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Summary 

The cellular prion protein (PrPC) was highly conserved during the evolution of 

mammals [Pantera et al. 2009; Jiayu et al. 2009]. The gene tree deduced from the PrP 

sequences largely agrees with the species tree, indicating that no major deviations 

occurred in the evolution of the prion gene in different placental lineages [Teun van 

Rheede et al. 2003]. However, the cellular function of this ubiquitous protein is still not 

clear. The accumulation of misfolded and aggregated forms of PrPC (known as PrPSc) 

causes transmissible neurodegenerative diseases. Despite increasing knowledge 

concerning PrPSc, very little is known about the physiological characteristics of PrPC and 

its interaction with other cellular proteins.  

The present study was undertaken to identify proteins interacting with PrPC that 

could provide new insights into its physiological functions and pathological role. Human 

PrPC was expressed in prion protein-deficient murine hippocampus (HpL3-4) neuronal 

cells. The PrPC along with its interacting proteins were affinity purified using STrEP-

Tactin chromatography, in-gel digested, and then identified by Q-TOF MS/MS analysis. 

Forty three proteins appeared to interact with PrPC in this neuronal cell line. Of these, 

fifteen were already known for their interaction with PrPC or PrPSc, while twenty eight 

new proteins were identified. All 43 (known and new) proteins which were identified as 

interacting partners were structural constituents of the cytoskeleton. Some are involved 

in cell growth, some in metabolism, and some in energy pathways. In addition, proteins 

that are important for cell homeostasis, cell communication, signal transduction, stress 

response and protein folding were also among the newly identified interacting partners 

of PrPC.  

Interactions of two novel (newly discovered) interacting partners of the GTPase 

family (Rab7a and Arf1) which have a suggested role in vesicle trafficking as well as the 

cytoskeleton associated protein alpha-tubulin 1 were further investigated using confocal 

laser scanning microscopy and reverse co-immunoprecipitation. Both reverse co-

immunoprecipitation and immunofluorescence results confirmed potential interactions of 

Rab7a, Arf1 and alpha-tubulin 1 with the PrPC. SiRNA against the Rab7a gene was 

used to decrease the expression of Rab7a protein (“knockdown”), in PrPC expressing 

HpL3-4 and SH-SHY5Y cells. This depleted Rab7a expression led to the enhanced 

accumulation of PrPC in Rab9 positive endosomal compartments. The PrPC which 
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accumulated within these Rab9 positive late endosomes remained sensitive to 

proteinase K digestion. Furthermore, Arf1 deactivation by brefeldin A treatment down 

regulated PrPC expression and redistributed PrPC into the cytosol, whereas nocodazole 

treatment increased PrPC expression and redistributed PrPC into the cytosol. 

The work described demonstrated for the first time that Rab7a and Arf1 interact 

with PrPC and may possibly be involved in the cellular trafficking and distribution of PrPC 

into microtubules. These results highlight the pivotal involvement of endosomal 

compartments in the trafficking and regulation of PrPC. 
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1. Introduction 

1.1  Prions and prion biology 

The term prion (proteinaceous infectious particle) was coined by Stanley Prusiner 

in 1982. Prions are unique infectious agents devoid of nucleic acid which cause a group 

of fatal neurodegenerative diseases associated with the misfolding of the cellular prion 

protein (PrPC). Bovine spongiform encephalopathy (BSE), Scrapie in sheep, and 

Creutzfeldt–Jakob disease (CJD) in humans are among the most notable prion 

diseases.  

1.1.1  Prion diseases and infectivity  

In the past decade, prion diseases or transmissible spongiform encephalopathies 

(TSE) have received enhanced attention largely because of the potential risk for human 

infection with BSE or ``mad cow disease.´´ These diseases can affect subjects in  many 

age groups causing a variety of motor or cognitive symptoms. The pathogenesis of 

prion diseases is attributed to the major conformational changes in the cellular form of 

prion protein (PrPC) which result in the diseased form of these proteins (PrPSc) [Prusiner 

1998a]. The BSE are uncommon but invariably fatal [Aguzzi 2000; Knight and Will 2004; 

Aguzzi and O'Connor 2010]. 

The first documented prion disease was CJD, characterized by Creutzfeldt in 

1920 and Jakob in 1921. Later, studies of kuru among the Fore 

(http://www.everyculture.com/Oceania/Fore-i-Orientation-i.html) people of Papua-New 

Guinea indicated that disease transmission relies on a single protease-resistant protein 

component of the prion [Prusiner 1998a; Prusiner 1998b]. According to the “protein-

only” hypothesis, PrPSc
 

is a potentially infectious agent that uses a self-propagating 

reaction to convert PrPC into the disease form. Additionally, transmission of the disease 

requires the presence of PrPC [Bueler et al. 1993; Brandner et al. 1996; Legname et al. 

2004; Sakudo and Ikuta 2009; Lee et al. 2010; Mallik et al. 2010].  

The clinical symptoms of prion diseases vary in humans. The neuropathology of 

prion diseases is characterized by extensive neuronal death, accompanied by 

spongiform vacuolation as well as astro- and microgliosis to extracellular amyloid 

aggregates. The deposited extracellular amyloid contains the causative agent PrPSc. 

http://www.everyculture.com/Oceania/Fore-i-Orientation-i.html
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This amyloid accumulation occurs in the majority of prion diseases, but not in all cases. 

These accumulations lead to progressively severe motor disturbance and dementia 

resulting in death within a few months to several years after diagnosis. Whereas, in 

transmissible cases, death can occur years to decades after the initial infection. 

1.1.2  The Structure of prion protein  

The human form of PrPC consists of 253 highly conserved amino acids 

[Goldmann 1993]. The majority of the mature form is attached to the plasma membrane, 

anchored through the C-terminus glycosyl-phosphatidylinositol (GPI) (Figure 1A). The 

N-terminal half of the PrPC polypeptide chain is essential for efficient clathrin-mediated 

endocytosis. Deletions within this region diminish internalisation of PrPC and direct 

translocation of the N-terminus of the polypeptide chain across the membrane and 

produce SecPrP or NtmPrP) [Stahl et al. 1987]. In the C-terminus of the PrP, there are two 

conserved N-linked glycosylation sites for complex oligosaccharide attachment at 

residues 181 (Asn-Ile-Thr) and 197 (Asn-Phe-Thr) [Caughey et al. 1989; Lawson et al. 

2005]. The molecular weight of PrPC is about 25-35 kDa, indicating the presence of post 

translational modification including variable glycosylation (non-, mono- and 

diglycosylated forms). The types of glycans attached to both full-length and truncated 

PrP appear to be extremely diverse. More than 50 sugar chains have been observed, 

using both biochemical and mass spectrometry methods [Rudd et al. 1999; Pan et al. 

2002], to be differentially distributed in various areas of the central nervous system 

(CNS) [DeArmond et al. 1999; Beringue et al. 2003]. The C-terminus of PrP contains 

two cysteine residues (Cys 179 and Cys 214) where post translationally a disulphide 

bridge is formed [Caughey et al. 1989; Rudd et al. 2002]. The relevance of these 

modifications is still under investigation. 

The N-terminus of PrPC contains an octapeptide repeat (OR) domain [Roucou 

and LeBlanc 2005]. This domain is made up of a PQGGGGWGQ peptide sequence 

followed by four identical repeats of PHGGGWGQ. These last four ORs show similarity 

to the BH2 domain found in the Bcl-2 family of proteins, suggesting that the protein may 

play a role in cell survival. In addition, the repeating motif provides a region rich in 

histidine, which is known to bind copper ions. A domain comprised of highly 

hydrophobic residues is found between amino acids 110 and 135 of PrP and plays an 

important role in generating transmembrane proteins [Lopez et al. 1990]. The NMR 
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spectroscopy deduced tertiary structure of the cellular prion protein (Figure 1B) shows 

predominantly an α-helical (42%) folded C-terminal domain and a tangled N-terminal 

flexible domain [Riek et al. 1997]. In contrast to the pathological form (PrPSc), the PrPC 

is sensitive to proteinase K (PK) digestion. 

 

Figure 1 The structural features of the cellular prion protein: (A) The schematic 

representation of PrP
C
 structure contains an N-terminal signal peptide (SP) and a glycosyl-

phosphatidylinositol (GPI) anchor signal at the C-terminus. In addition, PrP
C
 has an octapeptide repeat 

(OR) region, a hydrophobic transmembrane domain (TMD), one disulphide bridge and two N-linked 

glycosylation sites ( ) (B) Cartoon of the three-dimensional structure of the human PrP
C
 [Riek et al. 1997].  

 

1.1.3  Biosynthesis and internalization of PrPC 

The biosynthesis of PrPC
 

is similar to that of other membrane and secreted 

proteins. PrPC
 

contains a specific N-terminal signal peptide (SP) which translocates it 

into the endoplasmic reticulum (ER) from where it transits the Golgi on its way to the cell 

surface [Harris 2003a]. Targeting of the PrPC to the ER is subject to several post-

translational modifications including cleavage of the N-terminal signal peptide, addition 

of N-linked oligosaccharide chains, formation of a single disulphide bond, and the 

attachment of GPI anchor at C-teminus [Haraguchi et al. 1989; Stahl et al. 1987; Turk et 

al. 1988]. 
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Following, glycosylation and the addition of the GPI anchor, PrPC is transported 

to the cell surface where it is attached via the GPI anchor [Borchelt et al. 1990a] (Figure 

2). The majority of PrPC
 

is found in detergent-resistant raft domains on the cell surface 

[Gorodinsky and Harris 1995; Naslavsky et al. 1997] and constitutively cycles between 

the plasma membrane and the endocytic compartment [Shyng et al. 1993]. Kinetic 

analysis demonstrates that PrPC molecules cycle through the cell with a transit time of 

approximately 60 min [Magalhaes et al. 2002]. Shyng et al. in 1993 reported that most 

of the protein is recycled without degradation. Internalization of PrPC occurs possibly via 

i) clathrin coated pits [Shyng et al. 1995a] and/or ii), caveolae-like membranous 

domains [Vey et al. 1996], or sphingolipid/cholesterol rafts [Shyng et al. 1995b].  

i) Clathrin-mediated endocytosis is a process by which cells internalize molecules 

by the inward budding of plasma membrane. It involves the recruitment of clathrin and 

adaptor proteins, such as AP-2 at phosphoinositides in the membrane [Gaidarov and 

Keen 1999]. Shyng et al in 1994 used hypertonic media to disrupt clathrin lattices and 

thereby impair endocytosis via clathrin and reported impaired PrPC internalization, 

suggesting that PrPC may not behave like other GPI anchored proteins.  

ii) Caveolae is a special type of 50–100 nm in diameter lipid raft which 

invaginates the plasma membrane. Internalization of proteins through caveolae has 

been suggested to divert proteins from the endosomal/ lysosomal pathway [Pelkmans et 

al. 2001]. Vey et al. in 1996 showed that both PrPC and PrPSc proteins localized in these 

caveolae and may use these caveolae for their internalization. 

The prion protein is highly expressed within the nervous system, although its 

expression changes among differing cell types and among neurons with distinct neuro-

chemical phenotypes. Various cellular components of the immune system, in the bone 

marrow, blood, and peripheral tissues, also express substantial amounts of PrPC. PrPC 

has also been reported in endosomes containing transferrin receptors in adult mouse 

sensory neurons and N2a neuroblastoma cells [Sunyach et al. 2003]. Also in neurons, 

PrPC has been demonstrated both in the Golgi and within cytoplasmic organelles 

resembling endosomes [Laine et al. 2001]. Although the majority of PrPC is expressed 

on the cell surface [Borchelt et al. 1990b; Mironov et al. 2003], significant amounts are 

present within the cytoplasm of a subpopulation of neurons in the cortex, hippocampus 

and thalamus [Mironov et al. 2003]. Some of these cytoplasmic PrP may arise from the 
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endocytosed cell surface PrP. A few cytosolic PrP are derived from the endoplasmic 

reticulum associated degradative (ERAD) pathway. Accumulation of PrP in the cytosol 

of cells treated with proteasomal inhibitors has been reported [Ma and Lindquist 1999], 

indicating that excess PrPC is degraded by the proteasome system [Yedidia et al. 2001]. 

According to another hypothesis, PrP can also be translated, after losing its signal 

peptide [Rane et al. 2004], as a cytosolic protein which retains both the N-terminal and 

C-terminal signal peptides [Drisaldi et al. 2003].  

 

 

Figure 2 Biosynthesis and cellular trafficking of PrPC: The PrP
C
 synthesis, folding, 

glycosylation and GPI anchor addition all take place in the endoplasmic reticulum (ER). Three different 



Introduction 

 11 

topological forms of PrP are synthesized in the ER (Ctm-PrP: with the C-terminus in the lumen and the N-

terminus in the cytosol, Ntm-PrP: with the N-terminus in the lumen and the C-terminus in the cytosol and 

Sec-PrP: secretary PrP). Modified PrP
C
 then translocate to the outer leaflet of the plasma membrane and 

cycle between the plasma membrane and the endocytic compartments (Zafar et al. submitted). 

 

1.1.4  Physiological functions of PrPC 

The exact function of PrPC is still not clear; however, several putative functions 

have been reported including e.g. regulatory activity of copper metabolism [Brown et al. 

1997a; Korte et al. 2003; Toni et al. 2005; Varela-Nallar et al. 2006; Turu et al. 2008], 

antioxidant effects [Brown et al. 1997b; Brown et al. 2001; Sakudo et al. 2005; 

Anantharam et al. 2008], neuronal differentiation [Mouillet-Richard et al. 1999; Mouillet-

Richard et al. 2000; Steele et al. 2006; Lima et al. 2007; Barenco et al. 2009], 

neuroprotective signaling, and synaptic function [Collinge et al. 1994; Re et al. 2006].  

PrPC is also found in pre-synaptic nerve terminals, synapses in the brain and 

neuromuscular junctions [Brown, Clive, and Haswell 2001]. Furthermore, PrPC
 

may be a 

part of synaptic vesicle membranes, since the PrPC
 

interacting protein synapsin I is 

associated with small synaptic vesicles [Spielhaupter and Schatzl 2001] and PrPC
 

co-

localizes with the pre-synaptic vesicle protein synapthophysin [Fournier et al. 1995; 

Fournier 2008].  

PrPC
 

affects neurotransmitter release via synaptic vesicles as shown for 

acetylcholine in the neuromuscular junction [Re et al. 2006]. This would suggest a role 

in the recycling of vesicles or a more direct role in synaptic activity. The latter has been 

suggested by some electrophysiological studies conducted in mice devoid of PrPC, 

which demonstrate weakened GABAA-mediated fast inhibition [Collinge et al. 1994]. 

Recombinant PrP induces rapid polarization and development of synapses in embryonic 

rat hippocampal neurons [Kanaani et al. 2005]. In vivo accumulation of PrP deposits 

correlate with abnormal synaptic protein expression in the cerebellum of CJD brains 

[Ferrer 2002], and Scrapie-infected mice showed a loss of synapses [Jeffrey et al. 

2000], intrinsic dysfunction of cortical and hippocampal neurons [Jeffrey et al. 1996], 

and altered properties of the membrane and synapses [Johnston et al. 1997]. Beyond 

synaptic function, PrPC
 

binds copper via histidines in the octarepeat region and could 

regulate copper concentration in the synaptic region of neurons and decrease oxidative 

stress in synapses [Herms et al. 1999; Kretzschmar et al. 2000; Morot-Gaudry-
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Talarmain et al. 2003]. This anti-oxidative activity of PrPC
 

has been shown to be the 

result of copper/zinc-dependent superoxidedismutase activity [Brown et al. 1997b; 

Brown et al. 1999; Rachidi et al. 2003; Sakudo et al. 2005]. The signaling function of 

PrPC
 

has been demonstrated by the activation of the non-receptor tyrosine kinase fyn 

[Kanaani et al. 2005; Mouillet-Richard et al. 2000; Santuccione et al. 2005], which is 

enriched in brain synaptosomes.  

1.2  Cellular trafficking  

1.2.1  Vesicular trafficking  

Small membrane-bounded vesicles transport proteins from one organelle to 

another in the secretory and endocytic pathways. These vesicles bud from the 

membrane of a particular “parent” organelle and fuse with the membrane of a particular 

“target” (destination) organelle. They are critical for the sorting of proteins newly made 

in the rough endoplasmic reticulum and of proteins internalized from the cell surface 

(Figure 2). There are three well characterized transport vesicles – COPI (which 

transport proteins from the rough ER to the Golgi), COPII (which transport proteins in 

the retrograde direction between Golgi cisternae and from the cis-Golgi back to the 

rough ER), and clathrin vesicles (which transport proteins from the plasma membrane 

and the trans-Golgi network to the late endosomes). All types of coated vesicles are 

formed by the polymerization of cytosolic coat proteins, initiated by the recruitment of a 

small GTP-binding protein, onto a donor (parent) membrane. Then the complexes of 

coat and adapter proteins in the cytosol bind to the cytosolic domains of membrane 

cargo and receptor proteins; the latter bring soluble luminal cargo proteins into the 

budding vesicle. Shortly after vesicle release, the coat protein is shed exposing proteins 

(SNARE proteins) required for fusion with the target membrane [Kaiser and Ferro-

Novick 1998].  

1.2.2  RAS superfamily of monomeric GTP-binding proteins  

In eukaryotes, a family of GTP-binding proteins (Arf, Rab, Rho and dynamin 

families) regulates vesicle trafficking from the formation of vesicles on donor 

membranes to facilitating vesicle docking on target membranes [Bucci et al. 2000; 

Nielsen et al. 2008]. The budding of coated vesicles is initiated when molecules of Arf 
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protein exchange their bound GDP for GTP, a reaction catalyzed by an enzyme in the 

Golgi membrane. After Arf-GTP binds to Arf receptors on Golgi cisternae, coatomers 

bind to the cytosolic face of the Golgi cisterna and polymerize into a fibrous coat that 

induces vesicle budding. Because they can bind to coatomer, certain integral 

membrane proteins are incorporated into the vesicles. These include a V-SNARE, 

which functions in targeting vesicles to appropriate acceptor membranes [Weis and 

Scheller 1998]. Soluble proteins in the lumen are selected for entry into these vesicles 

by binding to specific membrane receptor proteins. Fatty acyl CoA is essential for the 

final separation of the transport vesicle from the donor membrane, but how this happens 

is not known. Finally, hydrolysis of GTP bound to the Arf proteins causes 

depolymerization of the coat and release of coatomers and ARF-GDP [Rothman 1996]. 

In the case of Rab-proteins, a cytosolic protein called GDI catalyzes the 

exchange of GDP which binds to cytosolic Rab, inducing a conformational change in 

Rab. This enables Rab to bind to a surface protein on a particular transport vesicle. 

After vesicle fusion, the GTP bound to the Rab protein is hydrolyzed to GDP triggering 

the release of the Rab protein which can then undergo another cycle of GDP-GTP 

exchange, binding, and hydrolysis. The rate of vesicle fusion is controlled by the 

absolute amount of Rab-GTP, which is modulated by unidentified protein regulators 

[Schimmoller et al. 1998; Zerial and McBride 2001]. Several lines of evidence support 

the involvement of specific Rab proteins as timers of vesicle fusion events. For instance, 

Rab3 is found predominantly in the donor compartment [Tuvim et al. 2001] and Rab5 is 

localized to early endosomes, organelles that form from clathrin-coated vesicles, just 

after they bud from the plasma membrane during receptor-mediated endocytosis 

[Morrison et al. 2008]. Rab7 is known to be associated with late endosomes and 

regulates membrane transport leading the transition from early to late endosomes [Feng 

et al. 1995]. Thus, some individual Rab proteins are clearly essential for specific vesicle 

fusion reactions to occur [Markgraf et al. 2007]. However, it is not known whether Rab 

proteins interact with V-SNARE proteins to determine the specificity of vesicle fusion 

with target membranes [Lodish 2004].  
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Figure 3 Rab proteins and vesicular trafficking: Individual Rab proteins are associated with 

distinct intracellular compartments. In some cases, the Rab protein is found predominantly localized on 

the target compartment (e.g., Rab 5 trafficking from plasma membrane to early endosomes), whereas in 

other cases it is found predominantly on the donor compartment (e.g., Rab3 in the regulation of 

exocytosis in secretory granules) [Tuvim et al. 2001]. 

1.2.3  Microtubules  

The cytoskeleton is a network of fibrous elements, consisting primarily of 

microtubules, actin microfilaments, and intermediate filaments which are found in the 

cytoplasm of eukaryotic cells. Microtubules are 25 nm in diameter cytoskeletal fibers 

which are formed by polymerization of α, β-tubulin monomers (which belong to an 

ancient family of GTPases) and exhibit structural and functional polarity. They are 

important components of cilia, flagella, the mitotic spindle, and other cellular structures 

[Lodish 2004]. 

Membrane vesicles are transported along microtubules in every eukaryotic cell, 

the best-studied system is the intracellular movement of Golgi vesicles. In cultured 

fibroblasts, the Golgi complex is concentrated near the microtubule-organizing centre 

(MTOC). During mitosis or after drug (colcemid) induced depolymerization of 

microtubules, the Golgi complex breaks into small vesicles that are dispersed 

throughout the cytosol. When the cytosolic microtubules re-form during interphase or 

after removal of the colcemid, the Golgi vesicles move along these microtubule tracks 

towards the MTOC. There these Golgi vesicles re-aggregate to form large membrane 

complexes [Schmoranzer and Simon 2003]. In addition to the Golgi complex, 
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microtubules are also associated with the endoplasmic reticulum (ER). Fluorescence 

microscopy, using anti-tubulin antibodies and DiOC6, a fluorescent dye specific for the 

ER, reveals an anastomosing network of tubular membranes in the cytosol that 

colocalizes with microtubules. If microtubules are destroyed by drugs such as 

nocodazole or colcemid, then the ER loses its network-like organization. After the drug 

is washed from the cell, tubular fingers of ER grow as new microtubules. This close 

association between ER and intact microtubules suggests that certain proteins act to 

bind ER membranes to microtubules [Lodish 2004]. 

In most familial cases of neurodegenerative disorders, dysfunction of the 

cytoskeleton changes vesicular biogenesis, vesicle/organelle trafficking, and synaptic 

signaling [Fletcher and Mullins 2010]. Cytoskeleton disruption is caused by activation of 

DNA damage followed by a cascade of events including mitochondrial dysfunction and 

oxidative stress [McMurray 2000]. The endosomes move along with microtubules, and 

microtubule disruption may produce enormous Rab5 and Rab7 positive endosomes. 

During clathrin-coated endocytosis the primary endocytic vesicles contain Rab5 and 

Arf1 domains but they do not contain Rab7. Later Rab7 is recruited to these endosomes 

and the other early endosome-associated small GTPases are eliminated The Rab7-

containing endosomes move along microtubules and fuse with other late endosomes. 

1.3  Interactomics 

Proteins rarely act alone; rather they interact with other molecules to perform 

their functions. In most biological systems protein-protein interactions are of critical 

importance. There are various approaches used to identify these interactions, such as 

the yeast two-hybrid system, immunoprecipitation, tagged purifications, or affinity 

purification-mass spectrometry.  

1.3.1  PrPC – putative interacting partners 

The molecules interacting with PrPC, because of their intrinsic activity, 

localization in the same cell compartment and within a specific signaling pathway, are a 

major focus of studies investigating the possible functions of PrPC. The first known 

interacting partners of PrPC were Pli45 and Pli110 [Oesch et al. 1990]. Pli 45 was 

identified as glial fibrillary acidic protein (GFAP), an astrocytic marker that accumulates 

concomitantly with disease-associated PrPC during TSEs [DeArmond et al. 1992]. The 
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two-hybrid system of yeast was used to identify anti-apoptotic protein Bcl-2 [Kurschner 

and Morgan 1995; Kurschner and Morgan 1996]; Heat shock protein 60 [Edenhofer et 

al. 1996]; the 37kDa laminin receptor precursor [Rieger et al. 1997]; synapsin Ib; 

adaptor protein Grb2, and prion interaction protein Pint 1 [Spielhaupter and Schatzl 

2001].  

PrPC was also immunoprecipitated with antibodies to the binding proteins 

calnexin, protein disulphide isomerase, and calreticulin [Capellari et al. 1999]. It has 

also been shown that PrPC binds with many proteins including laminin [Graner et al. 

2000]; neural cell adhesion molecules (N-CAMs) [Schmitt-Ulms et al. 2001]; 67 kDa 

laminin receptor [Gauczynski et al. 2001]; glycosaminoglycans (GAGS) [Priola and 

Caughey 1994; Pan et al. 2002]; stress inducible protein STI-1 [Zanata et al. 2002]; 

casein kinase 2, dystroglycan, aldolase C, heterogeneous nuclear ribonucleoprotein 

A2/B1 [Lasmezas 2003]; tubulin [Nieznanski et al. 2005]; vitronectin [Hajj et al. 2007] 

and signal protein 14-3-3 beta [Mei et al. 2009]. The functional influences of these 

interacting partners are still largely unknown, but both the biochemical features and the 

biological functions of PrPC may change through these interactions.  
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1.4  Aims of the Study 
 

In the present study experiments were designed to identify interacting partners of 

PrPC using an affinity purification strategy. In recent years many groups have tried to 

identify these interacting proteins; however, the hydrophobic nature and intracellular 

trafficking of PrPC pose a challenge. The use of One-STrEP-tag affinity purification was 

hypothesized to yield better results with less background contaminants due to the high 

specificity and binding affinity of STrEP-tactin. These studies were designed to provide 

a more comprehensive set of potential interacting proteins and lead to greater insight 

into the various cellular events mediated through PrPC. 

The following strategy was adopted to identify and characterize PrPC interacting 

proteins: 

 

1. Transient PrPC expression in neuronal cell models. 

2. Purification and identification of interacting partners of PrPC. 

3. Characterization of GTPase related (Rab7a and Arf1) and alpha-tubulin 1 

interacting proteins involved in PrPC trafficking and internalization. 
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2. Materials  

2.1  Antibodies 

Antibodies used for immunoblotting (IB), immunoprecipitation (IP) and 

immunofluorescence (IF) are listed in Table 1 

Table 1 List of antibodies and their application in present study  

Primary Antibody Origin Dilution  
IB/IP 

Dilution  
IF 

Company/ Cat. No. 

3F4 PrP mouse 
IgG2a 

1:1000 1:200 Chemicon/MAB1562  

6H4 PrP mouse IgG1 1:500 - Prionics/01-010  

α-Tubulin rabbit IgG 1:1000/1:100 1:50 Cell Signaling/2125 

Actin 

(cytoplasmic 1)  

mouse IgG1 1:1000 1:200 Sigma/A5441 

Annexin A2  mouse IgG 1:5000 - BD 
Transduction/610069 

Annexin A5  mouse IgG 1:5000 - abcam/ab14196 

Arf1 mouse IgG1 1:500/1:500 1:500 Affinity BioReagents/ 
MA3-060 

Cofilin-1 rabbit IgG 1:1500 1:200 Sigma/C8736 

Peroxiredoxin-1 rabbit IgG  1:1000 - abcam/ab15571 

Rab7(D95F2) rabbit IgG 1:1000/1:100 1:50 Cell Signaling/9367 

Rab9(D52G8) rabbit IgG - 1:50 Cell Signaling/5118 

SAF 70 PrP mouse 
IgG2b 

1:1500 - SPIbio/A03206 

STrEP MAB-Classic mouse IgG1 1:1000 1:100 IBA/ 2-1507-001 

Tropomyosin (alpha-
4 chain) 

rabbit 1:1500 - Chemicon/Ab5449 

Vimentin  mouse 
IgG2a 

1:5000 - Dako/M7020 

 

 

    

     



Materials 

 19 

Secondary 
antibody 

Origin Dilution 
IB 

Dilution 
IF 

Company/ Cat. No. 

α-mouse-HRP rabbit 1:5000 - IBA/2-1591-001 

α-mouse-HRP  goat 1: 15000  - Bio-Rad/170-6516 

α-rabbit-HRP  goat 1:5000 - Bio-Rad/170-6515  

α-mouse-Cy3 goat - 1:200 Dianova/115-165-
146 

α-mouse-A488  goat - 1:200 Invitrogen/522263 

α-rabbit-A488 goat - 1:200 Molecular 
Probes/A11070 

2.2  Antibiotics, enzymes and standards 

Table 2 List of antibiotics, enzymes and standards 

 Company/ Cat. No. 

Antibiotics  

Ampicillin Calbiochem/171254 

Geniticin Invitrogen/10131019 

Kanamycin Invitrogen/11815-024 

Enzymes  

Rstriction Endonuclease Xba I Boehringer / 674 257 

Restriction enzymes (Others) New England Biolabs/ Germany 

Standards (DNA & protein)  

Mass Ruler DNA ladder mix 10kDa  Fermentas/SM0403S 

DNA ladder low range Fermentas/SM0383S 

λDNA/HindIII fragments GibcoBRL/10382-018 

C-Terminus One-STrEP-tag Protein 

Ladder 

IBA/ 2-1011-100 

Precision Plus Protein Standard  Bio-Rad/ 161-0374 
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2.3  Bacterial strain and culture media 

Table 3 List of bacterial strain and culture media 

 Company/ Cat. No. 

Bacterial strains (E.coli) DH5α/Top10 Invitrogen-18258-012/C4040-10 

LB-medium  Applichem/A0954,9010 

LB-agar Applichem/A0927,9010 

Agarose Biozym/840004 

Low melting agarose Biozym/840101 

 

2.4  Chemicals 

All chemicals used in this study were obtained from Amersham (Freiburg, 

Germany), Sigma and Fluka (Deisenhofen, Germany), Merck (Haar, Germany), 

Applichem (Darmstadt, Germany), Serva (Heidelberg, Germany), Roth (Karlsruhe, 

Germany) and BioRad (München, Germany), if not stated otherwise in the text. 

2.5  Eukaryotic cells and culture media 

Prnp-deficient (Prnp-/-) Murine hippocampal neuronal cells (HpL3-4): HpL3-4 

cells were kindly provided by Prof. Takashi Onodera, Department of Molecular 

Immunology, School of Agricultural and Life Sciences, University of Tokyo, Japan. The 

cells were cultured in Dulbecco‟s modified Eagle‟s medium (DMEM) (Sigma-Aldrich 

Chemie, Germany), supplemented with 10% fetal bovine serum (FBS) (Biochrom AG, 

Germany), and 1% penicillin/Streotomycin (PS) (Biochrom AG, Germany) at 37°C, 

supplied with 5% CO2 and 95% humidity. 

SH-SY5Y (Stably expressing PrPC) cells: SH-SY5Y cells were obtained from 

Prof. Walter Schulz-Schaeffer, Department of Neuropathology, University medical 

center (UMG), Goettingen, Germany. The cells were cultured in DMEM, supplemented 

with 10% FBS, 1% PS, Geniticin 200µg/ml, at 37 oC, supplied with 5% CO2 and 95% 

humidity. 

Human embryonic kidney (HEK) 293 cells: HEK-293 cells were purchased 

from the American Type Culture Collection (ATCC). The cells were cultured in 

DMEM, supplemented with 10% FBS, and 1% PS, at 37°C, supplied with 5% CO2 and 

95% humidity. 
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2.6 Instruments and other materials 

Table 4 List of the instruments used in this study 

Appliance Model or Description Manufacture 

Bio-safety Cabinet Hera safe KS  Heraeus/ Osterode, Germany 

Centrifuges 5415C 

Rotina 35R 

Mikro 200 

Minifuge T  

Optima TL 100 

Eppendorf/Hamburg,Germany 

Hettich/ Tuttlingen, Germany 

Hettich/ Tuttlingen, Germany 

Heraeus /Hanau, Germany 

Beckman/ Krefeld, Germany 

Chamber slide Lab-Tek™ II Chamber 
Slide, 154534 

nunc/ New York, USA 

Culture dishes 60 mm, 351016 Becton Dickinson /NJ, USA 

Electro blotting apparatus,  Mini Trans-Blot®,  Bio-Rad /Munich, Germany 

Electrophoresis apparatus,  Mini-Protean® III, Bio-Rad /Munich, Germany 

Electroporation cuvette 1mm, 748 011 Biozym/ Oldendorf, Germany 

Freeze drier Alpha 1-4 LD SciQuip Ltd/ Shropshire, UK 

Gene Pulser Xcell 
Electroporation Systems 

165-2660 Bio-Rad/ California, USA 

Heated magnetic stirrer iKAMAG RCT IKA-Labortechnik/ Staufen, 
Germany 

Ice machine - Ziegra /Isernhagen, Germany 

Incubator IFE 400 Memmert/ Schwabach, 
Germany 

IPG strips 163-2002, 7 cm, pH 3–10 Bio-Rad/ Munchen, Germany 

Microscope Zeiss LSM 510 Meta Carl Zeiss/ Goettingen,  

Germany 

Microwave oven ER-6320 PW Brother International/ Bad 
Vilbel, Germany 

Power supply Power Pac 300 Bio-Rad /Munich, Germany 

PROTEAN IEF cell 165-4001 Bio-Rad/ Munchen, Germany 

Safe-Lock tubes 0.2, 0.5, 1.5 and 2ml Eppendorf /Hamburg, 
Germany 

Semi-Dry transfer Cell Transblot SD Bio-Rad/ Munchen, Germany 
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Serological pipettes  

plastic tubes 

2, 5, 10, 25ml 

15 and 50ml 

Sarstedt /Germany 

pH meter pH 526 WTW/ Weilheim, Germany 

Shakers CERTOMAT R Sartorius/ Goettingen, 

Germany 

Spectrophotometers EL808 Bioteck instruments/Winooski-
vermont, USA 

 DU 7500 Beckman/ Krefeld, Germany 

Sterile filter Nalgene 0.2μm Sartorius/ Goettingen, 

Germany 

Sterile filter pipette tips - Biozym /Oldendorf, Germany 

Syringes BD Discardit 2, 5, 20ml Becton Dickinson /NJ, USA 

Thermal Cycler TGradient Biometra/ Goettingen, 
Germany 

Thermomixer  5436 Eppendorf/ Hamburg, 

German 

UV-transilluminator 200x 200mm Bachofer/ Reutlingen, 
Germany 

Vacuum drier UNIVAPO 150H UNIEQUIP/ Martinsried, 
Germany 

Vortexer Genie 2™ Bender and Hobein /Zurich, 
Switzerland 

Water bath  1003 GFL/ Burgwedel, Germany 

X-ray films HyperfilmTM Amersham Biosciences 
/Freiburg, Germany 

2.7  Kits 

All the listed kits were used according to the manufacturer‟s instructions. 

Table 5 list of the kits used in this study 

Name Company/ Cat. 
No. 

Application 

Caspase-3 activity assay kit  Promega/G7220 Apoptotic activity assay 

C-terminus One-STrEP-tag AP 
detection kit 

IBA/2-1503-000 C-Terminus One-STrEP-
tagged protein detection 
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C-terminus One-STrEP-tag Starter 
kit 

IBA/2-1101-000 Purification of C-Terminus 
One-STrEP-tag protein 

EndoFree Plasmid Maxi Kit  Qiagen/12362 Plasmid DNA preparation  

QIAfilter Plasmid Midi Kit  Qiagen/12243 Plasmid DNA preparation 

Qiaprep Spin Miniprep Kit  Qiagen/27106 Plasmid DNA preparation 

QIAquick gel extraction Kit  Qiagen/28704 DNA gel extraction  

QIAquick PCR purification Kit  Qiagen/28106 DNA fragment purification  

StarGate Transfer / combinatorial 
Cloning kit 

IBA/5-1603-020 Cloning of C-Terminus One-
STrEP-tag plasmids 

2.8 Oligonucleotids 

The oligonucleotides used in this study are listed in Table 6 

Table 6 List of oligonucleotides 

Oligo Sequence (5’-3’) Accession/Cat. No. 

Prnp-For AATGGCGAACCTTGGCTGCTGGAT DQ408531 

Prnp-Rev TCCCACTATCAGGAAGATGAGGAA DQ408531 

Prnp-M129v-For CACATGGCTGATGCTGCAGCAG DQ408531 

Prnp-M129v-Rev GTGTACCGACTACGACGTCGTC DQ408531 

Prnp-H169y-For CCATGGATGAGCACAGCAACCAG DQ408531 

Prnp-H169y-Rev GGTACCTACTCGTGTCGTTGGTC DQ408531 

Pesg-sequencing-
Primer-For 

GAGAACCCACTGCTTACTGGC IBA/5-0000-121 

Pesg-sequencing-
Primer-Rev 

TAGAAGGCACAGTCGAGG IBA/5-0000-122 

siRNA Duplex   

siRNA-Rab7a CUGCUGCGUUCUCCUAUUU Operon 

siRNA Negative control - EUROGENTES/SR-
CL000-005 

Note: Colour highlights the combinatorial sites for combinatorial cloning (see section 

3.2.2). 
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2.9 Plasmids 

pENTRY- IBA1 (Lot. No. 4095-) and pESG-IBA103 (Cat. No. 5-4503-000) 

plasmids were provided by IBA, Goettingen. The construct maps for these vectors are 

provided in the Appendix. 

2.10 Software  

The following is a list of scientific software used in the study. 

Table 7 List of scientific software 

Program Use References 

Decodon Delta2D 2-DE gel analysis  DECODON GmbH, Greifswald 

Germany 

Graphpad Prism 5 Statistical analysis GraphPad Software, Inc. California, 

USA 

ImageJ 1.43u Densitomatric analysis National institutes of Health, USA 

ImageJ 1.43u WCIF Colocalization analysis National institutes of Health, USA 

KC4 V3.4 Absorbance reader Bioteck instruments, USA 

LabImage 2.7.1 Densitomatric analysis  Kapelan GmbH, Halle, Germany 

Protein-Lynx-Global-

Server v 2.1 

LS MS/MS data 

 analyzer 

Micromass, Manchester, U.K 

Zeiss LSM 4.2.0.121 Immunofluorescence  MicroImaging GmbH, Goettingen, 

Germany 

 

2.11 Stock solutions 

Blocking solution for WB: 5% Milk Powder in TBS-T 

Cell lysis buffer I: 50 mM Tris-HCl pH 8.0, 0.5% CHAPS, 1mM EDTA, 1% triton x100 

Cell lysis buffer II: 7 M urea, 2 M thiourea, 4% CHAPS, 2% ampholytes, 1% DTT and 

a protease inhibitor mixture 

Electrophoresis buffer (SDS-running buffer): 192 mM glycine, 0.1% SDS, 25 mM 

Tris-HCl pH 8.3 
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Elution buffer (C-terminus One-STrEP-tag purification): 100 mM Tris-HCl pH 8.0, 

150mM NaCl, 1mM EDTA, 1% triton x100 

Equilibration buffer I: 6 M urea, 2% SDS, 30% glycerin, 0.375 M Tris pH 8.8, 2% (w/v) 

DTT 

Equlibration buffer II: 6 M urea, 2% SDS, 30% glycerin, 0.375 M Tris pH 8.8, 2.5% 

(w/v) IAA, BPB in traces 

Laemmli Buffer (6x): 125 mM tris-Cl, 4% SDS, 20% glycerol, 2% mercatoethanol, pH 

6.8 

Rehydration buffer: 8 M urea, 2.5 M thiourea, 4% CHAPS, 66 mM DTT and 0.5% 

ampholytes 

Silver staining solutions: 

Developing solution: 6% Na2CO3, 0.0185% formaldehyde, 16 μM Na2S2O3 in 

ddH2O 

Fixation solution: 50% methanol, 12% acetic acid in ddH2O 

Sensitizing solution: 0.8 mM Na2S2O3 in ddH2O 

Silver nitrate solution: AgNO3 0.2% and 0.026% formaldehyde in ddH2O 

TBE: 42 mM Boric Acid, 10 mM EDTA, 50 mM Tris-HCl pH 8.0 

TBS-T: TBS and 0.1% of Tween-20 

TE: 0.01 M Tris-HCl, pH 7.4, 1 mM EDTA pH 8.0 

Transblot buffer for Nitrocellulose membrane: 192 mM glycine, 20% methanol, 25 

mM Tris-HCl pH 8.3 

Transblot buffer for PVDF membrane (semi dry): 192 mM Glycine, 10% methanol, 

25 mM Tris-HCl pH 8.3 
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3. Methods 

3.1  Microbiological methods  

3.1.1.  Culturing and storage of E. coli  

The E. coli strains were cultured for about 12-16 H in LB-medium at 37ºC on an 

orbital shaker at 180-250 rpm until approximately 0.6 OD600. For long-term storage 

bacterial strains were mixed with glycerol (9:1) and stored at -80ºC. 

3.1.2.  Preparation of electrocompetent E. coli cells 

One liter of LB medium was inoculated with 10 ml of fresh overnight culture of 

E.coli (DH5α strain). The culture was incubated for about 12-16 H in LB-medium at 

37ºC on an orbital shaker at 180-250 rpm until the OD600 reached to approximately 0.5-

0.8. The culture was cooled on ice for 1 H and centrifuged at 5,000 x g for 10 min. at 

4ºC. The pellet was resuspended in 10 ml ice-cold ddH2O and centrifuged at 5,000 x g 

for 15 min. at 4ºC. The resuspension and centrifugation step was repeated as before. 

The pellet was then resuspended in 5 ml ice-cold ddH2O. After centrifugation at 5,000 x 

g for 15 min. at 4ºC, the bacterial pellet was resuspended in 30 ml ice-cold ddH2O with 

a final concentration of 10% glycerol. Following the last centrifugation step (5,000 x g for 

15 min. at 4ºC), the pellet was then resuspended in ice-cold ddH2O followed by slow 

addition of glycerol to a final concentration of 10%. This cell suspension was dispensed 

in 0.5 ml aliquots which were first subjected to shock freezing in liquid N2 before storage 

at -80°C. Cells were kept on ice during the entire procedure. 

3.1.3.  Transformation of electrocompetent E. coli with plasmid 

DNA 

An aliquot of competent cells was first allowed to thaw on ice. About 5 ng DNA 

ligation product was added to 50 μl of competent cells and incubated for 5 min. The 

mixture was then subjected to electroporation pulse using Bio-Rad Gene Pulser II (Bio-

Rad, München, Germany). Electroporation was carried out at 1.8 kV with capacitance of 

25 μF and pulse-controller-resistance of 200 Ω. Immediately after the pulse, 900 μl of 

pre-warmed LB medium was added to the cuvette. After resuspension cells were 

incubated for 40 min. at 37ºC with shaking (180 rpm). The transformed cells were then 
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plated on pre-warmed LB agar supplemented with 100 μg/ml ampicillin and 50 μg/ml X-

Gal, or 50 μg/ml Kanamycin and then incubated at 37ºC for 12-16 H. 

3.1.4  Extraction of plasmid DNA  

Plasmid DNA was extracted using the QIAPrep Spin Miniprep Kit (QIAGEN, 

Hilden, Germany). A single colony of E. coli was inoculated into 5 ml LB medium 

supplemented with ampicillin to a final concentration of 100 μg/ml and then incubated 

for 16 H at 37°C with shaking (180 rpm). The cells were harvested by centrifugation at 

5,000 x g for 10 min. at 4°C. The remaining steps were performed according the 

manufacturer‟s instructions.  

 

3.2  Molecular biology methods 

3.2.1 Extraction of genomic DNA 

A total of 500 μl fresh anticoagulated/EDTA whole human blood was 

supplemented with RNase A (100 mg/ml) to obtain RNA-free genomic DNA. The blood 

cells were then lysed in 1 ml of lysis buffer, briefly mixed by vortexing, and then 

incubated for 10 min. at 56ºC followed by the addition of 200 μl of 100% ethanol and 

brief vortexing. The mixture was then carefully applied to a QIAamp spin column and 

centrifuged for one minute at approximately 11,000 x g in a table-top microcentrifuge. 

The bound DNA was washed with 500 μl of washing buffer and the column was 

centrifuged for one minute. An additional washing step was carried out by applying 500 

μl of washing buffer to the QIAamp spin column which was then centrifuged for 3 min. at 

maximum speed (13,000 x g). Any residual contaminants were removed by another 1 

min. centrifugation step. Finally, the QIAamp spin column was loaded with 200 μl of 

elution buffer, incubated for 5 min. at RT and centrifuged at approximately 11,000 x g 

for an additional minute. Small- and large-scale plasmid extractions were performed 

using the QIAGEN Mini and Maxi kits respectively according to the manufacturer's 

instructions. 

Ethanol DNA precipitation was carried out in order to improve the purity of the 

eluted DNA. Two volumes of ice-cold 100% ethanol and one tenth volume of 3 M 

sodium acetate buffer (pH 5.0 - 5.3) were added to one volume of eluted DNA. The 

solution was briefly vortexed and left on dry ice for 2-5 min. The supernatant was 
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quickly discarded after centrifugation (11,000 x g) in a microcentrifuge for 30 min. at 

4ºC. Then 200 μl of ice-cold 70% ethanol was added to the precipitate. Following 

another centrifugation step at maximum speed (11,000 x g) for 10 min at 4ºC, the 

supernatant was discarded and any residual ethanol was carefully removed without 

disturbing the pellet. The pellet was then air-dried for 2-3 min. and subsequently 

resuspended in TE buffer (pH 8.0). The solution was briefly mixed by vortexing, shortly 

centrifuged (13,000 x g) and stored at 4ºC for further analysis.  

3.2.2 Combinatorial cloning procedures 

All the procedures were performed according to the instructions provided in the 

StarGate Transfer/combinatorial Cloning kit-IBA with a slight modification, briefly 

described (below); 

3.2.2.1 Primer design  

The 5′- phosphorylated primers for combinatorial cloning (see section 2.8) were 

equipped with combinatorial sites at the 5′- and 3′- ends with the initial hybridization 

region having a melting temperature of 60-63oC. The 3′- end of the primers was 

designed to be phosphorothioate protected with a proof reading DNA polymerase. The 

5′- ends of the standard forward primers were formed by an additional -AATG- 

quadruplet to generate the upstream combinatorial site. The 3′- ends of the standard 

reverse primers were formed by an additional –TCCC- quadruplet to generate the 

downstream combinatorial site.  

3.2.2.2 Amplification of PRNP 

The amplification of PRNP was carried out in a total volume of 50 μl containing 2 

mM MgSO4, 10x ThermoPol Reaction buffer (New England Biolabs), 20 mM dNTPs 

(New England Biolabs), 25 pmol of each oligonucleotide primer, 1 U DNA polymerase 

(2,000 U/ml) (New England Biolabs), 100 ng of the template DNA and ddH20. Thirty-five 

cycles were done with initial denaturation at 95ºC for 120 s, denaturation at 95ºC for 30 

s, annealing at 60ºC for 45 s and extension at 72ºC for 60 s.  

3.2.2.3 Donor vector generation  

The pENTRY-IBA1 entry vector was mixed with 4 nM of water diluted PCR 

product and Star Solution E (1 l), then incubated for 1 H at 22 C. An aliquot of 10 l 

from the reaction mixture was incubated for 30 min. on ice with competent cells. The 
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mixture was mixed gently and incubated for 5 min. at 37 C and subsequently on ice for 

2-5 min. Then the mixture was supplemented with 900 l LB medium (without 

antibiotics) and incubated at 37 C with shaking for 45 min. The mixture was then plated 

on pre warmed LB Agar containing 50mg/L kanamycin and incubated at 37 C for 12-16 

H. 

3.2.2.4 Mammalian expression vector generation  

The supplied lyophilized , liquid acceptor vector pESG-IBA103 was diluted with 

generated donor vector solution to make the final concentration 1 ng/µl. Star solution 

A1, A2, A3 (1 µl each) were added and incubated with the StarMixll at 30 C for 1 H. The 

generated vectors were then transformed in competent cells previously thawed on ice. 

The mixture was mixed gently and incubated on ice for 30 min, then incubated at 37 C 

for 5 min., and finally put on ice for 2 min. The mixture was then supplemented with 90 

l LB medium (without antibiotics), plated on LB Agar containing 100mg/L ampicillin and 

50 mg/L X-Gal, and finally incubated at 37 C for 12-16 H. The generated vectors were 

then extracted as mentioned previously in section 3.1.4. 

3.2.2.5 Restriction digestion of vector DNA 

For cloning and analytical confirmation of the resultant clones, DNA was digested 

using Xba1/Hindlll restriction enzymes (FERMENTAS, St.Leon-Rot, Germany, New 

England Biolabs, Frankfurt, Germany). Generally 5-10 μg of plasmid DNA was digested 

for 1-2 H in a total volume of 20 μl at 37ºC using appropriate endonucleases in 

corresponding buffers. Three white colonies were selected and DNA mini preparation 

was performed (see section 3.1.4). 

3.2.3 Site directed mutagenesis 

Site directed mutagenesis was used to generate mutations (base substitutions) 

from double-stranded plasmid without the need for subcloning. The cDNA (0.5 pmole) 

was added to a PCR cocktail containing, 2 mM MgSO4 buffer, 0.2 mM of each dNTP, 25 

pmol of each oligonucleotide primer, 2.5 U Taq/Pfu DNA polymerase mix and 5% 

DMSO. Twenty-five cycles were performed with initial denaturation at 95ºC for 120 s, 

denaturation at 95ºC for 30 s, annealing at 60ºC for 30 s and extension at 72ºC for 60 s 

with a final extension of one cycle at 72ºC for 120 s. The parental template DNA and the 

linear, mutagenesis-primer incorporating newly synthesized DNA were treated with DpnI 
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(15 U) and DpnI buffer 5µl/50µl. The DpnI enzyme is specific for methylated and hemi-

methylated DNA and therefore digests the parental DNA template but does not digest 

the mutant synthesized DNA. As most E.coli strains produce methylated DNA, they are 

not resistant to Dpn I digestion. This reaction was incubated at 37ºC for 2 H. Undigested 

DNA was then purified by the PCR purification kit according to the manufacturer's 

instructions. The purified mutated DNA was then transformed into competent cells (see 

3.1.3). 

3.2.4 DNA agarose gel electrophoresis 

Agarose was melted in TBE buffer and 0.3 μg/ml ethidium bromide solution was 

added after being cooled to RT. The agarose was then poured into the agarose gel 

chamber. DNA samples were mixed with DNA loading buffer and ddH2O up to a final 

volume of 12.5 μl for loading of the gel. Gels were run in 1 x TBE buffer at 80-100 V for 

1-2 H, depending on the size of the examined DNA fragment or on the degree of the 

band separation required. The DNA bands were then visualized by UV light at 302 nm 

using a Gel Documentation 2000TM UVtransilluminator (Bio-Rad) and the Quantity One 

software (version 4.2.1). The estimation of DNA was done by visual comparison of the 

band intensity with that of a standard marker. 

3.2.5 Purification of DNA from agarose gels 

The PCR products were purified using QIAquick gel extraction Kits. The DNA 

fragments (bands) were excised from the agarose gels. The remaining steps were done 

exactly as described in the manufacturers instructions provided. The concentration of 

DNA in the final solution was measured at the Biophotometer (Eppendorf) at 260 nm. 

 

3.3 Cell biology methods 

3.3.1 Cryopreservation and thawing of eukaryotic cells 

For long-term storage, cells were frozen in the presence of dimethylsulphoxide 

(DMSO). The 60-90% confluent cells were centrifuged at 400 x g for 5 minutes at 4°C. 

The cells were then resuspended in ice-cold medium containing 70% DMEM, 20% FBS 

and 10% DMSO and finally aliquoted into 1ml cryogenic storage vials. The storage vials 
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were incubated at -20°C for 5 H and then 12-16 H at -80°C before they were finally 

stored in cryogenic vials suspended in liquid nitrogen.  

To re-freeze the cryo-preserved cells, the cryogenic stored vials with cells were 

quickly thawed in a water bath at 37°C. Subsequently, the cells were directly mixed with 

complete culture media (see section 2.5) and centrifuged at 400 x g for 5 min. in order 

to remove the cryopreservative (DMSO). The cells were then resuspended in the 

complete culture media and seeded in tissue culture flasks. 

3.3.2 Cultivation of eukaryotic cells 

All cell lines were cultured in their respective media (see section 2.5) and 

underwent between 5 and 25 passages. The cells were diluted 1:4 every 3-5 days after 

reaching approximately 70% confluency. The cell medium was removed and 3-5 ml of 

pre-warmed (37ºC) 0.05% trypsin/0.02% EDTA solution was added to the culture, 

incubated for 2-5 min. until the cells detached from the flask at 37ºC.  Cell culture 

medium (10 ml) was then added to stop the trypsin activity. The detached cells were 

carefully transferred to a Falcon tube and were spun down at 4ºC for 5 minute at 400 x 

g. After removing the supernatant the cell pellet was resuspended in 10 ml fresh media 

and seeded in four flasks (75 cm2). In the case of neuronal SH-SY5Y (PrPC Stable 

expressed) cells, Geniticin 200µg/ml containing media in 75 cm2 flasks was used for 

selection. 

3.3.3 Liposome-mediated transient transfection 

Transfection assays were performed using Lipofectamine 2000 (Invitrogen) 

following the supplier's recommendations. The cells were seeded in 6-well plates at a 

cell density of 2-5 x 105
 per well and maintained for 24 H in the medium containing 10% 

FBS. Prior to transfection cells were washed with Opti-MEM® I and subsequently 

transfected with 5 μg of DNA/well in Opti-MEM® I. After an incubation period of 24 H the 

transfection medium was replaced with DMEM supplemented complete medium. Cells 

were collected from confluent cultures after 48 H of transfection. 

3.3.4 Small interference RNAi treatment 

The cells were cultured (see section 3.3.2) for 24 H in complete DMEM medium 

prior to transient transfection (see section 3.3.3). The C-Terminus One-STrEP-tag PrPC 

(5 µg) was co-transfected with siRNA (100 nM) (see section 2.8) in HpL3-4 cells. In SH-
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SY5Y siRNAs with 100 nM duplexes were transfected using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer‟s instructions. The cells 

were also simultaneously transfected with non-targeting siRNA duplex (control siRNA 

Duplex Negative Control: Eurogentec). After 48 H of transfection the cells were lysed 

(see section 3.3.7) for expression analysis and immunofluorescence (see section 3.3.6) 

for localization studies.  

3.3.5 Immunocytochemical and quantification analysis 

 Cells were plated on chambered slides (Lab-Tek™ II; Thermo Fisher Scientific 

(Nunc GmbH & Co. KG), Langenselbold Site) and transfected with the C-terminus One-

STrEP-tag PrPC for 24, 36, and 48 H. Cells were subsequently washed in a phosphate-

buffered saline (PBS) and were fixed for 15 min. with 100% ethanol. After fixation cells 

were permeabilised with 0.2% Triton X-100 in 1xPBS, followed by a 20 min. blocking 

step using 0.2% casein-solution containing Tween 20. Co-localization of PrPC with 

interacting proteins was detected by applying the primary antibodies [anti-PrP 3F4 

(1:200), rabbit anti-Rab7a (1:50), rabbit anti-Rab9 (1:50), mouse anti-Arf (1:500), and 

mouse anti-Tubulin alpha (1:100)] for 12-14 H at 4°C. The primary antibodies were 

detected by incubating the slides for 60 min with secondary antibodies [Alexa 488 

conjugated anti-rabbit (1:200), Alexa 488 conjugated anti-mouse (1:200) or Cy3-labeled 

anti-mouse secondary antibody (1:200)]. Incubation with Hoechst 33342 or with TO-

PRO-3 iodide for 10 min was performed to visualize nuclei. Finally, cover slips were 

placed on glass slides and mounted with Fluoromount (DAKO, Hamburg, Germany). 

After secondary antibody incubation all the steps were carried out in a dark humid 

chamber. The slides were kept dry in dark at 4°C until further microscopic evaluation.  

 Confocal laser scanning microscopy was carried out using a LSM 510 laser-

scanning microscope (Zeiss, Göttingen, Germany; 488 nm Argon, 543 and 633 nm 

Helium-Neon excitation wavelengths) according to the manufacturer‟s instructions for 

the localization of PrPC and other interacting proteins, using a 63x/1.25 oil immersion 

lens. Individual images were analyzed separately for colocalization using LSM 5 (Zeiss) 

or ImageJ (WCIF plugin) software. For two-color analysis, stacks of images with a total 

thickness of approximately 30µm were acquired, using a dynamic range of 12 bits per 

pixel. Colocalization expressed as a correlation coefficient indicates the strength and 

direction of the linear relationship between two fluorescence channels. Pearson's linear 
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correlation coefficient (rP) was used in this study to calculate fluorescence channel 

correlations: 

 

Where xi= intensity of voxel I in image (xi=0 if xi is outside threshold of detection) 

yi= intensity of voxel I in image (yi=0 if yi is outside threshold of detection) 

xaver and yaver represent averages of the x and y channel intensities. 

The value of rP is between -1 and 1, where 0 indicates no correlation, and -1 indicates 
negative correlation. Values>0 indicate a positive correlation. 

Colocalization in the context of fluorescence microscopy is defined as the signal 

detection of two separated fluorescence channels at the same pixel. Threshold settings 

were generated automatically from regions of interest. Colocalization coefficients were 

calculated according to published methodology [Manders et al. 1993] in which 

 

and 

 

Where xi,coloc=xi if yi is within the intensity range defined by region of interest 

xi,coloc=0 if yi is outside the intensity range and 

yi,coloc=yi if xi is within the intensity range defined by region of interest 

yi,coloc=0 if xi is outside the intensity range. 

Values of colocalization coefficients range between 0 and 1. A value of 0 indicates that 

none of the signal within thresholds in that channel exists as co-localized with the other 

channel. A value of 1 indicates that the entire signal within thresholds in that channel 

exists as colocalized with the other channel. Two perfectly colocalized images will 

generate a scatter plot where the points fall in a line at 45° to either axis. 
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3.3.6 Cell lysis and protein extraction 

Total cell lysate was prepared from 70% confluent HpL3-4, HEK-293 and SH-

SY5Y cells. For C-Terminus One-STrEP-tag purification, HpL3-4 cells after 48 H of 

transient transfection were washed with ice cold 1xPBS, scraped and centrifuged at 4°C 

for 5 min at 400 x g. The pellet was resuspended in ice cold 1x PBS and centrifuged at 

4°C for 5 min at 400 x g. The washed cells were then lysed in lysis buffer I (50 mM Tris-

HCl, pH8, 1% Triton X-100, 0.5% CHAPS, 1mM DTT, Roche protease and phosphatase 

inhibitor cocktail). Cell lysates were homogenized with an ultra sonicator on ice (5 

strokes) and were then ultra-centrifuged for 15 min. with 543,000 x g at 4°C. Protein 

concentration was estimated (see section 3.3.8) and either underwent further C-

Terminus One-STrEP-tag purification or was stored at -20°C.  

3.3.7 Determination of protein concentration 

The protein concentration of cell lysate was determined by the Bradford assay 

(Bio-Rad). Working solution was prepared by diluting a dye reagent (Bio-Rad) with dH20 

1:5 followed by filtration through Whatmann filter paper. BSA protein standards were 

prepared in dH20 with a concentration range between 0.0-1.0 mg/ml. Protein samples of 

unknown concentration were diluted 1:5, 1:10 and 1:20. Protein standards or diluted 

samples of unknown concentrations (20 µl) were mixed with 1ml of Bradford working 

solution and incubated for 10 min. at RT. The absorbance of the samples was 

measured at 595 nm. The calculation of the protein concentration was done using 

Microsoft Office 2007 Excel software. 

3.3.8 One-STrEP-tag purification  

Total cell lysate was first prepared (see section 3.3.7). The STrEP-Tactin superflow 

beads were equilibrated by 3x washing with buffer containing 100mM Tris-HCl, pH8, 1% 

Triton X-100, 1mM DTT, 150 mM NaCl, Roche protease and phosphatase inhibitor 

cocktail. The total amount of protein isolated was estimated and then the beads were 

diluted with wash buffer containing 100mM Tris-HCl, pH8, 1% Triton X-100, 1mM DTT, 

Protease and Phosphatase inhibitors to make the final concentration of CHAPS 0.1%. 

The equilibrated STrEP-Tactin superflow beads were incubated with 4 mg total protein 

for 1 H at 4°C on a rocking platform. Following the centrifugation at 15,000 rpm for 2 

min. at 4°C supernatant was removed and STrEP-Tactin superflow beads with attached 

STrEP-tag protein were washed 4x with wash buffer and then STrEP-tagged protein 
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complex was eluted with 2.5 mM Desthiobiotin. The eluted proteins were precipitated 

with methanol/chloroform [Wessel and Flugge 1984]. 

3.3.9 Immunoprecipitation 

Cell lysis was performed as described previously (section 3.3.5). The insoluble 

cell debris was removed by centrifugation at 543,000xg for 10 min. at 4°C. 

Immunoprecipitation was performed using Dynabeads protein G (1.5 mg beads/3 mg 

total protein) according to the manufacturer‟s instructions. Samples of total cytoplasmic 

cell extracts or immunoprecipitated proteins (corresponding to 2x106cells/lane) were 

subjected to 12.5% SDS-PAGE and transferred to polyvinylidene difluoride membranes 

(Millipore). Immunoblotting was performed as described in section 3.3.12. 

3.3.10SDS-PAGE  

Two-phase gels were used for stacking and separating the proteins of interest 

according to their molecular weight (4% stacking gel and 12.5% resolving gel). 

Molecular weight markers were run in parallel in order to determine the size of the 

loaded proteins. Equal amounts of protein samples and 2x sample buffer (see section 

2.9) were mixed, heated for 10 min. at 95ºC and loaded onto the gel. SDS-PAGE was 

run at 4ºC. A voltage of 20 mA was applied for 15 min. to allow samples to enter the gel 

and stack without smearing and then increased to 40mA until bromphenol blue reached 

the bottom of resolving gel. 

3.3.11 Immunoblot analysis 

Cells were lysed (50mM Tris-HCl, pH8, 1% Triton X-100, 0.5% CHAPS, 1mM 

DTT), and lysates were cleared off from cellular debris (1 minute, 1000 x g, 4°C). Cell 

lysates were supplemented with Roche protease and phosphatase inhibitor and were 

separated on 12.5% SDS-PAGE (see section 3.3.11). Expression of proteins was 

analyzed by western blot using anti-PrP 6H4 monoclonal antibody (1:1000), anti-PrP 

SAF70 monoclonal antibody (1:5000), anti-Rab7a mAb (1:1000), anti-Arf1 mAb (1:1000) 

and anti-Tubulin alpha (1:5000) for 12-14 H at 4°C. Membranes were then rinsed in 1x 

TBS-T and incubated with the corresponding horseradish peroxidase-conjugated 

secondary antibody (diluted 1:2000/1:5000) for 1 H at RT. Immunoreactivity was 

detected after immersion of the membranes into enhanced chemiluminescence (ECL) 

solution and exposure to ECL-Hyperfilm (Amersham Biosciences, Buckinghamshire, 
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U.K.). Densitometric values for each band intensity were determined using lab image 

2.7.1 data analyzer software. 

3.3.12 Two-dimensional gel electrophoresis 

First dimension electrophoresis 

Proteins were separated in the first dimension by isoelectric focusing (IEF), which 

separates proteins by their isoelectric point (pI). Seven centimeter pre-cast immobilized 

pH gradient (IPG) strips (ReadyStrip IPG, Bio Rad) with a linear pH range between 3-10 

were used. The amount of protein loaded on each IPG strip varied with the staining 

method and the length of the strip. The protein load for Coomassie staining was 200 μg 

whereas for silver staining it was 40 μg. The cell lysates were prepared as described in 

Section 3.3.7. The total volume of sample applied per IPG strip was 130-135 μl for each 

7 cm IPG strip. 

Rehydration of IPG strips was carried out in the re-swelling cassette (Bio-Rad). 

The sample (130-135 μl) containing a certain amount of protein was carefully applied 

onto the cassette track for strip rehydration. The protective film was removed from the 

IPG strips and placed (gel side down) onto the cassette without air bubbles. Following 1 

H incubation at RT the IPG strips were overlaid with mineral oil (Bio-Rad) to avoid 

evaporation during an overnight passive rehydration (without any electric field). The 

focusing of the proteins on IPG strip was initiated at 200 V for 2 H, followed by ramping 

at 500 V for 2 H, and final focusing at 4000 V for 5 H until a total of 20000 Vh was 

achieved.  

Prior to the second dimension electrophoresis an equilibration step was applied 

to the proteins separated by IEF in order to reduce disulfide bonds and to alkylate the 

resultant sulfhydryl groups of the cysteine residues. The IPG strips were incubated on a 

horizontal shaker with equilibration buffer I for 25 min. followed by incubation in 

equlibration buffer II for a further 25 min. 

Second dimension electrophoresis by SDS-PAGE 

Equilibrated strips were placed on top of vertical 12% SDS polyacrylamide gels 

and overlaid with 1% (w/v) agarose in SDS running buffer. The gels were loaded with 

the suitable protein markers and run at 100 V for 2 H in Mini Protean II TM gel chamber 
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at 4ºC. At the end of second dimension electrophoresis gels were removed from the 

glass plates and either Coomassie stained; silver stained and western blotted to PVDF 

membranes. 

Visualization and imaging of the gels 

Coomassie staining was carried out using Roti-Blue staining solution (Roth) 

mixed with ethanol and water in 40:20:40 ratios. The gels were then briefly destained 

using ethanol/acetic acid/water (20:5:75) after 12-14 H of incubation and stored in 5% 

acetic acid in ddH2O. Sensitivity of detection by Coomassie staining requires 

approximately 40 ng of protein per spot for detection and allows visualization of the 

broadest spectrum of proteins. The gels were silver stained using the protocol described 

by Blum and co-workers (1987).  

3.3.13 Protein/peptide sequence identification by LC/MS-MS 

3.3.13.1 In-gel digestion and preparation of proteins and proteolytic 

fragments 

In-gel digestion was carried out according to the previously described protocol 

[Asif et al. 2007;Asif and Yevzlin 2009]. Specific bands were excised from the silver-

stained 1-DE gel into 1−2 mm2 slices, destained with 15 mM potassium ferricyanide/50 

mM sodium thiosulfate (Aldrich/Sigma-Aldrich, Steinheim, Germany) and then 

equilibrated with 50 mM ammonium bicarbonate/50% acetonitrile (ACN) (Sigma-Aldrich) 

until destained. Samples were dried for 15 min. using the SpeedVac SVC100 (Savant 

Instruments, Farmingdale, NY) vacuum concentrator. The dried slices were rehydrated 

with 10 mM dithiothreitol /100 mM ammonium bicarbonate and incubated at 56°C for 45 

min. The slices were then incubated with 55 mM iodoacetamide/ 100 mM ammonium 

bicarbonate at room temperature for 30 min in the dark and followed by washing with 

100 mM ammonium bicarbonate and made 1:1 solution with ACN and incubated for 15 

min. Samples were dried for 15 min. and rehydrated on ice with 10−20 µL of trypsin 

digestion (0.1 µg/µl) solution (Promega, Madison, WI) for 45 min. followed by an 

overnight incubation at 37°C in digestion solution without trypsin. The peptides were first 

extracted with 0.1% trifluoracetic acid (TFA) for 30 min. in a sonicating water bath 

Transsonic 310/H (Elma, Pforzheim, Germany) followed by extraction with 30% ACN in 

0.1% TFA and 60% ACN in 0.1% TFA. The eluate was collected in Eppendorf tubes 
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and dried with the SpeedVac. The extracted peptides were dissolved in 0.1% formic 

acid (FA) for ESI-QTOF-MS/MS.  

3.3.13.2 Identification of protein/peptide sequence analysis 

One microliter of tryptic digested peptide solution was introduced using a CapLC 

auto sampler (Waters) onto a μ-precolumn cartridge C18 pepMap (300 µm × 5 mm; 5 

µm partical size) and further separated through a C18 pepMap100 nano Series (75 µm 

×15 cm; 3 µm partical size) analytical column (LC Packings). The mobile phase 

consisted of solution A (0.1% FA in 5% ACN) and solution B (0.1% FA in 95% ACN). 

The single sample run time was set for 60 min. The chromatographically separated 

peptides were then analyzed on a Q-TOF Ultima Global (Micromass, Manchester, U.K.) 

mass spectrometer equipped with a nanoflow ESI Z-spray source in positive ion mode. 

Data acquisition was performed using MassLynx (v 4.0) software on a Windows NT PC 

and data were further processed on Protein-Lynx-Global-Server (v 2.1), (Micromass, 

Manchester, U.K.). Processed data were searched against MSDB and Swiss-Prot 

databases through the Mascot search engine using a peptide mass tolerance of 0.5 Da 

and fragment mass tolerance of 0.5 Da. The search criteria were set to a maximum of 

one missed cleavage allowed by trypsin and protein modifications set to methionine 

oxidation and carbamidomethylcysteine when appropriate. 

3.3.14 Enzyme-linked immunosorbent assay (ELISA) 

For ELISA analysis the BetaPrion® BSE EIA Test Kit (Leipzig, Germany) was used 

and all procedures were performed according to the supplier's recommendations. 

Briefly, equal amounts of protein (50 μg) from cell lysates of control and PRNP-

transfected cells were added to a microtitre plate coated with a monoclonal anti-PrP 

antibody and incubated for 60 min. at 37ºC. Recombinant human PrPC (Roboscreen, 

Leipzig, Germany) was used as a standard. After washing the plate three times a 

monoclonal, peroxidase-labeled, anti-PrP antibody was added followed by 60 min. 

incubation at 4ºC. Following five more washes a microtitre plate was incubated for 15 

min. with a developing solution containing hydrogen peroxide and tetramethylbenzidine. 

Afterwards the reaction was stopped, extinction measured (at 450/620 nm) and PrPC 

concentration (ng/ml) was determined. Means and standard deviations were calculated 

from three independent sets of experiments. Significant differences in PrPC levels were 
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determined using unpaired Student's t-test (p<0.05). Each sample was run in duplicate 

in a blinded fashion. 

 

3.4 Biochemical methods 

3.4.1 Cell viability assays 

The adherent cells were grown to 60-70% confluency and then detached from 

flasks using 1x Trypsin-EDTA. The cells were spun down at 4ºC for 5 min. at 400 x g 

and resuspended in culture media. Cells were then dispensed into 24-well plates (Nunc, 

Roskilde, Denmark) at a final concentration of 1x105 cells/well and incubated for 12 H at 

37°C . The cells were then transfected (see section 3.3.3) with C terminus One-STrEP-

tag PrPC plasmids for variable times (24 H, 36H and 48 H). The culture media was then 

removed and replaced prior to MTS [3-(4, 5-dimthylthiazol-2-yl)-5-(3-

carboymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium, inner salt] treatment. The effect 

of PrPC presence on cell viability was measured using the MTS cell proliferation assay, 

which measures the reduction of MTS tetrazolium salt to formazan by metabolically 

active cells [Cory et al. 1991]. The cells were then treated with a 1:20 ratio of MTS 

reagent (Promega Co. Madison, WI, USA) 2mg/ml with 05% Glucose and PMS 

0.92mg/ml with 0.5% Glucose. Cells were incubated for 1 H at 37oC for color 

development, and the absorbance values were read at 490 nm using a Multiscan plate 

reader (Labsystems, Virginia, USA) and Accent software 2.6. Background absorbance 

from controls was subtracted from sample wells after the final absorbance was 

obtained.  

Trypan blue exclusion was also used to check for cell viability. In subsequent 

experiments viability was determined by counting the number of cells in 10 fields (20x 

objective) selected at random on coverslips containing either transfected or un-

transfected (control) cells.  

The Nuclear Area Factor (NAF) for transfected and non-transfected cells was ere 

determined by fluorescent staining of the nucleus using DAPI, followed by digital 

microscopy. The measurement of the nuclear area and nuclear circularity was done 

using Image J analysis software [Daniel and DeCoster 2004]. 



Methods 

 

 40 

3.4.2 Caspase-3 activity assay 

The Caspase-3-activity assay allows quantitative measurement of change in 

caspase-3 (DEVDase) protease activity, which is an early regulatory event in the 

apoptotic cell death process. The assay was performed using Caspase-3 activity assay 

kits according to the manufacturer's recommendations. Briefly, untreated conrol, empty 

vector transfected and C-terminus One-STrEP-tag PrPC transfected cells were lysed in 

the cell lysis buffer for 15 min. at 4 °C followed by centrifugation at 10000 x g. Protein 

concentration was estimated in the supernatants and the total cell lysate (50 μg) was 

then incubated with 50 μM caspase-3 specific substrate DEVD-pNA for 4-5 H at 37 °C. 

The caspase-3 inhibitor Z-vad-FMK (20 mM) was used as a control. Caspase-3 

mediated release of pNA was measured by absorbance at 405 nm. Background 

absorbance from the control (untreated cells) was subtracted from the the final 

absorbance obtained for the samples. 

3.4.3 Brefeledin A treatment  

Brefeldin A (BFA), a metabolite of the fungus Eupenicillium brefeldianum, 

specifically and reversibly blocks protein transport from the endoplasmic reticulum (ER) 

to the Golgi apparatus in many cell-types and species. The cells were treated with 1 

µg/ml and 10 µg/ml of BFA after 24-48 H of transient transfection at different time points 

in HpL3-4 cells and same treatment was applied to the SH-SY5Y stable PrPC cells. After 

BFA treatment the cells were lysed (see section 3.3.7) for expression analysis and 

immunomounted (see section 3.3.6) for localization analysis.  

3.4.4 Microtubule disruption treatment 

The microtubules were disrupted as preiously described [Vonderheit and 

Helenius2005]. Briefly, cells were cultivated (see section 3.3.2) and treated with 5 µM 

nocodazole for 30 min., 3 H, and 24 H at 37ºC after transient (section 3.3.3) transfection 

in HpL3-4 cells and SH-SY5Y stable PrPC cells. After nocodazole treatment the cells 

were lysed (see section 3.3.7) for expression analysis or immunomounted (see section 

3.3.6) for localization analysis.  

3.4.5 Protease K degradation assay 

 The total cell lysates (siRNA treated and non-treated) were incubated for 60 min. 

with shaking at 37°C in the presence of PK (50 µg/ml). The digestion was stopped by 
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adding electrophoresis sample buffer and the protease-resistant PrP was examined by 

western blotting. 

3.5 Statistical analysis 

All results in this study were obtained from at least four independent sets of 

experiments and were expressed as mean ± S.D using descriptive statistics. 

Densitometric analysis of 1-DE gels were performed using ImageJ 1.43u software. 

3.6 Safety measures 

All operations with genetically modified organisms and plasmid DNA were performed in 

accordance with the Gentechnikgesetz of 1990 and the rules described by the 

Gentechnik-Sicherheitsverordnung of 1990. Ethidium bromide, formaldehyde, 

acrylamide and other chemicals deleterious for the environment, when used in the 

course of the work, were carefully managed and disposed of properly in accordance 

with institutional guidelines. All waste was disposed of according to institutional 

instructions. 
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4. Results 

Proteins interact with each other to perform their biological functions. Therefore, 

it is crucial to identify the different partners with which PrPC might be associated in the 

cell in order to uncover its physiological role. In recent years, many groups have tried to 

identify the proteins which functionally interact with PrPC. However, the complex 

trafficking and internalization pattern of PrPC restricts ligand purification.  

In this study, a neuronal cell model expressing C-terminus One-STrEP-tag PrPC 

was established to identify the interacting proteins of PrPC. The novel interacting 

proteins of PrPC identified, with suggested roles in trafficking and internalization, were 

further characterized using different molecular biological techniques. 

4.1 Generation and expression of C-terminus One-STrEP-tag-

PrP
C
  

Mammalian expression vector encoding C-terminus One-STrEP-tag PrPC was 

established with combinatorial cloning. The PRNP gene was first equipped with 

essential recombination sequences for the transfer of PRNP from pENTRY-IBA (donor 

vector) to the acceptor vector. The generated acceptor vector (pESG-103-PRNP) was 

checked by restriction digestion analysis, which showed the 830bp fragment of PRNP-

C-Terminus One-STrEP-tag (Figure 4). 

To test the C-terminus One-STrEP-tag system, HpL3-4 cells lacking endogenous 

PrPC were transiently transfected with the vector containing C-terminus One-STrEP-tag 

PrPC (PrP+/+ or PrPC) or control vector without the PrPC construct (PrP-/-). 

Immunoblotting with PrPC and One-STrEP-tag antibody confirmed its expression in 

transfected cells (Figure 5A-C). The PrPC expression/localization was further confirmed 

using anti-One-STrEP-tag antibody which showed complete overlapping with PrPC 

(Figure 6).  
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Figure 4 C-terminus One-STrEP-tag PrPC plasmid: (A) Amplification of the PRNP gene 

(molecular weight 762 bp) through genomic DNA extracted from whole human blood. (B) Donor vector 

(pENTRY-PRNP, molecular weight 2400 bp) generated with combinatorial cloning. (C) Restriction 

digestion of pESG-103-PRNP with XbaI and Hind III enzymes showed an 830 bp PRNP-C-terminus One-

STrEP-tag fragment (D) Schematic representation of PrP
C
 attached with One-STrEP-tag at its C-

terminus. 
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Figure 5 PrPC expression in HpL3-4 cells after transient transfection: (A) C-terminus 

One-STrEP tagged PrP
C
 (HpL3-4 PrP

C
) and control vector without PrP

C
 construct (HpL3-4 PrP

-/-
), 

transiently expressed for 48 H in HpL3-4 cell line. Linear 7cm IPG strips (pH 3-10) were used and loaded 

with 80 µg of total cell lysate and were analyzed by 2-DE immunoblotting using 6H4 PrP
C
 specific 

antibody (B) PrP
C
 expression after 24, 36 and 48 H of C-terminus One-STrEP-tag PrP

C
 transient 

transfection (B) Densitometric analysis of time dependent PrP
C
 expression after transient transfection. 

n=4.  
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Figure 6 PrPC localization in HpL3-4 cells after transient transfection: C-terminus 

One-STrEP tagged PrP
C
 and control PrP

C
 transiently expressed for 48 H in HpL3-4 cell line. Cells were 

fixed, made permeable with Triton-X-100. (A and B) Immunohistochemistry of PrP
C
 expression labeled 

with 6H4 anti- PrP
C
 antibody. Immunofluorescent staining of One-STrEP tagged PrP

C
(C) and control PrP

C
 

(D) with 6H4 anti- PrP
C
 antibody and STrEP mAb classic anti- One-STrEP tag antibody followed detection 

by Cy3 (red)- and Alexa488 (green)- conjugated secondary antibodies. (Scale bar: 10 μm). Typical scatter 

plot of the individual pixels from paired images. The region 3 demonstrated the overlapping region, 

regions 2 and 1 corresponding to green and red pixels, respectively, with no color mixing. Overlapping 

was quantified with the LSM 510 3 software (Carl Zeiss, Germany). 

 

4.2 PrP
C
 expression and cell viability  

4.2.1 PrPC expression and cell viability in HpL3-4 and SH-SY5Y cells 

To check the influence of PrPC expression on cell viability, C-terminus One-

STrEP-tagged PrPC was transiently transfected for 24, 36 and 48 H in HpL3-4 cells 

(Figure 5). The mitochondrial respiratory activity of non-apoptotic cells was determined 
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by MTS assay. Cell viability of HpL3-4 PrPC was not significantly different as compared 

to PrP-/- after 24 H and 36 H of transient transfection. However, the cell viability was 

slightly but significantly increased after 48 H of transient expression (Figure 7). On the 

other hand, the stably expressing PrPC SH-SY5Y cells showed significant decreased 

viability as compared to control pCIneo cells (Figure 8).  

 

 

Figure 7 Viability of transient PrPC expressing HpL3-4 cells: Cells were transiently 

transfected with PrP
-/-

 and PrP
C
 and cell viability was measured by MTS assay after 24, 36 and 48 H of 

expression. The viability values are shown as absorbance at 490nm. Data points are the means ± SEM of 

values from four different experiments. The significance was performed by student‟s t-test (*P< 0.05). 

 

                 

Figure 8 Viability of stable PrPC expressing SH-SY5Y cells: SH-SY5Y cells stably 

expressing pCIneo (control) and PrP
C
 (0.5 x 10

6
 cells/ml) and the viability of the cells were measured by 

MTS assay at 490 nm by spectrophotometry. The viability values are shown as absorbance at 490nm. 
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Data points are the means ± SEM of values from four different experiments. The significance was 

performed by student‟s t-test (**P< 0.01). 

 

4.2.3 Caspase-3 activity in PrPC expressing cells 

 To test the cytotoxic nature of PrPC, an apoptotic marker enzyme caspase-3 

activity was measured in transient and stable PrPC expressing cells. Caspase-3 activity 

was analyzed in cell lysates incubated with pNA-conjugated caspase-3 specific 

substrate DEVD. Free cleaved pNA was detected by fluorescence measurement. 

Relative Caspase-3 activity was analyzed in SH-SY5Y cells stably expressing pCineo 

(control) and PrPC and also in transient expressing PrPC HpL3-4 cells. The Caspase-3 

activity was significantly increased in pCineo control and in HpL3-4 PrP-/- cells after 

staurosporine treatment. The cells expressing transient and stable PrPC showed no 

significant (ns) regulation of caspase-3 enzyme activity and demonstrated the anti-

apoptotic nature of PrPC after staurosporine treatment (Figure 9). 
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Figure 9 Caspase-3 activity in HpL3-4 and SH-SY5Y cells: Total cell lysates were isolated 

from HpL3-4 cells (transiently expressing PrP
C
) and SH-SY5Y cells (expressing stable PCIneo (empty 

vector) and PrP
C
). Caspase-3 activity was detected by fluorescence measurement of the cleaved pNA 

from the substrate peptide DEVD-pNA. Densitometric analysis (A) HpL3-4 cells (B) SH-SY5Y cells. Data 

points are the means ± SD of values from four different experiments. The significance was tested by 

student‟s t-test (**P < 0.01, ***P< 0.001) and ns=non significant.  
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4.3 Purification and identification of PrP
C
 interacting proteins  

 C-terminus One-STrEP-tag affinity chromatography and reverse co-

immunoprecipitation methods were employed in this study to purify the interacting 

proteins under physiological conditions.  

4.3.1 C-terminus One-STrEP-tag PrPC affinity purification of PrPC 

complex  

HpL3-4 cells lacking endogenous PrPC were transiently transfected with the 

vector containing C-terminus One-STrEP-tag PrPC (PrP+/+) or control vector without 

PrPC construct (PrP-/-). The efficiency of C-terminus One-STrEP-tag PrPC protein 

recovery through the STrEP-Tactin column was optimized by using buffers designed to 

not disrupt physiological binding of the protein during its elution and purification. The 

total cell lysate (TCL) was prepared and then incubated (4 mg) with pre-equilibrated 

STrEP-Tactin superflow beads to purify PrPC along with its interacting proteins from the 

total cell lysates. The eluates from STrEP-Tactin superflow beads were precipitated with 

methanol/chloroform and then resuspended in Laemmli buffer, 1-DE separated, electro-

transferred to a PVDF membrane and detected with 6H4 PrPC as well as One-STrEP-

tag antibodies (Figure 10A and B). Following 6H4 PrPC and One-STrEP-tag specific 

western blots, the remaining eluate was 1-DE separated and silver nitrate stained 

(Figure 10C). Whole lanes from PrP+/+ and PrP-/- transfected eluates were excised, in-

gel digested and proteins were identified by Q-TOF MS/MS analysis. All the proteins 

identified in the PrP-/- lane bands were considered background contaminants and 

subtracted from the list of proteins identified from PrP+/+ transfected eluates. Both 

known and novel PrPC interacting partners were among the proteins identified in this 

study (Table 8). 
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Figure 10 Identification of PrPC 

multiprotein complex from HpL3-4 

cells purification by C-terminus 

One-STrEP-tag: TCL after 48 H of 

transient transfection was prepared and 

subjected to the C-terminus One-STrEP-tag 

purification method. Aliquots from each step 

of the purification (starting material (TCL) 

5%; flow-through (FT) 50%; washes 50%; 

eluates 25%) were analyzed by immuno 

blotting using (A) 6H4 and One-STrEP-tag 

specific antibodies (B) Densitometric 

analysis from immuno blotts n=4 (±SD). (C) Silver-stain 1-DE, proteins identified by MS/MS analysis are 

listed in Table 8 (D) Confirmatory immuno blotting using 3F4, One-STrEP-tag, and other interacting 

proteins specific antibodies.  

Fifteen out of the forty-three identified proteins have already been described as 

interacting partners of PrPC in previous studies (Table 8). Three of them (tubulin alpha-

1A, tubulin beta-5 chain, elongation factor 1-alpha-1), are also known for their 

interaction with PrPSC. However, five other proteins (actin, cofilin-1, Glyceraldehyde 3-
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phosphate dehydrogenase (GAPDH), D-3-phosphoglycerate dehydrogenase and heat 

shock protein 90-alpha) from our identified proteins were identified in these experiments 

as interacting partners for PrPSc but not for PrPC. Collectively, 23% of the interacting 

partners of PrPC identified in this study are  associated with cytoskeleton-cell 

growth/maintenance, 23% cell communication and signal transduction, 14% 

metabolism: energy pathways, 14% protein metabolism, 14% oxioreductase: stress 

response and 5% protein folding proteins. The remaining 7% proteins fall into other 

three functional groups (Figure 11). A selection of identified proteins was further 

validated by immunoblotting using the protein specific antibodies from purified One-

STrEP-tag eluate. PrPC and Strep-tag signal was detected in TCL and One-STrEP-tag 

elute from PrP+/+ or PrPC. Rab7a, Arf1, alpha tubulin 1, annexin A2, annexin A5, actin 

cytoplasmic 1, cofilin-1, vimentin, and peroxiredoxin-1 was only detected in PrPC One-

STrEP-tag elute. No signal was detected in the control purified elutes (Figure 10D), 

confirming the specificity of the purification process.  
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Table 8 PrPC interacting proteins: Interacting proteins were identified after C-terminus One-

STrEP-tag purification and Q-TOF MS/MS analysis. The biological functions are assigned according to 

the ExPASy protein database (http://expasy.org/) and the Human Protein Reference Database [Keshava 

Prasad et al. 2009]. B. No = Band No. listed in Figure 4C, Acc. No.= Swissprot Accession No., PrP
C
 

ligand = previously identified as a PrP
C
 interacting partner, PrP

Sc
 ligand= previously identified as a PrP

Sc
 

interacting partner. The detailed list of list of interacting proteins with score, peptide match, sequence 

coverage and sequences can be found in appendix B. 

B.
No  

Acc.  
No. 

Protein Description PrP
C
 

Ligand  
PrP

SC
 

Ligand  
Mass 
(kDa) 

Function (ExPASy)/ References 

Cytoskeleton: Cell growth /maintenance 

14 P60710 Actin, cytoplasmic 1 Novel Known 

[Morel et 

al. 2008] 

41.7 Highly conserved, involved in cell motility 

21 P07356 Annexin A2 Known 

[Morel et 

al. 2008] 

- 38.6 Calcium-regulated membrane-binding 

protein 

14 Q8BFZ3 Beta-actin-like protein 2 Novel - 41.9 Cell motility 

35 P18760 Cofilin-1  Novel Known 

[Giorgi et 

al. 2009] 

18.5 Controls reversible actin polymerization, 

depolymerization and is major component 

of intranuclear and cytoplasmic actin rods 

9 P26041 Moesin Novel - 67.7 Probably involved in connection of major 

cytoskeletal structures to the plasma 

membrane 

3 Q8VDD5 Myosin-9 Novel - 226.2 Cytokinesis, cell shape, secretion and 

capping 

33 Q9WVA4 Transgelin-2 Novel - 22.3 Muscle organ development  

12 P68369 Tubulin alpha-1A Known Known 

[Nieznans

ki et al. 

2005] 

50.1 Major constituent of microtubules 

13 P99024  Tubulin beta-5 chain Known Known 49.6 Major constituent of microtubules 

12 P20152 Vimentin Novel - 53.6 Class-III intermediate filaments, found in 

various non-epithelial cells 

Cell communication : Signal transduction 

27 P62259 14-3-3 protein epsilon Known 

[Satoh et 

al. 2005] 

- 29.1 Adapter protein in signaling pathway 

27 P63101 14-3-3 protein zeta/delta Known - 27.7 Adapter protein in signaling pathway 

24 P14206 Laminin receptor 1 Known 

[Gauczyn

ski et al. 

2001] 

- 32.8 Receptor for laminin, cell adhesion, cell 

fate determination and tissue 

morphogenesis, acts as a receptor for 

pathogenic prion protein, viruses, and 

bacteria  

http://godatabase.org/cgi-bin/go.cgi?query=GO:0007154&view=details&search_constraint=terms&depth=0
http://godatabase.org/cgi-bin/go.cgi?query=GO:0007165&view=details&search_constraint=terms&depth=0
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15 P63038 60 kDa heat shock protein Known 

[Edenhof

er et al. 

1996] 

- 60.9 Facilitates the correct folding of imported 

proteins, prevents misfolding and 

promotes the refolding under stress 

conditions in the mitochondrial matrix 

34 P84078 ADP-ribosylation factor 1 Novel - 20.6 Involved in protein trafficking among 

different compartments  

21 P10107 Annexin A1 Novel - 38.7 Calcium/phospholipid-binding protein, 

promotes membrane fusion and is 

involved in exocytosis This protein 

regulates phospholipase A2 activity 

22 P48036 Annexin A5 Novel - 35.9 Anticoagulant protein, indirect inhibitor of 

the thromboplastin-specific complex, 

which is involved in the blood coagulation 

cascade 

11 Q60864 Stress-induced-phosphoprotein 1 Known 

[Zanata 

et al. 

2002] 

- 62.5 Mediates the association of the molecular 

chaperones HSC70 and HSP90 

32 P51150 Ras-related protein Rab-7a Novel - 23.4 Involved in late endocytic transport  

8 Q8N3E9 Phosphatidylinositol-4,5-

bisphosphate phosphodiesterase 

delta-3 (PLC) 

Novel - 89.2 Hydrolyzes phosphatidylinositol 4,5-

bisphosphate (PIP2) to generate 2 second 

messenger molecules diacylglycerol 

(DAG) and inositol 1,4,5-trisphosphate 

(IP3). DAG mediates the activation of 

protein kinase C (PKC), while IP3 releases 

Ca
2+

 from intracellular stores. May 

participate in cytokinesis by hydrolyzing 

PIP2 at the cleavage furrow. 

Metabolism: Energy pathways 

16 P17182 Alpha-enolase  Novel - 47.1 Multifunctional enzyme, role in glycolysis, 

growth control, hypoxia tolerance, allergic 

responses, serves as a receptor and 

activator of plasminogen on the cell 

surface of leukocytes and neurons, 

stimulates immunoglobulin production 

16 P05202 Aspartate aminotransferase, 

mitochondrial 

Novel - 47.3 Amino acid metabolism, facilitates cellular 

uptake of long-chain free fatty acids 

17 P05064 Fructose-bisphosphate aldolase A Novel - 39.3 Glycolysis 

18 

P16858 

GAPDH Novel Known 

[Giorgi et 

al. 2009] 

35.7 Glycolysis 

26 O09131 Glutathione S-transferase omega-1 Novel - 27.4 Exhibits glutathione-dependent thiol 

transferase and dehydroascorbate 

reductase activities 

http://godatabase.org/cgi-bin/go.cgi?query=GO:0008152&view=details&search_constraint=terms&depth=0
http://godatabase.org/cgi-bin/go.cgi?query=GO:0006091&view=details&search_constraint=terms&depth=0
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33 P35700 Peroxiredoxin-1 Novel - 22.1 Involved in redox regulation, eliminating 

peroxides generated during metabolism, 

participates in the signaling cascades of 

growth factors and tumor necrosis factor-

alpha, and regulates GDPD5 function 

Protein metabolism 

6 P58252 Elongation factor 2 Novel - 95.2 GTP-dependent translocation of the 

nascent protein chain from the A-site to 

the P-site of the ribosome 

10 P63017 Heat shock cognate 71 kDa protein Novel - 70.8 Chaperone 

12 P09103 Protein disulfide-isomerase Novel - 57.1 Catalyzes the formation, breakage and 

rearrangement of disulfide bonds  

12 P27773 Protein disulfide-isomerase A3 Novel - 56.6 Catalyzes the rearrangement of -S-S- 

bonds in proteins 

16 P19324 Serpin H1 (47 kDa heat shock 

protein) 

Novel - 46.5 Binds specifically to collagen, involved as 

a chaperone in the biosynthetic pathway of 

collagen 

10 P38647 Stress-70 protein, mitochondrial Novel - 73.4 Implicated in the control of cell proliferation 

and cellular aging, also act as a 

chaperone 

Regulation of nucleic acid metabolism 

18 Q9EQU5 Protein SET Novel - 33.3 Involved in apoptosis, transcription, 

nucleosome assembly and histone binding  

Protein folding 

33 Q99LP6 GrpE protein homolog 1, 

mitochondrial 

Novel - 24.4 Essential component of the PAM complex, 

control the nucleotide-dependent binding 

of mitochondrial HSP70 to substrate 

proteins 

36 P17742 Peptidyl-prolyl cis-trans isomerase 

A  

Novel - 17.9 Accelerates the folding of proteins, 

catalyzes the cis-trans isomerization of 

proline imidic peptide bonds in 

oligopeptides 

Cell cycle 

14 P10126 Elongation factor 1-alpha 1 Novel Novel 50 Promotes the GTP-dependent binding of 

aminoacyl-tRNA to the A-site of ribosomes 

during protein biosynthesis 

Lipopolysaccharide binding; ATP binding 

10 P20029 78 kDa glucose-regulated protein 

(Bip) 

Known 

[Jin et 

al. 2000] 

- 72.3 Role in facilitating the assembly of 

multimeric protein complexes inside the 

ER 

Oxidoreductase, Stress response 

13 Q61753 D-3-phosphoglycerate Novel Known 56.5 Amino-acid biosynthesis, serine 

http://godatabase.org/cgi-bin/go.cgi?query=Protein%20metabolism&view=details&search_constraint=terms&depth=0
http://godatabase.org/cgi-bin/go.cgi?query=Regulation%20of%20nucleobase,%20nucleoside,%20nucleotide%20and%20nucleic%20acid%20metabolism&view=details&search_constraint=terms&depth=0
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dehydrogenase [Jin et 

al. 2000] 

biosynthesis 

9 P07901 Heat shock protein HSP 90-alpha Novel Known 

[Jin et 

al. 2000] 

84.7 Molecular chaperone with ATPase activity 

9 P11499 Heat shock protein HSP 90-beta Novel - 83.2 Molecular chaperone with ATPase activity 

20 P06151 L-lactate dehydrogenase A chain Known 

[Cooper 

et al. 

2010] 

- 36,4 Role in glycolysis 

20 P08249 Malate dehydrogenase, 

mitochondrial 

Novel - 35.5 Role in glycolysis, oxidation reduction 

31 P17751 Triosephosphate isomerase Novel - 26.6 Glycolysis, fatty acid biosynthesis, 

gluconeogenesis, lipid synthesis 

 

 

 

 

 

Figure 11 The functional categorization of identified interacting partners of PrPC: 

Interacting proteins identified by C-Terminus One-STrEP-tag purification were identified by Q-TOF MSMS 

analysis. The biological functions are assigned as in ExPASy protein database (http://expasy.org/) and 

Human Protein Reference Database [Keshava Prasad et al. 2009]. 



Results 

 56 

4.2.2 Binding of C-terminus One-STrEP-tag PrPC by interacting 

partners 

In order to further confirm the observations from the One-STrEP-tag purification 

system, TCL prepared from transiently PrPC transfected neuronal HpL3-4 cells and 

control PrP-/- transfected were reverse co-immunoprecipitated with Rab7a, Arf1 and 

PrPC specific antibodies using G-protein coupled magnetic beads Eluates from this 

reverse co-immunoprecipitation revealed a significant PrPC signal at 27kDa to 37kDa 

(Figure 12A). Figure 12B-D showed the reverse co-immunoprecipitation results with 

PrPC, Rab7a, Arf1 and alpha-tubulin1 antibodies, providing additional evidence for their 

interaction. 

 

 

 

Figure 12 PrPC interacts with Rab7a, Arf1 and alpha-tubulin 1: (A) TCL were co-

immunoprecipitated (IP) with 3F4 PrP
C
 (Lane1 PrP

-/-
 transfected and lane 2 PrP

+/+
 transfected), Rab7a 

(lane 3 PrP
-/-

 transfected and lane 4 PrP
+/+

 transfected) and Arf1 (Lane 5 PrP
-/-

 transfected and lane 6 

PrP
+/+

 transfected) and immunoblotted with Saf70 PrP
C
 antibody. (B) IP with 3F4 PrP

C
 (Lane1), Rab7a 

(lane 2) and immunoblotted with Rab7a antibody, (C) IP with 3F4 PrP
C
 (Lane1), Arf1 (lane 2) and 

immunoblotted with Arf1 antibody, (D) IP with 3F4 PrP
C
 (Lane1), alpha-tubulin 1 (lane 2) and 

immunoblotted with alpha-tubulin 1 antibody. 
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4.3 Characterization of interacting partners 

4.3.1 Rab7a and PrPC  

One-STrEP-tag purification and co-immunoprecipitation assays provided 

evidence that Rab7a might be an interacting partner of PrPC. To further check the 

potential interaction and influence of Rab7a on PrPC localization and expression, PrPC 

was transiently expressed in HpL3-4 PrPC knockout. In addition, SH-SY5Y cells stably 

expressing PrPC were examined. PrPC showed colocalization with Rab7a in the 

cytosolic area. In order to quantify the extent of colocalization, Imagej (WCIF plugin) 

software was used (Figure 13). Colocalization in fluorescence imaging characterizes the 

overlap extent between two different fluorescent labels with different emission 

wavelengths. The detection of fluorescence signals from two differently labeled proteins 

within the same voxel (three-dimensional pixel) determines that these proteins are 

located in the same area or very near to each other. Two perfectly colocalized 

fluorescence signals, each displayed on separate x and y axes, will generate a scatter 

plot wherein the points fall in a line at 45° to either axis. In the situation of non-

colocalized molecules, the resulting scatter plot reveals each color along its own axis, 

with no overlap at 45°. Quantification of co-localization of Rab7a and PrPC, using the 

distribution of fluorescence intensities in the scatter plots showed a partial colocalization 

between Rab7a and PrPC (Figure 13).  

Pearson's correlation coefficient rp (-1≤ rp ≤1) was used to measure the 

relatedness of two fluorescence channels, where values of 0 indicate no relatedness, 

whereas values >0 indicate a relatedness between the two fluorescence channels. On 

the basis of positive correlation coefficients for all analyzed pairs of fluorescence 

channels, further calculations were permissible for colocalization coefficients, M1 and 

M2, which express the contribution of each fluorescence channel to the pixels of 

interest. Values of colocalization coefficients range between 0 and 1. A value of 0 

indicates that none of the signal within thresholds in that channel colocalizes with the 

other channel. A value of 1 indicates that the entire signal within thresholds in that 

channel colocalizes with the other channel. Results of Pearson's correlation coefficient 

of colocalization demonstrated a partial colocalization between Rab7a and PrPC (Table 

9).  
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PrPC distribution was then evaluated after depleting Rab7a expression using the 

siRNA duplex. Approximately 70-75% Rab7a expression depletion was achieved in 

transiently and stably PrPC expressed HpL3-4 and SH-SY5Y cells, respectively (Figure 

13A). The immunoflurescence results demonstrated that a significant fraction of PrPC 

accumulated as a punctuated form and that the localization pattern of PrPC staining is 

dramatically altered in Rab7a depleted HpL3-4 cells (Figure 13D) as compared to cells 

treated similarly but without siRNA (control) (Figure 13C). Immunoblot analysis showed 

a significant (*P< 0.05) increase of PrPC levels in HpL3-4 cells after Rab7a knockdown 

in comparison to similar knockdown in PrP-/- control cells (Figure 14A and B ). These 

Rab7a siRNA knockdown results were confirmed in SH-SY5Y stably PrPC expressing 

cells (Figure 14C). The increase in the PrPC expression was confirmed in SH-SY5Y 

PCIneo endogenously and SH-SY5Y stable PrPC expressing cells (*P< 0.05; Figure 

14A, C). Subsequent immunoblots showed the influence of Rab7a knockdown on the 

expression of Arf1 in cells with and without Rab7a knockdown. The Arf1 was markedly 

decreased by Rab7a siRNA knockdown in HpL3-4 PrPC cells (Figure 14A-B) as well as 

in SH-SY5Y PrPC stable cells (Figure 14A and C). 
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Figure 13 Effect of Rab7a depletion on PrPC localization: HpL3-4 PrP
C
 knockout cells were treated with siRNA duplex (100 nM) to 

target Rab7a and PrP
C
. 48 H after transfection, PrP

C
 and Rab7a expression was analyzed by using 3F4 anti-PrP

C
 (red) and anti-Rab7a  
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(green), antibodies. (A) HpL3-4 PrP
C
 knockout cells transfected with non targeting siRNA (negative 

control) and PrP
-/-

, (B) HpL3-4 PrP
C
 knockout cells transfected with Rab7a siRNA and PrP

+/+
. PrP

C
 and 

Rab7a distribution was analyzed by using 3F4 PrP
C
 (red) and anti-Rab7a (green) antibodies. At least 25 

cells were observed per condition per experiment for an equal exposure time. The scatter plots of the 

individual pixels from paired images. The threshold levels of red on x-axis and green signals on y-axis 

determined the overlapping yellow region (midle). Quantification of colocalization was determined by 

Zeiss LSM 510 (version 3.2) and Imagej (WCIF plugin) softwares. 

 

Table 9 Rab7a partially colocalizes with PrPC: Pearson's correlation coefficient rp (-1≤ 

rp ≤1) demonstrated partial colocalization in HpL3-4 PrP
C
 knockout cells transfected with non 

targeting siRNA and PrP
C
. Colocalization coefficients, M1 and M2 ranged between 0 and 1, 

showed partial colocalized pixels of interest with in each channel. 

 

Rab-siRNA PrP
C
 rp Coloc. Coefficient  

PrP
C
 (M1) 

Coloc. Coefficient Rab7a 
(M2) 

- + 0.121 0.592 0.239 

+ + -0.068 0.006 0.339 
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Figure 14 Effect of Rab7a 

depletion on PrPC, Arf1 and 

alpha-tubulin 1 expression: 

HpL3-4 PrP
C
 knock out with transient 

PrP
C
 expressing and SH-SY5Y stable 

PrP
C
 expressing cells were transfected 

with siRNA duplex (100 nM) to target 

Rab7a. (A) PrP
C
, Arf1, alpha-tubulin 1 

and Rab7a expression was analyzed 

after 48 H of transfection by 

immnoblotting using specific Saf70 

PrP
C
, Arf1, alpha-tubulin1 and Rab7a 

antibodies. (B, C) Densitometry 

analysis from four independent (±SD) immnoblotting experiments and the significance was calculated by 

student‟s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). 

 

To determine the subcellular localization of PrPC in these siRNA knock down of 

Rab7a HpL3-4 cells, an immunofluorescence experiment with co-staining of PrPC and 

Rab9 (late endosomal marker [Russell et al. 2006] was performed. Interestingly 

accumulated PrPC higly co-localized with Rab9 positive compartments (Figure 15). 

Figure 15 showed respective scatter plots generated from representative images. Rab9 

(green) and PrPC (red) was largely overlapping, as indicated in the scatter plot at 45° 

(Figure 15B) as compared to control HpL3-4 PrPC knockout cells transfected with non 
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targeting siRNA and PrPC. Calculations of Pearson's correlation coefficient of 

colocalization demonstrate that colocalization between PrPC and Rab9 increased after 

Rab7a-siRNA treatment (Table 10). 

 

 

Figure 15 Effect of Rab7a depletion on PrPC localization: HpL3-4 PrP
C
 knockout cells 

transiently transfected (48H) with PrP
C
 and treated with siRNA (100 nM) to target Rab7a. PrP

C
 and late 

endosomal marker Rab9 expression were analyzed using 3F4 anti-PrP
C
 (red) and anti-Rab9 (green), 

antibodies. (A) HpL3-4 PrP
C
 knockout cells transfected with non targeting siRNA and PrP

C
 (B) HpL3-4 

PrP
C
 knockout cells co-transfected with PrP

C
 and Rab7a siRNA. At least 25 cells were observed per 

condition per experiment for an equal exposure time (Scale bar: 10 μm). The scatter plots of the individual 

pixels are from paired images. The threshold levels of red on x-axis and green signals on y-axis 

determined the overlapping yellow region. Quantification of colocalization was determined by Imagej 

(WCIF plugin) software. 

 

Table 10 Rab9 colocalizes with PrPC in Rab7a depleted HpL3-4 cells: Pearson's 

correlation coefficient rp (-1≤ r p≤ 1) demonstrated high colocalization between Rab9 and 

PrP
C
 in HpL3-4 PrP

C
 knockout cells transfected with Rab7a-siRNA and PrP

C
. Colocalization 

coefficients, M1 and M2 ranged between 0 and 1, showed high colocalized pixels of interest 

within each channel. 

Rab7a-siRNA PrP
C
 rp 

 
Coloc. Coefficient 

PrP
C
 (M1) 

Coloc. Coefficient  
Rab9 (M2) 

- + 0.306 0.679 0.793 

+ + 0.779 0.970 1.000 
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In order to see if transiently expressed PrPC has similar characteristics to the 

proteinase K (PK) resistant PrPSc form, the total cellular lysate of HpL3-4 cells 

containing transiently transfected PrPC and treated with Rab7a-siRNA, were digested 

with PK (10 µg/ml) and analyzed by western blot using Saf70 antibody. The results 

demonstrated that the accumulated PrPC does not acquire the PK resistant form, at 

least not within the 48 H tested (Figure 16). 

 

 

Figure 16 Figure 16 PK-digestion of 

PrPC under Rab7a knockdown HpL3-4 

cells: HpL3-4 PrP
C
 knockout cells were 

transfected with PrP
C
 and siRNA to target 

Rab7a protein. SiRNAs (100 nM) were co-

transfected with C-terminus One-STrEP-tag 

PrP
C
 into cultured HpL3-4 PrP

C
 knockout cells. 

The TCL was treated with 10 µg/ml PK and PrP
C
 

was analyzed by immunoblot using Saf70 

antibody.  

 

 

4.3.2 Arf1 and PrPC  

One-STrEP-tag purification and co-immunoprecipitation assays also identified 

Arf1 as a novel potential interacting partner of PrPC. Arf1 is an activator of 

phospholipase D and plays an important role in vesicular trafficking. To demonstrate the 

effects of Arf1 on PrPC expression and localization, HpL3-4 PrPC transfected and SH-

SY5Y PrPC stably expressing cells were treated with different concentrations of 

Brefeldin A (BFA). BFA is an inhibitor of intracellular protein transport and is commonly 

used to demonstrate the role of Arf1 in the morphology of the Golgi apparatus and 

recruitment of coat proteins to the Golgi [Volpicelli-Daley et al. 2005]. 

Immunofluorescence data showed significant changes in PrPC localization as compared 

to untreated cells (Figure 17). Quantification of the co-localization of Arf1 and PrPC by 

using the distribution of fluorescence intensities in the scatter plots demonstrated a 
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partial colocalization between Arf1 and PrPC (Figure 17). Pearson's correlation 

coefficient rp (-1≤ rp ≤1) also demonstrated partial colocalization between Arf1 and PrPC 

(Table 11). The long term exposure to BFA (24 H of 1µg/ml BFA) showed the 

accumulation of PrPC and drastically altered localization (Figure 17D) as compared to 

the control cells (Figure 17B). In contrast; however, after 1.5 H of 1µg/ml BFA treatment 

cells showed dispersed co-localization of PrPC with Arf1 (Figure 17C and E). The extent 

of colocalization decreased after BFA treatment as compared to the control, untreated 

cells (Table 11). 

The immunoblot analysis showed that the Arf1 expression was significantly 

decreased after BFA treatment in HpL3-4 cells transiently transfected with PrPC (Figure 

18A-B) as well as in SH-SY5Y PrPC stably expressing cells (Figure 18A-C). 

Immunoblotting experiments showed a significant decrease of PrPC concentrations in 

BFA treated cells (*P< 0.05, **P< 0.01, ***P< 0.001) in comparison to control cells 

(Figure 18A-C).  
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Figure 17 

Effect of BFA 

on Arf1 and 

PrPC 

localization: 

HpL3-4 PrP
C
 

knockout cells 

were transiently 

transfected with 

PrP
+/+

 or PrP
-/- 

and 

treated with BFA 

(1µg/ml) for 

different time 

intervals (A) 

untreated HpL3-4 

PrP
-/- 

transfected 

cells (B) untreated 

HpL3-4 PrP
C 

transfected cells, 

(C) 1.5 H of BFA 

treatment after 24 

H of PrP
C
 transient 

transfection (D) 24 

H of BFA treatment after 24 H of PrP
C
 transient transfection, (E) 1.5 H of BFA treatment after 48 H of PrP

C
 transient transfection. PrP

C 
and Arf1 

distribution was analyzed by using 3F4 anti-PrP
C
 (red) and anti-Arf1 (green) antibodies. At least 25 cells were observed per condition per 

experiment for an equal exposure time (Scale bar: 10 μm). The scatter plots of the individual pixels from paired images were generated by Imagej 

(WCIF plugin) software. 
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Table 11 Arf1 partially colocalizes with PrPC
: Pearson's correlation coefficient rp (-1≤ r p≤ 1) 

demonstrated partial colocalization (0.142) between Afr1 and PrP
C
 in HpL3-4 PrP

C
 knockout cells 

transfected with PrP
C
 and without BFA treatment. 1.5 H and 24 H of BFA treatment showed less 

colocalization as compared to control untreated cells. Colocalization coefficients, M1 and M2 ranged 

between 0 and 1, showing partial colocalized pixels of interest within each channel. 

 

BFA 
(1ug/ml) 

PrP
C
 rP 

 
Coloc. Coefficient PrP

C
 

(M1) 
Coloc. Coefficient Afr1 

(M2) 

- + 0.142 0.359 0.662 

+ 1.5 H + 0.028 0.242 0.224 

+ 24 H + -0.003 0.359 0.140 

+ 1.5 H + 0.048 0.472 0.412 
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Figure 18 Effect of BFA 

treatment on PrPC, Rab7a, Arf1 

and alpha-tubulin 1 

expression: HpL3-4 PrP
C
 knockout 

with 48 H of transient PrP
C
 expressing 

and SH-SY5Y stable PrP
C
 expressing 

cells were treated with 1µg/ml BFA for 

1.5 H. (A) PrP
C
, Rab7a, Arf1 and alpha-

tubulin 1 expression was analyzed by 

immnoblotting using specific Saf70 

PrP
C
, Rab7a, Arf1 and alpha-tubulin1 

antibodies. (B, C) Densitometry analysis from four independent (±SD) immnoblotting experiments where 

the significance was calculated by student‟s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). 

 

4.3.3 Rab7a/Arf1 interdependent role  

To search for the molecular link between Rab7a and Arf1 during sorting, 

candidate Rab7a was depleted by siRNA interference, and the resulting phenotypes 

were examined. The expression of Arf1 was markedly decreased by Rab7a knockdown 

in HpL3-4 PrPC cells and also in the control SH-SY5Y PrPC stable cell line (Figure 14A-

C). Rab7a activity was then monitored during BFA treatment. No significant influence 

was observed on Rab7a expression by BFA treatment (Figure 18A-C).  
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4.3.4 Microtubule fate in PrPC, Rab7a and Arf1 internalization  

PrPC binds directly to tubulin and this interaction leads to the inhibition of 

microtubule formation [Nieznanski et al. 2005; Nieznanski 2009] which is a necessary 

component of vesicle transportation for endosome movement [Nielsen et al. 1999; 

Nielsen et al. 2001; Bananis et al. 2000; Bananis et al. 2004; Matteoni and Kreis 1987]. 

When cells were treated for 3 H with nocodazole, a microtubule polymerization 

interfering agent, an altered localization pattern of PrPC was observed; more towards 

the cytosolic region of the cell (Figure 19B). The quantification of the co-localization of 

alpha-tubulin 1 and PrPC after treatment for 3 H with nocodazole, using the distribution 

of fluorescence intensities in the scatter plots, demonstrated no significant colocalization 

between alpha-tubulin 1 and PrPC (Figure 19B), as compared to the control, untreated 

cells (Figure. 19A). Pearson's correlation coefficients of colocalization shown in Table 

12 also demonstrated that alpha-tubulin 1 and PrPC after 3 H of treatment with 

nocodazole showed less colocalization. But interestingly after longer exposure to 

nocodazole (24 H), PrPC and alpha-tubulin 1 were still sharing the same compartments 

(Figure 19C) which showed that the effects of nocodazole on the organization of 

microtubules were reversible [Polioudaki et al. 2009]. Pearson's correlations also 

showed partial colocalization (Table 12). 

The TCL from HpL3-4 and SH-SY5Y treated cells were then used to verify PrPC 

and alpha-tubulin 1 expression. Total expression of alpha-tubulin 1 was not changed 

significantly after the treatment but the PrPC expression was upregulated significantly 

(*P< 0.05, **P< 0.01, ***P< 0.001) after microtubule-disruption (Figure 20A-C). The Arf1 

and Rab7a protein levels were significantly (*P< 0.05, **P< 0.01, ***P< 0.001) 

decreased by microtubule disruption. 
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Figure 19 Effect of nocodazole on alpha-tubulin 1 and PrPC localization: HpL3-4 PrP
C
 knockout cells were transfected with 

PrP
+/+

 or PrP
-/-

 and treated with norcodazole (1µmol) for different time intervals (A) untreated cells (B) 3H of nocodazole treatment after 24H of 

PrP
C
 transfection (D) 24H of nocodazole treatment after 24H of PrP

C
 transfection. PrP

C 
and alpha-tubulin 1 distribution were analyzed using 3F4  
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anti-PrP
C
 (red) and anti-alpha-tubulin 1 (green) antibodies. At least 25 cells were observed per condition 

per experiment for an equal exposure time (Scale bar: 10 μm). The scatter plots of the individual pixels 

from paired images were generated by Imagej (WCIF plugin) software. 

 

Table 12 Alpha-tubulin 1 partially colocalizes with PrPC: Pearson's correlation coefficient 

rp (-1≤ r p≤ 1) demonstrated partial colocalization (0.049) between alpha-tubulin 1 and PrP
C
 in HpL3-4 

PrP
C
 knockout cells transfected with PrP

C
 but without nocodazole treatment. 3 H and 24 H of nocodazole 

treatment showed less colocalization as compared to control, untreated cells. Colocalization coefficients, 

M1 and M2 ranged between 0 and 1, showing partial colocalized pixels of interest within each channel.  

 

Nocodazole 
(1umol) 

PrP
C
 rp Coloc. Coefficient PrP

C
 

(M1) 
Coloc. Coefficient alpha-

tubulin 1 (M2) 

- + 0.049 0.584 0.426 

+ 3 H + -0.068 0.298 0.213 

+ 24 H + 0.006 0.554 0.533 
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Figure 20 Effect of nocodazole 

on PrPC, Rab7a, Arf1 and alpha 

tubulin 1 expression: HpL3-4 PrP
C
 

knockout with 24 H of transient PrP
C
 

expressing and SH-SY5Y stable PrP
C
 

expressing cells were treated with 5 µmol 

of nocodazole for 24 H (A) PrP
C
, Rab7a, 

Arf1 and alpha-tubulin 1 expression was 

analyzed by immnoblotting using specific 

Saf70 PrP
C
, Rab7a, Arf1 and alpha-

tubulin1 antibodies. (B, C) Densitometry 

analysis from four independent (±SD) immnoblotting experiments and the significance was calculated by 

student‟s t-test (*P < 0.05, **P < 0.01, ***P < 0.001). 
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5. Discussion 

In the last few years, several new PrPC interacting proteins have been reported, 

indicating a growing interest in understanding the physiological function of PrPC. 

Towards this goal, protein sequencing techniques have  greatly facilitated the 

identification of proteins and their complexes. Although the sensitivity of mass 

spectrometry methods is currently sufficient to identify proteins, the isolation of protein 

complexes still poses serious challenges. Protein complexes need to be isolated from a 

densely populated cellular environment, in which the complex of interest may represent 

only a small fraction of the total protein population. Thus, successful purification 

requires a method that is stringent enough to differentiate the complex of interest from 

all other proteins in the mixture. On the other hand, the isolation method must also be 

gentle enough not to compromise the integrity of the complex. A method enabling 

identification of protein complexes by employing one-step purification would present 

several advantages. Therefore, the use of a single-step purification system known as 

the STrEP-tag method was explored for the isolation of interacting proteins from 

mammalian cells. This protein purification system has previously been shown to allow 

the rapid, single-step purification of recombinant proteins from bacterial or mammalian 

cellular lysates [Junttila et al. 2005]. One-STrEP-tag purification enhances the specificity 

of protein purification; the elution of the STrEP-tag fusion protein is achieved by the 

addition of desthiobiotin, a reversibly binding derivative of biotin, which binds to the 

biotin binding pocket on STrEP-Tactin in competition with the STrEP-tag [Junttila et al. 

2005]. The short peptide tag, enabling fast and simple one-step purification, coupled 

with competitive elution, under physiological conditions, are unique characteristics of the 

STrEP-tag system that make it an ideal candidate method for isolating PrPC interacting 

partners from mammalian cells. 

In order to evaluate the usefulness of the STrEP-tag method for purifying protein 

interacting partners, mammalian expression vectors encoding PrPC fused to the One-

STrEP-tag at its C-terminus were first generated. The specificity of these interactions 

was ensured by comparative purification using control vector without the PrPC construct 

(PrP-/-). Besides reporting a number of novel PrPC interacting proteins, several already 

identified protein partners were identified using these techniques (essentially providing a 

positive control). Some of the previously described PrPC-interacting proteins are 
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summarized in recent reviews [Linden et al. 2008; Caughey and Baron 2006]. The 

novel, previously undescribed interacting proteins identified in the present study include 

cytoskeleton proteins and proteins that are important for the cell homeostasis, cell 

communication, signal transduction, stress response, as well as protein folding and 

trafficking (Table 1). 

5.1 Interacting partners of PrPC 

Cytoskeleton associated proteins [actin, cytoplasmic 1, beta-actin-like protein 2, 

annexin A2, alpha-tubulin 1 and tubulin beta-5, cofilin-1, moesin, myosin-9 and 

vimentin]: Actin, cytoplasmic 1, and beta-actin-like protein 2 proteins are involved in cell 

motility, cell adhesion and reorganization of the actin cytoskeleton. PrP also plays an 

important role in cell adhesion [Malaga-Trillo et al. 2009]. Annexin A2 is known to 

contribute to the regulation of actin cytoskeleton dynamics in epithelial cell junctions 

[Benaud et al. 2004]. Tubulin is the major constituent of microtubules and a known 

interacting partner of PrPC [Nieznanski et al. 2005]. Tubulin was identified in our study 

as two novel isoforms, alpha-tubulin 1 and tubulin beta-5 chain. Cofilin-1 also co-purified 

in our study although cofilin has been shown to be associated with the disease form of 

prion protein PrPSc and to also be involved in abnormal formation of rods in the brain of 

Alzheimer disease patients [Giorgi et al. 2009]. Moesin, myosin-9 and vimentin have 

well defined roles in the maintenance of cytoskeleton assembly [Kosako et al. 1999]. 

These cytoskeleton associated interacting proteins are associated with PrPC during 

intracellular sorting and transportation [Nieznanski et al. 2005].  

Proteins involved in cell communication and signal transduction [14-3-3, Laminin 

receptor 1, stress-induced-phosphoprotein 1, Rab7a, Arf1, annexin A1, A5 and 

phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-3]: 14-3-3 is a 

biomarker for Creutzfeldt-jacob disease (CJD) [Hsich et al. 1996] and is also known to 

be an interacting partner of PrPC in association with heat shock protein 60 (Hsp60) 

[Satoh, Onoue, Arima, and Yamamura2005]. Laminin receptor 1 or 37/67 kDa laminin 

receptor (identified previously as an interacting partner using the yeast two hybrid 

system) functions as a cell surface receptor for laminin. It plays a significant role in cell 

adhesion and in the consequent activation of signaling transduction [Linden et al. 2008]. 

Stress-induced-phosphoprotein 1 is a known interacting partner of PrPC with a 

suggested role in neuroprotection [Zanata et al. 2002]. Ras-related protein Rab7a, ADP-
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ribosylation factor 1, annexin A1, A5 and phosphatidylinositol-4, 5-bisphosphate 

phosphodiesterase delta-3 (PLC) which were identified as novel interacting partners 

have a suggested role in cell communication.  

Protein metabolism and energy pathways [heat shock cognate 71 kDa protein, 

47 kDa heat shock protein, stress-70 protein, glyceraldehyde 3-phosphate 

dehydrogenase, aspartate aminotransferase, fructose-bisphosphate aldolase A, 

glutathione S-transferase omega-1, peroxiredoxin-1]: the molecular machinery  required 

for protein metabolism is provided by a variety of molecular chaperones that include 

both heat shock proteins and glucose-regulated proteins [Henle et al. 1998]. Heat shock 

cognate 71 kDa protein, 47 kDa heat shock protein and stress-70 protein (GRP75) were 

identified as PrPC interacting partners with possible chaperone activity. Protein disulfide 

isomerase which is over expressed in the brains of sporadic Creutzfeldt-Jakob disease 

(sCJD) patients but not other other neurodegenerative disorders (i.e. Down syndrome 

and Alzheimer's disease) may simply reflect a cellular defense response against the 

altered prion protein [Yoo et al. 2002]. Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) is a known interacting partner of PrP27-30 fibrils in transmissible spongiform 

encephalopathies (TSEs) [Giorgi et al. 2009]. Alpha enolase, a glycolytic enzyme is 

upregulated in PrPC over expressing cells in response to metabolic alterations [Ramljak 

et al. 2008]. Aspartate aminotransferase plays a key role in amino acid metabolism and 

is important for metabolite exchange between mitochondria and the cytosol. It facilitates 

cellular uptake of long-chain free fatty acids. It is being utilized as a CSF biomarker 

showing central nervous system degeneration [Satoh et al. 2007]. Fructose-

bisphosphate aldolase A is upregulated in Scrapie-infected mice and its mRNA is 

increased in Scrapie infection [Jang et al. 2008]. Furthermore glutathione S-transferase 

omega-1 is a well known detoxification enzyme that plays an important role in 

prostaglandin and steroid hormone synthesis [Oakley 2005]. It is involved in protection 

against oxidative stress and its isoform, glutathione S-transferase P, is reported to be 

up-regulated with PrPC overexpression [Ramljak et al. 2008]. Lastly, peroxiredoxin-1, 

which was identified as novel interacting protein, functions to protect the ribosomal 

machinery against damage from oxidative stress [Sideri et al. 2010]. 

Protein folding and nucleic acid metabolism [GrpE homolog 1 protein, peptidyl-

prolyl cis-trans isomerase, protein SET]: GrpE homolog 1 protein is an essential 
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component for the correct folding of proteins in the cell under physiological and stress 

conditions. It can serve as a central cellular tool for the recovery of native proteins from 

stress-induced aggregates. It can actively remove disease-causing toxic aggregates, 

such as polyglutamine-rich proteins, amyloid plaques, and prions [Ben-Zvi and 

Goloubinoff 2001]. Peptidyl-prolyl cis-trans isomerase also accelerates the folding of 

proteins and is involved in the protection of neurons against oxidative stress [Spisni et 

al. 2009]. Protein SET (Phosphatase 2A inhibitor, I2PP2A), an endogenous PP2A 

inhibitor, is a multitasking protein, involved in apoptosis; transcription; nucleosome 

assembly and histone binding [Liu et al. 2010].  

Cell cycle and lipopolysaccharide; ATP binding proteins [elongation factor 1-

alpha, binding immunoglobulin protein (BiP)]: Elongation factor 1-alpha, a regulator of 

cytoskeleton rearrangements, is upregulated in PrPC overexpressing HEK-293 cells 

[Ramljak et al. 2008]. BiP binds to a mutant prion protein for an abnormally prolonged 

period of time and mediates mutant prion protein degradation by the proteasomal 

pathway. The folding of PrP is chaperoned by BiP and BiP plays a role in maintaining 

quality control in PrP maturation pathways [Jin et al. 2000]. 

Oxidoreductase, stress response proteins [heat shock protein (HSP) 90-alpha 

and beta, Lactate dehydrogenase, malate dehydrogenase, triosephate isomerase]: HSP 

90-alpha and beta were up-regulated in the overexpressed PrPC conditions [Ramljak et 

al. 2008]. Lactate dehydrogenase is a known interacting partner of PrPC [Watts et al. 

2009] and lactate dehydrogenase activity in the CSF is increased significantly in 

patients with Creutzfeldt-Jakob disease [Schmidt et al. 2004].  

5.2 PrPC and GTPases 

The Rab- and Arf- GTPases play a critical role in regulating the vesicle trafficking 

in both exo- and endocytic pathways [Bucci et al. 2000]. The importance of small 

GTPases in membrane trafficking is indicated by their conservation throughout 

eukaryotes [Nielsen et al. 2001; Nielsen et al. 2008]. Our STrEP-tag affinity purification, 

immunofluorescence, and reverse co-immunoprecipitation results demonstrated that 

Rab7a (an isoform of Rab- GTPase) and Arf1 (an isoform of Arf-GTPase) are potential 

interacting partners of PrPC. Since the transport routes that determine PrPC endocytosis 

and PrPSC conversion remain elusive, this study identified an important possible Rab7a 

and Arf1 interaction in PrPC internalization and accumulation. 
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5.2.1 PrPC and Rab7a 

Rab7a, an important regulator of vesicular transport, is located in specific 

intracellular compartments (early to late endosomes) and has been shown to be 

involved in both the sorting and formation of transport vesicles [Vonderheit and Helenius 

2005]. Rab7 is not essential for the delivery of early endosome cargo to the late 

endosome but plays a role in biogenesis of multivesicular bodies and their fusion to the 

lysosome [Vanlandingham and Ceresa 2009]. Herein, new evidence is provided for 

Rab7a and Arf1 dependent mechanisms in regulating PrPC trafficking in this 

hippocampus neuronal cell line. Intriguingly, Rab7a depletion using the siRNA 

knockdown system significantly increased PrPC accumulation in the cytosolic region. 

The localization pattern also changed to a punctuated form in contrast to the control 

cells. The data suggests an impairment of PrPC trafficking from early to late endosomes 

after knockdown of Rab7a. The immunoblot analysis in both cell lines tested (HpL3-4 

transiently PrPC transfected and SH-SY5Y stable PrPC expressed cells) after Rab7a 

knockdown confirmed the increased PrPC expression. This PrPC accumulation may be 

attributed to the impaired biogenesis of lysosomes, which has been strongly suggested 

as a secondary function of Rab7a [Vanlandingham and Ceresa 2009]. Furthermore, it 

was demonstrated that Rab7a depletion results in PrPC accumulation and redistribution 

within Rab9 positive compartments. Rab9 GTPase resides in a late endosomes. The 

results with respect to Rab9 and prion protein showed that Rab9 overexpression in 

prion-infected cultured cells reduced cellular PrPSc content [Gilch et al. 2009]. 

The neuropathology of most prion diseases has been accompanied by 

widespread deposits of amyloidal aggregates containing the misfolded prion protein 

(PrPSc) [Clarke et al. 2001]. This aggregate formation has often been used as a 

parameter for neuronal toxicity, with characteristic resistance to proteinase K digestion 

[McKinley et al. 1983]. However, no proteinase K resistant PrPC was found after 48 H in 

siRNA transfected transiently PrPC expressed cells (Figure 16). These data suggest that 

impaired Rab7a machinery leads to accumulation of PrPC but not the formation of the 

resistant form of PrPC.  
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Figure 21 Influence of Rab7a depletion on PrPC expression and localization: The 

unique Rab7a interacting effect on PrPC expression and localization is highlighted with colors. 

The highlighted (colored) part shows the alteration of trafficking by the depletion of Rab7a 

expression which leads to the accumulation of PrPC in the Rab9 positive late endosome 

compartments.  

 

5.2.2 PrPC and Arf1 

Arfs regulate constitutive membrane trafficking and localize to early/cis-Golgi and 

ER–Golgi intermediate compartments. They play an important role in vesicular 

trafficking as an activator of phospholipase D (PLD), an enzyme involved in the 

regulation of secretion, endocytosis and receptor signaling [Brown et al. 1993; 

Fensome-Green and Cockcroft 2006]. Arfs activate PLD [Brown et al. 1993; Fensome-

Green and Cockcroft 2006; Cockcroft et al. 1994] and phosphatidylinositol 4-phosphate 

5-kinase (PIP5K) [Honda et al. 1999] to generate phosphatidic acid and 

phosphotidylinositol 4, 5-bisphosphate (PIP2) which are crucial for membrane curvature 
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and membrane protein recruitment [Donaldson 2005; Donaldson 2009]. PLD directly 

interacts with kinases such as protein kinase C (PKC) and has been shown to be 

involved in PrP (106-126) internalization [Paruch et al. 2006; Brandenburg et al. 2009]. 

Rab7a depletion was observed to increase PrPC accumulation in early to late 

endosomal compartments and to significantly decrease Arf1 expression. A likely 

explanation would be that Rab7a knockdown may also disturb the Arf1-trans Golgi 

recycling complex, indicative of a possible link between Rab7a and Arf1 in PrPC 

trafficking. 

Arfs dependent vesicle formation requires GEP (guanine nucleotide-exchange 

protein, an activator of Arf1) catalyzed cycling between inactive, Arf-GDP (largely 

cytosolic), and GTP-bound active (membrane associated) forms [Puxeddu et al. 2009]. 

The effect of the Arf1 interaction on PrPC localization and expression was studied by 

inhibiting GEP with BFA. BFA treatment resulted in a marked decline of PrPC 

expression. Using co-immunofluorescence techniques, it is demonstrated that BFA-Arf1 

deactivation alters the sub-cellular localization and expression of PrPC. Based on the 

model of Arf1 function in intra-Golgi trafficking, it is proposed propose that Arf1-GTP 

stimulates retrograde transport of PrPC molecules within the trans-Golgi compartment 

toward the ER and also to the plasma membrane. The functional disruption of Arf1; 

however, did not influence Rab7a expression in either HpL3-4 transiently PrPC 

transfected or SH-SY5Y stable PrPC expressing cells. 

5.3 PrPC and alpha- tubulin 1  

The microtubular cellular structures play a central role in intracellular transport, 

metabolism, and cell division. Microtubule networks are used as tracks for intracellular 

protein trafficking. Tubulin is a major component of microtubules and is known to 

interact with PrPC [Dong et al. 2008; Nieznanski et al. 2005].  An interaction of alpha-

tubulin 1 with PrPC was identified. Nocodazole treatment disrupts the microtubular 

network and affects the intracellular distribution of PrPC [Hachiya et al. 2004a; Hachiya 

et al. 2004b]. The role of nocodazole disruption of microtubules on PrPC intracellular 

distribution was examined. Increased PrPC expression was found in the cytosolic region 

after nocodazole treatment of PrPC expressing cells. Moreover, disruption of 

microtubules also led to the down regulation of Rab7a and Arf1 expression. Decreased 

Arf1 can be attributed to the Golgi membranes‟ kinesin-dependent dispersal following 
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microtubule disruption with nocodazole [Hehnly et al. 2010]. The active transport of 

Rab7-containing endosomes is mediated by microtubules which fuse with other late 

endosomes [Vonderheit and Helenius 2005]. Disruption of microtubules could influence 

Rab7a expression.  

Based on these results, it is interesting to speculate that PrPC can be recycled 

back to the plasma membrane with a Rab7a dependent pathway and that the impaired 

Rab7a machinery leads to accumulation of PrPC but not to the formation of the resistant 

form of PrPC. It remains to be determined whether this Rab7a dependent PrPC 

accumulation in the Rab9 positive endosomal compartments is crucial for the 

conversion of PrPC to PrPSc. The results also suggest that Arf1-GTP stimulates 

retrograde transport of PrPC molecules within the trans-Golgi compartment toward the 

ER and also to the plasma membrane. The functional disruption of Arf1; however, did 

not influence Rab7a expression. Moreover, disruption of microtubules also led to the 

down regulation of Rab7a and Arf1 expression. 

In conclusion, these studies identified a large number of both known and 

previously unknown PrPC interacting proteins. It remains to be demonstrated whether 

direct interactions take place or not as well as exactly what the actual interaction sites of 

these proteins have with PrPC. However, these results further highlight the pivotal role 

of endosomal compartments in PrPC trafficking and could help to explain the 

physiological role of PrPC and their associations with these interacting proteins. 
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6. Appendix A  

 pENTRY-IBA1-Cloning site 

 

 

 

 

GOI= Gene of interest 
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 pESG-IBA103-Cloning site 

 

 

 

GOI= Gene of interest 



Appendix 

 82 

Appendix B 

Peptides sequence of identified proteins. 

B.N
o  

Acc.  
No. 

Protein Description Mass 
(kDa) 

MS/MS 

Score 

Peptide 

matched 

pI Sequence 
Coverage 

% 

MS/MS analysis 

  Cytoskeleton: Cell growth /maintenance 

14 P60710 Actin, cytoplasmic 1 41.7 508 18 5.29 
 

36  Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    19 - 28      488.7444   975.4742   975.4410     0.0332     0  K.AGFAGDDAPR.A  

    29 - 39      400.2466  1197.7180  1197.6982     0.0197     0  R.AVFPSIVGRPR.H  

    51 - 61      599.7853  1197.5560  1197.5150     0.0411     0  K.DSYVGDEAQSK.R  

    51 - 61      599.7866  1197.5586  1197.5150     0.0437     0  K.DSYVGDEAQSK.R   

    51 - 62      452.2235  1353.6487  1353.6161     0.0326     1  K.DSYVGDEAQSKR.G   

    51 - 62      677.8400  1353.6654  1353.6161     0.0494     1  K.DSYVGDEAQSKR.G   

    85 - 95      505.9297  1514.7673  1514.7419     0.0254     0  K.IWHHTFYNELR.V   

    96 - 113     652.0298  1953.0676  1953.0571     0.0105     0  R.VAPEEHPVLLTEAPLNPK.A  

   184 - 191     499.7590   997.5034   997.4790      0.0244     0  R.DLTDYLMK.I  

   197 - 206     566.7804  1131.5462  1131.5197     0.0266     0  R.GYSFTTTAER.E  

   239 - 254     895.9766  1789.9386  1789.8846     0.0540     0  K.SYELPDGQVITIGNER.F   

   239 - 254     895.9796  1789.9446  1789.8846     0.0600     0  K.SYELPDGQVITIGNER.F   

   285 - 291     453.2414   904.4682   904.4436       0.0246     1  K.CDVDIRK.D   

   316 - 326     581.3295  1160.6444  1160.6111     0.0334     0  K.EITALAPSTMK.I   

   316 - 326     589.3286  1176.6426  1176.6060     0.0366     0  K.EITALAPSTMK.I  Oxidation (M)  

   329 - 336     462.2981   922.5816   922.5600       0.0217     1  K.IIAPPERK.Y   

   360 - 372     506.2490  1515.7252  1515.6954     0.0298     0  K.QEYDESGPSIVHR.K   

   360 - 372     506.2527  1515.7363  1515.6954     0.0409     0  K.QEYDESGPSIVHR.K   

21 P07356 Annexin A2 38.6 266 8 7.55 27 Start - End    Observed    Mr(expt)   Mr(calc)       Delta    Miss Sequence 

    38 - 47      537.3138  1072.6130  1072.5764      0.0366     0  R.DALNIETAVK.T  

    50 - 63      771.9626  1541.9106  1541.8413      0.0693     0  K.GVDEVTIVNILTNR.S  

    69 - 77      556.2996  1110.5846  1110.5458       0.0389     0  R.QDIAFAYQR.R  

   105 - 115     611.8281  1221.6416  1221.5877     0.0539   0  K.TPAQYDASELK.A  

   136 - 145     622.8444  1243.6742  1243.6156     0.0586   0  R.TNQELQEINR.V  

   158 - 168     613.3135  1224.6124  1224.5623     0.0502   0  K.DIISDTSGDFR.K  

   179 - 196     689.0285  2064.0637  2063.9760     0.0877   1  R.RAEDGSVIDYELIDQDAR.E  

   314 - 324     711.3830  1420.7514  1420.6874  0.0640  0  K.SLYYYIQQDTK.G 
14 Q8BFZ3 Beta-actin-like protein 2 41.9 140 6 5.30 

 
15 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    97 - 114     652.0298  1953.0676  1953.0571      0.0105     0  R.VAPDEHPILLTEAPLNPK.I   

   185 - 192     499.7590   997.5034   997.4790       0.0244     0  R.DLTDYLMK.I   

   240 - 255     895.9766  1789.9386  1789.8846     0.0540     0  R.SYELPDGQVITIGNER.F   

   240 - 255     895.9796  1789.9446  1789.8846     0.0600     0  R.SYELPDGQVITIGNER.F   

   286 - 292     453.2414   904.4682   904.4436       0.0246     1  K.CDVDIRK.D   

   330 - 337     462.2981   922.5816   922.5600       0.0217     1  K.IIAPPERK.Y   

35 P18760 Cofilin-1  18.5 118 5 5.54 
 

9 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    35 - 45      437.2444  1308.7114  1308.6748     0.0366     1  K.AVLFCLSEDKK.N   
    35 - 45      655.3682  1308.7218  1308.6748     0.0471     1  K.AVLFCLSEDKK.N   
    82 - 92      669.3351  1336.6556  1336.6187     0.0370     0  R.YALYDATYETK.E   
    82 - 92      669.3491  1336.6836  1336.6187     0.0650     0  R.YALYDATYETK.E   
   153 - 166     670.9175  1339.8204  1339.7711     0.0493     0  K.LGGSAVISLEGKPL.- 

9 P26041 Moesin 67.7 63 3 6.22 
 

5 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

   238 - 246     552.7748  1103.5350  1103.5764    -0.0413     0  K.IGFPWSEIR.N   

   264 - 273     591.7788  1181.5430  1181.5869    -0.0439     0  K.APDFVFYAPR.L   

   439 - 448     617.2702  1232.5258  1232.5673    -0.0415     0  K.ESEAVEWQQK.A   
3 Q8VDD5 Myosin-9 226.2 326 15 5.54 

 
7 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

   342 - 355     729.9309  1457.8472  1457.8606    -0.0133      0  R.VISGVLQLGNIAFK.K   

   663 - 670     481.2328   960.4510   960.4777    -0.0267        0  R.NTNPNFVR.C   

   694 - 702     509.2484  1016.4822  1016.5073    -0.0251      0  R.CNGVLEGIR.I   

   712 - 718     462.7362   923.4578   923.4865    -0.0287        0  R.VVFQEFR.Q   
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   719 - 731     520.2798  1557.8176  1557.8515    -0.0339      1  R.QRYEILTPNSIPK.G   

   746 - 755     597.2985  1192.5824  1192.6088    -0.0263      0  K.ALELDSNLYR.I   

   765 - 775     408.5372  1222.5898  1222.6306    -0.0408      0  R.AGVLAHLEEER.D   

   843 - 850     477.7383   953.4620   953.4818    -0.0197        0  R.HEDELLAK.E   

   859 - 867     534.2698  1066.5250  1066.5519    -0.0269      1  R.EKHLAAENR.L   

  1393 - 1400    459.2284   916.4422   916.4614    -0.0191      0  K.DLEGLSQR.L   

  1418 - 1433    650.6564  1948.9474  1948.9854    -0.0380     0  R.LQQELDDLLVDLDHQR.Q   

  1434 - 1441    452.7284   903.4422   903.4661    -0.0239       0  R.QSVSNLEK.K   

  1445 - 1454    610.8188  1219.6230  1219.6448    -0.0218     1  K.KFDQLLAEEK.T   

  1878 - 1888    666.2962  1330.5778  1330.6000    -0.0222     0  R.QLEEAEEEAQR.A   

  1923 - 1932    580.3208  1158.6270  1158.6510    -0.0239     1  R.RGDLPFVVTR.R  
33 Q9WVA4 Transgelin-2 22.3 122 4 8.39 

 
21 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    80 - 88      499.7946   997.5746   997.4902         0.0844     0  K.IQASSMAFK.Q   

   128 - 139     616.3934  1230.7722  1230.6754     0.0968     0  R.TLMNLGGLAVAR.D   

   161 - 171     640.3479  1278.6812  1278.5840     0.0972     0  R.NFSDNQLQEGK.N   

   172 - 182     609.8646  1217.7146  1217.6187     0.0960     0  K.NVIGLQMGTNR.G   

12 P68369 Tubulin alpha-1A 50.1 223 9 4.94 
 

28 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    41 - 60     1004.4802  2006.9458  2006.8858     0.0600     0  K.TIGGGDDSFNTFFSETGAGK.H   

    65 - 79      851.4842  1700.9538  1700.8985      0.0553     0  R.AVFVDLEPTVIDEVR.T   

    85 - 96      470.9381  1409.7925  1409.7667      0.0258     0  R.QLFHPEQLITGK.E   

   113 - 121     543.3328  1084.6510  1084.6128      0.0382   0  K.EIIDLVLDR.I   

   216 - 229     573.6496  1717.9270  1717.8747      0.0523   0  R.NLDIERPTYTNLNR.L   

   265 - 280     586.3396  1755.9970  1755.9559      0.0410   0  R.IHFPLATYAPVISAEK.A   

   327 - 336     508.3051  1014.5956  1014.5709      0.0247   0  K.DVNAAIATIK.T   

   340 - 352     799.9094  1597.8042  1597.7599      0.0443   0  R.TIQFVDWCPTGFK.V   

   353 - 370     913.0294  1824.0442  1823.9782      0.0661   0  K.VGINYQPPTVVPGGDLAK.V   

13 P99024  Tubulin beta-5 chain 49.6 193 9 4.78 
 

19 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    47 - 58      651.3401  1300.6656  1300.6299      0.0357     0  R.ISVYYNEATGGK.Y   

   104 - 121     653.6868  1958.0386  1957.9745     0.0640     0  K.GHYTEGAELVDSVLDVVR.K   

   242 - 251     565.8151  1129.6156  1129.5880     0.0277     0  R.FPGQLNADLR.K   

   242 - 251     565.8196  1129.6246  1129.5880     0.0367     0  R.FPGQLNADLR.K   

   283 - 297     830.4736  1658.9326  1658.8879     0.0447     0  R.ALTVPELTQQVFDAK.N   

   283 - 297     830.4849  1658.9552  1658.8879     0.0673     0  R.ALTVPELTQQVFDAK.N   

   310 - 318     520.3129  1038.6112  1038.5862     0.0250     0  R.YLTVAAVFR.G   

   337 - 350     848.9507  1695.8868  1695.8257     0.0612     0  K.NSSYFVEWIPNNVK.T   

   351 - 359     514.7861  1027.5576  1027.5121     0.0456     0  K.TAVCDIPPR.G   

12 P20152 Vimentin 53.6 260 11 5.06 
 

21 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    37 - 50      499.2907  1494.8503  1494.7790     0.0712     0  R.TYSLGSALRPSTSR.S   
    51 - 64      722.8833  1443.7520  1443.6994     0.0526     0  R.SLYSSSPGGAYVTR.S   
   130 - 139     585.3790  1168.7434  1168.7067     0.0368     0  K.ILLAELEQLK.G   
   130 - 139     585.3790  1168.7434  1168.7067     0.0368     0  K.ILLAELEQLK.G   
   130 - 143     513.9963  1538.9671  1538.9032     0.0639     1  K.ILLAELEQLKGQGK.S   
   160 - 168     530.8004  1059.5862  1059.5197     0.0666     0  R.QVDQLTNDK.A   
   208 - 217     544.7923  1087.5700  1087.5258     0.0443     0  R.QDVDNASLAR.L   
   274 - 282     512.2780  1022.5414  1022.5032     0.0382     0  R.QQYESVAAK.N   
   283 - 292     655.3319  1308.6492  1308.5986     0.0507     0  K.NLQEAEEWYK.S   
   295 - 304     547.2800  1092.5454  1092.5200     0.0255     0  K.FADLSEAANR.N   
   403 - 410     466.7512   931.4878   931.4610     0.0268     0  K.LLEGEESR.I 

  Cell communication : Signal transduction 

27 P62259 14-3-3 protein epsilon 29.1 95 3 4.63 
 

14 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    30 - 42      732.3979  1462.7812  1462.6974    0.0839     0  K.VAGMDVELTVEER.N  Oxidation (M)  

   107 - 118     619.3565  1236.6984  1236.6462  0.0522     0  K.HLIPAANTGESK.V   

   131 - 141     628.8278  1255.6410  1255.5833  0.0578     0  R.YLAEFATGNDR.K   
27 P63101 14-3-3 protein zeta/delta 27.7 162 4 4.73 

 
20 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    42 - 49      454.2814   906.5482   906.5174      0.0308     0  R.NLLSVAYK.N   

   104 - 115   665.8851  1329.7556  1329.6928    0.0628     0  K.FLIPNASQPESK.V   

   128 - 139     640.3543  1278.6940  1278.6456  0.0485     1  R.YLAEVAAGDDKK.G   

   140 - 157    1021.0496  2040.0846  2039.9800  0.1047   0  K.GIVDQSQQAYQEAFEISK.K 

24 P14206 Laminin receptor 1 32.8 163 3 4.80 
 

13 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    90 - 102     602.3539  1202.6932  1202.6408     0.0525     0  K.FAAATGATPIAGR.F   

   103 - 117     849.9825  1697.9504  1697.8526    0.0979     0  R.FTPGTFTNQIQAAFR.E   

   156 - 166     653.8563  1305.6980  1305.6387    0.0593     0  R.YVDIAIPCNNK.G   
15 P63038 60 kDa heat shock protein 60.9 123 5 5.91 

 
10 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    61 - 72      672.8917  1343.7688  1343.7085     0.0603     0  R.TVIIEQSWGSPK.V   
   406 - 417     617.3263  1232.6380  1232.5885     0.0496   0  K.VGGTSDVEVNEK.K   
   421 - 429     480.7774   959.5402   959.5036     0.0366     0  R.VTDALNATR.A   

http://godatabase.org/cgi-bin/go.cgi?query=GO:0007154&view=details&search_constraint=terms&depth=0
http://godatabase.org/cgi-bin/go.cgi?query=GO:0007165&view=details&search_constraint=terms&depth=0
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   430 - 446     842.9941  1683.9736  1683.8978     0.0759   0  R.AAVEEGIVLGGGCALLRC 
   482 - 493     608.3602  1214.7058  1214.6507     0.0552     0  K.NAGVEGSLIVEK.I 

34 P84078 ADP-ribosylation factor 1 20.6 57 3 6.32 
 

10 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 
    20 - 30      544.3536  1086.6926  1086.6107     0.0819     0  R.ILMVGLDAAGK.T   

    20 - 30      552.3506  1102.6866  1102.6056     0.0810     0  R.ILMVGLDAAGK.T   

   110 - 117     496.7753   991.5360   991.4644     0.0716     0  R.MLAEDELR.D    

21 P10107 Annexin A1 38.7 254 11 6.97 
 

26 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    30 - 53      782.0945  2343.2617  2343.1495       0.1121     0  K.GGPGSAVSPYPSFNVSSDVAALHK.A   

   114 - 124     631.8317  1261.6488  1261.5939     0.0550     0  K.TPAQFDADELR.G   

   167 - 178     447.8936  1340.6590  1340.6208     0.0381     1  K.DITSDTSGDFRK.A   

   167 - 178     671.3505  1340.6864  1340.6208     0.0656     1  K.DITSDTSGDFRK.A   

   205 - 212     454.7408   907.4670   907.4399       0.0271     0  R.ALYEAGER.R   

   205 - 212     454.7446   907.4746   907.4399       0.0347     0  R.ALYEAGER.R   

   214 - 228     551.3235  1650.9487  1650.8941     0.0546     1  R.KGTDVNVFTTILTSR.S   

   215 - 228     762.4437  1522.8728  1522.7991     0.0737     0  K.GTDVNVFTTILTSR.S   

   235 - 242     506.2924  1010.5702  1010.5298     0.0405     1  R.RVFQNYGK.Y   

   236 - 242     428.2355   854.4564   854.4286       0.0278     0  R.VFQNYGK.Y   

   270 - 281     665.3440  1328.6734  1328.6071     0.0664     0  K.CATSTPAFFAEK.L  
22 P48036 Annexin A5 35.9 201 7 4.83 

 
22 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

     5 - 16      634.8223  1267.6300  1267.5834     0.0467     0  R.GTVTDFPGFDGR.A   
    28 - 43      852.4765  1702.9384  1702.8737     0.0647     0  K.GLGTDEDSILNLLTSR.S   
    49 - 56      496.7637   991.5128   991.4974       0.0154     0  R.QEIAQEFK.T   
   107 - 115     501.3151  1000.6156  1000.5917    0.0240     0  K.VLTEIIASR.T   
   150 - 159     578.8582  1155.7018  1155.6798    0.0221     0  R.MLVVLLQANR.D   
   192 - 199     477.7874   953.5602   953.5335      0.0268     0  K.FITIFGTR.S  ) 
   275 - 283     553.8145  1105.6144  1105.5768     0.0377     0  R.SEIDLFNIR.K  

11 Q60864 Stress-induced-phosphoprotein 1 62.5 253 6 6.40 
 

13 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    14 - 32     1020.0450  2038.0754  2037.9677     0.107 0 K.ALSAGNIDDALQCYSEAIK.L)  

   110 - 118     532.2665  1062.5184  1062.4764     0.0421     0  K.EGLQNMEAR.L    

   124 - 136     821.4442  1640.8738  1640.8021     0.0718     0  K.FMNPFNLPNLYQK.L   

   145 - 153     526.2937  1050.5728  1050.5346     0.0383     0  R.SLLSDPTYR.E   

   352 - 364     744.9295  1487.8444  1487.7871     0.0573     0  R.LAYINPDLALEEK.N   

   534 - 543     558.8463  1115.6780  1115.6373     0.0408     0  K.LMDVGLIAIR.-   
32 P51150 Ras-related protein Rab-7a 23.4 93 3 6.40 

 
16 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    11 - 21      529.3070  1056.5994  1056.6179    -0.0185     0  K.VIILGDSGVGK.T   

    39 - 48      518.7822  1035.5498  1035.5601    -0.0102     0  K.ATIGADFLTK.E   

   158 - 171     795.4207  1588.8268  1588.8209   0.0060     0  K.EAINVEQAFQTIAR.N   

8 P08113 Endoplasmin 92.4 322 13 4.74 14 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    88 - 95      482.3147   962.6148   962.5800        0.0348     0  K.LIINSLYK.N  

    96 - 102     460.2888   918.5630   918.5287        0.0344     1  K.NKEIFLR.E   

   103 - 114     638.3587  1274.7028  1274.6354     0.0675     0  R.ELISNASDALDK.I   

   103 - 116     515.6331  1543.8775  1543.8205     0.0569     1  R.ELISNASDALDKIR.L   

   143 - 156     510.6133  1528.8181  1528.7668     0.0513     0  K.NLLHVTDTGVGMTR.E   

   385 - 395     594.3685  1186.7224  1186.6710     0.0514     0  K.SILFVPTSAPR.G   

   396 - 405     572.3105  1142.6064  1142.5608     0.0457     1  R.GLFDEYGSKK.S   

   435 - 448     743.4206  1484.8266  1484.7471     0.0795     0  K.GVVDSDDLPLNVSR.E   

   494 - 503     570.3190  1138.6234  1138.5731     0.0504     0  K.LGVIEDHSNR.T   

   672 - 682     645.3359  1288.6572  1288.5935     0.0637     0  K.DISTNYYASQK.K   

   683 - 690     502.7988  1003.5830  1003.5451     0.0380     1  K.KTFEINPR.H   

   684 - 690     438.7529   875.4912   875.4501       0.0411     0  K.TFEINPR.H   

   725 - 733     497.2874   992.5602   992.5179       0.0424     0  R.SGYLLPDTK.A  

  Metabolism: Energy pathways 

16 P17182 Alpha-enolase  47.1 288 6 6.37 
 

16 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    33 - 50      903.0068  1803.9990  1803.9366     0.0624     0  R.AAVPSGASTGIYEALELR.D   

    72 - 80      450.2883   898.5620   898.5488     0.0133       0  K.TIAPALVSK.K   

    81 - 89      536.8183  1071.6220  1071.5924     0.0296     1  K.KVNVVEQEK.I   

   270 - 281     720.3997  1438.7848  1438.7344     0.0505    0  R.YITPDQLADLYK.S   

   344 - 358     817.4485  1632.8824  1632.8141     0.0683    0  K.VNQIGSVTESLQACK.L   

   413 - 420     452.7413   903.4680   903.4549     0.0132      0  R.IEEELGSK.A 
16 P05202 Aspartate aminotransferase, 

mitochondrial 

47.3 220 7 9.13 
 

15 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

   108 - 122     779.4446  1556.8746  1556.8046     0.0701     0  K.ASAELALGENNEVLK.S   

   126 - 139     725.4400  1448.8654  1448.7988     0.0667     0  R.FVTVQTISGTGALR.V   

   140 - 147     439.2592   876.5038   876.4818       0.0221     0  R.VGASFLQR.F   

   288 - 296     490.7846   979.5546   979.5161       0.0385     0  R.VGAFTVVCK.D   

   326 - 337     635.8948  1269.7750  1269.7292     0.0458     0  R.IAATILTSPDLR.K   

   326 - 338     466.9622  1397.8648  1397.8242     0.0406     1  R.IAATILTSPDLRK.Q   

http://godatabase.org/cgi-bin/go.cgi?query=GO:0008152&view=details&search_constraint=terms&depth=0
http://godatabase.org/cgi-bin/go.cgi?query=GO:0006091&view=details&search_constraint=terms&depth=0
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   356 - 364     515.8410  1029.6674  1029.6182     0.0492     1  R.TQLVSNLKK.E   

17 P05064 Fructose-bisphosphate aldolase A 39.3 160 6 8.31 
 

11 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    15 - 22      470.7626   939.5106   939.4774        0.0333      0  K.ELSDIAHR.I   

    29 - 42      666.8856  1331.7566  1331.6932      0.0634      0  K.GILAADESTGSIAK.R   

   323 - 330     476.2620   950.5094   950.4709      0.0386      0  K.AAQEEYIK.R   

   323 - 331     554.3136  1106.6126  1106.5720     0.0407     1  K.AAQEEYIKR.A   

   323 - 331     554.3142  1106.6138  1106.5720     0.0419     1  K.AAQEEYIKR.A   

   332 - 342     566.8150  1131.6154  1131.5706     0.0448     0  R.ALANSLACQGK.Y   
18 P16858 GAPDH 35.7 387 10 8.44 

 
32 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    65 - 78      543.3352  1626.9838  1626.9457     0.0381     0  K.LVINGKPITIFQER.D   

   117 - 137  749.0670  2244.1792  2244.0919  0.0873   0 R.VIISAPSADAPMFVMGVNHEK.Y  

   144 - 160  910.4822  1818.9498  1818.8968   0.0531 0  K.IVSNASCTTNCLAPLAK.V  

   199 - 213     685.3871  1368.7596  1368.7361     0.0235     0  R.GAAQNIIPASTGAAK.A   

   218 - 225     435.2640   868.5134   868.5018     0.0116     0  K.VIPELNGK.L   

   226 - 232     406.2172   810.4198   810.4058     0.0140     0  K.LTGMAFR.V   

   233 - 246     778.9298  1555.8450  1555.8029     0.0422     0  R.VPTPNVSVVDLTCR.L   

   322 - 332     630.3224  1258.6302  1258.5937     0.0365     0  R.VVDLMAYMASK.E   

   322 - 332     630.3232  1258.6318  1258.5937     0.0381     0  R.VVDLMAYMASK.E   

   322 - 333     694.8505  1387.6864  1387.6363     0.0501     1  R.VVDLMAYMASKE.-   
26 O09131 Glutathione S-transferase omega-1 27.4 69 5 6.92 

 
20 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    12 - 25      681.3976  1360.7806  1360.7099   0.0707     0  K.GSAPPGPVPEGQIR.V   

    31 - 37      463.2351   924.4556   924.4276     0.0280     0  R.FCPFAQR.T  Carbamidomethyl (C)  

    49 - 57      540.3301  1078.6456  1078.6135   0.0322     0  R.HEVININLK.N   

   123 - 132     549.8549  1097.6952  1097.6597 0.0355     0  K.VPPLIASFVR.S   

   144 - 152     554.3092  1106.6038  1106.5607  0.0431     1  R.EALENEFKK.L   
33 P35700 Peroxiredoxin-1 22.1 182 7 8.26 

 
30 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

     8 - 16      503.7939  1005.5732  1005.5284     0.0449    0  K.IGYPAPNFK.A  

   111 - 120     554.3272  1106.6398  1106.5972  0.0427    0  R.TIAQDYGVLK.A  

   111 - 128     661.7098  1982.1076  1982.0109  0.0967    1  R.TIAQDYGVLKADEGISFR.G  

   129 - 136     460.7717   919.5288   919.5015     0.0274   0  R.GLFIIDDK.G   

   129 - 140     453.9479  1358.8219  1358.7922   0.0297   1  R.GLFIIDDKGILR.Q  

   141 - 151     613.3715  1224.7284  1224.6826   0.0458   0  R.QITINDLPVGR.S   

   159 - 168     598.8400  1195.6654  1195.6237   0.0417   0  R.LVQAFQFTDK.H  

  Protein metabolism 

6 P58252 Elongation factor 2 95.2 124 5 6.41 
 

5 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

     2 - 10      546.3216  1090.6286  1090.5771       0.0515     0  M.VNFTVDQIR.A   

   240 - 249     509.2732  1016.5318  1016.4887    0.0432     0  K.GEGQLSAAER.A   

   265 - 272     456.2335   910.4524   910.4185      0.0340     0  R.YFDPANGK.F   

   416 - 426     547.3389  1092.6632  1092.6179    0.0453     0  R.VFSGVVSTGLK.V   

   573 - 580     461.7394   921.4642   921.4556      0.0087     0  K.SDPVVSYR.E   

10 P63017 Heat shock cognate 71 kDa protein 70.8 236 13 5.37 
 

18 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 
    26 - 36      614.7968  1227.5790  1227.6207    -0.0417     0  K.VEIIANDQGNR.T   

   160 - 171     600.3202  1198.6258  1198.6670    -0.0411     0  K.DAGTIAGLNVLR.I   

   221 - 236     564.5534  1690.6384  1690.7183    -0.0800     0  K.STAGDTHLGGEDFDNR.M   

   237 - 246     618.2911  1234.5676  1234.6169    -0.0492     0  R.MVNHFIAEFK.R   

   300 - 311     494.2325  1479.6757  1479.7470    -0.0713     1  R.ARFEELNADLFR.G   

   302 - 311     627.2891  1252.5636  1252.6088    -0.0451     0  R.FEELNADLFR.G   

   312 - 319     429.7122   857.4098   857.4494    -  0.0396     0  R.GTLDPVEK.A   

   349 - 357     541.2634  1080.5122  1080.5604    -0.0481     0  K.LLQDFFNGK.E   

   416 - 423     465.7547   929.4948   929.5294      -0.0346     1  K.RNTTIPTK.Q   

   501 - 509     509.2637  1016.5128  1016.5614    -0.0486     1  K.ITITNDKGR.L   

   510 - 517     495.2458   988.4770   988.5189      -0.0418     1  R.LSKEDIER.M   

   540 - 550     660.2779  1318.5412  1318.5863    -0.0451     0  K.NSLESYAFNMK.A   

   574 - 583     639.2913  1276.5680  1276.6122    -0.0441     0  K.CNEIISWLDK.N   

   602 - 609     472.7433   943.4720   943.5161    -  0.0440     0  K.VCNPIITK.L   
12 P09103 Protein disulfide-isomerase 57.1 133 7 4.79 

 
14 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    60 - 67      431.7491   861.4836   861.4596         0.0241     0  K.ALAPEYAK.R   

    72 - 80      501.7995  1001.5844  1001.5505       0.0339     1  K.LKAEGSEIR.L   

    84 - 99      890.9596  1779.9046  1779.8275       0.0771     0  K.VDATEESDLAQQYGVR.G   

   329 - 340     470.5771  1408.7095  1408.6722     0.0373     0  K.YKPESDELTAEK.I   

   341 - 347     481.7499   961.4852   961.4440       0.0413     0  K.ITEFCHR.F   

   427 - 438     655.3291  1308.6436  1308.5867     0.0569     0  K.MDSTANEVEAVK.V   

   455 - 463     533.7825  1065.5504  1065.5091     0.0414     0  R.TVIDYNGER.T   

12 P27773 Protein disulfide-isomerase A3 56.6 113 5 5.88 
 

10 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    63 - 73      596.3225  1190.6304    1190.5931     0.0373     0  R.LAPEYEAAATR.L   

   131 - 140     498.3008   994.5870     994.5560     0.0311     0  K.QAGPASVPLR.T   

http://godatabase.org/cgi-bin/go.cgi?query=Protein%20metabolism&view=details&search_constraint=terms&depth=0
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   259 - 271     804.4152  1606.8158    1606.7403   0.0756     0  K.DLLTAYYDVDYEK.N   

   297 - 304     439.2591   876.5036     876.4817     0.0219     0  K.LNFAVASR.K   

   367 - 379     691.8729  1381.7312    1381.6725   0.0587     0  K.SEPIPESNEGPVK.V   
16 P19324 Serpin H1 (47 kDa heat shock 

protein) 

46.5 120 3 8.90 
 

9 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

   101 - 115     579.6795  1736.0167  1735.9217     0.0950     1  K.LRDEEVHTGLGELLR.S   

   308 - 318     612.8617  1223.7088  1223.6510     0.0578     0  K.GVVEVTHDLQK.H   

   393 - 404     653.8762  1305.7378  1305.6677     0.0701     0  R.DNQSGSLLFIGR.L   

10 P38647 Stress-70 protein, mitochondrial 73.4 397 9 5.91 
 

13 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    77 - 85      479.7308   957.4470   957.4879        -0.0409     0  K.VLENAEGAR.T   

   160 - 173     777.4011  1552.7876  1552.8323    -0.0447     0  K.LYSPSQIGAFVLMK.M   

   207 - 218     621.8179  1241.6212  1241.6728    -0.0515     0  K.DAGQISGLNVLR.V   

   349 - 360     667.3468  1332.6790  1332.7289    -0.0499     0  R.AQFEGIVTDLIK.R   

   349 - 361     497.2584  1488.7534  1488.8300    -0.0766     1  R.AQFEGIVTDLIKR.T   

   378 - 391     723.8605  1445.7064  1445.7548    -0.0484     0  K.SDIGEVILVGGMTR.M   

   395 - 405     645.8167  1289.6188  1289.6728    -0.0540     0  K.VQQTVQDLFGR.A   

   626 - 634     510.7139  1019.4132  1019.4520    -0.0387     0  K.DSETGENIR.Q   

   635 - 646     616.3114  1230.6082  1230.6568    -0.0485     0  R.QAASSLQQASLK.L   

  Regulation of nucleic acid metabolism 

18 Q9EQU5 Protein SET 33.3 180 5 4.22 
 

19 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    57 - 67      637.3608  1272.7070  1272.6561     0.0510     0  R.LNEQASEEILK.V   

    83 - 89      408.7590   815.5034   815.4865       0.0170     1  K.RSELIAK.I   

   122 - 131     604.8239  1207.6332  1207.5972   0.0360     0  R.VEVTEFEDIK.S   

   136 - 149     920.9449  1839.8752  1839.7992   0.0761     0  R.IDFYFDENPYFENK.V  ) 

   154 - 166     482.9012  1445.6818  1445.6423    0.0395     0  K.EFHLNESGDPSSK.S  

  Protein folding 

33 Q99LP6 GrpE protein homolog 1, 

mitochondrial 

24.4 161 8 8.58 
 

26 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 
    65 - 72      493.8080   985.6014   985.5556          0.0458     1  K.AKLEEQLR.E   

    81 - 89      501.7849  1001.5552  1001.5141        0.0411     0  R.ALADTENLR.Q   

    81 - 89      501.7869  1001.5592  1001.5141        0.0451     0  R.ALADTENLR.Q   

   101 - 109     543.2985  1084.5824  1084.5376      0.0449     0  K.LYGIQGFCK.D   

   110 - 120     629.3781  1256.7416  1256.6864      0.0553     0  K.DLLEVADILEK.A   

   110 - 120     629.4009  1256.7872  1256.6864      0.1009     0  K.DLLEVADILEK.A   

   128 - 138     647.8497  1293.6848  1293.6313      0.0536     0  K.EEISNNNPHLK.S   

   187 - 196     500.8031   999.5916   999.5601        0.0316     0  K.EPGTVALVSK.V   

36 P17742 Peptidyl-prolyl cis-trans isomerase 

A  

17.9 185 7 7.74 
 

20 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    20 - 28      528.3051  1054.5956  1054.5335       0.0621      0  R.VSFELFADK.V   

    20 - 31      460.6164  1378.8274  1378.7496       0.0777      1  R.VSFELFADKVPK.T   

    20 - 31      690.4260  1378.8374  1378.7496        0.0878     1  R.VSFELFADKVPK.T   

    83 - 91      577.8199  1153.6252  1153.5655        0.0597     0  K.FEDENFILK.H   

   132 - 144     513.2833  1536.8281  1536.7276      0.1005     1  K.VKEGMNIVEAMER.F  2  

   132 - 144     769.4380  1536.8614  1536.7276      0.1339     1  K.VKEGMNIVEAMER.F  2  

   134 - 144     655.8383  1309.6620  1309.5642      0.0978     0  K.EGMNIVEAMER.F  2  

  Cell cycle 

14 P10126 Elongation factor 1-alpha 1 50 177 7 9.10 
 

16 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    21 - 30      560.8203  1119.6260  1119.5924     0.0336      0  K.STTTGHLIYK.C   

    85 - 96      468.9226  1403.7460  1403.7197     0.0262      0  K.YYVTIIDAPGHR.D   

   135 - 146     438.9270  1313.7592  1313.7343     0.0249     0  R.EHALLAYTLGVK.Q   

   135 - 146     657.8920  1313.7694  1313.7343     0.0351     0  R.EHALLAYTLGVK.Q   

   166 - 172     468.7705   935.5264   935.5076     0.0188       1  K.RYEEIVK.E   

   248 - 255     488.2897   974.5648   974.5437     0.0212       0  R.LPLQDVYK.I   

   256 - 266     513.3220  1024.6294  1024.6030     0.0265     0  K.IGGIGTVPVGR.V 

  Lipopolysaccharide binding; ATP binding 

10 P20029 78 kDa glucose-regulated protein 

(Bip) 

72.3 166 5 5.07 
 

9 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    51 - 61      614.8412  1227.6678  1227.6207     0.0471     0  R.VEIIANDQGNR.I   
   166 - 182     630.0302  1887.0688  1886.9639     0.1049     0  K.VTHAVVTVPAYFNDAQR.Q   
   199 - 214     830.4892  1658.9638  1658.8879     0.0760     0  R.IINEPTAAAIAYGLDK.R   
   525 - 533     537.8023  1073.5900  1073.5465     0.0435     0  K.ITITNDQNR.L   
   534 - 541     493.7830   985.5514   985.5080     0.0435     0  R.LTPEEIER.M  

http://godatabase.org/cgi-bin/go.cgi?query=Regulation%20of%20nucleobase,%20nucleoside,%20nucleotide%20and%20nucleic%20acid%20metabolism&view=details&search_constraint=terms&depth=0
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  Oxidoreductase, Stress response 

13 Q61753 D-3-phosphoglycerate 

dehydrogenase 

56.5 252 8 6.12 
 

16 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

     9 - 20      717.8679  1433.7212  1433.6643        0.0570     0  K.VLISDSLDPCCR.K  2  

    22 - 33      649.8920  1297.7694  1297.7242       0.0453     0  K.ILQDGGLQVVEK.Q   

    59 - 69      565.8239  1129.6332  1129.5979       0.0354     0  K.VTADVINAAEK.L   

   147 - 155     450.2976   898.5806   898.5600       0.0207     0  K.TLGILGLGR.I   

   237 - 247     550.3247  1098.6348  1098.6033     0.0315     0  R.GGIVDEGALLR.A   

   352 - 364     666.4022  1330.7898  1330.7457     0.0442     0  K.GTIQVVTQGTSLK.N   

   385 - 394     536.3125  1070.6104  1070.5720     0.0384     0  K.QADVNLVNAK.L   

   462 - 469     465.2950   928.5754   928.5494       0.0260     0  R.GQPLLVFR.A  
9 P07901 Heat shock protein HSP 90-alpha 84.7 325 13 4.93 

 
15 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    88 - 100     675.3440  1348.6734  1348.7272    -0.0538     0  R.TLTIVDTGIGMTK.A   

    88 - 100     683.3395  1364.6644  1364.7221    -0.0577     0  R.TLTIVDTGIGMTK.A   

   174 - 182     482.1929   962.3712   962.4127    - 0.0415     0  R.TDTGEPMGR.G   

   186 - 201     672.3232  2013.9478  2014.0371    -0.0893     1  K.VILHLKEDQTEYLEER.R   

   210 - 224     593.6246  1777.8520  1777.9403    -0.0883     0  K.HSQFIGYPITLFVEK.E   

   285 - 293     576.2495  1150.4844  1150.5506    -0.0661     0  K.YIDQEELNK.T   

   285 - 293     576.2576  1150.5006  1150.5506    -0.0499     0  K.YIDQEELNK.T   

   294 - 300     451.2433   900.4720   900.5181      -0.0461     0  K.TKPIWTR.N   

   340 - 346     408.2396   814.4646   814.5065      -0.0419     0  R.ALLFVPR.R   

   347 - 356     632.8005  1263.5864  1263.6360    -0.0496     1  R.RAPFDLFENR.K   

   348 - 356     554.7521  1107.4896  1107.5349    -0.0452     0  R.APFDLFENR.K   

   388 - 401     757.3570  1512.6994  1512.7784    -0.0789     0  R.GVVDSEDLPLNISR.E   

   501 - 511     618.2714  1234.5282  1234.5942    -0.0660     0  K.DQVANSAFVER.L   

9 P11499 Heat shock protein HSP 90-beta 83.2 488 18 4.97 
 

23 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    42 - 55      515.5862  1543.7368  1543.8205    -0.0838     1  R.ELISNASDALDKIR.Y   

    73 - 82      597.8010  1193.5874  1193.6404    -0.0530     0  K.IDILPNPQER.T   

    83 - 95      675.3440  1348.6734  1348.7272    -0.0538     0  R.TLTLVDTGIGMTK.A   

    83 - 95      683.3395  1364.6644  1364.7221    -0.0577     0  R.TLTLVDTGIGMTK.A   

   169 - 177     476.2175   950.4204   950.4570    -0.0365     0  R.ADHGEPIGR.G   

   181 - 196     672.3232  2013.9478  2014.0371    -0.0893     1  K.VILHLKEDQTEYLEER.R   

   205 - 219     603.6295  1807.8667  1807.9509    -0.0842     0  K.HSQFIGYPITLYLEK.E   

   276 - 284     576.2495  1150.4844  1150.5506    -0.0661     0  K.YIDQEELNK.T   

   276 - 284     576.2576  1150.5006  1150.5506    -0.0499     0  K.YIDQEELNK.T   

   285 - 291     451.2433   900.4720   900.5181    -0.0461     0  K.TKPIWTR.N   

   292 - 306     924.3608  1846.7070  1846.7897    -0.0827     0  R.NPDDITQEEYGEFYK.S   

   338 - 347     618.7966  1235.5786  1235.6299    -0.0512     1  R.RAPFDLFENK.K   

   339 - 347     540.7463  1079.4780  1079.5287    -0.0507     0  R.APFDLFENK.K   

   379 - 392     757.3570  1512.6994  1512.7784    -0.0789     0  R.GVVDSEDLPLNISR.E   

   429 - 435     446.1936   890.3726   890.4174    -0.0448     0  K.FYEAFSK.N   

   439 - 448     571.2600  1140.5054  1140.5523    -0.0469     0  K.LGIHEDSTNR.R   

   482 - 491     580.7706  1159.5266  1159.5761    -0.0494     0  K.SIYYITGESK.E   

   558 - 565     505.2378  1008.4610  1008.5062    -0.0452     1  K.AKFENLCK.L   

20 P06151 L-lactate dehydrogenase A chain 36,4 161 7 7.62 
 

18 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 
    82 - 90      529.2570  1056.4994  1056.4546     0.0448     0  K.DYCVTANSK.L   

    91 - 99      457.3066   912.5986   912.5756     0.0230     0  K.LVIITAGAR.Q   

   158 - 169     624.8273  1247.6400  1247.5928     0.0472     0  R.VIGSGCNLDSAR.F   

   233 - 243     625.8594  1249.7042  1249.6554     0.0488     0  K.QVVDSAYEVIK.L   

   269 - 278     399.8977  1196.6713  1196.6700     0.0013     1  R.RVHPISTMIK.G   

   270 - 278     521.3130  1040.6114  1040.5688     0.0426     0  R.VHPISTMIK.G   

   306 - 315     572.8169  1143.6192  1143.5771     0.0421     0  K.VTLTPEEEAR.L   

20 P08249 Malate dehydrogenase, 

mitochondrial 

35.5 136 5 8.93 
 

15 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    92 - 104     669.8904  1337.7662  1337.7126     0.0537      0  K.GCDVVVIPAGVPR.K   

   166 - 176     617.3821  1232.7496  1232.7129     0.0368     0  K.IFGVTTLDIVR.A   

   177 - 185     496.7875   991.5604   991.5338     0.0266       0  R.ANTFVAELK.G   

   230 - 239     537.3062  1072.5978  1072.5764     0.0214     0  R.IQEAGTEVVK.A   

   315 - 324     565.8287  1129.6428  1129.6053     0.0376     0  K.MIAEAIPELK.A   
31 P17751 Triosephosphate isomerase 26.6 121 5 6.90 

 
20 Start - End     Observed    Mr(expt)   Mr(calc)     Delta   Miss Sequence 

    60 - 69      569.3124  1136.6102  1136.5648     0.0454       0  K.IAVAAQNCYK.V   

   161 - 175     801.9860  1601.9574  1601.8817     0.0757     0  K.VVLAYEPVWAIGTGK.T   

   161 - 175     801.9883  1601.9620  1601.8817     0.0803     0  K.VVLAYEPVWAIGTGK.T   

   176 - 188     489.6029  1465.7869  1465.7161     0.0708     0  K.TATPQQAQEVHEK.L   

   195 - 206     624.3315  1246.6484  1246.5902     0.0583     0  K.SNVNDGVAQSTR.I  
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