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Zusammenfassung 
 
 

Die Bildung des Tat-Protein/TAR RNA-Komplexes ist ein entscheidender Schritt in 

der Regulation der Expression des HI-Virus (Human Immunodeficiency Virus, HIV). 

Für eine vollständige Transkription des viralen Gens ist die Interaktion des Tat/TAR-

Komplexes mit dem positiven Transkriptionsfaktor-Komplex P-EFTb (Positive 

Transcription Elongation Factor) über dessen Cyclin T1-Komponente (CycT1) 

notwendig. Durch Mutagenesestudien wurde die Hexanukleotid-Schleife der TAR 

RNA als Kontaktstelle für die Wechselwirkung mit CycT1 identifiziert. 

Zur Entwicklung neuer Arzneimittel gegen das HIV stellt die Störung des Zusammen-

spiels zwischen dem Tat/CycT1-Komplex und der TAR RNA ein lohnendes Ziel dar. 

Positiv geladene Verbindungen wie Aminoglycoside oder Peptidmimetika binden an 

die TAR RNA und brechen so den Tat/TAR-Komplex auf. 

In dieser Arbeit wird die Bestimmung der dreidimensionalen Struktur des Komplexes 

zwischen der HIV-2 TAR RNA und einem Neooligoaminodeoxysaccharid mit Hilfe 

der NMR-Spektroskopie beschrieben. Im Gegensatz zu anderen Aminoglycosiden 

wechselwirkt diese neuartige Verbindung gleichzeitig mit den für die Bindung des 

Tat-Proteins verantwortlichen Resten des Bulges wie auch mit dem Adenosin 35 der 

Hexanukleotid-Schleife der TAR RNA. Diese Schleifenregion erfährt bei der Bildung 

des Komplexes mit dem Aminoglycosid eine große konformationelle Änderung. 

Dieser neue Bindungsmodus eröffnet zusammen mit der einfachen synthetischen Zu-

gänglichkeit von Neooligoaminodeoxysaccharid-Derivaten die Möglichkeit, eine neue 

Klasse von TAR RNA bindenden Molekülen zu entwerfen. Diese könnten 

gleichzeitig die Bildung des binären Tat/TAR- wie auch des ternären 

Tar/TAR/CycT1-Komplexes durch Störung der Schleifen- und Bulge-Region der 

RNA verhindern. 

 

Stichwörter: Aminoglycoside, TAR RNA, NMR, Bindungsmodus 
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Abstract 
 

The formation of the Tat-protein/TAR RNA complex is a crucial step in the 

regulation of Human Immunodeficiency Virus (HIV)-gene expression. To obtain full-

length viral transcripts the Tat/TAR complex has to recruit the positive transcription 

elongation factor complex (P-EFTb), which interacts with TAR through its CyclinT1 

(CycT1) component. Mutational studies identified the TAR hexanucleotide loop as a 

crucial region for contacting CyclinT1. Interfering with the interaction between the 

Tat/CycT1 complex and the TAR RNA is an attractive strategy for the design of anti-

HIV drugs. Positively charged molecules, like aminoglycosides or peptidomimetics, 

bind the TAR RNA, disrupting the Tat/TAR complex. Here, we investigate the 

complex between the HIV-2 TAR RNA and a neooligoaminodeoxysaccharide by 

NMR spectroscopy. In contrast to other aminoglycosides, this novel aminoglycoside 

analogue contacts simultaneously the bulge residues required for Tat binding and the 

A35 residue of the hexanucleotide loop. 

Upon complex formation, the loop region undergoes profound conformational 

changes. The novel binding mode, together with the easy accessibility of derivatives 

for the neooligoaminodeoxysaccharide, could open the way to the design of a new 

class of TAR RNA binders, which simultaneously inhibit the formation of both the 

Tat/TAR binary complex and the Tat/TAR/CyclinT1 ternary complex by obstructing 

both the bulge and loop regions of the RNA. 

 

Keywords: Aminoglycoside, TAR RNA, NMR, binding mode 
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1 Introduction 

 

The ultimate goal of therapy for HIV infection is to eradicate the virus. To date, 

therapeutic agents have only been able to push the virus towards a state of latency. 

Selected drugs can induce rapid, substantial and sustained viral suppression in some 

patients. However, recent evidence suggests that even in patients with undetectable 

levels of HIV RNA in plasma, latent reservoirs of virus exist that may require at least 

60 to 70 years of therapy to completely eradicate the virus [1; 2]. Furthermore, current 

therapies are limited by problems such as drug resistance, poor drug compliance and 

long-term side effects. Thus, the search for novel therapeutic options and approaches 

continues.   

Developments in the field of NMR, exemplified by the attainment of higher field 

strengths, introduction of the cryo probe technology, new alignment media, residual 

dipolar couplings as a sensitive probe of molecular structure and dynamics and novel 

labeling strategies have aided immensely in the search for new drugs [
3; 4; 5; 6; 7; 8

]. In 

parallel, rapid advances in related fields such as crystallography, microscopy, 

combinatorial chemistry and computational methods have provided greater 

momentum to the ongoing search for novel therapeutics. It is now routinely possible 

to obtain high-resolution structures of essential proteins and nucleic acids that play a 

key role in the interactions of important processes such as transcription and design 

new scaffolds that can specifically and effectively target such interactions. The 

resolution of structures of reverse transcriptase, protease, integrase and gp41 [
9; 10

] has 

already resulted in new drugs that are either approved for clinical use or in the trial 

phase [
11

]. Other HIV specific structures such as regulatory protein-RNA interactions 

such as the Tat-TAR and the Rev, RRE have also simulated rational drug 

development [
12; 13

]. Just thirty years after the identification of the HIV [
14; 15

], several 

antiviral drugs have been licensed and several more are in the process of development 

to combat this deadly disease.   

Administering a concoction of drugs is generally more efficient than treating the 

disease based on monotherapy. Constant mutation and increasing drug resistance 

makes monotherapy inefficient. Highly Active Antiretroviral Therapies (HAART) 

consists of drugs aimed at multiple targets [
16; 17

]. Research has proved that HAART 

can reduce viral replication in the plasma to undetectable levels (< 50 RNA 
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copies/ml) sufficient to make the emergence of resistant variants highly unlikely [
16; 

17
]. Further, multi drug resistance has not been detected and hence different drugs can 

be combined that, though effect the same molecular targets, show a sufficiently 

different spectrum of escape mutations to prevent cross-resistance [
18

]. 

Therapeutic techniques based on targeting RNA-protein interactions have attracted 

focus recently [
19; 20; 21; 22; 23; 24; 25

]. RNA is involved in many biologically important 

processes such as control of gene expression and translation processes. The wide 

range of conformations that can be adopted by RNA, containing double stranded 

duplexes, hairpins, loops, pseudo knots, bulges etc. contribute to the structural 

diversity and functional specificity of secondary structures involved in RNA-protein 

interactions and cellular functions. Targeting the interaction between the viral Tat 

protein and the Trans Activation Response element (TAR RNA) is an example of 

targeting conserved regions and conserved structures in the viral genome [
13; 21; 26

]. 

The virus encodes for a positive regulatory gene which is required for replication and 

increases gene expression directly by the HIV Long Terminal Repeat (LTR) promoter 

[
9; 27; 28; 29

]. The TAR element of the HIV-RNA is a structured RNA that binds to a 

viral nuclear regulatory protein called Tat. Disrupting the binding of Tat to the TAR 

RNA will thus block viral replication [
10; 22; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39

]. The 5’-TAR 

region of HIV mRNA is highly conserved amongst different HIV isolates and the 

TAR RNA is a highly conserved structure. The correct Tat/TAR RNA interaction is 

essential for viral gene expression. Tat also plays an essential role in AIDS 

pathogenesis and associated malignancies, both as an extra cellular protein [
28; 40; 41; 42; 

43
] and as an activator of cellular gene expression encoding cytokines. 

The following sections take a closer look at the structure and function of the TAR 

RNA, Tat protein and associated bio molecules that govern HIV transcription and 

replication. 
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1.1 The TAR RNA 

 

The 5’ end of all HIV mRNAs, whether they are spliced or not, starts with the 

formation of an identical stem-bulge-loop structure called the Trans Activation 

Responsive (TAR) element located from nucleotide position +1 to +59. TAR was 

originally identified as the target for the trans-activator of HIV, the Tat protein, which 

is essential for efficient transcription of viral genes and for viral replication [
44; 45

]. 

The studies that have examined the structure and the sequence of TAR have shown 

that the stem structure, the sequence in the bulge and in the loop, as well as the 

distance between the bulge and the loop are all required for Tat-mediated trans-

activation [
9; 44; 46; 47; 48; 49

]. The influence of mutations, especially in the bulge and 

loop region of the TAR RNA has emphasized its functional importance in the context 

of HIV replication. It has been observed that viral kinetics is affected when mutations 

causing changes in structure and sequence are inflicted upon the native TAR RNA 

[
50

]. It is known that there are two varieties of TAR RNA, each one arising from one 

of the two variants of HIV. TAR-1 differs from TAR-2 only in the presence of an 

extra nucleotide, C24 in the bulge of TAR-1 while this is absent in the sequence of 

TAR-2 RNA. Fig 1.4 shows a comparison between TAR-1 and TAR-2 of HIV-1 and 

HIV-2 respectively. 

 

Fig 1.1(a) A comparison of the sequences of TAR-1 and TAR-2 RNA of HIV. The nucleotides that are 

vital in the recognition of Tat protein as well as other factors influencing the production of full-length 

viral transcripts are marked in blue. Only the presence of the nucleotide Cyt-24 in the bulge 

differentiates TAR-1 from TAR-2 RNA. 

 

 



  Introduction 

 4 

The structure of the free TAR RNA has been well characterized by NMR 

spectroscopy. In summary, the TAR RNA consists of a lower stem region spanning 

residues 16 to 21 and 41 to 46, an upper stem region spanning residues 26 to 29 and 

36 to 39, a Uridine rich bulge region that connects the upper stem to the lower 

(residues 22 to 25) and finally a disordered and dynamic hexanucleotide loop atop the 

upper stem region. The NMR study [
31; 51

] reveals that both the stems adopt a 

conformation close to that of an A-form helix. The bulge residues U23 and C24 (HIV-

1 TAR RNA) remain stacked within the helix while U25 is looped out, resulting in a 

distortion of the phosphate backbone between C24 and G26. Overall, this results in an 

accessible and wide major groove making it ready for binding to the important 

residues of the Tat protein. The residues of the hexanucleotide loop are disordered in 

the NMR structure of the free TAR RNA. The use of relaxation rates and residual 

dipolar couplings has further contributed towards the understanding of structure and 

dynamics of the RNA.  

 

                              

 

 

                                 (b)                                                                                                (c) 

Fig 1.1 Structure of free TAR RNA (b) Superposition of residues 17-21,41-45 (lower stem) of four 

structures from 20 structures in 1anr.pdb representing the motional amplitude of the upper stem with 

respect to the lower stem. (c) Best energy structure of free TAR RNA. Notice that the upper stem does 

not stack co axially on the lower stem. The backbone has been highlighted in red ribbon and the 

residues of the flexible hexanucleotide loop are invisible. 

 

Al-Hashimi et al. [
52; 53; 54

] have extensively analyzed residual dipolar couplings in 

partially oriented systems and concluded that inter helical amplitude of 46 ± 4
o 

is 
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possible for the TAR RNA in its ground state. A pictorial representation of the 

motional amplitude in free TAR RNA is shown in Fig 1.1(b) where the lower stems 

of 4 structures from 1ANR.pdb [
31

] have been superimposed. The resulting 

divergence in the upper helix relative to the lower helix is generally attributed to the 

flexibility present in the bulge residues 22 to 25 and 40.  

The TAR RNA has been extensively studied in the context of Tat trans-activation, but 

recent data have shed light on its role in translation and that it is a target for a number 

of cellular RNA binding proteins that influence the rate of HIV translation (details in 

Table1). Considering its vital role in the virus life cycle, the HIV TAR RNA has been 

the target of drug development that has led to small molecules and RNA-based 

strategies for gene therapy. 

 

 Viral Function Cellular Function 

Tat HIV trans-activator, binds TAR RNA  

hCycT1 Binds Tat and increases its affinity for TAR 

RNA 

Cyclin 

CDK9 Binds CycT1 and phosphorylates RNAP II CTD Kinase, Phosphorylates RNAP II CTD 

P300/CBP Acetylates Tat at K50 and K51 Histone Acetyl Transferase 

PCAF Acetylates Tat at K28 Histone Acetyl Transferase 

hGCN5 Acetylates Tat at K50 and K51 Histone Acetyl Transferase 

PKR Binds TAR RNA, inhibits translation Kinase, inhibits translation, controls cell growth 

TRBP Binds TAR RNA and enhances translation Inhibits PKR, increases cell growth, controls 

spermatogenesis 

La autoantigen Binds TAR RNA and enhances translation RNAP III transcription 

Table 1. Viral and Cellular Proteins Involved in HIV TAR RNA functions [
44

] 
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1.2 The Tat protein 

 

Lentiviral Tat proteins are small (~101 amino acid long), arginine rich RNA binding 

proteins encoded by two exons. The amino acids encoded by the first exons are both 

necessary and functional for TAR RNA binding and in vivo transcriptional activation 

[
28; 40

]. Though an 86-amino-acid shortened version of Tat protein is found in the 

genome of a few laboratory passaged HIV’s, naturally occurring HIV’s have a 101-

amino-acid Tat protein. An atypical transcriptional activator, Tat protein binds not to 

DNA but to the specific promoter proximal nascent leader the TAR RNA [
28; 42; 45; 55; 

56; 57
]. The Tat protein is composed of several functional regions. A cysteine-rich 

region (amino-acids 22-37) contains seven cysteine residues; a “core” sequence 

(amino acids 37-48) contains six arginines and two lysines, and a glutamine rich 

region at the carboxyl terminus of the first exon. Only the basic and core regions are 

conserved in lentiviruses and although the integrity of the cysteine rich region is 

essential for transactivation, this region does not appear to be directly involved in 

TAR RNA recognition. Based on mutational analysis, Tat can be divided into two 

domains. The first domain is the activation domain (amino acids 1-47) or co-factor 

binding domain, which is functionally autonomous and is active when recruited to the 

HIV long terminal repeat (LTR) via heterologous RNA-binding protein. The second 

functional domain contains the basic region required for both RNA binding and 

nuclear localization activities of Tat [
58

]. 

 

 

 

Fig 1.2 The Tat protein genome 
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1.3 The Tat-TAR complex 

 

The TAR RNA was originally localized to nucleotides +1 to +80 within the viral LTR 

but subsequent deletion studies have established that the region from +19 to +42 

incorporates the minimal domain that is both necessary and sufficient for in vivo Tat 

protein responsiveness. As described in the previous section, TAR RNA consists of a 

hexanucleotide loop, an upper stem and a lower stem close to an A-form helix 

separated by a three (or two) nucleotide pyrimidine bulge. 

Interactions between Tat protein and cellular co-factor CyclinT1 are necessary for the 

recognition of TAR RNA. Fluorescence Energy Transfer studies using dye labeled 

Tat and TAR shows that the affinity of Tat protein to TAR RNA is increased when 

the human CyclinT1 interacts with the activation domain of Tat protein [
59

]. 

Biochemical and genetic studies show that Tat and human CyclinT1 interaction 

requires an essential cysteine (C261 on the CyclinT1 protein) and zinc [
60

], indicating 

that these proteins may form a metal-dependant heterodimer [
61

]. Structural studies 

involving NMR, site specific photo cross linking, site specific modification and 

affinity cleavage analysis have helped to understand the interaction in the Tat-TAR 

complex and the ternary CyclinT1-Tat-TAR complex. The following points 

summarize the salient features of Tat-TAR interaction. 

 

1) The TAR RNA element forms a hairpin stem-loop structure with a side bulge; the 

bulge is necessary for Tat binding and function. Site-specific modification reveals that 

argininamide can act as an effective Tat mimetic and may reflect on the mechanism 

that allows Tat protein to specifically bind to the TAR RNA. NMR investigation 

reveals that in the TAR–argininamide complex, the guanidium group of argininamide 

forms hydrogen bonds to the major groove face of G26 and is stacked between U23 

and A22. This is accompanied by the formation of a base triple between U38, A27 

and U23 [
46; 62

]. 

 

2) Unlike the free TAR RNA that exhibits dynamics of the upper stem with respect to 

the lower stem as depicted in Fig 1.1 (b), in the argininamide bound form of the TAR 

RNA, the upper stem co axially stacks on top of the lower stem. 
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Fig 1.3(a) TAR-argininamide binding. Major groove view of argininamide in red binding to TAR RNA 

(1AKX PDB accession number). The base triple formed by residues U38, A27 and U23 is marked in 

green. Argininamide is within hydrogen bonding distance to G26 (shown in yellow).  

 

 

3) Site specific cross-linking and affinity cleaving analysis suggests that in the bound 

form the residues 42 to 72 of Tat are close to the U42 of TAR RNA [
63

]. Further, Cys 

57 of Tat is close to the residue U31 in the loop of TAR RNA. Affinity cleaving 

experiments also show that F38 of the Tat protein is located in the proximity of 

nucleotide 34 and 35 of the TAR RNA. Also, the residue K50 of the Tat protein has 

been found to cross-link with the TAR nucleotide 34 and the binding of CyclinT1 to 

the Tat/TAR complex considerably enhances this interaction [
177

].  Fig 1.3 (b) 

schematically depicts the contacts between residues on the Tat protein and TAR 

RNA. The formation of the Tat-TAR complex is important because of the following 

reasons: 

 

a) Tat protein promotes formation of an activated transcription elongation complex. 

Transcription reactions performed using immobilized template DNA carrying wild-

type TAR RNA elements in the absence and presence of recombinant Tat protein 

revealed that the processivity of transcription complexes prepared in the presence of 

Tat is significantly greater than that of complexes prepared in the absence of Tat [
64; 

65
]. 

b) Activation of the transcription complex requires recruitment of Tat by a functional 

TAR RNA element. Tat activated transcription is strictly dependent upon the presence 

of a functional TAR RNA element [
66

]. 
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Fig 1.3(b) Tat-TAR RNA interaction. A schematic depiction of important residues identified in the 

interaction between the Tat protein and TAR RNA. Residues 42 to 72 on Tat are close to U42 on the 

TAR (shown in yellow).  Cys57 of the Tat is close in space to the U31 residue in the TAR loop (both 

shown in red). F38 (magenta) shows crosslink’s with residues 34 and 35 on the TAR while K50 is 

close to G34 on the TAR RNA (shown in blue). 

 

c) Release of TAR RNA from the transcription complex. 

The binding of Tat protein is known to induce a conformational change in the TAR 

RNA. [
22; 49; 67

] and this in turn may create a recognition site for a cellular co-factor 

recognizing the TAR apical loop. Karn et al. [
64

] propose that loop recognition factors 

could help dissociate Tat from TAR RNA, displacing the 5’ end of the nascent chain 

and permitting Tat to bind tightly to RNA polymerase II [
68

]. Thus, the apical loop is 

an integral part of the process of initial recruitment of Tat protein and subsequent 

release of the Tat protein to aid in the formation of a Tat-RNA polymerase II 

complex. 
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1.4 Positive Transcription Elongation Factor b 

 

The positive transcription elongation factor b (P-TEFb), a general elongation factor 

was first identified and purified from Drosophila extracts. It acts to prevent RNA 

polymerase arrest and contains an associated kinase activity capable of 

hyperphosphorylating the C-terminal domain (CTD) of Rpol II [
69; 70; 71

]. P-TEFb is 

composed of two subunits: the catalytic subunit Cyclin-dependent kinase (CDK9) and 

the regulatory subunit CyclinT1 [
59; 72; 73

]. Complexes containing CDK9 and 

CyclinT1-related proteins, CyclinT2a or CyclinT2b, are also active for P-TEFb 

function [
74

]. Tat interacts with CyclinT1 subunit of P-TEFb and recruits the kinase 

complex to the TAR RNA. Recruitment of P-TEFb to TAR has been proposed to be 

both necessary and sufficient for activation of transcription elongation from the HIV-

1 LTR promoter [
27; 75

]. The first 272 residues of human CyclinT1 are sufficient to 

bind Tat and TAR in vitro and support Tat transactivation in vivo [
60

].  

 

1.5 The Tat-TAR-CyclinT1 complex interactions 

 

The formation of the Tat-TAR-CyclinT1 complex is a highly concerted and 

cooperative event. Rana et. al. [76] investigated the interaction of the TAR RNA and 

Tat protein in the absence and presence of CyclinT1 (with Zn2+) by monitoring the 

distance and efficiency of energy transfer in a complex formed between chemically 

synthesized TAR-Fluorescien and Tat-Rhodamine. The efficiency of energy transfer 

between the Tat protein and TAR RNA was reduced in the presence of CyclinT1 

thus suggesting that the Tat protein my go through a structural reorganization upon 

CyclinT1 binding. Further, in the absence of Zn2+, no energy transfer was detected 

thus pointing towards the fact that interactions may be via a metal linked heterodimer 

between the Tat protein and CyclinT1.  

The Tat protein binds TAR RNA with a KD of 8.2 nM, and this affinity is enhanced 

ten-fold in the presence of CyclinT1. Additionally, a Tat peptide containing only the 

arginine rich motif binds TAR RNA with a KD of 1nm. This increase in binding 

affinity and the structural rearrangement as suggested by FRET data discussed above 

help conclude that CyclinT1 enhances the affinity and stability of the Tat-TAR 
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complex. The TAR RNA loop is of particular significance though the mechanism by 

which Tat-TAR complex favors the interaction of CyclinT1 with the hexanucleotide 

loop of the TAR RNA is not known. Photo crosslinking experiments demonstrate 

that CyclinT1 directly interacts with TAR loop residues 31 and 33 and the U31 side 

of the loop is the major interaction site. As pointed out in section 1.3, the Tat protein 

also interacts with the residue 34 side of the TAR RNA loop. Thus, it can be 

concluded that structural reorganization of the TAR RNA loop may play an 

important role in the formation and stabilizing of the Tat-TAR-CyclinT1 complex. 

 

1.6 Inhibitors of the Tat-TAR interaction 

 

The interaction between Tat and TAR RNA is critical for virus replication. Altering 

the RNA binding site results in defective viruses and furthermore, the viral replication 

is strongly inhibited by the over expression of TAR RNA, which acts as a competitive 

inhibitor of regulatory protein binding. [
77

]. A Tat agonist may inhibit HIV replication 

from integrated proviral DNA at an early stage of viral replication. On the other hand, 

transcriptional regulators, expressed early in the replication cycle (Tat) to control 

transcription of other viral genes are attractive targets for antiviral agents directed 

against chronic viral infection [
20

]. A compound that inhibits the transactivation of the 

HIV LTR promoter by the viral Tat protein may force the virus to a state of latency. 

Such compounds may inhibit both acute and chronic HIV infections and they may 

lead to less resistance. Mutations in the regulators that antagonize the interaction 

could be potentially lethal to the viruses. Since the viral transcriptional regulators do 

not have any cellular counterparts, they represent a potentially selective antiviral 

targets. Furthermore, since the Tat-TAR interaction is highly conserved between virus 

isolates, anti Tat-TAR drugs are less likely to be affected by HIV variability than 

other drugs. 

The ability to exploit Tat-TAR function for antiviral therapy was first demonstrated 

by Lisziewicz et al. [
78; 79; 80; 81

] where a Tat inhibitory gene (anti-Tat) was used to 

decrease the amount of Tat protein by inhibiting the translation of the Tat mRNA, 

thus proving its value as an effective long-term suppressor of HIV and also suggesting 

that anti-Tat gene therapy may be beneficial to block HIV replication and reconstitute 

the immune system of late phase AIDS patients. 
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Fig 1.6 Interfering with the HIV transcription apparatus. A variety of techniques have been established 

in recent years to interfere with the Tat-TAR interaction that is crucial for HIV transcription regulation. 

 

The examples summarized in the following sections demonstrate that inhibiting the 

Tat-TAR interaction might be an interesting approach to inhibit HIV replication and 

that the arginine-binding site on the TAR RNA (described previously) could be an 

important interaction site for potential inhibitors. 
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1.6.1 Antisense Oligonucleotides 

 

The concept underlying antisense technology is based on the fact that
 
the use of a 

sequence, complementary by virtue of Watson-Crick
 
base-pair hybridization, to a 

specific mRNA can inhibit its expression
 
and thus induce a blockade in the transfer of 

genetic information
 
from DNA to protein. Antisense oligonucleotides are unmodified 

or chemically modified single-stranded
 
DNA molecules. In general, they are relatively 

short (13–25
 
nucleotides) and hybridize to a unique

 
sequence in the total pool of 

targets present in cells. A novel, and potentially remarkable, development in 

oligonucleotide
 
technology is the relatively recent finding that 21 to 23-mer

 
double-

stranded RNA molecules, known as siRNA, can effectively
 
silence gene expression. 

Other antisense oligonucleotide technologies worth a mention are the use of 12 to 

16mer 2’-O-methyl oligoribonucleotides binding to the TAR RNA and inhibiting the 

binding of Tat protein in the 20 to 100nM range [
33

]. These oligonucleotides are 

complementary to the HIV TAR RNA apical stem loop and bulge region. 

 

1.6.2 Cationic peptides 

 

A second series of compounds that have been used to target the Tat-TAR interaction 

are the cationic peptides. Research has confirmed that Tat peptide binding to TAR 

RNA can be inhibited by L-argininamide and agmatine although the Ki value for both 

these molecules is high [
82; 83

]. Tat mimetics have been designed from the basic 

domain of the Tat protein specific for the TAR RNA. Noteworthy examples are Tat-

9K-biotin, Tat10-biotin, and CGP 64222 etc.  

 

Fig 1.6.2 CGP 64222 
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1.6.3 Intercalators 

 

A third series of compounds targeting the Tat-TAR interaction are intercalating 

agents, often combined with cationic groups. Most commonly, an ethidium derivative 

composed of arginine, a linker and an ethidium is employed to inhibit the Tat-TAR 

interaction. Molecular modeling studies show that the ethidium seems to fit near an 

unpaired residue at position 17 while the arginine side chain occupies the pyrimidine 

bulge at position 23-25 [
84; 85; 86

]. 

 

1.6.4 Aminoglycosides 

 

The aminoglycosides are a clinically important group of antibiotics that have a broad-

spectrum of activity and that are bactericidal in action. The family includes 

streptomycin, gentamicin, neomycin tobramycin, kanamycin, amikacin and 

netilmicin. Since the discovery of streptomycin, the first aminoglycoside to be 

isolated by Waksman and co-workers [
87; 88

]; the role of aminoglycoside antibiotics as 

a family of RNA binders has been considerably accentuated by reports from 

Schroeder et al. and Green et al. who demonstrated the capability of these antibiotics 

to inhibit splicing in group I introns and interaction between the HIV-1 Rev protein 

and its RNA target respectively [
89; 90

]. Consequently, aminoglycosides have become 

a vital tool in targeting and inhibiting the interaction of Tat protein and TAR RNA in 

the HIV virus. They also offer a powerful tool to study the structural basis of RNA 

recognition and inhibition of function by cationic organic molecules in general. 

Aminoglycosides have a variety of effects within the bacterial cell but principally they 

inhibit protein synthesis by binding to the 30S ribosomal subunit to prevent the 

formation of an initiation complex with messenger RNA. They also cause misreading 

of the messenger RNA message, leading to the production of nonsense peptides. 

Another important function of the aminoglycosides is that they increase membrane 

leakage.  

The common core of most aminoglycosides is 2-Deoxystreptamine (2-DOS), a highly 

functional aminoglycositol. Glycosylation of the 2-DOS core (Figure 1.6.4), typically 

at the 4- and 5-, or 4- and 6- positions characterizes most aminoglycosides. 

Examination of binding affinities reveals some rudimentary structure activity 
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relationships in aminoglycosides. The importance of amino groups for RNA binding 

and inhibition is apparent.  

 

Fig 1.6.4 2- Deoxystreptamine 

 

Also evident from affinity data is that, hydroxyl groups influence RNA affinity. 

Changing an amino group to a hydroxyl group in kanamycin A abolishes inhibitory 

activity in self-splicing and Rev-RRE assays [
24

]. Thus, it can be concluded that 

electrostatics plays an important role in RNA affinity. Despite apparent disadvantages 

like unspecific binding, high toxicity and rapid development of bacterial resistance, 

novel aminoglycosides are a valuable instrument in combating diseases especially 

related to Gram-positive bacteria, interfering with crucial RNA-protein interaction 

and in understanding the fundamental characteristics of RNA recognition. The main 

theme of research undertaken in this thesis is concerned with the interaction of the 

TAR RNA with a novel macro cyclic 1,4-butanediol-linked aminodeoxyglucoside; 

henceforth referred to as AMG and the preparation of which has been described by 

Kirschning et al. [
91

]. 
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1.7 Scope of the work and the questions we address  

 

RNA can adopt a plethora of conformations, depending on factors such as pH, 

temperature and salinity and hence, monitoring and studying the changes in local and 

global conformations of RNA has become increasingly important to understand 

principles of RNA recognition and RNA-protein interactions. These changes in 

conformation are usually triggered by cofactors that are required for biological 

functions. 

As described in previous sections, small positively charged molecules such as 

polyamines, aminocyclitols and aminoglycosidic scaffolds can specifically recognize 

the three dimensional motifs of RNA and thus arrest the RNA in a biologically 

inactive conformation or compete directly with the binding of proteins and cofactors 

that are essential for biological function. A deeper insight into the principle of 

recognition of RNA with cationic antibiotics represents a major step towards RNA 

based drug design. 

The Tat protein-TAR RNA complex offers a unique model system to investigate the 

role of such antibiotics on the interaction of RNA-protein systems that are of vital 

importance for the proliferation and pathogenicity of viral entities such as HIV. 

Further, the interaction of Tat protein with CyclinT1 unit of the P-ETFb complex is a 

key element in the control of HIV viral replication and constitutes attractive targets 

for anti viral therapy. The structural investigation carried out as part of this thesis 

work, of a novel aminoglycoside analogue interacting with the TAR RNA, offers 

unique insights particularly for the hexanucleotide loop of the RNA and how a better 

understanding of the multiple possibilities of RNA recognition by a cationic antibiotic 

can lead to the design of improved TAR binders and pave the way for alternative 

therapeutic approaches that inhibit the interaction of the TAR RNA with the Tat 

protein and subsequently the P-ETFb complex. 

Employing NMR and a variety of biochemical assays to characterize the structure of 

this novel aminoglycoside (AMG) and the TAR RNA, we aim to shed light on the 

following key issues: 
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1) Where does the aminoglycoside bind to the TAR RNA?  

 

2) What effect does the binding of AMG have on the bulge and the disordered 

hexanucleotide loop of the TAR RNA? 

 

3) Does the binding of AMG to the hexanucleotide loop suggest a possible principle 

of recognition of CyclinT1 of the same loop? 

 

4) What is the basis of RNA recognition by AMG? Do hydrogen bonds and specific 

contacts to the phosphate backbone of the TAR RNA influence the recognition of 

TAR RNA by AMG?  
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2 Methods 
 

2.1 HIV-2 TAR RNA synthesis 

 

The HIV-2 TAR RNA sequence is shown in Figure 2.1. The presence of two Guanine 

nucleotides at the 5’ end opposed by two Cytosine’s at the 3’ end promotes T7 

transcription and prevents aggregation. The RNA was transcribed from DNA 

templates with T7 RNA polymerase [92] expressed and produced in-house. Labeled 
15N/13C NTPs were purchased from Spectra Stable Isotopes. Table 2.1 shows the 

components of the reaction. 

Test reactions to optimize MgCl2 and NTP concentrations required for the 

transcription were carried out in 10µl aliquots for both the labeled and unlabeled 

HIV-2 TAR RNAs. Preparative reactions were subsequently done at the 20ml scale. 

All reactions were done in disposable Falcon tubes and extreme care was taken to 

avoid RNase contamination. The components of Table 2.1 were mixed in the 

appropriate proportions and the reaction was incubated for 5-6 hours at 37oC. An 

amount of EDTA equivalent to the concentration of MgCl2 used was employed to 

arrest the reaction once the transcription was over. The reaction mixture was extracted 

once with phenol: CHCl3 and then precipitated overnight with ethanol at -20oC. The 

precipitant was resuspended in loading buffer (8mM Urea + 0.1% bromophenol blue 

+ 0.1% xylenol blue) and separated on denaturing 20% polyacrylamide gels, 40cm x 

50cm, run at 50W for ≈ 15 hours till bromophenol blue had migrated most of the gel. 

The RNA band was visualized by UV shadowing and cut from the gel. Appropriately 

sized gel slices were electro eluted in an Elutrap apparatus. The resulting elutant was 

lyophilized and resuspended in appropriate buffer (50mM phosphate buffer and pH 

6.4) and the concentration of RNA was estimated by measuring the absorbance at 260 

nm.  
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Figure 2.1 The HIV-2 TAR RNA sequence 

 

 

Component  

            NTP          

(Spectra Stable Isotopes) 

15mM (3.75mM each) 

20mM (5.00mM each) 

           MgCl2                    

(Fluka Biochemika) 

           35mM 

           30mM 

   T7 polymerase 

(produced in-house) 

             3µl 

         PEG             0.16µl 

   DTT (100mM)              0.5µl 

Table 2.1 In-vitro T7 transcription reaction components for producing labeled and unlabeled HIV-2 
TAR RNA. Optimized NTP and MgCl2 concentrations for unlabeled RNA are shown in red font. The 
reaction mixture was made up to 10µl by the addition of 10X buffer which consisted of 400mM 
Tris/HCl at pH 8.0, 10mM Spermidine, 50mM DTT and 0.1% Triton-X 100. Preparative reactions 
were scaled to 20ml using similar conditions.  
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2.2 Cyclic Aminoglycoside AMG 

 

A short scheme illustrating the summary of the synthesis of AMG as described by 

Kirschning et. al. [91] is detailed below: 

 

 
Fig 2.2 Synthesis of AMG as described by Kirschning et. al [91]. 

 

The synthetic scheme of the AMG from a 1,4-butanediol linked C2 symmetric ribose-

configured allyl glycoside is shown above. The 15N-labeled and unlabeled cyclic 

amino glycoside (AMG) was obtained from the laboratory of Prof. Dr.Andreas 

Kirschning, Institute of Organic Chemistry, University of Hannover in lyophilized 

form. A stock solution of AMG was prepared for titration to monitor chemical shift 

changes of the TAR RNA residues with increasing concentration of AMG. 5 mg of 

AMG (molecular mass 805,051 g/mol) was dissolved in 5µl, 50mM sodium 

phosphate buffer at pH 6.5 and 95µl distilled water. The pH was adjusted to 6.4 - 6.5 

by the careful addition of 1M HCl and 1M NaOH solutions. The electrode was 

allowed to equilibrate after each addition for maximum accuracy. A final stock 

solution of 49.686 (≅ 50mM), 125µl AMG was obtained.  
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The important materials used in the course of the production of the samples were 

affiliated as follows: 

 

Deuterium Oxide D2O  Deutero GmbH (99.9% purity) 

    Vacuum pumps                       Vakkubrand GmbH 

               Eppendorf cups               Abimed 

               Lyophilizer Loc-1M Alpha       Christ 

               Water        Millipore 

               Heating blocks      neoLab 

               NMR sample tubes      Shigemi Co. LTD 

               Vortex Genie      Scientific Industries 

Table 2.2 Equipment and suppliers 
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2.3 RNase footprinting / Digestion 

 

The Ribonuclease T1 (RNase T1) is an endoribonuclease that specifically degrades 

single-stranded RNA at guanine residues. It cleaves the phosphodiester bond between 

3'-guanylic residues and the 5'-OH residues of adjacent nucleotides with the formation 

of corresponding intermediate 2', 3'-cyclic phosphates [97]. The reaction products are 

3'-GMP and oligonucleotides with a terminal 3'-GMP.  The Ribonuclease T1 does not 

require metal ions for activity. RNase A is sequence specific for single stranded 

RNAs. It degrades 3'end of unpaired CYT and URI residues. It cleaves the 

phosphodiester bond between the 5'-ribose of a nucleotide and the phosphate group 

attached to the 3'-ribose of an adjacent pyrimidine nucleotide. The resulting 2', 3'-

cyclic phosphate is hydrolyzed to the corresponding 3'-nucleoside phosphate [98]. This 

experiment is a sensitive probe of residues that are protected and shielded by the 

presence of AMG and those that are more solvent exposed and susceptible to 

cleavage/digestion by the respective RNase enzymes. 

In summary, residues that are less shielded by the ligand would be more prone to 

digestion than those residues that are close to the binding site of the ligand and hence 

protected from digestion. 

10µM of 5’–32P labeled HIV-2 TAR RNA was digested with either GUA selective 

RNase T or URI and CYT selective RNase A [99]. The reaction was performed in 

autoclaved Eppendorf reaction vessels at 4oC. The concentration of AMG was varied 

from 0.1µM to 10mM. Appropriate controls were performed and extreme precautions 

were taken to avoid RNase contamination. The reaction was stopped by the addition 

of 2mM EDTA and 0.1% SDS and the reaction mixture was loaded onto a 20% 

denaturing polyacrylamide gel. The radioactive complexes were visualized by 

autoradiography. 
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2.4 PACE (PolyAcrylamide Co Electrophoresis)  

 

The PACE experiment was originally designed to study RNA-protein (peptides) 

interactions, particularly those complexes with low affinities but this technique can be 

conveniently extended to investigate the binding of non-protein based ligands to RNA 

systems. We prepared PACE gels as described by Cilley and Williamson [100]. 10µM 

of 5’–32P labeled HIV-2 TAR RNA and a series of lanes containing different 

concentrations of AMG (0, 1, 2, 5, 7, 10, 20, 70, 100, 200 and 500µM) were poured 

with the native gel (15% acryl amide, 1X TBE and 0.02% ammonium persulphate) 

rotated by 900. 

The gels were run and subsequently visualized by autoradiography and analyzed. 

We adapted the PACE experiment to investigate the binding stoichiometry between 

the TAR RNA and AMG [101]. The principle behind this technique warrants a deeper 

discussion here. 

In the analysis of the PACE gel, the RNA is assumed to exist in two distinct states, 

one is the free unbound state with mobility equal to that of the RNA in the absence of 

AMG. The mobility of the bound form is a function of the size, shape and charge of 

the TAR RNA/ AMG complex formed under the given concentration of AMG. Thus, 

the maximal retardation observed would be system dependent. Also, it is assumed that 

the bound form and the free form of the TAR RNA are in rapid equilibrium with each 

other i.e. in the fast exchange regime relative to the electrophoresis time. 

The total distance traveled (D) for each TAR RNA under the influence of each AMG 

concentration considered is measured from the autoradiogram. As a control, the 

migration distance of TAR RNA in the absence of AMG (DF) is also measured to 

allow comparison of migration distances of different lanes.  

Assuming that a simple binding equilibrium exists between the TAR RNA and AMG 

leads to  

                                       TAR + AMG 
Kd

TAR / AMG   (i) 

 

Where Kd = [TAR] [AMG] / [TAR/AMG], [TAR] is the concentration of TAR RNA 

and [AMG] is the concentration of the amino glycoside. Further, the fraction of TAR 

RNA bound to AMG (φ) is given by  
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                                            φ  = [TAR]Bound / [TAR]Total     (ii) 

 

The binding constant between the TAR RNA and AMG is only moderate; hence it is 

safe to assume that the concentration of free AMG is equal to the concentration of 

total AMG. This leads to  

 

                                     φ  = [AMG]Total /{Kd, app + [AMG]Total}   (iii) 

 

Where Kd, app is the apparent dissociation constant for the TAR/AMG complex under 

PACE gel conditions. In the absence of AMG, the TAR RNA will travel a distance DF 

that corresponds to the migration of the free TAR RNA. When the total distance 

traveled, D equals DF then we can conclude that there is no significant interaction 

between the TAR RNA and AMG complex. A sufficiently high concentration of 

AMG will lead to maximal retardation of the TAR RNA and this distance DB is 

indicative of the migration of the fully bound form of the TAR RNA / AMG complex. 

The fraction of TAR RNA bound at any given AMG concentration is given by  

 

                                         φ  = {D – DF} / {DB – DF}     (iv) 

 

Where D is the retardation distance in each lane, DF is the retardation distance of the 

TAR RNA in the absence of AMG and DB is the retardation distance of the TAR 

RNA completely bound to AMG (in our case at a concentration of 500µM). 

Continuing the analysis, substituting (iii) in (iv), we get  

 

D = {[AMG]Total (D – DF) / Kd, app + [AMG]Total} + DF 

Leading to (D-DF)/(DB-DF) = [AMG]/ Kd, app + [AMG] 

 

For our investigation of binding stoichiometry in the TAR RNA/AMG complex, we 

assumed different binding models with different stoichiometries of the TAR RNA in 

complex with AMG and the theoretical dependence of φ  on the concentration of 

AMG was calculated in each case from the molar fractions assuming constant 

concentration of AMG in each lane. The experimental data were fitted to the 

theoretical function using MATLAB. 
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The following six different models were considered: 

(i) One molecule of the TAR RNA binds to one molecule of AMG 

(ii) One molecule of the TAR RNA binds to two molecules of AMG with the same Kd 

(iii) Two molecules of the TAR RNA bind to one molecule of AMG. 

(iv) One molecule of TAR RNA binds to two molecules of AMG with different Kd 

(v) One molecule of the TAR RNA binds one molecule of AMG with Kd1 followed by 

dimerization of TAR RNA/AMG complex with Kd2. 

(vi) Two molecules of the TAR RNA bind one molecule of AMG (Kd1). Subsequently 

two molecules of AMG are recruited by the RNA dimer (Kd2) for a total binding of 

two TAR RNA molecules and three AMG molecules.  

 

The values of D, DB and DF is elucidated from the PACE gel and the concentration of 

AMG is specific to each lane, hence the apparent Kd can be calculated by plotting   

(D-DF)/(DB-DF) vs. [AMG]. Thus, the theoretical dependence of (D-DF)/(DB-DF) on 

the concentration of AMG can be predicted for each of the above mentioned model 

cases assuming that the concentration of AMG remains constant in each lane. 
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2.5 NMR spectroscopy 

 

The labeled and unlabeled HIV-2 TAR RNA produced by T7 transcription was 

dialyzed extensively against NMR buffer [92].  

For the titration of the TAR RNA with AMG, 2.317mg of unlabelled HIV-2 TAR 

RNA was dissolved in 250µl of H2O and 20µl of D2O. AMG was titrated in varying 

concentrations steps of molar ratio (TAR RNA: AMG) 1:0, 1:1, 1:2, 1:5, 1:10, 1:20, 

1:40, 1:50, 1:70 and 1:100. The effect was monitored on the imino region of the TAR 

RNA employing a 1D Watergate experiment [102] on the 700 MHz Avance 

spectrometer at 298K. For the chemical shift mapping, AMG was titrated in 

concentrations varying from 0.3mM to 30mM against a sample of 0.3mM sample of 
15N/13C-labeled HIV-2 TAR RNA, dissolved in H2O /D2O, containing 50mM 

phosphate buffer at pH 6.4. 

The chemical shift changes of both the base (C5-H5, C6-H6, C8-H8) and the sugar 

(C1’-H1’) resonances of the RNA were monitored in 13C-HSQC spectra [103] during 

the titrations on a 600 MHz Avance spectrometer at 298K. Each spectrum, on the 

base and sugar was acquired for a total of 5 hours with the acquisition dimensions 

being 128 points (13C) and 2048 points (1H). For the final experiments 0.772 mg of 
15N/13C-labeled HIV-2 TAR RNA (0.3mM) and 0.724 mg of AMG (3mM) were 

dissolved in either D2O or H2O/ D2O (90/10%) containing 50mM phosphate buffer at 

pH 6.4. All experiments were acquired in-house on Bruker 600 DRX, 600 Avance, 

700 Avance, 800 DRX and 900 Avance spectrometers. All spectrometers except the 

600 DRX were equipped with a cryoprobe. The carrier frequency was set to 4.7 ppm 

(H2O/ HDO) for proton and 148 or 79 ppm for 13C depending on the chemical shifts 

to be observed. All spectra were collected at 298K unless otherwise specified. Spectra 

acquired were transferred and processed using XwinNMR (Bruker, Karlsruhe, 

Germany) or Felix (MSI).  
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2.5.1 Resonance assignment of the TAR RNA 

 

Standard NMR methods were employed to assign the TAR RNA AMG complex [104; 

105; 106]. One of the fundamental problems in NMR of RNA is obtaining the 

unambiguous and complete resonance assignment of the spin systems of the ribose 

sugars that are overlapped due to severe degeneracy of proton and carbon chemical 

shifts. The 3D HCCH-COSY-TOCSY experiment [107] offers an elegant way of 

combining the benefits of the HCCH-COSY [108; 109] and HCCH-TOCSY [110; 111] 

experiments and was used to get a complete spin assignment of the ribose spin system 

of the TAR RNA (C1’-H1’, C2’-H2’, C3’-H3’, C4’-H4’ and C5’-H5’/H5’’ 

correlations). This experiment was acquired on the 700 MHz Avance spectrometer at 

298K. The acquisition dimensions were 128 points on 1H/F1, 64 points on 13C/F2 and 

1024 points on 1H/F3, with 20 scans. The following section describes the 3D HCCH 

COSY-TOCSY (Fig 2.5.1 a) experiment in further detail.  

 
Figure 2.5.1 (a). The 3D HCCH-COSY-TOCSY pulse scheme for the assignment of the ribose sugar of 
nucleic acids. 
 

The pulse sequence can be divided into 7 parts namely INEPT, the COSY step, 

followed by the CT period, then the TOCSY mixing, two successive INEPT steps and 

finally the detection and acquisition. 

The effect of the pulses on the ribose spin system can be analyzed using product 

operator formalism [112] as follows: 

The INEPT step first creates a proton (H’) antiphase magnetization 2H’xC’z. 

Coherence is subsequently transferred to the directly attached hetero nucleus 13C (C’) 

and results in 2H’zC’y. 
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The COSY step is used to identify coupled spin systems. The JH-C coupling evolves 

for a period of 2∆1. ∆1 is set to 1/8JCH where JCH is the one bond J coupling constant 

of 1H-13C (≈160 Hz). As a consequence, in phase terms of both CH (namely C1’/H1’, 

C2’/H2’, C3’/H3’and C4’/H4’) and CH2 (in RNA only C5’/H5’ and H5’’) are 

refocused. Importantly, during the COSY step, the JC’-C’’ couplings evolve for a period 

of 2∆3. Here magnetization is transferred from C’ to the neighboring C’’ yielding 

terms of the form: 

C’X cos (ωH’t1) cos (2Δ3πJC-C) and C’yC’’z cos (ωH’t1) sin (2Δ3πJC-C) 

During the CT (Constant Time), the chemical shift of carbon (ωC’ and ωC’’) is 

modulated by the time period t2 while the JCC is modulated by the time period 2TC. 

The detectable terms after the CT are 

C ' x cos(!Ht 1)cos
n
(2" 3#JC $ C)cos(!C ' t 2)cos

n
(2TC#JC $ C)  …(a) 

C"x cos(!Ht 1)cos
n"1
(2# 3$JC " C)sin(2# 3$JC " C)cos(!C " t 2)

cos
m"1
(2TC$JC " C)sin(2TC$JC " C)

 …(b) 

Where n is the number of carbons attached to C’ and m is the number of carbons 

attached to C’’. In case of RNA, it is to be borne in mind that “m” and “n” can take 

values of either 1 or 2 depending on the number of neighbors the C atom has. C1’ and 

C5’ have only one neighboring C atom namely C2’ and C4’ respectively, while C2’, 

C3’ and C4’ have 2 neighbors each.  From the above two terms (a) and (b) we can 

conclude that the proton (H’) is correlated to the carbon it is directly attached to (C’) 

and the carbon two bonds away (C’’). This magnetization is then transferred to all the 

attached carbons within the ribose spin system in the TOCSY step by a DIPSI-3 

mixing scheme [113]. The reverse inept after the TOCSY step transfers the 

magnetization from C’X to H’X leading to detection on the proton dimension. 

In the HCCH-TOCSY experiment, all the 1H or 13C in the ribose system are correlated 

through the 13C-mixing scheme whereas in the HCCH-COSY experiment only the 

two neighboring 1H, 1H or 13C, 13C are correlated. Contrarily, the 3D HCCH-COSY 

TOCSY experiment combines both the transfer schemes into one experiment and 

offers a powerful technique to resolve whole 1H-13C COSY patterns for the 

assignment of poorly dispersed RNA ribose spins. 

Further resonance assignment of fully 15N/13C labeled RNA is mainly based on a set 

of heteronuclear through-bond transfer experiments correlating the nuclear spins 

within the same sugar, the same base, or between the sugar and base of the same 
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nucleotide [104; 114]. For large RNAs (30 nucleotides and higher), especially at lower 

sample concentration, the inter-nucleotide through-bond HCP correlation experiment 

[115] becomes very inefficient and thus, the 13C edited 3D NOESY becomes very 

important to detect 1H-1H NOEs between the sugar protons H1’, H2’ and the aromatic 

base protons, H6 or H8 of sequential nucleotides. 

A 3D 13C-HSQC NOESY [116] (mixing time of 100 ms, acquisition dimensions of 

2048 points on F3/1H, 88 points on F2/1H and 168 points on F1/13C, with 8 scans at 

298K on 800MHz) and a base resolved/selective 3D 13C-HSQC NOESY [117] (mixing 

time of 100 ms, acquisition dimensions of 2048 points on F3/1H, 96 points on F2/1H 

and 256 points on F1/13C, with 8 scans at 298K on 800MHz) was used for sequential 

resonance assignment of the TAR RNA. The pulse sequence of the base 

resolved/selective 3D 13C-HSQC NOESY is shown in Fig 2.5.1 (b) and the effect of 

the pulses on the RNA can be analyzed as follows: 

 

 
Figure 2.5.1 (b). The 3D Base Selective NOESY pulse scheme for the sequential resonance assignment 
of nucleic acids [117]. 
 

The experiment begins with an initial INEPT step at A, which allows the transfer of 
1H magnetization into two-spin order. 

The step at B functions as a base type selective C-C filter sequence to separate the 

resonances of C8 in purines and C6 in pyrimidines where the filter delay δ was set to 

1/2JC5C6 .  

This is followed by the carbon evolution period (t1) when the 13C spins are frequency 

labeled while decoupling homonuclear C-C scalar coupling. No decoupling is applied 
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on the 1H dimension so that Hα and Hβ states are not interconverted. Applying an 180o 

pulse on the 15N dimension removes scalar coupling evolution between base carbons 

and nitrogen at time t1/2. 

The block D performs spin-state-selective coherence transfer from 13C to 1H 

C+Hβ  CαH+ 

During t2 in block E, the 1H spins are frequency labeled followed by a NOESY 

mixing time of 100ms. The carbon spins are decoupled during t2. 

The 1H FID is detected while simultaneously decoupling 13C during F. 

This experiment helped correlate H6/H8-H1’ and H6/H8-H2’ connectivity’s on the 

TAR RNA residues.  

To measure hydrogen bond mediated JNP couplings, 15N labeled AMG was mixed 

with unlabeled TAR RNA. This was done to exclude or confirm the presence of 

hydrogen bonding between the amino groups of AMG and the phosphate backbone of 

the TAR RNA. The J-quantitative method [118] was employed to measure the JNP 

couplings in an H-N 2D correlation. The 15N chemical shift of the amino group 

confirmed that all four groups of AMG are protonated in the NMR buffer. Since the 

ligand is in fast exchange with the solvent, the resonances of the amino protons could 

not be observed. 
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2.5.2 Resonance assignment of the Aminoglycoside 

 

To obtain the resonance assignment of the ligand AMG [119], we relied on the 

following experiments measured on the 600 MHz Avance. 

(a) DQF-COSY: 512 points on F1 and 2048 points on F2 with 108 scans 

(b) TOCSY: 512 points on F1 and 2048 points on F2, mixing time 20 ms, 48 scans 

(c) TOCSY: 512 points on F1 and 2048 points on F2, mixing time 60 ms, 48 scans 

(d) NOESY: 512 points on F1 and 2048 points on F2, mixing time 130 ms, 80 scans 

(e) NOESY: 384 points on F1 and 2048 points on F2, mixing time 60 ms, 56 scans 

 

 

 
Fig2.5.2 The 1D region of AMG. 
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2.5.3 Titrations and chemical shift mapping 

 

An easy and rapid way to gain qualitative information about the interaction between 

two molecules is to study the chemical shift values. Chemical shifts depend on the 

local environment. The chemical shifts of 1H and 13C are particularly sensitive to 

changes of the environment. Therefore 1H and 13C are chemical shift perturbations 

recorded via 13C-HSQC spectra throughout an NMR titration are commonly 

combined in order to map a binding site of the ligand on an RNA. The residues 

exhibiting the largest 1H and 13C chemical shift changes upon titration of the ligand 

define the binding interface.  

 

 
Fig 2.5.3. Scheme (A) follows the stepwise addition of AMG to 0.9mM TAR RNA in varying molar 
ratios, on a 1D Watergate experiment at 298K on 700MHz Avance. Scheme (B) shows the 
superposition of the base region of a 13C-1H correlation for the HIV-2 TAR RNA free (black) and in 
complex with AMG (red). Acquisition dimensions were 128 (13C) and 2048 points (1H) each spectrum 
acquired for 5 hours on a 600 MHz Bruker Avance. 
 
As described in Section 2.5, the chemical shifts of the TAR were monitored on the 1D 

Watergate experiment and the 13C-HSQC during the titration against AMG. 
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2.5.4 T1 relaxation rate measurement 

 

NMR spectroscopic methods can be used to probe motions over a variety of 

timescales. Autocorrelation (T1, T2, T1ρ, NOE) and cross-correlated relaxation 

measurements can be used to monitor motions on the ns-ps timescale [120].  

Relaxation is induced by field fluctuations that occur due to molecular motion, i.e. 

changes in the local fields as the molecule moves. Thus, NMR relaxation experiments 

monitor the magnetic fluctuations arising from these molecular motions. 

A variety of parameters are at the disposal of the NMR spectroscopist that can be 

measured using relaxation experiments. It is common to measure the following 

relaxation parameters for heteronuclear HX spin systems: T1 –the spin-

lattice/longitudinal relaxation time, or the corresponding relaxation rate R1=1/T1; T2 –

the spin-spin/transverse relaxation time, or the relaxation rate R2=1/T2. The spin-

lattice relaxation rate describes the recovery of the longitudinal magnetization to 

thermal equilibrium—the return of the populations of the energy level of the spin 

system to the Boltzmann distribution. T2 measures the loss of coherence as individual 

spins experience slightly different resonance frequency due to inhomogeneities in the 

local magnetic field.  

Relaxation rates can also provide useful insights into the molecular weight and size of 

the molecule. As molecular weights increase the line broadening that is due to slow 

molecular tumbling rate increases. Consequently, T1 and T2 relaxation times become 

shorter, though T1 grows again after reaching a minimum. 

In order to measure longitudinal relaxation rate, an inversion recovery experiment is 

performed, while transverse relaxation rates are measured by CPMG (Carr-Purcell-

Meiboom-Gill) experiments, which are essentially a train of 180º pulses [121; 122]. The 

relaxation times T1 and T2 directly related to spectral densities J (ω) that describes the 

reorientation motions of the bond vector to be studied. The spectral densities are 

related to the correlation function that defines the motion by a simple Fourier 

transformation; this correspondence makes it possible to probe bimolecular motions 

from relaxation measurements. Unlike proteins, where the 15N atoms of amide 

residues provide a ready tool for the measurement of relaxation rates and thus give a 

deeper insight into residue specific dynamics, nucleic acids do not contain as many 
15N atoms. The ones that are present in the bases, the water-exchange properties of the 

GUA, CYT and ADE NH2 are not conducive to their analysis [123]. While the 
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measurement of 15N relaxation rates certainly shed light on the motions of base paired 

GUA and URI residues, they are inadvertently limited and thus it becomes necessary 

to measure 13C relaxation parameters to gain a deeper insight into the structure and 

dynamics of the nucleic acid in question.  

There is an increasing probability of the formation of multiple binding of ligand or 

multimerization of the RNA in the presence of high concentration of the ligand. To 

determine if the TAR RNA retains its monomeric status or whether the presence of 

the excess ligand encourages dimerization (multimerization), we measured T1 

relaxation times [124] of the C8-H8/C6-H6 in a 13C-1H correlation experiment (Fig 

2.5.4) using relaxation delays (d8) of 5, 10, 20, 30, 40, 60, 80, 100, 120, 160, 200, 

300, 400, 600, 800 and 1200ms. 

 

 
Fig2.5.4 Pulse sequence to measure T1 relaxation rate for the TAR/AMG complex 

 

After the INEPT step (HzCz), a reverse INEPT step ensures that we end up with -Cz 

term thus allowing us to measure only the 13C relaxation rates. The delay d8 is varied 

systematically in different experiments such that the inverted magnetization on 13C is 

allowed to undergo longitudinal relaxation. The subsequent steps allow chemical shift 

evolution of 13C in time period t1 and coupling modulated by the time period 2τ after 

which the magnetization is transferred from 13C to 1H and detected. The delays are set 

such that τ = 1/4JC-H. 
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2.5.5 Field induced residual dipolar couplings 

 

NMR structures of RNA molecules are usually less well defined than proteins with 

similar size and weight. This is because only short range interactions, such as 

sequential NOEs (intermolecular) and intra base pair NOEs, and dihedral angles as 

elucidated from J-coupling constants are utilized while long range distance 

information remain sparse or absent. In such circumstances, residual dipolar 

couplings become an invaluable source of long-range distance and angle information. 

Under conditions of isotropic tumbling of molecules, the RDCs average to zero and 

hence this valuable information is lost. To prevent this, several methods to induce 

partial alignment of the biomolecule in question (in our case RNA) have been 

introduced, prominent among them filamentous Pf1 bacteriophages, bicelles, Otting 

phase [125] and more recently polyacrylamide gels [126].  

However, the simultaneous presence of the negatively charged TAR RNA and an 

excess of positively charged AMG deterred us from using phages [127; 128; 129] or 

bicelles [130; 131] to attempt the alignment of TAR RNA/AMG complex. Instead, we 

exploit the natural anisotropic magnetic susceptibility inherent in most molecules, 

which can lead to partial alignment in a magnetic field [132; 133]. This alignment is 

substantial for experimental investigation only at high field strength and even then is 

extremely small (between 0 to 10Hz). We exploit this property of dipolar couplings 

scaling linearly with the square of the field strength [134; 135] and measure the splitting 

(J+D) of the C2-H2, C6-H6, C8-H8 and C1’-H1’ at 600, 700 and 800 MHz. The 

field-induced residual dipolar couplings (fiRDCs) at 800 MHz were derived by linear 

fitting of the three values against the square of field strength and extrapolated to zero 

magnetic field to obtain the value of J (Igor Pro 5 Wavemetrics, Inc). The couplings 

were extracted from coupled and decoupled version of the 13C-HSQC experiments. At 

higher field strengths, the anti TROSY component of the coupled spectrum becomes 

much weaker (broad) because of the fast decay of the 13C component; therefore the 

J+D coupling as given by the difference between the TROSY and anti TROSY peak 

of the coupled spectrum cannot be accurately measured.  

By measuring the difference between the distance of the coupled and the 

corresponding decoupled peaks, an estimate of half the J+D coupling at particular 

field strength can be made within appropriate error limits. A macro written in Felix 
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assisted in shifting and overlaying 1D slices of the coupled and decoupled spectra 

(Appendix C). 

 

 
Fig 2.5.5 On the left is a coupled peak whose splitting corresponds to 1JHC +DHC on the ω1 dimension. 
On the right is the corresponding peak in the decoupled version of the experiment.  
 

Only those fiRDCs that showed a linear relationship to Bo
2 within the experimentally 

determined error limits were employed in a subsequent refinement procedure. 
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2.5.6 NOE distance restraints 

 

Inter and intra nucleotide distance constraints were extracted from a 3D 13C-HSQC 

NOESY (mixing time 100 ms) and a base resolved/selective 3D 13C-HSQC NOESY 

(mixing time 100 ms). Peak intensities were scored as strong, medium and weak using 

contour levels to maintain consistency. Intermolecular distance restraints were 

obtained from a 13C-edited/12C-filtered HSQC-NOESY [136; 137] spectrum acquired in 

D2O with a mixing time of 200ms where the NOEs between the 13C-labeled TAR 

RNA and unlabeled AMG could be selectively observed. 

The NOE peak intensities were converted into appropriate NOE distance restraints 

with upper bounds of 3Å for strong intense peaks, 4.0 Å for medium intense peaks 

and 5.0 Å for weakly intense peaks. Very weak NOEs to exchangeable protons or 

very weak intermolecular NOEs were allowed an upper bound of 6.0 Å. 

 
RNA residue/atom AMG residue/atom  RNA residue/atom AMG residue/atom  

ADE 35 H1’ A H5, B H4*, B H2*/H3* URI 23 H5 A H5/H3, B H1*/H4*, BH2*/H3* 

ADE 35 H2’/H3’ A H3, B H4*, B H2*/H3*, A H1 URI 25 H1’ A H1, A H5/H3, B H1*/H4*, 

BH2*/H3*, A H6* 

ADE 35 H4’ A H1, A H3/H5, B H4*, A H4, B 

H2*/H3* 

URI 25 H5 B H1*/H4*, B H2*/H3*, A H6* 

ADE 35 H2 A H1, A H3/H5, B H4* URI 25 H6 A H6*, B H2*/H3* 

ADE 35 H8 A H3, BH4*, AH4, A H2*, AH6* GUA 26 H5’/H5’’ A H6* 

ADE 22 H8 A H1, A H3, B H4*, B H2*/H3* GUA 36 H8 B H1*/H4*, B H2*/H3* 

URI 23 H1’ B H2*/H3* GUA 43 H1’ B H2*/H3*, A H1, A H2* 

URI 23 H2’ B H1*/H4*, B H2*/H3* GUA 44 H4’ A H3/H5, B H2*/H3*, A H6* 

Table 2.5.6 Intermolecular connectivity’s of RNA residues to the ligand as observed in a 13C-
edited/12C-filtered HSQC-NOESY spectrum. The sugar moiety of the ligand is referred to as “A” and 
the linker moiety is referred to as “B” in this table. 
 

The intermolecular NOE data has been summarized in Table 2.5.6. The nomenclature 

of the protons can be understood from Figure 2.5.6(a). 

Given that the ligand AMG has a two-fold symmetry and a four-fold degeneracy of its 

resonances, a preliminary intermolecular data set with full ambiguity among the four 

possibilities was evaluated. To arrive at a more appropriate intermolecular data set, a 

rigorous and exhaustive procedure was adopted to define intermolecular NOEs 

spanning all reasonable possibilities that are not equivalent by symmetry.  
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The procedure began by numbering the sugars and linkers of AMG from 1 to 8 in the 

clockwise direction to define a ring consisting of sugar 1, linker 2, sugar 3, linker 4, 

sugar 5, linker 6, sugar 7 and linker 8 (Fig 2.55 b). 

(a)   (b)  
Fig 2.5.6 (a) Labeling scheme of AMG. (b) Individual sugar and linker units were numbered from 1 to 
8 in the clockwise direction to take care of the problem of two-fold symmetry and four-fold degeneracy 
in resonances that hinder unambiguous assignment of intermolecular NOE restraints. 
 

Seven data sets spanning all reasonable possibilities equivalent by symmetry were 

made as depicted in Fig 2.5.6 (c). 

Two assignments were considered for NOEs stemming from residue A35. In the first 

possibility A35 NOEs were directed towards sugar 1 and linker 2 (column 2 Fig 2.5.5 

(b)) while in the second possibility A35 NOEs were directed towards sugar 1 and 

linker 8 as shown in column 1. For the NOEs stemming from the bulge residues A22, 

U23 and U25, three alternatives were devised. a) A22, U23 and U25 contact sugar 5 

and linkers 4 or 6 (first row); b) A22, U23 and U25 contact sugars 3 or 5 and linker 4 

(second row); c) A22 and U23 contact sugar 5 and linkers 4 or 6, while U25 contacts 

sugar 3 and linkers 2 or 4 (third row). Combination of the two possibilities for NOEs 

from A35 and with the three possibilities arising from the bulge residues yields a total 

of 6 intermolecular NOE data sets. In the seventh set (bottom), NOEs stemming from 

A35 were assigned to sugar 1 and linker 8; those stemming from U25, to sugar 3 or 

linkers 2 or 4; those stemming from U23, to sugars 3 or 5 and linker 4; those 

stemming from A22, to sugar 5 and linker 4 or 6. When a residue contacts two AMG 

moieties equivalent by symmetry (e.g. linkers 4 and 6), those restraints were treated 

as ambiguous in the structure calculation. Taking into account the two-fold symmetry 

of AMG, the initial seven sets of intermolecular NOE data sets were duplicated by 

shifting the sugar and linker numbering by one unit (sugar1 -> sugar3, linker 2 -> 
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linker 4 etc.). Finally, fourteen unique combinations were used in the restrained 

Molecular Dynamics protocol.   

 
Fig 2.5.6 (c) Intermolecular NOE data sets scheme. The various cases shown above collectively span 
all the reasonable possibilities that are not equivalent by symmetry. 
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2.5.7 Dihedral angle restraints 

 

The furanose rings in a nucleic acid are twisted out of plane to minimize non-bonded 

interactions between their substituents. This phenomenon is called puckering [138]. 

The sugar pucker determines the shape of the A-helix, whether the helix will exist in 

the A-form or in the B-form. The five membered rings are for steric reasons not 

planar (Pitzer tension and Newman strain) because then all bonds would be in the 

eclipse conformation hence one atom or two are turned out of the plane [139]. In the 

ribo furanose, the plane C1’-O4’-C4’ is fixed. Endo-pucker means that C2’ or C3’ are 

turned out of this plane into the direction of C5’. Exo-pucker describes a shift in the 

opposite direction. In RNA we find predominantly the C3’- endo conformation. The 

sugar pucker was defined as either C2’-endo or C3’-endo depending on the J coupling 

constants between H1’ and H2’ derived from a 2D-HCCH-E.COSY spectrum (140).  

As shown in Fig 2.5.6 (a), if a ribose sugar adopts a C3’-endo conformation, as is 

usually the case with A-form backbone geometry, then vicinal couplings between 

ribose H1’ and H2’ are typically around 2 Hz and smaller. In contrast, the C2’-endo 

conformation results in larger coupling values of around 6 to 8 Hz. Intermediate 

values are indicative of exchange between the two conformations and residues 

exhibiting such coupling values are best left unrestrained. 

The H3’-H4’ couplings can also be used as a diagnostic tool to determine the pucker. 

A small value of J (H3’, H4’) is indicative of a C2’-endo conformation while a large J 

(H3’, H4’) is indicative of a C3’-endo conformation adopted by the sugar pucker. 

(a)       (b)  
Fig 2.5.7 (a) The common conformations exhibited by ribose sugars in RNA, C3’-endo and C2’-endo. 
Observe how the positions of H1’ and H2’ get altered with change in sugar pucker. (b) Dihedral angles 
associated with a nucleotide. 
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The HCCH-E.COSY experiment [140] enabled us to simultaneously detect the 3JHH 

homonuclear coupling along the ω2 dimension and the 1JCH heteronuclear coupling 

along the ω1 dimension Fig 2.5.6 (d). For the determination of the sugar pucker of 

each residue, we are interested in the 3JH1’H2’. The pulse sequence employed is shown 

in Fig 2.5.6 (c). 

 
Fig 2.5.7 (c) The HCCH E-COSY pulse sequence to elucidate the sugar pucker of nucleic acids 

 

This experiment relies on the initial transfer of magnetization from 1H to 13C using an 

INEPT step at which point the magnetization can be expressed in the form 2HzCy (a). 

This is followed by an evolution period wherein the chemical shift of 13C evolves in 

the duration t1/2 + T/2 – (T/2 –t1/2) = t1. The heteronuclear coupling between 1H and 
13C evolves for τ - T/2 + τ - t1/2 + (T/2 – t1/2) = -t1 + 2τ. In the evolution time t1 we 

get an in phase splitting of the resonances in the ω1 dimension. By adjusting the time 

interval 2τ = 1/2JHC the evolution of the JHC coupling can be described in the operator 

form 

2HzCy  -Cx 

The homonuclear coupling between 13C spins evolves in time T as described by  

-Cx  2C1yC2zsin(πJC1C2T)  

At step (b), the 90o pulse flips the magnetization of 13C to the transverse plane  

-2C1yC2z  -2C1zC2y  

When 2τ is set to 1/2JHC the heteronuclear coupling evolves as 

2C1zC2y  4C1zC2xH2z 

And the homonuclear coupling JCC under the influence of time Tc  

4C1zC2xH2z  2C2yH2z sin (πJC1C2Tc) 
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Tc is optimally set to 1/4Jcc. The E-COSY element ensures that the α and β spin 

states of 1H after the evolution time t1 don’t mix. In a final INEPT step (d), the 

magnetization is transferred back to 1H and then detected (e). 

 
Fig 2.5.7 (d) The E-COSY splitting pattern allows the unambiguous extraction of 3JHH homonuclear 
coupling along the ω2 dimension and the extraction of the 1JCH heteronuclear coupling along the ω1 
dimension. 
 

The presence of typical NOEs associated with an A-form helix (104; 105; 141; 142) led us 

to impose 41 non-experimental dihedral angle restraints defining the backbone angles 

α, ß, ς and ε, as shown in Fig 2.5.6 (b), within a range of ±60o for the lower stem 

residues 16 to 21 and 41 to 46. Figure 2.5.6 (e) schematically illustrates typical NOEs 

(exchangeable and non-exchangeable) observable in a stretch of RNA adopting an A-

form helix. 

 
Figure 2.5.7 (e) NOEs indicative of A-form helix formation in RNA 
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2.5.8 Planarity and hydrogen bonding 

 

Although X-PLOR NIH provides improper angles to maintain planarity of groups of 

atoms, the specification of these energy terms is sometimes cumbersome, especially 

when many atoms are involved. The restraints planarity statement allows one to 

define an effective energy term that penalizes out-of-plane conformations of the 

selected atoms. The planarity restraints energy term is defined as 

 

Eplan = !plan

g"groups

# gi
2

i"g

#  

 
Where the first sum is carried out over all defined groups of planar atoms, the second 
sum is carried out for all atoms i within each group, and gi is the orthogonal distance of i 
from the least-squares plane defined by all atoms of the group. 
Hydrogen bonds are of fundamental importance in the formation of RNA structures. 

A version of the 2D 15N imino-NOESY for observing the exchangeable protons was 

used to elucidate the presence of hydrogen bonds between Watson Crick base pairs in 

the TAR RNA. The base pairs were constrained in two ways: 1) NOE style distance 

restraints between each of the two (for A: U base pairs) or three (for the G: C base 

pairs) donor-acceptor pairs. 2) A term defining planar pseudo energy terms defined 

for each base pair. 

The failure to observe an imino resonance indicative of hydrogen-bonding scheme 

between A22 and U40, even at 4oC suggested that the A22-U40 hydrogen-bond 

pattern was sheared. However, several NOEs between U40 to C39/C41, and A22 to 

G21/G26, which are indicative of residues U40 and A22 remaining stacked between 

C39/C41 and G21/G26 respectively, lead us to treat the planarity and hydrogen bond 

restraints between these two restraints with more caution. Hence, while the planarity 

and hydrogen bond restraints between these two residues were present during the 

initial high temperature dynamics step of the molecular dynamics protocol to ensure 

that A22 and U40 remained stacked, these restraints were removed for subsequent 

stages of the rMD protocol, thus allowing both the residues to sample conformational 

space in the absence of planarity and hydrogen bond restraints between the two 

residues but only in the presence of NOE distance restraints indicative of U40 and 

A22 remaining stacked between C39/C41 and G21/G26 respectively. 
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2.5.9 Structure calculations 

 

Structures were calculated using restrained Molecular Dynamics (rMD) and energy 

minimization in XPLOR-NIH [143; 144] to obtain the final ensemble of structures of the 

TAR RNA/AMG complex. 

XPLOR-NIH [143; 144] relies on two files for its knowledge of the molecular structure 

and energies defined during the restrained Molecular Dynamics run. The topology file 

defines atom types, bonds, angles and improper terms, while the parameter file 

contains details regarding force constants for bonds, angles, impropers, dihedrals and 

non-bonded parameters. It is essential to use the topology and parameter files in 

tandem because the parameter file uses the information present in the topology file to 

calculate the molecular structure file (extension .psf).  

For the TAR RNA, the latest DNA/RNA Amber [145] parameter and topology files 

were downloaded from the Moore Lab Homepage (http://proton.chem.yale.edu/). 

Since the amino glycoside was a novel structure, not previously studied, the topology 

and parameter files for AMG were assembled by putting together information from 

the individual monomer units of N-Acetyl-β-d-Glucosaminidase (NAG) and other 

similar amino sugars and a butadiene monomer unit, available with the distributions 

of XPLOR-NIH and CNS (Crystallography and NMR System) [146]. 

A starting template and psf file of AMG was created using the customized parameter 

and topology files. 

For the HIV-2 TAR RNA, the RNA coordinates of HIV-2 TAR-Argininamide 

structure (1AKX.pdb) were used as a starting structure. These two PDB’s served as 

starting templates for subsequent structure calculations using the restrained Molecular 

Dynamics protocol outlined in the following sections. 

In its simplest form, the rMD protocol incorporates distance restraint terms of the 

form   k (d-do)2 where d is the distance between the atoms in the current conformation 

and do is the desired distance dynamics approach derived from NMR spectrum. k is a 

force constant, the value of which determines how tightly the restraint should be 

applied. The information derived from the 2D HCCH E.COSY experiment on the 

sugar puckers and the data on other torsion angle restraints can also be incorporated 

into the molecular dynamics energy function in addition to the distance restraints as 

derived from the NOE data. The force constants for the NOE and the Dihedral energy 

terms were set to 50-kcal/mol Å and 300-kcal/mol o respectively. Another way to 
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understand the significance of these force constants is that structures in which the 

distance between particular atoms or dihedral angles (between planes) exceed the 

target NOE derived distance or E.COSY derived dihedral angle restraints, then a 

penalty that is directly proportional to the force constant attributed to these restraints 

is imposed which contributes to the total energy of the structure. This can be 

mathematically written as  

 

V (d) = kl (d-dl)2 d < d1 

      V (d) = 0               dl ≤ d ≤ du  

     V (d) = ku (d-du)2 du < d 

 

Where dl and du are the lower and upper distances that are consistent with the 

experimental data. Thus a distance between dl and du incurs no penalty. Outside this 

region, the restraint force and the penalty is dictated by the form of the potential 

function viz. square, harmonic, soft etc. A similar treatment is conferred upon 

dihedral angles and dipolar coupling restraints (discussed in detail later). 

During the simulation, the system develops in a potential field under the influence of 

various forces, in which all information about the complex is summarized. Two 

classes of energy terms are distinguished: Eempirical and Eexperimental.  

 

                                  V = Eempirical + Eexperimental  

                                  Eexperimental = ENOE + Etorsion + Esani  

                                  Eempirical = Ebond + Eangle + Edihedral + Evdw + Eelectr  

 

Eempirical contains all information about the primary structure of the RNA and AMG 

and also data about topology and bonds in nucleic acids and AMG in general. The 

contributions of covalent bonds, bond-angles and dihedral angles towards Eempirical are 

approximated by a harmonic function. In contrast, non-covalent van-der-Waals forces 

and electrostatic interactions are simulated by an inharmonic Lennard-Jones potential 

and Coulomb potential, respectively. Eexperimental takes the experimentally determined 

constraints into account. Angle constraints are introduced by a harmonic function 

analogous to that for the dihedral angles. For distance constraints, the energy potential 

will be set to zero, if the corresponding distance is within the given limits. If it is 
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outside these limits, a harmonic energy potential is used, which tries to push the value 

of the distance into the limits. 

The restrained Molecular Dynamics protocol consisted of four stages. 

The first stage consisted of a preliminary High Temperature Molecular Dynamics run 

at 1000K to generate 150 starting templates of the TAR RNA/AMG complex. The use 

of different seeds for each structure generation leads to different structures. The 

starting structure (1AKX.pdb, already folded RNA with appropriate base pairing in 

place) is allowed to undergo high temperature dynamics at 1000K. Restraints to 

preserve the A-form helix structure in the lower stem were imposed to maintain 

helical structure during the high temperature randomization step. The force constants 

are allowed to increase very slowly (in step factors of 5 till maximum value of the 

force constants is reached; this can be followed in the XPLOR protocol in the 

Appendix) thus ensuring that maximum conformational space is sampled during the 

high temperature dynamics. The goal of a NMR structure calculation is to ensure that 

the structures generated are defined by the experimental restraints imposed. The total 

energy and violation energy of NOEs thus provide a tool that can be used to sort 

structures, which are refining against the restraints to define the structure. The slow 

increase of the force constants along with the dynamics at high temperature results in 

structures very different from each other. An r.m.s.d. to the mean of 3.4 Å angstroms 

(excluding the hexanucleotide loop of the TAR RNA) for an ensemble of chosen 

structures confirms that the initial high temperature dynamics succeeds in sampling a 

wide area of conformational space. After the high temperature phase, those structures 

with total energy less than 600 kcal/mol and NOE violation energy less than 100 

kcal/mol were chosen. Only structures meeting the appropriate cut offs in energy 

values were allowed to pass on to the subsequent stage. 

The next stage of the protocol is the Simulated Annealing (SA) wherein structures 

with reasonable energies generated in the High Temperature phase are subjected to 3 

rounds of 3ps dynamics at 1000K, 600K and 400K with 700 Powell minimization 

steps between the dynamics [147]. All force constants were ramped to their full value 

and structures were sorted against their total energies and violation energies. The 

hydrogen-bonding restraints deserve special attention at this stage. The presence of 

several NOEs between U40 to C39/C41, and A22 to G21/G26 are indicative of 

residues U40 and A22 remaining stacked between C39/C41 and G21/G26 

respectively. However, the failure to observe an imino resonance even at 4oC implies 



                                                                                                                       Methods 

 47 

that the hydrogen-bonding scheme between A22 –U40 is disrupted. Consequently, 

hydrogen-bonding restraints between A22 and U40 were employed only during the 

high temperature phase of the rMD and were removed for subsequent stages of the 

protocol. Structures were chosen based on total energy less than 400 kcal/mol and 

NOE violation energy less than 50 kcal/mol after the simulated annealing. 

In the refinement protocol that follows the simulated annealing, chosen structures 

were subjected to 2ps dynamics at 500, 300, 150, 50 and 10K with 1000 steps of 

Powell minimization between the dynamics. The dihedrals and planarity terms were 

switched off to allow for sampling all conformational space. At the end of the 

refinement, structures with NOE violation energy lower than 25 kcal/mol were chosen 

for subsequent refinement with the fiRDCs. Structures at this stage had 0 to 4 NOE 

violations greater than 0.2Å and no angular violations greater than 5º. The best 

fourteen structures at this stage converged to 1.6Å r.m.s.d. 

The final stage of calculations consisted of refinement with the incorporation of 

fiRDCs. While only repulsive Van der Waals non-bonded energy terms were 

employed in the earlier stages of the protocol to speed up the calculations, at this 

stage of refinement, the attractive Lennard Jones potential [143; 144] is switched on. The 

field induced dipolar couplings were included as restraints for refinement using the 

“Susceptibility Anisotropy (sani)” algorithm with a square potential well in Xplor-

NIH [148; 149]. One of the prerequisites to compute the potential arising from “sani” is 

the presence of external orienting axis which enables the calculation of Θ and Φ 

which are the angles measured between the dipolar vector and the alignment 

coordinate system, which is represented by four pseudo atoms OO, X, Y and Z in 

Xplor-NIH. OO represents the origin of the coordinate system while X, Y and Z 

represent the Cartesian axis system. The projection of the dipolar vector on the OO-Z 

axis results in cosΘ  while the projection onto OO-X and OO-Y result in sinΘcosΦ  

and sinΘsinΦ , respectively. The implementation of Susceptibility Anisotropy [148; 149] 

can be better understood in the following way. The dipolar coupling D arising due to 

the partial orientation of macromolecules (in our case the TAR RNA / AMG 

complex) is a function of the relative orientation of the dipolar vectors with respect to 

the alignment coordinate frame (Θ and Φ), the magnitude of the alignment tensor (Aa, 

Ar or Da, R), the gyro magnetic ratios of the interacting nuclei (γp and γq), the 
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distance between the nuclei (rpq) and the generalized order parameter of the dipolar 

vector (S). 

Dpq = -Sγpγp [Aa (3cos2Θ  - 1)  + (3/2)*Ar (sin2Θcos2Φ)]/ r3
pq 

 

The above equation reduces to  

Dpq =  Dpq
axial (3cos2Θ  - 1) + (3/2)*R (sin2Θcos2Φ) 

Where Θ  is the angle between the internuclear vector and the z-axis of the tensor, and 

Φ  is the angle between the angle between the projection of the internuclear vector on 

the x-y plane of the tensor and the x-axis. 

In Xplor-NIH, the function that is minimized is the difference between the calculated 

and measured dipolar couplings. 

Esani = k (D measured – D calculated)2 

Where k is the force constant assigned to the “sani” term during the calculation.  

To obtain an accurate estimate for Da and R, the measured dipolar couplings are 

plotted as a histogram [148], the extremes of which correspond to the alignment tensor 

components Axx, Ayy, and Azz where |Azz| ≥ |Ayy| ≥ |Axx|. Also, the alignment tensor is 

traceless leading to Axx + Ayy + Azz = 0. Da and R can be computed using the 

following equations: 

Azz = 2A 

Ayy = -Da (1+3/2R) 

Axx = -Da (1- 3/2R) 

The accuracy of the estimate in the histogram method increases with the increase in 

the number and types of measured dipolar coupling data. In our case, we rely 

exclusively on 37 13C-1H field induced dipolar coupling data, which makes the 

accurate estimation of the magnitude of Dzz and R difficult via the histogram method. 

Hence, a grid search [149] was performed where we evaluated the “sani” energy term 

as a function of the alignment tensor. A systematic grid search was performed where 

we sampled the values of Dzz between 5 and 10 in 1 Hz steps and values of R between 

0.1 and 0.66 in increments of 0.05. The sani energy term (Esani) associated with each 

grid value was analyzed and the optimized grid value was chosen such that sani 

energy term was minimized. The optimized grid value, in conjunction with the 

experimentally determined error limits (square well potential) was used in the final 

refinement of the TAR RNA / AMG complex.  
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Correlation coefficients of the experimentally derived fiRDCs versus the calculated 

fiRDCs and the Q factors [150] of the final structures were calculated using DipoCoup 

[151]. Final structures were viewed and analyzed using MOLMOL [152]. 

Scripts written in Awk, Python and Perl languages aided in data conversion, analysis 

and preparation of input and output scripts. 

The general scheme of the calculation and the Xplor scripts used to arrive at the final 

structures are presented in APPENDIX B. Further, scripts used for the analysis of 

violations, energies and tensors can be found in APPENDIX C. 
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3 Results 
 

3.1 Resonance assignment 

The 3D HCCH-COSY-TOCSY experiment was used to get a complete spin 

assignment of the ribose spin system of the TAR RNA (C1’-H1’, C2’-H2’, C3’-H3’, 

C4’-H4’ and C5’-H5’/H5’’ correlations). Fig 3.1 (a) and (b) trace the ribose spin 

connectivity of the U42 and A35 residues of the TAR RNA in the direct dimension 

(D1 in Felix) respectively. Though the resonances of the C2’/H2’ and C3’/H3’ are 

overlapped as shown in the figures, the HCCH-COSY-TOCSY experiment allows 

unambiguous assignment of the ribose spin system. Sequential resonance assignment 

employing a 3D 13C-HSQC NOESY and a base resolved/selective 3D 13C-HSQC 

NOESY helped correlate the peaks arising from the H1’ or H2’ and the H6/H8 (i+1) 

of the TAR RNA nucleotides. The DQF-COSY, TOCSY and NOESY experiments 

were employed to obtain the resonance assignment of the ligand AMG. Tables 3.1(a, 

b) summarize the resonance assignment of the TAR RNA and AMG (Fig 3.1(e)) as 

obtained from the experiments previously described. 
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Fig 3.1 (a) 2D skewer of the 3D HCCH-COSY-TOCSY experiment in the direct dimension at 4.59ppm 
(H2’ resonance of the U42) showing the assignment of U42 ribose system.  
 
 

 
 
Fig 3.1 (b) 2D skewer of the 3D HCCH-COSY-TOCSY experiment in the direct dimension at 4.89ppm 
(H2’ resonance of the A35) showing the assignment of A35 ribose system.  
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Table 3.1 (a) Resonance assignment of the ribose moieties of the HIV-2 TAR RNA 

 

 
Table 3.1 (b) Resonance assignment of the base moieties of the HIV-2 TAR RNA 
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Fig 3.1 (c) The C1’-H1’ region of the 13C-HSQC  

 

 
Fig 3.1 (d) The C6-H6 and C8-H8 region of the 13C-HSQC 
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The amino glycoside analogue was defined with 2 constituent monomer units; the 

sugar moiety ALR and the linker unit called BU1. The assignment of the protons for 

the respective units is as follows: 

 

 

ALR Chemical Shift 

H1 4.936 ppm 

H21 2.080 ppm 

H22 2.110 ppm 

H3 3.910 ppm 

H4 3.404 ppm 

H5 3.940 ppm 

H61, H62, H63 1.285 ppm 

BU1  

H11, H41 3.480 ppm 

H12, H42 3.711 ppm 

H21, H22 

H31, H32 

1.630 ppm 

Fig 3.1 (e) Resonance assignment of the protons in the linker (BU1) and ribose (ALR) moeity of the 
novel aminoglycoside ligand AMG.   
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3.2 Chemical shift mapping 

 

Chemical shift changes are immediate evidence that binding has occurred. This 

change is a result from a change in the environment of the nucleotides.  A change in 

line width  (or more directly the relaxation rate 1/T1 or 1/T2) may result from a change 

in the motional characteristics of the RNA [5; 6].  

The chemical shift mapping identifies A22, U23 and the loop nucleotides G32, G34 

and A35 as the sites being most affected by the binding of the amino glycoside analog 

AMG. Large chemical shifts changes are observed upon titration of AMG for the 

C2/H2 and C1’/H1’ resonances of A35. In particular, the line width of the A35–C2 

decreases from 80 to 48 Hz at 900 MHz, which suggests that in free TAR RNA, this 

nucleotide assumes different conformations interchanging on a µs to ms time scale, 

while in the complex the base occupies a well-defined position.  Notable is the 

chemical shift change experienced by the base of G34, which varies the most upon 

formation of the complex without showing any direct contact to the ligand. This is 

indicative of a profound change in the electronic environment of G34 and, possibly, 

of the overall conformation of the loop, triggered by the interaction of A35 with 

AMG. The chemical shift change of G34-C8/H8 is accompanied by a considerable 

decrease in the transverse relaxation time T2 of G34-C8, indicating that G34, which is 

disordered in the free TAR and in the TAR/argininamide complex [31; 46; 51; 153], 

undergoes a slow (µs –ms time scale) conformational transition between two states in 

complex with AMG [154]. 

Considerable chemical shifts changes are observed also for the ribose of U31, G32 

and G33. In the bulge, the largest chemical shift changes are observed for A22 and 

U23. A medium-sized chemical shift change of G43 C1’-H1’ resonance suggests 

additional binding effects in the minor groove of the TAR RNA lower stem. 

As shown in Fig 2.5.3, significant chemical shift changes were observed up to a 10-

fold excess of the ligand AMG over the TAR RNA, indicating that the equilibrium 

dissociation constant Kd is in the micro molar range [155].  Further addition of AMG 

doesn’t lead to further changes in the peaks thus leading us to conclude that a stable 

complex of the HIV-2 TAR RNA with AMG is formed under sample conditions of 10 

fold excess of AMG with TAR RNA. 

In summary, the most significant chemical shifts changes upon binding of the TAR 

RNA to AMG are observed either for the base or for the ribose 13C and 1H resonances 
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of A22, U23, G26, G32, G34 and A35 (rendered in red). Less prominent chemical 

shift changes are observed for G21, U25, G28, C29, U31, G33, G36 and G43 

(rendered in light blue) in Fig 3.2. 

 

 

 
Fig 3.2 Chemical shift mapping of TAR-binding sites. 
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3.3 Sugar pucker and dihedral angles 

 

Depending on the J coupling constants between H1’ and H2’ derived from a 2D-

HCCH-E.COSY spectrum, residues of the HIV-2 TAR RNA were classified as being 

in either C3’-endo or C2’-endo conformation. Table 3.3 summarizes the sugar pucker 

restraints for the residues of the TAR RNA. 

 

Residue Sugar Pucker Residue Sugar Pucker 

16 C3’-endo 32 Unrestrained 

17 C3’-endo 33 C2’-endo 

18 C3’-endo 34 Unrestrained 

19 C3’-endo 35 Unrestrained 

20 C3’-endo 36 C3’-endo 

21 C3’-endo 37 C3’-endo 

22 C3’-endo 38 C3’-endo 

23 C2’-endo 39 C3’-endo 

25 Unrestrained 40 C3’-endo 

26 C3’-endo 41 C3’-endo 

27 Unrestrained 42 C3’-endo 

28 C3’-endo 43 C3’-endo 

29 Unrestrained 44 C3’-endo 

30 Unrestrained 45 C3’-endo 

31 Unrestrained 46 C3’-endo 
Table 3.3 Sugar pucker restraints imposed on the residues of the TAR RNA 

 

41 non-experimental dihedral angle restraints defining the backbone angles α, ß, ς 

and ε within a range of ±60o for the lower stem residues 16 to 21 and 41 to 46 were 

imposed based on typical NOEs associated with an A-form helix. 
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3.4 Identifying the binding sites of AMG to TAR RNA  

 

The intermolecular NOESY spectrum reveals intimate contacts of AMG with the 

residues A22, U23, U25 of the bulge and A35 of the loop of the HIV-2 TAR RNA. 

Table 2.5.6 summarized the intermolecular NOE contacts revealed by the NOESY 

spectra. This result is in agreement with the chemical shift mapping, which identifies 

A22, U23, U25 and the loop nucleotides G32, G34 and A35 as the residues being 

most affected by the binding of AMG to the TAR RNA. The atypical C8/H8 chemical 

shifts of A35 in the free TAR RNA implies that the adenosine base is partially 

projected out of the loop, thus occupying an optimal position for interacting with a 

ligand bound to the bulge on the side of the upper stem major groove. In the bulge, 

the largest chemical shift changes are observed for A22 and U23. U23 stacks on A22 

in the free TAR RNA, while in this complex it is involved in several contacts with 

AMG. The A22–U40 base pair, which is stably formed at low temperature in the free 

HIV-2 TAR RNA, is disrupted in the complex, as confirmed by the failure to observe 

the U40 imino resonance even at 4oC. However, several NOEs indicate that both A22 

and U40 remain positioned between G21/G26 and C39/C41, respectively.  

A35 is the only loop residue that directly contacts the ligand, suggesting that the 

interaction of AMG with the loop must be part of a more complex network of 

interactions holding the complex together. Cooperative binding of AMG to both the 

loop and the bulge of the TAR RNA is supported by the chemical shift data, which 

indicate a Kd of comparable magnitude for both the bulge and the loop sites. 

Moreover, while AMG inhibits the binding of Tat-derived peptides to the TAR RNA, 

linear analogues or smaller cyclic analogues of AMG do not show any biological 

activity [91], underlining the importance of a cyclic constrained structure of 

appropriate size for the cooperative binding to the bulge and loop regions of the RNA. 

Therefore, it is safe to conclude that one molecule of AMG binds simultaneously to 

the loop and the bulge of the RNA. 

A medium-sized chemical shift change of G43–C1’ upon titration of AMG, together 

with NOEs between the aminoglycoside analogue and both G43-H1’ and G44-H4’, 

reveal an additional binding site of AMG in the minor groove of the RNA lower stem. 

This finding is not surprising, as structural studies of the TAR/neomycin B complex 

[156] had identified the lower stem minor groove as a binding site for positively 

charged aminoglycosides. 
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3.5 Field induced residual dipolar couplings 

 

Under a given high magnetic field (B), the TAR RNA assumes a sufficient level of 

molecular alignment to allow measurement of fiRDCs (D) as contributions to 

normally observed scalar couplings (J+D). The magnitudes of observed fiRDCs 

depend quadratically on the magnetic field strength (B2), and on the principal values 

of the magnetic susceptibility tensor (χii i = {x, y, z}). The magnetic susceptibility 

tensor for the TAR RNA is dominated by the diamagnetic susceptibilities of aromatic 

base groups (χii
 (base)). Corresponding χ-tensors tend to be close to axially symmetric 

(χyy ~ χxx) with principal values (χii) that increase approximately linearly with the total 

number of bases due to constructive addition of base susceptibilities arising due to the 

fact that stacking interactions favor coplanar arrangement of base planes in nucleic 

acids. 

Comparing experimental χii values determined for an unknown system (in our case the 

TAR RNA of the TAR/AMG complex) with the corresponding values expected for a 

monomer TAR RNA can provide new insights into the stoichiometry of the RNA 

component of the TAR RNA/AMG complex. The principal value of χii for the TAR 

RNA/AMG system is derived from the values of the fiRDCs. The following points 

need to be borne in mind when elucidating the χii in nucleic acids in general. 

 

a) Base interaction vectors are perpendicular to their own principal anisotropy 

(χzz
(base)) and therefore the vector is preferentially positioned within the χyy – 

χxx plane of the principal axis system.  

b) In nucleic acids, the axially symmetric tensors are very close in value i.e. (χyy 

~ χxx) thus, many RDC values measured for interaction vectors in the χyy – χxx 

plane will provide a good estimate for the value of Dyy.  

 

We also assume that the presence of the AMG in ten-fold excess concentration as the 

TAR RNA, does not contribute to the alignment of the TAR RNA in the magnetic 

field.  
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Fig 3.5. (a) Sensitivity of fiRDC to RNA stoichiometry “m”. Base pairs are shown as dotted lines 
between colored rectangles in multimers [134].  

 

 

An awk script written in-house* (Appendix C), allowed us to determine the theoretical 

values arising from a given model and compare this with the experimental value 

determined for the system. 

The experimental values of the field induced residual dipolar couplings and the 

associated experimental error for each coupling are summarized in Table 3.4. The 

same values are graphically depicted with error bars in Fig 3.5 (b). These fiRDCs 

were employed in the final round of refinement during structure calculations of the 

TAR RNA/AMG complex. 

A few dipolar couplings of the base C–H atom pairs measured at 800 MHz assume 

values between 5 and 7 Hz. These figures exceed by far those expected for the TAR 

RNA aligned in the magnetic field due to the magnetic susceptibility anisotropy of the 

bases [135]. The largest dipolar coupling tensor is expected for coaxial stacking of the 

upper and lower stems and would correspond to a Dzz of 8 Hz and a rhombicity R 

between 0 and 0.1 in an 800 MHz field. For such a tensor, the largest base C–H 

dipolar coupling should not exceed 4 Hz. The high values found for the TAR 

RNA/AMG complex suggest that the TAR RNA dimerizes in the presence of the 

ligand AMG. This conclusion is also in agreement with the T1 relaxation 

measurements. 

 
*Script written by Dr. Laurent Verdier, now at Laboratoire de Pharmacognosie, UMR 6013, Moulin de la Housse, Cedex, France 
*Script modified by Dr. Victor M. Sanchez Pedregal now at Universidad de Santiago de Compostella, Facultad de Quimica 
Organica, Campus Universitario Sur, Spain 
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Table 3.5 Field Induced Residual Dipolar Couplings and associated Errors for the TAR RNA/AMG 
system. 

 

 
Fig 3.5. (b) Bar graph with errors showing the distribution of field induced Residual Dipolar Couplings 

in various residues of the TAR RNA in the TAR/AMG complex  
 
 
 
 
 
 
 

Residue D (C1’-H1’) D (C2-H2) D (C5-H5) D (C6-H6) D (C8-H8) 
G17     -4,99 ± 0,10 

C18 2,33 ± 0,46   -0,37 ± 0,80  

C19   -5,37 ± 0,93   

A20  3,81 ± 1,62   -1,04 ± 0,99 

G21     -0,94 ± 0,90 

A22 2,28 ± 0,91 -0,92 ± 0,53   -2,37 ± 0,20 

G26 0,96 ± 0,54    -2,68 ± 0,08 

A27  0.13 ± 0.47   -1,70 ± 0,42 

G28     6,78 ± 1,00 

C29 -0,03 ± 0,50  1,03 ± 0,15 0,18 ± 0,30  

G36 0,76 ± 0,80     

C37 -0,06 ± 0,90   -3,33 ± 1,44  

U38 0,29 ± 0,20  -2,30 ± 0,37 -1,73 ± 0,64  

C39 0,83 ± 0,19  -5,07 ± 0,78 -0,80 ± 0,61  

U40   1,91 ± 0,19   

C41 0,63 ± 2,13     

U42 5,01 ± 0,48     

G43 0,33 ± 0,09    -2,28 ± 0,95 

G44 -0,91 ± 0,40    1,99 ± 0,18 

C45   -1,25 ± 0,09  -5,76 ± 0,04 
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3.6 NOE distance restraints 
 
A total of 127 internucleotide and 320 intranucleotide distance restraints were 

extracted from a 3D 13C-HSQC NOESY (mixing time 100 ms) and a base 

resolved/selective 3D 13C-HSQC NOESY (mixing time 100 ms).  

As described in the Materials and Methods section (Fig 2.5.5 (b)), an iterative 

assignment process for the intermolecular NOEs was adopted. The r.m.s.d of the 

upper stem-binding site, formed by AMG and the TAR RNA residues A22, U23, U25 

and A35, and the r.m.s.d of the whole complex, excluding the loop residues C30 to 

A35, were evaluated for 20 energetically most favorable structures in all the cases 

discussed. These results are summarized in Table 3.6. 
Run R.M.S.D (Å) 

 Core All* 

1 3.17  2.01  

2 3.63  2.31  

3 3.04  2.00  

4 3.66  2.44  

5 2.99  1.91  

6 3.55  2.45  

7 2.54  1.85  

Table 3.6 r.m.s.d values of different intermolecular NOE schemes considered in Fig 2.5.5 (b) 

 

The upper stem binding site of the complex converged best for the seventh set of 

intermolecular NOEs. The average r.m.s.d value for the remaining calculations was ≈ 

3 angstroms for the upper stem binding core and ≈ 2.25 Å for the whole complex 

excluding the loop, while in the favored seventh set, the average r.m.s.d value ≈ 2.5 Å 

for the upper stem binding core and ≈ 1.85 Å for the whole complex excluding the 

loop. An iterative assignment process further released some of the ambiguities in the 

seventh intermolecular NOEs data set during structure calculation to improve the 

convergence profile (≈ 2.15 Å for the upper stem binding core and ≈ 1.75 Å for the 

whole complex excluding the loop). A total of 55 intermolecular distance restraints 

were obtained from a 13C-edited/12C-filtered HSQC-NOESY spectrum acquired in 

D2O with a mixing time of 200ms. 
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3.7 Structure calculations 

 

The restraints used to arrive at the final structures are summarized in Table 3.7. 

The XPLOR protocols (Appendix) were used to arrive at the ensemble of final 

structures of the TAR RNA/AMG complex. The fourteen best structures 

(energetically favorable), after the refinement with fiRDCs are superimposed in 

Figure 3.7 (a). The effect of the fiRDCs on the structures can be better appreciated by 

comparing the structures before and after the refinement (Figure 3.7 (b)).  

 

Restraint statistics 

Distance restraints     Number of restraints 
 
Internucleotide      127 
Intranucleotide      320 
Intermolecular        55 
         
Total number of NOE restraints    502 
 
Hydrogen bonds       72 
         
Total distance restraints     574 
 
Dihedral restraints 
 
Sugar puckers 
C3’-endo       40 
C2’-endo         4 
 
Non-experimental A-form  
 
α                                                    10 
β                                                    11 
ς                                                    10 
ε                                         10 
 
Total dihedral restraints     85 
 
Field induced RDCs      37 
 
Total number of restraints used              696 
 

Table 3.7 Restraints used for structure determination of the TAR/AMG complex 
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Figure 3.7 (a) The best-fit superposition to the average structure of the 14 best structures of all the 
residues except the hexanucleotide loop. The AMG is in red and the TAR RNA is colored black. 
Notice that the upper stem is not coaxially stacked atop the lower stem as it does in the 
TAR/argininamide structure. 
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3.8 The upper stem binding site 

 

The structure calculation employing NOEs and dihedral angle restraints, conducted on 

a monomeric unit containing one TAR and one ligand molecule binding to the upper 

stem, resulted in a well-defined structure in both stems but in a poor definition of the 

relative orientation of the two stems [root mean square deviation (r.m.s.d.) for the 

lower stem, 0.5; r.m.s.d. for the upper stem, 0.8]. The structure refinement with the 

C–H fiRDCs positioned the two stems at a relative angle of 60o. The 14 lowest-energy 

structures of the monomeric unit are shown in Figure 3.7 (a). The RNA is well 

defined with a total heavy atom r.m.s.d. (excluding the loop residues) of 0.92. The A-

form helix structure of the lower (nucleotide 16–21, 41–46) and upper (nucleotide 26–

29, 36–39) stems is conserved. The upper stem helix is, however, slightly distorted, 

with the α and γ angles varying from the typical A-form gauche - and gauche + 

conformations to the trans conformation for residues A27–C29 and C39. AMG binds 

to the bulge and the loop residues on the major groove side of the upper stem. Owing 

to the 4-fold symmetry of its resonances and the fast kinetics of complex dissociation, 

the structure of AMG in the complex cannot be determined. However, the salient 

features of the interaction between the aminoglycoside analogue and the TAR RNA 

are well defined and the r.m.s.d. of the whole complex excluding the loop residues 

30–34 is 1.2 Å. The backbone of the 22–25 stretch opens up to allow AMG to reach 

the major groove of the RNA upper stem. The last base pair of the lower stem is 

disrupted: U40 stacks below C39; A22 stacks below G26 but tilts away from U40 to 

widen the major groove of the upper stem and make place for the ligand. Thus, in the 

TAR/AMG complex, A22 and U40 belong to the upper stem, while in free TAR they 

stack on the top of the lower stem G21–C41 base pair. The planarity of the G26–C39 

base pair is slightly distorted, as indicated by the weakening of the G26 imino 

resonance upon complex formation. The π-orbital of the U23 and U25 bases entertain 

hydrophobic interaction with linker-4 and sugar-3/linker-2 of AMG, respectively. 

Such hydrophobic contacts resemble a well-known interaction motif in complexes of 

proteins with oligosaccharides, where the sugars often stack below aromatic side 

chains [157]. 

The conformation induced by AMG at the bulge site of the TAR RNA, as well as the 

relative orientation of the two stems, differ from those found in the Tat/TAR complex. 



  Results 

 67 

Binding of AMG does not induce either the formation of the U23–A27–U38 base 

triple or the subsequent coaxial stacking of the upper and lower stems, as it is the case 

for the binding of the Tat mimetic argininamide [62; 82; 158; 159]. Instead, the bulge 

nucleotides are all exposed to the solvent in the TAR RNA/AMG complex and the 

axes of the two stems form an angle of 60o
. The relative position of the two domains is 

probably a consequence of the disruption of the A22–U40 base pair, of the tilting of 

A22 to accommodate the large ligand and of the electrostatic interactions of the ligand 

amino group with the phosphate of A22. A35 stacks on the top of the sugar-1 moiety 

of the ligand and is involved in a π-cation interaction with the positively charged 

amino group. This contact pulls A35 out of the loop, causing G34 to move on the top 

of G36 in all structures. 

In 60% of the structures G34 stacks on the top of G36, while in the other 40% the two 

bases interact face-to-edge. The presence of an equilibrium between two 

conformations is compatible with the large line width of the G34–C8 resonance, 

suggesting that the exchange between the face-to-face and face-to-edge orientations 

of G34 and G36 occurs on an µs–ms time scale [154; 160]. 

The positively charged amino groups of the four sugars of AMG interact with various 

functional groups of the RNA. The amino group of sugar-1 is involved, as already 

mentioned, in a π-cation interaction with A35 and in long-range electrostatic 

interactions with the O2 of U25. The amino group of sugar-3 is directed towards the 

major groove carbonyls of the A27–U38 and G28–C39 base pairs in all structures but 

two, while the amino group of sugar-5 is close to the phosphate backbone of A22 

and/or to the O4 of U23. Finally, no consistent contact is found for the amino group 

of sugar-7. These results are in agreement with the failure to detect H-bonding of the 

amino groups of AMG to the phosphate backbone of the RNA by the JNP scalar 

coupling measurement, as most of the amino groups of the ligand contact base 

functional groups rather than backbone phosphates of the RNA.  
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3.9 Definition of the second binding site and of the dimer geometry 

 

Similar to neomycin [156], the AMG binds also to the minor groove of the lower stem 

of the TAR RNA. The chemical shift change of G43–C1’ is maximum at a 1:1 ratio of 

TAR RNA: AMG, as opposed to the chemical shift changes in the bulge and loop 

region, which increase up to a 1:10 ratio. Thus, the binding constant of AMG to the 

minor groove of the TAR RNA is higher than that to the bulge and loop regions. This 

finding is confirmed by the analysis of the PACE data (discussed later).  Field 

induced Residual Dipolar Couplings and relaxation data suggest that TAR RNA 

dimerizes during the complex formation. 

The presence of only one set of resonances in the complex and the absence of NOEs 

between two TAR RNA moieties further suggests that the dimer is symmetric and that 

the TAR RNA dimerizes via the presence of one or more AMG molecules between 

the two dimerizing TAR RNAs. 

 
 

Figure 3.9 (i) Schematic representations of the association of TAR RNA with the aminoglycoside 
analogue AMG and of dimer formation. 

 
 

The fiRDC data suggests association of two TAR/AMG units with two stems of the 

two RNA molecules in a roughly parallel orientation and the other two stems 

diverging from each other. Further, the data is compatible with a dimer structure 

where lower stems are parallel to each other and upper stems diverge at an angle of 

about 60o. This geometry is compatible with the tensor derived from the systematic 

grid search which revealed a minimum at Dzz = 7 Hz and R = 0.55. The alignment 

tensor of the given model can be back calculated using the awk script provided in 
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APPENDIX C. These constraints on the dimer can be satisfied in four different 

scenarios each of them depicted in Figure 3.9 (i). In the first case (a), three molecules 

of AMG bind to the loop, the bulge and lower stem of the TAR RNA and the RNA 

dimerizes with the two upper stems parallel to each other. Case (b) considers two 

molecules of AMG binding to the loop and the bulge of the TAR RNA and the RNA 

dimerizes with the two lower stems roughly parallel to each other with one molecule 

of AMG intervening between the two dimerizing RNAs thus giving rise to complex 

formation with 2 TAR RNAs and 5 molecules of AMG. In case (c), one molecule of 

AMG binds to the upper stem major groove simultaneously contacting both the bulge 

and the loop of the TAR RNA, while a second molecule of AMG binds to the lower 

stem minor groove and the RNA dimerizes with the two upper stems parallel to each 

other. The final case (d) considers the binding of one molecule of AMG to the upper 

stem major groove simultaneously contacting the bulge and the loop of each of the 

TAR RNAs, while the second molecule of AMG contacts the lower stem minor 

groove of the TAR RNA. The RNA dimerizes with the two lower stems oriented 

roughly parallel to each other with one molecule of AMG between the parallel lower 

stem minor grooves of the RNAs (2 TAR RNAs: 3 AMG). Structure calculations of 

all the four cases investigated, resulted in very high energy structures due to the 

distortion of AMG in the dimer complex in case (a) and (c). Only case (b) and (d) 

were found to be consistent with the observed intermolecular NOEs and did not result 

in distortion of AMG and high-energy structures. However, case (b), which includes 5 

molecules of AMG binding to two molecules of TAR RNA can be excluded based on 

the following reasons: 

(i) Residue A35 is the only nucleotide of the hexanucleotide loop showing 

intermolecular NOEs to AMG indicating that the binding of AMG to this residue 

must be a part of a more complex network of interactions 

(ii) Chemical shift data indicate that AMG binds to the bulge and the loop of the RNA 

with the same Kd, suggesting cooperative binding to both the upper stem binding site 

and the lower stem binding site. 

(iii) Smaller cyclic analogues or linear analogues of AMG do not show any detectable 

binding to the TAR RNA [91], emphasizing on the relevance of cooperative binding to 

multiple sites. 

(iv) Entropic contribution strongly disfavors case (b) with respect to case (d). 

Thus, case (b) was excluded from further consideration and case (d) was identified as 
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the preferred model for dimer formation through the aminoglycoside bound to the 

lower stem minor groove as the only one consistent with the NOE data. 

To arrive at an ensemble of dimers that is compatible with our interpretation of the 

residual dipolar coupling data, relaxation and biochemical results i.e. a dimer model 

where the TAR RNA undergoes dimerization through one molecule of AMG bridging 

the lower stems of two molecules of TAR RNA, the following approach was adopted. 

The monomer entity (TAR/AMG complex) was predisposed by rigid body dynamics 

(see protocol in APPENDIX for details) in an orientation that was compatible with all 

the experimental data (case d as described above). Then, a third molecule of AMG 

was docked to the minor groove of the two TAR/AMG molecules, guided by NOE 

restraints of AMG to G43-H1’ and G44-H4’. The docking was performed by MD 

simulations in explicit water solvent [161]. A brief description of the MD simulation is 

summarized below: Simulations were performed with X-PLOR [143; 144] by using the 

same force fields for the RNA and AMG as described above with an electrostatic 

cutoff of 12 Å. The complex is surrounded by a layer of TIP3 water molecules [162], 

and the solvent is briefly equilibrated. Before the dynamics began, the system was 

equilibrated by 500 steps of Powell minimization of only the protons of the complex 

while the heavy atoms are kept fixed, another 100 steps of minimization to equilibrate 

the water molecules while the complex is kept fixed, 500 steps of minimization while 

the complex is harmonically restrained and finally 500 steps of free minimization of 

the TAR/AMG in water. This ensured that the TAR RNA/AMG complex was well 

equilibrated in the water layer (solvent) generated by TIP3 protocol. The MD protocol 

consisted of an initial heating stage (200 steps at 100K, 200K, 300K, 500K and 600K 

with a time step of 0.002 ps) followed by refinement at 600K (2000 steps, 0.003 ps). 

Finally, the system was cooled from 600K to 25K with the temperature decreasing in 

steps of 25K (200 steps, 0.003 ps at each step). The MD protocol ended with 200 

steps of Powell minimization.  
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Figure 3.9 (ii) Ensemble of 10 structures of the dimer of HIV-2 TAR RNA (black) in conjunction with 
3 molecules of AMG (red). The heavy atoms of residues 16 to 29, 36 to 46 and AMG have been 
superimposed. The bulge and loop residues of the TAR are shown in grey. 
 

The ensemble of models shown in Figure 3.9 (ii) are compatible with all experimental 

data, including NOEs, relaxation rates, fiRDCs and PACE gel electrophoresis. In this 

model, the aminoglycoside analogue AMG binds almost symmetrically to the minor 

groove of the lower stems of the two TAR RNA units. One amino group enjoys 

electrostatic interactions with the negative spot created by the phosphate groups of 

G21, A22 and U23, while another amino group closely contacts the 2’-hydroxyl of 

C45. Two sugars and the intervening linker of AMG penetrate the minor groove of 

each RNA molecule at the G43–C45 site. 
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3.10 RNase digestion and PACE gel analysis 

 

In agreement with the identification of A22, U23, U25 in the bulge and G32, G34 and 

A35 as the sites being most affected by the binding of AMG to TAR RNA by 

Chemical Shift mapping, digestion with RNase T1 and with RNase A suggests that 

loop residues G32 to G34 and residue C30 respectively, are protected by the binding 

of AMG to TAR RNA. The RNase foot printing analysis can be followed on Figure 

3.10(a). These protection assays of the TAR RNA / AMG complex were carried out 

with 10 µM 5’-32P-labeled HIV-2 TAR RNA at 277 K. The digestion experiments 

were analyzed by gel electrophoresis.  

As is evident from the digestion experiments, the ligand AMG protects residues G32, 

G34 and C30 from digestion by the RNase. This is in agreement with the chemical 

shift mapping, which identifies G32, G34 and A35 as the sites being most affected by 

the binding of AMG to the TAR RNA. 

 

 
Figure 3.10 (a) RNase footprinting shows digestion with (A) RNase A (selective for CYT and URI 
residues). Lane 1, control without RNase, Lane 2, AMG (10 mM); Lane 3, AMG (5 mM); Lane 4, 
AMG (500 µM); Lane 5, AMG (1.2 µM); Lane 6, AMG (0.12 µM). (B) Digestion with RNase T1 
(selective for GUA residues). Lane 1, control without RNase; Lane2, AMG (10 mM); Lane 3, AMG (5 
mM); Lane 4, AMG (500 µM); Lane 5, AMG (1.2 µM); Lane 6, AMG (0.12 µM). 
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The PACE gel analysis allowed us to test different binding models of the TAR RNA 

and AMG. We considered a total of 6 different models as described in the Methods 

(Section 2.4). The retardation distance of the TAR RNA binding to AMG at various 

concentrations (0, 2, 5, 7, 10, 20, 70, 100, 200 and 500 µM) can be elucidated from 

the autoradiogram as shown in Figure 3.10(b).  

Lane A                  B               C                 D               E                 F               G       

 
Figure 3.10 (b) Autoradiogram of 5’-32P labeled HIV-2 TAR RNA binding to different concentrations 
of AMG. Lane A depicts unbound RNA while lanes B, C, D, E, F and G show TAR RNA in the 
presence of 500, 200, 100, 70, 20 and 10µM AMG respectively. The bars enable us to elucidate the 
retardation distance in each lane, data that is subsequently used for the calculation of binding 
stoichiometry. 
 
The experimentally determined fraction of the RNA bound (φ) are summarized in 
Table 3.10. 
 

Concentration [AMG] φ  
500 µM 1.00 
200 µM 0.96 
100 µM 0.73 
70 µM 0.63 
20 µM 0.36 
10 µM 0.20 
7 µM 0.18 
2 µM 0.08 
0 µM 0.00 

Table 3.10  Experimental values of φ as measured from PACE gel. 
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The six theoretical binding models can be analyzed as follows: 
 
For the sake of convenience, the following conventions were adopted. 
The AMG concentration was designated as [A], the TAR RNA concentration is [T]. 
[C1] and [C2] are the concentrations of the complexes formed, Kd1 and Kd2 are the 
constants. 
 
Case (i) 
 
One molecule of the TAR RNA binds to one molecule of AMG. 
 

T + A 
Kd

 C1 
 

Where Kd = [T][A]/[C1] 
Rearranging, we have [C1] = [T][A]/ Kd …(a) 

 
The fraction of bound RNA  

φ = Concentration of complex/Total concentration of RNA= [C1]/{[T]+ [C1]} 
Substituting for [C1] from (a) we obtain 
  

φ  = [A]/{Kd + [A]} …Equation 1 
 
 
Case (ii) 
 
One molecule of the TAR RNA binds to two molecules of AMG 
 

T + 2A 
Kd

 C1 
Where Kd = [T][A]2/[C1] 

Rearranging, we have [C1] = [T][A]2/Kd …(b) 
 
The fraction of bound RNA  

φ = Concentration of complex/Total concentration of RNA= [C1]/{[T]+ [C1]} 
Substituting for [C1] from (b) we obtain 
  

φ  = [A]2/{Kd +[A]2} …Equation 2 
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Case (iii) 
 
Two molecules of the TAR RNA binds to one molecule of AMG 

2T + A 
Kd

C1 
Where Kd = [T]2[A]/[C1] 

Rearranging, we have [C1] = [T]2[A]/Kd …(c1) 
 
The total concentration of RNA (C) is given by [C] = 2[C1] + [T] …(c2)  

Keeping in mind that each [C1] contributes 2 TAR moieties.  

Combining (c1) and (c2), we obtain a quadratic equation as follows: 

{2[T]2[A]/Kd } + [T] – [C] = 0 

which can be solved for [T]. One of the two solutions can be discarded, as 

concentration cannot be negative, thus leading to 

[T] = (- Kd + sqrt (K2
d + 8[C][A]Kd))/4[A] …(c3) 

 
The equation for the fraction of bound RNA (φ) can be arrived at using the above 

equations and the final equation after simplification yields: 

 
φ  = (4[C][A] + Kd - sqrt (K2

d + 8[C][A]Kd))/ (4[C][A] - Kd + sqrt (K2
d + 8[C][A]Kd))  

…Equation 3 
 
 
Case (iv) 
 
One molecule of the TAR RNA binds to two molecules of AMG with different Kd 
 

T + A 
Kd1

C1 
 

C1 + A 
Kd2

C2 
 

Where Kd1=[A][T]/[C1] 

Rearranging, we have [C1] = [T][A]/ Kd1 …(d1) 

Where Kd2=[A] [C1]/[C2] 

Substituting for [C1] from (d1) and rearranging, we have 

 [C2] = [T][A]2/ Kd1Kd2 …(d2) 

 
Further, it has to be borne in mind that the total distance migrated of the bound form 

of the RNA is a combination of the distance migrated by C1 and C2. Though the 

individual distances migrated by the two complexes cannot be determined accurately, 
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it is safe to say that bound distance of C1 is less than the bound distance C2 and a 

factor Z (value between 0 and 1) can be introduced that is defined as Z =
DC1 ! DF

DC2 ! DF

 

where DC1 and DC2 are the distance traveled by the complexes C1 and C2 respectively 

and DF is the distance traveled by the free TAR RNA. The value of Z is defined 

within the boundary condition of 0 and 1 during the curve fitting/ optimization 

procedure. 

The fraction of bound RNA φ is given by 

 
φ = {[A]2 + [A]Z Kd2}/{Kd1Kd2 + Kd2[A] + [A]2} …Equation 4 

 
Case (v) 
 
One molecule of the TAR RNA binds one molecule of AMG to give complex C1 with 

constant Kd1. Subsequently C1 dimerizes to give C2 with constant Kd2. 

 

T + A 
Kd1

C1 
 

2C1  
Kd2

 C2 
 

Where Kd1=[A][T]/[C1] 
Rearranging, we have [C1] = [T][A]/ Kd1 …(e1) 

Where Kd2= [C1]2/[C2] 
Substituting for [C1] from (e1) and rearranging, we have [C2] = [T]2[A]2/ K2

d1Kd2 
…(e2) 

 
The total concentration of RNA (C) is given by [C] = [T]+[C1]+2[C2] keeping in mind 

that each [C2] contributes 2 TAR RNA moieties. 

Also, like in case (iv), we define a constant Z, that takes into account the differential 

migration rates of C1 and C2. 

The equation for the fraction of bound RNA (φ) can be arrived at using the above 

results and the final equation after simplification yields: 

 
φ = ((Kd2*(Kd1+[A])^2+4*C*[A]^2-(Kd1+[A])*sqrt (Kd2^2*(Kd1+[A])^2+8*C* 

Kd2*[A]^2))+Z*(2*[A]*sqrt (Kd2^2*(Kd1+[A])^2+8*C* Kd2*[A]^2)-(Kd1+[A])*2* 
Kd2*[A]))/(([A]+ Kd1)*sqrt (Kd2^2*(Kd1+[A])^2+8*C* Kd2*[A]^2)- Kd2*([A]+ 

Kd1)^2+4*C*[A]^2) …Equation 5 
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Case (vi) 
 
Two molecules of the TAR RNA bind one molecule of AMG to give complex C1 with 

constant Kd1. Subsequently C1 recruits two molecules of AMG to give C2 with a 

constant Kd2. C2 is a complex of 2 TAR RNA molecules and three AMG. 

2T + A 
Kd1

C1 
 

C1 + 2A 
Kd2

 C2 
 

Where Kd1=[A][T]2/[C1] 

Rearranging, we have [C1] = [T]2[A]/ Kd1 …(f1) 

Where Kd2= [C1][A]2/[C2] 

Substituting for [C1] from (f1) and rearranging, we have [C2] = [T]2[A]3/ Kd1Kd2 

…(f2) 

The total concentration of RNA (C) is given by [C] = [T]+2[C1]+2[C2] keeping in 

mind that [C1] and [C2] contribute 2 TAR RNA moieties each. As in case (iv) and (v), 

we define a constant Z, which takes into account the differential migration rates of C1 

and C2. The equation for the fraction of bound RNA (φ) can be arrived at using the 

above results and the final equation after simplification yields: 

 
φ = ((4*C*[A]^3*([A]^2+ Kd2)- [A]^2*sqrt (Kd1^2* Kd2^2+8*C*[A]* Kd1* 

Kd2*([A]^2+ Kd2))+ Kd1* Kd2*[A]^2)+Z*(4*C* Kd2*[A]*([A]^2+ Kd2)- Kd2*sqrt 
(Kd1^2* Kd2^2+8*C*[A]* Kd1* Kd2*([A]^2+ Kd2))+ Kd1* Kd2^2))/(4*C*[A]*([A]^2+ 

Kd2)^2- Kd1* Kd2*([A]^2+ Kd2)+(Kd2+[A]^2)*sqrt (Kd1^2* Kd2^2+8*C*[A]* Kd1* 
Kd2*([A]^2+ Kd2)))…Equation 6 

 
 
The experimental data can be fitted to each of the equations derived above (Equation 

1, 2, 3, 4, 5 and 6) to assess the quality of fit of the assumed model with respect to the 

experimental data. 

To test how each of the equations derived for a particular model fits with the 

experimentally derived data as summarized in Table 3.10 (a), φ was defined as a 

function of the concentration of the ligand AMG in accordance with the equations 

discussed above. These were then fit with a linear least square fitting procedure in 

MATLAB and the results are discussed in Figure 3.10(c). Scripts used to simulate and 

plot the functions are available in APPENDIX C. 
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Figure 3.10 (c) Binding stoichiometry. The function (D-DF)/(DB-DF) is plotted versus the concentration 
of the aminoglycoside analogue AMG in each lane of the PACE gel. D is the retardation distance in 
each lane, DF is the retardation distance of the TAR RNA without AMG and DB is the retardation 
distance of the TAR RNA completely bound to AMG (concentration of AMG = 500 µM). The function 
(D-DF)/(DB-DF) can be expressed in terms of molar fractions of bound and free RNA, according to the 
procedure described by Cilley and Williamson [100]. Different binding models were assumed and the 
theoretical dependence of (D-DF)/(DB-DF) on the concentration of AMG was calculated in each case 
from the molar fractions assuming constant concentration of AMG in each lane. The experimental data 
were fitted to the theoretical functions using MATLAB to derive the binding stoichiometry for the 
TAR/AMG complex. Six different models were considered: (i) one molecule of the TAR RNA binds 
one molecule of AMG (cyan line); (ii) one molecule of the TAR RNA binds two molecules of AMG 
with the same Kd (green line); (iii) two molecules of the RNA bind one molecule of AMG (magenta); 
(iv) one molecule of the TAR RNA binds two molecules of AMG with different Kd (blue line very 
close to cyan line); (v) one molecule of the TAR RNA binds one molecule of AMG (TAR + AMG  
Kd1 C1); subsequently the TAR/AMG complex dimerizes (2C1  Kd2 C2) (close to the cyan line, 
not shown); (vi) two molecules of the RNA bind one molecule of AMG (2 TAR+AMG  Kd1 C1); 
subsequently two molecules of AMG are recruited by the RNA dimer for a total of two RNA 
molecules and three molecules of AMG (C1+2AMG   Kd2 C2.(red line; Kd1 = 20µM2 ; Kd2 = 3mM2 
)The best fit is obtained for case (vi), which supports the stoichiometry inferred from the NMR data 
(r.m.s.d 0.084). 
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3.11 Structure statistics 

 

Energy profile over best 14 structures (monomer) 

Average total energy (kcal/mol)     -323.26 ± 12.12 

Average distance violation energy (kcal/mol)   16.80 ± 1.74 

Average sani violation energy (kcal/mol)    33.71 ± 3.09 

r.m.s.d profile over best 14 structures (monomer) 

Experimental restraints 

All distance / NOE restraints (Å)     0.024 ± 0.0012 

RDC / Susceptibility Anisotropy restraints (Hz)   1.29 ± 0.094 

Non-experimental/idealized restraints (monomer) 

Bonds (Å)       0.001 ± 0.0007 

Angles (o)       0.54 ± 0.02 

Impropers (o)       0.46 ± 0.02 

Superposition statistics over best 14 structures (monomer) 

All residues (TAR +AMG)**     1.16 

Lower stem of TAR (residues 16-21, 41-46)    0.40 

Upper stem pf TAR (residues 26-29, 36-39)    0.86 

Energy profile over best 10 structures (dimer) 

Average total energy (kcal/mol)     -2401.83 ± 32.23 

Average distance violation energy (kcal/mol)   23.62 ± 2.54 

Average sani violation energy (kcal/mol)    17.41 ± 3.05 

Experimental restraints 

All distance / NOE restraints (Å)     0.020 ± 0.0011 

RDC / Susceptibility Anisotropy restraints (Hz)   1.20 ± 0.071 

*For each value, the mean is given with the standard deviation. 

**Excluding loop (residues 30-35) 

 

 

Table 3.11 
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4 Discussions 
 

4.1 Binding of AMG to multiple spots on the upper stem  

 

It is widely recognized that the intermolecular surface in RNA/protein complexes is 

rather large and therefore small molecules cannot efficiently compete with proteins 

for RNA binding. Despite many efforts in the search for competitive inhibitors of the 

Tat/TAR interaction, no drug lead has been identified to date. The major difficulty in 

the development of TAR-binders as potential therapeutic agents is their low 

specificity. 

Brownian dynamics simulations of cation diffusion performed on the NMR structures 

of free TAR RNA [25; 39; 163; 164] revealed three electro negative pockets in the RNA 

hairpin.                   

 
Fig 4.1 (a) Multiple cation binding pockets predicted by Brownian dynamics simulation in TAR RNA 
 

The predicted cation binding sites are located on top of the U31-GG-G34 loop 

(orange), in the U23-C-U25 bulge (magenta), and in the deep groove of the lower 

stem (cyan) as shown in Figure 4.1(a). The “hot-spot” in the lower stem is particularly 

extended, involving the backbone of nucleotides in the upper stem, which connects 

the bulge and the loop. Multifunctional drugs, such as amino glycosides (AMG) 
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carrying several cationic groups could be expected to interact simultaneously with the 

lower and upper stem regions, thereby stabilizing the TAR RNA in its free 

conformation [30; 31; 164]. An extended effort in identifying the minimal number of 

interactions necessary to stabilize the Tat-bound conformation of the TAR RNA 

resulted in the detection of two binding sites for positively charged groups at the 

bulge site and in the upper stem major groove close to A27 and G28 [37].  

 

 
Fig 4.1 (b) Multiple interaction of amino group of the sugar moieties. Sugar 1 and 3 of AMG 
simultaneously interact with G28, A35 and U38 of HIV-2 TAR RNA. 
 

Synthetic ligands exploiting both binding sites showed the highest activity and 

induced an RNA conformation similar to that binding to the Tat-protein [13; 32; 37; 38; 57; 

66; 165; 166; 167; 168; 169; 170]. The amino groups of ligand AMG contact both the bulge site 

and the major groove functional groups at the G28 site (Figure 4.1(b)). Although the 

interaction with the bulge is suboptimal and could be improved by introducing a 

guanidinium group at the C1 or C5 of sugar-5, the amino group of sugar-3 nicely 

interacts with the electron-rich spot at the G28 and U38 site as shown in Figure 

4.1(b). Additionally, the amino group of sugar-1 interacts with the loop residue A35. 

Also, the intermolecular NOEs to G36 from AMG to H8 and the partial 
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rearrangement of the hexanucleotide loop as suggested by the stacking of G34 on G36 

suggests that that this large but flexible scaffold of AMG allows reaching multiple 

binding sites on the TAR RNA, and therefore represents a valuable starting structure 

for the design of binders that explore a large surface of the TAR upper stem. 

The conformation induced by AMG at the bulge site of the TAR RNA, as well as the 

relative orientation of the two stems is markedly different from that found in the 

TAR/argininamide complex which is accompanied by the formation of the U23-A27-

U38 base triple and subsequent coaxial stacking of the upper stem on the lower stem. 

In contrast, the bulge nucleotides are solvent exposed in the TAR RNA/AMG 

complex and the upper stem is oriented at an angle of 60o with respect to the lower 

stem (Fig 4.1 (c)). The disruption of the A22-U40 base pair leads to the relative 

position of the two stems, thus allowing the tilting of A22 to accommodate the large 

ligand and of the electrostatic interactions of AMG amino groups with the phosphate 

of A22. The sugars and linkers of AMG show extensive hydrophobic contacts with 

U23 and U25 rings which are characteristic of a well-known interaction motif in 

complexes of proteins with oligosaccharides, where the sugars usually stack below 

aromatic side chains [157; 163]. 

 
Fig 4.1 (c) The TAR RNA argininamide structure on the left reveals the co-axial stacking of the upper 
stem on the lower stem. In contrast, the upper stem is tilted at an angle of approximately 60o with 
respect to the lower stem in the TAR RNA/AMG complex on the right. (Figures generated with Pymol 
[DeLano Scientific] and CURVES [171]) 
 

The hexanucleotide apical loop (residues 30 to 35) has been found to be quiet flexible 

in previous NMR studies on the TAR RNA, with the ribose of C30, G33 and G34 
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averaging between C2’ endo and the C3’ endo conformations. Further, studies on a 14 

and 19 nucleotide hairpin containing the TAR hexanucleotide loop revealed the 

stacking of A35 on G36 and of G34 on G36 [172]. On the basis of such structural 

information, it was proposed that the apical loop is stabilized by base stacking on both 

sides and possibly by the formation of base pairs between C30 and A35 or C30 and 

G34 [173]. In a more recent work, biochemical analysis of native and mutant TAR 

RNAs was used together with MD simulations to show that the apical loop of the 

TAR RNA is stabilized by a cross-loop base pair between C30 and G34, with A35 

projected out of the loop [174]. This observation does not necessarily contradict the 

NMR studies hypothesizing the stacking of A35 on G36. The large line broadening of 

the A35–C2 resonance of the free TAR RNA and the NOEs between the bases of 

G34, A35 and G36 are consistent with A35 being in equilibrium between the stacked 

and looped-out conformations. The binding of AMG to the TAR RNA however 

eliminates this equilibrium. This is supported by the disappearance of NOE contacts 

between the base of A35 to those of G34 and G36, while several NOEs appear 

between the bases of G34 and G36. This suggests the stacking of G34 over G36. 

While G34 stacks on G36; the formation of C30-G34 base pair becomes possible even 

though no evidence of such a base pair is found in the TAR RNA/AMG complex. In 

the stacked conformation, the N7 and O6 functional groups of G34 assume well-

defined positions in the major groove and the formation of the C30-G34 base pair 

becomes possible. MD simulations also suggest that G34 adopts a C3’ endo 

conformation when G34 stacks upon G36. This is in agreement with our observation 

wherein we find that in all the structures of the TAR RNA/AMG complex, the ribose 

of G34 adopts the C3’ endo conformation, in spite of the sugar pucker remaining 

unrestrained during the molecular dynamics protocol.  

 
Fig 4.1 (d) G34 is positioned on top of G36. A35 interacts with the ligand and therefore moves out of 
the loop. As a consequence, G34 moves on top of G36. The two bases interact either face to face (A) or 
face to edge (B). This is indicative of two conformations in intermediate exchange in the microsecond 
to millisecond time scale. Further, the line width of C8 resonance of G34 also confirms this. 
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Modeling studies involving artificial restraints between C30-G34 enforcing the 

formation of a base pair in the hexanucleotide loop in the TAR RNA/AMG complex 

lead to formation of structures, which satisfy such constraints and do not lead to the 

violation of other experimental restraints and high energy. In summary, our data 

reveal that binding of a cationic ligand of appropriate size, simultaneously to the 

bulge and the loop of the TAR RNA on the major groove side of the upper stem leads 

to the stabilization of the looped out conformation of A35 and subsequently to the 

stacking of G34 on top of G36 [101]. Given the very large intermolecular surface in 

RNA/protein complexes, small molecules cannot efficiently act as competitive 

inhibitors to proteins for RNA binding. Despite many efforts in this direction, the 

search for a competitive inhibitor of the TAT/TAR RNA interaction has not met with 

much success because of toxicity or low specificity. The scaffold of AMG thus 

represents a promising class of aminoglycosides for the development of new TAR 

RNA binders that maybe used to address this problem, due to the following reasons: 

1) Cyclic structure and flexibility of AMG allows functional groups to bind to 

multiple sites on the RNA. 

2) AMG interacts with A35 of the hexanucleotide loop, leading to partial 

rigidification and restructuring of the previously unstructured loop, in a manner that 

may be suggestive of that required for the binding of CyclinT1 to the TAR RNA. 
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4.2 Cyclic Scaffold of AMG 

 

The value of cyclic structures as a conformationally constrained backbone for TAR 

binders has been proven by the design of peptidomimetics based on a cyclic, beta-

hairpin-like scaffold [170], binding the TAR RNA with a much higher affinity than the 

linear analogs [91; 170]. The structure of the BIV (Bovine Immunodeficiency Virus) 

TAR RNA bound to one of these peptidomimetics revealed extensive interactions 

with the upper stem major groove, including a conserved hydrophobic contact of an 

Isoleucine residue with the bulged-out Uridine of the base triple as well as 

electrostatic contacts of Arginine side chains with the tetra loop capping the upper 

stem and with the second and third base pairs of the upper stem [170]. Intermolecular 

interactions of similar nature are found for the TAR/AMG complex. Analogous to the 

BIV TAR RNA/peptide complex, AMG uses hydrophobic contacts to bind to the 

bulge pyrimidines and electrostatic contacts to bind to the major groove face of the 

upper stem base pairs and to the loop residues. As observed for the peptides, linear 

neooligoaminodeoxysaccharides show a much lower affinity for the TAR RNA than 

their cyclic analog AMG [91]. 

 

 
Figure 4.2 Cyclically restrained analogues as a tool to target the bulge and the loop of the TAR RNA 
simultaneously. The BIV TAR RNA/peptide complex on the right and the TAR RNA/AMG complex 
on the left offer analogous examples of cyclically restrained ligands targeting the bulge and the loop of 
the TAR RNA simultaneously. The ligands are colored red. 
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4.3 Comparison of the binding of AMG to TAR RNA complex with the binding 

of CyclinT1 to the TAR loop 

 

It was believed for many years that sequences in the apical loop of TAR RNA are not 

required for Tat binding even though this region of the RNA is essential for efficient 

trans-activation [175]. Genetic studies implied that the loop acts as a binding site for 

cellular co-factors of Tat, however the identity of the loop factor remained mysterious 

and controversial for many years. The first evidence identifying the cellular co-factor 

required for loop recognition was obtained by Wei et al. [59] who reported that 

CyclinT1, a subunit of P-TEFb complex, can form a stable ternary complex with Tat 

and TAR RNA that could be detected by gel electrophoresis. Ternary complex 

formation requires both the Tat binding site on TAR as well as the loop sequence. 

Further, the formation of the Tat/TAR complex is required for the phosphorylation 

and subsequent activation of the RNA polymerase stalled at the TAR RNA site. The 

interaction site of CyclinT1 with the TAR RNA is localized in the apical loop. The 

two atoms O6 and N7 of G32 and G34 and the presence, but not the nature, of a 

nucleotide in position 35 are essential for the interaction. This was confirmed by 

monitoring the effect of base substitution on the affinity of the TAR RNA for the Tat-

CyclinT1 complex and observing the efficiency of binding in a deletion mutant for the 

residue 35 [176]. Results indicated a dramatic reduction in the binding efficiency of the 

TAR RNA with the Tat-CyclinT1 complex when the normal TAR RNA sequence 

with the hexanucleotide loop was replaced with a deletion mutant at residue 35 

(pentanucleotide loop). On substituting the guanine residues at positions 32 and 34 

with adenine, a loss in binding affinity was observed. Further, if these guanine 

residues were substituted with a cytosine, then a dramatic loss in binding efficiency 

ensued. This could be reasoned out based on the chemical structure of the nucleotides 

in question. While the guanine moiety is not only capable of functioning as a 

hydrogen bond acceptor at the O6 site of the carbonyl group, it has also a electron rich 

Nitrogen at position 7 capable of functioning as an electron donor in the purine ring. 

Compared with guanine, adenine contains only the electron rich N7 but lacks the O6 

hydrogen bond acceptor. In stark contrast, the cytosine nucleotide contains an amino 

group (hydrogen bond donor) in place of the carbonyl group (hydrogen bond 

acceptor) and also N7 is absent. Thus, the importance of the N7 and O6 at positions 
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32 and 34 can be rationalized based on the efficiency of RNA-protein complex 

formation in different mutants and the chemical structure of the nucleotides.  

The mechanism by which the Tat protein favors the interaction of CyclinT1 with the 

apical loop is not known, although it is reasonable to hypothesize that Tat structurally 

pre-organizes the RNA for the binding of CyclinT1. On the basis of the structure of 

the complex of TAR with the aminoglycoside analogue AMG, we propose an 

explanation for the dependence of the TAR/CyclinT1 interaction on the Tat/TAR 

complex formation, which fits well the biochemical data summarized above. We 

suggest that the binding of Tat to TAR pre-organizes the hexanucleotide loop in a 

favorable conformation for CyclinT1 binding. It is conceivable that the arginine-rich 

stretch of the Tat protein, which is responsible for TAR binding at the bulge site, also 

contacts the A35 residue of the hexanucleotide loop and blocks it in its looped-out 

conformation, in a similar way as our aminoglycoside. The major driving force for 

this contact could be the interaction of an aromatic π orbital with a cation, similarly to 

that observed for the TAR RNA/AMG complex. A generic π-cation interaction 

provides a rationale for the insensitivity of the TAR/CyclinT1 interaction to the nature 

of the nucleotide at position 35. A small negative effect on complex formation is 

observed exclusively for the A35G mutant, where a possible cross-loop C30–G35 

base pair would destabilize the looped-out conformation of the nucleotide in position 

35. Supporting our hypothesis, affinity-cleaving experiments show that F38 of Tat is 

located in the proximity of nucleotide 34 and 35 of the TAR RNA [177]. Furthermore, 

the residue K50 of the Tat-protein has been found to cross-link with the TAR 

nucleotide 34, and this interaction is considerably enhanced by the binding of 

CyclinT1 to the Tat/TAR complex [176]. In the TAR RNA/AMG complex, the looped-

out conformation of A35 is accompanied by the relocation of G34 upon G36. 

Analogously, in the Tat/TAR complex stacking of G34 upon G36 would place the O6 

and N7 atoms of G34, which are essential for the binding of CyclinT1, in a well-

defined position in the major groove of the TAR RNA. The formation of a base pair 

between C30 and G34 would further stabilize the position of the G34 functional 

groups. In fact, such base pair has been shown to favor the interaction of the TAR 

RNA with CyclinT1 without being directly involved in the complex formation [176]. 

Based on the irrelevance of the nucleotide nature at position 35, it has been 

hypothesized that this nucleotide functions as a spacer with no direct contact to the 
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proteins. Contrarily, we suggest that A35 could be the basis of a regulation 

mechanism for the formation of the Tat/TAR/CyclinT1 complex based on the 

conformational stability of the hexanucleotide loop. 

 

4.4 The lower stem binding site and dimerization 

 

 
Figure 4.4 Two views of the dimer interface between the TAR RNA. Above is the top view of the 
dimer. The residues 43 and 44 are marked in green and blue respectively. The picture below offers a 
side view of the ligand in red at the dimer-forming interface. 
 

As described in section 4.1, the TAR RNA has multiple “hot spots” capable of acting 

as attractive targets of cationic moieties. Previous studies involving neomycin B are 

proof of the minor groove of the lower stem of the TAR RNA forming a negatively 

charged cleft that forms an attractive binding site for aminoglycosides. Thus, it isn’t 

surprising that the aminoglycoside analogue AMG also displays similar behavior, 

binding to the minor groove of the TAR RNA, sandwiched between the parallel, 

lower stems of two adjacent TAR RNA molecules. Furthermore the TAR/AMG 

complex dimerizes. A model invoking oligomerization of the TAR RNA/AMG 

complex through the molecule of AMG bound to the lower stem minor groove is 

compatible with all experimental data. This process is likely to be favored by the 
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appropriate size of the constrained cyclic structure of AMG that allows it to 

simultaneously contact both the TAR RNAs. 
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4.5 Significance for drug design 

 

In principle, targeting the interaction between the Tat protein and TAR RNA should 

be a sufficient condition to induce an inhibition of the transcription mechanism and 

lead to a decrease of full-length viral transcripts essential for the activity and 

pathogenicity of the Human Immunodeficiency virus. However, considering that 

biological systems are not static, and that proteins and nucleic acids present a certain 

degree of plasticity due to the pre existence of conformational populations, the 

traditional single drug-single target approach maybe (should be) replaced by single 

drug-multiple target approach [178]. However, it is essential to counterbalance this 

affinity of the drug towards multiple targets with specific recognition and a high 

degree of affinity towards these specific targets. The novel cyclic aminoglycoside, 

AMG, introduced as an attractive scaffold that can serve as the basis for the design of 

promising future leads to target the Tat-TAR interaction, is an example of how a 

single drug-multiple target moiety may function. 

It maybe possible to exploit the “promiscuous” behavior of an AMG based drug to 

target different sites, each of vital essence for the binding of different proteins 

required for biological activity, in this instance, simultaneously inhibit the interaction 

of the Tat protein with the bulge of the TAR RNA and the interaction of CyclinT1 

with the hexanucleotide loop of the TAR RNA.  
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5. Conclusion and Perspectives 

 
This thesis makes a contribution towards the understanding of the mechanism 

underlying the interaction of the Tat protein with the TAR RNA and how 

aminoglycosides based on a cyclic scaffold can afford a tool to explore RNA 

recognition by cationic entities. State of the art NMR methodology complimented 

with biochemical techniques was employed to arrive at the structure of the RNA in 

complex with the aminoglycoside analogue. 

The structure reveals two ligand-binding sites. The first spans from the bulge to the 

loop of the TAR RNA on the major groove side of the upper stem. In particular, 

AMG interacts with the residue A35 of the RNA capping loop, thereby inducing 

partial structuring, while simultaneously binding to the bulge residues resulting in 

obstruction and inhibition of the Tat protein/TAR RNA and Tat/TAR RNA/CycT1 

complex formation. The minor groove in the lower stem of the TAR RNA forms the 

second site capable of binding AMG. 

The structural rearrangement of the loop may resemble and be part of a necessary 

conformational change of the TAR RNA induced by the Tat protein for the binding of 

CyclinT1. Biological processes are usually concerted in nature and interfering with 

one process may necessarily cause an affect in subsequent interactions necessary for 

biological activity. The interaction of this novel aminoglycoside is an example of how 

an organic moiety can interfere with a necessary interaction (i.e. that of Tat protein 

and TAR RNA), provide insights into how further activities that precede the Tat/TAR 

interaction are regulated and how this mechanism can be exploited to design better 

scaffolds based on the structure of this organic moiety (AMG) for a new generation of 

TAR binders that can simultaneously inhibit both the Tat/TAR RNA and the 

Tat/TAR/CycT1 complex formation. 

Aminoglycosides have since long, formed an integral part of the armory at the 

disposal of chemists, to not only better explore the realm of RNA recognition by 

cations, but also an extremely valuable source of drugs used to target a wide variety 

of diseases prevailing in the world. However, lack of specificity and the quick 

development of resistance against such aminoglycosides by pathogenic organisms 

fuel the urgent need to design and synthesize new and novel scaffolds of antibiotics 

that would be more effective in curbing diseases. The author believes that the work 
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carried out in this thesis paves the way for the design of a promising generation of 

lead compounds that exhibit specific affinity towards the TAR RNA, while 

simultaneously contacting two sites which are of paramount importance for the 

binding of Tat protein and the CyclinT1 complex. These compounds would be novel 

in the fact that they would facilitate interference with the TAR-Tat and TAR-Tat-

CyclinT1 interaction in a cooperative way. 

 It is also the author’s hope, that the conclusions reached in this work will be a fruitful 

source of further experiments that may eventually lead to a deeper understanding of 

HIV pathogenicity and the underlying mechanism.  
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APPENDIX A 
 

!***************************Intra RNA NOE Restraints************* 
assign (resid 16 and name H1')(resid 16 and name H2') 2.25 0.75 0.75 
assign (resid 16 and name H1')(resid 16 and name H3') 2.75 1.25 1.25 
assign (resid 16 and name H1')(resid 16 and name H4') 2.75 1.25 1.25 
assign (resid 16 and name H2')(resid 16 and name H3') 2.25 0.75 0.75 
assign (resid 16 and name H2')(resid 16 and name H4') 3.25 1.75 1.75 
assign (resid 16 and name H3')(resid 16 and name H4') 2.25 0.75 0.75 
assign (resid 16 and name H4')((resid 16 and name H5') 
                                           or   (resid 16 and name H5'')) 3.25 1.75 1.75 
assign   ((resid 16 and name H5')  
  or    (resid 16 and name H5''))(resid 16 and name H1') 3.25 1.75 1.75 
assign   ((resid 16 and name H5') 
 or   (resid 16 and name H5''))(resid 16 and name H2') 3.25 1.75 1.75 
assign   ((resid 16 and name H5') 
 or   (resid 16 and name H5''))(resid 16 and name H3') 3.25 1.75 1.75 
assign   ((resid 16 and name H5') 
 or  (resid 16 and name H5''))(resid 16 and name H8)   3.25 1.75 1.75 
assign (resid 16 and name H8)(resid 16 and name H1') 3.25 1.75 1.75  
assign (resid 16 and name H8)(resid 16 and name H2') 2.75 1.25 1.25   
assign (resid 16 and name H8)(resid 16 and name H3') 3.25 1.75 1.75 
assign (resid 16 and name H8)(resid 16 and name H4') 3.25 1.75 1.75 
assign (resid 16 and name H2')(resid 17 and name H1') 3.25 1.75 1.75 
assign (resid 17 and name H8)(resid 16 and name H1') 3.25 1.75 1.75  
assign (resid 17 and name H8)(resid 16 and name H2') 2.25 0.75 0.75  
assign (resid 17 and name H8)(resid 16 and name H3') 3.25 1.75 1.75 
assign (resid 17 and name H8)(resid 16 and name H8) 3.25 1.75 1.75 
assign (resid 17 and name H1')(resid 17 and name H8) 2.75 1.25 1.25  
assign (resid 17 and name H1')(resid 17 and name H2') 2.25 0.75 0.75 
assign (resid 17 and name H1')(resid 17 and name H3') 2.75 1.25 1.25 
assign (resid 17 and name H1')(resid 17 and name H4') 2.75 1.25 1.25 
assign (resid 17 and name H2')(resid 17 and name H3') 2.25 0.75 0.75 
assign (resid 17 and name H2')(resid 17 and name H4') 2.75 1.25 1.25 
assign (resid 17 and name H3')(resid 17 and name H4') 2.25 0.75 0.75 
assign   ((resid 17 and name H5') 
 or   (resid 17 and name H5''))(resid 17 and name H1') 3.25 1.75 1.75 
assign   ((resid 17 and name H5') 
 or   (resid 17 and name H5''))(resid 17 and name H3') 3.25 1.75 1.75 
assign   ((resid 17 and name H5') 
 or   (resid 17 and name H5''))(resid 17 and name H4') 2.75 1.25 1.25 
assign (resid 17 and name H8)(resid 17 and name H3') 2.75 1.25 1.25   
assign (resid 17 and name H8 )(resid 17 and name H2') 3.25 1.75 1.75 
assign (resid 17 and name H8)(resid 17 and name H4') 3.25 1.75 1.75 
assign (resid 17 and name H8)((resid 17 and name H5') 
                                         or    (resid 17 and name H5'')) 3.25 1.75 1.75 
assign (resid 18 and name H1')(resid 17 and name H2') 2.75 1.25 1.25 
assign (resid 18 and name H5)(resid 17 and name H2') 3.25 1.75 1.75 
assign (resid 18 and name H5)(resid 17 and name H3') 3.25 1.75 1.75 
assign (resid 18 and name H6)(resid 17 and name H1') 3.25 1.75 1.75 
assign (resid 18 and name H6)(resid 17 and name H3') 3.25 1.75 1.75 
assign (resid 18 and name H6)(resid 17 and name H2') 2.75 1.25 1.25 
assign (resid 18 and name H3')(resid 18 and name H6) 2.25 0.75 0.75  
assign (resid 18 and name H4')(resid 18 and name H6) 3.25 1.75 1.75 
assign   ((resid 18 and name H5'') 
 or   (resid 18 and name H5'))  (resid 18 and name H6) 3.25 1.75 1.75 
assign (resid 18 and name H5)(resid 18 and name H3') 3.25 1.75 1.75 
assign (resid 18 and name H6)(resid 18 and name H1') 2.75 1.25 1.25 
assign (resid 18 and name H6)(resid 18 and name H2') 3.25 1.75 1.75 
assign (resid 18 and name H2')(resid 18 and name H1') 2.25 0.75 0.75 
assign (resid 18 and name H3')(resid 18 and name H1') 2.75 1.25 1.25 
assign (resid 18 and name H4')(resid 18 and name H1') 2.75 1.25 1.25 
assign (resid 18 and name H4')(resid 18 and name H3') 2.25 0.75 0.75 
assign   ((resid 18 and name H5') 
 or   (resid 18 and name H5''))(resid 18 and name H1') 3.25 1.75 1.75 
assign   ((resid 18 and name H5') 
 or   (resid 18 and name H5''))(resid 18 and name H3') 2.75 1.25 1.25 
assign   ((resid 18 and name H5') 
 or   (resid 18 and name H5''))(resid 18 and name H4') 2.25 0.75 0.75 

 
assign (resid 19 and name H6)(resid 18 and name H2') 2.25 0.75 0.75 
assign (resid 19 and name H6)(resid 18 and name H3') 2.75 1.25 1.25 
assign (resid 19 and name H1')(resid 19 and name H6) 2.75 1.25 1.25 
assign (resid 19 and name H1')(resid 19 and name H2') 2.25 0.75 0.75 
assign (resid 19 and name H6)((resid 19 and name H5') 
                                         or    (resid 19 and name H5'')) 3.25 1.75 1.75  
assign (resid 19 and name H6)(resid 19 and name H3') 2.75 1.25 1.25  
assign (resid 19 and name H3')(resid 19 and name H1') 2.75 1.25 1.25  
assign (resid 19 and name H3')(resid 19 and name H2') 2.25 0.75 0.75  
assign (resid 19 and name H4')(resid 19 and name H2') 2.75 1.25 1.25  
assign (resid 20 and name H8)(resid 19 and name H1') 3.25 1.75 1.75 
assign (resid 20 and name H8)(resid 19 and name H2') 2.25 0.75 0.75 
assign (resid 20 and name H8)(resid 19 and name H6) 3.25 1.75 1.75 
assign (resid 20 and name H8)(resid 19 and name H3') 3.25 1.25 1.25  
assign (resid 20 and name H3')(resid 19 and name H2') 3.25 1.75 1.75  
assign (resid 20 and name H2')(resid 20 and name H8) 3.25 1.75 1.75 
assign   ((resid 20 and name H5'') 
 or   (resid 20 and name H5'))  (resid 20 and name H8) 3.25 1.75 1.75 
assign (resid 20 and name H8)(resid 20 and name H1') 2.75 1.25 1.25  
assign (resid 20 and name H8)(resid 20 and name H3') 2.75 1.25 1.25 
assign (resid 20 and name H8)(resid 20 and name H4') 3.25 1.75 1.75 
assign (resid 20 and name H2')(resid 20 and name H1') 2.25 0.75 0.75 
assign (resid 20 and name H3')(resid 20 and name H1') 2.75 1.25 1.25 
assign (resid 20 and name H3')(resid 20 and name H2') 2.25 0.75 0.75 
assign (resid 20 and name H4')(resid 20 and name H1') 2.75 1.25 1.25 
assign (resid 20 and name H4')(resid 20 and name H2') 2.75 1.25 1.25 
assign (resid 20 and name H4')(resid 20 and name H3') 2.25 0.75 0.75 
assign (resid 20 and name H2)(resid 20 and name H2') 3.25 1.75 1.75 
assign   ((resid 20 and name H5'') 
 or   (resid 20 and name H5'))  (resid 20 and name H3') 2.75 1.25 1.25 
assign (resid 43 and name H1')(resid 20 and name H2) 2.75 1.25 1.25 
assign (resid 21 and name H8)(resid 20 and name H1') 3.25 1.75 1.75 
assign (resid 21 and name H8)(resid 20 and name H2') 2.25 0.75 0.75 
assign (resid 21 and name H8)(resid 20 and name H3') 2.75 1.25 1.25 
assign (resid 21 and name H8)(resid 20 and name H8) 3.25 1.75 1.75  
assign (resid 21 and name H1')(resid 20 and name H2) 2.25 0.75 0.75 
assign (resid 21 and name H1')(resid 21 and name H2') 2.25 0.75 0.75 
assign (resid 21 and name H8)(resid 21 and name H1') 2.75 1.25 1.25 
assign (resid 21 and name H8)(resid 21 and name H2') 3.25 1.75 1.75 
assign (resid 21 and name H8)(resid 21 and name H3') 2.75 1.25 1.25 
assign (resid 21 and name H8)(resid 21 and name H4') 3.25 1.75 1.75 
assign (resid 21 and name H8)((resid 21 and name H5') 
                                         or    (resid 21 and name H5'')) 3.25 1.75 1.75 
assign (resid 21 and name H3')(resid 21 and name H1') 2.75 1.25 1.25 
assign (resid 21 and name H4')(resid 21 and name H1') 2.75 1.25 1.25 
assign   ((resid 21 and name H5') 
 or   (resid 21 and name H5''))(resid 20 and name H1') 3.25 1.75 1.75 
assign (resid 21 and name H3')(resid 21 and name H2') 2.25 0.75 0.75 
assign (resid 21 and name H4')(resid 21 and name H3') 2.25 0.75 0.75 
assign (resid 22 and name H2)(resid 21 and name H1') 2.75 1.25 1.25 
assign (resid 22 and name H8)(resid 21 and name H1') 3.25 1.75 1.75 
assign (resid 22 and name H1')(resid 22 and name H2') 3.25 1.75 1.75 
assign (resid 22 and name H1')(resid 22 and name H4') 2.75 1.25 1.25 
assign (resid 22 and name H2')(resid 22 and name H8) 2.25 0.75 0.75 
assign (resid 22 and name H3')(resid 22 and name H1') 2.75 1.25 1.25 
assign (resid 22 and name H3')(resid 22 and name H2') 2.25 0.75 0.75 
assign (resid 22 and name H4')(resid 22 and name H2') 2.75 1.25 1.25 
assign (resid 22 and name H4')(resid 22 and name H3') 2.25 0.75 0.75 
assign (resid 22 and name H4')(resid 22 and name H8) 3.25 1.75 1.75 
assign   ((resid 22 and name H5') 
 or   (resid 22 and name H5''))(resid 22 and name H2') 3.25 1.75 1.75 
assign   ((resid 22 and name H5') 
 or   (resid 22 and name H5''))(resid 22 and name H3') 3.25 1.75 1.75 
assign   ((resid 22 and name H5') 
 or   (resid 22 and name H5''))(resid 22 and name H8) 3.25 1.75 1.75 
assign (resid 22 and name H8)(resid 22 and name H1') 3.25 1.75 1.75 
assign (resid 22 and name H8)(resid 22 and name H3') 2.75 1.25 1.25 
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assign (resid 23 and name H5)(resid 22 and name H3') 3.25 0.75 2.25  
assign (resid 23 and name H1')(resid 22 and name H3') 3.25 1.75 1.75  
assign (resid 23 and name H1')(resid 23 and name H6) 2.75 1.25 1.25 
assign (resid 23 and name H2')(resid 23 and name H6) 2.75 1.25 1.25 
assign (resid 23 and name H2')(resid 23 and name H1') 2.25 0.75 0.75 
assign (resid 23 and name H3')(resid 23 and name H1') 3.25 1.75 1.75 
assign (resid 23 and name H3')(resid 23 and name H2') 2.25 0.75 0.75 
assign (resid 23 and name H3')(resid 23 and name H4') 2.25 0.75 0.75 
assign (resid 23 and name H4')(resid 23 and name H1') 2.75 1.25 1.25 
assign   ((resid 23 and name H5') 
 or   (resid 23 and name H5''))(resid 23 and name H1') 3.25 1.75 1.75 
assign   ((resid 23 and name H5') 
 or   (resid 23 and name H5''))(resid 23 and name H2') 3.25 1.75 1.75 
assign   ((resid 23 and name H5') 
 or   (resid 23 and name H5''))(resid 23 and name H3') 3.25 1.75 1.75 
assign   ((resid 23 and name H5'') 
 or   (resid 23 and name H5'))  (resid 23 and name H4') 3.25 1.75 1.75      
assign   ((resid 23 and name H5'') 
 or   (resid 23 and name H5'))  (resid 23 and name H6) 2.75 1.25 1.25 
assign (resid 23 and name H5)(resid 23 and name H1') 3.25 1.75 1.75 
assign (resid 23 and name H5)(resid 23 and name H2') 3.25 1.75 1.75 
assign (resid 23 and name H5)(resid 23 and name H6) 2.25 0.75 0.75 
assign (resid 23 and name H6)(resid 23 and name H4') 3.25 1.75 1.75 
assign (resid 23 and name H6)(resid 23 and name H3') 3.25 1.75 1.75 
assign (resid 23 and name H6)((resid 22 and name H3') 
 or   (resid 20 and name H3') or(resid 26 and name H3') 
                                           or   (resid 25 and name H3')) 3.25 1.75 1.75  
assign (resid 25 and name H1')(resid 25 and name H2') 2.25 0.75 0.75 
assign (resid 25 and name H2')(resid 25 and name H6) 2.25 0.75 0.75 
assign (resid 25 and name H3')(resid 25 and name H1') 2.75 1.25 1.25 
assign (resid 25 and name H3')((resid 25 and name H5'') 
                                            or   (resid 25 and name H5'))3.25 1.75 1.75 
assign (resid 25 and name H4')((resid 25 and name H5') 
                                           or   (resid 25 and name H5'')) 2.75 1.25 1.25 
assign   ((resid 25 and name H5') 
 or   (resid 25 and name H5''))(resid 25 and name H1') 2.75 1.25 1.25 
assign   ((resid 25 and name H5'') 
 or   (resid 25 and name H5'))  (resid 25 and name H6) 3.25 1.75 1.75 
assign (resid 25 and name H5)(resid 25 and name H2') 2.75 1.25 1.75 
assign (resid 25 and name H6)(resid 25 and name H1') 2.75 1.25 1.25 
assign (resid 25 and name H6)(resid 25 and name H3') 3.25 1.75 1.75 
assign (resid 25 and name H6)((resid 25 and name H3') 
 or  (resid 23 and name H3') or(resid 27 and name H3')) 3.25 1.75 1.75  
assign (resid 25 and name H6)(resid 25 and name H4') 3.25 1.75 1.75  
assign (resid 22 and name H2)(resid 26 and name H1') 3.25 0.25 2.75 
assign (resid 22 and name H1')(resid 26 and name H1') 3.25 0.25 2.75 
assign (resid 25 and name H2')(resid 26 and name H8) 3.25 1.75 1.75 
assign (resid 25 and name H3')(resid 26 and name H8) 3.25 1.75 1.75 
assign (resid 25 and name H1')(resid 26 and name H8) 3.25 0.75 2.25 
assign (resid 26 and name H1')(resid 26 and name H8) 2.75 1.25 1.25 
assign (resid 26 and name H4')(resid 26 and name H8) 3.25 1.75 1.75 
assign (resid 26 and name H8)(resid 26 and name H2') 3.25 1.75 1.75 
assign (resid 26 and name H8)(resid 26 and name H3') 3.25 1.75 1.75 
assign (resid 26 and name H8)((resid 26 and name H5') 
                                         or    (resid 26 and name H5'')) 2.75 1.25 1.25   
assign (resid 26 and name H4')((resid 26 and name H5') 
                                           or   (resid 26 and name H5'')) 2.25 0.75 0.75 
assign (resid 26 and name H4')((resid 26 and name H5') 
                                           or   (resid 26 and name H5'')) 2.75 1.25 1.25  
assign (resid 27 and name H8)(resid 26 and name H1') 2.75 1.25 1.25  
assign (resid 27 and name H8)(resid 26 and name H2') 2.25 0.75 0.75  
assign (resid 27 and name H8)(resid 26 and name H3') 2.75 1.25 1.25  
assign (resid 27 and name H1')(resid 27 and name H2') 2.25 0.75 0.75 
assign (resid 27 and name H3')(resid 27 and name H1') 2.75 1.25 1.25 
assign (resid 27 and name H3')(resid 27 and name H8) 2.75 1.25 1.25 
assign (resid 27 and name H4')(resid 27 and name H1') 2.75 1.25 1.25 
assign (resid 27 and name H8)(resid 27 and name H1') 2.75 1.25 1.25 
assign (resid 27 and name H8)(resid 27 and name H2') 3.25 1.75 1.75 
assign (resid 27 and name H8)(resid 27 and name H3') 2.75 1.25 1.25  
assign (resid 27 and name H8)((resid 27 and name H5'') 

                                           or    (resid 27 and name H5'))3.25 1.75 1.75   
assign (resid 27 and name H3')((resid 27 and name H5'') 
                                            or   (resid 27 and name H5'))2.75 1.25 1.25  
assign (resid 28 and name H1')(resid 27 and name H2) 2.75 1.25 1.25 
assign (resid 27 and name H2)(resid 39 and name H1') 3.25 1.75 1.75 
assign (resid 28 and name H8)(resid 27 and name H1') 3.25 1.75 1.75  
assign (resid 28 and name H8)(resid 27 and name H2') 2.25 0.75 0.75  
assign (resid 28 and name H8)(resid 27 and name H3') 2.75 1.25 1.25 
assign (resid 28 and name H1')(resid 27 and name H2') 3.25 1.75 1.75  
assign   ((resid 28 and name H5') 
 or   (resid 28 and name H5''))(resid 27 and name H2')   3.25 1.75 1.75 
assign (resid 28 and name H8)(resid 28 and name H1') 2.75 1.25 1.25 
assign (resid 28 and name H8)(resid 28 and name H2') 3.25 1.75 1.75 
assign (resid 28 and name H8)(resid 28 and name H3') 2.75 1.25 1.25 
assign (resid 28 and name H8)(resid 28 and name H4') 3.25 1.75 1.75 
assign (resid 28 and name H8)((resid 28 and name H5') 
                                         or    (resid 28 and name H5'')) 3.25 1.75 1.75 
assign (resid 28 and name H3')((resid 28 and name H5') 
        or   (resid 28 and name H5'')) 2.75 1.25 1.25  
assign (resid 29 and name H1')(resid 29 and name H4') 2.75 1.25 1.25 
assign (resid 29 and name H2')(resid 29 and name H1') 2.25 0.75 0.75 
assign (resid 29 and name H3')(resid 29 and name H2') 2.25 0.75 0.75 
assign (resid 29 and name H3')(resid 29 and name H4') 2.25 0.75 0.75 
assign (resid 29 and name H5)(resid 29 and name H3') 3.25 1.75 1.75 
assign (resid 29 and name H6)(resid 29 and name H1') 2.75 1.25 1.25  
assign (resid 29 and name H6)(resid 29 and name H2') 3.25 1.75 1.75  
assign (resid 29 and name H6)(resid 29 and name H3') 2.75 1.25 1.25  
assign (resid 29 and name H6)((resid 29 and name H5') 
                                         or    (resid 29 and name H5'')) 2.75 1.25 1.75  
assign (resid 29 and name H6)(resid 29 and name H5) 2.25 0.75 0.75 
assign (resid 29 and name H5)(resid 28 and name H2') 3.25 1.75 1.75 
assign (resid 29 and name H5)(resid 28 and name H3') 3.25 1.75 1.75 
assign (resid 29 and name H5)(resid 28 and name H8 ) 3.25 1.75 1.75 
assign (resid 29 and name H6)(resid 28 and name H1') 3.25 1.75 1.75 
assign (resid 29 and name H6)(resid 28 and name H2') 2.25 0.75 0.75 
assign (resid 29 and name H6)(resid 28 and name H3') 3.25 1.75 1.75 
assign (resi 30 and name H2')(resi 30 and name H1') 2.25 0.75 0.75 
assign (resi 30 and name H2')(resi 30 and name H6) 2.75 1.25 1.25  
assign (resi 30 and name H3')(resi 30 and name H6) 3.25 1.75 1.75 
assign (resi 30 and name H6)(resi 30 and name H1') 3.25 1.75 1.75  
assign   ((resi 30 and name H5') 
  or   (resi 30 and name H5''))(resi 30 and name H3') 2.75 1.25 1.25 
assign   ((resi 30 and name H5') 
  or   (resi 30 and name H5''))(resi 30 and name H6) 3.25 1.75 2.25 
assign (resi 30 and name H1')((resi 31 and name H5') 
                                        or    (resi 31 and name H5'')) 3.25 1.75 2.75 
assign (resi 31 and name H3')(resi 31 and name H1') 3.25 1.75 1.75  
assign   ((resi 31 and name H5') 
  or   (resi 31 and name H5''))(resi 31 and name H1') 3.25 1.75 2.25 
assign (resi 31 and name H4')(resi 31 and name H1') 2.75 1.25 1.25  
assign (resi 31 and name H3')((resi 31 and name H5') 
                                        or    (resi 31 and name H5'')) 3.25 1.75 2.75 
assign (resi 31 and name H4')((resi 31 and name H5') 
                 or    (resi 31 and name H5''))  2.75 1.25 1.25    
assign   ((resi 31 and name H5') 
  or   (resi 31 and name H5''))(resi 31 and name H6) 3.25 1.75 2.75 
assign (resi 32 and name H1')(resi 32 and name H4') 2.75 1.25 1.25  
assign   ((resi 32 and name H5') 
  or   (resi 32 and name H5''))(resi 32 and name H1') 3.25 1.75 2.75 
assign (resi 32 and name H8)(resi 32 and name H1') 2.75 1.25 1.25 
assign (resi 32 and name H8)(resi 32 and name H2') 2.75 1.25 1.25 
assign (resi 32 and name H8)(resi 32 and name H3') 3.25 1.75 1.75 
assign (resi 32 and name H8)((resi 32 and name H5') 
                                      or     (resi 32 and name H5'')) 3.25 1.75 2.75 
assign (resi 32 and name H1')(resi 33 and name H8) 3.25 1.75 1.75  
assign (resi 33 and name H1')(resi 33 and name H4') 3.25 1.75 1.75 
assign (resi 33 and name H2')(resi 33 and name H1') 2.25 0.75 0.75 
assign (resi 33 and name H2')(resi 33 and name H3') 2.75 1.25 1.25 
assign (resi 33 and name H2')(resi 33 and name H4') 3.25 1.75 1.75 
assign (resi 33 and name H2')(resi 33 and name H8) 2.75 1.25 1.25  
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assign (resi 33 and name H3')(resi 33 and name H1') 3.25 1.75 1.75 
assign (resi 33 and name H3')((resi 33 and name H5'') 
                                         or    (resi 33 and name H5')) 3.25 1.75 1.75 
assign (resi 33 and name H3')(resi 33 and name H4') 2.25 0.75 0.75 
assign   ((resi 33 and name H5'') 
  or   (resi 33 and name H5'))(resi 33 and name H1') 3.25 1.75 2.75  
assign   ((resi 33 and name H5'') 
  or   (resi 33 and name H5'))(resi 33 and name H2') 3.25 1.75 2.75  
assign (resi 33 and name H8)(resi 33 and name H1') 3.25 1.75 1.75 
assign (resi 33 and name H8)(resi 33 and name H3') 3.25 1.75 1.75 
assign (resi 33 and name H5')((resi 33 and name H4') 
                                        or    (resi 33 and name H5'')) 2.75 1.25 1.25 
assign (resi 34 and name H1')(resi 34 and name H8) 3.25 1.75 1.75 
assign (resi 34 and name H1')(resi 34 and name H2') 2.25 0.75 0.75 
assign (resi 34 and name H1')(resi 34 and name H4') 2.75 1.25 1.25 
assign (resi 34 and name H2')(resi 34 and name H3') 2.75 1.25 1.25 
assign (resi 34 and name H2')(resi 34 and name H4') 2.75 1.25 1.75 
assign (resi 34 and name H2')(resi 34 and name H8) 2.75 1.25 1.25 
assign (resi 34 and name H3')(resi 34 and name H1') 2.75 1.25 1.25  
assign (resi 34 and name H4')(resi 34 and name H3') 2.25 0.75 0.75 
assign ((resi 34 and name H5'') 
    or (resi 34 and name H5'))(resi 34 and name H2') 3.25 1.75 2.25 
assign ((resi 34 and name H5'') 
    or (resi 34 and name H5'))(resi 34 and name H3') 3.25 1.75 1.75 
assign ((resi 34 and name H5') 
    or (resi 34 and name H5''))(resi 34 and name H4') 2.75 1.25 1.25 
assign (resi 34 and name H8)(resi 34 and name H3') 3.25 1.75 1.75 
assign (resi 34 and name H8)((resi 34 and name H5') 
                                      or     (resi 34 and name H5'')) 3.25 1.75 2.75 
assign (resi 34 and name H1')(resi 36 and name H1') 3.25 1.75 1.75  
assign (resi 36 and name H2')(resi 34 and name H1') 3.25 0.75 2.25 
assign ((resi 36 and name H5'') 
    or (resi 36 and name H5'))(resi 34 and name H1') 3.25 0.75 2.25  
assign (resi 36 and name H8)(resi 34 and name H1') 2.75 0.25 1.75  
assign (resi 36 and name H8)(resi 34 and name H2') 2.75 1.25 1.25  
assign (resi 34 and name H1')(resi 36 and name H4') 3.25 1.75 1.75  
assign (resi 35 and name H3')(resi 35 and name H4') 2.25 0.75 0.75 
assign (resi 35 and name H4')(resi 35 and name H2') 3.25 1.75 1.75 
assign ((resi 35 and name H5') 
    or (resi 35 and name H5''))(resi 35 and name H1') 3.25 1.75 1.75 
assign ((resi 35 and name H5') 
    or (resi 35 and name H5''))(resi 35 and name H2') 3.25 1.75 1.75 
assign ((resi 35 and name H5'') 
    or (resi 35 and name H5'))(resi 35 and name H4') 2.25 0.75 0.75  
assign ((resi 35 and name H5'') 
    or (resi 35 and name H5'))(resi 35 and name H8) 3.25 1.75 1.75 
assign (resi 35 and name H8)(resi 35 and name H1') 2.75 1.25 1.25  
assign ((resi 35 and name H5'') 
    or (resi 35 and name H5'))(resi 35 and name H3') 2.75 1.25 1.25 
assign ((resi 35 and name H5'') 
    or (resi 35 and name H5'))(resi 35 and name H2')  3.25 0.75 2.25 
assign (resi 36 and name H1')(resi 36 and name H2') 2.25 0.75 0.75 
assign (resi 36 and name H2')(resi 36 and name H8) 3.25 1.75 1.75 
assign (resi 36 and name H3')(resi 36 and name H1') 2.75 1.25 1.25  
assign ((resi 36 and name H5'') 
    or (resi 36 and name H5'))(resi 36 and name H8) 3.25 1.75 1.75 
assign (resi 36 and name H8)(resi 36 and name H1') 3.25 1.75 1.75 
assign (resid 36 and name H8)(resid 36 and name H3') 2.75 1.25 1.25 
assign (resid 36 and name H8)(resid 36 and name H4') 3.25 1.75 1.75 
assign (resid 36 and name H8)(resid 35 and name H1') 3.25 0.25 2.75  
assign (resid 37 and name H5)(resid 36 and name H8) 3.25 1.75 1.75 
assign (resid 37 and name H6)(resid 36 and name H1') 3.25 1.75 1.75 
assign (resid 37 and name H6)(resid 36 and name H2') 2.25 0.75 0.75 
assign (resid 37 and name H6)(resid 36 and name H3') 2.75 1.25 1.25  
assign (resid 37 and name H5)(resid 36 and name H2') 2.75 1.25 1.25  
assign (resid 37 and name H5)(resid 36 and name H3') 2.75 1.25 1.25  
assign (resid 37 and name H6)(resid 36 and name H8) 3.25 1.75 1.75  
assign (resid 37 and name H2')(resid 37 and name H1') 2.25 0.75 0.75 
assign (resid 37 and name H4')(resid 37 and name H6) 3.25 1.75 1.75 
assign   ((resid 37 and name H5') 

 or   (resid 37 and name H5''))(resid 37 and name H1')   3.25 1.75 1.75 
assign   ((resid 37 and name H5'') 
 or   (resid 37 and name H5'))(resid 37 and name H2')  3.25 0.75 2.25  
assign   ((resid 37 and name H5'') 
 or   (resid 37 and name H5'))(resid 37 and name H4')  2.25 0.75 0.75  
assign (resid 37 and name H5'')(resid 37 and name H5')  2.25 0.75 0.75 
assign (resid 37 and name H6)(resid 37 and name H1') 2.75 1.25 1.25  
assign (resid 37 and name H6)(resid 37 and name H2') 3.25 1.75 1.75 
assign (resid 37 and name H6)(resid 37 and name H2') 2.75 1.25 1.25  
assign (resid 37 and name H6)((resid 37 and name H5') 
                                         or    (resid 37 and name H5'')) 2.75 1.25 1.25  
assign (resid 37 and name H6)(resid 37 and name H5) 2.25 0.75 0.75 
assign (resid 37 and name H3')(resid 37 and name H5) 3.25 1.75 1.75  
assign (resid 38 and name H6)(resid 37 and name H1') 3.25 1.75 1.75  
assign (resid 38 and name H6)(resid 37 and name H2') 2.25 0.75 0.75  
assign (resid 38 and name H6)(resid 37 and name H3') 2.75 1.25 1.25 
assign (resid 38 and name H5)(resid 37 and name H2') 2.75 1.25 1.25 
assign (resid 38 and name H5)(resid 37 and name H3') 2.75 1.25 1.25  
assign (resid 38 and name H5)(resid 37 and name H5) 3.25 1.75 1.75  
assign (resid 38 and name H1')(resid 27 and name H2) 3.25 0.75 1.75  
assign (resid 38 and name H1')(resid 38 and name H4') 3.25 1.75 1.75  
assign (resid 38 and name H1')(resid 38 and name H3') 3.25 1.75 1.75 
assign (resid 38 and name H1')(resid 38 and name H5) 3.25 1.75 1.75 
assign (resid 38 and name H2')(resid 38 and name H1') 2.25 0.75 0.75 
assign (resid 38 and name H2')(resid 38 and name H3') 2.25 0.75 0.75 
assign (resid 38 and name H3')(resid 38 and name H5) 3.25 1.75 1.75 
assign   ((resid 38 and name H5'') 
  or   (resid 38 and name H5'))(resid 38 and name H2') 3.25 1.75 1.75 
assign (resid 38 and name H6)(resid 38 and name H1') 2.75 1.25 1.25 
assign (resid 38 and name H6)(resid 38 and name H2') 2.25 0.75 1.25 
assign (resid 38 and name H6)(resid 38 and name H3') 2.25 0.75 0.75 
assign (resid 38 and name H6)(resid 38 and name H4') 3.25 1.75 1.75 
assign (resid 38 and name H6)((resid 38 and name H5'') 
                                           or    (resid 38 and name H5'))3.25 1.75 1.75 
assign (resid 38 and name H6)(resid 38 and name H5) 2.25 0.75 0.75 
assign (resid 39 and name H6)(resid 38 and name H2') 2.75 1.25 1.25  
assign (resid 38 and name H2')((resid 39 and name H5'') 
                                          or     (resid 39 and name H5'))2.75 1.25 1.25 
assign (resid 39 and name H1')(resid 39 and name H4') 2.75 1.25 1.25 
assign (resid 39 and name H6)(resid 39 and name H1') 2.75 1.25 1.25 
assign (resid 39 and name H6)(resid 39 and name H4') 2.75 1.25 1.25  
assign (resid 39 and name H6)(resid 39 and name H5) 2.25 0.75 0.75  
assign (resid 39 and name H6)((resid 39 and name H5'') 
                                         or    (resid 39 and name H5')) 3.25 1.75 1.75 
assign (resid 39 and name H6)(resid 39 and name H3') 2.75 1.25 1.25 
assign (resid 39 and name H1')(resid 39 and name H3') 2.75 1.25 1.25 
assign (resid 39 and name H5)(resid 39 and name H3') 3.25 1.75 1.75 
assign (resid 39 and name H1')(resid 39 and name H2') 2.25 0.75 0.75 
assign (resid 39 and name H3')(resid 39 and name H4') 2.25 0.75 0.75 
assign (resid 39 and name H3')((resid 39 and name H5'') 
                                           or    (resid 39 and name H5'))3.25 1.75 1.75 
assign (resid 39 and name H6)(resid 40 and name H6) 3.25 1.75 1.75 
assign (resid 39 and name H2')(resid 40 and name H5) 3.25 1.75 1.75 
assign (resid 39 and name H3')(resid 40 and name H5) 3.25 1.75 1.75 
assign (resid 39 and name H3')(resid 40 and name H6) 2.75 1.25 1.25 
assign (resid 40 and name H6)(resid 40 and name H1') 3.25 1.75 1.75 
assign (resid 40 and name H6)(resid 40 and name H3') 3.25 1.75 1.75 
assign (resid 40 and name H6)((resid 40 and name H5'') 
                                          or    (resid 40 and name H5')) 3.25 1.75 1.75  
assign (resid 40 and name H5)(resid 40 and name H3') 3.25 1.75 1.75 
assign (resid 40 and name H5)(resid 40 and name H2') 3.25 1.75 1.75 
assign (resid 41 and name H5)(resid 40 and name H2') 3.25 1.75 1.75 
assign (resid 41 and name H5)(resid 40 and name H3') 3.25 1.75 1.75 
assign (resid 41 and name H2')(resid 41 and name H1')  2.25 0.75 0.75 
assign (resid 41 and name H3')(resid 41 and name H1')  2.75 1.25 1.25 
assign (resid 41 and name H3')(resid 41 and name H2') 2.25 0.75 0.75 
assign (resid 41 and name H6)(resid 41 and name H5) 2.25 0.75 0.75 
assign (resid 41 and name H6)(resid 41 and name H1') 2.75 1.25 1.25 
assign (resid 41 and name H6)(resid 41 and name H2') 3.25 1.75 1.75 
assign (resid 41 and name H6)(resid 41 and name H3') 2.75 1.25 1.25 
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assign (resid 41 and name H6)(resid 41 and name H4') 3.25 1.75 1.75 
assign   ((resid 41 and name H5') 
 or   (resid 41 and name H5''))(resid 41 and name H6)   3.25 1.75 1.75  
assign (resid 42 and name H1')(resid 42 and name H2') 2.25 0.75 0.75 
assign (resid 42 and name H1')(resid 42 and name H3') 2.75 1.25 1.25  
assign (resid 42 and name H1')(resid 42 and name H4')  2.75 1.25 1.25 
assign (resid 42 and name H2')(resid 42 and name H3') 2.25 0.75 0.75 
assign (resid 42 and name H3')(resid 42 and name H4')  2.25 0.75 0.75 
assign (resid 42 and name H6)(resid 42 and name H1') 3.25 1.75 1.75 
assign (resid 42 and name H6)(resid 42 and name H2') 3.25 1.75 1.75 
assign (resid 42 and name H6)(resid 42 and name H3') 2.75 1.25 1.25 
assign (resid 42 and name H6)(resid 42 and name H5) 2.25 0.75 0.75 
assign   ((resid 42 and name H5') 
 or   (resid 42 and name H5''))(resid 42 and name H6) 3.25 1.75 1.75  
assign (resid 42 and name H5)(resid 42 and name H2') 3.25 1.75 1.75 
assign (resid 42 and name H5)(resid 41 and name H2') 2.75 1.25 1.25 
assign (resid 42 and name H5)(resid 41 and name H3') 2.75 1.25 1.25 
assign (resid 42 and name H5)(resid 41 and name H5 ) 3.25 1.75 1.75 
assign (resid 42 and name H6)(resid 41 and name H2') 2.75 1.25 1.25   
assign (resid 42 and name H6)(resid 41 and name H1') 3.25 1.75 1.75 
assign   ((resid 42 and name H5') 
 or   (resid 42 and name H5''))(resid 41 and name H2')  2.75 1.25 1.25  
assign (resid 42 and name H5)(resid 41 and name H6) 2.75 1.25 1.25 
assign (resid 43 and name H8)(resid 42 and name H1') 3.25 1.75 1.75  
assign (resid 43 and name H8)(resid 42 and name H2')  2.25 0.75 0.75 
assign (resid 43 and name H8)(resid 42 and name H3') 2.75 1.25 1.25 
assign (resid 43 and name H8)(resid 42 and name H6) 3.25 1.75 1.75 
assign (resid 43 and name H1')(resid 43 and name H2') 2.25 0.75 0.75 
assign (resid 43 and name H1')(resid 43 and name H3')  2.75 1.25 1.25 
assign (resid 43 and name H1')(resid 43 and name H4') 2.75 1.25 1.25 
assign (resid 43 and name H2')(resid 43 and name H3') 2.25 0.75 0.75 
assign (resid 43 and name H2')(resid 43 and name H4') 2.75 1.25 1.25 
assign (resid 43 and name H3')(resid 43 and name H4') 2.25 0.75 0.75 
assign (resid 43 and name H8)(resid 43 and name H1') 2.75 1.25 1.25 
assign (resid 43 and name H8)(resid 43 and name H2') 3.25 1.75 1.75  
assign (resid 43 and name H8)(resid 43 and name H3') 2.75 1.25 1.25 
assign (resid 43 and name H8)(resid 43 and name H4') 3.25 1.75 1.75 
assign (resid 43 and name H8)((resid 43 and name H5') 
                                          or    (resid 43 and name H5'')) 3.25 1.75 1.75 
assign (resid 44 and name H8)(resid 43 and name H1') 3.25 1.75 1.75 
assign (resid 44 and name H8)(resid 43 and name H2') 2.25 0.75 0.75 
assign (resid 44 and name H8)(resid 43 and name H3') 2.75 1.25 1.25 
assign (resid 44 and name H8)(resid 43 and name H8) 2.75 1.25 1.25  
assign (resid 44 and name H1')(resid 43 and name H2')  2.75 1.25 1.25 
assign (resid 20 and name H2)(resid 43 and name H1') 2.75 1.25 1.25 
assign   ((resid 44 and name H5') 
 or   (resid 44 and name H5''))(resid 43 and name H2')  2.75 1.25 1.25 
assign (resid 44 and name H1')(resid 44 and name H2') 2.25 0.75 0.75 
assign (resid 44 and name H1')(resid 44 and name H3') 2.75 1.25 1.25 
assign (resid 44 and name H1')(resid 44 and name H4') 3.25 1.75 1.75 
assign (resid 44 and name H2')(resid 44 and name H8) 3.25 1.75 1.75  
assign (resid 44 and name H3')(resid 44 and name H4') 2.25 0.75 0.75 
assign (resid 44 and name H8)(resid 44 and name H1') 2.75 1.25 1.25  
assign (resid 44 and name H8)(resid 44 and name H3') 2.75 1.25 1.25 
assign (resid 44 and name H8)(resid 44 and name H4') 3.25 1.75 1.75 
assign (resid 44 and name H8)((resid 44 and name H5') 
                                          or    (resid 44 and name H5''))3.25 1.75 1.75 
assign   ((resid 44 and name H5') 
 or   (resid 44 and name H5''))(resid 44 and name H4')  2.25 0.75 0.75 
assign   ((resid 44 and name H5') 
 or   (resid 44 and name H5''))(resid 44 and name H3')  2.75 1.25 1.25  
assign (resid 45 and name H6)(resid 44 and name H1') 3.25 1.75 1.75 
assign (resid 45 and name H6)((resid 44 and name H2') 
                                            or  (resid 44 and name H3'))2.75 1.25 1.25 
assign (resid 45 and name H5)((resid 44 and name H2') 
                                            or  (resid 44 and name H3')) 3.25 1.75 1.75 
assign (resid 45 and name H1')(resid 45 and name H2') 2.25 0.75 0.75 
assign (resid 45 and name H1')(resid 45 and name H3') 2.75 1.25 1.25 
assign (resid 45 and name H1')(resid 45 and name H4') 2.75 1.25 1.25 
assign (resid 45 and name H2')(resid 45 and name H3') 2.25 0.75 0.75 

assign (resid 45 and name H2')(resid 45 and name H4') 2.75 1.25 1.25 
assign (resid 45 and name H3')(resid 45 and name H4') 2.25 0.75 0.75 
assign (resid 45 and name H4')(resid 45 and name H6) 3.25 1.75 1.75 
assign   ((resid 45 and name H5') 
 or   (resid 45 and name H5''))(resid 45 and name H3')  2.75 1.25 1.25 
assign   ((resid 45 and name H5') 
 or   (resid 45 and name H5''))(resid 45 and name H4')  2.75 1.25 1.25  
assign   ((resid 45 and name H5'') 
  or   (resid 45 and name H5'))(resid 45 and name H6) 3.25 1.75 1.75 
assign (resid 45 and name H5)(resid 45 and name H3') 3.25 1.75 1.75  
assign (resid 45 and name H6)(resid 45 and name H1') 2.75 1.25 1.25 
assign (resid 45 and name H6)(resid 45 and name H2') 3.25 1.75 1.75 
assign (resid 45 and name H6)(resid 45 and name H3') 2.75 1.25 1.25 
assign (resid 45 and name H2')(resid 46 and name H5) 2.75 1.25 1.25 
assign (resid 46 and name H5)(resid 45 and name H3') 2.75 1.25 1.25 
assign (resid 46 and name H5)(resid 45 and name H5) 3.25 1.75 1.75 
assign (resid 46 and name H6)(resid 45 and name H1') 2.75 1.25 2.25  
assign (resid 46 and name H6)(resid 45 and name H2') 2.25 0.75 0.75   
assign (resid 46 and name H6)(resid 45 and name H3') 2.75 1.25 1.25 
assign (resid 46 and name H1')(resid 45 and name H2') 3.25 1.75 1.75 
assign   ((resid 46 and name H5') 
or   (resid 46 and name H5'' ))(resid 45 and name H2')  2.75 1.25 1.25  
assign (resid 46 and name H1')(resid 46 and name H4') 2.75 1.25 1.25 
assign (resid 46 and name H2')(resid 46 and name H1') 2.25 0.75 0.75 
assign (resid 46 and name H3')(resid 46 and name H1') 2.75 1.25 1.25 
assign (resid 46 and name H3')(resid 46 and name H2')  2.25 0.75 0.75 
assign (resid 46 and name H3')(resid 46 and name H5) 3.25 1.75 1.75  
assign (resid 46 and name H4')(resid 46 and name H2') 2.75 1.25 1.25 
assign (resid 46 and name H4')(resid 46 and name H3') 2.25 0.75 0.75 
assign   ((resid 46 and name H5') 
 or (resid 46 and name H5''))(resid 46 and name H1')   3.25 1.75 1.75  
assign   ((resid 46 and name H5') 
 or  (resid 46 and name H5''))(resid 46 and name H4')    2.25 0.75 0.75  
assign (resid 46 and name H6)(resid 46 and name H1') 3.25 1.75 1.75 
assign (resid 46 and name H6)(resid 46 and name H2') 2.75 1.25 1.25 
assign (resid 46 and name H6)(resid 46 and name H3')  2.75 1.25 1.25 
assign (resid 46 and name H6)(resid 46 and name H4') 2.75 1.25 1.25 
assign (resid 46 and name H6)((resid 46 and name H5') 
                                         or    (resid 46 and name H5''))  3.25 1.75 1.75 
assign (resid 46 and name H6)(resid 46 and name H5)    2.25 0.75 0.75 
assign (resid 46 and name H3')((resid 46 and name H5') 
                                           or   (resid 46 and name H5'')) 2.75 1.25 1.25 
assign (resid 28 and name H1)(resid 27 and name H2) 3.25 1.75 2.75 
assign (resid 29 and name H5)(resid 28 and name H1) 3.25 1.75 2.75 
assign (resid 36 and name H1)(resid 28 and name H1) 3.25 1.75 1.75 
assign (resid 38 and name H3)(resid 28 and name H1) 3.25 1.75 2.75 
assign (resid 44 and name H1)(resid 17 and name H1) 2.75 1.25 1.75 
assign (resid 43 and name H1)(resid 20 and name H2) 3.25 1.75 2.75 
assign (resid 21 and name H1)(resid 20 and name H2) 3.25 1.75 2.75 
assign (resid 44 and name H1)(resid 43 and name H1) 3.25 1.75 2.75 
assign (resid 44 and name H1)(resid 18 and name HN')  3.25 1.75 2.75 
assign (resid 44 and name H1)(resid 18 and name HN'') 2.75 1.25 1.75 
assign (resid 43 and name H1)(resid 19 and name HN'') 3.25 1.75 2.75 
assign (resid 43 and name H1)(resid 19 and name HN') 3.25 1.75 2.75 
assign (resid 45 and name HN'')(resid 44 and name H1) 3.25 1.75 2.75 
assign (resid 36 and name H1)(resid 29 and name HN'') 3.25 1.75 2.75 
assign (resid 36 and name H1)(resid 29 and name HN')  3.25 1.75 2.75 
assign (resid 37 and name HN')(resid 28 and name H1)  3.25 1.75 2.75 
assign (resid 37 and name HN'')(resid 28 and name H1) 2.75 1.25 1.75 
 
!**************Hydrogen Bond Restraints*************************** 
assign (resid 16 and name O6)(resid 46 and name HN'') 1.71  0.20  0.20 
assign (resid 16 and name O6)(resid 46 and name N4) 2.91  0.01  0.01 
assign (resid 16 and name H1)(resid 46 and name N3) 1.89  0.20  0.20 
assign (resid 16 and name N1)(resid 46 and name N3) 2.95  0.01  0.01 
assign (resid 16 and name HN'')(resid 46 and name O2) 2.08  0.20  0.20 
assign (resid 16 and name N2)(resid 46 and name O2) 2.86  0.01  0.01 
assign (resid 16 and name N2)(resid 46 and name N3) 3.65  0.01  0.01 
assign (resid 16 and name O6)(resid 46 and name O2) 5.42  0.01  0.01 
assign (resi 17 and name O6)(resi 45 and name HN'') 1.71  0.20  0.20 
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assign (resi 17 and name O6)(resi 45 and name N4) 2.91  0.01  0.01 
assign (resi 17 and name H1)(resi 45 and name N3) 1.89  0.20  0.20 
assign (resi 17 and name N1)(resi 45 and name N3) 2.95  0.01  0.01 
assign (resi 17 and name HN'')(resi 45 and name O2) 2.08  0.20  0.20 
assign (resi 17 and name N2)(resi 45 and name O2) 2.86  0.01  0.01 
assign (resi 17 and name N2)(resi 45 and name N3) 3.65  0.01  0.01 
assign (resi 17 and name O6)(resi 45 and name O2) 5.42  0.01  0.01 
assign (resi 44 and name O6)(resi 18 and name HN'') 1.71  0.20  0.20 
assign (resi 44 and name O6)(resi 18 and name N4) 2.91  0.01  0.01 
assign (resi 44 and name H1)(resi 18 and name N3) 1.89  0.20  0.20 
assign (resi 44 and name N1)(resi 18 and name N3) 2.95  0.01  0.01 
assign (resi 44 and name HN'')(resi 18 and name O2) 2.08  0.20  0.20 
assign (resi 44 and name N2)(resi 18 and name O2) 2.86  0.01  0.01 
assign (resi 44 and name N2)(resi 18 and name N3) 3.65  0.01  0.01 
assign (resi 44 and name O6)(resi 18 and name O2) 5.42  0.01  0.01 
assign (resi 43 and name O6)(resi 19 and name HN'') 1.71  0.20  0.20 
assign (resi 43 and name O6)(resi 19 and name N4) 2.91  0.01  0.01 
assign (resi 43 and name H1)(resi 19 and name N3) 1.89  0.20  0.20 
assign (resi 43 and name N1)(resi 19 and name N3) 2.95  0.01  0.01 
assign (resi 43 and name HN'')(resi 19 and name O2) 2.08  0.20  0.20 
assign (resi 43 and name N2)(resi 19 and name O2) 2.86  0.01  0.01 
assign (resi 43 and name N2)(resi 19 and name N3) 3.65  0.01  0.01 
assign (resi 43 and name O6)(resi 19 and name O2) 5.42  0.01  0.01 
assign (resi 21 and name O6)(resi 41 and name HN'') 1.71  0.20  0.20 
assign (resi 21 and name O6)(resi 41 and name N4) 2.91  0.01  0.01 
assign (resi 21 and name H1)(resi 41 and name N3) 1.89  0.20  0.20 
assign (resi 21 and name N1)(resi 41 and name N3) 2.95  0.01  0.01 
assign (resi 21 and name HN'')(resi 41 and name O2) 2.08  0.20  0.20 
assign (resi 21 and name N2)(resi 41 and name O2) 2.86  0.01  0.01 
assign (resi 21 and name N2)(resi 41 and name N3) 3.65  0.01  0.01 
assign (resi 21 and name O6)(resi 41 and name O2) 5.42  0.01  0.01 
assign (resi 26 and name O6)(resi 39 and name HN'') 1.71  0.20  0.20 
assign (resi 26 and name O6)(resi 39 and name N4) 2.91  0.01  0.01 
assign (resi 26 and name H1)(resi 39 and name N3) 1.89  0.20  0.20 
assign (resi 26 and name N1)(resi 39 and name N3) 2.95  0.01  0.01 
assign (resi 26 and name HN'')(resi 39 and name O2) 2.08  0.20  0.20 
assign (resi 26 and name N2)(resi 39 and name O2) 2.86  0.01  0.01 
assign (resi 26 and name N2)(resi 39 and name N3) 3.65  0.01  0.01 
assign (resi 26 and name O6)(resi 39 and name O2) 5.42  0.01  0.01 
assign (resi 28 and name O6)(resi 37 and name HN'') 1.71  0.20  0.20 
assign (resi 28 and name O6)(resi 37 and name N4) 2.91  0.01  0.01 
assign (resi 28 and name H1)(resi 37 and name N3) 1.89  0.20  0.20 
assign (resi 28 and name N1)(resi 37 and name N3) 2.95  0.01  0.01 
assign (resi 28 and name HN'')(resi 37 and name O2) 2.08  0.20  0.20 
assign (resi 28 and name N2)(resi 37 and name O2) 2.86  0.01  0.01 
assign (resi 28 and name N2)(resi 37 and name N3) 3.65  0.01  0.01 
assign (resi 28 and name O6)(resi 37 and name O2) 5.42  0.01  0.01 
assign (resi 36 and name O6)(resi 29 and name HN'') 1.71  0.20  0.20 
assign (resi 36 and name O6)(resi 29 and name N4) 2.91  0.01  0.01 
assign (resi 36 and name H1)(resi 29 and name N3) 1.89  0.20  0.20 
assign (resi 36 and name N1)(resi 29 and name N3) 2.95  0.01  0.01 
assign (resi 36 and name HN'')(resi 29 and name O2) 2.08  0.20  0.20 
assign (resi 36 and name N2)(resi 29 and name O2) 2.86  0.01  0.01 
assign (resi 36 and name N2)(resi 29 and name N3) 3.65  0.01  0.01 
assign (resi 36 and name O6)(resi 29 and name O2) 5.42  0.01  0.01 
assign (resi 20 and name N1)(resi 42 and name H3) 1.93  0.20  0.20 
assign (resi 20 and name N1)(resi 42 and name N3) 2.82  0.01  0.01 
assign (resi 20 and name HN'')(resi 42 and name O4) 1.82  0.20  0.20 
assign (resi 20 and name N6)(resi 42 and name O4) 2.95  0.01  0.01 
assign (resi 27 and name N1)(resi 38 and name H3) 1.93  0.20  0.20 
assign (resi 27 and name N1)(resi 38 and name N3) 2.82  0.01  0.01 
assign (resi 27 and name HN'')(resi 38 and name O4) 1.82  0.20  0.20 
assign (resi 27 and name N6)(resi 38 and name O4) 2.95  0.01  0.01 
assign (resi 22 and name N1)(resi 40 and name H3) 1.93  0.20  0.20 
assign (resi 22 and name N1)(resi 40 and name N3) 2.82  0.01  0.01 
assign (resi 22 and name HN'')(resi 40 and name O4) 1.82  0.20  0.20 
assign (resi 22 and name N6)(resi 40 and name O4) 2.95  0.01  0.01 
!********************Intermolecular NOE Restraints****************** 
assign (resi 35 and name H1')(resi 3 and name H5)     3.50  0.50 2.00  
assign (resi 35 and name H1')(resi 2 and name H4*)     3.50  0.50 3.50  

assign (resi 35 and name H1')((resi 2 and name H2*)  
                                            or (resi 2 and name H3*)) 3.50  1.00 1.50  
assign ((resi 35 and name H2')  
 or (resi 35 and name H3'))(resi 3 and name H3)      3.50  0.50 3.50  
assign ((resi 35 and name H2')  
 or (resi 35 and name H3'))(resi 2 and name H4*)    3.50  0.50 2.00  
assign ((resi 35 and name H2')  
 or (resi 35 and name H3'))((resi 2 and name H2*)  
                                       or (resi 2 and name H3*)) 3.50  0.50 2.00  
assign ((resi 35 and name H2')  
 or (resi 35 and name H3'))(resi 3 and name H1)     3.50  0.50 3.50  
assign (resi 35 and name H4')(resi 3 and name H1)      3.50  0.50 3.50  
assign (resi 35 and name H4')((resi 3 and name H3)  
                                            or (resi 3 and name H5))    3.50 0.50 2.00  
assign (resi 35 and name H4')(resi 2 and name H4*)  3.50 0.50 2.00  
assign (resi 35 and name H4')(resi 3 and name H4)       3.50 0.50 3.50  
assign (resi 35 and name H4')((resi 2 and name H2*)  
                                            or (resi 2 and name H3*))    3.50 0.50 2.00  
assign (resi 35 and name H2)(resi 3 and name H1)      3.50 0.50 2.00  
assign (resi 35 and name H2)((resi 3 and name H3)  
                                           or (resi 3 and name H5))     3.50 0.50 2.00  
assign (resi 35 and name H2)(resi 2 and name H4*)     3.50 0.50 2.00  
assign (resi 35 and name H8)(resi 3 and name H3)      3.50 0.50 2.00  
assign (resi 35 and name H8)(resi 2 and name H4*)     3.50 0.50 3.50  
assign (resi 35 and name H8)(resi 3 and name H4)      3.50 0.50 3.50  
assign (resi 35 and name H8)(resi 3 and name H2*)     3.50 0.50 3.50  
assign (resi 35 and name H8)(resi 3 and name H6*)     3.50 0.50 2.00  
assign (resi 22 and name H8)(resi 7 and name H1)      3.50 0.50 2.00  
assign (resi 22 and name H8)(resi 7 and name H3)      3.50 0.50 2.00  
assign (resi 22 and name H8)(resi 6 and name H4*)     3.50 0.50 2.00  
assign (resi 22 and name H8)((resi 6 and name H2*)  
                                           or (resi 6 and name H3*))   3.50 0.50 2.00  
assign (resi 23 and name H1')((resi 6 and name H2*)  
                                            or (resi 6 and name H3*))    3.50 0.50 2.00  
assign (resi 23 and name H2')((resi 6 and name H1*)  
                                or (resi 6 and name H4*))   3.50 0.50 2.00  
assign (resi 23 and name H2')((resi 6 and name H2*)  
                                            or (resi 6 and name H3*))    3.50 0.50 2.00  
assign (resi 23 and name H5)((resi 5 and name H5)  
                                           or (resi 7 and name H3))     3.50 0.50 2.00  
assign (resi 23 and name H5)((resi 6 and name H1*)  
                                           or (resi 6 and name H4*))    3.50 0.50 3.50  
assign (resi 23 and name H5)((resi 6 and name H2*)  
                                or (resi 6 and name H3*))    3.50 0.50 2.00  
assign (resi 25 and name H1')(resi 5 and name H1)  3.50 0.50 2.00  
assign (resi 25 and name H1')((resi 5 and name H3)  
                                            or (resi 5 and name H5))     3.50 0.50 2.00  
assign (resi 25 and name H1')((resi 4 and name H1*)  
                                            or (resi 6 and name H4*))   3.50 0.50 2.00  
assign (resi 25 and name H1')((resi 4 and name H2*)  
                                            or (resi 6 and name H3*))   3.50 0.50 2.00  
assign (resi 25 and name H1')(resi 5 and name H6*)     3.50 0.50 2.00  
assign (resi 25 and name H5)((resi 4 and name H1*)  
                                            or (resi 6 and name H4*))   3.50 0.50 2.00  
assign (resi 25 and name H5)((resi 4 and name H2*)  
                                           or (resi 6 and name H3*))   3.50 0.50 2.00  
assign (resi 25 and name H5)(resi 5 and name H6*)    3.50 0.50 2.00  
assign (resi 25 and name H6)(resi 5 and name H6*)     3.50 0.50 2.00  
assign (resi 25 and name H6)((resi 4 and name H2*)  
                                           or (resi 6 and name H3*))   3.50 0.50 2.00  
assign ((resi 26 and name H5')  
    or(resi 26 and name H5''))(resi 5 and name H6*)     3.50 0.50 2.00  
assign (resi 36 and name H8)((resi 2 and name H4*)  
                                           or (resi 4 and name H1*))   5.50 3.00 0.00  
assign (resi 36 and name H8)((resi 2 and name H3*)   
                                           or (resi 4 and name H2*))   5.50 1.50 0.00  
assign (resi 43 and name H1')((resi 6 and name H3*)  
                                            or (resi 8 and name H2*))   5.00 4.00 0.00  
assign (resi 43 and name H1')(resi 7 and name H1)      5.00 4.00 0.00  
assign (resi 43 and name H1')(resi 7 and name H2*)     5.00 3.00 0.00  
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assign (resi 44 and name H4')((resi 7 and name H3)  
                                            or (resi 7 and name H5))    5.00 4.00 0.00  
assign (resi 44 and name H4')((resi 6 and name H3*)  
                                            or (resi 8 and name H2*))   5.00 4.00 0.00  
assign (resi 44 and name H4')(resi 7 and name H6*)     5.00 4.00 0.00  
assign (resi 43 and name H1')((resi 2 and name H3*)  
                                            or (resi 4 and name H2*))   5.00 4.00 0.00  
assign (resi 43 and name H1')(resi 3 and name H1)      5.00 4.00 0.00  
assign (resi 43 and name H1')(resi 3 and name H2*)     5.00 3.00 0.00  
assign (resi 44 and name H4')((resi 3 and name H3)  
                                            or (resi 3 and name H5))    5.00 4.00 0.00  
assign (resi 44 and name H4')((resi 2 and name H3*)  
                                            or (resi 4 and name H2*))   5.00 4.00 0.00  
assign (resi 44 and name H4')(resi 3 and name H6*)     5.00 4.00 0.00  
!************************Planarity Restraints ************************** 
!Format and syntax taken from XPLOR nmr/xplor/htmlman/node186.html 
!It forces the base pairs to be planar. 
restraints plane 
 
  !G28 - C37 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 28 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 37 ) 
    ) 
    weight=0.5 
  end 
 
 !G17 - C45 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 17 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 45 ) 
    ) 
    weight=0.5 
  end 
 
 !G36 - C29 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 36 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 29 ) 
    ) 
    weight=0.5 
  end 
 

 !G43 - C19 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 43 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 19 ) 
    ) 
    weight=0.5 
  end 
 
 !G44 - C18 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 44 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 18 ) 
    ) 
    weight=0.5 
  end 
 
 !G16 - C46 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 16 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 46 ) 
    ) 
    weight=0.5 
  end 
 
!G26 - C39  
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 26 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 39 ) 
    ) 
    weight=0.5 
  end 
 
!G21 - C41 
  group 
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   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 21 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 41 ) 
    ) 
    weight=0.5        
  end 
 
!A20 - U42 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 20 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 42 ) 
    ) 
    weight=0.5    
  end 
 
!A27 - U38 
  group 
   selection=( 
          (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 27 ) 
        or  (not( name P   or name O1P or name O2P or name O5' or name H5T or 
                name H1' or name H2' or name H3' or name H4' or name H5' or 
                name H5'' or name O2' or name HO2' or 
                name O3' or name C1' or name C2' or name C3' or name C4' or 
                name C5' or name O4' or name H3T) and residue 38 ) 
    ) 
    weight=0.5 
  end 
end 
                        {* The planarity energy term needs to be turned on.*} 
flags include plan end 
!*****************Dihedrals and Sugar Pucker******************** 
!apply sugar pucker for TAR-RNA  
!definitions 
!O4' C1' C2' C3' nu1 
!C1' C2' C3' C4' nu2 
!C3' C4' O4' C1' nu4 
!C2' C3' C4' O4' nu3 
!C5' C4' C3' O3' delta (delta = nu3 + 125) 
!C4' O4' C1' C2' nu0 (nu0 = 0 for C3' endo conformations) 
!nu(x) = phi(m).cos[P + 144(x-2)] 
!where x = 0,1,2,3,4 
!phi(m) = pucker amplitude btween 34 and 42 degrees 
!P = pseudo rotation phase angle  
!P = 18 for pure C3' endo 
!P = 162 for pure C2' endo 
!********************C2' endo*********************************** 
        assign  (resid 23 and name C1') 
                (resid 23 and name C2') 
                (resid 23 and name C3') 

                (resid 23 and name C4') 10.0 -40.0 5.0 2 !nu2 
        assign  (resid 23 and name C2') 
                (resid 23 and name C3') 
                (resid 23 and name C4') 
                (resid 23 and name O4') 10.0 23.0 10.0 2 !nu3 
        assign  (resid 33 and name C1') 
                (resid 33 and name C2') 
                (resid 33 and name C3') 
                (resid 33 and name C4') 10.0 -40.0 5.0 2 !nu2 
        assign  (resid 33 and name C2') 
                (resid 33 and name C3') 
                (resid 33 and name C4') 
                (resid 33 and name O4') 10.0 23.0 10.0 2 !nu3 
!*******************c3' endo***************************** 
!The values given below for each suger pucker angle have been taken 
!from standard xplor formats. 
!nu0,nu1,nu2,nu3 and nu4 (delta) have been restrained below 
!A form helix values were taken from the arnarst.inp file. 
        assign  (resid 16 and name C1') 
                (resid 16 and name C2') 
                (resid 16 and name C3') 
                (resid 16 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 16 and name C5') 
                (resid 16 and name C4') 
                (resid 16 and name C3') 
                (resid 16 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 17 and name C1') 
                (resid 17 and name C2') 
                (resid 17 and name C3') 
                (resid 17 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 17 and name C5') 
                (resid 17 and name C4') 
                (resid 17 and name C3') 
                (resid 17 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 18 and name C1') 
                (resid 18 and name C2') 
                (resid 18 and name C3') 
                (resid 18 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 18 and name C5') 
                (resid 18 and name C4') 
                (resid 18 and name C3') 
                (resid 18 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 19 and name C1') 
                (resid 19 and name C2') 
                (resid 19 and name C3') 
                (resid 19 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 19 and name C5') 
                (resid 19 and name C4') 
                (resid 19 and name C3') 
                (resid 19 and name O3') 10.0 82.0 5.0 2 !delta 
       assign  (resid 20 and name C1') 
                (resid 20 and name C2') 
                (resid 20 and name C3') 
                (resid 20 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 20 and name C5') 
                (resid 20 and name C4') 
                (resid 20 and name C3') 
                (resid 20 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 21 and name C1') 
                (resid 21 and name C2') 
                (resid 21 and name C3') 
                (resid 21 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 21 and name C5') 
                (resid 21 and name C4') 
                (resid 21 and name C3') 
                (resid 21 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 22 and name C1') 
                (resid 22 and name C2') 
                (resid 22 and name C3') 
                (resid 22 and name C4') 10.0 38.0  10.0 2 !nu2 
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        assign  (resid 22 and name C5') 
                (resid 22 and name C4') 
                (resid 22 and name C3') 
                (resid 22 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 26 and name C1') 
                (resid 26 and name C2') 
                (resid 26 and name C3') 
                (resid 26 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 26 and name C5') 
                (resid 26 and name C4') 
                (resid 26 and name C3') 
                (resid 26 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 28 and name C1') 
                (resid 28 and name C2') 
                (resid 28 and name C3') 
                (resid 28 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 28 and name C5') 
                (resid 28 and name C4') 
                (resid 28 and name C3') 
                (resid 28 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 36 and name C1') 
                (resid 36 and name C2') 
                (resid 36 and name C3') 
                (resid 36 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 36 and name C5') 
                (resid 36 and name C4') 
                (resid 36 and name C3') 
                (resid 36 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 37 and name C1') 
                (resid 37 and name C2') 
                (resid 37 and name C3') 
                (resid 37 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 37 and name C5') 
                (resid 37 and name C4') 
                (resid 37 and name C3') 
                (resid 37 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 38 and name C1') 
                (resid 38 and name C2') 
                (resid 38 and name C3') 
                (resid 38 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 38 and name C5') 
                (resid 38 and name C4') 
                (resid 38 and name C3') 
                (resid 38 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 39 and name C1') 
                (resid 39 and name C2') 
                (resid 39 and name C3') 
                (resid 39 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 39 and name C5') 
                (resid 39 and name C4') 
                (resid 39 and name C3') 
                (resid 39 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 40 and name C1') 
                (resid 40 and name C2') 
                (resid 40 and name C3') 
                (resid 40 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 40 and name C5') 
                (resid 40 and name C4') 
                (resid 40 and name C3') 
                (resid 40 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 41 and name C1') 
                (resid 41 and name C2') 
                (resid 41 and name C3') 
                (resid 41 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 41 and name C5') 
                (resid 41 and name C4') 
                (resid 41 and name C3') 
                (resid 41 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 42 and name C1') 
                (resid 42 and name C2') 

                (resid 42 and name C3') 
                (resid 42 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 42 and name C5') 
                (resid 42 and name C4') 
                (resid 42 and name C3') 
                (resid 42 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 43 and name C1') 
                (resid 43 and name C2') 
                (resid 43 and name C3') 
                (resid 43 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 43 and name C5') 
                (resid 43 and name C4') 
                (resid 43 and name C3') 
                (resid 43 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 44 and name C1') 
                (resid 44 and name C2') 
                (resid 44 and name C3') 
                (resid 44 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 44 and name C5') 
                (resid 44 and name C4') 
                (resid 44 and name C3') 
                (resid 44 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 45 and name C1') 
                (resid 45 and name C2') 
                (resid 45 and name C3') 
                (resid 45 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 45 and name C5') 
                (resid 45 and name C4') 
                (resid 45 and name C3') 
                (resid 45 and name O3') 10.0 82.0 5.0 2 !delta 
        assign  (resid 46 and name C1') 
                (resid 46 and name C2') 
                (resid 46 and name C3') 
                (resid 46 and name C4') 10.0 38.0  10.0 2 !nu2 
        assign  (resid 46 and name C5') 
                (resid 46 and name C4') 
                (resid 46 and name C3') 
                (resid 46 and name O3') 10.0 82.0 5.0 2 !delta 
!******************************************************* 
!below I have the backbone angles for the stretch between 16 and 21. 
assign ( resid 16 and name C3' ) 
       ( resid 16 and name O3' ) 
       ( resid 17 and name P ) 
       ( resid 17 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 16 and name O3' ) 
       ( resid 17 and name P ) 
       ( resid 17 and name O5' ) 
       ( resid 17 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 16 and name C4') 
       ( resid 16 and name C3') 
       ( resid 16 and name O3') 
       ( resid 17 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 17 and name P ) 
       ( resid 17 and name O5') 
       ( resid 17 and name C5') 
       ( resid 17 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 17 and name C3' ) 
       ( resid 17 and name O3' ) 
       ( resid 18 and name P ) 
       ( resid 18 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 17 and name O3' ) 
       ( resid 18 and name P ) 
       ( resid 18 and name O5' ) 
       ( resid 18 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 17 and name C4') 
       ( resid 17 and name C3') 
       ( resid 17 and name O3') 
       ( resid 18 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 18 and name P ) 
       ( resid 18 and name O5') 
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       ( resid 18 and name C5') 
       ( resid 18 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 18 and name C3' ) 
       ( resid 18 and name O3' ) 
       ( resid 19 and name P ) 
       ( resid 19 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 18 and name O3' ) 
       ( resid 19 and name P ) 
       ( resid 19 and name O5' ) 
       ( resid 19 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 18 and name C4') 
       ( resid 18 and name C3') 
       ( resid 18 and name O3') 
       ( resid 19 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 19 and name P ) 
       ( resid 19 and name O5') 
       ( resid 19 and name C5') 
       ( resid 19 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 19 and name C3' ) 
       ( resid 19 and name O3' ) 
       ( resid 20 and name P ) 
       ( resid 20 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 19 and name O3' ) 
       ( resid 20 and name P ) 
       ( resid 20 and name O5' ) 
       ( resid 20 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 19 and name C4') 
       ( resid 19 and name C3') 
       ( resid 19 and name O3') 
       ( resid 20 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 20 and name P ) 
       ( resid 20 and name O5') 
       ( resid 20 and name C5') 
       ( resid 20 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 20 and name C3' ) 
       ( resid 20 and name O3' ) 
       ( resid 21 and name P ) 
       ( resid 21 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 20 and name O3' ) 
       ( resid 21 and name P ) 
       ( resid 21 and name O5' ) 
       ( resid 21 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 20 and name C4') 
       ( resid 20 and name C3') 
       ( resid 20 and name O3') 
       ( resid 21 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 21 and name P ) 
       ( resid 21 and name O5') 
       ( resid 21 and name C5') 
       ( resid 21 and name C4')10.0 180.0 60.0 2 {beta} 
!********************************************************* 
!below i define the backbone angles for the stretch between 41 and 46. 
 
assign ( resid 41 and name P ) 
       ( resid 41 and name O5') 
       ( resid 41 and name C5') 
       ( resid 41 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 41 and name C3' ) 
       ( resid 41 and name O3' ) 
       ( resid 42 and name P ) 
       ( resid 42 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 41 and name O3' ) 
       ( resid 42 and name P ) 
       ( resid 42 and name O5' ) 
       ( resid 42 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 41 and name C4') 
       ( resid 41 and name C3') 
       ( resid 41 and name O3') 
       ( resid 42 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 42 and name P ) 

       ( resid 42 and name O5') 
       ( resid 42 and name C5') 
       ( resid 42 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 42 and name C3' ) 
       ( resid 42 and name O3' ) 
       ( resid 43 and name P ) 
       ( resid 43 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 42 and name O3' ) 
       ( resid 43 and name P ) 
       ( resid 43 and name O5' ) 
       ( resid 43 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 42 and name C4') 
       ( resid 42 and name C3') 
       ( resid 42 and name O3') 
       ( resid 43 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 43 and name P ) 
       ( resid 43 and name O5') 
       ( resid 43 and name C5') 
       ( resid 43 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 43 and name C3' ) 
       ( resid 43 and name O3' ) 
       ( resid 44 and name P ) 
       ( resid 44 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 43 and name O3' ) 
       ( resid 44 and name P ) 
       ( resid 44 and name O5' ) 
       ( resid 44 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 43 and name C4') 
       ( resid 43 and name C3') 
       ( resid 43 and name O3') 
       ( resid 44 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 44 and name P ) 
       ( resid 44 and name O5') 
       ( resid 44 and name C5') 
       ( resid 44 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 44 and name C3' ) 
       ( resid 44 and name O3' ) 
       ( resid 45 and name P ) 
       ( resid 45 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 44 and name O3' ) 
       ( resid 45 and name P ) 
       ( resid 45 and name O5' ) 
       ( resid 45 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 44 and name C4') 
       ( resid 44 and name C3') 
       ( resid 44 and name O3') 
       ( resid 45 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 45 and name P ) 
       ( resid 45 and name O5') 
       ( resid 45 and name C5') 
       ( resid 45 and name C4')10.0 180.0 60.0 2 {beta} 
assign ( resid 45 and name C3' ) 
       ( resid 45 and name O3' ) 
       ( resid 46 and name P ) 
       ( resid 46 and name O5' ) 10.0  -60.0  60.0 2 {zeta} 
assign ( resid 45 and name O3' ) 
       ( resid 46 and name P ) 
       ( resid 46 and name O5' ) 
       ( resid 46 and name C5' ) 10.0  -60.0  60.0 2 {alpha} 
assign ( resid 45 and name C4') 
       ( resid 45 and name C3') 
       ( resid 45 and name O3') 
       ( resid 46 and name P ) 10.0 240.0 60.0 2 {epsilon} 
assign ( resid 46 and name P ) 
       ( resid 46 and name O5') 
       ( resid 46 and name C5') 
       ( resid 46 and name C4')10.0 180.0 60.0 2 {beta} 
!***************End Restraints*********************** 
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Appendix B 
 

RESTRAINED MOLECULAR DYNAMICS PROTOCOL 

 
1) HIGH TEMPERATURE 

    a) Temperature: 1000K 

    b) Number of structures generated: 150 

    c) Energy terms: bonds, angles, Vdw, NOE, plan, impr and cdih 

    d) Force constants employed: 

                                              NOE=50.0 

                                              Cdih=300.0 

                                              Vdw=4.0 

e) Energy cutoff 600 kcal/mol (total) and 100 kcal/mol (NOE) 

  

  2) SIMULATED ANNEALING 

   100 steps of Powell energy minimization including bonds, vdw, NOE, angl, plan, cdih and impr 

a) 3 rounds of 3ps dynamics at 1000, 600 and 400K with 700 steps of Powell minimization between the dynamics. 

b) 1000 Powell energy minimization in the end. 

c) Hydrogen bonding restraints between A22-U40 removed 

d) Energy cutoff 400 kcal/mol (total) and 50 kcal/mol (NOE) 

  

  3) REFINEMENT 

a) 2ps dynamics at 500, 300, 150, 50 and 10K each with 1000 steps of Powell minimization between each step. 

b) Calculations ended with 2000 steps of Powell minimization. 

c) Energy cutoff 25 kcal/mol (NOE) 

d) All chosen structures had only 0 to 4 NOE violations greater than 0.2Å and none greater than 0.5 Å and no angular violations greater than 5º. 

 

4) REFINEMENT WITH fiRDCs 

a) Switch on attractive Lennard-Jones non-bonded parameter. 

b) 75 cycles, 1000 steps of molecular dynamics at 300K during which Ksani was increased from 0.001 to 1.5 kcal/mol Hz -2. 

c) 3 rounds of 5ps dynamics at 300, 150, 50 and 10K while all force constants were switched to their maximum value. 

d) 2000 steps of Powell minimization. 
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Protocols for initial structure generation, simulated annealing, refinement 
refinement with field induced Residual Dipolar Couplings used in XPLOR-NIH 
for the generation of structures of HIV-2 TAR-RNA/AMG. 
 
 
!********************************************************************* 
!*REMARKS This protocol allows gradual introduction of restraints                            * 
!*REMARKS at High Temperature with Verlet Dynamics and Powell Minimization   * 
!*REMARKS and generation of Multiple starting structures                                          * 
!********************************************************************* 
evaluate ($seed=(264437) + 976876) 
set seed $seed  end 
!******************************************************************** 
! read in the PSF file and initial structure 
 
parameter 
   @ (Read Parameter file here) 
end 
 
structure  
   @ (Read Topology/PSF file here) 
end 
 
coordinates @ (Read TAR co-ordinates here) 
                        (Read AMG co-ordinates here) 
                        (Read Axis co-ordinates here) 
!********************************************************************* 
! set the weights for initial experimental energy terms 
!*****************************Loop D********************************** 
evaluate ($lf_cool_steps = 4000) 
evaluate ($lf_init_t  = 1500.00) 
evaluate ($lf_final_t = 1000.00) 
evaluate ($lf_tempstep = 10) 
evaluate ($lf_in_ang = 0.5)         evaluate ($lf_fin_ang = 1.0) 
evaluate ($lf_in_imp = 0.1)         evaluate ($lf_fin_imp = 1.0) 
evaluate ($lf_in_con=  0.002)       evaluate ($lf_fin_con=  4.0)   
evaluate ($lf_in_noe = 20.0)        evaluate ($lf_fin_noe = 50.0) 
evaluate ($lf_in_cdih = 100.0)      evaluate ($lf_fin_cdih = 300.0) 
evaluate ($lf_in_rad  = 0.9)        evaluate ($lf_fin_rad  = 0.80) 
 
!*****************************Loop C********************************** 
evaluate ($l3_cool_steps = 2000) 
evaluate ($l3_init_t  = 1750.00) 
evaluate ($l3_final_t = 1500.00) 
evaluate ($l3_tempstep = 25) 
evaluate ($l3_fin_ang = $lf_in_ang) 
evaluate ($l3_in_ang = $l3_fin_ang / 5) 
evaluate ($l3_fin_imp = $lf_in_imp) 
evaluate ($l3_in_imp = $l3_fin_imp / 5) 
evaluate ($l3_fin_con= $lf_in_con)    
evaluate ($l3_in_con=  $l3_fin_con / 5) 
evaluate ($l3_fin_noe = $lf_in_noe) 
evaluate ($l3_in_noe = $l3_fin_noe / 5) 
evaluate ($l3_fin_cdih = $lf_in_cdih) 
evaluate ($l3_in_cdih = $l3_fin_cdih / 5) 
evaluate ($l3_fin_rad = $lf_in_rad) 
evaluate ($l3_in_rad = $l3_fin_rad / 5) 
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!*****************************Loop B********************************** 
evaluate ($l2_cool_steps = 1000) 
evaluate ($l2_init_t  = 2000.00) 
evaluate ($l2_final_t = 1750.00) 
evaluate ($l2_tempstep = 50) 
evaluate ($l2_fin_ang = $l3_in_ang) 
evaluate ($l2_in_ang = $l2_fin_ang / 5)          
evaluate ($l2_fin_imp = $l3_in_imp) 
evaluate ($l2_in_imp = $l2_fin_imp / 5)          
evaluate ($l2_fin_con= $l3_in_con)   
evaluate ($l2_in_con=  $l2_fin_con / 5)        
evaluate ($l2_fin_noe = $l3_in_noe) 
evaluate ($l2_in_noe = $l2_fin_noe / 5)          
evaluate ($l2_fin_cdih = $l3_in_cdih) 
evaluate ($l2_in_cdih = $l2_fin_cdih / 5)          
evaluate ($l2_fin_rad = $l3_in_rad) 
evaluate ($l2_in_rad = $l2_fin_rad / 5)          
 
!*****************************Loop A************************************ 
evaluate ($l1_cool_steps = 500) 
evaluate ($l1_init_t  = 2500.00) 
evaluate ($l1_final_t = 2000.00) 
evaluate ($l1_tempstep = 50.0) 
evaluate ($l1_fin_ang = $l2_in_ang) 
evaluate ($l1_in_ang = $l1_fin_ang / 5) 
evaluate ($l1_fin_imp = $l2_in_imp) 
evaluate ($l1_in_imp = $l1_fin_imp / 5) 
evaluate ($l1_fin_con= $l2_in_con)   
evaluate ($l1_in_con=  $l1_fin_con / 5) 
evaluate ($l1_fin_noe = $l2_in_noe) 
evaluate ($l1_in_noe = $l1_fin_noe / 5) 
evaluate ($l1_fin_cdih = $l2_in_cdih) 
evaluate ($l1_in_cdih = $l1_fin_cdih / 5) 
evaluate ($l1_fin_rad = $l2_in_rad) 
evaluate ($l1_in_rad = $l1_fin_rad / 5) 
!*********************************************************************** 
evaluate ($knoe  = 50.0)         
evaluate ($asym  = 1.0)          
!*********************************************************************** 
noe 
   reset 
   nres = 4000  
   class all  
   @ (Read NOE restraints here) 
   @ (Read H-Bonding restraints here) 
end 
 
noe 
   ceiling 1000 
   averaging  * sum 
   potential  * square 
   scale * $knoe 
   sqconstant * 1. 
   sqexponent * 2 
end 
!***************************************************************************** 
restraints dihedral 
   nass = 500 
   @ (Read Sugar Pucker & Dihedral restraints here) 
end 
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coor copy end 
!***************************************************************************** 
@ (Read Planarity restraints here) 
!***************************************************************************** 
!the input file below creates a form helix for the stems 
@ (A-form restraints for RNA-helices) 
!***************************************************************************** 
set echo on message on end 
evaluate ($rcon  = 0.003)  
!***************************************************************************** 
parameters 
  nbonds 
    atom 
    nbxmod 3   wmin = 0.01   cutnb=4.5 ctonnb=2.99 ctofnb=3 
    tolerance 0.5  repel= 0.9  rexp   =  2 irex   =  2 
    rcon=$rcon     
  end 
end  
!***************************************************************************** 
set message on echo on end 
 
vector do (refx=x) (all) 
vector do (refy=y) (all) 
vector do (refz=z) (all) 
 
constraints fix ((resid 500 or resid 501) and name OO) end 
 
vector do (mass  = 100.0) (not (resid 500 or resid 501))  
vector do (mass  = 30.0) (resid 500 or resid 501) 
vector do (fbeta = 10.0) (all)         
!***************************************************************************** 
 
{* Generate Structures 1 ->N} 
evaluate ($count =0) 
evaluate ($end_count = N) 
 
!***************************************************************************** 
while ($count < $end_count) loop main 
  evaluate ($count = $count + 1) 
  set seed $count  end 
  coor swap end 
  coor copy end 
 
  vector do (refx=x) (all) 
  vector do (refy=y) (all) 
  vector do (refz=z) (all) 
 
  noe scale * $knoe end       
!*****************************Loop A****************************************** 
  evaluate ($ncycle = ($l1_init_t-$l1_final_t)/$l1_tempstep) 
  evaluate ($nstep =int($l1_cool_steps/$ncycle)) 
  evaluate ($bath  = $l1_init_t) 
  evaluate ($radfact = ($l1_fin_rad/$l1_in_rad)^(1/$ncycle)) 
  evaluate ($radius=    $l1_in_rad) 
  evaluate ($ang_fac = ($l1_fin_ang/$l1_in_ang)^(1/$ncycle)) 
  evaluate ($k_ang = $l1_in_ang) 
  evaluate ($imp_fac = ($l1_fin_imp/$l1_in_imp)^(1/$ncycle)) 
  evaluate ($k_imp = $l1_in_imp) 
  evaluate ($k_vdwfact = ($l1_fin_con/$l1_in_con)^(1/$ncycle)) 
  evaluate ($k_vdw = $l1_in_con) 



 115 

  evaluate ($noe_fac = ($l1_fin_noe/$l1_in_noe)^(1/$ncycle)) 
  evaluate ($knoe = $l1_in_noe) 
  evaluate ($cdih_fac = ($l1_fin_cdih/$l1_in_cdih)^(1/$ncycle)) 
  evaluate ($kcdih = $l1_in_cdih) 
 
  flags  
    exclude * 
    include bonds vdw noe angl plan impr cdih 
  end 
 
  vector do (vx = maxwell($bath)) (all) 
  vector do (vy = maxwell($bath)) (all) 
  vector do (vz = maxwell($bath)) (all) 
 
 
    evaluate ($i_cool = 0) 
    while ($i_cool < $ncycle) loop cool 
    evaluate ($i_cool=$i_cool+1) 
    evaluate ($bath  = 1000)  ! mantaining 1000 K 
    evaluate ($k_vdw=min($l1_fin_con,$k_vdw*$k_vdwfact)) 
    evaluate ($radius=max($l1_fin_rad,$radius*$radfact)) 
    evaluate ($k_ang = $k_ang*$ang_fac) 
    evaluate ($k_imp = $k_imp*$imp_fac) 
    evaluate ($knoe  = $knoe*$noe_fac) 
    evaluate ($kcdih=min($l1_fin_cdih,$kcdih*$cdih_fac)) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
 
    parameter 
        nbonds 
          cutnb=4.5 rcon=$k_vdw nbxmod=3 repel=$radius 
        end 
    end 
 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
     
    dynamics  verlet 
        nstep=$nstep  timestep=0.003 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=500  iprfrq=0 
        ntrfr = 99999999 
    end 
    end loop cool 
!*****************************Loop B****************************************** 
  evaluate ($ncycle = ($l2_init_t-$l2_final_t)/$l2_tempstep) 
  evaluate ($nstep = int($l2_cool_steps/$ncycle)) 
  evaluate ($bath  = $l2_init_t) 
  evaluate ($radfact = ($l2_fin_rad/$l2_in_rad)^(1/$ncycle)) 
  evaluate ($radius=    $l2_in_rad) 
  evaluate ($ang_fac = ($l2_fin_ang/$l2_in_ang)^(1/$ncycle)) 
  evaluate ($k_ang = $l2_in_ang) 
  evaluate ($imp_fac = ($l2_fin_imp/$l2_in_imp)^(1/$ncycle)) 
  evaluate ($k_imp = $l2_in_imp) 
  evaluate ($k_vdwfact = ($l2_fin_con/$l2_in_con)^(1/$ncycle)) 
  evaluate ($k_vdw = $l2_in_con) 
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  evaluate ($noe_fac = ($l2_fin_noe/$l2_in_noe)^(1/$ncycle)) 
  evaluate ($knoe = $l2_in_noe) 
  evaluate ($cdih_fac = ($l2_fin_cdih/$l2_in_cdih)^(1/$ncycle)) 
  evaluate ($kcdih = $l2_in_cdih) 
 
  flags  
    exclude * 
    include bonds angl impr vdw noe plan cdih 
  end 
 
    evaluate ($i_cool = 0) 
    while ($i_cool < $ncycle) loop cool 
    evaluate ($i_cool=$i_cool+1) 
    evaluate ($bath  = 1000)   ! mantaining 1000 K 
    evaluate ($k_vdw=min($l2_fin_con,$k_vdw*$k_vdwfact)) 
    evaluate ($radius=max($l2_fin_rad,$radius*$radfact)) 
    evaluate ($k_ang = $k_ang*$ang_fac) 
    evaluate ($k_imp = $k_imp*$imp_fac) 
    evaluate ($knoe  = $knoe*$noe_fac) 
    evaluate ($kcdih=min($l2_fin_cdih,$kcdih*$cdih_fac)) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
 
    parameter 
        nbonds 
          cutnb=4.5 rcon=$k_vdw nbxmod=3 repel=$radius 
        end 
    end 
 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.003 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=500  iprfrq=0 
        ntrfr = 99999999 
    end 
    end loop cool 
!*****************************Loop C****************************************** 
  evaluate ($ncycle = ($l3_init_t-$l3_final_t)/$l3_tempstep) 
  evaluate ($nstep = int($l3_cool_steps/$ncycle)) 
  evaluate ($bath  = $l3_init_t) 
  evaluate ($radfact = ($l3_fin_rad/$l3_in_rad)^(1/$ncycle)) 
  evaluate ($radius= $l3_in_rad) 
  evaluate ($ang_fac = ($l3_fin_ang/$l3_in_ang)^(1/$ncycle)) 
  evaluate ($k_ang = $l3_in_ang) 
  evaluate ($imp_fac = ($l3_fin_imp/$l3_in_imp)^(1/$ncycle)) 
  evaluate ($k_imp = $l3_in_imp) 
  evaluate ($k_vdwfact = ($l3_fin_con/$l3_in_con)^(1/$ncycle)) 
  evaluate ($k_vdw = $l3_in_con) 
  evaluate ($noe_fac = ($l3_fin_noe/$l3_in_noe)^(1/$ncycle)) 
  evaluate ($knoe = $l3_in_noe) 
  evaluate ($cdih_fac = ($l3_fin_cdih/$l3_in_cdih)^(1/$ncycle)) 
  evaluate ($kcdih = $l3_in_cdih) 
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  flags  
    exclude * 
    include bonds angl impr vdw noe plan cdih  
  end 
 
    evaluate ($i_cool = 0) 
    while ($i_cool < $ncycle) loop cool 
    evaluate ($i_cool=$i_cool+1) 
    evaluate ($bath  = 1000)   ! mantaining 1000 K 
    evaluate ($k_vdw=min($l3_fin_con,$k_vdw*$k_vdwfact)) 
    evaluate ($radius=max($l3_fin_rad,$radius*$radfact)) 
    evaluate ($k_ang = $k_ang*$ang_fac) 
    evaluate ($k_imp = $k_imp*$imp_fac) 
    evaluate ($knoe  = $knoe*$noe_fac) 
    evaluate ($kcdih=min($l3_fin_cdih,$kcdih*$cdih_fac)) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
 
    parameter 
        nbonds 
          cutnb=4.5 rcon=$k_vdw nbxmod=3 repel=$radius 
        end 
    end 
 
    noe scale all $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.003 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=500  iprfrq=0 
        ntrfr = 99999999 
    end 
    end loop cool 
!*****************************Loop D****************************************** 
  evaluate ($ncycle = ($lf_init_t-$lf_final_t)/$lf_tempstep) 
  evaluate ($nstep =int($lf_cool_steps/$ncycle)) 
  evaluate ($bath  = $lf_init_t) 
  evaluate ($radfact = ($lf_fin_rad/$lf_in_rad)^(1/$ncycle)) 
  evaluate ($radius=    $lf_in_rad) 
  evaluate ($ang_fac = ($lf_fin_ang/$lf_in_ang)^(1/$ncycle)) 
  evaluate ($k_ang = $lf_in_ang) 
  evaluate ($imp_fac = ($lf_fin_imp/$lf_in_imp)^(1/$ncycle)) 
  evaluate ($k_imp = $lf_in_imp) 
  evaluate ($k_vdwfact = ($lf_fin_con/$lf_in_con)^(1/$ncycle)) 
  evaluate ($k_vdw = $lf_in_con) 
  evaluate ($noe_fac = ($lf_fin_noe/$lf_in_noe)^(1/$ncycle)) 
  evaluate ($knoe = $lf_in_noe) 
  evaluate ($cdih_fac = ($lf_fin_cdih/$lf_in_cdih)^(1/$ncycle)) 
  evaluate ($kcdih = $lf_in_cdih) 
 
  flags  
    exclude * 
    include bonds angl impr vdw noe cdih plan  
  end 
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    evaluate ($i_cool = 0) 
    while ($i_cool < $ncycle) loop cool 
    evaluate ($i_cool=$i_cool+1) 
    evaluate ($bath  = 1000)   ! mantaining 1000 K 
    evaluate ($k_vdw=min($lf_fin_con,$k_vdw*$k_vdwfact)) 
    evaluate ($radius=max($lf_fin_rad,$radius*$radfact)) 
    evaluate ($k_ang = $k_ang*$ang_fac) 
    evaluate ($k_imp = $k_imp*$imp_fac) 
    evaluate ($knoe  = $knoe*$noe_fac) 
    evaluate ($kcdih=min($lf_fin_cdih,$kcdih*$cdih_fac)) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
 
    parameter 
        nbonds 
          cutnb=4.5 rcon=$k_vdw nbxmod=3 repel=$radius 
        end   
    end 
 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.003 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=500  iprfrq=0 
        ntrfr = 99999999 
    end 
    end loop cool 
 
!*************************Powell Minimization********************************* 
 mini powell nstep= 2000 nprint= 20 end 
!*************************************************************************** 
set message on echo on end 
!lines below this print out threshold and violations 
 
   print threshold=0.2 noe 
   evaluate ($rms_noe=$result) 
   evaluate ($viol_noe=$violations) 
   print threshold=3.0 cdih 
   evaluate ($rms_cdih=$result) 
   evaluate ($viol_cdih=$violations) 
   print threshold=0.03 bonds           
   evaluate ($rms_bonds=$result) 
   evaluate ($viol_bonds=$violations) 
   print threshold=2.0 angles 
   evaluate ($rms_angles=$result) 
   evaluate ($viol_angles=$violations) 
   print threshold=3.0 impropers 
   evaluate ($rms_impropers=$result) 
   evaluate ($viol_imp=$violations) 
   set message on echo on end 
 
   remarks ******************************************************************* 
   remarks      overall,bonds,angles,improper,vdw,cdih,noe 
   remarks energies: $ener, $bond, $angl, $impr, $vdw, $cdih, $noe 
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   remarks ******************************************************************* 
   remarks            bonds,angles,impropers,cdih,noe 
   remarks  bonds etc: $rms_bonds,$rms_angles,$rms_impropers,$rms_cdih,$rms_noe 
   remarks ******************************************************************* 
   remarks               noe,  cdih,  bonds,  angles,  impropers 
   remarks violations:$viol_noe,$viol_cdih,$viol_bonds,$viol_angles,$viol_imp 
   remarks ******************************************************************* 
  
   set message on echo on end 
     evaluate ($filename="../(Directory_Name)/(File_Name_)"+".pdb") 
     write coordinates output =$filename end 
   end loop main 
stop 
 
!***************************************************************************** 
!*REMARKS Annealing protocol does 3 rounds of constant temperature dynamics          * 
!*REMARKS at various temperatures decreasing at 1000k 600k and 400k                                  * 
!*REMARKS each 3000 steps at 3 femtosecond with 1000 powell mini between                        * 
!***************************************************************************** 
evaluate ($seed=(264437) + 976876) 
set seed $seed  end 
!***************************************************************************** 
parameter 
   @ (Read Parameter file here) 
end 
 
structure  
   @ (Read Topology/PSF file here) 
end 
 
coordinates @ (Read Initial Structure Coordinates) 
!***************************************************************************** 
evaluate ($knoe  = 50.0)         
evaluate ($asym  = 1.0)  
 
noe 
   reset 
   nres = 4000  
   class all  
   @ (Read NOE restraints here) 
   @ (Read H-Bonding restraints here) 
end 
 
noe 
   ceiling 1000 
   averaging  * sum 
   potential  * square 
   scale * $knoe 
   sqconstant * 1. 
   sqexponent * 2 
end 
!***************************************************************************** 
restraints dihedral 
   nass = 500 
   @ (Read Sugar Pucker & Dihedral restraints here) 
end 
coor copy end 
!***************************************************************************** 
@ (Read Planarity restraints here) 
!***************************************************************************** 
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set echo on message on end 
evaluate ($rcon  = 0.003)  
!***************************************************************************** 
set message on echo on end 
 
vector do (refx=x) (all) 
vector do (refy=y) (all) 
vector do (refz=z) (all) 
 
constraints fix ((resid 500 or resid 501) and name OO) end 
 
vector do (mass  = 100.0) (not (resid 500 or resid 501)) 
vector do (fbeta = 10.0) (all)    
!***************************************************************************** 
{* Generate Structures 1 ->1 *} 
evaluate ($count =0) 
evaluate ($end_count =1) 
!***************************************************************************** 
  while ($count < $end_count) loop main 
  evaluate ($count = $count + 1) 
  set seed $count  end 
  coor swap end 
  coor copy end 
  evaluate ($icount =0) 
  while ($icount<3) loop imain   !3 rounds like Pardi suggests 
  evaluate ($icount = $icount + 1) 
!***************************************************************************** 
 flags  
    exclude * 
    include bonds vdw noe angl plan cdih impr  
  end 
  mini powell nstep= 100 nprint= 50 end 
!***************************************************************************** 
  vector do (refx=x) (all) 
  vector do (refy=y) (all) 
  vector do (refz=z) (all) 
 
  noe scale * $knoe end       
!***************************************************************************** 
  evaluate ($nstep=3000) 
  evaluate ($radius=0.8) 
  evaluate ($k_ang =1) 
  evaluate ($k_imp =1) 
  evaluate ($k_vdw =4) 
  evaluate ($knoe =50) 
  evaluate ($kcdih =300.00) 
 
  flags  
    exclude * 
    include bonds vdw noe angl plan cdih impr  
  end 
   
  for $bath in (1000 600 400) loop anneal 
 
  vector do (vx = maxwell($bath)) (all) 
  vector do (vy = maxwell($bath)) (all) 
  vector do (vz = maxwell($bath)) (all) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
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    end end 
 
    parameter 
        nbonds 
          cutnb=4.5 rcon=$k_vdw nbxmod=3 repel=$radius 
        end 
    end 
 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.003 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=100  iprfrq=0 
        ntrfr = 99999999 
    end 
    mini powell nstep= 700 nprint= 100 end 
    end loop anneal 
!***************************************************************************** 
 mini powell nstep= 1000 nprint= 100 end 
!***************************************************************************** 
    end loop imain 
 
    set message on echo on end 
 
!lines below this print out threshold and violations 
 
   print threshold=0.5 noe 
   evaluate ($rms_noe=$result) 
   evaluate ($viol_noe=$violations) 
   print threshold=5.0 cdih 
   evaluate ($rms_cdih=$result) 
   evaluate ($viol_cdih=$violations) 
   print threshold=0.05 bonds           
   evaluate ($rms_bonds=$result) 
   evaluate ($viol_bonds=$violations) 
   print threshold=5.0 angles 
   evaluate ($rms_angles=$result) 
   evaluate ($viol_angles=$violations) 
   print threshold=5.0 impropers 
   evaluate ($rms_impropers=$result) 
   evaluate ($viol_imp=$violations) 
 
   set message on echo on end 
 
   remarks ******************************************************************* 
   remarks      overall,bonds,angles,improper,vdw,cdih,noe 
   remarks energies: $ener, $bond, $angl, $impr, $vdw, $cdih, $noe 
   remarks ******************************************************************* 
   remarks            bonds,angles,impropers,cdih,noe 
   remarks  bonds etc: $rms_bonds,$rms_angles,$rms_impropers,$rms_cdih,$rms_noe 
   remarks ******************************************************************* 
   remarks               noe,  cdih,  bonds,  angles,  impropers 
   remarks violations:$viol_noe,$viol_cdih,$viol_bonds,$viol_angles,$viol_imp 
   remarks ******************************************************************* 
  
   set message on echo on end 
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     evaluate ($filename="../(Directory_Name)/(File_Name_)"+".pdb") 
     write coordinates output =$filename end 
   end loop main 
 
stop 
 
!***************************************************************************** 
!*REMARKS Refine protocol Verlet dynamics at 500K, 300K, 150K, 50K and 10K   * 
!*REMARKS 20,000 steps of 1 femtosecond dynamics at each temperature         * 
!*REMARKS and 1000 Powell minimization steps between the dynamics            * 
!***************************************************************************** 
evaluate ($seed=(264437) + 976876) 
set seed $seed  end 
!***************************************************************************** 
parameter 
   @ (Read Parameter file here) 
end 
 
structure  
   @ (Read Topology/PSF file here) 
end 
 
coordinates @ (Read Annealed Structure Coordinates) 
!***************************************************************************** 
evaluate ($knoe  = 50.0)         
evaluate ($asym  = 1.0)         
 
noe 
   reset 
   nres = 4000  
   class all  
   @ (Read NOE restraints here) 
   @ (Read H-Bonding restraints here) 
end 
 
noe 
   ceiling 1000 
   averaging  * sum 
   potential  * square 
   scale * $knoe 
   sqconstant * 1. 
   sqexponent * 2 
end 
!***************************************************************************** 
restraints dihedral 
   nass = 500 
   @ (Read Sugar Pucker & Dihedral restraints here) 
end 
coor copy end 
!***************************************************************************** 
@  (Read Planarity restraints here) 
!***************************************************************************** 
set echo on message on end 
vector do (refx=x) (all) 
vector do (refy=y) (all) 
vector do (refz=z) (all) 
 
constraints fix ((resid 500 or resid 501) and name OO) end 
 
vector do (mass  = 100.0) (not (resid 500 or resid 501))  
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vector do (mass  = 30.0) (resid 500 or resid 501) 
vector do (fbeta = 10.0) (all)     
!***************************************************************************** 
{* Generate Structures 1 ->1 *} 
evaluate ($count =0) 
evaluate ($end_count =1) 
!***************************************************************************** 
  while ($count < $end_count) loop main 
  evaluate ($count = $count + 1) 
  set seed $count  end 
  coor swap end 
  coor copy end 
 
  vector do (refx=x) (all) 
  vector do (refy=y) (all) 
  vector do (refz=z) (all) 
!***************************************************************************** 
  evaluate ($nstep =20000) 
  evaluate ($radius=0.8) 
  evaluate ($k_ang =1) 
  evaluate ($k_imp =1) 
  evaluate ($k_vdw =2) 
  evaluate ($knoe =50) 
  evaluate ($kcdih =300.00) 
 
  flags  
    exclude * 
    include bonds vdw noe angl impr cdih plan 
  end 
 
  for $bath in (500 300 150 50 10) loop refine 
   
  vector do (vx = maxwell($bath)) (all) 
  vector do (vy = maxwell($bath)) (all) 
  vector do (vz = maxwell($bath)) (all) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
 
    parameter 
        nbonds 
          cutnb = 4.5 ctonnb = 2.99 ctofnb = 3 
          rcon=2.0 nbxmod=3 repel=$radius 
        end 
    end 
 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.001 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=5000  iprfrq=0 
        ntrfr = 99999999 
    end 
    mini powell nstep= 1000 nprint= 20 end 
    end loop refine 



 124 

 
!***************************************************************************** 
 mini powell nstep= 2000 nprint= 20 end 
!***************************************************************************** 
 
set message on echo on end 
 
!lines below this print out threshold and violations 
 
   print threshold=0.5 noe 
   evaluate ($rms_noe=$result) 
   evaluate ($viol_noe=$violations) 
   print threshold=5.0 cdih 
   evaluate ($rms_cdih=$result) 
   evaluate ($viol_cdih=$violations) 
   print threshold=0.05 bonds           
   evaluate ($rms_bonds=$result) 
   evaluate ($viol_bonds=$violations) 
   print threshold=5.0 angles 
   evaluate ($rms_angles=$result) 
   evaluate ($viol_angles=$violations) 
   print threshold=5.0 impropers 
   evaluate ($rms_impropers=$result) 
   evaluate ($viol_imp=$violations) 
 
   set message on echo on end 
 
   remarks ******************************************************************* 
   remarks      overall,bonds,angles,improper,vdw,cdih,noe 
   remarks energies: $ener, $bond, $angl, $impr, $vdw, $cdih, $noe 
   remarks ******************************************************************* 
   remarks            bonds,angles,impropers,cdih,noe 
   remarks  bonds etc: $rms_bonds,$rms_angles,$rms_impropers,$rms_cdih,$rms_noe 
   remarks ******************************************************************* 
   remarks               noe,  cdih,  bonds,  angles,  impropers 
   remarks violations:$viol_noe,$viol_cdih,$viol_bonds,$viol_angles,$viol_imp 
   remarks ******************************************************************* 
  
   set message on echo on end 
     evaluate ($filename="../(Directory_Name)/(File_Name_)"+".pdb") 
     write coordinates output =$filename end 
   end loop main 
 
stop 
 
!********************************************************************* 
!*REMARKS RDC refine protocol. Introduces RDC using sani algorithm. Attractive * 
!*REMARKS LJ switched on, scale Sani force constant at 300K very slowly in          * 
!*REMARKS 75 cycles, 1000 steps 1 fs dynamics followed by refinement at              * 
!*REMARKS 300K, 150K, 50K and 10K, 50,000 steps, 1 fs dynamics and 1000 steps* 
!*REMARKS Powell Minimization between the steps                                                   * 
!********************************************************************* 
evaluate ($seed=(264437) + 976876) 
set seed $seed  end 
!********************************************************************* 
parameter 
   @ (Read Parameter file here) 
end 
 
structure  
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   @ (Read Topology/PSF file here) 
end 
 
coordinates @ (Read Refined Structure Coordinates) 
!****************************************************************************** 
noe 
   reset 
   nres = 4000  
   class all  
   @ (Read NOE restraints here) 
   @ (Read H-Bonding restraints here) 
end 
 
noe 
   ceiling 1000 
   averaging  * sum 
   potential  * square 
   scale * $knoe 
   sqconstant * 1. 
   sqexponent * 2 
end 
!****************************************************************************** 
restraints dihedral 
   nass = 500 
   @ (Read Sugar Pucker & Dihedral restraints here) 
end 
!****************************************************************************** 
@  (Read Planarity restraints here) 
!********read in dipolar coupling restraints and constants********************* 
evaluate ($ksani =0.001) 
  sani 
     nres=500 
     class JCH                     
     force $ktenso 
     potential square  
     coeff 0.0 3.5  0.55 {corresponds to 0.0  Da  R} 
     @ (Read field induced Residual Dipolar Coupling restraints) 
  end 
!****************************************************************************** 
set message on echo on end 
 
vector do (refx=x) (all) 
vector do (refy=y) (all) 
vector do (refz=z) (all) 
 
constraints fix ((resid 500 or resid 501) and name OO) end 
 
vector do (mass  = 100.0) (not (resid 500 or resid 501))  
vector do (mass  = 30.0) (resid 500 or resid 501) 
vector do (fbeta = 10.0) (all)     
!****************************************************************************** 
  {* Generate Structures 1 ->1 *} 
  evaluate ($count =0) 
  evaluate ($end_count =1) 
!****************************************************************************** 
  while ($count < $end_count) loop main 
  evaluate ($count = $count + 1) 
  set seed $count  end 
  coor swap end 
  coor copy end 
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  vector do (refx=x) (all) 
  vector do (refy=y) (all) 
  vector do (refz=z) (all) 
!***************Introduce fiRDC with slow increase in force constant*********** 
  evaluate ($ncycle = 75) 
  evaluate ($nstep =1000) 
  evaluate ($bath  = 300)  
  evaluate ($radius=0.8) 
  evaluate ($k_ang =1) 
  evaluate ($k_imp =1) 
  evaluate ($k_vdw =2.0) 
  evaluate ($knoe =50) 
  evaluate ($kcdih =300.00) 
  evaluate ($ini_sani = 0.001)  
  evaluate ($fin_sani = 1.2) 
  evaluate ($sani_fac = ($fin_tenso/$ini_tenso)^(1/$ncycle)) 
  evaluate ($ksani = $ini_sani) 
 
  flags  
    exclude * 
    include bonds vdw noe angl impr sani cdih plan 
 
  end 
 
  vector do (vx = maxwell($bath)) (all) 
  vector do (vy = maxwell($bath)) (all) 
  vector do (vz = maxwell($bath)) (all) 
 
 
  evaluate ($i_cool = 0) 
  while ($i_cool < $ncycle) loop sani 
  evaluate ($i_cool=$i_cool+1) 
  evaluate ($ktenso=$ktenso*$tens_fac) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
 
!*****************introducing attractive Lennard Jones************************* 
   parameter 
      nbonds 
      repel=0 
      atom wmin=0.01 tolerance=0.5 
      nbxmod=3 cutnb=11.5 ctonnb=9.5 ctofnb=10.5  rcon=2.0 
      rdie vswitch switch 
    end 
   end 
!*********************************************************************** 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    sani 
    force $ksani 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.0001 iasvel=current  firsttemp= $bath 
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        tcoupling = true  tbath = $bath   nprint=10000  iprfrq=0 
        ntrfr = 99999999 
    end 
    mini powell nstep= 1000 nprint= 20 end 
    end loop sani 
!****************************************************************************** 
  evaluate ($icount =0) 
  while ($icount<3) loop imain  {3 rounds} 
  evaluate ($icount = $icount + 1) 
!******************************************************************************   
  evaluate ($nstep =50000) 
  evaluate ($bath  = 300) 
  evaluate ($radius=0.8) 
  evaluate ($k_ang =1) 
  evaluate ($k_imp =1) 
  evaluate ($k_vdw =2.0) 
  evaluate ($knoe =50) 
  evaluate ($kcdih =300.00) 
  evaluate ($ksani = 1.2) 
 
  flags  
    exclude * 
    include bonds vdw noe angl impr sani cdih plan 
  end 
 
  for $bath in (300 150 50 10) loop refine 
   
  vector do (vx = maxwell($bath)) (all) 
  vector do (vy = maxwell($bath)) (all) 
  vector do (vz = maxwell($bath)) (all) 
 
    constraints interaction (all) (all) weights 
        * 1 angles $k_ang improper $k_imp 
    end end 
!*****************introducing attractive Lennard Jones************************ 
   parameter 
      nbonds 
      repel=0 
      atom wmin=0.01 tolerance=0.5 
      nbxmod=3 cutnb=11.5 ctonnb=9.5 ctofnb=10.5  rcon=2.0 
      rdie vswitch switch 
    end 
   end 
!********************************************************************** 
    noe scale * $knoe  end 
 
    restraints dihedral 
        scale $kcdih 
    end 
 
    sani 
    force $ksani 
    end 
 
    dynamics  verlet 
        nstep=$nstep  timestep=0.0001 iasvel=current  firsttemp= $bath 
        tcoupling = true  tbath = $bath   nprint=10000  iprfrq=0 
        ntrfr = 99999999 
    end 
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    mini powell nstep= 1000 nprint= 20 end 
    end loop refine 
!****************************************************************************** 
    mini powell nstep= 2000 nprint= 20 end 
    end loop imain 
!****************************************************************************** 
 
set message on echo on end 
 
!lines below this print out threshold and violations 
 
   print threshold=0.5 noe 
   evaluate ($rms_noe=$result) 
   evaluate ($viol_noe=$violations) 
   print threshold=5.0 cdih 
   evaluate ($rms_cdih=$result) 
   evaluate ($viol_cdih=$violations) 
   print threshold=0.05 bonds           
   evaluate ($rms_bonds=$result) 
   evaluate ($viol_bonds=$violations) 
   print threshold=5.0 angles 
   evaluate ($rms_angles=$result) 
   evaluate ($viol_angles=$violations) 
   print threshold=5.0 impropers 
   evaluate ($rms_impropers=$result) 
   evaluate ($viol_imp=$violations) 
   sani print threshold=0.5 class JCH end 
   evaluate ($rms_san_JCH=$result) 
   evaluate ($viol_san_JCH=$violations) 
   set message on echo on end 
   remarks ******************************************************************** 
   remarks      overall,bonds,angles,improper,vdw,cdih,noe,sani 
   remarks energies: $ener, $bond, $angl, $impr, $vdw, $cdih, $noe, $sani 
   remarks ******************************************************************** 
   remarks            bonds,angles,impropers,cdih,noe,sani 
   remarks  bonds etc: $rms_bonds,$rms_angles,$rms_impropers,$rms_cdih, 
   remarks  $rms_noe,$rms_san_JCH 
   remarks ******************************************************************** 
   remarks               noe,  cdih,  bonds,  angles,  impropers, sani 
   remarks violations:$viol_noe,$viol_cdih,$viol_bonds,$viol_angles,$viol_imp, 
   remarks $viol_san_JCH 
   remarks ******************************************************************** 
    set message on echo on end 
     evaluate ($filename="../(Directory_Name)/(File_Name_)"+".pdb") 
     write coordinates output =$filename end 
   end loop main 
stop 
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APPENDIX C 
 
Useful scripts for structure calculations, modeling and analysis. 
 
******************************************************************* 
*Perl script to generate multiple XPLOR input files each with new structures* 
******************************************************************* 
#! /usr/bin/perl 
if ( $#ARGV != 2 ) { 
 print "Usage: mp_xplor template_script output_script nam_file\n"; 
 exit; 
} 
($script_def, $script_out, $nam_name) = @ARGV; 
open(I, $nam_name); 
@nam=<I>; 
close I; 
foreach $i (0 .. $#nam) 
{ 
 chomp $nam[$i]; 
 $nam[$i]=~/ini_(.*)\.pdb/; 
 $num=$1; 
open( I, $script_def); 
@script = <I>; 
close I; 
foreach $j (1.. $#script ) 
{ 
 if ( $script[$j] =~ /ini_/ ) 
 { 
  $script[$j] =~ s/(.*)ini_(.*)/$1ini_$num$2/; 
 } 
 if ( $script[$j] =~ /ann_/ ) 
 { 
  $script[$j] =~ s/(.*)ann_(.*)/$1ann_$num$2/; 
 } 
} 
 $j = join( "", @script); 
 open( I, ">${script_out}_${i}.inp"); 
 print I "$j"; 
 close I; 
 } 
exit 0; 
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*********************************************************** 
*Perl script to make dihedral angle restraints from a given PDB file* 
* for nucleic acids and proteins                                                              * 
*********************************************************** 
#!/bin/sh -- # perl 
eval 'exec perl -w -S $0 ${1+"$@"}' 
  if 0; 
 
open (INFILE, "HH_dihedral.txt"); 
open (OUTFILE, ">cns_dihedrals.txt"); 
while ($line = <INFILE>) 
 { 
 chop ($line); 
 @line_split = split (' ', $line); 
 
# ensure that only intradomain restraints are generated 
              if (  
                       ((1<=$line_split[0])&&($line_split[0]<=4))  ||                     
                       ((131<=$line_split[0])&&($line_split[0]<=134)) || 
                       ((7<=$line_split[0])&&($line_split[0]<=13)) || 
                       ((101<=$line_split[0])&&($line_split[0]<=107))  
                   ) 
# Reference Nomenclatures from Crothers/Tinocoa and Bloomfeld                    
# Name = Definition 
# alpha = O3'(n-1)-P-O5'-C5'      nu0 = C4'-O4'-C1'-C2' 
# beta = P-O5'-C5'-C4'            nu1 = O4'-C1'-C2'-C3' 
# gamma = O5'-C5'-C4'-C3'         nu2 = C1'-C2'-C3'-C4' 
# epsilon = C4'-C3'-O3'-P(n+1)    nu3 = C2'-C3'-C4'-O4' 
# zeta = C3'-O3'-P(n+1)-O5'(n+1)  nu4 = C3'-C4'-O4'-C1' 
# chi(pur) = O4'-C1'-N9-C4 
# chi(pyr) = O4'-C1'-N1-C2 
               { 
 
 if ( ($line_split[2] eq ALPHA))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $alpha = $line_split[3]; 
  $dalpha = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE "! Resdiue $resnum ALPHA\n"; 
                print OUTFILE  "assign (resid $iminus and name O3')(resid $resnum and name P  )\n"; 
                print OUTFILE  "       (resid $resnum and name O5')(resid $resnum and name C5')"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $alpha, $dalpha; 
  } 
 if ( ($line_split[2] eq BETA)) 
## && ($secondary{$line_split[0]} eq "true") ) 
  { 
  $beta = $line_split[3]; 
  $dbeta = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE  "! Resdiue $resnum BETA\n"; 
                print OUTFILE  "assign (resid $resnum and name P  )(resid $resnum and name O5')\n"; 
                print OUTFILE  "       (resid $resnum and name C5')(resid $resnum and name C4')"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $beta, $dbeta; 
  } 
 if ( ($line_split[2] eq GAMMA))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $gamma = $line_split[3]; 
  $dgamma = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
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                print OUTFILE "! Resdiue $resnum GAMMA\n"; 
                print OUTFILE  "assign (resid $resnum and name O5' )(resid $resnum and name C5'  )\n"; 
                print OUTFILE  "       (resid $resnum and name C4' )(resid $resnum and name C3'  )"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $gamma, $dgamma; 
  } 
 if ( ($line_split[2] eq DELTA))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $delta = $line_split[3]; 
  $ddelta = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE "! Resdiue $resnum DELTA\n"; 
                print OUTFILE  "assign (resid $resnum and name C5' )(resid $resnum and name C4'  )\n"; 
                print OUTFILE  "       (resid $resnum and name C3' )(resid $resnum and name O3'  )"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $delta, $ddelta; 
  }  
 if ( ($line_split[2] eq EPSI))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $epsi = $line_split[3]; 
  $depsi = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE "! Resdiue $resnum EPSI\n"; 
                print OUTFILE  "assign (resid $resnum and name C4' )(resid $resnum and name C3'  )\n"; 
                print OUTFILE  "       (resid $resnum and name O3' )(resid $iplus  and name P    )"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $epsi, $depsi; 
  } 
 if ( ($line_split[2] eq ZETA))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $zeta = $line_split[3]; 
  $dzeta = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE "! Resdiue $resnum ZETA\n"; 
                print OUTFILE  "assign (resid $resnum and name C3' )(resid $resnum and name O3'  )\n"; 
                print OUTFILE  "       (resid $iplus  and name P   )(resid $iplus  and name O5'  )"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $zeta, $dzeta; 
  } 
 if ( ($line_split[2] eq NU1))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $nu1 = $line_split[3]; 
  $dnu1 = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE "! Resdiue $resnum NU1\n"; 
                print OUTFILE  "assign (resid $resnum and name O4' )(resid $resnum and name C1'  )\n"; 
                print OUTFILE  "       (resid $resnum and name C2' )(resid $resnum and name C3'  )"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $nu1, $dnu1; 
  } 
 if ( ($line_split[2] eq NU2))  
##&& ($secondary{$line_split[0]} eq "true") ) 
  { 
  $nu2 = $line_split[3]; 
  $dnu2 = 10; 
  $resnum = $line_split[0]; 
  $iminus = $line_split[0] -1; 
  $iplus = $line_split[0] +1; 
                print OUTFILE "! Resdiue $resnum NU2\n"; 
                print OUTFILE  "assign (resid $resnum and name C1' )(resid $resnum and name C2'  )\n"; 
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                print OUTFILE  "       (resid $resnum and name C3' )(resid $resnum and name C4'  )"; 
  printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $nu2, $dnu2; 
  } 
# Unomment the lines below in case you are measuring dihedral angles for Proteins 
# Then comment out the lines above for alpha, beta, gamma, delta, nu1 and nu2 which are specific 
# for nucleic acids. 
#        if ( ($line_split[2] eq PHI)) 
##&& ($secondary{$line_split[0]} eq "true") ) 
#                { 
#                $phi = $line_split[3]; 
#                $dphi = 0.1; 
#                $resnum = $line_split[0]; 
#                $iminus = $line_split[0] -1; 
#                print OUTFILE "! Resdiue $resnum PHI\n"; 
#                print OUTFILE  "assign (resid $iminus  and name C  )(resid $resnum and name N  )\n"; 
#                print OUTFILE  "           (resid $resnum and name CA)(resid $resnum and name C  )"; 
#                printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $phi, $dphi; 
#                } 
#        if ( ($line_split[2] eq PSI)) 
## && ($secondary{$line_split[0]} eq "true") ) 
#                { 
#                $psi = $line_split[3]; 
#                $dpsi = 0.1; 
#                $resnum = $line_split[0]; 
#                $iplus = $line_split[0] +1; 
#                print OUTFILE "! Resdiue $resnum PSI\n"; 
#                print OUTFILE  "assign (resid $resnum and name N  )(resid $resnum and name CA )\n"; 
#                print OUTFILE  "           (resid $resnum and name C  )(resid $iplus and name N  )"; 
#                printf OUTFILE " 25.0 %5.2f %5.2f 2\n", $psi, $dpsi; 
#                } 
                } 
 } 
close (INFILE); 
close (OUTFILE); 
#die; 
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******************************************************* 
*Perl script to generate artificial NOE restraints from PDB files* 
* that can be used for modeling in XPLOR/CNS format              * 
******************************************************** 
#! /usr/bin/perl 
 
# change the file name here 
open(INFILE, "/nmr1/deva/HH_calc/perl_scripts/ref_HH_180.pdb"); 
open (OUTFILE, ">cns_intradomain_noes.txt"); 
$index = 0 ; 
$cutoff = 100; 
# below fix the error values you would like to give the noe restraints +/- 
$distallowence = 0.01; 
 
while ($line = <INFILE>) 
 { 
 chop ($line); 
 @line_split = split(' ', $line); 
 print "$line_split[2] $line_split[3]\n"; 
 
# fix or statement to you liking.... 
 if ( ($line_split[0] eq "ATOM") && 
   ( 
   ($line_split[2] eq "P")    
   ) 
    ) 
 { 
 $atom[$index] = $line_split[2]; 
 $type[$index] = $line_split[3]; 
 $resnum[$index] = $line_split[4]; 
 $x[$index] = $line_split[5]; 
 $y[$index] = $line_split[6]; 
 $z[$index] = $line_split[7]; 
 $index ++; 
 
 }   # end if 
 }   # end while 
#die; 
$index --; 
for $i (0..$index) 
 { 
 for $j ($i..$index) 
  { 
# only intradomain NOEs in rna 
# explanation : For instance if you want to fix the 2 domains (helices) of the Hammerhead RNA 
# given by the residue numbers (7 to 13 and 101 to 107 stem 1) and ( 134 to 131 and 1 to 4 stem 3) 
# you can choose which atom type you want to use for restraints eg. P, H8, C8, H1' etc. 
# and specify the residue numbers between which you want to generate model / simulated noe restraints 
                if (  
                     ( 
                       ((1<=$resnum[$i])&&($resnum[$i]<=4)) && ((131<=$resnum[$j])&&($resnum[$j]<=134)) 
                     ) || 
                      ( 
                       ((7<=$resnum[$i])&&($resnum[$i]<=13)) && ((101<=$resnum[$j])&&($resnum[$j]<=107)) 
                     ) ||  
                     ( 
                       ((115<=$resnum[$i])&&($resnum[$i]<=118)) && ((123<=$resnum[$j])&&($resnum[$j]<=126)) 
                     )                       
                   ) 
                   { 
     $dist = sqrt( (($x[$i] - $x[$j])*($x[$i] - $x[$j])) + 
         (($y[$i] - $y[$j])*($y[$i] - $y[$j])) + 
         (($z[$i] - $z[$j])*($z[$i] - $z[$j])) ) ; 
     if ( ($dist < $cutoff) && ($i != $j) ) 
   { 
   print OUTFILE "Assign (resid $resnum[$i] and name $atom[$i])\n"; 
   print OUTFILE "       (resid $resnum[$j] and name $atom[$j]) "; 
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   printf OUTFILE "%3.2f %3.2f %3.2f", $dist,  
    $distallowence, $distallowence; 
   print OUTFILE " ! $type[$i]$resnum[$i]  and $type[$j]$resnum[$j] \n\n"; 
   } 
                    } 
  } 
 } 
  
close (INFILE); 
close (OUTFILE); 
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*************************************************** 
*Awk script to sort PDB structures generated by XPLOR * 
*according to total energies, violation energies and             * 
* number of violations                                                             * 
*************************************************** 
 
#!/usr/bin/awk -f 
 
# This script gathers the useful data from the ensemble of structures 
#  and creates several output files with the N best decoys according to  
#  three criteria: total-E, noe-E and n-violations. 
# The data are read from the headings of the PDB of each final decoy. 
# This script must be placed in the same directory as the PDBs 
 
BEGIN{ 
 system("ls -1 sa* > devanlist.txt") 
 
 while(getline < "devanlist.txt" >0){ 
  num++ 
  filenames[num]=$1 
 }close("devanlist.txt") 
 
 for(i=1;i<=num;i++){ 
  OK_en=0 
  OK_vio=0 
 
  while(getline < filenames[i] >0){ 
   if($2=="energies:"){ 
    en[i]=$0 
    OK_en=1 
   } 
 
   if($2=="violations.:"){ 
    vio[i]=$0 
    OK_vio=1 
   } 
 
   if(OK_vio*OK_en) 
    break 
  }close(filenames[i]) 
 } 
  
 for(i=1;i<=num;i++){ 
  printf "%20s %s     %s\n",filenames[i], en[i], vio[i] > "long.txt" 
 } 
 
 
 #Heading of by_nam_short.txt 
 { 
 printf "%s","pdb_name, total energy, noe energy, noe violations\n" > "short.txt" 
 } 
 
 
 # This while loop is only required to remove the unused columns of by_nam_long.txt 
 while(getline < "long.txt" >0){ 
  { 
  printf "%20s %s %s %s %s\n",$1,$4,$10,$14,"end" > "short.txt" 
  } 
 } 
 
 close("long.txt") 
 close("short.txt") 
 
 # Generate useful outputs 
 system("sort -k2n short.txt > tot_e_sorted.out") 
 system("sort -k3n short.txt > noe_e_sorted.out") 
 system("sort -k4n short.txt > viol_sorted.out" ) 
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 # Clean up unused files 
 #system("rm by_nam_short.txt by_nam_long.txt vslist.txt") 
 
 # Generate lists with 10 best for Molmol 
 count=0 
 j=0 
 violations=0 
 while(getline < "tot_e_sorted.out" >0){ 
  count++ 
  vector[count]=$1 
  violat[count]=substr($4,1,length-1) #counts violations  
 }close("tot_e_sorted.out") 
 
 for(j=2; j<=11; j++){ 
  print vector[j] > "tot_e_10best.nam" 
 
  violations=violations + violat[j] 
 } 
  
    addme="average violations in the 10 best-total-E decoys = " 
    print addme violations/10 > "aver_viol.out" 
 
 count=0 
 j=0 
 while(getline < "noe_e_sorted.out" >0){ 
  count++ 
  vector[count]=$1 
 }close("noe_e_sorted.out") 
 
 for(j=2; j<=11; j++){ 
  print vector[j] > "noe_e_10best.nam" 
 } 
 count=0 
 j=0 
 while(getline < "viol_sorted.out" >0){ 
  count++ 
  vector[count]=$1 
 }close("viol_sorted.out") 
 
 for(j=2; j<=11; j++){ 
  print vector[j] > "viol_10best.nam" 
 } 
 
 # List useful files on shell 
  system("ls -d *out") 
  system("ls -d *nam") 
} 
# The file by_nam_long.txt contains all names, energies and violations sorted by filename. 
# The file by_nam_short.txt contains only the numbers that I need sorted by filename. 
 
# The last line system("sort -k4n namesorted.txt") uses the UNIX "sort" command: 
# -k stands for column 
# 4  is the number of the column used for sorting 
# n  means that that column contains a number 
# For sorting strings, remove the 'n', as follows: system("sort -k4 namesorted.txt") 
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************************************************************** 
*Awk script that back calculates RDC and alignment tensor from PDB* 
************************************************************** 
#!/usr/bin/awk -f 
 
BEGIN{ 
 ### ---------------------------------------------------------------------- 
 ### User options 
 ### ---------------------------------------------------------------------- 
 ### MOLECULE 
 molec = "TAR" 
# molec = "1naj" 
# molec = "2gat" 
# molec = "lave"  #test DNA 
 print "Molecule =", molec, ARGV[1] 
 
 ### EQUATION 
 # To build X tensor from normal vector.  
# eqn = "vsan" #vsan view of Angew2004 - cartesian coord. 
 eqn = "vsph" #vsan view of spherical coord -correction of lave's eqn. 
# eqn = "cigr" #cigr, like in Angew2004; non-traceless X. 
# eqn = "lave" #as in the original program - two signs wrong. 
# print "Equation =", eqn 
 
 ### PREFACTORS 
 pre = "vsan" #implementation of Glaser - cartesian lab frame. 
# pre = "cigr" #Angew2004 - exclude 1/2 as I extrapolate to 0 field 
# pre = "bax" #as in JACS 2004 - prefactors change. 
  #Note: vsan(Glaser) and cigr differ only in 1/2. 
# print "Prefactors =", pre 
 
 ### Xi VALUES 
# xi_val = "Bax"  # Bax, JACS2004. 
# xi_val = "Angew" # Angew 2004, 187, Table 1. 
# xi_val = "lave" # Angew 2004, 187, Table 2. Wrong values. 
 xi_val = "zhang" # JACS2004p10530=bastiaan 
 
 scale = -1 # either -1.0 or -2/3 to scale Xzz and delta-Xi 
   # +1 for Laurent equations 
 if(eqn == "lave")  scale = -1*scale #as lave's eqn invert signs 
 
 ### TAR: include / exclude loop or bulge. Note that r24 is missing. 
 jump  = "yes"  # yes / no -- for missing residues 
 bulge = "exclude" # include / exclude 
 loop  = "exclude" # include / exclude 
 if(molec != "TAR"){jump  = "no" ; bulge = "include" ; loop  = "include"} 
### ---------------------------------------------------------------------------- 
#### End of user options 
### ---------------------------------------------------------------------------- 
### Assign constants 
### ---------------------------------------------------------------------------- 
 #initial count of TAR 
 if(molec=="TAR" ) iniN=16  
 if(molec=="1naj") iniN=1 # iniN=1,   jump =no, bulge/loop=include 
 if(molec=="2gat") iniN=101 # iniN=101, jump =no, bulge/loop=include 
 if(molec=="lave") iniN=1 
 
 #column counter for input PDB - dependent on number of columns 
 k=0 #for TAR 
 if(molec=="1naj" || molec=="2gat") k=1 
 
 #CIGR Xi values. 
 if(xi_val == "Angew"){ 
  print "Angew2004, Table 1. Xi values as Xzz" 
  xade = 13 *scale 
  xgua = 13 *scale 
  xcyt = 13 *scale 
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  xthy = 13 *scale 
  xuri = xthy 
  xlig = 2.70/2.04 *xade #lave's DNA ligand 
 } 
 #Xi? values in Angew 2004,187,Table 2, HM method.  
 if(xi_val == "lave"){ 
  print "Lave's: Angew2004, Table 2 - Xi values? Ring currents!" 
  xade = 1.5 *scale 
  xgua = 1.51 *scale 
  xcyt = 0.9 *scale 
  xthy = 0.9 *scale 
  xuri = xthy 
  xlig = 2.70 *scale #lave's DNA ligand 
 } 
 #Bax X values. JACS2004p10820, table 1. Units fixed. 
 if(xi_val == "Bax"){ 
  print "Bax Xi values as Xa=Xzz*3/2. JACS2004p10820, table 1." 
  pi=3.14159265 
  #scale = scale *2/3 #transform Xa into Xzz 
  scale = scale *(4*pi)*3/2 #Bax uses different units and eqn. 
  xade = 1.304 *scale 
  xgua = 0.922 *scale 
  xcyt = 0.392 *scale 
  xthy = 0.411 *scale 
  xuri = 0.386 *scale 
 } 
 #Zhang-Hashimi X values. JACS2004p10530, citing Bastiaan chapter. 
 if(xi_val == "zhang"){ 
 # print "Zhang + Hashimi Xi values. JACS2004p10530." 
  xade = 19.1 *scale 
  xgua = 18.3 *scale 
  xcyt = 12.0 *scale 
  xthy = xcyt *scale 
  xuri = 12.0 *scale 
 } 
 
 #names of residues can be ADE, THY ... or A, T, G, C, U 
 nade = "A" ; ngua = "G" ; ncyt = "C" ; nthy = "T" ; nuri = "U" 
 if(molec=="TAR" || molec=="lave"){ 
  nade = "ADE" ; ngua = "GUA" 
  ncyt = "CYT" ; nthy = "THY" ; nuri = "URI" 
 } 
 
### ---------------------------------------------------------------------------- 
#### Read input data 
### ---------------------------------------------------------------------------- 
while ( getline < ARGV[1] > 0 ){  
 if(molec == "TAR" ) if($11 != "TAR1" ) continue #skip non-TAR1 lines 
 if(molec == "1naj") if($1 == "ENDMDL") break #exit WHILE loop 
 if(molec == "2gat") if($1 == "CONECT") break #exit WHILE loop 
 
# READ BASE PLANE -- Read 4 base atoms to define base plane with two vectors 
 if($3 == "N1" && $4 != "LIG") for(j=1;j<=3;j++) pN1[$(5+k),j]=$(5+j+k) 
 if($3 == "C1" && $4 == "LIG") for(j=1;j<=3;j++) pN1[$(5+k),j]=$(5+j+k) 
 if($3 == "C2" )  for(j=1;j<=3;j++) pC2[$(5+k),j]=$(5+j+k) 
 if($3 == "C4" )   for(j=1;j<=3;j++) pC4[$(5+k),j]=$(5+j+k) 
 if($3 == "C6" )   for(j=1;j<=3;j++) pC6[$(5+k),j]=$(5+j+k) 
 if($3 == "C2" ) endN=$(5+k) # stores the last residue number 
 
# READ BONDS -- Read vectors for RDC of interest 
 if($3 == "C8" && $4 != "LIG") for(j=1;j<=3;j++)  pC8[$(5+k),j]= $(5+j+k) 
 if($3 == "H8" && $4 != "LIG") for(j=1;j<=3;j++)  pH8[$(5+k),j]= $(5+j+k) 
 if($3 == "H1" && $4 == ngua ) for(j=1;j<=3;j++)  pH1[$(5+k),j]= $(5+j+k) 
 if($3 == "N1" && $4 == ngua ) for(j=1;j<=3;j++) pNa1[$(5+k),j]= $(5+j+k) 
 if($3 == "H2" && $4 == nade ) for(j=1;j<=3;j++)  pH2[$(5+k),j]= $(5+j+k) 
 if($3 == "C2" && $4 == nade ) for(j=1;j<=3;j++) pCa2[$(5+k),j]= $(5+j+k) 
 if($4 == nthy || $4 == ncyt || $4 == nuri ){ 
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  if ( $3 == "C6" ) for(j=1;j<=3;j++) pCa6[$(5+k),j] = $(5+j+k) 
  if ( $3 == "H6" ) for(j=1;j<=3;j++)  pH6[$(5+k),j] = $(5+j+k) 
 } 
 
# Assign a susceptibility value to each base ring. 
 if ( $4 == ngua ){ xi[$(5+k)]=xgua ; res[$(5+k)]=$4 } 
 if ( $4 == nade ){ xi[$(5+k)]=xade ; res[$(5+k)]=$4 } 
 if ( $4 == ncyt ){ xi[$(5+k)]=xcyt ; res[$(5+k)]=$4 } 
 if ( $4 == nthy ){ xi[$(5+k)]=xthy ; res[$(5+k)]=$4 } 
 if ( $4 == nuri ){ xi[$(5+k)]=xuri ; res[$(5+k)]=$4 } 
 if ( $4 == "LIG"){ xi[$(5+k)]=xlig ; res[$(5+k)]=$4 } #only lave's DNA 
} 
close(ARGV[1]) 
 
### ---------------------------------------------------------------------------- 
### Calculate individual tensors and resultant tensor. 
### ---------------------------------------------------------------------------- 
for ( i=iniN ; i <= endN ; i++ ){ 
 if(jump == "yes")      if(i==24         ) continue # missing nt in TAR 
 if(bulge == "exclude") if(i==23 || i==25) continue # exclude bulge 
 if( loop == "exclude") if(i>=30 && i<=35) continue # exclude loop 
 if(jump == "yes")      if(i==55         ) continue # missing nt in TAR 
        if(bulge == "exclude") if(i==54 || i==56) continue # exclude bulge 
 if( loop == "exclude") if(i>=61 && i<=66) continue # exclude loop 
  
 #Build two vectors on the plane of each base. 
 for(j=1;j<=3;j++){ 
  vb1[j] = pN1[i,j] - pC4[i,j] 
  vb2[j] = pC2[i,j] - pC6[i,j] 
 } 
 # Calculate their vector product to get a normal vector. 
 vn[1] = vb1[2]*vb2[3] - vb1[3]*vb2[2] 
 vn[2] = vb1[3]*vb2[1] - vb1[1]*vb2[3] 
 vn[3] = vb1[1]*vb2[2] - vb1[2]*vb2[1] 
 vnorm = sqrt(vn[1]^2 + vn[2]^2 + vn[3]^2) 
 for(j=1;j<=3;j++) vn[j] = vn[j]/vnorm  
 
 # Laurent's way: spherical coordinates. Original program. 
 if(eqn == "lave"){ 
  nx[i]=vn[1]; ny[i]=vn[2]; nz[i]=vn[3] 
  s[i]=sqrt(1-nz[i]^2) 
  cp[i]=cos(atan2(ny[i],nx[i]))  
  sp[i]=sqrt(1-cp[i]^2) 
  mat[i,1,1] = xi[i]*(-(3*s[i]^2-1)*cp[i]^2 + sp[i]^2) 
  mat[i,1,2] = xi[i]*cp[i]*sp[i]*(3*s[i]^2)  
  mat[i,1,3] = xi[i]*(-3*nz[i]*s[i]*cp[i]) 
  mat[i,2,3] = xi[i]*(3*nz[i]*s[i]*sp[i]) 
  mat[i,2,2] = xi[i]*(-(3*s[i]^2-1)*sp[i]^2 + cp[i]^2) 
  mat[i,3,3] =-xi[i]*(3*nz[i]^2-1)  
  mat[i,2,1] = mat[i,1,2] 
  mat[i,3,1] = mat[i,1,3] 
  mat[i,3,2] = mat[i,2,3] 
 } 
 # vsan version of spherical coordinates. 
 if(eqn == "vsph"){ 
  czen = vn[3] 
  szen = sqrt( 1 - vn[3]^2 )  #zenital theta is in [0,pi] 
  cphi = vn[1] /sqrt(vn[1]^2 + vn[2]^2)  #phi is in [0,2*pi] 
  sphi = vn[2] /sqrt(vn[1]^2 + vn[2]^2) 
  mat[i,1,1] = xi[i]/3* ( (3 *szen^2 -1) *cphi^2 - sphi^2 ) 
  mat[i,1,2] = xi[i]/3* ( cphi *sphi *3 *szen^2 ) 
  mat[i,1,3] = xi[i]/3* ( 3 *czen *szen *cphi ) 
  mat[i,2,3] = xi[i]/3* ( 3 *czen *szen *sphi ) 
  mat[i,2,2] = xi[i]/3* ( (3 *szen^2 -1) *sphi^2 - cphi^2 ) 
  mat[i,3,3] = xi[i]/3* ( 3 *czen^2 -1 ) 
  mat[i,2,1] = mat[i,1,2] 
  mat[i,3,1] = mat[i,1,3] 
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  mat[i,3,2] = mat[i,2,3] 
 } 
 # vsan view of Angew2004. X built traceless by vsan. 
 if(eqn == "vsan"){ 
    for(p=1;p<=3;p++){  
  for(q=1;q<=3;q++){ 
     dk = 0.0   ;   if(p==q) dk=1.0 # delta de kronecker 
     mat[i,p,q]= xi[i]* ( vn[p]*vn[q] -dk/3 ) 
  } 
    } 
 } 
 #Exactly Angew2004 way. Note that X tensor is NOT traceless here! 
 if(eqn == "cigr"){ 
  for(p=1;p<=3;p++) for(q=1;q<=3;q++)  mat[i,p,q]= xi[i]*vn[p]*vn[q] 
 } 
 
 # Resultant tensor is the tensor sum of each residue tensor 
 for(p=1; p <= 3; p++) for(q=1; q <= 3; q++) Smat[p,q] += mat[i,p,q]  
} #end for i 
 
if(eqn=="lave") for(p=1;p<=3;p++) for(q=1;q<=3;q++) Smat[p,q]=Smat[p,q]/3 
 
### ---------------------------------------------------------------------------- 
# Conversion factors from susceptibility units to Hz. 
# See, for instance, Bax, Nat.Str.Biol. 1997, 732. 
# Constants in SI units. 
# Decomposed in mantissa and exponential. 
### ---------------------------------------------------------------------------- 
 
m_distn1h1=1.040 
m_distc6h6=1.090 
m_distc8h8=1.080 
m_distc2h2=1.090 
e_dist= -10  # factor metre/Angstrom 
 
factor= 10^-34 # Exponential of susceptibility values   
e_factor=-34   # in Laurent's units = SI units = m3 
 
B1=800  # MHz 
 #B2=400  # I'd rather use zero field 
B2=0  # As we extrapolated to zero field by linear fitting (TAR) 
B3=(B1*B1)-(B2*B2) 
 #B=B3*10^12 
e_B=12 
pi=3.14159265 
T=298 
  #R=8.134 #J/(K*mol) 
  #N=6.023*10^23; m_N=6.023; e_N=23 
h=6.634*10^-34  #J*s 
m_h=6.634 
e_h=-34 
kboltz=1.3807*10^-23  #Boltzmann = R/N in SI units = J/K  
m_boltz=1.3807 
e_boltz=-23 
diff1=0.25  #g-C / g-H, magnetogyric ratio 
diff2=0.10  #g-N / g-H, 
 
exp_cnst = e_B + e_h + e_factor - e_boltz -3*e_dist 
#print "exp_cnst =", exp_cnst 
cnst = -(B3 * m_h)/(15 *m_boltz *T)  *(3/(4*pi)) *10^exp_cnst 
 
if(pre == "bax"){ 
 e_factor=-27 # in Bax's units = J/T2 
 e_mu=-7 # mu0/4*pi = 10^-7 
 exp_cnst = e_B + e_h + e_factor - e_boltz -3*e_dist + e_mu 
 cnst = -(B3 * m_h)/(15 *m_boltz *T) *3 *10^exp_cnst #*(4*pi) 
} 
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cnst1 = cnst * diff1 / m_distc6h6^3  
cnst2 = cnst * diff1 / m_distc8h8^3 
cnst3 = cnst * diff2 / m_distn1h1^3 
cnst4 = cnst1    #cnst * diff1 / m_distc2h2^3 
#conve = sprintf("%3.5f  %3.5f  %3.5f  %3.5f", cnst1, cnst2, cnst3, cnst4) 
### ---------------------------------------------------------------------------- 
###  Compute some RDC to be compared with experimental ones 
### ---------------------------------------------------------------------------- 
#printf "                 RDC in Hz           --    nt tensors in m^3 (*1e34).\n" 
#printf " resid  Dc2h2   Dc6h6   Dc8h8   Dn1h1   (1,1)  (1,2)  (1,3)  (2,2)  (2,3)  (3,3)\n" 
 
for ( i=iniN ; i <= endN ; i++ ){ 
 if(jump == "yes") if(i==24) continue # missing nt in TAR 
 #RDC can be calculated, even if they were not used to build X-tensor 
 if(""){ 
    if(bulge == "exclude") if(i==23 || i==25) continue # exclude bulge 
    if( loop == "exclude") if(i>=30 && i<=35) continue # exclude loop 
 } 
# CALCULATE BOND VECTORS 
for(j=1;j<=3;j++){ 
 vc2[i,j]= pH2[i,j]-pCa2[i,j]   ;  rc2 += vc2[i,j]^2 
 vc6[i,j]= pH6[i,j]-pCa6[i,j]   ;  rc6 += vc6[i,j]^2 
 vc8[i,j]= pH8[i,j]- pC8[i,j]   ;  rc8 += vc8[i,j]^2 
 vn1[i,j]= pH1[i,j]-pNa1[i,j]   ;  rn1 += vn1[i,j]^2 
} 
rc2 = sqrt(rc2) ; rc6 = sqrt(rc6) ; rc8 = sqrt(rc8) ; rn1 = sqrt(rn1) 
 
### Calculate each RDC by multiplying v*Tensor*v, as Angew2004 
# tensor times column vector 
for(p=1; p <= 3; p++){  
 ac2[p] = 0 ; ac6[p] = 0 ; ac8[p] = 0 ; an1[p] = 0 
 for(r=1; r <= 3; r++){ 
  ac2[p] += Smat[p,r]*vc2[i,r] 
  ac6[p] += Smat[p,r]*vc6[i,r] 
  ac8[p] += Smat[p,r]*vc8[i,r] 
  an1[p] += Smat[p,r]*vn1[i,r] 
 } 
} 
# vector scalar product 
Dc2h2[i] = 0 ; Dc6h6[i] = 0 ; Dc8h8[i] = 0 ; Dn1h1[i] = 0 
for(r=1; r <= 3; r++){  
 Dc2h2[i] += ac2[r]*vc2[i,r] 
 Dc6h6[i] += ac6[r]*vc6[i,r] 
 Dc8h8[i] += ac8[r]*vc8[i,r] 
 Dn1h1[i] += an1[r]*vn1[i,r] 
} 
#Rescale D because the eqn requires unitary vectors (Angew2004,187). 
if(rc2>0) Dc2h2[i]= cnst4* Dc2h2[i]/rc2^2 
if(rc6>0) Dc6h6[i]= cnst1* Dc6h6[i]/rc6^2 
if(rc8>0) Dc8h8[i]= cnst2* Dc8h8[i]/rc8^2 
if(rn1>0) Dn1h1[i]= cnst3* Dn1h1[i]/rn1^2 
if(eqn == "cigr"){ 
 tr_x = 0.0 
 for(j=1;j<=3;j++) tr_x += Smat[j,j] # trace of tensor 
 print i,"tr_x=",tr_x 
 if(rc2>0) Dc2h2[i]= Dc2h2[i] - cnst4 * tr_x / 3 
 if(rc6>0) Dc6h6[i]= Dc6h6[i] - cnst1 * tr_x / 3 
 if(rc8>0) Dc8h8[i]= Dc8h8[i] - cnst2 * tr_x / 3 
 if(rn1>0) Dn1h1[i]= Dn1h1[i] - cnst3 * tr_x / 3 
} 
### End of Calculate each RDC by multiplying v*Tensor*v 
# prepare output of individual nt tensors 
linMat="" 
for(p=1;p<=3;p++) for(q=p;q<=3;q++) linMat = sprintf("%s %6.3f",linMat,mat[i,p,q]) 
#printf "%2s %3s %6.3f  %6.3f  %6.3f  %6.3f %s\n",i,res[i],Dc2h2[i],Dc6h6[i],Dc8h8[i],Dn1h1[i],linMat 
} #end for i 
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### DIAGONALIZE TOTAL TENSORS 
### ---------------------------------------------------------------------------- 
# Solution of Symmetric nxn Eigenvalue problem using Jacobi Method 
# Store Smat in new matrix 
for(p=1; p <= 3; p++)  for(q=1; q <= 3; q++)  aa[p-1,q-1] = Smat[p,q] 
n=3 #dimension of tensor (=3) 
eps=10^(-20) 
ntot=100  #ntot is # of sweeps 
for (count=0; count < ntot; count++){ 
for(p=0; p < n-1; p++){  #sweep through aa matrix 
for(q=p+1; q < n; q++){  #zero elements via Jacobi transformation 
if( sqrt(aa[p,q]^2) >= eps ){    #if(aa[p,q] != 0.0){ 
 a=aa[p,p] #from here, its same as 2x2 case as in lecture 
 b=aa[p,q] 
 d=aa[q,q] 
 theta=(d-a)/(2.0*b) 
 t1=-theta+sqrt(theta*theta+1.0) 
 t2=-theta-sqrt(theta*theta+1.0) 
 # The smallest root is more stable ... 
 t=t2 
 if( sqrt(t2*t2) > sqrt(t1*t1) ) t=t1 
 if(t == 0.0) break  #vsan 
 c=1.0/sqrt(1.0+t*t)  # cos(theta) 
 st=c*t    # sin(theta) 
 h=t*b 
 aa[p,p]= aa[p,p] -h 
 aa[q,q]= aa[q,q] +h 
 aa[p,q]= 0.0 
 aa[q,p]= 0.0 
 tau= st/(1.0+c) 
 for(r=0; r < p; r++){ 
  g1=aa[p,r]  ; g2=aa[q,r] 
  aa[p,r]=g1-st*(g2+tau*g1) ; aa[q,r]=g2+st*(g1-tau*g2) 
  aa[r,p]=aa[p,r]  ; aa[r,q]=aa[q,r] 
 } 
 for(r=p+1; r < q; r++){ 
  g1=aa[p,r]  ; g2=aa[q,r] 
  aa[p,r]=g1-st*(g2+tau*g1) ; aa[q,r]=g2+st*(g1-tau*g2) 
  aa[r,p]=aa[p,r]  ; aa[r,q]=aa[q,r] 
 } 
 for(r=q+1; r < n; r++){ 
  g1=aa[p,r]  ; g2=aa[q,r] 
  aa[p,r]=g1-st*(g2+tau*g1) ; aa[q,r]=g2+st*(g1-tau*g2) 
  aa[r,p]=aa[p,r]  ; aa[r,q]=aa[q,r] 
 } 
 #print intermediate tensors 
  for(p=0; p < n; p++){  
     line[p]="             " 
  } 
  for(p=0; p < n; p++) print line[p] 
} #close IF 
} #close q 
} #close p 
 
} #close count 
 
### OUTPUT TENSORS 
for(p=1; p <= 3; p++){  
 line[p]="" 
 for(q=1; q <= 3; q++) line[p] = sprintf("%s %8.3f",line[p],Smat[p,q]) 
} 
 for(p=0; p < n; p++){  
 line[p]="" 
} 
for(p=0; p < n; p++) print line[p]  
 
# rescale Smat to Hz relative to CH 
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for(p=1; p <= 3; p++)  for(q=1; q <= 3; q++) Smat[p,q] *= cnst2 
for(p=1; p <= 3; p++){  
 line[p]="" 
# for(q=1; q <= 3; q++)  line[p] = sprintf("%s %8.3f",line[p],Smat[p,q]) 
} 
# vsan: rescale aa[] to Hz relative to CH 
for(p=1; p <= 3; p++)  for(q=1; q <= 3; q++)  aa[p-1,q-1] *= cnst2 
for(p=1; p <= 3; p++){  
 line[p]="" 
 for(q=1; q <= 3; q++) line[p] = sprintf("%s %8.3f",line[p],aa[p-1,q-1]) 
} 
print "Diagonalized tensor in Hz relative to CH" 
for(p=1; p <= 3; p++) print line[p] 
 
} #close BEGIN 
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******************************************** 
*MATLAB scripts to analyze PACE gel data and * 
*compare theoretical and experimental fits of       * 
*different models                                                       * 
******************************************** 
#################Curve_fits.m################ 
clear; 
 
hold off 
conc=[0.000001 2 7 10 20 70 100 200 500]; 
phi = [0 0.08 0.18 0.2 0.36 0.63 0.73 0.96 0.999 ]; 
C=0.104e-3; 
% Fit all functions 
[k1,S1,rmsd1]=fitcurve1(conc,phi); 
k1 
rmsd1 
[k2,S2,rmsd2]=fitcurve2(conc,phi); 
k2 
rmsd2 
[k3,S3,rmsd3]=fitcurve3(conc,phi,C); 
k3 
rmsd3 
[k4,S4,rmsd4]=fitcurve4(conc,phi,C); 
k4 
rmsd4 
[k5,S5,rmsd5]=fitcurve5(conc,phi,C); 
k5 
rmsd5 
[k6,S6,rmsd6]=fitcurve6(conc,phi,C); 
k6 
rmsd6 
% Back-compute the curves 
x=(0.00001:1:500); 
fit1=x./(k1+x); 
fit2=x.^2./(k2+x.^2); 
fit3=(k3+x.*4*C-sqrt(k3.^2+x.*8*C*k3))./(-k3+x.*4*C+sqrt(k3.^2+x.*8*C*k3)); 
fit4=(x.^2+x.*C*k4(2))./(k4(1)*k4(2)+x.*k4(2)+x.^2); 
%fit5=x.^2./(k5(1)^2*k5(2)+x.^2+k5(1)*k5(2)*x); 
fit6= ((4.*C.*x.^3.*(x.^2+k6(2))-
x.^2.*sqrt(k6(1).^2*k6(2).^2+8.*C.*x.*k6(1)*k6(2).*(x.^2+k6(2)))+k6(1).*k6(2).*x.^2)+k6(3).*(4.*C.*k6(2).*x.
*(x.^2+k6(2))-
k6(2).*sqrt(k6(1).^2*k6(2).^2+8.*C.*x.*k6(1).*k6(2).*(x.^2+k6(2)))+k6(1).*k6(2).^2))./(4.*C.*x.*(x.^2+k6(2)).^
2-k6(1).*k6(2).*(x.^2+k6(2))+(k6(2)+x.^2).*sqrt(k6(1).^2.*k6(2).^2+8.*C.*x.*k6(1)*k6(2).*(x.^2+k6(2)))); 
%plot 6 curves 
plot(conc,phi,'o','Color','r') 
hold on 
plot(x,fit1,'Color','c','LineWidth',2); 
plot(x,fit2,'Color','g','LineWidth',2); 
plot(x,fit3,'Color','m','LineWidth',2); 
plot(x,fit4,'Color','b','LineWidth',2); 
%plot(x,fit5,'Color','y','LineWidth',2); 
plot(x,fit6,'Color','r','LineWidth',2); 
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#############PACEcurve1.m################ 
function [estimates, model] = fitcurve1(xdata, ydata) 
start_point = 100*rand(1); 
options = optimset('Display','final','TolX',1e-25, 'TolFun',1e-25,'MaxFunEvals',50000,'MaxIter',50000); 
model = @fitting1; 
[estimates,sse1] = fminsearch(model, start_point,options); 
rmsd2=sqrt(mean(sse2)); 
    function [sse, FittedCurve] = fitting1(params) 
        k1 = params(1); 
        FittedCurve = xdata./(k1+xdata); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
#############PACEcurve2.m################ 
function [estimates, model,rmsd2] = fitcurve2(xdata, ydata) 
start_point = 100*rand(1); 
options = optimset('Display','final','TolX',1e-25, 'TolFun',1e-25,'MaxFunEvals',50000,'MaxIter',50000); 
model = @fitting2; 
[estimates,sse2] = fminsearch(model, start_point,options); 
rmsd2=sqrt(mean(sse2)); 
function [sse, FittedCurve] = fitting2(params) 
        k2 = params(1); 
        FittedCurve = xdata.^2./(k2+xdata.^2); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
#############PACEcurve3.m################ 
function [estimates, model,rmsd3] = fitcurve3(xdata, ydata, C) 
start_point = 0.01; 
options = optimset('Display','final','TolX',1e-25, 'TolFun',1e-25,'MaxFunEvals',50000,'MaxIter',50000); 
model = @fitting3; 
[estimates,sse3] = fminsearch(model, start_point,options); 
rmsd3=sqrt(mean(sse3)); 
function [sse, FittedCurve] = fitting3(params) 
        k3 = params(1); 
        FittedCurve = (k3+xdata.*4*C-sqrt(k3.^2+xdata.*8*C*k3))./(-k3+xdata.*4*C+sqrt(k3.^2+xdata.*8*C*k3)); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
#############PACEcurve4.m################ 
function [estimates, model,rmsd4] = fitcurve4(xdata, ydata,C) 
start_point = 100*rand(1,2); 
options = optimset('Display','final','TolX',1e-25, 'TolFun',1e-25,'MaxFunEvals',50000,'MaxIter',50000); 
model = @fitting4; 
[estimates,sse4] = fminsearch(model, start_point,options); 
rmsd4=sqrt(mean(sse4)); 
function [sse, FittedCurve] = fitting4(params) 
        k4a = params(1); 
        k4b = params(2); 
        FittedCurve = (xdata.^2+xdata.*C*k4b)./(k4a*k4b+xdata.*k4b+xdata.^2); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
#############PACEcurve5.m################ 
function [estimates, model,rmsd5] = fitcurve5(xdata, ydata,C) 
% Call fminsearch with a random starting point. 
start_point = rand(1,3); 
options = optimset('Display','final','TolX',1e-25, 'TolFun',1e-25,'MaxFunEvals',50000,'MaxIter',50000); 
model = @fitting5; 
[estimates,sse5] = fminsearch(model, start_point,options); 
rmsd5=sqrt(mean(sse5)); 
function [sse, FittedCurve] = fitting5(params) 
        k5a = params(1); 
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        k5b = params(2); 
        D = params(3); 
        FittedCurve = ((k5b.*(k5a+xdata).^2.+4*C.*xdata.^2-
(k5a+xdata).*sqrt(k5b.^2*(k5a+xdata).^2))+D*(2*xdata.*sqrt(k5b^2*(k5a+xdata).^2+8*C*k5b*xdata.^2)-
(k5a+xdata).*2.*k5b.*xdata))./((xdata+k5a).*sqrt(k5b.^2*(k5a+xdata).^2+8*C*k5b*xdata.^2)-
k5b*(xdata+k5a).^2+4*C*xdata.^2); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
#############PACEcurve6.m################ 
function [estimates, model,rmsd6] = fitcurve6(xdata, ydata,C) 
start_point = rand(1,3); 
options = optimset('Display','final','TolX',1e-25, 'TolFun',1e-25,'MaxFunEvals',50000,'MaxIter',50000); 
model = @fitting6; 
[estimates,sse6] = fminsearch(model, start_point,options); 
rmsd6=sqrt(mean(sse6)); 
function [sse, FittedCurve] = fitting6(params) 
        k6a = params(1); 
        k6b = params(2); 
        D = params(3); 
        FittedCurve = ((4.*C.*xdata.^3.*(xdata.^2+k6b)-
xdata.^2.*sqrt(k6a.^2*k6b.^2+8.*C.*xdata.*k6a*k6b.*(xdata.^2+k6b))+k6a.*k6b.*xdata.^2)+D.*(4.*C.*k6b.*xda
ta.*(xdata.^2+k6b)-
k6b.*sqrt(k6a.^2*k6b.^2+8.*C.*xdata.*k6a.*k6b.*(xdata.^2+k6b))+k6a.*k6b.^2))./(4.*C.*xdata.*(xdata.^2+k6b).
^2-k6a.*k6b.*(xdata.^2+k6b)+(k6b+xdata.^2).*sqrt(k6a.^2.*k6b.^2+8.*C.*xdata.*k6a*k6b.*(xdata.^2+k6b))); 
        ErrorVector = FittedCurve - ydata; 
        sse = sum(ErrorVector .^ 2); 
    end 
end 
*********************************************** 
*Shell script to submit multiple jobs to the LSF queue* 
*********************************************** 
#!/bin/ksh 
  n=-1                           
  nn=30  (number of input protocols to submit to the queue)                                                                                              
  while ((n=n+1));((n<$nn)) 
do  
   bsub   "/progs/bin/xplor <../dipo_optimize/input/sani_lj_$n.inp >& ../dipo_optimize/output/$n.out" 
done 
exit 
*********************************************** 
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