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Summary: 
 

The nutritional ecology of the invasive maize pest Diabrotica virgifera virgifera 

LeConte (Coleoptera, Chrysomelidae, Galerucinae) was studied with regard to larval 

and adult food use and performance on various host plants. The adult beetles are 

feeding mainly on aboveground maize tissues, while the larvae are root feeders on 

maize and other Poaceae species. This leaf beetle was first detected 1992 near 

Belgrade and has spread into 15 European countries already. Models predict 

infestation to occur in all but northern European countries in the following years. The 

results of the study aim towards a more detailed understanding of processes which 

determine the invasion potential and success of this pest species. 

1) The use of different food resources by adult beetles in Southern Hungary were 

studied over a 10 week period. In order to evaluate the use of different maize tissues 

a gut content analyses was performed. Furthermore a detailed pollen analyses was 

carried out to estimate the use of alternative pollen sources.  

• The adult beetles showed a high adaptability with regard to their nutritional 

ecology in their new range. The majority of all flowering weeds were used as 

alternative pollen sources.  

• The use of maize tissue and pollen from alternative host plants by adult beetle 

was depending on maize phenology, diversity of flowering weeds in a given 

habitat and the sex of the beetles.  

2) The performance of larvae on maize cultivars from different European countries 

and several alternative host plants was tested. A new method was developed that 

allowed to measure how efficient D. v. virgifera larvae performed in transferring plant 

biomass into own body biomass.  

• The larval performance showed significant differences on different European 

maize varieties.  

• The larvae performed well on several other grass species which are common 

weeds in maize fields and also on some monocot crops as winter wheat. They 

were unable to use roots of dicot weeds as for example Amaranthus sp.  

• The performance of the larvae on different maize varieties and alternative host 

plants was related to the total nitrogen content, the C/N ratio and the phytosterol 

composition encountered in the host plant tissue.



Introduction 8 

Introduction: 

 

“We must make no mistake: we are seeing one of the great  

historical convulsions in the world’s fauna and flora”  

Charles S. Elton, 1958. 

 

Biological invasions occur when an organism is encountered beyond its previous 

range (Williamson, 1996). Natural invasions are usually long term events, which 

result in range expansions on continents or in colonization of new areas due to 

natural events (tectonic movement, land bridges) or historical fluctuations in climate 

and biota (Mooney and Cleland, 2001). In contrast to these natural invasions most 

invasions nowadays are results of human activities. Organisms are deliberately or 

accidentally transferred across natural biogeographical barriers like oceans or 

mountain ranges due to the worldwide transport of commercial goods and humans 

(Mack et al., 2000). Invasive species are considered as the second most important 

factor after habitat destruction responsible for biodiversity loss (Walker and Steffen, 

1997). Besides their environmental impact they also pose a heavy threat to national 

economies (Pimentel et al., 2000). Crop pests are the most obvious invaders to 

cause economic damage. Invasive arthropod pests are accounting for 14.4 billion 

USD monetary losses per year due to decreased yield, damage, and control costs in 

US agriculture (Pimentel et al., 2003). Several invasions were deliberate, like the 

spreading of crops across the globe. However, as Elton (1958) remarked “Just as 

trade followed the flag, so the animals have followed the plants”. Thus almost 500 

years after the arrival of maize in Europe its worst insect pest finally caught up. Since 

its first discovery 1992 near Belgrade, Yugoslavia, Diabrotica virgifera virgifera 

(Chrysomelidae, Galerucinae) is invading European maize fields and has spread into 

14 countries until 2002 (Fig. 1). This leaf beetle is most likely to colonize all European 

countries except for northern latitudes (Scandinavia) where climatic conditions 

impede larval development (Baufeld, pers. comm.). The spread may reach up to 100 

km per year (Baufeld and Enzian, 2001). Models predict an economic impact of 

about 500 Mio. € per year in the EU member states (Baufeld, pers. comm.). D. v. 

virgifera (Western Corn Rootworm; WCR) originated in Central America, where it is 

thought to have coevolved with annual monocot grasses like maize (Eben et al., 
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1997). In the US it is known since the beginning of the 20th century and is recognized 

as the most damaging insect pest in maize since the 1950s. It accounts for 1 billion 

USD monetary losses per year due to decreased yield and control costs (Krysan and 

Miller, 1986). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Spread of WCR in Europe until 2002. 
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The factors which determine success or failure of a given invader still remain 

unknown to a large extent (Williamson, 1996). Several important features of 

successful invaders are: the invasion (or propagule) pressure, the ability of an 

invader to encounter mates and suitable habitats or the invaders ability to adapt to 

the biotic and abiotic conditions in its new range (Williamson, 1996). Phenotypic 

plasticity is regarded as being another factor responsible for successful invasions 

(Agrawal, 2001). In case a species has successfully invaded a new area and 

eradication is not feasible anymore it is often called for management plans. To 

perform a risk assessment study and to establish a management plan, a thorough 

understanding of the population biology of the invasive species in its new range is 

indispensable (Simberloff, 2003). European maize production differs from the US 

with regard to production intensity and the cultural practices used. This sets up a 

different habitat with different resources available for WCR. Thus resource and 

habitat utilization of WCR in Europe may be significantly different compared to the 

resources used in its old range mainly in the corn belt of the USA.  

 

WCR is an univoltine species, where the eggs diapause during the winter. The larvae 

hatch in spring and reach pupation within 40 to 50 days of larval development 

depending on environmental conditions. All three larval stages feed on maize roots, 

while the first stage feeds externally and the later two stages mine inside the primary 

roots (Chiang, 1973). The main host is maize. However larval development is also 

possible on other monocot host plants (Branson and Ortman, 1970). When reared on 

alternative hosts, the adult fertility is not significantly decreasing (Branson and 

Ortman, 1967). Larval mobility is limited and the larvae are not able to discriminate 

between host and non-host plants by the means of olfaction (Krysan and Miller, 

1986). Therefore larval survival is determined by the females ability to find an 

appropriate host plant for oviposition (Branson and Krysan, 1981). After hatching the 

adult beetles feed on all aboveground tissue of maize especially pollen and silk 

(Ludwig and Hill, 1975). The females are able to lay up to 1000 eggs and oviposit 

during their entire life span from mid summer to late autumn (Chiang, 1973). 

Preferred sites for oviposition are the base of maize plants. If maize is not available 

or already harvested, females prefer clumps of monocot weeds over bare soil or 

maize stalks (Johnson and Turpin, 1985).  
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The encounter of suitable hosts is essential for all life stages of an invasive species. 

Which nutritional resources can be used by insect depends on their suitability for 

insect metabolism. Host suitability is determined by several factors like the content of 

nutrients and of secondary compounds such as phenols and alkaloids (Scriber and 

Slansky, 1981). For females it is especially important to find nitrogen rich food for egg 

maturation (Wheeler,1996). Because root feeding larvae have to cope with very 

nitrogen poor food (Slansky and Sriber, 1985), their performance is especially 

influenced by the content of nitrogen. 

 

The carbon-nutrient balance hypothesis has long been used as a tool to predict 

resource allocation of secondary compounds in plants (Hamilton et al., 2001). This 

hypothesis predicts that the plant should invest excess carbon or nitrogen into 

defense metabolites, depending on environmental conditions (Lerdau and Coley, 

2002). Besides C- or N-based plant defenses, carbon and nitrogen ratios may also 

allow to interpret the insects ability to use a given food item, because C and N may 

be incorporated in nutritive substances like sugars or amino acids as well. Nitrogen 

may be found as protein- or non-protein-nitrogen (secondary compounds like 

alkaloids) in plant tissues (Slansky and Scriber, 1985). The influence of nitrogen on 

insect performance has been well documented by more than 200 studies revised by 

Scriber (1984), investigating the influence of fertilizers on herbivores. In the majority 

of these studies a surplus of nitrogen led to increased larval growth and feeding 

damage. Thus the C/N ratio may be considered a valuable parameter to explain the 

performance of herbivore insects on different host plants.  

 

Besides the nitrogen content other essential compounds, which are present at much 

lower quantity in plant tissues play an important role as well. One group of these 

essential compounds for insects are phytosterols (Svoboda and Thompson, 1985). 

Sterols have numerous functions in insect biochemistry. They are essential 

components of cell membranes and serve as precursors of molting hormones 

(ecdysteroids) in many insects (Svoboda, 1984). Insects as many other invertebrates 

are unable to synthesize the steroid nucleus. Thus they rely on exogenous sources 

of sterols for regular development (Svoboda and Thompson, 1985). Metabolic 

constraints may limit which sterols could be used to support normal growth and 

development (Behmer and Elias, 2000). The phytosterol content of food items has 
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been shown to influence herbivore behavior (Behmer and Elias, 1999) and 

performance (Behmer and Grebenok, 1998). Thus a phytosterol analysis of the host 

plant tissue may be used to interpret insect performance on different host plants (Nes 

et al., 1997). 
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Objectives: 
 

To determine the factors which influence the success of the invasion of WCR in 

Europe the nutritional ecology of adults and larvae was investigated. 

 

1) A gut content and pollen analyses of field caught adults was performed to 

show the plasticity in food resource utilization in European maize production 

systems. More specifically we addressed the questions:  

! Does maize phenology has an impact on the nutritional ecology of adult 

WCR? 

! Is resource utilization of adult WCR habitat dependent? 

! Do female and male WCR use different components or proportions of 

the available resources? 

2) Furthermore food conversion efficiency studies were conducted to determine 

the suitability of different European maize varieties and alternative host plants 

for WCR larval development.  

! How do WCR larvae perform on different European maize varieties? 

! Are WCR larvae able to use alternative host plants for their 

development? 

! Is the performance on alternative hosts comparable to the performance 

on maize? 

! Is the larval performance correlated to the C/N ratio and the phytosterol 

content we determined in the host plant tissue? 
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Does plasticity in adult feeding behaviour facilitate the invasion of 
Europe by the maize pest Diabrotica virgifera virgifera? 

 

Joachim Moeser and Stefan Vidal 

Georg-August University Goettingen, Institute for Plant Pathology and Plant 

Protection, Grisebachstr. 6, 37077 Goettingen, Germany. Tel: +49 (0)551 393730, 

Fax: +49 (0)5513912105, E-mail contact: jmoeser@gwdg.de 

 

Corresponding author: S. Vidal, address and telephone/ fax as above; E-mail 

contact: svidal@gwdg.de 

 

ABSTRACT - The food utilization of adults of the invasive maize pest western corn 

rootworm (WCR; Diabrotica virgifera virgifera) was studied in its newly colonized 

range in Southern Europe. During a period of ten weeks we collected ten beetles per 

field per week from six fields with a high abundance of flowering weeds and six fields 

with a low abundance with the aim of understanding adult feeding behaviour in 

Europe. Gut content analysis was performed to determine the use of maize tissue 

and weed pollen with regard to maize phenology. Furthermore, all pollen found within 

the gut was identified and quantified to plant species level. The use of maize tissue 

by adult WCR changed with time according to maize phenology. Furthermore, pollen 

resources other than maize were used more frequently as the maize matured. A 

more detailed pollen analysis of the beetles revealed that adults fed on a high 

diversity of pollen, comprising 73% of all weed species (19 different plant species 

from 25 in total) found within maize fields. The use of different pollen resources was 

not dependent on their abundance but was determined by the preference of adult 

WCR for specific weed pollen. Pollen other than maize was found more frequently in 

beetles from fields with a high abundance of weeds compared to beetles from fields 

with a low abundance of weeds. Female and male beetles differed significantly in 

their use of alternative pollen resources; total numbers of pollen were higher in 

females, whereas males fed on a higher diversity of host plants. The pollen 

resources used by adult WCR in Southern Hungary are more diverse in comparison 

to data from the USA. Adaptation of their feeding behaviour to more heterogeneous 

environmental conditions may contribute to the invasion success of WCR in Europe. 
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KEY WORDS - Corn rootworm, pollen feeding, nutritional ecology, invasive species, 

C:N ratio, phytosterols 

 

INTRODUCTION 

Invasive species are regarded as the second most important factor responsible for 

biodiversity loss (Walker and Steffen, 1997) and pose heavy monetary losses on 

national economies (Pimentel et al., 2000). However, it is as yet a matter of 

discussion (debate) why invasive species are successful in the areas they invade. 

One factor responsible for the success of invading animal species is their capability 

to adapt to the biotic and abiotic settings of their new habitat (Williamson, 1996). To 

anticipate possible threats to the environment it is mandatory to know the ecological 

requirements of an invasive organism in its newly colonized habitat in order to carry 

out a risk assessment analysis and finally consider countermeasures, if eradication is 

no longer feasible (Simberloff, 2003). However, Simberloff’s “first shoot then ask” 

paradigm is no longer applicable to the invasion of Europe by the Western Corn 

Rootworm.  

Since the first discovery of Diabrotica virgifera virgifera LeConte (western corn 

rootworm; WCR) in 1992 near Belgrade, Yugoslavia, the insect has spread 

considerably and is now encountered in more than 15 European countries (EPPO, 

2003). The numbers of beetles and countries infested is rising each year. WCR has 

been known in the USA since the beginning of the 20th century. Since the 1950s, it 

has become the most important pest of maize, causing economic losses of about 1 

billion U.S. dollars per year (Krysan and Miller, 1986). WCR is an univoltine species 

where the females are able to oviposit during their entire adult life span. The adult 

beetles feed on all above ground parts of maize plants, especially maize pollen and 

silk (Chiang, 1973; Ludwig and Hill, 1975). However, little is known about the use of 

plants other than maize as food for adult WCR.  

The North American and European maize production systems differ with regard to 

size of the farms and intensity of maize production per unit area. Farms are more 

than 10 times larger in the corn belt of the USA compared to the average size in the 

EU (233:19 ha). Moreover, in the corn belt region maize is grown on more than 23 % 

of the utilized agricultural area (USDA, 2003), whereas in Europe this is just 3 % (EU 
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Commission, 2003). Therefore, food resources used by WCR in North America may 

differ from those used under European conditions.  

We hypothesized, that the invasion potential of WCR might be enhanced by 

more diverse habitats, providing alternative and/or additional food resources. We 

therefore compared populations of adult WCR from maize fields differing in their 

abundance of weeds. We used gut content and pollen analyses to identify 

parameters determining the nutritional behaviour of females and males WCR in 

southern Hungary both in time and space. 

 

MATERIALS AND METHODS - 

The investigation took place in Southern Hungary (Csongrad county) during a 

10-week period from the end of June to mid September 2000, the main feeding 

period of adult beetles in the field. Beetles were collected by hand from maize plants 

in fields selected with regard to different weed abundances in order to estimate the 

use of maize and weed-pollen by WCR. Six fields with a low abundance of weeds 

and six fields with a high abundance of weeds were used. Weedy fields were defined 

by containing more than three weed plant individuals of any species per transect. 

Beetles were also collected directly from weeds when encountered there. The maize 

phenology (Ritchie et al. 1992) was recorded once a week along transects within the 

fields to gather information on availability of different maize tissues or organs. A 

single transect comprised the area between two rows of maize at a length of 20 m. 

The maize rows were numbered and the transects were run following a random 

number generated by a pocket calculator. An additional randomly generated number 

between zero and 30 was used as the starting point for the transect, indicating the 

distance from the field margin. The transects were changed weekly. Additionally, the 

number of plants with fresh silk was recorded, serving as an indicator for silk 

availability. The percentage of pollen shedding maize plants was used as a measure 

of maize pollen availability. Furthermore, the abundance and diversity of flowering 

weeds was recorded weekly along the transects described above. All plant 

individuals were counted and determined to species level. Ten beetles were collected 

from each field, resulting in 120 beetles per week, 60 from each field type. These 

beetles were stored in the laboratory at –20°C until further processing. From the total 

1200 beetles collected, 600 beetles were examined regarding their gut content and 

another 600 were used in the pollen analysis. 
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The beetles were dissected by initially cutting off the last segment of the 

abdomen. The abdomen and thorax were subsequently cut ventrally. After pinning 

the insect in a water filled wax saucer the gut was removed between the first loop of 

the intestine and the section between oesophagus and stomach. This piece of 

intestine was placed on a glass slide and examined with a light microscope. In order 

to differentiate between the various maize tissues found in the gut, living beetles 

were fed this specific tissue and were then frozen half an hour later. These voucher 

specimens were treated as described above, thus serving as a reference to identify 

the gut content of field caught specimens. Maize pollen could be distinguished clearly 

from non-maize pollen, silk tissue could be identified because of its characteristic 

tubus-like appearance. Maize leaf tissue was identified by its characteristic cuticle 

and stomata, while kernel tissue was recognized by its pebble-like structures. 

Another 300 beetles from each field category were used in the qualitative and 

quantitative pollen analysis. Here only pollen and no other tissue could be identified 

due to the acetolysation processes. To remove pollen that was attached to the 

outside of the beetles, they were washed twice in 95 % alcohol. The wings and the 

elytra were subsequently removed and the remains were washed following the same 

procedure. The beetles were then placed in 1.5 ml Eppendorf tubes and 1 ml of the 

acetolysation solution (9:1 concentrated acetic anhydride to concentrated sulphuric 

acid) was added. The samples were heated in a hot block (100°C) for 15 min., and 

stirred with toothpicks every 5 minutes. After this time period 0.5 ml of glacial acetic 

acid was added and the test tubes were placed in a centrifuge (Sigma GmbH, Model 

4 K 10) for 3 min. at 4000 rpm. The supernatant was decanted and discarded, the 

residue vortexed with 1 ml distilled water and centrifuged. This step was repeated 

two more times. The next washing was performed using 1 ml ethanol (95%). After 

centrifuging once again two drops of Safranin-0 stain were added, and the solution 

was centrifuged again. The supernatant was decanted and discarded and three 

drops of Glycerin were added to the residue. The tubes were placed in a hot block 

(25°C) overnight so that the ethanol could evaporate. The Glycerin droplets 

containing the pollen were extracted using an Eppendorf pipette and transferred to a 

glass slide. The pollen was counted and identified using a previously established 

reference collection of all weeds encountered within and alongside the margins of 

maize fields. We created this reference collection by hand collecting flowers in the 

field and storing them at –20°C until further processing. In the laboratory pollen was 



Chapter 1: Food utilization of adult Diabrotica virgifera virgifera.                    19 

removed from the flowers/anthers by submersion in KOH for 1 min., then neutralizing 

with distilled water and finally sieving through a 400 µm mesh. The pollen-water 

obtained was concentrated using a centrifuge and treated in a similar manner to the 

beetles in the procedure described above. 

Systat 10 for Windows (SPSS Inc., 2000) was used for used for statistical 

analysis. For the gut content and for the pollen analyses, linear regression models 

were used to describe the relationship between the use of a given food item from 

maize pollen availability. Beetles from the two field types were compared regarding 

their pollen feeding and their use of host plants by repeated measures analysis of 

variance (RM-ANOVA) to measure within and between group variance. We used a 

one-way analysis of variance (ANOVA) with a Bonferroni adjustment to compare 

female and male use of alternative food sources from weedy and non-weedy fields to 

test individual samples against each other in a pair wise comparison.  
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RESULTS - 

Gut content analysis 
The use of alternative host pollen by WCR adults was dependent mainly on 

the availability of maize pollen. The decrease in maize pollen use was positively 

correlated with the reduction in maize pollen availability. Linear regression explained 

54% of the variance (y = 33.226 + 0.72x, P = 0.016) for beetles from weedy fields 

and 72% for beetles from non-weedy fields (y = 26.1573 + 0.79x, P = 0.002; Fig. 1.a). 

While the percentage of beetles feeding on weed pollen increased to almost 100 % in 

the weedy fields, only 60 % of the beetles from non-weedy fields fed on weed pollen 

(Fig. 1.b). The use of weed pollen by adult WCR was negatively correlated with the 

availability of maize pollen (weedy fields: y = 29.78 - 0.37x, R2 = 0.38, P = 0.07; non-

weedy fields: y = 27.4 - 0.41x, R2 = 0.42, P = 0.04). Silk feeding was observed to a 

large extent during the entire study period (Fig. 1.c) showing no correlation with the 

availability of fresh silk (weedy fields: y = 25.84 + 0.61x; R2 = 0.24; P = 0.15; non-

weedy fields: y = 40.46 + 0.47x, R2 = 0.11; P = 0.35). Beetles fed only on leaf tissue 

for a short period at the beginning of the study and again towards the end of the 

study period. These resources were used less when pollen and silk were widely 

available (Fig. 1.d). Kernel feeding was especially prominent in beetles from non-

weedy fields, when silk and pollen became scarce. On the other hand it was only 

rarely encountered in beetles from weedy fields (Fig. 1.e). Although none of the 

correlations were significant, a higher percentage of beetles from non-weedy fields 

used kernel and leaf tissue. Up to 60% of the beetles had empty guts in the first week 

of sampling, indicating newly hatched individuals, which had not had time to feed 

before sampling. This proportion dropped to zero in the second week of sampling 

and increased slowly again towards the end of the study. Beetles from non-weedy 

fields were more often found to have an empty gut (Fig. 1.f).  



Chapter 1: Food utilization of adult Diabrotica virgifera virgifera.                    21 

a) Week

1 2 3 4 5 6 7 8 9 10

Be
et

le
s 

fe
ed

in
g 

on
 m

ai
ze

 p
ol

le
n 

[%
]

0

20

40

60

80

100

 b) Week

1 2 3 4 5 6 7 8 9 10

Be
et

le
s 

fe
ed

in
g 

on
 n

on
-m

ai
ze

 p
ol

le
n 

[%
]

0

20

40

60

80

100

 

c) Week

1 2 3 4 5 6 7 8 9 10

Be
et

le
s 

fe
ed

in
g 

on
 s

ilk
 [%

]

0

20

40

60

80

100

 d) Week

1 2 3 4 5 6 7 8 9 10

Be
et

le
s 

fe
ed

in
g 

on
 le

av
es

 [%
]

0

20

40

60

80

100

 

e) Week

1 2 3 4 5 6 7 8 9 10

Be
et

le
s 

fe
ed

in
g 

on
 k

er
ne

l [
%

]

0

20

40

60

80

100

 f) Week

1 2 3 4 5 6 7 8 9 10

Be
et

le
s 

w
ith

 e
m

pt
y 

gu
ts

 [%
]

0

20

40

60

80

100

 

Beetles from weedy fields

Beetles from non-weedy fields
Percentage of maize plants with flowering tassel
Percentage of plants with fresh silk  

Figure 1: Use of different aboveground maize tissue. The percentage of beetles with 
the respective gut content is displayed against the percentage of maize plants with 
flowering tassel and/or fresh silk. a) Maize pollen, b) Weed pollen, c) Silk tissue, d) 
Leaf tissue, e) Kernel tissue and f) Empty guts. Week 1 = 23.06.2000, week 10 = 
08.09.2000. 
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Pollen analysis 
In the pollen analysis a total of 112322 pollen were counted and identified. 

These belonged to 19 species of plants from nine families (Tab. 1). The list of host 

plants found in the beetles comprised 73 % of the total weed flora found within the 

sampled maize fields. 

 

The total number of pollen of different plant species ingested by WCR adults was not 

dependent on the frequency of these plant species in the field. Although the most 

common plant in maize field was maize, it was not the most common pollen ingested 

by WCR adults (Fig. 2). 

 

Figure 2: Plant species or species groups and cumulative number of plant individuals 

counted along all the transects (left Y-axis and thick white bars) and the total number 

of pollen found inside the guts of adult WCR (right Y-axis and the smaller grey bars) 
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Table 1: List of host plants used by adult Diabrotica virgifera virgifera as revealed by 

visual observations in South Hungarian fields (visual observ.) or pollen analysis. 

Which specific plant organ or tissue served as food for WCR is indicated. 

Family 
 

Host plant species 
 

Visual 
observ. 

Pollen 
analysis 

Plant organs 
affected 

Poaceae 

 

Zea mays 

 

yes 

 

yes 

 

Pollen, kernel, 

leaves, silk 

Amaranthaceae Amaranthus sp. yes yes* Pollen 

Chenopodiaceae Chenopodium album yes yes* Pollen 

Asteraceae Ambrosia artemisiifolia no yes Pollen 

  Cirsium arvense no yes Pollen 

  

Helianthus annuus 

 

yes 

 

yes 

 

Flower petals , 

Pollen 

  Sonchus asper yes yes Pollen 

  Xanthium strumarium yes yes Pollen 

Cucurbitaceae Cucurbita maxima yes yes Leaves, Pollen 

Fabaceae Medicago sativa yes yes Leaves, Pollen 

  unknown Fabaceae no yes° Pollen 

Malvaceae 

 

Malva sylvestris 

 

yes° 

 

yes° 

 

Flower petals, 

Pollen 

Poaceae Echinochloa crus-galli no yes* Pollen 

  Setaria pumila yes° yes* Pollen 

  Setaria verticilaria yes° yes* Pollen 

  Sorghum halepense yes° yes* Pollen 

  Sorghum bicolor yes° yes* Pollen 

Scrophulariaceae Linaria vulgaris no yes° Pollen 

Solanaceae Datura stramonium yes° yes° Pollen 

N families = 9 N species = 19 (73%)    

° = rare event

* = impossible to distinguish within group
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The use of this pollen increased significantly in both groups over time (F = 5.38;df = 

9, 567; P < 0.001; Greenhouse-Geisser epsilon = 0.54; Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Number of pollen from different plant species per beetle including maize 

pollen. Week 1 = 23.06.2000, week 10 = 08.09.2000  
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Chenopodium pollen use explained 41% of the variance and showed a negative, 

significant linear relation at the 10% level for beetles from non weedy fields (y = 1.99 

-2.94x, P = 0.08). The use of Amaranthus / Chenopodium by beetles from weedy 

fields showed no significant linear relation to maize pollen availability (y = 0.019 + 

0.42x, R2 = 0.05, P = 0.52). 
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Figure 4: Amount of Amaranthus/Chenopodium pollen per beetle (Log transformed 

data) influenced by time (week 1-10) and habitat (weedy vs. non-weedy fields). Bars 

indicate the availability of maize pollen (= percentage of flowering maize plants; 

Week 1 = 23.06.2000, week 10 = 08.09.2000)  

 

No significant difference could be observed in the use of pollen from A. artemisiifolia 

between beetles collected in the two field types (F = 0.27; df = 1. 61; P = 0.61) (Fig. 

5). In beetles from both fields a significant increase of A. artemisiifolia pollen was 

found over time (F = 18.82; df = 9. 567; P < 0.001; Greenhouse-Geisser epsilon = 

0.32). Even in those fields where the abundance of A. artemisiifolia was low, a similar 

amount of pollen was found in the beetle guts, as in those beetles from the fields that 

had a high abundance of this weed. The use of A. artemisiifolia pollen was due 

mainly to the decreasing availability of maize pollen (y = 0.68 - 0.37x, R2 = 0.81, P <  

0.001).  
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Figure 5: Log transformed data of number of Ambrosia artemisiifolia pollen per 

beetle and the availability of maize pollen (= percentage of flowering maize plants 

during the study period from week 1 to 10). Week 1 = 23.06.2000, week 10 = 

08.09.2000) 

 
Field type as well as sex played a prominent role in influencing the feeding 

ecology of WCR during the entire study period. Male and female beetles, grouped 

together from weedy fields, fed significantly more on weed pollen (F = 6.686; df = 1. 

599; P = 0.01) and used a bigger array of host plants (F = 29.385; df = 1. 599; P < 

0.001) than the beetles from non-weedy fields. There were no differences regarding 

the use of maize pollen between the two field types (F = 0.853; df = 1. 599; P = 

0.356).  

However, the differences observed between the sexes were not 

straightforward. When data from both field types was pooled females were found to 

feed more frequently on maize and weed pollen than males, although the differences 

were not significant (F = 2.933; df = 1. 599; P = 0.087 for maize pollen and F = 0.371; 

df = 1. 599; P = 0.543 for weed pollen). 
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Figure 6: Number of maize pollen per beetle. Female (white bars) and male beetles 

(grey bars) are displayed separately by field type (weedy vs. non weedy). Same 

numbers above bars indicate no significant differences between samples (ANOVA). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Number of weed pollen per beetle. Female (white bars) and male beetles 

(grey bars) are displayed separately by field type (weedy vs. non weedy). Same 

numbers above bars indicate no significant differences between samples (ANOVA, 

Bonferroni adjustment). 
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There was a strong interaction between field type and sex (F = 4.236; df = 1. 

599; P = 0.04). These interactions could be mainly attributed to the females from 

weedy fields that fed significantly (F = 2.849; df = 1. 599; P = 0.037) more on maize 

pollen than the males in weedy fields and beetles of both sexes from non-weedy 

fields (Fig. 6). Females from weedy fields also fed significantly more on weed pollen 

than males in weedy fields and beetles of both sexes from non-weedy fields (F = 

2.827; df = 1. 599; P = 0.038; Fig. 7). 

Generally beetles caught in weedy fields contained a more diverse array of 

pollen than the beetles from non-weedy fields (F = 29.4; df = 1. 599; P < 0.001; Fig. 

8). Furthermore males fed on a significantly higher number of plant species than 

female beetles (F = 3.876; df = 1. 599; P = 0.05). No significant interaction between 

field type and sex could be observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Number of pollen from different plant species per beetle. Female (white 

bars) and male beetles (grey bars) are displayed separately by field type (weedy vs. 

non weedy). Same numbers above bars indicate no significant differences between 

samples. (ANOVA, Bonferroni adjustment).  

DISCUSSION: 

We were the first to demonstrate that changing maize phenology profoundly 
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biology of adult WCR exhibited a high plasticity, and was influenced mainly by the 

three factors discussed below:  

 

Impact of maize phenology changing over time:  
Gut content analysis: 

Ball (1957) had already hypothesized that the nutritional ecology of adult WCR 

was based on the availability of maize tissue changing in time. The results of our gut 

content analysis support his idea. Beetles started feeding on leaves, then on pollen 

and silk and then finally on kernel and weeds. After the depletion of their primary food 

source, maize pollen and silk, beetles started to feed on other maize tissue or weed 

pollen.  

 

Pollen analysis: 
Maize pollen was only available during a few weeks at the beginning of the 

study period, while most other plants flowered during the entire period. Weeds thus 

provided pollen for a longer time, which explains the finding that WCR fed more on 

Amaranthus/ Chenopodium pollen than on maize pollen. The use of alternative pollen 

resources such as Amaranthus/ Chenopodium or Ambrosia increased after maize 

pollen became scarce. The beetles from both field types fed on more plant species 

towards the end of the study, when maize pollen availability was close to zero.  

Ludwig and Hill (1975) described the different maize tissues used by WCR but 

did this only for a single sampling date at the end of July. They encountered only two 

species of weed pollen: Amaranthus sp. and Ambrosia sp., where Amaranthus sp. 

was used by almost 100% of all beetles sampled, while Ambrosia sp. played only a 

minor role, being absent from beetles caught on weeds and being present only in 6-

8% of all beetles caught on maize. Furthermore they proposed a change in food use 

after pollen shedding and silking of maize. They contrasted the behavior of the 

closely related Diabrotica barberi Smith & Lawrence (Northern Corn Rootworm = 

NCR), which started to feed more on weed pollen after maize became unsuitable as 

a food source, while WCR was supposedly feeding more on other maize tissue. 

Cinereski and Chiang (1968) also observed an increase in non-maize pollen over 

time in NCR. Here we demonstrated that the feeding behavior of WCR, at least in 

Southern Europe, is much more plastic than described by Ludwig and Hill (1975), 

and showed a comparable response to the depletion of maize pollen as NCR. This 
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was also reported by O´Neal et al. (2002). They found that the influence of maize 

phenology led to feeding on soybean foliage in the presence of older maize, 

indicating the possibility of highly variable responses with regard to different 

environments. Elliot et al. (1990) found that survival in WCR decreases with plant 

age, more so for older than for younger beetles. However, whether survival of the 

beetles increases in the presence of flowering weeds acting as alternative pollen 

sources remains to be investigated. 

 

Impact of habitat:  
Gut content analysis 

Weedy fields provided alternative pollen resources that were used to a large 

extent by adult D. v. virgifera. Beetles from fields with a low abundance of weeds 

may have to exploit less suitable food sources such as maize leaves, or an even 

higher proportion will be found to have an empty gut. WCR tends to feed on those 

items that are most available (Ludwig and Hill, 1975). They found that silk was the 

food most available in non-weedy fields, while in weedy fields weed pollen was the 

most prominent food for WCR. We were able to support their data in so far, as that 

beetles in weedy fields were using significantly more weed pollen, although beetles 

were feeding equally on silk tissue in both field categories.  

D. barberi does not feed on maize leaves, it leaves the maize field to feed on 

other pollen when pollen and silk are too dry. (Ludwig and Hill, 1975). Similar 

behavior could also be observed for WCR that were caught in weedy fields. They fed 

less on maize leaves and more on weed pollen. 

 

Pollen analysis 
In comparison to the closely related subspecies D. v. zeae Krysan and Smith, 

which was found to feed on 45 different plant families and 63 different genera (Jones 

and Coppedge, 2000), the list of host plants compiled in this study seems less 

impressive , however they comprise 73% of all plant species present within the 

sampled maize fields in southern Hungary. 

In some cases weeds acted as additional pollen sources. This could be 

observed for beetles from weedy fields that fed on Amaranthus/Chenopodium pollen 

during the entire study period to an equal extent regardless of maize pollen 

availability. Beetles from non-weedy fields fed on these plants only after maize pollen 
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became scarce. Feeding on Ambrosia describes an alternative use of this host plant, 

following the decrease in maize pollen availability. Beetles from both field types fed to 

a similar extend on Ambrosia pollen. Thus, WCR exhibited a certain preference for 

Ambrosia, partly explained also by the late flowering of this weed that started around 

the 4th week of July. Ambrosia was the only plant in maize fields which provided a lot 

of pollen during this vegetation period.  

For a long time WCR was regarded as a beetle that neither leaves maize 

fields (Branson and Krysan, 1981) nor flies as actively between maize fields when 

edible maize tissue becomes scarce; behavior which is well known from the closely 

related species D. barberi (Naranjo, 1991). However, our results clearly demonstrate 

that WCR did leave the fields to feed outside on weed pollen to a large extent, when 

maize was not a useable resource anymore. We suggest short distance flights along 

the margins, to forage, for example, on Ambrosia, or to adjacent fields to feed on 

sunflower pollen.  

Hill and Mayo (1980) found practically no WCR beetles on weeds but 

mentioned Amaranthus sp., Ambrosia sp., Setaria sp. and Sorghum sp. to be host 

plants without showing any data. We found all these plant species occurring in or 

near maize fields to be alternative pollen sources for this pest. Cinereski and Chiang 

(1968) found pollen from maize, Gramineae, Compositae, Leguminosae and 

Cucurbitaceae in the guts of the closely related species D.barberi, which is though to 

feed on a wider array of host plants than D. v. virgifera. However, our results provide 

evidence that WCR is feeding on a wider host range than was realized up to now. 

Studies on phagostimulation due to amino acids present in pollen (Hollister and 

Mullin, 1999) revealed that WCR fed more on maize and squash pollen than on 

sunflower and goldenrod in a no-choice experiment. They attributed these findings to 

the presence of a combination of specific amino acids. However, they did not include 

further data on other pollen that we found in our study. We therefore speculate that 

there may be either more general cues leading to pollen feeding in adult WCR than 

previously known or that pollen feeding is limited by just the presence or absence of 

flowering weeds.  

Preferences for specific weed plants which we discovered in beetles from non-

weedy fields which had fed on Ambrosia artemisiifolia pollen have not been reported 

up to now. However, phagostimulatory cues, which could explain these findings, 

remain to be analyzed. McKone et al. (2001) found only D. barberi to feed on 
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sunflower but not D. v. virgifera. Mullin et al. (1991) even isolated and identified 

antifeedants from sunflower and Solidago canadensis pollen, suggesting that 

Asteraceae are not beneficial food sources for D. v. virgifera. In addition they 

described a decreased longevity when adults fed on floral parts of sunflower as 

compared to maize. However, this data originates from no-choice tests with beetles 

feeding exclusively on sunflower for their entire life span. 

 

Impact of sex:  
Pollen analysis 

Female beetles fed more on weed pollen than males. This may be explained 

by the necessity of females to find nitrogen rich food for egg maturation (Wheeler, 

1996). As oviposition takes place during the entire life span of a female, alternative 

pollen sources are extremely valuable when maize pollen is not longer available. The 

best food for egg production in WCR is maize pollen and green silk (Elliot et al., 

1990) but weed pollen may contribute as well. If however the more extensive use of 

alternative food resources by females leads to a higher fecundity, a higher population 

density or faster population buildup remains to be investigated. Males fed on a wider 

array of host plants than females, although each individual had less pollen in its gut 

compared to females. We hypothesize that males are more mobile than females thus 

encountering more weeds as they fly around in the maize fields. This idea is 

supported by Naranjo (1991) who found males to be more active flyers than females. 

In maize, Ludwig and Hill (1975) found that more males than females had maize plus 

weed pollen in their guts, which also favors our mobility hypothesis.  

 

Pavuk and Stinner (1994) concluded from their studies that weeds in maize 

fields had no significant effect on WCR populations, although higher numbers of 

beetles were encountered in mixed weeds plots. Hungarian population densities in 

our study were too low to obtain a reliable estimate if weeds support a higher 

population density or not. As Siegfried and Mullin (1990) pointed out, the longevity of 

females is significantly reduced when fed exclusively on alternative food such as 

squash blossom or sunflower inflorescences compared to females maintained on 

maize ears, although the former diet keeps them alive enabling the production of 

viable eggs. This scenario does not happen in natural settings and alternative food 

sources are mainly used additionally, not exclusively. The same conclusion holds 
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true for Mullin et al. (1991) who argue that Asteraceae pollen is not a food source for 

WCR. Contrary to these findings we could clearly demonstrate, that WCR in Europe 

fed to a large extent on Asteraceae pollen from several plant species. 

Our results apply only to southern Hungary. As weed composition changes 

feeding ecology will change, too. Therefore, as Ambrosia is not present all over 

central Europe it would be of particular interest, to investigate if WCR would exhibit 

similar preferences for other late flowering weeds in other parts of Europe. Moreover 

it would be interesting to know, how the feeding ecology of WCR varies with the 

flowering weeds present.  

We clearly demonstrated the large plasticity of adult WCR nutritional ecology. 

The observed adaptability of WCR to the nutritional resources of European agro-

ecosystems could be one important factor which may contribute to the invasion 

potential and spreading capability of WCR of up to 100 km per year (Baufeld, 2001). 

We conclude that a high abundance of alternative pollen sources may facilitate 

spreading, may lead to a higher survival and fecundity and subsequently to higher 

levels of damage as well as higher population densities in the following year. 
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Introduction 

Studies of food conversion efficiency are used to determine the suitability of a 

particular food item for the development, growth or maintenance of animals 

(Waldbauer, 1968). When carried out on insects these studies on food conversion 

efficiency were up to now always limited to aboveground mostly leaf or shoot feeding 

insects. Insects which feed belowground or on the roots were neglected on account 

of methodological difficulties in handling the insects and because direct observations 

were not possible. The following description provides information on an experimental 

design which allows to measure feeding and to subsequently calculate food 

conversion efficiency for belowground feeding insect larvae of the maize pest 

Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). This method was 

developed in order to acquire knowledge on the impact of different maize varieties 

and possible alternative host plants on the larval development. Because this species 

invaded Europe in the beginning of the 1990´s, it is of vital interest to determine how 

suitable European maize varieties and weeds are as food sources, thus facilitating 

the spread and the buildup of economically relevant populations.  

  

Material and Methods 

Like most studies on food conversion efficiency the method described here is also 

dependent on gravimetric measurements (Waldbauer, 1986). In order to determine 
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the efficiency with which an herbivorous insect converts plant biomass into own body 

biomass it is necessary to acquire not only the initial weight of the larvae and of the 

food item but also the final weight of both. The larval weight should thereby increase 

whereas the weight of the food item will usually decrease. This relationship is 

calculated as follows: 

 

ECI = weight gain of larvae / weight loss of roots * 100 

 

In order to achieve a better comparability the calculations are performed with dry 

weights. Aliquots are required to estimate the initial weight of the larvae and the food 

items. For the final calculation it is crucial that the aliquots are obtained with high 

precision. Applying the method presented here the efficiency of conversion of 

ingested food (ECI) is measured. Other calculations, such as the approximate 

digestibility index (AD) or the efficiency of digested food (ECD) require the 

measurement of the weight of faeces which is virtually impossible for subterranean 

insects.  

 

While the calculation of the ECI is regarded  an analysis of covariance (ANCOVA) 

can be performed using weight gain of the larvae and the amount of ingested food as 

the dependent variables and initial fresh weight as the covariate to correct for an 

eventual bias due to different initial weights (Rabenheimer and Simpson, 1992; 

Horton and Redak, 1993). 

 

The test tubes used in this experimental device were 10cm long, 1cm wide and were 

closed with plastic plugs. The test tubes were half filled with plaster of Paris mixed 

with activated charcoal. This charcoal acted as an indicator for humidity: if the 

moisture level was sufficient the plaster of Paris retained its dark gray color whereas 

it turned almost white when dry. Vermiculit (an expanded Aluminum-Iron-Magnesium-

Silicate usually used for isolation purposes or in gardening as a soil substitute) was 

the material used to simulate a subterranean environment. The mineral, puffed by 

heat and pressure to form granules with a layered structure, was sieved to obtain 

particles of 0.5-2.5mm size. This mineral acted both as a moisture buffer and as a 

substitute for the missing soil surroundings. Preliminary experiments revealed that 

the larvae of the Western Corn Rootworm are apparently thigmotactic, thus a 
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substrate was needed to simulate an underground environment which (1) could be 

added and removed easily from the set up, (2) held moisture to some extent and (3) 

was chemically inert. The vermiculit used in our experiments fulfilled these 

requirements but any other granular inert substance could also be used. Finally, a 

fine scale (Sartorius GmbH, Micro MC5 / SC2) was used to measure differences of 

up to 0.001mg in weight.  

 

The larvae used in the experiments were obtained by the following protocol derived 

from Jackson (1986): The eggs of D. v. virgifera were obtained from females which 

had been caught in the field and which were kept in cages where they could oviposit 

for 2.5 months. The eggs were stored for a minimum period of 5 months at 8°C. At 

the beginning of each experiment the required number of eggs was incubated for 2 

weeks at 26°C and 60% RH. Five days before the first larvae were expected to 

hatch, 50 g of maize seeds were mixed with 200 g regular potting earth and 

thoroughly moistened. The growing maize plants served as food for the larvae until 

they were extracted using a modified Berlese funnel (approximately 16 days after first 

hatch). This modified extraction method comprised of a sieve with 0.7 cm mesh size 

which was placed over a water container. The earth from the small containers with 

the plants and larvae was placed in the sieve and a light bulb was placed on top. The 

heat and moisture gradient forced the larvae to move downwards and to finally fall 

into the water container. They were then skimmed from the water surface and used 

in the experiments. 

 

The maize plants were grown in a greenhouse for 7 weeks. The substrate was half 

sand and half regular potting earth. This mixture was used because it could be easily 

removed from the roots by washing. The roots obtained were cleaned and only the 

primary roots were used. From these the upper 5 cm were discarded and from the 

rest root pieces with a diameter of 1 to 2.5 mm and a fresh weight ranging from 0.6 to 

0.9 g were placed in the test tubes. The L2 of the Western Corn Rootworm which we 

used exhibited a clear preference for this size class. 80% preferred thicker to smaller 

roots and also medium sized to smaller roots, as we demonstrated in two-choice 

experiments. The medium sized roots of 1-2.5 mm diameter were available in larger 

quantities than the thicker roots. Thus we always used this size class in our 

experiments. After introducing the roots into the experimental test tube, sufficient 
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vermiculite was added to surround and cover the roots completely. The moisture 

content was subsequently adjusted to the level of a moist but not saturated 

environment (about 2.5 ml water in this design). Free water droplets were avoided, 

because larvae got trapped in these droplets, which then increased in size as the 

larvae moved around and finally led to immobility and suffocation. Only L2 larvae of a 

weight ranging from 1.0 to 2.0 mg fresh weight were used in the experiments. The 

restriction to one age/size class was necessary because larvae from this particular 

class were most suitable as regards the results of these experiments (Fig. 1). They 

showed significantly higher increase in weight compared to the other size classes 

(ANOVA: F 4:256 = 13.08, p <0.001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Weight gain of different size classes of larvae of Diabrotica virgifera 

virgifera. Full lines in the box plots indicate the median, while the dotted lines indicate 

the mean value. Only 5 and 95% quartiles are shown by the outlying points. The 

dashed line indicates zero weight gain. Same numbers above bars indicate no 

significant difference between size classes (ANOVA; Bonferroni adjustment for 

pairwise comparison). 
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larvae were weighed and placed inside the test tubes on top of the vermiculit 

embedded root pieces. The tubes were closed and kept in darkness at 26°C and 

60% RH. After 6 days the larvae and roots were extracted, dried for 3 days at 80°C 

and weighed.  

Discussion  

This method provides for the first time an opportunity of examining food suitability for 

subterranean insects not only qualitatively by measuring survival of larvae but also 

quantitatively by measuring the growth of each individual larva. Using this method it 

was possible to evaluate gradual differences between varieties of the main host plant 

maize and alternative host plants (Moeser and Vidal in prep.). The method also 

allows for a relatively quick assessment or screening as to the suitability of different 

host plants.  
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Protection, Grisebachstr. 6, 37077 Goettingen, Germany 

 

Abstract - 

We studied the performance of larvae of Diabrotica virgifera virgifera LeConte 

(Chrysomelidae, Galerucinae) on 17 different maize varieties from 6 European 

countries. We performed food conversion efficiency studies using a newly 

established method. The growth of D. v. virgifera (western corn rootworm) larvae and 

the amount of ingested food was measured and the food conversion efficiency (ECI) 

was calculated. In addition to this we analyzed the C/N ratio and the phytosterol 

content of the different varieties. Significant differences between the maize varieties 

with regard to larval weight gain, amount of ingested food and food conversion 

efficiency were encountered. The efficiency of D. v. virgifera in converting root 

biomass into own biomass was positively correlated with the amount of nitrogen in 

the plant tissue. Furthermore the phytosterol content had a strong influence on larval 

weight gain and the amount of ingested food. It was possible to group the varieties 

into suitable and unsuitable cultivars with regard to D. v. virgifera larval performance 

on the basis of the phytosterol content. Our results provide first evidence of the high 

variability of European maize varieties with respect to D. v. virgifera nutrition. The use 

of less suitable maize varieties is discussed with respect to integrated pest 

management strategies. 

 

Keywords: Western corn rootworm, root feeding, food conversion efficiency, 

nutritional ecology, plant-herbivore interactions. 
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Introduction 

INVASIVE SPECIES pose a heavy threat to national economies (Pimentel et al. 2000) in 

particular with regard to agricultural production systems. Whereas US agriculture has 

to deal with non-native arthropod pests causing damages of 14 billion USD per year 

(Pimentel et al. 2003), European agro-ecosystems have only rarely been invaded 

(Elton, 1958). However, after the establishment of the Colorado potato beetle at the 

beginning of the 20th century, Europe now has to face an invasion of similar 

magnitude by the worst maize pest originating from the US. 

 

Since the first discovery of the leaf beetle Diabrotica virgifera virgifera LeConte 

(Western corn rootworm) 1992 near Belgrade, Yugoslavia, the insect has spread 

considerably and is now encountered in more than 14 European countries (EPPO 

2003). The number of beetles and infested countries are increasing each year. D. v. 

virgifera has been known in the USA since the beginning of the 20th century. 

However it was not until after 1950 that it became the most important pest in maize, 

now causing economic losses of about 1 billion USD per year (Krysan and Miller 

1986). D. v. virgifera larvae are considered to be specialized maize root feeders. The 

larvae initially feed externally on the root system and mine inside the primary roots 

(Chiang 1973).  

 

This maize plant– D. v. virgifera interaction may be considered from both 

sides: Namely, the reaction of the differing maize varieties to larval damage and the 

performance of the larvae on the different varieties. Maize breeders have been 

mainly successful on the first part of this interaction, especially the breeding for 

maize varieties which tolerate larval damage by root-re-growth (Ortman et al. 1974). 

On the other side of this interaction research concentrated on breeding for maize 

varieties with antibiosis; however, have met with limited success up to now (Levine 

and Oloumi-Sadeghi 1991). If varieties with reduced damage cannot be produced a 

different approach might be taken. Varieties which are not resistant but are however 

less suitable for D. v. virgifera development would yield similar results with regard to 

D. v. virgifera control. This would lead to reduced population densities due to delayed 

development and decreased survival.  
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The nitrogen content (Slansky and Sriber 1985) and the phytosterol content 

(Svoboda and Thompson 1985) are two parameters used to explain the performance 

of herbivores on a specific host plant. The influence of nitrogen on insect 

performance has been well documented by more than 200 studies revised by Scriber 

(1984). The C/N ratio may be considered as a parameter to explain the performance 

of herbivore insects on different host plants. A further group of plant derived 

secondary compounds, which play an important role in insect performance, are 

phytosterols. These isoprenoid derived plant compounds are essential components 

of cell membranes and serve as precursors of molting hormones (ecdysteroids) in 

many insects (Svoboda 1984). Insects, and many other invertebrates, are unable to 

synthesize the steroid nucleus. Metabolic constraints may limit which sterols support 

normal growth and development (Behmer and Elias 2000). We therefore analyzed 

the C/N ratio and the phytosterol content of the plants fed to the larvae in order to 

correlate larval performance with these parameters derived from different European 

maize cultivars. 

  

Material and Methods - 

Similar to most studies on food conversion efficiency we also applied gravimetric 

measurements (Waldbauer 1968). In order to determine the efficiency with which an 

herbivorous insect converts plant biomass into own body biomass it was necessary 

to acquire not only the initial weight of the larvae and of the food item, but also the 

final weight of both. The larval weight should thereby increase whereas the weight of 

the food item should usually decrease. This relationship (the efficiency of conversion 

of ingested food = ECI) is calculated as follows: 

 

ECI = weight gain of larvae / weight loss of roots * 100 

 

An important prerequisite when calculating an ECI in feeding studies is a linear 

relationship between the initial and the final weight of larvae (Raubenheimer and 

Simpson 1992). We therefore plotted our data with respect to this assumption before 

calculating the ECI for each host plant. In order to achieve a better comparability the 

calculations were performed using dry weights. Aliquots were required to estimate 

the initial weight of the larvae and of the food items. For the final calculation it was 

crucial that the aliquots had been obtained with high precision. Applying the method 
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presented here the efficiency of conversion of ingested food (ECI) was measured. 

Other calculations, such as the approximate digestibility index (AD) or the efficiency 

of digested food (ECD) would require the measurement of the weight of faeces which 

is virtually impossible for subterranean insects.  

An experimental device was designed from test tubes which were 10 cm long, 

1 cm wide and were closed with plastic plugs. The test tubes were half filled with 

plaster of Paris mixed with activated charcoal (Merck GmbH, Germany). The 

charcoal acted as an indicator for humidity: if the moisture level was sufficient the 

plaster of Paris retained its dark gray color whereas it turned almost white when dry. 

Vermiculite (Klein GmbH, Zellertal, Germany) was used to simulate a subterranean 

environment. The mineral, puffed by heat and pressure to form granules with a 

layered structure, was sieved to obtain particles of 0.5-2.5 mm size. It acted as both 

a moisture buffer and a substitute for the missing soil surroundings. Preliminary 

experiments revealed that the larvae of the Western Corn Rootworm are apparently 

thigmotactic, thus a substrate was required to simulate an underground environment. 

Finally, a fine scale (Sartorius GmbH, Goettingen, Germany; Model: Micro MC5 / 

SC2) was used to measure differences of up to 0.001mg in weight.  

 

A total of 17 maize varieties from 6 European countries were tested (Table 1). 

The majority were modern hybrid lines while one was an inbred line (LG 2447) and 

three were open pollinated varieties (Reid’s Yellow Dent, Green Fields and Krug).  
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Table 1: Maize varieties tested, country of origin, seed company, product name and 

abbreviation used further on are indicated. Ranking of the varieties follows the one 

given in the figures. 

Country Seed company Variety name Abbreviation 

Hungary Pioneer Colomba CL 

France Pioneer PR 34 FO 2 PR 34 

Germany LG Nickerson Banguy BA 

France Mais Angevin Anjou 258 A 258 

Hungary Martonvasar Norma NO 

Italy DeKalb/Monsanto DK 440 DK 440 

Italy Istituto di Cerealicoltura Bergamo Marano MA 

Croatia Pioneer Florencia P 73 

France DeKalb/Monsanto DK 312 DK 312 

Croatia Agricultural Institute Osijek OSSK 602 OSSK 602 

Germany Euralis Earlystar EA 

France LG Nickerson LG 2447 LG 2447 

Croatia Agricultural Institute Osijek  OSSK 617 OSSK 617 

France Mais Adour Panama PA 

Portugal Greenfield farms Reid’s Yellow Dent RYD 

Portugal Greenfield farms Krug KRUG 

Portugal Greenfield farms Green Fields GF 

 

The maize plants were grown in the greenhouse for seven weeks. The 

substrate was half sand and half potting soil (RTS spezial, Oekohum GmbH, 

Dransfled, Germany). This mixture was used because it could be easily removed 

from the roots by washing. The roots obtained were cleaned and only the primary 

roots which originated from the plant base and no secondary root branches which 

originated from others roots were used. Second instar larvae are more frequently 

found in the first 10 cm of the roots from the plant base (Strnad and Bergman 1987 

and pers. observ.). From these first 10 cm the upper 5 cm were discarded and from 

the rest root pieces with a diameter from 1 to 2.5 mm and a fresh weight ranging from 

0.6 to 0.9 g were placed in the test tubes. After introducing the roots into the 

experimental test tube, sufficient vermiculite was added to surround and cover the 

roots completely. Afterwards, the moisture content was adjusted to the level of a 
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moist but not saturated environment (about 2.5 ml water in this design). Free water 

droplets were avoided, because larvae got trapped in these droplets, which 

increased in size as the larvae moved around and finally led to immobility and 

suffocation. 

 

The larvae used in the experiments were obtained by the following protocol 

derived from Jackson (1986): The eggs of D. v. virgifera were obtained from females 

caught in the field in Southern Hungary and kept in cages for 2.5 months with 

substrate for oviposition. The eggs were stored for a minimum period of five months 

at 8°C. At the beginning of each experiment the required number of eggs were 

incubated for 2 weeks at 26°C and 60% RH. Five days before the first larvae were 

expected to hatch 50 g of maize seeds were mixed with 200 g of regular potting earth 

and thoroughly moistened. The growing maize plants served as food for the larvae 

until they were extracted by a modified Berlese funnel (approximately 16 d after first 

hatch). This modified extraction method comprised of a sieve of 0.7 cm mesh size 

which was placed over a water container. The soil from the small containers with the 

plants and larvae was placed in the sieve and a light bulb was positioned above on 

top. The heat and moisture gradient forced the larvae to move downwards and to 

finally fall in the water container. They were then skimmed off the water surface and 

used in the experiment. Only second instar larvae of a weight ranging from 1.0 to 2.9 

mg fresh weight were used in the experiments. The restriction to a single age/size 

class was necessary because larvae from this particular class proved most suitable 

with regard to the results in these experiments (Moeser and Vidal 2003a). The 

extracted larvae were weighed and placed inside the test tubes on top of the 

vermiculite embedded root pieces. The tubes were closed and kept in darkness at 

26°C and 60% RH. After six days the larvae and roots were extracted, dried for three 

days at 80°C and weighed.  

 

C/N Analyses. 
In order to examine the carbon and nitrogen content of the different varieties we 

performed a C/N analysis. The roots were dried at 80°C for three days. 30 mg of dry 

roots of each variety were pooled because single roots provide sufficient biomass for 

the analysis to be examined individually. The 30 mg were finely ground and three 

samples of 5 mg dry weight were taken. These were compared to a standard of 5 mg 
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Acetanilide (Merck GmbH, Germany) every 20 samples in a C/N analyzer (Elementar 

Analysensysteme Hanau GmbH, Germany; Model: Vario EL III). The known quantity 

of C and N in the standard allowed for the calculation of the amount of these 

elements in each root sample. Subsequently the C/N ratio was determined.  

 

Sterol analyses.  
While preparing the roots for the feeding trials described above, three samples of 

roots per plant species weighing 0.5 g (fresh weight) each were deeply frozen in 

liquid nitrogen and stored at -20°C until further processing. To extract the 

phytosterols the roots were ground to a fine powder under liquid nitrogen using a 

mortar. To each sample a mixture of 5 ml 10 M potassium hydroxide solution, 15 ml 

96% ethanol and 0.3% Pyrogallol (Merck GmbH, Germany) was added. An ultrasonic 

homogenizer (Model: Sonoplus HG 2200 / UW 2200, 200 W, 20 kHz, Bandelin 

GmbH, Germany) was used for 30 sec to enhance further cell breakdown and to free 

the solution from microscopic air bubbles trapped inside the vial. The samples were 

subsequently kept in a shaker water bath at 80°C for 2.5 h. After cooling the samples 

to room temperature, 40 µl of an internal standard were added (Cholesterol 4 mg / ml 

chloroform, Merck GmbH, Germany). The sterols were extracted by applying 10 ml 

hexane to each sample. After thorough shaking for 10 sec the hexane fraction was 

transferred to a rotary evaporator flask with an Eppendorf pipette. This extraction 

step was repeated once. The total of 20 ml hexane solution was washed with 1 ml 

de-mineralized water, which was then extracted with an Eppendorf pipette. The 

samples were distilled using a rotary evaporator and a water bath of 42°C. The 

pertaining sterols were resolved in 1.5 ml hexane through gentle shaking and 

transferred to 1.5 ml Eppendorf cups. After centrifugation with 10,000 rpm for 10 min. 

the supernatant was transferred to vials and the hexane was evaporated overnight at 

50°C in a hot block. The sterols were then resolved in 240 µl hexane and 60 µl N,O-

Bis(trimethylsilyl)trifluoroacetamide (BSTFA, Fluka / Riedel-deHaen GmbH, 

Germany) and incubated at 70°C for 20 min. 1 µl of each sample with a split of 1:50 

of extracted sterols were analyzed using a gas chromatograph (Shimadzu GmbH, 

Model: GC14/15A) with a flame ionization detector. The samples were run on a fused 

silica column (SPB-1; 1.3m x 0.32mm, 0.25µm film thickness, Supelco Inc./ Sigma-

Aldrich, Germany). Helium was used as a carrier gas, the make-up gas was synthetic 

air with a linear velocity of 35cm/s. The temperature program was initially 5 min at 
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180°C then increase to 290°C at 4°C/min with a 20 min postrun time. The detector 

temperature was 300°C. Peak areas were calculated using an integrator and the 

internal standard. The sterols represented by each peak were identified beforehand 

using GC-MS with synthetic sterols as comparisons. The individual peak areas were 

summed up which resulted in the total sterol content. 

Statistics.  
Systat 10 for Windows (SPSS inc. 2000) was used for the statistical analysis. To 

estimate the differences between the varieties with regard to larval performance an 

analysis of covariance (ANCOVA) was performed. We used the weight gain of the 

larvae and the amount of ingested food as the dependent variable and the initial 

fresh weight as the covariate to correct for an eventual bias due to different initial 

larval weights (Rabenheimer and Simpson 1992; Horton and Redak 1993). For a pair 

wise comparison between varieties an analysis of variance (ANOVA) with a 

Bonferroni adjustment derived from GLM was performed. 
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Results -  

The weight gain of D. v. virgifera larvae feeding on the different maize varieties 

showed gradual differences ranging from positive to negative values. There were 

significant differences in weight gain between the varieties Colomba and 

Panama/Green Fields/OSSK 617 (F = 3.05; df = 16, 469; P < 0.001). Additionally, the 

initial fresh weight as a covariate had a significant influence on the differences in 

weight gain (F = 34.04; df = 16, 469; P < 0.001). Furthermore positive weight gain 

was observed in only 14 of the 17 varieties and only 11 varieties showed a positive 

mean larval weight gain (Fig. 1). The other varieties showed a mean negative weight 

gain, or a net weight loss. The three open pollinated varieties displayed results 

ranging from almost no weight gain to similar values found within the hybrids. 

 

 

Figure 1: Mean weight gain of D. v. virgifera larvae feeding on different maize 

varieties. Identical) letters above bars indicate no significant difference (ANOVA, 

Bonferroni adjustment).  
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The larvae did not feed to the same extent on all varieties tested (Fig. 2). They fed 

most on those varieties were they also gained weight. An exception was the variety 

“Marano” where the highest food consumption was found, but no weight gain of 

larvae could be observed. Lowest feeding was observed for the varieties were the 

larvae were not able to gain weight. There were several varieties which exhibited 

significant differences with regard to the amount of food consumed by the larvae (F = 

5.23; df = 16, 485; P < 0.001). Here the initial fresh weight of the larvae had no 

significant influence on the amount of ingested food (F = 0.28; df = 16, 485; P = 

0.59). The three open pollinated varieties showed an inverse feeding pattern: the 

varieties which were fed on most were the varieties with the lowest weight gain for 

the larvae.  

 

Figure 2: Mean amount of ingested food by D. v. virgifera larvae. Identical letters 

above bars indicate no significant differences (ANOVA, Bonferroni adjustment). The 

varieties are in the same order as in Figure1. 
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conversion efficiency showed the highest weight gain. Significant differences were 

found between varieties (F = 2.34; df = 16, 469; P = 0.003), while the initial fresh 

weight of the larvae used as a covariate had a significant influence on this result (F= 

16.22; df = 16, 469; P < 0.001). Larval weight loss resulted in a negative ECI index 

for several varieties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3: Mean ECI index for D. v. virgifera larvae feeding on different maize 

varieties. Identical letters above bars indicate no significant difference (ANOVA, 

Bonferroni adjustment). The varieties are ranked in the same order as in Figure1. 
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amount of food eaten by the larvae (y = 3.21 + 0.04x; R2 = 0.0004; P = 0.73). Similar 

to weight gain, the ECI was also negatively correlated to the initial fresh weight (y = 

3.85 - 1.83x; R2 = 0.084; P <0.0001). 
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C/N ratio. 
The parameters of carbon and nitrogen content of the food revealed a significant 

positive relation between the amount of ingested food and the C/N ratio and also 

between the ECI index and the nitrogen content (Table 2). No other significant 

correlations could be observed between the carbon or nitrogen content and the 

measured variables.  

 
Table 2: Correlation between the three measured variables, larval weight gain, 

amount of ingested food and food conversion efficiency and the Carbon and Nitrogen 

content or the respective ratio. 

Variables Regression r2 p-value 

Weight gain vs. C/N ratio y = 55.39 - 2.28x 0.0002 n. s. 

Weight gain vs. C content y = 1.1 - 0.025x 0.054 n. s. 

Weight gain vs. N content y = 0.84 + 0.27x 0.017 n. s. 

Ingested food vs. C/N ratio y = 42.14 + 4.65x 0.21 * 

Ingested food vs. C content y = 44.78 + -0.035x 0.003 n. s. 

Ingested food vs. N content y = 0.99 - 0.054x 0.14 n. s. 

ECI vs. C/N ratio y = 55.17 - 0.34x 0.011 n. s. 

ECI vs. C content y = 44.66 - 0.018x 0.008 n. s. 

ECI vs. N content y = 0.89 + 0.019x 0.24 ** 

n. s. = not significant 

* = significant at the 10% level 

** = significant at the 5 % level 

 

Phytosterols. 
Four major sterols were detected and summed up to result in the total sterol content: 

Brassicasterol, Campesterol, Sitosterol and Stigmasterol. The individual amounts 

were summed up after integrating the peak areas to result in the total sterol content. 

When all varieties were taken together no relationship between each varieties total 

sterol content and larval weight gain could be revealed (y = 0.034 - 0.0007x; R2 = 

0.06; P = 0.32; Fig. 4). Furthermore no correlation could be found between the total 

sterol content and the amount of ingested food (y = 2.12 - 0.0003x; R2 = 0.0001; P = 

0.96; Fig. 5).  
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Figure 4: Relationship between the mean total sterol content and the mean larval 

weight gain. White points represent varieties with positive larval growth, black points 

indicate varieties with negative larval growth.  

 

When those varieties which yielded either positive or negative larval growth 

were considered separately, a significant correlation between these parameters was 

encountered. A significant negative relation was discovered between the sterol 

content and the larval growth in varieties with positive larval weight gain (y = 0.15 + 

0.0007x; R2 = 0.42; P = 0.04; Fig. 4). Within these varieties a negative correlation 

was determined additionally between the sterol content and the amount of ingested 

food (y = 5.66 - 0.011x; R2 = 0.31; P = 0.07) which was significant at the 10% level. 
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Figure 5: Relationship between mean total sterol content of the roots and the mean 

amount of ingested food. White points represent varieties with positive larval growth, 

black points indicate varieties with negative larval growth. 

 

For those varieties which yielded a negative larval weight gain the sterol 

content was positively correlated to weight gain. This relation was significant at the 

10% level (y = -0.33 + 0.002x; R2 = 0.47; P = 0.06; Fig. 5). Within these varieties a 

highly significant positive relationship was encountered between the sterol content 

and the amount of ingested food (y = -5.78 + 0.05x; R2 = 0.87; P = 0.002).  

 

Discussion -  

D. v. virgifera larvae exhibited a highly variable response with regard to weight gain, 

amount of ingested food and food conversion efficiency when fed on different 

European maize varieties.  

Larvae of different ages and size show a preference for different parts of the root 

(Chiang 1973). Under field conditions larvae would thus search for more appropriate 

feeding sites when a given root is unpalatable on account of physical or chemical 
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cues. However as we did not carry out choice experiments we could not verify the 

possibility of increased weight gain in larvae feeding on more appropriate roots. 

Therefore, varieties which yielded weight loss for D. v. virgifera should be examined 

further in order to determine which factors led to this apparent unsuitability. Studying 

the mechanisms which result in larval weight loss could lead to the discovery of 

mechanisms useful in plant breeding against larval damage. The case of the variety 

“Marano” showed that although the larvae did not gain weight on average they fed to 

a considerable extent, which under field conditions would lead to massive root 

damage and subsequent malnutrition or plant lodging. This variety is an old landrace 

used locally in the Veneto region of Northern Italy. A similar pattern could be 

observed with Reid’s Yellow Dent where heavy feeding was observed but weight 

gain of the larvae was minimal. The other two open pollinated varieties showed no 

such contradictory results.  

When larvae fed substantially on roots but did not gain weight, postingestive 

effects of the different food items are a possible explanation (see “Phytosterols”). No 

preingestive effects like antibiosis could be observed, because D. v. virgifera fed on 

all varieties (Horton and Redak 1993). Hydroxyamic acids are considered to act as 

antibiosis factors for D. v. virgifera (Assabgui et al. 1995). We could observe no such 

behavior in the larvae and thus suggest this to be of minor importance. Resistance to 

D. v. virgifera (measured as reduced larval damage) has been encountered in some 

experimental maize hybrids at high egg densities though no explanation was given 

for this result (Branson et al. 1983). These authors were also unable to discriminate 

between post- and pre-ingestive effects. 

Differing degrees of larval feeding are of importance, as they point to a 

previously neglected part within the D. v. virgifera -maize interaction: varieties which 

yield low larval weight gain might still show huge larval damage if food conversion 

efficiency is low. On the other hand, varieties which display little damage could still 

be suitable resources for larval development, when food conversion efficiency is 

high. Thus the ECI is a good measure of indicating the suitability of the different 

maize varieties for larval development and should be considered in future research 

concerning D. v. virgifera -maize interaction. As we were the first to collect 

quantitative data on the suitability of host plants for root feeders, no other literature is 

as yet available for further comparisons (Slansky and Scriber 1982).  
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C/N ratio. 
The carbon-nutrient balance hypothesis (CNBH) is orientated mainly towards the 

plants point of view in a herbivore-host plant interaction (Hamilton et al. 2001). We 

used this hypothesis to explain the performance of D. v. virgifera larvae on different 

host plant varieties due to differences in the C/N ratio. Our results suggest that there 

are no carbon- or nitrogen-based defence compounds acting on D. v. virgifera 

performance when feeding on maize roots. Nitrogen has to be considered rather as a 

nutritive component, because a higher N content of a given variety led to higher 

efficiency of conversion of ingested food. Roots are considered to be an extremely 

nutrient poor food (Slansky and Scriber 1985). Therefore, root tissue of varieties with 

a higher N content could be converted more efficiently into own biomass than 

varieties with a low N content. Under natural conditions a nitrogen treatment of maize 

plants in the field led to an increase in larval damage and increased emergence rates 

of D. v. virgifera (Spike and Tollefson 1988), which supports our findings. Similarly 

Scriber (1984) revised more than 200 studies regarding the response of insects to 

nitrogen fertilization and found an increase in insect growth and damage in the 

majority of the papers analysed. 

 

Phytosterols. 
Sterol content had a strong influence on D. v. virgifera feeding behavior and larval 

performance. Sterols are essential nutrients for insects, but metabolic constraints 

may limit which phytosterols support normal growth and development (Behmer and 

Elias 1999). Thus a relative decrease in one sterol compound compared to others 

would lead to an increase in feeding to compensate for the deficient component. 

Maize tissue is known to contain mainly sitosterol, stigmasterol, campesterol and 24-

epicampestreol (Guo et al. 1995). It is unknown which of these phytosterols can be 

metabolized by D. v. virgifera.  

However, we suggest that those varieties which yielded positive larval weight 

gain provided sufficient sterols for regular growth. A higher overall sterol content in 

these varieties may be due to an increase of those sterol components which are 

unsuitable or even detrimental to larval growth. The total sterol content may contain a 

mixture of suitable and unsuitable compounds. When the grasshopper Schistocerca 

americana Drury was confronted with sterols of spinach (Spinacia oleracea L.) the 

results revealed that unsuitable phytosterols may even act as feeding deterrents 
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(Behmer and Elias 1999). It is therefore possible that an altered sterol composition 

led to decreased feeding and finally relatively less weight gain compared to those 

varieties with less total sterol content.  

Heliothis zea Hübner reared on an artificial diet displayed a huge variety of 

responses, when fed different sterols at different compositions (Nes et al. 1997). It is 

possible that those maize varieties unsuitable for larval growth in our study were 

deficient of a certain sterol component. This deficiency would result in increased 

feeding to compensate for this given compound. However, even with increased 

uptake of root tissue the larvae did not gain weight but displayed an overall weight 

loss. We therefore conclude that either the sterol composition was inadequate or 

other factors not covered by this study had an additional influence on the larval 

performance. As shown with Phyllotreta cruciferae Goeze altered phytosterol content 

in Brassica napus L. resulted in reduced survival and prolonged larval stages 

(Bodnaryk et al. 1997). In our study phytosterols had a strong impact on the larval 

performance of D. v. virgifera, though the results underline that further experiments 

are necessary, in particular with regard to the individual sterols involved in insect 

development. 

We conclude that larval performance varies to a great extent on the differing 

European maize varieties. The future search for a maize variety which is worth 

planting even in the presence of D. v. virgifera should focus on varieties which suffer 

little damage or which are able to tolerate damage but also yield decreased larval 

growth. Research into plants with an altered or unsuitable sterol composition 

impeding larval growth could be a valuable approach in breeding programs to 

counteract D. v. virgifera. 

 

Acknowledgements -  

We would like to thank the staff of the Institute for Plant Pathology and Plant 

Protection for their help with the feeding trials. Dr. D. Dugassa-Gobena provided 

valuable assistance with the sterol analysis, and U. Schlonsog from the Albrecht-

Haller Institute for Botany from the University of Goettingen assisted with the C/N 

analysis.  

The study was funded by the EU Project DIABROTICA QLK5-CT-1999-01110. 

 



Chapter 3: Larval performance on different maize varieties.                     58 

References Cited 

Assabgui, R. A., J. T. Arnason and R. I. Hamilton. 1993. Field evaluation of 

hydroamic acids as antibiosis factors in elite maize inbreds to the western corn 

rootworm (Coleoptera : Chrysomelidae). J. Econ. Entomol. 88: 1482-1493. 

Behmer, S. T. and D. O. Elias. 1999. Phytosterol structure and its impact on feeding 

behaviour in the generalist grasshopper Schistocerca americana. Phys. Entomol 

24: 18-27. 

Behmer, S. T. and D. O. Elias. 2000. Sterol metabolic constraints as a factor 

contributing to the maintenance of diet mixing in grasshoppers (Orthoptera: 

Acrididae). Phys. and Bioche. Zool. 73: 219-230. 

Behmer, S. T. and R. J. Grebenok. 1998. Impact of dietary sterols on life history 

traits of a caterpillar. Phys. Entomol. 23: 165-175. 

Branson, T. F., V. A. Welch, G. R. Sutter and J. R. Fisher. 1983. Resistance to 

larvae of Diabrotica virgifera virgifera in three experimental maize hybrids. 

Environ. Entomol. 12: 1509-1512. 

Bodnaryk, R. P. , M. Luo and L. Kudryk. 1997. Effects of modifying the phytosterol 

profile of canola, Brassica napus L., on growth, development, and survival of the 

bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae), the 

flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae) and the 

aphids Lipaphis erysimi (Kaltenbach) and Myzus persicae (Sulzer) (Homoptera: 

Aphididae). Can. J. Plant Sci. 77: 677-683. 

Chiang, H. C.. 1973. Bionomics of the northern and western corn rootworm. Ann. 

Rev Entomol. 18: 47-72. 

Elton, C. S. 1958. The ecology of invasions by animals and plants. University of 

Chicago Press, 181 pp. 

EPPO. 2003. http://www.eppo.org/QUARANTINE/Diabrotica_virgifera/diabrotica_ 

virgifera.html 

Guo, D., M. Venkatramesh and W. D. Nes. 1995. Developmental regulation of 

sterol biosynthesis in Zea mays. Lipids 30: 203-219. 

Hamilton, J., A. Zangerl, E. DeLucia and M. Berenbaum. 2001. The carbon-

nutrient balance hypothesis: its rise and fall. Ecol. Letters 4: 86-95. 

Horton, D. R. and R. A. Redak. 1993. Further comments on analysis of covariance 

in insect dietary studies. Entomol. Exp. Appl. 69: 263-275. 



Chapter 3: Larval performance on different maize varieties.                     59 

Jackson, J. J. 1986. Rearing and handling of Diabrotica virgifera and Diabrotica 

undecimpunctata howardi. In: J. L Krysan and T. A. Miller (eds.) Methods for the 

study of pest Diabrotica. Springer-Verlag, New York: pp. 25-47. 

Krysan, J. L. and T. A. Miller. 1986. Methods for the study of pest Diabrotica. 

Springer Verlag, New York, 260 pp. 

Lerdau, M and P. D. Coley. 2002. Benefits of the carbon-nutrient balance 

hypothesis. Oikos 98: 533-535. 

Levin, E. and H. Oloumi-Sadeghi. 1991. Management of Diabroticite rootworms in 

corn. Ann. Rev. Entomol. 36: 229-255. 

Moeser, J. and S. Vidal. 2003a. How to measure the food utilization of subterranean 

insects: a case study with the Western Corn Rootworm (Diabrotica virgifera 

virgifera). Submitted to Journal of Applied Entomology 

Nes, W. D., M. Lopez, W. Zhou, D. Guo, P. F. Dowd and R. A. Norton. 1997. 
Sterol utilization and metabolism by Heliothis zea. Lipids 32: 1317-1322. 

Ortman, E. E., D.C. Peters and E. D. Gerloff. 1974. Techniques, accomplishments, 

and future potential of host plant resistance to Diabrotica. In F.G. Maxwell and 

F. A. Harris (eds.) Proceedings of the Summer Institute on Biological Control of 

Plant Insects and Diseases. University Press, Mississippi, pp. 344-358. 

Pimentel, D., L. Lach, R. Zuniga and D. Morrison. 2000. Environmental and 

economic costs of nonindigenous species in the United States. Bioscience 50: 

53-65. 

Pimentel, D., L. Lach, R. Zuniga and D. Morrison. 2003. Environmental and 

economic costs of alien arthropods and other organisms in the United States. In 

G. J. Hallman and C. P. Schwalbe (eds.) Invasive arthropods in agriculture: 

Problems and solutions. Science Publishers Inc., Enfield, NH. pp. 107-117. 

Raubenheimer, D. and S. J. Simpson. 1992. Analysis of covariance: an alternative 

to nutritional indices. Entomol. Exp. Appl. 62: 221-231. 

Scriber, J. M. 1984. Nitrogen nutrition of plants and insect invasion. In R. D. Hauck 

(ed.) Nitrogen in crop production. Amer. Soc. Agron. Publ., Madison, Wisc. 

Chapter 34. 

Slansky, F. Jr. and J. M. Scriber. 1982. Selected bibliography and summary of 

quantitative food utilization by immature insects. ESA Bulletin 28: 43-55. 



Chapter 3: Larval performance on different maize varieties.                     60 

Slansky, F. Jr. and J. M. Scriber. 1985. Food consumption and utilization. In G. A. 

Kerkut and L. I. Gilbert (eds.) Comprehensive insect physiology, biochemistry 

and pharmacology. Vol. 4. Pergamon Press, New York. pp. 88-163. 

Strnad, S. P. and M. K. Bergman. 1987. Distribution and orientation of western corn 

rootworm (Coleoptera: Chrysomelidae) larvae in corn roots. Environ. Entomol. 

16: 1193-1198. 

Spike, B. P. and J. J. Tollefson. 1988. Western corn rootworm (Coleoptera: 

Chrysomelidae) larval survival and damage potential to corn subjected to 

nitrogen and plant density treatments. J. Econ. Entomol. 81: 1450-1455. 

SPSS Inc. 2000. Systat 10 for Windows; SPSS Inc., Chicago. 

Svoboda, J. A. 1984. Insect steroids: Metabolism and function. In W. D. Nes, G. 

Fuller and L. S. Tsai (eds.) Isoterpenoids in plants: Biochemistry and function. 

Marcel Dekker Inc. New York. pp. 367-388. 

Svoboda, J. A. and M. J. Thompson. 1985. Steroids. In G. A. Kerkut and L. I. 

Gilbert (eds.) Comprehensive insect physiology, biochemistry and 

pharmacology. Vol. 4. Pergamon Press, New York. pp. 137-175. 

Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. 

Insect Physiol. 5: 229-288. 

 



Chapter 4: Larval performance on alternative host plants.                     61 

Do alternative host plants enhance the invasion of the maize pest 
Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae, 
Galerucinae) in Europe? 

 

 

J. MOESER and S. VIDAL 

 

 

Georg-August University Goettingen, Institute for Plant Pathology and Plant 

Protection, Grisebachstr. 6, 37077 Goettingen, Germany 

 

ABSTRACT - 

We investigated the performance of larvae of the invasive maize pest Diabrotica 

virgifera virgifera LeConte (western corn rootworm) on roots of alternative host 

plants. During laboratory feeding trials we measured growth, amount of ingested food 

and determined the food conversion efficiency of second instar larvae. We tested 

eight species of weeds (seven monocot and one dicot) and three monocot crops with 

regard to host plant suitability employing a newly established method. We 

additionally examined the C/N ratio and the phytosterol content of the different plant 

species as parameters to interpret larval performance. Larval growth, the amount of 

ingested food, and the food conversion efficiency differed significantly between plant 

species. Plant species with a high nitrogen content were less suitable for D. v. 

virgifera development. The phytosterol content had a significant influence on the 

amount of ingested food, but not on larval weight gain. The performance of D. v. 

virgifera larvae on alternative hosts was comparable to their performance on maize. 

The ability to use alternative hosts for larval development may contribute to the 

invasion potential of D. v. virgifera and has important implications for integrated pest 

management. 

 

KEYWORDS - Western corn rootworm, invasive species, nutritional ecology, root 

feeding, food conversion efficiency, ECI, C/N ratio, phytosterols 
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Introduction 

INVASIVE SPECIES are regarded as the second most important factor responsible for 

biodiversity loss (Walker and Steffen 1997). They also pose heavy monetary losses 

on national economies (Pimentel et al. 2000). Although the parameters which 

determine the success or failure of an invasive species are largely unknown, some 

factors responsible for a successful invasion have already been determined such as 

propagule pressure, spreading potential and the capability of the species to adapt to 

the biotic and abiotic conditions in its new range (Williamson 1996). For invasive 

herbivorous insects one of the most important prerequisites for successful invasion is 

to find suitable host plants (Worner 2003). 

When Diabrotica virgifera virgifera LeConte (Chrysomelidae, Galerucinae) was 

first detected in Europe at the beginning of the 1990s, its main host plant, maize (Zea 

mays L.), had already been established as a crop for several hundred years. 

Therefore, conditions for this leaf beetle to colonize new areas in Europe were 

excellent. Since its first detection, D. v. virgifera (western corn rootworm) has 

become established in 14 European countries (EPPO 2003). D. v. virgifera is 

considered to be specialized on maize as a host plant (Chiang 1973). As D. v. 

virgifera larvae develop best when feeding on maize roots (Branson and Ortman 

1967, 1970), one of the most widely used cultural practices in order to prevent larval 

damage in the USA is crop rotation (Gray et al. 1998). Female beetles lay their eggs 

in maize fields, where the eggs diapause over winter (Chiang 1973). When a different 

crop other than maize is planted the following year, hatching larvae encounter only 

unsuitable host plants and thus cannot survive. At the beginning of the 1990’s, a 

strain of D. v. virgifera became established in the US corn belt that seemed to have 

adapted to this rotation practice by oviposition in soybean fields, which would then be 

rotated to maize fields the following year (Gray et al. 1998). D. v. virgifera females 

are known to prefer to oviposit near clumps of monocot grasses (Setaria sp.) rather 

than in bare soil or near the stalks of harvested maize (Johnson and Turpin 1985). 

Larval movement is limited and larvae are attracted to carbon dioxide not by specific 

volatile substances (Krysan and Miller 1986). They are unable to discriminate 

between the roots of different plant species from a distance but only after contact 

(Strnad and Dunn 1989). Thus they either have to feed on the roots of those  plants, 

which they encounter first or risk starvation during the search for a more appropriate 

host plant. However, D. v. virgifera larvae are known to feed and survive on several 
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monocot species (Branson and Ortman 1970), although knowledge regarding their 

performance on alternative host plants is limited. Weeds or monocot crops may thus 

act as reservoir host plants when maize is not available. If European weed species, 

typically encountered in maize fields, serve as alternative host plants, this could 

enhance the survival of D. v. virgifera in areas recently invaded in Europe and could 

undermine control measures such as crop rotation. In order to evaluate the 

performance of D. v. virgifera on alternative host plants we carried out food 

conversion efficiency studies using common weed species and monocot crops.  

The nitrogen content (Slansky and Sriber 1985) and the phytosterol content 

(Svoboda and Thompson 1985) are two parameters used to explain the performance 

of herbivores on a specific host plant. The influence of nitrogen on insect 

performance has been well documented by more than 200 studies reviewed by 

Scriber (1984). The C/N ratio may be considered as a parameter to explain the 

performance of herbivore insects on different host plants. A further group of plant 

derived secondary compounds, which play an important role in insect performance, 

are phytosterols. These isoprenoid derived plant compounds are essential 

components of cell membranes and serve as precursors of molting hormones 

(ecdysteroids) in many insects (Svoboda 1984). Insects, and many other 

invertebrates, are unable to synthesize the steroid nucleus. Metabolic constraints 

may limit which sterols support normal growth and development (Behmer and Elias 

2000). We therefore analyzed the C/N ratio and the phytosterol content of the plants 

fed to the D. v. virgifera larvae in order to correlate larval performance with these 

plant parameters. 

 

Material and methods 

We used gravimetric methods to determine the efficiency of converting plant biomass 

into body biomass for D. v. virgifera larvae. Following the method established by 

Waldbauer (1968) it was necessary to first obtain both the initial fresh weight of the 

larvae and of the food and also the final dry weight of both. Usually larval weight will 

increase with decreasing weight of the food item. This relationship (the efficiency of 

conversion of ingested food = ECI) is calculated as follows: 

 

ECI = weight gain of larvae / weight loss of roots * 100 
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An important prerequisite when calculating an ECI in feeding studies is a linear 

relationship between the initial and the final weight of larvae (Raubenheimer and 

Simpson 1992). Therefore, we plotted our data with respect to this assumption before 

calculating the ECI for each host plant. Several samples, however, revealed a 

negative value for the amount of ingested food, we were not able to use all data 

(compare to the equation above). In order to achieve an improved comparability, the 

calculations were performed with dry weights. This method requires aliquots to 

estimate the initial dry weights of larvae and food items. Twenty samples from each 

host plant species and 30 samples for larvae aliquots were used.  

We performed the feeding trials using 11 plant species. All but one were members of 

the Poaceae family. We selected the weed species to be tested in our design on the 

basis of weed abundance in Hungarian maize fields. During a study on the use of 

alternative host plants by adult D. v. virgifera we sampled the diversity and 

abundance of weeds in maize fields in southern Hungary (Moeser and Vidal 2003b). 

The sampling was carried out for 10 weeks in 12 fields with one transect per field, 

which was altered weekly. A single transect comprised the area between two rows of 

maize at a length of 20 m. The maize rows were numbered and the transects were 

run following a random number generated by a pocket calculator. An additional 

randomly generated number between zero and 30 was used as the starting point for 

the transect, indicating the distance from the field margin. In each transect the 

number of individual plants per species was counted. Amaranthus sp. was the most 

common weed, while grasses occupied the second rank in weed abundance. 

Because D. v. virgifera larvae are known to survive only on roots of monocot plants 

we concentrated on the different grass species (Table 1), rather than testing other 

dicot weeds. All weed seeds were collected from weeds in the sampled maize fields. 

The seeds were stored at 15°C for eight months before being used. Additionally, we 

obtained seeds of monocot crops, which are grown in southern Hungary (Sorghum 

halepense L. and S. bicolor L.). We also included winter wheat (Triticum aestivum L.) 

in our tests, because it is the most common monocot crop in Central Europe. The 

same experiments as described below were also performed using 17 european 

maize varieties (Moeser and Vidal 2003c). The two highest values for mean larval 

weight gain, mean amount of ingested food and mean ECI are given in the results for 

comparison.  
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Table 1. Host plants used in feeding trials with D. v. virgifera larvae. The order is the 

same as in the figures 1 - 3. The origin of the seeds is indicated. 

Family Species Source 

Poaceae Cynodon dactylon Collected in Hungarian maize fields 

Poaceae Sorghum halepense Cereal Research Company, Szeged 

Poaceae Echinochloa crus-galli Collected in Hungarian maize fields 

Poaceae Setaria italica Collected in Hungarian maize fields 

Amaranthaceae Amaranthus sp. Collected in Hungarian maize fields 

Poaceae Eragrostis sp. Dreschflegel GmbH, Germany 

Poaceae Sorghum bicolor  Cereal Research Company, Szeged 

Poaceae Triticum aestivum var. 

“Bussard” 

Lochow-Petkus GmbH, Germany 

Poaceae Setaria verticilaria Collected in Hungarian maize fields 

Poaceae Setaria glauca Collected in Hungarian maize fields 

Poaceae Panicum miliaceum Collected in Hungarian maize fields 

 

The plants were grown in a greenhouse for 10 weeks. The winter wheat was 

vernalized for two months at 4°C before planting. The substrate was half sand and 

half potting soil (RTS spezial, Oekohum GmbH, Dransfled, Germany). This mixture 

was used because it could be easily removed from the roots by washing. The roots 

obtained were cleaned thoroughly and cut into pieces ranging from 0.8 to 0.9 g fresh 

weight. The amount of roots used in the experiments was calculated from 

simultaneous experiments using maize roots. According to data obtained from these 

experiments D. v. virgifera larvae are able to consume up to 0.7 g fresh weight of 

roots in a six day feeding trial. After introducing the roots into the experimental test 

tubes, sufficient vermiculite (Klein GmbH, Zellertal, Germany) was added to 

completely surround and cover the roots. The moisture content was subsequently 

adjusted to a level of a moist but not saturated environment (about 2.5 ml water in 

this design). Free water droplets were avoided, because larvae got trapped in these 

droplets, which increased in size as the larvae moved around and finally led to 

immobility and suffocation. Details for the experimental design are given in Moeser 

and Vidal (2003a). 

The larvae used in the experiments were obtained by the following protocol derived 

from Jackson (1986): The eggs of D. v. virgifera were acquired from females caught 
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in the field in Southern Hungary. They were kept in cages and were allowed to 

oviposit for 2.5 months. The eggs were stored for a minimum period of five months at 

8°C. At the beginning of each experiment the required number of eggs were 

incubated for two weeks at 26°C and 60% RH. Five days before the first larvae were 

expected to hatch 50 g of maize seeds were mixed with 200 g of regular potting earth 

and thoroughly moistened. The growing maize plants served as food for the larvae 

until they were extracted by a modified Berlese funnel (approximately 16 d after first 

hatch). This modified extraction method comprised of a sieve of 0.7 cm mesh size 

which was placed over a water container. The earth from the small containers with 

the plants and larvae was placed into the sieve and a light bulb was positioned 

above. The heat and moisture gradient forced the larvae to move downwards and to 

finally fall into the water container. They were then skimmed off the water surface 

and used in the experiment. Only second instar larvae of a weight ranging from 1.0 to 

2.9 mg fresh weight were used in the experiments. The restriction to a single 

age/size class was necessary because larvae from this particular class proved most 

suitable regarding the results of these experiments (Moeser and Vidal 2003a). The 

first instars were not used because the larvae were too sensitive to changes in their 

environment, such as moisture or food. The extracted larvae were weighed and 

placed inside the test tubes on top of the vermiculite embedded root pieces. The 

tubes were closed and kept in darkness at 26°C and 60% RH. After six days the 

larvae and roots were extracted, dried for three days at 80°C and weighed. A fine 

scale (Sartorius GmbH, Goettingen, Germany; Model: Micro MC5 / SC2) was used to 

measure up to 0.001 mg differences in larval weight.  

 

C/N Analyses.  
For C/N Analyses a sufficient amount of roots, which were also obtained 

during the preparations for the feeding trials, were dried at 80°C for three days. Thirty 

mg of dry roots of each variety were then pooled because single roots did not have 

sufficient weight to be examined individually. The 30 mg were finely ground and three 

samples of 5 mg dry weight were taken. These were compared to a standard of 5 mg 

Acetanilide (Merck GmbH, Germany) every 20 samples in a C/N analyzer (Model: 

Vario EL III, Elementar Analysensysteme Hanau GmbH, Germany). The known 

quantity of C and N in the standard allowed for the calculation of the amount of these 

elements present in each root sample. The C/N ratio was subsequently determined.  
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Sterol analyses.   
While preparing the roots for the feeding trials described above, three samples 

of roots per plant species weighing 0.5 g (fresh weight) each were deeply frozen in 

liquid nitrogen and stored at -20°C until further processing. To extract the 

phytosterols the roots were ground to a fine powder under liquid nitrogen using a 

mortar. To each sample a mixture of 5 ml 10 M potassium hydroxide solution, 15 ml 

96% ethanol and 0.3% Pyrogallol (Merck GmbH, Germany) was added. An ultrasonic 

homogenizer (Model: Sonoplus HG 2200 / UW 2200, 200 W, 20 kHz, Bandelin 

GmbH, Germany) was used for 30 sec to enhance further cell breakdown and to free 

the solution from microscopic air bubbles trapped inside the vial. The samples were 

subsequently kept in a shaker water bath at 80°C for 2.5 h. After cooling the samples 

to room temperature, 40 µl of an internal standard were added (Cholesterol 4 mg / ml 

chloroform, Merck GmbH, Germany). The sterols were extracted by applying 10 ml 

hexane to each sample. After thorough shaking for 10 sec the hexane fraction was 

transferred to a rotary evaporator flask with an Eppendorf pipette. This extraction 

step was repeated once. The total of 20 ml hexane solution was washed with 1 ml 

de-mineralized water, which was then extracted with an Eppendorf pipette. The 

samples were distilled using a rotary evaporator and a water bath of 42°C. The 

pertaining sterols were resolved in 1.5 ml hexane through gentle shaking and 

transferred to 1.5 ml Eppendorf cups. After centrifugation with 10,000 rpm for 10 min. 

the supernatant was transferred to vials and the hexane was evaporated overnight at 

50°C in a hot block. The sterols were then resolved in 240 µl hexane and 60 µl N,O-

Bis(trimethylsilyl)trifluoroacetamide (BSTFA, Fluka / Riedel-deHaen GmbH, 

Germany) and incubated at 70°C for 20 min. 1 µl of each sample with a split of 1:50 

of extracted sterols were analyzed using a gas chromatograph (Shimadzu GmbH, 

Model: GC14/15A) with a flame ionization detector. The samples were run on a fused 

silica column (SPB-1; 1.3m x 0.32mm, 0.25µm film thickness, Supelco Inc./ Sigma-

Aldrich, Germany). Helium was used as a carrier gas, the make-up gas was synthetic 

air with a linear velocity of 35cm/s. The temperature program was initially 5 min at 

180°C then increase to 290°C at 4°C/min with a 20 min postrun time. The detector 

temperature was 300°C. Peak areas were calculated using an integrator and the 

internal standard. The sterols represented by each peak were identified beforehand 
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using GC-MS with synthetic sterols as comparisons. The individual peak areas were 

summed up which resulted in the total sterol content. 

 

Statistics.   
To estimate differences regarding the larval weight gain and the amount of 

ingested food an analysis of covariance (ANCOVA) was performed. The weight gain 

of the larvae or the amount of ingested food was used as the dependent variable, 

while the initial fresh weight of the larvae served as the covariate to correct for an 

eventual bias due to different initial weights (Raubenheimer and Simpson 1992; 

Horton and Redak 1993). For a pairwise comparison between the host plants an 

analysis of variance (ANOVA) with a Bonferroni adjustment was performed. Systat 

10 for Windows (SPSS Inc. 2000) was used for computation. To correlate two 

variables we performed linear regression analysis using SigmaPlot 2000 for Windows 

6.0 (SPSS Inc. 2000). 
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Results- 

The weight gain of D. v. virgifera larvae on alternative host plants ranged from 

positive to negative values (Fig. 1). There were significant differences between the 

different plant species with regard to larval weight gain (F = 2.99; df = 10, 265; P = 

0.002). Additionally the initial fresh weight of the larvae used as the covariate had a 

significant influence on weight gain (F = 18.63; df = 10, 265; P < 0.001). Three 

common weeds and winter wheat yielded positive mean weight gain, all other plant 

species tested yielded a mean weight loss. However, in Eragrostis sp. and Sorghum 

bicolor several larvae of D. v. virgifera displayed considerable weight gain as 

indicated by the positive standard error.  

 
Figure 1. Weight gain of D. v. virgifera larvae feeding on roots of alternative host 

plants. Identical letters above bars indicate no significant difference (ANOVA, 

Bonferroni adjustment). 

 

The mean weight gain of larvae feeding on S. glauca ( 0.11 mg dry weight ± 0.03 SE) 

and P. miliaceum (0.11 mg dry weight ± 0.08 SE) were exceeding the highest weight 
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gain of larvae feeding on maize roots. The highest values feeding on maize roots 

were 0.1 mg dry weight ± 0.03 SE and 0.08 mg dry weight ± 0.02 SE. 

Significant differences were measured with respect to the amount of ingested 

food on the different host plants (ANCOVA: F = 6.82; df = 10, 265; P < 0.001; Fig. 2). 

The initial fresh weight of larvae used as a covariate had no significant influence on 

the amount of feeding (ANCOVA: F = 0.38; df = 10, 265; P = 0.58). The host plants, 

which yielded the highest larval weight gain, were not the ones which were fed on 

most.  

 

Figure 2. Amount of ingested food of alternative host plants by D. v. virgifera larvae. 

Identical letters above bars indicate no significant differences between plant species 

(ANOVA, Bonferroni adjustment). 

 

The most pronounced feeding occurred on roots of Setaria verticilaria, which resulted 

in considerable weight gain, followed by Eragrostis sp. which led to a mean weight 

loss although some individuals showed an increase in weight. C. dactylon was 

ranked third but was the most unsuitable plant species with regard to larval weight 

gain. The lowest amount of feeding occurred in those plant species, which were 
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unsuitable for larval development. The other species showed intermediate feeding 

rates. 

The highest mean feeding rates (S. verticilaria: 5.04 mg dry weight ± 0.46 SE 

and Eragrostis sp.: 4.24 mg dry weight ± 0.55 SE) were in the same range as the 

highest mean feeding rates on maize roots (6.4 mg dry weight ± 0.75 SE and 4.71 

mg dry weight ± 0.41 SE). 

 

The larval weight gain was significantly correlated to the amount of ingested food; 

however the linear regression accounted for only 4% of the variability (R2 = 0.039; F 

= -0.016 + 0.012x; P = 0.02). 

A highly significant linear relation was found between the initial and the final weight of 

the larvae in our study (R2 = 0.92; F = 0.07 +0.81x; P <0.0001; compare “Material 

and Methods” for linear relationship as prerequisite for ECI). 

 

 

Figure 3. Food conversion efficiency index (ECI) of D. v. virgifera larvae on different 

host plants. Identical letters above bars indicate no significant difference between 

plant species (ANOVA, Bonferroni adjustment). 
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The ECI showed a similar pattern (Fig. 3) compared to the values for weight 

gain of D. v. virgifera larvae. Those plant species on which larvae gained weight had 

a positive ECI, while those plants which showed a decrease in larval weight had a 

negative ECI. 

Significant differences could be observed between the host plants which 

allowed for highest food conversion efficiency (S. glauca) and the two host plants 

which resulted in the lowest efficiency (C. dactylon and S. halepense) (F = 1.97; df = 

10, 180; P = 0.04). The initial fresh weight of the larvae used as the covariate had no 

significant influence on this result (F = 0.21; df = 10, 180; P = 0.65). The highest 

mean efficiency was reached when feeding on S. glauca ( 3.41 ±  0.93 SE) and on P. 

miliaceum (2.37 ± 1.98 SE). These ECI values were in the same range as the highest 

efficiencies reached when feeding on maize tissue (4.55 ± 1.85 SE and 3.61 ± 1.24 

SE).  

 

C/N ratio 
The weight gain of D. v. virgifera larva was not significantly correlated (P = 0.07) to 

the amount of nitrogen determined in the root tissue (Table 2). Furthermore it was 

also not correlated to the carbon content and the C/N ratio. Significant linear 

relationships were observed between the amount of ingested food and the carbon 

and the nitrogen content as well as the C/N ratio (Table 2). 

 

Table 2: Correlations between larval weight gain, the amount of ingested food and 

the amounts of carbon, nitrogen and their respective ratio. 

Variables Regression  R2 significance

Weight gain vs. C/N ratio F = 49.72 + 16.52x 0.08 n. s. 

Weight gain vs. C content F = 44.70 + 1.86x 0.09 n. s. 

Weight gain vs. N content F = 0.09 + -0.64x 0.44 * 

Ingested food vs. C/N ratio F = 42.94 + 3.18x 0.49 ** 

Ingested food vs. C content F = 43.87 + 0.39x 0.68 ** 

Ingested food vs. N content F = 1.03 + -0.05x 0.58 ** 

n. s. = not significant. 

* = significant at the 10% level. 

** = significant at the 5 % level. 
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Phytosterols 
Five major sterols were detected: Brassicasterol, Campesterol, Methylcholesterol 

Sitosterol and Stigmasterol. The individual amounts were summed up after 

integrating the peak areas to result in the total sterol content. There was no linear 

relationship between the overall sterol content and the mean larval weight gain (R2 = 

0.015; F = 0.03 -0.0004x; P = 0.72; Fig. 4), but we encountered a significant 

relationship between the overall sterol content and the amount of ingested food (R2 = 

0.33; F =-3.05+0.024x; P = 0.05; Fig. 4).  

 

Figure 4. Correlations between the overall sterol content and the mean larval weight 

gain and the mean amount of ingested food. 

 

Discussion 

D. v. virgifera larvae were able to survive and grow on various monocot host plants 

other than maize. Our data suggests that several weed species as well as winter 

wheat are as suitable as maize roots for larval development (Moeser and Vidal 

2003c).  
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D. v. virgifera larvae are able to develop on several other grasses from the Poaceae 

family but exhibit a drastically reduced survival rate (Branson and Ortman 1967, 

1970). Our results do not contradict these findings. However, growth and feeding on 

grass weeds and crops is comparable in magnitude to maize (Moeser and Vidal 

2003c). As we provided excess food to avoid starvation of the larvae, it seems that in 

some cases such as S. glauca or T. aestivum it is not the quality of the food but the 

quantity that limits D. v. virgifera survival. Root distribution and the three-dimensional 

geometry in the soil under natural conditions may not be advantageous for D. v. 

virgifera larvae. We suggest that monocot host plants other than maize may indeed 

provide sufficient food to support substantial larval feeding when grown at high 

densities.  

The potential of D. v. virgifera to develop on T. aestivum has been clearly 

demonstrated. Thus a crop rotation including maize and winter wheat could lead to 

D. v. virgifera populations adapted to winter wheat as a host plant in certain 

situations where the phenology of wheat is appropriate for larval growth like it is in 

Central Europe. The adaptation of D. v. virgifera to the US soybean–maize crop 

rotation system has led to damage on first year corn planted after soybean ,but not to 

soybean. Rotation with winter wheat would offer D. v. virgifera a potentially suitable 

host, so even host switching may be selected for. 

While Eragrostis sp. and S. italica were considered suitable for larval development 

(Branson and Ortman 1970), we only found some individuals to be able to grow on 

Eragrostis sp. and none at all which developed on S. italica. However, some larvae 

were able to grow on S. bicolor, which was considered to be unsuitable for D. v. 

virgifera, because of the hydrocyanic acid present in the its roots (Assabgui et al. 

1993). 

We encountered pre as well as postingestive effects of host plants on D. v. virgifera 

in our feeding trials. When the larvae did not feed on a given host (S. italica) or fed 

only very little (S. halepense and E. crus-galli) pre-ingestive effects like antibiosis 

may be attributable for this interaction. In other cases, D. v. virgifera larvae were 

feeding substantially on weed species such as C. dactylon but did not gain any 

weight. Here postingestive effects on D. v. virgifera larvae have to be considered, 

where essential nutritive compounds may be missing (see “Phytosterols section 

below”) or substances are present which prove detrimental for larval development 

after ingestion. 
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C/N ratio. 
The carbon-nutrient balance hypothesis (CNBH) aims at interpreting the plants point 

of view of an herbivore-plant interaction (Hamilton et al. 2001). The CNBH predicts 

an increase of nitrogen based defense compounds such as alkaloids (Lerdau and 

Coley 2002) if nutrients are abundant, but light is limited. As the plants we used in the 

feeding trials were grown in the greenhouse with sufficient nutrients available we 

prefer to suggest light to be the limiting factor. As D. v. virgifera fed less and gained 

less weight on those varieties with a high nitrogen content we conclude that N-based 

defense compounds may be responsible. The hypothesis of the existence of a 

carbon-based defense could be rejected, because D. v. virgifera larvae were feeding 

more on those host plants which contained more carbon.  

 

Phytosterols 
Feeding behavior of D. v. virgifera was strongly influenced by phytosterol content. 

While the larvae were feeding more on those plants with a high phytosterol content 

they did not gain more weight on these plants. Sterols are essential nutrients for 

insects, but metabolic constraints can limit which phytosterols support normal growth 

and development (Behmer and Elias 1999). Thus, a relative decrease in one sterol 

compared to others would lead to an increase in feeding to compensate for the 

deficient component. It is unknown which phytosterols are metabolised by D. v. 

virgifera. As could be shown for Phyllotreta cruciferae Goeze, altered phytosterol 

content in Brassica napus L. resulted in reduced survival and prolonged larval stages 

(Bodnaryk et al. 1997). Heliothis zea Hübner reared on an artificial diet displayed a 

huge variety of responses, when fed different sterols at different compositions (Nes 

et al. 1997). When the grasshopper Schistocerca americana Drury was confronted 

with sterols of Spinach (Spinacia oleracea L.) the results revealed a mixture of 

suitable and unsuitable sterol components, where the latter acted as feeding 

deterrents (Behmer and Elias 1999). This may explain the antibiosis effect we 

demonstrated with several plant species in our study. When confronted with non-host 

phytosterols the specialist herbivore Plutella xylostella L. exhibited reduced growth 

while growing best when the composition of sterols were similar to the composition of 

sterols in its host plant (Behmer and Grebenok 1998). Whether the sterol 
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composition of the host plants we tested resembles the sterol composition in maize 

remains to be investigated. 

We conclude that D. v. virgifera larvae can and most likely will use alternative hosts 

for larval development. Weeds will be used as reservoirs for D. v. virgifera larvae to 

develop on in the absence of maize. Other monocot crops such as winter wheat are 

likely to be affected as well. To what extent these host plants are used by D. v. 

virgifera will be determined by the selection pressure imposed, for example by crop 

rotation. If used incorrectly this cultural practice could in fact select for D. v. virgifera 

using other monocot crops like winter wheat or monocot weeds. The success of 

eradication programs, even in situations with no maize production, seems unlikely in 

the light of our results.  
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Discussion: 
 

When an insect invades new areas it has to meet different challenges. 

Besides other factors the invasive potential of an insect is determined by its 

nutritional ecology. All life stages in the life cycle have to find appropriate food items 

to succeed in the invasion. If only one stage fails, the invasions stops. If a maize 

specialist insect herbivore invades an area where maize is grown (like it is happening 

in Europe just now with regard to the Western Corn Rootworm [WCR], Diabrotica 

virgifera virgifera), it should not be faced with too much difficulties for the insect to 

find suitable food patches. However, due to the specialization of WCR in using an 

annual crop, the beetle has to cope with temporally limited availability of its main food 

sources. Furthermore harvest and cultural practices may put up high selection 

pressures on WCR to use alternative food resources. Both adults as well as larvae 

have to cope with these challenges. European maize production systems differ from 

US agro-ecosystems in having maize fields distributed more patchy, in most areas an 

at least 3 year rotational system and a more diverse landscape (Messner, pers. 

com).  

 
Phenotypic plasticity of an invasive species is known to facilitate biological 

invasions (Agrawal, 2001). We were able to demonstrate the great plasticity of WCR 

nutritional ecology with regard to larval and adult food utilization and performance. 

The adult beetles exhibited a high adaptability with regard to their nutritional ecology 

in their new range. In advance of our studies it was suggested that food use in WCR 

should depend on maize phenology (Ball, 1957; O’Neal et al., 2002) We were able to 

corroborate this hypothesis for the first time, by demonstrating the use of maize 

tissue in adult WCR according to maize phenology. WCR was known as a maize 

pollen and silk feeders in general until now (Ludwig and Hill, 1975). However, in 

Europe the beetles use a significantly larger array of resources compared to beetles 

from the US (Ludwig and Hill, 1975). A preference for maize pollen and silk could 

also be shown in the study presented here, but adults used other food sources as 

well. In Europe, the majority of all flowering weeds present in the maize fields in 

Southern Hungary were used as alternative pollen sources by WCR. The use of 

pollen from alternative host plants by adult beetles was depending on maize 
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phenology. Moreover, we demonstrated a strong influence of the diversity of 

flowering weeds in a given habitat on WCR feeding behavior.  

The use of alternative food resources may facilitate spreading and even 

accelerate spreading speed of WCR in Europe. Female and male beetles use 

alternative food resources differently. Because female beetles were using weed 

pollen more extensively than males we suggest that alternative pollen resources 

have to be considered especially valuable for fecundity and thus propagule pressure. 

 

The results from this study have also implications for integrated pest 

management measures: For example, in Southern Hungary the intercropping of 

maize and squash is a common cropping system. This cultural practice should be 

avoided as it adds to the resources used by WCR. Moreover, dicot weeds should be 

omitted from the field, especially Amaranthus sp. and Chenopodium sp. Additionally, 

to reduce pollen sources which are important for the beetles towards the end of the 

vegetation period Ambrosia sp. should be also removed from the fields.  

 

Until now, larval performance in WCR was measured indirectly by root 

damage ratings (Ksyan and Miller, 1986). In the present study a newly developed 

method was used to examine the food conversion efficiency of WCR feeding on 

different European maize varieties. 

WCR larvae showed highly variable responses when feeding on different 

European maize varieties. The different phytosterol content and the C/N ratio had 

significant influences on the suitability for WCR development. In the past research on 

resistant maize varieties mainly focused on pre-ingestive effects like deterrent 

substances (Assabgui et al., 1995). We suggest future search for unsuitable maize 

varieties to focus on altered composition of essential nutritional compounds like 

phytosterols to interfere with regular larval development.  

 

Until now, survival of larvae was the only measure to estimate larval 

performance on alternative host. This qualitative measure may now be supplemented 

by the quantitative data from this study. By using the newly developed method we 

were able to show that larvae of WCR perform as well on several alternative host 

plants as on maize. Especially, they performed comparably well on some monocot 

grasses and crops, but not on dicot plants.  
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The implications for integrated pest management of these findings are various:  

As WCR larvae have the ability to survive on monocot crops including winter wheat,. 

any crop rotation practice should avoid rotating maize and any other monocot crop 

the next year. Similarly, monocot weeds should be avoided in maize fields because 

they will allow WCR development the following year even in case of crop rotation. 

WCR has already shown its adaptation capability by changing the oviposition 

preference in the maize-soy bean rotation in the US corn belt. When strong selection 

pressures like crop rotation act on WCR populations this pest species can be 

expected to adapt to use other available resources. 

 

The nutritional ecology of WCR is most likely to change as the invasion 

progresses throughout Europe according to the resources which are available. The 

diversity of weeds which may act as additional food resources for the adults is 

different in different parts of Europe. The abundance of weeds will be influenced by 

differing production intensities (e.g. the use of herbicides). Moreover, the diversity 

and abundance of monocot weeds and crops for larval development will further 

impact the ability of WCR to maintain the invasion. In Europe more diverse maize 

varieties are used. Especially local ones, which are grown only on a small scale, may 

provide useful sources of resistance breeding programs.  

 

Besides the direct interaction with the host plant, also indirect interactions with 

other organisms are likely to occur: If e.g. the colonization of the roots by 

microorganism has an impact on larval performance will be a future field for research. 

Also the study of competition with other maize pests or pathogens may provide 

useful insights into invasion processes.  
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