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1. Zusammenfassung 

Nicht-kodierende RNAs (ncRNAs – non-coding RNAs) wurden lange Zeit als 

Artefakte angesehen. Daher war die Entdeckung von kleinen ncRNAs, insbesondere von 

miRNAs, überraschend. Diese können die Genexpression post-transkriptionell regulieren. 

Sowohl Computer-gestützte als auch experimentelle Ansätze lassen das Vorkommen von 

miRNAs in allen lebenden Organismen vermuten – auch in Pflanzen und Homo sapiens. Eine 

immer größer werdende Anzahl an Ergebnissen weisen darauf hin, dass miRNAs eine 

wichtige Rolle in verschiedenen Aspekten des Lebens spielen – angefangen vom einfachen 

Zellmetabolismus, über die Kontrolle des Zellschicksals bis hin zur Entwicklung von 

multizellulären Organismen. Ziel der vorliegenden Arbeit war es, die Funktion von miRNAs 

in pluripotenten Stammzellen und während der Spermatogenese zu untersuchen und zu 

verstehen. 

Im ersten Teil der vorliegenden Arbeit haben wir die Rolle der Pluripotenz-spezifischen 

miRNA-290-Gruppe während der Differenzierung von embryonalen Stammzellen (ESCs – 

embryonic stem cells) untersucht. Unsere Ergebnisse haben gezeigt, dass die Mitglieder der 

miRNA-290 Familie alleine nicht in der Lage sind, den Verlust der Pluripotenz während der 

Differenzierung von ESCs zu verhindern. Die Inhibition dieser miRNAs hingegen unterstützt 

den Differenzierungsprozess. Zusätzlich resultiert in ESCs die Überexpression der miR-290-

Gruppe in der Unterdrückung der Differenzierung in Richtung Mesoderm und Keimzellen – 

möglicherweise über die Regulierung des Wnt-Signalweges. Zusammenfassend weisen diese 

Ergebnisse auf eine wichtige Funktion von miRNAs bei der Regulation der Differenzierung 

von ESCs hin. 

Im zweiten Teil der vorliegenden Arbeit konnten wir zeigen, dass die ebenfalls 

Pluripotenz-assoziierte miRNA-302-Gruppe - im Gegensatz zu pluripotenten Zellen mit 

Keimbahn-Ursprung - in ESCs hoch exprimiert wird. Weiterhin identifizierten wir feine 

Unterschiede in den Expressionslevel von Keimzellmarker-Genen zwischen ESCs und den 

Keimbahn-entstammenden pluripotenten Zelltypen maGSCs (multipotent adult germline 

stem cells) und EGCs (embryonic germ cells). Interessanterweise war die Expression der 

Keimzellmarker-Gene negativ korreliert mit der Expression der miRNA-302 

Familienmitglieder. Dementsprechend habe wir gefunden, dass die Überexpression der 

miRNA-302-Gruppe in maGSCs in der Herunterregulation der Keimzellmarker-Gene 
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resultiert. Zusammenfassend lässt sich sagen, dass unsere Ergebnisse zeigen, dass die 

miRNA302-Gruppe die Differenzierung von ESCs in Richtung Keimbahn reguliert. 

Im dritten Teil der vorliegenden Arbeit war es unser Anliegen, die miRNA-Signatur 

verschiedener Keimzellstadien zu etablieren. Um dieses zu erreichen, haben wir eine doppelt-

transgene Maus (Stra8/EGFP und Sycp3/DsRed) generiert, mit deren Hilfe wir reine 

Keimzellpopulationen aus dem Hoden der Maus isolieren konnten. Wir haben die miRNA-

Expressionsprofile von spermatogonialen Stammzellen (SSCs – spermatogonial stem cells), 

premeiotischen (grünen) und meiotischen (roten) Keimzellen miteinander verglichen. Mit 

Hilfe dieses Ansatzes war es uns möglich, Stadien-spezifische miRNAs zu identifizieren, und 

wir konnten zeigen, dass z.B. miRNA-221, -203 und -34b-5q ihre Zielgene c-Kit, Rbm44 und 

Cdk66 regulieren und so die Spermatogenese beeinflussen. Zusammenfassend haben wir in 

dieser Studie das räumliche und zeitliche Expressionsprofil von miRNAs sowie deren 

möglichen Funktionen in der Spermatogenese beschrieben. 

Zusätzlich konnten wir zwei neue Pluripotenz-spezifische miRNAs identifizieren: 

miRNA-135b und miRNA-363. Die Funktion dieser neuen Pluripotenz-spezifischen miRNAs 

wird zurzeit untersucht. Desweiteren haben wir über die Verwendung unserer doppelt-

transgenen Maus eine Reihe bisher nicht charakterisierter Meiose-spezifischer Gene 

identifiziert. Im Moment werden diese Meiose-spezifischen Gene auf molekularer und 

biochemischer Ebene charakterisiert und bezüglich ihrer Funktionen während der Meiose 

untersucht. 
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1. Summary 

For quite a long time, non-coding RNAs (ncRNAs) were discriminated and considered 

as an evolutionary error. In light of this opinion, discovery of small ncRNAs, in particular 

microRNA (miRNA), which can regulate the gene expression post-transcriptionally, was a 

surprise.  Computational and experimental approaches revealed the presence of miRNA in 

almost all living organisms, including plants and Homo sapiens. Growing body of evidence 

suggests that miRNAs play a crucial role in different aspects of life, ranging from regulation 

of single cell metabolism through controlling of cell fate and development of multicellular 

organisms. The present thesis is aimed at understanding the function of miRNAs in 

pluripotent stem cells and in spermatogenesis.  

In the first part of this thesis, we studied the role of miRNA-290 cluster, a pluripotency-

related miRNA cluster, during differentiation of embryonic stem cells (ESCs). Our results 

show that miRNA-290 family members are not sufficient to prevent the loss-of-pluripotency 

during induced differentiation of ESCs. However, inhibition of these miRNAs was found to 

facilitate the differentiation process. In addition, overexpression of miR-290 cluster in ESCs 

resulted in prevention of differentiation towards mesoderm and germ cells, possibly through 

modulation of Wnt-signaling pathway. Collectively, these results support the assumption that 

miRNA-290 members are included in regulation of differentiation fate of ESCs. 

In the second part of this thesis, we identified that ESCs but not germline derived 

pluripotent stem cells retain high expression levels of miRNA-302 cluster, another 

pluripotency-related miRNA clusters. Further, we found out subtle differences in expression 

levels of germ cell marker genes between ESCs and germline derived pluripotent cell types 

such as multipotent adult germline stem cells (maGSCs) and embryonic germ cells (EGCs). 

Interestingly expression of germ cell marker genes was negatively correlated with expression 

of miRNA-302 family members. In agreement with these observations overexpression of 

miRNA-302 cluster in maGSCs resulted in downregulation of germ cell marker genes. Taken 

together, our results highlight that miRNA-302 cluster regulates differentiation of ESCs to 

the germ cell lineage. 

In the third part of this thesis, we made an attempt to establish the miRNA signature of 

various stage-specific germ cells. Towards this end, we generated a double transgenic mouse 

model (Stra8/EGFP and Sycp3/DsRed), which helped us to obtain pure germ cell populations 

from mouse testis. Next, we compared miRNA expression profiles between spermatogonial 
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stem cells (SSCs), pre-meiotic (green) and meiotic (red) cells. Through this study, we 

identified that stage-specific miRNAs, i.e., miRNA-221, -203 and -34b-5p regulate their 

corresponding targets such as c-Kit, Rbm44 and Cdk6 to orchestrate the spermatogenesis 

process. To sum up this study, we described spatiotemporal expression pattern of miRNAs 

and their possible functions during spermatogenesis. 

In the present study, we also identified two novel pluripotent cell-specific miRNAs: 

miR-135b and miR-363. The function of these novel pluripotency-related miRNAs is under 

investigation. Furthermore, using our double transgenic mouse model, we identified several 

uncharacterized meiotic cell-specific genes. Currently, the molecular and biochemical 

characterization of these genes and their functions during meiosis is under the way. 
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2. Introduction 

Gene expression is a process by which the information encoded in gene sequences is 

transcribed and mostly translated into gene product and is common for all living organisms. 

The course of gene expression is regulated in a simple way in Prokaryotes and becomes more 

complicated in Eukaryotes. Several steps during this process can be regulated, including 

remodeling of chromatin structure, generation and transport of transcripts, post-

transcriptional modification and finally protein translation and post-translational 

modifications. Regulation of gene expression gives the cells possibilities to control their 

behavior and function, and defines cells fate. This regulatory mechanism explains how cells 

sharing the same genome can be so different from each other. For quite a long time, only 

proteins were considered as regulatory tools of cellular identity. Due to this fact, screening 

for new regulatory molecules was focused on protein level. Although the function of some 

regulatory genes was well documented, the protein products of these genes have never been 

identified, but rather led to the discovery of non-coding RNAs (ncRNAs) (Eddy, 2001). 

Interaction of ncRNA with either DNA or mRNA results in regulation of gene expression 

(mostly repression). MicroRNA (miRNA or miR) is one of the most abundant ncRNA 

families regulating gene expression in a post-transcriptional manner (Bartel, 2004). The goal 

of this thesis is the identification and functional characterization of miRNAs which are 

specific for pluripotent stem cells and for various cell types of mouse spermatogenesis. 

Hence, the regulation and function of miRNAs, in general, as well as their crucial role in 

maintenance of pluripotency and regulation of spermatogenesis will be emphasized in the 

following sections. 

 

2.1. miRNA biogenesis 

The first miRNA was described independently by two groups in 1993 (Lee et al., 1993; 

Wightman et al., 1993). Both research groups have found that the product of the lin-4 gene, 

which negatively regulates the lin-14 gene expression in Caenorhabditis elegans (C. 

elegans), is not a protein but two small RNAs derived from it (Lee et al., 1993; Wightman et 

al., 1993). Forward genetic approach identified that lin-4 RNAs interact with 3΄ untranslated 

region (3΄ UTR) of lin-14 gene and led to propose a new mechanism for the regulation of 

gene expression (Wightman et al., 1991; Wightman et al., 1993). This innovative hypothesis 

was rather considered as an exception until the year 2000 when let-7, the second example of 
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such transcription regulatory-RNA was discovered (Reinhart et al., 2000). Let-7 represses lin-

41 expression and, similar to previously described lin-4, regulates developmental timing in C. 

elegans (Reinhart et al., 2000). Due to their functions in temporal development in worms, 

these small RNAs were initially named as small temporal RNAs (stRNAs) (Pasquinelli et al., 

2000). This name was later changed to microRNA when several research groups discovered 

that stRNA is not only limited to worm world, but is generally expressed in invertebrates as 

well as in mammals and plants (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and 

Ambros, 2001; Reinhart et al., 2002). Together with the large number of newly discovered 

miRNAs in almost all known organisms, it became evident that miRNAs represent a 

conserved pathway for the regulation of gene expression (Ambros, 2004; He and Hannon, 

2004). 

The mechanisms underlying miRNA biosynthesis are highly conserved and involve two 

sequential steps: (1) generation of ~70 nucleotides (nt) precursor miRNA (pre-miRNA) 

originating from a longer primary miRNA transcript (termed pri-miRNA), (2) processing of 

the pre-miRNA into mature ~22 nt miRNA. Figure 2.1. presents an overview of the 

canonical pathway of miRNA synthesis in animals. Typically, the pri-miRNA transcript is 

generated by a RNA polymerase II-mediated process and includes one or more internal stem-

loop hairpin structures containing the miRNA sequences (Cai et al., 2004; Lee et al., 2004). 

In the first step, the stem-loop structure is recognized and cleaved in the nucleus by 

microprocessor complex consisting of RNaseIII endonuclease Drosha and its cofactor 

DGCR8 (known as  Pasha in Drosophila melanogaster (D. melanogaster) and C. elegans) 

which executes enzymatic function and the cleavage site identification, respectively (Lee et 

al., 2003; Denli et al., 2004; Han et al., 2004; Han et al., 2006). Drosha cleaves at the base of 

the stem and releases pre-miRNAs which are exported from the nucleus to the cytoplasm by 

Exportin-5 in the presence of Ran-GTP cofactor (Yi et al., 2003). In the cytoplasm, the 

hairpin structure of pre-miRNA is processed by another RNaseIII endonuclease Dicer 

(Hutvagner et al., 2001; Ketting et al., 2001). Dicer cooperates with double strand RNA 

(dsRNA) binding protein TRBP (RDE-4 in C. elegans and Loquacious in D. melanogaster) 

to cleave the loop and thereby generates miRNA duplex (Tabara et al., 2002; Haase et al., 

2005). Generally, only one miRNA from the duplex, termed major or guide, is functional, 

another one (minor, miRNA* or passenger miRNA) has no known function and becomes 

degraded (Schwarz et al., 2003). The Dicer product (major miRNA) together with Argonaute 

proteins form miRNA-induced silencing complex (miRISC) which mediates post-

transcriptional gene suppression (MacRae et al., 2008). In principle, miRNA recognizes 
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complementary sequences in the 3΄ UTR of the targeted genes. Mechanisms by which 

major/mature miRNA executes its function depend on the degree of complementarity 

between miRNA and its target mRNA. Full complementarity causes mRNA degradation 

while partial complementarity results in translation inhibition. Degradation of mRNA targets 

in context of full complementarity is mostly restricted to plants (Bartel, 2004). In animals, 

miRNAs bind to their target mRNAs through imperfect complementarity at multiple sites 

leading to translational repression rather than target degradation. Therefore one miRNA can 

regulate the expression of more than one target gene, and individual target genes can be 

simultaneously targeted by several miRNAs (Doench and Sharp, 2004; Lim et al., 2005). 

Through the repression of target genes expression, miRNAs are involved in a wide variety of 

biological processes including developmental timing, cell proliferation and differentiation, 

cell cycle regulation, cell death and metabolism. Aberrant expression of many miRNAs has 

already been linked with developmental abnormalities and human diseases (Osman, 2012). 

 

Figure 2.1. Schematic representation of canonical miRNA biosynthesis pathway. Canonical pathway of 

miRNA processing includes production of primary transcript (pri-miRNA) either by RNA polymerase II or 

occasionally by RNA polymerase III. Nascent pri-miRNA transcript is further processed by microprocessor 

complex (Drosha-DGCR8) in the nucleus. The resulting precursor (pre-miRNA) is exported from the nucleus to 

the cytoplasm by Exportin-5-RanGTP complex. Dicer together with TRBP cleaves pre-miRNA to give rise to 

miRNA duplex. Finally only one strand from the duplex (termed mature or major) is loaded onto miRISC and 
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regulates the gene expression either by mRNA cleavage or translation repression. The other strand has no 

known function and is mostly degraded (figure adopted fromWinter et al., 2009). 

2.2. Regulation of miRNA expression 

Although the mechanism of miRNA biogenesis is well described, only a few studies 

illustrate the regulation of this process. Till now, no universal mechanism for miRNA 

maturation is proposed and most of our knowledge comes from examples of biosynthesis 

regulation of single miRNAs, miRNA clusters or only a subset of miRNAs (Krol et al., 

2010). Regulation of miRNA genesis can occur throughout each step of miRNA expression 

and maturation including pri-miRNA transcription, processing of pri-miRNA to pre-miRNA, 

export of pre-miRNA from nucleus to the cytoplasm, miRNA duplex formation, assembling 

of miRISC and finally modulation of mature miRNA. 

Mechanisms controlling the gene expression at the transcriptional level are common for 

protein-coding genes as well as for miRNAs. During transcription many DNA-binding 

proteins like c-Myc, p53 or cell-specific transcription factors can bind to miRNA promoter 

region and regulate its expression in a tissues-specific or developmental-specific manner 

(O'Donnell et al., 2005; Lin et al., 2009; Boominathan, 2010). Moreover, miRNA genes can 

be regulated by epigenetic modifications (DNA methylation and histone modifications) 

occurring at their promoter region or at neighbouring locus (Saito et al., 2006; Lujambio et 

al., 2008; Lujambio and Esteller, 2009). 

Once the transcriptional process is finished, different mechanisms regulate the 

maturation of mRNAs and miRNAs. The pri-miRNA transcript processing into mature 

miRNA involves two-step digestion mediated by Drosha and Dicer. Regulation of this stage 

entails post-transcriptional modification of enzymes or RNA template structure and control of 

interaction between both RNA and protein molecules. Interaction of Drosha with DEAD box 

RNA helicases p68 and p72 enables recruitment of other proteins (i.e. R-Smad, p53 or 

estrogen receptor-α) and regulates miRNA maturation (Davis et al., 2008; Suzuki et al., 

2009; Yamagata et al., 2009). The well-known example of RNA structure modification 

includes interaction between Lin28 or complex of nuclear factor 90 and nuclear factor 45 

(NF90/NF45) with members of the let-7 family (Newman et al., 2008; Rybak et al., 2008; 

Sakamoto et al., 2009). Lin28 binds to a specific sequence in the let-7 stem-loop structure 

and inhibits its maturation by changing the pri-miRNA conformation (Nam et al., 2011). 

Unlike Lin28, interaction of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and 

KH-type splicing regulatory protein (KSRP) with the loop of pri-miR-18a and pri-miR-206, 
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respectively, promote pri-miRNA processing (Michlewski et al., 2008; Trabucchi et al., 

2009). In addition, the maturation process can be regulated during export of pre-miRNA from 

the nucleus as well as during the incorporation of mature miRNA into the RISC complex. 

However, both mechanisms are poorly understood. A recent study has identified ~12nt semi-

microRNAs (smiRNA) which are generated along the miRNA pathway and are capable of 

regulating the activity of corresponding mature miRNAs (Plante et al., 2012).  

 

2.3. miRNA annotation and registry 

Together with the increasing number of newly discovered microRNAs it was necessary 

to develop a uniform system for miRNA annotation. In the year 2003, Victor Ambros and 

colleagues described a set of rules for the experimental verification of newly discovered 

miRNAs based on the expression and biogenesis criteria (Ambros et al., 2003). Moreover, 

they proposed also a convention for nomenclature of miRNAs. To improve the 

communication between miRNA research groups, Sanger Institute created a miRNA registry 

(miRBase) (Griffiths-Jones, 2004). This registry serves as a platform to submit new miRNAs 

on one hand and provides detailed information about each published miRNA, on the other 

hand. The 19
th 

release of miRBase is available since August 2012 and contains information 

about 25141 mature miRNAs in 193 species. 

 

2.4. miRNA functions in animal development 

Together with the discovery of lin-4 and let-7 functions, miRNAs have been classified 

as regulators of developmental processes (Lee et al., 1993; Wightman et al., 1993). The 

miRNA loss-of-function models displayed abnormalities during C. elegans larval maturation 

due to precocious or retarded development (Chalfie et al., 1981; Ambros and Horvitz, 1984). 

Due to their high evolutionary conservation, lin-4 and let-7 miRNAs are suggested to perform 

the same function in other species (Pasquinelli et al., 2000; Lagos-Quintana et al., 2002). 

This hypothesis was further supported by the results of knock out (KO) experiments, where 

organisms with defective miRNA biogenesis were used as a tool for characterization of 

miRNA function. Depletion of Dicer, Drosha or Argonaute proteins was found to result in 

embryonic lethality in all tested animal models (Grishok et al., 2001; Bernstein et al., 2003; 

Wienholds et al., 2003; Alisch et al., 2007; Park et al., 2010). Classical Dicer-KO mouse 

models displayed embryonic lethality at 7.5 day post coitum (dpc) due to the lack of stem 

cells, whereas conditional-KO resulted in defective proliferation and differentiation of 
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embryonic stem cells (ESCs) (Bernstein et al., 2003; Kanellopoulou et al., 2005). These 

results suggest that miRNAs are necessary for maintenance of stemness as well as for 

differentiation of pluripotent stem cells, where stage-specific miRNA might regulate the 

expression of target genes important for tissues development and/or their proper function. 

Following this observation, many research groups have started to analyze miRNA profiles of 

specific cell-types, tissues and organs in an attempt to elucidate their biological functions 

(Stefani and Slack, 2008). Upon the identification of a specific miRNA, its target mRNAs 

can be predicted using several web-based tools (Xia et al., 2009). To verify the interaction 

between a miRNA of interest and its corresponding target, a simple assay was established 

(Nicolas, 2011). This assay is based on the expression of chimeric gene (e.g. luciferase ORF 

fused with 3΄UTR of target of interest) upon miRNA overexpression. Finally, the interaction 

and regulation of target gene expression at protein level must be confirmed in vivo in a 

physiological condition. Development of miRNA microarray and deep sequencing 

technologies paved the way for the current golden age of miRNA research by replacing 

complicated and time consuming approaches for miRNA identification (Barad et al., 2004; 

Liu et al., 2004; Creighton et al., 2009). Data obtained from the comparison of miRNA 

profiles of normal or defective tissues thus illustrate the importance of a specific miRNAs. 

The well-known example includes miRNA miss-expression in many types of human cancer 

(Kong et al., 2012). 

 

2.5. Role of miRNAs in pluripotent stem cells 

Pluripotent stem cells are defined by two main characteristics: they are able to self-

renew and can differentiate towards derivatives of all three germ layers and to germ cells 

(Bradley et al., 1984). Since 1981, when Evans and Kaufman first established a protocol for 

the isolation and culture of mouse ESCs, these ESCs became the gold standard of 

pluripotency and model for further characterization (Evans and Kaufman, 1981). 

Understanding the molecular basis of ESCs self-renewal and differentiation properties would 

facilitate their use in future regenerative medicine applications. Among many identified 

factors, Oct4, Sox2, Klf4, c-Myc and Nanog compose a core transcription factor network 

regulating the stemness of pluripotent stem cells (Niwa, 2007). Interestingly, forced 

expression of these transcription factors allows the reprogramming of somatic cells into 

pluripotent cells, widely known as induced pluripotent stem cells (iPSCs) (Takahashi and 

Yamanaka, 2006; Takahashi et al., 2007; Yu et al., 2007). 
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Since Dicer and Dgcr8-knockouts resulted in embryonic lethality due to depletion of 

stem cells, it signified a need for identification of individual pluripotency-specific miRNAs 

and to elucidate their role in pluripotency. Till now, members of miR-290 family (miR-371 

family is human homolog) and miR-302 family were identified and characterized as specific 

for both mouse and human ESCs (Houbaviy et al., 2003; Suh et al., 2004). Moreover, miR-

290 family is expressed highly in the other pluripotent cell lines including embryonic germ 

cells (EGCs), multipotent adult stem cell (maGSCs) and embryonic carcinoma cells (ECCs) 

(Zovoilis et al., 2008; Zovoilis et al., 2010). Interestingly, the expression of these 

pluripotency-specific miRNAs is regulated by the core pluripotency transcription factor 

network, suggesting their involvement in a common molecular pathway of pluripotency 

maintenance (Marson et al., 2008). Although, ESC-specific miRNAs have a crucial role in 

maintenance of stemness, only a few studies enlightened their precise function. In general, 

members of ESC-expressed miRNAs promote pluripotency by regulating the cell cycle (Card 

et al., 2008; Wang et al., 2008; Lichner et al., 2011). In addition, the NFκB signalling 

pathway was reported as a target of miR-290 family to promote the pluripotency by 

suppressing differentiation and epithelial-to-mesenchymal transition (Luningschror et al., 

2012). Recent studies have shown that ESC-specific miRNAs not only regulate the stemness 

but also facilitate somatic cells reprogramming towards iPSCs (Judson et al., 2009; Lin et al., 

2011). Besides ESC-specific and cell cycle–regulating miRNAs, several miRNAs including 

miR-200 family, miR-205 and three miRNA clusters, miR-17~92, miR-106b~25 and miR-

106a~363 have been shown to regulate the reprogramming process by facilitating 

mesenchymal-to-epithelial transition (Gregory et al., 2008; Gregory et al., 2011; Li et al., 

2011). Despite the well-known influence of miRNAs in pluripotency regulation, many 

challenges remain to elucidate the underlying mechanisms. 

 

2.6. miRNA functions during male germ cells specification 

Germ cells are the only cells in the body capable of transmitting genetic information 

through the generations by either oogenesis or spermatogenesis. Spermatogenesis is the 

process which gives rise to haploid male gametes and is common for all sexually reproducing 

animals. In mice, the process of spermatogenesis consists of three major phases: a) self-

renewal and proliferation, b) meiotic division, and c) spermiogenesis. Spermatogenesis is 

strictly regulated by transcriptional as well as post-transcriptional mechanisms (Cooke and 

Saunders, 2002; Bettegowda and Wilkinson, 2010). The transcriptional mechanisms are well 
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described, however, the post-transcriptional regulation is still largely unknown (Pang et al., 

2003; Wu et al., 2004). The support for the role of post-transcriptional mechanisms came 

from conditional knock out mouse models in which Dicer or Drosha were specifically 

depleted in primordial germ cells (PGCs) or spermatogonia (Hayashi et al., 2008; Maatouk et 

al., 2008; Korhonen et al., 2011). In all cases, the lack of miRNAs resulted in infertility due 

to disruption of spermatogenesis. To unravel the role of miRNAs in spermatogenesis, several 

research groups have performed expression analysis using purified germ cells or cells from 

the whole testis (Yu et al., 2005; Ro et al., 2007; Yan et al., 2007; Song et al., 2009). 

Although they were able to identify many miRNAs that are specific for certain germ cell 

populations, no functional studies were performed to explain the molecular function of these 

miRNAs. Till now there are only few examples of miRNAs with well documented function 

in spermatogenesis: a) miRNA-122a is expressed in late germ cells and targets Transition 

protein 2 gene (Tnp2) thus allowing the loading of protamines and subsequent chromatin 

compaction (Yu et al., 2005), b) miRNA-21 which is highly expressed in spermatogonial 

stem cells (SSCs) and c) spermatocyte and spermatid-specific miRNA-34c are crucial for 

regulating  apoptosis during spermatogenesis (Niu et al., 2011; Liang et al., 2012). In order to 

establish a comprehensive list of miRNAs and their functions during spermatogenesis, it is 

necessary to develop efficient strategies to enrich pure populations of various spermatogenic 

cell types. miRNA expression data obtained from such pure germ cell populations might help 

us to establish a spatiotemporal expression profile of miRNAs and to elucidate their function. 

 

2.7. Objectives 

To further expand our knowledge on the expression and function of miRNAs in 

pluripotent cells as well as in germ cells, the current study was undertaken with the following 

objectives: 

1. Comparative expression and functional analysis of pluripotency-related miRNAs in 

various pluripotent cell types. 

2. Identification of cell type-specific miRNAs and elucidation of their function during the 

process of spermatogenesis.
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3. Results 

microRNAs (miRNAs) are a class of small non-coding RNAs known to function in 

post-transcriptional regulation of gene expression. The goal of this thesis was to characterize 

the function of known pluripotency-specific miRNAs. Moreover, we extended this study to 

germ cells and established the miRNA signature of various cell types of mouse 

spermatogenesis and showed functional relevance for some of the stage-specific miRNAs. 

Collectively, we revealed the miRNA profiles of pluripotent cells as well as germ cells and 

uncovered their function in regulation of pluripotency and spermatogenesis, respectively. The 

results of this thesis are summarized in the following manuscripts: 

3.1. Members of the miR-290 cluster modulate in vitro differentiation of mouse 

embryonic stem cells. 

3.2. Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent 

cells originating from the germ line. 

3.3. MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for 

stage-specifically expressed miRNA-221, -203, and -34b-5p mediated 

spermatogenesis regulation. 

Each paragraph within the following results section contains a brief description of the 

aim of the study in context of the complete thesis, the status of each manuscript as well as the 

author contributions. 
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3.1 Members of the miR-290 cluster modulate in vitro differentiation of mouse 

embryonic stem cells 

Recent studies have highlighted the importance of miRNAs, especially miR-290 family 

members, in maintenance of self-renewal and proliferation properties of pluripotent stem 

cells. In the first part of this thesis, we tested the possible function of miRNA-290 members 

during embryonic stem cell (ESC) differentiation. Towards this end, we performed miRNA 

gain-of-function and loss-of-function experiments in ESCs. The overexpression of miR-290 

cluster in ESCs could not prevent the downregulation of Oct4, a pluripotency marker gene, 

and also failed to sustain the stemness during induced differentiation. However, the 

suppression of miRNA-290 members expression resulted in an immediate downregulation of 

Oct4 and cells showed precocious differentiation. Additionally, differentiation towards 

mesoderm and germ cell lineage was found to be significantly affected in miR-290 cluster 

overexpressing cells. Reciprocally, the miR-290 cluster suppression resulted in preferential 

derivation of mesoderm and germ cell lineage cell types. Further studies revealed that 

miRNA-290 members target Dkk1, a Wnt-signaling inhibitor, to modulate the mesoderm and 

germ cells differentiation of ESCs. Collectively, our results demonstrate for the first time that 

pluripotent-specific miRNAs regulate the differentiation of ESCs. 

Authors: Athanasios Zovoilis*, Lukasz Smorag*, Angeliki Pantazi, Wolfgang Engel. 

* equal contribution to the work 

Published in Differentiation. 2009 Sep-Oct;78(2-3):69-78. doi: 10.1016/j.diff.2009.06.003. 

Epub 2009 Jul 22. 

 

http://www.ncbi.nlm.nih.gov/pubmed/19628328
http://www.ncbi.nlm.nih.gov/pubmed/19628328
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3.2. Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent 

cells originating from the germ line. 

We have identified that the expression of miR-290 as well as miR-302 clusters is 

identical between undifferentiated pluripotent cells originating either from inner cell mass of 

the blastocyst (ESCs) or from germ cells (multipotent adult germline stem cells (maGSCs)). 

However, we noted that maGSCs retain high expression levels of miR-290 cluster, which is 

associated with high Oct4 expression, during induced differentiation. In the second part of 

this thesis, we investigated the potential differences between ESCs and maGSCs as well as 

embryonic germ cells (EGCs) during differentiation and the relevance of miRNAs in this 

process. We found that undifferentiated maGSCs and EGCs express high levels of germ cell 

specific marker genes such as Dppa3 and Stra8 compared to ESCs. These expression levels 

were highly persistent even during the differentiation of maGSCs and EGCs. In light of these 

findings, we identified that ESCs but not maGSCs retains high expression levels of miRNA-

302 cluster during differentiation and inversely correlates with the levels of early-germ cell 

marker genes. Finally as a proof of concept, we show that overexpression of miR-302 in 

maGSCs can suppress the preferential differentiation into germ cell lineage during 

differentiation. 

Authors: Athanasios Zovoilis*, Angeliki Pantazi*, Lukasz Smorag*, Lennart Opitz, 

Gabriela Salinas Riester, Marieke Wolf, Anna Holubowska, Ulrich Zechner, Stewart Colin, 

Wolfgang Engel 

* equal contribution to the work 

Published in Mol Hum Reprod. 2010 Nov;16(11):793-803. doi: 10.1093/molehr/gaq053. 

Epub 2010 Jun 21.   

http://www.ncbi.nlm.nih.gov/pubmed/?term=Embryonic+stem+cell-related+miRNAs+are+involved+in+differentiation+of+pluripotent+cells+originating+from+the+germ+line.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Embryonic+stem+cell-related+miRNAs+are+involved+in+differentiation+of+pluripotent+cells+originating+from+the+germ+line.
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3.3. MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for 

stage-specifically expressed miRNA-221, -203, and -34b-5p mediated spermatogenesis 

regulation. 

Spermatogenesis, the process of haploid male gametes generation, is a complex process 

regulated by both transcriptional and post-transcriptional mechanisms. To better understand 

how post-transcriptional mechanisms mediated by miRNAs regulate the self-renewal as well 

as differentiation process of spermatogonial stem cells (SSCs), we analyzed the miRNA 

expression profile of various cell types of mouse spermatogenesis. To achieve this goal, we 

generated a transgenic mouse model (Stra8/EGFP and Sycp3/DsRed) in which pre-meiotic 

(PrM) and meiotic cells were marked by EGFP and DsRed, respectively. The isolation of 

pure germ cell populations, i.e., SSC, PrM and meiotic cells and the subsequent miRNA 

microarray expression analysis led us to establish the miRNA signature of individual cell 

type. Through functional studies, we show that miRNA-221 regulates the self-renewal of 

SSCs by targeting c-Kit, while miRNA-203 and -34b-5p function in preventing the 

precocious activation or repression of germ cell differentiation by targeting Rbm44 and Cdk6, 

respectively. Taken together, through our data we suggest a working model where 

spatiotemporal expression of miRNA functions in the regulation of spermatogenesis. 

Authors: Lukasz Smorag, Ying Zheng, Jessica Nolte, Ulrich Zechner, Wolfgang Engel, 

D.V. Krishna Pantakani. 

Published in Biol Cell. 2012 Nov;104(11):677-92. doi: 10.1111/boc.201200014. Epub 2012 

Sep 24. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=MicroRNA+signature+in+various+cell+types+of+mouse+spermatogenesis%3A+Evidence+for+stage-specifically+expressed+miRNA-221%2C+-203%2C+and+-34b-5p+mediated+spermatogenesis+regulation.
http://www.ncbi.nlm.nih.gov/pubmed/?term=MicroRNA+signature+in+various+cell+types+of+mouse+spermatogenesis%3A+Evidence+for+stage-specifically+expressed+miRNA-221%2C+-203%2C+and+-34b-5p+mediated+spermatogenesis+regulation.
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4. Discussion 

Since the first discovery of miRNAs in C. elegans about 20 years ago, now they are 

identified in almost all living organisms. As much as 60% of human protein-coding genes 

might be regulated by miRNAs (Lewis et al., 2005; Friedman et al., 2009). Deregulation in 

miRNAs expression has been already reported to be associated with many human diseases, in 

particular with cancer. Moreover, miRNAs were shown to be essential for maintenance of 

stem cells as well as for normal embryogenesis (Bernstein et al., 2003). In the present study, 

we investigated the expression and function of microRNAs in pluripotent stem cells as well 

as in germ cells. We have shown that miRNAs belonging to miR-290- and 302-clusters 

regulate the fate of pluripotent stem cells by suppression of differentiation pathways towards 

mesoderm and germ cell lineage. Moreover, we established miRNA expression profile of 

spermatogonial stem cells (SSCs), premeiotic and meiotic cells. Further, we have shown that 

germ cell specific miRNA-221, -203 and 34-5p regulate their corresponding target genes (c-

Kit, Rbm44 and Cdk6, respectively) to control the spermatogenesis. Taken together, our 

current studies revealed novel functions of pluripotent stem cells- and germ cell-specific 

miRNAs in the context of pluripotency and spermatogenesis. 

 

4.1 Pluripotent stem cell-specific miRNAs and their functions 

ESC specific miRNAs, the members of miR-290 and miR-302 clusters, have been 

shown to regulate pluripotency (Houbaviy et al., 2003; Suh et al., 2004; Lakshmipathy et al., 

2007; Morin et al., 2008). Moreover, these ESC-specific miRNAs are highly expressed in 

other pluripotent cell lines such as multipotent adult germline stem cells (maGSCs), 

embryonic carcinoma cells (ECCs), embryonic germ cells (EGCs) and induced pluripotent 

stem cells (iPSCs) (Zovoilis et al., 2008; Chin et al., 2009; Zovoilis et al., 2010). Similarly, 

members of miR-371 cluster (homolog of murine miRNA-290 family) and miRNA-302 

cluster represent the majority of human ESC-specific miRNAs (Suh et al., 2004). Our current 

knowledge concerning the function of ESC-specific miRNAs comes from analysis of 

phenotypes caused by genetic ablation of components of miRNA biosynthesis pathway. 

Dicer knockout embryos dye during embryonic development and Dicer-deficient (Dicer
-/-

) 

ESCs are viable but manifest proliferation and differentiation defects (Bernstein et al., 2003; 

Kanellopoulou et al., 2005; Murchison et al., 2005). Moreover, the Dicer
-/- 

ESCs failed to 

form teratoma after injection into immunodeficient mice and showed incompetence to 
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contribute to chimera formation after injection into the blastocyst (Kanellopoulou et al., 

2005). Interestingly, Dgcr8, a co-factor of Drosha, deficient ESCs displayed a similar 

phenotype (Wang et al., 2007).  

Under physiological conditions, ESCs display a unique cell cycle pattern. As compared 

to somatic cells, ESCs have extremely short G1 phase and a high proportion of the cells in S-

phase (White and Dalton, 2005). Analysis of cell cycle in Dicer
-/-

 or Dgcr8
-/-

 revealed that 

many cells accumulate in G1 cell cycle phase and show cell proliferation and growth defects 

(Murchison et al., 2005; Wang et al., 2008). Transfection of single miRNAs into Dgcr8
-/-

 

ESCs has shown that members of miR-290 cluster are sufficient to rescue the proliferation 

defect (Wang et al., 2008). The Cyclin E-Cdk2 complex has been reported to positively 

regulate G1/S transition in ESCs (Kato, 1999; Burdon et al., 2002). p21CIP, the protein 

product of Cdkn1a gene, is a well-known inhibitor of cyclin E-Cdk2 complex (Harper et al., 

1993). Simultaneously, Cdkn1a is post-transcriptionally regulated by miRNA-290 cluster and 

in the absence of miRNA-290 it can efficiently inhibit cyclin E-Cdk2 function resulting in G1 

arrest (Wang et al., 2008). Additionally, two members of cyclin E-Cdk2 pathway, Rbl2 

(p107) and Lats2 were identified as direct targets of miRNA-290 cluster (Wang et al., 2008). 

In consistence with these results, Lichner and colleagues have shown that miR-290 cluster 

regulate not only G1/S but also G2/M transition (Lichner et al., 2011). Further, this study has 

identified Fbx15 and Wee1 as targets of miR-290 cluster. Fbx15 interacts with dynactin-1 

and regulates the cell entry into S phase, while Wee1 inactivates Cdk1 protein and regulate 

G2/M transition (Tominaga et al., 2006; Zhang et al., 2007). The function of miRNA-290 

cluster in cell cycle regulation is depicted in Figure. 4.1. 
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Figure 4.1. Cell cycle of somatic cells and ESCs. ESCs display unique cell cycle lacking fully formed gap 

phases G1 and G2. Moreover, most of the time (50-60%) is dedicated for S phase in ESCs. Members of 

miRNA-290 cluster repress the expression of Cdkn1a and Lats2 to allow Cyclin E-Cdk2 mediated G1-S 

transition. Similarly, Rbl2, Pbx15 and Wee1 are inhibited by miR-290 members for G1-S and G2-M 

progression.  

 

Although proliferation defects seen in Dicer
-/-

 ESCs could be partially rescued by miR-

290 cluster, it was not sufficient to overcome differentiation defects (Sinkkonen et al., 2008; 

Wang et al., 2008). In line with these results, two research groups have shown that miRNA 

depletion results in inactivation of de novo methyltransferases (Dnmts) (Benetti et al., 2008; 

Sinkkonen et al., 2008). Due to the inactivation of DNA methylation machinery, core 

pluripotent transcription factors such as Oct4, Sox2 and Nanog showed persistent expression 

during differentiation and cells retained the pluripotent state (Benetti et al., 2008; Sinkkonen 

et al., 2008). However, these results cannot rule out that other miRNAs depleted in Dicer
-/-

 

and Dgcr8
-/-

 cells are necessary for differentiation. This hypothesis is strengthened by the 

observation that the let-7 family members are highly expressed in ESCs during differentiation 

(Viswanathan et al., 2008).  

In the present study (Zovoilis et al., 2009), we showed that ESC-specific miRNAs 

regulate stemness by suppression of genes involved in differentiation pathway. By employing 

gain-of-function and loss-of-function experiments in ESCs, for the first time we have shown 

that members of miRNA-290 family are sufficient to inhibit differentiation towards 

mesoderm and germ cells. We identified Dkk1, a well-known antagonist of Wnt signaling 
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pathway as a direct downstream target of miRNAs of 290 cluster. In contrast to these 

observations, activation of Wnt signaling pathway was mostly correlated with activation of 

mesoderm formation (ten Berge et al., 2008). Since our knowledge about Wnt action in ESCs 

remains incomplete it is difficult to explain this discrepancy. In accordance to our study, 

Lichner et al.(2011) have shown that stable overexpression of miRNA-290 cluster in ESCs is 

sufficient to suppress expression of the early differentiation markers of all three germ layers. 

However, in our study we were not able to show any influence on differentiation towards 

endoderm and ectoderm lineage. This discrepancy most probably comes from technical 

limitation of transient transfections used in our study. In light of above findings, many 

research groups have tried to test the influence of miRNA-290 family on the reprogramming 

process. However, members of miRNA-290 cluster alone were not sufficient to reprogram 

somatic cells, but in combination with Oct4, Sox2 and Klf4, the efficiency of reprogramming 

was shown to be increased ten times (Judson et al., 2009). Since c-Myc is one of the target 

genes of Wnt signaling, it is obvious that adding miRNA-290 cluster to the reprogramming 

cocktail can activate c-Myc expression via Wnt pathway (Fig. 4.2). Indeed our results could 

show that overexpression of miR-290 cluster leads to the activation of c-Myc (Zovoilis et al., 

2009). Collectively, these results strongly support the indispensable function of miRNAs in 

pluripotent stem cells as well as in normal animal development. 

 

Figure 4.2. Schematic representation of the role of miRNA-290 cluster in Wnt signaling pathway. 

Suppression of Dkk1 by miRNA-290 cluster enables binding of Wnts to the LPR5/6 receptor and prevents 

phosphorylation of β-catenin by GSK3β. Next, the stabilized β-catenin translocates into the nucleus and 

activates the transcription of c-Myc. 
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4.2. Identification of novel pluripotency-related miRNAs 

In order to identify novel miRNAs which can play a crucial role in pluripotent stem 

cells, we compared miRNA expression profiles between pluripotent ESCs and embryonic 

fibroblasts (MEFs). This analysis led us to identify miR-130b, -124, -363-3p, and -135b as 

novel miRNAs expressed specifically in ESCs but not in MEFs (Fig. 4.3A). We observed a 

specific expression of miR-290 family members in ESCs (Fig. 4.3A), further validating our 

microarray analysis. We analyzed the expression of these novel miRNAs in several adult 

mouse tissues as well as in ESCs and found that miR-135b and -363 are preferentially 

expressed in ESCs (Fig. 4.3B), whereas miR-124 and -130b are found to be ubiquitously 

expressed (Fig. 4.3C), thus excluding them as pluripotent cell-specific miRNAs. To confirm 

the specific expression of miR-135b and -363 in pluripotent cells, we analyzed their 

expression in various pluripotent stem cell types and found them to be highly expressed in all 

analyzed cell types (Fig. 4.4A). Recently, several miRNAs were shown to play a major role 

during the reprogramming of somatic cell towards induced pluripotent stem cells (iPSCs) 

(Anokye-Danso et al., 2011; Kuo and Ying, 2012). To analyze the expression profile of novel 

miR-135b and -363 during reprogramming, we checked their expression during the time 

course of iPSCs generation. This analysis indicated that miR-135b and -363 start expressing 

at day7 of reprogramming along with the expression of pluripotency-related and 

mesenchymal-to-epithilial-transition inducing miRNAs, miR-294 and -200b, respectively 

(Fig. 4.4B). 
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Figure 4.3. Identification and characterization of novel pluripotent cell-specific miRNAs. (A) Heat map 

representation of miRNA microarray data. The scale denotes an approximation of extent of miRNA relative 

upregulation in red and downregulation in cyan. Bar graph representation of qRT-PCR data showing the 

expression of miR-135b and miR-363 (B) as well as miRNA-130b and -124 (C) in various adult mouse tissues. 
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Figure 4.4 miR-135b and miR-363 are expressed in all pluripotent cell types. (A) Bar graph representation 

of qRT-PCR data of miR-135b and miR-363 in different pluripotent stem cell lines and in MEFs, a somatic cell 

type. (B) Bar graph showing the expression levels of miR-135b and miR-363 during somatic cell 

reprogramming time course. 

 

4.2.1. miRNA-135b and -363 are transcriptional targets of pluripotency-related factors 

The core pluripotency transcription factor network composed of Oct4 (O), Sox2 (S) and 

Nanog (N) regulates the expression of several pluripotency-related genes to maintain the 

pluripotency (Loh et al., 2006; Chen et al., 2008; Marson et al., 2008). The transcriptional 

regulation by these core transcription factors thus indicates a gene as important for 

pluripotency maintenance. To identify whether miR-135b and -363 are transcriptionally 

regulated by the pluripotency network, we analyzed the publicly available chromatin 

immunoprecipitation-sequencing (ChIP-Seq) data of OSN binding sites across the mouse 

genome (Marson et al., 2008). This analysis indicated that OSN bind ~4kb proximal to miR-

135b and adjacent to -363 transcriptional start sites (Fig. 4.5A). To validate these 

observations, we performed ChIP using OSN antibodies on the chromatin prepared from 

ESCs and found a specific binding of OSN to the putative promoter regions of miR-135b and 

-363, albeit at various levels (Fig. 4.5B and 4.5C) 
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Figure 4.5. miR-135b and -363 are transcriptional targets of core pluripotency transcription factors. (A) 

The genomic architecture of miR-135b and miR-363 clusters along with the reported Oct4 (O), Sox2 (S) and 

Nanog (N) binding sites (Marson et al., 2008). The region analyzed for OSN binding using qRT-PCR is 

indicated as thick bar. Bar graph representation of OSN enrichment at the putative promoter regions of miR-

135b (B) and miR-363 (C). The ChIP with IgG served as a negative control. 

 

4.2.2. Identification of miR-135b and -363 target genes 

In order to identify mRNA targets of miR-135b and -363, we used miRNA body map 

software to predict the targets of these two novel pluripotent cell-specific miRNAs. This 

analysis led us to identify cell cycle regulation and tumor suppressor genes as targets of miR-

135b (Fig. 4.6A). Similarly, miR-363 was predicted to target cell cycle regulators and 

differentiation-related genes (Fig. 4.6B). To experimentally validate these putative targets, 

we constructed luciferase reporters using the 3΄-UTRs of two selected targets for each 

miRNA. ESCs transfected with cell cycle negative regulator (Ccng2), a miR-135b target, 

reporter construct and miR-135b-mimic showed ~50% reduction in the luciferase reporter 

activity (Fig. 4.6C). However, tumor suppressor gene Rbl1, another target of miR-135, 

showed no significant difference in luciferase reporter activity (Fig. 4.6C). Similarly, 

transfection of ESCs with cardiomyocyte differentiation factor (Nox4) reporter construct and 
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miR-363-mimic showed ~30% reduction in luciferase activity (Fig. 4.6D), whereas 

neurogenesis inducer (Myo1b) showed no difference (Fig. 4.6D). Based on these results, we 

selected Ccng2 and Nox4 for further studies. Interestingly, we observed an inverse 

correlation in expression between miRNAs and their targets in undifferentiated ESCs as well 

as during induced differentiation (Fig. 4.6E, F). Further experiments aimed at understanding 

the function of these novel miRNAs and their targets during induced differentiation will 

uncover their role in pluripotency.  

 

 

 

Figure 4.6. Identification and validation of putative target genes of miR-135b and -363. List of predicted 

target genes of miR-135b (A) and miR-363 (B). Bar graph showing the luciferase reporter activities of miR-

135b targets Ccng2 and Rbl1 (C), and miR-363 targets Nox4 and Myo1b (D). (E) Bar graph representation of 

qRT-PCR data showing the expression of miR-135b (Ea’) and its target Ccng2 (Eb’) as well as miR-363 (Fc’) 

and Nox4 (Fd’) during the time course of retinoic acid (RA) induced differentiation of ESCs. 
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4.3. miRNAs in somatic cell reprogramming 

Generation of iPSCs by Takahashi and Yamanaka in 2006 opened up a new era in 

pluripotent stem cell research (Takahashi and Yamanaka, 2006). On the one hand iPSCs can 

overcome ethical issues associated with human ESCs and on the other hand they make it 

possible to generate patient specific stem cells and their use in cell replacement therapy by 

avoiding immune response. miRNAs are one of the factors which were shown to significantly 

enhance the efficiency of reprogramming process (Gregory et al., 2008; Li et al., 2011; Lin et 

al., 2011). The members of miR-290 cluster, miR-302, miR-17~92, miR-106b~25, miR-

106a~363 clusters as well as miR-200 cluster and miR-205 were reported to enhance the 

reprogramming process (Gregory et al., 2008; Li et al., 2011; Lin et al., 2011). Interestingly, 

majority of these miRNAs were proposed to regulate mesenchymal-to-epithelial transition 

(MET). Generation of iPSCs requires suppression of mesenchymal program and activation of 

epithelial program in somatic cells which is highly facilitated by miRNAs (Fig. 4.7) (Li et al., 

2010).  

 

 

Figure 4.7. Schematic representation of miRNAs functions in the process of mesenchymal-to-epithelial 

transition. The members of miR-106~363, miR-302 cluster and miR-93 (member of miR-106b~25 cluster) 

repress Tgfβ receptor and inhibit anti-epithelial stimuli. Further, members of miR-106~363 and miR-302 

clusters facilitate the expression of epithelial marker E-Cadherin. In addition, member of miR-200 cluster 

together with miR-205 repress the E-Cadherin antagonists Zeb1/2 (figure adopted from Pfaff et al., 2012). 

 

4.4. Function of miRNAs in gametogenesis 

In sexually reproducing organisms, gametes are the only cells capable of transmitting 

genetic information to the next generation. Many transcriptional as well as posttranscriptional 

mechanisms have been reported to regulate the process of gametogenesis (Pangas and 

Rajkovic, 2006; Bettegowda and Wilkinson, 2010). One of the recently discovered 

mechanisms governing gametogenesis includes miRNAs (Tang et al., 2007; Meng et al., 
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2011). By taking advantage of conditional knockout mouse models, many research groups 

have proven the importance of miRNAs in gametogenesis. The loss of total miRNA caused 

by depletion of Drosha or Dicer specifically in PGCs or spermatogonia resulted in male 

infertility (Hayashi et al., 2008; Maatouk et al., 2008; Korhonen et al., 2011; Wu et al., 

2012). Similarly, lack of Dicer in mouse oocytes resulted in female infertility (Murchison et 

al., 2007). Surprisingly, depletion of Dgcr8 in oocytes did not affect female fertility (Suh et 

al., 2010). Moreover Dgcr8
-/-

 oocytes can be fertilized by wild type sperm and the resulting 

zygotes develop and give rise to healthy pups (Suh et al., 2010). These results are in 

contradiction with previous reports and led to a suggestion that phenotypes observed in 

Dicer
-/-

 females and zygotes are probably caused by a lack of endogenous small interfering 

RNAs (siRNAs) rather than miRNAs (Tang et al., 2007; Ma et al., 2010). In line with these 

assumptions, importance of endogenous siRNA, generated by Dicer, was reported in the 

regulation of gene expression in mouse oocytes (Tam et al., 2008; Watanabe et al., 2008). 

Taken together, miRNAs seems to have uneven contribution to gametes formation in male 

and female.  

 

4.4.1. Functions of miRNAs in the process of spermatogenesis 

Spermatogenesis is a process common for all sexually reproducing animals through 

mitotic proliferation, meiotic divisions and maturation phases to finally give rise to functional 

sperm (Cooke and Saunders, 2002). Spermatogonial stem cells (SSCs), the unipotent stem 

cells, assure the source for generation of male gametes. In an attempt to identify miRNAs 

with a function in spermatogenesis, many research groups have characterized miRNA 

expression profiles of various germ cell populations or testicular cells isolated form 

prepubertal and adult animals (Yu et al., 2005; Ro et al., 2007; Yan et al., 2007; Song et al., 

2009). In the present study (Smorag et al., 2012), we developed an efficient system for 

isolation of SSCs, pre-meiotic (PrM) and meiotic cells. Generation of double transgenic 

mouse model (Stra8/EGFP and Sycp3/DsRed) led us to isolate pre-meiotic spermatogonia 

(green) and primary spermatocytes (red) using FACS approach. Comparison of miRNA 

profiles between SSCs, PrM and meiotic cells led us to identify miRNAs specific for only 

one, two or all three cell types. Through our study, for the first time, dynamic changes in 

miRNAs expression during spermatogenesis can be shown. In agreement with recent studies, 

we identified many miRNAs expressed in a stage-specific manner (Yu et al., 2005; Yan et 

al., 2007; Song et al., 2009; Buchold et al., 2010; Niu et al., 2011). Our results indicate that 



Discussion 

 

28 

 

miR-221, 203 and miR-34b-5p play an important role in spermatogenesis regulation by 

targeting c-Kit, Rbm44 and Cdk6 genes, respectively. Interestingly Kit
W/W

, Cdk6
-/-

 as well as 

its downstream target, Cdk2
-/-

 mice are subfertile or infertile (Yoshinaga et al., 1991; Ortega 

et al., 2003; Malumbres et al., 2004). Our knowledge about miRNA in later stages of 

spermatogenesis is rather poor and mostly based on analysis of miRNA profiles from whole 

testis. Till now only miR-122a and miRNA-34c were characterized in spermatids (Yu et al., 

2005; Liang et al., 2012). miR-122a has been reported to regulate histone-protamine 

exchange by targeting transition protein 2 (Tnp2) (Yu et al., 2005). However Tnp2
-/-

 animals 

were fertile, although they show abnormalities during chromatin condensation in spermatids 

(Zhao et al., 2001). Similarly, miR-34c has been shown to regulate apoptosis by targeting 

Atf1 gene (Liang et al., 2012). Atf1 has been reported to maintain cell viability during 

embryo development, however its function in germ cells is unknown (Bleckmann et al., 

2002). Interestingly, miRNA-34c was also detected in mature sperm and is known to regulate 

first cleavage division of the mouse zygote after fertilization. (Liu et al., 2011). These results 

highlighted that sperm contributes more than just a delivery of paternal genome during 

zygote development. Functions of miRNAs during spermatogenesis and early embryonic 

development are summarized in Figure. 4.8. 

 

 

 

Figure 4.8. Working model for the function of miRNAs during spermatogenesis. Spatiotemporal expression 

of miRNAs regulates sequential steps of male germ cells maturation. miRNAs along with their corresponding 

targets, which were identified in the present study, are indicated in bold (Smorag et al., 2012) (figure adopted 

and modified from Hogarth and Griswold, 2010). 

 



Discussion 

 

29 

 

 

4.5. miRNAs and human diseases 

Growing body of evidence suggests that miRNAs play a crucial role in health and 

disease. According to miRNA-disease data base in the year 2010, there are 174 described 

diseases associated with dys-regulated expression of miRNAs (www.mir2disease.org) (Jiang 

et al., 2009). Interestingly, 83 out of 174 diseases are cancer-related diseases. Due to 

relatively small size of mature miRNA sequences and their corresponding binding motifs in 

3′-UTR of target genes, diseases caused by direct mutation in these regions are extremely 

rare. Till now, there is only one evidence for each case of mutation in miRNA and its target 

sequence. Point mutation (substitution of A to G) in the seed sequence of miRNA-96 was 

reported to result in hearing loss (Mencia et al., 2009), while disruption of miRNA-189 

binding site caused by substitution of G to A in 3′-UTR of SLITRK1 was described as 

responsible for Tourette’s syndrome (Abelson et al., 2005). Since a single miRNA can 

regulate many targets and vice versa a single target can be regulated by several miRNAs, 

phenotype due to mutations occurring in either miRNAs sequence or their binding sites can 

be obscured by compensation mechanisms. This hypothesis can explain why diseases caused 

by mutations in the most abundant RNA family are so rare. 

 

4.6. miRNAs as therapeutic drugs 

Recent advances in understanding the function of miRNAs have led to use these small 

RNA molecules as a therapeutic drug. In theory, suppression of particular miRNA linked to 

disease might eliminate the block against the expression of corresponding therapeutic protein 

and conversely, delivery of mimic miRNAs can repress the expression of harmful gene. 

Although this new branch of pharmacology is quite attractive, the multiple functions of a 

single miRNA must be taken into consideration before any attempts of therapeutic usage. The 

data presented by Pharmaprojects (online data base of advances in pharmacological 

technology) summarizes the status of miRNA therapeutic approaches (Table 4.1.). The first 

ever miRNA-based therapy against Hepatitis C virus (HCV) is already in second phase of 

clinical trials. Collectively, the current pace of miRNA research holds great promise for 

future development of novel miRNA-based therapeutics. 
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Generic name Originator Status Pharmacology Target Aplication 

SPC-3649 Santaris Pharma Phase II miRNA Inhibitor miRNA-122 Infection, HCV, 

Hypercholesterolemia 

anti-miR-122 

oligo, Regulus 

Alnylam Preclinical miRNA Inhibitor miRNA-122 Infection, HCV 

miRNA 

inhibitors, 

Miragen 

Miragen 

Therapeutics 

Preclinical miRNA Inhibitor miRNA-208a Heart failure 

miRNA 

mimetics, 

Miragen 

Miragen 

Therapeutics 

Preclinical miRNA stimulant Unspecific Heart failure 

prostate cancer 

miRNAs, Mirna 

Mirna 

Therapeutics 

Preclinical miRNA stimulant Unspecific Cancer, prostate 

AML miRNA 

therapy, Mirna 

Mirna 

Therapeutics 

Preclinical miRNA stimulant Unspecific Cancer, leukaemia, 

acute myelogenous 

nsclc miRNA 

therapy, Mirna 

Mirna 

Therapeutics 

Preclinical miRNA stimulant microRNA let-

7a-1 

Cancer, lung, non-

small cell 

herpes virus 

therapy, Rosetta 

Rosetta 

Genomics 

Preclinical miRNA Inhibitor Unspecific Infection, Epstein-

Barr virus, herpes 

simplex virus 

miR-34a 

mimetics, 

Rosetta 

Rosetta 

Genomics 

Preclinical miRNA stimulant 

p53 stimulant 

Apoptosis agonist 

miRNA-34a 

tumor protein 

p53 

Cancer, liver 

hepatitis C 

therapy, Rosseta 

Rosetta 

Genomics 

Preclinical miRNA Inhibitor Unspecific Infection, HCV 

HIV therapy, 

Rosseta 

Rosetta 

Genomics 

Preclinical miRNA Inhibitor Unspecific Infection, HIV/AIDS 

 

Table 4.1. List of miRNA-based therapeutics which are in clinical and preclinical trials (table adapted and 

modified from http://www.pharmaprojects.com) 

 

4.7. Identification and characterization of novel meiotic genes 

Meiosis is the crucial process occurring during gametogenesis, leading to formation of 

haploid germ cells. However, our knowledge regarding meiotic processes is limited owing to 

only a few genes involved in this process. In order to identify new germ cells specific 

markers including meiotic genes, many research groups have performed transcriptome 

analysis of purified germ cells (Pang et al., 2003; Yu et al., 2003; Ma et al., 2012). Although 

these studies were able to identify genes specific for germ cells, no functional 

characterization of identified genes was done. In the present study, we took advantage of our 

double transgenic mouse model (Stra8/EGFP, Sycp3/DsRed) to identify and to characterize 
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novel meiotic-specific genes. After isolation and characterization of pre-meiotic and meiotic 

cells from double transgenic mouse testis using FACS, we performed mRNA expression 

profiling using Agilent Technologies 44K Mouse Whole Genome Microarray. Hierarchical 

clustering of transcriptome results revealed distant clustering of pre-meiotic (green cells) and 

meiotic (red cells) cells, while their biological replicates were closely related (Fig. 4.9A). 

Then, we applied a stringent selection criterion that is 7-fold expression difference between 

green and red cells to identify meiotic-specific genes. This analysis led us to identify 31 

genes as pre-meiotic specific, while 142 genes were identified as meiotic-specific (Fig. 

4.9B.). Further, we selected 10 meiotic-specific candidate genes (named as Meio1-10) with 

unknown function, for further characterization. The selected candidates displayed highest 

expression in red cells compared to green cells, and have been reported as testis-specific with 

unknown function in gene expression data base (www.ebi.ac.uk/gxa/). RT-PCR analysis 

confirmed the expression of nine of them in testis, while Meio4 could not be amplified by 

RT-PCR (Fig. 4.10). To confirm the testis specific expression of these novel Meio genes, we 

analyzed their expression in various adult mouse tissues. Seven out of nine Meio genes 

displayed testis-specific expression (Fig. 4.11). Meio2 and Meio6 showed ubiquitous 

expression and were excluded from further characterization. Next, we confirmed that none of 

these testis-specific Meio genes are expressed in Kit
W/Wv

 mouse testis (data not shown) 

indicating the germ cell-specificity. We checked the expression of these seven Meio genes 

during different mouse testicular developmental stages i.e. 5dpp till 20dpp (Fig. 4.12.). Apart 

from Meio3, all other Meio genes expression was first detected around day 15 (Fig. 4.12.), 

which correlates well with the appearance of primary spermatocytes in mouse testicular 

development. Taken together, these results led us to identify six novel meiosis-specific genes. 

The results of Meio genes expression analysis are summarized in Table 4.2. Further 

characterization of these selected Meio genes might help us to better understand their 

function in meiosis as well as to strengthen our knowledge about meiosis regulation. 
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Figure 4.9. Transcriptome analysis of pre-meiotic (green) and meiotic (red) cells isolated from 

Stra8/EGFP and Sycp3/DsRed transgenic mouse testis. (A) Hierarchical clustering of transcriptome data. (B) 

Venn diagram illustrating number of green and red-specific genes. 

 

 

Figure. 4.10. Expression analysis of Meio1-10 genes in mouse testis. RT-PCR analysis for Meio1-10 genes 

expression in adult mouse testis. 

 

Figure 4.11. Expression analysis of novel Meio genes in different adult mouse tissues. Bar graph  showing 

the expression levels of Meio genes in adult mouse tissues (combined qRT-PCR data of male and female tissues 

were normalized against testis expression). 
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Figure 4.12. Expression analysis of novel Meio genes during mouse testis development. Bar graph showing 

the expression of Meio genes at various testicular developmental stages. 

 

Name Symbol Testis 

expression 

Testis 

specificity 

Meiotic 

character 

Absence in 

W/Wv 

1700017D01Rik Meio1         

Pom121l2 Meio2   X n/a n/a 

1700017G19Rik Meio3     X n/a 

4933415F23Rik Meio4 X n/a n/a n/a 

Poteg Meio5         

Abca15 Meio6   X n/a n/a 

4933409D19Rik Meio7         

Fam170a Meio8         

1700008F21Rik Meio9         

4930403N07Rik Meio10         

 

Table 4.2 Characterization of novel meiotic-specific genes. The first column displays the official name of 

Meio genes followed by name given in the present study. V-indicates positive results, X-negative results and 

N/A –not analyzed. 
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4.8. Future endeavors and perspectives 

In the present study, we identified two novel pluripotent cell-specific miRNAs (miR-

135b and miR-363) and their targets (Ccng2 and Nox4, respectively). Further studies using 

stable overexpression and downregulation of these miRNAs and their role during 

differentiation of ESCs would shed light on their function in pluripotent cells.  Moreover, the 

functional characterization of their target genes Ccng2 and Nox4 during differentiation would 

help us to understand the differentiation potential of ESCs. It is interesting to note that miR-

135b overexpression was reported in several cancer cell types. In line with these 

observations, our preliminary results also showed an overexpression of miR-135b in one 

prostate and two colorectal cancer cell lines. Hence, studies on how miR-135b is involved in 

cell cycle regulation of cancer cells as well as of pluripotent stem cells would help us to 

dissect the mechanism of cell cycle regulation in these cells. It is also interesting to test 

whether miR-135b can initiate the tumorgenesis. Additionally, generation of loss-of-function 

and gain-of-function mouse models will help us to understand their function during 

development.  

The identification of stage-specific miRNAs during the process of spermatogenesis 

indicates the spatiotemporal control of this process by miRNAs. Interestingly, our in silico 

analysis indicated the presence of these stage-specific miRNAs in human genome, thus 

highlighting their possible conserved role in spermatogenesis. Further studies aimed at 

generation of loss-of-function mouse models and analysis of their phenotypes would help us 

to identify the functional significance of these miRNAs. The knowledge obtained through 

these mouse models might help us to identify the potential cause of infertility in idiopathic 

patients and development of possible therapies.  

The transcriptome analysis of pre-meiotic and meiotic cells led us to identify several 

meiosis-specific genes with unknown functions. The identification of protein interaction 

partners of these novel genes and their functional characterization might help us to 

understand their physiological function during meiosis. Furthermore, generation of antibodies 

against protein products of  these novel meiotic genes would facilitate cellular, molecular and 

biochemical studies. The higher expression of these genes in meiotic cells led us to speculate 

that the overexpression of these genes in pluripotent cells might result in successful 

progression of meiosis and thereby the generation of haploid gametes. Finally, the generation 

of knockout and transgenic mouse models for these genes will uncover their function during 

gametogenesis. 
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6 Abbreviations 

°C   degree Celsius 

Ago-2   Argonaute-2 

AP   Alkaline phosphatase 

bFGF   Basic fibroblast growth factor 

Bmp-4   Bone morphogenetic protein 4 

Boll   Boule-like 

bp   base pair 

Cdk6   Cyclin-dependent kinase 6 

cDNA   complementary DNA 

ChIP   Chromatin Immunoprecipitation 

DAPI   Diamidino-2-phenylindole dihydrochloride 

Dazl   Deleted in azoospermia-like 

Dgcr8   DiGeorge syndrome critical region gene 8 

Dkk1   Dickkopf-related protein 1 

DNA   Deoxyribonucleic acid 

dpc   day post coitum 

dpp   day postpartum 

Dppa3   Developmental pluripotency associated 3 

DsRed   Discosoma sp. Red Fluorescent Protein 

dsRNA  double stranded RNA 

dTg   double transgenic 

ECCs   Embryonic Carcinoma Cells 

EGCs   Embryonic Germ Cells 

EGF   Epidermal growth factor 

EGFP   Enhanced Green Fluorescent Protein 

ESCs   Embryonic Stem Cells 

FACS   Fluorescence-Activated Cell Sorting 

FCS   Fetal Calf Serum 

Fgf8   Fibroblast growth factor 8 

FL   feeder layer 

Fndc3a   Fibronectin type III domain containing 3A 
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GDNF   Glial cell-derived neurotrophic factor 

GO   Gene Ontology 

gPSs   germline-derived Pluripotent Stem Cells 

GSK3β  Glycogen synthase kinase-3 beta 

hnRNP A1  Heterogeneous nuclear ribonucleoprotein A1 

HRP   Horseradish peroxidase 

ICR   Imprinting Control Regions 

Igf2r   Insulin-like growth factor 2 receptor 

kb   kilobase pairs 

kDa   kilo Dalton 

Klf4   Kruppel-like factors 4 

KO   Knock-out 

KSRP   KH-type splicing regulatory protein 

LIF   Leukemia Inhibitory Factor 

LPR5/6  Lipoprotein receptor-related 5/6 

M   Molarity 

MACS   Magnetic Activated Cell Sorting 

maGSCs  multipotent adult Germline Stem Cells 

MEFs   Mouse embryonic fibroblasts 

Meg3   Maternally expressed 3 

mGSCs  multipotent Germline Stem Cells 

miRISC  microRNA Induced Silencing Complex 

miRNA or miR microRNA 

mRNA   messenger RNA 

MSCI   Meiotic sex chromosome inactivation 

ncRNA  non-coding RNA 

NF45   Nuclear factor 45 

NF90   Nuclear factor 90 

nt   nucleotide 

Oct4   Octamer-binding transcription factor 4 

OG-2   Oct4/EGFP 

ORF   Open reading frame 

Ovol1   Ovo-like 1 

PAGE   Polyacrylamide Gel Electrophoresis 
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Pasha   Partner of Drosha 

PCR   Polymerase Chain Reaction 

PGCs   Primordial Germ Cells 

Piwil-2  Piwi-like 2 

Plzf   Promyelocytic leukaemia zinc finger 

PoM   post-meiotic 

pre-miRNA  precursor microRNA 

pri-miRNA  primary microRNA 

PrM   pre-meiotic 

Prm1   Protamine 1 

qRT-PCR  quantitative RT-PCR 

RA   Retinoic acid 

Rbl2   Retinoblastoma-like protein 2 

Rbm44  RNA binding motif protein 44 

RDE-4   RNAi Defective-4 

RNA Pol  RNA polymerase 

RNA   ribonucleic acid 

Rnf-17   Ring finger protein 17 

Rpl13   Ribosomal protein L13 

Rsbn1   Round spermatid basic protein 1 

R-Smads  receptor-regulated Smads 

RT-PCR  Reverse Transcription PCR 

Sall4   Sal-like protein 4 

SD   standard deviation 

Sdha   Succinate dehydrogenase complex, subunit A 

SDS   Sodium Dodecylsulfate 

siRNA   small interfering RNA 

smiRNA  semiRNA 

Snrpn   Small nuclear ribonucleoprotein-associated protein N 

Sox2   Sex determining region Y-box 2 

SSCs   Spermatogonial stem cells 

Stag3   Stromal antigen 3 

Stra8   Stimulated by retinoic acid gene 8 

stRNA   Small temporal RNA 
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Sycp3   Synaptonemal complex protein 3 

TBST   Tris-Buffered Saline and Tween 20 

Tnp2   Transition protein 2 

Tox   Thymocyte selection-associated high mobility group box 

Tp2   Transition protein 2 

TRBP   HIV-1 TAR RNA binding protein 

UTR   Untranslated Region 

β-Gal   β-Galactosidase 

μm   micrometer 
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