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Notation

Symbols

X ,Y,Z random variables
x,y,z scalars (realizations of X ,Y,Z)
X1, . . . ,Xn random sample of size n
f probability density function (pdf)
fX pdf of X
h bandwidth
ĥ• ISE respectively ASE optimal bandwidth for a specific method
h• (A)MISE optimal bandwidth
b one sided bandwidth
b̂• OISE optimal bandwidth for a specific method
b• MOISE optimal bandwidth
f̂h estimated density function
f̂h,−i estimated density function when leaving out observation i
f̂le f t,b one-sided to the left kernel density estimator
K symmetric kernel function
Kh scaled kernel function, i.e. Kh(u) = K(u/h)/h
K̄ local linear version of a one sided kernel
µl(K) lth moment of K, i.e.

∫
ulK(u)du

K ?K convolution of K, i.e. K ?K(u) =
∫

K(u− v)K(v)dv
||K||22 squared L2 norm of K, i.e.

∫
[K(u)]2 du

a.s.−−→ almost sure convergence
P−→ convergence in probability
α weighting factor with α ∈ (0,1)
Op(•) / O(•) / o(•) Landau notation
εi random variable with mean zero and unit variance
σ2(x) conditional variance, i.e. Var(Y |X = x)
m(x) true regression function, i.e. E(Y | X = x)
β j parameter
m̂h(x) local linear estimator of the regression function
Sh, j weighted sums, i.e. ∑

n
i=1 Kh(x−Xi)(Xi− x) j
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Wh,i(x) weight for the local linear estimator
w(X j) trimming respectively weight function
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m̂Q j / m̂Pj quartic / parabolic OLS estimator for block j
θrs unknown functional, i.e.
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S m(r)(x)m(s)(x) f (x)dx

θ̂
Q
rs / θ̂ P

rs blocked quartic / parabolic estimator of θrs
σ̂2

Q / σ̂2
P blocked quartic / parabolic estimator of σ2

Abbreviations

cf. compare (Latin: confer)
i.i.d. independent and identically distributed
e.g. for example (Latin: exempli gratia)
i. e. that is (Latin: id est)
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AMSE asymptotic MSE
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Important Methods
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FPE finite prediction error



LIST OF TABLES 13

GCV generalized CV
LSCV least-squares CV
OLS ordinary least squares
OSCV one-sided CV
OSCV-l OSCV to the left
OSCV-r OSCV to the right
PI plug-in
PIP PI with a blocked parabolic parametric fit
PIQ PI with a blocked quartic parametric fit
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Introduction

Kernel estimation is a common nonparametric method for data based estimation of densities
or regression functions. Although one may consider nonparametric estimation as an estimation
procedure without parameters, one has to estimate bandwidth parameters. The difference to pa-
rameter based estimation of e.g. density functions is that no specific form of the nonparametric
density has to be assumed. This makes nonparametric estimation methods more flexible.
This thesis compromises three parts. The first part covers bandwidth selection in kernel density
estimation, which is a common tool for empirical studies in many research areas. The dis-
cussion about finding the optimal bandwidth based on the data has been going on over three
decades. The typical aim of empirical studies in the past was mostly to show that a new method
outperforms existing ones. Review articles on comparing methods are very rare and were writ-
ten a long time ago. Hence, chapter one of this thesis is an update review of existing methods
comparing them on a set of different designs. The second part is on bandwidth selection in
nonparametric kernel regression. The aim is similar to the first part: reviewing and comparing
existing methods on a set of designs. In part one and two, smooth densities of a random variable
X were assumed, therefore global bandwidth selection is adequate for the kernel estimation. In
contrast to the first two parts we assume a density of X with a sharp peak and smooth areas in
the third part. Usually local bandwidth selection is used in this case. However, we want to apply
global bandwidth selection methods and hence, it is tested if good results can be obtained by a
prior transformation. Therefore, part three covers a comparison between using a transformation
and estimating the global bandwidth without a transformation. The main question is whether an
improvement with respect to the typical error criteria in nonparametric regression can be made
by using a prior transformation. Since the methods were extensively reviewed in the second
part, only those who performed best were considered in this chapter. Then the estimation with
and without prior transformation is compared, in order to evaluate the performance of the pro-
posed transformation.

The thesis is written in LaTeX. The simulations are written in the programming languages
Fortran, C and R. The evaluation and presentation of the results was written in R, since R
provides the possibility to visualize the performance in nice graphics. The programming code
is available from the author.
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Chapter 1

Bandwidth Selection Methods for Kernel
Density Estimation - A Review of
Performance

Abstract

On the one hand, kernel density estimation is a common tool for empirical studies
in any research area. This goes hand in hand with the fact that these estimators
are provided by many software packages. On the other hand, since about three
decades the discussion on bandwidth selection has been going on. Although a good
part of the discussion is concerned about nonparametric regression, this issue is
by no means less problematic for density estimation. This becomes obvious when
reading empirical studies in which practitioners made use of kernel densities. New
contributions typically provide simulations limited to show that the own invention
outperforms existing methods. We review existing methods and compare them on a
set of designs that exhibits features like few bumps and exponentially falling tails.
We concentrate on small and moderate sample sizes. This essay is based on a joint
work with my colleague Nils-Bastian Heidenreich and Prof. Dr. Stefan Sperlich.
The main contribution of the author of this thesis is made in the evaluation of the
plug-in and bootstrap methods and the evaluation of the estimation results.
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18 CHAPTER 1. BANDWIDTH SELECTION FOR KERNEL DENSITIES

1.1 Introduction
Suppose we have observed i.i.d. data X1,X2, . . . ,Xn from a common distribution with density
f (·), and we aim to estimate this density using the standard kernel (i.e. the Parzen-Rosenblatt)
estimator

f̂h(x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
, (1.1)

where K is a kernel and h the bandwidth parameter. The problem is to find a reliable data
driven estimator of the optimal bandwidth. First one has to decide on a method of assessing the
performance of f̂h. The generally accepted performance measures are the integrated squared
error

ISE(h) = ISE{ f̂h(x)}=
∫
{ f̂h(x)− f (x)}2 dx (1.2)

or alternatively, the mean integrated squared error, i.e.

MISE(h) = MISE
[

f̂h(x)
]
=
∫

MSE
[

f̂h(x)
]

dx. (1.3)

Let us denote the minimizers of these two criteria by ĥ0 and h0 respectively. The main difference
is that ISE(h) is a stochastic process indexed by h > 0, while MISE(h) is a deterministic func-
tion of h, see Cao (1993). Therefore we distinguish two classes of methods: the cross-validation
methods trying to estimate ĥ0 and therefore looking at the ISE, and the plug-in methods which
try to minimize the MISE to find h0. It is evident that asymptotically these criteria coincide.
The main part of the nonparametric statistical community has accepted that there may not be a
perfect procedure to select the optimal bandwidth. However, we should be able to say which is
a reasonable bandwidth selector, at least for a particular problem. SiZer tries to show the practi-
tioner what is a range of reasonable bandwidths, and is therefore quite attractive for data snoop-
ing, see Chaudhuri and Marron (1999) for an introduction, Godtliebsen, Marron and Chaudhuri
(2002) for an extension to the bivariate case. Hanning and Marron (2006) made an improve-
ment using extreme value theory. However, SiZer does not give back one specific data driven
bandwidth as practitioners typically ask for.
Since until now the development of bandwidth selectors has been continuing, we believe it is
helpful to review and compare the existing selectors to get an idea of the objective and perfor-
mance of each selector. As we counted more than 30 bandwidth selectors - several of them
being modifications for particular estimation problems - we decided to restrict this study in
mainly two directions. Firstly, we considered independent observations. Secondly, we looked
at smooth densities, namely we use four underlying distributions which are mixtures of at most
three different normal and/or gamma distributions. This type of smoothness covers a broad
range of problems in any research area; it is clearly rather different from estimating sharp peaks
or highly oscillating functions. However, the latter problems should not be tackled with kernels
anyway. Density problems with extreme tails are not included. It is well known that those
problems should be transformed, see e.g. Wand, Marron and Ruppert (1991) or Yang and Mar-
ron (1999) for parametric, Ruppert and Cline (1994) for nonparametric transformations. After
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an appropriate transformation the remaining estimation problem falls into the here considered
class, too. Note that the limitation to global bandwidths is not very restrictive neither, and quite
common in density estimation. Actually, when X was transformed, and similar smoothness
is assumed over the whole transformed support, then global bandwidths are most reasonable.
Finally, we have restricted our study to already published methods.
The idea of cross validation methods goes back to Rudemo (1982) and Bowman (1984), but
we should also mention the so-called pseudo-likelihood CV-methods invented by Habbema,
Hermans and van den Broek (1974) and by Duin (1976). Due to the lack of stability of this
method, see e.g. Wand and Jones (1995), different modifications have been proposed like the
stabilized bandwidth selector recommended by Chiu (1991), smoothed CV proposed by Hall,
Marron and Park (1992), the modified CV (MCV) by Stute (1992), or the version by Feluch
and Koronacki (1992), and most recently the one-sided CV by Martı́nez-Miranda, Nielsen and
Sperlich (2009) and the indirect CV by Savchuk, Hart and Sheather (2010). The biased CV
(BCV) of Scott and Terrell (1987) is minimizing the asymptotic MISE like plug-in methods do
but uses a jack-knife procedure (therefore called CV) to avoid the use of prior information. The
recent kernel contrast method of Ahmad and Ran (2004) can be used for MISE minimization
as well, but it is not really data adaptive (or fully automatic) and it performs particularly well
rather for regression than for density estimation.
Compared to CV the so-called plug-in methods do not only minimize a different objective
function, MISE instead of ISE, they are less volatile but not entirely data adaptive as they require
pilot information. In contrast, CV allows to choose the bandwidth without making assumptions
about the smoothness (or the like) to which the unknown density belongs. Certainly, if we have
an appropriate pilot bandwidth the performance of plug-in methods is pretty good. Although,
they have a faster convergence rate compared to CV, they can heavily depend on the choice
of pilots. Among them, Silverman’s (1986) rule of thumb is probably the most popular one.
Various refinements were introduced like for example by Park and Marron (1990), Sheather
and Jones (1991), or by Hall, Sheather, Jones and Marron (1991). Also the bootstrap methods
of Taylor (1989) as well as all its modifications, see e.g. Cao (1993) or Chacón, Montanero and
Nogales (2008), we count to plug-in methods as they aim to minimize the MISE.
There are already several papers dealing with a comparison of different automatic data driven
bandwidth selection methods though, most of them are older than ten years. In the seventies and
early eighties survey papers about density estimation were published by Wegman (1972), Tartar
and Kronmal (1976), Fryer (1977), Wertz and Schneider (1979) as well as Bean and Tsokos
(1980). A short introduction to various methods of smoothing parameter selection without a
simulation study was released by Marron (1988a) and Park and Marron (1990). Then, extensive
simulations studies have been published by Park and Turlach (1992), Marron and Wand (1992),
Cao, Cuevas and González Manteiga (1994) and Chiu (1996). A brief survey is also announced
by Jones, Marron and Sheather (1996a) and a more comprehensive one in the companion pa-
per Jones, Marron and Sheather (1996b). A very comprehensive simulation study has been
published by Devroye (1997). Furthermore, Loader (1999) has published a comparison paper.
In recent years to our knowledge only Chacón, Montanero and Nogales (2008) has published
a comparison paper on this topic. However, they concentrate on Bootstrap methods and only
compare LSCV and the plug-in version of Sheather and Jones (1991). The general criticism
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against the two classes of selection methods can be summarized as follows: CV leads to under-
smoothing and breaks down for large samples, whereas plug-in depends on prior information
and often works bad for small data sets and much curvature.
For the statements about asymptotic theory, we make the following assumptions on kernel and
density. For some methods we will modify them.

(A1) The kernel K is a compactly supported density function on R, symmetric around zero
with Hölder-continuous derivative, K′.

(A2) µ2(K)< ∞, where µl(K) =
∫

ulK(u)du.

(A3) The density, f , is bounded and twice differentiable, f ′ and f ′′ are bounded and integrable,
and f ′′ is uniformly continuous.

In our simulation study we restrict on selection methods which consider no higher order ker-
nels. The main motivation for the usage of higher order kernels is their theoretical advantage
of faster asymptotic convergence rates. However, their substantial drawback is a loss in the
practical interpretability as they involve negative weights and can even give back negative den-
sity estimates. A good illustration of the understanding of higher order kernels can be found in
Marron (1994).
In the context of asymptotic theory we are aware of the trade-off between the classical plug-
in method and standard cross-validation. The plug-in has always smaller asymptotic variance
compared to cross-validation (Hall and Marron, 1987a). To our knowledge, no other bandwidth
selection rule has outperformed the asymptotic properties of the plug-in method. Although Hall
and Johnstone (1992) stated that such methods must theoretically exist, they couldn’t give any
practical example.

1.2 Cross-Validation methods in density estimation
Recall the used performance measure, i.e. the integrated squared error (ISE):

ISE(h) =
∫

f̂ 2
h (x)dx−2E{ f̂h(X)}+

∫
f 2(x)dx. (1.4)

Evidently, the first term can be calculated from the data, the second can be expressed as the
expected value of f̂h(X), and the third term can be ignored since it does not depend on the
bandwidth. Note that estimating E{ f̂h(X)} by 1

n ∑
n
i=1 f̂h(Xi) is inadequate due to the implicit

dependency ( f̂h depends on Xi). So the different modifications of CV basically vary in the
estimation of the problematic second part.

Ordinary least squares cross-validation

This is a straightforward approach by just dropping Xi when estimating f (Xi), called jack-knife
estimator and denoted by f̂h,−i(Xi). It yields the least-squares CV criterion

min
h

CV(h) =
∫

f̂ 2
h (x)dx−2

1
n

n

∑
i=1

f̂h,−i(Xi). (1.5)
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Stone (1984) showed that under the assumptions (A1)-(A3), the minimizing argument, ĥCV , ful-
fills
ISE(ĥCV ){minhISE(h)}−1 a.s.−−→ 1. However, Hall and Marron (1987a) stated that this happens
at the slow rate of Op(n−1/10). Many practitioners use this CV method because of its intuitive
definition and its practical flavor. But as mentioned above, it is not stable, tends to undersmooth
and often breaks down for large samples.

Modified cross-validation

Stute (1992) proposed a so-called modified CV (MCV). He approximated the problematic term
by the aid of a Hajek projection. In fact, he showed that under some regularity assumptions
given below, 2E[ fh(x)] is the projection of

S+
1
h

E
[

K
(

X1−X2

h

)]
= S+

1
h

∫ ∫
K
(

x− y
h

)
f (x) f (y)dxdy

= S+
∫

f 2(y)dy+
1
2

h2
∫

t2K(t)dt
∫

f (y) f ′′(y)dy+O(h3)

for S :=
1

n(n−1)h ∑
i6= j

K
(

Xi−X j

h

)
.

This gives the criterion

min
h

MCV (h) =
∫

f̂ 2
h (x)dx−S− µ2(K)

2n(n−1)h ∑
i 6= j

K′′
(

Xi−X j

h

)
. (1.6)

It can be shown then that under assumptions (A1),

(A2’) K is three times differentiable, with
∫

t4|K(t)|dt < ∞ ,
∫

t4|K′′(t)|dt < ∞ ,∫
t4[K′(t)]2 dt < ∞ , and

∫
t2[K′′′(t)]2 dt < ∞ ,

(A3’) f four times continuously differentiable, the derivatives being bounded and integrable,

you get the following consistency result:

ISE(ĥ0)

ISE(ĥMCV)

P−→ 1, and
ĥ0

ĥMCV

P−→ 1 as n→ ∞.

Stabilized bandwidth selection

Based on characteristic functions Chiu (1991) gave an expression for hCV which reveals the
source of variation. Note that the CV criterion is approximately equal to

1
π

∫
∞

0
|φ̃(λ )|2

{
w2(hλ )−2w(hλ )

}
dλ +2K(0)/(nh), (1.7)
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with φ̃(λ ) = 1
n ∑

n
j=1 eiλX j and w(λ ) =

∫
eiλuK(u)du. The noise in the CV estimate is mainly

contributed by |φ̃(λ )|2 at high frequencies, which does not contain much information about
f . To mitigate this problem, he looks at the difference of the CV criterion and the MISE. He
defines Λ as the first λ fulfilling |φ̃(λ )|2 ≤ 3/n and replaces |φ̃(λ )|2 by 1/n for λ > Λ. This
gives his criterion:

min
h

Sn(h) =
∫

Λ

0
|φ̃(λ )|2

{
w2(hλ )−2w(hλ )

}
dλ

+
1
n

∫
∞

Λ

{
w2(hλ )−2w(hλ )

}
dλ +2πK(0)/(nh), (1.8)

=
π

nh
||K||22 +

∫
Λ

0

{
|φ̃(λ )|2− 1

n

}
{w2(hλ )−2w(hλ )}dλ , (1.9)

with ||g||22 =
∫

g2(u)du.
For the minimizer, ĥST , of this criterion, it can be shown that ĥST

a.s.−−→ ĥ0, and it converges to
h0 at the optimal n−1/2-rate. In the calculation of Λ we came across with the computation of
square roots of negative terms in our simulations. To avoid complex numbers we calculated the
absolut value of the radicand. Note that in the literature this procedure is often counted among
the plug-in methods as it minimizes the MISE.

One-sided cross-validation

Marron (1986) made the point that the harder the estimation problem the better CV works.
Based on this idea Hart and Yi (1998) introduced an estimation procedure called one-sided
cross-validation in the regression context. They concluded that OSCV in regression clearly out-
performs the ordinary CV. Martı́nez-Miranda, Nielsen and Sperlich (2009) proposed to apply
one-sided cross-validation in density estimation. They apply CV on a harder estimation prob-
lem and afterwards calculate the corresponding bandwidth for the underlying ”real” estimation
problem. To make the estimation problem harder, they use a worse estimator, namely (1.1) but
with a local linear version of a one sided kernel,

K̄(u) =
µ2(K)−u

(
2
∫ 0
−∞

tK(t)dt
)

µ2(K)−
(

2
∫ 0
−∞

tK(t)dt
)2 2K(u)1{u<0}. (1.10)

Respectively to ISE and MISE they define the one-sided versions OISE and MOISE, with their
minimizers b̂0 and b0. The one-sided CV criterion is

min
b

OSCV(b) =
∫

f̂ 2
le f t,b(x)dx− 2

n

n

∑
i=1

f̂le f t,b(Xi), (1.11)

where f̂le f t,b is the one-sided (to the left) kernel density estimator. Then they define the corre-
sponding bandwidth for the ”real” estimation problem by

ĥOSCV :=C · b̂OSCV with C = h0/b0. (1.12)
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Note that C is deterministic and depends only on kernel K since

h0 =

(
||K||22

(µ2(K))2|| f ′′||22n

)1/5

, b0 =

(
||K̄||22

(µ2(K̄))2|| f ′′||22n

)1/5

. (1.13)

This gives, for example C ≈ 0.537 for the Epanechnikov kernel. The theoretical justification
for the improved convergence rate of one-sided CV is based on the result of Hall and Marron
(1987a) that under the assumptions (A1) - (A3)

n3/10(ĥCV − ĥ0)−→ N(0,σ2c−2). (1.14)

with known terms σ and c depending only on f and K. From this we can calculate the variance
reduction of OSCV compared to CV by {Cσ̄c/(c̄σ)}2 where c̄, σ̄ are just as c,σ but with K̄
instead of K. The reduction of the variance for the Epanechnikov kernel is at least 35% and
50% for the Gaussian kernel. Note that K̄ can also be constructed as a one sided kernel to the
right.

Further cross-validation methods

Feluch and Koronacki (1992) proposed to cut out not only Xi when estimating f (Xi) but rather
dropping also the m < n nearest neighbors with m→∞ such that m/n→ 0. They called this ver-
sion modified CV. Unfortunately, it turned out that the quality of this method crucially depends
on m. Therefore it cannot be considered as automatic or data driven, and will not be considered
further. This idea is similar to the CV selection for time series data, see Härdle and Vieu (1992).
Scott and Terrell (1987) introduced the Biased CV. They worried about unreliable small-sample
results, i.e. the high variability while using the cross-validation criterion. However, they di-
rectly focused on minimizing the asymptotic MISE and estimated the unknown term || f ′′(x)||22
via jack-knife methods. Already in their own paper they admitted a poor performance for small
samples and mixtures of densities, see also Chiu (1996). In their simulation study, Jones, Mar-
ron and Sheather (1996b) underlined the deficient performance from ’quite good’ to ’very poor’.
The smoothed cross-validation (SCV) was evolved by Hall, Marron and Park (1992). The gen-
eral idea is a kind of presmoothing of the data before applying the CV-criterion. This procedure
of presmoothing results in smaller sample variability, but enlarges the bias. Therefore the re-
sulting bandwidth is often oversmoothing and cuts off some features of the underlying density.
With this method it is possible to achieve a relative order of convergence of n−1/2 but only when
using a kernel of order ≥ 6. In total, it seems to be appropriate - if at all - only for huge sam-
ples. Without using a higher order kernel Jones, Marron and Sheather (1996b) stated, that there
exists an n−1/10 convergent version of SCV that is identical to Taylor’s bootstrap, see Taylor
(1989). Additionally, with a special choice for g SCV results in an n−5/14 version similar to a
diagonal-in version of Park and Marron’s plug-in, see Park and Marron (1990). Note that finally
the SCV is closely related to the bootstrap method of Cao (1993). These three methods do not
belong to the cross-validation methods, and hence, they are discussed later. In conclusion, we
have not implemented these methods, because either it is very similar to other methods or it is
necessary to use a higher order kernel.
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The partitioned cross-validation (PCV) was suggested by Marron (1988b). He modified the
CV-criterion by splitting the sample of size n into m subsamples. Then, the PCV is calculated
by minimizing the average of the score functions of the CV-score for all subsamples. In a final
step the resulting bandwidth needs to be rescaled. The number of subsamples affects the trade
off between variance and bias. Hence the choice of m is the smoothing problem in this case.
As Park and Marron (1990) noticed: ”this method ... is not quite fully objective”. Another
drawback is the required separation of the subsamples.
The pseudo-likelihood (also called the Kullback-Leibler) cross-validation (invented by Habbema,
Hermans and van den Broek (1974) and by Duin (1976)) aims to find the bandwidth maximiz-
ing a pseudo-likelihood criterion with leaving out the observation Xi. Due to the fact that lot
of authors criticize this method being inappropriate for density estimation, we skipped also this
method in our simulation study.
Wegkamp (1999) suggest a method being very much related to the cross-validation technique
providing quasi-universal bandwidth selection for bounded densities. Nonetheless, his paper
stays on a rather technical level but is not suitable for practitioners. Also Savchuk, Hart, and
Sheather (2010) introduce a method with excellent theoretical properties, based on indirect
cross-validation. For our implementation with Epanechnikov kernels it nevertheless worked
well only for large samples.
Recently, Ahmad and Ran (2004) proposed a kernel contrast method for choosing bandwidths
either minimizing ISE or alternatively the MISE. While it turned out to work quite well for
regression, the results for density estimation were less promising. A major problem is that one
needs two series of contrast coefficients which have a serious impact on the performance of
the method. As we are not aware of an automatic data driven and well performing method to
choose them, we will not consider this method further.

1.3 Plug-in methods in density estimation

Under (A1)-(A3) the MISE can be written for n→ ∞, h→ 0 as

MISE
[

f̂h(x)
]

=
h4

4
µ

2
2 (K)|| f ′′(x)||22 +

1
nh
||K||22 +o

(
1

nh

)
+o(h4), (1.15)

such that the asymptotically optimal bandwidth is

h0 = ||K||
2/5
2

(
|| f ′′||22 [µ2(K)]2 n

)−1/5
, (1.16)

where only || f ′′||22 is unknown and has to be estimated. The most popular method is the ”rule-
of-thumb” introduced by Silverman (1986). He uses the normal density as a prior for approxi-
mating || f ′′||22. For the necessary estimation of the standard deviation of X he proposes a robust
version making use of the interquartile range. If the true underlying density is unimodal, fairly
symmetric and does not have fat tails, it works fine.
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Park and Marron’s Refined plug-in

Natural refinements consist of using nonparametric estimates for || f ′′||22. Let us consider

f̂ ′′g (x) =
1

ng3

n

∑
i=1

K′′
(

x−Xi

g

)
,

where g is a prior bandwidth. Hall and Marron (1987b) proposed several estimators for || f ′′||22,
all containing double sums over the sample. They pointed out that the diagonal elements give a
non-stochastic term which does not depend on the sample and increases the bias. They therefore
proposed the bias corrected estimator

|̂| f ′′||22 = || f̂
′′
g ||22−

1
ng5 ||K

′′||22. (1.17)

The question which arises is how to obtain a proper prior bandwidth g. In Park and Marron

(1990) g is the minimizer for the asymptotic mean squared error of |̂| f ′′||22. With (1.16) one gets
a prior bandwidth in terms of h (using the notation in the original paper):

g =C3(K)C4( f )h10/13,

where C3(K) contains the fourth derivative and convolutions of K, and C4( f ) the second and
third derivatives of f . Substituting the normal with estimated variance for f gives

h =

 ||K||22
|̂| f ′′||22µ2

2 (K)n

1/5

. (1.18)

The optimal bandwidth is then obtained by numerical solution of this equation. The relative
rate of convergence to h0 is of order Op(n−4/13), which is suboptimal compared to the optimal
n−1/2-rate, cf. Hall and Marron (1991).

Implemented Refined plug-in

For small samples and small (optimal) bandwidths, the above estimator |̂| f ′′||22 can easily fail in
practice. Also, to find a numerical solution may become involved in practice. To avoid these
problems and to offer a quick and easy solution, we propose to first take Silverman’s rule-of-
thumb bandwidth for Gaussian kernels, hS = 1.06min{1.34−1IR,sn}n−1/5 with IR=interquartile
range of X , and sn the sample standard deviation, adjusted to Quartic kernels. This is done via
the idea of canonical kernels and equivalence bandwidths, see Härdle, Müller, Sperlich, and
Werwartz (2004). The Quartic which comes close to the Epanechnikov kernel but allows for
second derivative estimation. Finally, we adjust for the slower optimal rate for second derivative
estimation and obtain as a prior

g = hS
2.0362
0.7764

n1/5−1/9 (1.19)

for (1.17). This bandwidth leads to very reasonable estimates of the second derivative of f , and

hence of |̂| f ′′||22. A further advantage is that this prior g is rather easily obtained. As the idea
actually goes back to Park and Marron (1990) we will call the final bandwidth ĥPM.
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Bootstrap methods

The idea of these methods is to select the bandwidth along bootstrap estimates of the ISE or
the MISE. For a general description of this idea in nonparametric problems, see Hall (1990).
Imagine, for a given pilot bandwidth g we have a Parzen-Rosenblatt estimate, f̂g, from which
we can draw bootstrap samples (X∗1 ,X

∗
2 , . . . ,X

∗
n ). Then, defining the bootstrap kernel density

f̂ ∗h (x) =
1

nh

n

∑
i=1

K
(

x−X∗i
h

)
, (1.20)

the (mean) integrated squared error to be minimized can be approximated by

ISE∗(h) :=
∫ (

f̂ ∗h (x)− f̂g(x)
)2

dx , (1.21)

MISE∗(h) := E∗

[∫ (
f̂ ∗h (x)− f̂g(x)

)2
dx
]
. (1.22)

It can be shown that the expectation E∗ and so the MISE∗ depends only on the original sample
but not on the bootstrap samples. Consequently, there is actually no need to do resampling
to obtain the MISE∗. More specific, using Fubini’s theorem and decomposing the MISE∗ =
V ∗+SB∗ into integrated variance

V ∗(h) =
1

nh
· ||K||22 +

1
n
·
∫ (∫

K(u) · f̂g(x−hu)du
)2

dx (1.23)

and squared bias

SB∗(h) =
∫ (∫

K(u) · ( f̂g(x−hu)− f̂g(x))du
)2

dx (1.24)

gives (where ? denotes convolution)

V ∗(h) =
1

nh
||K||22 +

1
n3

n

∑
i=1

n

∑
j=1

[(Kh ?Kg)? (Kh ?Kg)] (Xi−X j) (1.25)

and

SB∗(h) =
1
n2

n

∑
i=1

n

∑
j=1

[(Kh ?Kg−Kg)? (Kh ?Kg−Kg)] (Xi−X j). (1.26)

In practice, it is hard to get explicit formulae for these integrals when kernels have bounded
support. However, using the Gaussian kernel in the formulae (1.25) and (1.26) we can directly
calculate the optimal bandwidth as the minimizer of

MISE*(h) =
1

2nh
√

π
+

1√
2π

[∑
i, j

(
exp
(
−1

2

(
Xi−X j

g
√

2

)2
))

√
2g2 ·n2

(1.27)

−
2 ·∑

i, j

(
exp

(
−1

2

(
Xi−X j√
h2+2g2

)2
))

√
h2 +2g2 ·n2

+

(n+1)∑
i, j

(
exp

(
−1

2

(
Xi−X j√
2(h2+g2)

)2
))

√
2(h2 +g2) ·n3

]
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The equivalent bandwidth for any other kernel can be obtained as described in Marron and
Nolan (1988).
The bootstrap approach in kernel density estimation was first presented by Taylor (1989). How-
ever, many modified versions were published in the following, e.g. Faraway and Jhun (1990),
Hall (1990) or Cao (1993). The crucial difference between these versions is the choice of the
pilot bandwidth and the procedure to generate the resampling distribution.
Taylor (1989) suggested to take g = h and used a Gaussian kernel. Several authors pointed out
that this procedure has no finite minimum and hence chooses a local minimum or the upper
limit of the bandwidths grid as its optimum. This leads to an inappropriate choice and a bias
towards oversmoothing, see Marron (1992). Differing from this approach, Faraway and Jhun
(1990) proposed a least-square cross-validation estimate to find g.
Hall (1990) recommended to use the empirical distribution to draw bootstrap samples of size
m < n, proposed m ' n1/2, h = g(m/n)1/5, and minimized MISE∗ with respect to g. Cao,
Cuevas and González-Manteiga (1994) demonstrated that the bootstrap version of Hall is quite
unstable and shows a bad behavior especially for mixtures of normal distributions, which make
up the biggest part of our simulation study. They found also that the methods of Faraway and
Jhun (1990) as well as the one of Hall (1990) are outperformed by the method of Cao (1993),
see below.
A bias corrected bootstrap estimate was developed by Grund and Polzehl (1997). They obtained
an root-n convergent estimate which attained very good results for larger sample sizes, but only
for few cases for moderate and small sample sizes. Moreover, to derive their asymptotic theory
they used extraordinary strong assumptions, compared to other methods discussed here. In
their simulation study Grund and Polzehl showed that the performance heavily depends on the
choice of g. They stated that using their oversmoothing bandwidth, which provides a root-
n convergence, seems to be far from optimal for smaller sample size. In contrast, using g = h
would achieve better performance in practical applications, but results in very slow convergence
rate, namely of order n−1/10. Summing up, they remarked that higher rates of convergence do
not result in better practical performance, especially for small samples.
In the smoothed bootstrap version of Cao (1993) the pilot bandwidth g is estimated by asymp-
totic expressions of the minimizer of the dominant part of the mean squared error. For further
details see Cao (1993). He noticed that in (1.26), for i = j this terms will inflate the bias artifi-
cially. He therefore proposed a modified bootstrap integrated squared bias MB*

MB∗(h) =
1
n2 ∑

i6= j
[(Kh ?Kg−Kg)? (Kh ?Kg−Kg)] (Xi−X j). (1.28)

As to what concerns the convergence rates, he showed for his bandwidth h∗0

MISE(h∗0)−MISE(h0)

MISE(h0)
= OP(n−5/7) (1.29)

and
MISE(h∗0M

)−MISE(h0)

MISE(h0)
= OP(n−8/13) (1.30)
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The convergence rate for the original bootstrap version is slightly faster than that for his modi-
fied bootstrap version.
Recently, Chacón, Montanero and Nogales (2008) published a bootstrap version quite similar to
Cao’s (1993). They showed that the asymptotic expressions of his bandwidth estimates might be
inadequate and defined an expression g(h) for every fixed h. Their estimation procedure allows
different kernels L and K for the bandwidths g and h. They calculated the optimal pilot band-
width g(h) using first the common way of reverting to a reference distribution, and afterwards
via estimation. In their simulation study they stated that the former version outperforms the
empirical approach, and is a good compromise between classical cross-validation and plug-in.
However, it depends seriously on the reference density. On the contrary, the empirical version
suffered from sample variability even more than classical CV. Exploring the asymptotics, they
achieved root-n convergence under the use of higher-order kernels.
In sum, in our simulation study we concentrate on just one representative of the class of boot-
strap estimates, going back to Cao (1993). He proved that the pilot bandwidth g as the mini-
mizer of (1.22) coincides with the minimizer of the dominant part of the mean squared error.
Concretely, it is given by

g =

 ||K||22
|̂| f ′′′||22µ2

2 (K)n

1/7

. (1.31)

This formula is used for the pilot bandwidth g in the calculation of (1.27). In our simulations,
we additionally ran the bootstrap for the Epanechnikov kernel calculating formulae (1.23) and
(1.24) numerically. As this was much slower and gave uniformly worse results, we will neglect
it for the rest of the paper.

Further Plug-in methods

Many other plug-in methods have been developed. Some of them show better asymptotic prop-
erties and others a better performance in particular small sample simulations. However, most of
them have not become (widely) accepted or even known.
An often cited method is the so-called Sheather and Jones (1991) bandwidth, see also Jones
and Sheather (1991). They used the same idea like Park and Marron (1990) but replaced the
“diagonal-out” estimator of || f ′′||22 by their “diagonal-in” version to avoid the problem that the

estimator |̂| f ′′||22 (see (1.17)) may give negative results. They stated that the non-stochastic term
in (1.17) is subducted because of its positive effect on the bias in estimating || f ′′||22. The idea is
to choose the prior bandwidth g such that the negative bias due to the smoothing compensates
the impact of the diagonal-in term. As a result they estimated || f ′′||22 by || f̂ ′′g ||22 which is always
positive, and obtained

g =C(K,L)
(
|| f ′′||22
|| f ′′′||22

)1/7

h5/7,

where C(K,L) depends on L, a kernel introduced to estimate || f ′′||22, and K, the kernel in the
original estimation. Then, || f ′′||22 and || f ′′′||22 were estimated using || f̂ ′′a ||22 and || f̂ ′′′b ||22, where
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a and b were estimated via the rule-of-thumb. Sheather and Jones (1991) showed that their
optimal bandwidth has a relative order of convergence to h0 of Op(n−5/14) which is only slightly
better than that of Park and Marron (1990). Jones, Marron and Sheather (1996b) indicates the
closeness of hPM to hSJ for practical purposes in their real data application. Hence, without
beating hPM in practical performance, having only a slightly better convergence rate but being
computationally much more expensive, we favor hPM to hSJ .
Hall, Sheather, Jones and Marron (1991) introduced a plug-in method giving back a bandwidth
ĥHSJM which achieves the optimal rate of convergence, i.e. n−1/2. The problem with ĥHSJM is
that they use higher order kernels to ensure the n−1/2 convergence (actually a kernel of order 6).
Marron and Wand (1992) showed that albeit their theoretical advantages, higher order kernels
have a surprisingly bad performance in practice, at least for moderate samples. Furthermore, in
the simulation study of Park and Turlach (1992) ĥHSJM behaved very bad for bi- and trimodal
densities, i.e. those we plan to study.
Jones, Marron and Park (1991) developed a plug-in method based on the smooth CV idea. They
used the prior bandwidth g = C( f )nphm, where the normal is used as reference distribution to
calculate the unknown C( f ). The advantage of this estimator is the n−1/2 convergence rate if
m = −2, p = 23

45 even if the kernels are of order 2. However, in simulation studies Turlach
(1994) and Chiu (1996) observed a small variance compared to the LSCV, but an unacceptable
large bias.
Kim, Park and Marron (1994) also showed the existence of a n−1/2 convergent method without
using higher order kernels. The main idea of obtaining asymptotically best bandwidth selectors
is based on an exact MISE expansion. But primarily the results of this paper are provided for
“theoretical completeness” because the practical performance in simulation studies for moder-
ate sample sizes is rather disappointing, which was already explicitly mentioned in their own
paper and as well shown in the exhaustive simulation study of Jones, Marron and Sheather
(1996b).
For the sake of completeness, we also refer to the “Double Kernel method” based on the L2
loss function, see Jones (1998). He explore an modification of the L1 based method proposed
by Devroye (1989), see also Berlinet and Devroye (1994). This method has the advantage
to be very universal. Under special assumptions it reduces to Taylor’s bootstrap respectively
biased CV. However, as already mentioned, these two methods have several disadvantages and
again the Double Kernel method requires the use of higher order kernels. In Jones (1998) the
performance of the Double Kernel method is assessed by comparing asymptotic convergence
rates, but it does not provide the expected improvement in the estimation of h0 (MISE optimal
bandwidth), e.g. compared to SCV.
Finally, for further plug-in methods recall also Ahmad and Ran (2004) or the so-called biased
CV, both already introduced in the section about cross validation methods.

1.4 Mixtures of methods

Recall that all authors criticize that the cross-validation criterion tends to undersmooth and
suffers from high sample variability. At the same time, the plug-in estimates deliver a much
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more stable estimate but often oversmooths the density. We therefore also consider mixtures
of classical cross-validation methods and plug-in estimates. Depending on the weighting factor
α ∈ (0,1), the mixed methods are denoted by Mix(α), with α · ĥCV +(1−α) · ĥPM. We mix
in three different proportions: Mix(1/2), Mix(1/3) and Mix(2/3). For the resulting mixed band-
widths we calculate the according ISE-value to assess the performance of the respective mix
proportion.
We are aware of different approaches which combine various density estimators by using a mix-
ture of their smoothing parameters. In the literature several papers address the problem of linear
and/or convex aggregation, e.g. Rigollet and Tsybakov (2007), Samarov and Tsybakov (2007)
as well as Yang (2000). However, as the main focus of this paper is not on the aggregation of
different bandwidth estimators, we will not investigate this much in detail, but instead consider
our mixtures as representatives.

1.5 Finite Sample Performance
The small sample performance of the different cross-validation methods, plug-in and bootstrap
methods is compared, including Chiu (1991). For obvious reasons we limited the study to data
adaptive methods without boundary correction. Although we tried many different designs we
summarize here the results for four densities.
We have compared the performance by different measures based on the integrated squared error
(ISE) of the resulting density estimate (not the bandwidth estimate), and on the distance to the
real optimal bandwidth ĥ0 (of each simulation run, as it is sample-dependent). There are a lot of
measures assessing the quality of the estimators. We will concentrate on the most meaningful
ones, that are:

m1: mean
[
ISE(ĥ)

]
, the average (or expected) ISE

m2: std
[
(ISE(ĥ)

]
, the volatility of the ISE

m3: mean(ĥ− ĥ0), bias of the bandwidth selectors

m4: mean
([

ISE(ĥ)− ISE(ĥ0)
]2
)

, squared L2 distance of the ISEs

m5: mean
[
| ISE(ĥ)− ISE(ĥ0) |

]
, L1-distance of the ISEs.

Further, we considered various densities for our simulation study, but for sake of presentation
we give only the results for the following ones:

1. Simple normal distribution, N (0.5,0.22) with only one mode

2. Mixture of N (0.35,0.12) and N (0.65,0.12) with two modes

3. Mixture of N (0.25,0.0752), N (0.5,0.0752), N (0.75,0.0752) with three modes
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4. Mixture of three gamma, Gamma(a j,b j), a j = b2
j , b1 = 1.5, b2 = 3 and b3 = 6 applied

on 8x giving two bumps and one plateau
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Figure 1.1: The data generating densities: design 1 to 4 from upper left to lower right.

As can be seen in Figure 1.1, all densities have the main mass in [0,1] with exponentially
decreasing tails. This way we can neglect possible boundary effects. Moreover, it is assumed
that the empirical researcher has no knowledge on possible boundaries. We also simulated
estimators with boundary corrections getting results very close to what we found in the present
study.
We studied almost all selection methods, excluding the non-automatic ones and those having
proved to perform uniformly worse than their competitors. In the presentation of the results
we concentrate on the methods which delivered the best results at least for one density. Hence,
some methods were dropped, e.g. the MCV sometimes provides multiple minima with a global
minima far outside the range of reasonable bandwidths. In the range of bootstrap methods we
concentrate on the presentation of the version (1.27) of the Smoothed Bootstrap which obtained
the best results among all bootstrap methods. For our mixed version (CV with refined plug-in)
we first concentrate on Mix(1/2) when comparing it to the other methods, and later sketch the
results of all mixed versions.
To conclude, we present the following methods: CV (cross validation), OSCV-l (one-sided CV
to the left), OSCV-r (one-sided CV to the right), STAB (stabilized), refPI (refined plug-in),
SBG (smooth bootstrap with Gaussian kernel - the results refer to the equivalent bandwidth for
the Epanechnikov kernel), Mix (mixed method for α = (1/2)), and as a benchmark the ISE
(infeasible ISE minimizing ĥ0).
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1.5.1 Simulation results
In order to summarize the different methods of choosing the optimal bandwidth, we first con-
sider the selected bandwidths and the corresponding biases for each method separately. Af-
terwards, we compare the methods by various measures. The shown results are based on 250
simulation runs.

Comparison of the bias for the different bandwidths

In Figure 2.7 we illustrate the Bias (m3) of the different methods for the mixture of three normal
distributions varying sample size and distribution.
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Figure 1.2: Comparison of the BIAS for different sample sizes (left) for a mixture of three
normals (model 3), and different densities (right) for a sample size of n=100.

Let us consider the cross-validation method (CV). Many authors have mentioned the lack of
stability of the CV-criterion and the tendency to undersmooth. In Figure 2.7 we see that CV has
the smallest bias for all sample sizes and densities due to the fact that it chooses the smallest
bandwidth. When the ISE optimal bandwidth is indeed very small, CV certainly does very well
therefore. However, CV clearly undersmooths in the case of the simple normal distribution.
In contrast, the one-sided versions (OSCV) are more stable. Regarding the bias they are neither
the best nor the worst in all sample sizes and models. As already stated by the authors, the
OSCV tends to overestimate the bandwidth a little bit. While for n = 25 OSCV is outperformed
by almost all other methods, this bias problem disappears rapidly for increasing n. In the left
panel of Figure 2.7 we see that their biases are much smaller than for the other methods except
CV, and STAB in the simple normal case. Moreover, their behavior is quite stable and they do
not fail as dramatically as the other methods in one or more cases. This feature is an intuitive
benefit of this method when in practice the underlying density is completely unknown. For
the densities studied, the differences between the left-(OSCV-l) and the right-sided (OSCV-r)
versions are negligible except for the gamma distributions because of the boundary effect that
is present on the left side.
The stabilized procedure of Chiu (STAB) is excellent for the simple normal case but it falls short
when estimating rougher densities: “hen the true density is not smooth enough, the stabilized
procedure is more biased towards oversmoothing than CV” (Chiu (1991)). This fact can be seen
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in both panels of Figure 2.7 where STAB has increasing difficulties with an increasing number
of bumps. Even though this method demonstrates here a reasonable performance, the results
should be interpreted with care, since in the derivation of Λ one has to deal with complex
numbers, a problem we solved in favor of this method for this simulation study such that all
presented results are slightly biased in favor of STAB.
The refined plug-in (refPI) and the smoothed bootstrap SBG show a similar behavior as the
stabilized procedure for n = 100, though the bias is much worse for refPI in small samples.
Not surprisingly, in general, the bias for these MISE minimizing methods is larger than for all
others. This partly results from the fact that we assume for the prior bandwidth that the second
or third derivative comes from a simple normal distribution. Note that the bias of the SBG
bandwidth is not as big as for the refPI.
The mixture of CV and plug-in is a compromise with biases lying between the ISE and the MISE
minimizing methods. It will be interesting whether this leads also to a more stable performance
(see below). Note that there is only a slight difference between the three versions of mixtures
(not shown). Clearly, the larger the share of the respective method, the bigger their impact on
the resulting estimate.

Comparison of the ISE-values

Next we compare the ISE-values of the density estimates based on the selected bandwidths.
The results are given in form of boxplots plus the mean (linked filled squares) displaying the
distribution of the ISEs after 250 simulation runs such that we get an idea of measures m1 and
m2, m4, and m5 in one figure. In Figure 1.3 we consider the mixture of three normal distributions
(model 3) and compare different sample sizes, whereas in figure 1.4 the sample size is fixed to
n = 100 while the distribution varies.
Certainly, for all methods the ISE values increase with the complexity of the estimation prob-
lem. As expected, the classical CV-criterion shows a high variation for all cases (upper extreme
values not shown for the sake of presentation), doing somewhat better for more complex den-
sities. The one-sided and the mixed versions do considerably better, though the least variation
is achieved by the MISE minimizing methods (STAB, refPI and SBG). The drawback of these
three methods becomes obvious when looking at the size of its ISE-values; they are clearly
smaller for the CV-based methods for n ≥ 25. Moreover, for increasing sample size their ISE
values decrease very slowly whereas for the CV-methods these values come close to the opti-
mal achievable ISE-values. Note that in the sense of minimizing the ISE, the one-sided and the
Mix(1/2) versions show the best performance. They do not vary as much as the classical CV-
criterion and their mean value is almost always smaller than for the other methods, see Figure
1.4.
The stabilized procedure of Chiu (STAB) delivers - as the name suggests - a very stable estimate
for the bandwidth. But in the end it is hardly more stable than the one-sided CV methods but
much worse in the mean and median. We else see confirmed what we already discussed in the
context of biases above. The mixture of CV and plug-in lowers the negative impacts of both
versions and does surprisingly well; they deliver a more stable estimate, and gives good density
estimates (looking at the ISE).
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Figure 1.3: Box-plots and means (�) of the ISE-values for the mixture of three normal densities
with different sample sizes

Comparison of the L1- and L2-distance of the ISE

To get an even better idea of the distance between the achieved ISE values of the selection
methods and the ISE optimal (i.e. achievable) values, we have a closer look at m5 and m4, i.e.
the L1 and L2 distances. In our opinion, these measures should be the most interesting for
practitioners. Figure 1.5 and 1.6 show the L1-distance, and the L2-distance, respectively, for
different sample sizes and models.
The pictures show that for CV, the m5 are really big if the underlying density is not wiggly. This
obviously is due to the the high variability of the selected bandwidths. Here, it does especially
apply for small sample sizes (the value for n = 25 is even out of the range of the pictures); but
for large samples like n = 500 the classical CV does not work at all (not shown). However, for
the mixture of three normals the CV delivers almost the smallest m5.
While both OSCV have problems with particularly small sample sizes, they easily compete with
all other selectors. One may say that again, for the normal densities the OSCV methods are
neither the best nor the worst methods, but always close to the best method. This corroborates
our statement from above that the OSCV-criteria could be used if we do not know anything about
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Figure 1.4: Box-plots and means (�) of the ISE-values for different distributions with sample
size 100

the underlying density. Another conspicuous finding in Figure 1.5 is the difference between the
two one-sided versions for the gamma distributions. Because of missing boundary correction
on the left, the OSCV-l behaves very badly especially for a small sample size of n = 25 (out of
the range) and n = 50. We get a similar result for n = 25 when looking at the L2-distances (out
of the displayed range in Figure 1.6).
The three MISE minimizing methods do very well for the simple normal distribution, but else
we observe a behavior for L1 and L2 which can be traced back to the fact of the prior problem
described above. Even for bigger sample sizes all three methods deliver a relative big L1-
distance for the mixture models. They further do not benefit as much from increasing n as other
methods do. Within this MISE minimizing group, the STAB shows a better L1-distance for
more complex densities. Actually, for the mixture of the three Gamma distributions we can see
that the L1-distances are always very small, except for the refPI with n = 25 (out of the plotted
range).
The mixture of CV and refined plug-in reflects the negative attributes of the CV, but for larger
samples it is often in the range of the best methods. A further advantage of the mixed version is
that it is much more stable than the CV or refPI when varying the sample size.
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Figure 1.5: L1-distance for different sample sizes of the four underlying densities

We obtain not the same but similar results for the L2-distance given Figure 1.6. We skipped the
values for n = 25 because they were too big for most of the methods. CV obtains very large
values for small sample sizes, so that they fall out of the range of the pictures in many cases.
The one-sided versions show an important improvement. The three MISE minimizing methods
are excellent for the simple normal (not surprisingly) and the mixture of gammas. Among
them, the STAB shows the smallest L2 distance. For sample sizes n > 50 the one sided CV
versions outperform the others - for simple normal and gamma mixtures giving the same results
as STAB but else having much smaller L2 distances. A huge difference between the left and the
right one-sided occurs because of the boundary problem.

A comparison of the L1- and the L2-distance for n = 100 varying the distributions is shown in
Figure 1.7. As can be seen in both pictures, the performance of all measures (without CV) for
the simple normal distribution and the mixture of the three gamma distributions is pretty good.
Also for the mixture of two normals most of the methods deliver good results, only the values
for CV, refPI and the SBG become larger. For more complex densities like the mixtures of three
normals, the pictures show that the MISE minimizing measures deliver worse results, because
of the large biases. The most stable versions are the OSCV and the Mix(1/2). For smaller
sample sizes (not shown) the pictures are quite similar, but the tendencies are strengthened and
only the Mix(1/2) version delivers stable results for all distributions.
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Figure 1.6: L2-distance for different sample sizes of the four underlying densities

Comparison of the mixed methods

Finally we have a closer look to the quite promising results obtained by mixing CV with refPI.
We did this in different proportions as described above. In Table 1.1 and Table 1.2 we have
tabulated different measures looking at the ISE, the bias of the chosen bandwidth as well as
the L1- and L2-distances for the four densities. We also give the values for the infeasible ISE-
minimizing bandwidths.
For design 1 (simple normal density) in Table 1.1 the Mix(1/3) is the best. This is an expected
result because we know from above that the refPI works very well for this distribution. The
only measure where this mix is not the best is the bias (m3). The reason is that CV gives the
smallest bias here. For design 2 (mixture of two normal densities) in Table 1.1 the Mix(2/3)
wins except for the standard deviation of the ISE values (m2) where Mix(1/3) is superior. This
is explained by the very large sample variation typical for CV.
For design 3 (trimodal distribution) in Table 1.2, Mix(2/3) does best except for the standard
deviation of the ISE-values (m2). This is not surprising because above we have always stated
that for more complex distributions the CV works very well while the refPI performs poorly.
For the mixture of the three gammas (design 4) we observe that the values of the different
measures are nearly the same, especially for the L2-distance. The main differences occur for
small sample sizes. The best is Mix(2/3). As we can see from the results, sometimes Mix(2/3)
is the best and sometimes Mix(1/3). The Mix(1/2) lies in between. Consequently, the main
conclusion is that the mix yields very stable results and is an attractive competitor to the other
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Figure 1.7: L1- and L2-distances for different underlying densities when n = 100

bandwidth selection methods.

1.6 Conclusions
A first finding is that it definitely makes a difference which bandwidth selector is chosen; not
only in numerical terms but also for the quality of density estimation. We can identify clear
differences in quality, and we can say in which situation what kind of selector is preferable.
As well known, the CV leads to a small bias but large variance. It works well for rather wiggly
densities and moderate sample size. However, it neither behaves well for rather small nor for
rather large samples. The quality is unfortunately dominated by its variability. A fully automatic
alternative is the one sided version. In contrast to the classical CV, the OSCV methods show a
behavior which is very stable. Moreover, they are maybe not uniformly the best but quite often,
and never the worst.
The refPI and the SBG show a similarly stable behavior due to the fact that they are minimizing
the MISE, and depend on prior information. The need of prior knowledge is the main disad-
vantage of these methods, and – as explained above – typically require a smooth underlying
density. The worst case for these methods is when trying to estimate a trimodal normal density.
Also the STAB method is quite stable as suggested by its name. Although the full name refers
to cross validation, it actually minimizes the MISE like refPI and SBG do. Consequently, it
performs particularly well for the estimation of rather smooth densities but else not. It again
shows the worst behavior for trimodal densities, indeed.
While the mix-methods (combining CV and plug-in) show an excellent - maybe the best - be-
havior, one can certainly not identify a “best mix” in advance. A further evident computational
disadvantage is that we first have to apply two other methods (CV and refPI) to achieve good
results.
Our conclusion is therefore that among all existing (automatic) methods for kernel density esti-
mation, to the best of our knowledge the OSCVs seem to outperform all competitors when no
(or almost no) prior knowledge is available – maybe except the one about possible boundary
problems. Depending on the boundary, one would apply left- or right-hand OSCV. For moder-
ate sample sizes however, the mixture of CV and refPI seems to be an attractive alternative until
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Design 1 Design 2
n Crit. ISE MIX(2/3) MIX(1/3) MIX(1/2) ISE MIX(2/3) MIX(1/3) MIX(1/2)

m1 .0605 .0802 .0699 .0730 .0810 .1017 .1104 .1055
m2 .0571 .0646 .0604 .0610 .0426 .0447 .0342 .0390

25 m3 0 -.0112 .0048 -.0018 0 .0459 .0663 .0576
m4 0 .0014 4e-04 6e-04 0 .001 .0013 .0011
m5 0 .0197 .0094 .0124 0 .0207 .0294 .0246
m1 .0374 .0471 .0420 .0436 .0561 .0706 .0793 .0745
m2 .0298 .0365 .0320 .0333 .0325 .0338 .0265 .0303

50 m3 0 -.0050 .0083 .0029 0 .0385 .0613 .0519
m4 0 4e-04 1e-04 2e-04 0 5e-04 8e-04 6e-04
m5 0 .0097 .0046 .0062 0 .0146 .0233 .0185
m1 .0246 .0307 .0271 .0282 .0344 .0452 .0525 .0485
m2 .0184 .0226 .0193 .0203 .0197 .0217 .018 .0199

100 m3 0 -.0070 .0056 3e-04 0 .0359 .0578 .0484
m4 0 1e-04 2e-05 5e-05 0 2e-04 4e-04 3e-04
m5 0 .0061 .0025 .0037 0 .0108 .0181 .0141
m1 .0146 .0173 .0158 .0163 .0225 .0289 .0349 .0318
m2 .0106 .0127 .0113 .0117 .0135 .0148 .0135 .0143

200 m3 0 -.0028 .0055 .0021 0 .0283 .0491 .0404
m4 0 3e-05 5e-06 1e-05 0 1e-04 2e-04 1e-04
m5 0 .0027 .0012 .0017 0 .0064 .0124 .0093

Table 1.1: Simple normal distribution and mixture of two normal distributions

n becomes large and CV fails completely.
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Chapter 2

A Review and Comparison of Bandwidth
Selection Methods for Kernel Regression

Abstract

Over the last four decades, several methods for selecting the smoothing parameter,
generally called the bandwidth, have been introduced in kernel regression. They
differ quite a bit, and although there already exist more selection methods than for
any other regression smoother we can still see coming up new ones. Given the
need of automatic data-driven bandwidth selectors for applied statistics, this review
is intended to explain and compare these methods. This essay is based on a joint
work with my colleague Max Köhler and Prof. Dr. Stefan Sperlich. The main
contribution of the author of this thesis is made in the evaluation of the plug-in,
bootstrap and mixed methods and the presentation and evaluation of the estimation
results.
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2.1 Introduction

Today, kernel regression is a common tool for empirical studies in many research areas. This is
partly a consequence of the fact that nowadays kernel regression curve estimators are provided
by many software packages. Even though for explorative nonparametric regression the most
popular and distributed methods are based on P-spline smoothing, kernel smoothing methods
are still common in econometric standard methods, for example for estimation of the scedas-
ticity function, estimation of robust standard errors in time series and panel regression models.
Still quite recently, kernel regression has experienced a kind of revival in the econometric lit-
erature on treatment effect estimation and impact evaluation, respectively. Nevertheless, until
today the discussion about bandwidth selection has been going on - or at least not be closed
with a clear device or suggestion for practitioners. Typically, software implementations apply
some defaults which in many cases are questionable, and new contributions provide simulations
limited to show that the own invention outperforms existing methods in particularly designed
cases. An explicit review or comparison article can be found only about bandwidth selection
for density estimation, see Heidenreich, Schindler and Sperlich (2010) and references therein.
There are many, quite different approaches dealing with the problem of bandwidth selection for
kernel regression. One family of selection methods is based on the corrected ASE criterion and
uses ideas from model selection to choose an optimal bandwidth. To the best of our knowledge
this was first introduced by Rice (1984). A second family has become quite popular under the
name of cross-validation (CV) going back to Clark (1975). A disadvantage of the CV approach
is that it can easily lead to highly variable bandwidths, see Härdle, Hall and Marron (1988). A
recently studied way to improve it is the one-sided cross-validation (OSCV) method proposed
by Hart and Yi (1998). Alternatives to the ASE minimizing and CV approaches are the so-called
plug-in methods. They look rather at the asymptotic mean integrated squared error where the
unknown quantities, depending on the density of the covariate, f (x), the regression function
m(x), and the variance (function) of the conditional response, are replaced by pre-estimates
or priors, cf. for example Ruppert, Sheather and Wand (1995). Finally, there exist various
bootstrap approaches but mainly focusing on the local optimal bandwidth for which reason they
a fair comparison is hardly possible. Cao-Abad and González-Manteiga (1993) proposed a
smoothed bootstrap, and González-Manteiga, Martı́nez Miranda and Pérez González (2004) a
wild bootstrap procedure, both requiring a pilot bandwidth to be plugged in. As it is the case for
the aforementioned plug-in methods, if we have an appropriate pilot or pre-estimator, then the
performance of these methods is typically excellent, else not. Asymptotics including the rate of
convergence of these methods was first studied by Hall, Marron and Park (1992).
We review a big set of existing selection methods for regression and compare them on a set
of different data for which we vary the variances of the residuals, the sparseness of the design
and the smoothness of the underlying curve. For different reasons we concentrate on small and
moderate samples and restrict to global bandwidths. Due to the complexity of the problem we
have had to be rather restrictive and decided to concentrate on designs and models which we
believe are interesting (with regard to their smoothness and statistical properties rather than the
specific functional form) for social and economic sciences. We are aware that neither the set of
methods nor the comparison study can be comprehensive but hope it nevertheless may serve as
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a fair guide for applied researchers. Note that most of them cannot be found in any software
package. We are probably the first who implemented all the here reviewed selection methods.

Suppose we have random pairs (X1,Y1), . . . ,(Xn,Yn), n ∈N, where the Xi’s are explanatory vari-
ables drawn from a continuous distribution with density function f . Without loss of generality,
we assume X1 < X2 < .. . < Xn. The Yi’s are response variables generated by the following
model:

Yi = m(Xi)+σ(Xi)εi, i = 1, . . . ,n, (2.1)

with i.i.d. random variables εi with mean zero and unit variance. Further, σ2(x) =Var(Y |X = x)
is finite, and the εi are independent of all X j. Assume one aims to estimate m(x) = E(Y | X = x)
for an arbitrary point x ∈ R.

Let K : R→ R be a kernel function that fulfills
∫

∞

−∞
K(u)du = 1,

∫
∞

−∞
uK(u)du = 0 and∫

∞

−∞
u2K(u)du =: µ2(K) < ∞. Furthermore, denote Kh(u) := 1

hK(u/h), where h ∈ R+ is our
bandwidth and or smoothing parameter. When speaking of kernel regression, there exist slightly
different approaches for estimating m(x). The maybe most popular ones are the Nadaraya-
Watson estimator proposed by Nadaraya (1964) and Watson (1964) and the local linear estima-
tor. Thinking of least squares estimation, the first one approximates m(x) locally by a constant,
whereas the latter one approximates m(x) locally by a linear function. Before the local linear
or more generally, the local polynomial smoother became popular, a well known alternative
to the Nadaraya-Watson estimator was the so-called Gasser-Müller estimator, see Gasser and
Müller (1979), which is an improved version of the kernel estimator proposed by Priestly and
Chao (1972). Fan (1992) presents a list of the biases and variances of each estimator, see that
paper also for more details. It is easy to see that the bias of the Nadaraya-Watson estimator
is large when | f ′(x)/ f (x)| is large, e.g. for clustered data, or when |m′(x)| is large. The bias
of the Gasser-Müller estimator looks simpler, does not have these drawbacks and is design-
independent so that the function estimation in regions of sparse observations is improved com-
pared to the Nadaraya-Watson estimator. On the other hand, the variance of the Gasser-Müller
estimator is 1.5 times larger than that of the Nadaraya-Watson estimator. The local linear es-
timator has got the same variance as the Nadaraya-Watson estimator and the same bias as the
Gasser-Müller estimator. When approximating m(x) with higher order polynomials, a further
reduction of the bias is possible but these methods require mode assumptions - and in prac-
tice also larger samples. For implementation, these methods are less attractive when facing
multivariate regression, and several considered bandwidth selection methods are not made for
these extensions. Most of these arguments hold also for higher order kernels. When comparing
the local linear with the Gasser-Müller and the Nadaraya-Watson estimator, both theoretical
approaches and simulation studies show that the local linear estimator in most cases corrects
best for boundary effects, see also Fan and Gijbels (1992) or Cheng, Fan and Marron (1997).
Moreover, in econometrics it is preferred to use models that nest the linear model without bias
and directly provides the marginal impact and elasticities, i.e. the first derivatives. All this is
provided automatically by the local linear but unfortunately not by the Nadaraya-Watson esti-
mator. Consequently, we will concentrate in the following on the local linear estimator. More
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precisely, consider

min
β0, β1∈R

n

∑
i=1

(Yi−β0−β1(Xi− x))2Kh(x−Xi) (2.2)

where the minimizer can be expressed as a weighted sum of the Yi, i.e. 1/n∑
n
i=nWh,i(x)Yi.

Denote Sh, j = ∑
n
i=1 Kh(x−Xi)(Xi− x) j and consider the following two cases:

• If

det
(

Sh,0(x) Sh,1(x)
Sh,1(x) Sh,2(x)

)
= Sh,0(x)Sh,2(x)− (Sh,1(x))2 6= 0 (2.3)

the minimizer of (2.2) is unique and given below.

• If Sh,0(x)Sh,2(x)− (Sh,1(x))2 = 0 we distinguish between

� x = Xk for a k ∈ {1, . . . ,n} but Xk does not have its neighbors close to it such that
Kh(Xk −Xi) = 0 for all i 6= k such that Sh,1(xk) = Sh,2(xk) = 0. In this case, the
minimizing problem (2.2) is solved by β0 = Yk, and β1 can be chosen arbitrarily.

� x 6= Xk for all k ∈ {1, . . . ,n}. Then the local linear estimator is simply not defined as
there are no observations close to x.

Summarizing, for our purpose we define the local linear estimator by

m̂h(x) =
1
n

n

∑
i=1

Wh,i(x)Yi (2.4)

with weights

Wh,i(x) =


nSh,2(x)Kh(x−Xi)−nSh,1(x)Kh(x−Xi)(Xi−x)

Sh,0(x)Sh,2(x)−Sh,1(x)2 , if Sh,0(x)Sh,2(x) 6= Sh,1(x)2,

n , if Sh,0(x)Sh,2(x) = Sh,1(x)2, x = xi

0 , else

if Wh,i(x)> 0 for at least one i. If Wh,i(x) = 0 ∀ i the local linear estimator is not defined. Note
that the matrix with entrances {Wh,i(X j)}i, j gives the so-called hat-matrix in kernel regression.
Thanks to the very limited set of assumptions, such a nonparametric regressor is most appro-
priate for explorative data analysis but also for further statistical inference when model spec-
ification is crucial for the question of interest, simply because model misspecification can be
reduced here to a minimum. The main drawback is, however, that if the empirical researcher
has no specific idea about the smoothness of m(x) but - which is commonly the case - he does
not know how to choose bandwidth h. Indeed, one could say that therefore the selection of
smoothing parameters is one of the fundamental model selection problems of nonparametric
statistics. For practitioners this bandwidth choice is probably the main reason for not using
nonparametric estimation.
To the best of our knowledge there are hardly - and no recent - reviews available comparing
either theoretically or numerically the different existing bandwidth selection methods for re-
gression. Some older studies to be mentioned are Rice (1984), Hurvich, Simonoff and Tsai
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(1998), or Hart and Yi (1998). Yang and Tschernig (1999) compared two plug-in methods for
multivariate regression, and more recently, González-Manteiga, Martı́nez Miranda and Pérez
González (2004) compared a new wild bootstrap and cross validation but with a focus on local
bandwidths. None of these studies compared several global bandwidth selectors for random
designs. The aim was typically to introduce a new methods and compare it with a standard
method.
In the next section we briefly discuss three risk measures (or say objective functions) on which
bandwidth selection could and should be based on. In Section 2.3 and Section 2.4 we introduce
and discuss the various selection methods we could find in the literature, separately for the
three different risk measures. In Section 2.5 we present in detail extensive simulation studies to
compare all here discussed selection methods. Section 2.6 concludes.

2.2 Typically used Risk Measures
We now address the problem of which bandwidth h is optimal, beginning with the question what
means ’optimal’. In order to do so let us consider the well known density weighted integrated
squared error (dwISE) and the mean integrated squared error (MISE), i.e. the expectation of the
dwISE, of the local linear estimator:

MISE(m̂h(x) | X1, . . . ,Xn) = E[ dwISE ] = E
[∫
{m̂h(x)−m(x)}2 f (x) dx

]
=

1
nh
||K||22

∫
S

σ
2(x)dx

+
h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx+oP

(
1

nh
+h4

)
,

where f (x) indicates the density of X , ||K||22 =
∫

K(u)2du, µl(K) =
∫

ulK(u)du, and f the
unknown density of the explanatory variable X with the compact support S = [a,b]⊂R. Hence,
assuming homoscedasticity, the AMISE (asymptotic MISE) is given by:

AMISE(m̂h(x) | X1, . . . ,Xn) =
1

nh
||K||22σ

2(b−a)+
h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx, (2.5)

where the first summand is the mean integrated asymptotic variance, and the second summand
the asymptotic mean integrated squared bias; cf. Ruppert, Sheather, and Wand (1995). That
is, we integrated squared bias and variance over the density of X , i.e. we weight the squared
error by the design. Finding a reasonable bandwidth means to balance the variance and the
bias part of (2.5). An obvious choice of for defining an optimal bandwidth is to say choose
h such that (2.5) is minimized. Clearly, the AMISE consists mainly of unknown functions
and parameters. Consequently, the selection methods’ main challenge is to find appropriate
substitutes or estimates. This will lead us either to the so-called plug-in methods or to bootstrap
estimates of the AMISE.
For estimating a reasonable bandwidth from the data we have to find an error criterion that
can be estimated in practice. Focusing on practical issues rises not only the question of how
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to get appropriate substitutes for the unknown functions and parameters of (2.5) but also the
question of why we should look at the mean integrated squared error, i.e. a population oriented
risk measure, when we just need a bandwidth for our particular sample at hand. If one does
not take the expectation over the sample, i.e. considers the dwISE, one finds in the literature
the so-called ASE (for average squared error) replacing the integration over the density of x by
averaging over the sample. So this risk measure is a discrete approximation of the (density-
weighted) integration of the squared deviation of our estimate from the true function. We define
our ASE by

ASE(h) =
1
n

n

∑
j=1

(m̂h(X j)−m(X j))
2 w(X j), (2.6)

where we introduced an additional trimming or weight function w to eliminate summands
(m̂h(X j)−m(X j))

2 where X j is near to the boundary. Having the explanatory variables ordered,
we can simply set w(X j) = 1[Xl+1,Xn−l ] for a given l.By this means, we can reduce seriously the
variability of the ASE score function, see Gasser and Müller (1979). Denote the minimizer of
ASE by ĥ0. Note that the ASE differs from the MISE in two points; first we do not integrate but
average over the design, and second we do not take the expectation with respect to the estima-
tor. If one wants to do the latter, one speaks of the MASE with optimal bandwidth h0. A visual
impression of what this function looks like is given in Figure 2.1. For the sake of illustration
we have to anticipate here some definitions given in detail at the beginning of our simulation
Section 2.5. When we refer here and in the following illustrations of this section to certain
models, for details please consult Section 2.5.

Figure 2.1: ASE with w(X j) = 1[X6,X144] for n = 150 simulated data following Model 3

For now we denote a minimizer of any other score function by ĥ. Following Shibata (1981), the
bandwidth selection rule is called asymptotically optimal with respect to the ASE risk measure,
if and only if

lim
n→∞

ASE(ĥ)
ASE(ĥ0)

= 1 (2.7)
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almost surely. If (2.7) is fulfilled, it follows easily that

ASE(ĥ)
ASE(ĥ0)

P→ 1 (2.8)

or nearly equivalently
ĥ
ĥ0

P→ 1, (2.9)

where P→ stands for convergence in probability. Note that optimality can also be defined with
respect to the other risk measures like MISE or MASE.
Before we start we should emphasize that we consider the ASE risk measure as our bench-
mark that should be minimized. All alternative criteria are typically motivated by the fact that
asymptotically they are all the same. We believe that in explorative nonparametric fitting the
practitioner is interested in finding the bandwidth that minimizes the (density weighted) inte-
grated squared error for the given data, she/he is not interested in a bandwidth that minimizes
the squared error for other samples or in average over all possible samples.

2.3 Choosing the smoothing parameter based on ASE
Having said that, it is intuitively obvious that one suggests to use ASE estimates for obtaining
a good estimate of the ’optimal’ bandwidth h. Therefore, all score functions introduced in this
section are approaches to estimate the ASE function in practice when the true function m is not
known. An obvious and easy approach for estimating the ASE function is plugging into (2.6)
response Yj for m(X j). This yields the substitution estimate

p(h) =
1
n

n

∑
j=1

(m̂h(X j)−Yj)
2w(X j). (2.10)

It can easily be shown, that this is a biased estimator of ASE(h), see for example Härdle (1992),
chapter 5. One can accept a bias that is independent of h as in this case the minimizer of (2.10)
is the same as that of (2.6). Unfortunately this is not the case for p(h).
We present two approaches to correct for the bias. First the corrected ASE methods that penal-
izes each summand of (2.10) when choosing h too small, and second the cross validation (CV)
method that applies the leave one out estimator. Furthermore, we introduce the most recent
one-sided cross validation (OSCV) method which is a remarkable enhancement of the classic
CV.

2.3.1 The Corrected ASE
It is clear that h ↓ 0 leads to interpolation, i.e. m̂h(X j)→Yj, so that the function to be minimized,
namely p(h), could become arbitrarily small. On the other hand, this would surely cause a very
large variance of m̂h what indicates that such a criterion function would not balance bias and
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variance. Consequently, the corrected ASE penalizes when choosing h too small in an (at least
asymptotically) reasonable sense. We define

G(h) =
1
n

n

∑
j=1

(Yj− m̂h(X j))
2

Ξ

(
1
n

Wh, j(X j)

)
w(X j), (2.11)

where we use w(X j) = 1[Xl+1,Xn−l ] to trim near the boundary. Ξ(.) is a penalizing function with
first-order Taylor expansion

Ξ(u) = 1+2u+O(u2) , u→ 0. (2.12)

The smaller we choose bandwidth h the larger gets Wh, j(X j) and the penalizing factor Ξ
(1

nWh, j(X j)
)

increases. By conducting a first-order Taylor expansion of G and disregarding lower order terms
it is easy to show that G(h) is roughly equal to ASE(h) up to a shift that is independent of h.
The following list presents a number of proposed penalizing functions that satisfy the expansion
Ξ(u) = 1+2u+O(u2) , u→ 0:

• Shibata’s model selector ĥS = argmin
h∈R+

GS(h), see Shibata (1981)

with ΞS(u) = 1+2u . (2.13)

• Generalized cross validation (GCV) ĥGCV = argmin
h∈R+

GGCV (h), see Craven and Wahba

(1979)
with ΞGCV (u) = (1−u)−2 . (2.14)

• Akaikes information criterion (AIC) ĥAIC = argmin
h∈R+

GAIC(h), see Akaike (1974)

with ΞAIC(u) = exp(2u) . (2.15)

• The finite prediction error (FPE) ĥFPE = argmin
h∈R+

GFPE(h), see Akaike (1970)

with ΞFPE(u) =
1+u
1−u

. (2.16)

• Rice’s T (T) ĥT = argmin
h∈R+

GT (h), see Rice (1984)

with ΞT (u) = (1−2u)−1 . (2.17)

All these corrected ASE bandwidth selection rules are consistent for n→ ∞ and nh→ ∞ as
h ↓ 0. In practice they certainly exhibit some deficiencies. To mitigate the problems that may
occur for too small bandwidths, we will fix a data-adaptive lower bound for ĥ. Notice that for
h ≤ hmin, j := min

{
X j−X j−1,X j+1−X j

}
(recall that the explanatory variables are ordered for



2.3. CHOOSING THE SMOOTHING PARAMETER BASED ON ASE 53

the sake of presentation), we get 1
nWh, j(X j) = 1 and 1

nWh,i(X j) = 0 for all i 6= j. In this case the
j’th summand of (2.11) is not defined if we choose Ξ(.) = ΞGCV (.) or Ξ(.) = ΞFPE(.) but is
Ξ(1) finite for all other penalizing functions such that the j’th summand of (2.11) gets zero. This
shows that for sufficient small bandwidths h the score function G(h) is either not defined or can
be arbitrarily small. This does surely not solve the problem of balancing bias and variance of
the local linear estimator. Therefore, we first calculate the infimum of the set of all bandwidths
for which (2.11) can be evaluated,

hmin,G = max
{

hmin,l+1, . . . ,hmin,n−l
}
. (2.18)

When minimizing G(h) for any of the above listed criteria, we used only the bandwidths h that
fulfill h > hmin,G, all taken from the grid in (2.18).

Figure 2.2: The Corrected ASE Functions for n = 150 independent data following Model 4 and
Model 10, respectively.

Figure (2.2) shows a plot of the corrected ASE score functions when using the Rice’s T penal-
izing function. Not surprisingly, the optimal bandwidth that is related to the simulated smooth
model 10 shows a clear optimum whereas the corrected ASE function corresponding to the
rather wiggly regression m(x) in model 4 takes it smallest value at the fixed (see above) mini-
mum. However, even the smooth model might cause problems depending on how the minimum
is ascertained: often one has at least two local minimums. These are typical problems of the
corrected ASE bandwidth selection rules that we observed for almost all penalizing function.
Recall that the models used for these calculations are specified in Section 2.5.

2.3.2 The Cross-Validation
In the following we present the CV method introduced by Clark (1977). To the best of our
knowledge he was the first who proposed the score function

CV (h) =
1
n

n

∑
j=1

(Yj− m̂h,− j(X j))
2w(X j) , (2.19)
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where m̂h,− j(X j) is the leave one out estimator which is simply the local linear estimator based
on the data (X1,Y1), . . .(X j−1,Yj−1), (X j+1,Y j+1), . . . ,(Xn,Yn). In analogy to the ASE function,
the weights w(·) are used to reduce the variability of CV (h). We again apply the trimming
w(X j) = 1[Xl+1,Xn−l ] to get rid of boundary effects. It can easily be shown that this score function
is a biased estimator of ASE(h) but the bias is independent of h. This motivates the until today
most popular data-driven bandwidth selection rule:

ĥCV = argmin
h∈R+

CV (h) . (2.20)

As for the corrected ASE bandwidth selection rules, the CV bandwidth selection rule is consis-
tent but in practice, curiously has especially serious problems as n→ ∞. The reason is that this
criterion hardly stabilizes for increasing n and the variance of the resulting bandwidth estimate
ĥ is often huge. Clearly, for h < hmin, j := min

{
X j−X j−1,X j+1−X j

}
we have similar prob-

lems as for the corrected ASE methods as then the local linear estimator m̂h(X j) is not defined.
Therefore, (2.19) is only defined if we fix h > hmin,CV with

hmin,CV := max
{

hmin,l+1, . . . ,hmin,n−l
}
. (2.21)

Although this mitigates the problems at the lower bound of the bandwidth scale (i.e. for band-

Figure 2.3: The CV functions for n = 150 simulated data following Model 4 and Model 10,
respectively.

width approaching zero), Figure 2.3 exhibits similar problems for the CV as we saw them for
the corrected ASE criteria. Figure 2.3 shows the CV score functions when data followed model
10 and model 4. Again, for the wiggly model 4 we simply take the smallest possible bandwidth
whereas for the smooth model 10 we seem to have a clear global minimum.

2.3.3 The One-Sided Cross Validation
As mentioned above the main problem of CV is the lack of stability resulting in large variances
of its estimated bandwidths. As has been already noted by Marron (1986), the harder the esti-
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mation problem the better CV works. Based on this idea, Hart and Yi (1998) developed a new
modification of CV.
Consider the estimator m̂ĥCV

with kernel K with support [−1,1] that uses the CV bandwidth
ĥCV . Furthermore, we consider a second estimator m̃b with smoothing parameter b based on a
(selection) kernel L with support [0,1]. Then define

OSCV (b) =
1

n−2l

n−l

∑
i=l+1

(m̃−i
b (Xi)−Yi)

2, (2.22)

where m̃−i
b (Xi) is the leave-one-out estimator based on kernel L. Note that l must be at least

2. This ensures that in each summand of (2.22) at least l− 1 data points can be used. Denote
the minimizer of (2.22) by b̂. The OSCV method makes use of the fact that a transformation
h : R+→ R+ exists, such that E(h(b̂)) ≈ E(ĥCV ) and Var(h(b̂)) < Var(ĥCV ). More precisely,
(2.22) is an unbiased estimator of

σ
2 +E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
.

Therefore, minimizing (2.22) is approximately the same as minimizing

E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
. (2.23)

In almost the same manner it can be argued that minimizing MASE(h) is approximately the
same as minimizing CV (h). We denote the minimizer of (2.23) by bn and the MASE(h) mini-
mizer by hn. Using the results in Fan (1992) for minimizing the MASE-expressions, dividing
the minimizers and taking limits yields

hn

bn
→
[
||K||22

(µ2
2 (K))2 ∗

(µ2
2 (L))

2

||L||22

]1/5

=: C,

see Yi (2001). Note that the constant C only depends on known expressions of kernels K and L.
One can therefore define the data driven bandwidth selector

ĥOSCV =C · b̂. (2.24)

According to which selection kernel is used one gets different OSCV-values. A list of rec-
ommended and well studied selection kernels is given in Table 2.1, see also Figure 2.4. The
transforming constants C of L1 to L4 are given together with the values µ2

2 (Li) and ||Li||22 in
Table 2.2.
As for the corrected ASE and CV bandwidth selection rules, the OSCV bandwidth selection
rule is consistent. Now consider the i’th summand of (2.22). Analogously to prior discus-
sions, (2.22) is only defined if b > bmin,lOSCV = max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1}, so that for
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Table 2.1: Selection kernels for left OSCV.
Kernel Formulae
One Sided Quartic L1(x) = 15/8(1− x2)21[0,1]
Local Linear Epanechnikov L2(x) = 12/19(8−15x)(1− x2)1[0,1]
Local Linear Quartic L3(x) = 10/27(16−35x)(1− x2)21[0,1]
opt. Kernel from Hart and Yi (1998) L4(x) = (1− x2)(6.92−23.08x+16.15x2)1[0,1]

Table 2.2: Selection kernels for left OSCV.
Kernel µ2

2 (L) ||L||22 C
L1 0.148571 1.428571 0.8843141
L2 -0.1157895 4.497982 0.6363232
L3 -0.08862434 5.11357 0.5573012
L4 -0.07692307 5.486053 0.5192593

minimizing (2.22) we consider only bandwidths b > hmin,CV . Because of

hmin,G = hmin,CV

= max
{

hmin,l+1, . . . ,hmin,m−l
}

= max{min{Xl+1−Xl,Xl+2−Xl−1} , . . . ,min{Xn−l−Xn−l−1,Xn−l+1−Xn−l}}
≥max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1}
= bmin,lOSCV

= 1/C ∗hmin,lOSCV

≥ hmin,lOSCV

this problem is much less serious for the OSCV than for the other methods. Due to the fact that
m̃b(x) uses only data that are smaller than the regression point x, the variance of m̃b(x) reacts
much more sensitive when decreasing b. This makes it more likely that the true minimum of
(2.22) is larger than bmin,lOSCV . And indeed, in our simulations the problem of not finding
the true minimum did not occur. Clearly, the OSCV score functions show a wiggly behavior
when choosing b small due to a lack of data when using data only from one side. Moreover,
this selection rule overweights the variance reduction. Figure (2.5) demonstrates the problem:
while for Model 4 we observe a clear minimum, for Model 10 we observe that the OSCV score
function does not seem to visualize a punishment when b is chosen disproportionately large. In
what follows we will deal with this problem and introduce modified OS kernels.
Note that the regression estimator used at the bandwidth selection stage, namely m̃b(x) in (2.24),
uses only the data Xi that are smaller than the regression point x. This explains the notion
left OSCV. For implementing the right OSCV, we use the kernel R(u) := L(−u). Note that
this kernel has support [−1,0] and therefore m̃b(x) uses only data at the right side of x. The
transforming constant C in (2.24) does not change. There is evidence that the difference of
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Figure 2.4: The One Sided Selection Kernels used for left OSCV.

left and right sided OSCV is negligible. Hart and Yi (1998) considered the kernel estimator
proposed by Priestley and Chao (1972) in an equidistant fixed and circular design setting and
argued that the OSCV score function using any left sided kernel L is the same as the OSCV score
function, when using its right sided version with kernel L(−u). Furthermore, they conducted
simulations with a fixed design setting using the local linear estimator and argued that in all
simulations they had done, a correlation of the minimizers of the left and the right OSCV
score function of larger than 0.9 was observed. Thus, in the theoretical considerations we only
concentrate on the left sided OSCV and assume that the corresponding right sided OSCV has
the same behavior.
When implementing the OSCV method one has to choose the one sided kernel L. Hart and Yi
(1998) calculated the asymptotic relative efficiency, i.e.

ARE(K,L) = lim
n→∞

E((ĥOSCV − ĥ0)
2)

E((ĥCV − ĥ0)2)
(2.25)

for different kernels for L. The setting was a fixed design using the kernel estimator for estimat-
ing m. They observed an almost twenty-fold reduction in variance compared to the CV method,
when simply using the right kind of kernel L. They introduced two optimal kernels. One of them
is the one sided local linear kernel based on Epanechnikov that is originally used for boundary
correction in density estimation (see Nielsen (1999)). For finding the optimal kernel in our case
we conducted a simulation study, where we simulated 30 times the data (X1,Y1), . . . ,(Xn,Yn)
for different data sets and different n. We compared the left OSCV methods, when using the
kernels listed up in Table 2.1.
We calculated the bandwidths (ĥ0)i, (ĥCV )i and (ĥOSCV )i (i = 1, . . . ,30) and then estimated
ARE(K,L) by

ÂRE(K,L) =
∑

30
i=1((ĥOSCV )i− (ĥ0)i)

2

∑
30
i=1((ĥCV )i− (ĥ0)i)2

. (2.26)
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Figure 2.5: The OSCV Functions based on 150 independent data (Xi,Yi).

The results in the case of n = 150 are given in Table 2.3. We observed that in seven out of the
twelve different cases using the kernel L4 is best, in only three cases L3 is best and kernel L1
is only best in one case. When conducting the same simulation study with n = 50, n = 100
and n = 200 we observed very similar results. Therefore, we decided to use kernel L4 in the
following simulation studies.

Table 2.3: The estimated ARE(K,Li) i = 1, . . .4 and n = 150.
Model ÂRE(K,L1) ÂRE(K,L2) ÂRE(K,L3) ÂRE(K,L4) Best
1 5.828767 0.801370 0.915525 1.061644 L2
2 96.290685 1.152327 19.722925 1.170663 L2
3 6.928571 1.103896 1.032468 0.714286 L4
4 2.051266 1.014796 1.013574 0.071266 L4
5 1.541477 0.427530 0.427530 0.413856 L4
6 2.025299 2.015951 1.000943 1.013723 L3
7 2.674820 0.424460 0.250360 0.283453 L3
8 1.519437 1.002538 0.998917 0.997350 L4
9 3.474171 2.652201 2.651982 2.927879 L3
10 3.945909 1.010591 1.000613 0.999650 L4
11 47.943458 45.635282 38.257424 30.616100 L4
12 1.484678 0.998468 0.524996 0.997636 L3

A plot of the left OSCV Function, when using kernel L4 is given in Figure 2.6. We observe that
the OSCV functions are very wiggly when we use the kernel L4 compared to using kernel L1.
The same wiggliness can be observed by using kernels L2 and L3. This behavior can also be
observed when plotting the OSCV functions based on other data sets.
Even though one-sided cross validation from the left or from the right should not differ (from
a theoretical point of view), in practice they do. To stabilize the behavior, Mammen, Martinez-
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Figure 2.6: The left OSCV function using kernel L4.

Miranda, Nielsen, and Sperlich (2011) proposed to merge them to a so-called double one-sided
or simply do-validation (half from the left-sided, half from the right-sided OSCV bandwidth)
for kernel density estimation and obtained amazingly good results with that procedure.

2.3.4 Notes on the Asymptotic Behavior
During the last two decades, a lot of asymptotic results for the corrected ASE methods and the
CV method have been derived. Unfortunately, these asymptotic results are often only derived in
the fixed and equidistant design case, when a kernel estimator or the Nadaraya-Watson estimator
is considered. However, it is not hard to see that the results discussed in the following carry over
to the local linear estimator which asymptotically can be considered as a Nadaraya-Watson
estimator with higher order kernels.
Rice (1984) considered the kernel estimator

m̂h(x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
Yi (2.27)

proposed by Priestley and Chao (1972) in an equidistant and fixed design setting. Using Fourier-
analysis, he analyzed the unbiased risk estimator of p(h) introduced by Mallows (1976), and
proved that its minimizer fulfills condition (2.9). He made some smoothness assumptions on K
and m and considered bandwidths in the range of Hn =

[
an−1/5,bn−1/5

]
for given a,b. Further-

more, he argued that this bandwidth selection rule is asymptotically equivalent to the corrected
ASE and the CV selection rules and therefore, the minimizers of the corrected ASE functions
also fulfill condition (2.9).
Härdle and Marron (1985) considered the Nadaraya-Watson estimator in a multivariate ran-
dom design setting. They proved the optimality condition (2.7) for the minimizer of the CV
score function with respect to the ASE, ISE and MASE risk measures for the CV method.
They made the assumption of h belonging to a range of possible bandwidths that is wider
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than
[
an−1/5,bn1/5

]
so that the user of CV does not need to worry about the roughness of

the underlying curve m. Further assumptions are the existence of the moments E(Y k|X = x),
a Hölder continuous kernel K, i.e. |K(u)−K(ν)| ≤ L||u−ν ||ξ for a ξ ∈ (0,1) and an L > 0,∫
||u||ξ |K(u)|du < ∞, the Hölder continuity of f and m and that the density f is bounded from

below and compactly supported.
If conditions (2.8) and (2.9) are fulfilled for the bandwidth selection rules based on the CV and
the corrected ASE score functions the question of the speed of convergence arises. Härdle and
Marron (1988) considered the fixed and equidistant design case. They assumed i.i.d. errors εi
for which all moments exist, a compactly supported kernel with Hölder continuous derivative
and that the regression function has uniformly continuous integrable second derivative. Let ĥ
be any minimizer of a corrected ASE or the CV score function. Then, as n→ ∞,

n3/10(ĥ− ĥ0)
L→ N(0,σ2) (2.28)

and
n3/10(ASE(ĥ)−ASE(ĥ0))

L→Cχ
2
1 (2.29)

hold, where σ and C are constants depending on the kernel, the regression function and the
observation error. It is interesting to observe that σ is independent of the particular penalizing
function Ξ() used. Taking the asymptotic rates of h’s and ASE’s into account, one finds that
condition (2.28) is of order n1/10 and condition (2.29) is of order n1/5. They also show that
the differences ĥ0−h0 and ASE(ĥ0)−ASE(h0) have the same small rates of convergence. The
authors conjecture that the slow rate of convergence of ĥ and ĥ0 is the best possible in the
minimax sense.
Chiu (1990) considered the unbiased risk minimizer using the kernel estimator in an equidis-
tant, fixed design setting with periodic regression function (so-called circular design). He made
the assumptions of independent errors εi for which all moments exist, some smoothness as-
sumptions on the symmetric kernel K and m completed by technical conditions for the circular
design. He only considered bandwidths belonging to a range that is slightly smaller than Hn. He
pointed out that the normal distribution is not a good approximation for ĥ because of its slow
rate of convergence. Having finite samples in mind, he reasoned that

n3/10(ĥ−h0)≈
bn/2c

∑
j=1

(Vj−2)wK( j), (2.30)

where V1, . . . ,Vbn/2c are i.i.d. χ2
2 -distributed random variables with weights wK( j) that only

depend on the kernel K. This approximation has got interesting implications. Having in mind
that the MASE minimizer is asymptotically the same as the ASE minimizer and that the unbiased
risk minimizer is asymptotically the same as the minimizer of the corrected ASE’s and the CV
score functions, it follows for example

n3/10(ĥCV −h0)≈
bn/2c

∑
j=1

(Vj−2)wK( j). (2.31)
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When Hart and Yi (1998) computed the first twenty weights wK( j) ( j = 1,2, . . . ,20) and for
the quartic kernel K and n = 100, they observed that wK(1) and wK(2) are large and negative
but wK(3), . . . ,wK(20) much smaller and mostly positive. This confirms that the distribution of
ĥCV is skewed to the left.
Assuming some further smoothness assumptions on the one sided selection kernel L and some
technical conditions on L to be able to work with a circular design, they derived a similar result
to (2.31) for OSCV, namely

n3/10(ĥOSCV −h0)≈
bn/2c

∑
j=1

(Vj−2)wL( j). (2.32)

When they calculated the weights wL( j) ( j = 1,2, . . . ,20) in (2.32) for L4 and n = 100, they ob-
served that these were now smaller in magnitude and almost symmetric around zero, indicating
a symmetric distribution of ĥOSCV with small(er) variance.
Yi (2001) proved the asymptotic stability of the OSCV selection rule. More precisely, let b0 be
the MASE optimal bandwidth using selection kernel L and b̂ be the minimizer of the unbiased
risk estimator. This is asymptotically the same as the minimizer of the OSCV score function,
namely b̂CV . Then, for Cb0−h0 = oP(b̂−b0) with constant C,

lim
n→∞

E((n3/10(ĥOSCV −h0))
2) =C2V (L), (2.33)

where V (L) is a constant that only depends on the selection kernel L. As before, he considered
only an equidistant fixed design case, assumed normally distributed i.i.d. errors, some smooth-
ness for m, K and L with symmetric and compactly supported kernel K, and further technical
conditions on m to be able to work with a circular design. Note that, when taking the rates of
convergence of ĥOSCV and h0 into account, one finds, that his limit theorem (2.33) is of order
n1/5.

2.4 Choosing the smoothing parameter based on (A)MISE
In contrast to the cross-validation and corrected-ASE methods, the plug-in methods try to min-
imize the MISE or the AMISE. The conditional weighted AMISE of the local linear estimator
m̂h(x) was already given in (2.5). Minimizing w.r.t. h, leads to the AMISE-optimal bandwidth
(hAMISE), given by:

hAMISE =

(
||K||22 ·

∫
S σ2(x)dx

µ2
2 (K) ·

∫
S (m′′(x))2 f (x)dx ·n

)1/5

, (2.34)

where S = [a,b] ⊂ R is the support of the sample X of size n. One has the two unknown
quantities,

∫
S σ2(x)dx and

∫
S (m

′′(x))2 f (x)dx, that have to be replaced by appropriate estimates.
Under homoscedasticity and using the quartic kernel, the hAMISE reduces to:

hAMISE =

(
35 ·σ2(b−a)

θ22 ·n

)1/5

, θrs =
∫

S
m(r)(x)m(s)(x) f (x)dx, (2.35)
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where m(l) denotes the lth derivative of m.
The plug-in idea is to replace the unknown quantities by mainly three different strategies:

1. Rule-of-thumb bandwidth selector hrot :
The unknown quantities are replaced by parametric OLS estimators.

2. Direct-plug-in bandwidth selector hDPI:
Replace the unknown quantities by nonparametric estimates, where we need to choose
’prior (or pilot) bandwidths’ for the two nonparametric estimators. In the second stage
we use a parametric estimate for the calculation of these bandwidths.

3. Bootstrap based bandwidth selection hSB and hWB:
The unknown expression are estimated by bootstrap methods. In case of the smoothed
bootstrap (giving hSB), again the unknown expressions in (2.35) are estimated, while the
wild bootstrap method (hWB) directly estimates the MISE of m̂h and the minimizes with
respect to h. Both methods require a ’prior bandwidth’.

There exist also a bandwidth selector which does not require prior bandwidths but tries to solve
numerically implicit equations. This procedure follows the solve-the-equation approach in ker-
nel density estimation, see Park and Marron (1990) or Sheather and Jones (1991). However,
the results of this bandwidth selector are not uniformly better than those of the direct-plug-in
approach (see Ruppert, Sheather and Wand (1995)) but require a much bigger computational
effort, and are therefore quite unattractive in practice.
For the first two strategies a parametric pre-estimate in some stage is required. We have opted
here for a piece-wise polynomial regression. For the sake of presentation assume the sample to
be sorted in ascending order. The parametric OLS-fit is a blocked quartic fit, i.e. the sample of
size n is divided in N blocks χ j =

(
X( j−1)n/N+1, . . . ,X jn/N

)
, ( j = 1, . . . ,N). For each of these

blocks we fit the model:

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi i = ( j−1)n/N +1, . . . , jn/N,

giving
m̂Q j(x) = β̂0 j + β̂1 jxi + β̂2 jx2

i + β̂3 jx3
i + β̂4 jx4

i .

Then, the formula for the blocked quartic parametric estimator θ̂rs, with max(r,s)≤ 4, is given
by:

θ̂
Q
rs(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(r)
Q j
(Xi)m̂

(s)
Q j
(Xi)1{Xi∈χ j}.

Similarly, the blocked quartic estimator for σ2 is

σ̂
2
Q(N) =

1
n−5N

n

∑
i=1

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j}.
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To choose N we follow Ruppert, Sheather, and Wand (1995), respectively Mallows (1973): take
the N̂ from (1,2, . . . ,Nmax) that minimizes

Cp(N) =
RSS(N) · (n−5Nmax)

RSS(Nmax)
− (n−10N),

where RSS(N) is the residual sum of squares of a blocked quartic N-block-OLS, and

Nmax = max [min(bn/20c,N∗),1] ,

with N∗ = 5 in our simulations. Another approach to the blocked parametric fit is to use non-
parametric estimators for the unknown quantities in (2.35), see Subsection 2.4.2.

2.4.1 Rule-of-thumb plug-in bandwidth selection
The idea of the rule-of-thumb bandwidth selector is to replace the unknown quantities in (2.35)
directly by parametric estimates, i.e. for θ22 use

θ̂
Q
22(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(2)
Q j
(Xi)1{Xi∈χ j}

=
1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)2
,

and the estimator for σ2

σ̂
2
Q(N) =

1
n−5N

n

∑
i=1

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j}

=
1

n−5N

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
yi− β̂0 j− β̂1 jxi− β̂2 jx2

i − β̂3 jx3
i − β̂4 jx4

i

)2
(2.36)

The resulting rule-of-thumb bandwidth selector hrot is given by

hrot =

(
35 · σ̂2

Q(N)(b−a)

θ̂
Q
22(N) ·n

)1/5

,

which now is completely specified and feasible due to the various pre-estimates.

2.4.2 Direct plug-in bandwidth selection
In this approach the unknown quantities in (2.35) are first replaced by nonparametric estimates.
Then, for the nonparametric estimator of θ22 a bandwidth g is needed. An obvious candidate
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is the bandwidth gAMSE that minimizes the AMSE (asymptotic mean squared error) of the non-
parametric estimator of θ22. Furthermore, a prior bandwidth λAMSE has to be determined for
the nonparametric estimator of σ2. These prior bandwidths are calculated with a parametric
OLS-block-fit.
A nonparametric estimator θ̂22(gAMSE) can be defined by

θ̂22(g) = n−1
n

∑
i=1

[
m̂(2)

g (Xi)
]2
, (2.37)

where we use local polynomials of order ≥ 2. As local polynomial estimates of higher deriva-
tives can be extremely variable near the boundaries, see Gasser et al. (1991), we apply some
trimming, i.e.

θ̂
α
22(gAMSE) =

1
n

n

∑
i=1

[
m̂(2)

gAMSE (Xi)
]2

1{(1−α)a+αb<Xi<αa+(1−α)b}, (2.38)

here the data are truncated within 100 ·α% of the boundaries of support S = [a,b], for some
small α ∈ (0,1). The reason for this truncation is that local polynomial kernel estimates of
higher derivatives can be extremely variable near the boundaries, also recommended by Gasser
et al. (1991). Since for increasing α increases the bias, α must not be too large. In our
simulations we follow the proposition α = 0.05 of Ruppert et al. (1995).
The prior bandwidth gAMSE , i.e. the minimizer of the conditional asymptotic mean squared
error of θ̂22(g) is given by

gAMSE =

[
C2(K)

σ2 · (b−a)
|θ24|n

]1/7

(2.39)

where the kernel dependent constant C2(K) for the quartic kernel is

C2(K) =

{ 8505
13 if θ24 < 0

42525
26 if θ24 > 0

The two unknown quantities are replaced by (block-wise) quartic parametric fits. For the prior
estimation of σ2 one uses the same as for the rule-of thumb bandwidth selector (see (2.36)).
For θ24 we use:

θ̂
Q
24(N̂) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(4)
Q j
(Xi)1{Xi∈χ j}

=
1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)
·24β̂4 j.

This gives first an estimate for the gAMSE , and afterward for θ α
22.

The nonparametric estimator for σ2 is:

σ̂
2 = ν

−1
n

∑
i=1

[
Yi− m̂λAMSE

(Xi)
]2
, (2.40)
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where ν = n−2∑i wii +∑i ∑ j w2
i j with {wi j}n

i, j=1 is the hat-matrix of m̂λAMSE
. The prior band-

width λAMSE is calculated as the minimizer of the conditional AMSE of σ̂2
1 , see Ruppert et al.

(1995). Hence, λAMSE is given by

λ̂AMSE =

[
C3(K)

σ̂4
Q(N̂)(b−a)(

θ̂ .05
22 (ĝAMSE)

)2
n2

]1/9

with the kernel dependent constant C3(K) = 146735
14339 .

Now, the direct-plug-in bandwidth hd pi is given by:

hDPI =

[
35

σ̂2(λ̂AMSE)(b−a)
θ̂ .05

22 (ĝAMSE)n

]1/5

.

2.4.3 Using smoothed bootstrap

The idea of is to apply bootstrap to estimate the MISE of m̂h or some specific parameters of the
regression or its derivatives. For a general description of this idea in nonparametric problems,
see Hall (1990) or Härdle and Bowman (1988), though they only consider fixed designs. Cao-
Abad and González-Manteiga (1993) discussed and theoretically analyzed several bootstrap
methods for nonparametric kernel regression. They proposed the smoothed bootstrap as an
alternative to wild bootstrap because the wild bootstrap mimics the model when the design
is fixed. If one refers to the random design, i.e. not the ISE or ASE but MISE or MASE
are of interest, hence the following resampling method is proposed: Draw bootstrap samples
(X∗1 ,Y

∗
1 ),(X

∗
2 ,Y

∗
2 ), . . . ,(X

∗
n ,Y

∗
n ) from the two-dimensional distribution estimate

F̂n(x,y) =
1
n

n

∑
i=1

1{Yi≤y}

∫ x

−∞

Kg(t−Xi)dt,

where g is a prior bandwidth asymptotically larger than h, see below. Cao-Abad and González-
Manteiga (1993) state that, as the marginal density of X∗ is the kernel density estimate of X
given the original data and bandwidth g, and the marginal distribution of Y ∗ is the empirical
distribution function of {yi}n

i=1, one has E∗(Y ∗ | X∗ = x) = m̂g(x), and a natural estimator for
Var(Y |x) is

σ̂
2
g (x) =

1
n

n

∑
i=1

WgiY 2
i − [m̂g(x)]

2 =Var∗(Y ∗ | X∗ = x). (2.41)

For the estimation of σ̂ assuming homoscedasticity, we average (2.41) over x = X∗i . Addition-
ally, a nonparametric estimator for θ22 is calculated as in formula (2.37) using cubic splines
on our bootstrap sample and with the same pilot bandwidth g. With an estimate of σ2 and θ 2

2
at hand we can use formula (2.35) to calculate a smoothed bootstrap bandwidth ĥSB which is
certainly still a function of the pilot bandwidth.
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2.4.4 Using Wild Bootstrap
For early papers about the resampling plan of the wild bootstrap, see Cao-Abad (1991) or
Härdle and Marron (1991). For its special use in bandwidth selection, see González-Manteiga,
Martı́nez-Miranda and Pérez-González (2004). We will use their estimation procedure of the
MSE. As we are not interested in obtaining bootstrap samples but in obtaining bootstrap es-
timates of the MASE, there is no need to introduce the creating of bootstrap samples. The
squared bootstrap bias and the bootstrap variance can be calculated as

Bias∗h,g(x) =
n

∑
i=1

Whi(x)m̂g(Xi)− m̂g(x)

and

Var∗h,g(x) =
n

∑
i=1

(Whi(x))2(Yi− m̂g(Xi))
2,

where g is again a pilot bandwidth that has to be chosen. For the selection of bandwidth h we
are interested in the MISE or the MASE, an error criterion independent from x. For simplicity
we opted for the

MASE(g,h) =
1
n

n

∑
i=1

MSE∗h,g(Xi) (2.42)

with MSE∗h,g(x) =
[
Bias∗h,g(x)

]2
+Var∗h,g(x). To get consistent estimators, for both the wild and

the smooth backfitting, the pilot bandwidth g has to be larger (in sample-size-dependent rates)
than bandwidth h. Having chosen g, the MASE only depends on h so that minimizing (2.42)
gives finally the optimal wild bootstrap bandwidth ĥWB. It can be easily seen, however, that the
necessity of choosing a pilot (or also called prior) bandwidth, is the main disadvantage of the
bootstrap methods.

2.4.5 Notes on the Asymptotic Behavior
It is clear that consistency can only be stated for the case where proper priors were used. Con-
sequently, the rule-of-thumb estimator has no consistency properties itself, because of possible
inconsistency of the there applied estimator for θ22. We therefore will concentrate on results
for the relative error of ĥDPI . Ruppert, Sheather, and Wand (1995) stated for the asymptotic
behavior of ĥPDI

ĥDPI−hMISE

hMISE

P−→ D, (2.43)

and that the method used to estimate ĥDPI , is of order OP(n−2/7).
Here, D is the error θ

−1
22
[1

2 µ4(K2,3)θ24G2 +σ2(b−a)||K2,3||22G−5] with g = Gn−1/7 the prior
bandwidth and G > 0 its constant. This consistency statement is based on (2.39), (2.40) with

σ̂
2(λ̂AMSE)−σ

2 = OP(n−1/2) ,

θ̂22(g)−1/5−θ
−1/5
22 '−1

5
θ
−6/5
22

[
θ̂22(g)−θ22

]
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conditional on X1, . . . ,Xn. Both together gives

ĥDPI−hMISE

hMISE
'−1

5
θ
−1
22
[
θ̂22(g)−θ22

]
leading to our (2.43), see Ruppert, Sheather, and Wand (1995) for details. We know already
from results of Fan (1992) and Ruppert and Wand (1994) that

hMISE = hAMISE +OP(n−3/5)

so that one can conclude from (2.43) to consistency with respect to hAMISE . The theoretical
optimal prior bandwidth g is obtained by choosing G such that D equals zero – asymptotically
not achievable, see Ruppert, Sheather, and Wand (1995) for further discussion.
Cao-Abad and González-Manteiga (1993) studied in detail the statistical behavior of smoothed
bootstrap. For early consistency results of the wild bootsrap, see Cao-Abad (1991). The consis-
tency of MSE estimation via wild bootstrap has been proved in González-Manteiga, Martı́nez-
Miranda and Pérez-González (2004). The optimal prior bandwidth for the both, the smoothed
and the wild bootstrap is of order n−2/9, see for example Härdle and Marron (1991). The specific
expressions however, see for example Cao-Abad and González-Manteiga (1993) or González-
Manteiga, Martı́nez-Miranda and Pérez-González (2004), depend again on various unknown
expressions so that we face similar problems as for hrot and hPDI .

2.4.6 A Mixture of methods

As already has been found by others, while some methods tend to over-smooth others under-
smooth. In kernel density estimation it is even clear that the plug-in bandwidth and cross-
validation bandwidth are negatively correlated. Heidenreich, Schindler and Sperlich (2010)
studied therefore the performance of bandwidths which are simple linear combinations of a
plug-in plus a cross-validation bandwidth. For kernel density estimation these bandwidths
turned out to perform pretty well in all of their simulation studies.
Motivated by these positive results we will also try out such mixtures of estimated bandwidths
in the context of kernel regression estimation. Like Heidenreich, Schindler and Sperlich (2010)
we will only consider linear mixtures of two bandwidths. In particular, we again mix a CV
bandwidth or a corrected ASE -based one with a plug-in or bootstrap method based bandwidth.
Depending on the weighting factor α ∈ (0,1), the mixed methods are denoted as:

Mixmethod1,method2(α) = α · ĥmethod1 +(1−α) · ĥmethod2, (2.44)

where ĥ• denotes the optimal bandwidth to the respective method. We mix our bandwidth in
the three following proportions, i.e. α = 1/2, α = 1/3 and α = 2/3. As for all the others, we
calculate the according ASE value for the resulting new bandwidths to assess the performance
of the respective mix, see next Section.
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2.5 Finite sample performance

Recall the MISE and MASE. Clearly, if
∫
( f (x))−1 dx is large, we expect a large integrated

variance and therefore, the optimal bandwidth gives more weight on variance reduction and is
therefore large. In cases of highly varying errors, i.e. a large σ2, the same effect is observed.
When the true underlying regression curve m(·) varies a lot, i.e.

∫
(m′′(x))2 dx is large, a large

integrated squared bias is expected so that the optimal bandwidth gives more weight on bias
reduction and therefore, chooses a small bandwidth. Clearly, some selection methods will do
better in estimating the bias, others in estimating the variance. The same will hold for cap-
turing the oscillation, say m′′(·) or the handling of sparse data areas or skewed designs. As a
conclusion, a fair comparison study requires a fair amount of different designs and regression
functions.
For our data generating process we first have to choose the distribution of X . Then, we have to
consider which are reasonable functions for m(x). Finally, we have to assume a value for the
variance of the error term. We generated noisy data following the models Yi = 1.5 · sin(k ·Xi)+
σ ·εi with ε ∼N (0,1) for different k’s, different σ ’s and a uniform design, i.e Xi∼U [−1,1], or
a standard normal design, i.e. Xi ∼N(0,1). We also considered the performance of the methods
where Xi ∼ 1/2 ·N (−0.6,1/4)+ 1/2 ·N (0.3,1/3). Because the results are almost identical
to the uniform distribution, we do not show the results of this design in the consideration below.
A list of all the models we used is given as:

Model σ Design k Model σ Design k
1 1 uniform 6 7 0.5 uniform 4
2 1 normal 6 8 0.5 normal 4
3 0.5 uniform 6 9 1 uniform 2
4 0.5 normal 6 10 1 normal 2
5 1 uniform 4 11 0.5 uniform 2
6 1 normal 4 12 0.5 normal 2

Table 2.4: True Regression models

Random numbers following a normal mixture design are an example which may easily yield a
large integrated asymptotic variance. Furthermore, the data are bimodal (so that two clusters are
expected) and slightly skewed. Moreover,

∫
(m′′(x))2 dx becomes larger as k increases so that a

larger integrated squared bias is expected as k increases. The different σ ’s affect the integrated
variance of the local linear estimator.
The aim of this section is to compare the small sample performance of all methods discussed
in the previous sections. Remember there different groups: cross-validation, corrected ASE,
plug-in and bootstrap. We also compare these methods with different mixtures of the classical
cross-validation (CV) criterion respectively several correcting ASE methods, with the rule-of-
thumb and the direct plug-in estimate (PI1 and PI2 resp.). The mixing procedure is to include
one half of the optimal bandwidth ĥCV resp. an optimal bandwidth of a corrected ASE method
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in different proportions with the optimal bandwidth of PI1 or PI2, then we assess the corre-
sponding ASE value for the mixed bandwidth. The reason why this makes sense is that CV and
corrected ASE methods tend to oversmooth while the PI methods tend to undersmooth the true
m(x).
All in all we present the following methods for estimation:

I cross-validation methods

1. CV: cross-validation

2. OSCV(L): one-sided cv (left)

3. OSCV(R): one-sided cv (right)

4. DoV: do-validation

II corrected ASE methods

5. Shib: Shibata’s model selector

6. GCV: generalized cv

7. AIC: Akaikes information criterion

8. FPE: finite prediction error

9. Rice: Rice’s T

III plug-in methods

10. PI1: rule-of-thumb plug-in

11. PI2: direct plug-in

IV bootstrap methods

12. SB: smoothed bootstrap

13. WB: wild bootstrap

V mixtures of two methods

VI ASE: infeasible ASE

There are certainly many ways how to compare the selection methods. Just when have in mind
that different selectors are looking at different objective functions, it is already clear that it
cannot be fair to use only one criterion. Consequently, we had to compare the performance
by different performance measures, most of them based on the averaged squared error (ASE),
as this is maybe the one the practitioner is mainly interested in. More specific, the considered
measures are:

m1: mean(ĥopt)
mean of the selected bandwidths for the different methods

m2: std(ĥopt)
standard deviation of the selected bandwidths

m3: mean
[
ASE(ĥ)

]
classical measure where the ASE of m̂ is calculated (and averaged over the 500 repeti-
tions)

m4: std
[
ASE(ĥ)

]
volatility of the ASE’s

m5: mean(ĥ−hASE)
’bias’ of the bandwidth selectors, where hASE is the real ASE-minimizing bandwidth

m6: mean
[
(ĥ−hASE)

2]
squared L2-distance between the selected bandwidths and hASE
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m7: mean
[
| ĥ−hASE |

]
L1 distance between the selected bandwidths and hASE

m8: mean
[
ASE(ĥ)−ASE(hASE)

]
= mean

[
| ASE(ĥ)−ASE(hASE) |

]
L1 distance of the ASE’s based on selected bandwidths compared to the minimal ASE

m9: mean
([

ASE(ĥ)−ASE(hASE)
]2)

squared L2-distance compared to the minimal ASE

In the following we will concentrate on the most meaningful measures, namely the bias of the
bandwidths selectors (m5), the means and standard deviations of the ASE’s (m3 and m4), showed
as box-plots, as well as the L1-distance of the ASE’s (m8).
Without loss of generality, we used the Quartic Kernel throughout, i.e. K(u)= 15

16(1−u2)21{|u|≤1}.
For both bootstrap procedures we tried several priors g but will present only results for the well
working choice g = 1.5 · ĥCV . The problems in choosing a bandwidth h which is too small
already described in Section 2.3 appear by using the local linear estimator m̂h(x). Hence, the
correction of the bandwidth grid, given in (2.18), is done in every case where this estimator
is used for calculation. All results are based on the calculations from 500 repetitions. In our
simulation study we tried all methods for the sample sizes n= 25, n= 50, n= 100, and n= 200.
We will first compare all methods without the mixtures. In order to summarize the different
methods of choosing the optimal bandwidth, we first consider the selected bandwidths and the
corresponding bias for each method separately. Afterward, we compare the methods by various
measures.
Before we start with the numerical outcomes for the different methods we should briefly com-
ment on the in practice also quite important questions of computational issues, in particular the
complexity of implementation and computational costs, i.e. the time required to compute the
optimal bandwidth along the considered methods. The fastest methods are the so-called cor-
rected ASE methods. The second best in speed performance are the plug-in methods, where
the rule-of-thumb plug-in is better than the direct plug-in. The fact that we only consider one-
dimensional regression problems and local linear smoother allows for an implementation such
that the CV methods behave also quite good but certainly worse than the plug-in. In our im-
plementation and for the somewhat larger sample sizes (in the end, we only consider small or
moderate ones) the slowest were the bootstrap based methods, in particular the smoothed boot-
strap. The direct plug-in and the smoothed bootstrap method turned out to be quite complex in
programming. Note that in general for more complex procedures the numerical results should
be better than for the other methods to legitimate the computational effort.

2.5.1 Comparison of the bias and L1-distance for the different bandwidths
(m5,m7)

Most of our numerical findings have been summarized in two figures: In Figure 2.7 we show
the biases (m5) and in Figure 2.8 the L1(h)-distances (m7) for all methods and models, but only
for sample sizes n = 25 and n = 200.
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Figure 2.7: Comparison of the bias for sample sizes n = 25 (above) and n = 200 (below)

We first summarize the behavior of CV and GCV since they behave almost identically. For
the standard normal distribution (see right panel in Figure 2.7), they are oversmoothing for all
cases. For the uniform distribution the bias changes signs for increasing sample size, i.e. the
bigger n the more tendency to undersmooth. Compared to all competitors, the L1-distances are
relatively small for all models, see Figure 2.8. Because of the almost identical behavior of these
two methods we will only show CV in the next subsections respectively in the pictures below.
OSCV-l, OSCV-r and DoV also oversmooth for the standard normal distribution but for larger
sample sizes the behavior improves considerably and compared to the competitors. Conspic-
uous for the normal design is that for n = 25 with a high frequency of the sinus function the
values of m5 and m7 are very high. For the uniform distribution with n = 200 we cannot see
any clear tendency to over- respectively undersmoothing, and the L1-distance is almost zero,
see also Figure 2.8. Because of the similar behavior of these three methods, and because DoV
generally behaves best, we will only consider DoV in the following.
The bandwidth selection rules AIC, FPE and Rice from the second group are oversmoothing for
the standard normal distribution. Only for n = 100, k = 2, and σ = 1 Rice undersmooths, and
has an almost zero bias (not shown in the Figure 2.7). For the uniform design the three methods
are almost always undersmoothing but in general show a good performance respective to the
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Figure 2.8: Comparison of the L1-distance for n = 25 (above) and n = 200 (below)

bias. The most noticeable for these three methods is that for n = 25 they behave better than CV,
GCV and the one-sided CV methods, but for n = 200 the AIC, FPE and Rice are just as good
as CV, GCV and the one-sided CV (see also Figure 2.8). In comparison AIC, FPE and Rice
seem to benefit less from increasing sample sizes, i.e. although the bias respectively the L1(h)-
distance is getting smaller in absolute value it is not getting smaller in the same magnitude like
CV, GCV and the one-sided CV methods. In general, due to the bias, AIC, FPE and Rice show
the best performance, i.e. they do not fail and are often the best. Because of the similar behavior
of these three methods, and because Rice mostly behaves best, we will only consider Rice in
the next sections.
The Shib selection method is almost always undersmoothing for the uniform design. For the
standard normal distribution it is oversmoothing for n = 25 but for the bigger samples there
is no clear tendency. The main difference to the other ASE corrected methods is that Shib
bandwidths are worse for the uniform design, but a little bit better for the normal design.
The plug-in methods and SB are almost always undersmoothing over all designs and sample
sizes. They all undersmooth with a bias which is large in absolute value. For the standard
normal design, PI1 shows a good bias behavior for the smallest sample size n = 25 and is best
for the high frequency models. In general we can state for PI1, PI2 and SB that for n = 25 they



2.5. FINITE SAMPLE PERFORMANCE 73

are as good as all the methods from group I and group II, but for increasing sample size the
value of the bias and the L1(h)-distance loose compared to the other selectors. Hence, in the
end, PI1, PI2 and SB seem to be worse than all the methods from the first and the second group.

The remaining method to be compared is the wild bootstrap “WB”. From Figure 2.7 it can be
seen that the values are often out of range except for model 11 for both sample sizes and model
9 for n = 25. In Figure 2.8 it can be seen that WB can only keep up with the other methods for
model 9 and model 11. These two models are the smoothest of all. But WB is never the best
method due to the bias and is best only for two special cases if we compare the L1(h)-distances
(model 9 for n = 25 and model 11 for n = 200). For the wiggly designs WB fails completely
and chooses always the largest bandwidth of our bandwidth grid.

2.5.2 Comparison of L1 and L2-distances for the different bandwidths
(m6, m7)

We will now summarize the performance of the selection methods according to the measures
L1(h) and L2(h). In order to see the most important results, it is sufficient to concentrate on
k = 6 and σ = 1 as all further results are almost identical to these with respect to the ordering of
the considered methods (compare once again Figure 2.7 and Figure 2.8). All in all we provide
here the comparison of the selection methods along models 1, 2, 9 and 10. In Figure 2.9 we
have plotted the resulting L1(h), and in Figure 2.10 the L2(h). For each of the four models we
show the values for all sample sizes, i.e. for n = 25,50,100,200.

Considering the wild bootstrap method “WB”, we notice that it is only for model 9 (the smoothest)
not out of the range of our plots. But even for this model we had to use a wider plotting range,
because the L1(h) respectively L2(h) values turned out to be very large for basically all meth-
ods. “WB” can only compete with the other selection methods in this case, but for n = 100 and
n = 200 is even here the worst of all methods. The cross validation, say “CV”, method exhibits
a pretty good performance for model 1; for sample size n = 50 it is indeed the best. For model
2 and model 10 it shows only bad performances for n = 25 but good ones for the larger sample
sizes. For model 9 it has an average behavior. This changes if we extend the cross validation
idea to one-sided and do-validation. Indeed, for models 1, 2 and 10 “DoV” (and one-sided
cross validation, where do-validation is based on) behaves badly only for n = 25, because of the
resulting lack of information. It already behaves well for n = 50 and very well for not saying
excellently for larger samples with n = 100 and n = 200. For model 9 its L1(h)- respectively
L2(h)-values are even very good for n = 25. But for this very smooth model and sample sizes
n = 50, n = 100 and n = 200 the plug-in PI1 is the best selection method. For model 10 PI1 is
the best just for n = 25. Finally, “Shib” and “Rice” have an average behavior for all models and
sample sizes, only for model 1 they are best for small samples with n = 25.

Summarizing we can say that the cross-validation methods need a sample size of at least 50 to
perform well if we have a model that is not that smooth. For really smooth regression problems,
the plug-in “PI1” does well.
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Figure 2.9: L1(h) for each four models varying the sample size

2.5.3 Comparison of the ASE-values (m3,m4)
In this subsection we summarize the results for the ASE-values of the different measures, i.e.
the bandwidth that has been chosen for the respective method is inserted in the formula for the
ASE. This is done because it enables us to compare rather the resulting regression performance
than the bandwidths selected by the different methods. Needless to say, that the smallest ASE-
value is reached with the benchmark, i.e. the true ASE optimal bandwidth. In our simulation we
assumed twelve different models, i.e. we know the true value for m(x) and the exact variance
of the error term, what we do not in practice. For the same reasons we mentioned in the last
subsection, the results for k = 4 and σ = 0.5 are skipped in the following. Hence, we compare
only the boxplots of the selection methods along our models 1, 2, 9 and 10.
The main conclusions from the ASE-distributions can be summarized as follows. Varying the
sample size, we can see from the boxplots, that for both designs, i.e. uniform design (see figure
2.11) and standard normal design (see figure 2.12), the means and median values for CV, DoV,
Shib and Rice decrease with increasing sample sizes and decreasing frequencies. With respect
to the inter quartile range (IQR henceforth) and the standard deviations it is almost the same
with two exceptions. The first one is the IQR of DoV for model 9 and n = 100 is smaller than
for n = 200, but there are more outliers for n = 100. The second one is Shib where the IQR
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Figure 2.10: L2(h) for each four models varying the sample size

increases with decreasing frequency in the uniform design for n = 25, n = 50 and n = 100.
For the plug-in and the bootstrap methods the results look quite messy. With respect to the IQR
and the standard deviations, WB and PI1 clearly improve with increasing sample size. For PI2
it is the same for model 1, 2 and 9, but for model 10 it is the other way round. For SB the IQR
and the standard deviation are getting larger with increasing sample size.
Now, we compare the methods for model 1 (see Figure 2.11, first row). DoV benefits most from
increasing sample size, i.e. for n= 25 DoV is worst of group I, group II and PI1, but for n= 200
DoV is the overall best. CV and Rice behave very similar, and they are the best selectors for
n = 25, and 2nd best for n = 200. Shib shows a good behavior for smaller sample sizes, but
for n = 100 and n = 200 it has the largest IQR of group I and group II. In general, the plug-in
methods behave worse than groups I and II, and only a little bit better than group IV.
The most noticeable of model 9 is that WB is the overall best method, there PI2 and SB behave
worst. That is because model 9 is the smoothest model, i.e. a large bandwidth is optimal in this
case. For n = 25 and n = 50 DoV is the best of I, II, and III, but for larger sample sizes CV and
Rice are doing better.
The results for model 2, the most wiggly design, can be seen in figure 2.12, first row. The most
interesting changes, compared to model 1, occur in the first four methods. There we have more
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Figure 2.11: ASE-values for X ∼U [−1,1] for all sample sizes

extreme outliers the bigger the sample size is. The reason for that is that these methods have
problems with outliers in the covariate X . Therefore, these outliers appear, if there is a random
sample having a big proportion of observations around zero but thin tails. The behavior of the
methods from group I and II is very similar, i.e. the chosen method does not have a big effect
on the results. Further outcomes are similar respectively identical to model 1.
Finally, we consider the results for model 10 (see figure 2.12, second row). We state the dif-
ferences to model 2 (for both X ∼ N(0,1)) and model 9 (for both k = 2). In contrast to model
2, the extremity of outliers does only increase a little bit with increasing sample size which is
due to the fact that the model is smoother. The difference to model 9 is that WB is not the best
method for model 10. This is maybe due to the fact that model 10 is more wiggly than model 9.
But for both model 9 and model 10 selector WB does not fail completely in contrast to model
1 and model 2. For WB we can therefore state that if m is smooth enough this method can be
used to estimate the bandwidth.

2.5.4 Comparison of the L1 and L2-distances of the ASE values (m8,m9)

If we look at Figures 3.10 and 2.14, we can conclude that there is nothing new with respect to
the comparison of the considered bandwidth selection methods. One interesting fact should be
mentioned: the L1-distances do generally not decrease with increasing sample size. In model 2
the L1-distances increase with increasing sample size for the plug-in and bootstrap methods. In
model 2 all L1 and L2-distances for WB are out of range. For this model PI1 is the best method
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Figure 2.12: ASE-values for X ∼ N(0,1) for all sample sizes

for n = 25 but for all other sample sizes the CV and ASE-corrected methods behave better. PI2,
WB and SB behave worse than the CV and ASE-corrected methods for all sample sizes.
One interesting fact for the CV and ASE-corrected methods is that there is a gap between n= 25
and the other sample sizes. That means, if we have a normal design respectively a more wiggly
model (see model 1) combined with an extreme small sample size, PI1 will be a good method
in bandwidth estimation. Another mentionable fact is that for model 9, the smoothest model,
WB is the best method when looking at the L1 and L2 ASE values, see Figures 3.10, 2.14. For
model 10 WB is good, but not better than CV or corrected ASE based methods. That means
that the decision of using WB depends more on the smoothness of m than on the smoothness of
the distribution of X .
We mentioned in the beginning of Section 2.5 that PI2 and SB are more complicated to imple-
ment, and especially SB has a notable computation time. If we look at all the results we can say
that PI2 and SB behave badly due to all the performance measures. Hence, there is no reason
for using these two methods for bandwidth estimation for the considered models.

2.5.5 Comparison of different mixtures

Finally we tried to mix two methods in order to get better results than with only one method.
We tried to mix a method that tends to oversmooth with a method that tends to undersmooth
the data. An obvious candidate is to mix the optimal bandwidth of the classical cross-validation
(CV) respectively of a correcting ASE methods with one of the plug-in or a bootstrap optimal
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Figure 2.13: L1(ASE) for each four models varying the sample size

bandwidth. Recall that CV and corrected ASE methods tend to oversmooth while the PI and
bootstrap methods tend to undersmooth. The mixtures will be compared with DoV which in the
end is also a mixture, namely the left- and the right-sided OSCV method, respectively.
Depending on the weighting factor α ∈ (0,1), the mixed methods are denoted as in formula
(2.44) by Mixmethod1,method2(α). We only try to mix methods having a good performance. We
also considered other mixtures, but the best results are obtained by mixing CV and Rice with
PI1. Hence, the results we present here are:

1 m11: MixCV,PI1(1/2)

2 m12: MixCV,PI1(2/3)

3 m13: MixCV,PI1(1/3)

4 m21: MixRice,PI1(1/2)

5 m22: MixRice,PI1(2/3)

6 m23: MixRice,PI1(1/3)

In fact, we did simulation for basically all two-folded mixtures but skip the presentation of all
the other methods for the sake of brevity and because they simply behave worse. Specifically,
we decided to show the following six different mixtures: three CV-PI1, and three Rice-PI1
mixtures.
In the Figures 2.15 and 2.16 we added DoV for obvious reasons mentioned above and because
this method exhibited a pretty good performance before. The bias behavior of PI1 is almost
always worst, the only exception is model 2 with a sample size of 25, where CV and DoV have
the biggest bias. As already mentioned, the aim to mix methods was, to get better results than
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Figure 2.14: L2(ASE) for each four models varying the sample size

with one single method. But, we see, that the bias values of the mixtures are indeed better
than for PI1 but worse than for CV or Rice. Only for model 2, the most wiggly model, we can
achieve the objective of improvement. For the L1 values we get similar results, see Figure 2.16.
In conclusion we can say, that the additional effort of mixing different methods seems not to be
justifiable.

2.6 Conclusions

The problem of bandwidth choice is basically as old as nonparametric estimation is. While in
the meantime kernel smoothing and regression as been becoming a standard tool for explorative
empirical research, and can be found in any statistical and econometric software package, the
bandwidth selection can still be considered as an unsolved problem - at least for practitioners.
Quite recently, Heidenreich, Schindler and Sperlich (2010) revised and compared more than
thirty bandwidth selection methods for kernel density estimation. Although they could not
really identify one method that performs uniformly better than all alternatives, their findings
give clear guidelines at least for a certain class of densities like we typically expect and find
them in social and econometric sciences.
This article is trying to offer a similar revision, comparison and guidelines for kernel regres-
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Figure 2.15: bias(h) for different mixtures

sion. Though it is true that especially for large and huge data sets, today spline regression, and
in particular P-spline estimation is much more common than is the use of kernel regression,
the latter is still a preferred tool for many econometric methods. Moreover, it has been experi-
enced a kind of revival in the fairway of treatment and propensity score estimation, smoothed
likelihood methods and small area statistics (in the latter as a competitor to spline methods for
reasons of interpretation).
To the best of our knowledge we are the first providing such a comprehensive review and com-
parison study for bandwidth selection methods in the kernel regression context. We have dis-
cussed, implemented and compared almost twenty selectors, completed by again almost 20 lin-
ear combinations of two seemingly negatively correlated (with respect to signs of the bandwidth
bias) selectors of which the six best have been shown here. For different reasons discussed in
the introduction we concentrated our study on local linear kernel estimation.
We started with a review of the idea and definition of the methods, its asymptotics, implemen-
tation and computational issues. Probably the most interesting results are summarized in the
last section, i.e. Section 2.5. We could see which methods behave quite similar and found a
certain ranking of methods although – like in Heidenreich, Schindler and Sperlich (2010) – no
bandwidth selector performed uniformly best. Different to their study on density estimation,
for regression the mixtures of methods could not really improve compared to the single use of
a selector, except the so-called do-validation. This even turned out to be maybe even the best
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Figure 2.16: L1(ASE) for different mixtures

performing method though it is not alway easy to implement nor computationally very fast.
For the rather small data sets considered, also the classical cross validation still performs well
but should be replaced by generalized cross validation for increasing sample size. Note that for
our context and estimator, CV and GCV behaved almost equivalently for the considered sample
sizes. Nonetheless, already here and although we had rather wiggly as well as rather smooth
functions under consideration, OSCV and especially DoV outperformed the classical CV. So it
did for almost all models and sample sizes also compared to the other methods, at least when
looking at the distribution of ASE, see Subsection 2.5.4. In our opinion, for the practitioner
this is the most important measure. It should be mentioned that in the reduced set of selectors,
the method proposed by Rice (1984) did also a pretty fair job for the models and sample sizes
considered in this article.
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MAMMEN, M., MARTÍNEZ-MIRANDA, M.D., NIELSEN, J.P. AND SPERLICH, S. (2011).
Do-validation for Kernel Density Estimation. Journal of the American Statistical Associ-
ation, forthcoming.

MARRON, J.S. (1986). Will the Art of Smoothing ever become a Science, Function Estimates
(Contemporary Mathematics 59), Providence, RI: American Mathematical Society, pp.
169-178.

NADARAYA, E.A. (1964) On Estimating Regression, Theory of Probability and its Applica-
tion 9, 141-142.

NIELSEN, J. P. (1999) Scand. Actuarial, 1, 93.95.

PARK, B.U. AND MARRON, J.S. (1990). Comparison of Data-Driven Bandwidth Selectors,
Journal of the American Statistical Association 85: 66-72.

PRIESTLEY, M. B., CHAO, M.T. (1972) Non-parametric function fitting, Journal of the Royal
Statistical Society, Series B 34, 385-392.

RICE, J. (1984) Bandwith Choice for Nonparametric Regression, The Annals of Statistics Vol.
12, No. 4, 1215-1230.



84 CHAPTER 2. BANDWIDTH SELECTION FOR KERNEL REGRESSION

RUPPERT, D.; SHEATHER, S.J. AND WAND, M.P. (1995). An Effective Bandwidth Selec-
tor for Local Least Squares Regression, Journal of the American Statistical Association
90(432): 1257-1270.

RUPPERT, D., AND WAND, M.P. (1994). Multivariate Locally Weighted Least Squares Re-
gression, The Annals of Statistics 22, 1346-1370.

SHEATHER, S.J. AND JONES, M.C. (1991). A reliable data-based bandwidth selection method
for kernel density estimation, Journal of the Royal Statistical Society, Series B 53: 683-
690.

SHIBATA, R. (1981) An Optimal Selection of Regression Variables, Biometrika 68, 45-54.

WATSON, G.S. (1964) Smooth Regression Analysis, Sankhyā, Series A 26, 359-372.
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Chapter 3

Improving Nonparametric Regression by
Prior-transformation ?

Abstract

In this essay a transformation for nonparametric kernel regression is tested for
achieving a better ASE behavior. Three different bandwidth selection methods with
an expected good behavior are assessed, i.e. the performance of the untransformed
and the transformed version are compared. The idea of the transformation is to
obtain good results for the estimation of the local linear estimator with the help of
a global bandwidth, although the density of the explanatory variable needs a local
bandwidth selection. The topic of this essay was suggested and supported by Prof.
Dr. Stefan Sperlich.
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3.1 Introduction
Suppose that there are random pairs (Xi,Yi), i = 1,2, . . .n ∈ N, where the Xi’s are explanatory
variables drawn from a continuous distribution with density function f . Without loss of gener-
ality, X1 < X2 < .. . < Xn is assumed. The Yi’s are response variables generated by the following
model:

Yi = m(Xi)+σ(Xi)εi, where {εi}are i.i.d. N(0,1) (3.1)

Further, σ2(x) = var(Y |x) is finite, and the εi are independent of all X j. Assume that one aims
to estimate m(x) = E(Y | X = x) for an arbitrary point x∈R. Let K : R→R be a kernel function
that fulfills µ0(K) = 1, µ1(K) = 0 and µ2(K)< ∞, where µl(K) =

∫
∞

−∞
ulK(u)du. Furthermore,

denote Kh(u) := 1
hK(u/h), where h ∈ R+ is the smoothing parameter (bandwidth).

The aim is to use a global smoothing parameter h although the probability density function of
X has a sharp peak, i.e. a region with many observations, where a small bandwidth is better
suited for estimation. It also has a smooth area where a big bandwidth is required, otherwise,
the estimation of m for values x of this region would be equal to zero. The problem of global
bandwidth selection in these cases is illustrated in figure 3.1 where a typical representative of
the described distribution, X ∼ lnN (0,1) is chosen. Although a local bandwidth selection
would be suitable, global bandwidth selection using a transformation is applied in this article.

Figure 3.1: m̂h(x) for distribution X ∼ lnN (0,1), assuming different sinus functions for m(x). The
first row shows homoscedastic models, and the second row shows heteroscedastic models. The dashed,
dotted and dashed-dotted lines show the estimation of m̂h(x) by different bandwidth selection methods:
CV, DoV, and PIP (see description below).

In the literature there is a fully nonparametric linear transformation approach with global band-
width selection, which is introduced in Park et al. (1997). They propose a transformation to
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reduce the MISE (mean integrated squared error) in kernel regression. The idea is to regress Yi
on xi in the first stage, where they use a fixed design of x and calculate the estimator m̂b(x) with
a global bandwidth b. In the second stage they propose two alternatives: regress Yi on m̂b(xi) us-
ing bandwidth h and the transformed data for the kernel weights or the same bandwidth b from
the first stage and use the original scale for calculating the kernel weights. In their simulation
study they compare the second alternative of the transformation estimator with different local
polynomial estimators m̂p,h(x).The conclusion is that there are only slight differences between
the transformation and the local cubic estimator. The overall performance of the local cubic
estimator is better, but for some special cases its behavior is really bad. Hence, they use the
transformation approach for their practical example.
In the article of Park et al. (1997) the problem of avoiding local bandwidth selection is not
been addressed. Further, in this thesis the local linear estimator in estimating m(x) and the
different methods are compared. Hence, the transformation, tested in this article follows an-
other approach. The idea is to map the data x into the interval [0,1] with the help of a bijective
strictly monotonic increasing function first. For this transformation the parametric cumulative
distribution function of X is used:

x→ FX(x)

Obviously, a nonlinear transformation is applied to the data. The advantage is that the interval
including the highest part of the observation is extended and the part with only a few obser-
vations is compressed, of course proportional to the transformed range [0,1]. This results in
almost uniformly distributed transformed sample as shown in figure 3.1.

Figure 3.2: Histogram of a lognormally distributed sample X (left) vs. histogram of the trans-
formed sample FX(X) (right)

Now the following question arises: How to obtain the suitable transformation? In the simulation
study below, X is assumed to follow some distribution, i.e. it is not necessary to guess it. But,
if someone wants to apply this approach, one has to guess the suitable parametric probabilty
density function, by plotting a histogram of X . The next step is to regress Y on FX(x) nonpara-
metrically, to find a global bandwidth h. In the following FX(x) will be denoted by z and hence
Zi = FX(Xi). For the estimation the well-known local linear kernel estimator m̂h (z) is used. It
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can be expressed as a weighted sum of the Yi, i.e.

m̂h(z) =
1
n

n

∑
i=1

Wh,i(z)Yi (3.2)

with weights

Wh,i(z) =


nSh,2(z)Kh(z−Zi)−nSh,1(z)Kh(z−Zi)(Zi−z)

Sh,0(z)Sh,2(z)−Sh,1(z)2 if Sh,0(z)Sh,2(z) 6= Sh,1(z)2

n if Sh,0(z)Sh,2(z) = Sh,1(z)2, for z = zi

0 otherwise

where Sh, j(z) = ∑
n
i=1 Kh (z−Zi)(Zi− z) j. The local linear estimator for an arbitrary point z ∈R

is only defined, if Wh,i(z) > 0 for at least one i. Note that the matrix with entries {Wh,i(Z j)}i, j
gives the so-called hat-matrix in kernel regression.

Figure 3.3: m̂h(x) using a transformation for X ∼ lnN (0,1), assuming different sinus functions for
m(x). The first row shows homoscedastic models, and the second row shows heteroscedastic models. The
dashed, dotted and dashed-dotted lines show the estimation of m̂h(x) by different bandwidth selection
methods: CV, DoV, and PIP (see description below).

Because the transformation is only done for Xi but not for Yi, the values of the true function m
are the same at the transformed scale, and hence, m(x) = E(Y | X = x) = E(Y | Z = z). On the
transformed range a global bandwidth h is chosen for estimating m̂h(z). If the values m̂h(Zi) are
plotted against the original scale, it can be seen, that the estimator m̂ is very wiggly in the area
with many observations and very smooth in the region with less observations . This corresponds
to local bandwidth selection, but if one looks at the figure 3.3 it can be seen, that in the region
with sparse data the true m has been oversmoothed. Of course, there are no jumps anymore,
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but the question arises if the estimator using the transformation is better than the untransformed
estimation.

(a) estimation using a transformation

(b) estimation without using any transformation

Figure 3.4: m̂h(x) for X ∼ lnN (0,1) on the transformed scale (a) and (b)

The reason for the oversmoothing becomes obvious when looking at figure 3.4. The true m on
the transformed scale that we aim to estimate in the transformation approach, is very smooth in
the subinterval [0,0.9) because of the stretching. The oscillations of the sinus functions in the
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left and middle column in figure 3.4 are in the subinterval [0.9,1]. Hence, again the problem
arises that it would be better to estimate the optimal m̂h with the help of a local bandwidth. But
by comparing subfigure 3.4(a) to subfigure 3.4(b) it could be assumed, that the estimation with
the transformation approach works better. Obviously, the estimation quality depends largely
upon the true m, i.e. the smoothness of m in the area on the transformed scale. The trans-
formed estimation will be better if on the original scale m is more wiggly in the area with many
observations and smooth in the area with sparse data.
From this point the pivotal question, i.e. the tradeoff between untransformed and transformed
estimation, becomes clear: Is it better to have jumps in the region with sparse data or to over-
smooth there too much?

For the purpose of assessing the estimation quality and answering this question, suitable risk
measures are needed. In Köhler, Schindler, Sperlich (2011) there is an extensive recapitulation
of different risk measures. To evaluate the estimation results the ASE (averaged squared error)
is used, which is defined by

ASE(h) =
1
n

n

∑
j=1

(m̂h(X j)−m(X j))
2 w(X j), (3.3)

where an additional trimming or weight function w is introduced to eliminate summands (m̂h(X j)−
m(X j))

2 where X j is near to the boundary. Having the explanatory variables ordered, w(X j) =
1[Xl+1,Xn−l ] can simply be set for a given l. By this means, the variability of the ASE score func-
tion can be greatly reduced, see Gasser and Müller (1979). Denote the minimizer of ASE by
ĥ0.
The ASE for the transformed data are given as the true m does not depend on the Z j but is still
a function of the original data X j. As already mentioned above, the values of m do not change
on the transformed scale and are now dependent on the observations, i.e. for each observation
j a value of m is assigned. Hence, the true m for a specific observation j with j = 1,2, . . . ,n is
denoted by m j. Furthermore, the optimal bandwidth of the transformed estimation is denoted
by ht. If we plot the estimated m̂ht(Z j) on the original scale, the global bandwidth ht from the
estimation on the transformed scale is on the original scale no longer global, and hence, the m̂
does no longer depend on the bandwidth parameter h but on the observation j and is denoted
by m̂ j. The procedure for obtaining the ASE-optimal bandwidth is the following: transform the
values X j as described. Then estimate the n-dimensional vectors m̂h(Z) = Ŷ for each h. The true
ASE with respect to one bandwidth ht, chosen on the transformed scale, is therefore calculated
as:

ASE(ht) =
1
n

n

∑
j=1

(m̂ht(Z j)−m j)
2 w(Z j) =

1
n

n

∑
j=1

(m̂ j−m j)
2 w j (3.4)

because the transformation with a cumulative distribution function is strictly monotonic increas-
ing, the boundary points of sorted vector X are the boundary points of the vector Z and therefore
only dependent on the observation j, denoted by w j.
There are several bandwidth selection methods to find the optimal estimator for m(x). An exten-
sive simulation study comparing numerous of them is given in Köhler, Schindler and Sperlich
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(2011). In section 3.2 the bandwidth selection methods, used for the simulation study in section
3.3, are presented in brief.

3.2 Bandwidth selection methods
The aim is to find a suitable global bandwidth for estimating model (3.1). Because of the
findings in Köhler, Schindler and Sperlich (2011) the pool of possible bandwidth selection
methods had been reduced. For the simulation study below only the following are used:

CV: cross-validation method, introduced by by Clark (1977)

DoV: do-validation (by Mammen, Martı́nez-Miranda, Nielsen and Sperlich (2011)), i.e. mix-
ture of left and right one-sided cross-validation, see Hart and Yi (1998)),

Shib: Shibata’s model selector, see Shibata (1981)

Rice: Rice’s T, see Rice (1984)

PIrot: plug-in rule-of-thumb, see Ruppert, Sheather and Wand (1995).

To know what are the features of the different methods, a short revision for this methods will
be given in the following subsections. For a more precisely description, see the literature, just
mentioned. For an extensive review see Köhler, Schindler and Sperlich (2011).

3.2.1 Choosing the smoothing parameter based on ASE

The score functions for CV, DoV, Shib, and Rice are methods to estimate the ASE function in
practice when the true function m is not known. The approach for estimating the ASE function
is plugging into (3.3) response Yj for m(X j). This yields the substitution estimate

p(h) =
1
n

n

∑
j=1

(m̂h(X j)−Yj)
2w(X j). (3.5)

It can easily be shown, that this is a biased estimator of ASE(h), see for example Härdle (1992),
chapter 5. One can accept a bias that is independent of h as in this case the minimizer of (3.5)
is the same as that of (3.3). Unfortunately this is not the case for p(h). The following methods
are approaches to correct for the bias.

The Corrected ASE

It is clear that h ↓ 0 leads to interpolation, i.e. m̂h(X j)→Yj, so that the function to be minimized,
namely p(h), could become arbitrarily small. On the other hand, this would surely cause a very
large variance of m̂h what indicates that such a criterion function would not balance bias and
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variance. Consequently, the corrected ASE penalizes when choosing h too small in an (at least
asymptotically) reasonable sense. Hence, it is defined as following

G(h) =
1
n

n

∑
j=1

(Yj− m̂h(X j))
2

Ξ

(
1
n

Wh, j(X j)

)
w(X j), (3.6)

where w(X j) = 1[Xl+1,Xn−l ] is used to trim near the boundary. Ξ(.) is a penalizing function with
first-order Taylor expansion

Ξ(u) = 1+2u+O(u2) , u→ 0. (3.7)

The smaller the bandwidth h has been chosen the larger gets Wh, j(X j) and the penalizing factor
Ξ
(1

nWh, j(X j)
)

increases. By conducting a first-order Taylor expansion of G and disregarding
lower order terms it is easy to show that G(h) is roughly equal to ASE(h) up to a shift that
is independent of h. There is a number of methods whose penalizing functions satisfy the
expansion (3.7). In the simulation study two of them are used whose penalizing functions are
given by:

• Shibata’s model selector ĥS = argmin
h∈R+

GS(h), see Shibata (1981)

with ΞS(u) = 1+2u . (3.8)

• Rice’s T (T) ĥT = argmin
h∈R+

GT (h), see Rice (1984)

with ΞT (u) = (1−2u)−1 . (3.9)

All these corrected ASE bandwidth selection rules are consistent for n→ ∞ and nh→ ∞ as
h ↓ 0. In practice they certainly exhibit some deficiencies. To mitigate the problems that may
occur for too small bandwidths, we will fix a data-adaptive lower bound for ĥ. Notice that for
h ≤ hmin, j := min

{
X j−X j−1,X j+1−X j

}
(recall that the explanatory variables are ordered for

the sake of presentation), we get 1
nWh, j(X j) = 1 and 1

nWh,i(X j) = 0 for all i 6= j. In this case
the j’th summand of (3.6) is not defined if we choose Ξ(.) = ΞGCV (.) or Ξ(.) = ΞFPE(.) but is
Ξ(1) finite for all other penalizing functions such that the j’th summand of (3.6) gets zero. This
shows that for sufficient small bandwidths h the score function G(h) is either not defined or can
be arbitrarily small. This does surely not solve the problem of balancing bias and variance of
the local linear estimator. Therefore, first the infimum of the set of all bandwidths is calculated
for which (3.6) can be evaluated,

hmin,G = max
{

hmin,l+1, . . . ,hmin,n−l
}
. (3.10)

When minimizing G(h) for any of the above listed criteria, only the bandwidths h is used that
fulfills h > hmin,G, all taken from the grid in (3.10).
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Cross-validation

In the following the CV method introduced by Clark (1977) are presented. The proposed the
score function

CV (h) =
1
n

n

∑
j=1

(Yj− m̂h,− j(X j))
2w(X j) , (3.11)

where m̂h,− j(X j) is the leave one out estimator which is simply the local linear estimator based
on the data (X1,Y1), . . .(X j−1,Yj−1), (X j+1,Y j+1), . . . ,(Xn,Yn). In analogy to the ASE function,
the weights w(·) are used to reduce the variability of CV (h). Again, the trimming w(X j) =
1[Xl+1,Xn−l ] is applied to get rid of boundary effects. It can easily be shown that this score function
is a biased estimator of ASE(h) but the bias is independent of h. This motivates the until today
most popular data-driven bandwidth selection rule:

ĥCV = argmin
h∈R+

CV (h) . (3.12)

As for the corrected ASE bandwidth selection rules, the CV bandwidth selection rule is consis-
tent but in practice, curiously has especially serious problems as n→ ∞. The reason is that this
criterion hardly stabilizes for increasing n and the variance of the resulting bandwidth estimate
ĥ is often huge. Clearly, for h < hmin, j := min

{
X j−X j−1,X j+1−X j

}
there are similar prob-

lems as for the corrected ASE methods as then the local linear estimator m̂h(X j) is not defined.
Therefore, (3.11) is only defined if we fix h > hmin,CV with

hmin,CV := max
{

hmin,l+1, . . . ,hmin,n−l
}
. (3.13)

The One-Sided Cross Validation

As mentioned above the main problem of CV is the lack of stability resulting in large variances
of its estimated bandwidths. As has been already noted by Marron (1986), the harder the esti-
mation problem the better CV works. Based on this idea, Hart and Yi (1998) developed a new
modification of CV.
Consider the estimator m̂ĥCV

with kernel K with support [−1,1] that uses the CV bandwidth
ĥCV . Furthermore, a second estimator m̃b with smoothing parameter b based on a (selection)
kernel L with support [0,1] is defined as:

OSCV (b) =
1

n−2l

n−l

∑
i=l+1

(m̃−i
b (Xi)−Yi)

2, (3.14)

where m̃−i
b (Xi) is the leave-one-out estimator based on kernel L. Note that l must be at least

2. This ensures that in each summand of (3.14) at least l− 1 data points can be used. Denote
the minimizer of (3.14) by b̂. The OSCV method makes use of the fact that a transformation
h : R+→ R+ exists, such that E(h(b̂)) ≈ E(ĥCV ) and Var(h(b̂)) < Var(ĥCV ). More precisely,
(3.14) is an unbiased estimator of

σ
2 +E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
.
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Therefore, minimizing (3.14) is approximately the same as minimizing

E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
. (3.15)

In almost the same manner it can be argued that minimizing MASE(h) is approximately the
same as minimizing CV (h). Note that for calculating the MASE (mean averaged squared error)
the expectation of the ASE is taken.
The minimizer of (3.15) is denoted by bn and the MASE(h) minimizer by hn. Using the results
in Fan (1992) for minimizing the MASE-expressions, dividing the minimizers and taking limits
yields

hn

bn
→
[
||K||22

(µ2
2 (K))2 ∗

(µ2
2 (L))

2

||L||22

]1/5

=: C,

see Yi (2001). Note that the constant C only depends on known expressions of kernels K and L.
One can therefore define the data driven bandwidth selector

ĥOSCV =C · b̂. (3.16)

According to which selection kernel L is used one gets different OSCV-values. Detailed dis-
cussions and simulation studies, which selection kernel L is optimal are given in Hart and Yi
(1998), and in Köhler, Schindler and Sperlich (2011). Because of this discussion, in the simu-
lation study below, the optimal Kernel from Hart and Yi (1998) is used, given by:

L(x) = (1− x2)(6.92−23.08x+16.15x2)1[0,1],

with the respective kernel dependent constants µ2
2 (L) = −0.07692307, ||L||22 = 5.486053, and

C = 0.5192593, which did also best in the simulation study in choosing L in Köhler, Schindler
and Sperlich (2011).
As for the corrected ASE and CV bandwidth selection rules, the OSCV bandwidth selection
rule is consistent. Now consider the i’th summand of (3.14). Analogously to prior discus-
sions, (3.14) is only defined if b > bmin,lOSCV = max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1}, so that for
minimizing (3.14) only bandwidths b > hmin,CV are considered.
Note that the regression estimator used at the bandwidth selection stage, namely m̃b(x) in (3.16),
uses only the data Xi that are smaller than the regression point x. This explains the notion
left OSCV. For implementing the right OSCV, the kernel R(u) := L(−u) is used. Note that
this kernel has support [−1,0] and therefore m̃b(x) uses only data at the right side of x. The
transforming constant C in (3.16) does not change. There is evidence that the difference of left
and right sided OSCV is negligible.
Even though one-sided cross validation from the left or from the right should not differ (from
a theoretical point of view), in practice they do. To stabilize the behavior, Mammen, Martinez-
Miranda, Nielsen, and Sperlich (2011) proposed to merge them to a so-called double one-sided
or simply do-validation (half from the left-sided, half from the right-sided OSCV bandwidth)
for kernel density estimation and obtained amazingly good results with that procedure. Also
in Köhler, Schindler and Sperlich (2011) it can be seen, that DoV (do validation) has a good
performance, especially for large sample sizes. Hence, it is used in the simulation study, below.
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3.2.2 Plug-in methods: Choosing the bandwidth based on (A)MISE
In contrast to the cross-validation and corrected-ASE methods, the plug-in methods try to min-
imize the MISE (mean integrated squared error) or the AMISE (asymptotic MISE) of the local
linear estimator m̂h(x) in order to calculate the optimal bandwidth. The conditional weighted
AMISE is given by:

AMISE(m̂h(x) | X1, . . . ,Xn) =
1

nh
||K||22

∫
S

σ
2(x)dx+

h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx, (3.17)

where the first summand is the mean integrated asymptotic variance, and the second summand
the asymptotic mean integrated squared bias; cf. Ruppert, Sheather, and Wand (1995). The no-
tation is the following: f (x) indicates the density of X , ||K||22 =

∫
K(u)2du, µl(K)=

∫
ulK(u)du,

and f the unknown density of the explanatory variable X with the compact support S = [a,b]⊂
R. Finding a reasonable bandwidth means to balance the variance and the bias part of (3.17),
therefore, an optimal bandwidth is obtained by minimizing (3.17) with respect to h. Clearly,
the AMISE consists mainly of unknown functions and parameters. Consequently, the selection
methods’ main challenge is to find appropriate substitutes or estimates. Minimizing w.r.t. h,
leads to the AMISE-optimal bandwidth (hAMISE), given by:

hAMISE =

(
||K||22 ·

∫
S σ2(x)dx

µ2
2 (K) ·

∫
S (m′′(x))2 f (x)dx ·n

)1/5

, (3.18)

where S = [a,b] ⊂ R is the support of the sample X of size n. Obviously, the two unknown
quantities in 3.18 are

∫
S σ2(x)dx and

∫
S (m

′′(x))2 f (x)dx, that have to be replaced by appropriate
estimates. By using the quartic kernel 3.18 reduces to:

hAMISE =

(
35 ·

∫
S σ2(x)dx
θ22 ·n

)1/5

, θrs =
∫

S
m(r)(x)m(s)(x) f (x)dx, (3.19)

where m(l) denotes the lth derivative of m. In Köhler, Schindler and Sperlich (2011), three
different strategies in obtaining the optimal bandwidth were described. Because of the perfor-
mance in their simulation study, the rule-of-thumb bandwidth selector hrot is used. This method
is very straightforward, because the unknown quantities are replaced by parametric OLS esti-
mators. In the simulation study below, a heteroscedastic model is tested. Hence, in the first step
a parametric FGLS (feasible generalized least squares), more precisely a piece-wise polynomial
regression fit is used as estimator to replace the unknown quantities.
For the sake of presentation assume the sample to be sorted in ascending order. The para-
metric FGLS-fit is a blocked quartic fit, i.e. the sample of size n is divided in N blocks
χ j =

(
X( j−1)n/N+1, . . . ,X jn/N

)
, ( j = 1, . . . ,N). For each of these blocks we fit the model:

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi i = ( j−1)n/N +1, . . . , jn/N,

giving
m̂Q j(x) = β̂0 j + β̂1 jxi + β̂2 jx2

i + β̂3 jx3
i + β̂4 jx4

i .
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Then, the formula for the blocked quartic parametric estimator θ̂22, is given by:

θ̂
Q
22(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(2)
Q j
(Xi)1{Xi∈χ j} =

1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)2
,

and the estimator for σ2
i

σ̂
2
i,Q =

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j} =

N

∑
j=1

(
yi− β̂0 j + β̂1 jxi− β̂2 jx2

i − β̂3 jx3
i − β̂4 jx4

i

)2
1{Xi∈χ j}

To choose N we follow Ruppert, Sheather, and Wand (1995), respectively Mallows (1973): take
the N̂ from (1,2, . . . ,Nmax) that minimizes

Cp(N) =
RSS(N) · (n−5Nmax)

RSS(Nmax)
− (n−10N), with Nmax = max [min(bn/20c,N∗),1] ,

where RSS(N) is the residual sum of squares of a blocked quartic N-block-OLS, and with N∗= 5
in our simulations. The idea of the rule-of-thumb bandwidth selector is to replace the unknown
quantities in (3.19) directly by parametric estimates, i.e. for θ22 use The resulting rule-of-thumb
bandwidth selector hrot is given by

hrot =

(
35 ·

∫
S σ̂2

i,Qdx

θ̂
Q
22(N) ·n

)1/5

,

which now is completely specified and feasible due to the various pre-estimates.
In Köhler, Schindler and Sperlich (2011) a blocked quartic fit was used, because for the so-
called direct-plug-in method, that did not perform well, i.e. it chooses a bandwidth that is
too small. For this method parametric estimators with a nonzero fourth derivative of m̂Q is
needed. The rule-of-thumb plug-in method only requires a nonzero second derivative. For
that reason, and because better results can be obtained, the estimation with a blocked parabolic
FGLS-estimator θ22 is applied, given by:

θ̂
P
22(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Pj
(Xi)m̂

(2)
Pj
(Xi)1{Xi∈χ j} =

1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j

)2
,

and the estimator for σ2
i

σ̂
2
i,P =

N

∑
j=1

(Yi− m̂Pj(Xi))
21{Xi∈χ j} =

N

∑
j=1

(
yi− β̂0 j + β̂1 jxi− β̂2 jx2

i

)2
1{Xi∈χ j}

The resulting rule-of-thumb bandwidth selector hP
rot is given by

hP
rot =

(
35 ·

∫
S σ̂2

i,Pdx

θ̂ P
22(N) ·n

)1/5

.
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3.3 Simulation study
The simulation was done with the help of dyncall, developed by Adler and Philipp (2010), the
specific R-package is called rdyncall, see Adler (2011). The library dyncall that is a function
call interface for the C programming language among others. The package rdyncall works as
following: first the C program is compiled and the compiled files are loaded via dyn.load to
the R-program. Later it is possible to call the functions of the C program to obtain the results.
In the simulation of this article, the data generation process is written in R, because it is very
convenient to create pseudo random samples, there. After this, several C functions are called, to
pass the data vectors and obtain the results in a short time, because the calculation in C is done
very fast.

Figure 3.5: Histograms and true parametric probability density functions of X

For the data generating process, first the distribution of X has to be chosen, second, reasonable
functions for m(x) are needed and finally, a value for the variance of the error term has to be
assumed. Because of the aim to test transformations in bandwidth selection methods for kernel
regression, three different distributions of X that usually need a local bandwidth selection are
assumed. Hence, the data for X are generated as X ∼ lnN(0,1), X ∼ 0.5(lnN(0,1)+N(10,4))
and X ∼ 1/3(lnN(0,1)+N(4,1)+N(10,4)). In figure 3.5 there is an illustration of the three
cases via histograms of X with sample size 100 and the parametric density function from which
the data were generated.

Further, three different functions for the true function m(x) are assumed, shown in figure 3.6.
These functions are two simple sinus functions m1(x) = sin(0.2x), and m2(x) = sin(0.4x) hav-
ing different frequencies, and a sinus function having decreasing oscillations with increasing x:
m3(x) = sin(3log(x+ 1)) which assumed to have better results in the transformed estimation
than in the untransformed one, because it is smoother in the area with sparse data than in the
region with many data points. In figure 3.7 the true functions m are plotted against the trans-
formed scale, remember the values of m do not change. There, the possible problems of global
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Figure 3.6: True functions of m(x)

Figure 3.7: True functions of m(x) on the transformed scale

bandwidth selection, mentioned in the introduction, can be seen even in the case of estimating
m3(x). For the simulation study two different true variances of the error term are assumed, the
first is σ2

1 = 1, assuming homoscedasticity. In order to see the performance of the methods in
the case of heteroscedasticity, a variance σ2

2 = (2 · |E(y|x)|)2 will be tested that is not indepen-
dent from the observations, and ε ∼ N (0,1). These assumptions result in 18 different true
models, shown in figure 3.8 (in the Appendix) or summarized in table 3.1.
As already stated above, the purpose is to find the best estimate for m(x) in model (3.1) by using
the local linear estimator m̂h(x). The first step is to evaluate the performance of the methods
CV, DoV, Shib, Rice, and the two PIrot methods by using the respective transformation, i.e.
the distribution function FX(x). The methods showing the best ASE behavior are chosen to be
compared with their untransformed version.
More precisely, the first estimation step is to transform the data X . Then the regression Yi on
FX(Xi) = Zi for i = 1,2, . . . ,n with the the local linear estimator m̂ht(Zi) is done resulting in the
calculation of the optimal bandwidth ĥt for each method with the respective true ASE-value,
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X ∼ lnN(0,1) X ∼ 0.5(lnN(0,1)+N(10,4)) X ∼ 1
3(lnN(0,1)+N(4,1)+N(10,4))

No. Model No. Model No. Model
1 y = m1(x)+σ1ε 7 y = m1(x)+σ1ε 13 y = m1(x)+σ1ε

2 y = m1(x)+σ2ε 8 y = m1(x)+σ2ε 14 y = m1(x)+σ2ε

3 y = m2(x)+σ1ε 9 y = m2(x)+σ1ε 15 y = m2(x)+σ1ε

4 y = m2(x)+σ2ε 10 y = m2(x)+σ2ε 16 y = m2(x)+σ2ε

5 y = m3(x)+σ1ε 11 y = m3(x)+σ1ε 17 y = m3(x)+σ1ε

6 y = m3(x)+σ2ε 12 y = m3(x)+σ2ε 18 y = m3(x)+σ2ε

Table 3.1: True regression models

calculated like in (3.4). Without loss of generality, the Quartic Kernel is used throughout, i.e.
K(u) = 15

16(1−u2)21{|u|≤1}.
There are certainly many ways to compare the selection methods. Just when have in mind that
different selectors are looking at different objective functions. To assess the results different
performance measures are used, most of them based on the averaged squared error (ASE). Note
that for the specific distributions, given above the weight function w in the formula of the ASE
(see equations (3.3) and (3.4)) does not cut points on the right side of the distribution of X ,
because these are points in the area of sparse data, and hence, the main interesting points. The
second reason is that there is no boundary on the the right side to worry about, because the
distributions of X have exponential decreasing tails on the right side. Hence the weighting
function changes to: w(X j) = 1[Xl+1,Xn].
The considered performance measures are:

pm1: mean
[
ASE(ĥ)

]
classical measure where the ASE of m̂ is calculated (and averaged over the 1000 repeti-
tions)

pm2: IQR
[
ASE(ĥ)

]
interquartile range as measure of the volatility of the ASE’s

pm3: mean(ĥ− ĥASE)
’bias’ of the bandwidth selectors, where hASE is the real ASE-minimizing bandwidth

pm4: mean
[
ASE(ĥ)−ASE(ĥASE)

]
= mean

[
| ASE(ĥ)−ASE(ĥASE) |

]
L1 distance of the ASE’s based on selected bandwidths compared to the minimal ASE

pm5: mean
([

ASE(ĥ)−ASE(ĥASE)
]2)

squared L2 distance compared to the minimal ASE

All results are based on the calculations from 1000 repetitions. In our simulation study we tried
all methods for the sample sizes n = 25, n = 50, n = 100, n = 200, and n = 500.
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3.3.1 Finite sample performance of the different methods using a trans-
formation

First, the behavior of the bandwidth selection methods by using the transformation is tested.
Two performance measures for all models and designs of X are illustrated: the bias (pm3) of
the selected bandwidth and the L1-distance (pm4) of the ASE values.
The bias for the different bandwidths (pm3) can be seen in figure 3.9 in the Appendix. The plug-
in methods do worst in that cases, because they have the tendency to undersmooth, in general.
The plug-in method with the blocked quartic fit has almost always the biggest bias in absolute
value, for all models. CV has the best bias performance in general, i.e. independent from the
model or sample size it does not fail.
The L1-distances (pm4) can be seen in figure 3.10 in the Appendix. Also with respect to the
L1-distance of the ASE-values, PIQ is the worst method of all. Its values for n = 25 are always
out of the plotting range. DoV shows the best performance, only for model 11 and model 12
PI with the blocked parabolic fit behaves best. For the other models PIP is still the second best
method. It can also be seen that the behavior of Shib and Rice is worse than for CV, DoV and
PIP, in general. From that reason, the decision was only to compare CV, DoV and PIP in the
next subsection, where the quality of the transformation is evaluated.

3.3.2 Finite sample performance of the transformation

The next step in the simulation study is to test the transformation. As already mentioned above,
several problems can arise by estimating a global bandwidth on the original data. Because of
the finding in the last subsection, we will compare only three methods: CV, DoV and PIP , last
letter “T” means with transformation. For this purpose, only the box plots of the ASE-values
will be shown. The L1- and the L2-distances of the ASE values pm4 and pm5, used in the last
subsection, are not suitable to compare the transformed against the untransformed version of the
methods, because two different ASE-optimal bandwidths are chosen, and hence the ASE-values
for the respective bandwidths are different. More precisely, the worse the ASE-value for the
ASE-optimal bandwidths the better the L1 respectively L2 distance for a method. Furthermore,
the performance measures based on the bandwidths are completely different, because for the
estimation two different bandwidth grids are necessary.
Next, the results for the ASE-values of the different measures are summarized, i.e. the band-
width that has been chosen for the respective method is inserted in the formula for the ASE.
This is done because it enables to compare rather the resulting regression performance than
the bandwidths selected by the different methods. The respective performance measures are
pm1 for the mean of the ASE-values, seen as squares in the box-plots and pm2 the interquartile
range (IQR) of the ASE-values, seen by the height of the boxes and of course the median of the
ASE-values can be seen.
The basic question in evaluating the transformation is: Does the transformation work better than
just using the untransformed version of the respective methods?
First the most important case: X ∼ lnN(0,1) (see figure 3.11) is considered. In general, it can
be seen that the performance of the transformed versions of the methods is clearly better. As ex-
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pected the best results are obtained by using m3(x) = sin(3log(x+1)). For the true regression
functions m1(x) = sin(0.2x) and m2(x) = sin(0.4x) the transformation works better for smaller
n and for the heteroscedastic models. But although the transformation behave worse in case of
homoscedasticity, it does not fail completely. By looking at the methods it can be seen that for
n = 25,50,100 the DoV resp. DoVT is always the best. For n = 200 and n = 500 CV respec-
tively CVT sometimes behaves better. If somebody would ask which method to use in general,
the answer would be DoVT. Of course the results for the regression model y = m2(x)+ ε for
n = 500 but for all the other 29 cases the ASE values of DoVT are best or not far from the best.
Focussing on X ∼ 1/3(lnN(0,1)N(10,4)) (see figure 3.12), it can be seen that the untrans-
formed methods behave better, and for X ∼ 1/3(lnN(0,1)+N(4,1)+N(10,4)) (see figure 3.13)
both the transformed and untransformed version are relatively equal. Obviously, the reason is
because the untransformed methods have big problems especially in the case of X ∼ lnN(0,1).
But if the problems with the distribution of X decrease, the problems with the regression func-
tion m, described above become more important. Hence, for m3(x) the performance is also
acceptable for X ∼ 1/3(lnN(0,1)N(10,4)) and X ∼ 1/3(lnN(0,1)+N(4,1)+N(10,4))

3.4 Conclusions
In the simulation study different bandwidth selection methods for relatively smooth functions
of m(x) has been compared. The best methods were CV, DoV and PIP. If the transformed vs.
the untransformed estimation was compared, the result was, that the best performance could
be obtained by the DoV methods. The estimation could be improved by using the proposed
transformation, especially DoVT turns out to be very good. The main conclusion is, that using
the proposed transformation in combination with global bandwidth selection on the transformed
scale is a very stable procedure to obtain a good estimation of m(x), if the distribution of X is
not very smooth and would actually require local bandwidth selection.
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3.5 Appendix

(a) X ∼ lnN (0,1)

(b) X ∼ 0.5(lnN(0,1)+N(10,4))

(c) X ∼ 1/3(lnN(0,1)+N(4,1)+N(10,4))

Figure 3.8: True regression models for distribution (a), (b) and (c)
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(a) X ∼ lnN (0,1)

(b) X ∼ 0.5(lnN(0,1)+N(10,4))

(c) X ∼ 1/3(lnN(0,1)+N(4,1)+N(10,4))

Figure 3.9: Bias of the selected bandwidths for the estimation with prior transformation, for
distribution (a), (b) and (c)
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(a) X ∼ lnN (0,1)

(b) X ∼ 0.5(lnN(0,1)+N(10,4))

(c) X ∼ 1/3(lnN(0,1)+N(4,1)+N(10,4))

Figure 3.10: L1-distances of the ASE-values for the estimation with prior-transformation, for
distribution (a), (b) and (c)
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(a) y = sin(0.2x)+ ε

(b) y = sin(0.2x)+2 · |E(y|x)|ε

(c) y = sin(0.4x)+ ε

(d) y = sin(0.4x)+2 · |E(y|x)|ε

(e) y = sin(3log(x+1))+ ε

(f) y = sin(3log(x+1))+2 · |E(y|x)|ε

Figure 3.11: Box-plots and means (�) of the ASE-values for distribution X ∼ lnN (0,1) for
model (a) - (f)
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(a) y = sin(0.2x)+ ε

(b) y = sin(0.2x)+2 · |E(y|x)|ε

(c) y = sin(0.4x)+ ε

(d) y = sin(0.4x)+2 · |E(y|x)|ε

(e) y = sin(3log(x+1))+ ε

(f) y = sin(3log(x+1))+2 · |E(y|x)|ε

Figure 3.12: Box-plots and means (�) of the ASE-values for distribution X ∼ 0.5(lnN(0,1)+
N(10,4)) model (a) - (f)
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(a) y = sin(0.2x)+ ε

(b) y = sin(0.2x)+2 · |E(y|x)|ε

(c) y = sin(0.4x)+ ε

(d) y = sin(0.4x)+2 · |E(y|x)|ε

(e) y = sin(3log(x+1))+ ε

(f) y = sin(3log(x+1))+2 · |E(y|x)|ε

Figure 3.13: Box-plots and means (�) of the ASE-values for distribution X ∼ 1/3(lnN(0,1)+
N(4,1)+N(10,4)) model (a) - (f)
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Chapter 4

Summary and Outlook

The main conclusions are already given at the end of each chapter. Obviously, bandwidth se-
lection in nonparametric estimation is a very extensive field, where many authors have done
research in it. In chapter 1 and chapter 2, our aim was to compare easy to implement estimation
methods having a good performance with respect to the typically used error criteria. Further
this methods do not need extra strong assumptions, the computation time is very low. Further,
these two chapters are giving an overview over almost all existing methods in global bandwidth
selection for the kernel estimation of densities of a random variable respectively univariate re-
gression with the help of second order kernels. It can be seen, that the decision which method
to use depends on the smoothness and the distribution of the data. Of course some methods are
only appropriate for very specific cases or just not adequate for global bandwidth selection, but
many methods are reasonable to use. However, practitioners often use the well known standard
routines or just guess optimal bandwidth. In chapter 3, we tested if a special transformations
can improve the estimation. From the conclusions we see, that in some cases there is an im-
provement and moreover, the estimation with transformation does never fail. But it remains to
find out, if there are possible transformations, that generally doing better than an untransformed
version.
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