Cyclisierungsreaktionen mehrfach ungesättigter Systeme
– Theorie und Experiment –

DISSEPTION
Zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultäten
der Georg-August-Universität zu Göttingen

vorgelegt von
Matthias Prall
aus Kassel

Göttingen 2002
D7

Referent: Prof. Dr. Peter R. Schreiner
Korreferent: Priv.-Doz. Dr. Christoph Schneider
Tag der mündlichen Prüfung: 20.06.2002
Die vorliegende Arbeit wurde unter der Leitung von Herrn Prof. Dr. Peter R. Schreiner in der Zeit von Juni 1998 bis Juni 2002 am Institut für organische Chemie der Georg-August-Universität zu Göttingen angefertigt.

Ich möchte mich bei meinem Lehrer Herrn Prof. Dr. Peter R. Schreiner herzlich für die interessante Themenstellung, die anregenden Diskussionen und die fortwährende Unterstützung im Verlauf dieser Arbeit bedanken.
Meiner Familie
1 Einleitung ... 1

2 Teil I: Theoretische Berechnungen thermischer Umlagerungen .. 7

2.1 Grundlagen der Computer-Chemie ... 7

2.2 Wahl der Methode .. 14

2.3 Cope-ähnliche Umlagerungen .. 20

2.4 Cyclisierungen .. 33

2.4.1 Die Cyclisierung von Hex-3-en-1,5-dien: Was gibt es neben der "Bergman-Cyclisierung"? ... 33

2.4.2 Die Cyclisierung von Hepta-1,2,4-trien-6-in: "Myers-Saito"-, "Schmittel"- und weitere Cyclisierungen .. 57

2.4.3 Die Cyclisierung von Hexa-1,3-dien-5-in ("Hopf-Cyclisierung") .. 71

2.4.4 Die Cyclisierung von Hexa-1,3,5-trien ("\[a\]-disrotatorische Cyclisierung") .. 85

2.4.5 Die Cyclisierung von Octa-1,2,4,6,7-pentaen .. 87

2.4.6 Die Cyclisierung von Hepta-1,2,4,6-tetraen .. 90

2.5 Schlußbetrachtung .. 92

3 Teil II: Experimente zur kationisch induzierten Cyclisierung ... 100

3.1 Grundlagen ... 100

3.2 Synthese der Cyclisierungs-Ausgangsverbindungen .. 107

3.3 Kationisch induzierte Additions- und Cyclisierungsreaktionen .. 116

3.4 Schlußbetrachtung .. 131

4 Zusammenfassung .. 135
<table>
<thead>
<tr>
<th>Seite</th>
<th>Inhaltsverzeichnis</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Experimentalteil</td>
<td>137</td>
</tr>
<tr>
<td>6</td>
<td>Literaturverzeichnis</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>Anhang</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>7.1 Abbildungen der 1H-NMR Spektren</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>7.2 Abbildungen der 13C-NMR Spektren</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>7.3 Molekülverzeichnis</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>7.4 Abkürzungen und Akronyme</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>7.5 Publikationsliste</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Danksagung</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Lebenslauf</td>
<td>206</td>
</tr>
</tbody>
</table>
1 Einleitung

Reaktionen, die unter Umlagerung des Kohlenstoffgerüsts und gleichzeitiger Verschiebung von Mehrfachbindungen ungesättigte Moleküle ineinander überführen können, sind sowohl in der präparativen Chemie als auch in der Pharmazie von herausragender Wichtigkeit. Bekannte Beispiele thermischer Umlagerungen aus der organischen Chemie sind die Cope-Umlagerung von 1,5-Hexadien-Derivaten 1,1,2 die Claisen-Umlagerungen von Allyvinylethern 2 zu Pent-4-enal-Derivaten 3,3-5 sowie die Diels-Alder-Reaktion zwischen Dien 4 und Dienophil 5 zu Cyclohexenen 66-8 und die thermische, disrotatorische Cyclisierung von 1,3,5-Hexatrien 7 zu Cyclohexadien-Derivaten 8 (Abb. 1).9-11

\[
\begin{align*}
\text{Cope} & : & 1 & \rightarrow & 1 \\
\text{Claisen} & : & 2 & \rightarrow & 3 \\
\text{Diels-Alder} & : & 4 + 5 & \rightarrow & 6 \\
\text{[6]-disrotatorisch} & : & 7 & \rightarrow & 8
\end{align*}
\]

\textbf{Abbildung 1.} Verschiedene Umlagerungen von ungesättigten Verbindungen

In den letzten Jahren fanden auch thermische Cyclisierungen, die Produkte mit ungepaarten Elektronen liefern, Eingang in die organische Synthese. Insbesondere sind hier die Bergman-Cyclisierung von Hex-3-en-1,5-diin-Derivaten 9 ("Endiine") zu 1,4-Didehydrobenzolen 10 ("Bergman-Produkte")12-15 und die Myers-Saito-Cyclisierung von Hepta-1,2,4-trien-6-in-Derivaten 11 ("Eninallene") zu α,3-Didehydrotoluolen 12 ("Myers-Saito-Produkte") zu nennen (Abb. 2).16-19 Obwohl die Reaktionen in Abbildung 1 und Abbildung 2 auf den ersten Blick nichts miteinander zu tun haben, liegt ihnen doch ein gleiches Prinzip zu Grunde. Bei genauerer Betrachtung handelt es sich bei der Bergman- und Myers-Saito-Cyclisierung formal um nichts anderes als Abwandlungen der Cope-Umlagerung mit ungesättigterem Charakter.
Die Bergman- und Myers-Saito-Cyclisierungen sind vor allem in der Naturstoffsynthese von Bedeutung, seit bekannt ist, daß die DNA-schädigenden Eigenschaften einiger Antitumor-Antibiotika, wie z.B. Calicheamicin γ1\textsubscript{1} 13, Dynemicin 14 und Neocarzinostatin 15, auf die Cyclisierung und die damit einhergehende Biradikalbildung solcher Endiin- und Eninkumulen-Untereinheiten zurückzuführen sind (Abb. 3). 20-25

Die normalerweise endotherm verlaufende Bergman-Cyclisierung26 wird in diesen Molekülen durch Erhöhung der Ringspannung ausgelöst. Durch einen intramolekularen Angriff wird die Struktur von 13 soweit verändert, daß die Reaktion exotherm verläuft, um Ringspannung abzubauen (Abb. 4). Das entstehende hochreaktive Biradikal 16 abstrahiert dann zwei H-Atome von der DNA, die daraufhin abgebaut wird.20-24,27,28 Im Neocarzinostatin 15 wird die Ringspannung durch einen intermolekularen Angriff erreicht, der zur Ausbildung des hochgespannten Eninkumulen-Gerüstes 17 führt. 29

1 Einleitung

Neben den zahlreichen thermisch initiierten Cyclisierungen, gibt es einige wenige Beispiele in der Literatur, bei denen sie auch kationisch, anionisch und radikalisch eingeleitet werden konnte.43-47 Die dabei erhaltenen Produkte entsprechen in der Struktur im Allgemeinen nicht denen der thermischen Cyclisierungen. Ein gutes Beispiel ist die Cyclisierung von 1,2-Bis(phenylethynyl)benzol 18 (Abb. 5). Während die thermische Cyclisierung über das schon bekannte substituierte Bergman-Produkt 19 ein substituiertes Naphthalinderivat 20 ergibt,48 werden bei der induzierten Cyclisierung zwei diastereomere Benzfulvenderivate (Z)-21 und (E)-21 erhalten.45

\begin{center}
\includegraphics[width=0.8\textwidth]{diagram.png}
\end{center}

Abbildung 5. Thermische und kationisch induzierte Cyclisierungen von 1,2-Bis(phenylethynyl)benzol 18

die Reaktivität der Mitglieder des Familienzweiges 2 untersucht. Weitere Schwerpunkte liegen auf der Auswirkung von Ringspannung auf die normalerweise endotherm ablaufenden Reaktionen, sowie auf den Substituenteneffekten auf die Bergman-Cyclisierung, beides zum Zweck der Reaktivitäts erhöhung und -kontrolle.

Abbildung 6. Die beiden Familienzweige der Cope-Familie mit einigen Beispielen

Abbildung 7. Verschiedene ungesättigte Systeme für "Zipper"-Reaktionen
2 Teil I: Theoretische Berechnungen thermischer Umlagerungen
2.1 Grundlagen

Hartree-Fock (HF),\(^{58,59}\) Die Hartree-Fock-Methode basiert auf dem Konzept des selbstkonsistenten Feldes (*self consistent field*, SCF). Ausgangspunkt ist die Schrödinger-Gleichung für die Wellenfunktion eines Systems:

\[
\hat{H}\Psi = E\Psi
\]

Unter der Annahme ruhender Kerne (Born-Oppenheimer-Näherung), kann der Hamilton-Operator in den Beitrag aus der Kernabstoßung

\[
V_{NN} = \sum_{A} \sum_{B>A} \frac{q_A q_B}{r_{AB}}
\]

und den elektronischen Beitrag unterteilt werden. Für ein *n*-Elektronensystem ergibt sich dieser zu
\[\tilde{H}_{\text{elek}} = -\frac{1}{2} \sum_i^n \nabla_i^2 + \sum_i^n V(r_i) + \sum_{i \neq j}^n \frac{1}{|r_i - r_j|} \]

wobei der erste Term die kinetische Energie der Elektronen, der zweite die potentielle Energie der Elektronen im Feld der Kerne und der dritte die potentielle Energie der Elektronen im Feld der anderen beschreibt. Da es sich dabei um ein Vielelektronensystem handelt (klassisches Mehrkörpersystem), ist dieses nicht analytisch lösbar und ein iterativer Prozeß wird notwendig, in dem nicht jedes Elektron mit jedem wechselwirkt, sondern jedes Elektron mit dem effektiven Gesamtfeld aller anderen Elektronen. Dabei werden folgende Schritte durchlaufen:

2. Ein Elektron wird ausgewählt und das Potential, in dem es sich bewegt, wird bestimmt, indem die Wechselwirkung mit dem effektiven Gesamtfeld berechnet wird.
3. Die Schrödinger-Gleichung wird für dieses Potential gelöst, was ein neues Orbital für das Elektron ergibt.

Da die genäherte Energie im Laufe des Prozesses immer kleiner wird und sich asymptotisch einem Grenzwert annähert, der größer oder gleich der korrekten Energie ist, gehorcht diese Methode dem Variationsprinzip.

\[E_0 \leq \frac{\langle \Psi' | \tilde{H} | \Psi' \rangle}{\langle \Psi' | \Psi' \rangle} \]

Dichtefunktionaltheorie (DFT). Die grundlegende Idee der DFT ist, daß die Energie eines elektronischen Systems in Termen der Elektronenwahrscheinlichkeitsdichte \(\rho \) geschrieben werden kann. Die elektronische Energie ist dann ein Funktional der Elektronendichte.

\[E^{\text{DFT}}[\rho] = T_3[\rho] + E_{\text{xc}}[\rho] \]

wobei der erste Term die kinetische Energie der Elektronen, der zweite die Anziehung zwischen Elektronen und Kernen und der dritte die Coulomb-Wechselwirkungen zwischen den Elektronen beschreibt. Der vierte Teil ist der sogenannte Austausch-Korrelations-Term.
in dem die Austauschwechselwirkungen der Elektronen und die Interaktion der Orbitale zusammengefaßt sind. Den eindeutigen Zusammenhang zwischen Vielteilchen-Wellenfunktion und Elektronendichte zeigt das Hohenberg-Kohn-Theorem.51 Kohn und Sham konnten dann das Vielteilchenproblem in ein effektives Einteilchenproblem überführen, indem sie Orbitale ähnlich denen der HF-Theorie einführten.62 Natürlich muß auch die Kohn-Sham-Gleichung wie die SCF-Gleichung iterativ gelöst werden. Ein DFT-Funktional besteht immer aus zwei Teilen: dem Austausch- (z.B. B63, S61,62,64, G9661,62,64-66, B367) und dem Korrelationsfunktional (z.B. LYP68,69, PW9170, VWN71), die alle frei miteinander kombinierbar sind (z.B. BLYP, SVWN). Zu unterscheiden sind dabei noch die "reinen" und die Hybrid-DFT Methoden. Während z.B. BLYP eine reine Methode darstellt, ist in B3LYP das Austauschfunktional B3 ein Hybrid, das aus dem reinen B und Termen aus der HF-Rechnung besteht. Die geeignete Wahl der Kombination hängt dabei vom zu beschreibenden System ab und sollte vor jeder Anwendung auf ihre Tauglichkeit geprüft werden (nähere Einzelheiten siehe nächstes Kapitel).

\textbf{Møller-Plesset-Störungsrechnung (MPn).}72 Die Verwendung der Störungstheorie zur Abschätzung der Korrelationsenergie geht auf einen Vorschlag von Møller und Plesset zurück, den im Rahmen der Hartree-Fock-Näherung verwendeten Hamiltonoperator als ungestörten Operator anzusehen. Die Differenz zwischen diesem und dem exakten Hamiltonoperator ist dann der Störoperator.

\[\tilde{H} = \hat{H}^{(0)} + \tilde{V} \]

Dabei wird unterstellt, daß der Beitrag des Störoperators klein ist im Verhältnis zu dem des ungestörten Operators. Die exakte Grundzustandsenergie, sowie die Wellenfunktion werden in Potenzreihen der Form

\[E_0 = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \ldots + \lambda^k E^{(k)} \]

und

\[\Psi_0 = \Psi^{(0)} + \lambda \Psi^{(1)} + \lambda^2 \Psi^{(2)} + \ldots + \lambda^k \Psi^{(k)} \]

mit den Störtermen \(k \)-ter Ordnung entwickelt. Der Energie der nullter Ordnung ist gleich der Summe der Orbitalenergien, die Summe aus nullter und erster Ordnung ist die HF-Energie. Die Störenergie zweiter Ordnung kann dann relativ einfach berechnet werden. Ein gravierendes Problem ist, daß der bei Routineberechnungen übliche Abbruch der Energieentwicklung mit der zweiten Ordnung (MP2) dazu führt, daß die so berechneten Energien nicht mehr dem Variationsprinzip unterliegen.
Multikonfigurations-Methoden (CASSCF)73-75 Moleküle, die elektronisch verschiedene Resonanzstrukturen oder nicht eindeutige Spinzstände besitzen, können nur durch Multikonfigurationsmethoden richtig beschrieben werden. Ozon kann beispielsweise durch zwei ionischen und eine biradikalische Strukturen beschrieben werden (Abb. 8). Während die ionischen Strukturen beide durch dieselbe Konfiguration beschrieben werden können, ist für die biradikalische eine zweite notwendig.

\[
\begin{align*}
\text{[O=O=O]} & \leftrightarrow \text{[O=O=O]} \\
& \leftrightarrow \text{[O=O=O]} \\
& \leftrightarrow \text{[O=O=O]}
\end{align*}
\]

Abbildung 8. Resonanzstrukturen von Ozon

In diesen Fällen wird jeder Resonanzstruktur eine eigene Wellenfunktion zugeschrieben und mit einem Koeffizienten versehen, der die Wichtung dieser Struktur anzeigt. Die Koeffizienten und die Orbitale werden dann im Rahmen der Rechnung optimiert, wobei die Summe aller Koeffizienten zu jederzeit eins sein muß. Für die am häufigsten verwendete Methode des vollständig aktiven Raumes (complete active space self consistent field, CASSCF), wird nur ein Satz wichtiger Konfigurationen ausgewählt, die den aktiven Raum aufspannen, in dem die Elektronen dann in alle möglichen Zustände verteilt werden (Abb. 9). Da die Auswahl der kritischen Konfigurationen nicht einfach ist, führt die unsachgemäße Verwendung häufig zu falschen oder nicht sinnvollen Ergebnissen.

Abbildung 9. Schema der CASSCF-Erweiterung
Coupled Cluster Methoden (CC) In der coupled cluster-Theorie wird die Wellenfunktion als Reihe entwickelt. Dabei wird die Referenzwellenfunktion (HF) durch den sogenannten cluster-Operator expandiert, der sich aus der Summe aller möglichen cluster-Anregungsoperatoren zusammensetzt, die wiederum durch die cluster-Amplituden gewichtet sind.

\[\Psi_{CC}^{\text{CC}} = e^T \Phi_{HF} = \left(\sum_{k=0}^{K} \frac{1}{k!} \right) \Phi_{HF} \quad \text{und} \quad T = T_1 + T_2 + T_3 + \ldots + T_r \]

Die am Häufigsten verwendete Methode ist der CCSD(T)-Ansatz, der die singles und doubles Amplituden (Anregungen) beinhaltet und die triples störungstheoretisch miteinbezieht. Diese Methode gibt äußerst exakte Ergebnisse für geschlossenschalige Moleküle, hat jedoch die Nachteile, daß sie sehr zeitaufwendig ist und nicht dem Variationsprinzip folgt. Eine Verbesserung für offenschalige Spezies bringt der BD(T)-Ansatz mit Brueckner-Orbitalen, die erst in Anwesenheit der Korrelationsstörung optimiert (rotiert) werden, bis die singles-Amplitude null ist, bevor die Wellenfunktion expandiert wird.

Basissätze Basissätze sind die mathematische, approximative Darstellung von Orbitalen. Zunächst wurden die sogenannten Slater-Orbitale (Slater-type-orbitals, STOs) verwendet, die den Orbitalen der exakten Lösung für das Wasserstoffatom sehr nahe kommen.

\[\chi_{\xi, n, l, m}^{\text{STO}} (r, \Theta, \varphi) = N Y_{l,m} (\Theta, \varphi) r^{n-1} e^{-\xi r} \]

Da jedoch mathematisch Gauß-Funktionen leichter zu integrieren sind als die STOs, ging man dazu über, jedes STO durch ein Produkt mehrerer primitiver Gauß-Funktionen (PGTOs) zu beschreiben (Abb. 10).

\[\chi_{\xi, n, l, m}^{\text{GTO}} (r, \Theta, \varphi) = N Y_{l,m} (\Theta, \varphi) r^{(2n-2-l)} e^{-\xi r^2} \]

Abbildung 10. Abbildung eines STOs und eines aus drei primitiven GTOs zusammengesetztes GTO
Der minimale Basissatz (STO-3G) enthält die Anzahl von Basisfunktionen, die zur Beschreibung der Atome gerade ausreicht (z.B. H: 1s; C: 1s, 2s, 2pₓ, 2pᵧ, 2pz). Minimale Basissätze repräsentieren atomähnliche Orbitale fester Größe.

Split-valence Basissätze verwenden zwei oder mehrere Basisfunktionen für jedes Valenz-Orbital (z.B. 3-21G → H: 1s, 1s’; C: 1s, 2s, 2s’, 2pₓ, 2pᵧ, 2pᵧ’, 2pz, 2pz’), wodurch die zur Beschreibung anisotroper Elektronenverteilungen nötige, zusätzliche Flexibilität in den Orbitalen zur Verfügung gestellt wird (Abb. 11). Die Anzahl solcher Gruppen von Basisfunktionen wird auch als double-, triple-, usw. ξ (Zeta, DZ, TZ, usw.) bezeichnet.

Abbildung 11. Flexibilitätsgewinn in split-valence Basissätzen

Die Einführung polarisierter Basissätze erlaubt die Beeinflussung der Gestalt der Orbitale. Das wird erreicht, indem Orbitale mit einer höheren Nebenquantenzahl hinzugefügt werden (z.B. p-Funktionen für Wasserstoff und d-Funktionen für die Elemente der zweiten Periode, Abb. 12). Dies wird als * oder (d) bzw. ** oder (d,p) für d-Funktionen an Schweratomen, bzw. zusätzlich p-Funktionen für Wasserstoff, in der Basissatzbezeichnung vermerkt (z.B. 6-31G*).

Abbildung 12. Polarisierung der Orbitale durch Einmischung von Orbitalen höherer Nebenquantenzahlen

Die Zahlen für die Pople-Basissätze sollen am Beispiel 3-21G erläutert werden. Die drei bedeutet dabei, daß die Rumpforbitale (wie bei STO-3G) durch drei primitive Gaussfunktionen beschrieben werden. Die kompakteren Valenzorbitale werden durch zwei, die diffuseren durch eine Gaussfunktion beschrieben, was die folgenden zwei Zahlen erklärt.

Zur Bestimmung hochwertiger Energien werden sogenannte Einzelpunktenergien berechnet, d.h. von sehr guten Geometrien aus HF- oder DFT-Berechnungen wird mit hochkorrelierten Methoden nur einmal die Wellenfunktion ermittelt und ohne Geometrie-optimierung die Energie der Wellenfunktion bestimmt. Für solche Berechnungen sollten korrelationskonsistente (correlation-consistent, cc) Basissätze, wie z.B. Dunnings cc-pVXZ (correlation-consistent polarized valence X-zeta), verwendet werden, die eigens für solche Fälle optimiert wurden.85

Verfahren. Die Rechnungen im Rahmen dieser Arbeit wurden mit den Programmpaketen GAUSSIAN9486 und GAUSSIAN9887 durchgeführt. Die Strukturen wurden durch Frequenzrechnungen als Grundzustand (NImag = 0) oder Übergangszustand erster Ordnung (NImag = 1) identifiziert. Aus denselben Rechnungen stammen die thermischen Korrekturen und die Nullpunkt-Schwingungsenergie (zero point vibrational energy, ZPVE), die zu Berechnungen von ΔH_0 Enthalpien unkorrigiert eingesetzt wurden. Die Wahl der Methode und des Basissatzes für die Berechnungen wird im Folgenden beschrieben.
2.2 Wahl der Methode

Eine Alternative zu diesen äußerst genauen, jedoch auch äußerst zeitaufwendigen Methoden ist die Dichtefunktionaltheorie (DFT), da sie, im Vergleich mit der HF Theorie, weniger anfällig für Raum- und Spinsymmetriebuch ist. In neuerer Literatur wird die Nützlichkeit dieses Ansatzes für die Beschreibung biradikalischer Spezies, wie sie in homolytischen Spaltungen von Bindungen oder Cyclisierungsreaktionen vorkommen, eindrucksvoll demonstriert. Es wurde hervorgehoben, daß diese Theorie mit Schwierigkeiten bei Spinsymmetriebuch effizient umgehen kann und Ergebnisse mit ausreichend hoher Genauigkeit ohne den Zeitaufwand der Multireferenzmethoden liefert.
Darüber hinaus erlaubt der uneingeschränkte Ansatz mit gestörtem Spin (unrestricted broken-spin, BS-U), in dem die Raum- und Spinsymmetrie der Wellenfunktion durch Mischung der Grenzorbitale gestört wird, die Einbeziehung derselben statischen Elektronenkorrelation.52,122,123 Diese Methode erlaubt die Beschreibung von reinen oder fast reinen, offenschalalen Singulett-Zuständen ohne die Probleme, die mit teilweise besetzten Orbitalen zusammenhängen, und sie verhindert das Kollabieren der uneingeschränkten zur beschränkten Wellenfunktion. Ältere Publikationen, die Biradikale wie z.B. das para-Didehydrobenzol \textbf{10} als reine, geschlossenschalale Singulett behandeln, sollten deshalb nicht mehr als Referenz verwendet werden.32,33,52,119 Dieses Ergebnis wird durch die Tatsache unterstützt, daß die Struktur von \textbf{10} berechnet auf dem BS-UBLYP Niveau63,68,69,124 näher an der CASSCF(8,8)-Geometrie liegt als die entsprechende RBLYP-Geometrie (Abb. 13). Die RBLYP-Geometrie scheint dabei eher ein Bis-Allen (1,2,4,5-Cyclohexatetraen, \textbf{26}) zu beschreiben. Deutlicher wird der Unterschied noch beim $\alpha,2$-Didehydrotoluol, bei dem die BS-UBLYP Rechnung wie erwartet das planare Biradikal \textbf{12} liefert, die RBLYP-Rechnung jedoch ein aus der Ebene verdrehtes Allen \textbf{27}.

Die Frage, ob die DFT auf ein Multireferenz-Problem angewendet werden kann, ist nicht allgemeingültig zu beantworten. Die zugrunde liegende Frage ist, ob es eine diskrete Elektronenkonfiguration gibt, die die vollständige Elektronendichte für ein offensichtlich multireferentes Problem produziert. Dies ist eine Fall-zu-Fall Entscheidung, die nicht a priori getroffen werden kann und die für jeden Fall neu überprüft werden muß. Für die biradikalischen Systeme in dieser Arbeit soll im Folgenden gezeigt werden, daß die Verwendung der DFT-Methode zulässig ist und, verglichen mit dem Experiment, gute Ergebnisse liefert.

\textbf{Abbildung 13.} Strukturelle Parameter für \textit{para}-Didehydrobenzol \textbf{10} mit verschiedenen Methoden
Da viele Produkte und Übergangszustände der diskutierten Reaktionen einen mehr oder weniger ausgeprägten Biradikalcharakter haben, was an den kleinen Singulett-Triplett-Abständen zu sehen ist.95,96 sind auf HF basierende Einzelsystemen für die Beschreibung dieser Umlagerungen nicht geeignet, während Multireferenzmethoden zu zeitaufwendig für große Geometrieoptimierungen sind. Wie schon diskutiert, eröffnet die DFT einen annehmbaren Kompromiß für diese quantenmechanisch anspruchsvollen Systeme.32,33,52,55,95,96,119 Um zu stabilen, unbeschränkten Lösungen zu gelangen und um die räumliche und die α/β-Symmetrie zu zerstören, wird deshalb ein BS-U Ansatz für alle offenschaligen Singulettss verwendet.

Es gibt noch immer viele Diskussionen über das geeignetste DFT-Funktional, was auch die Frage nach einer Unterscheidung zwischen reinen und Hybridfunktionalen miteinschließt. Obwohl einige wenige systematische Vergleiche zu anderen Beispielen existieren,57 wurde speziell für das vorliegende Problem eine große Anzahl von Ergebnissen aus gebräuchlichen DFT-Varianten mit den experimentellen Daten für die Barrieren und Enthalpien der Bergman- und Myers-Saito-Reaktion verglichen. Um einen ordnungsgemäßen Vergleich mit dem Experiment zu gewährleisten, wurden beide Reaktionsenthalpien bei 298.15 K, die Barriere der Bergman-Reaktion bei 470.15 K und die der Myers-Saito-Reaktion bei 343.15 K bestimmt, was den experimentellen Temperaturen entspricht. Die kleinsten Fehlerquadraten der berechneten, im Vergleich zu den experimentellen Daten der HF-, MP2-, CCSD(T)-, BD(T)- und DFT-Berechnungen, einschließlich der Austauschfunktionale B (Becke 1988),63 S (Slater),61,62,64 MPW (Barons modifiziertes PW),125 G96 (Gills 1996),65,66 B3 (Beckes drei Parameter Hybrid)67 und der Korrelationsfunktionale LYP (Lee, Yang und Parr),68,69 PW91 (Perdew und Wang 1991),70 P86 (Perdew 1986),126 PL (Perdews nicht gradienten-korrigiert),127 VWN (Vosko, Wilk und Nosair),71 VWN571 sind in Abb. 14 zusammengefaßt.

und BLYP32,33,124 Funktionale. Da die Qualität des relativ neuen G96LYP Funktionals noch nicht an einem ausreichend großen Satz an Referenzmolekülen getestet wurde, ist BLYP die Methode der Wahl zur Untersuchung der Umlagerungen in dieser Arbeit.

<table>
<thead>
<tr>
<th>Methode</th>
<th>Fehlerquadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>6,65</td>
</tr>
<tr>
<td>MP2</td>
<td>4,22</td>
</tr>
<tr>
<td>SPW91</td>
<td>2,67</td>
</tr>
<tr>
<td>SP86</td>
<td>2,66</td>
</tr>
<tr>
<td>SLYP</td>
<td>1,43</td>
</tr>
<tr>
<td>B3PW91</td>
<td>0,85</td>
</tr>
<tr>
<td>B3P86</td>
<td>0,81</td>
</tr>
<tr>
<td>SVWN5</td>
<td>0,74</td>
</tr>
<tr>
<td>SVWN</td>
<td>0,73</td>
</tr>
<tr>
<td>SPL</td>
<td>0,67</td>
</tr>
<tr>
<td>MPWPW91</td>
<td>0,29</td>
</tr>
<tr>
<td>MPWP86</td>
<td>0,28</td>
</tr>
<tr>
<td>G96PW91</td>
<td>0,27</td>
</tr>
<tr>
<td>G96P86</td>
<td>0,26</td>
</tr>
<tr>
<td>BPW91</td>
<td>0,25</td>
</tr>
<tr>
<td>BP86</td>
<td>0,24</td>
</tr>
<tr>
<td>CCSD(T)/BLYP</td>
<td>0,18</td>
</tr>
<tr>
<td>BPL</td>
<td>0,17</td>
</tr>
<tr>
<td>G96PL</td>
<td>0,15</td>
</tr>
<tr>
<td>MPWPPL</td>
<td>0,14</td>
</tr>
<tr>
<td>BVWN</td>
<td>0,13</td>
</tr>
<tr>
<td>G96VWN</td>
<td>0,12</td>
</tr>
<tr>
<td>BVWN5</td>
<td>0,12</td>
</tr>
<tr>
<td>MPVVWN</td>
<td>0,11</td>
</tr>
<tr>
<td>G96VWN5</td>
<td>0,10</td>
</tr>
<tr>
<td>MPVWVN5</td>
<td>0,09</td>
</tr>
<tr>
<td>B3LYP</td>
<td>0,08</td>
</tr>
<tr>
<td>MPWLYP</td>
<td>0,05</td>
</tr>
<tr>
<td>BLYP</td>
<td>0,04</td>
</tr>
<tr>
<td>G96LYP</td>
<td>0,04</td>
</tr>
<tr>
<td>BD(T)/B3LYP</td>
<td>0,02</td>
</tr>
<tr>
<td>BD(T)/BLYP</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Die Basissatzabhängigkeit wurde ebenfalls durch systematische Vergrößerung des Basissatzes untersucht (Abb. 15). Wie schon mehrfach bei DFT-Rechnungen festgestellt, ist das Verhalten bei größeren Basissätzen, insbesondere für reine Funktionale (BLYP und G96LYP), nicht vorhersehbar. In diesem Fall wird das Ergebnis bei der Vergrößerung der Basis von 6-31G*128 zu 6-311G** schlechter, dasselbe gilt für den Schritt von cc-pVDZ zu cc-pVTZ. 85 Das Hybrid-Funktional B3LYP hingegen verhält sich eher traditionell, d.h. eine größere Basis verbessert das Ergebnis. Für die im Rahmen dieser Arbeit berechneten, teilweise bis zu 18 Schweratome enthaltenen Strukturen stellt die Kombination aus dem BLYP Funktional und dem 6-31G* Basissatz einen sehr guten Kompromiß für die Optimierung der Strukturen und Berechnung der Energien dar.

Wie in Abbildung 15 gezeigt, wird die Qualität der Ergebnisse durch Einzelpunkt-Berechnungen auf dem BD(T)-Niveau unter Verwendung der BLYP/6-31G* Geometrien weiter verbessert. Für die offensichtlichen Systeme wird die Energie basierend auf der BS-UHF Wellenfunktion ermittelt, die durch die Verwendung der optimierten Brueckner-Orbitale, in denen der Anteil der ersten Anregung Null ist, die experimentellen Werte sehr gut reproduziert. Im Gegensatz dazu ergeben CCSD(T) Berechnungen mit unmodifizierten Orbitalen schlechte Ergebnisse, was wahrscheinlich am hohen Anteil der ersten Anregung
liegt, die im offensichtlichen Singulett an sich verbotenen ist, dort aber in die Berechnung eingeht.

Wie die Daten in Tabelle 1 zeigen, reproduziert das rechnerisch wenig aufwendige BLYP/6-31G* die experimentellen Daten schon recht gut, während die BD(T) Resultate, für die Dunnings korrelationskonsistenter Doppel-\(\zeta\) Basissatz (cc-pVDZ) verwendet wird, nahezu innerhalb der Fehlerbreite des Experiments liegen. Mit dieser überzeugenden Übereinstimmung zwischen Theorie und Experiment, sollen im Verlauf dieser Arbeit präzise Vorhersagen über bisher noch nicht durchgeführte Reaktionen gemacht werden. Dabei werden bei den Stamm- und benzannelierten Systemen die BLYP- von BD(T)-Rechnungen unterstützt, während alle anderen, größeren Systeme nur mit BLYP behandelt werden sollen.

Tabelle 1. Vergleich einiger berechneter und experimenteller \(\Delta H^1\) und \(\Delta H_{298}^1\) Werte (in kcal mol\(^{-1}\)).

<table>
<thead>
<tr>
<th></th>
<th>BLYP/6-31G*</th>
<th>BCCD(T)/cc-pVDZ(^a)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>29.0</td>
<td>35.9</td>
<td>33.5 ± 0.5(^2)</td>
</tr>
<tr>
<td>29</td>
<td>27.6</td>
<td>30.6</td>
<td>29.0(^{11})</td>
</tr>
<tr>
<td>8</td>
<td>-9.3</td>
<td>-16.5</td>
<td>-15.2(^{11})</td>
</tr>
<tr>
<td>30</td>
<td>23.8</td>
<td>25.6</td>
<td>28.2 ± 0.5(^{26})</td>
</tr>
<tr>
<td>10</td>
<td>7.3</td>
<td>7.0</td>
<td>8.5 ± 1.1(^{26})</td>
</tr>
<tr>
<td>31</td>
<td>23.0</td>
<td>27.6</td>
<td>25.2 ± 0.8(^{29})</td>
</tr>
<tr>
<td>32</td>
<td>13.2</td>
<td>16.4</td>
<td>17.8 ± 1.2(^{29})</td>
</tr>
<tr>
<td>33</td>
<td>17.8</td>
<td>19.7</td>
<td>21.8 ± 0.8(^{16})</td>
</tr>
<tr>
<td>12</td>
<td>-10.8</td>
<td>-14.8</td>
<td>-15 ± 3(^{17})</td>
</tr>
</tbody>
</table>

\(^a\) Geometrien und thermische Korrekturen aus BLYP/6-31G*
2.3 Cope-ähnliche Umlagerungen

Die Computerchemie kann zur Validierung, Interpretation und Voraussage von experimentellen Ergebnissen verwendet werden, wobei der letzte Aspekt der nützlichste, jedoch am wenigsten benutzte ist. Echte Voraussagen sind schwer zu machen und benötigen vorher einer genauen Validierung der eingesetzten Methode durch den Vergleich mit genau bekannten experimentellen Werten. Hilfreich sind in diesem Zusammenhang bereits bekannte Reaktionen und Strukturen, die den Untersuchten ähnlicher genug sind, um eine sichere Interpretation und Extrapolation der Ergebnisse zu gewährleisten ("Reaktions- und Strukturfamilien").

Die Gruppe der [3s,3s]-sigmatropen Umlagerungen, von denen die Cope-Umlagerung von 1,5-Hexadien 1 wahrscheinlich die geläufigste ist, bildet eine solche Familie. Sie enthält viele bekannte aber auch bisher unbekannte Transformationen, die teilweise auf den ersten Blick nicht als zur Cope-Familie zugehörig zu erkennen sind, jedoch in einem umfassenderen Rahmen zweifellos dazugehören. Ein solches Beispiel ist die Bergman-Cyclisierung von (Z)-Hexa-3-en-1,5-din 9, das sich zwar im Reaktionsprofil deutlich von der Cyclisierung von 1 unterscheidet, aber dennoch im Grunde eine Cope-ähnlich Umlagerung ist (Abb. 16). Beim Einordnen der verschiedenen Reaktionen in die Cope-Familie müssen nun die Unterschiede in den Energieprofilen erklärt werden, z.B. warum die Cope-Umlagerung ein einstufiger Prozeß ohne Zwischenprodukt ist, während das Zwischenprodukt der Bergman-Cyclisierung eindeutig als offenschaliges Biradikal identifiziert wurde. Um eindeutige Vorhersagen über die Reaktivitäten und Cyclisierungsmechanismen bisher unbekannter Mitglieder der Cope-Familie machen zu können, muß geklärt werden, wann eine biradikalische Zwischenstufe (oder Produkt) zu erwarten ist und wann nicht.

\[
\begin{align*}
\text{1} & \quad \overset{28}{\leftrightarrow} \quad \overset{9}{\leftrightarrow} \\
\text{1} & \quad \overset{30}{\leftrightarrow} \quad \overset{10}{\leftrightarrow} \\
\end{align*}
\]

Abbildung 16. Cope- und Bergman-Umlagerung einschließlich der Energieprofile
Generell muß zwischen zwei Fällen unterschieden werden: einem delokalisierten "aromatischen" Übergangszustand, in dem Bindungsbruch und Bindungsbildung simultan ablaufen, und einem biradikalischen stabilisierten Zwischenprodukt, in dem Bindungsbruch und Bindungsbildung in zwei aufeinander folgenden Schritten stattfinden. Für den genannten Cope-Bergman-Fall wurde auf vielen fortgeschrittenen Methoden ein aromatischer Übergangszustand für die Cope-Reaktion gefunden.137-146 Auf verschiedenen DFT-Niveaus konnte auch eine biradikalische Zwischenstufe lokalisiert werden, die aber in der Energie nur ~0.2 kcal mol\(^{-1}\) unter der des Übergangszustands liegt.139 Für die Bergman-Reaktion konnte hingegen eindeutig eine biradikalische, aromatische Zwischenstufe gefunden werden, die nach der einen oder anderen Seite zum Endiin öffnen kann.54,147,148 Die Situation ist also ähnlich wie bei der Cope-Umlagerung mit dem Unterschied, daß es wirklich eine biradikalische Zwischenstufe gibt.

Ein ähnlicher Vergleich kann zwischen der Cyclisierung von 1,2,6-Hexatrien 34 und (Z)-Hepta-1,2,4-trien-6-in 11 (Myers-Saito-Cyclisierung) gezogen werden (Abb. 17). Biradikalische Zwischenprodukte wurden experimentell für beide Reaktionen nachgewiesen, jedoch in verschiedenem Ausmaß. Während das α,2-Didehydrotoluol (12, Myers-Saito-Produkt) quantitativ über 33 aus 11 gebildet wird,16-19 findet nur ein Teil der Umlagerung von 34 über die biradikalischen Zwischenstufe 35 statt, ein anderer Teil jedoch über einen konzertierten Prozeß.131 Die Strukturen 12 und 27 sind elektronische Isomere (Elektronomere), d.h. ein offenschaliges und eine geschlossenschaliges Singulett. Das allenische 27 zeigt jedoch noch einmal die Ähnlichkeit beider Reaktionen im Vergleich zu 36.

\[\text{Abbildung 17. Umlagerung von 1,2,6-Hexatrien 34 und Myers-Saito-Cyclisierung von 11} \]

Cope-Familienzweig 1:

Cope-Familienzweig 2:

Abbildung 18. Die Einzelbausteine der zwei Zweige der Cope-Familie

Abbildung 19. Die Mitglieder des ersten Zweiges der Cope-Familie.
2 Teil I: Theoretische Berechnungen 2.3 Cope-ähnliche Umlagerungen 24
dieser Zeile und Spalte ist dann eine entsprechende Zwischenstruktur abgebildet. Dort sind
drei Fälle zu unterscheiden:

1. Wenn die abgebildete Struktur ein Übergangszustand ist und in der rechten oberen Ecke
ein ÜZ-Symbol steht, bedeutet dies eine einstufige Umlagerung.
2. Wenn die abgebildete Struktur ein Biradikal ist und in der rechten oberen Ecke ein ÜZ-
Symbol steht, bedeutet dies, daß die Reaktion über einen einstufigen Mechanismus und
eine biradikalische Zwischenstufe stattfinden kann und beide Wege auch in
unterschiedlichen Ausmaßen beschritten werden.
3. Wenn die abgebildete Struktur ein Biradikal ist und in der rechten oberen Ecke eine Zahl
steht, bedeutet dies eine Reaktion ausschließlich über eine biradikalische Zwischenstufe.

Die Zuordnung der Energiewerte ist in Abbildung 20 dargestellt und kann Tabelle 2
entnommen werden. Folgt man der Zeile und Spalte weiter, so kommt man zu den Produkt-
Bausteinen aus denen dann das Zielmolekül zusammengesetzt werden kann.
Abbildung 20. Erklärung zur Verwendung der Cope-Matrix
Abbildung 21. Die Matrix der Cope-ähnlichen Umlagerungen ("Cope-Familie")
Tabelle 2. Energien (\(\Delta H\) bzw. \(\Delta H^\circ\)) der Umlagerungen der Cope-Familie (in kcal mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Edukt</th>
<th>TS(_{\text{Zweistufig}})</th>
<th>Bir / TS(_{\text{Einstufig}})</th>
<th>TS(_{\text{Zweistufig}})</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>---</td>
<td>28: 35.0</td>
<td>---</td>
<td>1: 0.0</td>
</tr>
<tr>
<td>34: 0.0</td>
<td>---</td>
<td>35: 15.8 / 28.6</td>
<td>---</td>
<td>36: -15.4</td>
</tr>
<tr>
<td>36: 0.0</td>
<td>---</td>
<td>35: 31.2 / 44.1</td>
<td>---</td>
<td>34: 15.4</td>
</tr>
<tr>
<td>37: 0.0</td>
<td>42.0</td>
<td>80: 20.9</td>
<td>56.2</td>
<td>52: 30.4</td>
</tr>
<tr>
<td>38: 0.0</td>
<td>---</td>
<td>70: 33.4</td>
<td>---</td>
<td>55: -2.2</td>
</tr>
<tr>
<td>39: 0.0</td>
<td>---</td>
<td>75: 27.8 / 42.6</td>
<td>---</td>
<td>63: 14.7</td>
</tr>
<tr>
<td>40: 0.0</td>
<td>---</td>
<td>71: 34.3</td>
<td>---</td>
<td>57: 7.9</td>
</tr>
<tr>
<td>41: 0.0</td>
<td>37.8</td>
<td>84: 25.7</td>
<td>47.2</td>
<td>65: 22.8</td>
</tr>
<tr>
<td>42: 0.0</td>
<td>32.5</td>
<td>81: 5.9</td>
<td>32.5</td>
<td>42: 0.0</td>
</tr>
<tr>
<td>43: 0.0</td>
<td>30.7</td>
<td>72: 12.4</td>
<td>30.7</td>
<td>43: 0.0</td>
</tr>
<tr>
<td>44: 0.0</td>
<td>31.4</td>
<td>83: 1.4</td>
<td>41.8</td>
<td>53: 16.0</td>
</tr>
<tr>
<td>45: 0.0</td>
<td>---</td>
<td>73: 33.2</td>
<td>---</td>
<td>67: -4.6</td>
</tr>
<tr>
<td>46: 0.0</td>
<td>---</td>
<td>76: 32.4</td>
<td>---</td>
<td>68: 3.5</td>
</tr>
<tr>
<td>47: 0.0</td>
<td>32.6</td>
<td>85: 29.5</td>
<td>34.3</td>
<td>68: 12.3</td>
</tr>
<tr>
<td>48: 0.0</td>
<td>---</td>
<td>74: 12.1 / 27.7</td>
<td>---</td>
<td>56: -17.3</td>
</tr>
<tr>
<td>49: 0.0</td>
<td>---</td>
<td>82: 9.9 / 27.7</td>
<td>---</td>
<td>58: -8.8</td>
</tr>
<tr>
<td>50: 0.0</td>
<td>26.5</td>
<td>77: 5.8</td>
<td>30.1</td>
<td>64: -3.0</td>
</tr>
<tr>
<td>51: 0.0</td>
<td>29.2</td>
<td>86: 2.7</td>
<td>29.5</td>
<td>66: 5.5</td>
</tr>
<tr>
<td>52: 0.0</td>
<td>25.9</td>
<td>80: -9.5</td>
<td>11.7</td>
<td>37: -30.4</td>
</tr>
<tr>
<td>53: 0.0</td>
<td>25.8</td>
<td>83: -14.6</td>
<td>15.4</td>
<td>44: -16.0</td>
</tr>
<tr>
<td>54: 0.0</td>
<td>22.8</td>
<td>88: -21.6</td>
<td>22.8</td>
<td>54: 0.0</td>
</tr>
<tr>
<td>55: 0.0</td>
<td>---</td>
<td>70: 35.7</td>
<td>---</td>
<td>38: 2.24</td>
</tr>
<tr>
<td>56: 0.0</td>
<td>---</td>
<td>74: 29.3 / 45.0</td>
<td>---</td>
<td>48: 17.3</td>
</tr>
<tr>
<td>57: 0.0</td>
<td>---</td>
<td>71: 26.4</td>
<td>---</td>
<td>40: -7.9</td>
</tr>
<tr>
<td>58: 0.0</td>
<td>---</td>
<td>82: 18.7 / 36.5</td>
<td>---</td>
<td>49: 8.8</td>
</tr>
<tr>
<td>59: 0.0</td>
<td>---</td>
<td>78: 29.9</td>
<td>---</td>
<td>59: 0.0</td>
</tr>
<tr>
<td>60: 0.0</td>
<td>---</td>
<td>79: 37.3</td>
<td>---</td>
<td>61: 13.5</td>
</tr>
<tr>
<td>61: 0.0</td>
<td>---</td>
<td>79: 23.8</td>
<td>---</td>
<td>60: -13.5</td>
</tr>
<tr>
<td>62: 0.0</td>
<td>25.5</td>
<td>87: 19.3</td>
<td>25.5</td>
<td>62: 0.0</td>
</tr>
<tr>
<td>63: 0.0</td>
<td>---</td>
<td>75: 13.1 / 27.9</td>
<td>---</td>
<td>39: -14.7</td>
</tr>
<tr>
<td>64: 0.0</td>
<td>34.0</td>
<td>77: 8.7</td>
<td>29.5</td>
<td>50: 3.0</td>
</tr>
<tr>
<td>65: 0.0</td>
<td>24.4</td>
<td>84: 2.9</td>
<td>15.0</td>
<td>41: -22.8</td>
</tr>
<tr>
<td>66: 0.0</td>
<td>24.0</td>
<td>86: -2.8</td>
<td>23.7</td>
<td>51: -5.5</td>
</tr>
<tr>
<td>67: 0.0</td>
<td>---</td>
<td>73: 37.7</td>
<td>---</td>
<td>45: 4.6</td>
</tr>
<tr>
<td>68: 0.0</td>
<td>---</td>
<td>76: 28.8</td>
<td>---</td>
<td>46: -3.5</td>
</tr>
<tr>
<td>69: 0.0</td>
<td>21.9</td>
<td>85: 17.2</td>
<td>20.3</td>
<td>47: -12.3</td>
</tr>
</tbody>
</table>

2 Teil I: Theoretische Berechnungen 2.3 Cope-ähnliche Umlagerungen 28

Bei den Molekülen, die bei der Cyclisierung reine \(\pi, \pi \)-Biradikale bilden könnten, die also Dreifachbindungen und Allen- bzw. Kumuleneinheiten direkt an der zu brechenden bzw. zu knüpfenden Bindung haben, zeigt sich ein ähnliches Bild (Abb. 23). Die Umlagerungen von 45 und 59 laufen über einen konzertierten Prozeß ab und sind im Übergangszustand nicht stabilisiert. Die folgenden Moleküle besitzen alle eine energiereiche Kumuleneinheit, die die Edukte in der Energie destabilisiert und die Cyclisierung erleichtert. Während 61 und 68 ebenfalls über einen konzertierten Übergangszustand ablaufen, gibt es bei der Cyclisierung von 62 und 69 eine biradikalische Zwischenstufe. Die Stabilisierung der Biradikale ist in diesem Fall nicht ganz so einfach wie bei den \(\pi, \pi \)-Biradikalen, kann aber über teilweise Aromatisierung durch die exocyclischen Doppelbindungen und durch die Bildung von

Abbildung 22. Umlagerungen der reinen \(\pi, \pi \)-Biradikale ohne Dreifachbindungen

Abbildung 23. Umlagerungen der reinen σ,σ-Biradikale mit Dreifachbindungen und Allen- bzw. Kumuleneinheiten an der zu brechenden bzw. zu knüpfenden Bindung
Gemischte Zustände haben in der Regel Energien zwischen oder nahe den reinen Zuständen (Abb. 24). Die zwei Beispiele zeigen, wie Mischungen aus reinen \(\pi,\pi \)- und \(\sigma,\sigma \)-Zuständen ermittelt werden können. Biradikalische Zwischenprodukte sind im Allgemeinen zu erwarten, wenn dieses durch zwei oder mehr exocyclische Doppelbindungen stabilisiert wird. Die \(\sigma,\sigma \)-Zustände mit einer exocyclischen Doppelbindung ergeben Übergangszustände, die \(\pi,\pi \)- und die gemischten Zustände können über beide Reaktionspfade ablaufen (Übergangszustand und biradikalisches Intermediat). Umlagerungen bei Molekülen ohne Stabilisierung durch exocyclische Doppelbindungen laufen nur über Übergangszustände ab.

\[\text{Abbildung 24. Die Energie gemischter Zustände ergibt sich ungefähr aus der Energie der reinen Zustände.} \]
Der zweite Cope-Familienzweig umfaßt nur sechs Mitglieder, da die Kombinationsmöglichkeiten durch die zusätzliche Doppelbindung eingeschränkt sind (Abb. 25). Diese ist auch dafür verantwortlich, daß die Mitglieder dieses Zweiges nicht umlagern, sondern cyclisieren, d.h. ein cyclisches Produkt bilden und kein cyclisches Intermediat (Ausnahme: die Bergman-Reaktion von 9 ohne Radikalfänger, siehe oben). Es gelten aber dieselben Regeln wie zuvor: die Edukte 7, 92 und 94 ohne Dreifachbindungen ergeben formal π,π-Biradikale, die jedoch wegen der Konjugation über die zusätzliche Doppelbindung rekombinieren und die geschlossenschalige Produkte 8, 93 und 95 bilden. Die gemischten Moleküle 11 und 89 ergeben die σ,π-Biradikale 12 und 91, man kann ihnen aber auch die geschlossenschaligen Strukturen 27 und 88 zuweisen (Elektronomere). Das symmetrische 9 mit zwei Doppelbindungen schließlich ergibt das σ,σ-Biradikal 10 oder sein Elektronomer 26. Wie die Cyclisierungen und Energetiken dieser Reaktionen im einzelnen aussehen und ablaufen, soll in den folgenden sechs Kapiteln ausführlich besprochen werden.

2 Teil I: Theoretische Berechnungen 2.4 Cyclisierungen

2.4 Cyclisierungen

2.4.1 Die Cyclisierung von Hex-3-en-1,5-diin: Was gibt es neben der "Bergman"-Reaktion?

Eine Gruppe bakterieller Produkte, zu denen auch Calicheamicin \(\gamma_{1} \) 13 zählt, wurde in den 60er Jahren isoliert und zeigte starke antibiotische und tumorschädigenden Eigenschaften.\(^{20-25}\) Allen gemeinsam ist ein zehngliedriger Kohlenwasserstoffring, der eine Doppel- und zwei Dreifachbindungen enthält – die Endiin-Einheit.

Die pharmakologische Aktivität von 13 ist auf die Erhöhung der Ringspannung durch intramolekulare Michael-Addition zurückzuführen (Abb. 26). Unter diesen Bedingungen cyclisiert der Endiin-Teil des Moleküls spontan bei Körpertemperatur zu einem aromatischen Benzol-Biradikal 16, welches Wassermstoffatome von der Doppelhelix der DNA abstrahiert und damit zum Tod der Zelle führt.\(^{20-24,27,28}\)

\[\begin{align*}
\text{SSSMe} \quad & \xrightarrow{\text{OHCO}_2\text{Me}} \quad \text{SSSMe} \\
\text{HO} \quad & \xrightarrow{\text{O-Zucker}} \quad \text{HO}
\end{align*} \]

13 16

Abb. 26. Die Cyclisierung von Calicheamicin \(\gamma_{1} \) 13

Im Jahre 1972 konnte Bergman zeigen, daß die C\(^{1-}\text{C}^{6}\) Cyclisierung von (Z)-Hex-3-en-1,5-diin ("endiin", 9) über die Zwischenstufe des 1,4-Didehydrobenzol-Biradikals ("Bergman-Produkt", 10) Benzol 96 ergibt (Abb. 27).\(^{12-15}\) Der Ringschluß zum aromatischen nichtkonjugierten \(\sigma,\sigma\)-Biradikal 10 ist dabei um 8.5 ± 1.1 kcal mol\(^{-1}\) endotherm und findet erst bei hohen Temperaturen statt (\(t_{1/2} \approx 1 \text{ h bei } 155 ^\circ\text{C} \)).\(^{26}\) Da die folgende Bildung von zwei neuen CH-Bindungen durch Abstraktion von einem geeigneten H-Donor hoch exotherm verläuft, ist die Reaktion insgesamt irreversibel.

\[\begin{align*}
\text{9} \quad & \xrightarrow{} \quad \text{29} \\
\quad & \xrightarrow{\text{H Abstraktion}} \quad \text{10} \xrightarrow{} \quad \text{96}
\end{align*} \]

Abb. 27. Die C\(^{1-}\text{C}^{6}\) Cyclisierung von (Z)-Hex-3-en-1,5-diin 9

In diesem Kapitel sollen die Cyclisierungseigenschaften des Stammsystems eingehend untersucht und neue Cyclisierungen, die neben der bekannten Bergman-Reaktion stattfinden können, eingeführt werden. Insbesondere soll dabei auf eine interessante C{1}-C{5} Cyclisierung eingegangen werden, die zum Fulven-Biradikal führt (Abb. 28). Weiterhin wird der Effekt der Benzannelierung untersucht sowie der Einfluß von Ringspannung in den Endiinringen mit Ringgrößen von 7 (n=1) bis 14 (n=8) und verschiedenster Substituenten in den monosubstituierten und disubstituierten Endiinen auf die Barriere und Reaktionsenthalpie.

\begin{center}
\includegraphics[width=0.8\textwidth]{diagram.png}
\end{center}

\textbf{Abbildung 28.} Die Cyclisierungen des Endiin Stamm-, sowie weitere untersuchte Systeme

\textbf{Stammsystem.} Neben der bekannten Bergman C{1}-C{6}-Cyclisierung des Endiins zum 1,4-Didehydrobenzolbiradikal (6-endo-dig) lassen sich theoretisch noch zwei weitere...
Cyclisierungsreaktionen formulieren. Der C₁-C⁵-Ringschluss (5-exo-dig) würde dabei das 3,6-Didehydrofulven-Biradikal 97 erzeugen, während der C²-C⁵-Ringschluss (4-exo-dig) das α,α'-3,4-Dimethylencyclobuten-Biradikal 103 ergäbe (Abb. 29, Tab. 3). Beide Cyclisierungen des Stammsystems zum fünf- und viergliedrigen Ring sind experimentell bisher noch nicht beobachtet worden.

\[\begin{array}{c}
\text{9} \\
\text{30} \\
\text{101} \\
\text{102} \\
\end{array} \xrightarrow{\text{Bergman}} \begin{array}{c}
\text{10} \\
\text{97} \\
\text{103} \\
\end{array} \]

Abbildung 29. Die verschiedenen, theoretisch denkbaren Cyclisierungsarten des Endiin 9

Die Bergman-Reaktion ist experimentell³².15.26.40.54.148-150 sowie computergesichert³².33.51.52.55.56.74.151-154 sehr gut untersucht. Die experimentellen Werte für die Barriere (28.2 ± 0.5 kcal mol⁻¹)²⁶ und die Reaktionsenthalpie (8.5 ± 1.1 kcal mol⁻¹)²⁶ lassen sich mit BLYP/6-31G* (25.2 kcal mol⁻¹; 8.5 kcal mol⁻¹) relativ gut beschreiben, besser jedoch mit BD(T)/cc-pVDZ Einzelpunkt-Energien auf die BLYP Geometrien (27.1 kcal mol⁻¹; 8.3 kcal mol⁻¹). Deswegen soll im Folgenden nur auf die BD(T)-Energien eingegangen werden.

Die C¹-C⁵ Cyclisierung des Stammsystems zum Fulven-Biradikal 97 ist wesentlich endothermer und hat eine höhere Barriere als die Bergman-Reaktion. Der Grund dafür liegt in der fehlenden Stabilisierung, da weder Aromatisierungs-Energie (wie bei der Bergman-Reaktion) noch andere Radikalstabilisierungs-Energien (z.B. π-Konjugation) gewonnen werden. Es entstehen zwei lokalisierter, isolierte Radikalzentren. Dementsprechend ist die Barriere der C¹-C⁵ Cyclisierung (42.1 kcal mol⁻¹) 15 kcal mol⁻¹ höher und die Reaktionsenthalpie (39.6 kcal mol⁻¹) liegt 31 kcal mol⁻¹ über der der Bergman-Reaktion. Deshalb wird, in Übereinstimmung mit allen experimentellen Beobachtungen, bei der thermischen Cyclisierung von 9 keine Bildung von Fulvenen beobachtet. Nichtsdestotrotz ist es wichtig,
diesen Reaktionspfad zu studieren, da durch geeignete Veränderungen am Edukt die Bildung des Bergman-Produktes zugunsten des Fulven-Produktes zurückgedrängt werden könnte.

Einen Hinweis auf die Existenz dieser C1-C5 Cyclisierung gibt die Bildung von Indeno[2,1-a]inden-Derivaten 106 aus den sym-Dibenzo-1,5-cyclooctadien-3,7-diin-Derivaten 104, einem cyclischen Endiin-Verwandten (Abb. 30).155 Als Zwischenstufe wurde die Biradikal-Spezies 105 vorgeschlagen, die formal ein Dimeres des Fulven-Biradikals 97 ist.

![Chemische Struktur von 104, 105 und 106](image)

\textbf{Abbildung 30.} Bildung von Indeno[2,1-a]inden-Derivaten 106 aus den sym-Dibenzo-1,5-cyclooctadien-3,7-diin-Derivaten 104 via biradikalische Zwischenstufe 105

Der C2-C5 Ringschluß zum Dimetylenyclobuten Biradikal 103 ist aufgrund seiner ebenfalls fehlenden Stabilisierungsernergie und der zusätzlichen Ringspannung eines ungesättigten viergliedrigen Rings noch endothermer. Die Reaktionsenthalpie liegt mit 69.0 kcal mol-1 schon fast 42 kcal mol-1 über der des Bergman-Produktes 10 und 27 kcal mol-1 über der des Fulven-Biradikals 97. Der Übergangszustand dieser Cyclisierung konnte trotz größter Anstrengungen nicht lokализiert werden, liegt aber höchstens 5·10-3 kcal mol-1 oberhalb der Energie von 103. Dieser Reaktionspfad kann deshalb als experimentell detektierbar ausgeschlossen werden.

\begin{tabular}{|c|c|c|}
\hline
Struktur & BLYP/6-31G* & BD(T)/cc-pVDZa \\
\hline
9 & 0.0 & 0.0 \\
30 & 25.2 & 27.1 \\
10 & 8.5 & 8.3 \\
101 & 41.0 & 42.1 \\
97 & 41.3 & 39.6 \\
102 & – & – \\
103 & 68.8 & 69.0 \\
\hline
\end{tabular}

a Geometrien und thermische Korrekturen aus BLYP/6-31G*.
Das Fulven-Biradikal kann in zwei Isomen vorkommen, die sich in der Stellung des Wasserstoffatoms an der exocyclischen Doppelbindung unterscheiden (Abb. 31). Die (Z)-Konfiguration \((Z)-97\) ist dabei 2.7 kcal mol\(^{-1}\) stabiler als das (E)-Isomer \((E)-97\), da im ersteren Fall eine stabilisierende Interaktion zwischen dem Radikal-sp\(^{2}\)-Orbital an C\(^6\) und dem antibindenden C\(^4\)-C\(^5\) Orbital stattfinden kann. Die entsprechende Interaktion ist in \((E)-97\) kleiner, was sich auch in der kürzeren Bindungslänge der Akzeptorbindung bemerkbar macht (C\(^1\)–C\(^5\): \((Z)-97\) 1.582 Å, \((E)-97\) 1.537 Å; C\(^4\)–C\(^5\): \((Z)-97\) 1.474 Å, \((E)-97\) 1.488 Å). Trotzdem kann \((E)-97\) eine wichtige Rolle in der Cyclisierung von Endiinen spielen, wenn große Substituenten ihre Repulsion minimieren müssen.

![Abbildung 31](image)

Abbildung 31. Spindichten des \((Z)-97\) und \((E)-97\) Fulven Biradikals

Im Hinblick auf die experimentelle Bestätigung der Cyclisierung zum Fulven-Biradikal erscheint es als geeignet, die acetylenischen Wasserstoffatome durch raumbeanspruchende Gruppen zu substituieren. Die Repulsion dieser ortho-angeordneten Gruppen in einem entstehenden Bergman-Produkt sollte dann diesen Reaktionspfad gegenüber dem einer Fulven-Cyclisierung energetisch ungünstiger machen (Abb. 32).

![Abbildung 32](image)

Abbildung 32. Schematische Darstellung einer möglichen Synthesemethode von Fulven-Derivaten aus dissubstituierten Endiinen

Im Gegensatz zur Bergman Reaktion hat der Übergangszustand der C\(^1\)–C\(^5\) Cyclisierung einen hohen Biradikalcharakter. Optimierungen entlang des Reaktionspfades zeigen, daß ein ÜZ nur existiert, wenn eine broken spin offenschalige Wellenfunktion (BS-
UBLYP) verwendet wird. Für den geschlossenschaligen Fall (RBLYP) ergibt sich eine stetig ansteigende Energie für kleinere \(C_1-C_5 \) Abstände ohne Maximum (Abb. 33). Am ÜZ ergibt sich damit eine Energielücke zwischen dem offen- und geschlossenschaligen Ansatz (grauer Kasten oben, Abb. 33). Der Übergangszustand der \(C_1-C_6 \) Cyclisierung (Bergman) zeigt hingegen, wie schon in anderen Studien angemerkt, keinen Biradikalcharakter. Dies wird durch das Fehlen der Energielücke am Hochpunkt der Energiehyperflächen der offen- und geschlossenschaligen Ansätze eindeutig belegt (grauer Kasten unten, Abb. 33).

Abbildung 33. Offen- und geschlossenschalige \(C_1-C_5 \) und \(C_1-C_6 \) (Bergman) Cyclisierung von 9 berechnet mit BLYP/6-31G*

Die Standardbildungsenthalpie \(\Delta H^0 \) von 97 kann durch eine isodesmische Gleichung bestimmt werden (Tab. 4). Diese Methode wurde bereits zur Bestimmung der Standardbildungsenthalpie des Bergman Produktes verwendet, wobei auf dem BD(T)/cc-pVDZ Niveau ein Wert von 137.5 \(\pm \) 2.0 kcal mol\(^{-1}\) errechnet wurde. Der Vergleich mit dem experimentellen Wert von 138.0 \(\pm \) 1.0 kcal mol\(^{-1}\) zeigt, daß die Qualität dieser Methode sehr gut ist. Unter denselben Bedingungen kann \(\Delta H^0 \) von 97 mit 172.0 \(\pm \) 1.0 kcal mol\(^{-1}\) vorhergesagt werden.

Benzannelierung. Das benzannelierte Endiin (1,2-Diethinylbenzol, 98) folgt den gleichen Reaktionspfaden wie 9, aber die Barrieren und Enthalpien sind verändert (Tab. 5). Wie auch experimentell beobachtet, ist die Bergman-Cyclisierung, die zu 1,3-Didehydro-naphthalin 32 führt, energetisch ungünstiger als die des Stammsystems. Der Ursprung dafür liegt in der geringeren aromatischen Stabilisierungsentnergie verglichen mit zwei Benzoelringen. Der \(C^1-C^6 \) Ringschluß des Stammsystems erzeugt ein aromatisches aus einem nichtaromatischen System und erhält dafür die volle aromatische Stabilisierung eines Benzolringes. Das benzannelierte System enthält schon ein aromatisches System, die Cyclisierung zu 32 erhält deshalb nicht die volle aromatische Stabilisierung. Dies kann anhand der Exothermie (−9.4 kcal mol\(^{-1}\)) der folgenden isodesmischen Gleichung nachvollzogen werden:

\[
\begin{array}{c}
\text{10} + \text{97} \\
\rightarrow \text{10} + \text{97}
\end{array}
\]

Als Konsequenz daraus liegt der ÜZ 31 (29.2 kcal mol\(^{-1}\)) 2.1 kcal mol\(^{-1}\) oberhalb dem der Stammreaktion und 32 (17.6 kcal mol\(^{-1}\)) wird 9.4 kcal mol\(^{-1}\) endothermer gebildet als 10 (Abb. 34). Wie in der Stammreaktion hat auch 31 keinerlei Biradikalcharakter.

Eine leichte Erhöhung der Ringspannung durch Benzannelierung macht die Cyclisierung zu 108 (70.9 kcal mol\(^{-1}\)) 2.0 kcal mol\(^{-1}\) endothermer als in der Stammreaktion. In diesem Falle konnte jedoch der Übergangszustand 107 lokalisiert werden, liegt aber mit 71.8 kcal mol\(^{-1}\) nur wenig oberhalb von 108 (Abb. 34).
Das benzannelierte Derivat des Fulven-Biradikals (1-Methylen-1H-inden-Biradikal, 110) ist nur unwesentlich gegenüber der Stammreaktion stabilisiert (0.9 kcal mol\(^{-1}\)), dasselbe gilt für den entsprechenden Übergangszustand 109 (41.6 kcal mol\(^{-1}\)) der nur 0.5 kcal mol\(^{-1}\) niedriger liegt (Abb. 34). Das ist nicht unerwartet, da durch die Cyclisierung kein aromatisches System gebildet wird, d.h. die aromatische Stabilisierung ist vor und nach der Cyclisierung gleich (keine für die Stammreaktion und die eines Benzolringes im benzannelierten Falle). Dies kann wiederum durch die folgende, nahezu thermoneutrale isodesmische Gleichung (1.3 kcal mol\(^{-1}\)) gezeigt werden:

\[
\text{9} + \text{110} \rightarrow \text{98} + \text{97}
\]

Der Übergangszustand 109 hat wie im Stammsystem einen ausgeprägten Biradikalcharakter.

Abbildung 34. Vergleich der Energiehyperflächen für die Cyclisierungsreaktionen von Stamm- 9 und benzanneliertem System 98 auf BCCD(T)/cc-pVDZ//BLYP/6-31G* Niveau
2.4 Cyclisierungen

Tabelle 5. Barrieren und Reaktionsenthalpien (Δ_H) der Cyclisierungspfade von 1,2-Diethinylbenzol 98 (in kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th>Struktur</th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZa</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>24.6</td>
<td>29.2</td>
</tr>
<tr>
<td>32</td>
<td>14.4</td>
<td>17.6</td>
</tr>
<tr>
<td>109</td>
<td>37.2</td>
<td>41.6</td>
</tr>
<tr>
<td>110</td>
<td>37.4</td>
<td>38.7</td>
</tr>
<tr>
<td>107</td>
<td>67.3</td>
<td>71.8</td>
</tr>
<tr>
<td>108</td>
<td>67.9</td>
<td>70.9</td>
</tr>
</tbody>
</table>

a Geometrien und thermische Korrekturen aus BLYP/6-31G*.

Ringspannung.\(^{32,33}\) Wie schon bei den Naturstoffen zu beobachten, ist die Einbettung der Endiin-Einheit in ein Ringgerüst und der damit einhergehende Aufbau von Ringspannung eine Möglichkeit, das Cyclisierungsverhalten bei der Bergman-Reaktion zu verändern.\(^{20-24,27,28,30,31,34-36}\) Ist die Ringspannung, aufgebaut durch die zwei linearen Acetylen-Einheiten, größer als die Reaktionsbarriere, sollte es sogar bei Raumtemperatur zu spontaner Cyclisierung kommen.\(^{36}\) Fehlt bei der Reaktion jedoch ein geeigneter Radikalfänger, so kann das Radikal 10 wieder zum Endiin 9 zurückreagieren, und zwar, wie aus Experimenten mit deuteriertem Endiin 111 bekannt, in die eine oder die andere Richtung.\(^{14}\) Beim Endiin selbst gibt es keinen Unterschied in der Struktur der beiden vom Didehydrobenzol zurückgehaltenen Edukte, wohl aber bei den cyclischen Endiinen, bei denen das Biradikal 112a-h zum endocyclischen 99a-h und zum exocyclischen Endiin 113a-h zurückumlagern kann (Abb. 35).

![Abbildung 35. Cyclisierung und Umlagerung von Dideuteroendiin 111 und der Ringendiine 99a-h und 113a-h](image-url)
Im folgenden Abschnitt soll zunächst der Effekt der Ringspannung auf das Cyclisierungsverhalten endocyclischer Endiine 99a-h untersucht werden. Anschließend werden die exocyclischen Endiine 113a-h sowie das Öffnungsverhalten der Biradikale 112a-h hin zu beiden Endiinspezies näher betrachtet.

Eine generelle Tendenz in der Cyclisierung der endocyclischen Endiine 99a-h ist die abnehmende Reaktivität mit zunehmender Ringgröße (Abb. 36, Tab. 6). Die Ringe können dabei in drei Kategorien eingeteilt werden:

- Ringe, die Biradikale mit kleinen Alkyl-Ringen bilden (99a,b; n = 1,2)
- Ringe, die Biradikale mit mittleren Alkyl-Ringen bilden (99c,d,e; n = 3,4,5)
- Ringe, die Biradikale mit großen Alkyl-Ringen bilden (99f,g,h; n = 6,7,8)

Die beiden sieben- und achtgliedrigen Endiine 99a,b müßten bei der Cyclisierung ein hochgespanntes Benzo cyclopropen- 112a bzw. Benzocyclobuten-Biradikal 112b ausbilden. Im Falle von 99a ist dies nicht möglich, es konnte kein entsprechendes Biradikal lokalisiert werden. Im Falle von 99b liegt das Biradikal 112b mit einer Energie von 12.4 kcal mol⁻¹ etwas über dem der Stammreaktion, die Barriere 114b liegt jedoch bei nur 13.4 kcal mol⁻¹, was weit unterhalb der der Stammreaktion liegt. Allerdings ist die Barriere der Rückreaktion zu 99b so klein, daß keine Cyclisierung stattfindet. Ein Hinweis darauf, daß 99b stabil bei Raumtemperatur ist, zeigt das ebenfalls stabile, bereits bekannte Benzocyclooct-1-en-3,7-diin, das benzannelierte Derivat von 99b, das sich beim Erhitzen zersetzt, statt zu cyclisieren.

Die Energien der weiteren Endiine \textbf{99f-h} liegen erheblich höher, was darauf zurückzuführen ist, daß bei der Cyclisierung ungünstige, große acht- bis zehngliedrige Cycloalkenringe gebildet werden. Für \textbf{99f} liegen Barrieren (114f: 39.2 kcal mol\(^{-1}\)) und Reaktionsenergie (112f: 27.1 kcal mol\(^{-1}\)) schon weit oberhalb der Stammreaktion, was eine thermische Cyclisierung praktisch ausschließt. Dasselbe gilt für \textbf{99g} (114g: 38.3 kcal mol\(^{-1}\); 112g: 29.4 kcal mol\(^{-1}\)) und \textbf{99h} (114h: 42.6 kcal mol\(^{-1}\); 112h: 31.9 kcal mol\(^{-1}\)), die mit geringen Abständen folgen.

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=\textwidth,
 xlabel={Reaktionskoordinate},
 ylabel={ΔG_{298} (kcal mol\(^{-1}\))},
 xmin=0, xmax=60,
 ymin=0, ymax=50,
 xtick={0,10,...,60},
 ytick={0,10,...,50},
 grid=major,
]
\addplot[red,mark=*,thick] coordinates {
 (1,40) (2,35) (3,30) (4,25) (5,20) (6,15) (7,10) (8,5) (9,0)
};
\addplot[blue,mark=square,thick] coordinates {
 (1,30) (2,25) (3,20) (4,15) (5,10) (6,5) (7,0)
};
\addplot[green,mark=diamond,thick] coordinates {
 (1,20) (2,15) (3,10) (4,5) (5,0)
};
\addplot[orange,mark=triangle,thick] coordinates {
 (1,10) (2,5) (3,0)
};
\addplot[yellow,mark=star,thick] coordinates {
 (1,0)
};
\addplot[purple,mark=طة,thick] coordinates {
 (1,0)
};
\addplot[black,mark=*,thick] coordinates {
 (1,0)
};
\addplot[gray,mark=*,thick] coordinates {
 (1,0)
};
\end{axis}
\end{tikzpicture}
\end{center}

\textbf{Abbildung 36.} Energiediagramm für die Cyclisierung und Ringöffnung von endocyclischen Endiinen \textbf{99b-h}

Die exocyclischen Endiine weisen eine ganz andere Tendenz auf. Bei allen Cyclisierungen von \textbf{113b-h} liegen die Barrieren \textbf{115a-h} in einem Bereich von 2 kcal mol\(^{-1}\) beieinander, ohne \textbf{113b}, das man als Sonderfall aufgrund des aufgeweiteten Winkels der Acetyleneinheiten betrachten kann, sogar in einem Bereich von nur 0.5 kcal mol\(^{-1}\) um die Barriere des Stammökosystems (Abb. 37, Tab. 6. Zur besseren Darstellung zeigt Abb. 37 dieselben Energiewerte wie Abb. 36, jedoch mit anderem Nullpunkt). Die Reaktionsenergien
zu 112b-h verteilen sich ebenfalls in einem Bereich von 2 kcal mol\(^{-1}\) um die Energie des Stammsystems, wobei die kleineren Ringe 112b-d näher an dem Wert des Stammsystems liegen, während die Werte der größeren Ringe 112e-h etwas darunter liegen (~1 kcal mol\(^{-1}\)). Man kann also davon ausgehen, daß die Annelierung von Cycloalkenringen an die Doppelbindung des Endiins keinerlei Effekt auf die Energetik der Bergman-Reaktion verglichen mit dem Stammsystem hat.

Ausgehend von den Bergman-Biradikalen 112b-h ist die Barriere der Ringöffnung hin zu den exocyclischen Endiinen 113b-h immer höher als zu den entsprechenden endocyclischen Endiinen 99b-h. In Abwesenheit eines geeigneten Radikalfängers sollte es also möglich sein, die endocyclischen Endiinen über die Zwischenstufe der Biradikale 112b-h aus den exocyclischen herzustellen, während der umgekehrte Weg nicht möglich ist. Im zweiten Fall erfolgt nur die Rückreaktion zu den endocyclischen 99b-h.

Abbildung 37. Energiediagramm für die Cyclisierung und Ringöffnung von exocyclischen Endiinen 113b-h
Substitution. Neben der Ringspannung30-36 und der Komplexierung durch Metalle,37-41 sollte durch die Substitution eines oder mehrerer Wasserstoff-Atome im Endiin eine weitere Möglichkeit gegeben sein, die Reaktivität der Cyclisierung zu kontrollieren, vielleicht sogar zu steuern und sie "an"- oder "ab"-schalten zu können. Um den Einfluß von Substituenten auf die Barriere und die Enthalpie der Bergman-Reaktion zu untersuchen und vorherzusagen, wurden die acetylenischen Wasserstoffatome im Endiin durch einige funktionelle Gruppen einfach und zweifach ersetzt. Die Substituenten wurden dabei so gewählt, daß ein breites Spektrum an σ- und an π-akzeptierenden und -donierenden Spezies sowie Mischformen untersucht wurden, um eine breite theoretische Basis zu gewährleisten (Abb. 38).
Abbildung 38. Ausgewählte substituierte Endiine 100a-t und 100aa-tt

Im Allgemeinen sollte eine Reaktivitätssteigerung der Endiine durch die Stabilisierung der entsprechenden biradikalischen Produkte oder durch Destabilisierung der Edukte erreicht werden. Die folgende isodesmische Gleichung kann als Indikator für den Effekt des jeweiligen Substituenten A angesehen werden:

\[
\begin{array}{c}
\text{A} + \text{A} \rightarrow \text{A} + \\
\end{array}
\]

Eine positive Reaktionsenergie \(E_{\text{stab}}\) charakterisiert dabei die Stabilisierung der Dreifachbindung verglichen mit der Doppelbindung durch den Substituenten A. Daraus kann auf eine ähnliche Stabilisierung der Endiin-Einheit geschlossen werden, was die Bergman-Reaktion energetisch ungünstiger, verglichen mit dem Stammvergleich, macht (Tab. 8). Eine negative \(E_{\text{stab}}\) hingegen weist auf die Destabilisierung des Endiins hin und sollte die Bergman-Reaktion energetisch begünstigen. Die Korrelation zwischen \(E_{\text{stab}}\) und den Barrieren bzw. den Reaktionsenthalpien der Cyclisierungen zeigt eine lineare Beziehung für die mono-substituierten Endiine (Korrelationsfaktor für die Barrieren: 0.88; für die Enthalpien: 0.97; Abb. 39)
Für die dissubstituierten Endiine ist die Korrelation nicht so einfach. Da sich die zwei Substituenten in ortho-Position gegenseitig beeinflussen, ist die Korrelation zwischen E_{stab} und den Enthalpien schlecht (0.74) während es zwischen E_{stab} und den Barrieren keine Korrelation gibt (0.14). Die Energie der gegenseitigen Interaktion E_{inter} kann anhand der folgenden isodesemischen Gleichung bestimmt werden:

Eine negative E_{inter} zeigt dabei einen energieerhöhenden Einfluß der Substituenten (z.B. sterische oder elektrostatische Abstoßung, Drehung aus der Ebene), eine positive E_{inter} einen energieerniedrigenden Einfluß (z.B. Wasserstoffbrückenbildung) bezogen auf das entsprechende monosubstituierte Endiin (Tabelle 9).

Die Singulett-Triplett Aufspaltung ΔE_{ST} zeigt weder mit den Barrieren noch mit den Enthalpien eine Korrelation. Eine generelle Tendenz besteh darin, daß bis auf zwei Ausnahmen alle Biradikal-Singulett-Singuletts niedriger in der Energie sind als die entsprechenden Triplettts (negativer Wert für ΔE_{ST}) und daß für die meisten dissubstituierten Didehydrobenzole ΔE_{ST} kleiner ist als für die entsprechenden monosubstituierten (Tabelle 9).
Wie erwartet korrelieren die Abstände d der C-Atome der neu entstehenden Bindung in den Übergangszuständen und die Reaktionsenthalpien gut miteinander (je niedriger die Reaktionsenthalpie, desto länger d, Tabelle 9).

Substituenten an den vinylischen Positionen des Endiins wurden ebenfalls exemplarisch untersucht, stellten sich dort allerdings, im Bezug auf die Reaktivität, als wesentlich weniger effektiv dar als an den acetylenischen Positionen.157 Substitution an der Doppelbindung ergab (in einem Bereich von ± 2 kcal mol$^{-1}$) die gleichen Barrieren und Enthalpien wie das Stammsystem, unabhängig vom Substituenten.

Orbitalanalyse. Eine NBO-Analyse (natural bond orbitals = natürliche Bindungsorbitale) der partiellen Ladungen in Edukten, Übergangszuständen und Produkten zeigte leider nur eine schlechte Korrelation zwischen den Ladungen der Kohlenwasserstoffreste und den Barrieren bzw. den Enthalpien. Generell haben positiver geladene Kohlenwasserstoffreste niedrigere Barrieren und Reaktionsenthalpien (Tab. 9). Dieser offensichtliche Mangel an Korrelation zwischen Ladung und Barrieren ist auf Unterschiede der Orbitalgeometrien zurückzuführen. Die Orbital-Analyse identifizierte zwei unterschiedliche Gruppen von Substituenten. Eine Gruppe hat σ-artige HOMOs und π-artige HOMO–1s und die andere Gruppe π-artige HOMOs und σ-artige HOMO–1s (Abb. 40).

![Abbildung 40. π- und σ-artige HOMOs der Übergangszustände](image)

Da beide MO-Besetzungen eine große Rolle bei der Bildung des Übergangszustandes spielen, können Substituenten die Barriere zusätzlich verkleinern, wenn sie:

- π-Donor-Eigenschaften haben und die Elektronendichte im *bindenden* π-artigen Orbital erhöhen.
- σ-Akzeptor-Eigenschaften haben und die Elektronendichte im *antibindenden* σ-artigen Orbital erniedrigen.

Die Substituenteneffekte werden im Folgenden in der Reihenfolge der Hauptgruppen des Periodensystems (III. Hauptgruppe, IV. Hauptgruppe, Phosphorverbindungen, Chalkogene, Halogene) und innerhalb einer Gruppe in der Reihenfolge der Perioden ausführlich beschrieben.

III. Hauptgruppe (B, Al). Aufgrund seiner starken π-akzeptierenden Eigenschaften hat des Boranylen-Endiin (100a) eine herabgesetzte Reaktivität verglichen mit 9, da der ÜZ destabilisiert wird. Schwerer wiegt jedoch der σ-Donor Effekt des Boranylsubstituenten, der für eine Stabilisierung von 100a (E\(_{\text{stab}}\) = +10.9 kcal mol\(^{-1}\)) sorgt, so daß sowohl Barriere (116a: 29.1 kcal mol\(^{-1}\)) als auch die Energie von 117a (21.4 kcal mol\(^{-1}\)) erhöht sind. Diboranylen-Endiin 100aa ist noch weniger reaktiv, da zwei Boranylgruppen das Endiin gegenüber dem ÜZ stabilisieren (116aa: 37.2 kcal mol\(^{-1}\) und 117aa: 35.8 kcal mol\(^{-1}\)). Difluorboranylen-Endiin 100b ist etwas reaktiver (116b: 28.6 kcal mol\(^{-1}\); 117b: 17.9 kcal mol\(^{-1}\)) als 100a, weil der σ-Donor-Eigenschaft durch die Fluor-Atome herabgesetzt ist, jedoch unreaktiver als 9. Doppelt substituiertes 100bb ist weniger reaktiv als 100b (116bb: 34.5 kcal mol\(^{-1}\); 117bb: 29.9 kcal mol\(^{-1}\)), da sich die *ortho*-Substituenten gegenseitig behindern und aus der Ebene drehen müssen.

Alanyl-Endiin 100c hat eine mit 100a vergleichbare Reaktivität, da die π-Azeptorstärke ab-, die σ-Donorstärke jedoch zunimmt. Deshalb sind Barriere (116c: 29.5 kcal mol\(^{-1}\)) und Energie (117c: 21.5 kcal mol\(^{-1}\)) nahzu gleich. Im Dialanyl-Endiin 100cc sind Barriere und Energie (116cc: 30.6 kcal mol\(^{-1}\); 117cc: 29.8 kcal mol\(^{-1}\)) kleiner als erwartet, weil durch gegenseitige Beeinflussung eine Alanyl-Gruppe aus der Ebene gedreht ist und sich eine Al⁻H⁻Al Brücke ausbilden kann.

IV. Hauptgruppe (C, Si). Substituenten dieser Gruppe erhöhen generell Barriere und Reaktionsenergie der Bergman-Reaktion, verglichen mit dem Stammsystem. Die Methylgruppe stabilisiert die Dreifachbindung stärker als die Doppelbindung,\(^{33}\) was zu einer Stabilisierung des Methylendiin 100d und deshalb zu einer Erhöhung der Barriere (116d: 29.4 kcal mol\(^{-1}\)) und der Energie von 117d (16.1 kcal mol\(^{-1}\)) führt. Im Dimethylendiin 100dd spielen zusätzlich sterische Effekte eine Rolle. Die beiden Methyl-Gruppen in *ortho*-Position in 117dd stoßen sich gegenseitig ab und erhöhen dadurch zusätzlich die Barriere (116dd: 36.3 kcal mol\(^{-1}\)) und die Energie (117dd: 24.2 kcal mol\(^{-1}\)). Phenyl-Endiin 100e ist ebenfalls von der Phenyl-Gruppe stabilisiert und deshalb weniger reaktiv als das
Stammsystem (31.1 kcal mol⁻¹ und 18.1 kcal mol⁻¹ für 116e und 117e) trotz des negativen inductiven Effektes der Phenylgruppe. Ein zweiter Phenylsubstituent führt zu einer deutlichen Erhöhung der Barriere und Energie von 100ee (116ee: 41.6 kcal mol⁻¹; 117ee: 32.1 kcal mol⁻¹), da das Edukt durch zwei Phenylgruppen stabilisiert wird, während ÜZ und Produkt durch sterische Hindernisse destabilisiert werden.

Substituenten, die Heteroatome enthalten, welche durch Mehrfachbindung an ein Kohlenstoff-Atom gebunden sind, zeigen deutliche π-Akzeptor Fähigkeiten. Sie stabilisieren deshalb die Edekte, während die ÜZ destabilisiert werden, was einer geringeren Reaktivität, verglichen mit dem Stammsystem, entspricht (100f, 100ff, 100g, 100gg). Im Trifluormethyl-Endiin 100h kompensieren sich die stabilisierenden Effekte der Methylgruppe und die destabilisierenden des Halogens (siehe unten), so daß 100h nur eine wenig höhere Barriere (116h: 27.3 kcal mol⁻¹) und Reaktionsenergie (117h: 10.3 kcal mol⁻¹) hat als 9. Doppelt substituiertes 100hh hat eine etwas höhere Barriere (116hh: 32.9 kcal mol⁻¹) und Energie (117hh: 15.6 kcal mol⁻¹), jedoch liegen beide noch weit unterhalb der entsprechenden Energien für 100dd. Dies ist auf die teilweise Kompensation von sterischen durch elektronische Effekte zurückzuführen, die 117hh ausschließlich aufgrund der höheren σ-

akzeptierenden Eigenschaften der –CF₃-Gruppe gegenüber 117dd energetisch begünstigen.

Wie erwartet ist Silanyl-Endiin 100i, aufgrund des stärkeren σ-Donors –SiH₃, weniger reaktiv als sein Methyl-substituiertes Pendant 100d. Da Silane und Borane ähnliche Eigenschaften aufweisen sind Barriere und Energie von 100i (30.4 kcal mol⁻¹ und 19.8 kcal mol⁻¹) vergleichbar mit denen von 100a. Disilanyl-Endiin 100ii leidet unter der sterischen Abstoßung der beiden Silanylgruppen und hat deshalb erhöhte Werte für Barriere (116ii: 39.2 kcal mol⁻¹) und Energie (117ii: 32.6 kcal mol⁻¹).

PNiktiden (N, P). Amino-Endiin 100k zeigt eine geringfügig niedrigere Reaktivität als das Stammsystem (116k: 28.3 kcal mol⁻¹; 117k: 12.3 kcal mol⁻¹). Für Diamino-Endiin 100kk sind Barriere (116kk: 26.6 kcal mol⁻¹) und Reaktionsenergie (117kk: 12.8 kcal mol⁻¹) kaum unterschiedlich zu 100k und 9. In diesen Reaktionen scheinen sich die π-Donor- und die σ-

Akzeptor-Fähigkeiten der Substituenten sowie alle sterischen Einflüsse zu kompensieren.¹⁴⁷

Da –NH₃⁺ über keine π-Donor- sondern nur über große σ-Akzeptor-Eigenschaften verfügt, hat Ammonium-Endiin 100l eine relativ kleine Barriere (116l: 24.0 kcal mol⁻¹) und eine nahezu thermoneutrale Reaktionsenergie (117l: 0.2 kcal mol⁻¹). Doppelt substituiertes Bisammonium-Endiin 100ll zeigt leider nicht den erwarteten Reaktivitätsanstieg, der sich bei 100l abzuzeichnen schien, sondern im Gegenteil eine drastische Erhöhung von Barriere (116ll: 50.7 kcal mol⁻¹) und Reaktionsenergie von 117ll (25.4 kcal mol⁻¹), was dieses System
zum am wenigsten reaktiven aller untersuchten macht. Der Grund ist in der Abstoßung der beiden positiv geladenenen ortho-ständigen Ammonium-Gruppen in 117ll zu suchen.

Nitro-Endiin 100m ist ein Beispiel für die Überlagerung von σ- und π-akzeptierendem Effekt, wobei der σ-Effekt überwiegt und sich in einer niedrigeren Barriere (116m: 23.6 kcal mol⁻¹) und Reaktionsenergie (117m: 3.0 kcal mol⁻¹) relativ zu 9 bemerkbar macht. Dinitro-Endiin 100mm ist weniger reaktiv; Barriere (116mm: 27.8 kcal mol⁻¹) und Energie (117mm: 4.4 kcal mol⁻¹) sind gegenüber dem monosubstituierten Fall wegen sterischer Hinderung erhöht (O=O Abstand: 2.85 Å).

Der Phosphan-Substituent ist ein schlechter σ-Akzeptor und deshalb hat Phosphanyl-Endiin 100n eine höhere Barriere (116n: 30.8 kcal mol⁻¹) und Energie (117n: 17.4 kcal mol⁻¹) als das Stammsystem. Diphosphanyl-Endiin 100nn hat eine noch höhere Barriere und Energie (116nn: 37.4 kcal mol⁻¹ und 117nn: 27.1 kcal mol⁻¹) was einhergeht mit doppelter Substitution und somit doppelter Stabilisierung von 100nn.

Chalkogene (O, S). Da der Hydroxy-Substituent ein guter σ-Akzeptor ist, sollte Hydroxy-Endiin 100o eine höhere Aktivität als 9 zeigen. Tatsächlich sind Barriere (116o: 24.4 kcal mol⁻¹) und Energie (117o: 5.0 kcal mol⁻¹) erniedrigt, was auf die Destabilisierung des Edukts und die Stabilisierung des ÜZ zurückzuführen ist. Da die Hydroxy-Gruppe ein sterisch wenig anspruchsvoller Substituent ist, findet im Dihydroxy-Endiin 100oo wenig Repulsion statt und ist somit noch reaktiver als das monosubstituierte. Mit einer so niedrigen Barriere und der fast thermoneutralen Reaktionsenergie (116oo: 19.8 kcal mol⁻¹; 117oo: 0.8 kcal mol⁻¹) sollte 100oo bereits bei Raumtemperatur schnell und leicht cyclisieren. Die protonierte Hydroxy-Gruppe zeigte sich als ein viel besserer σ-Akzeptor als die nicht-protonierte, und daher ist auch die Reaktivität von 100p gegenüber 100o gesteigert. Mit einer Barriere von 20.5 kcal mol⁻¹ (116p) und einer Energie von −9.4 kcal mol⁻¹ (117p) ist 100p das reaktivste aller untersuchten monosubstituierten Endiine. Doppelte Protonierung hingegen erhöht die Barriere (116pp: 34.0 kcal mol⁻¹) und Energie (117pp: −1.8 kcal mol⁻¹) von 100pp aufgrund der Abstoßung der positiv geladenen Oxonium-Gruppen. Der Effekt ist nicht so groß wie in 117ll, da 117pp eine Konformation einnehmen kann, in der die ungünstigen H·H Repulsionen minimiert sind.

Die Reaktivität des Mercapto-Endiins 100q ist niedriger als die von 9, da die Thiolgruppe aufgrund weniger ausgeprägter σ-Akzeptor-Fähigkeiten das Endiin relativ zu 100o stabilisiert und den ÜZ destabilisiert (116q: 29.1 kcal mol⁻¹; 117q: 14.3 kcal mol⁻¹). Dimercapto-Endiin 100qq ist doppelt stabilisiert was eine noch niedrigere Reaktivität (116qq: 33.9 kcal mol⁻¹; 117qq: 20.3 kcal mol⁻¹) darstellt.
Halogene (F, Cl, Br). Da alle Halogene sowohl gute σ-Akzeptoren als auch gute π-Donoren sind, können hier niedrigere Barrieren erwartet werden. Das Fluor-Endiin 100r hat eine Barriere von 20.8 kcal mol\(^{-1}\) (116r) und cyclisiert exergonisch (117r: −1.2 kcal mol\(^{-1}\)); damit ist es das reaktivste ungeladene, monosubstituierte Endiin dieser Studie. Da der Fluor-Substituent sehr klein ist, gibt es wenig sterische Abstoßung im Cyclisierungsprodukt des Difluor-Endiin 100rr, d.h. sowohl Barriere (116rr: 16.9 kcal mol\(^{-1}\)) als auch Energie (117rr: −8.9 kcal mol\(^{-1}\)) sind nochmals im Vergleich zum monosubstituierten Endiin reduziert. Damit hat 100rr die kleinste Barriere aller untersuchten substituierten Endiine, was nicht nur dazu führt, daß 100rr äußerst reaktiv ist, es ist sogar instabil bei Raumtemperatur und cyclisiert spontan zum Biradikal 117rr. Die Reaktionsenergie ist nur geringfügig höher als die von 100p, dem am exergonischsten cyclisierenden Endiin.

Chlor- (100s) und Brom-Endiin (100t) haben gleiche Barrieren (116s und 116t: 26.4 kcal mol\(^{-1}\)), die mit der von 9 nahezu übereinstimmen. Zurückzuführen ist das auf die Kompensation von zunehmender π-donierender und abnehmender σ-akzeptierender Eigenschaft beim −Br, verglichen mit −Cl. Die Reaktionsenergien liegen etwas niedriger als bei 9 (117s: 7.4 kcal mol\(^{-1}\); 117t: 7.5 kcal mol\(^{-1}\)). Doppelte Substitution ändert die Energien von 100ss und 100tt, im Vergleich zu ihren monosubstituierten Derivaten, nicht.

Abbildung 41. Potentialhyperflächen der Cyclisierungen monosubstituierter Endiine mit erhöhter Reaktivität verglichen mit dem Stammssystem 9
Zusätzlich zu den Reaktivitätsunterschieden durch Substituenten in der Bergman-Reaktion wurden die Effekte auf die C1-C5-Cyclisierung untersucht, die zu substituierten offenschaligen Singulett-Fulvenbiradikalen 118 führen sollten (Abb. 43). Tatsächlich konnten Didehydrofulven-Biradikale 118 für R = –CN (ff), –COCH3 (gg), –CF3 (hh), –NH2 (kk), –NH3+ (ll), –NO2 (mm), –OH (oo), –OH2+ (pp), –F (rr) und –Cl (ss) identifiziert werden. Sie liegen jedoch alle energetisch viel ungünstiger als die entsprechend substituierten Didehydrobenzol-Biradikale 117 um mit der Bergman-Cyclisierung konkurrieren zu können, da alle Fulven-Reaktionsenergien bereits höher oder wenigstens gleich hoch sind wie die entsprechenden Bergman-Barrieren (Tab. 7).

Abbildung 42. Potentialhyperflächen der Cyclisierungen dissubstituierter Endiine mit erhöhter Reaktivität (Ausnahme: 100pp) verglichen mit dem Stammsystem 9

Abbildung 43. Cyclisierungen der substituierten Endiine 100 zu Bergman- 117 und Fulven-Biradikal 118
Tabelle 7. Berechnete Enthalpien (ΔG_{298}) für die Bergman- und Fulven-Cyclisierungen der dissubstituierten Endiine 116 (in kcal mol$^{-1}$).

<table>
<thead>
<tr>
<th>R</th>
<th>ÜZ 116</th>
<th>Bergman 117</th>
<th>Fulven 118</th>
<th>$\Delta \Delta G(118-117)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>–H</td>
<td>3</td>
<td>26.4</td>
<td>10.0</td>
<td>42.0</td>
</tr>
<tr>
<td>–CN</td>
<td>ff</td>
<td>36.8</td>
<td>27.4</td>
<td>42.3</td>
</tr>
<tr>
<td>–COCH$_3$</td>
<td>gg</td>
<td>29.7</td>
<td>21.3</td>
<td>32.6</td>
</tr>
<tr>
<td>–CF$_3$</td>
<td>hh</td>
<td>32.9</td>
<td>15.6</td>
<td>43.1</td>
</tr>
<tr>
<td>–NH$_2$</td>
<td>kk</td>
<td>26.6</td>
<td>12.8</td>
<td>30.7</td>
</tr>
<tr>
<td>–NH$_3^+$</td>
<td>ll</td>
<td>50.7</td>
<td>25.4</td>
<td>58.8</td>
</tr>
<tr>
<td>–NO$_2$</td>
<td>mm</td>
<td>27.8</td>
<td>6.0</td>
<td>25.3</td>
</tr>
<tr>
<td>–OH</td>
<td>oo</td>
<td>19.8</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>–OH$_2^+$</td>
<td>pp</td>
<td>34.0</td>
<td>–3.2</td>
<td>32.7</td>
</tr>
<tr>
<td>–F</td>
<td>rr</td>
<td>16.9</td>
<td>–8.9</td>
<td>24.3</td>
</tr>
<tr>
<td>–Cl</td>
<td>ss</td>
<td>27.9</td>
<td>7.8</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>(\Delta G_{298})</td>
<td>(\Delta G_{298})</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td>–H</td>
<td>–H</td>
<td>0.0</td>
<td>26.4a</td>
</tr>
<tr>
<td>a</td>
<td>–BH₂</td>
<td>–H</td>
<td>0.0</td>
<td>29.1</td>
</tr>
<tr>
<td>aa</td>
<td>–BH₂</td>
<td>–BH₂</td>
<td>0.0</td>
<td>37.2</td>
</tr>
<tr>
<td>b</td>
<td>–BF₂</td>
<td>–H</td>
<td>0.0</td>
<td>28.6</td>
</tr>
<tr>
<td>bb</td>
<td>–BF₂</td>
<td>–BF₂</td>
<td>0.0</td>
<td>34.5</td>
</tr>
<tr>
<td>c</td>
<td>–AlH₂</td>
<td>–H</td>
<td>0.0</td>
<td>29.5</td>
</tr>
<tr>
<td>cc</td>
<td>–AlH₂</td>
<td>–AlH₂</td>
<td>0.0</td>
<td>30.6</td>
</tr>
<tr>
<td>d</td>
<td>–CH₃</td>
<td>–H</td>
<td>0.0</td>
<td>29.4</td>
</tr>
<tr>
<td>dd</td>
<td>–CH₃</td>
<td>–CH₃</td>
<td>0.0</td>
<td>36.3</td>
</tr>
<tr>
<td>e</td>
<td>–C₆H₅</td>
<td>–H</td>
<td>0.0</td>
<td>31.1</td>
</tr>
<tr>
<td>ee</td>
<td>–C₆H₅</td>
<td>–C₆H₅</td>
<td>0.0</td>
<td>41.6c</td>
</tr>
<tr>
<td>f</td>
<td>–CN</td>
<td>–H</td>
<td>0.0</td>
<td>29.9</td>
</tr>
<tr>
<td>ff</td>
<td>–CN</td>
<td>–CN</td>
<td>0.0</td>
<td>36.8</td>
</tr>
<tr>
<td>g</td>
<td>–COCH₃</td>
<td>–H</td>
<td>0.0</td>
<td>30.2</td>
</tr>
<tr>
<td>gg</td>
<td>–COCH₃</td>
<td>–COCH₃</td>
<td>0.0</td>
<td>29.7</td>
</tr>
<tr>
<td>h</td>
<td>–CF₃</td>
<td>–H</td>
<td>0.0</td>
<td>27.3</td>
</tr>
<tr>
<td>hh</td>
<td>–CF₃</td>
<td>–CF₃</td>
<td>0.0</td>
<td>32.9</td>
</tr>
<tr>
<td>i</td>
<td>–SiH₃</td>
<td>–H</td>
<td>0.0</td>
<td>30.4</td>
</tr>
<tr>
<td>ii</td>
<td>–SiH₃</td>
<td>–SiH₃</td>
<td>0.0</td>
<td>39.2</td>
</tr>
<tr>
<td>k</td>
<td>–NH₂</td>
<td>–H</td>
<td>0.0</td>
<td>28.3</td>
</tr>
<tr>
<td>kk</td>
<td>–NH₂</td>
<td>–NH₂</td>
<td>0.0</td>
<td>26.6</td>
</tr>
<tr>
<td>l</td>
<td>–NH₃⁺</td>
<td>–H</td>
<td>0.0</td>
<td>24.0</td>
</tr>
<tr>
<td>ll</td>
<td>–NH₃⁺</td>
<td>–NH₃⁺</td>
<td>0.0</td>
<td>50.7</td>
</tr>
<tr>
<td>m</td>
<td>–NO₂</td>
<td>–H</td>
<td>0.0</td>
<td>23.6</td>
</tr>
<tr>
<td>mm</td>
<td>–NO₂</td>
<td>–NO₂</td>
<td>0.0</td>
<td>27.8</td>
</tr>
<tr>
<td>n</td>
<td>–PH₂</td>
<td>–H</td>
<td>0.0</td>
<td>30.8</td>
</tr>
<tr>
<td>nn</td>
<td>–PH₂</td>
<td>–PH₂</td>
<td>0.0</td>
<td>37.4</td>
</tr>
<tr>
<td>o</td>
<td>–OH</td>
<td>–H</td>
<td>0.0</td>
<td>24.4</td>
</tr>
<tr>
<td>oo</td>
<td>–OH</td>
<td>–OH</td>
<td>0.0</td>
<td>19.8</td>
</tr>
<tr>
<td>p</td>
<td>–OH₂⁺</td>
<td>–H</td>
<td>0.0</td>
<td>20.5</td>
</tr>
<tr>
<td>pp</td>
<td>–OH₂⁺</td>
<td>–OH₂⁺</td>
<td>0.0</td>
<td>34.0</td>
</tr>
<tr>
<td>q</td>
<td>–SH</td>
<td>–H</td>
<td>0.0</td>
<td>29.1</td>
</tr>
<tr>
<td>qq</td>
<td>–SH</td>
<td>–SH</td>
<td>0.0</td>
<td>33.9</td>
</tr>
<tr>
<td>r</td>
<td>–F</td>
<td>–H</td>
<td>0.0</td>
<td>20.8</td>
</tr>
<tr>
<td>rr</td>
<td>–F</td>
<td>–F</td>
<td>0.0</td>
<td>16.9</td>
</tr>
<tr>
<td>s</td>
<td>–Cl</td>
<td>–H</td>
<td>0.0</td>
<td>26.4</td>
</tr>
<tr>
<td>ss</td>
<td>–Cl</td>
<td>–Cl</td>
<td>0.0</td>
<td>27.9</td>
</tr>
<tr>
<td>t</td>
<td>–Br</td>
<td>–H</td>
<td>0.0</td>
<td>26.4</td>
</tr>
<tr>
<td>tt</td>
<td>–Br</td>
<td>–Br</td>
<td>0.0</td>
<td>27.2</td>
</tr>
</tbody>
</table>

a Experimenteller Wert: \(\Delta G_{298}^\varepsilon=33.0\pm0.5\) kcal mol\(^{-1}\); Berechnet: \(\Delta G_{298}^\varepsilon=27.7\) kcal mol\(^{-1}\) \(^2\) 26

b Experimenteller Wert: \(\Delta G_{298}^\varepsilon=10.6\pm1.0\) kcal mol\(^{-1}\) \(^2\) 26

c Experimenteller Wert: \(\Delta G_{553}^\varepsilon=42.7\) kcal mol\(^{-1}\) \(^4\) 48

d Edukt 100 oder Derivat experimentell bekannt, siehe Literatur.
Tabelle 9. Ausgewählte Eigenschaften der Cyclisierung substituierter Endiine

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>ΔE_{ST}</th>
<th>d</th>
<th>E_{inter}</th>
<th>HOMO</th>
<th>Ladung des KW-Teils</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>–H</td>
<td>–H</td>
<td>–4.1</td>
<td>2.077</td>
<td>0.00</td>
<td>σ</td>
<td>–0.51</td>
</tr>
<tr>
<td>a</td>
<td>–BH₂</td>
<td>–H</td>
<td>–5.4</td>
<td>1.975</td>
<td>σ</td>
<td>–0.49</td>
<td></td>
</tr>
<tr>
<td>aa</td>
<td>–BH₂</td>
<td>–BH₂</td>
<td>–5.1</td>
<td>1.792</td>
<td>–5.4</td>
<td>σ</td>
<td>–0.50</td>
</tr>
<tr>
<td>b</td>
<td>–BF₂</td>
<td>–H</td>
<td>–4.9</td>
<td>2.009</td>
<td>σ</td>
<td>–0.59</td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td>–BF₂</td>
<td>–BF₂</td>
<td>–5.3</td>
<td>1.914</td>
<td>–4.5</td>
<td>σ</td>
<td>–0.69</td>
</tr>
<tr>
<td>c</td>
<td>–AlH₂</td>
<td>–H</td>
<td>–6.8</td>
<td>1.992</td>
<td>σ</td>
<td>–0.81</td>
<td></td>
</tr>
<tr>
<td>cc</td>
<td>–AlH₂</td>
<td>–AlH₂</td>
<td>–12.1</td>
<td>1.834</td>
<td>5.4</td>
<td>σ</td>
<td>–1.11</td>
</tr>
<tr>
<td>d</td>
<td>–CH₃</td>
<td>–H</td>
<td>–3.8</td>
<td>2.023</td>
<td>σ</td>
<td>–0.31</td>
<td></td>
</tr>
<tr>
<td>dd</td>
<td>–CH₃</td>
<td>–CH₃</td>
<td>–2.7</td>
<td>1.963</td>
<td>–1.2</td>
<td>σ</td>
<td>–0.11</td>
</tr>
<tr>
<td>e</td>
<td>–C₆H₅</td>
<td>–H</td>
<td>–3.5</td>
<td>2.001</td>
<td>σ</td>
<td>–0.28</td>
<td></td>
</tr>
<tr>
<td>ee</td>
<td>–C₆H₅</td>
<td>–C₆H₅</td>
<td>–2.1</td>
<td>1.905</td>
<td>–5.2</td>
<td>σ</td>
<td>–0.06</td>
</tr>
<tr>
<td>f</td>
<td>–CN</td>
<td>–H</td>
<td>–3.6</td>
<td>1.976</td>
<td>σ</td>
<td>–0.25</td>
<td></td>
</tr>
<tr>
<td>ff</td>
<td>–CN</td>
<td>–CN</td>
<td>–2.8</td>
<td>1.889</td>
<td>–4.0</td>
<td>σ</td>
<td>–0.03</td>
</tr>
<tr>
<td>g</td>
<td>–COCH₃</td>
<td>–H</td>
<td>–3.1</td>
<td>2.045</td>
<td>σ</td>
<td>–0.28</td>
<td></td>
</tr>
<tr>
<td>gg</td>
<td>–COCH₃</td>
<td>–COCH₃</td>
<td>–4.8</td>
<td>2.014</td>
<td>0.7</td>
<td>σ</td>
<td>–0.13</td>
</tr>
<tr>
<td>h</td>
<td>–CF₃</td>
<td>–H</td>
<td>–3.5</td>
<td>2.052</td>
<td>σ</td>
<td>–0.31</td>
<td></td>
</tr>
<tr>
<td>hh</td>
<td>–CF₃</td>
<td>–CF₃</td>
<td>–1.8</td>
<td>2.009</td>
<td>–5.0</td>
<td>σ</td>
<td>–0.12</td>
</tr>
<tr>
<td>i</td>
<td>–SiH₃</td>
<td>–H</td>
<td>–5.4</td>
<td>2.001</td>
<td>σ</td>
<td>–0.69</td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>–SiH₃</td>
<td>–SiH₃</td>
<td>–5.9</td>
<td>1.914</td>
<td>–3.0</td>
<td>σ</td>
<td>–0.88</td>
</tr>
<tr>
<td>k</td>
<td>–NH₂</td>
<td>–H</td>
<td>–2.8</td>
<td>2.050</td>
<td>π</td>
<td>–0.26</td>
<td></td>
</tr>
<tr>
<td>kk</td>
<td>–NH₂</td>
<td>–NH₂</td>
<td>–1.6</td>
<td>2.029</td>
<td>0.1</td>
<td>π</td>
<td>0.03</td>
</tr>
<tr>
<td>l</td>
<td>–NH₃⁺</td>
<td>–H</td>
<td>–2.2</td>
<td>2.139</td>
<td>π</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>ll</td>
<td>–NH₃⁺</td>
<td>–NH₃⁺</td>
<td>0.2</td>
<td>2.041</td>
<td>–95.8</td>
<td>σ</td>
<td>0.56</td>
</tr>
<tr>
<td>m</td>
<td>–NO₂</td>
<td>–H</td>
<td>–2.2</td>
<td>2.091</td>
<td>σ</td>
<td>–0.05</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>–NO₂</td>
<td>–NO₂</td>
<td>–0.9</td>
<td>2.072</td>
<td>–11.9</td>
<td>σ</td>
<td>0.32</td>
</tr>
<tr>
<td>n</td>
<td>–PH₂</td>
<td>–H</td>
<td>–4.1</td>
<td>2.007</td>
<td>σ</td>
<td>–0.59</td>
<td></td>
</tr>
<tr>
<td>nn</td>
<td>–PH₂</td>
<td>–PH₂</td>
<td>–3.3</td>
<td>1.934</td>
<td>–1.4</td>
<td>σ</td>
<td>–0.50</td>
</tr>
<tr>
<td>o</td>
<td>–OH</td>
<td>–H</td>
<td>–2.4</td>
<td>2.083</td>
<td>π</td>
<td>–0.13</td>
<td></td>
</tr>
<tr>
<td>oo</td>
<td>–OH</td>
<td>–OH</td>
<td>–1.1</td>
<td>2.097</td>
<td>–1.3</td>
<td>π</td>
<td>0.27</td>
</tr>
<tr>
<td>p</td>
<td>–OH₂⁺</td>
<td>–H</td>
<td>–1.0</td>
<td>2.220</td>
<td>σ</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>pp</td>
<td>–OH₂⁺</td>
<td>–OH₂⁺</td>
<td>0.7</td>
<td>2.207</td>
<td>–97.7</td>
<td>σ</td>
<td>0.83</td>
</tr>
<tr>
<td>q</td>
<td>–SH</td>
<td>–H</td>
<td>–3.0</td>
<td>1.999</td>
<td>σ</td>
<td>–0.51</td>
<td></td>
</tr>
<tr>
<td>qq</td>
<td>–SH</td>
<td>–SH</td>
<td>–1.7</td>
<td>1.950</td>
<td>–0.8</td>
<td>π</td>
<td>–0.52</td>
</tr>
<tr>
<td>r</td>
<td>–F</td>
<td>–H</td>
<td>–2.1</td>
<td>2.131</td>
<td>π</td>
<td>–0.02</td>
<td></td>
</tr>
<tr>
<td>rr</td>
<td>–F</td>
<td>–F</td>
<td>–0.5</td>
<td>2.170</td>
<td>–3.6</td>
<td>π</td>
<td>0.47</td>
</tr>
<tr>
<td>s</td>
<td>–Cl</td>
<td>–H</td>
<td>–2.2</td>
<td>2.064</td>
<td>π</td>
<td>–0.39</td>
<td></td>
</tr>
<tr>
<td>ss</td>
<td>–Cl</td>
<td>–Cl</td>
<td>–0.6</td>
<td>2.032</td>
<td>–2.2</td>
<td>π</td>
<td>–0.27</td>
</tr>
<tr>
<td>t</td>
<td>–Br</td>
<td>–H</td>
<td>–2.2</td>
<td>2.060</td>
<td>π</td>
<td>–0.46</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>–Br</td>
<td>–Br</td>
<td>–0.6</td>
<td>2.029</td>
<td>–1.0</td>
<td>π</td>
<td>–0.42</td>
</tr>
</tbody>
</table>

a in kcal mol⁻¹, ein positiver Wert bedeutet einen Singulett-Grundzustand
b Abstand der C-Atome im ÜZ, die die neue Bindung bilden, in Å
c in kcal mol⁻¹
d Wegen fehlender Planarität nicht eindeutig identifiziert.
Die Cyclisierung von Hepta-1,2,4-trien-6-in: "Myers-Saito"-, "Schmittel"- und weitere Cyclisierungen

Ein Antibiotikum mit der gleichen Wirkung, Neocarzinostatin, wurde 1961 aus *Streptomyces carzinostaticus* extrahiert167 und besteht aus einem aktiven Chromophor 15, gebunden an ein 113-Aminosäuren-langes Apoprotein.21,25 Das Chromophor besitzt dabei aber nicht die typische Endiin-Einheit, was bedeutet, daß in diesem Fall eine andere Radikalreaktion stattfinden muß (Abb. 44). Das Chromophor 15 wird dabei zunächst durch ein Thiol aktiviert, und aus dem relativ ungespannten neungliedrigen Diin-Ring bildet sich ein hochgespannter Enin-Kumulen-Ring 17, der sofort zum Biradikal 119 cyclisiert29 und wie 13 dabei die DNA zerstört, indem es H-Atome von Adenin- oder Thymin-Einheiten entfernt.168,169

![Diagramm](image-url)

Abbildung 44. Cyclisierung des Neocarzinostatin-Chromophors 15, das Endiin-Antibiotikum Calicheamicin 13 und die Reaktion der Endiin- 9 und der Eninallen-Einheit 11
Im Jahr 1989 konnten Myers und (unabhängig davon) Saito zeigen, daß das Eninallen 11 eine ähnliche Reaktion wie der Enin-Kumulen-Körper 120 von 17 eingeht (Abb. 45).16-19 Die C2-C7 Cycloaromatisierung ("Myers-Saito Cyclisierung") von 11 ergibt α,3-Didehydrotoluol 12, ein σ,π-Biradikal, das durch benzyllische π-Konjugation stabilisiert wird. Im Gegensatz zu dem nicht konjugierten σ,σ-Bergman-Biradikal 10, das eine Endothermie von 8.5 \pm 1.1 kcal mol-1 besitzt,26 wird deshalb das Myers-Saito-Produkt 12 exotherm (−15 \pm 3 kcal mol-1) gebildet.17 Für beide Reaktionen ist dabei der Gewinn von Stabilisierungenergie durch Ausbildung eines aromatischen Ringsystems aus einem offenkettigen Molekül die treibende Kraft. Während 10 nur von ~21 kcal mol-1 Aromatisierungenergie stabilisiert wird, gewinnt 12 noch zusätzliche ~13 kcal mol-1 aus benzyllischer π-Konjugation.170,171

Obwohl das konjugierte π-System von 11 weitere Cyclisierungen zulassen sollte, konnten lange Zeit nur Myers-Saito-Produkte isoliert werden, bis Schmittel 1995 zeigte, daß substituierte 11 durch einen neuen C2-C6 Ringschluß ("Schmittel-Cyclisierung") Methylfulven-Derivate 121 ausbilden können (Abb. 45).172-177 Obwohl es sich bei 121 ebenfalls um ein σ,π-Biradikal handelt, ist die treibende Kraft der Schmittel-Reaktion offensichtlich nicht die Cycloaromatisierung. Da ihr die Aromatisierungenergie fehlt, verläuft die Reaktion im Stammystem ~10 kcal mol-1 endotherm und wurde daher noch nicht beobachtet.124,178,179 Durch große Reste an Stelle des acetylenischen Wasserstoffs (Phenyl, tert-Butyl oder Trimethylsilyl)172,180,181 konnte jedoch die Reaktion zum Myers-Saito-Produkt durch sterische Wechselwirkung soweit zurückgedrängt werden, daß sich Schmittel-Produkte bildeten (Abb. 45).

![Abbildung 45. Die Myers-Saito- und Schmittel-Cyclisierung des Eninallens 11](image-url)
Da im Eninallen 11 mehr ungesättigte C-Atome vorhanden sind als beim Endiin 9, sollte es rein hypothetisch auch mehr Cyclisierungs möglichkeiten geben. Im Gegensatz zu den C\textsubscript{sp}-C\textsubscript{sp} Reaktionen in 9, können bei 11 auch sp2-hybridisierte Kohlenstoffatome an den Cyclisierungen teilnehmen. Im folgenden Kapitel werden zunächst die beiden bekannten Myers-Saito- und Schmittel-Reaktionen eingehend untersucht, danach wird auf die weiteren möglichen Cyclisierungen eingegangen. Im weiteren Verlauf wird der Effekt der Benzannelierung auf 122 untersucht, bevor als letzter der Effekt, den die Ringspannung in den cyclischen Eninallen 123a-f auf die Barrieren, Reaktionsenthalpien und die Regioselektivität des Ringschlusses hat, betrachtet wird (Abb. 46).

Abbildung 46. Cyclisierung des Eninallen Stammsystems 10 sowie weitere Systeme

Stammsystem. Neben den bereits beschriebenen Cyclisierungen von 11 zu Schmittel-121 und Myers-Saito-Produkt 12 lassen sich noch vier weitere Ringschlußreaktionen formulieren (Abb. 47). Die Produkte lassen sich grob in zwei Gruppen einteilen: Die zwei bereits bekannten 12 und 121 bilden die Gruppe der σ,π-Biradikale, die durch die Reaktion von zwei sp-hybridisierten C-Atomen entstehen. Die zweite Gruppe sind die vier σ,σ-Biradikale 126, 127, 128 und 129, die aus der Reaktion von einem sp- mit einem sp2-hybridisierten C-Atom hervorgehen. Da den Radikalen der zweiten Gruppe, wie auch dem Bergman-Produkt, die π-Konjugation und zusätzlich auch die Aromatisierungsenergie fehlt, ist mit ihnen höchstens bei höheren Energien zu rechnen. Zunächst sollen deshalb die bereits bekannten Reaktionen im Detail besprochen werden, bevor auf weitere Cyclisierungen Bezug genommen wird.
Wie der Übergangszustand der Bergman-Reaktion haben auch die ÜZ der Myers-Saito- und Schmittel-Reaktion keinen Biradikalcharakter, was sich zum einen daraus ergibt, daß die Energien der beschränkten und der unbeschränkten Berechnungen gleich sind, und zum anderen, daß der Erwartungswert des Spinoperators bei der unbeschränkten Wellenfunktion Null ist. Die experimentelle Barriere der Myers-Saito-Reaktion (21.8 ± 0.5 kcal mol⁻¹) wird durch BLYP mit 18.8 kcal mol⁻¹ einigermaßen gut beschrieben, während BD(T) mit 20.7 kcal mol⁻¹ sehr gut liegt (Tab. 10). Bei der Schmittel-Reaktion gibt es zwei Übergangszustände \((E)-132\) und \((Z)-132\) zu zwei Produkten \((E)-121\) und \((Z)-121\), die sich, wie bei der \(\text{C}^1-\text{C}^5\)-Cyclisierung des Endiins \(9\), in der Stellung des Wasserstoffatoms an der exocyclischen Doppelbindung unterscheiden (Abb. 48). Die Barriere zu \((E)-121\) liegt dabei 11.4 bzw. 12.6 kcal mol⁻¹ über \(33\) [BLYP: 30.2 kcal mol⁻¹; BD(T): 33.3 kcal mol⁻¹], die zu
(Z)-121 nur 7.4 bzw. 8.1 kcal mol\(^{-1}\) über 33 [BLYP: 26.2 kcal mol\(^{-1}\); BD(T): 28.8 kcal mol\(^{-1}\)].
Wie bereits angedeutet, ist diese höhere Barriere dafür verantwortlich, daß im Stammsystem diese Cyclisierung noch nicht beobachtet wurde.

Bei den Produkten gibt es für beide Reaktionspfade offen- und geschlossenschalige Lösungen, die sich sowohl in der Energie als auch in der Geometrie unterscheiden (Abb. 48). Das biradikalische Myers-Saito-Produkt 12 wird exotherm gebildet und stimmt mit –9.6 kcal mol\(^{-1}\) für BLYP recht gut und mit –13.6 kcal mol\(^{-1}\) für BD(T) hervorragend mit dem experimentellen Wert von 15 ± 3 kcal mol\(^{-1}\) überein (Tabelle 10). Das geschlossenschalige allenische Produkt 27 kann ebenfalls über den ÜZ erreicht werden, liegt aber 5.2 bzw. 3.3 kcal mol\(^{-1}\) für BLYP bzw. BD(T) über 12 und ist deshalb energetisch ungünstiger. Es ist eindeutig von dem planaren, C\(_5\)-symmetrischen 12 zu unterscheiden, da die Allen-Teilstruktur für eine Verdrillung des sechsgliedrigen Ringes sorgt und die allenischen H somit einen Diederwinkel von 76.6° aufweisen. Nichtsdestotrotz kann 27 eine wichtige Rolle spielen, wenn geeignete Substituenten, z.B. an Stelle des acetylenischen H, die biradikalische Struktur destabilisieren und 27 zur stabileren Konfiguration wird. Beim Schmitt-Produkt gibt es entsprechend den zwei Übergangszuständen (E)-132 und (Z)-132 auch zwei biradikalische Produkte (E)-121 und (Z)-121, bei denen die energetischen Verhältnisse uneinheitlich sind. Hierbei liegt (E)-121 mit 12.9 bzw. 8.8 kcal mol\(^{-1}\) für BLYP bzw. BD(T) etwas günstiger bzw. ungünstiger als (Z)-121, das 0.1 kcal mol\(^{-1}\) darüber bzw. 0.2 kcal mol\(^{-1}\) darunter liegt. Da der ÜZ zwischen den beiden Strukturen (E)-121 und (Z)-121 kleiner als 5 kcal mol\(^{-1}\) sein sollte, können beide leicht ineinander übergehen. Die Struktur (E)-121 liegt auf beiden Niveaus 22.5 kcal mol\(^{-1}\) über dem Myers-Saito-Produkt 12. Auch beim Schmitt-Produkt gibt es ein geschlossenschaliges Produkt 135, das allerdings eine carbenoiden Struktur aufweist und 4.9 bzw. 6.8 kcal mol\(^{-1}\) über (E)-121 liegt. Auch hier ist 135 geometrisch unterscheidbar, da es von der planaren Geometrie abweicht und einen auf 112.5° verkleinerten H-C-C-Winkel am carbenoiden Kohlenstoff gegenüber 134.9° in (E)-121 aufweist.

![Abbildung 48. Offen- und geschlossenschalige Cyclisierungsprodukte des Einallen 11](image-url)
2 Teil I: Theoretische Berechnungen 2.4 Cyclisierungen

Tabelle 10. Barrieren und Reaktionsenthalpien (Δ_H^R) der Cyclisierungspfade von Eninallen 11 (in kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th>Struktur</th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>18.8</td>
<td>20.7</td>
</tr>
<tr>
<td>12</td>
<td>-9.6</td>
<td>-13.6</td>
</tr>
<tr>
<td>27</td>
<td>-4.4</td>
<td>-10.3</td>
</tr>
<tr>
<td>(E)-132</td>
<td>30.2</td>
<td>33.3</td>
</tr>
<tr>
<td>(Z)-132</td>
<td>26.2</td>
<td>28.8</td>
</tr>
<tr>
<td>(E)-121</td>
<td>12.9</td>
<td>8.8</td>
</tr>
<tr>
<td>(Z)-121</td>
<td>13.0</td>
<td>8.6</td>
</tr>
<tr>
<td>135</td>
<td>17.8</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Die Standardbildungsenthalpie (ΔH°) von 12 wurde experimentell mit 103 ± 3 bestimmt,17 was durch die Theorie sehr gut reproduziert wird (106.6 ± 2 kcal mol$^{-1}$ für beide Methoden, Tab. 11). Zum Vergleich ist noch das Ergebnis der coupled cluster Methode CCSD(T) aufgenommen, an dem sich deutlich zeigt, daß auf HF basierende Ein-Referenz Methoden bei den vorliegenden Biradikalen an ihre Grenzen stoßen (~13 kcal mol$^{-1}$ Abweichung vom Experiment).

Tabelle 11. Vergleich von berechneter und experimentell ermittelter Standardbildungsenthalpie von 12 (in kcal mol$^{-1}$). Die experimentellen Standardbildungsenthalpien sind: 19.7 (Benzol),182 79.1±2 (Phenylradikal)183 und 48±2 (Tolylradikal)184

\[
\begin{array}{ccc}
\text{Methode} & \Delta_R H_0 & \Delta H^\circ \\
\hline
\text{BLYP/6-31G*} & +0.8 & 106.6 \pm 2 \\
\text{CCSD(T)/cc-pVDZ}^a & +17.3 & 90.1 \pm 2 \\
\text{BD(T)/cc-pVDZ}^a & +0.8 & 106.6 \pm 2 \\
\text{Experiment} & -4.4 & 103 \pm 3 \\
\end{array}
\]

a Geometrien und ZPVE-Korrekturen aus BLYP/6-31G*

Die Standardbildungsenthalpie von (E)-121 konnte dann auf demselben Wege über eine isodesmische Gleichung erhalten werden, nachdem zuvor noch ΔH° von 2-Methylfulven, die experimentell noch nicht bekannt ist, zu 45.4 kcal mol$^{-1}$ bestimmt wurde.
2 Teil I: Theoretische Berechnungen

Die Standardbildungsenthalpie von \((E)\)-121 wird auf der Basis des auf BD(T)-Niveau erhaltenen Wertes mit 128.6 ± 3 kcal mol\(^{-1}\) vorausgesagt. Auch hier zeigt sich wieder deutlich, daß CCSD(T) für die vorliegende Problemstellung nicht geeignet ist.

Tabelle 12
Bestimmung der Standardbildungsenthalpie von 2-Methylfulven (in kcal mol\(^{-1}\)). Die experimentellen Standardbildungsenthalpien sind: 53.6 (Fulven),\(^{182}\) –25.3 (Methylcyclopentan)\(^{182}\) und –18.4 (Cyclopentan)\(^{182}\)

<table>
<thead>
<tr>
<th>Methode</th>
<th>(\Delta_R H_0)</th>
<th>(\Delta_H^o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLYP/6-31G*</td>
<td>–2.7</td>
<td>44.0</td>
</tr>
<tr>
<td>CCSD(T)/cc-pVDZ(^a)</td>
<td>–1.2</td>
<td>45.5</td>
</tr>
<tr>
<td>BD(T)/cc-pVDZ(^a)</td>
<td>–1.3</td>
<td>45.4</td>
</tr>
</tbody>
</table>

\(^a\) Geometrien und ZPVE-Korrekturen aus BLYP/6-31G*

Tabelle 13
Bestimmung der Standardbildungsenthalpie von \((E)\)-132 (in kcal mol\(^{-1}\)). Die experimentellen Standardbildungsenthalpien sind: 103±3 \((12)\),\(^{17}\) 12.0 (Toluol)\(^{182}\) und 44.0 bzw. 45.5\(^b\) (2-Methylfulven)

<table>
<thead>
<tr>
<th>Methode</th>
<th>(\Delta_R H_0)</th>
<th>(\Delta_H^o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLYP/6-31G*</td>
<td>–9.6</td>
<td>125.4 ± 3</td>
</tr>
<tr>
<td>CCSD(T)/cc-pVDZ(^a)</td>
<td>11.9</td>
<td>148.4 ± 3</td>
</tr>
<tr>
<td>BD(T)/cc-pVDZ(^a)</td>
<td>–7.8</td>
<td>128.6 ± 3</td>
</tr>
</tbody>
</table>

\(^a\) Geometrien und ZPVE-Korrekturen aus BLYP/6-31G*

\(^b\) Siehe Tabelle 12

Eine weitere wichtige Frage beschäftigt sich mit den Spindichten in den Produkten 12 und 121. Während 27 und 135 als geschlossenschalige Moleküle natürlich keine Einzelspin- dichten aufweisen, sind in 12 und 121 Delokalisationswirkungen des π-Radikals zu erwarten, und die Frage ist, welche Spinresonanzstruktur den größten Anteil hat (Abb. 49). Da die Singulett-

Triplett-Aufspaltungen sehr klein sind, ist zu erwarten, daß die Koeffizienten der Spindichten bei den offenschaligen Singulets und den Triplets praktisch gleich sind.
2 Teil I: Theoretische Berechnungen

2.4 Cyclisierungen

Während das \(\sigma \)-Radikal-Elektron auf sein \(sp^2 \)-Hybridorbital beschränkt ist und weder mit anderen Bindungen noch mit anderen Orbitalen, inklusive des \(\pi \)-Systems, wechselwirken kann, zeigt das \(\pi \)-Radikal-Elektron die Delokalisierungen, wie sie typisch für Benzyl- oder Allyl-Systeme sind. Die Konsequenzen für 12 sind deshalb nicht dramatisch, da das aromatische Elektronensextett nicht sehr effektiv mit dem Benzyl-Radikal wechselwirkt. Deshalb ist auch die Spinresonanz, wie sie in 12SR1 dargestellt ist, die dominante Repräsentation der Spindichte für das Myers-Saito-Produkt, gefolgt von 12SR3 und danach 12SR2 und 12SR4 zu gleichen Teilen (Abb. 50). Das Schmittel-Produkt zeigt jedoch ein ganz anderes Bild. Dort ist 121SR1 die Repräsentation mit der geringsten Bedeutung und ist für die tatsächliche \(\pi \)-Radikaldichte unbedeutend, die am besten durch 121SR3 und danach 121SR2 beschrieben wird. Deshalb ist auch die Energie geringer als im Fulven-Biradikal 97 der C\(^1\)-C\(^5\)-Endiincyclisierung, in der beide \(\sigma \)-Radikal-Elektronen in ihren Orbitalen lokalisiert sind, und folglich ist der Energieunterschied 30.8 kcal mol\(^{-1}\), der nicht durch unterschiedliche Stabilitäten der Edukte erklärt werden kann (\(\Delta E_{\text{Enallen/Methylendim}} = 2.9 \text{ kcal mol}^{-1} \)), sondern sich allein aus der \(\pi \)-Allylstabilisierung ergibt.

Abbildung 49. Spinresonanzstrukturen für die offenschaligen 12 und 121
Abbildung 50. Tripplett Spindichten im Myers-Saito- 12, Schmittel- 121 und Fulven-Biradikal 97

Andere Cyclisierungen des Eninallens 11 sind, wie schon erwähnt, nur zwischen den sp-hybridisierten Acetylen- und den sp²-hybridisierten Allenkohlenstoffatomen möglich und führen alle vier zu σ,σ-Biradikalen, die in der Energie entsprechend weit über den σ,π-Biradikalen stehen.

Die C₁⁻C⁷-Cyclisierung zum siebengliedrigen Biradikal (Cycloheptatrien-Biradikal, 126) durch Bindungsbildung zwischen den endständigen Kohlenstoffatomen in 11 ist 32.9 kcal mol⁻¹ endotherm und entsprechend ist 126 ~24 kcal mol⁻¹ instabiler als das Schmittel-Produkt 121 (Tab. 14). Da 121 bereits nicht als Produkt bei der Cyclisierung von 11 zu beobachten war, ist die Bildung von 126 ebenfalls unwahrscheinlich. Der Übergangszustand 130 (37.9 kcal mol⁻¹) liegt jedoch nur ~9 kcal mol⁻¹ über 132 für die Schmittel-Reaktion, und deshalb ist die Synthese substituierter Derivate von 126 zumindest nicht unmöglich, vorausgesetzt die richtigen Substituenten können gefunden werden. Der ÜZ 130 hat wie die der Schmittel- und Myers-Saito-Reaktion keinen Biradikalcharakter. Wie für das Myers-Saito- und das Schmittel-Produkt gibt es auch für das Cycloheptatrien-Biradikal eine geschlossenschalige Lösung (136, Abb. 51). Da die Geometrien von 126 und 136 sich nicht wesentlich unterscheiden, ist 136 auch nur ~2 kcal mol⁻¹ höher in der Energie als sein offenschaliges Gegenstück (Tab. 14).
2 Teil I: Theoretische Berechnungen 2.4 Cyclisierungen

Abbildung 51. Geschlossenschalige Varianten aller Cyclisierungsmöglichkeiten von 11

Tabelle 14. Barrieren und Reaktionsenthalpien (Δ_H) der Cyclisierungs-pfade von Eninallen 11 (in kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th>Struktur</th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZa</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>18.8</td>
<td>20.7</td>
</tr>
<tr>
<td>12</td>
<td>−9.6</td>
<td>−13.6</td>
</tr>
<tr>
<td>27</td>
<td>−4.4</td>
<td>−10.3</td>
</tr>
<tr>
<td>132</td>
<td>26.2</td>
<td>28.8</td>
</tr>
<tr>
<td>121</td>
<td>12.9</td>
<td>8.8</td>
</tr>
<tr>
<td>135</td>
<td>17.8</td>
<td>15.6</td>
</tr>
<tr>
<td>130</td>
<td>36.6</td>
<td>37.9</td>
</tr>
<tr>
<td>126</td>
<td>34.9</td>
<td>32.9</td>
</tr>
<tr>
<td>136</td>
<td>36.3</td>
<td>34.9</td>
</tr>
</tbody>
</table>

a Geometrien und ZPVE-Korrekturen aus BLYP/6-31G*

Andere Cyclisierungsarten für 11 führen nicht zu stabilen offenschaligen Singulett-Biradikalen. Genaue Betrachtungen der C_3–C_7 und C_1–C_6 Cyclisierungs-Reaktions-koordinaten zeigen einen monotonen Energieanstieg für kleiner werdende C-C Abstände (Abb. 52); die C_3–C_6 Cyclisierung ist ebenfalls nicht zugänglich.

Abbildung 52. Energiehyperflächen der C_1–C_7 und C_1–C_6 Cyclisierungen auf BLYP/6-31G*
Benzannelierung. Das benzannelierte Eninallen (1-Ethynyl-2-propa-1,2-dienylbenzol, \(122\)) zeigt dieselben Cyclisierungsreaktionen wie das Stammsystem. Das benzannelierte Myers-Saito-Produkt \(137\) \((-5.8 \text{ kcal mol}^{-1}\)) liegt energetisch ungünstiger als das des Stammsystems, da die Aromatizität im Produkt durch den bereits vorhandenen Benzolring verringert ist (Abb. 53, 54; Tab. 15). Im geschlossenschaligen Produkt \(138\) ist die Aromatizität durch das ortho-chinoide System weitgehend aufgehoben, so daß die Energie 7.2 kcal mol\(^{-1}\) höher liegt als in \(137\). Da das benzannelierte Schmittel-Produkt \(139\) nicht durch Cycloaromatisierung gebildet wird, ist die Energie mit 9.4 kcal mol\(^{-1}\) nahezu dieselbe wie im Stammsystem \((-0.6 \text{ kcal mol}^{-1}\) stabiler, Abb. 54). Auch hier leidet das entsprechende geschlossenschalige Produkt \(140\) an der Aufhebung der Aromatizität und liegt 15.7 kcal mol\(^{-1}\) höher in der Energie. Barriere und Reaktionsenthalpie zum Benzocycloheptatrien-Biradikal \(141\) verändern sich wenig gegenüber der Stammreaktion. Im Gegensatz zur Stammreaktion hat der Übergangszustand jedoch Biradikalcharakter. Eine geschlossenschalige Variante existiert vom benzannelierten siebengliedrigen Ring nicht. Die fehlenden drei Reaktionspfade gibt es auch für \(122\) nicht.

Abbildung 53. Offen- und geschlossenschalige Cyclisierungsprodukte von \(122\)

Abbildung 54. Vergleich der Potentialhyperflächen der Cyclisierungen von \(11\) und \(122\)
Tab. 15. Barrieren und Reaktionsenthalpien (Δ_h,Δ) der Cyclisierungs-
pfade des benzannellierten Eninallens 122 (in kcal mol⁻¹).

<table>
<thead>
<tr>
<th>Struktur</th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZ a</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>122→137</td>
<td>19.5</td>
<td>23.1</td>
</tr>
<tr>
<td>137</td>
<td>-4.5</td>
<td>-5.8</td>
</tr>
<tr>
<td>138</td>
<td>4.7</td>
<td>1.4</td>
</tr>
<tr>
<td>122→139</td>
<td>25.2</td>
<td>28.4</td>
</tr>
<tr>
<td>139</td>
<td>11.9</td>
<td>9.4</td>
</tr>
<tr>
<td>140</td>
<td>21.7</td>
<td>25.1</td>
</tr>
<tr>
<td>122→141</td>
<td>36.7</td>
<td>40.7</td>
</tr>
<tr>
<td>141</td>
<td>35.5</td>
<td>33.3</td>
</tr>
</tbody>
</table>

a Geometrien und ZPVE-Korrekturen aus BLYP/6-31G.

Ringspannung. Wie bei den cyclischen Endiinen 99a-h sollte die Ringspannung in
den cyclischen Eninallenen 123a-f eine Verringerung der Cyclisierungspanne und somit
eine Reaktivitätserhöhung bewirken. Ein weiterer Aspekt ist die Möglichkeit, daß durch
Ringspannungseffekte die Schmittel-Cyclisierung gegenüber der Myers-Saito-Cyclisierung
favorisiert wird und statt der Benzocycloalken-Biradikalen 124a-f die 4H-Cyclopenta-
cycloalken-Biradikale 125a-f gebildet werden (Abb. 54).

* Abb. 55. Ringschlußreaktionen der cyclischen Endiine 123a-f

Der siebengliedrige Ring 123a, in dem der terminale acetylenische Kohlenstoff direkt
mit dem allenischen verbunden ist, stellt einen Sonderfall dar, denn weder für das Myers-
Saito- (124a) noch für das Schmittel-Produkt 125a ergibt sich ein offenschaliges Biradikal.
Beide Strukturen existieren nur als geschlossenschalige Moleküle. Mit einer Barriere von 9.1
kcal mol⁻¹ zu 124a und einer Enthalpie von 9.0 kcal mol⁻¹ ist die Rückreaktion sehr schnell
und damit die Bildung des hochgespannten Benzocyclopropen-Biradikals 124a eher unwahr-
scheinlich (Tab. 16, Abb. 56). Das Schmittel-Produkt 125a scheint mit einer Barriere von
24.0 kcal mol⁻¹ und einer Enthalpie von 14.0 kcal mol⁻¹ experimentell erreichbar, ist jedoch
ebenfalls sehr gespannt aufgrund des gebildeten viergliedrigen Ringes.
Beim achtgliedrigen 123b sind beide Barrieren kleiner als die der Stamreaktionen. Die Barriere zu 125b ist dabei mit 15.2 kcal mol^{-1} um 2.6 kcal mol^{-1} kleiner als die zu 124b. Mit nur 0.5 kcal mol^{-1} Reaktionsenthalpie für 125b sollte aus 123b ausschließlich das Schmittel-Produkt gebildet werden und nicht 124b, das in seiner Enthalpie 3.3 kcal mol^{-1} über 125b liegt. Für beide Produkte 124b und 125b existiert jeweils auch ein geschlussenschaliges Pendant, die aber beide höher in der Energie liegen (5.7 bzw. 2.1 kcal mol^{-1}).

Die Barrieren des neungliedrigen Rings 123c sind beide noch einmal niedriger als die von 123b. Sie sind mit 14.2 kcal mol^{-1} zu 124c und 12.3 kcal mol^{-1} zu 125c die kleinsten aller cyclischen Eninallene, da bei beiden Produkten die vorteilhafte Kombination von einem fünf- und einem annelierten sechsgliedrigen Ring gebildet wird. Auch hier ist das Schmittel-Produkt bevorzugt, es wird jedoch mit 4.2 kcal mol^{-1} endotherm gebildet, während 124c eine Exothermie von −11.8 kcal mol^{-1} besitzt. Unter kinetischer Kontrolle sollte sich aber trotzdem bevorzugt 125c bilden. Die geschlussenschaligen Reaktionsprodukte haben etwa denselben Energiediskunterschied zu den offenschaligen wie bei 123b.

Beim zehngliedrigen Ring 123d sind die Produktverhältnisse wie beim Stammsystem, obwohl beide Barrieren im Vergleich immer noch kleiner sind. Da jedoch die Barriere nach 124d 5.8 kcal mol^{-1} und die Reaktionsenthalpie 19.0 kcal mol^{-1} kleiner sind als die zu 125d, ist eine Bildung des Schmittel-Produktes ausgeschlossen. Zum elfgliedrigen 123e hin ist der Unterschied in der Barriere noch etwas größer geworden. Die Energien von 123e entsprechen im großen und ganzen denen des Stammsystems, während sie im zwölfgliedrigen 123f schon darüberliegen und hohe Temperaturen zum Cyclisieren benötigen. Nichtsdestotrotz wird auch dort das Myers-Saito-Produkt bevorzugt gebildet.

Bei den geschlussenschaligen Cyclisierungsprodukten von 123d-f ist anzumerken, daß der Energieunterschied bei den Myers-Saito-Produkten abnimmt (124c: 5.7 kcal mol^{-1}; 124f: 2.5 kcal mol^{-1}), während er bei den Schmittel-Produkten zunimmt (125d: 1.3 kcal mol^{-1}; 125f: 6.1 kcal mol^{-1}). Die biradikalischen Produkte sind aber in jedem Fall energetisch günstiger.

Die Ringe 123d-f können als Cyclisierungsprodukt auch Cycloheptatrien-Biradikale bilden, die jedoch mit Reaktionsenthalpien von 37.1, 42.0 und 41.3 kcal mol^{-1} weit oberhalb der anderen beiden Reaktionspfade liegen und experimentell wohl unzugänglich sein sollten.
Tabelle 16. Barrieren und Reaktionsenthalpien (ΔG_{298}) der Eninallene 123a-f, berechnet auf dem BLYP/6-31G* Niveau (in kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th>Ringgröße</th>
<th>123</th>
<th>123→124</th>
<th>124</th>
<th>125</th>
<th>Geschlossenschalige Produkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Ring</td>
<td>a</td>
<td>0.0</td>
<td>9.1</td>
<td>—</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.0</td>
<td>14.0</td>
</tr>
<tr>
<td>8-Ring</td>
<td>b</td>
<td>0.0</td>
<td>17.8</td>
<td>3.8</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>9-Ring</td>
<td>c</td>
<td>0.0</td>
<td>14.2</td>
<td>−11.8</td>
<td>−6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.3</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td>5.5</td>
</tr>
<tr>
<td>10-Ring</td>
<td>d</td>
<td>0.0</td>
<td>16.6</td>
<td>−11.6</td>
<td>−6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.4</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>12.9</td>
</tr>
<tr>
<td>11-Ring</td>
<td>e</td>
<td>0.0</td>
<td>18.3</td>
<td>−3.7</td>
<td>−2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.6</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.2</td>
<td>21.3</td>
</tr>
<tr>
<td>12-Ring</td>
<td>f</td>
<td>0.0</td>
<td>23.7</td>
<td>−0.2</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.4</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Stammsystem</td>
<td>11</td>
<td>0.0</td>
<td>20.2</td>
<td>−7.8</td>
<td>−2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.2</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Abbildung 56. Vergleich der Barrieren und Enthalpien für die Cyclisierungen der Eninallene 123a-f im Vergleich mit dem Stammsystem 11.
2.4.3 Die Cyclisierung von Hexa-1,3-dien-5-in ("Hopf-Cyclisierung")

Die thermische Cyclisierung von Hexa-1,3-dien-5-in-Derivaten 142 ist von großer Wichtigkeit für die Synthese von schüsselförmigen Molekülen, wie z.B. Corannulen185-187 143 (Abb. 57) und Semibuckminsterfulleren.188 Die eingehende Untersuchung und das genaue Verständnis der Stammreaktion wird bei der Optimierung und Erweiterung dieser Synthesestrategie helfen.

Im Jahre 1969 konnten Hopf und Musso zeigen, daß Hexa-1,3-dien-5-in 89 thermisch zu Benzol 96 cycloisomerisiert.189 Die Reaktion beginnt ab einer Temperatur von 274°C, bei der sich ein Isomerisierungsgleichgewicht zwischen (E)-89 und (Z)-89 einstellt. Aus rein geometrischer Sichtweise wurde dabei (Z)-89 als die Spezies benannt, die die Cyclisierung einingeht und nicht (E)-89 (Abb. 57).

Abbildung 57. Synthese des schüsselförmigen Corannulen 143 aus dem Hexa-1,3-dien-5-in-Derivat 142 und die thermische Cycloisomerisierung von (Z)-89 zu 96

Da 89 und 96 dieselbe Anzahl von Atomen besitzen, muß vor oder nach der Cyclisierung eine Wasserstoffverschiebung stattfinden. Abbildung 58 zeigt die wahrscheinlichsten Reaktionspfade, die die Strukturen 89 und 96 verbinden:

- [1,2]-H-Shift zum Vinyliden-Carben 144 und weiter zu 96
- thermische Cyclisierung unter Umlagerung des π-Systems zu Isobenzol (1,2,4-Cyclohexatrien) 90 und anschließendem H-Shift zu 96
- thermische Cyclisierung zum Biradikal 91 und anschließendem H-Shift zu 96
- Addition eines H-Radikals (145), Cyclisierung und anschließender Verlust von H⁻ zu 96
Experimentelle und theoretische Studien berichten, daß bei niedrigeren Temperaturen (200–400 °C) hauptsächlich die Intermediate 90 oder 91 gebildet werden.26,190,191 Die genaue Rolle von Allen 90 und Biradikal 91 ist allerdings noch unklar.192,193 Bei höheren Temperaturen sind Prozesse bevorzugt, die über Intermediate wie 144 und 145 gehen, was sich an der vermehrten Bildung von Pentafulven als Nebenprodukt bemerkbar macht.194-198

Im Hinblick auf die Bildung von Fulleren-ähnlichen Teilstrukturen oder "building blocks" ist der Effekt der Benzannelierung auf Barriere und Enthalpie ebenso entscheidend. Wie bereits beschrieben, erhöht die Benzannelierung die Barriere der Bergman-Reaktion des Endiins kaum, die Reaktionsenthalpie dagegen erhöht sie um fast 10 kcal mol⁻¹.119,129,150,156,158 Da die Cycloisomerisierung von 89, im Gegensatz zur Bergman-Reaktion, offensichtlich kein einstufiger Prozeß ist, ist der Effekt der Benzannelierung nicht abzuschätzen.

Ein weiterer wichtiger Aspekt ist das Verhalten der Dienin-Einheit bei der Einbindung in ein carbocyclisches System. Die strukturell ähnlichen cyclischen Endiine 99a-h zeigen eine deutliche Abhängigkeit zwischen Ringspannung und Cyclisierungssbarriere.32,33 In Analogie zur Bergman-Reaktion von 99a-h sollten auch einige der kleineren Dienin-Ringe 146a-h eine niedrigere Barriere als das Stammsystem aufweisen (Abb. 59).
Die Synthese von Cycloocta-1,3-dien-5-in 146b ausgehend von Selendiazol 148 ist das erste Beispiel für ein cyclisches Dienin. Der hochgespannte Ring 146b konnte nach der Thermolyse von 148 bei 180 °C nur in Spuren detektiert werden, seine Bildung jedoch indirekt durch sein Cycloisomerisierungsprodukt Benzocyclobuten 147b bewiesen werden (Abb.). Neben 146b ist das einzige andere in der Literatur erwähnte cyclische Dienin Cyclodeca-1,3-dien-5-in 146d, allerdings ist die NMR-spektroskopische Strukturzuweisung zweifelhaft.

Im folgenden Kapitel wird die Cycloisomerisierung des Stammsystems (Z)-Hexa-1,3-dien-5-in 89 zu Benzol 96 im Detail untersucht, einschließlich aller möglichen Zwischenstufen und Übergangszustände. Die berechneten Daten werden mit experimentellen verglichen und daraus sollen Rückschlüsse auf die Beteiligung von Isobenzol 90 oder dem Biradikal 91 gezogen werden. Weiterhin wird der Effekt der Benzannelierung auf die
Cycloaromatisierung untersucht und Voraussagen für diese bisher nicht energetisch vermessene Reaktion gemacht.

Abschließend werden die Ringspannungseffekte auf die Cycloisomerisierung theoretisch auf der Basis der (E,Z)-Hexa-1,3-dien-5-in-Ringe diskutiert und die Resultate dann den entsprechenden experimentellen Daten gegenübergestellt.

Stammsystem. Das Stammsystem (Z)-Hexa-1,3-dien-5-in kann entlang verschiedener Pfade cycloisomerisieren, bei niedrigeren Temperaturen (200-400°C) wird jedoch der elektrocyclische Ringschluß bevorzugt (via oder Abb. 61). Frühere Arbeiten zeigen uneinheitliche Ergebnisse, was das Intermediat auf diesem Reaktionspfad betrifft. Die ersten experimentellen Berichte schlagen Isobenzol vor, eine erste semiempirische Studie gibt Hinweise darauf, daß das Biradikal ein Grundzustand, sondern ein Übergangszustand zwischen den beiden enantiomeren Isobenzol-Strukturen (S)-90 und (R)-90 (C1 Punktgruppe) ist. Anhand der gemessenen Standardbildungsenthalpien wurde später das Biradikal als Intermediat favorisiert.

Eine sehr detaillierte B3LYP/6-31G* Studie hat sich vor kurzem dieser Fragestellung angenommen. Diese Berechnungen, die mit eigenen BLYP/6-31G* Resultaten sehr gut übereinstimmen, zeigen, daß das Biradikal wirklich ein Übergangszustand für die Enantiomerisierung von 90 ist. Während sich die B3LYP Studie auf die Isomerisierung von 90 zu konzentriert, wird hier eher auf die Reaktionen und Reaktivitäten von eingeengangen. Folglich cyclisiert Dienin zu Isobenzol, das via racemisiert (Abb. 61).

![Diagramm](image_url)

Abbildung 61. Cyclisierung von Dienin zu den Isobenzolen (S)-90 und (R)-90, die durch den Biradikal-ÜZ verbunden sind
Die Barriere zwischen 89 und 90 ist 29.2 kcal mol⁻¹ auf BLYP/6-31G* und 31.7 kcal mol⁻¹ auf BD(T)/cc-pVDZ Niveau, was mit dem experimentellen Wert von 30.3 kcal mol⁻¹ sehr gut übereinstimmt (Tab. 17). Die Bildungsenthalpie des Zwischenproduktes wurde experimentell mit 20.4 kcal mol⁻¹ bestimmt und korreliert damit am besten mit den Werten für das Biradikal 91 (BLYP: 18.5 kcal mol⁻¹, BD(T): 17.1 kcal mol⁻¹). Allerdings konnten erweiterte Berechnungen mit mehreren verschiedenen Methoden [BLYP, G96LYP, BPW91, HF, MP2, CASSCF(8,8) mit einem 6-31G* Basissatz] zeigen, daß das planare 91 wirklich ein Übergangszustand ist (NImag = 1), in dem der imaginäre Vektor und zusätzliche IRC (intrinsic reaction coordinates) Berechnungen darauf hindeuten, daß sich die allenischen Wasserstoffatome aus der Ebene heraus zu einem verdrehten Allen bewegen. Folgt man dem Pfad des Diederwinkels dieser Wasserstoffatome von 0° (91) bis 98° (90) indem man den Winkel konstant hält, den Rest des Moleküls mit BLYP/6-31G* optimiert und anschließend BD(T)/cc-pVDZ Einzelpunktenergien darauf berechnet, so zeigt sich die Natur des Übergangszustandes ohne jeden Zweifel (Abb. 62). Der Triplet-Zustand liegt 1.9 kcal mol⁻¹ über dem offenschaligen Singulett und ist ein echtes Minimum. Zusätzlich zeigt eine IRC Berechnung von ÜZ 149, daß 89 und Allen 90 miteinander verbunden sind.

Abbildung 62. Singulett (rot) und Triplet (blau) Energiehyperflächen von 90 in Abhängigkeit vom Diederwinkel. Alle Punkte sind BD(T)/cc-pVDZ//BLYP/6-31G* Einzelpunktenergien
Diese Situation erinnert an die Enantiomerisierung von 1,2,4,6-Cycloheptatetraen 150 via das Singulett Cycloheptatrienyliden 151 (Abb. 63).206-208 Das Carben 151 kann als Einzentren-Biradikal angesehen werden, das lange Zeit als Intermediat galt. Jetzt ist allerdings bekannt, daß nur der Triplett-Zustand ein Intermediat, alle Singuletts jedoch Übergangszustände sind.

\begin{center}
\includegraphics[width=0.5\textwidth]{image63.png}
\end{center}

\textbf{Abbildung 63.} Racemisierung von 1,2,4,6-Cycloheptatetraen 150 über das planare Cycloheptatrienyliden 151

Im Gegensatz zu früheren Berechnungen liegt der Biradikal-ÜZ 91 höher in der Energie (5.9 kcal mol-1 auf BLYP und 7.9 kcal mol-1 auf BD(T) über 90 verglichen mit ~2 kcal mol-1), die Racemisierung findet jedoch immer noch schnell statt.204,205 Die Differenz von ca. 10 kcal mol-1 zwischen Theorie und Experiment ist jedoch noch nicht geklärt, deshalb scheinen mehr Experimente zur Cyclisierung von 89 nötig. Für die Isomerisierung von 90 zu 96 sind mehrere Reaktionspfade denkbar (Abb. 64):

- Direkte [1,5]-Wasserstoffverschiebung vom sp3-hybridisierten zum allenischen Kohlenstoff \textit{via} Übergangszustand 154 (Pfad 1)
- [1,2]-Wasserstoffverschiebung vom sp3-hybridisierten Kohlenstoff \textit{via} ÜZ 153 zu Biradikal-Intermediat 159 und anschließendem [1,4]-H Shift \textit{via} 160 zu 96 (Pfad 2)
- [1,2]-Wasserstoffverschiebung vom sp3-hybridisierten Kohlenstoff \textit{via} ÜZ 152 zum allenischen Kohlenstoff unter Bildung des Intermediats 156/157 und anschließendem [1,2]-H Shift \textit{via} 158 zu 96 (Pfad 3)
- [1,2]-Wasserstoffverschiebung des allenischen Wasserstoffs \textit{via} ÜZ 155 zum selben Intermediat 156/157 und anschließendem [1,2]-H Shift \textit{via} 158 zu 96 (Pfad 4)

Wie bereits erwähnt, ist Pfad (3) der energetisch günstigste. Mit einer Barriere von 38.8 kcal mol-1 für BLYP und 38.4 kcal mol-1 für BD(T) ausgehend von 89 ergibt sich eine sehr gute Übereinstimmung mit dem experimentellen Wert von 40.5 kcal mol-1. Die Barriere des vielleicht offensichtlichsten Pfades (1) ist noch ~16 kcal mol-1, die von Pfad (4) mehr als 34 kcal mol-1 höher als die Barriere für Pfad (3). Die erste Barriere in Pfad (2) ist nur ~5 kcal
mol\(^{-1}\) höher als in (3), eine zweite Barriere von jedoch mehr als 26 kcal mol\(^{-1}\) höher macht diese Reaktion ebenfalls energetisch ungünstig.

Die Struktur des Intermediats 156/157 ist schwer zu charakterisieren. Die BLYP Energien scheinen auf das Biradikal 156 hinzudeuten, während die BD(T)-Daten auf die carbenoide Struktur 157 als Grundzustand hinweisen. Weil sich die Energiedifferenzen innerhalb der Fehlerraten der Berechnungen befinden ist eine klare Aussage nicht möglich. Da die Singulett-Triplett-Lücke aber nur 1.9 kcal mol\(^{-1}\) groß ist, scheint eine biradikalische Beschreibung des Zwischenproduktes angezeigt. Die Barriere des zweiten [1,2]-H Shiftes ist sehr klein (BLYP: 4.4 kcal mol\(^{-1}\) über 156; BD(T): 0.4 kcal mol\(^{-1}\) über 157) und war deshalb experimentell nicht zu bestimmen. Die Gesamt-Reaktionsenthalpie der Cycloisomerisierung von 89 zu 96 (Expt.: –64.9 kcal mol\(^{-1}\)) stimmt wiederum gut mit den berechneten Werten überein (BLYP: –65.1 kcal mol\(^{-1}\) und BD(T): –67.9 kcal mol\(^{-1}\)).

Abbildung 64. Isomerisierungs-Pfade von Isobenzol 90 zu Benzol 96
Tabelle 17. Ergebnisse der berechneten Energien für die Cycloisomerisierung von 89 verglichen mit experimentellen Daten (alle Enthalpien in kcal mol⁻¹).

<table>
<thead>
<tr>
<th>Struktur</th>
<th>(\Delta_{H_{298}}/\Delta_{H^F_{623}}) BLYP/6-31G⁺</th>
<th>(\Delta_{H_{298}}/\Delta_{H^F_{623}}) BD(T)/cc-pVDZ</th>
<th>Experiment²⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>149</td>
<td>29.2</td>
<td>31.7</td>
<td>30.3</td>
</tr>
<tr>
<td>90</td>
<td>12.6</td>
<td>7.9</td>
<td>20.4</td>
</tr>
<tr>
<td>91</td>
<td>18.5</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>38.8</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>44.1</td>
<td>45.8</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>58.5</td>
<td>54.6</td>
<td>40.5</td>
</tr>
<tr>
<td>155</td>
<td>74.4</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>19.8</td>
<td>22.0</td>
<td>—</td>
</tr>
<tr>
<td>157</td>
<td>20.6</td>
<td>21.3</td>
<td>—</td>
</tr>
<tr>
<td>158</td>
<td>24.2</td>
<td>21.7</td>
<td>—</td>
</tr>
<tr>
<td>159</td>
<td>21.5</td>
<td>22.6</td>
<td>—</td>
</tr>
<tr>
<td>160</td>
<td>65.3</td>
<td>58.8</td>
<td>—</td>
</tr>
<tr>
<td>96</td>
<td>−65.1</td>
<td>−67.9</td>
<td>−64.9</td>
</tr>
</tbody>
</table>

Die weitere Isomerisierung zu Naphthalin 164 findet ebenfalls über zwei aufeinanderfolgende [1,2]-Wasserstoffverschiebungen statt. Die Barrieren der anderen Reaktionspfade sind zu hoch, als daß sie eine Rolle im H-Transfer spielen könnten. Die höhere Barriere des zweistufigen Shifts (LYP: 44.1 kcal mol⁻¹, BD(T): 46.0 kcal mol⁻¹) liegt 6 kcal mol⁻¹ über der entsprechende des Stammsystems, was eine erhöhte Reaktions- temperatur bedeutet. Das Zwischenprodukt 165/166 stellt wiederum ein Problem dar (ein Biradikal 165 auf LYP, auf BD(T) aber ein Carben 166). Die Barriere zwischen 165/166 und 164 ist sehr niedrig und kann experimentell nicht bestimmt werden. Die Gesamt- Reaktionsenthalpie ist ein wenig kleiner als die der Stammreaktion (~60 kcal mol⁻¹ vs. ~67 kcal mol⁻¹), da im Edukt 161 schon ein Aromat vorhanden ist. Während 89 die volle aromatische Stabilisierungsenergie beim Ausbilden von 96 bekommt, ist bei 161 nur ein Teil der Energie zugänglich wenn aus dem schon aromatischen 161 Naphthalin 164 entsteht.

Tabelle 18. Ergebnisse der berechneten Energien für die Cycloisomerisierung von 161 (alle Enthalpien in kcal mol⁻¹)

<table>
<thead>
<tr>
<th>Struktur</th>
<th>(\Delta R H_{298}/\Delta H^2_{298}) LYP/6-31G*</th>
<th>(\Delta R H_{298}/\Delta H^2_{298}) BD(T)/cc-pVDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>161→162</td>
<td>32.1</td>
<td>36.4</td>
</tr>
<tr>
<td>162</td>
<td>25.3</td>
<td>25.5</td>
</tr>
<tr>
<td>163</td>
<td>22.8</td>
<td>23.4</td>
</tr>
<tr>
<td>162→165</td>
<td>44.1</td>
<td>46.0</td>
</tr>
<tr>
<td>165</td>
<td>20.8</td>
<td>21.2</td>
</tr>
<tr>
<td>166</td>
<td>21.8</td>
<td>20.7</td>
</tr>
<tr>
<td>165→164</td>
<td>24.8</td>
<td>22.0</td>
</tr>
<tr>
<td>164</td>
<td>−59.3</td>
<td>−60.1</td>
</tr>
</tbody>
</table>
Ringspannung. In Analogie zu den Endiinen 99a-h sollten die cyclischen Dienine 146a-h in ihrer Reaktivität stark von der Ringspannung beeinflußt werden. Wie experimentell bekannt, cyclisieren die neun- und zehngliedrigen Endiin-Ringe 99c und 99d bereits bei Raumtemperatur, während das Stammsystem hohe Temperaturen benötigt (t_{1/2} ≈ 1h bei 155 °C).32,33,119 Der Grund für die erhöhte Reaktivität ist der Abbau von Ringspannung in den Edukten hin zu den weniger gespannten Produkten. Entsprechend sollten zumindest die kleineren (und damit gespannteren) Dienine 146 bei niedrigeren Temperaturen cyclisieren als das Stammsystem 89.

Die folgende Untersuchung behandelt ausschließlich die (E,Z)-carbocyclischen Dienine 146a-h und deren Cyclisierungspfade, die zu den Benzocycloalkenen 147a-h führen, da diese Spezies in einer anderen Arbeitsgruppe synthetisiert und untersucht worden ist. Zu Vergleichszwecken wurden nur die Strukturen (Z,Z)-146a-h berechnet. Während 146a und 146b viel stabiler in der (Z,Z)- als in der (E,Z)-Konformation sind (38.2 und 16.1 kcal mol⁻¹), sind 146c und 146d nur noch wenig stabiler in der (Z,Z)-Form (7.7 und 2.9 kcal mol⁻¹). Für 146e haben beide Isomere nahezu die gleiche Energie, während für die größeren Ringe 146f-h die (E,Z)-Konformation die stabiler ist.

Die (E,Z)-Isomere 146a-h können in der cis- und in der trans-Form auftreten (Abb. 66), wobei die kleinen Ringe erstere, die großen hingegen letztere Form bevorzugen. Die Cyclisierung zu 168a-h kann allerdings nur vom cis-Konformer aus stattfinden. Wie Rechnungen an dem 14-gliedrigen Ring 146h zeigen, ist die trans-Form nur 1.4 kcal mol⁻¹ stabiler als die cis-Form, und die Barriere für die Umwandlung der Konformere ineinander beträgt nur 5.6 kcal mol⁻¹. Da 146h als größter Ring natürlich die stabilste trans-Form besitzt, bevorzugen die kleineren Ringe die cis-Konformation oder haben eine niedrigere Barriere als 146h. Das bedeutet, daß die cis/trans-Isomerisierung vor der eigentlichen Cyclisierung kinetisch vernachlässigt werden kann.

![Abbildung 66. Dienine 146a-h in cis- und trans-Konformation](image-url)
Generell ergeben die \((E,Z)\)-Isomere 146a-h zunächst die trans-Allene trans-168a-h über die Übergangszustände 167a-h, während die \((Z,Z)\)-Isomere von 164a-h die cis-Allene cis-168a-h ergeben. Die zwei diastereomeren Formen der Allene 168a-h sind über die Biradikal-ÜZ 169a-h miteinander verbunden (Abb. 67). Die trans-Allene 168a-h gehen dann durch \([1,2]\)-H Shift in die Intermediate 171a-h über, die durch eine zweite \([1,2]\)-H Verschiebung zu den entsprechenden Benzocycloalkenen 147a-h reagieren. Da die zweiten \([1,2]\)-H Shifte eine wesentlich niedrigere Barriere haben als die ersten, sind sie kinetisch nicht relevant und werden deshalb nur in Tabelle 19 erwähnt.

Abbildung 67. Die Cyclisierung der cyclischen Dienine 146a-h

Die Reaktionen des sieben- und achtgliedrigen Dienins 146a und 146b sind Spezialfälle und müssen separat von den anderen Ringen behandelt werden. Ein trans-Allen kann aus 146a wegen der großen Ringspannung eines hypothetischen trans-konfigurierten Cyclopropanringes nicht ausgebildet werden. Aus demselben Grund kann es auch den ÜZ 169a nicht geben. Da die Reaktion zu 171a nur ausgehend von trans-168a möglich ist, kann diese Reaktion nicht stattfinden und soll deshalb nicht weiter betrachtet werden. Das achtgliedrige 146b ist in der Lage das trans-Allen 168b auszubilden, ist jedoch ebenfalls hochgespannt, was die relativ hohe Barriere von 28.0 kcal mol\(^{-1}\) und eine Reaktionsenthalpie von 27.8 kcal mol\(^{-1}\) verständlich macht. Die Barriere des ersten \([1,2]\)-H Shift ist mit 37.0 kcal mol\(^{-1}\) etwas geringer als bei der Stammreaktion, was 146b etwas reaktiver als 89 macht.

Der neungliedrige Ring 146c ist mit einer Cyclisierungsbarriere von 20.2 kcal mol\(^{-1}\) und der H-VerschiebungsbARRIERE von 26.7 kcal mol\(^{-1}\) wesentlich reaktiver als 89. Nur die
Energien des Allens \textit{trans-168c} (14.4 kcal mol\(^{-1}\)) und 90 sind vergleichbar aufgrund der zusätzlichen Ringspannung des \textit{trans}-konfigurierten fünfgliedrigen Cycloalkenringes in 168c (Abb. 68). Die Cyclisierungsbarriere des zehngliedrigen 146d (22.9 kcal mol\(^{-1}\)) ist wenig höher als die von 146c, während die H-Shift-Barriere mit 34.3 kcal mol\(^{-1}\) schon einen großen Unterschied zu der von 146c aufweist, jedoch immer noch weit unterhalb der von 89 liegt. Das Allen \textit{trans-168d} hat kaum zusätzliche Ringspannung durch die \textit{trans}-Konfiguration des Alkylrings und liegt deshalb unterhalb von \textit{trans-168c}. Mit 12.1 kcal mol\(^{-1}\) ist \textit{trans-168d} das energetisch günstigste aller Allene 168. Der elfgliedrige Ring 146e hat nahezu dieselben Energien wie das Stammssystem. Mit den Barrieren von 28.1 kcal mol\(^{-1}\) und 39.5 kcal mol\(^{-1}\) für Cyclisierung und H-Verschiebung ist 146e nur wenig reaktiver als 89. Alle anderen cyclischen Dienine 146f-h haben höhere Barrieren als das Stammssystem und sind deshalb weniger reaktiv.

\[\Delta G_{298} \text{ (kcal mol}^{-1}\text{)} \]

\begin{align*}
\text{Reaktionskoordinate} & \quad \text{96} \\
\text{147h} & \quad \text{147g} \\
\text{147f} & \quad \text{147e} \\
& \quad \text{147d} \\
& \quad \text{147c}
\end{align*}

Abbildung 68. Energiehyperflächen der Cycloisomerisierungen von 146c-h to 147c-h
Tabelle 19. Ergebnisse der berechneten Energien (ΔG298) für die Cycloisomerisierung von 146b-h (in kcal mol-1)

<table>
<thead>
<tr>
<th>Ringgröße</th>
<th>Struktur</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>Stamm-system</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>146</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>167</td>
<td>28.0</td>
<td>20.2</td>
<td>22.9</td>
<td>28.1</td>
<td>37.3</td>
<td>38.6</td>
<td>44.5</td>
<td>32.4</td>
</tr>
<tr>
<td>10</td>
<td>\textit{trans}-168</td>
<td>27.8</td>
<td>14.4</td>
<td>12.1</td>
<td>15.1</td>
<td>20.2</td>
<td>22.4</td>
<td>30.7</td>
<td>14.9</td>
</tr>
<tr>
<td>11</td>
<td>169</td>
<td>—</td>
<td>—</td>
<td>13.8</td>
<td>24.3</td>
<td>33.5</td>
<td>37.5</td>
<td>42.4</td>
<td>21.1</td>
</tr>
<tr>
<td>12</td>
<td>170</td>
<td>37.0</td>
<td>26.7</td>
<td>34.3</td>
<td>39.5</td>
<td>51.4</td>
<td>56.2</td>
<td>62.1</td>
<td>42.7</td>
</tr>
<tr>
<td>13</td>
<td>171</td>
<td>15.9</td>
<td>9.5</td>
<td>14.5</td>
<td>21.4</td>
<td>29.2</td>
<td>34.8</td>
<td>42.6</td>
<td>21.9</td>
</tr>
<tr>
<td>14</td>
<td>172</td>
<td>23.1</td>
<td>13.0</td>
<td>19.4</td>
<td>24.7</td>
<td>37.7</td>
<td>41.3</td>
<td>45.8</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>147</td>
<td>−65.8</td>
<td>−76.7</td>
<td>−70.1</td>
<td>−64.8</td>
<td>−49.8</td>
<td>−47.1</td>
<td>−43.7</td>
<td>−62.1</td>
</tr>
</tbody>
</table>

Experimentelle Ergebnisse. Die 1,3-Cyclodien-5-ine 146d-h konnten in Zusammenarbeit mit der Arbeitsgruppe von Herrn Prof. Hopf in einer fünfstufigen Synthese als farblose, flüchtige Flüssigkeiten in Gesamtausbeuten zwischen 2 und 22 % erhalten werden.209

\[\text{Abbildung 69. Synthese der 1,3-Cyclodien-5-ine 146d-h: a) (COCl)}\textsubscript{2}, \text{DMSO, CH\textsubscript{2}Cl\textsubscript{2}, NEt\textsubscript{3}, −60°C; b) \text{[1,3]Dioxolan-2-ylmethyl-triphenyl-phosphoniumbromid, KO-tBu, THF, RT; c) n-BuLi, Diethylether, −50°C, DMF, −70°C, d) TiCl\textsubscript{3}(DME)}\textsubscript{1.5}, Zn/Cu, DME, Rückfluß}\]

Erste Experimente zur Thermocyclisierung von 146d-h wurden in \textit{o-}C\textsubscript{6}D\textsubscript{4}Cl\textsubscript{2}-Lösung durchgeführt und NMR-spektroskopisch überwacht. Die Messungen zeigen deutlich eine Korrelation zwischen Ringgröße (und deshalb auch Ringspannung) und der Cyclisierungstemperatur. 1,3-Cyclodecadien-5-in 146d cyclisiert bereits bei Raumtemperatur, während die höheren Homologe wie erwartet höhere Temperaturen benötigen. Bei 1,3-Cyclotetradecadien-5-in 146h konnte bis 210°C (Sdp. von \textit{o}-Dichlorbenzol) keine Cyclisierung beobachtet werden (Tab. 20).
Erste kinetische Messungen für 146d-f ergaben die Halbwertszeiten und damit die Reaktionsbarrieren für die Cyclisierung (Tab. 20). Wie erwartet handelt es sich dabei um Reaktionen erster Ordnung. Der Vergleich der experimentellen mit den berechneten Daten zeigt, daß die Cyclisierungs-Barrieren mit dem Experiment sehr gut übereinstimmen. Die anschließenden [1,2]-H Shifte, die alle höhere Barrieren haben als die Cyclisierung selbst, sind jedoch in der Berechnung viel zu hoch, um die Bildung von Benzocycloalkanen unterhalb von 200°C zuzulassen. Dieses Problem ist noch nicht vollständig gelöst. Eine Möglichkeit könnte sein, daß in den cyclischen Systemen 146a-h aufgrund der aliphatischen Ketten andere Wasserstoff-Verschiebungen auftreten können als im Stammsystem. Um diese Fragen beantworten zu können, sind weitere experimentelle und theoretische Arbeiten notwendig.

Tabelle 20. Cyclisierungstemperaturen und Resultate der kinetischen Experimente für 146d-h

<table>
<thead>
<tr>
<th>Substanz</th>
<th>T_{min} [°C]</th>
<th>Temperatur T_{therm.} [°C (K)]</th>
<th>10^6 k [s^{-1}]</th>
<th>(\tau_{1/2}) [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>146d (CDCl₃)</td>
<td>r.t.</td>
<td>40 (313.15)</td>
<td>7.1 ± 0.3</td>
<td>27.0 ± 1.0</td>
</tr>
<tr>
<td>146e (o-C₆D₄Cl₂)</td>
<td>100</td>
<td>165 (438.15)</td>
<td>70 ± 5</td>
<td>2.8 ± 0.2</td>
</tr>
<tr>
<td>146f (o-C₆D₄Cl₂)</td>
<td>150</td>
<td>165 (438.15)</td>
<td>3.5 ± 0.1</td>
<td>55.0 ± 1.5</td>
</tr>
<tr>
<td>146g</td>
<td>Spuren bei 210°C</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>146h</td>
<td>keine Reaktion bis 210°C</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
2.4.4 Die Cyclisierung von Hexa-1,3,5-trien ("[n,6]-disrotatorische Cyclisierung")

Die Cyclisierung von Hexa-1,3,5-trien 7 wurde bei der Synthese von 7 aus 173 bei hohen Temperaturen entdeckt (Abb. 70).9,10 Als Nebenprodukt wurde dabei eine nicht unerhebliche Menge an 8 erhalten. Bei der thermischen Cyclisierung handelt es sich um einen disrotatorischen Vorgang, der für (E,Z,E)-Hexatriene 7 die entsprechenden cis-Cyclohexadiene 8 liefert.

\begin{center}
\[\text{173} \rightarrow \text{7} \rightarrow \text{8} \]
\end{center}

Abbildung 70. Darstellung und Cyclisierung von Hexa-1,3,5-trien 7

Stammsystem. Mit einer Barriere von \(28.4 \text{ kcal mol}^{-1}\) auf BLYP- und \(31.4 \text{ kcal mol}^{-1}\) auf BD(T)-Niveau wird das Experiment mit \(29.0 \text{ kcal mol}^{-1}\) gut reproduziert (Tab. 21).11 Damit benötigt 7 noch höhere Temperaturen zum Cyclisieren als die Bergman-Reaktion. Die Reaktionsenthalpie ist mit \(-8.3\) bzw. \(-15.5 \text{ kcal mol}^{-1}\) (Experiment: \(-15.2 \text{ kcal mol}^{-1}\))11 jedoch günstiger als die der drei zuvor beschriebenen, da mit 8 weder ein offenschaliges, noch ein gespanntes cyclisches System entsteht.

Benzannelierung. Durch den Einfluß der Benzannelierung wird die Cyclisierungsbarriere von 174 um \(-8 \text{ kcal mol}^{-1}\) angehoben und damit auch die Cyclisierungstemperatur im Vergleich zum Stammsystem gesteigert (Tab. 21). Der Effekt auf die Reaktionsenthalpie ist jedoch gravierender. Durch die Aufhebung der Aromatizität des Benzolringes durch das Ausbilden eines ortho-chinoiden Systems in 175 wird die Reaktion endotherm (BLYP: 3.8 kcal mol\(^{-1}\); BD(T): 0.2 kcal mol\(^{-1}\)) und zumindest nicht mehr vollständig ablaufen, da die Barrieren für hin und Rückreaktion praktisch gleich sind (Abb. 71).

\begin{center}
\[\text{174} \rightarrow \text{175} \]
\end{center}

Abbildung 71. Cyclisierung des benzannelierten 174
Tabelle 21. Barrieren und Reaktionsenthalpien ($\Delta_0 H$) der Cyclisierung der Triene 7 und 174 (in kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7→8</td>
<td>28.4</td>
<td>31.4</td>
</tr>
<tr>
<td>8</td>
<td>−8.3</td>
<td>−15.5</td>
</tr>
<tr>
<td>174</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>174→175</td>
<td>33.5</td>
<td>39.1</td>
</tr>
<tr>
<td>175</td>
<td>3.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>
2.4.5 Die Cyclisierung von Octa-1,2,4,6,7-pentaen

Dieses System ist bisher wenig untersucht und es existieren noch keine thermodynamischen Daten für die Cyclisierungen. Um so wichtiger ist es durch Berechnungen eine Vorhersage darüber zu machen, wie das Energieprofil für die Reaktion aussieht. Erste Hinweise auf den Cyclisierungsverlauf stammen von Bravermann, der die Cyclisierung des benzannelierten Endiallens 176 untersuchte und eine Cyclisierung mit anschließender H- bzw. D-Verschiebung unter Aromatisierung zu 177 beobachtete (Abb. 72).210 Neuere Erkenntnisse Stammen als Cyclisierungsprodukt 180 erhielt, das, wie er zeigen konnte, über die Zwischenstufe des Endiallens 179 reagierte (Abb. 72).211 Durch die fehlenden Wasserstoff-Atome in α-Position zu den Allen-Bindungen schlägt die Reaktion hier einen anderen Aromatisierungspfad unter Ausbildung eines Cyclobutenrings ein. Auf diesem Wege konnte Toda eine der längsten C–C-Einfachbindungen mit 1.72 Å darstellen.

Abbildung 72. Cyclisierungsreaktionen benzannelierter Endiallen-Derivate

Stammsystem. Die Beispiele deuten an, daß beide Reaktionen zunächst zu einer ortho-chinoide Zwischenstufe 95 cyclisieren, von wo aus dann zwei unterschiedliche Aromatisierungsschritte folgen (Abb. 73). Im Stammsystem 94, das experimentell bisher nur als trans-Verbindung bekannt ist, kann nur die Stufe zum Benzocyclobuten 147b folgen. Obwohl der Cyclisierungsschritt von 94 das ortho-Chinon 95 ergibt wird im Gegensatz zu
anderen ortho-chinoiden Stufen, die bisher besprochen wurden, keine Aromatizität zerstört oder herabgesetzt. Deshalb hat die Cyclisierung auch eine kleine Barriere (17.3 kcal mol⁻¹ für beide Methoden) und eine hohe Exothermie (BLYP: −39.7 kcal mol⁻¹; BD(T): −50.5 kcal mol⁻¹; Tab. 22). Der anschließende Aromatisierungsschritt unter Ausbildung des Cyclobutenringes 147b hat eine etwas höhere Barriere (~25 kcal mol⁻¹) ist aber durch die hohe Exothermie des ersten Schrittes leicht zu überwinden. Das aromatische Produkt 174b hat trotz der Ringspannung des viergliedrigen Ringes eine niedrigere Energie als das Zwischenprodukt 95 (BLYP: −50.0 kcal mol⁻¹; BD(T): −62.3 kcal mol⁻¹).

Das tetramethylsubstituierte Cyclisierungszwischenprodukt 181 aromatisiert jedoch wie im Experiment beobachtet²¹⁰ zu 182 und nicht zum Benzocyclobuten 183, da die Barriere zu 182 5.2 kcal mol⁻¹ niedriger ist als zu 183 und 182 11.0 kcal mol⁻¹ exothermer gebildet wird.

\[\text{182} \quad \rightarrow \quad \text{181} \quad \rightarrow \quad \text{183} \]

Abbildung 73. Cyclisierung des Endiallens 94 und Reaktionen des Tetramethyl-Zwischenproduktes 181

Benzannelierung. Auch das benzannelierte Endiallen 184 sollte mit einer Barriere von 18.7 kcal mol⁻¹ bei wenig Wärmeeinbringung cyclisieren (Tab. 22). Die Barriere ist nur geringfügig höher als im Stammsystem (1.4 kcal mol⁻¹), die Reaktionsenthalpie jedoch mehr als 10 kcal mol⁻¹, was auf die Aufhebung der Aromatizität in 185 zurückzuführen ist (Abb. 74). Die zweite Barriere ist mit 19.3 kcal mol⁻¹ ebenfalls etwas erhöht, jedoch immer noch kleiner als die Reaktionsenthalpie zu 185. Die Gesamtreaktionsenthalpie zu 186 ist mit −47.6 kcal mol⁻¹ nur ein wenig höher als beim Stammsystem, was auf den bereits in 184 vorhandenen Aromaten zurückzuführen ist.

\[\text{184} \quad \rightarrow \quad \text{185} \quad \rightarrow \quad \text{186} \]

Abbildung 74. Cyclisierung des benzannelierten Endiallen 184
Tabelle 22. Barrieren und Reaktionsenthalpien ($\Delta_0 H$) der Cyclisierung der Endiallene 94 und 184 (in kcal mol$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>94 \rightarrow 95</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>95</td>
<td>-39.7</td>
<td>-50.5</td>
</tr>
<tr>
<td>95 \rightarrow 174b</td>
<td>-14.4</td>
<td>-23.3</td>
</tr>
<tr>
<td>174b</td>
<td>-50.0</td>
<td>-62.3</td>
</tr>
<tr>
<td>184</td>
<td>0.0</td>
<td>—</td>
</tr>
<tr>
<td>184 \rightarrow 185</td>
<td>18.7</td>
<td>—</td>
</tr>
<tr>
<td>185</td>
<td>-28.4</td>
<td>—</td>
</tr>
<tr>
<td>185 \rightarrow 186</td>
<td>-9.1</td>
<td>—</td>
</tr>
<tr>
<td>186</td>
<td>-47.6</td>
<td>—</td>
</tr>
</tbody>
</table>
2.4.6 Die Cyclisierung von Hepta-1,2,4,6-tetraen

![Abbildung 75. Cyclisierung des instabilen Dienalls 92 ausgehend vom Vorläufermolekül 187](image)

Stammsystem. Das Stammsystem 92 hat mit 18.3 bzw. 19.4 kcal mol⁻¹ eine kleine Barriere und ist deshalb bei Raumtemperatur unbeständig. Mit einer Reaktionsenthalpie von –23.0 bzw. –31.5 kcal mol⁻¹ wird 93 hoch exotherm gebildet (Abb. 76, Tab. 23). Eine Weiterreaktion und Aromatisierung zu Toluol 189 ist thermodynamisch möglich, da die Enthalpie noch einmal 30 kcal mol⁻¹ abgesenkt würde. Tatsächlich wird bei der Reaktion in Spuren 189 gebildet. Die Barriere für die H-Übertragung ist jedoch fast 60 kcal mol⁻¹ hoch und eine thermische Bildung von 189 daher auszuschließen und eher ein katalytischer H-Transfer in Erwägung zu ziehen.

![Abbildung 76. Cyclisierung des Dienallen 92](image)

Benzannelierung. Die Barriere des benzannelierten 190 ist mit 19.5 kcal mol⁻¹ nur geringfügig höher als die des Stammsystems (1.2 kcal mol⁻¹). Der experimentelle Wert von 19.6 ± 0.56 kcal mol⁻¹ wird jedoch sehr gut reproduziert.213 Das Produkt 191 bildet sich mit –11.2 kcal mol⁻¹ immer noch exotherm, jedoch ist es 11.8 kcal mol⁻¹ energiereicher als 93 (Abb. 77, Tab. 23). Die Weiterreaktion zu 2-Methylnaphthalin 192 wird auch hier in Spuren
beobachtet, eine thermische Reaktion ist jedoch nicht möglich, obgleich die Barriere “nur” noch 47.5 kcal mol\(^{-1}\) beträgt.

Abbildung 77. Cyclisierung des benzannelierten Dienallen 190

Tabelle 23. Barrieren und Reaktionsenthalpien (\(\Delta H\)) der Cyclisierung der Dienallene 92 und 190 (in kcal mol\(^{-1}\))

<table>
<thead>
<tr>
<th></th>
<th>BLYP/6-31G*</th>
<th>BD(T)/cc-pVDZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>92→93</td>
<td>18.3</td>
<td>19.4</td>
</tr>
<tr>
<td>93</td>
<td>-23.0</td>
<td>-31.5</td>
</tr>
<tr>
<td>93→189</td>
<td>32.2</td>
<td>30.1</td>
</tr>
<tr>
<td>189</td>
<td>-56.1</td>
<td>-63.1</td>
</tr>
<tr>
<td>190</td>
<td>0.0</td>
<td>—</td>
</tr>
<tr>
<td>190→191</td>
<td>19.5</td>
<td>—</td>
</tr>
<tr>
<td>191</td>
<td>-11.2</td>
<td>—</td>
</tr>
<tr>
<td>191→192</td>
<td>36.3</td>
<td>—</td>
</tr>
<tr>
<td>192</td>
<td>-54.5</td>
<td>—</td>
</tr>
</tbody>
</table>
2.5 Schlußbetrachtung

Im Rahmen des ersten, theoretischen Teils dieser Arbeit konnte gezeigt werden, daß die Reaktion, die als Cope-Umlagerung bekannt ist, nur ein Mitglied einer großen Familie von Umlagerungen ist. Alle Reaktionen dieser Cope-Familie haben einen mehr oder weniger aromatischen, sechsgliedrigen Übergangszustand bzw. ein Zwischenprodukt oder Endprodukt gemeinsam. Die Zwischen- und Endprodukte sind größtenteils offenschalige, biradikalische Systeme, die normalerweise schwer, durch die Kombination der gewählten, theoretischen Niveaus (BLYP/6-31G* und BD(T)/cc-pVDZ) aber sehr gut beschrieben werden können. Ein Vergleich mit bekannten experimentellen Daten konnte die hervorragende Qualität der theoretischen Berechnungen zeigen, auf deren Grundlage präzise Voraussagen über bisher nicht bekannte Reaktionen gemacht wurden.

Die Cope-Familie kann in zwei Familienzweige unterteilt werden, die sich nur durch die Verbindung der Einzelelemente unterscheiden (Abb. 78). In Familienzweig 1 werden die Einzelbausteine durch eine Einfachbindung verknüpft, was eine Vielfalt an verschiedenen Edukten und Produkten ergibt, die über sechsgliedrige Zustände ineinander übergehen können. Bei Familienzweig 2 wird die Verbindung der Bausteine über eine Doppelbindung hergestellt, was die Anzahl und die Auswahl der Bausteine deutlich einschränkt. Beide Familienzweige wurden im Rahmen dieser Arbeit im Detail untersucht.

Abbildung 78. Schematische Darstellung der zwei Familienzweige der Cope-Familie
Der Familienzweig 1 der Cope-Familie konnte in drei Teile gegliedert werden, wovon eine Untergruppe ausschließlich $\pi\pi$-Biradikale bilden kann und deshalb auch keine Dreifachbindungen beinhaltet (Abb. 79). Die Reaktivität hängt dabei maßgeblich von der Stabilisierung des Zwischenproduktes ab, d.h. je besser das biradikalische Zwischenprodukt durch die exocyclischen Doppelbindungen stabilisiert wird, indem die π-Radikale delokalisiert werden, desto kleiner sind Barriere und Reaktionsenthalpie. Während 1 noch über einen konzertierten Prozeß bei hohen Temperaturen umlagert, findet die Cyclisierung von 54 zu 88 schon bei niedrigen Temperaturen und exotherm statt. Bei den Molekülen, die bei der Cyclisierung reine $\sigma\sigma$-Biradikale bilden können, die also Dreifachbindungen und Allen- bzw. Kumuleneinheiten direkt an der zu brechenden bzw. zu knüpfenden Bindung haben, zeigt sich ein ähnliches Bild (Abb. 79). Während 45 und 59 konzertiert umlagern, bildet 69 eine echte biradikalische Zwischenstufe mit kleiner Barriere. Die Stabilisierung der Biradikale ist in diesem Fall nicht ganz so simpel wie bei den $\pi\pi$-Biradikalen, kann aber über teilweise Aromatisierung durch die exocyclischen Doppelbindungen und durch die Bildung von Elektronomeren erklärt werden. Gemischte $\sigma\pi$-Zustände haben in der Regel Energien zwischen oder nahe den reinen Zuständen.
In Familienzweig 2 gibt es insgesamt sechs Umlagerungsprodukte (Abb. 80). Bei der Cyclisierung des Endiin 9 konnte neben der bekannten Bergman-Reaktion zu 1,4-Didehydrobenzol 10 noch zwei weitere Cyclisierungen entdeckt werden. Die experimentellen Werte der Bergman-Cyclisierung konnten dabei sehr gut reproduziert werden, die Reaktionen zu Didehydrofulven 97 und Didehydrodimethylencyclobuten 103 sind jedoch aufgrund fehlender Stabilisierung hoch endotherm und deshalb experimentell noch nicht beobachtet worden. Bei der Cyclisierung des Eninallen 11 konnte, neben den bekannten Myers-Saito- 12 und Schmittel-Produkten 121, ein weiterer Ringschluß zum siebengliedrigen Cycloheptatrien-Biradikal 126 gefunden werden. Dieser ist, wie die Schmittel-Reaktion, im Stammsystem
nicht zu beobachten, da der Myers-Saito-Pfad energetisch bevorzugt ist. Bei entsprechender Substitution kann es jedoch möglich sein, diesen Pfad, so wie bei der Schmittel-Cyclisierung, zur Hauptreaktion zu machen. Für die Hopf-Cyclisierung des Dienin 89 konnte der Cycloaromatisierungsmechanismus aufgeklärt werden, der mit den experimentell bestimmten Barrieren sehr gut übereinstimmt. Es wurden alle möglichen Reaktionspfade diskutiert und alle bis auf einen ausgeschlossen. Insbesondere konnte zweifelsfrei geklärt werden, daß das Intermediat in dieser Reaktion nicht das Biradikal 91, sondern das Isobenzol 90 ist. Die experimentelle Barriere und die Reaktionsenthalpie der Cyclisierung des Trien 7 konnten sehr genau berechnet werden, was wiederum für die Wahl der Methoden spricht. Die Cyclisierungen der, aufgrund der Instabilität der Edukte bisher nicht isolierten, Endiallen 94 und Dienallen 92 konnten beschrieben werden und thermische Folgereaktionen zu Benzocyclobuten 147b bzw. Toluol 189 daher bestätigt bzw. ausgeschlossen werden.

Abbildung 80. Cyclisierungen der Mitglieder des zweiten Cope-Familienzweigs

Abbildung 81. Cyclisierungen der benzannelierten Analoga des Familienzweigs 2

Abbildung 82. Cyclisierungen der cyclischen Analogä des Familienzweigs 2
Bei der Bergman-Reaktion konnte eindringlich demonstriert werden, daß die Substitution der acetylenischen Wasserstoffatome durch funktionelle Gruppen einen entscheidenden Einfluß auf die Reaktivität hat (Abb. 83). Substituenten mit \(\sigma \)-akzeptierenden und \(\pi \)-donierenden Eigenschaften erniedrigen die Barriere und Enthalpie, während \(\pi \)-akzeptierende und \(\sigma \)-donierende Substituenten diese erhöhen. So ist das Difluor-Endiin 100rr bei Raumtemperatur instabil und cyclisiert exotherm zum Bergman-Produkt 117rr, während die Barriere des Diboranyl-Endiin 100aa um 10 kcal mol\(^{-1}\), die Reaktionsenthalpie sogar um 25 kcal mol\(^{-1}\) erhöht ist. Zusätzlich zu den elektronischen sind noch sterische und Coulomb-Effekte zu berücksichtigen. Das Diphenylenendiin 100ee ist aufgrund seiner großen Substituenten im Bergman-Produkt 117ee sterisch gehindert und hat deshalb erhöhte Energiewerte. Im Diamino-Endiin 117ll ist der Substituent zwar recht klein und ein guter \(\sigma \)-Akzeptor, die beiden positiven Ladungen stoßen sich jedoch derart ab, daß Barriere und Enthalpie im Vergleich zum Stammsystem verdoppelt werden. Substitution eines vinylischen Wasserstoffatoms hat hingegen keine großen Auswirkungen auf die Energien.

Abbildung 83. Substituierte Endiine und ihre Cyclisierung

Abbildung 84. Gegenüberstellung von thermischer und elektrophil induzierter Cyclisierung des Endiin 18
3 Teil II: Experimente zur kationisch induzierten Cyclisierung

3.1 Grundlagen

Der elektrophile Angriff von Brom an C-C-Mehrfachbindungen gehört zu den bekanntesten und am besten untersuchten Reaktionen in der organischen Chemie. Die wichtigsten Vertreter sind die elektrophile Addition an Doppel- und Dreifachbindungen sowie die elektrophile Substitution an Aromaten (Abb. 85).214 Allen Reaktionen gemeinsam ist die Ausbildung eines Bromoniumions in einem ersten Schritt, das dann entsprechend unter Addition bzw. Eliminierung eines Nucleophils weiterreagiert.

\begin{center}
\includegraphics[width=\textwidth]{bromonium.png}
\end{center}

\textbf{Abbildung 85.} Bromoniumionen bei elektrophilen Angriffen

Die elektrophile Addition von Brom an eine Doppelbindung ist im Allgemeinen \textit{trans}-selektiv, da der Angriff auf derselben Seite sterisch gehindert ist und die Addition daher von der anderen Seite aus erfolgt.214 Bei den Alkinen gilt dies entsprechend, so daß sich, je nach Substitution, vorwiegend \textit{trans}-Dibromalkene bei der Addition von einem Äquivalent Brom bilden. Bei arylsubstituierten Alkinen ist die Situation allerdings etwas anders. Bei der Addition von "Br+" an Diphenylacetylen 196 entsteht kein Bromoniumion 197, sondern das mesomeriestabilisierte Carbenium-Ion 198, das dann unter Addition von Br- ein Gemisch aus \textit{cis}- 199 und \textit{trans}-Dibromstilben 199 ergibt (Abb. 86).215
Für die Addition von Brom an Moleküle mit benachbarten Dreifachbindungen, wie z.B. im 1,2-Bis(phenylethynyl)benzol 18, könnte man dem Additionsmechanismus nach Produkten des Typs 200 erwarten, die durch die Reaktion von Brom mit einer Dreifachbindung entstehen und die zweite acetylenische Bindung unberührt lassen (Abb. 87). Wie jedoch experimentell bekannt ist, interagieren die beiden Dreifachbindungen beim Erhitzen miteinander und bilden das Biradikal 19, das unter Abstraktion von zwei H-Atomen von einem geeigneten Donor 2,3-Diphenylacetylen ergibt (Bergman-Reaktion).12,14,48 Bei dem elektrophilen Angriff von Brom ist deshalb davon auszugehen, daß auch dort die benachbarten Dreifachbindungen miteinander reagieren und kein 200 erhalten wird. Theoretisch ist die Bildung von drei verschiedenen Ringsystemen durch den Angriff von "Br+" auf eine der Dreifachbindungen und die anschließende Faltung und Interaktion mit der zweiten Dreifachbindung möglich (Abb. 87). Tatsächlich konnte Whitlock zeigen, daß weder das Bergman-ähnlich Produkt 194, noch das viergliedrige 201 gebildet wird, sondern ausschließlich das Diphenylbenzofulven-Produkt 195 als eine Mischung aus den (E)- und (Z)-Isomeren.45 Ähnliche Produkte wurden auch durch elektrophile Addition von HBr und I2, sowie den nucleophilen Angriff von BuLi und radikalische Reaktionen mit Lithium und PhSH erhalten.45 Die Benzofulven-Cyclisierung scheint also eine prinzipielle Reaktion von 18 zu sein, unabhängig von der angreifenden Spezies.
Durch zusätzliche Versuche mit HBr konnte gezeigt werden, daß der elektrophile Angriff auf die Dreifachbindung kernnah und nicht substituentennah erfolgt (Abb. 88).45 Daher ist auch die Bildung von 201 (ganz abgesehen von der Ringspannung) nicht möglich. Für den Angriff, die Faltung der Bindung und die Interaktion mit der zweiten Dreifachbindung wurde ein konzertierter Schritt vorgeschlagen, in dem sich die Br–C- und die neue C–C-Bindung simultan bilden. Das gebildete resonanzstabilisierte Carbenium-Ion 202 kann dann von dem Nucleophil (Br⁻) von zwei Seiten angegriffen werden, was auch hier die Mischung aus cis- und trans-195 erklärt. Bromierungsversuche eines 1:1 Gemisches von 18 und Diphenylacetylen 196 mit einem Äquivalent Brom ergaben ausschließlich 195 und unreagiertes 196 als Produkte, jedoch kein Dibromstilben 199.45 Diese Beobachtung läßt die zwei Schlüfsfolgerungen zu, daß die Interaktion in 18 eindeutig die Reaktion gegenüber der normalen Addition beschleunigt, und daß der geschwindigkeitsbestimmende Schritt nicht die Trennung der Ladungen im Br₂ zu "Br⁺" und Br⁻ ist, sondern der elektrophile Angriff.

Abbildung 87. Mögliche Cyclisierungsarten von 1,2-Bis(phenylethynyl)-benzol 18
Eine ähnliche Cyclisierungsreaktion wurde für das 1,8-Bis(phenylethynyl)naphthalin 203 beobachtet. Obwohl die Acetylen-Gruppen hier ein C-Atom weiter voneinander entfernt sind und sich deshalb ein sechsgliedriger Ring 204 bilden könnte, wird wiederum nur die Cyclisierung zu einem fünfgliedrigen Ring beobachtet (Abb. 89). Für diesen Angriff wurde ein anderes Bromoniumion 205 als Zwischenprodukt vorgeschlagen, aus dem dann aus sterischen Gründen nur 206 entstehen sollte. Ob es sich bei dem Produkt aber wirklich um 206 oder eins seiner Isomere handelt, konnte damals nicht zufriedenstellend geklärt werden.
Die Reaktion von 1,8-Dipropinyl-naphthalin 207 mit Brom ergibt keine Cyclisierung, sondern ausschließlich das Tetrabromid 208, unabhängig von der Menge des zugegebenen Broms (Abb. 90). Zumindest im Naphthalin-Fall scheint die Anwesenheit der aromatischen Ringe an den Acetylen-Einheiten essenziell für eine Cyclisierung zu sein.

![Abbildung 90. Die Reaktion von 1,8-Dipropinyl-naphthalin 207 mit Brom.](image)

Bei einer Erweiterung des Endiin-Gerüstes von 18 zu 2,2'-Bis(phenylethinyl)diphenylacetylen 209 sollte sich ein weiterer Cyclisierungsschritt im Anschluß an den von 18 ergeben und somit eine Kaskaden-"Zipper"-Reaktion ablaufen. Das Ergebnis bei der Addition eines Äquivalents Brom war jedoch nicht das gewünschte. Es wurde eine Mischung der beiden von der einfachen Cyclisierung abgeleiteten Benzofulvene 210 und 211 erhalten, zusammen mit dem Edukt und einem Tetrabrom-Produkt (Abb. 91). Mit einem hohen Überschuss an Brom konnte das Tetrabromid rein erhalten werden und ihm wurde die Struktur 212 zugeordnet. Die Zipper-Reaktion läuft offensichtlich nicht ab, da als Zwischenprodukt das energetisch ungünstige Kation 213 gebildet werden müßte, das nicht resonanzstabilisiert ist.

![Abbildung 91. Cyclisierung von 2,2'-Bis(phenylethinyl)diphenylacetylen 209](image)

\[\text{Abbildung 92. Cyclisierung von [4.4]Orthocyclopha-1,3,11,13-tetrain 214} \]

Ein Beispiel für eine Methode zur Synthese von sechsgliedrigen Ringen durch elektrophil induzierte Cyclisierung ist die Reaktion des I(py)$_2$BF$_4$/HBF$_4$ Systems mit 1,4-Diphenylbut-1-in 217 bzw. 1,4-Diphenylbut-1-en 218. Hierbei wird zunächst "I" an die Doppel- bzw. Dreifachbindung addiert, und das so entstandene Kation greift dann den aromatischen Ring nach einem S$_E$Ar-Mechanismus an, wobei die entsprechenden Benzocyclohexadien- 219 bzw. Benzocyclohexen-Derivate 220 entstehen (Abb. 93). Im Falle von (Z)-218 entsteht sogar stereoselektiv nur cis-220. Obwohl bei der Cyclisierung von 218 theoretisch auch ein fünfgliedriger Ring entstehen könnte, konnte nur 220 als Produkt nachgewiesen werden. Auch im Falle einer unsubstituierten Doppelbindung wird nur der sechsgliedrige Ring erhalten. Für Cyclisierungen, die einen S$_E$Ar-Schritt enthalten, ist die Reaktion zu Benzocyclohexen-Derivaten anscheinend ein allgemeines Prinzip.

\[\text{Abbildung 93. Cyclisierungen von 1,4-Diphenylbut-1-in 217 und 1,4-Diphenylbut-1-en 218} \]
Die gegebenen Beispiele zeigen, daß die Interaktion zwischen verschiedenen ungesättigten C-Atomen während eines elektrophilen Angriffes durchaus zu sehr unterschiedlichen Ergebnissen führen können. Um eine Systematik in die verschiedenen Reaktionen zu bringen und um eine Basis zu haben, auf der es möglich ist, Vorhersagen über die Reaktivität und Selektivität bei der Cyclisierung zu machen, wurden eine Reihe mehrfach ungesättigter Verbindungen dargestellt und der elektrophilen Reaktion mit Brom unterworfen. Ältere Ergebnisse wurden teilweise reproduziert, um deren NMR-spektroskopische Eigenschaften zu bestimmen und zum Vergleich bei höheren Homologen heranzuziehen. Im Folgenden werden zunächst die Synthesen der ungesättigten Edukte beschrieben, bevor im Weiteren auf deren Cyclisierungsverhalten gegenüber Brom eingegangen wird.
3.2 Synthese der Cyclisierungs-Ausgangsverbindungen

Abbildung 94. Der Katalysecyclus der Sonogashira-Reaktion

Für die Reihe der benzannelierten Enpolyne wurden zunächst die für die Sonogashira-Kupplung notwendigen Halogenbenzole nach literaturbekannten Verfahren dargestellt, sofern sie nicht erwerblich waren. Durch die Sandmeyer-Reaktion der entsprechenden bromierten Aniline 225, 226 und 227 und anschließendes Umkrystallisieren aus Ethanol, konnten 1,2,3-, 228 und 1,2,4-Tribrombenzol 229 sowie 1,2,3,5-Tetramethylbenzol 230 in guten bis mäßigen Ausbeuten erzielt werden (Abb. 95).221 Das 1,2,3,4-Tetramethylbenzol 231 konnte aus Hexabrombenzol 232 in 66% Ausbeute durch Erhitzen mit einem großen Überschuß Hydrazin in Ethanol bis zum Verschwinden des schlecht löslichen 232 dargestellt werden.222 Während bei Hexachlorbenzol durch diese Reaktion zwei Chloratome in para-Stellung entfernt werden, sind es bei Hexabrombenzol aus sterischen Gründen zwei Bromatome in ortho-Stellung.222
Durch die Umgriñardisierung von Phenylmagnesiumbromid mit Hexabrombenzol 232 und anschließende saure Aufarbeitung wurde 1,2,3,4,5-Pentabrombenzol 233 in 18% Ausbeute erhalten.223

![Chemische Reaktionen](attachment:chem_reactions.png)

Abbildung 95. Darstellung der Brombenzole für die Reihe der benzannelierten Enpolyinen

![Sonogashira-Kupplung](attachment:sonogashira.png)

Abbildung 96. Sonogashira-Kupplung der Brombenzole
Abbildung 97. Alle Phenylethinyl-Benzole und ihre Ausbeuten bei der Sonogashira-Reaktion
Durch Sonogashira-Kupplung aus den entsprechenden Bromiden und Phenylacetylen konnten auch die literaturbekannten Verbindungen 2-Vinylphenylacetylen 243 (88%) und 2-(Phenylethyl)-biphenyl 24 (79%) dargestellt werden (Abb. 98). Das 2-Brombiphenyl wurde durch Sandmeyer-Reaktion aus 2-Aminobiphenyl erhalten.221

\begin{abbn}{98. Nach der Sonogashira-Vorschrift dargestellt: 2-Vinylphenylacetylen 243 und 2-(Phenylethyl)-biphenyl 24}

Aus 1-Bromnaphthalin 244 und Phenylacetylen wurde 1-(Phenylethyl)naphtalin 245 in 88% Ausbeute erhalten (Abb. 99). Das 1,8-Bis(phenylethyl)naphtalin 203 konnte ausgehend von 1,8-Diaminonaphthalin 246, wie in der Literatur beschrieben, dargestellt werden.44 Dafür wurde 246 zunächst durch Sandmeyer-Reaktion mit 37% Ausbeute in das 1,8-Diodnaphtalin 247 überführt224 und anschließend die Sonogashira-Kupplung mit Phenylacetylen durchgeführt, was 203 in einer Ausbeute von 22% ergab. Die bekannte, jedoch noch einmal selbst vermessene Kristallstruktur von 203 zeigt, daß die beiden Phenylringe um 60° bzw. 63° aus der Ebene des Naphthalin herausgedreht sind (Abb. 99).

\begin{abbn}{99. Darstellung von 1-(Phenylethyl)naphtalin 245 und 1,8-Bis(phenylethyl)naphtalin 203 und die Kristallstruktur von 203.}
Um das 1-(Phenylethyl-2'-ethinylbenzol 248 zu erhalten, wurde auf eine von der Literatur abweichende Strategie zurückgegriffen. Das trimethylsilylgeschützte Derivat von 248 wurde nicht aus schlecht zugänglichem 1-Iod-2-brombenzol oder aus 1,2-Dibrombenzol mit mäßigen Ausbeuten hergestellt und anschließend entschützt. Stattdessen diente 2-Brombenzaldehyd 249 als Ausgangsmaterial, das standardmäßig mit Phenylacetylen mit einer Ausbeute von 80% zu 2-(Phenylethyl-2'-ethinylbenzol 250 gekuppelt wurde (Abb. 100). Dieses konnte dann mit einer abgewandelten Corey-Fuchs-Synthese in 248 überführt werden.225 Dazu wurde zunächst 251 durch die Reaktion von 250 mit CBr₄/PPh₃ in 88% Ausbeute erhalten, anschließend wurde mit LDA zu 248 umgesetzt (83% Ausbeute).

![Chemische Reaktionen](image)

Abbildung 100. Darstellung von 1-(Phenylethyl-2'-ethinylbenzol 248

Abbildung 101. Synthese von 1-(2'-Biphenylethinyl)-2-(phenylethinyl)benzol 252, 1-(4'-Phenylbuta-1',3'-diinyl)-2-(phenylethinyl)benzol 253 und 2',2'-(Phenylethinyl)-1,4-diphenylbuta-1,3-din 23 und die Kristallstruktur von 23

Wie in der Literatur beschrieben, wurde durch Eglinton-Kupplung 1,4-Diphenylbuta-1,3-din 254 durch die Dimerisierung von Phenylacetylen in 92% Ausbeute erhalten (Abb. 102).229

Abbildung 102. Darstellung von 1,4-Diphenylbuta-1,3-din 254

Durch die Kupplung von 2-Methyl-but-3-in-2-ol mit 1,2-Dibrombenzol zu 255 und anschließender baseninduzierter Retro-Favorskii Reaktion, konnte 1,2-Diethinylbenzol 98 in 56% Gesamtausbeute nach einer Standardmethode hergestellt werden (Abb. 103).230 Vom Zwischenprodukt 255 konnte eine bis dato unbekannte Kristallstruktur erhalten werden, bei
der man deutlich sehen kann, daß die Hydroxy-Gruppen nicht untereinander wechselwirken, sondern mit denen von Nachbarmolekülen.

Abbildung 103. Darstellung von 1,2-Diehtinylbenzol 98 und Kristallstruktur des Zwischenproduktes 255

Das bereits bekannte, aber nicht vollständig charakterisierte 1,2-Bis(4'-phenylbuta-1',3'-diinyl)-benzol 256, konnte durch eine Cadiot-Chodkiewicz-Kupplung mit Bromphenyl-acetylen an 98 mit 74% Ausbeute dargestellt werden (Abb. 104).231 Die Kristallstruktur zeigt, daß beide Butadiin-Phenylringe konrotatorisch aus der Ebene gedreht sind, einer 73°, der andere 76°.

Abbildung 104. Darstellung und Kristallstruktur von 1,2-Bis(4'-phenylbuta-1',3'-diinyl)-benzol 256
Um zu überprüfen, ob der elektrophile Angriff von Brom auf 1,4-Diphenylbut-1-in 217 ebenso wie das bereits beschriebene System I(py)₂BF₄/HBF₄ eine Cyclisierung einleitet, wurde 217 aus 3-Phenylpropanal 257 über die Zwischenstufen 1,1-Dibrom-4-phenylbut-1-en 258 und 4-Phenylbut-1-in 259 durch eine Corey-Fuchs-Synthese und anschließende Sonogashira-Reaktion mit einer Gesamtausbeute von 41% über alle Schritte dargestellt (Abb. 105).

Ebenfalls durch die Wittig-Reaktion konnten die bekannten Verbindungen 2-Methyl-5-phenylpent-2-en 261 und 1,1,4-Triphenylbut-1-en 262 aus (3-Phenylpropyl)-triphenylphosphoniumbromid und Aceton bzw. Benzophenon in 44% bzw. 72% Ausbeute erhalten werden (Abb. 107).

Abbildung 107. Darstellung von 2-Methyl-5-phenylpent-2-en 261 und 1,1,4-Triphenylbut-1-en 262
3.3 Kationisch induzierte Additions- und Cyclisierungsreaktionen

![Abbildung 108. Addition von Brom an Phenylacetylen 263](image)

![Abbildung 109. Addition von Brom an Diphenylacetylen 196](image)
In der Literatur existieren wenige spektroskopische Daten über die isomeren Dibromstilbene 199. In einer Quelle werden nur \(^1H \)-Verschiebungen angegeben, die mit den hier für (\(E \))-199 gemessenen übereinstimmen, es gibt dort jedoch zusätzlich eine Kristallstruktur, die eindeutig (\(E \))-199 zeigt.\(^{233}\) In eine zweite Quelle werden nur \(^{13}\)C-Verschiebungen für (\(E \))-199 angegeben, die aber mit den hier gemessenen von (\(E \))-199 nicht übereinstimmen, sondern mit (\(Z \))-199, obwohl (\(E \))-199 aus Diphenylacetylen 196 und Tetra-butylammoniumtribromid hergestellt wurde, das stereoselektiv das \textit{anti}-Addukt liefern sollte.\(^{215}\) Es besteht deshalb grundlegendes Interesse, diese widersprüchlichen Ergebnisse in Einklang zu bringen. Die kristallographische Vermessung eines Einkristalls von (\(E \))-199 war leider nicht erfolgreich, der direkte Beweis durch die Verknüpfung der Kristallstruktur mit akkuraten NMR-Daten konnte so nicht geführt werden. Allerdings konnte ein naher Verwandter von 196 auf dieselbe Art bromiert werden und ergab eine Mischung aus (\(E \))-265 und (\(Z \))-265 im Verhältnis 60:40 (Abb. 110). Aus dem Gemisch konnte (\(E \))-265 durch fraktionierte Kristallisation abgetrennt und untersucht werden. Zusätzlich gelang es, einen Einkristall zu züchten und eine Röntgenstruktur zu erhalten. Diese zeigt klar, daß es sich um ein \textit{trans}-Produkt handelt, bei dem die beiden Doppelbindungs-Kohlenstoffatome im \(^{13}\)C-NMR eine Verschiebung von 118.48 und 117.34 ppm zeigen. Dieser Wert stimmt mit der Verschiebung von 118.05 ppm des Dibromstilbens (\(E \))-199 überein, die Zuordnung ist also in der zweiten Literaturquelle trotz stereoselektiver Reaktionsführung offensichtlich nicht richtig. Unterstützt wird diese Tatsache noch durch eigene \textit{ab initio} Berechnungen der NMR-Verschiebungen, die aufgrund der relativistischen Effekte des Broms zwar keine guten absoluten Werte liefern, für die Doppelbindungs-\(C \) aber brauchbare relative Werte produzieren. Auch hier ist (\(Z \))-199 zu tieferem Feld verschoben als (\(E \))-199.
Wie schon aus der Literatur bekannt, wird Brom nicht einfach nur an 1,2-Bis(phenylethinyl)benzol \(\text{18} \) addiert, sondern die beiden Acetyleneinheiten interagieren miteinander, was zu einer Cyclisierung zu den Benzofulvenen \((E)-\text{195}\) und \((Z)-\text{195}\) im Verhältnis 85:15 führt (Abb. 111).\(^{45}\) Die Isomere können auf einfachem Weg durch Umkristallisieren aus Ethanol bzw. Hexan rein erhalten werden. Durch Säure wird jedoch die Isomerisierung an der Doppelbindung katalysiert und es wird wieder das Gleichgewicht von \((E)\)- und \((Z)\)-195 hergestellt. Selbst in CDCl\(_3\), das Spuren von HCl enthält, findet die Umlagerung statt. Auf die spezielle \(^1\)H-NMR-spektroskopische Eigenschaft des Wasserstoffatoms an C-7 (Abb. 111, rot markiert) wurde in der Literatur bereits hingewiesen, aufgrund der damals schlechten NMR-Auflösung konnten jedoch keine verlässlichen Daten erhalten werden.\(^{45}\) Es wurde spekuliert, daß die Nähe zu dem elektronenreichen Brom in \((E)-\text{195}\) eine Tieffeldverschiebung zu 8.80 ppm auslöst, während die Nähe zu dem Ringstrom des Phenylrings in \((Z)-\text{195}\) eine Verschiebung zu hohem Feld (6.15 ppm) ergibt. Diese Vermutungen konnten mittels eines hochaufgelösten \(^1\)H-NMR-Spektrums, sowie erstmals

Abbildung 110. Addition von Brom an 1,3-Bis(phenylethinyl)benzol 235 und Kristallstruktur von \((E)-265\)
aufgenommenen 13C- und 2D-NMR-Spektren bestätigt und durch die bis dato unbekannte Kristallstrukturanalyse eines gezüchteten Einkristalls von (E)-195 untermauert werden. Die Eigenschaften dieser intramolekularen Protonen-"Sonde" wird auch in weiteren Strukturanalysen herangezogen, um Aussagen über die Stellung der Substituenten an der exocyclischen Doppelbindung zu machen.

Abbildung 111. Cyclisierung von 1,2-Bis(phenylethinyl)benzol 18. 1H-NMR-Spektrum der Reaktionsmischung und Kristallstruktur von (E)-195

Bei der Addition von Brom an das nächsthöhere Endiin-Homolog 1,2,3-Tris(phenylethinyl)benzol 22 ergaben sich große Probleme bei der Trennung der bromierten Produkte. Aus dem 1H-NMR konnte auf mindestens drei verschiedene Produkte geschlossen werden (Abb. 112, unteres Spektrum). Anhand der Verschiebungen des "Sonden"-Protons,
wie sie auch bei den Cyclisierungsprodukten von 18 auftreten, wurden den Signalen bei 6.02 und 8.16 ppm die Strukturen \((E)\text{-}266\) und \((Z)\text{-}266\) zugeordnet. Durch fraktionierte Kristallisation konnte \((Z)\text{-}266\) abgetrennt werden, die beiden Signale bei 8.20 und 8.26 ppm wurden jedoch in unverändertem Verhältnis zueinander und zum Hauptprodukt wiedergefunden (1 : 1 : 4). Durch préparatives Säulen waren die Bromide nicht zu trennen, vielmehr bildete sich während der Trennung durch die sauren Eigenschaften des Kieselgels \((Z)\text{-}266\) aus \((E)\text{-}266\). Eine Trennung konnte schließlich durch préparative HPLC erreicht werden, wobei durch die schlechte Löslichkeit der Bromide in Acetonitril jeweils nur einige Milligramm auf die Säule appliziert werden konnten. Anhand der sauberen \(^1\text{H}, \(^{13}\text{C}\)- und 2D-NMR-Spektren konnte dem isolierten Produkt die Formel von \((E)\text{-}266\) zugeordnet werden (Abb. 112, oberes Spektrum). Die Probe wurde dabei in CD\(_2\)Cl\(_2\) vermessen, um bei der lange Meßzeit, die durch die geringe Konzentration der Probe obligat war, die Isomerisierung zu \((Z)\text{-}266\) zu vermeiden. Die anderen Produkte konnten nicht rein erhalten werden. Aufgrund seiner offensichtlichen Ähnlichkeit zu dem isolierten Produkt wurde dem unbekannten Nebenprodukt vorläufig die Formel 267 zugeschrieben.

\[\text{Abbildung 112. Cyclisierung von 1,2,3-Tris(phenylethinyl)benzol 18, das Rohprodukte}}\text{pektren (unten) und das Spektrum des reinen } (E)\text{-}266\]
Das 1-Phenylethinylnaphthalin 245 wurde als Edukt für die Bromierung ausgewählt, um die Frage zu beantworten, ob sich auch fünfgliedrige Ringe bei einem elektrophilen Angriff, gefolgt von einer S_EAr am Aromaten bilden können, oder ob sich wirklich nur sechsgliedrige Ringe ergeben, so wie in der Einleitung behauptet. Die Reaktion von 245 und Brom ergab tatsächlich nur \((E)\)-267 und \((Z)\)-267 als Additionsprodukt an die Dreifachbindung und keine Reaktionskaskade zu 268 (Abb. 113). Das Verhältnis von trans- zu cis-Isomer ist dabei 60 : 40, wie bei der Bromierung von 196.

Beim Versuch die spektroskopischen Daten des Reaktionsproduktes von 1,8-Bis(phenylethyl)naphthalin 203 zu vervollständigen, konnte als Hauptprodukt nicht eines der isomeren Acenaptenderivate 206, wie in der Literatur beschrieben, beobachtet werden. Vielmehr wurde das einfache Additionsprodukt 269 gefunden, das sich im \(^{13}\)C-NMR-Spektrum durch seine, vom Eudkt verschiedenen, Acetylenkohlenstoff-Signale verrät (Abb. 114). Das Produkt konnte nicht vollständig gereinigt werden, es ist jedoch klar, daß es sich dabei nicht um 206 handelt, zumal es sich um einen, wie auch in der Literatur beschrieben, farblosen Feststoff handelt, das entsprechende 206 ohne Bromatome jedoch bereits orange ist und deshalb die Verbindung 206 selbst ebenfalls farbig sein sollte. Die in der gleichen Quelle beschriebene Reaktion von 203 mit Bromwasserstoff ergibt nur das zweifache Additionsprodukt, obwohl auch hier ein elektrophiler Angriff vorliegt. Die experimentellen Daten wurden offensichtlich nicht richtig interpretiert, es sind allerdings zur Absicherung noch weitere Experimente nötig.
Abbildung 114. Reaktion von 1,8-Bis(phenylethinyl)naphthalin 203 mit Brom

Die bekannte Iodierung von 1,4-Diphenylbut-1-in 217 mit I(py)2BF₄/HBF₄ wurde bereits vorgestellt.43 Die einfache Zugabe von Brom statt des komplizierten Iodosylkomplexes führt jedoch zum gleichen Ergebnis, einer Cyclisierung zu 270 (Abb. 115). Der Angriff des "Br⁺" erzeugt in diesem Fall ein stabilisiertes Benzylkation, das dann den anderen Aromaten nach einem elektrophilen, aromatischen Substitutionsmechanismus (S₁Ar) angreift. Im Gegensatz zu allen vorherigen Reaktionen enthält das Zielmolekül 270 nur ein Bromatom, es handelt sich also eher um eine Kaskaden-Substitution. Im Einklang mit den Baldwin-Regeln²³⁴ wird in diesem Fall ein sechsgliedriger Ring mit endocyclischer Doppelbindung einem fünfgliedrigen mit exocyclischer Doppelbindung vorgezogen.

Abbildung 115. Cyclisierung von 1,4-Diphenylbut-1-in 217

Bei der Reaktion von Brom mit 2-Vinyldiphenylacetylen 243, einem System ähnlich 24, bei dem ein Phenylring durch eine Vinylgruppe ersetzt ist, macht sich sowohl die Reaktivität der Doppelbindung als auch die fehlende Phenylsubstitution bemerkbar (Abb. 118). Das "Br⁺" greift in diesem Fall die Doppelbindung zuerst an und zwar, nach der Regel von Markownikow, an der =CH₂-Gruppe. Das gebildete stabilisierte Benzylkation könnte als Cyclisierung nur den viergliedrigen Ring 274, der wegen der hohen Ringspannung praktisch auszuschließen ist, oder den fünfgliedrigen Ring 275 bilden, der jedoch nicht durch Delokalisierung stabilisiert ist. Da beide Cyclisierungen unvorteilhaft sind, geschieht als Hauptreaktion die einfache Addition von Brom an die Doppelbindung zu 2-(1',2'-Dibromethyl)diphenylacetylen 276 ohne Cyclisierung.

Abbildung 117. Cyclisierung von 9-Phenyl-10-(phenylethynyl)-phenanthren 272 und Kristallstruktur von 272
Abbildung 118. Reaktion von Brom mit 2-Vinyldiphenylacetylen 243

Abbildung 119. Reaktion von Brom mit \((E)-2'-(\text{Phenylethinyl})\text{stilben} \) 260 unter Bildung eines nicht trennbaren Gemisches der Dibromide 277, 278 und 279
Bei der Reaktion von 2-(2',2'-diphenylvinyl)diphenylacetylen 25 mit Brom ergibt sich ein überraschendes Produkt (Abb. 120). Es findet weder die Addition an die Doppelbindung statt, noch reagiert das Brom überhaupt mit der Doppelbindung. In 25 ist die Dreifachbindung reaktiver als die Doppelbindung und wird elektrophil von "Br⁺" angegriffen, um dann anschließend die Doppelbindung zu attackieren. Dieses cyclisierte Kation stabilisiert sich nicht durch die Addition von Br⁻, da die zwei Phenylgruppen des Vinylsubstituenten das Kohlenstoffatom an dem sie sitzen sterisch zu sehr abschirmen. Es findet statt dessen, wie bei den Aromaten, ein Additions-Eliminations-Mechanismus statt, bei dem das Kation ein Proton zur Stabilisierung abgibt, und es entsteht das triphenylsubstituierte Benzfulven 280. Die Kristallstrukturanalyse zeigt, daß die Benzfulven-Einheit planar ist, und daß der Phenylring in der 2-Position um 50° aus der Ebene gedreht ist. Um der sterischen Spannung auszuweichen, ist die exocyclische Doppelbindung um 22°, die Phenylringe um 80° bzw. 75° gegen die Benzfulvenebene verdreht.

Abbildung 120. Cyclisierung von 2-(2',2'-diphenylvinyl)diphenylacetylen 25 und Kristallstruktur von 280
Die Auswirkungen eines elektrophilen Angriffs auf Butadiin-Einheiten sind bisher wenig untersucht. Die Ergebnisse der Reaktion von Brom mit 1,4-Diphenylbuta-1,3-dien \textbf{254} stammen vom Anfang des letzten Jahrhunderts und charakterisieren die Produkte entsprechend schlecht.236 Immerhin wurde als Produkt bereits ein Tetrabromid beschrieben, das trotz äquimolärer Zugabe von Brom das Hauptprodukt war. Eine genauere Untersuchung mit modernen Mitteln zeigte, daß sich tatsächlich ein Gemisch aus dem Edukt, dem tetrabromierten Produkt \textbf{281} und wenig Verunreinigungen bildet (Abb. 121). Die Struktur konnte mit Hilfe der zuvor beschriebenen Zuordnung der 13C-NMR-Signale zu (\textit{E})- und (\textit{Z})-Dibromstilben \textbf{199} als (\textit{E},\textit{E})-1,2,3,4-Tetram-brom-1,4-diphenylbuta-1,3-dien \textbf{281} charakterisiert werden. Die Verunreinigungen könnten ein (\textit{E},\textit{Z})-Derivat von \textbf{281} sein, ein (\textit{Z},\textit{Z})-\textbf{281} ist aus sterischen Gründen nicht möglich.

\textbf{Abbildung 121.} Addition von Brom an 1,4-Diphenylbuta-1,3-dien \textbf{254}

Eine interessante Frage nach den Reaktivitätsunterschieden von Ethinyl- und Butadiin-Einheit stellt sich bei der Bromierung von 2',2'-Bis(phenylethyl)-1,4-diphenylbuta-1,3-dien \textbf{23}. Aufgrund der vielfältigen Möglichkeiten zu Addieren und Cyclisieren ist eine große Zahl von di- und tetrabromierten Produkten zu erwarten. Tatsächlich wurde bei der Zugabe von einem Äquivalent Brom jedoch nur ein einziges, tetrabromiertes Produkt gebildet, im Gemisch mit nicht umgesetztem Edukt. Anhand des 1H-Signals bei 8.24 ppm und der Anzahl der 13C-Signale, die auf ein symmetrisches Produkt hindeuten, konnten alle Produkte, die an den exocyclischen Doppelbindungen (\textit{Z})-Konfiguration haben, sowie alle unsymmetrischen Produkte ausgeschlossen werden. Übrig blieben die beiden Strukturen \textbf{282} und \textbf{283}, die nicht aufgrund ihrer spektroskopischen Eigenschaften unterschieden werden konnten (Abb. 122). Die Röntgenstrukturanalyse eines Einkristalls der Probe zeigte eindeutig, daß es sich bei dem Produkt um \textbf{282} und nicht um \textbf{283} handelt. Somit ist auch klar, daß die Butadiin-Einheit eindeutig reaktiver ist als die Ethinyl-Einheit.
3 Teil II: Kationische Cyclisierungen

3.3 Cyclisierungsreaktionen

Bei der Bromierung von 1,1,4-Triphenylbut-1-in 262 konnte ebenfalls kein Cyclisierungsprodukt 286 nachgewiesen werden, eine Addition fand hingegen auch nicht statt (Abb. 124). Durch die raumbeanspruchenden Phenylgruppen war eine Cyclisierung ohnehin eher unwahrscheinlich, wie von 2-(2',2'-diphenylvinyl)diphenylacetylen 25 jedoch bereits bekannt, ist die Diphenylethen-Gruppierung sehr wenig reaktiv (weniger als die Dreifachbindung im Fall von 25). Dementsprechend findet auch keine Addition statt, sondern ein, für die Diphenylethen-Gruppierung bekannter, Additions-Eliminierungs-Schritt, bei dem das olefinische Wasserstoffatom durch Brom ersetzt wird und 287 ergibt.

Die Reaktion von 1-(2'-Biphenylethinyl)-2-(phenylethinyl)benzol 252 mit Brom ergibt einen roten Feststoff, der nicht eindeutig charakterisiert werden konnte. Aufgrund der 1H- und 13C-Verschiebungen wird dem Produkt vorerst die Formel 288 zugeordnet, die durch eine Aufeinanderfolge von kationisch induzierter Cyclisierung und Substitution entstanden sein kann (Abb. 125). Ein weiterer Hinweis kann die Farbe der Substanz sein, die ähnlich intensiv rot ist wie bei dem triphenylsubstituierte Benzfulven 280, das eindeutig charakterisiert werden konnte.
Abbildung 125. Mögliche Reaktion von 1-(2'-Biphenylethynyl)-2-(phenylethynyl)benzol 252
3.4 Schlußbetrachtung

Im Rahmen des zweiten, praktischen Teils dieser Arbeit konnte gezeigt werden, daß die elektrophil induzierte, intramolekulare Interaktion zwischen ungesättigten Molekülbau-gruppen eine interessante Vielfalt von cyclischen Produkten ergeben kann. Um eine Vorhersage über noch nicht durchgeführte Cyclisierungen machen zu können, müssen zuvor die Abfolge der Reaktivitäten der einzelnen ungesättigten Gruppen sowie der Einfluß der Substituenten und deren sterischer Effekte untersucht werden.

Zunächst konnte gezeigt werden, daß durch doppelte Aromatensubstitution die trans-Selektivität bei der Bromaddition an Dreifachbindungen durch die Bildung einer offenen Benzylkationzwischenstufe aufgehoben wird und sich eine nahezu äquimolare Mischung der cis- und trans-Isomere bildet. Die genaue Zuordnung der Isomere des Dibromstilbens 199 zu den NMR-Daten ist in der Literatur nicht eindeutig. Mit Hilfe der Kristallstruktur des verwandten 265 und dessen hochaufgelösten spektroskopischen Daten konnte die Zuordnung durch Transfer eindeutig vorgenommen werden und somit ohne jeden Zweifel gezeigt werden, daß die Daten in der Literatur falsch zitiert wurden.

Bei geeigneter ortho-ständiger Anordnung ungesättigter Gruppen kann eine Interaktion und damit eine Cyclisierung stattfinden. Beim 1,2-Bis(phenylethynyl)benzol 18 konnte in der Literatur gezeigt werden, daß die Dreifachbindungen durch den Angriff von Brom miteinander reagieren und sich eine Mischung der cis- und trans-Benzofulvene 195 bildet. Erstmals konnten diese komplett charakterisiert und deren Eindeutigkeit durch eine Kristallstruktur untermauert werden. Die Eigenschaften des „Sonden“-Protons, das zu tiefem Feld verschoben ist, wenn die Anordnung transoid ist und zu hohem Feld, wenn sie cisoid ist, konnten bestätigt werden. Auf diese Eigenschaft wurde für weitere Charakterisierungen fulvenischen Produktes zurückgegriffen.

Bei der Cyclisierung von 1,2,3-Tris(phenylethynyl)benzol 22 beispielsweise konnten zwei der drei Produkte sofort als die fulvenischen Produkte 266 erkannt und nach der anspruchsvollen Trennung das (E)-266 durch 2D-Spektren identifiziert werden. Die Cyclisierungsprodukte höherer Homologe wie z.B. des 1,2,3,4-Tetrakis(phenylethynyl)-benzols 239 konnte nicht getrennt und charakterisiert werden, die NMR-Spektren der Reaktionsmischungen deuten jedoch darauf hin, daß auch dort, neben diversen anderen Produkten, solche „Zipper“-Fulvene entstanden sind. Während 266 jedoch noch planar ist müßte 289 schon aus der Ebene heraus und eine schüsselförmige, gewölbte Gestalt
annehmen, was Energie kostet und deshalb die Reaktion entsprechend ungünstiger machen sollte (Abb. 126).

![Moleküle](image)

Abbildung 126. Die Reihe der "Zipper"-Cyclisierungsprodukte *ortho*-ständiger Enpolyine

Bei der Reaktion von 1-(Phenylethinylnaphthalin 245 konnte kein Cyclisierungsprodukt festgestellt werden, es fand nur die normale Addition statt. Die in der Literatur beschriebene brominduzierte Cyclisierung von 1,8-Bis(phenylethinyln)benzol 203 konnte nicht nachvollzogen werden, das Hauptprodukt war ein Additionsprodukt an eine Dreifachbindung. Das Produkt wurde nicht rein erhalten werden, konnte aber anhand der Acetylenpeaks im 13C-NMR und durch Vergleich mit 267 identifiziert werden.

Sechsgliedrige Ringe werden gebildet, wenn ungesättigte Gruppen mit Phenylgruppen interagieren. Die Cyclisierung von 1,4-Diphenylbut-1-in 217 ergibt so das substituierte Dihydronaphthalin 270, das erstmals vollständig charakterisiert wurde, als einziges Produkt; *cis*/*trans*-Isomere gibt es hier natürlich nicht. Dieselbe Reaktion findet bei 2-Phenylethinylbiphenyl 24 statt, das das Phenanthren 271 ergibt, welches in einer Art Selbstreplikation wieder mit Phenylacetylens umgesetzt und erneut cyclisiert werden konnte.

Weitere Substituenteneffekte sind bei der Reaktion von 261 und 262 zu beobachten. Während in 261 die Alkylgruppen zur Stabilisierung des Kations nicht ausreichen und sich deshalb nur das Additionsprodukt bildet, ist bei 262 wiederum keine Additions-, sondern nur
Eine Substitutionsreaktion zu 287 zu beobachten, während 218 mit einer Phenylgruppe als Substituent wie in der Literatur gezeigt, ein Cyclisierungsprodukt ergibt.

Als letztes wurden noch die Reaktivitätsunterschiede zwischen Ethinyl- und Butadiinyl-Gruppe verglichen. 1,4-Diphenylbutadiin 254 addiert selbst bei Zugabe einer äquimolaren Menge Brom zwei Äquivalente, so daß sich eine Mischung aus Tetrabromid 281 und Edukt ergibt. Die Stereochemie konnte durch die vorherige Lösung des (E)-(Z)-Rätsels bei Dibromstilben 199 und Transfer als (E,E)-281 zugeordnet werden. Der direkte Vergleich der Ethinyl- und Butadiinyl-Gruppen in 23 zeigt eindeutig, daß die Butadiinyl-Gruppe reaktiver ist, da beide Angriffe dort erfolgen und nicht am Ethinyl-Teil. Es wird wiederum eine Mischung aus Edukt und Tetrabromid 282 erhalten, in dem die beiden Fulvenringe direkt miteinander verbunden sind.

Zusammenfassend kann man sagen, daß für die kationisch induzierten Cyclisierungen mehrfach ungesättigter Systeme folgende Regeln gelten:

- Aromatische Substitution an den ungesättigten Bausteinen ist essenziell, Alkylgruppen oder Wasserstoff als Substituenten ergeben hauptsächlich Additionsprodukte.
- Angriffe von bromierten Doppel- oder Dreifachbindungen an andere Doppel- oder Dreifachbindungen ergeben fünfgliedrige Ringe, Angriffe auf Phenylringe ergeben sechsgliedrige Ringe.
- Doppelte Aromatensubstitution an Doppelbindungen bewirkt durch sterische Behinderung, daß dort keine Addition stattfindet und ein an dieser Doppelbindung gebildetes Kation keine weitere Cyclisierung eingeht, sondern daß das vinylische H durch das entsprechende Kation (Alkyl oder Brom) substituiert wird.
- Sind Ethinyl- und Butadiinyl-Gruppen gleichzeitig in einem Molekül vorhanden wird stets die Butadiin-Einheit angegriffen.

Interessant ist das Verhalten von Misch-Molekülen, die also einen cyclisierenden und einen nicht cyclisierenden Part beinhalten, wie z.B. 1-(Phenylethinyl)-2-octinylbenzol, oder cyclischer Varianten der Endiine, wie z.B. Tribenzo(12)annulen. Die Charakterisierung der Ergebnisse weiterer Cyclisierungen und die Verfeinerung der Cyclisierungsregeln sind Gegenstand weiterer Forschung.
4 Zusammenfassung

In einem zweiten Praktischen Teil konnte gezeigt werden, daß es neben den thermischen eine Vielfalt an kationisch induzierten Cyclisierungen an denselben Systemen geben kann, die zu ganz anderen Produkten führen. Es wurde eine sorgfältig ausgewählte Anzahl von mehrfach ungesättigten Systemen synthetisiert, dieser Cyclisierung unterworfen und anhand der teilweise überraschenden Ergebnisse eine Reaktivitätenreihenfolge
aufgestellt, die es ermöglichen sollte, die Ergebnisse noch nicht durchgeführter Cyclisierungen vorzusagen.

5 Experimenteller Teil

\(^1\)H-NMR-Spektren wurden auf den Geräten AM 250 (250 MHz) der Firma Bruker und Unity INOVA 500 (500 MHz) der Firma Varian aufgenommen. Chemische Verschiebungen sind als \(\delta\)-Werte in ppm angegeben und beziehen sich auf \(\delta = 7.26\) für Chloroform. Charakterisierung der Signalaufspaltung: \(s = \text{Singulett}, d = \text{Dublett}, t = \text{Triplet}, q = \text{Quartett}, m = \text{Multiplett}\).

\(^13\)C-NMR-Spektren wurden auf den Geräten AM 250 (62.9 MHz) der Firma Bruker und Unity INOVA 500 (125.7 MHz) der Firma Varian aufgenommen. Chemische Verschiebungen sind als \(\delta\)-Werte in ppm angegeben und beziehen sich auf \(\delta = 77.0\) für Chloroform. Charakterisierung der Signale: \(p = \text{primär}, s = \text{sekundär}, t = \text{tertiär}, q = \text{quartär}\).

Massenspektren wurden mit einem Spektrometer Modell MAT 311 der Firma Varian und einem Modell MAT 95 der Firma Finnigan aufgenommen.

Gaschromatographische Arbeiten und Analysen wurden an einem analytischen GC der Firma Hewlett Packert HP5890 II, ausgestattet mit Massendetektor HP5971A und der Säule HP Ultra 1 Säule (50 m x 0.2 mm x 0.33 mm Film) durchgeführt.

Säulenchromatographische Trennungen wurden an Merck Kieselgel 60 durchgeführt. Laufmittel wurden nur destilliert verwendet.

Dünnschichtchromatographie (DC): Macherey Nagel Fertigfolien: Alugram\(^\circ\) SIL G/UV\(_{254}\); Merck DC Fertigfolien: Kieselgel 60 F\(_{254}\) auf Aluminiumfolie. Detektion unter UV-Licht bei 254 nm oder durch Entwicklung mit Molybdatsalpetersäure Tauchreagenz (10 proz. Lsg. in Ethanol) und anschließendem Erwärmen.

Schmelzpunkte wurden mit einer Schmelzpunktsapparatur nach Dr. Tottoli der Firma Büchi ermittelt; die gemessenen Schmelzpunkte sind unkorrigiert und wurden in verschlossenen Kapillaren bestimmt.

IR-Spektren wurden mit dem Spektrometer IFS 66 (FTIR) der Firma Perkin-Elmer 298 aufgenommen.
Synthesevorschriften

Synthese von Bromiden durch Sandmeyer-Reaktion:\(^{221}\)

Vorbereitung des Kupferkatalysators: In einem Rundkolben werden 15 mmol CuSO\(_4\) (2.4 g) in 12 mL Wasser unter Erwärmen gelöst und mit 22.5 mmol NaBr (2.3 g) versetzt. Unter Rühren werden 7.5 mmol Na\(_2\)SO\(_3\) (0.95 g) in 15 mL Wasser dazugetropft und die Reaktionsmischung abkühlen gelassen. Der entstandene Niederschlag wird mit Wasser gewaschen und anschließend in 6 mL konz. HBr gelöst.

In einer Mischung aus 3.5 mL konz. HBr und 3.5 mL Wasser werden 10 mmol des entsprechenden Anilins suspendiert. Unter Kühlen werden 4 mL einer 2.5 molaren NaNO\(_2\)-Lösung hinzugetropft. Die Lösung wird unverzüglich in die Kupfer-Katalysator-Lösung bei 0°C eingetragen und anschließend erwärmt, bis die Stickstoffentwicklung beendet ist. Die abgekühlte Reaktionsmischung wird dreimal mit CH\(_2\)Cl\(_2\) extrahiert und die vereinigten organischen Phasen mit Wasser gewaschen. Abrotieren des Lösungsmittels und zweimaliges Umkristallisieren aus Ethanol ergibt das gewünschte Produkt.

1,2,3-Tribrombenzol (230):\(^{237,238}\)

![1,2,3-Tribrombenzol (230)](image)

Ausgangsmaterial: 2,6-Dibromanilin 227 (2.5 g). Ausbeute: 2.5 g 227 (80.6%) als farblose Kristalle. \(^1\)H-NMR: \(\delta = 7.57\) (d, 2H, 4-H, 6-H), 7.02 (t, 1H, 5-H).

\(^{13}\)C-NMR: \(\delta = 132.47\) (t, 2C, C-4, C-6), 129.14 (t, 1C, C-5), 127.59 (q, 1C, C-2), 126.14 (q, 2C, C-1, C-3). MS (GC-MS) Massenpeak m/z = 311.8 (M\(^+\)); C\(_6\)H\(_3\)Br\(_3\) (311.78).

1,2,4-Tribrombenzol (229):\(^{237}\)

![1,2,4-Tribrombenzol (229)](image)

Ausgangsmaterial: 2,4-Dibromanilin 226 (2.5 g). Ausbeute: 2.2 g 229 (70%) als farblose Kristalle. \(^1\)H-NMR: \(\delta = 7.76\) (d, 1H, 3-H), 7.46 (d, 1H, 6-H), 7.28 (dd, 1H, 5-H).

\(^{13}\)C-NMR: \(\delta = 136.01\) (t, 1C, C-3), 134.59 (t, 1C, C-6), 131.66 (t, 1C, C-5), 125.77 (q, 1C, C-2), 123.71 (q, 1C, C-1), 121.35 (q, 1C, C-4). MS (GC-MS) Massenpeak m/z = 311.8 (M\(^+\)); C\(_6\)H\(_3\)Br\(_3\) (311.78).

1,2,3,5-Tetramethylbenzol (231):\(^{237}\)

![1,2,3,5-Tetramethylbenzol (231)](image)

Ausgangsmaterial: 2,4,6-Tribromanilin 228 (3.3 g). Ausbeute: 0.9 g 231 (23%) als farblose Nadeln. \(^1\)H-NMR: \(\delta = 7.71\) (s, 2H, 4-H, 6-H).

\(^{13}\)C-NMR: \(\delta = 134.82\) (t, 2C, C-4, C-6), 126.74 (q, 1C, C-2), 126.56 (q, 2C, C-1, C-3), 121.38 (q, 1C, C-5). MS (GC-MS) Massenpeak m/z = 389.8 (M\(^+\)); C\(_6\)H\(_3\)Br\(_4\) (389.69).
2-Brombiphenyl:\cite{239}

Ausgangsmaterial: 2-Aminobiphenyl (1.7 g). Ausbeute: 1.5 g (69.7\%) als gelbliche Flüssigkeit. 1H-NMR: $\delta = 7.69$ (m, 1H, 6-H), 7.50 (m, 1H, 3-H), 7.44 (m, 5H, 8-H, 12-H, 9-H, 11-H, 10-H) 7.35 (m, 2H, 4-H, 5-H). 13C-NMR: $\delta = 142.53$ (q, 1C, C-1), 141.06 (q, 1C, C-7), 133.07 (t, 1C, C-3), 131.25 (t, 1C, C-5), 129.35 (t, 2C, C-8, C-12), 128.69 (t, 1C, C-10), 127.94 (t, 2C, C-9, C-11), 127.57 (t, 1C, C-4), 127.34 (t, 1C, C-5), 122.60 (q, 1C, C-2). MS (GC-MS) Massenpeak m/z = 232.0 (M$^+$); C$_{12}$H$_9$Br (231.99).

Synthese von 1,2,3,4-Tetrabrombenzol (232)\cite{222}

Eine Suspension von 10 mmol Hexabrombenzol 233 (5.5 g) in einer Mischung aus 100 mL Ethanol und 100 mL Hydrazinhydrat wird unter Rückfluß erhitzt, bis der Niederschlag verschwunden ist. Die erkalte Lösung wird in 500 mL Wasser eingetragen und der entstandene Niederschlag abgesaugt, mit Wasser gewaschen, getrocknet und aus Ethanol umkristallisiert.

Ausbeute: 2.6 g 232 (66\%) als farblose Kristalle. 1H-NMR: $\delta = 7.45$ (s, 2H, 5-H, 6-H). 13C-NMR: $\delta = 132.73$ (t, 2C, C-5, C-6), 129.07 (q, 2C, C-2, C-3), 124.75 (q, 2C, C-1, C-4). MS (GC-MS) Massenpeak m/z = 389.7 (M$^+$); C$_6$H$_2$Br$_4$ (389.69).

Synthese von 1,2,3,4,5-Pentabrombenzol (234)\cite{223}

Aus 20 mmol Magnesium (0.5 g) und 20 mmol Brombenzol (3.2 g/2.1 mL) in 20 mL THF wird eine Grignard-Lösung hergestellt, die bei 0 °C zu einer Suspension von 20 mmol Hexabrombenzol 233 (11 g) in 20 mL THF getropft wird. Nach vierstündigem Rühren bei RT wird die Suspension hydrolysiert und der entstandene Feststoff abgesaugt. Durch Extraktion mit heißem Ethanol wird 234 von nicht reagiertem Hexabrombenzol abgetrennt. Der nach dem Erkalten ausgefallene Feststoff wird abgesaugt und nochmals aus Ethanol umkristallisiert.

Ausbeute: 1.7 g 234 (18\%) als farblose Kristalle. 1H-NMR: $\delta = 7.91$ (s, 1H, 6-H). 13C-NMR: $\delta = 135.55$ (t, 1C, C-6), 129.97 (q, 1C, C-3), 127.90 (q, 2C, C-2, C-4), 124.76 (q, 2C, C-1, C-5). MS (GC-MS) Massenpeak m/z = 467.7 (M$^+$); C$_6$HBr$_5$ (467.60).
Synthese von 1,8-Diiodnapthalin (247):\(^{224}\)
Zu einer auf -20 °C gekühlten Suspension von 177 mmol 1,8-Diaminonaphthalin 246 (28 g) in 325 mL 6.9 molarer H\(_2\)SO\(_4\) wird langsam eine Lösung von 521 mmol NaNO\(_2\) (36 g) in 150 mL Wasser getropft, so daß die Temperatur -15 °C nicht übersteigt. Anschließend werden bei der selben Temperatur 1.08 mol KI (180 g) in 150 mL Wasser hinzutropft, die Reaktionsmischung wird langsam auf RT erwärmt und anschließend 1 h unter Rückfluß erhitzt. Nach dem Abkühlen wird bis zur neutralen Reaktion festes NaOH zugegeben und die Lösung filtriert. Die erhaltenen schwarzen Brocken werden mehrfach mit siedendem Ether extrahiert (mind. 1 L) und die vereinigten organischen Phasen mit gesättigter Na\(_2\)SO\(_4\)-Lösung Iod-frei gewaschen. Die organische Phase wird getrocknet und das Lösungsmittel abgezogen. Der Rückstand wird aus Ethanol umkristallisiert.

Ausbeste: 18.1 g 247 (37\%) als brauner Feststoff. \(^1\)H-NMR: \(\delta = 8.41\) (m, 2H, 2-H, 7-H), 7.83 (m, 2H, 4-H, 5-H), 7.05 (m, 2H, 3-H, 6-H). \(^{13}\)C-NMR: \(\delta = 143.93\) (t, 2C, C-2, C-7), 137.33 (q, 1C, C-8a), 135.65 (q, 1C, C-4a), 130.95 (t, 2C, C-4, C-5), 126.86 (t, 2C, C-3, C-6), 95.99 (q, 2C, C-1, C-8). MS (GC-MS) Massenpeak m/z = 379.9 (M\(^+\)); C\(_{10}\)H\(_{7}\)I\(_2\) (379.86).

Bis(triphenylphosphin)palladium-(II)-chlorid (221):\(^{240}\) Eine Lösung aus 5.6 mmol PdCl\(_2\) (1 g) und 12.4 mmol PPh\(_3\) (3.25 g) in 30 mL Benzonitril wird schrittweise auf 180 °C erhitzt. Die klare tiefrote Lösung wird langsam auf RT abgekühlt, der ausgefallene gelbe Feststoff abfiltriert und mit Ether gewaschen. Ausbeute: 3.7 g 221 (93\%) als gelbe Kristalle.

Synthese der Acetylene durch Palladium-katalysierte Sonogashira-Kupplung:\(^{220}\)
Diphenylacetylen (196):241

Ausgangsmaterialien: 50 mmol Brombenzol (7.9 g/5.2 mL), 60 mmol Phenylacetylen (6.0 g/6.6 mL), 150 mg PPh\textsubscript{3}, 50 mL NEt\textsubscript{3}, 50 mg (PPh\textsubscript{3})\textsubscript{2}PdCl\textsubscript{2}, 50 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 7.7 g \textbf{196} (87%) als gelbliche Kristalle. \textbf{1H-NMR:} δ = 7.65 (m, 4H, 2,2'-H, 6,6'-H), 7.42 (m, 6H, 3,3'-H, 5,5'-H, 4,4'-H). \textbf{13C-NMR:} δ = 131.53 (t, 4C, C-2,2', C-6,6'), 128.28 (t, 4C, C-3,3', C-5,5'), 128.20 (t, 2C, C-2,2'), 123.18 (q, 2C, C-1,1'), 89.37 (q, 2C, C-7,7'). \textbf{MS} (GC-MS) Massenpeak m/z = 178.2 (M\textsuperscript+); C\textsubscript{14}H\textsubscript{10} (178.08).

1,2-Bis(phenylethynyl)benzol (18):242

Ausgangsmaterialien: 50 mmol 1,2-Dibrombenzol (11.8 g/6 mL), 110 mmol Phenylacetylen (11.0 g/12.1 mL), 300 mg PPh\textsubscript{3}, 100 mL NEt\textsubscript{3}, 100 mg (PPh\textsubscript{3})\textsubscript{2}PdCl\textsubscript{2}, 100 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 10.4 g \textbf{18} (75%) als oranger Feststoff. \textbf{1H-NMR:} δ = 7.67 (m, 4H, 10,10'-H, 14,14'-H), 7.64 (m, 2H, 3-H, 6-H), 7.41 (m, 6H, 11,11'-H, 13,13'-H, 12,12'-H), 7.36 (m, 2H, 4-H, 5-H). \textbf{13C-NMR:} δ = 131.70 (t, 2C, C-3, C-6), 131.57 (t, 4C, C-10,10', C-14,14'), 128.37 (t, 2C, C-12,12'), 128.30 (t, 4C, C-11,11', C-13,13'), 127.94 (t, 2C, C-4, C-5), 125.73 (q, 2C, C-1, C-2), 123.20 (q, 2C, C-9,9'), 93.56 (q, 2C, C-8,8'), 88.29 (q, 2C, C-7,7'). \textbf{MS} (GC-MS) Massenpeak m/z = 278.1 (M\textsuperscript+); C\textsubscript{22}H\textsubscript{14} (278.11).

1,3-Bis(phenylethynyl)benzol (234):243

Ausgangsmaterialien: 25 mmol 1,3-Dibrombenzol (5.9 g/3 mL), 60 mmol Phenylacetylen (6.0 g/6.6 mL), 300 mg PPh\textsubscript{3}, 50 mL NEt\textsubscript{3}, 100 mg (PPh\textsubscript{3})\textsubscript{2}PdCl\textsubscript{2}, 100 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 5.5 g \textbf{234} (79%) als farbloser Feststoff. \textbf{1H-NMR:} δ = 7.76 (m, 1H, 2-H), 7.57 (m, 4H, 10,10'-H, 14,14'-H), 7.52 (m, 2H, 4-H, 6-H), 7.38 (m, 7H, 11,11'-H, 13,13'-H, 12,12'-H). \textbf{13C-NMR:} δ = 134.56 (t, 1C, C-2), 131.62 (t, 4C, C-10,10', C-14,14'), 131.24 (t, 2C, C-4, C-6), 128.42 (t, 3C, C-12,12', C-5), 128.35 (t, 4C, C-11,11', C-13,13'), 123.57 (q, 2C, C-1, C-3), 122.95 (q, 2C, C-9,9'), 89.95 (q, 2C, C-8,8'), 88.52 (q, 2C, C-7,7'). \textbf{MS} (70 eV) Massenpeak m/z = 278.1 (M\textsuperscript+); C\textsubscript{22}H\textsubscript{14} (278.11).
1,4-Bis(phenylethinyl)benzol (235):\(^\text{244}\)

Ausgangsmaterialien: 30 mmol 1,4-Dibrombenzol (7.1 g), 70 mmol Phenylacetylen (7.0 g/7.7 mL), 150 mg PPh\(_3\), 50 mL NEt\(_3\), 50 mg (PPh\(_3\))\(_2\)PdCl\(_2\), 50 mg CuI. Aufarbeitung nach Variante B. Ausbeute: 7.6 g \textbf{235} (91%) als farbloser Feststoff. \(^1\)H-NMR: \(\delta = 7.54\) (m, 8H, 2-H, 3-H, 5-H, 6H, 10,10'-H, 14,14'-H), 7.36 (m, 6H, 11,11'-H, 13,13'-H, 12,12'-H). \(^{13}\)C-NMR: \(\delta = 131.61\) (t, 4C, C-2, C-3, C-5, C-6/C-10,10', C-14,14'), 131.52 (t, 4C, C-2, C-3, C-5, C-6/C-10,10', C-14,14'), 128.45 (t, 2C, C-12,12'), 128.38 (t, 4C, C-11,11'; C-13,13'), 123.06 (q, 2C, C-1, C-4/C-9,9'), 122.99 (q, 2C, C-1, C-4/C-9,9'), 91.20 (q, 2C, C-7,7'/C-8,8'), 89.08 (q, 2C, C-7,7'/C-8,8'). MS (70 eV) Massenpeak m/z = 278.1 (M\(^+\); C\(_{22}\)H\(_{14}\) (278.11).

1,2,3-Tris(phenylethinyl)benzol (22):

Ausgangsmaterialien: 5 mmol 1,2,3-Tribrombenzol \textbf{230} (1.6 g), 20 mmol Phenylacetylen (2.0 g/2.2 mL), 75 mg PPh\(_3\), 25 mL NEt\(_3\), 25 mg (PPh\(_3\))\(_2\)PdCl\(_2\), 25 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 1.5 g \textbf{22} (80%) als farbloser Feststoff vom Schmelzpunkt 111 °C. \(^1\)H-NMR: \(\delta = 7.64\) (m, 6H, 10,10'-H, 14,14'-H, 18-H, 22-H), 7.55 (d, 2H, 4-H, 6-H), 7.39 (m, 9H, 11,11'-H, 13,13'-H, 12,12'-H, 19-H, 21-H, 20-H), 7.30 (t, 1H, 5-H). \(^{13}\)C-NMR: \(\delta = 131.68\) (t, 6C, C-10,10', C-14,14', C-18, C-22), 131.32 (t, 2C, C-4, C-6), 128.55 (t, 1C, C-20), 128.54 (t, 2C, C-12,12'), 128.37 (t, 6C, C-11,11', C-13,13', C-19, C-21), 128.02 (q, 1C, C-2), 127.57 (t, 1C, C-5), 126.17 (q, 2C, C-1, C-3), 123.39 (q, 1C, C-17), 123.12 (q, 2C, C-9,9'), 97.89 (q, 1C, C-16), 93.85 (q, 2C, C-8,8'), 88.02 (q, 2C, C-7,7'), 87.44 (q, 1C, C-15).

IR (KBr, Prebling) \(\nu = 3059, 3033, 2206, 1596, 1570, 1556, 1493, 1455, 1442, 1428, 1177, 1158, 1073, 1026, 920, 813, 797, 764, 756, 739, 689\ \text{cm}^{-1}.\ MS (70 eV) m/z (%): 378 (100) [M\(^+\)], 351 (7), 300 (8), 262 (8), 189 (4). HRMS Gef.: 378.1409, Ber.: C\(_{30}\)H\(_{18}\) 378.1409.
1,2,4-Tris(phenylethinyl)benzol (236):

Ausgangsmaterialien: 11 mmol 1,2,4-Tribrombenzol 229 (3.4 g), 50 mmol Phenylacetylen (5.0 g/5.5 mL), 150 mg PPh₃, 50 mL NEt₃, 50 mg (PPh₃)₂PdCl₂, 50 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 3.5 g 236 (83%) als gelblichen Feststoff vom Schmelzpunkt 108-110°C. \(^1\)H-NMR: δ = 7.78 (d, 1H, 3-H), 7.58 (m, 6H, 10-H, 14-H, 18-H, 22-H, 26-H, 30-H), 7.55 (d, 1H, 6-H), 7.49 (dd, 1H, 5-H), 7.38 (m, 9H, 11-H, 13-H, 12-H, 19-H, 21-H, 20-H, 27-H, 29-H, 28-H). \(^{13}\)C-NMR: δ = 134.68 (t, 1C, C-3), 131.75 (t, 1C), 131.66 (t, 2C), 131.63 (t, 1C), 130.86 (t, 1C), 128.58 (t, 3C), 128.39 (t, 6C), 126.02 (q, 1C), 125.35 (q, 1C), 123.09 (q, 1C), 123.02 (q, 2C), 122.79 (q, 1C), 95.24 (q, 1C), 94.03 (q, 1C), 91.60 (q, 1C), 88.38 (q, 1C), 88.16 (q, 1C), 87.55 (q, 1C). IR (KBr, Preßling) \(v = 3050, 3019, 2921, 1597, 1572, 1532, 1509, 1500, 1491, 1441, 1400, 1311, 1279, 1258, 1178, 1157, 1118, 1096, 1069, 1027, 915, 890, 835, 751, 750, 689 cm\(^{-1}\). MS (70 eV) m/z (%): 378 (100) [M⁺], 306 (10), 277 (25), 262 (20), 229 (4), 201 (4), 189 (8), 183 (16), 152 (5), 108 (4), 77 (7). \(C_{30}H_{18}\) (378.76). HRMS Gef.: 378.1410, Ber.: \(C_{30}H_{18}\) 378.1409.

1,3,5-Tris(phenylethinyl)benzol (237):

Ausgangsmaterialien: 11 mmol 1,2,4-Tribrombenzol (3.4 g), 50 mmol Phenylacetylen (5.0 g/5.5 mL), 150 mg PPh₃, 50 mL NEt₃, 50 mg (PPh₃)₂PdCl₂, 50 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 3.5 g 237 (83%) als gelblichen Feststoff. \(^1\)H-NMR: δ = 7.67 (s, 3H, 2-H, 4-H, 6-H), 7.55 (m, 6H, 10,10',10''-H, 14,14',14''-H), 7.38 (m, 9H, 11,11',11''-H, 13,13',13''-H, 12,12',12''-H). \(^{13}\)C-NMR: δ = 134.01 (t, 3C, C-2, C-4, C-6), 131.68 (t, 6C, C-10,10',10'', C14,14',14''), 128.60 (t, 3C, C-12,12',12''), 128.40 (t, 6C, C-11,11',11'', C-13,13',13''), 123.99 (q, 3C, C-1, C-3, C-5), 122.75 (q, 3C, C-9,9',9''), 90.48 (q, 3C, C-8,8',8''), 87.79 (q, 3C, C-7,7',7''). MS (70 eV) Massenpeak m/z = 378.2 (M⁺); \(C_{30}H_{18}\) (378.14).
1,2,3,4-Tetrakis(phenylethyl)benzol (239):

Ausgangsmaterialien: 2 mmol 1,2,3,4-Tetrabrombenzol 232 (0.8 g), 10 mmol Phenylacetylen (1.0 g/1.1 mL), 75 mg PPh₃, 25 mL NEt₃, 25 mg (PPh₃)₂PdCl₂, 25 mg CuI. Aufarbeitung nach Variante B. Ausbeute: 0.7 g 239 (68%) als farbloses Feststoff vom Schmelzpunkt 138°C. ¹H-NMR: δ = 7.62 (m, 8H, 10,10'-H, 14,14'-H, 18,18'-H, 22,22'-H), 7.50 (s, 2H, 5-H, 6-H), 7.37 (m, 12H, 11,11'-H, 13,13'-H, 19,19'-H, 21,21'-H, 12,12'-H, 20,20'-H). ¹³C-NMR: δ = 131.71 (t, 4C, C-18,18', C-22,22'), 131.68 (t, 4C, C-10,10', C-14,14'), 130.77 (t, 2C, C-5, C-6), 128.65 (t, 4C, C-12,12', C-20,20'), 128.37 (t, 8C, C-11,11', C-13,13', C-19,19', C-21,21'), 128.26 (q, 2C, C-2, C-3), 125.54 (q, 2C, C-1, C-4), 123.22 (q, 2C, C-17,17'), 122.94 (q, 2C, C-9,9'), 98.10 (q, 2C, C-16,16'), 95.36 (q, 2C, C-8,8'), 88.06 (q, 2C, C-7,7'), 87.25 (q, 2C, C-15,15'). IR (KBr, Preßling) ν = 3047, 3018, 2962, 2208, 1596, 1570, 1494, 1455, 1441, 1409, 1261, 1096, 1069, 1027, 910, 839, 802, 753, 685 cm⁻¹. MS (70 eV) m/z (%): 478 (100) [M⁺], 400 (8), 378 (12), 237 (6), 200 (3). C₃₈H₂₂ (478.85). HRMS Gef.: 478.1722, Ber.: C₃₀H₁₈ 478.1721.

1,2,3,5-Tetrakis(phenylethyl)benzol (238):

Ausgangsmaterialien: 4 mmol 1,2,3,5-Tetrabrombenzol 231 (1.6 g), 20 mmol Phenylacetylen (2.0 g/2.2 mL), 75 mg PPh₃, 25 mL NEt₃, 25 mg (PPh₃)₂PdCl₂, 25 mg CuI. Aufarbeitung nach Variante B. Ausbeute: 1.5 g 238 (78%) als farbloses Feststoff vom Schmelzpunkt 131°C. ¹H-NMR: δ = 7.70 (s, 2H, 4-H, 6-H), 7.62 (m, 6H, 10,10'-H, 14,14'-H, 18,18'-H, 22-H), 7.56 (m, 2H, 26-H, 30-H), 7.36 (m, 12H, 11,11'-H, 13,13'-H, 19-H, 21-H, 27-H, 29-H, 12,12'-H, 20-H, 28-H). ¹³C-NMR: δ = 133.98 (t, 2C, C-4, C-6), 131.72 (t, 6C, C-10,10', C-14,14', C-18, C-22), 131.67 (m, 2C, C-26, C-30), 128.70 (t, 4C, C-12,12', C-20, C-28), 128.41 (t, 8C, C-11,11', C-13,13', C-19, C-21, C-27, C-29), 127.38 (q, 1C, C-2), 126.41 (q, 2C, C-1, C-3), 123.21 (q, 1C, C-5), 122.94 (q, 1C, C-17), 122.90 (q, 2C, C-9,9'), 122.63 (q, 1C, C-25), 99.34 (q, 1C, C-16), 94.23 (q, 2C, C-8,8'), 91.91 (q, 1C, C-24), 87.76 (q, 1C, C-15), 87.38 (q, 1C, C-23), 87.35 (q, 2C, C-7,7'). IR (KBr, Preßling) ν = 3079, 3051, 3018, 2210, 1597, 1581, 1570, 1534, 1495, 1489, 1442, 1401, 1068, 1027, 906, 882, 753, 745, 683.
1,2,4,5-Tetrakis(phenylethynyl)benzol (240):\(^{245}\)

Ausgangsmaterialien: 10 mmol 1,2,4,5-Tetrabrombenzol (3.9 g), 45 mmol Phenylacetylen (4.5 g/5 mL), 150 mg PPh\(_3\), 50 mL NEt\(_3\), 50 mg (PPh\(_3\))\(_2\)PdCl\(_2\), 50 mg CuI. Aufarbeitung nach Variante B. Ausbeute: 3.9 g 240 (82%) als farbloses Feststoff. \(^1\)H-NMR: \(\delta = 7.79\) (s, 2H, 3-H, 6-H), 7.60 (m, 8H, 10,10',10'',10'''-H, 14,14',14'',14'''-H), 7.38 (m, 12H, 11,11',11'',11'''-H, 13,13',13'',13'''-H, 12,12',12'',12'''-H). \(^{13}\)C-NMR: \(\delta = 134.85\) (t, 2C, C-3, C-6), 131.70 (t, 8C, C-10,10',10'',10'''-H, C-14,14',14'',14'''-H), 128.71 (t, 4C, C-12,12',12'',12'''-H), 128.41 (t, 8C, C-11,11',11'',11'''-H, C-13,13',13'',13'''-H), 125.28 (q, 4C, C-1, C-2, C-4, C-5), 122.91 (q, 4C, C-9,9',9'',9'''-H), 95.44 (q, 4C, C-8,8',8'',8'''-H), 87.52 (q, 4C, C-7,7',7'',7'''-H). MS (70 eV) Massenpeak m/z = 478.2 (M\(^+\)); C\(_{30}\)H\(_{18}\) 478.1721.

1,2,3,4,5-Pentakis(phenylethynyl)benzol (241):

Ausgangsmaterialien: 2 mmol 1,2,3,4,5-Pentabrombenzol 234 (0.95 g), 15 mmol Phenylacetylen (1.5 g/1.7 mL), 75 mg PPh\(_3\), 25 mL NEt\(_3\) +5 mL DMF, 25 mg (PPh\(_3\))\(_2\)PdCl\(_2\), 25 mg CuI. Aufarbeitung nach Variante B. Ausbeute: 0.85 g 241 (74%) als hellbraunen Feststoff vom Schmelzpunkt 162°C. \(^1\)H-NMR: \(\delta = 7.72\) (s, 1H, 6-H), 7.61 (m, 10H, 10,10'-H, 18,18'-H, 26-H, 14,14'-H, 22,22'-H, 30-H), 7.38 (m, 15H, 11,11'-H, 19,19'-H, 27-H, 13,13'-H, 21,21'-H, 29'-H, 12,12'-H, 20,20'-H, 28-H). \(^{13}\)C-NMR: \(\delta = 133.84\) (t, 1C, C-6), 131.77 (t, 10C, C-10,10', C-18,18', C-26, C-14,14', C-22,22', C-30), 128.78 (t, 5C, C-12,12', C-20,20', C-28), 128.59 (q, 1C, C-3), 128.43 (t, 10C, C-11,11', C-19,19', C-27, C-13,13', C-21,21', C-29), 127.50 (q, 2C, C-2, C-4), 125.31 (q, 2C, C-1, C-5), 123.18 (q, 3C, C-17,17', C-25), 122.88 18 (q, 2C, C-9,9'), 99.36 (q, 2C, C-16,16'), 98.28 (q, 1C, C-24), 95.48 (q, 2C, C-8,8'), 87.48 (q, 2C, C-7,7/C-15,15'), 87.33 (q, 2C, C-7,7/C-15,15'), 87.10 (q, 1C, C-23). IR (KBr, Preßling) v = 3052, 3033, 2205, 1679, 1596, 1569, 1514, 1492, 1441, 1408, 1383, 1087, 1068, 1024, 912, 875, 751, 688 cm\(^{-1}\). MS (70 eV) m/z (%): 578 (100) [M\(^+\)], 491 (8),
478 (50), 372 (8), 361 (8), 289 (4), 249 (4), 183 (25), 135 (6), 124 (10), 102 (15). HRMS Gef.: 578.2035, Ber.: C_{46}H_{26} (578.2034).

1,2,3,4,5,6-Hexakis(phenylethynyl)benzol (242):\(^{245}\)

Ausgangsmaterialien: 10 mmol 1,2,3,4,5,6-Hexabrom-benzol 233 (5.5 g), 70 mmol Phenylacetylen (7.0 g/7.7 mL), 150 mg PPh\(_3\), 50 mL NEt\(_3\) +5 mL DMF, 50 mg (PPh\(_3\))\(_2\)PdCl\(_2\), 50 mg CuI. Aufarbeitung nach Variante B. Ausbeute: 1.2 g 242 (18\%) als gelben Feststoff. \(^1\)H-NMR: \(\delta = 7.66\) (m, 12H, 10-10''''-H, 14-14''''-H), 7.37 (m, 18H, 11-11''''-H, 13-13''''-H, 12-12''''-H). \(^{13}\)C-NMR: \(\delta = 131.83\) (t, 12C, C-10-10'''', C-14-14''''), 128.92 (t, 6C, C-12-12'''''), 128.48 (t, 12C, C-11-11''''', C-13-13'''''), 127.49 (q, 6C, C-1-6), 123.13 (q, 6C, C-9-9'''''), 99.39 (q, 6C, C-8-8'''''), 87.26 (q, 6C, C-7-7''''''). MS (70 eV) Massenpeak \(m/z = 678.0\) (M\(^+\)); C\(_{54}\)H\(_{30}\) (678.23).

1-(Phenylethynyl)naphthalin (245):\(^{244}\)

Ausgangsmaterialien: 20 mmol 1-Bromnaphthalin 244 (4.2 g/2.5 mL), 25 mmol Phenylacetylen (2.5 g/2.8 mL), 150 mg PPh\(_3\), 50 mL NEt\(_3\), 50 mg (PPh\(_3\))\(_2\)PdCl\(_2\), 50 mg CuI. Aufarbeitung nach Variante A. Die Reinigung erfolgte durch Säulen an Kieselgel mit Pentan (R\(t\) = 0.19). Ausbeute: 4.0 g 245 (87.7\%) als farblose Flüssigkeit. \(^1\)H-NMR: \(\delta = 8.57\) (m, 1H, 8-H), 7.90 (m, 3H, 2-H, 4-H, 5-H), 7.75 (m, 2H, 12-H, 16-H), 7.58 (m, 3H, 3-H, 6-H, 7-H), 7.46 (m, 3H, 13-H, 15-H, 14-H). \(^{13}\)C-NMR: \(\delta = 133.36\) (q, 1C, C-8a), 133.30 (q, 1C, C-4a), 131.76 (t, 2C, C-12, C-16), 130.46 (t, 1C, C-2), 128.86 (t, 1C, C-14), 128.52 (t, 2C, C-13, C-15), 128.47 (t, 1C, C-4), 128.41 (t, 1C, C-5), 126.87 (t, 1C, C-7), 126.52 (t, 1C, C-8), 126.30 (t, 1C, C-6), 125.36 (t, 1C, C-3), 123.49 (q, 1C, C-1), 120.99 (q, 1C, C-11), 94.46 (q, 1C, C-10), 87.68 (q, 1C, C-9). MS (GC-MS) Massenpeak \(m/z = 228.2\) (M\(^+\)); C\(_{18}\)H\(_{12}\) (228.09).
1,8-Bis(phenylethynyl)naphthalin (203):²⁴⁴²⁴⁶

Ausgangsmaterialien: 5 mmol 1,8-Diodnaphthalin 247 (1.9 g), 10 mmol Phenylacetylen (1.0 g/1.1 mL), 75 mg PPh₃, 25 mL NEt₃, 25 mg (PPh₃)₂PdCl₂, 25 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 0.4 g 203 (22%) als hellbraunen Feststoff. ¹H-NMR: δ = 7.87 (m, 2H, 2-H, 7-H), 7.82 (m, 2H, 4-H, 5-H), 7.45 (m, 2H, 3-H, 6-H), 7.35 (m, 4H, 12.12'-H, 16,16'-H), 7.19 (m, 2H, 14,14'-H), 7.11 (m, 4H, 13,13'-H, 15,15'-H). ¹³C-NMR: δ = 134.88 (t, 2C, C-2, C-7), 134.09 (q, 1C, C-8a), 131.55 (t, 4C, C-12,12', C-16-16'), 131.39 (q, 1C, C-4a), 129.58 (t, 2C, C-4, C-5), 127.88 (t, 4C, C-13,13', C-15,15'), 127.83 (t, 2C, C-14,14'), 125.55 (t, 2C, C-3, C-6), 123.71 (q, 2C, C-11,11'), 120.81 (q, 2C, C-1, C-8), 96.62 (q, 2C, C-10,10'), 89.69 (q, 2C, C-9,9'). MS (70 eV) Massenpeak m/z = 328.2 (M⁺); C₁₂₆H₁₆ (328.13).

2-(Phenylethynyl)biphenyl (24):²⁴⁷

Ausgangsmaterialien: 10 mmol 2-Brombiphenyl (2.3 g), 20 mmol Phenylacetylen (2.0 g/2.2 mL), 75 mg PPh₃, 25 mL NEt₃, 25 mg (PPh₃)₂PdCl₂, 25 mg CuI. Aufarbeitung nach Variante A, Säulen an Kieselgel mit Pentan:Ether = 99:1. Ausbeute: 2.0 g 24 (79%) als oranges Öl. ¹H-NMR: δ = 7.80 (m, 3H, 6-H, 8-H, 12-H), 7.61-7.36 (m, 11H, 3-H, 4-H, 5-H, 9-H, 11-H, 10-H, 16-H, 20-H, 17-H, 19-H, 18-H). ¹³C-NMR: δ = 143.81 (q, 1C, C-1), 140.46 (q, 1C, C-7), 132.78 (t, 1C, C-3), 131.27 (t, 2C, C-16, C-20), 129.40 (t, 1C, C-6), 129.33 (t, 2C, C-8, C-12), 128.46 (t, 1C, C-18), 128.18 (t, 2C, C-17, C-19), 128.03 (t, 1C, C-10), 127.82 (t, 2C, C-9, C-11), 127.40 (t, 1C, C-5), 126.99 (t, 1C, C-4), 123.37 (q, 1C, C-2), 121.48 (q, 1C, C-15), 92.18 (q, 1C, C-14), 89.38 (q, 1C, C-13). MS (GC-MS) Massenpeak m/z = 254.2 (M⁺); C₂₀H₁₄ (254.11).

2-(Phenylethynyl)benzaldehyd (250):²⁴⁸

Ausgangsmaterialien: 50 mmol 2-Brombenzaldehyd 249 (9.25 g/5.9 mL), 60 mmol Phenylacetylen (6.0 g/6.6 mL), 150 mg PPh₃, 50 mL NEt₃, 50 mg (PPh₃)₂PdCl₂, 50 mg CuI. Aufarbeitung nach Variante A. Ausbeute: 8.2 g 250 (80%) als gelbe Flüssigkeit. ¹H-NMR: δ = 10.66 (s, 1H, 7-H), 7.95 (m, 1H, 6-H), 7.64 (m, 1H, 4-H), 7.57 (m, 3H, 3-H, 11-H, 15-H), 7.45 (m, 1H, 5-H), 7.39 (m, 3H, 12-H, 14-H, 13-H). ¹³C-NMR: δ = 191.67 (t, 1C, C-7), 135.74 (q, 1C, C-1), 133.75 (t, 1C, C-4), 133.16 (t, 1C, C-3), 131.62 (t, 2C, C-11,
C-15), 129.03 (t, 1C, C-6), 128.57 (t, 1C, C-13), 128.48 (t, 2C, C-12, C-14), 127.19 (t, 1C, C-5), 126.82 (q, 1C, C-2), 122.25 (q, 1C, C-10), 96.27 (q, 1C, C-9), 84.83 (q, 1C, C-8). **MS (GC-MS)** Masspeak m/z = 206.1 (M⁺); C₁₅H₁₀O (206.07).

2-(Phenylethynyl)styrol (243):²⁴⁹

Ausgangsmaterialien: 2 mmol 2-Bromstyrol (0.37 g/0.25 mL), 2.5 mmol Phenylacetyl (2.5 g/2.8 mL), 75 mg PPh₃, 25 mL NEt₃, 25 mg (PPh₃)₂PdCl₂, 25 mg CuI. Aufarbeitung nach Variante A. Säulen an Kieselgel mit Pentan (R₁ = 0.21). Ausbeute: 0.36 g 243 (88.2%) als gelbes Öl. **¹H-NMR**: δ = 7.63 (m, 4H, 3-H, 6-H, 12-H, 16-H), 7.40 (m, 4H, 4-H, 5-H, 13-H, 15-H), 7.34 (m, 2H, 14-H, 7-H), 5.93 (dd, 1H, cis-8-H). ²J = 0.8, ³J = 17.6), 5.46 (dd, 1H, trans-8-H). ²J = 0.8, ³J = 11.0). **¹³C-NMR**: δ = 138.91 (q, 1C, C-1), 134.87 (t, 1C, C-7), 132.45 (t, 1C, C-3), 131.48 (t, 2C, C-12, C-16), 128.40 (t, 1C, C-14), 128.31 (t, 2C, C-13, C-15), 128.28 (t, 1C, C-5), 127.45 (t, 1C, C-4), 124.61 (t, 1C, C-6), 123.25 (q, 1C, C-2), 121.87 (q, 1C, C-11), 115.56 (q, 1C, C-8), 93.96 (q, 1C, C-10), 87.72 (q, 1C, C-9). **MS (GC-MS)** Masspeak m/z = 204.1 (M⁺); C₁₆H₁₁O (204.09).

1-(2'-Biphenylethynyl)-2-(phenylethynyl)benzol (252):

Ausgangsmaterialien: 12.5 mmol 1-Phenylethynyl-2-ethylbenzol 248 (2.5 g), 12.5 mmol 2-Brombiphenyl (2.9 g), 150 mg PPh₃, 50 mL NEt₃, 50 mg (PPh₃)₂PdCl₂, 50 mg CuI. Aufarbeitung nach Variante A. Säulen an Kieselgel mit Pentan:Ether = 95:5 (R₁ = 0.3). Ausbeute: 1.2 g 252 (27%) als gelbes Öl. **¹H-NMR**: δ = 7.73 (m, 3H, 14-H, 17-H, 19-H), 7.55 (m, 3H, 3-H, 24-H, 28-H), 7.43 (m, 4H, 11-H, 16-H, 20-H, 18-H), 7.3 (m, 8H, 4-H, 5-H, 6-H, 12-H, 13-H, 26-H, 27-H, 26-H). **¹³C-NMR**: δ = 143.65 (q, 1C, C-15), 140.29 (q, 1C, C-10), 133.29 (t, 1C, C-14), 131.86 (t, 1C, C-3/C-6), 131.81 (t, 1C, C-3/C-6), 131.67 (t, 2C, C-24, C-28), 129.49 (t, 1C, C-11), 129.33 (t, 2C, C-17, C-19), 128.70 (t, 1C, C-4/C-5/C-12/C-13/C-18/C-26), 128.36 (t, 1C, C-4/C-5/C-12/C-13/C-18/C-26), 128.31 (t, 2C, C-25, C-27), 127.88 (t, 2C, C-16, C-20), 127.86 (t, 1C, C-4/C-5/C-12/C-13/C-18/C-26), 27.82 (t, 1C, C-4/C-5/C-12/C-13/C-18/C-26), 127.45 (t, 1C, C-4/C-5/C-12/C-13/C-18/C-26), 126.99 (t, 1C, C-4/C-5/C-12/C-13/C-18/C-26), 125.88 (q, 1C, C-23), 125.37 (q, 1C, C-1/C-2), 123.24 (q, 1C, C-1/C-2), 121.50 (q, 1C, C-9), 93.32 (q, 1C, C-8/C-22), 93.29 (q, 1C, C-8/C-22), 91.03 (q, 1C, C-21), 88.59 (q, 1C, C-7). **IR (KBr, Film)** v = 3059, 3030, 2214, 1953, 1896, 1819, 1712, 1598, 1493, 1482, 1442, 1312, 1161,
1089, 1070, 1026, 1008, 950, 915, 870, 752, 699 cm⁻¹. MS (70 eV) m/z (%): 354 (100) [M⁺], 352 (68), 339 (12), 326 (8), 277 (20), 252 (6), 201 (2), 136 (5). HRMS Gef.: 354.1409, Ber.: C₂₈H₁₈ (354.1409).

1,4-Diphenyl-but-1-in (217):^{250}

Ausgangsmaterialien: 20 mmol 4-Phenyl-but-1-in 259 (2.6 g), 25 mmol Brombenzol (3.9 g/2.6 mL), 150 mg PPh₃, 50 mL NEt₃, 50 mg (PPh₃)₂PdCl₂, 50 mg CuI. Aufarbeitung nach Variante A. Säulen an Kieselgel mit Pentan (Rₕ = 0.36). Ausbeute: 3.4 g 217 (82%) als farblose Flüssigkeit. ¹H-NMR: δ = 7.42 (m, 2H, 6-H, 10-H), 7.32 (m, 8H, 7-H, 9-H, 8-H, 12-H, 16-H, 13-H, 15-H, 14-H), 2.97 (t, 2H, 4-H, ³J = 7.3 Hz), 2.73 (t, 2H, 3-H, ³J = 7.3 Hz). ¹³C-NMR: δ = 140.64 (q, 1C, C-11), 131.47 (t, 2C, C-6, C-10), 128.49 (t, 2C, C-13, C-15), 128.33 (t, 2C, C-12, C-16), 128.15 (t, 2C, C-7, C-9), 127.58 (t, 1C, C-8), 126.26 (t, 1C, C-14), 123.77 (q, 1C, C-5), 89.45 (q, 1C, C-2), 81.26 (q, 1C, C-1), 35.13 (s, 1C, C-4), 21.65 (s, 1C, C-3). MS (GC-MS) Massenpeak m/z = 206.1 (M⁺); C₁₆H₁₄ (206.11).

1,2-Bis(3-hydroxy-3-methylbutin-1-yl)benzol (255):^{230}

Ausgangsmaterialien: 100 mmol 1,2-Dibrombenzol (23.6 g/11.9 mL), 250 mmol 2-Methyl-but-3-in-2-ol (21.0 g/24.4 mL), 750 mg PPh₃, 250 mL NEt₃, 250 mg (PPh₃)₂PdCl₂, 250 mg CuI. Aufarbeitung nach Variante A. Säulen an Kieselgel mit Pentan:Ether = 60:40 (Rₕ = 0.22). Ausbeute: 23.0 g 255 (95%) als gelben Feststoff. ¹H-NMR: δ = 7.32 (m, 2H, 3-H, 6-H), 7.12 (m, 2H, 4-H, 5-H), 1.60 (s, 12H, 10,10'-C, 11,11'-C). ¹³C-NMR: δ = 131.08 (t, 2C, C-3, C-6), 127.49 (t, 2C, C-4, C-5), 125.25 (q, 2C, C-1, C-2), 98.01 (q, 2C, C-8, 8'), 80.45 (q, 2C, C-7, 7'), 65.29 (q, 2C, C-9, 9'), 31.22 (p, 6C, C-10,10', C-11,11'). MS (GC-MS) Massenpeak m/z = 242.3 (M⁺); C₁₆H₁₈O₂ (242.13).
10-(Phenylethinyl)-9-phenylphenathren (272): Ausgangsmaterialien: 3 mmol 9-Brom-10-phenylphenathren 271 (1.0 g), 10 mmol Phenylacetylen (1.0 g/1.1 mL), 75 mg PPh₃, 25 mL NEt₃, 25 mg (PPh₃)₂PdCl₂, 25 mg CuI. Aufarbeitung nach Variante B. Lösungsmittel hinzugegeben. Durch Vakuumfiltration (t, q, 1C, C-Ar), weiterverarbeitet. Ausbeute: 0.66 g 272 (62%) als farblose Kristalle vom Schmelzpunkt 119°C.

1H-NMR: δ = 8.77 (m, 2H, 4-H, 5-H), 8.70 (m, 1H, 8-H), 7.74 (m, 4G, Ar-H), 7.58 (m, 6-H, Ar-H), 7.30 (m, 5H, Ar-H). 13C-NMR: δ = 142.93 (q, 1C, C-9), 139.73 (q, 1C, C-11), 131.38 (t, 2C, C-20, C-24), 131.30 (q, 1C, C-10a), 130.65 (t+q, 3C, C-12, C-16, C-8a), 130.16 (q, 1C, C-4a/4b), 129.65 (q, 1C, C-4a/4b), 128.21 (t, 2C, C-Ar), 128.12 (t, 1C, C-Ar), 128.02 (t, 2C, C-Ar), 127.74 (t, 1C, C-Ar), 127.47 (t, 1C, C-Ar), 127.32 (t, 1C, C-Ar), 127.28 (t, 1C, C-Ar), 127.14 (t, 1C, C-Ar), 127.09 (t, 1C, C-Ar), 127.02 (t, 1C, C-Ar), 126.72 (t, 1C, C-Ar), 123.43 (q, 1C, C-10), 122.62 (t, 2C, C-4, C-5), 119.01 (q, 1C, C-18), 98.18 (q, 1C, C-18), 87.74 (q, 1C, C-17). IR (KBr, Preßling) ν = 3079, 3055, 3022, 2208, 1956, 1931, 1810, 1594, 1569, 1487, 1448, 1441, 1418, 1333, 1235, 1174, 1155, 1070, 1038, 1024, 998, 910, 857, 836, 775, 764, 732, 725, 697, 688, 642, 616 cm⁻¹. MS (70 eV) m/z (%): 354 (100) [M⁺], 326 (4), 276 (4), 176 (4).

HRMS Gef.: 354.1409, Ber.: C₂₈H₁₈Br₂ (354.1409).

Synthese der Dibromolefine durch Corey-Fuchs Synthese: Zu einer auf 0 °C gekühlten Lösung des entsprechenden Aldehyds und CBr₄ in CH₂Cl₂ wird PPh₃ in vier Portionen hinzugegeben und die Lösung zwei Stunden bei RT rühren gelassen. Anschließend wird das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand in Hexan aufgeschlämmt. Durch Vakuumfiltration wird der Feststoff abgetrennt und gut mit Hexan gewaschen, anschließend das Lösungsmittel abgezogen. Die Dibromolefine wurden ohne weitere Reinigung weiterverarbeitet.

(2,2-Dibromvinyl)benzol: Ausgangsmaterialien: 50 mmol Benzaldehyd (5.3 g/5.1 mL), 52 mmol CBr₄ (17.2 g), 150 mL CH₂Cl₂, 104 mmol PPh₃ (27.3 g). Ausbeute: 10.6 g (80.7%) als farbloser Feststoff. 1H-NMR: δ = 7.53 (m, 2H, 2-H, 6-H), 7.49 (s, 1H, 7-H), 7.37 (m, 3H, 3-H, 5-H, 4-H). 13C-NMR: δ = 136.83 (t, 1C, C-7), 135.27 (q, 1C, C-1), 128.52 (t, 1C, C-4), 128.38 (t, 2C, C-3, C-5), 128.35 (t, 2C, C-2, C-6), 89.58 (q, 1C, C-8). MS (GC-MS) Massenpeak m/z = 269.9 (M⁺); C₈H₆Br₂ (259.88).
1,1-Dibrom-4-phenyl-but-1-en (258):\(^{252}\)

Ausgangsmaterialien: 50 mmol 3-Phenylpropionaldehyd 257 (6.7 g/6.7 mL), 52 mmol CBr\(_4\) (17.2 g), 150 mL CH\(_2\)Cl\(_2\), 104 mmol PPh\(_3\) (27.6 g). Ausbeute: 11.7 g 258 (81%) als gelbes Öl. \(^1\)H-NMR: δ = 7.33 (m, 2H, 6-H, 10-H), 7.21 (m, 3H, 7-H, 9-H, 8-H), 6.43 (t, 1H, 2-H, \(^3\)J = 7.2 Hz), 2.76 (t, 2H, 4-H, \(^3\)J = 7.7 Hz), 2.45 (dt, 2H, 3-H, \(^3\)J = 7.2, 7.7 Hz). \(^{13}\)C-NMR: δ = 140.46 (q, 1C, C-5), 137.56 (t, 1C, C-2), 128.46 (t, 2C, C-6, C-10), 128.32 (t, 2C, C-7, C-9), 126.21 (t, 1C, C-8), 89.43 (q, 1C, C-1), 34.61 (s, 1C, C-4), 33.79 (s, 1C, C-3). MS (GC-MS) Massenpeak m/z = 287.8 (M\(^+\)); C\(_{10}\)H\(_{10}\)Br\(_2\) (287.91).

1-(2,2-Dibromvinyl)-2-(phenylethynyl)benzol (251):

Ausgangsmaterialien: 36 mmol 2-(Phenylethynyl)-benzaldehyd 250 (7.4 g), 38 mmol CBr\(_4\) (12.6 g), 100 mL CH\(_2\)Cl\(_2\), 76 mmol PPh\(_3\) (19.9 g). Ausbeute: 11.4 g 251 (87.5%) als gelbe Kristalle vom Schmelzpunkt 63°C. \(^1\)H-NMR: δ = 7.90 (s, 1H, 7-H), 7.81 (m, 1H, 6-H), 7.59 (m, 3H, 3-H, 12-H, 16-H), 7.38 (m, 5H, 5-H, 4-H, 13-H, 15-H, 14-H). \(^{13}\)C-NMR: δ = 137.17 (q, 1C, C-1), 135.83 (t, 1C, C-7), 132.01 (t, 1C, C-3), 131.54 (t, 2C, C-12, C-16), 128.59 (t, 1C, C-14), 128.40 (t, 2C, C-13, C-15), 128.24 (t, 1C, C-6), 128.00 (t, 2C, C-4, C-5), 122.80 (q, 1C, C-2), 122.70 (q, 1C, C-11), 95.14 (q, 1C, C-10), 91.56 (q, 1C, C-8), 87.16 (q, 1C, C-9). IR (KBr, Prefling) ν = 3055, 3013, 2213, 1598, 1490, 1441, 1260, 1153, 1120, 1089, 1069, 1025, 944, 914, 884, 844, 847, 832, 752, 726, 688 cm\(^{-1}\). MS (70 eV) m/z (%): 364 (2), 362 (4), 360 (2) [M\(^+\)], 283 (25), 281 (25), 202 (100), 189 (5), 150 (4), 101 (15). HRMS Gef.: 359.9148, Ber.: C\(_{16}\)H\(_{10}\)Br\(_2\) (359.9149).

1-Phenylethynyl-2-ethylbenzol (248):\(^{242}\)

Zu einer auf -78 °C gekühlten Lösung von 30 mmol Diisopropylamin (3.0 g/4.2 mL) in 30 mL abs. THF werden 25 mmol BuLi (15.6 mL einer 1.6 molaren Lösung in hexan) getropft. Die Lösung wird eine Stunde gerührt, anschließend werden 10 mmol 1-(2,2-Dibromvinyl)-2-(phenylethynyl)-benzol (251, 3.6 g) in 10 mL abs. THF hinzutropft. Die Lösung wird eine Stunde bei -78 °C, eine weitere Stunde bei RT gerührt und anschließend mit Wasser gequencht. Die Mischung wird zweimal mit CH\(_2\)Cl\(_2\) extrahiert, die vereinigten organischen Phasen getrocknet und das Lösungsmittel abgezogen. Die Reinigung erfolgte durch Säulen an Kieselgel mit Pentan:Ether = 90:10 (R\(_f\) = 0.42).
Ausbeute: 1.67 g 248 (82.7%) als gelbes Öl. 1H-NMR: $\delta = 7.58$ (m, 4H, 6-H, 10-H, 14-H), 7.33 (m, 5H, 4-H, 5-H, 11-H, 13-H, 12-H), 3.40 (s, 1H, 16-H). 13C-NMR: $\delta = 132.50$ (t, 1C, C-6), 131.68 (t, 3C, C-3, C-10, C-14), 128.48 (t, 1C, C-12), 128.44 (t, 1C, C-5), 128.27 (t, 2C, C-11, C-13), 127.86 (t, 1C, C-4), 126.19 (q, 1C, C-2), 124.52 (q, 1C, C-9), 123.03 (q, 1C, C-1), 93.47 (q, 1C, C-8), 87.79 (q, 1C, C-7), 82.11 (q, 1C, C-15), 81.13 (t, 1C, C-16). MS (GC-MS) Massenpeak m/z = 202.0 (M$^+$); C$_{10}$H$_{10}$ (202.08).

4-Phenyl-but-1-in (259):

Zu einer auf -78 °C gekühlten Lösung von 40 mmol 1,1-Dibrom-4-phenyl-but-1-en 258 (11.6 g) in 100 mL abs. THF werden 90 mmol BuLi-Lsg. 1.6 M in Hexan (56.3 ml) getropft. Die Lösung wird eine Stunde bei -78 °C, eine weitere Stunde bei RT gerührt und anschließend mit Wasser gequencht. Die Mischung wird zweimal mit Ether extrahiert, die vereinigten organischen Phasen getrocknet und das Lösungsmittel abgezogen. Die Reinigung erfolgte durch Destillation. Ausbeute: 3.3 g 259 (62%) als farblose Flüssigkeit. 1H-NMR: $\delta = 7.31$ (m, 2H, 6-H, 10-H), 7.25 (m, 3H, 7-H, 9-H, 8-H), 2.87 (t, 2H, 4-H, 3J = 7.5 Hz), 2.51 (dt, 2H, 3-H, 3J = 7.5, 4J = 2.7 Hz), 2.00 (t, 1H, 1-H, 4J = 2.7 Hz). 13C-NMR: $\delta = 140.37$ (q, 1C, C-5), 128.38 (t, 4C, C-6, C-10, C-7, C-9), 126.33 (t, 1C, C-8), 83.77 (q, 1C, C-2), 68.88 (t, 1C, C-1), 34.80 (s, 1C, C-4), 20.55 (s, 1C, C-3). MS (GC-MS) Massenpeak m/z = 130.1 (M$^+$); C$_{10}$H$_{10}$ (130.08).

Brom methyl benzol:

Zu einer Mischung aus 50 mmol (2,2-Dibromvinyl)benzol (13.5 g) und 5 mmol Benzyltrimethylammoniumchlorid (0.9 g) in 50 mL CH$_2$Cl$_2$ werden unter Eiskühlung 50 mL einer 60%igen wässrigen KOH-Lösung zugegeben und 2 h bei RT rühren gelassen. Die organische Phase wird abgetrennt, zweimal mit Wasser gewaschen und über Na$_2$SO$_4$ getrocknet. Das Lösungsmittel wird abgezogen und das Produkt durch Destillation gereinigt.

Ausbeute: 7.3 g (80.7%) als farblose Flüssigkeit. 1H-NMR: $\delta = 7.47$ (m, 2H, 2-H, 6-H), 7.35 (m, 3H, 3-H, 5-H, 4-H). 13C-NMR: $\delta = 131.96$ (t, 2C, C-2, C-6), 128.65 (t, 1C, C-4), 128.30 (t, 2C, C-3, C-5), 122.63 (q, 1C, C-1), 79.99 (q, 1C, C-7), 49.73 (q, 1C, C-8). MS (GC-MS) Massenpeak m/z = 180.1 (M$^+$); C$_8$H$_3$Br (179.96).
1,2-Diethinylbenzol (98):230 Eine Suspension von 50 mmol 1,2-Bis(3-hydroxy-3-methylbutin-1-yl)benzol (255, 12.1 g) und 2.5 g feingepulvertem KOH in 50 ml Paraffinöl wird bei einem Druck von 0.1 Torr auf 180°C erhitzt und die leichtflüchtigen Produkte in einer Kühlfalle ausgetrieben. Mitentstandenes Aceton wird abgezogen und das Produkt im Vakuum destilliert.

Ausbeute: 3.6 g 98 (58.7%) als bläulichgelbe Flüssigkeit. 1H-NMR: δ = 7.52 (m, 2H, 3-H, 6-H), 7.31 (m, 2H, 4-H, 5-H), 3.35 (s, 2H, 8,8'-H). 13C-NMR: δ = 132.58 (t, 2C, C-3, C-6), 128.49 (t, 2C, C-4, C-5), 124.96 (q, 2C, C-1, C-2), 81.77 (q, 2H, C-7,7'), 81.16 (t, 2H, C-8,8'). MS (GC-MS) Massenpeak m/z = 126.1 (M+); C\textsubscript{10}H\textsubscript{6}(126.05).

1-(Phenylethinyl)-2-(phenylbuta-1,3-diin-1-yl)benzol (253):

Ausgangsmaterialien: 7.5 mmol Hydroxylaminhydrochlorid (0.52 g), 0.2 mmol CuCl (21 mg), 20 ml n-C\textsubscript{4}H\textsubscript{9}NH\textsubscript{2}-EtOH-Mix, 5 mmol 1-(Phenylethinyl)-2-ethinylbenzol 248 (1.0 g), 6 mmol Bromphenylacetylen (1.1 g), 20 mL n-C\textsubscript{4}H\textsubscript{9}NH\textsubscript{2}-EtOH-Mix, 0.5 g KCN. Ausbeute: 0.8 g 253 (52%) als gelber Feststoff vom Schmelzpunkt 51°C. 1H-NMR: δ = 7.68 (m, 2H, 10-H, 14-H), 7.59 (m, 4H, 3-H, 6-H, 20-H, 24-H), 7.36 (m, 8H, 4-H, 5-H, 11-H, 13-H, 12-H, 21-H, 23-H, 22-H). 13C-NMR: δ = 132.59 (t, 1C, C-3), 132.41 (t, 2C, C-20, C-24), 131.79 (t, 2C, C-10, C-14), 131.58 (t, 1C, C-6), 129.18 (t, 1C, C-22), 128.77 (t, 1C, C-4), 128.49 (t, 1C, C-12), 128.36 (t, 2C, C-21, C-23), 128.26 (t, 2C, C-11, C-13), 127.86 (t, 1C, C-5), 126.96 (q, 1C, C-1), 124.36 (q, 1C, C-2), 22.93 (q, 1C, C-9), 121.66 (q, 1C, C-19), 94.23 (q, 1C, C-8), 87.75 (q, 1C, C-7), 82.62 (q, 1C, C-16), 80.21 (q, 1C, C-15), 77.78 (q, 1C, C-17), 74.01 (q, 1C, C-18). IR (KBr, Pressling) ν = 3057, 3020, 2213, 1596, 1568, 1489, 1470, 1440, 1272, 1174, 1156, 1096, 1069, 1024, 949, 919, 848, 755, 688 cm-1. MS (70 eV)
m/z (%): 302 (100) [M⁺], 274 (3), 202 (2), 151 (2). **HRMS** Gef.: 302.1096, Ber.: C₂₅H₁₈ (302.1096).

1,2-Bis(4-phenylbuta-1,3-diin-1-yl)benzol (256):²³¹

Ausgangsmaterialien: 15 mmol Hydroxyl-aminhydrochlorid (1.04 g), 0.2 mmol CuCl (21 mg), 20 ml n-C₄H₉NH₂-EtOH-Mix, 5 mmol 1,2-Diethinylbenzol 98 (0.63 g), 13 mmol Bromphenylacetylen (2.4 g), 20 mL n-C₄H₉NH₂-EtOH-Mix, 1 g KCN. Aus Ethanol umkristallisiert. Ausbeute: 1.2 g 256 (74%) als gelbe Kristalle. **¹H-NMR**: δ = 7.56 (m, 6H, 3-H, 6-H, 12,12'-H, 16,16'-H), 7.38 (m, 8H, 4-H, 5-H, 13,13'-H, 14,14'-H). **¹³C-NMR**: δ = 133.18 (t, 2C, C-3, C-6), 132.53 (t, 4C, C-12,12', C-16,16'), 129.32 (t, 2C, C-4, C-5), 128.79 (t, 2C, C-14,14'), 128.41 (t, 4C, C-13,13', C-15,15'), 125.24 (q, 2C, C-1, C-2), 121.59 (q, 2C, C-11,11'), 83.09 (q, 2C, C-8,8'), 79.44 (q, 2C, C-7,7'), 78.05 (q, 2C, C-9,9'), 73.99 (q, 2C, C-10,10'). **MS** (70 eV) Massenpeak m/z = 326.1 (M⁺); C₂₅H₁₈ (326.11).

Synthese der Butadiène durch Eglinton-Kupplung:²⁵⁵

1,4-Diphenylbuta-1,3-diin (254):²⁴⁴

Ausgangsmaterialien: 80 mmol CuAc₂ (16 g), 210 ml Pyridin:Methanol:Ether-Mix, 40 mmol Phenylacetylen (4.0 g/4.4 mL) in 50 ml Ether. Aus Ethanol umkristallisiert. Ausbeute: 3.7 g 254 (91.6%) als farblose Kristalle. **¹H-NMR**: δ = 7.57 (m, 4H, 2,2'-H, 6,6'-H), 7.39 (m, 4H, 3,3'-H, 5,5'-H), 7.37 (m, 2H, 4,4'-H). **¹³C-NMR**: δ = 132.42 (t, 4C, C-2,2', C-6,6'), 129.16 (t, 2C, C-4,4'), 128.38 (t, 4C, C-3,3', C-5,5'), 121.66 (q, 2C, C-1,1'), 81.51 (q, 2C, C-8,8'), 73.88 (q, 2C, C-7,7'). **MS** (GC-MS) Massenpeak m/z = 202.1 (M⁺); C₁₆H₁₀ (202.08).
2,2'-Bis(phenylethylidiphenylbutadiin (23):

Ausgangsmaterialien: 20 mmol CuAc₂ (4 g), 70 ml Pyridin: Methanol: Ether-Mix, 10 mmol 1-(Phenylethylidiphenyl)-2-ethinylbenzol 248 (2.0 g) in 10 ml Ether. Aus Ethanol umkristallisiert. Ausbeute: 1.5 g 23 (75%) als hellbraune Kristalle vom Schmelzpunkt 130°C. \(^1H\)-NMR: \(\delta = 7.58 \text{ (m, 8H, 3,3'-H, 6,6'-H, 10,10'-H, 14,14'-H)}, 7.32 \text{ (m, 10H, 4,4'-H, 5,5'-H, 11,11'-H, 13,13'-H, 12,12'-H)}\). \(^{13}C\)-NMR: \(\delta = 132.79 \text{ (t, 2C, C-3,3')}, 131.84 \text{ (t, 4C, C-10,10', C-14,14')}, 131.69 \text{ (t, 2C, C-6,6')}, 128.88 \text{ (t, 2C, C-4,4')}, 128.46 \text{ (t, 2C, C-12,12')}, 128.27 \text{ (t, 4C, C-11,11', C-13,13')}, 127.90 \text{ (t, 2C, C-5,5')}, 127.07 \text{ (q, 2C, C-1,1')}, 124.47 \text{ (q, 2C, C-9,9')}, 122.87 \text{ (q, 2C, C-2,2')}, 94.42 \text{ (q, 2C, C-8,8')}, 87.71 \text{ (q, 2C, C-7,7')}, 81.38 \text{ (q, 2C, C-16,16')}, 77.91 \text{ (q, 2C, C-15,15')}. IR (KBr, Preßling) \(\nu = 3074, 3057, 3022, 2216, 1943, 1910, 1878, 1799, 1684, 1653, 1597, 1567, 1492, 1466, 1441, 1195, 1181, 1155, 1089, 1068, 1024, 940, 911, 758, 747, 688 \text{ cm}^{-1}. MS (70 eV) m/z (%): 402 (100) [M⁺], 374 (4), 324 (8), 277 (6), 201 (4). HRMS Gef.: 402.1408, Ber.: C₂₈H₁₈ (402.1409).

Darstellung der Phosphoniumbromide:

In einem Kolben mit Rückflußkühler werden Bromid und Triphenylphosphan in dem entsprechenden Lösungsmittel gelöst und 48h unter Rückfluß erhitzt. Mit Toluol als Lösungsmittel wird das ausgefallene Phosphonium-Salz abgesaugt, mit Benzol gewaschen und im Vakuum getrocknet. Mit DMF als Lösungsmittel wird das Lösungsmittel am Rotationsverdampfer unter Vakuum abgezogen, das Phosphonium-Salz aus Hexan/CH₂Cl₂ ausgefällt, abgezogen, mit Benzol gewaschen und im Vakuum getrocknet.

Benzyl-triphenylphosphoniumbromid:

Ausgangsmaterialien: 50 mmol Benzylbromid (8.6 g/5.9 mL), 50 mmol PPh₃ (13.1 g), 75 mL Toluol. Ausbeute: 20.4 g (94.2%) als farbloses Pulver. \(^1H\)-NMR: \(\delta = 7.63 \text{ (m, 15H, 9,9',9''-H, 13,13',13''-H, 10,10',10''-H, 12,12',12''-H, 11,11',11''-H)}, 7.14 \text{ (m, 1H, 5-H)}, 7.00 \text{ (m, 4H, 3-H, 7-H, 4-H, 6-H)}, 5.19 \text{ (d, 2H, 1-H, 3J (H,P) = 14.35 Hz)}. \(^{13}C\)-NMR: \(\delta = 134.87 \text{ (t, 3C, C-11,11',11''), 4J (C,P) = 2.9 Hz}), 134.06 \text{ (t, 6C, C-10,10',10'', C-12,12',12'', 3J (C,P) = 9.8 Hz}), 131.18 \text{ (t, 2C, C-4, C-6, 4J (C,P) = 5.5 Hz), 129.97 \text{ (t, 6C, C-9,9',9''}, C-13,13',13''}, 2J (C,P) = 12.5 Hz), 128.61 \text{ (t, 2C, C-3, C-7, 3J (C,P) =
3.4 Hz), 128.22 (t, 1C, C-5, 3J (C,P) = 3.9 Hz), 126.79 (q, 1C, C-2, 2J (C,P) = 8.6 Hz), 117.33 (q, 3C, C-8,8',8'', 1J (C,P) = 85.7 Hz), 30.57 (s, 1C, C-1, 1J (C,P) = 46.8 Hz).

(3-Phenylpropyl)-triphenylphosphoniumbromid:

Ausgangsmaterialien: 100 mmol (3-Brompropyl)benzol (19.9 g/15.1 mL), 100 mmol PPh$_3$ (26.2 g), 150 mL Toluol. Ausbeute: 40.6 g (88%) als farbloses Pulver. 1H-NMR: δ = 7.54 (m, 15H, 11,11',11''-H, 15,15',15''-H, 12,12',12''-H, 14,14',14''-H, 13,13',13''-H), 7.05 (m, 5H, 5-H, 9-H, 6-H, 8-H, 7-H), 3.58 (m, 2H, 1-H), 2.84 (m, 2H, 3-H), 1.81 (m, 2H, 2-H). 13C-NMR: δ = 139.53 (q, 1C, C-4), 134.59 (t, 3C, C-13,13',13'', 4J (C,P) = 2.9 Hz), 132.00 (t, 6C, C-12,12',12'', C-14,14',14'', 3J (C,P) = 10.0 Hz), 130.01 (t, 6C, C-11,11',11'', C-15,15',15'', 2J (C,P) = 12.5 Hz), 128.36 (t, 2C, C-6, C-8), 128.06 (t, 1C, C-7), 125.87 (t, 2C, C-5, C-9), 117.42 (q, 3C, C-10,10',10'', 1J (C,P) = 86.1 Hz), 35.05 (s, 1C, C-3, 3J (C,P) = 16.6 Hz), 23.99 (s, 1C, C-2, 2J (C,P) = 3.7 Hz), 20.99 (s, C-1, 1J (C,P) = 51.1 Hz).

Diphenylmethyl-triphenyl-phosphoniumbromid:

Ausgangsmaterialien: 50 mmol Bromdiphenylmethan (13.1 g), 50 mmol PPh$_3$ (13.1 g), 75 mL Toluol. Ausbeute: 20.9 g (82%) als farbloses Pulver. 1H-NMR: δ = 7.86 (d, 1H, 1-H, 2J (H,P) = 17.7 Hz), 7.63 (m, 9H, 10,10',10''-H, 12,12',12''-H, 11,11',11''-H), 7.47 (m, 10H, 3,3'-H, 7,7'-H, 9,9',9''-H, 13,13',13''-H), 7.10 (m, 6H, 4,4'-H, 6,6'-H, 5,5'-H). 13C-NMR: δ = 134.74 (t, 6C, C-10,10',10'', C-12,12',12'', 3J (C,P) = 9.2 Hz), 134.61 (t, 3C, C-11,11',11'', 4J (C,P) = 7.6 Hz), 132.89 (q, 2C, C-2,2', 2J (C,P) = 2.7 Hz), 130.73 (t, 4C, C-3,3', C-7,7', 3J (C,P) = 6.8 Hz), 129.64 (t, 6C, C-9,9',9'', C-13,13',13'', 2J (C,P) = 12.3 Hz), 128.65 (t, 4C, C-4,4', C-6,6'), 128.34 (t, 2C, C-5,5'), 118.05 (q, 3C, C-8,8',8'', 1J (C,P) = 82.2 Hz), 45.20 (t, 1C, C-1, 1J (C,P) = 42.3 Hz).

Oleﬁnsynthese nach Wittig257

Zu einer Suspension des Phosphoniumsalzes in absolutem THF wird bei RT 1.6 M BuLi-Lösung zugetropft und 30 Min. gerührt. Anschließend wird die entsprechende Carbonylverbindung in absolutem THF hinzugetropft und noch einmal 2h gerührt. Wasser wird hinzugegeben und die Mischung mit Ether extrahiert. Die organische Phase wird über MgSO$_4$ getrocknet und der Ether abgezogen. Der Rückstand wird in Pentan suspendiert, der
Feststoff abfiltriert und das Filtrat eingegengt. Der Rückstand wird über eine Kieselgelsäule gereinigt.

2-Methyl-5-phenyl-pent-2-en (261):258

Auszangsmaterialien: 30 mmol (3-Phenylpropyl)-triphenylphosphoniumbromid (13.8 g) in 100 mL THF, 30 mmol BuLi-Lsg. 1.6 M in Hexan (18.75 ml), 40 mmol Aceton (2.3 g/3 mL) in 20 mL THF. Ausbeute: 2.1 g 261 (44%) als farblose Flüssigkeit. 1H-NMR: δ = 7.28 (m, 2H, 9-H, 11-H), 7.21 (m, 3H, 8-H, 12-H, 10-H), 5.21 (tt, 1H, 3-H, 3J = 7.1; 4J = 1.4 Hz), 2.65 (dt, 2H, 5-H, 3J = 7.4; 4J = 1.4 Hz), 2.32 (dt, 2H, 4-H, 3J = 7.1; 7.4 Hz), 1.71 (s, 3H, 1-H/6-H), 1.59 (s, 3H, 1-H/6-H). 13C-NMR: δ = 142.35 (q, 1C, C-7), 132.07 (q, 1C, C-2), 128.38 (t, 2C, C-9, C-11), 128.16 (t, 2C, C-8, C-12), 125.60 (t, 1C, C-10), 123.67 (t, 1C, C-3), 36.10 (s, 1C, C-5), 30.03 (s, 1C, C-4), 25.64 (p, 1C, C-1/C-6), 17.59 (p, 1C, C-1/C-6). MS (GC-MS) Massenpeak m/z = 160.1 (M⁺); C₉H₁₂ (160.13).

1,1,4-Triphenyl-but-1-en (262):253

Auszangsmaterialien: 20 mmol (3-Phenylpropyl)-triphenylphosphoniumbromid (9.2 g) in 80 mL THF, 25 mmol BuLi-Lsg. 1.6 M in Hexan (15.6 ml), 25 mmol Benzophenon (4.6 g) in 40 mL THF. Ausbeute: 4.1 g 262 (72%) als farblose Flüssigkeit. 1H-NMR: δ = 7.27 (m, 15H, alle Ar-H), 6.17 (t, 1H, 2-H, 3J = 7.4 Hz), 2.80 (t, 2H, 4-H, 3J = 7.6 Hz), 2.49 (dt, 2H, 3-H, 3J = 7.4, 7.6 Hz). 13C-NMR: δ = 142.57 (q, 1C, C-17), 142.14 (q, 1C, C-11), 141.59 (q, 1C, C-5), 139.97 (q, 1C, C-1), 129.75 (t, 2C, C-12, C-16), 128.74 (t, 1C, C-2), 128.46 (t, 2C, C-7, C-9), 128.23 (t, 2C, C-6, C-10), 128.07 (t, 2C, C-19, C-21), 128.01 (t, 2C, C-13, C-15), 127.15 (t, 2C, C-18, C-22), 126.84 (t, 1C, C-14/C-20), 126.81 (t, 1C, C-14/C-20), 125.78 (t, 1C, C-8), 36.11 (s, 1C, C-4), 31.60 (s, 1C, C-3). MS (70 eV) Massenpeak m/z = 284.3 (M⁺); C₂₂H₂₀ (284.16).
(E)-1-(Phenylethinyl)-2-(phenylvinyl)benzol (260):²³²

Ausgangsmaterialien: 10 mmol Benzyl-triphenylphosphoniumbromid (4.3 g) in 40 mL THF, 10 mmol BuLi-Lsg. 1.6 M in Hexan (6.3 mL), 10 mmol 2-(Phenylethinyl)benzaldehyd 250 (2.1 g) in 20 mL THF. Ausbeute: 1.8 g 260 (63%) als farbloser Feststoff. H-NMR: δ = 7.75 (m, 2H, 6-H, 15-H), 7.61 (m, 5H, 3-H, 10-H, 14-H, 18-H, 22-H), 7.46-7.21 (m, 11H, 4-H, 5-H, 11-H, 13-H, 12-H, 19-H, 21-H, 20-H).

C-NMR: δ = 138.67 (q, 1C, C-2), 137.35 (q, 1C, C-17), 132.68 (t, 1C, C-6), 131.49 (t, 2C, C-10, C-14), 130.29 (t, 1C, C-16), 128.73 (t, 2C, C-19, C-21), 128.52 (t, 1C, C-4/C-5/C-15), 128.42 (t, 2C, C-11, C-13), 128.35 (t, 1C, C-12), 127.84 (t, 1C, C-20), 127.22 (t, 1C, C-4/C-5/C-15), 126.69 (t, 3C, C-18, C-22, C-3), 124.73 (t, 1C, C-4/C-5/C-15), 123.31 (q, 1C, C-1), 122.14 (q, 1C, C-9), 94.39 (q, 1C, C-8), 87.92 (q, 1C, C-7). MS (70 eV) Massenpeak m/z = 280.1 (M⁺); C₂₂H₁₆ (280.13).

1-(Phenylethinyl)-2-(2',2'-diphenylvinyl)benzol (25): A

Ausgangsmaterialien: 10 mmol Diphenylmethyl-triphenylphosphoniumbromid (5.1 g) in 40 mL THF, 10 mmol BuLi-Lsg. 1.6 M in Hexan (6.3 ml), 10 mmol 2-(Phenylethinyl)benzaldehyd 250 (2.1 g) in 20 mL THF. Ausbeute: 0.6 g 25 (17%) als farbloser Feststoff vom Schmelzpunkt 86°C. H-NMR: δ = 7.52 (m, 4H, 6-H, 10-H, 14-H, 15-H), 7.43 (m, 2H, 18-H, 22-H), 7.34 (m, 8H, 11-H, 13-H, 12-H, 19-H, 21-H, 25-H, 27-H, 26-H), 7.23 (m, 3H, 20-H, 24-H, 28-H), 7.12 (m, 1-H, 5-H), 6.79 (m, 1-H, 4-H), 6.86 (m, 1-H, 3-H). C-NMR: δ = 143.82 (q, 1C, C-17/C-23), 143.24 (q, 1C, C-17/C-23), 140.19 (q, 1C, C-16), 139.44 (q, 1C, C-2), 132.18 (t, 1C, C-6), 131.53 (t, 2C, C-10, C-14), 130.58 (t, 2C, C-24, C-28), 129.16 (t, 1C, C-3), 128.43 (t, 2C, C-11, C-13), 128.29 (q, 2C, C-19, C-21), 128.21 (t, 1C, C-12), 128.18 (t, 2C, C-25, C-27), 127.86 (t, 2C, C-18, C-22), 127.61 (t, 1C, C-20/C-26), 127.49 (t, 1C, C-4), 127.41 (t, 1C, C-20/C-26), 126.49 (t, 1C, C-5), 126.42 (t, 1C, C-15), 123.67 (q, 1C, C-1), 123.33 (q, 1C, C-9), 94.39 (q, 1C, C-8), 88.43 (q, 1C, C-7). IR (KBr, Preßling) ν = 3076, 3046, 1598, 1584, 1596, 1570, 1490, 1467, 1441, 1354, 1275, 1177, 1162, 1087, 1074, 1028, 998, 954, 922, 915, 863, 850, 776, 758, 702 cm⁻¹. MS (70 eV) m/z (%): 356 (16) [M⁺], 280 (24), 202 (100), 178 (5), 168 (24). HRMS Gef.: 356.1565, Ber.: C₂₈H₂₀ (356.1565).
Bromierungen: Zu einer Lösung des entsprechenden Acetylns in 25 ml CHCl₃ werden pro eingesetztem mmol 2.5 ml einer 0.4 molaren Stammlösung von Brom in CHCl₃ hinzugetropft. Die Reaktion wird 2 h bei RT unter Lichtausschluß gerührt, anschließend wird die Reaktionsmischung gegen ges. Na₂SO₃-Lösung und zweimal gegen Wasser ausgeschüttelt, über Na₂SO₄ getrocknet und das Lösungsmittel abgezogen. Aufarbeitung entweder durch Umkristallisieren (A), durch Säulenchromatographie (B) oder durch préparative HPLC (C).

Bromierung von Phenylacetylen (263):²¹⁵

Ausgangsmaterialien: **263** (5 mmol, 500 mg). Produkte: 95% (E)-(1,2-Dibromvinyl)benzol (E)-**264**, 5% (Z)-(1,2-Dibromvinyl)benzol (Z)-**264**. (E)-**264**: gelbe Kristalle. ¹H-NMR: δ = 7.52 (m, 2H, 3-H, 5-H), 7.38 (m, 3H, 2-H, 6-H, 4-H), 6.82 (s, 1H, 8-H). ¹³C-NMR: δ = 136.98 (q, 1C, C-1), 129.38 (t, 1C, C-4), 129.12 (t, 2C, C-3, C-5), 128.24 (t, 2C, C-2, C-6), 121.29 (q, 1C, C-7), 103.01 (t, 1C, C-8). MS (GC-MS) Massenpeak m/z = 260 (C₈H₆Br₂ 259.88).

Bromierung von Diphenylacetylen (196):²¹⁵,²³³

Ausgangsmaterialien: **196** (5 mmol, 900 mg). Produkte: 60% α,α'-Dibrom-cis-stilben (Z)-**199**, 40% α,α'-Dibrom-trans-stilben (E)-**199**. (E)-**199**: farblose Kristalle. ¹H-NMR: δ = 7.56 (m, 4H, 3,3'-H, 5,5'-H), 7.43 (m, 6H, 2,2'-H, 6,6'-H, 4,4'-H). ¹³C-NMR: δ = 140.73 (q, 2C, C-1,1'), 129.05 (t, 4C, C-3,3', C-5,5'), 128.90 (t, 2C, C-4,4'), 128.36 (t, 4C, C-2,2', C-6,6'), 118.04 (q, 2C, C-7,7'). MS (GC-MS) Massenpeak m/z = 336.1 (C₁₄H₁₀Br₂ 335.95). (Z)-**199**: farblose Kristalle. ¹H-NMR: δ = 7.20-7.12 (m, 10H, alle Ar-H). ¹³C-NMR: δ = 139.37 (q, 2C, C-1,1'), 129.74 (t, 4C, C-2,2', C-6,6'), 128.31 (t, 2C, C-4,4'), 128.00 (t, 4C, C-3,3', C-5,5'), 125.66 (q, 2C, C-7,7'). MS (GC-MS) Massenpeak m/z = 336.1 (C₁₄H₁₀Br₂ 335.95).
Bromierung von 1,2-Bis(phenylethynyl)benzol (18): 45

Ausgangsmaterialien: 18 (3 mmol, 830 mg). Produkte: 85% (E)-3-Brom-1-(α-brom-benzyliden)-2-phenyl-inden (E)-195, 15% (Z)-3-Brom-1-(α-brom-benzyliden)-2-phenyl-inden (Z)-195. (E)-195: gelbe Kristalle. 1H-NMR: δ = 8.84 (d, 1H, 7-H), 7.52 (m, 3H, 4-H, 5-H, 6-H), 7.14 (m, 2H, Ar-H), 6.99 (m, 8H, Ar-H). 13C-NMR: δ = 141.10 (q, 1C, C-3a), 140.65 (q, 1C, C-9/C-15), 139.71 (q, 1C, C-9/C-15), 137.95 (q, 1C, C-1), 135.52 (q, 1C, C-7a), 134.82 (q, 1C, C-2), 130.74 (q, 1C, C-8), 130.35 (t, 2C, C-10/C-16, C-14/C-20), 129.51 (t, 2C, C-10/C-16, C-14/C-20), 128.81 (t, 1C, C-5), 128.61 (t, 2C, C-11/C-17, C-13/C-19), 127.08 (t, 2C, C-11/C-17, C-13/C-19), 127.06 (t, 1C, C-12/C-18), 126.95 (t, 1C, C-6), 126.42 (t, 1C, C-12/C-18), 126.25 (q, 1C, C-3), 124.46 (t, 1C, C-7), 120.58 (t, 1C, C-4). MS (70 eV) m/z (%): 440 (8), 438 (16), 436 (8) [M]+, 358 (12), 356 (12), 278 (100), 138 (12). HRMS Gef.: 435.9462, Ber.: C22H14Br2 435.9462. (Z)-195: gelber Feststoff. 1H-NMR: δ = 7.46 (m, 10H, 10-H, 14-H, 16-H, 20-H, 11-H, 13-H, 17-H, 19-H, 12-H, 18-H), 7.38 (d, 1H, 4-H), 7.25 (dd, 1H, 5-H), 6.89 (dd, 1H, 6-H), 6.12 (d, 1H, 7-H). 13C-NMR: δ = 142.29 (q, 1C), 140.68 (q, 1C), 139.95 (q, 1C), 137.93 (q, 1C), 136.11 (q, 1C), 134.79 (q, 1C), 130.30 (t, 2C), 129.61 (t, 1C), 129.04 (t, 2C), 128.63 (q, 1C), 128.57 (t, 2C), 128.46 (q, 1C), 128.19 (t, 2C), 127.88 (t, 1C), 127.79 (t, 1C), 126.66 (t, 1C), 122.99 (t, 1C), 120.16 (t, 1C). MS (70 eV) Massenpeak m/z = 436 (M)+; (C22H14Br2 435.99).

Bromierung von 1,4-Bis(phenylethynyl)benzol (235):

Ausgangsmaterialien: 235 (3 mmol, 830 mg). Produkte: 60% (E)-1-(1,2-Dibrom-2-phenylvinyl)-4-phenylethynylbenzol (E)-265, 40% (Z)-1-(1,2-Dibrom-2-phenyl-vinyl)-4-phenylethynyl-benzol (E)-265. (E)-265: farblose Kristalle vom Schmelzpunkt 177°C. 1H-NMR: δ = 7.55 (m, 2H, 3-H, 5-H), 7.51 (m, 6H, 11-H, 13-H, 12-H, 18-H, 22-H, 20-H), 7.41 (m, 2H, 2-H, 6-H), 7.34 (m, 4H, 10-H, 14-H, 19-H, 21-H). 13C-NMR: δ = 140.62 (q, 1C, C-9), 140.30 (q, 1C, C-1), 131.67 (t, 2C, C-3/C-18, C-5/C-22), 131.52 67 (t, 2C, C-3/C-18, C-5/C-22), 129.25 (t, 2C, C-11/C-19, C-13/21), 129.02 (t, 2C, C-11/C-19, C-13/21), 129.00 (t, 1C, C-12/C-20), 128.49 (t, 1C, C-12/C-20), 128.40 (t, 2C, C-6/C-10, C-2/14), 128.39 (t, 2C, C-6/C-10, C-2/14), 123.93 (q, 1C, C-17), 122.98 (q, 1C, C-4), 118.48 (q, 1C, C-8), 117.34 (q, 1C, C-7), 90.66 (q, 1C, C-16), 88.86 (q,
5 Experimenteller Teil

1C, C-15). \textbf{IR} (KBr, Preßling) ν = 3078, 3055, 1954, 1925, 1601, 1572, 1502, 1485, 1441, 1403, 1276, 1244, 1104, 1069, 1019, 914, 856, 835, 826, 758, 751, 732, 694, 671, 613 cm⁻¹.

\textbf{MS} (70 eV) m/z (%): 440 (16), 438 (32), 436 (16) [M⁺], 278 (100), 139 (22). \textbf{HRMS} Gef.: 435.9462, Ber.: C₂₂H₁₄Br₂ (435.9462).

\textbf{Bromierung von 1,2,3-Tris(phenylethyl)benzol (22):}

\begin{center}
\includegraphics[width=0.4\textwidth]{diagram.png}
\end{center}

Auszugsmaterialien: \textbf{22} (2 mmol, 750 mg). Produkt: \textbf{266} orangeroter Feststoff vom Schmelzpunkt 201°C. \textbf{¹H-NMR}: δ = 8.10 (d, 1H, 7-H), 7.43 (t, 1H, 6-H), 7.35 (d, 1H, 5-H), 7.13 (m, 3H- Ar-H), 7.05 (m, 4H, Ar-H), 6.94 (m, 1H, Ar-H), 6.88 (m, 2H, Ar-H), 6.80 (m, 1H, Ar-H), 6.68 (m, 4H, Ar-H). \textbf{¹³C-NMR}: δ = 148.37 (q, 1C, C-7b), 145.70 (q, 1C, C-2a), 142.13 (q, 1C, C-9/C-15/C21), 140.51 (q, 1C, C-9/C-15/C21), 139.85 (q, 1C, C-9/C-15/C21), 163.17 (q, 1C), 135.50 (q, 1C), 134.57 (q, 1C), 133.39 (q, 1C), 131.35 (q, 1C, C-7a), 130.64 (t, 2C), 129.95 (t, 2C), 129.86 (t, 2C), 129.77 (q, 1C, C-4a), 129.35 (t, 1C), 127.77 (t, 2C), 127.72 (t, 1C), 127.62 (t, 1C), 127.58 (t, 2C), 127.28 (q, 1C, C-4), 127.22 (t, 2C), 127.07 (t, 1C, C-6), 123.74 (t, 1C, C-7), 119.58 (t, 1C, C-5). \textbf{IR} (KBr, Preßling) ν = 3056, 3015, 2962, 2924, 1740, 1653, 1599, 1582, 1559, 1484, 1457, 1440, 1350, 1261, 1198, 1088, 1044, 1019, 866, 802, 790, 755, 696, 688, 635, 616 cm⁻¹. \textbf{MS} (70 eV) m/z (%): 540 (16), 538 (32), 536 (16) [M⁺], 458 (16), 456 (16), 378 (100), 350 (4), 300 (6), 237 (8), 189 (16), 121 (28). \textbf{HRMS} Gef.: 535.9775, Ber.: C₃₀H₁₈Br₂ (535.9775).

\textbf{Bromierung von 1-Phenylethynlnaphthalin (245):}

\begin{center}
\includegraphics[width=0.4\textwidth]{diagram.png}
\end{center}

Auszugsmaterialien: \textbf{245} (5 mmol, 1.1 g). Produkte: 60% \textbf{(E)-267}, 40% \textbf{(Z)-267}. \textbf{(E)-267}: farblose Kristalle vom Schmelzpunkt 148–152°C. \textbf{¹H-NMR}: δ = 8.10 (m, 1H, 8-H), 7.94 (m, 2H, 4-H, 5-H), 7.7-7.4 (m, 9H, Ar-H). \textbf{¹³C-NMR}: δ = 140.11 (q, 1C, C-11), 138.22 (q, 1C, C-1), 133.76 (q, 1C, C-4a), 129.43 (t, 1C, C-Ar), 129.36 (q, 1C, C-8a), 129.22 (t, 2C, C-13, C-15), 129.11 (t, 1C, C-Ar), 128.62 (t, 1C, C-Ar), 128.43 (t, 2C, C-12, C-16), 126.89 (t, 1C, C-Ar), 126.70 (t, 1C, C-Ar), 126.41 (t, 1C, C-Ar), 125.53 (t, 1C, C-Ar), 124.70 (t, 1C, C-Ar), 121.05 (q, 1C, C-9), 116.14 (q, 1C, C-10). \textbf{IR} (KBr, Preßling) ν = 3073, 3052, 3027, 1589, 1577, 1508, 1488, 1443, 1389, 1337, 1238, 1213, 1070, 1017, 868, 799, 777, 764, 739, 693, 681, 652, 625 cm⁻¹. \textbf{MS} (70 eV) m/z (%): 390 (8), 388 (16), 368 (8) [M⁺], 308 (4), 228 (100), 202 (6), 114 (12). \textbf{HRMS} Gef.: 356.1565, Ber.: C₁₈H₁₂Br₂ (356.1565).
Bromierung von 1,4-Diphenylbut-1-in (217):259,260

Ausgangsmaterialien: 217 (5 mmol, 1.0 g). Produkt: 270, bläulichgelber Feststoff vom Schmelzpunkt 52-54°C. 1H-NMR: δ = 7.46 (m, 3H, 10-H, 14-H, 12-H), 7.29 (m, 2H, 11-H, 13-H), 7.20 (m, 2H, 6-H, 7-H), 7.09 (m, 1H, 5-H), 6.69 (d, 1H, 8-H), 3.06 (m, 4H, 3-H, 4-H). 13C-NMR: δ = 139.58 (q, 1C, C-9), 138.31 (q, 1C, C-1), 135.70 (q, 1C, C-4a), 134.05 (q, 1C, C-8a), 129.66 (t, 2C, C-11, C-13), 128.32 (t, 2C, C-10, C-14), 127.43 (t, 1C, C-6), 127.27 (t, 1C, C-12), 127.13 (t, 1C, C-5), 126.49 (t, 1C, C-8), 125.98 (t, 1C, C-7), 123.44 (q, 1C, C-2), 35.10 (s, 1C, C-4), 29.49 (s, 1C, C-3). IR (KBr, Preßling) ν = 3054, 3019, 3008, 2948, 2938, 2890, 2825, 1617, 1597, 1489, 1479, 1442, 1419, 1109, 1072, 1059, 960, 857, 799, 765, 746, 720, 698 cm⁻¹. MS (70 eV) m/z (%): 286 (95), 284 (100) [M⁺], 205 (75), 178 (15), 165 (8), 127 (12), 101 (20), 91 (12). HRMS Gef.: 284.0201, Ber.: C₂₈H₂₀ (284.0201).

Bromierung von 2-(Phenylethyl) biphenyl (24):235

Ausgangsmaterialien: 24 (3 mmol, 760 mg). Produkt: 271, farblose Kristalle vom Schmelzpunkt 111°C. 1H-NMR: δ = 8.75 (m, 2H, 4-H, 5-H), 8.57 (m, 1H, 8-H), 7.75 (m, 2H, 6-H, 7-H), 7.68 (m, 1H, 1-H), 7.58 (m, 3H, 13-H, 15-H, 14-H), 7.47 (m, 2H, 2-H, 3-H), 7.38 (m, 2H, 12-H, 16-H). 13C-NMR: δ = 140.77 (q, 1C, C-10), 139.37 (q, 1C, C-11), 132.28 (q, 1C, C-8a), 130.65 (q, 1C, C-10a), 130.15 (q, 1C, C-4a), 129.77 (t, 2C, C-13, C-15), 129.38 (q, 1C, C-4b), 128.68 (t, 1C, C-8), 128.23 (t, 2C, C-12, C-16), 127.66 (t, 1C, C-3), 127.53 (t, 1C, C-7), 127.49 (t, 1C, C-14), 127.21 (t, 1C, C-6), 126.82 (t, 1C, C-2), 126.64 (t, 1C, C-1), 123.39 (q, 1C, C-9), 122.43 (t, 1C, C-4/C-5), 122.40 (t, 1C, C-4/C-5). IR (KBr, Preßling) ν = 3076, 3048, 3022, 1600, 1583, 1564, 1493, 1482, 1446, 1439, 1416, 1273, 1174, 1156, 1102, 1070, 1046, 1029, 958, 875, 767, 753, 733, 722, 696, 619 cm⁻¹. MS (70 eV) m/z (%): 334 (70), 332 (70) [M⁺], 252 (100), 224 (8), 126 (28) 113 (10). HRMS Gef.: 332.0201, Ber.: C₂₀H₁₃Br (332.0201).
Bromierung von 1-Phenylethyl-2-vinylbenzol (243):

Auszgangsmaterialien: 243 (1 mmol, 200 mg). Produkt: 276, gelbes Öl

1H-NMR: $\delta = 7.60$ (m, 4H, 3-H, 6-H, 12-H, 16-H), 7.41 (m, 5H, 4-H, 5-H, 13-H, 15-H, 14-H), 5.87 (dd, 1H, 7-H, 3J = 10.3, 5.8 Hz), 4.18 (m, 2H, 8-H). 13C-NMR: $\delta =$ 139.54 (q, 1C, C-1), 132.56 (t, 1C, C-3), 131.55 (t, 2C, C-12, C-16), 128.95 (t, 1C, C-4/C-5/C-14), 128.76 (t, 1C, C-4/C-5/C-14), 128.71 (t, 1C, C-4/C-5/C-14), 128.42 (t, 2C, C-13, C-15), 126.92 (t, 1C, C-6), 122.95 (q, 1C, C-2), 122.69 (q, 1C, C-11), 95.74 (q, 1C, C-10), 86.16 (q, 1C, C-9), 48.16 (t, 1C, C-7), 34.16 (s, 1C, C-8). IR (KBr, Film) $\nu = 3061, 3030, 2978, 2215, 1952, 1808, 1692, 1600, 1572, 1493, 1442, 1280, 1231, 1195, 1128, 1070, 1026, 911, 753, 690 \text{ cm}^{-1}$.

MS (70 eV) m/z (%): 366 (8), 364 (16), 362 (8) [M$^+$], 285 (20), 283 (20), 202 (100), 178 (16), 122 (12), 105 (20). HRMS Gef.: 361.9306, Ber.: C$_{16}$H$_{12}$Br$_2$ (361.9306).

Bromierung von (E)-1-(Phenylethyl)-2-(2',2'-diphenylvinyl)benzol (25):

Auszgangsmaterialien: 25 (1 mmol, 360 mg). Produkt: 280, rote Kristalle vom Schmelzpunkt 195°C. 1H-NMR: $\delta = 7.50$ (m, 4H, 4-H, Ar-H), 7.42 (m, 2H, Ar-H), 7.30 (m, 1H, 5-H), 7.13 (m, 2H, Ar-H), 6.96 (m, 9H, 6-H, Ar-H), 6.39 (m, 1H, 7-H).

13C-NMR: $\delta =$ 149.50 (q, 1C, C-8), 142.85 (q, 1C, C-9), 140.86 (q, 1C, C-15/C-21), 140.68 (q, 1C, C-3a), 140.14 (q, 1C, C-15/C-21), 136.57 (q, 1C, C-7a), 136.40 (q, 1C, C-1/C-2), 135.76 (q, 1C, C-1/C-2), 132.06 (t, 2C, C-Ar), 130.80 (t, 2C, C-Ar), 130.36 (t, 2C, C-Ar), 128.98 (t, 1C, C-12/C-18/C-24), 128.63 (t, 2C, C-Ar), 127.99 (t, 1C, C-6), 127.29 (t, 1C, C-5), 127.07 (t, 2C, C-Ar), 126.98 (t, 2C, C-Ar), 126.18 (t, 1C, C-12/C-18/C-24), 126.10 (t, 1C, C-12/C-18/C-24), 125.78 (q, 1C, C-3), 123.12 (t, 1C, C-7), 120.04 (t, 1C, C-4). IR (KBr, Preßling) $\nu = 3075, 3055, 3026, 1952, 1603, 1575, 1551, 1541, 1488, 1481, 1455, 1438, 1345, 1334, 1286, 1269, 1235, 1179, 1154, 1076, 12027, 952, 933, 846, 782, 774, 757, 723, 702, 624, 615 \text{ cm}^{-1}$.

MS (70 eV) m/z (%): 436 (100), 434 (95) [M$^+$], 355 (40), 278 (24), 178 (16). HRMS Gef.: 434.0670, Ber.: C$_{28}$H$_{19}$Br (434.0670).
Bromierung von 1,4-Diphenylbuta-1,3-diin (254):236

Ausgangsmaterialien: 254 (5 mmol, 1.0 g). Produkt: 281, gelbe Kristalle vom Schmelzpunkt 165°C. \textbf{1H-NMR:} δ = 7.57 (m, 4H, 3,3'-H, 5,5'-H), 7.43 (m, 6H, 2,2'-H, 6,6'-H, 4,4'-H). \textbf{13C-NMR:} δ = 138.51 (q, 2C, C-1,1'), 139.54 (t, 2C, C-4,4'), 128.93 (t, 4C, C-3,3', C-5,5') 128.12 (t, 4C, C-2,2', C-6,6'), 122.68 (q, 2C, C-7,7'), 116.22 (q, 2C, C-8,8'). \textbf{IR} (KBr, Preßling) ν = 3075, 3055, 3014, 1595, 1486, 1442, 1276, 1210, 1161, 1099, 1024, 998, 925, 886, 883, 764, 723, 695, 677 cm-1. \textbf{MS} (70 eV) m/z (%): 442 (20), 440 (20) [M+], 364 (20), 362 (40), 360 (20), 282 (20), 280 (20), 202 (100), 101 (24). \textbf{HRMS} Gef.: 517.7516, Ber.: C\textsubscript{16}H\textsubscript{16}Br\textsubscript{4} (517.7516).

Bromierung von 2',2'-Bis(phenylethynyl)-1,4-diphenylbuta-1,3-diin (23):43

Ausgangsmaterialien: 23 (2 mmol, 800 mg). Produkt: 282, orange Kristalle vom Schmelzpunkt 222°C. \textbf{1H-NMR:} δ = 8.24 (m, 2H, 7,7'-H), 7.57 (m, 2H, 4,4'-H), 7.30 (m, 2H, 5,5'-H), 7.22 (m, 6H, 11,11'-H, 13,13'-H, 12,12'-H), 7.01 (m, 2H, 6,6'-H), 6.65 (m, 4H, 10,10'-H, 14,14'-H). \textbf{13C-NMR:} δ = 140.80 (q, 2C, C-3a,3a'), 140.42 (q, 2C, C-9,9'), 138.45 (q, 2C, C-1,1'), 135.34 (q, 2C, C-7a,7a'), 133.31 (q, 2C, C-2,2'), 130.28 (q, 2C, C-8,8'), 129.96 (t, 2C, C-Ar), 129.61 (q, 2C, C-3,3'), 128.91 (t, 2C, C-5,5'), 128.37 (t, 2C, C-Ar), 128.14 (t, 2C, C-Ar), 127.09 (t, 2C, C-6,6'), 126.78 (t, 2C, C-Ar), 125.69 (t, 2C, C-Ar), 123.69 (t, 2C, C-7,7'), 120.13 (t, 2C, C-4,4'). \textbf{IR} (KBr, Preßling) ν = 3050, 1947, 1082, 1596, 1577, 1486, 1447, 1440, 1347, 1270, 1260, 1230, 1165, 1098, 1076, 1026, 966, 942, 926, 894, 859, 762, 752, 738, 705, 694, 659, 645, 628 cm-1. \textbf{MS} (70 eV) m/z (%): 726 (10), 724 (50), 722 (72), 720 (50), 718 (10) [M+], 355 (40), 278 (24), 178 (16). \textbf{HRMS} Gef.: 717.8142, Ber.: C\textsubscript{32}H\textsubscript{18}Br\textsubscript{4} (717.8142).

Bromierung von 2-Methyl-5-phenylpent-2-en (261):

Ausgangsmaterialien: 261 (5 mmol, 800 mg). Produkt: 285, farblose Flüssigkeit. \textbf{1H-NMR:} δ = 7.27 (m, 5H, 7-H, 11-H, 8-H, 10-H, 9-H), 4.17 (m, 1H, 3-H), 3.28 (m, 1H, 4-H), 3.08 (m, 2-H, 5-H), 2.17 (m, 1H, 4-H), 1.98 (s, 3H, 1-H/12H), 1.83 (s, 3H, 1-H/12H). \textbf{13C-NMR:} δ = 140.26 (q, 1C, C-6), 128.49 (t, 2C, C-8, C-10), 128.38 (t, 2C, C-7, C-11), 126.11 (t, 1C, C-9), 68.25 (q, 1C, C-2), 65.68 (t, 1C, C-3), 37.16 (s, 1C, C-5), 35.10 (p, 1C, C-1/C-12), 34.09 (s, 1C, C-4), 28.21 (p, 1C, C-1/C-12). \textbf{MS} (70 eV) m/z (%): 322 (2), 320 (4), 318 (2) [M+], 240 (4), 238...
Bromierung von 1,1,4-Triphenylbut-1-en (262):

Ausgangsmaterialien: 262 (5 mmol, 1.4 g). Produkt: 287, gelber Feststoff vom Schmelzpunkt 44°C. \(^1\)H-NMR: \(\delta = 7.25\) (m, 11H, Ar-H), 7.14 (m, 2H, Ar-H), 6.89 (m, 2H, Ar-H), 3.01 (t, 2H, 4-H, \(^3\)J = 7.4 Hz), 2.85 (t, 2H, 3-H, \(^3\)J = 7.4 Hz). \(^13\)C-NMR: \(\delta = 143.09\) (q, 1C, C-1/C-5), 142.88 (q, 1C, C-1/C-5), 140.65 (q, 1C, C-11/C-17), 140.43 (q, 1C, C-11/C-17), 128.80 (t, 4C, C-Ar), 128.49 (t, 2C, C-Ar), 128.27 (t, 2C, C-Ar), 128.18 (t, 2C, C-Ar), 127.99 (t, 2C, C-Ar), 127.10 (t, 2C, C-14, C-20), 126.59 (q, 1C, C-2), 126.12 (t, 1C, C-8), 40.38 (s, 1C, C-4), 34.79 (s, 1C, C-3). IR (KBr, Preßling) \(\nu = 3050, 3024, 2946, 2924, 2859, 1941, 1803, 1632, 1595, 1491, 1453, 1443, 1423, 1167, 1153, 1074, 1052, 1029, 1008, 866, 763, 748, 704, 695\) cm\(^{-1}\). MS (70 eV) m/z (%): 364 (30), 362 (30) [M\(^+\)], 271 (30), 269 (30), 192 (100), 165 (15), 91 (20). HRMS Gef.: 362.0670, Ber.: C\(_{22}\)H\(_{19}\)Br (362.0670).
6 Literaturverzeichnis

3) Claisen, L. Ber. 1912, 45, 3157.
4) Claisen, L. Ber. 1925, 58, 275.
72) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 98, 5648.
Literaturverzeichnis

7 Anhang

7.1 Abbildungen der 1H-NMR Spektren

1,2,3-Tris(phenylethinyl)benzol 18

1,2,4-Tris(phenylethinyl)benzol 236
1,2,3,4-Tetrakis(phenylethinyl)benzol 239

1,2,3,5-Tetrakis(phenylethinyl)benzol 238
1,2,3,4,5-Pentakis(phenylethynyl)benzol 241

2-(2',2'-Dibromvinyl)diphenylethynyl 251
7.1 1H-NMR Spektren

1-(2'-Biphenylethynyl)-2-(phenylethynyl)benzol 252

2-(2',2'-Diphenylvinyl)diphenylacetylen 25
7.1 1H-NMR Spektren

4-(Phenylethynyl)dibromstilben 265

1-(Bromphenylmethylene)-2,3-diphenyl-4-brom-1H-cyclopenta[cd]indene 266
1-(1,2-Dibrom-2-phenylvinyl)-naphthalin 267

9-Brom-10-phenylphenanthren 271
1-(Diphenylmethylene)-2-phenyl-3-brom-1H-inden 280

1,2,3,4-Tetrabrom-1,4-diphenylbuta-1,3-dien 281
2,2'-Bis[(1-bromphenylmethylen)-3-brom-1H-inden] 282

2,3-Dibrom-2-methyl-5-phenylpentan 285
7.2 Abbildung der 13C-NMR Spektren

1,2,3-Tris(phenylethinyl)benzol 18

1,2,4-Tris(phenylethinyl)benzol 236
7.2 13C-NMR Spektren

1,2,3,4-Tetrakis(phenylethynyl)benzol 239

1,2,3,5-Tetrakis(phenylethynyl)benzol 238
1,2,3,4,5-Pentakis(phenylethynyl)benzol 241

2-(2′,2′-Dibromvinyl)diphenylacetylen 251
1-(2'-Biphenylethynyl)-2-(phenylethynyl)benzol 252

2-(2',2'-Diphenylvinyl)diphenylacetylen 25
7.2 13C-NMR Spektren

4-(Phenylethynyl)dibromstilben 265

1-(Bromphenylmethylene)-2,3-diphenyl-4-brom-1H-cyclopenta[cd]indene 266
1-(1,2-Dibrom-2-phenylvinyl)-naphthalin 267

9-Brom-10-phenylphenanthren 271
1-(Diphenylmethylen)-2-phenyl-3-brom-1H-inden 280

1,2,3,4-Tetrabrom-1,4-diphenylbuta-1,3-dien 281
2,2'-Bis[(1-bromphenylmethylen)-3-brom-1H-inden] 282

2,3-Dibrom-2-methyl-5-phenylpentan 285
7.3 Molekülverzeichnis

1. C
2. O
3. O
4. C
5. =
6. C
7. C
8. C
9. =
10. C
11. C
12. C
13. SSSMe
14. NHCO₂Me
15. Zucker-O
16. NHCO₂Me
17. Zucker-O
18. C
19. C
20. C
21. (Z)-
22. C
23. C
24. C
25. C
7.3 Molekülverzeichnis

\[
\begin{align*}
89 & \quad 90 & \quad 91 & \quad 92 & \quad 93 & \quad 94 & \quad 95 & \quad 96 \\
97 & \quad 98 & \quad (\text{CH}_2)_n \\
100a-t & : R_1 = \text{BH}_2, \text{BF}_2, \text{AlH}_2, \text{CH}_3, \text{Ph}, \text{CN}, \text{Ac}, \text{CF}_3, \\
 & \quad \text{SiH}_3, \text{NH}_2, \text{NH}_3^+, \text{NO}_2, \text{PH}_2, \text{OH}, \text{OH}_2^+, \\
 & \quad \text{SH}, \text{F}, \text{Cl}, \text{Br} \\
100aa-ff & : R_1 = R_2 = \text{Subst} \\
101 & \quad 102 & \quad 103 & \quad 104 & \quad 105 \\
106 & \quad 107 & \quad 108 & \quad 109 & \quad 110 \\
111a-h & : n=1-8 \\
112a-h & : n=1-8 \\
113a-h & : n=1-8 \\
114a-h & : n=1-8 \\
115a-h & : n=1-8 \\
116a-t & : R_1 = \text{BH}_2, \text{BF}_2, \text{AlH}_2, \text{CH}_3, \text{Ph}, \text{CN}, \text{Ac}, \text{CF}_3, \\
 & \quad \text{SiH}_3, \text{NH}_2, \text{NH}_3^+, \text{NO}_2, \text{PH}_2, \text{OH}, \text{OH}_2^+, \\
 & \quad \text{SH}, \text{F}, \text{Cl}, \text{Br} \\
116aa-ff & : R_1 = R_2 = \text{Subst} \\
117a-t & : R_1 = \text{BH}_2, \text{BF}_2, \text{AlH}_2, \text{CH}_3, \text{Ph}, \text{CN}, \text{Ac}, \text{CF}_3, \\
 & \quad \text{SiH}_3, \text{NH}_2, \text{NH}_3^+, \text{NO}_2, \text{PH}_2, \text{OH}, \text{OH}_2^+, \\
 & \quad \text{SH}, \text{F}, \text{Cl}, \text{Br} \\
117aa-ff & : R_1 = R_2 = \text{Subst}
7.3 Molekülverzeichnis

(Z)-199

200

201

202

203

204

205

206

207

208

209

210: R₁ = H; R₂ = C≡C-H
211: R₂ = H; R₁ = C≡C-H

212

213

214

215

216

217

218

219

220

221

222

223

224

(PPh₃)₂PdCl₂

(PPh₃)₂Pd^0

(R')(PPh₃)₂PdX

(R')(PPh₃)₂PdR'
7 Anhang 7.3 Moleküldarstellung

226: $R_1 = \text{Br}; R_2 = \text{H}$
227: $R_1 = \text{H}; R_2 = \text{Br}$
228: $R_1 = \text{Br}; R_2 = \text{Br}$

229: $R_1 = \text{Br}; R_2 = \text{H}$
230: $R_1 = \text{H}; R_2 = \text{Br}$
231: $R_1 = \text{Br}; R_2 = \text{Br}$
7.4 Abkürzungen und Akronymen

\(\delta \) NMR-Skala der chemischen Verschiebung
\(\mu \) Mikro
\(\nu \) IR-Verschiebung in Wellenzahlen
\(\text{Å} \) Ångstrom
Abb. Abbildung
abs. absolut
\(\text{äq} \) äquivalent
au \(\text{atomic unit}; \text{atomare (Massen)-Einheit} \)
ber. berechnet
BLYP Becke-Lee-Yang-Parr
br. s breites Singulett
bzw. beziehungsweise
C \(\text{Celsius, Symmetriegruppe} \)
CASSCF \(\text{complete active space self consistent field}; \text{selbstkonsistentes Feld im vollständig aktiven Raum} \)
CC \(\text{coupled cluster} \)
cc \(\text{correlation consistent}; \text{korrelationskonsistent} \)
\(\text{cm}^{-1} \) Wellenzahlen
d bzw. \(d \) Dublett, \(\text{double}; \text{doppelt}, \text{deuterium, d-Orbitalfunktionen, days}; \text{Tage} \)
DFT \(\text{density functional theory}; \text{Dichtefunktionaltheorie} \)
E \(\text{Energie} \)
e \(\text{Elektron, Elektronenladung, Eulersche Konstante} \)
FTIR \(\text{Fourier transform infra red, Fourier-transformierte infra-rot} \)
G \(\text{freie Gibbssche Enthalpie} \)
gef. Gefunden
Gl. Gleichung
H \(\text{freie Enthalpie} \)
h \(\text{Stunde, Plancksche Konstante} \)
HF \(\text{Hartree–Fock} \)
HK \(\text{Hohenberg–Kohn} \)
HOMO \(\text{highest occupied molecular orbital}; \text{(energetisch) höchstes besetztes Molekülorbital} \)
Hz \(\text{Herz} \)
IR \(\text{Infrarot} \)
IRC \(\text{intrinsic reaction coordinate}; \text{intrinsische Reaktionskoordinate} \)
J \(\text{Joule} \)
k \(\text{Kilo} \)
K \(\text{Kelvin} \)
Kat. Katalysator
Abkürzungen 203

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konz.</td>
<td>Konzentration</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>Lit.</td>
<td>Literatur</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital; (energetisch) niedrigstes unbesetztes Molekülorbital</td>
</tr>
<tr>
<td>m</td>
<td>Multiplett</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MO</td>
<td>molecular orbital; Molekülorbital</td>
</tr>
<tr>
<td>mol</td>
<td>Einheit der Stoffmenge</td>
</tr>
<tr>
<td>MP2</td>
<td>second order Møller–Plesset perturbation theory; störungstheoretischer Ansatz zweiter Ordnung nach Møller–Plesset</td>
</tr>
<tr>
<td>n</td>
<td>Normal</td>
</tr>
<tr>
<td>p</td>
<td>Polarisationen, p-Orbitalfunktionen</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>q</td>
<td>Quartett</td>
</tr>
<tr>
<td>rev.</td>
<td>Revision</td>
</tr>
<tr>
<td>Rf</td>
<td>Retardierungsfaktor</td>
</tr>
<tr>
<td>RHF</td>
<td>restricted Hartree–Fock; beschränkte Hartree–Fock</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s</td>
<td>Singulett, Sekunde</td>
</tr>
<tr>
<td>SCF</td>
<td>self consistent field; selbstkonsistentes Feld</td>
</tr>
<tr>
<td>Smp.</td>
<td>Schmelzpunkt</td>
</tr>
<tr>
<td>sog.</td>
<td>Sogenannt</td>
</tr>
<tr>
<td>t</td>
<td>Triplett, triple; dreifach, Zeit</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
</tr>
<tr>
<td>ÜZ</td>
<td>Übergangszustand</td>
</tr>
<tr>
<td>UHF</td>
<td>unrestricted Hartree–Fock; unbeschränkte Hartree–Fock</td>
</tr>
<tr>
<td>vs.</td>
<td>versus; im Vergleich zu</td>
</tr>
<tr>
<td>VWN</td>
<td>Vosko-Wilk-Nussair</td>
</tr>
<tr>
<td>Z</td>
<td>Zeta (ζ)</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>ZPVE</td>
<td>zero point vibrational energy; Nullpunktsenergie</td>
</tr>
</tbody>
</table>
7.5 Publikationsliste

Danksagung

Als letztes möchte ich noch meiner Familie danken, die mir das Studium erst ermöglicht hat und ohne die ich nicht soweit gekommen wäre, und vor allem meiner Frau Antje, die mich mit Liebe und Geduld auf dem Weg durch das Studium begleitet hat.
Lebenslauf

1971 Geboren am 07.09.1971 in Kassel
1978-1982 Besuch der Grundschule Brückenhof-Nordshausen in Kassel
1982-1988 Besuch der Mittelstufe an der Heinrich-Schütz-Schule in Kassel
1988-1991 Besuch der gymnasialen Oberstufenschule Jacob-Grimm-Schule in Kassel
1991 Erreichen der allgemeinen Hochschulreife (Note: 1.6)
1991-1992 Ableistung des Grundwehrdienstes
1992 Beginn des Studiums der Chemie an der Universität Gesamthochschule Kassel
1994 Diplomvorprüfung in Chemie mit sehr gut bestanden
1995 Dreimonatige berufspraktische Studien im chemischen Labor der Qualitätssicherung der AEG Hausgeräte AG in Kassel
1997 Im April Hochzeit mit der Zeitsoldatin Antje Prall, geb. Altenhofen
1997-1998 Diplomarbeit im AK von Prof. Dr. H. Frauenrath an der Universität Gesamthochschule Kassel zum Thema: *Synthese und Epoxidierung von 4H-1,3-Dioxinen: Vergleich mit der Reaktion von 5-Methyl-4H-1,3-Dioxinen.* Diplomprüfung in Chemie mit sehr gut bestanden
1998 Beginn der Dissertation im AK von Prof. Dr. Peter R. Schreiner am Institut für organische Chemie der Universität Göttingen zum Thema: *Cyclisierungsreaktionen mehrfach ungesättigter Systeme – Theorie und Experiment.*
1999 Teilnahme an der *Winter School on Organic Reactivity* (WISOR VIII) in Brixen/Italien
2000-2002 Insgesamt vier Monate Forschungsaufenthalt an der *University of Georgia* in Athens/USA
2002 Promotionsprüfung in Chemie