridization, and 

disease transmission (Hermoso et al. 2011; Gozlan et al. 2010; Arismendi et al. 

2009; Vitule et al. 2009; Gozlan 2008; Dextrase and Mandrak 2006; Larsen et al. 

2006; Canonico et al. 2005; Ogutu-Ohwayo 1990). Although these results showed 

no correlation between the abundance of introduced fish species and abundance 

of Red Rainbowfish, Allen (1991) argues that introduced fish species are one of 

the main threats to freshwater fish in New Guinea. An example of this occurring 

elsewhere is the Eastern Rainbowfish (Melanotaenia splendida splendida) in 

Australia. Reproductive activities of breeding groups of introduced Tilapia 

(Oreochromis mossambicus) severely impacted the spawning success of Eastern 

Rainbowfish (Doupé et al. 2009). Because Tilapia is also found in Lake Sentani, it 

is possible that the Red Rainbowfish and other native species may be affected by 

its presence, whether through habitat alteration or other means; however, there 

is presently no research on the impact of the Tilapia in Lake Sentani. 
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5.7 Sex Ratio of the Red Rainbowfish 

 
Red Rainbowfish along the shoreline of Lake Sentani were predominantly male. 

Sex ratios were similar across groups (M:F = 6–8:1), with Group 3 having a 

slightly higher ratio, M:F = 8:1 (Table 4.8). Group 3 was much lower in female 

abundance than Group 1 and Group 2 (Table 4.3). Siby (2009) noted that female 

fish prefer to occupy deeper water amidst submerged water plants. Group 3’s 

locations had no water plants, except for a small group of Water Hyacinth in BAy, 

BAs and BP. This may be the cause of the lower abundance of female Red 

Rainbowfish in Group 3 compared with the other two groups, both of which had 

dense submerged water plants, H. verticillata being the most abundant. Siby 

(2009) also found that Red Rainbowfish had a sex ratio of 1:1 in the months of 

December, April, and May, and 1:2.5 or 1:3 in the months of January and 

February. Siby’s results were similar to those of Red Rainbowfish observed in 

captivity, which is 1:1, although different from ratios of other rainbowfish 

species, such as the Lake Tebera Rainbowfish (Melanotaenia herbertaxelrodi), 

which could have 100% males or females, depending on water temperature. 

Higher water temperature resulted in more males, while lower water 

temperature produced more females (Johannes Graf, pers. comm.). The different 

habitat preferences of male and female Red Rainbowfish might be a factor in the 

disparity between males and females sampled during this survey. Therefore, 

different methods of fish collection have to be used to determine sex ratios and 

the abundance of female Red Rainbowfish in Lake Sentani. 

 
Although this study shows that there is an increase in pollutants in Lake Sentani, 

particularly in Groups 1 and 2, statistical analyses on the fish failed to detect 

serious impacts of these pollutants on Red Rainbowfish, with the exception of 

nitrate, which affected abundance. A number of other factors may have 

contributed to Red Rainbowfish abundance, such the physical conditions of the 

lake, food availability, substrate type, or presence of terrestrial or water 
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vegetation. The former two factors, which were not part of this study, may be 

the subject of a future study..  

 
5.8 Red Rainbowfish Habitat Preferences  

 
Red Rainbowfish were found abundantly in sand, gravel, and cobble substrates, 

but rare in mud substrate (Fig. 4.15, Fig 4.16). Reasons for the substrate selection 

by the fish were not analyzed. However, selection may be related to food 

availability and predator avoidance. Gotceitas and Brown (1993) found that 

substrate selection by Atlantic Cod (Gadus morhua) is related to predation. The 

juvenile fish preferred sand or gravel-pebble when there was no risk of 

predation, and hiding in cobble substrate when predators were nearby. 

Meanwhile, the Three-spined Stickleback, Gasterosteus aculeatus, prefers 

specific substrates while foraging (Webster and Hart 2004). It prefers complex 

substrates (mixed sand-stone gravel) over simple substrates (sieved sand 

particles), even in cases when simple substrates have higher prey density. In 

experimental conditions, the Lake Sturgeon, Acipenser fulvescens, prefers sand 

substrate over gravel, rock, and smooth plastic, similar to its preference in the 

wild (Peake 1999). Habitat types were also determined by the existence of young 

fish in the littoral zone of Lake Müggelsee (Lewin et al. 2004).  

 The Red Rainbowfish prefers to shoal amongst water plants and terrestrial 

plants, the latter of which encompasses grasses and, more rarely, the roots of 

Sago Palms (Metroxylon sagu) along the shoreline. The presence of water and 

terrestrial vegetation were factors in Red Rainbowfish habitat selection, along 

with substrate type and food availability. Many Red Rainbowfish were observed 

searching for food amongst grasses, roots of Sago Palms, and Water Hyacinth. 

Wilde and Paulson (1989) found that fish abundance was more correlated with 

food abundance than physical water parameters. The existence of certain water 

and terrestrial plants supported Red Rainbowfish abundance in its habitats. 

Overall, H. verticillata was the most common species. However, its presence or 
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absence did not have a significant influence on Red Rainbowfish abundance, as 

abundance was not significantly different between locations with and without  

H. verticillata (Fig. 4.17). Contrarily, the presence of other water plants  (Water 

Hyacinth), terrestrial plants (grasses and Sago Palms), and other habitat 

preferences (such as substrate type) supported Red Rainbowfish abundance. 

Water Hyacinth is a common water weed in freshwater ecosystems in Papua, 

and Lake Sentani is no exception, with the high level of phosphate in the lake 

contributing to the high density of the plant. A high input of nutrients will further 

increase population numbers of this plant, allowing it to extend as far as the 

shoreline and cause oxygen depletion in the water underneath it. Furthermore, 

the plant is reported to have negative social, economic, and environmental 

impacts in freshwater ecosystems (Baglioni 1959; Mailu 2001). In general, a DO 

concentration under 4 mg L-1 will be harmful for fishes (Matthews 1998). Thus, a 

dense population of this plant is detrimental to the Red Rainbowfish. However, 

in small groups and different parts of the shoreline, it able to attract Red 

Rainbowfish searching amongst its roots for food. The plant also has an 

additional positive role in water, such as removing color in wastewater, 

absorbing cadmium, arsenic, cyanide, mercury, nitrate, phosphate, and industrial 

and radioactive liquid waste, and serving as a biological indicator of heavy 

pollution in aquatic ecosystems (Tarawou et al. 2007; Nir et al. 1990; Marcus 

1993; Wooten and Jodd 1976; Gossett and Norris 1971; Chigbo et al. 1982; 

Skinner et al. 2007; Hafez and Ramadan 2002; Pfeiffer et al. 1986). The Red 

Rainbowfish was also most commonly found around H. verticillata, and to a 

lesser extent, grasses, Vallisneria americana, and E. crassipes, probably to search 

for food and as refuge. Serafy and Harrell (1993) found high Banded Killifish 

(Fundulus diaphanus) densities in beds of H. verticillata, in particular, and  

V. americana, occupying them during the day and night as refuge and feeding 

areas. Hydrilla verticillata is an Old World plant that is widespread in Lake 

Sentani as a habitat to some native fish species, including the Red Rainbowfish. 

Except for disturbing water transportation in the lake (Sukarwo 1990), the 
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negative impacts of the species on water organisms have so far gone unreported. 

Hattori and Warburton (2003) also showed that the Crimsonspotted Rainbowfish 

(Melanotaenia duboulayi) is more abundant in vegetated areas, with larger 

individuals using the plants as refuge and a food source, but did not enter 

Vallisneria beds, where predators were observed. Borg et al. (1997) also 

confirmed that water vegetation was a refuge from predation for juvenile Cod 

(Gadus morhua L.). Moreover, wood debris, which was influenced by lakeshore 

development (Marburg et al. 2006), was also important as a habitat for the Red 

Rainbowfish, as was the case with the Salmon (Oncorhynchus masou) in the 

Toikanbetsu Stream system and Pankenai Stream, whose abundance correlated 

positively with wood debris abundance (Inoue and Nakano 2001). Riparian 

vegetation was also significant, serving as a food source (pollen) and providing 

shade for the fish. Therefore, the existence of terrestrial vegetation is necessary 

for the survival of the Red Rainbowfish. Any habitat alteration along the 

shoreline that destroys water and terrestrial vegetation will have a negative 

impact on and threaten the Red Rainbowfish, as well as the other fishes 

occupying the area.  

 

The Red Rainbowfish usually occupied very shallow waters, up to 200 cm. Fish 

with smaller body lengths (<90 mm SL) tended to occupy the very shallow area 

near the shoreline, while fish with longer bodies (≥90 mm SL) were rare along the 

shoreline (Fig. 5.1). Red Rainbowfish were seldom caught by local fisherman with 

gill nets in the deeper parts of the lake. In Lake Constance, Germany, shallow 

areas were important for small species or juveniles of larger species. Turbulence 

in these areas was very high because of high wind and wave action, and might 

have prevented larger predators from preying on the small and juvenile fish, thus 

allowing them to use the shallow areas as a refuge (Fischer and Eckmann 1997). 

Moreover, Serafy and Harrell (1993) also found that shallow areas served as a 

refuge from predators and feeding area for smaller fish. Allen (1991) confirmed 

that rainbowfish species generally consume a variety of plant and animal items, 
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which are all available in the shallow areas along shorelines. In the case of the 

Red Rainbowfish, these factors, turbulence and food availability, may be the 

reasons in their habitat selection.  

 

 

 

 

 

Although we found Red Rainbowfish in both clear water (5 NTU) and turbid 

water, they were predominantly found in clear water (Appendix 5). The only 

turbid waters in which they were found were the mouths of AW (Group 1) and AJ 

(Group 2) Creeks. The turbidity in these two locations was caused by erosion in 

the heads of the creeks and in the terrestrial areas along them, as the result of 

human activities. Some other rainbowfish species have also been found in still 

turbid or black tea water, such as Melanotaenia praecox, which is found in a 

small turbid creek in Mamberamo rainforest in Buare, Central Mamberamo, 

Papua; and Chilaterina fasciata and 
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C. lorentzi in a turbid stream and creek in Haya at Van Rees Mountain, 

Mamberamo, while Glossolepis multisqumatus is only found in a small, black-

colored lake in Haya, Mamberamo as well. The Red Rainbowfish was observed up 

to 15 meters into the creeks in AW and AJ; other lake-dwelling species of 

rainbowfish were found in tributaries, creeks, streams, and rivers. For instance, 

Melanotaenia ajamaruensis and M. boesemani are found in the Ayamura Lakes 

and their surrounding tributaries in the Bird’s Head Peninsula, Papua; M. 

ajamaruensis is also found upstream in Kaliwensi River, about 5 km west of 

Ayamura Lake, while M. boesemani is also found in Tiwit Creek, less than 1 km 

north of Ayamura Lake (Kadarusman et al. 2010).  

The Red Rainbowfish was found abundantly in the early morning, 06.00–

09.00 am, and afternoon, 16.00–dark. It usually avoided high light intensities. 

Therefore, fish were rarely found in shallow waters during periods of high light 

intensity, such as from late-morning to mid-afternoon, having dived to deeper 

waters and shoaled near food sources. When they remained near the surface, 

they had moved to shadowed areas, such as under stilt houses or submerged 

plants. In contrast, juveniles and small fish of the Crimsonspotted Rainbowfish 

(M. duboulayi) shoal near the surface where it is warmest, even during the 

hottest time of day, feeding on floating material; in cloudy conditions, all sizes of 

the fish preferred deeper water (Hattori and Warburton 2003). Shaded areas can 

be used to avoid both higher temperatures and the sights of predators (Helfman 

1981). In addition to the availability of food and turbulence, habitat selection of 

the Red Rainbowfish is probably also related to the spatial distribution of the 

temperature gradient in the lake, which is an important influence in the habitat 

selection of all fish (Matthews 1998). High temperatures broadly limited 

distributions of lentic and lotic fishes (Eaton et al. 1995). This shows that every 

single fish has a temperature range that limits their habitat selection or 

distribution in aquatic ecosystems. Moreover, gradients of oxygen and pH are 

also cues to fish habitat selection or avoidance (Matthews 1998). Therefore, the 
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habitat selection of the Red Rainbowfish should be closely-related to abiotic 

factors, such as water temperature and food sources.  

 The habitat preferences of the Red Rainbowfish, including substrate 

types, and vegetation, contributed to its abundance, and these preferences serve 

as indicators of its habitat selection in Lake Sentani. Statistical analyses revealed 

no difference between groups in Red Rainbowfish abundance, despite the 

groups’ different habitat conditions. Nevertheless, each group contained its 

preferred substrates, vegetation, and food sources, which may explain the 

consistency in abundance across groups, and further indicating that habitat 

preferences played a greater role in fish abundance than water quality.   

 
5.9 Conservation of the Red Rainbowfish 

 
The Red Rainbowfish is one of seven threatened rainbowfish species in Papua 

listed in the IUCN Red List of Threatened Species and is categorized as vulnerable 

(IUCN 2012; Allen 1996b). It has a very restricted range, less than 9,000 ha, and 

categorized as a restricted range species (Ohee 2005). This study revealed that 

the fish could still be found abundantly in the littoral zone up to a depth of 2 

meters. However, habitat alteration occurred in almost all parts of Lake Sentani’s 

littoral zone, especially near urban centers and along the provincial road. The 

only known habitat of the Red Rainbowfish is currently facing heavy human-

induced disturbances in the form of the establishment of settlements, 

restaurants, and harbors, public infrastructure development, land filling, road 

expansion, and domestic waste discharge. These activities threaten not just the 

Red Rainbowfish, but all of Lake Sentani’s inhabitants. Habitat alteration in the 

lake has probably led to the near extinction of another endemic rainbowfish, the 

Sentani Rainbowfish (Chilatherina sentaniensis), in the wild. It is also one of the 

seven threatened rainbowfish species in Papua and has been categorized as 

Critically Endangered (CR) by IUCN, with its major threats being the domestic 

waste from increasing human populations near the lake, and the introduction of 

exotic species to the lake, such as Carp, Tilapia, Walking Catfish, Barbs, and 
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Gouramies (Allen 1996a). The fish has not been found in Lake Sentani recently, 

and nor its last known habitat, Carwash Creek (AJ’s Creek).  

The increasing settlements around the lake belong mainly to people from 

outside of Jayapura and Sentani Regency seeking work and education, and 

accelerate habitat degradation around the lake. Moyle and Leidy (1992) have 

argued that five factors cause biodiversity loss in aquatic ecosystems: 1) 

competition for water; 2) habitat alteration; 3) pollution; 4) introduction of 

exotic species; and 5) commercial exploitation. At least three of the five causes, 

habitat alteration, pollution, and introduced exotic species, are currently 

happening in Lake Sentani. The human population in Sentani District also poses a 

problem. With a population and density of 47,758 and 598.47, respectively 

(Kantor Distrik Sentani 2009), population growth led to increases in 1) pollution 

from domestic waste in the lake, 2) introduced exotic species, either deliberately 

or accidentally, and 3) resource over-exploitation. 

However, based on our observations, the biggest cause of habitat 

degradation was road expansion, which in some locations extended to the 

shoreline, although this was not the case in any of our survey locations. 

Vegetation in and near the shoreline was felled and land filled to build Papua’s 

provincial road. Sedimentation was observed in the parts of the shoreline 

encroached on by the road, causing water turbidity and decreasing the water 

quality, and the habitats, feeding areas, and nursery grounds of the Red 

Rainbowfish and other native fish species, such as the Sentani Gudgeon 

(Oxyeleotris heterodon) and Snakehead Gudgeon (Giurus margaritaceus), both of 

which are the most important fish species to the local people, were damaged. 

Although the Red Rainbowfish was still abundant in Lake Sentani, the current 

rate of habitat alteration and degradation will likely threaten the species in the 

near future.  

 
The physicochemical indicators of habitat alteration, increasing nitrate, nitrite, 

and phosphate, were from human activities around the lake. While nitrate and 

nitrite levels were still within acceptable limits, phosphate concentrations were 
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high in all locations. We believe this result would need special attention in 

considerations of the future of the Red Rainbowfish, as well as Lake Sentani’s 

other native fish species. One of the ways of mitigating the increase in phosphate 

and nitrogen would be for the local governments of Papua Province and Jayapura 

Regency to establish an awareness campaign on proper waste management.  

Furthermore, both the central and local government should be made 

aware of Lake Sentani’s ecological importance as Papua’s largest lowland lake, as 

proposed by Conservation International (1999) and Polhemus et al. (2004), in 

order to protect its endemic and native species. Time is a critical factor in this 

respect, as quicker action may prevent further species extinction, which has 

already occurred with the Sawfish (Pristis microdon) and probably Sentani 

Rainbowfish.  

Over two decades ago, Allen (1991) stated that Lake Sentani is one of the 

most endangered freshwater ecosystems in New Guinea, as the result of exotic 

species and population increase. He added that, even then, it was too late for it 

to be saved. Nevertheless, with proper and meaningful conservation efforts, an 

opportunity to protect the lake and its inhabitants still exists. Conservation 

efforts should focus on increasing local awareness of proper waste management, 

establishing community-based environmental initiatives, and educating policy-

makers of the ecological and cultural significance of Lake Sentani and its 

inhabitants. Finally, further research into the relation between the Red 

Rainbowfish and its habitat preferences may shed further light on their 

ecological relevance to both the Red Rainbowfish and Lake Sentani.  
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6 Conclusion 
 

This study revealed that the habitats of the Red Rainbowfish in Lake Sentani have 

suffered from degradation as the result of human activities, as shown in the 

levels of nitrate, nitrite, phosphate, biological oxygen demand (BOD) and 

chemical oxygen demand (COD) that exceeded the Indonesian government’s 

limits. Two groups (1 and 2) were categorized as having heavy human impacts on 

the Red Rainbowfish’s habitats, with Group 1 having the highest nitrate and 

nitrite levels and Group 2 having the highest phosphate, BOD and COD levels. 

The third group (3) had low to medium levels all five physicochemical 

parameters; thus, the impact of human activities in its locations was low. 

However, all but one pollutant had a negligible influence on the abundance of 

the Red Rainbowfish, which was similar across groups. The one exception was 

nitrate, of which increased concentrations had a significant negative correlation 

with abundance, albeit with a limited impact because nitrate levels were not very 

high. Instead, abundance was shown to have been more affected by habitat 

preference, including substrate type, vegetation, and food availability, suggesting 

that the Red Rainbowfish is able to tolerate the present level of pollution in Lake 

Sentani, although further increases in nitrate, nitrite, and phosphate through 

locals’ continued deposition of organic waste into the lake, will have a 

detrimental and possibly irreversible effect on the species, along with the rest of 

the lake’s fish community.  

Body length, which is associated with abundance, was also largely 

unaffected by the pollutants in the lake. Only phosphate contributed to the body 

length of the Red Rainbowfish, but the effect was so low, that Group 3, with its 

higher overall water quality, had the highest mean body length, whereas Group 

2, with the highest concentrations of phosphate, had the second-highest mean 

body length. It is possible that there may be a correlation between habitat 

preference and Red Rainbowfish body length, and further research may shed 

light on whether this is the case. 
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Contrary to our original assumption, males were far more abundant in 

shallow waters than females, who seemed to prefer the lake’s deeper water. 

Female abundance tends to correlate with overall abundance, but this was not 

true of the Red Rainbowfish, where overall abundance was unaffected by the 

lack of females. The reason for females’ depth preference is presently 

inconclusive. In captivity, where there is no variation in temperature and light, no 

depth preference has been observed. In Lake Sentani, these two factors may be 

the cause. 

Correlations between introduced fish abundance and Red Rainbowfish 

abundance were very weak in all three groups; in Groups 1 and 3, a very weak 

positive correlation was found, whereas in 2, we found a very weak negative 

correlation. Different abundances of different exotic species between groups, 

and specifically between Groups 1 and 3 and Group 2, is the likely cause of the 

positive and negative correlations, respectively, as well as the prevalence of 

adequate shelter or food, or lack thereof. 

The habitat preferences of the Red Rainbowfish included sand, gravel, 

and cobble substrates; very shallow, clear waters (up to two meters); and 

Hydrilla verticillata, Eichhornia crassipes, Metroxylon sagu, and some grasses. 

These preferences affect its abundance, but not its survivability, as it was 

observed in areas that lacked them. Nevertheless, the importance of these 

vegetation and substrate types in providing shelter and food means they will 

continue to play a role in the future of the Red Rainbowfish in where it shoals 

and what it eats, and their continued prevalence enables it to thrive with very 

little risk of predation and starvation. Reducing the availability of these 

preferences will not only affect its abundance, but increase competition amongst 

the aquatic community for limited food and shelter sources, and increase 

predation on smaller fish such as the Red Rainbowfish.  

 

Pollution in Lake Sentani has now made its water unsafe for human 

consumption. Despite that, human activities around the lake only contribute 
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more organic and inorganic waste, further polluting it. So far, the Red 

Rainbowfish has managed to cope with the pollution through its ability to adapt 

to changes in water quality. However, it is only a matter of time before the level 

of pollution in the water makes the Lake Sentani uninhabitable, for both humans 

and aquatic organisms. This will also lead to the extinction of its three endemic 

fish species.  

The results of this study provide baseline data for Red Rainbowfish 

conservation in Lake Sentani, and will supply policy-makers with a means of 

pursuing the protection of its habitats, create a strategy to control pollutants, 

and encourage community-based environmental management. Further research 

should investigate the roles and concentrations of other aquatic indicators of 

pollution, and the relationship between the Red Rainbowfish and its habitat 

preferences, as well as its susceptibility to certain types and concentrations of 

pollutants. Another research focus should be female Red Rainbowfish, 

specifically, and why their habitat preferences differ from those of males, in 

addition to the effect of females’ different behavior on overall abundance. More 

broadly, other parts of Lake Sentani should be surveyed as a supplement to this 

research, and a lake-wide monitoring program should be established to 

understand the exact ecological and physicochemical condition of the lake. Only 

then, rehabilitation of its vast ecosystem may follow. 
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Appendix 1. Rainbowfish species of Papua and their distribution area. 

No. Species Common Name Distribution 

Region 

Northern 
New Guinea 

Southern 
New Guinea 

Western New 
Guinea (Bird's 
Head region) 

1 2 3 4 5 6 7 

1 Chilatherina alleni Allen's Rainbowfish Aiborei River of the Siriwo drainage, situated in the Derewo River 
Basin, southeast of Cenderawasih Bay in northern West Papua. 

X   

2 C. bleheri Bleher's Rainbowfish Lake Holmes (Danau Bira), lower Mamberamo system. X   

3 C. crassispinosa* Silver Rainbowfish Widespread in northern New Guinea, including the Markham, 
Gogol, Ramu, Sepik, Pual, and Mamberamo Rivers. 

X   

4 C. fasciata* Barred Rainbowfish Widespread in northern New Guinea, including the Markham, 
Ramu, Sepik, and Mamberamo river systems; has also recently 
been discovered on Yapen Island. 

X   

5 C. lorentzi* Lorentz's Rainbowfish Tawarin River on the north coast of Irian Jaya about 200 km west 
of Jayapura, and Puive Creek, a tributary of the Pual River near 
Vanimo. 

X   

6 C. pricei Price's Rainbowfish The Reifafeif River in Yapen Island, which is situated in 
Cenderawasih Bay (formerly Geelvink Bay) off the northern coast 
of West Papua. 

X   

7 C. sentaniensis Sentani Rainbowfish Lake Sentani, which is located some 10 kilometers west of 
Jayapura. 

X   

8 Glossolepis dorityi Dority's Rainbowfish Grime River of northern West Papua. X   

9 G. incisus Red Rainbowfish Lake Sentani. X   

10 G. leggeti Leggett's Rainbowfish Wapoga River system of northern West Papua. X   

11 G. multisquamatus Sepik Rainbowfish Mamberamo river system in Papua. X   

12 G. pseudoincisus Tami River 
Rainbowfish 

Tami River, Enfote Lake, Yaniruk Lake. 
X   
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Appendix 1. Rainbowfish species of Papua and their distribution area (continued). 
1 2 3 4 5 6 7 

13 I. werneri** Threadfin 
Rainbowfish 

Central-southern New Guinea between the Merauke and Fly 
Rivers. 

 X  

14 M. affinis* North New Guinea 
Rainbowfish 

North of the Central Dividing Range; the distribution extends 
from the vicinity of Lae, Papua New Guiea, and westward into 
Papua as far as Nabire. 

X   

15 M. ajamaruensis Ajamaru Lakes 
Rainbowfish 

The Ayamaru Lakes, situated near the centre of the Bird’s Head 
Peninsula, and Kaliwensi River, about 5 km west of the 
Ayamaru Lakes. 

  X 

16 M. ammeri - Gusimawa stream, northern part of Arguni Bay.   X 

17 M. angfa Yakati Rainbowfish Kurumoi Creek, near Lake Kurumoi and about 12 km north of 
Yakati Village, and Pondok Creek, which are both in the Yakati 
river system of West Papua. 

  X 

18 M. arfakensis Arfak Rainbowfish Tributaries of the Prafi River system near Manokwari, only.   X 

19 M. arguni Arguni 
Rainbowfish 

Egerwara village, Jasu Creek, 61 km north of Kaimana, District 
Arguni Bawah, West Papua. 

  X 

20 M. batanta Batanta 
Rainbowfish 

Batanta island in the Raja Ampat Group, west of the Bird’s 
Head Peninsula. 

  X 

21 M. boesemani Boeseman's 
Rainbowfish 

Found mainly in the Ayamaru Lakes and a few surrounding 
tributaries, as well as in Lake Hain and Lake Aitinjo. The 
Ayamaru Lakes region is located about 120 km east-southeast 
of Sorong, at the headwaters of the Ayamaru River in a 
mountainous region of the Bird’s Head Peninsula. 

  X 

22 M. catherinae Waigeo 
Rainbowfish 

Waigeo and Batanta Islands in the Raja Ampat Group that lie 
immediately west of the Bird’s Head Peninsula. 

  X 

23 M. corona Corona 
Rainbowfish 

Upper Sermowai River on the north coast of West Papua, 
about 75 kilometers west of Jayapura. 

X   

24 M. fasinensis - Tributary of Kladuk River, Fasin creek, northwest Teminabuan.   X 
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Appendix 1. Rainbowfish species of Papua and their distribution area (continued). 
1 2 3 4 5 6 7 

25 M. fredericki Sorong 
Rainbowfish 

Samson river system and streams near Sorong on the western 
portion of the Bird’s Head Peninsula. 

  X 

26 M. goldiei* Goldie River 
Rainbowfish 

South of the Central Dividing Range, extending from Port Moresby 
in Papua New Guinea to Etna Bay in Papua, as well as the Aru 
Islands. 

  X 

27 M. irianjaya Irian Jaya 
Rainbowfish 

Widely distributed in southerly-flowing river systems of the Bird’s 
Head Peninsula, as well as southern Bomberai Peninsula. 

  X 

28 M. japenensis Yapen Rainbowfish Yapen Island, which is situated in the gulf (Teluk Sarera) on the 
north coast of West Papua. 

X   

29 M. kamaka Kamaka 
Rainbowfish 

Lake Kamakawaiar and several smaller ones just inland from Triton 
Bay, which is situated on the southern coast of West Papua, 
immediately east of the Bomberai Peninsula. 

  X 

30 M. kokasensis - Small stream near Kokas Village on the north Fak Fak Peninsula.   X 

31 M. lakamora Lakamora 
Rainbowfish 

Lake Lakamora and Lake Aiwaso, which are also inland from Triton 
Bay. 

  X 

32 M. mairasi - Lake Furnusu, which lies approximately 15 km northeast of 
Kaimana, West Papua. 

  X 

33 M. maylandi Mayland's 
Rainbowfish 

Known only from a small creek about 2-3 km from Lake Holmes, 
Mamberamo. 

X   

34 M. misoolensis Misool 
Rainbowfish 

Tama River in Misool Island, which is part of the Raja Ampat 
Group. 

  X 

35 M. ogilbyi Ogilby's 
Rainbowfish 

Lower Lorentz River and Timika Region. 
 

 X  

36 M. parva Lake Kurumoi 
Rainbowfish 

Known only from Lake Kurumoi in the middle of the narrow 
isthmus that connects the Bird’s Head Peninsula to the remainder 
of New Guinea. The lake is within the Yakati River watershed. 

  X 
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Appendix 1. Rainbowfish species of Papua and their distribution area (continued). 
1 2 3 4 5 6 7 

37 M. pierucciae Pierucci's 
Rainbowfish 

Werfyang Creek and Lake Kamakawaiar. 
  X 

38 M. praecox Dwarf Rainbowfish Mamberamo and Wapoga river systems. X   

39 M. rubripinnis Red-finned 
Rainbowfish 

Wapoga river system of northern West Papua. 
X   

40 M. salawati - Doktor Creek, a stream 5-10 m wide, in the vicinity of 
Waipule village on the northwestern part of Salawati Island. 

  X 

41 M. rubrostriata** Red-striped 
Rainbowfish 

South of the Central Dividing Range, on the Aramia River 
(near the Fly River) of Papua New Guinea and Etna Bay, 
central Papua. 

  X 

42 M. synergos Batanta Island 
Rainbowfish 

Batanta Island, west of the Bird’s Head Peninsula. 
  X 

43 M. urisa Urisa Rainbowfish Sewiki Lake, 6 km SE of Urisa Village, 44 km north of 
Kaimana 

  X 

44 M. vanheurni Van Heurn's 
Rainbowfish 

The Taritatu River and Doorman River (which is a tributary 
of theTaritatu). 

X   

45 M. veoliae Veolia Rainbowfish Gebiasi Creek, 22 km north of Kaimana and 14 km south of 
Wanoma Village. 

  X 

46 M. wanoma Wanoma 
Rainbowfish 

Wermura Creek, 20 km north of Kaimana and 16 km south 
of Wanoma Village. 

  X 

47 Pelangia 
mbutaensis 

Lake Mbuta 
Rainbowfish 

Mbuta Basin, Bintuni Bay. 
  X 

Total   19 2 26 

 *New Guinean species. 
**New Guinean and Australian species. 
Sources: Allen and Hadiaty 2011; Kadarusman et al. 2010, 2011, 2012; Tappin 2010; Allen and Unmack 2008; Allen et al. 2008; Mack and 
Alonso 2000; Richards and Suryadi 2002; Allen and Renyaan 1995, 1996a, 1996b, 1998a, 1998b, 2000a, 2000b; Allen 1991, 1998.  
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Appendix 2. Description of research locations.  

Zone/Group Location Description Sampling sites 

1 2 3 4 

I/1 
 
 
 
 
 
 
 
 
 
 
 

AW (Waena) 
 
 
 
 
 
 
 
 
 
 
 

 There are two administrative villages in the area, 
Waena and Yabansai. Waena has an area of 14,024 ha 
and population of 15,738, while Yabansai has an area 
and population of 12.5 ha ± 13,000. 

 It is located adjacent to a major provincial road 
connecting the districts of Jayapura Municipality to 
those of Sentani Regency.  

 The biggest state university in Papua, Cenderawasih 
University (UNCEN), is located in the area, resulting in 
population flux throughout the year.  

 Mostly of the houses in the area are modern and 
located away from the lake. However, domestic waste, 
both organic and inorganic, is drained into the lake by 
rain.  

 Waste is often dumped into the creeks, and then 
washed or drained into the lake.  

 Deforestation occurs in the area, causing habitat 
alteration in the terrestrial area and consequently 
impacting the lake’s ecosystem by increasing turbidity 
and sedimentation. 
 

 
 

I. Located 2° 36.032’S, 140° 37.575’E, 
around the mouth of a creek; mostly silt 
and sand substrate; water was turbid; 
large amount of inorganic and organic 
waste was found in the site; dense 
Hydrilla verticilata; small number of 
houses near the lake, using its water for 
daily needs and fishing. Fish sampling was 
conducted at a depth of less than 130 cm. 

II. Located 2° 35.837’S, 140° 37.391’E, 
around 272 m NE of sampling site I; 
sampling took place near a house with 
sand, gravel, and cobble substrates; dense 
Hydrilla verticillata. Fish sampling was 
conducted at a depth of less than 150 cm.  

III. Located 2° 35.895’S, 140° 37.170’E, 
around 414 m NE of sampling site I; sand, 
gravel, and cobble substrates; Hydrilla 
verticillata, and some Eichhornia 
crassipes. Fish sampling was conducted at 
a depth of around and less than 100 cm.  
By 2011, the number of houses had 
increased, causing sedimentation and 
increased turbidity. 
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Appendix 2. Description of research locations (continued).  

1 2 3 4 

I/1 AY (Yoka) 
 It is a village in the eastern part of the lake, adjacent to 

a road connecting Jayapura to a number of villages 
south of Lake Sentani.  

 Population numbered 2000 within a 10 ha 
administrative area.  

 Human impact includes organic and inorganic domestic 
waste and use of the shoreline as a landfill by 
restaurants and governmental buildings. 

I. Located 2° 36.560’S 140° 37.306’E, near 
houses on the edge of the village; gravel 
and cobble substrates; Hydrilla verticillata 
present only in some spots. Fish sampling 
was conducted at a depth of less than 60 
cm. 

II. Located 2°36.433’S 140° 37.399’E; around 
302 m SW of sampling site I; only gravel 
substrate; Hydrilla verticillata was found in 
almost the entire area. Fish sampling was 
conducted at a depth of around and less 
than 150 cm. 

III. Located 2°36.409’S, 140° 37.484’E, around 
458 m SW of sampling site I; silt and sand 
substrates; Hydrilla verticillata and 
Vallisneria americana were abundant in the 
area. Fish sampling was conducted at a 
depth of around 50 cm and lower. 

I/2 AJ (Jembatan 
2) 

 Located along a provincial major road connecting 
districts in Jayapura Municipality and Jayapura 
Regency. 

 Jembatan II Creek, (famous amongst rainbowfish 
researchers as Carwash Creek) is found in this 
location.  

 Small-scale gold mining takes place in the creek’s 
headwaters, causing turbidity and sedimentation in 
the creek and lake.  

I. Located 2° 35.433’S, 140° 36.977’E, around 
the mouth of the creek; water was turbid; 
substrates were silt, sand, and gravel; 
erosion in the headwaters of the creek 
caused sedimentation in the creek’s mouth 
and some meters into the lake, as well; 
vegetation was dominated by Hydrilla 
verticillata. Fish sampling was conducted at 
a depth of less than 50 cm. 
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Appendix 2. Description of research locations (continued).  

1 2 3 4 

I/2 AJ (Jembatan 
2) 

 Chilatherina sentaniensis has been reported to be 
found in the creek. There have been no recent 
sightings, however.  

 The human impact on the lake and creek comprised 
dumping domestic waste, detergent, and oil from cars 
and motorcycles.  

 Few people actually live near the creek and lake, with 
only around 20 houses spread throughout the area, 
both modern and traditional. However, many people 
use the creek for washing clothes, cars, and 
motorcycles, and throw the resulting waste into the 
creek, which is then washed into the lake. 

II. Located 2° 35.398’S, 140° 36.964’E; 
approximately 44 m NW of sampling site I; 
silt and sand substrates; dense Hydrilla 
verticillata; some log debris and a heavy 
amount of dead leaves. Fish sampling was 
conducted at a depth of 150 cm and less. 

III. Located 2° 35.441’S, 140° 37.016’E; 
approximately 90 m SE of sampling site I; 
only sand substrate; dense Hydrilla 
verticillata and water lily; sedimentation of 
the creek was found in the site. Fish 
sampling was conducted at a depth of 
around and less than 120 cm. 

II/3 BAy (Ayapo)  A village in the eastern part of the lake occupied by a 
local tribe (Sentani).  

 Population of 1,300 people in an approximately 24 
km2 area.  

 Most people live in traditional stilt houses.  

 Water from the lake is used for cooking, washing, 
bathing, eliminating, and drinking.  

 Domestic waste is the main human impact in the 
village. 

 Fairly homogenous in its habitat characteristics, with 
little vegetation being found and the same substrate 
types in all three sampling sites (gravel and cobble).  

I. Located 2° 36.771S, 140° 35.300’E; no 
vegetation. Fish sampling was conducted at 
a depth of less than 150 cm. 

II. Located 2° 36.589’S, 140° 35.121’E, 
approximately 474 m NW of sampling site I; 
some Eichhornia crassipes. Fish sampling 
was conducted at a depth of less than 150 
cm. 

III. Located 2° 36.946’, 140° 34.781’E, 
approximately 1.01 km W of sampling site I 
and 913 m SW of sampling site II; some 
Eichhornia crassipes. Fish sampling was 
conducted at a depth of less than 150 cm. 
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Appendix 2. Description of research locations (continued).  

1 2 3 4 

II/3 BAs (Asei)  It is a small island, less than 21.6 km2, in the eastern 
part of the lake, with a population of 400. 

 Lake water is used for daily activities, including 
cooking, drinking, washing and bathing, and 
eliminating. Therefore, household waste is the main 
human impact, in addition to waste from livestock, 
specifically pigs. 

 Gravel and cobble are the main substrates, and 
vegetation is not common, only being found in one 
sampling site. 

 

I. Located 2° 36.304S, 140° 34.798’E. Fish 
sampling was conducted at a depth of 150 
cm and less. 

II. Located 2° 36.312S, 140° 34.856’E, 
approximately 107 m E of sampling site I; 
small groups of Eichhornia crassipes , which 
are distributed by wind. Fish sampling was 
conducted at a depth of 150 cm and less. 

III. Located 2° 36.265’S, 140° 34.859’E, 
approximately 134 m NE of sampling site I 
and around 88 m N of sampling site II. Fish 
sampling was conducted at a depth of 150 
cm and less. 

II/3 BP (Puay)  It is a village of 523 in the southern part of the lake, 
near its only outlet, Djafuri Stream.  

 It is also located adjacent to the road connecting the 
southern part of the lake to Jayapura.  

 Although some inhabitants live in the terrestrial area, 
most build their homes on stilts on the shoreline.  

 The lake is used for most activities, with the result 
being household waste, animal and human feces, and 
small-scale deforestation from traditional gardens.  

 Fish are commonly found amidst Eichhornia crassipes 
and Metroxylon sagu.  

I. Located 2° 40.771S, 140° 35.234’E; mud was 
the predominant substrate; Eichhornia 
crassipes was present. Fish sampling was 
conducted at a depth of less than 100 cm. 

II. Located 2° 40.708S, 140° 35.153E, 
approximately 190 m NW of sampling site I; 
silt and sand substrates; dense grass along 
the shoreline. Fish sampling was conducted 
at a depth of less than 100 cm. 

III. Located 2° 40.433’S, 140° 35.281’E, 
approximately 635 m N of sampling site I 
and around 564 m NE of sampling site II; 
were sand and gravel substrates; dense 
grass. Fish sampling was conducted at a 
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Appendix 2. Description of research locations (continued).  

1 2 3 4 

II/3 BP (Puay)  depth of less than 100 cm. 
III/3 CY (Yakonde)  It is a village in the western part of the lake, with a 

population of 400 in a 2,658 ha area.  

 Lake water is used for bathing, cooking, drinking, 
fishing, and eliminating waste, although modern 
toilets are available in the terrestrial area.  Livestock 
can also be found around locals’ houses, along with 
their dung in the water. 

 Inorganic waste is less common than organic waste.  

 There has been an increasing prevalence of caged fish 
farms, as observed during the three years of the 
survey.  

 The Red Rainbowfish is abundant in this location, 
especially in gravel, cobble, and boulder substrates.  

I. Located 2° 34.426’S, 140° 23.750’E; gravel 
and cobble substrates; abundant Hydrilla 
verticillata. Fish sampling was conducted at 
a depth of less than 2 m. 

II. Located 2° 34.283’S, 140° 23.837’E, 
approximately 311 m NE of sampling site I; 
sand and gravel substrates; Hydrilla 
verticillata was the only vegetation. Fish 
sampling was conducted at a depth of less 
than 2 m. 

III. Located 2° 34.291’S, 140° 23.873’E, 
approximately 339 m NE of sampling site I; 
gravel, cobble, and boulder substrates; 
some Hydrilla verticillata. Fish sampling was 
conducted at a depth of less than 2 m.  

III/3 CR (Rimi)  Located in the southern part of the lake, between BAy 
and BP, with less than five people in each sampling 
site. 

 Although activities based on the lake include cooking, 
drinking, fishing, bathing, and eliminating, the impact 
of human activities is lower here than in other 
locations, because of the small population.  

 Only some deforestation occurs for small-scale 
traditional gardens. 

I. Located 2° 39.049’S, 140° 35.440’E, near a 
stilt house; silt and sand substrates; dense 
grass near the shoreline. Fish sampling was 
conducted at a depth of around 150 cm.  

II. Located 2° 39.168’S, 140° 35.294’E, 
approximately 350 m SW of sampling site I; 
silt and sand substrates; small number of 
Metroxylon sagu, grass, and trees. Fish 
sampling was conducted at a depth of 
around 150 cm. 

III. Located 2° 38.719’S, 140° 35.399’E, 
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Appendix 2. Description of research locations (continued).  

1 2 3 4 

III/3 CR (Rimi)   approximately 617 m N of sampling site I; 
silt and sand substrates; no vegetation. Fish 
sampling was conducted at a depth of 
around 150 cm. 

III/3 CK (Kanale)  Kanale is an isolated area in the south of the lake, 
between BAy and BP, with almost no human 
population.  

 Two houses can be found in the area, but people 
rarely stay in them.  

 As there is no water vegetation, the Red Rainbowfish 
is only found near the shoreline, amongst Metroxylon 
sagu and its roots, the roots of trees, and dense beds 
of grass.  

I. Located 2° 39.144S, 140° 36.234’E, near a 
house with no residents; sand and gravel 
substrates. Fish sampling was conducted at 
a depth of less than 2 m. 

II. Located 2° 38.936’S, 140° 36.328’E, 
approximately 400 m N of sampling site I. 
Fish sampling was conducted at a depth of 
less than 1 m. 

III. Located 2° 38.794’S, 140° 36.359’E, 
approximately 700 m N of sampling site I; 
gravel substrate. Fish sampling was 
conducted at a depth of less than 2 m.  
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Appendix 3.1. Fish sampling sites in Lake Sentani. Zone I/Group 1: Waena (AW); 

(a) sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

  

(a) 
 

(b) 
 

(c) 
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Appendix 3.2. Fish sampling sites in Lake Sentani. Zone I/Group 1: Yoka (AY); (a) 

sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 
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Appendix 3.3. Fish sampling sites in Lake Sentani. Zone I/Group 2: Jembatan II 

(AJ); (a) sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 
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Appendix 3.4. Fish sampling sites in Lake Sentani. Zone II/Group 3: Ayapo (BAy); (a) 

sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 



103 
 

Appendix 3.5. Fish sampling sites in Lake Sentani. Zone II/Group 3: Asei (BAs); (a) 

sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 
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Appendix 3.6. Fish sampling sites in Lake Sentani. Zone II/Group 3: Puai (BP); (a) 

sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 
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Appendix 3.7. Fish sampling sites in Lake Sentani. Zone III/Group 2: Yakonde (CY); 

(a) sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 
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Appendix 3.8. Fish sampling sites in Lake Sentani. Zone III/Group 3: Rimi (CR); (a) 

sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

 

(c) 
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Appendix 3.9. Fish sampling sites in Lake Sentani. Zone III/Group 3: Kanale (CK); 

(a) sampling site 1, (b) sampling site 2, and (c) sampling site 3. 

 

(a) 
 

(b) 
 

(c) 
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Appendix 4. Regrouping of research locations based on water physicochemical parameters. Group 1 comprises AW and AY (red circles),  
Group 2 comprises AJ and CY (yellow circles), and Group 3 comprises BAy, BAs, BP, CR, and CK (blue circles).    
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Appendix 5. The ecology of the Red Rainbowfish, including substrate types, turbidity levels, water physicochemical parameter levels, and 
water and terrestrial vegetation.  
Zone/ 
Group Location 

Sampling 
site 

Substrate 
type Turbidity 

Physicochemical parameters Water 
vegetation 

Terrestrial 
vegetation Temp pH DO BOD COD Nitrate Nitrite Phosphate 

I/1 Waena I Mostly silt 
and sand; 
gravel in 
some spots 

< 14 NTU 
(creek); < 
5 NTU 
(lake) 

30.22 7.25 4.98 5.11 24.29 0.71 0.0133 0.41 Hydrilla 
verticillata 

Predominantly grass 

II Sand; 
gravel; 
rubble  

< 5 NTU Hydrilla 
verticillata 

Ficus sp.; Artocarpus 
heterophyllus; 
Pometia pinnata; 
Areca catechu; grass 

III Sand; 
gravel; 
rubble 

< 5 NTU Hydrilla 
verticillata; 
Eichhornia 
crassipes  

Predominantly grass 

I/1 Yoka   I Gravel; 
rubble 

< 5 NTU Hydrilla 
verticillata 

Artocarpus 
heterophyllus; 
Eugenia sp. 

II Gravel  < 5 NTU Hydrilla 
verticillata 

Predominantly grass 

III Silt; sand < 5 NTU Hydrilla 
verticillata; 
Vallisneria 
americana 

 

I/2 Jembatan 
II 

I Silt; sand; 
gravel 

< 240 NTU 
(creek);  
< 5 NTU 
(lake) 

31.06 7.14 4.99 8.23 83.60 0.0035 0.0012 0.875 Hydrilla 
verticillata 

Metroxylon sagu; 
grasses 
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Appendix 5. The ecology of the Red Rainbowfish, including substrate types, turbidity levels, water physicochemical parameter levels, and 
water and terrestrial vegetation (continued). 
Zone/
Group Location 

Sampling 
site Substrate type Turbidity 

Physicochemical parameters Water 
vegetation 

Terrestrial 
vegetation Temp pH DO BOD COD Nitrate Nitrite Phosphate 

I/2 Jembatan 
II 

II Gravel; rubble < 5 NTU         Hydrilla 
verticillata  

III Silt; sand < 5 NTU Hydrilla 
verticillata; 
water lily 

Artocarpus 
heterophyllus; 
Eugenia sp.; Musa 
sp. 

III/2 Yakonde I Gravel; rubble < 5 NTU Hydrilla 
verticillata 

Grass 

II Sand; gravel < 5 NTU Hydrilla 
verticillata 

 

III Gravel; 
rubble; 
boulder 

< 5 NTU Hydrilla 
verticillata 

 
 

II/3 Ayapo I Gravel; rubble < 5 NTU 30.33 7.06 4.80 3.11 23.29 0.18 0.0024 0.295  Pometia pinnata  
II Gravel; rubble < 5 NTU  Ficus sp.  

III Gravel; rubble < 5 NTU  Anacardium sp.; 
Delonix regia 

II/3 Asei I Gravel; rubble < 5 NTU Eichhornia 
crassipes 

Cocos nucifera; 
herbs 

II Gravel; rubble < 5 NTU  Inocarpus fagifer 
III Gravel; rubble < 5 NTU  Terminalia catappa  
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Appendix 5. The ecology of the Red Rainbowfish, including substrate types, turbidity levels, water physicochemical parameter levels, and 
water and terrestrial vegetation (continued). 
Zone/G
roup Location 

Sampling 
site 

Substrate 
type Turbidity 

Physicochemical parameters Water 
vegetation 

Terrestrial 
vegetation Temp pH DO BOD COD Nitrate Nitrite Phosphate 

II/3 Puai I Mud < 5 NTU 

        

Eichhornia 
crassipes; 
Grass 

Eugenia sp.; Pometia 
pinnata 

II Sand < 5 NTU  Predominantly grass 

III Sand; gravel < 5 NTU  Predominantly grass 
III/3 Rimi I Silt; sand < 5 NTU 30.33 7.06 4.80 3.11 23.29 0.18 0.0024 0.295  Herbs including 

Ludwigia octovaluis; 
Desmodium sp.; 
Kylinga 
monocephala; 
Commelina 
nudiflora; Brachiaria 
sp.; and Vigna sp. 

II Silt; sand < 5 NTU  Trees including 
Pterocarpus indicus; 
Hibiscus sp.; Ficus sp. 

III Sand; gravel < 5 NTU  Trees such as 
Metroxylon sagu, 
Pterocarpus indicus, 
Commersonia 
bartramia, Bambusa 
sp.; Cyperus sp.; 
Imperata cylindrica 
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Appendix 5. The ecology of Red Rainbowfish, including substrate types, turbidity levels, water physicochemical parameters levels, water 
and terrestrial vegetation (continued). 
Zone/ 
Group Location 

Sampling 
site 

Substrate 
type Turbidity 

Physicochemical parameters Water 
vegetation 

Terrestrial  
vegetation Temp pH DO BOD COD Nitrate Nitrite Phosphate 

III/3 Kanale I Sand; gravel < 5 NTU 30.33 7.06 4.80 3.11 23.29 0.18 0.0024 0.295  Predominantly  grass 
and some domestic 
trees; Metroxylon 
sagu 

II Mud < 5 NTU  Paspalum 
conjugatum and 
some unidentified 
species 

III Gravel < 5 NTU  Herbs including 
Alternanthera sp., 
Lepistemon 
urceolatus, Pueraria 
sp., Piper aduncum, 
and Cyperus diffuses; 
trees such as 
Anthocephalus 
chinensis 
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Appendix 6.1. The fish community in Lake Sentani: endemic species. 
 
 

 
 
 
 
 
 
 
 
 
  
  

 
 
     

 
 
 
 
 
 
 
 
  

Fig. 6.1.1. Chilatherina sentaniensis  
(Photo by G.R. Allen) 

Fig. 6.1.2. Glossolepis incisus (Photo 
by J. Graf) 

Fig. 6.1.3. Glossogobius sp. 
(Photo by H. L. Ohee) 
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Appendix 6.2. The fish community in Lake Sentani: indigenous species.  

Fig. 6.2.1. Arius velutinus 
(Photo by G. R. Allen) 

Fig. 6.2.5. Neosilurus novaeguineae 
(Photo by G. R. Allen) 

Fig. 6.2.3. Giuris margaritacea 
(Photo by H. L. Ohee) 

Fig. 6.2.2. Glossamia wichmanni 
(Photo by H. L. Ohee) 

Fig. 6.2.6. Glossamia beauforti  
(Photo by G. R. Allen) 

Fig. 6.2.4. Chilatherina fasciata 
(Photo by H. L. Ohee) 

Fig. 6.2.7. Oxyeleotris heterodon 
(Photo by G. R. Allen) 
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Appendix 6.3. The fish community in Lake Sentani: anadromous species. 

 
 

Fig. 6.3.1. Anguilla australis 
(Photo by S. M. Moore) 

Fig. 6.3.2. Anguilla bicolor 
(Photo by G. R. Allen) 

Fig. 6.3.7. Mugil cephalus 
(Photo by J. E. Randall) 

Fig. 6.3.3. Anguilla marmorata 
(Photo by G. R. Allen) 

Fig. 6.3.4. Pristis microdon 
(Photo by T. Meyer) 

Fig. 6.3.5. Caranx melampygus 
 (Photo by R. A. Patzner) 

Fig. 6.3.6. Caranx ignobilis 
(Photo by J. E. Randall) 

http://www.treasuresofthesea.org.nz 

http://www.fishbase.org 

http://www.fishbase.org http://www.fishbase.org 

http://www.fishbase.org 
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Appendix 6.4. The fish community in Lake Sentani: introduced species.  
 

 
 
 
 
 

Fig. 6.4.1. Channa striata 
(Photo by H. L. Ohee) 

Fig. 6.4.2. Puntius gonionotus 
(Photo by H. L. Ohee) 

Fig. 6.4.3. Systomus orphoides 
(Photo by J. C. P. Diaz) 

Fig. 6.4.4. Cyprinus carpio 
(Photo by H. L. Ohee) 

Fig. 6.4.5. Oreochromis niloticus 
(Photo by H. L. Ohee) 

Fig. 6.4.6. Helostoma temminckii 
(Photo by E. Chuan) 

Fig. 6.4.7. Trichogaster pectoralis 
(Photo by H. L. Ohee) 

Fig. 6.4.8. Osteochilus hasseltii 
(Photo by T. Warren) 

http://www.fishbase.org 

http://www.fishbase.org 

http://www.fishbase.org 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=1499
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Appendix 6.4. The fish community in Lake Sentani: introduced species (continued). 
 
 

 
 
 
 
 
 
 
 
 

Fig. 6.4.9. Osphronemus goramy 
(Photo by D. Bjerregaard) 

Fig. 6.4.10. Oreochromis mossambicus 
(Photo by B. Gratwicke) 

Fig. 6.4.11. Amphilophus citrinellus 
(Photo by H. L. Ohee) 

Fig. 6.4.12. Amphilophus longimanus 
(Photo by H. L. Ohee) 

Fig. 6.4.13. Clarias batrachus 
(Photo by L. L. Lovshin) 

http://www.fishbase.org 

http://www.fishbase.org http://www.fishbase.org 
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