Untersuchungen zum Blatt- und Wurzelmetabolismus
sowie zum Phloem- und Xylemtransport in Zusammenhang mit
der Stickstoff-Effizienz bei Raps (Brassica napus L.)

Dissertation
zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultäten
der Georg-August-Universität zu Göttingen

vorgelegt von

Zewen Zhou
aus Guangdong, VR China

Göttingen 2000
Referent: Prof. Dr. H. W. Heldt
Korreferent: Priv.-Doz. Dr. D. Heineke
Tag der mündlichen Prüfung: 02. 11. 2000
Inhaltsverzeichnis

1 Einleitung

1.1 Die Bedeutung von Raps als Kulturpflanze

1.2 Stickstoff-Problematik und -Effizienz bei Raps

1.3 Stickstoffassimilation und -transport in höheren Pflanzen

1.4 N-assimilierende Enzyme in der Pflanze

1.4.1 Nitratreduktase (NR) und Nitritreduktase (NiR)

1.4.2 Glutamin-Synthetase

1.4.3 Asparagin-Synthetase

1.5 Aminosäuretransport in der Pflanze

1.6 Die Samen-Speicherproteine von Raps

1.6.1 Regulation der Synthese der Samen-Speicherproteine

1.7 Zielsetzung der Arbeit

2 Material und Methoden

2.1 Pflanzenmaterial und Anzuchtbedingungen

2.1.1 Proben aus dem Feldversuch

2.1.2 Ausgewählte Winterraps-Genotypen

2.1.3 Transgene Rapspflanzen mit Änderungen der Glutaminsynthetase (GS)

2.1.4 Transgene Rapspflanzen mit Asparaginsynthetase A (AsnA) aus E. coli

2.2 Chloroform-Methanol-Extraktion von wasserlöslichen Metaboliten aus Blatt- und Wurzelgeweben

2.3 Chlorophyllbestimmung

2.4 Stärkebestimmung

2.5 Proteinbestimmung

2.5.1 Bestimmung nach Lowry et al. (1951)

2.5.2 Bestimmung nach Bradford (1976)

2.6 Optisch enzymatische Bestimmung von Glukose, Fruktose, Saccharose, Stärke, Malat und Nitrat

2.6.1 Glukose, Fruktose und Saccharose

2.6.2 Stärke

2.6.3 Malat

2.6.4 Nitrat
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Phloemsaft-Gewinnung</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Gewinnung von Wurzeldruck-Exudat (Xylemsaft)</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Chromatographische Bestimmung der Aminosäuren</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Amperometrische Bestimmung von Kohlenhydraten</td>
<td>32</td>
</tr>
<tr>
<td>2.11</td>
<td>Konzentrationsbestimmung von Ionen und organischen Säuren durch ein HPLC-System</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>SDS Polyacrylamid Gelelektrophorese (SDS-PAGE)</td>
<td>34</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Vorbereitung der Gele</td>
<td>34</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Probenauftragung und Durchführung der Elektrophorese</td>
<td>35</td>
</tr>
<tr>
<td>2.13</td>
<td>Western-Blot</td>
<td>36</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Aufarbeitung der Proben</td>
<td>36</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Trennung der Proteine durch die Gelelektrophorese</td>
<td>37</td>
</tr>
<tr>
<td>2.13.3</td>
<td>Elektrotransfer der Proteine auf die Nitrocellulosemembran</td>
<td>37</td>
</tr>
<tr>
<td>2.13.4</td>
<td>Kontrolle des Transfers</td>
<td>38</td>
</tr>
<tr>
<td>2.13.4.1</td>
<td>Amidoschwarz-Färbung</td>
<td>38</td>
</tr>
<tr>
<td>2.13.4.2</td>
<td>Coomassie-Färbung</td>
<td>38</td>
</tr>
<tr>
<td>2.13.5</td>
<td>Nachweis durch "Enhanced Chemiluminescence" (ECL)</td>
<td>39</td>
</tr>
<tr>
<td>2.14</td>
<td>Enzymaktivitätsmessungen</td>
<td>40</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Nitrat-Reduktase (NR)</td>
<td>40</td>
</tr>
<tr>
<td>2.14.2</td>
<td>Asparagin-Synthetase (AsnS)</td>
<td>42</td>
</tr>
<tr>
<td>2.14.3</td>
<td>Glutamin-Synthetase (GS)</td>
<td>45</td>
</tr>
<tr>
<td>2.15</td>
<td>Bestimmung der photosynthetischen Aktivität</td>
<td>46</td>
</tr>
<tr>
<td>2.16</td>
<td>Auswertung der durchgeführten Experimente</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Ergebnisse</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Feldversuch mit unterschiedlichen Stickstoff-Düngungsstufen</td>
<td>48</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Auswirkung der N-Düngung auf den Blatt- und Kornmetabolismus von Winterraps im Feldversuch</td>
<td>49</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Aminosäuremuster im Blatt der Winterraps-Genotypen</td>
<td>50</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Genetische Varianz unter den 36 Winterraps-Genotypen</td>
<td>50</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Zusammenhang zwischen Blattmetabolismus und Proteingehalt bzw. N-Ertrag im Samen</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Gewächshaus-Versuch mit 8 ausgewählten Winterraps-Genotypen</td>
<td>59</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Metabolismus in verschiedenen Pflanzenteilen der</td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

3.4.4 Aminosäure- und Saccharosekonzentrationen in Phloem- und Xylemsaft der transgenen Raps pflanzen mit AsnA aus E. coli .. 92

4 Diskussion ... 95

4.1 Hintergrund der Untersuchung zur Stickstoff-Effizienz bei Raps 95

4.2 Genetische Variation für die N-Effizienz bei Winterraps-Genotypen 96

4.3 Beitrag des Blattmetabolismus und des Phloemtransports zur N-Effizienz

4.3.1 Aminosäuretransport bei Winterraps ... 100

4.3.2 Einfluß der Nitrat-Versorgung auf den N-Metabolismus und den N-Transport der Winterraps-Pflanzen ... 103

4.3.3 Einfluß der Ammonium-Ernährung auf den N-Metabolismus und den N-Transport der Raps-Pflanzen ... 105

4.4 Zur genetischen Manipulation der N-assimilierenden Enzyme bei Raps 107

4.4.1 Transgene Raps pflanzen mit Überexpression der cytosolischen oder plastidären Glutamin-Synthetase ... 107

4.4.2 Transgene Raps pflanzen mit „Antisense“-Hemmung der Glutamin-Synthetase ... 109

4.4.3 Transgene Raps pflanzen mit heterologer Expression der AsnA aus E. coli ... 110

4.4.4 Abschlußbemerkung ... 112

5 Zusammenfassung ... 113

6 Abkürzungsverzeichnis .. 116

7Literaturverzeichnis ... 119
1 Einleitung

1.1 Die Bedeutung von Raps als Kulturpflanze

1.2 Stickstoff-Problematik und -Effizienz bei Raps

1.3 Stickstoffassimilation und -transport in höheren Pflanzen

Abbildung 1-1. Nitratassimilation und Aminosäuretransport in der Pflanze
(NR - Nitratreduktase, NiR - Nitritreduktase, GS - Glutaminsynthetase, AS - Aminosäuren)

1.4 N-assimilierende Enzyme in der Pflanze

1.4.1 Nitratreduktase (NR) und Nitritreduktase (NiR)

Die in den Plastiden lokalisierete Nitritreduktase ist ein Monomer mit drei prosthetischen Gruppen: Ein 4Fe-4S-Zentrum, ein FAD und ein Sirohäm (Siegel und
1. Einleitung

1.4.2 Glutamin-Synthetase

1.4.3 Asparagin-Synthetase

Asparagin gehört zu den wichtigsten transportierten Aminosäuren in Leguminosen und Aktinorhiza-Pflanzen, die aufgrund der Symbiose mit N₂-fixierenden Bakterien die primäre N-Assimilation in den Wurzeln durchführen (Lea

Nach Transformation von Tabakpflanzen mit AsnA aus \textit{E. coli} konnte gezeigt werden, daß AsnA in Pflanzen aktiv ist und einen positiven Effekt auf das Wachstum und die Biomasseproduktion der Pflanzen hat (Dudits et al. 1991). Asparagin hat ein günstigeres N/C-Verhältnis (0.5) im Vergleich zu Glutamin (0.4) und könnte als eine günstigere Form des N-Transportes dienen. Daher ist die Transformation von Raps mit der AsnA aus \textit{E. coli} auch für die Untersuchungen zur Stickstoff-Verwertungseffizienz in Raps interessant, da so ein weiterer Weg zur Ammonium-Assimilation in der Pflanze zur Verfügung stehen würde.

1.5 Aminosäuretransport in der Pflanze

Das Xylem besteht aus verholzten Röhren, durch welche Wasser und darin gelöste Nährstoffe aus der Wurzel über den Transpirationsstrom in die Blätter gelangen. Die treibende Kraft ist die Wasserpotential-Differenz zwischen den Wurzeln.

1.6 Die Samen-Speicherproteine von Raps

1.6.1 Regulation der Synthese der Samen-Speicherproteine

1.7 Zielsetzung der Arbeit

Untersuchungen zur multifaktoriell beeinflussten N-Effizienz bei Raps sind sowohl ökonomisch als auch ökologisch von zunehmender Bedeutung. Daher wurden im Rahmen dieser Arbeit verschiedene Rapsgenotypen mit einem breiten genetischen Ursprung (Hybride, ältere Sorten, heutige Linien, neuere Zuchtstämme, Resynthese-Linien, und transgene Pflanzen) untersucht. Das Ziel war:

In Feldversuchen, (a) an einem sehr breiten Winterraps-Material das Ausmaß der genetischen Variation des Blatt-Metabolismus (Source-Leistungsfähigkeit) zu erfassen, und (b) die Korrelation zwischen Blatt-Metabolismus und Proteinertrag bzw. N-Effizienz zu beurteilen.

In Versuchen mit ausgewählten Winterrapsgenotypen unter Gewächshaus-Bedingungen, (a) den C- und N-Metabolismus in verschiedenen Raps-Organen (junge Blätter, „source“-Blätter, alte Blätter und Wurzeln) genauer zu charakterisieren, und (b) den Beitrag von Phloem- und Xylemtransport zur N-Effizienz der Winterrapssorten zu untersuchen.

In Versuchen mit transgenen Pflanzen die Auswirkung der Aktivitäts-Änderung von N-assimilierenden Enzymen (Überexpression oder „Antisense“-Hemmung der Glutaminsynthetase oder der Asparaginsynthetase) auf den Metabolismus sowie den Phloem- und Xylemtransport der Rapspflanzen zu untersuchen.
2 Material und Methoden

2.1 Pflanzenmaterial und Anzuchtbedingungen

In der vorliegenden Arbeit wurden Raps genotypen (*Brassica napus* L.) mit unterschiedlichem genetischem Hintergrund bearbeitet, die entweder auf dem Feld oder im Gewächshaus angezogen wurden.

2.1.1 Proben aus dem Feldversuch

Tabelle 2-1. Übersicht der Proben aus den Feldversuchen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahl der Genotypen</td>
<td>70</td>
<td>91</td>
<td>36</td>
</tr>
<tr>
<td>Zahl der Standorte</td>
<td>1 (Einbeck)</td>
<td>1 (Einbeck)</td>
<td>2 (Göttingen)</td>
</tr>
<tr>
<td>N-Düngungsstufen (kgN/ha)</td>
<td>N₁ = 100</td>
<td>N₀ = 0</td>
<td>N₀ = 0</td>
</tr>
<tr>
<td></td>
<td>N₂ = 240*</td>
<td>N₂ = 240</td>
<td>N₂ = 240</td>
</tr>
<tr>
<td>Wiederholungen</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* zum Teil analysiert

Die Namen und die Eigenschaften der verwendeten Genotypen sind in Tabelle 2-2 aufgelistet.
Tabelle 2-2. Liste der Genotypen aus den Feldversuchen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Express</td>
<td>heutige Linie, früh, kurz</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>Falcon</td>
<td>heutige Linie, sehr verbreitete Standardsorte</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>Marathon</td>
<td>heutige Linie, sehr ertragreich</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bristol</td>
<td>heutige Linie, sehr hoher Ölertrag, früh</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>Lirajet</td>
<td>heutige Linie, mittelfrüh, lang</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DH Mansholts</td>
<td>DH-Linie aus alter Landsorte</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>Capitol</td>
<td>heutige Linie, nährstoffeffizient</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>Apex</td>
<td>heutige Linie, mit breiter Adaption</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>Alaska</td>
<td>heutige Linie, späte Blüte, frühe Reife</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>President</td>
<td>heutige Linie, sehr spät</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Prospa</td>
<td>heutige Linie, sehr früh</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>Mohican</td>
<td>heutige Linie, hoher Ölgehalt</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>WRG 136</td>
<td>neuer Zuchtstamm</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DSV 15</td>
<td>neuer Zuchtstamm, niedriger Proteingehalt</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>Oxident</td>
<td>heutige Linie, spät abreifend</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Celt</td>
<td>heutige Linie</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Capricorn</td>
<td>heutige Linie</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Calibra</td>
<td>heutige Linie</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Honk</td>
<td>heutige Linie, früh</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Prelude</td>
<td>heutige Linie, kleines TKG, niedriger Ertrag</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NW 2532</td>
<td>neuer Zuchtstamm, früh</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>NW 2553</td>
<td>neuer Zuchtstamm, mittel-spät</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Attila</td>
<td>heutige Linie</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>H 683 C</td>
<td>2-Wege-Verbundhybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>H 948 C</td>
<td>3-Wege-Verbundhybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>AK 639</td>
<td>teilrestaurierte Hybride</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>27</td>
<td>AK 650</td>
<td>teilrestaurierte Hybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Magnum</td>
<td>heutige Linie (Liniensorte)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>29</td>
<td>Amber</td>
<td>Liniensorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Laser</td>
<td>Liniensorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>31</td>
<td>Zenith</td>
<td>Linien sorte</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>32</td>
<td>RNX 9508</td>
<td>Verbundhybride</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>RNX 9505</td>
<td>Verbundhybride</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>34</td>
<td>RNX 9504</td>
<td>Verbundhybride</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Joker</td>
<td>restaurierte Hybride</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>36</td>
<td>Pronto</td>
<td>restaurierte Hybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S 3</td>
<td>Resynthese</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>38</td>
<td>S 9</td>
<td>Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>S 12</td>
<td>Resynthese</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>40</td>
<td>S 13</td>
<td>Resynthese</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>S 27</td>
<td>Resynthese</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>S 29</td>
<td>Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>S 30</td>
<td>Resynthese</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Rasmus</td>
<td>heutige Linie</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Lisabeth</td>
<td>heutige Linie</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>46</td>
<td>Lizard</td>
<td>heutige Linie</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>47</td>
<td>Wotan</td>
<td>heutige Linie</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>48</td>
<td>Licord</td>
<td>heutige Linie</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>49</td>
<td>Falcon x S 9</td>
<td>Falcon-msL x Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Falcon x S 12</td>
<td>Falcon-msL x Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Falcon x S 13</td>
<td>Falcon-msL x Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>DP-HB-4</td>
<td>neuer Zuchtstamm</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>53</td>
<td>DP-HB-5</td>
<td>neuer Zuchtstamm</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>54</td>
<td>RS 1</td>
<td>Resynthese</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>55</td>
<td>RS 2</td>
<td>Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>RS 3</td>
<td>Resynthese</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>57</td>
<td>RS 4</td>
<td>Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>RS 5</td>
<td>Resynthese</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>RS 6</td>
<td>Resynthese</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>60</td>
<td>Hansen</td>
<td>heutige Linie</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Tarok</td>
<td>heutige Linie</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>62</td>
<td>Jazz</td>
<td>heutige Linie, geringer Ölgehalt, viel N im Korn?</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Chang</td>
<td>heutige Linie, klein, schwach, fast normaler Ertrag</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>DP-HB-1</td>
<td>neuer Zuchstamm, frühe Abreife, hoher Ölgehalt</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>65</td>
<td>DP-HB-2</td>
<td>neuer Zuchstamm, spät und lang, kräftig</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>DP-HB-3</td>
<td>neuer Zuchstamm, wenige aber sehr große Körner</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Ascona</td>
<td>heutige Linie</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>TED 23</td>
<td>neuer Zuchstamm</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>TH 82/96</td>
<td>Verbundhybride</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>TH 91/96</td>
<td>Verbundhybride</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Quedlinburger</td>
<td>ältere Sorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Olimpiade</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ramses</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Gesunder</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Giessener Höhenraps</td>
<td>ältere Sorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Heimer</td>
<td>ältere Sorte, Öl (++)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Hektor</td>
<td>ältere Sorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Janetzis Schlesischer</td>
<td>ältere Sorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Lembkes Normal</td>
<td>ältere Sorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Marex</td>
<td>ältere Sorte</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Mirander</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Norde</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>DH Samourai</td>
<td>heutige Linie</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Sarepta</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Synra</td>
<td>ältere Sorte</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Viktor</td>
<td>ältere Sorte, Öl (++)</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>TH 75/96</td>
<td>Verbundhybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>TH 76/96</td>
<td>Verbundhybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>TH 81/96</td>
<td>Verbundhybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>TH 83/96</td>
<td>Verbundhybride</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>TEC 21</td>
<td>neuer Zuchstamm</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>SLM 046</td>
<td>sehr ertragreich</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Material und Methoden

2.1.2 Ausgewählte Winterraps-Genotypen

Aufgrund der Ergebnisse aus den Feldversuchen im Jahr 1997 wurden acht Genotypen (Apex, Bristol, DP-HB-1, Express, Falcon, Lirajet, RS3 und S27) ausgewählt, die in Laborexperimenten genauer charakterisiert wurden. Diese acht Genotypen wurden auf Hydrokultur mit Nährösungen von zwei Konzentrationen (0.5 mM NO\(_3^-\) und 4 mM NO\(_3^-\), siehe Tab. 2-5) im Gewächshaus mit zusätzlicher Belichtung (HQI-TS250 Lampe, 250W, täglich 6.00-21.00 Uhr) angezogen.

2.1.3 Transgene Rapspflanzen mit Änderungen der Glutaminsynthetase (GS)

Hierfür wurde mit transgenen Pflanzen (C10-26, E8-1 und F2-1), die von der Arbeitsgruppe Dr. Möllers (Institut für Pflanzenbau und Pflanzenzüchtung der Universität Göttingen) zur Verfügung gestellt wurden, gearbeitet. Diese Pflanzen wurden in Plastiktöpfen mit Komposterde im Gewächshaus mit zusätzlicher Belichtung (HQI-TS250 Lampe, 250W, täglich 6.00-21.00 Uhr) angezogen.

Die Transformation der Sommerrapssorte "Drakkar" bzw. Winterrapssorte "Falcon" wurde mittels *Agrobacterium tumefaciens* GV3101pMP90 durchgeführt (Wallbraun 1997). Das Ausgangsmaterial für die Klonierungen waren cDNA-Klone der plastidären (BnGSL1) und der cytosolischen (BnGSR1) Glutamin-Synthetase, jeweils aus dem A-Genom von *Brassica napus*. Als erster Schritt der Klonierung wurden die cDNA-Klone der Glutamin-Synthetase sowohl in "sense"- als auch in...

Tabelle 2-3. Liste der bearbeiteten transgenen Rapspflanzen mit Änderungen der GS

<table>
<thead>
<tr>
<th>transgene Pflanze</th>
<th>Ausgangspflanze</th>
<th>Eigenschaft (nach Wallbraun 1997)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10-26</td>
<td>Drakkar</td>
<td>cytosolische GS (GSR1) überexprimiert</td>
</tr>
<tr>
<td>E8-1</td>
<td>Drakkar</td>
<td>plastidäre GS (GSL1) überexprimiert</td>
</tr>
<tr>
<td>F2-1</td>
<td>Falcon</td>
<td>"antisense"-Hemmung der plastidären GSL1</td>
</tr>
</tbody>
</table>

2.1.4 Transgene Rapspflanzen mit Asparaginsynthetase A (AsnA) aus *E. coli*

Diese Pflanzen wurden ebenfalls von der Arbeitsgruppe Dr. Möllers (Institut für Pflanzenbau und Pflanzenzüchtung der Universität Göttingen) zur Verfügung gestellt. Sie wurden auf Hydrokultur (Tab. 2-4-A) mit zwei unterschiedlichen Nährlösungen (4 mM NO₃⁻ oder 4 mM NH₄⁺; siehe Tab. 2-5) oder in Plastiktöpfen mit Komposterde (Tab. 2-4-B) im Gewächshaus mit zusätzlicher Belichtung (HQI-TS250 Lampe, 250W, täglich 6.00-21.00 Uhr) angezogen.

Tabelle 2-4-A. Transgene Rapspflanzen mit AsnA aus *E. coli* ohne Transitpeptid

<table>
<thead>
<tr>
<th>transgene Pflanze</th>
<th>Ausgangspflanze</th>
<th>Eigenschaft (nach Wallbraun 1997)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 18-6</td>
<td>Drakkar</td>
<td>1 Kopie nach Southern-Blot-Analyse</td>
</tr>
<tr>
<td>H 18-8</td>
<td>Drakkar</td>
<td>3 Kopien nach Southern-Blot-Analyse</td>
</tr>
<tr>
<td>H 24-2</td>
<td>Drakkar</td>
<td>1 Kopie nach Southern-Blot-Analyse</td>
</tr>
</tbody>
</table>

Tabelle 2-4-B. Transgene Rapspflanzen mit AsnA aus *E. coli* mit Transitpeptid

<table>
<thead>
<tr>
<th>transgene Pflanze</th>
<th>Ausgangspflanze</th>
<th>Eigenschaft (nach Seiffert 2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsnAtp 14</td>
<td>Drakkar</td>
<td>Western-Blot-Analyse: positiv</td>
</tr>
<tr>
<td>AsnAtp 63</td>
<td>Drakkar</td>
<td>Western-Blot-Analyse: positiv</td>
</tr>
<tr>
<td>AsnAtp 86</td>
<td>Drakkar</td>
<td>Western-Blot-Analyse: positiv</td>
</tr>
<tr>
<td>AsnAtp 154</td>
<td>Drakkar</td>
<td>Western-Blot-Analyse: positiv</td>
</tr>
<tr>
<td>AsnAtp 215</td>
<td>Drakkar</td>
<td>Western-Blot-Analyse: positiv</td>
</tr>
</tbody>
</table>

Tabelle 2-5. Zusammensetzung der Nährlösungen für Rapspflanzen auf Hydrokultur im Gewächshaus

<table>
<thead>
<tr>
<th></th>
<th>4 mM NO₃⁻</th>
<th>0.5 mM NO₃⁻</th>
<th>4 mM NH₄⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makroelemente:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>2 mM</td>
<td>0.25 mM</td>
<td></td>
</tr>
<tr>
<td>NH₄Cl</td>
<td></td>
<td></td>
<td>4 mM</td>
</tr>
<tr>
<td>KCl</td>
<td>0.1 mM</td>
<td>0.1 mM</td>
<td>0.1 mM</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>0.7 mM</td>
<td>0.7 mM</td>
<td>0.7 mM</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>1 mM</td>
<td>1 mM</td>
<td>1 mM</td>
</tr>
<tr>
<td>KH₂PO₄-K₂HPO₄ (pH 7.2)</td>
<td>0.3 mM</td>
<td>0.3 mM</td>
<td>0.3 mM</td>
</tr>
<tr>
<td>Spurenelemente:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>27.8 μM</td>
<td>27.8 μM</td>
<td>27.8 μM</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>5.5 μM</td>
<td>5.5 μM</td>
<td>5.5 μM</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>0.46 μM</td>
<td>0.46 μM</td>
<td>0.46 μM</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>0.19 μM</td>
<td>0.19 μM</td>
<td>0.19 μM</td>
</tr>
<tr>
<td>Na₂MoO₄</td>
<td>0.072 μM</td>
<td>0.072 μM</td>
<td>0.072 μM</td>
</tr>
<tr>
<td>Fe-Na-EDTA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeCl₃</td>
<td>48 μM</td>
<td>48 μM</td>
<td>48 μM</td>
</tr>
<tr>
<td>Na₂EDTA</td>
<td>27.4 μM</td>
<td>27.4 μM</td>
<td>27.4 μM</td>
</tr>
</tbody>
</table>
2.2 Chloroform-Methanol-Extraktion von wasserlöslichen Metaboliten aus Blatt- und Wurzelgeweben

Die Blattscheiben oder Wurzelabschnitte wurden in flüssigem Stickstoff zu einem feinen Pulver zermörtelt. Ein ca. 200 mg Aliquot wurde mit 5 ml Chloroform-Methanol-Gemisch (Chloroform : Methanol = 1.5 : 3.5 (v/v)) versetzt und gemischt. Nach mindestens 30 min Inkubation auf Eis wurden 4 ml hochreines H2O zugegeben. Danach wurde die Probe 2 min gemischt und 5 min bei 5000 rpm und Raumtemperatur zentrifugiert. Die hydrophile Oberphase wurde in einen Rundkolben überführt, die Unterphase nochmals mit 3 ml H2O wie oben ausgeschüttelt und zentrifugiert. Die vereinigten wässrigen Oberphasen wurden am Rotationsverdampfer bis zur Trockene eingeengt. Der Rückstand wurde in 1.5 ml H2O aufgenommen, durch einen Cellulose-Nitrat-Filter (Porengröße 0.45 µm) in Micro-Reagiergefäße filtriert, in flüssigem Stickstoff eingefroren und bis zur Analyse bei –80°C gelagert.

2.3 Chlorophyllbestimmung (nach Arnon 1949)

Die chloroformhaltige Unterphase der Chloroform-Methanol-Extraktion (siehe 2.2.) der Blattgewebe wurde mit 96% Ethanol auf 10 ml aufgefüllt, gut geschüttelt, und für 10 min bei 4300 rpm und 4°C zentrifugiert. Die Extinktion der klaren Überstände wurde bei 652 nm gegen einen Blindwert (96% Ethanol) bestimmt. Hoch konzentrierte Proben wurden mit 96% Ethanol verdünnt, bis eine Extinktion zwischen 0.1-0.3 erreicht wurde. Den Berechnungen des Chlorophyll-Gehaltes liegt ein Extinktionskoeffizient von 36 ml·mg⁻¹·cm⁻¹ zugrunde. Das Pellet wurde für die Stärke- und Proteinbestimmung (siehe 2.4. und 2.5.1.) bei 4°C aufbewahrt.

2.4 Stärkebestimmung (modifiziert nach Stitt und Heldt 1981)

Der quantitative Stärkenachweis beruht auf dem sukzessiven Abbau der Stärkekörner zu Glukoseeinheiten, die sich optisch-enzymatisch oder durch HPLC erfassen lassen.
Die Stärkegehalte wurden aus den hydrophoben Unterphasen der Chloroform-Methanol-Extrakte (siehe 2.3.) bestimmt. Das Pellet wurde zuerst mit Ethanol gewaschen, um Chloroform und Chlorophyll möglichst vollständig zu entfernen. Nach der Resuspension mit 2 ml 0.2 N KOH wurde das Volumen bestimmt und anschließend im Schüttelwasserbad bei 80°C für 3 h inkubierte. Durch Zugabe von 1 N Essigsäure (ca. 350 µl) wurde der pH-Wert auf 4.5-5.0 eingestellt. Dann wurde die Probe zur guten Homogenisation im Ultraschallbad für 10 min behandelt, und für die weitere enzymatische Aufspaltung oder für die Proteinbestimmung (siehe 2.5.) bereitgestellt.

Enzymatische Aufspaltung (2 Ansätze pro Probe): 100 µl Aliquot und 400 µl Reaktionsmedium wurden zusammengegeben und bei 50°C für mindestens 3 h inkubierte. Danach wurde die Probe 2 min bei 13000 rpm zentrifugiert und der klare Überstand für die Bestimmung des Glukosegehalts (enzymatisch siehe 2.6.; durch HPLC siehe 2.10.) verwendet.

Reaktionsmedium: 50 mM Natriumacetat (pH 4.8)
23 nKat Amyloglukosidase
33 nKat α-Amylase

2.5 Proteinbestimmung

2.5.1 Bestimmung nach Lowry et al. (1951)

Der Proteingehalt wurde aus der Unterphase der Chloroform-Methanol-Extraktion nach Aufarbeitung zur Stärkebestimmung (siehe 2.4.) bestimmt.

Stammlösungen:
A) 2% Na₂CO₃ in 0.1 N NaOH (w/v)
B) 2% Na-K-Tartrat (w/v)
C) 1% CuSO₄ (w/v)
D) Folin-Ciocalteus-Phenolreagenz
Arbeitslösung 1: (frisch)

Eine Mischung von Stammlösungen A, B und C (A:B:C = 99:0.5:0.5)

Arbeitslösung 2:

Verdünnnte Stammlösung D (Stammlösung D : H₂O = 1:2)

700 µl der Arbeitslösung 1 und 150 µl der verdünnten Probe wurden gemischt und bei Raumtemperatur für 15 min inkubiert. Dann wurden 100 µl der Arbeitslösung 2 zugegeben und geschüttelt. Nach einer mindestens 10 minütigen Inkubation bei Raumtemperatur und anschließenden 2 min Zentrifugation wurden die Extinktionen der Proben bei 578 nm bestimmt. Um die Eigenabsorption der Proben berücksichtigen zu können, wurde ein Blindwert gemessen. Hierfür erfolgte die Zugabe der Arbeitslösung 2 vor Zugabe der Probelösung. Die Proteingehalte wurden mittels einer parallel erstellten Eichkurve (0-45 µg Rinderserumalbumin) bestimmt.

2.5.2 Bestimmung nach Bradford (1976)

Die Proteingehalte der Proben für die Western-Blot-Analyse oder Enzymaktivitätsmessungen wurden mit dieser Methode bestimmt.

Der verwendete Farbstoff Coomassie Brilliantblue G-250 oder Servablau-G liegt in saurer Lösung in zwei Formen vor, einer blauen und einer orangen Form. Proteine binden bevorzugt die blaue Form, wobei ein Komplex entsteht, dessen Extinktionskoeffizient um vieles größer ist als der des freien Farbstoffes.

Lösungen: 1) 70 mg Coomassie Brilliantblue G-250 (Servablau-G) wurden in 50 ml 96%igen Ethanol gelöst

2) 100 ml 86%ige Phosphorsäure wurden mit 600 ml H₂O verdünnt

Farbreagenz: Lösung 1) und 2) wurden zusammen gemischt und dann mit H₂O auf 1000 ml aufgefüllt, gut gemischt und wenn nötig filtriert. Eine Eichkurve wurde anschließend im Bereich von 0-15 µg Protein (Rinderserumalbumin) erstellt. Im Mittel wurde eine Extinktion von ca. 52 E pro mg Protein erhalten. Das Farbreagenz ist lichtgeschützt mehrere Wochen haltbar.
50 µl Probelösung wurden mit 1 ml Farbreagenz versetzt und 5 min bei Raumtemperatur inkubiert. Als Blindwert wurden 50 µl des Puffers der Probe mit 1 ml Farbreagenz gleichzeitig versetzt und inkubiert. Anschließend wurde die Extinktion bei 595 nm bestimmt.

2.6 Optisch enzymatische Bestimmung von Glukose, Fruktose, Saccharose, Stärke, Malat und Nitrat

Verwendet wurden die Extrakte aus der Chloroform-Methanol-Extraktion (siehe 2.2.). Die Messungen erfolgten an einem Spektralphotometer (Kontron Uvikon 922). Falls die verwendeten Enzyme in Ammoniumsulfat gelöst waren, wurden sie zuerst 8 min (13000 rpm, 4°C) zentrifugiert und das Sendiment in dem jeweiligen Reaktionspuffer resuspendiert.

Die Metabolitkonzentrationen (c) sind den Extinktionsänderungen (ΔE) proportional und berechnen sich nach dem Lambert-Beer’schen Gesetz:

\[c = \frac{\Delta E}{\varepsilon \cdot d} \quad [\text{mol} \cdot \text{l}^{-1}] \], \ d = \text{Schichtdicke der Küvette (1 cm)}

Der Extinktionskoeffizient (ε) für NAD(P)H (bei 334 nm und 25°C, Referenz 405 nm) beträgt 6.18 \cdot 10^3 [M \cdot cm]^{-1}, für APADH_2 (bei 366 nm und 25°C, Referenz 436 nm) 9.1 \cdot 10^3 [M \cdot cm]^{-1}.

2.6.1 Glukose, Fruktose und Saccharose (modifiziert nach Bergmeyer 1983)

Meßprinzip:

\begin{align*}
\text{für Glc-6-P:} & \quad 2 \text{Glc-6-P} + 2 \text{NADP}^+ \xrightarrow{\text{Glc-6-P-DH}} 2 \text{Gluconat-6-P} + 2 \text{NADPH} + 2 \text{H}^+ \\
\text{für Glukose:} & \quad \text{Glukose} + \text{Fruktose} + 2 \text{ATP} \xrightarrow{\text{Hexokinase}} \text{Glc-6-P} + \text{Fru-6-P} + 2 \text{ADP} \\
\text{für Fruktose und Fru-6-P:} & \quad \text{Fru-6-P} \xrightarrow{\text{PGI}} \text{Glc-6-P} \\
\text{für Saccharose:} & \quad \text{Saccharose} + \text{H}_2\text{O} \xrightarrow{\text{Invertase}} \text{Glukose} + \text{Fruktose}
\end{align*}
2. Material und Methoden

Testansatz (600 µl):

- 100 mM Imidazol (pH 6.9)
- 3 mM MgCl₂
- 1.1 mM ATP
- 0.5 mM NADP
- 19 nKat Glukose-6-P-Dehydrogenase (Glc-6-P-DH)
- 10-20 µl Probe
- 41 nKat Hexokinase
- 19 nKat Phosphoglucose-Isomerase (PGI)
- 650 nKat β-Fructosidase (Invertase)

2.6.2 Stärke

Der Testansatz ist analog zu 2.6.1. Hierbei wurden nur Glc-6-P-DH und Hexokinase zugegeben.

2.6.3 Malat (modifiziert nach Bergmeyer 1983)

Meßprinzip:

\[
\text{Malat} + \text{APAD} \xleftarrow{MDH} \text{Oxalacetat} + \text{APADH}_2 + \text{H}^+ \\
\text{Oxalacetat} + \text{Acetyl-CoA} + \text{H}_2\text{O} \xrightarrow{CS} \text{Citrat} + \text{CoA}
\]

Durch die Verwendung des stärker als NAD oxidierend wirkenden APADs wird die Bildung von Oxalacetat begünstigt, denn normalerweise liegt das Gleichgewicht der MDH-Reaktion in der Zelle weit auf der Seite der Edukte. Die Malatkonzentration ist der Extinktionszunahme bei 366 nm proportional.
2. Material und Methoden

2.6.4 Nitrat

Meßprinzip:

\[
\text{Nitrat + NADPH + H}^+ \rightarrow \text{Nitrit + NADP}^+ + \text{H}_2\text{O}
\]

Testansatz (600 µl):
- 100 mM KH$_2$PO$_4$-K$_2$HPO$_4$ (pH 7.3)
- 0.17 mM NADPH
- 10-30 µl Probe
- 0.8 nKat Nitratreduktase (NR)

Die Nitratkonzentration ist der Extinktionabnahme bei 334 nm proportional.

2.7 Phloemsaft-Gewinnung (nach Lohaus 1995)

Die verwendeten Blattläuse wurden mit einem weichen Zeichenpinsel von ihren Futterpflanzen in einen Plastikkäfig gesammelt. Um eine starke Verunreinigung des Blattes mit Honigtau zu verhindern, wurden 10-20 Blattläuse angesetzt. Dazu wurde dann der Plastikkäfig an einer leicht zugänglichen Stelle der Blattunterseite einer

Der Aphidenkörper wurde durch einen Laserblitz, der durch das 40x Objektiv des Mikroskops geleitet wurde, von der inserierten Stechborste getrennt. Der verwendete Laser war mit einem Neodym-Glas Stab (LG 760, Länge 75 mm, Durchmesser 4 mm; Schott, Mainz) ausgestattet, dessen Wellenlänge 1.06 µm betrug. Die Ladespannung war variabel einstellbar und betrug für die hier verwendeten Blattläuse 1200-1300 V. Die Ausgangsenergie des Laserblitzes war 1 Joule, wobei die Puls-Auslösung manuell erfolgte und die Puls-Dauer 150 µsec betrug.

Aminosäure- und Saccharosekonzentrationen wurden im Phloemsaft mittels HPLC gemessen (siehe 2.9. und 2.10.).

2.8 Gewinnung von Wurzeldruck-Exudat (Xylemsaft) (modifiziert nach Salt et al. 1995)

Aminosäure-, Zucker- und Ionenkonzentrationen wurden im Xylemsaft mittels HPLC gemessen.

2.9 Chromatographische Bestimmung der Aminosäuren (nach Riens 1992)

Die Konzentrationen der freien Aminosäuren wurden durch „High Performance Reversed Phase Liquid Chromatography“ (HPLC) qualitativ und quantitativ nachgewiesen. Die Aminosäuren wurden zunächst mit o-Phthaldialdehyd (OPA) und Mercaptoethanol bei 15°C zu fluorophoren apolaren Indolderivaten umgesetzt. Die Derivatisierung der Aminosäuren mit diesem Fluoreszenzfarbstoff setzt die Nachweissgrenze um das 20fache gegenüber der herkömmlichen Ninhydrin-Derivatisierung herab. Iminosäuren (Prolin) lassen sich nicht derivatisieren und so mit dieser Methode nicht nachweisen. Der Nachweisbereich lag bei 0.2-20 µM. Alle verwendeten Chemikalien und Lösungsmittel entsprachen dem höchsten Reinheitsgrad.
2. Material und Methoden

Derivatisierungsreagenz:

1) *OPA-Stock-Lösung*: 16 mM o-Phthaldialdehyd (OPA)
 - 88% (v/v) Methanol
 - 0.11 M K-Borat (pH 10.4)
 - 1.1% (v/v) Mercaptoethanol

2) *Arbeitslösung*: 0.5 ml OPA-Stock-Lösung und 1 ml Kaliumborat (1 M, pH 10.4) durchmischen, dann in vier HPLC-Röhrchen verteilen.

OPA-Stock-Lösung ist lichtgeschützt bei 4°C eine Woche haltbar, aber bei der Benutzung wurde jeweils noch 5 µl Mercaptoethanol zugesetzt, falls sie älter als 24 h war.

Standardlösungen:

- *AS-Mix* (je 200 µM): jeweils 200 µl von 1 mM Asparagin, 1 mM Glutamin, 1 mM Tryptophan, 1 mM γ-Aminobuttersäure, und 1 mM Phosphoserin zusammen mischen.

- *Standard 3* (STD 3, Endkonzentration 20 µM): 800 µl Sigma-Mix, 100 µl K-Borat (1 M, pH 10.4), und 100 µl AS-Mix mischen.
Standard 2 (Endkonzentration 10 µM): 290 µl STD 3 und 290 µl HPLC-H₂O mischen

Standard 1 (Endkonzentration 4 µM): 120 µl STD 3 und 480 µl HPLC-H₂O mischen.

Interner Standard (Endkonzentration 16.7 µM): 10 µl 100 µM α-Aminobuttersäure (L-α-Amino-n-Butyric acid, Sigma) und 50 µl Proben- oder Standardlösung zusammengeben.

20 µl Derivatisierungsarbeitslösung und 20 µl Probe- oder Standardlösung (mit internem Standard) wurden gemischt und 1 min derivatisiert. Davon wurden 20 µl auf eine C-18 Reversed Phase Säule (Superspher, 100 RP 18 endcapped, 4 µm, 4 x 125 mm; Fa. Merck, Darmstadt, Deutschland) aufgetragen. Das Säulenmaterial besteht aus Octadecylsilicat. Um Verunreinigungen der Säule zu verhindern, wurde eine Vorsäule (LiChrospher 100 RP 18e, 5 µm, Fa. Merck, Darmstadt, Deutschland) verwendet. Die Gesamtaminosäure-Konzentration betrug im Derivatisierungsansatz maximal 0.5 mM.

Elutionslösungen:

Stockpuffer [18 mM Natriumphosphat, 1.71 mM EDTA (freie Säure), pH 7.1]: 3 ml H₃PO₄ (suprapur) und 1.25 g EDTA (freie Säure) in 2.5 L HPLC-H₂O geben, lange rühren und mit 50% NaOH den pH-Wert auf 7.06-7.08 einstellen.

Lösung A: 95% Stockpuffer (v/v), 5% Acetonitril (v/v)
Lösung B: 50% Stockpuffer (v/v), 50% Acetonitril (v/v)
Lösung C: 70% Acetonitril (v/v) in HPLC-H₂O

Die Anregung der Derivatisierungsprodukte erfolgte bei 330 nm. Die Emission des Eluats wurde bei 408 nm direkt am Säulenausgang durch einen Fluoreszenzdetektor (Fluoreszenzdetektor 2144, Fa. Pharmacia LKB) bei einer

Verlauf des Gradienten:

<table>
<thead>
<tr>
<th>Zeit (min)</th>
<th>Lösung A (%)</th>
<th>Lösung B (%)</th>
<th>Lösung C (%)</th>
<th>Flußrate (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>12</td>
<td>81</td>
<td>19</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>19</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>38</td>
<td>52</td>
<td>48</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>41</td>
<td>52</td>
<td>48</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>68</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>51</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>1.2</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>1.2</td>
</tr>
<tr>
<td>68</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>78</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Jede Meßsequenz (max. 31 Läufe) erforderte eine eigene Kalibrierung. Die Kalibrierung erfolgte mit HPLC-H₂O als Blindwert und drei Konzentrationen von verschiedenen Aminosäuren (Standard 1, 2 und 3); hierbei wurden die entsprechenden Konzentrationen an Glutamin, Asparagin, Tryptophan, γ-Aminobuttersäure und Phosphoserin zugesetzt. Die Linearität der Eichgerade wurde in einem Bereich von 1-50 μM überprüft.

Durch ein Computerprogramm (HPLC-Manager, Fa. Pharmacia LKB) wurden die Pumpe, der Autosampler und die Meßsequenz gesteuert und die Daten des Fluoreszenzdetektors kontinuierlich gespeichert. Die Auswertung der Daten erfolgte mit einem Integrationsprogramm (PeakNet Version 5.1, Chromatographie Datenstation, Dionex GmbH, Idstein, Deutschland).
2.10 Amperometrische Bestimmung von Kohlenhydraten

Die Probe wurde zunächst über eine Vorsäule (CarboPac™, PA 10, 4 mm (10-32), P/N 46115, S/N 1438; Dionex Chromatography) gereinigt und dann von einer Anionenaustauscher-Säule (CarboPac™, PA 10, 4x250 mm (10-32), P/N 46110, S/N 1538; Dionex Chromatography) aufgetrennt. Die Elution erfolgte isokratisch mit 160 mM NaOH (7.5 ml 50% NaOH in 1800 ml HPLC-H₂O), wobei das H₂O zuvor 20 min mit Helium entgast wurde, um die Bildung des schwerlöslichen Natriumhydrogen-carbonats zu verhindern. Die Flußrate (1 ml/min) und die Elutionsdauer (z.B. 15 min pro Lauf) wurden mit einer Pumpe (Shimadzu-liquid-chromatograph LC-9A) gesteuert. Die elektrochemische Detektion der getrennten Kohlenhydrate erfolgte über eine amperometrische Zelle (ESA, #5040, Bedford, USA) mit einer Goldelektrode. Ein Amperometer (Coulochem II, ESA, Bedford, USA) steuerte die Spannungspulse und war für die Messung der Stromstärken erforderlich.

<table>
<thead>
<tr>
<th>Puls Modus:</th>
<th>Spannung</th>
<th>Dauer</th>
<th>Meßverzögerung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messung</td>
<td>50 mV</td>
<td>500 ms</td>
<td>400 ms</td>
</tr>
<tr>
<td>Reinigung</td>
<td>700 mV</td>
<td>540 ms</td>
<td></td>
</tr>
<tr>
<td>Regenerierung</td>
<td>-800 mV</td>
<td>540 ms</td>
<td></td>
</tr>
</tbody>
</table>

gespeichert, und die Auswertung erfolgte über ein Integrationsprogramm (PeakNet Version 5.1, Chromatographie Datenstation, Dionex GmbH).

2.11 Konzentrationsbestimmung von Ionen und organischen Säuren durch ein HPLC-System

Die hierbei verwendeten Proben waren die Blatt- und Wurzelextrakte aus der Chloroform-Methanol-Extraktion sowie die Xylemsaftproben. Dabei konnten die Konzentrationen der Kationen (Na\(^{+}\), NH\(_4\)\(^{+}\), K\(^{+}\), Mg\(^{2+}\), und Ca\(^{2+}\)) oder der Anionen (Cl\(^{-}\), NO\(_3\)\(^{-}\), PO\(_4\)\(^{3-}\), SO\(_4\)\(^{2-}\)) sowie einiger organischer Säuren (Malat, Oxalat) nach dem Prinzip des Ionenaustausches durch "High Performance Ion Chromatography" bestimmt werden.

Die Anionen wurden über eine IonPac AS4A-Säule (Fa. Dionex, Idstein, Deutschland) in Kombination mit einer AS4A-Säule aufgetrennt. Beiden Säulen war eine IonPac 4A-SC-Säule (Fa. Dionex) vorgeschaltet. Die Elution erfolgte isokratisch mit 1.8 mM Na\(_2\)CO\(_3\) und 1.7 mM NaHCO\(_3\).

Die Kationen wurden über eine Dionex CS 12A-Säule, der gleichfalls eine Vorsäule (Dionex CG 12A) vorgeschaltet war, aufgetrennt. Hierbei erfolgte die Elution isokratisch mit 40 mM H\(_2\)SO\(_4\).

Die Ionen wurden über ihre elektrischen Leitfähigkeiten nachgewiesen. Neben einem Leitfähigkeitsdetektor (CD 20 Conductivity Detector, Fa. Dionex, Idstein, Deutschland) bildete ein jeweiliges Suppressorsystem einen weiteren Teil der Detektionseinheit (für Anionen: Dionex Anion Self-Regenerating Suppressor ASRS-II 4-mm, und für Kationen: Dionex-Ultra 4-mm). Die Suppressorsysteme verringerten zum einen auf chemischem Wege die hohe Grundleitfähigkeit der als Eluenten fungierenden Elektrolyten, zum anderen überführten sie die zu analysierenden Ionen in
2. Material und Methoden

eine stärker leitende Form. Beides hatte eine deutlich gesteigerte Empfindlichkeit der
Detektion zur Folge. Die Identifikation der Ionen erfolgte über ihre Retentionszeit, ihre
Quantifizierung mit Hilfe von Eichgraden in einem Konzentrationsbereich zwischen
200 und 2000 µM für Anionen und zwischen 50 und 500 µM für Kationen.

Die Steuerung der Pumpe und die Auswertung der Daten erfolgte mit einem
Computerprogramm (PeakNet Version 5.1, Chromatographie Datenstation, Dionex
GmbH).

2.12 SDS Polyacrylamid Gelelektrophorese (SDS-PAGE)

2.12.1 Vorbereitung der Gele

Hierbei wurden Minigele verwendet. Die Gel-Dicke betrug 1 mm. Die Länge
des Sammelgels war 1 cm und die des Trenngels ca. 6 cm.

Zusammensetzung der Stammlösungen:

30% Acrylamid Stock: 75 g Acrylamid und 2 g N,N-Methylenbisacrylamid in H₂O
auf 250 ml lösen.

Lower Gel Stock: 36.3 g Tris und 0.8 g SDS (Sodium dodecyl sulfate) in H₂O auf
200 ml lösen, dabei mit HCl auf pH 8.8 einstellen.

Upper Gel Stock: 12 g Tris und 0.8 g SDS in H₂O auf 200 ml lösen, dabei mit HCl
auf pH 6.8 einstellen.

10% (w/v) Ammoniumpersulfat (APS): 10 mg APS in 100 µl H₂O lösen (frisch).

TEMED: N,N,N′,N′-Tetramethylethyldiamin

- die Glasplatten für das Gießen des Gels wurden mit Ethanol gereinigt und 2 cm vom
 oberen Rand markiert.
- Trenngel-Ansatz (für 4 Gele von 11% Acrylamid-Endkonzentration)
2. Material und Methoden

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Gel Stock</td>
<td>6 ml</td>
</tr>
<tr>
<td>30% Acrylamid Stock</td>
<td>8.8 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>9.2 ml</td>
</tr>
<tr>
<td>10% (w/v) APS</td>
<td>160 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>20 µl</td>
</tr>
</tbody>
</table>

- das Trenngel bis 2 cm zum oberen Rand gießen
- mit 100 µl Isobutanol überschichten, 45 min stehenlassen
- mit H₂O das Isobutanol wegspülen
- Sammelgel-Ansatz (für 4 Gele von 4.5% Acrylamid-Endkonzentration)

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Gel Stock</td>
<td>2.6 ml</td>
</tr>
<tr>
<td>30% Acrylamid Stock</td>
<td>1.54 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>6 ml</td>
</tr>
<tr>
<td>10% (w/v) APS</td>
<td>60 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

- das Sammelgel bis zum Rand gießen und Kamm luftblasenfrei hineinstecken; 60 min stehenlassen.

2.12.2 Probenauftragung und Durchführung der Elektrophorese

Zur Denaturierung der Proteine wurden die mit Probenpuffer versetzten Proben und Markerproteine bei 95°C für 5 min inkubiert. Dann wurden sie zur Sedimentierung der unlöslichen Bestandteile 5 min zentrifugiert. Pro Tasche konnten max. 20 µl Probevolumen aufgetragen werden, wobei die Proteinmenge jeder Tasche für Western-Blot 10 µg betrug. Die Elektrophorese erfolgte bei einer konstanten Stromstärke von 10 mA pro Gel, und wurde beendet, wenn die von Bromphenolblau markierte Lauffront das Ende des Gels erreicht hatte.
2. Material und Methoden

Probenpuffer: Tris-HCl (pH 6.8) 15 mM
SDS 5% (w/v)
2-Mercaptoethanol 2% (v/v)
Glycerin 20% (v/v)
Bromphenolblau 0.25% (w/v)

Elektrodenpuffer: Tris (pH nicht eingestellt) 50 mM
Glycin 380 mM
SDS 0.1% (w/v)

Für Western-Blot und Coomassie-Färbung wurde ein Ansatz der folgenden Markerproteine als Molekulargewichtsmarker bei der Elektrophorese verwendet:

Markerproteine: Phosphorylase B 94 kDa
BSA 66 kDa
Ovalbumin 43 kDa
Carboanhydrase 29 kDa
Trypsininhibitor 20.1 kDa
α-Lactoalbumin 14.2 kDa

2.13 Western-Blot

Hierbei wurde die Expression von Asparagin-Synthetase A (AsnA) aus E. coli in Rapstransformanten (siehe 2.1.4.) auf Protein-Ebene überprüft.

2.13.1 Aufarbeitung der Proben

Blatt- und Wurzelproben wurden zuerst in flüssigem Stickstoff fein zermörser und in Micro-Reagiergefäßen eingewogen. Sofort nach dem Auftauen der Proben (auf Eis) wurde Extraktionspuffer (400 µl für je 100 mg Blattmaterial bzw. 200 µl für je 100 mg Wurzelmateriel) zugesetzt, durchgemischt, und bei 13000 rpm und 4°C für 10 min zentrifugiert. Der Überstand wurde nach der Bestimmung des Proteingehalts (Bradford, siehe 2.5.2.) für die Gelelektrophorese verwendet.
2. Material und Methoden

Extraktionspuffer: 0.25 mM Tris-HCl (pH 7.8)
1 mM PMSF

2.13.2 Trennung der Proteine durch Gelelektrophorese

Die Proteine in den Proben wurden durch SDS-PAGE (siehe 2.12.) getrennt. Als Kontrolle diente das aufgereinigte AsnA-Protein aus *E. coli*.

2.13.3 Elektrotransfer der Proteine auf die Nitrocellulosemembran

Der Transfer der Proteine aus den Polyacrylamidgelen auf Nitrocellulosemembranen erfolgte mit der Semi-Dry Elektroblotapparatur (Biometra Fast Blot). Im Vergleich mit dem konventionellen Tankblotting wurden die Proteine durch diese Methode schneller transferiert.

Das Gel wurde sofort nach Beendigung der Elektrophorese von den Glasplatten abgelöst und das Sammelgel abgetrennt. Für den Blotvorgang wurde folgende Anordnung auf die Anode plaziert: 5 Lagen Whatman Filterpapier #3, Nitrocellulose-membran, Polyacrylamidgel und weitere 5 Lagen Whatman Filterpapier #3. Nitrocellulose-membran (0.2 µm Poregröße, Fa. Sartorius) und Whatman Filterpapier wurden vorher genau auf Gelgröße zugeschnitten und vor Verwendung in Blottingpuffer getränkt. Möglicherweise vorhandene Luftblasen wurden in der oben beschriebenen "Sandwich-Anordnung" durch Ausrollen einer Glaspipette entfernt. Während des Blotvorgangs, der für 36 min bei 300 mA erfolgte, wurde die Apparatur mit 0.5 kg beschwert und mit Leitungswasser gekühlt.

Blottingpuffer: 25 mM Tris
150 mM Glycin
10% (v/v) Methanol
2.13.4 Kontrolle des Transfers

2.13.4.1 Amidoschwarz-Färbung

Zur Kontrolle des Proteintransfers wurde die Spur der Markerproteine von der Blotmembran abgeschnitten, für 1 min in Amidoschwarzlösung angefärbt und für 15 min entfärbt. Nach dem Spülen mit H₂O wurde der Membranabschnitt zwischen Whatmanpapier getrocknet. Der andere Teil der Membran wurde für die Behandlung mit Antikörpern weiter bearbeitet (2.13.5.).

Amidoschwarzlösung: 0.1% (w/v) Amidoschwarz
45% (v/v) Isopropanol
10% (v/v) Essigsäure

Entfärber: 90% (v/v) Isopropanol
2% (v/v) Essigsäure

2.13.4.2 Coomassie-Färbung

Nach dem Transfer wurde das Gel noch mit Coomassie-Brilliant-Blue angefärbt, um den Transfereffekt zu überprüfen. Hierfür wurde das Gel in der Färbelösung für 30 min unter Schütteln inkubiert, wobei die Proteine fixiert und angefärbt wurden. Anschließend erfolgte die Entfärbung (mit Schütteln) durch zweibis dreimaliges Wechseln des Entfärbers, so lange bis der Hintergrund des Gels nahezu farblos war.

Färbelösung: Coomassie Blue R-250 (Serva Blau R) 0.25% (w/v)
Methanol 40% (v/v)
Essigsäure 10% (v/v)

Entfärber: Methanol 50% (v/v)
Essigsäure 10% (v/v)
2.13.5 Nachweis durch "Enhanced Chemiluminescence" (ECL)

Alle nachfolgenden Arbeitsschritte wurden bei Raumtemperatur unter leichtem Schütteln durchgeführt. Nach dem Transfer wurden die Membranen für 60 min in Blocklösung inkubiert und anschließend 3-malig für 10 min in TBS-T Puffer gewaschen. Dann wurde der primäre Antikörper (in TBS-Puffer mit 1% BSA entsprechend verdünnt, siehe unten) für 60 min mit der Membran zusammen inkubiert und wiederum 3-mal 10 min in TBS-T Puffer gewaschen. Danach wurde für die Reaktion mit dem sekundären Antikörper (Protein A-HRP Conjugate, Bio-RAD; bei Benutzung in TBS-Puffer 1:20000 verdünnt) analog verfahren. Somit ist die Membran für den ECL-Test vorbereitet.

primärer Antikörper: Polyklonaler Antikörper gegen die Asparagin-Synthetase aus *E. coli*, freundlicherweise von der Firma AGREVO zur Verfügung gestellt, fand in einer Verdünnung von 1:1000 Verwendung. Mit 0.02% NaN₃ kann die Antikörperlösung bei 4°C gelagert und mehrmals verwendet werden.

Verdünnungspuffer für primären Antikörper: 1% (w/v) BSA und 0.02% (w/v) NaN₃ in TBS-Puffer

TBS-Puffer: 50 mM Tris-HCl (pH 7.5), 0.9% (w/v) NaCl

Blocklösung: 5% (w/v) “dry milk” (Naturaflor, Magermilchpulver, instant, 1% Fett) in TBS-Puffer

TBS-T Puffer: 0.05% (v/v) Tween 20 in TBS-Puffer

Der Nachweis der AsnA-spezifischen Banden erfolgte mit Hilfe des "Enhanced Chemiluminescence"-Kit von Amersham (ECL Western blotting detection reagents). Hierfür wird der sekundäre Antikörper durch die Reaktion der Peroxidase, die an den letzteren gekoppelt ist, nachgewiesen. Die Peroxidase und H₂O₂ katalysieren unter alkalischen Bedingungen die Oxidation von Luminol, welches dabei angeregt wird, Licht zu emittieren (Chemilumineszenz). Die Lichtemission wird durch Phenole verstärkt und erreicht 5-20 min nach Reaktionsstart ihr Maximum. Diese Reaktion hat eine Halbwertszeit von ca. 60 min.
2. Material und Methoden

Zur Detektion wurde die mit dem Antikörper beschichtete Seite der Nitrocellulosemembran mit einer Lösungsmischung aus "ECL Western blotting detection reagents" 1 und 2 (Mischungsverhältnis 1:1) für 1 min inkubiert. Dann wurde die Membran in Frischhaltefolie luftblasenfrei verpackt und für 20 s bis 10 min auf Röntgenfilm (X-OMAT, Fa. Kodak) exponiert. Der Film wurde anschließend entwickelt (Entwickler und Fixierer, Fa. Kodak).

\[
\text{Luminol} \xrightarrow{\text{H}_2\text{O}_2, \text{Peroxidase}} 3\text{-Aminophthalat} + \text{N}_2 + \text{Licht}
\]

2.14 Enzymaktivitätsmessungen

2.14.1 Nitrat-Reduktase (NR) (modifiziert nach Kaiser et al. 1992)

Meßprinzip:

\[
\text{Nitrat} + \text{NADH} \xrightarrow{\text{NR}} \text{Nitrit} + \text{NAD} + \text{H}_2\text{O}
\]

Die Aktivität wurde über die Bestimmung des Nitrits gemessen, das durch einen Farbtest quantifiziert wurde. Dabei wurde Sulfanilsäure durch salpetrige Säure diazotiert und das entsprechende Diazoniumsalz mit \(\alpha\)-Napthylamin zu einem pinkfarbenen Azofarbstoff gekoppelt.

Probenextraktion:

2. Material und Methoden

Extraktspuffer: HEPES (pH 7.5) 100 mM
Glycerin 10% (v/v)
Na₂-EDTA 1 mM
Magnesiumacetat 5 mM
Triton-X 100 0.1% (v/v)
Rinderserumalbumin 0.5% (w/v)
Natriummolybdat 5 µM
Polyvinylpolypyrrolidon 1% (w/v)
Dithiothreitol* 5 mM
Leupeptin* 25 µM
FAD* 20 µM
PMSF* 0.5 mM

* Diese Substanzen wurden dem Puffer frisch zugegeben.

Testansatz (300 µl):

Reaktionsmedium A oder B 235 µl
Additive 15 µl
Probenhomogenat 50 µl

Nach dem Start mit 50 µl Probenhomogenat wurden die Ansätze für 0-12 min bei 30°C inkubiert. Es erfolgte eine Zugabe von 100 µl Stop-Mix und 15 min Inkubation im Dunkeln. Dann wurden sie mit 600 µl Farbmix versetzt, 30 min bei Raumtemperatur inkubiert, und die Extinktion bei 540 nm nach 2 min Zentrifugation bestimmt (Kontron Uvikon 932). Die Auswertung erfolgte über eine Eichkurve im Bereich von 0-15 nmol Nitrit.

Nach der Zugabe von Stop-Mix wurde die Reaktion mit Zinkacetat abgestoppt und das überschüssige NADH durch Phenazinmethosulfat bei Inkubation im Dunkeln oxidiert, da es den Farbtest stören würde.

Bei Inkubation mit Reaktionsmedium A wird die maximale Aktivität erfaßt, Medium B gibt die Hemmung der Nitrat-Reduktase durch physiologische
Konzentrationen an Magnesium wieder. Der Aktivierungszustand der NR errechnet sich wie folgt: \(\text{Aktivierungszustand} \, (\%) = \frac{B}{A} \times 100 \).

<table>
<thead>
<tr>
<th>Reaktionsmedium:</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>106 mM HEPES (pH 7.5)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6 mM Kaliumnitrat</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6 mM EDTA</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>13 mM Magnesiumacetat</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Additive:
- 50 mM HEPES (pH 7.5)
- 330 µM Leupeptin*
- 200 µM FAD*
- 5 mM DTT*
- 100 µM Natriummolybdat
- 10 mM NADH*

Die Additive dienten der Stabilisierung des empfindlichen Enzyms. Die Substanzen mit "*" wurden frisch angesetzt.

Stop-Mix*:
- 0.6 M Zinkacetat (ZnAc)
- 0.2 mM Phenazinmethosulfat (PMS)

* 0.6 M ZnAc ist nur im Dunkeln für 24 h haltbar. Vor Gebrauch wurden die zwei Lösungen zum Stop-Mix gemischt (0.6 M ZnAc : 0.2 mM PMS = 1:3 (v/v)).

Farbmix*:
- 1% (w/v) Sulfanilamid in 2 N HCl
- 0.02% (w/v) N-Naphthylethyldiamindihydrochlorid

* Vor Gebrauch wurden gleiche Volumina der zwei Lösungen zum Farbmix gemischt (Hagemann und Reed, 1980).

Hierbei wurde die AsnS-Aktivität von den Proben der Rapstransformanten mit Asparagin-Synthetase A (AsnA) aus *E. coli* (siehe 2.1.4.) bestimmt.
Meßprinzip:

\[
\text{Asp} + \text{Gln (oder NH}_4^+\text{)} + \text{ATP} \xrightarrow{\text{AsnS(Mg}^{2+},\text{Cl}^-)} \text{Asn} + \text{Glu} + \text{AMP} + \text{PPi}
\]

AsnS ist wie Nitrat-Reduktase ein sehr instabiles und sensitives Enzym, was bei der Durchführung der Experimente berücksichtigt werden mußte. Die Aktivität wurde durch die Asn-Bildung gemessen, die mittels des HPLC-Systems bestimmt wurde.

Probenextraktion:

Extraktionspuffer:

1) *Extraktionspuffer ohne Additive*:

- 50 mM Hepes-KOH (pH 7.8)
- 10% (v/v) Glycerin
- 10 mM MgCl\(_2\)
- 1 mM EDTA
- 1 mM EGTA
- 0.1% (v/v) Triton-X 100
2. Material und Methoden

2) Additive (frisch zugeben):

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mM</td>
<td>2-Mercaptoethanol</td>
</tr>
<tr>
<td>1 mM</td>
<td>DTT</td>
</tr>
<tr>
<td>1 mM</td>
<td>Aminooxyacetat</td>
</tr>
<tr>
<td>2 mM</td>
<td>Benzamidin</td>
</tr>
<tr>
<td>2 mM</td>
<td>Aminocapronat</td>
</tr>
<tr>
<td>0.5 mM</td>
<td>PMSF</td>
</tr>
<tr>
<td>1 mM</td>
<td>ATP</td>
</tr>
<tr>
<td>1 mM</td>
<td>Asp</td>
</tr>
</tbody>
</table>

Vorbereitung der Sephadex G-25 Säule:

Testansatz:

200 µl Reaktionsmedium (+/- ATP) wurde mit 50 µl Probe versetzt und bei 30°C inkubiert. Nach 0 min, 15 min, und 30 min wurde die Reaktion mit 40 µl 72% HClO₄ (10% Endkonzentration) gestoppt und für 5 min auf Eis gestellt. Dann wurde

<table>
<thead>
<tr>
<th>Reaktionsmedium (frisch ansetzen):</th>
<th>mit ATP</th>
<th>ohne ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mM Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mM Gln oder 5 mM NH₄⁺Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM DTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mM Aminooxyacetat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 mM Benzamidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 mM Aminocapronat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 mM PMSF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 mM ATP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Material und Methoden

der Ansatz mit 1 M K₂HPO₄-5 M KOH (ca. 80 µl) neutralisiert. Nach 10 min
Inkubation auf Eis und einer anschließenden 5 minütigen Zentrifugation bei 4°C und
13000 rpm wurde der Überstand für die Bestimmung der Asn-Konzentration
verwendet.

Meßprinzip:

\[
\text{Glutamat} + \text{NH}_2\text{OH} + \text{ATP} \xrightarrow{\text{GS}} \gamma\text{-Glutamylhydroxamat} + \text{ADP} + \text{Pi}
\]

Das entstandene \(\gamma\)-Glutamylhydroxamat (L-glutamic acid-\(\gamma\)-monohydroxamate)
bildet mit Fe³⁺-Ionen einen bräunlichen Farbkomplex, der ein Absorptionsmaximum
bei 535 nm besitzt.

Probenextraktion:

\[\text{Extraktionspuffer:} \quad \begin{array}{l}
50 \text{ mM} \quad \text{Hepes-KOH (pH 7.4)} \\
10\% \ (v/v) \quad \text{Glycerin} \\
5 \text{ mM} \quad \text{MgCl}_2 \\
1 \text{ mM} \quad \text{EDTA} \\
1 \text{ mM} \quad \text{EGTA} \\
0.1\% \ (v/v) \quad \text{Triton-100} \\
25 \text{ mM} \quad 2\text{-Mercaptoethanol}* \\
1 \text{ mM} \quad \text{DTT}* \\
2 \text{ mM} \quad \text{Benzamidin}* \\
2 \text{ mM} \quad \text{Aminocapronat}* \\
0.5 \text{ mM} \quad \text{PMSF}*
\end{array} \]

* Diese Substanzen wurden frisch zugegeben.

Blatt- und Wurzelmaterial wurde in flüssigem Stickstoff fein gemörsernd und ca.
200 mg in Micro-Reagiergefäße eingewogen. Dann wurde 1 ml Extraktionspuffer
zugesetzt und durchgemischt. Nach 10 min Zentrifugation bei 13000 rpm und 4°C
wurde der Überstand für den Enzymaktivitätstest verwendet.
2. Material und Methoden

Testansatz (1 ml):

<table>
<thead>
<tr>
<th>Reaktionsmedium (550 µl):</th>
<th>mit ATP</th>
<th>ohne ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mM Hepes-KOH (pH 7.4)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 mM MgCl₂</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 mM Na₂-EDTA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 mM Hydroxylamin (NH₂OH)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100 mM Na-Glutamat*</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 mM ATP*</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

* Diese Substanzen wurden frisch zugegeben.

Farbmix:
370 mM FeCl₃
667 mM HCl
200 mM Trichloressigsäure

2.15 Bestimmung der photosynthetischen Aktivität

Die photosynthetische Aktivität wurde mittels eines tragbaren Gaswechselporometers (LCA3, Fa. ADC, Hoddesdon, Großbritannien) gemessen.

2.16 Auswertung der durchgeführten Experimente

Die angegebenen Ergebnisse geben einen typischen Verlauf aller durchgeführten Experimente oder zusammengefasste Ergebnisse wieder. Im letzteren
Fall werden der arithmetische Mittelwert (x) und die Standardabweichung (SD) als mittlerer Fehler der Einzelmessungen (x_i) angegeben. Alle Experimente wurden mit einer Stichprobe von mindestens $n=3$ durchgeführt, wenn dies im Text nicht anders angegeben ist.

\[
\text{Mittelwert (} x \text{)} = \frac{\sum \text{Einzelmessungen}}{\text{Anzahl der Einzelmessungen}}
\]

\[
\text{Standardabweichung (} SD \text{)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2}{n - 1}}
\]
3 Ergebnisse

Im Rahmen dieser Arbeit wurden verschiedene Rapsgenotypen untersucht, die einen breiten genetischen Ursprung (Hybride, ältere Sorten, heutige Linien, neuere Zuchtstämmen, Resynthese-Linien, transgene Pflanzen) hatten und unter unterschiedlichen Bedingungen (Feldanzucht, Gewächshaus) angezogen wurden. Das Ziel war es, a) an einem sehr breiten Winterraps-Material das Ausmaß der genetischen Variation für die N-Effizienz und die damit zusammenhängenden Parameter zu erfassen, und b) die Auswirkung der genetischen Veränderungen der N-Assimilationsenzyme (Glutaminsynthetase oder Asparaginsynthetase) in transgenen Pflanzen zu untersuchen.

3.1 Feldversuch mit unterschiedlichen Stickstoff-Düngungsstufen

3. Ergebnisse

3.1.1 Auswirkung der N-Düngung auf den Blatt- und Kornmetabolismus von Winterraps im Feldversuch

In Tabelle 3-1 sind die Auswirkungen der N-Düngungsstufen auf die Winterrapspflanzen zusammengefasst. Auf Grund unterschiedlicher Umweltfaktoren (Boden, Klima, Grundwasser, usw.) schwanken die Werte zwischen verschiedenen Versuchsjahren. Dennoch lassen sich verschiedene Tendenzen aufzeigen. Die untersuchten Genotypen unter höherer Düngungsstufe hatten insgesamt einen höheren Nitratgehalt, eine höhere Nitratreduktase-Aktivität und Aminosäurekonzentration im Blatt bzw. einen höheren Proteingehalt und N-Ertrag im Samen. Die Summe C (aus Stärke, Glukose, Fruktose, Saccharose, Malat und freien Aminosäuren) im Blatt ist unter N=100 kgN/ha am höchsten und unter N=240 kgN/ha am niedrigsten. Im Vergleich mit N=0 kgN/ha steigt die \(\Sigma \) Aminosäuren im Blatt bei N=240 kgN/ha um 61%, der Proteingehalt im Samen um 19% und der N-Ertrag im Samen um 77%. Dagegen sank der N-Ernte-Index (Anteil des Stickstoffs im Samen im Verhältnis zum Stickstoff in der Gesamtpflanze) mit der Erhöhung der Düngungsstufe. Unter höherer Düngungsstufe wie 240 kgN/ha wurde der Stickstoff mehr in den vegetativen Teilen abgelagert.

Tabelle 3-1: Auswirkung der N-Düngungsstufen auf die Winterrapspflanzen

<table>
<thead>
<tr>
<th>Düngungsstufe (kgN/ha)</th>
<th>N=0</th>
<th>N=100*</th>
<th>N=240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitratgehalt im Blatt (µmol/g FG)</td>
<td>0.6 ± 0.4</td>
<td>5.8 ± 0.9</td>
<td>18.5 ± 17.3</td>
</tr>
<tr>
<td>NR-Aktivität im Blatt (nmol Nitrit/g FG/min)</td>
<td>38.3 ± 8.0</td>
<td>**</td>
<td>59.4 ± 15.7</td>
</tr>
<tr>
<td>(\Sigma) Aminosäuren im Blatt (µmol/g FG)</td>
<td>6.4 ± 0.4</td>
<td>6.1 ± 0.1</td>
<td>10.3 ± 3.0</td>
</tr>
<tr>
<td>Summe C im Blatt (µmol/g FG)</td>
<td>622 ± 132</td>
<td>931 ± 192</td>
<td>470 ± 211</td>
</tr>
<tr>
<td>Proteingehalt im Samen (%)***</td>
<td>18.1 ± 1.9</td>
<td>20.0 ± 0.6</td>
<td>21.5 ± 1.2</td>
</tr>
<tr>
<td>N-Ertrag im Samen (kgN/ha)***</td>
<td>87 ± 24</td>
<td>112 ± 30</td>
<td>154 ± 27</td>
</tr>
<tr>
<td>N-Ernte-Index (%)***</td>
<td>73.7 ± 3.3</td>
<td>68.6 ± 9.3</td>
<td>66.0 ± 6.8</td>
</tr>
</tbody>
</table>

* N=100 wurde nur im Jahr 1997 durchgeführt (Tab. 2-1).

** nicht bestimmt

*** Daten von B. Kessel (im Rahmen der Arbeit eines DFG-Projekts)
3.1.2 Aminosäuremuster im Blatt der Winterraps-Genotypen

<table>
<thead>
<tr>
<th>Düngungsstufe (kgN/ha)</th>
<th>N=0</th>
<th>N=100*</th>
<th>N=240</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣAminosäuren im Blatt (µmol/g FG)</td>
<td>6.4 ± 0.4</td>
<td>6.1 ± 0.1</td>
<td>10.3 ± 3.0</td>
</tr>
<tr>
<td>glu (%)</td>
<td>42.5</td>
<td>44.3</td>
<td>33.1</td>
</tr>
<tr>
<td>gln(%)</td>
<td>11.2</td>
<td>9.3</td>
<td>13.8</td>
</tr>
<tr>
<td>asp (%)</td>
<td>15.7</td>
<td>18.0</td>
<td>12.8</td>
</tr>
<tr>
<td>asn (%)</td>
<td>0.8</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>ser (%)</td>
<td>9.2</td>
<td>8.2</td>
<td>12.6</td>
</tr>
<tr>
<td>gly (%)</td>
<td>3.0</td>
<td>1.9</td>
<td>4.4</td>
</tr>
<tr>
<td>thr (%)</td>
<td>3.9</td>
<td>6.3</td>
<td>7.9</td>
</tr>
<tr>
<td>arg (%)</td>
<td>2.0</td>
<td>0.4</td>
<td>1.5</td>
</tr>
<tr>
<td>ala (%)</td>
<td>4.2</td>
<td>4.3</td>
<td>3.9</td>
</tr>
<tr>
<td>andere Aminosäuren (%)</td>
<td>7.5</td>
<td>6.7</td>
<td>8.7</td>
</tr>
</tbody>
</table>

* N=100 wurde nur im Jahr 1997 durchgeführt (Tab. 2-1)

3.1.3 Genetische Varianz unter den 36 Winterraps-Genotypen

Da die Düngungsstufe N=100 kgN/ha nur im Jahr 1997 durchgeführt wurde, und nur eine Schnittmenge von 36 Genotypen in beiden Jahren 1998 und 1999 angebaut wurde, sind in den nächsten Abschnitten nur die Daten dieser 36 Genotypen, die mit zwei Düngungsstufen (N=0 und N=240 kgN/ha) und an sechs Standorten
untersucht wurden, zur Analyse der genetischen Variation der Winterraps-Genotypen zusammengefaßt. Die 36 Genotypen gliedern sich folgendermaßen auf (Tab. 3-3).

Tabelle 3-3. Gliederung der 36 Winterraps-Genotypen

<table>
<thead>
<tr>
<th>Namens der zugeordneten Genotypen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybride: AK639, RNX9505, Joker</td>
</tr>
<tr>
<td>neuer Zuchtstamm: DSV15, DP-HB-1</td>
</tr>
<tr>
<td>heutige Linie: Express, Falcon, Marathon, Bristol, Lirajet, DH Samourai, Capitol, Apex, Alaska, Prospa, Mohican, Magnum, Zenith, Lisabeth, Lizard, Licord, Tarok</td>
</tr>
<tr>
<td>ältere Sorte: DH Mansholts, Quedlinburger, Giessener Höhenraps, Heimer, Hektor, Janetzkis Schlesischer, Lembkes Normal, Marex</td>
</tr>
<tr>
<td>Resynthese-Linie: S3, S12, S27, RS1, RS3, RS6</td>
</tr>
</tbody>
</table>

In den Abbildungen 3-1, 3-2, und 3-3 sind die Nitratreduktase-Aktivität, die Summe der freien Aminosäuren und die Summe C im Blatt jedes Genotyps dargestellt. Es zeigte sich eine breite genetische Varianz: Die Nitratreduktase-Aktivität im Blatt variierte unter N=0 kgN/ha zwischen 23.9 (Capitol) und 62.2 nmol Nitrit/g FG/min (RS6), unter N=240 kgN/ha zwischen 39.1 (Hektor) und 85.8 nmol Nitrit/g FG/min (RS1). Die Summe der freien Aminosäuren im Blatt variierte unter N=0 kgN/ha zwischen 5.1 (Apex) und 9.6 µmol/g FG (RS3), unter N=240 kgN/ha zwischen 9.9 (DP-HB-1) und 17.2 µmol/g FG (RS3). Die Summe C (aus Stärke, Glukose, Fruktose, Saccharose, Malat und freien Aminosäuren) im Blatt variierte unter N=0 kgN/ha zwischen 504 (RS6) und 1157 µmol/g FG (Lisabeth), unter N=240 kgN/ha zwischen 409 (DH Samourai) und 758 µmol/g FG (RS3). Unter der höheren Düngungsstufe (N=240 kgN/ha) zeigten sich höhere Nitratreduktase-Aktivitäten (durchschnittlich 160%), erhöhte Aminosäuregehalte (durchschnittlich 191%), aber weniger Kohlenhydrate (Stärke, Glukose, Fruktose, Saccharose und Malat; durchschnittlich 76%) im Blatt als unter der niedrigen Düngungsstufe (N=0 kgN/ha, 100%).
3. Ergebnisse

Im Vergleich zu den anderen Genotypen (Hybriden, neuere Zuchtstämme, heutige Linien und ältere Sorten) zeigten die Resynthese-Linien im Blatt durchschnittlich eine höhere Nitratreduktase-Aktivität und höhere Aminosäure-Gehalte. Im Samen zeigten sie einen höheren Proteingehalt aber einen niedrigeren N-Ertrag (Tab. 3-4).

<table>
<thead>
<tr>
<th></th>
<th>Resynthese-Linien</th>
<th>andere Genotypen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-Aktivität (nmol Nitrit/g FG/min)</td>
<td>61.7 ± 4.2</td>
<td>47.5 ± 7.1</td>
</tr>
<tr>
<td>Summe der Aminosäuren (µmol/g FG)</td>
<td>11.2 ± 1.1</td>
<td>9.6 ± 0.8</td>
</tr>
<tr>
<td>Summe C im Blatt (µmol/g FG)</td>
<td>640 ± 97</td>
<td>580 ± 79</td>
</tr>
<tr>
<td>Proteingehalt im Samen (% in TG)*</td>
<td>21.8 ± 1.2</td>
<td>19.0 ± 1.1</td>
</tr>
<tr>
<td>N-Ertrag im Samen (kgN/ha)*</td>
<td>115 ± 13</td>
<td>135 ± 12</td>
</tr>
</tbody>
</table>

* Daten von B. Kessel (im Rahmen der Arbeit eines DFG-Projekts)
Abbildung 3-1. Mittelwerte und Standardabweichungen (n=4) der Nitratreduktase-Aktivität im Blatt von jedem der in den Jahren 1998 und 1999 untersuchten 36 Genotypen. Die Werte unter $N=0$ kgN/ha variierten zwischen 23.9 (Capitol) und 62.2 nmol Nitrit/g FG/min (RS6), unter $N=240$ kgN/ha zwischen 39.1 (Hektor) und 85.8 nmol Nitrit/g FG/min (RS1).
Abbildung 3-3. Mittelwerte und Standardabweichungen (n=4) der Summe C (aus Stärke, Glukose, Fruktose, Saccharose, Malat und freien Aminosäuren) im Blatt von jedem der in den Jahren 1998 und 1999 untersuchten 36 Genotypen. Die Werte unter N=0 kgN/ha variierten zwischen 504 (RS6) und 1157 µmol/g FG (Lisabeth), unter N=240 kgN/ha zwischen 409 (DH Samourai) und 758 µmol/g FG (RS3).
3.1.4 Zusammenhang zwischen Blattmetabolismus und Proteingehalt bzw. N-Ertrag im Samen

Die Nitratreduktase-Aktivität und die Summe der freien Aminosäuren zeigten eine positive Korrelation mit einem Bestimmtheitsmaß (R^2) von 0.38 (Abb. 3-4). Die
Summe der freien Aminosäuren im Blatt zeigte keine Korrelation zum Proteingehalt im Samen (Abb. 3-5, $R^2=0.15$), zur Summe C (aus Stärke, Glukose, Fruktose, Saccharose, Malat und freien Aminosäuren) im Blatt (Abb. 3-6, $R^2=0.12$) und zum N-Ertrag im Samen (Abb. 3-7, $R^2=0.01$).

Dabei zeigten alle sechs Resynthese-Linien eine erhöhte NR-Aktivität und Gesamtaminosäure-Gehalte im Blatt sowie erhöhte Proteingehalte im Samen, aber niedrigere Samen-N-Erträge. Die Summe C war nur bei einer der sechs Resynthese-Linien unterdurchschnittlich. In den Hybriden und neuen Zuchtstämmen ist die NR-

Abbildung 3-5. Die Summe der freien Aminosäuren im Blatt im Verhältnis zum Proteingehalt im Samen. Dargestellt sind die Daten der 36 Winterraps-Genotypen, die in den Jahren 1998 und 1999 mit insgesamt sechs Wiederholungen angebaut wurden. Die dargestellten Werte sind die Mittelwerte aus den beiden Düngungsstufen (N=0 kgN/ha und N=240 kgN/ha).

* Daten von B. Kessel (im Rahmen der Arbeit eines DFG-Projekts)
3. Ergebnisse

3.2 Gewächshaus-Versuch mit 8 ausgewählten Winterraps-Genotypen

Tabelle 3-5. Proteingehalt im Samen* der 8 ausgewählten Genotypen bei 3 Düngungsstufen in allen 3 Versuchs jahren. Die Einheit ist Protein in % vom Trockengewicht (TG).

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>0 kgN/ha 1998</th>
<th>0 kgN/ha 1999</th>
<th>100 kgN/ha 1997</th>
<th>100 kgN/ha 1999</th>
<th>240 kgN/ha 1997</th>
<th>240 kgN/ha 1999</th>
<th>MW</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td>16.8</td>
<td>14.7</td>
<td>18.7</td>
<td>20.9</td>
<td>20.3</td>
<td>19.4</td>
<td>18.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Bristol</td>
<td>17.0</td>
<td>14.0</td>
<td>17.5</td>
<td>20.0</td>
<td>18.9</td>
<td>18.4</td>
<td>17.6</td>
<td>1.9</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>17.5</td>
<td>16.0</td>
<td>18.1</td>
<td>19.9</td>
<td>21.1</td>
<td>18.0</td>
<td>18.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Express</td>
<td>17.2</td>
<td>15.9</td>
<td>18.5</td>
<td>21.1</td>
<td>22.4</td>
<td>19.4</td>
<td>19.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Falcon</td>
<td>19.2</td>
<td>15.6</td>
<td>18.7</td>
<td>19.6</td>
<td>21.7</td>
<td>19.4</td>
<td>19.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Lirajet</td>
<td>17.5</td>
<td>14.1</td>
<td>17.9</td>
<td>19.3</td>
<td>21.8</td>
<td>19.3</td>
<td>18.3</td>
<td>2.3</td>
</tr>
<tr>
<td>RS 3</td>
<td>23.5</td>
<td>20.5</td>
<td>23.6</td>
<td>24.8</td>
<td>25.5</td>
<td>24.3</td>
<td>23.7</td>
<td>1.6</td>
</tr>
<tr>
<td>S 27</td>
<td>23.6</td>
<td>19.6</td>
<td>22.9</td>
<td>23.2</td>
<td>24.4</td>
<td>24.0</td>
<td>22.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* Daten von B. Kessel (im Rahmen der Arbeit eines DFG-Projekts)

3.2.1 Metabolismus in verschiedenen Pflanzenteilen der Winterraps-Genotypen im Gewächshaus

Verschiedene Pflanzenteile unterscheiden sich in ihren Funktionen sowie ihrem Metabolismus. Daher wurden Proben aus den Blättern bei drei Altersphasen (junges Blatt, „source“-Blatt und altes Blatt), aus den Wurzeln sowie aus Phloem- und

3.2.1.1 N-Metabolismus in den jungen, „source“ und alten Blättern sowie in den Wurzeln

Wie in Abbildung 3-8-A gezeigt, ist die Summe der freien Aminosäuren in den jungen Blättern am höchsten, gefolgt von den „source“-Blättern und am niedrigsten in den Wurzeln. Unter 4 mM NO$_3^-$ haben die Pflanzen mehr freie Aminosäuren als unter 0.5 mM NO$_3^-$, aber in den alten Blättern und den Wurzeln ist dies nicht so deutlich wie in den jungen und „source“-Blättern. Am Ende der Lichtperiode haben die Pflanzen mehr freie Aminosäuren als am Ende der Dunkelpériode.

Die Nitratreduktase-Aktivität (Abb. 3-8-B) ist in den Pflanzen unter 4 mM NO$_3^-$ höher als unter 0.5 mM NO$_3^-$ bzw. während der Lichtperiode höher als während der Dunkelperiode. In den alten Blättern ist die Aktivität nicht abhängig von den Nitratbedingungen sowie vom Licht/Dunkel-Wechsel. Unter 4 mM NO$_3^-$ ist die NR-Aktivität in den jungen Blättern am höchsten und in den alten Blättern am niedrigsten, während sie unter 0.5 mM NO$_3^-$ in den „source“-Blättern am höchsten und in den Wurzeln am niedrigsten ist.

Die Glutaminsynthetase-Aktivität (Abb. 3-8-C) ist in den „source“-Blättern am höchsten, während sie in den alten Blättern am niedrigsten ist. Der Licht/Dunkel-Wechsel und die N-Ernährung beeinflussen die Aktivität nicht sehr stark. Im Vergleich mit 4 mM NO$_3^-$ ist die Enzymaktivität unter 0.5 mM NO$_3^-$ in den Blättern höher, aber in Wurzeln niedriger. Ähnlich wie die Nitratreduktase-Aktivität ist die Glutaminsynthetase-Aktivität während der Lichtperiode erhöht.

* Ght = γ-Glutamylhydroxamat
Der Gehalt der löslichen Proteine (Abb. 3-8-D) ist in jungen Blättern am höchsten und in den alten Blättern am niedrigsten. Am Ende der Dunkelperiode ist der Gehalt der löslichen Proteine in der Pflanze leicht erhöht im Vergleich zum Ende der Lichtperiode.

Der Nitratgehalt (Abb. 3-8-F) in der Pflanze ist unter 0.5 mM NO$_3^-$ sehr gering (0.2-3.0 µmol/g FG), während er unter 4 mM NO$_3^-$ 25-60 µmol/g FG beträgt. Dabei ist der Gehalt in den jungen Blättern am höchsten und in den Wurzeln am niedrigsten. Die Pflanzen unter 4 mM NO$_3^-$ haben sowohl in den Blättern als auch in den Wurzeln am Ende der Dunkelperiode mehr Nitrat als am Ende der Lichtperiode.

3.2.1.2 C-Metabolismus in den jungen, „source“ und alten Blättern sowie in den Wurzeln

Die gemittelten Werte der Kohlenstoff-Gehalte (Stärke, Saccharose, Hexosen und Malat) von allen acht Genotypen wurden in Abbildung 3-9 dargestellt. Rapspflanzen enthalten am Ende der Lichtperiode mehr Stärke, Saccharose, Hexosen und Malat als am Ende der Dunkelperiode. Die Unterschiede sind in alten Blättern und in Wurzeln nicht so ausgeprägt. Die Gehalte der C-Verbindungen in den Wurzeln sind am niedrigsten. Der Gehalt von Stärke oder Saccharose ist in „source“-Blättern am höchsten, während der von Hexosen in den jungen Blättern oder von Malat in den alten Blättern am höchsten ist. Die Pflanzen unter 4 mM NO$_3^-$ haben weniger Kohlenhydrate als die unter 0.5 mM NO$_3^-$, mit Ausnahme des Malatgehalts in den „source“-Blättern und in den alten Blättern. Daraus ergibt sich, daß die Pflanzen unter 0.5 mM NO$_3^-$ ein sehr viel höheres C/N Verhältnis haben als unter 4 mM NO$_3^-$.
3. Ergebnisse

3.2.1.3 Ionenkonzentrationen in den jungen, "source" und alten Blättern sowie in den Wurzeln

Im Gegensatz zu den Metabolit-Gehalten zeigen die anorganischen Ionen in den Pflanzen keinen einheitlichen diurnalen Rhythmus (Abb. 3-10). Die Pflanzen unter 4

3.2.1.3 Ionenkonzentrationen in den jungen, „source“ und alten Blättern sowie in den Wurzeln

Im Gegensatz zu den Metabolit-Gehalten zeigen die anorganischen Ionen in den Pflanzen keinen einheitlichen diurnalen Rhythmus (Abb. 3-10). Die Pflanzen unter 4
mM NO$_3^-$ haben mehr Natrium und Magnesium, aber weniger Chlorid, Phosphat, Sulfat und Kalium als die unter 0.5 mM NO$_3^-$-Nährösung. Obwohl die 0.5 mM NO$_3^-$-Nährösung weniger Calcium enthielt, hat es ein ähnliches Niveau unter beiden Nitratbedingungen (Tab. 2-5).

Die Verteilungsmuster der Ionen in den Pflanzenteilen sind sehr unterschiedlich: Der Chlorid-Gehalt ist in den alten Blättern am höchsten und in den jungen Blättern am niedrigsten. Der Phosphat-Gehalt ist in den jungen Blättern unter 0.5 mM NO₃⁻ oder in den „source“-Blättern unter 4 mM NO₃⁻ am höchsten und in den Wurzeln am niedrigsten. Der Sulfat-Gehalt ist in den „source“-Blättern bei 0.5 mM NO₃⁻ oder in den alten Blättern bei 4 mM NO₃⁻ am höchsten, und in den Wurzeln am niedrigsten. Der Natrium-Gehalt ist in den vier unterschiedlichen Pflanzenteilen jeweils ähnlich. Der Kalium-Gehalt ist in den „source“-Blättern am höchsten und in den Wurzeln am niedrigsten. Der Magnesium-Gehalt ist in den alten Blättern bei 4 mM NO₃⁻ und in den „source“-Blättern bei 0.5 mM NO₃⁻ am höchsten, und in den Wurzeln am niedrigsten. Der Calcium-Gehalt ist in den alten Blättern am höchsten und in den Wurzeln am niedrigsten.

3.2.1.4 Aminosäuremuster in den jungen, „source“ und alten Blättern sowie in den Wurzeln

3. Ergebnisse

3.2.1.5 Aminosäure- und Saccharosegehalte im Phloem- und Xylemsaft sowie im "source"-Blatt und in der Wurzel

Da der Transport von Metaboliten und Ionen im Phloem- und Xylemsystem

3.2.1.5 Aminosäure- und Saccharosegehalte im Phloem- und Xylemsaft sowie im "source"-Blatt und in der Wurzel

Da der Transport von Metaboliten und Ionen im Phloem- und Xylemsystem
ergeben, wurden die Aminosäure- und Saccharosekonzentrationen im Phloem- und Xylemsaft mit denen im „source“-Blatt und in der Wurzel während der Lichtperiode verglichen (Tab. 3-6).

Tabelle 3-6. Aminosäure- und Saccharosegehalte im Phloem- und Xylemsaft sowie im „source“-Blatt und in der Wurzel während der Lichtperiode unter 0.5 mM bzw. 4 mM NO₃⁻-Bedingungen. Dargestellt sind Mittelwerte und SD aller 8 Genotypen (n=4).

<table>
<thead>
<tr>
<th></th>
<th>Phloemsaft (mM)</th>
<th>„source“-Blatt (µmol/g FG)</th>
<th>Xylemsaft (mM)</th>
<th>Wurzel (µmol/g FG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NO₃⁻]:</td>
<td>4 mM 0.5 mM</td>
<td>4 mM 0.5 mM</td>
<td>4 mM 0.5 mM</td>
<td>4 mM 0.5 mM</td>
</tr>
<tr>
<td>Saccharose:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>814 ± 170</td>
<td>1852 ± 301</td>
<td>2.3 ± 1.1</td>
<td>4.7 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>0.06 ± 0.03</td>
<td>0.25 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>1.6 ± 0.3</td>
</tr>
<tr>
<td>∑Aminosäuren:</td>
<td>535 ± 156</td>
<td>378 ± 62</td>
<td>25 ± 6</td>
<td>8.3 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>4.8 ± 1.1</td>
<td>2.5 ± 0.5</td>
<td>5.5 ± 1.1</td>
<td>3.7 ± 0.5</td>
</tr>
<tr>
<td>glu (%)</td>
<td>26 26</td>
<td>16 47</td>
<td>2.0 4.7</td>
<td>17 28</td>
</tr>
<tr>
<td>gln (%)</td>
<td>17 15</td>
<td>15 38</td>
<td>2.0 4.7</td>
<td>11 17</td>
</tr>
<tr>
<td>asp (%)</td>
<td>9.8 10</td>
<td>11 13</td>
<td>3.1 16</td>
<td>8.0 11</td>
</tr>
<tr>
<td>asn (%)</td>
<td>3.9 3.0</td>
<td>2.1 0.7</td>
<td>3.3 1.9</td>
<td>3.4 3.1</td>
</tr>
<tr>
<td>ser (%)</td>
<td>11 8.7</td>
<td>9.2 11</td>
<td>1.3 3.2</td>
<td>5.3 5.7</td>
</tr>
<tr>
<td>gly (%)</td>
<td>0.8 1.5</td>
<td>8.7 9.1</td>
<td>0.9 2.7</td>
<td>2.9 4.1</td>
</tr>
<tr>
<td>his (%)</td>
<td>1.4 0.1</td>
<td>0.5 0.0</td>
<td>0.0 0.0</td>
<td>0.8 0.0</td>
</tr>
<tr>
<td>thr (%)</td>
<td>5.2 5.3</td>
<td>3.9 5.5</td>
<td>3.6 3.7</td>
<td>4.4 6.3</td>
</tr>
<tr>
<td>arg (%)</td>
<td>1.2 1.2</td>
<td>1.6 0.3</td>
<td>1.4 0.8</td>
<td>1.1 2.2</td>
</tr>
<tr>
<td>ala (%)</td>
<td>1.5 1.5</td>
<td>3.9 3.3</td>
<td>0.6 1.8</td>
<td>7.0 6.6</td>
</tr>
<tr>
<td>gaba (%)</td>
<td>0.0 0.3</td>
<td>0.1 0.2</td>
<td>0.8 3.2</td>
<td>2.7 2.7</td>
</tr>
<tr>
<td>tyr (%)</td>
<td>1.5 2.0</td>
<td>0.2 0.2</td>
<td>0.5 1.1</td>
<td>0.6 0.5</td>
</tr>
<tr>
<td>val (%)</td>
<td>5.7 6.8</td>
<td>1.3 1.8</td>
<td>2.4 5.1</td>
<td>4.8 3.6</td>
</tr>
<tr>
<td>met (%)</td>
<td>0.3 0.2</td>
<td>0.4 0.2</td>
<td>0.4 1.9</td>
<td>1.1 0.5</td>
</tr>
<tr>
<td>trp (%)</td>
<td>0.6 1.3</td>
<td>0.2 0.2</td>
<td>0.1 0.8</td>
<td>1.2 0.7</td>
</tr>
<tr>
<td>ile (%)</td>
<td>4.7 5.4</td>
<td>1.3 1.5</td>
<td>1.8 3.4</td>
<td>1.9 2.7</td>
</tr>
<tr>
<td>phe (%)</td>
<td>2.1 2.7</td>
<td>0.2 0.0</td>
<td>0.2 0.6</td>
<td>0.4 0.0</td>
</tr>
<tr>
<td>leu (%)</td>
<td>2.9 2.7</td>
<td>0.2 0.3</td>
<td>0.8 1.3</td>
<td>1.2 1.4</td>
</tr>
<tr>
<td>lys (%)</td>
<td>5.7 5.0</td>
<td>1.2 0.5</td>
<td>2.3 2.0</td>
<td>1.5 2.0</td>
</tr>
</tbody>
</table>
Die Aminosäure- und Saccharosekonzentrationen im Phloem- und Xylemsaft, in den „source“-Blättern und in den Wurzeln reagieren auf die Stickstoffversorgung mit einer gleichen Tendenz: Im Vergleich mit 0.5 mM NO₃⁻ zeigen sich bei 4 mM NO₃⁻ höhere Aminosäurekonzentrationen aber niedrigere Saccharosekonzentrationen.

Alle in Blatt und Wurzel vorhandenen Aminosäuren werden auch im Phloem und im Xylem transportiert, aber die jeweiligen Anteile der einzelnen Aminosäuren am Gesamtaminosäure-Gehalt sind unterschiedlich: In „source“-Blättern und in Wurzeln unter 4 mM NO₃⁻ ist der Anteil von Glutamin am höchsten, während unter 0.5 mM NO₃⁻ der von Glutamat am höchsten ist. Unter beiden Stickstoffbedingungen ist der Anteil von Glutamat im Phloemsaft am höchsten. Im Xylemsaft ist Glutamin die dominierende Aminosäure mit einem Anteil an der Gesamtaminosäure-Konzentration von 75% unter 4 mM NO₃⁻ und von 46% unter 0.5 mM NO₃⁻. Die Änderung des Aminosäuremusters im Phloemsaft zwischen 0.5 mM und 4 mM NO₃⁻ ist nicht so stark wie die im „source“-Blatt, in den Wurzeln und im Xylemsaft.

3.2.2 Unterschiede zwischen den 8 ausgewählten Genotypen im Gewächshaus-Versuch

Die im Gewächshaus angezogen acht Genotypen gehören zu unterschiedlichen Gruppen (Tab. 3-3). Sie unterscheiden sich nicht nur im Proteingehalt im Samen, sondern auch in ihrer Photosyntheseleistung, in ihren Metabolitgehalten und in den Aktivitäten von N-assimilierenden Enzymen sowie im Phloem- und Xylemtransport. Diese Unterschiede sind im folgenden zusammengefaßt.

3.2.2.1 Netto-CO₂-Assimilation sowie Frischgewicht von Sproß und Wurzel der 8 Rapsgenotypen

Als Kriterium der Photosyntheseleistung dient die Netto-CO₂-Assimilation. Außerdem wird das Frischgewicht von Sproß und Wurzel zur Mitte der Blüte angegeben. Die Messung der CO₂-Assimilation wurde im Gewächshaus durchgeführt. Da sich die Parameter wie Lichtstärke und CO₂-Konzentration änderten, wurden in
Tabelle 3-7 nur die Werte bei Lichtstärken von 470 ± 40 μmol·m⁻²·s⁻¹ und CO₂-Konzentrationen von 375 ± 15 μbar dargestellt.

Die Pflanzen unter 4 mM NO₃⁻ zeigten nur eine geringfügig höhere Netto-CO₂-Assimilation pro m² als die unter 0.5 mM NO₃⁻. Zu sehen war ein Unterschied bei Falcon, Lirajet, RS3 und S27. Obwohl es Unterschiede zwischen den Genotypen gibt, zeigten die Resynthese-Linien (RS3 und S27) keine höhere Netto-CO₂-Assimilation (μmol CO₂·m⁻²·s⁻¹) als die anderen untersuchten Genotypen. Die Frischgewichte der Pflanzen unter 4 mM NO₃⁻ waren dagegen viel höher als unter 0.5 mM NO₃⁻.

Tabelle 3-7. Netto-CO₂-Assimilation und Biomasse der acht Genotypen unter 0.5 mM und 4 mM NO₃⁻ im Gewächshaus. Die Netto-CO₂-Assimilation wurde bei Lichtstärken von 470 ± 40 μmol·m⁻²·s⁻¹ und CO₂-Konzentrationen von 375 ± 15 μbar gemessen (n=6-9 Blätter). Als Biomasse wurden die Mittelwerte der Frischgewichte der Pflanzen (n=4) zur Mitte der Blüte angegeben.

<table>
<thead>
<tr>
<th></th>
<th>Netto-CO₂-Assimilation (μmol CO₂·m⁻²·s⁻¹)</th>
<th>Frischgewicht (Sproß und Wurzel) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mM NO₃⁻</td>
<td>0.5 mM NO₃⁻</td>
</tr>
<tr>
<td>Apex</td>
<td>15.7 ± 1.5</td>
<td>14.8 ± 0.6</td>
</tr>
<tr>
<td>Bristol</td>
<td>14.8 ± 1.5</td>
<td>14.3 ± 2.3</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>12.5 ± 1.8</td>
<td>13.3 ± 0.4</td>
</tr>
<tr>
<td>Express</td>
<td>15.1 ± 1.1</td>
<td>14.3 ± 1.4</td>
</tr>
<tr>
<td>Falcon</td>
<td>15.4 ± 1.1</td>
<td>12.0 ± 3.2</td>
</tr>
<tr>
<td>Lirajet</td>
<td>15.0 ± 1.1</td>
<td>9.8 ± 2.2</td>
</tr>
<tr>
<td>RS3</td>
<td>15.0 ± 0.6</td>
<td>11.4 ± 0.8</td>
</tr>
<tr>
<td>S27</td>
<td>14.0 ± 1.6</td>
<td>11.4 ± 1.0</td>
</tr>
</tbody>
</table>
3.2.2.2 Metabolitgehalte und C/N-Verhältnisse in den Blättern der 8 Genotypen am Ende der Lichtperiode

In Tabelle 3-8 sind die Metabolitgehalte (µmol/g FG) und C/N-Verhältnisse in den Blättern der acht Genotypen (n=4) unter zwei Nitratbedingungen (4 mM oder 0.5 mM) dargestellt. Dabei wurden die Meßwerte der jungen, "source"- und alten Blätter gemittelt. Wegen der großen Unterschiede zwischen den drei Altersphasen der Blätter werden keine Standardabweichung angegeben. Die Unterschiede der Metabolitgehalte in den Wurzeln sind sehr gering und daher nicht dargestellt.

Es zeigt sich eine starke Variationsbreite der Metabolitgehalte in den Pflanzen der acht Genotypen. Die Variabilität der Gehalte der \(\sum \) Aminosäuren und Nitrat ist unter 4 mM NO\(_3^-\) weniger ausgeprägt als unter 0.5 mM NO\(_3^-\), während es eine umgekehrte Tendenz im Fall von C-haltigen Verbindungen gibt. Unter 4 mM NO\(_3^-\) ist das C/N-Verhältnis in den Blättern der Sorte Express (2.5) wegen der niedrigeren Kohlenstoff-Gehalte am niedrigsten, und von Bristol (6.0) auf Grund höherer Gehalte von Kohlenstoff-Verbindungen am höchsten. Unter 0.5 mM NO\(_3^-\) ist das C/N-Verhältnis in den Blättern von Bristol (47) auf Grund geringerer Kohlenstoff-Gehalte und höherer Aminosäure-Gehalte am niedrigsten, und von RS3 (305) auf Grund höherer Kohlenstoff-Gehalte und geringerer Aminosäure-Gehalte am höchsten. Daher ist der Unterschied der C/N-Verhältnisse zwischen den Genotypen bei 0.5 mM NO\(_3^-\) größer als der bei 4 mM NO\(_3^-\). Bei den Aminosäuregehalten und C/N-Verhältnissen im Blatt zeigen die Resynthese-Linien (RS3, S27) keine deutlichen Unterschiede gegenüber den anderen Rapssorten unter den Gewächshaus-Bedingungen.

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Apex</th>
<th>Bristol</th>
<th>DP-HB-1</th>
<th>Express</th>
<th>Falcon</th>
<th>Lirajet</th>
<th>RS 3</th>
<th>S 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärke</td>
<td>1.7</td>
<td>1.4</td>
<td>0.9</td>
<td>1.0</td>
<td>1.7</td>
<td>1.5</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Saccharose</td>
<td>2.8</td>
<td>2.6</td>
<td>1.5</td>
<td>1.1</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Hexose</td>
<td>6.9</td>
<td>6.6</td>
<td>3.5</td>
<td>2.9</td>
<td>4.2</td>
<td>2.4</td>
<td>11.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Malat</td>
<td>30</td>
<td>41</td>
<td>24</td>
<td>17</td>
<td>30</td>
<td>17</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>∑Aminosäure</td>
<td>27</td>
<td>29</td>
<td>28</td>
<td>25</td>
<td>27</td>
<td>25</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Nitrat</td>
<td>41</td>
<td>34</td>
<td>48</td>
<td>45</td>
<td>42</td>
<td>35</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>∑C</td>
<td>324</td>
<td>373</td>
<td>259</td>
<td>228</td>
<td>294</td>
<td>247</td>
<td>303</td>
<td>228</td>
</tr>
<tr>
<td>∑N</td>
<td>82</td>
<td>80</td>
<td>91</td>
<td>91</td>
<td>81</td>
<td>80</td>
<td>66</td>
<td>97</td>
</tr>
<tr>
<td>C/N-Verhältnis</td>
<td>5.2</td>
<td>6.0</td>
<td>3.1</td>
<td>2.5</td>
<td>3.9</td>
<td>3.4</td>
<td>4.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

3.2.2.3 Nitratreduktase- und Glutaminsynthetaseaktivität in den Blättern und den Wurzeln der 8 Genotypen

3. Ergebnisse

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>4 mM NO(_3)-Lichtende</th>
<th>Dunkelende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blatt</td>
<td>Wurzel</td>
</tr>
<tr>
<td>Apex</td>
<td>267</td>
<td>199</td>
</tr>
<tr>
<td>Bristol</td>
<td>279</td>
<td>190</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>207</td>
<td>171</td>
</tr>
<tr>
<td>Express</td>
<td>304</td>
<td>147</td>
</tr>
<tr>
<td>Falcon</td>
<td>276</td>
<td>217</td>
</tr>
<tr>
<td>Lirajet</td>
<td>305</td>
<td>143</td>
</tr>
<tr>
<td>RS 3</td>
<td>214</td>
<td>146</td>
</tr>
<tr>
<td>S 27</td>
<td>216</td>
<td>133</td>
</tr>
<tr>
<td>Sorten-MW</td>
<td>259</td>
<td>170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>0.5 mM NO(_3)-Lichtende</th>
<th>Dunkelende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blatt</td>
<td>Wurzel</td>
</tr>
<tr>
<td>Apex</td>
<td>123</td>
<td>11</td>
</tr>
<tr>
<td>Bristol</td>
<td>122</td>
<td>14</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>116</td>
<td>9</td>
</tr>
<tr>
<td>Express</td>
<td>60</td>
<td>11</td>
</tr>
<tr>
<td>Falcon</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>Lirajet</td>
<td>66</td>
<td>13</td>
</tr>
<tr>
<td>RS 3</td>
<td>54</td>
<td>11</td>
</tr>
<tr>
<td>S 27</td>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>Sorten-MW</td>
<td>83</td>
<td>11</td>
</tr>
</tbody>
</table>

Die NR-Aktivität ist in den auf Hydrokultur unter 0.5 mM NO\(_3\)\(^{-}\) angezogenen Rapspflanzen niedrig, insbesondere in den Wurzeln. Auf Hydrokultur unter 4 mM NO\(_3\)\(^{-}\) angezogen ist die NR-Aktivität pro Gramm Frischgewicht in den Blättern etwa 1.5fach höher als in den Wurzeln. Unter 0.5 mM NO\(_3\)\(^{-}\) angezogen ist die Aktivität dagegen in den Blättern etwa 7fach höher als in den Wurzeln. Die Variation der NR-Aktivität zwischen den Genotypen ist unter 0.5 mM NO\(_3\)\(^{-}\) größer als unter 4 mM NO\(_3\)\(^{-}\).
Wenn die Aktivitäten in den Blättern und den Wurzeln zusammen berücksichtigt werden, ist bei 4 mM \(\text{NO}_3^- \) am Ende der Lichtperiode die Aktivität der Sorte S27 am niedrigsten (175 nmol Nitrit/g FG/min) und die von Falcon am höchsten (247 nmol Nitrit/g FG/min), sowie am Ende der Dunkelperiode die Aktivität von RS3 am niedrigsten (113 nmol Nitrit/g FG/min) und die von Apex am höchsten (217 nmol Nitrit/g FG/min). Bei 0.5 mM \(\text{NO}_3^- \) ist die Aktivität in den Resynthese-Linien (RS3, S27) gegenüber den anderen Rapsgenotypen ebenfalls wie bei 4 mM Nitrat nicht erhöht.

<table>
<thead>
<tr>
<th>4 mM (\text{NO}_3^-)</th>
<th>Lichtende</th>
<th>Dunkelende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blatt</td>
<td>Wurzel</td>
</tr>
<tr>
<td>Apex</td>
<td>815</td>
<td>893</td>
</tr>
<tr>
<td>Bristol</td>
<td>848</td>
<td>677</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>796</td>
<td>876</td>
</tr>
<tr>
<td>Express</td>
<td>808</td>
<td>656</td>
</tr>
<tr>
<td>Falcon</td>
<td>656</td>
<td>874</td>
</tr>
<tr>
<td>Lirajet</td>
<td>664</td>
<td>651</td>
</tr>
<tr>
<td>RS 3</td>
<td>402</td>
<td>448</td>
</tr>
<tr>
<td>S 27</td>
<td>547</td>
<td>533</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.5mM (\text{NO}_3^-)</th>
<th>Lichtende</th>
<th>Dunkelende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blatt</td>
<td>Wurzel</td>
</tr>
<tr>
<td>Apex</td>
<td>815</td>
<td>761</td>
</tr>
<tr>
<td>Bristol</td>
<td>849</td>
<td>641</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>816</td>
<td>676</td>
</tr>
<tr>
<td>Express</td>
<td>768</td>
<td>527</td>
</tr>
<tr>
<td>Falcon</td>
<td>860</td>
<td>483</td>
</tr>
<tr>
<td>Lirajet</td>
<td>881</td>
<td>694</td>
</tr>
<tr>
<td>RS 3</td>
<td>638</td>
<td>479</td>
</tr>
<tr>
<td>S 27</td>
<td>778</td>
<td>663</td>
</tr>
</tbody>
</table>

Im Gegensatz zur NR-Aktivität ist der Einfluß der Stickstoff-Versorgung oder des Licht/Dunkel-Wechsels auf die GS-Aktivität in den Rapspflanzen sehr gering. Am

3.2.2.4 Phloem- und Xylemtransport der 8 Genotypen

Die Konzentrationen der Hauptmetabolite im Phloem- und Xylemsaft der acht Genotypen sind in den Tabellen 3-11-A und -B dargestellt. Angegeben sind Mittelwerte und Standardabweichungen (SD): für Xylemsaft n=4, für Phloemsaft bei 4 mM NO₃⁻ n=4-6 und bei 0.5 mM NO₃⁻ n=2-3.

Die Konzentrationen der Kohlenstoff- und Stickstoffverbindungen im Phloem- und Xylemsaft der acht Genotypen zeigen eine große Variation. Bei 4 mM NO₃⁻ ist die Konzentration der Gesamtaminosäuren (ΣAS) im Phloemsaft von der Resynthese-Linie S27 mit 766 mM am höchsten und vom Genotyp Apex mit 307 mM am niedrigsten; bei 0.5 mM NO₃⁻ ist es dagegen umgekehrt, beim Genotyp S27 ist sie mit 294 mM am niedrigsten und beim Genotyp Apex mit 495 mM am höchsten. Die Konzentration der Saccharose im Phloemsaft variiert bei 4 mM NO₃⁻ zwischen 489 (Bristol) und 1062 mM (DP-HB-1), und bei 0.5 mM NO₃⁻ zwischen 1514 (RS3) und 2420 mM (Apex). Das Saccharose/ΣAminosäure-Verhältnis im Phloemsaft liegt bei 4 mM NO₃⁻ zwischen 1.1 (RS3) und 2.7 (Apex), bei 0.5 mM NO₃⁻ zwischen 4.0 (Lirajet) und 6.3 (S27). Die Konzentration der ΣAS im Xylemsaft ist bei 4 mM NO₃⁻ 4.0 (Lirajet) bis 7.3 mM (S27), bei 0.5 mM NO₃⁻ 1.8 (Lirajet) bis 3.1 mM (S27). Die Nitrat-Konzentration im Xylemsaft liegt bei 4 mM NO₃⁻ zwischen 4.7 und 17.4 mM, bei 0.5 mM NO₃⁻ zwischen 0.3 und 3.8 mM. Die Ammoniumkonzentration im Xylemsaft ist bei 4 mM NO₃⁻ 0.36 bis 1.05 mM, bei 0.5 mM NO₃⁻ 0.06 bis 0.19 mM. Die Konzentrationen der Kohlenhydrate im Xylemsaft sind sehr niedrig, besonders bei 4 mM NO₃⁻: Die Hexosen-Konzentration ist 0.05-0.1 mM bei 4 mM NO₃⁻ und 0.1-0.4 mM bei 0.5 mM NO₃⁻. Die Malat-Konzentration ist 0.3-1.7 mM bei 4 mM NO₃⁻ und 3.9-5.5 mM bei 0.5 mM NO₃⁻. Bei 4 mM NO₃⁻ liegt das Saccharose/ΣAminosäure-Verhältnis im Xylemsaft zwischen 0.01 und 0.03, bei 0.5 mM NO₃⁻ zwischen 0.05 und 0.17.

Tabelle 3-11-A. Gesamtaminosäure- und Saccharosekonzentrationen im Phloemsaf der 8 Genotypen. Dargestellt sind die Mittelwerte und Standardabweichungen jedes Genotyps: bei 4 mM NO$_3^-$ n=4-6 und bei 0.5 mM NO$_3^-$ n=2-3.

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>\sumAS (mM)</th>
<th>Saccharose (mM)</th>
<th>Saccharose/\sumAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mM NO$_3^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>307 ± 105</td>
<td>767 ± 140</td>
<td>2.7</td>
</tr>
<tr>
<td>Bristol</td>
<td>439 ± 255</td>
<td>489 ± 90</td>
<td>1.4</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>675 ± 115</td>
<td>1062 ± 75</td>
<td>1.6</td>
</tr>
<tr>
<td>Express</td>
<td>398 ± 87</td>
<td>953 ± 117</td>
<td>2.5</td>
</tr>
<tr>
<td>Falcon</td>
<td>366 ± 101</td>
<td>824 ± 132</td>
<td>2.3</td>
</tr>
<tr>
<td>Lirajet</td>
<td>649 ± 189</td>
<td>759 ± 114</td>
<td>1.2</td>
</tr>
<tr>
<td>RS 3</td>
<td>738 ± 104</td>
<td>791 ± 161</td>
<td>1.1</td>
</tr>
<tr>
<td>S 27</td>
<td>766 ± 208</td>
<td>867 ± 97</td>
<td>1.2</td>
</tr>
<tr>
<td>0.5 mM NO$_3^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>495 ± 129</td>
<td>2420 ± 140</td>
<td>4.9</td>
</tr>
<tr>
<td>Bristol</td>
<td>400 ± 82</td>
<td>2213 ± 221</td>
<td>5.7</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>343 ± 26</td>
<td>1610 ± 23</td>
<td>4.6</td>
</tr>
<tr>
<td>Express</td>
<td>369 ± 80</td>
<td>1730 ± 68</td>
<td>4.9</td>
</tr>
<tr>
<td>Falcon</td>
<td>306 ± 75</td>
<td>1575 ± 108</td>
<td>6.0</td>
</tr>
<tr>
<td>Lirajet</td>
<td>381 ± 89</td>
<td>1520 ± 1126</td>
<td>4.0</td>
</tr>
<tr>
<td>RS 3</td>
<td>437 ± 77</td>
<td>1514 ± 314</td>
<td>4.5</td>
</tr>
<tr>
<td>S 27</td>
<td>294 ± 38</td>
<td>1923 ± 182</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Tabelle 3-11-B

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>(\Sigma AS) (mM)</th>
<th>Saccharose (mM)</th>
<th>Nitrat (mM)</th>
<th>Ammonium (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td>4.3 ± 0.1</td>
<td>0.04 ± 0.01</td>
<td>9.1 ± 3.6</td>
<td>0.60 ± 0.05</td>
</tr>
<tr>
<td>Bristol</td>
<td>4.3 ± 0.3</td>
<td>0.04 ± 0.02</td>
<td>8.1 ± 0.1</td>
<td>0.66 ± 0.03</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>4.0 ± 0.3</td>
<td>0.02 ± 0.01</td>
<td>12.0 ± 0.3</td>
<td>1.05 ± 0.08</td>
</tr>
<tr>
<td>Express</td>
<td>4.0 ± 0.4</td>
<td>0.05 ± 0.03</td>
<td>17.4 ± 0.9</td>
<td>1.04 ± 0.05</td>
</tr>
<tr>
<td>Falcon</td>
<td>6.2 ± 0.6</td>
<td>0.06 ± 0.02</td>
<td>4.7 ± 0.1</td>
<td>0.36 ± 0.03</td>
</tr>
<tr>
<td>Lirajet</td>
<td>4.0 ± 0.2</td>
<td>0.06 ± 0.01</td>
<td>4.9 ± 0.3</td>
<td>0.45 ± 0.04</td>
</tr>
<tr>
<td>RS 3</td>
<td>4.3 ± 0.1</td>
<td>0.13 ± 0.04</td>
<td>7.9 ± 0.1</td>
<td>0.74 ± 0.12</td>
</tr>
<tr>
<td>S 27</td>
<td>7.3 ± 0.1</td>
<td>0.08 ± 0.04</td>
<td>10.4 ± 3.4</td>
<td>0.81 ± 0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>(\Sigma AS) (mM)</th>
<th>Saccharose (mM)</th>
<th>Nitrat (mM)</th>
<th>Ammonium (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td>2.4 ± 0.8</td>
<td>0.17 ± 0.01</td>
<td>2.0 ± 0.5</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>Bristol</td>
<td>2.1 ± 0.1</td>
<td>0.17 ± 0.02</td>
<td>3.8 ± 0.2</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td>DP-HB-1</td>
<td>2.0 ± 0.2</td>
<td>0.11 ± 0.01</td>
<td>2.9 ± 0.1</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Express</td>
<td>3.1 ± 0.3</td>
<td>0.26 ± 0.02</td>
<td>3.3 ± 0.5</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>Falcon</td>
<td>2.6 ± 0.3</td>
<td>0.35 ± 0.07</td>
<td>3.6 ± 0.9</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td>Lirajet</td>
<td>1.8 ± 0.1</td>
<td>0.24 ± 0.06</td>
<td>1.1 ± 0.8</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>RS 3</td>
<td>2.5 ± 0.8</td>
<td>0.44 ± 0.12</td>
<td>0.3 ± 0.1</td>
<td>0.19 ± 0.03</td>
</tr>
<tr>
<td>S 27</td>
<td>3.1 ± 0.2</td>
<td>0.24 ± 0.12</td>
<td>0.6 ± 0.3</td>
<td>0.13 ± 0.06</td>
</tr>
</tbody>
</table>

3.2.3 Korrelation zwischen Nitratreduktase-Aktivität und der Summe der freien Aminosäuren in den Pflanzenteilen

Im Feldversuch zeigte sich eine positive Korrelation zwischen NR-Aktivität und der Summe der freien Aminosäuren im Blatt. Daher ist in Abbildung 3-12 die NR-Aktivität im Verhältnis zur Summe der freien Aminosäuren in den verschiedenen Pflanzenteilen dargestellt. Eine positive Korrelation zeigt sich besonders in den jungen und den "source"-Blättern mit jeweils einem Bestimmtheitsmaß von etwa 0.7. Sowohl die NR-Aktivität als auch die AS-Gehalte in den alten Blättern sind sehr niedrig und zeigen kaum eine Korrelation. In den Wurzeln ist dagegen eine positive Korrelation vorhanden (R²=0.59).
Abbildung 3-12. Nitratreduktase-Aktivität im Verhältnis zur Summe der freien Aminosäuren in den Pflanzenteilen der 8 Genotypen. Dargestellt sind die Werte der 8 Genotypen unter allen Bedingungen (0.5 mM und 4 mM NO₃⁻, Ende der Licht- und Dunkelperiode).
3.3 Transgene Pflanzen mit Veränderungen der Glutaminsynthetase (GS)

Tabelle 3-12. Zusammenfassung der für die biochemischen Untersuchungen ausgewählten transgenen Pflanzen (Wallbraun 1997).

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Transgen</th>
<th>Northern-Blot</th>
<th>Western-Blot</th>
<th>GS-Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10-26</td>
<td>GSR1sense</td>
<td>200%</td>
<td>+</td>
<td>310% (GS1)</td>
</tr>
<tr>
<td>E8-1</td>
<td>GSL1sense</td>
<td>310%</td>
<td>+</td>
<td>230% (GS2)</td>
</tr>
<tr>
<td>F2-1</td>
<td>GSL1antisense</td>
<td>nicht bestimmt</td>
<td>-</td>
<td>64% (GS2)</td>
</tr>
</tbody>
</table>

+ = im Vergleich zur Ausgangssorte deutlich erhöhtes Signal
- = im Vergleich zur Ausgangssorte deutlich verringertes Signal
GS1 = cytosolische GS, GS2 = plastidäre GS

Von jedem transformierten Konstrukt wurden drei Pflanzen eines Klons untersucht. Dabei ging es um die Frage, inwieweit die genetischen Veränderungen der GS

3.3.1 Metabolitgehalte und Glutaminsynthetase-Aktivität in den Blättern

Die Pflanzen der jeweiligen Ausgangssorte wurden zusammen mit den transgenen Pflanzen unter gleichen Bedingungen bearbeitet und untersucht. In folgenden Tabellen sind die Metabolitgehalte und die Glutaminsynthetase-Aktivität in Blättern der Pflanzen mit einer Überexpression der cytosolischen oder plastidären Glutaminsynthetase (Tab. 3-13) sowie der Pflanzen mit einer „antisense“-Hemmung der plastidären GS (GSL1, Tab. 3-14) im Vergleich zur Ausgangssorte dargestellt.

Die hier nicht dargestellten Daten der Transformanten mit GS-Überexpression am Ende der Dunkelperiode zeigen gleichfalls keine deutliche Auswirkung der Überexpression auf den C- und N-Metabolismus der Rapspflanzen.
<table>
<thead>
<tr>
<th>Metabolit</th>
<th>Drakkar</th>
<th>C10-26</th>
<th>E8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>glu</td>
<td>3.8 ± 0.3</td>
<td>3.0 ± 0.4</td>
<td>3.5 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>(45%)</td>
<td>(50%)</td>
<td>(36%)</td>
</tr>
<tr>
<td>gln</td>
<td>0.3 ± 0.1</td>
<td>0.3 ± 0.1</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>(3.8%)</td>
<td>(5.6%)</td>
<td>(8.4%)</td>
</tr>
<tr>
<td>asp</td>
<td>1.8 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.7 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>(21%)</td>
<td>(19%)</td>
<td>(18%)</td>
</tr>
<tr>
<td>asn</td>
<td>0.08 ± 0.02</td>
<td>0.06 ± 0.02</td>
<td>0.14 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>(0.9%)</td>
<td>(1.0%)</td>
<td>(1.5%)</td>
</tr>
<tr>
<td>ser</td>
<td>0.9 ± 0.2</td>
<td>0.44 ± 0.04</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>(10%)</td>
<td>(7.2%)</td>
<td>(14%)</td>
</tr>
<tr>
<td>gly</td>
<td>0.2 ± 0.06</td>
<td>0.2 ± 0.02</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>(2.8%)</td>
<td>(3.1%)</td>
<td>(3.0%)</td>
</tr>
<tr>
<td>∑Aminosäure</td>
<td>8.5 ± 0.8</td>
<td>6.1 ± 0.8</td>
<td>9.5 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
<tr>
<td>Protein</td>
<td>31 ± 1</td>
<td>26 ± 2</td>
<td>31 ± 5</td>
</tr>
<tr>
<td>Nitrat</td>
<td>13 ± 1</td>
<td>12 ± 1</td>
<td>14 ± 5</td>
</tr>
<tr>
<td>Stärke</td>
<td>49 ± 4</td>
<td>58 ± 14</td>
<td>25 ± 2</td>
</tr>
<tr>
<td>Glukose</td>
<td>16 ± 1</td>
<td>28 ± 2</td>
<td>8.0 ± 1</td>
</tr>
<tr>
<td>Fruktose</td>
<td>18 ± 1</td>
<td>23 ± 1</td>
<td>8.7 ± 1</td>
</tr>
<tr>
<td>Saccharose</td>
<td>8.6 ± 0.2</td>
<td>6.1 ± 0.5</td>
<td>5.3 ± 0.5</td>
</tr>
<tr>
<td>Malat</td>
<td>24 ± 2</td>
<td>20 ± 2</td>
<td>28 ± 2</td>
</tr>
<tr>
<td>Saccharose/∑Aminosäure</td>
<td>1.01</td>
<td>1.01</td>
<td>0.56</td>
</tr>
<tr>
<td>GS-Aktivität *</td>
<td>100% **</td>
<td>310% (GS1)</td>
<td>230% (GS2)</td>
</tr>
</tbody>
</table>

* Daten von Wallbraun (1997) im Rahmen der Arbeit eines DFG-Projekts
** für C10-26: GS1, für E8-1: GS2
Tabelle 3-14. Metabolitgehalte und Glutaminsynthetase-Aktivität in Blättern der GSL1-antisense-gehemmten Pflanzen (F2-1) und ihrer Ausgangssorte. Die Mittelwerte und Standardabweichungen der Gehalte am Ende der Lichtperiode sind angegeben (n=3). Die Einheit für Protein ist $mg/g\ FG$, für andere Metabolite $\mu mol/g\ FG$.

<table>
<thead>
<tr>
<th>Metabolit</th>
<th>Falcon</th>
<th>F2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>glu</td>
<td>1.9 ± 0.2</td>
<td>2.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>(15%)</td>
<td>(17%)</td>
</tr>
<tr>
<td>gln</td>
<td>2.3 ± 0.5</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>(19%)</td>
<td>(16%)</td>
</tr>
<tr>
<td>asp</td>
<td>2.1 ± 0.4</td>
<td>3.0 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>(17%)</td>
<td>(20%)</td>
</tr>
<tr>
<td>asn</td>
<td>0.3 ± 0.0</td>
<td>0.3 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>(2.6%)</td>
<td>(2.0%)</td>
</tr>
<tr>
<td>ser</td>
<td>1.6 ± 0.4</td>
<td>2.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>(13%)</td>
<td>(14%)</td>
</tr>
<tr>
<td>gly</td>
<td>1.7 ± 0.5</td>
<td>1.5 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>(14%)</td>
<td>(10%)</td>
</tr>
<tr>
<td>Σ Aminosäure</td>
<td>12.1 ± 2.3</td>
<td>14.9 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
<tr>
<td>Protein</td>
<td>33 ± 2</td>
<td>39 ± 1</td>
</tr>
<tr>
<td>Nitrat</td>
<td>72 ± 1</td>
<td>41 ± 4</td>
</tr>
<tr>
<td>Stärke</td>
<td>32 ± 2</td>
<td>35 ± 5</td>
</tr>
<tr>
<td>Glukose</td>
<td>13 ± 1</td>
<td>22 ± 1</td>
</tr>
<tr>
<td>Fruktose</td>
<td>15 ± 1</td>
<td>24 ± 1</td>
</tr>
<tr>
<td>Saccharose</td>
<td>3.9 ± 0.1</td>
<td>4.5 ± 0.4</td>
</tr>
<tr>
<td>Malat</td>
<td>24 ± 2</td>
<td>21 ± 1</td>
</tr>
<tr>
<td>Saccharose/Σ Aminosäure</td>
<td>0.32</td>
<td>0.30</td>
</tr>
<tr>
<td>GS-Aktivität*</td>
<td>100% (GS2)</td>
<td>64% (GS2)</td>
</tr>
</tbody>
</table>

* Daten von Wallbraun (1997) im Rahmen der Arbeit eines DFG-Projekts

Auch im Falle der "antisense"-Hemmung der plastidären Glutaminsynthetase zeigten sich keine deutlichen Auswirkungen auf die Metabolitgehalte: Der Gesamtamino säuregehalt oder das Aminosäuremuster änderten sich kaum. Während in den

3.3.2 Aminosäure- und Saccharosekonzentrationen im Phloemsaft sowie Protein- und Ölgehalte im Samen der GS-transgenen Pflanzen

Die im Blatt synthetisierten Metabolite werden durch das Phloem in andere Pflanzenteile wie Samen transportiert. Daher sind in den Tabellen 3-15 und 3-16 die Aminosäure- und Saccharosekonzentrationen im Phloemsaft sowie die Protein- und Ölgehalte im Samen der GS-trangenen Pflanzen dargestellt. Ähnlich wie in den Blättern, zeigen die genetischen Veränderungen, sowohl der Überexpression als auch

<table>
<thead>
<tr>
<th>Phloemsaft</th>
<th>Drakkar</th>
<th>C10-26</th>
<th>E8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>glu (%)</td>
<td>15.6 ± 7.6</td>
<td>12.6 ± 10.2</td>
<td>20.1 ± 10.4</td>
</tr>
<tr>
<td>gln (%)</td>
<td>20.2 ± 20.8</td>
<td>17.7 ± 8.4</td>
<td>14.4 ± 16.6</td>
</tr>
<tr>
<td>asp (%)</td>
<td>6.5 ± 2.6</td>
<td>6.3 ± 3.6</td>
<td>7.9 ± 4.1</td>
</tr>
<tr>
<td>asn (%)</td>
<td>3.9 ± 2.3</td>
<td>4.2 ± 2.9</td>
<td>4.8 ± 4.9</td>
</tr>
<tr>
<td>ser (%)</td>
<td>6.3 ± 3.2</td>
<td>5.4 ± 2.7</td>
<td>6.8 ± 5.5</td>
</tr>
<tr>
<td>gly (%)</td>
<td>0.6 ± 0.1</td>
<td>1.4 ± 0.9</td>
<td>0.5 ± 0.3</td>
</tr>
<tr>
<td>∑Aminosäure (mM)</td>
<td>289 ± 139</td>
<td>291 ± 176</td>
<td>207 ± 215</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>2242 ± 2216</td>
<td>2010 ± 680</td>
<td>1485 ± 1083</td>
</tr>
<tr>
<td>Saccharose/∑Aminosäure</td>
<td>7.8</td>
<td>6.9</td>
<td>7.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteingehalt (% in TG)*</td>
</tr>
<tr>
<td>Ölgehalt (% in TG)*</td>
</tr>
</tbody>
</table>

* Daten von Wallbraun (1997) im Rahmen der Arbeit eines DFG-Projekts
3. Ergebnisse

Tabelle 3-16. Aminosäure- und Saccharosekonzentrationen im Phloemsaft der GSL1-antisense-gehemmten Pflanzen (F2-1) und ihrer Ausgangssorte. Die Mittelwerte und Standardabweichungen sind angegeben (n=9-11).

<table>
<thead>
<tr>
<th></th>
<th>Falcon</th>
<th>F2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>glu (%)</td>
<td>26.9 ± 11.1</td>
<td>23.6 ± 6.1</td>
</tr>
<tr>
<td>gln (%)</td>
<td>14.8 ± 5.0</td>
<td>27.6 ± 9.6</td>
</tr>
<tr>
<td>asp (%)</td>
<td>14.2 ± 7.6</td>
<td>9.1 ± 2.1</td>
</tr>
<tr>
<td>asn (%)</td>
<td>5.4 ± 3.2</td>
<td>3.6 ± 1.2</td>
</tr>
<tr>
<td>ser (%)</td>
<td>13.3 ± 8.0</td>
<td>12.9 ± 2.9</td>
</tr>
<tr>
<td>gly (%)</td>
<td>0.4 ± 0.1</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>∑Aminosäure (mM)</td>
<td>398 ± 186</td>
<td>412 ± 98</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>1092 ± 268</td>
<td>1320 ± 322</td>
</tr>
<tr>
<td>Saccharose/∑Aminosäure</td>
<td>2.7</td>
<td>3.2</td>
</tr>
</tbody>
</table>

3.4 Transgene Pflanzen mit Expression der Asparagin-Synthetase A aus *E.coli* (AsnA)

In *E. coli* gibt es zwei Asparaginsynthetase-Formen: eine (AsnA) ist NH₄⁺-abhängig und von *asnA* codiert (Nakamura et al. 1981), die andere (AsnB) ist Gln-abhängig und von *asnB* codiert (Scofield et al. 1990). Die AsnA aus *E. coli* katalysiert eine analoge Reaktion zur pflanzlichen GS, in der Asparagin aus Aspartat und Ammonium unter Verbrauch von ATP produziert wird (Sugiyama et al. 1992). Aus diesem Grund wurden, zur Einführung eines alternativen Wegs für die Ammonium-
3. Ergebnisse

Bindung in der Rapspflanze, Transformanten mit \textit{asnA} in sense aus \textit{E. coli} erzeugt (Wallbraun 1997).

Aus den Transformanten wurden drei transgene Klone H18-6, H18-8 und H24-2 biochemisch charakterisiert. Die Pflanzen wurden zusammen mit ihrer Ausgangssorte Drakkar im Gewächshaus auf Hydrokultur (4 mM NO$_3^-$ und 4 mM NH$_4^+$) mit zusätzlicher Belichtung angezogen. Blatt-, Wurzel-, Phloemsaff- und Xylemsaftploben wurden gewonnen und analysiert.

Unter Gewächshaus-Bedingungen zeigten die transgenen Pflanzen keine phänotypischen Unterschiede zur Ausgangssorte. Die Pflanzen auf 4 mM NH$_4^+$-Nährösung wuchsen schlecht und waren viel kleiner als die auf 4 mM NO$_3^-$-Nährösung angezogenen Pflanzen. Die NH$_4^+$-Ernährung führte auch zu früherem Blattabwurf.

3.4.1 Nachweis der Expression der AsnA aus \textit{E. coli} in der Rapspflanze durch Western-Blot-Analyse

Abbildung 3-13. Western-Blot Analyse zum Nachweis der Expression der AsnA aus *E. coli*.

Bild A: H18-6, Bild B: H18-8, Bild C: H24-2.

Bahn K: aufgereinigtes AsnA-Protein aus *E. coli* als Kontrolle, ca. 37 kDa; Bahn D: Proben von der Ausgangssorte Drakkar (Bild A, Blattprobe am Ende der Lichtperiode auf 4 mM NO₃⁻; Bild B, Wurzelprobe am Ende der Lichtperiode auf 4 mM NO₃⁻; Bild C, Blattprobe am Ende der Dunkelperiode auf 4 mM NH₄⁺); Bahn 1: Blattprobe am Ende der Lichtperiode auf 4 mM NO₃⁻; Bahn 2: Blattprobe am Ende der Lichtperiode auf 4 mM NH₄⁺; Bahn 3: Blattprobe am Ende der Dunkelperiode auf 4 mM NO₃⁻; Bahn 4: Blattprobe am Ende der Dunkelperiode auf 4 mM NH₄⁺; Bahn 5: Wurzelprobe am Ende der Lichtperiode auf 4 mM NO₃⁻; Bahn 6: Wurzelprobe am Ende der Lichtperiode auf 4 mM NH₄⁺; Bahn 7: Wurzelprobe am Ende der Dunkelperiode auf 4 mM NO₃⁻; Bahn 8: Wurzelprobe am Ende der Dunkelperiode auf 4 mM NH₄⁺.

(Bei der Elektrophorese wurden 10 µg Protein je Tasche aufgetragen. Der polyklonale Antikörper ergab einige unspezifische Signale.)
3. Ergebnisse

3.4.2 *In vitro* Enzymaktivitäten der Asparaginsynthetase, Glutaminsynthetase und Nitratreduktase der Rapspflanzen mit AsnA aus *E. coli*

Die AsnA aus *E. coli* ist NH$_4^+$-abhängig (Nakamura et al. 1981). Obwohl die bislang untersuchten Asparaginsynthetasen aus Pflanzen Gln-abhängig sind, konnten die meisten von ihnen *in vitro* unter einer hohen NH$_4^+$-Konzentration die Synthese von Asn katalysieren (Shi et al. 1997). Im vorigen Abschnitt 3.4.1 ist die Expression der AsnA aus *E. coli* in den Rapspflanzen nachgewiesen worden. In diesem und den kommenden Abschnitten wird gezeigt, inwieweit die Expression der AsnA aus *E. coli* in Rapspflanzen ihren Aminosäuremetabolismus beeinflußte. Aufgrund der aufwendigen Messungen werden die Ergebnisse gemischter Proben aus jeweils vier Pflanzen angegeben.

Bei *in vitro* Enzymtests zeigen die trangenen Pflanzen mit der AsnA aus *E. coli* im Vergleich mit ihrer Ausgangssorte eine erhöhte Asparaginsynthetase-Aktivität in den Blättern und den Wurzeln. Die Asparaginsynthetase-Aktivität (Gln als Substrat) der transgenen Klone ist bei 4 mM NO$_3^-$ 5-20fach höher und bei 4 mM NH$_4^+$ 7-50fach höher als die der Ausgangssorte Drakkar. Bei Aktivitätsmessungen mit NH$_4^+$ als Substrat ist die Asparaginsynthetase-Aktivität der transgenen Pflanzen noch überwiegend höher als die der Ausgangssorte (Tab. 3-17-A).

Außerdem wurde die Asparaginsynthetase-Aktivität im Blatt fünf anderer transgener Rapspflanzen bestimmt, bei denen das *asnA*-Gen aus *E. coli* mit einem Transitpeptid für Transport in den Chloroplasten verbunden war. Die Pflanzen wurden parallel mit ihrer Ausgangssorte Drakkar auf Komposterde im Gewächshaus angezogen. Tabelle 3-17-B zeigt, daß die Enzymaktivität (Gln als Substrat) im Blatt dieser transgenen Pflanzen 18-80fach höher war als in der Ausgangssorte Drakkar. Die Aktivitätsmessungen mit Ammonium als Substrat zeigten eine noch höhere Aktivität.
3. Ergebnisse

Tabelle 3-17-A. Asparaginsynthetase-Aktivität in Rapsblättern mit AsnA aus *E. coli* und der Ausgangssorte Drakkar. Die Meßwerte gemischter Blatt- und Wurzelproben aus jeweils 4 Pflanzen sind dargestellt. Im Reaktionsansatz wurde Gln oder NH$_4^+$ als Substrat zugegeben. Die Einheit ist nmol Asn/mg Protein/h.

<table>
<thead>
<tr>
<th>Akt. mit Gln</th>
<th>Drakkar Blatt</th>
<th>Drakkar Wurzel</th>
<th>H18-6 Blatt</th>
<th>H18-6 Wurzel</th>
<th>H18-8 Blatt</th>
<th>H18-8 Wurzel</th>
<th>H24-2 Blatt</th>
<th>H24-2 Wurzel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mM NO$_3^-$</td>
<td>3.2</td>
<td>1.9</td>
<td>69</td>
<td>38</td>
<td>70</td>
<td>31</td>
<td>61</td>
<td>10</td>
</tr>
<tr>
<td>4 mM NH$_4^+$</td>
<td>1.4</td>
<td>5.0</td>
<td>74</td>
<td>51</td>
<td>47</td>
<td>63</td>
<td>69</td>
<td>33</td>
</tr>
</tbody>
</table>

Tabelle 3-17-B. Asparaginsynthetase-Aktivität im Blatt von Rapsblättern mit AsnA aus *E. coli* und einem Transitpeptid für Transport in den Chloroplasten, und der Ausgangssorte Drakkar. Dargestellt sind die Mittelwerte aus je zwei Messungen. Im Reaktionsansatz wurde Gln oder NH$_4^+$ als Substrat zugegeben. Die Einheit ist nmol Asn/mg Protein/h.

<table>
<thead>
<tr>
<th>Akt. mit Gln</th>
<th>Drakkar AsnAtp 14</th>
<th>Drakkar AsnAtp 63</th>
<th>Drakkar AsnAtp 86</th>
<th>Drakkar AsnAtp 154</th>
<th>Drakkar AsnAtp 215</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>107</td>
<td>66</td>
<td>26</td>
<td>54</td>
<td>67</td>
</tr>
<tr>
<td>1.1</td>
<td>323</td>
<td>253</td>
<td>56</td>
<td>313</td>
<td>274</td>
</tr>
</tbody>
</table>

Die GS-Aktivität in den Blättern liegt bei 4 mM NO$_3^-$ zwischen 35 (H24-2) und 57 µmol γ-Glutamylhydroxamat/g FG/h (Drakkar), bei 4 mM NH$_4^+$ zwischen 33 (Drakkar) und 43 µmol γ-Glutamylhydroxamat/g FG/h (H18-6). Die Aktivität in den Wurzeln ergibt bei 4 mM NO$_3^-$ Werte zwischen 22 und 24 µmol γ-Glutamylhydroxamat/g FG/h, bei 4 mM NH$_4^+$ zwischen 16 und 24 µmol γ-Glutamylhydroxamat/g FG/h. Die transgenen Pflanzen zeigten keine deutlichen Veränderungen der GS-Aktivität in den Blättern oder Wurzeln (Tab. 3-18).

Die Nitratreduktase-Aktivität bei 4 mM NO$_3^-$ liegt in den Blättern zwischen 127 (H18-8) und 229 nmol Nitrit/g FG/h (Drakkar), in den Wurzeln zwischen 73 (H18-8) und 98 nmol Nitrit/g FG/h (H18-6). Die NR-Aktivität bei 4 mM NH$_4^+$ ist sehr gering (Tab. 3-19). Zudem ist keine Änderung der NR-Aktivität in den transgenen Pflanzen zu erkennen.
3. Ergebnisse

<table>
<thead>
<tr>
<th>Tripel</th>
<th>Drakkar</th>
<th>H18-6</th>
<th>H18-8</th>
<th>H24-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blatt</td>
<td>57</td>
<td>46</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>Wurzel</td>
<td>24</td>
<td>22</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tripel</th>
<th>Drakkar</th>
<th>H18-6</th>
<th>H18-8</th>
<th>H24-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blatt</td>
<td>229</td>
<td>178</td>
<td>127</td>
<td>185</td>
</tr>
<tr>
<td>Wurzel</td>
<td>92</td>
<td>98</td>
<td>73</td>
<td>91</td>
</tr>
</tbody>
</table>

3.4.3 Metabolitgehalte in Blättern und Wurzeln der Rapsblättern mit AsnA aus *E. coli* unter Kontrolle des 35S-Promoters

Tabelle 3-20-A. Metabolitgehalte in Blättern und Wurzeln der Rapspflanzen mit AsnA aus *E. coli* im Vergleich mit der Ausgangssorte auf 4 mM NO₃⁻ am Ende der Lichtperiode. Dargestellt sind die Messwerte der gemischten Blatt- oder Wurzelproben aus jeweils vier Pflanzen. Die Einheit ist µmol/g FG, für Protein mg/g FG.

<table>
<thead>
<tr>
<th></th>
<th>Blatt - Lichtperiode</th>
<th>Wurzel - Lichtperiode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drakkar</td>
<td>H18-6</td>
</tr>
<tr>
<td>glu (%)</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>gln (%)</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>asp (%)</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>asn (%)</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>ser (%)</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>gly (%)</td>
<td>3.6</td>
<td>3.2</td>
</tr>
<tr>
<td>∑Aminosäure</td>
<td>18.6</td>
<td>13.5</td>
</tr>
<tr>
<td>Protein</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Nitrat</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Stärke</td>
<td>76</td>
<td>65</td>
</tr>
<tr>
<td>Glukose</td>
<td>10.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Fruktose</td>
<td>5.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Saccharose</td>
<td>3.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Malat</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>∑Aminosäure</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Die transgenen Pflanzen hatten bei 4 mM NO₃⁻ und am Ende der Lichtperiode weniger Gesamtaminosäuren und Kohlenhydrate im Blatt als die Ausgangssorte Drakkar. Der Anteil von Asparagin an den Gesamtaminosäuren im Blatt war bei H18-6 und H24-2 unverändert, bei H18-8 verdoppelt. Trotzdem zeigten die Aminosäuremuster allgemein keine großen Unterschiede. Der Metabolitgehalt der Wurzeln war ebenfalls unverändert (Tab. 3-20-A).
Tabelle 3-20-B. Metabolitgehalte in Blättern und Wurzeln der Rapspflanzen mit AsnA aus *E. coli* im Vergleich mit der Ausgangssorte auf 4 mM NH₄⁺ am Ende der Lichtperiode. Dargestellt sind die Messwerte der gemischten Blatt- oder Wurzelproben aus jeweils vier Pflanzen. Die Einheit ist µmol/g FG, für Protein mg/g FG.

<table>
<thead>
<tr>
<th></th>
<th>Blatt - Lichtperiode</th>
<th>Wurzel - Lichtperiode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drakkar</td>
<td>H18-6</td>
</tr>
<tr>
<td>glu (%)</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>gln (%)</td>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td>asp (%)</td>
<td>2.6</td>
<td>5.1</td>
</tr>
<tr>
<td>asn (%)</td>
<td>2.0</td>
<td>3.4</td>
</tr>
<tr>
<td>ser (%)</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>gly (%)</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>∑Aminosäure</td>
<td>29.3</td>
<td>19.2</td>
</tr>
<tr>
<td>Protein</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Nitrat</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Stärke</td>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>Glukose</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Fruktose</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Saccharose</td>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Malat</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Saccharose/∑Aminosäure</td>
<td>0.14</td>
<td>0.17</td>
</tr>
</tbody>
</table>

* nicht gemessen

Aufgrund der Ammonium-Abhängigkeit der AsnA aus *E. coli* war zu erwarten, daß die transgenen Pflanzen bei der Ammonium-Ernährung Vorteile gegenüber der Ausgangssorte besäßen. Trotzdem zeigten die transgenen Pflanzen bei 4 mM NH₄⁺ ebenso wie bei 4 mM NO₃⁻ keine erhöhten Asparagin-Werte. Die Gesamtaminosäuregehalte im Blatt am Ende der Lichtperiode nahmen ab (Tab. 3-20-B). Die Gehalte der anderen Metabolite und die Aminosäuremuster im Blatt sowie die Metabolitgehalte...
in der Wurzel waren im Vergleich zur Kontrolle Drakkar verändert oder ohne gemeinsame Tendenz.

3.4.4 Aminosäure- und Saccharosekonzentrationen in Phloem- und Xylemsaft der transgenen Rapspflanzen mit AsnA aus *E. coli*

In Tabellen 3-21 und 3-22 sind die Saccharose- und Aminosäurekonzentrationen sowie die Aminosäuremuster im Phloem- und Xylemsaft der transgenen Rapspflanzen dargestellt. Im Xylemsaft wird sowohl Nitrat als auch Ammonium transportiert. Unter Berücksichtigung der Standardabweichungen besteht kein wesentlicher Unterschied in Bezug auf den Phloem- und Xylemtransport für Aminosäuren und Saccharose zwischen den transgenen Pflanzen und der Ausgangs sorte, sowohl bei 4 mM NO$_3^-$ als auch bei 4 mM NH$_4^+$. Die Aminosäurekonzentration im Phloem- und Xylemsaft der Raps pflanzen bei 4 mM NH$_4^+$ ist erheblich höher als die bei 4 mM NO$_3^-$, während die entsprechenden Saccharosekonzentrationen nicht so stark erhöht sind. Aus diesem Grund ist das Saccharose/ΣAminosäure-Verhältnis bei 4 mM NH$_4^+$ niedriger als bei 4 mM NO$_3^-$. Dieses Phänomen gilt ebenfalls für die Gehalte von Gesamtaminosäuren und Saccharose in Blatt und Wurzel der Raps pflanzen.
Tabelle 3-21. Aminosäure- und Saccharosekonzentrationen im Phloemsaft der Rapspflanzen mit AsnA aus *E. coli* im Vergleich mit der Ausgangssorte. Die Mittelwerte und Standardabweichungen sind angegeben (n=3-7).

<table>
<thead>
<tr>
<th></th>
<th>Drakkar</th>
<th>H18-6</th>
<th>H18-8</th>
<th>H24-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mM NO₃⁻</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glu (%)</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>gln (%)</td>
<td>19</td>
<td>24</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>asp (%)</td>
<td>12</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>asn (%)</td>
<td>3.2</td>
<td>2.3</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>ser (%)</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>gly (%)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ Aminosäure (mM)</td>
<td>316 ± 126</td>
<td>476 ± 137</td>
<td>351 ± 137</td>
<td>338 ± 38</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>824 ± 160</td>
<td>970 ± 116</td>
<td>745 ± 395</td>
<td>741 ± 162</td>
</tr>
<tr>
<td>Σ Aminosäure</td>
<td>2.6</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>4 mM NH₄⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glu (%)</td>
<td>2.2</td>
<td>7.2</td>
<td>3.4</td>
<td>5.1</td>
</tr>
<tr>
<td>gln (%)</td>
<td>51</td>
<td>39</td>
<td>36</td>
<td>47</td>
</tr>
<tr>
<td>asp (%)</td>
<td>0.3</td>
<td>1.8</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>asn (%)</td>
<td>2.9</td>
<td>3.8</td>
<td>3.4</td>
<td>4.1</td>
</tr>
<tr>
<td>ser (%)</td>
<td>13</td>
<td>9</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>gly (%)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ Aminosäure (mM)</td>
<td>847 ± 320</td>
<td>975 ± 725</td>
<td>768 ± 236</td>
<td>629 ± 202</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>815 ± 324</td>
<td>1281 ± 357</td>
<td>1181 ± 133</td>
<td>1083 ± 53</td>
</tr>
<tr>
<td>Σ Aminosäure</td>
<td>1.0</td>
<td>1.3</td>
<td>1.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Tabelle 3-22. Aminosäure-, Nitrat-, Ammonium- und Saccharosekonzentrationen im Xylesmaß der Rapspflanzen mit AsnA aus *E. coli* im Vergleich mit der Ausgangssorte. Die Mittelwerte und Standardabweichungen sind angegeben (n=4).

<table>
<thead>
<tr>
<th></th>
<th>Drakkar</th>
<th>H18-6</th>
<th>H18-8</th>
<th>H24-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mM NO$_3^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glu (%)</td>
<td>3.8</td>
<td>2.0</td>
<td>4.1</td>
<td>5.2</td>
</tr>
<tr>
<td>gln (%)</td>
<td>47</td>
<td>53</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>asp (%)</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>asn (%)</td>
<td>2.8</td>
<td>2.8</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>ser (%)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>gly (%)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>\sum Aminosäure (mM)</td>
<td>3.2 ± 0.9</td>
<td>4.8 ± 1.4</td>
<td>2.3 ± 0.08</td>
<td>2.9 ± 0.05</td>
</tr>
<tr>
<td>Nitrat (mM)</td>
<td>1.2 ± 0.6</td>
<td>1.5 ± 0.3</td>
<td>1.4 ± 0.7</td>
<td>2.5 ± 1.3</td>
</tr>
<tr>
<td>Ammonium (mM)</td>
<td>0.10 ± 0.01</td>
<td>0.09 ± 0.01</td>
<td>0.10 ± 0.03</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>0.13 ± 0.02</td>
<td>0.08 ± 0.02</td>
<td>0.13 ± 0.06</td>
<td>0.18 ± 0.08</td>
</tr>
<tr>
<td>Saccharose \sum Aminosäure</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>4 mM NH$_4^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glu (%)</td>
<td>1.6</td>
<td>1.8</td>
<td>2.4</td>
<td>0.8</td>
</tr>
<tr>
<td>gln (%)</td>
<td>70</td>
<td>66</td>
<td>61</td>
<td>76</td>
</tr>
<tr>
<td>asp (%)</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>asn (%)</td>
<td>3.0</td>
<td>3.2</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>ser (%)</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>gly (%)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\sum Aminosäure (mM)</td>
<td>16.9 ± 2.3</td>
<td>13.0 ± 1.1</td>
<td>16.8 ± 3.7</td>
<td>25.9 ± 4.9</td>
</tr>
<tr>
<td>Nitrat (mM)</td>
<td>0.62 ± 0.32</td>
<td>0.84 ± 0.32</td>
<td>0.55 ± 0.19</td>
<td>1.36 ± 0.81</td>
</tr>
<tr>
<td>Ammonium (mM)</td>
<td>1.02 ± 0.02</td>
<td>1.14 ± 0.02</td>
<td>0.25 ± 0.04</td>
<td>0.94 ± 0.01</td>
</tr>
<tr>
<td>Saccharose (mM)</td>
<td>0.20 ± 0.04</td>
<td>0.13 ± 0.05</td>
<td>0.15 ± 0.06</td>
<td>0.11 ± 0.04</td>
</tr>
<tr>
<td>Saccharose \sum Aminosäure</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.004</td>
</tr>
</tbody>
</table>
4 Diskussion

4.1 Hintergrund der Untersuchung zur Stickstoff-Effizienz bei Raps

Ergebnisse sind jedoch nicht ohne weiteres auf Raps übertragbar, da Raps eine Kulturpflanze mit höherem Öl- und Proteingehalt im Samen ist.

4.2 Genetische Variation für die N-Effizienz bei Winterraps-Genotypen

Untersuchungen aus Feldversuchen zur genetischen Variation der N-Effizienz von verschiedenen Winterraps-Genotypen sind bisher aus der Literatur jedoch noch nicht bekannt.

Aufgrund der Ergebnisse in den Jahren 1998 und 1999 zeigten diese Genotypen darüber hinaus eine breite genetische Variation im Blatt-Metabolismus: Die Nitrat-reduktase-Aktivität im Blatt (Abb. 3-1) schwankte unter N=0 kgN/ha zwischen 24 (Capitol, heutige Linie) und 62 nmol Nitrit/g FG/min (RS6, Resynthese-Linie), unter N=240 kgN/ha zwischen 39 (Hektor, ältere Sorte) und 86 nmol Nitrit/g FG/min (RS1, Resynthese-Linie). Die Summe der freien Aminosäuren im Blatt (Abb. 3-2) variierte unter N=0 kgN/ha zwischen 5.1 (Apex, heutige Linie) und 9.6 µmol/g FG (RS3, Resynthese-Linie), unter N=240 kgN/ha zwischen 9.9 (DP-HB-1, neuer Zuchtstamm) und 13.4 µmol/g FG (RS3). Die Summe C (aus Stärke, Glukose, Fruktose, Saccharose, Malat und freien Aminosäuren) im Blatt (Abb. 3-3) lag unter N=0 kgN/ha zwischen 504 (RS6) und 1157 µmol/g FG (Lisabeth, heutige Linie), unter N=240 kgN/ha zwischen 409 (DH Samourai, heutige Linie) und 758 µmol/g FG (RS3). Die Resynthese-Linien zeigten im Vergleich zu den anderen Genotypen insgesamt eine höhere Nitratreduktase-Aktivität und höhere Aminosäuregehalte im Blatt sowie einen höheren Proteingehalt im Samen aber einen niedrigeren Samen-N-Ertrag (Tab. 3-4).
Auch unter Gewächshaus-Bedingungen zeigten die acht Winterraps-Genotypen genetische Variationen des Blatt- und Wurzel-Metabolismus sowie des Phloem- und Xylemtransports, sowohl bei geringer N-Versorgung (0.5 mM Nitrat) als auch bei hoher N-Versorgung (4 mM Nitrat). Zwischen den Genotypen sind Unterschiede im Metabolitgehalt (Tab. 3-8), in der Aktivität N-assimilierender Enzyme wie Nitrat-reduktase (Tab. 3-9) und Glutaminsynthetase (Tab. 3-10) sowie im Phloem- und Xylemtransport (Tab. 3-11-A und -B) erkennbar. Unter Gewächshaus-Bedingungen zeigten die Resynthese-Linien (RS3 und S27) andere Eigenschaften als im Feldversuch. Im Gewächshaus auf Hydrokultur sind bei den Resynthese-Linien

1-„DH Samourai“, 2-„DP-HB-1“, 3-„RNX9505“, 4-„Lembkes Normal“, 5-„Lirajet“, 6-„Alaska“. * Daten aus Kessel (2000) im Rahmen der Arbeit eines DFG-Projekts

Auch unter Gewächshaus-Bedingungen zeigten die acht Winterraps-Genotypen genetische Variationen des Blatt- und Wurzel-Metabolismus sowie des Phloem- und Xylemtransports, sowohl bei geringer N-Versorgung (0.5 mM Nitrat) als auch bei hoher N-Versorgung (4 mM Nitrat). Zwischen den Genotypen sind Unterschiede im Metabolitgehalt (Tab. 3-8), in der Aktivität N-assimilierender Enzyme wie Nitrat-reduktase (Tab. 3-9) und Glutaminsynthetase (Tab. 3-10) sowie im Phloem- und Xylemtransport (Tab. 3-11-A und -B) erkennbar. Unter Gewächshaus-Bedingungen zeigten die Resynthese-Linien (RS3 und S27) andere Eigenschaften als im Feldversuch. Im Gewächshaus auf Hydrokultur sind bei den Resynthese-Linien
gegenüber den anderen Genotypen keine deutlichen Unterschiede mehr erkennbar. Lediglich die Aminosäure-Konzentration im Phloem von RS3 und S27 war unter 4 mM Nitrat leicht erhöht (Tab. 3-11-A). Die „überoptimalen“ Bedingungen im Gewächshaus führten vermutlich dazu, daß die Unterschiede der Genotypen nicht mehr so stark ausgesprägt waren.

4.3 Beitrag des Blattmetabolismus und des Phloemtransports zur N-Effizienz bei Winter-Raps

auf einen negativen Zusammenhang zwischen dem Samen-Ertrag und dem Proteingehalt im Samen hin.

Bei den zahlreichen Rapsgenotypen war lediglich eine positive Korrelation zwischen der Nitratreduktase-Aktivität und dem Aminosäuregehalt in den jungen Blättern (Gewächshausversuche), in den „source“-Blättern (Feld- und Gewächshausversuche) sowie in den Wurzeln (Gewächshausversuche) zu erkennen (Abb. 3-4 und 3-12). In den alten Blättern (Gewächshausversuche) zeigte sich keine Korrelation mehr, da in seneszenten Blättern die Nitratreduktase-Aktivität sehr gering ist und die Proteine zu Aminosäuren abgebaut werden. Zwischen dem Proteingehalt im Samen, dem N-Ertrag im Samen, dem Aminosäuregehalt im Blatt und der Aminosäurekonzentration im Phloem-saft zeigte sich keine Korrelation (Abb. 3-5 und 3-7, Tab. 3-4, 3-5, 3-8 und 3-11-A).

4.3.1 Aminosäuretransport bei Winterraps

Obwohl freie Aminosäuren sowohl im Phloem als auch im Xylem transportiert werden, sind die relativen Konzentrationen der Aminosäuren im Phloem viel höher als die im Xylem, z.B. ist die Aminosäure-Konzentration im Xylem von *Urtica* 3-20 mM (Rosnitschek-Shimmel 1985), von Fichte 3.4-12.7 mM, von Buche 2.4-8.6 mM (Gessler et al. 1998), von Mais-Genotypen 0.6-2.4 mM (Lohaus et al. 1998) und von den hier untersuchten Winterraps-Genotypen 4.0-7.3 mM (Tab. 3-11-B). Die Aminosäure-Konzentration im Phloem ist dagegen von Zucker- und Futtermüben 100-
200 mM (Winzer et al. 1996), von Mais-Genotypen 40-120 mM (Lohaus et al. 1998) und von den hier untersuchten Winterraps-Genotypen 300-770 mM (Tab. 3-11-A). Damit ist die Aminosäure-Konzentration im Phloem der Rapspflanzen höher als die verschiedener anderer Pflanzen-Arten (Tab. 4-1). Das deutet darauf hin, daß Raps eine hohe Leistungsfähigkeit für die N-Assimilation und den Aminosäure-Transport im Phloem hat.

<table>
<thead>
<tr>
<th>Tabelle 4-1. Aminosäurekonzentration im Phloemsaft verschiedener Kulturpflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminosäuren im Phloem (mM)</td>
</tr>
<tr>
<td>Winterraps (Tab. 3-11-A)</td>
</tr>
<tr>
<td>Mais (Lohaus et al. 1998)</td>
</tr>
<tr>
<td>Spinat (Riens et al. 1991)</td>
</tr>
<tr>
<td>Gerste (Winter et al. 1992)</td>
</tr>
<tr>
<td>Zucker- und Futterrüben (Winzer et al. 1996)</td>
</tr>
</tbody>
</table>

Mit Hilfe der nicht-wässrigen Faktionierung wurde gezeigt, daß etwa 65% der Aminosäuren im Cytosol der Mesophyllzellen von Raps lokalisiert sind (Lohaus und Möllers 2000). Unter der Annahme, daß das Volumen des Cytosols etwa 38 µl/g FG beträgt (Winter et al. 1993 und 1994, Leidreiter et al. 1995), können die cytosolischen Aminosäurekonzentrationen berechnet und mit denen im Phloem von Raps verglichen werden. Bei Winterraps ist die Gesamtaminosäure-Konzentration im Phloem etwa 1.3-2.7fach höher als die im Cytosol der Mesophyllzellen (Tab. 4-2). Dabei ist der Gradient bei 0.5 mM Nitrat höher als bei 4 mM Nitrat. Dies deutet auf eine effizientere Mobilisierung der Aminosäuren unter geringer N-Versorgung hin.

Aus einem Vergleich der Aminosäure-Muster (Tab. 3-6, besonders die Anteile von Gln und Glu) zwischen Phloem und „source“-Blatt sowie zwischen Xylem und Wurzel ergibt sich, daß die jeweiligen Anteile der einzelnen Aminosäuren am Gesamtaminosäure-Gehalt in Blatt, Wurzel, Phloem und Xylem unterschiedlich sind. In „source“-Blättern unter 4 mM NO₃⁻ ist der Anteil von Glutamin (38%) am höchsten, während unter 0.5 mM NO₃⁻ der von Glutamat (47%) am höchsten ist. Im Phloemsaft ist der Anteil von Glutamat (26%) unter beiden Stickstoffbedingungen am höchsten. In
4. Diskussion
den Wurzeln ist, ähnlich wie in „source“-Blättern, unter 4 mM NO₃⁻ der Anteil von Glutamin (32%) am höchsten, während unter 0.5 mM NO₃⁻ der von Glutamat (28%) am höchsten ist. Im Xylemsaft (Wurzeldruckexudat) ist Glutamin die dominierende Aminosäure mit einem Anteil an der Gesamtaminosäure-Konzentration von 75% unter 4 mM NO₃⁻ oder von 46% unter 0.5 mM NO₃⁻. Der Unterschied des Aminosäuremusters im Phloemsaaft zwischen 0.5 mM und 4 mM NO₃⁻ ist nicht so stark wie der in „source“-Blättern, in den Wurzeln und im Xylemsaft.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mM Nitrat</td>
</tr>
<tr>
<td>Phloem (mM)</td>
</tr>
<tr>
<td>Apex</td>
</tr>
<tr>
<td>Bristol</td>
</tr>
<tr>
<td>DP-HB-1</td>
</tr>
<tr>
<td>Express</td>
</tr>
<tr>
<td>Falcon</td>
</tr>
<tr>
<td>Lirajet</td>
</tr>
<tr>
<td>RS3</td>
</tr>
<tr>
<td>S27</td>
</tr>
<tr>
<td>MW</td>
</tr>
</tbody>
</table>

4.3.2 Einfluß der Nitrat-Versorgung auf den N-Metabolismus und den N-Transport der Winterraps-Pflanzen

Die in dieser Arbeit untersuchten Winterraps-Genotypen zeigten eine ähnliche Tendenz in der Reaktion auf Nitrat-Versorgung wie sie bereits in anderen Untersuchungen (Yau und Thurling 1987, Gerath und Schweiger 1991, Aniol 1994, Gerath und Balko 1995) beobachtet wurden. Die in Feldversuchen ermittelten Werte aller untersuchten Winterraps-Genotypen zeigten, daß Winterraps unter höherer N-Düngung \((N=240 \text{ kgN/ha})\) insgesamt einen höheren Nitratgehalt, eine höhere Nitratreduktase-Aktivität und Aminosäurekonzentration im Blatt bzw. einen höheren Proteingehalt und N-Ertrag im Samen, aber eine niedrigere Summe C im Blatt und einen niedrigeren N-Ernte-Index hatten als unter geringerer N-Düngung \((N=0 \text{ kgN/ha})\), Tab. 3-1, Abb. 3-1, 3-2 und 3-3).
Auch bei Gewächshaus-Versuchen mit ausgewählten Genotypen unter 0.5 mM bzw. 4 mM Nitrat zeigte sich, daß die Pflanzen unter 4 mM Nitrat höhere Aminosäuregehalte, höhere NR-Aktivitäten und höhere Nitratgehalte, aber niedrigere Stärke-, Saccharose- und Hexosegehalte in den Blättern und den Wurzeln hatten. Daher sind die C/N-Verhältnisse unter 4 mM Nitrat niedriger als unter 0.5 mM Nitrat (Abb. 3-8 und 3-9). Diese Ergebnisse stimmen mit denen bei Zucker- und Futterrüben erzielten Ergebnissen überein (Winzer et al. 1996). Darüber hinaus zeigten die Konzentrationen im Phloem und Xylem eine ähnliche Abhängigkeit von der Nitrat-Versorgung wie sie in den Blättern und Wurzeln beobachtet wurde. Unter 4 mM Nitrat waren mehr N-Verbindungen (im Phloem Aminosäuren; im Xylem Nitrat, Ammonium und Aminosäuren) aber weniger Kohlenhydrate (wie Saccharose) im Phloem und Xylem vorhanden als unter 0.5 mM Nitrat (Tab. 3-11-A und -B).

4.3.3 Einfluß der Ammonium-Ernährung auf den N-Metabolismus und den N-Transport der Raps-Pflanzen

4. Diskussion

4.4 Zur genetischen Manipulation der N-assimilierenden Enzyme bei Raps

4.4.1 Transgene Raps pflanzen mit Überexpression der cytosolischen oder plastidären Glutamin-Synthetase

Im Rahmen dieser Arbeit konnte die Überexpression der cytosolischen oder der plastidären GS in Rapspflanzen durch Northern-Blot und Western-Blot Analysen nachgewiesen werden und spiegelte sich in der Erhöhung der GS-Aktivität wider (Tab. 3-12, Wallbraun 1997).

Im Blatt der hier untersuchten GS1-überexprimierenden Rapspflanzen (C10-26) waren im Vergleich zur Ausgangssorte (Drakkar) die Gehalte der Gesamtaminosäuren, der löslichen Proteine und der Kohlenhydrate, bzw. der Anteil der einzelnen Aminosäuren nicht erhöht (Tab 3-13). Auch die Aminosäure- und Saccharosekonzentrationen im Phloemsaft (Tab. 3-15) der GS1-überexprimierenden Rapspflanzen waren kaum verändert.

Im Vergleich zur Kontrolle (Drakkar) war der Gesamtaminosäuregehalt in den Blättern der GS2-überexprimierenden Rapspflanzen (E8-1) erhöht. Dabei stiegen die Gehalte und die Anteile von Glutamin, Asparagin und Serin an, während die von Glutamat und Aspartat sanken. Der Protein- und Nitratgehalt in den Blättern von E8-1 blieb dabei unverändert. Die Kohlenhydratgehalte und das Saccharose/ΣAminosäure-Verhältnis waren in den Blättern von E8-1 niedriger. Trotzdem waren unter Berücksichtigung der Standardabweichung die Änderungen der Metabolitgehalte im Blatt (Tab. 3-13) und im Phloem (Tab. 3-15) der GS2-überexprimierenden Rapspflanzen (E8-1) ebenso wie die der GS1-überexprimierenden Pflanzen (C10-26) insgesamt nicht signifikant. Dies weist darauf hin, daß die vorhandene Aktivität des Enyzms kein limitierender Faktor für die Ammonium-Assimilation ist.

4.4.2 Transgene Rapspflanzen mit „Antisense“-Hemmung der Glutamin-Synthetase

Im Rahmen dieses Projekts wurde die plastidäre Isoform der Glutamin-synthetase mit Hilfe der „Antisense“-Technik gehemmt. Hierzu wurden die vollständigen cDNA-Klone in „antisense“-Orientierung hinter den 35S-Promotor gekoppelt und via *Agrobacterium*-Transformation in das Rapsgenom inseriert. In regenerierten „Antisense“-Pflanzen konnte eine Reduktion der plastidären
Enzymaktivität bis zu 52% gezeigt werden, die mit einer Verminderung der Proteinmenge, gezeigt im Western-Blot, einherging (Wallbraun 1997). Davon wurden die „Antisense“-Pflanzen (F2-1) mit der Rest-GS2-Aktivität von 64% (Tab. 3-12) biochemisch charakterisiert. Im Vergleich zur Ausgangssorte zeigten die GS2-„Antisense“-Rapspflanzen keine Unterschiede im Phänotyp unter Gewächshaus-Bedingungen. In den „Antisense“-Pflanzen waren keine deutlichen Änderungen in den Metabolit-Gehalten (wie z. B. Aminosäuren, Saccharose und Hexosen) (Tab. 3-14) und im Phloemtransport (Tab. 3-16) erkennbar. Vermutlich ist die Hemmung der GS2-Aktivität nicht genügend, um deutliche Änderung auszulösen.

4.4.3 Transgene Raps-Plantage mit heterologer Expression der AsnA aus E. coli

Wie in der Einleitung bereits beschrieben, katalysiert die AsnA aus E. coli eine analoge Reaktion zur Glutamin-Synthetase, wobei Ammonium und Aspartat unter Verbrauch von ATP Asparagin bilden (Sugiyama et al. 1992). Daher wurde im Rahmen dieses Projekts das asnA-Gen aus E. coli unter Kontrolle des 35S-Promoters
mittels *Agrobacterium* in Rapspflanzen transformiert (Wallbraun 1997, Seiffert 2000), um neben der pflanzeneigenen Asparagin-Synthetase und Glutamin-Synthetase einen weiteren Weg für die Ammonium-Assimilation in Raps einzuführen.

In Western-Blot Analysen wurde eindeutig die Expression der AsnA aus *E. coli* in Rapspflanzen nachgewiesen (Abb. 3-13). Obwohl das AsnA-Gen aus *E. coli* unter Kontrolle des 35S-Promotors in die Rapspflanze eingebracht wurde, zeigten sich Unterschiede in der Proteinmenge in den unterschiedlichen Organen und in Abhängigkeit von der N-Ernährung. Die Signale der Blattproben sind stärker als die der Wurzelproben, und die Signale der Wurzelproben bei Ammonium-Ernährung sind stärker als die bei Nitrat-Ernährung (Abb. 3-13). Das deutet darauf hin, daß die Expression der AsnA aus *E. coli* unter Kontrolle des CaMV 35S-Promotors in der Rapspflanze eine gewisse Gewebe- (in Tabak: Jefferson et al. 1987, Cannon et al. 1990; in Reis: Battraw und Hall 1990; in Raps: Stefanov et al. 1994) und Ernährungspezifität (Nitrat oder Ammonium) hat, bzw. einer translationalen Regulation unterworfen ist.

Im Vergleich zur Kontrolle (Drakkar) führte die in den Rapspflanzen exprimierte AsnA aus *E. coli* zu einer 5-20fachen Aktivitäts-Steigerung der Asparagin-Synthetase in vitro (Tab. 3-17-A). Die Aktivität der Glutamin-Synthetase (Tab. 3-18) und der Nitratreduktase (Tab. 3-19) waren dagegen unverändert. Im Gewächshaus waren keine phänotypischen Veränderungen der transgenen Pflanzen sichtbar. Weiter zeigte die eingeführte AsnA aus *E. coli* in den transgenen Pflanzen (H18-6, H18-8 und H24-2) keine deutlichen Auswirkungen auf die Metabolitgehalte (Tab. 3-20-A und -B), weder bei Nitrat- noch bei Ammonium-Ernährung sowie weder am Ende der Lichtperiode noch am Ende der Dunkelperiode. Die Anteile von Asparagin sowie anderer Aminosäuren am Gesamtaminosäuregehalt im Blatt waren unverändert. Bei 4 mM Ammonium-Ernährung zeigten die transgenen Pflanzen keine Vorteile gegenüber der Ausgangssorte. Ebenfalls ist kein großer Unterschied zwischen den transgenen Pflanzen und der Kontrolle in den Phloem- (Tab. 3-21) und Xylem-Konzentrationen (Tab. 3-22) zu finden. Dies deutet darauf hin, daß die pflanzeneigene Aktivität der Asparagin-Synthetase nicht limitierend für die Ammonium-Assimilation ist. Da die Ammonium-Assimilation vermutlich in erster Linie in Plastiden stattfindet, wurde die

4.4.4 Abschlußbemerkung

Anhand der Ergebnisse der transgenen Raspflanzen, wobei die genetische Veränderung der Glutamin-Synthetase oder Asparagin-Synthetase in Raps nur eine Veränderung der entsprechenden Enzymexpression und -aktivität aber keinen deutlichen Einfluß auf den Aminosäuregehalt im Blatt und im Phloem auslöste, deuten darauf hin, daß die Aktivitäten von Glutamin-Synthetase und Asparagin-Synthetase kein limitierender Faktor für die N-Assimilation in Raps sind. Die Verbesserung der N-Effizienz ist zu komplex, als daß die Veränderung der Aktivität eines Enzym dies bewirken könnte.
5 Zusammenfassung

In der vorliegenden Arbeit wurde der Zusammenhang zwischen N-Assimilation, Phloemtransport, Proteinspeicherung im Samen und N-Effizienz bei verschiedenen Rapsgenotypen untersucht.

1) Genetische Variation der Stickstoff-Verwertungseffizienz bei Winterraps

2) Einteilung der auf dem Feld untersuchten Winterraps-Genotypen unter Berücksichtigung der „Source“- und „Sink“-Kapazität

3) **Korrelationen zwischen den untersuchten Parametern für die N-Verwertungs-Effizienz bei verschiedenen Winterraps-Genotypen**

In den Feld- oder Gewächshausversuchen war eine positive Korrelation zwischen NR-Aktivität und Aminosäuregehalt in den jungen und den „Source“-Blättern sowie in den Wurzeln zu finden, in den alten Blättern jedoch nicht.

Der Proteingehalt im Samen, der Samen-N-Ertrag, sowie der Aminosäuregehalt im Blatt und im Phloem korrelierte nicht miteinander.

4) **Aminosäuremuster und -transport bei Winterraps**

Bei Raps sind Glutamat, Glutamin, Aspartat und Serin die Hauptaminosäuren in den Blättern und Wurzeln sowie im Phloemsäft, während Glutamin im Xylemsaft dominant ist.

Im Vergleich zu den anderen Pflanzen-Arten zeigten die Rapspflanzen sehr viel höhere Aminosäure-Konzentrationen im Phloem, was auf eine hohe Leistungsfähigkeit für die N-Assimilation und Aminosäure-Transport hinweist.

Der Aminosäure-Konzentrationsgradient zwischen Phloem und Cytosol der Mesophyllzellen ist bei 0.5 mM Nitrat höher als bei 4 mM Nitrat. Daher ist die Mobilisierung der Aminosäuren unter geringerer N-Versorgung effizienter.

5) **Reaktion des Stoffwechsels der Rapspflanze auf Nitrat-Versorgung**

Im Vergleich zur geringeren Nitrat-Versorgung zeigten die Rapspflanzen unter höherer Nitrat-Versorgung insgesamt, **a)** höhere NR-Aktivität in den Blättern und Wurzeln, **b)** höhere Gehalte der N-haltigen Metabolite aber niedrigere Gehalte der Kohlenhydrate in den Blättern und Wurzeln sowie im Phloem- und Xylemsaft, **c)** höheren Proteingehalt und N-Ertrag im Samen aber niedrigeren N-Ernte-Index.

Die GS-Aktivität in den Blättern und Wurzeln wurde von Nitrat-Versorgung nur wenig beeinflußt.

Das Aminosäuremuster im Phloem war im Vergleich zu denen in „Source“-Blatt, Wurzel und Xylem von der Nitrat-Versorgung wenig beeinflußt.
5. Zusammenfassung

6) Reaktion des Stoffwechsels der Raps pflanze auf Ammonium-Ernährung

Die Rapspflanzen bei 4 mM Ammonium wuchsen schlechter, warfen die Blätter früher ab und waren bei Blühende kleiner als die bei 4 mM Nitrat.

Die GS-Aktivität in Blatt und Wurzel wurde kaum von der N-Form (Nitrat oder Ammonium) beeinflußt, während die NR-Aktivität in den Ammonium-ernährten Raps pflanzen erwartungsgemäß sehr niedrig ist.

7) Auswirkungen der N-assimilierenden Enzyme auf N-Verwertungseffizienz bei Raps

Bei den GS1- und GS2-überexprimierenden Raps pflanzen waren trotz der erhöhten GS-Aktivität die Änderungen der Metabolit-Gehalte im Blatt und im Phloemsaft gegenüber der Ausgangssorte nicht signifikant.

Auch die GS2-„Antisense“-Raps pflanzen zeigten keine phänotypischen Änderungen und trotz der geringeren GS2-Aktivität keine deutlichen Änderungen in den Metabolit-Gehalten im Blatt und im Phloemsaft.

Im Vergleich zur Ausgangssorte zeigten die transgenen Raps pflanzen mit AsnA aus E. coli zwar a) erhöhte Aktivitäten der Asparagin-Synthetase aber b) keine Vorteile bei 4 mM Ammonium-Ernährung und keine phänotypischen Veränderungen im Gewächshaus, c) keine deutlichen Auswirkungen auf die Metabolitgehalte in Blatt und Wurzel sowie im Phloem- und Xylemsaft, auch nicht auf den Gehalt von Asparagin.

Vermutlich sind die Aktivitäten dieser Enzyme nicht limitierend für die N-Assimilation. Die Verbesserung der Stickstoffeffizienz ist zu komplex, als daß die Veränderung der Aktivität eines Enzyms dies bewirken könnte.
6 Abkürzungsverzeichnis

ABA Abscisinsäure
ADP Adenosin-5′-Diphosphat
Akt. Aktivität
Ala (ala) Alanin
AMP Adenosin-5′-Monophosphat
APAD(H₂) Acetylpyridinadenindinukleotid (reduziert)
APS Ammoniumpersulfat
Arg (arg) Arginin
AS Aminosäure(n)
Asn (asn) Asparagin
AsnA Asparaginsynthetase A
AsnB Asparaginsynthetase B
AsnS Asparaginsynthetase
Asp (asp) Aspartat
ATP Adenosin-5′-Triphosphat
Bl. Blatt
BSA Rinderserumalbumin
cDNA copy DNA
CS Citrat-Synthase
DH Dehydrogenase
DNA Desoxyribonukleinsäure
DTT Dithiothreitol
E Extinktion
EDTA Ethylendiamin-N,N,N′,N′-Tetraacetat
EGTA Ethylenglykol-bis-(2′-Aminoethylether)- N,N,N′,N′-Tetraacetat
ER endoplasmatisches Reticulum
Fa. Firma
FAD(H₂) Flavinadenindinucleotid (reduziert)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>Frischgewicht</td>
</tr>
<tr>
<td>Fru-6-P</td>
<td>Fruktose-6-Phosphat</td>
</tr>
<tr>
<td>gaba</td>
<td>γ-Aminobuttersäure</td>
</tr>
<tr>
<td>Glc-6-P</td>
<td>Glukose-6-Phosphat</td>
</tr>
<tr>
<td>Gln (gln)</td>
<td>Glutamin</td>
</tr>
<tr>
<td>Glu (glu)</td>
<td>Glutamat</td>
</tr>
<tr>
<td>Gly (gly)</td>
<td>Glycin</td>
</tr>
<tr>
<td>GOGAT</td>
<td>Glutamatsynthase</td>
</tr>
<tr>
<td>GS</td>
<td>Glutaminsynthetase</td>
</tr>
<tr>
<td>GS1</td>
<td>cytosolische Glutaminsynthetase</td>
</tr>
<tr>
<td>GS2</td>
<td>plastidäre Glutaminsynthetase</td>
</tr>
<tr>
<td>Hepes</td>
<td>N-(2-Hydroxyethyl)-Piperazin-N′-Ethansulfonsäure</td>
</tr>
<tr>
<td>His (his)</td>
<td>Histidin</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>Ile (ile)</td>
<td>Isoleucin</td>
</tr>
<tr>
<td>Kat</td>
<td>Katal (Enzymeinheit, mol/s)</td>
</tr>
<tr>
<td>K-Borat</td>
<td>Kaliumborat</td>
</tr>
<tr>
<td>Leu (leu)</td>
<td>Leucin</td>
</tr>
<tr>
<td>Lys (lys)</td>
<td>Lysin</td>
</tr>
<tr>
<td>MDH</td>
<td>Malat-Dehydrogenase</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-Morpholino)-ethansulfonsäure</td>
</tr>
<tr>
<td>Met (met)</td>
<td>Methionin</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NAD(H)</td>
<td>Nicotinamid-Adenindinukleotid (reduziert)</td>
</tr>
<tr>
<td>NADP(H)</td>
<td>Nicotinamid-Adenindinukleotid-Phosphat (reduziert)</td>
</tr>
<tr>
<td>NiR</td>
<td>Nitritreduktase</td>
</tr>
<tr>
<td>NR</td>
<td>Nitratreduktase</td>
</tr>
<tr>
<td>OPA</td>
<td>ortho-Phthaldialdehyd</td>
</tr>
<tr>
<td>PGI</td>
<td>Phosphoglukose-Isomerase</td>
</tr>
<tr>
<td>Phe (phe)</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Pi</td>
<td>anorganisches Phosphat</td>
</tr>
<tr>
<td>PPI</td>
<td>Pyrophosphat</td>
</tr>
<tr>
<td>PMS</td>
<td>Phenazinmethosulfat</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonsäure</td>
</tr>
<tr>
<td>R²</td>
<td>Bestimmtheitsmaß</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>Ser (ser)</td>
<td>Serin</td>
</tr>
<tr>
<td>TG</td>
<td>Trockengewicht</td>
</tr>
<tr>
<td>Thr (thr)</td>
<td>Threonin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>Trp (trp)</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tyr (tyr)</td>
<td>Tyrosin</td>
</tr>
<tr>
<td>Val (val)</td>
<td>Valin</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen/Volumen</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht/Volumen</td>
</tr>
</tbody>
</table>
7 Literaturverzeichnis

Cox WJ, Reisenauer HW. (1973) Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil 38: 363-380.

Polesskaya OG, Glazunova MA, Alekhina ND. (1999) Respiration and photosynthesis in wheat plants as related to their growth and nitrogen status

Herzlichen Dank an...

Frau Dr. Gertrud Lohaus für die Betreuung, interessierte Anregungen, Diskussionen und alle Hilfe bei der Durchführung und beim Schreiben dieser Arbeit

Herrn Prof. Dr. Hans-Walter Heldt für die Unterstützung und seine häufige Frage „Wie geht’s? Wie geht Ihre Arbeit voran?“

Priv.-Doz. Dr. Dieter Heineke für die Übernahme des Korreferats und die Hilfe

Dr. Thilo Winzer, Christian Knop, Jens Tilsner und Michaela Strauß für das Durchlesen eines Teils bzw. der ganzen Arbeit

Melanie Hußmann, Marion Gottschall, Christiane, Birgit und Monika Raabe für die Hilfe beim Probenernten auf dem Feld bzw. bei den zahlreichen Messungen

Gerd Mader für die technische Unterstützung

Anne Brandeck für die Hilfsbereitschaft und das Lächeln

Herrn Wedemeyer für die Hilfe bei der Versorgung der Pflanzen und der Blattläuse im Gewächshaus

Herrn Heise, Herrn Rureinski, Katharina Pawlowski, Sigrun Reumann, Helmut, Friedrich Kauder und Meike, Andrea Nickel, Maren, Anita, Helma, Yolanda, Barbara, Jens, Meik, Andrea Hattenbach, Maria Koch, Mareike, Olga, Marsha, Marion, Alex, u. a. für die Hilfe und die freundliche Atmosphäre

Prof. Dr. H. Becker, Dr. Christian Möllers, Michael Wallbraun, Bettina Kessel und Beatrix Seiffert für die Zusammenarbeit im Rapsprojekt

Die Freunde, wie z.B. meine Landsleute und Tischtennis-GegnerInnen, die hier nicht konkret genannt werden, für den Spaß während der Freizeit in den vergangenen Jahren

Meine Eltern und Geschwister für die besondere Unterstützung und das Verständnis

Die Erziehungskommission der Volksrepublik China und die Hanns-Seidel-Stiftung für das Stipendium
Lebenslauf

08. 1988 – 09. 1994 Wissenschaftlicher Mitarbeiter an der Fakultät für Biologie der Agrarwissenschaftlichen Universität Südchina, Guangzhou, VR China

10. 1994 – 01. 1996 Deutsch-Intensivkurs an der Tongji-Universität in Shanghai, VR China

03. 1996 – 06. 1996 Deutsch-Sprachkurse am Goethe-Institut in München, Deutschland

07. 1996 – 02. 1997 Aufbaustudium im Institut für Biochemie der Pflanze an der Universität Göttingen, Deutschland