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Anthropogenic change and biodiversity loss � a problem at multiple scales 

Anthropogenic modification of habitats, largely due to agricultural conversion, is a global 

threat to biodiversity (e.g., Tilman et al. 2002; Gaston et al. 2003). Much previous 

attention has focused on the use of set-aside areas for conservation; however, there is 

increasing recognition that protected areas are not sufficient to slow the biodiversity 

decline, and attention is now turning towards the potential utility of managed land for 

conservation (Novacek & Cleland 2001; Bengtsson et al. 2003; Tscharntke et al. 2005 � 

see also Chapter 2). Nowhere is this need more imperative than in the tropics, where the 

greatest diversity of species occurs (Myers et al. 2000), but conservation funding is low, 

increasing the reliance of these regions on managed land for biodiversity maintenance 

(Perfecto et al. 1996). Recent attention has therefore shifted to tropical agroforests, as 

their superficial resemblance to natural habitats and less intensive management practises, 

may make them an important candidate for conservation in the tropics (e.g., Perfecto et 

al. 1996, Moguel & Toledo 1999; Rice & Greenberg 2000; Perfecto et al. 2003). 

Nevertheless, the extent of their contribution to the biodiversity of many taxa is unclear, 

particularly in comparison to other more intensive (e.g. arable land) or less-intensive 

(forest) land use types. Previous studies have examined the effects of increased 

management intensity on a variety of taxa and found both negative (Steffan-Dewenter et 

al. 2002; Mas & Dietsch 2003; Schulze et al. 2004; Shahabuddin et al. 2005 � see also 

Chapter 5), and positive (e.g., DeVries et al. 1997; Lawton et al. 1998; DeVries & Walla 

2001; Klein et al. 2002 - see also Chapter 4) effects on diversity. One reason for the lack 

of congruence in these studies may result from differences in the spatial and/or temporal 

scale of sampling, and recent studies have shown that the effects of habitat 

loss/modification can manifest themselves differently according to the scale examined 

(e.g., Roland & Taylor 1997; Hamer & Hill 2000; Willis & Whittaker 2000; Hill & 

Hamer 2004 � see also Chapters 2,4,5). Therefore, an understanding of the effects of land 

use on diversity requires an understanding of the manner in which these effects vary 

across spatial scales. Although effects at different temporal scales have received less 

attention, the same patterns appear to occur (DeVries et al. 1997 - see also Chapter 5); 

therefore, a clear understanding of the effects of land use on diversity requires analyses at 
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multiple spatiotemporal scales (Ricklefs & Schluter 1993; May 1994), and across a broad 

range of habitats.  

 

The overarching project   

The work contained in this thesis took place within 

a project titled: Evaluation of biological diversity of 

land-use systems in mega-diverse regions of coastal 

Ecuador (BIO-SYS). A brief description of the 

project follows, so that the remaining chapters can 

be placed into their proper context within the 

project. Parts of this chapter were taken from 

Tylianakis et al. (2004). 

 

Project rationale/components 

Sustainable land use may produce a great variety of ecological goods and services 

(Altieri 1999). However, without payments for these services, environmentally-friendly 

land use may remain economically unattractive. Therefore, some kind of economic 

incentive may be necessary to encourage ecologically sustainable land use. Before 

incentives such as payment for ecosystem services can be initiated, however, information 

is needed regarding both the land management practices that are most beneficial for 

preservation of biodiversity, and the financial costs or benefits associated with these 

practices. 

The BIO-SYS project lies at the interface of science and politics. We sought to evaluate 

species richness and ecosystem services in order to provide a scientific and operational 

basis for the implementation of payments for these services. Such payments, whether 

originating from the government or consumers, could potentially lift the economic burden 

of biodiversity preservation from landowners, allowing economically feasible 

conservation on private land.  

The project was divided into four main components, one biological, one soil, one 

economic, and one land-use modelling. The aim of the diversity component was to 

determine the importance of differences in land-use types for the preservation of 
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biodiversity and associated ecosystem functioning. Agroforests in particular may be 

important reservoirs for biodiversity (Perfecto et al. 1996; Moguel & Toledo 1999; Rice 

& Greenberg 2000; but see Rappole et al. 2003 for a caveat), and therefore received 

considerable attention.  

The economic component made cost/revenue comparisons and risk analyses for the 

different land-use types. Finally, the overall diversity (soil, plants, arthropods, birds) and 

economic components will be integrated into a dynamic land-use model for the regions 

concerned. The major components of the project are as follows: 

 

Soil analyses 

These determined the effect of the interaction between soil type and land use 

management on the diversity of chemical, physical and biological soil characteristics at 

the plot and landscape level and its relation with other ecosystem functions such as plant 

diversity, nutrient cycling and carbon sequestration. 

 

Plant community analyses 

These used botanical surveys to map vegetation and determine the relationship between 

the diversity of plants and land-use type or combination of land use types. This was then 

related to bird diversity.  

 

Bird diversity 

Bird diversity in the different land use systems was determined by means of the point 

count method in different seasons. Bird diversity in natural forest and agroforestry 

systems was related to food availability. 

 

Insect community analyses 

The work contained in this thesis formed part of the insect component (see Research 

objectives p.13). A further study examined the effects of differences in Hymenoptera 

diversity on coffee pollination and revenues. 
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Figure 1.1. Map of Ecuador showing study 
regions in 1. Esmeraldas and 2. Manabi. 

Economic 

The economic component of the project focused on comparisons of different land-uses 

and land management practices, as well as quantification of opportunity costs for 

biodiversity conservation. Farmers' land allocation problems were studied in detail, 

considering that net revenues and risks are major determinants for land-use choice. Risk-

analysis techniques included Montecarlo simulations and Stochastic Dominance. The 

biodiversity component of the overall research was integrated in this analysis by means 

of possible payments for environmental services, which may lead to relevant policy 

implications. 

 

Dynamic modeling 

The locally recorded ecological and economic information will be combined into a land-

use model for the Manabi and Esmeraldas regions. This will allow regional-scale 

forecasts concerning land-use changes generated by financial incentives for providing 

ecosystem services. Through scenario studies we will identify potential trade-offs 

between biodiversity conservation, carbon sequestration and the production of 

agricultural and forestry products. Finally, it will be estimated how and where 

conservation measures can be implemented with the lowest opportunity costs. The model 

will be assigned from the local to the regional scale. 

 

Study region  

The research was carried out in the megadiverse �choco-manabi� region of coastal 

Ecuador. This region is characterised by high annual rainfall, and high diversity of many 

taxa. The primary study region was in the 

province of  Manabi, close to the town of Jipijapa 

(Fig. 1.1, and Fig. 4.1 p.76). We conducted our 

research in this region for 17 months, using 

monthly evaluations of the trap-nests. The 

province of Manabi has been heavily modified by 

agricultural practices (Table 4.1, p.75, shows the 
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area occupied by the different land-use types in this study). This formerly humid region 

has become semi-arid (temperature and rainfall information is presented in Appendix 5.1, 

p.109) due to large-scale deforestation, and the little forest cover remaining suffers from 

fragmentation effects, removal of timber, and intensive activities such as burning of the 

adjacent arable land. The province of Manabi is therefore ideal for an assessment of the 

effects of agricultural modification on biodiversity, as it is too late to consider 

conservation of natural habitats in this region as a solution to biodiversity decline. The 48 

study plots comprised private farms within the cantons: Jipijapa, Pajan and 24 de Mayo 

(see Appendix 5.2, p.110 for site location details).  

In addition to this region, we also conducted research on trap-nesting Hymenoptera 

communities within the northern province of Esmeraldas (Fig. 1.1), close to the town of 

Cabo San Fransisco. This region is in direct contrast to Manabi, with very little 

agricultural conversion, and a large degree of forest cover. The data from Esmeraldas are 

not presented here, but will be used in future work. 

 

The study system: Cavity-nesting Hymenoptera as bioindicators 

The central problem surrounding direct measurement of biodiversity is the sheer number 

of species in most habitats, making indirect measurement techniques more heavily relied 

upon. Indirect measures generally incorporate presence/absence data from few taxa, such 

as lichens or aquatic invertebrates, as a basis for extrapolations to community-level 

diversity (e.g., Wolseley et al. 1994; Larsen et al. 1996). Several indicator taxa from 

different groups may even be used; however, these taxa may not show congruent patterns 

of diversity (Prendergast et al. 1993). This makes the selection itself of indicator taxa a 

partial determinant of the end diversity estimate. However, bioindicator groups can also 

be used in a broader sense to indicate changes in population parameters, ecological 

functions or community structure (e.g., Tscharntke et al.1998; Paoletti 1999; Davis et al. 

2001). Insects make particularly useful bioindicators because they account for more than 

half of all species and their diversity allows for fine-scale resolution when differentiating 

between habitats. 

Many surface-dwelling arthropods are used for bioindication because a) the taxa most 

often collected (such as carabid and staphylinid beetles and spiders) are polyphagous 
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predators, and are therefore considered to be important for biological control, b) 

collections are made easily with pitfall traps, and c) catches are normally sufficiently 

large to allow statistical analyses (Duelli et al.1999). Pitfall sampling for ground-

dwelling invertebrates may however lead to taxonomic difficulties and often 

unmanageable sample sizes. While these problems can be partially overcome with 

simpler survey techniques (e.g., Andersen et al. 2002), such surveys yield ultimately 

information only on individual and species number, without any ecological context 

regarding species interactions. These ecological interactions are integral to the concept of 

biodiversity, and their exclusion reduces ecosystem diversity to a simple number, which 

does not contribute fully to the understanding of ecosystem services in multitrophic 

communities (Montoya et al. 2003). For this reason community-based studies for 

evaluations of biodiversity are necessary. For example, marine crustacean, soil arthropod 

or cavity-nesting Hymenoptera (Hymenoptera: Apidae, Eumenidae, Sphecidae and 

Pompilidae) communities make useful bioindication tools, due to their discreet area, 

trophic complexity and species diversity (Sanchez-Moyano & Garcia-Gomez 1998; 

Tscharntke et al. 1998; van Straalen 1998). In terms of ecosystem services (sensu 

Costanza et al. 1997) or functional agricultural biodiversity (Gurr et al. 2003), 

communities of cavity-nesting bees and wasps (Fig. 1.2) are particularly salient, as their 

constituents are important pollinators of both crops and wild plants (Corbet et al. 1991; 

Klein et al. 2003). Anthropogenic declines in insect pollinators may have important 

consequences for plant biodiversity and stability of food crop yields (Allen-Wardell et al. 

1998). Moreover, many cavity-nesting species are also predators or parasitoids, thereby 

acting as biological control agents (e.g., Harris 1994).  

Trap-nests yield a suite of ecological information that can be used to compare habitats. 

As with other sampling techniques, they provide measures of overall abundance (Klein et 

al. 2002), and species richness (Chapters 3-7), as well as species richness of certain 

guilds, such as parasitoids (Chapters 3,6,7). These parameters can be used for habitat 

comparisons based on differences in successional stage (Gathmann et al. 1994), plant 

species richness (Tscharntke et al. 1998; Chapters 3,4), land-use intensity (Klein et al. 

2002; Chapters 3-7) or habitat diversity (Steffan-Dewenter 2002). Moreover, trap-nests 

provide important and often-neglected information on ecological interactions such as the 
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type of food provided to offspring (e.g., pollen, spiders, Lepidoptera larvae), rates of 

survival/parasitism (Chapters 6,7), or foraging time (Klein et al. 2004).  

A description of the construction of trap-nests can be found in the Methods sections of 

Chapters 3-6, and a list of the species observed in the present study can be found in 

Appendix 6.1 (p.128). 

 

 

Figure 1.2. Examples of (left) a trap-nest, (centre) a trap-nesting bee species (Neofidelia sp.; Hymenoptera: 

Megachilidae), and (right) a parasitoid of trap-nesting species (Leucospis sp.; Hymenoptera: Leucospidae). 

 

Research objectives 

The overall aim of this research was to examine the effects of anthropogenic habitat 

modification on the diversity and parasitism rates of cavity-nesting bees, wasps, and their 

natural enemies. This general aim could be broken down into separate themes relating to 

i) the effects of habitat modification on diversity, ii) effects across different spatial and 

temporal scales, and iii) the effects of diversity on rates of parasitism.  

i) We began with a general discussion of the utility of managed land for 

conservation of insects, and an introduction of the manner in which this utility 

can vary at different spatial and temporal scales (Chapter 2). We then 

examined, for our particular study region, the effects of habitat heterogeneity 

on species diversity at three trophic levels (Chapter 3). 

ii) We examined the effect of anthropogenic habitat modification on additively-

partitioned Hymenoptera diversity, and the importance of source habitats and 

local floral resource availability. We also examined the manner in which these 

effects on α, β, and γ diversity vary across spatial (Chapter 4) and temporal 

(Chapter 5) scales. This approach allowed us to examine why previous short-

term studies have had contradictory results in terms of the effects of habitat 
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modification on species diversity.  We also examined the impact of habitat 

modification on the proportion of habitat specialists, as examination of species 

richness alone gives no indication of the conservation value of the species 

considered (Chapter 5).  

iii) Many studies have examined the effects of diversity on plant productivity, and 

recent studies have examined the effects of predator/parasitoid diversity on 

rates of predation/parasitism. However, these studies have almost entirely 

been conducted in mesocosms, so the applicability of the results to the real 

world remain unclear. We therefore examined the effect of bee, wasp and 

natural enemy diversity on rates of parasitism, and stability in parasitism 

through time (Chapter 6), and the effects of resource heterogeneity on the 

diversity/parasitism relationship (Chapter 7). 

 

Chapter outline 

Chapter 2 discusses the potential utility of managed land for conservation of insects, and 

briefly introduces the manner in which this can vary at different scales. It examines the 

biodiversity and ecosystem services that may be maintained in agroecosystems, and how 

these may be enhanced. It also questions the appropriateness of current agri-environment 

schemes for conservation on managed land, and suggests possible improvements to these 

schemes that incorporate the multiple scales at which land use affects biodiversity. 

Chapter 3 examines how land use can affect soil heterogeneity and promote plant 

diversity, which in turn affects the diversity of bees, wasps and their natural enemies. 

This chapter demonstrates the importance of heterogeneity in resource distributions for 

the structure of ecological communities � a theme that recurs throughout this thesis.  

Chapter 4 examines the effect of habitat modification on bee and wasp diversity. It also 

examines the effects of distance to source populations and floral resource availability on 

diversity, and how these effects vary across spatial scales. This chapter uses additive 

partitioning of diversity to examine the contribution of trap- (α) and plot- (β) scale 

diversity to the overall habitat type and regional (γ) diversity, noting the different 

partitioning of diversity in different habitat types. 
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Chapter 5 takes a step further, by including data over a longer time period, and examining 

the temporal species turnover in different habitat types. It explains why homogenous 

modified habitats may appear to have higher diversity than natural habitats when sampled 

over a short time period. This chapter also examines the relative specificity of the bees 

and wasps inhabiting different habitat types, showing that species richness is not the only 

useful measure of the contribution of a habitat to biodiversity. 

Chapter 6 addresses the relationship between diversity and ecosystem functioning. Much 

research has been conducted on this subject; however, field studies are almost completely 

lacking, and in the instances where they have been conducted, possible methodological 

flaws have led to equivocal results. This chapter examines the effect of bee, wasp and 

natural enemy diversity on rates of parasitism, and stability in parasitism through time. It 

explains why previous studies may have yielded equivocal results, and draws on 

knowledge from the previous chapters to understand patterns in parasitism rates across 

different habitat types. 

Chapter 7 examines the diversity/parasitism relationship itself, and how this varies 

according to heterogeneity in biotic and abiotic factors. It uses one focal host species and 

examines how heterogeneity, particularly patchiness in host abundance, leads to a 

stronger effect of natural enemy diversity on rates of parasitism. It also explains that 

mesocosm studies may not have contained the necessary heterogeneity to allow niche 

complementarity, and therefore have often found no effect of predator diversity on prey 

consumption. 
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Introduction 

Agricultural land use and biodiversity conservation have been traditionally viewed as 

incompatible, but only recently, recognition has increased that a restriction of 

conservation efforts to natural, undisturbed ecosystems is of limited value (Pimentel et al. 

1992, Bengtsson et al. 2003). �We are obviously past any point where strategies that 

focus on conservation of pristine habitat are sufficient for the job� (Novacek and Cleland 

2001). Agriculture can make important contributions to high diversity of landscapes, 

while it also benefits from sustainable ecosystem services provided by agricultural 

conservation management (Daily 1997, Kremen 2005, Tscharntke et al. 2005). For 

example, enhanced biological pest control and improved crop pollination may directly 

increase the farmers� income (e.g. Östman et al. 2003, Ricketts et al. 2004, Olschewski et 

al. submitted).  

In this chapter, we review negative and positive effects of agriculture for 

biodiversity conservation and the role of biodiversity in multifunctional agriculture, 

including ecosystem services such as biological pest control. Biodiversity patterns change 

with the spatial and temporal scales considered, so integrating conservation in agriculture 

requires a multiscale landscape perspective. Further, we discuss political options for 

sustainable landscape planning. We argue that there is a need for a diversity of 

�insurance� species, to support the landscape-wide capacity to reorganize after 

disturbance, and for tailoring agri-environment schemes at the landscape level.  

 

Agriculture between habitat destruction and conservation 

The greatest losses in biodiversity worldwide have been attributed to the expansion and 

intensification of agriculture (Robinson and Sutherland 2002; Tilman et al. 2002), and 

land use is often characterized by a transformation of complex ecosystems and 

landscapes into simple ones, resulting in reduced biodiversity (Fig. 2.1). Species loss 

does not affect all species similarly, which may result in the release of herbivores due to 

reduced control by natural enemies (see Fig. 2.1). Agricultural intensification happens at 

different spatial scales. Local intensification includes adverse effects such as shortened 

crop rotation cycles and increasing input of agrochemicals. On a landscape scale, fields 
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have been amalgamated and enlarged, resulting in simplified landscapes without any 

noncrop habitats remaining (e.g., Swift and Anderson 1993, Tscharntke et al. 2005).  

 
Figure 2.1. Decreasing insect biodiversity with decreasing landscape heterogeneity.  From top to bottom, 

the agricultural landscape becomes simplified and the associated insect communities become less diverse. 

For each landscape type, insect symbols show herbivores (two rows on the bottom) and predators (two 

rows on the top). In the simplest landscape (bottom) only generalist species survive, pest outbreaks are 

common because higher trophic levels suffer more from simplification, and ecosystem services are limited.  
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However, agricultural land use does not just mean habitat destruction. Traditional and 

low-intensity land use practices may create species-rich habitats, which is well known 

from Europe (e.g., high diversity grasslands) but also known from the tropics (see 

Perfecto et al. 1996). For example, coffee and cacao agroforestry, shaded by diverse 

natural or planted trees, represent the last remaining forested habitats in many tropical 

landscapes (Rice and Greenberg 2000, Perfecto and Armbrecht 2003).  

Insect and bird species in these managed ecosystems may be as high as in the adjacent 

forest remnants. Both in temperate and tropical regions, the neighbourhood of natural and 

managed ecosystems is often important for sustaining the agroecosystems� biodiversity 

and associated ecosystem services such as pollination and biological control. For 

example, field boundaries adjacent to temperate crop fields support colonisation by 

noncrop plants as well as insects, thereby facilitating biological control (e.g., Thies and 

Tscharntke 1999). Coffee agroforestry adjacent to rainforests profits from the invasion of 

pollinating bees, enhancing coffee yield and net revenues of the farmers (Olschewski et 

al. submitted). 

Habitat manipulation of farmland offers great potential for conservation of non-

arthropods too. Many songbird populations have declined markedly in western Europe, as 

have those of the grey partridge, Perdix perdix (L.) and some mammals such as the 

harvest mouse, Micromys minutes (Pallas). Recent work by scientists at the Game 

Conservancy Trust in the United Kingdom has led to dramatic improvements in the 

populations of these species by the use of simple but research-intensive protocols. Again, 

beetle banks are prominent in this regard; not only do they harbour up to 1000 predatory 

invertebrate individuals per square metre in the winter, but the greatest nesting densities 

of grey partridge and the harvest mouse now occur in these �island habitats� (Thomas et 

al. 2001). 

Methods for increasing the conservation value of agricultural land at the habitat scale are 

usually more familiar, and normally involve an attempt to decrease the intensity of 

management. Insect diversity and abundance can be enhanced by provision of woody 

borders or non-crop habitats adjacent to fields (e.g., Dyer and Landis 1997; Holland and 

Fahrig 2000), high shade-tree diversity in agroforests (Stamps and Linit 1997; Sperber et 

al. 2004, Veddeler et al. 2005) or through organic management (Hutton and Giller 2003; 
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Asteraki et al. 2004; Wickramasinghe et al. 2004; Bengtsson et al. 2005, Morandin and 

Winston 2005). Nevertheless, the primary goal of landowners is to maximise profit, and 

differences between those strategies that favour conservation and those that favour 

economic returns must be reconciled (Banks 2004). In this sense conservation efforts 

must be pragmatic, and search for strategies that are mutually beneficial for the 

landowners and biodiversity. Several options are available for this type of mutual benefit. 

First of all, financial incentives can be offered to landowners in exchange for providing 

conservation services, such as unsprayed headlands or the agri-environment schemes 

discussed below. Second, reduced intensity through organic farming can be beneficial to 

a variety of taxa, and any extra costs associated with organic farming can be offset by the 

consumer, so that the financial burden of conservation is shared (e.g., Collins et al. 1992). 

 

Biodiversity in Agroecosystems and Habitat Manipulation for Enhanced Biocontrol 

Agricultural ecosystems are traditionally considered to be biodiversity poor (see above). 

Consequently, the role of modified ecosystems such as agricultural and urban land in 

providing ecosystem services, such as biological control, climate regulation, food, fuel 

wood, gas regulation, pollination and soil formation has received little attention. The 

pivotal paper by Costanza et al. (1997), which calculated the economic value of 17 

ecosystem services in 16 biomes to be in the range of US$16-54 trillion per year, with an 

annual average of US$33 trillion, actually attributed no dollar value to managed 

ecosystems. This is patently not true, especially when �ecological engineering� techniques 

are available to enhance ecosystem services on farmland, such as habitat manipulation 

tactics for beneficial arthropods that are responsible for biological control (reviewed by 

Gurr et al. 2003, 2004). 

It was only a few decades ago that awareness of functional biodiversity in farmland was 

raised. A key paper by Potts and Vickerman (1974) linked the role of functional 

invertebrate biodiversity in cereal crops to pest population dynamics. In this work, cereal 

aphid populations were reduced when total arthropod diversity increased (see Fig. 11 in 

Potts and Vickerman 1974). Parallel studies in cotton have shown that the predaceous 

fauna present is large. There are estimated to be over 250 species of predatory arthropods 

present in cotton in Australia, including 41 species that are commonly recorded (Room 
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1979). This number is even greater in the USA, where approximately 600 predatory 

species are present in that crop (Whitcomb and Bell 1964). The value of field boundaries 

as refugia for beneficial arthropods such as Araneida and Coleoptera (Carabidae and 

Staphylinidae) has led to the development of �beetle banks� across field centres, which 

are now a common part of the British landscape (Thomas et al. 1991). These permanently 

vegetated strips provide an alternative habitat for arthropods (as well as birds and small 

mammals), which is vital in annual cropping systems or when pesticides are used, as it 

ensures the colonisation, persistence and continuity of natural enemies to deliver the 

ecosystem service of pest control. A possible shortcoming of beetle banks and other types 

of refugia is the difficulty of ensuring that the individual arthropods that they harbour 

actually colonise the adjacent fields in the spring as the crops begin to grow (see 

Cameron et al. 1984).  

Other recent work on functional biodiversity on farmland has explored the dynamics of 

arthropod dispersal, predation and parasitism rates, and population growth rates in more 

detail, and has included a strong emphasis on the spatial scale at which these processes 

operate. Some of this work has demonstrated the importance of uncultivated landscape 

elements in �driving� these landscape effects (reviewed by Tscharntke et al. 2005). These 

effects are clearly important, but there need to be policy changes before this information 

can be used most effectively, as the spatial scales involved transcend the scales at which 

individual landowners operate. In highly modified �colonial� landscapes, such as lowland 

New Zealand, Australia and perhaps in other relatively new farming landscapes, most 

native vegetation has been removed from the agroecosystem. These landscapes are much 

simpler than their equivalent in Europe, particularly in relation to the �nodes� where field 

corners join. In Europe these nodes can be rich �hotspots� of invertebrate, vertebrate and 

plant diversity (Fry 1995; Fig. 2.2). 

Adding functional biodiversity to agroecosystems can be a rapid process when particular 

predator-pest associations are targeted. For example, flowering plants such as alyssum 

(Lobularia maritima (L.) Desv, Brassicaceae), buckwheat (Fagopyrum esculentum 

Moench, Polygonaceae) and phacelia (Phacelia tanacetifolia Benth, Hydrophyllaceae) 

can be grown alongside horticultural crops which would otherwise be pure monocultures. 

These floral patches or strips provide nectar, pollen and shelter for beneficial arthropods, 
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which can markedly improve the abundance, diversity and fitness of these arthropods, 

leading to marked reductions in crop pests (reviewed by Landis et al. 2000; see also 

Berndt et al. 2002; Tylianakis et al. 2004; Berndt and Wratten 2005; Lee and Heimpel 

2005). However, in this type of work the plant biodiversity (both crop and flowers) added 

is usually non-native, as are the pest and beneficial species involved. Habitat 

manipulation methods remain valid for enhancing the biodiversity of native species, as 

demonstrated by beetle banks (see above). However, the results are typically generated 

more slowly because many of these native taxa have specialist food requirements, 

reproduce slowly and/or have low mobility (including colonisation abilities). For 

example, the invertebrate fauna associated with mature trees on farmland, in particular 

with the coarse woody debris which occurs in association with mature forests, is usually 

depauparate. Recent work in New Zealand is using untreated discs of pine wood to 

accelerate ecological succession; these discs provide many of the ecological functions of 

natural fallen logs and can harbour late-succession invertebrate communities which 

usually would not be present in highly-modified farming landscapes (Bowie and 

Frampton 2004). 

A similar example from New Zealand which again involves designing end-of-succession 

habitats is the use of �Weta Hotels�. Wetas (Orthoptera: Anostostomatidae, 

Rhaphidophoridae) are large, iconic native insects that are usually associated with 

undisturbed forest landscapes. Weta hotels, which mimic coarse woody debris with 

cavities, harbour this specialist fauna on farmland on which this insect disappeared in 

association with forest clearance (Bowie et al. submitted). Populations of pollinating bees 

and predatory wasps in agroecosystems can be enhanced with the introduction of suitable 

nesting sites (Gathmann et al. 1994, Tscharntke et al. 1998). 

Much of the above work on restoring functional biodiversity has concentrated on 

increasing the contribution of natural enemies to pest control in order to minimise the 

negative effects associated with agricultural intensification, such as pesticide use. In 

summary, agroecosystems can support a rich diversity of beneficial arthropods. Provided 

the land use areas are managed correctly, these arthropods should contribute to the 

ecosystem service of pest control. Habitat manipulation approaches, such as beetle banks  
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Figure 2.2. Contrast between a homogeneous (or simple) and a heterogeneous (or complex) farm 

landscape, exemplified by some (a) New Zealand and (b) British landscapes. Note the heterogeneity of 

habitats and the connectance features in the British landscape compared with the uniformity of the New 

Zealand farm landscape. A = indigenous plant reserve: these tend to be large tracts of land not integrated 

with farmland; B = pasture, exotic grasses; C = typical shelter belt (e.g. popular, Cupressus macrocarpa, 

Pinus radiata); D = riparian vegetation (e.g. willow, grasses, some indigenous species); E = farmhouse 

garden; F = small areas of patchy gorse; G = wire fences: common field boundaries; H = small wood-lot: a 

highly used but sustained feature; I = pasture; J = ploughed field; K = hedge fence; L = orchard; M = 

farmhouse garden; N = riparian vegetation; O = roadside vegetation, hedges, trees etc; P = wire fences or 

stone walls; and Q = woodland. Illustration by Cor Vink, used with permission from V. Keesing and S.D. 

Wratten, 1997, Integrating plant and insect conservation, In: Plant Genetic Conservation, eds. N. Maxted, 

B.V. Ford-Lloyd and J.G. Hawkins, Chapman Hall: London, p. 220-235. 

 

and species-rich floral patches, provide the opportunity to enhance biological control, but 

also to conserve important species of invertebrates, vertebrates and plants.
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Biodiversity patterns in agricultural landscapes 

Despite this evidence that agricultural land can contribute greatly to biodiversity and 

ecosystem services, the extent of this contribution across different systems and scales is 

somewhat ambiguous (Tscharntke et al. 2005). Previous studies have compared insect 

diversity at different management intensities within a particular land use type (e.g., 

DeVries et al. 1997; DeVries and Walla 2001; Klein et al. 2002), or across a variety of 

land uses, comprising a gradient of intensity (e.g., Shahabuddin et al. 2005; Tylianakis et 

al. in press). The results of these studies have not always been consistent, for example, 

insect diversity has been shown to  increase (DeVries et al. 1997; Lawton et al. 1998; 

DeVries and Walla 2001; Klein et al. 2002; Tylianakis et al. submitted), decrease (Di 

Guilo et al. 2001; Sinclair et al. 2002; Steffan-Dewenter et al. 2002; Maeto et al. 2002; 

Mas and Dietsch 2003; Schulze et al. 2004; Shahabuddin et al. 2005; Tylianakis et al. in 

press) or not significantly differ (Steffan-Dewenter and Leschke 2003) with increasing 

management intensity.  

Recent evidence suggests that the varied responses of different taxa to habitat 

modification may be scale- or landscape context-dependent (Tscharntke and Brandl 

2004). This is not surprising, as different forces will be structuring communities and 

populations at different scales, ranging from within the habitat, to the entire region or 

landscape in which the habitat is embedded. Interacting species may experience these 

scales differently according to their dispersal, feeding and life history strategies (Jonsen 

and Fahrig 1997; Krauss et al. 2003; Borges and Brown 2004; Chust et al. 2004; Stoner 

and Joern 2004; Ribas et al. 2005), and the influence of landscape-scale processes on 

habitat-scale interactions is frequently overlooked (Tscharntke et al. 2005). It is therefore 

necessary to examine the effects of agricultural management on diversity at different 

scales and to consider approaches to integrating multiscale effects in order to gain a full 

understanding of the contribution of agricultural landscapes to overall biodiversity. 

 

Factors affecting biodiversity at different spatial and temporal scales 

While the effects of management intensity are frequently considered at the farm scale, 

agricultural intensification has also modified entire landscapes, through the amalgamation 

of fields to improve efficiency, and the loss of natural habitats and mosaic quality of the 
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landscape (Tscharntke et al. 2005). Such homogenisation of landscapes leads to 

fragmentation and isolation of natural habitats, ultimately causing species decline. For 

example, fragment size, shape and spatial configuration can all significantly affect insect 

diversity (Cane 2001; Tscharntke et al. 2002; Krauss et al. 2003; Steffan-Dewenter 2003; 

Stoner and Joern 2004; Summerville and Crist 2004; Tscharntke and Brandl 2004; Ribas 

et al. 2005). Isolation, the distance of a habitat from a natural insect source population 

(e.g., forest), can also be an important determinant of insect diversity, especially of 

functionally important groups such as bees and ants (Ambrecht and Perfecto 2003; Klein 

et al. 2003a,b; Ricketts et al. 2004; but see Cunningham et al. 2005). Proximity to natural 

habitats, a landscape scale factor, may therefore partly mitigate harmful management 

practices at the habitat scale. 

The negative effects of agriculture at the habitat scale generally result from reduced plant 

diversity (e.g., Marshall et al. 2003) or usage of insecticides (e.g., Paoletti and Pimentel 

2000). However, the biodiversity of a habitat is ultimately limited by the total species 

pool within the landscape, and these two spatial scales are inherently linked. The 

diversity of a habitat is usually unsaturated with respect to the regional species pool (Holt 

and Gaston 2002; Gaston and Spicer 2004), and the degree of saturation can be assumed 

to be lower in agroecosystems due to their high disturbance frequency (Tscharntke et al. 

2005). 

Although analyses at different spatial scales have received some attention, variation in 

diversity across different temporal scales is often neglected. Temporal heterogeneity in 

the biodiversity of different habitat types may result from temporal variation in resource 

availability (Wolda 1978, 1988), for example, during periods of mast flowering or 

anthropogenic sowing/harvesting. This can allow species to move between habitats, 

exploiting the availability of predictable, ephemeral resources (Wissinger 1997; 

Bambaradeniya et al. 2004). Studies that have explicitly examined temporal variation in 

insect diversity have concluded that small temporal sampling scales can lead to a serious 

underestimation of diversity (e.g., DeVries et al. 1997; Summerville and Crist 2005), or 

even a completely erroneous comparison of diversity between habitat types (Tylianakis et 

al. in press). 



 31

Therefore, rather than considering diversity in only one point in time and space, we need 

to also consider the turnover in species (beta diversity) between habitats within the 

landscape and across time. The challenge of assessing diversity at multiple scales can be 

met by partitioning diversity between different levels of a nested spatial and/or temporal 

hierarchy, thereby determining the scale across which the highest beta diversity occurs. 

This multi-scale approach was used by Summerville et al. (2003) to evaluate lepidopteran 

diversity in temperate forests in Ohio, USA, and Tylianakis et al. (2005) to compare the 

contribution of different land use types to Hymenoptera diversity in coastal Ecuador. 

Although beta diversity is often lower in agricultural systems than within or across 

natural habitats (Clausnitzer 2003; Tylianakis et al. in press), species turnover between 

different patches of managed habitats can still make a significant contribution to regional 

biodiversity (Tscharntke et al. 2002; Tylianakis et al. in press). Nevertheless, beta 

diversity at all scales is lost as homogeneity due to management intensity increases, such 

that homogenous habitats have low turnover within fields, between fields across the 

landscape, and through time (Tylianakis et al. in press). 

On the basis of the varied responses of taxa to the environment at different scales, 

conservation tactics aimed at only one scale, or based on information from studies 

conducted at only one scale may be misguided. Conservation policies should 

simultaneously target both the individual farm and landscape scales to maximise overall 

success (Östman et al. 2001; Stoner and Joern 2004; Tscharntke et al. 2005). 

At the landscape scale, insect biodiversity can be supported by moderating the effects of 

fragmentation and habitat loss, for example, by increasing connectivity between habitat 

types, to facilitate dispersal between metapopulations (e.g., Steffan-Dewenter 2003)  

Additionally, although single large conservation areas are often advocated over several 

small areas, the spreading of several small fragments across a large geographic area may 

maximise beta diversity, as has been shown for butterflies and grasshoppers in calcareous 

grasslands (Tscharntke et al. 2002; Peintinger et al. 2003). Fragmentation effects may 

also be reduced by the availability of non-cultivated land within the landscape. For 

example, parasitoids of rape pollen beetles usually show higher densities near 

overwintering sites such as edge grassy strips, but these edge effects are overwhelmed by 
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high overall densities of the parasitoids when a high percentage of non-crop area (> 20%) 

remains in the landscape (Tscharntke et al. 2002).  

Despite the utility of maintaining non-crop habitat, landscape-scale conservation does not 

necessarily require large set-aside areas. The above example shows that insects may 

benefit from natural habitats; however, the resources provided by cultivated habitats may 

also be beneficial. For example, Westphal et al. (2003) found that bumblebee densities 

did not respond to the proportion of natural habitat, but rather to the availability of rich 

floral resources (oilseed rape) within the landscape. 

The detrimental effects of homogenisation through landscape scale intensification can be 

offset by maximising the heterogeneity of the landscape by planting different crops, 

rather than monocropping over large areas. For example, landscape heterogeneity has 

been shown to be a good predictor of Collembola diversity (Chust et al. 2003) and to 

enhance the diversity of a variety of other insect taxa (Steffan-Dewenter et al. 2002; 

Dauber et al. 2003; Krauss et al. 2003; Kruess 2003). 

 

The insurance hypothesis and sustainable landscape planning  

In the recent debates on the relationship between biodiversity and ecosystem functioning 

(summarized in Hooper et al. 2005) biodiversity can affect ecosystem services in two 

ways. Firstly, the magnitude of ecosystem services, such as pollination or biological 

control, can be affected locally by diversity, mainly because species are complementary 

in their effects on ecosystem functioning. This idea has its roots in parts of classical niche 

theory and is based on the fact the species differ in their impacts on the environment 

(Chase and Leibold 2003) and on ecosystem properties. This effect has been examined in 

numerous studies of experimental grasslands (e.g. Hector et al. 1999). 

Secondly, and from the agricultural landscape perspective more importantly, diversity 

can affect the temporal variability and magnitude of ecosystem services because species 

differ in their responses to environmental conditions, for example by having different 

reaction norms to resource levels or abiotic factors or differing in tolerance to such 

factors. Consequently, diverse ecosystems are expected to vary less, be more robust to 

external disturbances, and have a higher rate of ecosystem functioning when studied over 

time. The concept of the Hutchinsonian niche is more appropriate in this case (Chase and 
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Leibold 2003). The idea was termed the insurance hypothesis by Yachi and Loreau 

(1999). To separate the diversity in responses to the environment from diversity effects 

on ecosystem properties, Elmqvist et al. (2003) coined the term response diversity. 

The effect of biodiversity on the magnitude of ecosystem services acts through 

mechanisms of local interactions, such as species sorting or positive interactions with 

mycorrhiza. However, most ecosystems, in particular agro-ecosystems, are subject to 

disturbances and environmental variation acting at varying spatial and temporal scales, 

from local management of fields to climate change (Holling et al. 1996; Bengtsson et al. 

2003). Recovery and reorganisation of biodiversity and ecosystem functioning (termed 

resilience by e.g. Gunderson 2000) after such disturbances require a species pool at the 

landscape level from which species can recolonize, emphasising the role of species 

dispersal and landscape structure for the stability, and ultimately also magnitude, of 

ecosystem services. The insurance hypothesis can have both a temporal aspect, as 

environmental conditions vary locally, and a spatial aspect when local patches are 

subjected to disturbances. It explicitly takes the interplay between local and regional 

landscape-level processes into account (Nyström and Folke 2001; Loreau et al. 2003). In 

a heterogenous mosaic landscape, species with different traits, tolerances and optimum 

requirements thrive in patches with different environmental conditions, ensuring that 

there will be at least some species available in source areas for recolonization after 

disturbances, and that species with optimum performance can more easily colonize 

patches of different quality (Bengtsson et al. 2003).  

The theoretical background for the insurance hypothesis is, on one hand, island 

biogeography, metapopulation and metacommunity theory (see e.g. Leibold et al. 2004), 

and on the other hand theories for dynamic ecosystems (e.g. Holling et al. 1996; Norberg 

et al. 2001; Bengtsson et al. 2003). There is considerable theoretical support for it (Yachi 

and Loreau 1999; Norberg et al. 2001; Loreau et al. 2003), but it is intrinsically difficult 

to test explicitly, especially on the large spatial scale where it is likely to be most 

important for ecosystem services and society. The finding that mosaic agricultural 

landscapes, with a larger proportion of semi-natural areas, sustain higher levels of 

diversity in several organism groups (see e.g. Tscharntke et al. 2005) provides empirical 

support for one of its basic components. Experimental studies of the effects of spatial 
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structure and landscape connectivity for diversity and biomass (Gonzales and Chaneton 

2002) are also suggestive. On larger scales, Nyström and Folke (2001) highlighted the 

importance of source areas in the landscape for ecosystem or community recovery. 

Recent studies showing that seminatural habitats enhance the ecosystem service of coffee 

pollination (Klein et al. 2003b; Ricketts et al. 2004) imply that diversity on the landscape 

scale provides better ecosystem services to society. However, stringent tests of the 

insurance hypothesis need to vary local and regional diversity in landscapes of different 

structure in terms of, for example, connectivity and availability of natural habitats, and 

measure both diversity and the magnitude of ecosystem services over time, as 

environmental conditions vary and disturbances are allowed to occur. A daunting task, 

but cleverly designed studies of agro-ecosystems can be good candidates for 

observational tests of the insurance hypothesis. 

Irrespective of whether we can provide hard experimental evidence for the insurance 

hypothesis, the fact that diversity in agricultural habitats often depends on landscape 

structure (see above; Tscharntke et al. 2005) as well as on local conditions, has 

implications for the maintenance of diversity and ecosystem services in agro-ecosystems. 

There are, as stated above, good reasons to believe that maintaining landscape mosaics 

with different disturbance regimes and successional stages, will contribute to biodiversity 

and a less variable delivery of ecosystem services, such as biological control or 

pollination. This is especially important in the face of climate change where the dispersal 

rates of species will determine how quickly ecosystems can respond. A low landscape 

diversity entails a small species pool and less genetic variation for adapting to new 

environmental conditions. 

 

Agri-environment schemes at a landscape scale and political options  

Agri-environment schemes are one of the most important political and nature 

conservation instruments to safeguard or promote wildlife in agricultural landscapes 

(EEA 2004). They stimulate farmers to adopt more environmentally friendly farming 

practices and compensate them for any loss of income associated with scheme 

implementation. Conservation measures usually consist of a reduction or cessation of the 

use of agro-chemicals and/or a reduction in stocking rates (Kleijn and Sutherland 2003) 
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but may also include the establishment and maintenance of landscape features such as 

ponds and hedges.  

The conservation of insects or specific insect groups is rarely mentioned specifically as 

an objective of agri-environment schemes. Many schemes aim to conserve biodiversity in 

general, however, and the class of insects is one of the most diverse taxa contributing to 

biodiversity in general. A considerable number of studies have examined the response of 

insects to agri-environment schemes (Kleijn and Sutherland 2003). Uncropped wildlife 

strips in the United Kingdom had positive effects on the species richness of carabid 

beetles and Heteroptera in cereal fields (Hassall et al. 1992). Schemes reducing stocking 

rates resulted in higher species richness of Auchenorrhyncha, Heteroptera, Coleoptera 

and Hymenoptera Parasitica in grasslands in northern Germany (Kruess and Tscharntke 

2002). Dutch management agreements reducing agrochemical applications and delaying 

the first seasonal agricultural activities in wet grasslands were found to have positive 

effects on species richness of bees and hover flies (Kleijn et al. 2001). Implementation of 

the English Environmentally Sensitive Area Scheme and the Countryside Stewardship 

Scheme led to positive population trends in habitat specialist butterflies (Brereton et al. 

2002). The positive effects of a wide variety of schemes on wide range of insect species 

groups suggest that insects in agricultural landscapes may be conserved easily and rapidly 

by means of agri-environment schemes.  

Organic farming, being one of the more important agri-environment schemes in Europe, 

has mixed but mainly positive effects on diversity and density of insects (Bengtsson et al. 

2005). In a literature review, predatory arthropods generally increased in diversity and 

density in organic farming systems, while the responses of non-predatory insects were 

more heterogeneous and on average not different from neutral (Bengtsson et al. 2005). 

The effects for arthropods were significantly positive on the smaller �field� and �plot� 

scales, but non-significant and highly heterogeneous on the farm scale (meta-analysis 

calculated from the arthropod subset of the data in Bengtsson et al. 2005, Appendices). 

Several recent studies show positive effects of organic farming on arthropod diversity or 

density (e.g. Kremen et al. 2002, Hutton and Giller 2003, Schmidt et al. 2005), but there 

are also exceptions for one or both variables (e.g. Purtauf et al. 2005). A common 

conclusion is that organic farming is less important for diversity than landscape factors. 
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This highlights the problem of how to design agri-environmental schemes when the 

effects are likely to vary according to the heterogeneity of the landscape (Bengtsson et al. 

2005, Tscharntke et al. 2005).  

Most studies examining the response of insects to changes in farm management were 

conducted at small spatial scales, usually comparing fields with different types of 

management. Furthermore, virtually all studies examined responses of adult individuals. 

Since adults of many groups of insects are mobile, it is often impossible to determine 

with certainty whether the observed response is caused by an increase in population size 

or due to a foraging response resulting in a concentration of individuals in resource-rich 

patches in the landscape. An enhanced reproduction rate of insects on scheme fields 

relative to conventionally managed fields would be a clear indication that schemes have 

positive effects on population size. Only Gardener et al. (2001) examined effects of agri-

environment schemes on juvenile insects. They found no significant differences in the 

densities of carabid beetle larvae on fields with and without agri-environment schemes.  

Considering the importance of landscape context for insect species richness (Duelli and 

Obrist 2003, Steffan-Dewenter et al. 2002, Kleijn and van Langevelde 2006), 

surprisingly little is known on whether the effects of agri-environment schemes depend 

on the structure of the surrounding landscape. Peter and Walter (2001) observed a 

positive effect of Swiss agri-environment schemes on the species richness of 

grasshoppers that was partially explained by distance from nature reserves. In the 

Netherlands, landscape structure did affect species richness of both bees and hoverflies 

but the effects of schemes did not depend on landscape context (Kleijn et al. 2004). 

Summarizing the scant literature on the topic, Tscharntke et al. (2005) hypothesized that 

conservation measures on farmland are most effective in landscapes with intermediate 

complexity (Fig. 2.3). Very simple landscapes may be devoid of potential colonizers of 

scheme fields whereas very complex landscapes support overall high levels of species 

richness resulting in a continuous colonization from the surrounding landscape of even 

the most intensively farmed fields.  

Despite the generally positive effects of agri-environment schemes on insects in general, 

they rarely promote endangered insect species. This is largely because contemporary 

farmland, with or without schemes, rarely hosts Red Data Book species (Kleijn et al. 
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submitted). Originally, a wide range of endangered insect species occurred in various 

types of agricultural habitats such as low productive grasslands and arable fields or 

extensively managed vineyards and orchards. Due to agricultural intensification, this type 

of habitat has disappeared from north-western European farmland long before the 

introduction of the first agri-environment schemes and these habitats are now almost 

exclusively restricted to nature reserves. Consequently, most endangered insect species 

have already disappeared from agricultural areas and are now restricted to nature 

reserves. Red Data Book species may therefore only be able to benefit from agri-

environment schemes if schemes are implemented within colonizing distance of the 

refuges of these species (e.g. see Peter and Walter 2001). In any case, agri-environment 

schemes may prevent more common species from becoming endangered in the near 

future.  

In conclusion, most contemporary agri-environment schemes and particularly those 

implemented in landscapes with intermediate complexity, promote richness of common 

insect species thereby enhancing general biodiversity. This is a promising result since a 

more abundant and species-rich insect community may provide better ecosystem services 

such as pollination or pest control (Steffan-Dewenter and Tscharntke 1999, but see Wilby 

and Thomas 2002). On the other hand, the majority of agri-environment schemes fail to 

conserve the species that are most threatened by modern farming practices, usually 

because they are implemented in the wrong locations. It may therefore be prudent to 

differentiate the objectives of agri-environment schemes aimed at biodiversity 

conservation into schemes aimed to increase functional biodiversity and schemes aimed 

at the conservation of rare species. Schemes aimed to increase functional biodiversity 

may then be implemented throughout the countryside and with little regard for the initial 

quality of surrounding area. Schemes aimed to conserve endangered species should only 

be implemented in or near areas still hosting the target species.  
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Figure 2.3. Effectiveness of agri-environment schemes in relation to landscape type. Effectiveness is 

measured as biodiversity enhancement due to management, such as the conversion from conventional to 

organic farming (Roschewitz et al. 2005) or the creation of crop field-boundaries (Thies and Tscharntke 

1999, Tscharntke et al. 2002), compared to unmanaged control sites. Landscape type is classified as cleared 

(minimum diversity, < 1% non-crop habitat), simple (low diversity, 1-20% noncrop habitat) and complex 

(high diversity, > 20% noncrop habitat; see Andrén 1994, Tscharntke et al. 2002). The resulting hump-

shaped relationship results from the different source pools in the surrounding landscape for recolonisation 

of managed habitat. In cleared landscapes, the very few species are not a sufficient basis to result in a 

recognizable response to management changes. Similarly, in complex landscapes, management does not 

result in a significant effect, because biodiversity is high everywhere. In contrast, simple landscapes 

support intermediate species pools that allow a significant response to management. (Illustration with 

permission from Tscharntke et al. 2005). 

 

Conclusions and implications for conservation in agricultural landscapes  

Planning for future sustainable landscapes requires that several aspects of today�s 

approach to conservation are modified, to incorporate the recent advances in spatial 

ecology and ecosystem dynamics. Although individual farmers always play a key role in 

conservation, incentive structures need to be targeted to ensure that diversity is 
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maintained or improved at the larger landscape (regional) level. Some basic propositions 

for the new landscape approach to rural planning are:  

1. Fields and small management units should not be used as a basic unit for conservation, 

but at least whole farms and preferably whole landscapes. A problem is that different 

organisms will respond to landscape structure at different spatial scales (Tscharntke et al. 

2005), but whole landscapes can be �managed� taking this into account by imposing a 

variety of disturbances and management regimes, rather than single ones. Encouraging 

farmers to diversify and vary their land use is one way through which this may be 

accomplished. 

2. Natural, seminatural and semipermanent managed areas allow many species to persist 

in the agricultural landscape, and should thus be the focus of most conservation efforts 

(Swift et al. 2004). The conservation of semi-natural and natural areas will most likely 

enhance ecosystem services in intensely managed fields (Thies and Tscharntke 1999; 

Östman et al. 2001; Klein et al. 2003; Ricketts et al. 2004).  

3. Many current farming methods, especially organic or integrated farming, rely on 

species in less intensively managed ecosystems for biological control of pests, pollination 

of many crops, decomposition, etc. Recent discussions on the limits of oil reserves and 

increased oil prices imply that costs for agricultural inputs will increase. This means that 

in a future scenario where energy costs have increased dramatically, food production and 

security will rely more on natural ecosystem services. Hence, as an insurance against 

such a scenario, agricultural policies should strive to maintain and restore biodiversity in 

agricultural landscapes. 

Agricultural systems may therefore harbour a significant diversity of insect species that 

can offer many services to landowners. In order for such ecosystem services to be 

maximised, and sustained in the future, action must be taken by landowners and policy 

makers. This action needs to consider the effects of management at different spatial and 

temporal scales, and the identity (and potential utility) of the species concerned. 
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Abstract 

Heterogenous distributions of resources such as soil chemicals may reduce competition, 

thereby promoting species diversity of higher plants, and studies have shown that high 

plant or structural resource diversity can lead to high insect diversity. Therefore, it may 

be inferred that diversity of soil chemicals could promote plant diversity, which could in 

turn promote insect diversity; however such a pattern across several trophic levels has not 

yet been demonstrated in practice for a terrestrial system. Here we show for the first time 

that high soil heterogeneity (specifically variability in magnesium concentrations) leads 

to a domino effect of increased diversity across three trophic levels (herbaceous plants, 

cavity-nesting bees and wasps, and their natural enemies). The robustness of this bottom-

up diversity cascade is strengthened by its consistency across three different habitat 

types, comprising a gradient of increasing anthropogenic disturbance in a tropical 

landscape in Southwest Ecuador. We show that beta diversity of herbs explains more 

variation in bee and wasp diversity than does herb species richness. However, natural 

enemy species richness was only correlated with bee and wasp richness, not beta 

diversity. Biodiversity of varied taxa may therefore be enhanced in managed systems by 

maintaining high habitat heterogeneity, and perturbations at one trophic level may have 

repercussions across the entire community. 
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Introduction 

Anthropogenic modification of habitats alters entire landscapes and is largely responsible 

for the current global decline in biodiversity (Vitousek et al. 1997; Foley et al. 2005). An 

understanding of the direct and indirect effects of land use changes on diversity is 

necessary to mitigate this decline and guide conservation initiatives that incorporate 

managed land (Tscharntke et al. 2005). However, many studies examine the effects of 

habitat modification on different taxonomic groups in isolation, neglecting the effects of 

organisms on their adjacent trophic levels. For example, studies have often considered the 

effects of habitat modification on the diversity of plants (e.g., Tilman & Lehman 2001) or 

insects (e.g., Shahabuddin et al. 2005; Tylianakis et al. in press). Nevertheless, the effects 

of land use changes on the diversity of these species may have indirect consequences for 

the diversity of other species within the system, and the effects of habitat modification 

are seldom examined across multiple taxa (for exceptions see Lawton et al. 1998; 

Schulze et al. 2004).  

The basis for the assumption that diversity at one level may propagate diversity at higher 

levels rests on the concept of resource-based niches (McKane et al. 2002). Diversity or 

heterogeneity of a limiting resource should provide a larger array of different niches, 

thereby promoting diversity in heterogenous habitats (e.g., Kassen et al. 2000; Benton et 

al. 2003). Indeed, the diversity of insect groups has previously been shown to be affected 

by plant or structural resource diversity (Murdoch et al. 1972; Siemann et al. 1998; 

Steffan-Dewenter & Tscharntke 2001; Potts et al. 2003; Ambrecht et al. 2004). However, 

the effect of resource heterogeneity on plant diversity is less clear. Stevens & Carson 

(2002) found that high light intensity, rather than heterogeneity maintains high plant 

diversity. At a large scale, based on satellite images, soil heterogeneity has been 

correlated with floristic similarity, but not diversity (Tuomisto et al. 2003), and another 

study (McMaster 2005) found that diversity of soil types explained vascular plant 

diversity on offshore islands, although this was partly confounded by island area. The 

effects of soil heterogeneity on plant diversity at smaller-scales, over which interspecific 

interactions and competitive exclusion can occur, have also produced mixed results. 

Previous studies have shown that small-scale heterogeneity in soils can be positively 
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(Fitter 1982; Lundholm & Larson 2003; Baer et al. 2005), negatively (Kleb & Wilson 

1997) or not correlated (Wijesinghe et al. 2005) with plant diversity.  

A pattern of heterogeneity affecting diversity has not to our knowledge been shown 

across a large number of levels in a terrestrial system. Furthermore, diversity patterns 

may vary across different habitats (Schulze et al. 2004; Tylianakis et al. in press), thereby 

obscuring any multi-trophic level effects. 

Here we examine whether the diversity (species richness) and heterogeneity (CV of soil 

nutrients and beta diversity of plants and insects) of resources correlate with diversity of 

the taxa that utilise those resources, such that soil heterogeneity may promote increased 

diversity that cascades up different trophic levels. We examine this pattern in three 

different land use types that comprise a gradient of increasing anthropogenic 

modification (coffee agroforests, pasture and rice) in Southwest Ecuador. This region has 

suffered heavy anthropogenic modification, and is therefore appropriate for a comparison 

of managed land use types.  

We focus here on the effect of soil heterogeneity on herbaceous plants, as their rapid 

growth in tropical regions means that they respond quickly to variation in abiotic 

conditions. We then examine the effects of diversity (species richness) and spatial 

heterogeneity (beta diversity) of herbs on cavity-nesting bees and wasps (Hymenoptera: 

Aculeata). Plant diversity is important for these species as it can affect the diversity and 

abundance of herbivore prey, for bee and wasp larvae (Siemann et al. 1998), and floral 

resources for adults (Steffan-Dewenter & Tscharntke 2001). Moreover, the importance of 

bees and wasps for pollination and biological control of pests (Klein et al. 2002, 2004), 

makes an understanding of the factors that determine their diversity essential for the 

maintenance of valuable ecosystem services. Finally, we examine the effects of species 

richness and beta diversity of cavity-nesting bees and wasps on the diversity of their 

natural enemies (parasitoids and cleptoparasites). Consequently, we aim to determine 

whether diversity at one level propagates itself up the food-chain in a diverse tropical 

region, and whether this effect varies with intensity of cultivation (from rice to pasture 

and agroforests). We also examine whether species richness itself or heterogeneity in 

species distributions (beta diversity) is more important for determining diversity of bees 

and wasps and their natural enemies.  
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Methods 

Study region 

The 36 study plots were spread across three cantons within the province of Manabi, 

Southwest Ecuador (Latitude 01º 16`-01º37´South, Longitude 80º 22´-80º 28` East, alt. 

259m; for individual plot location details and a full description of the region see 

Tylianakis et al. in press). The region falls within the semi-arid tropics and is largely 

dominated by agriculture. Here we examine a gradient of anthropogenic modification 

using the predominant agricultural systems in the region - an arable crop (rice), pasture, 

and agroforestry (coffee), with twelve replicates of each habitat type. The area can be 

divided in 2 morphological units: the lower alluvial river valleys situated south and 

southeast of Pajan and Noboa and upper sloping areas including very steep slopes, mainly 

northwest of Pajan and Noboa. Six replicate plots per land use type occurred on slope 

soils, and the other six occurred on alluvial fans.  

 

Sampling methods  

In each plot, we marked nine points (in a 3 x 3 grid, each point 25 m apart). Sampling 

minimized edge effects by locating traps and surveys away from habitat boundaries. 

Replicate plots were representative of the particular land use type within the region. For 

each group, sampling effort was identical across all plots and land use types. Authors 

primarily responsible for data from each group are represented in the following by 

initials. 

 

Soil: (M.L.-U., E.V.) We took a soil sample from the 0-0.25 m layer at each of the 9 

points in each plot. These samples were air-dried, passed through a 2-mm sieve, and 

stored in plastic bags for laboratory analysis. Soil pH was determined in a slurry of 10 g 

soil and 25 ml de-ionized water (Anderson & Ingram 1993). In the laboratory, soil 

samples were analyzed for total organic carbon and nitrogen using an automated C & N 

analyzer (Heraeus Vario EL). Total phosphorus was determined after digestion under 

pressure with HNO3 following the method described by Heinrichs (1989). Exchangeable 

calcium (Ca), magnesium (Mg), manganese (Mn), iron (Fe), potassium (K) and 

aluminum (Al) were extracted by leaching soil samples with 100 ml of unbuffered 1 M 
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ammonium chloride (NH4Cl) for 4-5 hours. Cations in the extracts were quantified by 

atomic absorption spectroscopy (König and Fortmann, 1996). 

Soil heterogeneity was defined as the coefficient of variation (CV = standard deviation as 

a proportion of the mean) in concentrations of each of these soil parameters (pH, total N, 

total C, C:N ratio, bulk density, as well as Ca, Fe, Mn, Al, Na, K and Mg exchangeable 

cations) between sampling points within a plot. As concentrations of these chemicals may 

be correlated with one another, we conducted a spearman rank correlation test, and only 

included soil parameters that were not significantly correlated in the final model. These 

were: pH, total nitrogen, C:N ratio, and Al, Na, K and Mg exchangeable cations. It was 

also possible to substitute Na and Al for total P, but the result did not differ qualitatively 

(P had no significant effect), so only results for the former combination are presented. 

Herbs: (T.L.) At the nine sampling points per plot, herb diversity was sampled in 2.5 x 

2.5 m quadrants during two sampling periods (May and September 2003). All herb 

individuals (including ferns) were gathered, and voucher specimens were identified to the 

lowest possible taxonomic level by experts at Quito (QCA, QCNE) and Guayaquil 

(GUAY) herbaria in Ecuador. Total herb diversity (species richness) per plot was 

calculated by combining the results from the two sampling dates; however, we kept 

sampling points separate for calculations of beta diversity (see Statistical analyses 

below).  

 

Insects: (J.M.T.) We placed a trap nest (Tscharntke et al. 1998), consisting of a PVC tube 

filled with reed (Arundo donax L., Poaceae) internodes of varying diameter, at each 

sampling point to provide nesting sites for aboveground cavity-nesting bees and wasps 

(Hymenoptera: Aculeata) and their natural enemies. Exposure of standardised trap nests 

is similar to the exposure of other resources, e.g. phytometer plants, but because the guild 

of aboveground cavity-nesting species reproduces in these traps, the problem of species 

appearing as �tourists� in samples is eliminated. Cavity-nesting species usually build nests 

very close to the nesting site from which they pupated, so trap nests give an accurate 

representation of the community normally occurring in a particular habitat (see 

Tscharntke et al. 1998 and references therein). Trap nests were hung from trees in coffee 

systems and suspended from wooden posts in rice and pasture. Sticky glue (tanglefoot) 
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was applied to the post or attachment point to deter ants. All traps were positioned 1.5 m 

above the ground. 

We removed and replaced occupied reeds every month from June 2003 to October 2004 

and opened occupied reeds for identification of primary occupants and any natural enemy 

(parasitoid or cleptoparasitoid) species present. Species were identified to family level, 

then where possible to genus or species level by D.W. Roubik, an expert in neotropical 

Hymenoptera, and by the authors using keys and reference collections from the Pontificia 

Universidad Católica del Ecuador. Remaining species were identified as morphospecies. 

For analyses of overall bee, wasp and natural enemy diversity, we pooled species 

richness data from each of the monthly evaluations to have one measure in each of the 

nine traps per plot.  

 

Statistical analyses 

We carried out all statistical analyses using Statistica 6.1 (StatSoft 2003). We used 

general linear models with backwards stepwise elimination of non-significant variables 

(under the GRM module of Statistica). Land use type was included as a categorical 

predictor in all models, and we tested for interaction effects between land use types and 

continuous predictors. Soil type (slope or alluvial) was also included as a categorical 

predictor in analyses of soil and plant interactions. Herb diversity was included as a 

covariable in analyses of the effects of bee and wasp diversity on natural enemy diversity, 

to ensure that the enemies were not simply responding to herb diversity. Post-hoc 

differences between categorical variables were assessed with Tukey�s pairwise 

comparisons. All model residuals conformed to a normal distribution, so transformations 

were not necessary. 

Beta diversity was calculated using additive partitioning (Lande 1996), a technique that is 

insensitive to differences in sampling effort among replicates, and therefore does not 

require rarefaction of data prior to analyses (Veech et al. 2002; Crist et al. 2003). For 

herb data, to ensure accurate estimation of beta diversity, given the very high diversity, 

we included only those species identified to at least genus level (98% of morphospecies). 

Beta diversity was calculated as the total number of species recorded for a plot minus the 

mean number of species in each of the nine sampling quadrats. 
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Because of the short generation times of bees and wasps, relationships between hosts and 

natural enemies may vary through time across habitat types, making comparisons that are 

pooled across many months inappropriate (Tylianakis et al. in press; Tylianakis et al. 

unpublished manuscript). Therefore, when analysing the effect of bee and wasp on 

natural enemy diversity, we used the mean number of species per month, and included 

temporal beta diversity for each plot within a given land use type as a covariable. This 

was calculated according to Tylianakis et al. (in press) as the total number of species 

found within that plot (over the entire year) minus the mean number of species per month 

for that plot. Spatial beta diversity was calculated as the total number of species found 

within a habitat type over the entire year minus the mean number of species per plot of 

that habitat type (over the entire year). For both herb and insect data, beta diversity for a 

plot was divided by the overall (gamma) plot diversity for analyses, to prevent 

differences in beta diversity being driven by differences in gamma diversity. 

 

Results 

Soil effects on plants 

Of the seven soil chemicals included in the model, only heterogeneity in the 

concentration of magnesium significantly affected herb diversity (F1, 31 = 9.54, P = 0.004, 

R2 = 0.147) (Fig. 3.1). Land use type also significantly affected herb diversity (F2, 31 = 

9.44, P < 0.001), with rice and pasture having higher species richness than coffee, and 

slope soils having significantly higher herb diversity than alluvial soils (F2, 31 = 5.42, P = 

0.026). Heterogeneity in Mg did not significantly interact with land use type or soil type; 

however, the strongest effect of soil heterogeneity on herb diversity was in coffee, where 

the overall model (including land use type, soil type and CV of the seven soil variables) 

explained a phenomenal 94% of the variance (adjusted for ties) and was highly 

significant (F5, 6 = 37.11, P = 0.0002). Soil heterogeneity did not significantly correlate 

with herb beta diversity. It may be argued that if many different soil chemicals are 

included in the analysis, the probability of committing a Type II error (erroneously 

accepting a false hypothesis) increases due to chance; however, the probability of 

achieving a level of significance of P = 0.004 (that of CV of Mg on herb diversity) from 
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Figure 3.1. Correlation between variability (CV) in exchangeable cation concentration of soil magnesium 

and herb diversity (species richness) residuals after removal of variation due to soil type and land use type. 

The equation of the line is y = 0.5102x � 12.2628. Effect of Mg CV was significant at (F1, 31 = 9.54, P = 

0.004, R2 = 0.147). 

 

seven chemicals (the number included in the model) is only P = 0.028 (Moran 2003), and 

therefore still significant. 

To determine whether variability in magnesium was directly associated with land use or 

soil type, we tested for an effect of land use and soil type (and interaction of the two) on 

CV of Mg (using a factorial ANOVA), and there were no significant effects (land use 

type: F2, 30 = 0.13, P = 0.876; soil type: F1, 30 = 0.512, P = 0.480). 

 

Plant effects on bees and wasps  

Herb diversity was significantly, positively correlated with cavity-nesting bee and wasp 

diversity. However, bee and wasp diversity was not as strongly correlated with herb 

species richness (F1, 33 = 4.46, P = 0.026, R2 = 0.102) as it was with herb beta diversity 
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(F1, 33 = 8.38, P = 0.007, R2 = 0.193) (fig. 3.2). Land use type did not have a significant 

effect on overall bee and wasp diversity, nor did it interact with the effects of herb 

species richness or herb beta diversity. 

 

Bee and wasp effects on natural enemies  

Bee and wasp species richness (mean per month) was significantly positively correlated 

with natural enemy species richness per month (F1, 33 = 21.29, P = 0.00006, R2 = 0.253) 

(fig. 3.3). Land use type had no effect, nor did it interact with the effect of bee and wasp  

 
Figure 3.2. Correlation 

between plant beta 

diversity and species 

richness of bees and 

wasps. No 

differentiation is made 

between land use types 

as this had no 

significant effect. The 

equation of the line is y 

= 17.5161x -1.7314. 

Effect was significant at 

(F1, 33 = 8.38, P = 0.007, 

R2 = 0.211). 

 

species richness. When all host variables were removed from the model, land use type 

significantly affected natural enemy diversity, indicating that the effect of land use is 

mediated via the diversity of bee and wasp hosts. Surprisingly, bee and wasp spatial beta 

diversity was weakly negatively correlated with natural enemy species richness (F1, 33 =  

5.98, P = 0.020, R2 = 0.071); however, this effect disappeared when species richness was 

removed from the model. This was due to the bee and wasp richness being correlated 

with spatial beta, and the strong effect of the former explaining much of the variation also 

explained by the latter. Bee and wasp temporal beta diversity, herb species richness and 

herb beta diversity had no significant effect on natural enemy species richness. 
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Figure 3.3. Correlation between bee and wasp and natural enemy species richness (both mean per month). 

No differentiation is made between land use types as this had no significant effect. The equation of the line 

is y = 0.4587x -0.1534. Effect was significant at (F1, 33 = 21.29, P = 0.00006, R2 = 0.253). 

 

Discussion 

That soil heterogeneity led to increased herb diversity is not surprising, as the importance 

of habitat heterogeneity for structuring ecological communities has been frequently 

emphasised (Murdoch et al. 1972; Fitter 1982; Tuomisto et al. 1995; Ruokolainen & 

Tuomisto 2002; Benton et al. 2003; Lundholm & Larson 2003; Potts et al. 2003; 

Armbrecht et al. 2004; Baer et al. 2005; McMaster 2005). However, this direct effect of 

soil heterogeneity on plant diversity being strong enough to permeate up three trophic 

levels, amidst the noise of different land use types and numerous other influences, has not 

previously been shown in practice. Land use can strongly affect diversity of plants and 

insects (Lawton et al. 1998; Schulze et al. 2004; Tylianakis et al. in press), so the 

isolation of an effect of soil, over and above that attributable to land use alone, is 

testament to the importance of soil heterogeneity in the bottom-up structuring of herb and 

insect communities. Although magnesium is an important, sometimes limiting, nutrient 

for tropical plant species (Burslem et al. 1995; Hailes et al. 1997), and different species 

may respond to Mg availability in different ways (Gunatilleke et al. 1997), we emphasise 
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that variability in the soil, rather than actual concentrations of Mg, drove the pattern of 

diversity (López et al. unpublished manuscript). Magnesium variability was correlated 

with the variability of other soil nutrients (e.g., exchangeable Ca and base cations) and 

Magnesium is associated with the overall clay content of the soil. Therefore, rather than 

suggesting an importance of Mg variability per se, Mg most likely indicated general 

variability in the soil structure and chemistry, and this variability allowed a greater 

variety of herb species to occupy separate niches. 

Of course diversity of all taxa is driven by a great variety of mechanisms. Plant and insect 

diversity frequently respond to other factors such as light, landscape context and 

availability of other resources (Begon et al. 2005). Nevertheless, the integral link 

between plants and soil cannot be undermined, and bees and wasps are frequently 

dependent on floral resources at one or more life-history stages (Landis et al. 2000; 

Tylianakis et al. 2004). Similarly, parasitoids and cleptoparasites are intimately 

associated with their hosts, and the frequent host-specificity of these species may lead 

their diversity to map that of the available hosts. Therefore, it is possible that this type of 

diversity cascade may have general applicability across different habitats. Perhaps most 

surprising was the absence of an effect of habitat on this diversity cascade. Although 

diversity of plants differed across habitats, the soil variability/plant diversity correlation 

did not vary across habitats (no interaction effect of Mg variability with land use type 

was observed), suggesting some degree of generality in the cascade across habitats. 

However, all habitats examined were modified to some extent by agriculture, therefore 

further studies are needed in natural systems to ascertain the general applicability of this 

pattern. 

In terms of habitat management, the results suggest that loss of biodiversity at one 

community level may have negative repercussions across the entire community. Previous 

studies have shown that different taxa respond differently to anthropogenic habitat 

modification (Lawton et al.1998, Schulze et al. 2004); however, the different taxa in 

these studies were selected for their value as bioindicators, rather than any expectation 

that they depend on, or interact with, one another. Here we show that within each habitat 

type, the diversity of taxa at different trophic levels may respond to the diversity or 

heterogeneity of their resources in the same manner. Therefore, management regimes that 
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favour heterogeneity may generally enhance diversity � an effect that has been shown for 

independent taxa at habitat (Murdoch et al. 1972; Potts et al. 2003; Ambrecht et al. 2004; 

Tylianakis et al. in press) and landscape scales (Ewers et al. 2005; Gabriel et al. 2005). 

Increased diversity of these taxa may also provide increased ecosystem functioning in the 

form of higher plant productivity (van Ruijven & Berendse 2005) or rates of parasitism 

(biological control) (Tylianakis et al. unpublished manuscript). 

Surprisingly, beta diversity of bees and wasps was not positively correlated with natural 

enemy diversity. It could be expected that heterogeneously distributed resources may 

allow spatial partitioning of niches, thereby reducing interspecific competition (e.g., 

Borer et al. 2004). Indeed, beta diversity of herbs was correlated strongly with bee and 

wasp diversity. However, many of the natural enemy species in our system are 

specialised on a limited number of hosts, and the number of host species, rather than 

spatial heterogeneity in host distribution, allows niche partitioning. 

We emphasise that, even in anthropogenically modified habitats within a highly modified 

region, complex interspecific and cross trophic level associations can occur. Therefore 

loss of diversity at any level may have important repercussions over the entire system, 

and management of agricultural systems to maintain or maximise soil heterogeneity may 

contribute significantly to regional biodiversity. 
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Abstract  

AIM: Anthropogenic changes in land use may have major consequences for global 

biodiversity; however, species diversity is determined by a suite of factors that may affect 

species differently at different spatial scales. For the first time we tested the combined 

effects of land use and spatial scale on α, β and γ diversity in the tropics using 

experimental communities of cavity-nesting Hymenoptera (Aculeata). We aimed to 

determine whether 1) Land use intensity negatively affects diversity of cavity-nesting 

Hymenoptera, 2) beta diversity, both within and between plots, is higher in more natural 

systems,  3) diversity of flowering herbs positively affects species richness of 

Hymenoptera within and across habitats, 4) diversity of cavity-nesting Hymenoptera in 

highly modified habitats declines with increasing distance from natural or seminatural 

habitats, and 5) the effects of land use, herb diversity and forest distance on Hymenoptera 

α and β diversity vary at different spatial scales. 

LOCATION: Manabi, southwest Ecuador.  

METHODS: We examined diversity within 48 plots of five habitat types that comprised a 

gradient of decreasing agricultural intensity from rice and pasture to coffee agroforests, 

unmanaged abandoned agroforests and forest fragments using standardised nesting 

resources for reproducing communities of cavity-nesting bees and wasps.  

RESULTS: 1) Land use significantly affected α diversity of trap-nesting Hymenoptera at 

the subplot scale, but not β diversity or plot-scale species richness (γ diversity). 2) Beta 

diversity was surprisingly higher between plots within a land use type than between land 

use types. 3) Diversity of Hymenoptera increased with diversity of flowering herbs at the 

subplot scale only. 4) Forest distance affected Hymenoptera diversity at the plot scale 

only. 5) Land use, herb diversity and forest distance each showed significant effects at 

only one spatial scale. 

MAIN CONCLUSIONS: The effects of land use on species richness were highly 

dependent on spatial scale. Subplot-scale analyses showed that rice and pasture contained 

the highest species diversity, whereas plot-scale analyses showed no significant 

difference in the diversity of different land use types. We emphasize caution in the 

estimation of biodiversity at only one spatial scale and highlight the surprisingly large 

contribution of managed land to overall biodiversity. 
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Introduction 

Tropical ecosystems are the greatest contributors to global biodiversity (Myers et al. 

2000) and a lack of conservation funding increases the reliance of these regions on 

managed land for biodiversity conservation (Perfecto et al. 1996, Bawa et al. 2004). The 

contribution of different land use systems to tropical biodiversity requires thorough 

assessment; however, past studies on the effects of land use intensity on biodiversity have 

frequently measured diversity at only one spatial scale (e.g., Klein et al. 2002). This may 

mask subtle differences in species diversity, because the factors that determine diversity 

may not scale up or down across different spatial and temporal scales (Whittaker et al. 

2001; Willis & Whittaker 2002). On a landscape scale, species richness can be affected 

by factors such as fragmentation (Didham et al. 1996; Cane 2001), matrix composition 

(Ricketts 2001; Dauber et al. 2003), landscape diversity (Steffan-Dewenter et al. 2002; 

Dauber et al. 2003; Krauss et al. 2003; Kruess 2003) or climate (James & Shine 2000; 

Opdam & Wascher 2004). At smaller spatial scales, factors such as habitat type (Kruess 

2003; Weibull et al. 2003), habitat area (Richie & Olff 1999; James and Shine 2000; 

Krauss et al. 2003; Summerville & Crist 2004), management intensity (Klein et al. 2002; 

Perfecto et al. 2003) and inter- or intraspecific interactions (Veech et al. 2003) become 

more important in determining species distributions. Therefore, the spatial scale selected 

for the study may inadvertently determine the outcome, for instance, if species turnover is 

low within plots, but high between plots (e.g. Summerville et al. 2003). 

The challenge of assessing diversity at multiple scales can be met by partitioning 

diversity between different levels of a nested spatial hierarchy (Willis & Whittaker 2002), 

thereby determining the spatial scale across which the highest beta diversity occurs. This 

multi-scale approach was used by Summerville et al. (2003) to evaluate lepidopteran 

diversity in temperate forests in Ohio, USA, and Wagner et al. (2000) used this technique 

to examine the plant species diversity of different land use systems, in an agricultural 

landscape on the Swiss Plateau.  

Many studies on the effects of land use on biodiversity consider only a few related 

management systems, such as different intensities of coffee or cacao management (e.g., 

Perfecto et al. 2003; but see Ricketts et al. 2001). While this work can provide valuable 
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guidelines for conservation and management of the systems concerned, it fails to assess 

the overall contribution of managed land to regional biodiversity.  

Here we use a highly replicated field study to examine the effects of the five predominant 

land use types (rice, pasture, coffee, abandoned coffee and forest fragments) in southwest 

Ecuador, on the diversity of trap-nesting bees and wasps (Hymenoptera: Aculeata). 

Experimental communities of trap-nesting Hymenoptera make useful tools for 

investigations of biodiversity, due to their ease of physical manipulation, trophic 

complexity, and species diversity (Tscharntke et al. 1998). In terms of ecosystem services 

(sensu Costanza et al. 1997), communities of trap-nesting Hymenoptera are particularly 

salient, as many species are important pollinators of both crops and wild plants (Klein et 

al. 2003). Moreover, many predacious or parasitic trap-nesting species may act as 

biological control agents (Klein et al. 2004). 

We use additive partitioning of beta diversity at multiple spatial scales to assess the land 

use types in which the greatest beta diversity occurs. Finally, we examine possible drivers 

of observed variation in species richness by assessing the effects of distance from forest 

remnants, and vegetational diversity on the diversity of trap-nesting Hymenoptera, and 

how these effects manifest themselves at different spatial scales. Such drivers are often 

absent from studies of human impacts on Hymenoptera diversity, and this can lead to 

broad, questionable generalisations (Cane 2001). The spatial scales we define are the 

subplot scale, which comprises variation between traps of a particular plot, the plot scale, 

which examines variation between different plots of a given land use type and the 

regional scale, which examines variation between land use types. 

Specifically, we test the following hypotheses regarding the effects of land use on 

diversity of trap-nesting Hymenoptera at different spatial scales: 

1) Land use intensity negatively affects diversity of trap-nesting Hymenoptera. In 

general, more natural habitats tend to exhibit higher biodiversity of a variety of insect 

taxa (e.g., Mas & Dietsch 2003; Shahabuddin et al. 2005). However, trap-nesting 

Hymenoptera may be able to exploit resources such as crop plants and their herbivore 

communities, and they have been previously shown to benefit from increased intensity of 

agroforest management (Klein et al. 2002). Nevertheless, agroforests comprise a 

relatively natural habitat compared with arable crops. We therefore aim to determine how 
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different land use types, rather than management intensity of a single type, affect 

diversity of this guild of bees and wasps. 

2) Beta diversity, both within and between plots, is higher in more natural systems. 

Natural systems are more heterogenous than intensely managed land use types, and 

therefore provide a greater array of niches. We expect that this will lead to higher beta 

diversity in unmanaged systems than in the agricultural land use types (Clausnitzer 

2003).  

3) Diversity of flowering herbs positively affects species richness of Hymenoptera within 

and across habitats. Herb diversity has been shown to correlate positively with 

Hymenoptera diversity within coffee agroforests (Klein et al. 2003); however, the 

robustness of this effect across different land use types remains to be tested. Further, it is 

unclear whether high herb diversity attracts trap-nesting Hymenoptera into a habitat or 

land use type, or whether this effect only determines the distribution of species within a 

habitat, i.e. at the subplot scale. 

4) Diversity of trap-nesting Hymenoptera in highly modified habitats declines with 

increasing distance from natural or seminatural habitats. Klein et al. (2003) found a 

negative effect of forest distance on the diversity of social bees, but not solitary species 

such as those that occupy trap nests. Natural habitats may act as source populations for 

trap-nesting species, thereby leading to higher diversity in traps or plots that are 

proximate to such habitats.  

5) The effects of land use, herb diversity and forest distance on Hymenoptera α and β 

diversity vary at different spatial scales. Many factors affecting biodiversity are only 

examined at one spatial scale; however, these effects can not always be linearly �scaled 

up� across space and time (Willis & Whittaker 2002). 

 

Materials and Methods 

Study sites 

The study plots are located in the province of Manabi, southwest Ecuador. They comprise 

private farms spread across three cantons; Jipijapa (17N 546800m, E 9849274m alt. 

259m), Pajan (17N 563969, E 9828342m alt. 142m) and 24 de Mayo (largest town: 

Noboa 17N 567374m, E 9844106 alt. 260m) (Fig. 4.1) (for individual plot location 
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details and a full description of the region see Tylianakis et al. in press). The region falls 

within the semi-arid tropics and is largely dominated by agriculture, therefore the effects 

of agricultural intensification are directly relevant to this region. There are a variety of 

different crops cultivated in this area; however, in this study we consider the dominant 

ones - an arable crop (rice), pasture and agroforestry (coffee). Coffee agroforests can vary 

greatly with individual management; therefore, an effort was made to select plots that had 

been in cultivation for over 8 years, used no chemical fertilizers and had a similar degree 

of shade tree cover (60 � 80%). As there is no primary rainforest remaining in the zone 

(only few secondary and fragmented forest remnants), we used the most �natural� 

systems available, abandoned coffee agroforests and forest fragments, and these two 

types were treated separately in analyses. These land use types represent a gradient of 

decreasing management intensity. Their relative abundance and the total area within the 

study region are presented in Table 1. Twelve replicates of each managed land use type 

were sampled in the study, as were six abandoned coffee agroforests (abandoned for 10 - 

15 years and now resembling secondary forest) and six forest fragments. 

The study plots were generally clustered in groups of three or more different land use 

types so as to avoid spatial autocorrelation resulting from several plots of one land use 

type being clustered together (Fig 4.1). All plots had been occupied by the same land use 

type for at least five years. 

 
Table 4.1. The area in hectares and percentage of the total canton area occupied by each of the land use 

types considered in this study (Segarra 2004).  

Land use type Area Percentage of 

study zone 

Agroforestry, predominantly coffee 59 347 54.8

Forests and partially intervened natural vegetation, 

including abandoned agroforests 

18 660 17.2

Seasonal, permanent, and partly overgrown pastures 17 570 16.2

Rice and other annual crops 2 030 1.9

Total area of zone 108 241 100.0
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Trap nests 

Nine trap-nests were positioned (in a 3 x 3 grid, 25 m between adjacent traps) in the 

centre of each of the 48 plots to provide nesting sites for naturally occurring bee and 

wasp communities. Because the guild of aboveground cavity nesting species reproduces 

in these traps, the problem of species appearing as �tourists� in samples is eliminated. 

Trap nests were constructed according to the methodology of Tscharntke et al. (1998). A 

PVC tube with a length of 22 cm and a diameter of 15 cm formed the outer case of the 

nest. Internodes of reeds Arundo donax L. (Poaceae) with varying diameter (2 � 20 mm)  

 

 
Figure 4.1. Map of study region showing distribution of plots in relation to the major towns: Jipijapa (17N 

546800m, E 9849274m alt. 259m), Pajan (17N 563969, E 9828342m alt. 142m) and Noboa (17N 

567374m, E 9844106 alt. 260m). Circles with number to top right indicate clusters of plots within a village 

or two adjacent villages. 
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and a length of 20 cm were inserted into this tube and provided the nesting sites for bees 

and wasps. 

Trap nests were hung from trees in shaded (coffee, abandoned coffee and forest) systems 

and suspended from wooden posts in open (rice and pasture) systems. Sticky glue 

(tanglefoot) was applied to the post or attachment point to deter ants. All traps were 

positioned 1.5 m above the ground. A broad spectrum fungicide (Fitoraz® 76 PM, Bayer 

Crop Science S.A.: Propineb 21 g/L, Cymoxanil 1.8 g/L) that is not toxic to Hymenoptera 

was applied to each trap with a hand sprayer every month.  

Each trap was evaluated every month during the dry season (June � December 2003), and 

all reed internodes that were occupied by Hymenoptera were removed and replaced with 

new internodes of the same diameter. Occupied reeds were opened and the larvae were 

reared to maturity for positive identification to Subfamily level. Genera and species were 

identified where possible by D.W. Roubik, an expert in neotropical Hymenoptera, and by 

the authors using keys and reference collections from the Pontificia Universidad Católica 

del Ecuador. Remaining species were identified as morphospecies.  Species richness data 

from the six evaluations were pooled for each trap. Parasitoids and cleptoparasites were 

excluded from analyses, as their diversity is dependent partially on available host species. 

 

Plant surveys 

Plant surveys were conducted in 2.5 x 2.5 m quadrats below the traps in shaded systems 

or adjacent to the wooden posts, in open systems. The number of flowering angiosperm 

species potentially attracting Hymenoptera was counted in each quadrat. Ferns, grasses 

and other plants that did not require insect pollination were excluded, as these do not 

provide nectar resources that may influence populations of Hymenoptera. Two plant 

surveys were conducted (one in May/June 2003 and one in September/October 2003) in 

order to estimate herb diversity at the beginning and end of the dry season. The mean 

species richness from the two surveys was used in the analyses. Tree diversity (number of 

species) was also recorded in 10 x 10 m quadrats around each trap in the shaded land use 

types (coffee, abandoned coffee, and forest).  
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Forest distance 

The distance to the nearest possible hymenopteran source population (hereafter: �forest 

distance�) was measured for each trap in the open systems. This constituted the distance 

from each trap to the border of the nearest forested habitat type, i.e. forest fragment, 

agroforest or abandoned agroforest. This parameter could not be meaningfully assessed 

for the remaining land use systems, as the border between one agroforest and another was 

often arbitrarily based on ownership, rather than any biological significance, and all plots 

would essentially have zero values for this parameter. Distances up to one hundred 

metres were measured with a tape measure and greater distances were measured with 

GPS (Etrex Venture � Garmin: mean error for the measurements was 12.4 ± 4.36 m). For 

analyses, forest distance was partitioned into the distance from the forest to the plot (plot 

level) and the distance from the edge of the plot to each trap (subplot level).  

 

Alpha, Beta, and Gamma diversity 

Beta diversity is a measure of the proportion of total species diversity that is not present 

in each sample unit. We used additive partitioning (Lande 1996) to calculate this value 

such that regional species diversity γ is the sum of α diversity (the average within-sample 

diversity) and β diversity (species turnover). The benefit of this technique is that α, β and 

γ diversity can be defined according to a hierarchy of spatial scales, so that γ diversity at 

one level becomes α diversity for the next level. Thus, in our study, if αsub is defined as 

the mean species richness at the subplot scale, i.e. the average number of species in each 

trap within a plot, βsub is beta at the subplot scale and αplot is the total species richness for 

a plot, then:  αsub = αplot - βsub. 

At the next level of the hierarchy:  mean αplot for a land use type = αreg � βplot  where αreg 

is the total number of species within a land use type. Finally, mean αreg = γreg � βreg   

where γreg is the total number of species within the study region, i.e. across all land use 

types. In order to meaningfully compare alpha and beta diversity between different land 

use types, we compared them as a proportion of the total diversity for the land use type 

(arcsine square-root transformed). As α and β are correlated with eachother, we treated 

them as a multivariate response variable, and compared land use types as a fixed factor 

and plot cluster (Fig. 4.1) as a random factor (to eliminate variation due to spatial 
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autocorrelation, see below) in a linear mixed effects model (Crawley 2002), under the 

Variance Components module of Statistica 6.1 (StatSoft 2003). This module calculates 

error degrees of freedom (DF) using Satterthwaite's method of denominator synthesis 

(Satterthwaite, 1946), and can yield non-whole-number DF values (these were rounded to 

whole numbers in the results).  

 

Statistical analyses 

A preliminary Mantel test, based on Pearson�s product-moment correlation conducted in 

R (R Development Core Team 2004) found that our plots were spatially autocorrelated 

(Mantel statistic r: 0.2124, p = 0.005). Although the majority of this autocorrelation was 

between plots of different land use types, we nevertheless grouped our plots into 12 

clusters (Fig. 4.1), and used this as a covariate in analyses. Grouping the sites in this 

manner actually increased the significance values of significant variables by removing 

unexplained variation due to spatial autocorrelation. Any plots within 2 km of each other 

were grouped into a cluster. This distance was conservative, as a study and review of 

solitary bee foraging ranges (Gathmann & Tscharntke 2002) found a maximum dispersal 

range of 1200m in large solitary bees.  

To measure whether our samples were close to species saturation we calculated the 

abundance-based coverage estimator (ACE) and Chao1 estimates of species richness 

using the EstimateS software Version 5 (Colwell 1997). Sampled species richness was 

then divided by each estimator for each plot to calculate the percent species saturation. 

Remaining analyses were conducted in Statistica 6.0 (Statsoft 2003).  

Model residuals were tested for adherence to a particular distribution before this was 

assumed in analyses. The effect of land use on subplot diversity was calculated using a 

mixed effects model with diversity of individual traps as the response variable, grouped 

with plot as a random factor. Plot level effects of land use on species richness were tested 

with ANOVA.  

The effects of tree and herb diversity on species richness at the plot scale were tested with 

a linear mixed effects model, using land use as a fixed factor, plot cluster as a random 

factor, and tree or herb diversity as continuous predictors. At the subplot scale, traps were 
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grouped into plots (random factor). The effect of tree diversity was analysed only in the 

shaded systems (rice and pasture were excluded). 

In rice and pasture plots, the effect of forest distance on species richness was tested in a 

mixed effects model. Distance from forest to plot and distance from each trap to the plot 

edge closest to the forest were analysed as separate variables, with land use as a fixed 

factor and plot cluster as a random factor. Subplot samples were also blocked into plots. 

The division of forest distance into two components was necessary to determine whether 

traps within a plot that were closer to a forested habitat had higher diversity (e.g., through 

edge effects). The effects of plot age and area on plot-scale richness were also tested 

using a mixed effects model with land use type and plot cluster as covariables. 

 

Results 

A total of 10,006 individuals from 22 morphospecies (Hymenoptera: Apidae, Eumenidae, 

Megachilidae, Pompilidae and Sphecidae) were collected from the 432 trap nests. 

Generally, there was little specialisation in land use selection by the bees and wasps, as 

there was a great overlap in the species that constituted the communities of each land use 

type. Pasture, rice and coffee each had one species specific to only that type, and a further 

bee species was specific to coffee and abandoned coffee. The mean species saturation per 

study plot (N = 48) was 96.3 ± 0.85% according to the ACE and 97.7 ± 0.86% according 

to the Chao1 estimators. Percent species saturation according to the estimators did not 

vary significantly between land use types (one-way ANOVA: F<1, P>0.5 in both cases), 

so we preferred to make direct comparisons with original species richness data, rather 

than estimated values.  

 

Effects of land use on species richness  

At the subplot level, land use strongly affected species richness (F(4,43) = 17.62, P < 

0.0001) (Fig. 4.2a) of trap-nesting Hymenoptera; however, at the plot level there was no 

significant effect of land use type on species richness (F(4,43) = 1.17, P > 0.33) (Fig. 4.2b) 

or on ACE or Chao1 estimates of species richness (F(4,43) < 1.34, P > 0.272).  
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Figure 4.2. The effects of land use type on mean (± SE) species richness of trap-nesting Hymenoptera at 

the A) subplot and B) plot level. 

 

Partitioning of species diversity across spatial scales 

In general α diversity accounted for proportionately low levels of the total species 

richness (a mean of 15.3 ± 0.95% of αreg and 10.8 ±  0.65% of γreg), and the highest 

proportions of αreg and γreg were accounted for by species, βplot (Fig. 4.3).  Alpha 

diversity, as a proportion of total plot diversity (αsub / αplot ) was affected significantly by 

land use type (F(4,22) = 14.65, P < 0.00001), but relative beta diversity within plots (β/ 

αplot) was unaffected (F(4,22)= 0.71, P > 0.05) (Fig. 4.3).  

Both alpha and beta as a proportion of plot diversity were significantly affected by plot 

cluster (F(11,17) > 2.59, P < 0.05 in both cases), indicating that communities were partly 

affected by geographic location. Land use type and plot cluster did not interact 

significantly (F(11,17) < 1.63, P > 0.17 in both cases). 

 

Effects of plant diversity and abiotic variables on species richness 

At the subplot scale, herb diversity significantly affected species richness of trap-nesting 

Hymenoptera (F(1,39,7) = 13.90, P < 0.001) (Fig. 4.4); however, this effect was not 

apparent at the plot scale (F(1,20.2) = 0.32, P > 0.57). Tree diversity in the shaded plots had 

no significant effect on Hymenoptera species richness at the subplot (F(1,24.7) = 0.02, P > 
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Figure 4.3. Additively partitioned diversity of different land use types presented as a percentage of total 

diversity for each type, and total diversity for the region.  

 

0.89) or plot scale (F(1,9.6) = 0.01, P > 0.91). 

In the open land use types, forest distance had a significant positive effect on species 

richness at the plot scale (F(1,10) = 7.23, P = 0.02) (Fig. 4.5), but not at the subplot scale 

(F(1,101) = 2.59, P > 0.11). Therefore, proximity to forest patches did not cause significant 

variation between traps within a plot, even when the forest was adjacent to the plot. Plot-

scale species richness was not affected by plot age (F(117.3) = 0.02, P > 0.89) or area 

(F(1,19.9) = 0. 33, P > 0. 57).  
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Figure 4.4. Mean number of species of trap-nesting Hymenoptera (Log +/- SE) related to the number of 

herb species at the subplot level. 

 

 
Figure 4.5. Number of trap-nesting species per plot in open (rice and pasture) systems related to forest 

distance. Rice and pasture are not separated as Hymenoptera in these land use types were not significantly 

different in their response to forest distance. 
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Discussion 

Land use significantly affected species richness of trap-nesting Hymenoptera at the 

subplot (αsub) scale, yet we found no effect on species richness at the plot (αplot) scale. 

This seemingly contradictory result can be explained by differences in the proportionate 

α and β diversity of the different land use types. Alpha diversity explained a larger 

proportion of the total diversity in rice and pasture than in the other land use types, and 

this manifested itself as significantly higher per-trap (i.e. subplot) diversity. However, 

plot-scale diversity (αplot) and beta (βsub), as a proportion of total diversity, did not vary 

significantly between land use types (Fig. 4.3). This illustrates that land use does affect 

diversity (Hypothesis 1); however, alpha and beta diversity must be considered at 

multiple spatial scales in order to gain a full understanding of community structure 

(Hypothesis 5). 

Alpha diversity in our traps accounted for, on average, 11% of the total diversity for the 

study region (Fig. 4.3). On average, a high percentage of the total species for a given land 

use type were not present in each plot (βplot was 43%), a greater proportion in fact than 

beta between land use types (Fig 4.3). This contradicts the suggestion that within-taxa 

beta diversity should increase with environmental dissimilarity between plots (Harrison et 

al. 1992), such as between different land use types. Our results also lend support to the 

contention that human impacts reduce β relative to α diversity (Hypothesis 2; see also 

Thomas 1991). 

The increased species richness we observed at the subplot scale in more intensively 

managed systems is in general accordance with Klein et al. (2002), who found higher  

diversity of trap-nesting Hymenoptera in more intensively managed agroforestry systems. 

This is also congruent with the results of DeVries and others (DeVries et al. 1997; 

DeVries & Walla 1999) who found higher diversity of butterflies in more disturbed 

forests in eastern Ecuador. However, we found this result across a variety of land use 

types, not simply across different management or disturbance intensities of a single type. 

These results contradict the common perception that managed land is depauperate in 

biodiversity, and show that it can be a very valuable contributor to regional conservation 

of cavity nesting Hymenoptera.  
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High herb diversity resulted in high diversity of Hymenoptera at the subplot scale, 

supporting Hypothesis 3 and consistent with the results of Klein et al. (2003), who found 

that diversity of solitary bees increased with increasing blossom cover in coffee 

agroforests in Indonesia. Floral resource subsidies have been shown to cause aggregation 

and increased reproduction in Hymenoptera (Tylianakis et al. 2004), and one of these 

mechanisms may have lead to the higher diversity that we observed. However, plot-scale 

herb diversity did not influence diversity of Hymenoptera. This suggests that floral 

resources are important for attraction of individual bees within plots, but (perhaps due to 

their ephemeral nature) are not primary determinants of community diversity at larger 

spatial scales (Hypothesis 5). 

In open (rice and pasture) systems, diversity was higher in plots that were more distant 

from forest, the reverse pattern to that predicted by Hypothesis 4. However, within a plot, 

traps that were closer to forest did not differ significantly in species richness from traps 

that were further from forest. That forest distance only had an effect on larger spatial 

scales again lends support to Hypothesis 5. It is commonly assumed that natural habitats 

act as a kind of source population for many species within agriculturally intensified 

landscapes. For example, Klein et al. (2003) found a decrease in the number of social bee 

species in coffee agroforests with increasing forest distance, and Ricketts (2004) found 

that higher bee diversity at close proximity to forest led to improved pollination and fruit 

quality of coffee in Costa Rica. This would not be surprising if intensity of production 

does, in fact, go hand in hand with reduced biodiversity. However, the pattern found by 

Klein et al. (2003) did not hold for solitary species such as those in our study, and Krauss 

et al. (2003) found no effect of habitat isolation on butterfly diversity. Species richness of 

solitary wild bees has been shown to correlate positively with the percentage of 

seminatural habitats at scales of up to 750m (Steffan-Dewenter et al. 2002). If �natural� 

habitats were to act as a source population for trap-nesting Hymenoptera, how then could 

we rationalise the contrary pattern of reduced diversity we observed in plots and patches 

that are proximate to forest-like habitats? It is possible that in regions that are heavily 

dominated by agriculture, where natural forest systems have been heavily fragmented and 

disturbed (such as in our study region), forest-specialising species cannot survive easily, 

and that open, disturbed habitat specialists proliferate. In this sense, many trap-nesting 
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species, such as those of our study, may represent a special case of species that actually 

benefit from agricultural intensification, perhaps through a greater abundance of 

herbivore prey or flowering weeds. A similar phenomenon occurs in some tropical 

butterflies that benefit from feeding on flowering weeds in disturbed forest habitats 

(DeVries et al 1997). This would explain the positive effect of increasing forest distance 

we observed in open, more disturbed systems, and imply that determinants of diversity in 

landscapes depend on the taxa concerned, and possibly on the predominant land use of 

the region (in our study region, agriculture).  

In summary, the significance of herb diversity at the subplot scale only and the surprising 

effect of forest distance at the plot scale highlight the importance of testing driving 

factors for differences in biodiversity at different spatial scales. Moreover, the effects of 

land use on species richness were highly dependent on spatial scale. If diversity estimates 

in our study region were based only on subplot-scale analyses, it would appear that rice 

and pasture contain the highest species diversity, and therefore merit the greatest 

attention. Conversely, a plot-scale analysis would give no indication of which land use 

system contains the most species. We emphasize caution in the estimation of biodiversity 

at only one spatial scale, as the selection of different scales for an investigation may 

result in completely disparate conclusions. 
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Abstract 

Understanding global biodiversity patterns requires analyses at multiple spatial and 

temporal scales, across a variety of different habitat types. We used a highly replicated 

study in coastal Ecuador to examine simultaneously for the first time spatial and temporal 

species turnover and the contribution of five different habitat types (rice, pasture, coffee 

agroforests, abandoned coffee agroforests and native forest fragments) to regional 

diversity in the tropics, using the experimental placement of standardised nesting 

structures for bees and wasps. There was notable overlap in the communities of different 

habitat types, indicating that even intensively managed land can provide a valuable 

contribution to the overall biodiversity of the landscape mosaic. Importantly, there was a 

significant effect of habitat type on temporal variation in diversity. While intensive 

cropping systems such as rice and pasture exhibited higher diversity in certain months, 

greater species turnover through time in the abandoned coffee and forest plots accounted 

for the higher overall diversity in these habitats. Overall, spatial and temporal turnover 

explained 38.6% and 23.1%, respectively, of partitioned regional species richness. A 

quantitative analysis revealed that the relative habitat specificity of Hymenoptera 

decreased with increasing habitat disturbance. 
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Introduction 

Global biodiversity is declining at an alarming rate, and the impending loss of important 

ecosystem services (Luck et al. 2003) has made this one of the most pressing issues 

facing ecologists today. The realisation that set-aside conservation areas are no longer 

sufficient to slow this decline has led to an increased focus on managed land for 

conservation (Perfecto et al. 1996, Hughes et al. 2002; Bawa et al. 2004); however, the 

importance of such anthropogenic habitats remains somewhat ambiguous and a more 

complete understanding requires analyses at multiple spatial and temporal scales 

(Ricklefs & Schluter 1993; May 1994).  

While the partitioning of spatial components of species turnover to determine local-

regional diversity patterns has attracted considerable attention recently (Gering & Crist 

2002; Gaston 2004), temporal variation in biodiversity patterns, such as the contribution 

of temporal regimes (abiotic, biotic or anthropogenic) in different habitat types to overall 

landscape diversity is a neglected issue. Some studies have shown that increased 

management intensity leads to decreased diversity of a variety of taxa (Steffan-Dewenter 

et al. 2002; Mas & Dietsch 2003; Schulze et al. 2004; Shahabuddin et al. 2005), whereas 

others have demonstrated higher species richness in disturbed habitats (e.g., DeVries et 

al. 1997; Lawton et al. 1998; DeVries & Walla 2001; Klein et al. 2002; Chapter 4). The 

temporally changing importance of habitat type for overall biodiversity may partly 

explain the contradicting results of these studies; however, this has not yet been examined 

over a range of different habitats. Temporal heterogeneity in the biodiversity of different 

habitat types may occur when important resources become available at different times 

(Wolda 1978, 1988), e.g., during periods of mast flowering or anthropogenic 

sowing/harvesting. Species may therefore move from one habitat to another, exploiting 

the availability of predictable, ephemeral resources (Wissinger 1997; Bambaradeniya et 

al. 2004). If there is strong temporal heterogeneity in habitat biodiversity, the time-scale 

of sampling could lead to a serious over- or underestimation of diversity within a given 

habitat type (Summerville & Crist 2005), or an unbalanced comparison of diversity 

between different habitats (Roubik 2001). This is especially pertinent to tropical regions, 

where relatively little seasonal variation in temperature means that biodiversity sampling 
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is often carried out over short time scales and assumed to be representative of general 

patterns (e.g., Hughes et al. 2002; Shahabuddin et al. 2005; but see DeVries et al. 1997). 

Here we use a highly replicated study to examine simultaneously for the first time spatial 

and temporal species turnover and the contribution of different habitat types to regional 

diversity in the tropics. We assess the contribution of five different habitats to the 

biodiversity of a guild of bees and wasps. This variety of habitats is necessary, as many 

past studies examining the importance of different habitat types for biodiversity deal only 

with differing management intensities or disturbance levels of a single habitat type (or 

group of closely related habitats), and therefore cannot give accurate estimates of the 

overall contribution of managed land to regional biodiversity (but see Schulze et al. 2004; 

Shahabuddin et al. 2005). More importantly, we examine whether there is temporal 

variation in the spatial partitioning of biodiversity. Specifically, we ask 1) does 

partitioned biodiversity in the region show temporal variation, and is this variation 

consistent across habitats, 2) do the different habitat types show complementarity in 

partitioned biodiversity, 3) is there a seasonal shift of species between habitats, and 4) are 

there significant differences in the specific species composition of each habitat, such that 

species may be specific to just one type? Specificity is often given a cursory mention in 

biodiversity studies, as it is intuitively obvious that high diversity of cosmopolitan 

species is not preferable to slightly lower diversity of rare habitat specialists when global 

biodiversity decline is considered. Nevertheless, specificity is seldom quantified further 

than anecdotal observations that a species was only found in one habitat and must 

therefore be specific to that habitat (for exceptions see McGeoch & Chown 1998; 

Wagner & Edwards 2001; and references within). 

For this study we use the guild of trap-nesting Hymenoptera, as they comprise an 

important group of pollinators and potential natural enemies of insect pests (Klein et al. 

2002, 2004). The diversity of these communities is highly correlated with total bee and 

wasp diversity (Tscharntke et al. 1998). Therefore, our results have implications not only 

for the study and management of biodiversity, but also for the timing and availability of 

ecosystem services, such as crop pollination or pest population reduction, provided by 

these species. The habitat types we consider (rice, pasture, coffee agroforests, abandoned 

coffee agroforests and native forest fragments), represent a gradient of decreasing 
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anthropogenic disturbance, and the predominant habitat types found in Southwest 

Ecuador.  

 

Materials and Methods 

Study region 

The 48 study plots are spread across three cantons; Jipijapa (17N 546800m, E 9849274m 

alt. 259m), Pajan (17N 563969, E 9828342m alt. 142m) and 24 de Mayo (largest town: 

Noboa 17N 567374m, E 9844106 alt. 260m) within the province of Manabi, Southwest 

Ecuador (see online supplement for site details). The region falls within the semi-arid 

tropics and is largely dominated by agriculture. There are a variety of different crops 

cultivated in this area, however we consider only the dominant ones - an arable crop 

(rice), pasture and agroforestry (coffee). The structure of coffee agroforests can vary 

greatly with individual management. Therefore, an effort was made to select plots that 

had been in cultivation for over 8 years, used no chemical fertilizers and had a similar 

degree of shade tree cover (60 � 80%). Many coffee agroforests have been abandoned by 

owners due to low economic returns. As these abandoned agroforests occupy a large 

proportion of the landscape, we included abandoned coffee as a natural intermediate 

between cultivated coffee and forest. There is no primary rainforest remaining in the 

zone, so for this study we used the most �natural� systems available (which were partly 

disturbed forest fragments). Coffee is the most abundant land-use type within the 

landscape (54.8% of the study zone), followed by forest (including disturbed forest and 

abandoned agroforests) (17.2%), pasture (16.2%) and arable crops (1.9%) (Segarra 

2004). Twelve replicates of each managed habitat type were sampled in the study, as well 

as six abandoned coffee agroforests (abandoned for 10 - 15 years and now resembling 

secondary forest) and six forest fragments. 

The study plots were generally clustered in groups of three or more different habitat types 

so as to avoid spatial autocorrelation resulting from several plots of one habitat type 

being clustered together.  
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Trap nests 

Nine trap-nests were positioned (in a 3 x 3 grid, 25 m between adjacent traps) in the 

centre of each of the 48 plots. Trap nests were constructed according to the methodology 

of Tscharntke et al. (1998). A PVC tube with a length of 22 cm and a diameter of 15 cm 

formed the outer case of the nest. Internodes of reeds Arundo donax L. (Poaceae) with 

varying diameter (2 � 20 mm) and a length of 20 cm were inserted into this tube and 

provided the nesting sites for bees and wasps. Trap nests were hung from trees in shaded 

(coffee, abandoned coffee and forest) systems and suspended from wooden posts in open 

(rice and pasture) systems. Sticky glue (tanglefoot) was applied to the post or attachment 

point to deter ants. All traps were positioned 1.5 m above the ground. 

A broad spectrum fungicide (Fitoraz® 76 PM, Bayer: Propineb 21 g/L, Cymoxanil 1.8 

g/L) that is not toxic to Hymenoptera was applied to each trap with a hand sprayer every 

month.  

 

Sampling period  

Each trap was evaluated every month from June 2003 to May 2004 (temperature and 

rainfall for this region is presented in Appendix A), and all reed internodes that were 

occupied by Hymenoptera were removed and replaced with new internodes of the same 

diameter. Occupied reeds were opened and the larvae were reared to maturity for positive 

identification to morphospecies (hereafter referred to simply as �species�). Data from 

each of the nine traps were pooled for each plot. Parasitoids and cleptoparasites were 

excluded from analyses, as their diversity is partially dependent on available host species. 

 

Data analyses 

We carried out all statistical analyses using Statistica 6.1 (StatSoft 2003). The effect of 

habitat type on overall diversity and abundance per plot was analysed with ANOVA and 

post hoc Tukey�s pairwise comparisons on data with normally distributed model 

residuals. Analyses of seasonal effects of habitat type on species richness, Shannon 

index, and abundance were conducted using repeated measures ANOVA.  

The effects of habitat area and time in cultivation (plot age) on diversity were tested 

simultaneously using general linear models with habitat type as a fixed factor. 



 98

To determine temporal species turnover, we used additive partitioning of species 

diversity (Lande 1996), a technique that is insensitive to differences in sampling effort 

among replicates, and therefore does not require rarefaction of data prior to analyses 

(Veech et al. 2002; Crist et al. 2003). Alpha diversity (α) was defined as the mean 

number of morphospecies per plot, per month. The temporal turnover in species richness 

between months was calculated for each plot (βTPlot) within a given habitat type as: the 

total number of morphospecies found within that plot (over the entire year) minus the 

mean number of morphospecies per month for that plot (α). Overall βT was calculated as 

the mean βTPlot for a given habitat type. Spatial turnover (βS) was calculated as: the total 

number of morphospecies found within a habitat type over the entire year minus the mean 

number of morphospecies per plot of that habitat type (over the entire year).  

Therefore, the overall diversity of a habitat type, γ = α + βT + βS. 

As α and βTPlot were replicated across plots, they were analysed as a proportion of γ 

(arcsine square root transformed), and treated as multivariate responses in a mixed effects 

model with habitat type as a fixed factor. 

We estimated a habitat specificity index for each species by comparing observed and 

expected numbers of each species in each habitat type. Some published specificity 

measures (e.g., McGeoch & Chown 1998) are useful for within-habitat comparisons of 

species, but are biased by differences in sample size between habitats. We therefore 

calculated the expected number of individuals of species i for habitat j as:  

Eij = Ni.Pj 

where Ni is the total number of individuals of species i across all habitats, and Pj is the 

proportion of the total individuals sampled (of all species across all habitats) that were 

found in habitat j. Eij therefore represents the number of individuals of species i that we 

would expect in habitat j if this species showed no preference for any habitat type and 

distributed itself randomly across habitats proportionately to the relative abundance of all 

species in each habitat. We then used log10{(Oij/Eij)+1}, where Oij is the observed number 

of individuals of species i in habitat j, as a measure of specificity, i.e. the deviation of 

species i from the expected random distribution. The specificity measures for every 

species were compared across habitats using a non-parametric Friedman ANOVA by 

ranks, to determine whether the species had on average higher specificity in one or more 
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Figure 5.1. Mean (± SE) A) number of species and B) 
Shannon index per plot per month (white bars) and per plot 
over the entire year (shaded bars) in each of the five 
habitat types: rice, pasture, coffee agroforest, abandoned 
coffee agroforest and forest fragment. Letters represent 
significant differences between means in a post-hoc Fisher 
LSD test. 

habitats. Post-hoc pairwise comparisons were then made with Wilcoxon matched pairs 

tests. 

 

Results 

Seasonal analyses  

In total, 15 047 individuals of 31 species (Hymenoptera: Apidae, Eumenidae, 

Megachilidae, Mutilidae, Pompilidae and Sphecidae) were collected from the 432 trap 

nests. Species richness was not significantly correlated with individual abundance 

(Spearman rank correlation, r = -0.15, N = 48, P > 0.1). 

Season had a strong effect on species 

richness (F(11,473) = 7.30, P < 0.0001) 

and Shannon index (F(11,473) = 6.83, 

P < 0.0001) in the different habitat 

types, as did the habitat type itself 

(F(4,43) > 5.54, P ≤ 0.001 for richness 

and Shannon). Season and habitat 

interacted significantly on species 

richness, such that seasonal effects 

were different in the different habitat 

types (F(44,473) = 2.25, P < 0.0001). 

On average per month, species 

richness and Shannon index were 

highest in the most intensive systems 

(Fig. 5.1). At the beginning of the 

dry season (June-August 2003), rice 

and pasture had significantly higher 

alpha diversity than other habitat types 

(F(4,43) > 9.97, P < 0.0001 in each  

month). Rice and pasture were also 

highest in October 2003 and January- 
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February 2004, although the effect was weaker in these months (F(4,43) > 2.72, P < 0.05 in 

each month). Abundance of individuals was also affected by season (F(11,473) = 13.61, P < 

0.0001) and habitat type (F(4,473) = 18.93, P < 0.0001), and these variables interacted 

significantly (F(44,473) = 6.97, P < 0.0001). 

In a comparison of the rainy vs dry season (see Appendix A), the mean number of species 

per plot was higher in the rainy season (F(1,43) = 9.90, P < 0.005), and this effect did not 

differ significantly among habitat types (interaction effect: F(4,43) = 9.90, P > 0.05). There 

were eight out of 31 species that were found in the rainy season and not in the dry season 

(and eight species that showed the reverse pattern), across all habitat types. 

 

Effects of habitat on overall diversity and abundance  

When data for the entire year were pooled for each plot, habitat type significantly 

affected the number of individuals (F(4,43) = 18.69, P < 0.0001), which was highest in rice 

and pasture plots. Species richness (F(4,43) = 2.58, P = 0.050) and Shannon index (F(4,43) = 

11.09, P < 0.0001) were also significantly affected by habitat type. However, despite 

having lower abundance of individuals, and lower diversity per month (see above) forest 

and abandoned coffee showed the highest richness and Shannon index per plot over the 

entire year, and coffee showed an equally high Shannon index (Fig. 5.1). In total, across 

all plots and months, rice contained 21 species, managed coffee contained 24, and the 

remaining habitat types contained 25 species each.  

Habitat area and time in cultivation did not significantly affect species richness (F(1,41) < 

0.71, P > 0.40 for both age and area) or Shannon index  (F(1,41) < 0.19, P > 0.66 for both 

age and area) of trap nesting Hymenoptera. 

 

Partitioning of species diversity across spatio-temporal scales 

The different habitat types showed substantial differences in the relative partitioning of 

diversity across space and time (Fig. 5.2). The most intensive systems (rice and pasture) 

had proportionately higher diversity per plot (α/γ) (F(4,43) = 18.16, P < 0.0001), and 

relatively high species turnover across plots (βS); however, temporal species turnover (βT) 

was low in these systems. Conversely, abandoned coffee and forest had a significantly 

larger proportion of γ explained by βTPlot than did the other systems (F(4,43) = 3.27 P <  
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Figure  5.2. Proportion of total (γ) diversity partitioned into α diversity and temporal (βT) and spatial (βS) 

turnover. The mean number of species per plot, per month is represented by α diversity. Error bars show SE 

among plots. 

 

0.02), and they also had relatively low α and βS diversity (Fig. 5.2). Overall, at the level 

of sampling conducted, α diversity comprised 6.9% of the total diversity of our study 

region (31 species). Temporal and spatial turnover comprised 23.1% and 38.6%, 

respectively, of total diversity and the remaining 31.4% represented turnover in species 

between the different habitat types. 

 

Specificity analyses 

Although there was some variation in species composition across habitat types, overall 

specificity was relatively low. Abandoned coffee had no entirely specific species, forest 

had two (forest and abandoned coffee combined had an additional one) and each of the 

remaining habitats contained one species that was specific to that type. Specificity (as 
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measured by the specificity index) varied significantly across habitats (Chi-sq = 11.63, N 

= 33, DF  = 4, P = 0.020), with rice and pasture showing significantly lower specificity 

(below expected values), than coffee, abandoned coffee, or forest (Wilcoxon matched 

pairs tests: Valid N = 33, Z > 2.6, P < 0.0078 in significantly different pairs), which had 

median observed values that were higher than those expected by random distribution of 

individuals among habitats in proportion to sample size (Fig. 5.3).  

 

 
 

Figure 5.3. Specificity (log10{(Observed/Expected)+1} number of individuals per species) (median ± 95% 

CI) in the five different habitat types. Letters show significant differences based on pairwise comparisons 

using Wilcoxon matched pairs tests. The dotted line represents observed values equal to expected values, 

i.e. distribution among habitats in proportion to sample size. 

 

Discussion 

Diversity varied greatly among habitat types and seasons. If we had only carried out a 

�snapshot� comparison of habitat types at the beginning of the dry season (June � August 
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2003), we would have falsely concluded that the most intensive cropping systems (rice 

and pasture) contained the highest diversity of trap-nesting bees and wasps in this study 

system (as found by Klein et al. 2002; Chapter 4). However, when we analysed data for 

the entire year, we found that the less disturbed habitats (forests and abandoned coffee 

agroforests) had higher temporal species turnover, which led to greater overall diversity. 

These highly contradictory outcomes demonstrate the necessity for adequate sampling 

regimes that incorporate the temporal component of variation in biodiversity, and may 

help to explain the varied responses of diversity to disturbance intensity that have been 

observed in previous, single season studies (e.g., Schulze et al. 2004; Shahabuddin et al. 

2005; Chapter 4). This is particularly important for mobile species with short generation 

times such as insects.  

Surprisingly, coffee agroforests did not maintain significantly higher overall species 

richness than did the more intensively managed crops, although Shannon index was 

significantly higher. This more marginal role of agroforestry is consistent with the results 

of Shahabuddin et al. (2005), and contrasts with the perception that shade coffee 

agroforests may be a potentially important refuge for biodiversity (e.g., Perfecto et al. 

1996; Moguel & Toledo 1999). However, we found that agroforests that had been 

abandoned for 10-15 years were not significantly different from forest fragments in their 

associated diversity of Hymenoptera, and that both productive and abandoned coffee 

showed high habitat specificity scores (see below). This may imply that decreases in 

biodiversity are more ephemeral in agroforests compared with more destructive annual 

crops; however, studies are needed that compare several crop types that have been 

abandoned for the same period. Coffee also showed relatively high spatial and temporal 

turnover in diversity (Fig. 5.2), indicating that there may be great variation among 

different plots due to variation in management practices.  

The increase in Hymenoptera diversity per plot that we observed in the rainy season was 

concomitant with higher herb diversity per plot at this time (T. Lozada, unpubl. data). 

This is in accordance with the broad pattern of high trap-nesting bee and wasp diversity 

in areas of high flowering herb diversity (Klein et al. 2002; Chapter 4). 

Contrary to expectations, there was not a great degree of habitat specificity in 

communities of trap-nesting bees and wasps. All habitat types had one or two species 
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specific to that type, but there was considerable overlap in community composition 

between habitats, rather than high complementarity. Coffee, abandoned coffee and forest 

fragments had the highest specificity scores, indicating that the proportion of habitat 

specialists (like overall diversity) declines with increasing habitat disturbance.  

Total regional species richness did not show great variation between the dry and rainy 

seasons (23 species in each season); however, species composition changed dramatically 

(ca. 30% turnover in species identity between the two seasons � see online supplement), 

as did the distribution of species richness among the different habitat types. We found no 

direct evidence of seasonal movement between different habitat types, although there 

were a total of 16 species that we only observed in either the rainy or dry season. 

Whether these taxa migrate from outside the region, are present year-round at low 

densities, or spend part of the year in a larval or pupal stage is unclear. Metapopulation 

studies of individual species will be necessary to ascertain whether movement between 

different habitat types actually occurs. Furthermore, in order for the ecosystem services 

of different species to be utilised, the time at which they occur requires careful 

consideration. For example, Sperber et al. (2004) found that populations of beneficial 

parasitoids emigrated from Brazilian cacao agroforests to nearby forest remnants in 

winter, yet high tree diversity encouraged a greater diversity of parasitoid families in 

spring and summer. 

In conclusion, although we found the highest overall biodiversity and specificity in the 

more natural systems (abandoned coffee and forest fragments), the diversity of 

Hymenoptera within each habitat type showed great temporal variability. This 

emphasises that temporal, as well as spatial, dynamics are integral to the distribution of 

biodiversity, and even studies conducted in the tropics must consider temporal variation 

when partitioning components of regional species diversity. Although our results indicate 

that temporal variation in biodiversity is very important, we realise that one year is, 

ecologically speaking, a relatively short time, and interannual temporal turnover may also 

explain a significant portion of overall species richness.  

All habitat types contributed to between 60% and 70% of the total regional diversity 

observed in our study. Therefore, our results show that even intensively managed land 

can provide a valuable contribution to the overall biodiversity of the landscape mosaic. 
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Appendix 5.1. Online Appendix  

Jason Tylianakis, Alexandra-Maria Klein and Teja Tscharntke. 2005. Temporally-dependent effects of habitat on spatially 

partitioned Hymenoptera diversity within a tropical mosaic landscape. Ecology VOL: pp-pp. 

Appendix A. Monthly temperature (oC) and rainfall (mm) in Pajan (17N 563969, E 9828342m alt. 142m) within our study region in 
2003.  
The rainy season begins in December and ends in May. 
 
 Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Temperature  
25.8 25.7 25.8 26 25.9 25.9 25.6 25.3 25.4 25.6 25.6 25.4 

Rainfall  
73.3 197.1 276.1 307.1 293.6 143.2 35.8 18.4 7.3 6.7 4.5 28.8 
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Appendix 5.2. Online supplement: site_table.csv 
Details of the location, age, area, and habitat type of each plot, with species richness, individual abundance 
and Shannon index over the entire year. Column (1) gives the habitat type (forest fragment, abandoned 
coffee, coffee, pasture or rice). The second and third columns give the GPS coordinates (UTM 17) of the 
plots in metres (2) East and (3) South respectively. Column (4) gives the elevation of the plot in metres. 
Column (5) gives the area of the plot in hectares and column (6) gives the age (years in cultivation with that 
particular habitat type) of the plot. Column (7) gives the species richness, (8) gives the number of 
individual larvae found in the traps and (9) the Shannon diversity Index over a 1 year sampling period. 
 
    Type       E      S     Elev.  Area   Age Species  Indiv.  Shannon 
Ab. Coffe 9835796 563314      354     2    15       7      56   1.687 
Ab. Coffe 9828140 559366      230     1    10      13     151   2.146 
Ab. Coffe 9822004 549768      401     2    10      13      75   2.367 
Ab. Coffe 9819264 549200      358     1    12      14     175   2.289 
Ab. Coffe 9830652 569611      128     1    16      14     157   2.370 
Ab. Coffe 9811036 562421      346     1    15      12     120   2.006 
Coffee    9844870 566670      180     5    15      10     215   1.597 
Coffee    9841336 570482      228     6    25      10     105   1.917 
Coffee    9832226 569803      132    10    30      12     202   2.107 
Coffee    9837024 570716      126     3    30       6      72   1.588 
Coffee    9830485 571246      148     1    15      15     193   2.285 
Coffee    9827161 564191      136     2    24      10      65   2.167 
Coffee    9824511 566837      125   1.5     8       9      73   1.878 
Coffee    9840142 571993      198     2    20      10      99   1.845 
Coffee    9839314 562322      467     2    30       5     297   0.660 
Coffee    9837120 560633      471     6    20       9     190   1.075 
Coffee    9828048 568651      194   0.8     8      14     129   2.241 
Coffee    9830574 569064      190   1.5    40      12     139   1.907 
Forest    9830698 572012      110     1    30      14     263   2.031 
Forest    9824511 566837      140     2    40      14     195   2.055 
Forest    9835774 563422      369     2    60      10      68   1.751 
Forest    9837364 560303      471    10     2      12     130   2.106 
Forest    9810148 563307      308    25    80      12      65   2.063 
Forest    9805960 563128      347    25    80       9      67   1.971 
Pasture   9844972 567846      205  0.75    25      13     189   1.700 
Pasture   9841319 569843      180     2    20      13     699   1.601 
Pasture   9832121 569533      130   1.5    50      11     833   1.402 
Pasture   9837350 570866      136   1.5     9       9     538   1.039 
Pasture   9830749 570410      121   1.5    40      11     539   1.110 
Pasture   9827113 564587      125     1    30      11     398   1.383 
Pasture   9824316 567452      160   1.5    20      10     380   1.588 
Pasture   9840111 571780      186     5    30      13     371   1.591 
Pasture   9840014 561598      477     2    20       9     268   1.372 
Pasture   9837259 560441      471     2    30       7     612   0.821 
Pasture   9828324 569287      193     8    14       9     751   0.470 
Pasture   9830544 568947      187     1    40      12     438   1.487 
Rice      9844318 565629      156  0.75     2      12     297   1.572 
Rice      9841059 569801      179   1.5     8      11     605   1.592 
Rice      9832126 569803      126     2     5       8     658   1.219 
Rice      9837018 570716      126   1.5    10       6     337   1.040 
Rice      9830614 570695      119  0.75     6      11     473   1.354 
Rice      9826975 564833      120     2     7       8     466   1.497 
Rice      9824383 566908      105   1.2     4       8     303   1.446 
Rice      9840298 571901      189  0.75     8      10     236   1.389 
Rice      9839223 562412      471     1     2      10     427   1.001 
Rice      9837713 560684      470   0.6     5       8     330   1.438 
Rice      9828204 568962      175     3     2       9     285   1.032 
Rice      9830574 569064      190   1.5     6       8     552   0.930 
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Abstract 

Global biodiversity decline has prompted great interest in the effects of habitat 

modification and diversity on the functioning and stability of ecosystem processes. 

However, the applicability of previous modelled or mesocosm community studies to real 

diverse communities in different habitats remains ambiguous. 

We exposed standardised nesting resources for naturally-occurring communities of 

cavity-nesting bees and wasps and their natural enemies in coastal Ecuador, to test the 

effects of host and natural enemy diversity on ecosystem function (parasitism rates) and 

temporal variability in this function. Parasitism rates increased with increasing diversity 

of natural enemies and their hosts, exceeding the effects of increased enemy abundance 

alone. Temporal variability in parasitism was lower in plots with high mean natural 

enemy diversity and higher in plots with temporally variable host and natural enemy 

diversity. These effects of diversity on parasitism and temporal stability in parasitism 

rates were sufficiently strong to be visible across five different habitat types, representing 

a gradient of increasing anthropogenic modification.  
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Introduction 

The modification of landscapes through human exploitation of the environment continues 

to reduce biodiversity on a global scale (Vitousek et al. 1997). This dramatic 

anthropogenically mediated decline in biodiversity has led to concern over the potential 

loss of important ecosystem processes (Foley et al. 2005), and the need for a clearer 

understanding of the ways in which diversity affects ecosystem functioning (Chapin et al. 

2000; Daily et al. 2000; Hooper et al. 2005) and variability in this functioning over time 

(Rodriguez & Hawkins 2000; Halpern et al. 2005). The tenet that diversity increases 

ecosystem functioning has itself engendered some controversy (e.g., Huston 1997; 

Tilman et al. 1997; Naeem 2002), and several authors have argued for a clearer 

understanding of the interactions between abiotic factors and diversity/function (e.g., 

Loreau et al. 2001).  

Much recent work has focused on the relationship between diversity and productivity in 

plant communities (e.g., Mouquet et al. 2002; Pfisterer & Schmid 2002; Cardinale et al. 

2004; Lambers et al. 2004; van Ruijven & Berendse 2005); however, there is some 

evidence that the dominant impacts of biodiversity change on ecosystem functioning are 

trophically mediated by consumers (Duffy 2003). A recent link has therefore been made 

between the body of work relating to ecosystem function and that relating to predator-

prey interactions (Ives et al. 2005).  

Diversity effects on consumer-resource interactions have until now been examined using 

modelled (Fox 2004; Ives et al. 2005) or simplified communities in the laboratory 

(Gamfeldt et al. 2005) or in field cage (Cardinale et al. 2002; 2003; Finke & Denno 

2004) environments. While this work has been critical to understanding the mechanisms 

through which diversity may affect ecosystem processes, the structure and diversity of 

experimental communities often differs markedly from the communities actually 

providing ecosystem services within real landscapes (Sih et al. 1998; Kremen 2005). 

Therefore, uncertainty remains as to how the results of such experiments scale up to 

landscapes and generalize across different spatiotemporal scales and habitat types 

(Loreau et al. 2001; Cardinale et al. 2004).  

Related to the diversity/function debate is the effect of diversity on stability of 

ecosystems and their processes. This subject has received considerable attention (see 
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Pimm 1984; McCann 2000; Cottingham et al. 2001 for reviews), and carries important 

implications for conservation and sustainable agriculture, as consistency in ecosystem 

services is required over time. Moreover, diversity effects on ecosystem functioning and 

stability generally act in concert, so these factors are most meaningful when studied 

together (Pfisterer & Schmid 2002; Worm & Duffy 2003). As with diversity/function 

relationships, much of the diversity/stability literature has focused on stability of plant 

productivity (e.g., Tilman 1996; Tilman et al. 1998; Pfisterer & Schmid 2002; Caldeira et 

al. 2005). However, the importance of predator diversity for ecosystem stability remains 

poorly studied (Loreau et al. 2001), despite the importance of these species for biological 

pest control, and the fact that higher trophic levels frequently suffer more from landscape 

modification (Kruess & Tscharntke 1994). Although there is some evidence from the 

laboratory (Steiner et al. 2005), the effects of diversity on consumer-resource interactions 

and stability in real systems remain contentious (Rodriguez & Hawkins 2000; Montoya et 

al. 2003; Finke & Denno 2004). A recent meta-analysis found a destabilising effect of 

predator diversity on herbivore biomass (Halpern et al. 2005), whereas a field 

investigation of a parasitoid guild showed no effect of diversity on functioning and 

stability (Rodriguez & Hawkins 2000). 

We address this dearth of field evidence by examining the effect of natural enemy 

diversity on ecosystem functioning (parasitism rates) and stability of parasitism rates 

through time. We also examine how these effects vary across different habitat types, 

forming a gradient of anthropogenic modification. We use a diverse guild of cavity-

nesting bees and wasps, and their natural enemies in coastal Ecuador, and find that 

increased diversity of natural enemies (parasitoids and cleptoparasites) leads to increased 

parasitism rates, exceeding the effects of abundance of natural enemies or their hosts. We 

also show that high mean diversity per month leads to low between month variability in 

parasitism (i.e. high stability), even though high overall diversity across the entire 

sampling period had no significant effect on stability. Conversely, temporally variable 

natural enemy and host diversity led to variable rates of parasitism between months. 

These effects were found across five different habitat types, representing a gradient of 

increasing anthropogenic modification. Our results show that consistently high diversity 
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can promote ecosystem functioning and temporal stability, whereas variability in 

diversity through time is inimical to the maintenance of high parasitism rates. 

 

Materials and Methods 

Study region 

The 48 study plots were spread across three cantons in the region of Jipijapa (17N 

546800m, E 9849274m alt. 259m), within the province of Manabi, Southwest Ecuador 

(for individual plot location details and a full description of the region see Tylianakis et 

al. in press). The region falls within the semi-arid tropics and is largely dominated by 

agriculture. Here we examine a gradient of anthropogenic modification using the 

predominant agricultural systems in the region - an arable crop (rice), pasture and 

agroforestry (coffee). We also examine forest fragments and use abandoned coffee 

agroforests as an intermediate between forest and agricultural systems. Twelve replicates 

of each managed habitat type were sampled in the study, as well as six abandoned coffee 

agroforests (abandoned for 10 - 15 years and now resembling secondary forest) and six 

forest fragments.  

 

Trap nests 

Nine trap nests were positioned (in a 3 x 3 grid, 25 m between adjacent traps) in the 

centre of each of the 48 plots, to provide nesting sites for naturally occurring bee, wasp 

and natural enemy communities. Exposure of standardised trap nests is similar to the 

exposure of other resources, e.g. phytometer plants, but because the guild of aboveground 

cavity nesting species reproduces in these traps, the problem of species appearing as 

�tourists� in samples is eliminated. It may be argued that in open habitats, where fewer 

natural nesting sites are available, these trap nests will attract Hymenoptera more than in 

wooded habitats; however, this has been shown not to be the case. Rather, cavity-nesting 

species usually build nests very close to the nesting site from which they pupated, and 

trap nests give an accurate representation of the community normally occurring in a 

particular habitat (see Tscharntke et al. 1998 and references therein). Trap nests were 

constructed according to the methodology of Tscharntke et al. (1998). A PVC tube with a 

length of 22 cm and a diameter of 15 cm formed the outer case of the nest. Internodes of 
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reeds Arundo donax L. (Poaceae) with varying diameter (2 � 20 mm) and a length of 20 

cm were inserted into this tube and provided the nesting sites for bees and wasps. Trap 

nests were hung from trees in shaded (coffee, abandoned coffee and forest) systems and 

suspended from wooden posts in open (rice and pasture) systems. Sticky glue (tanglefoot) 

was applied to the post or attachment point to deter ants. All traps were positioned 1.5 m 

above the ground. 

The natural enemies found in trap nests can be broadly classified as either ectoparasitoids 

(feed externally on the host) endoparasitoids (feed internally on the host) or 

cleptoparasites (feed on the host�s food resources), and all kill the host larva/pupa 

(Appendix 1). Host identity was usually determined either from surviving hosts within a 

parasitised nest or by nest characteristics when all host larvae were parasitised. 

A broad spectrum fungicide (Fitoraz® 76 PM, Bayer Crop Science S.A.: Propineb 21 

g/L, Cymoxanil 1.8 g/L) that is not toxic to Hymenoptera was applied to each trap with a 

hand sprayer every month.  

Each trap was evaluated every month from June 2003 to October 2004, and all reed 

internodes that were occupied by Hymenoptera were removed and replaced with new 

internodes of the same diameter. Occupied reeds were opened and the larvae were reared 

to maturity for positive identification to Subfamily level following Goulet & Huber 

(1993) for wasps, and Michener (2000) for bees. Genera and species were identified 

where possible by D.W. Roubik, an expert in neotropical Hymenoptera, and by the 

authors using keys and reference collections from the Pontificia Universidad Católica del 

Ecuador. Remaining species were identified as morphospecies. Data from each of the 

nine traps per plot were pooled for analyses. 

 

Data analyses 

Analyses were carried out in Statistica 6.1 (StatSoft 2003). Degrees of freedom were 

calculated using the Satterthwaite method of denominator synthesis (Satterthwaite 1946) 

which can yield non-whole number DF values. Post hoc tests for differences between 

habitat types were made using Tukey�s pairwise comparisons.  

Determinants of host and natural enemy diversity were examined using general linear 

models (GLM) with the number of individuals as a covariable, habitat type as a fixed 
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factor and plot number as a random factor (to group different months within a plot). Host 

diversity was also included as a covariable in analyses of parasitoid diversity. Diversity 

data were square-root transformed, as model residuals were not normally distributed. 

Parasitism rate was defined as the proportion of host individuals that were parasitised or 

cleptoparasitised per month per plot. Proportion parasitism data were arcsine square root 

(+ 0.5) transformed prior to analysis to meet the assumptions of normality and 

homogeneity of variances. They were analysed in a GLM with host and natural enemy 

species richness and abundance as continuous predictors, habitat type as a fixed factor 

and plot as a random factor.  

To determine whether there was significant temporal variation in parasitism rates, we 

conducted a repeated measures ANOVA with habitat type as a predictor and time 

(month) as a within-factor.  

We followed previous authors (e.g., Tilman et al. 1998; Rodriguez & Hawkins 2000; 

Kremen et al. 2004; Halpern et al. 2005) by measuring stability using the coefficient of 

variation (CV, i.e. the standard deviation expressed as a percentage of the mean) in 

parasitism rates, such that high stability is indicated by low CV (hereafter: �variability�) 

through time. To determine the effect of natural enemy diversity on variability, we 

examined the CV in parasitism rates (Ln transformed) in a GLM using the mean species 

richness of natural enemies per month, the variability (CV) in host and natural enemy 

species richness per month, and the total natural enemy species richness for the plot over 

the entire sampling period as continuous predictors and habitat type as a fixed factor. 

A gregarious hymenopteran parasitoid species (Melittobia acasta Walk., Chalcidoidea: 

Eulophidae) occurred in our trap nests with up to 1,500 individuals in each nesting tube. 

Because this would overwhelm the 1-5 individuals of other natural enemy species, we 

defined the abundance of M. acasta as the number of host larvae parasitised by this 

species. This accords better with the other observed natural enemy species that on 

average produce one individual per parasitised host. 

 

 

 

 



 118

Results 

Overall, 23,302 individuals of 33 species of bees and wasps (Hymenoptera: Apidae, 

Megachilidae, Mutilidae, Pompilidae, Sphecidae and Vespidae) occupied the trap nests.  

These primary occupants (hereafter: �hosts�) were parasitised by an additional 1,924 

individuals (plus 40,380 individuals of the gregarious M. acasta) of 9 natural enemy 

species (Hymenoptera: Eulophidae, Ichneumonidae, Leucospidae, Megachilidae and 

Chrysididae; Diptera: Bombyliidae) (Appendix 6.1).  

Host and natural enemy species richness per month varied significantly across habitat 

types (F(4,44.2) = 3.51, P = 0.014 for hosts; F(4,44.6) = 4.65, P = 0.003 for natural enemies), 

and were higher in rice and pasture (the most highly modified habitats) than in the 

remaining habitat types (Tukey�s pairwise comparisons). Species richness was positively 

correlated with number of individuals (F(1,417.6) = 197.9, P < 0.000001 for hosts; F(1,787.1) = 

186.2, P < 0.000001 for natural enemies), which explained 19.1% and 8.3% of the 

variance in diversity of hosts and natural enemies respectively. Natural enemy species 

richness per month was also strongly positively correlated with host species richness 

(F(1,570.9) = 509.6, P < 0.000001, R2 = 0.352).  

Rates of parasitism and cleptoparasitism (hereafter: �parasitism�) in each month were 

significantly affected by habitat type, with abandoned coffee being significantly lower 

than rice and pasture, and forest and coffee intermediate (F(4,46.9) = 3.34, P = 0.010). 

However, habitat type did not significantly interact with the effect of natural enemy 

diversity (interaction effect: F(4,526) = 1.66, P = 0.159), so that the slope of the 

diversity/function graph did not vary across habitats. Parasitism rates were strongly 

positively correlated with natural enemy species richness (F(1,570) = 426.7, P < 0.000001, 

R2 = 0.323) (Fig. 6.1), and to a lesser extent by natural enemy abundance (F(1,570) = 243.4, 

P < 0.000001, R2 = 0.185), host abundance (F(1,570) = 25.1, P = 0.000001, R2 = 0.019), 

and host species richness (F(1,570) = 7.8, P = 0.005, R2 = 0.006). Altogether, the model 

explained 52.9% of the variance (adjusted for ties) in parasitism rates.  

Parasitism rates showed significant temporal variation (F(16,432) = 6.9, P < 0.000001), and 

this variation was not consistent across habitat types (time x habitat interaction effect: 

F(64,432) = 1.8, P < 0.001). Temporal variability in parasitism rates (the inverse of stability) 

was significantly negatively correlated with the mean species richness of natural enemies  
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Figure 6.1. Mean 

proportion of host 

individuals parasitised 

vs. mean species 

richness of natural 

enemies per month for 

each plot. No distinction 

is made between habitat 

types as these did 

significantly affect the 

slope of the effect. 

 

 

 

 

per month (F(1,39) = 243.0, P < 0.000001, R2  = 0.722) (Fig. 6.2A), such that plots with a 

high per month diversity had greater stability (lower CV) in parasitism rates. Conversely, 

temporal variability in parasitism rates was positively correlated with temporal variability 

(CV) in both natural enemy (F(1,39) = 48.6, P < 0.000001, R2 = 0.145) (Fig. 6.2B) and host 

 
Figure 6.2. Variability (coefficient of variation, CV) in parasitism rates between months (A) decreases with 

mean natural enemy diversity per month, and (B) increases with monthly variation (CV) in natural enemy 

species richness. 
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 (F(1,39) = 5.4, P = 0.026, R2 = 0.016) species richness. Stability was not significantly 

correlated with overall species richness during the entire sampling period combined 

(F(1,39) = 0.4, P = 0.552) or with habitat type (F(4,39) = 0.1, P = 0.991). The entire model 

explained over 88.4% of the variance in temporal parasitism CV.  

 

Discussion  

Diversity-function 

In our study system, an ecosystem function (parasitism) and stability of this function 

across time increased with increasing diversity of natural enemies. Effects of consumer 

diversity on prey consumption have been predicted by modelled and mesocosm studies of 

simplified communities (e.g., Cardinale et al. 2002, 2003; Fox 2004; Gamfeldt et al. 

2005); however, previous field studies have found no effect (Rodriguez & Hawkins 

2000) or even a negative effect (Finke & Denno 2004) of diversity on rates of 

predation/parasitism. The mixed results of these field studies may have been the result of 

specific characteristics of the systems examined. For example, Rodriguez & Hawkins 

(2000) found no effect of parasitoid diversity on rates of parasitism of grass-feeding 

Tetramesa spp,, or stability in parasitism. However, these hosts comprised one genus, 

with one life-history strategy, and all the natural enemies were hymenopteran larval 

parasitoids (Chalcidoidea). In contrast, our study system contained a diverse natural 

enemy and host community, and a high functional diversity of natural enemies (e.g., 

solitary parasitoids, aggregating parasitoids, cleptoparasites), an element of diversity that 

is very important for ecosystem functioning (Diaz & Cabido 2001) and emergent effects 

of multiple consumers (Sih et al. 1998). Furthermore, many of our natural enemy species 

were highly polyphagous (parasitising up to 15 host species). This sharing of natural 

enemies between host species in our study may explain why high host and natural enemy 

diversity did not lead to a reduction in parasitism such as that found by Montoya et al. 

(2003), who compared food webs where different herbivores did not share primary 

parasitoid species. Indeed that study found that omnivorous consumers (hyperparasitoids) 

did have an important effect on rates of parasitism. The natural enemy species in our 

study all required host resources for development, and although there were instances 

when more than one species of natural enemy parasitised a host nest, natural enemies 
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could not survive only by consuming other natural enemies unless the latter had already 

consumed a host. Therefore, the type of intraguild predation that may lead to reduced 

ecosystem functioning in diverse consumer guilds (e.g., between spider species; Finke & 

Denno 2004) did not occur in our system. 

We also emphasise the importance of examining diversity/function relationships at the 

spatiotemporal scales at which interactions take place (Cardinale et al. 2004). Pooling 

long term data on species richness neglects the importance of temporal turnover in 

species, such that all of the species recorded in a site over a year may not necessarily 

have the opportunity to interact with each other. For example, the effect of natural enemy 

diversity on parasitism rates and stability was much stronger when measured each month, 

than when diversity and parasitism rates were pooled over the entire sampling period, as 

in previous studies (Rodriguez & Hawkins 2000). Therefore caution is required when 

examining large-scale patterns based on small-scale processes, as diversity (Tylianakis et 

al. in press), functioning and stability may all vary with the spatiotemporal scale 

examined. 

The surprising positive effect we found of host species richness on rates of parasitism, 

contrasts with a recent meta-analysis of consumer-resource experiments, which found 

that consumer effects tended to decrease as diversity of the prey assemblage increases 

(Hillebrand & Cardinale 2004). The potential mechanisms proposed for this effect 

(increased possibility of selecting unpalatable species, or positive prey interactions), may 

not have operated in our system, or these mechanisms may differ at higher trophic levels 

than the grazer-algal interaction examined by Hillebrand & Cardinale (2004). In our 

cavity-nesting communities host diversity appeared to provide a varied niche-base, 

supporting a higher diversity of natural enemies and allowing greater resource niche 

differentiation, with subsequent increased parasitism rates.  

 

Diversity-stability 

Species diversity has been shown to increase stability in plant biomass production (Worm 

& Duffy 2003; Caldeira et al. 2005) and crop pollination (Kremen et al 2002), two 

important ecosystem services. In simplified aquatic systems, diversity has been shown to 

enhance community-level food-web stability (Steiner et al 2005); however, a previous 
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field study of a parasitoid/host system found no influence of parasitoid diversity on 

temporal stability in rates of parasitism (Rodriguez and Hawkins 2000). Here we used a 

diverse host and natural enemy community to examine parasitism as an ecosystem 

service, and found that parasitism rates varied significantly across time. We found that 

temporal variability in parasitism was lower when average natural enemy diversity was 

high, but increased with high temporal variability in host and natural enemy diversity. 

High overall pooled diversity (as measured by Rodriguez and Hawkins 2000) was not 

associated with reduced variability in rates of parasitism. Rather, overall stability 

increased with constantly high diversity in each month, and was in turn associated with 

high overall parasitism when the sampling period was combined. This led to our 

somewhat counterintuitive result of disturbed, homogenous systems (rice and pasture) 

with low beta diversity (Tylianakis et al. in press) but consistently high average diversity, 

having increased parasitism rates relative to temporally heterogenous systems. High 

spatiotemporal species turnover (beta diversity) has been shown previously to lead to 

higher overall diversity in unmanaged habitat types in our study system (Tylianakis et al. 

in press). However, high overall diversity that results from high temporal turnover in 

species did not increase stability in ecosystem functioning. 

 

Effects of habitat 

Surprisingly, the effects of diversity on ecosystem functioning and temporal stability 

were identifiable over the noise of environmental variation across habitats, which has 

been predicted to mask local effects of diversity on ecosystem function (Loreau 2000). 

Habitat type (level of anthropogenic disturbance) did not have a marked effect on 

parasitism, except that abandoned coffee had significantly lower rates of parasitism than 

the more disturbed habitats. Moreover, the slope of the diversity/function relationship did 

not vary across habitat types, despite predictions from theoretical modelling that this 

slope should decrease with increasing habitat disturbance (Cardinale et al. 2000). 

Additionally, habitat affected diversity of natural enemies and their hosts, which in turn 

strongly affected ecosystem functioning, and both of these variables were highest in rice 

and pasture.  
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Kremen et al. (2004) examined the effects of organic vs. conventional farming on 

stability in pollination services and found no effect of management practice. The 

proportion of natural habitat in the landscape surrounding the sites was found to 

significantly affect pollination, however, it is unclear whether this effect was mediated 

through bee diversity. 

 

Conclusions 

We showed that the positive effects of diversity on ecosystem functioning and stability 

were not simply the result of increased abundance of natural enemies being correlated 

with diversity, but rather an effect of diversity itself. Diversity itself, and the functions it 

provides may vary across time and space, and knowledge of the processes affecting 

diversity across ecosystems is essential for conservation and management (Loreau et al. 

2003), and determination of the scales at which studies should be conducted. We 

recommend the further use of field-based studies to test predictions of models and 

experimental studies, and urge caution when extrapolating effects across habitats, 

community types and multiple spatiotemporal scales. 
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Appendix 6.1. Natural enemy species/morphospecies, mode of attack, hosts parasitised 
in our study, and the habitat types (R = Rice, P = Pasture, C = Coffee, Ac = Abandoned 
coffee, F = Forest) in which they were found. 

Family Species/ 
morphospecies 

Mode of attack Observed hosts Habitat 
types 

Eulophidae Melittobia acasta Gregarious 
ectoparasite of 
several orders. 
Facultatively 
hyperparasitic 

Anthidium sp. 
Chrysis sp. 
Euglossa variabilis 
Megachile sp.1 
Neofidelia sp. 
Pseudodynerus sp. 
Tetrapedia sp. 
Trypoxylon sp.1 
Trypoxylon sp.2 
Trypoxylon sp.3 
Zeta sp. 
Eumeninae Gen. sp.1 
Eumeninae Gen. sp.3 
Eumeninae Gen. sp.4 
Sphecidae Gen. sp.2 
Sphecidae Gen. sp.3 
Pompilidae Gen. sp.1 

All 

Chrysididae Chrysis sp. Cleptoparasite 
(kills host to eat 
food resources) 
of 
Hymenoptera. 

Anthidium sp. 
Neofidelia sp. 
Pseudodynerus sp. 
Tetrapedia sp. 
Trypoxylon sp.1 
Trypoxylon sp.2 
Trypoxylon sp.3 
Zeta sp. 
Eumeninae Gen. sp.1 
Sphecidae Gen. sp.2 
Sphecidae Gen. sp.3 
UnIDhost sp.1 

All 

Megachilidae Coelioxys sp. Cleptoparasite 
(kills host to eat 
food resources). 

Neofidelia sp. 
Tetrapedia sp. 
Pseudodynerus sp. 
Megachile sp.1 
Megachile sp.2 
Megachilidae Gen. 
sp.5 

All 

Bombyliidae 
(Diptera) 

Bombyliidae Gen. 
sp.1 

Solitary 
ectoparasite 

Anthidium sp. 
Pseudodynerus sp. 
Sphecidae Gen. sp. 2 
Zeta sp. 

R, P, C 
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Leucospidae Leucospidae  
Gen. sp.1 

Solitary 
ectoparasite of 
aculeate 
Hymenoptera. 
Facultatively 
hyperparasitic 

Anthidium sp. 
Trypoxylon sp.3 
Eumeninae 
Gen. sp.4 
Megachilidae 
Gen. sp.5 

R, P, C, Ac 

Leucospidae Leucospis sp. Solitary 
ectoparasite of 
aculeate 
Hymenoptera. 
Facultatively 
hyperparasitic 

Neofidelia sp. 
Tetrapedia sp. 
Pseudodynerus 
sp. 
Sphecidae Gen. 
sp. 2 
 

P, C, 
Ac, F 

Ichneumonidae Phygadeuontinae 
Gen. sp. 

Solitary 
endoparasitoid  

Neofidelia sp. 
Sphecidae Gen. 
sp. 2 

R, C, 
Ac, F 

Chalcididae Chalcididae 
Gen. sp. 

Solitary 
endoparasitoid 

Pseudodynerus 
sp. 
 

R, P 

Unidentified UnIDenemy sp. - Zeta sp. 
Sphecidae Gen. 
sp.3 

R, C 
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Summary 

Global biodiversity decline has prompted great concern over the concomitant decline in 

ecosystem services and the manner in which ecosystems function (Naeem et al. 1994; 

Foley et al. 2005; Hooper et al. 2005). This has resulted in a recent explosion of 

biodiversity/ecosystem function (BDEF) studies, examining factors as diverse as plant 

productivity (Loreau & Hector 2001; Pfisterer & Schmid 2002), pollination (Fontaine et 

al. 2006) and rates of predation or consumption (Finke & Denno 2004; Ives et al. 2005). 

Despite the volume of studies examining the effect of consumer diversity on resource 

consumption, no consensus has yet been reached, and studies have shown positive 

(Cardinale et al. 2002; Gamfeldt et al. 2005), negative (Finke & Denno 2004) and no 

effects (Rodriguez & Hawkins 2000) of consumer diversity.  Although many of these 

studies were conducted in mesocosms or field cages, complementary resource use by 

different species can only increase overall consumption when a diverse array of niches is 

available, and this mechanism may often not operate in homogeneous experimental 

systems (Wellnitz & Poff 2001; Ives et al. 2005).  Here we examine the effects of natural 

enemy diversity, host resource heterogeneity and habitat heterogeneity on parasitism 

rates of a cavity-nesting eumenid wasp across five habitat types in coastal Ecuador. We 

found that parasitism of wasp larvae/pupae in standardised nests consistently increased 

with natural enemy diversity, and that the slope of this relationship became steeper in 

plots with greater heterogeneity in host abundance. The relationship also showed the 

tendency to decline in more highly modified habitats. This implies that the strength of the 

diversity/function relationship strongly depends on environmental context, and that a 

complete understanding of the effects of diversity on ecosystem functioning requires 

examination in more realistic environments with heterogeneous resources. 
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Introduction 

The tenet that diversity increases ecosystem functioning has been the subject of 

considerable controversy (e.g., Tilman et al. 1997; Bardgett & Wardle 2003), due to 

variable results and contention over the effects of diversity per se versus 

sampling/species composition effects (Cardinale et al. 2000; Loreau & Hector 2001). 

Diversity effects require a degree of complementarity (niche partitioning) or facilitation, 

such that multiple species function synergistically, with an overall effect greater than any 

individual species in isolation. Conversely, sampling effects produce increased 

functioning of diverse systems simply due to a greater probability of including a highly 

efficient species, that produces more biomass or consumes more prey. 

A critical turning point in BDEF literature was made when environmental context entered 

the debate, and theoretical analysis has shown that spatial heterogeneity may affect the 

slope of the diversity/productivity relationship and the relative importance of species 

diversity vs. composition effects in different habitats (Cardinale et al. 2000; Wellnitz & 

Poff 2001). Structural or resource heterogeneity can affect the diversity of insects 

(Steffan-Dewenter & Tscharntke 2001; Ambrecht et al. 2004) and other taxa (Benton et 

al. 2003), and spatial heterogeneity in general has long been known to be an important 

determinant of how resources are divided between species (Tscharntke 1992; Tilman & 

Kareiva 1997).  However, the possibility that habitat or resource heterogeneity may 

mediate the BDEF relationship has not been tested empirically. Further, larger 

spatiotemporal scales of investigation incorporate greater habitat heterogeneity, thereby 

increasing the likelihood of complementarity effects over the sampling effects often 

found in short term, small scale experimental studies.  

Much recent work has focused on the relationship between diversity and productivity in 

plant communities (e.g., Pfisterer & Schmid 2002; Cardinale et al. 2004; van Ruijven & 

Berendse 2005). However, the dominant impacts of biodiversity change on ecosystem 

functioning may be trophically mediated by consumers (Duffy 2003), and a critical new 

direction in diversity/function research involves a link to predator-prey interactions (Ives 

et al. 2005). This has also been examined from a slightly different perspective � 

biological pest control � where the effect of predator or parasitoid diversity on rates of 

prey consumption carries important practical implications for strategies regarding the 
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problems or benefits associated with introducing multiple vs. single control agents 

(Wilby & Thomas 2002). As higher trophic levels are more active, have a greater variety 

of feeding modes, and suffer more strongly from habitat fragmentation (Kruess & 

Tscharntke 1994), they may offer important insights and new mechanisms through which 

diversity may affect ecosystem functioning. Despite this importance, there has been a 

distinct paucity of field studies examining the effects of diversity on predation or 

parasitism in real systems (but see Rodriguez & Hawkins 2000), hindering extrapolation 

of BDEF effects to the real systems within 

which diversity loss initially prompted the 

concern. 

Here we examine the effects of within-

habitat heterogeneity in structure and host 

resource distribution on the relationship 

between diversity and an ecosystem 

function: rates of parasitism by a 

functionally-diverse guild of natural 

enemies. We hypothesised that diverse 

natural enemy assemblages would exert 

higher rates of parasitism, and that the 

strength of this effect (the slope of the 

relationship) due to complementarity 

would increase with greater niche 

availability (i.e. heterogeneity) in the 

habitat (Fig. 7.1).  

 

 

 

 

 

 

 

Figure 7.1. Hypothetical interactions of natural 

enemy diversity and resource or habitat heterogeneity 

on parasitism rates. A) Null hypothesis: Neither 

diversity nor heterogeneity affect parasitism rates. B) 

Basic diversity/function: Positive effect of diversity 

on rates of parasitism, with no effect of heterogeneity. 

C) Heterogeneity-mediated diversity/function: The 

strength (steepness) of the positive effect of diversity 

on rates of parasitism increases with increasing 

habitat/resource heterogeneity. 
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Methods 

Study region 

The 48 study plots were spread across three cantons in the region of Jipijapa (17N 

546800m, E 9849274m alt. 259m), within the province of Manabi, Southwest Ecuador 

(for individual plot location details and a full description of the region see Tylianakis et 

al. in press). This area falls within the Choco-Manabi region (a biodiversity hotspot), but 

large-scale agricultural conversion threatens the local biodiversity and the ecosystem 

services it provides. 

 

Trap nests 

Nine trap nests were positioned in each of the 48 plots, to provide nesting sites for 

naturally occurring bee, wasp and natural enemy communities (Tylianakis et al. in press). 

Trap nests were constructed according to the methodology of Tscharntke et al. (1998), 

and evaluated every month from June 2003 to October 2004. Occupied reeds were 

opened and the larvae were reared to maturity for positive identification of any natural 

enemies. Data from each of the nine traps per plot were pooled across all months for 

analyses. 

Of all the potential host species found in our traps (Appendix 6.1), the one with the 

greatest number of natural enemies (6 species) was a predatory wasp, Pseudodynerus sp. 

(Hymenoptera: Eumeninae). This species was also the second most abundant of all the 

host species (6884 individuals, 487 of which were parasitised), and had the most even 

distribution among habitat types � allowing statistical analyses in all habitats. We 

therefore used this species as our focal host for this study. 

The natural enemies attacking Pseudodynerus were either gregarious ectoparasitoids, 

where many larvae feed externally on the host (Melittobia acasta Walk. Hymenoptera: 

Eulophidae); solitary ectoparasitoids, where one larva feeds on the host (Leucospis sp., 

Hymenoptera: Leucospidae; and Bombyliidae Gen. sp., Diptera); endoparasitoids, that 

feed internally on the host (Chalcididae Gen. sp., Hymenoptera); or cleptoparasites, that 

feed on the host�s food resources rather than the host itself (Chrysis sp., Hymenoptera: 

Chrysididae; and Coelioxys sp., Hymenoptera: Megachilidae).  
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Heterogeneity parameters 

To quantify the heterogeneity of each plot, we measured the following biotic and abiotic 

variables that may be of importance to the natural enemy species: 1) herb diversity, 

which may provide nectar resources to parasitoids, was measured in a 2.5 x 2.5m quadrat 

around each of the 9 traps per site, on two sampling dates (see Chapter 3). These 

measures for each trap and sampling date were pooled to give one measure of herb 

diversity for the entire plot.  

2) Tree diversity, a measure of structural complexity, was also recorded in 10 x 10m 

quadrats around each trap and the total species richness was pooled for the site.  

3) The total volume of dead wood (from fallen trees or branches) was estimated within 10 

x 10m quadrats around each trap. Dead wood comprises potential nesting sites for the 

cavity-nesting species, and is an indicator of structural complexity. Heterogeneity of dead 

wood was calculated as the coefficient of variation (CV, the standard deviation expressed 

as a proportion of the mean) of dead wood between each of the 9 quadrats per site.  

4) The heterogeneity in host distribution was calculated similarly for each plot as the 

between trap nest CV in host (Pseudodynerus) abundance. Abundance was measured as 

the number of Pseudodynerus larvae in all occupied reeds over the entire sampling 

period. This heterogeneity was not affected by habitat type (GLM: F4,38 = 1.59, P = 

0.198), overall host abundance for the site (F1,38 = 1.59, P = 0.214), and these variables 

did not interact (F4,38 = 0.78, P = 0.544). 

 5) The mean of five light measures, taken with a luxmeter (Gossen Mavolux Digital) at 

each sampling point, was used to calculate the CV in light between the 9 sampling points 

for a plot. Light may affect search efficiency and thermal state of foraging parasitoids.  

 

Statistical analyses 

Analyses were conducted in Statistica 6.1 (Statsoft 2003). The proportion of 

Pseudodynerus larvae parasitised per plot was arcsine square root transformed prior to 

analyses. Overall effects of habitat and natural enemy diversity on rates of parasitism 

were tested in a general linear model (GLM), with Type I sums of squares. Habitat type 

entered the model first, then natural enemy abundance, followed by natural enemy 

species richness and a habitat type x species richness interaction effect. Not surprisingly, 
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rates of parasitism were higher when natural enemy abundance was higher (F1,37 = 25.90, 

P = 0.00001, R2 = 0.160), and abundance and diversity of natural enemies were 

correlated (after removal of variation due to habitat type F1,42 = 14.06, P = 0.0005, R2 = 

0.144). Therefore, to be conservative and ensure that effects of high natural enemy 

diversity were not merely the result of high abundance, we used the residual variation of 

natural enemy species richness (after removal of the variance explained by abundance) in 

all further analyses. The effects of heterogeneity parameters on parasitism and the 

diversity/parasitism relationship were tested separately for open (rice and pasture) and 

shaded (coffee, abandoned coffee and forest) systems, as open systems did not have 

significant quantities of dead wood or trees to include in analyses. The effects of 

heterogeneity variables were tested using GLMs with backwards stepwise elimination of 

non-significant variables. Habitat type was included as a fixed factor, and natural enemy 

species richness residuals were treated as a continuous predictor. The biotic and abiotic 

heterogeneity measures were included as continuous predictors, and interaction effects 

between natural enemy diversity residuals and each of the other continuous predictors 

and habitat type were included in the model. These interaction effects were most 

important, as they determined the ways in which heterogeneity affected the 

diversity/parasitism relationship. 

 

Results 

Overall, we found that rates of parasitism were significantly higher in plots with high 

natural enemy diversity (F1,37 = 40.71, P < 0.00001, R2 = 0.252), congruent with the 

general predictions of the effects of diversity on ecosystem function, and with previous 

work in our system using a diverse host guild (Chapter 6). Parasitism rates varied 

significantly across habitat types (F4,37 = 8.41, P = 0.0006), and were highest in pasture 

(which was significantly higher than forest and abandoned coffee) and rice (significantly 

higher than abandoned coffee only), and coffee was intermediate. Additionally, the effect 

of natural enemy diversity on parasitism (the slope of the relationship) varied 

significantly across habitat types (interaction effect: F4,37 = 6.06, P = 0.0007), and this 

slope was significantly lower in rice and pasture than in the remaining habitats. In fact, 

the slope of the diversity/parasitism relationship showed a tendency to decrease along the 
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Figure 7.2. The effects of heterogeneity in host 

abundance on rates of parasitism of Pseudodynerus sp. 

in A) shaded (coffee, abandoned coffee and forest) 

and B) open (rice and pasture) systems. Heterogeneity 

in host abundance was calculated as the coefficient of 

variation (CV) between the 9 sampling points per plot. 

 

gradient of increasing management intensity (as predicted by Cardinale et al. 2000), 

except that abandoned coffee, rather than forest, had the steepest slope. The equations of 

the diversity (x) vs. proportion parasitised (y) relationship were: Rice y = 0.0321x + 

0.1952, Pasture y = 0.0597x + 0.1665, 

Coffee y = 0.1263x + 0.0732, 

Abandoned coffee y = 0.2523x + 

0.0041, and Forest y = 0.1427x + 

0.0023. 

Heterogeneity (CV) in host abundance 

mediated the positive effect of diversity 

on parasitism rates in both shaded 

(Interaction effect: F1,23 = 5.79, P = 

0.025, R2 = 0.208) and open (Interaction 

effect: F1,21 = 9.79, P = 0.005, R2 = 

0.248) systems, such that increased 

diversity had a stronger effect on 

parasitism rates in sites with more 

heterogeneously distributed hosts (Fig 

7.2).  

In the open systems, the only other  

significant predictor remaining in the 

model was herb diversity, which was 

positively correlated with rates of 

parasitism (F1,21 = 13.64, P = 0.001,  

R2 = 0.345), possibly due to 

enhancement of natural enemies by 

floral resource subsidies (Tylianakis et 

al. 2004), but herb diversity did not 

affect the slope of the relationship 

between diversity and parasitism.             
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Although no other variables had significant effects on parasitism, or the slope of the 

diversity/parasitism relationship (all were removed from the models during backwards 

stepwise elimination), host heterogeneity will also partly respond to other habitat 

variables. 

 

Discussion 

Our results provide evidence for the tenet that biodiversity can increase the level of an 

ecosystem function in real habitats, and more importantly, that the extent of this increase 

is context-dependent. Moreover, we argue that in order for mechanisms such as niche 

complementarity to occur, sufficient niche space or heterogeneity is required. In fact, 

when varied niche space is unavailable, the probability increases of negative interspecific 

interactions such as intraguild predation (Finke & Denno 2004). Conversely, complex 

habitats with heterogenous resource distributions, allow resource partitioning, such that 

parasitoids may use different search criteria and attack different host subpopulations 

(Tscharntke 1992; Costamanga et al. 2004). The effect of such complementarity is 

increased overall parasitism with increasing natural enemy diversity. 

We have shown that host resource heterogeneity affects the slope of the 

diversity/function relationship for a guild of parasitoids. Resource heterogeneity may also 

have positive effects on plant productivity (Cardinale et al. 2000), and spatial 

heterogeneity may increase community stability (Brown 2003), thereby reducing the 

negative effects of temporally variable diversity on ecosystem function (Benedetti-Cecchi 

2005). If our results are applicable across different systems and/or ecosystem functions, it 

would imply that in order to maximise the effect of diversity on ecosystem functioning, 

we must not only conserve species, but also the complex habitats in which they interact. 

While important for testing certain specific mechanisms, previous mesocosm studies 

using random species assemblages, that have not incorporated environmental 

heterogeneity, may not have contained the varied niche space required for effective 

expression of complementarity effects. Although recent years have seen enormous strides 

in understanding of the BDEF relationship, our results combine with calls from 

theoretical work to suggest that expanding research to include more realistic conditions, 
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such as variable habitats or resources will be critical towards further understanding these 

relationships. 
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SUMMARY 
 

Global biodiversity decline has prompted great interest in the effects of habitat 

modification on species diversity and the functioning and stability of ecosystem 

processes. Anthropogenic changes in land use may have major consequences for global 

biodiversity; however, species diversity is determined by a suite of factors that may affect 

species differently across habitats and at different spatial and temporal scales. Further, the 

effects of resource heterogeneity on the diversity of organisms has not been examined 

across multiple trophic levels. Diversity and resource heterogeneity may also affect 

ecosystem functions such as parasitism rates, but the applicability of previous modelled 

or mesocosm studies on this subject to real communities remains ambiguous.  

Here we assess the contribution of managed land to conservation of insects, and the 

ecosystem services that they provide. For the first time we tested the combined effects of 

land use and spatial and temporal scales of analysis on α, β and γ diversity in the tropics. 

We aimed to determine whether: 1) resource heterogeneity leads to increased diversity of 

the organisms that use that resource, and whether this bears consequences for higher 

trophic levels; 2) land use intensity effects vary at different spatiotemporal scales; 3) beta 

diversity, both within and between plots, and through time, is higher in more natural 

systems;  4) diversity of natural enemies and/or hosts leads to higher rates of parasitism, 

and stability of parasitism rates through time; and 5) resource heterogeneity affects the 

diversity/function relationship itself. 

We used standardised nesting resources for reproducing communities of cavity-nesting 

bees and wasps (Hymenoptera: Aculeata), within 48 plots of five habitat types in coastal 

Ecuador. These habitats comprised a gradient of decreasing agricultural intensity from 

rice and pasture to coffee agroforests, unmanaged abandoned agroforests and forest. 

1) We show for the first time that high soil heterogeneity (specifically variability in 

magnesium concentrations) led to a domino effect of increased diversity across three 

trophic levels (herbaceous plants, cavity-nesting bees and wasps, and their natural 

enemies). The robustness of this bottom-up diversity cascade was strengthened by its 

consistency across three different habitat types. We show that beta diversity of herbs 

explained more variation in bee and wasp diversity than did herb species richness. 
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However, natural enemy species richness was only correlated with bee and wasp 

richness, not beta diversity. 2) We also show that land use affected diversity of cavity-

nesting Hymenoptera differently at different spatiotemporal scales, with the strongest 

effects being at the lowest (alpha diversity) scale of subplot diversity per month. 3) 

Additionally, overall spatial and temporal turnover (beta diversity) explained 38.6% and 

23.1%, respectively, of partitioned regional species richness. Beta diversity between plots 

and especially through time, was significantly higher in the more natural habitats � 

abandoned coffee and forest. This shows that studies conducted at small spatiotemporal 

scales will tend to over represent the diversity of intensively managed, homogeneous 

systems, and under represent the diversity of natural systems. Nevertheless there was 

notable overlap in the communities of different habitat types, indicating that even 

intensively managed land can provide a valuable contribution to the overall biodiversity 

of the landscape mosaic. 4) We also found that parasitism rates increased with increasing 

diversity of natural enemies and their hosts, exceeding the effects of increased enemy 

abundance alone. Temporal variability in parasitism was lower in plots with high mean 

natural enemy diversity and higher in plots with temporally variable host and natural 

enemy diversity. 5) Finally, the slope of the natural enemy diversity/parasitism rate 

function increased in systems with more heterogeneous host distributions. This indicates 

that niche complementarity is more likely to lead to a positive diversity/function effect in 

heterogeneous habitats. These effects were sufficiently strong to be visible across five 

different habitat types, over the noise of different management regimes. 

In conclusion, biodiversity of a variety of taxa may be enhanced in managed systems by 

maintaining high habitat heterogeneity, and perturbations at one trophic level may have 

repercussions across the entire community. However, the effects of land use on species 

richness may be highly dependent on spatial and temporal scale, and we emphasise 

caution in the interpretation of studies conducted at only one scale. Conservation 

strategies need to take a landscape scale approach, in order to maximise beta diversity 

(species turnover) within and between fields, and between habitat types. Maintaining 

high diversity may also have great benefits for biological pest control, through higher 

rates of parasitism, and stability of parasitism rates through time. 
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