
Dynamic Language Bindings for C Libraries
with emphasis on their application to R

Dissertation

presented for the degree of Doctor rerum politicarum

at the Faculty of Business and Economics

of the Georg-August-Universität Göttingen

by

Daniel Adler

from Göttingen, Germany

Göttingen, 2012

First Examiner: Prof. Dr. W. Zucchini

Second Examiner: Prof. Dr. T. Kneib

Third Examiner: Prof. Dr. C. Damm

Thesis defense: 23.05.2012

in memory of Gisela

Contents

Contents I

List of Tables . VII

List of Figures . IX

List of Listings . XI

Typographic Conventions . XIII

Software Sources . XV

Acronyms . XVII

Acknowledgements . XXI

1 Introduction 1

1.1 Overview . 2

1.2 Outline of Thesis . 3

2 Background and Motivation 5

2.1 Programming Languages . 5

2.1.1 Scripting . 6

2.1.2 R Language . 7

2.1.3 C Language . 9

2.1.4 Current Trends . 11

2.2 Software Libraries . 12

2.2.1 OpenGL . 12

2.2.2 Simple DirectMedia Layer . 15

2.3 Motivation . 15

2.3.1 Graphics Plotting versus Real-time Graphics Rendering 15

I

II CONTENTS

2.3.2 3D Visualization Device System for R . 17

2.3.3 Suggested Architecture for Language Extensions 21

3 Dynamic Bindings Model 23

3.1 C Libraries . 23

3.1.1 Binary Formats . 23

3.1.2 Software Distribution . 24

3.1.3 Binary Interface . 25

3.2 Language Bindings . 26

3.2.1 Compiled Language Extensions . 26

3.2.2 Handwritten Bindings . 27

3.2.3 Automation Tools . 28

3.3 Interoperability . 29

3.3.1 Code-level Interoperability . 29

3.3.2 Data-level Interoperability . 29

3.4 Foreign Function Interfaces . 30

3.4.1 Static FFI . 30

3.4.2 Limitations of the Static FFI in R . 31

3.4.3 Dynamic FFI . 33

3.4.4 Generic Dynamic FFI . 34

3.5 Model Description . 35

3.5.1 Overview . 35

3.5.2 Architecture . 36

3.5.3 Comparison of Bindings Models . 37

3.6 C Type System . 39

3.6.1 Overview . 39

3.6.2 Object types . 40

3.6.3 Composite data types . 42

3.6.4 Pointer types . 42

3.6.5 Function types . 44

3.7 Text-based Encoding Format for C APIs . 45

CONTENTS III

3.7.1 Introduction . 45

3.7.2 Objectives . 46

3.7.3 Encoding Format . 48

3.8 Parser Framework . 56

3.8.1 Overview . 56

3.8.2 Implementation . 58

3.9 Summary . 66

4 Dynamic FFI for R 69

4.1 Introduction . 69

4.1.1 Software Architecture . 72

4.1.2 Usage of Type Signatures . 73

4.1.3 Internals of R . 73

4.2 Code loading . 79

4.2.1 Introduction . 80

4.2.2 Interface . 81

4.2.3 Naming Schemes of Shared Libraries . 82

4.2.4 Searching of Shared Libraries . 84

4.2.5 Implementation . 89

4.2.6 Low-level interface . 90

4.3 Foreign Function Calls . 91

4.3.1 Interface . 91

4.3.2 Call Signature . 92

4.3.3 Supported Function Types . 93

4.3.4 Supported Calling Conventions . 94

4.3.5 Type Checking . 95

4.3.6 Value Conversion . 97

4.4 Wrapper Functions . 99

4.4.1 Comparison of Wrapper Function . 100

4.4.2 Automation of Wrapper Function Creation . 102

4.4.3 Implementation . 103

IV CONTENTS

4.4.4 Performance Benchmark . 105

4.5 Data-level Interoperability . 106

4.5.1 Interface . 108

4.5.2 Registration of C data types . 109

4.5.3 Implementation . 109

4.5.4 Low-level Interface . 110

4.6 Callbacks . 112

4.6.1 Interface . 113

4.7 Dynamic R Bindings to C Libraries . 117

4.7.1 Interface . 118

4.7.2 Implementation . 119

4.7.3 Installation of run-time libraries . 120

4.8 Example . 121

4.8.1 Simulation and Visualization of Random Fields using OpenGL 121

4.9 Summary . 128

5 Dynamic Interfaces to Compiled Code 131

5.1 Anatomy of Function Calls . 131

5.1.1 Execution Environment . 132

5.1.2 Call Stack . 133

5.1.3 Calling Sequence . 135

5.1.4 Diversity of Calling Sequences . 137

5.2 Application Binary Interface . 139

5.2.1 Overview . 139

5.3 Processor Architecture Families . 142

5.3.1 From CISC to RISC . 143

5.3.2 X86 Processor Architecture Family . 145

5.3.3 ARM Processor Architecture Family . 149

5.3.4 PowerPC Processor Architecture Family . 155

5.3.5 MIPS Processor Architecture Family . 159

5.3.6 SPARC Processor Architecture Family . 162

CONTENTS V

5.3.7 Stack Frames . 166

5.3.8 Data Representation . 169

5.4 Dynamic Function Calls . 175

5.4.1 Introduction . 175

5.4.2 Objective . 177

5.4.3 Approach . 177

5.4.4 Architecture . 178

5.4.5 Interface . 179

5.4.6 Sample Applications . 185

5.4.7 Implementation . 193

5.4.8 Passing arguments via the stack (x86-32 ports) 197

5.4.9 Passing arguments via registers (arm32-softfloat ports) 202

5.4.10 Passing leading integer arguments via registers (x86-32-fast ports) 205

5.4.11 Passing arguments via registers with homing area (sparc-v7 port) 207

5.4.12 Overlapping FPU registers and homing area (sparc-v9 port) 209

5.4.13 Passing floating-point arguments via multiform FPU registers (x86-64 ports) . 212

5.4.14 Passing floating-point arguments via uniform FPU registers (ppc32 ports) . . . 215

5.4.15 Passing leading floating-point arguments via FPU registers (mips-o32 port) . . 219

5.4.16 Passing arguments via type-specific load instructions (mips-n64 port) 223

5.5 Dynamic Callback Handlers . 226

5.5.1 Introduction . 226

5.5.2 Objective . 227

5.5.3 Approach . 227

5.5.4 Architecture . 228

5.5.5 Interface . 231

5.5.6 Sample Application . 233

5.5.7 Implementation . 237

5.6 Dynamic Loading of Code . 245

5.6.1 Interface . 245

5.6.2 Enumeration of Symbols . 245

5.6.3 Implementation . 246

VI CONTENTS

5.7 Software Tools for Building and Testing . 247

5.7.1 Build systems . 247

5.7.2 Software testing . 252

5.8 Summary . 256

6 Conclusion 259

6.1 Summary . 259

6.2 Related work . 260

6.3 Conclusion and Future Direction . 261

Bibliography 263

List of Tables

1.1 History of dyncall and related projects. 3

2.1 Comparison of system programming languages and scripting languages. 6

2.2 History of R, S and S-PLUS. 9

2.3 History of C. 10

2.4 The Transparent Language Popularity Index for April 2012. 12

2.5 Revisions of OpenGL. 14

3.1 Static mapping of R to C argument types in R’s Static FFI .C 31

3.2 Overview of Dynamic FFIs. 34

3.3 Data type bit-sizes of C types across architectures of the past. 39

3.4 Overview of fundamental C types and some extensions. 43

3.5 Examples of XPath expressions. 61

4.1 Compilation of C user applications based on OpenGL and SDL across platforms. 71

4.2 Overview of R object types. 74

4.3 Overview of platform-specific file paths for specific C libraries. 83

4.4 Naming schemes of shared libraries across operating systems and ABI platforms. . . . 83

4.5 Loading expat shared library on different ELF-based operating systems. 86

4.6 Mapping between C data types and object signature characters. 93

4.7 Supported non-standard calling conventions required on Windows 32-bit platforms. . . 95

4.8 Value Conversion between R and C arithmetic and pointer types. 97

4.9 Passing of typed pointer objects between R and C. 99

4.10 Table of DynPorts: R Bindings to C Libraries. 118

4.11 Implementation of DynPort in R. 120

VII

VIII LIST OF TABLES

4.12 Installation of SDL and OpenGL on various platforms. 121

5.1 Illustration of a call stack. 134

5.2 Overview of Processor Architecture Families. 143

5.3 Families, Architectures, ABIs and Calling Conventions. 144

5.4 Calling Conventions of the x86 architecture. 146

5.5 Overview of the ARM Architecture family. 150

5.6 ABIs of ARM processor architectures. 153

5.7 Comparison of stack frame characteristics. 166

5.8 Overview of 64-bit C programming models. 169

5.9 Overview of data representations of C data types . 171

5.10 C API of dyncall for the specification of calling sequences. 184

5.11 Overview of supported platforms by dyncall. 193

5.12 Handling of floating-point arguments on the mips-o32 ABI. 219

5.13 Overview of supported platforms by dyncallback. 237

5.14 Components of dyncallback. 237

5.15 Free registers suitable for passing a reference of a Thunk. 241

5.16 Overview of DynCall unit tests. 252

6.1 Some metrics of software packages (platform x86-64-osx). 260

List of Figures

1 Color highlighting conventions for code in this thesis. XIII

2.1 Examples of visualizations of rgl. 17

2.2 C++ software architecture of R package rgl. 18

2.3 C++ class hierarchy of rgl scene graph database. 19

3.1 Dynamic load-time linkage of shared libraries. 25

3.2 Illustration of scripting languages, C libraries and bindings on a single platform. . . . 27

3.3 Comparison of the compiled and dynamic bindings. 38

3.4 Overview of the C type system. 40

3.5 Design of the DynPort Tool. 57

4.1 Screenshots: Cross-platform R application using SDL/OpenGL. 70

4.2 Software architecture of R package rdyncall. 72

4.3 S-Expression header and top-level bit field. 75

4.4 Atomic vectors and language lists in R. 76

4.5 Different data representations of R numeric data. 77

4.6 Internal representation of a call object in R. 78

4.7 Result of FFI benchmark performance test. 106

4.8 Overview of union SDL_Event C data type for processing user-interface events. 108

4.9 Generic quick-sort algorithm using C callbacks. 114

4.10 Screenshot of real-time visualization and plot of demo(randomfield) 122

4.11 Control flow diagram of demo(randomfield) . 123

5.1 Overview of the Instruction Set Architecture. 133

5.2 Comparison of register files and stack between sysv and x64 ABIs. 138

IX

X LIST OF FIGURES

5.3 Anatomy of the Application Binary Interface. 140

5.4 Register usage in calling conventions of x86. 147

5.5 Register files on the arm processor architecture. 153

5.6 FPU registers of the VFPv2 co-processor of arm and utilization in armhf ABI. 154

5.7 Register files of the ppc processor architecture family. 158

5.8 Register files on the mips processor architecture family. 161

5.9 FPU registers of the mips processor architecture family. 162

5.10 Register files on the sparc processor architecture family. 165

5.11 FPU registers of the sparc processor architecture family. 165

5.12 Comparison of the memory layout of stacks. 167

5.13 Layout of C struct data types on different architectures. 172

5.14 State machine diagram of the Call VM and C API of dyncall. 180

5.15 Anatomy of C Callbacks. 226

5.16 Anatomy of Thunks Objects. 228

5.17 Anatomy of Callback Objects. 229

5.18 Dynamic allocation of Argument Iterator on Callback Thunk Entry’s stack frame. . . 229

5.19 Anatomy of C Callbacks to R based on rdyncall and dyncallback. 231

List of listings

1 SWIG example . 28

2 Hybrid C/R call wrapper for sqrt . 32

3 Sample DynPort 1.0 file used by rdyncall . 55

4 Sample DynPort 2.0 file used by luadyncall . 56

5 DynPort Tool implementation example: C to DynPort. 58

6 DynPort Tool implementation example: XML output of GCC-XML. 59

7 Outline of XSLT stylesheet files. 60

8 C and R: Basic multimedia application skeleton based on OpenGL and SDL. 70

9 Implementation of dynfind . 90

10 Comparison of FFI Wrapper functions to C sqrt library function. 101

11 C and R: Using SDL for opening an OpenGL window. 103

12 C and R: SDL Event Handling. 107

13 R Run-time Type Information on C Composite Data Types. 112

14 C and R: Using callbacks with C qsort. 114

15 C and R: Using callbacks with Expat XML Parser C library. 117

16 R: Texture generators of 2D Kernels. 125

17 Comparison of assembly: C caller code of sysv and x64 ABIs on x86-64. 138

18 Program to determine the size and alignment of C data types. 170

19 C Implementation of R’s Static FFI .C . 176

20 Common Call VM structure shared by x86-32 call kernels. 197

21 Call VM for cdecl calling convention on x86-32. 198

22 Call VM mode switching on x86-32 . 199

23 Call kernels for cdecl and stdcall on the x86-32 architecture. 200

24 Call kernels for arm32-aapcs-softfloat in ARM arm and thumb ISA. 203

25 Call VM for apcs-gnu and aapcs-linux ABIs on ARM for arm ISA 204

26 Call kernel for fastcall on x86-32. 205

27 Call VM for fastcall on x86-32. 206

28 Call VM for sparc-v7. 207

29 Call kernels for sparc v7/v8 and v9 . 208

30 Call VM for sparc-v9. 210

XI

XII LIST OF LISTINGS

31 Call VM data structure for x86-64 calling conventions. 212

32 Call VM for x86-64 calling conventions. 213

33 Call kernels for x86-64 (sysv and x64). 214

34 Call VM for ppc32. 216

35 Call kernel for sysv and osx calling convention on the ppc32 architecture. 217

36 Call VM for mips-o32. 220

37 Call kernel for mips-o32. 221

38 Call VM for mips-n64. 224

39 Call kernel for mips-n64 ABI. 225

40 Thunk Assembly Header, Code Block and C Implementation. 240

41 Implementation of Argument Iterator methods for arm. 243

42 Callback thunk entry routine for arm. 244

43 Common configuration files and selection of code modules in GNU make. 248

44 Example of a portable (GNU/BSD/SUN) plain makefile in dyncall. 250

45 Using make with user settings. 250

46 Makevars file of rdyncall to build the embedded dyncall sources. 250

47 Portable assembly sources (portasm) translated to MASM and GAS. 251

48 Example of user-defined test cases in call suite. 253

49 Random test case generator using Lua. 254

50 Test case generator in Lua. 255

Typographic Conventions XIII

Typographic Conventions

Emphasized passages of text are printed in “italic” font style. Software packages, libraries,

filepaths and internet links are printed in “type-writer” font style. Elements of computer lan-

guages are printed in “type-writer” font where the background color indicates on a given context and

dialect such as document markup elements of XML and XSLT , programming language elements of R ,

C and Assembly and other plain text format. Further, code snippets and listings are printed

with syntax highlighting using the minted LATEX package and pygmentize1. Figure 1 gives the color

scheme and examples of listings.

Language Code example

Plain

Text

:fun

setWindowRect(*<Window>*<Rect>)v;

newWindow(IB)*<Window>;

.

:struct

Window{:}

XSLT
<template match="//Function">

<value-of select="@name"/>

<text>(</text>

<apply-templates select="Argument"/>

<text>)</text>

XML
<GCC_XML>

<PointerType id="_24" type="_5"/>

<FundamentalType id="_25" name="int"/>

<Function id="_3" name="SDL_SetVideoMode" returns="_24">

<Argument type="_25"/>

R

draw <- function(sim) {

glClear(GL_COLOR_BUFFER_BIT)

drawTexCirclesVertexArray(simx,simy,sim$r)

glFinish()

SDL_GL_SwapBuffers()

}

C

double tiny_dyncall(void (*fun)(), char const * fmt, ...) {

va_list ap;

va_start(ap, fmt);

while (ch = *ptr++ != ’)’) {

switch(ch) {

case ’d’: dcArgDouble(vm, va_arg(ap, double)); break;

Assembly

amd64_sysv:

pushq %rbp # Prolog

pushq %rbx

movq %rsp,%rbp

movq %r8, %rbx # RBX = function pointer

movsd 0(%rcx),%xmm0 # Load FPU register

Figure 1: Color highlighting conventions for code in this thesis.

1Sources of pygmentize were slightly modified for enhanced support of gas ARM Assembly syntax; Patches are

available from the thesis homepage http://dyncall.org/thesis.

http://dyncall.org/thesis

XIV LIST OF LISTINGS

Software Sources XV

Software Sources

Several software packages that are subject of this thesis are available under the open-source license

ISC (Internet Systems Consortium). Copyright information, download links and license text are given

below:

• dyncall is available from the project site at http://dyncall.org.

Copyright (c) 2007-2012 Daniel Adler <dadler@uni-goettingen.de>,

Tassilo Philipp <tphilipp@potion-studios.com>

Parts of dynload and dyncall related to dynload_mach-o.* and dyncall_struct.*:

Copyright (c) 2010-2011 Olivier Chafik <olivier.chafik@centraliens.net>

• rdyncall is distributed on CRAN at http://cran.r-project.org/package=rdyncall.

Copyright (c) 2007-2012 Daniel Adler <dadler@uni-goettingen.de>

The license text is given below.

Permission to use, copy, modify, and distribute this software for any

purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

http://dyncall.org
http://cran.r-project.org/package=rdyncall

XVI LIST OF LISTINGS

Acronyms XVII

Acronyms

ABI Application Binary Interface. 2–4, 26, 39, 42, 66, 83, 139, 175

API Application Programming Interface. 1, 2, 4, 12, 13, 20, 21, 23, 26, 29, 31, 36, 39, 56, 66, 69, 91,

100, 102, 110, 117–119, 121, 123, 175, 178, 179, 181, 185, 195, 231, 245

ARM Advanced Risc Machines. 149

BNF Backus-Naur Form. 48

Call VM Call Virtual Machine. 178, 179, 181–183, 186, 187, 193–198, 202, 205, 207, 210, 212, 215,

220, 222, 223, 230, 242, 248, 249

CHRP Common Hardware Reference Platform. 156

COM Component Object Model. 3, 45, 46

CPU Central Processing Unit. 132

CRAN Comprehensive R Archive Network. 8, 69, 174, 259, 261

CUDA Compute Unified Device Architecture. 17

DLL Dynamically Linked Library. 83–85, 89, 148, 246

DSC Distributed Statistical Computing. 18

DTD Document Type Definition. 59

ELF Execution and Link Format. 83, 85, 88, 141, 239, 246

FDI Foreign Data Interface. 30

FFI Foreign Function Interface. 2–4, 23, 30, 33, 39, 46, 54, 55, 66, 72, 91, 92, 95, 100, 101, 107, 112,

117, 131, 175, 196

FFT Fast Fourier Transformation. 261

FP Frame Pointer. 136

FPR floating-point register. 143

FPS Frames Per Second. 122, 124, 127

FPU Floating-point unit. 132, 145, 152

GCC GNU Compiler Collection. 35, 56, 65

XVIII Acronyms

GLEW OpenGL Extension Wrangler library. 13

GLU OpenGL Utility library. 13

GPGPU General-Purpose Graphics Processing Unit. 16

GPL GNU Public License. 9

GPR general-purpose register. 143

GPU Graphics Processing Unit. 16, 122, 124

IDL Interface Definition Language. 46

ISA Instruction Set Architecture. 132, 203

ISC Internet Systems Consortium. XV

JIT Just-In-Time. 261

JNI Java Native Interface. 30

JSM Joint Statistical Meetings. 18

LR Link Register. 136

Mach-O Mach object file format. 84, 239, 246

MMU Memory Management Unit. 133, 238

MSVCRT Microsoft Visual C Run-Time. 80

OpenCL Open Computing Language. 17

OpenGL Open Graphics Library. 12, 13, 15

OpenGL ES Open Graphics Library for Embedded Systems. 13

PC Program Counter. 132, 136

PE Portable Execution Format. 83, 84, 239, 246

PReP PowerPC Reference Platform. 156

SDL Simple DirectMedia Layer. 15

SIMD Single Instruction Multiple Data. 132, 145, 152

soname Shared Object Name. 85–89

Acronyms XIX

SP Stack Pointer. 136

SPARC Scalable Processor ARChitecture. 162

SSE SIMD Streaming Extension. 145

SWIG Simplified Wrapper and Interface Generator. 28

URI Uniform Resource Identifier. 60

XML Extensible Markup Language. 56, 58, 60

XPath XML Path language. 61

XPCOM Cross-Platform Component Object Model. 45, 46

XSD XML Schema. 59

XSLT Extensible Stylesheet Language Transformations. 56, 58, 60

XX Acronyms

Acknowledgements

My first and sincere appreciation goes to my supervisor Professor Dr. Walter Zucchini for the encour-

agement, patient guidance and advice he has provided throughout my time as his student, and since

his retirement. I am deeply grateful for his support and commitment.

I also would like to thank Professor Dr. Thomas Kneib and Professor Dr. Carsten Damm for their

spontaneous willingness to act as my second and third examiner.

This project would be impossible without the help and support other persons and organizations.

Special thanks goes to Tassilo Philipp for the fruitful collaboration with him. I also want to thank the

“GCC Compile Farm Project” project, the GWDG and Frank Scholl for providing access to hardware

resources.

I am very grateful to Juliane Manitz for promptly proofreading. I also want to thank Jörg Evers,

Cordula Kunkel, Frank Scholl and Friday for their support during my defense.

Lastly, I want to thank Cecy and my family for their support and love.

XXI

XXII Acronyms

Chapter 1

Introduction

The use of scripting languages is becoming increasingly prevalent. Ever more users, from non-technical

areas, are attracted by the low hurdles of scripting and the rapid development environments. The “R

Project for Statistical Computing” gives a prime example of such an open platform for computational

statistics and graphics which connects users world-wide.

Whether a specific language is suitable to solve a given task often depends on the quality and quantity

of available extensions. Numerous efficient “best-practice” software solutions are available in the form

of reusable software program libraries with a C API (Application Programming Interface). Often they

are ported across hardware platforms and can be accessed as a dynamically loadable and linkable

shared C library, such as OpenGL to utilize accelerated graphics hardware for real-time graphics

rendering. Scripting users can benefit indirectly from these external C libraries if a Language Bindings

extension exists for their language to provide for a scripting interface to the C API.

However, the development of Language Bindings to C Libraries can be expensive. Depending on

the library the API can comprise hundreds of functions; for each of them a corresponding scripting

wrapper needs to be implemented. Moreover, if callbacks and complex data structures are part of

the C interface, the development becomes even more challenging. After all, the development is a

language-and-library specific task; developers require detailed knowledge of both sides of an adapter,

the C extension interface of the scripting language and the C API of the library. Since a language

bindings extension comprises hybrid implementations, written in the scripting language and C, its

development includes porting, compilation, testing and deployment for each supported target platform

of the language; effectively, development tasks are needed for each and every language-library-platform

combination.

In this thesis we discuss an extension model for scripting languages that provides for seamless scripting

access to the C API of native libraries without the need for compilation of wrapper modules and thus

significantly decreases the complexity of language bindings development. We give a detailed description

of the model and an implementation for the R language. The model makes use of dynamic operations

for interoperability with native code and data that are carried out at the machine level and that need

1

2 CHAPTER 1. INTRODUCTION

to conform with the ABI (Application Binary Interface) and Calling Conventions of the processor

hardware platform. We give an overview of ABIs across five processor-architecture families and then

present a portable abstraction layer for making foreign function calls and handling of callbacks.

1.1 Overview

Whereas language bindings are usually implemented by means of C wrapper code which necessitates

compilation for a specific language-library-platform combination, we suggest an alternative bindings

model, named the Dynamic Bindings Model, that superseeds compilation to reduce the complexity

where a C library can be made accessible across supported scripting languages and platforms by a per-

library development task. The model describes a single extension module that needs to be developed

once for a specific scripting language. This extension takes the role of an interface hub to C libraries;

linkage and set up of scripting interfaces is carried out dynamically at run time, driven by a platform-

and language-portable “C API bindings” specification format, named DynPort. The format serves

as a portable text-based interface for type-safe interoperability with native C code and data across

hardware platforms; abstract C type information of a library’s API is encoded in a compact, intuitive

text-based format that is suitable for bindings automation but also as a low-level scripting interface

for native operations. Bindings for C APIs are collected in a repository that is extendable, and we

give the design of an automation parser tool, based on open-source compiler, scripting and XML tools,

that translates C API header files to DynPort files.

We then discuss an implementation of this model for the R programming language that is contributed

as the rdyncall R package. The model requires the existence of a Dynamic FFI (Foreign Function

Interface) to overcome compilation. However, the existing FFI of R has very limited support for

calling native C code; only a small subset of C function types are supported and type-safety needs to

be implemented manually. rdyncall provides a Dynamic FFI facility for R to be used as a flexible

alternative for making calls to native C code of arbitrary C function type with only small limitations.

It includes support for handling native C data objects and wrapping of R functions as callbacks. The

implementation of this model is based on these services. We show that the C interfaces are mapped

to R as-is and we illustrate this resemblance with a comparison of C API user code in C and R. We

also give complex examples that emphasis platform-portable scripting of 3D multimedia applications

in R using powerful libraries, such as OpenGL and SDL.

Basically we overcome compilation in this bindings model by utilizing dynamic operations of a Dynamic

FFI, such as foreign function calls, handling and manipulation of C run-time data objects, and also

wrapping of scripting functions as C callback pointers. They are usually implemented by using a

software abstraction layer with a portable C interface, named Generic Dynamic FFI, that abstracts

the low-level operations to carry out machine-level function calls that conform to a specific calling

convention.

1.2. OUTLINE OF THESIS 3

Little has been published about the implementation of a Generic Dynamic FFI, although this layer is

substantial for portable implementation of FFIs and low-level middleware. This layer of abstraction is

difficult to implement because it has to take details of the processor architecture, the ABI and calling

convention of compilers into account.

In this thesis we give an overview of different ABI standards across five common processor-architecture

families, namely x86, powerpc, arm, mips and sparc. We then discuss the design and implementation

of a software abstraction layer for dynamic interoperability with precompiled code, contributed as

open-source libraries of the DynCall project. The discussion of this abstraction layer completes the

implementation design of the Dynamic Bindings Model for platform-specific issues. Table 1.1 gives an

overview of the development history of the R package rdyncall and the C libraries of the DynCall

project (dyncall, dyncallback and dynload).

Year Details

2007 Adler developed prototyp of COM-based middleware for C++ components with R bindings on x86-32 platform

using type signature strings and call kernel. Adler and Philipp began to create an open-source library that

abstracts calling conventions via a dynamic C interface for making calls to precompiled functions.

2008 Public release of dyncall version 0.1 comprising two libraries dynload and dyncall, and ports to x86-32 and

x86-64 for Microsoft Windows and Unix-based SVR4 Platforms, Apple Mac OS X ppc32 , arm32 for Nintendo

DS and mips32 EABI for Sony Playstation Portable. A number of low-level bindings to programming languages

were contributed on the Subversion repository for R, Python, Lua, Ruby. dyncall version 0.2 contains an

improved documentation.

2009 Support for ppc32 on SVR4 and ARM thumb mode was added in version 0.3 of dyncall. Initial release of

dyncallback library with support for x86-32, x86-64 and Apple Mac OS X ppc32 as of dyncall version

0.4. Lua package luadyncall was started that uses DynPort 2.0 format. On useR! 2009 rdyncall including

DynPort was presented to the public.

2010 DynCall version 0.5 added more ports for dyncallback and improved arm32 port. Chafik contributed improve-

ments for dyncallback (Microsoft Windows x64 port) dynload and initial support for passing composite data

types in dyncall that is used in the Java/C++ middleware BridJ which uses dyncall for the implementation

at low level.

2011 Public release of R package rdyncall version 0.7 on CRAN with dynamic R bindings to legacy/modern OpenGL,

SDL library family and others.

2012 dyncall version 0.7 adds port for sparc32, sparc64 and mips64 platforms, abstraction of assembly sources

(portasm) and hybrid GNU/BSD/Sun Make build system.

Table 1.1: History of dyncall and related projects.

1.2 Outline of Thesis

Chapter 2 gives background information on programming languages, such as C and R, and portable

C libraries, such as OpenGL and SDL, followed by the motivation for this thesis. Chapter 3 describes

the software architecture for an extension to dynamic programming languages that gives scripting

access to C libraries without the need for compilation of language bindings wrapper and which can

work across platforms. We introduce the model with a general overview on loading and linking shared

4 CHAPTER 1. INTRODUCTION

libraries, and also interoperability with precompiled code. Then follows a discussion on the creation

of language bindings to C libraries, outlining shortcomings of compiled language bindings and static

foreign function interfaces, such as given by the built-in FFI of R. Our Dynamic Bindings Model

was developed to overcome these shortcomings. There follows a description of language-neutral and

platform-portable components of the model; we give a brief overview of the abstract C type system

and then present a compact encoding format for C APIs and a parser framework for automation.

An implementation of the model for the R programming language, contributed by the R package

rdyncall, is discussed in Chapter 4. First, we describe the foundation layer comprising components

of a Dynamic FFI for R. At appropriate points in the course of the description, we give side-by-

side examples of R and C user code for C libraries, such as SDL, OpenGL and Expat, to compare the

syntactic structure and to illustrate their similarity. The chapter closes with an example of an R user

application that makes use of OpenGL and SDL via rdyncall; this serves to illustrate platform-portable

R scripting of system-level applications without compilation. The platform-specific abstraction layer

and its implementation across processor architectures that is needed by Dynamic FFIs is discussed in

Chapter 5. The anatomy of function calls at native machine level is discussed, followed by a survey of

platform-specific ABIs and Calling Conventions across five processor-architecture families. The three

libraries of the DynCall project, namely dyncall, dyncallback and dynload, are described in detail,

which provides the abstraction layer to platform-specific details for the implementation of Dynamic

FFIs and the Dynamic Bindings Model. We discuss the chosen software design, including the portable

C API, and we compare implementation ports across a range of processor-architecture familes and

operating systems. Our conclusions are given in Chapter 6.

Chapter 2

Background and Motivation

In this chapter we discuss the difference between compiled and interpreted languages and emphasise

their different strengths. In particular, we focus on the R programming language and on powerful

libraries with a C interface, such as OpenGL and SDL for the development of platform-portable real-time

graphics application. We then describe the design of an existing R extension, named rgl, that con-

tributes a 3D real-time graphics visualization device system with interactive navigation to R that was

written in C++ using OpenGL and platform-specific interfaces to the windowing system; we outline

the software design and compare its current state with ongoing developments of OpenGL, including

issues of porting the package across major R platforms. This marks the starting point for the moti-

vation of this thesis because it suggests a different development model for language extensions based

on dynamic bindings to make portable C libraries become scriptable components across platforms.

2.1 Programming Languages

Ada Lovelace is credited with having written the world’s first computer program. In her article,

written between 1842-43, on a translation of memoirs from Luigi Menabrea about Charles Babbage’s

Analytic Engine, she added specifications for the calculation of Bernoulli numbers using the Engine

(Fuegi and Francis, 2003). The Engine was among the first mechanical computers, but Babbage did

not manage to finish building it.

The first freely programmable “stored-program” computers, as we know them today, were developed

no earlier than in the late 1940s. The fundamental programming interface to these machines has not

changed since then; it is “machine code”: a sequence of numbers in storage memory which encodes

a sequence of primitive hardware operations including arithmetic, load/store operations, control-flow

branches, subroutine calls and conditional blocks of execution. Assembly language is one of the first

programming languages that gives text-based access to the binary machine interface. As computers

evolved, ever new machine-level interfaces were invented. Thereby, programs written in assembly

language were architecture-specific and needed to be rewritten in a different dialect for new hardware

5

6 CHAPTER 2. BACKGROUND AND MOTIVATION

platforms. In addition to the incompatibility of assembly languages between machines, programmers

realized that this language is not convenient for writing complex software as it addresses a programming

style at too low a level. A competition of language designs began. In the 1950s FORTRAN (later

renamed Fortran) was one of the first programming languages which offered a high-level programming

interface to the machine. At that time languages were compiled. A year later LISP was introduced

and quickly became one of the first interpreted programming languages. At the end of the 1960s the

UNIX operating system (later renamed Unix) and the C programming language were invented; both

are getting on in years but still provide the software backbone for platforms, services, components,

applications, and the Internet of today. By 1969 about 120 “important” languages existed but most

of them are no longer in use (Mashey, 2004).

In the last two decades a wave of programming languages and environments has evolved; it has initiated

a new era of “programming” and has brought users from different fields in academia, industry and

the general public closer together.

2.1.1 Scripting

Ousterhout’s 1998 paper “Scripting: Higher-Level Programming in the 21th Century” emphasises

the importance of scripting languages. He dicotomizes the landscape of programming languages

roughly into system programming languages and scripting programming languages, and compares these

language categories to explain why scripting languages handle many of the programming tasks better

than system programming languages. Table 2.1 gives a summary of his comparison.

Aspect System Programming Scripting

Languages C, C++, Java, Objective-C Tcl, Perl, Python, R, Lua

Purpose Data Structures and Algorithms Connecting components

Typing Static Dynamic

Performance Fast execution Rapid development

Learning Curve steep, weeks to months flat, hours to days

User Experienced Software Developer Casual Programmer and Developers

Table 2.1: Comparison of system programming languages and scripting languages based on Ousterhout

(1998).

He considers both language groups to be in a complementary and symbiotic relationship and suggests

combining them in a “gluing component framework”. System programming languages, such as C and

C++, should be used for the implementation of reusable core components. The strongly typed nature

of such languages helps to manage complexity of data structures and algorithms, and the compilation

of code increases execution speed. Scripting languages are used for gluing components as applications.

Ousterhout argues that scripting languages allow rapid development of gluing-oriented applications.

He supports his argumentation by an empirical study which compares the number of code lines and the

2.1. PROGRAMMING LANGUAGES 7

development time for a variety of software projects, differing by size (three weeks to 180 month) and

application domain (Database, Security Scanner, Simulation and Graphical User-Interfaces). Each

application was implemented in two rounds using a system programming language (C++, C, Java)

and a scripting language (Tcl, Perl). In every case applications written in the scripting language

required far fewer lines of code (by a factor between 2 and 47) and less development time (by a factor

between 3 and 60). He concludes that “the true difference between the two language types is more

like a factor of five to 10”(Ousterhout, 1998).

The “scripting” approach that he suggests can be found in a variety of current software architectures.

With the Netscape Browser release as open-source by Netscape Communications in 1998, a community

of developers began to re-engineer the source base. A little later the Mozilla 1.0 platform was born,

a platform that fosters general-purpose Rapid Application Development ; applications are written in

JavaScript which is connected with a component model (XPCOM) that gives access to core components

implemented in C++. Example applications that run on the platform are the Firefox browser and the

Thunderbird mail client. The architecture encourages extension writing, so it is not surprising that a

large repository of add-ons exists for Firefox and Thunderbird. Futher details are given in McFarlane

(2003).

Scripting has developed as is evident in the Web of today. Server-side scripting was available from

early on for generating dynamic web content. But nowadays the Web is scripted at both ends. In

1995, the web browser Netscape Navigator 2.0 included a JavaScript interpreter to execute small

scripts as part of a web page content. At that time client-side JavaScript had little connectivity with

the components of a web browser. But the number of new interfaces has exploded in the past years.

Today JavaScript is an integral part of almost all web browsers; it gives web developers fine-grained

control over the browser-side user interface, network services as well as low-level graphics and audio

devices. For a growing number of web sites JavaScript is a requirement; it is increasingly used to

control the rendering of the complete web page in order to provide a responsive and flexible user

interface.

2.1.2 R Language

A prime example of “scripting” in the academic field is the R Project for Statistical Computing. What

started as a tool for statisticians has evolved into a general-purpose programming environment with

many users from different research fields. The core of R is in fact a scripting language, and users

who start to work with R as a tool often find themselves writing their own functions within hours or

days. The R language (R Development Core Team, 2012a) is an interpreted, functional programming

language with a single reference implementation. The software architecture is of a modular design

for development of extensions and graphics output devices. The interpreter, graphics devices and

core functions for computation are implemented in compiled languages, such as C and Fortran, while

the “gluing” part is mostly written in the R programming language. R is delivered with a basic set

8 CHAPTER 2. BACKGROUND AND MOTIVATION

of computational methods primarily focused in the area of statistics, but the core is extendable by

packages. The CRAN (Comprehensive R Archive Network) is a repository of extension packages,

mirrored across continents with currently 85 servers that offer users a convenient and quick way to

download and install R packages. The user can choose among the currently available 3700 packages

that can be installed within seconds. Researchers have recognized the power of this platform and so

it is not surprising that many of current state-of-the-art computational methods - in particular in

statistics - are available as R packages from CRAN. Package authors upload their package source code

and the CRAN build server precompiles these for Windows, Mac OS X and Linux and then distributes

them in both source and prebuilt binary form on the mirror network.

2.1.2.1 History

The development was started in 1993 (Ihaka and Gentleman, 1996) as a free re-implementation and

open-source alternative to the proprietary S language, a programming system for statistics invented

at the AT&T Bell Laboratories in the 1970s by Chambers et al. “Our [Becker et al.] primary goal

was to bring interactive computing to bear on statistics and data analysis problems.”(Becker, 1994)

The aim of the language, as expressed by Chambers, is “to turn ideas into software, quickly and

faithfully”(Chambers, 1998). Table 2.2 gives an overview of the notable historical events relating to

R and S.

2.1.2.2 Platforms

R is an open-source software that has been ported to many current platforms. The portable design is

a key factor for R’s success as a universal platform for scientific computing and exchange of software-

based research methods; it does not force users to use a particular operating system; rather it unifies

users of different desktop systems.

2.1.2.3 Extensions

R offers a large collection of packages that extend the core language with new functionality. A number

of packages make services available to R from C libraries. Most of these packages make use of a

two-sided wrapper implementation using R and C code, where the latter needs to be compiled and

linked with external C libraries for each platform.

In general, R packages which contain C code and use external libraries are harder to implement and

maintain. The package author has to understand the differences between operating systems, e.g.

Mac OS X, Linux, BSD derivates, Solaris (Unix-based) and Windows systems, and either needs to

incorporate the external library or to negotiate build strategies with administrators of the CRAN

build server.

2.1. PROGRAMMING LANGUAGES 9

Date Details

1975 Becker, Chambers and Wilks began the development of an interactive environment for data analysis and

graphics.

1977 S 1.0 was released.

1984 Brown S Book “An Interactive Environment for Data Analysis and Graphics” (Becker and Chambers, 1984)

was published, describing a Macro-based extension language.

1988 Blue S Book “The New S” (Becker et al., 1988) was published, featuring user-written extensions as first-class

objects. Commercial implementation of S, named “S-Plus”, was offered by a Seattle-based start-up company.

1990 Gentlemen and Ihaka decided to write a LISP-based interpreter to evaluate ideas and to “publish a paper or

two”.

1991 White S Book “Statistical Models in S” (Chambers and Hastie, 1991) was published, featuring Classes.

1992 Ihaka and Gentlemen decided to adopt the syntax of S. As a joke, the name “R” was coined for the language.

1993 Statistical Sciences merged with MathSoft and acquired the exclusive license to distribute S.

1994 Initial release of R under GPL license appeared on the Internet.

1997 R became an official part of the GNU project. CRAN went online. R Core Team was founded.

1998 Green S Book “Programming with data: a guide to the S language” (Chambers, 1998) was published, de-

scribing a more rigorous class system. Chambers received the ACM Award for his S language. Chambers and

Lang started the OmegaHat project.

2000 R 1.0 was released. S-PLUS 6 was ported to Unix-based platforms.

2001 Newsletter “R News” started to publish short and medium length articles. S-PLUS was sold to Insightful.

2007 Revolution Analytics was founded offering commercial support via custom R distribution “Revolution R”.

2008 R Journal was founded, superseding R News. TIBCO acquired Insightful Corporation.

2011 R version 2.14 was released.

Table 2.2: History of R, S and S-PLUS.

2.1.3 C Language

C is a statically typed and compiled programming language that is regarded as the lingua franca of

system-level programming with a long history of development. Table 2.3 gives an overview of the past

40 years of its development in which the language has become a standard for software development

and was refined through several ratification processes. The origin of C can be found within the history

of the UNIX operating system: “MULTiplexed Information and Computing Service (MULTICS),

which is considered the precursor of the UNIX operating systems, came about from a joint venture

between MIT, Bell Laboratories, and the General Electric Company (GEC), which was involved in

the computer-manufacturing business at that time. The development of MULTICS was born of the

desire to introduce a machine to support numerous timesharing users. At the time of this joint venture

in 1965, operating systems, although capable of multiprogramming (timesharing between jobs), were

batch systems that supported only a single user. The response time between a user submitting a job

and getting back the output was in the order of hours. The goal behind MULTICS was to create

an operating system that allowed multiuser timesharing that provided each user access to his own

terminal. Although Bell Labs and General Electric eventually abandoned the project, MULTICS

eventually ran in production settings in numerous places. UNIX development began with the porting

of a stripped-down version of MULTICS in an effort to develop an operating system to run in the

10 CHAPTER 2. BACKGROUND AND MOTIVATION

PDP-7 minicomputer that would support a new filesystem. The new filesystem was the first version

of the UNIX filesystem. This operating system, developed by Ken Thompson, supported two users

and had a command interpreter and programs that allowed file manipulation for the new filesystem.

In 1970, UNIX was ported to the PDP-11 and updated to support more users. This was technically

the first edition of UNIX. In 1973, for the release of the fourth edition of UNIX, Ken Thompson and

Dennis Ritchie rewrote UNIX in C (a language then recently developed by Ritchie). This moved the

operating system away from pure assembly and opened the doors to the portability of the operating

system.”(Rodriguez and Fischer, 2006, Section 1.1)

Date Standard Details

1966 BCPL Richards designed BCPL at Cambridge University.

1969 B Thompson developed “B” at Bell Labs with contributions from Ritchie. Ritchie

started development of “C”. UNIX development started by Thompson, Ritchie and

others on the “little-used PDP-7 in a corner” at Bell Labs.

1971 UNIX V1 First edition of UNIX on PDP-11/20 written in assembly.

1973 C, UNIX V4 Ritchie designed the first version of the “C” language at Bell Labs. Fourth Edition

of UNIX was finished, rewritten in C.

1975 UNIX V6, BSD UNIX Sixth Edition (Version 6) left Bell Labs.

1978 K&R C Kernighan and Ritchie published the first edition of “The C Programming Lan-

guage”, often called the ‘white book’ or “K&R”.

1982 ANSI WG, System III ANSI formed a committee to standardize C named ANSI X3J11.

1983 System V AT&T announced the first supported release of UNIX.

1984 4.2BSD University of California at Berkeley released 4.2BSD.

1989 ANSI C, C89, SVR4 First ratification of C as ANSI X3.159-1989 “Programming Language: C”. UNIX

System V Release 4 ships, unifying System V, BSD and Xenix.

1990 ISO C, C90 ISO adopted the ANSI C standard as ISO/IEC 9899:1990. (Working Group WG14

Commitee).

1995 Normative Amendment 1 was published and added support for international char-

acter sets.

1999 C99 The second official ISO standard (ISO/IEC 9899-1999) added support for inline

functions, _Bool data type, long long integer qualifier and _Complex floating-

point qualifiers and variadic function-like macros.

2008 Embedded C A standard for embedded systems was published adding support for fixed-point

arithmetic and named address spaces.

2011 C11 (C1X) The third official ISO standard ISO/IEC 9899:2011 (ISO, 2011) added support for

generic type macros and multi-threading, published on 2011-12-08.

Table 2.3: History of C.

UNIX became widely popular: “There are good reasons for this popularity. One is portability: the

operating system kernel and the applications programs are written in the programming language C,

and thus can be moved from one type of computer to another with much less effort than would be in

involved in recreating them in the assembly language of each machine. Essentially the same operating

system therefore runs on a variety of computers, and users needn’t learn a new system when new

hardware comes along. Perhaps more important, vendors that sell the UNIX system needn’t provide

2.1. PROGRAMMING LANGUAGES 11

new software for each new machine; instead, their software can be compiled and run without change

on any hardware, which makes the system commercially attractive.”(Pike and Kernighan, 1984, p.1)

C specifies an elaborate type system in which a number of built-in data types is defined without giving

concrete specification about its implementation on the machine. In that the compiler defines the exact

mapping to machine data types for a particular target platform, the C language can be utilized on a

broad spectrum of hardware architectures. As a consequence, C compilers exist for a large number of

hardware platform families, such as for 32- and 64-bit server- and desktop systems and also for 8-, 16-

and 32-bit microcontroller boards, and mobile- and embedded platforms.

A number of modern general-purpose programming languages, such as C++ and Objective-C, are

largely based on C; they adopt, in particular, the fundamental type system of C, including the syntactic

structure and semantics of expressions for fundamental data types. The integration of C is not a

coincidence; languages which are compatible with C can be linked with external C libraries, and thus

enable users to make use of the large pool of available C libraries that has been created over the past

decades and are still growing. This makes modern languages applicable for a wide range of applications

from the very beginning.

Software developers often choose C as the lowest common denominator among languages for a portable

and efficient reference implementation of algorithms and protocols. Also scripting language interpreters

are often implemented in C, such as in the case of the reference implementation of Lua (Ierusalimschy

et al., 1996), Perl (Wall, 2000), Python (Van Rossum and Drake Jr, 1995), R (Ihaka and Gentleman,

1996), Ruby (Matsumoto, 2002) and Tcl (Ousterhout, 1990). As a side effect such languages offer

a low-level extension interface accessible from C that can be used to link existing C libraries with

scripting languages.

2.1.4 Current Trends

We close this brief overview of programming languages with excerpts of two popularity indices of

programming languages. The web-site the Transparent Language Popularity Index (Language Pop-

ularity Index Project, 2012) publishes a ranking index on a monthly basis. The index is created by

an open-source tool, described transparently on the website; it aggregates the monthly activities of

several large online sources, such as Freecode (Freshmeat), Ohloh, Craigslist, Google Code, Powells,

Delicious and Yahoo Search. Table 2.4 gives an excerpt of the normalized comparison of the top

20 most popular languages, and the top 10 languages classified as either general-purpose (including

system level) and script languages.

Another online index opened with the “April Headline: Java and C swap places at the top of the

TIOBE index”(TIOBE, 2012). We give the first six positions of the total rank briefly: C (17.555%),

Java (17.026%), C++ (8.895%), Objective-C (8.236%), C# (7.348%) and PHP (ranked as the first

scripting language) (5.288%); R is ranked 31st (0.380%). The TIOBE index “counts the hits of the

most popular search engines [..] from the top 9 websites.”(TIOBE, 2012, in “TIOBE Programming

12 CHAPTER 2. BACKGROUND AND MOTIVATION

TOP 20 All Categories

Rank Language Share

1 C 17.175

2 Java 16.500

3 Objective-C 9.682

4 Basic 8.636

5 C++ 6.564

6 PHP 5.353

7 C# 3.938

8 Python 3.643

9 Perl 3.351

10 JavaScript 1.913

11 Delphi 1.625

12 Ruby 1.528

13 R 1.248

14 D 1.214

15 Pascal 1.079

16 CL (OS/400) 1.051

17 Ada 0.862

18 Go 0.719

19 Logo 0.671

20 Fortran 0.594

TOP 10 General-Purpose

Rank Language Share

1 C 23.789

2 Java 22.854

3 Objective-C 13.410

4 Basic 11.962

5 C++ 9.092

6 C# 5.455

7 Delphi 2.251

8 D 1.681

9 Pascal 1.495

10 Ada 1.194

TOP 10 Script

Rank Language Share

1 PHP 22.854

2 Python 15.553

3 Perl 14.306

4 JavaScript 8.169

5 Ruby 6.525

6 R 5.327

7 CL (OS/400) 4.486

8 Lisp/Scheme 2.319

9 MATLAB 2.157

10 Lua 2.087

Table 2.4: The Transparent Language Popularity Index for April 2012.

Community Index Definition”)

2.2 Software Libraries

The complexity of large software projects is often countered by breaking down large tasks or problems

into smaller ones. For recuring tasks and solutions a generalized and reusable software library is often

developed in the open-source world. Countless libraries with a portable C API now exist that provide

a comprehensive solution framework for a specific problem domain. In the following we give a brief

overview of two popular C libraries that provide an abstraction layer to high-performance graphics

hardware, desktop windowing-systems and multimedia devices.

2.2.1 OpenGL

OpenGL (Open Graphics Library) offers a cross-platform programming interface to dedicated graphics

hardware for the implementation of 3D graphics applications including computer games, scientific

visualization software or sophisticated user-interfaces. A comprehensive guide for programming with

the OpenGL C API is given in OpenGL Architecture Review Board and D. Shreiner and et al (2005).

2.2. SOFTWARE LIBRARIES 13

The development began in 1992 by Silicon Graphics Inc., a company that focused on hard- and

software solutions for real-time graphics. Today almost all desktop systems support the OpenGL

interface to graphics accelerators, such as Microsoft Windows, Apple Mac OS X, and the X Window

System of Solaris, Linux and BSDs, while graphics card vendors, such as Nvidia and ATI, provide the

implementation in form of graphics card drivers for their hardware products. The latter often extend

the OpenGL interface with new extensions that make use of hardware improvements. In addition to

the core OpenGL API, a number of helper libraries exists, such as GLU (OpenGL Utility library)

for rendering of high-level graphics primitives, or GLEW (OpenGL Extension Wrangler library) for

providing a portable interface to load specific versions of OpenGL and extensions.

Over the last two decades the library experienced several revisions, specialized branches and vendor-

specific extensions. For example, OpenGL ES (Open Graphics Library for Embedded Systems) is a

variant of OpenGL designed for mobile devices such as game consoles, smart phones and tablets.

Altogether, OpenGL provides an efficient cross-platform interface to a high-performance graphics

processing pipeline model; it does not offer a portable interface for setting up an OpenGL context and

corresponding display output surface. These two initial steps are left to platform-specific APIs that

need be provided by the respective windowing system.

2.2.1.1 From the Fixed-Function Graphics Pipeline to freely Programmable GPUs

Table 2.5 gives an overview of the development from the original OpenGL 1 API in 1992 to the current

OpenGL 4 API. After the initial release of OpenGL a large number of extensions were added to

accommodate the rapid progress in graphics hardware design (see Lengyel (2003) for a comprehensive

overview). New C functions and symbolic constants were incorporated to the original OpenGL 1.0 API

as part of extensions that address new graphics effects and their parametrization (e.g. new blending

and texture-environment modes, improved lighting, shadow mapping, point sprites), optimizations of

the data flow within the graphics processing pipeline (e.g. vertex pointers and buffer objects) and

other issues mostly related to improvements in graphics hardware capabilities (e.g. compressed texture

data formats, vertex and fragment programs, stencil operations).

The most significant change came with OpenGL 2.0 and the introduction of the OpenGL Shading

Language which enables users to specify short programs that are executed per vertex (to freely define

transformations and projections) and per pixel (to implement custom graphics shading effects). See

Rost (2004) for a detailed guide of the language.

The graphics hardware has been transformed from specialized hardware designs for particular graph-

ics effects to a freely programmable co-processor that works on streams of vector data types. Over

the years the OpenGL API has been tidied up to accommodate this development. The current ver-

sion comprises the OpenGL Shading Language and a core set of C interface functions for resource

managament (compiling and linkage of shader objects, and uploading/downloading of data to texture

samplers, vertex buffers and framebuffers). Large parts of the original 1.0 API and numerous exten-

14 CHAPTER 2. BACKGROUND AND MOTIVATION

sions have been declared deprecated, such as immediate mode rendering commands (in favor of using

vertex buffers) and support for display lists (prerecording of sequences of API calls) were dropped.

Other APIs based on OpenGL, such as OpenGL ES and WebGL, adopted this mean programming

model1. The development process of the OpenGL API emphasizes the importance for scripting lan-

guage bindings to address adaptability to the evolution of the low-level C programming interface.

Versions

API Shader Language Year Details

IrisGL - 1982 Clark started one of the first Computer Graphics companies, named Silicon

Graphics (later renamed SGI), which invented Irix OS and IrisGL (Integrated

Raster Imaging System Graphics Library).

1.0 - 1992 Release of the open-source version of IrisGL API, named OpenGL, which became

an industry standard. First version provided the basic fixed-function graphics

pipeline model.

1.1 - 1997 Vertex arrays and texture mapping support was added.

1.2 - 1998 Texture mapping improvements (3D and multi-level filtering/mipmapping) were

added. Separate specular color component was added for improved lighting model

as well as improvements for image processing (e.g. convolution matrices and

support for color space transformation).

1.3 - 2001 Extensions were incorporated to the standard API, such as cube textures, multi-

sampling of texture data, multi-texturing and bump mapping.

1.4 - 2002 Further extensions were incorporated, such as depth textures for shadow mapping.

1.5 - 2003 Vertex Buffer Objects were added to improve transfer of vertex data.

2.0 1.10 2004 The OpenGL Shading Language was added as a standard, including compilation

of vertex and fragment shader programs, as an alternative to the fixed-function

graphics pipeline model.

2.1 1.20 2006 Data transfer of pixel data was improved via incorporation of Pixel Buffer Objects.

3.0 1.30 2008 With this verison a large subset of the API, that addresses the fixed-function

graphics pipeline model, were declared as deprecated (but still supported). It

was also added support for floating-point texture formats and framebuffer objects.

The latter allows rendering output to offscreen and texture memory.

3.1 1.40 2009 The API incorporates a strict separation between the modern and the deprecated

API functions. It also included support for 1D texture buffer objects and uniform

variable buffer objects.

3.2 1.50 2009 Introduction of profiles for deprecated and modern API.

3.3 3.30
2010

Simultaneous release with 4.0.

4.0 4.00 Two new stages of the graphics pipeline were opened for shader-based tesselation

of higher level geometry.

4.1 4.10 2010 Full compatibility with OpenGL ES 2.0 with support for precompiled shader

programs.

4.2 4.20 2011 API included support for 32-bit packed data types.

Table 2.5: Revisions of OpenGL.

1For a comparision of different sizes of the OpenGL API, see Table 4.10 and compare rows with column “Lib/Dyn-

Port” named “GL” (for Version 1.2), “GLEW” (for OpenGL 1.2 + Extensions) and “GL3” (for OpenGL 3.0 excluding

deprecated API functions and constants).

2.3. MOTIVATION 15

2.2.2 Simple DirectMedia Layer

SDL (Simple DirectMedia Layer) is a portable and open-source C library providing an abstraction

layer to the windowing system, including multimedia services and hardware. The library development

was initiated in 1999 by Lantinga at “Loki Software”, a company that was specialized in porting video

games to the Linux desktop. SDL offers a coherent interface to core components such as video- and

audio output, timer management, multi-threaded programming and CD-ROM drives. (See Lantinga

and et al, 2012, and Pendleton, 2003 for an introduction to the C API.)

SDL also offers an abstraction to the windowing system for the creation of OpenGL graphics con-

texts. This makes SDL an attractive foundation layer for writing platform-portable OpenGL-based

applications.

Based on SDL, there exist several extension libraries that provide further abstractions for more specific

tasks. For example SDL image offers a common interface for loading and saving of pixel-based images

with support for a large list of graphics formats. SDL mixer comprises music player routines for

various codecs including MP3, OggVorbis and MOD. SDL ttf enables the loading and rendering of

fonts. Furthermore, SDL net contributes networking facilities to the SDL framework.

The list of supported platforms is very large. Besides ports to all major desktop operating systems

and windowing systems, ports exists to game consoles and embedded platforms. Today a large number

of software packages exists that use SDL as a foundation layer for platform portability. Currently (as

of September 2012), the user database of the SDL website (Lantinga and et al, 2012) lists 702 video

games, 119 technical demonstrations, 182 applications and bindings to 27 programming languages.

Bindings for the R language are not mentioned; in this thesis we discuss the framework that provides

R bindings to several libraries of the SDL family, contributed with the rdyncall R package.

2.3 Motivation

In this section we make a brief digression to real-time graphics visualization in computational statistics,

with focus on R. We emphasize the importance of interoperability between programming languages

and software technologies, such as R and OpenGL, using the example of rgl, a contribution of a

3D real-time graphics visualization device system to R. We review the current states of rgl and

OpenGL and discuss several design issues of the software architecture which is the ground work for the

motivation of this thesis.

2.3.1 Graphics Plotting versus Real-time Graphics Rendering

One of R’s strength is its graphics capabilities for plotting data and displaying results. While the

graphics system of R offers a large range of output devices and formats, it is designed for high quality

output of static images; it is not suitable for real-time graphics. In general, if data plots have more

16 CHAPTER 2. BACKGROUND AND MOTIVATION

than two dimensions, it is challenging to produce a meaningful image without losing important details.

3D visualization techniques can be very helpful here. The persp function of R enables the drawing

of a 3D surface of a height matrix but the underlying problem remains: since a 3D graph is projected

onto a 2D image, the viewpoint of the projection is of importance. Significant regions at the back of a

3D plot might be obscured by data at the front. By using different colours and transparencies one can

improve the ability to see through the front. However, real-time graphics visualization, coupled with

interactive navigation, is much more valuable here, because it enables users to change the viewpoint

and to get an instant update of the display; the user can interactively explore the data.

However, the R graphics system was designed for plotting images; it is too slow for real-time graphics

output that requires rapid graphics clear and drawing performance.

In the past, real-time computer graphics was a reserved domain for owners of dedicated and expensive

computer hardware available to professional engineers in product planning and construction, medical

visualization, and for film and TV broadcasting companies. A second branch that influenced the

development of computer graphics software techniques and hardware can be traced back to the early

years of home computers and its computer game industry.

When the first commercial video games for home computers were sold in the early 1980s, a black

market for ‘cracked’ versions of computer games evolved very rapidly. A ‘crack’ of a game was pro-

duced by skilled computer enthusiasts who reengineered the game code to remove the copy protection

and finally to create a freely copyable version. Small programs, named “intros”, were added to a

cracked version, and got loaded before the actual game. Intros were used to advertise the so called

‘cracker group’ responsible for the crack. Although intro programs had strong size limitations, pro-

grammers constantly improved their skills to develop visually rich real-time graphics effects while

playing computer-generated music. As more people became attracted to “intro” and “demo”2 cod-

ing, a community, known as the “Demoscene” (Tasajrvi, 2004), diverted from its criminal origin.

Game developers and demo coders started to push computer hardware to its limit in order to produce

astonishing real-time graphics effects, but often with a limited scope of reuse.

At the end of the last century, hardware-accelerated 3D graphics chips had become very inexpensive

due to the tremendous success in 3D graphics card sales volume, and the appetite of video game

consumers for improved 3D graphics capabilities in terms of output resolution, quality and refresh

rate. In the last decade the graphics hardware has evolved from circuit boards with a fixed func-

tion to freely programmable highly parallel vector-based GPU (Graphics Processing Unit). Today

GPGPU (General-Purpose Graphics Processing Unit) computing is a field of applied computer sci-

ence in research domains, such as molecular modeling in chemistry (Stone et al., 2007), Black-Scholes

Options Pricing in finance (Kolb and Pharr, 2006) or Markov chain Monte Carlo methods in statis-

tics (da Silva, 2011). The OpenGL library is a foundation of this development, now superseeded

2Demos are similar to intros but without size limitations and may contain several parts similar to a music video clip

- but usually still employing real-time graphics effects.

2.3. MOTIVATION 17

by successor libraries designed for GPGPU programming, such as CUDA (Compute Unified Device

Architecture) and OpenCL (Open Computing Language).

2.3.2 3D Visualization Device System for R

The rgl package contributes a 3D visualization device system for R using OpenGL for real-time

graphics rendering.

rgl offers a set of building block functions to define 3D shape geometry and apperance for authoring

a 3D scene. 3D visualizations are created by passing data as parameters for geometry and appearance

properties.

The design of the programming interface of rgl is close to that of the R graphics system and is

optimized for displaying large amount of data in 3D space. The viewer window projects the data in

3D with automatic centering of the focus. The user can use the pointing device to rotate, zoom or to

change the perspective distortion (up to an orthogonal projection).

Some examples with code are given in Figure 2.1.

data(volcano)

x<-1:nrow(volcano)

y<-1:ncol(volcano)

z<-volcano*0.3

r<-range(volcano)

scaled<-volcano-r[[1]]/diff(r)

cols<-terrain.colors(256)

cmat<-cols[scaled]

surface3d(x,y,z,cmat)

n <- 1000

x1<-rnorm(n,2,3);y1<-rnorm(n,1,5);z1<-rnorm(n,-2,4)

x2<-rnorm(n,4,7);y2<-rnorm(n,2,7);z2<-rnorm(n, 2,7)

x3<-rnorm(n,3,5);y3<-rnorm(n,3,5);z3<-rnorm(n,-2,3)

spheres3d(x1,y1,z1,color="red")

spheres3d(x2,y2,z2,color="green")

spheres3d(x3,y3,z3,color="blue")

library(hotplots)

m1<-lm(sr~pop15*pop75+pop75,data=LifeCycleSavings)

plot3d(m1)

Figure 2.1: Examples of visualizations of rgl.

18 CHAPTER 2. BACKGROUND AND MOTIVATION

api

scene

device

gui

devicemanager rglview

types math pixmap

pngpixmap

lib

win32guiwin32lib

client device

Figure 2.2: C++ software architecture of R package rgl.

2.3.2.1 History

The first public version of rgl appeared (Adler et al., 2003) in the context of a diploma thesis in Fall

2002. The first port was initially done for the Microsoft Windows operating system. The work was

awarded with the John S. Chambers Software Award 2003 at the JSM (Joint Statistical Meetings)

in San Francisco. At the DSC (Distributed Statistical Computing) 2003 a new version was presented

(Adler and Nenadic, 2003) that included a second port to the X11 display system. Hence, the group

of Unix-based platforms running Linux, BSDs and others were also supported. The package name

inadvertently clashed with another package (Murdoch, 2001) that was based on a similar idea but

written in Delphi for Microsoft Windows. That version was renamed to djmrgl and the authors

joined efforts to merge e.g. par3d (a coherent 3D graphics parametrization interface analogous to

par for R graphics) and to improve the code base. In a later version, a third port to native Mac

OS X/Carbon was added. That step complemented ports to all three major windowing systems and

can be considered to be one of the most important parts of the developments. In the meantime, a

Mac OS X/Cocoa port has been added to support Mac OS X 64-bit platforms. CRAN Task Views, a

topic-driven user guide to R packages on the web, classified rgl as a core package for graphics; About

60 packages on CRAN depend on rgl functionality and another 54 packages suggest the use of rgl

(April 2012). rgl is mentioned as one of “the packages with the highest numbers of reverse strong

dependencies”(Hornik, 2012, pg. 63).

2.3.2.2 Software Architecture

The most challenging part of the implementation of rgl was the integration of the platform-specific

windowing system and user interface with ports to Microsoft Windows, Apple Mac OS X and Unix-

based X11 desktop systems. The C++ software architecture is given in Figure 2.2 and is briefly

outlined below.

Each box in the figure represents a certain module or class. At the lower part we see several modules

that represent a foundation layer for platform-portable application development.

2.3. MOTIVATION 19

The modules “lib” and “gui” provide for an abstraction to the underlying operating system and

windowing system, respectively; underneath the two modules the figure also depicts the port to the

Microsoft Windows platform comprising of two modules with the common prefix “win32”. Module

“pngpixmap” implements support for reading/writing image data in the png image format offered as

an abstract service “pixmap” for loading image textures and for saving screenshots.

rgl supports the simultaneous use of multiple open 3D “device” objects organized by the “device

manager” that holds the currently active device, which is the target for action commands executed

via the R programming interface depict as Module “api”.

Module “device” represents a single 3D device that owns a window object. Module “rglview” represents

the 3D rendering viewer component with interactive navigation. Module “scene” represents the heart

of rgl because it comprises the basic building blocks for the composition of 3D scenes. We depict the

C++ class hierarchy of the database in Figure 2.3. Leaf classes represent final building blocks for data

visualization that are exposed to the R programming interface. E.g. rgl.points() or points3d() (for

the creation of a point cloud in 3D) leads to the creation of C++ instance objects of class PointSet

that are hooked into the database run-time model. The viewer component uses this database for

the rendering of 3D graphics. If new objects are inserted into the database the viewer reflects that

instantly on the screen.

SceneNode

BBoxDeco Light Shape Viewpoint

Background PrimitiveSet SphereSet SpriteSet Surface TextSet

FaceSet LineSet LineStripSet PointSet

QuadSet TriangleSet

PlaneSet

ABCLineSet

Figure 2.3: C++ class hierarchy of rgl scene graph database.

2.3.2.3 Drawbacks of the Architecture for Extensions

From an R user’s perspective, a major drawback of this architecture for extending rgl with new

visualization methods is given by the use of a multi-layered software design comprising of code in

C++ and R. The implementation for a building block of rgl’s scene graph is spread across three

20 CHAPTER 2. BACKGROUND AND MOTIVATION

different layers:

1. The interface function, written in R, receives shape node parameters for appearance properties

and the geometry data. The former are forwarded to a C interface function for handling material

data, the latter are passed to the next layer.

2. A C++ function, using an R-to-C calling convention, receives data for geometry (e.g. coordi-

nates, sphere radius, etc..). It creates an instance of a new shape node (implemented in the

next layer) that is then inserted into the database of the currently active device.

3. A shape node, written in C++, prepares geometry data for rendering (e.g. generation of nor-

mal and texture coordinates for lighting computation and texture mapping, respectively) and

implements the update method for graphics rendering.

In Section 2.1.1 we outlined advantages of scripting as a technique for a rapid application development.

A hybrid implementation for the high-level parts in a system-level and scripting language significantly

slows down development of new visualization methods. But the choice in favor of a hybrid software

design in C/C++ and R for extensions is often inevitable if the necessary interfaces are not available

for R. Since R interfaces to important components of rgl were missing, such as OpenGL and an

portable abstraction to the windowing system, a foreign compiled language was needed here.

Furthermore, rgl is based on OpenGL Version 1.2, and, in the meantime, the graphics processing

pipeline model and API of OpenGL have significantly changed from a fixed-function model to a freely

programmable one for major stages of the pipeline. The new API offers considerable scope for ad-

vanced applications of real-time graphics visualization and high-performance computing. Although it

is possible to upgrade rgl to use newer versions of OpenGL, we would have to introduce additional R

interfaces and abstraction layers to take advantage of the new programming model of OpenGL. How-

ever, the C API of OpenGL already represents the interface for accessing graphics hardware resources

in a platform-portable manner. So it makes sense to develope an approach that connects this interface

directly to R.

If R bindings existed to all required low-level components of rgl, then the application could be written

entirely in R and the distribution of the package would become significantly easier as compilation is

eliminated.

If the creation of R bindings can be automated by using the official OpenGL C header file definitions,

new versions of OpenGL could be incorporated promptly. Aside from rgl other applications for using

OpenGL in the context of statistical computation with R are also becoming feasible, as R users do

not have to figure out a complex C/C++-based software architecture in advance to start exploring

new methods.

2.3. MOTIVATION 21

2.3.3 Suggested Architecture for Language Extensions

We propose an alternative software architecture for those language extensions that require significant

support from external C libraries for their implementation. Instead of writing extension code in

C/C++ to gain access to the C API of libraries, we suggest providing for language bindings to

external C libraries in a first step and then to script the application or extension.

In that we shift the implementation from a foreign compiled language to the scripting language, we

provide for a rapid application development model as discussed in Section 2.1.1. In the case of rgl this

would reduce the number of implementation layers and the software design becomes more transparent

to scripting users. For example, R users can extend rgl with advanced visualization techniques by

using the core OpenGL API without the need to write and integrate C++ code across multiple layers

of implementation.

In general, if C libraries can be used within scripting languages as language extensions, the pool of

available language facilities instantly grows with high-quality components. Mature C libraries, such

as OpenGL and SDL, provide an elaborated interface that has been developed over many years.

One prequisite of this software architecture design is the existence of a software technology that

facilitates the bindings between the scripting language and C library. If possible, the bindings should

be established in a dynamic manner so that compilation is not required which significantly eases the

building and distribution of dependent application code.

In this thesis we propose a Dynamic Bindings Model for making arbitrary C APIs of external C

libraries available as an extension to the scripting interpreter; our proposal emphasises the R language

as a first implementation as well as platform-portability across processor architectures.

22 CHAPTER 2. BACKGROUND AND MOTIVATION

Chapter 3

Dynamic Bindings Model

In this chapter we discuss a middleware architecture for scripting languages and shared C libraries

that provides scripting access to C APIs across platforms. In contrast to compiled language bindings,

we aim to overcome compilation through the use of dynamic methods for run-time interoperability

with precompiled shared library code, thus the name Dynamic Bindings model.

We begin with brief accounts of the background concepts, such as shared libraries, language bindings,

interoperability and FFI, and then proceed to a description of the proposed model.

3.1 C Libraries

A basic idea of this thesis is to regard a C library as a self-contained component, and to elaborate

techniques for C interface access from scripting languages. Therefore we give a brief overview of types

of compiled C libraries and their distribution as software packages.

3.1.1 Binary Formats

In general, we distinguish two binary format types of C libraries:

• Static libraries represent the most basic type of a compiled library. After compilation of library

sources the corresponding object files are collected in a single archive file. Static libraries are

used for development of subsequent software. In simplified terms, static libraries are linked with

user software by copying the archive’s object files into the target executable or library file.

• Shared libraries comprise a rather complex binary form that resembles that of an executable

image as shared libraries are loaded to a running process at load time or at run time:

– Load-time linking: Shared libraries can be used for development of subsequent software,

such as in the case of a static library. But instead of copying the library code into a target

23

24 CHAPTER 3. DYNAMIC BINDINGS MODEL

executable, application code is linked symbolically. On loading an application, its exe-

cutable file and referenced shared libraries are loaded into memory before the application’s

process starts.

– Run-time linking: Shared libraries can also be loaded dynamically, on request, as self-

contained binary components to a running process.

Shared libraries represent the most flexible binary format of a C library. After compilation as a shared

library, the library can be used as a static dependency in other applications (load-time linkage) or

also dynamically as a component. Dynamic run-time linkage is fundamental for plug-in architectures

where the system is configured via loading components from a (possibly large) repository. For exam-

ple, programming environments, such as R, use run-time linkage for loading extension packages that

comprise compiled C/Fortran code.

The Dynamic Linker, a component of the operating system, is responsible for loading and load-

time/run-time linking of shared libraries and executables. In order to reduce physical memory, it

uses the virtual memory management system to load the read-only regions of shared library files into

physical memory once and maps this memory to several user processes. Hence a significant amount

of physical memory is shared if several application processes use the same shared library.

Since we consider dynamic loading of shared C libraries across platforms, we discuss platform-specific

details in Section 4.2.3. In Section 5.5 we present a C library with a portable API for dynamic run-time

loading of shared libraries including ports to major operating systems. Detailed information about

binary formats and loading/linking methods is given in Levine (2000).

3.1.2 Software Distribution

Libraries are distributed as software packages in three different forms, depending on the chosen binary

format, installation and deployment policy of the target platform:

• A source package comprises the source code, header files and miscellaneous files for building,

deployment, documentation preparation and installation.

• A run-time package comprises the prebuilt binary file for a particular operating system/processor

architecture combination.

• A development package comprises common platform-neutral files for development and compila-

tion, such as C/C++ header files and documentation.

Package management systems, such as used in open-source Linux and BSD systems, as well as those

provided by third-party system extensions, such as the MacPorts project (MacPorts Project, 2002)

for Mac OS X and the OpenCSW project (OpenCSW project, 2002) for Solaris, are very convenient

for distribution of source, run-time and development packages for libraries.

3.1. C LIBRARIES 25

Figure 3.1: Dynamic load-time linkage of shared libaries. The build process (top) and the run-time

environment (bottom).

If a shared library is used by a large number of applications, shared libraries and package managers

become very efficient to the overall system. On current platforms, there are usually very few libraries

that provide significant services to virtually all applications available. Due to the linkage model of

shared libraries, package systems can arrange operating systems as a tree of dependent binary packages

of applications and libraries. On the broad scale, the overall compilation time for building a compre-

hensive software repository is significantly reduced. Furthermore, software updates are available more

promptly. Finally, end-users experience a rapid installation procedure since binary packages contain

only the bare minimum of binary data. Dependencies to shared library packages are resolved at in-

stallation time and need to be installed only once. (For an overview of different installation methods

across platforms, see Table 4.12 which uses the example of the SDL library.)

3.1.3 Binary Interface

Since libraries and dependent applications are compiled separately, possibly by different compilers on

the same platform, the compiler plays a significant role in the realization of the binary interface.

Figure 3.1 illustrates the build processes for a shared library and a dependent user application that

links with a shared library dynamically at load time. The shared library is linked symbolically to

the executable. At load time of the executable, the loader and the dynamic linker (both are usually

26 CHAPTER 3. DYNAMIC BINDINGS MODEL

combined as a single component of the operating system) are responsible for setting up the virtual

address space and mapping the executable including all dependent shared libraries into the virtual

address space of the process.

Since there are no other run-time services involved except the loader and dynamic linker, run-time

interoperability between application and library code needs to be facilitated in advance by compilers at

compile time; they have to conform to a platform-specific implementation standard for the C language

to make the run-time linkage and interoperability work. If for some reason two different compilers, one

for the library and the other for the application, did not share a common C compilation standard and

calling convention, then this would break compatibility, in the worst case, without notice at compile

time.

The conformance of components at low level is given by the ABI, published for a specific platform.

It contains machine-specific implementation details of C. Thus in effect the ABI and a conforming

compiler implement the interoperability at compile time. (see Section 5.2 for a detailed discussion on

the ABI.)

Shared C libraries can be regarded as a pure form of binary components within a system; they can

be loaded as plug-ins dynamically at run time via dynamic linkers to a running process. However, a

dynamic interface for interoperability with the components of their interface, such as functions and

data objects, is not provided by operating systems. If we can carry out dynamic and generic methods

that conform with the ABI, we can provide for dynamic interoperability between scripting languages

and precompiled shared C libraries. Our considerations and a proposal for such a service is discussed

in detail in Chapter 5.

3.2 Language Bindings

A Bindings extension for a particular scripting language gives scripting access to the C API of a

specific external library. The scripting interface comprises proxy objects that mimick the C API via

delegation of function calls and value preservation for symbolic constants. In this section we discuss

common techniques for developing of language bindings extensions.

3.2.1 Compiled Language Extensions

Bindings are often implemented as compiled extension modules, written or auto-generated, in C. The

source code comprises repetitive code sequences for wrapping C library function calls. In addition,

depending on the design of the C API, methods for mapping symbolic constants, data structures and

callbacks need to be taken into account. The details for passing control flow and for value conversion

are carried out by bridge or wrapper C code that connects the two C interfaces, that of the interpreter

and that of the library. The code strongly depends on the extension and embedding interface of the

scripting language. Muhammad and Ierusalimschy (2007) give an overview and compare C interfaces

3.2. LANGUAGE BINDINGS 27

Scripting Languages
Py

Perl R Lua

JS

C Libraries
gtk+

expat GL SDL

R

Figure 3.2: Illustration of scripting languages, C libraries and bindings on a single platform. In the

compiled model each path between a language and library represents a compiled extension module.

for extension and embedding scripting languages.

The workload for making a single C library available to the set of popular languages, or for making a

set of popular C libraries available to a new programming language, can be enormous. Figure 3.2 gives

a graphical illustration. Note that taking account of the platform axis here as part of software build-

and-release process for cross-platform languages multiplies the workload by the number of supported

platforms.

Compilation of language bindings has an annoying side-effect. Scripting languages often suggest their

own build-and-deployment tools for extension development, in particular when using C, for example

see extension and embedding guides for R (R Development Core Team, 2012c), Perl (Jenness and

Cozens, 2003), Tcl (Flynt, 2003), PHP (Golemon, 2006) or Python (van Rossum, 2012). Aside from

learning the build tools, object code needs to be linked with external libraries. If a cross-platform

bindings extension is required, the development task can be complicated and tedious due to platform-

specific differences for linking. See Section 4.1 for an illustration of linking user code with SDL across

platforms.

3.2.2 Handwritten Bindings

The development of language bindings requires detailed knowledge of both sides of the bridge; internals

of the scripting language, as well as the C API and interface usage policy of the library need to be

considered in order to achieve a comprehensive scripting interface to the C API. The development of

bindings becomes a cumbersome process, in particular, if the C API comprises hundreds of components.

In practice, work-arounds are common; for a given programming task, only the bare minimum of

functionality is connected with the scripting language in the form of a custom bindings package. But

28 CHAPTER 3. DYNAMIC BINDINGS MODEL

in the long run this approach runs contrary to the objective of using scripting languages for rapid

application development by gluing of ‘components’, such as shared C libraries with a well-defined

API.

3.2.3 Automation Tools

Automation tools can significantly reduce the workload for developing a language bindings extension.

Most notable is SWIG (Simplified Wrapper and Interface Generator), a software tool for automatic

generation of language bindings with support for a large number of programming languages. SWIG

(The SWIG Developers, 2010) generates language-specific extension C code according to a language

neutral module description of the library. The format of the module description looks very similar to

C header files. We illustrate the workflow for creating a SWIG-based binding of the sqrt C function

to the Lua (Ierusalimschy et al., 1996) programming language in Listing 1.

%module sqrt

double sqrt(double x);

require"sqrt"

x = sqrt.sqrt(144)

-- result: x = 12

LUA_LDFLAGS =$(shell pkg-config lua --libs)

LDFLAGS =${LUA_LDFLAGS}

all: sqrt.so

%_wrap.c: %.i

swig -lua $<

sqrt.so: sqrt_wrap.o

$(CC) -shared $(LDFLAGS) $^ $<

Listing 1: SWIG example to create a Lua binding to the sqrt function of the C standard math library.

Listing in top-left corner gives the SWIG module specification, listing in bottom-left corner gives Lua

user test code and the listing to the right gives a sample Makefile to trigger the SWIG code generator

and then the C compiler to produce a Lua shared library module.

SWIG accepts interface files with the file extension *.i to be written manually, as stated in the manual:

“Although SWIG can parse many header files, it is more common to write a special ‘.i’ file defining

the interface to a package. [...] It is rarely necessary to access every single function in a large package.

Many C functions might have little or no use in a scripted environment.”(SWIG Developers, 2009,

Section 5.7.3) This argumentation appears to be pragmatic for the development of bindings for custom

application software. However, in the context of scripting of applications by gluing general-purpose

C library components, it becomes important that the complete C interface is made available to the

scripting language.

Further the manual states, that “SWIG can’t parse certain definitions that appear in header files.

Having a separate file allows you to eliminate or work around these problems.”(SWIG Developers,

2009, Section 5.7.3)

SWIG can be considered as a helpful development tool for creating compiled bindings but with limita-

tions; it still requires further manual assistance for writing the interface file, as well as for building and

linkage across platforms. In contrast, we aim to exchange the wrapper compilation layer with dynamic

methods for interoperability between scripting language and C libraries, that serves as a foundation

3.3. INTEROPERABILITY 29

layer for a cross-platform bindings framework to shared C libraries and their API.

3.3 Interoperability

In the field of computer science the term “Interoperability” is used to characterise the ability of

diverse systems and components to work together. The IEEE Glossary (Geraci et al., 1991) defines

interoperability as ”the ability of two or more systems or components to exchange information and to

use the information that has been exchanged.”

In this thesis we consider interoperability within a single running process between the run-time en-

vironment of scripting languages and precompiled external libraries with a C API. In particular, we

are interested to develop methods for interoperability that work at low level in a dynamic and generic

manner, where the bindings are driven by type information at a meta level across native platforms.

We consider two low-level forms of interoperability that are briefly outlined next.

3.3.1 Code-level Interoperability

Code-level interoperability has to take account of function calls and the orderly passing of control-flow

from the interpreter’s environment to the C run-time environment of the library.

Libraries often play an implicitly passive role as a collection of functions to be called in a uni-directional

manner. But some libraries use “callbacks”, i.e. user-defined functions are passed to library code which

is called later from inside the library.

Therefore, code-level interoperability needs to be considered in both directions: from language to

library (calls or call-out) and from library to language (callbacks or call-in).

3.3.2 Data-level Interoperability

Data-level interoperability deals with the synchronization of views on data objects that are shared

by the scripting language and the C library. Data-level interoperability is intrinsically anchored with

code-level interoperability at low level. During a call to a foreign function arguments are converted

from a high-level form to a low-level representation. Conversely, return values received at low level

need to be converted to newly allocated high-level language objects. This process is also named

marshalling (from high to low level) and unmarshalling (from low to high level).

While parameter and return types of C functions are usually of scalar data type, which makes the

conversion process between the interpreter and C manageable, the handling of scalar pointer objects

represents a challenge for data-level interoperability, especially if the underlying pointee object is of

a composite data type, such as user-defined struct and union data types. Many libraries provide

an interface policy framework that specifies certain rules to follow (beyond calling API functions in a

certain order).

30 CHAPTER 3. DYNAMIC BINDINGS MODEL

A commonly used interface policy requires that data objects are allocated and initialized in user code

and are passed as call-by-pointer arguments to a library’s function; user code has to deal with the

management of composite C structure and union data type, including allocation and destruction of

memory objects and precise addressing of fields within the object. (See Section 4.5 for a comprehensive

example.) The native representation of complex C data objects needs to be guaranteed when a pointer

is passed as argument to a function of the library. Depending on the interface policy, the object also

needs to remain at the address in memory subsequently.

A dynamic interface requires an appropriate carrier within the scripting language for C composite data

objects with support for embedding C objects within scripting objects and referencing of C objects

via pointers. By preserving the native representation and address of composite C data objects, and

by providing a scripting interface for read and write access on field level, data-level interoperability is

also feasible in this context.

Fisher et al. (2000) give a detailed discussion on data-level interoperability implemented for C and

the Moby language and coin the term “Foreign Data Interface” for this approach. In Section 4.5 we

discuss an FDI (Foreign Data Interface) for the R language.

3.4 Foreign Function Interfaces

A Foreign Function Interface (FFI) is a facility for programming languages to provide interoperability

with external libraries written in a foreign language. The term was first coined in the context of

Common LISP; users were given a set of functions to make function calls to foreign code of external

libraries without leaving the language. A large number of extensions for various dynamic programming

languages adopted this term. And even compiled languages and virtual machines, such as Java, use

this term, for low-level interfaces to native C code, such as the JNI (Java Native Interface). Despite

its name, FFIs often include extended functionality beyond calling foreign functions from external

libraries.

The online work-in-progress report “Design Issues of FFIs” (Urban, 2004) gives an overview of existing

FFIs and provides a detailed classification. In the reference manual of ECL, an implementation of

Common Lisp, ”Two kinds of FFI” are decribed (Garcia-Ripoll and Rosenberg, 2006, Sec. 3.2), namely

“Static FFIs” and “Dynamic FFIs”.

3.4.1 Static FFI

Essentially a static FFI is a language-extension interface to C; it provides functions to make calls to

C. However, the support for making calls to foreign functions of external C libraries is rather limited.

We discuss the limitation of static FFIs in the following section using the example of R.

3.4. FOREIGN FUNCTION INTERFACES 31

3.4.2 Limitations of the Static FFI in R

The FFI of R comprises several R functions to make calls to compiled C and Fortran code; each

interface function supports a different target language and calling convention:

Interface Description

.C() Foreign C function.

.Fortran() Foreign Fortran function.

.Call() C function with R calling convention passing each argument as an SEXP.

.External() C function with R calling convention passing the call object as a single SEXP.

.Call and .External are used by package developers to call precompiled C functions that are written

intentionally as an extension to R. C functions must be of a specific type in order to be compatible

with R so that C code can access R arguments and return results as R objects. In general, such C

code also accesses the low-level C API of R to create new R value objects.

.C was designed for the purpose of calling foreign C code from within the interpreter. It has the

following functional interface:

.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

The first argument name specifies the C function to be called; it is followed by the arguments to be

passed, denoted by the placeholder ‘ ... ’ . We notice that no additional parameter is reserved to

specify the function type of the target C function; the C function type is derived from the R argument

types that are passed on each foreign function call. Consequently the C argument types of the target

C function need to be compatible with the R argument types and the conversion is driven by latter.

Table 3.1 gives the mapping rules.

R Type C Type

integer int *

numeric double *

single float *

complex RComplex *

logical int *

character char **

raw unsigned char*

list SEXP *

others SEXP

Table 3.1: Static mapping of R to C argument types in R’s Static FFI .C .

Although the FFI works at a dynamic level without compilation, we classify the FFI as a static rather

than a dynamic call interface to C. The reason is illustrated by the following simple example.

32 CHAPTER 3. DYNAMIC BINDINGS MODEL

Example Suppose we wish to compute the square root of a positive number and plan to use the C

function sqrt from the C Standard math library that is pre-installed on most platforms. An excerpt

of the header file math.h that specifies the function prototype declaration is given here:

double sqrt(double x);

The function receives a single scalar argument of C type double denoted with x . Its implementation

computes the square root of x and returns the result of C type double .

The .C function is suitable to “make calls to compiled code that has been loaded into R”(quote from

the manual page of .C as of R Version 2.14):

Load shared C library (Example on x86-32/Linux)

> libm <- dyn.load("/usr/lib/libm.so")

> addr <- libm$sqrt$address

> .C(addr, 144) # UNDEFINED BEHAVIOUR

[[1]]

[1] 144

The expected result of 12 was not returned; it is also quite possible that the call will lead to an abnormal

termination of the R session; also no warning or error is returned. Closer examination reveals: .C

does not support passing of scalar objects. Instead, a pointer to that value is passed. Moreover it

does not support C return values. The C function must return values via pointer arguments.

Thus, an intermediate C wrapper code is needed that serves as an adapter between R and sqrt to

convert arguments and results as given in Listing 2. The left panel gives the C wrapper code. On

the right panel of the listing an R front-end function is given. The R front-end insures that the R

argument is coerced to a numeric value (i.e. to be passed as a C double* pointer to C) and the length

of the argument vector is greater or equal to 1 before the call to the C wrapper code.

#include <math.h>

void wrap_sqrt(double* ptr)

{

double x, result;

x = ptr[0];

result = sqrt(x);

ptr[0] = result;

}

libwrap_sqrt <- dyn.load("libwrap_sqrt.dylib")

mysqrt <- function(x)

{

x <- as.double(x)

length(x) <- min(length(x), 1)

.C(libwrapsqrt$wrap_sqrt$address, x)[[1]]

}

Listing 2: Hybrid C/R call wrapper for sqrt .

The code has to be compiled and the resulting object file has to be linked with external libraries to a

shared library.

$ gcc -shared wrap_sqrt.c -lm -o libwrap_sqrt.dylib

Alternatively the wrapper can be prepared as part of an R package. In both cases the external wrapper

library has to be linked with the C math library explicitly.

3.4. FOREIGN FUNCTION INTERFACES 33

In most cases C library functions are not compatible with the given low-level R-to-C call interface of

.C . We give a brief summary of the limitations of .C :

• Arguments can not be passed by scalar value, but are always passed by pointer, with support

for int* , float* , double* , char** and unsigned char* .

• No return values are supported. Return values are passed by argument pointers.

• Non-standard C calling conventions are not supported.

In general, the FFI of R is so restrictive that no general-purpose C library code can be called directly.

Hence, C wrapper code needs to be developed, so that it can be plugged in between R and the target

C function of the library. Moreover we are forced to introduce hybrid wrappers consisting of R and C

code:

• R wrapper “front-end” code converts input arguments and coerces a static type before calling

the C wrapper via .C .

• C wrapper “adapter” code converts argument values and return values and calls the foreign C

function of an external library.

Alternatively the .External and .Call FFI interfaces can be used, which gives C access to R internals,

for single C wrapper implementations.

The FFI of R is a static variant that defines a strict R-specific calling convention with strong limita-

tions. Support for handling of callbacks from C to R and foreign C data objects is also not addressed

by this FFI.

We can summarize by saying that the FFI, offered by the base R package, is not an interface for

foreign libraries; it is designed as an interface for writing extensions in C and Fortran code.

3.4.3 Dynamic FFI

Dynamic FFIs overcome the limitations of static FFIs in that a larger number of function types

are supported without the need of compiled wrapper code. In contrast to the static FFI, the call

interface function includes a parameter that gives the target C function type. Input arguments from

the interpreter are converted according to the sequence of parameter types of the C function type;

this ensures that the subsequent call to compiled code is type-safe. Notice that, whereas type-safety

is supposed to be achieved by the C wrapper for static FFIs, it is largely unnecessary when using

dynamic FFIs.

34 CHAPTER 3. DYNAMIC BINDINGS MODEL

Language Variant Extension Implementation

Forth Factor built-in custom

Haskell GHC built-in libffi

Java

JavaVM
JNA libffi

BridJ dyncall

gcj built-in libffi

OpenJDK built-in libffi

JavaScript

WebKit JSCocoa libffi-iphone

Mozilla js-ctypes libffi

NodeJS node-ffi libffi

jsh built-in dyncall

Lua
PUC-Rio

alien libffi

luadyncall dyncall

LuaJIT ffi LuaJIT/DynASM

ML NJ ML-NLFFIGEN custom

OCaml OCaml ocamlffi custom

Pawn Pawn built-in dyncall

Perl

Perl 5 FFI ffcall

NQP built-in dyncall

Rakudo Perl 6 zavolaj dyncall

Python CPython
ctypes libffi

PyObjC libffi

R R
rdyncall dyncall

Rffi libffi

Rebol Rebol3 dyncall dyncall

Ruby Ruby MRI

ruby-ffi libffi

Typelib dyncall

fiddle libffi

RubyCocoa libffi

Scheme

Guile built-in libffi

Racket built-in libffi

PLT Scheme built-in libffi

Common Lisp many cffi CFFI-SYS, libffi

Table 3.2: Overview of Dynamic FFIs.

Dynamic FFIs exist for a large number of languages, whether as built-in services or as extension

libraries. Table 3.2 gives an overview of various dynamic FFIs. Many FFIs exist for Common Lisp,

possibly due to the historical roots in that language. We introduce a dynamic FFI for the R language,

named rdyncall, in Chapter 4.

3.4.4 Generic Dynamic FFI

Whereas static FFIs can be portably implemented in C (see Section 5.4.1 for a discussion of .C ’s

implementation), dynamic FFIs require an abstraction for function calls at machine level. The latter

3.5. MODEL DESCRIPTION 35

requires code to be written in assembly language, or incorporation of a machine-code generator. Given

the complexity of developing a portable solution for the implementation of a dynamic FFI, it is not

surprising that most dynamic FFIs do not include such an implementation themselves, but make use

of an external library that offers this abstraction. Urban (2004) introduces a separate category, named

Language Independent Generic Dynamic FFI. In the paper numerous FFI extensions for languages

are given, but for their implementation only two C libraries with selective ports to specific processor

architectures are given, namely ffcall (Haible, 2004) and libffi (Green and et al, 2011), as well

as assembly language in general and “Minotaur”, a Forth-based glue to C. Since 2004 (when that

document was last updated), we can further extend this list with C/Invoke (Weisser, 2007) and

dyncall.

Most dynamic FFIs regard the low-level implementation of dynamic FFIs as a black box and often

details to be found only in assembly language sources. Given the fact that, for years now, the generic

dynamic FFI layer plays the most significant role within any dynamic FFI and beyond, the shortage of

comprehensive information on the design and implementation of dynamic interoperability techniques

across processor architectures seems to be paradox. For example, the GCC (GNU Compiler Collection)

uses libffi for handling calls between interpreted and natively compiled Java. The importance of

these low-level packages is also given in Table 3.2 by column ‘Implementation’; in summary (frequency

is given parentheses) from our list of dynamic FFIs (32) either a custom implementation (4) or one of

three Generic Dynamic FFI C libraries libffi(18) , dyncall(9) and ffcall(1) is used. We discuss

the design and implementation of dyncall in Chapter 5.

3.5 Model Description

In this section we describe a model of a middleware architecture for scripting languages and shared

C libraries to provide seamless scripting access to the C API across platforms without the use of

compilation.

First we give an overview of the model and an outline of the architecture followed by a discussion on

its characteristics for development of language bindings by comparision with the compilation-based

model.

3.5.1 Overview

In general, C libraries are offered as binary components in the form of a shared library. They can

be installed via package management systems on a broad range of platforms within seconds. Shared

libraries represent the purest form of a binary component; they can be loaded dynamically as plug-ins

and offer a static binary interface. The dynamic linker of the operating system provides an interface

for loading shared libraries at run time, as well as for resolving symbolic names to loaded memory

addresses of global function and data objects.

36 CHAPTER 3. DYNAMIC BINDINGS MODEL

Further, a dynamic FFI provides the methods for run-time interoperability with foreign code and

data, such as making calls to compiled and loaded C functions, but requires type information as a

parameter. Thus, a wrapper layer is still required to inject type information. Scripting languages

are ideal for automation tasks, including the creation of wrappers. The wrapper comprises proxies,

one for each component of a C API, such as scripting functions for C functions to assure type-safe

invocation of the foreign function call.

However, the essential information for using a C API, such as a functions symbolic name and type,

is not contained in the binary shared library files but in C header files. A parser could be utilized to

extract the required information from C header files. But this would demand that development files,

including C API and system header files, are preinstalled on a target run-time platform. Furthermore,

the inclusion of a C language parser would significantly increase the total memory footprint for the

run-time middleware component.

As an alternative, we suggest to utilize an off-line preprocessing phase in which C header files are

translated to a simple text-based format. Text formats can be parsed via standard text scanner

routines, in the scripting language for text-based input to a dynamic FFI, as well as in C for processing

text for operating a generic dynamic FFI. So in addition to the shared libary, the format encodes the

corresponding type information, symbolic names and constant values of a particular C API as a

cross-platform type library for C APIs.

3.5.2 Architecture

We now consider the implementation of the model for a specific scripting language by developing a

single language extension, in C. The extension functions as a hub for the creation of dynamic bindings

to arbitrary C APIs; the linkage between the scripting language and a pre-installed shared C library

is created dynamically at run time.

The extension provides a function for loading of dynamic bindings. The name of the bindings is passed

by a cross-platform name of the C API. On calling the function, the creation of a Dynamic Binding

to the C API is triggered. The subsequent automation is driven by a platform-neutral description

file that provides information about the components of the C API, including hints of the name for

loading the platform-specific shared C library on different platforms. Description files are stored in a

repository. Support for new C libraries is realised by extension of the repository.

An extendable repository of portable bindings information to C APIs is provided with the extension.

At first, the shared library is searched, based on hints of names. If the shared library is found, it is

opened via the dynamic linker. Then, for each component of the C API the following proxy language

objects are created:

• C API Functions are wrapped by a dynamically created scripting function which consists of a call

3.5. MODEL DESCRIPTION 37

object to the dynamic FFI with two parameters, namely code address and function type. Both

are derived by the description file (for the symbolic name and type) and subsequent resolving

the symbolic name to the loaded address.

• C API Symbolic constants are mapped as corresponding named constant value objects that

preserve the constant value. Both, name and value, are given by the description file.

• C API Types are mapped as helper objects in order to support function pointer callbacks,

data pointers to objects of composite data types, memory allocation of data objects and their

manipulation. Type helper objects are initialized by type information provided by the description

file.

We now consider the architecture of the model in order to reduce complexity of its implementation

and to emphasize its portability across multiple languages and hardware platforms.

The Dynamic Bindings model comprises three layers of abstraction:

1. For each library, we encode the C API in a language- and platform-portable format, named

DynPort. The format plays a central role as it is used as cross-platform text-based interface to

the Dynamic FFI. We also give the implementation of a parser tool, named DynPort tool, that

translates C header files to DynPort files. In Section 3.7 and Section 3.8 we discuss the DynPort

format and the DynPort tool, respectively.

2. For each scripting language, a language extension needs to be developed. First, we need a

Dynamic FFI as a foundation. Based on this FFI, we implement the automation process that

parses DynPort files and creates corresponding proxy objects. We discuss this layer in Chapter

4 using the example of an implementation for the R programming language, named rdyncall.

3. For each platform, we need an implementation of the dynamic FFI at machine level or the use a

Generic Dynamic FFI with a portable C interface. For the latter, we give a detailed discussion in

Chapter 5 using the example of an implementation, named dyncall, comprising three C libraries

that provide a portable C abstraction layer for dynamic linkers, function calls and callback

handling, respectively. We give an overview of ABIs on five processor-architecture families,

followed by a detailed discussion using the example of several platform-port implementations in

C and assembly language of dyncall.

3.5.3 Comparison of Bindings Models

The Dynamic Bindings model is illustrated in Figure 3.3 which compares the different technical

development workflows and run-time environment configurations of the “compiled” (left) and the

“dynamic” (right) approaches.

38 CHAPTER 3. DYNAMIC BINDINGS MODEL

Language Run time

Extension A Extension B

Lib A Lib B

Header

A

Header

B

Wrapper

A

Wrapper

B

C Compiler

Linker

Bindings A Bindings B

Language Run time

Lib A Lib B

Dynamic Bindings

Extension

DynPort

A

DynPort

B

Header

A

Header

B

DynPort

Tool

Bindings A Bindings B

p
er

li
b

ra
ry

/
p

la
tf

or
m

p
er

li
b

ra
ry

cr
o

ss
p

la
tf

or
m

ru
n

-t
im

e
li
n

ka
g

e

lo
a

d
-t

im
e

li
n

ka
g

e

Figure 3.3: Comparison of the compiled (left) and dynamic bindings (right). See Section 3.5.2 for

details.

In each case, two C libraries “A” and “B” are made available as bindings to a language run-time

interpreter and environment, depicted in the lower part of the figure. The upper part gives the

development tasks for creating language bindings.

The left-hand panel of Figure 3.3 gives the workflow and run-time environment for “compiled” bind-

ings. For each C library a language extension is implemented in a compiled language (C/C++).

The sources are depicted as document icons and labeled “Wrapper A” and “Wrapper B”. The term

“Wrapper” is commonly used in the context of language bindings. Wrappers encapsulate existing

functionality and wrap around a foreign interface. The wrapper code does include (via #include of

the C preprocessor) the C API header files of the library as well as the header files of low-level exten-

sion development of the scripting language. After the modules are compiled, packaged and installed

as standard language extension packages, Bindings “A” and “B” can be loaded on demand by users

via language-specific standard extension loading mechanisms (e.g. loading compiled R Bindings to

“A” via package “ExtA”: library(ExtA)).

The right-hand panel gives the workflow and run-time environment of our proposed “dynamic” bind-

ings approach. Instead of a compilation phase, the C API header files are translated by the DynPort

tool into a simplified language-neutral and platform-portable DynPort format that provides the in-

formation for automation of dynamic interfaces. After the DynPort files are created, and the shared

libraries have been installed to the system (e.g via package managers), then as above, Bindings “A”

and “B” can be loaded on demand as well but via a specific loader interface (e.g. loading dynamic R

3.6. C TYPE SYSTEM 39

Architecture Year Bits char short int long void*

Unisys 1100 1962 36 9 18 36 36 72

PDP 11 1970 16 8 16 16 32 16

VAX/11 1977 32 8 16 32 32 32

Motorola 68000 1979 16/32 8 8/16 16/32 32 32

Harris H800 1982 48 8 24 24 48 24

Cray-2 1985 64 8 64(32) 64(32) 64 64(24)

Intel 80386 1985 32 8 8/16 16/32 32 16/32/48

Table 3.3: Data type bit-sizes of C types across architectures of the past.

bindings to “A” via DynPort “ExtA” and rdyncall: dynport(ExtA)).

We now compare the two bindings methods with regard to their implementation, also across multiple

languages and platforms. In the “compiled” model sources for wrapper modules have to be written for

each language-and-library combination. While the wrapper modules also need to be compiled for each

language-library-platform combination, the DynPort file is generated once per library. The Dynamic

Bindings extension has to be implemented once per language. Doing this for several languages makes

one DynPort file applicable across those languages. The implementation of the model is based on a

Dynamic FFI which needs to be implemented once per language; it is based on a Generic Dynamic

FFI, such as dyncall, that has to be implemented once per ABI platform but can then be used for

a wider spectrum. (See Table 5.11 for an overview of ABI/platform ports of the dyncall library and

Table 3.2 gives an overview of dynamic FFIs and their implementation base.)

A key point of our model is the use of a language-neutral format that is used for shared library

loading, resolving of addresses and interoperability. For the implementation we require the existence

of a dynamic linker and a powerful dynamic FFI that can be driven by given information from DynPort

files.

3.6 C Type System

Types classifies the objects and expressions of a programming language. In simplified terms, the data

type of a C object gives information about the encoding and representation of data in memory, while

the function type of a C function gives information about the data type of the return value and the

parameters. This information is essential for dynamic FFIs in order to make foreign function calls,

or to handle callbacks and foreign data objects. Therefore, we give an overview of the components of

the C type system, for which we develop a text-based encoding scheme for C APIs in Section 3.7.

3.6.1 Overview

C was designed as a platform-independent language with emphasis on low-level programming and

plaform-portability software development. Although both objectives seem to be rather contrary, C

40 CHAPTER 3. DYNAMIC BINDINGS MODEL

was successfully used for the development of cross-platform solutions as well as bit-level processing.

A key decision within the C standard was to omit implementation details, such as the representation

of data types and the details of the implementation of function calls in machine code, to a large

degree. The decision for the assignment between abstract C types and concrete machine-level data

types is ascribed to vendors of hardware platforms, compilers and operating-systems. Table 3.3 gives

an overview of the different data type representations (in bit sizes) of abstract integer-based C data

types for a range of outdated hardware architectures. From a programmer’s point of view, it may

seem as a dilemma; the size of a data type, such as int , needs to be obtained from the builtin C

function sizeof(X) at compile time, or, researched from ABI and compiler specifications. Fortunately,

the mapping of data types has become more uniform across current platforms. For example, the size

of an int is usually 32 bits on major architectures (but there are exceptions; see Section 5.3.8 for a

detailed discussion on 64-bit systems and different mapping schemes).

type

function object

void basic bitfield derived

int float pointer array struct union

bool char enum signed unsigned real complex

Figure 3.4: Overview of the C type system.

We now give a brief overview of the components of the C type system. Figure 3.4 gives a structured

illustration of the C type system using a hierarchy of categories. At the highest level, C types can be

divided into function and object types.

3.6.2 Object types

Object types describe the encoding format and storage properties of C data objects i.e. local and

global variables but also arguments and results of a function call. From early on, the C standard

reserved only a small number of keywords. A subset of keywords were used to refer to built-in abstract

basic C data types.

A major milestone of the C standard specification was finished in 1989, often refered to as ANSI C 89

or C89. It defines “only a few basic data types in C:

3.6. C TYPE SYSTEM 41

char a single byte, capable of holding one character in the local character set.

int an integer, typically reflecting the natural size of integers on the host machine.

float single-precision floating point.

double double-precision floating point.”(Kernighan and Ritchie, 1988, Ch. 2,Pg. 36)

This classification is rather abstract and limited; it does not cover the full range of available machine-

level data types, such as integral data types of different bit sizes and numeric value formats. C reserves

a few more keywords in order to refine size and value encoding characteristics of basic data types.

Besides the standard integer data type int there exist shorter and longer versions that are refered

via qualifier keywords short , long and long long . While the C standard does not define the bit sizes

for the five different int -based data types char , short , int , long and long long , a strict relation

between their implementation size is implied:

sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long)

Longer and shorter versions may refer to different sizes of its machine-level implementation type but

this is not mandatory; it depends on the binary interface standards that are defined by the designers of

a platform, and that are to be implemented by compiler vendors. Once a standard platform exists, one

can assume that the mapping between C data types and machine-level data types with a specific size

is fixed; otherwise, interoperability between applications and libraries is broken. char and int data

types can be further divided into signed (the default) and unsigned value types. Unsigned data types

are specified via the type qualifier unsigned . Signed integers may have different encoding scheme (as

defined in the standard) but the two’s complement representation is usually used as an implementation

at hardware level across architectures.

Objects of the char data type are “large enough to store any member of the basic execution character

set”(ISO, 2011, Section 6.2.5) i.e. char represents the smallest integer with a size of a single byte and,

since hardware platforms converged at byte-level over the decades, we can assume it is of 8-bit size.

No particular value encoding format is implied for a char ; it can be implemented as signed char or

unsigned char ; this is decided by the ABI and/or compiler.

Usually, float and double are represented as standard floating-point data types defined by the IEEE

754 standard for single-precision and double-precision floating-point numbers; we also can assume

they have a size of 32 and 64 bits, respectively. C defines a third standard floating-point data type,

named long double ; this data type is mainly used in applications that need very large precision. The

implementation of this floating-point type is very different on several platforms.

Enumeration types represent an unsigned integer-based data type. In general, enum types are used

in a declaration comprising a set of named constant unsigned integer values, as an alternative to

traditional constant value definitions via C preprocessor macro definitions. In practice, the enum

types are implemented as an unsigned int data types. Bit-field types appear only as members of

structure types. They use a basic integer type as a carrier and specify a subset of reserved bits from

42 CHAPTER 3. DYNAMIC BINDINGS MODEL

that type. When bit field types of the same carrier type occur in sequence within a structure, the

memory can be shared among bit-fields.

The void type is a unit type that refers to a non-data type. Usually it is used to denote the absence

of a return value for functions or an incomplete pointer type (void*).

While the first two ratification processes, namely ANSI C 89 and ISO C 90, were equivalent technically,

ISO C 99 expanded the set of standard basic types by a boolean type _Bool , a long long data type

for very large integers and a _Complex floating-point qualifier for complex values. The most recent

revision of the C standard, namely C11 (ISO/IEC 9899:2011), mentions the data types __int128 and

double double as possible extensions for supporting larger integer- and floating-point data types in

future.

Compilers often provide extensions to the C standard and its type system; this includes instrinsic

functions and data types that make use of advanced features of the processor architecture. Other data

types and extensions are often found in specifications of processor-architecture ABIs. In Table 3.4 we

give an overview of standard basic data types and platform-specific extensions.

In general, cross-platform C APIs tend to use a portable subset of possible C data types. So if the

support is limited to a subset of C data types, there is still a good chance that most general-purpose

C libraries can be adopted.

3.6.3 Composite data types

struct data types are used to define complex data types or records comprising of members that are

sequencially arranged. Each member field consists of an object type and a field name; the latter needs

to be unique within this structure. The exact layout of this information depends on the size and the

alignment properties of its members.

A union data type is a type unification of a sequence of field types. Fields of a union data object

share the same block of memory. Fields access the shared memory in terms of the corresponding field

type. The total size and alignment of a union is as large as the maximum size and alignment of its

members, respectively.

3.6.4 Pointer types

Pointers are a very powerful component of the C language; as lightweight objects, comprising a

reference on another object, they can be exchanged rapidly between functions and data structures, so

that the referenced object need not to be duplicated for data exchange. Pointer types are implemented

as unsigned integer data types that encode a memory address. Additional type information about a

pointer’s base type is available but not required for handling the raw data type of a pointer.

But, in the context of a dynamic FFI or a C compiler, the base type of a pointer becomes very

3.6. C TYPE SYSTEM 43

C Type Standard or platform-specific details

incomplete types

void C89

Boolean

_Bool C99

character and standard integer types

char C89

short C89

int C89

long C89

enum C89

long long C99

Pointer

real floating types

float C89

double C89

long double C89

complex types

float _Complex C99

double _Complex C99

long double _Complex C99

extended integer types (implementation-specific)

signed __int128 x86-64, ppc64 (GCC 4.7)

unsigned __int128 x86-64, ppc64 (GCC 4.7)

_Decimal32 32bit BID (IEEE-754R)

_Decimal64 64bit BID (IEEE-754R)

_Decimal32 128bit BID (IEEE-754R)

other implementation-specific types

__f16 arm (16-bit half-precision floating-point)

__float128 x86 (128-bit extended floating-point)

__m64 x86 (64-bit packed vectors, MMX and 3DNow!)

__m128 x86 (128-bit packed vectors, SSE and SSE-2)

__m256 x86 (256-bit packed vectors, AVX)

Table 3.4: Overview of fundamental C types and some extensions.

44 CHAPTER 3. DYNAMIC BINDINGS MODEL

important for type-safe interoperability with external C functions and C objects. “C is unusual in

that it allows pointers to point to anything. Pointers are sharp tools, and like any such tool, used well

they can be delightfully productive, but used badly they can do great damage.”(Pike, 1989)

Pointer types to a composite data type are often used in C API functions for the exchange of infor-

mation records. As such, in a function as a parameter, virtually any memory address can be passed

as pointers, also those which point to something else; this can damage other run-time data structures

and also often leads to a crash of the running process.

Type information about a pointers base type can be used to reject dangerous calls; such as, if the base

types of the argument object and the parameter type are not matching.

Even if base-type information is incomplete i.e. only the name of a structure is known, but nothing

about its members. While incomplete information is useless for memory allocation and data field

access, it can contributes to type-safety of foreign function calls.

3.6.5 Function types

Function types describe callable objects; the type gives the sequence of parameter types, the type of

the return value and the calling convention.

Any object type except bit fields and void are valid as parameter types. While array types are

implicitly passed by reference via pointers, other composite types, such as struct and union , are

passed by value. The number of arguments can be large; ISO C gives recommendations for compiler

designs to support at least up to 127 arguments, but in practice, C API functions usually use a much

lower number of parameters.

Any object type except bit fields and array types are valid as return types. If no value should be

returned the unit type void is used.

A function type implies a Calling Convention which specifies the details of the Calling Sequence for

passing arguments and receiving results during a function call at machine level. C supports two

kinds of calling conventions, one for functions with positional arguments and another for functions

with variadic number of arguments. The arguments of variadic functions are divided into two parts.

One part consists of a fixed number of positional arguments and the other part is variable in length,

designated by the ellipsis symbol ’ ... ’.

Furthermore, there exist platform-specific calling conventions that compilers support via non-standard

extensions to C. Support for additional operating-system specific calling conventions is required, for

example, on the Microsoft Windows 32-bit platform. The stdcall calling conventions is used for

system libraries, such as OpenGL.

Aside from the indicator ... , C offers no further keywords or syntax rules for the specification of

calling conventions. It is rather common that compiler-specific syntax extensions to C are used; The

gcc compiler expands the C language family with several extensions (see Stallman, 2003, Ch. 6). The

3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 45

statement __attribute__(()) is used to annotate C objects, such as struct , union , enum as well

as function declarations and definitions. A large number of Function Attributes are offered where

a subset is reserved to specify the calling convention (see Stallman, 2003, Section 6.30). Function

attributes can also be specified in a short form by prefixing __ followed by the calling convention

name, e.g. __stdcall to declare the stdcall calling convention. This syntax is compatible with that

of Microsoft Visual C++ Compilers. The following table gives the short form for attribute and the

corresponding calling convention.

Function Attribute Calling Convention

__cdecl Standard C

__stdcall Windows System DLLs

__thiscall C++ Member Function Calls

__fastcall Passing via registers (non-standardized)

A few examples for declaring functions with different calling conventions are given below:

int f1(int x, int y) __fastcall;

int f2(int x, int y) __stdcall;

int f3(int x, int y) __cdecl;

typedef int (* __fastcall) fastcall_funptr_t)(int x, int y);

We close this brief overview on the abstract side of the C language which serves as the basis for

a description of the encoding in the following section. Implementation details on C, such as data

representation of basic data types and the implementation of calling convention across processor-

architecture families are discussed in Section 5.3.

3.7 Text-based Encoding Format for C APIs

In this section we describe a compact text-based encoding for C API components, named DynPort.

It is designed for language- and platform-independent creation of language bindings for C Libraries

as outlined in 3.5.2. Furthermore, part of the syntax was incorporated in dynamic FFIs as text-based

interfaces for the specification of type information.

3.7.1 Introduction

C API header files contain necessary information for run-time interoperability with their corresponding

shared library. At compile-time, header files are parsed for compilation of user code so that later linking

will function. However, they are not designed to be used as C API information resources at run-time,

which is needed for dynamic creation of language bindings at run-time.

Object-oriented component middleware frameworks, such as Microsoft’s COM (Box, 1998) and Mozilla’s

XPCOM (Cross-Platform Component Object Model) (McFarlane, 2003), connect scripting languages

46 CHAPTER 3. DYNAMIC BINDINGS MODEL

with C/C++ components. While a native component is implemented in C/C++, its interface is explic-

itly specified during development in IDL (Interface Definition Language), named MIDL and XPIDL

for COM and XPCOM, respectively. An IDL specification is compiled to a “binary” type library file,

with the suffix .tlb for COM and .xpt for XPCOM. “A type library (.tlb) is a binary file that stores

information about a COM or DCOM object’s properties and methods in a form that is accessible to

other applications at runtime. Using a type library, an application or browser can determine which

interfaces an object supports, and invoke an object’s interface methods. This can occur even if the

object and client applications were written in different programming languages.”(Microsoft, 2012) (See

also Box, 1998, p. 40, and Szyperski et al., 2002, pp. 330, 345-346 for further information on type

libraries on COM.)

XPCOM was designed as an open alternative to COM and is available across platforms. These

middleware frameworks are similar in their design, but they are not compatible. “Ideally, XPCOM

typelibs would be binary-compatible with those generated by Microsoft’s MIDL compiler, but the MS

typelib format is proprietary.” (Furman and Bandhauer, 2012)

In contrast to object-oriented C++ middleware frameworks, little was published about middleware

frameworks for C libraries. ctypeslib (Kloss, 2008) is a framework for automatic creation of Python

Bindings for C libraries. A parser translates C header files to Python code which, when executed, cre-

ates Python bindings for C libraries. However, the translated information is very specific to Python’s

ctypes FFI but not usable for other scripting languages.

3.7.2 Objectives

A major goal of DynPort is to offer a language-independent and platform-portable encoding format

for C APIs. We propose a compact format with a simple structure, so that parser and scanner

functions can be implemented with little effort in a variety of programming languages. Since scripting

languages usually offer standard processing tools for text rather than for binary data, we use a text-

based encoding format. For the text encoding, a small range of characters is used from the character

set US-ASCII 7-bit. Encoded C API information can be embedded in character string objects of

different languages, and thus type information can be transferred between language contexts.

C APIs are encoded by means of the abstract C type system for preserving the abstract platform-

portable meaning. The mapping from high-level C data types to its low-level machine-specific data

representation is implemented by a dynamic FFI.

In that the type information is transferable across languages and platforms, due to a text-based and

abstract encoding, DynPort constitutes a platform-portable and language-neutral type library for C

libraries; similar to type libraries of COM and XPCOM for C++, but with two differences.

Firstly, while COM is specific to a native platform, DynPort type information is used for cross-platform

bindings to C libraries. Secondly, COM is an intrusive framework in that the components need to be

3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 47

written from the ground up i.e. a compiled wrapper is needed for making a C library a component. We

consider C libraries as binary components that can be wrapped dynamically and without redefinition

of their interface; our goal is to use existing C API header information as sources of information. This

information is used for connecting shared libraries with scripting languages in a non-intrusive way

with respect to the C library, across platforms.

3.7.2.1 Type signature

The term “type signature” is often used in the context of programming languages as the description

for the type of a function object. Sometimes the term signature of a function is used instead and

object-oriented languages, such as Java, use the term method signature. While type information is

fundamental to statically typed programming languages, type signatures are also found in weak or

dynamically typed languages for the external interface to native code.

Type signatures can be represented in different forms. In some languages type signatures are specified

in the notation of the language for the definition of the function type, such as in Haskell, Erlang

and C. In other languages, such as Python, Java and Objective-C, type signatures are encoded in a

serialized text-based form. The latter was adopted for DynPort; we use text-based signature formats

for function types, as well as for data type definitions.

3.7.2.2 Text-based Interface

Virtually every programming language supports the character string data type, which is used in func-

tions as a parameter type for passing complex variable information. For example, the C output

function printf uses a character string parameter for the specification of the output and formatting

rules, which was widely adopted by other languages, such as Java, MATLAB, Python or Perl. Fur-

thermore, the term “Regular Expressions” refers to a powerful language for pattern-based searching,

matching and substitution in text processing. As a universal language, it is embedded across numerous

scripting languages, C libraries, text editors and command-line tools.

Type signatures, encoded in character strings, are already used in FFIs for driving foreign function

calls. The FFI module of Perl (Paul Moore, 2008) uses a text-based interface to denote the C function

types as a serialized type signature string.

As a precursor to DynPort, we developed experimental FFI packages for various scripting languages,

such as R, Lua, Python, Ruby and Shell. For each language we also utilized a common text-based

interface and serialized type signature strings. In DynPort the core idea remains preserved; type

signature strings are utilized to drive foreign function calls.

48 CHAPTER 3. DYNAMIC BINDINGS MODEL

3.7.3 Encoding Format

We return now to a description of the DynPort encoding format. The notation is described first, then

we describe the encoding for different components of the C API.

3.7.3.1 Notation of Syntax Diagrams

The syntax grammar of languages is often defined in BNF (Backus-Naur Form) notation. The notation

comprises terminal elements, non-terminal elements and production rules for the specification of a

syntax grammar. Terminal elements represent input tokens e.g. single characters, keywords or the

literal text of a numeric value (for example, a sequence of digits). Non-terminal elements are defined by

a single production rule that gives the sequence of terminal and non-terminal elements. In addition, the

notation includes operators to denote repetition and optional elements. A grammar can be specified

as a set of production rules and a top-level non-terminal element that represents the final element of

a language, such as the “command-line” for an interpreted language or the “compilation unit” for a

compiled language.

Syntax diagrams, also named Railroad diagrams, are a visual alternative to the formal BNF notation.

Production rules are displayed as railroad network with a fixed start and end point at the left- and right-

hand side, respectively. Terminal elements are represented by circles, labeled with single characters

or a named token in angle brackets (e.g. ‘<alpha>’ for any character of the alphabet). Non-terminal

elements are represented as rectangles. Optionally, annotations are given following the names, in italic.

Optional paths and repetitions are illustrated by outgoing branches (on track, or to the right-hand

side of an element), and jointed incoming junctions (to the left-hand-side of an element), respectively.

Example We illustrate the use and interpretation of railroad diagrams by an example of the syntax

for an electronic mail address format1, such as me@example.com .

email

name local @

���
name host �
� .

���
name domain�
�

�

�

name

<alnum>

�� �
�
�

�

The syntax is given by a sequence of terminal and non-terminal elements. In the diagram the sequence

is illustrated by traversing Railroad Diagram “email”. The reader starts at the left-hand side and

1We give an example of a simplified syntax here. It is by no means the official format as specified in RFC 5322.

3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 49

follows the railroad track in right-hand direction. By traversing possible paths, including repetitive

or optional routes, the production is finished by reaching the right-hand side.

At first, Element “name” is reached, which is a non-terminal, depicted by a surrounding rectangle, so

that the syntax is given by a different diagram, labeled ‘name’. As depicted in Diagram “name”, the

syntax of a name comprises a non-empty sequence of terminal elements denoted with ‘<alnum>’. In

general, terminal elements comprise simple lexical text patterns. We describe them in words rather

than as a diagrams. We define ‘<alnum>’ as a single alphanumeric character in the range of ASCII

characters ‘a’..‘z’, ‘A’..‘Z’ and ‘0’ .. ‘9’. Notice the ‘<alnum>’ is connected with a looping route that

branches on the right-hand side and joins on the left-hand side. This denotes a non-empty sequence

of consecutive alphanumeric characters, which also completes the syntax of a “name”.

We proceed back now to Diagram “name” and follow the route to the right of element “name” local.

The next element that follows is the non-terminal ‘@’ followed by a “name” for the host part of an

email address, as indicated by the note in italic. After that, if the next character in the input sequence

is a ‘.’, we follow that route and reach another “name” for the domain part of an email address. As

depicted in the diagram, this process is repeated until we finally reach the end of the rule indicated by

an empty input sequence or a different character than ‘.’ or ‘<alnum>’ follows. If we want to ensure

that the input is empty after the rule finishes, we would insert a terminal, for example ‘<end>’ (to

indicate end of input), right before the right-hand side in the diagram. If the next input character

of an sequence can not be used for moving along in the railroad network then the input sequence is

considered to be invalid.

3.7.3.2 Basic types

The built-in basic data types of the C type system represent the fundamental building blocks. They

are essential for the definition of function types and derived data types, such as pointers, arrays,

struct and union types. We denote a basic C data types with a reserved character of the alpha-

bet. Where possible, the character is derived from the initial character of the type name (excluding

unsigned / signed prefixes), e.g. ‘ i ’ for int and ‘ s ’ for short . An exception to this is long , which is

encoded with ‘ j ’ whereas long long is encoded with ‘ l ’. unsigned integer data types are encoded as

upper case characters of corresponding character for signed data types, such as ’ I ’ for unsigned int

and ‘ S ’ for unsigned short . The boolean C data type _Bool (bool in C++) is encoded as ‘ B ’. The

void type is denoted by the ‘ v ’ character. Untyped pointers (pointers to incomplete data types) are

expressed via ‘ p ’. Later we give a notation for typed pointers. ‘ Z ’ denotes the standard C string

type const char * .

50 CHAPTER 3. DYNAMIC BINDINGS MODEL

basic

B bool

�� �
�
� c char

�� �
� i int

�� �
� j long

�� �
� l long long

�� �
� s short

�� �
� C unsigned char

�� �
� I unsigned int

�� �
� J unsigned long

�� �
� L unsigned long long

�� �
� S unsigned short

�� �
� f float

�� �
� d double

�� �
� v void

�� �
� p pointer

�� �
� Z const char*

�� �

�

3.7.3.3 User-defined structure and union types

User-defined record types are specified in terms of a sequence of field types and names. We give two

examples for the definition of a user-defined struct and union and a corresponding type signature.

typedef struct

{

int x, y;

unsigned int w,h;

const char * title;

} Window;

"Window{iiIIZ}x y w h title ;"

typedef union

{

int integer;

double real;

const char * string;

} Val;

"Val|idZ}integer real string ;"

The syntax for the specification of the signature is given below:

3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 51

struct

name {
���
�

� object field�
�

�

�

}
���
�

� name field

���
�
�

�

�

;

���

union

name |

���
�
� object field�

�
�

�

}
���
�

� name field

���
�
�

�

�

;

���

name

<alpha>

�� �
�
����

�

�
� <alnum>

�� �
�
����

�

�
�

�

�

Signatures give the symbolic name (as defined by the last name of a typedef declaration), followed by

a character to indicate the kind of type i.e. ‘ { ’ for struct and ‘ | ’ for union types. This is followed

by a sequence of data type fields and terminated by a ‘ } ’ character. Field data types are encoded

with an object type signature; an extended version of the signature format for basic data types (see

below for a description). This is followed by a corresponding sequence of field names. Field names

are separated by a single whitespace character (ASCII code 32). The signature is terminated by a

‘ ; ’ character. A name begins with a single character of the alphabet or an underscore, followed by a

(possibly empty) sequence of alphanumeric and underscore characters.

3.7.3.4 Object types

Object types are a combination of basic C data types, user-defined data types and also typed pointers.

We encode user-defined data types by using an alias name that references a user-defined struct or

union type by name. We enclose the name of a type name in angle brackets. The encoding of a type

name is given next:

alias

<

���
name >

���

Aside from pointers to an incomplete types, denoted with ‘ p ’, we also include support for typed

pointers. We use an optional prefix sequence of ‘ * ’, followed by it’s base type, to denote typed

pointers.

52 CHAPTER 3. DYNAMIC BINDINGS MODEL

pointer

*

���
�
�

�

basic�
� alias

�

In combination, we give the syntax for object types, which integrates the two diagrams the above with

the one for basic C data types:

object

�
� * typed pointer

�� �
�
�

�

�

B bool

�� �
�
� c char

�� �
� i int

�� �
� j long

�� �
� l long long

�� �
� s short

�� �
� C unsigned char

�� �
� I unsigned int

�� �
� J unsigned long

�� �
� L unsigned long long

�� �
� S unsigned short

�� �
� f float

�� �
� d double

�� �
� v void

�� �
� p pointer

�� �
� Z const char*

�� �
� < type alias

�� �
name >

���

�

3.7.3.5 Function types

Function types are specified by a sequence of object signatures of the parameter types, followed by a

‘) ’ character and an object signature for the return type.

3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 53

funtype

�
� object parameter�

�
�

�

)

���
object return

In the following, and also (for historical reason) in the R package rdyncall, we use the synonym Call

Signature which refers to this encoding format.

3.7.3.6 Functions

We extend the above signature with a syntax for declaring public C functions, which includes the

symbolic name of the function:

function

name (

���
�
� object parameter�

�
�

�

)

���
object return ;

���

Below we give examples of signatures of C API functions:

int SDL_Init (Uint32 flags);

SDL_Surface* SDL_SetVideoMode(int width, int height, int bpp, Uint32 flags);

void dpsifn (double, int, int, int, double*, int*, int*);

SDL_Init(I)i;

SDL_VideoMode(iiiI)*<SDL_Surface>;

dpsifn(diii*d*i*i)v;

3.7.3.7 Symbolic Constants

A set of symbolic names for constant values, such as status return codes, enumeration constants or bit

masks, are often defined as part of a C API. In C there are two alternative forms for their definition.

Either the C enum type is used for declaring constant values or, in a more traditional way, constants

are defined onto preprocessor level using the #define directive for macro definitions.

#define SDL_INIT_VIDEO 0x00000020

#define SDL_INIT_AUDIO 0x00000010

#define SDL_INIT_JOYSTICK 0x00000200

enum XML_Error {

XML_ERROR_NONE,

XML_ERROR_NO_MEMORY,

XML_ERROR_NO_ELEMENTS = 4,

};

SDL_INIT_VIDEO=0x00000020

SDL_INIT_AUDIO=0x00000010

SDL_INIT_JOYSTICK=0x00000200

XML_ERROR_NONE=0

XML_ERROR_NO_MEMORY=1

XML_ERROR_NO_ELEMENTS=4

Symbolic constants are encoded using the following syntax:

54 CHAPTER 3. DYNAMIC BINDINGS MODEL

constant

name =

���
value <NL>

�� �

‘<NL>’ denotes a “new line”; it is encoded in ASCII using the new line character code (ASCII code

10). Optionally, for support of non-Unix platforms, it is also prefixed (Windows) or suffixed (Mac OS)

by carriage return character code (ASCII code 13).

In principle, we encode a value as a line of text. For practical reason in rdyncall, values need to be

encoded using a syntax that is compatible with R and C.

3.7.3.8 Function Types with Calling Convention

So far the encoding for function types does not provide information about the calling convention.

As discussed in Section 3.6.5 we have to distinguish between at least two calling conventions for C;

functions with a fixed number of arguments (the default), and those ending with a ellipsis “ ... ”

which denotes a variable number of arguments. Furthermore, specific to the x86-32 platform, there

are more calling conventions, that need to be considered here. For practical reason the stdcall is

quite important in order to make use of functions of system libraries on Microsoft Windows 32-bit

operating systems; for example, this is needed for using OpenGL functions on Windows. Other calling

conventions, such as fastcall, are relatively seldom used in libraries.

We extended the encoding format for function types with an optional prefix notation, denoted with

a ‘ ’ character and followed by a single alphabet character that encodes the calling convention.

Otherwise, if the prefix is missing, the default C calling convention for functions with a fixed number

of arguments is implied.

cccall

�
����
 e ellipsis

�� �
�
� s stdcall

�� �
� f fastcall

�� �

�

�

�
� object parameter�

�
�

�

)

���
object return

3.7.3.9 File Formats

DynPort type signatures are used in the R package rdyncall as an encoding format for text-based

interface for various FFI services.

DynPort files specify cross-platform R bindings to C libraries, and they are also used in the package.

The first experimental version of DynPort files, implemented in the rdyncall package, uses a repre-

sentation as R script files. Listing 3 gives an example of a DynPort Version 1 file as it is used in the

3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 55

rdyncall package for cross-platform bindings to the SDL library. The R scripts comprise R expressions

for the creation of wrappers, including service calls to rdyncall’s FFI services for creating function

call wrappers and helper objects for foreign data objects. The DynPort type signature format is used

for passing arguments to these service functions in terms of character strings. Notice that rdyncall’s

FFI service functions work on batches of signatures. Hence, several signatures are processed in a loop.

Thus several signatures can be packed in one large text block (e.g. for binding all shared C library

functions at once).

Shared Functions

dynbind(c("sdl","sdl-1.2","sdl-1.2.so.0"), "

SDL_Init(I)i;

SDL_SetVideoMode(iiiI)*<SDL_Surface>;

SDL_PollEvent(*<SDL_Event>)i;

")

Aggregate Structure Informations

parseStructInfos("

SDL_Rect{ssSS}x y w h ;

SDL_MouseButtonEvent{CCCCSS}type which button state x y ;

SDL_KeyboardEvent{CCC<SDL_keysym>}type which state keysym ;

")

Symbolic Constants

SDL_INIT_AUDIO=0x00000010

SDL_INIT_CDROM=0x00000100

SDL_INIT_VIDEO=0x00000020

Listing 3: Sample DynPort 1.0 file used by rdyncall

For a second implementation2 of the Dynamic Bindings model for the Lua programming language,

we designed a language-neutral DynPort file format. The file format is divided into sections. Each

section addresses a different component type of C APIs, such as public functions, symbolic constants

and data type definitions. Each element of a category is defined in a separate text line.

version2

�
� :

���
secname <NL>

�� �
�

�

��
� statement <NL>

�� �
�
�

�

�

.

���
<NL>

�� �

��

�

�

�

.

���
<NL>

�� �

Depending on the section name (secname the above), a different syntax is used for each line until the

section terminates with a ‘.’:

2Available at http://dyncall.org/svn/dyncall/trunk/bindings/lua/luadyncall.

http://dyncall.org/svn/dyncall/trunk/bindings/lua/luadyncall

56 CHAPTER 3. DYNAMIC BINDINGS MODEL

Section Description

lib Short library names separated by ‘|’.

fun Function signatures.

const Symbolic contant signatures.

struct struct type signatures.

union union type signatures.

An example of a DynPort Version 2 file, as it is used in the Lua module luadyncall, is depicted in

Listing 4

:lib

SDL|SDL-1.2|SDL-1.2.so.0

.

:fun

SDL_Init(I)i;

SDL_SetVideoMode(iiiI)*<SDL_Surface>;

SDL_PollEvent(*<SDL_Event>)i;

.

:struct

SDL_Rect{ssSS}x y w h ;

SDL_MouseButtonEvent{CCCCSS}type which button state x y ;

SDL_KeyboardEvent{CCC<SDL_keysym>}type which state keysym ;

.

:const

SDL_INIT_AUDIO=0x00000010

SDL_INIT_CDROM=0x00000100

SDL_INIT_VIDEO=0x00000020

.

.

Listing 4: Sample DynPort 2.0 file used by luadyncall

3.8 Parser Framework

In this section we describe a flexible framework for parsing C API header files to encode type infor-

mation, as well as symbolic constant names and values in the DynPort format.

3.8.1 Overview

The framework is largely based on a modified version of the GCC compiler, named GCC-XML (King,

2004) (the command-line tool is named gccxml), which parses C/C++ sources and outputs a tree

of definitions and declarations, encoded in the standard document markup format XML (Extensible

Markup Language). Numerous data management and processing tools are provided for XML. Among

them, XSLT (Extensible Stylesheet Language Transformations) provides a programming language

for transformation of XML documents to user-defined output formats (XML, XHTML or raw text).

(See Clark, 2001 for specifications.) An XSLT processor, such as xsltproc (Veillard et al., 2009),

parses an input XML document as node tree, and outputs a transformed version, according to an

XSLT stylesheet file. Aside from gccxml and XSLT/xsltproc, further tools are incorporated in the

3.8. PARSER FRAMEWORK 57

framework: a standard C preprocessor (e.g. gcc), the Unix program grep (Kernighan and Pike, 1983,

Section 4.1) for filtering, a custom C/C++ preprocessor based on Boost Wave (Kaiser, 2011); the

latter is superseeded by using gcc and awk (Kernighan and Pike, 1983, Section. 4.4).

Figure 3.5: Design of the DynPort Tool.

Figure 3.5 illustrates the design of the DynPort tool. The tool comprises a chain of programs. As

main input a simple C file (depicted as “Main Source”) is created manually that references that

C API header, which should be transformed to the DynPort format via an #include statement.

Corresponding C API header files and system headers for C development should have been installed

in advance on the build system.

In a first stage a temporary file (depict as “All-in-one”) is created, comprising content of all referenced

header files, after which it is passed as input to gccxml. As a result a node tree structure of the C

sources is outputted, encoded in XML.

In a next step the XML file is processed by the XSLT processor xsltproc. The processor also reads

an XSLT stylesheet file, which specifies C to DynPort transformation rules. Then the transformation

is performed on the input XML document. As a result elements of the C API are outputted in the

DynPort format, as is defined by the stylesheet file.

Since C API headers put reference to all kinds of external headers, the input to gccxml is rather a mix

58 CHAPTER 3. DYNAMIC BINDINGS MODEL

of C and System APIs. Thus we use a “Filter” to exclude elements of external header files. As depict

in Figure 3.5, the output of xsltproc is split into separate passes; one for each category type. Each

pass produces a separate fragment of text data encoded in the DynPort format. We use separated C

API elements for a fine-grained filter.

Symbolic constants of a C API, which are defined as preprocessor macro definitions (in contrast to

enum), need to be handled by a custom preprocessor. In the following section we describe details of

implementation for the gccxml/xslt transformation from C to DynPort, the filter and the custom

preprocessor.

3.8.2 Implementation

We illustrate the translation of C to custom file formats using XSLT and gccxml/xsltproc by an

example. Listing 5 shows a translation of a sample C code (left) to the DynPort 2.0 file format (right).

C file ‘example.c’:
/* Data structures: */

typedef struct Rect {

int x, y;

unsigned short width, height;

} Rect;

typedef struct Window Window;

/* Functions: */

Window* newWindow (unsigned int flags);

void setWindowRect (Window* w, Rect* r);

−→

DynPort 2.0 file ‘example.dynport’:
:fun

newWindow(I)*<Window>

setWindowRect(*<Window>*<Rect>)v

.

:struct

Rect{iiSS}x y width height ;

Window{};

.

.

Listing 5: DynPort Tool implementation example: C to DynPort.

The translation is performed in two stages:

1. gccxml parses the C source example.c and outputs the XML document example.xml (see Listing 6).

$ gccxml example.c -fxml=example.xml

2. xsltproc transforms example.xml to DynPort example.dynport using transformation rules from dynport.xsl.

$ xsltproc dynport.xsl example.xml >example.dynport

Before we describe the XSLT language, we give a brief introduction to XML; a detailed description is

given in Bray et al. (1997).

3.8.2.1 XML and gccxml XML output

XML is a text-based markup language for hierarchically structured document types. In XML, a

document is logically structured as a tree of nodes with a single root. XML nodes have a type, given

as a tag name, a number of attributes (pairs of name/value) and nested content, such as child nodes

or text content blocks. Diverse kinds of document types can be encoded in XML. Document types

3.8. PARSER FRAMEWORK 59

can be defined in schema documents, such as encoded in a DTD (Document Type Definition) or

XSD (XML Schema). For a given document type, the corresponding schema defines the set of types,

mandatory or optional attributes, and the rules for hierarchical nesting structure of node types in

a tree. Nodes are specified by opening and closing tags, beginning with ‘<’ and ‘</’, respectively,

followed by the tag name and a ‘>’ character. Text and child nodes can be declared between the tags,

e.g. <Function> and </Function> . Opening tags of a node can have attributes after their tag name in

the form 〈name〉‘=’〈value〉 that are assigned to that node. There exist a short notation for leaf nodes

where an opening tag is terminated by ‘/>’, such as <Argument type="_10"/> .

<?xml version="1.0"?>

<GCC_XML>

<Namespace id="_1" name="::" members="_3 _4 _6 _5 _8 _7 "/>

<Namespace id="_2" name="std" context="_1" members=""/>

<Function id="_3" name="setWindowRect" returns="_9" context="_1" extern="1">

<Argument type="_10"/>

<Argument type="_11"/>

</Function>

<Function id="_4" name="newWindow" returns="_10" context="_1" extern="1">

<Argument type="_12"/>

</Function>

<Struct id="_5" name="Window" context="_1" incomplete="1"/>

<Typedef id="_6" name="Window" type="_5" context="_1"/>

<Struct id="_7" name="Rect" context="_1" members="_13 _14 _15 _16 _17 _18 " bases=""/>

<Typedef id="_8" name="Rect" type="_7" context="_1"/>

<FundamentalType id="_9" name="void"/>

<PointerType id="_10" type="_6"/>

<PointerType id="_11" type="_8"/>

<FundamentalType id="_12" name="unsigned int"/>

<Field id="_13" name="x" type="_19" context="_7"/>

<Field id="_14" name="y" type="_19" context="_7"/>

<Field id="_15" name="width" type="_20" context="_7"/>

<Field id="_16" name="height" type="_20" context="_7"/>

<Constructor id="_17" name="Rect" artificial="1" throw="" context="_7">

<Argument name="_ctor_arg" type="_21"/>

</Constructor>

<Constructor id="_18" name="Rect" artificial="1" throw="" context="_7"/>

<FundamentalType id="_19" name="int"/>

<FundamentalType id="_20" name="short unsigned int"/>

<ReferenceType id="_21" type="_7c"/>

<CvQualifiedType id="_7c" type="_7" const="1"/>

<File id="f0" name="test2.c"/>

</GCC_XML>

Listing 6: DynPort Tool implementation example: XML output of GCC-XML.

Listing 6 depicts the XML output file of gccxml after parsing the C source file example.c. The docu-

ment begins with a conforming XML header, followed by a root XML node <GCC_XML> . Various entities

of the C source example.c are nested as child of from <GCC_XML> . Since we consider transformations

of this document, it is necessary to become familiar with its structure (compare with example.c in

Listing 5). It is worth noting that the hierarchical structure of the <GCC_XML> tree is rather flat. For

example, C struct Rect , encoded as <Struct> , and its members, encoded as <Field> , are inserted

on the same nesting level of the XML node tree. All XML nodes are labeled using the id attribute.

As an exception, argument types of functions, encoded as <Argument> , are nested as children of the

<Function> XML node. Various relationships, including the link between composite types and their

members, are realized by symbolic references using the id of the target, which is assigned for the

60 CHAPTER 3. DYNAMIC BINDINGS MODEL

source’s attribute, such as returns and type .

Some of the nodes, depicted in Listing 6, are not considered in our example, such as <Namespace> ,

<Constructor> and <File> ; they can be ignored in the following discussion.

3.8.2.2 Transformation of XML to Text via XSLT and XPath

We now discuss the implementation of XML transformations via XSLT using the example of stylesheet

file dynport.xsl.

XSLT is written as a standard XML document. In contrast to our example outputting text, XSLT

is usually used for output of “XML” documents. As a consequence, the XSLT stylesheet comprises

two XML schemes or dialects i.e. tags of XSLT and of output format, in one file; so that ambiguous

naming conflicts arise. Therefore XSLT tag names are usually prefixed with xsl: to distinguish them

from tags of the XML output format. But in our case we use text output, and thus we use a default

XML namespace for XSLT and omit tag prefixes3 which increases readability of given XSLT listings.

<?xml version="1.0" encoding="ISO-8859-1"?>

<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">

<output method="text"/>

<template match="/">

<!-- template for the root tree -->

</template>

<template match="//Function">

<!-- template for all Function child nodes of root -->

</template>

<template match="//Struct">

<!-- template for all Struct child nodes of root -->

</template>

</stylesheet>

Listing 7: Outline of XSLT stylesheet files.

The basic structure of an XSL style sheet is illustrated in Listing 7. The file comprises a standard

XML header followed by the document’s root node <stylesheet> . Then the output mode is specified

to as ‘text’ (otherwise defaults to XML), followed by several <template> tags.

In XSLT transformations are defined by a set of template rules, specified by the <template> tag. First

of all the XSLT processor (xsltproc) parses the input XML document as a node tree representation,

3 XML namespaces provide a means to solve ambiguity in XML; they also serve to identify the docu-

ment type of an XML file. Namespaces represent XML dialects, such as XHTML or XSLT, which are speci-

fied by a namespace URI (Uniform Resource Identifier). For example, the official namespace URI for XSLT is

http://www.w3.org/1999/XSL/Transform . Namespace prefixes are defined as pseudo-attributes of the root node using

the syntax xmlns: 〈prefix 〉 = 〈URI 〉 to declare a user-defined prefix with a link to the document type’s namespace URI.

Subsequent child tags that refer to that namespace need to be prefixed. A default namespace for tags without prefix,

such as used in our example, is specified via the pseudo-attribute xmlns= 〈URI 〉.

3.8. PARSER FRAMEWORK 61

as well as the XSLT stylesheet; the latter gives the templates. Then the actual transformation process

begins by searching a template to proceed with.

A template comprises a sequence of operations, such as printing text content to the output via <text>

tags. Templates are instantiated for a matching subset of the input document, given by a string

value of the template’s attribute match . The pattern matching process of XSLT is expressed in a

string-based language, named XPath (XML Path language). XPath expressions can select nodes of a

specific tag name, or those that are nested in a specific hierarchical configuration. For example, XPath

expression "//Function" selects all <Function> nodes that are child nodes of the root node. Table 3.5

gives an overview of expressions that are used throughout this example. (See Clark et al., 1999 for

specifications of XPath.)

XPath Expression Description

"/" root node

"//Function" <Function> child nodes of root

"//Function/Argument" <Argument> child nodes of Function , which are child nodes of root

"Argument" <Argument> child nodes of the current node

"@name" value of the attribute name of the current node

"//*" all child nodes to the root node

"//*[@id=_2]" all child nodes with an attribute id that equals to ‘ 2 ’

"//*[@id=$type]" all child nodes with an attribute id that equals to variable ‘type’

"//Typedef|//CvQualifiedType" <Typedef> inclusive or <CvQualifiedType> child nodes of root

Table 3.5: Examples of XPath expressions.

As an initial transformation step, the processor searches a template that matches the root node, and

which then can be instantiated. So, we define a main template by using the XPath expression "/" :

<template match="/">

<text>:fun
</text>

<apply-templates select="//Function"/>

<text>.
</text>

<text>:struct
</text>

<apply-templates select="//Struct" mode="def"/>

<text>.
</text>

<text>.
</text>

</template>

By this template, we define the general outline of output for the DynPort format, including the order

of sections. For our example, we plan the following: First we output function signatures, and then

struct signatures. For each section a header is outputted, such as “ :fun ” and “ :struct ”, terminated

with a new line character (ASCII 10), encoded in XML encoding with the escape code ‘
 ’.

After output of a header via <text>...</text> , further transformations are activated via:

<apply-templates select="..."/>

This tag prompts the processor to start a new template matching process; a subset of the input tree

is selected via an XPath expression, given by the attribute value of select . Then, templates are

62 CHAPTER 3. DYNAMIC BINDINGS MODEL

searched that matches on the new input, which is then instantiated.

For the first section fun: , all C function declarations are selected from the gccxml input document,

given by the XPath expression "//Function" . For the second section struct: , all C structure defi-

nitions are selected, given by the XPath expression "//Struct" . Notice the total transformation is

implemented as an interaction between <template> and <apply-templates> .

This style of programming resembles the traditional style of function definitions and function calls.

However, as a result of a single <apply-templates> , several templates can be instantiated, depending

on the selected input and the matching templates.

In the following we give listings of XSLT template code as a the left-hand panel. At the right-hand

side we give text fragments of <GCC_XML> input, DynPort output, and notes, depending on the context.

For the transformation of C function declarations from XML to DynPort function signatures, we define

a template that matches <Function> child nodes of root, using the XPath expression "//Function" , in

order to output the function signatures of C function declarations.

<template match="//Function">

<value-of select="@name"/>

<text>(</text>

<apply-templates select="Argument"/>

<text>)</text>

<variable name="X" select="@returns"/>

<apply-templates select="//*[@id=$X]"/>

<text>;
</text>

</template>

Input nodes (depict with children):
<Function id="_3" name="setWindowRect" returns="_9">

<Argument type="_10"/>

<Argument type="_11"/>

</Function>

<Function id="_4" name="newWindow" returns="_10">

<Argument type="_12"/>

</Function>

Final output (with all template code from below):

newWindow(I)*<Window>;

setWindowRect(*<Window>*<Rect>)v;

In general, XSLT templates are instantiated in a context of a current node or node list, so that

operations in a template can be executed relative to a matching node or list of nodes. The tag

<value-of select="@name"/> evaluates an XPath expression "@name" within the current node’s context

and prints the result. The prefix "@" is used for referencing attribute names (and selecting their

value) instead of tag names. Thus the XPath expression "@name" gives the value of the name attribute

of the current node <Function> ’. As a result the name of the C function (e.g. setWindowRect and

newWindow) is outputted. In accordance with the format for function signatures, the name is separated

by generating a ‘ (’ character. We then apply templates on all <Argument> children relative to the

current node by using an XPath expression without a root prefix ("//"). As a result, a sequence

of argument type signatures is generated; we discuss the definition of this template below. After all

argument types are processed, we output a ‘) ’ character, followed by applying a template to generate

the return type signature. In contrast to the arguments of a function, the return type is not given as

a child node to Function but as an attribute value.

As we noted earlier, the hierarchical structure of <GCC_XML> documents is flat; associations between

nodes are given by symbolic reference between attributes, such as returns and corresponding XML

nodes with a matching id . Thus we need to follow the reference from <Function> to its return type

3.8. PARSER FRAMEWORK 63

via returns symbolically: We save the value of attribute returns of <Function> in a variable, named

X using <variable> with the XPath expression "@returns" .

In a next step the template

<apply-templates select="//*[@id=$X]"/>

is executed; "//*" selects all nodes of a tree, while the expression "[@id=$X]" selects all subsequence

nodes with an attribute id that equals to a value of the variable named X . In what follows we use

this technique whenever we need to apply templates to symbolic relatives. Often we will also need to

delegate to a different node symbolically.

Now we give the template for handling argument types.

<template match="//Function/Argument">

<variable name="X" select="@type"/>

<apply-templates select="//*[@id=$X]"/>

</template>

Sample context node:

<Argument type="_12"/>

Corresponding selection:

<FundamentalType id="_12" name="unsigned int"/>

We delegate to a node with the id that equals to type attribute.

We now give a template to generate DynPort’s object type signatures for the C basic data types.

<template match="FundamentalType">

<variable name="name" select="@name"/>

<choose>

<when test="$name=’void’"> <text>v</text></when>

<when test="$name=’char’"> <text>c</text></when>

<when test="$name=’unsigned char’"> <text>C</text></when>

<when test="$name=’signed char’"> <text>c</text></when>

<when test="$name=’short int’"> <text>s</text></when>

<when test="$name=’short unsigned int’"><text>S</text></when>

<when test="$name=’int’"> <text>i</text></when>

<when test="$name=’unsigned int’"> <text>I</text></when>

<when test="$name=’long int’"> <text>j</text></when>

<when test="$name=’long unsigned int’"> <text>J</text></when>

<when test="$name=’float’"> <text>f</text></when>

<when test="$name=’double’"> <text>d</text></when>

</choose>

</template>

Input node:

<FundamentalType id="_9" name="void"/>

<FundamentalType id="_19" name="int"/>

Corresponding outputs: ” v ” and ” i ”.

Basic C data types are encoded in <GCC_XML> as <FundamentalType> nodes where its name attribute

gives the basic C type name. We store the attribute of its name in a variable first and then use a

<choose> block of <when> conditions; each condition compares the variable with a standard C basic

data type name. If a match occurs the corresponding basic type character signature is outputted.

We need to specify templates for handling pointer types as well, which are encoded in <GCC_XML> as

<PointerType> tags. For the pointer type, we output a ‘ * ’ prefix before we delegate symbolically to

its base type using attribute type . Analogous to return types of functions and the pointer’s base

types, <TypeDef> and <CvQualifiedType> (which denote const and volatile C type qualifiers) also

need delegate symbolically. Templates for <Struct> and <Union> types output their name, enclosed

by angle brackets; ‘ < ’ and ‘ > ’ are encoding in XML as ‘ < ’ and ‘ > ’, respectively.

64 CHAPTER 3. DYNAMIC BINDINGS MODEL

<template match="PointerType">

<text>*</text>

<variable name="type" select="@type"/>

<apply-templates select="//*[@id=$type]"/>

</template>

<template match="//Typedef|//CvQualifiedType">

<variable name="type" select="@type"/>

<apply-templates select="//*[@id=$type]"/>

</template>

<template match="Struct|Union">

<text><</text>

<value-of select="@name"/>

<text>></text>

</template>

A sample matching node:

<PointerType id="_10" type="_6"/>

After following the symbolic reference:

<Typedef id="_6" name="Window" type="_5"/>

After following the symbolic reference:

<Struct id="_5" name="Window" context="_1"/>

Final output: ” *<Window> ”

We have completed all templates for generating of the section for function signatures. Now, we give

the implementation for data type signatures.

In order to process all C structure data types, we need a second template for <Struct> using a

XPath selector "//Struct" . As we already defined a template with a similar select (see the last

template above), we need to define a second template with a different mode . The mode is used as an

attribute in <template> and <apply-templates> ; it is an additional user-defined selector/match value

for <template> and <apply-templates> , which needs to match.

<template match="//Struct" mode="def">

<value-of select="@name"/>

<text>{</text>

<variable name="i" select="@id"/>

<apply-templates select="//Field[@context=$i]"/>

<text>}</text>

<apply-templates

select="//Field[@context=$i]" mode="n"/>

<text>;
</text>

</template>

<template match="//Field">

<variable name="t" select="@type"/>

<apply-templates select="//*[@id=$t]"/>

</template>

<template match="//Field" mode="n">

<value-of select="@name"/>

<text> </text>

</template>

Sample input document:

<Struct id="_7" name="Rect"/>

Subsequent sequence (for the above):

<Field id="_13" name="x" type="_19" context="_7"/>

<Field id="_14" name="y" type="_19" context="_7"/>

<Field id="_15" name="width" type="_20" context="_7"/>

<Field id="_16" name="height" type="_20" context="_7"/>

Final Output:

Rect{iiII}x y width height;

The name of the C struct ’s is outputted, followed by a ‘ { ’ character. Then we process all <Field>

nodes via symbolic reference. Note that we need to do two rounds; first the types, and then the names

of the field. So we use a mode="n" for the second pass. In between, we output a ‘ } ’ character. Finally,

we terminate the signature with a ‘ ; ’ character.

Our example is now complete. We illustrated the use of gccxml and open-source XML tools for the

implementation of C/C++ code transformations.

3.8.2.3 Parsing C Preprocessor Defines

We presented a flexible framework for parsing C header files. But it is limited to C/C++ declara-

tions. Symbolic constants, declared in C via #define NAME VALUE , are not seen by a C/C++ compiler,

3.8. PARSER FRAMEWORK 65

such as gccxml. The reason is that the preprocessing stage, including the definition and applica-

tion of macros, is separated from the compilation phase in the translation model of C. (See ISO,

2011, Section 5.1.1.2 for details.) Hence, the C/C++ compiler does not even see macro names, but

corresponding replacement parts on input performed by the preprocessor.

As a consequence we implemented a custom C/C++ preprocessor, using Boost Wave preprocessor

parser C++ library (Kaiser, 2011). But the maintenance costs for this tool were large relative to the

other programs used in this framework. As an alternative, we developed a lighter solution, based on

GCC and awk (Kernighan and Pike, 1983, Section 4.4). The tool has two stages: First, gcc is invoked

with the initial source file via gcc -E -dM to dump all macro definitions at the end of the preprocessing

task.

gcc -E -dM includeSDL.c

The following listing gives a sample output:

#define SDL_INIT_TIMER 0x00000001

#define SDL_INIT_AUDIO 0x00000010

#define SDL_INIT_VIDEO 0x00000020

#define SDL_INIT_CDROM 0x00000100

[... further output omitted ...]

Secondly awk was utilized for transformation into the right form; the program is given next:

#!/usr/bin/awk -f

/#define/ {

printf("%s=",$2);

for (i=3;i<NF;i++)

print("%s ",$i);

printf("%s\n",$1);

}

As a result, we get:

SDL_INIT_TIMER=0x00000001

SDL_INIT_AUDIO=0x00000010

SDL_INIT_VIDEO=0x00000020

SDL_INIT_CDROM=0x00000100

3.8.2.4 Filter

In general, C API headers refer to external header files of the C Standard Library, the operating

system and third-party libraries. As a result, the DynPort toolchain generates a large number of

signatures for C entities that are not part of the particular C API. Since C symbols are managed in

a single namespace (except for tag names of struct , union , enum), name clashes are prevented by

convention, in that C API symbols are prefixed with a short name (for example, SDL functions are

prefixed with SDL_).

A filter, based on grep, was incorporated as a last step in order to filter the output fragments before

assembly into a single DynPort file. Since all DynPort signatures for public functions, data types and

constants are written in text lines, beginning with their symbolic name; all output fragments can be

66 CHAPTER 3. DYNAMIC BINDINGS MODEL

filtered by grep likewise.

3.9 Summary

We presented a middleware architecture for scripting languages and shared C libraries that provides

scripting access to C APIs across platforms.

We introduced the topic with a brief overview of shared C libraries and emphasised their significance

as reusable binary building blocks for virtually all applications on current platforms. We discussed

binary interoperability and emphasized the role of C compiler as a static glue between binary com-

ponents at the Application Binary Interface of platforms. We noticed that language bindings to C

libraries are usually implemented by C wrapper code. However, the development of wrapper code for

each library-language combination and subsequent compilation for each platform is obviously a disad-

vantage. We noted that the use of standard code generators also inevitably necessitates some manual

development tasks. At the latest, when building for multiple platforms, subsequent work is needed

for specification of linking. Instead of using wrappers in C and compilation for language bindings, we

suggested using the dynamic methods, provided by Foreign Function Interfaces of scripting languages,

for interoperability with binary components at run-time.

We identified two subcategories of FFIs, namely static and dynamic, and illustrated the limitations of

the former using the example of the built-in FFI of R. While dynamic FFIs seem to be advantageous

in this context, we noted that these require type information to provide dynamic bindings to C APIs

but that this information can be extracted from C header files.

Based on our considerations, we developed the Dynamic Bindings model and outlined it’s architecture

that comprises three abstraction layers. The first layer provides a cross-platform portable type library

format for C API information, and a corresponding C header parser tool. The second layer defines

the language extension that implements automation of dynamic bindings using a dynamic FFI and

data from the first layer. Finally, the third layer provides a platform-abstraction interface to the

dynamic linker, ABIs and calling conventions of processor hardware architectures for implementation

of dynamic FFIs.

We gave an outlook of the potential advantages of our proposed model for software development of

language bindings in comparison with the compilation-based method. Whereas compiled bindings

are developed on per language-and-library basis, and are built as an additional binary wrapper per-

platform, dynamic bindings are created per library via automation tools and are then available across

all supported platforms and languages. We concluded that the dynamic bindings model reduces

development time, fosters rapid scripting of cross-platform applications, and can significantly decrease

the gap between scripting languages and C library developments. In the last part of this chapter we

proposed an implementation of the first layer of the architecture. Firstly, we gave an overview of the

C type system, which provides the foundation for developing an encoding format for C APIs. We then

3.9. SUMMARY 67

presented the design of a text-based encoding format for C API information, named DynPort. Finally,

we described a parser framework for translation from C header files to DynPort files. The framework

is based on XML/XSLT- and Unix-tools, such as gccxml, xsltproc, gcc, grep and awk. Furthermore,

we illustrated in detail the use of gccxml and XSLT/XPath for processing C type information and

transformation to custom file formats using the example of DynPort.

In summary, this chapter gave an overview of the Dynamic Bindings model and a detailed description

of the first of its three layers, named DynPort. For the remaining layers, we discuss an implementation

for the R programming language in Chapter 4. Layer 3, an abstraction layer to the ABI across five

processor architecture families, is covered in Chapter 5.

68 CHAPTER 3. DYNAMIC BINDINGS MODEL

Chapter 4

Dynamic FFI for R

In this chapter we present a dynamic FFI for the R programming language, contributed as package

rdyncall (Adler, 2012) on CRAN. The package comprises a toolkit of components for working with

shared C libraries and provides interoperability with natively compiled C code and run-time C data

objects. Collectively the components constitute an implementation of the Dynamic Bindings Model, as

discussed in Chapter 3, for the R programming language; it provides a simple cross-platform interface

for loading dynamic R bindings to C APIs, such as those offered by the OpenGL and SDL C library

families.

4.1 Introduction

First we give a motivating example to use rdyncall as the base for rapid cross-platform development

of application software followed by an outline of the package architecture. The first section closes with

a brief overview of the R language and the anatomy of R language objects; it provides background

information for subsequent discussion on the components of the package, interoperability between R

and C, and the implementation of the Dynamic Bindings Model. We give listings of C API user code,

side by side in C and R, to illustrate the syntactic resemblance of R and C when C APIs are used.

The chapter closes with an example of a real-time visualization and simulation software, written in R,

using OpenGL and SDL via rdyncall, and is followed by a summary.

Example We consider a visualization program that utilizes high-performance graphics output via

OpenGL for a statistical application offered by packages of CRAN in R. Further we require that the

software runs across platforms so that we also utilize the SDL library as a portable abstraction layer

to the windowing system, user-input event processing and access to additional multimedia hardware

such as audio output.

As a first step we develop a skeleton of the application that comprises basic setup methods for OpenGL

graphics output and processing of user input events. As an initial test for using OpenGL, a rectangle

69

70 CHAPTER 4. DYNAMIC FFI FOR R

is drawn within a loop, made of two triangles that are filled with interpolated colors across the four

corners. Figure 4.1 gives screenshots of the application skeleton for three major R platforms. The

Figure 4.1: Screenshot: Cross-platform R application using SDL and OpenGL on Windows, Mac OS

X and Linux.

application skeleton is implemented twice; the sources are given side by side in Listing 8. The left

panel gives the C code and the right panel the R code using OpenGL and SDL via the rdyncall package.

#include "SDL.h"

#include "SDL_opengl.h"

int main(int argc char* argv[]) {

int quit = 0;

SDL_Event e;

SDL_Init(SDL_INIT_VIDEO);

SDL_SetVideoMode(640,480,32,

SDL_OPENGL|SDL_DOUBLEBUF);

while(!quit) {

glClearColor(0.0,0.0,1.0,0.0);

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_TRIANGLE_STRIP);

glColor3f(1.0,0.0,0.0);

glVertex2f(-0.9,-0.9);

glColor3f(0.0,1.0,0.0);

glVertex2f(-0.9, 0.9);

glColor3f(0.0,0.0,1.0);

glVertex2f(0.9,-0.9);

glColor3f(0.0,0.0,0.0);

glVertex2f(0.9, 0.9);

glEnd();

SDL_GL_SwapBuffers();

while(SDL_PollEvent(&e)) {

if (e.type == SDL_QUIT) {

quit=1;

}

}

}

return 0;

}

library(rdyncall)

dynport(SDL)

dynport(GL)

main <- function() {

quit <- FALSE

e <- new.struct(SDL_Event)

SDL_Init(SDL_INIT_VIDEO)

SDL_SetVideoMode(640,480,32,

SDL_OPENGL+SDL_DOUBLEBUF)

while(!quit) {

glClearColor(0.0,0.0,1.0,0.0)

glClear(GL_COLOR_BUFFER_BIT)

glBegin(GL_TRIANGLE_STRIP)

glColor3f(1.0,0.0,0.0)

glVertex2f(-0.9,-0.9)

glColor3f(0.0,1.0,0.0)

glVertex2f(-0.9, 0.9)

glColor3f(0.0,0.0,1.0)

glVertex2f(0.9,-0.9)

glColor3f(0.0,0.0,0.0)

glVertex2f(0.9, 0.9)

glEnd()

SDL_GL_SwapBuffers()

while(SDL_PollEvent(e)) {

if (e$type == SDL_QUIT) {

quit <- TRUE

}

}

}

}

main()

Listing 8: C and R: Basic multimedia application skeleton based on OpenGL and SDL.

In both cases components of the two C APIs are distinguished by their prefix i.e. SDL components

are prefixed by “ SDL_ ” while OpenGL components are prefixed by “ gl ” and “ GL_ ”. Note that the

R code is very similar to C; the differences are marginal: SDL_OPENGL+SDL_DOUBEBUF is used instead of

SDL_OPENGL|SDL_DOUBLEBUF due to the lack of bit-wise operations in R1. The allocation of temporary C

1The value of symbolic constants, SDL_OPENGL and SDL_DOUBLEBUF , represent independent bit flag patterns that

4.1. INTRODUCTION 71

struct data structures is done via new.struct ; field member access to C structure objects is done in

R via $ operator.

The C version of the application needs to be compiled and linked with the shared libraries on each

supported platform. Table 4.1 gives an overview for building the C application across platforms. In

essence, platform- and library-specific installation paths of run-time and development files all need to

be considered for each port. Some library development packages offer helper shell scripts to retrieve

library-specific build options, such as sdl-config for SDL, but in general, platform-specific adaptions

need to be taken into account for each port.

Platform/Compiler Build instructions

Ubuntu Linux
$ gcc -c ‘sdl-config --cflags‘ main.c

$ gcc -o example main.o ‘sdl-config --libs‘ -lGL

NetBSD 5.1
$ gcc -c ‘sdl-config --cflags‘ -I/usr/X11R7/include example.c -o example.o

$ gcc -o example main.o ‘sdl-config --libs‘ -L/usr/X11R7/lib -lGL

Mac OS X 10.7
$ gcc -c -I/Library/Frameworks/SDL.framework/Headers SDLMain.m -o SDLMain.o

$ gcc -c -I/Library/Frameworks/SDL.framework/Headers example.c -o example.o

$ gcc -o example example.o SDLMain.o -framework SDL -framework Cocoa -framework OpenGL

Windows/MinGW32
> gcc -c -I/devel example.c -o example.o

> gcc -o example.exe main.o -lmingw32 -L/devel/lib -lSDL -lSDLmain -lOPENGL32

Windows/Visual C
> cl /c /MD /IC:\devel\include main.c

> link main.obj /OUT:example.exe /SUBSYSTEM:CONSOLE \

/LIBPATH:C:\devel\lib\x86 SDL.lib SDLmain.lib OPENGL32.lib

Table 4.1: Compilation of C user applications based on OpenGL and SDL across platforms.

For example, on NetBSD, in contrast to Linux, a specific location for the OpenGL header files and

libraries needs to be specified for the compiler toolchain. On Mac OS X the files SDLMain.h and

SDLMain.m need to be copied from the SDL development package in advance. On Microsoft Windows

the build instructions for using the Microsoft Visual C compiler are significantly different. It should be

noted that build systems, such as CMake (Martin et al., 2003) and GNU make (Stallman and McGrath,

2002), substantially reduce the amout of work for building portable software, but such tools also require

a steep learning curve. In summary, we can conclude that cross-platform application development using

a compiled language, such as C/C++, requires platform-specific expertise and a pool of (virtualized)

hardware and software tools for building multi-platform software releases. For the C version further

work is still needed to incorporate the R interpreter; this is beyond the scope of this example; see

R Development Core Team (2012c, Section 8.1) for details on embedding R and package RInside

(Eddelbuettel and Francois, 2012), which provides a cross-platform C++ API for this purpose.

The R version in the example runs across platforms without compilation. Naturally the precompiled

run-time packages of OpenGL and SDL need to be installed; see Section 4.7.3 for detailed installation

instructions for major R platforms. In Section 2.3.2 we outlined the rgl package which offers a real-

time visualization device system. However, rgl provides a scene graph using OpenGL and advanced

can be combined by “+” in R which is equivalent to bit-wise “or” in this case; alternatively this operation is provided

by the package bitops (Dutky and Maechler, 2012).

72 CHAPTER 4. DYNAMIC FFI FOR R

methods need to be implemented in C++. Since the core C APIs of OpenGL and SDL are directly

accessible from within R via rdyncall, a similar degree of freedom is achieved as it is the case for C

but without considering platform-specific build and linking issues. Furthermore, the full range of R

packages and the C APIs (given in Table 4.10) both become accessible.

4.1.1 Software Architecture

The software architecture of the rdyncall package is represented in Figure 4.2. The package comprises

of several components that are depicted as stacked in order of dependency; components at a higher

level are implemented by means of components below them. The language for the implementation

of each component is indicated by the color background: R (blue), C (green) and assembly language

(gray).

dynload

(Section 5.6)

dyncall

(Section 5.4)

Function Calls

.dyncall

(Section 4.3)

Code Loading

dynfind

.dynload

(Section 4.2.2)

C Data Access

.(un)pack

(Section 4.5.4)

Callbacks

new.callback

(Section 4.6)

Automation of Wrappers

dynbind

(Section 4.4)

dyncallback

(Section 5.5)

Foreign Data

new.struct

$.struct (S3)

TypeInfo (S3)

(Section 4.5)

Dynamic Bindings to C libraries

dynport

(Section 4.7)

DynPort

Files

C Libraries

(Generic Dynamic FFI)

Extension to R

assembly

language

C

R

Implementation

Figure 4.2: Software architecture of R package rdyncall.

dynport represents the main interface for loading dynamic R bindings to C libraries; the bindings

creation process is data-driven using a repository of DynPort files, installed with the package, where

each file specifies cross-platform R bindings to a specific C API. dynbind is an automation tool for

the creation of a set of function call wrappers to shared library functions. dynfind provides a cross-

platform interface for naming the shared libraries to be searched and loaded. .dynload is an alternative

interface function to the dynamic linker of the operating system. .dyncall offers a dynamic function

call facility for R and is the core component of the dynamic FFI. The component block in Figure

4.2, comprising new.struct , $.struct (S3) and TypeInfo (S3), represents a framework for data-level

interoperability with C struct and union data types. .pack and .unpack offer a low-level interface

for read/write operations with support for the basic set of C scalar data types. new.callback wraps

4.1. INTRODUCTION 73

R functions as C closure objects so that R functions can be written and passed to shared libraries as

C callback function pointers. The rdyncall package is based on a Generic Dynamic FFI, depicted

by the bottom layer of Figure 4.2; it comprises the three C libraries, namely dynload, dyncall and

dyncallback.

4.1.2 Usage of Type Signatures

Several facilities within the rdyncall package incorporate text-based type signatures as part of their

interface, which uses the DynPort encoding format, as described in Section 3.7:

Component Functions Signature Type

Function Calls
.dyncall Call Signature

.dyncall.<CALLMODE> Call Signature

Callbacks new.callback Call Signature

Foreign Data
parseStructInfos Struct Signature

parseUnionInfos Union Signature

C Data Access
.pack Object Signature

.unpack Object Signature

Automation of Wrappers dynbind Function Signature

The .dyncall FFI uses the type signature to specify the sequence of parameter types and the return

type of a foreign C function. This information is used for type-safe value conversion between dynamic

R objects and statically typed C argument values and return values. new.callback wraps a user-

defined R function as a C function pointer object so that it is callable from C; it uses type signatures

to specify the C function type. It is used in a similar context as in .dyncall but in the opposite

direction; it converts the arguments from C to R and the results from R to C.

C struct and union data types are also specified using a signature to describe the sequence of

field member types and their names in order to compute platform-specific memory requirements for

allocation and member field offsets for symbolic member-field access. In order to read and write various

C data types the .pack and .unpack functions use type signature character code for the specification

of the desired C scalar basic type.

dynbind uses a sequence of function signatures for the creation of R wrapper functions to a set of C

library functions, using .dyncall as implementation for generated wrappers.

4.1.3 Internals of R

As preparation to subsequent sections we give a brief overview of the internals of the R language. The

core of R, including the interpreter and the representation of language objects, is implemented in C. In

this chapter we consider details of the representation of R language objects to figure out efficient and

type-safe techniques for data transfer between R and C, in particular when data need to be exchanged

via C pointers.

74 CHAPTER 4. DYNAMIC FFI FOR R

Access to the internals of R is given by the C API header files of R (e.g. Rinternals.h) and details

are described in R Development Core Team (2012c) and R Development Core Team (2012b).

4.1.3.1 Object Types

R is a dynamic programming language with a relatively large set of different object types. While most

of the types are accessible via the interpreter, some of these types are internal. Table 4.2 summarizes

all available language objects (of R 2.14); it gives the string output of typeof and sample expressions

whose value is of such an object type.

Kind typeof() C Type ID Examples/Comments

Atomic Vectors

logical LGLSXP TRUE , FALSE , as.logical(0)

integer INTSXP 123L , as.integer(c(1,2,3))

double REALSXP 123 , as.double(c(1L,2L,3L))

complex CPLXSXP 1+0i , as.complex(c(1,1,0))

character STRSXP "hello" , as.character(c(1,2,3))

raw RAWSXP as.raw(c(65,43,23))

Linked Lists
language LANGSXP quote(x+y)

pairlist LISTSXP pairlist(1L,2,"3")

Vectors
list VECSXP list(1L,2,"3")

expression EXPRSXP expression(x+y,a+b*rnorm(10))

Special objects

NULL NILSXP NULL

externalptr EXTPTRSXP getLoadedDLLs()[["base"]][["handle"]]

environment ENVSXP new.env()

symbol SYMSXP as.symbol("hallo")

closure CLOSXP function()NULL

builtin BUILTINSXP get("+")

special SPECIALSXP get("if")

S4 S4SXP typeof(getClass("NULL"))

weakref WEAKREFSXP key/value references

promise PROMSXP argument slot for lazy evaluation

char CHARSXP single character strings

... DOTSXP argument placeholder

any ANYSXP type signature marker

bytecode BCODESXP byte code

NEWSXP internal

FREESXP internal

Table 4.2: Overview of R object types: R type name, the corresponding C symbolic constant S-

Expression type ID and sample expressions that evaluate to that value type.

4.1. INTRODUCTION 75

4.1.3.2 S-Expressions

In R all objects, whether they are atomic vectors, linked lists, vectors or special objects, such as

environments, function closures, control-flow entities (if , while , for) or primitive language objects

(’...’), are represented using a common data structure header. The common structure is named an

S-Expression.

We now take a closer look at the internal structure of the representation of S-Expressions in R. The

header contains vital information for the interpreter, the garbage collector, debugging facilities and

also for the low-level C interface. The header is illustrated in Figure 4.3; the first field consists of a

32-bit wide bit field, followed by a dedicated pointer for attributes (which is a list with named entries),

and a node header (double-linked list) for chaining objects for garbage collection.

Bit field

Attributes

Next

Prev


S-Expression

Header

hhhhhhhh
hhhhhhhh


type-specific

data

ob
j

na
m
ed

m
ar
k

de
bu
g

tr
ac
e

sp
ar
e

gc
ge
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

type gp gccls

Figure 4.3: S-Expression header (left) and top-level bit field (right).

4.1.3.3 Type Identification

Since R is a dynamically typed language, interpreter and user-defined functions need to determine

actions at run-time. The interpreter processes a sequence of R objects, and for each object in turn, it

determines the action to perform, starting with the type id in the S-Expression, and whether it is an

atomic vector or a list object, a variable name (that needs to be looked up) or a language list object

representing a function call. Some user-defined functions check input argument objects and transform

the data to a target form (e.g. as.integer to coerce an input vector to an integer atomic vector).

While type checking is often not needed in high-level user-defined functions, where it is delegated to

low-level functions, type checking becomes very important where basic operations are implemented in

C, or where the control-flow is passed to a foreign C function. So the most primitive operation that

can be applied uniformly to any R object is type identification. Currently there are 24 different R

object types each having a designated number encoded in the first five bits of the header bit field. C

symbolic constants for identification of the S-Expression type are given in Table 4.2. Depending on

the type information, the rest of the S-Expression is expected to have a specific format.

We are primary interested in R objects that are used for data exchange with external C libraries.

Thus we focus on objects that carry data values; these are atomic vector objects for data values,

external pointer R objects as containers for C pointers, as well as special objects such as NULL . We

76 CHAPTER 4. DYNAMIC FFI FOR R

also consider language list objects for processing arbitrary sequences of R arguments.

Figure 4.4 gives an outline of the data structure of atomic objects and language list objects.

Header

(vector)

length

truelength

 Vector

Header

index 1
hhhhhhhh

hhhhhhhh

index N

(padding)


Vector

Data

Header

(list)

car

cdr

tag


data

next

name

Figure 4.4: Atomic vectors and language lists in R.

4.1.3.4 Atomic Vectors

Atomic vectors are used as containers for data of homogeneous type, where data is tightly packed

in a continuous region of memory. As with all R objects, they begin with an S-Expression header,

followed by a common header for atomic vectors containing a length field. Elements are stored using

the representation of C data types using the following mapping between R types and their internal C

representation:

logical −→ int[]

integer −→ int[]

double −→ double[]

complex −→ Rcomplex[]

raw −→ unsigned char[]

character −→ SEXP[]

Note that complex is implemented as a struct Rcomplex , which consists of two double ; atomic vectors

of R, except for the character , are represented as a flat data structure of a C array of scalar C data

types. Character strings are slightly more complex in general because in contrast to basic scalar

data types, such as integer values, floating-point numbers and address pointers, because they have

a variable length. As a consequence languages use their own data structure scheme for strings. For

example, in Pascal strings consist of an array of characters prefixed with a length field of the string.

In C strings are implemented as an array of characters with a terminating null character. In R the

character R object is a vector of character strings using an array of pointers to S-Expression objects

4.1. INTRODUCTION 77

of type CHARSXP , each of which represents a single character string which is used for character data

but also for symbol objects. Since R version 2.6.0 CHARSXP S-Expressions are partly managed in a

cache for reuse; see R Development Core Team (2012b, Sec. 1.10) for details. Note that even a single

scalar data value is held as a vector of length 1. In R the default representation for literal numeric

values is double even if the value is representable as an integer object, which consumes less memory.

Integer representation of literal values is enforced by giving a suffix L .

Example Values can be encoded in different data types in programming languages. In the following

example we illustrate the representation of a numeric vector of four elements which is coerced to

different R object types. Figure 4.5 gives an illustration of the run-time data structure of different R

atomic types. The widths of the boxes are proportional to the memory usage.

0.0 1.0 2.0 1.0

0 1 2 1

0 1 1 1

0 1 2 1

CHAR CHAR CHAR

”0” ”1” ”2”

x <- c(0,1,2,1)

as.double(x)

as.integer(x)

as.logical(x)

as.raw(x)

as.character(x)

Figure 4.5: Different data representations of R numeric data.

Note the complex pointer structure that is used for the character vector.

4.1.3.5 Language lists

The implementation of R objects is strongly based on the Scheme language (a member of the LISP-

based family of languages). In Scheme and LISP both code and data are represented by lists.

Language lists are small building blocks with a singly linked structure using three pointers, namely

car , cdr and tag , as depicted in Figure 4.4. car points to data, such as an atomic vector, to refer

to constant values, or to a symbolic name object to refer to a variable, or function name. cdr points

to the next element in the chain of the list or to the singleton NULL object, to mark the end of the

list. tag is used to specify the symbolic name of an argument in a function call.

78 CHAPTER 4. DYNAMIC FFI FOR R

Example Every function call in R is represented as a language list object. For example, the call

expression rnorm(100,mean=3,sd=4) is represented as an S-Expression. Figure 4.6 illustrates its run-time

data type structure.

LANG

car

cdr

tag

LANG

car

cdr

tag

LANG

car

cdr

tag

LANG

car

cdr

tag

rnorm(100,mean=3,sd=4)

SYM

pname

value

internal

CHAR

len=1

truelen

cptr

"rnorm"

REAL

len=1

truelen

100

REAL

len=1

truelen

3

REAL

len=1

truelen

4

SYM

pname

value

internal

SYM

pname

value

internal

CHAR

len=1

truelen

cptr

CHAR

len=1

truelen

cptr

"mean" "sd"

Figure 4.6: Internal representation of a call object in R.

The call expression is evaluated as a function call by the interpreter. Language list objects represent

a chain of list objects to link other objects as a sequence. The head of the call expression points to

the symbol object that represents name of the function to be called, followed by the first argument

of the call, and so on. The last element of the call expression points to the nil object to indicate the

end of the list (not depicted). Note that the arguments of the call expression are scalar values, each

represented as a separate R atomic vector object of length 1.

4.1.3.6 Other language objects

The NULL object: In R NULL refers to a non-value type, sometimes refered to as nil in other

languages to express non-value semantics. It does not have a state; it exists as a single entity within

the R interpreter.

4.2. CODE LOADING 79

Vector-based lists Atomic objects are used for storing data in a uniform encoding scheme. In order

to support structured data objects with varying data types, R offers a list object type for storing data

objects (of possibly different atomic types) as a sequence. The internal representation resembles that

of atomic vectors, but a pointer to S-Expressions is used as elementary scalar type of the vector. While

this data type is flexible, it is very specific to the implementation of R and can not be used as-is in

foreign language contexts. Thus we do not consider specific support for exposing this data type to C,

in contrast to the atomic vector objects (with special care for character) which can be used for the

exchange of C array data.

External Pointers External pointers are rarely used in R but they are important when working

with C libraries. In Section 3.3.2 we discussed data-level interoperability and the need to determine

the right carrier for transfer of pointer values; external pointers are exactly for this purpose. The

value copying semantics for these objects is different. While R objects are usually copied when they

are passed as arguments, external pointers (and also environment objects) are passed as references.

4.1.3.7 Memory Management

The R run-time system includes a generational garbage collector that provides for automatic memory

management. Users allocate new objects; the garbage collector detects if data become unreachable

and frees memory. R’s garbage collector does not move objects; we can expose internal data to C

APIs, but we need to make sure that the data are protected from garbage collection as long as they

are needed by the C library. See R Development Core Team (2012b, sec 1.7) for details on the garbage

collector of R.

4.2 Code loading

Before C functions and global data objects of external shared libraries can be used from within an

interpreter, the library has to be loaded first. This is done dynamically using the dynamic linker of

the operating system. Since the naming of a shared library is not standardized across platforms, the

loading of a shared library represents a problem to cross-platform development. The naming scheme

is specific to a particular operating-system platform and the location of the library can also depend

on system configuration choices.

We illustrate this problem by comparing the file paths of shared libraries across a number of operating

systems. Using the example of the standard C math library we show the limitation of the base R

interface to the dynamic linker for searching and loading shared libraries across platforms. We then

present an alternative facility for working with shared libraries in R that offers a unified naming scheme

for searching and loading of shared libraries that works across platforms; it also offers automatic

unloading of shared libraries, which is more suitable for working with external libraries. We also

80 CHAPTER 4. DYNAMIC FFI FOR R

discuss the differences between the shared library formats and details of searching methods among

dynamic linkers across operating systems.

4.2.1 Introduction

The base package of R offers the dyn.load function for loading shared libraries:

lib <-dyn.load(x)

If the library is found an S3 object of class DLLInfo is returned that represents an opened shared

library in R so that the addresses of functions can be resolved by their symbolic names via the R

function getNativeSymbolInfo or the extract operator ’$’ .

address <-lib$<SYMBOL>$address

However, the name of the shared library to be loaded, given by x , needs to be specified as a platform-

specific absolute file path. It is this that makes cross-platform development with shared libraries rather

impractical.

Consider, for example, the standard C math library that is usually installed on all systems. On Unix-

based platforms it is commonly named “m”. On Windows it is part of the C run-time library named

“MSVCRT” (Microsoft Visual C Run-Time). The following table gives the file path of the shared C

library math for this and a number of operating systems:

Operating system File path of standard C math shared library

Mac OS X /usr/lib/libm.dylib

Windows C:\WINDOWS\SYSTEM32\MSVCRT.DLL

Debian 7 on x86-32 /lib/i386-linux-gnu/libm.so.6

Debian 7 on x86-64 /lib/x86_64-linux-gnu/libm.so.6

Fedora Linux 18 on x86-64 /lib64/libm.so.6

ArchLinux 2013.5 /lib/libm.so

Solaris 10 /usr/lib/libm.so

NetBSD 6.1 /lib/libm.so

FreeBSD 9.1 /usr/lib/libm.so

OpenBSD 5.3 /usr/lib/libm.so.7.1

DragonFly BSD 3.2 /usr/lib/libm.so

In order to write cross-platform R user code that loads the library, the platform needs to be identified

to select a corresponding hard-coded platform-specific file path:

4.2. CODE LOADING 81

> path <- switch(Sys.info()[["sysname"]],

Darwin = "/usr/lib/libm.dylib", # for Mac OS X

Windows = "/WINDOWS/SYSTEM32/MSVCRT.DLL",

Linux = "/usr/lib/i386-linux-gnu/libm.so.6", # for Debian-based Distributions on x86-32

SunOS = "/usr/lib/libm.so", # for Solaris

NetBSD = "/usr/lib/libm.so",

FreeBSD = "/usr/lib/libm.so",

OpenBSD = "/usr/lib/libm.so.7.1",

DragonFly = "/usr/lib/libm.so"

)

> libm <- dyn.load(path)

The number of platforms covered by above code is still incomplete; it would require extended code to

handle cases where the file path includes versioning information, which may change between revisions

of a library and can be different among platforms. In the case of Linux-based platforms, the above

code does only support Debian-based Linux Distributions for x86-32 architectures; other architectures

and also other Linux Distribution families often have a different directory scheme. Furthermore, for

other non-standard libraries, such as SDL, the path can also depend on the selected installation method

or package management system, in particular on systems such as Mac OS X using MacPorts, Solaris

using OpenCSW, and DragonFly BSD using DPorts. It is obvious that the dyn.load interface is

inconvenient for cross-platform development with shared libraries; the absolute file paths need to

be arranged and tested on a large number of systems including different distributions and processor

architectures.

In general, the dynamic linker provides capabilities for searching a shared library by the library’s file

name without given an absolute directory path. However, dyn.load implicitly disables these search

capabilities because the file path is filtered ; if the character string, given by x , is not an absolute

path, i.e. x does not begin with a ‘/’, the current working directory is prepended, so that the dynamic

linker always receives an absolute path.

Even when search capabilities of the dynamic linker are used, the name for a shared library significantly

differs across platforms. On Windows, the math library is named “MSVCRT.DLL”, on Mac OS X it is

“libm.dylib” while on the others it can be looked up via “libm.so” or “libm.so.6” where the latter

needs to be used on Linux platforms.

4.2.2 Interface

The rdyncall package offers the function dynfind for searching and loading shared libraries from

within R. It provides a unified interface using a cross-platform naming schema; the implementation

uses the direct interface of the dynamic linker in order to search libraries. The interface is as follows:

lib<-dynfind(libnames, auto.unload=TRUE)

dynfind attempts to load a shared library using a collection of platform-specific hints. The shared

library is specified by libnames given as a vector of character strings. Each string represents a short

library name that gives a hint about the name of the shared library. The library name is given by its

82 CHAPTER 4. DYNAMIC FFI FOR R

distinguishing naming part without platform-specific prefixes and suffixes in which built-in platform-

specific heuristics are used to derive possible file paths. For specific libraries and in order to support

several platforms, multiple hints are often needed, such as a suffix form, which includes versioning

information.

Example Suppose cross-platform R code is needed to load the math C library. dynfind can be used

for this task by giving a list of hints to open the math library across all major platforms:

> libm <- dynfind(c("msvcrt","m","m.so.6"))

> libm

<pointer: 0x103813070>

attr(,"path")

[1] "/usr/lib/libm.dylib"

attr(,"auto.unload")

[1] TRUE

In the example three hints are required to cover cross-platform loading of the math library; the first

hint "msvcrt" is used for loading the standard C library on Windows, the second hint "m" usually

works across all other platforms except for certain Linux installations, which are handled by the third

hint "m.so.6" that includes a major version number. As a result of this call an external pointer R

object is returned that represents a handle to a shared library. Furthermore the handle can be used

for operations such as resolving of symbols via the function .dynsym(handle, symbol) .

> sqrtAddress <- .dynsym(libm, "sqrt")

> sqrtAddress

<pointer: 0x7fff89e872d0>

The list of short library names depends on the naming characteristics of a particular shared library

and its installation across platforms. Table 4.3 gives the file paths of four shared libraries, namely C,

expat(Clark, 2007), OpenGL and SDL, on several operating systems. The full file path is given in gray;

the name required for searching via the dynamic linker is given in black. The short library name,

needed by dynfind , is underlined. We also give the list of short library names for each of the four

shared libraries that is needed to load the library via dynfind .

Common platform-specific prefixes and suffixes are automatically appended to a short library name

internally. For most cases the distinguished name part of the library is sufficient for dynfind to search

and open a shared library. But there are platform-specific issues of naming shared libraries that require

to use a list of names. For example, on Mac OS X there are two forms of shared libraries, on Windows

some libraries, such as C, are named completely differently, and on Linux and Solaris version numbers

need to be identified.

4.2.3 Naming Schemes of Shared Libraries

The file path of a shared library can be partitioned into a directory location and a file name component,

where the former depends on a particular operating system, processor architecture, operating-system

4.2. CODE LOADING 83

Platforms Shared library C Shared library OpenGL

Windows %WINDIR%\SYSTEM32\MSVCRT.DLL %WINDIR%\SYSTEM32\OPENGL32.DLL

Mac OS X 10.7 /usr/lib/libc.dylib /System/Library/Frameworks/OpenGL.framework/OpenGL

Solaris 10 /lib/libc.so /usr/lib/libGL.so

ArchLinux 2013.5 /lib/libc.so /usr/lib/libGL.so

Debian 6 /lib/libc.so.6 /usr/lib/libGL.so.1

Ubuntu 12.04 /lib/i386-linux-gnu/libc.so.6 /usr/lib/i386-linux-gnu/libGL.so.1

FreeBSD 9.1 /usr/lib/libc.so /usr/local/lib/libGL.so

OpenBSD 5.3 /usr/lib/libc.so.66.2 /usr/X11R6/lib/libGL.so.10.0

NetBSD 6.1 /usr/lib/libc.so /usr/X11R7/lib/libGL.so

DragonFly 3.4 /usr/lib/libc.so /usr/pkg/lib/libGL.so

cross-platform dynfind(c("MSVCRT","c","c.so.6")) dynfind(c("OPENGL32","OpenGL","GL","GL.so.1"))

Platforms Shared library expat Shared library SDL

Windows <custom>\libexpat.DLL <custom>\SDL.DLL

Mac OS X 10.7 /usr/lib/libexpat.dylib /Library/Frameworks/SDL.framework/SDL

Solaris 10 /opt/csw/lib/libexpat.so.1 /opt/csw/lib/libSDL-1.2.so.0

ArchLinux 2013.5 /usr/lib/libexpat.so /usr/lib/libSDL.so

Debian 6 /usr/lib/libexpat.so.1 /usr/lib/libSDL-1.2.so.0

Ubuntu 12.04 /lib/i386-linux-gnu/libexpat.so.1 /usr/lib/i386-linux-gnu/libSDL-1.2.so.0

FreeBSD 9.1 /usr/local/lib/libexpat.so /usr/local/lib/libSDL.so

OpenBSD 5.3 /usr/lib/libexpat.so.9.0 /usr/local/lib/libSDL.so.8.0

NetBSD 6.1 /usr/lib/libexpat.so /usr/pkg/lib/libSDL.so

DragonFly 3.4 /usr/local/libexpat.so /usr/pkg/lib/libSDL.so

cross-platform dynfind(c("expat", "expat.so.1")) dynfind(c("SDL","SDL-1.2.so.0"))

Table 4.3: Overview of platform-specific file paths for specific C libraries and cross-platform loading

via dynfind and short library names.

family or Linux distribution, package management system or custom installation location, while the

latter contains a library-specific 〈name〉 and uses an ABI platform-specific file name or path pattern

as shown in Table 4.4.

Operating system(s) ABI platform Shared library name scheme

Windows PE 〈name〉.DLL
Linux, BSDs, Solaris ELF lib〈name〉.so [.〈major〉 [.〈minor〉]]

Mac OS X Mach-O
lib〈name〉.dylib
〈name〉.framework/〈name〉

Table 4.4: Naming schemes of shared libraries across operating systems and ABI platforms.

Windows platforms use the binary image format standard PE (Portable Execution Format); a shared

library is stored as a DLL (Dynamically Linked Library) with the file name extension “.DLL”.

Unix-related platforms based on the System V ABI standard, such as Linux, BSDs and Solaris,

typically incorporate ELF (Execution and Link Format) as binary format for executable files and

shared libraries; the latter are stored as Shared Objects with a common file name prefix “lib” and

the shared object extension “.so”. ELF also supports versioning of libraries in which the file name is

suffixed by a ‘.’ and a 〈major〉 version number.

84 CHAPTER 4. DYNAMIC FFI FOR R

Although Mac OS X is very similar to Unix-based systems, it is based on the Darwin operating system,

which uses a Mach-based Microkernel, named ‘XNU’, and the Mach-O (Mach object file format) binary

image format. Shared libraries are represented as Dynamic Libraries with the file name prefix “lib”

and the file extension “.dylib”. In addition, Mac OS X also provides a second form of shared library

components named Frameworks. A Mac OS X framework is a directory tree of files with a specific

directory name of the form “〈name〉.framework” in which a dynamic library is placed as “〈name〉”
without prefixes or suffixes.

Whether the binary files are named Dynamically Linked Libraries on Windows PE, Shared Objects on

System V ELF platforms, Dynamic Libraries on Mach-O or Framework Bundles on Mac OS X, all

these terms denote a Shared Library that can be loaded dynamically at run time via the C API of the

platform’s dynamic linker.

4.2.4 Searching of Shared Libraries

Each dynamic linker provides a C API, discussed in Section 5.6, for loading shared libraries via a

file name at run time. The interface is simple; a character string needs to be given for naming the

library. If the file name is given without an absolute path, the dynamic linker searches for the shared

library. There are fine differences between platforms in naming of shared libraries and which directory

locations are considered for searching. Furthermore, the arrangement of user-defined locations for

third-party shared library installations also differs depending on the functioning of the dynamic linker.

We therefore briefly describe the different search methods and naming schemes in more detail.

4.2.4.1 Dynamic Linker on Windows PE-based platforms

The dynamic linker of Windows searches for a specific DLL in several locations using the following

order of directory locations:

• The directory of the application’s executable,

• the current working directory,

• a number of system directories and

• a number of locations specified by the environment variable %PATH%, which consists of a list of

absolute directory paths separated by ‘;’ characters.

The file extension “.DLL” can be omitted when searching via the C API. DLLs of system components,

such as OpenGL, are installed in a subfolder, named ‘SYSTEM32’, of the Windows folder, which is often

located at C:\WINDOWS but can be specified during installation of Windows; the exact location is given

by the environment variable %WINDIR%.

4.2. CODE LOADING 85

Since Windows platforms lack a standard package management and distribution system there are no

standard directory locations for third-party libraries in contrast to open-source platforms and Unix-

related systems. Therefore users usually have to copy DLLs into the SYSTEM32 directory or arrange

for a directory for common shared libraries that needs to be added to the environment variable %PATH%

in order to enable the dynamic linker to find the DLL by its name.

4.2.4.2 Dynamic Linker on ELF platforms

The dynamic linker of ELF systems searches for shared objects given by the full file name using the

following pattern:

lib〈name〉.so

So the prefix “lib” and the file extension suffix “.so” need to be included when searching for a shared

library 〈name〉 via the C API.

The dynamic linker searches in

• built-in system locations (e.g. “/lib” and “/usr/lib”),

• further system locations, which are specified in configuration files, such as defined in “/etc/ld.

so.conf” and in files located in /etc/ld.so.conf.d, and/or configured via system tools such

as ldconfig,

• directories that are specified by the environment variable $LD_LIBRARY_PATH, which comprises

a list of directory locations separated by the ‘:’ character, and

• directories that are specified within the application’s executable for which the dynamic linker

searches shared libraries given as a data field named rpath.

A number of dynamic linkers that support the ELF format make use of versioning of shared libraries.

The latter are installed using a multi-level version numbering scheme for their file name, and shortened

variants are also installed via symbolic file links. For example, the following pattern of symbolic linked

files is used on several Linux platforms:

lib〈name〉.so.〈major〉 → lib〈name〉.so.〈major〉.〈minor〉
lib〈name〉.so.〈major〉.〈minor〉 → lib〈name〉.so.〈major〉.〈minor〉.〈micro〉

The version naming scheme with a single 〈major〉 version number has a special meaning in ELF; it

is the soname (Shared Object Name), which is also often stored within the binary file of the shared

library and also within dependent executable files as symbolic link information; it gives the library

name, which includes a binary ABI version. This name is used by the dynamic linker for resolving

dependencies of application executables to shared libraries during the loading of a dynamically linked

application program. The file name scheme is as follows:

86 CHAPTER 4. DYNAMIC FFI FOR R

ELF System Package name Files and Symbolic Links Name for loading

Solaris 10
CSWlibexpat1

libexpat.so.1 →libexpat.so.1.6.0
libexpat.so.1

libexpat.so.1.6.0

CSWlibexpat-dev libexpat.so →libexpat.so.1.6.0 libexpat.so

Debian Linux 7
libexpat1

libexpat.so.1 →libexpat.so.1.6.0
libexpat.so.1

libexpat.so.1.6.0

libexpat1-dev libexpat.so →libexpat.so.1.6.0 libexpat.so

Fedora Linux 18
expat

libexapt.so.1 →libexpat.so.1.6.0
libexpat.so.1

libexpat.so.1.6.0

expat-devel libexpat.so →libexpat.so.1.6.0 libexpat.so

ArchLinux 2013.5 expat

libexpat.so →libexpat.so.1.6.0

libexpat.so

libexpat.so.1 →libexpat.so.1.6.0

libexpat.so.1.6.0

NetBSD 6.1 expat

libexpat.so →libexpat.so.2.0

libexpat.so.2 →libexpat.so.2.0

libexpat.so.2.0

FreeBSD 9.1 expat-2.0.1 2
libexpat.so →libexpat.so.6

libexpat.so.6

DragonFly BSD 3.4 expat
libexpat.so →libexpat.so.6

libexpat.so.6

OpenBSD 5.3 base53.tgz libexpat.so.10.0

Table 4.5: Loading expat shared library on different ELF-based operating systems.

lib〈name〉.so.〈major〉

The 〈major〉 version number usually starts with zero; it is not incremented until the interface of a

library significantly changes or needs to break binary compatibility with a previous version. Whereas

the soname “lib〈name〉.so.〈major〉” is used during load- and run-time dynamic linking, the linker

of the compiler, which prepares symbolic links between application executables and shared libraries,

usually uses the unversioned variant “lib〈name〉.so” for searching the shared library and then reads

the actual soname from the found shared library as symbolic link information within the application’s

executable file.

As a consequence, run-time packages of shared libraries often do not install the unversioned file names

since applications only require the existance of soname-based library file names. Table 4.5 gives an

overview of different packages and ELF shared library names for the expat XML parser C library

across ELF platforms. From this table we can see that the shared libraries on Solaris and on several

Linux distributions are split into a run-time and a development package. The unversioned ELF shared

library name of a symbolic file link is usually installed with the development package. Furthermore,

we can see that the soname is not standardized across ELF platforms.

There are further fine differences among dynamic linkers on ELF platforms that we briefly describe

in the following paragraph.

4.2. CODE LOADING 87

The GNU dynamic linker on Linux platforms comprises a cache of library names that can be con-

figured via the ldconfig utility and the /etc/ld.so.conf configuration file, which contains addi-

tional search paths for shared libraries. In general the latter comprises the text line instruction

“ include /etc/ld.so.conf.d/* ”, which causes ldconfig to read further library search paths from ad-

ditional text files in the directory in /etc/ld.so.conf.d. For example, the R installation on Fedora

Linux 18 on x86-64 installs the file /etc/ld.so.conf.d/R-x86_64.conf, which contributes the search

path /usr/lib64/R/lib for searching custom R shared libraries such as the R shared library and R-

specific BLAS libraries. ldconfig is usually executed during system startup and after installation of

new packages in order to rebuild the library name cache of available shared libraries. When ldconfig

is executed it scans directories (specified by the configuration) for shared library binary files, which

usually have the form “lib〈name〉.so.〈major〉.〈minor〉” and creates symbolic file links of the soname

form “lib〈name〉.so.〈major〉”. BSD platforms and Solaris also offer a similar utility to configure a

cache of shared library names (it is also named ldconfig on BSDs and crle on Solaris). But in

contrast to the GNU-based utility, no symbolic links are created.

The example, shown in Table 4.5, illustrates different schemes for multi-level versioning of file names

among Linux distributions. While FreeBSD and DragonFly BSD use a single symbolic link of the

form “lib〈name〉.so” → “lib〈name〉.so.〈major〉”, NetBSD uses a two-level symbol link. NetBSD

also discourages the use of the ldconfig utility and configuration via /etc/ld.so.conf in favour of

the rpath facility. rpath is a data field, similar to soname, which specifies a run-time search path

that is hard-coded into an executable; it is used by the dynamic linker when searching for required

shared libraries. See NetBSD (2013) for a detailed discussion on this topic.

OpenBSD does not use ELF standard methods for handling sonames. It has its own versioning system

and search method. Every shared object is versioned using the file name pattern:

“lib〈name〉.so.〈major〉.〈minor〉”

Interestingly, there are no symbolic file links. The dynamic linker searches corresponding file names

via unversioned library names so that “lib〈name〉.so” can be used to search a corresponding shared

library without the use of symbolic file links.

In summary: Whether an unversioned file name is sufficient to load a shared library depends on the

operating system; usually soname-based files are always available. However, the soname differs across

operating-system platforms; in order to load a shared library dynamically a common naming scheme

would be beneficial here.

Our experiments with several shared libraries on various platforms using the rdyncall package sug-

gests that standard installations of shared libraries on the BSD-based operating-system family is

supplied with a symbolic link to an unversioned file name, so that the short library name “〈name〉”
is sufficient, as it is translated by dynfind to “lib〈name〉.so”. On Linux and Solaris, there are cases

where run-time packages of shared libraries do not include a symbolic link of the form “lib〈name〉.so”

88 CHAPTER 4. DYNAMIC FFI FOR R

so that the soname needs to be used as a short library name, encoded without the prefix “lib” using

the pattern “〈name〉.so.〈major〉”. If the sonames differ among Linux and Solaris platforms, several

variants need to be passed to dynfind . Note that major versions are usually very stable for a particular

library and are generally incremented only in major revisions of a library.

See Levine (2000, Ch. 10) for details on ELF and soname, Hearn (2004) for details on versioning

of ELF shared libraries, Wheeler (2003, Sec. 3) for details on ELF shared libraries on Linux, and

OpenBSD (2013) for notes on handling shared libraries on OpenBSD.

4.2.4.3 Dynamic Linker on Mach-O / Mac OS X

The dynamic linker of the Mach-O platform offers an ELF-compatible C API for dynamic loading of

a shared library. It requires the following file pattern to search for a corresponding shared library:

lib〈name〉.dylib

The dynamic linker searches for the shared library using a set of environment variables and the current

working directory of the running process. The environment variables, if set, contain a sequence of

directory paths separated by ‘:’ characters. The order is as follows:

• LD_LIBRARY_PATH,

• DYLD_LIBRARY_PATH,

• working directory and

• DYLD_FALLBACK_LIBRARY_PATH, which defaults to $HOME/lib;/usr/local/lib;/usr/lib.

Similarly to Windows and in contrast to ELF-based platforms, there are no configuration files to

control the searching.

Shared libraries, installed as Mac OS X frameworks, are searched by using the following file name

pattern:

〈name〉.framework/〈name〉

Several standard directory locations are considered such as /System/Library/Frameworks, /Library/

Frameworks and $HOME/Library/Frameworks. Further framework directories are considered as spec-

ified by the environment variable $DYLD_FRAMEWORK_PATH where directory paths are separated by ‘:’

characters.

For shared libraries that are installed by package management systems, such as MacPorts, Fink or

Homebrew, the environment variables need to be set appropriately in advance. For example, MacPorts

installs dynamic libraries under the directory tree /opt/local/lib, which need to be adopted by

setting the location in the environment variable LD_LIBRARY_PATH.

4.2. CODE LOADING 89

For information on the implementation of shared libraries within operation systems, see Tanenbaum

(2009, Sec. 3.5.6).

4.2.5 Implementation

The initial version of dynfind incorporates platform-specific search heuristics where the file path is

partitioned into four components:

〈location〉 〈prefix 〉 〈name〉 〈suffix 〉

The components 〈location〉, 〈prefix 〉 and 〈suffix 〉 are platform-specific values, while the 〈name〉 com-

ponent is passed by the user as a short library name.

For a given list of short library 〈name〉s, a large number of possible absolute file paths is derived by

permutation of the four components. Each trial is passed directly to the dynamic linker until a library

is successfully opened. The set of 〈location〉s comprises a hard-coded list of values that is extended

by additional paths that are read from environment variables such as $LD_LIBRARY_PATH (ELF and

Mach-O) and %PATH% (Windows PE). In addition, platform-specific characteristics, such as searching

for frameworks on Mac OS X, were also incorporated. The initial version of dynfind works fine for a

large number of platforms but has its draw-backs as new versions of operating systems and software

distributions need to be adapted.

Recently an improved version of dynfind was developed. It makes use of the underlying search

methods of the dynamic linkers and does not use any absolute file paths. Thus it significantly reduces

the number of search trials and works more closely with the search method of the dynamic linker. We

give the implementation, written in R, in Listing 9. For each short library name, passed to dynfind ,

there are up to two function calls to .dynload ; the latter is a direct R interface to the dynamic linker

for the lookup. Note that the 〈location〉 naming component is omitted in this scheme since users

and system administrators can configure the dynamic linker appropriately via system configuration

settings and environment variables.

The derivation of file names from short library names is platform-specific using a maximum of two

calls for searching per short library name:

• On Windows the pattern “lib〈name〉” is used to search for “lib” prefixed DLLs and then the

pattern “〈name〉” to search for DLLs without prefix.

• On Mac OS X the pattern “〈name〉.framework/〈name〉” is used to search for a framework and

the pattern “lib〈name〉.dylib” is used to search for a dynamic library.

• On ELF platforms the pattern “lib〈name〉.so” is used to search for an unversioned shared

library and the pattern “lib〈name〉” is used to search for a soname-based shared library where

the short name ends with “.so.〈major〉”.

90 CHAPTER 4. DYNAMIC FFI FOR R

dynfind1 <-

if (.Platform$OS.type == "windows") {

function(libnames, ...) {

handle <- .dynload(paste("lib",name,sep=""),...)

if (!is.null(handle)) return(handle)

.dynload(name,...)

}

} else {

if (Sys.info()[["sysname"]] == "Darwin") {

function(name, ...) {

handle <- .dynload(paste(name,".framework/",name,sep=""),...)

if (!is.null(handle)) return(handle)

.dynload(paste("lib",name,".dylib",sep=""),...)

}

} else {

function(name, ...) {

handle <- .dynload(paste("lib",name,".so",sep=""),...)

if (!is.null(handle)) return(handle)

.dynload(paste("lib",name,sep=""),...)

}

}

}

dynfind <- function(libnames, auto.unload = TRUE) {

for (libname in libnames) {

handle <- dynfind1(libname)

if (!is.null(handle)) return(handle)

}

}

Listing 9: Implementation of dynfind .

4.2.6 Low-level interface

Since the existing interface dyn.load is inappropriate to make use of the search capabilities of the

dynamic linker, an alternative R interface to the dynamic linker was incorporated into the rdyncall

package. The following table gives a side-by-side comparision between the base and the rdyncall

interface to the dynamic linker:

Task base package rdyncall package

Load dyn.load .dynload

Resolve getNativeSymbolInfo .dynsym

Unload dyn.unload .dynunload

Load and unload tasks are for opening and closing a shared library. Access to the symbol table for

retrieving pointers to functions and global variables is given via resolving symbolic names to addresses.

4.2.6.1 Improved Life-Cycle Management

Since shared libraries are resources that can be loaded at run time, they should also be unloaded

dynamically when they are no longer needed. The base R interface to the dynamic linker is mainly

used to manage loading and unloading of shared libraries as part of the R package loading and

unloading mechanism. Since the rdyncall interface is designed for working with external C libraries

4.3. FOREIGN FUNCTION CALLS 91

further considerations went into the implementation of the .dynload and .dynsym functions to offer a

fine-grained resource management.

Resource objects in R are often represented as external pointers, which are copied by-reference so that

there exists a one-to-one mapping between an R external pointer object and corresponding resource.

The garbage collector of R offers the ability to register a finalizer function for external pointers that is

called when the external pointer is about to be removed. This enables the implementation of methods

for cleanup of resources such as closing files or unloading shared libraries. Aside from storing an

address, external pointers may also contain an owning reference to another object in order to protect

the latter from garbage collection.

The rdyncall-based interface to the dynamic linker incorporates finalizers and protection in order

to offer a fine-grained life-cycle model for loading/unloading shared libraries. Shared libraries that

are opened via .dynload are returned as handle objects represented as external pointer R object.

.dynload has an optional parameter, named auto.unload ; if set to TRUE (the default) a finalizer is

registered for the external object; then unloads the shared library when the object is about to be

removed by the garbage collector. The handle to a shared library is passed to .dynsym for resolving

symbols; the addresses of resolved symbolic functions are returned as external pointers that protect

the library’s handle object from garbage collection. So shared libraries, opened via .dynload , are not

removed as long as there exist any active external pointer R objects that reference their code or data

objects.

The implementation of the low-level interface to the dynamic linker of the operating system is based

on the dynload library that provides a thin portable abstraction layer to the platform-specific C API

of the dynamic linker; see Section 5.6 for details.

4.3 Foreign Function Calls

The facility to make calls to foreign functions of external precompiled libraries is probably the most

obvious component of an FFI. We gave an overview of different types of FFIs in Section 3.4; we noted

that the .C FFI of the base package is a static version of an FFI; it supports a small subset of

C function types that can be called directly from R without additional C code wrapper. Dynamic

versions of FFIs offer interoperability with a wide range of foreign function types by using a generic

dynamic implementation and type information about the target function type.

4.3.1 Interface

The function .dyncall constitutes the main interface for making calls to foreign C functions. The

interface is as follows:

.dyncall(address, signature, ..., callmode = "default")

92 CHAPTER 4. DYNAMIC FFI FOR R

.dyncall requires two items of information about the C function:

• the memory location of the function’s code, which is specified by address ,

• and the function type, which is specified by signature .

The actual argument values for marshalling to C arguments are passed via ... according to their

positional order in the foreign C function type.

The callmode is an optional parameter. It specifies the calling convention of the target C function

and is of particular interest on the Microsoft Windows 32-bit x86-32 platform to make function calls

to System DLLs. We give details on the selection of calling conventions in Section 4.3.4.

The address is passed as an external pointer; a corresponding object for refering to a “loaded C

function” can be obtained by using dynfind and .dynsym , as discussed in Section 4.2, or by using the

standard R base functions for loading shared libraries and resolving of symbols to addresses, such as

dyn.load and getNativeSymbolInfo , respectively.

The parameter signature specifies the C function type of the target C function encoded as a call

signature character string. The inclusion of this parameter constitutes a main difference to the FFI

of the base package.

4.3.2 Call Signature

The call signature specifies the C function type. The encoding was specified in the syntax diagram

illustrated in Section 3.7.2.1; we give the text pattern of the format again:

[〈parameter-type〉...] ‘)’ 〈return-type〉

The parameter types are specified according to the C function prototyp declaration, as defined in C

header files or sources, from left to right. 〈parameter-type〉 and 〈return-type〉 are specified as object

signatures that refer to a particular C parameter- and return data type. Table 4.6 gives the mapping

between supported basic C types and corresponding object type signature encoding.

Example In Section 3.4.2 we discussed the limitation of R’s static FFI using a simple example of

binding the C double sqrt(double x) function of the math library to R. We showed that development

of C wrapper code and compilation was needed for connecting R with the C function sqrt .

.dyncall can be used to make a direct call to sqrt from within R without the need for adapters in

C. In the following listing we first give the steps to load the sqrt C function, which works across R

platforms using dynfind and .dynsym as described in Section 4.2, followed by an FFI call via .dyncall .

4.3. FOREIGN FUNCTION CALLS 93

C data type Object signature

char ‘c’

short ‘s’

int ‘i’

long ‘j’

long long ‘l’

float ‘f’

double ‘d’

unsigned char ‘C’

unsigned short ‘S’

unsigned int ‘I’

unsigned long ‘J’

unsigned long long ‘L’

void ‘v’

void* ‘p’

const char* ‘Z’

Bool , _Bool ‘B’

typedef ... name ‘<’ name ‘>’

TYPE * ‘*’ ...

Table 4.6: Mapping between C data types and object signature characters.

> library(rdyncall)

> lib <- dynfind(c("msvcrt","m","m.so.6"))

> addr <- .dynsym(lib,"sqrt")

> .dyncall(addr,"d)d", 144)

[1] 12

As indicated by the return value 12 , we can assume the function call was successful. Note the

call signature “ d)d ” passed as second argument, which specifies the C function type of sqrt . The

signature is derived from the C function declaration double sqrt(double) .

4.3.3 Supported Function Types

.dyncall offers support for making calls to a large subset of function types. Functions where all

parameter types and the return type are in the following set can be called directly:

• All standard signed integer types from signed char to long long int .

• All standard unsigned integer types from unsigned char to unsigned long long int .

• Floating-point types float and double .

• Code and data pointers.

• The boolean type _Bool .

94 CHAPTER 4. DYNAMIC FFI FOR R

No support is currently provided for functions where at least one parameter type, or the return type,

is in the following set:

• Floating-point type long double .

• Composite struct and union data types passed as call-by-value objects.

• Any other standard and platform-specific C data types (see Table 3.4 for an overview).

The maximum number of arguments that is supported by .dyncall varies; but the number is very

large. The total size of memory that C argument objects of a function call require must be less

than 4096 bytes; this leads to a limitation of approximately 512-1024 arguments per function call

depending on the actual argument types. This is effectively no limitation since, in practice, C API

functions comprise a much smaller number of parameters.

The implementation of .dyncall is based on the Generic Dynamic FFI dyncall which provides a

portable C interface for dynamic invocation of function calls. It is partly implemented in assembly

language with ports to a large range of platforms; all major R platforms are supported. (See Table 5.11)

Note that some of the platforms listed in the table may not be supported by R. The implementation

of .dyncall by means of the dyncall library is discussed in Section 5.4.6.2.

4.3.4 Supported Calling Conventions

.dyncall supports several calling conventions as selected by the callmode parameter. This parameter

may be needed currently on the Microsoft Windows 32-bit platform for the x86-32 processor archi-

tecture where C functions of system libraries use a different calling sequence to the default C calling

convention for C libraries.

.dyncall is a front-end function that uses the callmode argument to delegate to specialized back-end

functions that implement a particular calling convention:

High-Level Interface:

.dyncall (address, signature, callmode = "default", ...)

Low-Level Interface:

.dyncall.<callmode> (address, signature, ...)

The calling convention is selected by a named character string passed via the callmode argument.

Table 4.7 gives a list of possible values.

.dyncall also supports virtual method calls to C++ member functions, named thiscalls. Usually

the this pointer of an instance to a C++ class has to be passed as first argument. For the x86-32

architecture, the calling convention also needs to be further specified, depending on the C++ compiler

that was used for the target code. The implementation of .dyncall currently supports the Microsoft

Visual C++ and GNU C++ compiler for Microsoft Windows (MinGW32).

4.3. FOREIGN FUNCTION CALLS 95

callmode Description

default Default calling convention for C functions

cdecl Standard C functions (alias to default)

stdcall C stdcall functions of Windows 32-bit System libraries

thiscall Calling convention for C++ member functions

thiscall.msvc C++ member functions compiled by Visual C++

thiscall.gcc C++ member functions compiled by MinGW32

fastcall Calling convention for C fastcall functions

fastcall.msvc C fastcall functions compiled by Visual C++

fastcall.gcc C fastcall functions compiled by MinGW32

Table 4.7: Supported non-standard calling conventions required on Windows 32-bit platforms.

4.3.5 Type Checking

If argument values of a call do not match the corresponding parameter types of the target function,

the execution of the call can lead to a fatal run-time error. For this reason C compilers perform type

analysis of caller C code before code generation, and abort compilation if an unresolvable argument

type mismatch is detected. FFIs represent run-time services for making function calls and, likewise,

they need type information to guarantee system stability.

During an FFI call, the .C function uses the actual types of R arguments to derive the C function

type of the call and which is determined dynamically at call time. When C functions are registered

as part of the initialization of an R package that contains compiled code, type information about the

function’s parameter types can be specified. (See R Development Core Team, 2012c, Section 5.4 for

details.) This information is later used during a call via .C for type checking. However, when C

functions of an external library are called via .C , there is no source of information available that

provides type information for type checking.

The call signature parameter provides type information about the target C function that .dyncall

uses for three tasks:

• Type Checking : While the arguments are processed, several type checks are performed: the

number of actual arguments and formal parameters need to be equal and the argument values

need to be convertable to C parameter types.

• Value Conversion: If arguments are not of the same type .dyncall checks if the value can be

converted automatically.

• Directing : The argument objects in C data representation are passed to the Generic Dynamic

FFI, which copies the sequence of arguments to CPU registers and on the C call stack, followed

by the execution of an ABI-conformant function call. This procedure is mainly driven by the

call signature.

In the following, we consider type checking and value conversion; directing the function call at low-

96 CHAPTER 4. DYNAMIC FFI FOR R

level is discussed in detail in Section 5.4, and the implementation of .dyncall , written in C, for all

three tasks is discussed in Section 5.4.6.2.

Before making the foreign function call, the .dyncall FFI performs a number of tests on the passed

arguments, based on the signature in order to check whether the number of arguments and type of

the arguments are compatible or can be meaningfully and easily converted to compatible arguments.

A function call is rejected if the passed number of arguments does not match with the expected number

of parameters as specified by the function type signature:

> .dyncall(addr, "d)d")

Error in .dyncall(addr, "d)d") :

Not enough arguments for function-call signature ’d)d’.

> .dyncall(addr, "d)d", 144, 13)

Error in .dyncall(addr, "d)d", 144, 13) :

Too many arguments for signature ’d)d’.

The call is also rejected if the type of an argument is incompatible with parameter type, the call is

also rejected. For example, when a character string is passed to sqrt via .dyncall , this is rejected

as follows:

> .dyncall(addr, "d)d", "some-text")

Error in .dyncall(addr, "d)d", "some-text") :

Argument type mismatch at position 1: expected C double convertable value

Numeric objects in R are represented as vectors that can have length zero. Calls are reject if an

argument to C is an empty vector.

> .dyncall(addr, "d)d", integer(0))

Error in .dyncall(addr, "d)d", ...) :

Argument type mismatch at position 1: expected length greater

zero.

Furthermore, automatic value conversion is performed if there is a conversion that is feasible without

creating new R memory objects. For example, while the natural counter-part to a double C argument

is given by an R double argument, the user may pass an integer , logical or even raw , such as the

literal integer value 144L suffixed by the L that indicates an integer value:

> .dyncall(addr, "d)d", 144L)

[1] 12

In summary, the call signature “ d)d ” leads to the following type checks and conversion rules:

• The number of arguments, represented by ... , must be 1.

• The type of the argument must be a logical , double , integer or raw atomic vector.

• The length of the vector needs to be at least 1.

• If the argument is an R double vector the first element is passed as argument to the C function,

• otherwise the value needs to be converted: The first scalar element is extracted from the atomic

4.3. FOREIGN FUNCTION CALLS 97

vector and converted to a C double object.

4.3.6 Value Conversion

Several components of the rdyncall package, namely .dyncall , .pack , .unpack and new.callback ,

incorporate data conversion and mapping strategies between data objects of R and C. The following

table gives an overview of the different facilities and the context in which marshalling/unmarshalling

of R language objects to/from C data objects takes place:

Marshalling (R → C) Unmarshalling (C → R)

.dyncall arguments .dyncall return values

.pack argument .unpack return value

Callback return values Callback arguments from C

Since C functions and objects have a static type, whereas the type of R language objects is determined

at run-time, we consider differentiated mappings depending on the direction of data conversion. The

mapping between R and C types was decided on the internal data representation of R object types. A

large number of mappings was built-in for C scalar arithmetic and untyped pointer types as illustrated

in Table 4.8, which gives mappings for both directions. Mappings of “R → C” are given in columns

one and two, and “C → R” in columns two and three.

R input type C type R output type

l
o
g
i
c
a
l

i
n
t
e
g
e
r

d
o
u
b
l
e

r
a
w

c
h
a
r
a
c
t
e
r

e
x
t
e
r
n
a
l
p
t
r

N
U
L
L

S
ig

n
a
tu

re

X X X X - - - ‘B’ _Bool logical

X X X X - - - ‘c’ char integer

X X X X - - - ‘C’ unsigned char integer

X X X X - - - ‘s’ short integer

X X X X - - - ‘S’ unsigned short integer

X X X X - - - ‘i’ int integer

X X X X - - - ‘I’ unsigned int double

X X X X - - - ‘j’ long double

X X X X - - - ‘J’ unsigned long double

X X X X - - - ‘l’ long long double

X X X X - - - ‘L’ unsigned long long double

X X X X - - - ‘f’ float double

X X X X - - - ‘d’ double double

X X X X X X X ‘p’ any-type * externalptr

- - - - X X X ‘Z’ char* character

Table 4.8: Value Conversion between R and C arithmetic and pointer types.

98 CHAPTER 4. DYNAMIC FFI FOR R

In the direction “R → C” a dynamic mapping was incorporated where different kinds of R object

types can be passed as argument for a particular C data type that is automatically converted. This

provides for a convenient interface which makes coercion of input R argument types to .dyncall and

.pack unnecessary. For example, the literal R value “ 123 ” can be passed as value for C int data

types without the need to convert the argument via as.integer . Furthermore, dynamic mappings are

required for scalar C data types where there exists no counterpart as data representation in R. For

example, R objects can be passed for the target C scalar data type float even though there is no R

atomic vector type that uses this representation for its element type.

Seven R object types are considered as valid R source objects for value conversion to C data objects:

• logical , integer , double and raw vectors can be passed for any supported C scalar arithmetic

type where the first element of the vector is considered as source for value conversion. Vectors

can also be passed for C untyped pointers in that the address of the first element of the vector

is passed as pointer value.

• character vectors can be passed for C untyped or string pointers in that the address of the first

character of the first string element of the vector is passed as pointer value.

• externalptr R objects can be passed for any C pointer object.

• NULL can be passed for any C pointer type to denote a C NULL pointer value.

R complex vectors are omitted since C _Complex data types are currently not supported by the

underlying Generic Dynamic FFI. All atomic vectors need to have a length greater than 0.

In the direction “C → R” a static mapping is used due to the static source type. For each supported

C source type a specific R target type is used that should preserve the C value although it may use

a different representation. This works fine for most C data types but except for 64-bit integer types

because R does not offer a native 64-bit integer data type. Currently C (unsigned) long long data

objects are cast to C double and then passed as R double vectors.

4.3.6.1 Support for typed C Pointers

C pointers need to be handled with caution as outlined in Section 3.6.4. In contrast to C arithmetic

scalar objects which are passed by-value and which can be easily converted from/to R without allo-

cation of array objects, C pointers reference memory objects, which can be manipulated by a foreign

function as a side effect. Untyped pointers, denoted by ‘ p ’, allow the passing of any atomic vector

object which maybe modified by calls to .dyncall and .pack , typed pointers, such as int* denoted

by ‘ *i ’, further constrain the set of possible input atomic vector objects and slightly improvement of

type safety. Table 4.9 gives an overview of possible mappings between R objects and typed C pointers.

The signature ‘ *v ’ is an alias for untyped pointers using the prefix pointer type signature notation.

For typed C pointer objects only those R atomic vectors are accepted which comprise a C array data

4.4. WRAPPER FUNCTIONS 99

R input type C type R output type

l
o
g
i
c
a
l

i
n
t
e
g
e
r

d
o
u
b
l
e

r
a
w

c
h
a
r
a
c
t
e
r

e
x
t
e
r
n
a
l
p
t
r

N
U
L
L

S
ig

n
a
tu

re

X X X X X X X ‘*v’ void* externalptr

? ? - X - X X ‘*B’ _Bool* externalptr

- - - X X X X ‘*c’ char* character

- - - X X X X ‘*C’ unsigned char* externalptr

- - - X - X X ‘*s’ short* externalptr

- - - X - X X ‘*S’ unsigned short* externalptr

X X - X - X X ‘*i’ int* externalptr

X X - X - X X ‘*I’ unsigned int* externalptr

? ? - X - X X ‘*j’ long* externalptr

? ? - X - X X ‘*J’ unsigned long* externalptr

- - - X - X X ‘*l’ long long* externalptr

- - - X - X X ‘*L’ unsigned long long* externalptr

- - - X - X X ‘*f’ float* externalptr

- - X X - X X ‘*d’ double* externalptr

Table 4.9: Passing of typed pointer objects between R and C.

representation that is compatible with the target C pointer type. As an exception, raw atomic vectors

are always accepted; they are used as generic containers of data. The mapping of _Bool* and long*

is displayed as a “?” as the data representation of the C data type depends on the target platform:

• Bool_ is usually based on int (4 bytes). However, on Mac OS X for the ppc32 architecture, a

smaller sized element type of 1 byte is used for its representation.

• On 64-bit architectures, the long is based on int (4 bytes) on Windows, but long long (8

bytes) on all System V-based ABI platforms (Linux, Mac OS X, Solaris and BSDs). For further

discussion of 64-bit platforms see Section 5.3.8 and Table 5.8.

For all the C pointer types where there exists no compatible R atomic vector with a compatible

C array, such as short* , long long* and float , only raw , externalptr and NULL can be passed.

Pointers to C character data, such as char* , unsigned char* or signed char* , are accepted by R data

objects of type raw and character .

4.4 Wrapper Functions

The call signature makes for a direct and flexible call interface to native compiled functions; it provides

automatic value conversion and type-safety. However, .dyncall calls require at least two parameters

that need to match to ensure type-safety, i.e. the signature character string needs to encode a C

100 CHAPTER 4. DYNAMIC FFI FOR R

function type that corresponds with the type of the foreign function that is referenced by the address

parameter. When making calls to several functions of a C API from within a scripting environment,

the proper arrangement of the two parameters for each call can be error prone and burdensome process.

In general wrapper functions are used for providing a call interface to C API functions. As the

arguments of function calls are dynamically typed, wrappers need to check and convert the type of

each argument according to the target function type. But in contrast to wrappers of the static FFIs

of R, which need to implement specific type checks and value conversion in C, .dyncall wrappers

are lightweight R objects comprising of a single call object with appropriate parameters address and

signature .

In this section we compare writing R wrappers to C API functions using the FFI of base and rdyncall.

We also discuss a convenient automation function, named dynbind , for creating bindings to C API

functions of a shared library, that works across platforms. We report the results of a performance

benchmark between the FFIs of base and rdyncall.

4.4.1 Comparison of Wrapper Function

In this section we compare the creation of a wrapper functions by using the example of the sqrt

function of the standard C math library. Listing 10 gives the hybrid implementation in R and C for

type-safe wrappers using .C , .Call and .External .

Since all wrappers of sqrt need to provide a type-safe interface, they need to ensure that

• the number of arguments is 1,

• the vector length of the first argument is ≥ 1,

• the first value of the vector is converted to a C double object,

• the call uses the C function type signature double sqrt (double) , and

• the return value of sqrt is passed as a double object.

The R wrapper code of .C is used for type-checking and conversion, while the C wrapper is used to

implement the actual C function call. .C can not be used here directly since it does not have support

for passing C return values and has no support for scalar C argument types; arguments are always

passed as data pointers.

While the .C interface was designed for making direct calls to external C functions, the .Call and

.External interfaces represent interfaces for writing R functions in C, which give access to the internal

structure of R arguments and enable the creation of new R objects. In both cases a lightweight R

wrapper code is used to delegate to a corresponding C wrapper code. At first the length of the input ar-

gument is checked via LENGTH(arg) . Then type checking and value conversion is performed via explicit

4.4. WRAPPER FUNCTIONS 101

FFI R Wrapper C Wrapper

.C

sqrt.C <- function(x)

{

x <- as.double(x)

length(x) <- min(length(x), 1)

.C(sqrt_C, x)[[1]]

}

#include <math.h>

void sqrt_C(double* ptr)

{

double x, result;

x = ptr[0];

result = sqrt(x);

ptr[0] = result;

}

.Call
sqrt.Call <- function(x)

.Call(sqrt_Call, x)

#include <Rinternals.h>

#include <math.h>

SEXP sqrt_Call(SEXP arg)

{

SEXP nv;

double x;

if (LENGTH(arg) == 0)

Rf_error("length(x) is zero.");

nv = PROTECT(coerceVector(arg,REALSXP));

x = REAL(nv)[0];

x = sqrt(x);

UNPROTECT(1);

return ScalarReal(x);

}

.External
sqrt.External <- function(x)

.External(sqrt_Ext, x)

#include <Rinternals.h>

#include <math.h>

SEXP sqrt_Ext(SEXP args)

{

SEXP nv, arg;

double x;

args = CDR(args);

arg = CAR(args);

if (LENGTH(arg) == 0)

Rf_error("length(x) is zero.");

nv = PROTECT(coerceVector(arg,REALSXP));

x = REAL(nv)[0];

x = sqrt(x);

UNPROTECT(1);

return ScalarReal(x);

}

.dyncall
sqrt.dyncall <- function(...)

.dyncall(sqrt, "d)d", ...)

Listing 10: Comparison of FFI Wrapper functions to C sqrt library function.

coersion of the R object arg to a double R object by the C API function coerceVector(arg,REALSXP) of

R. The operation returns a new temporary object, which needs to be protected from garbage collection

for the duration of its use within the C function; this is done by a call to PROTECT . The first double

element is extracted so that it can be passed as argument to a function call to sqrt . A corresponding

call to UNPROTECT is needed to balance the number of PROTECT / UNPROTECT calls. The return value is

placed in a newly created double vector via ScalarReal .

Wrappers for the .External FFI look quite similar to those for .Call . The difference of their R to C

calling convention is due to the method of passing arguments. While .Call passes the S-Expression

of each argument separately, the .External call passes a single S-Expression which gives access to the

whole call object, a LISP-like pairlist that contains all arguments in a list and has its target function

name as first element. In the case of .External the arguments are accessible via traversing of the

pairlist using a combination of calls to CDR and CAR macros.

102 CHAPTER 4. DYNAMIC FFI FOR R

In contrast to the required C code needed for .C , .Call or .External , wrappers for .dyncall are

very compact and simply wrap the .dyncall call using the correct target address and a matching

signature without any C code.

4.4.2 Automation of Wrapper Function Creation

.dyncall significantly simplifies the writing of wrapper functions in comparison to the existing FFI

facility in R such as .C . However, the development of bindings for a complete set of C API functions

can be still a complex task; for example, the C API of the SDL library comprises more than 200

functions.

The rdyncall package includes an automation function, named dynbind , that uses the DynPort

encoding format for library signatures and the toolchain that were discussed in Section 3.7 and 3.8,

respectively.

4.4.2.1 Interface

The dynbind interface is given below (a few advanced parameters were omitted):

dynbind(libnames, signature, envir=parent.frame(), callmode="default")

libnames gives a list of short names which is passed to dynfind to load a native library across platforms,

as described in Section 4.2.2.

The signature represents a sequence of C function signatures, as described in Section 3.7.3.6. The

syntax format is as follows:

〈name〉 ‘(’ [〈argument-type〉...] ‘)’ 〈return-type〉 ‘;’ ...

After the library is located and loaded via dynfind , dynbind processes the signature. For each C

function’s name <NAME> and call signature <SIGNATURE> , the C function’s address <ADDR> is resolved

via .dynsym and a corresponding R wrapper function is created using the following template:

<NAME> <-function (...) .dyncall.<CALLMODE> (<ADDR> , <SIGNATURE>, ...)

Note the <CALLMODE> is specified as an argument to dynbind . The wrapper objects are assigned in the

R environment given by envir with the name of the C function.

Example Consider an R application that uses two C functions of the SDL library for the initialization

and setup of a graphics output window:

4.4. WRAPPER FUNCTIONS 103

int SDL_Init (Uint32 flags);

SDL_Surface * SDL_SetVideoMode(int width, int height, int bpp, Uint32 flags);

The following function call to dynbind can be used for the complete task for loading the SDL library

and creation of two R wrappers to corresponding C API functions:

> dynbind(c("SDL","SDL-1.2","SDL-1.2.so.0"), "

SDL_Init(I)i;

SDL_SetVideoMode(iiiI)*<SDL_Surface>;

")

It is assumed that the SDL library is installed on the system; see Section 4.7.3 for details. If the

search was successful, two new R functions, namely SDL_Init and SDL_SetVideoMode , are installed in

the global environment:

> SDL_Init

function (...)

.dyncall.default(<pointer: 0x55562c2>, "I)i", ...)

> SDL_SetVideoMode

function (...)

.dyncall.default(<pointer: 0x555129e>, "iiiI)*<SDL_Surface>", ...)

Note that external pointer is directly placed as an argument to the .dyncall call so that no symbolic

name lookup is performed. Since the C API is available to R using a similar name, the syntax of the

R user code is very similar to that of C for using the SDL C API as Listing 11 illustrates. Note that

the symbolic constants need to be specified in R according to the C API headers of SDL. In Section

4.7 we discuss the dynport function and DynPort files which use dynbind for C functions but also

provides for mapping of symbolic constants and data types.

#include "SDL.h"

int main(int argc, char* argv[]) {

SDL_Surface * surface;

SDL_Init(SDL_INIT_VIDEO)

surface = SDL_SetVideoMode(640,480,32,SDL_OPENGL)

}

SDL_INIT_VIDEO <- 0x00000020

SDL_OPENGL <- 0x00000002

SDL_Init(SDL_INIT_VIDEO)

surface <- SDL_SetVideoMode(640,480,32,SDL_OPENGL)

Listing 11: C and R: Using SDL for opening an OpenGL window.

4.4.3 Implementation

The function dynbind was implemented in R by using text processing and meta programming functions

for manipulation of language objects. We give a detailed description of the implementation using a

slightly simplified version but that uses the core steps for automation of R wrapper functions from

DynPort signatures. We give the implementation in successive steps. For each step a brief description

is given, followed by the implementation in R and a detailed explanation.

1. The function definition begins as follows:

dynbind <- function(libnames, signature, envir=parent.frame()) {

libnames specifies the C library, signature specifies a sequence of function signatures given as

104 CHAPTER 4. DYNAMIC FFI FOR R

a character string and envir specifies an environment for storing created wrapper functions.

2. The libnames argument is passed to dynfind to load the shared library:

lib<-dynfind(libnames)

3. The text string signature is converted to a list of character vectors with two elements (name

and signature):

sigtab <- gsub("[\n\t]*","",signature) # remove white spaces and new line

sigtab <- strsplit(sigtab, ";")[[1]] # split functions at ’;’

sigtab <- strsplit(sigtab, "\\(") # split name/call signature at ’(’

White space and new line characters are removed from the signature string, so that all function

signatures are separated by a ‘;’. gsub is used for pattern-based text substitution. The first

argument specifies the pattern in regular expression notation; "[\n\t]*" denotes character

sequences of white space, tabulator codes and new lines. The text is then separated by ‘;’

characters using strsplit . The result is returned as a list with a string vector of function

signatures. strsplit is applied a second time to split each string in the vector by ‘(’ to separate

name from call signature. Notice, the character ‘(’ has to be escaped via "\\(" . As a result, a

list of character string vectors with two elements is returned.

4. The lists of names and signatures are processed. In each iteration step the name and signature

is stored in the local variables name and signature for the next wrapper to create.

for (i in seq(along=sigtab)) {

name <- sigtab[[i]][[1]]

signature <- sigtab[[i]][[2]]

(a) The C function name is resolved to its address using .dynsym :

address<- .dynsym(lib, name)

(b) All parameters for .dyncall are now available for the creation of a wrapper function:

call <- substitute(

.dyncall.default(X, Y,...),

list(

X = address,

Y = signature

)

)

The call represents a call object, such as the following call expression:

.dyncall.default(<pointer: 0x15711bd0>, "I)i", ...)

substitute is a powerful function for manipulation of R language objects. It receives

two arguments, namely an expression and a list of named elements. Symbols within the

expression are substituted by matching list elements. Note that the first argument to

substitute is not evaluated; it is a template for the returned expression.

(c) An R function is created and its body is assigned the call object.

4.4. WRAPPER FUNCTIONS 105

wrapper <- function(...) { }

body(wrapper) <- call

First, we create a ‘dummy’ function in order to apply body()<- , which assigns a new body

of a function. Note that the formal argument ... is needed for the wrapper to pass all

arguments to the inner call object.

(d) Finally, the wrapper function wrapper is assigned to an environment envir .

assign(name, wrapper, envir=envir)

The envir parameter defaults to the environment of the caller of dynbind i.e. when dynbind

is called from the interpreter, the environment returned by parent.frame() is the global

environment.

This implementation was done purely in R and it emphasises the advantage of a simple text-based

encoding format for C type information, which can be utilized in different contexts. In our case, we

used the function signature for the creation of wrapper functions; one part of the signature is also used

for resolving symbols via .dynsym and the other part is incorporated as a call signature for .dyncall .

4.4.4 Performance Benchmark

In this section we give a summary of a small performance benchmark to compare the timings needed

for calling dummy C functions with one, two, four and eight arguments using wrappers implemented

by means of .C , .Call , External and .dyncall .

The dummy C functions t1 , t2 , t3 and t4 are defined as follows:

void t1(int x) { }

void t2(int x, int y) { }

void t4(int x, int y, int z, int w) { }

void t8(int x, int y, int z, int w, int r, int s, int t, int u) { }

For each test the call is repeated 106 times in a loop to obtain results on a per second scale.

Test2.C <- function(N) for (i in 1:10^6) { Wrapper2.C(1,2) }

Test2.Call <- function(N) for (i in 1:10^6) { Wrapper2.Call(1,2) } }

Test2.External <- function(N) for (i in 1:10^6) { Wrapper2.External(1,2) } }

Test2.dyncall <- function(N) for (i in 1:10^6) { Wrapper2.dyncall(1,2) }}

In each test R numeric argument values are passed that need to be coerced to an integer vector in

R or to cast to int scalars in C somewhere along the call path to the final target C function.

Our results are illustrated in Figure 4.7 as a bar chart and a table of CPU user time in seconds.

These show the low performance of .C ; we can assume this is due to the use of interpreted R code for

type-checking and value conversion. While the performance of .Call and .External are nearly equal,

.dyncall takes about twice of CPU user time. However, this overhead shows be assessed in terms of

the time-savings for development due to automation of bindings.

106 CHAPTER 4. DYNAMIC FFI FOR R

R FFI Performance Benchmark

10^6 iterations per test, on Intel Core 2 Duo 2.5 Ghz CPU, Mac OS X 10.6 using x86_64 sub−arch and R 2.12.
number of arguments

se
co

nd
s

(m
ea

su
re

d
in

 C
P

U
 u

se
r

tim
e)

0

10

20

30

40

1 2 4 8

.C

.Call

.External

.dyncall

A
rg

u
m

en
ts

.
C

.
C
a
l
l

.
E
x
t
e
r
n
a
l

.
d
y
n
c
a
l
l

1 7.20 1.48 1.49 3.05

2 11.77 1.91 1.90 3.63

4 21.15 2.70 2.72 4.72

8 40.22 4.62 4.63 7.25

Figure 4.7: Result of FFI benchmark performance test: Bar chart (left-hand panel) and table of CPU

user time in seconds for 106 function calls.

4.5 Data-level Interoperability

In this section we discuss a component of the rdyncall package for handling foreign C struct and

union data objects from within R. The development was motivated by the following example.

Example SDL-based applications run a sequence of top-level tasks in a main loop, such as generating

graphics output and processing input events. Listing 12 gives a typical main loop skeleton, written in

C and also given in R using the facility of rdyncall for handling C union and struct data types.

During event processing, the SDL function

int SDL_PollEvent(SDL_Event* event)

is called successively in a loop to read events from the event input queue of SDL. In each round a data

record of event information is written to user memory specified by the pointer argument event . The

return value of the function indicates whether an event was successfully written (value of 1) or the

queue is empty (value of 0) so that the event-processing loop can break. Typically a single C object

of type SDL_Event is allocated and then reused for each subsequent calls to SDL_PollEvent .

Records are further processed via read operations of member fields of the record. The C data type

4.5. DATA-LEVEL INTEROPERABILITY 107

#include "SDL.h"

#include "SDL_opengl.h"

int main() {

int quit = 0; // application state variables

SDL_Event e; // allocate event data storage

// Init SDL:

SDL_Init(SDL_INIT_VIDEO|SDL_INIT_JOYSTICK)

SDL_SetVideoMode(640,480,32,SDL_OPENGL)

SDL_EnableUNICODE(1)

// Main loop:

while(!quit) {

// Update display:

glClear(GL_COLOR_BUFFER_BIT)

SDL_GL_SwapBuffers();

// Process events:

while(SDL_PollEvent(&e)) {

switch(e.type) {

case SDL_QUIT: // quit

quit = 1; break;

case SDL_MOUSEBUTTONDOWN: // button pressed

printf("button %d at %d,%d\n",

e.button.button, e.button.x, e.button.y);

break;

case SDL_MOUSEMOTION: // mouse motion

printf("pos: %d,%d\n",e.motion.x,e.motion.y);

break;

case SDL_KEYDOWN: // key pressed

printf("unicode: %d\n",e.key.keysym.unicode);

break;

case SDL_JOYBUTTONDOWN: // joystick events

case SDL_JOYAXISMOTION:

case SDL_JOYBALLMOTION:

case SDL_JOYHATMOTION:

}

}

}

}

dynport(SDL)

dynport(GL)

main <- function() {

quit <- FALSE

e <- new.struct(SDL_Event)

Init SDL:

SDL_Init(SDL_INIT_VIDEO+SDL_INIT_JOYSTICK)

SDL_SetVideoMode(640,480,32,SDL_OPENGL)

SDL_EnableUNICODE(1)

Main loop:

while(!quit) {

Update display:

glClear(GL_COLOR_BUFFER_BIT);

SDL_GL_SwapBuffers();

Process events:

while(SDL_PollEvent(e)) {

if (e$type == SDL_QUIT) {

quit = 1

} else if (e$type == SDL_MOUSEBUTTONDOWN) {

cat("button", e$button$button,

" at ",e$button$x,",",e$button$y,"\n");

}

else if (e$type == SDL_MOUSEMOTION) {

cat("pos: ",e$motion$x,",",e$motion$y,"\n");

}

else if (e$type == SDL_KEYDOWN) {

cat("unicode: ",ekeykeysym$unicode,"\n");

}

else if (e$type == SDL_JOYBUTTONDOWN) { }

else if (e$type == SDL_JOYAXISMOTION) { }

else if (e$type == SDL_JOYBALLMOTION) { }

else if (e$type == SDL_JOYHATMOTION) { }

}

}

}

Listing 12: C and R: SDL Event Handling.

SDL_Event is a user-defined C union comprising overlays of event-specific C struct members. Figure

4.8 gives a graphical illustration of this data structure; note that the objects left to the top-level

SDL_Event are all struct members, some of which are nested. All struct members consist of a

common header, similar to S-Expressions. The header comprises a single integer-based type identifier,

which is also accessible as a top-level member field of the union, named type , which indicates the type

of the event. Corresponding symbolic constants are defined in the C API of SDL such as SDL_QUIT

for close events, SDL_MOUSEBUTTONDOWN for mouse button events, and so on. After the event type is

known, an event-type specific member of the union is accessed to get detailed event information, e.g.

when e.type equals to SDL_MOUSEBUTTONDOWN ; subsequent code selects the member field button , which

is of C struct type SDL_MouseButtonEvent , in order to accessed the button number (button.button) and

coordinates (button.x and button.y) of the pointing device.

As shown in Listing 12 the processing is structured using a block of conditional cases where each one

handles a specific event type. The processing of event data is done consistently via access to member

fields by symbolic name. So the FFI of rdyncall was extended by a framework for handling foreign

C composite data types via syntactic sugar in R, such as accessing foreign member fields by symbolic

field names.

108 CHAPTER 4. DYNAMIC FFI FOR R

SDL_Event

SDL_JoyHatEvent
 jhat

SDL_UserEvent
 user

SDL_MouseMotionEvent

 motion

SDL_KeyboardEvent

 key

SDL_keysym keysym

SDL_JoyButtonEvent
 jbutton

SDL_SysWMEvent
 syswm

SDL_SysWMmsg msgSDL_version version

SDL_QuitEvent quit

SDL_JoyBallEvent

 jball

SDL_ActiveEvent

 active

SDL_MouseButtonEvent

 button

SDL_JoyAxisEvent

 jaxis

SDL_ExposeEvent

 expose

SDL_ResizeEvent

 resize

Figure 4.8: Overview of union SDL_Event C data type for processing user-interface events.

4.5.1 Interface

Our suggested R interface for symbolic access to members of C struct and union data objects leans

on the corresponding C syntax by using the following syntax mapping between C and R:

C Syntax R Syntax

Read
value = pointer->member value <-pointer$member

value = reference.member value <-reference$member

Write
pointer->member = value pointer$member <-value

reference.member = value reference$member <-value

The syntactic sugar for the required R syntax can be achieved via S3 classes and method overloads

for the operators $ (read) and $<- (write). For this purpose a new S3 class, named “ struct ”, was

defined that is used as a proxy for pointers or references to C composite data types. Two S3 methods

are defined for the implementation of read and write operations on member fields:

$.struct <-function(x, index) { ... }

$<-.struct <-function(x, index, value) { ... }

The R proxy object x is represented either as an external pointer or as an atomic vector; the latter

is used for user-allocated objects that is managed by the R garbage collector; see Section 4.5.4.1 for

details. By convention of the R syntax of the $ and $<- operators, the index is passed as a character

string. So in this context it gives the symbolic name of the member field of a foreign C data type.

In general read/write operations at member-field level are carried out by value conversion of a value

from/to the member field’s type and address. The address of a member object can be decomposed as

4.5. DATA-LEVEL INTEROPERABILITY 109

address = base + offset

where base refers to the address of the composite object, given by x , and offset is a constant value

specific to the particular member of a type. Thus the offset can be shared across all objects, and

together with the type of x , it is indirectly given by index .

The mapping between a proxy x to the underlying type is achieved via an attribute “ struct ” that is

attached to the proxy; it gives the type name.

Since the offset needs to be determined once per data type, the use of a helper R object was utilized.

For each struct and union data type that needs to be supported by this framework, the data type is

registered and a corresponding R helper object is created, which comprises total sizes and alignment

properties as well as names, types and computed offsets of member fields.

4.5.2 Registration of C data types

So far we utilized type signatures for the specification of function type information. Now we use

signatures for the registration of C data types; we introduced a DynPort encoding for struct and

union data types in Section 3.7.3.3. The format was defined as follows (in text pattern notation):

〈struct-name〉 ‘{’ 〈field-types〉 ‘}’ 〈field-names〉 ‘;’ ...

〈union-name〉 ‘|’ 〈field-types〉 ‘}’ 〈field-names〉 ‘;’ ...

The rdyncall package contains two parser functions that processes data type signatures and installs

type information objects of S3 class TypeInfo as a side effect.

parseStructInfos(sigs, envir=parent.frame())

parseUnionInfos (sigs, envir=parent.frame())

sigs is a character string that comprises a batch of data type signatures. For each signature, a

corresponding TypeInfo object is created and assigned in the environment given by envir with the

same name as given by the data type signature (e.g. the 〈struct-name〉 or 〈union-name〉, respectively).

The mapping between member names and offsets is done via an R data frame object, which comprises

two columns, namely type and offset, indexed by member names as row names. The offset is a

ABI specific value that is computed and cached when we create this object. The algorithm for the

computation is described in Section 5.3.8.1.

4.5.3 Implementation

The implementation of $.struct and $<-.struct involves a sequence of steps for the computation of

the base and offset for a given proxy x and symbolic member field name index :

110 CHAPTER 4. DYNAMIC FFI FOR R

1. The C type name of x is given by the attribute “ struct ” of x .

2. Type information about the composite C data type “name” is available from a corresponding

TypeInfo S3 object, which needs to be registered via parseStructInfos and parseUnionInfos .

3. The TypeInfo object comprises a table of member field offsets and types which can be obtained

by the member field’s name, given by index .

4. The base address is provided by x , i.e. the value of the external pointer or the start address of

the first element of an atomic vector object.

After the parameters base, offset and type have been determined the read/write operation can be per-

formed using pack and unpack , which are discussed in the following section. Note that the difference

between precomputation and handling of unions and structs is marginal; union member fields have a

fixed offset at 0.

4.5.4 Low-level Interface

The low-level interface comprises two functions: .pack for packing R values to memory locations using

a C data representation (marshalling), and .unpack for unpacking C values from memory locations to

R values (unmarshalling). The interface is as follows:

value <-.unpack(x, offset, sigchar)

.pack (x, offset, sigchar, value)

.unpack reads a C value from memory and returns the value converted to a scalar R value. .pack

converts an R value to a C data type representation and writes the data to memory. The C data

type is indicated by the sigchar character string that consists of a single character using the type

signature scheme giving in Table 4.6. The effective memory location for reading and writing data is

computed by x and offset , where x specifies a base memory address and offset represents a byte

offset to be added to or substracted from that base. x can be either an external pointer, to refer

to external memory, or an atomic R vector. In the later case one operates on the internal R vector

storage in-place using the start address of the data area skipping header information including the

S-Expression header and vector length field of the object x .

The two functions .pack and .unpack represent very powerful operations that perform pointer opera-

tions at C level from within R. But they are also very dangerous since they can give access to internal

R memory and, if wrongly used, corrupt the management structures of R and other components of the

run-time environment. The usual call-by-value copying semantics are not given. For example when

passing a numeric vector as x to .pack , the object can have been modified when the function call

returns. But this also gives great flexibility when working with C APIs that require user code to work

4.5. DATA-LEVEL INTEROPERABILITY 111

with C data objects. The value passed in from R can be any atomic vector type; it is converted to

the C data type according to the given signature and described in detail in Section 4.3.6.

Example We give an example in which .pack and .unpack can be very helpful to manipulate raw

R memory in order to make use of certain API functions that would otherwise be inaccessible.

The .dyncall FFI offers flexible scalar conversion of values for arguments but the support for C

functions that receive pointers to C arrays is limited. Given that a C function expects that the array

of a scalar C type initialized by user code, it is not clear if this can be accomplished directly in R with

the given means provided by .dyncall. As long as the C array type is compatible with an R atomic

vector type (where the R implementation matches with that of the underlying C array type), we can

initialize an object of that type in R and then pass it as an argument i.e. we have built-in support for

C arrays of type bool , char , int , double arrays but no support for short and float .

Since .pack and .unpack also offer flexible conversion of R scalar values as given by .dyncall , but

for reading and writing within memory chunks, we can create foreign data types that do not exist in

R. That said, we can add virtual data types to this facility such as an array for 16-bit short values

and write values passed in from R as numeric or integer values. 16-bit data buffers of short signed

integer are often used for data exchange with audio output components.

We give a converter function as.short that transforms a numeric vector (with values ranging from -1

and 1) to a buffer of 16-bit signed integer values stored as in a raw vector using the .pack function:

as.short <- function(x)

{

n <- length(x)

r <- raw(2*n)

for(i in 1:length(x)) {

.pack(r, (i-1)*2, ’s’, x[[i]]*2^15)

}

return(r)

}

4.5.4.1 Allocation of C data types

The framework includes a utility function for allocation of C data type objects in R memory:

dataobj <-new.struct(name)

The function new.struct allocates a raw vector whose length equals that of the C data type given

by name . name can be a character string, a type information object, or if used within the same

environment as given by envir , in literal form (where it refers symbolically to a type information

object).

The returned raw vector dataobj is tagged with S3 class of ’struct’ and a named attribute ’struct’

which specifies the C data type.

112 CHAPTER 4. DYNAMIC FFI FOR R

Example SDL defines a data type structure for the specfication of colors as given in the top-left

panel of Listing 13. In the bottom-left panel we give the steps in R to define the C data type, allocate

an object in R memory, read/write fields and dump the object. The right-hand panel gives the contents

of run-time type information about the data type given by a TypeInfo object.

// Definition of C composite data type

typedef struct SDL_Color {

Uint8 r;

Uint8 g;

Uint8 b;

Uint8 unused;

} SDL_Color;

> # Definition of C composite data type in R:

> parseStructInfos("SDL_Color{CCCC}r g b unused ;")

> # Allocation

> x <- new.struct(SDL_Color)

> # Write to fields

> x$r <- 60; x$g <- 80; x$b <- 100

> # Reading from fields

> cat("red ",x$r,"\n")

red 60

> # Print C data object

> x

struct SDL_Color {

r :60

g :80

b :100

unused :0

}

Dump of R Type Information object

> SDL_Color

$name

[1] "SDL_Color"

$type

[1] "struct"

$size

[1] 4

$align

[1] 1

$basetype

[1] NA

$fields

type offset

r C 0

g C 1

b C 2

unused C 3

$signature

[1] NA

attr(,"class")

[1] "typeinfo"

Listing 13: R Run-time Type Information on C Composite Data Types.

4.6 Callbacks

Callbacks represent a second form of function call interaction between user code and a library. In

contrast to library function calls, callbacks are performed in the opposite direction; from library

code to user-defined functions. Callbacks offer library frameworks that enable the user to decide and

implement a certain behaviour that should be activated upon a library-specific event.

A callback function is a user-defined C function that is registered to a library for later execution from

within the execution context and by decision of the library. So it is called passively due to an event

decided by library code.

If callbacks are to be utilized from within a scripting language via a FFI, it is required that scripting

functions can be used where usually C function pointers are passed to library functions and the

scripting function can be activated as of a function call from C. Therefore we added a facility for

wrapping user-defined R functions as C function pointers.

4.6. CALLBACKS 113

4.6.1 Interface

The interface of new.callback is as follows:

new.callback(signature, fun , envir = new.env())

new.callback wraps the R function fun as a C function pointer that can be called from C code. The

type of the C callback function needs to be specified by a call signature, similarly to .dyncall , given

by signature . new.callback returns an external pointer that represents a C function pointer. The

underlying C function object is generated synthetically and works as an adapter that can be passed as

argument to other foreign C functions for use as a C function pointer. During a callback from C, the

C arguments are converted to R objects as specified by the call signature. The R function is called

and evaluated within the environment given by envir . On return of the R function its return value

is converted to a C value and control flow is passed back to foreign C code where the callback was

originated.

Example The standard C library contains a number of sorting and searching algorithms. Although

the library is compiled to native code, the algorithms offer a generic implementation design that allows

to sort and search arrays of user-defined data types due to the use of callbacks. Any array of elements

with a user-defined data type can be sorted or searched by these functions given that the user-defined

data type

• is of byte-size granularity,

• has a fixed-size,

• and can be compared by a function that the user has to implement.

Among the sorting algorithms that are supported by the standard C library there is the quick sort

algorithm provided as the C function qsort and declared as follows:

void qsort(void *array, size_t len, size_t el_size, int (*compar)(const void*, const void*));

The function has four parameters: array is a pointer to an array of values, len gives the length of the

array, el_size specifies the byte size of the element type and compar is a C callback function pointer

for comparing two elements.

qsort uses two operations, namely compare and swap, to offer a generic implementation that works

with user-defined data types as illustrated in Figure 4.9. The swap operation works on memory chunks,

specified by the first three parameters array , len and el_size . In order to determine equality of two

elements as a criteria to swap the order, the algorithm calls the user-defined callback function compar

114 CHAPTER 4. DYNAMIC FFI FOR R

User Program C Library

Array

main

my_cmp

qsort

el_size

swap

3
> ?

1

2

Figure 4.9: Generic quick-sort algorithm using C callbacks.

where the return value indicates the order, such as less-than (< 0), equal-to (= 0) or greater-than

(> 0).

Listing 14 gives an example for sorting rational numbers using qsort from with in C and using

new.callback in R.

#include <stdlib.h>

typedef

struct { int nom; int denom; }

rational;

int my_cmp(const void *p1, const void *p2)

{

rational* ra = (rational*) p1;

rational* rb = (rational*) p2;

double va = ((double)ra->nom)/((double)ra->denom);

double vb = ((double)ra->nom)/((double)ba->denom);

return (va<vb) ? -1 : (va>vb) ? 1 : 0;

}

int main() {

rational values[4] = {

{6,8}, {4,5}, {1,2}, {3,4}

};

size_t cnt =

sizeof(array)/sizeof(array[0]);

size_t elsize = sizeof(rational);

qsort(values, cnt, elsize, &my_cmp);

return 0;

}

library(rdyncall)

dynbind(c("msvcrt","c","c.so.6"),"qsort(piip)v;")

mycmp <- function(p1,p2) {

a_nom <- .unpack(p1,0,"i")

a_den <- .unpack(p1,4,"i")

va <- a_nom / a_den

b_nom <- .unpack(p2,0,"i")

b_den <- .unpack(p2,4,"i")

vb <- b_nom / b_den

if (va<vb) return (-1) else if (va>vb) (1) else 0

}

mycmp <- new.callback("pp)i", mycmp)

main <- function() {

values <- as.integer(c(6,8,4,5,1,2,3,4))

qsort(values, 4, 16, mycmp)

}

Listing 14: C and R: Using callbacks with C qsort.

We discuss the R implementation in more detail. As a prequisite we need to bind the C qsort function:

> dynbind(c("msvcrt","c","c.so.6"), "qsort(piip)v")

4.6. CALLBACKS 115

First, we define an R function that compares two rational numbers; the arguments are always passed

as pointers to an array of two int numbers. The callback argument of sqrt has the following type:

int (*compare_fn) (void * pa, void * pb);

We define a compare function in R with two parameters; both parameters will also be of type

const void* which is passed as an external pointer.

> f <- function(pa,pb) {

an <- .unpack(pa,0,"i")

ad <- .unpack(pa,4,"i")

a <- an / ad

bn <- .unpack(pb,0,"i")

bd <- .unpack(pb,4,"i")

b <- bn / bd

if (a==b) return(0)

else if (a<b) return (-1)

else return(1)

}

Note that we need to extract the rational values from C pointer arguments. Both pointers, pa and pb ,

are represented as external pointer objects to an object comprising two C int objects, the nominal

and the denominal component. Thus we use .unpack to extract the nominal and denominal part of

each rational number, followed by a division to create a value. Note that we do not have to coerce the

type although it is integer ; R’s division operator automatically converts operands to double . As a

last step we compare both values and return the result as an indicator of 0 (a = b), -1 (a < b) and 1

(a > b). The return value indicates to qsort whether the two elements need to be swapped. The R

function is now wrapped as a callable C function object via:

> callback <- new.callback("pp)i", f)

Note that we use ‘ p ’ as an untyped pointer here. Finally we call qsort using the callback as a forth

argument. As input vector we use the following sequence of rational numbers: 6
8 ,

4
5 ,

1
2 ,

3
4 . We encode

them as a numeric vector.

> values <- as.integer(6,8,4,5,1,2,3,4)

> qsort(values, length(values)/2, 16, callback)

After the function call returns, the values have been sorted in-place. An output as a matrix is given

next:

> print(as.matrix(values,nrow=2))

[,1] [,2] [,3] [,4]

[1,] 1 6 3 4

[2,] 2 8 4 5

Example In the second example callbacks are used for parsing XML documents.

There are two basic frameworks for processing of XML documents:

116 CHAPTER 4. DYNAMIC FFI FOR R

1. XML documents are parsed as a node tree representation in memory.

2. XML documents are parsed as a stream of data; for each identified type an event is notfied to

user-supplied callback functions.

While the first variant is ideal for traversing in a tree data structure, the required amount of memory

depends on the size of the document. The second variant has no large memory requirements. In order

to define a processing application of an XML document the user has to define callback functions.

The second variant is supported by the expat C library (Clark, 2007). Users specify callback handlers

for a set of XML processing events, such as the start tag or the end tag of an XML node. During

event document processing event-data, such as the XML tag name and attribute maps, are passed by

the parser to the callbacks.

For this example we use three functions of the expat C API, which we first need to bind via dynbind :

dynbind(c("expat","expat.so.1"),"

XML_ParserCreate(Z)p;

XML_SetElementHandler(ppp)v;

XML_Parse(pZii)i;

")

Then a parser object needs to be created. The constructor function XML_ParserCreate is declared

as follows:

XML_Parser XML_ParserCreate(const XML_Char* encoding)

If encoding is non- NULL , the given C string specifies the encoding to use for the document. Otherwise

the document’s encoding declaration is used. For this example, a NULL is passed using the nil R object

NULL .

p <- XML_ParserCreate(NULL)

The returned object is a pointer that represents a handle to the newly created parser object. Now the

parser is configured by registration of callback functions. For handling of processing events, such as

XML tag open and close elements, the following two callback functions are defined as follows:

typedef void (*XML_StartElementHandler) (void *userData, const XML_Char *name, const XML_Char **atts);

typedef void (*XML_EndElementHandler) (void *userData, const XML_Char *name);

The first argument, userData , is used for passing application-specific data. The value can be bound

with a parser object; for this example it can be ignored. Event data, such as the XML tag name, is

transferred via name as a C string; note XML_Char is a type alias to char . For the callback signatures

we can use the object type signature ‘ Z ’, which indicates, that the argument should be automatically

converted as a character object in R. Two R functions are defined that should be used as callbacks.

4.7. DYNAMIC R BINDINGS TO C LIBRARIES 117

startFun<-function(user,tag,attr) {

cat("Start tag:", tag, "\n")

}

S<-new.callback("pZp)v",startFun)

endFun<-function(user,tag) {

cat("End tag:", tag, "\n")

}

E<-new.callback("pZ)v",endfun)

XML_SetElementHandler(p,S,E)

Now the parser can be tested on an XML document.

d <- "<hello><world></world></hello>"

XML_Parse(p, d, nchar(d), 1)

The following output is generated:

Start tag: hello

Start tag: world

End tag: world

End tag: hello

/* C: */

#include <expat.h>

void S(void* userData,

const XML_Char *name,

const XML_Char **attrs) {

printf("onStart: %s\n", name);

}

void E(void* userData,

const XML_Char *name) {

print("onStop: %s\n", name);

}

int main() {

XML_Parser p;

char* d;

p = XML_ParserCreate(NULL);

XML_SetElementHandler(p,S,E);

d ="<hello><world></world></hello>";

XML_Parse(p,d,sizeof(d),1);

}

R:

dynport(expat)

startFun<-function(user,tag,attr) {

cat("Start tag:", tag, "\n")

}

S<-new.callback("pZp)v",startFun)

endFun<-function(user,tag) {

cat("End tag:", tag, "\n")

}

E<-new.callback("pZ)v",endfun)

main <- function() {

p <- XML_ParserCreate(NULL)

XML_SetElementHandler(p,S,E)

d <- "<hello><world></world></hello>"

XML_Parse(p, d, nchar(d), 1)

}

Listing 15: C and R: Using callbacks with Expat XML Parser C library.

In contrast to this facility, other FFIs for R, such as the package base or Rffi (Lang, 2011), do not

support callbacks. The callback support is based on the dyncallback C library, which is discussed

in Section 5.5. In Section 5.5.6 we discuss the application for the callback facility of rdyncall. Note

that the supported set of argument and return types is equal to that of .dyncall . However, there are

several missing platform ports of dyncallback.

4.7 Dynamic R Bindings to C Libraries

In this section we discuss a high-level interface for loading dynamic R bindings to C APIs. So far we

have considered functions of the rdyncall package for the creation of R wrapper functions to foreign

C functions and helper objects for working with foreign C run-time data objects. Now these functions

118 CHAPTER 4. DYNAMIC FFI FOR R

DynPort Library/Description Functions Constants Data Types

Struct/Union

GL OpenGL 337 3253 -

GLU OpenGL Utility 59 154 -

glew OpenGL Extension Wrangler 1465 - -

gl3 OpenGL Version 3 324 838 1

SDL Simple Directmedia library 203 465 51

SDL image Pixel image loaders 29 - -

SDL mixer Music player & loaders 63 12 -

SDL ttf Font format loaders 35 9 -

SDL net Network programming 34 5 3

expat XML parsing(Clark, 2007) 65 70 -

CUDA GPU programming 387 665 84

OpenCL GPU programming 78 260 10

stdio Standard I/O 76 3 -

R R library 238 700 27

Table 4.10: Table of DynPorts: R Bindings to C Libraries as of rdyncall 0.7.4.

are incorporated into a data-driven component for management of a number of R bindings to C APIs.

For each supported C API a DynPort file is defined which comprises C API information encoded using

the DynPort type signatures. In the current version DynPort files are written as R scripts. They

comprise function calls to services of the rdyncall package, such as a call to dynbind for the creation

of wrapper functions and calls to parseStructInfos and parseUnionInfos for the registration of C data

type information, and also assignment statements for defining symbolic constants. As a binding is

specified by text-based DynPort signatures, the parser framework that was discussed in Section 3.8

can be used for automation of DynPort files from C API header files. Table 4.10 gives an overview of

cross-platform R bindings to C APIs currently available within the package.

4.7.1 Interface

The interface for loading a DynPort resemblance that for loading R packages via library(pkgname) or

require(pkgname) :

dynport(portname)

portname is a character string or literal value that specifies the name of a DynPort file. The file

is searched for within a repository directory, which is located relative to the package installation of

rdyncall using the file path pattern “dynports/〈name〉.R”. The DynPort file is evaluated using the

base R function sys.source .

In R environment objects are used for managing named objects. When the R interpreter is evaluating

an expression and it encounters a symbolic name, the value for that name is searched for within a

4.7. DYNAMIC R BINDINGS TO C LIBRARIES 119

number of environments. It first searches for a named object in the local and enclosing environments

of the function of the expression in lexical scope. Then the interpreter searches within a sequence of

environments, which are stored in the ‘search path’.

As each DynPort file is evaluated in a new environment, the bindings are organized in isolated envi-

ronment objects. By attaching the environment object to the search path, the wrapper components

to a C API become available at global lexical scope.

Example The following example illustrates the resemblance of this mechanism by comparing the

interface of the R package loader and the DynPort loader.

After loading an R package via library(pkg) the effect becomes visible via search() , which gives the

current search path:

> library(lattice)

> search()

[1] ".GlobalEnv" "package:lattice" "tools:RGUI"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

As a result of loading an R package, a public environment is created and inserted into the search

path at the second index. The first index is reserved for the global workspace environment, named

.GlobalEnv , so that user-defined objects that name clash with object of packages are given precedence.

The same mechanism is used for managing dynamic R bindings in rdyncall. As a result of loading a

DynPort, an environment is created with R wrapper objects to C API components. The environment

object is attached to the search path at index two.

> library(rdyncall)

> dynport(SDL)

> search()

[1] ".GlobalEnv" "package:SDL" "package:rdyncall"

[4] "tools:RGUI" "package:stats" "package:graphics"

[7] "package:grDevices" "package:utils" "package:datasets"

[10] "package:methods" "Autoloads" "package:base"

4.7.2 Implementation

We take closer a look at the content of a DynPort environment, such as the one of SDL library after

loading via dynport(SDL) :

> str(ls(2))

chr [1:651] "AUDIO_S16" "AUDIO_S16LSB" ...

> table(sapply(ls(2), function(x) typeof(get(x,2))))

closure double list

201 416 34

The output of str(ls(2)) reveals that the SDL DynPort consists of 651 R objects that are of three

different R object types. Table 4.11 gives an overview of the three object types, their corresponding C

120 CHAPTER 4. DYNAMIC FFI FOR R

API element and their implementation, based on a specific DynPort signature encoding and rdyncall

package function or statement form.

R Wrapper C API Element Signature R Implementation

closure Function declarations library dynbind

list
struct definitions struct parseStructInfos

union definitions union parseUnionInfos

double
#define NAME REPLACEMENT value Assignments:

enum { NAME = VALUE, .. } value 〈name〉 = 〈value〉

Table 4.11: Implementation of DynPort in R for each different category of C API Element; the

signature format is given and the R implementation function or expression.

DynPort files, distributed with the package, are generated by means of the automation framework

described in Section 3.8. An excerpt of the SDL DynPort R script is given in Listing 3.

4.7.3 Installation of run-time libraries

As a prequisite to working with DynPort bindings, the shared library needs to be installed on a system.

If a shared library is not found, dynport gives the following message:

dynbind error: Unable to find shared library ’SDL’.

For details how to install dynport shared libs, type: ?’rdyncall-demos’ might help.

If there is no information about your OS, consult the projects page how to build and install the shared library

for your operating-system.

Make sure the shared library can be found at the default system places

or adjust environment variables (e.g. %PATH% or $LD_LIBRARY_PATH).

Currently there is work in progress to incorporate automatic installation of shared libraries by using

an abstraction layer to package management systems. For now several installation procedures are

collected in a manual page accessible via ?‘rdyncall-demos‘ . For OpenGL and SDL the platform-specific

installation procedure is briefly summarized in the following paragraph.

Table 4.12 gives an overview of the various installation procedures and commands to install pre-

compiled packages for different operating systems.

OpenGL is usually part of the operating system; it is pre-installed on Microsoft Windows and Apple Mac

OS X operating systems. Depending on the Linux Distribution, OpenGL might already been installed;

otherwise it is available as part of desktop environments or explicitly named as GL or also as Mesa2.

Usually BSD systems require explicit installation of OpenGL. SDL is usually not pre-installed but often

available through package management systems or via explicit download and manual installation.

2Mesa is an open-source implementation of OpenGL.

4.8. EXAMPLE 121

OS/Distribution Installation

Mac OS X Download SDL-1.2.15.dmg, mount and copy SDL.framework to

/Library/Frameworks.

Windows 32-bit Download SDL-1.2.15-win32.zip, unpack and add directory to

%PATH%.

Windows 64-bit Download SDL-1.2.15-win32-x64.zip, unpack and add direc-

tory to %PATH%.

Debian Linux 6 $ aptitude install libsdl1.2debian

Fedora Linux 13/14 $ pkcon install mesa-libGL SDL

Ubuntu 12.04 LTS $ apt-get install libsdl1.2deban

ArchLinux 2013.5 $ pacman -S mesa sdl

FreeBSD 9.0 $ pkg add -r sdl

OpenBSD 4.8 $ pkg add SDL

NetBSD 5.1 $ pkg add Mesa SDL

DragonFly 3.4 $ pkg radd SDL

$ pkg install sdl

Table 4.12: Installation of SDL and OpenGL on various platforms.

4.8 Example

In this section we illustrate the usage of rdyncall and dynport for scripting R applications by gluing

C library components. We present a ‘demo’ application written in R and available from the package.

We discuss its implementation and we focus on R programming techniques for exchanging data with

C APIs using the example of the R and the OpenGL API.

4.8.1 Simulation and Visualization of Random Fields using OpenGL

The study of interdependent data, such as time series, spatial field, spatio-temporal processes of

observations of even higher dimensions, is of importance in a number of branches of science and

technology. Of interest is the modelling and estimation of the dependency structure of the observations.

A popular way to assess the plausibility of the stochastic processes used to model such observations

is to generate realizations from the model and check whether these display the same features and

properties as the observed values.

The R package RandomFields (Schlather et al., 2013) provides a wide range of simulation methods for

generating random fields. The simulation task involves a large number of computational operations

depending on the dimension and size of the field and the number of point processes, etc.. Although

the package is mainly implemented in C, the simulation of random fields can be considered an off-line

process; it is not fast enough for real-time graphics visualization or simulation.

The field of computer graphics offers efficient real-time graphics methods for imitating the behaviour

of natural processes such as gases, cloud, fluids and natural materials. More recently, GPU hardware

is also being utilized in scientific applications such as high-performance simulation and visualization

122 CHAPTER 4. DYNAMIC FFI FOR R

in real-time. We give a simple example in which we use R and OpenGL via rdyncall for the com-

putation and display of Gaussian Markov random fields in high resolution (512x512); for each round

of simulation we simulate a large number of random point processes (5000) and we achieve a rate,

required for real-time graphics output and visualization, between 30-100 FPS (Frames Per Second).

The demonstration is available as a demo in rdyncall:

> library(rdyncall)

> demo(randomfield)

Note that the demo requires SDL and OpenGL shared libraries for execution (see Section 4.7.3 or open

the help file with ?’rdyncall-demos’ for installation details).

row

co
lu

m
n

100

200

300

400

500

100 200 300 400 500

8.0e+08

1.0e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2.0e+09

2.2e+09

Figure 4.10: Screenshot of real-time visualization (left) and plot (right) of demo(randomfield) .

The real-time visualization of the simulation is displayed in a separate output window , depicted in

the left-hand panel of Figure 4.10. The simulation runs at 55 FPS (indicated in the window’s title

bar); the output resembles quick motion of particles in a swirl. By pressing the left button on the

pointing device, the current frame is downloaded from the GPU to R as a matrix object and then

plotted in R (right-hand panel in Figure 4.10). Note that although the ‘simulation and visualization’

task generates approximately 55 matrices per second3 but it can take several seconds to download

data from graphics memory to R and to plot the matrix subsequently using R graphics.

4.8.1.1 Implementation

We now discuss the implementation of demo(randomfield) . It is written entirely in R and uses OpenGL

via dynport(GL) /rdyncall so that it runs across major R platforms. The ‘graphics hardware’ require-

3Platform: Mac OS X 10.6 MacBook Pro, 2.5 GHz using Nvidia 8600M GT.

4.8. EXAMPLE 123

initialize

SDL+GL

generate

2D kernel

texture

simulate

render

process

events
plot

button

clicked

exit

window close

otherwise

Figure 4.11: Control flow diagram of demo(randomfield) .

ments for running this demonstration are low as we use the OpenGL Version 1.1 API. In the following

discussion we focus on various OpenGL function calls with an emphasis on efficient data exchange

between R/rdyncall and C.

We generate a finite field of random values of size 512 × 512 elements. The values assigned to these

elements are generated in a number of steps. First 5000 points are sampled from a spatial point process

over the field. A 2D Gaussian kernel is placed over each point. Associated with each point is also a

randomly sampled radius attribute. The value of each element of the 512× 512 matrix is given by the

sum of the values of the generated kernels at the coordinates of the elements. The computation of the

final matrix is implemented by means of OpenGL via rendering squares (one for each point process)

using texture mapping of an image (the kernel) and blending (for summing up the kernel values).

Overview The control flow diagram in Figure 4.11 outlines the steps implemented by the software.

In a first stage, we initialize the application. Then we generate a 2D Gaussian kernel matrix by using

R functions; we upload the matrix to OpenGL as a texture image i.e. the kernel is transferred to fast

memory of the GPU. After that we run the ‘simulation and visualization’ main loop. In each round we

simulate 5000 point processes (including radii) using standard R functions. We then draw the points

as squares to produce the final image using OpenGL. Then the display is refreshed. As a last step of

124 CHAPTER 4. DYNAMIC FFI FOR R

the round, we process input events; if the window close button was pressed, we stop the main loop; if

the mouse button was pressed, we transfer data from OpenGL to R for plotting.

Main Function The application is written as a main function that calls sub-functions for particular

tasks. After initialization the main loop starts: 5000 observations are sampled using R, and then

drawed as squares via OpenGL. Finally input events are processed and the FPS counter is updated.

main <- function() {

init()

while(!quit) {

sim <- sim(5000)

render(sim)

pollEvents()

fps <- fpsUpdate(fps)

}

}

Initialization At first, we load DynPorts of SDL and OpenGL, and initialize the video sub-system.

We define the output matrix by opening a OpenGL video output surface with 512 × 512 pixels.

We initialize global parameters of the OpenGL graphics rendering pipeline: “clear color” is set to zero,

the blending operation is enabled and configured, and the parameters for data transfer are configured

for download of data from GPU memory to R. We then generate a kernel matrix that is uploaded

to OpenGL. As a final step we initialize a FPS counter object and initialize global variable quit to

FALSE (the invariant of the mainloop).

init <- function() {

-- Load Bindings

dynport(SDL)

dynport(GL)

-- Init OpenGL Output

stopifnot(!SDL_Init(SDL_INIT_VIDEO))

surface <<- SDL_SetVideoMode(512,512,32,SDL_OPENGL+SDL_DOUBLEBUF)

-- Set OpenGL Globals

glClearColor(0,0,0,0)

glColor3d(colorunit,colorunit,colorunit)

glBlendFunc(GL_SRC_ALPHA, GL_ONE)

glEnable(GL_BLEND)

glPixelStorei(GL_PACK_ALIGNMENT,1)

-- Compute kernel

img <- genTex.bnorm(512)

-- Prepare OpenGL Texture Unit

initTex()

loadTex(img)

-- Initialize globals (for main loop)

fps <<- fpsInit()

quit <<- FALSE

}

Generate Kernel Matrices We specify the kernel by computing a matrix of values. Later we

upload this matrix to the texture mapping unit of the GPU. We give two R functions and corresponding

R plots in Listing 16

4.8. EXAMPLE 125

genTex.circle <- function(n) {

m<-matrix(nr=n,nc=n);r<-n/2

for(i in 1:n) {

for(j in 1:n) {

m[[i,j]] <- ifelse(

(i-r)^2+(j-r)^2 > r^2,

0L,255L

) } }; return(m)

}

row

co
lu

m
n

100

200

300

400

500

100 200 300 400 500

0

50

100

150

200

250

genTex.bnorm <- function(n) {

x <- seq(-3,3,len=n)

d <- dnorm(x)

m <- outer(d,d)

return(m)

}

row

co
lu

m
n

100

200

300

400

500

100 200 300 400 500

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Listing 16: R: Texture generators for 2D Kernels: R function (left) and corresponding plots (right);

Kernels: Boolean circular (top) and Bivariate Gaussian (bottom).

Preparing the OpenGL Texture Unit During initialization, we also need to allocate an OpenGL

texture object resource and upload image data to the GPU from R. We discuss this task in more detail

now. The allocation function in C is given as follows:

void glGenTextures(GLsizei n, GLuint* textures);

As a result of this call, OpenGL assigns n distinct identifier numbers and outputs them in a user-

allocated array of C GLuint elements (GLuint is a type alias to unsigned int). Since the internal

format of an R integer vector is compatible with GLuint* , we can allocate an R object of length 1

and pass it as the second argument.

tex.ids <- integer(1)

glGenTextures(length(tex.ids),tex.ids)

We give now the C API function for uploading image data to OpenGL:

void glTexImage2D(GLenum texture, GLint level, GLint internalFormat,

GLsizei width, GLsizei height, GLint border, GLenum format,

GLenum type, const GLvoid* pixels);

We use this function in the R function initTex for uploading an R atomic numeric matrix as a texture

image to the texture object; in this example the texture object is specified by the global variable

126 CHAPTER 4. DYNAMIC FFI FOR R

tex.ids[[1]] . We convert the input matrix img to a raw vector. Note that we use a primitive format

for the texture image data type by using unsigned 8-bit integer values to provide for compatibility

with older graphics cards.

After we have bound the texture object to the texture 2D unit, we transfer image data to the texture

unit via glTexImage2D . The last two parameters of glTexImage2D specify the format and pointer; we

specify the internal format GL_UNSIGNED_BYTE and pass the raw vector as a pointer value. After the

function call, R data has been copied to GPU memory and it is associated with the texture object.

initTex <- function(img) {

m <- max(img)

texdata <- as.raw((img/m) * 255)

glBindTexture(GL_TEXTURE_2D, tex.ids[[1]])

glPixelStorei(GL_UNPACK_ALIGNMENT, 1)

glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, nrow(img), ncol(img), 0,

GL_ALPHA, GL_UNSIGNED_BYTE, texdata)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,GL_CLAMP_TO_BORDER)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,GL_CLAMP_TO_BORDER)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE)

}

Simulation We sample 2D coordinates (x and y) and a radius value for each mixture component.

sim <- function(N=5000) {

obj <- list(

x=runif(N, -1.1, 1.1),

y=runif(N, -1.1, 1.1),

r=runif(N, 0.1, 0.2)

)

return(obj)

}

Visualization Initially we clear the frame buffer to black color (by means of a matrix with all

elements set to zero) by OpenGL glClear(bufferFlags) . Then we call a function that renders squares,

specified by simulated data of x, y and radius vectors. Finally the graphics rendering output is

presented on the display via swapping front and back video buffers (as we initialized the video output

display using the SDL_DOUBLEBUF flag).

draw <- function(o) {

glClear(GL_COLOR_BUFFER_BIT)

drawSquareTexVertexArray(ox,oy,o$r)

glFinish()

SDL_GL_SwapBuffers()

}

Draw texture-mapped 2D squares At first we transform input data to vertex and texture coor-

dinates in order to pass data to OpenGL. Then we enable texture mapping and client states; the latter

is used for transfer of vertex information via pointers. We now pass R objects to OpenGL vertex and

4.8. EXAMPLE 127

texture coordinates via function calls to glVertexPointer and glTexCoordPointer . Then we draw all

square shapes via a single function call; OpenGL reads vertex information from R objects. Since we

are about to leave the function afterwards, we need to disable OpenGL pointer access to R object.

drawSquareTexVertexArray <- function(x,y,r) {

n <- max(length(x),length(y),length(r))

x1 <- x-r ; y1 <- y-r

x2 <- x+r ; y2 <- y+r

vertexArray <- as.vector(rbind(x1,y1,x2,y1,x2,y2,x1,y2))

texCoordArray <- rep(as.double(c(0,0,1,0,1,1,0,1)), n)

glEnable(GL_TEXTURE_2D)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_TEXTURE_COORD_ARRAY)

glVertexPointer(2,GL_DOUBLE,0,vertexArray)

glTexCoordPointer(2,GL_DOUBLE,0,texCoordArray)

glDrawArrays(GL_QUADS, 0, n*4)

glDisableClientState(GL_VERTEX_ARRAY)

glDisableClientState(GL_TEXTURE_COORD_ARRAY)

glDisable(GL_TEXTURE_2D)

}

Event Handling We process the input queue to determine when to stop the main loop. We also

check if the button pointer device was recently pressed to initiate transfer of data to R for plotting.

pollEvents <- function() {

doReadPixels <- FALSE

while(SDL_PollEvent(event) != 0) {

type <- event$type

if (type == SDL_MOUSEBUTTONDOWN) {

doReadPixels <- TRUE

} else if (type == SDL_QUIT) {

quit <<- TRUE

}

}

if (doReadPixels) {

pixels <<- readpixels()

image(pixels)

}

}

Download GPU data to R Data from the frame buffer are read via glReadPixels . We allocate

an R integer matrix in advance, which is passed as a pointer; OpenGL writes data into that object.

readpixels <- function()

{

array <- matrix(NA_integer_,512,512)

glReadPixels(0,0,fb.size,fb.size, GL_LUMINANCE, GL_INT, array)

return(array)

}

Frames Per Second Counter We define functions for the initialization and update of an FPS

counter represented as an R list object. For the implementation we make use of C functions of SDL,

such as SDL_GetTicks to query time, and SDL_WM_SetWindowCaption to update the window title bar.

128 CHAPTER 4. DYNAMIC FFI FOR R

fpsInit <- function() {

list(

tbase = SDL_GetTicks(),

frames = 0

)

}

fpsUpdate <- function(fps) {

tnow <- SDL_GetTicks()

if ((tnow - fps$tbase) > 1000) {

fps$tbase <- tnow

SDL_WM_SetCaption(paste("FPS:", fps$frames),NULL)

fps$frames <- 0

} else {

fps$frames <- fps$frames + 1

}

return(fps)

}

4.9 Summary

This chapter covers a middleware package for R that offers scripting access to C API components.

The package contributes a dynamic FFI for code- and data-level interoperability between R and C.

Based on this foundation it also offers a simple cross-platform interface for dynamic loading of R

bindings of C APIs. This concept provides a model for rapid application development. We motivated

the approach by comparing the merits of developing interactive 3D real-time graphics applications,

based on OpenGL and SDL, in R/rdyncall instead of C.

We illustrated the inconvenience of compiling and linking user code with libraries in C. In contrast to

this, we emphasized the potential for scripting ambitious applications, based on portable C libraries,

in a dynamic language by using dynamic bindings to C APIs. Since the core application code is

interpreted it can be executed immediately across a range of platforms even though it uses low-level

components such as OpenGL and SDL.

As an example of this package we discussed an implementation of the Dynamic Bindings Model based

on core services of a dynamic FFI. We first discussed the components of this foundation layer compris-

ing facilities for loading external C libraries, resolving functions, making calls, handling C run-time

data objects and wrapping R functions as C callback functions.

As a prequisite for cross-platform scripting of shared library C components we considered the general

problem of loading code. While a large number of valuable C libraries exist as portable components

with a stable C API across platforms, providing a common interface for requesting access is challenging

due to the platform-specific details for naming and loading a C library. We illustrated the diversity

of naming schemes by comparing the file paths of four C libraries across ten operating systems. We

discussed the details of dynamic linkers and presented a method for loading libraries across platforms

with a simple interface.

A common text-based interface was used across core components based on the DynPort type signature

4.9. SUMMARY 129

encoding format; we showed several advantages of this design choice. Firstly, the compact and intuitive

encoding scheme enables users to experiment with foreign C components in interactive development

sessions. Secondly, type signatures are used for driving function calls but also as input parameters

for type checking and value conversion so that type-safe and convenient interfaces to C APIs can be

created by wrapping FFI call objects. Thirdly, components for code- and data-level interoperability

can be combined via type signatures.

We showed the advantage of character strings for encoding and passing type information across dif-

ferent language contexts. Scripting languages, such as R, offer efficient text processing tools to split

the text chunk of C API specifications into components for type information. The latter is put into

R wrappers as character objects and then, at call-time, is processed by the workhorse of the FFI in C

for driving foreign function calls, type checking and value conversion.

The discussion was illustrated by several examples that emphasized the syntactic similarity of R to

C user code. We closed this chapter with a comprehensive example of a visualization and simulation

software written in portable R code using SDL and OpenGL, where advanced techniques for data transfer

between R and C APIs were addressed. Included here was uploading of R vector data for texture

mapping and processing of vertex information.

The package was implemented in R and C as a portable middleware solution by using a Generic

Dynamic FFI library which provides an abstraction layer to ABI details of the calling sequence for

code-level interoperability; a portable C interface encapsulated non-portable code in assembly language

implemented for a range of ABI platforms. The design of the Generic Dynamic FFI library dyncall

and details of data- and code-level interoperability at ABI level across five processor architecture

families is covered in Chapter 5.

130 CHAPTER 4. DYNAMIC FFI FOR R

Chapter 5

Dynamic Interfaces to Compiled Code

This chapter covers a software abstraction layer with a portable and dynamic C interface for making

function calls, handling of callbacks and loading code. This layer represents a fundamental building

block for the implementation of portable Dynamic FFIs, such as rdyncall for R presented in Chapter

4.

As an introduction to the topic we consider the anatomy of function calls at machine level. Subse-

quently we give a survey of binary interfaces, including calling conventions and data type mapping

schemes, on five current processor architecture families and common operating systems.

Finally we discuss the open-source Generic Dynamic FFI software package DynCall comprising three

small C libraries. dyncall provides a portable interface for making dynamic function calls with

support for arbitrary function types including support for several calling conventions. dyncallback

offers an implementation framework for dynamic handling of C callbacks. Lastly, dynload offers a

portable C API to dynamic linkers of various operating systems. We discuss the design of the C APIs

and the implementation in C and partly in assembly language for a range of processor architectures

and operating systems. The chapter closes with a discussion on development issues including portable

build systems and software testing suites of the package.

5.1 Anatomy of Function Calls

At first we consider the basic execution environment of machine-level function calls, i.e. the core

components of computer platforms and the run-time organization of processes and threads within an

operating system. We then give a brief overview of some characteristics of calling conventions and

discuss general steps of the machine for making a function call.

131

132 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

5.1.1 Execution Environment

The CPU (Central Processing Unit) of a processor is the heart of a computer system. It executes the

operating-system kernel and user programs by processing primitive instructions encoded in machine

code which are read from the main memory via an address bus. CPUs contain a small number of

general-purpose registers to store fixed length bit sequences that are interpreted by instructions as

operand values for bit/integer arithmetic or as memory addresses for load/store memory operations.

In addition a set of registers for special purposes and hardwired tasks is built-in, for example, to control

the execution of programs. The PC (Program Counter) references the next instruction of execution.

The CPU fetches a word of machine code and decodes the instruction which is then executed and the

pc is advanced to the address of the next machine instruction.

For the implementation of control flow, such as goto jumps and for/while loops in high-level languages,

branch or jump instructions (explicitly or conditionally) load the pc. Furthermore, machines offer a call

instruction (or semantics) with which sub-routine procedure and function calls can be executed, which

we discuss in more detail in the next section.

The machine-code encoding defines the mapping between binary codes and corresponding instructions

and operands specified in the ISA (Instruction Set Architecture). “One of the important abstractions

that a programmer uses is the instruction set architecture (ISA). The ISA defines the personality of a

processor and specifies how a processor functions: what instructions it executes, what interpretation

is given to these instructions, and so on. The ISA, in a sense, defines a logical processor. If these

specifications are precise, it gives freedom to various chip manufacturers to implement physical designs

that look functionally the same at the ISA level. Thus, if we run the same program on these imple-

mentations, we get the same results. Different implementations, however, may differ in performance

and price.”(Dandamudi, 2005b, p.347) Instructions are encoded by an operation code, followed by

operand identifiers (usually two or three). As operand the programmer can choose between a register,

integer constants, absolute memory reference and also relative memory addresses. The latter is given

by a base register and an offset specified by a register or constant value. However, the permitted

number and kinds of operands per instruction can be more or less restrictive, depending on the ISA.

The CPU interprets data in a register and memory as a signed/unsigned integer or bit field data

type and different fixed size sub-types are supported (usually 8, 16, 32 up to 64 bit). Floating-point

data types and arithmetic are supported by means of software implementation but with low perfor-

mance. However, an FPU (Floating-point unit) contributes hardware-based floating-point support via

hardwired instructions that process floating-point data in a separate register file. Modern CPUs also

offer a SIMD (Single Instruction Multiple Data) extension for vector-based operations on packed data

types; typically 2, 4, 8 or 16 component vectors of integer and/or floating-point data types are packed

in a single (64, 128, 256 up to 512 bit) register on a separate register file. Other implementations

of this extension use “register pairing” of existing register files such as SIMD extensions of SPARC

and MIPS processor architectures. Instructions of the core and its extensions are combined in a single

5.1. ANATOMY OF FUNCTION CALLS 133

ISA, as depicted in Figure 5.1, so that a stream of machine code comprises the sequential execution

of CPU, FPU and SIMD instructions (although they might be executed asynchronously internally).

Furthermore, instructions exist for data exchange between the different register files.

Instruction Set Architecture

...

Integer Registers

CPU

...

Floating-point Registers

FPU

...

Vector Registers

SIMD

Processor Architecture + Extensions

Figure 5.1: Overview of the Instruction Set Architecture.

Modern operating systems virtualize computing resources. The physical memory is shared among

multiple applications and the operating system via an MMU (Memory Management Unit) hardware

extension. Each process is given a private address space. This allows one to run multiple processes

isolated from the operating-system kernel and other processes.

User-space programs are started in a process environment with a main thread of execution that runs

the main function of the program. A thread is a virtualization of the core resources of an ISA for

executing user-space program code. Thus it has a private copy of CPU, FPU and SIMD user registers,

including the pc which gives the current location of code that is being executed. A user-space thread

runs for a small amount of time and is interrupted by the kernel for a context switch. The kernel

suspends the thread by saving the register content as part of the thread state and exchanges their

content with the saved state of another thread that is up next for running a number of CPU cycles.

Several threads can be spawned in a single process and each one has a private view on the processor

and also a private region of memory named the Stack.

5.1.2 Call Stack

In general, programs are not encoded as a single linear block of code that runs sequentially from start

to finish. Rather, programs are written as functions and sub-routines that get called. A program has

a main entry point function, executed at the start of the process that calls sub-routines and functions,

which may call other functions.

Repetitive computations and algorithms are typically encapsulated as functions. The compiler trans-

lates a C function, whose activation can occur multiple times, as a block of machine code only once.

Its activation can occur multiple times. Function calls are often nested, for example in recursive com-

putations. For the duration of a function call a data record is allocated to provide temporary storage

for local variables, arguments and results. Over the course of a program run the required amount of

memory grows and shrinks according to the pattern of nested function calls/returns in last in, first

134 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

out (LIFO) order. A corresponding memory reservation system can be implemented using the stack

abstract data type. Memory for arguments/results and local variables can be placed as interleaved

memory chunks on a linear vector of memory as depicted in Figure 5.1.

Bottom → Highest Address

↓ stack grows down ↓
...

local storage
 Activation Record (Caller)...

arguments
 Call frame...

local storage
 Activation Record (Callee)...

Top →

Table 5.1: Illustration of a call stack.

Stacks are elementary structures, simple to implement in machine code by reserving one hardware

register as the stack pointer (sp) for the top of the stack and by applying read/write and arithmetic

instructions for the implementation of push and pop operations. For each newly created thread of

execution a fixed size linear region of stack memory is allocated that is large enough for deeply nested

function calls. The bottom of stack is at a fixed address while the top of stack grows and shrinks.

Although scalar values can be pushed and popped on stacks, call stacks are often organized in stack

frame structures that are placed or removed as a whole; this can also be implemented by a single

addition and subtraction instruction to the sp. The size of each frame is variable depending on the

number of arguments (for a caller frame) and local variables (for a callee frame). As an important

side effect the stack memory remains defragmented throughout the life-cycle of a program.

Compilers of high-level languages (e.g. C and Pascal) translate functions by using this run-time data

model; the generated code for accessing local variables, arguments and results uses relative addressing

to the sp register so that caller and callee code can be executed dynamically at arbitrary and multiple

times. Effectively the call stack works as a generic interface for calling public compiled functions.

Given that the order of arguments is known compiled functions can also be called from low-level

assembly routines, for example the start-up code for user-space processes, or the caller code of a

dynamic generic FFI library.

In general the stack shares the main memory with the Heap - a pool of memory for dynamic allocation

of memory objects per run-time process. Since applications may have different needs and character-

istics regarding dynamic memory and nesting of function calls, operating systems, utilize a memory

organization where the heap grows from low to high addresses and the stack grows from high to low

5.1. ANATOMY OF FUNCTION CALLS 135

addresses. This scheme originates historically from single-threaded systems with a small (virtual)

address space. Current multi-threaded 32- and 64-bit operating systems manage multiple threads of

execution, each one with its own stack but shared with all other threads in one virtual address space

per process. However, the direction of call stacks has still remained on current platforms; they start

at the highest address of their memory region and grow to lower addresses.

5.1.3 Calling Sequence

Function calls can be divided in a caller and callee side. Both parts are distinct blocks of machine-code

instruction, possibly compiled in separate compilation runs in distinct units and linked to different

files (e.g. executable file and dynamically linked shared library).

At the border between caller and callee, a standard compiler generates code that conforms with

the language- and platform-specific calling conventions. The latter give exact specifications for the

calling sequence i.e. how parameters and return values are passed, and control flow is transferred

between caller and callee. “The general architecture dictates how parameters are passed on to the

procedures. There are two basic techniques: register-based or stack-based. In the first method,

parameters are placed in processor registers and the called procedure reads the parameter values from

these registers. In the stack-based method, parameters are pushed onto the stack and the called

procedure would have to read them off the stack. The advantage of the register method is that it is

faster than the stack method. However, because of the limited number of registers, it imposes a limit

on the number of parameters. Furthermore, recursive procedures cannot use the simple register-based

mechanism. Because RISC processors tend to have more registers, register-based parameter passing

is used in RISC processors. The IA-32 tends to use the stack for parameter passing due to the limited

number of processor registers. Some architectures use a register window mechanism that allows a

more flexible parameter passing. The SPARC and Intel Itanium processors use this parameter passing

mechanism.”(Dandamudi, 2005a, p.28) On architectures with a large number of registers a subset is

used as carrier for parameters. Whether registers of hardware extensions, such FPU and SIMD, are

incorporated in a calling convention depends on requirements for binary compatibility; designers of

calling conventions often make a compromise here between available hardware features and backward

compatibility with legacy hardware.

Registers take on one of three possible roles for the entire period of the program run, which is defined

by the calling conventions that serve for the register selection of the compiler:

• Volatile registers can be used for local variables until a function is called. This includes registers

for passing of parameters and return values.

• Preserved registers keep their value throughout a function call. If they are used by a function as

local storage, their content needs to be saved in advance and restored before returning control

flow.

136 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

• System-reserved registers can not be used by user code and are exclusively used by the operating

system for management tasks.

In addition, architectures define a number of registers with special roles:

• The Program Counter (PC) points to the current instruction in machine code.

• The Link Register (LR) is loaded with the return address during a call instruction.

• The Stack Pointer (SP) points to the current top of stack that contains the latest frame.

• The Frame Pointer (FP) is a second pointer on the stack that points to the local stack frame.

The stack is organized in cells of same size, similar to the bit size property of the processor architecture.

Smaller values (in bits) still occupy a full register and/or stack cell. Placement of values and the layout

of data structures is constrained by alignment restrictions of the platform; these are either hardware

constrains or result from performance considerations (unaligned memory can decrease performance of

the memory bus and cache logic).

A general outline of the calling sequence is given below:

1. A function call is prepared at the caller side by loading parameter arguments to registers and

on the stack.

(a) The first arguments are loaded in volatile registers that are reserved for parameter trans-

fer. Which register class is selected (i.e. general-purpose, FPU or SIMD) depends on the

parameter type.

(b) Remaining arguments are passed on the stack. In general for C, the push order is right-to-

left. However, historically Pascal uses the opposite order.

2. The function call is executed by loading the pc with the target address of callee function.

In addition, the return address is also transferred via a register or on the stack: On CISC

architectures the call instruction pushes the return address on the stack. On RISC architectures

the bl (branch and link) instruction loads the lr with the return address.

3. Functions consist of prolog and epilog code blocks that are executed on entry and exit, respec-

tively. The prolog section of the callee initializes a new activation record for local storage on

the stack (by decrementing the sp). Preserved registers that are used by the callee’s function

block are saved in the activation record. On RISC architectures the content of lr is also saved

on the stack; as an optimization, leaf functions (functions that do not call other functions) can

omit this step.

4. The main code of the function is executed.

5.1. ANATOMY OF FUNCTION CALLS 137

5. The function’s return value is passed via volatile registers that are reserved for this purpose. In

accordance with parameter transfer, the return value type decides which register class is used.

Typically C function return values do fit in one or two registers and are thus passed via registers.

However, large objects that do not fit into registers are passed via memory. In that case the

caller would allocate the memory storage in advance and the calling sequence would include a

hidden first argument for the memory address (in Step 1) in which the callee would write the

return value.

6. The function returns by executing the epilog code section:

(a) Preserved registers are restored.

(b) The activation record is removed from the stack (via incrementation of the sp).

(c) The return address is assigned to the pc. RISC architectures move the contents of the lr

to the pc; CISC architectures use a ret instruction that pops the return address from the

stack and loads the pc in one step.

Furthermore, the call’s stack frame (containing arguments on the stack) need to be removed.

Whether the caller or the callee is responsible for this task depends on the calling convention.

5.1.4 Diversity of Calling Sequences

Details of the calling sequence depend foremost on the processor architecture. However, calling con-

ventions can further vary depending on the operating system as the following example illustrates.

Example We compare the gcc compiler’s assembly output of a C function call for two different

operating systems running on the x86-64 processor architecture. We consider a function call with a

long sequence of heterogeneous types1:

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit, int tmax, double temp, int trace, void *ex);

The calling sequences is visualized in the assembly output by tagging each parameter using an ordered

sequence of ascending numerical constants:

#include "R_ext/Applic.h"

void call_samin() { samin(1, (double*) 2, (double*) 3, (optimfn*) 4, 5, 6, 7.0, 8, (void*) 9); }

Listing 17 gives the assembly output generated by the GCC compiler for two major binary platforms

of the x86-64 processor architecture, namely the Unix-based System V standard (sysv) for Linux,

Mac OS X, BSDs and Solaris (left panel), and the Microsoft Windows (x64) platform (right panel).

Based on that output we can analyse the storage class and location for each positional argument i.e.

whether data is passed in a register or on stack and which register type and number or stack memory

offset was chosen by the code generator of the compiler.

1 samin is an optimizing function (simulated annealing) available in the shared C library of R.

138 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

_call_samin:

movq %rsp, %rbp

subq $16, %rsp

movq $9, 8(%rsp)

movl $8, (%rsp)

movl $1, %edi

movl $2, %esi

movl $3, %edx

movl $4, %ecx

movl $5, %r8d

movl $6, %r9d

movsd LCPI1_0(%rip), %xmm0

callq _samin

addq $16, %rsp

popq %rbp

ret

call_samin:

subq $88, %rsp

movabsq $4619567317775286272, %rax # bits := 7.0

movl $4, %r9d

movl $3, %r8d

movl $2, %edx

movl $1, %ecx

movq $9, 64(%rsp)

movl $8, 56(%rsp)

movq %rax, 48(%rsp)

movl $6, 40(%rsp)

movl $5, 32(%rsp)

call samin

addq $88, %rsp

ret

Listing 17: Comparison of assembly: C caller code to samin on the x86-64 processor architecture for

the sysv (left side) and x64 (right side) ABI platform.

The sequence of assembly language instructions is different in each case. Notice the order of instruc-

tions for loading arguments on stack and in registers is not strict and can even change depending on

compilation flags. Rather, as illustrated in Figure 5.2, it is the contents of the register files and the

call stack right before the call instruction that is of interest for a comparison of calling sequences.

r9 6

r8 5

rcx 4

rdx 3

rsi 2

rdi 1

Register Value

General-purpose

xmm7 -

xmm6 -

xmm5 -

xmm4 -

xmm3 -

xmm2 -

xmm1 -

xmm0 7.0

Register Value

SIMD

8 9

0 8

Offset Value

Stack

Linux, Mac OS X, BSD derivates, Solaris

r9 4

r8 3

rdx 2

rcx 1

Register Value

General-purpose

xmm3 (skip)

xmm2 (skip)

xmm1 (skip)

xmm0 (skip)

Register Value

SIMD Regs

80 -

72 -

64 9

58 8

48 7.0

40 6

32 5

24 (home)

16 (home)

8 (home)

0 (home)

Offset Value

Stack

Microsoft Windows 64-bit

Figure 5.2: Comparison of general-purpose and SIMD register files and call stack during a C func-

tion call to samin between sysv (left side) and x64 (right side) platforms on the x86-64 processor

architecture.

On both platforms a set of general-purpose and SIMD registers are used for the first arguments; further

arguments are passed via the stack. However, the sysv platform reserves six general-purpose registers

and eight SIMD registers for passing arguments while the Microsoft x64 platform reserves only four

registers of both register files. Furthermore there exists an interdependency between general-purpose

and SIMD registers on the x64 ABI; when an argument value is assigned to a general-purpose register

a corresponding SIMD register is marked as occupied (labeled “skip”). The x64 ABI also reserves

a fixed size area on the stack, named the homing area that has the capacity to save the first four

arguments in general-purpose or SIMD registers. In summary, the number of registers for passing

5.2. APPLICATION BINARY INTERFACE 139

arguments can differ significantly across software platforms. Details, such as the homing area and

the interdependency effects between register files, need to be taken into account in order to address a

generic call facility that works across processor architectures and operating systems.

5.2 Application Binary Interface

Function calls between applications and linked libraries cross compilation units where data need to

be transferred in a consistent manner. Whether a simple number is passed or a pointer to complex

data records, whose fields need to be precisely read and written by both sides, the underlying C code,

separately compiled, needs to be generated in a consistent manner to ensure stable transfer of control-

and data-flow i.e. code- and data-level interoperability. The so-called ABI provides the foundation for

this consistency. It specifies the rules for a seamless functioning of all components on a given binary

software platform, like the gears in an engine block.

“An Application Binary Interface (ABI) includes a set of conventions that allows a linker to combine

separately compiled and assembled elements of a program so that they can be treated as a unit.

The ABI defines the binary interfaces between compiled units and the overall layout of application

components comprising a single task within an operating system. Therefore, most compilers target

an ABI. The requirements and constraints of the ABI relevant to the compiler extend only to the

interfaces between shared system elements. For those interfaces totally under the control of the

compiler, the compiler writer is free to choose any convention desired, and the proper choice can

significantly improve performance.”(Hoxe et al., 1996, p.157)

In general ABI specifications include recommendations for the implementation-defined parts of the C

standard, including details for the implementation of standard conforming C functions and function

calls at machine level, and the data representation of C data objects in memory.

5.2.1 Overview

The interplay between hardware and software, regulated by the ABI, is illustrated in Figure 5.3. A “C

Compiler” is responsible for building the system, including the“OS Kernel”, the “Binary Executables”

and “Libraries”, from “C sources”. Their run-time object representation is depicted as blue boxes;

arrows show run-time interactions such as function calls, callbacks and system calls. Since the code

generator of the compiler “implements” the ABI specifications, depicted as the big yellow box, the

generated data and code is suitable for code- and data-level interoperability among all components of

the system. The rules of the ABI can be roughly divided into four categories:

• “Program Initialization” specifies the required steps for an operating system to create a run-

time process from a “Binary Executable” file stored on persistent “Storage”. The file format is

specified by an “Image Format” specification and includes the binary layout of “Shared Library”

140 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Application Binary Interface

• Program Initialization & Image Format

Executable

• Calling Convention

Shared Library

• System Call Interface

OS Kernel

• Data Representation (C Types → Machine Types)

struct {

char f1;

short f2;

double f3;

int f4;

};

char short

double

int

system call

call callback

C Compiler

C Sources implements

Storage

Figure 5.3: Anatomy of the Application Binary Interface.

5.2. APPLICATION BINARY INTERFACE 141

object files and the “OS kernel” image file.

• “Calling Conventions” give details on the calling sequence for code-level interoperability be-

tween code modules that make calls to public functions depicted as arrows between “Binary

Executable” and “Library”.

• The “System Call” interface is used for calling “OS Kernel” functions from a user-space envi-

ronment. Typically this interface is used by a “Shared Library” that provides a standard C API

such as the I/O functions of the standard C library to call functions of the operating-system

kernel for its implementation. Since there is a strict separation between user and kernel space,

the mechanism to call system functions is quite different from user-space function calls i.e. typ-

ically user-space code has to request an interrupt and passes a service number and parameters

via registers. Thus, system calls are usually implemented in assembly language.

• “Data Representation” gives details on the mapping between scalar C data types to machine

data types in registers and memory. This includes size and alignment properties. This also

influences the “Calling Convention” since arguments may be passed via the call stack and thus

need to be aligned properly.

Designers of native software platforms can freely define an ABI and typically include calling con-

ventions and data type mappings for C. ABIs are specified by standard consortiums (e.g. System

V), or designers of processor architectures (e.g. ARM and SPARC Consortium), operating systems

(e.g. Apple and Microsoft) or compilers (e.g. fastcall calling convention of Watcom, Borland and

Microsoft).

The System V Unix standard is often used as the base for a large number of Unix-related operating

systems. The standard document is divided in two parts:

• The generic ABI specification “gABI” (AT&T, 1990) defines the binary standard that is common

across all processor hardware platforms. This includes the ELF image and object file format for

code and data on persistent storage for executable files and shared object libraries.

• The processor-specific supplement part “psABI” specifies the details related to a particular pro-

cessor architecture hardware and gives details for the implementation of C function calls and

mapping of C data types to machine types. System V processor supplements exist for a large

number of architectures including i386, AMD64, SPARC, MIPS, PowerPC, Motorola 88000 and

Itanium.

Operating systems, such as Linux, Solaris, BSD derivates and Haiku, usually base their ABI on

System V. However, Mac OS X followed System V only recently: “The heart of Mac OS X is the

XNU kernel. XNU is basically composed of a Mach core [..] with supplementary features provided

by Berkeley Software Distribution (BSD).”(Miller and Zovi, 2009, p.4) “Mach, developed at Carnegie

142 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Mellon University by Rick Rashid and Avie Tevanian, originated as a UNIX-compatible operating

system back in 1984.”(Miller and Zovi, 2009, p.4) Mac OS X uses the Mach-O file format instead of

ELF (as discussed in Section 4.2.3). At first, Mac OS X ran on PowerPC processor architectures using

an Apple-specific ABI (Apple Inc., 2010b) which is different to the System V ABI for PowerPC. As

the porting process to the x86 processor architecture family Mac OS X adopted the System V ABI

processor supplement for x86 processor architectures, including the 32-bit and 64-bit sub-systems.

However, for the 32-bit variant small refinements are included, specified in Apple Inc. (2010b, p.43):“

• Different rules for returning structures.

• The stack is 16-byte aligned at the point of function calls.

• Large data types (larger than 4 bytes) are kept at their natural alignment.

• Most floating-point operations are carried out using the SSE unit instead of the x87 FPU, expect

when operating on long double values.”

Although Microsoft Windows on x86 32-bit platforms is also very similar to the System V calling

conventions, a different image format is used due to the fundamental differences between Windows

and Unix. On 64-bit platforms even the calling convention completely differs to all the other Unix-

related systems.

While ABIs are designed for longevity, refinements need to be made for optimization purposes to

support an extension of a processor architecture such as an FPU with the consequence of breaking

backward compatibility, such as in the Mac OS X ABI for PowerPC 32-bit: “In Mac OS X v10.4 and

later and GCC 4.0 and later, the size of long double extended precision data types is 16 bytes (it’s

made up of two 8-byte doubles). In earlier versions of Mac OS X and GCC, long double is equivalent

to double. You should not use the long double type when you use GCC 4.0 or later to develop or or

in programs targeted at Mac OS X versions earlier than 10.4.”(Apple Inc., 2010b, p.10)

5.3 Processor Architecture Families

The development of an abstraction interface to function calls and its implementation on a target

platform requires a deeper study of the different machine interfaces (i.e. the ISA) and the functioning

of their call mechanisms (i.e. the ABI and calling conventions). As a preparation for a discusson on

the implementation of dyncall and dyncallback, we briefly introduce the following five processor

architecture families.

• X86 architecture family (x86).

• ARM architecture family (arm).

5.3. PROCESSOR ARCHITECTURE FAMILIES 143

• PowerPC architecture family (ppc).

• MIPS architecture family (mips).

• SPARC architecture family (sparc).

We use a common abbreviation and naming scheme for refering to a particular processor architecture

family as given in parenthesis the above. For a particular architecture the bit size (32 or 64) is

appended. Specific to the x86, a dash (‘-’) separates the family name and bit number. Furthermore,

when we refer to a specific ABI, such as System V abbreviated sysv, it is appended separated by a

dash i.e. x86-32-sysv refers to the System V ABI on the x86 32-bit platform. Table 5.2 gives an

overview of the five architecture familes and available bit sizes, their class of architecture and the

number of available general-purpose registers (GPRs) and floating-point registers (FPRs).

Family Architecture Number of Registers

Category Bits GPRs FPRs Floating-point formats

x86 CISC
16/32 8 8 80-bit extended precision (x87)

64 16 16 32/64-bit single/double precision (SSE)

arm

RISC

32/64 16 32 32-bit single precision or 16 × 64-bit double precision (overlapped) (VFP)

ppc 32/64 32 32 64-bit double precision

mips 32/64 32 32 32/64-bit single/double precision or 128-bit quad precision (overlapped)

sparc 32/64 32 32 32/64-bit single/double precision or 128-bit quad precision (overlapped)

Table 5.2: Overview of Processor Architecture Families, bit architectures, number of general-purpose

registers (GPRs) and floating-point registers (FPRs) and supported floating-point formats.

An overview of processor architectures and ABIs to be discussed in the following sections is given in

Table 5.3.

5.3.1 From CISC to RISC

In the early years of computing the design of a processor chip was mainly characterized by the com-

plexity of the instruction set. “Popular processor designs can be broadly divided into two categories:

Complex Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC). The

dominant processor in the PC market, Pentium, belongs to the CISC category. However, the recent

trend is to use the RISC designs. Even Intel has moved from CISC to RISC design for their 64-bit

processor.”(Dandamudi, 2005a, p.vii)

“In the 1970s and early 1980s, processors predominantly followed the CISC designs. [..] Several factors

contributed to the popularity of CISC in the 1970s. In those days, memory was very expensive and

small in capacity.”(Dandamudi, 2005a, p.5) “The motivation for designing such complex instruction

sets is to provide an instruction set that closely supports the operations and data structures used by

Higher-Level Languages (HLLs). [..] The evolution of CISC designs can be attributed to the desire

of early designers to efficiently use two of the most expensive resources, memory and processor, in a

144 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Family Bits ABI Variants Notes (Languages, OSs and Compilers)

x86
32

cdecl Standard C calling convention (compatible with System V, GNU, Microsoft)

stdcall Standard call for System DLLs on Microsoft Windows

fastcall
ms Fastcall Microsoft compiler specific

gnu Fastcall GNU compiler specific

thiscall
ms C++ member function calls using Microsoft compiler

gnu C++ member function calls using GNU compiler

plan9 Plan9 calling convention on i386

syscall
linux System call on Linux (and dos)

bsd System call on BSDs

64
sysv System V ABI

x64 Microsoft Windows 64-bit calling convention

ppc 32
sysv System V ABI

osx Mac OS X Calling Convention

arm 32 aapcs

oabi Old Linux ABI (hybrid FPU utilization / very slow)

eabi Standard ABI (soft-float i.e. no FP registers)

armhf Standard ABI (hard-float)

mips

32
o32 System V ABI for 32-bit (Old ABI)

eabi Embedded ABI for Playstation Portable (Homebrew)

64
n64 System V ABI for 64-bit (New ABI)

n32 32-bit mode on 64-bit (New ABI)

sparc
32 v7 System V ABI

64 v9 System V ABI

Table 5.3: Families, Architectures, ABIs and Calling Conventions.

computer system. In the early days of computing, memory was very expensive and small in capacity.

This forced the designers to devise high-density code: that is, each instruction should do more work

so that the total program size could be reduced. Because instructions are implemented in hardware,

this goal could not be achieved until the late 1950s due to implementation complexity.”(Dandamudi,

2005a, p.39-40)

“The decision of CISC designers to provide a variety of addressing modes leads to variable- length

instructions. For example, instruction length increases if an operand is in memory as opposed to in

a register. For these and other reasons, in the early 1980s, designers started looking at simple ISAs.

Since these ISAs tend to produce instruction sets with far fewer instructions, they coined the term

Reduced Instruction Set Computers (RISC). Even though the main goal was not to reduce the number

of instructions, but rather the complexity, the term has stuck. SPARC, PowerPC, MIPS, and Itanium

are all examples of RISC designs.”(Dandamudi, 2005b, p.348)

“The design of Reduced Instruction Set Processors (RISC) began in earnest in the early 1980s. Early

RISC processors typically were characterized by a load-store architecture, single instruction-per-cycle

execution, and 32-bit addressing. The instruction set architecture of these early RISC chips was well

matched to the level of computer optimization available in the early 1980s, and provided a minimal

5.3. PROCESSOR ARCHITECTURE FAMILIES 145

interface for the UNIX(TM) operating system.”(Weaver and Germond, 1994, xiii)

5.3.2 X86 Processor Architecture Family

x86 is one of the oldest processor architecture families that is still widely use in current notebook,

desktop and server systems. In the late-1970s Intel released the 16-bit 8086 /8088 processors. The

ISA was extended to 32-bit with Intel’s 80386 CPU core in 1985. Other companies, such as AMD,

VIA, IBM, Texas Instruments, Cyrix and National Semiconductor, manufactured processor chips that

were binary compatibility with the x86-16/x86-32 ABI of Intel’s 80386. Due to its CISC design, the

ISA comprises a large number of instructions. However, only eight registers are available for general-

purpose, and of those, some were hardwired for special purposes such as the stack pointer register esp

and corresponding stack manipulation instructions: push and pop.

Hardware-based floating-point support was introduced with the x87 FPU co-processor, which uses

a register file of eight registers of 80-bit precision. Later, the co-processor was integrated as part

of the 80486 CPU core. With the era of graphics multimedia and video games on standard PC

hardware in the 1990s, Intel designed a SIMD extension which introduced native vector-based data

types and operations. At first the ISA was extended by integer-only vector operations and eight 64-bit

registers, primary designed for graphics pixel processing effects with support for 8×8-bit, 4×16-bit or

2× 32-bit packed (unsigned) integer data types. The extension was branded as MMX. Soon afterwards

AMD released a similar extension named ‘3Dnow!’. Effectively MMX registers are shared with those

of the x87 FPU so that x87 and MMX operations need to be synchronized for mode switching. Later

a modern SIMD extension, named SSE (SIMD Streaming Extension),was introduced that supports

floating-point vector operations on a separate set of eight 128-bit vector registers (which is not shared

with registers of the x87 FPU). Several revisions followed, such as SSE2, SSE3, SSE4 and so on. AMD’s

implementation of SSE2 doubled the number of the SSE registers to sixteen (xmm0-15).

With the specification of a 64-bit ISA extension for x86, published by AMD in 2000, the number

of general-purpose registers was doubled to sixteen registers and the SSE2 extension was integrated.

Major vendors, such as VIA and Intel, adopted the 64-bit ISA standard; the extension became known

as x86-64 and other acronyms such as amd64, x86 64, IA-32e, Intel64 and x64. Ever since, backward

compatibility has remained one of the major features of the x86 ISA; even modern 64-bit x86-64 CPU

cores are still capable of executing legacy 16-bit and 32-bit code.

5.3.2.1 ABIs and Calling Conventions of x86

The list of binary interfaces available for x86-16 and x86-32 gives a prime example of the diversity

of binary software standards for a single processor architecture; diversity decreased with the x86-64

architecture as depicted in Table 5.4.

Presumably the limited number of registers and the lower clock-speed of x86 cores available between

146 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Stack

Architecture Calling Convention Argument Registers Push order Cleanup

16

cdecl - rtl caller

pascal - ltr callee

fastcall-ms ax,dx,bx ltr callee

fastcall-borland ax,dx,bx ltr callee

fastcall-watcom ax,dx,bx,cx rtl callee

32

cdecl - rtl caller

stdcall - rtl callee

fastcall-ms ecx,edx rtl callee

fastcall-gnu ecx,edx rtl callee

fastcall-borland eax,edx,ecx ltr callee

fastcall-watcom eax,edx,ebx,ecx ltr callee

thiscall-gcc - rtl caller

thiscall-ms ecx rtl callee

plan9 - rtl caller

syscall-dos/linux eax,ebx,ecx,edx,esi,edi - -

syscall-bsd eax rtl caller

64
sysv rdi,rsi,rdx,rcx,r8-9,xmm0-7 rtl caller

x64 rcx,rdx,r8-9, xmm0-3 rtl caller

Table 5.4: Some calling Conventions of the x86 architecture. ‘rtl’ and ‘ltr’ refers to the stack push

order of arguments from ‘right-to-left’ or ‘left-to-right’, respectively.

1980s and 90s encouraged compiler and platform vendors to develope different calling conventions to

optimize overall system performance.

In order to compare calling conventions at register level for each architecture, we use register charts,

such as depicted in Figure 5.4; a description of the notation is given in the box below:

Register Charts A set of registers is displayed as cells in rows. The base color indicates

the register class, such as general-purpose (yellow), FPU (blue) and SIMD (magenta),

respectively. The intensity of the cell color indicates whether a register is volatile (light

color) or preserved (dark color) during a function call. The order of registers for passing

parameters and results is given by indexed labels aindex and rindex, respectively. Special-

purpose registers are labels sp (stack pointer), lr (link register), fp (frame pointer), ip

(intra-procedure pointer), tr (thread register), sb (static base) and pc (program counter).

Furthermore, system-reserved and constant zero (labeled “0”) registers are colored red.

When comparing multiple calling conventions, the labels are given on the left of the register

bar. Additional information, such as register numbers and names, grouping structure, and

overlapping register layout schemes, are given above and below the bar.

The register utilization for some x86 32- and 64-bit ABIs are depicted in Figure 5.4. The first eight

general-purpose registers, available since the first x86 16-bit architecture, are given symbolic names

such as eax, esi and esp. The accumulator, base index, counter and data registers are abbreviated

5.3. PROCESSOR ARCHITECTURE FAMILIES 147

by ax, bx, cx and dx, respectively. Source index, destination index, stack pointer and base pointer

registers are abreviated si, di, sp and bp, respectively. The upper eight registers, introduced with

the x86-64 architecture, are specified by numeric names (r8-r15). As the lower eight registers are

available in 16-bit mode, they are prefixed by e and r in 32-bit and 64-bit mode, respectively. Registers

of the x87 FPU, named st(0) to st(7), are organized and programmed in a stack-based manner; they

are only part of calling conventions for passing scalar floating-point return values.

x86-32 architecture

32-bit GPRs

0 1 2 3 4 5 6 7

r1 r2 sp fpc,std

r1
a1

r2
a2 sp fpfast

r1
this

r2
sp fpthis

id

r1
a2 a3 a1 sp fp a4 a5dos

id

r1
sp fpbsd

ea
x

ec
x

ed
x

eb
x

es
p

eb
p

es
i

ed
i

80-bit FPRs (x87)

0 1 2 3 4 5 6 7

r1

r1

r1

st
(0
)

st
(1
)

st
(2
)

st
(3
)

st
(4
)

st
(5
)

st
(6
)

st
(7
)

x86-64 architecture

64-bit GPRs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r1 a4
a3

r2
sp fp a2 a1 a5 a6sysv

r1 a1 a2 sp fp a3 a4x64

ra
x

rc
x

rd
x

rb
x

rs
p

rb
p

rs
i

rd
i

r8 r9 r1
0

r1
1

r1
2

r1
3

r1
4

r1
5

128-bit FPRs (SIMD) (supports 32/64-bit)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1

r1

a2

r2
a3 a4 a5 a6 a7 a8

a1

r1
a2 a3 a4

Figure 5.4: Register usage in calling conventions of x86.

The C calling convention (depicted as “c” in Figure 5.4), implemented on x86, uses a simple scheme:

all arguments are passed via the stack and return values are passed via registers. Small integer values

(up to 32 bits) are placed in eax, 64-bit integer values are placed in the register pair ecx:eax, and

floating-point values, such as float , double and long double , are returned via st(0). All other x87

floating-point registers are volatile and need to be empty when a function returns.

This calling convention is commonly found on major x86-32 platforms for C programs (Windows) or

for the entire user-space system (Unix) with slight modifications.

• On the Microsoft’s Windows 32-bit platforms, it is commonly named the cdecl calling conven-

tion.

• x86-32 ports of Unix-based commercial, free and open-source operating systems are mostly

148 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

based on the System V ABI Intel386 Architecture Processor Supplement (AT&T, 1991) which

defines the C calling convention as the base in their ABI.

• Apple’s Mac OS X ABI for x86-32 (Apple Inc., 2010b, pp.43) is mainly based on System V with

small modifications as outlined in Section 5.2.

A peculiarity of the Microsoft Windows is the stdcall calling convention, used for the public C

interface of system component DLLs. In principle it functions similiarly to the C calling convention.

However, the stack cleanup strategy is different. While the caller is usually responsible for removing

all arguments on the stack, it is the callee in this case.

Major C compilers of x86-32 offer a compiler-specific fastcall calling convention; the name refers to

an optimized calling convention which utilized a subset of the eight GPRs; an overview of 16-bit and

32-bit variants of fastcall is listed in Table 5.4. Figure 5.4 gives the register utilization for fastcall

on x86-32, supported by Microsoft and GNU compilers (displayed as “fast” in Figure 5.4). Both

calling conventions make use of registers ecx and edx to pass the first two integer arguments.

C and Pascal calling conventions on x86 differ by the order in which arguments are pushed on

the stack. In C arguments are pushed in right-to-left order. Consequently, since the stack grows

downwards, the sequence of argument data is placed upwards on stack memory, similar to fields of

a C data structure, in ascending left-to-right order. The majority of calling conventions for x86 and

other processor architecture familes use this scheme. Exceptions to this include the Pascal calling

convention (pascal) and a few fastcall variants for x86-16/32 that use the opposite order.

Support for calling C++ member functions necessitates passing a reference of a C++ object. This

can be transparently implemented by means of the C calling convention; the instance this pointer

is passed as a first argument of the calling sequence. However, the thiscall calling convention is

used for C++ member function calls on Microsoft Windows x86-32 platforms; the instance pointer is

passed via the register ecx (depicted as “this” in Figure 5.4) and the callee is responsible for cleaning

up the stack.

Although most Unix-based operating systems on x86-32, such as Linux and BSD derivates, are based

on System V and utilize the ELF format for binary executable and shared library formats (as discussed

in Section 4.2), there exist different calling conventions for system calls. In general, system functions

are called by execution of an interrupt; the function is specified by passing a service number in a

register. On Linux all arguments are also passed via registers while FreeBSD arguments are passed

via the stack.

The doubling of general-purpose registers as of the x86-64 ISA led to a RISC-based design of calling

conventions for x86. Two ABI standards cover a majority of 64-bit x86 platforms. Both standards

make use of the larger number of available registers and also utilize SSE registers for transfer of floating-

point parameters and results. The System V Application Binary Interface: AMD64 Architecture

Processor Supplement (Matz et al., 2012) specifies a calling convention for C (denoted “sysv” in Figure

5.3. PROCESSOR ARCHITECTURE FAMILIES 149

5.4) that was adopted by Linux, Solaris, Mac OS X and BSD operating systems. Microsoft defines

its own calling convention for Windows 64-bit platforms (Microsoft, 2013), namely “x64 Software

Conventions” (denoted “x64” in the illustration in Figure 5.4). Microsoft’s ABI uses fewer registers

for passing arguments as illustrated in the example of Section 5.1.4. Note also that x64 uses one register

for return values while sysv uses up to two registers. For further details on calling conventions of the

x86 architecture family see Fog (2012).

5.3.3 ARM Processor Architecture Family

The ARM (Advanced Risc Machines) processor family was originally designed as a 32-bit RISC archi-

tecture and its origin dates back to the mid-1980s when it was first used in the Acorn (Archimedes)

personal computers. “Acorn had developed a strong position in the UK personal computer market

due to the success of the BBC (British Broadcasting Corporation) microcomputer” (Turber, 2000,

p. 36). “The first ARM processor was developed at Acorn Computers Limited, of Cambridge, Eng-

land, between October 1983 and April 1985. At that time, and until the formation of Advanced RISC

Machines Limited (which later was renamed simply ARM Limited) [..], ARM stood for Acorn RISC

Machine” (Turber, 2000, p. 36). ”At the time the first ARM chip was designed, the only examples

of RISC architectures were the Berkeley RISC I and II and the Stanford MIPS (which stands for

Microprocessor without Interlocking Pipeline Stages), although some earlier machines such as the

Digital PDP-8, the Cray-1 and the IBM 801, which predated the RISC concept, shared many of the

characteristics which later came to be associated with RISCs” (Turber, 2000, p. 37).

The company “ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple

Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6

processor family, and VLSI became the initial licensee. Subsequently, additional companies, includ-

ing Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor designs,

extending the applications of ARM processors into mobile phones, computer hard disks, personal dig-

ital assistants (PDAs), home entertainment systems, and many other consumer products.”(Yiu, 2010,

p. 2)

We can assume that ARM will take on an important role in the CPU market in the coming years.

In fact, it is already dominating the embedded, mobile and handheld market. “ARMs designers have

come a long way from the first ARM1 prototype in 1985. Over one billion ARM processors had been

shipped worldwide by the end of 2001.”(Sloss et al., 2004, p. 3) “There were 20 billion ARM cores

used by 2002. Nowadays, ARM processors are almost in everybodys pocket because almost all of the

mobile phones, PDAs are developed based on ARM cores.”(Muresan, 2005, p. 6) “Nowadays [2010],

ARM partners ship in excess of 2 billion ARM processors each year. Unlike many semiconductor

companies, ARM does not manufacture processors or sell the chips directly. Instead, ARM licenses

the processor designs to business partners, including a majority of the worlds leading semiconductor

companies. Based on the ARM low-cost and power-efficient processor designs, these partners create

150 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

their processors, microcontrollers, and system-on-chip solutions. This business model is commonly

called intellectual property (IP) licensing.”(Yiu, 2010, p. 2) “The ARM company bases their success

on a simple and powerful original design, which continues to improve today through constant technical

innovation. In fact, the ARM core is not a single core, but a whole family of designs sharing similar

design principles and a common instruction set.”(Sloss et al., 2004, p. 3) See Table 5.5 for a sample

selection of hardware systems of the past two decades, ranging from home computers, mobile cell

phones, handheld game consoles and tablet PCs, that incorporated one or more ARM cores and/or

licensed ARM IP in their System-On-Chip design.

CPU SoC

Year ISA Features and Extensions Sample Products Family Core Package

1985 ARMv1 26-bit address space Prototyp (1985) ARM1 ARM1

1986 ARMv2 Multiply instruction BBC Archimedes 305 (1987) ARM2 ARM2

1990 ARMv3 32-bit address space Acorn A5000 (1991) ARM3 ARM3

1993

ARMv4
32-bit address space only

System mode

Apple Newton 100 (1993)
ARM6

ARM610

3DO (1993) ARM60

StrongARM RiscPC (1996)
StrongARM

SA-110

Sharp Zaurus SL-5500 (2002) SA-1110

1994

ARMv4T 16-bit ISA Thumb

Nokia 6110 (1997)

ARM7 ARM7TDMI
Apple iPod (2001)

Nintendo GBA (2001)

Nintendo DS (2002)
2002

ARMv5TE
ARM/Thumb interworking

ARM9
ARM946E-S

VFPv2 FPU, DSP Marvell SheevaPlug (2009) Marvell Kirkwood 88F6281

ARMv5TEJ Java Bytecode Execution RIM BlackBerry Quark (2003) ARM7 ARM7EJ-S

2007

ARMv6

16/32-bit ISA Thumb-2

Enhanced SIMD

DSP

Apple iPhone (2007)

ARM11

ARM1176JZF-S
SSL8900

Raspberry Pi (2012) BCM 2825

HTC Dream (2008)
ARM1136EJ-S

MSM7201A

Samsung Galaxy i7500 (2009) MSM7200A

2008

ARMv7-A

Advanced SIMD NEON

VFPv3 FPU

VFPv4 FPU

TI BeagleBoard (2008)

Cortex-A

Cortex-A8

OMAP3530

Apple iPhone 3GS (2009) S5PC100

Genesi Efika MX (2009) i.MX515

Apple iPad 1 (2010) Apple A4

Samsung Galaxy Note (2011)

Cortex-A9

Exynos 4

Microsoft Surface RT (2012) Tegra 3

Apple iPhone 4S (2011) Apple A5

Apple iPhone 5 (2012) Cortex-A15 Apple A6

2012
ARMv8-A 64-bit Architecture Apple iPhone 5S (2013) Cortex-A50

Cortex-A53

Cortex-A57
Apple A7

Table 5.5: Overview of the ARM Architecture family. (See also Sloss et al. (2004, p.39, Table 2.7))

Recently, ARM released a 64-bit extension, which leads to the assumption that ARM cores may be a

future alternative to the dominating x86 architecture for notebook, desktop and server systems: AMD

announced “to release its first ARM-based chip in 2014 [to follow] in the steps of Dell and HP which

have previously announced plans to build ARM-based servers.”(BBC News, 2012)

5.3. PROCESSOR ARCHITECTURE FAMILIES 151

5.3.3.1 ARM Architecture and Revisions

“The ARM core uses a RISC architecture. RISC is a design philosophy aimed at delivering simple but

powerful instructions that execute within a single cycle at a high clock speed. The RISC philosophy

concentrates on reducing the complexity of instructions performed by the hardware because it is easier

to provide greater flexibility and intelligence in software rather than hardware. As a result, a RISC

design places greater demands on the compiler. In contrast, the traditional complex instruction set

computer (CISC) relies more on the hardware for instruction functionality, and consequently the CISC

instructions are more complicated.”(Sloss et al., 2004, p. 4)

“An ARM processor is an implementation of a specific instruction set architecture (ISA). The ISA

has been continuously improved from the first ARM processor design. Processors are grouped into

implementation families (ARM7, ARM9, ARM10, and ARM11) with similar characteristics.”(Sloss

et al., 2004, p. 44) “The processor family is a group of processor implementations that share the

same hardware characteristics. For example, the ARM7TDMI, ARM740T, and ARM720T all share the same

family characteristics and belong to the ARM7 family.”(Sloss et al., 2004, p.38)

At the core of the CPU 16 general-purpose 32-bit registers are available for integer/bit arithmetic,

load/store operations and control flow. Over time a number of extensions have been designed for

ARM. See Table 5.5 for a chronological list of ISA revisions and extensions.

The address space of the first ARM architecture was limited to 26 bits. Support for a 32-bit address

space was later added with ARMv3. ARMv4 introduced a privileged system mode for handling exceptions.

The instructions of ARM are encoded as 32-bit words, which is very typical for 32-bit RISC ar-

chitectures. However, a significant ISA extension for the embedded and mobile market was added

with ARMv4T: “Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set

space. Since Thumb has higher performance than ARM on a processor with a 16-bit data bus, but lower

performance than ARM on a 32-bit data bus, [it is suggested to] use Thumb for memory-constrained

systems. Thumb has higher code density - the space taken up in memory by an executable program -

than ARM. For memory-constrained embedded systems, for example, mobile phones and PDAs, code

density is very important. Cost pressures also limit memory size, width, and speed. On average, a

Thumb implementation of the same code takes up around 30% less memory than the equivalent ARM

implementation.[...] Each Thumb instruction is related to a 32-bit ARM instruction.”(Sloss et al., 2004,

p. 87) “In Thumb state, you do not have direct access to all registers. Only the low registers r0 to r7

are fully accessible.”(Sloss et al., 2004, p.89)

From then on developers needed to handle two separate machine-code instructions and corresponding

decoding ‘modes’ of the CPU. Mode switches between Thumb and ARM can be intermixed in a single

code execution flow. The ARMv5 architecture improved interworking between ARM and Thumb mode

switching.

Note the naming schemes for ARM architectures and cores, as depicted in Table 5.5, looks confusingly

152 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

similar and can lead to wrong assumptions, e.g. the ARM6 processor and the ARMv6 architecture are

not related; ARM6 cores implement the ARMv4 ISA. The following two tables give the notation syntax

for the ARM architecture (left) and processor (right).

“ARMv” 〈number〉 〈letter〉...
letter Description

‘T’ Thumb: 16-bit compressed ISA

‘E’ Enhanced DSP

‘J’ Jazelle: Java byte-code execution

“ARM” 〈number〉 〈letter〉...
letter Profile

‘T’ Application

‘D’ JTag debugging

‘M’ Fast multiplier

‘I’ EmbeddedICE macrocell

‘E’ Enhanced instructions (assumes TDMI)

The suffix letter codes, such as ‘T’, ‘E’ and ‘J’, indicate a certain feature of the architecture or CPU

core. Later revisions of the ARM architecture adopted this feature set completely. So that Thumb,

encoded as ‘T’ till ARMv5, is a core feature for ARMv6 and ARMv7-A architectures. Similarly, “all ARM

cores after the ARM7TDMI include the TDMI features even though they may not include those letters

after the ‘ARM’ label.”(Sloss et al., 2004, p.38)

ARM has support for FPU co-processor extensions, such as VFPv1, VFPv2, VFPv2-D32, VFPv3 and

VFPv4. New SIMD operations were also added to ARM with the ARMv6 architecture, which was later

enhanced with the NEON extension for the ARMv7-A architecture.

Owing to the success of the Thumb ISA, a new mixed-mode ISA, named Thumb-2, was added that

integrates ARM 32-bit and Thumb 16-bit machine-code encoding. “The Thumb-2 technology extended

the Thumb Instruction Set Architecture (ISA) into a highly efficient and powerful instruction set

that delivers significant benefits in terms of ease of use, code size, and performance. The extended

instruction set in Thumb-2 is a superset of the previous 16-bit Thumb instruction set, with additional

16-bit instructions alongside 32-bit instructions. It allows more complex operations to be carried out

in the Thumb state, thus allowing higher efficiency by reducing the number of states switching between

ARM state and Thumb state.”(Yiu, 2010, p. 8)

Since ARMv7 the architecture has been split in three profiles, each with a different focus of use case:

“ARMv” 〈number〉 ‘-’ 〈letter〉
letter Profile

‘A’ Application

‘R’ Realtime

‘M’ Microcontroller

The ARMv8-A Application profile is currently the latest version of the architecture. It introduces a new

64-bit execution environment named AArch64 and a new 64-bit ISA named A64; the 32-bit execution

environment is still supported and referd to as AArch32. The number of registers was almost doubled

offering 31 general-purpose registers and a 48-bit address space is used for a larger virtual address

space where the LP64 and LLP64 are the primary data models A detailed discussion on 64-bit data

models is given in Section 5.3.8. The AArch32 environment supports ARM and Thumb that are referred

to as A32 and T32, respectively. However, the architecture is relatively new so that we focus in this

5.3. PROCESSOR ARCHITECTURE FAMILIES 153

ABI Note

apcs ARM Procedure Call Standard (OABI)

iwmmxt Support for Intel XScale MMX extensions

tpcs Thumb Procedure Call Standard

atpcs ARM-Thumb ABI (precursor to aapcs)

apcs-gnu Legacy ABI for arm32 on Linux

aapcs ARM Architecture Procedure Call Standard (EABI)

aapcs-linux EABI using 32-bit integer enums

armhf EABI using floating-point registers

ios-v6 Apple iOS ABI for ARMv6 architecture based on aapcs

ios-v7 Apple iOS ABI for ARMv7 architecture based on aapcs

Table 5.6: ABIs of ARM processor architectures.

thesis on 32-bit architectures ARMv4 to ARMv7-A.

5.3.3.2 ABIs and Calling Conventions of arm

“On the ARM architecture, there are two major ABI types to choose from: EABI and OABI. There is

also a Thumb ABI and an Intel IWMMX specific ABI but these are generally not recommended for most

uses. The EABI (Embedded ABI) is newer and supports additional features, faster software floating

point operations, and Thumb interworking, but is only compatible with ARMv4t and newer cores. The

EABI has sub-ABIs of: aapcs-linux and aapcs. aapcs-linux has standard Linux 4 byte enums while

aapcs has variable length enums. aapcs-linux is recommended over aapcs. The OABI (old ABI) is

called apcs-gnu and supports ARMv4 and older cores. Generally the OABI is not used by modern ARM

processors.”(Ciccone et al., 2012, sec 6.3) “The atpcs is a precursor to the aapcs while the apcs and

tpcs ABIs are considered obsolete.”(ARM Limited, 2009, p.6) Table 5.6 gives an overview of some

ARM ABIs including legacy standards. Despite the large number of ARM-based hardware platforms

the total number of available ABIs is relatively small; several ABIs contain mostly small modifications.

Today most platforms have converged to the Procedure Call Standard for the ARM Architecture(ARM

Limited, 2009), abbreviated aapcs, which specifies the data types and alignments, the base procedure

call standard, standard variants and C/C++ language mappings.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1

r1

a2

r2
a3 a4 fp

sb

tr
ip sp lr pc

Figure 5.5: Register files on the arm processor architecture.

Figure 5.5 gives an overview of the utilization of general-purpose registers for procedure calls in the

aapcs base standard. The first four registers, r0-r3, are used for passing argument values. r0-r1

are used for passing return values. Further values are passed via the stack managed by the stack

pointer register r13 (sp). Register r14 and r15 are used as link register (lr) and program counter

(pc), respectively. r12 is a scratch register that can also be used transparently by the linker as an

154 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Intra-Procedure-call register (ip).

aapcs provides a flexible framework that addresses different hardware profiles. For example, r9 is

defined to be a platform-specific register; it can be used as a register for thread-local storage (tr) or

as a static base register (sb) in a position-independent data model, depending on the needs of the

target platform. aapcs provides a base calling convention which does not require the existance of a

FPU; floating-point argument/return values are passed via integer registers and the stack, even if the

architecture supports a FPU co-processor. However, aapcs includes recommendations to support FPU

co-processor registers and, more recently, a new ABI, named armhf (ARM hard-float), was specified

for Debian GNU/Linux on ARM systems (Debian, 2012) as an optimization for architectures with a

VFPv2 (or higher) FPU co-processor such as provided by ARMv6 and ARMv7-A CPU cores.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 ... single precision

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 ... double precision

q0 q1 q2 q3 q4 q5 ... quad precision

Figure 5.6: FPU registers of the VFPv2 co-processor of arm and utilization in armhf ABI.

The VFPv2 FPU comprises 32 registers for single-precision floating-point values, named s0 to s31, as

depicted in Figure 5.6. The armhf ABI utilizes the first 16 registers for passing floating-point values.

Note that double-precision floating-point values are also supported by VFPv2, via register pairing, and

these can be addressed in assembly via d0-d15. Thus up to eight double floating-point values are

passed via FPU registers before being passed via the stack. Similarly, quad-precision floating-point in

hardware is also supported via register pairing as of the NEON SIMD extension.

Since ARMv4T the ARM architecture offers the 16-bit Thumb (and later Thumb-2) machine-code mode

besides the standard 32-bit ARM mode where both modes can co-exist within a single program code and

running process. For a portable implementation of generic function calls at machine level that cover

different ARM architecture versions, both ISA modes need to be considered. Note that the roles of

registers and the layout of the stack remains identical in both modes. However, special care is needed

for handling the so-called interworking when calling functions that require a mode switch between ARM

and Thumb. The latter can take place during a branch code, including function returns. The target

mode is specified by bit 0 of the code address of a target branch; ARM compiled code addresses are as-is

while Thumb compiled code have odd addreses where bit 0 is set to 1 although the actual code still

begins at even addresses. Depending on the ARM architecture to be supported different interworking

techniques for branch instructions (via a code pointer) need to be considered. For details see ARM

Limited (2009, sec 5.6).

The aapcs base standard has been widely adopted or refined. For example, the ABI for Apple’s

ARM-based iOS platform (used in iPod, iPhone and iPad mobile devices) is based on the core aapcs

(without FPU registers) and includes small refinements: “The function call calling convention used

5.3. PROCESSOR ARCHITECTURE FAMILIES 155

in the ARMv6 environment are the same as those used in the Procedure Call Standard for the ARM

Architecture (release 1.07), with the following exceptions:

• The stack is 4-byte aligned at the point of function calls.

• Large data types (larger than 4 bytes) are 4-byte aligned.

• Register R7 is used as a frame pointer.

• Register R9 has special usage.” (Apple Inc., 2010a, p.5)

Note that aapcs specifies 8-byte alignment requirements for the stack for public function calls and for

large data types (see also Table 5.9 for a comparison of C data type alignments of ‘arm32’ prefixed

ABIs).

For the ARMv7 architecture Apple further states: “In general, applications built for the ARMv7 en-

vironment are capable of running in the ARMv6 environment and vice versa. This is because the

calling conventions for the ARMv7 environment are nearly identical to those found in the ARMv6 envi-

ronment.”(Apple Inc., 2010a, p.14)

5.3.4 PowerPC Processor Architecture Family

In the 1990s the PowerPC architecture offered an attractive alternative to Intels x86 as a personal

computer platform for several operating systems, including Motorola 68000-based (m68k) platforms

and newer operating systems. “Although announced in 1991, the PowerPC architecture represents

the end product of nearly 20 years of evolution starting with work on the 801 system at IBM. From

the beginning, advanced hardware and software techniques were intermingled to develop first RISC

and then superscalar computer systems. [...] Historically, CISC architectures evolved in response

to the limited availability of memory because complex instructions result in smaller programs. As

technology improved, memory cost dropped and access times decreased, so the decode and execution

of the instructions became the limiting steps in instruction processing. Work at IBM, Berkeley, and

Stanford demonstrated that performance improved if the instruction set was simple and instructions

required a small number of cycles to execute, preferably one cycle. The reduction in cycle time and

number of cycles needed to process an instruction were a good trade-off against the increased path

length. Development along these RISC lines continued at IBM and elsewhere. [...] The work at

IBM led to the development of the POWER architecture, which implemented parallel instruction

(superscalar) processing, introduced some compound instructions to reduce instruction path lengths

in critical areas, incorporated floating-point as a first-class data type, and simplified the architecture

as a compiler target.”(Hoxe et al., 1996, pp 1–2)

“IBM developed many of the concepts in 1975 for a prototype system. An unsuccessful commercial

version of this prototype was introduced around 1986. Four years later, IBM introduced the RS/6000

156 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

family of processors based on their POWER architecture. In early 1991, a group from Motorola,

IBM, and Apple began work on the PowerPC architecture using the IBM POWER architecture as the

base.”(Dandamudi, 2005a, p.79) As a competitor to the x86 and the IBM PC compatible, a standard

system architecture for PowerPC was specified, named PReP (PowerPC Reference Platform), in order

to allow hardware developers to design hardware-compatible machines that can run Windows NT,

OS/2, Solaris and AIX. In 1995, IBM and Apple Computers published the successor CHRP (Common

Hardware Reference Platform) which included support for Mac OS and NetWare.

In 1994, Apple Computers exchanged the processor architecture of the Macintosh platform from

Motorola 68000 processor family to PowerPC. However, in 2006 the Mac OS X platform was shifted

to the x86 architecture and support for PowerPC-based Macintosh hardware was discontinued by

release of Mac OS X 10.6 in 2009.

PowerPC is also considered as the successor architecture for the Amiga “classic” platforms which were

also based on Motorola 68000. When Commodore released the Amiga 1000 in 1985, the platform

quickly attracted a growing community of users and developers due to its multimedia hardware capa-

bilities. As stated by Andy Warhol: “The thing that I like most about doing this kind of art on the

Amiga is that it looks like my work.”(Guy Wright and Glenn Suokko, 1986) Beyond its multimedia

capabilities, some users consider the AmigaOS operating system ahead of its time, compared to the

commercially more successful systems of Microsoft and Apple. As stated by John C. Dvorak: “The

AmigaOS remains one of the great operating systems of the past 20 years, incorporating a small kernel

and tremendous multitasking capabilities the likes of which have only recently been developed in OS/2

and Windows NT. The biggest difference is that the AmigaOS could operate fully and multitask in as

little as 250 K of address space. Even today, the OS is only about 1MB in size. And to this day, there

is very little a memory-hogging CD-ROM-loading OS can do the Amiga can’t. Tight code there’s

nothing like it. I’ve had an Amiga for maybe a decade. It’s the single most reliable piece of equip-

ment I’ve ever owned. It’s amazing! You can easily understand why so many fanatics are out there

wondering why they are alone in their love of the thing. The Amiga continues to inspire a vibrant

- albeit cultlike - community, not unlike that which you have with Linux, the Unix clone.”(Dvorak,

1996) However, Commodore International declared bankruptcy in 1994. Since then several companies

relicensed the trademark Commodore and Amiga; an official successor platform based on PowerPC

was out of sight. In 1997, Phase 5 released the first PowerPC accelerator card for Amiga that should

rescue the system to the PowerPC architecture. “At the time Phase 5 were one of the only companies

that appeared serious to invest money into the Amiga market and move it away from the ageing 68k

platform.”(Knight, 2006) This provided the base for porting AmigaOS to PowerPC and started the

development of new derivates of AmigaOS, such as MorphOS (MorphOS Development Team, 2013).

In 2009, Hyperion Entertainment released AmigaOS 4.1 which runs on Amiga “classic” systems with

PowerPC-accelerators and PowerPC-based computer systems, including a series of new Amiga hard-

ware systems (A-EON Technology Ltd., 2011) under the label “AmigaONE”. In 1995, the AROS

project was initiated to develop an open-source version of AmigaOS; currently more than 80% of the

5.3. PROCESSOR ARCHITECTURE FAMILIES 157

original AmigaOS 3.1 are covered (AROS Development Team, 2013). It can run natively on x86 and

PowerPC architectures and has also been back-ported to run on m68k-based Amiga “classic” machines.

The BeOS operating system was originally developed for PowerPC and later ported to x86; but it was

not successful. Nowadays it continues to exist as “Haiku”, an open-source reimplementation of BeOS

for x86 (Haiku, Inc., 2013).

Currently, the PowerPC is used on IBM server systems running the commercial AIX Unix operating

system. A majority of open-source Unix-based operating systems also offer PowerPC ports.

PowerPC cores are also commonly used in embedded systems and video game consoles, such as the

Sony Playstation 3, Microsoft XBox 360 and Nintendo Wii. “The PowerPC architecture has made its

presence felt in the embedded market where AMCC PowerPC and Motorola PowerPC deliver 32-bit

system-on-chip (SOC) integrated products. These SOCs encompass the processor along with built-in

clocks, memory, busses, controllers, and peripherals. The companies who license PowerPC include

AMCC, IBM, and Motorola.”(Rodriguez and Fischer, 2006, Section 1.6)

“In 2006, Freescale and IBM collaborated on the creation of the Power ISA Version 2.03, which rep-

resented the reunification of the architecture by combining Book E [Embedded environment] content

with the more general purpose PowerPC Version 2.02. A significant benefit of the reunification is

the establishment of a single, compatible, 64-bit programming model. [..] Because of the substantial

differences in the supervisor (privileged) architecture that developed as Book E was optimized for em-

bedded systems, the supervisor architectures for embedded and general purpose implementations are

represented as mutually exclusive categories. Future versions of the architecture will seek to converge

on a common solution where possible.”(IBM, 2010, p.iii)

5.3.4.1 ABIs and Calling Conventions of PowerPC

“The PowerPC architecture is a 64-bit architecture with a 32-bit subset.”(IBM and Motorola, 1997,

p.1-4) In general, the architecture defines three levels, or programming environments, of the PowerPC

architecture: PowerPC user instruction set architecture (UISA), PowerPC virtual environment archi-

tecture (VEA) and PowerPC operating environment architecture (OEA). “The UISA defines the base

user-level instruction set, user-level registers, data types, memory conventions, and the memory and

programming models seen by application programmers.”(IBM, 2000, p.xxv) “IBM has defined three

ABIs for the PowerPC architecture: the AIX ABI for big-endian 32-bit PowerPC processors and the

Windows NT and Workplace ABIs for little-endian 32-bit PowerPC processors.”(Hoxe et al., 1996,

p.157) In addition to the AIX ABI, based on specifications found in Hoxe et al. (1996, Appendix A),

we review three other ABIs for the 32-bit subset of the PowerPC architecture:

• The System V ABI (sysv) supplement for PowerPC 32-bit (Zucker and Karhi, 1995).

• The Embedded ABI (eabi) for PowerPC 32-bit (Steven Sobek and Kevin Burke, 2004), which is

based on a sysv ABI.

158 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

• The Mac OS X ABI (osx) for PowerPC 32-bit (Apple Inc., 2010b).

General-Purpose Registers

32-bit (ppc32) / 64-bit (ppc64)

sp
a1

r1

a2

r2
a3 a4 a5 a6 a7 a8 ...sysv

eabi

sp
a1

r1

a2

r2
a3 a4 a5 a6 a7 a8 ep ...osx

sp
a1

r1

a2

r2
a3 a4 a5 a6 a7 a8 ep ...aix

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r1
0

r1
1

r1
2

r1
3

r1
4

r1
5.
.3
1

Floating-Point Registers

64-bit double-precision

a1

r1
a2 a3 a4 a5 a6 a7 a8 ...

a1

r1
a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13 ...

a1

r1

a2

r2
a3 a4 a5 a6 a7 a8 a9 a10a11a12a13 ...

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f1
0

f1
1

f1
2

f1
3

f1
4

f1
5.
.3
1

Vector Registers (altivec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v1
0

v1
1

v1
2

v1
3

v1
4

v1
5

v1
6

v1
7

v1
8

v1
9

v2
0

v2
1

v2
2

v2
3

v2
4

v2
5

v2
6

v2
7

v2
8

v2
9

v3
0

v3
1

Figure 5.7: Register files of the ppc processor architecture family.

Figure 5.7 gives an illustration of register sets as they are utilized in calling conventions of the four

ABIs. The PowerPC architecture comprises two large registers sets consisting of 32 registers for

general-purpose and floating-point values, respectively. In addition, the architecture supports a SIMD

extension named altivec. Note the FPU uses a 64-bit double-precision format internally, in con-

trast to FPUs of other architectures, which typically offer support for 32-bit single-precision. As

a consequence for PowerPC, C float single-precision floating-point values are promoted to 64-bit

double-precision values when they are passed via floating-point registers.

As a common convention to all four ABIs, the eight GPRs r3-r10 are reserved for passing of ar-

guments on all four calling conventions. Return values, up to 64-bit integer, are passed via r3 and

r4; single- and double-precision floating-point values are passed via f1; aix also supports passing of

quad-precision floating-point values via f1 and f2. However, osx and aix reserve eleven FPRs for

passing floating-point values in contrast to eight FPRs on sysv and eabi.

The calling conventions of sysv and eabi seem to be straight-forward. First arguments are either

passed via GPRs or FPRs. If no register is available for one or the other, the argument is passed in

the “parameter list” area of the caller’s stack frame in ascending memory addresses i.e. in right-to-left

push order on downgrowing stacks. The stack frame begins (at the lowest address) with a “back

chain” pointer to the previous caller frame on the stack, followed by a reserved cell to save the link

register lr (a separate register not part of the GPRs and used by branch-and-link instructions), and

followed by the parameter list area.

In contrast to sysv/eabi, the calling conventions of osx and aix are more complex. The stack

frame contains a homing area which reserves “home location” storage in memory for the eight 32-bit

GPRs parameter registers. Arguments passed as 64-bit double-precision values via FPRs are mapped

logically to one (for float arguments) or two (for double arguments) GPRs, which on their part are

5.3. PROCESSOR ARCHITECTURE FAMILIES 159

mapped to the homing area and are marked as used. However, arguments passed via GPRs do not

automatically mark a corresponding FPR here and further details need to be considered since only

a subset of FPRs may be mapped to GPRs. As the osx ABI states “When floating-point registers

are exhausted, the caller places floating-point elements in the parameter area.”(Apple Inc., 2010b,

p.19) In part, the specification of osx is inprecise here; a clearer explanation was found in the aix

specification: “Any floating-point values that extend beyond the first 8 words of the argument list

must also be stored at the corresponding location on the stack.”(Hoxe et al., 1996, p.163) The layout

of stack frames, including the homing area, is further discussed in Section 5.3.7; a comparison of stack

frames, including those of osx and sys, is illustrated in Figure 5.12.

Note the role of register r2 differs among ABIs; it functions as a volatile register by osx while it

is used as a system-reserved register by the other ABIs. The registers r11 and r12 are reserved

for special ABI-specific purposes. sysv defines them as volatile registers which may be modified

during function linkage (Zucker and Karhi, 1995, p.3-14). On the osx and aix ABIs registerr11

is volatile for caller and callee of functions. However, some C compilers support an extension for

nested function definitions where this register becomes an environment pointer (ep) that points to

the top-level function’s environment i.e. for access to local variables from within the nested functions.

osx defines that r12 is set to the address of the branch target before indirect calls for dynamic code

generation, whereas aix defines r12 to be used for special exception handling and global linkage

routines.

The utilization of altivec registers is incorporated by the osx ABI; up to eleven registers are utilized

for passing vector data types. A corresponding C data type, named vector , is defined as a C extension

for the GNU compiler.

5.3.5 MIPS Processor Architecture Family

“The MIPS architecture was born in the early 1980s from the work done by John Hennessy and his

students at Stanford University. Over the course of the next 14 years, the MIPS architecture evolved

in a number of ways and its implementations were used very successfully in workstation and server

systems. [...] Over that time, the architecture and its implementations were enhanced to support

64-bit addressing and operations, support for complex memory-protected operating systems such as

UNIX, and very high performance floating point. Also in that period, MIPS Computer Systems was

acquired by Silicon Graphics and MIPS processors became the standard for Silicon Graphics computer

systems. With 64-bit processors, high-performance floating point, and the Silicon Graphics heritage,

MIPS processors became the solution of choice in high-volume gaming consoles. In 1998, MIPS

Technologies emerged from Silicon Graphics as a stand-alone company focused entirely on intellectual

property for embedded markets. As a result, the pace of architecture development has increased

to address the unique needs of these markets: high-performance computation, code compression,

geometry processing for graphics, security, signal processing, and multi-threading. Each architecture

160 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

development has been matched by processor core implementations of the architecture, making MIPS-

based processors the standard for high-performance, low-power applications.”(Sweetman, 2007, p.V)

“These days MIPS is not the highest-volume 32-bit architecture, but it is in a comfortable second

place.”(Sweetman, 2007, p.XV) “ARM gets more headlines, but MIPS sales volumes remain healthy

enough: 100 M MIPS CPUs were shipped in 2004 into embedded applications.”(Sweetman, 2007, p.1)

“A piece of equipment built around a MIPS CPU might have cost you $35 for a wireless router or

hundreds of thousands of dollars for an SGI supercomputer (though with SGIs insolvency, those have

now reached the end of the line). Between those extremes are Sony and Nintendo games machines,

many Cisco routers, TV set-top boxes, laser printers, and so on.”(Sweetman, 2007, p.XV)

5.3.5.1 ABIs and Calling Conventions of mips

The original 32-bit MIPS ISA, named MIPS-I, was revised in five rounds until it became the 64-bit

ISA named MIPS64 with a 32-bit subset architecture MIPS32; both are referred to as MIPS32/64.

MIPS-I was implemented by the R2000 and R3000 CPUs which were used among others in Sony’s

Playstation 1. The 64-bit architecture of MIPS was introduced with the MIPS-III and it was first

implemented by the R4000 CPU. Integer-based SIMD instructions were added with the MIPS-V ISA

and were simultaneously released as a SIMD extension, named MDMX. With a few exceptions MIPS

ISAs are backward compatible, for example MIPS I 32-bit code can run on a R4000 CPU. However,

“the only ISA version that could cause you trouble is MIPS V, some of which is not available in

MIPS64. But then it was never implemented, either.”(Sweetman, 2007, p.44) A compressed 16-bit

ISA, similar to ARM’s Thumb mode, was also designed for the MIPS architecture, named MIPS16e.

“The most important ABIs in MIPS history are:

• o32: Grew from traditional MIPS conventions (‘o’ for old) [...] o32 is still pretty much universally

used by embedded toolchains and for 32-bit Linux.

• n64: New formal ABI for 64-bit programs on 64-bit CPUs running under Silicon Graphics Irix

operating system. SGIs 64-bit model makes both pointers and C long integer types into 64-

bit data items. However, n64 also changes the conventions for using registers and the rules

for passing parameters; because it puts more arguments in registers, it improves performance

slightly.

• n32: A partner ABI to n64, this is really for “32-bit” programs on 64-bit CPUs. It is mostly the

same as n64, except for having pointers and the C long data type implemented as 32 bits. That

can be useful for applications where a 32-bit memory space is already spacious, 64-bit pointers

represent nothing but extra overhead.”(Sweetman, 2007, p.311-312)

In addition the 32-bit eabi ABI for Homebrew development on the PlayStation Portable game console

is also included here. An inofficial specification was published via mailing list (Christopher, 2003).

5.3. PROCESSOR ARCHITECTURE FAMILIES 161

MIPS CPUs comprise 32 general-purpose registers as depicted in Figure 5.8. Register r0 is special as

it represents a constant that always returns zero. r1 is an assembly temporary (at). Furthermore,

several registers takes specific roles such as the global pointer (gp), stack pointer (sp), frame pointer

(fp) and link register (lr); registers 26 and 27 are reserved for the operating-system kernel.

General-Purpose Registers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 at r1 r2 a1 a2 a3 a4 gp sp lr
oabi

(32-bit)

0 at r1 r2 a1 a2 a3 a4 a5 a6 a7 a8 gp sp fp lrn32,n64,eabi

Figure 5.8: Register files on the mips processor architecture family.

The old o32 ABI is used as the base for the System V ABI supplement for 32-bit MIPS platforms

(AT&T, 1991). “Silicon Graphics has defined the following parameter passing convention. The first

four “in” parameters are passed to a function in $a0, $a1, $a2, and $a3 [labeled a1-a4 in Figure 5.8].

The convention states that space will be allocated on the stack for the first four parameters even

though these input values are not stored on the stack by the caller. All additional “in” parameters are

passed on the stack. Register $v0 [labeled r1 in Figure 5.8] is used to return a value.”(Britton, 2003,

p.53) With the support for 64-bit long long data types, register r3 (labeled r2) was also included to

pass large integer values. In contrast to the o32 MIPS, the modern ABIs n64, n32 and eabi use eight

registers for passing integer arguments and no stack space is reserved.

The first FPU co-processor available in MIPS-I was rather complicated and led to odd calling conven-

tion rules: “One of the worst faults caused by the age of o32 is that its use of registers is compatible

with the very earliest MIPS floating-point units, which used only the even-numbered registers to hold

floating-point values. Double-precision values quietly extended into the adjacent odd-numbered reg-

ister; the odd-numbered registers were used only when reading or writing FP values from memory, or

from integer registers. o32’s resulting register conventions do not quite prevent software from using

all 32 registers in later CPUs, but they dont make for great efficiency.”(Sweetman, 2007, p.322) The

FPU registers for MIPS-I are illustrated in Figure 5.9: single-precision and double-precision registers

are addressed by even-numbered registers; note that the odd-numbered single-precision registers are

not considered at all.

The number of floating-point registers for passing arguments of the o32 ABI is surprisingly small; up

to two registers, f12 and f14, are reserved. Due to historic reason the registers are only used if the

first arguments in the calling sequence are of floating-point values; otherwise all data is passed via

integer registers and then via the stack. “Old-fashioned C had no built-in mechanism for checking that

the caller and callee agreed on the type of each argument to a function. To help programmers survive

this, the caller converted arguments to fixed types: int for integer values and double for floating point.

There was no way of saving a programmer who confused floating-point and integer arguments, but at

162 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

FPU registers on MIPS-I ISA / o32 ABI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r1 r2 a1 a2o32

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f3132-bit

f0 f2 f4 f6 f8 f10 f12 f14 f16 f18 f20 f22 f24 f26 f28 f3064-bit

32/64-bit FPU Registers of modern MIPS ISAs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r1 r2 a1 a2 a3 a4 a5 a6 a7 a8n32

r1 r2 a1 a2 a3 a4 a5 a6 a7 a8n64

r1 r2 a1 a2 a3 a4 a5 a6 a7 a8eabi

Figure 5.9: FPU registers of the mips processor architecture family.

least some possibilities for chaos were averted. Modern C compilers use function prototypes available

when the calling function is being compiled, and the prototypes define all the argument types. But

even with function prototypes, there are routines – notably the familiar printf() – where the type of

argument is unknown at compile time; printf() discovers the number and type of its arguments at run

time. MIPS made the following rules. Unless the first argument is a floating-point type, no arguments

can be passed in FP registers. This is a kludge that ensures that traditional functions like printf() still

work: Its first argument is a pointer, so all arguments are allocated to integer registers, and printf()

will be able to find all its argument data regardless of the argument type. The rule is also not going

to make common math functions inefficient, because they mostly take only FP arguments. Where the

first argument is a floating-point type, it will be passed in an FP register, and in this case so will any

other FP types that fit in the first 16 bytes of the argument structure. Two doubles occupy 16 bytes,

so only two FP registers are defined for arguments fa0 and fa1, or $f12 and $f14.”(Sweetman, 2007,

p.321)

“The floating-point register conventions change more dramatically; this is not surprising, since the

n32/n64 conventions are for later MIPS CPUs, which have a full 64-bit floating-point unit with 32

fully usable independent registers.”(Sweetman, 2007, p.327) Although eabi is a 32-bit MIPS ABI it

also takes advantage of a modern 64-bit MIPS FPU; each floating-point register supports two storage

formats, single-precision or double-precision, and eight registers are reserved for passing floating-point

values.

5.3.6 SPARC Processor Architecture Family

The SPARC (Scalable Processor ARChitecture) processor architecture was introduced by Sun Mi-

crosystems in 1987, a company founded in 1982 by three students of Stanford; the acronym “Sun”

is derived from the initials of the Stanford University Network. Sun began developing the operating

5.3. PROCESSOR ARCHITECTURE FAMILIES 163

system “SunOS” (later renamed to “Solaris”) and built corresponding server/workstation hardware.

Early machines were based on the Motorola 68000 processor family. Later in 1985, the company

formulated the first SPARC design. Sun was successful with SPARC server and workstation products

but more than that it contributed significant technologies such as Java and the ZFS file system.

In January 2010 Oracle Corporation acquired Sun and rebranded its technology assets. However, in

mid-2000s Sun decided to open-source major parts of Solaris and the SPARC architecture, known as

OpenSolaris and OpenSPARC.

“Small amounts of computer hardware Intellectual Property (IP) have been available for many years

in open-source form, typically as circuit descriptions written in an RTL (Register Transfer Level)

language such as Verilog or VHDL. However, until now, few large hardware designs have been available

in open-source form. One of the most complex designs imaginable is for a complete microprocessor;

with the notable exception of the LEON 32-bit SPARC processor, none have been available in open-

source form until recently. In March 2006, the complete design of Sun Microsystems “UltraSPARC”

T1 microprocessor was released in open-source form, it was named OpenSPARC T1. In early 2008,

its successor, OpenSPARC T2, was also released in open-source form. These were the first (and still

only) 64-bit microprocessors ever open-sourced.”(Weaver, 2008, p.xiii)

5.3.6.1 ABIs and Calling Conventions of sparc

“SPARC is based on the RISC I and II designs engineered at the University of California at Berkeley

from 1980 through 1982. SPARCs “register window” architecture, pioneered in the UC Berkeley

designs, allows for straightforward, high-performance compilers and a reduction in memory load/store

instructions.”(HAL Computer Systems, 1998, p.19)

Unlike most other processor architectures SPARC uses a very large register file where a small subset

of registers is available to a subroutine. “The SPARC architecture provides for a register file with a

mapping register that indicates the active registers. Typically, 128 registers are provided, with the

programmer having access to the 8 global registers, and only 24 of the mapped registers at any one

time. The save instruction changes the register mapping so that new registers are provided. A similar

instruction, restore, restores the register mapping on subroutine return.

The 32 registers are divided into four groups: “in”, “local”, “out” and “general”. The eight general

registers g0 - g7 are not mapped and are global to all subroutines. The in registers are used to pass

arguments to closed subroutines, the local registers are for a subroutine’s local variables, and the

out registers are used to pass arguments to subroutines that are called by the current subroutine.

When the “save” instruction is executed the out registers become the in registers, and a new set

of local and out registers is provided. The mapping pointer into the register file is changed by 16

registers.”(Paul, 2000, p.185)

The large register file works as a call stack in hardware; the word ’scalable’ in SPARC is due to the

variable number of registers that can be packaged on to a core which ranges between 40 and 520

164 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

registers i.e. CPU designers can choose between 2 to 32 register windows. However, the execution

environment still requires a call stack in main memory for storing additional arguments/local variables

beyond the first six arguments and eight local variables in registers. Stack frames also reserve a homing

area for i0-i5 registers and a save area for register window content (for the eight local and out

registers). The latter is used by a trap handler for register window overflow management during a

function call/return where inactive register windows are moved between hardware registers and main

memory on the call stack.

The first ISA of the SPARC architecture (for 32-bit) is known as SPARC Version 7 (sparc-v7) and

was released 1986. In 1990 SPARC Version 8 (sparc-v8) was specified in SPARC International (1992)

which featured enhanced division/multiply instructions. A corresponding System V ABI supplement

for SPARC 32-bit systems is specified in AT&T and SCO (1996). In the mid-1990 SPARC was

extended by a 64-bit ISA known as sparc-v9; a corresponding System V ABI is specified in SPARC

International (1997).

“SPARC-V9 extends the address space of SPARC to 64 bits and adds a number of new instructions

and other enhancements to the architecture. SPARC-V9, like its precedessor SPARC-V8, is a micro-

processor specification by the SPARC Architecture Commitee of SPARC International. SPARC-V9 is

not a specific chip; it is an architecture specification that can be implemented as a microprocessor by

anyone securing a license from SPARC International.”(Weaver and Germond, 1994, xiii) “The most

important SPARC-V9 architectural mandate is binary compatibility of nonprivileged programs across

implementations. Binaries executed in nonprivileged mode should behave identically on all SPARC-V9

systems when those systems are running an operating system known to provide a standard execution

environment. One example of such a standard environment is the SPARC-V9 Application Binary

Interface (ABI).”(HAL Computer Systems, 1998, p.19) The System V ABI for sparc-v9 is defined in

SPARC International (1997).

“A SPARC-V9 processor logically consists of an integer unit (IU) and a floating-point unit (FPU),

each with its own registers. This organization allows for implementations with concurrent integer and

floating-point instruction execution. Integer registers are 64-bits wide; floating-point registers are 32-,

64-, or 128-bits wide. Instruction operands are single registers, register pairs, register quadruples, or

immediate constants.”(HAL Computer Systems, 1998, p.31) “An implementation of the SPARC-V9

IU may contain from 64 to 528 general-purpose 64-bit r registers. This corresponds to a grouping of

the registers into 8 global r registers, 8 alternate global r registers, plus a circular stack of from 3 to

32 sets of 16 registers each, known as register windows.”(HAL Computer Systems, 1998, p.32)

Figure 5.10 gives an overview of SPARC’s register utilization. Integer parameters are passed by similar

means in 32-bit (v7/v8) and 64-bit (v9) modes: The first six arguments are passed via register o0 to

o5; the callee accesses these via register i0 to i5 due to the overlapping register windows as illustrated

on the right-hand panel of Figure 5.10; note the overlapping of the caller’s “out” and the callee’s “in”

register group. Similar to MIPS, the g0 register represents the constant zero. g1 is a volatile register

5.3. PROCESSOR ARCHITECTURE FAMILIES 165

General-purpose registers 32-bit (sparc-v8) or 64-bit (sparc-v9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

general out local in

g0g1g2g3g4g5g6g7 o0 o1 o2 o3 o4 o5 o6 o7 l0 l1 l2 l3 l4 l5 l6 l7 i0 i1 i2 i3 i4 i5 i6 i7

0
a1

r1
a2 a3 a4 a5 a6 sp lr

a1

r1
a2 a3 a4 a5 a6 fp lr v8

0
a1

r1
a2 a3 a4 a5 a6 sp lr

a1

r1
a2 a3 a4 a5 a6 fp lr v9

caller callee

in

local

out in

local

out

Figure 5.10: Register files on the sparc processor architecture family.

while Registers g2 to g4 are need to be preserved. Registers g5 to g7 are reserved for the system;

note register g5 was redefined as a second volatile register in v9.

However, the handling of floating-point arguments has significantly changed between v8 and v9, as

has the FPU hardware. An overview of the FPU register files and its utilization for v8 and v9 ABIs

is illustrated in Figure 5.11.

FPU registers of sparc-v8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r1 r2

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31 single precision

d0 d2 d4 d6 d8 d10 d12 d14 d16 d18 d20 d22 d24 d26 d28 d30.. double precision

FPU Registers of sparc-v9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

a1/r1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 ...

a1/r1 a2 a3 a4 a5 a6 a7 a8 ...

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31 single precision

d0 d2 d4 d6 d8 d10 d12 d14 d16 d18 d20 d22 d24 d26 d28 d30.. double precision

q0 q4 q8 q12 q16 q20 q24 q28.. quad precision

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

...

...

d32 d34 d36 d38 d40 d42 d44 d46 d48 d50 d52 d54 d56 d58 d60 d62 double precision

q32 q36 q40 q44 q48 q52 q56 q60 quad precision

Figure 5.11: FPU registers of the sparc processor architecture family.

The v8 ABI it is defined that “except for floating-point return values, global floating-point registers

have no specified role in the standard calling sequence.”(AT&T and SCO, 1996, p.3-13) Floating-point

arguments are passed via general-purpose registers and the stack.

Note the v8 FPU comprises 32 single-precision registers that can be paired as 16 double-precision reg-

isters. However, the v9 FPU was extended with additional double- and quad-precision registers with-

out extending the set of single-precision registers. “The FPU has thirty-two 32-bit (single-precision)

floating-point registers, thirty-two 64-bit (double-precision) floating-point registers, and sixteen 128-

bit (quad-precision) floating-point registers, some of which overlap. Double-precision values occupy an

166 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

even-odd pair of single-precision registers, and quad-precision values occupy a quad-aligned group of

four single-precision registers. The 32 single-precision registers, the lower half of the double-precision

registers, and the lower half of the quad-precision registers overlay each other. The upper half of the

double-precision registers and the upper half of the quad-precision registers overlay each other but do

not overlay any of the single-precision registers. Thus, the floating-point registers can hold a maximum

of 32 single-precision, 32 double-precision, or 16 quad-precision values.”(HAL Computer Systems, 1998,

p.32) The value transfer of floating-point data types has also changed in v9: “Floating-point argu-

ments are passed in the floating-point registers. Unpromoted single-precision arguments are passed in

the first 16 odd-numbered f registers. Double-precision arguments are passed in registers d0 through

d30. Quad-precision arguments are passed in registers q0 through q28. Floating-point return val-

ues appear in the floating-point registers. Single-precision values occupy f0; double-precision values

occupy d0; quad-precision values occupy q0”(SPARC International, 1997).

5.3.7 Stack Frames

In the previous sections we focused on available registers across processor architectures and their

utilization within the calling conventions. Now we give a brief overview on caller stack frames and

compare their structure.

Figure 5.12 illustrates the layout structure of the caller stack frame for different processor architectures

and calling conventions as they are stored at the top of stack directly after a machine-level function

call is executed. The width of each cell in the figure is equal to the bits of the architecture.

A significant difference between the five architecture families is how the return address is passed. RISC

architectures use a link register which is loaded with the return address. On the x86 architecture the

return address is pushed as the last element on the stack, denoted “ret” in Figure 5.12.

Alignment Homing area

Calling Convention Offset Size

x86-32 4 - -

x86-32-osx 16 - -

x86-64-sysv 16 - -

x86-64-x64 16 8 32

ppc32-sysv 16 - -

ppc32-osx 16 24 32

arm32-aapcs 8 - -

mips32-o32 8 0 16

mips32-eabi 8 - -

mips64-n64 16 - -

mips64-n32 16 - -

sparc-v8 16 68 24

sparc-v9 16 128 48

Table 5.7: Comparison of stack frame characteristics.

5.3. PROCESSOR ARCHITECTURE FAMILIES 167

...

args⊥
ret

...

args⊥
ret

...

args

home

⊥
ret

...

args

lr

link⊥

...

args

home

res

lr

cr

link⊥

...

args ⊥

...

args

home

⊥

...

args⊥

...

args

home

valref

regwin

⊥

...

args

home

regwin

⊥

cdecl sysv x64 sysv osx aapcs o32 n32/64 v7/v8 v9

x86-32 x86-64 eabi

x86 ppc arm mips sparc

Legend:

args arguments on stack. lr save area for link register.

ret return address. res reserved space for kernel.

home homing area for parameter regs. regwin save area for register window.

link back-chain to previous call frame. valref address for large return values.

cr save area for control register. ⊥ point of alignment.

Figure 5.12: Comparison of the memory layout of stacks.

168 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

The topmost element of each stack frame needs to be aligned to a specific memory boundary. Note

the point of alignment for x86 stack frames is above the return address. Table 5.7 gives an overview of

different alignment requirements; 8-byte or 16-byte memory boundaries are typically here but x86-32

simply uses 4-byte alignment and thus has effectively no alignment requirements. However, the Mac

OS X ABI for IA-32 (Apple Inc., 2010b, p.43), which is based on x86-32, prescribes a 16-byte memory

boundary. Alignments larger than 16-byte are also possible; as a special case for the x86-64-sysv

ABI, the stack frame needs to be aligned at a 32-byte memory boundary if the __m256 data type

(256-bit x86-64-specific SIMD C data type extension) is used as an argument type (Matz et al., 2012,

p.16).

The homing area (denoted “home” in Figure 5.12) is part of the stack frame of some ABIs, such as

x86-64-x64, ppc32-osx, mips-o32 and sparc-v8/v9, and serves as a place holder for contents of

parameter registers. This can be used to give arguments a memory location and reference if needed.

For example, when the address of a function’s parameter is requested by C code values in the registers

can be saved to their home location on the stack. See Table 5.7 for an overview of sizes and offsets (in

bytes) to the top of stack. It is worth noting that the homing area is located right before the argument

region starts so that when all parameters in registers are saved to their “home location” the complete

argument list is available serialized in stack memory, which can be suitable for the purpose of iterating

over the arguments (possibly in a sub-routine). For example, the standard C variadic argument macros

va_list , va_start , va_arg and va_end , defined in the C standard header file stdarg.h, provide an

argument iterator for C ellipsis function call arguments. However, for architectures with dependencies

between integer and floating-point parameter registers it is often infeasible to implement a generic

assembly routines which save all parameter registers to the homing area simultaneously without

knowledge of the exact sequence of types for the first arguments. While homing areas have a fixed

size that matches the content of only the integer-based parameter registers, floating-point parameter

registers are usually mapped to the integer parameters registers. In order to support integer and,

in particular, float and double arguments passed via floating-point registers, a specific sequence of

instructions is needed that matches the types of arguments.

Some ABIs use a homing area while others omit them, even on the same architecture. There exist

alternative techniques that can be used for dynamic allocation of homing areas (e.g. by using local

variable storage below the callee stack frame). A generic callback handler framework is discuss in

Section 5.5.

A notable detail of the stack frame of sparc-v9 is that stack and frame pointer registers are biased

by 2047 bytes towards lower addresses. “This changes the reach of stack relative addressing that uses

a 13-bit signed immediate operand of load and store instructions. With the bias, the forward reach

is sacrificed but the code can address more of the older stack content.”(Jermár, 2007, p.27) Another

percularity of stack frames on sparc-v7/v8 ABI is the valref field which explicitly reserves storage

for passing memory references for large return values to the callee; the convention in other ABIs is to

inject a first hidden parameter in the calling sequence.

5.3. PROCESSOR ARCHITECTURE FAMILIES 169

In summary the layout of stack frames vary among architectures. While some calling conventions are

simple others can be quite complex. Even on a single architecture, such as PowerPC, the stack frames

can differ significantly, depending on the software convention if, for example, a homing area is defined

or whether further management information is part of a stack frame (for example, the system-reserved

fields on ppc32-osx denoted “res” in Figure 5.12). It is also noticeable that SPARC uses a very large

stack frame structure due to the register window (the large region at the top denoted “regwin” in

Figure 5.12).

5.3.8 Data Representation

The mapping scheme between C and machine data types has a significant influence on the calling

convention for the selection of registers and the allocation of the stack location, as well as for the

memory layout of composite data types.

For a long time the machine-level data type of the C int data type was decided by the recommendation

that “ int will normally be the natural size of a particular machine”(Kernighan and Ritchie, 1988,

p.36) and it was widely adopted on 16- and 32-bit architectures. However, with the rise of 64-bit

computing, this rule was discontinued for practical reasons. The changeover from 32-bit to 64-bit

offers a much larger address space for handling large data but it also doubles the size of C pointers and

thus leads to a significant increase of memory consumption. Although the average amount of available

main memory also increased, the memory bus still remains the bottleneck of performance. CPUs use

fast multi-level cache memory to speed up the processing of data with good locality. “A much larger

practical effect in some commercially important applications comes from the consumption of additional

memory and the costs of transporting that memory throughout the system. 64-bit integers require

twice as much space as 32-bit integers. Further, the latency penalty can be enormous, especially to

disk, where it can exceed 1,000,000 CPU cycles (3 nsec to 3 msec). int is by far the most frequent

data type to be found (statically and sometimes dynamically) within C and C++ programs.”(The

Open Group, 1997) int is also frequently used as the base type of arrays and within the fields of data

records in countless programs so that data objects that once were fitting in a single cache line would

be spreaded across several cache lines due to 64-bit int types.

C Data Model s
h
o
r
t

i
n
t

l
o
n
g

l
o
n
g
l
o
n
g

v
o
i
d
*

Platforms

ILP32 16 32 32 64 32 32-bit Execution Environment on IA64.

LLP64 16 32 32 64 64 Microsoft Windows 64-bit.

LP64 16 32 64 64 64 System V AMD64 (Linux, Mac OS X, BSD)

ILP64 16 64 64 64 64 HAL Computer Systems port of Solaris to SPARC 64

SILP64 64 64 64 64 64 Unicos

Table 5.8: Overview of 64-bit C programming models.

170 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

As a compromise several 64-bit C programming models were designed as depicted in Table 5.8. Each

data model uses a different 32/64-bit mapping of fundamental C integer-based data types. The data

models are abbreviated using a type signature scheme that gives a subset of data types and followed

by a particular bit size mapping. The most common programming models are LP64 on Unix-based

systems and LLP64 on Microsoft Windows system; both differ by the size of the long data type while

the int data type remains a 32-bit machine word.

However the data model does not reveal the alignment in memory. The alignment of a data type

specifies restrictions for the memory address location imposed by memory caching and bus hardware.

Most processor architectures permit explicit memory access on unaligned addresses. However, some

other architectures trigger a memory bus exception such as SPARC architectures.

ABI specifications provide information about the size, alignment and encoding of machine data types.

However, alignment and sizes can also be determined emipirically. Listing 18 gives the C code of a

program that determines the size and alignment properties for basic C data types. We make use of the

built-in C function sizeof to determine the size of a data type. For the computation of the alignment

of a data type we use the following schema: For each data type an inline C structure data type is

defined that begins with a 1-byte field and followed by a second field with the corresponding data type

whose alignment needs to be detected. The compiler is forced to align the offset of the second field to

the alignment requirements of its data type. Thus, the alignment is equal to the offset of the second

field which can be retrieved via the C macro offsetof .

#include <stdio.h>

#include <stddef.h>

#define alignof(X) offsetof(struct { char c; X member; }, member)

int main(int argc, char* argv[]) {

#define X(Y) printf(#Y "\t%ld\t%ld\n", sizeof(Y), alignof(Y));

X(_Bool)

X(char)

X(short)

X(int)

X(long)

X(long long)

X(double)

X(float)

X(void*)

X(long double)

return 0;

}

Listing 18: Program to determine the size and alignment of C data types.

We give an overview of sizes and alignments of C data type implementations for several platforms in

Table 5.9. Both properties are given with the format “〈size〉:〈alignment〉”; a single number implies

natural alignment i.e. the alignment is equal to the size.

Across the spectrum of 32- and 64-bit target platforms of our survey a subset of C data types is

consistently mapped to machine data types with a common size and natural alignment, such as 8 bit

char , 16 bit short and 32-bit int and float . long long and double are mapped as 64 bit data types.

5.3. PROCESSOR ARCHITECTURE FAMILIES 171

ABI _
B
o
o
l

c
h
a
r

s
h
o
r
t

i
n
t

l
o
n
g

l
o
n
g
l
o
n
g

f
l
o
a
t

d
o
u
b
l
e

p
o
in

te
r

l
o
n
g
d
o
u
b
l
e

x86-32-sysv 1 1 2 4 4 8:4 4 8:4 4 12:4

x86-32-osx 1 1 2 4 4 8:4 4 8:4 4 16

x86-32-win32 1 1 2 4 4 8 4 8 4 8

x86-32-mingw32 1 1 2 4 4 8 4 8 4 12:4

x86-64-sysv 1 1 2 4 8 8 4 8 8 16

x86-64-x64 1 1 2 4 4 8 4 8 8 8

arm32-aapcs 1 1 2 4 4 8 4 8 4 8

arm32-apcs 1 1 2 4 4 8:4 4 8:4 4 8:4

arm32-ios 1 1 2 4 4 8:4 4 8:4 4 8:4

arm64-aapcs 1 1 2 4 4/8 8 4 8 8 16

sparc32-v8 1 1 2 4 4 8 4 8 4 16:8

sparc64-v9 1 1 2 4 8 8 4 8 8 16

ppc32-sysv 1 1 2 4 4 8 4 8 4 8

ppc32-osx 4 1 2 4 4 8:4 4 8:4 4 16

ppc32-eabi 1 1 2 4 4 8 4 8 4 16:8

ppc64-sysv 1 1 2 4 8 8 4 8 8 16

mips32-o32 1 1 2 4 4 8 4 8 4 8

mips32-eabi 1 1 2 4 4 8 4 8 4 8

mips64-n64 1 1 2 4 8 8 4 8 8 16

mips64-n32 1 1 2 4 4 8 4 8 4 16

ia64-linux 1 1 2 4 8 8 4 8 8 16

hppa-linux 1 1 2 4 4 8 4 8 4 8

Table 5.9: Overview of data representations of C Data Types. The quantities give the size in bytes.

Alignment requirements other than natural alignments (i.e 6= size) are given separated by ‘:’.

However, on several platforms the alignment is less restrictive i.e. 4-byte instead of 8-byte alignment.

Due to different 64-bit programming models, the long type significantly differs across ABIs of 64-bit

architectures, such as on the x86-64 architecture; long occupies 4 bytes on 64-bit Windows and 8

bytes on 64-bit System V platforms. The _Bool data type is usually implemented as a single byte

except on Mac OS X for PowerPC 32-bit architectures where it occupies 4 bytes of memory. The size

of C pointers (i.e. memory addresses) is directly related to the bits of an architecture.

We also include the size and alignment properties of the C long double data type; the different sizes

among platforms indicates that different floating-point formats are used. x86-32 platforms utilize the

x87 FPU which uses an 80-bit extended-precision format internally. Since the stack is always 4-byte

aligned on x86 12 bytes instead of 10 bytes are used for storage. Mac OS X on x86 also uses extended-

precision as storage format but adds a padding of 6 bytes to ensure 16-byte alignment. Microsoft

Windows platforms, whether on 32- or 64-bit architectures, use double for the implementation of

long double . SPARC and PowerPC architectures have support for 128-bit quad-precision floating-

172 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

point arithmetic and thus use 16 bytes of storage. MIPS 32-bit uses 64-bit double-precision formats

for the implementation of long double , while on MIPS 64-bit architectures 128-bit quad-precision

floating-point data types are used.

5.3.8.1 Computation of offsets

The C standard does not specify the size and alignment of basic C data types nor how the memory

layout of member fields is computed. However, analogous to the implementation of function calls

at machine-level, ABI specification give details for the layout of composite data types. Figure 5.13

illustrates the variety of memory layouts of a struct data type on three platforms.

struct {

short a;

long b;

int c;

long long d;

char e;

};

x86-32 x86-64-x64 x86-64-sysv

Fields size align offset size align offset size align offset

a 2 2 0 2 2 0 2 2 0

b 4 4 4 4 4 4 8 8 8

c 4 4 8 4 4 8 4 4 16

d 8 4 12 8 8 16 8 8 24

e 1 1 20 1 1 24 1 1 32

end 21 25 33

total 24 4 32 8 40 8

0 8 16 31

short pad

long

int

long long

e pad

0 8 16 32 64

short pad long

int pad

long long

e pad

0 8 16 32 64

short pad

long

int pad

long long

e pad

Figure 5.13: Layout of C struct data types on different architectures.

In general, the offset of a member within a C struct data structure depends on the layout of previous

members in the sequence. The compiler has to account for a location next to the nearest free byte offset

that matches the alignment of its member type. Furthermore, the maximum alignment requirement

of its members is used as the total alignment requirement for the data structure object.

The following algorithm is used in the rdyncall R package for the computation of struct and union

fields from type signatures as discussed in Section 4.5:

5.3. PROCESSOR ARCHITECTURE FAMILIES 173

Algorithm Given a definition of a C struct data type T with an ordered sequence of n field types

FT = {ft1, ft2, .., ftn} and a platform-specific type information database with two query functions,

Qs(t) and Qa(t), to obtain the size and alignment of the type t, we will compute corresponding field

offsets o1, o2, .., on (in bytes) and the size Qs(T) and alignment Qa(T) of the struct data type T.

For the set of fundamental C types B (char , int , float etc..) the size and alignment properties are

predefined i.e. the query functions Qs(t) and Qa(t) are predefined ∀ t ∈ B.

For example, on the x86-32-sysv platform, the following query functions are predefined for int and

double :

Qs(int) = 4

Qa(int) = 4

Qs(double) = 8

Qa(double) = 4

Let align(m, a) be the aligned address of memory address m to the alignment requirement a:

align(m, a) =

⌊
m + a− 1

a

⌋
a

Let O = o1, o2, .., on be the output sequence of field offsets, and o1 be initialized to zero:

o1 = 0

The field offsets o2..on are then computed in sequence as follows:

oi = align(oi−1 + Qs(ti−1), Qa(ti)) , i = 2..n

Then the alignment and size of the struct type T can be computed as follows:

Qa(T) = max(Qa(t1), Qa(t2), ..., Qa(tn))

Qs(T) = align(on + Qs(tn), Qa(T))

174 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

In order to compute the size and alignment of struct T, the alignment and size of all field types ti need

to be known or have to be computed in advance. When the computation of struct T is completed

so that the size Qs(T) and alignment Qa(T) is known, other data struct or union data types, which

contain struct T as field type, can be computed given that the size and alignment requirements of

all other field types are also known.

Analoguous to the above, the size and alignment of C union types can be computed; however, all field

offsets need to be set to zero.

Note that compilers also offer flags and #pragma instructions to enable structure packing which removes

any paddings but these is not used very frequently. If multiple packing schemes need to be supported,

we suggest to use several profiles of base type size/alignment configurations which can be changed at

run time.

An implementation of this algorithm, written in R, is available in the rdyncall source package on

CRAN, in file R/dynstruct.R.

5.4. DYNAMIC FUNCTION CALLS 175

5.4 Dynamic Function Calls

In this section we discuss the open-source dyncall software library, which offers a portable C API for

making calls to precompiled native functions of diverse function type with support for several calling

conventions. The library was ported across several platforms and includes support for a variety of

ABIs and calling conventions, which we discussed in Section 5.3. dyncall serves as a portability layer

for the implementation of dynamic call facilities, such as dynamic FFIs, in scripting languages.

We give an introduction to the challenging problem of implementing a dynamic FFI portably in C

using the example of R’s Static FFI function .C . We then discuss our approach, the design of the

library and API, followed by examples of its usage. Included here is a brief description of the libraries

use as an implementation of .dyncall for the Dynamic R FFI (see Section 4.3). We then describe the

implementation architecture and discuss ports to different processor architectures and ABIs, including

details of implementation in C and assembly languages.

5.4.1 Introduction

FFIs require a flexible “caller code” that supports diverse function types. In addition, it is a desireable

goal to base the implementation on a portable language, such as C.

Since C is a static typed language, the target function type of a C call expression is of constant

type and is unchangeable after compilation. As a result, a specific caller code is needed to support a

particular function type. However, for a generic solution in C, code is needed for all different kinds

of variations of function types; the code size would explode. While the C standard offers a couple of

“portable” interfaces for advanced language features, such as variadic function types, there does not

exist a C standard interface for dynamic composition of calls at run-time.

Static FFIs can be implemented in C by limiting the range of supported C function types. For example,

.C offers support for calling C functions with return type void , and up to 65 parameter types; the

latter must all be of type “data pointer” such as int* (for logical and integer), and double* for

(numeric). Such a solution is a compromise.

We now take more closer look at the implementation of .C by using an excerpt of the source code

given in Listing 19. In a first step all R atomic vector arguments to be passed to C are saved in

a C array of data pointers, referencing the first element – recall that R value objects are vectors,

represented as C arrays. In a second step caller code is selected (in a switch) based on the number

of arguments. Each caller code handles a function type with a different number of arguments, all of

which have a parameter type of void* . The actual arguments are picked from the array of step 1.

Note that the R argument types and C parameter types are not considered in this process for selection

of a caller code. This makes the number of cases to be handled relatively small.

In general, arguments of type “data pointer”, such as void* , int* or float* , are passed consistently

at machine-code level, regardless of the base type. Thus, a specific caller code for a particular number

176 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

/* .C() {op=0} or .Fortran() {op=1} */

SEXP attribute_hidden do_dotCode(SEXP call, SEXP op, SEXP args, SEXP env)

{

void **cargs;

/* ... */

cargs = (void**) R_alloc(nargs, sizeof(void*));

nargs = 0;

/* ... */

for(pargs = args ; pargs != R_NilValue; pargs = CDR(pargs)) {

/* ... */

cargs[nargs] = RObjToCPtr(CAR(pargs), naok, dup, nargs + 1,

Fort, symName, argConverters + nargs,

checkTypes ? checkTypes[nargs] : 0,

encname);

nargs++;

}

/* ... */

switch (nargs) {

case 2:

fun(cargs[0], cargs[1]);

break;

case 3:

fun(cargs[0], cargs[1], cargs[2]);

break;

/* ... */

case 10:

fun(cargs[0], cargs[1], cargs[2], cargs[3], cargs[4],

cargs[5], cargs[6], cargs[7], cargs[8], cargs[9]);

break;

/* ... */

case 30:

fun(cargs[0], cargs[1], cargs[2], cargs[3], cargs[4],

cargs[5], cargs[6], cargs[7], cargs[8], cargs[9],

cargs[10], cargs[11], cargs[12], cargs[13], cargs[14],

cargs[15], cargs[16], cargs[17], cargs[18], cargs[19],

cargs[20], cargs[21], cargs[22], cargs[23], cargs[24],

cargs[25], cargs[26], cargs[27], cargs[28], cargs[29]);

break;

/* ... */

case 65:

/* ... */

default:

errorcall(call, _("too many arguments, sorry"));

}

/* ... */

}

Listing 19: C Implementation of R’s Static FFI .C ; we give an excerpt from file src/main/dotcode.c

at line 1600 of R 2.14 and omit several blocks of code in between.

of arguments can make calls to all functions where the parameter types are all data pointers, regardless

of the base type of each data pointer; the value of a pointer is just a memory address. However, each

argument needs to be coerced to a specific R object type in advanced in order to achieve type-safety

on the callee side in C.

In summary, .C passes all R objects as a C data pointers, referencing the first data element. The

argument vector of S-Expressions is transformed to a C array in a generic way by using a fixed byte

offset from a header of an S-Expression to its first element; no detailed type checking on a per argument

basis is needed in order to build up a generic sequence of C arguments. In a second step a generic

call code for data pointers is select from of 65 cases. This leads to a relatively small and portable

implementation in C.

5.4. DYNAMIC FUNCTION CALLS 177

This simplified implementation of a FFI causes difficulties for extension developers; type checking

and value conversion need to be implemented by R wrapper code, and function calls need to be

implemented by C wrapper code.

Dynamic FFIs overcome the limitations of static FFIs since they significantly expand the number of

supported C function types, and thereby, they can also take care of type checking and value conversion.

However, it is not feasible to write a generic implementation in C. While data pointers are all handled

in the same way for a particular calling convention, this is not the case for other basic data types of

C. Thus a dynamic call interface needs to take account of ABI-specific machine-level details.

5.4.2 Objective

We discuss a portable software library with a C interface that provides an abstraction layer to the

calling sequence at machine level. Our objective is to offer this layer as a dynamic service for native

execution environments that carries out conforming calls to precompiled functions of arbitrary function

type, where the latter is specified as part of the interface by the user.

In this context, the term dynamic applies in two senses: First, the service should offer a generic solution

that functions dynamically at run time with support for a large spectrum of function types. Second, the

service should operate through a C API comprising functions to compose function calls in a step-wise,

successive, dynamic manner, ideal for dynamic execution environments such as interpreters. Since

several calling conventions may exist on a single native platform, we consider a software architecture

that encapsulates a driver of a specific calling convention.

5.4.3 Approach

The compiler implements a function call as a sequence of machine code instructions where the selection

of instructions and the exact sequence is not fixed. Some platforms host a variety of C compilers where

each code generator can produce different sequences of machine code. Even a single compiler can be

operated in a specific mode for optimization that leads to different series of instructions depending on

whether the aim is to debug the code, increase execution performance or reduce the code size. But

as long as both sides of the call comply with a common calling convention, the caller and callee are

compatible and the function call should work.

Effectively, at the point of the machine-level call instruction, the state of the machine-level resources

related to the passing of arguments is precisely defined. For the callee side of a function call, it

is important that argument values are to be found in specific locations on the call stack and/or in

registers. More precisely, a conforming function call is given to the callee if there is a stack frame at

the top of stack with an exact layout of data fields, and a number of registers of the set of registers for

passing arguments are loaded with arguments values, possibly promoted and converted to a platform-

specific encoding format. The precise layout of the frame, rules for promotion and alignment of

178 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

argument values and assignment of values to data fields on the stack and to registers is determined

by an algorithm (defined by a calling convention) and the C function type (for a specific case of an

implementation of a function or a call).

Thus, since the calling convention does not prescribe a specific sequence of instrutions right before

the final call instruction, and there is a deterministic algorithm that specifies the exact locations for

arguments based on the sequence of argument types and values, we can use a programming interface

that allows users to compose a function call by given the sequence of arguments in a step-wise manner

where the values are buffered. We then work out the call by setting up a stack frame and loading of

registers that correspond to the current function type and calling convention on the platform.

While we cannot address precise manipulations of the call stack and register content in C, we can

do this in assembly language. Since the stack frame for a function call is a linear block of memory

and a fixed subset of registers are used for passing arguments, we use a small call routine written

in assembly language, named the Call Kernel, to carry out function calls in a generic manner. It

implements copying transactions to registers and the stack, followed by the call machine instruction.

The Call Kernel is passed an image of the content for the call stack and registers to be copied to the

top of the call stack and to be loaded into register files, respectively. The preparation of image data for

the call stack frame and register contents is based on the sequence of argument values and paramater

types. This is implemented in C and includes details for assignment of values to stack and/or register

buffers, value promotion and encoding, and alignment of data fields on the stack.

5.4.4 Architecture

We define an abstract object, named the Call VM (Call Virtual Machine), which encapsulates the

details for carrying out calls that conform to a specific calling convention. The interface consists of a

portable C API for the specification of calls with support for diverse function types. An implementation

of this abstract object provides support for one or more specific calling conventions, implemented for

a particular processor architecture. Internally, a Call VM can switch between different drivers to

support multiple calling conventions. We give a detailed description of the internals in Section 5.4.7.

We now look closer at the interface. In general, a “call” to a function can be characterized by the

following attributes:

• Function type specific information:

– Calling convention

– Return type

– Sequence of parameter types

• Call specific information:

5.4. DYNAMIC FUNCTION CALLS 179

– Sequence of argument values

– Address of target function

An implementation of a Call VM represents a state machine, where the parameters of the above are

specified via a sequence of interface function calls. The total sequence for the specification of a single

call is decomposed into three phases:

1. Preparation:

(a) Mode: Specification of the calling convention. This step is optional. A Call VM is initially

configured to perform function calls that conform to the default C calling convention of

the target platform. Users may change this configuration and choose a language-specific

(e.g. C++) or platform-specific (e.g. system calls or System DLLs on Microsoft Windows)

calling convention for subsequent function calls. As a consequence, the current driver of a

Call VM object is switched to a different implementation.

(b) Reset: A Call VM is a reusable object for making numerous consecutive calls to different

functions. Before performing the next function call the Call VM state needs to be reset,

so that the internal buffers for argument values are cleared and a specification of a new

sequence of arguments (Step 2) can be started.

2. Load arguments: A group of interface functions is declared to specify the argument value and

corresponding (argument and parameter) type. The sequence of arguments is specified by a

corresponding sequence of calls to these interface functions, in accordance with the declaration

order of parameter types of the target function from “left to right”.

3. Call the target function: A group of “call” functions is defined in the interface of the Call VM.

For each supported return type a corresponding interface function is available. The return type

and target address are specified as a last step. As a result, the foreign function call is carried

out by the service and the return value is passed back via the interface function.

Figure 5.14 gives the automata state machine diagram and the corresponding C interface calls for

carrying out foreign function calls via dyncall. At the bottom of the figure we give an illustration to

derive the sequence of dyncall API calls from the C declaration of the foreign function type.

5.4.5 Interface

The API of dyncall is accessible via inclusion of a single C header file dyncall.h:

#include "dyncall.h"

We use a consistent naming scheme for elements of the C interface in order to prevent naming conflicts

with other C APIs; the following table gives an overview:

180 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

new

setup

reset

args load
yes

call

no

reuse

free

no

yes

other calling convention

new function call

recall different target

1

2

3

new:

DCCallVM *vm;

vm = dcNewCallVM(4096); // use 4096 bytes for buffer

setup:

dcMode(vm, DC_CALL_C_DEFAULT);

reset:

dcReset(vm);

// Example C Call:

// pSurf = SDL_SetVideoMode(640,480,32,SDL_OPENGL)

load:

dcArgInt(vm, 640); // 1. arg ’width’

dcArgInt(vm, 480); // 2. arg ’height’

dcArgInt(vm, 32); // 3. arg ’bpp’

dcArgInt(vm, SDL_OPENGL); // 4. arg ’flags’

call:

pSurf = dcCallPointer(vm, &SDL_SetVideoMode);

if (again) {

if (other_callconv) goto setup;

if (new_args) goto reset;

if (recall) goto call;

}

free:

dcFree(vm);

Matching the calling sequence using C prototypes:

SDL_Surface* __cdecl SDL_SetVideoMode(int width, int height, int bpp, unsigned int flags);

C Type Function

(unsigned) int → dcArgInt

float → dcArgFloat

any * → dcArgPointer

...

C Type Function

void → dcCallVoid

(unsigned) int → dcCallInt

any * → dcCallPointer

...

from left to right

dcArg<ArgType>(vm,value)

Calling

Convention

1. arg 2. arg 3. arg 4. argreturn type symbolic name

dcCall<ReturnType>(vm,addr)

dcMode(vm,id)
(optional)

1

2

3

Figure 5.14: State Machine diagram for calling functions via the Call VM (left), an example of using

the C API (right) and matching the calling sequence from the C function prototype definition(below).

5.4. DYNAMIC FUNCTION CALLS 181

API elements Verb chaining Prefix Example

Functions camel-case dc dcArgPointer

Types camel-case DC DCCallVM

Symbolic constants upper-case and underscore DC_ DC_CALL_C_DEFAULT

All C API function names are prefixed dc , derived from ‘d’yn-‘c’all. Names of types and symbolic

constants use an upper-case variant. The chain of verbs in function and type names use a camel-case

encoding2. Symbolic constants are defined with upper-case letters using underscores to separate verbs.

We declare typedef alias types for all supported C types (e.g. DCint is an alias to int); space

separators in C standard type are ignored in this mapping (e.g. DClonglong is an alias to long long).

Call VMs are self-contained service objects, so that no global variables are used and multiple Call VM

objects can co-exist e.g. one for each thread of execution in a multi-threaded execution context.

5.4.5.1 Constructor

The constructor function dcNewCallVM creates a new Call VM object and returns a pointer of type

DCCallVM* as a reference; for the rest of the Call VM API functions this pointer is always passed as

the first argument.

DCCallVM * dcNewCallVM (DCsize size);

We use an internal memory buffer for the preparation of foreign function calls. The size parameter

gives the size in bytes of internal memory that should be allocated internally; it effectively limits the

maximum number of argument values that can be buffered (a size of 4096 bytes is typically used which

is large enough to prebuffer arguments for almost all cases i.e. 512-1024 arguments).

5.4.5.2 Phase 1: Preparation

The initial state of a newly created Call VM object is an empty sequence of arguments. After loading

arguments and making a call, the buffered arguments are not automatically removed; any subsequent

use of the Call VM for making calls to other functions using a different sequence of arguments requires

resetting the state machine to the initial state. This is performed by the function dcReset :

void dcReset(DCCallVM* vm);

Call VMs are configured for a specific calling convention which is initially set to the default C calling

convention of the platform. However, users can change the calling convention as part of the preparation

phase via the API function dcMode :

2A single upper-case character indicates a new verb in the symbol name.

182 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

void dcMode (DCCallVM* vm, DCint mode);

The argument mode gives the identifier number; for each supported calling convention a corresponding

symbolic constant is defined. Thereby two kinds of symbolic constants can be identified: language

specific identifiers and calling convention specific identifiers. The former is available to all platforms

while the latter should be used on particular target platform only.

Currently, three language-specific identifiers are defined:

• DC_CALL_C_DEFAULT refers to the standard C calling convention,

• DC_CALL_C_ELLIPSIS refers to the ellipsis calling convention and

• DC_CALL_SYS_DEFAULT refers to the system call calling convention.

In addition, symbolic constants for the following platform-specific calling conventions exists.

#define DC_CALL_C_X86_CDECL 1

#define DC_CALL_C_X86_WIN32_STD 2

#define DC_CALL_C_X86_WIN32_FAST_MS 3

#define DC_CALL_C_X86_WIN32_FAST_GNU 4

#define DC_CALL_C_X86_WIN32_THIS_MS 5 // C++ this calls

#define DC_CALL_C_X86_WIN32_THIS_GNU 6 // C++ this calls

#define DC_CALL_C_X86_PLAN9 19

#define DC_CALL_C_X64_WIN64 7

#define DC_CALL_C_X64_SYSV 8

#define DC_CALL_C_PPC32_DARWIN 9

#define DC_CALL_C_PPC32_SYSV 13

#define DC_CALL_C_ARM_ARM 14

#define DC_CALL_C_ARM_ARM_EABI 10

#define DC_CALL_C_ARM_THUMB 15

#define DC_CALL_C_ARM_THUMB_EABI 11

#define DC_CALL_C_MIPS32_O32 16

#define DC_CALL_C_MIPS32_EABI 12

#define DC_CALL_C_MIPS64_N32 17

#define DC_CALL_C_MIPS64_N64 18

#define DC_CALL_C_SPARC32 20

#define DC_CALL_C_SPARC64 21

#define DC_CALL_SYS_X86_INT80H_LINUX 201

#define DC_CALL_SYS_X86_INT80H_BSD 202

5.4.5.3 Phase 2: Load argument

Arguments are “loaded” via functions; their name begins with a common prefix dcArg followed by

the C type name (in camel-case notation).

For each supported parameter type there is a interface function to specify the next argument value in

the calling sequence; the parameter type is implicitly specified by the chosen function. The direction

is always left-to-right in accordance to the declaration of the function type in the foreign language.

During buffering of the sequence of argument types and values, internals of the Call VM perform the

necessary operations, such as assignment to stack and register buffers, promotion of argument values

to larger sizes, and also updating of internal state variables.

5.4. DYNAMIC FUNCTION CALLS 183

void dcArgBool (DCCallVM* vm, DCbool value);

void dcArgChar (DCCallVM* vm, DCchar value);

void dcArgShort (DCCallVM* vm, DCshort value);

void dcArgInt (DCCallVM* vm, DCint value);

void dcArgLong (DCCallVM* vm, DClong value);

void dcArgLongLong (DCCallVM* vm, DClonglong value);

void dcArgFloat (DCCallVM* vm, DCfloat value);

void dcArgDouble (DCCallVM* vm, DCdouble value);

void dcArgPointer (DCCallVM* vm, DCpointer value);

All integer data are regarded as signed data types; unsigned parameter types are indirectly supported

via type casting to corresponding signed types in advance.

Intensive testing verified that this method is sufficient in practice except for one very specific test

case3 that was identified only recently and only for one specific platform (ppc32), compiler settings

and value transfer (to provoke an overflow). Therefore, it is planed to extend the interface for unsigned

data types in a new version of dyncall.

5.4.5.4 Phase 3: Call function

After all arguments have been buffered, the target function can be called by selecting the return type.

For each supported return type there is a type-specific interface function to specify the return type

(implied by the chosen function) and the address of the target function.

DCbool dcCallBool (DCCallVM* vm, DCpointer funcptr);

DCchar dcCallChar (DCCallVM* vm, DCpointer funcptr);

DCshort dcCallShort (DCCallVM* vm, DCpointer funcptr);

DCint dcCallInt (DCCallVM* vm, DCpointer funcptr);

DClong dcCallLong (DCCallVM* vm, DCpointer funcptr);

DClonglong dcCallLongLong (DCCallVM* vm, DCpointer funcptr);

DCfloat dcCallFloat (DCCallVM* vm, DCpointer funcptr);

DCdouble dcCallDouble (DCCallVM* vm, DCpointer funcptr);

DCpointer dcCallPointer (DCCallVM* vm, DCpointer funcptr);

Phase two and three of the interface are summarized in Table 5.10. For each supported C type

corresponding “load argument” and “call” functions are offered by the interface, except for void ,

which gives no argument value.

5.4.5.5 Freeing resources

When a Call VM object is not needed, it can be destroyed via dcFree :

void dcFree(DCCallVM* vm);

3The test case is available in the test/sign project folder in the source repository.

184 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

C Type Argument Functions Call Functions

parameters: Parameter Type, Argument Value Return Type, Function Address

prototyp pattern: void dcArg<TYPE>(state,<VALUE>) <RTYPE> dcCall<RTYPE>(state,<ADDR>)

void - dcCallVoid

_Bool dcArgBool dcCallBool

char dcArgChar dcCallChar

short dcArgShort dcCallShort

int dcArgInt dcCallInt

long dcArgLong dcCallLong

long long dcArgLongLong dcCallLongLong

float dcArgFloat dcCallFloat

double dcArgDouble dcCallDouble

any * dcArgPointer dcCallPointer

Table 5.10: C API of dyncall for the specification of calling sequences.

5.4.5.6 Invocation of C++ code

dyncall has support for C++ member function calls. The user has to pass the this pointer as

first parameter. On most platforms, C++ member function calls are implemented using the this

pointer as hidden first argument to function (the C++ method). However, on the x86-32 platform,

the this pointer needs to be placed in a specific register (ecx). Therefore, two calling conventions

(and Call Kernels) are available that need to be selected in advance, namely the symbolic constants

DC_CALL_C_X86_THIS_MS and DC_CALL_C_X86_THIS_GNU , which refer to calling conventions used by code

generated with Microsoft’s Visual C++ and GNU’s GCC compilers, respectively.

5.4.5.7 Invocation of Variadic C Functions

Variadic C functions are supported by a separate calling convention driver, selected via DC_CALL_C_ELLIPSIS .

After positional arguments are loaded, the mode needs to change to DC_CALL_C_ELLIPSIS_VARARG , which

indicates that the arguments that follow are variadic. Note that, as of the current implementation,

the user is still responsible for passing C types that are valid as the variable argument types. For the

variadic part of a calling sequence, float is automatically promoted to double at the caller side. We

have not yet implemented auto-promotion for ellipsis calls (as this would also double the amount of

driver code).

5.4.5.8 Invocation of System Calls

Preliminary support for system calls is given for a small number of x86-32 operating systems. System

calls are selected by a numeric identifier instead of a function pointer; the number is specific to a

5.4. DYNAMIC FUNCTION CALLS 185

particular operating system and identifies a system service. Currently, the user passes the number

via type casting as a function pointer to dcCallVoid or dcCallInt functions. Note that the system

call interface often uses a very limited number of arguments and often does only support a subset of

return and argument types i.e. floating-point types are usually not supported as value types.

5.4.6 Sample Applications

In this section we give two examples for the implementation of a Dynamic FFI in C using the dyncall

API.

5.4.6.1 Variadic function call interface for C

We give a simple example for a dynamic call interface for C. The interface is defined as a function

named tiny_dyncall ; the implementation is as follows:

#include "dyncall.h"

#include <stdarg.h>

typedef union { int i; float f; double d; void* p; } Result;

void tiny_dyncall(DCCallVM* vm, Result* res, void (*fun)(), char const * fmt, ...)

{

va_list ap;

va_start(ap, fmt);

dcReset(vm);

while (*fmt != ’)’) {

switch(*fmt++) {

case ’i’: dcArgInt (vm, va_arg(ap, int)); break;

case ’f’: dcArgFloat (vm, (float) va_arg(ap, double)); break;

case ’d’: dcArgDouble (vm, va_arg(ap, double)); break;

case ’p’: dcArgPointer(vm, va_arg(ap, void*)); break;

}

}

va_end(ap);

switch(*fmt) {

case ’v’: dcCallVoid (vm, fun); break;

case ’i’: res->i = dcCallInt (vm, fun); break;

case ’f’: res->f = dcCallFloat (vm, fun); break;

case ’d’: res->d = dcCallDouble (vm, fun); break;

case ’p’: res->p = dcCallPointer(vm, fun); break;

}

}

The interface consists of several positional parameters: a reference to a previously created CallVM, a

pointer to a union data object for storing return values, a pointer to a C function to be called and a

signature string that encodes the target C function type. Then the arguments to the target function

are passed via

Variadic C functions are implemented by means of macros from the C standard header stdarg.h to

iterate over the sequence of arguments passed after the last positional argument. The macros can

be used to extract the arguments in a step-wise manner, but the type of each argument needs to be

known. Therefore a descriptor, typically a C string, is mostly used as a positional parameter that

186 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

gives the sequence of argument types. We use a signature string that describes the argument types,

followed by a ‘) ’ and the return type as last character. Our interface supports five types: ‘ i ’ for

integers, ‘ p ’ for pointers, ‘ f ’ and ‘ d ’ for single- and double-precision floating-point values, and ‘ v ’

for void return types.

We briefly discuss the standard C macros for the implementation of variadic functions in C (defined

in stdarg.h); in particular, we explain the iteration over the arguments indicated by The data

type va_list is used as an iterator object for the variable argument list; it is initialized via the macro

va_start(va_list ap, last) where last refers to the last positional argument. Arguments are extraced

via the macro va_arg(va_list ap, type) in a step-wise manner. Finally the va_end(va_list ap) macro

gets called to terminate the iteration.

During processing of the arguments, we call corresponding functions to load arguments to the Call

VM. Note that we need to treat float argument types in a special way due to value promotion rules

for ellipsis function calls of the C standard: the set of data types that are passed as ... is limited

to a subset of (promotion target) types; small-sized integer data types are promoted to int while

floating-point values are promoted to double . Support for very large integers (e.g. long long) and

floating-point values (e.g. long double) or non-standard data types of a particular platform is not

specified by the C standard. As we aim to support float via tiny_dyncall , we use a small convention

here: when a float is specified for a function call (as of a ‘ f ’), we assume it is passed auto-promoted

as a double to tiny_dyncall , so that it is converted to float and then to be passed to dyncall’s Call

VM.

After all arguments are loaded and the iteration terminates, we select an appropriate call function

that corresponds to the final signature character and invoke the function call; we store the return

value in a user-allocated union given by the pointer res .

A sample user code for our interface is given below:

#include <math.h>

#include "SDL.h"

void usercode() {

Result r;

DCCallVM* vm = dcNewCallVM(4096);

dcMode(vm, DC_CALL_C_DEFAULT);

tiny_dyncall(vm, &r, sqrt, "d)d", 144.0);

tiny_dyncall(vm, &r, SDL_Init, "i)i", SDL_INIT_VIDEO);

tiny_dyncall(vm, &r, SDL_SetVideoMode, "iiii)p", 640,480,32,SDL_OPENGL);

dcFreeCallVM(vm);

}

We have kept this example relatively simple to give a brief overview of the implementation structure.

At first, the sequence of argument types and values are processed, and then the call is performed.

Real-world implementations of Dynamic FFIs include support for more data types than were used in

this example.

5.4. DYNAMIC FUNCTION CALLS 187

5.4.6.2 Application to the R interpreter

In this section we describe the implementation of the .dyncall FFI to R. As we outlined in Section

4.3.4, .dyncall is a front-end that delegates to dyncall.<MODE> depending on the callmode argument.

In the following code we give the implementation for the default callmode.

.dyncall.default <- function(address, signature, ...)

{

.External("dyncall", callvm.default, address, signature, ..., PACKAGE="rdyncall")

}

It is a front end to the C implementation, which specifies the Call VM as a second argument and

delegates to the C implementation. For example, .dyncall.stdcall is very similar; callvm.default

would be replaced with callvm.stdcall which refers to a Call VM configured to use the stdcall calling

convention (on x86-32 platforms). In the current implementation of the R package rdyncall, we use

a set of callvm.* external pointer objects that represent a reference to a Call VM, i.e. DCCallVM* .

.External is used as the extension interface to C for passing a variable number of arguments to an

R function implemented in C, named "dyncall" in R. Note that the parameter PACKAGE specifies

the R package (and corresponding shared library) for resolving "dyncall" to the address of the C

implementation r_dyncall and it is then dropped from argument list.

The following code gives the head of r_dyncall for extraction of positional arguments, such as

callvm.default , address and signature :

SEXP r_dyncall(SEXP args) // args -> "dyncall", callvm, address, signature, ...

{

args = CDR(args); // NEXT ARG args -> callvm, address, signature, ...

DCCallVM *pvm=(DCCallVM*)R_ExternalPtrAddr(CAR(args)); // extract callvm

args = CDR(args); // NEXT ARG args -> address, signature, ...

if (!pvm) { // ensure

error("Argument ’callvm’ is null"); return R_NilValue; }

if (TYPEOF(CAR(args))!=EXTPTRSXP) {

error("Target address must be external pointer."); return R_NilValue; }

void *addr=R_ExternalPtrAddr(CAR(args)); // extract address

if (!addr) { // ensure addr is not NULL pointer

error("Argument ’addr’ is null"); return R_NilValue; }

const char* signature=CHAR(STRING_ELT(CAR(args)0)); // extract signature

args = CDR(args); // NEXT ARG args -> ...

const char* sig = signature; // init signature iterator

dcReset(pvm); // init callvm

SEXP arg; //

int ptrcnt = 0; // init pointer counter (for prefixes)

int argpos = 0; // init positional counter

In the code the macros CAR and CDR are used to iterate over the S-Expression call object and for

the extraction of arguments, respectively, followed by resetting the Call VM and assignment of local

variables (counter for ‘ * ’ prefixes and argument position counter).

In the following code section the head of the iteration loop is listed; the loop scans the signature string

and stops when it encounters a ‘) ’ signature character (the end of the arguments). Prefixes of ‘ * ’

increment a pointer prefix counter for the support of typed pointers. Otherwise an iteration step for

the argument list is performed (we expect an object signature character).

188 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

for(;;) {

char ch = *sig++; // next char

if (ch == ’)’) break; // ’)’ -> argument terminator

if (ch == ’\0’) { // end of string? (but we are still in the middle!)

error("invalid signature ’%s’: missing ’)’.", signature); return R_NilValue;

}

if (args == R_NilValue) { // end of arguments? (but we already read a type code!)

error("signature ’%s’: not enough args.", signature); return R_NilValue;

}

else if (ch == ’*’) { // pointer prefix?

ptrcnt++; continue; // increment ptrcnt and continue scanning

}

arg = CAR(args); args = CDR(args); argpos++; // iteration-step over R args

int type_id = TYPEOF(arg); // get R object type

If ptrcnt is greater than zero the type of the next argument is a pointer, otherwise it is a scalar specified

by the next type signature character. First we handle the cases for scalar types; the conversion of R

to C values is implemented via a nesting of two switch/cases blocks, where the outer block determines

the target C type and the inner block determines the source R argument object type, so that a precise

conversion can be implemented for each case.

Next we give the conversion to C _Bool , int and float , including a guard code that ensures that

the length of atomic vectors is greater than zero:

5.4. DYNAMIC FUNCTION CALLS 189

if (ptrcnt == 0) { // base type (no pointer prefixes)

// Assert that length() > 0 for anything other than NULL or externalptr.

if (type_id != NILSXP && type_id != EXTPTRSXP && LENGTH(arg) == 0) {

error("arg type mismatch at pos %d: length() must be >0.", argpos);

return R_NilValue;

}

switch(ch) {

case ’B’: { // Convert as _Bool

DCbool boolValue;

switch(type_id) {

case LGLSXP: boolValue = (LOGICAL(arg)[0] == 0) ? DC_FALSE : DC_TRUE; break;

case INTSXP: boolValue = (INTEGER(arg)[0] == 0) ? DC_FALSE : DC_TRUE; break;

case REALSXP: boolValue = (REAL(arg)[0] == 0.0) ? DC_FALSE : DC_TRUE; break;

case RAWSXP: boolValue = (RAW(arg)[0] == 0) ? DC_FALSE : DC_TRUE; break;

default:

error("arg type mismatch at pos %d: expected C bool convertable value", argpos);

return R_NilValue;

}

dcArgBool(pvm, boolValue);

} break;

case ’i’: { // Convert as ’int’

int intValue;

switch(type_id) {

case LGLSXP: intValue = (int) LOGICAL(arg)[0]; break;

case INTSXP: intValue = INTEGER(arg)[0]; break;

case REALSXP: intValue = (int) REAL(arg)[0]; break;

case RAWSXP: intValue = (int) RAW(arg)[0]; break;

default:

error("arg type mismatch at pos %d: expected C int convertable value", argpos);

return R_NilValue;

}

dcArgInt(pvm, intValue);

} break;

case ’f’: { // Convert as ’float’

float floatValue;

switch(type_id)

{

case LGLSXP: floatValue = (float) LOGICAL(arg)[0]; break;

case INTSXP: floatValue = (float) INTEGER(arg)[0]; break;

case REALSXP: floatValue = (float) REAL(arg)[0]; break;

case RAWSXP: floatValue = (float) RAW(arg)[0]; break;

default:

error("arg type mismatch at pos %d: expected C float convertable value",argpos);

return R_NilValue;

}

dcArgFloat(pvm, floatValue);

}

break;

Note, that no R object is created during value conversion; the goal is to minimize interactions with

a garbage collector for each call. Thus no objects are created due to value conversion. We omit the

handling for other types; its implementation is very similar. The next code section gives the conversion

for typed pointers to struct / union data types that are prefixed via ‘ * ’, followed by a ‘ < ’, followed

by a type alias name, and terminated by ‘ > ’in order to support the framework for handling foreign

data types (described in Section 4.5).

190 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

else if (ptrcnt == 1) {

DCpointer ptrValue; // temp storage for pointer value

if (ch == ’<’) { // pattern: ’<’ .. typename .. ’>’

switch(type_id) { // set value support NULL, externalptr and RAW values:

case NILSXP: ptrValue = (DCpointer) 0; break;

case EXTPTRSXP: ptrValue = R_ExternalPtrAddr(arg); break;

case RAWSXP: ptrValue = (DCpointer) RAW(arg); break;

default:

error("internal error: typed-pointer must be NULL,externalptr or raw only.");

return R_NilValue;

}

char const * b = sig; // mark begin ^

while(isalnum(*sig)||*sig==’_’)sig++; // scan name ([A-Za-z0-9_]*)

if (*sig != ’>’) { // we expect a ’>’ -------------^

error("Invalid signature ’%s’ at pos ’%d’: missing ’>’.", signature, argpos);

return R_NilValue;

}

sig++;

// check pointer type:

SEXP structName = getAttrib(arg, install("struct"));

if (structName == R_NilValue) {

error("typed pointer needed here");

return R_NilValue; /* Dummy */

}

char const * e = sig-1;

int l = e - b;

char cosnt * n = CHAR(STRING_ELT(structName,0));

if ((strlen(n) != l) || (strncmp(b,n,l) != 0)) {

error("incompatible pointer types");

return R_NilValue; /* Dummy */

}

dcArgPointer(pvm, ptrValue); // load pointer value to Call VM

ptrcnt = 0; // reset pointer counter

}

In summary, the code checks that external pointers or raw vectors contain an attribute ’struct’ that

equals the name between ‘ < ’ and ‘ > ’ in the signature. Otherwise the case for typed pointers to

scalars is handled, i.e. the signature begins with a ‘ * ’, followed by a signature character for a scalar

type. The implementation also uses two levels of switch/case blocks, similar to the implementation

for passing C scalar values. Since we pass pointers here to the internal C array storage of R atomic

vectors, the mapping rules are strict and effectively implement the rules described in Section 4.3.6.1.

We include the case of ‘ v ’ that refers to the void non-type and thus is a void* argument type which

equals to the code for handling just ‘ p ’. We always accept the NULL and externalptr as values for

any typed pointer signature. The raw object is a fallback for any typed pointers where no matching

implementation type in R exist, such as for float* where users need to pass in R objects created with

the helper function as.floatraw .

5.4. DYNAMIC FUNCTION CALLS 191

else { // sigchar is not ’<’.. so we expect a type character.

switch(ch) {

case ’v’:

switch(type_id) {

case NILSXP: ptrValue = (DCpointer) 0; break;

case STRSXP: ptrValue = (DCpointer) CHAR(STRING_ELT(arg,0)); break;

case LGLSXP: ptrValue = (DCpointer) LOGICAL(arg); break;

case INTSXP: ptrValue = (DCpointer) INTEGER(arg); break;

case REALSXP: ptrValue = (DCpointer) REAL(arg); break;

case CPLXSXP: ptrValue = (DCpointer) COMPLEX(arg); break;

case RAWSXP: ptrValue = (DCpointer) RAW(arg); break;

case EXTPTRSXP: ptrValue = R_ExternalPtrAddr(arg); break;

default:

error("arg type mismatch at pos %d: expected ptr convertable value", argpos);

return R_NilValue;

}

break;

case ’f’:

switch(type_id) {

case NILSXP: ptrValue = (DCpointer) 0; break;

case RAWSXP:

if (strcmp(CHAR(STRING_ELT(getAttrib(arg,install("class")),0)),"floatraw")==0){

ptrValue = (DCpointer) REAL(arg);

}

break;

default:

error("arg type mismatch at pos %d: expected ’floatraw’", argpos);

return R_NilValue;

}

break;

case ’c’:

case ’C’:

switch(type_id)

{

case STRSXP: ptrValue = (DCpointer) CHAR(STRING_ELT(arg,0)); break;

case NILSXP: ptrValue = (DCpointer) NULL; break;

case RAWSXP: ptrValue = (DCpointer) RAW(arg); break;

case EXTPTRSXP: ptrValue = R_ExternalPtrAddr(arg); break;

default:

error("arg type mismatch at pos %d: expected ’C str’ convertable value",argpos);

return R_NilValue;

}

break;

case ’d’:

switch(type_id)

{

case NILSXP: ptrValue = (DCpointer) 0; break;

case REALSXP: ptrValue = (DCpointer) REAL(arg); break;

case EXTPTRSXP: ptrValue = R_ExternalPtrAddr(arg); break;

default:

error("arg type mismatch at pos %d: expected ’C double’ convertable value", argpos);

return R_NilValue;

}

break;

case ’I’:

case ’i’:

switch(type_id)

{

case NILSXP: ptrValue = (DCpointer) NULL; break;

case INTSXP: ptrValue = (DCpointer) INTEGER(arg); break;

case EXTPTRSXP: ptrValue = R_ExternalPtrAddr(arg); break;

default:

error("arg type mismatch at pos %d: expected ’int*’ convertable value", argpos);

return R_NilValue;

}

break;

default:

error("low-level typed pointer on C char pointer not implemented");

return R_NilValue;

}

dcArgPointer(pvm, ptrValue);

ptrcnt = 0;

}

}

}

192 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

At this point the argument iteration is finished as we approached to the ‘) ’. The end of arguments

is checked next.

if (args != R_NilValue) {

error ("Too many arguments for signature ’%s’.", signature);

return R_NilValue; /* dummy */

}

Now the Call VM has been successfully loaded with arguments and we can finally invoke the foreign

function and return the value as an appropriate R object.

switch(*sig++) {

case ’B’:return ScalarLogical((dcCallBool(pvm,addr)==DC_FALSE)?FALSE:TRUE);

case ’c’:return ScalarInteger((int)dcCallChar(pvm,addr));

case ’C’:return ScalarInteger((int)((unsigned char)dcCallChar(pvm, addr)));

case ’s’:return ScalarInteger((int)dcCallShort(pvm,addr));

case ’S’:return ScalarInteger((int)((unsigned short)dcCallShort(pvm,addr)));

case ’i’:return ScalarInteger(dcCallInt(pvm,addr));

case ’I’:return ScalarReal((double)(unsigned int) dcCallInt(pvm, addr));

case ’j’:return ScalarReal((double)dcCallLong(pvm, addr));

case ’J’:return ScalarReal((double)((unsigned long) dcCallLong(pvm, addr)));

case ’l’:return ScalarReal((double)dcCallLongLong(pvm, addr));

case ’L’:return ScalarReal((double)dcCallLongLong(pvm, addr));

case ’f’:return ScalarReal((double)dcCallFloat(pvm,addr));

case ’d’:return ScalarReal(dcCallDouble(pvm,addr));

case ’p’:return R_MakeExternalPtr(dcCallPointer(pvm,addr),R_NilValue,R_NilValue);

case ’Z’:return mkString(dcCallPointer(pvm,addr));

It is also possible that the return type is in prefixed and typed pointer notation. We give the im-

plementation for typed pointers, which returns an external pointer that is tagged with a struct

attribute.

case ’*’: {

SEXP ans;

ptrcnt = 1;

while (*sig == ’*’) { ptrcnt++; sig++; } // count pointers.

switch(*sig) {

case ’<’: {

/* struct/union pointers */

PROTECT(ans = R_MakeExternalPtr(dcCallPointer(pvm,addr),R_NilValue,R_NilValue));

char buf[128];

const char* b = ++sig;

const char* e= strchr(sig, ’>’);

size_t n = e - b;

strncpy(buf, b, n);

buf[n] = ’\0’;

setAttrib(ans, install("struct"), mkString(buf));

setAttrib(ans, install("class"), mkString("struct"));

} break;

case ’C’:

case ’c’: {

PROTECT(ans = mkString(dcCallPointer(pvm,addr)));

} break;

default: error("Unsupported returnt type signature"); return R_NilValue;

}

UNPROTECT(1);

return(ans);

}

default: error("Unknown return type specification for signature ’%s’.", signature);

return R_NilValue; /* dummy */

}

}

Since the handling of typed pointers is not completed for all combinations when returning, we aim to

5.4. DYNAMIC FUNCTION CALLS 193

offer a much more general approach in a future version, where the returned pointer is always passed

as an external pointer that is tagged with the desired pointer type.

5.4.7 Implementation

In this section we discuss the implementation of dyncall and details of back-end ports to several

calling conventions on the supported processor architectures. For some target platforms only one

calling convention is available in dyncall; others offer support for multiple calling conventions that

can be changed during run time. An overview of available ports is given in Table 5.11.

Arch/OS M
ic

ro
so

ft
W

in
d

o
w

s

A
p

p
le

L
in

u
x
,(

N
et

,F
re

e,
O

p
en

)
B

S
D

S
o
la

ri
s

D
ra

g
o
n

fl
y

B
S

D

H
a
ik

u

M
in

ix
3

P
la

n
9

N
in

te
n

d
o

D
S

S
o
n
y

P
S
P

x86-32 cdecl,stdcall,fastcall(ms/gnu),thiscall(ms/gnu) p9 - -

x86-64 x64 sysv - - - - -

ppc32 - osx sysv - - - - - - -

arm32 - aapcs,armhf - - - - - apcs -

mips32 - - o32 - - - - - - eabi

mips64 - - n64 - - - - - - -

sparc32 - - v7/v8 - - - - - -

sparc64 - - v9 - - - - - -

Table 5.11: Overview of supported platforms by dyncall.

dyncall is implemented mostly in C for the Call VM and sparsely in assembly language for the call

kernel. The front-end API functions delegate calls to methods, implemented in C, to promote, align

and assign data to internal buffers for registers and/or the stack. Call kernels represent generic call

services for arbitrary calling sequences but specific ABI and calling convention. They receive pointers

to data buffers and buffer sizes to copy data to registers and the call stack, and a function pointer to

execute the call.

Most call-kernel implementations consist of short code blocks that create new stack frames by decre-

menting the stack pointer register, followed by instructions to copy data from a buffer to the newly

allocated region on the stack. For some calling conventions alignment restrictions of stack frames are

handled by assembly code. For those calling conventions that use registers for passing arguments the

call kernels contain a section of code with a fixed size sequences of “load” instructions to transfer data

from buffers to register storage. Some architectures use a FPU with overlapping floating-point register

formats. In those cases type-specific load instructions are embedded in conditional blocks; selection of

whether single-precision or double-precision values are loaded is based on a bit mask managed from

194 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

C. Furthermore some calling conventions use homing areas that need to be reserved on the stack for

some parameter registers.

The source code of dyncall comprises

• a common code base, including

– API front-end delegation to back-ends in C (dyncall_api.c) and

– a common implementation of the argument buffer in C(dyncall_vector.c), and

• back-end implementations for various architecture-specific calling conventions, including

– one or more Call VM state machine(s) in C (dyncall_callvm_<ABI>.c)

– one or more Call kernel(s) in assembly language (dyncall_call_<ABI>.[S|s|asm]).

Source code file name patterns to be found in the source package are given in parenthesis.

5.4.7.1 Anatomy of Call VM objects

The Call VM is represented as a fixed size data object that usually comprises only few kilobytes. It

begins with a common header structure followed by port-specific data fields. The rest of the object is

reserved for a vector to buffer the variable sequence of argument data to be copied to the stack. The

header is declared in C as follows:

typedef struct {

DCCallVM_vt* mVTpointer;

DCint mError;

} DCCallVM;

The first field mVTpointer is used to determine the current mode, i.e. the driver for a specific calling

convention. The pointer references a table of function pointers which - on their part - specify the

implementation for an API function. The function table DCCallVM_vt is declared as follows:

5.4. DYNAMIC FUNCTION CALLS 195

typedef struct {

void (*free) (DCCallVM* vm);

void (*reset) (DCCallVM* vm);

void (*mode) (DCCallVM* vm,DCint modeId);

void (*argBool) (DCCallVM* vm,DCbool value);

void (*argChar) (DCCallVM* vm,DCchar value);

void (*argShort) (DCCallVM* vm,DCshort value);

void (*argInt) (DCCallVM* vm,DCint value);

void (*argLong) (DCCallVM* vm,DClong value);

void (*argLongLong) (DCCallVM* vm,DClonglong value);

void (*argFloat) (DCCallVM* vm,DCfloat value);

void (*argDouble) (DCCallVM* vm,DCdouble value);

void (*argPointer) (DCCallVM* vm,DCpointer value);

void (*callVoid) (DCCallVM* vm,DCpointer funcptr);

DCbool (*callBool) (DCCallVM* vm,DCpointer funcptr);

DCchar (*callChar) (DCCallVM* vm,DCpointer funcptr);

DCshort (*callShort) (DCCallVM* vm,DCpointer funcptr);

DCint (*callInt) (DCCallVM* vm,DCpointer funcptr);

DClong (*callLong) (DCCallVM* vm,DCpointer funcptr);

DClonglong (*callLongLong) (DCCallVM* vm,DCpointer funcptr);

DCfloat (*callFloat) (DCCallVM* vm,DCpointer funcptr);

DCdouble (*callDouble) (DCCallVM* vm,DCpointer funcptr);

DCpointer (*callPointer) (DCCallVM* vm,DCpointer funcptr);

} DCCallVM_vt;

All functions of the dyncall API, except dcNewCallVM , are implemented as methods of a Call VM

object. Front-end API functions delegate to methods referenced by the function pointer table. For

example, the dcArgDouble API front-end function is defined as follows:

void dcArgDouble(DCCallVM* vm, DCdouble x) {

vm->mVTpointer->argDouble(vm, x);

}

For each supported calling convention a separate function pointer table is allocated and initialized

statically at compile time. In order to switch between several calling conventions (or modes) the

mVTpointer field is adjusted to point to a different function table.

The second field of the common header, named mError , is used to indicate an error status. Currently

only the function dcMode , to select the mode, sets this field to indicate an error if the requested calling

convention is not supported.

The vector for buffering arguments is implemented in C as a common code base available to all ports

of the library. The beginning of the vector within the Call VM data object is marked by a vector

header structure, which is declared as follows:

typedef struct {

DCsize mTotal;

DCsize mSize;

} DCVecHead;

Several C macros and functions for vector management, declared in dyncall_vector.h, are listed

below:

196 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

#define dcVecInit(p,size) (p)->mTotal=size;(p)->mSize=0

#define dcVecReset(p) (p)->mSize=0

void dcVecAppend(DCVecHead* pHead, const void* source, size_t length);

#define dcVecResize(p,size) (p)->mSize=(size)

#define dcVecSkip(p,size) (p)->mSize+=(size)

#define dcVecData(p) ((unsigned char*) (((DCVecHead*)(p))+1))

#define dcVecAt(p,index) (dcVecData(p)+index)

#define dcVecSize(p) ((p)->mSize)

The vector is initialized via a macro call to dcVecInit with a pointer to the vector header and the

total amount of memory available for the buffer; the latter is typically set to

total size of the object − size of all headers.

The field mSize keeps track of the current size of data within the buffer and it functions as a write

pointer that is initialized to zero by dcVecInit and dcVecReset , and is incremented while appending

data via dcVecAppend .

The implementation of the vector was intentionally held simple; detection of buffer overflows was

omitted and left open to users of the library, such as developers of dynamic FFIs who can decide to

limit the number of arguments. However, we suggest to allocate a few kilobytes of memory for a Call

VM object, so that the vector can handle all the kinds of sequences that are encountered in practice.

For example, 4096 bytes is enough memory to buffer from 512 to 1024 arguments (depending on the

type), a much larger number of arguments then exist in public C libraries.

We now discuss several examples of back-end implementations. We begin with simple calling con-

ventions and then proceed to the more complex ones. During this discussion we give excerpts of

dyncall sources partly in modified form (i.e. shorter symbolic names) to improve legibility of core

implementation concepts.

5.4. DYNAMIC FUNCTION CALLS 197

5.4.8 Passing arguments via the stack (x86-32 ports)

One of the most basic calling conventions uses only the stack to pass all arguments. Some calling

conventions for the x86-32 architecture, such as cdecl and stdcall, adopted this basic scheme. The

Call VM’s vector is sufficient as main data structure to buffer different sequences of incoming argument

data; no further state variables are need other than the current size of the vector. All arguments are

appended to the vector during the loading phase; this matches the right to left “stack push order”

rule of cdecl and stdcall. Stack values need to be aligned to 4-byte boundaries - a core condition

for call stacks on the x86-32 architecture. For small integer arguments (smaller than 4 bytes) the

value is promoted to 4-byte integer words in advance. Other supported argument types are already

multiples of 4-byte quantities and are appended as-is.

typedef struct

{

DCCallVM mInterface; /* callvm header */

int mIntRegs; /* fastcall specific: used integer registers */

DCVecHead mVecHead; /* vector header */

} DCCallVM_x86;

Listing 20: Common Call VM structure shared by x86-32 call kernels.

Listing 20 gives the C declaration of the Call VM data object for the x86-32 architecture. The

head of the structure consists of the common header DCCallVM mInterface , a port-specific data field

int mIntRegs and ends with the header of the vector DCVecHead mVecHead . In order to switch between

calling conventions on x86-32 at run time all port-specific data fields are collectively held in the data

structure. The field mIntRegs is included because it is used by driver code of the fastcall calling

convention, which is discussed in Section 5.4.10; for now we can ignore this variable.

In dyncall, driver code for calling conventions is implemented by means of function tables. Listing

21 gives the C source code for the implementation of cdecl and stdcall drivers. Both tables -

gVT_x86_cdecl and gVT_x86_stdcall - are preset with a similar set of implementation methods except

for the call<RTYPE> slot which is set to call-kernel specific delegate functions.

The reset method sets the header field mSize of the vector to zero via dcVecReset . Implementations

for loading small integers, such as aBool , aChar and aShort , first promote argument values to 32-bit

int values and then delegate the call to the aInt function, which appends 4 bytes of data to the back

of the vector. Other method implementations, such as aDouble and aLongLong , append data as-is.

The same delegate functions to call kernels, namely call_cdecl or call_stdcall , are each used for an

entire set of call<RTYPE> slots regardless of the different return types. Note that the actual return

type of the delegate function is void in C. However, the passing of return values proceeds here as

expected; after the user invokes one of the dcCall<RTYPE> API functions the return value is transferred

correctly. Recall that C functions usually pass return values via registers and, since both the delegate

function and call kernel do not modify these registers after the foreign function call was executed, the

caller will find the return value in the register that is reserved for this purpose.

198 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

void destroy (DCCallVM* p) { dcFreeMem(p); }

void reset (DCCallVM* p) { dcVecReset(&((DCCallVM_x86*)p)->mVecHead); }

void aInt (DCCallVM* p, DCint v) { dcVecAppend(&((DCCallVM_x86*)p)->mVecHead, &v, sizeof(DCint));}

void aBool (DCCallVM* p, DCbool v) { aInt(p, (DCint) v); }

void aChar (DCCallVM* p, DCchar v) { aInt(p, (DCint) v); }

void aShort (DCCallVM* p, DCshort v) { aInt(p, (DCint) v); }

void aLong (DCCallVM* p, DClong v) { aInt(p, (DCint) v); }

void aLongLong(DCCallVM* p, DClonglong v) { dcVecAppend(&((DCCallVM_x86*)p)->mVecHead, &v, sizeof(DClonglong));}

void aFloat (DCCallVM* p, DCfloat v) { dcVecAppend(&((DCCallVM_x86*)p)->mVecHead, &v, sizeof(DCfloat));}

void aDouble (DCCallVM* p, DCdouble v) { dcVecAppend(&((DCCallVM_x86*)p)->mVecHead, &v, sizeof(DCdouble));}

void aPointer (DCCallVM* p, DCpointer v) { dcVecAppend(&((DCCallVM_x86*)p)->mVecHead, &v, sizeof(DCpointer));}

void call_cdecl (DCCallVM* p, DCpointer target) {

DCCallVM_x86* vm = (DCCallVM_x86*) p;

x86_cdecl (target, dcVecData(&vm->mVecHead), dcVecSize(&vm->mVecHead));

}

void call_stdcall (DCCallVM* x, DCpointer target) {

DCCallVM_x86* vm = (DCCallVM_x86*) p;

x86_stdcall(target, dcVecData(&vm->mVecHead), dcVecSize(&vm->mVecHead));

}

DCCallVM_vt gVT_x86_cdecl = {

&destroy, &reset, &mode, &aBool, &aChar, &aShort, &aInt, &aLong, &aLongLong, &aFloat, &aDouble, &aPointer

, (DCvoidvmfunc *) &call_cdecl, (DCboolvmfunc *) &call_cdecl, (DCcharvmfunc *) &call_cdecl

, (DCshortvmfunc *) &call_cdecl, (DCintvmfunc *) &call_cdecl, (DClongvmfunc *) &call_cdecl

, (DClonglongvmfunc *) &call_cdecl, (DCfloatvmfunc *) &call_cdecl, (DCdoublevmfunc *) &call_cdecl

, (DCpointervmfunc *) &call_cdecl

};

DCCallVM_vt gVT_x86_stdcall = {

&destroy, &reset, &mode, &aBool, &aChar, &aShort, &aInt, &aLong, &aLongLong, &aFloat, &aDouble, &aPointer

, (DCvoidvmfunc *) &call_stdcall, (DCboolvmfunc *) &call_stdcall, (DCcharvmfunc *) &call_stdcall

, (DCshortvmfunc *) &call_stdcall, (DCintvmfunc *) &call_stdcall, (DClongvmfunc *) &call_stdcall

, (DClonglongvmfunc *) &call_stdcall, (DCfloatvmfunc *) &call_stdcall, (DCdoublevmfunc *) &call_stdcall

, (DCpointervmfunc *) &call_stdcall

};

Listing 21: Call VM for cdecl calling convention on x86-32.

While most API functions are implemented by means of the function table, the dcNewCallVM is the only

front-end API function that is implemented directly by a back-end port. We discuss its implementation

by example of the x86-32 port of dyncall:

DCCallVM* dcNewCallVM(DCsize size)

{

DCCallVM_x86* p = (DCCallVM_x86*) dcAllocMem(sizeof(DCCallVM_x86)+size);

p->mVTpointer = &gVT_x86_cdecl;

p->mError = DC_ERROR_NONE;

dcVecInit(&p->mVecHead, size);

return (DCCallVM*) p;

}

Each port provides its own implementation of this API function for the construction of a Call VM

object. The total size of the object is determined by the user-defined size of the vector adjusted by

the size of the header structure. Memory for the object is allocated from heap memory via dcAllocMem

- an alias to C’s dynamic memory allocator malloc . The object is initialized by setting the pointer

to the function table of the driver for the default C calling convention cdecl, and by initializing the

vector via dcVecInit .

Listing 22 gives the implementation of the mode slot for x86-32 Call VMs to switch between calling

convention drivers. Predefined macros are often used to set platform-specific driver code for abstract

language-specific modes at compile time. For example, the DC_CALL_SYS_DEFAULT identifier selects either

5.4. DYNAMIC FUNCTION CALLS 199

a Linux or BSD system-call driver, depending on the target operating-system at compile time, as

selected by predefined macros such as DC__OS_Linux .

void mode(DCCallVM* in_self, DCint mode)

{

DCCallVM_x86* self = (DCCallVM_x86*) in_self;

DCCallVM_vt* vt;

switch(mode) {

case DC_CALL_C_ELLIPSIS:

case DC_CALL_C_ELLIPSIS_VARARGS:

case DC_CALL_C_DEFAULT:

case DC_CALL_C_X86_CDECL: vt = &gVT_x86_cdecl; break;

case DC_CALL_C_X86_WIN32_STD: vt = &gVT_x86_stdcall; break;

case DC_CALL_C_X86_WIN32_FAST_MS: vt = &gVT_x86_fast_ms; break;

case DC_CALL_C_X86_WIN32_THIS_MS: vt = &gVT_x86_this_ms; break;

case DC_CALL_C_X86_WIN32_FAST_GNU: vt = &gVT_x86_fast_gnu; break;

case DC_CALL_C_X86_WIN32_THIS_GNU: vt = &gVT_x86_cdecl; break;

if defined DC_UNIX

case DC_CALL_SYS_DEFAULT:

if defined DC__OS_Linux

vt = &gVT_x86_sys_int80h_linux; break;

else

vt = &gVT_x86_sys_int80h_bsd; break;

endif

#endif

default:

self->mInterface.mError = DC_ERROR_UNSUPPORTED_MODE; return;

}

self->mInterface.mVTpointer = vt;

}

Listing 22: Call VM mode switching on x86-32

We now take a closer look at the implementation of the call kernels for cdecl and stdcall. Their

interface from C is declared as follows:

void x86_cdecl (void (*target)(), void* buffer, size_t size);

void x86_stdcall (void (*target)(), void* buffer, size_t size);

Both call kernels receive a pointer to the target function, a pointer to the argument buffer and the

size of the vector. At first each routine allocates a new region on the stack via decrementing the

stack pointer by the size . Then the contents of the argument buffer vector are copied from buffer

to the newly allocated region on the stack. Finally the call to the target function pointer is executed.

On return of the call return values are stored in corresponding registers and remain unmodified. Then

the caller stack frame is removed (only for cdecl call kernels) and finally control flow is passed back

to the call kernel’s caller.

Listing 23 gives the assembly source for both call kernels.

200 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

1 .text

2 .globl x86_cdecl

3 x86_cdecl:

4 pushl %ebp # prolog

5 movl %esp,%ebp

6 pushl %esi # preserve

7 pushl %edi

8 movl 12(%ebp),%esi # esi = buffer

9 movl 16(%ebp),%ecx # ecx = size

10 addl $ 15,%ecx #

11 andl $-16,%ecx # ecx = align(ecx,16)

12 movl %ecx,16(%ebp) # save ecx to stack

13 subl %ecx,%esp # alloc stack frame

14 movl %esp,%edi # edi = top of stack

15 rep movsb # copy data loop

16 call *8(%ebp) # call

17 addl 16(%ebp),%esp # caller cleans stack!

18 popl %edi # restore

19 popl %esi

20 movl %ebp,%esp # epilog

21 popl %ebp

22 ret

.text

.globl x86_stdcall

x86_stdcall:

pushl %ebp # prolog

movl %esp,%ebp

pushl %esi # save preserved

pushl %edi

movl 12(%ebp),%esi # esi = buffer

movl 16(%ebp),%ecx # ecx = size

no alignment

subl %ecx,%esp # alloc stack frame

movl %esp,%edi # edi = top of stack

rep movsb # copy data loop

call *8(%ebp) # call

callee cleans!

popl %edi # restore preserved

popl %esi

movl %ebp,%esp # epilog

popl %ebp

ret

Listing 23: Call kernel for the cdecl (left) and the stdcall (right) on the x86-32 architecture.

The call kernel begins with a prolog code (line 4-7) to set up a local stack frame. First the frame

pointer ebp is saved on the stack (line 4) before it is loaded with the stack pointer esp (line 5). Then

the source and destination registers, esi and edi, are saved (line 6-7) since they are needed later in

the code for memory copying operations. The three arguments to the call kernels are accessed relative

to the frame pointer ebp; the stack layout (after execution of the prolog section) is given in the next

table:

Offset Content

ebp+16 Arg 3: size

ebp+12 Arg 2: buffer

ebp+8 Arg 1: target

ebp+4 Return address

ebp+0 Saved ebp

esp+4 Saved esi

esp+0 Saved edi

The source register esi is loaded with the buffer pointer argument (line 8), and the counter register

ecx is loaded with the total size of bytes to be copied (line 9).

Since the cdecl calling convention for Mac OS X on x86-32 is slightly modified and requires that the

stack is aligned on a 16-byte boundary, we adopted this scheme for cdecl in general here. The call

kernel’s local frame is of size 16 bytes as depicted in the table above. Therefore the size of the new

stack frame is adjusted to the next multiple of 16 bytes (line 10 to 11). The adjusted size is saved

back to the parameter location on the stack (line 12) for later reuse.

A new stack frame is allocated by decrementing the stack pointer esp (line 13); its location is also

5.4. DYNAMIC FUNCTION CALLS 201

loaded in the destination register edi (line 14). Data is copied using a single string memory copy

instruction with a loop prefix rep (line 15) - a pecularity of the x86 ISA; bytes are copied in a loop

from a source to a destination address, given by esi and edi registers, respectively. After each round

both registers are incremented by one and the loop counter ecx is decremented by one. The loop

breaks when ecx reaches zero.

The target function ([ebp+8]) is called (line 16). When the control flow returns (line 17) the return

values are stored in corresponding registers such as eax, edx and st(0); it needs to be ensured that

these registers remain unmodified until control flow and the results in registers are passed back (line

22) so that return values are passed along via the call delegate to finally reach the user of the dcCall*

C API functions. The cdecl call kernel removes the stack frame of the previous call by incrementing

the esp again (line 17). All preserved registers are restored to their original content, including frame

and stack pointers (line 18 to 21). Finally, the stack pointer points to the return address and control

flow is returned back via ret instruction (line 22).

The code of both call kernels is very similar except for two tasks which are implemented only by

cdecl: code to ensure the stack is aligned to 16 bytes (line 10 to 12), and code to clean up the stack

frame (line 17); the source code lines of stdcall are left intentionally blank here.

202 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

5.4.9 Passing arguments via registers (arm32-softfloat ports)

Major calling conventions for the ARM architecture utilize a subset of general-purpose registers to pass

arguments. Even ARM hardware platforms with FPU registers do not use them for passing arguments

in this scheme. More recently the armhf ABI (ARM hardfloat) was defined which utilizes FPU co-

processor registers as was discussed in Section 5.3.3. In this section we focus on the implementation

of ARM driver back ends for softfloat calling conventions that use only general-purpose registers.

A group of calling conventions, namely apcs-gnu and linux-aapcs, logically arranges argument values

on a linear region of memory, similar to the x86-32-cdecl ABI. However, the first 16 bytes of storage

are assigned to four registers, r0 to r3, while the rest (if any) is assigned to stack memory. Note

that all kinds of data types are passed via general-purpose registers regardless of the data type such

as floating-point values or large data; the latter can be passed eventually split between register and

stack memory.

ARM supports two different ISAs, namely arm and thumb, so that two implementations of call kernels

were implemented in two different assembly languages.

The data structure of the Call VM for ARM is very similar to that of x86-32 and requires only the

vector for its implementation:

typedef struct {

DCCallVM mInterface;

DCVecHead mVecHead;

} DCCallVM_arm32;

The C interface of each call kernel is also similar to that of the x86-32 architecture:

void arm32_arm (void (*target)(), void* buffer, size_t size);

void arm32_thumb(void (*target)(), void* buffer, size_t size);

Both call kernels load the first 16 bytes of the buffer to registers r0-r3; the rest is copied on the

stack. Listing 24 gives the ARM call kernel implementation for arm ISA and thumb ISA. Both codes

implement the same tasks by means of the respective ISA. We discuss the arm ISA code (left side)

first.

As one of the first steps of the arm code a set of preserved registers r4-r12 and the return address in

the link register (r14) are saved to the stack (line 6). The three arguments to the call kernel are copied

to r4-r6 from r0-2 (line 7 to 9) to make the latter available for the next call. Then the first four

words of the argument buffer (r5) are loaded to parameter registers r0-r3 and r5 is incremented

accordingly by 16 bytes (line 11). r6 (size parameter) is decremented by 16 bytes to give the number

of bytes to be copied to the stack (line 12). If this number is less than or equal to zero, the data

copying step can be skipped (line 13). Otherwise the stack pointer is adjusted and aligned to an 8-byte

boundary (line 14 to 16). Data are copied from the buffer to the stack in a loop (line 22 to 27). Finally

5.4. DYNAMIC FUNCTION CALLS 203

1 .text

2 .code 32

3 .globl arm32_arm

4 arm32_arm:

5 mov %r12, %r13 # r12 = stack pointer on entry

6 stmbdb %r13!,{%r4-%r12,%r14} # save registers

7 mov %r11, %r12 # r11 = stack pointer on entry

8 mov %r4 , %r0 # r4 = target function (=arg 1:r0)

9 mov %r5 , %r1 # r5 = argument buffer (=arg 2:r1)

10 mov %r6 , %r2 # r6 = size (=arg 3:r2)

11 ldmia %r5!, {%r0-%r3} # load arg 1-4 to regs

12 subs %r6, %r6, #16 # and decrement size

13 ble .call # is less than zero?

14 sub %r13, %r13, r6 # copy arguments to stack

15 and %r9 , %r6 , #7 # align

16 sub %r13, %r13, r9

17 mov %r8 , %r13

18 mov %r9 , #0 # init copy counter to 0

19

20

21

22 .copy: # copy loop

23 ldrb %r7, [%r5, %r9]

24 strb %r7, [%r8, %r9]

25 add %r9, %r9, #1

26 cmp %r9, %r6

27 bne .copy

28 .call:

29 mov %r14, %r15 # r14 = return address

30 bx %r4 # branch-and-link (armv4t)

31

32 ldmdb %r11,{%r4-%r11,%r13,%r15} # restore & return

.text

.code 16

.globl arm32_thumb

arm32_thumb:

push {%r4-%r7, %r14} # save registers

mov %r7, %r13 # fp = sp

mov %r4, %r0

mov %r5, %r1

mov %r6, %r2

cmp %r6, #16

ble .call # use stack?

sub %r6, #16

mov %r0, %r13

sub %r0, %r0, %r6

lsr %r0, #3

lsl %r0, #3

mov %r13, %r0

add %r1, #16

mov %r2, #0

.copy:

ldrb %r3, [%r1, %r2]

strb %r3, [%r0, %r2]

add %r2, %r2, #1

cmp %r2, %r6

bne .copy

.call:

ldmia %r5!, {%r0-%r3}

blx %r4 # armv5/v6 branch-and-link

mov %r13, %r7 # sp = fpr

pop {%r4-%r7, %r15} # restore registers

Listing 24: Call Kernel for arm-aapcs-softfloat calling conventions implemented for arm 32-bit

(left) and thumb 16-bit (right) ISA.

a branch-and-link call is executed to the target function (line 29 to 30). On return the preserved

registers are restored and the return address is moved to the program counter (15) to return to the

caller (line 31).

The thumb ISA code is quite similar except that r7 is used as frame pointer to be compilant with

the specifications of iOS for armv6 and armv7 platforms, and alternative sequences of instructions are

used to ensure 8-byte stack frame alignment and copying.

In order to support arm/thumb interworking it should be noted in particular which branch-and-link

instruction to choose for indirect function calls (to target addresses stored in registers). The branch-

and-link instruction blx Rm can be used in armv5/armv6 for making sub-routine function calls with

support for interworking. However, in order to support armv4t the sequence mov lr,pc and bx Rm

need to be used. See ARM Limited (2009, pp.21) for details. Which sequence to choose depends on

the target platform; we currently incorporate a compile-time selection in the dyncall arm assembly

sources that selects an appropriate method based on the requested target platform.

Both call kernels are used for two different calling conventions, namely apcs-gnu and aapcs, imple-

mented as separate back-end drivers given in Listing 25. Their rules differ for the alignment of data

types larger than 4 bytes i.e. for passing long long and double C argument data types. Note that

the implementation is also duplicated in order to support thumb target platforms where a different

204 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

call delegate, call_thumb , is used that calls arm32_thumb instead of arm32_arm .

void aInt(DCCallVM* p, DCint v) {

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DCint)); }

void aBool (DCCallVM* p, DCbool v) { aInt(p,v); }

void aChar (DCCallVM* p, DCchar v) { aInt(p,v); }

void aShort(DCCallVM* p, DCshort v) { aInt(p,v); }

void aLong (DCCallVM* p, DClong v) {

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DClong));}

void aLongLong(DCCallVM* p, DClonglong v) {

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DClonglong));}

void aFloat(DCCallVM* p, DCfloat v) {

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DCfloat));}

void aDouble(DCCallVM* p, DCdouble v) {

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DCdouble));}

void aPointer(DCCallVM* p, DCpointer v) {

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DCpointer));}

DCCallVM_vt gVT_apcs_gnu = {

&destroy,&reset,&mode,

,&aBool,&aChar,&aShort,&aInt,&aLong

,&aLongLong

,&aFloat

,&aDouble

,&aPointer

,(DCvoidvmfunc*) &call_arm

,(DCboolvmfunc*) &call_arm

/* [... lines omitted ...] */

,(DCpointervmfunc*)&call_arm

};

void aDoubleAlign8(DCCallVM* p, DCdouble v) {

/* align vector to 8 byte boundary. */

dcVecSkip(&((DCCallVM_arm32*)p)->mVecHead,

dcVecSize(&((DCCalVM_arm32*)p)) & 4);

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DCdouble));

}

void aLongLongAlign8(DCCallVM* p, DClonglong v) {

/* align vector to 8 byte boundary. */

dcVecSkip(&((DCCallVM_arm32*)p)->mVecHead,

dcVecSize(&((DCCalVM_arm32*)p)) & 4);

dcVecAppend(&((DCCallVM_arm32*)p)->mVecHead,

&v, sizeof(DCdouble));

}

void call_arm(DCCallVM* p, DCpointer target) {

DCCallVM_arm32_arm* vm = (DCCallVM_arm32_arm*)p;

arm32_arm(target, dcVecData(&vm->mVecHead),

dcVecSize(&vm->mVecHead));

}

DCCallVM_vt gVT_aapcs_linux = {

&destroy,&reset,&mode

,&aBool,&aChar,&aShort,&aInt,&aLong

,&aLongLongAlign8 /* <-- 8-byte alignment version */

,&aFloat

,&aDoubleAlign8 /* <-- 8-byte alignment version */

,&aPointer

,(DCvoidvmfunc*) &call_arm

,(DCboolvmfunc*) &call_arm

/* [... lines omitted ...] */

,(DCpointervmfunc*) &call_arm

};

Listing 25: Call VM for apcs-gnu and aapcs-linux ABIs on ARM for arm ISA

5.4. DYNAMIC FUNCTION CALLS 205

5.4.10 Passing leading integer arguments via registers (x86-32-fast ports)

The fastcall calling conventions on x86-16 and x86-32 use two or more integer registers for pass-

ing integer-only data types. dyncall contains two back-end drivers for compiler-specific variants of

fastcall ABIs for x86-32, namely for Microsoft Visual C (fastcall-ms) and GNU (fastcall-gnu)

compilers. Both calling conventions reserve the two registers ecx and edx for passing integers up to

32 bit. 64-bit integer and floating-point values are passed via the stack. However, in contrast to cdecl

and stdcall a second buffer is needed and the Call VM state machine needs to track the number of

available registers. For this purpose the first 8 bytes of the internal vector are reserved for data to be

passed via integer registers and a counter variable int mIntRegs was added to the Call VM to check

the current state depicted in Listing 20. One call kernel is used by both fastcall calling conventions.

It always loads the first 8 bytes of the buffer to ecx and edx and after that corresponds with the

implementation of the stdcall call kernel. The C interface is as follows:

void x86_fastcall (void (*target)(), void* buffer, size_t size);

The code, given in Listing 26, is similar to the stdcall call kernel (Listing 23) since the callee is

responsible for cleaning the stack. In addition, the first 8 bytes of the buffer are copied to the integer

registers ecx and edx (line 10-13 and 18).

1 .text

2 .globl x86_fastcall

3 x86_fastcall:

4 pushl %ebp # prolog

5 movl %esp,%ebp

6 pushl %esi # save preserved

7 pushl %edi

8 movl 12(%ebp),%esi # ESI = buf

9 movl 16(%ebp),%ecx # ECX = len

10 movl 0(%esi),%eax # EAX = register argument 1

11 movl 4(%esi),%edx # EDX = register argument 2

12 addl $8,%esi # skip first 8 bytes

13 subl $8,%ecx # for buf and len

14 subl %ecx,%esp # alloc stack frame

15 movl %esp,%edi # EDI = top

16 rep movsb # copy arguments

17 movl %eax,%ecx # ECX = register argument 1

18 call *8(%ebp) # call

19 popl %edi # restore preserved

20 popl %esi

21 movl %ebp,%esp # epilog

22 popl %ebp

23 ret

Listing 26: Call kernel for fastcall on x86-32.

The drivers fastcall-gnu and fastcall-ms are integrated with those in the Call VM for x86-32 and

their implementation is given in Listing 27.

Several driver methods of the fastcall calling conventions differ from that of cdecl and stdcall.

The reset method fReset reserves the first 8 bytes of the vector for use as a separate buffer for the

206 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

void fInt(DCCallVM* p, DCint v) {

DCCallVM_x86* x = (DCCallVM_x86*) p;

if (x->mIntRegs < 2) { /* to register */

((int)dcVecAt(&x->mVecHead,x->mIntRegs*4))=v;

x->mIntRegs++;

} else /* to stack */

dcVecAppend(&x->mVecHead,&v,sizeof(DCint));

}

/* Promote small integers to 32 bit. */

void fBool (DCCallVM* p,DCbool x){fInt(p,(DCint)x);}

void fChar (DCCallVM* p,DCchar x){fInt(p,(DCint)x);}

void fShort(DCCallVM* p,DCshort x){fInt(p,(DCint)x);}

void fLong (DCCallVM* p,DClong x){fInt(p,(DCint)x);}

void fPtr(DCCallVM* p,DCpointer x){fInt(p,(DCint)x);}

DCCallVM_vt gVT_x86_fast_ms = {

&destroy, &fReset, &mode

, &fBool, &fChar, &fShort, &fInt, &fLong

, &aLongLong /* <-- different --> */

, &aFloat, &aDouble, &fPtr

, (DCvoidvmfunc *) &fCall

, (DCboolvmfunc *) &fCall

/* [... lines omitted ...] */

, (DCpointervmfunc *) &fCall

};

void fLongLong_gnu(DCCallVM* p, DClonglong v) {

self->mIntRegs = 2; /* always skip registers */

aLongLong(p, v);

}

void fReset(DCCallVM* p) {

DCCallVM_x86* x = (DCCallVM_x86*) p;

dcVecResize(&x->mVecHead,8);

x->mIntRegs=0;

}

void fCall(DCCallVM* p, DCpointer target) {

DCCallVM_x86* x = (DCCallVM_x86*) p;

x86_fastcall(target,dcVecData(&x->mVecHead),

dcVecSize(&x->mVecHead));

}

DCCallVM_vt gVT_x86_fast_gnu = {

&destroy, &fReset, &mode,

&fBool, &fChar, &fShort, &fInt, &fLong

, &fLongLong_gnu /* <-- GNU’s fastcall */

, &aFloat, &aDouble, &fPtr,

, (DCvoidvmfunc *) &fCall

, (DCboolvmfunc *) &fCall

/* [... lines omitted ...] */

, (DCpointervmfunc *) &fCall

};

Listing 27: Call VM for fastcall on x86-32.

two integer registers. The method fInt implements the core logical to pass integer 32-bit data first

via registers where data is buffered in the first 8 bytes of the vector and the state of currently occupied

registers is tracked by the mIntRegs counter variable. If no register is free data is appended to the

vector. For all integer-based data types smaller 32 bit, the data is promoted to 4 bytes. Floating-point

values are always appended to vector. 64 bit integer data types are passed via the stack and GNU’s

variant marks both registers as used.

5.4. DYNAMIC FUNCTION CALLS 207

5.4.11 Passing arguments via registers with homing area (sparc-v7 port)

Six 32-bit general-purpose registers are reserved for parameters by the sparc v7 (and v8) ABI. Al-

though the 32-bit SPARC calling conventions use large structures for stack frames and specific mech-

anisms for their allocation and destruction they are relatively simple. All arguments are promoted to

32-bit values and then appended to the stack. However, the first 24 bytes of memory for parameters

are reserved as the “homing area” and these data are passed via the corresponding memory of six pa-

rameter registers. Due to this static mapping between stack memory and registers the implementation

of the Call VM consists only of the vector, as in the case of x86-32 and arm-apcs:

typedef struct {

DCCallVM mInterface;

DCVecHead mVecHead;

} DCCallVM_sparc;

The implementation of the Call VM, given in Listing 28, is also very similar to that of x86-32 and

arm-apcs.

void reset (DCCallVM* p) {dcVecReset (&((DCCallVM_sparc*)p)->mVecHead); }

void aInt (DCCallVM* p,DCint v){dcVecAppend(&((DCCallVM_sparc*)p)->mVecHead, &v, sizeof(DCint));}

void aBool (DCCallVM* p,DCbool v){aInt(p,(DCint)v); }

void aChar (DCCallVM* p,DCchar v){aInt(p,(DCint)v); }

void aShort (DCCallVM* p,DCshort v){aInt(p,(DCint)v); }

void aLong (DCCallVM* p,DClong v){dcVecAppend(&((DCCallVM_sparc*)p)->mVecHead, &x, sizeof(DClong));}

void aLongLong(DCCallVM* p,DClonglong v){dcVecAppend(&((DCCallVM_sparc*)p)->mVecHead, &x, sizeof(DClonglong));}

void aPointer (DCCallVM* p,DCpointer v){dcVecAppend(&((DCCallVM_sparc*)p)->mVecHead, &v, sizeof(DCpointer));}

void aFloat (DCCallVM* p,DCfloat v){dcVecAppend(&((DCCallVM_sparc*)p)->mVecHead, &v, sizeof(DCfloat));}

void aDouble (DCCallVM* p,DCdouble v){dcVecAppend(&((DCCallVM_sparc*)p)->mVecHead, &v, sizeof(DCdouble));}

DCCallVM_vt gVT_v7 = {

&free, &reset, &mode, &aBool, &aChar, &aShort, &aInt, &aLong, &aLongLong, &aFloat, &aDouble, &aPointer,

(DCvoidvmfunc*) &sparc_v7, (DCboolvmfunc*) &sparc_v7, (DCcharvmfunc*) &sparc_v7,

(DCshortvmfunc*) &sparc_v7, (DCintvmfunc*) &sparc_v7, (DClongvmfunc*) &sparc_v7,

(DClonglongvmfunc*) &sparc_v7, (DCfloatvmfunc*) &sparc_v7, (DCdoublevmfunc*) &sparc_v7,

(DCpointervmfunc*) &sparc_v7

};

Listing 28: Call VM for sparc-v7.

However, the call kernel is directly plugged in for all call methods (the &sparc_v7 fields in the function

table gVT_v7); implementations other than sparc use a delegate call function here to extract param-

eters, such as buffer pointer and the size of the vector, to be passed to the kernel. In this case the

C function type interface of call kernels for sparc corresponds to that of the front-end dcCall<RTYPE>

API interface functions:

void sparc_v7 (DCCallVM* vm, DCpointer target);

This direct assembly interface to the C API front-end was choosen due to SPARC’s register windows

and, in particular, the change of mapping return value registers during function returns. On most

platforms a C function can be plugged as a call delegate for all call methods regardless of different

return types; the return value in registers is passively forwarded by the void function. However, on

sparc the return value could be destroyed.

208 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

1 sparc_v7:

2 or %o0, %g0, %o3 ! o3: vm

3 or %o1, %g0, %o0 ! o0: target

4 ld [%o3+12], %o1 ! o1: size

5 add %o3, 16, %o2 ! o2: data

6 add %o1, 92+15,%o3 ! o3: stack frame size:

7 and %o3, -16, %o3 ! 92 = (16+1+6)*4

8 neg %o3 ! 16-byte aligned

9 save %sp, %o3, %sp ! Allocate register window

10 ld [%i2],%o0 ! Load 6 x 32-bit GPRs

11 ld [%i2+4*1],%o1

12 ld [%i2+4*2],%o2

13 ld [%i2+4*3],%o3

14 ld [%i2+4*4],%o4

15 ld [%i2+4*5],%o5

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 sub %i1, 24, %i1 ! Skip homing area

33 cmp %i1, 0 ! Size > 0 ?

34 ble .do_call

35 nop ! Copy on stack:

36 add %i2, 24, %i2 ! i2: 7th word of args buffer

37 or %g0,%g0, %l0 ! l0: offset initialized to 0

38 add %sp, 92, %l2 ! l2: argument area on stack

39 .next:

40 ld [%i2+%l0],%l1 ! Read 4-byte word

41 st %l1, [%l2+%l0] ! Write 4-byte word

42 add %l0, 4, %l0 ! Update index

43 sub %i1, 4, %i1 ! Update counter

44 cmp %i1, 0

45 bgt .next

46 nop

47 .do_call:

48 call %i0 ! Call target

49 nop

50 or %o0,%g0,%i0 ! Rescue return value

51 or %o1,%g0,%i1 ! Rescue upper 32-bit

52 jmpl %i7+8,%g0 ! Return, but before:

53 restore ! Restore register window

dcCall_v9:

or %o0, %g0 , %o3

or %o1, %g0 , %o0

ldx [%o3+24] , %o1 ! Offset 24

add %o3, 32, %o2 ! Offset 32

add %o1,176+15, %o3 ! Stack frame size:

and %o3, -16, %o3 ! 176 = (16+0+6)*8

neg %o3 ! 16-byte alined

save %sp, %o3, %sp

ldx [%i2] ,%o0 ! Load 6 x 64-bit GPRs

ldx [%i2+8*1] ,%o1

ldx [%i2+8*2] ,%o2

ldx [%i2+8*3] ,%o3

ldx [%i2+8*4] ,%o4

ldx [%i2+8*5] ,%o5

ldd [%i2],%f0 ! Load 16 x 64-bit FPRs

ldd [%i2+8*1],%f2

ldd [%i2+8*2],%f4

ldd [%i2+8*3],%f6

ldd [%i2+8*4],%f8

ldd [%i2+8*5],%f10

ldd [%i2+8*6],%f12

ldd [%i2+8*7],%f14

ldd [%i2+8*8],%f16

ldd [%i2+8*9],%f18

ldd [%i2+8*10],%f20

ldd [%i2+8*11],%f22

ldd [%i2+8*12],%f24

ldd [%i2+8*13],%f26

ldd [%i2+8*14],%f28

ldd [%i2+8*15],%f30

sub %i1, 48, %i1 ! Skip 48 bytes homing area

cmp %i1, 0

ble .do_call

nop

add %i2, 48, %i2 ! Skip 6 x 64-bit

or %g0, %g0, %l0

add %sp 2047+176,%l2 ! Biased sp (-2047)

.next:

ldx [%i2+%l0],%l1 ! Read 8-byte word

stx %l1, [%l2+%l0] ! Write 8-byte word

add %l0, 8, %l0

sub %i1, 8, %i1

cmp %i1, 0

bgt .next

nop

.do_call:

call %i0

nop

or %o0,%g0,%i0 ! Rescue 64-bit value

jmpl %i7+8,%g0

restore

Listing 29: Call kernels for sparc ABIs v7/v8 (left) and v9 (right).

5.4. DYNAMIC FUNCTION CALLS 209

The implementation of the call kernel is depicted in Listing 29 (left). Due to the different C function

interface of the assembly routine the parameters size and buffer need to be retrieved directly from

the vm base parameter (line 2-5). Before a new stack frame is allocated the size needs to be calculated.

The minimum size for a standard stack frame header is 16 words for the register window, 1 word for

“large return value” pointer and 6 words for the homing area i.e. 23× 4 bytes = 92 bytes (see column

“sparc” in Figure 5.12 for an illustration). The size of the buffer is added and the total size4 is

aligned to a 16-byte boundary.

The stack frame is allocated by the save instruction by passing the requested size as a parameter (line

9). As a result the mapping of registers changes. Output registers o0-o7 are mapped to input registers

i0-i7 and a free set of local and output registers is made available by the system. The first six words

of the buffer are loaded to output registers o0-o5 (line 10-15), size is reduced by 24 bytes (line 32)

to determine the remaining number of bytes, if any (line 33-34), to be copied to the parameter region

of the stack frame (starting above the stack header at byte offset 92) (line 36-45). Finally the call to

the target address is executed (line 48).

On return of a function integer-based results are passed in register o0 and o1. However, the local stack

frame needs to be cleaned up via a restore instruction (line 52) which remaps the input registers back

to the output register (for the caller) so that results would be destroyed. Therefore registers o0 and o1

need to be saved to the input registers (line 50-51) first. Note the nop (no operation) instructions (line

19, 35, and 46); these are branch delay slots which get executed as part of the previous instruction. In

the case of the function’s return (line 52) the restore instruction is part of its branch delay slot (line

53) and gets executed before the function has returned.

5.4.12 Overlapping FPU registers and homing area (sparc-v9 port)

The 64-bit ABI for sparc, named v9, also uses six general-purpose registers and a corresponding

homing area as does the 32-bit predecessors v7/v8. In addition, registers of the FPU for passing

arguments are incorporated in the calling convention. Several floating-point formats are supported

by distinct FPU registers but with overlapping register memory; a 64-bit register is shared by a pair

of 32-bit registers5. The first sixteen 64-bit registers are reserved for passing double values. From

the corresponding set of thirty-two 32-bit registers the sixteen odd-numbered registers are reserved

for passing float values. The calling convention puts parameter registers and the stack in relation

to each other. When a parameter is passed via a FPU register, the next free location on the stack is

marked as occupied for subsequent arguments in the calling sequence. Conversely, parameters passed

in general-purpose registers block the next free location in 32/64-bit FPU registers.

Several versions of a port to v9 were implemented in dyncall; the first version incorporates a state

4The total size is slightly larger than needed as the first 24 bytes are already included in the standard header size, a

trade-off decision between small size overhead versus more calculations for saving 24 bytes stack space reservation.
5Only the first half of the 64-bit registers use this mapping; see Figure 5.11 for details.

210 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

machine design based on a bit mask for the piecewise overloading of 32-bit floating-point values,

distinct buffers for each register type and counters and the vector. More recently a new version was

implemented based on the simple mapping scheme described below.

The calling convention prescribes an alignment of stack values at 8-byte boundaries and has a “homing

area” for the first six general-purpose registers. The inter-relation between registers and the stack

suggests that one regards the 64-bit FPU registers as being also “homed”. Since a “homing” location

on the stack is either associated with a register of one kind or the other but not both; the same head

of the stack can be transferred to both sets (for a relatively small kernel in assembly). Furthermore,

if the sixteen 64-bit FPU registers for passing double values are stored to memory in sequence, all

float values in 32-bit FPU registers are covered by this operation and the 4-byte gap, due to unused

even registers, ensures 8-byte alignment.

The current implementation uses a similarly simple Call VM as in v7 but with 64-bit value promo-

tion/padding for 8-byte alignment, as depicted in Listing 30. Function argFloat implements buffering

of float by passing the value in a 8-byte union that matches the overlapping scheme of the floating-

point registers before being append to the vector.

void argLongLong(DCCallVM* p, DClonglong x) {

DCCallVM_v9* self = (DCCallVM_v9*)p;

dcVecAppend(&self->mVecHead, &x, sizeof(DClonglong));

}

void argLong (DCCallVM* p, DClong x) { argLongLong(p, (DClonglong) x); }

void argInt (DCCallVM* p, DCint x) { argLongLong(p, (DClonglong) x); }

void argBool (DCCallVM* p, DCbool x) { argLongLong(p, (DClonglong) x); }

void argChar (DCCallVM* p, DCchar x) { argLongLong(p, (DClonglong) x); }

void argShort (DCCallVM* p, DCshort x) { argLongLong(p, (DClonglong) x); }

void argPointer(DCCallVM* p, DCpointer x) { argLongLong(p, (DClonglong) x); }

void argDouble (DCCallVM* p, DCdouble x) {

DCCallVM_v9* self = (DCCallVM_v9*)p;

dcVecAppend(&self->mVecHead, &x, sizeof(DCdouble));

}

void argFloat (DCCallVM* p, DCfloat x) {

union { DClonglong l, float f[2]; } u;

u.f[1] = x;

argLongLong(p, u.l);

}

Listing 30: Call VM for sparc-v9.

The call kernel loads the first six 64-bit words to general-purpose registers, but also the first sixteen

64-bit words to corresponding FPU registers. In accordance to v7, the C interface of the call kernel is

similar to the front-end API:

void sparc_v9 (DCCallVM* vm, DCpointer target);

Listing 29 (right panel) gives the implementation for the v9 call kernel. The differences to the v7

kernel (left panel) are as follows:

• A sequence of ldx instructions is used (instead of ld instructions for loading the first 48 bytes of

buffer data to six 64-bit general-purpose registers (line 10-15).

5.4. DYNAMIC FUNCTION CALLS 211

• A sequence of ldd instructions is added for loading the first 128 bytes of buffer data to the sixteen

64-bit floating-point registers for passing float and double values (line 16-31).

• The size of the standard header is not exactly a multiple of 2 (due to 64-bit) but adjusted by

one element on the stack which is used for the computation of a stack frame size of 176 bytes

(line 6). This is due to a slightly different stack frame structure of v9: The valref field, reserved

for passing a reference to memory objects for large return values in v7, was removed from the

standard structure of v9 (compare columns ‘v7/v8’ and ‘v9’ in Figure 5.12).

• By convention, the v9 stack pointer is always biased by −2047 bytes and needs to be adjusted

to get the effective address (line 38).

• One output register was copied to one input register for saving the 64-bit integer return value

(line 50).

212 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

5.4.13 Passing floating-point arguments via multiform FPU registers (x86-64 ports)

ABIs on the x86-64 utilize general-purpose and SIMD vector registers for passing arguments. The

latter are used for passing 32-bit and 64-bit floating-point values. The two major ABIs, namely for

Microsoft Windows 64-bit (x64) and for System V Unix-based systems (sysv), use different calling

conventions. While six general-purpose and eight floating-point registers for 64-bit values are reserved

for arguments on sysv, only four of each kind are used in x64.

In addition, x64 also incorporates a homing area on the stack with the capacity for 4× 64-bit register

storage = 32 bytes of register data. This byte quantity corresponds to the capacity of register-

memory for passing arguments of one kind but not for both. On x64 the four SIMD registers are

logically mapped to the four general-purpose registers so that an argument value assigned to one

register marks a corresponding register of the other kind as occupied.

sysv uses a simple calling convention. Depending on the data type kind a corresponding register file

is subsequently filled with argument data. If no space is left the value is assigned to stack memory.

Furthermore, the two ABIs use a different 64-bit C programming model; the size of a long is mapped

to 32-bit on x64 and 64-bit on sysv). However the alignment and promotion rules for smaller argument

data types less than or equal to 64-bit are effectively the same. In summary, four arguments can be

passed via registers on x64 in contrast to a maximum number of fourteen arguments via registers on

sysv.

A common code base was used for the implementation of the methods, while the different calling

conventions are manifested in specific call kernels and configurations for the data structure by using

two buffers and two counter variables for sysv and a unified buffer and counter for x64 as depicted in

Listing 31. The configuration is based on preprocessor macros, DC_WINDOWS (x64) and DC_UNIX (sysv),

that indicate the target ABI platform.

#if defined(DC_WINDOWS)

typedef long long int64; /* llp64 */

#define numIntRegs 4

#define numFloatRegs 4

#define DCRegCount_x64 DCRegCount_x64_u

#define DCRegData_x64 DCRegData_x64_u

#elif defined(DC_UNIX)

typedef long int64; /* lp64 */

#define numIntRegs 6

#define numFloatRegs 8

#define DCRegCount_x64 DCRegCount_x64_s

#define DCRegData_x64 DCRegData_x64_s

#endif

typedef union { int i; int f; } DCRegCount_x64_u;

typedef struct { int i; int f; } DCRegCount_x64_s;

typedef union {

int64 i[numIntRegs]; double f[numFloatRegs];

} DCRegData_x64_u;

typedef struct {

int64 i[numIntRegs]; double f[numFloatRegs];

} DCRegData_x64_s;

typedef struct {

DCCallVM mInterface;

DCRegCount_x64 mRegCount;

DCRegData_x64 mRegData;

DCVecHead mVecHead;

} DCCallVM_x64;

Listing 31: Call VM data structure for x86-64 calling conventions.

The shared implementation of both Call VM is given in Listing 32.

However, the call method is slightly different as the interface of each call kernel differs as follows:

void x86_64_sysv(size_t size,void* buf,void* idata,void* fdata,(void (*target)()));

5.4. DYNAMIC FUNCTION CALLS 213

void a_B(DCCallVM* p, DCbool v){ a_l(p,(long long)v) };

void a_c(DCCallVM* p, char v){ a_l(p,(long long)v) };

void a_s(DCCallVM* p, short v){ a_l(p,(long long)v) };

void a_i(DCCallVM* p, int v){ a_l(p,(long long)v) };

void a_j(DCCallVM* p, int v){ a_l(p,(long long)v) };

void a_p(DCCallVM* p, void* v){ a_l(p,(long long)v) };

void a_l(DCCallVM* p, long long v) {

DCCallVM_x64* x = (DCCallVM_x64*)p;

if(x->mRegCount.i < numIntRegs)

x->mRegData.i[x->mRegCount.i++] = v;

else

dcVecAppend(&x->mVecHead, &v, 8);

}

void a_f(DCCallVM* p, float v){

DCCallVM_x64* x = (DCCallVM_x64*)p;

union { /* floats are passed as 64-bit words */

DCdouble d;

DCfloat f;

} f;

f.f = v;

if(x->mRegCount.f < numFloatRegs)

(DCfloat)&x->mRegData.f[x->mRegCount.f++] = v;

else

dcVecAppend(&x->mVecHead, &f.f, sizeof(DCdouble));

}

void a_d(DCCallVM* p, double v)

{

DCCallVM_x64* x = (DCCallVM_x64*)p;

if(x->mRegCount.f < numFloatRegs)

x->mRegData.f[x->mRegCount.f++] = v;

else

dcVecAppend(&x->mVecHead, &v, sizeof(DCdouble));

}

void reset(DCCallVM* p) {

DCCallVM_x64* x = (DCCallVM_x64*)p;

dcVecReset(&x->mVecHead);

x->mRegCount.i = x->mRegCount.f = 0;

}

void call(DCCallVM* p, DCpointer target)

{

DCCallVM_x64* x = (DCCallVM_x64*)p;

#if defined(DC_UNIX)

x86_64_sysv(

#else

x86_64_win64(

#endif

dcVecSize(&x->mVecHead), dcVecData(&x->mVecHead),

x->mRegData.i,

#if defined(DC_UNIX)

x->mRegData.f,

#endif

target

);

}

DCCallVM_vt gVT_x86_64 =

{

&free, &reset, &mode

, &a_B, &a_c, &a_s, &a_i, &a_j, &a_l

, &a_f, &a_d, &a_p

, (DCvoidvmfunc*) &call, (DCboolvmfunc*) &call

, (DCcharvmfunc*) &call, (DCshortvmfunc*) &call

, (DCintvmfunc*) &call, (DClongvmfunc*) &call

, (DClonglongvmfunc*) &call, (DCfloatvmfunc*) &call

, (DCdoublevmfunc*) &call, (DCpointervmfunc*) &call

};

Listing 32: Call VM for x86-64 calling conventions.

void x86_64_x64 (size_t size,void* buf,void* regdata ,(void (*target)()));

Listing 33 gives the assembly source for both call kernels. We discuss the sysv first. Preserved

registers are saved to the stack (line 2-4) and the stack pointer is saved to the frame pointer (line

5). Floating-point register data (fdata) are loaded to xmm0-xmm7 (line 7-14). A new stack frame

is allocated (line 15) and aligned to a lower 32-byte boundary (line 16). Similar to x86-32 data are

copied using a string move operation with a loop prefix (line 17-19). Integer data are loaded to the six

integer registers (line 20-25). In order to support calls to variadic functions the al register is set to

8 (line 26) to indicate the maximum number of xmm registers that are potentially filled with data as

specified in Matz et al. (2012, p.20). Then the call is performed (line 27). Finally the stack frame is

removed (line 28) and preserved registers are restored (line 29-30) before returning to the caller (line

31).

The x64 calling convention is significantly different. The code begins with a standard prolog code for

saving preserved registers (line 2-5). The size of the buffer is aligned to the next 16-byte boundary

(line 6-7). Then a new stack frame is allocated (line 8) followed by a standard string copy (line 9-11).

r9 (target argument) is saved to rax (line 12) to make all registers available for loading 32 bytes

of regdata to integer registers (line 13-16). The same data are transferred as-is (without conversion

or type cast) to corresponding floating-point registers (line 17-20). The homing area is allocated at

214 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

1 x86_64_sysv:

2 pushq %rbp # prolog

3 pushq %rbx

4

5 movq %rsp,%rbp

6 movq %r8, %rbx # RBX = fun

7 movsd 0(%rcx),%xmm0 # load float regs

8 movsd 8(%rcx),%xmm1

9 movsd 16(%rcx),%xmm2

10 movsd 24(%rcx),%xmm3

11 movsd 32(%rcx),%xmm4

12 movsd 40(%rcx),%xmm5

13 movsd 48(%rcx),%xmm6

14 movsd 56(%rcx),%xmm7

15 sub %rdi, %rsp # create stack frame

16 and %rsp, #-32 # align to 32 byte

17 mov %rdi, %rcx # set loop count

18 mov %rsp, %rdi #

19 rep movsb # copy on stack

20 movq 0(%rdx),%rdi # load int regs

21 movq 8(%rdx),%rsi

22 movq 24(%rdx),%rcx

23 movq 32(%rdx),%r8

24 movq 40(%rdx),%r9

25 movq 16(%rdx),%rdx

26 movb $8,%al # AL = 8 XMM regs used

27 call *%rbx # call

28 movq %rbp,%rsp # epilog

29 popq %rbx

30 popq %rbp

31

32 ret

x86_64_x64:

pushq %rbp # Prolog

pushq %rsi

pushq %rdi

movq %rsp,%rbp

addq $ 15,%rcx # RCX = align(RCX,16)

andq $-16,%rcx

subq %rcx,%rsp

movq %rdx,%rsi # RSI = sdata

movq %rsp,%rdi # RDI = stack frame

rep movsb # copy data

movq %r9,%rax # RAX = fun

movq 0 (%r8),%rcx # load int regs

movq 8 (%r8),%rdx

movq 24(%r8),%r9

movq 16(%r8),%r8

movd %rcx,%xmm0 # load float regs

movd %rdx,%xmm1

movd %r8 ,%xmm2

movd %r9 ,%xmm3

pushq %r9 # push first arguments

pushq %r8 #

pushq %rdx #

pushq %rcx #

call *%rax # call

movq %rbp,%rsp # epilog

popq %rdi

popq %rsi

popq %rbp

ret

Listing 33: Call kernels for x86-64 ABIs: System V sysv (left) and Microsoft Windows x64 (right).

the top of stack, but with content by push instructions to copy regdata also to stack memory (line

21-24) in order to support varadic function calls. Finally the call is performed (line 27), followed by

a standard epilog (line 28-32).

5.4. DYNAMIC FUNCTION CALLS 215

5.4.14 Passing floating-point arguments via uniform FPU registers (ppc32 ports)

PowerPC offers two sets6 of register files for passing arguments. Specific to this architecture the FPU

uses a uniform 64-bit floating-point register format so that float 32-bit values need to be passed

converted as 64-bit double values when being passed via FPU registers.

Two ABI ports for the PowerPC 32-bit architecture, namely System V (sysv) and Mac OS X (osx), are

currently available in dyncall. Both ABIs use a stack frame header with a slightly different structure

as illustrated in column “ppc” of Figure 5.12.

On sysv arguments are assigned to be passed via registers of one of register file depending on the

data type. Eight registers are reserved for both register classes. If all parameter registers of one file

are exhausted the argument is assigned to be passed via the parameter region of the stack frame.

Subsequent arguments in the sequence can still be assigned to the other file if possible. Specific to this

calling convention 64-bit integer values are passed via odd-even register pairs (in the range of r3 and

r10) and this can lead to gaps of unused even-numbered registers. Aside from that, the sysv utilizes

a relatively simple scheme in contrast to osx.

On osx the same range of integer-based parameter registers are utilized but the range of floating-

point registers is extended by five registers to thirteen in total for passing floating-point arguments.

Furthermore, stack space is reserved for a homing area. The combination of a homing area for eight

32-bit integer registers, which are partly linked with thirteen 64-bit floating-point registers, effectively

leads to a more complex calling convention rule set.

One Call VM was implemented for ppc32 that integrates both calling conventions and supports switch-

ing modes similar to the design of the x86-32 port. Thus the data structure contains buffers for eight

32-bit integer registers and thirteen 64-bit floating-point registers.

typedef struct {

DCint gpr[8];

DCdouble fpr[13];

} DCRegData_ppc32;

typedef struct {

DCCallVM mInterface;

int iregs;

int fregs;

DCRegData_ppc32 mRegData;

DCVecHead mVecHead;

} DCCallVM_ppc32;

The implementation is given in Listing 34. Note that the two function tables (at the bottom of the

listing) are initialized with methods, some of which are shared by both drivers while others are specific

to either sysv or osx and prefixed ‘s’ or ‘o’ in the C code, respectively.

6This port considers a standard PowerPC platform which offers a FPU. Note that variants exist, such as embedded

PowerPC platforms without FPU, and Apple’s ABI supports a SIMD extension, named altivec, which offers a third

register file for passing intrinsic vector data types.

216 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

/* --- Common methods --- */

void reset(DCCallVM* p) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p; dcVecReset(&x->mVecHead); x->iregs=0; x->fregs=0; }

/* -- methods below promote to int (either delegated to sysv_Int or osx_Int) */

void aBool (DCCallVM* p, DCbool v) { dcArgInt(p, (v == 0) ? DC_FALSE : DC_TRUE);}

void aChar (DCCallVM* p, DCchar v) { dcArgInt(p, (DCint) v); }

void aShort (DCCallVM* p, DCshort v) { dcArgInt(p, (DCint) v); }

void aLong (DCCallVM* p, DClong v) { dcArgInt(p, (DCint) v); }

void aPointer (DCCallVM* p, DCpointer v) { dcArgInt(p, *(DCint*) &v) };

/* --- System V methods: --------------------------- */

void sysv_Call(DCCallVM* p, DCpointer target) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*) p;

ppc32_sysv(t, &x->mRegData,

dcVecSize(&x->mVecHead),

dcVecData(&x->mVecHead));

}

void sysv_Int(DCCallVM* p, DCint i) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

if (x->iregs < 8) /* assign to register ? */

x->mRegData.gpr[x->iregs++] = i;

else /* OR: to stack */

dcVecAppend(&x->mVecHead,&i,sizeof(DCint));

}

void sysv_Float(DCCallVM* p, DCfloat f) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

if (x->fregs < 8) /* as ’double’ to register ? */

x->mRegData.fpr[x->fregs++] = (DCdouble) (f);

else /* OR to stack as-is */

dcVecAppend(&x->mVecHead,&f,sizeof(DCfloat));

}

void sysv_Double(DCCallVM* p, DCdouble d) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

if (x->fregs < 8) /* assign to FPR */

x->mRegData.fpr[x->fregs++] = d;

else { /* OR: to stack 8-byte aligned */

dcVecResize(&x->mVecHead,

(dcVecSize(&x->mVecHead)+7UL)&-8UL);

dcVecAppend(&x->mVecHead,&d,sizeof(DCdouble));

}

}

void sysv_LongLong(DCCallVM* p, DClonglong v) {

DCint* d = (DCint*) &v;

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

/* fillup integer register file */

if (x->iregs < 7) { /* 2 GPRs available ? */

if (x->iregs & 1) x->iregs++;

x->mRegData.gpr[x->iregs++] = d[0];

x->mRegData.gpr[x->iregs++] = d[1];

} else { /* OR: to stack 8-byte aligned */

x->iregs=8; /* force all GPRs occupied. */

dcVecResize(&x->mVecHead,

(dcVecSize(&x->mVecHead)+7)&(-8UL));

dcVecAppend(&x->mVecHead,&L,sizeof(DClonglong));

}

}

DCCallVM_vt gVT_sysv = {

&free, &reset, &mode

, &aBool, &aChar, &aShort

, &sysv_Int,

, &aLong,

, &sysv_LongLong,&sysv_Float,&sysv_Double,

, &aPointer

,(DCvoidvmfunc*) &sysv_Call

,(DCboolvmfunc*) &sysv_Call

/* [... lines omitted ...] */

,(DCpointervmfunc*) &sysv_Call

};

/* --- Mac OS X methods: --------------------------- */

void osx_Call(DCCallVM* p, DCpointer t) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

ppc32_osx(t,&x->mRegData,

DC_MAX(dcVecSize(&x->mVecHead), 8*4),

dcVecData(&x->mVecHead));

}

void osx_Int(DCCallVM* p, DCint i) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

if (x->iregs < 8) /* to GPR ? */

x->mRegData.gpr[x->iregs++] = i;

/* AND: push onto stack (for ellipsis) */

dcVecAppend(&x->mVecHead,&i,sizeof(DCint));

}

void osx_Float(DCCallVM* p, DCfloat f) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

if (x->fregs < 13) /* to register? */

x->mRegData.fpr[x->fregs++] = (DCdouble) (f);

if (x->iregs < 8) /* skip 1 GPR */

x->mRegData.gpr[x->iregs++] = *((DCint*) &f);

/* AND: push on stack */

dcVecAppend(&x->mVecHead, &f, sizeof(DCfloat));

}

void osx_Double(DCCallVM* p, DCdouble d) {

DCCallVM_ppc32* x = (DCCallVM_ppc32*)p;

if (x->fregs < 13) {

x->mRegData.fpr[x->fregs++] = d;

/* skip two integer register file entries */

if (x->iregs < 8)

x->mRegData.gpr[x->iregs++]=((DCint*)&d)[0];

if (x->iregs < 8)

x->mRegData.gpr[x->iregs++]=((DCint*)&d)[1];

}

/* AND: push on stack */

dcVecAppend(&x->mVecHead, &d, sizeof(DCdouble));

}

void osx_LongLong(DCCallVM* in_x, DClonglong L) {

DCint* d = (DCint*) &L;

dcArgInt(p, d[0]);

dcArgInt(p, d[1]);

}

DCCallVM_vt gVT_osx = {

&free, &reset, &mode

, &aBool, &aChar, &aShort

, &osx_Int,

, &aLong,

, &osx_LongLong,&osx_Float,&osx_Double,

, &aPointer

,(DCvoidvmfunc*) &osx_Call

,(DCboolvmfunc*) &osx_Call

/* [... lines omitted ...] */

,(DCpointervmfunc*) &osx_Call

};

Listing 34: Call VM for ppc32.

5.4. DYNAMIC FUNCTION CALLS 217

The C interface of both call kernels is given below:

void ppc32_osx (void* target, DCRegData_ppc32* rdata, size_t size, void* buffer);

void ppc32_sysv(void* target, DCRegData_ppc32* rdata, size_t size, void* buffer);

The implementation of both call kernels is given in Listing 35. As their implementations are similarly

structured we discuss them once.

1 .globl ppc32_sysv:

2 ppc32_sysv: # prolog:

3 mflr r0 # load return address to r0

4 stw r0,4(r1) # and save to link area

5 # allocate stack frame

6 addi r0,r5,23 # r0 = size (=arg 2/r5)

7 # + link area size (=8)

8 # + align-1(=15)

9 rlwinm r0,r0,0,0,27 # r0 = r0 and -16

10 neg r0,r0 # r0 := - align(size+link,16)

11 stwux r1,r1,r0 # store r1 and decrement

12 # copy stack data

13 subi r6,r6,4 # r6 = argbuf(arg 3:r6)-4

14 addi r7,r1,4 # r7 = dest+8(link)-4

15 srwi r5,r5,2 # r5 = size in words (*4)

16 cmpi cr0,r5,0 # is size zero ?

17 beq cr0,.done

18 mtctr r5 # copy loop:

19 .next:

20 lwzu r0, 4(r6)

21 stwu r0, 4(r7)

22 bdnz .next

23 .done:

24 mr r12,r3 # r12 = target func (arg 1:r3)

25 mtctr r12 # ctr = r12

26 mr r11,r4 # r11 = register data buf

27 lwz r3 , 0(r11) # load 8 integer 32-bit regs

28 lwz r4 , 4(r11) #

29 lwz r5 , 8(r11)

30 lwz r6 ,12(r11)

31 lwz r7 ,16(r11)

32 lwz r8 ,20(r11)

33 lwz r9 ,24(r11)

34 lwz r10,28(r11)

35 lfd f1 ,32(r11) # load 8 float 64-bit regs

36 lfd f2 ,40(r11)

37 lfd f3 ,48(r11)

38 lfd f4 ,56(r11)

39 lfd f5 ,64(r11)

40 lfd f6 ,72(r11)

41 lfd f7 ,80(r11)

42 lfd f8 ,88(r11)

43

44

45

46 creqv 6,6,6 # support for variadic args

47

48 bctrl # call target func

49 lwz r1, 0(r1) # restore stack ptr to r1

50 lwz r0, 4(r1) # r0 = return address

51 mtlr r0 # store in link reg

52 blr # return (jump link reg)

.globl ppc32_osx

.ppc32_osx: # prolog:

mflr r0 # r0 = ret addr (link reg)

stw r0,8(r1) # save to link area

allocate stack frame:

addi r0,r5,39 # r0 = size (=arg 2/r5)

+ link area (=24)

+ align-1 (=15)

rlwinm r0,r0,0,0,27 # r0 = r0 and -16

neg r0,r0 # r0 := - align(size+link,16)

stwux r1,r1,r0 # store r1 and decrement stack

copy stack data:

subi r6,r6,4 # r6 = argbuf(arg 3:r6)-4

addi r7,r1,20 # r7 = dest+24(link)-4

srwi r5,r5,2 # r5 = size in words (*4)

cmpi cr0,r5,0 # is size zero ?

beq cr0,.done

mtctr r5 # copy loop:

.next:

lwzu r0, 4(r6)

stwu r0, 4(r7)

bdnz .next

.done:

mr r12,r3 # r12 = target func (arg 1:r3)

mtctr r12 # ctr = r12

mr r2, r4 # r2 = register data buf

lwz r3 , 0(r2) # load 8 integer 32-bit regs

lwz r4 , 4(r2)

lwz r5 , 8(r2)

lwz r6 ,12(r2)

lwz r7 ,16(r2)

lwz r8 ,20(r2)

lwz r9 ,24(r2)

lwz r10,28(r2)

lfd f1 ,32(r2) # load 13 float 64-bit regs

lfd f2 ,40(r2)

lfd f3 ,48(r2)

lfd f4 ,56(r2)

lfd f5 ,64(r2)

lfd f6 ,72(r2)

lfd f7 ,80(r2)

lfd f8 ,88(r2)

lfd f9 ,96(r2)

lfd f10,104(r2)

lfd f11,112(r2)

lfd f12,120(r2)

lfd f13,128(r2)

bctrl # call target func

lwz r1, 0(r1) # restore stack ptr to r1

lwz r0, 8(r1) # r0 = return address

mtlr r0 # store in link reg

blr # return (jump link reg)

Listing 35: Call kernel for sysv and osx calling convention on the ppc32 architecture.

The return address in the link register is saved to the “link area” of the caller’s stack frame (line 3-4).

The size of the new stack frame is computed based on the size adjusted by the head of the stack

218 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

frame (line 6) and aligned to a 16-byte boundary (line 9-10). Finally the stack pointer is decremented

to allocate a new stack frame (line 11). Note the different offsets for the “link area” and different

sizes of the header structures with byte offset 4 within a 8-byte structure for sysv, and byte offset

8 in a 24-byte structure for osx. Data from buffer (in Register r6) are then copied to the stack

frame (line 13-23). The target function’s address (in Register r3) is saved to Register r12 and

the control register (line 24-25). The pointer rdata , to register data DCRegData_ppc32 (in Register

r4), is loaded to a free volatile register, namely r11 for sysv or r2 for osx. All parameter registers

are now reusable; integer (line 27-34) and floating-point registers (line 35-42 [sysv], 35-47 [osx]) are

loaded with argument data. Note the instruction creqv 6,6,6 for sysv (line 46) is required to support

C variadic function calls, as specified in Zucker and Karhi (1995, Section 3.21). Finally the call is

executed (line 48) using the target address stored in the control register. On function return the stack

pointer and link register are restored (line 49-50); the latter is moved to register r0 and a branch to

link register instruction passes back control to the caller (line 51-52).

5.4. DYNAMIC FUNCTION CALLS 219

5.4.15 Passing leading floating-point arguments via FPU registers (mips-o32 port)

The o32 ABI of mips uses a complex calling convention for handling floating-point arguments. The

FPU comprises a set of 32 registers with each 32 bits of register storage. Two floating-point formats

are supported, namely 32-bit and 64-bit floating-point values, which can be addressed by only the

even numbered registers. For 64-bit values the storage of an even/odd numbered register pair is used.

However, except for memory transfer, the odd-numbered registers are otherwise not used.

The calling convention reserves four FPU registers, f12 to f15, for passing the leading two arguments

for float and double data types. Four 32-bit registers, r4 to r7, are utilized for passing the first 16

bytes of data (regardless of the argument type) and a corresponding homing area forms the top of the

stack frame similar to the scheme used on sparc-v7. Small values are promoted to 32-bit values and

all data objects are naturally aligned i.e. double and long long 64-bit objects are aligned to 8-byte

boundaries and/or to an even numbered general-purpose register.

As the memory size for argument data of both register types equals to 16 bytes this could suggest

a simple mapping between FPU and CPU register memory with regard to the homing area. Such a

mapping was incorporated, for example, on x86-64-x64. However, float arguments passed in FPU

registers cause skipping the next register which does not match the memory image of CPU registers.

The following examples of argument types and corresponding mappings to CPU/FPU registers, given

in Table 5.12, are intended to illustrate the assignment of arguments to registers in more detail.

Type CPU registers FPU registers

sequence r4 r5 r6 r7 f12 f13 f14 f15

f1,f2 f1 f2 . . . f1 - f2 -

f1,d1 f1 - d1 f1 - d1

d1,f1 d1 f1 . . . d1 f1 -

d1,d2 d1 d2 d1 d2

i1,f1 i1 f1 . . . - - f1 -

l1,f1 l1 f1 . . . - - f1 -

l1,d1 l1 d1 - - d1

i1,i2,f1,f2 i1 i2 f1 f2 - - - -

Table 5.12: Handling of floating-point arguments on the mips-o32 ABI.

Each row gives an argument-type sequence and its corresponding assignment to the four general-

purpose and floating-point parameter registers. Arguments are denoted as 〈type〉index with ‘f ’ for

float , ‘d’ for double , ‘i’ for int and ‘l’ for long long , and the index is used to distinguish objects of

the same type. The “. . . ” indicates the next free general-purpose register for subsequently following

third arguments (although alignment restrictions may lead to a skip). While a mapping of CPU

registers to corresponding FPU registers works for some cases, this scheme would fail for others. For

example, for the sequences (f1,f2) in Row 1 and (i1,f1) in Row 5 the second argument would need to

be passed in general-purpose register r6, instead of r5, in order to utilize a simple mapping scheme.

220 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

For the implementation a Call VM for mips-o32 a separate buffer was incorporated to layout and

transfer data to floating-point registers separately; the decision regarding exactly where to place data

is based on an argument number counter mArgCount . The data structure of the Call VM for mips-o32

is given below:

typedef struct {

union {

double d;

float f[2];

} u[2];

} DCRegData_o32;

typedef struct {

DCCallVM mInterface;

int mArgCount;

DCRegData_o32 mRegData;

DCVecHead mVecHead;

} DCCallVM_o32;

Listing 36 gives the implementation of the Call VM. Note that all load argument methods (prefixed

‘a’) update the counter by one. The variable is evaluated in the methods aFloat and aDouble where

data are appended to the vector and also assigned to the register buffer for the first two arguments.

void aFloat(DCCallVM* p, DCfloat x) {

DCCallVM_o32* x = (DCCallVM_o32*)p;

dcVecAppend(&x->mVecHead,&x,sizeof(DCfloat));

if (x->mArgCount < 2) {

#if defined(__MIPSEL__)

x->mRegData.u[mArgCount].f[1] = x;

#else

x->mRegData.u[mArgCount].f[0] = x;

#endif

}

x->mArgCount++;

}

void aInt(DCCallVM* p, DCint i) {

DCCallVM_o32* x = (DCCallVM_o32*)p;

dcVecAppend(&x->mVecHead, &i, sizeof(DCint));

x->mArgCount++; }

void aBool (DCCallVM* p, DCbool v){aInt(p,(DCint)v);}

void aChar (DCCallVM* p, DCchar v){aInt(p,(DCint)v);}

void aShort(DCCallVM* p, DCshort v){aInt(p,(DCint)v);}

void aLong (DCCallVM* p, DClong v){aInt(p,(DCint)v);}

void aLongLong(DCCallVM* p, DClonglong v) {

DCCallVM_o32* x = (DCCallVM_o32*)p;

/* align to 8-byte */

dcVecSkip(&x->mVecHead,dcVecSize(&x->mVecHead)&4);

dcVecAppend(&x->mVecHead,&v,sizeof(DClonglong));

x->mArgCount++; }

void aDouble(DCCallVM* p, DCdouble x) {

DCCallVM_o32* x = (DCCallVM_o32*)p;

/* align 8-byte */

dcVecSkip(&x->mVecHead, dcVecSize(&x->mVecHead) & 4);

dcVecAppend(&x->mVecHead, &x, sizeof(DCdouble));

if (x->mArgCount < 2)

x->mRegData.d[x->mArgCount] = x;

x->mArgCount++;

}

void reset(DCCallVM* p) {

DCCallVM_o32* x = (DCCallVM_o32*)p;

dcVecReset(&x->mVecHead); x->mArgCount = 0; }

void call(DCCallVM* p, DCpointer target) {

DCCallVM_o32* x = (DCCallVM_o32*)p;

mips_o32(target,&x->mRegData,

DC_MAX(16,((dcVecSize(&x->mVecHead))+7UL)&(-8UL));

,dcVecData(&x->mVecHead));

}

DCCallVM_vt gVT_o32 = {

&free, &reset, &mode, &aBool, &aChar, &aShort, &aInt

, &aLong, &aLongLong, &aFloat, &aDouble, &aPointer

, (DCvoidvmfunc*) &call

, (DCboolvmfunc*) &call,

/* [...] */

, (DCpointervmfunc*) &call

};

Listing 36: Call VM for mips-o32.

The C interface to the call kernel is given below:

void mips_o32(void* target, DCRegData_o32* regdata, size_t size, void* buffer);

The call kernel, depicted in Listing 37, transfers the buffer data to the stack and copies the first 16

bytes to registers r4 to r7 while regdata is passed to FPU registers f12 to f15. Since data are also

5.4. DYNAMIC FUNCTION CALLS 221

written to the homing area of the stack the call kernel is also suitable for calling standard and variadic

functions.

1 mips_o32:

2 addiu $sp,$sp,-8 # Alloc local stack frame

3 sw $31,4($sp) # Save link register

4 sw $fp,0($sp) # Save frame pointer register

5 move $fp,$sp # fp = sp

6 sub $sp,$sp,$6 # Alloc call stack frame

7 move $12,$7 # r12 = buffer (r7)

8 move $14,$sp # r14 = sp

9 .next: # ’Copy’ loop:

10 beq $6 , $0,.skip # size > 0 ?

11 nop

12 lw $2 , 0($12) # read word

13 nop

14 sw $2 , 0($14) # write word

15 addiu $12,$12, 4 # update read/write pointers

16 addiu $14,$14, 4

17 addiu $6 , $6, -4 # update size counter

18 j .next

19 nop

20 .skip: # Load FPRs (f12-f15)

21 l.d $f12, 0($5) # load 64-bit data in f12/f13

22 l.d $f14, 8($5) # load 64-bit data in f14/f15

23 move $12, $7 # r12 = stack data

24 move $25, $4 # r25 = target function

25 lw $4 , 0($12) # Load GPRs (r4-r7)

26 lw $5 , 4($12)

27 lw $6 , 8($12)

28 lw $7 ,12($12)

29 jalr $25 # Call target function

30 nop

31 move $sp,$fp # Restore stack pointer

32 lw $31,4($sp) # Restore link register

33 lw $fp,0($sp) # Restore frame pointer

34 addiu $sp,$sp,8 # Clean up local stack frame

35 j $31 # Jump to link register (return)

36 nop

Listing 37: Call kernel for mips-o32.

At first a local stack frame is allocated (line 2) in which the link register and frame pointer are stored

(line 3-4). The stack pointer is saved as the new frame pointer (line 5) and then decremented by size

to allocate a new stack frame for the next call (line 6). Note that size (Register r6) is guaranteed to

be equal or larger than 16 bytes and aligned to 8 bytes (see Function call in Listing 36). The buffer

(in Register r7) is then copied to the stack including the homing area (line 9-20). FPU register data

are loaded from regdata (in Register r5) into four floating-point parameter registers f12 to f15 (line

21-22). The first four words of buffer are loaded to the four general-purpose parameter registers r4

to r7 (line 25-28). Finally the call is executed (line 29). After that the stack frame of the call is

cleaned up by moving the frame pointer to the stack pointer (line 31). The original frame pointer

and link register are restored (line 32-33), the local stack frame is cleaned up (line 34) and, finally,

control is passed back to the caller (line 35-36). Note the nop instructions which need to be used for

branch delay slots (line 11, 19, 30 and 36); also one nop is used to prevent load delays between direct

dependencies when loading/storing data (line 13) which is suggested in Sweetman (2007, p.52).

The MIPS architecture supports two endian data models. Typically “mips” implies a big endian model

222 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

also referred to as “mipseb”. The little endian variant is known as “mipsel”. For the implementation

of the Call VM and the call kernel the endian model has an influence for storing float data in the

correct location in the register buffers (see Function aFloat in Listing 36) and for transfer to the

FPU registers which needs to change the 32-bit word transfer order for passing data to f12/f13 and

f14/f15; this is managed by the pseudo-instruction l.d (line 21-22 of Listing 37) which generates two

instructions of the form lwc1 Fn, offset(Rn) and sets up the “offset” that corresponds to the endian

model of the target machine during assembling.

5.4. DYNAMIC FUNCTION CALLS 223

5.4.16 Passing arguments via type-specific load instructions (mips-n64 port)

MIPS CPUs, based on the MIPS32/64 ISA, incorporate a modern FPU programming model that

improves on the mips-o32 ABI. It offers support for 64-bit registers which support 32-bit and 64-bit

data types. The calling convention of the n64 ABI reserves eight 64-bit general-purpose and floating-

point registers for passing of arguments. The two register files are logically inter-connected. When

one argument is assigned to be passed via one register, the corresponding register of the other set

is marked as occupied, similar to the x86-64-x64 ABI. However, no homing area is reserved on the

stack. Effectively, eight arguments can be passed via registers.

The data structure of the Call VM for n64 contains two buffers for each register type; for the floating-

point buffer a union structure for float and double values is used:

typedef struct {

DClonglong mGPR[8];

union {

DCfloat f;

DCdouble d;

} mFPR[8];

DClonglong mBitMask;

} DCRegData_n64;

typedef struct {

DCCallVM mInterface;

int mRegCount;

DCRegData_n64 mRegData;

DCVecHead mVecHead;

} DCCallVM_n64;

The call kernel loads both sets of eight registers. However, in order to load floating-point registers

we needed type-specific load instructions to distinguish 32-bit and 64-bit value transfer. A bit mask

mBitMask is used as part of the state machine, where the lower 8 bits indicate the specific sub-type

whether a value needs to be transferred as a float (bit cleared) or as a double (bit set). The

implementation of the Call VM is given in Listing 38.

During initialization and resetting of the Call VM the bit mask is cleared. Small integer argument

types are promoted to 64 bits. If 32-bit floating-point values need to be passed via stack (if mRegCount

> 7) the value is append to the vector and a 4-byte padding is added so that the stack remains

8-byte aligned. The method implementation for dcArgDouble , named aDouble , updates the bit mask

accordingly for the first eight arguments. The call kernel has the following C interface:

void mips_n64(void* target, DCRegData_n64* regdata, size_t size, void* buffer);

The assembly source for the call kernel is given in Listing 39.

At first a local stack frame is allocated on the stack (line 2) in which link register, frame pointer and

global pointer are saved (line 3-5). The stack pointer is copied to the frame pointer (line 6) and then

decremented by size (Register r6) to allocate a new stack frame (line 7). Then buffer data are

224 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

void aLongLong(DCCallVM* p, DClonglong v) {

DCCallVM_mips_n64* x = (DCCallVM_mips_n64*)p;

if (x->mRegCount < 8)

x->mRegData.mGPR[x->mRegCount++] = v;

else

dcVecAppend(&x->mVecHead,&v,sizeof(DClonglong));

}

void aInt(DCCallVM* p,DCint v){

aLongLong(p,(DClonglong)v); }

void aBool (DCCallVM* p,DCbool v){

aLongLong(p,(DClonglong)v); }

void argChar (DCCallVM* p,DCchar v){

aLongLong(p,(DClonglong)v); }

void aShort(DCCallVM* p,DCshort v){

aLongLong(p,(DClonglong)v); }

void aLong (DCCallVM* p,DClong v){

aLongLong(p,(DClonglong)v); }

void aPtr (DCCallVM* p,DCpointer v){

aLongLong(p, *(DClonglong*)&v);}

void reset(DCCallVM* p) {

DCCallVM_mips_n64* x = (DCCallVM_mips_n64*)p;

dcVecReset(&x->mVecHead);

x->mRegCount = 0;

x->mRegData.mBitMask = 0LL;

}

void aFloat(DCCallVM* p, DCfloat v) {

DCCallVM_n64* x = (DCCallVM_n64*)p;

if (x->mRegCount < 8) {

x->mRegData.mFPR[x->mRegCount++].f = x;

} else {

dcVecAppend(&x->mVecHead, &v, sizeof(DCfloat));

dcVecSkip (&x->mVecHead, sizeof(DCfloat));

}

}

void aDouble(DCCallVM* p, DCdouble v) {

DCCallVM_n64* x = (DCCallVM_n64*)p;

if (x->mRegCount < 8) {

x->mRegData.mBitMask |= 1<<(x->mRegCount);

x->mRegData.mFPR[x->mRegCount++].d = v;

} else

dcVecAppend(&x->mVecHead, &v, sizeof(DCdouble));

}

void call(DCCallVM* p, DCpointer t) {

DCCallVM_mips_n64* x = (DCCallVM_mips_n64*)p;

mips_n64(t, &x->mRegData,

dcVecSize(&x->mVecHead), dcVecData(&x->mVecHead));

}

Listing 38: Call VM for mips-n64.

copied to the stack frame (line 8-18) and the eight general-purpose registers are loaded (line 21-28).

The bit mask is loaded to Register r14 (line 34) followed by a sequence of eight conditional blocks

for loading floating-point registers. In each block a bit is tested (e.g. line 35) in order to load a 32-bit

(e.g. line 37) or 64-bit (e.g. line 39) value, respectively. Code is given for the first (line 35-39) and the

last conditional block (line 41-45) and is omitted for blocks in between. After loading all floating-point

registers the preparation of arguments is complete and the call can be executed (line 47). On function

return the stack pointer is restored to the local frame (line 47) from where other registers are restored

(line 48-50). The local frame is removed (line 51) and control is passed back to the caller (line 53).

5.4. DYNAMIC FUNCTION CALLS 225

1 mips64_n64:

2 dsubu $sp,$sp,64 # Alloc local frame

3 sd $ra,48($sp) # Save link register

4 sd $fp,40($sp) # Save frame pointer

5 sd $gp,32($sp) # Save global pointer

6 move $fp,$sp # Set fp = stack pointer

7 dsubu $sp,$sp,$6 # Alloc call frame

8 move $12,$7 # Set r12 = buffer

9 move $14,$sp # Set r14 = sp

10 .next: # ’Copy’ loop:

11 beq $6,$0,.skip # size == 0 ?

12 daddiu $6,$6,-8

13 ld $2, 0($12)

14 sd $2, 0($14)

15 daddiu $12,$12,8

16 daddiu $14,$14,8

17 b .next

18 .skip: # Free GPRs:

19 move $25,$4 # r25 = target

20 move $13,$5 # r13 = regdata

21 ld $4 , 0($13) # Load 8 x 64-bit GPRs

22 ld $5 , 8($13)

23 ld $6 , 16($13)

24 ld $7 , 24($13)

25 ld $8 , 32($13)

26 ld $9 , 40($13)

27 ld $10, 48($13)

28 ld $11, 56($13)

29

30

31

32

33 # Load 8 x 32/64-bit FPRs

34 ld $14 ,128($13) # r14 = bit mask

35 .f0: and $15 ,$14,1 # Bit 0 set ?

36 bgtz $15 ,.d0

37 l.s $f12,64($13) # load 32-bit float

38 j .f1

39 .d0: l.d $f12,64($13) # load 64-bit double

40 # [...] -- CODE OMITTED FOR BIT 2-6 --

41 .f7: and $15, $14,128 # Bit 7 set ?

42 bgtz $15, .d7

43 l.s $f19,120($13) # load 32-bit float

44 j .call

45 .d7: l.d $f19,120($13) # load 64-bit float

46 .call:jal $ra , $25 # Call function

47 move $sp , $fp # Restore stack pointer

48 ld $ra ,48($sp) # Restore link register

49 ld $fp ,40($sp) # Restore frame pointer

50 ld $gp ,32($sp) # Restore global pointer

51 daddu $sp ,$sp,64 # Free local frame

52 j $ra # Jump to return address

Listing 39: Call kernel for mips-n64 ABI.

226 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

5.5 Dynamic Callback Handlers

The previous section covered a generic technique for calling precompiled code from within a dynamic

execution context. Our focus remains on function calls, but in this section we regard the complemen-

tary problem.

We discuss a portable software framework to execute scripting functions on behalf of C callbacks.

This was motivated by the aim to allow scripting users to implement callbacks of C libraries by

means of user-defined scripting functions. The framework is provided as an open-source C library,

named dyncallback, contributed to the DynCall project. In this sense dyncallback complements

dyncall to offer a dynamic bi-directional inter-language call bridge between compiled and interpreted

programming languages.

5.5.1 Introduction

Callbacks are offered by C APIs as a complementary interface method to the usual function call

interfaces. APIs make use of callbacks to allow users to define behaviour for library-specific events

that are activated during execution of a library’s function. Figure 5.15 illustrates the basic components

of a callback in C libraries.

C Library User Program

Function Pointer

Caller

Callback Function

Figure 5.15: Anatomy of C Callbacks.

The figure shows a running program comprising two run-time modules (light blue), namely a shared

“C library” and an executable “user program”. At a finer level two code objects (green) and one data

object (yellow) are depicted. The “Callback Function” is defined as part of the application’s code but

for the implementation of a library’s callback. At first the application code registers this C function as

a callback via a library-specific mechanism so that the function’s code address is stored in a “Function

Pointer” variable of the library; the reference is shown as the black solid arrow. Subsequently the

library code activates the callback, for example to compare elements when sorting a user-defined data

type (e.g. the qsort function) or to notify an event during parsing an XML file (e.g. the expat

XML parser library) as illustrated in Section 4.6. The control flow (dashed red line) of the callback is

activated by the “Caller” code section. In preparation for the call arguments are loaded to the stack

and registers in accordance with the C function type of the callback and the calling conventions of

the platform. Finally a machine-level call instruction is executed by using the “Function Pointer”

5.5. DYNAMIC CALLBACK HANDLERS 227

variable as the target address and control flow is passed from the library to the application’s “Callback

Function”. Note that the callee side needs to conform with the function type and calling convention

of the callback caller otherwise the process possibly crashes.

Interpreters usually offer an embedding interface for executing scripting functions from C. Language

bindings to C libraries make use of this facility to provide support for callbacks. Typically a bindings

interface is offered to specify a user-defined scripting function to be registered as a C callback. The

bindings package provides C callback functions that take the role of adapters which are registered as

callbacks; when they are activated the calls are forwarded at interpreter-level to corresponding scripting

functions. However, for each distinct function type a separate C function needs to be implemented

as adapter by the bindings package. Furthermore context information about the interpreter and

the target scripting function needs to be incorporated by different means depending on the library’s

registration and callback interface.

5.5.2 Objective

Function pointer objects represent the key interface objects for registration and activation of callbacks

in C. If a generic method is made available to scripting languages for wrapping user-defined scripting

functions as plain C function pointers a much broader spectrum of C API services can be accessed

dynamically than by a foreign function call interface alone. However, a C function can not be used

as a generic callback adapter directly for receiving incoming calls from call-outs of arbitrary function

types.

The problem is as challenging as is the case of dyncall. Callbacks with arbitrary calling sequences are

executed at machine level. In order to handle them from a scripting language in a generic way they

need to be processed by a generic handler code that translates the function call to the interpreter; it

is desirable that this interface can be implemented in C.

We discuss a portable software library with a C interface that provides an abstraction layer for handling

of function calls on the callee side. Included here is an abstraction for processing arbitrary sequences

of arguments.

Our objective is to offer this layer as a generic and dynamic service for wrapping function objects

of a dynamic scripting language as native function pointer objects. When calling the latter from

precompiled code control is delegated to a callback handler function where an interpreter-based call

to the scripting function is executed with access to the sequence of arguments and further context

information.

5.5.3 Approach

In order to handle arbitrary function calls on the callee side the state of machine resources for passing

arguments can be captured and encapsulated as an abstract argument iterator object. This allows

228 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

argument processing to be delegated to a handler in C later. Such a generic function entry handler

can be implemented in assembly language, similarly to call kernels of dyncall. However, a pointer

to this function is not suitable as a wrapper since additional context information needs to be made

available to the handler, such as the C function type of the callback and the reference to the target

scripting function. Therefore we use a hybrid “code” and “data” adapter object for this purpose as

depicted in Figure 5.16.

C Library User Program

Function Pointer

Caller

Thunk

Data

Thunk Object

Thunk Entry

Figure 5.16: Anatomy of Thunks Objects.

The object begins with a short section of machine code (gray), named a Thunk header, which makes

it a callable object, followed by a data section (yellow) which provides an environment for context

data. When calling Thunk objects control flow is forwarded to a user-defined Thunk Entry routine

regardless of the type of the function call.

Dynamic creation of natively callable objects at run time poses a challenge in C. Callable objects are

typically created at build time by compilers or assemblers. However, the code of a thunk is relatively

small (between 12 to 20 bytes) and we can use a tiny code generator (approximately 15 lines of C) for

each platform port. A thunk code header performs two tasks:

1. A reference of the Thunk object is loaded in a specific volatile register that is not otherwise

reserved as a parameter register. In this framework the register is named the thunk register.

2. Control flow is passed to the Thunk Entry via a jump instruction.

On entry to the thunk entry function the execution environment is that after the caller’s call except

that additional context “Data” are available via the thunk register. Thus a specific routine can

be specified as “thunk entry” which captures the current state of the call and then forwards this

information to a C handler function for further evaluation of the call.

5.5.4 Architecture

The dyncallback framework provides a C interface for dynamic run-time creation of Callback object

types. The object type is special because it is callable and contains context-specific data. As depicted

in Figure 5.17, a pointer to this object can be used as a plain function pointer for registration of C

callbacks regardless of the required function type but the caller code needs to comply with the calling

convention supported by the framework.

5.5. DYNAMIC CALLBACK HANDLERS 229

C Library User Program

Function Pointer

Caller

Thunk

Callback Handler

Data

Callback Object

Callback Thunk Entry

Callback Handler

Figure 5.17: Anatomy of Callback Objects.

Callback objects are associated with a C “Callback Handler” function and a user “Data” pointer.

The framework ensures that calls to callback objects are delegated to the handler function. Several

parameters are passed to the handler, such as the sequence of arguments, storage for passing callback-

specific return values and the user data pointer.

Since a handler function needs access to the arguments of arbitrary function types, the sequence needs

to be captured before entry to the C handler function. Technically this needs to be done very early

after the call. Since arguments are loaded in registers and stack memory their values need to be

preserved for later iteration, in particular to free parameter registers for the next C call to the handler

function.

Callback objects are based on Thunk objects configured to bypass calls to a “Callback Thunk Entry”

function. The main task of the callback thunk entry is to delegate the call as data arguments to the

handler. As part of this task arguments are encapsulated by an object, named Argument Iterator,

that will be dynamically allocated on the stack as depicted in Figure 5.18.

...

Args. on Stack

(Return Address)

(Saved Registers)

Register Content

Storage

Argument Iterator

Return value storage

...

...

Integer Float Vector

Arguments in Registers

Callback

Caller Stack Frame

Callback Thunk Entry

Local Stack Frame

Callback Handler

Callee Stack Frame

Figure 5.18: Dynamic allocation of Argument Iterator on Callback Thunk Entry’s stack frame.

230 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

The argument iterator is a platform-specific data object that needs to take the characteristics of

calling conventions and ABIs into account. For all parameter registers corresponding buffers need

to be reserved in that object. The callback thunk entry code is responsible for its allocation and

initialization; the contents of parameter registers are saved to buffers; the parameter region on the

callback’s call stack frame is saved to a pointer variable and counter variables are initialized.

In addition a second object is dynamically allocated on the stack for storing return values. Finally the

handler of the“Callback object” is called. The return value of the handler indicates the return type of

the callback by a type code so that corresponding registers are loaded with return values from stack

storage. Finally, control flow returns back to the “Caller”.

Type information about the function type of a callback is typically stored in user data so that the

handler can iterate type-safe over arguments and return appropriate value types. The argument

iterator object offers a C interface for type-specific iteration. Note that the implementation of these

functions is also specific to a calling convention; the argument iterator represents a state machine

similar to the Call VM of dyncall but for the opposite direction - to read arguments in sequence.

For the implementation of a dynamic callback handling facility as an extension to a dynamic program-

ming language three tasks need to be accomplished in C:

1. User data: Definition of a user-defined structure for information about the callback type (e.g.

fuction type signature) and the target execution environment (e.g reference to a scripting func-

tion).

2. Handler function: Implementation of a handler function that iterates over incoming arguments

to prepare a call to a scripting function and then to execute it. According to the function type,

a return value is passed back via a data structure and its value type is returned via a return

code.

3. Wrapper interface: Implementation of a scripting interface to wrap user-defined scripting func-

tions and corresponding C function types of the callback (e.g. function type signature) as a

pointer object. A user data object is created and initialized accordingly. Finally the callback

object is created, linked with the handler and user data, and then returned as an external pointer

object.

Figure 5.19 illustrates the application of this framework to R contributed by the rdyncall package as

discussed in Section 4.6. The figure shows a “Callback object”, created in R via a call to new.callback

that wrapped a user-defined “R Function” as a plain function pointer registered to a C library as

a callback and stored in a “Function Pointer” object. Callback objects, created by rdyncall, are

set to the global “R Callback Handler” function. This function implements the bridge between calls

from statically compiled C code to dynamically interpreted function calls in R. Note the “R Callback

Userdata” which supplies the handler with callback-specific information such as the reference to the

“R function” and the C function type (not depicted).

5.5. DYNAMIC CALLBACK HANDLERS 231

C Library dyncallback framework

R and rdyncall package

Function Pointer

Caller

Thunk

Callback Handler

User-data

Callback Thunk Entry

R Callback Userdata R Callback Handler

R InterpreterR Function

Figure 5.19: Anatomy of C Callbacks to R based on rdyncall and dyncallback.

5.5.5 Interface

The C API of dyncallback is accessible via inclusion of the C header file dyncall_callback.h.

A similar API name scheme as for dyncall (see Section 5.4.5) is used for dyncallback except for

callback and argument iterator functions which are prefixed dcb instead of dc .

5.5.5.1 Creation of Callback objects

Callback objects are created dynamically at run time via the following interface:

DCCallback* dcbNewCallback(const char* sig, DCCallbackHandler* hf, void* ud);

hf specifies the handler function, which is called on behalf of a callback call.

ud specifies a user data pointer which is associated with the callback and passed as an argument

to the handler function during callback activation. The function returns a pointer to DCCallback ; in

order to call it from C code it can be type cast to a function pointer.

The signature sig is currently used on x86-32 for the the selection of the calling convention and possi-

bly the computation of stack clean-up sizes, such as required by the stdcall ABI. Other architectures

currently ignore this parameter.

5.5.5.2 Callback Handler Interface

Handler functions need to conform with the following function type as interface convention:

char MyCallbackHandler (DCCallback* p, DCArgs* a, DCValue* r, void* ud);

232 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

As a response to a function call on a callback object a corresponding handler is called with four

arguments: a pointer to the callback object, given by p , a pointer to the argument iterator, given by

a , a pointer to a buffer to store return values, given by r and a pointer to the user data associated

with the callback object during creation, given ud .

Handlers should return different return values via r according to the callback’s function type. In

addition the handler’s return value is a return type code which indicates the return type of the callback

to the underlying framework; the latter moves the return value from the storage to appropriate registers

according to this type code. The type code is a single character code based on the notation for basic

C types of DynPort (see Section 3.7.3.2).

Note that, if no other means are used for function type information, the data field sig of p , gives

the signature sig as it was passed during creation of the callback object.

5.5.5.3 Argument Iterator

A handler processes arguments by using the Argument Iterator and a function type of the callback

(e.g. a signature). The interface for the argument iterator comprises a set of C functions, one for each

supported argument type. All functions have a common naming and function type pattern as follows:

〈type〉 dcbArg 〈type〉 (DCArgs* pArgIter)

where 〈type〉 is one of Bool , Char , UChar and so on. The following gives a complete list of the

interface:

typedef struct DCArgs DCArgs;

DCbool dcbArgBool (DCArgs*);

DCchar dcbArgChar (DCArgs*);

DCshort dcbArgShort (DCArgs*);

DCint dcbArgInt (DCArgs*);

DClong dcbArgLong (DCArgs*);

DClonglong dcbArgLongLong (DCArgs*);

DCuchar dcbArgUChar (DCArgs*);

DCushort dcbArgUShort (DCArgs*);

DCuint dcbArgUInt (DCArgs*);

DCulong dcbArgULong (DCArgs*);

DCulonglong dcbArgULongLong (DCArgs*);

DCfloat dcbArgFloat (DCArgs*);

DCdouble dcbArgDouble (DCArgs*);

DCpointer dcbArgPointer (DCArgs*);

The arguments are traversed from left-to-right according to the function type of the callback.

5.5.5.4 Return Value Storage

The DCValue data structure defines a variant union data type that contains a data value field for each

supported return type.

5.5. DYNAMIC CALLBACK HANDLERS 233

typedef union DCValue_ DCValue;

union DCValue_

{

DCbool B;

DCchar c;

DCuchar C;

DCshort s;

DCushort S;

DCint i;

DCuint I;

DClong j;

DCulong J;

DClonglong l;

DCulonglong L;

DCfloat f;

DCdouble d;

DCpointer p;

DCstring Z;

};

The field name corresponds with the return type code of the handler.

5.5.5.5 Destroying Callback Objects

Callback objects that are no longer needed can be destroyed by calling a destructor as follows:

void dcbFreeCallback(DCCallback* pcb);

5.5.5.6 Querying parameters

The user data of a callback can be queried as follows:

void* dcbGetUserData(DCCallback* pcb);

5.5.6 Sample Application

In Section 4.6 we discussed a facility of the rdyncall R package for wrapping R scripting functions

as callback objects to C callbacks. We now give its implementation which is based on dyncallback.

The R constructor function new.callback(signature, fun, envir) is implemented as a small R wrap-

per that delegates a call to the C implementation:

new.callback <- function(signature, fun, envir=new.env())

{

stopifnot(is.character(signature))

stopifnot(is.function(fun))

stopifnot(is.environment(envir))

.Call("new_callback", signature, fun, envir, PACKAGE="rdyncall")

}

234 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Each callback object is associated with a user-defined data structure that contains R-specific callback

data such as the reference to the R scripting function and a reference to the environment envir where

the R function should be evaluated:

typedef struct

{

int disabled; /* disabled marker */

SEXP fun; /* R function */

SEXP rho; /* environment */

int nargs; /* number of arguments (cached) */

const char* signature; /* signature without callmode prefix (cached) */

} RData;

The field fun holds the reference to the R function closure object that will be called upon callback

activation by the R callback handler. The callback handler creates a call expression that holds this

S-Expression as a first object. Further S-Expressions in the list are appended with atomic R value

objects that are initialized by incoming C arguments via the argument iterator. The field rho holds

the reference to the environment in which the call expression is evaluated. The field nargs is used as

a cached number of arguments derived from the signature. The field signature comprises the function

type signature without any calling convention prefixes.

The callback object constructor in C is given below:

SEXP new_callback(SEXP sig, SEXP fun, SEXP rho) {

const char* s = CHAR(STRING_ELT(sig, 0)); // get signature C string pointer

RData* rdata = Calloc(1, RData); // allocate RData object

DCCallback* cb = dcbNewCallback(s, &handler, rdata); // create DCCallback object

rdata->disabled = 0; // unmark as disabled

rdata->fun = fun; R_PreserveObject(fun); // protect fun and rho

rdata->rho = rho; R_PreserveObject(rho);

if (*s == ’_’) s += 2; // skip any calling convention prefix

rdata->signature = s; // store signature string

int nargs = 0; while((*s++) != ’)’) nargs++; // count arguments and store

rdata->nargs = nargs;

SEXP ans = R_MakeExternalPtr(cb,R_NilValue,R_NilValue); // create external pointer

R_RegisterCFinalizerEx(ans, &finalizer, TRUE); // register finalizer

return ans;

}

The data structure RData will be allocated as user data for the callback and rdyncall’s callback

handler. A full scan over the signature is performed to determine the beginning of the arguments

and the number of arguments. The function and environment are referenced for external use via

R_PreserveObject to protect them from garbage collection.

The finalizer function will be called if there are no references to a callback object in R and the garbage

collector is running.

void finalizer(SEXP x) {

DCCallback* cb = R_ExternalPtrAddr(x); // obtain DCCallback object

RData* rdata = (RData*) dcbGetUserData(cb); // obtain R user data

R_ReleaseObject(rdata->fun); // release fun and rho

R_ReleaseObject(rdata->rho);

Free(rdata); // free R_Callback object

dcbFreeCallback(cb); // free Callback object

}

The finalizer reverses all allocations of the constructor and releases the function and environment for

5.5. DYNAMIC CALLBACK HANDLERS 235

garbage collection.

When calling a callback from C the callback handler “ handler ” is activated. As a convention of the

rdyncall package if an R callback script function failed during execution it is disabled for subsequent

callbacks. If the callback’s user data field disabled is set control is passed back immediately.

char handler(DCCallback* pcb, DCArgs* args, DCValue* rval, void* userdata){

RData* rdata = (RData*) userdata;

if (rdata->disabled) return ’v’;

A call expression is allocated to prepare the function call.

SEXP call;

PROTECT(call = allocList(rdata->nargs + 1));

SET_TYPEOF(call, LANGSXP); SETCAR(call, rdata->fun);

call is a root S-Expression object that needs to be protected from garbage collection. It follows the

iteration loop to create a sequence of R argument objects.

SEXP x = CDR(s);

char const *ptr;

char ch;

for(ptr = rdata->signature ; (ch = *ptr) != ’)’ ; ptr++) {

SEXP item;

switch(ch) {

case ’B’: item = ScalarLogical((dcbArgBool(args)==DC_FALSE)?FALSE:TRUE); break;

case ’c’: item = ScalarInteger((int) dcbArgChar(args)); break;

case ’C’: item = ScalarInteger((int) dcbArgUChar(args)); break;

case ’s’: item = ScalarInteger((int) dcbArgShort(args)); break;

case ’S’: item = ScalarInteger((int) dcbArgUShort(args)); break;

case ’i’: item = ScalarInteger((int) dcbArgInt(args)); break;

case ’I’: item = ScalarReal((double) dcbArgUInt(args)); break;

case ’j’: item = ScalarReal((double) dcbArgLong(args)); break;

case ’J’: item = ScalarReal((double) dcbArgULong(args)); break;

case ’l’: item = ScalarReal((double) dcbArgLongLong(args)); break;

case ’L’: item = ScalarReal((double) dcbArgULongLong(args)); break;

case ’f’: item = ScalarReal((double) dcbArgFloat(args)); break;

case ’d’: item = ScalarReal(dcbArgDouble(args)); break;

case ’z’: item = mkString(dcbArgPointer(args)); break;

case ’p’: item = R_MakeExternalPtr(dcbArgPointer(args), R_NilValue, R_NilValue); break;

}

SETCAR(x, item);

x = CDR(x);

}

The argument iterator is operated according to the signature. At each step atomic R scalar values

are constructed and appended to the call expression object. The objects need not be protected since

they are inserted in the call expression which is already protected from garbage collection. The call

object is complete and can be evaluated as follows:

int error = 0;

SEXP ans;

PROTECT(ans = R_tryEval(call, rdata->rho, &error));

If an error occures the callback object is disabled for subsequent callbacks.

236 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

if (error) {

do_error:

warning("error during R callback (disabled).");

rdata->disabled = 1; // mark as ’disabled’

UNPROTECT(2);

return ’v’;

}

Otherwise the return value is returned as follows:
ch = *ptr;

switch(ch) {

case ’v’: break;

case ’B’:

ch = ’i’;

switch(TYPEOF(ans)) {

case INTSXP: rval->i = (INTEGER(ans)[0] == 0) ? DC_FALSE : DC_TRUE; break;

case LGLSXP: rval->i = (LOGICAL(ans)[0] == FALSE) ? DC_FALSE : DC_TRUE; break;

case REALSXP: rval->i = (REAL(ans)[0] == 0.0) ? DC_FALSE : DC_TRUE; break;

default: goto do_error;

} break;

case ’c’: case ’C’: case ’s’: case ’S’: case ’i’: case ’I’:

ch = ’i’;

switch(TYPEOF(ans)) {

case INTSXP: rval->i = (int) INTEGER(ans)[0]; break;

case REALSXP: rval->i = (int) REAL(ans)[0]; break;

case LGLSXP: rval->i = (int) LOGICAL(ans)[0]; break;

default: goto do_error;

} break;

case ’j’: case ’J’:

ch = ’j’;

switch(TYPEOF(ans)) {

case INTSXP: rval->j = (long) INTEGER(ans)[0]; break;

case REALSXP: rval->j = (long) REAL(ans)[0]; break;

case LGLSXP: rval->j = (long) LOGICAL(ans)[0]; break;

default: goto do_error;

} break;

case ’l’: case ’L’:

ch = ’l’;

switch(TYPEOF(ans)) {

case INTSXP: rval->l = (long) INTEGER(ans)[0]; break;

case REALSXP: rval->l = (long) REAL(ans)[0]; break;

default: goto do_error;

} break;

case ’f’:

ch = ’f’;

switch(TYPEOF(ans)) {

case INTSXP: rval->f = (float) INTEGER(ans)[0]; break;

case REALSXP: rval->f = (float) REAL(ans)[0]; break;

default: goto do_error;

} break;

case ’d’:

ch = ’d’;

switch(TYPEOF(ans)) {

case INTSXP: rval->d = (float) INTEGER(ans)[0]; break;

case REALSXP: rval->d = (float) REAL(ans)[0]; break;

default: goto do_error;

} break;

case ’p’: switch(TYPEOF(ans)) {

ch = ’p’;

case NILSXP: rval->p = NULL; break;

case EXTPTRSXP: rval->p = R_ExternalPtrAddr(ans); break;

default: goto do_error;

} break;

}

UNPROTECT(2);

return ch;

}

5.5. DYNAMIC CALLBACK HANDLERS 237

The result of the evaluation is cast to the corresponding C return value, as indicated by the signature,

and stored in the object pointed to by the argument DCValue* rval (3rd argument) and a corresponding

return type character is passed back.

5.5.7 Implementation

In this section we discuss the implementation of the dyncallback library on a number of platforms.

Table 5.13 gives an overview of available ports of the library. Note that a subset of ports in dyncall

have been made available to dyncallback; ppc32-sysv and x86-32-p9 ports as well as support for

mips and sparc architectures are currently work in progress.

Arch/OS M
ic

ro
so

ft
W

in
d

o
w

s

A
p

p
le

L
in

u
x
,(

N
et

,F
re

e,
O

p
en

)
B

S
D

S
o
la

ri
s

D
ra

g
o
n

fl
y

B
S

D

H
a
ik

u

M
in

ix
3

P
la

n
9

N
in

te
n

d
o

D
S

S
o
n
y

P
S
P

x86-32 cdecl,stdcall,fastcall(ms/gnu),thiscall(ms/gnu) [p9] - -

x86-64 x64 sysv - - - - -

ppc32 - osx [sysv] - - - - - - -

arm32 - aapcs - - - - - aapcs -

Table 5.13: Overview of supported platforms by dyncallback.

Table 5.14 gives an overview of the components of a “port” of dyncallback. Base components are

listed first, followed by dependent components. The order gives an orientation for development of

a port i.e. we suggest to first check for the existence of a suitable implementation of a “Memory

allocator” before continuing with the development of a “Thunk” port. It is worth noting that unit

tests are available for various components in order to support the porting process; an overview is given

in Section 5.7.2.

Component Language API Header Implementation files

Memory allocator C dyncall_alloc_wx.h dyncall_alloc_wx_<OS|API>.c

Thunk C, machine code dyncall_thunk.h dyncall_thunk_<ARCH>.[c|h]

Callback object C dyncall_callback.h dyncall_callback_<ARCH>.[c|h]

Argument iterator C dyncall_args.h dyncall_args_<ARCH>.[c|h]

Callback entry Assembly - dyncall_callback_<ARCH>.[S|s|asm]

Table 5.14: Components of dyncallback.

Except for the memory allocator, which needs to be ported to a particular operating-system platform,

the other components are processor-architecture specific (i.e. ISA, ABI and calling convention). We

now discuss the components and their implementation in more details.

238 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

5.5.7.1 Memory Allocator

In order to “call” an object so that the program counter can jump to its address, the memory need to

be marked as “executable”. For security reasons current platforms typically forbid execution of code

for certain default memory regions such as the stack and heap memory. Several CPUs incorporate a

protection mechanism on their MMU which is advertised as a special protection bit, such as the NX

bit (Never eXecute) by AMD, or XD bit (eXecute Diasabled) by AMD Intel, for x86-64 and the XN

bit (eXecute Never) for the arm architecture. Standard C functions for dynamic allocation of memory,

such as malloc , allocate memory for data objects on the heap so that execution of code is forbidden.

However, there are operating-system specific functions for allocating memory in which users can specify

security and access features. The “Memory allocator” interface in dyncallback represents a portable

abstraction layer for allocation of Writable-eXecutable memory. The C API interface is given below:

DCerror dcAllocWX(DCsize size, void** pp);

void dcFreeWX (void* p, DCsize size);

dcAllocWX allocates a memory block of size bytes. On success the address is written as a user-defined

pointer variable, given by pp , and an error code of zero is returned. Otherwise an error is indicated

by a return value less than zero. dcFreeWX is used to free the memory.

Currently two ports are included; both regarded together cover a broad spectrum of operating system

platforms. One implementation uses the windows-specific memory allocator function VirtualAlloc

and the other uses the POSIX function mmap . There is also a dummy implementation, based on

malloc , for use on target platforms which allow execution of code in heap memory.

5.5.7.2 Anatomy of Thunks

Thunks are provided as a reusable component via a C API available from dyncall_thunk.h:

typedef struct {

/* platform-specific implementation */

} DCThunk;

void dcbInitThunk(DCThunk* t, void (*e)());

The API defines a C struct data object, named DCThunk , and a function dcbInitThunk for its initial-

ization. Both are platform-specific, i.e. each port gives their definition and implementation.

Users can use the DCThunk structure as a header member field of their user-defined data structure but

need to be aware that the definition and its size is platform-specific.

The function dcbInitThunk initializes objects with a thunk header by writing a machine-code sequence

to the memory referenced by t . It is therefore important that thunk objects and derived user-

5.5. DYNAMIC CALLBACK HANDLERS 239

defined objects are allocated in memory regions that are writable and executable such as provided by

dcAllocWX .

The thunk entry routine, given by e , is executed in response to arbitrary function calls on a thunk

object. Due to the special conditions on entry, i.e. the environment of the “call” is accessible via the

thunk register, the routine is usually implemented in assembly by the user. Although the dyncallback

framework uses one implementation for the delegation to a handler function the thunk API allows for

other applications. For example, we plan to use thunks for dynamic inheritance and overloading of

C++ classes by scripting languages.

An implementation of the thunk software framework comprises:

1. Selection of a Thunk Register or some other means (i.e. by pushing a value on the stack) to

transfer an address value between thunk code and thunk entry routine without destroying the

resources used by function calls.

2. Definition of a C API “data” structure, named DCThunk , which corresponds to the size of the

machine code needed to implement the two basic tasks of a thunk, namely:

• to load a self-reference address, given by t , to the common variable (determined in Step

1) and then

• to jump to a thunk entry function, given by e .

3. Implementation of a code generator C API function, named dcbInitThunk , which initializes the

data structure the above with the machine code.

Examples of thunk implementations, in terms of assembly code and corresponding memory block

layout, C data structure and code generator for four architectures, are depicted in Listing 40. Note

that the machine code in the C function was determined by development of prototypes in assembly

code, translated and disassembled or outputted as hex dumps via image format tools, such as objdump

(for ELF and PE) and otool (Mach-O).

The selection of the thunk register depends on the architecture and the range of calling conventions

on the platform to be supported. As a requirement the register needs to be volatile without taking

the role of a parameter register. However, it may be a register reserved for return values since it is

soley used for data transfer between thunk code and thunk entry. A list of architectures and suggested

thunk registers is given in Table 5.15.

We give a brief summary of implementation methods and we outline a fallback alternative.

• The thunk object address is loaded in the thunk register

– relative to the program counter using a lea (load effective address) instruction (x86-64)

240 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

x86-32

nop

nop

nop

mov SELF, %eax

jmp 12(%eax)

nop

nop nop nop mov

SELF
jmp nop
entry

Thunk-Register: eax

typedef struct {

uint32_t mov;

void *SELF;

uint32_t jmp;

void (*entry)();

} DCThunk;

void dcbInitThunk(DCThunk *t, void (*e)()) {

t->mov =0xB8909090;

t->SELF =t;

t->jmp =0x900C60FF;

t->entry=e;

}

x86-64

lea 0(%rip), %rax

jmp 16(%rax)
CODE

entry

Thunk-Register: rax

typedef struct {

uint64_t code[2];

void (*entry)();

} DCThunk;

void dcbInitThunk(DCThunk* t, void (*e)()) {

t->code[0]=

0xfffffffff9058d48ULL;

t->code[1]=

0x9090900000000325ULL;

t->entry =e;

}

arm32

sub %r12, %r15, 8

ldr %r15, %r15,-4
CODE

entry

Thunk-Register: r12

typedef struct

{

uint32_t code[2];

void (*entry)();

} DCThunk;

void dcbInitThunk(DCThunk* t, void (*e)()) {

t->code[0]=0xE24FC008;

t->code[1]=0xE51FF004;

t->entry =e;

}

ppc32-osx

lis %r2,HI

ori %r2,%r2,LO

lwz %r12,20(%r2)

mtclr %r12

bctr

lis r2 SELF HI
ori r2 SELF LO

lwz
mtclr
bctr
entry

Thunk-Register: r2

typedef struct {

uint16_t lis, HI;

uint16_t ori, LO;

uint32_t code[3];

void (*entry)();

} T;

void dcbInitThunk(DCThunk *t, void (*e)()) {

t->lis=0x3C40;t->HI=hi16(t);

t->ori=0x6042;t->LO=lo16(t);

t->code[0]=0x81820014;

t->code[1]=0x7D8903A6;

t->code[2]=0x4E800420;

t->entry=e;

}

Listing 40: Thunk Assembly Header, Code Block and C Implementation.

5.5. DYNAMIC CALLBACK HANDLERS 241

Architecture Free register Supported ABIs and Calling Conventions

x86-32 eax cdecl, stdcall and thiscall

x86-64 rax sysv and x64

arm32 r12 apcs, linux-aapcs and armhf

ppc32 r2 osx

ppc32 r12 osx, sysv

mips32 r1 oabi, eabi, n32, n64, eabi

sparc g1 v7, v9

Table 5.15: Free registers suitable for passing a reference of a Thunk.

or move instruction with arithmetic adjustment (e.g. sub thunk, pc, 8 for arm327), or

– as an immediate constant, given by p , encoded in a li (load immediate) or mov (move)

instruction (x86-32 and ppc32-osx).

The thunk entry code address, given by e , is encoded as a data field in the code header below

the jump instruction. The data field is addressed via an offset to the thunk register (x86-32/64

and ppc32-osx) or the program counter (arm32) as the target of the jump.

• As a fallback solution: Thunk object address and thunk entry code are both encoded as immediate

constants in load and jump instructions.

5.5.7.3 Anatomy of Callback objects

Callback objects consist of a thunk header followed by callback-specific data. The thunk entry routine

“Callback Thunk Entry” gets access to the data part via the thunk register so that the handler function

pointer and a user data pointer can be retrieved. The default structure is given below:

typedef struct {

DCThunk thunk;

DCCallbackHandler* handler;

void* userdata;

} DCCallback;

The API function dcbNewCallback is responsible for the creation of this object. A default implemen-

tation, which is used by most ports, is given below:

DCCallback* dcbNewCallback(const char* signature, DCCallbackHandler* handler, void* userdata) {

int err;

DCCallback* p = 0;

err = dcAllocWX(sizeof(DCCallback), (void**)&p);

if (!err) {

dcbInitThunk(&p->thunk, &dcCallbackThunkEntry);

p->handler = handler;

p->userdata = userdata;

}

return p;

}

7I.e. thunk register = program counter− 8 bytes; the offset is needed since the sub instruction is executed when the

program counter is already incremented.

242 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

At first, memory is allocated by using dcAllocWX , and then the thunk header is initialized by a call

to dcbInitThunk . Finally, callback-specific properties, such as the user-defined handler and data, are

stored, and a pointer is returned.

5.5.7.4 Anatomy of Argument Iterators and Callback Thunk Entry

The definition of the DCArgs data structure and corresponding methods for iteration can be imple-

mented in C while its allocation and initialization need to be done by the dcCallbackThunk routine

written in assembly language.

The argument iterator is very similar to the Call VM of dyncall. It is a state machine that, via an

iteration interface, updates variables and pointers in order to deliver type-specific values. However,

the interface is plain functional and does not use a common object-oriented structure as in the case

of Call VM; the front-end API functions (e.g. dcbArg<TYPE>) are implemented by a back-end port

without an intermediate layer, such as a function table.

The callback thunk entry routine is written in assembly language and needs to perform the following

tasks:

1. Allocation and initialization of a DCArgs object in the local stack frame. All parameter registers

need to be saved to corresponding locations which need to match the structure of the C object.

2. Allocation of a DCValue object in the local stack frame.

3. Calling the handler hf(p,a,r,ud) , where p is the value of the thunk register, a and r are

the addresses of DCArgs and DCValue on the local stack frame, and h and ud are read from

DCCallback (accessible via the thunk register).

4. On return, the handler’s return value indicates the return type. According to the type code

the actual return value of the callback (stored in DCValue) is loaded to corresponding registers

reserved for passing return values.

5. The local stack frame is removed. Depending on the calling convention the caller’s stack frame

also needs to be removed. Finally control flow is passed back to the callee.

5.5.7.5 Port arm32-aapcs-softfloat

The implementation of DCArgs and a suitable callback thunk entry represent the major parts of a port

(aside from the thunk). As an example we discuss the arm32-aapcs-softfloat port.

On entry of a function call all arguments are placed in sequence from left-to-right in register memory of

four registers for the first 16 bytes of argument data. Further data is passed via the stack in ascending

order of memory addresses. We can implement a suitable argument iterator by means of a buffer

5.5. DYNAMIC CALLBACK HANDLERS 243

for the register content and we use a counter for iteration which runs from zero to three. When the

counter reaches index four the iteration is performed using a pointer, initially initialized to the top of

the stack. The data structure of the argument iterator object is declared as follows:

typedef struct

{

int reg_data[4];

int reg_count;

int* stack_ptr;

} DCArgs; /* for ARM */

The implementation of the argument iterator is given in Listing 41. Front-end API functions read a 4

or 8-byte quantity, perform type conversion and then pass back the result as return value. The three

core functions for reading data update the counter and/or the pointer: arm_word is used for reading a

4-byte word, arm_double and arm_longlong are used for 8-byte quantities and return data as integer or

floating-point values, respectively. In order to support the eabi ABI (e.g. aapcs-linux), arm_double

and arm_longlong are slightly modified; the counter is adjusted to be the next even index or the stack

pointer is adjusted to the next 8-byte boundary.

DClonglong dcbArgLongLong (DCArgs* p) { return arm_longlong(p); }

DClong dcbArgLong (DCArgs* p) { return *(DClong*)arm_word(p); }

DCint dcbArgInt (DCArgs* p) { return (DCint) dcbArgLong(p); }

DCchar dcbArgChar (DCArgs* p) { return (DCchar) dcbArgLong(p); }

DCshort dcbArgShort (DCArgs* p) { return (DCshort) dcbArgLong(p); }

DCbool dcbArgBool (DCArgs* p) { return (dcbArgLong(p) == 0) ? 0 : 1; }

DCuint dcbArgUInt (DCArgs* p) { return (DCuint) dcbArgInt(p); }

DCuchar dcbArgUChar (DCArgs* p) { return (DCuchar) dcbArgChar(p); }

DCushort dcbArgUShort (DCArgs* p) { return (DCushort) dcbArgShort(p); }

DCulong dcbArgULong (DCArgs* p) { return (DCulong) dcbArgLong(p); }

DCulonglong dcbArgULongLong (DCArgs* p) { return (DCulonglong)dcbArgLongLong(p); }

DCpointer dcbArgPointer (DCArgs* p) { return (DCpointer) dcbArgLong(p); }

DCdouble dcbArgDouble (DCArgs* p) { return arm_double(p); }

DCfloat dcbArgFloat (DCArgs* p) { return *(DCfloat*) arm_word(p); }

void* arm_word(DCArgs* args) {

if(args->reg_count < 4)

return &args->reg_data[args->reg_count++];

else

return (void*)args->stack_ptr++;

}

DCdouble arm_double(DCArgs* args) {

union {

DCdouble d;

DClong l[2];

} d;

#if defined(DC__ABI_ARM_EABI)

arm_align8(args);

#endif

d.l[0] = *(DClong*)arm_word(args);

d.l[1] = *(DClong*)arm_word(args);

return d.d;

}

DClonglong arm_longlong(DCArgs* args) {

union {

DClonglong ll;

DClong l[2];

} ll;

#if defined(DC__ABI_ARM_EABI)

arm_align8(args);

#endif

ll.l[0] = *(DClong*)arm_word(args);

ll.l[1] = *(DClong*)arm_word(args);

return ll.ll;

}

void arm_align8(DCArgs* args) {

if(args->reg_count < 4)

args->reg_count = (args->reg_count+1)&~1;

else if(args->stack_ptr & 4)

++args->stack_ptr;

}

Listing 41: Implementation of Argument Iterator methods for arm.

The callback thunk entry routine for arm is given in Listing 42.

Preserved registers, stack pointer (Register r13) and link register (Register r14) are saved on the

stack (line 3). However, the stack pointer is not updated and still points to the parameter region of

244 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

1 .code 32

2 arm_callback_thunk_entry:

3 stmdb %r13 ,{%r4-%r11,%r13,%r14} # save

4 mov %r11 ,%r13 # r11 = sp

5 sub %r13 ,%r13,#40 # Skip save region

6 mov %r4 ,#0 # r4 = 0 (counter)

7 stmdb %r13!,{%r0-%r4,%r11} # push DCArgs(r0-r3,0,sp)

8 mov %r0 ,%r12 # r0 = Thunk/Callback Object

9 mov %r1 ,%r13 # r1 = DCArgs*

10 sub %r13 ,%r13,#8 # Alloc sizeof(DCValue) storage

11 mov %r2 ,%r13 # r2 = DCValue*

12 ldr %r3 ,[%r12, #16] # r3 = void*

13 ldr %r4 ,[%r12, #12] # r4 = handler*

14 mov %r14 ,%r15 # r14 = r15

15 bx %r4 # Branch with link register

16 ldmia %r13 ,{%r0,%r1} # Load results into r0/r1

17 ldmdb %r11 ,{%r4-%r11,%r13,%r15} # Restore and return

Listing 42: Callback thunk entry routine for arm.

the callback call so that this value is saved to r11 (line 4) and then is finally adjusted by 40 bytes

(line 5). The allocation of DCArgs object is then prepared. Register r4 is loaded with constant zero.

Now a set of registers, including parameter registers of the callback r0 to r3 for reg_data[4] , r4 for

reg_count and r11 for the stack_ptr , is saved to the stack in accordance to the data structure of

DCArgs (line 7). As all parameter registers are saved, the function call to the handler is prepared. The

thunk register (r12) is loaded in r0 as the first argument DCCallback* (line 8). The current stack

pointer gives the reference of DCArgs and is loaded as second argument in r1 (line 9). DCValue is

allocated on the stack by subtraction of sizeof(DCValue) and the result is loaded as third argument

DCValue* in r2 (line 10-11). The mUserdata field of DCCallback is retrieved via thunk register (at

offset 16) and loaded as fourth argument in r3 (line 12). The handler function (also retrieved via

thunk register) is loaded in r4 (line 13) followed by a arm-thumb interworking-compatible function call

(line 14-15). On function return the handler has written return values in DCValue object (referenced

by r13). Since, by convention, return values are always passed via r0 and r1, regardless of the data

type, the type code returned by the handler is ignored. Both registers are loaded by data of DCValue

(line 16). The local stack frame gets cleaned up. But the saved link register value is restored in the

program counter in order to return to the caller (line 17).

5.6. DYNAMIC LOADING OF CODE 245

5.6 Dynamic Loading of Code

The dynload library offers a software abstraction layer for services typically provided by the dynamic

linker and loader of an operating system.

The C API represents a thin wrapper to platform-specific APIs for loading of shared libraries and

resolving of symbols. In addition the library was extended with advanced functions to enumerate

symbols tables. It can be used as a portable foundation layer for handling shared libraries in dynamic

FFIs as was illustrated in Section 4.2 using the example of R and rdyncall.

5.6.1 Interface

The API is accessible via inclusion of the C header file dynload.h. The interface consists of three

functions, namely the loading of code, resolving of symbols to addresses and the unloading of code:

DLLib* dlLoadLibrary (const char* libpath);

void* dlFindSymbol (DLLib* pLib, const char* name);

void dlFreeLibrary (DLLib* pLib);

dlLoadLibrary opens a shared library object specified by the path libpath . On success the shared

library is loaded to the running process and a non- NULL pointer is returned. The latter represents an

abstract reference object (or handle) to the loaded code resource; it is passed as first parameter for

the other two functions.

dlFindSymbol looks up a name in the symbol table for exported code and data objects and returns the

loaded memory address or NULL if the symbol was not found.

dlFreeLibrary destroys the handle; if there are no other references the shared library is unloaded8

from the running process.

In order to resolve symbols of the executable program a NULL pointer can be given as libpath and

dlLoadLibrary returns a handle that gives a reference to the running process.

Note that libpath is passes to the dynamic loader as-is without any modifications for a portable

naming scheme. We discussed different naming conventions for the path across operating-system

platforms in Section 4.2.3. And we also presented a portable naming scheme for loading shared

libraries based on dynload. See Section 4.2.5 for a details.

5.6.2 Enumeration of Symbols

Shared object and executable files usually contain a symbol table which the dynamic loader uses for

resolving of symbolic names to addresses. An extension to the core interface for providing this service

was contributed; the interface is given below:

8Usually the operating system uses a reference count for loaded code modules to determine when to unload the object

but details of this behaviour are platform-specific.

246 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

DLSyms* dlSymsInit (const char* libPath);

const char* dlSymsName (DLSyms* pSyms, int index);

int dlSymsCount (DLSyms* pSyms);

void dlSymsCleanup (DLSyms* pSyms);

dlSymInit opens the symbol table of a shared library file specified by the path libPath and returns

an abstract handle object which is passed as first parameter for the other functions. A list of exported

symbols can be queried by a series of dlSymsName calls with an index run from 0 to number of symbols

(exclusive). The latter is returned by dlSymsCount . dlSymsCleanup closes the symbol table again.

5.6.3 Implementation

dynload was ported to major operating-system platforms that use ELF, PE or Mach-O as binary

image format. Since the core interface is a thin wrapper to C API functions we give the two major

native APIs, namely for Microsoft Windows and POSIX; the latter is available on most Unix-based

platforms.

void* dlopen (const char* path, int mode);

void* dlsym (void* handle, const char* symbol);

void dlclose (void* handle);

POSIX C API

HMODULE LoadLibrary (LPCTSTR lpFilename);

FARPROC GetProcAddress (HMODULE hModule, LPCSTR lpName);

BOOL FreeLibrary (HMODULE hModule);

Microsoft Windows C API

The load function dlopen of the POSIX API offers a second parameter mode which can be used to pass

generic and operating-system specific details for the dynamic loading/linking process. An adoption of

this parameter in dynload’s C interface for portable fine-tuning the loading process is planned.

In contrast to the three core functions, the enumeration of symbol tables is not commonly available

via dynamic linker C APIs. However, we discovered that the handle HMODULE , returned by LoadLibrary

on Windows platforms, is actually a pointer to the PE DLL file in memory so that it was feasible

to implement a Windows port for the dlSyms* API by processing the binary data structure of PE; a

port for Linux ELF platforms was also feasible using the returned pointer of dlopen . However, this

does apply for all ELF platforms. The ELF port was modified in order to open ELF shared objects as

ordinary data files for processing. The new ELF port, a Mach-O port and additions to the interface

were contributed by the author of bridj (Chafik, 2011) - a middleware package for Java to connect

with C/C++ components which uses dynload to discover API elements and dyncall/dyncallback

for interoperability.

5.7. SOFTWARE TOOLS FOR BUILDING AND TESTING 247

5.7 Software Tools for Building and Testing

In this section we give an overview of methods and tools that are used for building, testing and release-

management of the dyncall sources. The source package is organized as a tree of sub-level projects

as follows (miscellaneous files, such as README.* files, are omitted here):

autovar/ Common abstraction to predefined macros.

buildsys/ Build tool files.

doc/ Documentation sources.

dyncall/ Library dyncall sources.

dyncallback/ Library dyncallback sources.

dynload/ Library dynload sources.

portasm/ Common abstraction to assembly language dialects.

test/ Test units.

The source package contains three library projects (dyn* folders), common C macro utilities (autovar

and portasm), unit tests (test), documentation (doc) and build tool files (buildsys).

5.7.1 Build systems

The source code of dyncall comprises platform-specific modules; the appropriate subset of code must

be selected for building depending on the target platform. Numerous source packages of software that

require compilation incorporate a configuration phase, which detects the target platform, compiler

tools, size of data types and so on.., before the actual build phase. Typically, on Unix-based system, a

“configure” shell script is offered in the top-level folder of a source package that needs to be executed

as a first step, followed by executing the make build tool to start the build phase.

A collection of popular tools for management of configure/make build systems are available from the

GNU project. The GNU autoconf tool is a shell code generator which outputs a configure script

based on specifications written in the M4 macro language. GNU automake is used to specify the

build process. A project tree in a source package is usually specified by Makefile.am files, which are

translated to GNU make-compatible Makefiles when running the auto-generated configure script.

Essentially, some kind of “configuration” is required in the dyncall package for the identification of

the target platform and, based on that, the selection of platform-specific code for building. However,

the GNU build system is rather complex and we found it hard to control it in detail; the generated

shell code is large (even with default autoconf configurations) and when it runs a long list of tests

is executed per default. Besides the popular Linux/GNU platform, dyncall also supports further

platforms, such as Windows and BSD systems, which offer different default tools; those are not

supported by the GNU build tools so that further methods for configuration and building software

were considered:

248 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

configure make tool out-of-source

Approach phase GNU BSD Sun nmake mk builds

make-specific Makefiles yes X X - X X (GNU)

common Makefile.embedded no X X X - - -

common Makefile.generic yes X X X - - yes

CMake yes X X X X - yes

Visual Studio project files

We incorporated three different methods for building the software (depicted in the first three rows of

the table above) in order to support various make-derivates, such as GNU make (Stallman and McGrath,

2002), BSD make, Sun make, Microsoft’s nmake and Plan9’s mk. Support for building dyncall with

CMake (Martin et al., 2003) was also added; this is a meta build system and supports a large number

of other build systems, including a number of make tools.

5.7.1.1 Make-specific files with a common configuration

One goal was to incorporate methods for building the sources with default tools available on supported

platforms. Over time three configuration scripts were added, namely a Unix configure shell script, a

Windows configure.bat batch file and a Plan 9 configure.rc script. The scripts identify the target

platform, architecture and default compiler/assembler tools by platform-specific means. Identified

facts about the target environment are saved as properties in a file, named ConfigVars, using a

common syntax format as depicted in Listing 43.

#auto-generated by dyncall/configure

CONFIG_PACKAGE=dyncall

CONFIG_HOST=darwin

CONFIG_OS=darwin

CONFIG_ARCH=x64

CONFIG_TOOL=gcc

CONFIG_ASM=as

CONFIG_CONFIG=release

CONFIG_PREFIX=/usr/local

ifdef BUILD_ARCH_ppc32

MODS += dyncall_callvm_ppc32

MODS += dyncall_ppc32

endif

ifdef BUILD_ARCH_mips32

MODS += dyncall_callvm_mips32

MODS += dyncall_mips32

endif

Listing 43: Common configuration file ConfigVars (left) and an excerpt of file dyncall/GNUmakefile

with conditional blocks to select platform-specific sources (deprecated as of dyncall Version 0.4).

Configuration properties for building the software are specified as a list of key/value pairs. Note

that the syntax is simple so that this file can be included by various make tools and the properties

become make variables. The selection of platform-specific code modules was specified by means of

conditional blocks offered by make tools. However, the syntax of conditional blocks is make-tool

specific. As a consequence several make systems were integrated by using separate trees of make files

(e.g. GNUmakefile, BSDmakefile and Nmakefile) according to the projects sub-folder structure of

the source package. A sample of conditional blocks for the selection of the Call VM and call kernel of

the project file dyncall/GNUmakefile is given in the right panel of Listing 43.

5.7. SOFTWARE TOOLS FOR BUILDING AND TESTING 249

5.7.1.2 Predefined macros

Properties of the target platform are also provided by C compilers via predefined macros, which can be

evaluated during preprocessing in C via standard #if , #elif and #else conditional blocks in order

to enable/disable code sections, or to include platform-specific files.

However, names of predefined macros that indicate a specific target platform are specific to the C

compiler. In order to use a common naming scheme in sources a thin abstraction layer to compiler-

specific names for similar facts and properties is implemented in the file dyncall/dyncall_macros.h:

#if defined(_M_X64_) || defined(_M_AMD64) || defined(__amd64__) || defined(__amd64) || defined(__x86_64__)

define DC__Arch_AMD64

#elif defined(__arm__)

define DC__Arch_ARM

#elif /* [...] */

A common front-end C module file was added which includes a particular platform-specific C module

file based on the definition of a macro. For example, the selection of the platform-specific Call VM

code module is managed by a front-end C module dyncall/dyncall_callvm.c:

#if defined(DC__Arch_Intel_x86)

include "dyncall_callvm_x86.c"

#elif defined(DC__Arch_AMD64)

include "dyncall_callvm_x64.c"

#elif defined(DC__Arch_PowerPC)

include "dyncall_callvm_ppc32.c"

#elif defined(DC__Arch_PPC64)

include "dyncall_callvm_ppc64.c"

#elfi /* [...] */

Major Unix-based compiler tools, such as gcc, support preprocessing of assembly language files with

the filename extension “.S” (in contrast to the default “.s” file extension) so that the same method

was feasible for the assembly language sources in dyncall. By using this method we simplified the

specification of make files in dyncall significantly.

5.7.1.3 Plain Makefiles

A set of files, named Makefile.embedded, was added as a new alternative for building the sources

with make tools. However, the syntax used in these files was carefully chosen to be compatible with

GNU make, BSD make and Sun make. See Listing 44 for an example.

This build method omits the configure script due to the use of front-end modules and predefined

macros for C and assembly languages. Note that configure scripts are also used as command-line

interface by users to specify build and installation settings, for example:

./configure --prefix=/my/install/dir CFLAGS=-m64

However, make tools also support such an interface using shell arguments or environment variables

as shown by various examples in Listing 45. While users need to be aware of common variables for

controlling a build, such as the CFLAGS variable to specify C compilation settings, the settings can be

250 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

LIBNAME = dyncall

OBJS = dyncall_vector.o dyncall_api.o dyncall_callvm.o dyncall_callvm_base.o dyncall_call.o

HEADERS = dyncall_macros.h dyncall_config.h dyncall_types.h dyncall.h

LIB = lib${LIBNAME}_s.a

.PHONY: all clean install

all: ${LIB}

${LIB}: ${OBJS}

${AR} ${ARFLAGS} ${LIB} ${OBJS}

clean:

rm -f ${OBJS} ${LIB}

install: all

mkdir -p ${PREFIX}/lib

mkdir -p ${PREFIX}/include

cp ${LIB} ${PREFIX}/lib

cp ${HEADERS} ${PREFIX}/include

Listing 44: Example of a portable (GNU/BSD/SUN) plain makefile in dyncall.

$ make PREFIX=/tmp install # Install in /tmp directory

$ CFLAGS=-m64 make # Build 64-bit version e.g. on sparc

$ PREFIX=/my/install/dir make CFLAGS=-m64 all install # Build 64-bit version, install in /my/in[..]

$ make test # Build all tests

$ CFLAGS=-g make # Build ’debug’ version

$ make CFLAGS=-O2 # Build ’release’ version

$ make CC=clang # Use clang compiler

$ make CFLAGS="-arch i386 -arch ppc" # Build Mac OS X universal binary

Listing 45: Using make with user settings.

propagated from top-level (or from where the user executes make) to all sub-level directories; dyncall

contains three library projects and 17 test projects. Note that the above commands can be executed

from the top-level folder; all user settings (e.g. CFLAGS=-m64) are passed to sub-level directions.

The Makefile.embedded build system was successfully used for embedding the dyncall sources in

the R rdyncall source package at src/dyncall. It was feasible to link the build process of rdyncall

with that of dyncall by using standard R package make files, namely src/Makevars (depicted in

Listing 46).

PKG_CPPFLAGS=-Idyncall/dyncall -Idyncall/dynload -Idyncall/dyncallback

PKG_LIBS=dyncall/dyncall/libdyncall_s.a \

dyncall/dynload/libdynload_s.a \

dyncall/dyncallback/libdyncallback_s.a

.PHONY: all mylibs

all: $(SHLIB)

$(SHLIB): mylibs

mylibs:

(cd dyncall ; CC="$(CC)" AR="$(AR)" CFLAGS="-fPIC $(CFLAGS)" \

CPPFLAGS="-DNDEBUG ${CPPFLAGS}" make -f Makefile.embedded)

Listing 46: Makevars file of rdyncall to build the embedded dyncall sources.

While the R package build system offers support for running configure scripts, the delegation of a

make shell call to another directory was less complex and our solution turns out to be portable as well.

5.7. SOFTWARE TOOLS FOR BUILDING AND TESTING 251

Furthermore, R packages which use the default Makevar files (instead of Makefile and configure

scripts) have various advantages, such as building R packages on Mac OS X per default as universal

binaries.

5.7.1.4 Portable Assembler Sources

The syntax of assembly languages is naturally specific to the processor architecture. The code for

call kernels of the x86-32 architecture can be shared across various operating systems. However, the

syntax of assembly languages for the same processor architecture is often also differs for assembler

tools on different operating systems.

Two syntax types are common on the x86 architecture family, namely AT&T and Intel; these differ

significantly (e.g. the order of source and destination operands of instructions is swapped). MASM

(Windows) uses Intel syntax, others on Unix (GNU assembler gas and Sun’s fbe) use AT&T syntax

per default. Thus, the same code needed to be reimplemented repeatedly.

#include "../portasm/portasm-x86.S"

BEGIN_ASM

GLOBAL(dcCall_x86_cdecl)

BEGIN_PROC(dcCall_x86_cdecl)

PUSH(EBP)

MOVL(ESP,EBP)

PUSH(ESI)

PUSH(EDI)

MOVL(DWORD(EBP,12),ESI)

MOVL(DWORD(EBP,16),ECX)

ADDL(LIT(15),ECX)

ANDL(LIT(-16),ECX)

MOVL(ECX,DWORD(EBP,16))

SUBL(ECX,ESP)

MOVL(ESP,EDI)

REP(MOVSB)

CALL_DWORD(EBP,8)

ADDL(DWORD(EBP,16),ESP)

POP(EDI)

POP(ESI)

MOVL(EBP,ESP)

POP(EBP)

RET()

END_PROC(dcCall_x86_cdecl)

END_ASM

.386

.MODEL FLAT

.CODE

_dcCall_x86_cdecl PROC

OPTION PROLOGUE:NONE, EPILOGUE:NONE

push EBP

mov EBP,ESP

push ESI

push EDI

mov ESI,dword ptr [EBP+12]

mov ECX,dword ptr [EBP+16]

add ECX,15

and ECX,-16

mov dword ptr [EBP+16],ECX

sub ESP,ECX

mov EDI,ESP

rep movsb

call dword ptr [EBP+8]

add ESP,dword ptr [EBP+16]

pop EDI

pop ESI

mov ESP,EBP

pop EBP

ret

_dcCall_x86_cdecl ENDP

END

.text

.globl _dcCall_x86_cdecl

_dcCall_x86_cdecl:

pushl %ebp

movl %esp,%ebp

pushl %esi

pushl %edi

movl 12(%ebp),%esi

movl 16(%ebp),%ecx

addl $15,%ecx

andl $-16,%ecx

movl %ecx,16(%ebp)

subl %ecx,%esp

movl %esp,%edi

rep movsb

call *8(%ebp)

addl 16(%ebp),%esp

popl %edi

popl %esi

movl %ebp,%esp

popl %ebp

ret

#

Listing 47: Sources written in portasm (left) and translated to MASM for Microsoft platforms (center)

and gas for others (right).

A small experimental software framework, named portasm, was initiated for writing processor-specific

but tool-portable assembly sources. Our aim is to consign the maintence of the assembly language

sources exclusively to a single shared source code, which is translated to various assembler tool syntaxes

via the C preprocessor. Effectively, portasm code is written by means of preprocessor macros. This

framework requires only a C preprocessor and has no further dependencies.

Consider, for example, the x86-32-cdecl call kernel given in Listing 47, implemented in portasm

252 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

(left) and translated to MASM (middle) and gas (right). portasm source files are written with the

extension “*.S”; at first, an architecture-specific header file from the portasm framework is included.

GNU and Sun compilers can process these files directly as preprocessor assembly language files. In

order to support MASM the portasm source is processed by a standard C preprocessor, where the

macro GEN_MASM is predefined (via command-line parameter e.g. cc -E -DGEN_MASK), which activates

an appropriate driver of macro definitions, and the output of the sources is produced in MASM format.

Currently portasm is used in dyncall for x86-32, x86-64, ppc32 and arm32 assembly sources.

5.7.2 Software testing

A collection of projects for software testing is made available below the test folder of the source

distribution; an overview is given in Table 5.16.

Name Test purpose

Unit tests for dyncall

call_suite Lua-based code generator for random/user-defined test cases.

plain Plain C function calls.

plain_c++ Plain C++ member function calls.

suite Python-based code generator for ordered permutation of function types.

suite_floats Based on suite testing only floating-point function types.

suite_x86win32fast Based on suite for fastcall calling convention.

suite_x86win32std Based on suite for stdcall calling convention.

suite2 Python-based code generator for random/user-defined function types.

suite2_x86win32fast Based on suite2 for fastcall calling convention.

suite2_x86win32std Based on suite2 for stdcall calling convention.

suite3 Based on suite2 for a subset of argument types.

ellipsis Based on suite2 for variadic function call tests.

callf Plain test for formatted call interface.

syscall Plain test for ystem calls.

Unit tests for dyncallback

callback_suite Lua-based code generator for random/user-defined test cases.

callback_plain Plain C callback tests.

malloc_wx Unit test for writable/executable memory allocator.

thunk Unit test for thunks.

Unit tests for dynload

nm Enumerating symbol tables in shared libraries.

resolve_self Unit test for resolving symbols of an executable program’s symbol table..

Table 5.16: Overview of DynCall unit tests.

Some projects consist of simple unit tests for a specific feature, such as malloc wx for dcAllocWX , while

others represent test suites with advanced features to support testing and debugging of implementation

code.

5.7. SOFTWARE TOOLS FOR BUILDING AND TESTING 253

5.7.2.1 Code generators for test cases

It frequently occurs during port development or debugging that some very specific test cases have to

be checked. For example, according to the ppc32-sysv calling convention, the first eight 32/64-bit

floating-point values and the first eight 32-bit integer are passed via registers before using the stack.

Suppose we want to check the correct passing of double and float values via registers and on stack.

A number of test cases would be required, for example, eight double values (to fill registers) and then

a float (make the stack 4-byte aligned) followed by a double to check the alignment of double values

on stack.

Several test suites were developed using code generators for automation of test case generation and

execution based on simple specification files. The test suite call suite was designed for validating

ports of the dyncall library. A test case validates the correct passing of argument values and the

correct reception of return values for a specific function type. A set of test cases is specified in a text

file named cases.txt. Each line specifies one test case encoded as character-based type signature; the

first character specifies the return type followed by a sequence of characters that specify the argument

types, for the example the sequence vddddddddfd . As an extension to the example, we also check all

shortened subset sequences, beginning with an empty sequence so that we design a set of test cases in

cases.txt as depicted in Listing 48. The command line and output of the generator are given on the

right of the listing. At first the generator mk-cases.lua processes input the cases.txt file as input

and the output is saved its as a C header file cases.h; this step can also be executed via make config .

Then the test program is build via make clean all .

File: cases.txt
v

vd

vdd

vddd

vdddd

vddddd

vdddddd

vddddddd

vdddddddd

vddddddddf

vddddddddfd

$ lua ./mk-cases.lua <cases.txt >cases.h

$./make clean all

$./call_suite

0:v:1

1:vd:1

2:vdd:1

3:vddd:1

4:vdddd:1

5:vddddd:1

6:vdddddd:1

7:vddddddd:1

8:vdddddddd:1

9:vddddddddf:1

10:vddddddddfd:1

result: call_suite: 1

Listing 48: Example of user-defined test cases in call suite.

Finally the test cases can be executed and a test report is generated. Each line of output gives the

number of the test case (which starts counting at 0), followed by its signature and terminated by the

test result. A result code of “1” indicates a success, otherwise “0” is given (as well as extended error

diagnostics such as the index of the argument which failed). The last line of output gives a global

result code: “1” if all test cases were successful, and otherwise “0”.

The test suite framework supports two basic operating modes: design and random. The above example

254 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

was executed in design mode where users specify test cases manually for debugging sessions. The

random mode was designed for validation of implementations by using random test case functions; an

illustration is given in Listing 49.

config.lua

minargs = 1

maxargs = 8

ncases = 4

types = "csijlpfd"

→

rand-sig.lua

#!/usr/bin/env lua

-- rand-sig.lua

require"config"

rtypes = "v"..types

math.randomseed(2342)

local sigs = { }

local id

for i = 1, ncases do

id = math.random(#rtypes)

local nargs = math.random(minargs,maxargs)

local sig = { rtypes:sub(id,id)}

for j = 1, nargs do

id = math.random(#types)

sig[#sig+1] = types:sub(id,id)

end

io.write(table.concat(sig))

io.write("\n")

end

→

cases.txt
vspfsdd

vjc

dlf

vlfjjcpcj

↓
mk-cases.lua

(See Listing 50)

↓

cases.h
/* 1:vspfsdd */ v f1(s a1,p a2,f a3,s a4,d a5,d a6){fid=1;V_s[1]=a1;V_p[2]=a2;V_f[3]=a3;V_s[4]=a4;V_d[5]=a5;V_...

/* 2:vjc */ v f2(j a1,c a2){fid=2;V_j[1]=a1;V_c[2]=a2;ret_v(2)}

/* 3:dlf */ d f3(l a1,f a2){fid=3;V_l[1]=a1;V_f[2]=a2;ret_d(2)}

/* 4:vlfjjcpcj */ v f4(l a1,f a2,j a3,j a4,c a5,p a6,c a7,j a8){fid=4;V_l[1]=a1;V_f[2]=a2;V_j[3]=a3;V_j[4]=a4;...

funptr G_funtab[] = {

(funptr)&f1,

(funptr)&f2,

(funptr)&f3,

(funptr)&f4,

};

char const * G_sigtab[] = {

"vspfsdd",

"vjc",

"dlf",

"vlfjjcpcj",

};

int G_maxargs = 8;

Listing 49: Random test case generator using Lua.

Base parameters are specified in the file config.lua. Then the script rand-sig.lua is executed which

reads configuration properties and generates a number of random signatures, given by ncases . Other

properties give details for preparing random sequences such as the upper and lower limits for the num-

ber of arguments, given by minargs and maxargs , and the base set of argument types, given by types .

A set of random function type signatures is created in file cases.txt by executing make config-random .

Subsequent steps are identical to those of design mode (e.g. make clean all && ./call_suite).

We discuss now the generic design of the test case in more detail. In preparation for running a single

test case, a global memory buffer is cleared to zero. The test is executed by calling the test case

function via dyncall and passing a sequence of reference values as arguments. The callee stores

all received argument values in the global memory buffer and returns a reference value based on its

function type. Then it is checked that output values stored in global memory and the return value are

5.7. SOFTWARE TOOLS FOR BUILDING AND TESTING 255

require"math"

local max = math.max

local maxargs = 0

function trim(l)

return l:gsub("^%s+",""):gsub("%s+$","")

end

function mkcase(id,sig)

local sig = trim(sig)

local h = {

"/* ",id,":",sig," */ ",sig:sub(1,1),

" f", id,"(",""

}

local t = { "fid=",id,";" }

local pos = 0

maxargs = max(maxargs, #sig-1)

for i = 2, #sig do

pos = tostring(i-1)

local name = "a"..pos

local ch = sig:sub(i,i)

h[#h+1] = ch;h[#h+1] = " ";h[#h+1] = name

h[#h+1] = ","

t[#t+1] = "V_";t[#t+1] = ch;

t[#t+1] = "[";t[#t+1] = pos;t[#t+1] = "]"

t[#t+1] = "=";t[#t+1] = name;t[#t+1] = ";"

end

h[#h] = "){"

t[#t+1] = "ret_";t[#t+1] = sig:sub(1,1)

t[#t+1] = "(";t[#t+1] = pos;t[#t+1] = ")"

t[#t+1] = "}\n"

return table.concat(h,"")..table.concat(t,"")

end

function mkfuntab(n)

local s = { "funptr G_funtab[] = {\n"}

for i = 1, n do

s[#s+1] = "\t(funptr)&f"..i..",\n"

end

s[#s+1] = "};\n"

return table.concat(s,"")

end

function mksigtab(sigs)

local s = { "char const * G_sigtab[] = {\n"}

for k,v in pairs(sigs) do

s[#s+1] = ’\t"’

s[#s+1] = v

s[#s+1] = ’",\n’

end

s[#s+1] = "};\n"

return table.concat(s,"")

end

function mkall()

local lineno = 1

local sigtab = { }

for line in io.lines() do

local sig = trim(line)

io.write(mkcase(lineno,sig))

sigtab[#sigtab+1] = sig

lineno = lineno + 1

end

io.write(mkfuntab(lineno-1))

io.write(mksigtab(sigtab))

io.write("int G_maxargs = "..maxargs..";\n")

end

mkall()

Listing 50: Test case generator in Lua.

equal to corresponding reference values. Reference values are retrieved from arrays of constant values

(one array for each supported data type). The arrays (one for each data type) are initialized with

distinct pseudo-random numbers. The reference value for a specific argument type in the sequence is

determined by the type and the position in the sequence. The argument type selects the array and the

positional index specifies the index of the actual value to use. The reference value of a return value

uses the number of arguments as index for selecting the value.

The first test suites in dyncall (e.g. suite) were written in C++ and Python. In more recent

frameworks, such as call suite, we use now C and Lua. First, Lua is very convenient for shell

scripting and text processing. Furthermore, Lua is small, runs fast and has very low dependencies; it

requires an ANSI C compiler. If Lua is not available for the target platform, a script is available for

bootstrapping Lua from source; this downloads sources and builds the Lua interpreter in very little

time (ten seconds to a minute). This tool and others (e.g. callback suite for testing dyncallback)

were very valuable during porting. We use them to run large numbers of test cases with tens to

hundreds of arguments to validate all ports before software releases.

256 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

5.7.2.2 Testing Environment

Stability tests across a large range of operating system/processor architecture combinations are tedious

to set up and run. dynos is a testing environment that was developed for automation of building,

testing and packaging of releases.

“The dynos test project(Philipp, 2011) is a FreeBSD based collection of shell scripts that run dyncall

builds and regression tests on different OS and toolchain deployments. This is done natively for the

host OS, in OS images run by various emulators (such as QEMU and GXemul), on more or less directly

attached devices (e.g. Nintendo DS), or over the network. The platforms are set up in a way that

allows fully automated startups, tests and shutdowns.” (Philipp, 2011)

It follows a list of supported platforms as of May 2012:

Arch Linux 2011.08.19 / x64

Arch Linux 2011.08.19 / x86

Debian GNU/Linux 4.1.1-21 / PPC

Debian GNU/kFreeBSD 6.0 / x64

Debian GNU/kFreeBSD 6.0 / x86

DragonFlyBSD 2.10.1 / x64

DragonFlyBSD 2.0.0 / x86

Haiku r1 alpha2 r38811 / x86

NetBSD 4.0.1 / cats (arm)

NetBSD 5.0.2 / pmax (mips)

OpenBSD 4.0 / x64

OpenBSD 4.0 / x86

Plan9 4th edition / x86

Windows XP / x64

Windows XP / x86

Darwin 8.0.1 / x86

Desmume 0.8 / Nintedo DS (arm) - experimental

NetBSD 4.0.1 / macppc

Nexenta (OpenSolaris) 1.0.1-b85 / x64

Nexenta (OpenSolaris) 1.0.1-b85 / x86

OpenBSD 4.4 / mvme88k - experimental

ReactOS 0.3.11 / x86 - experimental

5.8 Summary

This chapter covers the design of a Generic Dynamic FFI software package, named dyncall, and its

implementation on the basis of five processor architecture families, namely x86, arm, powerpc, mips

and sparc. We introduced the topic with an overview of the anatomy of machine-level function calls.

We outlined the environment of ‘machine-code’ execution before we discussed the ISA and ABI, and

the roles of registers and the call stack in a calling sequence of calling conventions.

An overview on the processor architecture families was given. Each architecture was introduced with

a brief account of its history and current developments, followed by an outline of available binary

interfaces and their particularities. We illustrated differences of stack frame structures and utilization

of CPU, FPU and SIMD register in calling conventions. We closed this overview with an empirical

analysis of machine-level representations of C data types at machine level. We motivated the use

of low-level techniques for generic solutions due to limitations of C using the static FFI of R as an

5.8. SUMMARY 257

example.

The design of the dyncall library was discussed in detail. We presented a C API for dynamic function

calls founded on a portable implementation architecture which consists of a state machine (Call VM)

in C and a generic caller code (call kernel) in assembly language. We emphasized the portability of

the architecture design by numerous examples of available ports and detailed descriptions of their

implementation in C and assembly, thereby giving a detailed picture of the variety of binary interfaces

and calling convention standards, and indicated similarities and differences.

We discussed dynamic handling of callbacks on the callee side. Our objective was to enable implemen-

tation of C callback functions by means of a scripting language. We suggested a generic solution for

versatile use within various C APIs based on wrapping of callable objects of the scripting language as

plain C function pointers and presented the dyncallback software framework for implementing such

wrapping services in scripting languages.

As a foundation we designed a hybrid code and data object type, which works as a proxy for calls made

from compiled code. Based on this object we developed a method for delegating callbacks to a common

handler function which handles the call by means of a different language. The software framework

makes use of a small machine-code generator. We suggested a method for developing such generators,

based on prototyping (2-4 lines of assembly code) and subsequent code analysis for an implementation

as a generator in C. Included here was a discussion on the implementation of such codes in accordance

to the software framework, and we gave implementations for some processor architectures.

We closed this chapter with a brief overview on the interface of dynload and a discussion on software

tools for building and testing.

We discussed examples of applications with an emphasis on R; in detail we described the implemen-

tations of the core components of rdyncall in C, founded on the C interface of dyncall. However,

the methods for implementation of dynamic FFIs are transferable to other interpreter software that

offer a C extension and embedded interface i.e. virtually all interpreters.

258 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Chapter 6

Conclusion

We close with a summary of contributions and related work, followed by a conclusion and an outline

of ongoing developments.

6.1 Summary

Language bindings are typically implemented by means of adapter modules written in C on a per

language-and-library basis which needs to be compiled for each platform. We presented a middleware

architecture for scripting languages for an extension to connect with compiled C libraries dynamically

to give users scripting access to C APIs.

We gave a proof-of-concept by example of an implementation for R, contributed as the package

rdyncall on CRAN, which offers dynamic access to the C API of standard library families such

as OpenGL and SDL. The architecture fosters a rapid application development model. This was illus-

trated by examples of portable R applications code for interactive real-time graphics applications that

run across platforms, including Microsoft Windows, Mac OS X, Linux, BSD derivates and Solaris.

We discussed the design and implementation of the architecture in terms of three layers:

• The top-level “abstraction” layer provides an intuitive text-based language- and platform-neutral

type library format for C API specifications, designed to automate wrapper creation.

• The middle-level layer is “implemented” for a specific scripting language to provide automation

of bindings to C APIs via a dynamic FFI using information of the top-level layer. The dynamic

FFI is founded on the bottom-level layer.

• The bottom-level “abstraction” layer offers portable C interfaces for dynamic control of function

calls and callback handling using generic implementation at machine level ported on various

processor architectures.

We give a brief overview of contributions and findings of this thesis:

259

260 CHAPTER 6. CONCLUSION

• The design and implementation of a generic dynamic FFI, contributed as dyncall, with ports

to x86-32/64, arm32, ppc32, mips32/64 and sparc32/64 (Chapter 5).

• The design and implementation of a dynamic FFI for R, contributed as rdyncall, (Chapter 4).

• A method for a common naming scheme to load shared libraries via the dynamic linkers of

various operating systems (Section 4.2.5).

• Specifications for a text-based type library format for C APIs (Section 3.7).

• An application of GCC XML and XML tools for the development of a parser for C/C++ header

files (Section 3.8).

• Various R bindings to C APIs, such as OpenGL and SDL (Section 4.7 and Table 4.10).

• A software framework for tool-portable abstraction to assembly language (Section 5.7.2).

• An example for portable make files for BSD, GNU and Sun make (Section 5.7.1.4).

• The design of a test-case code generator for FFIs using the example of the call suite of dyncall

(Section 5.7.2).

Our contributions exhibit a relatively low binary memory footprint due to the generic implementation

at machine level. The code is small in comparison to other packages. Table 6.1 compares binary size

and the number of lines of source code of rdyncall and dyncall libraries to rgl. Note that, in the 64

kb binary file of rdyncall, all three C library binary files are statically linked. However, whereas rgl

contains 20 times more code and comprises an abstraction layer to windowing systems and a C++

scene graph with a small interface of 122 functions, rdyncall gives virtual access to a dozent C APIs

i.e. hundreds of functions.

Binary Sources (Lines of code)

size R C Assembly

Package Sources Headers

R package rgl 1.3 mb 7020 21484 - -

R package rdyncall 64 kb 682 1499 - -

C library dyncall 25 kb - 5805 737 3140

C library dyncallback 7.5 kb - 2336 391 1854

C library dynload 4.4 kb - 807 65 -

Table 6.1: Some metrics of software packages (platform x86-64-osx).

6.2 Related work

The origins of automated bindings come from the SWIG software development tool (The SWIG De-

velopers, 2010) supports a large number of languages but uses compiled code. Kloss (2008) describes

6.3. CONCLUSION AND FUTURE DIRECTION 261

the ctypeslib python package, an extension to ctypes (Heller, 2011) that brings automation of dy-

namic bindings to C APIs - based on XML output of GCC XML and transformation to python code via

pyXML. Our approach extends the idea but uses a language-neutral encoding for type information. Our

toolchain for parsing C header files is also based on GCC XML but applies XML/XSLT processing tools,

such as libxslt, for transformation of XML output to type signatures encoded in plain text. The

FFI library of LuaJIT (Pall, 2012), a JIT (Just-In-Time) compiler-based version of Lua, also offers

automation of bindings creation; it uses a built-in C parser.

Several interpreter-based languages offer a dynamic FFI, such as ctypes (Heller, 2011) for Python,

alien (Mascarenhas, 2009) for Lua, RFFI (Lang, 2011) for R, CFFI (Bielman, 2010) for Common

LISP and the FFI module for Perl (Paul Moore, 2008) and Ruby (Meissner, 2011). Most FFIs use a

language-specific interface, except Perl FFI that suggested a text-based interface policy; we followed

this approach in this work. These all facilitate similar services, such as foreign function calls and

handling of foreign data. With the exception of Rffi, these also support wrapping of scripting

functions as C callbacks. In most cases the type information is specified as a sequence of statements

in the grammar of the dynamic language.

Specific alternatives to dyncall include libffi (Green and et al, 2011) and ffcall (Haible, 2004).

They offer a data-driven C interface and, in particular, libffi has support for a large number of

current and older platforms. The dyncall interface offers a more functional C interface inspired by

the OpenGL API. The C/Invoke library (Weisser, 2007) also offers a similar FFI facility with bindings

to Lua, Java and Kite.

The csound (Brown, 2012) R package on CRAN contributes R bindings to the C API of Csound, a

software sound synthesizer, and uses the binding facilities of rdyncall. Package cart (Gastner and

Newman., 2013) uses diffusion-based cartograms with R based on bindings to the FFT (Fast Fourier

Transformation) library libfftw3 via rdyncall.

The following software projects have already incorporated dyncall: A Java to C++ middleware,

named BridJ (Chafik, 2011), a lightweight Perl 6-like environment for virtual machines, named nqp

(Foundation, 2013), an embedded scripting language, named pawn (CompuPhase, 2013), an extension

for native calls to Rakudo (a variant of Perl 6), named Zavolaj! (Worthington, 2013), a game server

engine plugin, named SPE (Developers, 2013), an application server, named GTK Server (van Eerten,

2012), a C/C++ type and value introspection library with Ruby bindings, named Typelib (Joyeux,

2009) and a JavaScript shell, named jsh (Taylor, 2013).

6.3 Conclusion and Future Direction

In this thesis we have presented in this thesis the architecture of a Dynamic Bindings Model, with a

focus on the technical feasibility on a variety of platforms. Our initial assumptions of the potential

for Generic Dynamic FFIs were confirmed by the feedback from dyncall users and its apllication in a

262 CHAPTER 6. CONCLUSION

variety of other projects. Since little has been documented on the design and implementation of such

FFIs we approached the task of developing our Generic Dynamic FFI, dyncall “de novo”. We covered

a wide range of architectures in order to verify the feasibility. In particular, the development of test

case code generators and testing enviroments was a major improvement for porting and verification

of code in dyncall. We have focused primarily on the mappings of C to machine interfaces and a

subset of the data types; this simplified porting and tool development. This limitation restricts access

to a few exotic functions but covers the vast majority of cases, including the C APIs supported by

rdyncall.

We presented various examples of rapid application development using dynamic R bindings to C APIs

of two families of library interfaces. However, C allows a large degree of freedom, and interface designs

of C APIs can be diverse. We have focused on typical elements on the basis of some standard APIs.

A few pratical issues should be solved first before users are likely to make use of dynamic bindings on a

larger scale. If the installation of C libraries were as convenient as language extensions through CRAN,

rdyncall-based applications could be more effectively used. Thus we are considering development of

a distributed installation framework for C packages, designed for dynamic FFIs.

Moreover, it is certainly quite conceivable to think about a foreign documentation interface. We

assume it would greatly help R users to use a C API if a corresponding R manual page or convenient

interface to C documentation were available. Since the documentation of C libraries is not standardized

automation remains a difficult task.

By example of rdyncall, an implementation of the Dynamic Bindings Model was shown. Major tasks

of the middleware, such as parsing of DynPort files and wrapper creation, were implemented in R.

This was beneficial for exploring techniques for wrapping objects. However, similar work needs to

be done repeatedly for any other languages. Further improvements to the DynPort format require

synchronization between language extensions.

Some abstraction layer for DynPort tasks and wrapper management within the middle-level layer of

the Dynamic Bindings Model is conceivable. Then a common code base for managing C components

could be shared among scripting language extensions, for example, by using C/C++ code and the C

extension interface of languages. If we consider to design such an abstraction layer, we then could also

ask the next question for a general abstraction to languages, possibly encapsulated as plug-ins, in a

new model for generic interoperability. The findings of this work, and the Dynamic Bindings Model,

contribute a portable implementation of a plug-in for the language C and its libraries.

Bibliography

A-EON Technology Ltd. (2011). AmigaONE X1000. URL http://a-eon.com/x1000.html; accessed

2013-09-30.

Adler, D. (2012). Foreign Library Interface. The R Journal, 4(1):30–40.

Adler, D. and Nenadic, O. (2003). A Framework for an R to OpenGL Interface for Interactive

3D graphics. Proceedings of Distributed Statistical Computing 2003 (working paper) URL http:

//www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/AdlerNenadic.pdf; accessed 2013-04-

18.

Adler, D., Nenadic, O., and Zucchini, W. (2003). RGL: A R-library for 3d visualization with OpenGL.

In Proceedings of the 35th Symposium of the Interface: Computing Science and Statistics, volume 35,

pp 419–429, Salt Lake City, USA.

Apple Inc. (2010a). iOS ABI Function Call Guide. (version 2010-07-07) URL https://developer.

apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/

iPhoneOSABIReference.pdf; accessed 2013-03-31.

Apple Inc. (2010b). Mac OS X ABI Function Call Guide. (version 2010-11-17) URL

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/

LowLevelABI/Mac_OS_X_ABI_Function_Calls.pdf; accessed 2013-03-17.

ARM Limited (2009). Procedure Call Standard for the ARM Architecture. URL http://infocenter.

arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf; accessed 2013-04-18.

AROS Development Team (1995-2013). AROS Research Operating System. URL http://aros.

sourceforge.net/; accessed 2013-09-30.

AT&T (1990). Unix System V: Application Binary Interface. Prentice Hall.

AT&T (1991). System V Application Binary Interface: Intel386 processor supplement: UNIX system.

Prentice Hall.

AT&T (1991). System V Application Binary Interface: MIPS RISC Processor Supplement: UNIX

System V. Prentice Hall.

263

http://a-eon.com/x1000.html
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/AdlerNenadic.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/AdlerNenadic.pdf
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/Mac_OS_X_ABI_Function_Calls.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/Mac_OS_X_ABI_Function_Calls.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
http://aros.sourceforge.net/
http://aros.sourceforge.net/

264 BIBLIOGRAPHY

AT&T and SCO (1996). System V Application Binary Interface: SPARC Processor Supplement.

Prentice Hall.

BBC News (2012). AMD in chip tie-up with UK’s ARM. URL http://www.bbc.co.uk/news/

technology-20137041; accessed 2013-09-15.

Becker, R. A. (1994). A brief history of S. AT&T Bell Laboratories, New Jersey, USA. URL http:

//cm.bell-labs.com/stat/doc/94.11.ps; accessed 2013-10-27.

Becker, R. A. and Chambers, J. M. (1984). S: An Interactive Environment for Data Analysis and

Graphics. Chapman and Hall/CRC.

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988). The New S Language. Chapman and

Hall/CRC.

Bielman, J. (2010). CFFI - Common Foreign Function Interface. (CL package version 0.10.6) URL

http://common-lisp.net/project/cffi/; accessed 2013-04-18.

Box, D. (1998). Essential COM, 1st edition. Addison-Wesley Professional, Boston, MA, USA.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. (1997). Extensible markup

language (XML). World Wide Web Journal, 2(4):27–66.

Britton, R. (2003). MIPS Assembly Language Programming. Prentice Hall.

Brown, E. (2012). csound: Accessing Csound functionality through R. (R package version 0.1-1) URL

http://CRAN.R-project.org/package=csound; accessed 2013-10-13.

Chafik, O. (2011). BridJ. (Java package version 0.5) URL http://code.google.com/p/bridj/;

accessed 2013-04-18.

Chambers, J. M. (1998). Programming with data: A guide to the S language. Springer.

Chambers, J. M. and Hastie, T. J. (1991). Statistical Models in S. Chapman and Hall/CRC.

Christopher, E. (2003). mips eabi documentation. URL http://sourceware.org/ml/binutils/

2003-06/msg00436.html; accessed 2013-09-20.

Ciccone, J., Gifford, J., Lankhorst, M., and Oliver, R. (2012). Cross-Compiled Linux From Scratch -

Embedded. URL http://cross-lfs.org/view/clfs-embedded/arm/index.html; accessed 2013-

04-18.

Clark, J. (1998-2007). The Expat XML Parser. (C library version 2.0.1) URL http://expat.

sourceforge.net/; accessed 2013-04-18.

Clark, J. (2001). XSL transformations (XSLT) version 1.1, working draft. URL http://www.w3.org/

TR/2001/WD-xslt11-20010824; accessed 2013-03-04.

http://www.bbc.co.uk/news/technology-20137041
http://www.bbc.co.uk/news/technology-20137041
http://cm.bell-labs.com/stat/doc/94.11.ps
http://cm.bell-labs.com/stat/doc/94.11.ps
http://common-lisp.net/project/cffi/
http://CRAN.R-project.org/package=csound
http://code.google.com/p/bridj/
http://sourceware.org/ml/binutils/2003-06/msg00436.html
http://sourceware.org/ml/binutils/2003-06/msg00436.html
http://cross-lfs.org/view/clfs-embedded/arm/index.html
http://expat.sourceforge.net/
http://expat.sourceforge.net/
http://www.w3.org/TR/2001/WD-xslt11-20010824
http://www.w3.org/TR/2001/WD-xslt11-20010824

BIBLIOGRAPHY 265

Clark, J., DeRose, S., et al. (1999). XML Path Language (XPath), version 1.0. URL http://www.

w3.org/TR/1999/REC-xpath-19991116/; accessed 2013-05-05.

CompuPhase (1998-2013). pawnscript - An embedded scripting language. (Interpreter version

4.0.4733) URL http://www.compuphase.com/pawn/pawn.htm; accessed 2013-10-01.

da Silva, A. R. F. (2011). cudabayesreg: Parallel implementation of a bayesian multilevel model for

fmri data analysis. Journal of Statistical Software, 44(4):1–24.

Dandamudi, S. P. (2005a). Guide to RISC Processors - for Programmers and Engineers. Springer.

Dandamudi, S. P. (2005b). Introduction to Assembly Language Programming: For Pentium and RISC

Processors. Springer.

Debian (2012). ARM Hardfloat Port. URL http://wiki.debian.org/ArmHardFloatPort; accessed

2013-04-18.

Developers, S. (2013). Source Python Extensions. (Software version 2.8.12) URL http://python.

eventscripts.com/pages/Spe; accessed 2013-10-01.

Dutky, S. and Maechler, M. (2012). bitops: Functions for Bitwise operations. (R package version 1.0)

URL http://CRAN.R-project.org/package=bitops; accessed 2013-06-12.

Dvorak, J. C. (1996). Inside Track. PC Magazine. October 1996.

Eddelbuettel, D. and Francois, R. (2012). RInside: C++ classes to embed R in C++ applications.

(R package version 0.2.10) URL http://CRAN.R-project.org/package=RInside; accessed 2013-

06-12.

Fisher, K., Pucella, R., and Reppy, J. (2000). Data-level interoperability. In Electronic Notes in

Theoretical Computer Science.

Flynt, C. (2003). TCL/TK - A Developer’s Guide. Morgan Kaufmann, San Francisco, USA.

Fog, A. (2004-2012). Calling conventions for different c++ compilers and operating systems. (Version

2012-02-29) URL http://www.agner.org/optimize/calling_conventions.pdf; accessed 2012-

04-29.

Foundation, T. P. (2009-2013). NQP - Not Quite Perl. (Interpreter version 2013.10) URL https:

//github.com/perl6/nqp; accessed 2013-10-26.

Fuegi, J. and Francis, J. (2003). Lovelace & Babbage and the Creation of the 1843 “Notes”. IEEE

Annals of the History of Computing, 25(4):16–26.

Furman, S. and Bandhauer, J. (2012). XPCOM Type Library File Format. (Version 2012-08-06) URL

http://www-archive.mozilla.org/scriptable/typelib_file.html; accessed 2013-05-02.

http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.compuphase.com/pawn/pawn.htm
http://wiki.debian.org/ArmHardFloatPort
http://python.eventscripts.com/pages/Spe
http://python.eventscripts.com/pages/Spe
http://CRAN.R-project.org/package=bitops
http://CRAN.R-project.org/package=RInside
http://www.agner.org/optimize/calling_conventions.pdf
https://github.com/perl6/nqp
https://github.com/perl6/nqp
http://www-archive.mozilla.org/scriptable/typelib_file.html

266 BIBLIOGRAPHY

Garcia-Ripoll, J. J. and Rosenberg, K. M. (2006). The ECL Manual. URL http://ecls.

sourceforge.net/new-manual; accessed 2013-04-18.

Gastner, M. T. and Newman., M. E. J. (2013). Diffusion-based Cartograms with R. (R package in

development) URL https://github.com/thomaszumbrunn/cart; accessed 2013-10-27.

Geraci, A., Katki, F., McMonegal, L., Meyer, B., and Porteous, H. (1991). IEEE Standard Computer

Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE.

Golemon, S. (2006). Extending and Embedding PHP. Sams, Indianapolis, USA.

Green, A. and et al (2011). libffi - A Portable Foreign Function Interface Library. (C library version

3.0.10) URL http://sourceware.org/libffi/; accessed 2013-04-18.

Guy Wright and Glenn Suokko (1986). Andy Warhol: An Artist and His Amiga. Amiga World

magazine, Issue 3, 1986, IDG.

Haible, B. (2004). ffcall - foreign function call libraries. (C library version 1.10) URL http://www.

gnu.org/s/libffcall/; accessed 2013-04-18.

Haiku, Inc. (2001-2013). What is Haiku? URL http://www.haiku-os.org/about; accessed 2013-10-

01.

HAL Computer Systems, I. (1998). SPARC64-III User’s Guide. HAL Computer Systems, Inc.,

Campbell, California, USA.

Hearn, M. (2004). Writing shared libraries. URL http://plan99.net/~mike/

writing-shared-libraries.html; accessed 2013-05-23.

Heller, T. (2011). ctypes - A foreign function library for Python. URL http://starship.python.

net/crew/theller/ctypes/; accessed 2013-04-18.

Hornik, K. (2012). Are There Too Many R Packages? Austrian Journal of Statistics, 41(1):59–66.

Hoxe, S., Karim, F., Hay, B., and Warren, H. (1996). The PowerPC Compiler Writer’s Guide.

Warthmann Associates, Palo Alto, California, USA.

IBM (2000). PowerPC Microprocessor Family: The Programming Environments for 32-

Bit Microprocessors. URL https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

852569B20050FF778525699600719DF2; accessed 2013-10-08.

IBM (2010). PowerISA. URL https://www.power.org/wp-content/uploads/2012/07/PowerISA_

V2.06B_V2_PUBLIC.pdf; accessed 2013-09-30.

IBM and Motorola (1997). PowerPC Microprocessor Family: The Programming Environments. URL

http://www.freescale.com/files/32bit/doc/user_guide/MPCFPE_AD_R1.pdf; accessed 2013-

10-08.

http://ecls.sourceforge.net/new-manual
http://ecls.sourceforge.net/new-manual
https://github.com/thomaszumbrunn/cart
http://sourceware.org/libffi/
http://www.gnu.org/s/libffcall/
http://www.gnu.org/s/libffcall/
http://www.haiku-os.org/about
http://plan99.net/~mike/writing-shared-libraries.html
http://plan99.net/~mike/writing-shared-libraries.html
http://starship.python.net/crew/theller/ctypes/
http://starship.python.net/crew/theller/ctypes/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600719DF2
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600719DF2
https://www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf
https://www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf
http://www.freescale.com/files/32bit/doc/user_guide/MPCFPE_AD_R1.pdf

BIBLIOGRAPHY 267

Ierusalimschy, R., de Figueiredo, L. H., and Filho, W. C. (1996). Lua—An Extensible Extension

Language. Software—Practice and Experience, 26(6):635–652.

Ihaka, R. and Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of

Computational and Graphical Statistics, 5(3):299–314.

ISO (2011). ISO/IEC 9899:2011 Information technology — Programming languages — C. Interna-

tional Organization for Standardization.

Jenness, T. and Cozens, S. (2003). Extending and Embedding Perl. Manning, Greenwich, CT, USA.

Jermár, J. (2007). Porting SPARTAN kernel to SPARC V9 architecture. Master’s thesis, Charles

University in Prague, Faculty of Mathematics and Physics. URL http://www.helenos.org/doc/

theses/jj-thesis.pdf; accessed 2013-10-13.

Joyeux, S. (2004-2009). Typelib: a C++ type and value introspection library. (C++/Ruby package)

URL http://typelib.sourceforge.net/html/index.html; accessed 2013-10-26.

Kaiser, H. (2011). Wave V2.0 - Boost C++ Libraries. (C++ library version 2.1.0; in Boost C++ library

version 1.45) URL http://www.boost.org/doc/libs/release/libs/wave/index.html; accessed

2013-04-18.

Kernighan, B. W. and Pike, R. (1983). The Unix programming environment. Prentice Hall.

Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language, ANSI C, 2nd edition.

Prentice Hall, Englewood Cliffs, New Jersey, USA.

King, B. (2004). GCC-XML. (Program version 0.6.0) URL http://gccxml.github.io/HTML/Index.

html; accessed 2013-04-18.

Kloss, G. K. (2008). Automatic C Library Wrapping – Ctypes from the Trenches. The Python Papers,

3(3). ISSN 1834-3147.

Knight, G. (2006). Amiga history guide. URL http://www.amigahistory.co.uk/phase5story.html;

accessed 2013-09-29.

Kolb, C. and Pharr, M. (2006). Options Pricing on the GPU. GPU Gems, 2:719–731. Addison-Wesley.

Lang, D. T. (2011). Rffi. (R package version 0.3-0) URL http://www.omegahat.org/Rffi/; accessed

2013-04-18.

Language Popularity Index Project (2012). The Transparent Language Popularity Index. URL http:

//lang-index.sourceforge.net/; accessed 2013-04-18.

Lantinga, S. and et al (2012). libSDL: Simple DirectMedia Layer. (C library version 1.2.15) URL

http://www.libsdl.org/; accessed 2013-04-18.

http://www.helenos.org/doc/theses/jj-thesis.pdf
http://www.helenos.org/doc/theses/jj-thesis.pdf
http://typelib.sourceforge.net/html/index.html
http://www.boost.org/doc/libs/release/libs/wave/index.html
http://gccxml.github.io/HTML/Index.html
http://gccxml.github.io/HTML/Index.html
http://www.amigahistory.co.uk/phase5story.html
http://www.omegahat.org/Rffi/
http://lang-index.sourceforge.net/
http://lang-index.sourceforge.net/
http://www.libsdl.org/

268 BIBLIOGRAPHY

Lengyel, E. (2003). The OpenGL Extensions Guide. Charles River Media, Inc., Massachusetts, USA.

Levine, J. R. (2000). Linkers and Loaders. Morgan Kaufmann, San Francisco, USA.

MacPorts Project (2002). MacPorts Project. URL http://www.macports.org; accessed 2013-05-05.

Martin, K., Hoffman, B., Cedilnik, A., King, B., and Nuendorf, A. (2003). Mastering CMake: A

cross-platform build system. Kitware Incorporated, New York, USA.

Mascarenhas, F. (2009). Alien - Pure Lua extensions. (Lua package version 0.5.1) URL http://

alien.luaforge.net/; accessed 2013-04-18.

Mashey, J. R. (2004). Languages, Levels, Libraries, and Longevity. ACM Queue, 2(9):32–38.

Matsumoto, Y. (2002). Ruby in a nutshell - a desktop quick reference. O’Reilly.

Matz, M., Hubic̆ka, J., Jaeger, A., and Mitchell, M. (2012). System V Applica-

tion Binary Interface: AMD64 Architecture Processor Supplement. (version 0.99.6)

URL http://ensiwiki.ensimag.fr/images/d/de/System_V_Application_Binary_Interface_

AMD64_Architecture_Processor_Supplement.pdf.

McFarlane, N. (2003). Rapid Application Development with Mozilla. Prentice Hall, New Jersey, USA.

Meissner, W. (2011). Ruby-FFI. (Ruby package version 1.0.10) URL https://github.com/ffi/ffi/

wiki; accessed 2013-04-18.

Microsoft (2012). COM, DCOM, and Type Libraries. (version 2012-10-26) URL http://msdn.

microsoft.com/en-us/library/windows/desktop/aa366757(v=vs.85).aspx; accessed 2013-05-

02.

Microsoft (2013). x64 Software Conventions. URL http://msdn.microsoft.com/en-us/library/

7kcdt6fy.aspx; accessed 2013-04-18.

Miller, C. and Zovi, D. A. D. (2009). The Mac Hacker’s Handbook. Wiley.

MorphOS Development Team (2000-2013). MorphOS. URL http://www.morphos-team.net/; ac-

cessed 2013-09-29.

Muhammad, H. and Ierusalimschy, R. (2007). C APIs in Extension and Extensible Languages. Journal

of Universal Computer Science, 13(6):839–853.

Murdoch, D. (2001). RGL: An R interface to OpenGL. In Proceedings of the 2nd International

Workshop on Distributed Statistical Computing, Vienna, Austria.

Muresan, R., editor (2005). Embedded System Development and Labs for ARM, English Edition. Uni-

versity of Guelph Canada. URL http://www.eos.uoguelph.ca/webfiles/rmuresan/ENGG4420%

20OLD%20pre%20F10/EmbeddedSystemsAndLabsForARM-V1.1.pdf; accessed 2013-09-14.

http://www.macports.org
http://alien.luaforge.net/
http://alien.luaforge.net/
http://ensiwiki.ensimag.fr/images/d/de/System_V_Application_Binary_Interface_AMD64_Architecture_Processor_Supplement.pdf
http://ensiwiki.ensimag.fr/images/d/de/System_V_Application_Binary_Interface_AMD64_Architecture_Processor_Supplement.pdf
https://github.com/ffi/ffi/wiki
https://github.com/ffi/ffi/wiki
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366757(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366757(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/7kcdt6fy.aspx
http://msdn.microsoft.com/en-us/library/7kcdt6fy.aspx
http://www.morphos-team.net/
http://www.eos.uoguelph.ca/webfiles/rmuresan/ENGG4420%20OLD%20pre%20F10/EmbeddedSystemsAndLabsForARM-V1.1.pdf
http://www.eos.uoguelph.ca/webfiles/rmuresan/ENGG4420%20OLD%20pre%20F10/EmbeddedSystemsAndLabsForARM-V1.1.pdf

BIBLIOGRAPHY 269

NetBSD (2013). NetBSD ELF FAQ. URL http://www.netbsd.org/docs/elf.html; accessed 2013-

06-01.

OpenBSD (2013). OpenBSD: How to handle shared libraries in the ports tree. URL http://openbsd.

org/porting/libraries.html; accessed 2013-05-24.

OpenCSW project (2002). OpenCSW Solaris packages. URL http://www.opencsw.org; accessed

2013-05-05.

OpenGL Architecture Review Board and D. Shreiner and et al (2005). OpenGL(R) Programming

Guide: The Official Guide to Learning OpenGL(R), Version 2. Addison Wesley.

Ousterhout, J. (1990). Tcl: An embeddable command language. In Proceedings of the Winter 1990

USENIX Conference, pp 133–146, Washington, D.C., USA.

Ousterhout, J. K. (1998). Scripting: Higher level programming for the 21st century. IEEE Computer,

31(3):23–30.

Pall, M. (2012). LuaJIT FFI Library. URL http://luajit.org/ext_ffi.html; accessed 2013-04-13.

Paul, R. P. (2000). SPARC architecture, assembly language programming, and C, second edition.

Prentice Hall, second edition.

Paul Moore, Gaal Yahas, A. V. (2008). FFI - Perl Foreign Function Interface. (Perl module version

1.04) URL http://search.cpan.org/~gaal/FFI/FFI.pm; accessed 2013-04-18.

Pendleton, B. (2003). Game programming with the Simple DirectMedia Layer. Linux Journal,

2003(110):1. Online version URL http://www.linuxjournal.com/article/6410; accessed 2013-

10-29.

Philipp, T. (2011). DynOS Project. URL http://dyncall.org/dynos; accessed 2013-04-18.

Pike, R. (1989). Notes on Programming in C. URL http://doc.cat-v.org/bell_labs/pikestyle;

accessed 2013-04-18.

Pike, R. and Kernighan, B. (1984). Program design in the UNIX environment. AT&T Bell Laboratories

Technical Journal, 63(8):1595–1605.

R Development Core Team (2012a). R: A Language and Environment for Statistical Computing

(version 2.15.1). R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

R Development Core Team (2012b). R Internals (version 2.15.1). R Foundation for Statistical

Computing, Vienna, Austria.

R Development Core Team (2012c). Writing R Extensions (version 2.15.1). R Foundation for Statis-

tical Computing, Vienna, Austria. ISBN 3-000051-11-9.

http://www.netbsd.org/docs/elf.html
http://openbsd.org/porting/libraries.html
http://openbsd.org/porting/libraries.html
http://www.opencsw.org
http://luajit.org/ext_ffi.html
http://search.cpan.org/~gaal/FFI/FFI.pm
http://www.linuxjournal.com/article/6410
http://dyncall.org/dynos
http://doc.cat-v.org/bell_labs/pikestyle

270 BIBLIOGRAPHY

Rodriguez, C. S. and Fischer, G. (2006). The Linux Kernel Primer: A Top-Down Approach for x86

and PowerPC Architectures. Prentice Hall.

Rost, R. J. (2004). OpenGL Shading Language. Addison-Wesley.

Schlather, M., Menck, P., Singleton, R., Pfaff, B., and team, R. C. (2013). RandomFields: Simulation

and Analysis of Random Fields. (R package version 2.0.66) URL http://CRAN.R-project.org/

package=RandomFields; accessed 2013-08-03.

Sloss, A. N., Symes, D., and Wright, C. (2004). ARM System Developer’s Guide. Morgan Kaufmann.

SPARC International (1992). The SPARC Architecture Manual – Version 8. SPARC International

Inc., CA, USA.

SPARC International (1997). System V Application Binary Interface: SPARC Version 9 Processor

Supplement. (Delta Document 1.35x, draft) URL http://www.sparc.com/standards/64.psabi.

1.35.ps.Z; accessed 2013-04-18.

Stallman, R. M. (2003). Using GCC: the GNU compiler collection reference manual. GNU Press.

Stallman, R. M. and McGrath, R. (2002). GNU Make: A Program for Directing Recompilation. GNU

Press.

Steven Sobek and Kevin Burke (2004). PowerPC Embedded Application Binary Interface (EABI): 32-

Implementation. URL http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf;

accessed 2013-09-19.

Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., and Schulten, K. (2007).

Accelerating molecular modeling applications with graphics processors. Journal of computational

chemistry, 28(16):2618–2640.

Sweetman, D. (2007). See MIPS Run: Linux. Elsevier.

SWIG Developers (2009). SWIG 1.3 Documentation. URL http://www.swig.org/Doc1.3/

SWIGDocumentation.pdf; accessed 2013-04-18.

Szyperski, C., Gruntz, D., and Murer, S. (2002). Component Software: Beyond Object-Oriented

Programming, Second Edition. Addison-Wesley.

Tanenbaum, A. S. (2009). Modern Operating Systems, Third Edition. Pearson Prentice Hall.

Tasajrvi, L. (2004). DEMOSCENE: The Art of Real-Time. Even Lake Studios, Helsinki.

Taylor, T. J. (2013). jsh - The Hypersoft JavaScript Shell. (Interpreter, in development) URL https:

//github.com/hypersoft/jsh; accessed 2013-10-26.

http://CRAN.R-project.org/package=RandomFields
http://CRAN.R-project.org/package=RandomFields
http://www.sparc.com/standards/64.psabi.1.35.ps.Z
http://www.sparc.com/standards/64.psabi.1.35.ps.Z
http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf
http://www.swig.org/Doc1.3/SWIGDocumentation.pdf
http://www.swig.org/Doc1.3/SWIGDocumentation.pdf
https://github.com/hypersoft/jsh
https://github.com/hypersoft/jsh

BIBLIOGRAPHY 271

The Open Group (1997). 64-Bit Programming Models: Why LP64? URL http://www.unix.org/

version2/whatsnew/lp64_wp.html; accessed 2013-09-25.

The SWIG Developers (1995–2010). SWIG: Simplified Wrapper and Interface Generator. URL http:

//www.swig.org/; accessed 2013-04-18.

TIOBE (2012). TIOBE Programming Community Index. URL http://www.tiobe.com/index.php/

content/paperinfo/tpci/index.html; accessed 2012-04-18.

Turber, S. (2000). ARM System on Chip Architecture, Second Edition. Addison-Wesley.

Urban, R. (2004). Design Issues for Foreign Function Interfaces. (version 2004-05-04) URL http:

//autocad.xarch.at/lisp/ffis.html; accessed 2013-04-18.

van Eerten, P. (2008-2012). GTK-server. (Program version 2.3.1) URL http://www.gtk-server.

org/; accessed 2013-10-26.

van Rossum, G. (2012). Extending and Embedding the Python Interpreter. Python Software Founda-

tion, 2.7 edition. URL http://docs.python.org/2/extending/; accessed 2013-10-29.

Van Rossum, G. and Drake Jr, F. L. (1995). Python reference manual. Centrum voor Wiskunde en

Informatica. (Online Version) URL http://docs.python.org/2/reference/; accessed 2013-10-29.

Veillard, D., Reese, B., and et al (2009). XSLT C library for GNOME. (C library version 1.1.26) URL

http://xmlsoft.org/XSLT/; accessed 2013-04-18.

Wall, L. (2000). Programming Perl. O’Reilly.

Weaver, D. L., editor (2008). OpenSPARC Internals: OpenSPARC T1/T2 Chip Multithreaded

Throughput Computing. Lulu, Inc., NC, USA.

Weaver, D. L. and Germond, T. (1994). The SPARC Architecture Manual - Version 9. Prentice Hall.

Weisser, W. (2007). C/Invoke. (C library version 1.0) URL http://cinvoke.teegra.net/index.

html; accessed 2013-04-18.

Wheeler, D. A. (2003). Program Library HOWTO. URL http://tldp.org/HOWTO/

Program-Library-HOWTO; accessed 2013-06-01.

Worthington, J. (2010-2013). Native call interface for Rakudo. (Language extension, in development)

URL https://github.com/jnthn/zavolaj; accessed 2013-10-26.

Yiu, J. (2010). The Definitive Guide to the ARM Cortex-M3, Second Edition. Elsevier.

Zucker, S. and Karhi, K. (1995). System V Application Binary Interface: PowerPC Processor Sup-

plement. SunSoft, USA. URL http://refspecs.linux-foundation.org/elf/elfspec_ppc.pdf;

accessed 2013-03-17.

http://www.unix.org/version2/whatsnew/lp64_wp.html
http://www.unix.org/version2/whatsnew/lp64_wp.html
http://www.swig.org/
http://www.swig.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://autocad.xarch.at/lisp/ffis.html
http://autocad.xarch.at/lisp/ffis.html
http://www.gtk-server.org/
http://www.gtk-server.org/
http://docs.python.org/2/extending/
http://docs.python.org/2/reference/
http://xmlsoft.org/XSLT/
http://cinvoke.teegra.net/index.html
http://cinvoke.teegra.net/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO
http://tldp.org/HOWTO/Program-Library-HOWTO
https://github.com/jnthn/zavolaj
http://refspecs.linux-foundation.org/elf/elfspec_ppc.pdf

	Contents
	List of Tables
	List of Figures
	List of Listings
	Typographic Conventions
	Software Sources
	Acronyms
	Acknowledgements

	Introduction
	Overview
	Outline of Thesis

	Background and Motivation
	Programming Languages
	Scripting
	R Language
	C Language
	Current Trends

	Software Libraries
	OpenGL
	Simple DirectMedia Layer

	Motivation
	Graphics Plotting versus Real-time Graphics Rendering
	3D Visualization Device System for R
	Suggested Architecture for Language Extensions

	Dynamic Bindings Model
	C Libraries
	Binary Formats
	Software Distribution
	Binary Interface

	Language Bindings
	Compiled Language Extensions
	Handwritten Bindings
	Automation Tools

	Interoperability
	Code-level Interoperability
	Data-level Interoperability

	Foreign Function Interfaces
	Static FFI
	Limitations of the Static FFI in R
	Dynamic FFI
	Generic Dynamic FFI

	Model Description
	Overview
	Architecture
	Comparison of Bindings Models

	C Type System
	Overview
	Object types
	Composite data types
	Pointer types
	Function types

	Text-based Encoding Format for C APIs
	Introduction
	Objectives
	Encoding Format

	Parser Framework
	Overview
	Implementation

	Summary

	Dynamic FFI for R
	Introduction
	Software Architecture
	Usage of Type Signatures
	Internals of R

	Code loading
	Introduction
	Interface
	Naming Schemes of Shared Libraries
	Searching of Shared Libraries
	Implementation
	Low-level interface

	Foreign Function Calls
	Interface
	Call Signature
	Supported Function Types
	Supported Calling Conventions
	Type Checking
	Value Conversion

	Wrapper Functions
	Comparison of Wrapper Function
	Automation of Wrapper Function Creation
	Implementation
	Performance Benchmark

	Data-level Interoperability
	Interface
	Registration of C data types
	Implementation
	Low-level Interface

	Callbacks
	Interface

	Dynamic R Bindings to C Libraries
	Interface
	Implementation
	Installation of run-time libraries

	Example
	Simulation and Visualization of Random Fields using OpenGL

	Summary

	Dynamic Interfaces to Compiled Code
	Anatomy of Function Calls
	Execution Environment
	Call Stack
	Calling Sequence
	Diversity of Calling Sequences

	Application Binary Interface
	Overview

	Processor Architecture Families
	From CISC to RISC
	X86 Processor Architecture Family
	ARM Processor Architecture Family
	PowerPC Processor Architecture Family
	MIPS Processor Architecture Family
	SPARC Processor Architecture Family
	Stack Frames
	Data Representation

	Dynamic Function Calls
	Introduction
	Objective
	Approach
	Architecture
	Interface
	Sample Applications
	Implementation
	Passing arguments via the stack (x86-32 ports)
	Passing arguments via registers (arm32-softfloat ports)
	Passing leading integer arguments via registers (x86-32-fast ports)
	Passing arguments via registers with homing area (sparc-v7 port)
	Overlapping FPU registers and homing area (sparc-v9 port)
	Passing floating-point arguments via multiform FPU registers (x86-64 ports)
	Passing floating-point arguments via uniform FPU registers (ppc32 ports)
	Passing leading floating-point arguments via FPU registers (mips-o32 port)
	Passing arguments via type-specific load instructions (mips-n64 port)

	Dynamic Callback Handlers
	Introduction
	Objective
	Approach
	Architecture
	Interface
	Sample Application
	Implementation

	Dynamic Loading of Code
	Interface
	Enumeration of Symbols
	Implementation

	Software Tools for Building and Testing
	Build systems
	Software testing

	Summary

	Conclusion
	Summary
	Related work
	Conclusion and Future Direction

	Bibliography

