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1. INTRODUCTION 
 
1.1 Description of the pathogen, its distribution and control 

 

The Gram-negative bacterium Erwinia amylovora ((Burril) Winslow et al.) is the causal agent 

of fire blight, a dangerous disease of pome fruits and several ornamentals of rosaceous plants. 

Fire blight was first described in North America about 200 years ago (VAN DER ZWET and 

BEER, 1992). After its first occurrence in 1957 in Europe (LELLIOTT, 1959) through its 

introduction by contaminated fruits and budwood from the North American continent, the 

disease has been distributed over whole Europe (VAN DER ZWET and BONN, 1999).  

 

Fire blight control measures are mostly restricted to the early eradication of attacked host 

plants, as in most countries the use of effective antibiotics is prohibited by law. In countries 

where the antibiotic streptomycin has been allowed, the problem of streptomycin resistant 

strains of the pathogen occurred (MANULIS et al., 1999).  

 

Several chemical copper compounds, Flumequine, Aliette and Oxolinic acid, have been tested 

as alternatives to the use of antibiotics. They either revealed insufficient efficacy under field 

conditions, or showed negative side effects (VANNESTE, 2000). Thus, an effective 

compound against the disease is urgently needed by the growers. Biocontrol agents have been 

tested as alternatives to antibiotics. 

 

1.2 Alternatives to antibiotic compounds 

 

1.2.1 Bacterial antagonists 
 
A biocontrol method based on antagonism against the disease has already been developed 

about 30 years ago (BEER and RUNDLE, 1987). Especially with strains of Erwinia 

herbicola, the so-called yellow bacteria, first positive results have been achieved. Later on, a 

significant reduction of fire blight was achieved by the application of Bacillus subtilis, 

Pseudomonas fluorescens, Pantoea agglomerans or Rahnella aquatilis strains, respectively 

(BEER and NORELLI, 1986; ZELLER and WOLF, 1996). In recent studies, application of 

Pseudomonas fluorescens caused 40-60% reduction of fire blight symptoms, and for Pantoea 

agglomerans a control of 50-80% was observed (LAUX et al., 1999). Based on the strains 

Pseudomonas fluorescens A506 and Pantoea agglomerans C9-1, the product  Blight Ban 



 

10 

(Plant Health Systems) was released on the US-market. Another antagonistic strain of 

Bacillus subtilis is the active ingredient of the commercial formulation “Serenade” (Serenade 

Product Information). However, in most cases the field efficacy of these products was 

significantly lower than that of antibiotics, and not constant from year to year (FRIED et al., 

1998). Therefore, no registration of these products in Europe has been achieved until now.  

 

1.2.2 Induced resistance 

 

Several biocontrol agents have been shown to induce resistance in the plant. Biotic and 

chemical agents are reported as resistance inducers, although only a few of them are real plant 

activating agents. Three criteria need to be fullfilled before an agent can be classified as 

systemic acquired resistance (=SAR) inducing compound: 

• The treated plants are resistant to the same spectrum of disease as those in which SAR 

is induced biologically. 

• A lack of direct antimicrobial activity and no conversion of the compound in planta 

into antimicrobial metabolites. 

• Induction of the same pre-infectional biochemical processes as observed in plant tissue 

after biological induction of SAR (KESSMANN et al., 1994a).  

 

1.2.2.1 Plant extracts 

 

As a further alternative to antibiotics several plant extracts have been tested against E. 

amylovora in vitro and in vivo. MOSCH et al. (1989) reported an antibacterial activity for 24 

out of 139 plant extracts tested in an agar diffusion test. The antibacterial activity against E. 

amylovora could also be observed with leaf extracts from Rhus typhina, Berberis vulgaris, 

and Mahonia aquifolium in field experiments. Extracts from these plants, applied as 

protective spray showed a high disease control (MENDE et al., 1993). Moreover, a high 

activity against the disease was reported for plant extracts from Reynoutria sachalinensis, 

Hedera helix, Viscum album and Alchemilla vulgaris. These extracts induced resistance in the 

high susceptible host plant Cotoneaster waterei, causing a slower multiplication of the 

bacterium and a reduction in disease severity. The same results have been achieved with 

extracts from Hedera helix and Viscum album on detached leaves of Cydonia ablonga 

(MOSCH et al., 1993). In field experiments with the apple variety `James Grieve`, an extract 

from Hedera helix showed an efficacy similar to that of streptomycin (MOSCH et al., 1996). 
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The active components of the plant extract from Hedera helix which induce resistance have 

not been elucidated. However, chemical analysis of Hedera folium leaves revealed the 

presence of the following compounds: Hederagenin, oleanolacid, bayogenin (=2β-

hydroxyhederagenin) as aglykon and hederasaponin (=hederacosid) (WICHTL, 1997). It is 

yet unknown whether these compounds occur in the methanolic plant extract from Hedera 

helix. In another study, an inhibitory effect against the disease was also reported for Bactosan, 

an extract from Pingania piñata, by PSALLIDAS and TSIANTOS (2000). 

 

A plant extract from Hedera helix, an inducer of resistance, was shown to cause physiological 

changes. Thus, enhanced levels of PR proteins (chitinase, ß-1,3 glucanase) and enzymes of 

phenol metabolism, which can be regarded as a marker of resistance induction was observed 

(MOSCH et al., 1996). These enzymes have been reported as markers for induced resistance 

by several authors (HAMMERSCHMIDT et al., 1982; BINDER et al., 1989; MÈTRAUX et 

al., 1989; WARD et al., 1991). 
 
1.2.2.2 Etheric oils 

 

Besides plant extracts also etheric oils have been tested against E. amylovora in vivo and in 

vitro. SCORTICHINI and ROSSI (1989, 1991, 1993) reported an antibacterial effect against 

E. amylovora with essential oils from origanum, thyme, savory, cinnamon and garlic. In their 

studies an influence of essential oil constituents on bacterial growth was determined, as for 

instance by the terpenoids geraniol and citrollenol. In addition, an etheric oil from Thymbra 

spicata was reported as an induction agent of systemic acquired resistance (SAR) (BASIM et 

al., 2000). 

 

1.2.2.3 Synthetic compounds 

 

Benzo-(1,2,3)-thiadiazole-7-carbothioic-S-methyl-ester (BTH=Acibenzolar-S-methyl), which 

is capable of inducing SAR, has been tested against several pathogens (KESSMANN et al., 

1994b; RUESS et al., 1995; OOSTENDORP et al., 1996). In 1996, BTH was introduced in 

Germany and is available as the commercial product BION®. Resistance inducing effects of 

this product have been demonstrated in plants against Erysiphe graminis, Septoria spp., 

Pyricularia oryzae, Peronospora tabacina, Phytophthora spp., Didymella bryonia, (RUESS et 

al., 1995; KESSMANN et al., 1996; GÖRLACH et al., 1996) CMV-Y (cucumber mosaic 
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virus) (ANFOKA, 2000) and against Erwinia amylovora in recent studies (BRISSET et al., 

2000; ZELLER and ZELLER, 1998). 

 

The growth regulator Prohexadione-Ca has also been tested as an alternative compound 

against fire blight. However, sufficient efficacy in field experiments could not be obtained. 

Recently, the compound harpin was released on the US-market as resistance inducer, but it 

has not yet been tested against fire blight in the field  (PSALLIDAS and TSIANTOS, 2000). 

 

1.3 Aim of this study 
 
Until now not much information is available regarding physiological changes in apple tissue 

against E. amylovora during induced resistance. In the here reported studies, two different 

resistance inducers were compared for their potential effect against fire blight (Erwinia 

amylovora): the synthetic inducer BTH (BION®), and as a biotic agent a plant extract from 

Hedera helix. Experiments were primarily performed to characterize the physiology of 

induced resistance, besides the direct efficacy of these inducers against the disease. In 

particular, alterations of the phenol metabolism and enzymatic activities were followed, since 

earlier studies indicated a decisive of these reactions in the resistance respons against Erwinia 

amylovora (ZELLER and BRULEZ, 1987). 
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2. MATERIALS AND METHODS 

 

2.1 Plant material 
 
M26 apple rootstocks obtained from Rheinau (Deutsche Marken-Baumschule) were used as 

host plants for the studies. These rootstocks are highly susceptible to fire blight caused by 

Erwinia amylovora. 

  

2.2 Greenhouse conditions 
 
Three-month old rootstocks were grown in pots of 20 cm x 15 cm x 15 cm size, filled with 8 

kg soil in the greenhouse, with temperatures of 25 ± 5 oC, humidity of 68 - 80%, and light 

intensity of 5000- 14000 lux. The plants were used 4 weeks after planting (young shoots were 

10-12 cm long with 6-8 leaves per shoot). This environment was maintained during the entire 

period of the experiment.  

 

Fig. 1: Experimental set-up in greenhouse  
 
2.3 Bacterial strains and culture medium 
 
Bacterial strains of Erwinia amylovora (Ea7/74, Ea385, Ea6/98) were obtained from the 

Federal Biological Research Centre (BBA), Darmstadt (collection of Prof. Dr. W. Zeller). The 

virulence was tested on M26 rootstocks. Ea7/74 showed the highest virulence and was used in 

all following experiments. The inoculation method is described in the following. 
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Stock cultures were preserved on the modified Miller-Schroth medium (MSM, Table 1) 

(ZELLER and BRULEZ, 1987) in glass flasks at 4 oC in a refrigerator. The bacteria were 

transferred every 3 months to new flasks.  

 

Table 1: Miller-Schroth medium (MSM) (MILLER and SCHROTH, 1972)  

 

Nutrient Broth (Difco Co. 23400)     8 g 

Saccharose (Carl-Roth Co. 4621.2)     50 g 

Difco Bacto Agar (Carl-Roth Co. 5210.2)    20 g  

0.5 % Bromothymolblue solution (Merck Co. 1.59103.0001)  9 ml  

0.5 %  Neutralred solution (Merck Co. 1.01369.0025)  2.5 ml 

Actidion (Fungicide) (Carl-Roth Co. 8682.3)   50 mg /l 

H2O         1000 ml 

pH was adjusted to 7.4 with 2 N NaOH  

 

2.4 Application of BTH (BION®) 

 

Benzothiadiazole (BTH (BION®)) was used at a concentration of 0.02% (diluted with tap 

water) as inducing agent by spraying on leaves at 48, 72, 96 and 120 h before inoculation to 

determine the induction interval. Control plants were treated similarly with water. 

 

 

Fig. 2: Formula of BTH (BION®) 
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2.5 Preparation and application of plant extract from Hedera helix  

 

Dried and ground leaf material (powder and ground leaves of about 3 mm size) supplied by 

Galke Company (Gittelde / Harz) was used for the preparation of plant extract. The plant 

material was extracted in 80% methanol with a soxhlet–apparatus. The extract was boiled in 

80% methanol for 30 min after cooling with a reflux condenser for 4 hours. After 15 min the 

extract was filtered and dissolved in methanol/water and then again boiled for another 15 min. 

This treatment was repeated three times. Then, the methanol was evaporated from the extract 

by a rotation-evaporator (according to MOSCH and ZELLER, 1997). The plant extract was 

stored in a refrigerator in 30% ethanol solution until use. Before application, the extracts were 

diluted with water to 3% extract concentration. The extracts were applied by spraying on 

leaves until run off.  
 

2.6 Inoculation  
 
The two youngest leaves of the shoots were cut at the tip and inoculated by dipping into a 

suspension of 1x108 CFU/ ml of strain Ea7/74 (ZELLER and MEYER, 1975). 

 

2.7 Determination of induction time 
 
To determine the most efficient induction interval, experiments were conducted at four 

induction times (48, 72, 96, and 120 h) with BTH application on M26 rootstocks before 

inoculation. Control plants were sprayed with water at the same intervals. To determine the 

disease index, eight plants were used for each treatment in greenhouse experiments. These 

experiments revealed that 48 h were the most efficient induction time. Therefore, this 

application time was used for BTH and plant extract.  

 

 

2.8 Symptom development 
 
Symptom development was evaluated at 4, 6, 7, 11, and 14 days after inoculation according to 

a rating system from 0-10 as given below (Fig. 3). From these data, the disease index (%) was 

calculated.  
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Fig. 3: Rating system (class of symptoms)  
 

 

0- no obvious symptom* 

1- main leaf vein turned to brown from cutting point, few mm (3-5) 

2- main leaf vein turned to brown from cutting point, several mm (>5 mm, not total leaf length) 

3- main leaf vein turned to brown from cutting point , total leaf length 

5-   main and side leaf veins turned to brown and / or necrosis from cutting point, half leaf   length  

7-   total leaf turned to brown and / or necrosis up to leaf stem 

10- infection of shoot, often together turning black, and shoot curved 

* minimum necrosis at cutting point was assessed as symptom, as it sometimes also occurred in control plants.  
 

Index of disease (DI %) was calculated as follows: 
 

� (number of leaves X class of symptom) 

DI %=                                                                    X 100 

                               Total number of leaves 

 
 
2.9 Determination of bacterial multiplication in planta by dilution plating 

 

For the determination of bacterial multiplication, the samples of inoculated shoot tips (ca. 1 g 

plant material) were collected and homogenized in 0.06% NaCl solution (1:1). From each 

homogenate, dilution plating (from 10-1 to 10-6) was performed on the modified Miller-

Schroth medium (ZELLER and BRULEZ, 1987) and incubated for 2 days at 27 °C, (Fig. 4). 
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Fig. 4: Plate counting technique: Scheme of the dilution row and calculation  

of living bacterial cells (KLEMENT et al., 1990). 

 

2.10 Determination of bacterial population in planta by PCR 

In this experiment, in addition to quantitative determination of bacterial population it was 

tested whether the PCR method allowed to detect any changes in the bacterial population after 

inoculation or treatment with BTH or plant extract. The samples were collected at the same 

time of the experimental period as samples used to determine enzyme activities. 

 
2.10.1 Testing of phenol inhibitory substances for PCR 

For determination of bacterial populations in plants, bacterial suspensions were adjusted to an 

absorbance of 0.2 (≅ 108 CFU / ml) and homogenized 1:1 v/w with 1 g healthy plant material 

in order to detect possible negative effects of plant phenolics on sensitivity of PCR. The 

homogenate was separated from plant residues by filtration through a sieve followed by 

centrifugation at 15000 X g for 10 min. To 1000 µl of the resulting bacterial suspension 250 

µl prepared solution consisting of 1% (v/v) PVPP, 5% (v/v) glycerol and 0.1 M DTT were 

added and gently shaken to inhibit probable complications, due to phenolic substances in the 

PCR reaction (LLOP et al., 2000). The bacterial suspension was centrifuged at 13000 X g for 

10 min. The bacterial pellet was suspended in 1 ml distilled water and again centrifuged at 

13000 X g for 10 min. The pellet was suspended in 1 ml distilled water serially diluted with 

1% Tween 20 and incubated at 60 oC for 10 min. Aliquots of 10 µl were taken for PCR. Plant 
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samples of 1 g each without bacteria collected from the greenhouse were homogenized 1:1 

(w/v) in distilled water and then the same procedure as above was carried out.  

 

2.10.2 PCR protocol (after JOCK et al., 2000) 
 
A specific PCR core kit (Qiagen GmBH) was used to detect the PCR signal. The composition 

of the reaction mixture and thermal cycle conditions, are listed in the following tables (A-B). 

 

A. Composition of reaction mixture 

10X Qiagen PCR buffer  5 µl 

dNTP    2 µl 

Primer A   1 µl (pEA 29 A) 

Primer B   1 µl  (pEA 29 B) 

Taq DNA polymerase  1 µl  

Distilled water   31.5 µl 

Sample    10 µl 

Total volume   50 µl 

 

B. Conditions of the thermal cycler  

Initial denaturation  3 min 94 oC 

3-step cycling 

Denaturation:   1 min 94 oC  

Annealing:   1 min 52 oC 

Extension:   1 min 72 oC 

Number of cycles:  28 

Final extension:   10 min 72 oC 

 
 
For detection of Erwinia amylovora by PCR the specific plasmid pEA29 A-B (BERESWILL 

et al., 1992) was used. As a marker 0.9 Kb AluI pBR 322 (MBI Fermentas Co. # SM0123) 

was applied.  
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2.10.3 Preparation of agarose gel 
 
The agarose gel was prepared by dissolving 1.5 g agarose in 100 ml of *Tris-buffer (see 

below) by microwave. After cooling down in a water bath (60 oC) the agarose was slowly 

poured into the gel electrophoresis tank.  

 

Composition of *Tris-buffer 

 

Tris   107.8 g 

Boric acid  55.0 g  

EDTA   7.44 g  

Distilled water 1000 ml 

pH adjusted to  7.4 

 

For dissolving the agarose the Tris-buffer was diluted 1:10. 

 

2.10.4 Loading of samples in agarose gel  

 

After preparation of the agarose gel, each sample was applied together with 5 µl ready loading 

buffer solution, using AluI pBR 322 as a marker. Electrophoresis was performed at 5-6 V/ m 

for 3 hours. After electrophoresis, the gel was stained with ethidium bromide for 15 min and 

photographed under UV light (JOCK et al., 2000). 

 

2.11 Physiological investigations  
 
A considerable suppression of symptom development and bacterial multiplication was 

observed in BTH and plant extract treated plants. This effect was supposed to be an induced 

resistance reaction caused by physiological changes in the plant. Therefore, several typical 

biochemical and physiological parameters, which are activated by resistance inducing agents, 

were estimated at different time intervals (1-11 days) after induction and inoculation. At each 

time interval, four samples (2 shoot tips from each of two seedlings) were taken for each 

treatment. The following methods were used: 
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2.11.1 Preparation of samples for determining enzyme activities 
 
For determining enzyme activities of peroxidase (PO), polyphenoloxidase (PPO), 

phenylalanine ammonia-lyase (PAL) and β-glucosidase (β-Gl) shoots measuring 5 cm from 

the tip were collected, immersed in liquid N2 and homogenized with 0.1 M Na-acetate buffer 

(pH 5.2) (1 g plant material in 10 ml). The homogenate was centrifuged at 15000 g for 30 min 

at 4 oC, and the enzyme activities were determined in the supernatants. 

 

For determining pathogenesis related (PR) proteins (chitinase, β-1,3-glucanase) and 

glutathione-S-transferase, harvested shoots were immersed in liquid N2 and homogenized in 2 

ml 0,1 M Na-acetate buffer of pH 5.2 consisting of 1% (v/v) PVPP 

(polyvinylpolypyrolidone), 5% (v/v) glycerol, 0.1 M phenylmethansulfanylfluorid, and 0.1 M 

DTT (dithiothreitol). Homogenates were centrifuged at 15000 g for 30 min at 4 oC. 

Supernatants were used to determine enzymatic activities. 

 

2.11.2 Protein assay 
 
Protein content of samples was determined by the Bradford reagent (BRADFORD, 1976) 

prepared as follows: 

 

100 mg Coomassie Brilliant Blue G-250 (Carl-Roth Co. 3862.1) were gently dissolved in 50 

ml ethanol (95%), added to 100 ml 85% H3PO4, mixed with 1000 ml water, filtered, left for 

24 h, and preserved in a refrigerator (+4 oC). 

Assay: 100 µl homogenate were gently shaken with 1.5 ml Bradford reagent and incubated 

for 15 min at room temperature. Protein content was determined spectrophotometrically at 

595 nm with bovine serum albumine (BSA) (0-5.0 mg/ml) as standard. Na-acetate buffer was 

used as blank.  
 
 
2.11.3 Total phenol content 

 

Shoots measuring 5 cm from the tip were immersed in liquid N2, homogenized in 80% 

methanol (1 g plant material in 10 ml) and stored in the deep-freeze (-20 oC). Later, the 

homogenate was centrifuged at 15000 g for 30 min at 4 oC. The pellet was discarded. After 

addition of ascorbic acid (0.1 g to 5 ml) the homogenate was evaporated in a rotary evaporator 

at 65 oC 3 times for 5 min. The residues were dissolved in 5 ml of 80% methanol. For the 



 

21 

assay, 0.02 ml methanol extract were incubated for 1 h with 0.5 ml folin ciocalteau phenol 

reagent and 0.75 ml of 20% Na2CO3 solution. The total phenol content was determined 

spectrophotometrically at 767 nm with gallic acid (0-5 mg) as a standard. Methanol was used 

as blank. The results were expressed as mg gallic acid / g plant material (RAPP und 

ZIEGLER, 1973; ZELLER, 1985).  

 

2.12 Flavonoids  
 
Shoots immersed in liquid N2 were homogenized in 80% methanol (1g plant material in 10 ml 

methanol), protected from oxidation by replacing oxygen with nitrogen and eliminating light 

for 48 h, extracted with ethyl acetate (1:1 v/v), and evaporated for 3 times (10 min) at 65 oC 

in a rotary evaporator. The residues were separated by thin layer chromatography (TLC) two-

dimensionally on micropolyamide plates of 20 X 20 cm (RAPP und ZIEGLER, 1973). The 

solvent systems for both directions are shown below. The dried plates were sprayed with 

``Naturreagenz A``(Carl-Roth Co. 99201) (1:100 dissolved in methanol). The spots were 

identified according to hrf values and specific colours (NEU, 1957; ZELLER, 1985; 

SCHULZ, 1987; HEIMLER and BODDI, 1989). 

 

 

*Methylpropyl-ketone (pentanon-2)/water/formic acid 2: 12: 6 (v /v) Dimension 2    (30 min) 

*Methylpropyl-ketone (pentanon-2)/butyl format/formic acid 4: 13: 3 (v/v) Dimension 1 (1 h) 

 

 

2.12.1 Inhibitory substances  

 

The aim was to characterize phenolic compounds which may play a role as antibacterial 

substances after application of BTH and plant extract. 10 µl residue (see 2.12) were spotted on 

silica gel thin layer chromatography plates (Silica gel 60F-254, Merck), and developed with 

chloroform and acetic acid (95:5 v/v). After drying for 4 h, a bacterial suspension of ca. 108 

cells / ml of Ea7/74 in liquid culture medium [0.8% Nutrient Broth (Difco Co. 23400), 5% 

2 nd direction 
Starting point 

1st direction 
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saccharose (Carl-Roth Co. 4621.2), 1% glycerol, 0,05% actidion (Carl-Roth Co. 8682.3)] was 

sprayed on the plates, followed by incubation for 24 h at 27 oC. Plates were dried until opaque 

appearence, and immediately sprayed with aesculin spray [0.2% w/v aesculin (Carl-Roth Co. 

8704.1), 0.1% w/v ammonium ferric citrate; 0.5% w/v yeast extract, in distilled water]. The 

plates were again incubated at 27 oC for 24 h in boxes to allow hydrolysis of aesculin to occur. 

Inhibition zones appeared as white spots against a yellow background (LUND and LYON, 

1975). 

 

2.12.2 Inhibitory effect of the detected substance compared with phenolic acids 

 

In recent studies, pH decreases due to increase of phenolic acids in resistant plants have been 

reported by which the growth of the pathogen was inhibited (MATERN and KNEUSEL, 

1988). Also, the present study revealed an increase of the phenol content and PO activity, and 

the appearance of a yet uncharacterized substance in BTH treated and plant extract treated 

plants.  

 

The effect of the detected inhibitory substance and phenolic acids as reference substances 

were tested in liquid shaking cultures against E. amylovora. The reference substances (gallic 

acid, cinnamic acid, chlorogenic acid, and phloretin), which were reported as phytoalexin-like 

compounds in apple tissue (GOODMAN et al., 1986), were dissolved in 60% acetone. Final 

concentrations of 0.01 M of the reference substances were added to 50 ml nutrient saccharose 

(NS, see Table 1.) medium. Parallelly, 30 g plant sample were extracted. 2 ml of each extract 

were developed on TLC thick layer plates (PSI Merck silica – gel 60F-254). Later on, 

inhibitory substance was scraped off the dried plates, dissolved in 50% acetone, and added to 

50 ml NS. Substance free NS was used as control. At the start of experiment, 250 µl bacterial 

suspension of 108 CFU/ml of Ea7/74 was applied. Changes of the bacterial concentration in 

shaking culture were recorded spectrophotometrically at 660 nm for 3 days. 

 

2.13 High-performance liquid chromatography (HPLC) analysis 

 

After determination of the flavonoid content through TLC and testing of inhibitory 

substances, HPLC analyses were performed in order to observe quantitative changes in 

phenolic acids and phloretin content in BTH, plant extract treated and untreated plants. Thirty 

gram plant sample was used and prepared as described above (see 2.12). Samples were 
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analysed by HPLC in the laboratory of Dr. Treutter (Technical University of München, 

Institut für Pflanzenbau) according to the method of TREUTTER et al. (1994) with 

dimethylaminocinnamaldehyde (DMACA)-reagent. 

 

The HPLC equipment consisted of two pumps T-414 (Kontron) and the gradient programmer 

205 (Kontron). The column (250 x 4 mm I.D.) as prepacked in the laboratory with Shandon 

Hypersil ODS, 3 µm. The solvents were 5% formic acid (A) and gradient grade methanol (B) 

with a flow-rate of 0.5ml/ min. The gradient profile used was: 0-5 min. isocratic, 5% B in A; 

5-15 min, 5-10% B in A; 15-30 min, isocratic, 10% B in A; 30-50 min, 10-15% B in A; 50-70 

min, isocratic, 15% B in A; 70-85 min, 15-20% B in A; 85-95 min, isocratic, 20% B in A; 95-

110 min, 20-25% Bin A; 110-140 min, 25-30% B in A; 140-160 min, 30-40% B in A; 175-

190 min, 50-90 % B in A. 

 

Directly behind the column a Kontron filter detector (Uvikon 740 LC) was used for detection 

at 280 nm. Thereafter the eluent containing the phenols was mixed with the reagent in a 

simple T-connection. A Gynkotek HPLC pump (Model 300-C) moved the reagent at a flow-

rate of 0.5 ml /min. For both the T-connection and the pumps stainless steel heads were used. 

The reactors were knitted PTFE capillaries (0.5 mm I.D) with different lengths. The PTFE 

capillaries have to be replaced after 4-5 months due to the occurrence of insoluble, blue to 

violet precipitations which can absorb phenolic compounds leading to peak tailing. The blue 

reaction products were measured at 640 nm by VIS-detector (Model SP6V, Gynkotek, 

Germany). The data of both chromatograms were evaluated simultaneously by a computer 

equipped with Gynkosoft chromatography software (Gynkotek). 

 

For the heating experiments, a stainless-steel capillary (50 cm X 0.5 mm I.D.) was inserted 

between the T-connection and the PTFE-reactor. This short capillary was clamped between 

the open ends of the secondary coil of a laboratory-made low voltage/high current transformer 

and heated directly by an alternating current of approximately 20-30 A. The temperature was 

controlled electronically using a micro temperature probe attached to the capillary. 

 

The reference compounds were commercially available (catechin, epigallocatechin, 

epicatechin-3-O-gallate, epigallocatechin-3-O-gallate, epicatechin, procyanidins B2, B5, A2, 

C1, epicatechin (4β→ 8),-epicatechin (4β→ 6),epicatechin, epicatechin, ent-epicatechin-
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(4β→ 8;2β→ 7). The number of the peaks and common names of flavonoids are presented in 

Table.2. 

 
Common name  Structure Ratio 40/280 

Reaction time  

2 min 

Retention time 

without CRD 

Elution order 

(peak number) 

2,3-cis Series     

Epigallocatechin  98.8 31.3 4 

Epigallocatechin-3-O-

gallate 

 3.2 49.5 6 

Epicatechin-3-O-gallate  2.8 85.4 11 

Epicatechin  20.9 55.6 7 

Procyanidin B2 E(4β→ 8)E 10.9 41.2 5 

Procyanidin C1 E(4β→ 8)E(4β→ 8)E 7.7 63.6 9 

 E(4β→ 8)E(4β→ 8)E(4β→ 8)E 3.8 67.9  

Procyanidin B5 E(4β→ 6)E 14.5 112.0 14 

 E(4β→ 8)E(4β→ 6)E 14.3 126.9 15 

2,3-trans Series     

Catechin  12.4 28.5 3 

Procyanidin B3 C(4α→ 8) C 5.5 20.7 1 

 C(4α→ 8)C(4α→ 8)C 3.4 20.7 1 

 C(4α→ 6)C 6.3 31.3 4 

A-types     

Procyanidin A2 E(4β→ 8;2-0→ 7)E 2.9 100.5 13 

 entE(4α→ 8;2α-0→ 7)E 2.0 94.2 12 

 E(4α8;2β→ 0→ 7)E(4β→ 8)entE 1.9 49.5 6 

  1.8 70.9 10 

Sterochemically mixed 

procyanidins 

    

Procyanidin B1 E(4β→ 8)C 9.7 24.0 2 

Procyanidin  B7 E(4β→ 6)C 11.9 57.5 8 

 

Table 2: Influence of the structure on peak area ratio (CRD/UV) and retention time for 

determination of flavonoids (from TREUTTER et al., 1994). 

 

2.14 Peroxidase (PO) 

 

Peroxidase activity was determined spectrophotometrically using guaiacol as a common 

substrate for peroxidases. The homogenate (see 2.11.1) of 0.2 ml was incubated with 0.1 ml 
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0.1 M Na-acetate-buffer (pH 5.2), 0.2 ml 1% guaiacol and 0.2 ml 1% H2O2 at 25 o C for 5 min 

and measured at 436 nm (PUTTER, 1974). Na-acetate buffer was used as blank. Enzyme 

activity was calculated from the change in absorbance and was expressed as: 

 

Peroxidase activity  = OD436nm. / mg protein  

 

2.14.1 Peroxidase activity on SDS-PAGE gel electrophoresis 

 

After the determination of PO activity spectrophotometrically, it was investigated if there 

were any differences in peroxidase isoenzyme patterns between the treatments. The protein 

patterns of the samples were observed in the following electrophoresis studies. 
 
2.14.2 Determination of peroxidase activity with staining solution 

 

The gel was incubated in *staining solution in the dark at room temperature until red-brown 

bands appeared (VALLEJOS, 1983). The gel was washed in water, fixed in 50% glycerol and 

photographed. 
 
*Staining solution 

50 mM sodium acetate buffer, pH 5.0 100 ml 

3-amino-9-ethyl-carbazole (dissolved in a few drops of acetone)  50 mg 

3% H2O2 (freshly prepared)       0.75 ml 

 

2.15 Protein patterns 
 
Preserved samples were treated with acetone 1:4 v/v and kept at -20 oC overnight. These 

samples were centrifuged (18000 X g) at –1 oC for 15 min, the supernatant was dried at room 

temperature and suspended in the *sample buffer (see below)  

*Sample buffer 

100 mM tris / HCl 

10% glycerol 

10% mercaptoethanol 

5% SDS 

0.01% bromophenolblue 

pH 6.8 
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2.15.1 Preparation of samples 

 

One gram plant material was immersed in liquid nitrogen, stored in deep-freeze (-20 oC) and 

homogenized with sea sand, 2 ml *Tris-buffer, 0.05 g polyclar and 0.05 g dowex. 

 

*Tris-buffer 

0.2 M Tris / HCl pH 7.2 

14 mM 2- mercaptoethanol 

 

Homogenized plant material was centrifuged (18000 X g) at 1 oC for 30 min; the supernatant 

was centrifuged (20000 X g) at 1 oC for 10 min, and preserved at -20 oC for SDS-PAGE. 

 

2.15.2 Electrophoresis and staining  

 

Prepared SDS Gel (Fa. BIO-Rad, 10 wells) was used for determination of specific peroxidase 

activity and protein patterns. The electrophoresis tank was filled with 1% SDS puffer (Fa. 

Roth). Combs were removed from stacking gel, taking care not to disturb the well dividers. 

The samples (5 µl) and standard protein as marker (low molecular weight–marker, Pharmacia 

calibration Kit; 14.4, 20.1, 30, 43, 67, and 94 kD) were applied in 1:1 (v/v) sample buffer in 

well dividers. Electrophoresis was performed at 60 V in the first 2 h, then at 110 V for 1 h 

more, after which the gel was removed from the electrophoresis tank.  

 

2.15.3 Staining of gel with Coomassie brilliant blue 

 
After the run, the gel was placed into *Coomassie solution since proteins are not directly 

visible and incubated for 1 h at room temperature. Coomassie blue dye binds to protein non-

specifically. Corresponding protein bands can be detected as blue bands on a clear 

background (WILSON, 1983). Thereafter, the gel was placed in the *destaining solution 

under gentle shaking for 4 h to remove the background, prior to evaluation and photography. 

Protein electropherograms of samples were compared visually with the marker. After 

removing the solution, the bands of visible protein bands were fixed with 50% glycerol 

solution and stored in a refrigerator. 
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*Coomassie solution  

0.25 g Coomassie – blue 

400 ml methanol 

70 ml glacial acetic acid 

1 l distilled water 

 

*Destaining solution 

100 ml isopropanol 

100 ml glacial acetic acid 

800 ml distilled water 

 

2.16 Phenylalanine ammonia-lyase (PAL) activity  

 

0.5 ml homogenate (see 2.11.1) were incubated with 2 ml 50 mM *Na-borate buffer / HCl 

(pH 8.8) with 1 ml 60 mM phenylalanine, in 50 mM *Na-borate-buffer at 37 oC for 2 h. PAL 

activity was calculated at OD290 nm. Cinnamic acid (0- 5.0 mg) was used as standard. Activity 

was determined as the rate of conversion of L-phenylalanine to trans-cinnamic acid at 290 nm 

(ZUCKER, 1968).  

 

*Preparation of Na-Borate buffer: 25 ml NaOH (1 N) 3.09 g H3BO3 and 349 µl 

mercaptoethanol, dissolved in 1000 ml distilled water, and pH adjusted to 8.8.  

 

PAL activity = mM cinnamic acid /mg protein 
 

2.17 Polyphenoloxidase (PPO) activity 
 
0.5 ml homogenate, which was used for determination enzymatic activities (see subchapter 

2.11.1) were incubated with 2 ml 50 mM *Sörensen phosphate buffer and 0.5 ml substrate 

Brenzcatechol (Merck Co. 1.59614.0005) at 37 °C for 2 hours and measured at 410 nm 

(BATRA and KUHN, 1975).  

*Preparation of Sörensen phosphate buffer: 6.8 g KH2PO4 and 8.99 g Na2HPO4 X 2H20 are 

dissolved in 1000 ml water, after addition of 0.372 g /l EDTA the pH is adjusted to 6.5. 

PPO activity = OD410 nm. / mg protein  
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2.18 ββββ-Glucosidase (ββββ-GL) activity 

 

From the same homogenate, as prepared for other enzyme determinations (PO, PAL, etc.), 0.5 

ml were mixed with 1.5 ml Sörensen phosphate buffer (pH 6.5) and 0.5 ml 5 mM p-

nitrophenylglucopyranosid and incubated for 5 min at 30 oC. The O.D at 400 nm with 

nitrophenol (0-5.0 mg) as standard corresponded to the enzyme activity (ZELLER, 1985). 

 

β-Glucosidase activity = mM p-nitrophenol / mg protein  

 

2.19 Activities of chitinase and ββββ-1,3-glucanase 
 
Chitinase activity was determined by the method of WIRTH and WOLF (1990 and 1992). 

High polymeric carboxymethyl-substituted chitin, labelled covalently with Remazol Brilliant 

Violet 5R (CM–Chitin–RBV, Fa. Loewe Biochemica) was used as substrate for chitinase 

activity, while polymeric carboxymethyl-substituted curdlan, labelled covalently with 

Remazol Brilliant Violet 5R (CM–Curdlan–RBV, Fa. Loewe Biochemica), was used as 

substrate for β-1,3-glucanase activity. 

Test sample was prepared as follows; 

 

0.50 ml 0.01 M Na-acetate buffer pH 5.2 with 5% (v/v) glycerol 

0.25 ml plant extract   

0.25 ml dye labelled substrate CM–*RBV solution (2 mg /ml) 

 

Test samples were kept in a water bath incubated at 37 oC for 120 min for chitinase 

determination or 60 min for β-1,3-glucanase determination. The enzyme reaction was 

terminated by adding 0.25 ml 2 N HCl. After centrifugation (14000 X g for 5 min), 

supernatants containing soluble, dye labelled degradation products were transferred into 

another cuvette (1 ml). Absorbance was measured spectrophotometrically at 550 nm for 

chitinase or 600 nm for β-1,3-glucanase. Blanks were prepared similarly with Na-acetate 

buffer instead of the homogenate. Enzyme activity was expressed as: 

OD550 / mg protein for chitinase activity 

OD600 / mg protein for β-1,3-glucanase activity 
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2.20 Glutathione-S- transferase (GST)  
 
Glutathione-S-transferase activity was determined spectrophotometrically using reduced 

glutathione as substrate. For the assay, 600 µl homogenate (see 2.11.1) were mixed with 1200 

µl Na-phosphate buffer (pH 6,5), 12 µl chloro-dinitro-benzene (CDNB), 12 µl 0.1 M GSH 

(reduced glutathione) and incubated at 30 oC for 10 min. Samples were left on ice for 5 min 

and enzyme activity was determined by measuring O.D. at 340 nm (HABIG et al., 1974). 
 
GST activity = O.D.340 nm / mg protein  

 

2.21 Salicylic acid 
 
500 µl homogenate (see 2.11.3) were mixed with 250 µl HCl (10 N) and 1000 µl methanol. 

Samples were incubated in a water bath at 80 oC for 2 h, neutralised with 4-5 drops 1 M 

NaHCO3, and 1000 µl methanol were added. The O.D. at 254 nm was measured (modified 

from DAT et al., 1998) to calculate the content of salicylic acid and expressed as:  

 

Amount of total salicylic acid = µg / g plant material 

 

2.22 Statistical analysis 

 

For determination of disease index, standard deviations of the mean values of two different 

experiments were calculated with the statistical analysis programme MSTAT (version 1.41) 

(RUSSELL, 1989) and expressed as ± standard deviation (⊥). 

 

In the physiological studies (enzyme activities and total phenol content) standard deviations 

of data obtained were calculated from four different samples (2 shoot tips from each of two 

seedlings) with MSTAT and expressed as ± standard deviation (⊥). 
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3. RESULTS 

 

3.1 Determination of the virulence of different strains of Erwinia amylovora 
 
In order to work with a highly virulent strain in the following studies, three strains of Erwinia 

amylovora (Ea385, Ea6/98 and Ea7/74) were tested. Apple rootstocks of M26 were inoculated 

with a dose of 108 CFU/ml. Seven days after inoculation, the disease index of the shoots was 

determined. Strain Ea7/74 showed highest virulence, according to symptom development. 

Seven days after inoculation, the strains Ea7/74, Ea385 and Ea6/98 caused 72%, 52% and 

41% infection, respectively (Fig. 5). According to these results, strain Ea7/74 was selected for 

the following experiments. 

 

Fig. 5: Virulence of different strains of E. amylovora on M26 rootstocks. 

⊥ Standard deviations of two replicates (8 plants per variant). 
 
3.2 Symptom development in untreated, BTH or plant extract treated shoots 
 
In the following experiments, control seedlings showed a faster symptom development than 

BTH, and plant extract treated ones. The first symptoms in control seedlings were observed 

at the main leaf vein after 4 days p.i. At this time, leaves were brownish coloured until 0.5-1 

cm distance from infection site. Seven days p.i., symptoms reached half of the main and side 

leaf vein. Eleven days after inoculation, infection covered the whole leaf and stem (Figs. 6 a, 

d, g). 
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In BTH treated seedlings, the symptom development was slower than in plant extract treated 

ones, which in turn, showed significantly slower symptom development than control 

seedlings. Considerable differences in symptom development were observed at 4 d after 

inoculation. The symptom development was observed at the main leaf vein, covering 1-5 mm. 

At 7 d p.i., symptoms occured around 1 cm from the infection site. Very low symptom 

development was observed during the whole course of the experiment (Figs. 6 b, e, h).  

 

In plant extract treated seedlings, first symptoms were observed 4 d after inoculation at the 

main leaf vein covering 1 cm. Seven days p.i., contrary to BTH treated seedlings the whole 

leaf showed necrotization (Figs. 6 c, f, i).  

 

Fig. 6: Course of infection in untreated control plants, in comparison to BTH, and plant extract 

treatment. 

 

    a) 4 d p.i. control shoots                                       b) 4 d p.i. BTH treated shoots 

 

Generally, in BTH treated and plant extract treated seedlings, infection did not proceed 

systemically, compared to untreated seedlings. Thus, suppression of symptom development was 

clearly visible in BTH, and plant extract treated seedlings, during course of the infection.  
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   c) 4 d p.i. plant extract treated shoots                      d) 7 d p.i. control shoots 

 

Contrary to untreated seedlings, in BTH and plant extract treated seedlings the infection stopped in 

the middle of the leaf, at a maximum. BTH treated seedlings did not show any necrotization. 

However, in the plant extract treated seedlings necrotization of infected leaves was observed.  

 
 

 
e) 7 d p.i. BTH treated shoots                                       f) 7 d p.i. and plant extract treated shoots 
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g) 11 d p.i. control shoots              h) 11 d p.i. BTH treated shoots           i) 11 d p.i. plant extract 

treated shoots 
 
 
Untreated shoots were heavily diseased. From the upper part of the stem, typical cracking and dark 

brown-clinging leaves were observed. In BTH treated seedlings, a high disease severity in shoots 

was never observed compared to untreated and plant extract treated seedlings. In plant extract 

treated shoots, high necrotization was recorded only in the inoculated leaves. Thus, at the end of the 

experimental period development of disease was weaker in plant extract treated than in untreated 

seedlings. 

 

3.3 Influence of BTH on symptom development and determination of its optimum 

application time 
 
After application of BTH a remarkable reduction in the disease index of fire blight occurred 

(Fig. 7). When different time intervals between BTH treatment and inoculation (48, 72, 96 

and 120 h) were compared the greatest suppression of disease was caused by BTH treatment 

48 h before inoculation with Erwinia amylovora; but also BTH application at 72 h-120 h 

before inoculation reduced disease index significantly. The resistance against E. amylovora 

induced by the BTH-treatment was firstly detected 6 days after inoculation and lasted for the 

entire experimental period until two weeks after inoculation. Untreated plants showed a 

significantly faster symptom development during this period. Thus, at 7 days p.i. disease 

index was reduced by 62% in BTH treated seedlings and at 11 and 12 days p.i. up to 67 and 

70 %, respectively. At 14 days p.i. the disease indices of control seedlings were 82% whereas 

those of BTH treated seedlings were only 12% - 35%.  
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Fig. 7: Disease index of fire blight on M26 rootstocks after different time intervals 

between BTH-treatment and inoculation (48 –120 h). ⊥ Standard 

deviations of disease index for two replicates (10 plants per variant). 

 

Since the highest effect was observed at a time interval of 48 h between treatment and 

inoculation, this application of BTH time was practised in all further experiments. 

 

3.4 Influence of the Hedera helix plant extract on symptom development and 

determination of its optimum application time  

 

Also, application of the Hedera helix plant extract significantly reduced symptom 

development. However, stable differences between different time intervals did not show up. 

Therefore, the same induction time as for BTH-treatment was also chosen for application of 

plant extracts (48 h before inoculation). At 4 days p.i., treatment with BTH and plant extract 

reduced the disease index by 40%, although not statistically significant (Fig. 8). Six days after 

inoculation, the plant extract and BTH treated seedlings showed 50 and 58% reduction in 

symptom development, respectively. At all the following dates, from 7–14 days post 
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inoculation, BTH–treatment always reduced disease indices stronger than treatment with plant 

extracts (Fig. 8 and Table 3). 

 

Table 3: Disease index of fire blight on M26 rootstock after resistance induction 

with BTH or plant extract. ⊥ Standard deviations of disease index of two 

replicates (8 plants per variant). 

 
Control BTH Plant extract Days after 

inoculation 
5 ± 2.4 3 ± 1.8 3 ± 2.1 4 
12 ± 3.8 6 ± 3.4 7 ± 3.5 6 
29 ± 4.2 14 ± 3.7 16 ± 5.2 7 
48 ± 5.6 19 ± 5.2 33 ± 5.3 11 
54 ± 4.5 22 ± 5.5 40 ± 5.4 12 
78 ± 5.2 24 ± 5.4 54 ± 5.2 14 

 

 

Fig. 8: Disease index of fire blight on M26 rootstock after resistance induction 

with BTH or plant extract. ⊥ Standard deviations of disease index of two 

replicates (8 plants per variant). 

 

3.5 Bacterial growth in planta after resistance induction with BTH or plant extract 
 
The growth of E. amylovora was markedly reduced in BTH and plant extract treated seedlings 

compared to the untreated control (Fig. 9). This inhibitory effect was firstly observed at 2 d 

after inoculation and determined until 7 d after inoculation. Also, in these experiments BTH-
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treatment caused a stronger reduction of bacterial growth than treatment with plant extract. 

Thus, the bacterial population was reduced by 80 and 65% by BTH, compared to only 72 and 

58% by plant extracts at 4 and 7 d after inoculation, respectively (Fig. 9). At 11 d p.i. no 

significant differences between treated and non-treated seedlings were detected. This may be 

due to necrotization of the plant tissue at the end of the infection period. 

 

Fig. 9: Growth of Erwinia amylovora in shoots of M26 rootstock after 

treatment with BTH or plant extract. ⊥ Standard deviations of 

CFU/g for 2 replicates (1 g plant material per variant). 

 

3.6 Evaluation of bacterial populations in planta by PCR 
 
For the PCR studies, suspensions of pure bacterial cultures with approximately 108 CFU /ml 

were prepared. When a plant homogenate was added to these bacterial suspensions, the 

bacterial concentration was reduced to 106 CFU /ml as shown by serial dilution and plating 

(Table 4). By PCR no signal could be achieved below the 104 CFU /ml (Fig. 10). However, 

with addition of inhibitory substances against phenolics (see 2.10.1), the PCR-sensitivity was 

increased to one step more and a signal could be observed down to 103 CFU/ml (Fig. 11). 
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Table 4: A comparison of bacterial suspensions of O.D.660 nm = 0.2 with and 

without addition of plant homogenate (* no bacteria grew on Petri 

plates). 

 

Dilution series 
Plant homogenate 

(CFU/ml) 

No plant homogenate 

(CFU/ ml)  

10-8 * 1.7X108 

10-7 * 1.3X108 

10-6 4X106 1.2X108 

10-5 3.2x106 Uncountable 

10-4 3.7X106 Uncountable 

10-3 Uncountable Uncountable 

 

Fig. 10: PCR f
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rom dilution series of pure bacterial culture (Ea7/74 from 104 to 

ixed with plant homogenate containing no inhibitory substances 

t phenolics. 

. marker pBR 322 DNA / AluI marker,20 

. positive control (high density bacteria) 

. negative control (without bacteria only plant homogenate) 

. 104 CFU /ml  

.105 CFU /ml  

.106 CFU / ml 

 

 

 

 

 M   1  2  3          4  5  6  
908bp
 
659bp
 
521bp

 



 

38 

 

 

Fig. 11: PCR from dilution series of pure bacterial cultures (Ea7/74 

from 106 to 101) mixed with plant homogenate containing 

inhibitory substances against phenolics (PVPP and DTT). 

1. 105 2. 104 3. 103 4. 102  5. 101 6. 106  

M=pBR 322 DNA/ AluI Marker,20 

 

In a greenhouse experiment, 1 day after inoculation no PCR signal was received from all 

variants. Two days after inoculation, from control and plant extract treated seedlings very 

faint signals were obtained. A significant difference was found in BTH treated seedlings 4 

days after inoculation (Figs. 12. 4A, 4B) which was maintained up to 7 d p.i., compared to 

control seedlings. At the end of the experimental period (11 d p.i.) the signal was similar in 

untreated and BTH treated seedlings. In plant extract treated seedlings (Figs. 12. 2A, 2C), the 

differences between treated and non-treated seedlings were rather weak from 4 - 11 d after 

inoculation. 
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Fig. 12: The signal differences on PCR in plant during the experimental period. 
 

 

 

0 No signal, + very low, ++ low, ++ medium, +++ high, ++++ very high 

M pBR 322 DNA/AluI Marker, 20 

 

1A. Control shoots 1 d p.i.       1B. BTH treated 1 d p.i.             1C. PE treated 1 d p.i. 

2A. Control shoots 2 d p.i.       2B. BTH treated 2 d p.i.             2C. PE treated 2 d p.i. 

4A. Control shoots 4 d p.i.       4B. BTH treated 4 d p.i.             4C. PE treated 4 d p.i. 

7A. Control shoots 7 d p.i.       7B. BTH treated 7 d p.i.             7C. PE treated 7 d p.i. 

11A. Control shoots 11 d p.i. 11B. BTH treated 11 d p.i.         11C. PE treated 11 d p.i. 
 

 

Days after inoculation 

Treatments 1 d  2 d 4 d 7 d 11 d 

Control 0 (+) ++ +++ ++++ 

BTH treated plants 0 0 (+) + +++ 

Plant extract treated plants 0 (+) + ++ +++++ 

                   1A 1B  2A 2B   4A  4B   7A  7B  11A 11B 

908bp 
 
659bp 
 
521bp 
 
M 

908bp 
 
659bp 
 
521bp 
 
M         1A 1C  2A  2C   4A 4C    7A   7C   11A 11C 
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3.7 Physiological changes  

 

3.7.1 Total phenol content 

In general, the BTH and plant extract treated shoots showed a higher phenol content than 

untreated shoots. This effect was most significant between 2 – 4 d after treatment. In the 

following these changes are characterized in more detail. 
 
a) Non-inoculated shoots 
 
The total phenol content differed significantly between all three variants, BTH, plant extract 

treated and non-treated shoots (Fig. 13a). One day after treatment, the total phenol content 

gradually increased more rapidly in the BTH and plant extract treated shoots (14 and 31%, 

respectively) than in the untreated shoots. The plant extract treated shoots reached their 

highest value 2 d after treatment, when the phenol content was 60% higher than in non-treated 

shoots, and also significantly higher than after BTH treatment (31%). From 4 d to 11 d p.i. the 

total phenol content decreased gradually after both treatments and nearly reached the level of 

non-treated shoots 11 d p.i.. 

 

Fig. 13a: Total phenol content in non-inoculated shoots, which were 

treated or non-treated. ⊥ Standard deviations of measurements 

in 4 samples (2 plants per sample). 
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b) Inoculated shoots 

 

The trend of phenol content showed a decrease for all variants post inoculation. At the 

beginning of the experiment, the inoculated, untreated seedlings had a higher phenol content 

than non-inoculated seedlings.  

 

One day after inoculation, the treatment with plant extract caused a slight (12%) but 

significant increase of total phenols compared to BTH treated and control seedlings (Fig. 

13b). Thereafter, the content of total phenolics gradually decreased in all variants and reached 

a similar value 7d p.i..  

 

 

Fig. 13b: Total phenol content in inoculated shoots, and after treatment with 

BTH or plant extract. ⊥ Standard deviations of measurements in 4 

samples (2 plants per sample). 
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3.7.2 Peroxidase (PO) activity 
 
a) Non-inoculated shoots  

 

In the non-inoculated shoots, over the entire experimental period, PO activity was markedly 

increased in BTH (42%) and plant extract (54%) treated tissue (Fig. 14a), starting 2 d after 

induction with a significantly higher activity. At 4 d after induction, the plant extract treated 

shoots showed a significantly higher activity than BTH treated ones (67%). In plant extract 

treated shoots, the highest increase was up to 135%. Afterwards, the PO activity gradually 

decreased and reached the normal level at 11 d.p.i.. 

 

Fig. 14a: Peroxidase activity in non-inoculated shoots, which had been 

treated with BTH or plant extract. ⊥ Standard deviations of 

measurements in 4 samples (2 plants per sample). 
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b) Inoculated shoots 

 

The course of PO activity in inoculated plants was different from non-inoculated ones (Fig. 

14b). One day after inoculation, PO activity was significantly lower in BTH treated plants 

than in plant extract treated and control plants. The activity increased in plant extract treated 

plants to 50% at 2 d after inoculation, and was significantly higher than in BTH treated and 

control plants. The activity in control plants remained on the same level up to 4 d after 

inoculation. In plant extract treated plants, the highest activity (70% more than the control) 

was observed at 4 d after inoculation, and also BTH treated plants showed a similar activity 

(80% of control) at the same time. At the end of the experimental period (11 d p.i.) the 

activity was similar in all treatments. 

 

 

Fig. 14b: Peroxidase activity in inoculated shoots, which were treated with 

BTH or plant extract. ⊥ Standard deviations of measurements 

in 4 samples (2 plants per sample). 
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3.7.2.1 Specific peroxidases detected by electrophoresis  

 

To characterize specific changes in PO, the period of highest activity (4 d after treatment and 

inoculation) was examined by SDS- PAGE.  

 

As demonstrated in Fig. 15, PO activities were found at protein sizes of 20.1 and 43 kD. The 

plant extract treated seedlings showed high PO activities in 3 bands, and BTH treated 

seedlings in 2 bands 4 d p.i. These results correlated well to the spectrophotometrical 

measurements of PO activity.  
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3.7.3 Protein bands detected by electrophoresis  
 

For determination of bands corresponding to PO activity (see 3.7.2.1), total proteins were 

extracted and denaturised. Protein bands were recorded 4 d after treatment and inoculation. In 

the samples of BTH (B) and plant extract treated seedlings (A), a protein band of 42 kD 

appeared to increase (see Fig. 16). However, this protein band seemed to be stronger in the 

untreated inoculated plants. In the homogenate of BTH treated plants (C), additional protein 

bands at 43–20.1 kD were observed (Fig. 16) which were not present in the non-treated 

control. On the contrary, the treatment with BTH or plant extracts induced increase of specific 

protein bands similar to the pattern after artificial inoculation. 

 

Fig. 16: Protein bands of untreated a

treatment and inoculation (1 g

1. Non-treated shoots. 

2. BTH treated non-inoculated shoots.

3. Plant extract treated non-inoculated
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3.7.4 Phenylalanine ammonia- lyase (PAL) activity 

 

a) Non-inoculated shoots 

 

After treatment of plants with BTH or plant extract, an increased PAL activity was observed. 

Generally, activation by plant extract was significantly higher than by BTH (Fig. 17a). The 

PAL activity increased to the highest level at 4 d after treatment with plant extract (93%), and 

with a delay 7 d after treatment with BTH. On the other hand, at the end of the experimental 

period (11 d.p.i.) both treatments showed the same enzyme level as untreated plants.  

 

Fig. 17a: PAL activity in non-inoculated shoots, which were treated with 

BTH or plant extract. ⊥ Standard deviations of measurements 

in 4 samples (2 plants per sample). 
 
b) Inoculated shoots  

 

Generally, a higher PAL activity was observed in all variants after inoculation. The activity in 

BTH treated seedlings was significantly lower than in plant extract treated ones, but nearly 

comparable with that of the control (Fig. 17b). On the other hand, the plant extract treated 

seedlings showed a high activity nearly over the whole experimental period with a peak at 4 d 

p.i. BTH treatment enhanced PAL activity only weakly with a delay compared to the control. 
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At the end of the experimental period, all variants showed a decreasing PAL activity with 

comparably low activity.  

 

Fig. 17b: PAL activity in inoculated shoots, which were treated with BTH 

or plant extract. ⊥Standard deviations of measurement in 4 samples 

(2 shoots per sample). 

 

3.7.5 Polyphenoloxidase (PPO) activity 

 

a) Non-inoculated shoots 

 

The PPO activity was higher in seedlings treated by BTH or plant extract, compared to the 

non-treated control over the whole experimental period (Fig. 18a), especially after treatment 

with plant extract 7 d p.i. (72% increase). 
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Fig. 18a: PPO activity in non-inoculated shoots, which were treated with 

BTH or plant extract. ⊥ Standard deviations of measurements 

in 4 samples (2 shoots per sample). 

 

b) Inoculated shoots 

 

Inoculated shoots showed a gradual increase of PPO activity in the later stages of infection (7 

and 11 d p.i.) (Fig. 18b). In contrast, the treatments caused a faster increase of PPO-activity 

from 2 - 4 d p.i., especially after treatment with plant extract. Later on (11 d p.i.) PPO-activity 

decreased below the level of inoculated plants without treatments (Fig. 18b).  
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Fig. 18b: PPO activity in inoculated shoots, which were treated with BTH or 

plant extract. ⊥ Standard deviations of measurements in 4 samples 

(2 shoots per sample). 

 

3.7.6 Flavonoids determined by thin layer chromatography (TLC) 

 

An enhanced total phenol content and increased enzymatic activities (PO, PPO, PAL etc.) 

were observed in BTH or plant extract treated seedlings, with or without inoculation. 

Synthesis of phenolic acids and flavonoids is often related to the synthesis of secondary 

metabolites, and inhibitory substances against several plant pathogens after application of 

plant protection agents (TOREL et al., 1986; MATERN and KNEUSEL, 1988; MAYR et al., 

1995). The quantitative changes of the flavonoids quercetin, kampferol, procyanidin, and their 

isoforms, were followed in course of the experiment and the reduction of the disease was 

often correlated with increases in the flavonoids (FEUCHT and TREUTTER, 1989; MAYR, 

1995). 
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Regarding the flavonoid changes, reduction in monomer flavonoids and increase in oligomer 

flavonoids 6 days after application of the plant extract from H. helix has already been 

demonstrated before (MOSCH and ZELLER, 1997). Therefore, flavonoid changes in plants 

were also examined in these experiments. Due to increased enzymatic activities and phenol 

content 4 d after treatment and inoculation, this time was selected to determine changes in the 

content of flavonoids, which could be characterized only qualitatively. Flavonoids were 

determined on basis of hrf values and the colour of substance spots (NEU, 1957; ZELLER, 

1985; SCHULZ, 1987; HEIMLER and BODDI, 1989). However, a few flavonoids showed 

the same colours at different hrf values. Therefore, these flavonoids were assumed to be 

isoforms. 

 

TLC analysis revealed a higher flavonoid content in BTH treated seedlings than in non-treated 

ones (Fig. 19.2). In the plant extract treated seedlings the flavonoid pattern appeared to be 

changed (Fig. 19.6). However, the different pattern may have been caused by the fact that all 

substances travelled higher during TLC in this variant. After inoculation, the BTH treated 

seedlings (Fig. 19.5) showed a similar flavonoid content as non-treated ones (Fig. 19.4), and a 

lower content in plant extract treated seedlings (Fig. 19.6). 

 

According to hrf values and the colour of the flavonoids outlined in Table 5 several 

substances were assumed. Generally, it was observed that in BTH treated seedlings the 

kampferol isoforms increased more than in plant extract treated and non-treated seedlings. 

Changes in colours of flavonoids could only be observed after treatments with the plant 

extract, which were assumed to be flavonoid oligomers. These may play a role as inhibitory 

compounds against E. amylovora after inoculation.  
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Non-inoculated shoots 

     1.                                                 2.                                          3. 
 

 

Inoculated shoots  

 

 
 
      4.                                               5.                                              6. 
Fig. 19: The flavonoid content in seedlings, and examination of these compounds on TLC.  

 

1. Non-treated shoots. 

2. BTH treated non-inoculated shoots. 

3. Plant extract treated non-inoculated shoots. 

4. Control inoculated shoots. 

5. BTH treated and inoculated shoots. 

6. Plant extract treated and inoculated shoots. 
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3.7.7 Inhibitory substances in BTH and plant extract treated shoots  
 
After the examination of flavanoid changes in TLC plates several flavanoids were assumed to 

play a role as inhibitory substances against Erwinia amylovora. After one-dimensional TLC 

spraying the plate with a suspension of E. amylovora and aesculin revealed the presence of an 

inhibitory substance in BTH treated seedlings 4 d after inoculation (Fig. 21, B). Identification 

of this substance involved scraping of the corresponding spot from the TLC plate, extraction 

with methanol and analysis. Due to the low amount obtained, the substance could not be 

characterized completely. Contrary to this result, in plant extract treated seedlings no 

inhibitory substance was found.  

 

Fig. 21: Inhibitory substance in BTH treated and inoculated shoots 4 d after 

inoculation A. BTH treated uninoculated shoots (4 d after treatment). B. 

BTH treated inoculated shoots (4 d after inoculation). C. Untreated 

inoculated shoots D. Untreated non-inoculated shoots. 

 
3.7.7.1 Inhibitory effect of the substance in liquid culture and comparison to phenolic 

acids 

The inhibitory substance from the TLC plate could not be chemically identified. However, a 

phenolic structure appeared to be likely. Several substances were tested on their effect on 

Erwinia amylovora in vitro in comparison to the substance detected. Cultures containing 

phloretin, or the tested substance showed the strongest reduction of bacterial growth. The 

growth reduction at 24 h p.i. was determined with 46 and 35%, respectively (Fig. 22). 

Phloretin is known as an inhibitory substance in several host parasite interactions 

(GOODMAN et al., 1986). This could also be assumed for the here detected substance after 

TLC. 

   A             B            C            D
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Fig. 22: The effect of some phenolic compounds and the inhibitory substance 

from TLC on the growth of Erwinia amylovora in liquid culture. 
 
 

3.7.8 High performance liquid chromatography (HPLC) analyses  
 
As described above (Fig. 22) some phenolic compounds reduced the growth of E. amylovora 

in liquid culture. Therefore, changes in concentration of phenolic acids were followed in both, 

BTH treated and plant extract treated shoots, by HPLC analysis. Enzymatic activities had 

shown a significant difference in BTH and plant extract treated seedlings compared to 

untreated ones 4 d after treatment. Therefore, this date was selected for analysis by HPLC. 

When inoculated seedlings were analysed, the samples were taken 6 d after treatment and 4 d 

after inoculation. 

 

The HPLC-analyses revealed some changes in the content of flavonoids, flavonols, phenolic 

acids and phloretin derivates in inoculated seedlings when treated with BTH or plant extract 

(Figs. 23-34). All the data, obtained on the different compounds in all experimental variants 

are presented in Table 5 for all treatments. In those cases were the treatment with BTH or PE 
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caused an increase in phenolic acids, flavonoids, phloretin derivates or other components the 

data obtained have been marked by an asterix. 

 

The flavonoids in general (total content) increased stronger after BTH-treatment than after 

PE-treatment in inoculated plants. Especially the not yet identified peak (P) 8 showed as 

strong increase after BTH-treatment, but not after PE-treatment. On the other hand, B5 

procyanidin and E-B5 increased stronger after PE-treatment. 

 

The total content of phenolic acids increased (doubled) at similar rate in both treatments. 

These results correlated well with the spectrophotometrical measurements of the phenol 

content (see 3.7.1). A few phenolic compounds, such as caffeic acid, p-cumaric-glucoside and 

p-cumaric acid D increased a little stronger after PE-treatment (Table 6). Phloretin derivates 

did not change very much. If at all, they increased after BTH-treatment. Interestingly, 

infection alone caused a decrease of phloretin derivates. 
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3.7.9 ββββ-Glucosidase activity 

 
a) Non-inoculated shoots 

 

The β-Gl activity increased markedly 4 d p.i. in BTH and plant extract treated shoots up to 

110 and 150%, respectively. Thereafter, the activity decreased (Fig. 35a) and reached similar 

values as the control 11 days after inoculation. The plant extract treated shoots showed a 

significantly higher activity than BTH treated shoots in the early phase between 1 and 4 d p.i.. 

 

 

Fig. 35a: β-Glucosidase activity in non-inoculated shoots, which were 

treated with BTH or plant extract. ⊥ Standard deviation of 

measurements in 4 samples (2 shoots per sample). 
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b) Inoculated shoots 
 
In inoculated plants, the β-Gl activity was similar to that of untreated plants (Fig. 35b). 

Treatment with BTH or plant extract caused nearly the same changes as in non-inoculated 

shoots. The only difference was that the first significant increase in β-Gl activity occurred 2 

d p.i. in BTH (43% of control) and plant extract treated shoots (93% of control). 

 
 

 

 

Fig. 35b: β-Glucosidase activity in infected shoots, which were treated with 

BTH or plant extract. ⊥ Standard deviations of measurements in 4 

samples (2 shoots per sample). 

 
 

3.7.10 Pathogenesis related (PR) proteins 
 
 
As physiological markers of induced resistance, PR protein activities were examined in 
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protein activities were also determined in BTH and plant extract treated seedlings.  
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3.10.1 Chitinase activity 
 
a) Non-inoculated shoots 
 

The chitinase activity in BTH treated shoots was higher, compared to control and plant extract 

treated shoots with exception of the first stage after treatment (1 and 2 d p.i.) (Fig. 36a). The 

activity increased from 1 d to 4 d after treatment in BTH treated shoots up to 138% and in 

plant extract treated shoots up to 88% compared to the control. While in BTH treated shoots 

the activity was considerably higher than in untreated shoots during the whole experimental 

period, a sharp decrease was recorded in plant extract treated shoots 4 d after induction in 

control shoots. At the end of the experiment (11 d p.i.) there was only a marginal difference in 

the activity between all variants. 

 
 

 
Fig. 36a: Chitinase activity in non-inoculated shoots, which were 

treated with BTH or plant extract. ⊥ Standard deviations of 

measurements in 4 samples (2 shoots per sample). 
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p.i. and was higher in BTH treated (214% of the control) than in plant extract treated (151% 

of the control) shoots. The highest activity was observed in BTH and plant extract treated 

shoots at 4 d p.i. In all three variants, there was a drop in chitinase activity after 4 d p.i. until 

the end of the experiment with a similar level. The chitinase activity in control shoots 

remained at the same level up to 4 d p.i. with a slight increase at end of the experiment.  

 
 

 
Fig. 36b: Chitinase activity in inoculated shoots, which were treated with 

BTH or plant extract. ⊥ Standard deviations of measurements in 

4 samples (2 shoots per sample). 
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2 d p.i. up to 147% in plant extract treated, and up to 73% BTH treated shoots. In the second 

experimental period up to 4 d p.i., the plant extract treated shoots showed a significantly 

higher activity (128% of control) than BTH treated shoots (100% of control). After 4 d p.i., 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

days after inoculation

O
D 

55
0 /

 m
g 

pr
ot

ei
n

Control BTH Plant extract

 1   2  4   7  11



 

 

the activity decreased until the end of the experiment, when the activity in all variants was 

nearly the same. 

 

 
Fig. 37a: β-1,3-Glucanase activity in non-inoculated shoots, which were 

treated with BTH or plant extract. ⊥ Standard deviations of 

measurements in 4 samples (2 shoots per sample). 

 
 
b) Inoculated shoots 
 
Also after inoculation β-1,3-glucanase activity was higher in plant extract treated and in 

BTH treated shoots (Fig. 37b), especially from 1 to 2 d p.i. Highest increase occurred at 2 d 

p.i. with 83 and 114% of the control shoots in BTH and plant extract treated shoots, 

respectively. Afterwards, the activities decreased and showed the same level at the end of 

experiment. The activity in control plants was nearly on the same level with a slight increase 

at the end of experiment. 
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Fig. 37b: β-1,3-Glucanase activity in inoculated shoots, which were 

treated with BTH or plant extract. ⊥ Standard deviations of 

measurements in 4 samples (2 shoots per sample). 

 

3.7.11 Glutathione-S-transferase (GST) activity  
 
The glutathione–S-transferase is representing an important enzyme of the glutathione cycle 

and is part of the antioxidative protection system of plants (MAUCH and DUDLER, 1993). In 

recent studies, GST activity was reported as an indicator of induced resistance. This was 

associated with an inhibition of necrotization and a reduced multiplication of the pathogen in 

planta (WINGATE et al., 1988). Therefore, in the present study, this activity was also 

examined. 

 

a) Non-inoculated shoots 
 
With exception of the first stage of the experiment, BTH and plant extract treated shoots 

showed a higher GST activity (Fig. 38a). The highest increase occurred after BTH treatment 

(186%, of the control) 4 d p.i. After this peak, the activity decreased to the level of the control 

shoots until the end of the experiment (11 d p.i.).  
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Fig. 38a: Glutathion-S-transferase activity in non-inoculated shoots, 

which were treated with BTH or plant extract. ⊥ Standard 

deviations of measurements in 4 samples (2 shoots per 

sample). 

 

 
b) Inoculated shoots 
 
In inoculated shoots, the strong increase of GST activity after BTH treatment was also very 

pronounced with 132% of the control shoot at 4 d p.i. (Fig. 38b), whereas the enzyme 

increased only slightly in plant extract treated shoots. Until 7 d p.i. the GST activity in BTH 

treated shoots decreased (51% of control), but was still significantly higher than in the control 

and in plant extract treated shoots. At the end of experiment, there was no significant 

difference in GST activity between the three variants. 
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Fig. 38b: Glutathion-S-transferase activity in inoculated shoots, which 

were treated with BTH or plant extract. ⊥ Standard deviations 

of measurements in 4 samples (2 shoots per sample). 

 

 
3.12 Salicylic acid (SA) 
 

Salicylic acid is regarded as a signal transductor in plant defence mechanisms and is essential 

for the induction of SAR (KESSMANN et al., 1994a). Therefore, a correlation between 

activation of the investigated enzymatic activities and changes in concentration of salicylic 

acid was expected for BTH and plant extract treated apple shoots. 

 
 
a) Non-inoculated shoots 
 
A remarkable SA increase up to 135% of the control was caused by the treatment with plant 

extract 4 d p.i. Significantly higher activities were also observed at 2 and 7 d p.i. (Fig. 39a). 

On the contrary, no differences in SA concentration were found between BTH treated shoots 

and the control shoots.  
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Fig. 39a: Concentration of salicylic acid in non-inoculated shoots, which 

were treated with BTH or plant extract. ⊥ Standard deviations of 

measurements in 4 samples (2 plants per sample). 
 

 

 

b) Inoculated shoots 
 
A similar increase of salicylic acid content was found in inoculated shoots after treatment 

with plant extract (Fig. 39b). Two days p.i., salicylic acid content in plant extract treated 

shoots was significantly higher than in BTH treated ones (34% of control), and even more 4 d 

p.i. (51% of control). Later on, no significant difference between the treatments was observed.  
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Fig. 39b: Concentration of salicylic acid in inoculated shoots, which were 

treated with BTH or plant extract. ⊥ Standard deviations of measurements 

in 4 samples (2 shoots per sample). 

 

 

3.7.13 Physiological changes and symptom development in shoots 

 

The main results are summarized in Table 7. All the biological studies showed very clearly 

that the resistance induction by BTH was stronger than by the plant extract (= PE) (Table 7). 

Thus, after BTH treatment symptoms development slower, and the reduction of symptoms 

was more effective. Also bacterial growth in planta was more reduced by BTH than by PE, at 

4 as well as at 7 days after treatment. Only for BTH an optimum induction time, two days 

before inoculation, was established whereas for PE an optimum induction time could not be 

detected within two to five days before inoculation. This finding may be explained by the fact 

that the plant extract from ephew leaves is certainly a mixture of several biologically active 

substances. These may affect the resistance induction by different mode of actions, which 

need different time intervals. BTH, on the other hand, is a single synthetic compound so that it 

can be assumed that a dominant or primary biochemical affect is mainly responsible for 

resistance induction. 
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Table 7: The effects of BTH and plant extract (PE) on fire blight pathogenesis and 

physiological or biochemical activities in apple shoots. 

 
Character BTH PE 

Optimum induction time 2 d no optimum from 2–5 d 
p.i. 

Speed of symptom development very slow slow 
Reduction of disease symptoms 
(maximum) 

70% 50% 

Reduction of bacterial growth in planta  
(4 d p.i.) (maximum) 

80% 72% 

Reduction of bacterial growth in planta  
(7 d p.i.) 

65% 58% 

Increase of total phenol content 
(maximum) 

53% 60% 

Flavonoids increase no clear increase 
Bacteriostatic substance yes no 
Increase of peroxidase activity  
2–7 d p.i. 

42% 54% 

Increase of peroxidase activity  
4 d p.i. (maximum) 

67% 135% 

Electrophoresis of peroxidase 2 bands increase 3 bands increase 
Changes in protein banding pattern after 
electrophoresis 

similar to effect of inoculation 

Increase of phenylalanine ammonia -
lyase activity 

ca. 30% (delay to 
PE) 

93% 

Increase of polyphenol oxidase activity  30% 72% 
Increase of glutathione-S-transferese 
activity 

186% (4 and 7 d 
p.i.) 

ca. 80% 

Necrotization 0 + + (7 d p.i.) 
Increase of β-glucosidase activity 110% 150% 
Increase of chitinase activity 214% 151% (earlier) 
Increase of β-1,3-glucanase activity 83% 114% (earlier) 
Increase of salicylic acid 0 135% 

 
 
Although resistance induction was more effective by BTH than by PE it was unexpected that 

all reactions related to phenol metabolism were stronger after treatment with PE. Thus, PE 

caused a higher increase of total phenol content, a higher increase of peroxidase activity 

during 2 - 7 days d p.i. and especially at the maximum of 4 d p.i. Electrophoresis revealed 3 

increasing peroxidase bands after PE treatment, but only two after BTH treatment. Even 

higher were the differences in the increases of enzyme activities for phenylalanine ammonia-

lyase (PAL) and polyphenol oxidase, both of which increased much more after treatment with 

PE. In addition, the increase of PAL by BTH-treatment was delayed in comparison to the PE- 

treatment. Another striking difference was that only PE induced a strong increase of salicylic 



 

 

acid, the concentration of which was not significantly affected by BTH- treatment. Therefore, 

a comparison of the biological and biochemical effects of BTH and PE indicates that the 

phenol metabolism in general may not be the primary mode of action of BTH. 

 

The data obtained in these studies show, however, that a few reactions were stronger after 

BTH treatment than after PE treatment. Thus, the activity of glutathione-S-transferase activity 

was much more enhanced by BTH than by PE. This finding may explain why an application 

of the resistance inducer together with inoculation caused necrotization only after PE- 

treatment but not after BTH treatment. Secondly, the synthesis of a bacteriostatic compound 

was only detected after BTH treatment, as well as increases in certain flavonoids. Thirdly, 

chitinase increased stronger after BTH treatment.  

 

The possible effects of these different biochemical reactions are dealt with in more detail in 

the discussion. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

4. DISCUSSION 
 
Induced resistance is defined as an increase in the level of resistance without any changes in 

the basic genetic constitution. The plants utilise their own defence mechanism for restriction 

of pathogen development. As markers of resistance, physiological changes always appear in 

certain intervals after application of the biotic and abiotic inducers against pathogens 

(SCHÖNBECK et al., 1980). 

 

The benzo-(1,2,3)-thiadiazole-7-carbothioic-S-methyl ester (BTH) which was used in our 

studies, has been tested against several pathogens (KESSMAN et al., 1994a; RUESS et al., 

1995; OOSTENDROP et al., 1996). A resistance induction of BTH was reported against 

fungi, such as Erysiphe graminis, Septoria spp., Pyricularia oryzae, Peronospora tabacina, 

Phytophthora spp., (RUESS et al., 1995; KESSMANN et al., 1996; FRITZ, 1996; 

GÖRLACH et al., 1996) Didymella bryonia (ISHII et al., 1999), against bacteria, for 

instance Erwinia amylovora (ZELLER and ZELLER, 1998, ZELLER, 1998) or Xanthomonas 

campestris pv. vesicatoria and Pseudomonas syringae pv. tomato (LOUWS et al., 2001), and 

against viruses, e.g. CMV-Y (cucumber mosaic virus) (ANFOKA, 2000). 

 

The plant extract (PE) of Hedera helix which has been tested since 10 years showed the 

highest suppression effect against fire blight in field experiments when compared to other 

plant extracts (MOSCH and ZELLER, 1989; MOSCH et al., 1989, 1993). 

 

In the present study, BTH and plant extract (PE) from Hedera helix were tested against fire 

blight. The induced resistance was characterized by studying biochemical markers. Thus, in 

PE as well as in BTH treated apple seedlings the enzymatic activities showed a significant 

increase up to 4-7 days after inoculation. 

 

4. 1 Induction time in BTH and plant extract (PE) treated plants 

 
For the development of resistance plants need an interval after application of the inducing 

agent. In most cases this interval was reported between 2 and 7 days. The pre-inoculation of 

avirulent or virulent biotic agents (pathogens), and of abiotic agents (chemical compounds) 

was tested for resistance induction against several plant diseases. For instance, an acquired 

resistance could be observed in cucumber cultivars (KUĆ, 1987). Regarding the 

determination of the best induction time in other studies, the pathogens were evaluated as 



 

 

elicitor agents by formation of necrosis around the infection site after application. This effect 

was observed 1 to 3 days after application (OUCHI et al., 1976; KUNOH et al., 1985; 

SCHWEIZER et al., 1989). Research on plant growth–promoting rhizobacteria (PGPR) 

showed that these organisms have beneficial effects in controlling plant diseases by inducing 

host resistance (TUZUN et al., 1989; KLOEPPER et al., 1992). In other studies using 

inoculation with TNV, resistance could be detected on the second leaves 7 days after 

treatment of the first leaf against Colletotrichum lagenarium, or Pseudomonas lachrymans 

(JENNS et al., 1979).  

 

Besides biotic agents treatment with synthetic chemicals, for instance 2,6-dichloroisonicotinic 

acid derivates, were tested against fungal diseases, and protection was achieved against 

Collectotrichum lagenarium two days after induction, and against Cercospora beticola five 

days after induction (MÉTRAUX et al., 1990). In addition to these compounds oxalates 

(DOUBRAVA et al., 1988) and sodium phosphates (GOTTSTEIN and KUĆ, 1989; 

MUCHARROMAH and KUĆ, 1991) were tested against plant diseases. The stimulation of 

resistance to bacterial and fungal diseases was observed in many cultivars 1-2 days after 

application.  

 

In this study, although different induction times in BTH treated plants showed a low disease 

index, the best induction time against the fire blight pathogen E. amylovora was found to be 

two days before inoculation.  

 

The resistance inducing effect of plant extracts and elicitor like substances tested at different 

application times against several plant pathogens has been reported in several studies (SALT 

et al., 1986; DOUBRAVA et al., 1988; YAMADA et al., 1990). Regarding the control of 

Erwinia amylovora with plant extracts, it was reported that Hedera helix, Viscum album, and 

Alchemilla vulgaris caused induced resistance against E. amylovora when applied two days 

before inoculation in Cotonaster waterei (RIECK 1992; MENDE et al., 1993).  

 

4.2 Symptom development and bacterial multiplication in plants after resistance 

induction  

 

During the here reported greenhouse experiments in BTH and PE treated plants, the slower 

symptom development correlated with a considerable lower bacterial populations compared to 



 

 

the control. These data indicate, that the resistance inducers did not only suppress symptoms 

but directly or indirectly inhibited the pathogen`s multiplication in planta. The reduction of 

bacterial multiplication in BTH and PE treated plants was also accompanied by physiological 

changes in the plant`s tissue after induction. 

 

Also in other host/parasite-interactions a correlation between the reduction of bacterial 

populations and development of resistance in BTH treated plants has been reported 

(LAWTON et al., 1996; SIEGRIST et al., 1997). These results are in accordance with other 

studies on resistance mechanism where the development of symptoms was delayed and the 

multiplication of bacteria was on a low, but constant rate (LOZANO and SEQUEIRA, 1970; 

GOODMAN et al., 1986). A low nutrient concentration in the intercellular space can be a 

limiting factor for the growth of bacteria. But also apoplastic compounds, or antimicrobial 

metabolic components of plants with bacteriostatic properties may be involved in the control 

of bacterial growth in BTH treated plants (SIEGRIST et al., 1997). In the here reported 

studies with PE and BTH treated apple seedlings a significantly lower bacterial population 

was observed up to 96 h after inoculation compared to untreated plants. This effect may be 

caused by an accumulation of anthocyanins hindering bacterial pathogenic enzymes as a 

physiological barrier in xylem parachymas (GEHRISCH et al., 1996; ZELLER, 1998). 

 

However, 11 days after inoculation the bacterial population in BTH and PE treated plants did 

no longer show a considerable difference to untreated plants. From this observation it may be 

concluded that the used resistance inducers have an effect only up to 7 days p i. However, the 

main reason for the approximation of bacterial populations at 11 d p.i. was that the number of 

bacteria in the control plants also showed a strong reduction, probably due to the necrotization 

of the plant tissue. An increase of secondary metabolites due to necrotization in plant tissue 

can exert a negative effect on the bacterial population even in untreated inoculated plants 

(ADDY and GOODMAN, 1974). 

 

4.2.1 Studies on PCR and assessment of changes in signal of PCR product in plants 

 

In the PCR studies a positive signal was obtained from the dilution series from 106 to 103. The 

reason for obtaining no signal below a population of 103 bacteria per ml can be due to a low 

copy plasmid (BERESWILL et al., 1992). An inhibitory effect of phenolic compounds to the 

PCR assay was also reported by LLOP et al. (2000). From cloned fragments of the multicopy 



 

 

plasmid pEA29 only a 5 kb fragment is specific for E. amylovora. Therefore, it can be 

assumed that  this small specific fragment will not always be integrated by the template DNA. 

The pEA29 PCR plasmid has been used successfully in other studies to determine populations 

of E. amylovora in plants. However, the infected plant material was shaken in liquid culture 

media for 8 h to allow a rapid multiplication of bacteria before performing PCR (BERGER et 

al., 1995). In the have reported studies, the infected plant material was not shaken in liquid 

culture media but was directly applied to PCR. Moreover, the smearing of PCR products after 

electrophoresis may have been caused by the use of phenol inhibitors (DTT, PVPP). Maybe 

the used inhibitors disturbed the structure of DNA and created a deformation of the PCR 

product. In the test, these inhibitory compounds were added to tubes with the marker, and the 

same smearing effect could also be observed in the marker. Nevertheless, the PCR studies 

showed that in BTH treated and PE treated plants the bacterial population was reduced.  

 

 

4.3 Physiological changes 

 

4.3.1 Phenols, flavonoids and inhibitory substances in treated plant tissue 

 

Between 2 – 4 d after induction and inoculation, BTH and PE treated plants showed a higher 

content of phenolic compounds than the untreated plants. It can be assumed that these 

compounds caused some inhibition of the pathogen. In another study, the commercial product 

MILSANA (a plant extract from Reynoutria sachalinensis) stimulated synthesis of phenolic 

compounds (DAAFY et al., 1995). Also, the application of salicylic acid and 

dichloroisonicotinic acid (DCINA) (analog of SA) led to increasing phenols in the cell wall 

(SIEGRIST et al., 1997). Therefore, because of the chemical structure of BTH a similar effect 

can be suggested which may have reduced the bacterial growth. Thus an accumulation of 

phenolic compounds at the infection site has been correlated with the restriction of pathogen 

development (HEATH, 1980). Toxic effect of phenols can kill bacteria and other 

microorganisms in plant tissue. As components of physical barriers in the form of lignin, they 

prevent pathogens from penetrating. In form of tannin substances, phenols act as chemical 

barriers in cell walls (TREUTTER, 1996).  

 

In several studies, an increase in phenolic compounds and development of resistance has been 

reported (GOODMAN et al., 1986). The resistance may be further increased by phenol 



 

 

esterification in the cell wall (NICHOLSON, 1992). Changes of the cytoplasmic pH 

(OJALVO et al., 1987) in plant tissue, due to increased phenolic acid content, and a resulting 

inhibition of pathogen development have also been proposed. Gallic acid, due to its monomer 

structure, can easily be decomposed by phenolic oxidation (FEUCHT and TREUTTER, 

1989). Similar process may occur in plant tissue after inoculation, since in these studies a 

slight decrease in the total phenol content after inoculation was recorded. In other studies, 

oxidation of monomer phenolic compounds, and accumulation near to the infection site were 

observed (BONHOFF et al., 1987). Generally, many resistance reactions of the plant against 

pathogens are characterized by very rapid synthesis of phenolics and their polymerisation at 

the cell wall (MATERN and KNEUSEL, 1988). In order to verify, whether phenolic 

substances participated in the resistance mechanism induced by BTH and PE in these studies, 

more substantiated studies appear necessary. Especially the results, that content of total 

phenolics increased stronger after PE-treatment then after BTH treatment, the latter causing a 

higher degree of resistance, needs an explanation. 

 

Concerning the flavonoids their content appeared to be higher in BTH treated plants 4 days 

after treatment when analysed by TLC. BTH can cause accumulation of monomer flavonoids 

without a pathogenic elicitor (STADNIK and BUCHENAUER, 1998). But activation of the 

same signal pathways as by pathogenic elicitors can be assumed for BTH in plant tissue. On 

the other hand, in plant extract treated shoots a significant increase in flavonoids was not 

detected. However, changes in the pattern of flavonoids in PE treated plants may occur, 

since a significant increase in oligomer flavonoids 6 days p.i. in plant extract treated shoots 

has been reported (MOSCH and ZELLER, 1997). The flavonoid content is often connected 

with phytoalexin production and activation of resistance mechanisms in the plant. Thus, after 

inoculation of incompatible phytopathogenic pseudomonads in soybean leaves accumulation 

of several isoflavonoids was demonstrated (INGHAM et al., 1981). An earlier study showed 

that - as a physiological marker of resistance – phenylalanine ammonia-lyase (PAL) activity 

correlated with accumulation of oligomer flavonoids and an increase in resistance (KEEN and 

KENNEDY, 1974). In the here analysed PE treated shoots, the high (93%) increase of PAL 

activity may be involved in the synthesis of oligomer flavonoids. Especially, anthocyanidin 

and proanthocyanidin were suggested to play a role in the resistance of apple cultivars against 

Venturia inaequalis (MAYR, 1995).  

 



 

 

From our TLC experiments it was assumed that quercetin derivates increased in BTH treated 

plants. Because an inhibitory effect of quercetin on polyphenol oxidase (PPO) was reported 

(MAYER and HAREL, 1979; MAYR, 1995) the high content of quercetin in BTH treated 

plants may be responsible for the low PPO activity. On the other hand, a lower content of 

quercetin may be the reason for high level of PPO activity in PE treated plants. In BTH 

treated plants an increase in quercetin content can be accompanied by the production of 

inhibitory phloretin derivatives. The HPLC analyses indicated that phloretin derivates and 

procyanidin derivates increased after BTH and plant extract treatment. Quercetin derivatives 

were also related to an increase in phloridzin and kampferol derivatives (DICK et al., 1985; 

BILLOT, 1986) and showed an antibacterial and antiviral effect (KÖNIG and DUSTMANN, 

1985; 1988). The high level of quercetin and kampferol contents was accompanied by lipid 

peroxidase activity and antioxidants in chloroplasts and mitochondria (TAKAHAMA et al., 

1984; SORATA et al., 1984; PINCEMAIL et al., 1986; TOREL et al., 1986). The quercetin 

and kampferol contents in BTH treated plants appeared to be higher than in PE treated plants. 

An increase in activity of antioxidative protection pathways in BTH treated plants can be 

related to an enhancement of the content of quercetin and kampferol.  
 

 3-galactosidase 

Quercetin 3-glucoside 

 3-rhamnoside 

 3-arabinoside 

Kampferol 3-rhamnoglucoside

 3-xyloside 

 

Table 8: Different forms of quercetin and kampferol compounds in apple (WILLIAMS, 1982) 

 

On TLC plates, an increase in the derivates of similar compounds could be observed at 

different places. This observation may indicate the production of different forms of similar 

flavonoids (Table. 8) (WILLIAMS, 1955; WILLIAMS, 1982; SCHULTZ, 1987) or derivates 

of flavonoids (TREUTTER et al., 1994). Since BTH induced an increase in kampferol 

compounds, it may be suggested that for production of these flavanoids pathways occurred 

independently from salicylic acid and without accumulation of oligomer flavonoids. In PE 

treated plants, synthesis of quercetin derivates suggests formation of oligomer flavonoids such 

as myrecitin. For myrecitin additional inhibitory effects were reported, such as detoxification 

of fatty acids and increase in lipoxygenases (LARSON, 1988). If the lipoxygenase acts as an 

antibacterial substance, the induction of myrecitin may thus enhance the resistance reaction. 



 

 

In PE treated plants myrcetin may also play a role as antimicrobial metabolite, instead of 

quercetin.  

 

Although all the aspects discussed here on the possible role of flavonoids in resistance 

induced by BTH and PE appear very interesting, many more data on the concentration of 

chemically identified flavonoids at different time intervals are urgently needed, before their 

actual role in induced resistance can be elucidated. 

 

4.3.2 Changes in enzymatic activities  

 
4.3.2.1 Peroxidase (PO) activity 
 
Treatment of apple shoots with resistance inducers caused a general increase of peroxidase 

activity, especially after PE application. Peroxidase activity has been associated with induced 

resistance after inoculation with several pathogens (HAMMERSCHMIDT et al., 1982), 

especially acidic peroxidase in the cell wall (SMITH and HAMMERSCHMIDT, 1998). It is 

long known that peroxidases play a role in resistance of plants against leaf spot causing 

bacteria (RUDOLPH, 1970; 1995). An enhancement in PO activity was related to several 

functions, one of them being oxidative polymerisation of hydroxycinnamyl alcohol and 

formation of cell barriers against pathogen invasion (VANCE et al., 1980). In other studies it 

was noticed that hydroxycinnamyl alcohols were related to polymerisation under action of a 

peroxidase to lignin formation (HAMMERSCHMIDT and KUĆ, 1982). Increase in PO 

activity can be involved in the formation of lignin and inhibition of the pathogen`s spread in 

xylem (ZELLER, 1985). Peroxidase activity was also implicated in oxidative defence 

mechanisms after elicitor treatment. 

 

The here reported increase of PO activity in BTH and PE treated plants may cause oxidative 

cross-linking of pre-existing hydroxyproline–rich structural proteins to increase resistance 

against degradation by microbial enzymes and protect the cell wall against pathogen invasion. 

The oxidative cross-linking pathways and the synthesis of salicylic acid by the 

phenylpropanoid pathway were correlated with enhanced PO activities by STERMER (1995) 

and BRADLEY et al. (1992). Peroxidase–generated compounds and hydrogen peroxide have 

a direct function as antimicrobial agents. In peroxidase, H2O2 (hydrogen peroxide) plays an 

important role in inducing subsequent defence responses in infected plants (APOSTOL et al., 

1989; PENG and KUĆ, 1992; CHEN et al., 1993). Therefore, similar to elicitors, BTH and 



 

 

PE may trigger the defence mechanism in the plant and also affect the production of some 

antibacterial substances by increasing the PO activity. An increased specific PO activity and 

transmission of H2O2 can also be correlated with the expression of glutathione transferase and 

glutathione peroxidase genes (LEVINE et al., 1994). However, the knowledge about the 

signals and function of peroxidase and the biochemical processes underlying these cytological 

changes is very poor. It has been demonstrated that in some cases specific peroxidase 

isoenzymes increase in the host tissues as response to pathogen attack (YE et al., 1990).  

 

Most plants contain a number of different peroxidase isoforms (LAGRIMINI and 

ROTHSTEIN, 1987). HAMMERSCHMIDT et al. (1982) showed at least three peroxidase 

isoforms which were associated with induced resistance. A similar set of acidic peroxidases 

was shown in watermelon and muskmelon (SMITH and HAMMERSCHMIDT, 1988). These 

isoforms showed a similar charge and molecular weight of 30 to 33 kD. Later, RASMUSSEN 

et al. (1991) reported a 33 kD apoplastic peroxidase in systemic induced resistance. 

 

In our studies, an increase in three acidic peroxidases was found after inoculation in BTH and 

PE treated shoots, so that the detected PO isoenzymes in BTH and PE treated seedlings 

appear to be associated with induced resistance. However, the number of PO bands after SDS-

PAGE differed. Therefore, it is suggested that activation of isoenzymes and the mechanism of 

PO activity is different between BTH treated and PE treated apple seedlings. In other studies, 

induced resistance was correlated to an increased PO activity and enhancement of the PR 

protein levels (chitinase and β-1,3-glucanase) (BINDER et al., 1989; MÉTRAUX et al., 

1989). Also in our greenhouse experiments with BTH or PE treated plants, PO activity and 

PR protein activities increased (see 3.7.2 and 3.7.10). 

 

Differences were also observed in the protein bands of different treatments. In PE treated 

shoots, it appeared as if the same proteins were expressed as after artificial inoculation. 

However, in the BTH treated shoots different protein bands showed a high expression 

compared to control and PE treated shoots. Therefore, during development of induced 

resistance different mechanisms can be assumed. Further studies are necessary to understand 

the role of these proteins and their relation to different PO isoenzymes in BTH and PE treated 

plants. 

 



 

 

 

4.3.2.2 Phenylalanine ammonia-lyase (PAL) activity 

 

PAL activity was considerably higher in PE treated shoots than in BTH treated and control 

shoots. The inoculated non-treated shoots also showed an increase of PAL up to 2 d after 

inoculation (Fig. 17 b). Later a decrease in activity occurred. The increased PAL activity in 

untreated plants has been reported to induce elicitors which affect the adjacent unchallenged 

areas (ELLISTON et al., 1977). In another study with susceptible rice plants inoculated with 

Xanthomonas oryzae pv. oryzae, the PAL activity reached its maximum 2 d p.i. and 

afterwards declined (LI et al., 1999). BTH treated plants showed a gradual increase in PAL 

activity compared to untreated plants, but the activity was not at a high level.  

 

In PE treated plants PAL activity increased more than in BTH treated plants. PAL activity and 

enhancement of PO activity can participate in the production of antibacterial metabolites. 

Thus, the synthesis of phytoalexins and activation of the enzyme chalcone synthase (CHS) 

and the triggering of plant defence mechanisms depended on PAL activity in phenylpropanoid 

pathways (SEKIZAVA and WATANABE, 1981). The regulation of phenylpropanoid–

biosynthetic genes is complex. PAL gene regulation and biochemical specialization of the 

encoded isopolypeptides includes highly diverse biological functions of phenylpropanoid 

natural products (DIXON and LAMB, 1990). 

 

In this study, PAL activity in BTH treated apple seedlings did not change very much. 

Therefore instead of synthesis of salicylic acid the phenylpropanoid pathway may be 

important for synthesis of flavonoids and antimicrobial compounds. In systemically protected 

potato tissue, however, no sufficient evidence was obtained that either PAL or other enzymes 

significantly increased and are important for the synthesis of phytoalexins (NICHOLSON, 

1992). In other studies with tobacco plants a considerable increase in PAL activity was 

correlated to the formation of salicylic acid from cinnamic acid (1) (RASKIN, 1992) (Fig. 

40).  

 

PAL is a crucial enzyme involved in activation of phenol metabolism in response to infection 

(HAHLBROCK and SCHEEL, 1989). In PE treated plants the enhancement of PAL activity 

participates in the biosynthesis of lignin and accumulation of 4-hydrobenzoic, caffeic and 

ferulic acids (KUROSAKI et al., 1986). 



 

 

 

 

Fig. 40: Proposed pathways for salicylic acid biosynthesis in plants (RASKIN, 1992). 

 

Although PAL activity increased much more after BTH–treatment than after PE-treatment, 

salicylic acid increased in PE treated shoots but not in BTH treated ones. (Table 7). Therefore, 

if PAL plays a role in resistance induction by BTH, this cannot occur via synthesis of salicylic 

acid (Fig. 40). The function of PAL may be flavonoid synthesis and production of substrate 

for GST activity. Thus, the antioxidative protection system can be enhanced by PAL activity. 

MAUCH and DUDLER (1993) showed that cinnamic acid serves as a substrate for 

glutathione-S-transferase (GST) activity. The low activity increase of PAL after PE-treatment 

concomitant with a strong increase of SA indicates, that PAL may not be the limiting factor 

for SA synthesis in apple shoots. Obviously, different defence mechanisms are likely to occur 

for different resistance inducing agents.  

1 

2 



 

 

4.3.2.3 Polyphenoloxidase (PPO) activity 

 

Even more than peroxidase the PPO activity increased much more in PE treated than in BTH 

treated shoots, which in turn had a higher activity than the untreated shoots at different time 

intervals. PPO not only contributes to synthesis of phytoalexins (ZINKERNAGEL, 1984) but 

can also cause enhanced concentration of quinones which are cytotoxicants that can inhibit 

the growth of bacteria in plants (FARKAS et al., 1959). This may explain why, compared to 

BTH treated plants, a high necrotization occurred in PE treated plants. But also mechanisms 

of necrotization are possible. GEHRISCH et al. (1996) tested the efficacy of PE (H. helix) 

against Xanthomonas campestris pv. campestris and showed a high content of anthocyanin in 

the plant extract. It was suggested that this component may increase the efficacy of PE as 

resistance inducer. 

 

In other systems, the rapid collapse of plant tissues, so-called HR (hypersensitive response), is 

caused by biotic or abiotic inducers or “elicitors”. However, the resistance inducing activity of 

different pathogens or plant extracts should be differentiated from elicitors of HR 

(SEQUEIRA, 1983). Substances which cause a rapid tissue collapse after application cannot 

be applied as plant protection measure, because the necrotization of many leaves would 

certainly per se lead to significant yield losses.  

 

In BTH treated plants a significant and permanent increase of PPO activity did not occur on 

the high level as in PE treated shoots. Therefore an increase of PPO-activity may not be the 

decisive mode of action in BTH treated plants. However, in PE-treated shoots the enhanced 

PPO activity may lead to production of antimicrobial metabolites restricting the pathogen, and 

a high level of oxidative burst can be suggested in collapsed cells (VAUGHN and DUKE, 

1984; HAMMERSCHMIDT and KUĆ, 1995).  

 

Therefore, it is suggested that the modes of action of BTH and PE are dissimilar. It can be 

assumed that PE activated a different pattern of enzymes and genes in the plant than BTH. In 

another study, SCHWEIZER et al. (1989) showed differences in induced genes between 

plants treated with a non-host pathogen agent or INA (analogue of SA). 

 

 

 



 

 

4.3.2.4 ββββ-Glucosidase (ββββ-Gl) activity 

 

The β-Gl activity increased nearly by the same factor in BTH and PE treated plants up to 4 d 

after induction. In general the β-Gl activity was a little bit higher in PE treated than in BTH 

treated shoots. An enhanced level of β-Gl can decompose the binding of glucose to 

inhibitory substances so that the growth of the pathogen in infected tissues and cell walls is 

restricted. The enhanced antibacterial activity of the aglycone phloretin over the glycoside 

phloridzin in tissue of apple shoots was recorded (HILDEBRAND and SCHROTH, 1964). In 

other studies, abiotic compounds, such as benzoquinone and napthoquinone, were involved in 

fungitoxic activity in plants and the presence of aglycones correlated with phytoalexin 

formation (GOODMAN et al., 1986). 

 

In the here described experiments BTH and PE induced not only higher PO activity, but also 

higher β-Gl activity. Enhancement of β-Gl activity may contribute to higher synthesis of 

phytoalexins. In BTH and PE treated plants, the decomposition of glucosides and the release 

of phloretin in the cell wall may therefore be maintained longer than in control plants. The 

reaction chains in formation of antibacterial substances show some differences between β-

glucosidase and PPO as shown in Fig. 41. While in PE treated plants the reaction may be 

dominated by the PPO activity steps, this cannot be proposed for BTH treated plants. Since 

also the β-glucosidase was a little bit higher in PE-treated shoots it is assumed that in BTH-

treated shoots β-glucosidase does not play a major role in induction of resistance. 

 

Fig. 41: Comparison β-glucosidase activity with PPO activity (GOODMAN et al., 1986) 



 

 

 

4.4 Pathogenesis-related (PR) proteins 

 

In many studies an accumulation of PR proteins has been reported after inoculation of 

different pathogens (viruses, bacteria, fungi) (DE TAPIA et al., 1986; REDOLFI et al., 1989; 

AWADE et al., 1989; BOL et al., 1990; KESSMANN et al., 1994a). Some PR proteins and 

the corresponding enzyme activities showed a significant increase after application of biotic 

and abiotic agents of induced resistance (FISCHER et al., 1988; MÉTRAUX et al., 1989; 

IRVING and KUĆ, 1990; SMITH et al., 1991; UKNES et al., 1992). 

 

In these experiments, the chitinase activity was higher in BTH treated plants, when compared 

to the control and PE treated plants. PR proteins` activities (chitinase and β-1,3-glucanase) 

increased earlier in PE treated than BTH treated shoots. BRISSET et al. (2000) also tested 

BTH against Erwinia amylovora and determined an enhanced β-1,3-glucanase activity in 

Golden Delicious seedlings under greenhouse conditions. The protection against fire blight 

was found to be around 69%. Accumulation of β-1,3-glucanase was determined 

systematically in all parts of the plants by BRISSET et al. (2000). Induced activity was mostly 

found to be associated with an acidic chitinase (MÉTRAUX and BOLLER, 1986). 

 

Class Possible role in defence 

Peroxidase Strengthen cell walls, generate toxic free radicals 

PR-1 Functions unknown 

Chitinases Antifungal, some of them acidic chitinase 

β-1,3-glucanases Enhance activity of chitinase 

PR-4 Unknown 

Thaumatin-like proteins Antifungal; α-amylase / protease inhibitors 

Systemic acquired 

resistance 

Unknown 

Glycine–rich proteins Strengthen cell walls 

 

Table 9: Classes of proteins accumulating systemically in plants after local infection (STERMER, 

1995). 



 

 

 

Subsequent work by MÉTRAUX et al. (1988) revealed that the acidic chitinase has a 

considerable inhibition effect on the pathogen development in plant tissue. The studies 

demonstrated that several PR proteins, appearing in intercellular fluids of infected leaves, are 

acidic forms of chitinase and glucanase. These forms were secreted, or released into the 

intercellular space (DIXON and LAMB, 1990). Some of the encoded mRNA regions which 

induced PR proteins (chitinase and glucanase) are known and cause high enzymatic activities 

(KAUFFMANN et al., 1987; LEGRAND et al., 1987). 

 

It is possible that BTH and PE are recognised by the plant as elicitors, which induce similar 

signalling pathways. In this way, the encoded specific regions of mRNA may cause 

expression of these enzyme activities. However further studies are necessary to understand the 

recognition of PE or BTH by the plant. Regarding BTH, another study showed that it has an 

effect on eliciting of PR proteins (chitinase and β-1,3-glucanase) and activates the SAR 

signal transduction pathways after application (FRIEDRICH et al., 1996). 

 

Several metabolites which increase during systemic acquired resistance (SAR) have been 

suggested to possess antimicrobial activity, or are related to classes of antimicrobial proteins 

(KESSMANN et al., 1994a), for instance, β-1,3 glucanase, chitinase, cysteine-rich proteins 

related to thaumatin and the PR-1 proteins (see Table 9). Moreover, the PR proteins (chitinase 

and β-1,3 glucanase) are described as hydrolytic enzymes. The enzymes catalyse the 

hydrolysis of the main carbohydrate components of most fungal cell walls (MÉTRAUX et al., 

1989). BOLLER et al. (1983) studied the effect of PR proteins on fungal pathogens and 

determined that chitinase is able to decompose cell walls of bacteria with lysozyme activity. 

Besides the direct effect of these enzymes, chitinase and β-1,3-glucanase are capable of 

hydrolyzing pathogen cell walls by releasing oligosaccharide molecules, having elicitor 

properties for the recognizing process in infection (KEEN and YOSHIKAWA, 1983; 

DARVILL and ALBERSHEIM, 1984). In another study, YOSHIKAWA et al. (1990) 

explained resistance induced by ethylene by an increase of glucanase activity which released 

oligosaccharides acting as elicitors of phytoalexin synthesis at the beginning of infection. 

 

It can be suggested that BTH and PE treatment trigger defence mechanisms and phytoalexin 

production in plants. In this case, an increase in chitinase activity may be accompanied by 

lysozyme activity against pathogenic bacteria. After infection, rapid response with 



 

 

phytoalexins accumulation, hydroxyproline rich proteins, and lignin at the site of infection 

can be caused by the enhanced level of the chitinase, β-1,3-glucanase and other PR–proteins 

and peroxidases (KUĆ, 1995). Following this concept, it can be assumed that the BTH and PE 

treated apple seedlings respond more rapidly against bacteria than untreated seedlings. This 

response may include both, phytoalexin synthesis and the direct effect of hydrolytic activities. 

In SDS-PAGE a few protein bands were detected which increased after application of the 

elicitors. It may be that these protein bands represent specific PR proteins. However, further 

studies are necessary to characterize these proteins.  

 

 

4.5 Glutathione-S-Transferase (GST) 

 

It is long known that glutathione (GSH) plays a major role in induction of defence related 

products and causes a massive selective transcription of defence related genes coding for 

enzymes synthesizing phytoalexins and hydroxyproline–rich cell wall glycoproteins 

(WINGATE et al., 1988). Dependend on GSH, GST activity is responsible for the glutathione 

cycle and subsequent specific pathways (DUDLER et al., 1991). GST is a component of the 

antioxidative protection system in the glutathione cycle by which oxidative products induced 

by pathogens are diminished. Thus, GST counteracts against necrotization and collapse of cell 

walls and release of toxicants or causes herbicide detoxification in plant cells (MAUCH and 

DUDLER, 1993).  

 

The GST activity increased after application of the resistance inducers. The antioxidative 

activity of GST may be responsible for the finding that in BTH treated seedlings necrotization 

occurred at a considerably lower level than in PE treated plants. Therefore, it can be assumed 

that toxic oxygen species resulting from the enhanced peroxidases were detoxified involving 

the glutathione system. DALTON et al. (1986) studied the elimination of oxygen toxicity 

originating from special enhanced peroxidases. These are components of scavenger 

mechanisms concerned with ascorbate, ascorbate peroxidase, dehydroascorbate reductase, and 

glutathione reductase. 

 

In another study, DCINA and SA were shown to activate antioxidants (catalase) and PR-2 and 

PR-3 proteins (chitinases and β-1,3-glucanases) (CONRATH et al., 1995; ). In BTH treated 

shoots a considerable increase in glutathione transferase activity, but not in PAL activity was 



 

 

recorded, whereas in PE treated shoots PAL activity increased an GST activity increased only 

for a very short time. Glutathione (GSH) is involved in activation and regulation of 

biosynthetic processes in plant defence (BOLTER et al., 1993). For instance, when resistance 

to powdery mildew was induced in wheat tissue by pre-inoculation with an incompatible 

mildew pathogen, one of the putative genes shown to be activated was homologous to GST in 

its sequence (SCHWEIZER et al., 1989). On the other hand, an accumulation of phytoalexins 

and an increased level of PAL activity was elicited by infiltration of GSH in Lotus 

corniculatus (ROBBINS et al., 1991). In the here reported experiments, GST activity is 

considered as an indicator for enhanced level of GSH, so that it can be assumed that BTH was 

involved in GSH production itself.  

 



 

 

 

Fig. 42: Proposed role of salicylic acid in systemic acquired resistance (Enyedi et al. 1992). 

 

4.6 Changes in salicylic acid content 
 
In PE treated seedlings total salicylic acid content increased early and significantly but not all 

in BTH-treated seedlings. Salicylic acid is essential for SAR and activation of plant defence 

responses (MALAMY et al.,1990; MÉTRAUX et al., 1990; RASSMUSSEN et al., 1991).  

 

Although little is known about the signal transduction pathway leading to Systemic Acquired 

Resistance (SAR), one step is apparently involved in the synthesis of salicylic acid 

(MÉTRAUX et al. 1990). In other studies, application of exogenous SA induced resistance 

against plant pathogens (MALAMY et al., 1990). It was also shown that exogenous 

application of SA induced the same set of mRNAs as after pathogen infection (ANTONIW 

and WHITE, 1983; WARD et al., 1991; UKNES et al., 1992). Several data suggest that SA 

increase is required for SAR, and that SA induced protection is accompained by 

transcriptional activation of PR protein genes (Fig. 42) (CARR and CLESSIG, 1989) and 

induced peroxidase, superoxidase dismutase, and glycine-rich cell wall proteins (BOLWEL et 

al., 1985; VAN DE RHEE et al., 1990). Exogeneous applied SA inhibited the biosynthesis of 

the plant hormone ethylene, stomatal closure and root ion uptake (RASKIN, 1992).  



 

 

 

SA was described as signal substance for elicitors causing an activation of receptors in the cell 

wall (FRITZ, 1996). Systemic resistance needs signal transduction, and it was suggested that 

SA is transported from infected tissues to uninfected areas (SHULAEV et al., 1995). 

 

In the present studies, SA did not increase in BTH-treated but only in PE treated seedlings. 

Obviously, BTH treated plants developed resistance without SA increase, and even stronger 

than in the PE-treated seedlings. Nevertheless, PR proteins and peroxidase activity also 

increased after BTH treatment. Therefore, it appears possible that BTH induced a downstream 

of SA instead of SA increase. Recent studies showed that SA binding proteins play a role in 

signal transmission during defence response. These may lead to changes of certain 

biochemical and physiological states of plant cells (CHEN et al., 1993). According to other 

studies, application of the inductor INA activated a component of SAR causing a signalling 

pathway with suppression of SA accumulation. DCINA induced the same mechanism, 

however, activated the antioxidants and suppressed the PR-1 proteins (CONRATH et al., 

1995). The BTH treated plants did not show significant changes in SA content after 

application in the here reported as well as in other studies (FRIEDRICH et al., 1996; 

LAWTON et al., 1996). Activation of antioxidative mechanisms is suggested for BTH treated 

plants (see subchapter 4.5). Contrary to BTH treated plants the PE treatment caused a strong 

increase (135% of control) of SA. This accumulation may explain activation of PR-1 proteins 

and a suppressive effect on antioxidants. Accumulation of SA induced SAR genes. 

Establishment of the resistance state was correlated with PR-1, PR-2, PR-3 gene expression 

(WARD et al., 1991; VERNOOIJ et al., 1994;). Consequently, it is suggested that BTH exerts 

similar effects than SA due to a similar structure (analogue). Because of the nevertheless 

differing structure of BTH, slightly differing defence responses and expression of different 

defence related genes are induced than in PE treated apple seedlings. 



 

 

4.7 Study hypothesis 

 

4.7.1 Mode of action of resistance induction by BTH 

 

Different modes of action have to be assumed for BTH and PE. BTH is thought to act as 

signalling compound. This signal may lead to an activation of different membrane-bound 

enzymes resulting in higher levels of oxygen, oxygen radicals, superoxides, hydroxyl radicals 

and the formation of H2O2 (HAHLBROCK et al., 1995). The signal transmission and 

resistance induction may be similar to that of applied elicitors (WOJTASZEK et al., 1995). 

Expression of mRNA may be regulated by SA binding proteins which can be assumed as 

further steps of signal transmission (HAHLBROCK et al., 1995). In another study, a defence 

response was triggered by several mRNA regions (HAMDAN and DIXON, 1987). It is 

hypothesised that the SA binding proteins (PR-1-PR-3 etc.) are activated independently to SA 

(Fig. 43). It is also assumed that PAL activity is responsible for flavonoid biosynthesis 

(phenylpropanoid pathways) and synthesis of cinnamic acid as a substrate for the glutathione 

cycles. The synthesis of a bacteriostatic compound in BTH treated apple seedlings may be the 

reason for the stronger resistance induction of BTH compared to PE. In the present studies, it 

could be confirmed that BTH treatment suppressed SA accumulation in the plant. 

(FRIEDRICH et al., 1996; LAWTON et al., 1996). Enhanced PO activity is regarded as a 

secondary transmission of defence responses. The increased PO activity may serve as elicitor 

of other defence mechanisms of the plant. The outlined mechanisms can lead to a suppression 

of the fire blight pathogen up to 7 days after inoculation. 

 

Consequently, BTH is suggested to act as an analogue of SA during resistance reaction in 

apple seedlings (Fig. 43).  



 

 

 

Fig. 43: Assumed mechanism of induced resistance in BTH treated apple seedlings. 

 

4.7.2 Mode of action of resistance induction by plant extract from Hedera helix 
 
In contrast to BTH for the PE a direct effect on phenylpropanoid pathways and SA is assumed 

which has similar consequences as the indirect effect of BTH (Fig. 44). In PE treated plants, 

ethylene metabolism may play an important role in signal transmission in the plasma 

membrane (SCHNEIDER and ULRICH, 1994). In addition, an increase of peroxidase activity 

and appearance of different PO isoenzymes was observed. Therefore, another signal 

transmission is suggested leading to an enhancement of total SA content, which was not 

observed in BTH treated seedlings. Contrary to BTH, in PE treated plants there was no 

significant increase in enzymes of the antioxidative protection system, allowing necrotization 

of the inoculated tissue with a high level of polyphenoloxidase and possible synthesis of 

oligomer flavonoids. 

 

Consequently, contrary to BTH, PE is suggested to act via increase of SA during the 

resistance reaction of the plant. 
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Fig. 44: Assumed mechanism of induced resistance in plant extract treated apple seedlings. 
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5. SUMMARY 

 

In the present study the plant activator BTH (= benzothiadiazole) (BION®) and an extract 

from leaves of Hedera helix were assayed on resistance inducing effects against fire blight 

caused by Erwinia amylovora, strain Ea7/74 on the highly susceptible apple rootstock M26. 

The experiments were carried out under controlled climatic conditions in the greenhouse.  

 

5.1 Symptom development and growth of bacterial multiplication in BTH and PE 

treated plants 

 

Pre-inoculation application of BTH and plant extract to the foliage of rootstock M26 reduced 

severity of disease as well as the multiplication of bacteria in the tissue. The greatest effect of 

BTH was achieved by an induction interval of 48 hours before inoculation. For the plant 

extract an optimum induction interval could not be determined. Therefore, the same induction 

period of 48 h was used for both treatments. In the treated apple shoots the development of 

systemic symptoms was suppressed. Reduction of disease severity in BTH treated shoots 

amounted up to 70% and up to 31% in plant extract treated shoots. In plant extract treated 

shoots high necrotization was recorded in the inoculated leaves. The reduction of disease 

severity was correlated with a suppressive effect on multiplication of bacteria in planta up to 

80% and 72% in BTH and PE treated shoots, respectively. The reduction of bacterial 

multiplication in planta was also demonstrated by PCR with the use of the specific primer 

pEA29.  

 

5.2 Physiological changes 

 

Several indicators of resistance reactions in plants were examined, such as  total phenol 

content, pattern of flavonoids, bacteriostatic compounds, peroxidase (PO), phenylalanine 

ammonia-lyase (PAL), polyphenol oxidase (PPO), pathogenesis related (PR) proteins 

(chitinase, β-1,3-glucanase), β-glucosidase, glutathione-S-transferase (GST), and total 

salicylic acid (SA) content. 

 
5.2.1 Phenols, flavonoids and inhibitory substances in treated plants  

 

In general, BTH and plant extract treated shoots showed a higher phenol content than 

untreated shoots. This effect was most significant 2-4 d after treatment. Chromatographic 



 

 

(TLC) examinations indicated that some flavonoids (quercetin and kampferol isoforms) 

increased after treatment with BTH and plant extract. An inhibitory substance was found in 

BTH treated plants which could, however, not be fully characterized. From the data obtained 

the detected inhibitory substance was assumed to be a phloretin derivate that showed 

considerable reduction of bacterial multiplication in vitro. 

 

5.2.2 Enzymatic activities, PR proteins and salicylic acid (SA) 

 

Peroxidase activity showed a significant increase in BTH and PE treated shoots from 2–7 d 

p.i. with the highest activity 4 d after treatment. After SDS-PAGE the main PO activity was 

found in molecular sizes of 20.1 and 43 kD. The plant extract treated shoots showed a high 

expression in 3 bands and BTH treated shoots in 2 bands.  

 

Treatment with BTH or plant extracts induced an increase of specific protein bands, similar 

to the pattern after artificial inoculation. 

 

Also, phenylalanine-ammonia lyase (PAL) activity was increased in BTH and plant extract 

treated shoots. Generally, the activation by PE was significantly higher than by BTH 

treatment. 

 

Polyphenoloxidase (PPO): Only treatments with plant extracts caused a remarkable 

enhancement. This result was correlated to high necrotisation in PE treated plants. In contrast, 

low PPO activity correlated with low necrotization in BTH treated plants. Infection increased 

PPO activity much later (11 d p.i.) than PE treatment. 

 

β-Glucosidase activity (β-Gl) was considerably higher after both treatments, especially 4 d 

p.i. In BTH treated plants a significant increase of β-Gl correlated to production of an 

antimicrobial substance.  

 

Glutathione-S-transferase (GST) was strongly increased in BTH treated shoots 4 and 7 d p.i. 

This result was correlated to low necrotization after BTH treatment in contrast to PE 

treatment with more necrotization but less GST activity in the shoots.  



 

 

 

Two enzymes, often found in the so-called PR-proteins also increased after the treatment: 

chitinase and β-1,3-glucanase. Chitinase activity was higher in BTH treated shoots from 4–

11 d p.i. than in plant extract treated shoots, although the increase started earlier in plant 

extract treated shoots. Also, the activity of ββββ-1,3-glucanase increased earlier after PE 

treatment than in BTH  treated shoots.  

 
A remarkable increase in concentration of salicylic acid (SA) occurred only in plant extract 

treated plants, whereas no difference was found between BTH treated and control plants. For 

a role in signal transduction and defence mechanism BTH was assumed to replace SA, 

independently. Contrary to BTH, a direct effect of plant extract on SA was assumed.  

 
 
5.2.3 Mode of action of BTH and PE 

 

Summarizing the above mentioned results on the effects of the resistance-inducing agents 

BTH and PE on symptom and bacterial development as well as the physiological changes in 

the plant the following modes of action are proposed: 

 

For BTH, it is hypothesised that the SA binding proteins are activated independently from 

SA. It was shown that BTH treatment did not increase but enhanced peroxidase activity. 

These reactions are regarded as secondary transmission of defence responses. Therefore, BTH 

is suggested to act as an analogue of SA during the resistance reaction of the plant. 

 

For PE a direct effect on the phenylpropanoid pathway and SA accumulation is assumed. A 

different signal transmission is suggested with peroxidase activity and enhancement of total 

SA content. PE treated plants led to an increased level of PPO activity, which is related to the 

formation of oligomer flavonoids. However, in PE treated plants there was no significant 

increase in enzymes of the antioxidative protection system. So PE is suggested to act directly 

via SA accumulation during the resistance reaction of the plant. 
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