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Typographic Conventions XIII

Typographic Conventions

Emphasized passages of text are printed in “italic” font style. Software packages, libraries,
filepaths and internet links are printed in “type-writer” font style. Elements of computer lan-
guages are printed in “type-writer” font where the background color indicates on a given context and
dialect such as document markup elements of xML and XSLT , programming language elements of R,
¢ and Assembly and other plain text format. Further, code snippets and listings are printed
with syntax highlighting using the minted IXTEX package and pygmentizeﬂ Figure [1]| gives the color

scheme and examples of listings.

Language Code example
:fun
. setWindowRect (*<Window>*<Rect>)v;
Plain newWindow (IB)*<Window>;
TeXt :struct
Window{:}

<template match="//Function">
<value-of select="@name"/>
XSLT <text>(</text>
<apply-templates select="Argument"/>
<text>)</text>

<GCC_XML>
<PointerType id="_24" type="_5"/>
XML <FundamentalType id="_25" name="int"/>
<Function id="_3" name="SDL_SetVideoMode" returns="_24">
<Argument type="_25"/>

draw <- function(sim) {
glClear (GL_COLOR_BUFFER_BIT)
drawTexCirclesVertexArray(sim$x,sim$y,sim$r)
R glFinish()
SDL_GL_SwapBuffers ()
}

double tiny_dyncall(void (*fun)(), char const * fmt, ...) {
va_list ap;
va_start(ap, fmt);
C while ( ch = *ptr++ != )’ ) {
switch(ch) {
case ’d’: dcArgDouble(vm, va_arg(ap, double)); break;

amd64_sysv:
pushq %rbp # Prolog
pushqg ’%rbx
Assembly movq Yrsp,Yrbp
movq %r8, %rbx # RBX = function pointer

movsd O(%rcx),%xmm0 # Load FPU register

Figure 1: Color highlighting conventions for code in this thesis.

!Sources of pygmentize were slightly modified for enhanced support of gas ARM Assembly syntax; Patches are
available from the thesis homepage http://dyncall.org/thesis!


http://dyncall.org/thesis
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Software Sources XV

Software Sources

Several software packages that are subject of this thesis are available under the open-source license

[ISC (Internet Systems Consortium)l Copyright information, download links and license text are given

below:

e dyncall is available from the project site at http://dyncall.org.

Copyright (c) 2007-2012 Daniel Adler <dadler@uni-goettingen.de>,
Tassilo Philipp <tphilipp@potion-studios.com>

Parts of dynload and dyncall related to dynload_mach-o.* and dyncall_struct.x*:

Copyright (c) 2010-2011 Olivier Chafik <olivier.chafik@centraliens.net>

e rdyncall is distributed on CRAN at http://cran.r-project.org/package=rdyncalll

Copyright (c) 2007-2012 Daniel Adler <dadler@uni-goettingen.de>

The license text is given below.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.


http://dyncall.org
http://cran.r-project.org/package=rdyncall
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Acronyms XVII

Acronyms

ABI Application Binary Interface.

API Application Programming Interface.
[T00], [T02], 110, [TT7HITY, 2T, 123}, 175}, (178, [I79} [I8T] [I85], [195] 231}, [245]

ARM Advanced Risc Machines. [149]

BNF Backus-Naur Form.

Call VM Call Virtual Machine. [T78| [T79] [T8THI83] [186] [187], [T93HI98| 02| 205], P07, R10] P12 15|
(220, 222} 223] [230} 242 248} 249

CHRP Common Hardware Reference Platform. [I56]

COM Component Object Model.
CPU Central Processing Unit.

CRAN Comprehensive R Archive Network.

CUDA Compute Unified Device Architecture.

DLL Dynamically Linked Library.

DSC Distributed Statistical Computing.

DTD Document Type Definition.

ELF Execution and Link Format. [83] [85] [239] [246]
FDI Foreign Data Interface.

FFI Foreign Function Interface. [100}, [101], [107], [112]
(117} 131} [I75] [196]

FFT Fast Fourier Transformation. 261]

FP Frame Pointer. [136]

FPR floating-point register. (143

FPS Frames Per Second.
FPU Floating-point unit. [I32] [I45]

GCC GNU Compiler Collection.



XVIII Acronyms

GLEW OpenGL Extension Wrangler library.
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Chapter 1

Introduction

The use of scripting languages is becoming increasingly prevalent. Ever more users, from non-technical
areas, are attracted by the low hurdles of scripting and the rapid development environments. The “R
Project for Statistical Computing” gives a prime example of such an open platform for computational

statistics and graphics which connects users world-wide.

Whether a specific language is suitable to solve a given task often depends on the quality and quantity

of available extensions. Numerous efficient “best-practice” software solutions are available in the form

of reusable software program libraries with a C{API (Application Programming Interface)l Often they

are ported across hardware platforms and can be accessed as a dynamically loadable and linkable
shared C library, such as OpenGL to utilize accelerated graphics hardware for real-time graphics
rendering. Scripting users can benefit indirectly from these external C libraries if a Language Bindings
extension exists for their language to provide for a scripting interface to the C [AP]]

However, the development of Language Bindings to C Libraries can be expensive. Depending on
the library the [AP]] can comprise hundreds of functions; for each of them a corresponding scripting
wrapper needs to be implemented. Moreover, if callbacks and complex data structures are part of
the C interface, the development becomes even more challenging. After all, the development is a
language-and-library specific task; developers require detailed knowledge of both sides of an adapter,
the C extension interface of the scripting language and the C [AP]] of the library. Since a language
bindings extension comprises hybrid implementations, written in the scripting language and C, its
development includes porting, compilation, testing and deployment for each supported target platform
of the language; effectively, development tasks are needed for each and every language-library-platform

combination.

In this thesis we discuss an extension model for scripting languages that provides for seamless scripting
access to the C[AP] of native libraries without the need for compilation of wrapper modules and thus
significantly decreases the complexity of language bindings development. We give a detailed description
of the model and an implementation for the R language. The model makes use of dynamic operations

for interoperability with native code and data that are carried out at the machine level and that need
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to conform with the [ABI (Application Binary Interface)l and Calling Conventions of the processor

hardware platform. We give an overview of across five processor-architecture families and then

present a portable abstraction layer for making foreign function calls and handling of callbacks.

1.1 Overview

Whereas language bindings are usually implemented by means of C wrapper code which necessitates
compilation for a specific language-library-platform combination, we suggest an alternative bindings
model, named the Dynamic Bindings Model, that superseeds compilation to reduce the complexity
where a C library can be made accessible across supported scripting languages and platforms by a per-
library development task. The model describes a single extension module that needs to be developed
once for a specific scripting language. This extension takes the role of an interface hub to C libraries;
linkage and set up of scripting interfaces is carried out dynamically at run time, driven by a platform-
and language-portable “C [AP]| bindings” specification format, named DynPort. The format serves
as a portable text-based interface for type-safe interoperability with native C code and data across
hardware platforms; abstract C type information of a library’s is encoded in a compact, intuitive
text-based format that is suitable for bindings automation but also as a low-level scripting interface
for native operations. Bindings for C APIs are collected in a repository that is extendable, and we
give the design of an automation parser tool, based on open-source compiler, scripting and XML tools,
that translates C[AP] header files to DynPort files.

We then discuss an implementation of this model for the R programming language that is contributed

as the rdyncall R package. The model requires the existence of a Dynamic |F'FI (Foreign Function)
Interface) to overcome compilation. However, the existing of R has very limited support for

calling native C code; only a small subset of C function types are supported and type-safety needs to

be implemented manually. rdyncall provides a Dynamic [FF] facility for R to be used as a flexible
alternative for making calls to native C code of arbitrary C function type with only small limitations.
It includes support for handling native C data objects and wrapping of R functions as callbacks. The
implementation of this model is based on these services. We show that the C interfaces are mapped
to R as-is and we illustrate this resemblance with a comparison of C API user code in C and R. We
also give complex examples that emphasis platform-portable scripting of 3D multimedia applications

in R using powerful libraries, such as OpenGL and SDL.

Basically we overcome compilation in this bindings model by utilizing dynamic operations of a Dynamic
FFI such as foreign function calls, handling and manipulation of C run-time data objects, and also
wrapping of scripting functions as C callback pointers. They are usually implemented by using a
software abstraction layer with a portable C interface, named Generic Dynamic FFI, that abstracts
the low-level operations to carry out machine-level function calls that conform to a specific calling

convention.
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Little has been published about the implementation of a Generic Dynamic[FF], although this layer is
substantial for portable implementation of and low-level middleware. This layer of abstraction is
difficult to implement because it has to take details of the processor architecture, the [ABI and calling

convention of compilers into account.

In this thesis we give an overview of different [ABI]standards across five common processor-architecture
families, namely x86, powerpc, arm, mips and sparc. We then discuss the design and implementation
of a software abstraction layer for dynamic interoperability with precompiled code, contributed as
open-source libraries of the DynCall project. The discussion of this abstraction layer completes the
implementation design of the Dynamic Bindings Model for platform-specific issues. Table[I.T] gives an
overview of the development history of the R package rdyncall and the C libraries of the DynClall
project (dyncall, dyncallback and dynload).

Year | Details
2007 | Adler developed prototyp of] COMl-based middleware for C4++ components with R bindings on x86-32 platform

using type signature strings and call kernel. Adler and Philipp began to create an open-source library that

abstracts calling conventions via a dynamic C interface for making calls to precompiled functions.

2008 | Public release of dyncall version 0.1 comprising two libraries dynload and dyncall, and ports to x86-32 and
x86-64 for Microsoft Windows and Unix-based SVR4 Platforms, Apple Mac OS X ppc32 , arm32 for Nintendo
DS and mips32 EABI for Sony Playstation Portable. A number of low-level bindings to programming languages
were contributed on the Subversion repository for R, Python, Lua, Ruby. dyncall version 0.2 contains an
improved documentation.

2009 | Support for ppc32 on SVR4 and ARM thumb mode was added in version 0.3 of dyncall. Initial release of

dyncallback library with support for x86-32, x86-64 and Apple Mac OS X ppc32 as of dyncall version
0.4. Lua package luadyncall was started that uses DynPort 2.0 format. On useR! 2009 rdyncall including
DynPort was presented to the public.

2010 | DynCall version 0.5 added more ports for dyncallback and improved arm32 port. Chafik contributed improve-
ments for dyncallback (Microsoft Windows x64 port) dynload and initial support for passing composite data
types in dyncall that is used in the Java/C++ middleware BridJ which uses dyncall for the implementation

at low level.

2011 | Public release of R package rdyncall version 0.7 on CRAN with dynamic R bindings to legacy /modern OpenGL,
SDL library family and others.

2012 | dyncall version 0.7 adds port for sparc32, sparc64 and mips64 platforms, abstraction of assembly sources
(portasm) and hybrid GNU/BSD/Sun Make build system.

Table 1.1: History of dyncall and related projects.

1.2 Outline of Thesis

Chapter [2| gives background information on programming languages, such as C and R, and portable
C libraries, such as OpenGL and SDL, followed by the motivation for this thesis. Chapter [3| describes
the software architecture for an extension to dynamic programming languages that gives scripting
access to C libraries without the need for compilation of language bindings wrapper and which can

work across platforms. We introduce the model with a general overview on loading and linking shared
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libraries, and also interoperability with precompiled code. Then follows a discussion on the creation
of language bindings to C libraries, outlining shortcomings of compiled language bindings and static
foreign function interfaces, such as given by the built-in FFI of R. Our Dynamic Bindings Model
was developed to overcome these shortcomings. There follows a description of language-neutral and
platform-portable components of the model; we give a brief overview of the abstract C type system
and then present a compact encoding format for C and a parser framework for automation.
An implementation of the model for the R programming language, contributed by the R package
rdyncall, is discussed in Chapter [d First, we describe the foundation layer comprising components
of a Dynamic [FF] for R. At appropriate points in the course of the description, we give side-by-
side examples of R and C user code for C libraries, such as SDL, OpenGL and Expat, to compare the
syntactic structure and to illustrate their similarity. The chapter closes with an example of an R user
application that makes use of OpenGL and SDL via rdyncall; this serves to illustrate platform-portable
R scripting of system-level applications without compilation. The platform-specific abstraction layer
and its implementation across processor architectures that is needed by Dynamic[FFI4is discussed in
Chapter 5] The anatomy of function calls at native machine level is discussed, followed by a survey of
platform-specific and Calling Conventions across five processor-architecture families. The three
libraries of the DynCall project, namely dyncall, dyncallback and dynload, are described in detail,
which provides the abstraction layer to platform-specific details for the implementation of Dynamic
[FFI3 and the Dynamic Bindings Model. We discuss the chosen software design, including the portable
C [AP]| and we compare implementation ports across a range of processor-architecture familes and

operating systems. Our conclusions are given in Chapter [6]



Chapter 2
Background and Motivation

In this chapter we discuss the difference between compiled and interpreted languages and emphasise
their different strengths. In particular, we focus on the R programming language and on powerful
libraries with a C interface, such as OpenGL and SDL for the development of platform-portable real-time
graphics application. We then describe the design of an existing R extension, named rgl, that con-
tributes a 3D real-time graphics visualization device system with interactive navigation to R that was
written in C++ using OpenGL and platform-specific interfaces to the windowing system; we outline
the software design and compare its current state with ongoing developments of OpenGL, including
issues of porting the package across major R platforms. This marks the starting point for the moti-
vation of this thesis because it suggests a different development model for language extensions based

on dynamic bindings to make portable C libraries become scriptable components across platforms.

2.1 Programming Languages

Ada Lovelace is credited with having written the world’s first computer program. In her article,
written between 1842-43, on a translation of memoirs from Luigi Menabrea about Charles Babbage’s
Analytic Engine, she added specifications for the calculation of Bernoulli numbers using the Engine
(Fuegi and Francis, [2003). The Engine was among the first mechanical computers, but Babbage did

not manage to finish building it.

The first freely programmable “stored-program” computers, as we know them today, were developed
no earlier than in the late 1940s. The fundamental programming interface to these machines has not
changed since then; it is “machine code”: a sequence of numbers in storage memory which encodes
a sequence of primitive hardware operations including arithmetic, load/store operations, control-flow
branches, subroutine calls and conditional blocks of execution. Assembly language is one of the first
programming languages that gives text-based access to the binary machine interface. As computers
evolved, ever new machine-level interfaces were invented. Thereby, programs written in assembly

language were architecture-specific and needed to be rewritten in a different dialect for new hardware
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platforms. In addition to the incompatibility of assembly languages between machines, programmers
realized that this language is not convenient for writing complex software as it addresses a programming
style at too low a level. A competition of language designs began. In the 1950s FORTRAN (later
renamed Fortran) was one of the first programming languages which offered a high-level programming
interface to the machine. At that time languages were compiled. A year later LISP was introduced
and quickly became one of the first interpreted programming languages. At the end of the 1960s the
UNIX operating system (later renamed Unix) and the C programming language were invented; both
are getting on in years but still provide the software backbone for platforms, services, components,
applications, and the Internet of today. By 1969 about 120 “important” languages existed but most
of them are no longer in use (Mashey), 2004]).

In the last two decades a wave of programming languages and environments has evolved; it has initiated
a new era of “programming” and has brought users from different fields in academia, industry and

the general public closer together.

2.1.1 Scripting

Ousterhouts (1998 paper “Scripting: Higher-Level Programming in the 21th Century” emphasises
the importance of scripting languages. He dicotomizes the landscape of programming languages
roughly into system programming languages and scripting programming languages, and compares these
language categories to explain why scripting languages handle many of the programming tasks better

than system programming languages. Table 2.1] gives a summary of his comparison.

Aspect System Programming Scripting

Languages C, C++, Java, Objective-C Tcl, Perl, Python, R, Lua
Purpose Data Structures and Algorithms Connecting components
Typing Static Dynamic

Performance Fast execution Rapid development
Learning Curve steep, weeks to months flat, hours to days

User Experienced Software Developer Casual Programmer and Developers

Table 2.1: Comparison of system programming languages and scripting languages based on |Ousterhout
(1998).

He considers both language groups to be in a complementary and symbiotic relationship and suggests
combining them in a “gluing component framework”. System programming languages, such as C and
C++, should be used for the implementation of reusable core components. The strongly typed nature
of such languages helps to manage complexity of data structures and algorithms, and the compilation
of code increases execution speed. Scripting languages are used for gluing components as applications.
Ousterhout| argues that scripting languages allow rapid development of gluing-oriented applications.

He supports his argumentation by an empirical study which compares the number of code lines and the
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development time for a variety of software projects, differing by size (three weeks to 180 month) and
application domain (Database, Security Scanner, Simulation and Graphical User-Interfaces). Each
application was implemented in two rounds using a system programming language (C++, C, Java)
and a scripting language (Tcl, Perl). In every case applications written in the scripting language
required far fewer lines of code (by a factor between 2 and 47) and less development time (by a factor
between 3 and 60). He concludes that “the true difference between the two language types is more

like a factor of five to 10” (Ousterhout, |1998|).

The “scripting” approach that he suggests can be found in a variety of current software architectures.
With the Netscape Browser release as open-source by Netscape Communications in 1998, a community
of developers began to re-engineer the source base. A little later the Mozilla 1.0 platform was born,
a platform that fosters general-purpose Rapid Application Development; applications are written in
JavaScript which is connected with a component model (XPCOM) that gives access to core components
implemented in C++. Example applications that run on the platform are the Firefox browser and the
Thunderbird mail client. The architecture encourages extension writing, so it is not surprising that a
large repository of add-ons exists for Firefox and Thunderbird. Futher details are given in McFarlane
(2003).

Scripting has developed as is evident in the Web of today. Server-side scripting was available from
early on for generating dynamic web content. But nowadays the Web is scripted at both ends. In
1995, the web browser Netscape Navigator 2.0 included a JavaScript interpreter to execute small
scripts as part of a web page content. At that time client-side JavaScript had little connectivity with
the components of a web browser. But the number of new interfaces has exploded in the past years.
Today JavaScript is an integral part of almost all web browsers; it gives web developers fine-grained
control over the browser-side user interface, network services as well as low-level graphics and audio
devices. For a growing number of web sites JavaScript is a requirement; it is increasingly used to
control the rendering of the complete web page in order to provide a responsive and flexible user

interface.

2.1.2 R Language

A prime example of “scripting” in the academic field is the R Project for Statistical Computing. What
started as a tool for statisticians has evolved into a general-purpose programming environment with
many users from different research fields. The core of R is in fact a scripting language, and users
who start to work with R as a tool often find themselves writing their own functions within hours or
days. The R language (R Development Core Team, 2012a)) is an interpreted, functional programming
language with a single reference implementation. The software architecture is of a modular design
for development of extensions and graphics output devices. The interpreter, graphics devices and
core functions for computation are implemented in compiled languages, such as C and Fortran, while

the “gluing” part is mostly written in the R programming language. R is delivered with a basic set
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of computational methods primarily focused in the area of statistics, but the core is extendable by

packages. The [CRAN (Comprehensive R Archive Network)| is a repository of extension packages,

mirrored across continents with currently 85 servers that offer users a convenient and quick way to
download and install R packages. The user can choose among the currently available 3700 packages
that can be installed within seconds. Researchers have recognized the power of this platform and so
it is not surprising that many of current state-of-the-art computational methods - in particular in
statistics - are available as R packages from [CRAN] Package authors upload their package source code
and the [CRAN| build server precompiles these for Windows, Mac OS X and Linux and then distributes

them in both source and prebuilt binary form on the mirror network.

2.1.2.1 History

The development was started in 1993 (Ihaka and Gentleman, 1996)) as a free re-implementation and
open-source alternative to the proprietary S language, a programming system for statistics invented
at the AT&T Bell Laboratories in the 1970s by Chambers et al. “Our [Becker et al.] primary goal
was to bring interactive computing to bear on statistics and data analysis problems.” (Becker} (1994)
The aim of the language, as expressed by Chambers, is “to turn ideas into software, quickly and
faithfully” (Chambers, [1998|). Table gives an overview of the notable historical events relating to
R and S.

2.1.2.2 Platforms

R is an open-source software that has been ported to many current platforms. The portable design is
a key factor for R’s success as a universal platform for scientific computing and exchange of software-
based research methods; it does not force users to use a particular operating system; rather it unifies

users of different desktop systems.

2.1.2.3 Extensions

R offers a large collection of packages that extend the core language with new functionality. A number
of packages make services available to R from C libraries. Most of these packages make use of a
two-sided wrapper implementation using R and C code, where the latter needs to be compiled and

linked with external C libraries for each platform.

In general, R packages which contain C code and use external libraries are harder to implement and
maintain. The package author has to understand the differences between operating systems, e.g.
Mac OS X, Linux, BSD derivates, Solaris (Unix-based) and Windows systems, and either needs to
incorporate the external library or to negotiate build strategies with administrators of the [CRAN|

build server.
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Date | Details

1975 | Becker, Chambers and Wilks began the development of an interactive environment for data analysis and
graphics.
1977 | S 1.0 was released.

1984 | Brown S Book “An Interactive Environment for Data Analysis and Graphics” (Becker and Chambers,ﬁ 1984))

was published, describing a Macro-based extension language.

1988 | Blue S Book “The New S” (Becker et al.,r 1988) was published, featuring user-written extensions as first-class

objects. Commercial implementation of S, named “S-Plus”, was offered by a Seattle-based start-up company.

1990 | Gentlemen and Ihaka decided to write a LISP-based interpreter to evaluate ideas and to “publish a paper or

two”.

1991 | White S Book “Statistical Models in S” (Chambers and Hastie} [1991) was published, featuring Classes.

1992 | Thaka and Gentlemen decided to adopt the syntax of S. As a joké7 the name “R” was coined for the language.

1993 | Statistical Sciences merged with MathSoft and acquired the exclusive license to distribute S.

1994 | Initial release of R under |GPL| license appeared on the Internet.
1997 | R became an official part of the GNU project. CRAN went online. R Core Team was founded.

1998 | Green S Book “Programming with data: a guide to the S language” (Chambers| [1998]) was published, de-
scribing a more rigorous class system. Chambers received the ACM Award for his S language. Chambers and
Lang started the OmegaHat project.

2000 | R 1.0 was released. S-PLUS 6 was ported to Unix-based platforms.

2001 | Newsletter “R News” started to publish short and medium length articles. S-PLUS was sold to Insightful.

2007 | Revolution Analytics was founded offering commercial support via custom R distribution “Revolution R”.

2008 | R Journal was founded, superseding R News. TIBCO acquired Insightful Corporation.

2011 | R version 2.14 was released.

Table 2.2: History of R, S and S-PLUS.

2.1.3 C Language

C is a statically typed and compiled programming language that is regarded as the lingua franca of
system-level programming with a long history of development. Table gives an overview of the past
40 years of its development in which the language has become a standard for software development
and was refined through several ratification processes. The origin of C can be found within the history
of the UNIX operating system: “MULTiplexed Information and Computing Service (MULTICS),
which is considered the precursor of the UNIX operating systems, came about from a joint venture
between MIT, Bell Laboratories, and the General Electric Company (GEC), which was involved in
the computer-manufacturing business at that time. The development of MULTICS was born of the
desire to introduce a machine to support numerous timesharing users. At the time of this joint venture
in 1965, operating systems, although capable of multiprogramming (timesharing between jobs), were
batch systems that supported only a single user. The response time between a user submitting a job
and getting back the output was in the order of hours. The goal behind MULTICS was to create
an operating system that allowed multiuser timesharing that provided each user access to his own
terminal. Although Bell Labs and General Electric eventually abandoned the project, MULTICS
eventually ran in production settings in numerous places. UNIX development began with the porting

of a stripped-down version of MULTICS in an effort to develop an operating system to run in the
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PDP-7 minicomputer that would support a new filesystem. The new filesystem was the first version
of the UNIX filesystem. This operating system, developed by Ken Thompson, supported two users
and had a command interpreter and programs that allowed file manipulation for the new filesystem.
In 1970, UNIX was ported to the PDP-11 and updated to support more users. This was technically
the first edition of UNIX. In 1973, for the release of the fourth edition of UNIX, Ken Thompson and
Dennis Ritchie rewrote UNIX in C (a language then recently developed by Ritchie). This moved the
operating system away from pure assembly and opened the doors to the portability of the operating

system.” (Rodriguez and Fischer, 2006 Section 1.1)

Date Standard Details

1966 BCPL Richards designed BCPL at Cambridge University.

1969 B Thompson developed “B” at Bell Labs with contributions from Ritchie. Ritchie
started development of “C”. UNIX development started by Thompson, Ritchie and
others on the “little-used PDP-7 in a corner” at Bell Labs.

1971 UNIX V1 First edition of UNIX on PDP-11/20 written in assembly.

1973 C, UNIX V4 Ritchie designed the first version of the “C” language at Bell Labs. Fourth Edition
of UNIX was finished, rewritten in C.

1975 UNIX V6, BSD UNIX Sixth Edition (Version 6) left Bell Labs.

1978 K&R C Kernighan and Ritchie published the first edition of “The C Programming Lan-
guage”, often called the ‘white book’ or “K&R”.

1982 | ANSI WG, System III | ANSI formed a committee to standardize C named ANSI X3J11.

1983 System V AT&T announced the first supported release of UNIX.

1984 4.2BSD University of California at Berkeley released 4.2BSD.

1989 | ANSI C, C89, SVR4 | First ratification of C as ANSI X3.159-1989 “Programming Language: C”. UNIX
System V Release 4 ships, unifying System V, BSD and Xenix.

1990 ISO C, C90 ISO adopted the ANSI C standard as ISO/IEC 9899:1990. (Working Group WG14
Commitee).

1995 Normative Amendment 1 was published and added support for international char-
acter sets.

1999 C99 The second official ISO standard (ISO/IEC 9899-1999) added support for inline
functions, _Bool data type, long long integer qualifier and _Complex floating-
point qualifiers and variadic function-like macros.

2008 Embedded C A standard for embedded systems was published adding support for fixed-point
arithmetic and named address spaces.

2011 Cl11 (CIX) The third official ISO standard ISO/IEC 9899:2011 (1SO, [2011) added support for
generic type macros and multi-threading, published on 2011-12-08.

UNIX became widely popular:

Table 2.3: History of C.

“There are good reasons for this popularity. One is portability: the

operating system kernel and the applications programs are written in the programming language C,
and thus can be moved from one type of computer to another with much less effort than would be in
involved in recreating them in the assembly language of each machine. Essentially the same operating
system therefore runs on a variety of computers, and users needn’t learn a new system when new

hardware comes along. Perhaps more important, vendors that sell the UNIX system needn’t provide
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new software for each new machine; instead, their software can be compiled and run without change
on any hardware, which makes the system commercially attractive.” (Pike and Kernighan) 1984, p.1)
C specifies an elaborate type system in which a number of built-in data types is defined without giving
concrete specification about its implementation on the machine. In that the compiler defines the exact
mapping to machine data types for a particular target platform, the C language can be utilized on a
broad spectrum of hardware architectures. As a consequence, C compilers exist for a large number of
hardware platform families, such as for 32- and 64-bit server- and desktop systems and also for 8-, 16-
and 32-bit microcontroller boards, and mobile- and embedded platforms.

A number of modern general-purpose programming languages, such as C+4 and Objective-C, are
largely based on C; they adopt, in particular, the fundamental type system of C, including the syntactic
structure and semantics of expressions for fundamental data types. The integration of C is not a
coincidence; languages which are compatible with C can be linked with external C libraries, and thus
enable users to make use of the large pool of available C libraries that has been created over the past
decades and are still growing. This makes modern languages applicable for a wide range of applications
from the very beginning.

Software developers often choose C as the lowest common denominator among languages for a portable
and efficient reference implementation of algorithms and protocols. Also scripting language interpreters
are often implemented in C, such as in the case of the reference implementation of Lua (lerusalimschy
et al., [1996), Perl (Wall, |2000), Python (Van Rossum and Drake Jr, 1995)), R (Ihaka and Gentleman,
1996), Ruby (Matsumoto, 2002) and Tcl (Ousterhout, 1990). As a side effect such languages offer
a low-level extension interface accessible from C that can be used to link existing C libraries with

scripting languages.

2.1.4 Current Trends

We close this brief overview of programming languages with excerpts of two popularity indices of
programming languages. The web-site the Transparent Language Popularity Indexr (Language Pop-
ularity Index Project|, |2012)) publishes a ranking index on a monthly basis. The index is created by
an open-source tool, described transparently on the website; it aggregates the monthly activities of
several large online sources, such as Freecode (Freshmeat), Ohloh, Craigslist, Google Code, Powells,
Delicious and Yahoo Search. Table gives an excerpt of the normalized comparison of the top
20 most popular languages, and the top 10 languages classified as either general-purpose (including

system level) and script languages.

Another online index opened with the “April Headline: Java and C swap places at the top of the
TIOBE index” (TIOBE;, [2012)). We give the first six positions of the total rank briefly: C (17.555%),
Java (17.026%), C++ (8.895%), Objective-C (8.236%), C# (7.348%) and PHP (ranked as the first
scripting language) (5.288%); R is ranked 31st (0.380%). The TIOBE index “counts the hits of the
most popular search engines [..] from the top 9 websites.” (TIOBE, 2012, in “TTIOBE Programming



12 CHAPTER 2. BACKGROUND AND MOTIVATION

TOP 20 All Categories TOP 10 General-Purpose

Rank Language Share Rank Language Share
1 cC 17175 1 C 23.789
2 Java . 16.500 2 Java 22.854
3 Objective-C 9.682 3 Objective-C 13.410
4 Basic 8.636 4 Basic 11.962
5 O+  6.564 5 C++ 9.092
6  PHP © 5.353 6 C# 5.455
T C# ©3.938 7 Delphi 2.251
§  Python 3.643 8 D 1.681
9  Perl 3351 9 Pascal 1.495
10 JavaScript 1913 10 | Ada 1.194

11 Delphi 1625 TOP 10 Script
12 Ruby 1.528 Rank Language Share
13 R - 1.248 1 PHP 22.854
14 D - 1.214 2 Python 15.553
15 Pascal 1079 3 Perl 14.306
16 CL (0S/400) - 1.051 4 JavaScript 8.169
17 Ada - 0.862 5 Ruby 6.525
18 Go - 0.719 6 R 5.327
19 Logo 0671 7 | CL (0S/400) 4.486
20 | Fortran - 0.594 8 Lisp/Scheme 2.319
9 MATLAB 2.157
10 Lua 2.087

Table 2.4: The Transparent Language Popularity Index for April 2012.

Community Index Definition”)

2.2 Software Libraries

The complexity of large software projects is often countered by breaking down large tasks or problems
into smaller ones. For recuring tasks and solutions a generalized and reusable software library is often
developed in the open-source world. Countless libraries with a portable C[API] now exist that provide
a comprehensive solution framework for a specific problem domain. In the following we give a brief
overview of two popular C libraries that provide an abstraction layer to high-performance graphics

hardware, desktop windowing-systems and multimedia devices.

2.2.1 OpenGL

|OpenGL (Open Graphics Library)|offers a cross-platform programming interface to dedicated graphics

hardware for the implementation of 3D graphics applications including computer games, scientific
visualization software or sophisticated user-interfaces. A comprehensive guide for programming with
the OpenGL C is given in |OpenGL Architecture Review Board and D. Shreiner and et al (2005).
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The development began in 1992 by Silicon Graphics Inc., a company that focused on hard- and
software solutions for real-time graphics. Today almost all desktop systems support the OpenGL
interface to graphics accelerators, such as Microsoft Windows, Apple Mac OS X, and the X Window
System of Solaris, Linux and BSDs, while graphics card vendors, such as Nvidia and ATI, provide the
implementation in form of graphics card drivers for their hardware products. The latter often extend
the OpenGL interface with new extensions that make use of hardware improvements. In addition to

the core OpenGL API, a number of helper libraries exists, such as [GLU (OpenGL Utility library)|

for rendering of high-level graphics primitives, or GLEW (OpenGL Extension Wrangler library)| for

providing a portable interface to load specific versions of OpenGL and extensions.

Over the last two decades the library experienced several revisions, specialized branches and vendor-

specific extensions. For example, [OpenGL ES (Open Graphics Library for Embedded Systems)|is a
variant of designed for mobile devices such as game consoles, smart phones and tablets.

Altogether, OpenGL provides an efficient cross-platform interface to a high-performance graphics
processing pipeline model; it does not offer a portable interface for setting up an OpenGL context and
corresponding display output surface. These two initial steps are left to platform-specific that

need be provided by the respective windowing system.

2.2.1.1 From the Fixed-Function Graphics Pipeline to freely Programmable GPUs

Table [2.5] gives an overview of the development from the original OpenGL 1 API in 1992 to the current
OpenGL 4 API. After the initial release of OpenGL a large number of extensions were added to
accommodate the rapid progress in graphics hardware design (see |[Lengyel (2003)) for a comprehensive
overview). New C functions and symbolic constants were incorporated to the original OpenGL 1.0 API
as part of extensions that address new graphics effects and their parametrization (e.g. new blending
and texture-environment modes, improved lighting, shadow mapping, point sprites), optimizations of
the data flow within the graphics processing pipeline (e.g. vertex pointers and buffer objects) and
other issues mostly related to improvements in graphics hardware capabilities (e.g. compressed texture

data formats, vertex and fragment programs, stencil operations).

The most significant change came with OpenGL 2.0 and the introduction of the OpenGL Shading
Language which enables users to specify short programs that are executed per vertex (to freely define
transformations and projections) and per pixel (to implement custom graphics shading effects). See

Rost| (2004) for a detailed guide of the language.

The graphics hardware has been transformed from specialized hardware designs for particular graph-
ics effects to a freely programmable co-processor that works on streams of vector data types. Over
the years the OpenGL API has been tidied up to accommodate this development. The current ver-
sion comprises the OpenGL Shading Language and a core set of C interface functions for resource
managament (compiling and linkage of shader objects, and uploading/downloading of data to texture

samplers, vertex buffers and framebuffers). Large parts of the original 1.0 API and numerous exten-
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sions have been declared deprecated, such as immediate mode rendering commands (in favor of using

vertex buffers) and support for display lists (prerecording of sequences of API calls) were dropped.
Other APIs based on OpenGL, such as OpenGL ES and WebGL, adopted this mean programming
mode]ﬂ The development process of the OpenGL API emphasizes the importance for scripting lan-

guage bindings to address adaptability to the evolution of the low-level C programming interface.

Versions
API Shader Language | Year Details
IrisGL - 1982 Clark started one of the first Computer Graphics companies, named Silicon
E Graphics (later renamed SGI), which invented Irix OS and IrisGL (Integrated
Raster Imaging System Graphics Library).

1.0 - 1992 Release of the open-source version of IrisGL API, named OpenGL, which became
an industry standard. First version provided the basic fixed-function graphics
pipeline model.

1.1 - 1997 Vertex arrays and texture mapping support was added.

1.2 - 1998 Texture mapping improvements (3D and multi-level filtering/mipmapping) were
added. Separate specular color component was added for improved lighting model
as well as improvements for image processing (e.g. convolution matrices and
support for color space transformation).

1.3 - 2001 Extensions were incorporated to the standard API, such as cube textures, multi-
sampling of texture data, multi-texturing and bump mapping.

1.4 - 2002 Further extensions were incorporated, such as depth textures for shadow mapping.

1.5 - 2003 Vertex Buffer Objects were added to improve transfer of vertex data.

2.0 1.10 2004 The OpenGL Shading Language was added as a standard, including compilation
of vertex and fragment shader programs, as an alternative to the fixed-function
graphics pipeline model.

2.1 1.20 2006 Data transfer of pixel data was improved via incorporation of Pixel Buffer Objects.

3.0 1.30 2008 With this verison a large subset of the API, that addresses the fixed-function
graphics pipeline model, were declared as deprecated (but still supported). It
was also added support for floating-point texture formats and framebuffer objects.
The latter allows rendering output to offscreen and texture memory.

3.1 1.40 2009 The API incorporates a strict separation between the modern and the deprecated
API functions. It also included support for 1D texture buffer objects and uniform
variable buffer objects.

3.2 1.50 2009 Introduction of profiles for deprecated and modern API.

3.3 3.30 2010 Simultaneous release with 4.0.

4.0 4.00 i Two new stages of the graphics pipeline were opened for shader-based tesselation
of higher level geometry.

4.1 4.10 2010 Full compatibility with OpenGL ES 2.0 with support for precompiled shader
programs.

4.2 4.20 2011 API included support for 32-bit packed data types.

Table 2.5: Revisions of OpenGL.

'For a comparision of different sizes of the OpenGL API, see Table and compare rows with column “Lib/Dyn-
Port” named “GL” (for Version 1.2), “GLEW” (for OpenGL 1.2 + Extensions) and “GL3” (for OpenGL 3.0 excluding

deprecated API functions and constants).



2.3. MOTIVATION 15

2.2.2 Simple DirectMedia Layer

[SDL (Simple DirectMedia Layer)| is a portable and open-source C library providing an abstraction

layer to the windowing system, including multimedia services and hardware. The library development
was initiated in 1999 by Lantinga at “Loki Software”, a company that was specialized in porting video
games to the Linux desktop. [SDI] offers a coherent interface to core components such as video- and
audio output, timer management, multi-threaded programming and CD-ROM drives. (See |[Lantinga
and et al, 2012, and Pendleton, |2003 for an introduction to the C API.)

[SDI] also offers an abstraction to the windowing system for the creation of OpenGL graphics con-
texts. This makes [SDI] an attractive foundation layer for writing platform-portable [OpenGL}based

applications.

Based on SDL, there exist several extension libraries that provide further abstractions for more specific
tasks. For example SDL_image offers a common interface for loading and saving of pixel-based images
with support for a large list of graphics formats. SDL_mixer comprises music player routines for
various codecs including MP3, OggVorbis and MOD. SDL_ttf enables the loading and rendering of

fonts. Furthermore, SDL_net contributes networking facilities to the [SDI] framework.

The list of supported platforms is very large. Besides ports to all major desktop operating systems
and windowing systems, ports exists to game consoles and embedded platforms. Today a large number
of software packages exists that use SDL as a foundation layer for platform portability. Currently (as
of September 2012), the user database of the SDL website (Lantinga and et al, [2012) lists 702 video
games, 119 technical demonstrations, 182 applications and bindings to 27 programming languages.
Bindings for the R language are not mentioned; in this thesis we discuss the framework that provides

R bindings to several libraries of the SDL family, contributed with the rdyncall R package.

2.3 Motivation

In this section we make a brief digression to real-time graphics visualization in computational statistics,
with focus on R. We emphasize the importance of interoperability between programming languages
and software technologies, such as R and OpenGL, using the example of rgl, a contribution of a
3D real-time graphics visualization device system to R. We review the current states of rgl and
OpenGL and discuss several design issues of the software architecture which is the ground work for the

motivation of this thesis.

2.3.1 Graphics Plotting versus Real-time Graphics Rendering

One of R’s strength is its graphics capabilities for plotting data and displaying results. While the
graphics system of R offers a large range of output devices and formats, it is designed for high quality

output of static images; it is not suitable for real-time graphics. In general, if data plots have more
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than two dimensions, it is challenging to produce a meaningful image without losing important details.
3D visualization techniques can be very helpful here. The persp function of R enables the drawing
of a 3D surface of a height matrix but the underlying problem remains: since a 3D graph is projected
onto a 2D image, the viewpoint of the projection is of importance. Significant regions at the back of a
3D plot might be obscured by data at the front. By using different colours and transparencies one can
improve the ability to see through the front. However, real-time graphics visualization, coupled with
interactive navigation, is much more valuable here, because it enables users to change the viewpoint

and to get an instant update of the display; the user can interactively explore the data.

However, the R graphics system was designed for plotting images; it is too slow for real-time graphics

output that requires rapid graphics clear and drawing performance.

In the past, real-time computer graphics was a reserved domain for owners of dedicated and expensive
computer hardware available to professional engineers in product planning and construction, medical
visualization, and for film and TV broadcasting companies. A second branch that influenced the
development of computer graphics software techniques and hardware can be traced back to the early

years of home computers and its computer game industry.

When the first commercial video games for home computers were sold in the early 1980s, a black
market for ‘cracked’ versions of computer games evolved very rapidly. A ‘crack’ of a game was pro-
duced by skilled computer enthusiasts who reengineered the game code to remove the copy protection
and finally to create a freely copyable version. Small programs, named “intros”, were added to a
cracked version, and got loaded before the actual game. Intros were used to advertise the so called
‘cracker group’ responsible for the crack. Although intro programs had strong size limitations, pro-
grammers constantly improved their skills to develop visually rich real-time graphics effects while
playing computer-generated music. As more people became attracted to “intro” and “demo”ﬂ cod-
ing, a community, known as the “Demoscene” (Tasajrvi, 2004), diverted from its criminal origin.
Game developers and demo coders started to push computer hardware to its limit in order to produce

astonishing real-time graphics effects, but often with a limited scope of reuse.

At the end of the last century, hardware-accelerated 3D graphics chips had become very inexpensive
due to the tremendous success in 3D graphics card sales volume, and the appetite of video game
consumers for improved 3D graphics capabilities in terms of output resolution, quality and refresh

rate. In the last decade the graphics hardware has evolved from circuit boards with a fixed func-

tion to freely programmable highly parallel vector-based |GPU (Graphics Processing Unit)l Today

|GPGPU (General-Purpose Graphics Processing Unit)| computing is a field of applied computer sci-

ence in research domains, such as molecular modeling in chemistry (Stone et al., 2007)), Black-Scholes
Options Pricing in finance (Kolb and Pharr, 2006) or Markov chain Monte Carlo methods in statis-
tics (da Silval 2011). The OpenGL library is a foundation of this development, now superseeded

2Demos are similar to intros but without size limitations and may contain several parts similar to a music video clip

- but usually still employing real-time graphics effects.
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by successor libraries designed for GPGPU programming, such as [CUDA (Compute Unified Devicel

[Architecture)| and |[OpenCL (Open Computing Language)|

2.3.2 3D Visualization Device System for R

The rgl package contributes a 3D visualization device system for R using OpenGL for real-time

graphics rendering.

rgl offers a set of building block functions to define 3D shape geometry and apperance for authoring
a 3D scene. 3D visualizations are created by passing data as parameters for geometry and appearance

properties.

The design of the programming interface of rgl is close to that of the R graphics system and is
optimized for displaying large amount of data in 3D space. The viewer window projects the data in
3D with automatic centering of the focus. The user can use the pointing device to rotate, zoom or to

change the perspective distortion (up to an orthogonal projection).

Some examples with code are given in Figure 2.1]

data(volcano)
x<-1:nrow(volcano)
y<-1:ncol(volcano)
z<-volcano*0.3

r<-range (volcano)
scaled<-volcano-r[[1]]1/diff (r)
cols<-terrain.colors(256)
cmat<-cols[scaled]
surface3d(x,y,z,cmat)

n <- 1000

x1<-rnorm(n,2,3) ;yl<-rnorm(n,1,5) ;zi<-rnorm(n,-2,4)
x2<-rnorm(n,4,7) ;y2<-rnorm(n,2,7) ;z2<-rnorm(n, 2,7)
x3<-rnorm(n,3,5) ;y3<-rnorm(n, 3,5) ;z3<-rnorm(n,-2,3)
spheres3d(x1,y1,z1,color="red")
spheres3d(x2,y2,22,color="green")
spheres3d(x3,y3,2z3,color="blue")

library(hotplots)
m1<-1m(sr~poplb*pop75+pop75,data=LifeCycleSavings)
plot3d(ml)

Figure 2.1: Examples of visualizations of rgl.
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Figure 2.2: C4++ software architecture of R package rgl.

2.3.2.1 History

The first public version of rgl appeared (Adler et al.l |2003) in the context of a diploma thesis in Fall
2002. The first port was initially done for the Microsoft Windows operating system. The work was
awarded with the John S. Chambers Software Award 2003 at the |JSM (Joint Statistical Meetings)|

in San Francisco. At the [DSC (Distributed Statistical Computing)| 2003 a new version was presented

(Adler and Nenadic, 2003) that included a second port to the X11 display system. Hence, the group
of Unix-based platforms running Linux, BSDs and others were also supported. The package name
inadvertently clashed with another package (Murdochl 2001) that was based on a similar idea but
written in Delphi for Microsoft Windows. That version was renamed to djmrgl and the authors
joined efforts to merge e.g. par3d (a coherent 3D graphics parametrization interface analogous to
par for R graphics) and to improve the code base. In a later version, a third port to native Mac
OS X/Carbon was added. That step complemented ports to all three major windowing systems and
can be considered to be one of the most important parts of the developments. In the meantime, a
Mac OS X/Cocoa port has been added to support Mac OS X 64-bit platforms. CRAN Task Views, a
topic-driven user guide to R packages on the web, classified rgl as a core package for graphics; About
60 packages on CRAN depend on rgl functionality and another 54 packages suggest the use of rgl
(April 2012). rgl is mentioned as one of “the packages with the highest numbers of reverse strong
dependencies” (Hornik, 2012, pg. 63).

2.3.2.2 Software Architecture

The most challenging part of the implementation of rgl was the integration of the platform-specific
windowing system and user interface with ports to Microsoft Windows, Apple Mac OS X and Unix-
based X11 desktop systems. The C++ software architecture is given in Figure and is briefly

outlined below.

Each box in the figure represents a certain module or class. At the lower part we see several modules

that represent a foundation layer for platform-portable application development.
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The modules “lib” and “gui” provide for an abstraction to the underlying operating system and
windowing system, respectively; underneath the two modules the figure also depicts the port to the
Microsoft Windows platform comprising of two modules with the common prefix “win32”. Module
“pngpixmap” implements support for reading/writing image data in the png image format offered as

an abstract service “pixmap” for loading image textures and for saving screenshots.

rgl supports the simultaneous use of multiple open 3D “device” objects organized by the “device
manager” that holds the currently active device, which is the target for action commands executed

via the R programming interface depict as Module “api”.

Module “device” represents a single 3D device that owns a window object. Module “rglview” represents
the 3D rendering viewer component with interactive navigation. Module “scene” represents the heart
of rgl because it comprises the basic building blocks for the composition of 3D scenes. We depict the
C++ class hierarchy of the database in Figure Leaf classes represent final building blocks for data
visualization that are exposed to the R programming interface. E.g. rgl.points() or points3d() (for
the creation of a point cloud in 3D) leads to the creation of C++ instance objects of class PointSet
that are hooked into the database run-time model. The viewer component uses this database for
the rendering of 3D graphics. If new objects are inserted into the database the viewer reflects that

instantly on the screen.

BBoxDeco

| Light |

Viewpoint

Background PrimitiveSet | SphereSet | | SpriteSet | | Surface TextSet

FaceSet | | LineSet | | LineStripSet | | PointSet
| N
QuadSet | | TriangleSet | | ABCLineSet |

PlaneSet

Figure 2.3: C++ class hierarchy of rgl scene graph database.

2.3.2.3 Drawbacks of the Architecture for Extensions

From an R user’s perspective, a major drawback of this architecture for extending rgl with new
visualization methods is given by the use of a multi-layered software design comprising of code in

C++ and R. The implementation for a building block of rgl’s scene graph is spread across three
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different layers:

1. The interface function, written in R, receives shape node parameters for appearance properties
and the geometry data. The former are forwarded to a C interface function for handling material

data, the latter are passed to the next layer.

2. A C++ function, using an R-to-C calling convention, receives data for geometry (e.g. coordi-
nates, sphere radius, etc.. ). It creates an instance of a new shape node (implemented in the

next layer) that is then inserted into the database of the currently active device.

3. A shape node, written in C++, prepares geometry data for rendering (e.g. generation of nor-
mal and texture coordinates for lighting computation and texture mapping, respectively) and

implements the update method for graphics rendering.

In Section we outlined advantages of scripting as a technique for a rapid application development.
A hybrid implementation for the high-level parts in a system-level and scripting language significantly
slows down development of new visualization methods. But the choice in favor of a hybrid software
design in C/C++ and R for extensions is often inevitable if the necessary interfaces are not available
for R. Since R interfaces to important components of rgl were missing, such as OpenGL and an
portable abstraction to the windowing system, a foreign compiled language was needed here.
Furthermore, rgl is based on OpenGL Version 1.2, and, in the meantime, the graphics processing
pipeline model and [AP]| of OpenGL have significantly changed from a fixed-function model to a freely
programmable one for major stages of the pipeline. The new [AP]| offers considerable scope for ad-
vanced applications of real-time graphics visualization and high-performance computing. Although it
is possible to upgrade rgl to use newer versions of OpenGL, we would have to introduce additional R
interfaces and abstraction layers to take advantage of the new programming model of OpenGL. How-
ever, the C API of OpenGL already represents the interface for accessing graphics hardware resources
in a platform-portable manner. So it makes sense to develope an approach that connects this interface
directly to R.

If R bindings existed to all required low-level components of rgl, then the application could be written
entirely in R and the distribution of the package would become significantly easier as compilation is
eliminated.

If the creation of R bindings can be automated by using the official OpenGL C header file definitions,
new versions of OpenGL could be incorporated promptly. Aside from rgl other applications for using
OpenGL in the context of statistical computation with R are also becoming feasible, as R users do
not have to figure out a complex C/C++-based software architecture in advance to start exploring

new methods.
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2.3.3 Suggested Architecture for Language Extensions

We propose an alternative software architecture for those language extensions that require significant
support from external C libraries for their implementation. Instead of writing extension code in
C/C++ to gain access to the C API of libraries, we suggest providing for language bindings to

external C libraries in a first step and then to script the application or extension.

In that we shift the implementation from a foreign compiled language to the scripting language, we
provide for a rapid application development model as discussed in Section[2.1.1} In the case of rgl this
would reduce the number of implementation layers and the software design becomes more transparent
to scripting users. For example, R users can extend rgl with advanced visualization techniques by
using the core OpenGL API without the need to write and integrate C++ code across multiple layers

of implementation.

In general, if C libraries can be used within scripting languages as language extensions, the pool of
available language facilities instantly grows with high-quality components. Mature C libraries, such

as OpenGL and SDL, provide an elaborated interface that has been developed over many years.

One prequisite of this software architecture design is the existence of a software technology that
facilitates the bindings between the scripting language and C library. If possible, the bindings should
be established in a dynamic manner so that compilation is not required which significantly eases the

building and distribution of dependent application code.

In this thesis we propose a Dynamic Bindings Model for making arbitrary C of external C
libraries available as an extension to the scripting interpreter; our proposal emphasises the R language

as a first implementation as well as platform-portability across processor architectures.
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Chapter 3
Dynamic Bindings Model

In this chapter we discuss a middleware architecture for scripting languages and shared C libraries
that provides scripting access to C across platforms. In contrast to compiled language bindings,
we aim to overcome compilation through the use of dynamic methods for run-time interoperability

with precompiled shared library code, thus the name Dynamic Bindings model.

We begin with brief accounts of the background concepts, such as shared libraries, language bindings,

interoperability and and then proceed to a description of the proposed model.

3.1 C Libraries

A basic idea of this thesis is to regard a C library as a self-contained component, and to elaborate
techniques for C interface access from scripting languages. Therefore we give a brief overview of types

of compiled C libraries and their distribution as software packages.

3.1.1 Binary Formats

In general, we distinguish two binary format types of C libraries:

e Static libraries represent the most basic type of a compiled library. After compilation of library
sources the corresponding object files are collected in a single archive file. Static libraries are
used for development of subsequent software. In simplified terms, static libraries are linked with

user software by copying the archive’s object files into the target executable or library file.

e Shared libraries comprise a rather complex binary form that resembles that of an executable

image as shared libraries are loaded to a running process at load time or at run time:

— Load-time linking: Shared libraries can be used for development of subsequent software,

such as in the case of a static library. But instead of copying the library code into a target

23
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executable, application code is linked symbolically. On loading an application, its exe-
cutable file and referenced shared libraries are loaded into memory before the application’s

process starts.

— Run-time linking: Shared libraries can also be loaded dynamically, on request, as self-

contained binary components to a running process.

Shared libraries represent the most flexible binary format of a C library. After compilation as a shared
library, the library can be used as a static dependency in other applications (load-time linkage) or
also dynamically as a component. Dynamic run-time linkage is fundamental for plug-in architectures
where the system is configured via loading components from a (possibly large) repository. For exam-
ple, programming environments, such as R, use run-time linkage for loading extension packages that

comprise compiled C/Fortran code.

The Dynamic Linker, a component of the operating system, is responsible for loading and load-
time/run-time linking of shared libraries and executables. In order to reduce physical memory, it
uses the virtual memory management system to load the read-only regions of shared library files into
physical memory once and maps this memory to several user processes. Hence a significant amount

of physical memory is shared if several application processes use the same shared library.

Since we consider dynamic loading of shared C libraries across platforms, we discuss platform-specific
details in Section In Section 5.5 we present a C library with a portable API for dynamic run-time
loading of shared libraries including ports to major operating systems. Detailed information about

binary formats and loading/linking methods is given in [Levine, (2000).

3.1.2 Software Distribution

Libraries are distributed as software packages in three different forms, depending on the chosen binary

format, installation and deployment policy of the target platform:

e A source package comprises the source code, header files and miscellaneous files for building,

deployment, documentation preparation and installation.

e A run-time package comprises the prebuilt binary file for a particular operating system/processor

architecture combination.

e A development package comprises common platform-neutral files for development and compila-

tion, such as C/C++ header files and documentation.

Package management systems, such as used in open-source Linux and BSD systems, as well as those
provided by third-party system extensions, such as the MacPorts project (MacPorts Project, 2002])
for Mac OS X and the OpenCSW project (OpenCSW project), 2002) for Solaris, are very convenient

for distribution of source, run-time and development packages for libraries.
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Figure 3.1: Dynamic load-time linkage of shared libaries. The build process (top) and the run-time

environment (bottom).

If a shared library is used by a large number of applications, shared libraries and package managers
become very efficient to the overall system. On current platforms, there are usually very few libraries
that provide significant services to wvirtually all applications available. Due to the linkage model of
shared libraries, package systems can arrange operating systems as a tree of dependent binary packages
of applications and libraries. On the broad scale, the overall compilation time for building a compre-
hensive software repository is significantly reduced. Furthermore, software updates are available more
promptly. Finally, end-users experience a rapid installation procedure since binary packages contain
only the bare minimum of binary data. Dependencies to shared library packages are resolved at in-
stallation time and need to be installed only once. (For an overview of different installation methods
across platforms, see Table which uses the example of the SDL library.)

3.1.3 Binary Interface

Since libraries and dependent applications are compiled separately, possibly by different compilers on

the same platform, the compiler plays a significant role in the realization of the binary interface.

Figure [3.1] illustrates the build processes for a shared library and a dependent user application that
links with a shared library dynamically at load time. The shared library is linked symbolically to

the executable. At load time of the executable, the loader and the dynamic linker (both are usually
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combined as a single component of the operating system) are responsible for setting up the virtual
address space and mapping the executable including all dependent shared libraries into the virtual

address space of the process.

Since there are no other run-time services involved except the loader and dynamic linker, run-time
interoperability between application and library code needs to be facilitated in advance by compilers at
compile time; they have to conform to a platform-specific implementation standard for the C language
to make the run-time linkage and interoperability work. If for some reason two different compilers, one
for the library and the other for the application, did not share a common C compilation standard and
calling convention, then this would break compatibility, in the worst case, without notice at compile

time.

The conformance of components at low level is given by the [ABI published for a specific platform.
It contains machine-specific implementation details of C. Thus in effect the [AB] and a conforming

compiler implement the interoperability at compile time. (see Section for a detailed discussion on
the [ABT})

Shared C libraries can be regarded as a pure form of binary components within a system; they can
be loaded as plug-ins dynamically at run time via dynamic linkers to a running process. However, a
dynamic interface for interoperability with the components of their interface, such as functions and
data objects, is not provided by operating systems. If we can carry out dynamic and generic methods
that conform with the [ABI] we can provide for dynamic interoperability between scripting languages
and precompiled shared C libraries. Our considerations and a proposal for such a service is discussed
in detail in Chapter

3.2 Language Bindings

A Bindings extension for a particular scripting language gives scripting access to the C [AP]] of a
specific external library. The scripting interface comprises proxy objects that mimick the C API via
delegation of function calls and value preservation for symbolic constants. In this section we discuss

common techniques for developing of language bindings extensions.

3.2.1 Compiled Language Extensions

Bindings are often implemented as compiled extension modules, written or auto-generated, in C. The
source code comprises repetitive code sequences for wrapping C library function calls. In addition,
depending on the design of the C[API methods for mapping symbolic constants, data structures and
callbacks need to be taken into account. The details for passing control flow and for value conversion
are carried out by bridge or wrapper C code that connects the two C interfaces, that of the interpreter
and that of the library. The code strongly depends on the extension and embedding interface of the

scripting language. Muhammad and Ierusalimschy (2007) give an overview and compare C interfaces
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Scripting Languages

Figure 3.2: Illustration of scripting languages, C libraries and bindings on a single platform. In the

compiled model each path between a language and library represents a compiled extension module.

for extension and embedding scripting languages.

The workload for making a single C library available to the set of popular languages, or for making a
set of popular C libraries available to a new programming language, can be enormous. Figure|3.2|gives
a graphical illustration. Note that taking account of the platform axis here as part of software build-
and-release process for cross-platform languages multiplies the workload by the number of supported

platforms.

Compilation of language bindings has an annoying side-effect. Scripting languages often suggest their
own build-and-deployment tools for extension development, in particular when using C, for example
see extension and embedding guides for R (R Development Core Team, 2012c|), Perl (Jenness and
Cozens, 2003)), Tcl (Flynt, |2003), PHP (Golemon, |2006) or Python (van Rossum, 2012). Aside from
learning the build tools, object code needs to be linked with external libraries. If a cross-platform
bindings extension is required, the development task can be complicated and tedious due to platform-
specific differences for linking. See Section [£.1] for an illustration of linking user code with SDL across

platforms.

3.2.2 Handwritten Bindings

The development of language bindings requires detailed knowledge of both sides of the bridge; internals
of the scripting language, as well as the C API and interface usage policy of the library need to be
considered in order to achieve a comprehensive scripting interface to the C API. The development of
bindings becomes a cumbersome process, in particular, if the C API comprises hundreds of components.
In practice, work-arounds are common; for a given programming task, only the bare minimum of

functionality is connected with the scripting language in the form of a custom bindings package. But
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in the long run this approach runs contrary to the objective of using scripting languages for rapid
application development by gluing of ‘components’, such as shared C libraries with a well-defined
APL

3.2.3 Automation Tools

Automation tools can significantly reduce the workload for developing a language bindings extension.

Most notable is SWIG (Simplified Wrapper and Interface Generator), a software tool for automatic

generation of language bindings with support for a large number of programming languages. SWIG
(The SWIG Developers, 2010)) generates language-specific extension C code according to a language
neutral module description of the library. The format of the module description looks very similar to
C header files. We illustrate the workflow for creating a SWIG-based binding of the sqrt C function
to the Lua (lerusalimschy et al., [1996) programming language in Listing

LUA_LDFLAGS =$(shell pkg-config lua --libs)

hmodule sqrt LDFLAGS =${LUA_LDFLAGS}
double sqrt(double x); all: sqrt.so

require"sqrt" % wrap.c: %.1i

x = sqrt.sqrt(144) swig -lua $<

== pEsnlEs @ S JZ sqrt.so: sqrt_wrap.o

$(CC) -shared $(LDFLAGS) $~ $<

Listing 1: SWIG example to create a Lua binding to the sqrt function of the C standard math library.
Listing in top-left corner gives the SWIG module specification, listing in bottom-left corner gives Lua
user test code and the listing to the right gives a sample Makefile to trigger the SWIG code generator

and then the C compiler to produce a Lua shared library module.

SWIG accepts interface files with the file extension *.1i to be written manually, as stated in the manual:
“Although SWIG can parse many header files, it is more common to write a special ‘.i’ file defining
the interface to a package. [...] It is rarely necessary to access every single function in a large package.
Many C functions might have little or no use in a scripted environment.” (SWIG Developers, [2009,
Section 5.7.3) This argumentation appears to be pragmatic for the development of bindings for custom
application software. However, in the context of scripting of applications by gluing general-purpose
C library components, it becomes important that the complete C interface is made available to the

scripting language.

Further the manual states, that “SWIG can’t parse certain definitions that appear in header files.
Having a separate file allows you to eliminate or work around these problems.” (SWIG Developers,

2009, Section 5.7.3)

SWIG can be considered as a helpful development tool for creating compiled bindings but with limita-
tions; it still requires further manual assistance for writing the interface file, as well as for building and
linkage across platforms. In contrast, we aim to exchange the wrapper compilation layer with dynamic

methods for interoperability between scripting language and C libraries, that serves as a foundation
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layer for a cross-platform bindings framework to shared C libraries and their

3.3 Interoperability

In the field of computer science the term “Interoperability” is used to characterise the ability of
diverse systems and components to work together. The IEEE Glossary (Geraci et al., [1991)) defines
interoperability as ”the ability of two or more systems or components to exchange information and to

use the information that has been exchanged.”

In this thesis we consider interoperability within a single running process between the run-time en-
vironment of scripting languages and precompiled external libraries with a C API. In particular, we
are interested to develop methods for interoperability that work at low level in a dynamic and generic
manner, where the bindings are driven by type information at a meta level across native platforms.

We consider two low-level forms of interoperability that are briefly outlined next.

3.3.1 Code-level Interoperability

Code-level interoperability has to take account of function calls and the orderly passing of control-flow

from the interpreter’s environment to the C run-time environment of the library.

Libraries often play an implicitly passive role as a collection of functions to be called in a uni-directional
manner. But some libraries use “callbacks”, i.e. user-defined functions are passed to library code which

is called later from inside the library.

Therefore, code-level interoperability needs to be considered in both directions: from language to

library (calls or call-out) and from library to language (callbacks or call-in).

3.3.2 Data-level Interoperability

Data-level interoperability deals with the synchronization of views on data objects that are shared
by the scripting language and the C library. Data-level interoperability is intrinsically anchored with
code-level interoperability at low level. During a call to a foreign function arguments are converted
from a high-level form to a low-level representation. Conversely, return values received at low level
need to be converted to newly allocated high-level language objects. This process is also named

marshalling (from high to low level) and unmarshalling (from low to high level).

While parameter and return types of C functions are usually of scalar data type, which makes the
conversion process between the interpreter and C manageable, the handling of scalar pointer objects
represents a challenge for data-level interoperability, especially if the underlying pointee object is of
a composite data type, such as user-defined struct and union data types. Many libraries provide
an interface policy framework that specifies certain rules to follow (beyond calling API functions in a

certain order).
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A commonly used interface policy requires that data objects are allocated and initialized in user code
and are passed as call-by-pointer arguments to a library’s function; user code has to deal with the
management of composite C structure and union data type, including allocation and destruction of
memory objects and precise addressing of fields within the object. (See Section 4.5|for a comprehensive
example.) The native representation of complex C data objects needs to be guaranteed when a pointer
is passed as argument to a function of the library. Depending on the interface policy, the object also

needs to remain at the address in memory subsequently.

A dynamic interface requires an appropriate carrier within the scripting language for C composite data
objects with support for embedding C objects within scripting objects and referencing of C objects
via pointers. By preserving the native representation and address of composite C data objects, and
by providing a scripting interface for read and write access on field level, data-level interoperability is

also feasible in this context.

Fisher et al.| (2000)) give a detailed discussion on data-level interoperability implemented for C and

the Moby language and coin the term “Foreign Data Interface” for this approach. In Section we

discuss an [FDI (Foreign Data Interface)| for the R language.

3.4 Foreign Function Interfaces

A [Foreign Function Interface (FFI)|is a facility for programming languages to provide interoperability

with external libraries written in a foreign language. The term was first coined in the context of
Common LISP; users were given a set of functions to make function calls to foreign code of external
libraries without leaving the language. A large number of extensions for various dynamic programming

languages adopted this term. And even compiled languages and virtual machines, such as Java, use

this term, for low-level interfaces to native C code, such as the |JNI (Java Native Interface)l Despite

its name, often include extended functionality beyond calling foreign functions from external

libraries.

The online work-in-progress report “Design Issues of FFIs” (Urban, 2004) gives an overview of existing
and provides a detailed classification. In the reference manual of ECL, an implementation of
Common Lisp, ”Two kinds of FFI” are decribed (Garcia-Ripoll and Rosenberg), 2006, Sec. 3.2), namely
“Static FFIs” and “Dynamic FFIs”.

3.4.1 Static FFI

Essentially a static FFI is a language-extension interface to C; it provides functions to make calls to
C. However, the support for making calls to foreign functions of external C libraries is rather limited.

We discuss the limitation of static FFIs in the following section using the example of R.
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3.4.2 Limitations of the Static FFI in R

The FFI of R comprises several R functions to make calls to compiled C and Fortran code; each

interface function supports a different target language and calling convention:

Interface Description
.CcO) Foreign C function.
.Fortran() Foreign Fortran function.
.Call() C function with R calling convention passing each argument as an SEXP.

.External () C function with R calling convention passing the call object as a single SEXP.

.Call and .External are used by package developers to call precompiled C functions that are written
intentionally as an extension to R. C functions must be of a specific type in order to be compatible
with R so that C code can access R arguments and return results as R objects. In general, such C

code also accesses the low-level C of R to create new R value objects.

. was designed for the purpose of calling foreign C code from within the interpreter. It has the

following functional interface:
.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

The first argument name specifies the C function to be called; it is followed by the arguments to be

‘... . We notice that no additional parameter is reserved to

passed, denoted by the placeholder
specify the function type of the target C function; the C function type is derived from the R argument
types that are passed on each foreign function call. Consequently the C argument types of the target
C function need to be compatible with the R argument types and the conversion is driven by latter.

Table gives the mapping rules.

R Type C Type
integer int *

numeric double *
single float *
complex RComplex *
logical int *
character char *x*

raw unsigned char*
list SEXP *

others SEXP

Table 3.1: Static mapping of R to C argument types in R’s Static FFI .c.

Although the FFI works at a dynamic level without compilation, we classify the FFI as a static rather

than a dynamic call interface to C. The reason is illustrated by the following simple example.



32 CHAPTER 3. DYNAMIC BINDINGS MODEL

Example Suppose we wish to compute the square root of a positive number and plan to use the C
function sqrt from the C Standard math library that is pre-installed on most platforms. An excerpt

of the header file math.h that specifies the function prototype declaration is given here:

double sqgrt(double x);

The function receives a single scalar argument of C type double denoted with x . Its implementation

computes the square root of x and returns the result of C type double .

The .c function is suitable to “make calls to compiled code that has been loaded into R”(quote from
the manual page of .c as of R Version 2.14):

# Load shared C library (Example on x86-32/Linuzx)
> 1libm <- dyn.load("/usr/lib/libm.so")

> addr <- libm$sqrt$address

> .C(addr, 144) # UNDEFINED BEHAVIOUR
[C111

[1] 144

The expected result of 12 was not returned; it is also quite possible that the call will lead to an abnormal
termination of the R session; also no warning or error is returned. Closer examination reveals: .c
does not support passing of scalar objects. Instead, a pointer to that value is passed. Moreover it

does not support C return values. The C function must return values via pointer arguments.

Thus, an intermediate C wrapper code is needed that serves as an adapter between R and sqrt to
convert arguments and results as given in Listing The left panel gives the C wrapper code. On
the right panel of the listing an R front-end function is given. The R front-end insures that the R
argument is coerced to a numeric value (i.e. to be passed as a C doublex pointer to C) and the length

of the argument vector is greater or equal to 1 before the call to the C wrapper code.

#include <math.h> libwrap_sqrt <- dyn.load("libwrap_sqrt.dylib")
void wrap_sqrt(double* ptr) mysqrt <- function(x)
{ {
double x, result; x <- as.double(x)
x = ptr[0]; length(x) <- min(length(x), 1)
result = sqrt(x); .C(libwrapsqrt$wrap_sqrt$address, x ) [[1]]
ptr[0] = result; T
}

Listing 2: Hybrid C/R call wrapper for sqrt .

The code has to be compiled and the resulting object file has to be linked with external libraries to a

shared library.

$ gcc -shared wrap_sqrt.c -lm -o libwrap_sqrt.dylib

Alternatively the wrapper can be prepared as part of an R package. In both cases the external wrapper

library has to be linked with the C math library explicitly.
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In most cases C library functions are not compatible with the given low-level R-to-C' call interface of

.C . We give a brief summary of the limitations of .c:

e Arguments can not be passed by scalar value, but are always passed by pointer, with support

for intx* , float* , double* , char*x* and unsigned charx .
e No return values are supported. Return values are passed by argument pointers.

e Non-standard C calling conventions are not supported.

In general, the [FFT] of R is so restrictive that no general-purpose C library code can be called directly.
Hence, C wrapper code needs to be developed, so that it can be plugged in between R and the target
C function of the library. Moreover we are forced to introduce hybrid wrappers consisting of R and C

code:

e R wrapper “front-end” code converts input arguments and coerces a static type before calling

the C wrapper via .C.

e C wrapper “adapter” code converts argument values and return values and calls the foreign C

function of an external library.

Alternatively the .External and .call FFI interfaces can be used, which gives C access to R internals,

for single C wrapper implementations.

The FFI of R is a static variant that defines a strict R-specific calling convention with strong limita-
tions. Support for handling of callbacks from C to R and foreign C data objects is also not addressed
by this FFIL.

We can summarize by saying that the [FFI} offered by the base R package, is not an interface for

foreign libraries; it is designed as an interface for writing extensions in C and Fortran code.

3.4.3 Dynamic FFI

Dynamic overcome the limitations of static in that a larger number of function types
are supported without the need of compiled wrapper code. In contrast to the static FFI, the call
interface function includes a parameter that gives the target C function type. Input arguments from
the interpreter are converted according to the sequence of parameter types of the C function type;
this ensures that the subsequent call to compiled code is type-safe. Notice that, whereas type-safety
is supposed to be achieved by the C wrapper for static FFIs, it is largely unnecessary when using

dynamic FFIs.
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Language Variant Extension Implementation
Forth Factor built-in custom
Haskell GHC built-in libffi

JNA 1libffi
JavaVM
BridJ dyncall
Java
gcj built-in libffi
OpenJDK built-in 1libffi
WebKit JSCocoa libffi-iphone
. Mozilla js-ctypes libffi
JavaScript
NodelJS node-ffi 1ibffi
jsh built-in dyncall
alien 1libffi
PUC-Rio
Lua luadyncall dyncall
LuaJIT ffi LuaJIT/DynASM
ML NJ ML-NLFFIGEN i custom
OCaml OCaml ocamlffi custom
Pawn Pawn built-in dyncall
Perl 5 FFI ffcall
Perl NQP built-in dyncall
Rakudo Perl 6 | zavolaj dyncall
ctypes 1libffi
Python CPython
PyObjC 1ibffi
rdyncall dyncall
R R Y Y
Rffi 1libffi
Rebol Rebol3 dyncall dyncall
ruby-ffi libffi
Typelib dyncall
Ruby Ruby MRI
fiddle libffi
RubyCocoa libffi
Guile built-in libffi
Scheme Racket built-in libffi
PLT Scheme built-in libffi
Common Lisp | many cffi CFFI-SYS, 1ibffi

Table 3.2: Overview of Dynamic FFIs.

Dynamic FFIs exist for a large number of languages, whether as built-in services or as extension

libraries. Table [3.2] gives an overview of various dynamic FFIs. Many FFIs exist for Common Lisp,

possibly due to the historical roots in that language. We introduce a dynamic FFI for the R language,

named rdyncall, in Chapter

3.4.4 Generic Dynamic FFI

Whereas static FFIs can be portably implemented in C (see Section for a discussion of .c’s

implementation), dynamic FFIs require an abstraction for function calls at machine level. The latter
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requires code to be written in assembly language, or incorporation of a machine-code generator. Given
the complexity of developing a portable solution for the implementation of a dynamic FFI, it is not
surprising that most dynamic FFIs do not include such an implementation themselves, but make use
of an external library that offers this abstraction. [Urban| (2004) introduces a separate category, named
Language Independent Generic Dynamic FFI. In the paper numerous FFI extensions for languages
are given, but for their implementation only two C libraries with selective ports to specific processor
architectures are given, namely ffcall (Haible, 2004) and 1ibffi (Green and et al, 2011), as well
as assembly language in general and “Minotaur”, a Forth-based glue to C. Since 2004 (when that
document was last updated), we can further extend this list with C/Invoke (Weisser, 2007) and
dyncall.

Most dynamic FFIs regard the low-level implementation of dynamic FFIs as a black box and often
details to be found only in assembly language sources. Given the fact that, for years now, the generic
dynamic FFI layer plays the most significant role within any dynamic FFI and beyond, the shortage of

comprehensive information on the design and implementation of dynamic interoperability techniques

across processor architectures seems to be paradox. For example, the|(GCC (GNU Compiler Collection)|

uses libffi for handling calls between interpreted and natively compiled Java. The importance of
these low-level packages is also given in Table by column ‘Implementation’; in summary (frequency
is given parentheses) from our list of dynamic FFIs (32) either a custom implementation (4) or one of
three Generic Dynamic FFI C libraries 1ibf£i(18) , dyncall(9) and ffcall(l) is used. We discuss
the design and implementation of dyncall in Chapter

3.5 Model Description

In this section we describe a model of a middleware architecture for scripting languages and shared
C libraries to provide seamless scripting access to the C API across platforms without the use of

compilation.

First we give an overview of the model and an outline of the architecture followed by a discussion on
its characteristics for development of language bindings by comparision with the compilation-based

model.

3.5.1 Overview

In general, C libraries are offered as binary components in the form of a shared library. They can
be installed via package management systems on a broad range of platforms within seconds. Shared
libraries represent the purest form of a binary component; they can be loaded dynamically as plug-ins
and offer a static binary interface. The dynamic linker of the operating system provides an interface
for loading shared libraries at run time, as well as for resolving symbolic names to loaded memory

addresses of global function and data objects.
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Further, a dynamic FFI provides the methods for run-time interoperability with foreign code and
data, such as making calls to compiled and loaded C functions, but requires type information as a
parameter. Thus, a wrapper layer is still required to inject type information. Scripting languages
are ideal for automation tasks, including the creation of wrappers. The wrapper comprises proxies,
one for each component of a C API, such as scripting functions for C functions to assure type-safe

invocation of the foreign function call.

However, the essential information for using a C API, such as a functions symbolic name and type,
is not contained in the binary shared library files but in C header files. A parser could be utilized to
extract the required information from C header files. But this would demand that development files,
including C API and system header files, are preinstalled on a target run-time platform. Furthermore,
the inclusion of a C language parser would significantly increase the total memory footprint for the

run-time middleware component.

As an alternative, we suggest to utilize an off-line preprocessing phase in which C header files are
translated to a simple text-based format. Text formats can be parsed via standard text scanner
routines, in the scripting language for text-based input to a dynamic FFI, as well as in C for processing
text for operating a generic dynamic FFI. So in addition to the shared libary, the format encodes the
corresponding type information, symbolic names and constant values of a particular C API as a

cross-platform type library for C APIs.

3.5.2 Architecture

We now consider the implementation of the model for a specific scripting language by developing a
single language extension, in C. The extension functions as a hub for the creation of dynamic bindings
to arbitrary C APIs; the linkage between the scripting language and a pre-installed shared C library

is created dynamically at run time.

The extension provides a function for loading of dynamic bindings. The name of the bindings is passed
by a cross-platform name of the C API. On calling the function, the creation of a Dynamic Binding
to the C API is triggered. The subsequent automation is driven by a platform-neutral description
file that provides information about the components of the C API, including hints of the name for
loading the platform-specific shared C library on different platforms. Description files are stored in a

repository. Support for new C libraries is realised by extension of the repository.

An extendable repository of portable bindings information to C is provided with the extension.

At first, the shared library is searched, based on hints of names. If the shared library is found, it is
opened via the dynamic linker. Then, for each component of the C API the following proxy language

objects are created:

e C API Functions are wrapped by a dynamically created scripting function which consists of a call
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object to the dynamic FFI with two parameters, namely code address and function type. Both
are derived by the description file (for the symbolic name and type) and subsequent resolving

the symbolic name to the loaded address.

e C API Symbolic constants are mapped as corresponding named constant value objects that

preserve the constant value. Both, name and value, are given by the description file.

e C API Types are mapped as helper objects in order to support function pointer callbacks,
data pointers to objects of composite data types, memory allocation of data objects and their
manipulation. Type helper objects are initialized by type information provided by the description
file.

We now consider the architecture of the model in order to reduce complexity of its implementation

and to emphasize its portability across multiple languages and hardware platforms.

The Dynamic Bindings model comprises three layers of abstraction:

1. For each library, we encode the C API in a language- and platform-portable format, named
DynPort. The format plays a central role as it is used as cross-platform text-based interface to
the Dynamic FFI. We also give the implementation of a parser tool, named DynPort tool, that
translates C header files to DynPort files. In Section [3.7] and Section [3.8| we discuss the DynPort
format and the DynPort tool, respectively.

2. For each scripting language, a language extension needs to be developed. First, we need a
Dynamic FFI as a foundation. Based on this FFI, we implement the automation process that
parses DynPort files and creates corresponding proxy objects. We discuss this layer in Chapter

[ using the example of an implementation for the R programming language, named rdyncall.

3. For each platform, we need an implementation of the dynamic FFI at machine level or the use a
Generic Dynamic FFI with a portable C interface. For the latter, we give a detailed discussion in
Chapter 5| using the example of an implementation, named dyncall, comprising three C libraries
that provide a portable C abstraction layer for dynamic linkers, function calls and callback
handling, respectively. We give an overview of ABIs on five processor-architecture families,
followed by a detailed discussion using the example of several platform-port implementations in

C and assembly language of dyncall.

3.5.3 Comparison of Bindings Models

The Dynamic Bindings model is illustrated in Figure [3.3] which compares the different technical
development workflows and run-time environment configurations of the “compiled” (left) and the

“dynamic” (right) approaches.
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Figure 3.3: Comparison of the compiled (left) and dynamic bindings (right). See Section for
details.

In each case, two C libraries “A” and “B” are made available as bindings to a language run-time
interpreter and environment, depicted in the lower part of the figure. The upper part gives the

development tasks for creating language bindings.

The left-hand panel of Figure [3.3] gives the workflow and run-time environment for “compiled” bind-
ings. For each C library a language extension is implemented in a compiled language (C/C++).
The sources are depicted as document icons and labeled “Wrapper A” and “Wrapper B”. The term
“Wrapper” is commonly used in the context of language bindings. Wrappers encapsulate existing
functionality and wrap around a foreign interface. The wrapper code does include (via #include of
the C preprocessor) the C API header files of the library as well as the header files of low-level exten-
sion development of the scripting language. After the modules are compiled, packaged and installed
as standard language extension packages, Bindings “A” and “B” can be loaded on demand by users
via language-specific standard extension loading mechanisms (e.g. loading compiled R Bindings to

“A” via package “ExtA”: library(ExtA) ).

The right-hand panel gives the workflow and run-time environment of our proposed “dynamic” bind-
ings approach. Instead of a compilation phase, the C API header files are translated by the DynPort
tool into a simplified language-neutral and platform-portable DynPort format that provides the in-
formation for automation of dynamic interfaces. After the DynPort files are created, and the shared
libraries have been installed to the system (e.g via package managers), then as above, Bindings “A”

and “B” can be loaded on demand as well but via a specific loader interface (e.g. loading dynamic R
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Architecture Year  Bits char short int long voidx
Unisys 1100 1962 36 9 18 36 36 72
PDP 11 1970 16 8 16 16 32 16
VAX/11 1977 32 8 16 32 32 32
Motorola 68000 | 1979 16/32 8 8/16 16/32 32 32
Harris H800 1982 48 8 24 24 48 24
Cray-2 1985 64 8 64(32) 64(32) 64 64(24)
Intel 80386 1985 32 8 8/16 16/32 32 16/32/48

Table 3.3: Data type bit-sizes of C types across architectures of the past.

bindings to “A” via DynPort “ExtA” and rdyncall: dynport(ExtA) ).

We now compare the two bindings methods with regard to their implementation, also across multiple
languages and platforms. In the “compiled” model sources for wrapper modules have to be written for
each language-and-library combination. While the wrapper modules also need to be compiled for each
language-library-platform combination, the DynPort file is generated once per library. The Dynamic
Bindings extension has to be implemented once per language. Doing this for several languages makes
one DynPort file applicable across those languages. The implementation of the model is based on a
Dynamic FFI which needs to be implemented once per language; it is based on a Generic Dynamic
FFI, such as dyncall, that has to be implemented once per [AB] platform but can then be used for
a wider spectrum. (See Table for an overview of ABI/platform ports of the dyncall library and
Table gives an overview of dynamic FFIs and their implementation base.)

A key point of our model is the use of a language-neutral format that is used for shared library
loading, resolving of addresses and interoperability. For the implementation we require the existence

of a dynamic linker and a powerful dynamic FFI that can be driven by given information from DynPort
files.

3.6 C Type System

Types classifies the objects and expressions of a programming language. In simplified terms, the data
type of a C object gives information about the encoding and representation of data in memory, while
the function type of a C function gives information about the data type of the return value and the
parameters. This information is essential for dynamic in order to make foreign function calls,
or to handle callbacks and foreign data objects. Therefore, we give an overview of the components of

the C type system, for which we develop a text-based encoding scheme for C [APIs in Section [3.7

3.6.1 Overview

C was designed as a platform-independent language with emphasis on low-level programming and

plaform-portability software development. Although both objectives seem to be rather contrary, C
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was successfully used for the development of cross-platform solutions as well as bit-level processing.

A key decision within the C standard was to omit implementation details, such as the representation
of data types and the details of the implementation of function calls in machine code, to a large
degree. The decision for the assignment between abstract C types and concrete machine-level data
types is ascribed to vendors of hardware platforms, compilers and operating-systems. Table gives
an overview of the different data type representations (in bit sizes) of abstract integer-based C data
types for a range of outdated hardware architectures. From a programmer’s point of view, it may
seem as a dilemma; the size of a data type, such as int, needs to be obtained from the builtin C
function sizeof(X) at compile time, or, researched from ABI and compiler specifications. Fortunately,
the mapping of data types has become more uniform across current platforms. For example, the size
of an int is usually 32 bits on major architectures (but there are exceptions; see Section m for a

detailed discussion on 64-bit systems and different mapping schemes).

G D G G
(7 & o o T (@) Camd

Figure 3.4: Overview of the C type system.

We now give a brief overview of the components of the C type system. Figure [3.4] gives a structured
illustration of the C type system using a hierarchy of categories. At the highest level, C types can be
divided into function and object types.

3.6.2 Object types

Object types describe the encoding format and storage properties of C data objects i.e. local and
global variables but also arguments and results of a function call. From early on, the C standard
reserved only a small number of keywords. A subset of keywords were used to refer to built-in abstract

basic C data types.

A major milestone of the C standard specification was finished in 1989, often refered to as ANSI C 89
or C89. It defines “only a few basic data types in C:



3.6. C TYPE SYSTEM 41

char a single byte, capable of holding one character in the local character set.
int an integer, typically reflecting the natural size of integers on the host machine.
float single-precision floating point.

double  double-precision floating point.” (Kernighan and Ritchie, (1988, Ch. 2,Pg. 36)

This classification is rather abstract and limited; it does not cover the full range of available machine-
level data types, such as integral data types of different bit sizes and numeric value formats. C reserves
a few more keywords in order to refine size and wvalue encoding characteristics of basic data types.
Besides the standard integer data type int there exist shorter and longer versions that are refered
via qualifier keywords short , long and long long . While the C standard does not define the bit sizes
for the five different int -based data types char, short, int, long and long long, a strict relation

between their implementation size is implied:
sizeof (short) < sizeof(int) < sizeof(long) < sizeof(long long)

Longer and shorter versions may refer to different sizes of its machine-level implementation type but
this is not mandatory; it depends on the binary interface standards that are defined by the designers of
a platform, and that are to be implemented by compiler vendors. Once a standard platform exists, one
can assume that the mapping between C data types and machine-level data types with a specific size
is fixed; otherwise, interoperability between applications and libraries is broken. char and int data
types can be further divided into signed (the default) and unsigned value types. Unsigned data types
are specified via the type qualifier unsigned . Signed integers may have different encoding scheme (as
defined in the standard) but the two’s complement representation is usually used as an implementation

at hardware level across architectures.

Objects of the char data type are “large enough to store any member of the basic execution character
set” (ISO} 2011}, Section 6.2.5) i.e. char represents the smallest integer with a size of a single byte and,
since hardware platforms converged at byte-level over the decades, we can assume it is of 8-bit size.
No particular value encoding format is implied for a char ; it can be implemented as signed char or

unsigned char ; this is decided by the ABI and/or compiler.

Usually, float and double are represented as standard floating-point data types defined by the IEEE
754 standard for single-precision and double-precision floating-point numbers; we also can assume
they have a size of 32 and 64 bits, respectively. C defines a third standard floating-point data type,
named long double ; this data type is mainly used in applications that need very large precision. The

implementation of this floating-point type is very different on several platforms.

Enumeration types represent an unsigned integer-based data type. In general, enum types are used
in a declaration comprising a set of named constant unsigned integer values, as an alternative to
traditional constant value definitions via C preprocessor macro definitions. In practice, the enum
types are implemented as an unsigned int data types. Bit-field types appear only as members of

structure types. They use a basic integer type as a carrier and specify a subset of reserved bits from
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that type. When bit field types of the same carrier type occur in sequence within a structure, the

memory can be shared among bit-fields.

The void type is a unit type that refers to a non-data type. Usually it is used to denote the absence

of a return value for functions or an incomplete pointer type ( voidx ).

While the first two ratification processes, namely ANSI C 89 and ISO C 90, were equivalent technically,
ISO C 99 expanded the set of standard basic types by a boolean type _Bool, a long long data type
for very large integers and a _Complex floating-point qualifier for complex values. The most recent
revision of the C standard, namely C11 (ISO/IEC 9899:2011), mentions the data types __int128 and
double double as possible extensions for supporting larger integer- and floating-point data types in

future.

Compilers often provide extensions to the C standard and its type system; this includes instrinsic
functions and data types that make use of advanced features of the processor architecture. Other data
types and extensions are often found in specifications of processor-architecture In Table 3.4] we

give an overview of standard basic data types and platform-specific extensions.

In general, cross-platform C APIs tend to use a portable subset of possible C data types. So if the
support is limited to a subset of C data types, there is still a good chance that most general-purpose

C libraries can be adopted.

3.6.3 Composite data types

struct data types are used to define complex data types or records comprising of members that are
sequencially arranged. Each member field consists of an object type and a field name; the latter needs
to be unique within this structure. The exact layout of this information depends on the size and the

alignment properties of its members.

A union data type is a type unification of a sequence of field types. Fields of a union data object
share the same block of memory. Fields access the shared memory in terms of the corresponding field
type. The total size and alignment of a union is as large as the maximum size and alignment of its

members, respectively.

3.6.4 Pointer types

Pointers are a very powerful component of the C language; as lightweight objects, comprising a
reference on another object, they can be exchanged rapidly between functions and data structures, so
that the referenced object need not to be duplicated for data exchange. Pointer types are implemented
as unsigned integer data types that encode a memory address. Additional type information about a

pointer’s base type is available but not required for handling the raw data type of a pointer.

But, in the context of a dynamic FFI or a C compiler, the base type of a pointer becomes very
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C Type ‘ Standard or platform-specific details
incomplete types
void ‘ C89
Boolean
_Bool ‘ C99
character and standard integer types
char C89
short C89
int C89
long C89
enum C89
long long C99
Pointer
real floating types
float C89
double C89
long double C89
complex types
float _Complex C99
double _Complex C99
long double _Complex | C99

extended integer types (implementation-specific)

signed __int128

unsigned __int128

x86-64, ppc64 (GCC 4.7)
x86-64, ppc64 (GCC 4.7)

_Decimal32 32bit BID (IEEE-754R)
_Decimal64 64bit BID (IEEE-754R)
_Decimal32 128bit BID (IEEE-754R)

other implementation-specific types
__f16 arm (16-bit half-precision floating-point)
__float128 x86 (128-bit extended floating-point)
__m64 x86 (64-bit packed vectors, MMX and 3DNow!)
__ml28 x86 (128-bit packed vectors, SSE and SSE-2)
__m256 x86 (256-bit packed vectors, AVX)

Table 3.4: Overview of fundamental C types and some extensions.

43
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important for type-safe interoperability with external C functions and C objects. “C is unusual in
that it allows pointers to point to anything. Pointers are sharp tools, and like any such tool, used well

they can be delightfully productive, but used badly they can do great damage.” (Pike, [1989)

Pointer types to a composite data type are often used in C API functions for the exchange of infor-
mation records. As such, in a function as a parameter, virtually any memory address can be passed
as pointers, also those which point to something else; this can damage other run-time data structures

and also often leads to a crash of the running process.

Type information about a pointers base type can be used to reject dangerous calls; such as, if the base

types of the argument object and the parameter type are not matching.

Even if base-type information is incomplete i.e. only the name of a structure is known, but nothing
about its members. While incomplete information is useless for memory allocation and data field

access, it can contributes to type-safety of foreign function calls.

3.6.5 Function types

Function types describe callable objects; the type gives the sequence of parameter types, the type of

the return value and the calling convention.

Any object type except bit fields and void are valid as parameter types. While array types are
implicitly passed by reference via pointers, other composite types, such as struct and union, are
passed by value. The number of arguments can be large; ISO C gives recommendations for compiler
designs to support at least up to 127 arguments, but in practice, C API functions usually use a much

lower number of parameters.

Any object type except bit fields and array types are valid as return types. If no value should be

returned the unit type void is used.

A function type implies a Calling Convention which specifies the details of the Calling Sequence for
passing arguments and receiving results during a function call at machine level. C supports two
kinds of calling conventions, one for functions with positional arguments and another for functions
with variadic number of arguments. The arguments of variadic functions are divided into two parts.
One part consists of a fixed number of positional arguments and the other part is variable in length,

designated by the ellipsis symbol ’ ... .

Furthermore, there exist platform-specific calling conventions that compilers support via non-standard
extensions to C. Support for additional operating-system specific calling conventions is required, for
example, on the Microsoft Windows 32-bit platform. The stdcall calling conventions is used for

system libraries, such as OpenGL.

Aside from the indicator ..., C offers no further keywords or syntax rules for the specification of
calling conventions. It is rather common that compiler-specific syntax extensions to C are used; The

gcc compiler expands the C language family with several extensions (see |Stallman) [2003, Ch. 6). The
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statement __attribute__( ( ) ) is used to annotate C objects, such as struct, union, enum as well
as function declarations and definitions. A large number of Function Attributes are offered where
a subset is reserved to specify the calling convention (see |Stallman| 2003, Section 6.30). Function
attributes can also be specified in a short form by prefixing __ followed by the calling convention
name, e.g. __stdcall to declare the stdcall calling convention. This syntax is compatible with that
of Microsoft Visual C++ Compilers. The following table gives the short form for attribute and the

corresponding calling convention.

Function Attribute | Calling Convention

__cdecl Standard C

__stdcall Windows System DLLs

__thiscall C++ Member Function Calls
__fastcall Passing via registers (non-standardized)

A few examples for declaring functions with different calling conventions are given below:

int f1(int x, int y) __fastcall;

int £2(int x, int y) __stdcall;

int £3(int x, int y) __cdecl;

typedef int (* __fastcall) fastcall_funptr_t)(int x, int y);

We close this brief overview on the abstract side of the C language which serves as the basis for
a description of the encoding in the following section. Implementation details on C, such as data
representation of basic data types and the implementation of calling convention across processor-

architecture families are discussed in Section [£.3]

3.7 Text-based Encoding Format for C APIs

In this section we describe a compact text-based encoding for C API components, named DynPort.
It is designed for language- and platform-independent creation of language bindings for C Libraries
as outlined in [3.5.2, Furthermore, part of the syntax was incorporated in dynamic FFIs as text-based

interfaces for the specification of type information.

3.7.1 Introduction

C API header files contain necessary information for run-time interoperability with their corresponding
shared library. At compile-time, header files are parsed for compilation of user code so that later linking
will function. However, they are not designed to be used as C API information resources at run-time,

which is needed for dynamic creation of language bindings at run-time.

Object-oriented component middleware frameworks, such as Microsoft’sm (Box,|1998)) and Mozilla’s
(XPCOM (Cross-Platform Component Object Model)| (McFarlanel 2003), connect scripting languages
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with C/C++ components. While a native component is implemented in C/C++, its interface is explic-
itly specified during development in [IDL (Interface Definition Language), named MIDL and XPIDL
for [COM] and [KPCOM] respectively. An [[DI]specification is compiled to a “binary” type library file,
with the suffix .t1b for and .xpt for “A type library (.t1b) is a binary file that stores

information about a COM or DCOM object’s properties and methods in a form that is accessible to

other applications at runtime. Using a type library, an application or browser can determine which
interfaces an object supports, and invoke an object’s interface methods. This can occur even if the
object and client applications were written in different programming languages.” (Microsoft, [2012) (See

also [Boxl, (1998, p. 40, and |Szyperski et al., 2002, pp. 330, 345-346 for further information on type
libraries on )

XPCOM was designed as an open alternative to COM and is available across platforms. These
middleware frameworks are similar in their design, but they are not compatible. “Ideally, XPCOM
typelibs would be binary-compatible with those generated by Microsoft’s MIDL compiler, but the MS
typelib format is proprietary.” (Furman and Bandhauer, |2012)

In contrast to object-oriented C++ middleware frameworks, little was published about middleware
frameworks for C libraries. ctypeslib (Kloss, 2008) is a framework for automatic creation of Python
Bindings for C libraries. A parser translates C header files to Python code which, when executed, cre-
ates Python bindings for C libraries. However, the translated information is very specific to Python’s

ctypes [FF] but not usable for other scripting languages.

3.7.2 Objectives

A major goal of DynPort is to offer a language-independent and platform-portable encoding format
for C APIs. We propose a compact format with a simple structure, so that parser and scanner
functions can be implemented with little effort in a variety of programming languages. Since scripting
languages usually offer standard processing tools for text rather than for binary data, we use a text-
based encoding format. For the text encoding, a small range of characters is used from the character
set US-ASCII 7-bit. Encoded C API information can be embedded in character string objects of

different languages, and thus type information can be transferred between language contexts.

C APIs are encoded by means of the abstract C type system for preserving the abstract platform-
portable meaning. The mapping from high-level C data types to its low-level machine-specific data

representation is implemented by a dynamic FFIL.

In that the type information is transferable across languages and platforms, due to a text-based and
abstract encoding, DynPort constitutes a platform-portable and language-neutral type library for C

libraries; similar to type libraries of COM and XPCOM for C++, but with two differences.

Firstly, while COM is specific to a native platform, DynPort type information is used for cross-platform

bindings to C libraries. Secondly, COM is an intrusive framework in that the components need to be
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written from the ground up i.e. a compiled wrapper is needed for making a C library a component. We
consider C libraries as binary components that can be wrapped dynamically and without redefinition
of their interface; our goal is to use existing C API header information as sources of information. This
information is used for connecting shared libraries with scripting languages in a non-intrusive way

with respect to the C library, across platforms.

3.7.2.1 Type signature

The term “type signature” is often used in the context of programming languages as the description
for the type of a function object. Sometimes the term signature of a function is used instead and
object-oriented languages, such as Java, use the term method signature. While type information is
fundamental to statically typed programming languages, type signatures are also found in weak or

dynamically typed languages for the external interface to native code.

Type signatures can be represented in different forms. In some languages type signatures are specified
in the notation of the language for the definition of the function type, such as in Haskell, Erlang
and C. In other languages, such as Python, Java and Objective-C, type signatures are encoded in a
serialized text-based form. The latter was adopted for DynPort; we use text-based signature formats

for function types, as well as for data type definitions.

3.7.2.2 Text-based Interface

Virtually every programming language supports the character string data type, which is used in func-
tions as a parameter type for passing complex variable information. For example, the C output
function printf uses a character string parameter for the specification of the output and formatting
rules, which was widely adopted by other languages, such as Java, MATLAB, Python or Perl. Fur-
thermore, the term “Regular Expressions” refers to a powerful language for pattern-based searching,
matching and substitution in text processing. As a universal language, it is embedded across numerous

scripting languages, C libraries, text editors and command-line tools.

Type signatures, encoded in character strings, are already used in FFIs for driving foreign function
calls. The FFI module of Perl (Paul Moore, 2008)) uses a text-based interface to denote the C function

types as a serialized type signature string.

As a precursor to DynPort, we developed experimental FFI packages for various scripting languages,
such as R, Lua, Python, Ruby and Shell. For each language we also utilized a common text-based
interface and serialized type signature strings. In DynPort the core idea remains preserved; type

signature strings are utilized to drive foreign function calls.
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3.7.3 Encoding Format

We return now to a description of the DynPort encoding format. The notation is described first, then

we describe the encoding for different components of the C API.

3.7.3.1 Notation of Syntax Diagrams

The syntax grammar of languages is often defined in[BNF (Backus-Naur Form)|notation. The notation

comprises terminal elements, non-terminal elements and production rules for the specification of a
syntax grammar. Terminal elements represent input tokens e.g. single characters, keywords or the
literal text of a numeric value (for example, a sequence of digits). Non-terminal elements are defined by
a single production rule that gives the sequence of terminal and non-terminal elements. In addition, the
notation includes operators to denote repetition and optional elements. A grammar can be specified
as a set of production rules and a top-level non-terminal element that represents the final element of
a language, such as the “command-line” for an interpreted language or the “compilation unit” for a

compiled language.

Syntax diagrams, also named Railroad diagrams, are a visual alternative to the formal [BNF| notation.
Production rules are displayed as railroad network with a fixed start and end point at the left- and right-
hand side, respectively. Terminal elements are represented by circles, labeled with single characters
or a named token in angle brackets (e.g. ‘<alpha>’ for any character of the alphabet). Non-terminal
elements are represented as rectangles. Optionally, annotations are given following the names, in italic.
Optional paths and repetitions are illustrated by outgoing branches (on track, or to the right-hand

side of an element), and jointed incoming junctions (to the left-hand-side of an element), respectively.

Example We illustrate the use and interpretation of railroad diagrams by an example of the syntax

for an electronic mail address formatﬂ such as me@example.com .

email

name local @ name host

‘ name domain

name

—_—

The syntax is given by a sequence of terminal and non-terminal elements. In the diagram the sequence

is illustrated by traversing Railroad Diagram “email”. The reader starts at the left-hand side and

"We give an example of a simplified syntax here. It is by no means the official format as specified in RFC 5322.



3.7. TEXT-BASED ENCODING FORMAT FOR C APIS 49

follows the railroad track in right-hand direction. By traversing possible paths, including repetitive

or optional routes, the production is finished by reaching the right-hand side.

At first, Element “name” is reached, which is a non-terminal, depicted by a surrounding rectangle, so
that the syntax is given by a different diagram, labeled ‘name’. As depicted in Diagram “name”, the
syntax of a name comprises a non-empty sequence of terminal elements denoted with ‘<alnum>’. In
general, terminal elements comprise simple lexical text patterns. We describe them in words rather
than as a diagrams. We define ‘<alnum>’ as a single alphanumeric character in the range of ASCII
characters ‘a’..‘z’, ‘A’..‘Z’ and ‘0’ .. ‘9’. Notice the ‘<alnum>’ is connected with a looping route that
branches on the right-hand side and joins on the left-hand side. This denotes a non-empty sequence

of consecutive alphanumeric characters, which also completes the syntax of a “name”.

We proceed back now to Diagram “name” and follow the route to the right of element “name” local.
The next element that follows is the non-terminal ‘@’ followed by a “name” for the host part of an
email address, as indicated by the note in italic. After that, if the next character in the input sequence
is a ‘.’ we follow that route and reach another “name” for the domain part of an email address. As
depicted in the diagram, this process is repeated until we finally reach the end of the rule indicated by

> or ‘<alnum>’ follows. If we want to ensure

an empty input sequence or a different character than °.
that the input is empty after the rule finishes, we would insert a terminal, for example ‘<end>’ (to
indicate end of input), right before the right-hand side in the diagram. If the next input character
of an sequence can not be used for moving along in the railroad network then the input sequence is

considered to be invalid.

3.7.3.2 Basic types

The built-in basic data types of the C type system represent the fundamental building blocks. They
are essential for the definition of function types and derived data types, such as pointers, arrays,
struct and union types. We denote a basic C data types with a reserved character of the alpha-
bet. Where possible, the character is derived from the initial character of the type name (excluding
unsigned / signed prefixes), e.g. ‘i’ for int and ‘s’ for short . An exception to thisis long , which is
encoded with ‘ j ’ whereas 1long long is encoded with ‘ 1’. unsigned integer data types are encoded as
upper case characters of corresponding character for signed data types, such as’ 1’ for unsigned int
and ‘s’ for unsigned short . The boolean C data type _Bool (bool in C++) is encoded as ‘B’. The
void type is denoted by the ‘ v’ character. Untyped pointers (pointers to incomplete data types) are
expressed via ‘p’. Later we give a notation for typed pointers. ‘z’ denotes the standard C string

type const char * .
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basic

J

~ B bool 7

c char

it

j long

1 long long

s short

C unsigned char
I unsigned int

J unsigned long

S unsigned short
£ float

d double

v void

p pointer

Z const char*

T

3.7.3.3 User-defined structure and union types

User-defined record types are specified in terms of a sequence of field types and names. We give two

examples for the definition of a user-defined struct and union and a corresponding type signature.

typedef struct typedef union

{ {
int x, y; int integer;
unsigned int w,h; double real;
const char * title; const char * string;

} Window; } Val;

"Window{iiIIZ}x y w h title ;" "Val|idZ}integer real string ;"

The syntax for the specification of the signature is given below:
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struct
o ®
L-J -
unLon
| ® G

== O

name

<alpha>

Signatures give the symbolic name (as defined by the last name of a typedef declaration), followed by
a character to indicate the kind of type i.e. ‘ {’ for struct and ‘|’ for union types. This is followed
by a sequence of data type fields and terminated by a ¢} ’ character. Field data types are encoded
with an object type signature; an extended version of the signature format for basic data types (see
below for a description). This is followed by a corresponding sequence of field names. Field names
are separated by a single whitespace character (ASCII code 32). The signature is terminated by a

; ' character. A name begins with a single character of the alphabet or an underscore, followed by a

(possibly empty) sequence of alphanumeric and underscore characters.

3.7.3.4 Object types

Object types are a combination of basic C data types, user-defined data types and also typed pointers.
We encode user-defined data types by using an alias name that references a user-defined struct or
union type by name. We enclose the name of a type name in angle brackets. The encoding of a type

name is given next:

alias

OO

Aside from pointers to an incomplete types, denoted with ‘p’, we also include support for typed
pointers. We use an optional prefix sequence of ‘ =’ followed by it’s base type, to denote typed

pointers.
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pointer

In combination, we give the syntax for object types, which integrates the two diagrams the above with

the one for basic C data types:

object

J

~ B bool e

* typed pointer

c char

i nt

j long

1 long long

JAEHH

s short
C unsigned char

I unsigned int

f

J unsigned long

@<
IS
3
2
Q
3
)
ISH
3
3
Q
-
3
T

|

S unsigned short

£ float

d double

v void

JHHE

p pointer

Z const char*

< type aliag—‘ name

|

e
¢

3.7.3.5 Function types

Function types are specified by a sequence of object signatures of the parameter types, followed by a

¢

) ’ character and an object signature for the return type.
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funtype

) object return

object parameter

In the following, and also (for historical reason) in the R package rdyncall, we use the synonym Call

Signature which refers to this encoding format.

3.7.3.6 Functions

We extend the above signature with a syntax for declaring public C functions, which includes the

symbolic name of the function:

function

( ) object return o

object parameter

Below we give examples of signatures of C API functions:

int SDL_Init (Uint32 flags); SDL_Init(I)i;
SDL_Surface* SDL_SetVideoMode(int width, int height, int bpp, Uint32 flags); SDL_VideoMode(iiiI)*<SDL_Surface>;
void dpsifn (double, int, int, int, double*, int*, int*); dpsifn(diii*d*ixi)v;

3.7.3.7 Symbolic Constants

A set of symbolic names for constant values, such as status return codes, enumeration constants or bit
masks, are often defined as part of a C API. In C there are two alternative forms for their definition.
Either the C enum type is used for declaring constant values or, in a more traditional way, constants

are defined onto preprocessor level using the #define directive for macro definitions.

#define SDL_INIT_VIDEO 000000020 SDL_INIT_VIDEO=0x00000020
#define SDL_INIT_ AUDIO 0x00000010 SDL_INIT_AUDIO=0x00000010
#define SDL_INIT_JOYSTICK 0xz00000200 SDL_INIT_JOYSTICK=0x00000200
enum XML_Error {
XML_ERROR_NONE, XML_ERROR_NONE=0
XML_ERROR_NO_MEMORY, XML_ERROR_NO_MEMORY=1
XML_ERROR_NO_ELEMENTS = 4, XML_ERROR_NO_ELEMENTS=4
i

Symbolic constants are encoded using the following syntax:
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constant

s (s ()

‘NL>’ denotes a “new line”; it is encoded in ASCII using the new line character code (ASCII code
10). Optionally, for support of non-Unix platforms, it is also prefixed (Windows) or suffixed (Mac OS)
by carriage return character code (ASCII code 13).

In principle, we encode a value as a line of text. For practical reason in rdyncall, values need to be

encoded using a syntax that is compatible with R and C.

3.7.3.8 Function Types with Calling Convention

So far the encoding for function types does not provide information about the calling convention.
As discussed in Section we have to distinguish between at least two calling conventions for C;
functions with a fixed number of arguments (the default), and those ending with a ellipsis “...”
which denotes a variable number of arguments. Furthermore, specific to the x86-32 platform, there
are more calling conventions, that need to be considered here. For practical reason the stdcall is
quite important in order to make use of functions of system libraries on Microsoft Windows 32-bit
operating systems; for example, this is needed for using OpenGL functions on Windows. Other calling
conventions, such as fastcall, are relatively seldom used in libraries.

We extended the encoding format for function types with an optional prefix notation, denoted with
a ¢ _’ character and followed by a single alphabet character that encodes the calling convention.
Otherwise, if the prefix is missing, the default C calling convention for functions with a fixed number

of arguments is implied.

cccall

) object return

object parameter

3.7.3.9 File Formats

DynPort type signatures are used in the R package rdyncall as an encoding format for text-based

interface for various [EFTl services.

DynPort files specify cross-platform R bindings to C libraries, and they are also used in the package.
The first experimental version of DynPort files, implemented in the rdyncall package, uses a repre-

sentation as R script files. Listing [3| gives an example of a DynPort Version 1 file as it is used in the
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rdyncall package for cross-platform bindings to the SDL library. The R scripts comprise R expressions
for the creation of wrappers, including service calls to rdyncall’s [FF]] services for creating function
call wrappers and helper objects for foreign data objects. The DynPort type signature format is used
for passing arguments to these service functions in terms of character strings. Notice that rdyncall’s
FFI service functions work on batches of signatures. Hence, several signatures are processed in a loop.
Thus several signatures can be packed in one large text block (e.g. for binding all shared C library

functions at once).

# Shared Functions

dynbind( c("sdl","sd1l-1.2","sd1-1.2.s0.0"), "
SDL_Init(I)i;

SDL._SetVideoMode (iiiI) *<SDL_Surface>;

SDL_PollEvent (¥*<SDL_Event>)i;

"

# Aggregate Structure Informations

parseStructInfos ("

SDL_Rect{ssSS}x y w h ;

SDL_MouseButtonEvent{CCCCSS}type which button state x y ;
SDL_KeyboardEvent{CCC<SDL_keysym>}type which state keysym ;
"

# Symbolic Constants

SDL_INIT_AUDIO=0x00000010

SDL_INIT_CDROM=0x00000100

SDL_INIT_VIDEQO=0x00000020

Listing 3: Sample DynPort 1.0 file used by rdyncall

For a second implementatiorﬂ of the Dynamic Bindings model for the Lua programming language,
we designed a language-neutral DynPort file format. The file format is divided into sections. Each
section addresses a different component type of C APIs, such as public functions, symbolic constants

and data type definitions. Each element of a category is defined in a separate text line.

version2

O-(aw)—

secname

( .

N /

Depending on the section name (secname the above), a different syntax is used for each line until the

section terminates with a “.’:

2 Available at http://dyncall.org/svn/dyncall/trunk/bindings/lua/luadyncall
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Section Description

lib Short library names separated by |’.
fun Function signatures.

const Symbolic contant signatures.

struct struct type signatures.

union | union type signatures.

An example of a DynPort Version 2 file, as it is used in the Lua module luadyncall, is depicted in
Listing [4]

:1ib

SDL|SDL-1.2|SDL-1.2.s50.0

:fun

SDL_Init(I)i;

SDL_SetVideoMode (iiiI)*<SDL_Surface>;

SDL_PollEvent (*<SDL_Event>)i;

:struct

SDL_Rect{ssSS}x y w h ;

SDL_MouseButtonEvent{CCCCSS}type which button state x y ;
SDL_KeyboardEvent{CCC<SDL_keysym>}type which state keysym ;

:const

SDL_INIT_AUDIO=0x00000010
SDL_INIT_CDROM=0x00000100
SDL_INIT_VIDEO=0x00000020

Listing 4: Sample DynPort 2.0 file used by luadyncall

3.8 Parser Framework

In this section we describe a flexible framework for parsing C [API] header files to encode type infor-
mation, as well as symbolic constant names and values in the DynPort format.
3.8.1 Overview

The framework is largely based on a modified version of the compiler, named GCC-XML (King,

2004) (the command-line tool is named gccxml), which parses C/C++ sources and outputs a tree

of definitions and declarations, encoded in the standard document markup format XML (Extensible]

[Markup Language)l Numerous data management and processing tools are provided for Among

them, [XSLT (Extensible Stylesheet Language Transformations)| provides a programming language
for transformation of XML documents to user-defined output formats (XML, XHTML or raw text).
(See |Clark], 2001 for specifications.) An XSLT processor, such as xsltproc (Veillard et al. 2009),

parses an input document as node tree, and outputs a transformed version, according to an
XSLT stylesheet file. Aside from gcexml and [XSLT|/xsltproc, further tools are incorporated in the
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framework: a standard C preprocessor (e.g. gcc), the Unix program grep (Kernighan and Pikel (1983,
Section 4.1) for filtering, a custom C/C++ preprocessor based on Boost Wave (Kaiser, 2011); the
latter is superseeded by using gcc and awk (Kernighan and Pike, |1983, Section. 4.4).

Main Source
XSL Stylesheet
Y
C Preprocessor -
- Installed
(Include files) Functions
Variables
/_
gcexml »  xsltproc
>
Types
C Macro Define Processor _Constants
All-in-one (boost::wave based) L
Header w
AN
dynport file

Figure 3.5: Design of the DynPort Tool.

Figure illustrates the design of the DynPort tool. The tool comprises a chain of programs. As
main input a simple C file (depicted as “Main Source”) is created manually that references that
C API header, which should be transformed to the DynPort format via an #include statement.
Corresponding C APT header files and system headers for C development should have been installed

in advance on the build system.

In a first stage a temporary file (depict as “All-in-one”) is created, comprising content of all referenced
header files, after which it is passed as input to gccxml. As a result a node tree structure of the C

sources is outputted, encoded in XML.

In a next step the XML file is processed by the XSLT processor xsltproc. The processor also reads
an XSLT stylesheet file, which specifies C' to DynPort transformation rules. Then the transformation
is performed on the input XML document. As a result elements of the C API are outputted in the
DynPort format, as is defined by the stylesheet file.

Since C API headers put reference to all kinds of external headers, the input to gccxml is rather a mix



o8 CHAPTER 3. DYNAMIC BINDINGS MODEL

of C and System APIs. Thus we use a “Filter” to exclude elements of external header files. As depict
in Figure the output of xsltproc is split into separate passes; one for each category type. Each
pass produces a separate fragment of text data encoded in the DynPort format. We use separated C

API elements for a fine-grained filter.

Symbolic constants of a C API, which are defined as preprocessor macro definitions (in contrast to
enum ), need to be handled by a custom preprocessor. In the following section we describe details of
implementation for the gccxml/xslt transformation from C to DynPort, the filter and the custom

preprocessor.

3.8.2 Implementation

We illustrate the translation of C to custom file formats using [XSLT| and gccxml/xsltproc by an
example. Listing shows a translation of a sample C code (left) to the DynPort 2.0 file format (right).

C file ‘example.c’: DynPort 2.0 file ‘example.dynport’:

/* Data structures: */ :fun

typedef struct Rect { newWindow (I)*<Window>
int x, y; setWindowRect (*<Window>*<Rect>)v
unsigned short width, height; :

} Rect; —7  :struct

typedef struct Window Window; Rect{iiSS}x y width height ;

/* Functions: */ Window{};

Window* newWindow (unsigned int flags);

void setWindowRect (Window* w, Rect* r);

Listing 5: DynPort Tool implementation example: C to DynPort.
The translation is performed in two stages:

1. gcexml parses the C source example.c and outputs the XML document example.xml (see Listing@.

$ gccxml example.c -fxml=example.xml

2. xsltproc transforms example.xml to DynPort example.dynport using transformation rules from dynport.xsl.

$ xsltproc dynport.xsl example.xml >example.dynport

Before we describe the XSLT language, we give a brief introduction to [XML} a detailed description is
given in Bray et al.| (1997)).

3.8.2.1 XML and gccxml XML output

XMI] is a text-based markup language for hierarchically structured document types. In XML, a
document is logically structured as a tree of nodes with a single root. XML nodes have a type, given
as a tag name, a number of attributes (pairs of name/value) and nested content, such as child nodes

or text content blocks. Diverse kinds of document types can be encoded in XML. Document types
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can be defined in schema documents, such as encoded in a [DTD (Document Type Definition)| or

(XSD (XML Schema)| For a given document type, the corresponding schema defines the set of types,

mandatory or optional attributes, and the rules for hierarchical nesting structure of node types in
a tree. Nodes are specified by opening and closing tags, beginning with ‘<’ and ‘</’, respectively,
followed by the tag name and a ‘>’ character. Text and child nodes can be declared between the tags,
e.g. <Function> and </Function>. Opening tags of a node can have attributes after their tag name in
the form (name)‘="(value) that are assigned to that node. There exist a short notation for leaf nodes

where an opening tag is terminated by ‘/>’, such as <Argument type="_10"/> .

<?zml version="1.0"2?>
<GCC_XML>

<Namespace id="_1" name="::" members="_3 _4 _6 _5 _8 _7 "/>

<Namespace id="_2" name="std" context="_1" members=""/>

<Function id="_3" name="setWindowRect" returns="_9" context="_1" extern="1">
<Argument type="_10"/>
<Argument type="_11"/>

</Function>

<Function id="_4" name="newWindow" returns="_10" context="_1" extern="1">
<Argument type="_12"/>

</Function>

<Struct id="_5" name="Window" context="_1" incomplete="1"/>

<Typedef id="_6" name="Window" type="_5" context="_1"/>

<Struct id="_7" name="Rect" context="_1" members="_13 _14 _15 _16 _17 _18 " bases=""/>

<Typedef id="_8" name="Rect" type="_7" context="_1"/>

<FundamentalType id="_9" name="void"/>

<PointerType id="_10" type="_6"/>

<PointerType id="_11" type="_8"/>

<FundamentalType id="_12" name="unsigned int"/>

<Field id="_13" name="x" type="_19" context="_7"/>

<Field id="_14" name="y" type="_19" context="_7"/>

<Field id="_15" name="width" type="_20" context="_7"/>

<Field id="_16" name="height" type="_20" context="_7"/>

<Constructor id="_17" name="Rect" artificial="1" throw="" context="_7">
<Argument name="_ctor_arg" type="_21"/>

</Constructor>

<Constructor id="_18" name="Rect" artificial="1" throw="" context="_7"/>

<FundamentalType id="_19" name="int"/>
<FundamentalType id="_20" name="short unsigned int"/>
<ReferenceType id="_21" type="_7c"/>
<CvQualifiedType id="_7c" type="_7" const="1"/>
<File id="f0" name="test2.c"/>

</GCC_XML>

Listing 6: DynPort Tool implementation example: XML output of GCC-XML.

Listing [6] depicts the XML output file of gccxml after parsing the C source file example.c. The docu-
ment begins with a conforming XML header, followed by a root XML node <GcC_XML> . Various entities
of the C source example.c are nested as child of from <gcc_xML> . Since we consider transformations
of this document, it is necessary to become familiar with its structure (compare with example.c in
Listing . It is worth noting that the hierarchical structure of the <gcc_xML> tree is rather flat. For
example, C struct Rect , encoded as <Struct>, and its members, encoded as <Field>, are inserted
on the same nesting level of the XML node tree. All XML nodes are labeled using the id attribute.
As an exception, argument types of functions, encoded as <Argument> , are nested as children of the
<Function> XML node. Various relationships, including the link between composite types and their

members, are realized by symbolic references using the id of the target, which is assigned for the
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source’s attribute, such as returns and type .

Some of the nodes, depicted in Listing |§|, are not considered in our example, such as <Namespace> ,

<Constructor> and <File>; they can be ignored in the following discussion.

3.8.2.2 Transformation of XML to Text via XSLT and XPath

We now discuss the implementation of XML transformations via XSLT using the example of stylesheet

file dynport.xsl.

XSLT is written as a standard XML document. In contrast to our example outputting text, XSLT
is usually used for output of “XML” documents. As a consequence, the XSLT stylesheet comprises
two XML schemes or dialects i.e. tags of XSLT and of output format, in one file; so that ambiguous
naming conflicts arise. Therefore tag names are usually prefixed with xs1: to distinguish them
from tags of the XML output format. But in our case we use text output, and thus we use a default

XML namespace for XSLT and omit tag preﬁxe&ﬂ which increases readability of given XSLT listings.

<?zml version="1.0" encoding="IS0-8859-1"2>
<stylesheet version="1.0" xmlns="http://www.w3.org/1999/XSL/Transform">
<output method="text"/>

<template match="/">
<!-- template for the root tree —-—>
</template>

<template match="//Function">
<!-- template for all Function child nodes of rToot —-->
</template>

<template match="//Struct">
<!-- template for all Struct child nodes of root ——>

</template>

</stylesheet>

Listing 7: Outline of XSLT stylesheet files.

The basic structure of an XSL style sheet is illustrated in Listing [7]] The file comprises a standard
XML header followed by the document’s root node <stylesheet>. Then the output mode is specified

to as ‘text’ (otherwise defaults to XML), followed by several <template> tags.

In XSLT transformations are defined by a set of template rules, specified by the <template> tag. First

of all the XSLT processor (xsltproc) parses the input XML document as a node tree representation,

3 XML namespaces provide a means to solve ambiguity in XML; they also serve to identify the docu-
ment type of an XML file. Namespaces represent XML dialects, such as XHTML or [KSLT] which are speci-
fied by a namespace [URI (Uniform Resource Identifier)] For example, the official namespace for is
http://wuw.w3.org/1999/XSL/Transform . Namespace prefixes are defined as pseudo-attributes of the root node using
the syntax xmlns: (prefiz) = (URI) to declare a user-defined prefix with a link to the document type’s namespace

Subsequent child tags that refer to that namespace need to be prefixed. A default namespace for tags without prefix,

such as used in our example, is specified via the pseudo-attribute xmlns= (URI).
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as well as the XSLT stylesheet; the latter gives the templates. Then the actual transformation process

begins by searching a template to proceed with.

A template comprises a sequence of operations, such as printing text content to the output via <text>
tags. Templates are instantiated for a matching subset of the input document, given by a string

value of the template’s attribute match . The pattern matching process of XSLT is expressed in a

string-based language, named [XPath (XML Path language)l XPath expressions can select nodes of a

specific tag name, or those that are nested in a specific hierarchical configuration. For example, XPath
expression "//Function" selects all <Function> nodes that are child nodes of the root node. Table
gives an overview of expressions that are used throughout this example. (See Clark et al., 1999 for

specifications of XPath.)

XPath Expression Description

"/ ; root node

"//Function" E <Function> child nodes of root

"//Function/Argument" E <Argument> child nodes of Function , which are child nodes of root
"Argument" E <Argument> child nodes of the current node

"@name" E value of the attribute name of the current node

"/ /" E all child nodes to the root node

"//x[@id=_2]" all child nodes with an attribute id that equals to * 2’
"//*[@id=$typel" all child nodes with an attribute id that equals to variable ‘type’
"//Typedef | //CvQualifiedType" E <Typedef> inclusive or <CvQualifiedType> child nodes of root

Table 3.5: Examples of XPath expressions.

As an initial transformation step, the processor searches a template that matches the root node, and
which then can be instantiated. So, we define a main template by using the XPath expression "/ :

<template match="/">
<text>:fun </text>
<apply-templates select="//Function"/>
<text>. </text>
<text>:struct </text>
<apply-templates select="//Struct" mode="def"/>
<text>. </text>
<text>. </text>
</template>

By this template, we define the general outline of output for the DynPort format, including the order

of sections. For our example, we plan the following: First we output function signatures, and then

[43 7

struct signatures. For each section a header is outputted, such as “ :fun” and “ :struct 7, terminated

with a new line character (ASCII 10), encoded in XML encoding with the escape code * &#10; .

After output of a header via <text>...</text> , further transformations are activated via:
<apply-templates select="..."/>

This tag prompts the processor to start a new template matching process; a subset of the input tree

is selected via an XPath expression, given by the attribute value of select. Then, templates are
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searched that matches on the new input, which is then instantiated.

For the first section fun: , all C function declarations are selected from the gccxml input document,
given by the XPath expression "//Function" . For the second section struct: , all C structure defi-
nitions are selected, given by the XPath expression "//Struct". Notice the total transformation is

implemented as an interaction between <template> and <apply-templates> .

This style of programming resembles the traditional style of function definitions and function calls.
However, as a result of a single <apply-templates> , several templates can be instantiated, depending

on the selected input and the matching templates.

In the following we give listings of XSLT template code as a the left-hand panel. At the right-hand

side we give text fragments of <GCC_XML> input, DynPort output, and notes, depending on the context.

For the transformation of C function declarations from XML to DynPort function signatures, we define
a template that matches <Function> child nodes of root, using the XPath expression "//Function" , in

order to output the function signatures of C function declarations.

<template match="//Function"> Input nodes (depict with children):
<value-of select="@name"/> <Function id="_3" name="setWindowRect" returns="_9">
<text>(</text> <Argument type="_10"/>
<apply-templates select="Argument"/> <Argument type="_11"/>
<text>)</text> </Function>

<variable name="X" select="@returns"/>
<apply-templates select="//*[@id=$X]"/>
<text>; </text>

</template>

<Function id="_4" name="newWindow" returns="_10">
<Argument type="_12"/>
</Function>

Final output (with all template code from below):

newWindow (I)*<Window>;
setWindowRect (*<Window>*<Rect>)v;

In general, XSLT templates are instantiated in a context of a current node or node list, so that
operations in a template can be executed relative to a matching node or list of nodes. The tag
<value-of select="@name"/> evaluates an XPath expression "ename" within the current node’s context
and prints the result. The prefix "e" is used for referencing attribute names (and selecting their
value) instead of tag names. Thus the XPath expression "ename" gives the value of the name attribute
of the current node <Function>’. As a result the name of the C function (e.g. setWindowRect and
newWindow ) is outputted. In accordance with the format for function signatures, the name is separated
by generating a ‘ (’ character. We then apply templates on all <Argument> children relative to the
current node by using an XPath expression without a root prefix ("//" ). As a result, a sequence
of argument type signatures is generated; we discuss the definition of this template below. After all
argument types are processed, we output a ‘) ’ character, followed by applying a template to generate
the return type signature. In contrast to the arguments of a function, the return type is not given as

a child node to Function but as an attribute value.

As we noted earlier, the hierarchical structure of <gcc_xML> documents is flat; associations between
nodes are given by symbolic reference between attributes, such as returns and corresponding XML

nodes with a matching id . Thus we need to follow the reference from <Function> to its return type
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via returns symbolically: We save the value of attribute returns of <Function> in a variable, named

X using <variable> with the XPath expression "ereturns" .

In a next step the template

<apply-templates select="//*[Q@id=$X]"/>

is executed; "//x" selects all nodes of a tree, while the expression "[eid=$x]" selects all subsequence
nodes with an attribute id that equals to a value of the variable named x. In what follows we use
this technique whenever we need to apply templates to symbolic relatives. Often we will also need to

delegate to a different node symbolically.

Now we give the template for handling argument types.

<template match="//Function/Argument"> Sample context node:
<variable name="X" select="@type"/> <Argument type="_12"/>
<apply-templates select="//*[@id=$X]"/> . X

</template> Corresponding selection:

<FundamentalType id="_12" name="unsigned int"/>

We delegate to a node with the id that equals to type attribute.

We now give a template to generate DynPort’s object type signatures for the C basic data types.

<template match="FundamentalType"> Input node:

<variable name="name" select="@name"/> <FundamentalType id="_9" name="void"/>
<choose>

<when test="$name=’void’"> <text>v</text></when> <FundamentalType id="_19" name="int"/>
<when test="$name=’char’"> <text>c</text></when> Corresponding outputs: ” v” and ” 1 7.
<when test="$name=’unsigned char’"> <text>C</text></when>

<when test="$name=’signed char’"> <text>c</text></when>

<when test="$name=’short int’"> <text>s</text></when>

<when test="$name=’short unsigned int’"><text>S</text></when>

<when test="$name=’int’"> <text>i</text></when>

<when test="$name=’unsigned int’"> <text>I</text></when>

<when test="$name=’long int’"> <text>j</text></when>

<when test="$name=’long unsigned int’"> <text>J</text></when>

<when test="$name=’float’"> <text>f</text></when>

<when test="$name=’double’"> <text>d</text></when>

</choose>

</template>

Basic C data types are encoded in <GCC_XML> as <FundamentalType> nodes where its name attribute
gives the basic C type name. We store the attribute of its name in a variable first and then use a
<choose> block of <when> conditions; each condition compares the variable with a standard C basic

data type name. If a match occurs the corresponding basic type character signature is outputted.

We need to specify templates for handling pointer types as well, which are encoded in <GCC_XML> as
<PointerType> tags. For the pointer type, we output a ‘ x’ prefix before we delegate symbolically to
its base type using attribute type . Analogous to return types of functions and the pointer’s base
types, <TypeDef> and <CvQualifiedType> (which denote const and volatile C type qualifiers) also
need delegate symbolically. Templates for <Struct> and <Union> types output their name, enclosed

3

by angle brackets; ‘ <’ and ‘>’ are encoding in XML as ‘ &1t; ’ and ‘ &gt; ’, respectively.
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<template match="PointerType">
<text>*</text>
<variable name="type" select="Qtype"/>
<apply-templates select="//*[@id=$type]"/>
</template>
<template match="//Typedef|//CvQualifiedType">
<variable name="type" select="@type"/>
<apply-templates select="//*[@id=$type]"/>
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A sample matching node:

<PointerType id="_10" type="_6"/>

After following the symbolic reference:
<Typedef id="_6" name="Window" type="_5"/>
After following the symbolic reference:

<Struct id="_5" name="Window" context="_1"/>

</template>

<template match="Struct|Union">
<text>&lt;</text>
<value-of select="@name"/>
<text>&gt;</text>

</template>

Final output: ” *<Window> ”

We have completed all templates for generating of the section for function signatures. Now, we give

the implementation for data type signatures.

In order to process all C structure data types, we need a second template for <Struct> using a
XPath selector "//sStruct". As we already defined a template with a similar select (see the last
template above), we need to define a second template with a different mode . The mode is used as an
attribute in <template> and <apply-templates> ; it is an additional user-defined selector/match value

for <template> and <apply-templates> , which needs to match.

<template match="//Struct" mode="def"> Sample input document:

<value-of select="@name"/>
<text>{</text>
<variable name="i" select="@id"/>
<apply-templates select="//Field[@context=$i]"/>
<text>}</text>
<apply-templates
select="//Field[@context=$i]" mode="n"/>
<text>;&#10;</text>
</template>

<Struct id="_7" name="Rect"/>

Subsequent sequence (for the above):

<Field id="_13" name="x" type="_19" context="_7"/>
<Field id="_14" name="y" type="_19" context="_7"/>
<Field id="_15" name="width" type="_20" context="_7"/>
<Field id="_16" name="height" type="_20" context="_7"/>
Final Output:

<template match="//Field">
Rect{iiII}x y width height;

<variable name="t" select="@type"/>
<apply-templates select="//*[@id=$t]"/>
</template>
<template match="//Field" mode="n">
<value-of select="@name"/>

<text> </text>
</template>

The name of the C struct ’s is outputted, followed by a ¢ { ’ character. Then we process all <Field>
nodes via symbolic reference. Note that we need to do two rounds; first the types, and then the names
of the field. So we use a mode="n" for the second pass. In between, we output a ‘ } ’ character. Finally,

we terminate the signature with a ‘ ; ’ character.

Our example is now complete. We illustrated the use of gccxml and open-source XML tools for the

implementation of C/C++ code transformations.

3.8.2.3 Parsing C Preprocessor Defines

We presented a flexible framework for parsing C header files. But it is limited to C/C++ declara-

tions. Symbolic constants, declared in C via #define NAME VALUE , are not seen by a C/C++ compiler,
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such as gccxml. The reason is that the preprocessing stage, including the definition and applica-
tion of macros, is separated from the compilation phase in the translation model of C. (See ISO|
2011} Section 5.1.1.2 for details.) Hence, the C/C++ compiler does not even see macro names, but

corresponding replacement parts on input performed by the preprocessor.

As a consequence we implemented a custom C/C++ preprocessor, using Boost Wave preprocessor
parser C++ library (Kaiser, [2011). But the maintenance costs for this tool were large relative to the
other programs used in this framework. As an alternative, we developed a lighter solution, based on
and awk (Kernighan and Pike} |1983| Section 4.4). The tool has two stages: First, gcc is invoked
with the initial source file via gcc -E -dM to dump all macro definitions at the end of the preprocessing

task.

# gcc -E -dM includeSDL.c

The following listing gives a sample output:

#define SDL_INIT_TIMER 0x00000001
#define SDL_INIT_AUDIO 0x00000010
#define SDL_INIT_VIDEO 0x00000020
#define SDL_INIT_CDROM 0x00000100
[... further output omitted ...]

Secondly awk was utilized for transformation into the right form; the program is given next:
#!/usr/bin/awk -f
/#define/ {

printf ("%s=",$2);

for (i=3;i<NF;i++)

print("%s ",$i);

printf ("%s\n",$1);
}
As a result, we get:

SDL_INIT_TIMER=0x00000001
SDL_INIT_AUDIO=0x00000010
SDL_INIT_VIDEO=0x00000020
SDL_INIT_CDROM=0x00000100

3.8.2.4 Filter

In general, C API headers refer to external header files of the C Standard Library, the operating
system and third-party libraries. As a result, the DynPort toolchain generates a large number of
signatures for C entities that are not part of the particular C API. Since C symbols are managed in
a single namespace (except for tag names of struct, union, enum ), name clashes are prevented by
convention, in that C API symbols are prefixed with a short name (for example, SDL functions are

prefixed with spL_ ).

A filter, based on grep, was incorporated as a last step in order to filter the output fragments before
assembly into a single DynPort file. Since all DynPort signatures for public functions, data types and

constants are written in text lines, beginning with their symbolic name; all output fragments can be
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filtered by grep likewise.

3.9 Summary

We presented a middleware architecture for scripting languages and shared C libraries that provides

scripting access to C APIs across platforms.

We introduced the topic with a brief overview of shared C libraries and emphasised their significance
as reusable binary building blocks for virtually all applications on current platforms. We discussed

binary interoperability and emphasized the role of C compiler as a static glue between binary com-

ponents at the [Application Binary Interface] of platforms. We noticed that language bindings to C

libraries are usually implemented by C wrapper code. However, the development of wrapper code for
each library-language combination and subsequent compilation for each platform is obviously a disad-
vantage. We noted that the use of standard code generators also inevitably necessitates some manual
development tasks. At the latest, when building for multiple platforms, subsequent work is needed
for specification of linking. Instead of using wrappers in C and compilation for language bindings, we
suggested using the dynamic methods, provided by Foreign Function Interfaces of scripting languages,

for interoperability with binary components at run-time.

We identified two subcategories of namely static and dynamic, and illustrated the limitations of
the former using the example of the built-in [FFT of R. While dynamic FFIs seem to be advantageous
in this context, we noted that these require type information to provide dynamic bindings to C

but that this information can be extracted from C header files.

Based on our considerations, we developed the Dynamic Bindings model and outlined it’s architecture
that comprises three abstraction layers. The first layer provides a cross-platform portable type library
format for C API information, and a corresponding C header parser tool. The second layer defines
the language extension that implements automation of dynamic bindings using a dynamic FFI and
data from the first layer. Finally, the third layer provides a platform-abstraction interface to the
dynamic linker, ABIs and calling conventions of processor hardware architectures for implementation

of dynamic FFIs.

We gave an outlook of the potential advantages of our proposed model for software development of
language bindings in comparison with the compilation-based method. Whereas compiled bindings
are developed on per language-and-library basis, and are built as an additional binary wrapper per-
platform, dynamic bindings are created per library via automation tools and are then available across
all supported platforms and languages. We concluded that the dynamic bindings model reduces
development time, fosters rapid scripting of cross-platform applications, and can significantly decrease
the gap between scripting languages and C library developments. In the last part of this chapter we
proposed an implementation of the first layer of the architecture. Firstly, we gave an overview of the

C type system, which provides the foundation for developing an encoding format for C APIs. We then
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presented the design of a text-based encoding format for C API information, named DynPort. Finally,
we described a parser framework for translation from C header files to DynPort files. The framework
is based on XML/XSLT- and Unix-tools, such as gccxml, xsltproc, gcc, grep and awk. Furthermore,
we illustrated in detail the use of gccxml and XSLT/XPath for processing C type information and

transformation to custom file formats using the example of DynPort.

In summary, this chapter gave an overview of the Dynamic Bindings model and a detailed description
of the first of its three layers, named DynPort. For the remaining layers, we discuss an implementation
for the R programming language in Chapter [4l Layer 3, an abstraction layer to the ABI across five

processor architecture families, is covered in Chapter [5
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Chapter 4

Dynamic FFI for R

In this chapter we present a dynamic FFI for the R programming language, contributed as package
rdyncall (Adler, [2012) on The package comprises a toolkit of components for working with
shared C libraries and provides interoperability with natively compiled C code and run-time C data
objects. Collectively the components constitute an implementation of the Dynamic Bindings Model, as
discussed in Chapter 3] for the R programming language; it provides a simple cross-platform interface
for loading dynamic R bindings to C APIs, such as those offered by the OpenGL and SDL C library

families.

4.1 Introduction

First we give a motivating example to use rdyncall as the base for rapid cross-platform development
of application software followed by an outline of the package architecture. The first section closes with
a brief overview of the R language and the anatomy of R language objects; it provides background
information for subsequent discussion on the components of the package, interoperability between R
and C, and the implementation of the Dynamic Bindings Model. We give listings of C[AP]|user code,
side by side in C and R, to illustrate the syntactic resemblance of R and C when C APIs are used.
The chapter closes with an example of a real-time visualization and simulation software, written in R,

using OpenGL and SDL via rdyncall, and is followed by a summary.

Example We consider a visualization program that utilizes high-performance graphics output via
OpenGL for a statistical application offered by packages of CRAN in R. Further we require that the
software runs across platforms so that we also utilize the SDL library as a portable abstraction layer
to the windowing system, user-input event processing and access to additional multimedia hardware

such as audio output.

As a first step we develop a skeleton of the application that comprises basic setup methods for OpenGL

graphics output and processing of user input events. As an initial test for using OpenGL, a rectangle
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is drawn within a loop, made of two triangles that are filled with interpolated colors across the four

corners. Figure gives screenshots of the application skeleton for three major R platforms. The

=1o1x]

Figure 4.1: Screenshot: Cross-platform R application using SDL and OpenGL on Windows, Mac OS

X and Linux.

application skeleton is implemented twice; the sources are given side by side in Listing The left

panel gives the C code and the right panel the R code using OpenGL and SDL via the rdyncall package.

#include "SDL.h"
#include "SDL_opengl.h"

int main(int argc char* argv[]) {
int quit = 0;
SDL_Event e;
SDL_Init (SDL_INIT_VIDEO) ;
SDL_SetVideoMode (640,480,32,
SDL_OPENGL | SDL_DOUBLEBUF) ;
while(!quit) {
glClearColor(0.0,0.0,1.0,0.0);
glClear (GL_COLOR_BUFFER_BIT) ;
glBegin (GL_TRIANGLE_STRIP) ;
glColor3£(1.0,0.0,0.0);
glVertex2£(-0.9,-0.9);
glColor3£(0.0,1.0,0.0);
glVertex2f(-0.9, 0.9);
glColor3£(0.0,0.0,1.0);
glVertex2f( 0.9,-0.9);
glColor3£(0.0,0.0,0.0);
glVertex2f( 0.9, 0.9);
glEnd () ;
SDL_GL_SwapBuffers() ;
while(SDL_PollEvent (&e)) {
if (e.type == SDL_QUIT) {
quit=1;
}
¥
}
return O;

}

library(rdyncall)
dynport (SDL)
dynport (GL)
main <- function() {
quit <- FALSE
e <- new.struct(SDL_Event)
SDL_Init (SDL_INIT_VIDEO)
SDL_SetVideoMode (640,480,32,
SDL_0PENGL+SDL_DOUBLEBUF)
while(!quit) {
glClearColor(0.0,0.0,1.0,0.0)
glClear (GL_COLOR_BUFFER_BIT)
glBegin (GL_TRIANGLE_STRIP)
glColor3£(1.0,0.0,0.0)
glVertex2£(-0.9,-0.9)
glColor3£(0.0,1.0,0.0)
glVertex2f(-0.9, 0.9)
glColor3£(0.0,0.0,1.0)
glVertex2£f( 0.9,-0.9)
glColor3£(0.0,0.0,0.0)
glVertex2f( 0.9, 0.9)
glEnd ()
SDL_GL_SwapBuffers ()
while(SDL_PollEvent(e)) {
if (e$type == SDL_QUIT) {
quit <- TRUE
}
}
}
¥

main()

Listing 8: C and R: Basic multimedia application skeleton based on OpenGL and SDL.

In both cases components of the two C APIs are distinguished by their prefix i.e. SDL components

b

are prefixed by * sDL

_” while OpenGL components are prefixed by “gl” and “6L_”. Note that the

R code is very similar to C; the differences are marginal: SDL_OPENGL+SDL_DOUBEBUF is used instead of

SDL_OPENGL | SDL_DOUBLEBUF due to the lack of bit-wise operations in Rﬂ The allocation of temporary C

The value of symbolic constants, SDL_OPENGL and SDL_DOUBLEBUF , represent independent bit flag patterns that
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struct data structures is done via new.struct ; field member access to C structure objects is done in

R via $ operator.

The C version of the application needs to be compiled and linked with the shared libraries on each
supported platform. Table gives an overview for building the C application across platforms. In
essence, platform- and library-specific installation paths of run-time and development files all need to
be considered for each port. Some library development packages offer helper shell scripts to retrieve
library-specific build options, such as sdl-config for SDL, but in general, platform-specific adaptions

need to be taken into account for each port.

Platform/Compiler Build instructions
. $ gcc -c ‘sdl-config --cflags‘ main.c
Ubuntu Linux $ gcc -o example main.o ‘sdl-config --libs‘ -1GL
$ gcc -c ‘sdl-config --cflags‘ -I/usr/X11R7/include example.c -o example.o
NetBSD 5.1 $ gcc -o example main.o ‘sdl-config --libs‘ -L/usr/X11R7/1ib -1GL
$ gcc -c¢ -I/Library/Frameworks/SDL.framework/Headers SDLMain.m -o SDLMain.o
Mac OS X 10.7 $ gcc -c -I/Library/Frameworks/SDL.framework/Headers example.c -o example.o
$ gcc -o example example.o SDLMain.o -framework SDL -framework Cocoa -framework OpenGL
. . > gcc -c -I/devel example.c -o example.o
Windows/MinGW32 | 5 gcc -0 example.exe main.o -lmingw32 -L/devel/lib -1SDL -1SDLmain -10PENGL32

> cl /c /MD /IC:\devellinclude main.c
Windows/Visual C > link main.obj /OUT:example.exe /SUBSYSTEM:CONSOLE \
/LIBPATH:C:\devel\1lib\x86 SDL.lib SDLmain.lib OPENGL32.lib

Table 4.1: Compilation of C user applications based on OpenGL and SDL across platforms.

For example, on NetBSD, in contrast to Linux, a specific location for the OpenGL header files and
libraries needs to be specified for the compiler toolchain. On Mac OS X the files SDLMain.h and
SDLMain.m need to be copied from the SDL development package in advance. On Microsoft Windows
the build instructions for using the Microsoft Visual C compiler are significantly different. It should be
noted that build systems, such as CMake (Martin et al., 2003|) and GNU make (Stallman and McGrath),
2002]), substantially reduce the amout of work for building portable software, but such tools also require
a steep learning curve. In summary, we can conclude that cross-platform application development using
a compiled language, such as C/C++, requires platform-specific expertise and a pool of (virtualized)
hardware and software tools for building multi-platform software releases. For the C version further
work is still needed to incorporate the R interpreter; this is beyond the scope of this example; see
R Development Core Team (2012c, Section 8.1) for details on embedding R and package RInside
(Eddelbuettel and Francois| 2012)), which provides a cross-platform C++ API for this purpose.

The R version in the example runs across platforms without compilation. Naturally the precompiled
run-time packages of OpenGL and SDL need to be installed; see Section for detailed installation
instructions for major R platforms. In Section we outlined the rgl package which offers a real-

time visualization device system. However, rgl provides a scene graph using OpenGL and advanced

can be combined by “+” in R which is equivalent to bit-wise “or” in this case; alternatively this operation is provided

by the package bitops (Dutky and Maechler, |2012).
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methods need to be implemented in C++. Since the core C APIs of OpenGL and SDL are directly
accessible from within R via rdyncall, a similar degree of freedom is achieved as it is the case for C

but without considering platform-specific build and linking issues. Furthermore, the full range of R
packages and the C APIs (given in Table [4.10) both become accessible.

4.1.1 Software Architecture

The software architecture of the rdyncall package is represented in Figure The package comprises
of several components that are depicted as stacked in order of dependency; components at a higher
level are implemented by means of components below them. The language for the implementation

of each component is indicated by the color background: R (blue), C (green) and assembly language

(gray).
Implementation
o g a o o DynPort
Dynamic Bindings to C libraries i
dynport
(Section R
Automation of Wrappers Foreign Data
dynbind new.struct
Extension to R (Section $.struct (S3)
- ; TypeInfo (S3
Code Loading Function Calls yp (&) Callbacks

Section 4.5
dynfind (Section B3

.dyncall C Data Access new.callback
.dynload . (un) pack

(Section (Section (Section (Section

E— C
dynload dyncall dyncallback
C Libraries _ _ . assembly
(Generic Dynamic FFI) (Section (Section (Section pe——

Figure 4.2: Software architecture of R package rdyncall.

dynport represents the main interface for loading dynamic R bindings to C libraries; the bindings
creation process is data-driven using a repository of DynPort files, installed with the package, where
each file specifies cross-platform R bindings to a specific C API. dynbind is an automation tool for
the creation of a set of function call wrappers to shared library functions. dynfind provides a cross-
platform interface for naming the shared libraries to be searched and loaded. .dynload is an alternative
interface function to the dynamic linker of the operating system. .dyncall offers a dynamic function
call facility for R and is the core component of the dynamic [FFIl The component block in Figure
comprising new.struct , $.struct (S3) and TypeInfo (S3), represents a framework for data-level
interoperability with C struct and union data types. .pack and .unpack offer a low-level interface

for read/write operations with support for the basic set of C scalar data types. new.callback wraps
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R functions as C closure objects so that R functions can be written and passed to shared libraries as
C callback function pointers. The rdyncall package is based on a Generic Dynamic FFI, depicted
by the bottom layer of Figure 4.2} it comprises the three C libraries, namely dynload, dyncall and
dyncallback.

4.1.2 Usage of Type Signatures

Several facilities within the rdyncall package incorporate text-based type signatures as part of their

interface, which uses the DynPort encoding format, as described in Section

Component Functions Signature Type

. .dyncall Call Signature
Function Calls
.dyncall.<CALLMODE> | Call Signature

Callbacks new.callback Call Signature
) parseStructInfos Struct Signature
Foreign Data
parseUnionInfos Union Signature
.pack Object Signature
C Data Access
i .unpack Object Signature
Automation of Wrappers dynbind Function Signature

The .dyncall FFI uses the type signature to specify the sequence of parameter types and the return
type of a foreign C function. This information is used for type-safe value conversion between dynamic
R objects and statically typed C argument values and return values. new.callback wraps a user-
defined R function as a C function pointer object so that it is callable from C; it uses type signatures
to specify the C function type. It is used in a similar context as in .dyncall but in the opposite

direction; it converts the arguments from C to R and the results from R to C.

C struct and union data types are also specified using a signature to describe the sequence of
field member types and their names in order to compute platform-specific memory requirements for
allocation and member field offsets for symbolic member-field access. In order to read and write various
C data types the .pack and .unpack functions use type signature character code for the specification

of the desired C scalar basic type.

dynbind uses a sequence of function signatures for the creation of R wrapper functions to a set of C

library functions, using .dyncall as implementation for generated wrappers.

4.1.3 Internals of R

As preparation to subsequent sections we give a brief overview of the internals of the R language. The
core of R, including the interpreter and the representation of language objects, is implemented in C. In
this chapter we consider details of the representation of R language objects to figure out efficient and
type-safe techniques for data transfer between R and C, in particular when data need to be exchanged

via C pointers.
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Access to the internals of R is given by the C API header files of R (e.g. Rinternals.h) and details
are described in R Development Core Team (2012¢) and R Development Core Team| (2012b).

4.1.3.1 Object Types

R is a dynamic programming language with a relatively large set of different object types. While most

of the types are accessible via the interpreter, some of these types are internal. Table summarizes

all available language objects (of R 2.14); it gives the string output of typeof and sample expressions

whose value is of such an object type.

Kind typeof () C Type ID Examples/Comments
logical LGLSXP TRUE , FALSE , as.logical(0)
integer INTSXP 123L, as.integer(c(1,2,3))
Atomic Vectors double REALSXP 123 , as.double(c(1L,2L,3L))
complex CPLXSXP 1+0i , as.complex(c(1,1,0))
character STRSXP "hello" , as.character(c(1,2,3))
raw RAWSXP as.raw(c(65,43,23))
Linked Lists language LANGSXP quote (x+y)
pairlist LISTSXP pairlist(1L,2,"3")
Vectors list VECSXP list(1L,2,"3")
expression EXPRSXP expression(x+y,atb*rnorm(10))
NULL NILSXP NULL
externalptr EXTPTRSXP getLoadedDLLs () [["base"]] [["handle"]]
environment ENVSXP new.env ()
symbol SYMSXP as.symbol("hallo")
closure CLOSXP function()NULL
builtin BUILTINSXP get ("+")
special SPECIALSXP get ("if")
Special objects sS4 S4SXP typeof (getClass ("NULL"))
weakref WEAKREFSXP | key/value references
promise PROMSXP argument slot for lazy evaluation
char CHARSXP single character strings
DOTSXP argument placeholder
any ANYSXP type signature marker
bytecode BCODESXP byte code
NEWSXP internal
FREESXP internal

Table 4.2: Overview of R object types: R type name, the corresponding C symbolic constant S-

Expression type ID and sample expressions that evaluate to that value type.
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4.1.3.2 S-Expressions

In R all objects, whether they are atomic vectors, linked lists, vectors or special objects, such as
environments, function closures, control-flow entities ( if , while , for ) or primitive language objects
(’...7), are represented using a common data structure header. The common structure is named an

S-Ezpression.

We now take a closer look at the internal structure of the representation of S-Expressions in R. The
header contains vital information for the interpreter, the garbage collector, debugging facilities and
also for the low-level C interface. The header is illustrated in Figure the first field consists of a
32-bit wide bit field, followed by a dedicated pointer for attributes (which is a list with named entries),

and a node header (double-linked list) for chaining objects for garbage collection.

>
i 3 oo @ &
Bit field o S @&é&%&&&f
i o ® SRS
Attributes S-Expression
012345 6 7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Next Header
twpe &p gecls
Prev

type-specific

§ data

Figure 4.3: S-Expression header (left) and top-level bit field (right).

4.1.3.3 Type Identification

Since R is a dynamically typed language, interpreter and user-defined functions need to determine
actions at run-time. The interpreter processes a sequence of R objects, and for each object in turn, it
determines the action to perform, starting with the type id in the S-Expression, and whether it is an
atomic vector or a list object, a variable name (that needs to be looked up) or a language list object
representing a function call. Some user-defined functions check input argument objects and transform
the data to a target form (e.g. as.integer to coerce an input vector to an integer atomic vector).
While type checking is often not needed in high-level user-defined functions, where it is delegated to
low-level functions, type checking becomes very important where basic operations are implemented in
C, or where the control-flow is passed to a foreign C function. So the most primitive operation that
can be applied uniformly to any R object is type identification. Currently there are 24 different R
object types each having a designated number encoded in the first five bits of the header bit field. C
symbolic constants for identification of the S-Expression type are given in Table Depending on

the type information, the rest of the S-Expression is expected to have a specific format.

We are primary interested in R objects that are used for data exchange with external C libraries.
Thus we focus on objects that carry data values; these are atomic vector objects for data values,

external pointer R objects as containers for C pointers, as well as special objects such as NULL . We
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also consider language list objects for processing arbitrary sequences of R arguments.

Figure [4.4] gives an outline of the data structure of atomic objects and language list objects.

Header Header

(vector) (list)

length Vector car data
truelength Header cdr next

index 1 tag name

% Vector

index N Data

(padding)

Figure 4.4: Atomic vectors and language lists in R.

4.1.3.4 Atomic Vectors

Atomic vectors are used as containers for data of homogeneous type, where data is tightly packed
in a continuous region of memory. As with all R objects, they begin with an S-Expression header,
followed by a common header for atomic vectors containing a length field. Elements are stored using
the representation of C data types using the following mapping between R types and their internal C

representation:

logical — int[]

integer — int[]

double — double[]
complex — Rcomplex[]

raw — unsigned char[]
character = —— SEXP[]

Note that complex is implemented as a struct Rcomplex , which consists of two double ; atomic vectors
of R, except for the character , are represented as a flat data structure of a C array of scalar C data
types. Character strings are slightly more complex in general because in contrast to basic scalar
data types, such as integer values, floating-point numbers and address pointers, because they have
a variable length. As a consequence languages use their own data structure scheme for strings. For
example, in Pascal strings consist of an array of characters prefixed with a length field of the string.
In C strings are implemented as an array of characters with a terminating null character. In R the

character R object is a vector of character strings using an array of pointers to S-Expression objects
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of type CHARSXP , each of which represents a single character string which is used for character data
but also for symbol objects. Since R version 2.6.0 CHARSXP S-Expressions are partly managed in a
cache for reuse; see |R Development Core Team| (2012b}, Sec. 1.10) for details. Note that even a single
scalar data value is held as a vector of length 1. In R the default representation for literal numeric
values is double even if the value is representable as an integer object, which consumes less memory.

Integer representation of literal values is enforced by giving a suffix L.

Example Values can be encoded in different data types in programming languages. In the following
example we illustrate the representation of a numeric vector of four elements which is coerced to
different R object types. Figure gives an illustration of the run-time data structure of different R

atomic types. The widths of the boxes are proportional to the memory usage.

x <-¢(0,1,2,1)

as.double(x) ’ 0.0 I 1.0 I 2.0 1.0
as.integer (x) ’ 0 I L I 2 I 1 ‘
as.logical (x) ’ 0 I L I 1 I 1 ‘

as.raw(x) m

as.character (x) ’ o I o I o /I/. ‘
~. S~

CHAR CHAR CHAR

Figure 4.5: Different data representations of R numeric data.

Note the complex pointer structure that is used for the character vector.

4.1.3.5 Language lists

The implementation of R objects is strongly based on the Scheme language (a member of the LISP-
based family of languages). In Scheme and LISP both code and data are represented by lists.

Language lists are small building blocks with a singly linked structure using three pointers, namely
car , cdr and tag, as depicted in Figure car points to data, such as an atomic vector, to refer
to constant values, or to a symbolic name object to refer to a variable, or function name. cdr points
to the next element in the chain of the list or to the singleton NULL object, to mark the end of the

list. tag is used to specify the symbolic name of an argument in a function call.
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Example Every function call in R is represented as a language list object. For example, the call
expression rnorm(100,mean=3,sd=4) is represented as an S-Expression. Figureillustrates its run-time

data type structure.

rnorm(100,mean=3, sd=4)

l

LANG LANG LANG LANG
o car o car o car o car
\ cdr Or— \ cdr O— \ cdr O \ cdr

T A A

SYM REAL / REAL / REAL
émame len=1 len=1 len=1
x\alue truelen truelen truelen
int¥rnal 100 3 4
CHAR SYM SYM
len=1 6)name é)name
truelen é\alue kalue
ﬁptr int&rnal int\grnal
CHAR CHAR
rnorm len=1 len=1
truelen truelen
cSptr 6ptr
llmeanll llsdll

Figure 4.6: Internal representation of a call object in R.

The call expression is evaluated as a function call by the interpreter. Language list objects represent
a chain of list objects to link other objects as a sequence. The head of the call expression points to
the symbol object that represents name of the function to be called, followed by the first argument
of the call, and so on. The last element of the call expression points to the nil object to indicate the
end of the list (not depicted). Note that the arguments of the call expression are scalar values, each

represented as a separate R atomic vector object of length 1.

4.1.3.6 Other language objects

The NULL object: In R NULL refers to a non-value type, sometimes refered to as nil in other
languages to express non-value semantics. It does not have a state; it exists as a single entity within

the R interpreter.
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Vector-based lists Atomic objects are used for storing data in a uniform encoding scheme. In order
to support structured data objects with varying data types, R offers a list object type for storing data
objects (of possibly different atomic types) as a sequence. The internal representation resembles that
of atomic vectors, but a pointer to S-Expressions is used as elementary scalar type of the vector. While
this data type is flexible, it is very specific to the implementation of R and can not be used as-is in
foreign language contexts. Thus we do not consider specific support for exposing this data type to C,
in contrast to the atomic vector objects (with special care for character ) which can be used for the

exchange of C array data.

External Pointers FExternal pointers are rarely used in R but they are important when working
with C libraries. In Section we discussed data-level interoperability and the need to determine
the right carrier for transfer of pointer values; external pointers are exactly for this purpose. The
value copying semantics for these objects is different. While R objects are usually copied when they

are passed as arguments, external pointers (and also environment objects) are passed as references.

4.1.3.7 Memory Management

The R run-time system includes a generational garbage collector that provides for automatic memory
management. Users allocate new objects; the garbage collector detects if data become unreachable
and frees memory. R’s garbage collector does not move objects; we can expose internal data to C
APIs, but we need to make sure that the data are protected from garbage collection as long as they
are needed by the C library. See|R Development Core Team| (2012bl sec 1.7) for details on the garbage

collector of R.

4.2 Code loading

Before C functions and global data objects of external shared libraries can be used from within an
interpreter, the library has to be loaded first. This is done dynamically using the dynamic linker of
the operating system. Since the naming of a shared library is not standardized across platforms, the
loading of a shared library represents a problem to cross-platform development. The naming scheme
is specific to a particular operating-system platform and the location of the library can also depend

on system configuration choices.

We illustrate this problem by comparing the file paths of shared libraries across a number of operating
systems. Using the example of the standard C math library we show the limitation of the base R
interface to the dynamic linker for searching and loading shared libraries across platforms. We then
present an alternative facility for working with shared libraries in R that offers a unified naming scheme
for searching and loading of shared libraries that works across platforms; it also offers automatic

unloading of shared libraries, which is more suitable for working with external libraries. We also
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discuss the differences between the shared library formats and details of searching methods among

dynamic linkers across operating systems.

4.2.1 Introduction

The base package of R offers the dyn.load function for loading shared libraries:

1lib <-dyn.load(x)

If the library is found an S3 object of class DLLInfo is returned that represents an opened shared
library in R so that the addresses of functions can be resolved by their symbolic names via the R

function getNativeSymbolInfo or the extract operator ’§’ .

address <-1ib$<SYMBOL>$address

However, the name of the shared library to be loaded, given by x , needs to be specified as a platform-
specific absolute file path. It is this that makes cross-platform development with shared libraries rather

impractical.

Consider, for example, the standard C math library that is usually installed on all systems. On Unix-
based platforms it is commonly named “m”. On Windows it is part of the C run-time library named

“MSVCRT” (Microsoft Visual C Run-Time|). The following table gives the file path of the shared C

library math for this and a number of operating systems:

Operating system File path of standard C math shared library
Mac OS X /usr/1lib/libm.dylib

Windows C:\WINDOWS\SYSTEM32\MSVCRT.DLL
Debian 7 on x86-32 /1ib/i386-1linux-gnu/libm.so.6
Debian 7 on x86-64 /1ib/x86_64-1linux-gnu/libm.so.6
Fedora Linux 18 on x86-64 | /1ib64/libm.so.6

ArchLinux 2013.5 /1ib/libm.so

Solaris 10 /usr/1lib/libm.so

NetBSD 6.1 /1ib/libm.so

FreeBSD 9.1 /usr/lib/libm.so

OpenBSD 5.3 /usr/lib/libm.so.7.1

DragonFly BSD 3.2 /usr/lib/libm.so

In order to write cross-platform R user code that loads the library, the platform needs to be identified

to select a corresponding hard-coded platform-specific file path:



4.2. CODE LOADING 81

> path <- switch( Sys.info() [["sysname"]],
Darwin = "/usr/lib/libm.dylib", # for Mac 0S X

Windows = "/WINDOWS/SYSTEM32/MSVCRT.DLL",

Linux = "/usr/1lib/i386-linux-gnu/libm.so.6", # for Debian-based Distributions on xz86-32
Sun0S = "/usr/lib/libm.so", # for Solaris

NetBSD = "/usr/lib/libm.so",

FreeBSD = "/usr/lib/libm.so",

OpenBSD = "/usr/lib/libm.so.7.1",

DragonFly = "/usr/lib/libm.so"

)
> 1libm <- dyn.load(path)

The number of platforms covered by above code is still incomplete; it would require extended code to
handle cases where the file path includes versioning information, which may change between revisions
of a library and can be different among platforms. In the case of Linux-based platforms, the above
code does only support Debian-based Linux Distributions for x86-32 architectures; other architectures
and also other Linux Distribution families often have a different directory scheme. Furthermore, for
other non-standard libraries, such as SDL, the path can also depend on the selected installation method
or package management system, in particular on systems such as Mac OS X using MacPorts, Solaris
using OpenCSW, and DragonFly BSD using DPorts. It is obvious that the dyn.load interface is
inconvenient for cross-platform development with shared libraries; the absolute file paths need to
be arranged and tested on a large number of systems including different distributions and processor

architectures.

In general, the dynamic linker provides capabilities for searching a shared library by the library’s file
name without given an absolute directory path. However, dyn.load implicitly disables these search
capabilities because the file path is filtered; if the character string, given by x, is not an absolute
path, i.e. x does not begin with a ‘/’, the current working directory is prepended, so that the dynamic

linker always receives an absolute path.

Even when search capabilities of the dynamic linker are used, the name for a shared library significantly
differs across platforms. On Windows, the math library is named “MSVCRT.DLL”, on Mac OS X it is
“libm.dylib” while on the others it can be looked up via “libm.so” or “libm.so.6” where the latter

needs to be used on Linux platforms.

4.2.2 Interface

The rdyncall package offers the function dynfind for searching and loading shared libraries from
within R. It provides a unified interface using a cross-platform naming schema; the implementation

uses the direct interface of the dynamic linker in order to search libraries. The interface is as follows:

lib<-dynfind(libnames, auto.unload=TRUE)

dynfind attempts to load a shared library using a collection of platform-specific hints. The shared
library is specified by 1libnames given as a vector of character strings. Each string represents a short

library name that gives a hint about the name of the shared library. The library name is given by its
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distinguishing naming part without platform-specific prefixes and suffixes in which built-in platform-
specific heuristics are used to derive possible file paths. For specific libraries and in order to support
several platforms, multiple hints are often needed, such as a suffix form, which includes versioning

information.

Example Suppose cross-platform R code is needed to load the math C library. dynfind can be used
for this task by giving a list of hints to open the math library across all major platforms:

> 1libm <- dynfind(c("msvcrt","m","m.so0.6"))
> libm

<pointer: 0x103813070>

attr(,"path")

[1] "/usr/lib/libm.dylib"
attr(,"auto.unload")

[1] TRUE

In the example three hints are required to cover cross-platform loading of the math library; the first
hint "msvcrt" is used for loading the standard C library on Windows, the second hint "m" usually
works across all other platforms except for certain Linux installations, which are handled by the third
hint "m.so.6" that includes a major version number. As a result of this call an external pointer R
object is returned that represents a handle to a shared library. Furthermore the handle can be used

for operations such as resolving of symbols via the function .dynsym(handle, symbol) .

> sqrtAddress <- .dynsym(libm, "sqrt")
> sqrtAddress
<pointer: 0x7fff89e872d0>

The list of short library names depends on the naming characteristics of a particular shared library
and its installation across platforms. Table gives the file paths of four shared libraries, namely C,
expat(Clark, |2007), OpenGL and SDL, on several operating systems. The full file path is given in gray;
the name required for searching via the dynamic linker is given in black. The short library name,
needed by dynfind, is underlined. We also give the list of short library names for each of the four

shared libraries that is needed to load the library via dynfind .

Common platform-specific prefixes and suffixes are automatically appended to a short library name
internally. For most cases the distinguished name part of the library is sufficient for dynfind to search
and open a shared library. But there are platform-specific issues of naming shared libraries that require
to use a list of names. For example, on Mac OS X there are two forms of shared libraries, on Windows
some libraries, such as C, are named completely differently, and on Linux and Solaris version numbers
need to be identified.

4.2.3 Naming Schemes of Shared Libraries

The file path of a shared library can be partitioned into a directory location and a file name component,

where the former depends on a particular operating system, processor architecture, operating-system
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Platforms Shared library C Shared library OpenGL

Windows %WINDIR/\SYSTEM32\MSVCRT.DLL ZWINDIRY\SYSTEM32\0PENGL32.DLL

Mac OS X 10.7 /usr/1ib/libc.dylib /System/Library/Frameworks/0OpenGL. framework/OpenGL
Solaris 10 /1ib/libc.so /usr/1ib/1ibGL.so

ArchLinux 2013.5 | /1ib/libc.so /usr/1ib/1ibGL.so

Debian 6 /1ib/1libc.so.6 /usr/1ib/1ibGL.so.1

Ubuntu 12.04 /1ib/i386-1inux-gnu/libc.so0.6 /usr/1ib/i386-1inux-gnu/libGL.so.1

FreeBSD 9.1 /usr/1ib/libc.so /usr/local/lib/1ibGL.so

OpenBSD 5.3 /usr/1ib/libc.so0.66.2 /usr/X11R6/1ib/1ibGL.so.10.0

NetBSD 6.1 /usr/1ib/1libc.so /usr/X11R7/1ib/1ibGL.so

DragonFly 3.4

/usr/lib/libc.so

/usr/pkg/1ib/1ibGL.so

cross-platform

dynfind(c("MSVCRT","c","c.s0.6"))

dynfind(c("OPENGL32","OpenGL","GL","GL.so.1"))

Platforms Shared library expat Shared library SDL

Windows <custom>\libexpat.DLL <custom>\SDL.DLL

Mac OS X 10.7 /usr/lib/libexpat.dylib /Library/Frameworks/SDL.framework/SDL
Solaris 10 /opt/csw/1ib/libexpat.so.1 /opt/csw/1ib/1ibSDL-1.2.50.0

ArchLinux 2013.5 /usr/lib/libexpat.so /usr/1ib/1ibSDL.so

Debian 6 /usr/lib/libexpat.so.1 /usr/1ib/1ibSDL-1.2.s50.0

Ubuntu 12.04 /1ib/i386-1inux-gnu/libexpat.so.1 /usr/1ib/i386-1inux-gnu/1ibSDL-1.2.50.0
FreeBSD 9.1 /usr/local/lib/libﬂ.so /usr/local/1ib/1ibSDL.so

OpenBSD 5.3 /usr/lib/libexpat.s0.9.0 /usr/local/lib/1ibSDL.s0.8.0

NetBSD 6.1 /usr/lib/libexpat.so /usr/pkg/1lib/1ibSDL. so

DragonFly 3.4

/usr/local/libexpat.so

/usr/pkg/1ib/1ibSDL. so

cross-platform

dynfind(c("expat", "expat.so.1"))

dynfind(c("SDL","SDL-1.2.s0.0"))
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Table 4.3: Overview of platform-specific file paths for specific C libraries and cross-platform loading

via dynfind and short library names.

family or Linux distribution, package management system or custom installation location, while the
latter contains a library-specific (name) and uses an ABI platform-specific file name or path pattern
as shown in Table [4.4]

Operating system(s) | ABI platform | Shared library name scheme
Windows PE (name) .DLL
Linux, BSDs, Solaris | ELF

lib(name).so [ .{major) [ .(minor) ||

lib(name).dylib

Mac OS X Mach-O

(name) . framework/(name)

Table 4.4: Naming schemes of shared libraries across operating systems and ABI platforms.

Windows platforms use the binary image format standard [PE (Portable Execution Format); a shared

library is stored as a|DLL (Dynamically Linked Library) with the file name extension “.DLL”.

Unix-related platforms based on the System V [ABI] standard, such as Linux, BSDs and Solaris,

typically incorporate [ELF (Ezecution and Link Format) as binary format for executable files and

shared libraries; the latter are stored as Shared Objects with a common file name prefix “1ib” and

the shared object extension “.so”. also supports versioning of libraries in which the file name is

i

suffixed by a ‘.” and a (major) version number.
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Although Mac OS X is very similar to Unix-based systems, it is based on the Darwin operating system,
which uses a Mach-based Microkernel, named ‘XNU’, and the [Mach-O (Mach object file format )| binary

image format. Shared libraries are represented as Dynamic Libraries with the file name prefix “1ib”

and the file extension “.dylib”. In addition, Mac OS X also provides a second form of shared library
components named Frameworks. A Mac OS X framework is a directory tree of files with a specific
directory name of the form “(name).framework” in which a dynamic library is placed as “(name)”

without prefixes or suffixes.

Whether the binary files are named Dynamically Linked Libraries on Windows [PE] Shared Objects on
System V ELF platforms, Dynamic Libraries on or Framework Bundles on Mac OS X, all
these terms denote a Shared Library that can be loaded dynamically at run time via the C API of the

platform’s dynamic linker.

4.2.4 Searching of Shared Libraries

Each dynamic linker provides a C API, discussed in Section for loading shared libraries via a
file name at run time. The interface is simple; a character string needs to be given for naming the
library. If the file name is given without an absolute path, the dynamic linker searches for the shared
library. There are fine differences between platforms in naming of shared libraries and which directory
locations are considered for searching. Furthermore, the arrangement of user-defined locations for
third-party shared library installations also differs depending on the functioning of the dynamic linker.

We therefore briefly describe the different search methods and naming schemes in more detail.

4.2.4.1 Dynamic Linker on Windows [PE}based platforms

The dynamic linker of Windows searches for a specific [DLI] in several locations using the following

order of directory locations:

The directory of the application’s executable,

the current working directory,
e a number of system directories and

e a number of locations specified by the environment variable %PATH%, which consists of a list of

absolute directory paths separated by ‘;’ characters.

The file extension “.DLL” can be omitted when searching via the C API. of system components,
such as OpenGL, are installed in a subfolder, named ‘SYSTEM32’, of the Windows folder, which is often
located at C:\WINDOWS but can be specified during installation of Windows; the exact location is given
by the environment variable ;WINDIRY.
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Since Windows platforms lack a standard package management and distribution system there are no
standard directory locations for third-party libraries in contrast to open-source platforms and Unix-
related systems. Therefore users usually have to copy into the SYSTEM32 directory or arrange
for a directory for common shared libraries that needs to be added to the environment variable %PATHY

in order to enable the dynamic linker to find the [DLL] by its name.

4.2.4.2 Dynamic Linker on [ELF| platforms

The dynamic linker of ELF systems searches for shared objects given by the full file name using the

following pattern:
lib(name).so

So the prefix “1ib” and the file extension suffix “.so” need to be included when searching for a shared

library (name) via the C APL.

The dynamic linker searches in

e built-in system locations (e.g. “/1ib” and “/usr/1ib”),

e further system locations, which are specified in configuration files, such as defined in “/etc/1d.
so.conf” and in files located in /etc/1d.so.conf.d, and/or configured via system tools such

as ldconfig,

e directories that are specified by the environment variable $LD_LIBRARY_PATH, which comprises

7

a list of directory locations separated by the ‘:’ character, and

e directories that are specified within the application’s executable for which the dynamic linker

searches shared libraries given as a data field named rpath.

A number of dynamic linkers that support the ELF format make use of versioning of shared libraries.
The latter are installed using a multi-level version numbering scheme for their file name, and shortened
variants are also installed via symbolic file links. For example, the following pattern of symbolic linked

files is used on several Linux platforms:

lib(name).so.(major) — lib(name).so.(major).(minor)

lib(name).so.(magjor).(minor) — lib(name).so.(major).(minor).(micro)

The version naming scheme with a single (major) version number has a special meaning in m it

is the [soname (Shared Object Name)| which is also often stored within the binary file of the shared

library and also within dependent executable files as symbolic link information; it gives the library
name, which includes a binary ABI version. This name is used by the dynamic linker for resolving
dependencies of application executables to shared libraries during the loading of a dynamically linked

application program. The file name scheme is as follows:
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ELF System Package name Files and Symbolic Links Name for loading
libexpat.so.1 —libexpat.s0.1.6.0
. i CSWlibexpati libexpat.so.1
Solaris 10 : libexpat.s0.1.6.0
CSWlibexpat-dev | libexpat.so —libexpat.so0.1.6.0 | libexpat.so
: libexpat.so.1 —libexpat.so0.1.6.0
. . i libexpatl libexpat.so.1
Debian Linux 7 i libexpat.so0.1.6.0
libexpatl-dev libexpat.so —1libexpat.so0.1.6.0 ; libexpat.so
: libexapt.so.1 —1libexpat.so0.1.6.0
. | expat libexpat.so.1
Fedora Linux 18 : libexpat.s0.1.6.0
expat-devel libexpat.so —libexpat.so0.1.6.0 | libexpat.so
: libexpat.so —libexpat.s0.1.6.0
ArchLinux 2013.5 expat libexpat.so.1 —1libexpat.so0.1.6.0
: libexpat.so0.1.6.0
: libexpat.so —libexpat.s0.2.0
NetBSD 6.1 expat libexpat.so.2 —1libexpat.so0.2.0
: libexpat.so0.2.0 libexpat.so
libexpat.so —libexpat.so0.6

FreeBSD 9.1 expat-2.0.1.2
: libexpat.so.6

libexpat.so —libexpat.so.6
DragonFly BSD 3.4 | expat
: libexpat.so.6

OpenBSD 5.3 baseb3.tgz libexpat.so.10.0

Table 4.5: Loading expat shared library on different ELF-based operating systems.

lib(name).so.(major)

The (magor) version number usually starts with zero; it is not incremented until the interface of a
library significantly changes or needs to break binary compatibility with a previous version. Whereas
the “lib(name).so.(major)” is used during load- and run-time dynamic linking, the linker
of the compiler, which prepares symbolic links between application executables and shared libraries,
usually uses the unversioned variant “lib(name).so” for searching the shared library and then reads
the actual from the found shared library as symbolic link information within the application’s

executable file.

As a consequence, run-time packages of shared libraries often do not install the unversioned file names
since applications only require the existance of [soname}based library file names. Table gives an
overview of different packages and ELF shared library names for the expat XML parser C library
across ELF platforms. From this table we can see that the shared libraries on Solaris and on several
Linux distributions are split into a run-time and a development package. The unversioned ELF shared
library name of a symbolic file link is usually installed with the development package. Furthermore,

we can see that the [soname] is not standardized across ELF platforms.

There are further fine differences among dynamic linkers on ELF platforms that we briefly describe

in the following paragraph.
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The GNU dynamic linker on Linux platforms comprises a cache of library names that can be con-
figured via the ldconfig utility and the /etc/1d.so.conf configuration file, which contains addi-
tional search paths for shared libraries. In general the latter comprises the text line instruction

7

“include /etc/ld.so.conf.d/* ”, which causes ldconfig to read further library search paths from ad-
ditional text files in the directory in /etc/1d.so.conf.d. For example, the R installation on Fedora
Linux 18 on x86-64 installs the file /etc/1d.so.conf.d/R-x86_64.conf, which contributes the search
path /usr/1ib64/R/1ib for searching custom R shared libraries such as the R shared library and R-
specific BLAS libraries. 1dconfig is usually executed during system startup and after installation of
new packages in order to rebuild the library name cache of available shared libraries. When ldconfig
is executed it scans directories (specified by the configuration) for shared library binary files, which
usually have the form “lib(name).so.(major).(minor)” and creates symbolic file links of the [soname|
form “lib(name).so.(major)”. BSD platforms and Solaris also offer a similar utility to configure a

cache of shared library names (it is also named ldconfig on BSDs and crle on Solaris). But in

contrast to the GNU-based utility, no symbolic links are created.

The example, shown in Table illustrates different schemes for multi-level versioning of file names
among Linux distributions. While FreeBSD and DragonFly BSD use a single symbolic link of the
form “lib(name).so” — “lib(name).so.(major)”, NetBSD uses a two-level symbol link. NetBSD
also discourages the use of the 1dconfig utility and configuration via /etc/1d.so.conf in favour of
the rpath facility. rpath is a data field, similar to which specifies a run-time search path
that is hard-coded into an executable; it is used by the dynamic linker when searching for required

shared libraries. See |NetBSD| (2013) for a detailed discussion on this topic.

OpenBSD does not use ELF standard methods for handling [sonames] It has its own versioning system

and search method. Every shared object is versioned using the file name pattern:
“lib{name).so.(major).(minor)”

Interestingly, there are no symbolic file links. The dynamic linker searches corresponding file names
via unversioned library names so that “lib(name).so” can be used to search a corresponding shared

library without the use of symbolic file links.

In summary: Whether an unversioned file name is sufficient to load a shared library depends on the
operating system; usually [sonamelbased files are always available. However, the differs across
operating-system platforms; in order to load a shared library dynamically a common naming scheme

would be beneficial here.

Our experiments with several shared libraries on various platforms using the rdyncall package sug-
gests that standard installations of shared libraries on the BSD-based operating-system family is
supplied with a symbolic link to an unversioned file name, so that the short library name “(name)”
is sufficient, as it is translated by dynfind to “lib(name).so”. On Linux and Solaris, there are cases

where run-time packages of shared libraries do not include a symbolic link of the form “lib(name).so”
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so that the needs to be used as a short library name, encoded without the prefix “1ib” using
the pattern “(name).so.(major)”. If the differ among Linux and Solaris platforms, several
variants need to be passed to dynfind . Note that major versions are usually very stable for a particular

library and are generally incremented only in major revisions of a library.

See [Levine (2000, Ch. 10) for details on [ELF| and [soname| Hearn| (2004) for details on versioning
of ELF shared libraries, Wheeler| (2003, Sec. 3) for details on ELF shared libraries on Linux, and
OpenBSD) (2013) for notes on handling shared libraries on OpenBSD.

4.2.4.3 Dynamic Linker on Mach-O / Mac OS X

The dynamic linker of the Mach-O platform offers an ELF-compatible C API for dynamic loading of

a shared library. It requires the following file pattern to search for a corresponding shared library:
lib(name).dylib

The dynamic linker searches for the shared library using a set of environment variables and the current
working directory of the running process. The environment variables, if set, contain a sequence of

i

directory paths separated by ‘:’ characters. The order is as follows:

e LD_LTBRARY_PATH,
e DYLD_LTIBRARY_PATH,
e working directory and

e DYLD_FALLBACK_LIBRARY_PATH, which defaults to $HOME/1ib;/usr/local/lib;/usr/1lib.

Similarly to Windows and in contrast to ELF-based platforms, there are no configuration files to

control the searching.

Shared libraries, installed as Mac OS X frameworks, are searched by using the following file name

pattern:
(name) . framework/(name)

Several standard directory locations are considered such as /System/Library/Frameworks, /Library/
Frameworks and $HOME/Library/Frameworks. Further framework directories are considered as spec-
ified by the environment variable $DYLD_FRAMEWORK_PATH where directory paths are separated by :’

characters.

For shared libraries that are installed by package management systems, such as MacPorts, Fink or
Homebrew, the environment variables need to be set appropriately in advance. For example, MacPorts
installs dynamic libraries under the directory tree /opt/local/1ib, which need to be adopted by
setting the location in the environment variable LD_LIBRARY_PATH.
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For information on the implementation of shared libraries within operation systems, see Tanenbaum
(2009} Sec. 3.5.6).

4.2.5 Implementation

The initial version of dynfind incorporates platform-specific search heuristics where the file path is

partitioned into four components:

(location) (prefix) (name) (suffiz)

The components (location), (prefir) and (suffiz) are platform-specific values, while the (name) com-

ponent is passed by the user as a short library name.

For a given list of short library (name)s, a large number of possible absolute file paths is derived by
permutation of the four components. Each trial is passed directly to the dynamic linker until a library
is successfully opened. The set of (location)s comprises a hard-coded list of values that is extended
by additional paths that are read from environment variables such as $LD_LIBRARY_PATH (ELF and
Mach-O) and %PATHY, (Windows PE). In addition, platform-specific characteristics, such as searching
for frameworks on Mac OS X, were also incorporated. The initial version of dynfind works fine for a
large number of platforms but has its draw-backs as new versions of operating systems and software

distributions need to be adapted.

Recently an improved version of dynfind was developed. It makes use of the underlying search
methods of the dynamic linkers and does not use any absolute file paths. Thus it significantly reduces
the number of search trials and works more closely with the search method of the dynamic linker. We
give the implementation, written in R, in Listing @ For each short library name, passed to dynfind ,
there are up to two function calls to .dynload ; the latter is a direct R interface to the dynamic linker
for the lookup. Note that the (location) naming component is omitted in this scheme since users
and system administrators can configure the dynamic linker appropriately via system configuration

settings and environment variables.

The derivation of file names from short library names is platform-specific using a maximum of two

calls for searching per short library name:

e On Windows the pattern “lib(name)” is used to search for “lib” prefixed and then the
pattern “(name)” to search for without prefix.

b

e On Mac OS X the pattern “(name).framework/(name)” is used to search for a framework and

the pattern “lib(name).dylib” is used to search for a dynamic library.

e On ELF platforms the pattern “lib(name).so” is used to search for an unversioned shared
library and the pattern “lib(name)” is used to search for alsoname}based shared library where

the short name ends with “.so.(major)”.
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dynfindl <-
if (.Platform$0S.type == "windows") {
function(libnames, ...) {

handle <- .dynload(paste("lib",name,sep=""),...)
if (!is.null(handle)) return(handle)
.dynload(name,...)
}
} else {
if ( Sys.info() [["sysname"]] == "Darwin" ) {
function(name, ...) {
handle <- .dynload(paste(name,".framework/",name,sep=""),...)
if (!is.null(handle)) return(handle)
.dynload(paste("lib",name,".dylib",sep=""),...)
¥
} else {
function(name, ...) {
handle <- .dynload(paste("lib",name,".so",sep=""),...)
if (!is.null(handle)) return(handle)
.dynload(paste("lib",name,sep=""),...)
}
}
}

dynfind <- function(libnames, auto.unload = TRUE) {
for (libname in libnames) {
handle <- dynfindl(libname)
if (!is.null(handle)) return(handle)
}
}

Listing 9: Implementation of dynfind .

4.2.6 Low-level interface

Since the existing interface dyn.load is inappropriate to make use of the search capabilities of the
dynamic linker, an alternative R interface to the dynamic linker was incorporated into the rdyncall
package. The following table gives a side-by-side comparision between the base and the rdyncall

interface to the dynamic linker:

Task base package rdyncall package
Load dyn.load .dynload

Resolve | getNativeSymbolInfo .dynsym

Unload dyn.unload .dynunload

Load and wunload tasks are for opening and closing a shared library. Access to the symbol table for

retrieving pointers to functions and global variables is given via resolving symbolic names to addresses.

4.2.6.1 Improved Life-Cycle Management

Since shared libraries are resources that can be loaded at run time, they should also be unloaded
dynamically when they are no longer needed. The base R interface to the dynamic linker is mainly
used to manage loading and unloading of shared libraries as part of the R package loading and

unloading mechanism. Since the rdyncall interface is designed for working with external C libraries
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further considerations went into the implementation of the .dynload and .dynsym functions to offer a

fine-grained resource management.

Resource objects in R are often represented as external pointers, which are copied by-reference so that
there exists a one-to-one mapping between an R external pointer object and corresponding resource.
The garbage collector of R offers the ability to register a finalizer function for external pointers that is
called when the external pointer is about to be removed. This enables the implementation of methods
for cleanup of resources such as closing files or unloading shared libraries. Aside from storing an
address, external pointers may also contain an owning reference to another object in order to protect

the latter from garbage collection.

The rdyncall-based interface to the dynamic linker incorporates finalizers and protection in order
to offer a fine-grained life-cycle model for loading/unloading shared libraries. Shared libraries that
are opened via .dynload are returned as handle objects represented as external pointer R object.
.dynload has an optional parameter, named auto.unload ; if set to TRUE (the default) a finalizer is
registered for the external object; then unloads the shared library when the object is about to be
removed by the garbage collector. The handle to a shared library is passed to .dynsym for resolving
symbols; the addresses of resolved symbolic functions are returned as external pointers that protect
the library’s handle object from garbage collection. So shared libraries, opened via .dynload , are not
removed as long as there exist any active external pointer R objects that reference their code or data

objects.

The implementation of the low-level interface to the dynamic linker of the operating system is based
on the dynload library that provides a thin portable abstraction layer to the platform-specific C
of the dynamic linker; see Section [5.6] for details.

4.3 Foreign Function Calls

The facility to make calls to foreign functions of external precompiled libraries is probably the most
obvious component of an We gave an overview of different types of FFIs in Section we noted
that the .c of the base package is a static version of an it supports a small subset of
C function types that can be called directly from R without additional C code wrapper. Dynamic
versions of offer interoperability with a wide range of foreign function types by using a generic

dynamic implementation and type information about the target function type.

4.3.1 Interface

The function .dyncall constitutes the main interface for making calls to foreign C functions. The

interface is as follows:

.dyncall (address, signature, ..., callmode = "default")
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.dyncall requires two items of information about the C function:

e the memory location of the function’s code, which is specified by address ,

e and the function type, which is specified by signature .

The actual argument values for marshalling to C arguments are passed via ... according to their

positional order in the foreign C function type.

The callmode is an optional parameter. It specifies the calling convention of the target C function
and is of particular interest on the Microsoft Windows 32-bit x86-32 platform to make function calls

to System DLLs. We give details on the selection of calling conventions in Section [£.3.4]

The address is passed as an external pointer; a corresponding object for refering to a “loaded C
function” can be obtained by using dynfind and .dynsym , as discussed in Section or by using the
standard R base functions for loading shared libraries and resolving of symbols to addresses, such as

dyn.load and getNativeSymbollInfo , respectively.

The parameter signature specifies the C function type of the target C function encoded as a call
signature character string. The inclusion of this parameter constitutes a main difference to the FFI

of the base package.

4.3.2 Call Signature

The call signature specifies the C function type. The encoding was specified in the syntax diagram

illustrated in Section [3.7.2.1} we give the text pattern of the format again:
[ (parameter-type)... | )’ (return-type)

The parameter types are specified according to the C function prototyp declaration, as defined in C
header files or sources, from left to right. (parameter-type) and (return-type) are specified as object
signatures that refer to a particular C parameter- and return data type. Table gives the mapping

between supported basic C types and corresponding object type signature encoding.

Example In Section we discussed the limitation of R’s static [FF] using a simple example of
binding the C double sqrt(double x) function of the math library to R. We showed that development

of C wrapper code and compilation was needed for connecting R with the C function sqrt .

.dyncall can be used to make a direct call to sqrt from within R without the need for adapters in
C. In the following listing we first give the steps to load the sqrt C function, which works across R
platforms using dynfind and .dynsym as described in Section followed by an call via .dyncall .
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C data type Object signature
char ‘c’

short ‘s’

int ‘i’

long ‘3’

long long ‘v

float ‘£’

double ‘d’
unsigned char ‘C’
unsigned short ‘s’
unsigned int ‘T
unsigned long ‘J’
unsigned long long | ‘L’

void ‘v’

void* ‘p’

const char* A

Bool , _Bool ‘B’

typedef ... name ‘<’ name >’
TYPE = k7L

Table 4.6: Mapping between C data types and object signature characters.

> library(rdyncall)

> 1ib <- dynfind(c("msvcrt","m","m.so0.6"))
> addr <- .dynsym(lib,"sqrt")

> .dyncall(addr,"d)d", 144)

[11 12

As indicated by the return value 12, we can assume the function call was successful. Note the
call signature “d)d” passed as second argument, which specifies the C function type of sqrt. The

signature is derived from the C function declaration double sqrt(double) .

4.3.3 Supported Function Types

.dyncall offers support for making calls to a large subset of function types. Functions where all

parameter types and the return type are in the following set can be called directly:

e All standard signed integer types from signed char to long long int .

e All standard unsigned integer types from unsigned char tO unsigned long long int .
e Floating-point types float and double .

e Code and data pointers.

e The boolean type _Bool .
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No support is currently provided for functions where at least one parameter type, or the return type,

is in the following set:

e Floating-point type long double .
e Composite struct and union data types passed as call-by-value objects.

e Any other standard and platform-specific C data types (see Table for an overview).

The maximum number of arguments that is supported by .dyncall varies; but the number is very
large. The total size of memory that C argument objects of a function call require must be less
than 4096 bytes; this leads to a limitation of approximately 512-1024 arguments per function call
depending on the actual argument types. This is effectively no limitation since, in practice, C API

functions comprise a much smaller number of parameters.

The implementation of .dyncall is based on the Generic Dynamic FFI dyncall which provides a
portable C interface for dynamic invocation of function calls. It is partly implemented in assembly
language with ports to a large range of platforms; all major R platforms are supported. (See Table
Note that some of the platforms listed in the table may not be supported by R. The implementation
of .dyncall by means of the dyncall library is discussed in Section

4.3.4 Supported Calling Conventions

.dyncall supports several calling conventions as selected by the callmode parameter. This parameter
may be needed currently on the Microsoft Windows 32-bit platform for the x86-32 processor archi-
tecture where C functions of system libraries use a different calling sequence to the default C calling

convention for C libraries.

.dyncall is a front-end function that uses the callmode argument to delegate to specialized back-end

functions that implement a particular calling convention:

High-Level Interface:
.dyncall ( address, signature, callmode = "default", ... )
Low-Level Interface:

.dyncall.<callmode> ( address, signature, ... )

The calling convention is selected by a named character string passed via the callmode argument.
Table [4.7] gives a list of possible values.

.dyncall also supports virtual method calls to C++ member functions, named thiscalls. Usually
the this pointer of an instance to a C++ class has to be passed as first argument. For the x86-32
architecture, the calling convention also needs to be further specified, depending on the C++ compiler
that was used for the target code. The implementation of .dyncall currently supports the Microsoft
Visual C++ and GNU C++ compiler for Microsoft Windows (MinGW32).
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callmode Description

default Default calling convention for C functions

cdecl Standard C functions (alias to default )

stdcall C stdcall functions of Windows 32-bit System libraries
thiscall Calling convention for C++ member functions

thiscall.msve | C+4 member functions compiled by Visual C++
thiscall.gcc C++ member functions compiled by MinGW32
fastcall Calling convention for C fastcall functions
fastcall.msvc | C fastcall functions compiled by Visual C++

fastcall.gcc C fastcall functions compiled by MinGW32

Table 4.7: Supported non-standard calling conventions required on Windows 32-bit platforms.

4.3.5 Type Checking

If argument values of a call do not match the corresponding parameter types of the target function,
the execution of the call can lead to a fatal run-time error. For this reason C compilers perform type
analysis of caller C code before code generation, and abort compilation if an unresolvable argument
type mismatch is detected. represent run-time services for making function calls and, likewise,

they need type information to guarantee system stability.

During an call, the .c function uses the actual types of R arguments to derive the C function
type of the call and which is determined dynamically at call time. When C functions are registered
as part of the initialization of an R package that contains compiled code, type information about the
function’s parameter types can be specified. (See |R Development Core Team) [2012c, Section 5.4 for
details.) This information is later used during a call via .c for type checking. However, when C
functions of an external library are called via .c, there is no source of information available that

provides type information for type checking.

The call signature parameter provides type information about the target C function that .dyncall

uses for three tasks:

o Type Checking: While the arguments are processed, several type checks are performed: the
number of actual arguments and formal parameters need to be equal and the argument values

need to be convertable to C parameter types.

o Value Conversion: If arguments are not of the same type .dyncall checks if the value can be

converted automatically.

e Directing: The argument objects in C data representation are passed to the Generic Dynamic
FFI, which copies the sequence of arguments to CPU registers and on the C call stack, followed
by the execution of an ABI-conformant function call. This procedure is mainly driven by the

call signature.

In the following, we consider type checking and value conversion; directing the function call at low-
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level is discussed in detail in Section and the implementation of .dyncall , written in C, for all
three tasks is discussed in Section [(5.4.6.2

Before making the foreign function call, the .dyncall FFI performs a number of tests on the passed
arguments, based on the signature in order to check whether the number of arguments and type of

the arguments are compatible or can be meaningfully and easily converted to compatible arguments.

A function call is rejected if the passed number of arguments does not match with the expected number
of parameters as specified by the function type signature:

> .dyncall(addr, "d)d")
Error in .dyncall(addr, "d)d") :
Not enough arguments for function-call signature ’d)d’.
> .dyncall(addr, "d)d", 144, 13)
Error in .dyncall(addr, "d)d", 144, 13) :
Too many arguments for signature ’d)d’.

The call is also rejected if the type of an argument is incompatible with parameter type, the call is
also rejected. For example, when a character string is passed to sqrt via .dyncall, this is rejected

as follows:

> .dyncall(addr, "d)d", "some-text")
Error in .dyncall(addr, "d)d", "some-text") :
Argument type mismatch at position 1: expected C double convertable value

Numeric objects in R are represented as vectors that can have length zero. Calls are reject if an
argument to C is an empty vector.

> .dyncall(addr, "d)d", integer(0))

Error in .dyncall(addr, "d)d", ...) :
Argument type mismatch at position 1: expected length greater
Zero.

Furthermore, automatic value conversion is performed if there is a conversion that is feasible without
creating new R memory objects. For example, while the natural counter-part to a double C argument
is given by an R double argument, the user may pass an integer , logical or even raw, such as the

literal integer value 144L suffixed by the L that indicates an integer value:

> .dyncall(addr, "d)d", 144L)
[1]1 12

[13

In summary, the call signature “ d)d ” leads to the following type checks and conversion rules:

e The number of arguments, represented by ..., must be 1.

The type of the argument must be a logical , double, integer Or raw atomic vector.

The length of the vector needs to be at least 1.

If the argument is an R double vector the first element is passed as argument to the C function,

otherwise the value needs to be converted: The first scalar element is extracted from the atomic
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vector and converted to a C double object.

4.3.6 Value Conversion
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Several components of the rdyncall package, namely .dyncall, .pack, .unpack and new.callback ,

incorporate data conversion and mapping strategies between data objects of R and C. The following

table gives an overview of the different facilities and the context in which marshalling/unmarshalling

of R language objects to/from C data objects takes place:

Marshalling (R — C)

‘ Unmarshalling (C — R)

.pack argument

.dyncall arguments

Callback return values

.dyncall return values

.unpack return value

Callback arguments from C

Since C functions and objects have a static type, whereas the type of R language objects is determined

at run-time, we consider differentiated mappings depending on the direction of data conversion. The

mapping between R and C types was decided on the internal data representation of R object types. A

large number of mappings was built-in for C scalar arithmetic and untyped pointer types as illustrated

in Table [4.8] which gives mappings for both directions. Mappings of “R — C” are given in columns

one and two, and “C — R” in columns two and three.

R input type C type R output type
; H
H +
H ~ [oH
: o — ®
— S : £ © —
] ) o Q a =)
0 80 ~ ® ¥ =
- () Q ~ (0] ] <
o0 L 3 o= © P | g
o g o | ® < w B | &b
—~ A AR o ) Z |5
v v v v - - - ‘B’ | _Bool logical
v v v v - - - ‘e’ char integer
v v v - - ‘C’ | unsigned char integer
v v v v - - - ‘s’ i short integer
v v v v - - - ‘S’ | unsigned short integer
v v v v - - - ‘i’ int integer
v v v iV - - - | ‘T" | unsigned int double
v v v v - - - ‘37 i long double
v v iV - - - ‘3> | unsigned long double
v v v v - - - ‘1’ | long long double
v v v v - - - ‘L’ | unsigned long long double
VA VA IRV BV B - - | e float double
VAR RV BV VA . - | ‘@ | double double
v v v v v v v | ‘P i any-type * externalptr
- - - v v v |z charx* character

Table 4.8: Value Conversion between R and C arithmetic and pointer types.
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In the direction “R — C” a dynamic mapping was incorporated where different kinds of R object
types can be passed as argument for a particular C data type that is automatically converted. This
provides for a convenient interface which makes coercion of input R argument types to .dyncall and
.pack unnecessary. For example, the literal R value “123” can be passed as value for C int data
types without the need to convert the argument via as.integer . Furthermore, dynamic mappings are
required for scalar C data types where there exists no counterpart as data representation in R. For
example, R objects can be passed for the target C scalar data type float even though there is no R

atomic vector type that uses this representation for its element type.

Seven R object types are considered as valid R source objects for value conversion to C data objects:

® logical , integer , double and raw vectors can be passed for any supported C scalar arithmetic
type where the first element of the vector is considered as source for value conversion. Vectors
can also be passed for C untyped pointers in that the address of the first element of the vector

is passed as pointer value.

e character vectors can be passed for C untyped or string pointers in that the address of the first

character of the first string element of the vector is passed as pointer value.
e externalptr R objects can be passed for any C pointer object.

e NULL can be passed for any C pointer type to denote a C NULL pointer value.

R complex vectors are omitted since C _Complex data types are currently not supported by the

underlying Generic Dynamic FFI. All atomic vectors need to have a length greater than 0.

In the direction “C — R” a static mapping is used due to the static source type. For each supported
C source type a specific R target type is used that should preserve the C value although it may use
a different representation. This works fine for most C data types but except for 64-bit integer types
because R does not offer a native 64-bit integer data type. Currently C (unsigned) long long data

objects are cast to C double and then passed as R double vectors.

4.3.6.1 Support for typed C Pointers

C pointers need to be handled with caution as outlined in Section In contrast to C arithmetic
scalar objects which are passed by-value and which can be easily converted from/to R without allo-
cation of array objects, C pointers reference memory objects, which can be manipulated by a foreign
function as a side effect. Untyped pointers, denoted by ‘ p’, allow the passing of any atomic vector
object which maybe modified by calls to .dyncall and .pack, typed pointers, such as int* denoted
by ¢ *i’, further constrain the set of possible input atomic vector objects and slightly improvement of
type safety. Table gives an overview of possible mappings between R objects and typed C pointers.

9

The signature ¢ xv’ is an alias for untyped pointers using the prefix pointer type signature notation.

For typed C pointer objects only those R atomic vectors are accepted which comprise a C array data
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R input type C type R output type
: H
P
& 2,
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v v vV i vV v Vo | kv’ 1 voidx externalptr
? ? - v - v v’ | ‘*B’> | _Boolx externalptr
- - v v v v | ‘*¢’ | charx character
- - - vV iV v v | *C’ | unsigned charx externalptr
- - - v - v v | ‘*s’ | shortx externalptr
- - - v - v v | “*S’ | unsigned shortx externalptr
v v - v - v v | %1’ | int* externalptr
v v - v - v v | %I’ | unsigned intx externalptr
? ? - v - v v | %37 | long* externalptr
? ? - v - v v | “*J° | unsigned long* externalptr
- - - v - v v | 41’ | long longx externalptr
- - - v - v v/ | %L’ | unsigned long long* externalptr
- - - v - v v | *%f7 | float* externalptr
- - v iV - v v | *d’ | doublex externalptr

Table 4.9: Passing of typed pointer objects between R and C.
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representation that is compatible with the target C pointer type. As an exception, raw atomic vectors

are always accepted; they are used as generic containers of data. The mapping of _Bool* and long*

is displayed as a “?” as the data representation of the C data type depends on the target platform:

e Bool_ is usually based on int (4 bytes). However, on Mac OS X for the ppc32 architecture, a

smaller sized element type of 1 byte is used for its representation.

e On 64-bit architectures, the 1long is based on int (4 bytes) on Windows, but long long (8
bytes) on all System V-based ABI platforms (Linux, Mac OS X, Solaris and BSDs). For further
discussion of 64-bit platforms see Section and Table

For all the C pointer types where there exists no compatible R atomic vector with a compatible
C array, such as shortx, long longx and float, only raw, externalptr and NULL can be passed.
Pointers to C character data, such as charx , unsigned char* Or signed char* , are accepted by R data

ObjeCtS of type raw and character .

4.4 Wrapper Functions

The call signature makes for a direct and flexible call interface to native compiled functions; it provides
automatic value conversion and type-safety. However, .dyncall calls require at least two parameters

that need to match to ensure type-safety, i.e. the signature character string needs to encode a C
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function type that corresponds with the type of the foreign function that is referenced by the address
parameter. When making calls to several functions of a C API from within a scripting environment,

the proper arrangement of the two parameters for each call can be error prone and burdensome process.

In general wrapper functions are used for providing a call interface to C API functions. As the
arguments of function calls are dynamically typed, wrappers need to check and convert the type of
each argument according to the target function type. But in contrast to wrappers of the static
of R, which need to implement specific type checks and value conversion in C, .dyncall wrappers
are lightweight R objects comprising of a single call object with appropriate parameters address and

signature .

In this section we compare writing R wrappers to C API functions using the[FF] of base and rdyncall.
We also discuss a convenient automation function, named dynbind, for creating bindings to C
functions of a shared library, that works across platforms. We report the results of a performance
benchmark between the of base and rdyncall.

4.4.1 Comparison of Wrapper Function

In this section we compare the creation of a wrapper functions by using the example of the sqrt
function of the standard C math library. Listing [10] gives the hybrid implementation in R and C for

type-safe wrappers using .C, .Call and .External .

Since all wrappers of sqrt need to provide a type-safe interface, they need to ensure that

the number of arguments is 1,

the vector length of the first argument is > 1,

the first value of the vector is converted to a C double object,

the call uses the C function type signature double sqrt (double) , and

the return value of sqrt is passed as a double object.

The R wrapper code of .c is used for type-checking and conversion, while the C wrapper is used to
implement the actual C function call. .c can not be used here directly since it does not have support
for passing C return values and has no support for scalar C argument types; arguments are always

passed as data pointers.

While the .c interface was designed for making direct calls to external C functions, the .cal1 and
.External interfaces represent interfaces for writing R functions in C| which give access to the internal
structure of R arguments and enable the creation of new R objects. In both cases a lightweight R
wrapper code is used to delegate to a corresponding C wrapper code. At first the length of the input ar-

gument is checked via LENGTH(arg) . Then type checking and value conversion is performed via explicit
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FFI R Wrapper C Wrapper
#include <math.h>
sqrt.C <- function(x) void sqrt_C(double* ptr)
{ {
C x <- as.double(x) double x, result;
: length(x) <- min(length(x), 1) x = ptr[0];
.C(sqrt_C, x) [[1]] result = sqrt(x);
} ptr[0] = result;
}

#include <Rinternals.h>
#include <math.h>
SEXP sqrt_Call(SEXP arg)

{
SEXP nv;
double x;
sqrt.Call <- function(x) if (LENGTH(arg) == 0)
-Call -Call(sqrt_Call, x) Rf_error("length(x) is zero.");

nv = PROTECT (coerceVector (arg,REALSXP)) ;
x = REAL(av) [0];

x = sqrt(x);

UNPROTECT (1) ;

return ScalarReal(x);

}

#include <Rinternals.h>
#include <math.h>
SEXP sqrt_Ext (SEXP args)

{
SEXP nv, arg;
double x;
args = CDR(args);
sqrt.External <- function(x) arg = CAR(args);
.External .External (sqrt_Ext, x) if (LENGTH(arg) == 0)

Rf_error("length(x) is zero.");
nv = PROTECT (coerceVector (arg,REALSXP)) ;
x = REAL(nv) [0];
x = sqrt(x);
UNPROTECT (1) ;
return ScalarReal (x);

sqrt.dyncall <- function(...)
.dyncall .dyncall(sqrt, "d)d", ...)

Listing 10: Comparison of FFI Wrapper functions to C sqrt library function.

coersion of the R object arg to a double R object by the C API function coerceVector(arg,REALSXP) of
R. The operation returns a new temporary object, which needs to be protected from garbage collection
for the duration of its use within the C function; this is done by a call to PROTECT . The first double
element is extracted so that it can be passed as argument to a function call to sqrt . A corresponding
call to UNPROTECT is needed to balance the number of PROTECT / UNPROTECT calls. The return value is

placed in a newly created double vector via ScalarReal .

Wrappers for the .External look quite similar to those for .cal1l. The difference of their R to C
calling convention is due to the method of passing arguments. While .call passes the S-Expression
of each argument separately, the .External call passes a single S-Expression which gives access to the
whole call object, a LISP-like pairlist that contains all arguments in a list and has its target function
name as first element. In the case of .External the arguments are accessible via traversing of the

pairlist using a combination of calls to ¢cDR and CAR macros.
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In contrast to the required C code needed for .c, .Call or .External , wrappers for .dyncall are
very compact and simply wrap the .dyncall call using the correct target address and a matching

signature without any C code.

4.4.2 Automation of Wrapper Function Creation

.dyncall significantly simplifies the writing of wrapper functions in comparison to the existing FFI
facility in R such as .c. However, the development of bindings for a complete set of C API functions
can be still a complex task; for example, the C of the SDL library comprises more than 200

functions.

The rdyncall package includes an automation function, named dynbind , that uses the DynPort
encoding format for library signatures and the toolchain that were discussed in Section and

respectively.

4.4.2.1 Interface

The dynbind interface is given below (a few advanced parameters were omitted):
dynbind(libnames, signature, envir=parent.frame(), callmode="default")

libnames gives a list of short names which is passed to dynfind to load a native library across platforms,
as described in Section [4.2.21

The signature represents a sequence of C function signatures, as described in Section [3.7.3.6 The

syntax format is as follows:

9

(name) ‘C [ (argument-type)... | )’ (return-type) ‘;
After the library is located and loaded via dynfind, dynbind processes the signature. For each C
function’s name <nAME> and call signature <SIGNATURE> , the C function’s address <ADDR> is resolved
via .dynsym and a corresponding R wrapper function is created using the following template:

<NAME> <-function (...) .dyncall.<CALLMODE> ( <ADDR> , <SIGNATURE>, ... )

Note the <CALLMODE> is specified as an argument to dynbind . The wrapper objects are assigned in the

R environment given by envir with the name of the C function.

Example Consider an R application that uses two C functions of the SDL library for the initialization

and setup of a graphics output window:
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int SDL_Init (Uint32 flags);
SDL_Surface * SDL_SetVideoMode(int width, int height, int bpp, Uint32 flags);

The following function call to dynbind can be used for the complete task for loading the SDL library
and creation of two R wrappers to corresponding C API functions:

> dynbind(c("SDL","SDL-1.2","SDL-1.2.50.0"), "

SDL_Init(I)i;

SDL_SetVideoMode (iiiI) *<SDL_Surface>;

||)

It is assumed that the SDL library is installed on the system; see Section for details. If the

search was successful, two new R functions, namely SDL_Init and SDL_SetVideoMode , are installed in

the global environment:

> SDL_Init
function (...)
.dyncall.default(<pointer: 0x55562c2>, "I)i", ...)

> SDL_SetVideoMode
function (...)
.dyncall.default(<pointer: 0x555129e>, "iiiI)*<SDL_Surface>", ...)

Note that external pointer is directly placed as an argument to the .dyncall call so that no symbolic
name lookup is performed. Since the C API is available to R using a similar name, the syntax of the
R user code is very similar to that of C for using the SDL C API as Listing [11] illustrates. Note that
the symbolic constants need to be specified in R according to the C API headers of SDL. In Section
H we discuss the dynport function and DynPort files which use dynbind for C functions but also

provides for mapping of symbolic constants and data types.

#include "SDL.h"
int main(int argc, charx argv[]) {

SDL_Surface * surface;

SDL_Init(SDL_INIT_VIDEO)

surface = SDL_SetVideoMode (640,480,32,SDL_0OPENGL)
}

SDL_INIT_VIDEO <- 0x00000020
SDL_OPENGL <- 0x00000002

SDL_Init(SDL_INIT_VIDEQ)
surface <- SDL_SetVideoMode (640,480,32,SDL_0OPENGL)

Listing 11: C and R: Using SDL for opening an OpenGL window.

4.4.3 Implementation

The function dynbind was implemented in R by using text processing and meta programming functions
for manipulation of language objects. We give a detailed description of the implementation using a
slightly simplified version but that uses the core steps for automation of R wrapper functions from
DynPort signatures. We give the implementation in successive steps. For each step a brief description

is given, followed by the implementation in R and a detailed explanation.

1. The function definition begins as follows:

dynbind <- function(libnames, signature, envir=parent.frame()) {

libnames specifies the C library, signature specifies a sequence of function signatures given as
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a character string and envir specifies an environment for storing created wrapper functions.

2. The 1libnames argument is passed to dynfind to load the shared library:

1lib<-dynfind(libnames)

3. The text string signature is converted to a list of character vectors with two elements (name

and signature):

sigtab <- gsub("[ \n\t]*","", signature) # remove white spaces and new line
sigtab <- strsplit(sigtab, ";")[[1]] # split functions at ’;’
sigtab <- strsplit(sigtab, "\\(") # split name/call signature at °(’

White space and new line characters are removed from the signature string, so that all function
signatures are separated by a ‘;’. gsub is used for pattern-based text substitution. The first
argument specifies the pattern in regular expression notation; "[ \n\tl*" denotes character
sequences of white space, tabulator codes and new lines. The text is then separated by *;’
characters using strsplit. The result is returned as a list with a string vector of function
signatures. strsplit is applied a second time to split each string in the vector by ‘(’ to separate
name from call signature. Notice, the character ‘C has to be escaped via "\\(". As a result, a

list of character string vectors with two elements is returned.

4. The lists of names and signatures are processed. In each iteration step the name and signature

is stored in the local variables name and signature for the next wrapper to create.
for (i in seq(along=sigtab)) {

name <- sigtab[[i]][[11]
signature <- sigtab[[i]][[2]]

(a) The C function name is resolved to its address using .dynsym :

address<- .dynsym( 1ib, name )

(b) All parameters for .dyncall are now available for the creation of a wrapper function:

call <- substitute(
.dyncall.default(X, Y,...),

list(
X = address,
Y = signature
)

)
The call represents a call object, such as the following call expression:

.dyncall.default(<pointer: 0x15711bd0>, "I)i", ...)

substitute is a powerful function for manipulation of R language objects. It receives
two arguments, namely an expression and a list of named elements. Symbols within the
expression are substituted by matching list elements. Note that the first argument to

substitute is not evaluated; it is a template for the returned expression.

(¢) An R function is created and its body is assigned the call object.
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wrapper <- function(...) { }
body (wrapper) <- call

First, we create a ‘dummy’ function in order to apply body()<- , which assigns a new body
of a function. Note that the formal argument ... is needed for the wrapper to pass all

arguments to the inner call object.

(d) Finally, the wrapper function wrapper is assigned to an environment envir .

assign( name, wrapper, envir=envir )

The envir parameter defaults to the environment of the caller of dynbind i.e. when dynbind
is called from the interpreter, the environment returned by parent.frame() is the global

environment.

This implementation was done purely in R and it emphasises the advantage of a simple text-based
encoding format for C type information, which can be utilized in different contexts. In our case, we
used the function signature for the creation of wrapper functions; one part of the signature is also used

for resolving symbols via .dynsym and the other part is incorporated as a call signature for .dyncall .

4.4.4 Performance Benchmark

In this section we give a summary of a small performance benchmark to compare the timings needed
for calling dummy C functions with one, two, four and eight arguments using wrappers implemented

by means of .C, .Call, External and .dyncall .

The dummy C functions t1,t2,t3 and t4 are defined as follows:

void t1(int x) { }

void t2(int x, int y) { }

void t4(int x, int y, int z, int w) { }

void t8(int x, int y, int z, int w, int r, int s, int t, int u) { }

For each test the call is repeated 10° times in a loop to obtain results on a per second scale.

Test2.C <- function(N) for (i in 1:1076) { Wrapper2.C(1,2) }
Test2.Call <- function(N) for (i in 1:107°6) { Wrapper2.Call(i,2) } }
Test2.External <- function(N) for (i in 1:1076) { Wrapper2.External(1,2) } }
Test2.dyncall <- function(N) for (i in 1:1076) { Wrapper2.dyncall(1,2) }}

In each test R numeric argument values are passed that need to be coerced to an integer vector in

R or to cast to int scalars in C somewhere along the call path to the final target C function.

Our results are illustrated in Figure [4.7] as a bar chart and a table of CPU user time in seconds.
These show the low performance of .c; we can assume this is due to the use of interpreted R code for
type-checking and value conversion. While the performance of .call and .External are nearly equal,
.dyncall takes about twice of CPU user time. However, this overhead shows be assessed in terms of

the time-savings for development due to automation of bindings.
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Figure 4.7: Result of FFI benchmark performance test: Bar chart (left-hand panel) and table of CPU

user time in seconds for 10% function calls.

4.5 Data-level Interoperability

In this section we discuss a component of the rdyncall package for handling foreign C struct and

union data objects from within R. The development was motivated by the following example.

Example SDL-based applications run a sequence of top-level tasks in a main loop, such as generating
graphics output and processing input events. Listing[12| gives a typical main loop skeleton, written in

C and also given in R using the facility of rdyncall for handling C union and struct data types.

During event processing, the SDL function
int SDL_PollEvent (SDL_Event* event)

is called successively in a loop to read events from the event input queue of SDL. In each round a data
record of event information is written to user memory specified by the pointer argument event . The
return value of the function indicates whether an event was successfully written (value of 1) or the
queue is empty (value of 0) so that the event-processing loop can break. Typically a single C object

of type SDL_Event is allocated and then reused for each subsequent calls to SDL_PollEvent .

Records are further processed via read operations of member fields of the record. The C data type
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#include "SDL.h" dynport (SDL)
#include "SDL_opengl.h" dynport (GL)
int main() { main <- function() {
int quit = 0; // application state variables quit <- FALSE
SDL_Event e; // allocate event data storage e <- new.struct(SDL_Event)
// Init SDL: # Init SDL:
SDL_Init(SDL_INIT_VIDEO|SDL_INIT_JOYSTICK) SDL_Init (SDL_INIT_VIDEO+SDL_INIT_JOYSTICK)
SDL_SetVideoMode (640,480,32,SDL_0OPENGL) SDL_SetVideoMode (640,480,32,SDL_0OPENGL)
SDL_EnableUNICODE(1) SDL_EnableUNICODE(1)
// Main loop: # Main loop:
while(!quit) { while(!quit) {
// Update display: # Update display:
glClear (GL_COLOR_BUFFER_BIT) glClear (GL_COLOR_BUFFER_BIT) ;
SDL_GL_SwapBuffers() ; SDL_GL_SwapBuffers() ;
// Process events: # Process events:
while(SDL_PollEvent (&e)) { while(SDL_PollEvent(e)) {
switch(e.type) {
case SDL_QUIT: // quit if (e$type == SDL_QUIT) {
quit = 1; break; quit = 1
case SDL_MOUSEBUTTONDOWN: // button pressed } else if (e$type == SDL_MOUSEBUTTONDOWN) {
printf ("button %d at %d,%d\n", cat("button", e$button$button,
e.button.button, e.button.x, e.button.y); " at ",e$button$x,",",e$button$y,"\n");
break; }
case SDL_MOUSEMOTION: // mouse motion else if (e$type == SDL_MOUSEMOTION) {
printf("pos: %d,%d\n",e.motion.x,e.motion.y); cat("pos: ",e$motion$x,",",e$motiondy,"\n");
break; }
case SDL_KEYDOWN: // key pressed else if (e$type == SDL_KEYDOWN) {
printf("unicode: %d\n",e.key.keysym.unicode) ; cat("unicode: ",e$key$keysym$unicode,"\n");
break; }
case SDL_JOYBUTTONDOWN: // joystick events else if (e$type == SDL_JOYBUTTONDOWN) { }
case SDL_JOYAXISMOTION: else if (e$type == SDL_JOYAXISMOTION) { }
case SDL_JOYBALLMOTION: else if (e$type == SDL_JOYBALLMOTION) { }
case SDL_JOYHATMOTION: else if (e$type == SDL_JOYHATMOTION) { }
}
} }
} }
} }

Listing 12: C and R: SDL Event Handling.

SDL_Event is a user-defined C union comprising overlays of event-specific C struct members. Figure
gives a graphical illustration of this data structure; note that the objects left to the top-level
SDL_Event are all struct members, some of which are nested. All struct members consist of a
common header, similar to S-Expressions. The header comprises a single integer-based type identifier,
which is also accessible as a top-level member field of the union, named type , which indicates the type
of the event. Corresponding symbolic constants are defined in the C API of SDL such as SDL_QUIT
for close events, SDL_MOUSEBUTTONDOWN for mouse button events, and so on. After the event type is
known, an event-type specific member of the union is accessed to get detailed event information, e.g.
when e.type equals to SDL_MOUSEBUTTONDOWN ; subsequent code selects the member field button , which
is of C struct type SDL_MouseButtonEvent , in order to accessed the button number ( button.button ) and

coordinates ( button.x and button.y ) of the pointing device.

As shown in Listing [12| the processing is structured using a block of conditional cases where each one
handles a specific event type. The processing of event data is done consistently via access to member
fields by symbolic name. So the [FFI| of rdyncall was extended by a framework for handling foreign
C composite data types via syntactic sugar in R, such as accessing foreign member fields by symbolic

field names.
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Figure 4.8: Overview of union SDL_Event C data type for processing user-interface events.

4.5.1 Interface

Our suggested R interface for symbolic access to members of C struct and union data objects leans

on the corresponding C syntax by using the following syntax mapping between C and R:

C Syntax | R Syntax
Read value = pointer->member value <-pointer$member
“ value = reference.member value <-reference$member
Wit pointer->member = value @ pointer$member <-value
e reference.member = value reference$member <-value

The syntactic sugar for the required R syntax can be achieved via S3 classes and method overloads
for the operators $ (read) and $<- (write). For this purpose a new S3 class, named “ struct ”, was
defined that is used as a prozy for pointers or references to C composite data types. Two S3 methods

are defined for the implementation of read and write operations on member fields:

$.struct <-function(x, index) { ... }

$<-.struct <-function(x, index, value) { ... }

The R proxy object x is represented either as an external pointer or as an atomic vector; the latter
is used for user-allocated objects that is managed by the R garbage collector; see Section 4.5.4.1| for
details. By convention of the R syntax of the $ and $<- operators, the index is passed as a character

string. So in this context it gives the symbolic name of the member field of a foreign C data type.

In general read/write operations at member-field level are carried out by value conversion of a value

from/to the member field’s type and address. The address of a member object can be decomposed as
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address = base + offset

where base refers to the address of the composite object, given by x, and offset is a constant value
specific to the particular member of a type. Thus the offset can be shared across all objects, and
together with the type of x, it is indirectly given by index .

[4

The mapping between a proxy x to the underlying type is achieved via an attribute “ struct ” that is

attached to the proxy; it gives the type name.

Since the offset needs to be determined once per data type, the use of a helper R object was utilized.
For each struct and union data type that needs to be supported by this framework, the data type is
registered and a corresponding R helper object is created, which comprises total sizes and alignment

properties as well as names, types and computed offsets of member fields.

4.5.2 Registration of C data types

So far we utilized type signatures for the specification of function type information. Now we use
signatures for the registration of C data types; we introduced a DynPort encoding for struct and
union data types in Section [3.7.3.3] The format was defined as follows (in text pattern notation):

(struct-name) ‘{’ (field-types) ‘}’ (field-names) *;’ ...

(union-name) ‘|’ (field-types) ‘} (field-names) *;’
The rdyncall package contains two parser functions that processes data type signatures and installs

type information objects of S3 class TypeInfo as a side effect.

parseStructInfos(sigs, envir=parent.frame())

parseUnionInfos (sigs, envir=parent.frame())

sigs is a character string that comprises a batch of data type signatures. For each signature, a
corresponding TypeInfo object is created and assigned in the environment given by envir with the

same name as given by the data type signature (e.g. the (struct-name) or (union-name), respectively).

The mapping between member names and offsets is done via an R data frame object, which comprises
two columns, namely type and offset, indexed by member names as row names. The offset is a
ABI specific value that is computed and cached when we create this object. The algorithm for the
computation is described in Section

4.5.3 Implementation

The implementation of $.struct and $<-.struct involves a sequence of steps for the computation of

the base and offset for a given proxy x and symbolic member field name index :
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1. The C type name of x is given by the attribute “struct” of x.

2. Type information about the composite C data type “name” is available from a corresponding

TypeInfo S3 object, which needs to be registered via parseStructInfos and parseUnionInfos .

3. The TypeInfo object comprises a table of member field offsets and types which can be obtained

by the member field’s name, given by index .

4. The base address is provided by x, i.e. the value of the external pointer or the start address of

the first element of an atomic vector object.

After the parameters base, offset and type have been determined the read/write operation can be per-
formed using pack and unpack , which are discussed in the following section. Note that the difference
between precomputation and handling of unions and structs is marginal; union member fields have a

fixed offset at 0.

4.5.4 Low-level Interface

The low-level interface comprises two functions: .pack for packing R values to memory locations using
a C data representation (marshalling), and .unpack for unpacking C values from memory locations to

R values (unmarshalling). The interface is as follows:

value <-.unpack(x, offset, sigchar)

.pack (x, offset, sigchar, value)

.unpack reads a C value from memory and returns the value converted to a scalar R value. .pack
converts an R value to a C data type representation and writes the data to memory. The C data
type is indicated by the sigchar character string that consists of a single character using the type
signature scheme giving in Table The effective memory location for reading and writing data is
computed by x and offset , where x specifies a base memory address and offset represents a byte
offset to be added to or substracted from that base. x can be either an external pointer, to refer
to external memory, or an atomic R vector. In the later case one operates on the internal R vector
storage in-place using the start address of the data area skipping header information including the

S-Expression header and vector length field of the object x .

The two functions .pack and .unpack represent very powerful operations that perform pointer opera-
tions at C level from within R. But they are also very dangerous since they can give access to internal
R memory and, if wrongly used, corrupt the management structures of R and other components of the
run-time environment. The usual call-by-value copying semantics are not given. For example when
passing a numeric vector as x to .pack, the object can have been modified when the function call

returns. But this also gives great flexibility when working with C[APIk that require user code to work
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with C data objects. The value passed in from R can be any atomic vector type; it is converted to

the C data type according to the given signature and described in detail in Section

Example We give an example in which .pack and .unpack can be very helpful to manipulate raw
R memory in order to make use of certain API functions that would otherwise be inaccessible.

The .dyncall FFI offers flexible scalar conversion of values for arguments but the support for C
functions that receive pointers to C arrays is limited. Given that a C function expects that the array
of a scalar C type initialized by user code, it is not clear if this can be accomplished directly in R with
the given means provided by .dyncall. As long as the C array type is compatible with an R atomic
vector type (where the R implementation matches with that of the underlying C array type), we can
initialize an object of that type in R and then pass it as an argument i.e. we have built-in support for
C arrays of type bool, char, int, double arrays but no support for short and float .

Since .pack and .unpack also offer flexible conversion of R scalar values as given by .dyncall, but
for reading and writing within memory chunks, we can create foreign data types that do not exist in
R. That said, we can add virtual data types to this facility such as an array for 16-bit short values
and write values passed in from R as numeric or integer values. 16-bit data buffers of short signed

integer are often used for data exchange with audio output components.

We give a converter function as.short that transforms a numeric vector (with values ranging from -1

and 1) to a buffer of 16-bit signed integer values stored as in a raw vector using the .pack function:

as.short <- function(x)
{
n <- length(x)
r <- raw(2#n)
for(i in 1:length(x)) {
.pack(r, (i-1)*2, ’s’, x[[i]1]*2715)
}
return(r)

}

4.5.4.1 Allocation of C data types

The framework includes a utility function for allocation of C data type objects in R memory:

dataobj <-new.struct(name)

The function new.struct allocates a raw vector whose length equals that of the C data type given
by name. name can be a character string, a type information object, or if used within the same
environment as given by envir , in literal form (where it refers symbolically to a type information

object).

The returned raw vector dataobj is tagged with S3 class of ’struct’ and a named attribute ’>struct’

which specifies the C data type.
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Example SDL defines a data type structure for the specfication of colors as given in the top-left
panel of Listing [T3] In the bottom-left panel we give the steps in R to define the C data type, allocate
an object in R memory, read/write fields and dump the object. The right-hand panel gives the contents

of run-time type information about the data type given by a TypeInfo object.

// Definition of C composite data type # Dump of R Type Information object
typedef struct SDL_Color { > SDL_Color
Uint8 r; $name
Uint8 g; [1] "SDL_Color"
Uint8 b;
Uint8 unused; $type
} SDL_Color; [1] "struct"
> # Definition of C composite data type in R: .
> parseStructInfos("SDL_Color{CCCC}r g b unused ;") ?i;zz
> # Allocation
> x <- new.struct(SDL_Color) .
> # Write to fields sﬁﬁlfn
> x$r <- 60; x$g <- 80; x$b <- 100
> .
ke
red 60 [1] NA
> # Print C data object
> x $fields
struct SDL_Color { RS G
r :60 r ¢ 0
: o R
b :100
unused :0 R C E
¥ $signature
[1] NA

attr(,"class")
[1] "typeinfo"

Listing 13: R Run-time Type Information on C Composite Data Types.

4.6 Callbacks

Callbacks represent a second form of function call interaction between user code and a library. In
contrast to library function calls, callbacks are performed in the opposite direction; from library
code to user-defined functions. Callbacks offer library frameworks that enable the user to decide and

implement a certain behaviour that should be activated upon a library-specific event.

A callback function is a user-defined C function that is registered to a library for later execution from
within the execution context and by decision of the library. So it is called passively due to an event

decided by library code.

If callbacks are to be utilized from within a scripting language via a [FF]] it is required that scripting
functions can be used where usually C function pointers are passed to library functions and the
scripting function can be activated as of a function call from C. Therefore we added a facility for

wrapping user-defined R functions as C function pointers.
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4.6.1 Interface

The interface of new.callback is as follows:
new.callback( signature, fun , envir = new.env() )

new.callback wraps the R function fun as a C function pointer that can be called from C code. The
type of the C callback function needs to be specified by a call signature, similarly to .dyncall , given
by signature . new.callback returns an external pointer that represents a C function pointer. The
underlying C function object is generated synthetically and works as an adapter that can be passed as
argument to other foreign C functions for use as a C function pointer. During a callback from C, the
C arguments are converted to R objects as specified by the call signature. The R function is called
and evaluated within the environment given by envir . On return of the R function its return value
is converted to a C value and control flow is passed back to foreign C code where the callback was

originated.

Example The standard C library contains a number of sorting and searching algorithms. Although
the library is compiled to native code, the algorithms offer a generic implementation design that allows
to sort and search arrays of user-defined data types due to the use of callbacks. Any array of elements
with a user-defined data type can be sorted or searched by these functions given that the user-defined

data type

e is of byte-size granularity,
e has a fixed-size,

e and can be compared by a function that the user has to implement.

Among the sorting algorithms that are supported by the standard C library there is the quick sort

algorithm provided as the C function gsort and declared as follows:

void gsort(void *array, size_t len, size_t el_size, int (*compar) (const void*, const voidx));

The function has four parameters: array is a pointer to an array of values, len gives the length of the
array, el_size specifies the byte size of the element type and compar is a C callback function pointer

for comparing two elements.

gsort uses two operations, namely compare and swap, to offer a generic implementation that works
with user-defined data types as illustrated in Figure[4.9] The swap operation works on memory chunks,
specified by the first three parameters array, len and el_size . In order to determine equality of two

elements as a criteria to swap the order, the algorithm calls the user-defined callback function compar
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Figure 4.9: Generic quick-sort algorithm using C callbacks.

where the return value indicates the order, such as less-than (< 0), equal-to (= 0) or greater-than
(> 0).
Listing gives an example for sorting rational numbers using gsort from with in C and using

new.callback in R.

#include <stdlib.h> library(rdyncall)
typedef dynbind(c("msvert","c","c.s0.6"),"gsort (piip)v;")
struct { int nom; int denom; }
rational; mycmp <- function(pl,p2) {
a_nom <- .unpack(p1,0,"i")
int my_cmp(const void #*pl, const void *p2) a_den <- .unpack(pl,4,"i")
va <- a_nom / a_den
rational* ra = (rational*) pi; b_nom <- .unpack(p2,0,"i")
rational* rb = (ratiomal*) p2; b_den <- .unpack(p2,4,"i")
double va = ((double)ra->nom)/((double)ra->denom); vb <- b_nom / b_den
double vb = ((double)ra->nom)/((double)ba->denom) ; if (va<vb) return (-1) else if (va>vb) (1) else O
return (va<vb) ? -1 : (va>vb) ? 1 : 0; }

}
mycmp <- new.callback("pp)i", mycmp)

int main() {

rational values[4] = { main <- function() {

{6,8}, {4,5}, {1,2}, {3,4} values <- as.integer(c(6,8,4,5,1,2,3,4))
I8 gsort(values, 4, 16, mycmp)
size_t cnt = ¥

sizeof (array)/sizeof (array[0]) ;
size_t elsize = sizeof(rational);

gsort( values, cnt, elsize, &my_cmp );
return O;

Listing 14: C and R: Using callbacks with C gsort.

We discuss the R implementation in more detail. As a prequisite we need to bind the C gsort function:

> dynbind(c("msvert","c","c.s0.6"), "gsort(piip)v")
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First, we define an R function that compares two rational numbers; the arguments are always passed

as pointers to an array of two int numbers. The callback argument of sqrt has the following type:
int (*compare_fn) (void * pa, void * pb);

We define a compare function in R with two parameters; both parameters will also be of type
const void* which is passed as an external pointer.
> f <- function(pa,pb) {

an <- .unpack(pa,0,"i")

ad <- .unpack(pa,4,"i")

a <- an / ad

bn <- .unpack(pb,0,"i")

bd <- .unpack(pb,4,"i")

b <- bn / bd

if (a==b) return(0)

else if (a<b) return (-1)
else return(1)

Note that we need to extract the rational values from C pointer arguments. Both pointers, pa and pb,
are represented as external pointer objects to an object comprising two C int objects, the nominal
and the denominal component. Thus we use .unpack to extract the nominal and denominal part of
each rational number, followed by a division to create a value. Note that we do not have to coerce the
type although it is integer ; R’s division operator automatically converts operands to double. As a
last step we compare both values and return the result as an indicator of 0 (a = b), -1 (a < b) and 1
(a > b). The return value indicates to gsort whether the two elements need to be swapped. The R

function is now wrapped as a callable C function object via:

> callback <- new.callback("pp)i", f)

Note that we use ‘ p ’ as an untyped pointer here. Finally we call gsort using the callback as a forth

argument. As input vector we use the following sequence of rational numbers: g, %, %, %. We encode
them as a numeric vector.

> values <- as.integer(6,8,4,5,1,2,3,4)
> gsort(values, length(values)/2, 16, callback)

After the function call returns, the values have been sorted in-place. An output as a matrix is given

next:

> print(as.matrix(values,nrow=2))
[,11 [,21 [,3]1 [,4]

[1,] 1 6 3 4

[2,] 2 8 4 5

Example In the second example callbacks are used for parsing XML documents.

There are two basic frameworks for processing of XML documents:
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1. XML documents are parsed as a node tree representation in memory.

2. XML documents are parsed as a stream of data; for each identified type an event is notfied to

user-supplied callback functions.

While the first variant is ideal for traversing in a tree data structure, the required amount of memory
depends on the size of the document. The second variant has no large memory requirements. In order

to define a processing application of an XML document the user has to define callback functions.

The second variant is supported by the expat C library (Clark, 2007)). Users specify callback handlers
for a set of XML processing events, such as the start tag or the end tag of an XML node. During
event document processing event-data, such as the XML tag name and attribute maps, are passed by

the parser to the callbacks.

For this example we use three functions of the expat C API, which we first need to bind via dynbind :

dynbind(c("expat","expat.so.1"),"

XML_ParserCreate(Z)p;

XML_SetElementHandler (ppp)v;

XML_Parse(pZii)i;

i)

Then a parser object needs to be created. The constructor function XML_ParserCreate is declared

as follows:

XML_Parser XML_ParserCreate(const XML_Char* encoding)

If encoding is non- NULL , the given C string specifies the encoding to use for the document. Otherwise
the document’s encoding declaration is used. For this example, a NULL is passed using the nil R object

NULL .

p <- XML_ParserCreate (NULL)

The returned object is a pointer that represents a handle to the newly created parser object. Now the
parser is configured by registration of callback functions. For handling of processing events, such as
XML tag open and close elements, the following two callback functions are defined as follows:

typedef void (*XML_StartElementHandler) (void *userData, const XML_Char *name, const XML_Char **atts);
typedef void (*XML_EndElementHandler) (void #*userData, const XML_Char #*name);

The first argument, userData , is used for passing application-specific data. The value can be bound
with a parser object; for this example it can be ignored. Event data, such as the XML tag name, is
transferred via name as a C string; note XML_Char is a type alias to char . For the callback signatures
we can use the object type signature ¢ z’, which indicates, that the argument should be automatically

converted as a character object in R. Two R functions are defined that should be used as callbacks.
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startFun<-function(user,tag,attr) {
cat("Start tag:", tag, "\n")

}

S<-new.callback("pZp)v",startFun)

endFun<-function(user,tag) {
cat("End tag:", tag, "\n")

}

E<-new.callback("pZ)v",endfun)

XML_SetElementHandler(p,S,E)

Now the parser can be tested on an XML document.

d <- "<hello><world></world></hello>"
XML_Parse(p, d, nchar(d), 1)

The following output is generated:

Start tag: hello
Start tag: world
End tag: world
End tag: hello

/* C: */ # R:

#include <ezpat.h> dynport (expat)

void S(void* userData, startFun<-function(user,tag,attr) {
const XML_Char *name, cat("Start tag:", tag, "\n")
const XML_Char **attrs) { }
printf ("onStart: %s\n", name); S<-new.callback("pZp)v",startFun)

¥

void E(void* userData, endFun<-function(user,tag) {
const XML_Char #*name) { cat("End tag:", tag, "\n")
print ("onStop: %s\n", name); }

3 E<-new.callback("pZ)v",endfun)

int main() {
XML_Parser p;

char* d; main <- function() {
p = XML_ParserCreate(NULL) ; p <- XML_ParserCreate(NULL)
XML_SetElementHandler(p,S,E); XML_SetElementHandler(p,S,E)
d ="<hello><world></world></hello>"; d <- "<hello><world></world></hello>"
XML_Parse(p,d,sizeof(d),1); XML_Parse(p, d, nchar(d), 1)

¥ ¥

Listing 15: C and R: Using callbacks with Expat XML Parser C library.

In contrast to this facility, other for R, such as the package base or Rffi (Lang, |2011)), do not
support callbacks. The callback support is based on the dyncallback C library, which is discussed
in Section In Section we discuss the application for the callback facility of rdyncall. Note
that the supported set of argument and return types is equal to that of .dyncall . However, there are

several missing platform ports of dyncallback.

4.7 Dynamic R Bindings to C Libraries

In this section we discuss a high-level interface for loading dynamic R bindings to C So far we
have considered functions of the rdyncall package for the creation of R wrapper functions to foreign

C functions and helper objects for working with foreign C run-time data objects. Now these functions
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DynPort Library /Description Functions { Constants Data Types
Struct/Union

GL OpenGL 337 3253 -

GLU OpenGL Utility 59 154 -

glew OpenGL Extension Wrangler 1465 - -

gl3 OpenGL Version 3 324 838 1

SDL Simple Directmedia library 203 465 51

SDL_image | Pixel image loaders 29 - -

SDL_mixer | Music player & loaders 63 12 -

SDL_ttf Font format loaders 35 9 -

SDL_net Network programming 34 5 3

expat XML parsing(Clarkl 2007]) 65 70 -

CUDA GPU programming 387 665 84

OpenCL GPU programming 78 260 10

stdio Standard I/O 76 3 -

R R library 238 700 27

Table 4.10: Table of DynPorts: R Bindings to C Libraries as of rdyncall 0.7.4.

are incorporated into a data-driven component for management of a number of R bindings to C APIs.

For each supported C[API|a DynPort file is defined which comprises C[AP]]information encoded using
the DynPort type signatures. In the current version DynPort files are written as R scripts. They
comprise function calls to services of the rdyncall package, such as a call to dynbind for the creation
of wrapper functions and calls to parseStructInfos and parseUnionInfos for the registration of C data
type information, and also assignment statements for defining symbolic constants. As a binding is
specified by text-based DynPort signatures, the parser framework that was discussed in Section (3.8
can be used for automation of DynPort files from C[API] header files. Table gives an overview of
cross-platform R bindings to C currently available within the package.

4.7.1 Interface

The interface for loading a DynPort resemblance that for loading R packages via library(pkgname) or

require (pkgname) :
dynport (portname)

portname is a character string or literal value that specifies the name of a DynPort file. The file
is searched for within a repository directory, which is located relative to the package installation of
rdyncall using the file path pattern “dynports/(name).R”. The DynPort file is evaluated using the

base R function sys.source .

In R environment objects are used for managing named objects. When the R interpreter is evaluating

an expression and it encounters a symbolic name, the value for that name is searched for within a
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number of environments. It first searches for a named object in the local and enclosing environments
of the function of the expression in lexical scope. Then the interpreter searches within a sequence of

environments, which are stored in the ‘search path’.

As each DynPort file is evaluated in a new environment, the bindings are organized in isolated envi-
ronment objects. By attaching the environment object to the search path, the wrapper components

to a C[AP]I become available at global lexical scope.

Example The following example illustrates the resemblance of this mechanism by comparing the

interface of the R package loader and the DynPort loader.

After loading an R package via library(pkg) the effect becomes visible via search() , which gives the
current search path:

> library(lattice)
> search()

[1] ".GlobalEnv" "package:lattice"  "tools:RGUI"

1o g
[4] "package:stats" "package:graphics" '"package:grDevices"
[7]1 "package:utils" "package:datasets" '"package:methods"
[10] "Autoloads" "package:base"

As a result of loading an R package, a public environment is created and inserted into the search
path at the second index. The first index is reserved for the global workspace environment, named

.GlobalEnv , so that user-defined objects that name clash with object of packages are given precedence.

The same mechanism is used for managing dynamic R bindings in rdyncall. As a result of loading a
DynPort, an environment is created with R wrapper objects to C API components. The environment
object is attached to the search path at index two.

> library(rdyncall)
> dynport (SDL)
> search()

[1] ".GlobalEnv" "package:SDL" "package:rdyncall"
[4] "tools:RGUI" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:datasets"
[10] "package:methods" "Autoloads" "package:base"

4.7.2 Implementation

We take closer a look at the content of a DynPort environment, such as the one of SDL library after

loading via dynport (SDL) :

> str(1s(2))
chr [1:651] "AUDIO_S16" "AUDIO_S16LSB" ...
> table(sapply(1s(2), function(x) typeof(get(x,2)) ))
closure double list
201 416 34

The output of str(1s(2)) reveals that the SDL DynPort consists of 651 R objects that are of three
different R object types. Table gives an overview of the three object types, their corresponding C
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APT element and their implementation, based on a specific DynPort signature encoding and rdyncall

package function or statement form.

R Wrapper | C API Element Signature i R Implementation
closure Function declarations library dynbind

struct definitions struct parseStructInfos
list

union definitions union parseUnionInfos

#define NAME REPLACEMENT | value Assignments:
double

enum { NAME = VALUE, .. } | value (name) = (value)

Table 4.11: Implementation of DynPort in R for each different category of C API Element; the

signature format is given and the R implementation function or expression.

DynPort files, distributed with the package, are generated by means of the automation framework

described in Section An excerpt of the SDL DynPort R script is given in Listing

4.7.3 Installation of run-time libraries

As a prequisite to working with DynPort bindings, the shared library needs to be installed on a system.
If a shared library is not found, dynport gives the following message:

dynbind error: Unable to find shared library ’SDL’.

For details how to install dynport shared libs, type: ?’rdyncall-demos’ might help.

If there is no information about your 0S, consult the projects page how to build and install the shared library
for your operating-system.

Make sure the shared library can be found at the default system places
or adjust environment variables (e.g. %PATH/, or $LD_LIBRARY_PATH).

Currently there is work in progress to incorporate automatic installation of shared libraries by using
an abstraction layer to package management systems. For now several installation procedures are
collected in a manual page accessible via ?‘rdyncall-demos¢ . For OpenGL and SDL the platform-specific

installation procedure is briefly summarized in the following paragraph.

Table gives an overview of the various installation procedures and commands to install pre-

compiled packages for different operating systems.

OpenGL is usually part of the operating system; it is pre-installed on Microsoft Windows and Apple Mac
OS X operating systems. Depending on the Linux Distribution, OpenGL might already been installed;
otherwise it is available as part of desktop environments or explicitly named as GL or also as MesaEI.
Usually BSD systems require explicit installation of OpenGL. SDL is usually not pre-installed but often

available through package management systems or via explicit download and manual installation.

2Mesa is an open-source implementation of OpenGL.
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OS/Distribution Installation

Mac OS X Download SDL-1.2.15.dmg, mount and copy SDL.framework to
/Library/Frameworks.

Windows 32-bit Download SDL-1.2.15-win32.zip, unpack and add directory to
%PATHY.

Windows 64-bit Download SDL-1.2.15-win32-x64.zip, unpack and add direc-

tory to %PATHY.

Debian Linux 6 $ aptitude install 1libsdll.2debian
Fedora Linux 13/14 | $ pkcon install mesa-1ibGL SDL
Ubuntu 12.04 LTS $ apt-get install libsdlil.2deban
ArchLinux 2013.5 $ pacman -S mesa sdl
FreeBSD 9.0 $ pkg_add -r sdl
OpenBSD 4.8 $ pkg_add SDL
NetBSD 5.1 $ pkg_add Mesa SDL
DragonFly 3.4 $ pkg.radd SDL

$ pkg install sdl

Table 4.12: Installation of SDL and OpenGL on various platforms.
4.8 Example

In this section we illustrate the usage of rdyncall and dynport for scripting R applications by gluing
C' library components. We present a ‘demo’ application written in R and available from the package.
We discuss its implementation and we focus on R programming techniques for exchanging data with
C using the example of the R and the OpenGL [API

4.8.1 Simulation and Visualization of Random Fields using OpenGL

The study of interdependent data, such as time series, spatial field, spatio-temporal processes of
observations of even higher dimensions, is of importance in a number of branches of science and
technology. Of interest is the modelling and estimation of the dependency structure of the observations.
A popular way to assess the plausibility of the stochastic processes used to model such observations
is to generate realizations from the model and check whether these display the same features and

properties as the observed values.

The R package RandomFields (Schlather et al., 2013) provides a wide range of simulation methods for
generating random fields. The simulation task involves a large number of computational operations
depending on the dimension and size of the field and the number of point processes, etc.. Although
the package is mainly implemented in C, the simulation of random fields can be considered an off-line

process; it is not fast enough for real-time graphics visualization or simulation.

The field of computer graphics offers efficient real-time graphics methods for imitating the behaviour
of natural processes such as gases, cloud, fluids and natural materials. More recently, GPU hardware

is also being utilized in scientific applications such as high-performance simulation and visualization
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in real-time. We give a simple example in which we use R and OpenGL via rdyncall for the com-
putation and display of Gaussian Markov random fields in high resolution (512x512); for each round

of simulation we simulate a large number of random point processes (5000) and we achieve a rate,

required for real-time graphics output and visualization, between 30-100 [FPS (Frames Per Second)|

The demonstration is available as a demo in rdyncall:

> library(rdyncall)
> demo (randomfield)

Note that the demo requires SDL and OpenGL shared libraries for execution (see Section or open

the help file with ?’rdyncall-demos’ for installation details).

206 FPS: 55
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Figure 4.10: Screenshot of real-time visualization (left) and plot (right) of demo(randomfield) .

The real-time visualization of the simulation is displayed in a separate output window , depicted in
the left-hand panel of Figure The simulation runs at 55 [FPS| (indicated in the window’s title
bar); the output resembles quick motion of particles in a swirl. By pressing the left button on the
pointing device, the current frame is downloaded from the [GPU] to R as a matrix object and then
plotted in R (right-hand panel in Figure . Note that although the ‘simulation and visualization’
task generates approximately 55 matrices per secon(ﬁ but it can take several seconds to download

data from graphics memory to R and to plot the matrix subsequently using R graphics.

4.8.1.1 Implementation

We now discuss the implementation of demo(randomfield) . It is written entirely in R and uses OpenGL

via dynport(GL) /rdyncall so that it runs across major R platforms. The ‘graphics hardware’ require-

3Platform: Mac OS X 10.6 MacBook Pro, 2.5 GHz using Nvidia 8600M GT.
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Figure 4.11: Control flow diagram of demo(randomfield) .

ments for running this demonstration are low as we use the OpenGL Version 1.1[AP]] In the following
discussion we focus on various OpenGL function calls with an emphasis on efficient data exchange

between R/rdyncall and C.

We generate a finite field of random values of size 512 x 512 elements. The values assigned to these
elements are generated in a number of steps. First 5000 points are sampled from a spatial point process
over the field. A 2D Gaussian kernel is placed over each point. Associated with each point is also a
randomly sampled radius attribute. The value of each element of the 512 x 512 matrix is given by the
sum of the values of the generated kernels at the coordinates of the elements. The computation of the
final matrix is implemented by means of OpenGL via rendering squares (one for each point process)

using texture mapping of an image (the kernel) and blending (for summing up the kernel values).

Overview The control flow diagram in Figure [4.11| outlines the steps implemented by the software.
In a first stage, we initialize the application. Then we generate a 2D Gaussian kernel matrix by using
R functions; we upload the matrix to OpenGL as a texture image i.e. the kernel is transferred to fast
memory of the GPU. After that we run the ‘simulation and visualization’ main loop. In each round we
simulate 5000 point processes (including radii) using standard R functions. We then draw the points

as squares to produce the final image using OpenGL. Then the display is refreshed. As a last step of
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the round, we process input events; if the window close button was pressed, we stop the main loop; if

the mouse button was pressed, we transfer data from OpenGL to R for plotting.

Main Function The application is written as a main function that calls sub-functions for particular
tasks. After initialization the main loop starts: 5000 observations are sampled using R, and then
drawed as squares via OpenGL. Finally input events are processed and the counter is updated.

main <- function() {
init ()
while(!quit) {
sim <- sim(5000)
render (sim)
pollEvents()
fps <- fpsUpdate(fps)
}
}

Initialization At first, we load DynPorts of SDL and OpenGL, and initialize the video sub-system.
We define the output matrix by opening a OpenGL video output surface with 512 x 512 pixels.

We initialize global parameters of the OpenGL graphics rendering pipeline: “clear color” is set to zero,
the blending operation is enabled and configured, and the parameters for data transfer are configured
for download of data from GPU memory to R. We then generate a kernel matrix that is uploaded
to OpenGL. As a final step we initialize a counter object and initialize global variable quit to
FALSE (the invariant of the mainloop).

init <- function() {
# —-— Load Bindings
dynport (SDL)
dynport (GL)
# —-— Init OpenGL Output
stopifnot (!SDL_Init (SDL_INIT_VIDEQ))
surface <<- SDL_SetVideoMode(512,512,32,SDL_0PENGL+SDL_DOUBLEBUF)
# —-— Set OpenGL Globals
glClearColor(0,0,0,0)
glColor3d(colorunit,colorunit,colorunit)
glBlendFunc (GL_SRC_ALPHA, GL_ONE)
glEnable (GL_BLEND)
glPixelStorei (GL_PACK_ALIGNMENT, 1)
# —-— Compute kernel
img <- genTex.bnorm(512)
# —-- Prepare UpenGL Texzture Unit
initTex ()
loadTex (img)
# —-- Initialize globals (for main loop)
fps <<- fpsInit()
quit <<- FALSE

Generate Kernel Matrices We specify the kernel by computing a matrix of values. Later we
upload this matrix to the texture mapping unit of the[GPU|] We give two R functions and corresponding
R plots in Listing
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genTex.circle <- function(n) {

m<-matrix(nr=n,nc=n) ;r<-n/2 o

for(i in 1:n) {
for(j in 1:n) { o
m[[i,jl] <- ifelse(
(i-r)"2+(j-1)"2 > r"2, . 0

OL,255L

) } }; return(m) . w

column

genTex.bnorm <- function(n) {

x <- seq(-3,3,len=n)
d <- dnorm(x)
m <- outer(d,d)

column

return(m)

Listing 16: R: Texture generators for 2D Kernels: R function (left) and corresponding plots (right);

Kernels: Boolean circular (top) and Bivariate Gaussian (bottom).

Preparing the OpenGL Texture Unit During initialization, we also need to allocate an OpenGL
texture object resource and upload image data to the GPU from R. We discuss this task in more detail

now. The allocation function in C is given as follows:
void glGenTextures(GLsizei n, GLuint* textures);

As a result of this call, OpenGL assigns n distinct identifier numbers and outputs them in a user-
allocated array of C GLuint elements ( GLuint is a type alias to unsigned int ). Since the internal
format of an R integer vector is compatible with GLuint* , we can allocate an R object of length 1

and pass it as the second argument.

tex.ids <- integer(1)
glGenTextures (length(tex.ids) ,tex.ids)

We give now the C API function for uploading image data to OpenGL:

void glTexImage2D(GLenum texture, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border, GLenum format,
GLenum type, const GLvoid* pixels);

We use this function in the R function initTex for uploading an R atomic numeric matrix as a texture

image to the texture object; in this example the texture object is specified by the global variable
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tex.ids[[11] . We convert the input matrix img to a raw vector. Note that we use a primitive format
for the texture image data type by using unsigned 8-bit integer values to provide for compatibility

with older graphics cards.

After we have bound the texture object to the texture 2D unit, we transfer image data to the texture
unit via glTexImage2D . The last two parameters of glTexImage2D specify the format and pointer; we
specify the internal format GL_UNSIGNED_BYTE and pass the raw vector as a pointer value. After the
function call, R data has been copied to GPU memory and it is associated with the texture object.

initTex <- function(img) {

m <- max(img)

texdata <- as.raw( ( img/m ) * 255 )

glBindTexture (GL_TEXTURE_2D, tex.ids[[1]])

glPixelStorei (GL_UNPACK_ALIGNMENT, 1)

glTexImage2D (GL_TEXTURE_2D, O, GL_ALPHA, nrow(img), ncol(img), O,
GL_ALPHA, GL_UNSIGNED_BYTE, texdata)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,GL_CLAMP_TO_BORDER)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,GL_CLAMP_TO_BORDER)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)

glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE)

Simulation We sample 2D coordinates (x and y) and a radius value for each mixture component.

sim <- function(N=5000) {
obj <- list(
x=runif (N, -1.1, 1.1),
y=runif (N, -1.1, 1.1),
r=runif (N, 0.1, 0.2)
)
return(obj)

}

Visualization Initially we clear the frame buffer to black color (by means of a matrix with all
elements set to zero) by OpenGL glClear (bufferFlags) . Then we call a function that renders squares,
specified by simulated data of x, y and radius vectors. Finally the graphics rendering output is
presented on the display via swapping front and back video buffers (as we initialized the video output
display using the SDL_DOUBLEBUF flag).

draw <- function(o) {
glClear (GL_COLOR_BUFFER_BIT)
drawSquareTexVertexArray (o$x, 08y, o$r)
glFinish()
SDL_GL_SwapBuffers ()

}

Draw texture-mapped 2D squares At first we transform input data to vertex and texture coor-
dinates in order to pass data to OpenGL. Then we enable texture mapping and client states; the latter

is used for transfer of vertex information via pointers. We now pass R objects to OpenGL vertex and
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texture coordinates via function calls to glVertexPointer and glTexCoordPointer . Then we draw all
square shapes via a single function call; OpenGL reads vertex information from R objects. Since we

are about to leave the function afterwards, we need to disable OpenGL pointer access to R object.

drawSquareTexVertexArray <- function(x,y,r) {
n <- max(length(x),length(y),length(r))
x1 <- xr ; yl <- yr
X2 <- xtr ; y2 <- y+r
vertexArray <- as.vector(rbind(x1l,y1,x2,y1,x2,y2,x1,y2))
texCoordArray <- rep( as.double(c(0,0,1,0,1,1,0,1)), n )
glEnable (GL_TEXTURE_2D)
glEnableClientState (GL_VERTEX_ARRAY)
glEnableClientState (GL_TEXTURE_COORD_ARRAY)

glVertexPointer (2,GL_DOUBLE, O, vertexArray)
glTexCoordPointer (2,GL_DOUBLE, 0, texCoordArray)

glDrawArrays (GL_QUADS, 0, nx*4)
glDisableClientState (GL_VERTEX_ARRAY)
glDisableClientState (GL_TEXTURE_COORD_ARRAY)
glDisable (GL_TEXTURE_2D)

Event Handling We process the input queue to determine when to stop the main loop. We also
check if the button pointer device was recently pressed to initiate transfer of data to R for plotting.

pollEvents <- function() {
doReadPixels <- FALSE
while( SDL_PollEvent(event) != 0 ) {
type <- event$type
if (type == SDL_MOUSEBUTTONDOWN) {
doReadPixels <- TRUE
} else if (type == SDL_QUIT) {
quit <<- TRUE
}
}
if (doReadPixels) {
pixels <<- readpixels()
image (pixels)
}
}

Download GPU data to R Data from the frame buffer are read via glReadPixzels . We allocate

an R integer matrix in advance, which is passed as a pointer; OpenGL writes data into that object.

readpixels <- function()

{
array <- matrix(NA_integer_,512,512)
glReadPixels(0,0,fb.size,fb.size, GL_LUMINANCE, GL_INT, array)
return(array)

}

Frames Per Second Counter We define functions for the initialization and update of an
counter represented as an R 1list object. For the implementation we make use of C functions of SDL,

such as SDL_GetTicks to query time, and SDL_WM_SetWindowCaption to update the window title bar.
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fpsInit <- function() {
list(
tbase SDL_GetTicks(),
frames = 0O
)
}
fpsUpdate <- function(fps) {
tnow <- SDL_GetTicks()
if ((tnow - fps$tbase) > 1000) {
fps$tbase <- tnow
SDL_WM_SetCaption(paste("FPS:", fps$frames),NULL)
fps$frames <- 0
} else {
fps$frames <- fps$frames + 1
}
return(£fps)
}

4.9 Summary

This chapter covers a middleware package for R that offers scripting access to C API components.
The package contributes a dynamic FFI for code- and data-level interoperability between R and C.
Based on this foundation it also offers a simple cross-platform interface for dynamic loading of R
bindings of C APIs. This concept provides a model for rapid application development. We motivated
the approach by comparing the merits of developing interactive 3D real-time graphics applications,
based on OpenGL and SDL, in R/rdyncall instead of C.

We illustrated the inconvenience of compiling and linking user code with libraries in C. In contrast to
this, we emphasized the potential for scripting ambitious applications, based on portable C libraries,
in a dynamic language by using dynamic bindings to C APIs. Since the core application code is
interpreted it can be executed immediately across a range of platforms even though it uses low-level

components such as OpenGL and SDL.

As an example of this package we discussed an implementation of the Dynamic Bindings Model based
on core services of a dynamic FFI. We first discussed the components of this foundation layer compris-
ing facilities for loading external C libraries, resolving functions, making calls, handling C run-time

data objects and wrapping R functions as C callback functions.

As a prequisite for cross-platform scripting of shared library C components we considered the general
problem of loading code. While a large number of valuable C libraries exist as portable components
with a stable C API across platforms, providing a common interface for requesting access is challenging
due to the platform-specific details for naming and loading a C library. We illustrated the diversity
of naming schemes by comparing the file paths of four C libraries across ten operating systems. We
discussed the details of dynamic linkers and presented a method for loading libraries across platforms

with a simple interface.

A common text-based interface was used across core components based on the DynPort type signature
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encoding format; we showed several advantages of this design choice. Firstly, the compact and intuitive
encoding scheme enables users to experiment with foreign C components in interactive development
sessions. Secondly, type signatures are used for driving function calls but also as input parameters
for type checking and value conversion so that type-safe and convenient interfaces to C APIs can be
created by wrapping FFI call objects. Thirdly, components for code- and data-level interoperability

can be combined via type signatures.

We showed the advantage of character strings for encoding and passing type information across dif-
ferent language contexts. Scripting languages, such as R, offer efficient text processing tools to split
the text chunk of C API specifications into components for type information. The latter is put into
R wrappers as character objects and then, at call-time, is processed by the workhorse of the FFI in C

for driving foreign function calls, type checking and value conversion.

The discussion was illustrated by several examples that emphasized the syntactic similarity of R to
C user code. We closed this chapter with a comprehensive example of a visualization and simulation
software written in portable R code using SDL and OpenGL, where advanced techniques for data transfer
between R and C APIs were addressed. Included here was uploading of R vector data for texture

mapping and processing of vertex information.

The package was implemented in R and C as a portable middleware solution by using a Generic
Dynamic FFI library which provides an abstraction layer to ABI details of the calling sequence for
code-level interoperability; a portable C interface encapsulated non-portable code in assembly language
implemented for a range of ABI platforms. The design of the Generic Dynamic FFI library dyncall
and details of data- and code-level interoperability at ABI level across five processor architecture

families is covered in Chapter
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Chapter 5
Dynamic Interfaces to Compiled Code

This chapter covers a software abstraction layer with a portable and dynamic C interface for making
function calls, handling of callbacks and loading code. This layer represents a fundamental building
block for the implementation of portable Dynamic[FFls, such as rdyncall for R presented in Chapter
4

As an introduction to the topic we consider the anatomy of function calls at machine level. Subse-
quently we give a survey of binary interfaces, including calling conventions and data type mapping

schemes, on five current processor architecture families and common operating systems.

Finally we discuss the open-source Generic Dynamic FFI software package DynCall comprising three
small C libraries. dyncall provides a portable interface for making dynamic function calls with
support for arbitrary function types including support for several calling conventions. dyncallback
offers an implementation framework for dynamic handling of C callbacks. Lastly, dynload offers a
portable C APT to dynamic linkers of various operating systems. We discuss the design of the C APIs
and the implementation in C and partly in assembly language for a range of processor architectures
and operating systems. The chapter closes with a discussion on development issues including portable

build systems and software testing suites of the package.

5.1 Anatomy of Function Calls

At first we consider the basic execution environment of machine-level function calls, i.e. the core
components of computer platforms and the run-time organization of processes and threads within an
operating system. We then give a brief overview of some characteristics of calling conventions and

discuss general steps of the machine for making a function call.

131
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5.1.1 Execution Environment

The [CPU (Central Processing Unit)| of a processor is the heart of a computer system. It executes the

operating-system kernel and user programs by processing primitive instructions encoded in machine
code which are read from the main memory via an address bus. CPUs contain a small number of
general-purpose registers to store fixed length bit sequences that are interpreted by instructions as

operand values for bit/integer arithmetic or as memory addresses for load/store memory operations.

In addition a set of registers for special purposes and hardwired tasks is built-in, for example, to control

the execution of programs. The [PC (Program Counter)| references the next instruction of execution.

The CPU fetches a word of machine code and decodes the instruction which is then executed and the

PC is advanced to the address of the next machine instruction.

For the implementation of control flow, such as goto jumps and for/while loops in high-level languages,
branch Or jump instructions (explicitly or conditionally) load the PC. Furthermore, machines offer a ca11
instruction (or semantics) with which sub-routine procedure and function calls can be executed, which

we discuss in more detail in the next section.

The machine-code encoding defines the mapping between binary codes and corresponding instructions

and operands specified in the [[SA (Instruction Set Architecture)l “One of the important abstractions

that a programmer uses is the instruction set architecture (ISA). The ISA defines the personality of a
processor and specifies how a processor functions: what instructions it executes, what interpretation
is given to these instructions, and so on. The ISA, in a sense, defines a logical processor. If these
specifications are precise, it gives freedom to various chip manufacturers to implement physical designs
that look functionally the same at the ISA level. Thus, if we run the same program on these imple-
mentations, we get the same results. Different implementations, however, may differ in performance
and price.” (Dandamudi, 2005bl, p.347) Instructions are encoded by an operation code, followed by
operand identifiers (usually two or three). As operand the programmer can choose between a register,
integer constants, absolute memory reference and also relative memory addresses. The latter is given
by a base register and an offset specified by a register or constant value. However, the permitted

number and kinds of operands per instruction can be more or less restrictive, depending on the ISA.

The CPU interprets data in a register and memory as a signed/unsigned integer or bit field data
type and different fixed size sub-types are supported (usually 8, 16, 32 up to 64 bit). Floating-point

data types and arithmetic are supported by means of software implementation but with low perfor-

mance. However, an |[FPU (Floating-point unit)|contributes hardware-based floating-point support via

hardwired instructions that process floating-point data in a separate register file. Modern CPUs also

offer a|SIMD (Single Instruction Multiple Data)| extension for vector-based operations on packed data

types; typically 2, 4, 8 or 16 component vectors of integer and/or floating-point data types are packed
in a single (64, 128, 256 up to 512 bit) register on a separate register file. Other implementations
of this extension use “register pairing” of existing register files such as SIMD extensions of SPARC

and MIPS processor architectures. Instructions of the core and its extensions are combined in a single
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ISA, as depicted in Figure [5.1], so that a stream of machine code comprises the sequential execution
of CPU, FPU and SIMD instructions (although they might be executed asynchronously internally).

Furthermore, instructions exist for data exchange between the different register files.

e R R 7
Instruction Set Architecture
—————————— ——————————
—————————— ————————————
—————————— ———————
———————— ————— ————————
—————————— ——————
—————————— ——
Integer Registers Floating-point Registers Vector Registers
CPU FPU SIMD
L Processor Architecture 4+ Extensions ]

Figure 5.1: Overview of the Instruction Set Architecture.

Modern operating systems virtualize computing resources. The physical memory is shared among

multiple applications and the operating system via an [MMU (Memory Management Unit)| hardware

extension. Each process is given a private address space. This allows one to run multiple processes

isolated from the operating-system kernel and other processes.

User-space programs are started in a process environment with a main thread of execution that runs
the main function of the program. A thread is a virtualization of the core resources of an ISA for
executing user-space program code. Thus it has a private copy of CPU, FPU and SIMD user registers,
including the PC which gives the current location of code that is being executed. A user-space thread
runs for a small amount of time and is interrupted by the kernel for a context switch. The kernel
suspends the thread by saving the register content as part of the thread state and exchanges their
content with the saved state of another thread that is up next for running a number of CPU cycles.
Several threads can be spawned in a single process and each one has a private view on the processor

and also a private region of memory named the Stack.

5.1.2 Call Stack

In general, programs are not encoded as a single linear block of code that runs sequentially from start
to finish. Rather, programs are written as functions and sub-routines that get called. A program has
a main entry point function, executed at the start of the process that calls sub-routines and functions,

which may call other functions.

Repetitive computations and algorithms are typically encapsulated as functions. The compiler trans-
lates a C function, whose activation can occur multiple times, as a block of machine code only once.
Its activation can occur multiple times. Function calls are often nested, for example in recursive com-
putations. For the duration of a function call a data record is allocated to provide temporary storage
for local variables, arguments and results. Over the course of a program run the required amount of

memory grows and shrinks according to the pattern of nested function calls/returns in last in, first
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out (LIFO) order. A corresponding memory reservation system can be implemented using the stack
abstract data type. Memory for arguments/results and local variables can be placed as interleaved

memory chunks on a linear vector of memory as depicted in Figure

Bottom — Highest Address

| stack grows down |

local storage

Activation Record (Caller)

arguments

Call frame

local storage

Activation Record (Callee)

Top —

Table 5.1: Illustration of a call stack.

Stacks are elementary structures, simple to implement in machine code by reserving one hardware
register as the stack pointer (sp) for the top of the stack and by applying read/write and arithmetic
instructions for the implementation of push and pop operations. For each newly created thread of
execution a fixed size linear region of stack memory is allocated that is large enough for deeply nested
function calls. The bottom of stack is at a fixed address while the top of stack grows and shrinks.
Although scalar values can be pushed and popped on stacks, call stacks are often organized in stack
frame structures that are placed or removed as a whole; this can also be implemented by a single
addition and subtraction instruction to the sp. The size of each frame is variable depending on the
number of arguments (for a caller frame) and local variables (for a callee frame). As an important

side effect the stack memory remains defragmented throughout the life-cycle of a program.

Compilers of high-level languages (e.g. C and Pascal) translate functions by using this run-time data
model; the generated code for accessing local variables, arguments and results uses relative addressing
to the SP register so that caller and callee code can be executed dynamically at arbitrary and multiple
times. Effectively the call stack works as a generic interface for calling public compiled functions.
Given that the order of arguments is known compiled functions can also be called from low-level
assembly routines, for example the start-up code for user-space processes, or the caller code of a

dynamic generic FFI library.

In general the stack shares the main memory with the Heap - a pool of memory for dynamic allocation
of memory objects per run-time process. Since applications may have different needs and character-
istics regarding dynamic memory and nesting of function calls, operating systems, utilize a memory

organization where the heap grows from low to high addresses and the stack grows from high to low
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addresses. This scheme originates historically from single-threaded systems with a small (virtual)
address space. Current multi-threaded 32- and 64-bit operating systems manage multiple threads of
execution, each one with its own stack but shared with all other threads in one virtual address space
per process. However, the direction of call stacks has still remained on current platforms; they start

at the highest address of their memory region and grow to lower addresses.

5.1.3 Calling Sequence

Function calls can be divided in a caller and callee side. Both parts are distinct blocks of machine-code
instruction, possibly compiled in separate compilation runs in distinct units and linked to different

files (e.g. executable file and dynamically linked shared library).

At the border between caller and callee, a standard compiler generates code that conforms with
the language- and platform-specific calling conventions. The latter give exact specifications for the
calling sequence i.e. how parameters and return values are passed, and control flow is transferred
between caller and callee. “The general architecture dictates how parameters are passed on to the
procedures. There are two basic techniques: register-based or stack-based. In the first method,
parameters are placed in processor registers and the called procedure reads the parameter values from
these registers. In the stack-based method, parameters are pushed onto the stack and the called
procedure would have to read them off the stack. The advantage of the register method is that it is
faster than the stack method. However, because of the limited number of registers, it imposes a limit
on the number of parameters. Furthermore, recursive procedures cannot use the simple register-based
mechanism. Because RISC processors tend to have more registers, register-based parameter passing
is used in RISC processors. The IA-32 tends to use the stack for parameter passing due to the limited
number of processor registers. Some architectures use a register window mechanism that allows a
more flexible parameter passing. The SPARC and Intel Itanium processors use this parameter passing
mechanism.” (Dandamudi, 2005a, p.28) On architectures with a large number of registers a subset is
used as carrier for parameters. Whether registers of hardware extensions, such FPU and SIMD, are
incorporated in a calling convention depends on requirements for binary compatibility; designers of
calling conventions often make a compromise here between available hardware features and backward

compatibility with legacy hardware.

Registers take on one of three possible roles for the entire period of the program run, which is defined

by the calling conventions that serve for the register selection of the compiler:

e Volatile registers can be used for local variables until a function is called. This includes registers

for passing of parameters and return values.

o Preserved registers keep their value throughout a function call. If they are used by a function as
local storage, their content needs to be saved in advance and restored before returning control

flow.
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e System-reserved registers can not be used by user code and are exclusively used by the operating

system for management tasks.

In addition, architectures define a number of registers with special roles:

The |[Program Counter| (PC|) points to the current instruction in machine code.

The |[Link Register| (LR) is loaded with the return address during a call instruction.
The [Stack Pointer| (SP)) points to the current top of stack that contains the latest frame.
The (FP)) is a second pointer on the stack that points to the local stack frame.

The stack is organized in cells of same size, similar to the bit size property of the processor architecture.
Smaller values (in bits) still occupy a full register and/or stack cell. Placement of values and the layout
of data structures is constrained by alignment restrictions of the platform; these are either hardware
constrains or result from performance considerations (unaligned memory can decrease performance of

the memory bus and cache logic).

A general outline of the calling sequence is given below:

1. A function call is prepared at the caller side by loading parameter arguments to registers and

on the stack.

(a) The first arguments are loaded in volatile registers that are reserved for parameter trans-
fer. Which register class is selected (i.e. general-purpose, FPU or SIMD) depends on the

parameter type.

(b) Remaining arguments are passed on the stack. In general for C, the push order is right-to-

left. However, historically Pascal uses the opposite order.

2. The function call is executed by loading the PC with the target address of callee function.
In addition, the return address is also transferred via a register or on the stack: On CISC
architectures the call instruction pushes the return address on the stack. On RISC architectures

the v1 (branch and link) instruction loads the LR with the return address.

3. Functions consist of prolog and epilog code blocks that are executed on entry and exit, respec-
tively. The prolog section of the callee initializes a new activation record for local storage on
the stack (by decrementing the SP). Preserved registers that are used by the callee’s function
block are saved in the activation record. On RISC architectures the content of LR is also saved
on the stack; as an optimization, leaf functions (functions that do not call other functions) can

omit this step.

4. The main code of the function is executed.
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5. The function’s return value is passed via volatile registers that are reserved for this purpose. In
accordance with parameter transfer, the return value type decides which register class is used.
Typically C function return values do fit in one or two registers and are thus passed via registers.
However, large objects that do not fit into registers are passed via memory. In that case the
caller would allocate the memory storage in advance and the calling sequence would include a
hidden first argument for the memory address (in Step 1) in which the callee would write the

return value.
6. The function returns by executing the epilog code section:

(a) Preserved registers are restored.
(b) The activation record is removed from the stack (via incrementation of the sp).

(c) The return address is assigned to the pc. RISC architectures move the contents of the LR
to the pc; CISC architectures use a ret instruction that pops the return address from the

stack and loads the PC in one step.

Furthermore, the call’s stack frame (containing arguments on the stack) need to be removed.

Whether the caller or the callee is responsible for this task depends on the calling convention.

5.1.4 Diversity of Calling Sequences

Details of the calling sequence depend foremost on the processor architecture. However, calling con-

ventions can further vary depending on the operating system as the following example illustrates.

Example We compare the gcc compiler’s assembly output of a C function call for two different
operating systems running on the x86-64 processor architecture. We consider a function call with a

long sequence of heterogeneous type&ﬂ
void samin(int n, double *x, double *Fmin, optimfn fn, int maxit, int tmax, double temp, int trace, void *ex);

The calling sequences is visualized in the assembly output by tagging each parameter using an ordered
sequence of ascending numerical constants:

#include "R_ext/Applic.h"
void call_samin() { samin(l, (double*) 2, (double*) 3, (optimfn*) 4, 5, 6, 7.0, 8, (voidx) 9); }

Listing [7] gives the assembly output generated by the GCC compiler for two major binary platforms
of the x86-64 processor architecture, namely the Unix-based System V standard (sysv) for Linux,
Mac OS X, BSDs and Solaris (left panel), and the Microsoft Windows (x64) platform (right panel).
Based on that output we can analyse the storage class and location for each positional argument i.e.
whether data is passed in a register or on stack and which register type and number or stack memory

offset was chosen by the code generator of the compiler.

! samin is an optimizing function (simulated annealing) available in the shared C library of R.
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_call_samin: call_samin:

movq %4rsp, Arbp

subq $16, %rsp subq $88, Yrsp

movg $9, 8(lrsp) movabsq $4619567317775286272, Yrax # bits := 7.0

movl $8, (%rsp) movl $4, %rod

movl $1, %edi movl $3, %r8d

movl $2, %esi movl $2, %edx

movl $3, %edx movl $1, JYecx

movl $4, %ecx movq $9, 64(%rsp)

movl $5, %r8d movl $8, 56 (%rsp)

movl $6, %r9d movq %rax, 48(%rsp)

movsd LCPI1_0(%rip), %xmmO movl $6,  40(%rsp)
movl $5, 32(%rsp)

callqg _samin call samin

addq $16, %rsp addq $88, Y%rsp

popq %rbp

ret ret

Listing 17: Comparison of assembly: C caller code to samin on the x86-64 processor architecture for

the sysv (left side) and x64 (right side) ABI platform.

The sequence of assembly language instructions is different in each case. Notice the order of instruc-
tions for loading arguments on stack and in registers is not strict and can even change depending on
compilation flags. Rather, as illustrated in Figure [5.2] it is the contents of the register files and the

call stack right before the call instruction that is of interest for a comparison of calling sequences.

80 -
72 -
64
XMMT7 - 58
XMMG6 - 48 7.0
RY 6 XMM5 - 40 6
R8 5 XMM4 - 32 5
ROX 4 XMM3 - R9 4 XMM3 (skip) 24 i (home)
RDX 3 XMM2 - RS 3 XMM2 (skip) 16 i (home)
RSI 2 XMM1 - 8 9 RDX 2 XMM1 (skip) 8 i (home)
RDI 1 XMMO 7.0 0 8 RCX 1 XMMO (skip) 0 i (home)
Register | Value Register | Value Offset : Value Register : Value Register : Value Offset Value
General-purpose SIMD Stack General-purpose SIMD Regs Stack
Linux, Mac OS X, BSD derivates, Solaris Microsoft Windows 64-bit

Figure 5.2: Comparison of general-purpose and SIMD register files and call stack during a C func-
tion call to samin between sysv (left side) and x64 (right side) platforms on the x86-64 processor

architecture.

On both platforms a set of general-purpose and SIMD registers are used for the first arguments; further
arguments are passed via the stack. However, the sysv platform reserves six general-purpose registers
and eight SIMD registers for passing arguments while the Microsoft x64 platform reserves only four
registers of both register files. Furthermore there exists an interdependency between general-purpose
and SIMD registers on the x64 ABI; when an argument value is assigned to a general-purpose register
a corresponding SIMD register is marked as occupied (labeled “skip”). The x64 ABI also reserves
a fixed size area on the stack, named the homing area that has the capacity to save the first four

arguments in general-purpose or SIMD registers. In summary, the number of registers for passing
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arguments can differ significantly across software platforms. Details, such as the homing area and
the interdependency effects between register files, need to be taken into account in order to address a

generic call facility that works across processor architectures and operating systems.

5.2 Application Binary Interface

Function calls between applications and linked libraries cross compilation units where data need to
be transferred in a consistent manner. Whether a simple number is passed or a pointer to complex
data records, whose fields need to be precisely read and written by both sides, the underlying C code,
separately compiled, needs to be generated in a consistent manner to ensure stable transfer of control-
and data-flow i.e. code- and data-level interoperability. The so-called [ABI| provides the foundation for
this consistency. It specifies the rules for a seamless functioning of all components on a given binary

software platform, like the gears in an engine block.

“An Application Binary Interface (ABI) includes a set of conventions that allows a linker to combine
separately compiled and assembled elements of a program so that they can be treated as a unit.
The ABI defines the binary interfaces between compiled units and the overall layout of application
components comprising a single task within an operating system. Therefore, most compilers target
an ABI. The requirements and constraints of the ABI relevant to the compiler extend only to the
interfaces between shared system elements. For those interfaces totally under the control of the
compiler, the compiler writer is free to choose any convention desired, and the proper choice can

significantly improve performance.” (Hoxe et al., (1996, p.157)

In general ABI specifications include recommendations for the implementation-defined parts of the C
standard, including details for the implementation of standard conforming C functions and function

calls at machine level, and the data representation of C data objects in memory.

5.2.1 Overview

The interplay between hardware and software, regulated by the ABI, is illustrated in Figure A “C
Compiler” is responsible for building the system, including the“OS Kernel”, the “Binary Executables”
and “Libraries”, from “C sources”. Their run-time object representation is depicted as blue boxes;
arrows show run-time interactions such as function calls, callbacks and system calls. Since the code
generator of the compiler “implements” the ABI specifications, depicted as the big yellow box, the
generated data and code is suitable for code- and data-level interoperability among all components of

the system. The rules of the ABI can be roughly divided into four categories:

e “Program Initialization” specifies the required steps for an operating system to create a run-
time process from a “Binary Executable” file stored on persistent “Storage”. The file format is

specified by an “Image Format” specification and includes the binary layout of “Shared Library”
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Figure 5.3: Anatomy of the Application Binary Interface.
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object files and the “OS kernel” image file.

e “Calling Conventions” give details on the calling sequence for code-level interoperability be-
tween code modules that make calls to public functions depicted as arrows between “Binary

Executable” and “Library”.

e The “System Call” interface is used for calling “OS Kernel” functions from a user-space envi-
ronment. Typically this interface is used by a “Shared Library” that provides a standard C API
such as the I/O functions of the standard C library to call functions of the operating-system
kernel for its implementation. Since there is a strict separation between user and kernel space,
the mechanism to call system functions is quite different from user-space function calls i.e. typ-
ically user-space code has to request an interrupt and passes a service number and parameters

via registers. Thus, system calls are usually implemented in assembly language.

e “Data Representation” gives details on the mapping between scalar C data types to machine
data types in registers and memory. This includes size and alignment properties. This also
influences the “Calling Convention” since arguments may be passed via the call stack and thus

need to be aligned properly.

Designers of native software platforms can freely define an ABI and typically include calling con-
ventions and data type mappings for C. ABIs are specified by standard consortiums (e.g. System
V), or designers of processor architectures (e.g. ARM and SPARC Consortium), operating systems
(e.g. Apple and Microsoft) or compilers (e.g. fastcall calling convention of Watcom, Borland and
Microsoft).

The System V Unix standard is often used as the base for a large number of Unix-related operating

systems. The standard document is divided in two parts:

e The generic ABI specification “gABI” (AT&T), 1990) defines the binary standard that is common
across all processor hardware platforms. This includes the [ELF|image and object file format for

code and data on persistent storage for executable files and shared object libraries.

e The processor-specific supplement part “psABI” specifies the details related to a particular pro-
cessor architecture hardware and gives details for the implementation of C function calls and
mapping of C data types to machine types. System V processor supplements exist for a large
number of architectures including 1386, AMD64, SPARC, MIPS, PowerPC, Motorola 88000 and

Itanium.

Operating systems, such as Linux, Solaris, BSD derivates and Haiku, usually base their ABI on
System V. However, Mac OS X followed System V only recently: “The heart of Mac OS X is the
XNU kernel. XNU is basically composed of a Mach core [..] with supplementary features provided
by Berkeley Software Distribution (BSD).” (Miller and Zovi, 2009} p.4) “Mach, developed at Carnegie
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Mellon University by Rick Rashid and Avie Tevanian, originated as a UNIX-compatible operating
system back in 1984.” (Miller and Zovi, 2009, p.4) Mac OS X uses the Mach-O file format instead of
ELF (as discussed in Section . At first, Mac OS X ran on PowerPC processor architectures using
an Apple-specific ABI (Apple Inc., 2010b)) which is different to the System V ABI for PowerPC. As
the porting process to the x86 processor architecture family Mac OS X adopted the System V ABI
processor supplement for x86 processor architectures, including the 32-bit and 64-bit sub-systems.

However, for the 32-bit variant small refinements are included, specified in |Apple Inc.| (2010bj, p.43): ¢

Different rules for returning structures.

The stack is 16-byte aligned at the point of function calls.

Large data types (larger than 4 bytes) are kept at their natural alignment.

Most floating-point operations are carried out using the SSE unit instead of the x87 FPU, expect

when operating on long double values.”

Although Microsoft Windows on x86 32-bit platforms is also very similar to the System V calling
conventions, a different image format is used due to the fundamental differences between Windows
and Unix. On 64-bit platforms even the calling convention completely differs to all the other Unix-

related systems.

While ABIs are designed for longevity, refinements need to be made for optimization purposes to
support an extension of a processor architecture such as an FPU with the consequence of breaking
backward compatibility, such as in the Mac OS X ABI for PowerPC 32-bit: “In Mac OS X v10.4 and
later and GCC 4.0 and later, the size of long double extended precision data types is 16 bytes (it’s
made up of two 8-byte doubles). In earlier versions of Mac OS X and GCC, long double is equivalent
to double. You should not use the long double type when you use GCC 4.0 or later to develop or or
in programs targeted at Mac OS X versions earlier than 10.4.” (Apple Inc., [2010bj p.10)

5.3 Processor Architecture Families

The development of an abstraction interface to function calls and its implementation on a target
platform requires a deeper study of the different machine interfaces (i.e. the ISA) and the functioning
of their call mechanisms (i.e. the ABI and calling conventions). As a preparation for a discusson on
the implementation of dyncall and dyncallback, we briefly introduce the following five processor

architecture families.

e X86 architecture family (x86).

e ARM architecture family (arm).
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e PowerPC architecture family (ppc).
e MIPS architecture family (mips).

e SPARC architecture family (sparc).

We use a common abbreviation and naming scheme for refering to a particular processor architecture
family as given in parenthesis the above. For a particular architecture the bit size (32 or 64) is
appended. Specific to the x86, a dash (‘-’) separates the family name and bit number. Furthermore,
when we refer to a specific ABI, such as System V abbreviated sysv, it is appended separated by a
dash i.e. x86-32-sysv refers to the System V ABI on the x86 32-bit platform. Table gives an
overview of the five architecture familes and available bit sizes, their class of architecture and the
number of available [general-purpose registers| (GPRs]) and [floating-point registers| (FPRs).

Family Architecture Number of Registers

Category Bits GPRs | FPRs Floating-point formats

16/32 8 8 | 80-bit extended precision (x87)
x86 CISC i
64 16 16 | 32/64-bit single/double precision (SSE)

arm 32/64 16 32 32-bit single precision or 16 x 64-bit double precision (overlapped) (VFP)
pPpPC RISC 32/64 32 32 64-bit double precision
mips 32/64 32 32 | 32/64-bit single/double precision or 128-bit quad precision (overlapped)
sparc 32/64 32 32 32/64-bit single/double precision or 128-bit quad precision (overlapped)

Table 5.2: Overview of Processor Architecture Families, bit architectures, number of [general-purpose]

registers| (GPRs|) and [floating-point registers| (FPRs) and supported floating-point formats.

An overview of processor architectures and ABIs to be discussed in the following sections is given in
Table (.31

5.3.1 From CISC to RISC

In the early years of computing the design of a processor chip was mainly characterized by the com-
plexity of the instruction set. “Popular processor designs can be broadly divided into two categories:
Complex Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC). The
dominant processor in the PC market, Pentium, belongs to the CISC category. However, the recent
trend is to use the RISC designs. Even Intel has moved from CISC to RISC design for their 64-bit

processor.” (Dandamudi, 2005a;, p.vii)

“In the 1970s and early 1980s, processors predominantly followed the CISC designs. [..] Several factors
contributed to the popularity of CISC in the 1970s. In those days, memory was very expensive and
small in capacity.” (Dandamudi, 2005a, p.5) “The motivation for designing such complex instruction
sets is to provide an instruction set that closely supports the operations and data structures used by
Higher-Level Languages (HLLs). [..] The evolution of CISC designs can be attributed to the desire

of early designers to efficiently use two of the most expensive resources, memory and processor, in a
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Family | Bits ABI Variants | Notes (Languages, OSs and Compilers)
cdecl Standard C calling convention (compatible with System V, GNU, Microsoft)
stdcall Standard call for System DLLs on Microsoft Windows
ms Fastcall Microsoft compiler specific
fastcall
86 gnu Fastcall GNU compiler specific
X
32 ms C++ member function calls using Microsoft compiler
thiscall
gnu C++ member function calls using GNU compiler
plan9 Plan9 calling convention on i386
linux | System call on Linux (and dos)
syscall
bsd System call on BSDs
64 sysv System V ABI
x64 Microsoft Windows 64-bit calling convention
sysv System V ABI
ppc 32 . .
osX Mac OS X Calling Convention
oabi Old Linux ABI (hybrid FPU utilization / very slow)
arm 32 aapcs eabi Standard ABI (soft-float i.e. no FP registers)
armhf Standard ABI (hard-float)
39 032 System V ABI for 32-bit (Old ABI)
] eabi Embedded ABI for Playstation Portable (Homebrew)
mips
P 64 né4 System V ABI for 64-bit (New ABI)
n32 32-bit mode on 64-bit (New ABI)
32 v7 System V ABI
sparc
64 v9 System V ABI

Table 5.3: Families, Architectures, ABIs and Calling Conventions.

computer system. In the early days of computing, memory was very expensive and small in capacity.
This forced the designers to devise high-density code: that is, each instruction should do more work
so that the total program size could be reduced. Because instructions are implemented in hardware,
this goal could not be achieved until the late 1950s due to implementation complexity.” (Dandamudi,
2005al p.39-40)

“The decision of CISC designers to provide a variety of addressing modes leads to variable- length
instructions. For example, instruction length increases if an operand is in memory as opposed to in
a register. For these and other reasons, in the early 1980s, designers started looking at simple ISAs.
Since these ISAs tend to produce instruction sets with far fewer instructions, they coined the term
Reduced Instruction Set Computers (RISC). Even though the main goal was not to reduce the number
of instructions, but rather the complexity, the term has stuck. SPARC, PowerPC, MIPS, and Itanium
are all examples of RISC designs.” (Dandamudi, 2005bl, p.348)

“The design of Reduced Instruction Set Processors (RISC) began in earnest in the early 1980s. Early
RISC processors typically were characterized by a load-store architecture, single instruction-per-cycle
execution, and 32-bit addressing. The instruction set architecture of these early RISC chips was well

matched to the level of computer optimization available in the early 1980s, and provided a minimal
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interface for the UNIX(TM) operating system.” (Weaver and Germond), 1994, xiii)

5.3.2 X86 Processor Architecture Family

x86 is one of the oldest processor architecture families that is still widely use in current notebook,
desktop and server systems. In the late-1970s Intel released the 16-bit 8086 /8088 processors. The
ISA was extended to 32-bit with Intel’s 80386 CPU core in 1985. Other companies, such as AMD,
VIA, IBM, Texas Instruments, Cyrix and National Semiconductor, manufactured processor chips that
were binary compatibility with the x86-16/x86-32 ABI of Intel’s 80386. Due to its CISC design, the
ISA comprises a large number of instructions. However, only eight registers are available for general-
purpose, and of those, some were hardwired for special purposes such as the stack pointer register ESP

and corresponding stack manipulation instructions: push and pop.

Hardware-based floating-point support was introduced with the x87 [FPU] co-processor, which uses
a register file of eight registers of 80-bit precision. Later, the co-processor was integrated as part
of the 80486 CPU core. With the era of graphics multimedia and video games on standard PC
hardware in the 1990s, Intel designed a [SIMD] extension which introduced native vector-based data
types and operations. At first the ISA was extended by integer-only vector operations and eight 64-bit
registers, primary designed for graphics pixel processing effects with support for 8 x 8-bit, 4 x 16-bit or
2 x 32-bit packed (unsigned) integer data types. The extension was branded as MMX. Soon afterwards
AMD released a similar extension named ‘3Dnow!’. Effectively MMX registers are shared with those

of the x87 FPU so that x87 and MMX operations need to be synchronized for mode switching. Later

a modern SIMD extension, named |[SSE (SIMD Streaming Extension){was introduced that supports

floating-point vector operations on a separate set of eight 128-bit vector registers (which is not shared
with registers of the x87 FPU). Several revisions followed, such as SSE2, SSE3, SSE4 and so on. AMD'’s
implementation of SSE2 doubled the number of the SSE registers to sixteen (xMM0-15).

With the specification of a 64-bit ISA extension for x86, published by AMD in 2000, the number
of general-purpose registers was doubled to sixteen registers and the SSE2 extension was integrated.
Major vendors, such as VIA and Intel, adopted the 64-bit ISA standard; the extension became known
as x86-64 and other acronyms such as amd64, x86_64, IA-32e, Intel64 and x64. Ever since, backward
compatibility has remained one of the major features of the x86 ISA; even modern 64-bit x86-64 CPU

cores are still capable of executing legacy 16-bit and 32-bit code.

5.3.2.1 ABIs and Calling Conventions of x86

The list of binary interfaces available for x86-16 and x86-32 gives a prime example of the diversity
of binary software standards for a single processor architecture; diversity decreased with the x86-64
architecture as depicted in Table

Presumably the limited number of registers and the lower clock-speed of x86 cores available between
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Stack

Architecture | Calling Convention Argument Registers Push order | Cleanup

cdecl - rtl caller

pascal - ltr callee

16 fastcall-ms AX,DX,BX Itr callee

fastcall-borland AX,DX,BX Itr callee

fastcall-watcom AX,DX,BX,CX rtl callee

cdecl - rtl caller

stdcall [ - rtl callee

fastcall-ms ECX,EDX rtl callee

fastcall-gnu ECX,EDX rtl callee

fastcall-borland EAX,EDX,ECX Itr callee

32 fastcall-watcom EAX,EDX,EBX,ECX Itr callee

thiscall-gcc - rtl caller

thiscall-ms ECX rtl callee

plan9 - rtl caller
syscall-dos/linux EAX,EBX,ECX,EDX,ESI,EDI - -

syscall-bsd EAX rtl caller

64 Sysv RDI,RSI,RDX,RCX,R8-9,XMMO0-7 rtl caller

x64 { RCX,RDX,R8-9, XMMO0-3 rtl caller

Table 5.4: Some calling Conventions of the x86 architecture. ‘rtl’ and ‘ltr’ refers to the stack push

order of arguments from ‘right-to-left’ or ‘left-to-right’, respectively.

1980s and 90s encouraged compiler and platform vendors to develope different calling conventions to

optimize overall system performance.

In order to compare calling conventions at register level for each architecture, we use register charts,

such as depicted in Figure a description of the notation is given in the box below:

Register Charts A set of registers is displayed as cells in rows. The base color indicates
the register class, such as general-purpose (yellow), FPU (blue) and SIMD (magenta),
respectively. The intensity of the cell color indicates whether a register is volatile (light
color) or preserved (dark color) during a function call. The order of registers for passing
parameters and results is given by indexed labels a;nger and 7ip4er, respectively. Special-
purpose registers are labels SP (stack pointer), LR (link register), FP (frame pointer), 1P
(intra-procedure pointer), TR (thread register), SB (static base) and PC (program counter).
Furthermore, system-reserved and constant zero (labeled “0”) registers are colored red.

When comparing multiple calling conventions, the labels are given on the left of the register

bar. Additional information, such as register numbers and names, grouping structure, and

overlapping register layout schemes, are given above and below the bar.

The register utilization for some x86 32- and 64-bit ABIs are depicted in Figure The first eight
general-purpose registers, available since the first x86 16-bit architecture, are given symbolic names

such as EAX, ESI and ESP. The accumulator, base index, counter and data registers are abbreviated
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by AX, BX, CX and DX, respectively. Source indez, destination index, stack pointer and base pointer
registers are abreviated S1, DI, SP and BP, respectively. The upper eight registers, introduced with
the x86-64 architecture, are specified by numeric names (R8-R15). As the lower eight registers are
available in 16-bit mode, they are prefixed by E and R in 32-bit and 64-bit mode, respectively. Registers
of the x87 FPU, named sT(0) to ST(7), are organized and programmed in a stack-based manner; they

are only part of calling conventions for passing scalar floating-point return values.

x86-32 architecture

32-bit GPRs 80-bit FPRs (x87)
0 1 2 3 4 5 6 7 0 01 2 3 4 5 & 7
c,std |71 |72 SP | FP 1
a1
fast |71 - a2 SP | FP 1
thi
this |71] sp | Fp -
T2
id
dos |\ |az|as|a1|sp|Fp|as|as
1
id
bsd SP | FP
71
i Sl Q¢ S
PSS IS DA S M@ &N
F S & F S NI
x86-64 architecture
64-bit GPRs 128-bit FPRs (SIMD) (supports 32/64-bit)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
asg
sysv |T1|a4 - SP|Fp|a2|a1i|as|ae @i | ez a3 |aq|as|aglar|as
1| T2
x64 |71 |a1|az2 SP | FP asz|aq “Uaslas|aa
r1
FFF TR I A8 D Q OV O O > v
T IS I I EFIT PRIV

Figure 5.4: Register usage in calling conventions of x86.

(193]

The C calling convention (depicted as “c” in Figure , implemented on x86, uses a simple scheme:
all arguments are passed via the stack and return values are passed via registers. Small integer values
(up to 32 bits) are placed in EAX, 64-bit integer values are placed in the register pair ECX:EAX, and
floating-point values, such as float , double and long double , are returned via ST(0). All other x87

floating-point registers are volatile and need to be empty when a function returns.

This calling convention is commonly found on major x86-32 platforms for C programs (Windows) or

for the entire user-space system (Unix) with slight modifications.

e On the Microsoft’s Windows 32-bit platforms, it is commonly named the cdecl calling conven-

tion.

e x86-32 ports of Unix-based commercial, free and open-source operating systems are mostly



148 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

based on the System V ABI Intel386 Architecture Processor Supplement (AT&T, [1991) which

defines the C calling convention as the base in their ABI.

e Apple’s Mac OS X ABI for x86-32 (Apple Inc., 2010b, pp.43) is mainly based on System V with

small modifications as outlined in Section [5.21

A peculiarity of the Microsoft Windows is the stdcall calling convention, used for the public C
interface of system component In principle it functions similiarly to the C calling convention.
However, the stack cleanup strategy is different. While the caller is usually responsible for removing

all arguments on the stack, it is the callee in this case.

Major C compilers of x86-32 offer a compiler-specific fastcall calling convention; the name refers to
an optimized calling convention which utilized a subset of the eight GPRs; an overview of 16-bit and
32-bit variants of fastcall is listed in Table Figure gives the register utilization for fastcall
on x86-32, supported by Microsoft and GNU compilers (displayed as “fast” in Figure . Both

calling conventions make use of registers ECX and EDX to pass the first two integer arguments.

C and Pascal calling conventions on x86 differ by the order in which arguments are pushed on
the stack. In C arguments are pushed in right-to-left order. Consequently, since the stack grows
downwards, the sequence of argument data is placed upwards on stack memory, similar to fields of
a C data structure, in ascending left-to-right order. The majority of calling conventions for x86 and
other processor architecture familes use this scheme. Exceptions to this include the Pascal calling

convention (pascal) and a few fastcall variants for x86-16/32 that use the opposite order.

Support for calling C++ member functions necessitates passing a reference of a C++ object. This
can be transparently implemented by means of the C calling convention; the instance this pointer
is passed as a first argument of the calling sequence. However, the thiscall calling convention is
used for C4++ member function calls on Microsoft Windows x86-32 platforms; the instance pointer is
passed via the register ECX (depicted as “this” in Figure and the callee is responsible for cleaning
up the stack.

Although most Unix-based operating systems on x86-32, such as Linux and BSD derivates, are based
on System V and utilize the ELF format for binary executable and shared library formats (as discussed
in Section , there exist different calling conventions for system calls. In general, system functions
are called by execution of an interrupt; the function is specified by passing a service number in a
register. On Linux all arguments are also passed via registers while FreeBSD arguments are passed

via the stack.

The doubling of general-purpose registers as of the x86-64 ISA led to a RISC-based design of calling
conventions for x86. Two ABI standards cover a majority of 64-bit x86 platforms. Both standards
make use of the larger number of available registers and also utilize SSE registers for transfer of floating-
point parameters and results. The System V Application Binary Interface: AMDG64 Architecture

Processor Supplement (Matz et al.,|2012) specifies a calling convention for C (denoted “sysv” in Figure
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that was adopted by Linux, Solaris, Mac OS X and BSD operating systems. Microsoft defines
its own calling convention for Windows 64-bit platforms (Microsoft, 2013), namely “x64 Software
Conventions” (denoted “x64” in the illustration in Figure . Microsoft’s ABI uses fewer registers
for passing arguments as illustrated in the example of Section[5.1.4] Note also that x64 uses one register
for return values while sysv uses up to two registers. For further details on calling conventions of the

x86 architecture family see |[Fog| (2012)).

5.3.3 ARM Processor Architecture Family

The|ARM (Advanced Risc Machines)| processor family was originally designed as a 32-bit RISC archi-

tecture and its origin dates back to the mid-1980s when it was first used in the Acorn (Archimedes)
personal computers. “Acorn had developed a strong position in the UK personal computer market
due to the success of the BBC (British Broadcasting Corporation) microcomputer” (Turber, [2000,
p. 36). “The first ARM processor was developed at Acorn Computers Limited, of Cambridge, Eng-
land, between October 1983 and April 1985. At that time, and until the formation of Advanced RISC
Machines Limited (which later was renamed simply ARM Limited) [..], ARM stood for Acorn RISC
Machine” (Turber], 2000, p. 36). ”At the time the first ARM chip was designed, the only examples
of RISC architectures were the Berkeley RISC I and IT and the Stanford MIPS (which stands for
Microprocessor without Interlocking Pipeline Stages), although some earlier machines such as the
Digital PDP-8, the Cray-1 and the IBM 801, which predated the RISC concept, shared many of the
characteristics which later came to be associated with RISCs” (Turber, 2000, p. 37).

The company “ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple
Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6
processor family, and VLSI became the initial licensee. Subsequently, additional companies, includ-
ing Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor designs,
extending the applications of ARM processors into mobile phones, computer hard disks, personal dig-
ital assistants (PDAs), home entertainment systems, and many other consumer products.” (Yiu, 2010,
p. 2)

We can assume that ARM will take on an important role in the CPU market in the coming years.
In fact, it is already dominating the embedded, mobile and handheld market. “ARMs designers have
come a long way from the first ARM1 prototype in 1985. Over one billion ARM processors had been
shipped worldwide by the end of 2001.” (Sloss et al., 2004, p. 3) “There were 20 billion ARM cores
used by 2002. Nowadays, ARM processors are almost in everybodys pocket because almost all of the
mobile phones, PDAs are developed based on ARM cores.” (Muresan, 2005, p. 6) “Nowadays [2010],
ARM partners ship in excess of 2 billion ARM processors each year. Unlike many semiconductor
companies, ARM does not manufacture processors or sell the chips directly. Instead, ARM licenses
the processor designs to business partners, including a majority of the worlds leading semiconductor

companies. Based on the ARM low-cost and power-efficient processor designs, these partners create
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their processors, microcontrollers, and system-on-chip solutions. This business model is commonly

called intellectual property (IP) licensing.” (Yiu, 2010, p. 2) “The ARM company bases their success

on a simple and powerful original design, which continues to improve today through constant technical

innovation. In fact, the ARM core is not a single core, but a whole family of designs sharing similar

design principles and a common instruction set.” (Sloss et al., 2004, p. 3) See Table for a sample

selection of hardware systems of the past two decades, ranging from home computers, mobile cell

phones, handheld game consoles and tablet PCs, that incorporated one or more ARM cores and/or
licensed ARM IP in their System-On-Chip design.

CPU SoC
Year ISA Features and Extensions Sample Products Family Core Package
1985 ARMv1 26-bit address space Prototyp (1985) ARM1 ARM1
1986 ARMv2 Multiply instruction BBC Archimedes 305 (1987) ARM2 ARM2
1990 ARMv3 32-bit address space Acorn A5000 (1991) ARM3 ARM3
1993 Apple Newton 100 (1993) ARM610
ARM6
ARMv4 32-bit address space only 3DO (1993) ARM60
v
System mode StrongARM RiscPC (1996) SA-110
StrongARM
Sharp Zaurus SL-5500 (2002) SA-1110
1994 Nokia 6110 (1997)
Apple iPod (2001)
ARMv4T 16-bit ISA Thumb ARMT ARM7TTDMI
Nintendo GBA (2001)
: : Nintendo DS (2002)
2002 ARM/Thumb interworking ARM9/6E-S
ARMv5TE ARM9
VFPv2 FPU, DSP Marvell SheevaPlug (2009) Marvell Kirkwood 88F6281
ARMv5TEJ Java Bytecode Execution RIM BlackBerry Quark  (2003) ARM7 ARM7EJ-S
2007 . Apple iPhone (2007) S5L8900
16/32-bit ISA Thumb-2 ) ARM1176JZF-8
Raspberry Pi (2012) BCM 2825
ARMv6 Enhanced SIMD ARM11
HTC Dream (2008) MSM72014
DSP ARM1136EJ-S
Samsung Galaxy 17500 (2009) MSM72004
2008 TI BeagleBoard (2008) OMAP3530
Apple iPhone 3GS (2009) S5PC100
Cortex-A8
Genesi Efika MX (2009) i.MX515
Advanced SIMD NEON
Apple iPad 1 (2010) Apple A4
ARMv7-A VFPv3 FPU Cortex-A
Samsung Galaxy Note (2011) Ezynos 4
VFPv4 FPU
Microsoft Surface RT (2012) Cortez-A9 Tegra 3
Apple iPhone 4S (2011) Apple 45
Apple iPhone 5 (2012) Cortez-A15 Apple 46
2012 X . . Cortex-A53
ARMv8-A 64-bit Architecture Apple iPhone 5S (2013) i Cortex-A50 Apple A7
Cortex-A57

Table 5.5: Overview of the ARM Architecture family. (See also Sloss et al.| (2004 p.39, Table 2.7))

Recently, ARM released a 64-bit extension, which leads to the assumption that ARM cores may be a

future alternative to the dominating x86 architecture for notebook, desktop and server systems: AMD

announced “to release its first ARM-based chip in 2014 [to follow] in the steps of Dell and HP which

have previously announced plans to build ARM-based servers.” (BBC News, 2012)
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5.3.3.1 ARM Architecture and Revisions

“The ARM core uses a RISC architecture. RISC is a design philosophy aimed at delivering simple but
powerful instructions that execute within a single cycle at a high clock speed. The RISC philosophy
concentrates on reducing the complexity of instructions performed by the hardware because it is easier
to provide greater flexibility and intelligence in software rather than hardware. As a result, a RISC
design places greater demands on the compiler. In contrast, the traditional complex instruction set
computer (CISC) relies more on the hardware for instruction functionality, and consequently the CISC

instructions are more complicated.” (Sloss et al., |2004, p. 4)

“An ARM processor is an implementation of a specific instruction set architecture (ISA). The ISA
has been continuously improved from the first ARM processor design. Processors are grouped into
implementation families (ARM7, ARM9, ARM10, and ARM11) with similar characteristics.” (Sloss
et al., 2004, p. 44) “The processor family is a group of processor implementations that share the
same hardware characteristics. For example, the ARM7TDMI, ARM7/0T, and ARM720T all share the same
family characteristics and belong to the ARM7 family.” (Sloss et al., [2004, p.38)

At the core of the CPU 16 general-purpose 32-bit registers are available for integer/bit arithmetic,
load/store operations and control flow. Over time a number of extensions have been designed for
ARM. See Table for a chronological list of ISA revisions and extensions.

The address space of the first ARM architecture was limited to 26 bits. Support for a 32-bit address

space was later added with ARMv3. ARMv4 introduced a privileged system mode for handling exceptions.

The instructions of ARM are encoded as 32-bit words, which is very typical for 32-bit RISC ar-
chitectures. However, a significant ISA extension for the embedded and mobile market was added
with ARMvAT: “Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction set
space. Since Thumb has higher performance than ARM on a processor with a 16-bit data bus, but lower
performance than ARM on a 32-bit data bus, [it is suggested to] use Thumb for memory-constrained
systems. Thumb has higher code density - the space taken up in memory by an executable program -
than ARM. For memory-constrained embedded systems, for example, mobile phones and PDAs, code
density is very important. Cost pressures also limit memory size, width, and speed. On average, a
Thumb implementation of the same code takes up around 30% less memory than the equivalent ARM
implementation.|...] Each Thumb instruction is related to a 32-bit ARM instruction.” (Sloss et al., |2004]
p. 87) “In Thumb state, you do not have direct access to all registers. Only the low registers RO to R7
are fully accessible.” (Sloss et al., 2004, p.89)

From then on developers needed to handle two separate machine-code instructions and corresponding
decoding ‘modes’ of the CPU. Mode switches between Thumb and ARM can be intermixed in a single
code execution flow. The ARMv5 architecture improved interworking between ARM and Thumb mode

switching.

Note the naming schemes for ARM architectures and cores, as depicted in Table looks confusingly
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similar and can lead to wrong assumptions, e.g. the ARM6 processor and the ARMv6 architecture are
not related; ARM6 cores implement the ARMv4 ISA. The following two tables give the notation syntax
for the ARM architecture (left) and processor (right).

“ARMv” (number) (letter)... “ARM” (number) (letter)...
letter | Description letter | Profile
‘T Thumb: 16-bit compressed ISA ‘T Application
‘E’ Enhanced DSP ‘D’ JTag debugging
J Jazelle: Java byte-code execution ‘o Fast multiplier
‘T EmbeddedICE macrocell
‘B Enhanced instructions (assumes TDMI)

The suffix letter codes, such as ‘T’, ‘E’ and ‘J’, indicate a certain feature of the architecture or CPU
core. Later revisions of the ARM architecture adopted this feature set completely. So that Thumb,
encoded as ‘T’ till ARMv5, is a core feature for ARMv6 and ARMv7-A architectures. Similarly, “all ARM
cores after the ARM7TDMI include the TDMI features even though they may not include those letters
after the ‘ARM’ label.” (Sloss et al.l 2004} p.38)

ARM has support for co-processor extensions, such as VFPv1, VFPv2, VFPv2-D32, VFPv3 and
VFPv4. New [SIMD)] operations were also added to ARM with the ARMv6 architecture, which was later
enhanced with the NEON extension for the ARMv7-A architecture.

Owing to the success of the Thumb ISA, a new mixed-mode ISA, named Thumb-2, was added that
integrates ARM 32-bit and Thumb 16-bit machine-code encoding. “The Thumb-2 technology extended
the Thumb Instruction Set Architecture (ISA) into a highly efficient and powerful instruction set
that delivers significant benefits in terms of ease of use, code size, and performance. The extended
instruction set in Thumb-2 is a superset of the previous 16-bit Thumb instruction set, with additional
16-bit instructions alongside 32-bit instructions. It allows more complex operations to be carried out
in the Thumb state, thus allowing higher efficiency by reducing the number of states switching between

ARM state and Thumb state.” (Yiu, 2010, p. 8)

Since ARMv7 the architecture has been split in three profiles, each with a different focus of use case:

“ARMv” (number) ‘=’ (letter)

letter : Profile
‘N Application
‘R Realtime
‘o Microcontroller

The ARMv8-A Application profile is currently the latest version of the architecture. It introduces a new
64-bit execution environment named AArch64 and a new 64-bit ISA named A64; the 32-bit execution
environment is still supported and referd to as AArch32. The number of registers was almost doubled
offering 31 general-purpose registers and a 48-bit address space is used for a larger virtual address
space where the LP64 and LLP64 are the primary data models A detailed discussion on 64-bit data
models is given in Section The AArch32 environment supports ARM and Thumb that are referred

to as A32 and T32, respectively. However, the architecture is relatively new so that we focus in this
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ABI Note
apcs ARM Procedure Call Standard (0ABI)
iwmmxt Support for Intel XScale MMX extensions
tpcs Thumb Procedure Call Standard
atpcs ARM-Thumb ABI (precursor to aapcs)
apcs-gnu Legacy ABI for arm32 on Linux
aapcs ARM Architecture Procedure Call Standard (EABI)

aapcs-linux

EABI using 32-bit integer enums

armhf EABI using floating-point registers
ios-v6 Apple i0OS ABI for ARMv6 architecture based on aapcs
ios-v7 Apple i0OS ABI for ARMvT architecture based on aapcs

Table 5.6: ABIs of ARM processor architectures.

thesis on 32-bit architectures ARMv4 to ARMv7-A.

5.3.3.2 ABIs and Calling Conventions of arm

“On the ARM architecture, there are two major ABI types to choose from: EABI and 0ABI. There is
also a Thumb ABI and an Intel IWMMX specific ABI but these are generally not recommended for most
uses. The EABI (Embedded ABI) is newer and supports additional features, faster software floating
point operations, and Thumb interworking, but is only compatible with ARMv4t and newer cores. The
EABI has sub-ABIs of: aapcs-linux and aapcs. aapcs-1linux has standard Linux 4 byte enums while
aapcs has variable length enums. aapcs-1linux is recommended over aapcs. The 0ABI (old ABI) is
called apcs—-gnu and supports ARMv4 and older cores. Generally the 0ABI is not used by modern ARM
processors.” (Ciccone et al 2012, sec 6.3) “The atpcs is a precursor to the aapcs while the apcs and
tpcs ABIs are considered obsolete.” (ARM Limited, 2009, p.6) Table gives an overview of some
ARM ABIs including legacy standards. Despite the large number of ARM-based hardware platforms
the total number of available ABISs is relatively small; several ABIs contain mostly small modifications.
Today most platforms have converged to the Procedure Call Standard for the ARM Architecture(ARM
Limited, 2009)), abbreviated aapcs, which specifies the data types and alignments, the base procedure
call standard, standard variants and C/C++ language mappings.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ay | a2 SB
a3 | aa FP IP | SP [ LR | PC
T1 | T2 TR

Figure 5.5: Register files on the arm processor architecture.

Figure [5.5| gives an overview of the utilization of general-purpose registers for procedure calls in the
aapcs base standard. The first four registers, RO-R3, are used for passing argument values. RO-R1
are used for passing return values. Further values are passed via the stack managed by the stack
pointer register R13 (SP). Register R14 and R15 are used as link register (LR) and program counter

(PC), respectively. R12 is a scratch register that can also be used transparently by the linker as an



154 CHAPTER 5. DYNAMIC INTERFACES TO COMPILED CODE

Intra-Procedure-call register (1p).

aapcs provides a flexible framework that addresses different hardware profiles. For example, R9 is
defined to be a platform-specific register; it can be used as a register for thread-local storage (TR) or
as a static base register (SB) in a position-independent data model, depending on the needs of the
target platform. aapcs provides a base calling convention which does not require the existance of a
FPU; floating-point argument /return values are passed via integer registers and the stack, even if the
architecture supports a FPU co-processor. However, aapcs includes recommendations to support FPU
co-processor registers and, more recently, a new ABI, named armhf (ARM hard-float), was specified
for Debian GNU/Linux on ARM systems (Debian) 2012) as an optimization for architectures with a
VFPv2 (or higher) FPU co-processor such as provided by ARMv6 and ARMv7-A CPU cores.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ai|a2 a3z |agfas|ae | a7 | ag | ag |@10 @11 |@12|a13|A14|A15|A16

s0 [ s1 [s2 s3] sa]s5[s6]s7]ss]so[s10]s1]s12]s13]s14]s15]s16]s17[s18]s19]s20]s21]s22]s23] -] single precision
D0 DL D2 D3 D4 D5 D6 D7 D8 DY D10 D11 | double precision
Q0 Ql Q2 Q3 Q4 Q5 | quad precision

Figure 5.6: FPU registers of the VFPv2 co-processor of arm and utilization in armhf ABI.

The VFPv2 FPU comprises 32 registers for single-precision floating-point values, named sO to s31, as
depicted in Figure 5.6 The armhf ABI utilizes the first 16 registers for passing floating-point values.
Note that double-precision floating-point values are also supported by VFPv2, via register pairing, and
these can be addressed in assembly via DO-D15. Thus up to eight double floating-point values are
passed via FPU registers before being passed via the stack. Similarly, quad-precision floating-point in

hardware is also supported via register pairing as of the NEON SIMD extension.

Since ARMv4T the ARM architecture offers the 16-bit Thumb (and later Thumb-2) machine-code mode
besides the standard 32-bit ARM mode where both modes can co-exist within a single program code and
running process. For a portable implementation of generic function calls at machine level that cover
different ARM architecture versions, both ISA modes need to be considered. Note that the roles of
registers and the layout of the stack remains identical in both modes. However, special care is needed
for handling the so-called interworking when calling functions that require a mode switch between ARM
and Thumb. The latter can take place during a branch code, including function returns. The target
mode is specified by bit 0 of the code address of a target branch; ARM compiled code addresses are as-is
while Thumb compiled code have odd addreses where bit 0 is set to 1 although the actual code still
begins at even addresses. Depending on the ARM architecture to be supported different interworking
techniques for branch instructions (via a code pointer) need to be considered. For details see ARM
Limited| (2009, sec 5.6).

The aapcs base standard has been widely adopted or refined. For example, the ABI for Apple’s
ARM-based i0S platform (used in iPod, iPhone and iPad mobile devices) is based on the core aapcs

(without FPU registers) and includes small refinements: “The function call calling convention used
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in the ARMv6 environment are the same as those used in the Procedure Call Standard for the ARM

Architecture (release 1.07), with the following exceptions:

e The stack is 4-byte aligned at the point of function calls.
e Large data types (larger than 4 bytes) are 4-byte aligned.
e Register R7 is used as a frame pointer.

e Register R9 has special usage.” (Apple Inc., 2010al p.5)

Note that aapcs specifies 8-byte alignment requirements for the stack for public function calls and for
large data types (see also Table for a comparison of C data type alignments of ‘arm32’ prefixed
ABIs).

For the ARMv7 architecture Apple further states: “In general, applications built for the ARMv7 en-
vironment are capable of running in the ARMv6 environment and vice versa. This is because the
calling conventions for the ARMv7 environment are nearly identical to those found in the ARMv6 envi-

ronment.” (Apple Inc., 2010al p.14)

5.3.4 PowerPC Processor Architecture Family

In the 1990s the PowerPC architecture offered an attractive alternative to Intels x86 as a personal
computer platform for several operating systems, including Motorola 68000-based (m68k) platforms
and newer operating systems. “Although announced in 1991, the PowerPC architecture represents
the end product of nearly 20 years of evolution starting with work on the 801 system at IBM. From
the beginning, advanced hardware and software techniques were intermingled to develop first RISC
and then superscalar computer systems. [...] Historically, CISC architectures evolved in response
to the limited availability of memory because complex instructions result in smaller programs. As
technology improved, memory cost dropped and access times decreased, so the decode and execution
of the instructions became the limiting steps in instruction processing. Work at IBM, Berkeley, and
Stanford demonstrated that performance improved if the instruction set was simple and instructions
required a small number of cycles to execute, preferably one cycle. The reduction in cycle time and
number of cycles needed to process an instruction were a good trade-off against the increased path
length. Development along these RISC lines continued at IBM and elsewhere. [...] The work at
IBM led to the development of the POWER architecture, which implemented parallel instruction
(superscalar) processing, introduced some compound instructions to reduce instruction path lengths
in critical areas, incorporated floating-point as a first-class data type, and simplified the architecture

as a compiler target.” (Hoxe et al.l 1996, pp 1-2)

“IBM developed many of the concepts in 1975 for a prototype system. An unsuccessful commercial

version of this prototype was introduced around 1986. Four years later, IBM introduced the RS/6000
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family of processors based on their POWER, architecture. In early 1991, a group from Motorola,
IBM, and Apple began work on the PowerPC architecture using the IBM POWER architecture as the
base.” (Dandamudi, 2005al p.79) As a competitor to the x86 and the IBM PC compatible, a standard

system architecture for PowerPC was specified, named [PReP (PowerPC Reference Platform)| in order

to allow hardware developers to design hardware-compatible machines that can run Windows NT,
0S/2, Solaris and AIX. In 1995, IBM and Apple Computers published the successor [CHRP (Common|
[Hardware Reference Platform)| which included support for Mac OS and NetWare.

In 1994, Apple Computers exchanged the processor architecture of the Macintosh platform from
Motorola 68000 processor family to PowerPC. However, in 2006 the Mac OS X platform was shifted
to the x86 architecture and support for PowerPC-based Macintosh hardware was discontinued by
release of Mac OS X 10.6 in 20009.

PowerPC is also considered as the successor architecture for the Amiga “classic” platforms which were
also based on Motorola 68000. When Commodore released the Amiga 1000 in 1985, the platform
quickly attracted a growing community of users and developers due to its multimedia hardware capa-
bilities. As stated by Andy Warhol: “The thing that I like most about doing this kind of art on the
Amiga is that it looks like my work.” (Guy Wright and Glenn Suokko| [1986) Beyond its multimedia
capabilities, some users consider the AmigaOS operating system ahead of its time, compared to the
commercially more successful systems of Microsoft and Apple. As stated by John C. Dvorak: “The
AmigaOS remains one of the great operating systems of the past 20 years, incorporating a small kernel
and tremendous multitasking capabilities the likes of which have only recently been developed in OS/2
and Windows NT. The biggest difference is that the AmigaOS could operate fully and multitask in as
little as 250 K of address space. Even today, the OS is only about 1MB in size. And to this day, there
is very little a memory-hogging CD-ROM-loading OS can do the Amiga can’t. Tight code there’s
nothing like it. I've had an Amiga for maybe a decade. It’s the single most reliable piece of equip-
ment ['ve ever owned. It’s amazing! You can easily understand why so many fanatics are out there
wondering why they are alone in their love of the thing. The Amiga continues to inspire a vibrant
- albeit cultlike - community, not unlike that which you have with Linux, the Unix clone.” (Dvorak,
1996) However, Commodore International declared bankruptcy in 1994. Since then several companies
relicensed the trademark Commodore and Amiga; an official successor platform based on PowerPC
was out of sight. In 1997, Phase 5 released the first PowerPC accelerator card for Amiga that should
rescue the system to the PowerPC architecture. “At the time Phase 5 were one of the only companies
that appeared serious to invest money into the Amiga market and move it away from the ageing 68k
platform.” (Knight|, |2006) This provided the base for porting AmigaOS to PowerPC and started the
development of new derivates of AmigaOS, such as MorphOS (MorphOS Development Team, 2013]).
In 2009, Hyperion Entertainment released AmigaOS 4.1 which runs on Amiga “classic” systems with
PowerPC-accelerators and PowerPC-based computer systems, including a series of new Amiga hard-
ware systems (A-EON Technology Ltd., [2011) under the label “AmigaONE”. In 1995, the AROS

project was initiated to develop an open-source version of AmigaQOS; currently more than 80% of the
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original AmigaOS 3.1 are covered (AROS Development Team) 2013)). It can run natively on x86 and

PowerPC architectures and has also been back-ported to run on m68k-based Amiga “classic” machines.

The BeOS operating system was originally developed for PowerPC and later ported to x86; but it was
not successful. Nowadays it continues to exist as “Haiku”, an open-source reimplementation of BeOS
for x86 (Haiku, Inc., 2013]).

Currently, the PowerPC is used on IBM server systems running the commercial AIX Unix operating

system. A majority of open-source Unix-based operating systems also offer PowerPC ports.

PowerPC cores are also commonly used in embedded systems and video game consoles, such as the
Sony Playstation 3, Microsoft XBox 360 and Nintendo Wii. “The PowerPC architecture has made its
presence felt in the embedded market where AMCC PowerPC and Motorola PowerPC deliver 32-bit
system-on-chip (SOC) integrated products. These SOCs encompass the processor along with built-in
clocks, memory, busses, controllers, and peripherals. The companies who license PowerPC include
AMCC, IBM, and Motorola.” (Rodriguez and Fischer, 2006, Section 1.6)

“In 2006, Freescale and IBM collaborated on the creation of the Power ISA Version 2.03, which rep-
resented the reunification of the architecture by combining Book E [Embedded environment| content
with the more general purpose PowerPC Version 2.02. A significant benefit of the reunification is
the establishment of a single, compatible, 64-bit programming model. [..] Because of the substantial
differences in the supervisor (privileged) architecture that developed as Book E was optimized for em-
bedded systems, the supervisor architectures for embedded and general purpose implementations are
represented as mutually exclusive categories. Future versions of the architecture will seek to converge

on a common solution where possible.” (IBM} 2010} p.iii)

5.3.4.1 ABIs and Calling Conventions of PowerPC

“The PowerPC architecture is a 64-bit architecture with a 32-bit subset.” (IBM and Motorolal (1997,
p.1-4) In general, the architecture defines three levels, or programming environments, of the PowerPC
architecture: PowerPC user instruction set architecture (UISA), PowerPC virtual environment archi-
tecture (VEA) and PowerPC operating environment architecture (OEA). “The UISA defines the base
user-level instruction set, user-level registers, data types, memory conventions, and the memory and
programming models seen by application programmers.” (IBM, 2000, p.xxv) “IBM has defined three
ABIs for the PowerPC architecture: the AIX ABI for big-endian 32-bit PowerPC processors and the
Windows NT and Workplace ABIs for little-endian 32-bit PowerPC processors.” (Hoxe et al., 1996
p.157) In addition to the AIX ABI, based on specifications found in Hoxe et al.| (1996, Appendix A),
we review three other ABIs for the 32-bit subset of the PowerPC architecture:

e The System V ABI (sysv) supplement for PowerPC 32-bit (Zucker and Karhi, [1995).

e The Embedded ABI (eabi) for PowerPC 32-bit (Steven Sobek and Kevin Burke, 2004), which is
based on a sysv ABL
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e The Mac OS X ABI (osx) for PowerPC 32-bit (Apple Inc., 2010b).
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Figure 5.7: Register files of the ppc processor architecture family.

Figure gives an illustration of register sets as they are utilized in calling conventions of the four
ABIs. The PowerPC architecture comprises two large registers sets consisting of 32 registers for
general-purpose and floating-point values, respectively. In addition, the architecture supports a SIMD
extension named altivec. Note the FPU uses a 64-bit double-precision format internally, in con-
trast to FPUs of other architectures, which typically offer support for 32-bit single-precision. As
a consequence for PowerPC, C float single-precision floating-point values are promoted to 64-bit

double-precision values when they are passed via floating-point registers.

As a common convention to all four ABIs, the eight GPRs R3-R10 are reserved for passing of ar-
guments on all four calling conventions. Return values, up to 64-bit integer, are passed via R3 and
R4; single- and double-precision floating-point values are passed via F1; aix also supports passing of
quad-precision floating-point values via F1 and F2. However, osx and aix reserve eleven FPRs for

passing floating-point values in contrast to eight FPRs on sysv and eabi.

The calling conventions of sysv and eabi seem to be straight-forward. First arguments are either
passed via GPRs or FPRs. If no register is available for one or the other, the argument is passed in
the “parameter list” area of the caller’s stack frame in ascending memory addresses i.e. in right-to-left
push order on downgrowing stacks. The stack frame begins (at the lowest address) with a “back
chain” pointer to the previous caller frame on the stack, followed by a reserved cell to save the link
register LR (a separate register not part of the GPRs and used by branch-and-link instructions), and

followed by the parameter list area.

In contrast to sysv/eabi, the calling conventions of osx and aix are more complex. The stack
frame contains a homing area which reserves “home location” storage in memory for the eight 32-bit
GPRs parameter registers. Arguments passed as 64-bit double-precision values via FPRs are mapped

logically to one (for float arguments) or two (for double arguments) GPRs, which on their part are
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mapped to the homing area and are marked as used. However, arguments passed via GPRs do not
automatically mark a corresponding FPR here and further details need to be considered since only
a subset of FPRs may be mapped to GPRs. As the osx ABI states “When floating-point registers
are exhausted, the caller places floating-point elements in the parameter area.” (Apple Inc., 2010b),
p.19) In part, the specification of osx is inprecise here; a clearer explanation was found in the aix
specification: “Any floating-point values that extend beyond the first 8 words of the argument list
must also be stored at the corresponding location on the stack.” (Hoxe et al., [1996] p.163) The layout
of stack frames, including the homing area, is further discussed in Section [5.3.7} a comparison of stack

frames, including those of osx and sys, is illustrated in Figure

Note the role of register R2 differs among ABIs; it functions as a volatile register by osx while it
is used as a system-reserved register by the other ABIs. The registers R11 and R12 are reserved
for special ABI-specific purposes. sysv defines them as volatile registers which may be modified
during function linkage (Zucker and Karhi, 1995, p.3-14). On the osx and aix ABIs registerr11
is volatile for caller and callee of functions. However, some C compilers support an extension for
nested function definitions where this register becomes an environment pointer (EP) that points to
the top-level function’s environment i.e. for access to local variables from within the nested functions.
osx defines that R12 is set to the address of the branch target before indirect calls for dynamic code
generation, whereas aix defines R12 to be used for special exception handling and global linkage

routines.

The utilization of altivec registers is incorporated by the osx ABI; up to eleven registers are utilized
for passing vector data types. A corresponding C data type, named vector , is defined as a C extension
for the GNU compiler.

5.3.5 MIPS Processor Architecture Family

“The MIPS architecture was born in the early 1980s from the work done by John Hennessy and his
students at Stanford University. Over the course of the next 14 years, the MIPS architecture evolved
in a number of ways and its implementations were used very successfully in workstation and server
systems. [...] Over that time, the architecture and its implementations were enhanced to support
64-bit addressing and operations, support for complex memory-protected operating systems such as
UNIX, and very high performance floating point. Also in that period, MIPS Computer Systems was
acquired by Silicon Graphics and MIPS processors became the standard for Silicon Graphics computer
systems. With 64-bit processors, high-performance floating point, and the Silicon Graphics heritage,
MIPS processors became the solution of choice in high-volume gaming consoles. In 1998, MIPS
Technologies emerged from Silicon Graphics as a stand-alone company focused entirely on intellectual
property for embedded markets. As a result, the pace of architecture development has increased
to address the unique needs of these markets: high-performance computation, code compression,

geometry processing for graphics, security, signal processing, and multi-threading. Each architecture
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development has been matched by processor core implementations of the architecture, making MIPS-
based processors the standard for high-performance, low-power applications.” (Sweetman, 2007, p.V)
“These days MIPS is not the highest-volume 32-bit architecture, but it is in a comfortable second
place.” (Sweetman, 2007, p.XV) “ARM gets more headlines, but MIPS sales volumes remain healthy
enough: 100 M MIPS CPUs were shipped in 2004 into embedded applications.” (Sweetman, 2007, p.1)
“A piece of equipment built around a MIPS CPU might have cost you $35 for a wireless router or
hundreds of thousands of dollars for an SGI supercomputer (though with SGIs insolvency, those have
now reached the end of the line). Between those extremes are Sony and Nintendo games machines,

many Cisco routers, TV set-top boxes, laser printers, and so on.” (Sweetman), 2007, p.XV)

5.3.5.1 ABIs and Calling Conventions of mips

The original 32-bit MIPS ISA, named MIPS-I, was revised in five rounds until it became the 64-bit
ISA named MIPS64 with a 32-bit subset architecture MIPS32; both are referred to as MIPS32/64.
MIPS-I was implemented by the R2000 and R3000 CPUs which were used among others in Sony’s
Playstation 1. The 64-bit architecture of MIPS was introduced with the MIPS-III and it was first
implemented by the R£000 CPU. Integer-based SIMD instructions were added with the MIPS-V ISA
and were simultaneously released as a SIMD extension, named MDMX. With a few exceptions MIPS
ISAs are backward compatible, for example MIPS I 32-bit code can run on a R4£000 CPU. However,
“the only ISA version that could cause you trouble is MIPS V, some of which is not available in
MIPS64. But then it was never implemented, either.” (Sweetman, 2007, p.44) A compressed 16-bit
ISA, similar to ARM’s Thumb mode, was also designed for the MIPS architecture, named MIPS16e.

“The most important ABIs in MIPS history are:

e 032: Grew from traditional MIPS conventions (‘o’ for old) [...] 032 is still pretty much universally

used by embedded toolchains and for 32-bit Linux.

e n64: New formal ABI for 64-bit programs on 64-bit CPUs running under Silicon Graphics Irix
operating system. SGIs 64-bit model makes both pointers and C long integer types into 64-
bit data items. However, n64 also changes the conventions for using registers and the rules
for passing parameters; because it puts more arguments in registers, it improves performance

slightly.

e n32: A partner ABI to n64, this is really for “32-bit” programs on 64-bit CPUs. It is mostly the
same as n64, except for having pointers and the C long data type implemented as 32 bits. That
can be useful for applications where a 32-bit memory space is already spacious, 64-bit pointers

represent nothing but extra overhead.” (Sweetman| 2007, p.311-312)

In addition the 32-bit eabi ABI for Homebrew development on the PlayStation Portable game console

is also included here. An inofficial specification was published via mailing list (Christopher, 2003).
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MIPS CPUs comprise 32 general-purpose registers as depicted in Figure Register RO is special as
it represents a constant that always returns zero. R1 is an assembly temporary (AT). Furthermore,
several registers takes specific roles such as the global pointer (GP), stack pointer (SP), frame pointer

(FP) and link register (LR); registers 26 and 27 are reserved for the operating-system kernel.

General-Purpose Registers

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

oabi
0 |AT (71 |T2|a1|a2|a3|aq GP|SP LR
(32-bit)
n32,n64,eabi | 0 |AT|7T1|7T2|a1|az(a3|a4|as5|ae|ar|as GP|[SP[FP|LR

Figure 5.8: Register files on the mips processor architecture family.

The old 032 ABI is used as the base for the System V ABI supplement for 32-bit MIPS platforms
(AT&T, [1991)). “Silicon Graphics has defined the following parameter passing convention. The first
four “in” parameters are passed to a function in $a0, $al, $a2, and $a3 [labeled aj-as in Figure [5.§].
The convention states that space will be allocated on the stack for the first four parameters even
though these input values are not stored on the stack by the caller. All additional “in” parameters are
passed on the stack. Register $v0 [labeled r; in Figure is used to return a value.” (Britton, [2003,
p.53) With the support for 64-bit long long data types, register R3 (labeled r2) was also included to
pass large integer values. In contrast to the 032 MIPS, the modern ABIs n64, n32 and eabi use eight

registers for passing integer arguments and no stack space is reserved.

The first FPU co-processor available in MIPS-I was rather complicated and led to odd calling conven-
tion rules: “Omne of the worst faults caused by the age of 032 is that its use of registers is compatible
with the very earliest MIPS floating-point units, which used only the even-numbered registers to hold
floating-point values. Double-precision values quietly extended into the adjacent odd-numbered reg-
ister; the odd-numbered registers were used only when reading or writing FP values from memory, or
from integer registers. 032’s resulting register conventions do not quite prevent software from using
all 32 registers in later CPUs, but they dont make for great efficiency.” (Sweetmanl, 2007, p.322) The
FPU registers for MIPS-I are illustrated in Figure [5.9} single-precision and double-precision registers
are addressed by even-numbered registers; note that the odd-numbered single-precision registers are

not considered at all.

The number of floating-point registers for passing arguments of the 032 ABI is surprisingly small; up
to two registers, F12 and F14, are reserved. Due to historic reason the registers are only used if the
first arguments in the calling sequence are of floating-point values; otherwise all data is passed via
integer registers and then via the stack. “Old-fashioned C had no built-in mechanism for checking that
the caller and callee agreed on the type of each argument to a function. To help programmers survive
this, the caller converted arguments to fixed types: int for integer values and double for floating point.

There was no way of saving a programmer who confused floating-point and integer arguments, but at
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FPU registers on MIPS-I ISA / 032 ABI
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Figure 5.9: FPU registers of the mips processor architecture family.

least some possibilities for chaos were averted. Modern C compilers use function prototypes available
when the calling function is being compiled, and the prototypes define all the argument types. But
even with function prototypes, there are routines — notably the familiar printf() — where the type of
argument is unknown at compile time; printf() discovers the number and type of its arguments at run
time. MIPS made the following rules. Unless the first argument is a floating-point type, no arguments
can be passed in FP registers. This is a kludge that ensures that traditional functions like printf() still
work: Its first argument is a pointer, so all arguments are allocated to integer registers, and printf()
will be able to find all its argument data regardless of the argument type. The rule is also not going
to make common math functions inefficient, because they mostly take only FP arguments. Where the
first argument is a floating-point type, it will be passed in an FP register, and in this case so will any

other FP types that fit in the first 16 bytes of the argument structure. Two doubles occupy 16 bytes,

so only two FP registers are defined for arguments FAO and FA1, or $f12 and $f14.” (Sweetman, [2007,
p.321)

“The floating-point register conventions change more dramatically; this is not surprising, since the
n32/n64 conventions are for later MIPS CPUs, which have a full 64-bit floating-point unit with 32
fully usable independent registers.” (Sweetman) 2007, p.327) Although eabi is a 32-bit MIPS ABI it
also takes advantage of a modern 64-bit MIPS FPU; each floating-point register supports two storage

formats, single-precision or double-precision, and eight registers are reserved for passing floating-point

values.

5.3.6 SPARC Processor Architecture Family

The [SPARC (Scalable Processor ARChitecture)| processor architecture was introduced by Sun Mi-

crosystems in 1987, a company founded in 1982 by three students of Stanford; the acronym “Sun”

is derived from the initials of the Stanford University Network. Sun began developing the operating
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system “SunOS” (later renamed to “Solaris”) and built corresponding server/workstation hardware.
Early machines were based on the Motorola 68000 processor family. Later in 1985, the company
formulated the first SPARC design. Sun was successful with SPARC server and workstation products

but more than that it contributed significant technologies such as Java and the ZFS file system.

In January 2010 Oracle Corporation acquired Sun and rebranded its technology assets. However, in
mid-2000s Sun decided to open-source major parts of Solaris and the SPARC architecture, known as
OpenSolaris and OpenSPARC.

“Small amounts of computer hardware Intellectual Property (IP) have been available for many years
in open-source form, typically as circuit descriptions written in an RTL (Register Transfer Level)
language such as Verilog or VHDL. However, until now, few large hardware designs have been available
in open-source form. One of the most complex designs imaginable is for a complete microprocessor;
with the notable exception of the LEON 32-bit SPARC processor, none have been available in open-
source form until recently. In March 2006, the complete design of Sun Microsystems “UltraSPARC”
T1 microprocessor was released in open-source form, it was named OpenSPARC T1. In early 2008,
its successor, OpenSPARC T2, was also released in open-source form. These were the first (and still

only) 64-bit microprocessors ever open-sourced.” (Weaver, 2008, p.xiii)

5.3.6.1 ABIs and Calling Conventions of sparc

“SPARC is based on the RISC I and II designs engineered at the University of California at Berkeley
from 1980 through 1982. SPARCs “register window” architecture, pioneered in the UC Berkeley
designs, allows for straightforward, high-performance compilers and a reduction in memory load/store

instructions.” (HAL Computer Systems, 1998, p.19)

Unlike most other processor architectures SPARC uses a very large register file where a small subset
of registers is available to a subroutine. “The SPARC architecture provides for a register file with a
mapping register that indicates the active registers. Typically, 128 registers are provided, with the
programmer having access to the 8 global registers, and only 24 of the mapped registers at any one
time. The save instruction changes the register mapping so that new registers are provided. A similar
instruction, restore, restores the register mapping on subroutine return.

The 32 registers are divided into four groups: “in”, “local”, “out” and “general”. The eight general
registers GO - G7 are not mapped and are global to all subroutines. The IN registers are used to pass
arguments to closed subroutines, the LOCAL registers are for a subroutine’s local variables, and the
OUT registers are used to pass arguments to subroutines that are called by the current subroutine.
When the “save” instruction is executed the out registers become the in registers, and a new set

of local and out registers is provided. The mapping pointer into the register file is changed by 16
registers.” (Paul, 2000, p.185)

The large register file works as a call stack in hardware; the word ’scalable’ in SPARC is due to the

variable number of registers that can be packaged on to a core which ranges between 40 and 520
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registers i.e. CPU designers can choose between 2 to 32 register windows. However, the execution
environment still requires a call stack in main memory for storing additional arguments/local variables
beyond the first six arguments and eight local variables in registers. Stack frames also reserve a homing
area for 10-15 registers and a save area for register window content (for the eight LOCAL and ouT
registers). The latter is used by a trap handler for register window overflow management during a
function call/return where inactive register windows are moved between hardware registers and main

memory on the call stack.

The first ISA of the SPARC architecture (for 32-bit) is known as SPARC Version 7 (sparc-v7) and
was released 1986. In 1990 SPARC Version 8 (sparc-v8) was specified in SPARC International (1992])
which featured enhanced division/multiply instructions. A corresponding System V ABI supplement
for SPARC 32-bit systems is specified in |AT&T and SCO| (1996)). In the mid-1990 SPARC was
extended by a 64-bit ISA known as sparc-v9; a corresponding System V ABI is specified in [SPARC
International| (1997)).

“SPARC-V9 extends the address space of SPARC to 64 bits and adds a number of new instructions
and other enhancements to the architecture. SPARC-V9, like its precedessor SPARC-VS, is a micro-
processor specification by the SPARC Architecture Commitee of SPARC International. SPARC-V9 is
not a specific chip; it is an architecture specification that can be implemented as a microprocessor by
anyone securing a license from SPARC International.” (Weaver and Germond, 1994} xiii) “The most
important SPARC-V9 architectural mandate is binary compatibility of nonprivileged programs across
implementations. Binaries executed in nonprivileged mode should behave identically on all SPARC-V9
systems when those systems are running an operating system known to provide a standard execution
environment. One example of such a standard environment is the SPARC-V9 Application Binary
Interface (ABI).” (HAL Computer Systems, 1998| p.19) The System V ABI for sparc-v9 is defined in
SPARC International (1997)).

“A SPARC-V9 processor logically consists of an integer unit (IU) and a floating-point unit (FPU),
each with its own registers. This organization allows for implementations with concurrent integer and
floating-point instruction execution. Integer registers are 64-bits wide; floating-point registers are 32-,
64-, or 128-bits wide. Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.”(HAL Computer Systems, 1998, p.31) “An implementation of the SPARC-V9
IU may contain from 64 to 528 general-purpose 64-bit r registers. This corresponds to a grouping of
the registers into 8 global r registers, 8 alternate global r registers, plus a circular stack of from 3 to

32 sets of 16 registers each, known as register windows.” (HAL Computer Systems 1998, p.32)

Figure gives an overview of SPARC’s register utilization. Integer parameters are passed by similar
means in 32-bit (v7/v8) and 64-bit (v9) modes: The first six arguments are passed via register 00 to
05; the callee accesses these via register 10 to 15 due to the overlapping register windows as illustrated
on the right-hand panel of Figure note the overlapping of the caller’s “out” and the callee’s “in”

register group. Similar to MIPS, the GO register represents the constant zero. G1 is a volatile register
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General-purpose registers 32-bit (sparc-v8) or 64-bit (sparc-v9)
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[ general | out | local | in ] Tocal
oca.
c0fc1]e2]es]c4]esle]a7]o0]o1]o2]o3[o4]oslo6lo7[L0[L1]L2[L3]L4]L5]L6[L7]10] 11 [12[13[14]15[16]17 .
out n
0 :i az(aslaqfas|ae|SP|LR :i az(as|a4(as(a6(FP[LR| v8 local
al ay out
0  [42|@3]|@4(a5|a6|SP(LR  |42|38(04(a5)|a6(FP|lr | vO

Figure 5.10: Register files on the sparc processor architecture family.

while Registers G2 to G4 are need to be preserved. Registers G5 to G7 are reserved for the system;

note register G5 was redefined as a second volatile register in v9.

However, the handling of floating-point arguments has significantly changed between v8 and v9, as
has the FPU hardware. An overview of the FPU register files and its utilization for v8 and v9 ABIs
is illustrated in Figure[5.11

FPU registers of sparc-v8

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[ra]r2] |

fo[ri]r2]e3]ra]ss]ee]er]es]so]erofrir]rrz]ris[rrafsis]ere]s7]rr8]rio]r20]s21]r22] 28] r24]r25]r26 | r27[r28 r20[f30]131] single precision
do d2 d4 dé ds8 dio | d12 | di14 | d16 | di8 | d20 | d22 | d24 | d26 | d28 | d30.. | double precision

FPU Registers of sparc-v9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

[ |a1 |a2 |a3 |a4 |a5 |a6 |a7 |as |a9 |a10 |a11 |a12 |a13 |a14 |a15 |a16
ai/ri| a2 as as as ag ar as ag | a0 | a11 | a12 | @13 | @14 | a5 | aie
ai/r1 a2 a3 ag as ag az ag

t0 [ f1]r2]s3]ra]ts[16]e7] 8]0 [rro]rra|ri2]ris]rrafr1s]ri6] 7] r18]rr0]r20]s21 ] r22]r28]r24[r25] 126 r27]f28] r29] £30]131] single precision
do d2 d4 dé ds8 d10 | d12 | d14 | d16 | d18 | d20 | d22 | d24 | d26 | d28 | d30.. | double precision
q0 q4 a8 ql2 ql6 q20 q24 q28.. quad precision

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

d32 [ d34 | d36 [ a38 | d40 | d42 | daa [ d46 | d48 [ d50 | d52 | ds4 | dse6 | ds8 | d60 | dé2 | double precision
q32 q36 q40 qd4 q48 q52 56 q60 quad precision

Figure 5.11: FPU registers of the sparc processor architecture family.

The v8 ABI it is defined that “except for floating-point return values, global floating-point registers
have no specified role in the standard calling sequence.” (AT&T and SCO, 1996, p.3-13) Floating-point

arguments are passed via general-purpose registers and the stack.

Note the v8 FPU comprises 32 single-precision registers that can be paired as 16 double-precision reg-
isters. However, the v9 FPU was extended with additional double- and quad-precision registers with-
out extending the set of single-precision registers. “The FPU has thirty-two 32-bit (single-precision)
floating-point registers, thirty-two 64-bit (double-precision) floating-point registers, and sixteen 128-

bit (quad-precision) floating-point registers, some of which overlap. Double-precision values occupy an
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even-odd pair of single-precision registers, and quad-precision values occupy a quad-aligned group of
four single-precision registers. The 32 single-precision registers, the lower half of the double-precision
registers, and the lower half of the quad-precision registers overlay each other. The upper half of the
double-precision registers and the upper half of the quad-precision registers overlay each other but do
not overlay any of the single-precision registers. Thus, the floating-point registers can hold a maximum
of 32 single-precision, 32 double-precision, or 16 quad-precision values.” (HAL Computer Systems, (1998
p.32) The value transfer of floating-point data types has also changed in v9: “Floating-point argu-
ments are passed in the floating-point registers. Unpromoted single-precision arguments are passed in
the first 16 odd-numbered F registers. Double-precision arguments are passed in registers DO through
D30. Quad-precision arguments are passed in registers Q0 through Q28. Floating-point return val-
ues appear in the floating-point registers. Single-precision values occupy F0; double-precision values

occupy DO; quad-precision values occupy Q0” (SPARC International, |1997)).

5.3.7 Stack Frames

In the previous sections we focused on available registers across processor architectures and their
utilization within the calling conventions. Now we give a brief overview on caller stack frames and

compare their structure.

Figure illustrates the layout structure of the caller stack frame for different processor architectures
and calling conventions as they are stored at the top of stack directly after a machine-level function

call is executed. The width of each cell in the figure is equal to the bits of the architecture.

A significant difference between the five architecture families is how the return address is passed. RISC
architectures use a link register