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Summary 

Mycorrhizal associations of tree species are important drivers of plant belowground 

interactions. The main objective of this study was to investigate the contribution of 

mycorrhizal fungi on plant competition for nutrients. Another goal of the present study was to 

determine nutrient and carbon fluxes between trees, and soil food web via mycorrhizal fungi.  

The influence of interspecific interactions on N and P acquisition of ash (Fraxinus excelsior) 

and beech was analysed in nutrient limited conditions. Beech and ash saplings were grown in 

conspecific and heterospecific pairs and labelled with nutrient solution containing 6.27 ng 

³³PH3
33PO4 (3.7 MBq) and 4 mM 15NH4

15NO3. The growth of beech was not influenced by the 

species identity of the neighbouring tree, whereas the height growth of ash decreased in the 

presence of beech. Beech was also neutral to interspecific competition for nutrients, whereas 

ash shifted to increased deprivation of N and P in the presence of beech.  

The N and P accumulation was higher in EM root tips than in vital ash roots and non-

mycorrhizal beech roots. Non-mycorrhizal beech root tips accumulated 1.2 times less N and 

4.2 times less P than mycorrhizal root tips. Vital ash fine root tips accumulated 2.3 times less 

N and 6.7 times less P than mycorrhizal beech root tips. The N and P concentrations of beech 

fine roots and mycorrhizal root tips were positively correlated.  

Differences in N and P accumulation of EM species demonstrated the functional diversity 

within beech roots colonizing EM community. The most abundant EM species Tomentella 

castanea and Sebacina sp. (81.7 % mono; 89.2% mix) had high P and N accumulation.  

The ability of tree species to use organic N and carbon (C) was examined using 15N and 13C 

enriched litter in double-split-root rhizotrons planted with ash and beech saplings (Chapter 4). 

Nitrogen uptake from litter was documented in both ash and beech. No C from organic origin 

was detected in fine roots or other plant tissues after 475 days of incubation. Although beech 

root biomass was significantly lower than that of ash only beech decreased soil carbon and 

nitrogen concentrations significantly. These results suggest that trees, which are colonized by 

mycorrhizal fungi, use organic nutrient sources. However, the allocation of C is presumably 

unidirectional, namely from plant to fungus.  

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
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In another experiment we demonstrated that when the allocation carbon from photoassimilates 

was inhibited through girdling, EM was supplied from root carbon storages (Appendix, 

Chapter 6).  

The path of plant derived C via EM fungi to soil food web was analyzed using 15NO3
15NH4 

and 13CO2 labelling. Beech saplings from Hainich national park were removed with intact soil 

cores in order to maintain intact soil community and labelled for five months in a green house. 

The highest concentrations of 13C and 15N were found in mycorrhizal root tips. The strong 

relation of 15N in EM root tips and adjacent fine root demonstrated that 15N taken up by the 

EM fungus was mainly transported to host plant. The results demonstrated that mycorrhizal 

structures are an important nutrient source for soil animals and a considerable channel of plant 

C into soil food web. 

Based on the present results, the interactions between beech and ash are suggested to be 

driven mainly by effects of beech and associated EM fungi. It can be concluded that abundant 

root colonizing EM fungi significantly contribute to N and P nutrition of beech. 
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1. Mycorrhizal symbiosis 

1.1 Types of mycorrhizal associations 

Mycorrhiza (mýkēs ‚fungus, ῥίζα rhiza‚ root) is a symbiosis between specialised soil fungi 

and higher plants. Approximately 90% of terrestrial plants form mycorrhizal associations 

(Trappe 1987).  

On the basis of morphological characteristics, mycorrhizal types can be divided into seven 

main groups: arbuscular mycorrhiza, arbutoid mycorrhiza, ectendomycorrhiza, ecto-

mycorrhiza, ericoid mycorrhiza, monotropoid mycorrhiza and orchid mycorrhiza (Harley & 

Smith 1983). Tree species in European temperate forests form different types of mycorrhizal 

associations, whereof EM is the most prevalent (Tab.1).  

Table 1: Examples of mycorrhizal types of common tree species in temperate forest. EM 

ectomycorrhizal, AM arbuscular mycorrhizal (Cornelissen et al. 2001, Dučić et al. 2009, Lang 

et al. 2011, Schüßler 2009). 

Deciduous tree species   Coniferous tree species  

Species  Family 
Mycorrhizal 

type 
 Species  Family 

Mycorrhizal 
type 

Fraxinus 

excelsior Oleaceae AM 

 

Pseudotsuga spp. Pinaceae EM/Ectendo 

Acer spp. Aceraceae AM  Picea abies Pinaceae EM 

Fagus sylvatica Fagaceae EM  Abies alba Pinaceae EM 

Quercus spp. Fagaceae EM  Larix decidua Pinaceae EM 

Salix spp. Salicaceae AM/EM  Pinus sylvestris Pinaceae EM 

Populus spp. Salicaceae AM/ EM  Taxus baccata Taxaceae AM 

 

The mycorrhizal types contribute differentially to functional traits of plant carbon (C) cycling 

(Cornelissen et al. 2001). In temperate forests, plants associated with AM display compara-

tively high growth rates, high foliar nutrient content and fast litter decomposition, whereas 

trees with EM have intermediate growth ratio, lower foliar nutrient contents and intermediate 

to slow litter decomposability (Cornelissen et al. 2001). 
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1.2 Arbuscular mycorrhiza 

On basis of 400 million years old fossil 

funds arbuscular symbiosis (AM) is the 

oldest type of mycorrhiza. AM are formed 

by ca. 180 fungal taxa of the genus 

Glomeromycota (Smith and Read, 2008). 

In AM associations, fungal hyphae 

penetrate cortical cells of plant fine roots 

and develop hyphal coils and arbuscles to 

increase the surface area for the exchange 

of nutrient minerals and water with carbon. 

Several fungal species also form vesicles, 

structures used as lipid storages (van Aarle 

& Olsson 2003).  

1.3. Ectomycorrhiza 

The dominating mycorrhizal type in boreal 

and temperate forests is ectomycorrhiza 

(EM). Fossile records of EM originate 

from 50-52 million years ago (Beimforde 

et al. 2011, LePage et al. 1997), but presu-

mably EM evolved together with gymno-

sperms and exist since 190 million years 

(Taylor et al. 2009). EM associations are 

formed by estimated 7000-10 000 fungal 

taxa and by 8000 plant taxa (Taylor & 

Alexander 2005). Even though only a 

small fraction of terrestrial plants form EM 

symbioses, they include numerous eco-

logically and economically important tree 

species (Taylor and Alexander, 2005).  

 

 

 

          Figure 1: AM arbuscles 

           Figure 2: AM vesicles and hyphae 

             Figure 3: EM mycorrhiza 

             Figure 4: EM rhizomorphs on  

             beech fine roots 

 

 

  

10µm 
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EMs have an often well developed periradical phase, present as a hyphal mantle that covers 

the outside of the fine root tips and has a characteristic appearance, so called morphotype. The 

intraradical part of EMs consists of the Hartig net, an interface for plant carbon and nutrient 

exchange (Corrêa et al. 2012). The extraradical hyphae emanate from the mantle into the 

surrounding soil. They can greatly differ in structure, abundance and length and in some EM 

form vessel like structures, so called rhizomorphs, which serve the long distance nutrient and 

water transport (Agerer 1990).  

1.4 Functions of mycorrhizal association 

Mycorrhizal fungi provide their host plant with nutrients and water and in exchange up to 

22% of the plant assimilated C (Hobbie 2006). When the allocation of recent photpassimilates 

to roots is restricted, trees have been shown to supply mycorrhiza from root C storages 

(Appendix 2). Recent experiments with 13CO2, 
15N and 32P labelling (Fellbaum et al. 2012, 

Kiers et al. 2011) and a meta analysis of published data (Corrêa et al. 2012) showed that in 

AM and EM associations, both plant and fungus control the nutrient and C exchange. When 

colonized with multiple fungi, plants provide beneficial mycorrhizal partners with more C 

than unprofitable partners. In turn, fungi can drive the symbiosis by increased nutrient transfer 

to roots containing higher C concentrations. The bi-directional control presumably results in a 

fair reciprocal transfer of nutrients and carbon (Corrêa et al. 2012, Kiers et al. 2011). 

2. Nitrogen and phosphorus in plant nutrition 

The most plant growth limiting factor in temperate forests is nitrogen (N) (Rennenberg et al. 

1998). It is an essential component of numerous organic compounds of plant cells, such as 

amino acids, proteins and nucleid acids. Plants acquire N mainly from two sources: from soil, 

through mineralization of organic matter, as well as through natural and anthropogenic N 

deposition, and from atmosphere through symbiotic N2 fixation (Vance 2001). In forest soils, 

the main fraction of N occurs in organic compounds, such as leaf litter, dead roots and soil 

organisms. Only a small fraction of soil N is present as ammonium (NH4
+), nitrate (NO3

-) or 

in form of simple amino acids that can be directly taken up by plant roots (Näsholm et al. 

2009). Tree species differ in their preferences to distinct N forms (Schulz et al. 2011). Wher-

eas coniferous tree species are generally considered to prefer NO3
- over NH4

+, in deciduous 

species considerable species specific differences and contradictory results within one species 

have been reported (Dannenmann et al. 2009). In general, the uptake of NH4
+ is considered as 
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more cost efficient, whereas NO3
- might be more plant available due to its higher diffusion 

rate and low absorption to soil particles (Darrah et al. 1983).  

The second most plant growth limiting macronutrient in temperate forests is phosphorous (P) 

(Cairney 2011). For plants it is essential as a structural component of proteins, enzymes and 

nucleid acids, with numerous functions in plant metabolism and growth, such as photo-

synthesis, respiration, as well as energy production, storage and transfer. In soils, both 

inorganic and organic forms of P exist. Organic P (Po) is mainly present as phosphate 

monoesters, phosphate diesters and inositol phosphates, whereas inorganic P (Pi) is mainly 

present in form of mineral and dissolved phosphates (Schachtman et al. 1998). Although 

bound P is relatively abundant in many soils, the main portion of P is not available for plant 

uptake due to the high reactivity with other chemical and biological compounds (White and 

Hammond 2005). P availability varies with factors such as soil age, rates of mineral Pi 

weathering, precipitation reactions with cations, rates of decomposition and immobilization in 

microbes and plants (Lambers et al. 2008). In Central European forests the amount of organic 

bound P increases with increasing tree species diversity whereas the ratio of mineral P is 

relatively constant irrespective of the tree species diversity (Talkner et al. 2009).  

Plants take up mainly inorganic orthophosphate Pi, which occurs in low concentrations 

(10µM) in the soil solution (Schachtman et al. 1998). The optimal Pi uptake of most plants is 

recorded at soil pH between 6.0 and 5.0. Under these conditions Pi mainly occurs as H2PO4
-. 

Due to the low diffusion rate (10-12 to 10-15 m2 s-1) of Pi in soil solutions, the phosphorous 

concentration in root near rhizosphere is rapidly depleted. In order to maintain plant internal P 

balance, plants store and recycle P (Schachtman et al. 1998).  

Plants have evolved different strategies to overcome the nutrient depletion in the rhizosphere. 

These include the modification of root growth and architecture (Curt et al. 2005, Jacob et al. 

2012), influence on soil chemical properties, which include acidification through proton 

extrusion and the release of root exudates (organic acids), as well as influencing soil microbial 

activity (Fender et al. 2012, Richardson et al. 2009). However, the most important strategy to 

overcome nutrient transport limitation in the depletion zone is the mycorrhizal association 

(Smith et al. 2001). 

3. Functions of AM and EM in plant P and N acquisition 

Numerous mycorrhizal fungi have been shown to substantially enhance both plant N and P 

uptake (Cairney 2011, Plassard & Dell 2010, Smith & Read 2008). The host plant receive 
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nutrients via mobilisation and absorption by fungal mycelia, translocation through fungal 

hyphae to the fungus-root interface and transfer across the fungus-root interface (Nehls et al. 

2007). Both AM and EM fungi produce extraradical mycelia, that formed by AM can reach 

soil areas of several cm (Drew et al. 2003, Eissenstat 1990) and that by EM up to several 

meters (Fiore-Donno & Martin 2001) from root surface. Thus, both fungal types extend far 

beyond the nutrient depletion zone of the rhizosphere and generate an efficient network of 

nutrient uptake. Mycorrhizal root tips and hyphae produce a range of exudates that serve the 

nutrient release by mineral weathering (Landeweert et al. 2001), mineralisation of organic 

polymers (Durall et al. 1994, Read & Perez-Moreno 2003), and that are also required for 

nutrient uptake processes, metal detoxification and antimicrobial defence. Exudates consist 

mainly of low molecular weight organic acids, saccarides, amino acids and peptides but EM 

root tips also release fatty acids, polymeric carbohydrates and different enzymes into the soil 

(Courty et al. 2005, Gadd 2007).  

In temperate forests, EM fungi contribute up to 80% of the host plant N (van der Heijden et 

al. 2008). EMs have been shown to be able to use both mineral N sources nitrate (NO3) 

(Nygren et al. 2008) and ammonium (NH4), most likely with a preference to ammonium, if 

both N forms are available (Finlay et al. 1989, Smith and Read 2008). Furthermore, EMs have 

been reported to use a range of organic compounds, such as proteins and nucleic acids, as N 

sources (Marmeisse et al. 2004). They secrete extracellular proteinases and peptidases that 

effectively hydrolyse organic N sources to amino acids, which can be absorbed by the fungus 

(Chalot & Brun 1998, Nygren et al. 2008). The production of extracellular phosphor-

monoesterases and phosphodiesterases has been reported, as well as that of hydrolytic 

enzymes such as cellulases and hemicellulases (Nygren & Rosling 2009). These enzymes 

might serve the penetration to dead organic material in soil for uptake of sequestered mineral 

nutrients (Morel et al. 2006, Nygren & Rosling 2009).  

AM fungi have been shown to take up and transport NO3
- (Govindarajulu et al. 2005, Tobar et 

al. 1994) and NH4
+ (Jin et al. 2005, Peréz-Tienda et al. 2012). The uptake of N from organic 

sources has been reported (Hawkins et al. 2000, Hodge & Fitter 2010), however it is not clear 

in which form AM acquire N from organic compounds (Hodge 2001, Leigh et al. 2009). AM 

fungi mainly take up mineral P, but some species have been shown to extract P from organic 

sources with extracellular phosphatases (Hodge & Fitter 2010, Jayachandran et al. 1992). 

Also EM are able to use both mineral and organic P sources (Cairney 2011). The absorption 
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of Pi is maximized by high affinity transporters of the types Pi:H
+ and Pi:Na+ (Harrison et al. 

2002, Plassard & Dell 2010). Several AM and EM putative Pi transporter genes have been 

reported, that are mainly expressed in extraradical mycelium during the symbiosis (Harrison 

& van Buuren 1995, Martin et al. 2008, Tatry et al. 2009).  

In mycorrhizal hyphae, N is transported mainly as amino acids and NH4
+, P presumably as Pi 

(Chalot et al. 2006, Müller et al. 2007). P absorption is regulated by phosphate demand of the 

host plant. Plant P demand is reflected by plant P status, as well as by the concentration of 

hyphal polyphosphates, which serve as Pi storage pools (Bücking et al. 1999, Bücking et al. 

2000, Cairney & Smith 1992, Finlay 1989). At the fungus-root interface, the nutrients are 

transferred through efflux across the fungal plasma membrane (Bücking et al. 1999). 

Subsequently, nutrients are absorbed from the apoplasm of the fungus-root interface across 

the plasma membrane of the host root cell (Nehls et al. 2007). The apoplasmic compartment 

serves the control of local chemical and physical properties of the plant-fungus interface. This 

presumably results in an equal control of the exchange by both fungus and host plant (Corrêa 

et al. 2012, Kiers et al. 2011, Nehls et al. 2007). 

4. Plant interactions 

Plant competition occurs when individuals of same species (intraspecific) or different species 

(interspecific) compete for the same resource, such as light, nutrients or space. Interactions 

among plant individuals are usually size-asymmetric, which means a resource pre-emption by 

a larger individual, usually measured by disproportional size advantage of larger individuals 

of a population. In the aboveground compartment, this is comprehensible, since the main 

limiting resource is light. A taller plant can pre-empt light from shorter neighbours. Therefore, 

already a small size difference can offer a considerable competitive advantage. Similarly, 

investigations of fine root biomass distributions and competitive interactions in the field, 

which were investigated by soil core analysis and root growth chambers with isolated but 

intact fine root endings of mature trees, a markedly asymmetric belowground competition has 

been demonstrated in temperate forests (Leuschner et al. 2001, Rewald & Leuschner 2009). 

Since mycorrhizal interactions tightly associate with plant interactions (Jacob et al. 2012), it is 

important to consider them as a part of the plant interactions.  

5. Mycorrhizal fungi in ecological interactions 

5.1 Mycorrhizal fungi in plant interactions 
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Current research is addressing the question whether mycorrhizal fungi influence the outcome 

of plant competitive interactions. This is particularly important, not only to understand the 

interactions of plants in natural ecosystems, but also the effects of global change, such as the 

dispersal of invasive aliens on ecosystem structure and function (Dawson et al. 2012). The 

mycorrhizal status has a great impact on plant competition. Experiments with AM plants 

showed that usually plant size decreases without mycorrhizal association. This is based on the 

potential inability of mycorrhiza forming plants to effective use soil resources in the absence 

of mycorrhizal colonization (Facelli et al. 1999, van der Heijden et al. 2003). In mycorrhizal 

association the level of interplant competition increases considerably with enhanced use of 

available soil volume.  

Also mycorrhizal types EM or AM might differently modify plant interactions. Aerts (2002) 

suggested a theoretical model of plant competition for two nutrients between plant species 

with different mycorrhizal types, based on Tilman´s model (Tilman 1982).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A hypothetical model to predict the effect of mycorrhizal colonization on plant 

coexistence in temperate forests based on Tilman´s R* model. The species that can grow on 

the lowest resource concentration (R*) is competitively superior to the other species. In a non-

mycorrhizal (NM) situation the plant species associated with AM fungi (A) out-competes the 

plant species associated with EM fungi (B), because of its higher uptake capacity for both 

nitrogen (N) and phosphorus (P). In the mycorrhizal situation a co-existence is possible 

because of the increased capacity of the plant species with EM to take up N and a higher 

capacity of the plant associated with AM fungi to take up P. Adapted from (Aerts 2002).  
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The model is based on the assumption that nutrient utilization of two resources can lead to 

niche differentiation or out-competition between species. The species, which can reduce the 

resource to the lowest level and maintain growth, wins the competition. Co-existence is 

possible, when the growth of the species is differentially limited by the resources. Figure 5 

demonstrates the suggested role of mycorrhizal type on plant interactions. In the absence of 

mycorrhizal colonisation, plant species associated with AM fungi is predicted to have a 

competitive advantage over plant species associated with EM fungi due to their presumably 

faster N and P uptake (Schulz et al. 2011, Stadler et al. 1993). The mycorrhizal colonization 

changes the situation. The suggested higher uptake capacity of EM for N, and AM for P leds 

to an increased P status of plant associated with AM fungi and increased N status of plant 

associated with EM fungi. According to Tilman´s model, both species can co-exist under 

these conditions.  

The shift between co-existence and competition however varies with the total amount of the 

nutrient acquisition. Moreover, a number of influencing factors, such as plant species identity 

and species assemblages of root colonizing fungi have a great influence on plant performance 

(van der Heijden et al. 2003, van der Heijden et al. 1998). In an experiment with the AM 

forming plant species Hieracium pilosella, Bromus erectus, and Festuca ovina and four AM 

fungi, van der Heiden et al. (1998) demonstrated that plant species differ in their dependency 

on AM. This was reflected by the differing growth response of plant species on mycorrhizal 

colonisation, as well as by different effects of both AM species identity and species 

assemblages on several plant growth variables. Mycorrhizal diversity might also acts as an 

insurance to sustain plant productivity under changing environmental conditions. In a 

greenhouse experiment (Wagg et al. 2011) demonstrated that under nutrient limited con-

ditions high number of AM mycorrhizal species relaxed the interspecific competition by 

reducing the growth suppression of the competitively weaker plant species. In nutrient-rich 

systems, the mixture of four AM fungal species was equally beneficial for the plant 

productivity as the most beneficial mycorrhizal fungal species in low nutrient system (Wagg 

et al. 2011).  

5.2 Mycorrhizal networks 

Both AM and EM fungi form simultaneous associations with trees of one or more taxa (Bent 

et al. 2011). These mycorrhizal networks (MN) are able to transport nutrients and carbon 

between tree individuals, and create facilitative effects of nutrient and water partitioning. This 
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might be particularly important to relax the aboveground competition between mature plants 

and seedlings (Teste & Simard 2008). In a review of 60 cases, in which seedlings and larger 

plants were grown together, van der Heijden and Horton (2009) demonstrated that MN 

promoted seedling growth in 48% of the cases, whereas in 27% cases the effect of MN was 

neutral and in 25% cases negative (van der Heijden & Horton 2009). Generally, plants with 

EM benefitted from the MN, while the effects of AM association varied (van der Heijden & 

Horton 2009). The type of mycorrhizal association might be particularly important, thus MN 

can strongly affect the growth and survival of plant species excluded from the prevailing MN 

(Booth 2004) and finally enhance the dominance of plants with one mycorrhizal type over 

another (McGuire 2007).  

5.3 Trophic interactions with soil fauna 

Mycorrhiza serve as an important channel of plant mediated carbon to soil food web (Pollierer 

et al. 2007). The use of 13CO2 gas labelling has currently confirmed C from recent 

photoassimilates as the most important C source of soil animals. Besides living or dead roots 

and root exudates, EM hyphae presumably contribute in a considerable manner to the 

nutrition of soil animals (Landeweert et al. 2001).  

Spore findings of EM in guts of arthropod fungivores (mites, springtails, millipedes, beetles, 

fly larvae) and predators (centipedes) suggest that diverse soil animals feed on mycorrhiza 

and serve the spore dispersal of belowground fruiting species (Lilleskov & Bruns 2005). 

Feeding experiments with axenic fungal cultures have shown that soil animal species feed 

selectively on distinct fungal species (Hiol et al. 1994, Scheu & Simmerling 2004). However, 

due to differences in EM metabolism in the symbiotic stage and the large variety of EM 

species in natural communities (Lang & Polle 2011), feeding choice experiments can hardly 

reflect animal behaviour under natural conditions. Currently, no firm proof for the 

mycorrhizal structures as primary diet of certain soil animals exists (Högberg et al. 2010, 

Pollierer et al. 2007). Furthermore other kinds of interaction, such as interactions between 

mycorrhizal and saprophytic fungi (Cairney & Meharg 2002, Mougel et al. 2006) or soil 

bacteria (Frey-Klett et al. 2007) occur. However, they are not considered in this thesis, since 

the research here focused on interactions with soil fauna. 

 



11 
 

6 Ecological characteristics of beech 

(Fagus sylvatica) and ash (Fraxinus 

excelsior) 

Beech (Fagus sylvatica) is under natural 

conditions, with few exceptions, the 

dominating tree species in monocultures 

and mixed forest stands in Central Europe. 

Currently, beech comprises approximately 

30% of the forest area in Germany (www. 

bundeswaldinventur.de). 

Beech develops a typical heart root system 

with a markedly dense fine root fraction. 

The rooting depth depends strongly on the 

aeration of the soil. The main rooting 

direction is downwards, at an angle of ca. 

45° (Rust & Savill 2000). The beech roots 

divide into fine rootlets and end in fine 

tips. Beech roots do not extend very far 

and the rooting is very intensive, especially 

in the top 5-10 cm (Rust & Savill 2000). 

Beech has wide habitat amplitude. It 

favours habitats with Atlantic climatic 

characters; moist, warm conditions, rela-

tively warm winters and high preci-

pitation, avoids stagnant moisture and too  

dry soils (Ellenberg & Leuschner 2010).  

Figure 6: Beech (Fagus sylvatica) 

 

Figure 7: Beech leaf 

 

Especially in a young age beech is sensitive to winter frost, late frost, heat and dryness 

(Geßler et al. 2007). The best growth is reached in moist and nutrient rich soils. 
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Ash (Fraxinus excelsior) is a common 

deciduous tree species in entire Europe, 

with the exception of north Scandinavia 

and south Spain. In Germany ash is found 

in all areas, in the low mountain range up 

to 800 m and in the Alps up to 1350 m 

(Ellenberg & Leuschner 2010). 

Ash root systems are superficial but far 

reaching. It has a strong horizontal root 

system that sends laterals vertically down-

wards. The superficial rooting is very 

intensive and dominates the upper 0-5 cm 

of the soil profile. The fine roots usually 

end sud-denly and blunty (Rust and Savill, 

2000). With its root system ash is able to 

grow in compact and wet soils. In wet soil 

the fine roots grow preferentially in the 

patches with higher aeration.  

Ash has a high demand on soil nutrient 

richness and humidity, though it occurs on 

a wide range of soil types, particularly at 

basic (pH 6-7), calcarous soils. The opti- 

mal growth is reached only on fertile, pH-

neutral, deep, moist and freely draining 

soils (Kerr & Cahalan 2004).  

 

 

Figure 8: Ash (Fraxinus excelsior) 

 

 

Figure 9: Ash leaf 

 

 

 

Its occurrence on sites which are marginal or less optimal is probably due to competition with 

other species on better sites, frequently mediated by forest management. 
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Beech and ash differ in their light demands. Especially in the juvenile stage, beech tolerates 

shade (Emborg 1998). Its growth in shade is plagiotrophic, indicating a horizontal light-

foraging strategy (Petritan 2009). The growth of ash follows a cap-growth strategy, charac-

terised by a constant growth response to increasing light and an inability to strongly reduce 

the growth rate in deep shade (Emborg 1998, Petritan 2009).  

In mixed stands of ash and beech the relative strength of plant interactions varies with stand 

development. The distribution of ash saplings is mainly influenced by the competition for 

light, whereas the interspecific competition for water strongly limits the growth and survival 

of beech (Rust & Savill 2000). Compared with beech, ash is more tolerant to drought (Rust & 

Savill 2000). In contrast, beech saplings tolerate shade better than ash. In mixed stands ash 

dominates the canopy in the first (~60) years of growth due to its faster growth. In the 

biostatic phase of the forest development, the dominance shifts from ash to beech. From now 

on beech is able to shade ash and reduce its biomass productivity (Emborg 1998). 

Interesingly, in age between 100 and 200 years, the upper 20 cm of the soil is apparently 

dominated by ash roots (Jacob et al. 2012, Rust & Savill 2000).  

It is well known that different tree species require different N and P concentrations in their 

leaves for optimal functioning and growth (Güsewell 2004). According to foliar threshold 

values, normal ranges of foliar N and P for beech are 18.7-23.2 mg g-1 and 1.2- 1.9 mg g-1 

respectively (Mellert & Göttlein 2012). Corresponding values for ash are 23-28 mg N g-1 dwt 

and 1.4-1.6 mg P g-1dwt, respectively (Kopinga & van den Burg 1995). The leaf N and P con-

centrations have been suggested to reflect the availability of these nutrients in certain habitats 

and therefore used as an index of the nutrition (Berger & Glatzel 2001, Güsewell 2004). At 

sufficient nutrient availability the N and P threshold values are reflected by leaf N/P ratios of 

12.2-15.6 for beech, and 16.4-17.5 for ash. Contradictory results about the preference for 

mineral N forms in ash and beech exist. Geßler et al. (1998) reported a preference of beech for 

NH4
+ both in the field and under laboratory conditions, whereas others have demonstrated that 

beech trees to prefer NO3
- over NH4

+ (Dannenmann et al. 2009, Schulz et al. 2011, Simon et 

al. 2011). Reports for ash suggest a moderate preference for NH4
+ over NO3

-
 (Stadler et al. 

1993), preference for NO3
-
  over NH4

+ (Schulz et al. 2011), or no preference for the given N 

forms (Jacob et al. unpublished). These observations however do not consider the role of 

mycorrhizal colonization, whose changes may partially explain the variability of the results 

within one tree species. 
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7. Objectives 

This thesis focuses on the question how mycorrhizal fungi relate to plant competitive 

interactions and multitrophic interactions in the soil food web. 

The following research questions guided the present thesis: 

 Ash and beech often co-occure in mixed temperate forests. Does plant competition for 

nutrients relate to root colonizing mycorrhizal fungi? Concerning this research question, 

the nutrient uptake of beech and ash seedlings was studied in conspecific and 

heterospecific mixtures. The path of inorganic phosphorus, and nitrogen were studied with 

radioactive (32P, 33P) and stable (15N) tracers (Chapter 2 and 3). 

 Interspecific interactions between ash and beech have often been compared without 

considering the associated mycorrhizal fungi on tree interactions. Which role do different 

EM fungi have in the nutrient acquisition of beech? In order to discover species differences 

of EM fungi, their contribution on nutrient acquisition of beech was studied. Uptake of 

mineral P (Chapter 2) and mineral N (Chapter 3) was studied in non-mycorrhizal root tips 

as well as in root tips colonized with different EM species of beech and compared with the 

nutrient accumulation in fine roots of ash.  

 The effects of tree species interactions on simultaneous N and P accumulation are barely 

examined. What relationship do N and P accumulation of ash and beech have in species 

interactions, and how do N and P accumulation relate in different EM species? 

 Mycorrhizal fungi are presumably an important channel of plant C into soil food web. We 

studied the paths of plant C via mycorrhizal fungi to soil animal food web and soil-derived 

N to plants. For this reason, natural regeneration of beech from Hainich National Park with 

intact mycorrhizal and soil animal community was grown in mesocosms for one growth 

season and labelled with 13CO2
 and 15NO3

15NH4 (Chapter 4).  

 

The analyses of the impact of mycorrhizal fungi on nutrient and C fluxes between trees and 

soil food web will provide basic information that so far has been lacking. In addition, this 

thesis may give information about factors, which influence the co-occurrence of tree species 

with differing mycorrhizal types. 
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2.1 Introduction 

The role of mycorrhiza for plant productivity and competition for nutrients attracts growing 

interest in ecological research. It is well known that mycorrhiza has a great impact on plant 

nutrient acquisition, especially in nutrient limited conditions (Scheublin et al. 2007, Smith & 

Read 2008, Smith et al. 2003, Treseder 2004). Phosphorus (P) is essential for plants as a 

structural element with numerous functions in metabolism and growth. It has been suggested 

that plant competition for phosphorus depends mainly on its availability in soil (Allcock 

2002). Due to its high reactivity with soil particles (absorption), positive ions (precipitation) 

and P uptake by microorganisms (immobilisation), the main part of P in soil is not available 

for plant uptake (White & Hammond 2008). This makes it beside nitrogen (N) to the most 

forest growth limiting nutrient worldwide (Abel et al. 2002, Rausch & Bucher 2002, 

Schachtman et al. 1998). In terrestrial ecosystems P limitation is widespread (Wardle et al. 

2004). In European forest ecosystems, especially the chemical composition of the foliage of 

beech (Fagus sylvatica) indicates P deficit (de Vries et al. 2003).  

In plants forming mycorrhizal symbiosis, the competition for nutrients is mainly carried out 

by mycorrhizal fungi (Facelli & Facelli 2002, Hodge 2004, Richardson et al. 2009, van der 

Heijden & Horton 2009). Tree species in temperate forests form different mycorrhizal life 

forms, whereof ectomycorrhiza (EM) and arbuscular mycorrhiza (AM) are the most abundant. 

Both AM and EM types have been reported to take up phosphorus (reviewed in Plassard and 

Dell 2010). Still, EM has been usually associated with uptake of other nutrients, especially N 

(Corrêa & Martins- Loução 2001). Because most tree species associate only with one type of 

mycorrhiza, distinct mycorrhizal communities occur in mixed forests. These in turn might 

differ in their access to P. Since the preservation and extension of mixed forest stands has 

become an important aspect of sustainable forest management worldwide, knowledge about 

competition of tree species with differing mycorrhizal types for P is of great relevance.  

Linkage of trees to mycorrhizal network has a strong impact on plant growth as well as on 

inter- and intraspecific competition (Selosse et al. 2006, Teste & Simard 2008). For example, 

Teste and Simard (2008) showed that an access to mycorrhizal network increased the seedling 

survival in the competition experiment with Douglas-fir seedlings. In a tropical rain forest, a 

network of EM enhanced the survival of seedlings leading to spatial monodominance of EM 

forming tree species in an area usually dominated by tree species with arbuscular mycorrhiza 

(McGuire 2007). Hereby, the advantage of a mycorrhizal network is based on interplant 
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facilitation of nutrient and water exchange (Peuke & Rennenberg 2004, Selosse et al. 2006, 

Teste & Simard 2008).  

The functional differences between plant species with different mycorrhizal strategies are of 

great importance for the formation of plant community structures (Cornelissen et al. 2001, van 

der Heijden & Horton 2009). In comparison of plants with different mycorrhizal types, plants 

with AM were associated with comparatively high growth ratio, high foliar N and P content 

and fast litter decomposition, whereas EM type trees are associated with intermediate growth 

ratio, lower foliar N and P contents and intermediate to slow litter decomposability 

(Cornelissen et al. 2001).  

Despite the significance of phosphorus in tree nutrition, little research has been conducted on 

mycorrhizal benefits on plant P acquisition, especially in P limited systems. Controlled 

studies of plant-mycorrhiza interactions are often made with plants inoculated with one fungal 

species in an early colonization state and often hampered by low mycorrhizal colonisation. In 

field studies, a mixture of tree species and understory plants with diverse mycorrhizal 

associations hinder the study of species effects. Moreover, studies on the competition for P 

between tree species with different mycorrhizal types under controlled conditions are virtually 

inexistent. 

In the present study, we aim to investigate the P competition between tree species with 

different mycorrhizal types in nutrient limited conditions. We performed a ³³P tracer 

experiment with tree saplings grown in monocultures and two-species mixtures to test the 

following hypotheses related to P uptake: (1) EM fungi differ in their P accumulation, (2) tree 

species with AM and EM have different patterns of P uptake with conspecific and 

heterospecific neighbour, and (3) tree species with AM association have a greater competitive 

effect on trees with EM association than vice versa;  

For this purpose, we chose ash (Fraxinus excelsior) which form AM, and beech (Fagus 

sylvatica), which form EM, since they commonly coexist in temperate deciduous forests 

(Emborg 1998, Meinen et al. 2009). The plants were grown in an outdoor area and possessed 

natural mycorrhizal communities. Mycorrhizal colonization was confirmed before the 

beginning of the labelling experiment and quantified for both mycorrhizal types at the harvest. 

Furthermore, the EM species diversity was determined with morphological and molecular 

approaches. 
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2.2 Material and Methods  

 

2.2.1 Plant material 

Three year old European beech (Be, Fagus sylvatica, germinated June 2007) and one year old 

ash (As, Fraxinus excelsior, germinated June 2009) seedlings (seeds from Forstsaatgut-

Beratungsstelle Nds. FoA Oerrel, Germany) with similar plant height were planted 

(01.06.2010) pair wise in three combinations: As-As, Be-Be, As-Be. Plants were grown in 

pots with a sand-peat mixture of 4.5 parts fine sand (ø 0.7-1.3 ø), 4.5 parts coarse sand (ø 0.4-

0.8 mm) and 1 part peat in a shaded and wind protected outdoor area. Stem diameter at 

ground level and plant shoot height were recorded twice before (05.08.2010 and 08.11.2010) 

and during the harvest (26.08.2011, 29.08.2011, 02.09.2011).  

In natural ecosystems plant nutrient pool is limited. In order to conduct nutrient limited 

conditions, plants in our experiment were grown in nutrient limited system. Plants were 

watered regularly with tap water (pH 7,7 - 8,4, NH4 < 0.1 mg l-1,+NO3
, 6-10 mg l-1, NO2 < 0,04 

mg l-1, P compounds 0-0,1 mg l-1) and fertilized for a short time from 01.10.2010 to 

31.12.2010 every second day with 15 ml modified Matzners nutrient solution (Brandes 1999) 

with pH 3.9, containing 0.4 mM NH4Cl, 0.05mM NaSO4, 0.1 mM K2SO4, 0.06 mM MgSO4, 

0.13 mM CaSO4, 0.03 mM KH2PO4 and with 0.005 mM of the following nutrients: CuSO4, 

Fe-EDTA, H3BO3, MnSO4, NaMoO4 and ZnSO4, respectively. In the following season 

(01.01.2011 -19.08.2011), the plants were exposed to rain water and if necessary irrigated 

with tap water to avoid drought stress. Five days before labelling (19.08.2011), the plants 

were moved into an experimental green house and supplied daily with 50 ml demineralised 

water. The growth conditions in the growth cabinet were 20°C, a 16 h photoperiod with 90-

110 mmol m-2 s-1 photosynthetically active radiation (PAR) at plant height and 60 % air 

humidity.  

 

2.2.2 33P labelling and harvest 

Each pot was irrigated with 30 ml of the modified Matzner nutrient solution containing 

additionally 3.7 MBq H3
33PO4 and 4 mM NH4NO3 on day 0 to avoid acute N limitation. This 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
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corresponded to 0.93 mg P including 6.27 ng 33P and 3.78 mg N per pot. From now on plants 

were irrigated daily with 50 ml demineralised water per pot until harvest. 

The number of leaves, stem lengths, stem diameters and the biomass of leaves, stem, 

branches, fine roots and coarse roots were determined at the harvest. Plants were divided in 

three groups and harvested 1, 4 and 8 days after the labelling. The roots were briefly washed 

with tap water to remove sand and peat and separated in fine (< 2 mm) and coarse root (> 2 

mm) fractions. Aliquots of the fine roots were dried and the remaining fine roots were stored 

in moist tissue paper in plastic bags at 5°C for further analysis. 

All plant fractions including mycorrhizal root tips, samples of vital non-mycorrhizal- and dry 

root tips as well as soil were dried for at least 7 d at 60° C and stored at room temperature. 

Dry plant fractions were homogenized with a blender (Waring Commercial Blendor, Dyna-

mics Corporation of America, New Hartford, Connecticut, USA) and milled in a ball mill 

(Type MM2, Retsch, Haan, Germany). 

2.2.3 Autoradiography 

Autoradiography was used to qualitatively determinate the distribution of the phosphorus 

within ash and beech grown in monocultures and mixtures. For this purpose, one pot per 

treatment was used before the actual labelling experiment (05.-13.07.2011). The experimental 

setup was similar except following changes: 1) 1.9 MBq H3
32PO4 used instead of 3.7 MBq 

H3
33PO4; 2) during the experiment, plants were irrigated daily with 40 ml demineralised 

water; 3) plants were harvested and dried for at least 24 h at 60°C. For autoradiography 

images, dried fine roots and leaves were placed on paperboards, covered with transparent film 

(Toppits, Melitta, Minden, Germany). Subsequently, the samples were exposed on imaging 

plates (BASIII, Fuji Photo Film (Europe) Co., Ltd., Düsseldorf, Germany) between 30 min 

and 1 h depending on the amount of the radioactive decay. The plates were read out by a 

phosphor imager (FLA-5100, Fuji Photo Film (Europe) Co., Ltd., Düsseldorf, Germany) 

using an image analysing software (AIDA Image Data Analyzer software, Version 4.10.; 

Raytest Isotopenmeßgeräte GmbH, Straubenhardt, Germany). 

2.2.4 ³³P Measurements 

Mycorrhizal root tips, fine roots and leaves (1- 5 g) were weighted, ashed at 500°C for 1 h 

(Heraeus M Muffle Furnace, Heraeus Instruments, Hanau, Germany) and suspended in 10 ml 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
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of scintillation cocktail (LumasafeTM plus, Lumac LSC B.V., Groningen, Netherlands). 

Radioactivity was determined by liquid scintillation analyzer (Tri-Carb 2800TR Counter, 

Perkin Elmer Life Sciences, Rodgau-Jügesheim, Germany). 

Soil ³³P activity was analysed with a non-destructive ³³P analysis method, requiring no ashing 

and scintillation cocktail. The calibration was carried out using equivalent non-labelled 

samples as internal standards. For the calculation of the efficiency, internal standards were 

prepared by addition of 66.77 kBq H3
33PO4 in 20g dry control soil, dried and weighed in 

scintillation vials of 22 ml volume. Radioactivity was determined using WIZARD3 

Automatic Gamma Counter (Perkin Elmer Life Sciences, Massachusetts, USA). 

The ³³P activity in the plant tissues, mycorrhizal structures and soil was calculated with the 

equation A [Bq] = ((cpmsample-cpmbackground)/efficiency)/60), in which cpm = counts per 

minute.  

The activity was corrected referring to the day of the ³³P incubation with the equation, 

𝐴(𝑡) = 𝐴(0) ∗ 0.5

𝑇1−𝑇0
33P 𝑇 (1/2)

 
 

whereby T0 = time of labelling T1 = time of measurement and ³³P T( 1/2) = ³³P half life (25.3 d). 

 

2.2.5 Ectomycorrhizal analysis 

The roots were examined under a stereomicroscope (Leica M205 FA, Leica Microsystems, 

Wetzlar, Germany). Per sample, root tips were counted until 1000 vital root tips were 

recorded. The numbers of vital, dead, mycorrhizal and non-mycorrhizal root tips were 

recorded. Live and dead root tips were separated using morphological criteria such as colour, 

root elasticity and the degree of cohesion of root stele and periderm (Leuschner et al. 2001). 

The percentage of EM colonization was calculated with the following equation:  

EM [%] = (n mycorrhizal root tips/n vital root tips)*100 (Supplement table S1). 

 

VI [%] =  
𝑛 𝑑𝑒𝑎𝑑 𝑟𝑜𝑜𝑡 𝑡𝑖𝑝𝑠

𝑛 𝑣𝑖𝑡𝑎𝑙 𝑟𝑜𝑜𝑡 𝑡𝑖𝑝𝑠 
∗ 100 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus


31 
 

The EM were morphotyped by morphological characteristics according to a simplified system 

of Agerer (1987–2006) as described before (Druebert et al. 2009, Lang et al. 2011). All 

morphotypes were photographed with a digital camera (Leica DFC420 C, Leica 

Microsystems, Wetzlar, Germany) and the abundances were recorded. Aliquots of 10 - 20 

root tips per fungal species were stored at -20 °C for molecular analysis and in 70 % EtOH at 

room temperature for anatomical analysis. Relative abundance (Pi) was calculated with the 

equation (Pi = ni/N), whereby ni = number of species i in a sample and N = number of all 

found mycorrhizal root tips in the sample.  

 

2.2.6 Arbuscular mycorrhizal analysis 

Ash fine roots were inspected under a stereomicroscope (Leica M205 FA, Leica 

Microsystems, Wetzlar, Germany) and separated according to their colour and consistence to 

vital and dry root tips. Aliquots were stored in 70 % EtOH at room temperature for the 

mycorrhizal analysis. For the determination of the arbuscular mycorrhiza (AM) colonization, 

the roots were stained with Lactophenol Blue (Phillips & Hayman, 1970) and stored at room 

temperature in 50 % glycerine until use. The roots were examined with a light microscope 

(Zeiss, Oberkochen, Germany) by 200 x magnification. AM colonization was recorded after 

the magnified intersection method of McGonigle et al (1990) on a 10 x 10 grid. Four roots per 

plant were analysed. The following mycorrhizal structures were recorded: vesicles, arbuscles 

and hyphae. The relative AM fungal colonization was calculated as follows:  

AM [%] = (n intersections with mycorrhizal structures/ n intersections with root tissue)*100 

(Supplement table S1). 

 

2.2.7 Molecular identification of the EM species 

DNA was extracted from 10-20 mycorrhizal root tips per sample using the innuPREP Plant 

DNA Kit (Analytik Jena AG, AJ Innuscreen GmbH, Jena, Germany). The ITS region was 

amplified with the primer pair ITS1f 5´-CTTGGTCATTTAGAGGAAGTAA -3´and ITS4 5´- 

TCCTCCGCTTATTGATATGC -3´ (White et al., 1990; Gardes & Bruns, 1993). PCR 

products were cloned in the pGEM®-T Vector (Promega, Madison, WI, USA) and 

transformed into electrocompetent E. coli cells (E. coli TOP10, Invitrogen, Carlsbad, 
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California, USA). Positive clones were sequenced with ABI Prism 3100 Genetic Analyzer 

(Applied Biosystems, Carlsbad, California, USA) and edited with Staden Package (4.10). The 

fungal species were identified by comparison of the sequences with the NCBI Genbank 

(www.ncbi.nlm.nih.gov) and with the UNITE databases (http://www.unite.ut.ee). If the blast 

score was higher than 700 bits and the homology more than 97 %, the species suggested in 

Genbank, preferably the UNITE result was quoted. If the score was higher than 600, the 

homology > 95 and < 87 % and both databases suggested the same genus, the species was 

named as unknown species of the suggested genus (Supplement table S2).  

 

2.2.8 Fine root architecture 

Three randomly chosen fine root sections per plant were scanned on a flat-bed scanner. The 

pictures were analysed with WinRhizo 2005c software (Régent Instruments Inc., Québec, QC, 

Canada) with following settings: Number of classes: 11, filter: 0.5, sensitivity: more, 0.2 steps 

and dark root compatible threshold methods. Thereafter, the roots were weighed and dried at 

70°C for 3 days. The dry weight was recorded. We calculated root length (RL), root surface 

area (SA), root volume (RV), number of root tips, forks and crossings and average root 

diameter (AD) as well as specific root area (SRA) and specific root surface area (SSA) for the 

entire root sample and for eleven root classes from 0.00 - 0.20 cm up to > 2.00 cm root 

diameter (Supplement table S3, and S4) 

 

Specific root length was calculated with the equation SRL [cm g-1 dw] = (root lengthsample/root 

dry mass sample), and specific surface area as SSA [cm g-1] = (SAsample/root dry weightsample). 

The number of root tips in the sample were calculated per mg dry weight, number of forks 

and crossings were calculated in relation to root length (n cm-1) (Supplement table S5). 

 

2.2.9 Elemental analysis 

P content of homogenised fine root and leaf samples were measured after extraction in 65 % 

HNO3 for 12 h at 170°C according to Heinrichs et al. (1986) with an inductively coupled 

plasma mass spectrometer ICP-AES (Spectro Analytic Instruments, Kleve, Germany). For 

analysis of N and C, homogenized leaf and fine root samples were used (Supplement table 

http://www.unite.ut.ee/
http://www.unite.ut.ee/
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S6). EM root tips, fine root sections with AM, dead and vital non mycorrhizal fine root tips 

were directly weighed into tin capsules (4 x 6 mm). Samples were analysed with an isotope 

ratio mass spectrometer Delta C (Finnigan MAT, Bremen, Germany). 

2.2.10 Data analysis 

Statistical analyses were performed with software R 2.10.0 (Team 2008). The homogeneity of 

variance and normal distribution of the data were tested with Levene´s test and Shapiro-Wilk 

test of normality. If the preconditions of analysis of variance (ANOVA) were not met, data 

were log-transformed. When transformated data did not meet these requirementsKruskal-

Wallist test was used to detect significant differences between the treatments As-As, Be-Be, 

As-Be. The pairwise comparisons were in this case calculated with Wilcoxon rank sum test. 

Relations between plant nutrient element concentrations in plant tissues and plant biomass 

were calculated with Spearman´s rank correlation test. 

We used ANOVA to analyse the effects of intra- and interspecific competition for ³³P 

concentrations in different plant tissues (fine roots, coarse roots, stem and branches) of beech 

and ash. We used species, treatment (monoculture and two species mixture) and day of 

harvest (1, 4 and 8) as factors and ³³P concentrations in different plant tissues and plant ³³P 

content as response variables. To detect significant differences between the treatments, we 

pooled the data of all three harvests. The pairwise comparsions were calculated with Tukey´s 

HSD test. 

The relative annual height growth (RAG) was calculated with the equation: RAG [%] = (h1 – 

h0)/(h0)*100, whereby h0 = shoot height in August 2010 and h1 = shoot height in August 2011 

at the time of the harvest. The figures were generated with the software Origin 8.5G (Origin 

Lab Corp., Northampton, USA) and R 2.10.0 (Team 2008). 

The ³³P uptake rates were calculated for three sampling intervals, from day of labelling to first 

harvest, from first to second harvest (d1-d4) and from second to third harvest with the 

equation 

v = {[(P2)-(P1)]/t }/m 

whereby P1 and P2 represent the ³³P content of plants at the beginning and end of the sampling 

interval. t is the time between the samplings and m ist the mean dry mass of the plants per 

time intervall. Subsequently, an average of v values of both sampling intervals was calculated. 
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The relative competition intensity was calculated according to Cambbell and Grime (1992), 

with the equation:  

RCIP = (amix - amono)/amono]*100. Hereby amix and amono represent the plant ³³P content [kBq 

plant-1] of ash and beech saplings grown in monocultures and in mixtures. 

Similarly we calculated the relative annual growth intensity  

RCIgrowth. Hereby amix and amono represent the relative annual height growth [%] of ash and 

beech saplings grown in monocultures and in mixtures. 

 

2.3 Results 

 

2.3.1 Mycorrhizal colonization in ash and beech 

The relative abundance of mycorrhizal structures in ash fine roots in monoculture was 76 ± 3 

% and in two species mixture 75 ± 4 % (P = 1.0). No significant differences occurred between 

tree species or treatments.  

For EM mycorrhizal analysis, a total of 52336 vital beech root tips were observed. The 

percentage of vital ectomycorrhizal (EM) root tips of beech in monoculture was 69 ± 4 % and 

in two species mixture with ash 71 ± 5 % (P = 0.285). We recorded 21 EM morphotypes, 

whereof 12 EM species were identified by ITS sequence data (Supplement table S1). 

 

2.3.2 Relative abundance of EM species 

Tomentella castanea colonized 62% of mycorrhizal beech root tips in monoculture and 70% 

in the two species mixture (Tab. 2.1). The second most abundant species was Sebacina sp., 

occurring on 20% of the mycorrhizal root tips in beech monoculture and 20% in two species 

mixture. Other EM species colonized in average 1% or less of the mycorrhizal beech root tips. 

No differences occurred between the relative abundances of one fungal species in different 

treatments.  
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Table 2.1: Relative abundance (Pi) of ectomycorrhizal species of Fagus sylvatica grown in 

monoculture (mono) and two species mixture with Fraxinus excelsior (mix) 

Species  
Pi (mono) Pi (mix) 

Paxillus involutus 6.1 ± 2.4a 1.4 ± 0.3a 

Rhizoscyphus sp. 5.4 ± 2.8a 0.0 ± 0.0a 

Sebacina sp. 19.8 ± 5.3b 19.7 ± 4.4b 

Tomentella castanea 61.9 ± 5.8c 69.5 ± 7.8c 

Tomentella badia 4.8 ± 1.5a 5.0 ± 1.1a 

Other EM species 2.0 ± 0.8a 4.3 ± 2.9ab 

Data indicates means (± SE). nmono= 34, nmix= 20. Different letters in columns indicate 

significant differences between fungal species with P ≤ 0.05. Statistics was performed with 

ANOVA and pair wise comparisons with Tukey´s HSD test. 

 

2.3.3 ³³P in soil 

Soil ³³P was analysed after harvest. The mean values of beech and ash monocultures were 

2541 ± 496 and 3043 ± 547 kBq pot-1, in mixture 2537 ± 615 kBq pot-1 , respectively. No 

significant differences were found between labelled pots beech and ash monocultures (P < 

0.138), monocultures and mixture (Pash < 0.101; Pbeech=1.00) or between harvest days. The ³³P 

content in control pots were beech monoculture; 2 ± 3 kBq pot-1, ash monoculture; 3 ± 7 kBq 

pot-1 and mixture 5 ± 9 kBq pot-1 respectively.  

 

2.3.4 33P accumulation in EM species 

One day after labelling, ³³P concentration of all EM species was higher than that of 

background radiation. The highest concentrations of ³³P were measured in EM root tips of 

beech and in EM rhizomorphs (Fig 2.1). Vital non-mycorrhizal root tips of beech had a 

significantly higher ³³P concentration than dry beech root tips (P = 0.014, Fig. 2.1). This result 

was consistent also in comparison of the treatments (Be-Be and As-Be). In contrast to this, 

vital and dry ash fine roots had similar ³³P concentrations (P = 0.999, Fig. 2.1).  
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Figure 2.1:³³P concentration (kBq g-1) in mycorrhizal root tips of Paxillus involutus (P. 

inv), Rhizoscyphus sp. (Rhi), Sebacina sp. (Seb), Tomentella badia (T. bad), Tomentella 

castanea (T. cas), Rhizomorphs (RM), non-mycorrhzal beech fine roots (NMb), vital ash 

root tips (VRa) as well as dry ash (DRa) and beech (DRb) fine roots labelled with ³³P. 

Different letters indicate significant differences among plant fractions with P ≤ 0.05. 

Statistics was performed with ANOVA and pair wise comparisons with Tukey´s HSD 

test. 

 

For the analysis of ³³P accumulation of different EM species, a total of 118 samples EM root 

tips of seven EM species were analyzed. Three of these species were sufficiently abundant 

during the time course of labelling and could therefore be used to measure ³³P concentrations 

in mycorrhizal root tips after one, four and eight days of labelling (Fig. 2.2).  

After one day labelling, all analysed EM species had reached a 33P concentration that did not 

increase significantly during the subsequent experiment. Only in Sebacina sp., ³³P 

concentration increased in trend. T. castanea was highly enriched with 33P already 1 day after 

labelling and remained high until the end of measurement on day 8.  
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Figure 2.2:³³P concentration (kBq g-1) in mycorrhizal root tips of Paxillus involutus 

(Paxillus), Sebacina sp. (Sebacina) and Tomentella castanea (Tomentella) after 1, 4 and 8 

days of incubation with ³³P. Different letters indicate significant differences among plant 

fractions with P < 0.05. Outliers were excluded with Bonferroni test. Statistics: Wilcoxon 

rank sum test following Kruskal-Wallis test.  

In contrast to these two highly P accumulative EM species, the overall ³³P concentration of 

Paxillus involutus remained low during the incubation period. Other observed EM species had 

rather low ³³P concentrations with the exception of Tomentella badia, which displayed a ³³P 

concentration comparable to that of Sebacina sp. and T. castanea (Fig. 2.2). Due to the low 

abundances of these EM species, not all time points of labelling could be measured. 

 

2.3.5 Total phosphorus (P) in fine roots and leaves 

Fine root and leaf P concentrations show that ash in mixture had lower P accumulation than in 

monoculture. As revealed in table 2.2, ash fine roots in monoculture had significantly higher 
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P concentrations than beech fine roots in monoculture (P = 0.022) or beech in mixture (P = 

0.038). The P concentration in leaves of ash grown in monoculture was also significantly 

higher than in beech leaves. In contrast to this, P concentration decreased in fine roots and 

leaves of ash grown in mixture, resulting in P concentrations similar to those found in beech. 

 

Table 2.2: Concentrations of phosphorous (P) in leaves and fine roots of beech and ash in 

monocultures and mixtures  

Tree species Treatment P leaves [mg g-1] P fine roots [mg g-1] 

F. sylvatica mono 0.75 ± 0.03a 0.74 ± 0.02a 

F. excelsior mono 0.96 ± 0.05b 0.85 ± 0.05b 

F. sylvatica mix 0.75 ± 0.05a 0.75 ± 0.03a 

F. excelsior mix 0.85 ± 0.06ab 0.81 ± 0.03a 

Data shows means (n= 16-26 ± SE). Different letters in columns indicate significant 

differences among plant fractions with P ≤ 0.05. Kruskal-Wallis test and pairwise 

comparisons using Wilcoxon rank sum test. Used P value adjustment method: Bonferroni.  

 

2.3.6 Phosphorus accumulation in fine roots and leaves 

To image the pattern of P distribution, autoradiography was used. Beech and ash saplings 

grown in monocultures and mixtures were labelled once and exposed to 32P for eight days. 

Figure 2.3 illustrates that after 8 days incorporation, upper leaf 32P concentrations of beech in 

mixture were higher than in beech grown in monoculture (Fig. 2.3 A, E). Ash leaves 

displayed an opposite pattern of P accumulation (Fig. 2.3 C, G). Here, the ash saplings grown 

in mixture with beech had lower P concentrations than those grown in monoculture after eight 

days labelling. ³²P was unequally distributed in fine roots of both species (Fig. 2.4). Beech 

(Fig. 2.4 A, B) and ash (Fig. 2.4 C, D) grown in monoculture showed no differences in ³²P 

accumulation. The autoradiograph of mixture showed, that ³²P was higher beech (Fig. 2.4 E, 

F) than in ash (Fig. 2.4 G, H) fine roots. 
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Figure 2.3: Representative autoradiographs and photographs of leaves of beech (A, B) and 

ash (C, D) grown in monocultures , as well as of beech (E, F) and ash (G, H)  grown in two 

species mixtures after eight days labelling. The colours from blue to red indicate an increasing 

amount of incorporated 32P. The autoradiographs and photographs were taken in a pre-

experiment under similar experimental conditions. 

 5 cm 
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Figure 2.4: Representative autoradiograms and photographs of fine roots of beech (A, B) and 

ash (C, D) grown in monocultures , as well as of beech (E, F) and ash (G, H) grown in two 

species mixtures after eight days labelling. The colours from blue to red indicate an increasing 

amount of incorporated 32P. The autoradiographs and photographs were taken in a pre-

experiment under similar experimental conditions. 

 

Leaf and fine root ³³P concentrations as well as overall 33P content of beech and ash increased 

during the experiment (Fig. 2.5). Whereas leaf 33P concentration of ash and beech in 

monoculture were similar, in mixture the leaf ³³P concentrations of ash and beech differed 

significantly eight days after labelling (P < 0.001, Fig 2.5 A). The fine root ³³P concentrations 

of ash and beech differed also four days after labelling (P < 0.001). Similar differences were 

found overall 33P contents of beech and ash in mixture (Fig. 2.5 B, C). Overall plant ³³P 

contents showed a similar pattern; however the differences were significant only four days 

after labelling (Fig. 2.5 C).  
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Figure 2.5: ³³P concentration (kBq g-1) of leaves (A) and fine roots (B) as well as overall ³³P 

content (C) of ash and beech saplings grown in monocultures and two species mixtures after 

1, 4 and 8 days labelling. Data indicates means (± SE). Different letters indicate significant 

differences with P ≤ 0.05. Ti = time, S = species, T= treatment. Statistical analysis of ³³P 

concentration [kBq g-1] in plant tissues and overall ³³P content in plant tissues [kBq dw-1] was 

calculated with Tukey´s HSD test following one-way ANOVA using log transformed data. 

 

To investigate the effect of species identity of neighbouring tree on tree phosphorus 

accumulation, mean 33P concentrations [kBq g-1], 33P contents in tissues and plants across all 

time points were calculated (Tab. 2.3). Fine root 33P in ash decreased, whereas beech fine root 

33P increased in mixture. Similar pattern was observed in leaf 33accumulation. 
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Table 2.3: ³³P concentrations [kBqg-1] and ³³P content [kBq] of fine roots (FR), coarse roots 

(CR), leaves and stem, and overall ³³P content (Plant) of ash (Fraxinus excelsior) and beech 

(Fagus sylvatica) grown in monocultures and two species mixtures. Data indicates mean across 

all time points. The calculation of ³³P content is based on dry weights of tissues and total dry 

weights of plants 

Tree 

species 
F.sylvatica F. excelsior F.sylvatica F.excelsior ANOVA 

Treatmen mono mono mix mix  SS F P 

Parameter 

³³P  

[kBq g-1] 

³³P  

[kBq g-1] 

³³P  

[kBq g-1] 

³³P  

[kBq g-1] 

 

   FR  49.9 ± 9.0b 44.5 ± 6.7b 103.5 ± 1.5c 13.9 ± 3.5a  7.7 13.8 < 0.001 

CR 0.3 ± 0.3a 2.3 ± 0.7a 2.0 ± 0.5a 0.7 ± 0.2a  1.6 1.6 0.203 

Stem  1.5 ± 0.7a 3.9 ± 1.1a 3.2 ± 0.9a 1.9 ± 0.8a  3.0 1.9 0.134 

Leaves 0.9 ± 0.3a 4.1 ± 1.0b 3.9 ± 1.2b 0.6 ± 0.2a  12.5 8.0 < 0.001 

 Content ³³P [kBq] ³³P [kBq] ³³P [kBq] ³³P [kBq]  

   FR  186.0 ± 50.6b 135.8 ± 21.7b 219.4 ± 33.3b 55.6 ± 14.8a  4.2 7.6 < 0.001 

CR 8.6 ± 3.5a 18.5 ± 6.2a 6.3 ± 1.0a 7.7 ± 1.7a  0.7 0.7 0.531 

Stem  4.7 ± 1.8a 5.0 ± 1.4a 6.0 ± 2.2a 7.3 ± 4.4a  3.0 1.9 0.134 

Leaves 2.0 ± 0.5abc 6.8 ± 1.8c 5.2 ± 1.6bc 1.2 ± 0.3a  9.2 5.6 0.001 

Plant 188.3 ± 50.5abc 167.1 ± 28.8c 238.0 ± 34.3bc 72.3 ± 17.8a  2.9 4.5 0.006 

Data indicates means of data from all labeling days n = 17-32 (± SE). Values of stem include 

stem and branches. Statistical analysis of ³³P concentration [kBq g-1] in plant tissues and 

overall ³³P content in plant tissues [kBq DW-1] were calculated with Tukey´s HSD test 

following ANOVA. Different letters in rows indicate significant differences with P ≤ 0.05. df 

= 3, SS = sum of squares. 
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The concentration of recently accumulated 33P was lower in fine roots of ash grown in two 

species mixture than in monoculture (P = 0.001) and higher in beech grown in two-species 

mixture than in beech grown in monoculture (P = 0.024). The ³³P concentrations in beech and 

ash leaves reflected the ³³P concentrations in fine roots. The highest plant ³³P contents were 

found in beech saplings grown in mixture, the lowest in ash in mixture (Tab. 2.3). The ³³P 

content of ash and beech saplings in mixture differed significantly (P = 0.003), whereas no 

differences between the species were found in monocultures (P = 0.945).  

 

Table 2.4: Daily ³³P uptake rates of beech and ash grown in monoculture and mixture 

Species  
Treatment 

³³P uptake rate 

[kBq g-1] 

d1-d0/1 

³³P uptake rate 

[kBq g-1] 

d4-d1/3 

³³P uptake rate 

[kBq g-1] 

d8-d4/4 

F.sylvatica mono 4.7 ± 1.3a 3.9 ± 2.7a -1.9 ± 0.3b 

F. excelsior mono 5.5 ± 1.0a 2.8 ± 0.9ab 0.8 ± 0.8ab 

F.sylvatica mix 7.5 ± 3.8a 1.4 ± 1.0ab 2.6 ± 1.2ab 

F. excelsior mix 1.8 ± 0.5ab 0.2 ± 0.2ab 0.5 ± 0.5ab 

 

ANOVA F                            P 
 

Species 0.280 0.598 
 

Treatment 0.052 0.820  
 

Time interval 23.917 < 0.001 *** 

Species x Treatment 5.225 0.025 * 

Species x Time interval 1.932 0.168 
 

Treatment x Time interval 1.755 0.189 
 

Species x Treatment x Time interval 0.142 0.708 
 

Data shows means (n =6-12, ± SE). Significant differences between time intervals are marked 

with different Latin letters, those between mean values with different Greek letters. P  ≤  0.05. 

Statistics was performed with ANOVA and pair wise comparisons with Tukey´s HSD test. 
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2.3.7 ³³P uptake rate  

Ash in monoculture had the highest average daily uptake rates, followed by beech in mixture 

(Tab. 2.4). The 33P uptake of beech in monoculture decreased from fourth to eigth harvest. In 

beech in monoculture, ash in monoculture and ash in mixture 33P uptake did not change 

significantly during the experiment. 

 

2.3.8 Root morphology 

The root morphological characteristics might affect the P uptake of plants. We investigated 

root morphological parameters and root architecture to find out whether the interspecific 

competition altered the root demography. Specific root length and specific root surface area of 

beech were significantly higher than those of ash (Tab. 2.5). Ash had a higher average root 

diameter than beech. The fine root architecture of beech and ash did not differ between 

monoculture and mixture (Table S5).  

Table 2.5: Specific root length (SRL), specific surface area (SSA), average fine root diameter 

(AD) and number of root tips of ash and beech fine roots grown in monocultures and two 

species mixtures 

Tree  

species 

Treat- 

ment 

SRL 

[cm g-1] 

SSA 

[cm² g-1] 

AD 

[mm] 

Tips 

[n cm-1] 

F. sylvatica mono 5282 ± 290a 460 ± 24a 2.8 ± 0.1a 3.1 ± 0.1a 

F. excelsior mono 3252 ± 166b 394 ± 18a 3.9 ± 0.1b 1.0 ± 0.1b 

F. sylvatica mix 5989 ± 467a 495 ± 46a 2.6 ± 0.1a 1.6 ± 0.2a 

F. excelsior mix 3592 ± 182b 430 ± 18a 3.8 ± 0.1b 0.4 ± 0.1b 

Data shows means (n = 20-36 ± SE). ). Different letters in columns indicate significant 

differences among treatments with P ≤ 0.05.Wilcoxon rank sum test following Kruskal-Wallis 

test. 

 

Irrespective to the species identity of neighbouring tree, beech fine roots had a higher number 

of root tips, root forks and crossings, and ash a higher average fine root diameter. These 

results indicate that the differences in root morphology and architecture were species related 

and not influenced by the root competition. 
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2.3.9 Competition intensity  

The RCI of ash was significantly smaller than zero (Tab. 2.6). In contrast to ash, RCI of beech 

for P did not differ significantly from zero.  

Table 2.6: Relative competition intensity (RCI) for phosphorus in ash (Fraxinus excelsior) 

and beech (Fagus sylvatica). Data indicates means values of one, four and eight days after 

labelling and mean across all time points (1-8). The P values demonstrate significant 

differences to 0, whereby facilitation: RCI > 0 and competition RCI < 0 with P ≤ 0.05  

Species day                    RCI     P 
 

F. sylvatica 1 145 ± 84 0.147 
 

 
4 -24 ± 15 0.171 

 

 
8 65 ± 29 0.070 

 
F. excelsior 1 -46 ± 16 0.040 * 

 
4 -70 ± 6 < 0.001 *** 

 
8 -56 ± 19 0.032 * 

      F. sylvatica 1-8 62 ± 33 0.077 
 

F. excelsior 1-8 -58 ± 8 < 0.001 *** 

Data indicates means (± SE).Statistic was calculated with t-test.  

This result indicates a strong competition for P in mixture with beech compared to ash in 

monoculture. The results suggest that growth in species mixture with ash did not affect the P 

accumulation of beech, whereas ash had a competitive disadvantage. 

 

2.3.10 The effect of interpecific and intraspecific competition on plant growth 

Interspecific competition might differetially affect the plant growth than intraspecific 

competition. The relative growth during one growth period was faster in ash than in beech 

(Fig. 2.6). The growth of beech in mixture remained similar with beech in monoculture (P = 

0.083), whereas the growth of ash decreased 55 ± 3% in mixture (P = 0.008). Generally, 

biomass was differently distributed in ash and beech (Supplement table S7), in which beech 

had higher aboveground biomass and ash higher root biomass. Fine root biomass however 

differed only between beech and ash in mixture (P = 0.035, Supplement table S7).  
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Figure 2.6: Relative annual height growth (%) of ash and beech grown in monocultures 

(mono) and in two species mixture (mix). Statistical analysis was performed with 

Wilcoxon rank sum test following Kruskal-Wallis test with P ≤ 0.05. 

2.3.11 The effect of competition for phosphorus on plant growth 

In order to investigate the relationship between plant growth and relative 33P competition 

intensity we calculated the relative annual growth intensity (RCIgrowth) of beech and ash and 

compared the values with the relative 33P competition intensity (RCIP). High competition 

intensity of beech was related with high growth intensity (Fig. 2.7). The low competition 

intensity of ash linked to a low annual growth intensity. These results indicate that the P 

competition affected ash growth, whereas the growth intensity of beech linked with the high 

competition intensity for P. 
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Figure 2.7: The relationship between 

relative annual P competition intensity 

and relative annual growth of beech 

and ash in nutrient limited conditions 

 



48 
 

2.4 Discussion 

2.4.1 Plant phosphorus uptake in nutrient limited conditions 

The objective of our study was the comparison of phosphorus uptake of two co-existing tree 

species with different mycorrhizal associations in nutrient limited system. 

The importance of mycorrhizal association in plant phosphorus acquisition is particularly 

important in ecosystems with strong P limitation (Bücking & Heyser 2000, Bougher et al. 

1990, Burgess et al. 1993). Bougher et al. (1990) showed that ectomycorrhizal infection with 

one of four different EM fungi (Descolea maculata; two isolates, Pisolithus tinctorius, and 

Laccaria laccata) improved plant P concentration and growth. Our experiment demonstrated, 

that beech colonising EM species accumulate P differently. The benefit of mycorrhizal 

association has been schon to decrease with the increasing level of available soil P until a 

point where the growth of non-mycorrhizal plants is not limited (Bougher et al. 1990). In an 

experiment from Burgess et al (1993), the effectiveness of 16 EM species in improving plant 

growth on high (12 mg kg-1) and low (4 mg kg-1) P levels was examined. At low soil P 

concentrations EM association of Eucalyptus globulus and Eucalyptus diversicolor seedlings 

biomass exceeded up to 13 times that of non-mycorrhizal plants (Burgess et al. 1993). We 

therefore presume, that the EM species in our experiment accumulated P more effieciently 

than they accumulate on high P levels. Also Bücking and Heyser (2000) demonstrated that P 

transfer from EM to Pinus sylvestris seedlings inoculated with Suillus bovinus increased in P 

limited conditions, whereas high external P concentration resulted in higher P content in non-

mycorrhizal roots than in EM colonized roots. 

 

2.4.2 Species specific differences in phosphorus uptake of EM 

Our results are in accordance to our first hypothesis that EM species differ in their ability to 

take up phosphorus. The most abundant EM fungus reached high ³³P concentrations within 

one labelling day, whereas other EM species did not accumulate P during the labelling. In 

Tomentella castanea, the ³³P concentrations were already high after one day labelling. In 

Sebacina sp., the concentration increased constitutively during labelling period. These results 

indicate a rapid uptake of external P within 24h to an EM species specific level. This is in 

accordance with Jones et al (1991), who showed that plant P inflow rates of Eucalyptus 
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coccifera were 3.8 times higher with EM Thelephora terrestris or L. bicolor than that of non-

mycorrhizal plants and 1.4 times higher than that of AM inoculated plants (Jones et al. 1998). 

The P concentration of Paxillus involutus remained low during the experiment. This result 

indicates that P. involutus did not take up H3
33PO4 in a nutrient limited system. Since  

P. involutus has been demonstrated to take up P, this result might reflect the functional 

diversity of EM with respect to P uptake. Paxillus involutus might rather take up other P 

sources or nutrients. Bücking and Heyser (2000) showed that P content in cells of P. involutus 

and its host Pinus sylvestris increased with (NH4)2HPO4 supply compared to KH2PO4 and 

NaH2PO4, whereas P uptake of Suillus bovinus was not affected by P source. One explanation 

for this could be an adaptation to high soil nutrient conditions, as suggested by Lilleskov et al. 

(2002).  

The different uptake of EM species might also result from different Pi transporters found in 

EM species. In mycorrhizal fungi, high affinity P transporters of type Pi:H
+ have been 

reported (Martin et al. 2008, Tatry et al. 2009). The transcripts have mainly been detected in 

extraradical hyphae, and their expression level is enhanced by low P concentrations in soil 

(Plassard & Dell 2010). Through increases in soil Pi availability, other transporters might be 

activated (Tatry et al. 2009). In our experiment, Tomentella badia had ³³P concentrations si-

milar to T. castanea. This result indicates that closely relative species might have similar 

phosphorus acquisition strategies.  

 

2.4.3 Phosphorus accumulation via mycorrhiza 

In accordance to our second hypothesis, trees hosting AM and EM fungi had differed in their 

P uptake. Our result points towards comparisons of plants inoculated with AM or EM fungi 

performed with tree species (Eucalyptus, Salix) that form dual mycorrhizal associations 

(Jones et al. 1998, van der Heijden 2001). Jones et al (1998) showed that Eucalyptus seedlings 

inoculated with EM (L. bicolor or T. terrestris) had higher P content, shoot and root P 

concentrations and higher stem mass than seedlings inoculated with AM fungi. In another 

experiment with Salix repens inoculated with AM or EM, the plant performance and 

phosphorus contents were measured 12, 20 and 30 weeks after inoculation (van der Heijden 

2001). Here, S. repens inoculated with AM had faster (< 12 weeks) response in P uptake as 

well as in shoot and root growth, but long-term (> 7 months) plants benefitted more from EM 

(van der Heijden 2001). Due to the few fungal species used as inocula, the results of these two 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
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studies might primarily reflect fungal taxon related differences in P accumulation. The 

measured uptake of P in AM fine root tips was remarkably low. The ³³P concentrations were 

comparable to those of non mycorrhizal beech fine roots. Similar fine root ³³P concentrations 

to those found in ash fine roots in our experiment have been reported in other plant species 

inoculated with the AM species Glomus intraradices (Nagy et al. 2005).  

The differences of the mycorrhizal types in length and density of root external hyphae may 

result in lower concentrations of recent P in ash fine roots compared to beech. Jacobsen et al. 

(1992) demonstrated that the P uptake of two AM species with short external hyphae was over 

25 times lower than that of AM species with long external hyphae. Compared to numerous 

EM species, the root external hyphae of AM are rather short (Glomus species ≤ 1 cm, G. 

intraradices ≤ 3 cm) (Agerer 1990, Jakobsen et al. 1992, Nagy et al. 2005) and do usually not 

form rhizomorphs (Dodd et al. 2000). 

In a quantification of length of external hyphae, EM produced three to seven times more 

external hyphae than AM fungi. Hereby the hyphal length was highly correlated with plant P 

uptake and shoot weight (Jones et al. 1998). In our experiment, no quantification of external 

hyphae was conducted; however morphological analysis and sequence data confirmed that 

rhizomorphs of the most abundant EM species T. castanea were frequently found 

(Supplement table S2). The ³³P concentration in rhizomorphs had a signature similar to that of 

high accumulative EM root tips. Therefore, we suggest that external hyphae might have led to 

a competitive advantage for EM through larger space occupation and more efficient P uptake.  

Early estimations by Harley and McCready (1952) showed that at low external P 

concentrations up to 90% of the P in EM structures might not be directly transported to beech 

(F. sylvatica). It has been suggested that high P concentration in EM structures results from 

permanent P uptake or serve as storage to overcome temporal P limitations (Smith & Read 

2008). Though, the high P accumulation in rhizomorphs and EM mantles might have limited 

the available P pool for ash.  

Unexpectedly, P concentrations of vital mycorrhizal ash fine roots and dead ash roots were 

similar. That might be explained by the morphology of dead fine roots, but need further 

verification.  

 

2.4.4 Total phosphorus in leaves indicates P deficiency 
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The mean leaf P concentrations across all measured time points did not differ significantly 

between ash and beech. Based on the new critical nutrient foliar concentrations for beech (1.0 

mg g-1 P) suggested by Mellert and Göttlein (2012), beech leaf P (mono 0.8, mix 0.8 mg g-1) 

concentrations indicated a P deficiency. In this study, foliar nutrient thresholds of ash were 

not included, but according to van der Burg´s (1985, 1990), original threshold values (1.3 mg 

g-1), also ash (mono: 1.0, mix 0.9 mg g-1) was in P deficiency. This was expected because the 

saplings were not fertilized in the growth period before harvest.  

 

2.4.5 33P accumulation in leaves and fine roots  

The accumulation of recently acquired phosphorus examined with autoradiography and 33P 

concentrations showed that similarly to the total P concentrations, in monoculture ash leaf P 

accumulation was higher and increased faster than in beech. In mixture the accumulation of 

recently acquired P in ash clearly decreased. Similarly, the fine root 33P concentration of ash 

and beech resembled in monocultures, but fine roots of ash in mixture accumulated less P. 

These results are in accordance with our second hypothesis, that tree species with AM and 

EM have different patterns of P uptake with conspecific and heterospecific neighbor. 

Furthermore, our results indicate that ash might generally transport more or faster P to 

aboveground tissues than beech. There are some indications, that growth in neighbourhood of 

beech might affect nutrient uptake of ash. In an empirical study, nitrogen concentration of ash 

fine roots decreased in mixture with beech and lime, whereas P concentration of beech 

decreased in mixture with ash and lime (Lang & Polle 2011). However, Lang and Polle 

(2011) studied a tree species mixture with more than two species, which might differentially 

influence the nutrient acquisition of each other.  

The differences in recently acquired P in ash and beech in mixture were presumably not 

caused by P limitation during labelling. In plant pairs, a maximum of 1% of the ³³P added to 

the soil solution was detected (3.7 MBq ³³P added per pot, in average 166 ± 60 kBq recorded 

in plans). However soil samples might also contain mycorrhizal hyphae. 

Furthermore, results of in vivo and in vitro analysis of ash and beech saplings suggest that ash 

out-competes beech in water acquisition (Rust & Savill 2000). The water availability is 

connected with acquisition of P. The poor mobility of P in soil is further reduced by drought, 

whereas the uptake of N is less affected (Peuke & Rennenberg 2004). In our experiment, the 

plants were sufficiently watered and did not show any signs of water limitation. Beech 
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saplings gained more and faster the accessible P via EM. In our experiment, according to 

morphological and sequence data, we found numerous highly ³³P enriched rhizomorphs of 

EM in the soil, but no comparable AM structures.  

In our experiment, the P uptake of ash did not increase in relation to biomass. Whereas ash 

had a higher overall root mass and higher fine root mass in mixture, both total P concentration 

and concentrations of recently acquired ³³P in ash tissues decreased. The comparison of 

monocultures and two species mixtures of ash and beech in forest showed that fine root 

biomass of ash increased in mixture with beech, indicating a belowground competitive 

superior of ash (Jacob et al. 2012). Despite greater fine root mass of ash in mixture, its P 

accumulation declined. Moreover, the annual growth rate of ash decreased by 55% (Fig. 2.6). 

These results support the conclusion that despite the higher fine root biomass, growth in 

mixture affected the P uptake and growth of ash saplings. In contrast to ash, beech saplings 

had higher ³³P concentrations in mixture but similar overall ³³P contents in both treatments. In 

conclusion, the effect of interspecific competition on P uptake of beech was neutral.  

 

2.4.6 Interspecific competition for phosphorus 

To our knowledge, the competition for P between beech and ash has not been reported before. 

In contrast to our third hypothesis, AM association did not result in a competitive advantage 

for ash in P utilization. The relative competition index (RCI) indicates that growth in two 

species mixture with beech resulted in disadvantage for ash in P uptake. Thus, the hypothesis 

that ash with AM has a greater competitive effect on beech with EM was rejected. The 

relative competition index of ash indicated strong competition for phosphorus with beech. In 

contrast to ash, the growth of beech in species mixture did not result in facilitative or 

competitive interaction with ash. In our experimental design we intended to force competition 

between the two tree species. Therefore, the belowground rooting area was clearly restricted.  

In experiments investigating the effects of AM colonisation on intraspecific competition 

indicate that AM species perform best in low densities (Facelli et al. 1999). Consequently, in 

lower densities less root competition might occur. 
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2.5 Conclusions 

 

In the present study, we investigated the P competition of two tree species with differing 

mycorrhizal strategies in a nutrient limited system.  

EM fungi reveal functional diversity with respect to P uptake. The most abundant species  

T. castanea and Sebacina sp. emerged as high accumulative for P and reached within 24h 

high ³³P concentrations. The uptake of recent phosphorus in P. involutus remained low during 

the experiment, which indicates uptake of other nutrients or other ecological functions. P 

concentrations of rhizomorphs were similar to high accumulative EM species. Unless P in EM 

structures might not be directly transported to beech, the accumulation might limit the 

available P pool for ash and serve as a reserve that supports the host plant to overcome 

temporal soil phosphate delimitations. 

Conspecific and heterospecific neighbor differentially affected the P uptake of ash and beech. 

In monocultures, the higher P accumulation of ash leaves compared to beech can be 

considered as taxon related characteristics. The growth in species mixture decreased ash P 

accumulation significantly, whereas beech P acquisition was unaffected by the species 

identity of the neighbour. The changes in P accumulation of ash in mixture were however not 

related with modification of root architecture, which indicates that mycorrhiza and not root 

tissue took a decisive role in P uptake. 

The relative competition index of ash indicated severe competition for phosphorus with beech 

whereas the effect of interspecific competition on P uptake of beech was neutral.  

We conclude that in nutrient limited conditions, beech with EM can effectively compete for P 

with ash. 
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Supplementary data 

Supplement Table S1:  Mycorrhizal colonization of beech (Fagus sylvatica; ECM) and ash 

(Fraxinus excelsior; AM) grown in monoculture and two species mixture  

Supplement Table S2: Molecular information on ectomycorrhizal (EM) species. EM fungi 

were identified by ITS sequencing and sequence information was deposited in NCBI 

databank. If the homology was higher than 97 % and the score higher than 700 bits, the name 

suggested by the database, preferentially that of UNITE was quoted. If the score was higher 

than 600, the homology more than 95 % and both databases suggested the same genus, the 

species was named as unknown species of the suggested genus. 

Supplement Table S3:Root length (RL), specific root length (SRL), specific surface area 

(SSA), and average root diameter (AD) of fine roots (ø ≤ 2mm) of ash and beech saplings 

grown in monocultures and two species mixtures 

Supplement Table S4: The lenght (cm), area (cm²), volume (cm³) and number of root tips (n) 

of fine roots of beech (Fagus sylvatica) and ash (Fraxinus excelsiot) divided in 11 classes.  

Supplement Table S5: Fine root architecture of beech and ash saplings grown in 

monoculture and in two species mixture. The number of root tips, -forks and –crossings in 

relation to root length 

Supplement Table S6: Nutrient element concentrations in beech (Fagus syvatica) and ash 

(Fraxinus excelsior) fine roots and leafs 

Supplement Table S7: Biometrical parameters of ash and beech grown in monoculture 

(mono) and two species mixture (mix) 
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Supplement Table S1: Mycorrhizal colonization of beech (Fagus sylvatica; EM) and ash 

(Fraxinus excelsior; AM) grown in monoculture and two species mixture 

Species Treatment n % 

Mycorrhizal root tips 

F. sylvatica mono 34 68.7 ± 4a 

F. excelsior mono 14 75.8 ± 3a 

     
F. sylvatica mix 20 70.5 ± 5a 

F. excelsior mix 11 75.3 ± 4a 

Data indicates means (± SE). Different letters in columns indicate significant differences 

among treatments with P ≤ 0.05. Statistics was performed with Kruskal-Wallis test. To 

determine ECM colonization of the root tips, in each sample 1000 vital root tips were 

counted. The percentage of ECM colonization was calculated as: ECM root tips/(ECM 

root tips + non mycorrhizal root tips)x100. 
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Supplement Table S2: Molecular information on ectomycorrhizal (EM) species. EM fungi were identified by ITS sequencing and sequence 

information was deposited in NCBI databank. If the homology was higher than 97 % and the score higher than 700 bits, the name suggested by the 

database, preferentially that of UNITE was quoted. If the score was higher than 600, the homology more than 95 % and both databases suggested 

the same genus, the species was named as unknown species of the suggested genus. ACC = Accession number in NCBI databank, Best BLAST 

match = name obtained from NCBI or UNITE 

 
ACC 

Length of 

Fragment 

[letters] 

Best BLAST Match Source Strain Identity Identities 

Homo 

logy 

[%] 

Score 

[bits] 

Hebeloma velutipes  JX844784 597 Hebeloma velutipes UNITE UDB000022 595/597 99 1172 

Paxillus involutus  JX844778 668 Paxillus involutus UNITE UDB000754 642/642 100 1273 

Paxillus involutus  JX844779 707 Paxillus involutus UNITE UDB000754 654/654 100 1296 

Rhizoscyphus sp.  JX844782 569 
Uncultured EM 

(Rhizoscyphus)  
NCBI HQ211588.1 566/569 99 1035 

Sebacina sp. 1 JX844771 651 Uncultured EM (Sebacina)  NCBI HQ212339.1 633/653 97 1090 

Sebacina sp. 1 JX844775 568 UnculturedEM (Sebacina)  NCBI HQ212339.1 551/569 97 948 

Sebacina sp. 1  JX844773 560 Uncultured EM (Sebacina)  NCBI HQ212339.1  542/561 97 928 

Sebacina sp. 2 JX844772 622 Uncultured EM (Sebacina)  NCBI HQ212355.1 604/622 97 1046 

Sebacina sp. 2 JX844774 516 Uncultured EM (Sebacina) NCBI HQ212355.1 502/516 97 874 

Tomentella badia  JX844776 704 Tomentella badia UNITE UDB000952 544/546 99 1070 

Tomentella castanea  JX844764 619 Tomentella castanea UNITE UDB000120 608/608 100 1205 

Tomentella castanea  JX844765 575 Tomentella castanea UNITE UDB000120 575/575 100 1140 

Tomentella castanea JX844767 668 Tomentella castanea UNITE UDB000120 668/668 100 1324 

Tomentella castanea  JX844768 668 Tomentella castanea UNITE UDB000120 668/668 100 1324 

Tomentella castanea  JX844769 668 Tomentella castanea UNITE UDB000120 532/532 100 1055 

Tomentella castanea  JX844770 668 Tomentella castanea UNITE UDB000120 637/637 100 1263 

Tuber sp.  JX844780 621 Uncultured EM (Tuber)  NCBI HQ204753.1  618/621 99 1131 

Uncultured EM MT10 JX844777 782 Uncultured EM fungus  NCBI DQ233812.1 
776/782 99 1411 

Unknown EM MT18  JX844781 559 Sphaerosporella brunnea UNITE UDB000994 345/368 93 541 

uncultured Helotiales  JX844783 466 Uncultured EM (Helotiales)  NCBI FJ475652.1 459/467 98 718 

 

http://www.ncbi.nlm.nih.gov/nucleotide/310754449?report=genbank&log$=nuclalign&blast_rank=27&RID=6KRE4J1H01N
http://www.ncbi.nlm.nih.gov/nucleotide/78191191?report=genbank&log$=nucltop&blast_rank=5&RID=6KRZSCWK01N
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Supplemen Table S3: Root length (RL), specific root length (SRL), specific surface area 

(SSA) and average root diameter (AD) 

Tree species treatment SRL [cm g-1] SSA [cm² g-1] AD [cm] 

F. sylvatica mono 5282.1 ± 290a 459.8 ± 24.1a 0.028 ± 0.001a 

F. Excelsior mono 3251.6 ± 166b 393.9 ± 18.4a 0.039 ± 0.001b 

F. sylvatica mix 5989.2 ± 467a 494.6 ± 46.0a 0.026 ± 0.001a 

F. Excelsior mix 3591.9 ± 182b 429.6 ± 18.3a 0.038 ± 0.001b 

Data shows means (n = 20-36 ± SE). Different letters in columns indicate significant 

differences among treatments with P ≤ 0.05 (Kruskal-Wallis test and post hoc tests with 

Wilcoxon rank sum test). 
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Supplement Table S4: The lenght (cm), area (cm²), volume(cm³) and number of root tips (n) of fine roots of beech (Fagus sylvatica) and ash 

(Fraxinus excelsiot) grown in monocultures (mo) and mixtures (mi) divided in 11 classes  

Species 
Tr

eat 
class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 11 

Root area 

[cm²] 
 0.0< - ≤ 0.2 0.2< - ≤ 0.4 0.4< - ≤ 0.6 0.6< - ≤ 0.8 0.8< - ≤ 1.0 1.0< - ≤ 1.2 1.2< - ≤ 1.4 1.4< - ≤ 1.6 1.6< - ≤ 1.8 1.8< - ≤ 2.0 >2.0 

F. sylvatica mo 4.7 ±0.3a 5.8 ±0.4a 4.31 ±0.3ab 1.13 ±0.1a 0.79 ±0.1a 0.32 ±0.1a 0.07 ±0.02ab 0.07 ±0.01a 0.03 ±0.01a 0.01 ±0.00a 0.03 ±0.01a 

F. excelsior mo 0.3 ±0.0b 8.2 ±0.7b 4.81 ±0.4b 0.83 ±0.1a 0.3 ±0.1b 0.26 ±0.1b 0.05 ±0.02b 0.03 ±0.01b 0.01 ±0.01b 0.00 ±0.00b 0.01 ±0.01b 

F. sylvatica mi 5.2 ±0.5a 6.8 ±0.8ab 3.81 ±0.3a 0.82 ±0.1a 0.51 ±0.1ab 0.25 ±0.1ab 0.08 ±0.02a 0.03 ±0.01ac 0.03 ±0.01a 0.01 ±0.01a 0.03 ±0.01a 

F. excelsior mi 0.4 ±0.0b 9.8 ±1.0b 5.65 ±0.4b 0.76 ±0.1a 046 ±0.1b 0.20 ±0.1ab 0.06 ±0.02ab 0.02 ±0.01bc 0.01 ±0.01b 0.00 ±0.00ab 0.01 ±0.00ab 

Root length 

[cm] 
 0.0< - .≤ 0.2 0.2< - ≤ 0.4 0.4< - ≤ 0.6 0.6< - ≤ 0.8 0.8< - ≤ 1.0 1.0< - ≤ 1.2 1.2< - ≤ 1.4 1.4< - ≤ 1.6 1.6< - ≤ 1.8 1.8< - ≤ 2.0 - >2.0 

F. sylvatica mo 116.2 ±6.4a 51.1 ±3.3a 21.5 ±1.5a 4.11 ±0.4a 2.28 ±0.3a 0.74 ±0.1a 0.13 ±0.03ab 0.11 ±0.02a 0.05 ±0.01a 0.01 ±0.01a 0.02 ±0.00a 

F. excelsior mo 8.7 ±1.0b 80.9 ±6.7b 29.5 ±2.2b 3.63 ±0.3a 1.83 ±0.3a 0.70 ±0.2a 0.12 ±0.03b 0.05 ±0.02b 0.02 ±0.01b 0.00 ±0.00b 0.01 ±0.01b 

F. sylvatica mi 127.6 ±12.3a 61.3 ±7.9a 19.5 ±1.7a 3.00 ±0.4a 1.49 ±0.2a 0.59 ±0.1a 0.16 ±0.03a 0.06 ±0.01ab 0.04 ±0.01a 0.02 ±0.01a 0.02 ±0.01a 

F. excelsior mi 11.1 ±1.3b 95.8 ±10.3b 34.9 ±2.8b 3.34 ±0.4a 1.61 ±0.2a 0.56 ±0.1a 0.13 ±0.04ab 0.04 ±0.02b 0.02 ±0.01ab 0.00 ±0.00ab 0.01 ±0.00ab 

Root volume 

[cm3] 
 0.0< - .≤ 0.2 0.2< - ≤ 0.4 0.4< - ≤ 0.6 0.6< - ≤ 0.8 0.8< - ≤ 1.0 1.0< - ≤ 1.2 1.2< - ≤ 1.4 1.4< - ≤ 1.6 1.6< - ≤ 1.8 1.8< - ≤ 2.0 - >2.0 

F. sylvatica mo 0.01 ±0.0a 0.03 ±0.0a 0.04 ±0.0ab 0.01 ±0.0a 0.01 ±0.0a 0.01 ±0.0 0.00 ±0.00ab 0.00 ±0.00a 0.00 ±0.00a 0.00 ±0.00a 0.00 ±0.00a 

F. excelsior mo 0.00 ±0.0b 0.06 ±0.0b 0.05 ±0.0b 0.01 ±0.0a 0.01 ±0.0a 0.01 ±0.0a 0.00 ±0.00b 0.00 ±0.00b 0.00 ±0.00b 0.00 ±0.00b 0.00 ±0.00b 

F. sylvatica mi 0.01 ±0.0a 0.04 ±0.0ab 0.04 ±0.0a 0.01 ±0.0a 0.01 ±0.0 0.01 ±0.0a 0.00 ±0.00a 0.00 ±0.00ab 0.00 ±0.00a 0.00 ±0.00a 0.00 ±0.00a 

F. excelsior mi 0.00 ±0.0b 0.07 ±0.0b 0.06 ±0.0b 0.01 ±0.0a 0.01 ±0.0a 0.00 ±0.0a 0.00 ±0.00ab 0.00 ±0.00b 0.00 ±0.00ab 0.00 ±0.00ab 0.00 ±0.00ab 

Root tips [n]  0.0< - .≤ 0.2 0.2< - ≤ 0.4 0.4< - ≤ 0.6 0.6< - ≤ 0.8 0.8< - ≤ 1.0 1.0< - ≤ 1.2 1.2< - ≤ 1.4 1.4< - ≤ 1.6 1.6< - ≤ 1.8 1.8< - ≤ 2.0 - >2.0 

F. sylvatica mo 536.5 ±30.4a 65.3 ±9.1a 10.5 ±1.2a 1.93 ±0.3a 1.03 ±0.2a 0.27 ±0.1a 0.10 ±0.07a 0.00 ±0.00a 0.00 ±0.00a 0.03 ±0.03a 0.00 ±0.00a 

F. excelsior mo 52.4 ±5.1b 59.1 ±5.1a 8.53 ±0.9a 1.28 ±0.2a 0.72 ±0.1a 0.28 ±0.1a 0.08 ±0.05a 0.00 ±0.00a 0.03 ±0.03a 0.00 ±0.00a 0.00 ±0.00a 

F. sylvatica mi 582.6 ±56.0a 76.8 ±10.4a 9.59 ±1.1a 0.91 ±0.2 0.86 ±0.3a 0.41 ±0.1a 0.14 ±0.07a 0.05 ±0.04a 0.00 ±0.00a 0.00 ±0.00a 0.00 ±0.00a 

F. excelsior mi 65.3 ±6.6b 76.2 ±7.8a 11.6 ±1.9a 1.45 ±0.3a 0.55 ±0.2a 0.20 ±0.1a 0.05 ±0.05a 0.00 ±0.00a 0.00 ±0.00a 0.00 ±0.00a 0.00 ±0.00a 

Data shows means (n = 20-36 ± SE). Different lower-case letters indicate significant differences between the variants at a significance level P ≤ 

0.05 (Kruskal-Wallis test, post hoc test: pairwise Wilcoxon rank sum test with P value adjustment with bonferroni correction method).  
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Supplement Table S5: Fine root architecture. The number of root tips, -forks and –crossings 

in relation to root length 

Species Treatment n Tips cm-1 Forks cm-1 Crossings cm-1 

F. sylvatica  mono 30 3.14 ± 0.2a 7.34 ± 0.4a 1.50 ± 0.1a 

F. excelsior mono 36 0.98 ± 0.1b 1.88 ± 0.2b 0.45 ± 0.1b 

F. sylvatica  mix 22 3.14 ± 0.3a 7.13 ± 0.7a 1.55 ± 0.2a 

F. excelsior mix 20 1.05 ± 0.1b 1.98 ± 0.2b 0.44 ± 0.1b 

Data shows means (n = 20-36 ± SE). ). Different letters in columns indicate significant 

differences among treatments with P < 0.05. Wilcoxon rank sum test following Kruskal-Wallis 

test 
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Supplement Table 6: Nutrient element concentrations in beech (Fagus syvatica) and ash (Fraxinus excelsior) fine roots and leafs 

Tree species 
Treat

ment 
Al [mg g-1] C [mg g-1] Ca [mg g-1] Fe [mg g-1] K [mg g-1] Mg [mg g-1] Mn [mg g-1] N [mg g-1] Na [mg g-1] P [mg g-1] S [mg g-1] 

Fine Roots  
                      

F. sylvatica mono 3.78 ±0.44a 433.4 ±6.7a 5.08 ±0.3a 2.95 ±0.28a 3.24 ±0.19a 1.48 ±0.07a 3.78 ±0.44a 10.09 ±0.19a 0.66 ±0.15a 0.73 ±0.02a 1.48 ±0.07a 

F. excelsior mono 0.98 ±0.16b 432.4 ±4.8a 3.38 ±0.1b 0.66 ±0.08b 9.89 ±0.62b 3.24 ±0.14b 0.23 ±0.16b 7.37 ±0.21b 2.86 ±0.23b 0.85 ±0.03b 3.24 ±0.14 b 

F. sylvatica mix 5.16 ±0.77a 429.3 ±7.9a 4.84 ±0.2a 3.46 ±0.44a 3.53 ±0.67a 1.53 ±0.09a 5.16 ±0.77a 9.53 ±0.35a 0.61 ±0.03a 0.74 ±0.03ab 1.53 ±0.09a 

F. excelsior mix 0.82 ±0.11b 430.8 ±8.7a 3.69 ±0.2b 0.65 ±0.10b 10.1 ±0.51b 2.91 ±0.15b 0.82 ±0.11b 8.06 ±0.23b 2.31 ±0.29 0.81 ±0.03ab 2.91 ±0.15b 

Leafs  
                      

F. sylvatica mono 0.13 ±0.01a 471.5 ±8.4a 6.28 ±0.3a 0.15 ±0.01a 5.05 ±0.33a 1.83 ±0.06a 0.59 ±0.05a 11.96 ±0.42a 0.17 ±0.01a 0.75 ±0.03a 0.82 ±0.03a 

F. excelsior mono 0.11 ±0.01a 435.0 ±1.7b 11.1 ±0.7b 0.17 ±0.01a 16.0 ±0.77b 4.80 ±0.27b 0.06 ±0.00b 11.14 ±0.36a 0.11 ±0.02b 0.96 ±0.05b 1.73 ±0.10b 

F. sylvatica mix 0.10 ±0.00a 458.3 ±1.1c 6.75 ±0.3ac 0.15 ±0.01a 5.31 ±0.82a 2.11 ±0.15a 0.71 ±0.09a 11.50 ±0.65a 0.19 ±0.02a 0.75 ±0.05a 0.85 ±0.07a 

F. excelsior mix 0.12 ±0.01a 431.1 ±1.9b 9.22 ±0.9bc 0.15 ±0.01a 17.8 ±1.56b 4.90 ±0.40b 0.10 ±0.04b 10.69 ±0.40a 0.08 ±0.03b 0.85 ±0.06ab 1.54 ±0.15b 

Data indicates means (n = 17-27 ± SE). Different letters in columns indicate significant differences among plant fractions with P < 0.05. Kruskal-

Wallis test and Pairwise comparisons using Wilcoxon rank sum test.  
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Supplement Table S7: Biometrical parameters of ash and beech grown in monoculture (mono) and two species mixture (mix) 

Tree species Treatment 
Biomass 

[g plant-1] 

Leaf 

[g plant-1] 

Stem 

[g plant-1] 

Fine root 

[g plant-1] 

Coarse Root 

[g plant-1] 

R:S 

Ratio 

CR:FR 

Ratio 

WHD 

[mm] 

Shoot heighta 

[cm] 

Shoot 

height 
b 

[cm] 

RGR 

[%] 

F. sylvatica mono 20.20 ± 2ab 2.41 ± 0.2b 7.07 ± 0.7b 3.73 ± 2ab 7.52 ± 0.6a 1.74 ± 0.4a 2.57 ± 0.8a 6.95 ± 0.3b 49.07 ± 2b 57.16 ± 2b 1.48 ± 0.2a 

F. excelsior mono 17.17 ± 1a 1.54 ± 0.1a 3.68 ± 0.3a 3.31 ± 1ab 8.64 ± 0.3b 3.48 ± 0.2b 2.93 ± 0.2b 7.15 ± 0.2b 19.52 ± 2a 33.67 ± 2a 11.02 ± 1.2c 

F. sylvatica mix 13.90 ± 2a 1.94 ± 0.3ab 5.17 ± 0.8ab 2.53 ± 1a 4.27 ± 0.3a 1.52 ± 0.1a 1.83 ± 0.2a 5.96 ± 0.3a 43.28 ± 3b 52.75 ± 4b 2.67 ± 0.7a 

F. excelsior mix 22.87 ± 2b 1.98 ± 0.1b 5.11 ± 0.4ab 4.65 ± 1b 11.12 ± 0.6c 3.27 ± 0.2b 2.93 ± 0.3b 8.28 ± 0.3c 25.42 ± 2a 38.94 ± 2a 5.88 ± 0.9b 

Data indicates means (± SE). Different letters in columns indicate significant differences within group with P ≤ 0.05. Statistics were performed with 

Wilcoxon rank sum test following Kruskal-Wallis test. Data of relative growth rate includes control plants and was calculated with RGR [%] = 

(Shoot heightb-Shoot heighta)/(Shoot heighta*10)*100a Shoot length measured 10 months before the harvest, b Shoot length measured at the harvest. 
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3.1 Introduction 

The benefits of mycorrhizal associations in the acquisition of the most plant growth limiting 

nutrients nitrogen (N) and phosphorus (P) have become important issues of scientific research 

(Correâ et al. 2012, Fellbaum et al., 2012, Kiers et al. 2011). The vast majority of the studies 

has focused on the acquisition of one nutrient element, but very little is known about the 

simultaneous uptake of multiple elements. In addition, the effects of mycorrhizal fungi on 

plant competition for multiple nutrients are nearly unknown. Therefore, the main objective of 

this study was to investigate the role of different mycorrhizal species on plant N and P 

acquisition. 

N acquisition of plants presumably varies with the type of mycorrhizal association (van der 

Heijden et al. 2001). Especially ectomycorrhiza (EM) forming fungi have been considered to 

effectively increase the N status of plants (Smith and Read 2008). In an experiment with non-

mycorrhizal and with EM inoculated Scotch pine (Pinus sylvestris L.) seedlings, root N 

concentration increased significantly in mycorrhizal seedlings compared to non-mycorrhizal 

plants (Colpaert et al. 1996). EM has been shown to be able to use both mineral N sources 

nitrate, NO3
- (Nygren et al. 2008) and ammonium, NH4

+ (Chalot et al. 2006), most likely with 

a preference to NH4
+, if both N forms are available (Finlay et al. 1989). Furthermore, EM 

fungi have been reported to use a range of organic compounds as N sources (Chalot & Brun 

1998, Marmeisse et al. 2004).  

Besides EM, certain tree species in temperate forests form arbuscular mycorrhizal (AM) 

associations. The relevance of these fungi to plant N acquisition is increasingly recognised 

(Fellbaum et al. 2012, Pérez-Tienda et al. 2012, Govindarajulu et al. 2005). AM fungi have 

been shown to take up and transport NO3
- (Tobar et al. 1994, Govindarajulu et al. 2005), 

NH4
+ (Govindarajulu et al. 2005, Jin et al. 2005, Peréz-Tienda et al. 2012) and N from organic 

sources (Hawkins et al. 2000, Hodge & Fitter 2010).  

Although different mycorrhizal types might impact the N and P acquisition of co-occurring 

tree species unequally, surprisingly little attention has been paid to this issue. According to 

Tilman´s (Tilman 1982) model, the nutrient utilization of two resources can lead to niche 

differentiation or out-competition between species (Tilman’s R*). Species that can reduce the 

resource to the lowest level and maintain growth wins the competition. Co-existence is 

possible, when the growth of the species is differentially limited by the resources. The 

association with mycorrhizal fungi, and especially the different mycorrhizal types, modify the 
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response of the competing plants (Aerts, 2002). It has been suggested that in non-mycorrhizal 

stage, plant species associated with AM fungi have a competitive advantage over plant 

species associated with EM fungi. This suggestion is based on the theory that plants 

associated with AM are characterized by more efficient N and P uptake than plants with EM 

(Schulz et al. 2011, Stadler et al. 1993). The mycorrhizal colonization changes the situation. 

Due to the presumed higher uptake capacity of EM for N, and AM for P, the phosphorus 

status of ash and nitrogen status of beech increases. According to Tilman´s model, both 

species can co-exist under these conditions.  

Until now, no experimental evidence for the differences in uptake capacities of AM and EM 

for N and P in competition exists. An empirical study supports the theory of Aerts (2002) for 

differences in N and P acquisition of mycorrhizal types (Lang & Polle 2011). Lang and Polle 

(2011) demonstrated that root P concentration of beech decreased and P concentration of ash 

increased by increasing root diversity, suggesting interspecific competition for P. In addition, 

N acquisition was related with EM diversity. In a mixed stand, fine root N concentration of 

ash decreased with increasing EM diversity of beech roots. This result indicates that EM 

influences the competition for N in tree species mixture (Lang & Polle 2011).  

It has been speculated, that the dominance of EM tree species in temperate and boreal forests, 

which are characterised by a strong limitation of N availability, might rely on a more effective 

N acquisition of EM compared to AM (Smith and Read 2008, Rennenberg et al. 2009). 

However, the experimental evidence is lacking to answer the question whether EM provides 

an advantage in both N and P acquisition over AM symbiosis.  

This study reports the nitrogen uptake of ash and beech grown in conspecific and 

heterospecific pairs. Since the EM species effects on plant interactions are currently not well 

documented, we determined N acquisition in beech root tips colonised with different EM 

species. It is currently also unclear whether EM species with high P accumulation, which was 

documented in chapter 2, also take up N more efficiently than other EM species. Therefore, 

the relationship of N and P accumulation in EM roo tips was studied.  

For this purpose, we used beech (Fagus sylvatica), which forms associations with EM fungi, 

and ash (Fraxinus excelsior), which forms associations with AM fungi. Both are common tree 

species in Central Europe, often co-occuring in mixed forests (Ellenberg & Leuschner 2010, 

McKay et al. 1999). Since the developmental stage of the mycorrhizal association might 

strongly impact the plant response, we conducted a long term experiment to ensure the 
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establishment of root external hyphae and mycorrhizal colonization in plant roots. Saplings 

were grown in conspecific and heterospecific pairs for two growing seasons. In order to 

analyse N and P uptake, we labelled the saplings for one, four or eight days with a nutrient 

solution containing 4 mM 15NO3
15NH4 and 3.7 MBq H3

33PO4. Subsequently we measured 15N, 

33P and total N and P in leaves, fine roots, vital root tips (ash) as well as in mycorrhizal and 

non-mycorrhizal root tips (beech)  

We hypothesised that (1) Nitrogen uptake of beech and ash differ in heterospecific and 

conspecific pairs in nutrient limited system (2) the high accumulation of P found in some EM 

species (Chapter 2) relate with a high accumulation for N. 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
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3.2 Material and Methods 

 

3.2.1 Plant material 

The plant material and procedures have been described in chapter 2 and are therefore here 

only briefly reported. Beech (Fagus sylvatica), and ash (Fraxinus excelsior) seeds were 

germinated in June 2007 (beech) and June 2009 (ash) (Forstsaatgut-Beratungsstelle Nds. FoA 

Oerrel, Germany), and grown in sand-peat mixture. In June 2010 saplings of comparable size 

were planted in conspecific (As-As, Be-Be) and heterospecific pairs (As-Be) in pots 

containing a mixture 4.5:4.5:1 fine sand (0.71-1.25 mm), coarse sand (0.4-0.8 mm) and peat.  

Saplings were grown together for two vegetation periods (June 2010 to August 2011) in a 

shaded and wind protected outdoor area. Plants were watered regularly and fertilized every 

second day from 01.10.2010 to 31.12.2010 with 15 ml modified nutrient solution based on 

nutrient solution of Matzner et al. (1982, in Brandes 1999), containing 0.4 mM NH4Cl, 

0.05mM NaSO4, 0.1 mM K2SO4, 0.06 mM MgSO4, 0.13 mM CaSO4, 0.03 mM KH2PO4, 

0.005 mM MnSO4 and with 0.005 mM of the following micronutrients: H3BO3, NaMoO4, 

ZnSO4, CuSO4 and Fe-EDTA respectively. The plants were watered with tap water from 

01.01.2011 to 19.08.2011. One week before labelling (19.08.2011), plants were moved to 

cabinet with constant temperature of 20°C, 16 h photoperiod, 90-110 mmol m-2 s-1 

photosynthetically active radiation (PAR) at plant height and 60% air humidity. Plants were 

supplied daily with 50 ml demineralised water per pot. 

3.2.2 Labelling and harvest 

The saplings were labelled on day 0 with 30 ml of the modified Matzners nutrient solution per 

pot, containing 3.78 mg N whereof 3.36 mg 15N and 0.93 mg P whereof 6.27 ng 33P per pot. 1, 

4 and 8 days after labelling, labelled and non-labelled plants from conspecific and 

heterospecific mixtures were harvested. The roots were briefly washed with tap water and 

separated in fine root (< 2 mm) and coarse root (> 2 mm) fractions. Subsequently, soil and 

plant fractions (fine roots, coarse roots, leaves, stem and branches) were weighted. Stem 

length, collar diameter and the number of leaves were recorded. Aliquots of fine roots were 

separated, put to plastic bags with moist tissue paper and stored at 5°C for mycorrhizal 

analyses. Subsequently fine roots, mycorrhizal samples, all other plant fractions and soil 

aliquots were dried at 60°C. 
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3.2.3 15N isotope analysis and N uptake rate 

15N labels of fine roots, leaves, dry fine roots, vital ash fine root tips of 1. and 2. order, EM 

fine root tips and non-mycorrhizal beech root tips were measured. Dry plant material was 

homogenized with a blender (Waring Commercial Blendor, Dynamics Corporation of 

America, New Hartford, Connecticut, USA) and ball mill (Type MM 2, Retsch, Haan, 

Germany). Due to the small sample sizes, ash fine root tips, non-mycorrhizal beech fine roots 

and EM root tips (one EM sample containing approximately 40-100 tips) were directly used. 2 

mg of the dry material were weighted into tin capsules and analyzed with a coupled system of 

elemental analyser (NA 1500, Carlo Erba, Mailand) and a mass spectrometer (EA NC2500 

Delta Plus and EA NC1108 ConFlo III Delta C, Finnigan MAT, Bremen, Germany) at the 

Centre for Stable Isotope Research and Analysis, University of Göttingen. The isotopic 

composition was calculated as  

𝛿𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 [‰] =  
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 − 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
∗ 1000 

 

where Rsample i and Rstandard represent the stabile isotope ratios (13C/12C and 15N/14N) of the 

sample i and standards. Results are shown in the δ notation in ‰ relative to the international 

standard PD Belemnite (PBD) for 13C and atmospheric nitrogen for 15N. 

Specific N uptake rate was calculated for fine roots, leaves and root tips according to Schulz 

et al. (2011) with the equation:  

µg N15  d–1 (g plant biomass dw)–1  = [
(a1 – a0) ∗  N%

𝑡
 ] ∗ 100  

whereby a1 and a0 represent the atom% 15N concentrations of the plant fractions in labelled 

plants and non-labelled control plants. The atom% is calculated as 

atom% C13 =  
C13

C13 + C12 ∗ 100 

 

and N% is the total N concentration and t is the time between 15N labelling and harvest date.  
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The enrichment of 15N in root tips was expressed as atom%excess 

APE
N15 = (atom%labelled−atom%unlabelled) ∗ 100 

 

3.2.4 ³³P Analysis  

The radiation of radioactive isotopes in mycorrhizal root tips was measured with a liquid 

scintillation analyzer (Tri-Carb 2800TR Counter, Perkin Elmer Life Sciences, Rodgau-

Jügesheim, Germany), as described previously in chapter 2. 

3.2.5 Mycorrhizal analysis 

Root tips were examined under a stereomicroscope (Leica M205 FA, Leica Microsystems, 

Wetzlar, Germany) and divided to vital and dry tips according to their colour and consistence. 

The EM mycorrhizal colonization was calculated, the EM root tips morphotyped, abundances 

recorded and the morphotypes photographed as described previously (chapter 2). For the 

analysis of the relative colonization rate of ash, three lactophenole-blue stained (Schmitz et al. 

1991) fine roots per sample were examined with light microscope (Axioplan with digital 

camera AxioCam incl. software Axiovision, Zeiss, Oberkochen, Germany) and AM 

colonization was calculated with the magnified intersection method described by McGonigle 

et al (1990).  

3.2.6 Plant growth 

The relative annual height growth (RAG) was calculated with the equation:  

RAG [%] = [
(h1 – h0)

h0
] ∗ 100 

 

whereby h0 = shoot height in August 2010 and h1 = shoot height in August 2011 at the time of 

the harvest.  

3.2.7 Data analysis 

The statistical analysis was performed with the software R (The R Foundation for Statistical 

Computing, http://www.r–project.org). Data were log-transformed to meet the assumptions of 

normality and variance homogeneity. We carried out analysis of variance (ANOVA) with 
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Tukeys HSD test. We used treatment (As-As, Be-Be, As-Be) and days of labelling (1, 4, and 

8) as main effects to examine signatures of 15N and 13C as well as total N and C 

concentrations of plant tissues. If the data were unsuitable for ANOVA after transformation, 

we used a non-parametric Kruskal-Wallis test and pairwise comparisons with Wilcoxon test 

to detect significant differences.  

Linear regression analyses were performed to evaluate the relationship of 15N signatures of 

fine roots and leavesas well as 15N concentrations of mycorrhizal and non-mycorrhizal fine 

root tips. The figures were generated with the software Origin 8.5G (Origin Lab Corp., 

Northampton, USA) and R 2.10.0 (Team 2008). 

 

3.3 Results 

 

3.3.1 Total carbon and nitrogen in fine roots and leaves 

Total N concentrations in ash and beech leaves were similar (Tab. 3.1). According to the 

foliar nutrient threshold values of 19-23 mg g-1 for beech (Mellert and Göttlein 2012) and 23-

28 mg g-1 for ash (Kopinga & van den Burg, 1995), both species were N deficient. Total N 

concentrations of fine roots displayed taxon related differences and were not influenced by the 

species identity of the neighbour.  

Leaf C concentration of beech was higher than in ash, but decreased in mixture. Generally the 

C concentrations of fine roots were species specific. The growth in mixture increased the C 

concentration of EM root tips of the most abundant EM species (EM species mean). Non-

mycorrhizal root tips of beech had the highest C concentrations.  
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Table 3.1: N and C concentration [mg g-1] in leaves, fine roots (FR) as well as in dry, vital 

non mycorrhizal (NM) and mycorrhizal (EM) root tips of beech and dry and vital 

mycorrhizal root tips of ash fine roots grown in monoculture (mono) and two species 

mixture (mix) 

Sample 
Species 

N [mg g-1] 

mono 

N [mg g-1] 

mix 

C [mg g-1] 

mono 

C [mg g-1] 

mix 

leaf F. sylvatica 11.91  ± 0.4a 11.55  ± 0.7a 470.63  ± 8.5a 458.81  ± 1.0c 

 

F. excelsior 11.14  ± 0.4a 10.69  ± 0.4a 435.03  ± 1.7b 431.07  ± 2.0b 

FR F. sylvatica 10.06  ± 0.2b 9.7  ± 0.3b 428.62  ± 7.4a 432.77  ± 8.8a 

 

F. excelsior 7.37  ± 0.2a 7.8  ± 0.2a 432.43  ± 4.9a 433.55  ± 7.3a 

NM root tip F. sylvatica 14.70 ± 1.0b 12.68 ± 0.5b 477.82 ± 3b 467.30 ± 18b 

vital root tip F. excelsior 8.68 ± 0.3a 8.92 ± 0.4a 449.64 ± 2a 447.21 ± 4a 

Dry root 

tips 
F. sylvatica 14.79 ± 0.5a 14.39 ± 0.8a 465.20 ± 4a 464.20 ± 5a 

 

F. excelsior 15.05 ± 1.0a 15.50 ± 0.8a 452.65 ± 17a 472.41 ± 3a 

Ectomycorrhizal samples         

EM sp. 

mean F. sylvatica 
16.20 ± 0.4a 17.46 ± 0.9a 439.63 ± 7a 447.06 ± 3b 

EM pool F. sylvatica 17.29 ± 0.4a 16.31 ± 0.4a 456.71 ± 4b 445.65 ± 2b 

Data indicates means (nmono= 13-46; nmix= 12-23, ± SE). Different letters indicate 

significant differences of element concentration of a tissue between tree species in different 

treatments (mono–mix) with P ≤ 0.05. Statistics were performed with Wilcoxon rank sum 

test following Kruskal-Wallis test.  

 

3.3.2 15N accumulation in leaves and fine roots 

The leaf 15N accumulation of beech and ash in monocultures displayed species differences 

(Fig. 3.1 A, Tab. 3.2). Leaf 15N accumulation of beech was significantly lower than in ash (P 

= 0.012). In addition, leaf 15N signature of beech did not increase remarkably during the 

labelling period. The signatures were however higher than in unlabelled controls (P < 0.001). 

Leaf 15N accumulation of ash decreased in mixture compared to monoculture. This resulted in 

similar leaf 15N labels of ash and beech in mixture (P = 0.877) at day 8. Fine root 15N 

accumulation of ash and beech did not differ significantly over the time (Fig. 3.1 B). 
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Figure 3.1: δ15N accumulation in leaves (A) and fine roots (B) of beech (squares) and ash 

(dots) grown in monoculture (open symbols) and two species mixtures (filled symbols) during 

8 days labelling.  

 

Table 3.2: Results of ANOVA for δ15N accumulation [‰] in leaves and fine roots of beech 

and ash grown in monoculture and two species mixtures during 8 days labelling 

ANOVA 15N leaves [‰] F P 

 Day 44.184 <0.001 *** 

Species 88.327 <0.001 *** 

Treatment 0.003 0.953 

 Day x Species 2.846 0.042 * 

Day x Treatment 0.921 0.434 

 Species x Treatment 4.221 0.043 * 

Day x Species x Treatment 0.394 0.758 

 

    ANOVA 15N fine roots [‰] F P 

 Day 627.444 <0.001 *** 

Species 2.634 0.626 

 Treatment 0.240 0.049 * 

Day x Species 2.718 0.506 

 Day x Treatment 0.784 0.133 

 Species x Treatment 2.298 0.302 

 Day x Species x Treatment 0.474 0.701 

  

Beech fine root 15N accumulation was generally higher in mixture than in monoculture. 

However the accumulation of 15N in fine roots differed not significantly between species. 

3.3.3 15N accumulation in fine roots tips 

In order to find out whether 15N uptake of fine root tips differs between trees grown in 

monoculture and mixture, we compared the mean 15N signatures of root tips (Fig. 3.2). The 
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highest 15N label was found in EM root tips. In monoculture NM beech fine root tips and vital 

ash fine root tips accumulated 15N similarly (P = 0.219). In mixture NM beech root tips had 

higher fine root 15N signatures than ash fine root tips (P = 0.039).  

In mycorrhizal beech root tips, the N accumulation tended to increase in mixture. In contrast, 

vital ash root tips and non-mycorrhizal (NM) beech root tips tended to accumulate less 15N in 

mixture. The lowest 15N signatures were recorded in dead root tips of beech. Passive 

absorption of 15N was measured to some extent in dead root tips of both tree species.  

 

 

ANOVA 
15N fine root tips [‰] F P 

 Tissue  21.8052 < 0.001 *** 

Species 0.814 0.368 

 Treatment 1.502 0.222 

 Tissue x Species  8.375 0.004 ** 

Tissue x Treatment 0.995 0.396 

 Species x Treatment  0.120 0.730 

 Tissue x Species x Treatment 0.083 0.774 

  

Figure 3.2: δ15N enrichment (‰) in dry, vital non mycorrhizal (NM), mycorrhizal root tips of 

most abundant ECM species (EM sp mean), mixture of all found EM (EM pool) of beech 

(Fas) and dry and vital mycorrhizal root tips of ash (Fre) fine roots grown in monoculture 

(mono) and two species mixture (mixture). Data indicates means (n = 46-16 ± SE). Tukeys 

HD test following one way ANOVA with P ≤ 0.05. 
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3.3.4 15N accumulation in EM species 

In order to determine taxon related differences in N uptake in EM fungi, 15N accumulation 

was measured in beech root tips colonized with different EM species. Because no significant 

differences between monocultures and mixtures occurred, the mean value of both treatments 

is shown. Some taxon related differences were found in the 15N uptake of EM species (Fig. 

3.3).  

 

Figure 3.3: 15N signatures of dry root tips (dry), of ash (Fre) and beech (Fas), vital root tips of 

ash (vital), non-mycorrhizal root tips (NM) of beech and in ectomycorrhizal species Paxillus 

involutus (P. inv), Tomentella castanea (T. cas), Sebacina sp. (Seb sp) and Tomentella badia 

(T. bad). Data indicates means (± SE). Letters indicate significant differences with P ≤ 0.05. 

Tukeys HD test following one way ANOVA.  

 

The most abundant EM species Tomentella castanea (68 ± 3 % colonized root tips) and 

Sebacina sp. (19 ± 3 % colonized root tips) were highly enriched with 15N. In contrast, the 15N 

label of Paxillus involutus remained low (4 ± 1 % colonized root tips). Its 15N signature was 

similar to non-mycorrhizal root tips and dry beech roots. This result demonstrates that 

whereas other EM sepcies accumulated N effectively, P. involutus barely accumulated 

nitrogen.  
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Despite the differences between 15N singatures of EM species, total N contents of EM species 

were relatively similar (Fig. 3.4). This result suggests that the higher 15N signatures found in 

Tomentella spp. and Sebacina sp. did not result from a generally higher N content of fungal 

structures.  

 

Figure 3.4: The relationship of 15N accumulation and total N concentration in ash (open 

symbols) and beech (filled symbols) fine roots (triangles), non-mycorrhizal root tips of beech 

(square), vital root tips of ash (square), dry root tips (rectangle) and root tips colonized with 

different EM species (stars). 

 

3.3.5 Relationship of 15N in mycorrhizal root tips and total fine root 15N  

In order to investigate whether high 15N accumulation in mycorrhizal root tips resulted in an 

increased allocation of 15N into fine roots, we determined the relationship between the 15N 

signatures in both plant fractions. 
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We found a low positive relationship of 15N signatures of EM root tips and mean fine root 15N 

signatures, but no correlation between non-mycorrhizal root tips and fine root 15N signatures 

(Fig. 3.5). These results indicate that mycorrhizal root tips might be more important for plant 

N uptake than non-mycorrhizal root tips. 

 

 

 

 

Figure 3.5: Relationship between recently accumulated 15N in fine roots and in EM fine root 

tips (filled dots, filled line) or NM root tips (open triangle).  

 

3.3.6 Relationship of 15N signatures in fine roots and leaves 

Subsequently we investigated whether a higher fine root 15N was related with an increased N 

accumulation in leaves. There was a positive relationship between 15N signatures of fine roots 

and leaves, with an exception of ash in mixture (Fig. 3.6 A, B). This result suggests that a 

higher 15N accumulation in fine roots might enhance the transport of N to leaves. In addition, 

partitioning of 15N in tissues of ash changed in the presence of beech.  
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Species Treatment y P R2 

F. sylcatica mono y=7.8+0.005x 0.002 0.334 

 

mix y=14.9+0.003x 0.003 0.406 

F. excelsior mono y=-484.0+0.2x 0.008 0.222 

 

mix y=-2.1+0.1x 0.235 0.030 

Figure 3.6: Relationship between recently accumulated 15N in fine roots and leaves 

of beech (A) and ash (B) grown in monoculture (filled dots, line) and mixture (open 

dots, dotted line). 

 

3.3.7 Short-term 15N and 33P supply in mycorrhizal and NM root tips 

Because EM species with high 33P accumulation were identified earlier (Chapter 2), we 

investigated whether high ³³P accumulation in these EM species was related with a high 

nitrogen accumulation. Because no significant differences were found between EM species 

from monocultures and mixtures, the EM samples from beech monocultures and mixtures 

were pooled together. The EM species could roughly been divided to three groups (Fig. 3.7).  

The first group contains EM species T. castanea, T. badia (n=2) and an unknown EM species 

MT8 (n=1), which had relative high accumulations of both recently acquired phosphorus (³³P) 

and 15N. The second group included species P. involutus and Rhizoscyphus sp., which do not 

accumulate significantly more 33P and 15N than vital or dry root tips. Thus, these species can 

be supposed to be relatively inactive for N and P uptake. The third group includes only one 

species, Sebacina sp. that had a relative high 15N accumulation, bur rather low 33P 

accumulation. These results indicate taxon related traits for N and P uptake within EM 

species.  

B 
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Figure 3.7: ³³P concentration (kBq g-1) and 15 N signatures (δ ‰) in ash (open symbols) and 

beech (filled symbols) root tips. Different symbols represent different fine root fractions: Dry 

root tips (squares), vital root tips of ash (open triangles), non-mycorrhizal root tips of beech 

(filled triangles) and beech root tips colonized with different EM species (stars). Root tips 

were divided in roots from monocultures (mono) and mixtures (mix), with an exception of 

EM root tips. Data indicateds means (± SE).  

N and P accumulations of non mycorrhizal beech fine root tips and with vital, mycorrhizal ash 

fine root tips decreased in mixture. However, the difference between N/P ratios of 

monoculture and mixture were higher in non-mycorrhizal root tips of beech (difference, 12.7) 

than in root tips of ash (difference, 0.2). These results indicate that in mixture with ash, non-

mycorrhizal beech root tips shift to P deficiency, whereas N and P supply of vital ash root tips 

was unaltered by the species identity of the neighbouring tree. 

 

3.3.8 Comparison of long-term and short-term N and P relations of fine roots and leaves  

The N and P accumulation in EM root tips might influence the relationship of N and P 

accumulation in other plant tissues. As an index of long-term N and P balance of the tree 
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species, N/P ratios of plant tissues were compared (Tab. 3.3). Subsequently the N/P ratios 

were compared with short-term 15N and 33P nutrition (Fig. 3.8 A, B).  

N/P ratios of beech leaves were 16.1 in monoculture and 15.6 in mixture. These ratios suggest 

normal to optimal N/P balance of beech (Tab. 3.3). In contrast, leaf N/P ratios of ash were 

lower than 14 (mono: 11.5, mix: 12.4) indicated that ash was relatively more limited by N 

than by P.  

Table 3.3: Balanced leaf N/P ratios of beech and ash based on leaf nitrogen and phosphorus 

threshold values suggested by Mellert & Göttlein (2012) and Kopinga & van den Burg (1995) 

Species 

optimal 

leaf N 

mg g-1 

optimal 

leaf P 

mg g-1 

relative 

N  

deficiency 

optimal 

N/P  

ratio 

relative 

P 

deficiency 

Reference 

F. sylvatica 19-23 1.2-1.9 <10 10-19 >19 Mellert & Göttlein (2012) 

F. excelsior 23-28 1.4-1.6 <14 14-20 >20 
Kopinga & van den Burg 

(1995) 

 

Total N and P concentrations of ash leaves decreased in mixture (Fig. 3.8 A). In addition, the 

short-term N and P accumulation indicates that the nutrient allocation to leaves was affected 

by the presence of beech (Fig. 3.8 B). 

 

Figure 3.8: Long-term N and P supply (A), and short-term 15N and 33P supply (B) in leaves 

(Le) and fine roots (FR) of beech (Be) and ash (As) grown in monocultures (mono) and two-

species mixtures (mix).  

In fact, the difference value of leaf 15N/33P ratios in mixture and monoculture was 22 times 

higher in ash than in beech. Fine root 15N and 33P signatures of ash indicate that in the 

presence of beech N deficiency tended to increase more than P deficiency (Fig. 10B). In 

contrast, the growth in mixture with ash increased both 15N and 33P accumulation of beech 

fine roots.   

B A 
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3.4 Discussion  

 

3.4.1 Nitrogen uptake of beech and ash in heterospecific and conspecific pairs  

In accordance to our first hypothesis, the N deficiency of ash increased in the presence of 

beech. This was true although ash had a higher fine root biomass than beech. Experimental 

data and field surveys show that root biomass of ash tends to predominate in ash-beech 

mixtures (Jacob et al. 2012, Rust & Savill 2000). The results of the present study demonstrate 

that a higher root biomass of ash does not necessary result in a competitive advantage for N 

acquisition. In fact, beech was capable to compete with ash for N, presumably due to its EM 

association. N uptake of beech was, contrary to expected, unaffected by species identity of the 

neighbouring tree.  

15N in fine roots and leaves tended to have a positive relationship. This result indicates that 

higher N uptake results in an increased leaf N accumulation. Only exception was ash in 

conspecific mixture. At eighth labelling day, leaf 15N signatures of ash decreased in mixture. 

In contrast, 15N accumulation increased in fine roots. These results might indicate that over 

the time N uptake of ash decreased in the presence of beech. Since the uptake kinetics was not 

measured in this study, this is only a speculation. The conclusions of van der Heijden et al. 

(200I) support our suggestion. Van der Heijden et al. (2001) demonstrated that in nutrient 

poor conditions, nutrient uptake of Salix repens increased faster in plants inoculated with AM 

than in plants with EM (van der Heijden et al. 2001). However, in long term plants benefitted 

more from EM association (van der Heijden et al. 2001). This long-term beneft of EM 

association may partially explain the well-known dominance of beech in mixed forests from 

the middle of the biostatic phase of forest development (Emborg 1998).  

Total leaf N concentration of ash was higher than that of beech. Ash also accumulated more 

15N in leaves than beech. These differences occurred irrespective to the growth in mono-

culture or in two species mixture, and can therefore be considered as taxon related 

characteristics. The higher N accumulation in leaves might result from the reported higher N 

uptake rate of ash compared with beech (Schulz et al. 2011). It has been suggested that high 

nutrient uptake kinetics might not be a competitive advantage in a nutrient depleted ecosystem 

(Aerts 1999). High nutrient content of leafs and high nutrient uptake rates are presumably 
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related to adaptation to nutrient rich ecosystems (Aerts 1999, Reich et al. 2003). Therefore, 

we suggest that ash is less adapted to nutrient depleted conditions than beech.  

According to our knowledge, this was the first time that the N/P ratios of two competing tree 

species with different mycorrhizal types were investigated experimentally. N/P ratios reflect 

species specific differences and intraspecific responses to N and P supply (Güsewell 2004). 

Leaf N/P ratios demonstrate that contrary to ash, beech was able to maintain a balanced leaf 

N/P ratio in nutrient limited conditions. This might indicate that beech used N and P resources 

more economical than ash. N/P ratios (Fig. 11A) and relationship of short-term accumulation 

of 15N and 33P by ash suggest that ash was generally more limited by N than by P. However, 

both N and P deficiency of ash increased in mixture with beech. These results indicate that no 

clear niche differentiation between ash and beech occurred. Since tree interspecific 

interactions might shift with stand age (Cavard et al. 2011), adult trees in field could respond 

differently in comparable soil conditions.  

3.4.2 The role of EM species in plant N and P uptake  

EM association enhanced remarkably beech N and P supply. The comparison of N/P ratios of 

NM beech root tips in heterospecific and conspecific mixtures demonstrated that in the 

presence of ash non-mycorrhizal beech fine root tips shift to P deficiency. These results 

suggest that when the mycorrhizal colonization of beech decreases, it shifts to P deficiency. 

These results support the theory suggested by (Aerts 2002) that the interspecific competition 

with AM associated plant drives EM plant in non-mycorrhizal stage to P deficiency. In other 

words: the outcome of plant competition for N and P is driven by their mycorrhizal 

association.  

The differences in N accumulation between EM species were species specific. EM with 

highest relative abundances; Tomentella spp., and Sebacina sp. had the highest 15N signatures. 

Tomentella species are frequently found in EM root tips and in soil (Danielsen et al. 2012, 

Horton & Bruns 2001, Kjøller 2006, Pena et al. 2010). The reason for the dominance of 

Tomentella species is not known, but they are demonstrated as good competitors in root 

colonisation (Kennedy et al. 2007), which might have important ecological functions, such as 

efficient nutrient acquisition in N limited conditions (Horton & Bruns 2001, Lilleskov et al. 

2002).  

In contrast to the most abundant EM fungi in our experiment, P. involutus barely accumulated 

15N. This was surprising, since it is well known species from N uptake experiments 
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(Arnebrant 1994, Kytöviita 2005, Kytöviita et al. 2001, Morel et al. 2006). We assume that 

the growth conditions might have affected nutrient uptake efficiency of P. involutus. This is 

supported by a survey of EM species abundance in forest sites with differing gradients of N 

deposition (Lilleskov et al. 2002). Dark mantled Tomentella species, similar to those abundant 

in our experiment, were suggested to be adapted to N uptake in N-poor soils; whereas  

P. involutus was suggested to be specialized to high N conditions (Lilleskov et al. 2002).  

Consistent to our second hypothesis, species that were identified as high accumulative for P 

had often high accumulation of N (Tomentella spp. and unknown EM MT8). The second 

group of EM species (Paxillus involutus and Rhizoscyphus sp) had similar N and P ratios than 

non-mycorrhizal and dead fine root tips. These EM species did presumably not actively 

accumulate N or P. As a third variation, Sebacina sp. had a high N and an inter-mediate P 

accumulation. These differences in N and P acquisition suggest functional diversity of EM 

species. Nygren et al. (2008) and Nygren and Rosling (2009) showed that although many EM 

species share similar pools of genes for nitrate reductase (nar) and phosphomonoesterases, the 

growth of EM species differ significantly on supplied N and P sources. The authors infered 

continuously distributed traits to use different nutrient sources among EM species. Our results 

support this hypothesis.   
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3.5 Conclusions 

We investigated N and P acquisition in beech and ash in nutrient limited conditions with 

emphasis on roles of different mycorrhizal species on plant N and P acquisition. 

Both tree species related effects on N accumulation and indications of interspecific 

competition for N were found. The differences in total N contents of fine roots, as well as the 

transport of recently acquired N to leaves were tree species related.  

The shift in N/P relation of ash fine roots and leaves indicated that N and P deficiency of ash 

increased in mixture with beech. Despite of long-term nutrient limitation, beech leaf N/P 

ratios remained balanced. 

These results are particularly important, since they indicate that beech is better adapted to 

nutrient limited conditions than ash. We believe that this might be an important aspect to 

consider by establishing mixed forests stands with beech and ash saplings on nutrient limited 

sites.  

The N and P relations differed greatly within EM species, indicating taxon related traits for N 

and P uptake. These results suggest that the species composition of root colonizing fungi is of 

great importance for nutrient acquisition of the host plant.  

In conclusion, competition, rather than facilitation, for N and P occurred between beech and 

ash saplings in mixture. EM fungi contributed significantly to N and P acquisition of beech.  
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4.1 Introduction  

Recently, there has been growing awareness of the relevance of ectomycorrhizal fungi (EM) 

to belowground food webs. Ectomycorrhiza play a key role in plant nutrient uptake and plant 

defence, but they also serve as an important channel of plant mediated carbon to soil food web 

(Pollierer et al. 2012). In temperate forests, ectomycorrhizal fungi contribute to 80% of the 

host plant nitrogen (van der Heijden et al. 2008). Up to 30% of the total photoassimilate 

carbon is transferred to the fungal symbiosis partner (Smith & Read 1997) and partitioned to 

three different pools: fungal biomass, exudation and respiration. Well reported is the high EM 

biomass in forest soils. The fungal mycelium comprises up to 70 mg g–1 soil (Vinichuk & 

Johanson 2003) and Wallander et al. (2001, 2004) estimated total amount of EM mycelium 

including EM mantles up to 700–900 kg·ha–1 (Wallander et al. 2004, Wallander et al. 2001), 

others suggest approximately 30% of the microbial biomass and 80% of the fungal biomass in 

boreal forest soils to be ectomycorrhizal mycelium (Högberg & Högberg 2002, Wallander et 

al. 2003, Wallander et al. 2001). 

The metabolic activities among ectomycorrhizal tips differ largely. (Jany et al. 2003) mea-

sured with a microradiorespirometry assay respiration rates between 7 and 34 nmol O2 g
−1s−1 

in ectomycorrhizal root tips of different EM species. High variability of respiration rates 

between single ectomycorrhizal root tips has also been found (Jany et al. 2003, Trocha et al. 

2010). 

Exudation is considered as an important component of EM’s overall C budget (Fransson & 

Johansson 2010, Godbold et al. 2006, Högberg & Högberg 2002). Exudation serves the 

nutrient uptake by mineral weathering (Landeweert et al. 2001), mineralisation of organic 

polymers (Durall et al. 1994, Read & Perez-Moreno 2003), and is also required for the 

nutrient uptake process, metal detoxification and antimicrobial defence (Bais et al. 2006). The 

range of produced substances differs between EM species. Exudates consist mainly of low 

molecular weight organic acids, saccharides, amino acids and peptides but ectomycorrhizal 

root tips also release fatty acids, polymeric carbohydrates and different enzymes into the 

rhizosphere (Courty et al. 2005, Gadd 2007). Hence, EM hyphae presumably contribute in a 

considerable manner to the nutrition of soil animals and carbon cycling (Bonkowski et al. 

2009, Landeweert et al. 2001, Langley et al. 2006). 

Despite the increasing interest on connecting mycorrhizal symbiosis with belowground 

ecosystem functions, our knowledge about the relationship of EM and soil animals is limited. 
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Recent studies have shown that the number of soil animals depending on carbon from EM 

fungi has been underestimated (Pollierer et al. 2007, Pollierer et al. 2009). Spore findings of 

EM in guts of soil animals suggest that diverse species feed on EM and serve the spore 

dispersal of belowground fruiting EM (Lilleskov & Bruns 2005). Feeding experiments with 

axenic fungal cultures have shown soil fauna species to feed selectively on fungi (Hiol et al. 

1994, Scheu & Simmerling 2004). However, due to the differences in EM metabolism in 

symbiotic stage and the large variety of EM species in natural communities (Lang et al. 2011) 

feeding choice experiments can hardly reflect natural behaviour of EM feeding soil animals.  

13C and 15N tracing is a useful method to investigate nutrient fluxes and trophic interactions. 

Feeding strategies and trophic relations of soil animals have been investigated by comparing 

both natural and experimentally enriched abundances of stable isotopes 13C and 15N in soil 

food web (Högberg et al. 2010, Pollierer et al. 2009, Scheu & Falca 2000, Wardle et al. 2011). 

Application of stable isotope tracers allows a time–integrated detection of trophic pathways 

for nutrients derived from specific sources. The majority of early fungal studies with stable 

isotopes was limited to measurements on aboveground fruit bodies (Gebauer & Dietrich 1993, 

Gebauer & Taylor 1999, Högberg et al. 1999). Meanwhile the focus of experiments is 

increasingly on belowground trophic interactions. Högberg et al. (2010) showed that 13C 

levels of Collembola species increased within days after a CO2 labelling (Högberg et al. 

2010). Pollierer et al. (2007) identified different diets of soil arthropods such as leaf litter, root 

derived and soil carbon respectively. Though recent research using stable tracers has shown 

plant recent photoassimilates as one of the most important carbon source of soil animals, it 

remains unclear if mycorrhizal structures were the primarly diet. Numerous soil animals are 

considered as fungivorous (Pollierer et al. 2007), often without paying attention as to whether 

these fungi are mycorrhizal or saprotrophic. Moreover, the majority of experiments have been 

performed in arbuscular mycorrhiza comprising grassland ecosystems (Graham 2001, Hempel 

et al. 2009, Hoffmann et al. 2009, Koricheva et al. 2009). Because of the vast importance of 

EM for plant fitness, better understanding of the trophic interactions of soil animals and EM is 

of great relevance. Since previous research has pointed out the ability of mycorrhizal fungi to 

interact with and influence a number of predator species of plant feeding species (Bonkowski 

et al. 2009, Hempel et al. 2009, Hoffmann et al. 2011) the predator arthropods with a trophic 

link to ectomycorrhizas are of special interest.  
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The aim of this study was to determine carbon and nitrogen fluxes between beech trees 

(Fagus sylvatica), its mycorrhizal fungi and soil arthropods. We used 13C enriched CO2 and 

15N labeled NO3NH4 nutrient solution to label beech seedlings. Intact soil cores ensured vital 

beech plants and associated mycorrhiza as well as an undisturbed soil animal community. To 

analyse carbon and nitrogen allocation processes, we measured 13C and 15N label in leaves, 

stem, fine roots, mycorrhizal root tips, in addition to fine roots directly above the mycorrhizal 

root tip and in soil animals.  

We hypothetized that (a) EM–colonized root tips are strong sinks for both C and N, (b) the 

accumulation of 13C and 15N in root EM tips is directly related to the exchange of C and N 

with the attached root and (c) ectomycorrhiza are an attractive nutrient source for a number of 

soil arthropod species. 

 

4.2 Materials and Methods 

4.2.1 Plant material and experimental setup  

The sampling sites were deciduous forest stands in two parts (Thiemsburg and Lindig) of 

National Park Hainich, Thuringia, Germany (51°05′28′′N, 10°31′24′′E). The forest was 

unmanaged for at least four decades and is characterised by having a total annual precipitation 

of 600–670 mm and an annual mean temperature of 7.5–8.0 °C (Leuschner et al. 2009). 

Naturally regenerated seedlings of Fagus sylvatica with a height of approximately 40 cm were 

extracted within intact soil cores, transported to a greenhouse and placed in pots with diameter 

of 25 cm, a height of 45 cm and a drainage 

A total of nine trees were exposed to 13CO2 enriched air (1018 ± 340 ppm, 13CO2, EURISO-

TOP GmbH, Saarbrücken, Germany) for one growing season (24.04- 05.10.09) at an average 

temperature of 22.8 °C (± 2.8) and humidity of 71.8% (± 13). Contemporaneously, the plants 

were irrigated daily with a Hoagland–based nutrient solution containing 0.6 mM CaCl2, 0.4 

mM MgSO4, 0.01 mM FeCl3, 0.4 mM K3PO4, 1.8 µM MnSO4, 0.064 µM CuCl, 0.15 µM 

ZnCl2, 0.1 µM MoO3, 0.01 mM H3BO3, 5 mM NO3NH4 and 0.1 mM 15NO3
15NH4 (Euriso–top, 

Saint–Aubin, Essonne, France). The soil moisture was kept at 30% during the experiment. 
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4.2.2 Plant harvest and soil collection 

At the end of the experimental treatment (05.10.09), leaf and aboveground plant mass were 

weighted. The soil columns were divided into two depth fractions: 0–5 cm corresponding to 

the A1 horizon, and 5– 21 cm corresponding to the top of the A2 horizon. Soil fauna were 

trapped in the litter and upper soil layers. The roots in the lower soil layer (below 5 cm depth) 

were immediately washed with hand warm tap water, divided into coarse (> 2 mm) and fine 

root fractions and weighed. After removal of trapped animals the roots in the upper horizon 

were also washed and weighed. Both root fractions were stored at 4 °C in moist tissue paper 

in plastic bags for mycorrhizal analysis. Leaf morphology and area were analysed from flat–

bed scanner images usingWinFolia 2005a,b (Régent Instruments Inc., Québec, QC, Canada). 

Subsequently, the plant material was dried for 4 days at 70 °C and the dry masses of all plant 

fractions were recorded. Soil and leaf litter were also collected, dried and used for further 

analyses. 

4.2.3 Soil animal harvest and identification 

Soil fauna were collected from the entire upper soil layer by using a heat gradient extractor 

(Kempson 1963), driven out into glycol and stored in 70% EtOH. Animals were counted and 

sorted to group level. Lumbricids, Araneidae, Isopoda, Chilopoda (Strigamia accuminata, 

Lithobiidae and Geophilidae), Diplopoda, Oribatida and Collembolans were determined to 

species level. 

4.2.4 Ectomycorrhizal identification and quantification 

Fine roots of nine beech trees were examined with a stereomicroscope (Leica M205 FA, Leica 

Microsystems, Wetzlar, Germany). To determine EM colonization of the root tips, five fine 

root fragments were randomly selected in each sample and 500 vital root tips were counted. 

The percentage of EM colonization was calculated as: EM root tips/(EM root tips + non 

mycorrhizal vital root tips)x100. 

Mycorrhizal roots tips were classified using the previously described (Druebert et al. 2009, 

Lang et al. 2011). morphotyping system developed by Agerer (1987–2006). The abundance of 

each morphotype in each subsample was recorded, the morphotypes photographed (Leica 

DFC420 C, Leica Microsystems, Wetzlar, Germany) and collected for chemical and molecular 

analyses.  
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4.2.5 Molecular identification of the EM species 

DNA was extracted from 10–40 mycorrhizal root tips per sample using innuPREP Plant DNA 

Kit (Analytik Jena AG, AJ Innuscreen GmbH, Jena, Germany) according to the 

manufacturer’s instructions, with the exception that lysis buffer and protease were added to 

the sample before the homogenisation with a push rod. DNA was resuspended in 100 µl 

elution solution. A polymerase chain reaction (PCR) product of the complete region of the 

internal transcribed spacer (ITS) region was amplified with the primer pair ITS1f 5´–

CTTGGTCATTTAGAGGAAGTAA–3´and ITS4 5´– TCCTCCGCTTATTGATATGC –3´ 

(White et al., 1990; Gardes and Bruns, 1993). The total volume of the PCR reaction was 25 

µl, containing 10 x PCR buffer with (NH4)2SO4 (Fermentas, St–Leon–Rot, Germany), 2 mM 

MgCl2, 200 µM of each dNTP, 0.5 µM each primer and 0.5 U Taq–polymerase (Fermentas, 

St–Leon–Rot, Germany). The PCR was performed in a Mastercycler Gradient (Eppendorf, 

Hamburg, Germany) with the following settings: initial denaturation at 95 °C for 60 s, 

denaturation at 94°C for 30 s, annealing at 55 °C for 30 s and elongation at 72 °C for 60 s. 

This was repeated for 35 cycles before the final elongation at 72 °C for 10 min. If the 

subsequent gel analysis revealed more than one PCR product the PCR products were cloned 

in E. coli TOP19 (Invitrogen, Carlsbad, California, USA).  

The ligation and transformation of the ITS–PCR products was done with a pGEM®–T and 

pGEM®–T easy Vector system kit following the manufacter´s instructions (Promega 

Corporation, Madison, USA), with the exception that the litigation product was incubated 1 h 

at 16°C. For the transformation Luria Bertani–medium (10g/l tryptone, 5g/l yeast extract, 

10g/l NaCl, 15g/l agar and 1l demineralised H2O) with 100µg/ml Ampicillin, 200 mg/ml 

IPTG, and 20 mg/ml X–Gal in DMF was prepared. The PCR products were sequenced at the 

Department of Forest Genetics and Forest Tree Breeding, University of Göttingen with an 

ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, USA). The sequences 

were edited with Staden Package (4.10, http://staden.sourceforge.net) and multiple sequence 

alignments were made with Clustal W (http://align.genome.jp). For the fungal species 

identification, sequences were compared with NCBI Genbank (www.ncbi.nlm.nih.gov) and 

UNITE (Kõljalg et al. 2005) databases. If the score was higher than 700 bits and the 

homology more than 97% the species suggested in gene bank, preferably UNITE was used. If 

the score was 600–700, homology 95–97% and both databases suggested the same genus, the 

species was recorded as an unknown species of the suggested genus. The sequences with 
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lower scores or a database sequence identity limited to family level were recorded on the basis 

of the results of a phylogenetic analysis or remained as unknown mycorrhizal species. 

A phylogenetic tree of the EM species based on an alignment of ITS 1 and 2 and 2.5 S 

sequences with a total alignment length of 659 bases was constructed using SeaView (4.2.12, 

http://pbil.univ-lyon1.fr/software/seaview.html) program (Gouy et al. 2010). A Maximum 

Likelihood phylogram using GTR model aLRT was created with the following settings: 

invariable sites were ignored, optimized across site rate variation with 4 rate categories, NNI 

tree searching operation, BioN starting tree option, optimized tree topology and 5 random 

sites. Bootstrap values were calculated with 100 replicates. 

4.2.6 Chemical analysis: 13C and 15N labeling 

Dry plant tissues (leaf, wood, coarse root, fine root) as well as aliquots of soil from upper soil 

layer and leaf litter were milled with a ball mill (Type MM 2, Retsch, Haan, Germany), dried 

for another 24 h at 70°C and kept in an exicator. Aliquots of the samples were weighed into 

tin capsules and the of 15N/14N and 13C/12C were analyzed with an isotope ratio mass 

spectrometer IRMS (Delta C, Finnigan MAT, Bremen, Germany) at the Centre for Stable 

Isotope Research and Analysis, University of Göttingen. All mycorrhizal species and 3–10 

mm long fine root sections next to the mycorrhizal mantle, directly connected with a given 

EM were analyzed after weighting ca 1 mg directly into tin capsules.  

The isotopic composition of plant tissues, mycorrhiza, soil animals, soil and above ground 

litter was calculated as 

𝛿𝑠𝑎𝑚𝑝𝑙𝑒 𝑖[‰] =  
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 − 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
∗ 1000 

where Rsample i and Rstandard represent the 13C/12C and 15N/14N ratios of the sample i and  

standards. Results are shown in the δ notation in ‰ relative to the international standard 

Vienna Pee Dee belemnite (V-PDB) and 28/29 ratio.  

We used the isotopic label of the fine roots as a reference to remove the background 

variability of the 13C label.  

∆ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 [‰] = 𝛿𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 −  𝛿𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡𝑠 𝑖 

Additionally the atom fraction expressed as percentages (atom %) was used to analyse the 15N 

and 13C levels of plant and mycorrhizal tissues.  
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4.2.7 Statistical analysis 

The statistical computing was carried out with R software v.2.10.0 (The R Foundation for 

Statistical Computing, http://www.r–project.org). All data were tested for normal distribution 

using the Shapiro–Wilk test and for homogeneity of variances with the Levene test. To 

compare the carbon and nitrogen contents and enrichments in different plant fractions, 

mycorrhizal root tips, soil, litter and soil fauna, a linear model was used. Studentized residuals 

were detected with the Bonferroni Outlier test. Subsequently, a non–parametric Kruskal–

Wallis test was used to test significant differences between means followed by multiple 

comparisons of the data with the package nparcomp based on Pearson's product–moment 

correlation and non–parametric Behrens–Fischer problem (Brunner and Munzel, 2000). Mean 

± SE were calculated using original data. Spearman´s rank correlation was used to test the 

relation of δ13C to δ15N label in EM species and their corresponding fine roots, the relation of 

leaf area to δ13C and δ15N label in EM species. Regression analysis was used to test the 

relation of δ13C and δ15N label in mycorrhizal root tips (EM) and mycorrhizal root tip 

corresponding fine roots (RM). In all analyses, differences were considered significant when 

P ≤ 0.05. 

 

4.3 Results  

4.3.1 Carbon and nitrogen allocation between plant tissues and soil organisms 

17 different EM and 29 invertebrates were recorded (Supplement Table S1, S2). The vital root 

tips were on average 96% (± 3%) colonised with EM. 13 EM species were identified through 

ITS sequence data and phylogenetic analysis (Supplement Table S1, Supplement Fig. S2). 

Three of these were ascomycota (Cenococcum geophilum, Peziza succosa and the unknown 

ascomycet MT 17); the remaining species belonged to the basidiomyceta.  

The δ 15N ratio was highest in EM colonized root tips and decreased along the uptake and 

transport route from roots to leaves (Fig. 4.1 A). The δ 15N label of the EM root tips (P= 

0.003) and the fine roots associated with the mycorrhizal root tips were significantly higher (P 

≤ 0.001) than that of the other plant fractions (Fig. 4.1) or non-labelled beech fine roots in 

field conditions (7.21 ± 2 ‰) . The lowest δ15N signatures were found in soil (252 ± 172 ‰) 

and leaf litter (607 ± 540 ‰), both enriched compared to field conditions, where litter layer 

δ15N values of approximately –3.7 ‰ in beech dominated mixed forests  have been recorded 
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(Scheu & Falca 2000). The δ15N ratio of soil fauna was higher than that of soil (661 ± 553 

‰), but clearly below that of plant tissues and their associated EM (Fig. 4.1 A).  

The stable isotope δ13C ratio showed an increase from distant plant fractions such as the stem 

to the mycorrhizal root tip. Furthermore, the δ13C label was significantly higher (P ≤ 0.001) in 

the mycorrhizal root tips than in any other fraction (Fig 4.1 B). δ13C label in soil fauna was 

higher than in soil or leaf litter (Fig 4.1 B), whose labels were low (–23 ± 3 ‰).  

4.3.2 EM mediated N uptake and transfer in relation to carbon incorporation 

A regression analysis showed a strong positive relationship between δ15N label in the 

mycorrhizal root tips and mycorrhiza–attached fine roots (y = 0.005 + 0.46x, r = 0.630 P = 

0.0001), whereas no relationship was detected between the δ13C ratio in the mycorrhizal root 

tips and mycorrhiza attached fine roots (y = 65.5+0.30x, r = 0.182, P = 0.088).  

  



100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: δ15N (A) and δ13C (B) in leaves (LE), stem (ST), coarse roots (CR), fine roots 

(FR), fine roots attached to mycorrhiza (MR), ectomycorrhizal root tips (EM), soil (SO), leaf 

litter (LL) and soil fauna (SF). The boxes indicate the 25th and 75th percentile, the horizontal 

line the 50th percentile and the whiskers within the 1.5 interquartile range.  
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Figure 4.2: Mycorrhizal rot tip (red square) and fine root 

adjacent to mycorrhizal root tip (green square) 

 

Since the acquisition of 15N and 13C may also be affected by the concentration of N and C in 

the tissues, the specific enrichment 15N (atom%) and 13C (atom%) was analysed (Fig. 4.2, 

4.3). The 15N enrichment in root adjacent to EM was strongly related to the 15N label of the 

EM (Fig 4.3 A, y = 1.44 + 0.54x, r = 0.750, P = 7.01x10–6); whereas the 13C enrichment in 

EM was not related to the 13C enrichment in adjacent roots (Fig 4.3 B, y = 0.84 + 0.30 x, r = 

0.184, P = 0.086).  

 

 

 

 

 

 

 

Figure 4.3: Relation between specific 15N (A) and 13C (B) signatures in ectomycorrhizal root 

tips (EM) and their corresponding fine roots (MR). 

The 15N enrichment in EM was not related to its 13C enrichment (y = 10201.23 + 19.53x, r = 

0.006, P = 0.673). Similarly, no relationship was found between the 15N enrichment in 

mycorrhiza–attached roots and the 13C enrichment in these roots (y = 75.51 + 0.002x, r = 

0.150, P = 0.092).  
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We found a negative correlation (P = 0.03, rs=–0.46) between the 13C enrichment in the 

mycorrhizal root tips and the specific leaf area (SLA). Also a correlation was found between 

15N enrichment of the mycorrhizal root tips and specific leaf area (P =0.05, rs= 0.42). 

However, this relation could not be followed up within one fungal species. 

4.3.3 Trophic relations of soil fauna, beech and ectomycorrhizal fungi 

EM root tips formed a group with the strongest increases in both δ15N and δ13C compared to 

roots and invertebrates (Fig. 4.4). The highest δ13C label compared to fine roots was found in 

predators (–1.7 ± 29 ‰) followed by some species of decomposers soil animal taxa (–54.0 ± 

36 ‰). Unexpected, putative fungivore species did have rather low 13C label (–0.1 ± 29 ‰) 

(Fig. 4.4). Eight of the 29 invertebrate species displayed δ13C enrichment compared to fine 

roots (Fig 4.4). These species included three species of the genus Lithobius (L. 

erythrocephalus 51.98 ‰, L. curtipes 27.22 ‰, and L. forficatus 19.51 ‰), which are 

predators. Other predators had significantly lower values (–31.98 ± 29.23 ‰). This result 

indicates that Lithobius species have a different diet than the other analysed predators. A 

wood louse Trichoniscus pusillus had a δ13C level of 50.154 ‰ highly related to 

ectomycorrhizas.  

Mesofauna species with the highest ∆13C ratios were the oribatida mite Hypochthonius luteus 

(4.44 ‰) and two collembolan species (Lepidocyrtus cyaneus –17.52 ± 35.20 ‰ and 

Sinella/Pseudosinella –10.99 ‰). Endogeic earthworms (Apporectodea rosea, Octolasion 

tyrtaeum, 1.59 ± 0.18) had δ13C ratios corresponding to fine roots. Also Lumbricus rubellus 

had a high ∆13C ratio (19.0 ‰). The ratios of these three earthworms were higher than the 

values for the known anecic earthworm Lumbricus terrestris (–37.34 ± 26 ‰) and compost 

earthworms E. octaedra and E. tetraedra (–57.70 ± 17.02 ‰).  
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Figure 4.4: Enrichment of δ15N and δ13C through the food web. δ13C signatures were 

normalized for fine roots. 

 

Only one of the seven analysed oribatida mites, H. luteus had a δ 13C label higher than the fine 

roots (+ 4.44 ‰). The putative fungivorous oribatida species; Nothrus palustris, Damaeidae 

and myriapoda Craspedosoma sp. (–54.5 ± 33 ‰) did not show mycorrhiza–related δ13C 

labels. Other oribatida mites of as yet unknown trophic level, i.e., Hermaniella sp. and 

Xenillus sp. had ratios near to known detritus–feeding oribatida (–69.9 ± 0.1 ‰). This would 

indicate that these species are not exclusive mycorrhiza feeders, but rather detritivores.  
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4.4 Discussion 

4.4.1 The experimental setup maintain a fungal beech EM community  

Experiments based on interactions between mycorrhiza and root–feeding soil fauna are often 

done in laboratory conditions with sterilised soil and controlled inoculation of fungi and 

insects, or in the field using fungicides. Both methods can have unwanted effects on the 

system leading to bias in the experimental setup (Koricheva et al. 2009). Furthermore 

pronounced host–fungal preferences exist (Lang et al. 2011), and the effects of the symbiosis 

can differ between fungal strains (Nygren & Rosling 2009). In spite of the limitations of in 

vitro experiments, Johnson et al. 2012 emphasized the need of approaches under controlled 

conditions for resolving ecological questions.  

In order to maintain a natural rhizosphere we used naturally regenerated seedlings from a 

forest that were kept in intact soil cores with their natural soil community. However, elevated 

CO2 used could have lead to shifts in the carbon allocation process, mycorrhizal biomass and 

community structure (Fransson 2012, Parrent & Vilgalys 2009, Wiemken et al. 2001). 

Regardless of this, five months after the initiation of our greenhouse experiment mycorrhizal 

colonisation of the plants was comparable to that found in natural forests (Lang et al. 2011). 

C. geophilum, L. subdulcis and Tomentella spp. were the most frequently recorded species on 

beech roots. These and other species found have been reported as EM of beech trees in 

Hainich national park (Lang & Polle 2011) and therefore we assume that the EM community 

was similar to the natural stand of the beech trees. 

 

4.4.2 High nitrogen accumulation in ectomycorrhizal fungi 

We found an increasing shift of δ13C and δ15N from plants to fine roots attached to 

mycorrhiza. This demonstrates that a considerable part of the nitrogen taken up by the EM is 

directly transported to the plant and not fixed in the hyphal structures. On the other hand, EM 

is a strong sink of plant–mediated carbon. Similar to Högberg et al. (2008), we found highly 

heterogeneous 13C levels in EM root tips. The carbon productivity of plants has been shown to 

depend, amongst other factors, on specific leaf area (McMurtrie & Dewar 2011). In our 

experiment 13C enrichment in the mycorrhizal root tips was negatively related to specific leaf 

area. At high nutrient availability plant growth is rather carbon–limited; therefore it has been 
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suggested, that bigger plants might have less carbon available for investment to mycorrhizas 

(Yanai et al. 1995). In contrast, the 15N labels of the mycorrhizal root tips were positively 

correlated to SLA. 

No correlation between δ15N and δ13C enrichment of the EM was found. This result is in 

disagreement with Högberg et al. (2008), who found a positive correlation of N and C labels 

in ECM root tip. A longer labelling period and a higher label of our experiment compared to 

the experiment of Högberg et al. (2008) might influence the relation of nitrogen and carbon in 

mycorrhizal root tips differently. Furthermore, our results indicate that the plant leaf area or 

other factors affect plant carbon allocation and nitrogen uptake. For instance the patchiness of 

the available nitrogen in the soil can contribute to the differences in the nitrogen concentration 

of the mycorrhizal root tips and in carbon allocation processes (Corrêa et al. 2011, Kytöviita 

2005, Rosling, Lindahl & Finlay, Wallander et al. 2002). In our study, however, the plants 

were regularly irrigated with 15N fertilizer, and we therefore assume no high patchiness of the 

15N label.  

The δ13C enrichment differed between EM species up to 50 %. Previously we demonstrated 

that plant productivity and the amount of plant mediated carbon affect the carbon allocation to 

the mycorrhizal root tips (Druebert et al. 2009). Ecological theories hold that carbon 

investment is higher to more beneficial fungal associates (Bruns et al. 2002, Corrêa et al. 

2008), however, studies with contrasting results exist. Plant belowground carbon allocation 

was showed rather to relate with soil nitrogen availability than with actual nitrogen gain 

through mycorrhiza. Also indications that host plants continue to invest carbon to mycorrhiza 

by decreasing nitrogen supply has been found (Corrêa et al. 2011, Corrêa et al. 2008). The 

individual root tips have been suggested to receive different amounts of carbon depending on 

mycorrhizal species or intra specific differences between fungi (Johnson et al. 2012). In our 

experiment, low numbers of individual species precluded statistical analysis of this 

phenomenon. 

Nevertheless, we presume that EM species differ in their ability to allocate nitrogen to the 

host. If plants provide mycorrhiza with more efficient nitrogen supply with increased carbon 

allocation we would expect a direct correlation of carbon and nitrogen labels found in 

mycorrhizal root tips. In our experiment however nitrogen and carbon allocation were not 

directly related. This leads to the conclusion that plant carbon allocation did not depend on 

nitrogen label of mycorrhizal root tips or vice versa. However, the fact that nitrogen and 
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carbon allocation were not directly related could indicate that EM with lower nitrogen 

accumulation allocate other resources such as other nutrient elements or water (Rosling, 

Lindahl & Finlaya, Rosling, Lindahl, Taylor b, Wallander et al. 2002).  

4.4.3 EMs have a high nutritional value  

We showed that the mycorrhizal root tips and the fine roots attached to the mycorrhiza had 

the highest C and N enrichment of the entire root system. This would make root tips 

nutritionally more attractive to root feeders. In fact, herbivore soil animals have been reported 

to prefer to feed on root tips (Bonkowski & Roy 2005, Rodger et al. 2003). 

We found soil fauna species with an enriched δ13C signature compared to fine roots, but the 

enrichment was on average five times lower than the label found in mycorrhizal root tips 

(96.86 ± 38.69 ‰ vs. -26.52 ± 38.41 ‰). The highest δ13C label compared to fine roots was 

found in predators followed by fungivore species. The decomposers had the lowest ∆13C 

values. The species with currently unknown trophic position were positioned between 

decomposers and putative fungal feeder, suggesting these species to have a mixed diet.  

In this experiment we measured the EM 13C and 15N labels in mycorrhizal root tips. Thus a 

distinction between labels in different mycorrhizal structures was not possible, the separation 

of mycorrhizal root tips and extramatrical mycelium as food source of soil animals was partly 

based on available information about the behavior and ecology of the found soil animals.  

The most similar isotopic δ13C ratios to mycorrhizal root tips were found in macrofaunal 

species, which have no direct trophic links to mycorrhizas. The isotopic ∆13C ratios of the 

predatory species Lithobius erythrocephalus (51.98 ‰), Hypochthonius luteus and an isopoda 

species, Trichoniscus pusillus (50.15 ‰) corresponded with the ∆13C label of ectomycorrhizal 

root tips. T. pusillus have been earlier shown to feed on litter colonizing microbiota (Kautz et 

al. 2000). Presumably leaf litter grazed by T. pusillus could be incorporated with 

ectomycorrhizal mycelia (Hrynkiewicz et al. 2010, Perez-Moreno & Read 2000), but also 

other carbon sources like the bacterial food channel cannot be excluded.  

L. erythrocephalus and H. luteus have indirect trophic links to mycorrhizas through feeding 

on mycorrhizal–nourished prey (Maraun 2012). Isotopic values of predators and secondary 

decomposers have been found to resemble each other (Maraun 2012). We found a significant 

difference between ∆13C values of these trophic groups. Predators with intermediate 13C 

enrichment presumably feed on mixed prey. Our results suggest EM to be a possible carbon 
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source for both trophic groups. Still, explicit work is needed to distinguish the bacterial and 

fungal nutrient channels.  

The comparison of ∆13C ratios of anecic earthworm L. terrestris (–37.34 ‰) with earth 

worms from other ecotypes (compost earthworms, epigeic earthworms and endogeic 

earthworms) showed that the endogeic species Apporectodea rosea and Octolasion tyrtaeum 

had a δ13C enrichment similar to that of fine roots. However these results are based on single 

measurements. In contrast, the epigeic Eiseniella species E. octaedra and E. tetraedra (–57.70 

± 17.02 ‰) have much lower ∆13C values. This is in accordance with an earlier suggestion 

that these species feed presumably on leaf litter (Scheu & Falca 2000). Another epigeic 

species Lumbricus rubellus differed clearly from these two species, by having a higher ∆13C 

ratio (19.0 ‰). A. rosea and O. tyrtaeum have been suggested to feed on older and more 

humified litter (Maraun 2012). Our findings suggest endogeic and epi–endogeic earth worms 

to have a possible indirect link to plant carbon, which might rely on older litter with 

incorporated EM mycelium or recalcitrant carbon from dead hyphae in deeper soil layers 

(Langley et al. 2006).  

An oribatid mite from the Family Hypochthoniidae, Hypochthonius luteus (4.44 ‰), showed 

a fine root related enrichment of the δ13C label. We expected putative fungivore oribatid mites 

Nothrus palustris (–53.74 ± 35.75 ‰) and Damaeidae (–77.95 ± 24.06) to be enriched in δ13C 

compared to fine roots. However, no corresponded δ13C enrichment was found. We suggest 

both species to feed on saprophytic fungi or litter.  

We found two collembolan species from the family Entomobryoidea, Lepidocyrtus cyaneus (–

17.51 ± 35.20 ‰) and Sinella/Pseudosinella spec. (–10.99 ‰), enriched with δ13C. Högberg 

et al. (2010), found that Collembolan species from the family Entomobryoidea are rapidly 

labeled with tree derived 13C, and suggested that they feed upon highly active mycelia. 

Because the label levels were much higher than in the leaf litter (Fig. 4.4), but lower than in 

EM, we presume that Entomobryoidea might have a mixed diet that includes mycorrhizas, 

fine roots or both. This result is in accordance with Pollierer et al. (2007) who suggested 

Entomobryidae (Collembola) to acquire root and leaf litter derived carbon in similar amounts. 
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4.5 Conclusions 

Our results show that the mycorrhizal root tips and the fine roots attached to the mycorrhizas 

have the highest 13C and 15N enrichment compared to other plant structures. Also we found a 

strong relationship between nitrogen concentration in mycorrhizal root tips and adjacent fine 

roots. This indicates that a notable amount of nitrogen in EM is directly allocated to the host 

plant. Similar relations were neither found between carbon concentrations in mycorrhizal root 

tips and adjacent fine roots, nor between carbon and nitrogen enrichment in mycorrhizal root 

tips. Due to the high nitrogen concentrations in mycorrhizal root tips EM can be concidered to 

have a high nutritional value. Our results demonstrate that soil animal species from all trophic 

levels potentially connect to EM fungi. However, explicit work is still needed to distinguish 

between bacterial and fungal nutrient channels, as well as between mycorrhizal root tip and 

EM mycelia as nutrient sources of soil animals. Finally, EM fungi are pivotal as a nutrient 

channel not only to the host plant but also for the soil food web.  
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Supplementary data 

Supplement Table S1: Molecular information of ectomycorrhizal species. Species were 

identified by ITS sequencing and sequence information was deposited in NCBI databank. If 

the homology was higher than 94% and the score higher than 700 bits, the name suggested by 

the database, preferentially that of UNITE was accepted. If both NCBI and UNITE database 

did suggest the same genus, species with higher score than 600 bits were named as unknown 

species of the suggested genera, unknown species clustering with known species were named 

as unknown species of the same genera, otherwise unknown ectomycorrhizas were called 

unknown species with an internal morphotype number (MT). Species for which sequence 

information was not available were called by their internal morphotype number (MT). ACC = 

Accession number in NCBI databank, Best BLAST match = name obtained from NCBI or 

UNITE, UncECM= Uncultured Ectomycorrhiza. 

Supplement Table S2: Taxonomical (order/phylum) and ecological (ecology/diet) information 

of soil arthropods and  their ∆13C enrichment. δ13C signatures were normalized for fine roots. 

 

Supplement Figure S1: Phylogeny of EMF species based on ITS sequences. Maximum 

Likelihood , ML ln(L)= 4066.9, 657 sites GTR 4 rate classes. The Bootstrap values were 

generated from 100 replicates 
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Supplement Table S1: 

Species 

NCBI 

Genbank 

ACC 

number 

Best BLAST Match Source 

Source 

Accession 

Database number 

Best BLAST 

Match 

Length of 

Fragment 

Homol

ogy 

[%] 

Score 

[bits] 

Tomentella spec. 1 

 
JQ982963 

Uncultured 

Thelephoraceae clone 

SC_ITS_157 

NCBI GQ219960.1 685 100% 1266 

Tomentella spec. 2 JQ982967 

Uncultured 

ectomycorrhiza 

(Thelephoraceae) clone 

M44C6 

NCBI FJ196997.1 629 98 830 

Tomentella spec. 4 JQ982968 Tomentella galzinii UNITE UDB000263 553 95 844 

Tomentella spec. 5 JQ982969 

Uncultured 

Thelephoraceae clone 

6S4.22.S04 

NCBI EF619818.1 256 93 856 

Thelephora spec.1 JQ982964 

Uncultured 

ectomycorrhiza 

(Thelephoraceae) clone 

OT-76 

NCBI FJ0130.1 475 100 878 

Thelephora spec. 2. JQ982978 

Uncultured 

Thelephoraceae clone 

6S4.22.S04 

NCBI GQ219960.1 568 99 1031 

Clavulina cf. 

cinerea 
JQ982970 

Clavulina cf. cinerea 

BIO 10304 
NCBI EU862226 564 99 876 

Hymenogaster spec. JQ982975 

Hymenogaster vulgaris 

voucher RBG Kew 

K(M)27363 

NCBI EU784365.1 472 95 725 

Hymenogaster 

rehsteineri 
JQ982973 

Hymenogaster 

rehsteineri isolate 

zb20070814 

NCBI GU479324.1 572 100 1057 

Lactarius subdulcis JQ982974 Lactarius subdulcis UNITE UDB000380 394 100 781 

Russula spec. JQ982979 
Russula romellii 2-

1119IS77 
NCBI AY061714.1 388 97 652 

Pestiza succosa JQ982977 
Peziza succosa voucher 

KH-98-07 (C) 
NCBI DQ200840 586 99 1075 
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Supplement Table S2: 

Phylum/ 

Order Species ∆13C [ ‰] PDB Diet Trophic level 

Arachneida Clubiona sp. -14.66 

 

mixed prey* predator 

Arachneida Hahnia pusilla -20.22 ± 17.4 mixed prey* predator 

Coleoptera Coleoptera A sp. -29.54 ± 44.8 mixed diet* unknown 

Collembola Lepidocyrtus cyaneus -17.52 ± 35.2 detridivore secondary decompose 

Collembola Sinella/Pseudosinella ssp. -10.99 

 

mixed diet* secondary decomposer 

Isopoda Trichoniscus pusillus 50.15 

 

litter with incorp 

EMF mycelium* secondary decomposer 

Lumbricida Aporrectodea caliginosa -66.10  ± 22.5 leaf litter* primary decomposer 

Lumbricida Apporectodea rosea 1.41 

 

leaf litter/fine root 

litter* secondary decomposer 

Lumbricida Eiseniella octaedra -40.68 

 

leaf litter* primary decomposer 

Lumbricida Eiseniella tetraedra -74.73 

 

leaf litter* primary decomposer 

Lumbricida Lumbricus terrestris -37.34 ± 25.9 leaf litter secondary decomposer 

Lumbricida Lumbricus rubellus 18.96 

 

old leaf litter with 

incorp EMF 

mycelium* secondary decomposer 

Lumbricida Octolasion tyrtaeum 1.77 

 

old leaf litter with 

incorp EMF 

mycelium* primary decomposer 

Myriapoda Craspedosoma sp. -34.17 

 

leaf litter /saproph. 

fungi* secondary decomposer 

Myriapoda Glomeris helvetica -93.00 

 

leaf litter* primary decomposer 

Myriapoda Glomeris undulata -41.70 ± 49.7 leaf litter* primary decomposer 

Myriapoda Lithobius curtipes 27.77 

 

fungivore prey* predator 

Myriapoda Lithobius erythrocephalus 51.98 

 

fungivore prey* predator 

Myriapoda Lithobius forficatus 19.51 

 

fungivore prey* predator 

Myriapoda Lithobius muticus -12.32 ± 22.5 mixed prey* predator 

Myriapoda Necrophleophagus -9.97 ± 23.0 mixed prey* predator 

Oribatida Achipteria sp. -70.92 ± 19.2 leaf litter primary decomposer 

Oribatida Damaeidae sp. -77.95 ± 24.1 leaf litter* primary decomposer 

Oribatida Hermaniella sp. -69.77 

 

leaf litter* primary decomposer 

Oribatida Hypochthonius luteus 4.44 

 

fine roots* 

primary 

consumer*predator 

Oribatida Nothrus palustris -53.74 ± 35.8 saphrohytic fungi* Primary decomposer 

Oribatida Platynothrus peltifer -71.60 

 

decomposer primary decomposer 

Oribatida Stegacarus magnus -27.99 ± 7.4 leaf litter primary decomposer 

Oribatida Xenillus sp. -70.05 

 

detritus decomposer/detritivore  

∆13C values normalized for fine roots. Data shows means (± SD). Data without SD is based on a single 

measurement. All diets after corresponding references, with the exception of species with to our knowledge 

at the time unassured diet. Ecology/ trophic level marked with an asterix indicate  diet/ecology suggested 

by author.  
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5. General discussion 

5.1 Differential interactions between mycorrhizal fungi and tree species impact the structure 

and dynamics of plant communities 

The present work demonstrates that interactions between ash and beech, in respect to nitrogen 

and phosphorus acquisition, were notably supported by mycorrhizal fungi. This resulted in a 

disadvantage for ash.  

In mixed ash-beech forests, ash tends to dominate the belowground area with higher root 

biomass (Jacob et al. 2012, Rust & Savill 2000). This thesis showed that despite the generally 

higher fine root biomass of ash, its N and P limitation increased in the presence of beech 

(Chapter 2 and 3). This was surprising, because ash has been reported to take up N (and P) 

more effectively than beech (Schulz et al. 2011). There are two possible explanations for the 

decreased growth and nutrient accumulation of ash in mixture with beech. Firstly, the results 

indicate that the interaction with beech affected nutrient accumulation of ash. The comparison 

of nutrient uptake efficiencies between tree species is usually based on measurements in 

monocultures (Comas et al. 2002, Schulz et al. 2011). However the conclusions based on 

plant functions measured in monocultures may not display the plant reactions in species 

mixtures.  

 

Secondly, efficient nutrient retention and economical resource use might be more important 

plant characteristics in nutrient limited conditions than high nutrient uptake kinetics (Aerts 

1999). The maintained N/P balance of beech leaves compared with an N/P inbalance of ash in 

the species mixture might therefore indicate that beech is better adapted to nutrient limitation 

than ash.  

Our findings are important, since they suggest that despite the often higher root mass, ash 

cannot be interpreted as a belowground dominating tree species in mixture with beech. The 

relative competition index for P presented a convincing argument for the contrary.  

 

The increased root biomass of beech in a dual-splitroot-rhizothron experiment indicates 

belowground overyielding, and thus, a possible biodiversity effect (Appendix 1). The 

previous studies of belowground diversity of tree species report both, positive (Schmid & 

Kazda 2002) and neutral (Bolte & Villanueva 2006, Leuschner et al. 2001, Meinen et al. 
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2009) biodiversity effects on root growth. However, the role of tree species identity rather 

than biodiversity might predominate the effects (Jacob et al. 2012).  

 

The differences in fungal species composition (Chapters 2, 3 and 5) might also change the 

strength of the plant interactions. This would also explain the different outcomes of studies on 

soil N form preferences for ash and beech (Dannenmann et al. 2009, Gessler et al. 1998, 

Schulz et al. 2011, Stadler et al. 1993).  

No comparable biomass increase of beech, as found in dual-splitroot-rhizothron experiment, 

occurred in more nutrient limited system (Chapter 2 and 3). This result suggests that 

overyielding may be possible when resource limitation does not drive the tree species to 

competition. In fact, model based analysis of tree species diversity on temperate forest 

productivity indicate that environmental conditions influence productivity of mixed tree sites 

(Morin et al. 2011).  

In addition, the differences in growth responses in our experiments could be explained by 

limited rooting area. In order to drive competition, the available soil volume was clearly 

restricted in chapters 2 and 3. Here, fine root density was on its upper limit in both 

monocultures and mixtures after two growth periods (1 g FR dw l-1soil pot-1, P = 0.511). 

Similar upper fine root densities (1-2 g biomass l-1) have been reported in the topsoil horizons 

of temperate-broad leaved forests (Hertel 2011). This density appears to be exceeded neither 

in monocultures nor in mixed stands (Jacob et al. 2012). In contrast, in the split-root 

experiment the soil space compared to root mass was larger. This might partially explain the 

facilitative effect of ash on growth of beech, whereas growth of ash was unaffected by the 

presence of beech.  

This thesis indicates that EM fungi contributed significantly to both N and P acquisition of 

beech. In addition, we demonstrated that EMs were substantially better accumulators for both, 

N and P, than ash root tips (Chapter 2 and 3). Our findings reinforce earlier studies on dual-

mycorrhizal associations of single tree species, which have suggested that EM fungi are more 

efficient providers of P than AM fungi (Jones et al. 1998, van der Heijden 2001), but contrast 

the widely held view that AM fungi are more important for plant P nutrition than EM. 

Although the biomass of extraradical hyphae of AM and EM fungi were not measured in this 

study, it is likely that EM rhizomorphs were more present in soil than extraradical hyphae of 

AM fungi (Chapter 2 and 3). This suggestion is supported by estimations of abundances of 
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fungal species with different ecological lifestyles in soil (Bueé et al. 2009, Danielsen et al. 

2012). Similar accumulation of P in EM rhizomorphs and in EM root tips suggests that 

extraradical hyphae of EM were highly involved in beech nutrient uptake. 

The distinction of extraradical hyphae of AM and EM species and their quantification are 

rather challenging. The currently available methods such as phospholipid fatty acid markers 

(PLFAs), content of ergosterol and quantification of ITS sequence copy numbers have only 

limited usability to differ between EM and AM types. We can therefore only speculate that a 

higher extent of extraradical EM hyphae may have lead to retention of nutrients in EM 

structures. 

The differences in nutrient accumulation of EM species were taxon related (Chapters 2, 3 and 

5). The most abundant beech root colonizing EM fungi, Tomentella castanea and Sebacina 

sp., were concurrently high accumulative species for both, N and P (Chapter 2 and 3). In 

contrast, N and P accumulation of Paxillus involutus was comparable with non-mycorrhizal 

root tips. This was surprising because this species has been reported to take up and translocate 

N to Fagus sylvatica (Finlay et al. 1989) and P to Pinus sylvestris (Bücking & Heyser 2000). 

In previous studies, narrow niche-differentiation within lineages of EM species has been 

demonstrated (Geml et al. 2008). Therefore, relatively low N and P accumulation in the 

present experiments might indicate an unprofitable host-fungus association. Another 

explanation could be that the growth conditions were not suitable for P. involutus. Since host 

plants transfer more C to those fungal species that provide more nutrients (Corrêa et al. 2011, 

Corrêa & Martins-Loução 2011, Kiers et al. 2011), unequal partitioning of carbon may have 

decreased the colonization of roots by less profitable EM species such as P. involutus.  

Our data support that in a mixed ash-beech forest stand beech associated with EM community 

rather than ash with AM community has a competitive advantage in P and N acquisition. 

Highly nutrient accumulative EM species colonized up to 80% of mycorrhizal root tips of 

beech and were significantly involved in beech N and P acquisition. Given the high diversity 

in natural EM communities, complementarity of fungal species with respect to functional 

ecophysiological traits may promote coexistence of tree species (van der Heijden et al. 2003).  

The results of the present study contributed new information about the role of different 

mycorrhizal fungi on plant competition for nutrients that so far has been lacking. In addition, 

the results of plant interactions between ash and beech on different soil nutrient availabilities 

could be applied to spatially explicit modelling of neighbor effects on forest dynamics. 
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5.2 Outlook 

Intepretations of the functional significance of mycorrhizal fungi on plant interactions are still 

limited by a lack of knowledge about functional capacities of most mycorrhizal fungi. In the 

present work, functional relevance of EM species on plant N and P uptake was demonstrated. 

Amongst others, a high accumulation of 33P in EM rhizomorphs was shown. More definite 

conclusions about the role of AM and EM fungi on nutrient acquisition of ash and beech will 

be possible when future work includes quantitative measurements of extraradical mycelium in 

soil. This may explain whether EM fungi use the given soil volume more efficiently than AM 

fungi and restrict the amount of available nutrients for ash. Also the quantification of mycelial 

biomass of AM and EM could be conducted with real time PCR using AM and EM specific 

primers. In the near future, a large set of mycorrhizal genomes will be available for future 

research. At the moment whole genomes of Laccaria bicolour and Tuber melanosporum 

(Martin et al. 2008, Martin et al. 2010) already enable a primer design for regions coding for 

N and P transporter. A use of degenerative primers could allow a screening of a large set of 

root colonizing fungi for the presence of these genes. These could be used to detect functional 

differences of EM fungi during intra- and interspecific plant competition for N and P. 

EM diversity of beech roots increased in the presence of another beech (Appendix 1). This 

result indicates that a neighbouring tree with the same mycorrhizal type has a potential to 

increase the mycorrhizal community diversity and might enhance facilitation between tree 

individuals. Neighbour effects mediated by the mycorrhizal network need to be targeted by 

future research. As demonstrated in this work, stable and radioactive isotopes provide 

versatile, time-integrated measurements of nutrient and carbon fluxes. Future work could 

include pulse labelling of donator plant and measurements in proximate gainer plant to 

determine whether the nutrient and carbon fluxes occur only between trees with similar 

mycorrhizal types or are facilitative interactions possible also between fungi of different 

mycorrhizal types. 
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Highlights 

 Rhizodeposition of beech reduced soil C by decreasing C use efficiency of 

bacteria 

 More litter-derived carbon is channeled into higher trophic levels in soil 

planted with ash 

 Bacteria and fungi form different energy channels in soil planted with beech 

 In particular the roots of beech alter C dynamics in soil  
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Abstract 

Knowledge on the influence of living roots on decomposition processes in soil is scarce but is 

needed to understand carbon dynamics in soil. We investigated the effect of dominant 

deciduous tree species of the Central European forest vegetation, European beech (Fagus 

sylvatica L.) and European ash (Fraxinus excelsior L.), on soil biota and carbon dynamics 

differentiating between root- and leaf litter-mediated effects. The influence of beech and ash 

saplings on carbon and nitrogen flow was investigated using leaf litter enriched in 13C and 15N 

in double-split-root rhizotrons planted with beech and ash saplings as well as a mixture of 

both tree species and a control without plants. Stable isotope and compound-specific fatty 

acid analysis (13C-PLFA) were used to follow the incorporation of stable isotopes into 

microorganisms, soil animals and plants. Further, the bacterial community composition was 

analyzed using pyrosequencing of 15S rRNA gene amplicons. Although beech root biomass 

was significantly lower than that of ash only beech significantly decreased soil carbon and 

nitrogen concentrations after 475 days of incubation. In addition, beech significantly 

decreased microbial carbon use efficiency as indicated by higher specific respiration. Low soil 

pH probably increased specific respiration of bacteria and suggests that rhizodeposits of beech 

roots induced increased microbial respiration and therefore carbon loss from soil. Compared 

to beech, more litter carbon and nitrogen were channeled into higher trophic levels 

(Gamasida) in treatments with ash indicating higher amounts of litter-derived carbon to reach 

higher trophic levels under ash. Similar δ13C signatures of bacteria and fine roots indicate that 

mainly bacteria incorporated root-derived carbon in beech rhizotrons. The results suggest that 

beech and ash differentially impact soil processes with beech more strongly affecting the 

belowground system via root exudates and associated changes in rhizosphere microorganisms 

and carbon dynamics than ash. 

 

Key words: 13C, 15N, bacteria, carbon cycling, decomposition, fungi, nitrogen, soil food web  
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1. Introduction 

Soils store twice as much carbon as plants and the atmosphere together thereby forming an 

important component of the global carbon cycle (Schlesinger and Andrews, 2000). However, 

the way carbon is processed and how carbon dynamics are controlled still is not well 

understood. Knowledge of controlling factors of the carbon flux from the entry into the soil 

until its release or sequestration is of significant importance, especially in face of global 

warming and climate disruption as a consequence of increased atmospheric CO2 (McKinley et 

al., 2011).  

In terrestrial ecosystems, 90% of the annual biomass produced by plants enters the dead 

organic matter pool forming the basis of the decomposer system in soil (Gessner et al., 2010). 

Plant carbon enters the soil via two pathways: dead organic matter (leaf litter and dead roots) 

and root exudates. Most studies suggest leaf litter quality as main factor explaining physical 

and chemical properties of soil systems, which in turn influence soil biota as drivers of 

decomposition processes (Reich et al., 2005; Jacob et al., 2009; Langenbruch et al., 2012). 

Litter quality strongly influences soil pH as calcium and magnesium of the litter compete with 

H+ and Al3+ for exchange sites on soil particle surfaces or organic matter (Reich et al., 2005). 

As a consequence, high pH often promotes higher microbial biomass resulting in higher soil 

respiration, mineralization and decomposition (Swift et al., 1979; Wardle, 1998). Low 

mineralization and decomposition rates are associated with high C-to-N ratios and high lignin 

contents as it is typical for recalcitrant litter. In contrast, Pollierer et al., (2007) highlighted 

that in temperate forests carbon does not enter the soil food web predominantly via litter but 

rather via roots. Rhizodeposits comprise labile exudates (e.g., sugars, amino acids and organic 

acids), but also complex molecules (e.g., polysaccharides, mucilage and proteins). Labile 

exudates control both community structure and activity of rhizosphere microorganisms 

(Paterson et al., 2009). Summarizing results of 95 plant 14C labeling studies, Jones et al., 

(2004) estimated the loss of carbon by exudation to be equivalent to 5 - 10% of the net carbon 

fixed by plants and 25% of the carbon plants allocate to root growth. This supply of energy 

increases microbial biomass (Butler et al., 2004), acts as soil organic matter (SOM) priming 

agent (Bird et al., 2011) and alters the physical and chemical soil environment (Gregory, 

2006). Microbial communities in rhizosphere and bulk soil are therefore responsible for root 

exudate-mediated changes in soil processes (Söderberg et al., 2004; Paterson et al., 2007). 

Since plant species differ in the quality and quantity of exudates (Jones et al., 2004), soil 
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carbon dynamics are likely affected by plant species identity and diversity (Grayston et al., 

1998; Steinbeiss et al., 2008).  

Next to individual effects of distinct plant species (Jacob et al. 2009), decomposition studies 

showed positive mixing effects (Gartner and Cardon, 2004; Hättenschwiler et al., 2005). Until 

today, however, studies investigating the influence of plant diversity on belowground 

dynamics in forests are scare (but see Meinen et al., 2009) and most often only consider the 

effect of aboveground plant residues (Hättenschwiler and Gasser, 2005; Jacob et al., 2009, 

2010). To what extent belowground processes mediated by roots and root exudates affect soil 

organisms and thereby carbon dynamics remains largely unknown. This lack of knowledge is 

unfortunate as 60% of the terrestrial carbon is bound in forests and its contribution to global 

carbon cycling is of fundamental importance (McKinley et al., 2011). 

To improve knowledge on carbon dynamics in forest soils from a root perspective we used the 

common temperate broad-leaved tree species European beech (Fagus sylvatica L.) and 

European ash (Fraxinus excelsior L.) to differentiate between general and species-specific 

effects of living roots on soil organisms and decomposition of litter material in soil. Beech is 

the dominant tree species in many Central European deciduous forests. Ash often is 

associated with beech forests and is expected to increase in dominance in a warmer and drier 

climate (Broadmeadow and Ray, 2005). Life history traits of beech and ash differ strongly, 

e.g. speed of growth, root morphology, litter quality, mycorrhizal association, and nutrient, 

water and light use efficiency (Grime et al., 1997; Emborg, 1998). Beech has higher specific 

root tip abundance, specific fine root surface area (SRA) and specific fine root length (SRL), 

whereas ash roots are characterized by higher mean fine root diameter (Meinen et al., 2009). 

Roots of beech are colonized by ectomycorrhizal (EM) fungi and those of ash by arbuscular 

mycorrhizal (AM) fungi which differ in nutrient acquisition strategies (Smith and Read, 

2008). Beech tolerates soil pH from acid to highly alkaline, while ash is restricted to soils of 

high base saturation (Weber-Blaschke et al., 2002). Litter of beech at more acidic sites has 

high C-to-N ratio >50 and high lignin content, while ash litter is regarded as high quality litter 

due to its low C-to-N ratio of about 28 and low lignin content (Jacob et al., 2010). 

For allowing access to the root system and to investigate interactions between both tree 

species, beech and ash saplings were planted into double split-root systems. The systems 

allowed dissecting root associated processes and belowground interactions between beech and 

ash. Carbon and nitrogen fluxes in soil were traced following the incorporation of 13C and 15N 
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from labelled ash litter into soil, bacteria, fungi, soil animals and plants. Ash litter was used to 

follow the uptake of resources from high quality litter materials by beech and ash as compared 

to more recalcitrant soil resources.  

We hypothesized that (1) beech and ash differentially affect the structure of the microbial 

community thereby modifying soil processes and plant nutrient capture. Differences in 

microbial community structure are expected to (2) result in differential decomposition of 

labeled ash litter and differential mobilization of nutrients from the litter. Further, we 

expected (3) modifications of the soil microorganisms community and soil processes to be 

most pronounced in the mixed treatment with both tree species present due to a 

complementary effect on soil microorganisms and soil processes.  

2. Material and methods 

2.1 Rhizotrons 

Double split-root rhizotrons were used to separate root systems of two tree saplings into 

compartments with root strands of one individual sapling at each side and a shared root 

compartment in the centre where root strands of both tree saplings could interact (Fig. 1). We 

focused on the middle compartment where the two root strands grew together. The central 

compartment had a volume of 7.6 l and side compartments half the volume of 3.8 l. 

Rhizotrons were 90 cm high and 64 cm wide, and were built from anodized aluminum 

covered at the front with a 10-mm Perspex plate. They were tilted at 35° to direct roots 

growing along the Perspex plate. The Perspex plate was covered with black scrim to ensure 

that roots grow in darkness. Rhizotrons were divided into six soil depth sections (I-VI). Every 

soil depth contained four manipulation sites (MS), two in the centre and two at the sides (Fig. 

1). The back side of the rhizotrons was equipped with a cooling system keeping the 

temperature at a constant level of 20ºC over the whole soil column. Climate conditions were 

set to 20°C air temperature, 70% relative air humidity and 10 h daylight in winter and 14 h in 

summer.  
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Fig 1 | Schematic setup of the double split-root rhizotrons. (a) Front view of mixed species treatments with ash 

(red) and beech (blue) roots interacting in the central compartment. Circles represent manipulation sites (MS) 

with soil (open circles) or a soil-litter mixture (shaded circles). Numbers indicate soil depths (I-VI). Black dots 

along central dashed line refer to the position of temperature sensors. Dashed lines mark the sampling raster in 

which soil samples were separated. (b) Side view of the double split-root rhizotron and assembly of the MS. 

Tubes inside the MS can be drawn completely to fill it with litter and soil. A cooling system is installed at the 

back panel and is flooded with distilled water. A valve allowed drainage of the rhizotrons. 

 

The tree saplings were illuminated (EYE Lighting, Clean Ace, Mentor, OH, USA) ensuring a 

minimum PPFD of 200 ± 10 µmol m-2 s-1 from June 2009 to October 2010. The experiment 

lasted for 475 days i.e., plants were harvested after the second season. 

2.1.1 Soil and plants 

The soil was taken from a mixed temperate broadleaf forest dominated by F. sylvatica, F. 

excelsior and Tilia cordata in Central Germany (Hainich forest, 51°04' N 10°30' E, about 350 

m a.s.l) from a depth of 0 - 10 cm after removing the litter. The soil type was a Stagnic  
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Luvisol (IUSS Working Group WRB 2007; 1.8% sand, 80.2% silt and 18.1% clay) and free of 

carbonate (<0.02% of total carbon) with a pH (H2O) of 4.56 ± 0.03 and a gravimetric water 

content at date of sampling of 22.7%. Initial total carbon amounted to 19.2 ± 0.3 g kg-1 dry 

weight, initial total nitrogen averaged 1.56 ± 0.01 g kg-1 dry weight and base saturation was 

22.9 ± 1.3% (Table 1). Each rhizotron was filled with 15.2 l of sieved soil (1 cm mesh) 

containing natural microflora and soil fauna. Volumetric soil water content was monitored 

three times a week with a TDR measurement device (Trime-FM, IMKO, Ettlingen, Germany), 

and kept at constant level by adding distilled water. Soil temperature was measured with NTC 

thermistors (Epcos, Munich, Germany), arranged vertically in the centre of the rhizotrons, at 

soil depths of 8, 20, 42.5 and 70.5 cm and in 2 cm distance of the Perspex plate. Data were 

recorded in 15-min intervals with a CR1000 data logger (combined with two AM416 Relay 

Multiplexer, Campbell Scientific Inc., Utah, USA). 

In spring 2009, beech (F. sylvatica) and ash (F. excelsior) saplings with comparable root 

biomass were excavated in the Hainich forest with intact soil cores to preserve the root and 

15.4±1.2 cm for beech and ash saplings, respectively. At the start of the experiment, ash had 

significantly higher fine root biomass than beech, but tree species did not differ significantly 

in total root and total aboveground biomass (Table 2). Before planting, the soil material 

adhering to the root systems was removed by watering. The remaining soil-water mixture was 

used to equilibrate microbial communities in soil. 

  

Table 1 | Soil characteristics (means ± 1 SE) at the start of the experiment. 

Soil parameter  

pH  4.56 ± 0.03 

CEC [µmolc g
-1 dry weight] 191.70 ± 11.80 

Base saturation [%] 22.90 ± 1.30 

N-NO3
- [mg kg-1 dry weight] 4.89 ± 0.20 

N-NH4
+ [mg kg-1 dry weight] 6.00 ± 0.22 

Corg [g kg-1 dry weight] 19.20 ± 0.30 

Ntotal [g kg-1 dry weight] 1.64 ± 0.01 

C/N ratio [g g-1] 11.70 ± 0.14 

Cmic [µg C g-1 dry weight] 382.80 ± 14.60 
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Fifty-three days after planting, 1.5 g labelled ash litter was added into MS at every second soil 

depth (II, IV, VI; Fig. 1).  Prior to adding ash leaves (air dried, crushed to pieces < 1 cm) were 

mixed with 40 g soil (air dried). The litter was labelled with 13C and 15N by incubating ash 

trees in a green house for one vegetation period with the CO2 concentration in air elevated by 

adding 13CO2 (1,200 ppm) and by watering the soil with nutrient solution containing and 0.1 

mM 15NO3
15NH4 (both 99 atom %; Euriso-top, Saint-Aubin, Essonne, France). Further, the 

solution contained 0.6 mM CaCl2, 0.4 mM MgSO4, 0.01 mM FeCl3, 0.4 mM K3PO4, 1.8 µM 

MnSO4, 0.064 µM CuCl, 0.15 µM ZnCl2, 0.1 µM MoO3, 5 mM NO3NH4 and 0.01 mM 

H3BO3,. The stable isotope signature of the ash litter was 146.8 ± 0.3‰ for δ13C and 

13,139 ± 59‰ for δ15N (Table 3).  

2.2 Experimental design  

The experiment was set up in a two-factorial design with the factors beech and ash (absence: 

“-“ and presence: “+”), resulting in the following treatments with four replicates each: (a) two 

beech saplings (BB), (b) two ash saplings (AA), (c) a mixture with one beech and one ash 

sapling (BA or AB, depending on target tree species), and (d) an unplanted control (Co), 

resulting in rhizotrons without (B-: Co and AA) and with beech (B+: BB and BA), as well as 

rhizotrons without (A-: Co and BB) and with ash (A+: AA and AB).  

 

 

 

 

Table 2 | T-test table of T- and P-values and means ± 1 SE of plant biomass g-1 dry weight of beech and ash 

saplings at the start of the experiment (n=5). 

 

    
Initial Biomass 

   
              
              Biomass 

 

T   P 

 

Beech 

 

Ash 

Total    0.15   0.7122   2.04 ± 0.46   2.13 ± 0.22 

Total aboveground 

 

0.01 

 

0.9294 

 

1.26 ± 0.27 

 

1.25 ± 0.15 

Total belowground 

 

0.81 

 

0.3933 

 

0.78 ± 0.20 

 

0.88 ± 0.08 

Shoots 

 

0.27 

 

0.6190 

 

0.88 ± 0.22 

 

0.74 ± 0.09 

Leaves   2.49   0.1530   0.38 ± 0.05   0.52 ± 0.07 

Fine roots 

 

6.49 

 

0.0343 

 

0.16 ± 0.05 

 

0.41 ± 0.08 

Coarse roots 

 

0.08 

 

0.7866 

 

0.64 ± 0.17 

 

0.56 ± 0.06 
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2.3 Sampling 

After 475 days rhizotrons were harvested. They were opened in horizontal position and a 

sampling grid was used to identify locations for sampling i.e., at MS and the surrounding of 

these sites (SS) (Fig. 1). Samples from the depth layers II, III, IV and V of the central 

compartment were analyzed. Further, as we were not interested in effects of soil depth we 

pooled the data from the four layers. In addition to soil samples, plant shoots and roots from 

each of the soil layers were taken for measuring plant biomass.  

Table 3 | Isotopic signatures of the used soil, labeled ash litter and of the soil-litter-mixture in manipulation 

sites in rhizotrons at the start of the experiment and after 422 days (means ± 1 SE).  

 

Start End 

 

Soil Litter 
Soil-litter 

mixture 
 

Soil-litter  

mixture 

Difference

* [%] 

             

   

 

 

δ13C [‰] -26.20±0.10 146.80±0.32 69.00±0.60 -17.44±1.86 88.25 

δ15N [‰] 1.60±0.16 13139.30±59.10 6153.80±0.40 577.38±124.88 81.23 

C [%] 1.92±0.03 36.05±0.09 5.93±0.05 1.94±0.06 65.34 

N [%] 0.16±0.00 1.85±0.01 0.40±0.00 0.18±0.004 54.82 

C/N  11.70±0.10 19.50±0.10 14.90±0.10 10.98±0.12 15.33 

* Differences between isotopic signatures from the start and the end of the experiment base on values of 

soil-litter mixtures and were calculated overall treatments (n=16) and were related to the natural isotopic 

signatures of beech and ash litter. 

 

2.3.1 Plants 

At harvest shoot length and root collar diameter of saplings was measured. Roots were 

separated from soil, washed and cleaned from adhering soil particles. To obtain overall plant 

biomass fine root biomass estimated from MS for mycorrhizal analysis were combined with 

plant biomass data from SS. Whenever possible three intact root strands of ca. 7 cm length 

from each tree species per compartment and soil depths were taken and digitalised on a flat-

bed scanner for image analysis carried out using WinRhizo 2005c software (Régent 

Instruments Inc., Québec, QC, Canada) to determine specific fine root area (SRA; cm2 g-1 dry 

matter), specific fine root length (SRL; cm g-1 dry matter) and total fine root surface. 

Thereafter, samples were oven-dried (70°C, 48 h), weighed and milled for measurement of 

organic carbon (Corg), total nitrogen (Ntotal) as well as δ13C and δ15N signatures (Delta C, 

Finnigan MAT, Bremen, Germany).  
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2.3.2 Mycorrhiza 

Colonization of roots at MS by mycorrhiza-forming fungi was determined. Fine roots were 

stored in Falcon tubes with moist tissue paper at 4°C until analysis. Fine roots of beech were 

analyzed with a stereomicroscope (Leica M205 FA, Leica Microsystems, Wetzlar, Germany). 

The percentage of EM fungi colonization was calculated using the following equation: 

EM fungi colonization [%] = (
𝑛 𝑚𝑦𝑐𝑜𝑟𝑟ℎ𝑖𝑧𝑎𝑙 𝑟𝑜𝑜𝑡 𝑡𝑖𝑝𝑠

𝑛 𝑣𝑖𝑡𝑎𝑙 𝑟𝑜𝑜𝑡 𝑡𝑖𝑝𝑠
) × 100   (eq. 1) 

Fine roots of ash were stored in 70% EtOH at room temperature. For determining the 

colonization by AM fungi roots were stained with lactophenole-blue (Schmitz et al., 1991) 

and stored at room temperature in 50% glycerol until microscopic inspection at 200x 

magnification. AM fungi colonization was calculated with the magnified intersection method 

of McGonigle et al., (1990) using a 10x10 grid. The abundance of vesicles, arbuscles and 

hyphae was calculated as percentage of mycorrhizal structures of the total number of 

intersections. The percentage of vesicles was taken as relative colonization rate of AM fungi 

and used for further calculations. 

2.3.4 Soil properties 

Soil pH was measured in a suspension of 10 g soil and 25 ml H2O with a Vario pH meter 

(WTW GmbH, Weilheim, Germany). Soil water content was measured gravimetrically after 

drying at 105°C for 24 h. Nitrate and ammonium concentrations were measured by extracting 

soil samples in 0.5 M K2SO4 solution (1:3 wet soil mass-to-solution ratio). Samples were 

shaken for 1 h and filtered through Sartorius folded filters (Sartorius Stedim, Aubagne, 

France). Nitrate and ammonium concentrations of filtered extracts were analyzed using 

continuous flow injection colorimetry (SAN+ Continuous Flow Analyzer, Skalar Instruments, 

Breda, The Netherlands). Nitrate was determined by copper cadmium reduction method (ISO 

method 13395) and ammonium was quantified by Berthelot reaction method (ISO method 

11732). Corg, Ntotal as well as δ13C and δ15N values were measured after grinding soil samples 

with a disc mill. Samples were analyzed with a coupled system consisting of an elemental 

analyzer (NA 1500, Carlo Erba, Mailand) and a mass spectrometer (Delta C, Finnigan MAT, 

Bremen, Germany).  
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2.3.5 Microbial respiration 

Basal respiration (BAS), microbial biomass (Cmic), and specific respiration (qO2) were 

measured by substrate-induced respiration (SIR) i.e., the respiratory response of 

microorganisms to glucose (Anderson and Domsch, 1978). Before measurement, roots were 

removed and soil samples were sieved (2 mm). Measurements were done using an automated 

O2 microcompensation system (Scheu, 1992). BAS of microorganisms reflected their 

averaged oxygen consumption rate without the addition of glucose within 10-30 h after 

attachment of the samples to the analysis system. Subsequently, 4 mg glucose g-1 soil dry 

weight was added as aqueous solution to the soil samples. The mean of the three lowest 

hourly measurements within the first 10 h was taken as the maximum initial respiratory 

response (MIRR). Cmic (µg C g-1) was calculated as 38 x MIRR (µl O2 g
-1 soil dry weight h-1) 

according to Beck et al., (1997). Microbial specific respiration qO2 (µl O2 mg-1 Cmic h
-1) was 

calculated as BAS/Cmic.   

2.3.6 Fatty acid analysis 

Before extraction of lipids, soil samples were sieved (2 mm) and root and litter pieces were 

removed. Lipid extraction followed Frostegård et al., (1991). Briefly, 4 g soil (wet weight) 

was mixed with 18.5 ml Bligh & Dyer solution and shaken for 2 h(Bligh and Dyer, 1959). 

Subsequently, samples were centrifuged at 2,500 rpm for 10 min at 8°C. Supernatants were 

transferred to new tubes. The remaining pellet was washed with 5 ml of the Bligh & Dyer 

solution and centrifuged as described above. The supernatants were combined and 6.2 ml 

chloroform and 6.2 ml citrate buffer were added. Two ml of the lipid containing lower phase 

was transferred to a new tube. The organic phase was evaporated at 40°C for 40 min. 

Columns containing silic acid fractionated the lipid material into phospholipids by adding 

methanol. The phospholipid-methanol solution was evaporated at 40°C for 90 min. Each 

sample was dissolved in 1 ml methanol-toluene-solvent (1:1) and 30 µl internal Standard 

(5.77 mg methylnondecanoat in 25 ml isooctane) was added. Basic methanolysis of lipids was 

conducted in 1 ml 0.2 M methanolic KOH (2.8 g KOH in 250 ml methanol) incubated at 37°C 

for 15 min. Afterwards, 2 ml hexane, 0.3 ml acetic acid and 2 ml deionized water were added, 

vortexed and centrifuged as described above. The upper phase was transferred to new tubes 

and evaporated at 40°C for 45 min. The remaining extract was solved with 100 µl isooctane 

and filled into 1.5 ml vials for analysis. Bacterial biomass was estimated using the following 

PLFAs: a15:0, i15:0, i16:0, 16:1ω7, i17:0, cy17:0 and cy19:0; the PLFA 18:2ω6,9 was used 



 

 

139 

 

as fungal biomarker (Ruess and Chamberlain, 2010). A gas-chromatography-combustion-

isotope-ratio-monitoring-mass spectrometer (GC-C-IRM-MS) using Thermo Finnigan Trace 

GC coupled via a GP interface to a Delta Plus mass spectrometer (Finnigan, Bremen, 

Germany) was used to determine the isotopic composition of individual PLFAs. Fatty acid 

identification was verified by GC-MS using a Varian CP-3800 chromatograph coupled to a 

1200L mass spectrometer and a fused silica column (Phenomenex Zebron ZB-5MS, 30 m, 

0.25 µm film thickness, ID 0.32 mm) and helium as carrier gas. 

2.3.7 Pyrosequencing  

DNA and RNA were co-isolated from 2 g soil using the RNA PowerSoilTM Total RNA 

Isolation Kit and DNA Elution Accessory Kit (MO BIO Laboratories Inc., Carlsbad, CA, 

USA). Residual DNA contaminations in RNA extracts were removed using the TURBO 

DNA-free™ Kit (Ambion Applied Biosystems, Darmstadt, Germany). RNA was concentrated 

using the RNeasy MiniElute Kit (QIAGEN, Hilden, Germany). The nucleic acid 

concentration was estimated using a NanoDrop ND-1000 spectrophotometer (Peqlab 

Biotechnologie GmbH, Erlangen, Germany).  

The V2-V3 region of the 16S rRNA was reverse transcribed using the SuperScriptTM III 

reverse transcriptase (Invitrogen, Karlsruhe, Germany). As template 100 ng of the DNA-free 

RNA were applied. The resulting cDNA as well as the extracted DNA was amplified in 

triplicate using the Phusion® Hot Start High-Fidelity DNA polymerase (FINNZYMES, 

Espoo, Finland) as described by Nacke et al., (2011).  

The following barcoded primer set was used for reverse transcription and amplification, 

containing the Roche 454 pyrosequencing adaptors (underlined): V2for 5’-

CTATGCGCCTTGCCAGCCCGCTCAGAGTGGCGGACGGGTGAGTAA-3’ and V3rev 

5’-CGTATCGCCTCCCTCGCGCCATCAGCGTATTACCGCGGCTGCTG-3’  

modified from (Schmalenberger et al., 2001). 

The PCR products were treated and purified as described by Nacke et al., (2011). All kits 

were used as described in the manufacturer´s instructions. The Göttingen Genomics 

Laboratory determined the sequences of the partial 16S rRNA genes using a Roche GS-FLX 

454 pyrosequencer (Roche, Mannheim, Germany) according to the manufacturer´s 

instructions for amplicon sequencing. Sequences shorter than 300 bp were removed from the 

dataset.  
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To minimize the bias introduced by pyrosequencing due to decreasing read precision at the 

end of the reads denoising was carried out using Denoiser 0.91 (Reeder and Knight, 2010). 

OTU determination was performed using uclust OTU picker 1.2.22q (Edgar, 2010) at genetic 

divergence of 3%, 5% and 20% according to Schloss and Handelsman (2005). The resulting 

datasets have been deposited in the GenBank short-read archive under accession number 

SRA050002.  

2.3.8 Soil animals 

Soil not needed for other analysis was taken to extract soil animals by heat (Kempson et al., 

1963). Animals were conserved in saturated NaCl solution and kept at -10°C until analysis. 

The gamasid mite Hypoaspis aculeifer (G. Canestrini, 1884) was taken for stable isotope 

analysis as it occurred in sufficient numbers for the analysis. Twenty adult mites were 

weighed into tin capsules and dried at 40°C for 24 h. Samples were analyzed as described 

above. 

2.4 Statistical analysis 

Two-way ANOVA was used to test for main effects of beech (B- and B+), ash (A- and A+) 

and their interactions with data of the four soil depths pooled. To detect differences in plant 

biomass and mycorrhizal colonization contrasts were calculated using pairwise t-test to 

account for dependence in mixed rhizotrons. U-Test was used for analyzing the number of 

root tips. Treatments in beech-only rhizotrons (BB) were compared to ash-only (AA) and 

beech-ash mixture (BA). Ash (AA) was also compared with beech-ash mixture (AB). 

Statistical analyzes were done using SAS 9.2 (SAS Institute; Cary, NC, USA). 

Discriminant function analysis (DFA) was calculated to analyze fatty acid patterns combined 

with microbial respiration and soil chemical data. Differences of the bacterial composition in 

beech and ash rhizotrons and the control were calculated using multi-dimensional scaling 

(MDS) to reduce dimensions in the dataset. DFA and MDS were calculated using 

STATISTICA 7.0 for Windows (StatSoft, Tulsa, USA, 2001).  

Means were compared using Tukey's Honestly Significant Difference test (P < 0.05). Data 

were log- or arcsine-square root transformed (percentages) to improve homogeneity of 

variance. Means given in text and tables are based on non-transformed data.  
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3. Results 

3.1 Plants and mycorrhizae 

After 475 days, total biomass of tree saplings in BB rhizotrons was significantly lower than in 

AA and BA rhizotrons (Table 4). Fine and coarse root biomass were significantly lower in BB 

rhizotrons compared to that of saplings in AA (-69%) and BA rhizotrons (-62%) resulting in 

significantly lower total root biomass. Total biomass, total root biomass and coarse root 

biomass of saplings in mixtures exceeded that of saplings in monocultures, but this increase 

was only significant for beech (60%, 62%, 70%, respectively); biomass of ash saplings in 

mixture increased by 11%, 17% and 23%, respectively. 

δ13C and δ15N signatures in fine roots were significantly lower in BB than those in AA 

rhizotrons (Table 4). SRA and SRL did not differ significantly between tree species but 

tended to be higher in beech (BB vs AA: + 6% and +68%, respectively), especially in the 

mixture (BA vs AB: +24% and 79%, respectively. Generally, fine root tips of tree saplings 

increased in mixed rhizotrons, especially beech in mixed rhizotrons had a significantly higher 

number of root tips than beech in monoculture by +89% compared to ash in mixed rhizotrons 

and ash in monoculture by +54%. Mycorrhizal colonization of roots of beech in BB 

rhizotrons was significantly lower than that of roots of ash in AA rhizotrons, however, as 

beech and ash are colonized by different types of mycorrhiza the differences have to be 

interpreted with caution. Beech did not influence the colonization rate of ash by arbuscular 

mycorrhiza (AA vs AB; + 2 %), whereas ash increased the colonization of beech by 

ectomycorrhiza (BB vs BA; + 45 %) although the effect was not significant (Table 4).  

3.2 Soil properties 

In general, the studied soil properties were strongly affected by beech and not by ash with 

interactions between tree species also being not significant (Table 5). Soil pH was 

significantly lower in B+ (4.54 ± 0.08) than in B- rhizotrons (4.80 ± 0.06). In presence of 

beech Corg and Ntotal were significantly decreased by -7% and -6%, respectively, but NO3
- and 

NH4
+ concentrations remained unaffected. Further, δ13C and δ15N of bulk soil were 

significantly lower in B+ (-24.46 ± 0.32‰ and 127.04 ± 19.95‰, respectively) compared to 

B- rhizotrons (-22.24 ± 0.78‰ and 265.25 ± 48.79‰, respectively). Generally, after 422 days 

of litter incubation, the signatures of δ13C and δ15N within the soil-litter-mixtures decreased 

strongly by 88% and 81% respectively (Table 3). 
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Table 4 | Contrasts calculated with t-test for all plant parameters except for number of fine root tips (U-test) and means ± 1 SE for differences in plant parameters between 

individual trees in rhizotrons after 475 days.  

   
Pure beech 

(BB) vs. 

pure ash 

(AA) 

 
Pure beech 

(BB) vs.  

beech in 

mixture (BA) 

 
Pure ash 

(AA) vs.  

ash in 

mixture (AB) 

 

BB 

 

AA 

 

BA 

 

AB 

         

         
         

        

   t P  t P  t P         

                  Biomass [g dry weight] plant 

 Total   8.82 0.0117  6.39 0.0266  0.00 0.9518  4.52 ± 0.79  12.08 ± 1.69  11.33 ± 2.03  13.50 ± 2.33 
 Total aboveground  4.20 0.0629  2.91 0.1138  1.11 0.3128  1.85 ± 0.38  3.34 ± 0.86  4.29 ± 1.01  3.03 ± 0.43 

 Total root   9.52 0.0094  6.96 0.0217  0.28 0.6035  2.67 ± 0.50  8.74 ± 1.08  7.04 ± 1.08  10.47 ± 2.15 

 Shoot  1.24 0.2876  3.43 0.0889  0.12 0.7300  1.38 ± 0.25  1.78 ± 0.32  3.20 ± 0.73  2.64 ± 0.41 
 Leaves  5.14 0.0426  0.53 0.4809  7.50 0.0180  0.46 ± 0.14  1.56 ± 0.56  1.08 ± 0.34  0.39 ± 0.22 

 Fine roots  9.14 0.0106  4.60 0.0532  0.09 0.7669  0.78 ± 0.18  2.38 ± 0.30  1.80 ± 0.27  2.27 ± 0.44 
 Coarse roots  7.95 0.0154  6.50 0.0255  0.59 0.4557  1.89 ± 0.35  6.36 ± 0.87  5.24 ± 0.82  8.21 ± 1.91 

δ13C [‰] Plant fractions                           

 Shoot  5.14 0.0426  7.00 0.0214  2.12 0.1708  -29.09 ± 0.32  -28.07 ± 0.28  -27.90 ± 0.22  -27.40 ± 0.26 
 Leave  0.30 0.5955  0.25 0.6287  0.75 0.4029  -29.62 ± 0.56  -29.26 ± 0.27  -29.29 ± 0.44  -29.83 ± 0.20 

 Fine roots  8.27 0.0139  0.04 0.8402  0.01 0.9395  -27.64 ± 0.34  -25.60 ± 0.85  -27.49 ± 0.19  -25.56 ± 0.23 

 Coarse roots  12.86 0.0037  2.78 0.1215  0.06 0.8162  -28.35 ± 0.31  -25.74 ± 0.76  -27.15 ± 0.31  -25.92 ± 0.32 

δ15N [‰] Plant fractions                           

 Shoot  0.87 0.3701  0.07 0.8018  2.15 0.1682  171.27 ± 30.67  260.05 ± 66.16  154.54 ± 18.34  154.40 ± 26.76 

 Leaves  5.34 0.0394  0.55 0.4741  1.98 0.1853  192.42 ± 32.67  316.50 ± 43.37  166.67 ± 23.49  228.28 ± 15.10 
 Fine roots  4.77 0.0496  1.35 0.2674  4.07 0.0666  209.02 ± 41.75  396.07 ± 99.34  148.85 ± 17.63  214.48 ± 22.80 

 Coarse roots  9.34 0.0100  0.10 0.7630  2.81 0.1196  193.66 ± 27.78  390.78 ± 78.87  178.50 ± 12.60  257.86 ± 19.23 

SRA [cm² g-1]                          

 Fine roots  0.23 0.6385  0.05 0.8271  0.78 0.3950  485.16 ± 15.36  456.49 ± 42.70  509.00 ± 54.07  410.65 ± 64.00 

SRL [cm g-1]                          

 Fine roots  2.89 0.1150  0.50 0.4947  0.20 0.6596  2374.80 ± 221.17  1414.42 ± 168.82  3235.44 ± 848.14  1810.83 ± 450.85 

Fine root tips                          

 Total number   -0.48 0.9970  -13.16 0.00010  2.13 0.1750  1623.50 ± 230.01  2299.00 ± 419.58  3072.50 ± 207.37  3543.75 ± 107.79 

Mycorrhiza [%]                           

 Colonization rate  27.50 0.0002  3.07 0.1053  0.04 0.8481  37.81 ± 8.58  81.82 ± 5.17  54.80 ± 6.51  83.54 ± 2.87 
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Table 5 | ANOVA table of F- and P-values on the effects of beech and ash and interactions between both tree species in rhizotrons as well as means ± 1SE. 

  
     

 
Beech absent (B-)  Beech present (B+) 

  
Beech   Ash  Beech × Ash 

  

     
Ash absent (A-) 

(Control) 
 

Ash present 

(A+) 

(Ash) 

 
Ash absent (A-) 

(Beech) 
 

Ash present (A+) 

(Mixture) 
 

F P 

  

F P 

  

F P 

     

             Soil data 

                        
 

pH (H2O) 5.77 0.0334 
 

0.11 0.7436 
 

0.02 0.8944 
 

4.78 ± 0.12 
 

4.83 ± 0.05 
 

4.53 ± 0.14 
 

4.55 ± 0.11 

 

N-NO3
- [mg kg-1 dry 

weight] 

1.00 0.3387 

 

0.04 0.8532 

 

0.62 0.4487 

 

41.31 ± 4.96 

 

42.88 ± 3.20 

 

39.32 ± 3.83 

 

35.14 ± 5.93 

 
N-NH4

+[mg kg-1 dry 

weight] 

0.01 0.9422 
 

0.41 0.5360 
 

0.38 0.5477 
 

2.46 ± 0.93 
 

1.47 ± 0.63 
 

1.88 ± 0.72 
 

1.86 ± 0.69 

 

Corg [mg kg-1 dry weight] 15.02 0.0022 

 

0.08 0.7829 

 

0.02 0.8980 

 

1.89 ± 0.04 

 

1.91 ± 0.05 

 

1.76 ± 0.03 

 

1.77 ± 0.02 

 

Ntotal [mg kg-1 dry weight] 7.82 0.0162 

 

0.24 0.6297 

 

0.00 0.9687 

 

0.18 ± 0.00 

 

0.17 ± 0.00 

 

0.17 ± 0.00 

 

0.16 ± 0.00 

 
δ13C soil [‰] 7.54 0.0177 

 
1.73 0.2129 

 
1.40 0.2604 

 
-23.27 ± 0.58 

 
-21.21 ± 1.35 

 
-24.51 ± 0.57 

 
-24.41 ± 0.40 

 

δ15N soil [‰] 7.42 0.0185 

 

0.83 0.3816 

 

0.31 0.5907 

 

212.18 ± 55.44 

 

318.33 ± 78.47 

 

126.29 ± 37.64 

 

127.79 ± 20.99 

 
C/N 0.56 0.4677 

 
0.98 0.3406 

 
0.00 0.9932 

 
10.78 ± 0.24 

 
10.94 ± 0.08 

 
10.66 ± 0.16 

 
10.82 ± 0.14 

Microbial respiration 

                        

 

BAS [µl O2 h-1 g] 4.04 0.0674 

 

0.09 0.7674 

 

0.19 0.6701 

 

1.18 ± 0.09 

 

1.18 ± 0.05 

 

1.41 ± 0.07 

 

1.36 ± 0.15 

 
Cmic [µg C g-1] 0.03 0.8643 

 
0.48 0.5019 

 
0.40 0.5365 

 
150.03 ± 13.65 

 
134.32 ± 5.93 

 
139.79 ± 6.62 

 
140.86 ± 13.38 

 

qO2 [µl O2 mg-1 Cmic h-1] 9.00 0.0111 

 

0.14 0.7178 

 

1.59 0.2311 

 

0.008 ± 0.001 

 

0.009 ± 0.000 

 

0.010 ± 0.001 

 

0.010 ± 0.001 

PLFA [nmol g-1dry weight] 

                        
 

Total 0.75 0.4025 
 

0.00 0.9619 
 

1.11 0.3130 
 

7.22 ± 1.32 
 

6.03 ± 1.36 
 

6.57 ± 0.55 
 

8.19 ± 0.97 

 

Bacteria 0.53 0.4801 

 

0.01 0.9377 

 

1.05 0.3262 

 

6.95 ± 1.20 

 

5.85 ± 1.29 

 

6.25 ± 0.52 

 

7.66 ± 0.95 

 

Fungi 3.36 0.0916 

 

0.18 0.6757 

 

1.20 0.2955 

 

0.27 ± 0.16 

 

0.18 ± 0.07 

 

0.33 ± 0.05 

 

0.53 ± 0.15 

 
Fungi/Bacteria 5.17 0.0422 

 
0.33 0.5755 

 
0.85 0.3752 

 
0.032 ± 0.017 

 
0.026 ± 0.010 

 
0.050 ± 0.008 

 
0.073 ± 0.019 

PLFA δ13C [‰] 

                        

 

Total 2.43 0.1454 

 

1.40 0.2590 

 

0.30 0.5944 

 

-22.80 ± 2.37 

 

-21.49 ± 2.09 

 

-27.14 ± 0.60 

 

-23.55 ± 2.51 

 
Bacteria 2.01 0.1818 

 
0.49 0.4960 

 
0.51 0.4871 

 
-24.38 ± 1.47 

 
-24.43 ± 1.05 

 
-27.25 ± 0.45 

 
-25.31 ± 1.89 

 

Fungi 7.48 0.0181 

 

0.08 0.7807 

 

0.16 0.6941 

 

-21.01 ± 6.61 

 

-17.06 ± 4.53 

 

-31.59 ± 0.92 

 

-28.27 ± 4.01 

Gamasid mites 

                        
 

δ 13C [‰] 20.59 0.0008 

 

159.43  <.0001 7.80 0.0175 

 

-23.37 ± 0.86 
 

-13.89 ± 0.31 
 

-20.19 ± 1.40 
 

-8.78 ± 0.43 

 
δ 15N [‰] 25.75 0.0004 

 

148.88  <.0001 11.93 0.0054 

 

130.14 ± 23.08 

 

713.33 ± 43.37 

 

339.07 ± 37.35 

 

1121.26 ± 26.97 
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Fig 2 | Discriminant functional analysis (DFA) of microbial PLFAs, 

microbial respiration and soil properties in rhizotrons without trees (control), 

beech saplings, ash saplings and a mixture of both tree species. Wilks' 

Lambda: 0.016480, F (54,33) = 1.85, P = 0.0296. Ellipses represent 

confidence intervals at P = 0.05. 

Fig 3 | Discriminat function analysis (DFA) of bacterial phyla based on 

pyrosequencing of 16S rRNA in rhizotrons without trees (control) and with 

beech and ash saplings after reducing data to 6 dimensions by 

multidimensional scaling (MDS). Wilks' Lambda: 0.499576; F (12,60) = 2.07;  

P = 0.0325. Ellipses represent confidence intervals at P = 0.05. 
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3.3 Microorganisms 

Cmic was not significantly affected by tree species and averaged over all treatments 141.25 ± 

4.93 µg C g-1. However, qO2 was significantly higher in B+ (0.0101 ± 0.003 µl O2 mg-1 Cmic 

h-1) than B- rhizotrons (-16%, Table 5), which was due to marginally higher BAS in B+ (1.39 

± 0.08 µl O2 h
-1 g-1) compared to B- rhizotrons (-15%).  

The ratio of fungal-to-bacterial marker PLFAs was significantly higher in B+ (0.061 ± 0.007) 

than in B- rhizotrons (-53%) as the fungal biomass was higher in B+ (0.43 ± 0.08 nmol g-1dry 

weight) than in B- rhizotrons (-47%), whereas bacterial biomass remained unaffected.  

Table 6 | Summary of input variables of the discriminant function analysis (DFA) of the composition of PLFA 

of the microbial community, soil properties and microbial respiration. 

 

  Wilks' Lambda F (3,11) P-level 

Gram+ bacteria i15:0 0.0175 0.2171 0.8825 

 

a15:0 0.0242 1.7284 0.2188 

 

i16:0 0.0237 1.6062 0.2441 

  i17:0 0.0430 5.8991 0.0119 

Gram- bacteria cy17:0 0.0390 5.0135 0.0198 

  cy19:0 0.0239 1.6448 0.2358 

Unspecified 

bacteria 16:1ω7 0.0250 1.8939 0.1891 

Fungi 18:2ω6:9c 0.0298 2.9597 0.0792 

Microbial 

respiration BAS 0.0178 0.2972 0.8267 

 

Cmic 0.0179 0.3145 0.8146 

  qO2 0.0175 0.2325 0.8719 

Soil properties pH 0.0320 3.4554 0.0549 

 

NO3
- 0.0211 1.0298 0.4170 

 

NH4
+ 0.0188 0.5116 0.6825 

 

Corg 0.0182 0.3726 0.7745 

 

Ntotal 0.0261 2.1450 0.1524 

 

δ13C 0.0221 1.2510 0.3384 

 

δ15N 0.0173 0.1733 0.9122 
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Bacterial and total PLFA content were not significantly affected by the treatments and 

averaged 6.67 ± 1.67 and 7.00 ± 0.53 nmol g-1dry weight, respectively. The δ13C values of the 

fungal marker PLFA 18:2ω6,9 were significantly lower in B+ (-29.93 ± 2.00‰) than in B- 

rhizotrons (-18.75 ± 3.60‰). Also, weighted δ13C values of bacterial PLFAs were lower in 

B+ (-26.28 ± 0.97‰) than in B- rhizotrons (-24.40 ± 0.84‰), whereas in A+ rhizotrons (-

24.87 ± 1.01‰) they tended to be higher than in A- rhizotrons (-25.82 ± 0.89‰). In general, 

ash did not significantly influence δ13C values of marker PLFA (Table 5). 

DFA suggests strong similarity in the composition of PLFAs in BB and BA rhizotrons. Both 

treatments differed strongly from the AA and the control treatment (Fig. 2). Differences were 

due to low amounts of gram-negative (i17:0) and gram-positive bacteria (cy17:0), higher 

fungal biomass and low pH (Table 6, 7). Pyrosequencing of the bacterial community revealed 

high overlap of bacterial phyla and species with little differences between the treatments (Fig. 

3). 

Table 7 | Means ± 1 SE of PLFA markers (nmol g-1 dry soil weight) of the microbial community. 

   

Beech absent (B-) 

 

Beech present (B+) 

   

Ash absent 

(A-) 

(Control) 

 

Ash present 

(A+) 

(Ash) 

 

Ash absent 

(A-) 

(Beech) 

 

Ash present 

(A+) 

(Mixture) PLFA marker   

    Gram+ bacteria i15:0 

 

0.9

2 

± 0.2

2 
 

0.81 ± 0.36 

 

1.0

5 

± 0.2

1 
 

1.59 ± 0.35 

 

a15:0 

 

1.4

1 

± 0.2

9 
 

1.04 ± 0.34 

 

1.4

0 

± 0.2

4 
 

1.93 ± 0.24 

 

i16:0 

 

0.7

0 

± 0.0

8 
 

0.66 ± 0.12 

 

0.8

0 

± 0.0

6 
 

0.87 ± 0.06 

  i17:0   0.6

2 

± 0.0

5 

  0.74 ± 0.14   0.4

2 

± 0.0

4 

  0.70 ± 0.09 

Gram- bacteria cy17:0 

 

0.7

2 

± 0.1

6 
 

0.77 ± 0.13 

 

0.6

3 

± 0.0

6 
 

0.84 ± 0.16 

 

cy19:0   1.2

2 

± 0.5

8 

  1.13 ± 0.46   1.1

3 

± 0.2

2 

  0.74 ± 0.26 

Unspecified 

bacteria 

16:1ω7 

 

1.3

5 

± 0.3

7 
 

0.70 ± 0.35 

 

0.8

1 

± 0.2

1 
 

0.98 ± 0.44 

Fungi 18:2ω6,

999 

  0.2

7 

± 0.1

6 

  0.18 ± 0.07   0.3

3 

± 0.0

5 

  0.53 ± 0.15 

                   

3.4 Gamasid mites 

The 13C and 15N from the added ash litter was incorporated into the soil food web as indicated 

by the label in the predatory mite H. aculeifer (Table 5). The signatures suggest that 

incorporation of label was most pronounced in mixed rhizotrons (significant interaction 

between beech and ash) followed by AA, BB and control rhizotrons. 
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4. Discussion 

4.1 Changes in the microbial community due to rhizodeposition 

Lower pH in the rhizosphere of beech likely contributed to favoring soil fungi supporting our 

hypothesis (1) that beech and ash differentially affect the structure of the microbial 

community. Acidification of the soil by beech is well known (Holzwarth et al., 2011; 

Langenbruch et al., 2012), however, commonly it has been ascribed to low concentrations of 

calcium and magnesium and high concentrations of recalcitrant compounds such as lignin in 

beech leaf litter (Reich et al., 2005; Hobbie et al., 2006; Hansen et al., 2009). As we excluded 

leaf litter fall from saplings to the rhizotrons soil surface and uniformly placed high quality 

ash litter in each of the treatments, the observed differences must have been due to the activity 

of beech roots. Indeed, in the vicinity of beech roots concentrations of formate and acetate 

were increased as compared to control rhizotrons in the same experiment, whereas in the 

vicinity of ash roots only the concentration of acetate increased (Fender et al., 2012). The 

release of organic acids increases nutrient availability by functioning as reducing agent which 

is facilitated by low pH (Jones et al., 2004), probably a strategy of beech to make nutrients 

sequestered in its recalcitrant litter better available. Low pH in the soil, however, 

predominantly is caused by the release of H+ by roots rather than by dissociation of organic 

acids (Neumann and Römheld, 1999). Accordingly, H+ concentration was significantly higher 

in rhizotrons with beech, i.e. the pH was lower. Notably, acidification of the soil by beech 

roots occurred despite a comparatively lower root biomass in beech than ash rhizotrons. 

However, SRA and SRL were higher in B+ rhizotrons as compared to A+ rhizotrons. This 

suggests that the observed modifications were partly due to changes in root physiology rather 

than root biomass and number of fine root tips (Lehmann, 2003). Differences in the release 

rates of specific exudates of the two species presumably also contributed to the observed 

changes. 

Bacterial community composition was little affected by tree roots as indicated by analysis of 

16S rRNA. However, the ratio of fungal-to-bacterial biomass measured with PLFA analysis 

increased in B+ rhizotrons and reflected the general pattern of increasing fungal dominance at 

low pH accounting for differences in soil processes (Aciego Pietri and Brookes, 2008; Rousk 

et al., 2009). Fungal biomass was measured using 18:2ω6,9 as marker PLFA (Ruess and 

Chamberlain, 2010; Frostegård et al., 2011) which includes EM and saprotrophic fungi 

(Kaiser et al., 2010). We suggest the change in fungal biomass only to refer to EM and 
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saprotrophic fungi, as the PLFA 18:2ω6,9 is only found in very low densities in AM fungi 

(Olsson and Johansen, 2000) and since the AM colonization rate did not change. Colonization 

by EM fungi in beech was relatively low (46 ± 6%, pooled data from BB and BA rhizotrons). 

This corresponds to low colonization rates in other greenhouse and rhizotron experiments 

(Dučić et al., 2009; Reich et al., 2009; Winkler et al., 2010) when compared to field data 

(Leuschner et al., 2004; Lang et al., 2011) suggesting that saprotrophic rather than EM fungi 

increased in beech rhizotrons. Further, lower δ13C values of PLFA 18:2ω6,9 as compared to 

fine roots indicate that saprotrophic fungi substantially contributed to changes in the fungal 

marker PLFA. 

Combined data on PLFAs, soil properties and microbial respiration in DFA revealed high 

similarity of beech and mixed rhizotrons with these differing significantly from ash and 

control rhizotrons. The fatty acids i17:0 and cy17:0 contributed most to this separation, with 

slighter contributions by pH and fungal biomass. The fatty acid i17:0 is regarded as marker 

for gram-positive bacteria whereas cy17:0 characterizes gram-negative bacteria, the former 

considered to dominate in microorganisms being present in bulk soil whereas the latter in 

rhizosphere soil processing labile root derived carbon (Söderberg et al., 2004; Paterson et al., 

2007). The relative abundance of both was lowest in BB rhizotrons suggesting that both 

suffered from the presence of beech roots, presumably due to beech increasing the 

competitive strength of saprotrophic fungi.  

4.2 Changes in decomposition due to different tree species 

Hypothesis (2) assuming that litter decomposition is differentially affected by tree species was 

supported by our data. Generally, stable isotope values of the litter-soil mixture in MS 

decreased strongly during incubation by -88% and -81% for 13C and 15N, respectively. Ash 

litter is known to decompose fast; in the field it disappears entirely after two years (Jacob et 

al., 2009). High and constant temperatures within the climate chambers (20°C) contributed to 

fast decomposition of the litter in the rhizotrons (Moore-Kucera and Dick, 2008). Data on 

higher qO2 (this study) and higher cumulative heterotrophic CO2 production in beech as 

compared to ash rhizotrons (Fender et al., 2012) suggest an overall higher stimulation of litter 

decomposition in beech root affected soil, i.e., higher carbon loss due to microbial respiration. 

High H+ concentrations were shown to limit bacterial growth, while low concentrations limit 

fungal growth (Rousk et al., 2009). Since bacterial biomass did not decrease we suggest that 

bacteria were not repressed but their metabolic costs increased reflected in a higher qO2. By 



 

 

149 

 

lowering pH beech decreased the efficiency of bacteria to use carbon for biomass production 

due to increased respiratory losses leading to higher carbon loss from soil. δ13C values in 

fungal and bacterial PLFAs were depleted most in B+ rhizotrons suggesting that bacteria and 

fungi incorporated less litter carbon in presence of beech roots than of ash also indicating a 

faster turnover of litter carbon. Further, the more depleted δ13C values in fungi compared to 

fine roots suggest that fungal carbon originated from soil organic matter, whereas higher δ13C 

values in bacteria rather suggest bacteria to depend on root-derived carbon as their signatures 

resembled that of beech fine roots (Bowling et al., 2008).  

Several studies found plant species identity to have stronger effects than plant diversity (De 

Deyn et al., 2004; Hättenschwiler and Gasser, 2005; Ball et al., 2009), as distinct plant species 

act as key species (Jacob et al., 2009). The strong effect of beech in this study is mediated by 

roots whereas ash had no effect suggesting that rhizodeposition in ash is of minor importance. 

Despite this low rhizosphere changes ash incorporated more litter nitrogen than beech (Lang 

and Polle, 2011; Schulz et al., 2011); potentially, ash is more effective in exploiting resources 

from fast decomposing litter such as ash leaves or by virtue of the higher root biomass 

production of ash in our experiment. Notably, ash saplings incorporated more litter 15N than 

beech saplings supporting the conclusion that the reduced Ntotal in B+ rhizotrons was due to 

increased SOM decomposition and not due to plant uptake by beech. Notable the uptake of 

15N declined in mixture with ash. This corresponds to field observations where the N 

concentrations in ash declined in mixtures with other tree species and their ectomycrrhizal 

diversity (Lang and Polle, 2011) A higher uptake of N by ash roots was also found in a 15N 

tracer study in the Hainich forest where ash fine roots showed a significantly higher mass-

specific uptake of labeled NH4
+ and glycine (but not of NO3

-) than beech roots (A. Jacob, 

unpubl.).  

4.3 Channeling of litter-derived carbon into higher trophic levels 

Hypothesis (3) assuming that mixing of both tree species beneficially affects the 

microorganisms thereby stimulating carbon turnover is supported in part by our data. 

Generally, mixing of tree species increased plant biomass, fine root tips, SRA, SRL and 

mycorrhizal colonization especially that of beech saplings but did not affect soil chemistry 

and microorganisms. However, soil chemistry and microbial data are point measures and do 

not reflect fluxes over the whole period of the experiment. As the plants are sinks for 
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resources made available over the whole experimental time higher plant growth in mixed 

rhizotrons suggests that the gross flux of resources was greater in these rhizotrons.  

Isotope analyses of food web components are a net measure over the long experimental 

period. Here, we measured δ13C and δ15N being incorporated within the predatory mite H. 

aculeifer. δ13C and δ15N values of H. aculeifer were significantly increased in mixed 

rhizotrons suggesting that more litter-derived carbon and nitrogen entered the soil food web. 

In contrast, in control and beech rhizotrons δ13C values of H. aculeifer resembled those in the 

field (δ13C: -23.9 ± 0.76‰; δ15N: +2.0 ± 2.11‰; Klarner et al., 2012) suggesting low 

incorporation of litter-derived carbon (and nitrogen) into the animal food web. However, the 

turnover of belowground C in unplanted soil, i.e., the control, was numerously shown to be 

lower compared to planted soil (Kuzyakov, 2010; Bird et al., 2011), i.e. soil with beech trees. 

Low incorporation of litter resources in BB rhizotrons may point to the fast decomposition of 

ash litter and to the dominance of root derived resources as basis of the soil animal food web 

in beech forests as suggested earlier (Pollierer et al., 2007).  

5. Conclusions 

The results suggest that the effect of living roots on litter decomposition, SOM dynamics and 

energy channels varies with tree species identity. Rhizodeposits have the potential to change 

soil pH with the potential to affect the metabolic activity of microorganisms. This propagates 

to higher trophic levels as tree species can impact the amount of litter-derived resource 

entering the soil food web and on energy channels. Effects of living roots are notoriously 

understudied and have to be included into studies on soil C dynamics to understand carbon 

and nutrient cycling as well as soil food web functioning of forests. 
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Figure legends 

Fig. 1 Scheme of double split-root rhizotrons. (a) Front view of mixed species treatments with 

ash (left) and beech (right) roots interacting in the central compartment. Circles represent 

manipulation sites (MS) with soil (open circles) or soil-litter mixture (grey circles). The 

shaded area refers to the surrounding sampling site (SS). Roman numerals indicate soil depths 

(I-VI). The bold rim in the central compartment from soil depth II to VI represents the 

sampling area. Black dots along the central dashed line refer to the position of temperature 

sensors. Dashed lines mark the sampling grid. (b) Side view of the double split-root rhizotron 

and assembly of MS. Tubes inside MS can be withdrawn to fill them with litter and/or soil. A 

water flux based cooling system is installed at the back panel. A valve allowed drainage of the 

rhizotrons.  

 

Fig. 2 Discriminant function analysis (DFA) of microbial PLFAs, microbial respiration and 

soil properties in rhizotrons without trees (control), with beech, ash and a mixture of beech 

and ash. Wilks' Lambda: 0.016480, F (54,33) = 1.85, P = 0.0296. Ellipses represent 

confidence intervals at P = 0.05. 

 

Fig. 3 Discriminat function analysis (DFA) of bacterial phyla based on pyrosequencing of 

16S rRNA in rhizotrons without trees (control) and with beech and ash saplings after reducing 

data to six dimensions by multidimensional scaling (MDS). Wilks' Lambda: 0.499576; F(12,60) 

= 2.07; P = 0.0325. Ellipses represent confidence intervals at P = 0.05. 
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Table 2 Soil characteristics (means ± 1 SE) at the start of the experiment. 

 Soil parameter  

pH  4.56 ± 0.03 

CEC [µmolc g
-1 dry weight] 191.70 ± 11.80 

Base saturation [%] 22.90 ± 1.30 

N-NO3
- [mg kg-1 dry weight] 4.89 ± 0.20 

N-NH4
+ [mg kg-1 dry weight] 6.00 ± 0.22 

Corg [g kg-1 dry weight] 19.20 ± 0.30 

Ntotal [g kg-1 dry weight] 1.64 ± 0.01 

C/N ratio [g g-1] 11.70 ± 0.14 

Cmic [µg C g-1 dry weight] 382.80 ± 14.60 

CEC: cation exchange capacity; Cmic: microbial carbon 
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Table 2: Means ± 1 SE and T- and P-values of plant biomass of beech and ash saplings at the 

start of the experiment (in g plant-1; n=5).  

 

 

Initial Biomass 

 Beech  Ash   

 

       Means      SE  

       Means        

SE     T P 

Biomass           

 Total  2.04 ± 0.46   2.13 ± 0.22   0.15  0.7122 

 Total 

aboveground 1.26 ± 0.27  1.25 ± 0.15  0.01  0.9294 

 Total 

belowground 0.78 ± 0.20  0.88 ± 0.08  0.81  0.3933 

 Shoots 0.88 ± 0.22  0.74 ± 0.09  0.27  0.6190 

 Leaves 0.38 ± 0.05   0.52 ± 0.07   2.49  0.1530 

 Fine roots 0.16 ± 0.05  0.41 ± 0.08  6.49  0.0343 

 Coarse roots 0.64 ± 0.17  0.56 ± 0.06  0.08  0.7866 
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Table 3 Isotopic signatures of the used soil, labeled ash litter and of the soil-litter-mixture in 

manipulation sites at the start of the experiment and at the end after 422 days of litter 

incubation (means ± 1 SE).  

 Start  End   

 Soil  Litter  
Soil-litter 

mixture  
Soil-litter  

mixture  
Difference* 

[%] 

                  

δ13C 

[‰] 

-

26.20 

± 0.10  146.80 ± 0.32  69.00 ± 0.60  -17.44 ± 1.86 

 

88.25 

δ15N 

[‰] 

1.60 ± 0.16  13139.30 ± 59.10  6153.80 ± 0.40  577.38 ± 124.88 

 

81.23 

C 

[%] 

1.92 ± 0.03  36.05 ± 0.09  5.93 ± 0.05  1.94 ± 0.06 

 

65.34 

N 

[%] 

0.16 ± 0.00  1.85 ± 0.01  0.40 ± 0.00  0.18 ± 0.004 

 

54.82 

C/N  11.70 ± 0.10  19.50 ± 0.10  14.90 ± 0.10  10.98 ± 0.12  15.33 

* Differences between the signatures from the start and the end of the experiment are 

displayed for soil samples from manipulation sites overall treatments (n=16) and were related 

to natural isotopic signatures of ash litter (V. Eißfeller, unpubl. data). 
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Table 4 Means ± 1 SE for plant parameters per plant in rhizotrons planted with beech trees 

(BB), ash trees (AA), beech trees in mixture (BA) and ash trees in mixture (AB) as well as 

GLM table of contrasts after 475 days.  

    
BB 

(pure beech) 

 

 
AA 

(pure ash) 

 

 BA 

(beech in 
mixture) 

 

 AB 

(ash in 
mixture) 

 

 Pure 

beech 

(BB) vs. 

pure ash 

(AA) 

 Pure 

beech 

(BB) vs.  

beech 

in 

mixture 

(BA) 

 Pure 

ash 

(AA) 

vs.  

ash in 

mixtur

e (AB) 

          

          

          

      

Means 

S

E 
   

Means 

S

E 
   

Means 

S

E 
   

Means 

S

E 

 F P  F P  F P 

Biomass [g dry 

weight] per plant 
                        

 Total    4.5
2 

± 0.7
9 

 12.
08 

± 1.6
9 

 11.
33 

± 2.0
3 

 13.
50 

± 2.3
3 

 8.8

2 

0.0

117 

 6.3

9 

0.0

266 

 0.
00 

0.9
518 

 Total 

aboveground 
  1.8

5 
± 0.3

8 
 3.3

4 
± 0.8

6 
 4.2

9 
± 1.0

1 

 3.0

3 
± 0.4

3 

 4.2

0 

0.0

629 

 2.9

1 

0.1

138 

 1.

11 

0.3

128 
 Total root    2.6

7 
± 0.5

0 
 8.7

4 
± 1.0

8 
 7.0

4 
± 1.0

8 
 10.

47 
± 2.1

5 
 9.5

2 

0.0

094 

 6.9

6 

0.0

217 

 0.
28 

0.6
035 

 Fine roots   0.7

8 
± 0.1

8 
 2.3

8 
± 0.3

0 
 1.8

0 
± 0.2

7 
 2.2

7 
± 0.4

4 

 9.1

4 

0.0

106 

 4.6

0 

0.0

532 

 0.

09 

0.7

669 
 Coarse roots   1.8

9 
± 0.3

5 
 6.3

6 
± 0.8

7 
 5.2

4 
± 0.8

2 
 8.2

1 
± 1.9

1 

 7.9

5 

0.0

154 

 6.5

0 

0.0

255 

 0.

59 

0.4

557 δ13C [‰] Plant 

fractions 
                           

 Shoot   -

29.

09 

± 0.3

2 
 -

28.

07 

± 0.2

8 
 -

27.

90 

± 0.2

2 
 -

27.

40 

± 0.2

6 

 5.1

4 

0.0

426 

 7.0

0 

0.0

214 

 2.

12 

0.1

708 
 Leaves   -

29.

62 

± 0.5
6 

 -
29.

26 

± 0.2
7 

 -
29.

29 

± 0.4
4 

 -
29.

83 

± 0.2
0 

 0.3
0 

0.5
955 

 0.2
5 

0.6
287 

 0.
75 

0.4
029 

 Fine roots   -

27.

64 

± 0.3

4 
 -

25.

60 

± 0.8

5 
 -

27.

49 

± 0.1

9 
 -

25.

56 

± 0.2

3 

 8.2

7 

0.0

139 

 0.0

4 

0.8

402 

 0.

01 

0.9

395 
 Coarse roots   -

28.

35 

± 0.3
1 

 -
25.

74 

± 0.7
6 

 -
27.

15 

± 0.3
1 

 -
25.

92 

± 0.3
2 

 12.

86 

0.0

037 

 2.7
8 

0.1
215 

 0.
06 

0.8
162 δ15N [‰] Plant 

fractions 
                           

 Shoot   171

.27 
± 30.

67 
 260

.05 
± 66.

16 
 154

.54 
± 18.

34 
 154

.40 
± 26.

76 

 0.8

7 

0.3

701 

 0.0

7 

0.8

018 

 2.

15 

0.1

682 
 Leaves   192

.42 
± 32.

67 
 316

.50 
± 43.

37 
 166

.67 
± 23.

49 
 228

.28 
± 15.

10 
 5.3

4 

0.0

394 

 0.5
5 

0.4
741 

 1.
98 

0.1
853 

 Fine roots   209

.02 
± 41.

75 
 396

.07 
± 99.

34 
 148

.85 
± 17.

63 
 214

.48 
± 22.

80 

 4.7

7 

0.0

496 

 1.3

5 

0.2

674 

 4.

07 

0.0

666 
 Coarse roots   193

.66 
± 27.

78 
 390

.78 
± 78.

87 
 178

.50 
± 12.

60 
 257

.86 
± 19.

23 
 9.3

4 

0.0

100 

 0.1
0 

0.7
630 

 2.
81 

0.1
196 

SRA [cm² g-1]                           

 Fine roots   485

.16 
± 15.

36 
 456

.49 
± 42.

70 
 509

.00 
± 54.

07 
 410

.65 
± 64.

00 

 0.2

3 

0.6

385 

 0.0

5 

0.8

271 

 0.

78 

0.3

950 
SRL [cm g-1]                           

 Fine roots   237

4.8

0 

± 22

1.1

7 

 141

4.4

2 

± 16

8.8

2 

 323

5.4

4 

± 84

8.1

4 

 181

0.8

3 

± 45

0.8

5 

 2.8

9 

0.1

150 

 0.5

0 

0.4

947 

 0.

20 

0.6

596 
Fine root tips                           

 Total number    162

3.5

0 

± 23

0.0

1 

 229

9.0

0 

± 41

9.5

8 

 307

2.5

0 

± 20

7.3

7 

 354

3.7

5 

± 10

7.7

9 

 -

0.4

8 

0.9

970 

 -

13.

16 

0.0

000 

 2.

13 

0.1

750 Mycorrhiza 

[%] 
                           

 Colonization 
rate 

  37.
81 

± 8.5
8 

 81.
82 

± 5.1
7 

 54.
80 

± 6.5
1 

 83.
54 

± 2.8
7 

 27.

50

† 

0.0

002

† 

 3.0
7 

0.1
053 

 0.
04 

0.8
481 

 

†Note that the different type of mycorrhiza in beech and ash demanded for special counting 

techniques, thus direct comparisons have to be treated with caution but allow comparison with 

trees in the mixture.
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Table 5 Means ± 1 SE for soil and microbial parameters and on signatures in gamasid mited 

as influenced by beech (B) and ash (A) as well as the ANOVA table of F- and P-values in 

rhizotrons after 475 days. 

  Beech absent (B-)  Beech present (B+)  Beech 

(B) 

 
Ash (A) 

 
B × A   Ash 

absent (A-

) 

(Control) 

 Ash 

present 

(A+) 

(Ash) 

 Ash 

absent (A-

) 

(Beech) 

 Ash 

present 

(A+) 

(Mixture) 

   
       

             

 Me

ans 

 SE  Me

ans 

 SE  Me

ans 

 SE  Me

ans 

 SE  F P  F P  F P 

Soil data                         

 pH (H2O) 4.7

8 

± 0.

12 

 4.8

3 

± 0.0

5 

 4.5

3 

± 0.

14 

 4.55 ± 0.

11 

 5.

77 

0.0

334 

 0.1

1 

0.7

436 

 0.

02 

0.8

944  N-NO3
- [mg 

kg-1 dry 

weight] 

41.

31 

± 4.

96 

 42.

88 

± 3.2

0 

 39.

32 

± 3.

83 

 35.1

4 

± 5.

93 

 1.

00 

0.3

387 

 0.0

4 

0.8

532 

 0.

62 

0.4

487  N-NH4
+[mg 

kg-1 dry 

weight] 

2.4

6 

± 0.

93 

 1.4

7 

± 0.6

3 

 1.8

8 

± 0.

72 

 1.86 ± 0.

69 

 0.

01 

0.9

422 

 0.4

1 

0.5

360 

 0.

38 

0.5

477  Corg [mg kg-1 

dry weight] 

1.8

9 

± 0.

04 

 1.9

1 

± 0.0

5 

 1.7

6 

± 0.

03 

 1.77 ± 0.

02 

 15

.0

2 

0.0

022 

 0.0

8 

0.7

829 

 0.

02 

0.8

980  δ13C soil [‰] -

23.

27 

± 0.

58 

 -

21.

21 

± 1.3

5 

 -

24.

51 

± 0.

57 

 -

24.4

1 

± 0.

40 

 7.

54 

0.0

177 

 1.7

3 

0.2

129 

 1.

40 

0.2

604  Ntotal [mg kg-1 

dry weight] 

0.1

8 

± 0.

00 

 0.1

7 

± 0.0

0 

 0.1

7 

± 0.

00 

 0.16 ± 0.

00 

 7.

82 

0.0

162 

 0.2

4 

0.6

297 

 0.

00 

0.9

687  δ15N soil [‰] 212

.18 

± 55

.4

4 

 318

.33 

± 78.

47 

 126

.29 

± 37

.6

4 

 127.

79 

± 20

.9

9 

 7.

42 

0.0

185 

 0.8

3 

0.3

816 

 0.

31 

0.5

907  C/N 10.

78 

± 0.

24 

 10.

94 

± 0.0

8 

 10.

66 

± 0.

16 

 10.8

2 

± 0.

14 

 0.

56 

0.4

677 

 0.9

8 

0.3

406 

 0.

00 

0.9

932 Microbial 

respiration 

                        

 BAS [µl O2 h-1 

g] 

1.1

8 

± 0.

09 

 1.1

8 

± 0.0

5 

 1.4

1 

± 0.

07 

 1.36 ± 0.

15 

 4.

04 

0.0

674 

 0.0

9 

0.7

674 

 0.

19 

0.6

701  Cmic [µg C g-1] 150

.03 

± 13

.6

5 

 134

.32 

± 5.9

3 

 139

.79 

± 6.

62 

 140.

86 

± 13

.3

8 

 0.

03 

0.8

643 

 0.4

8 

0.5

019 

 0.

40 

0.5

365  qO2 [µl O2 mg-

1 Cmic h-1] 

0.0

08 

± 0.

00

1 

 0.0

09 

± 0.0

00 

 0.0

10 

± 0.

00

1 

 0.01

0 

± 0.

00

1 

 9.

00 

0.0

111 

 0.1

4 

0.7

178 

 1.

59 

0.2

311 PLFA [nmol g-

1dry weight] 

                        

 Total 7.2

2 

± 1.

32 

 6.0

3 

± 1.3

6 

 6.5

7 

± 0.

55 

 8.19 ± 0.

97 

 0.

75 

0.4

025 

 0.0

0 

0.9

619 

 1.

11 

0.3

130  Bacteria 6.9

5 

± 1.

20 

 5.8

5 

± 1.2

9 

 6.2

5 

± 0.

52 

 7.66 ± 0.

95 

 0.

53 

0.4

801 

 0.0

1 

0.9

377 

 1.

05 

0.3

262  Fungi 0.2

7 

± 0.

16 

 0.1

8 

± 0.0

7 

 0.3

3 

± 0.

05 

 0.53 ± 0.

15 

 3.

36 

0.0

916 

 0.1

8 

0.6

757 

 1.

20 

0.2

955  Fungi/Bacteria 0.0

32 

± 0.

01

7 

 0.0

26 

± 0.0

10 

 0.0

50 

± 0.

00

8 

 0.07

3 

± 0.

01

9 

 5.

17 

0.0

422 

 0.3

3 

0.5

755 

 0.

85 

0.3

752 PLFA δ 13C [‰]                         

 Total -

22.

80 

± 2.

37 

 -

21.

49 

± 2.0

9 

 -

27.

14 

± 0.

60 

 -

23.5

5 

± 2.

51 

 2.

43 

0.1

454 

 1.4

0 

0.2

590 

 0.

30 

0.5

944  Bacteria -

24.

38 

± 1.

47 

 -

24.

43 

± 1.0

5 

 -

27.

25 

± 0.

45 

 -

25.3

1 

± 1.

89 

 2.

01 

0.1

818 

 0.4

9 

0.4

960 

 0.

51 

0.4

871  Fungi -

21.

01 

± 6.

61 

 -

17.

06 

± 4.5

3 

 -

31.

59 

± 0.

92 

 -

28.2

7 

± 4.

01 

 7.

48 

0.0

181 

 0.0

8 

0.7

807 

 0.

16 

0.6

941 Gamasid mites                         

 δ 13C [‰] -

23.

37 

± 0.

86 

 -

13.

89 

± 0.3

1 

 -

20.

19 

± 1.

40 

 -

8.78 

± 0.

43 

 20

.5

9 

0.0

008 

 159

.43 

 

<.0

001 

 7.

80 

0.0

175  δ 15N [‰] 130

.14 

± 23

.0

8 

 713

.33 

± 43.

37 

 339

.07 

± 37

.3

5 

 112

1.26 

± 26

.9

7 

 25

.7

5 

0.0

004 

 148

.88 

 

<.0

001 

 11

.9

3 

0.0

054 



 

 

165 

 

Table 6 Summary of input variables of the discriminant function analysis (DFA), i.e. data on 

PLFA, soil properties and microbial respiration. 

   Wilks' Lambda F (3,11) P-level 

Gram+ bacteria i15:0 0.0175 0.2171 0.8825 

 a15:0 0.0242 1.7284 0.2188 

 i16:0 0.0237 1.6062 0.2441 

  i17:0 0.0430 5.8991 0.0119 

Gram- bacteria cy17:0 0.0390 5.0135 0.0198 

  cy19:0 0.0239 1.6448 0.2358 

Unspecified bacteria 16:1ω7 0.0250 1.8939 0.1891 

Fungi 18:2ω6:9c 0.0298 2.9597 0.0792 

Microbial respiration BAS 0.0178 0.2972 0.8267 

 Cmic 0.0179 0.3145 0.8146 

  qO2 0.0175 0.2325 0.8719 

Soil properties pH 0.0320 3.4554 0.0549 

 NO3
- 0.0211 1.0298 0.4170 

 NH4
+ 0.0188 0.5116 0.6825 

 Corg 0.0182 0.3726 0.7745 

 Ntotal 0.0261 2.1450 0.1524 

 δ13C 0.0221 1.2510 0.3384 

 δ15N 0.0173 0.1733 0.9122 
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Table 7 Means ± 1 SE of PLFA markers of the microbial community in rhizotrons after 475 

days. 

   Beech absent (B+)  Beech present (B-) 

   
Ash absent 

(A-)  

Ash present 

(A+)  

Ash absent 

(A-)  

Ash present 

(A+) 

PLFA marker    (Control)  (Ash)  (Beech)  (Mixture) 

Gram+ bacteria i15:0  0.92 ± 0.22  0.81 ± 0.36  1.05 ± 0.21  1.59 ± 0.35 

 a15:0  1.41 ± 0.29  1.04 ± 0.34  1.40 ± 0.24  1.93 ± 0.24 

 i16:0  0.70 ± 0.08  0.66 ± 0.12  0.80 ± 0.06  0.87 ± 0.06 

  i17:0   0.62 ± 0.05   0.74 ± 0.14   0.42 ± 0.04   0.70 ± 0.09 

Gram- bacteria cy17:0  0.72 ± 0.16  0.77 ± 0.13  0.63 ± 0.06  0.84 ± 0.16 

 cy19:0   1.22 ± 0.58   1.13 ± 0.46   1.13 ± 0.22   0.74 ± 0.26 

Unspecified 

bacteria 

16:1ω

7 
 1.35 ± 0.37  0.70 ± 0.35  0.81 ± 0.21  0.98 ± 0.44 

Fungi 18:2ω

6,9 
  0.27 ± 0.16   0.18 ± 0.07   0.33 ± 0.05   0.53 ± 0.15 

 

 

 

 

 

 



 

167 
 

Appendix 2 
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Beech carbon productivity as driver of ectomycorrhizal 

abundance and diversity 

CHRISTINE DRUEBERT, CHRISTA LANG, KERTTU VALTANEN & ANDREA POLLE 

Büsgen-Institut, Abteilung Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077 

Göttingen, Germany 

ABSTRACT 

We tested the hypothesis that carbon productivity of beech 

(Fagus sylvatica) controls ectomycorrhizal colonization, 

diversity and community structures. Carbon productivity 

was limited by long-term shading or by girdling. The trees 

were grown in compost soil to avoid nutrient deficiencies. 

Despite severe limitation in photosynthesis and biomass 

production by shading, the concentrations of carbohydrates 

in roots were unaffected by the light level. Shadeacclimated 

plants were only 10% and sun-acclimated plants were 74% 

colonized by ectomycorrhiza. EM diversity was higher on 

roots with high than at roots with low mycorrhizal 

colonization. Evenness was unaffected by any treatment. 

Low mycorrhizal colonization had no negative effects on 

plant mineral nutrition. In girdled plants mycorrhizal 

colonization and diversity were retained although 14C-leaf 

feeding showed almost complete disruption of carbon 

transport from leaves to roots. Carbohydrate storage pools 

in roots decreased upon girdling. Our results show that 

plant carbon productivity was the reason for and not the 

result of high ectomycorrhizal diversity. We suggest that 

ectomycorrhiza can be supplied by two carbon routes: 

recent photosynthate and stored carbohydrates. Storage 

pools may be important for ectomycorrhizal survival when 

photoassimilates were unavailable, probably feeding 

preferentially less carbon demanding EM species as shifts in 

community composition were found. 

Key-words:beech;diversity;invisibility;nitrogen;productivity; 

understory ecology. 

INTRODUCTION 

Soil microbes are considered as important drivers of plant 

diversity and productivity in terrestrial ecosystems (van der 

Heijden, Bardgett & van Straalen 2008). Mycorrhizal fungi play 

a pivotal role in this respect. In boreal and temperate forests, 

which are usually nitrogen limited, trees depend on their 

associated ectomycorrhizal mutualists to supply them with 

sufficient amounts of nutrients (Read & Perez-Moreno 2003). 

About 75% of annual phosphorus uptake and up to 

Correspondence: A. Polle. Fax: +49 551 3922705; e-mail: apolle@ 

gwdg.de 

80% of nitrogen are derived from mycorrhizal fungi (Simard, 

Jones & Durall 2002; Hobbie & Hobbie 2006; van der Heijden 

et al. 2008). 

The colonization and diversity of ectomycorrhizal fungi at 

roots of forests trees is usually high (De Roman,Claveria & De 

Miguel 2005).The factors controlling this diversity are barely 

understood but abiotic factors such as soil chemistry or 

anthropogenic impacts such as increasing nitrogen deposition are 

important components (Brandrud 1995; Markkola et al. 1995; 

Peter, Francois & Egli 2001; Lilleskov et al. 2002). Although it 

is generally assumed that high diversity will stabilize ecosystem 

functions and services, the role of ectomycorrhizal communities 

in this respect is unknown (Johnson et al. 2005).Experimental 

evidence supporting functional roles of mycorrhizal diversity in 

maintaining plant productivity and diversity mainly stems from 

studies of arbuscular mycorrhizal fungi in grassland ecosystems, 

where high diversity of arbuscular mycorrhizal fungi enhanced 

plant productivity or altered the distribution of nutrients amongst 

co-existing grassland species (Grime et al. 1987;van der Heijden 

et al. 1998;van der Heijden et al. 2006;Vogelsang, Reynolds & 

Bever 2006). However, plants are also expected to affect below-

ground microbial communities for example by carbon supply and 

root exudates,thus, providing feedback loops (Bais et al. 2006). 

Surprisingly little is known on the question how plant 

productivity affects ectomycorrhizal fungal associations and 

their diversity and whether plants can control these communities 

(Johnson et al. 2005). Ectomycorrhizal fungal associations are 

thought to place a high carbon demand on the host plant and, thus, 

plant-fungal interactions may not always be positive, especially 

when carbon resources are limited. In microcosm studies, as 

much as 20 to 30% of current assimilate was allocated to 

ectomycorrhizal fungi (Finlay & Söderström 1992; Söderström 

2002). EM fungi provide the most important path of plant-

derived carbon into soil (Godbold et al. 2006), and recent 

estimates suggest figures of up to 22% of total plant carbon 

allocation to ectomycorrhiza (Hobbie 2006).Already early tracer 

studies indicate that photoassimilates are rapidly translocated to 

992 © 2009 Blackwell Publishing Ltd 
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the roots of ectomycorrhizal plants (Melin & Nilsson 1957). 

When the carbon transport pathway to the roots was interrupted 

by girdling, soil respiration decreased by 50% in a boreal Scots 

pine forest (Högberg et al. 2001).Separation of heterotrophic, 

root and hyphal respiration indicated that ectomycorrhizal 

hyphae contributed 25% to soil CO2 flux (Heinemeyer, Hartley 

& Evans 2007). These examples underline the carbon costs 

incurred by ectomycorrhizas. If costs and benefits were directly 

linked,alterations in carbon supply are expected to directly affect 

root colonization and community structures. However, when 

carbon flow to ectomycorrhiza was restricted by defoliation of 

previous-year needles of Scots pine, no effects on below-ground 

diversity in term of the number of morphotypes or morphotype 

diversity index were observed, but the formation of sporocarps 

decreased (Kuikka et al. 2003). Other studies indicated that 

alterations in carbon availability either by defoliation or by 

enhancing supply through exposure to elevated CO2 affected 

fungal community structures (Godbold & Berntson 1997; 

Saikkonen et al. 1999; Parrent, Morris & Vigalys 2006). 

In forest ecosystems light is frequently a growth limiting 

resource. Very little is known on whether light-driven increases 

in productivity affect the abundance,diversity and community 

structures of ectomycorrhizas. In experimental studies, 

colonization with arbuscular mycorrhizal fungi showed a 

positive relationship with light availability (Pearson, Smith & 

Smith 1991; Vierheilig et al. 2002; Gamage, Singhakumara & 

Ashton 2004; Gehring 2004). In contrast to this, a pot study with 

birch and conifers under controlled conditions showed no 

influence of light on ectomycorrhizal colonization (Dehlin et al. 

2004). Field studies of birch grown in understory, gaps and 

clearings suggested that increasing light availability would 

increase ectomycorrhizal colonization of roots (Cheng, Widden 

& Messier 2005). However, clear correlations were not obtained 

because other factors such as soil properties and plant age also 

varied in this field study and the shade-tolerance of birch as an 

early succession species is limited. 

In Central Europe, European beech (Fagus sylvatica L.) 

dominates the natural forest communities forming monospecific 

stands in a broad range of environmental conditions (Ellenberg 

1996).In the juvenile phase,beech trees are very shade–tolerant, 

but can also adapt to high irradiation displaying considerable 

phenotypic and ecophysiological plasticity (Johnson et al. 1997; 

Parelle, Roudaut & Ducrey 2006). European beech, like all 

Fagaceae, forms only ectomycorrhizal symbioses,which are 

considered as ecologically obligate for this tree species. 

In the present study, we used European beech to address the 

question whether plant productivity affects ectomycorrhizal 

colonization and diversity. In our field experimental study, young 

beech trees were grown densely like natural regeneration forming 

closed canopies in a nutrient rich soil to avoid nitrogen 

limitations. Net primary productivity was manipulated by long-

term shading to test whether differences in productivity would 

cause changes in the abundance of fungal partners,and in return 

affect nutrient allocation to plant tissues. To distinguish between 

recent and stored assimilate supply on abundance and diversity 

of ectomycorrhizal fungi, trees were girdled in the middle of the 

growth season.The disruption of carbon transport was controlled 

in an accompanying experiment by studying 14C below ground 

allocation. The field study was set up to test the following 

hypotheses: (1) low plant carbon productivity will lead to 

changes in the ectomycorrhizal fungi community composition, if 

the fungi have different carbon demand; (2) the relative 

abundance of ectomycorrhizal colonization will not change if 

beech was obligatorily ectomycorrhizal; and (3) alternatively, if 

ectomycorrhizas were controlled by plant carbon productivity, 

decreased colonization is expected as a consequence of carbon 

limitation. 

MATERIALS AND METHODS 

Plants, growth conditions, experimental 

treatments and harvest 

Two-year-old beech trees (F.sylvatica,L.,provenance North 

Germany, seed lot 81009) obtained from a nursery 

(Forstbaumschule Billen, Bösinghausen, Germany) were 

planted in March 2003 into compost soil in the area of the Forest 

Botanical Garden (geographical coordinates: 51°31′48″N, 

9°56′39″E; University of Göttingen, Göttingen, Germany). A 

total of 160 trees were planted at a density of 0.4 ¥ 0.2 m. The 

area was divided in four plots with plastic barriers.Half the 

number of trees was shaded with nets (Hermann-Meyer 

KG,Rellingen,Germany) yielding 65% shading in 2003 and 

2004. In 2005 and 2006, a second net was installed decreasing 

ambient light to about 10% of incident irradiation. 

Compost soil with a pH of 7.2 and the following nutrient 

elements concentrations (mg g-1 dry mass): N: 6, P: 1.3, K: 6.8, 

Ca: 30.4, Mg: 5.7, and S: 1.23 was obtained from Kompostwerk 

GmbH (Niederorla, Germany). The mean seasonal temperatures 

(and sum of precipitation) in the growth phase from 1st of April 

to 30th of September were 15.7 °C (280 mm) in 2003,14.2 °C 

(404 mm) in 2004,14.5 °C (328 mm) in 2005 and 15.4 °C (446 

mm) in 2006. When necessary during dry hot periods, all trees 

were irrigated with tap water. 

On the 30th of June 2006, half of the plants of each light level 

were girdled at the main stem at half of the distance between the 

bottom and the first side branches. A 2-cmwide strip of bark was 

removed around the stem initially retaining a small connecting 

piece (ca. 5 mm width). Since no effects on photosynthesis were 

found after 4 weeks of girdling, the connecting bark strap was 

removed on 7 August. Stem radial diameter was measured once 

a week at a marked position at the stem basis. 

No plant died because of girdling; however, some plants had 

died between 2003 and 2006. Thus, between 30 and 40 plants 

were available per treatment. Plant height was determined by 

measuring the length from the stem basis to the top of the leader 

shoot.Twenty trees of similar height were selected in each 

treatment for further analysis.Ten of these plants were harvested 

5 weeks (first week of August), and a further 10 plants 10 weeks 

after girdling (second week of September). Immediately after 

harvest, aliquots of fresh tissues from five plants per treatment 

were frozen in liquid nitrogen for further biochemical analysis. 

Root systems of five plants per treatment and harvest date were 
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stored at 4 °C for mycorrhizal analysis. All plants were used for 

biomass determination after separation into leaves, stem and 

branches, coarse and fine roots. Dry mass was determined after 

drying for 2 weeks at 40 °C. 

Photosynthesis and chlorophyll fluorescence 

measurements 

Gas exchange was determined with an infrared gas analyser 

(HCM-1000, Walz, Effeltrich, Germany) at saturating 

photosynthetically active radiation (PAR) of 800 mmol light 

quanta m-2 s-1 at 20 °C, and 65% relative air humidity on five 

plants per treatment 1 week before harvest in September. Light 

curves were recorded by increasing the light intensity stepwise 

from zero to 1200 mmol light quanta m-2 s-1. Measurements 

were performed in July on non-girdled, shade- and sun-

acclimated plants (n = 5 per treatment).Photosynthesis (PS) 

curves were fitted by exponential growth equations (software 

Origin7, OriginLab Corporation, Northampton, MA, USA). 

PAR was measured approximately twice a week between 10 

a.m. and 2 p.m. from July to mid-September at the level of the 

upper leaves of five plants per treatment. 

The quantum yield of photochemistry was determined 

regularly from July until harvest in September (MINIPAM, 

Walz, Effeltrich, Germany) at ambient conditions as (Fm′ - 

Fo)/Fm′ (Maxwell & Johnson 2000) (n = 5 plants per treatment). 

Biochemical methods and element analysis 

For pigment analysis, frozen leaves were ground with a pestle 

and mortar in liquid nitrogen to a fine powder, extracted in 80% 

acetone and the absorption of the chlorophyll a, chlorophyll b 

and carotenoids was determined spectrophotometrically as 

described by Lichtenthaler & Wellburn (1983). 

Soluble carbohydrates were determined enzymatically in 

extracts of leaf and root tissue yielding glucose, fructose and 

sucrose concentrations (Beutler 1978). Starch was converted to 

glucose by amyloglucosidase and measured in glucose units. 

Nutrientelementsweremeasuredafterpressuredigestion of dry 

leaf and root tissues in 65% nitric acid by inductively coupled 

plasma optical emission spectrometry (Spectro Analytical 

Instruments, Kleve, Germany) (Heinrichs et al. 1986).Carbon 

and nitrogen were determined in an Elemental Analyzer (Carlo 

Erba, Rodano, Italy).All analyses were conducted in tissues of 

five plants per treatment. 

Mycorrhizal analysis 

Harvested roots were stored at 4 °C and observed within 2 

weeks. They were soaked in water and washed gently to remove 

the adhering soil. Five fine root samples per plant with 200 to 

300 root tips each were observed using a dissecting microscope 

(Stemi SV 11, Zeiss, Jena, Germany). 

Root tips were counted and recorded as vital mycorrhizal, vital 

non-mycorrhizal and dead root tips. To control these 

classifications, selected root tips were embedded (Gafur et al. 

2004) and anatomically inspected (data not shown). Relative EM 

colonization was calculated as EM/(EM + vital non mycorrhizal 

root tips). Mycorrhizal root tips were divided into morphotypes 

according to a simplified system of Agerer (1987–2006) based 

on morphological characters like colour of the mantle, branching 

and appearance and properties of emanating hyphae and 

rhizomorphs. All morphotypes were documented with digital 

photos (Coolpix 4500, Nikon, Düsseldorf, Germany). 

To identify EM species DNA was extracted from aliquots of 

the morphotypes, which had been stored at -80 °C. Frozen EM 

root tips were ground in a mill (Typ MM 2, Retsch, Haan, 

Germany) and extracted using the DNeasy® Plant Mini Kit 50 

(Qiagen, Hilden, Germany) following the instruction of the 

manufacturer. The ITS (internal transcribed spacer) region was 

amplified by PCR using the primers ITS 1 (5′- TCC GTA GGT 

GAA CCT GCG G-3′) and ITS 4 (5′-TCC TCC GCT TAT TGA 

TAT GC-3′) (White et al. 1990). PCR was performed according 

to Landeweert et al. (2005). PCR products were cloned in the 

pGEM®-T System I vector (Promega, Madison, WI, USA) and 

transformed into electrocompetent E. coli cells (TOP TEN, 

Invitrogen, Carlsbad, CA, USA). Positive clones were sequenced 

(ABI Prism 3100 Genetic Analyser, 36 cm capillary, Matrix Pop 

6, Applied Biosystems Foster City, CA, USA). The sequences 

were compared with those present in UNITE database (Kõljalg 

et al. 2005, http://unite.ut. ee/) and NCBI database 

(http://www.ncbi.nlm.nih.gov/). UNITE is a databank for 

ectomycorrhizal fungi, which requires deposition of specimen 

and therefore is usually more reliable than NCBI,which is a 

general database for all kinds of sequences. 

14C glucose below ground allocation 

In an independent experiment, one year old beech plants grown 

in pots in a greenhouse,were transferred to a growth cabinet and 

maintained under 16 h light (200 mmol photosynthetic active 

radiation)/8 h darkness, 20 °C and 60 to 70% relative air 

humidity. Six plants were girdled 3 cm above soil level by 

removing an about 1-cm-broad strip of bark. Further six plants 

remained intact.After 1 h the third fully expanded top leaf was 

rubbed with silicium carbid (‘Carborund’, ESK-SIC GmbH, 

Frechen, Germany) and immediately supplied with 50 ml 5 mCi 

glucose (Moravek Biochemicals, Brea, CA, USA). The plants 

were watered regularly and harvested after 3 and 6 d. The plants 

were separated into the following fractions: coarse roots, fine 

roots, a 1-cm-long stem piece directly below the girdle (separated 

in bark and wood), a 1-cm-long stem pieces directly above the 

girdle (separated in wood and bark) and residual materials.The 

plant materials were dried for 24 h at 70 °C, and the exact mass 

of each plant fraction was determined.The samples were 

combusted in a biological oxidizer (Ox500, Zinsser, Frankfurt, 

Germany) using the carbon-14 standard for sample oxidizers 

from Amersham International (Plc., Amersham, UK) as the 

standard. Resulting 14CO2 was trapped in a liquid scintillation 

cocktail (Zinsser Analysis Oxysolve TC-400, Zinsser Analytic, 

Frankfurt, Germany). The radioactivity was measured in a liquid 

http://unite.ut/
http://www.ncbi.nlm.nih.gov/
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scintillation analyser (Tri-Carb 2800 TR, PerkinElmer Life 

Sciences, Wellesley, MA, USA). Total radioactivity was 

determined in each of the fractions and related to the applied 

amount of radioactivity: tissue label (%) = (total activity in a 

plant fraction) * 100/(total applied radioactivity). 

Data analysis 

The following diversity indices were calculated: species richness 

H(max) = ln(number of all species), ShannonWiener index, H′ 

=-Spi ln pi, where p is the probability of the species i, and 

Evenness = H′/H(max) (Shannon & Weaver 1949). The 

sampling unit ‘plant’ served as the basis for calculating these 

indices, if not indicated differently. 

Statistical analysis was performed using Statgraphics Plus 3.0 

(StatPoint, Inc., St Louis, MO, USA). The experiment had a 

randomized block design with the factors light and girdling. Data 

in figures and table are indicated are as means ( 1 SE) when 

assumptions for normality were met (Shapiro-Wilks Test W, P < 

0.05) and were compared by anova and a multiple range test 

(LSD). If assumptions of normality were not met, data were log 

transformed before anova. Means were considered to be 

significantly different from each other, if P  0.05. Significant 

differences are indicated in tables and figures by different letters. 

Regression curves were plotted with the programme Origin 7G 

(Origin Lab, Corporation, Northhampton, MA, USA). 

RESULTS 

Light limitations affect growth but not carbon 

storage in roots 

To limit carbon availability, beech trees were grown for four 

seasons under limiting light. Maximum rates of lightsaturated 

photosynthesis were about 2 and 9 mmol CO2 m-2 s-1 in shade 

and sun acclimated plants, respectively, in the fourth season 

(Table 1). Chlorophyll concentrations showed typical 

adaptations to shade and sun, respectively (Table 1). Under 

ambient light net photosynthesis (NP) rates were estimated on 

the basis of light response curves of sun-acclimated plants [NP 

= 6.59 + (-8.12 e (PAR/-109.75)), r2 = 0.9856] and shade-

acclimated plants [NP = 2.42 + (-3.11 e (PAR/-56.20)), r2 = 

0.9848]. Sun-acclimated plants maintained photosynthetic 

activities close to the maximum, whereas shade-acclimated 

plants operated just above the light compensation point of 13 

mmol light quanta m-2 s-1 (Table 1). The photosynthetic 

limitation resulted in significantly diminished growth and 

biomass production in shade-grown compared with sun-grown 

trees but not in differences in biomass allocation between above 

and below ground plant tissues as indicated by similar root-to-

shoot ratios of sun- and shade-acclimated plants (Table 1). 

Soluble carbohydrate concentrations calculated as the sum of 

glucose, fructose and sucrose of sun-acclimated leaves were 

higher than those of shade-acclimated leaves, whereas the foliar 

starch concentrations were unaffected (Fig. 1a,b). Soluble 

carbohydrates of coarse and fine roots as well as starch 

concentrations of fine roots of sunacclimated plants were 

similar to those of shade-acclimated plants (Fig. 1c,e,f).The 

starch concentrations in coarse roots of shade-acclimated plants 

were even higher than those of sun-acclimated plants (Fig. 1d). 

This indicates that 

Table 1. Photosynthesis, growth, biomass, pigments 

and carbohydrates in beech (Fagus 

sylvatica) grown in full sun or with limited 
light 

aData were log-transformed for statistical analysis. 

NS, non-structural. 

Estimated photosynthesis (mmol CO2 m
-2 s-1) was calculated on the basis of the equations for the 

light response curves (see text) and repeated light measurements (PAR*) from July to September. 

Maximum photosynthesis was determined in September at saturating photosynthetically active 

radiation of 800 mmol quanta m-2 s-1. Non-structural carbohydrates were determined as the sum of 

starch,glucose,fructose and sucrose in fine and coarse roots (n = 5, 1 SE). Different letters in rows 

indicate significant differences at P  0.05. 

 Sun control Sun girdled Shade control Shade girdled 

PAR (mmol m-2 s-1)a 980  123b 990  128b 20  3a 19  2a 

Photosynthesis (estimated) 6.05  0.28b 6.14  0.23b 0.21  0.07a 0.22  0.11a 

Photosynthesis (max) 8.85  1.49b 9.02  0.39b 2.21  0.28a 2.11  0.49a 

Chl (a + b) (mmol g-1 FW) 2061  312a 1906  105a 4025  332b 3729  266b 

Leader shoot heighta (m) 0.88  0.34b 0.94  0.38b 0.61  0.20a 0.56  0.16a 

Stem incrementa (‰ per week) 15.8  5.3b 12.0  5.9b 8.4  4.9a 3.8  3.1a 

Biomassa (g) 664  131b 680  146b 34  8a 26  2a 

Root/shoot 0.55  0.06b 0.35  0.03a 0.59  0.03b 0.49  0.02b 

NS carbon (mg whole root-1) 3901  157c 2850  275b 309  21a 143  19a 
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Figure 1. Soluble carbohydrates and starch in leaves (a, b), coarse roots (c, d) and fine roots (e, f) of beech (Fagus sylvatica) grown in full sun or with 

limited light. Plants were grown under shading nets with about 10% of incident radiation (black bars) or in full sun (white bars) for 4 years. Half of the 

plants of each light level were girdled (hatched bars). Soluble carbohydrates were determined as the sum of glucose, fructose and sucrose in September. 

Data indicate means (n = 5, 1 SE). Different letters in rows indicate significant differences at 

P  0.05. 

despite severe light limitation of photosynthesis, below ground 

storage pools of carbon were not depleted. 

Girdling has no immediate implications for 

photosynthesis but leads to depletion in root 

carbon storage pools 

To limit flux of recently fixed carbon to the roots,a subset of 

trees from each light regime was girdled in the mid of the 

growth season, initially partly and after five weeks completely. 

Girdling had no negative effect on quantum yield of 

photochemistry (not shown), CO2 assimilation or gross biomass 

but caused a loss in root relative to shoot biomass in sun-

acclimated plants (Table 1). Girdling did not affect 

carbohydrate concentrations in the leaves (Fig. 1a,b). 

Since we had expected accumulation of carbohydrates and 

feed-back inhibition of photosynthesis in response to girdling, we 

wondered whether the girdle could be circumvented by radial 

transport of carbohydrates into the xylem ray parenchyma cells, 

transport in radial and axial ray cells with possible reallocation 

into the bark below the girdle.To investigate this possibility, a 

radioactive labelling experiment was conducted under controlled 

conditions.A mature top leaf was fed with 14C glucose and the 

relative distribution of the label above and below the girdle and 
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in the root system was analysed after 3 and 7 d. After these 

exposure 

Controls were harvested at the corresponding positions. 

times, coarse and fine roots of non-girdled controls showed a 

strong accumulation of the applied label, whereas in the root 

system of girdled trees only traces were detected (Table 2).A 

sizable fraction of the label was also present in the throughflow 

of the irrigation water of non-girdled trees, whereas only traces 

were present in the irrigation water of girdled trees (Table 2). 

Along the transport path, girdled trees showed an accumulation 

of the label in xylem and bark above but a strong decrease below 

the girdle (Table 2). In control trees, no gradient was observed at 

corresponding positions of the stem.This shows that although 

girdling does not interrupt belowground carbon allocation 

completely, the fraction of carbohydrates reaching the 

belowground compartment was only marginal accounting for 

0.01% and 0.25% in coarse and fine roots compared with non-

girdled controls. 

In the field experiment, the concentration of nonstructural 

carbon in roots, especially that of starch in coarse roots of shaded 

plants, decreased as a consequence of girdling (Fig. 1d). As the 

replenishment of carbon resource in the girdled trees was 

negligible, carbon consumption rates of the roots can be assessed. 

Using biomass data for fine and coarse roots, the total pool sizes 

of the metabolically active carbon fraction (sum of 

glucose,fructose,sucrose and starch) were calculated (Table 1). 

Within 10 weeks, girdled sun- and shade-grown beech trees lost 

27% and 54%, respectively, of the total carbohydrates compared 

with nongirdled controls. 

Light limitation and girdling have different 

impact on mycorrhizal abundance and diversity 

Fine roots of beech trees grown under full sun light showed about 

twice higher fractions of dead root tips than shadeacclimated 

trees (Fig. 2a). The vital root tips of shadeacclimated trees 

displayed very low colonization with ectomycorrhizal fungi in 

comparison with trees grown in full sun light (Fig. 2b). Girdling 

had no influence on ectomycorrhizal abundance but resulted in a 

trend towards higher root mortality in roots of shade-acclimated 

trees (Fig. 2a,b).The maintenance of ectomycorrhizal abundance 

and proportion of colonization was unexpected and suggested 

that the observed decreases in root carbohydrate storage were not 

only utilized for self support of root structures but also to feed 

mycorrhizas. 

To find out whether differences in growth and plant biomass 

production as well as girdling affected the composition of the 

fungal communities, morphotyping was combined with 

sequencing of the ITS region to identify fungi and to obtain 

quantitative data on root colonization. We have been able to 

obtain sequence information for 11 out of initially 20 different 

fungal morphotypes. The 11 sequences belonged to 7 different 

species yielding a total number of 16 putatively different fungal 

species forming ectomycorrhizas with the beech trees in this 

experiment (Supplementary files 1A & B). We can not exclude 

that these numbers overestimated species richness because we 

have not been able to obtain PCR products for all morphotypes. 

However, the non-sequenced morphotypes were dissimilar 

(Supplementary file 1B). Based on these species numbers, total 

species richness at roots of shade- and sunacclimated beech 

trees was 3 and 14, respectively, and not affected by girdling 

(Supplementary file 1C). Only one species, an uncultured ECM 

(MT1), occurred at root tips of all treatments. 

Shannon-Wiener indices (H′) were calculated for each root 

sample (mean root sample = 988  57 vital root tips, n = 5 per 

experimental variable).H′ was significantly higher for 

ectomycorrhizas at roots of sun-acclimated than for those of 

shade-acclimated trees (Fig. 2c). Girdling had no significant 

influence on H′ (Fig. 2c). Overall, these results show that if there 

were more root tips amenable for mycorrhizal colonization, they 

were colonized by more different fungal species and not by 

more fungi of the same species. 

To find out whether changes in community composition 

observed at roots of light-limited and sun-exposed or girdled 

Table 2. Carbon transport to roots after girdling 

Treatment 

Chase time 
(d) 

Wood (a) 
(%) 

Bark (a) 
(%) 

Wood (b) 
(%) 

Bark (b) 
(%) 

Coarse roots 
(%) 

Fine roots 
(%) 

Through flow 
(%)a 

Control 3 0.13  0.05 0.27  0.07 0.17  0.03 0.35  0.08 13.85  2.98 4.33  1.07 0.121 

Girdle 3 0.70  0.22 1.09  0.12 0.06  0.02 0.04  0.01 0.00  0.00 0.05  0.02 0.033 

Control 7 0.06  0.01 0.17  0.07 0.05  0.01 0.18  0.08 10.00  3.78 4.76  1.21 0.128 

Girdle 7 0.99  0.51 1.86  0.64 0.07  0.01 0.05  0.02 0.01  0.00 0.04  0.01 0.000 

P(girdle) 0.026 0.005 0.069 0.006 0.001 0.001 nd  

P(time) 0.693 0.337 0.026 0.218 0.447 0.800 nd  

Interaction 0.525 0.213 0.013 0.167 0.446 0.792 nd  

aRadioactivity in through flow was determined a pooled sample. 

Data indicate fraction of radioactivity (%) recovered in wood, bark, coarse and fine roots of young beech (Fagus sylvativa) trees after 14C glucose feeding 

via a leaf. Six trees were girdled 1 h before application of 14C glucose to the leaf and six trees were kept as controls. Total radioactivity applied to the 

leaf was set as 100%. Trees were maintained in a growth cabinet during the labelling and chase phase and harvested 3 and 7 d after labelling (n = 3 per 

time point and treatment. (a) refers to wood and bark directly above and (b) below the girdle. 
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and non-girdled trees affected dominance structures, we 

calculated evenness. There were no significant differences 

between the treatments. Mean Evenness across 

 

Shade-C    Shade-G   Sun-C        Sun-G 

Figure 2. Proportion of dead root tips (a), mycorrhizal 

colonization of vital roots tips (b) and Shannon-Wiener index H′ of 

mycorrhizal roots of beech (Fagus sylvatica) grown in full sun or with 

limited light. Plants were grown under shading nets with about 10% of 

incident radiation (black bars) or in full sun (white bars) for 4 years. 

Half of the plants of each light level were girdled (hatched bars). 

Measurements were taken in August and September. As no significant 

differences were found between data, means of both sampling dates 

are shown (n = 10, 1 SE). Different letters in rows indicate significant 

differences at P  0.05. 

all treatments was 0.71  0.02. We conclude that beech trees 

showed a surprisingly stable pattern of dominance structures of 

their ectomycorrhizal communities, although the colonization 

of the roots tips varied strongly (Fig. 2) and the species 

composition changed with light level and girdling 

(Supplementary files). 

Mycorrhizal abundance and diversity in relation 

to beech productivity and nutrition 

As low rates of mycorrhizal colonization can lead to insufficient 

nutrient uptake, which in turn may affect growth, nutrient 

element concentrations were determined in fine roots and leaves 

(Table 3). The nitrogen concentrations of leaves and roots of the 

shade-grown plants were higher than those of sun-exposed plants 

(Table 3). The concentrations of other nutrients were more 

variable than those of nitrogen. Roots of girdled, sun-exposed 

trees contained more P than roots of girdled,shade-exposed trees 

(Table 3). In roots of non-girdled trees, differences between the 

harvest in August and the harvest in September were observed, 

but there were no effects of shading (Table 3). Other nutrients 

were usually higher or unaffected in shadecompared with sun-

exposed plants (Table 3). We conclude that the productivity of 

shade-exposed plants was only limited by light and not by 

nutrients.Therefore,mycorrhizal colonization and diversity of 

shaded plants were dependent on plant productivity and not vice 

versa. 

We plotted biomass as independent and diversity H′ as 

dependent variable to investigate the relationship between these 

parameters (Fig. 3). The best fit was obtained for an exponential 

function (Fig. 3). A similar relationship was obtained for biomass 

and mycorrhizal colonization rates (Fig. 3) because H′ was 

increased in samples with high mycorrhizal abundance (Fig. 

2b,c). 

DISCUSSION 

Beech productivity governs ectomycorrhiza 

abundance and diversity 

Understanding the links between aboveground and belowground 

communities is one of the challenging tasks of ecology (Bardgett 

et al. 2005). In forest ecosystems, analysis of the relationship 

between beech productivity and diversity of the associated root 

fungi is hampered by soil patchiness, nutrient availability, tree 

age and other variables. To test the hypothesis that plant 

productivity was the reason for and not the result of high 

ectomycorrhizal diversity, our study was conducted under 

conditions where these factors were excluded. A draw-back of 

such experimental conditions is that the fungal community and 

colonization found at the roots of beech were not typical of a 

forest situation. Beech roots are usually almost completely (99%) 

colonized by a highly diverse ectomycorrhizal flora (Taylor, 

Martin & Read 2000; Rumberger et al. 2004; Buée, Vairelles & 

Garbaye 2005; Grebenc & Kraigher 2007). Repeated samplings 

across different seasons revealed up to 90 different morphotypes 

on beech roots in an undisturbed oldgrowth forest (Pena et al., 

unpublished results). But species numbers depend on the 

sampling scheme (Taylor 2002).For example, beech roots 

sampled once along a north–south transect at sites differing in N 

pollution showed between 11 and 20 different morphotypes, 

which is within the range of morphotypes found in our study. 



Beech productivity and ectomycorrhiza 999 

© 2009 Blackwell Publishing Ltd, Plant, Cell and Environment, 32, 992–1003 

Similar figures were also reported for beech grown on relatively 

sandy soil 

indicate significant differences at P  0.05. 

(Rumberger et al. 2004).We can not exclude that the nutrient rich 

compost soil, which we used to avoid nutrient limitations 

affected diversity and root colonization. For example, the 

unusually high number and abundance of Tuber species might 

have been caused by the relatively high soil pH (Pruett, Bruhn & 

Mihail 2008). There is evidence that ectomycorrhizal species 

richness is suppressed by high nitrogen availability (Jonsson, 

Anders & Tor-Erik 2000; Peter et al. 2001; Lilleskov et al. 2002; 

Carfrae et al. 2006; Parrent et al. 2006; Avis, Mueller & 

Lussenhop 2008), although the development of species rich 

nitrophilic communities has also been observed (Kranabetter, 

Durall & 

 

Biomass (g plant−1) 

Figure 3. Relationship of diversity (white circles) of fungal taxa or 

proportion of ectomycorrhizal roots colonization (black circles) with 

biomass of beech (n = 5, 1 SE). Diversity was fitted by exponential 

increase (line). 

MacKenzie 2008). Despite these uncertainties, our study clearly 

demonstrates that ectomycorrhizal colonization of roots was 

strongly related to beech net primary productivity and that 

increasing colonization was accompanied with increasing 

diversity of the fungal community at root tips. 

In our study, shade grown beech trees showed acclimation of 

photosynthetic parameters and productivity similar to those in 

Table 3. Nutrient element concentrations (mg g-1 dry mass) in leaves and roots of beech (Fagus sylvatica) grown in full sun or shade 

Tissue Element 

1st harvest 

 

Shade control Sun control 

2nd harvest 

 

Shade control Sun control 

2nd harvest  

Shade girdled Sun girdled 

Leaf C 458.3  9.6c 473.6  4.1e 433.7  2.0a 464.5  2.9cd 445.1  2.7b 465.7  5.4d 

Leaf N 26.20  0.64cd 21.69  2.03a 27.98  2.71d 23.08  2.38ab 25.10  2.10bc 20.93  1.51a 

Leaf P 0.95  0.29a 1.21  0.07ab 1.51  0.32c 1.35  0.18bc 1.37  0.07bc 1.24  
0.19bc 

Leaf K 8.09  3.75b 4.51  0.51a 15.39  1.89d 6.46  1.09ab 12.29  2.53c 4.95  0.69a 

Leaf S 1.21  0.42a 1.24  0.08a 1.79  0.18c 1.52  0.11bc 1.65  0.17c 1.27  
0.180ab 

Leaf Ca 8.82  3.91a 10.19  2.41a 15.21  2.23b 11.16  2.96a 10.01  1.0a 10.43  1.66a 

Leaf Mg 2.17  0.78a 2.51  0.29ab 3.05  0.67b 2.32  0.32a 3.01  0.21b 2.16  0.44a 

Leaf Mn 0.02  0.01ab 0.02  0.01bc 0.03  0.01d 0.02  0.01bc 0.03  0.01cd 0.01  0.01a 

Leaf Fe 0.44  0.23bc 0.19  0.09a 0.81  0.27d 0.31  0.09ab 0.56  0.19c 0.18  0.08a 

Root C 465.5  5.4bc 454.0  13.4a 468.2  5.9c 455.3  12.8ab 475.2  3.4c 465.6  1.6bc 

Root N 16.97  2.28b 11.18  1.56a 17.13  1.73b 11.83  0.52a 16.27  4.33b 11.39  1.16a 

Root P 1.16  0.57a 1.62  0.66ab 1.46  0.67ab 1.32  0.29a 1.25  0.39a 2.17  0.93b 

Root K 3.93  1.75a 3.78  0.97a 5.19  1.38a 4.13  0.27a 5.00  1.61a 4.18  0.63a 

Root S 1.59  0.65c 1.07  0.34ab 1.32  0.13bc 1.08  0.19ab 1.07  0.11ab 0.97  0.19a 

Root Ca 13.42  5.48b 9.59  2.91a 9.53  1.26a 9.26  2.39a 9.23  0.81a 8.75  2.11a 

Root Mg 1.86  0.78a 1.98  0.43a 1.81  0.27a 1.89  0.36a 1.73  0.38a 1.88  0.34a 

Root Mn 0.07  0.03ab 0.07  0.02b 0.05  0.01ab 0.05  0.02ab 0.05  0.02a 0.05  0.01a 

Root Fe 1.45  0.67abc 1.85  0.51c 1.01  0.24a 1.68  0.83bc 1.05  0.46ab 1.14  
0.31ab 

Data indicate means (n = 5, SD) of harvest 1 (first week in August) and harvest 2 (second week in September). Different letters in rows 
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previous studies (Tognetti et al. 1998; Lichtenthaler et al. 

2000).The strong dependence of mycorrhizal colonization on 

host productivity may shed further light on the significance of 

below-ground hyphal networks connecting trees with each other 

in forest ecosystems. Our data suggest that strongly light-limited 

understory plants may not be able to invest sufficient own 

carbon into mycorrhizas, whose functions may, however, be 

essential to satisfy their nitrogen requirement in nutrient-limited 

environments. In fact, oak seedlings connected with congeneric 

trees by mycorrhizal nets contained increased foliar nitrogen 

concentrations compared with unconnected seedlings (Dickie, 

Koide & Steiner 2002). In understory, the connection of 

carbonlimited trees with a hyphal web subsidized by light-

exposed, mature trees might be ecologically beneficial and grant 

their survival, even if the actual carbon exchange between the 

trees is marginal (Robinson & Fitter 1999). 

Functional differences of recent photosynthate 

and stored carbohydrates for ectomycorrhizas 

The observed relationships between mycorrhizal colonization, 

species richness, and diversity might have been expected 

according to ecological concepts relating resistance of 

invasibility of new species to resource limitations (Levine & 

D’Antonio 1999). In such a system higher 
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photoassimilate production would increase fine root 

productivity and, thus, increase the ability of novel EM taxa to 

invade (Davis, Grime & Thompson 2000). In the wider context 

of our data, this explanation is, however, too simplistic. First, 

we always analysed the same number of vital root tips;the high 

proportion of non-mycorrhizal root tips in light-limited plants 

indicates that‘available’ root tip per se is an insufficient 

indicator to predict ectomycorrhizal diversity. Second, the 

carbohydrate concentrations in the root systems of sun-

acclimated trees were similar to those of light-limited 

trees.Therefore, root carbohydrate concentrations can also be 

excluded as the direct cause of increased proportion of root 

colonization and increased diversity of ectomycorrhizal fungi. 

It is possible that carbon exudation is required to attract and 

enable the installation of ectomycorrhiza,and that the 

interaction is further regulated by hormonal signals (Mathesius 

2003; Morgan, Bending & White 2005).The links between such 

plant-born signals and diversity of EM fungi will have to be 

addressed in future studies. 

As ectomycorrhizal symbiosis involves reciprocal transfer of 

carbon and nutrients between plant and fungi, feedbacks of low 

EM colonization on plant nutrition might have been expected. 

The foliar N concentrations in beech of our study were in the 

range of those found in field studies across Europe (Bauer, 

Schulze & Mund 1997; Duquesnay et al. 2000). Increased foliar 

N concentrations in shadeacclimated plants reflect higher 

investment into photosynthetic structures and excluded negative 

effects of low EM colonization on nutrient supply to these 

plants. The sunexposed plants with high biomass production 

contained lower N concentrations in their tissues, but whole-

plant N uptake was strongly increased because of the significant 

increase in biomass production. Among the abundant EM taxa 

colonizing roots of sun-exposed trees, two species, an 

uncultured EM and Tuber maculatum, were characterized by 

emanating hyphae which may extend the soil volume used for 

nutrient foraging (Agerer 2001). Such EM associations may be 

important to satisfy higher N demand of sunexposed plants. 

Furthermore, the maintenance of such species may be too 

expensive for carbon-limited beech because long distance 

exploration types of EM fungi, e.g. Suillus sp., have higher 

carbon demand than species with a short radius of soil 

exploration or species that may acquire carbon by saprotrophic 

mechanisms, e.g. Piloderma sp. (Heinosala, Hurme & Sen 

2004; Saravesi et al. 2008). Overall, our results show that 

mycorrhizal colonization is under host control, and that host 

carbon productivity is a pre-condition for ectomycorrhizal 

diversity. 

This conclusion was also supported by the results of girdling 

experiments. Ectomycorrhizal fungi are considered important 

sinks for carbon, which are rapidly supplied with carbohydrates 

from current photosynthetic activities (Melin & Nilsson 1957; 

Heinosala et al. 2004). In pulsechase feeding experiments with 

Scots pine, maximal C uptake in the extramatrical mycelium 

occurred within 3 d (Leake et al. 2001). One might, therefore, 

expect that disruption of this carbon supply would cause a 

relatively rapid loss in ectomycorrhizas. However, this was 

neither observed in the present relatively short-term study nor 

in other girdling experiments with mature beech in forest 

ecosystems lasting more than 1 year (Pena et al., unpublished 

results). Similarly, Kuikka et al. (2003) and Högberg et al. 

(2001), who restricted carbon flux to roots of Scots pine by 

defoliation or girdling, respectively, found no rapid loss in 

ectomycorrhizal colonization proportion or loss in diversity. 

Since beech – unlike conifers – may have the possibility to 

circumvent the girdle by carbon transport through axial 

parenchyma cells, we have also demonstrated that girdling was 

very efficient in disrupting basipetal carbon transfer. Therefore, 

our data document that the consumption of carbohydrate 

reserves must have enabled the maintenance and survival of 

ectomycorrhizal as well as non-mycorrhizal roots. This was 

supported by the observation that increases in necromass in 

response to girdling were not significant. The higher fraction of 

dead root tips in sun- compared with shade-exposed trees may 

be caused by slower decomposition of ectomycorrhizal than of 

non-mycorrhizal roots (Langley, Chapman & Hungate 2006). 

In our study, the dominance structures of EM were 

surprisingly stable since Evenness did not change across all 

treatments. However, there were small changes in the community 

composition on roots of girdled trees compared with those of 

non-girdled trees at the two different sampling dates. At first 

glance, this was surprising since one might assume that the same 

host species in same soil might have the same preferences for 

ectomycorrhizal partners. However,it has also been shown that 

the carbon demand of fungal taxa is different and that plants 

allocate more carbon to more beneficial mutualists (Rosling, 

Landahl & Finlay 2004;Bever et al. 2009).Therefore,the 

community pattern is expected to change, if fungi with lower 

carbon demand would be favoured or would be more competitive 

when the supply with recent photoassimilates stopped.We noted 

that the abundance of a common fungal taxon (MT13) of 

shadeacclimated trees, which forms only small EM structures 

with a smooth mantle, increased consistently in girdled sun-

acclimated trees. However, since only one taxon was involved, 

the overall changes in community structures were small. 

Our study suggests that carbon stored in the root systems is 

normally not used by the fungal partners, but can apparently be 

shunted to support ectomycorrhizal structures if supply with 

current assimilates is restricted. How this sink regulation 

functions is an interesting question, but beyond the scope of this 

study. The supply with plant-derived carbon from recent 

photosynthate or storage pools appears to be flexible and the 

regulation may be important to understand ectomycorrhizal 

diversity patterns. Since the abundance of most major fungal 

species did not change after girdling, we assumed that installation 

of ectomycorrhizal structures may be more energy-consuming 

than their maintenance. Therefore, it may be more favourable to 

keep the mycorrhiza than to abandon and re-install them. 

Investment and running costs should be included in cost-benefit 

analysis and other modelling exercises to quantify and assess 

root-mycorrhizal interactions. Economic market models 

depending on the exchange of ‘goods’ may be too simplistic 

(Kummel & Salant 2006). 
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