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Effect of nitrogen fertilizer on nitrogen assimilation and seed quality of amaranth

(Amaranthus  spp.) and quinoa (Chenopodium quinoa Willd)

Abstract

Amaranth and quinoa are protein-rich pseudocereals and may be used as an alternative

source for non-allergenic food products. Seed composition of amaranth (Amaranthus

spp.) and quinoa (Chenopodium quinoa Willd) varieties produced under Northern

Germany conditions in 2001 and 2002 was investigated. Amaranth and quinoa seeds

contained high protein contents. Their amino acid content was accepted as sufficient for

the human nutritional requirements. The proteins were especially rich in lysine. The

insoluble dietary fiber was the main part of the dietary fiber content in the seed.

Amaranth flour had more pasting viscosity than wheat flour.

The effects of nitrogen fertilizer on nitrogen assimilation and seed composition of

amaranth and quinoa plants were determined. Nitrogen fertilizer application affected the

increase of the grain weight, biomass, grain yield and harvest index. Nitrogen use

efficiency, nitrogen utilization efficiency, nitrogen harvest index and grain yield per unit

of grain nitrogen decreased with increased nitrogen fertilizer rates.

Nitrogen fertilizer application affected the increase of seed protein and linoleic acid

content but decreased albumin-1 fractions. The concentrations of essential amino acids

were not affected by nitrogen fertilizer application. Albumin-1 fractions had high lysine

content, while albumin-2 fractions had high leucine content. Globulin fractions contained

higher concentrations of essential amino acids than the other fractions, but lower content

of lysine. Glutelin fractions were well balanced in their essential amino acids with

exception of methionine. The dietary fiber content was not changed, whereas an increase

of the pasting temperature of flours obtained from amaranth and quinoa seeds was

negatively related to the nitrogen supply.

The present results showed the high potential of amaranth and quinoa seeds in human diet

utilization. Nitrogen fertilizer application could be an advantage to improve the

nutritional values by increasing protein content and maintaining concentrations of

essential amino acids.
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INTRODUCTION

1 Introduction

Food allergy is defined as an adverse reaction to foods that is mediated immunologi-

cally and involves specific imunoglubolin E (IgE) or non-IgE mechanisms (Papageor-

giou, 2001). Within the European Union, food allergies affect about 5 to 10 million

people (Crevel, 2001). Wheat and other cereal grains such as rice, maize and barley

are well known causes of food allergies (Nakamura, 1987). Related allergens were not

observed in amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd).

Therefore, grains from these crops may be used as an alternative source for non-

allergenic food products.

Amaranth and quinoa are protein-rich pseudocereals. They are dicotyledons con-

sisting of starchy seeds and able to grow well even under unfavorable environmental

conditions. They are more protein-rich than the main cereal crops (Ahamed et al.

1998). Furthermore, the amino acid composition of their proteins corresponds rather

to the FAO standards for human nutrition than that of many other plant proteins. In

addition, their fat contents are similar to other cereals, especially the unsaturated fatty

acid composition and content is in a balanced spectrum.

The major quinoa producing countries are Bolivia, Peru and Ecuador. Recent data

from the year 2000 showed that the quinoa production amounted to 55,000 tons from

an area of 80,000 ha (Taylor and Parker, 2002). Amaranth was grown in South

America and in some countries of Asia and Africa (e.g. China, India, Ethiopia,

Kenya) it was cultivated too.  In European countries as Austria, Czech Republic,

England, Germany, Hungary, Italy, Poland, Russia and Slovakia, amaranth production

is developed as well. Both China and Russia have production areas of more than

100,000 ha and grow amaranth mainly for feed use. A commercial amaranth produc-

tion for human nutrition is established in Mexico, South American countries, USA,

China, Poland, and Austria (Berghofer and Schoenlechner, 2002). Valuable amaranth

germplasms of more than 3000 accessions are available for breeding programs (Mu-

jica and Jacobsen, 2003).
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INTRODUCTION

Quinoa belongs botanically to the Chenopodiaceae family, which is found world-

wide. The majority of these family are weedy plants. The interest of quinoa as a valu-

able crop has been renewed because of its versatility. Quinoa is able to grow under

conditions normally inhospitable to other grains. These conditions include low rain-

fall, high altitude, sub-freezing or high temperatures (Ahamed et al. 1998). For ama-

ranth, the major grain-producing species are A. cruentus L., A. hypochondriacus L.

and A. caudatus L. that are spread throughout the tropic and temperate zones. The hy-

bridization of both species is useful because of their shorter plant height and earlier

maturity. Recently, weed amaranth, A. hybridus L. is also used for grain production.

Amaranth uses the C4 photosynthesis pathway, which has a high efficiency of carbon

dioxide utilization, high photosynthesis rate at high temperature and drought tolerance

(Williams and Brenner, 1995).

Amaranth and quinoa are important crops in South America since many centuries.

Since the 1970’s their seeds have received attention by many investigators due to the

valuable sources of protein and amino acids that are deficient in other cereals.  Re-

cently, they are used in several world regions for nutritional balance improvement and

the healthy food production (Ahamed et al. 1998; National Research Council, 1989).

Amaranth species have 720 to 1320 g m-2 total biomass and obtain 140 to 300 g m-2

grain, while quinoa produces 238 to 636 g m-2 total biomass and contain 215 to 294 g

m-2 grain. The harvest indexes (HI) is ranging from 0.2 to 0.3 in amaranth and from

0.2 to 0.5 in quinoa (Aufhammer et al. 1995, Spehar et al. 1998). The fertilizer use

efficiency is an important factor due to the cost of production and various environ-

mental affects. Nitrogen is the primary limiting nutrient for grain production. Nitrogen

availability and supply varied between species depending on their requirements (Sin-

clair and de Wit, 1975). The different efficiency in nitrogen use between levels of ni-

trogen supply and among genotypes of maize was reported by Moll et al. (1982).

Wyss et al. (1991) described that genetic differences in assimilate uptake and

remobilization by source and utilization efficiencies of sink had profound effects in

the seed on its protein concentration. Kaul et al. (1996) found in linseed, rapeseed,

sunflower, faba bean and white lupine that the nitrogen uptake and the amount of the

nitrogen residues were correlated with the dry matter production.
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INTRODUCTION

Elbehri et al. (1993) reported that amaranth grain yield responded to nitrogen fertilizer

in the most environments and it also increases lodging of the plants. Myers (1998) de-

scribed that with increased nitrogen fertilization from 0 to 180 N ha-1 the yield in-

creased by 43 %. This is in contrast to results of Bressani et al. (1987), which found

that yield of amaranths were not significant effected by the fertilizer rate. In amaranth,

effects of environmental conditions on yield have been reported. The semidwarf culti-

var ‘K432’ produced low grain yield in dry environments but the highest grain yield

was obtained under cool and moist conditions (Henderson et al. 2000).

The content of nutrients in amaranth seeds is similar to that of quinoa seeds in regard

to protein, fat and carbohydrate contents, but it is higher in crude fiber content than

that of quinoa. The seeds of both pseudocereals contain higher quantity and quality of

protein than the major cereals. Wild and cultivated amaranth and quinoa plants vary in

their grain protein content from 13 to 21% DM and 12 to 19% DM respectively

(Ahamed et al. 1998; National Research Council, 1989, Zhelenov et al. 1997). The

essential amino acid content in amaranth seeds is up to 47.6 g 100 g-1 protein. Results

about protein fractions, protein patterns and main amino acids in amaranth and quinoa

seeds have been reported by several researchers (Table 1, 2 and 3).

Table 1 Protein fractions as percentage of total protein of amaranth seeds [Protein

fractions: Alb-1, albumin-1; Alb-2, albumin-2; Glo, globulin; Glut, glutelin; Prol,

prolamin (% total protein)]

Alb-1 Alb-2 Glo Glut Prol Rest Source

20.7 19.2 44.4 2.2 13.4 Bressani and Garcia-Vela (1990)

61.3 24.1 1.4 -

Gorinstein and Moshe (1991)

34 4 19 - - - Gorinstein et al. (2001)

- - - 26.9 1.8 - Gorinstein et al. (2002)
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INTRODUCTION

The fat content varied from 0.8 to 19 % DM in amaranth and approximately from 5 to

10 % DM in quinoa (Ruales and Nair 1993; Wood et al. 1993). The fatty acid compo-

sitions of amaranth and quinoa are similar to that of soybean. Linoleic acid is the

dominant fatty acid, followed by oleic and palmitic acid (Singhal and Kulkarni, 1988;

Prakash and Pal 1992; Prakash et al. 1995; Sauerbeck et al. 2002). In quinoa, the ratio

of polyunsaturated to saturated fatty acids (PS ratio) is 4.9. This is higher than the PS

ratios of the most edible oils, such as oil from soybean (3.92), corn (4.65), and olive

(0.65). Quinoa contains starch from 58% to 64% DM. The total mineral content of

quinoa is similar to amaranth (3% to 4% DM). Pentosans are part of the plant cell

wall. The content of pentosan is usually calculated as the sum of the anhydrous arabi-

nose and xylose residues in the dietary fiber. Pentosan content ranged from 3% to 4%

DM in quinoa (Ahamed et al. 1998).  Dietary fiber is an important nutrient for human

digestion system. Amaranth contains about 15.2 % of total dietary fiber (TDF)

(USDA, 2003), whereas quinoa seed contains 13.4 % TDF with 11% insoluble dietary

fiber (IDF) and 2.3% soluble dietary fiber (SDF). The physico-chemical properties of

quinoa flour was found to be different from that of wheat flour due to it is higher vis-

cosity and stability than wheat flour (Ruales and Nair, 1994).

Recently, pseudocereals have been interested for the mass production in several Euro-

pean countries (Jacobsen et al. 1994; Jacobsen 1997; Aufhammer et al. 1995). How-

ever, knowledge about amaranth and quinoa seed composition is still marginal. The

determination of the seed chemical composition is necessary for the variety evalua-

tion, on the basis of a high nutritive value for human diet.  Hence, the nitrogen use

efficiency and effect of nitrogen fertilizer on seed composition of amaranth and qui-

noa productions under the Western European climatic conditions are necessary to in-

vestigate.
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INTRODUCTION

Therefore, the main objectives of this study were

1. to evaluate the chemical composition of the seeds from various amaranth species

and quinoa produced under Western European climatic conditions.

2. to assess the effect of nitrogen supply on biomass, grain yields, nitrogen uptake and

its assimilation from the soil to the vegetative and grain parts of amaranth and qui-

noa.

3. to investigate the effect of nitrogen fertilizer application on the chemical composi-

tion of the seeds in various amaranth and quinoa varieties.

4. to focus more on the effects of nitrogen fertilizer application on the protein, essen-

tial amino acids contents and dietary fiber of various amaranth and quinoa species

in order to approve them as the good alternative for human diet.
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Seed Composition of Amaranth and Quinoa

3 Seed Composition of Amaranth (Amaranthus spp.) and Quinoa (Chenopodium

quinoa Willd) Produced under Climatic Conditions of Northern Germany

Abstract

Seed composition of sixteen varieties of three amaranth species (A. cruentus, A. hy-

bridus, A. edulis), three breeding varieties of amaranth (Koniz, RD2 and CO2CX55)

and two breeding varieties of quinoa were investigated in this study. The results

showed the effect of interaction between genetics (G) and environment (E) on the

seed composition. The seeds of amaranth and quinoa contained 12.77 and 13.12 %

DM of protein, and 5.69 and 5.99 % DM of fat, respectively. Quinoa seeds had higher

essential amino acid (EAA) contents than amaranth seeds.  The dominant essential

amino acids were lysine (Lys) and phenylalanine (Phe). Their values were sufficient

according to the WHO/FAO standard requirement for human diet. The starch contents

of amaranth and quinoa varieties were with 55.14 and 51.84 % DM lower than that of

wheat and rye. The amaranth and quinoa seeds consisted of 7.64 % DM of total die-

tary fiber (TDF) with a ratio of insoluble dietary fiber (IDF) and soluble dietary fiber

(SDF) of 3:1. Furthermore, amaranth seeds contained less pentosans than quinoa

seeds. Their flour showed high values of pasting viscosity (PV) and final viscosity

(FV). The differences in the chemical composition were statistically significant. Pro-

tein and fat contents were not correlated with each other, whereas the starch content

was positively correlated with the dietary fiber and total mineral contents. The results

indicated that breeding programs need to consider and improve the protein content in

quinoa.

Key words: amaranth; quinoa; protein; fat; dietary fiber; starch; pasting properties
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3.1 Introduction

Amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) are pseudoce-

reals. They are dicotyledons consisting of starchy seeds and able to grow well even

under poor environmental conditions. Both of them are important crops in South

America since many centuries. Since the 1970’s their seeds have been received the

attention by many investigators due to the valuable sources of protein and amino acids

that are deficient in other cereals (Ahamed et al., 1998). Recently, they became at-

tractive crops using for food and pharmaceuticals production (Jauregui et al., 2000;

León-Camacho et al., 2001). Their protein contents composed of higher lysine con-

centration (5.1 - 6.3 g AA 100g-1 protein) compared with that of cereals such as

wheat, maize and oat (Ahamed et al., 1998). The amino acid composition of amaranth

and quinoa seeds is similar to the values of nutritional requirements for the human

diet (Ahamed et al., 1998). The content of nutrients in amaranth seeds is comparable

to that of quinoa seeds in protein, fat and carbohydrate contents, but it is higher in

crude fiber content than quinoa. It was found that amaranth contained about 10 to

21% DM protein (Zheleznov et al., 1997; Prakash and Pal, 1992), while the protein

content of quinoa was ranged between 12 and 19 % DM (Ahamed et al., 1998). The

EAA content in amaranth seeds was up to 47.6 g 100 g-1 protein and mainly deter-

mined by isoleucine (Ile), leucine (Leu), phenylalanine (Phe), valine (Val), histidine

(His) and methionine (Met) (Gorinstein et al., 2002). In quinoa, the seed protein was

rich in His, cysteine (Cys), arginine (Arg) and lysine (Lys) (Brinegar, 1997). The fat

content varied from 4.4 to 13.2 % in amaranth (Prakash et al., 1995) and approxi-

mately from 5.1 to 9.7 % DM in quinoa (Ruales and Nair, 1993; Wood et al., 1993).

The fatty acid compositions of amaranth and quinoa were similar to that of wheat

(Ahamed et al., 1998). Linoleic acid was the dominant fatty acid, followed by oleic

and palmitic acid (Singhal and Kulkarni, 1988; Prakash and Pal, 1992; Prakash et al.,

1995; Sauerbeck et al., 2002). Dietary fiber is an important nutrient for the human di-

gestion system. Amaranth contains about 15.2 % of TDF (USDA, 2003) whereas qui-

noa seed contains 13.4 % TDF with 11.0 % IDF and 2.4 % SDF. The physico-

chemical properties of quinoa flour differed in pasting properties due to a higher vis-

cosity compared to cereal flours, e.g. wheat flour (Ruales and Nair, 1994).
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Seed Composition of Amaranth and Quinoa

In Europe, the potential use of these crops as alternative crops has remained under

investigation (Jacobsen et al., 1992). Since 1992, amaranth has been investigated in

southern regions of Germany (Aufhammer et al., 1995). Preliminary data on its agro-

nomic performance was also studied in northern regions of Germany by the Federal

Agricultural Research Center, Braunschweig. The determination of the chemical

composition of the seeds is necessary for the variety evaluation. Therefore, this study

was aimed to investigate the seed chemical composition of various amaranth species

and quinoa.

3.2 Materials and methods

3.2.1 Plant materials

Nineteen varieties (sixteen varieties and three breeding varieties) of amaranth and two

breeding varieties of quinoa were cultivated at the Federal Agricultural Research

Center, Braunschweig, Germany in the years 2001 and 2002 (Table 1). The site con-

dition used for this experiment was provided at a sandy loamy soil (dystric Cambisol)

with 8.5°C and 650 mm precipitation as the long-term medium. The planting density

was 60 plants m-2 in both years. All plots were fertilized with 60 kg N ha-1 (ammo-

nium nitrate) and 120 kg K2O ha-1 (potassium chloride). The experimental fields were

plotted with the size of 15 m2 in the year 2001 and 18 m2 in the year 2002. The sow-

ing was on 19th May in 2001, and 16th May in 2002. The samples were subsequently

harvested on 16th October 2001, and 15th September in 2002, respectively.

In addition, seeds of four amaranth varieties and two quinoa varieties from different

European countries were used for the determination of the nutritional value in

comparison to the samples of our interest as described above (Table 3.1).

3.2.2 Sample preparation

Seed samples were cleaned and dried as needed before analysis. Seed composition

analyses were conducted at the Institute of Agricultural Chemistry, Georg-August

University of Goettingen. Whole mature seeds of amaranth and quinoa were ground

on a Laboratory mill 120 (Perten Instruments AB, Huddinge, Sweden) through a 60-

mesh screen and stored at 4°C in airtight plastic bottles until use.

11
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Table 3.1: Varieties, species and the origin of amaranth and quinoa

Code No. Variety Species Origin Cultivation Year
Amaranth
1a AMR A. cruentus Czech Republic Czech Republic 2001
2 D001-A A. cruentus Czech Republic Germany 2001
3 NO-17 A. cruentus Czech Republic Germany 2001
4 Bärnkraft A. cruentus Germany Germany 2001
5 Pastevny A. hypochondriacus Russia Germany 2001
6b RD2/01 A. hybridus Austria Austria 2001

7 RRC A. cruentus Argentina Germany 2002
8 Tibet A. cruentus China Germany 2002
9 A-2002-D A. cruentus Czech Republic Germany 2002
10 Ames A. cruentus Czech Republic Germany 2002
11c NO-17 A. cruentus Czech Republic Germany 2002
12 OPC A. cruentus Czech Republic Germany 2002
13 Elbrus A. edulis Czech Republic Germany 2002
14c Koniz A. cruentus x

A. hypochondriacus

Czech Republic Germany 2002

15 Bärnkraft A. cruentus Germany Germany 2002
16 Amont A. cruentus USA Germany 2002
17 K266 A. cruentus USA Germany 2002
18 K283 A. cruentus USA Germany 2002
19 K436 A. cruentus USA Germany 2002
20 Montana A. cruentus USA Germany 2002
21 Pastevny A. hypochondriacus Russia Germany 2002
22 RD2/01 A. hybridus Austria Germany 2002
23d Rawa A. cruentus Poland Poland 2002
24b CO2CX55 A. hybridus Austria Austria 2002
Quinoa
25e S7/01 Chenopodium quinoa Austria Austria 2001
26e S407EB/01 Chenopodium quinoa Austria Austria 2001
27 S7/02 Chenopodium quinoa Austria Austria 2002
28 S407EB/02 Chenopodium quinoa Austria Austria 2002
29 S7/01 Chenopodium quinoa Germany Germany 2002
30 S407EB/01 Chenopodium quinoa Germany Germany 2002

a Commercial seed from AMR company, Czech Republic (used for comparisons)
b Breeding variety
c Breeding varieties from AMR company, Czech Republic
d Seed material from Szarlat company, Poland
e Seed material, breeding varieties from ZENO company, Austria
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3.2.3 Determination of the chemical composition

Crude protein content was determined by the Dumas combustion method with the

automated LECO CN analyzer model CN2000 (LECO, St. Joseph, MI), and the pro-

tein conversion factor of 5.85 was used (Sweeney and Rexroad, 1987).

Amino acid composition was analyzed according to Gorinstein et al. (2002). De-

rivatization was done with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate

(Cohen and Michaud, 1993). The sample was injected into a Multi-Pump Gradient

HPLC system (Waters, Milford, MA) with a vertex pre-column spherimage ODS2;

5 µm, 5 X 4 mm and a vertex separation column, spherimage-80 ODS2; 5 µm, 4.6 X

150 mm (Knauer, Germany). The Millenium chromatography manager system (Wa-

ters, Milford, MA) was used to evaluate the amino acids content. Scanning fluores-

cence detector was used at an excitation of 250 nm and emission of 395 nm. Gradient

program was provided with sodium acetate phosphate buffer and acetonitrile/water

solution (60/40; v/v). Tryptophan was not determined. The results are given as g AA

100g-1 protein.

The fat content was carried out by means of Soxhlet extraction according to ICC

standard No. 136 (ICC Standards, 1999).

The starch content was determined polarimetrically using hydrochloric acid accord-

ing to the ICC Standard No. 123/1 (ICC Standards, 1999). The magnitude of specific

optical rotation or Ewers factor for amaranth and quinoa were 180.1 and 187.0 grd.ml

g.dm-1 as followed (Mundigler, 1998).

The determination of the total mineral content (crude ash) was followed by the ICC

standard No. 104/1 (ICC Standards, 1999).

For the total dietary fiber and insoluble dietary fiber determination, an enzymatic-

gravimetric method was used (Asp et al., 1983; AOAC, 1984). Soluble dietary fiber

was calculated as the difference between total and insoluble dietary fiber.

The determination of pasting properties of seed flour was followed by the ICC stan-

dard No. 162 (ICC Standards, 1999). A Rapid Visco Analyzer model RVA super 3

(Newport Scientific Pty Ltd., Australia) was applied. The RVA test profile was used

as the standard profile 1 of the general pasting method (Anonymous, 1998). The val-

ues of viscosity were recorded in centipoise units (cP). Abbreviations used in this

study are peak viscosity (PV), highest viscosity during heating; trough (T), lowest

viscosity after cooling started; breakdown (BD), peak viscosity minus trough; final

13



Seed Composition of Amaranth and Quinoa

viscosity (FV), highest viscosity after the temperature had returned to 50oC; setback

(SB), final viscosity minus trough and pasting temperature (PT), temperature at which

the trace left the baseline. Commercial wheat cv. Hanseat which was grown and har-

vested in 1999 at the field station Reinshof, University of Goettingen, was applied for

comparison.

The pentosans content was determined colorimetrically according to the method of

Dörfer (1999).

3.2.4 Statistical analyses

Data was evaluated by analysis of variance, and means were tested by least significant

difference (LSD). The p values of <0.05 were considered as significant. The statistical

analyses were performed by using Statistix 7.0 (Analytical Software, Tallahassee,

FL).

3.3 Results and Discussion

3.3.1 Protein

The chemical composition of amaranth and quinoa seeds is shown in Table 3.2 . The

seed protein contents of various amaranth species and quinoa were significantly dif-

ferent. In amaranth, they ranged from 10.90 (‘9’) to 15.81 % DM (‘11’) and in quinoa

from 11.38 (‘30’) to 16.89 % DM (‘26’) The average values of crude protein content

of amaranth and quinoa seeds were 12.77 and 13.12 % DM, respectively. The hybrid

variety ‘Koniz’ (‘14’) showed significantly higher seed protein content than the other

Amaranthus species.

A. cruentus contained slightly more proteins than A. hypochondriacus, which was

similar to the results reported by Bressani et al. (1987). However, the differences in

protein content within the species of amaranth were not significant. The values ob-

tained for quinoa in this study were in agreement with earlier data reported by Ruales

and Nair (1992). In addition, the protein contents of amaranth and quinoa were com-

parable to that of wheat (14 % DM), oats (14 % DM) and maize (13 % DM) (Ahamed

et al., 1998).

Under the climatic conditions of northern Germany, it was found that amaranth vari-

ety ‘NO-17’ showed with 15.81 % DM in 2002 the highest protein content. When
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compared the average protein yields of seed materials collected from the other coun-

tries with the seeds growing under northern Germany conditions, they were similar in

the protein content, except for the seed material variety ‘23’ from Poland. The plant-

ing seasons affected also the seed protein content. In the planting season 2001, the

cultivars ‘Bärnkraft’, ‘Pastevny’ and ‘RD2/01’ had significant higher protein contents

than in 2002, while in the planting season 2002, the cultivar ‘NO-17’ contained more

protein than in 2001.

In quinoa, the effects of the climatic conditions on the level of protein content were

distinctly demonstrated. Quinoa seeds grown under northern Germany conditions

contained lower protein content than that collected from Austria. Furthermore, the

protein content of the Austrian seed material was also influenced by the season. Risi

and Galwey (1991) reported also the effect of interaction between genotype and envi-

ronment on the agronomic characters of quinoa. Hence, the interaction between

genotype and environment could have an effect on seed chemical composition. How-

ever, the variations of protein content were not correlated with other compounds.

3.3.2 Amino acid composition

In Table 3.3 the amino acid composition of amaranth and quinoa seeds is presented.

The following amino acids were analyzed: aspartic acid (Asp), serine (Ser), glutamic

acid (Glu), glycine (Gly), arginine (Arg), alanine (Ala), proline (Pro), histidine (His),

threonine (Thr), cysteine (Cys), methionine (Met), tyrosine (Tyr), phenylalanine

(Phe), valine (Val), lysine (Lys), isoleucine (Ile), leucine (Leu). Furthermore,  the sum

of essential amino acids (EAA) was calculated. The EAA contents of amaranth and

quinoa seeds varied from 37.59 (‘21’) to 43.76 (‘14’), and from 41.44 (‘29’) to 47.14

g AA 100g-1 protein (‘26’), respectively. The amaranth seeds contained lower EAA

contents than quinoa (41.23 and 44.27 g AA 100g-1 protein, respectively). When com-

pared between the several species of Amaranthus, A. cruentus and A. edulis showed

higher EAA contents than A. hypochondriacus. A. cruentus contained high concentra-

tions of Thr, Tyr and Met. With respect to the protein quality, the variety ‘D001-A’

could be the most interesting variety for further breeding proposes because it con-

tained both high EAA and protein concentrations.
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Table 3.2: Contents of protein, fat, starch, total mineral (TM), total dietary fiber

(TDF), insoluble dietary fiber (IDF), soluble dietary fiber (SDF) and pentosans in the

seeds of amaranth and quinoa (% DM)

Code No. Protein Fat Starch TM Dietary fiber
TDF IDF SDF Pentosans

Amaranth
1 12.69 6.41 53.01 3.46   7.67   6.28 1.39 3.02
2 14.71 6.08 50.64 3.48   7.00   6.02 0.98 3.52
3 13.40 5.94 55.19 3.21   6.70   4.35 2.35 4.17
4 13.02 6.64 61.21 3.33   7.73   4.69 3.04 2.96
5 13.65 4.71 51.66 3.62 14.81 14.19 0.62 2.43
6 11.91 4.64 55.53 2.81   6.10   5.16 0.94 3.10
7 11.95 6.68 53.09 3.55   6.75   5.35 1.40 2.88
8 11.87 6.50 56.11 3.24   6.77   4.76 2.00 3.11
9 10.90 6.44 53.93 3.56   6.70   5.07 1.63 3.11
10 11.56 7.65 55.47 3.95   7.11   4.97 2.13 2.51
11 15.81 5.69 58.09 3.48   6.87   5.07 1.80 3.62
12 13.32 6.46 54.51 3.48   7.10   4.67 2.43 4.83
13 13.46 5.48 57.89 3.73   6.68   4.25 2.44 2.64
14 15.77 5.91 51.33 3.71   6.96   4.33 2.63 2.81
15 11.00 6.43 57.95 3.39   7.55   5.13 2.42 3.29
16 11.60 5.28 55.31 3.50   6.48   4.38 2.10 3.00
17 12.73 7.22 52.82 3.78   8.25   5.97 2.28 3.07
18 11.71 5.56 56.55 3.49   6.38   5.48 0.90 3.75
19 12.86 6.19 55.92 3.59   6.82   5.24 1.58 2.80
20 12.49 6.36 56.10 3.69   7.11   5.07 2.04 2.69
21 12.21 5.01 48.20 4.37 15.08 14.42 0.66 3.24
22 11.76 4.67 57.55 3.50   5.72   4.33 1.39 2.50
23 13.67 6.47 56.15 3.80   7.15   4.35 2.80 2.96
24 12.46 5.36 59.08 2.99   6.23   4.06 2.17 2.44
Significance  ** ** ** **    **   ** ** **
LSDa   0.83 0.39 3.60 0.23   0.49   0.37 0.13 0.21
Quinoa
25 14.47 4.38 52.93 4.14   7.50   6.39 1.11 4.68
26 16.89 6.04 49.75 3.46   8.28   6.13 2.15 5.19
27 12.48 5.34 49.71 4.37   8.71   6.65 2.07 5.04
28 11.46 6.43 52.55 3.92   8.27   4.90 3.37 5.34
29 12.06 5.29 53.26 4.58   7.57   5.32 2.26 5.40
30 11.38 6.64 52.87 4.23   7.15   5.82 1.33 5.12
Significance ** ** NSb **   *   ** ** NS
LSDa 1.18 0.52 - 0.37   0.72   0.53 0.20 -
* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
a LSD for comparison at the 0.05 probability level
b Non significant at the 0.05 probability level
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The pattern of EAA composition in amaranth seeds was similar to that reported by Go-

rinstein and Moshe (1991) as well as Bejosano and Corke (1998). The amaranth seeds

contained high amounts of Arg, Lys, Leu and low quantities of Met (11.87, 7.74. 5.32,

1.64 g AA 100g-1 protein respectively). The quinoa seeds showed a similar EAA com-

position as amaranth, but they contained higher quantities of Arg, Ala, Pro, Leu, Val

and Ile. However, the values of Val, Ile, Lys, Arg were found to be higher than those

reported by Ruales and Nair (1992). Therefore, the EAA contents of amaranth and qui-

noa (41.23, and 44.27 g 100g-1 protein, respectively) were higher than the FAO/WHO

requirements for adults (11.1 g 100g-1 protein) (Young and Borgonha, 2000).

3.3.3 Fat

The fat content varied from 4.64 (‘6’) to 7.65 % DM (‘10’) in amaranth seeds, and

from 4.38 (‘25’) to 6.64 % DM (‘30’) in quinoa seeds (Table 3.2). The values were in

the same ranges as the data reported by Prakash and Pal (1992). The variation of fat

content clearly depended on the species. A. cruentus had significantly higher fat con-

tent than the other species of amaranth. However, the quinoa varieties ‘S407EB’

showed a higher level of fat content than the ‘S7’ varieties.

There were significant differences in the fat content of quinoa seeds collected from

Austria between the years 2001 and 2002. The quinoa varieties grown up under north-

ern Germany conditions contained fat contents similar to that material collected from

Austria in the same year of production. The level of fat content in quinoa seeds was

similar to that of amaranth seeds with average values of 5.99 and 5.69 % DM, respec-

tively. However, they were lower than the results reported by Ruales and Nair in 1992.

Nevertheless, the fat content of amaranth and quinoa was still higher than that of bar-

ley, rice, sorghum and wheat, which contained in each case about 1 % DM (Ahamed et

al., 1998).

3.3.4 Starch

The content of amaranth starch varied from 48.20 (‘21’) to 61.21 % DM (‘4’) (Table

3.2). We found that A. edulis had significantly higher starch content than A. hypochon-

driacus. The hybrid variety ‘Koniz’ (‘14’) contained less starch than amaranth species.

On the other hand, the starch contents of the samples investigated in this study were

lower than that reported by Mundigler (1998).
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In quinoa seeds, the starch content ranged from 49.71 (‘27’) to 53.26 % DM (‘29’). No

significant differences between the quinoa varieties were observed and the results were

similar to that reported by Ruales and Nair (1994). The starch contents of amaranth and

quinoa (55.14 and 51.84 % DM as followed) were lower than that of 80.46 and 72.80

% DM in wheat and rye, respectively (Verwimp et al., 2004).

3.3.5 Total Minerals

The differences in the total mineral content between the varieties were statistically sig-

nificant. The contents ranged from 2.81 (‘6’) to 4.37 % DM (‘21’) in amaranth seeds,

while they varied from 3.46 (‘26’) to 4.58 % DM (‘29’) in quinoa seeds. A. hypochon-

driacus had a significantly higher mineral content than A. cruentus and A. hybridus.

The average mineral content of 3.53 % DM in amaranth seeds was similar to that de-

scribed by Mundigler (1998). In contrast, in quinoa seeds it was with the value of 4.12

% DM higher than those found by Ruales and Nair (1992). The mineral contents were

significantly correlated with the starch and dietary fiber content

(r=-0.5233 and 0.3891, respectively).

3.3.6 Dietary fiber

The TDF, IDF and SDF contents of amaranth and quinoa seeds are also presented in

Table 3.2 .  Among amaranth species, the range of TDF was between 5.72 (‘22’) and

15.08 % DM (‘21’). The IDF content varied from 4.06 (‘24’) to 14.42 % DM (‘21’). A.

hypochondriacus species, the black seed variety ‘Pastevny’ (‘5’ and ‘21’) contained

significantly more TDF and IDF than the other species of amaranth in both years 2001

and 2002. For SDF, the range varied from 0.62 (‘5’) to 3.04 % DM (‘4’). A. edulis

showed higher SDF than A. hypochondriacus, A. hybridus and the hybrid variety

‘Koniz’ (‘14’).

In quinoa seeds, the values of dietary fiber content ranged from 7.15 (‘30’) to 8.71 %

DM (‘27’) for TDF, from 4.90 to (‘28’) to 6.65 % DM (‘27’) for IDF, and from 1.11

(‘25’) to 3.37 % DM (‘28’) for SDF. The dietary fiber content of quinoa seeds was

higher than that of amaranth. However, the TDF and IDF values of quinoa seeds (7.92

and 5.83 % DM, respectively) obtained from this study were lower than those reported

by Ruales and Nair (1994). The ratio between IDF and SDF was about 3:1. The IDF

was identified as the main part of the dietary fibers in the seed. This result was similar
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to that of oats (6.0 to 7.1 % DM) (Manthey et al., 1999). The IDF have more positive

effects to reduce the cancer risks than to reduce the blood cholesterol (Jenkins et al.,

1993; Mai et al., 2003). The variety ‘Pastevny’ could be an attractive variety to im-

prove the dietary fiber in healthy food products.

3.3.7 Pentosans

The content of pentosans in amaranth seeds varied from 2.43 (‘5’) to 4.83 % DM

(‘12’). No significant differences between Amaranthus species were observed. The

amaranth seeds contained less pentosans than quinoa seeds (3.10 and 5.13 % DM, re-

spectively). The proportion of pentosans in the amount of total dietary fiber of ama-

ranth and quinoa seeds was 43 % and 65 %, respectively. The proportions obtained

from our study are similar to the previous results reported by Hansen et al. (2003) in

rye where the dietary fiber consisted of 54 to 58 % pentosans. However, the pentosans

content of amaranth and quinoa was also lower than that of rye (8 to 12 % DM).

3.3.8 Pasting properties

The pasting properties as important functional properties of flours during processing

are shown for amaranth and quinoa in Table 4 and Figure 1. Statistical analyses of the

values indicated the significant differences between the cultivars. The results showed

the effects of the planting season on the pasting properties. The viscograms of ama-

ranth and quinoa flour in comparison to that of wheat flour are presented in Figure 3.1 .

The amaranth and quinoa flour had lower PT than wheat flour. The average PTs of

amaranth, quinoa and wheat flour were 76.10, 74.79 and 79.00 oC, respectively. Low

PT of amaranth and quinoa flours could be an advantage during processing as gelatini-

sation process in short processing times (Zhou et al., 1998).
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Table 3.4 Pasting properties of flour from amaranth and quinoa seeds (cP)

Code No. Peak

viscosity

Trough Breakdown Final

viscosity

Setback Pasting

Temperature
o

Amaranth
1 1727 1453 274 1692 239 73.45
2 1331 1231 100 1407 176 75.10
3 1074   981 93 1191 210 70.20
4 1251 1121 130 1281 160 72.70
5   917   882   35 1180 298 89.60
6 1381 1275 106 1403 128 75.85
7 1231 1073 158 1236 163 73.45
8 1604 1523   81 1947 424 75.05
9 1783 1471 312 1716 245 75.20
10 1082   977 105 1167 190 71.90
11 1255 1138 117 1301 163 77.60
12 1745 1487 258 1691 204 73.30
13 1867 1823   44 2757 934 77.55
14 1649 1485 164 1733 248 74.30
15 1489 1314 175 1507 193 76.70
16 1269 1096 173 1271 175 75.90
17 1438 1256 182 1441 185 76.75
18 1420 1166 254 1418 252 76.70
19 1332 1219 113 1400 181 75.00
20 1335 1172 163 1360 188 73.45
21 1301 1207   94 1358 151 74.35
22   818   764   54 1127 363 91.30
23 1303 1139 164 1309 170 75.10
24 1423 1235 188 1421 186 75.85
Significance ** ** ** ** ** **
LSDa 54 47 15 70 33 0.97
Quinoa
25 1430 1358   72 2172 814 83.85
26 1496 1425   71 1894 469 74.35
27 1709 1643   66 2355 712 74.30
28 1613 1493 120 1892 399 71.80
29 1643 1587   56 2228 641 73.45
30 1755 1601 154 2074 473 71.00
Significance ** ** ** ** ** **
LSDa 51 46 16 76 66 1.89
* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
a LSD for comparison at the 0.05 probability level

21



Seed Composition of Amaranth and Quinoa

Figure 3.1 RVA viscograms of the mean values of amaranth, quinoa and wheat flour

In amaranth, the variety ‘22’ had with 91.30 oC the highest PT. This variety showed

also the lowest PV and FV (818 and 1127 cP as followed).

After the onset of swelling, a rapid increasing in the viscosity was occurred. The qui-

noa and amaranth flour had a higher PV than wheat flour. This result indicated that

quinoa and amaranth flour had higher water-binding capacity than wheat flour. The PV

was significantly and negatively correlated with the PT. Amaranth flour was more sta-

ble than wheat and quinoa flour after the processes of swelling and cooling. Quian and

Kuhn (1999) reported similar patterns in starch isolated from amaranth and quinoa.

The BD of quinoa flour was lower than that of wheat and amaranth flour, resulting in

the higher final viscosity after cooling. The low SB and BD of amaranth and quinoa

flour presented more stability to maintained viscosity than quinoa and wheat flour. The

PT was correlated with fat and dietary fiber contents. Baldwin (2001) assumed that the
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protein and fat content on the surface of starch granules influenced the biosynthesis of

the starch granule.

3.4 Conclusions

The variation in seed composition of amaranth and quinoa was the result of the inter-

actions between genotype and environment. The chemical composition of the analyzed

amaranth and quinoa species was affected by location and planting season. This effect

could be considered for breeding programs to improve the agronomic characters for

obtaining more stables line of chemical composition and content. Most of the chemical

components of amaranth seeds were similar to that of quinoa. The variation of the

protein content was mainly affected by the planting season. However, differences be-

tween the species were not found. The analyzed proteins were rich in lysine and its

content is sufficient for the human nutritional requirement. The fat and starch contents

were mainly affected by the variety. Furthermore, the starch content was correlated

with the contents of total minerals, TDF and pentosans. The amaranth varieties con-

tained higher starch and lower pentosans contents than the investigated quinoa varie-

ties. The contents of fat and TDF were also affected by the physico-chemical proper-

ties of the seed flours. Their pasting temperatures were lower than that of wheat flour.

Amaranth flour had more gel formation ability and viscosity than wheat flour. The

high concentration in essential nutritional compounds showed the potency of amaranth

and quinoa seeds production under northern Germany conditions.
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4 Yield and Nitrogen Assimilation of Amaranth (Amaranthus spp.) and Quinoa (Cheno-

podium quinoa Willd)

Abstract

Amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) are pseudocereals

containing protein-rich seeds which have a better balance in amino acid composition than that

of wheat and barley. The effects of nitrogen fertilizer on nitrogen uptake and its assimilation

from soil to the vegetative and grain parts are still rarely analyzed. In the present study, two

varieties of amaranth and quinoa were grown in pots and supplied with 0, 0.8 and 1.2 g N pot-

1. Plant height, grain weight, biomass and grain increased with rising nitrogen supply. Harvest

indexes were 0.28 and 0.33 in amaranth, and 0.19 and 0.21 in quinoa, respectively. Nitrogen

accumulation in plant and grain responded to the nitrogen fertilizer application. Nitrogen use

efficiency (NUE) varied from 13.78 to 21.64 g grain g-1 Nmin. While the rate of nitrogen fer-

tilizer application increased, nitrogen utilization efficiency (NUtE) and NUE decreased. NUtE

was observed as a limiting factor in nitrogen use efficiency at 1.2 g N pot-1. It was found that

quinoa had higher yield and NUE than amaranth. Nitrogen harvest index (NHI) amounted to

0.35 in amaranth, and 0.54 in quinoa. The grain produced per unit of grain nitrogen (GNE)

was significantly and negatively correlated with the nitrogen fertilizer application. The nitro-

gen uptake efficiency (NUpE) should be also considered for quinoa improvement.

Key words: amaranth – quinoa – yield – nitrogen use efficiency

4.1 Introduction

Amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) are protein-rich pseu-

docereals. These cultivated plants have a long and varied record of uses. They were and

remain as an importance component in the diet of South America. Their seeds have also a

better balance in their amino acid composition than the major cereal seeds. They are used also

for the production of healthy food in several world regions (National Research Council,

1989). Amaranth species produce 720 to 1320 g m-2 total biomass and obtain 140 to 300 g m-2

grain, while quinoa produce 238 to 636 g m-2 total biomass and contain 215 to 294 g m-2

grain. The harvest indexes (HI) range from 0.2 to 0.3 in amaranth and from 0.2 to 0.5 in qui-
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noa (Aufhammer et al. 1995, Spehar et al. 1998). The fertilizer use efficiency is an important

factor due to the cost of production and various environmental effects. Nitrogen is the primary

limiting nutrient for grain production. Availability and supply of nitrogen vary between spe-

cies depending on their requirements (Sinclair and de Wit, 1975). Plants are different in nitro-

gen use efficiency upon each levels of nitrogen supply, which was also reported among

genotypes by Moll et al. (1982). Wyss et al. (1991) showed as well that genetic differences in

assimilation uptake and remobilization by source and utilization efficiencies of sink had pro-

found effects in the seed especially on its protein concentration. Elbehri et al. (1993) reported

that amaranth grain yield was responded to nitrogen fertilizer in most of the environments and

caused increased lodging of the plants. Kaul et al. (1996) found that the nitrogen uptake and

the amount of the nitrogen residues were correlated with the dry matter production. Myers

(1998) also described that with rising nitrogen fertilization up to 180 N ha-1, the yield was in-

creased by 43 %. These findings are in contrasts with results of Bressani et al. (1987), who

reported that the yield of amaranth was not significantly affected by increased fertilizer rate.

At temperate latitudes, the quinoa grain yields were strongly dependent on the variety (Risi

and Galwey, 1991). In amaranth, effects of environmental conditions on yield have been de-

scribed. The semidwarf cultivar ‘K432’ produced low grain yield in the dry environments and

the highest grain yield under cool and moist conditions (Henderson et al., 2000).

Recently, pseudocereals are of interest for the commercial production in several Euro-

pean countries (Jacobsen et al., 1994; Jacobsen, 1997; Aufhammer et al., 1995). However, the

nitrogen efficiency in amaranth and quinoa production under Western European climatic con-

ditions is still not sufficient understood. The aim of this study was, therefore, to investigate

the effect of nitrogen fertilizer on biomass, grain yields, nitrogen uptake and its assimilation

from the soil to the vegetative and grain parts of amaranth and quinoa.

4.2 Materials and Methods

4.2.1 Plant materials

This experiment was carried out in 2001 and 2002 at the Institute of Agricultural Chemistry,

Georg-August University of Goettingen. Split-plot in completely randomized design (CRD)

with three replications was used. Main plots were cultivars, sub plots were the nitrogen levels.

Two of each amaranth varieties [Bärnkraft (A. cruentus) and K432 (A. hypochondriacus x A.

hybridus)] and quinoa (Faro and Tango) were cultivated in pots. Each pot contained 5 kg of
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dried sandy loam soil with mineral nitrogen content in the soil of 0.21 g pot-1. Two plants

were grown in every pot and applied with three treatments of NH4NO3 fertilizer (0, 0.8 and

1.2 g N pot-1). Pre-planting fertilizer was used at the rates of 0, 0.8 and 0.8 g N pot-1, respec-

tively. To reach 1.2 g N pot-1, top dressing nitrogen fertilizer as 0.4 g N pot-1 was added to

one of the 0.8 g N pot-1 treatment at the flowering stage. Phosphorus and potassium supply

was used as 0.6 and 0.8 g pot-1, respectively (adjusted with CaHPO4 and K2SO4). Plant lodg-

ing was protected by using a wire frame. Weed control was handled by hands. During the

grain filling period, 1 % Oxydemeton-Methyl was used for insect control. For water control,

plants were sprinkled with water every three days during the vegetative period and every two

days during the reproductive period.

Amaranth and quinoa were sown on 7thMay in 2001, and on 9th May in 2002. Plants were

harvested after the majority of them were senescent during the period of 23rd August to 26th

September in 2001, and 28th August to 20th September in 2002. Plant height, total biomass,

grain weight (Gw), thousand-kernel weight and nitrogen content in biomass and grain were

determined. Weight measurement was adjusted to 14 % moisture content.

4.2.2 Soil mineral content

The mineral nitrogen content in the soil (soil nitrate plus amomonia) was determined in 0.01

M CaCl2 extract (1:2.5 W/V) and analyzed by a flow injection analyzer model SFAS 5100

(Skalar, Germany) (Houba et al., 1986).

4.2.3 Nitrogen determination

The nitrogen determination was done by Dumas method using an automated LECO CN ana-

lyzer model CN2000 (LECO, St. Joseph, MI) (Sweeney and Rexroad, 1987).

4.2.4 Nitrogen use efficiency

Nitrogen use efficiency (NUE), nitrogen uptake efficiency (NUpE), nitrogen utilization effi-

ciency (NUtE), nitrogen harvest index (NHI) and grain produced per unit of grain N (GNE)

were determined as described by Moll et al. (1982) and Elbehri et al. (1993) and defined as:

NUE = Gw/Ns (g grain g-1 Nmin)

NUpE = Nt/Ns (g Nplant g-1 Nmin)

NUtE = Gw/Nt (g grain g-1 Nplant)
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NHI = Ng/Nt (g Ngrain g-1 Nplant)

GNE = Gw/Ng(g grain g-1 Ngrain)

in which,

Gw = grain yield per plant (g grain)

Ng = nitrogen accumulated in the grain at harvest per plant (g Ngrain)

Ns = total N supply per plant (mineral fertilizer plus mineral soil N) (g Nmin)

Nt = total aboveground plant N (g Nplant)

Analyses of variance and least significant difference (LSD) values for the comparison of cul-

tivars and nitrogen levels were conducted according to Steel and Torry (1980). Relationships

between parameters were determined by using the Pearson’s simple correlation test. The p

values of <0.05 were considered as significant values. Statistical analyses were performed by

using the software Statistix 7.0 (Analytical Software, Tallahassee, FL).

4.3 Results and Discussion

In 2001, plants were damaged by insects during growing. Only the parameters grain yield,

nitrogen accumulated in grain at harvest, nitrogen use efficiency and grain yield per unit of

grain nitrogen were determined (Table 4.1).

In the initial step of investigation, the growing periods of amaranth and quinoa with three dif-

ferent rates of nitrogen fertilizer applications were examined. Significant differences between

cultivars and nitrogen levels during their growing periods were determined. The growing pe-

riod of amaranth was longer than that of quinoa.

In 2001, nitrogen fertilizer application (0.8 and 1.2 g N pot-1) decreased growing period of

amaranth “Bärnkraft” variety when compared with 0 g N pot-1 treatment (110, 109 and 147

days, respectively).

In 2002, when compared the reproductive periods of both cultivars, it was found that the ama-

ranth variety “Bärnkraft” and the quinoa variety “Faro” had longer reproductive periods than

the other two cultivars. The quinoa variety “Tango” without nitrogen fertilizer application (0

g N pot-1) had a longer growing period than the other with the other two nitrogen treatments

(115, 107 and 107 days, respectively).

Plant height was measured at the maturity stage. Quinoa had significantly higher plant height

than amaranth and the differences between varieties in each species were also significant (Ta-
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ble 4.2). The 0.8 g N pot-1 treatment caused the highest plant height compared with the other

nitrogen treatments (114.5, 81.2 and 111.2 cm, respectively). These results are in contrast

with the previous results reported by Elbehri et al. (1993), in which plant height was continu-

ously increased with increased nitrogen fertilizer rates. Myers (1998) found also that under

optimum soil conditions, plant height and yield of amaranth increased. But at high rates of

nitrogen fertilizer, grain yield was decreased caused by plant lodging. However, in this ex-

periment lodging percentage was not recorded because a wire frame was used for protecting

against the risk of lodging.

Table 4.1: Grain yield, nitrogen accumulated in grain at harvest, nitrogen use efficiency and

grain yield per unit of grain nitrogen of amaranth and quinoa applied with three different rates

of nitrogen fertilizer in 2001

[Ng = nitrogen accumulated in grain at harvest (g Ngrain), NUE = Nitrogen use efficiency (g

grain g-1 Nmin), GNE = grain produced per unit of grain nitrogen (g grain g-1 Ngrain)]

Plants

Species

Varieties Grain yield

(g plant-1)

Ng NUE GNE

Amaranth Bärnkraft 2.46 0.06 10.53 41.70

K432 2.94 0.08 10.97 38.32

Quinoa Faro 2.50 0.06 10.87 40.64

Tango 5.70 0.13 20.99 45.45

Significant ** ** ** **

LSDa 0.257 0.007 0.978 1.181

Nitrogen levels (g N pot-1)b

0 2.72 0.05 27.18 50.14

0.8 3.75 0.10   7.50 38.20

1.2 3.74 0.10   5.34 36.25

Significant ** ** ** **

LSDa 0.223 0.006 0.847 1.023
* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
a LSD for comparison at the 0.05 probability level
b Average of all plant species and cultivars
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Amaranth “Bärnkraft” variety produced significantly higher biomass than the other cultivars.

The biomass increased significantly in correlation with the rates of nitrogen fertilizer from

8.97 g plant-1 for the treatment without nitrogen fertilizer, to 30.87 and 35.17 g plant-1 for the

treatments with 0.8 and 1.2 g N pot-1, respectively (Table 4.2).  This result is in agreement

with Elbehri et al. (1993). They reported that biomass increased from 10.2 to 12.8 Mg ha-1

when applied 0 and 180 kg N ha-1 in amaranth.

Table 4.2: Agronomic characteristics, biomass, grain yield, harvest index (HI), nitrogen ac-

cumulated in grain at harvest, total aboveground plant nitrogen of amaranth and quinoa ap-

plied with three different rates of nitrogen fertilizer in 2002

[TKW= Thousand-Kernel Weight, Ng = nitrogen accumulated in grain at harvest per plant (g

Ngrain), Nt = total aboveground plant nitrogen (g Nplant)]

Plants

Species

Varieties Plant height

(cm)

Biomass

(g plant-1)

Grain

yield

(g plant-1)

 TKW

(g)

HI Ng Nt

Amaranth Bärnkraft   95 27.92 5.78 0.76 0.21 0.12 0.42

K432   73 22.91 4.39 0.60 0.19 0.10 0.33

Quinoa Faro 128 23.50 6.91 2.54 0.29 0.15 0.31

Tango 113 25.69 9.08 2.83 0.34 0.19 0.36

Significant ** ** ** ** ** ** **

LSDa 5.1 1.674 0.466 0.679 0.010 0.014 0.041

Nitrogen levels (g N pot-1)b

0   81 8.97 2.16 1.58 0.24 0.04 0.07

0.8 114 30.87 7.81 1.77 0.26 0.16 0.39

1.2 111 35.17 9.65 1.70 0.27 0.23 0.60

Significant ** ** ** ** ** ** **

LSDa 4.4 1.450 0.404 0.059 0.009 0.012 0.035
* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
a LSD for comparison at the 0.05 probability level
b Average of all plant species and cultivars
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In 2001, the grain yield was affected by insect damage and resulted in lower yield when com-

pared with the year 2002. However, in 2002 we found that the grain yields of quinoa were

higher than that of amaranth and significantly increased when applied with the nitrogen fer-

tilizer.

In this experiment, quinoa cultivar “Tango” produced the highest grain yield (5.70 and 9.04 g

plant-1 in 2001 and 2002, respectively). The treatments of 0.8 and 1.2 g N pot-1 increased the

yields about 138 and 138 % in 2001 and 362 and 447 % in 2002, respectively, compared to

the treatment without nitrogen supply. This result is in accordance with Elbehri et al. (1993)

and Myers (1998) for amaranth and Jacobsen et al. (1994) for quinoa. However, yields in

2001 were probably impaired because of insect damage during the grain filling period.

The grain weights of quinoa samples were significantly higher than that of amaranth. The

thousand-kernel weight with 1.77 g was the highest after application of 0.8 g N pot-1. With

increasing nitrogen level to 1.2 g N pot-1 it was decreased to 1.58 g. This effect was also re-

ported for oats (Chalmers et al., 1998). In contrast, another study showed that increased yield

after nitrogen fertilizer application resulted from an increased number of seeds per plant and

not from the seed weight which was not changed (Myers, 1998).

Quinoa varieties showed higher HI than amaranth. The variety “Tango” had the highest HI

(0.34) from all cultivars (Table 4.2). It was increased from 0.24 to 0.26 and 0.27 when applied

with 0, 0.8 and 1.2 g N pot-1, respectively. In contrast, Elbehri et al. (1993) described in their

studies that the HI was not affected by nitrogen fertilizer rates, probably because of the use of

domesticated species.

The total aboveground plant nitrogen (Nt) was significantly different between the cultivars

(Table 2) and was at highest in amaranth “Bärnkraft” (0.42 g Nplant). It was highly significant

increased after nitrogen application (0.07, 0.39 and 0.60 g Nplant, respectively). Elbehri et al.

(1993) reported also that grain and plant nitrogen concentration was linearly increased along

with the rates of nitrogen fertilizer application.

The nitrogen accumulated in grain (Ng) correlated in the same direction as Nt with the rates

of nitrogen fertilizer. Quinoa “Tango” variety had higher Ng than the other cultivars in 2001

(Table 1). The Ng increased significantly with increasing rates of nitrogen fertilizer applica-

tion from 0.05 to 0.10 g Ngrain .

In 2002, quinoa contained higher Ng than amaranth. The Ng of the quinoa varieties “Faro”

and “Tango” amounted to 0.15 and 0.19 g Ngrain, respectively, whereas the amaranth varieties

“Bärnkraft” and “K432” contained 0.12 and 0.10 g Ngrain. The Ng increased also significantly
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from 0.04 to 0.16 and 0.23 g Ngrain with increasing nitrogen rates. Hayati et al. (1996) reported

that the nitrogen accumulation and concentration in soybean seed increased proportionally to

the nitrogen concentration in the media under in vitro culture conditions. Similarly, Noulas et

al. (2004) reported that in wheat increased biomass, grain yield and grain nitrogen concentra-

tion was caused by nitrogen fertilization.

The NUE of quinoa “Tango” variety was higher than that of the other cultivars (Table 1). The

NUE was significantly decreased when applied with 0.8 and 1.2 g N pot-1 nitrogen fertilizer in

2001 (from 27.18 to 7.50 and 5.34 g grain g-1 Nmin, respectively).

Table 4.3: Nitrogen use efficiency and components of nitrogen efficiency of amaranth and

quinoa applied with three rates of nitrogen fertilizer in 2002

[NUE = Nitrogen use efficiency (g grain g-1 Nmin), NUpE = nitrogen uptake efficiency (g

Nplant g-1 Nmin), NUtE = nitrogen utilization efficiency (g grain g-1 Nplant), NHI = nitrogen har-

vest index (g Ngrain g-1 Nplant), GNE = grain produced per unit of grain nitrogen (g grain g-1

Ngrain)]

Plant

Species

Varieties NUE NUpE NUtE NHI GNE

Amaranth Bärnkraft 13.84 0.85 17.52 0.35 50.17

K432 12.71 0.77 16.50 0.35 46.22

Quinoa Faro 18.31 0.67 28.24 0.56 49.74

Tango 23.20 0.80 29.49 0.53 55.87

Significant ** ** ** ** **

LSDa 1.229 0.085 1.295 0.028 2.58

Nitrogen levels (g N pot-1)b

0 21.64 0.67 32.20 0.53 60.83

0.8 15.63 0.79 20.55 0.43 48.46

1.2 13.78 0.86 16.06 0.38 42.21

Significant ** ** ** ** **

LSDa 1.064 0.073 1.122 0.024 2.235
* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
a LSD for comparison at the 0.05 probability level
b Average of all plant species and cultivars
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In 2002, the NUE of quinoa was higher than that of amaranth (Table 4.2). This result was in

contrast with the previous results reported by Sage and Pearcy (1987), which showed that the

NUE of Amaranthus retroflexus is greater than that of Chenpodium album at high rates of ni-

trogen supply. Quinoa “Tango” showed significantly a higher NUE than quinoa “Faro” (23.20

and 18.31 g grain g-1 Nmin, respectively). NUE of amaranth “Bärnkraft” and “K432” varieties

were 13.84 and 12.71 g grain g-1 Nmin, respectively. These values were higher than ranged

from 3.5 to 7.9 g grain g Nmin in the previous data reported by Elbehri et al. (1993). They con-

cluded that the lower NUE was caused by the low HI (ranged from 9.9 to 15.9). However, the

NUE was significantly decreased with increasing level of nitrogen fertilizer. This result

showed that all plants have a reduced efficiency of nitrogen utilization when increasing rates

of nitrogen fertilizer are applied.

Amaranth “Bärnkraft” had significantly higher NUpE than the other cultivars. Increased ni-

trogen fertilizer application led to significant increased values of NUpE. The high values of

NUpE were correlated with the high values of Nt. When the level of nitrogen fertilizer appli-

cation was increased from 0.8 to 1.2 g N pot-1, the NUpE was not significantly increased.

Quinoa varieties had significantly higher NUtE than amaranth (28.86 and 17.01 g grain g-1

Nplant, respectively), demonstrating that quinoa had a higher efficiency in producing grain per

unit of plant nitrogen than amaranth. However, the NUtE was significantly decreased with

increased rates of nitrogen fertilizer application. NUtE was decreased to 36 and 50 % after

application of 0.8 and 1.2 g N pot-1, respectively.

For NHI, quinoa also had significantly higher values than amaranth (0.54 and 0.35 g Ngrain g-1

Nplant, respectively). The NHI of amaranth was in accordance with the previous results re-

ported by Aufhammer et al. (1995). However, the NHI values of amaranth and quinoa were

observed as low values when compared with wheat (0.69 to 0.84 g Ngrain g-1 Nplant) (Noulas et

al., 2004). The NHI values were significantly decreased when applied 0.8 and 1.2 g N pot-1

fertilizers (19 and 28 %, respectively). This result showed that quinoa had higher nitrogen

translocation efficiency from source to sink organ than amaranth. Salado-Navarro et al.

(1985) found that increase of NHI indicated the high rate of nitrogen partitioning to seed. This

efficiency was decreased when increasing the amount of nitrogen supply. It was also reported,

that NHI in oats was reduced from 81 to 72 g Ngrain g-1 Nplant when applied with 240 kg N ha-1

(Chalmers et al. 1998).
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The quinoa “Tango” variety had higher GNE than the other varieties in both years. The GNE

correlated significantly and negatively with the rates of nitrogen fertilizer application. This

finding is in agreement with the previous results of Hayati et al. (1996), indicated that seed

can accumulate dry matter without nitrogen accumulation, and apparently need only minimal

supply of nitrogen to maintain the metabolic processes necessary to sustain dry matter accu-

mulation.

Fig 4.1: The measurement of nitrogen residues in soil at the harvesting period of amaranth

(Bärnkraft and K432) and quinoa (Faro and Tango) applied with three different rates of nitro-

gen fertilizer in the year 2002

The results of nitrogen residues in the soil at the harvesting period of amaranth and quinoa are

presented in Fig 1. We found that the plants had different rates of nitrogen uptake from the

soil. Nitrogen residues in soil were negative correlated with the NHI and NUE values. Quinoa

had clearly better nitrogen absorption efficiency than amaranth. The differences between qui-

noa cultivars were quite low when compared with amaranth. Amaranth cultivar “K432”

showed the highest nitrogen residues in soil when compared with the other cultivars. How-

ever, Kaul et al. (1996) suggested that the mineral nitrogen content of the soil at the harvest-

ing period depends much more on the soil properties and/or the weather conditions than on
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the crops’ species. In this study, all soil samples were prepared at the same conditions. Thus,

the differences in soil nitrogen residues should be only affected by the species of plants. It

should be noticed that the interactions between nitrogen fertilizer levels and cultivars signifi-

cantly affected all factors and parameters investigated in this study.

4.4 Conclusions

Nitrogen fertilizer application affected the increase of grain weight, biomass, grain yield and

HI in amaranth and quinoa. Nitrogen accumulations in plant and grain correlated with the ni-

trogen fertilizer rates. Nitrogen use efficiency, nitrogen utilization efficiency, nitrogen harvest

index and grain produced per unit of grain nitrogen decreased with increased nitrogen fertil-

izer rates. Rates of nitrogen fertilizer higher than 0.8 g N pot-1 did not increase the nitrogen

uptake efficiency. Nitrogen use efficiency was related to the nitrogen utilization and nitrogen

uptake efficiencies. Hence, any breeding for improvement the nitrogen utilization efficiency

could be necessary done. Quinoa had higher grain yield and HI than amaranth. For improve-

ment the yield of quinoa, nitrogen uptake efficiency might be also considered for breeding

programs.
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5 Changes in pseudocereal protein fractions in relation to nitrogen fertilization

Abstract

The purpose of this study was to investigate the effects of nitrogen fertilizer application on

seed proteins of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd). Ni-

trogen fertilizer was applied with three different rates at 0, 0.8, and 1.2 g N pot-1, respectively.

The following compounds were analyzed: protein fractions, SDS-PAGE patterns and amino

acid composition. Seed proteins were fractionated as albumin-1, albumin-2, globulin and

glutelin. Nitrogen fertilizer application affected the albumin-1 fraction in both plant species.

Electrophoresis patterns were also related to the plant species. Amaranth and quinoa had high

contents of lysine, but low contents of methionine. Albumin-1 fractions were high in lysine

content while albumin-2 fractions had high leucine content. Globulin fractions contained

higher amounts of essential amino acids than the other fractions, but lower content of lysine.

Glutelin fractions were well balanced in their essential amino acids with exception of methio-

nine.

5.1 Introduction

Food allergy is defined as an adverse reaction to foods that is mediated immunological and

involves specific imunoglubolin E (IgE) or non-IgE mechanisms (Papageorgiou, 2001).

Within the European Union, food allergy affects about 5 to 10 million people (Crevel, 2001).

Wheat and other cereal grains such as rice, maize and barley are well known sources of food

allergies (Nakamura, 1987). These allergens were not observed in amaranth (Amaranthus

spp.) and quinoa (Chenopodium quinoa Willd). Therefore, they may be used as an alternative

source for non-allergenic food products.

Pseudocereals are dicotyledons consisting of starchy seeds. Amaranth and quinoa belong to

this group. They are also protein-rich and have a better balance in their amino acid composi-

tion than other cereals such as wheat, maize and oat. Therefore, the sum of essential amino

acids (EAA) in amaranth and quinoa seeds is closely related to the recommended amino acid

pattern of the FAO/WHO standard (Ahamed et al., 1998). The major storage proteins in ama-

ranth and quinoa seeds were globulins and also a different amino acids composition in each

protein fraction was found (Bressani and Garcia-Vela., 1990; Gorinstein et al., 1991). Nitro-

gen supply was the dominant effect on protein accumulation in the seed. Hayati et al. (1996)
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reported that in soybean seeds the nitrogen accumulation and concentration were related to the

nitrogen concentration in the media under in vitro culture conditions. Paek et al. (1997)

showed that raising soybean seed protein concentration through enhanced plant nitrogen af-

fected the quality of seed storage proteins. Nitrogen is translocated mainly via phloem in form

of amino acids. Higher protein contents in rapeseeds was found to correlate with higher

amino-nitrogen translocation rates in the phloem (Lohaus and Moellers, 2000). Protein frac-

tions in wheat grains (Triboï et al., 2003) and amino acids composition changes in birch

plants (Näsholm and McDonald, 1990) related to nitrogen fertilizer application have been re-

ported. However, information about the effects of nitrogen fertilizer on the protein properties

of amaranth and quinoa are very limited. The purposes of this study were to determine the

contents of albumin, globulin and glutelin in amaranth and quinoa seeds as well as their

amino acid compositions depending on nitrogen supply.

5.2 Materials and methods

Plant materials were grown and prepared as described in chapter 4.

5.2.1 Protein Extraction

Protein fractions were extracted stepwise according to the following methods (Delgado, 1995;

Delgado et. al, 1999). The meal (10 g) was extracted with a solvent: sample ratio of 10:1

(v/w) and vigorously shaken at 4 oC. The extracts were separated by centrifuging at 9000g for

20 min. Each step was repeated twice. The sequence of the used solvents was the following:

0.5 M NaCl, then separated by dialysis (ZelluTrans/Roth 3, 5, Carl Roth, Germany) against

water [albumins-1 (Albu-1) and globulins (Glob)], Albumins-2 (Albu-2) fraction was

extracted with water after removing Albu-1 and Glob.  The last fraction [glutelin (Glut)]

prepared at 20 °C by extraction with 0.125 sodium borate buffer (pH10) containing 3 % (v/v)

2-mercaptoethanol (2-ME) plus 0.5 % (w/v) sodium dodecyl sulphate (SDS). Then all

fractions were freeze-dried.

5.2.2 Protein Determination

Protein contents in each fraction were determined  by the change in absorption of Coomassie

Blue Dye when it binds to proteins and in comparison with a standard protein (Bovine serum

albumin) curve (Bradford, 1976). Glob content was calculated as the difference between
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crude protein, Albu-1, Albu-2, Glut and the insoluble rest. The rest fraction has been pooled

with the prolamin fractions. Crude protein and protein content of the rest were determined as

nitrogen with the Dumas combustion method using an automated LECO CN analyzer model

CN2000 (LECO, St. Joseph, MI) and a conversion factor of 5.85 for the calculation of the

protein content (Sweeney and Rexroad, 1987).

5.2.3 Protein Characterization with Sodium Dodecyl Sulphate Polyacrylamid Gel

Electrophoresis (SDS-PAGE).

SDS-PAGE was performed according to Laemmli (1970) using a gel concentration of 10 %

with some modifications from Delgado (1995) and Gorinstein et al. (2001). Protein molecular

weight identified by SDS polyacrylamide gel electrophoresis (PAGE) using the Biometra

Mini-Power Pack 040-100 and PP 2000 with glass plates (6.6 x 7.7 cm) (Biometra, Germany).

Protein standards mixture IV (Merck, Germany) were applied to determine protein subunit

molecular masses in kDa: cytochrome C (12); myoglobin (16); carboanhydrase (30);

ovalbumin (42); albumin (66); ovotransferrin (78).

Amino acid composition. Determination as described in chapter 3.

5.3 Results and Discussion

Protein Fractions. The seed protein fractions are presented in Table 5.1. The distribution of

the single fractions within the proteins was mainly depending on the cultivars. The average

ratio of Albu-1 : Albu-2 : Glob : Glut : rest was  8.9 : 3.3 : 53.6 : 5.7 : 28.5. Glob was the

main protein fraction followed by Alb-1. In this study, the Alb and Glob fractions were higher

than in that previous reported by Bressani and Garcia-Vela (1990). The different values may

be caused by the differences in the plant material, methods and amount of fractions used to

extraction. Albu-1 fraction was significantly decreased after nitrogen application. Albu-

1content was negatively correlated with the Glob fractions and should be affected during

seeding development stage. According to Tabe et al. (2002), the down regulation of prolamins

fraction in opaque 2 mutant in maize was associated with a compensatory increase in nitrogen

storage in other seed protein fractions. The functional proteins are accumulated in grain

mainly during the cell division stage, whereas the storage proteins are accumulated mainly

during the filling period (Triboï et al., 2003). Martre et al. (2003) found that the accumulation
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of storage proteins is significantly enhanced by nitrogen supply, whereas functional protein

content is less affected.

Table 5.1 Effect of nitrogen fertilizer on seed protein fractions

Plants Varieties Fraction (%)†

Species Albu-1 Albu-2 Glob Glut Rest‡

Amaranth Bärnkraft 10.5b 3.6b 51.6a 5.6b 28.7b

K432 6.2a 2.1a 51.0a 8.2c 32.5b

Quinoa Faro 7.0a 6.2c 60.2b 3.2a 23.4a

Tango 12.0c 1.4a 51.4a 5.9b 29.3b

Nitrogen levels§ (g N pot-1)

0 10.7b 3.7 51.0 6.2 28.5

0.8 8.5a 3.7 54.6 6.1 27.2

1.2 7.4a 2.7 55.1 5.0 29.7

The values of mean which are following by the same letter had p>0.05, and therefore, they
were not characterized as significant difference

† Protein fractions: Albu-1, albumin-1; Albu-2, albumin-2; Glob, globulin; Glut, glutelin. Ex-
pressed as total protein percentage

‡ Protein content of the rest was determined as nitrogen with the Dumas combustion method
§ Average values of all plant species and cultivars

Electrophoresis patterns. The SDS-PAGE in one dimension was used to analyze heteroge-

neity in the size of protein in each fraction. The electrophoresis patterns are shown in Figure

5.1 and 5.2. The study found a variation in all protein fractions of the amaranth cultivars but

not in quinoa. The result in amaranth was in agreement with previous findings reported by

Gorinstein et al. (1991), showing the variations in some minor bands. Nitrogen application did

not change the electrophoresis patterns of all cultivars.
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Figure 5.1 SDS-PAGE patterns of Albu-1 fractions (A1), Albu-2 fractions (B1) of amaranth
and quinoa at all levels of nitrogen fertilizer
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Figure 5.2 SDS-PAGE patterns of Glob fractions (A2) and Glut fractions (B2) of amaranth
and quinoa at all levels of nitrogen fertilizer

In Albu-1 fractions (Figure 5.1), amaranth variety ‘Bärnkraft’ and ‘K432’ had differences in

protein subunits pattern. Albu-1 of ‘Bärnkraft’ had a lower molecular weight (MW) than
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‘K432’. ‘Bärnkraft’ contained three major subunits at 28, 30, and 33 kDa, respectively, while

‘K432’ consisted of four major subunits with MW of 26, 28, 30 and 34 kDa. These results

were similar to the protein patterns of amaranth reported by Drzewiecki et al. (2003).

For quinoa, Albu-1 fractions showed a wide range of major protein subunits within the range

of 25-83 kDa. Both varieties had similar major protein bands at 25, 28, 36, 39, 78 and 83 kDa.

Difference in the major subunits between ‘Faro’ and ‘Tango’ were 47 and 57 kDa. Protein

patterns of quinoa were similar to soybean, which had major subunits under 30 kDa as well as

above 42 and 78 kDa (Gorinstein et al., 2001).

The major proteins in Albu-2 fractions of amaranth and quinoa are presented in Figure 5.1.

The major protein subunits of amaranth could be divided into three groups with the range of

22-25, 31-39 and 51-54 kDa. The major protein subunits in amaranth variety ‘Bärnkraft’ were

31 and 57 kDa. The ‘K432’ variety contained several major protein subunits when compared

with ‘Bärnkraft’ variety (22, 28, 31, 34, 39, 53, 64, and 72 kDa, respectively). Both varieties

of quinoa consisted of four major subunits with MW of 23, 31, 35 and 52 kDa. The SDS-

PAGE patterns of Glob in amaranth and quinoa seeds are shown in Figure 5.2 . The predomi-

nant protein subunits of ‘Bärnkraft’ were 29, 34, 38 and 52 kDa. The ‘K432’ variety had sev-

eral low MW protein subunits in the range of 22-26 kDa and four major protein subunits with

MW of 30, 34, 38 and 64 kDa. In this study, the protein patterns in amaranth seeds consisted

of the higher molecular weight proteins than that reported by Gorinstein et al. (1991). Glob

electrophoretic profiles of both quinoa varieties were similar in the major protein subunits.

There were distinct protein subunits within the range of 29-32 kDa and other four protein

bands at 23, 35, 58 and 78 kDa.

For Glut fractions, similar patterns of protein bands in amaranth ‘Bärnkraft’ and ‘K432’ were

shown (Figure 5.2). The major protein subunits of ‘Bärnkraft’ were found at 32, 34 48, 53 and

57 kDa. For ‘K432’, the major protein bands at 24, 32, 34 and 55 kDa were detected. The

patterns of amaranth are in accordance with Gorinstein et al. (1991). Quinoa had less protein

bands compared to amaranth. The variety ‘Faro’ consisted of two major protein subunits with

MW of 32 and 94 kDa, while ‘Tango’ contained the two subunits of 25 and 32 kDa.

Amino acid composition. In Figure 5.3 the amino acid composition of amaranth and qui-

noa seeds is presented. The following amino acids were analyzed: aspartic acid (Asp), serine

(Ser), glutamic acid (Glu), histidine (His), glycine (Gly), arginine (Arg), threonine (Thr), ala-

nine (Ala), proline (Pro), cysteine (Cys), tyrosine (Tyr), valine (Val), methionine (Met), lysine

(Lys), isoleucine (Ile), leucine (Leu) and phenylalanine (Phe). Amaranth flour contained sig-
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nificantly lower amounts of Val and Leu than quinoa. The sums of essential amino acids

(EAA) in quinoa were higher than amaranth (45.8 and 41.5 g 100 g-1 protein, respectively).

Amino acids concentrations responded to nitrogen fertilizer application were showed in Fig-

ure 5.3. Pro and Glu contents were negatively correlated with Arg content. Plants take up ni-

trogen preferably as ammonia and then convert it into glutamine (Gln) and Glu. These two

amino acids act as nitrogen donors for the Pro and Arg biosynthesis (Verma and Zhang,

1999).  Phe content increased from 2.5 to 3.0 and 3.0 g 100 g-1 protein when applied 0, 0.8

and 1.2 g N pot-1, respectively. Bullman et al. (1994) observed in barley, that the Phe content

was increased proportionally to the rising rates of nitrogen fertilizer supply. Amaranth and

quinoa contained higher amounts of Lys (6.3-8.2 g 100 g-1 protein) than wheat, maize, rice

and barley (1.98, 3.52, 4.0 and 3.08 g 100 g-1 protein) (Bright and Shewry, 1983). This value

is also higher than recommended (5.5 g 100 g-1 protein) in the FAO/WHO standard (Ahamed

et al., 1998). The content of Met, lower than FAO/WHO standard, might be affected by Cys

synthesis (Clarke and Wiseman, 2000). However, total EAA content was not changed after

nitrogen application. For human diet, nitrogen fertilizer application might be advantage to im-

prove the nutritional values by increasing protein content and maintaining most of essential

amino acids content.

In the Albu-1 fraction of amaranth and quinoa the amino acid compositions were different

(Figure 5.4). However, EAA contents of amaranth and quinoa were not significantly different

when compared to each other (average 49.1 g 100 g-1 protein). Albu-1 fraction contained

more Gly than other fractions. On the other hand, the concentration of Gly found in this study

was considerably higher than that (4.7 g 100 g-1 protein) reported by Bressani and Garcia-

Vela (1990). After nitrogen application, the EAA content decreased from 50.3 to 48.7 and

48.6 g 100 g-1 protein, respectively. His content was significantly decreased when the rates of

nitrogen fertilizer increased. Met content was lower than FAO/WHO standard (1.8 and 3.5 g

100 g-1 protein, respectively). Phe increased along with the increasing rates of nitrogen appli-

cation.

Albu-2 fractions differed in amino acids composition depending on cultivars and nitrogen ap-

plication (Figure 5.5). The average value of EAA was 49.1 g 100 g-1 protein. Amaranth had

higher content of Ser than quinoa. It was found that the concentrations of Asp, Arg and Leu

were affected by nitrogen application. However, only Arg content was distinctly decreased

after increased nitrogen fertilizer rates. Met content was low in this fraction. Albu-2 fractions

had higher content of Leu than that of Albu-1 and Glob fractions.
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Figure 5.3 Amino acid concentrations (A3) of amaranth and quinoa and (B3) at different rates

of nitrogen applications (average of all species and cultivars). Bars indicate LSD 0.05 .
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Figure 5.4 Amino acid concentrations in Albu-1 fractions (A4) of amaranth and quinoa and

(B4) at different rates of nitrogen applications (average of all species and cultivars). Bars in-

dicate LSD 0.05 .
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Figure 5.5 Amino acid concentrations in Albu-2 fractions (A5) of amaranth and quinoa and

(B5) at different rates of nitrogen applications (average of all species and cultivars). Bars in-

dicate LSD 0.05 .
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Amino acid composition in Glob fractions was influenced by cultivars and nitrogen fertilizer.

Quinoa had significantly higher EAA content than amaranth (57.8 and 53.3 g 100 g-1 protein,

respectively). The content of sulfur containing amino acid Met was decreased along with the

rates of nitrogen fertilizer application, while Ile and Phe were increased (Figure 5.6). Naka-

sathien et al. (2000) reported that increasing nitrogen supply affected the sulfur amino acid

synthesis. Phe content was high in this fraction. Lys and Cys contents were lower than in the

other fractions. Amaranth and quinoa contained less Lys than Phaseolus vulgaris (2.88 and

10.75 g 100 g-1 protein, respectively) when compared with previous reported by Chagas and

Santoro (1997). Shewry et al. (1995) proposed that seed Glob fractions were deficient in Cys

and Met. In contrast, Gorinstein et al. (2001) showed in their study that Glob was rich in Met

and Cys, Ile and Val. Phe content was increased in respond to increasing rates of nitrogen

supplied. Therefore, increasing in Phe content of amaranth and quinoa flour should be af-

fected by Glob fractions.

Glut fractions of amaranth and quinoa varied also in amino acid composition (Figure 5.7).

Quinoa ‘Tango’ had the highest EAA content when compared with the other cultivars (51.5

and average 47.0 g 100 g-1 protein, respectively). Glut had high content of Leu. It was found

that Lys content was higher than soybean in previous report by Gorinstein et al. (2002). How-

ever, Lys content in glutelin fractions was lower than Albu-1 and Albu-2 fractions. Alb frac-

tions were the major sources of lysine, which is synthesized during seed development (She-

wry and Casey, 1999).
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Figure 5.6 Amino acids concentration in Glob fractions (A6) of amaranth and quinoa and (B6)

at different rates of nitrogen applications (average of all species and cultivars).. Bars indicate

LSD 0.05 .
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Figure 5.7 Amino acid concentrations in Glut fractions (A7) of amaranth and quinoa and (B7)

at different rates of nitrogen applications (average of all species and cultivars). Bars indicate

LSD 0.05 .
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5.4 Conclusions

Nitrogen fertilizer application affected both protein fractions and amino acid composition of

amaranth and quinoa. Decreasing of Albu-1 fraction was affected by seed development. The

sum of essential amino acids was not affected by the nitrogen application. Albu-1 fractions

had high lysine content while Albu-2 fractions were high in leucine. Glob fractions contained

higher concentrations of essential amino acids than the other fractions, but lower content of

lysine. Glut fractions were well-balanced in their essential amino acid composition with ex-

ception of methionine. Nitrogen fertilizer application could be advantage for improve the nu-

tritional values of human diet by increasing protein content and maintaining essential amino

acid content.
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6 Effects of nitrogen fertilizer on pseudocereals seed composition

Abstract

The main aim of this study was to investigate the effect of nitrogen supply on seed composi-

tion of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd). The following

compounds were analyzed: protein, fat, starch, total mineral, dietary fiber and pentosans con-

tents. Fatty acid composition and pasting properties were also measured. The nitrogen fertil-

izer was applied with three different rates at 0, 0.8, and 1.2 kg N ha-1, respectively. Seed

protein was increased for 4 % DM while fat content was decreased for 1 % DM after nitrogen

application. The nitrogen fertilizer treatment led to increased starch content from 460 to 481 g

kg-1 DM and decreased total mineral content from 36 to 34 g kg-1 DM, respectively. Dietary

fiber and pentosans contents were significantly influenced by the cultivars. Amaranth con-

tained higher concentrations of total dietary fiber (TDF) than quinoa. The ratio of insoluble

dietary fiber (IDF) to soluble dietary fiber was about 2 : 1. Pentosans content in quinoa was

higher than that of amaranth.  Linoleic acid increased from 485.8 to 493.8 and 507.4 g kg-1

DM according to the increased rates of nitrogen fertilizer. A negative correlation between the

applied fertilizer rate and the fatty acid composition was observed for stearic and oleic acid.

Peak viscosity and pasting temperature were increased with rising nitrogen fertilizer rate. In

addition, the protein contents of amaranth and quinoa were similar to that of wheat and oats.

Key words: amaranth; quinoa; protein; fat; dietary fiber; pasting properties

6.1 Introduction

Amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) are protein-rich pseu-

docereals. Their protein contents are higher than that of rice (8 % DM) and barley (12 %

DM). The amino acid composition of the pseudocereal seed proteins corresponds rather to the

FAO standards for the human nutrition than that of wheat and corn proteins (Ahamed et al.,

1998).

Wild and cultivated amaranth and quinoa were at first cultivated by the Incas in South Amer-

ica and their grains were converted to food. Till now, both plants are particularly cultivated in

Latin America and Asia where the protein sources are deficit. Meanwhile, they are also con-

sumed in other regions of the earth, especially in European countries to improve the nutri-
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tional balance in the diet (Ahamed et al., 1998; National Research Council, 1989). Both plant

types were found to differ in their grain protein content from 13 to 21% DM and 12 to 19%

DM respectively (Ahamed et al., 1998; National Research Council, 1989, Zhelenov et al.,

1997). In addition, their fat contents were found similarly to that of other grain with a bal-

anced spectrum of unsaturated fatty acids.

The influence of the nitrogen fertilization had an effect on the chemical composition of the

seed (Bressani et al., 1987a). In different field experiments, the fat content of amaranth varied

from 4.4 to 13.2% DM and linoleic acid was identified as the dominant fatty acid (24,7 to

56.6% of the total fatty acid content) followed by oleic and palmitic acid (Prakash et al.,

1995; Sauerbeck et al., 2002). The influence of nitrogen fertilizer on the yield was described

(Elberi et al., 1993; National Research Council, 1989), however it did not have a distinctively

effect on the fat content. The fat content of quinoa amounted from 3.8 to 9% DM. Linoleic

acid with 52% was also the dominant fatty acid, followed by oleic acid with 24% (Ruales and

Nair, 1993; Sauerbeck et al., 2002; Wood et al., 1993). The concentration of saturated fatty

acids was 11% of the total fatty acid content, whereby palmitic acid with 8.5 % was the main

saturated fatty acid (Wood et al., 1993).

Dietary fiber is a heterogeneous mixture of polysaccharides and lignin that cannot be de-

graded by the endogenous enzymes of human. Fiber rich food has an increased protein-to-

carbohydrate ratio. The protective effect of dietary fiber may be due to increased vegetable

protein content, which may directly reduce clotting factors and oxidized LDL-cholesterol lev-

els (Jenkins et al., 2000). Increasing dietary cereal fiber in the diet could contribute to the pre-

vention of peripheral arterial disease (Merchant et al., 2003). Amaranth contained about 15.2

% of total dietary fiber (TDF) (USDA, 2003) and quinoa seed had 13.4 % total dietary fiber,

11% insoluble dietary fiber (IDF) and 2.3% soluble dietary fiber (SDF) (Ruales and Nair,

1994). Both of these plants had higher TDF and IDF than buckwheat, which contained 7%

TDF, 2.2% IDF and 4.8% SDF (Steadman et al., 2001). There are only few information’s

concerning the effects of nitrogen fertilizer on the nutritional properties of amaranth and qui-

noa available (Bressani, 1987a).

The goal of this investigation was to examine the effects of different plant genotypes and ni-

trogen fertilization levels on the chemical composition of amaranth and quinoa seeds. In this

study, several parameters such as protein, fat, fatty acid, ash, dietary fiber, pentosans and

pasting properties were determined.
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6.2 Material and methods

Plant materials were prepared as described in chapter 3.

Seed samples preparation, protein, fat, starch, total mineral, dietary fiber, pentosans contents

and pasting properties were determined as described in chapter 3.

6.2.1 Fatty acid analysis

The fatty acid composition was determined by GC following the procedure of Thies (1971),

and analysed on a Perkin Elmer gas chromatograph mode 8600 (Perkin Elmer, USA)

equipped with a fused-silica capillary column FFAP, 25 m x 0.25 mm with 0.25 µmol film

thickness (Macherey and Nagel GmbH, Germany). The oven, detector and injector

temperatures were 210, 230 and 230°C respectively. The carrier gas was hydrogen with a

pressure of 100 kPa. The amount of 2 µl of each sample was injected at a split rate of 1:70.

Individual fatty acids including palmitic (16:0), stearic (18:0), oleic (18:1) and linoleic (18:2)

acids were expressed as percentage of the total fatty acids, including minor fatty acids.

6.3 Results and Discussions

Amaranth and quinoa contained different protein and fat contents depending on their varieties

(Table 6.1). The nitrogen fertilizer had significantly effects on seed protein and fat content.

The seed protein increased from 108 to 137 and 151 g kg-1 DM when applied 0, 0.8 and 1.2 g

N pot-1, respectively. Seed protein was increased for 4 % DM, while fat content was decreased

for 1 % DM with increased rates of nitrogen fertilizer. The decrease of fat content with the

simultaneous increase of the protein content was also described in soybean (Hayati et al.,

1996). The seed nitrogen accumulation depends on the genetic control of nitrogen uptake and

utilization. Carbon is the source for seed proteins and fatty acids (Schwender and Ohlrogge,

2002). While amino acids are converted to seed storage proteins, they did not provide the car-

bon source for fatty acid synthesis. Approximately 30% of carbon in seed protein is derived

from exogenous amino acids and as a consequence, the utilization of amino acids as a carbon

source may have a significant influence on the total carbon and energy balance in the seed

metabolism. Therefore, nitrogen fertilizer supply has a direct effect on the increase of seed

storage proteins (Martre et al., 2003).
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Table 6.1 Effect of nitrogen fertilizer on seed composition (g kg-1 DM)

Plants Varieties Protein Fat Starch Total Dietary fiber Pentosans

Species Mineral TDF IDF SDF

Amaranth Bärnkraft 131b 65c 451a 36b 102c 71c 31 26a

K432 135d 62b 504c 34a 102c 75c 27 28a

Quinoa Faro 144c 61b 447a 37b 77b 51b 26 47b

Tango 122a 58a 488b 34a 63a 41a 23 49b

Nitrogen levels (g N pot-1)*

0 108a 68c 460a 36b 84 58 26 38

0.8 137b 60b 477b 36b 88 58 30 37

1.2 151c 56a 481b 34a 86 62 24 38

The values of mean which are following by the same letter had p>0.05, and therefore, they
were not characterized as significantly different
* Average values of all plant species and cultivars

The differences in the starch content between the cultivars were statistically significant. The

starch content in quinoa was similar to the results of Ruales and Nair (1994), reporting that

quinoa contained 516 g kg-1 DM. However, this value was lower than the previous results de-

scribed by Mundigler (1998), who found in amaranth and quinoa flours 673 and 692 g kg-1

DM, respectively.  In this study, the starch content increased after nitrogen application (from

460 to 477 and 481 g kg-1 DM). The results showed also the positive correlation between

protein and starch contents. The carbon assimilation is mainly used for the syntheses of starch

and oil, and stored essentially in the endosperm or cotyledon. The decreasing of the fat con-

tent after nitrogen applications may be caused by the increased starch content due to the en-

largement of the seed size (Triboï and Triboï-Blondel, 2002).

The total mineral content of amaranth and quinoa was also statistically significant depending

on their varieties. The 1.2 g N pot-1 treatment caused the decrease of the total mineral content

when compared with the other two treatments. The amaranth and quinoa contained higher to-

tal mineral contents (35.0 and 35.5 g kg-1 DM, respectively) than the cereals, i.e. 22, 8.7 and

6.7 g kg-1 DM in buckwheat, rye, and wheat, respectively (Steadman et al., 2001; Verwimp et

al., 2004). Singhal and Kulkarni (1988) also reported that Amaranthus species contained total

mineral content in the range from 24.7 to 40 g kg-1 DM.
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Pentosans are components of the cell wall material and belong to the dietary fiber. Quinoa

contained more pentosans than amaranth (48 and 27 g kg-1 DM, respectively), but the pento-

san content was not changed after nitrogen application. In amaranth and quinoa we found

lower concentrations than Hansen et al. (2003) reported in their study. They gave  values of

about 80 to 121 g kg-1 DM as the sum of arabinose and xylose.

In the present study, the dietary fiber content was not affected by nitrogen application. It was

depending on plant genetics and varieties (Table 6.1). The total and insoluble dietary fiber

contents of amaranth were higher than that of quinoa. Amaranth contained 102 g kg-1 DM

TDF, while quinoa contained 70 g kg-1 DM. The insoluble dietary fiber was the major part of

seed dietary fiber. The ratio of IDF : SDF of all treatments was about 2 : 1. This ratio is in

agreement with Ruales and Nair (1994), however, the dietary fiber content was lower than

that reported as 134 g kg-1 DM with the same determination method. This finding  may be

caused from the use of different quinoa varieties.

The cultivars had significant differences in their fatty acid contents (Table 6.2). Oleic and li-

noleic acids were the major unsaturated acids both in amaranth and quinoa, whereas palmitic

was the main saturated fatty acid. Amaranth contained higher palmitic and oleic acid concen-

trations with 188.8 and 281.8 g kg-1 DM, while quinoa contained only 123.0 and 197.2 g kg-1

DM, respectively. The linoleic acid content in quinoa was higher than in amaranth (560 and

430 g kg-1 DM, respectively). This result was similar to Bressani et al. (1987b), Prakash and

Pal (1992), Prakash et al. (1995).
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The effect of nitrogen supply on fatty acid composition was clearly demonstrated. The

fatty acid composition and particulary the contents of stearic, oleic and linoleic acid

were changed. The contents of stearic and oleic acid were decreased with increasing

rates of nitrogen supply, while the linoleic acid content was increased. The fatty acids

synthesis was involved and activated by specific enzymes, which elongate chain

lengths and introduced additional double bonds (Ohlrogge, 1994). This result can be

explained by an indirect influence of the nitrogen supply on the availability of other

nutrients.

An increase in the linoleic acid content as essential fatty acid appears on the one hand

interesting in nourish-physiological regard while on the other hand it increase the off-

flavours when the oil is used for cooking (John, 1992).  The stearic, α-Linoleic and

arachidic acid contents were significant affected by nitrogen supply.

Table 6.3 Effect of nitrogen fertilizer on pasting properties of amaranth and quinoa

seed flour (cP)

Plants Varieties Peak Breakdown Setback Final Pasting

Species viscosity viscosity temp. (oC)

Amaranth Bärnkraft 1465d 260b 207b 1449b 78.22c

K432 1109a 89a 144a 1148a 76.50b

Quinoa Faro 1386c 48a 454d 1792d 72.66a

Tango 1218b 17a 360c 1561c 73.31a

Nitrogen levels (g N pot-1)*

0 1208a 106 280 1397a 74.61a

0.8 1368b 105 292 1566b 74.96ab

1.2 1307b 100 303 1499b 75.95b

The values of mean which are following by the same letter had p>0.05, and therefore,
they were not characterized as significantly different
* Average of all plant species and cultivars

The pasting characteristics of amaranth and quinoa flour were shown in Table 6.3

Significant differences between the cultivars were observed. Amaranth had higher

pasting temperature than quinoa.
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Figure 6.1 Pasting characteristics of amaranth and quinoa flours supplied with differ-

ent rates of nitrogen application and compared with wheat flour (N1, N2, and N3 were

0, 0.8, and 1.2 g N pot-1, respectively)

Effect of nitrogen fertilizer on pasting properties is shown in Figure 1. In all cultivars,

peak viscosity, final viscosity and pasting temperature were significantly increased

after nitrogen application. Zhou et al. (1998) found in oat flour that the application of

nitrogen fertilizer decreased the peak viscosity, while the pasting temperature was in-

creased. A high pasting temperature expected to be a disadvantage during processing

because insufficient gelatinisation may occur during short processing times used

commercially.

The protein, fat, total mineral and pentosans contents in this experiment were in the

same range with the results described in chapter 3. However, starch and dietary fiber

contents were lower than the results in chapter 3. Plant production environment and

crop management could be of important influence on this result.
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6.4 Conclusions

The differences of plant genotypes and the nitrogen fertilizer application levels influ-

enced the chemical composition of the seeds. Nitrogen supply had effects on protein,

fat, starch, total mineral content and pasting properties. Palmitic, oleic and linoleic

acid were the major fatty acids and were influenced by applied nitrogen fertilizer. Li-

noleic acid content was increased proportionally to the nitrogen rates. The dietary fi-

ber and pentosans contents were not changed. Nitrogen fertilization had effects on the

increase of the nutritional values of amaranth and quinoa seeds. However, it affected

the processing quality by increasing the pasting temperature. For the processing of

products, the optimum rates of nitrogen fertilizer application should be firstly deter-

mined to avoid undesirable effects, that may occurred during the processing proce-

dures. Especially high pasting temperatures requirement for the gelatinisation may

increase the cost of production.
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7 Summary

Soybean and peanut proteins are among the most common food allergens for children.

Moreover, peanut protein is among the most common allergens for adults (Sampson,

1998). Wheat and other cereal grains such as rice, maize and barley are well known

causes of food allergies (Nakamura, 1987). These allergens were not observed in ama-

ranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd). Therefore, these

plant species may be used as an alternative source for gluten-free diets (Kuhn et al.,

1996). Furthermore, amaranth and quinoa contained high amounts of dietary fiber,

which takes part in lipid metabolism improvement and prevention of LDL-C oxida-

tion (Kreft et al., 1998).

Seed composition of amaranth and quinoa varieties produced under Northern Ger-

many conditions in 2001 and 2002 were investigated. The variation in seed composi-

tion of amaranth and quinoa was caused by interactions between genetic and envi-

ronmental factors. The variation in protein content was mainly affected by the plant-

ing season. Amaranth and quinoa seeds contained high protein contents. Their amino

acid contents were accepted as sufficient for the human nutritional requirements. The

proteins were especially rich in lysine. The fat and starch contents were mainly

affected by the varieties. The amaranth varieties contained higher starch and lower

pentosans contents than the quinoa varieties. The insoluble dietary fiber was the main

part of the dietary fiber content in the seed. This is of great importance for the nutri-

tional value of pseudocereals, because a high content of dietary fiber has positive ef-

fects on the reduction of the cancer risk. In general, amaranth and quinoa contained

higher total mineral contents than the other cereals such as rye and wheat. The pasting

properties of amaranth and quinoa flour were very different from that of wheat flour.

Amaranth flour had more gel formation ability and viscosity than wheat flour. How-

ever, breeding programs should be considered to improve the agronomic characters

for obtaining more stable lines of chemical composition.

To study the effects of nitrogen fertilizer on biomass, grain yields, nitrogen uptake

and its assimilation from the soil to the vegetative and grain parts of amaranth and

quinoa plants were investigated. Nitrogen fertilizer application affected the increases

of grain weight, biomass, grain yield and harvest index. Quinoa had higher grain yield
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and harvest index than amaranth. Nitrogen accumulations in plant and grain were cor-

related with the nitrogen fertilizer application. Nitrogen use efficiency, nitrogen utili-

zation efficiency, nitrogen harvest index and grain yield per unit of grain nitrogen de-

creased with increased nitrogen fertilizer rates. Higher rates of nitrogen fertilizer than

0.8 g N pot-1 had no effect on the increase of the nitrogen uptake efficiency. Quinoa

had a higher efficiency in producing grain per unit of plant nitrogen than amaranth

(NUtE). However, the NUtE was decreased to 36 and 50 % after application of 0.8

and 1.2 g N pot-1, respectively. The present results show a demand for breeding pro-

grams to improve the nitrogen utilization efficiency and nitrogen uptake efficiency in

pseudocereals.

The nutritional values of amaranth and quinoa are mainly correlated with their protein

and amino acid composition. Nitrogen supply was the dominant factor on the protein

accumulation in the seed. Effects of nitrogen fertilizer on protein properties of ama-

ranth and quinoa were observed. The concentrations of Albu, Glob and Glut in ama-

ranth and quinoa as well as their amino acid compositions were determined. Nitrogen

fertilizer application affected both protein fractions and amino acid composition. De-

creasing of Albu-1 fraction was correlated with the increasing of Glob fractions and

should be affected during seed development stage. Protein patterns depended on the

species of crop plants. The contents of essential amino acids were not affected by ni-

trogen fertilizer application. Amaranth and quinoa had high contents of Lys, but low

contents of Met. Quinoa contained more Leu and Val contents than amaranth. Albu-1

fractions had high Lys content, while Albu-2 fractions had high Leu content. Glob

fractions contained higher concentrations of essential amino acids than the other frac-

tions, but lower content of Lys. Glut fractions were well balanced in their essential

amino acids with exception of Met. For human diet, nitrogen fertilizer application

should be advantage for improve the nutritional values by increased protein content

and maintained amounts of essential amino acid content.

Nitrogen supply affected the protein and fat content of the seeds. Palmitic, oleic and li

noleic acid were the major fatty acids and their concentrations were influenced by the

rates of nitrogen fertilizer. Linoleic acid content increased proportionally to the nitro-

gen fertilizer application. A considerable content of linoleic acid as an unsaturated

essential fatty acid is a good parameter giving for the quality of oil using for human
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diet. The dietary fiber and pentosans contents were not changed, whereas the increase

of the pasting temperature of flours obtained from amaranth and quinoa seeds was

negatively related to the nitrogen supply.

Finally, the obtained results about the content of essential and nonessential nutrients

showed the high potential of amaranth and quinoa seeds in human diet utilization. Ni-

trogen fertilizer application affected the increase of seed protein and linoleic acid

content but decreased Albu-1 fractions. The dietary fiber content was not affected by

nitrogen fertilizer application. For the processing of products, the optimum rates of

nitrogen fertilizer application should be firstly determined to avoid undesirable ef-

fects, that may occurred during the processing procedures. Especially high pasting

temperatures requirement for the gelatinisation may increase the cost of production.
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8 Zusammenfassung

Sojabohnen- und Erdnussproteine zählen zu den häufigsten allergieauslösenden

Verbindungen bei Kindern, während Erwachsene vor allem unter Allergien leiden, die von

Erdnussproteinen hervorgerufen werden (Sampson, 1998). Weizen und andere Getreidearten

wie Reis, Mais und Gerste sind weitere bekannte Ursachen für Nahrungsmittelallergien

(Nakamura, 1987). Diese Allergene wurden jedoch nicht in Amarant (Amarant spp.) und

Reismelde (Chenopodium quinoa Willd) gefunden. Folglich können diese Pseudocerealien

potentiell als alternative Quelle für glutenfreie Diäten (Kuhn et al., 1996) genutzt werden.

Außerdem enthalten Amarant und Reismelde hohe Mengen an Ballaststoffen,  die an der

Verbesserung des Fettstoffwechsels und an der Verhinderung der LDL-C Oxidation beteiligt

sind (Kreft et al., 1998).

Im Rahmen der vorliegenden Arbeit wurden zunächst mehrere Amarant- und Reismeldesorten

unterschiedlicher Herkünfte hinsichtlich ihrer chemischen Zusammensetzung untersucht,

welche in den Jahren 2001 und 2002 unter den Bedingungen Norddeutschlands angebaut

worden waren. Die Veränderung der Samenszusammensetzung von Amarant und Reismelde

wurde überwiegend durch Interaktionen zwischen genetischen Faktoren und Klimaeinflüssen

verursacht. Veränderungen im Proteingehalt wurde dagegen primär von der Anbausaison

beeinflusst. Die ermittelte Aminosäurezusammensetzung entspricht den Anforderungen, die

aus Sicht der menschlichen Ernährung insbesondere an den Gehalt essentieller Aminosäuren

zu stellen sind. Die Proteine der untersuchten Pseudocerealien waren vor allem reich an

Lysin. Fett- und Stärkegehalte wurden hauptsächlich von dem Potential der jeweiligen Sorte

beeinflusst, wobei Amarant höhere Stärke- und geringere Pentosangehalte als Reismelde

enthielt. Die Ballaststoffe bestanden hauptsächlich aus unlöslichen Verbindungen. Dies ist

von großer Bedeutung für den Nährwert von Pseudocerealien, weil ein hoher Inhalt an

Ballaststoffen positive Effekte auf die Verminderung des kanzerogenen Risikos hat. Im

Allgemeinen wiesen Amarant und Reismelde einen höheren Gehalt an Mineralstoffen als z.B.

Roggen und Weizen auf. Im Hinblick auf die Viskosität unterschieden sich die Mehle aus

Amarant und Reismelde sehr deutlich von Weizenmehl. Amarantmehl zeigte eine bessere

Ausprägung von Gelbildung und Viskosität. Im Hinblick auf weitere Züchtungsarbeiten sollte

aus Sicht der ernährungsphysiologischen Qualität sowie der Verarbeitungseigenschaften mehr

Augenmerk auf eine Stabilisierung der Zusammensetzung an wertgebenden Inhaltsstoffe

gelegt werden.
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Um den Einfluss der Stickstoffdüngung auf Biomasse, Kornertrag, Stickstoffaufnahme und

dessen Assimilation vom Boden zu den vegetativen Teilen und Körnern von Amarant und

Reismelde zu untersuchen, wurden die Pflanzen analysiert. Die Stickstoffzufuhr bewirkte

Zunahmen des Korngewichts, der Biomasse, des Kornertrages und des HI. Reismelde hatte hö

here Kornerträge und einen höheren HI als Amarant. Die Stickstoffakkumulation in der

Pflanze und im Korn war von der Höhe der N-Düngung abhängig. Die Parameter

Stickstoffaufnahmeeffizienz, Stickstoffverwertungseffizienz, Stickstoffernteindex und

Kornertrag pro Maßeinheit des Kornstickstoffes verringerten sich mit zunehmender

Stickstoffdünger-Zufuhr. Höhere Raten als 0.8 g N Gefäß-1 hatten keinen Einfluss auf die

Zunahme der Stickstoffaufnahmeeffizienz. Reismelde hatte eine höhere

Stickstoffverwertungseffizienz als Amarant, die jedoch um 6 bzw. 50 % nach Anwendung

von 0.8 und 1.2 g N Gefäß-1 verringert wurde. Die ermittelten Resultate belegen die

Notwendigkeit der züchterischen Verbesserung der Stickstoffaufnahme- und –

verwertungseffizienz in Pseudocerealien.

Der Nährwert von Amarant und Reismelde wird hauptsächlich durch ihre Protein- und

Aminosäurezusammensetzung bestimmt. Das Stickstoffangebot war dominierend in Bezug

auf die Proteinakkumulation im Samen. Effekte der Stickstoffdüngung auf die

Proteineigenschaften Amarant und Reismelde wurden ebenfalls beobachtet. Die Höhe der

Stickstoffzufuhr beeinflusste den mengenmäßigen Anteil der untersuchten Proteinfraktionen

und die Aminosäurezusammensetzung. Während die Fraktion von Albu-1 abnahm, erfolgte

eine Zunahme der Glob- Fraktion. Die Gesamtkonzentrationen an essentiellen Aminosäuren

wurden nicht durch die Stickstoffdüngung beeinflusst. Amarant und Reismelde hatten hohe

Gehalte an Lys und niedrige Gehalte an Met. Reismelde enthielt höhere Leu- und Val-Gehalte

als Amarant. Die Fraktion von Albu-1 hatte einen hohen Lys-Gehalt, während Albu-2 vor

allem durch einen hohen Leu-Gehalt charakterisiert war. Die Glob-Fraktion enthielt höhere

Mengen an essentiellen Aminosäuren als alle anderen Fraktionen, jedoch einen niedrigeren

Gehalt an Lys. Die Glut-Fraktionen wiesen mit Ausnahme von Met eine ausgeglichene

Zusammensetzung an essentiellen Aminosäuren auf. Im Hinblick auf die Erfordernisse bei der

menschlichen Ernährung erwies sich die Stickstoffdüngung von Vorteil für die Verbesserung

der Nährwerte durch erhöhte Proteingehalte und gleich bleibende Aminosäuregehalte. Die

Stickstoff-Versorgung beeinflusste auch den Lipidgehalt der Samen. Palmitin-, Ölsäure- und

Linolsäure wurden als dominierende Fettsäuren identifiziert. Ihre Gehalte wurden durch die

Höhe der Stickstoffdüngung beeinflusst. Der Linolsäuregehalt erhöhte sich proportional zur
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Stickstoffzufuhr. Ein hoher Gehalt an Linolsäure als ungesättigte Fettsäure ist ein guter

Parameter für die Ölqualität im Hinblick auf die menschliche Ernährung. Der Gehalt an

Ballaststoffen, einschließlich der Pentosane wurde nicht von der Stickstoffdüngung bestimmt.

Dagegen korrelierte die Zunahme der Verkleisterungstemperaturen der Mehle von Amarant

und Reismelde negativ mit der Höhe der Stickstoffzufuhr.

Schließlich zeigten die erreichten Resultate hinsichtlich des Gehaltes an

ernährungsphysiologisch relevanten Nährstoffen das hohe Potential von Amarant und

Reismelde in der menschlichen Ernährung. Die Stickstoffdüngung beeinflusste die Zunahme

des Proteins in den Körnern und den Linolsäuregehalt. Gleichzeitig verringerte sich die Albu-

1-Fraktion. Im Hinblick auf die Verarbeitungseigenschaften von Mehlen aus Pseudocerealien

sollte die optimale Rate der Stickstoffdüngung festgestellt werden, um unerwünschte Effekte

und erhöhte Kosten infolge hoher Verkleisterungstemperaturen zu vermeiden. 
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Appendix I: Grain yield, nitrogen accumulated in grain at harvest, nitrogen use efficiency and grain

yield per unit of grain nitrogen of amaranth and quinoa applied with three different rates of nitrogen

fertilizer in 2001. [Ng = nitrogen accumulated in grain at harvest (g Ngrain), NUE = Nitrogen use

efficiency (g grain g-1 Nmin), GNE = grain produced per unit of grain nitrogen (g grain g-1 Ngrain)]

Plants

Species

Varieties Nitrogen levels

(g N pot-1)

Grain yield

(g plant-1)

Ng NUE GNE

Amaranth Bärnkraft 0.0 2.29 0.05 22.88 50.04

0.8 2.48 0.07 4.97 38.03

1.2 2.62 0.07 3.75 36.97

K432 0.0 2.15 0.05 21.51 43.99

0.8 3.26 0.09 6.52 36.83

1.2 3.41 0.10 4.87 34.07

Quinoa Faro 0.0 2.37 0.05 23.68 48.22

0.8 2.77 0.07 5.55 38.12

1.2 2.37 0.07 3.39 34.24

Tango 0.0 4.07 0.07 40.65 58.17

0.8 6.48 0.16 12.96 39.74

1.2 6.54 0.17 9.34 38.40

Appendix II: Agronomic characteristics, biomass, grain yield, harvest index (HI), nitrogen

accumulated in grain at harvest, total aboveground plant nitrogen of amaranth and quinoa applied with

three different rates of nitrogen fertilizer in 2002. [TKW= Thousand-Kernel Weight, Ng = nitrogen

accumulated in grain at harvest per plant (g Ngrain), Nt = total aboveground plant nitrogen (g Nplant)]

Plants

Species

Varieties Nitrogen

levels

(g N pot-1)

Plant

height

(cm)

Biomass

(g plant-1)

Grain yield

(g plant-1)

TKW

(g)

HI Ng Nt

Amaranth Bärnkraft 0.0 61   7.07 1.53 0.68 0.22 0.03 0.06

0.8 112 34.83 6.31 0.77 0.18 0.12 0.45

1.2 111 41.87 9.50 0.83 0.23 0.22 0.72

K432 0.0 66   9.80 1.87 0.62 0.19 0.04 0.08
0.8 77 29.55 5.78 0.60 0.20 0.13 0.40

1.2 76 29.38 5.52 0.58 0.19 0.13 0.52

Quinoa Faro 0.0 106   9.31 2.41 2.22 0.26 0.04 0.06

0.8 147 28.14 8.14 2.64 0.29 0.17 0.31
1.2 132 33.04 10.17 2.75 0.31 0.25 0.54

Tango 0.0 91   9.72 2.84 2.81 0.29 0.04 0.07

0.8 122 30.97 11.03 3.06 0.36 0.22 0.40

1.2 126 36.38 13.39 2.63 0.37 0.32 0.62
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Appendix III: Nitrogen use efficiency and components of nitrogen efficiency of amaranth and quinoa

applied with three rates of nitrogen fertilizer in 2002. [NUE = Nitrogen use efficiency (g grain g-1

Nmin), NUpE = nitrogen uptake efficiency (g Nplant g-1 Nmin), NUtE = nitrogen utilization efficiency (g

grain g-1 Nplant), NHI = nitrogen harvest index (g Ngrain g-1 Nplant), GNE = grain produced per unit of

grain nitrogen (g grain g-1 Ngrain)]

Plant

Species

Varieties Nitrogen

levels

(g N pot-1)

NUE NUpE NUtE NHI GNE

Amaranth Bärnkraft 0.0 15.33 0.61 25.13 0.46 55.15

0.8 12.63 0.91 13.88 0.27 51.81

1.2 13.58 1.03 13.16 0.31 43.10

K432 0.0 18.69 0.76 24.45 0.47 52.36

0.8 11.55 0.80 14.41 0.33 43.99
1.2 7.89 0.74 10.68 0.25 42.02

Quinoa Faro 0.0 24.12 0.60 40.06 0.65 61.22

0.8 16.27 0.63 25.85 0.55 46.58

1.2 14.53 0.77 18.79 0.45 41.32
0.0 28.42 0.73 39.04 0.53 73.89

Tango 0.8 22.05 0.80 27.61 0.54 51.28

1.2 19.13 0.88 21.62 0.51 42.19

Appendix IV: Effect of nitrogen fertilizer on seed protein fractions

Fraction (%)Plants

Species

Varieties Nitrogen

levels

(g N pot-1)

Albu-1 Albu-2 Glob Glut Rest

Amaranth Bärnkraft 0.0 10.28 3.40 53.31 4.12 28.89
0.8 10.33 3.55 51.66 6.29 28.17

1.2   8.95 3.24 53.55 5.35 28.91

K432 0.0   7.15 2.06 47.71 9.53 33.55

0.8   5.40 1.93 56.17 7.15 29.36
1.2   4.90 1.88 52.28 6.35 34.59

Quinoa Faro 0.0   8.49 7.40 53.30 4.20 26.61

0.8   6.40 6.29 64.55 3.04 19.72

1.2   4.64 3.76 65.99 1.65 23.96

Tango 0.0 14.04 0.89 54.83 5.16 25.08

0.8   9.70 2.01 50.60 6.15 31.54
1.2   9.90 0.99 52.46 5.34 31.32
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Appendix V: Amino acid concentrations of amaranth and quinoa and at different rates of nitrogen

applications (g 100 g-1 protein)

Plants Species Amaranth Quinoa

Varieties Bärnkraft K432 Faro Tango

Nitrogen levels

(g N pot-1)

0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2

Amino acid

composition

Asp 9.6 9.8 9.5 9.1 9.0 8.4 11.0 9.4 9.5 11.1 9.2 9.2

Ser 7.3 7.2 5.9 6.6 10.6 8.6 5.4 4.5 4.4 5.7 4.6 4.2

Glu 11.7 11.9 11.6 12.2 10.5 10.2 10.7 9.4 9.4 10.4 9.5 9.5

His 2.7 2.6 2.8 2.7 2.7 2.7 2.8 2.9 2.8 2.9 3.3 3.0

Gly 6.4 5.8 4.9 6.1 10.3 9.3 3.9 3.6 3.1 4.2 3.7 3.4

Arg 12.2 11.6 13.4 13.8 11.7 11.8 12.3 13.8 13.5 12.2 14.4 14.3

Thr 3.4 3.5 3.8 3.9 3.4 3.2 4.1 3.7 4.1 4.2 3.9 3.6

Ala 8.6 8.8 8.9 8.2 8.1 8.4 10.0 9.7 10.3 8.7 9.0 9.4

Pro 6.6 6.7 7.1 6.5 6.4 6.6 7.3 7.8 8.2 8.8 9.4 9.5

Cys 3.4 3.5 3.1 2.9 1.3 3.7 2.9 3.1 3.4 2.7 2.3 2.9

Tyr 5.0 5.1 5.5 4.9 4.5 4.9 4.8 5.7 5.5 4.7 5.4 5.3

Val 3.3 3.3 3.6 3.5 3.1 3.2 4.3 4.4 4.6 4.3 4.5 4.4

Met 1.6 1.4 1.5 1.8 1.2 1.2 1.4 1.4 1.4 1.3 1.4 1.2

Lys 8.2 7.9 7.0 7.5 7.1 7.3 7.8 7.2 6.8 7.3 6.3 7.0

Ile 2.6 2.9 2.9 2.7 2.5 2.6 3.1 3.5 3.5 3.1 3.4 3.4

Leu 4.8 5.1 5.5 5.1 4.9 5.0 6.0 6.8 6.8 6.0 6.6 6.7

Phe 2.6 2.9 3.0 2.7 2.8 2.9 2.3 3.2 3.0 2.4 3.2 3.1

EAA 41.4 41.2 43.5 43.6 39.4 39.9 44.0 46.8 46.4 43.8 47.0 46.6
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Appendix V: Amino acid concentrations in Albu-1 fractions of amaranth and quinoa and at different

rates of nitrogen applications (g 100 g-1 protein)

Plants Species Amaranth Quinoa

Varieties Bärnkraft K432 Faro Tango

Nitrogen levels

(g N pot-1)

0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2

Amino acid

composition

Asp 4.5 5.5 4.5 4.5 4.3 3.4 4.7 5.0 5.1 5.5 6.9 6.8

Ser 5.5 4.5 5.3 6.1 6.3 5.3 3.9 4.3 4.2 4.4 4.8 4.6

Glu 13.8 15.1 13.9 9.8 10.7 6.5 10.7 11.7 12.7 9.2 13.3 15.8

His 2.7 2.6 2.7 5.4 4.6 5.6 3.4 3.2 2.9 3.3 1.7 1.1

Gly 15.1 11.7 14.2 16.9 16.7 18.5 12.0 11.8 11.8 9.9 10.9 11.3

Arg 11.6 9.4 12.0 13.5 13.8 9.7 5.9 6.6 6.1 7.8 7.4 9.1

Thr 4.0 4.3 4.2 4.4 4.0 4.8 5.8 5.7 5.9 5.3 5.3 4.7

Ala 4.0 5.2 4.3 3.8 3.9 4.7 6.6 6.1 6.3 6.2 6.4 6.0

Pro 3.7 4.0 3.8 3.8 3.9 4.5 6.2 5.9 5.7 5.3 5.3 5.1

Cys 1.3 0.5 0.1 0.6 0.3 0.2 0.0 0.0 0.0 0.0 0.1 0.1

Tyr 5.5 5.3 5.2 4.3 4.9 6.2 5.3 5.7 5.3 5.8 4.4 4.3

Val 4.7 5.5 5.0 4.3 4.4 5.4 7.3 6.9 7.0 7.2 6.6 5.9

Met 1.9 1.9 2.0 1.6 1.6 1.8 1.8 1.7 1.5 2.2 1.9 1.7

Lys 7.8 8.6 8.0 8.5 7.4 6.8 5.4 5.5 6.5 7.4 8.2 8.1

Ile 4.0 4.7 4.4 3.9 3.9 4.9 5.9 5.6 5.6 5.6 4.7 4.3

Leu 5.3 6.3 5.7 4.8 5.0 6.1 8.4 7.8 7.7 8.3 7.1 6.6

Phe 4.8 5.0 4.9 3.8 4.4 5.5 6.6 6.4 5.8 6.4 5.0 4.6

EAA 46.7 48.2 48.7 50.1 49.0 50.7 50.5 49.4 48.9 53.7 48.0 46.1
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Appendix VI: Amino acid concentrations in Albu-2 fractions of amaranth and quinoa and at different

rates of nitrogen applications (g 100 g-1 protein)

Plants Species Amaranth Quinoa

Varieties Bärnkraft K432 Faro Tango

Nitrogen levels

(g N pot-1)

0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2

Amino acid

composition

Asp 8.2 9.2 8.4 8.7 9.5 8.0 9.7 9.6 9.5 9.5 9.5 8.6

Ser 6.3 5.6 6.1 6.5 6.2 5.3 4.8 3.9 4.3 4.8 5.0 4.5

Glu 13.1 15.3 15.7 12.6 13.0 10.1 15.9 14.7 14.1 12.8 12.6 12.2

His 3.1 2.8 3.2 3.0 3.4 3.0 2.2 3.1 3.0 2.9 3.1 2.7

Gly 7.8 7.2 7.3 7.5 7.2 7.3 5.9 5.9 6.6 7.4 7.6 7.4

Arg 9.4 9.1 10.5 11.1 11.0 7.2 9.0 9.6 9.8 9.4 8.7 7.4

Thr 4.4 4.5 4.4 4.7 4.5 4.5 4.4 3.9 4.3 4.7 5.2 5.6

Ala 5.3 4.8 4.7 5.1 5.3 7.1 6.0 6.9 6.3 6.9 7.3 7.6

Pro 5.2 4.8 5.0 4.7 4.8 5.4 4.4 4.8 4.7 4.6 5.0 4.9

Cys 0.7 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Tyr 4.9 4.6 4.2 4.7 4.3 5.2 4.0 4.2 4.4 4.2 4.6 7.6

Val 6.1 6.2 5.8 6.0 5.7 7.2 6.5 6.5 6.3 6.9 4.6 5.0

Met 1.2 1.3 1.1 0.9 0.8 0.9 1.4 1.5 1.4 1.0 0.9 1.3

Lys 5.3 6.5 5.5 6.0 6.4 6.6 7.1 6.6 6.6 6.8 7.3 7.2

Ile 5.4 5.3 5.1 5.3 5.1 6.2 5.5 5.6 5.4 5.5 5.5 5.4

Leu 7.8 7.3 7.2 7.5 7.3 8.9 8.1 8.2 8.2 8.0 8.0 8.1

Phe 6.0 5.7 5.8 5.7 5.4 6.7 4.9 5.1 5.0 4.7 5.1 4.7

EAA 48.6 48.6 48.7 50.1 49.6 51.3 49.1 49.9 50.1 49.9 48.4 47.2
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Appendix VII: Amino acid concentrations in Glob fractions of amaranth and quinoa and at different

rates of nitrogen applications (g 100 g-1 protein)

Plants Species Amaranth Quinoa

Varieties Bärnkraft K432 Faro Tango

Nitrogen levels

(g N pot-1)

0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2

Amino acid

composition

Asp 2.8 3.1 2.8 3.0 3.9 2.6 2.8 2.9 3.0 3.0 2.9 3.4

Ser 4.2 4.6 4.1 3.5 3.7 3.7 3.4 3.3 3.3 4.3 3.6 3.8

Glu 9.8 10.5 10.4 11.5 14.0 10.6 11.4 12.7 12.5 10.4 10.9 11.0

His 4.2 4.0 3.9 4.0 3.9 4.5 5.8 6.6 6.5 4.9 5.4 5.2

Gly 6.4 8.6 7.7 7.6 6.9 7.9 6.2 5.8 5.7 7.5 6.4 6.5

Arg 15.3 17.8 15.8 14.9 12.6 12.9 19.6 20.3 20.0 18.3 19.8 17.6

Thr 4.1 3.6 3.8 3.8 3.9 4.1 4.4 5.4 4.7 3.9 4.4 4.6

Ala 9.0 8.4 10.5 9.2 7.7 9.7 7.2 5.0 4.6 7.4 7.5 7.1

Pro 4.8 4.3 4.7 5.1 4.9 5.3 4.7 3.7 3.4 4.5 4.4 4.4

Cys 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tyr 7.2 7.2 6.7 6.8 6.9 7.7 6.9 8.4 8.7 6.2 6.3 6.4

Val 4.9 4.2 4.7 4.7 5.1 5.0 4.0 3.7 3.9 4.4 4.4 4.9

Met 3.3 2.9 2.6 3.2 2.3 2.1 3.0 2.1 2.1 3.9 2.3 2.2

Lys 3.3 2.7 3.5 3.6 3.8 2.8 2.7 0.9 0.8 3.6 3.3 3.5

Ile 4.8 4.1 4.6 4.6 5.1 5.0 4.1 3.8 4.2 4.6 4.4 4.8

Leu 6.9 5.6 5.9 6.1 6.6 6.5 6.1 5.6 5.9 6.6 6.5 6.9

Phe 8.9 8.7 8.4 8.3 8.5 9.7 7.6 10.1 10.8 6.7 7.4 7.7

EAA 55.5 53.4 53.1 53.2 52.0 52.5 57.3 58.5 58.9 56.8 57.9 57.4
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Appendix VIII: Amino acid concentrations in Glut fractions of amaranth and quinoa and at different

rates of nitrogen applications (g 100 g-1 protein)

Plants Species Amaranth Quinoa

Varieties Bärnkraft K432 Faro Tango

Nitrogen levels

(g N pot-1)

0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2 0.0 0.8 1.2

Amino acid

composition

Asp 10.3 9.7 9.8 8.6 9.4 9.8 10.1 9.7 9.9 9.0 9.5 9.8

Ser 5.9 5.6 5.7 6.1 5.6 5.5 5.2 5.2 5.1 5.2 5.4 5.4

Glu 12.8 13.7 13.9 15.8 17.4 18.0 16.5 16.8 16.9 10.7 12.6 12.5

His 2.7 3.0 2.9 3.1 3.0 2.8 3.2 3.2 3.0 3.2 3.4 3.3

Gly 6.3 6.3 6.2 6.2 5.9 5.7 5.5 5.7 5.6 5.9 5.8 5.9

Arg 8.2 9.4 9.9 10.1 10.0 9.6 8.7 9.0 8.8 8.9 10.1 9.8

Thr 5.1 4.6 4.5 4.6 3.9 3.8 4.2 4.1 4.1 5.0 4.7 4.8

Ala 5.3 4.6 4.6 4.8 4.8 4.9 5.7 5.3 5.3 5.8 5.4 5.6

Pro 4.8 5.1 5.2 4.5 4.9 4.8 4.1 4.2 4.2 4.5 4.4 4.5

Cys 2.6 2.4 2.4 1.1 1.0 1.6 2.0 1.5 1.4 0.7 1.0 0.8

Tyr 4.9 5.3 5.0 5.1 4.8 4.4 4.1 4.0 4.2 5.7 4.8 4.7

Val 5.9 5.5 5.4 5.6 5.5 5.4 6.0 5.9 6.0 6.5 6.0 6.2

Met 1.1 1.2 1.0 0.8 0.8 0.8 1.2 1.4 1.3 1.8 1.6 1.6

Lys 5.7 5.1 5.3 4.8 4.9 5.3 5.4 5.2 5.4 5.8 5.2 5.4

Ile 5.4 5.6 5.5 5.4 5.3 5.2 5.3 5.4 5.5 5.8 5.7 5.7

Leu 8.2 7.7 7.6 8.0 7.8 7.6 8.5 8.3 8.4 9.5 8.7 8.8

Phe 4.8 5.3 5.2 5.3 5.1 4.9 4.6 4.9 5.0 6.1 5.7 5.4

EAA 47.1 47.3 47.3 47.8 46.2 45.4 47.0 47.5 47.4 52.6 50.9 50.9
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