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You always return from a
journey as a different man to
the one who set off.

(Graham Greene)
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“...] see that you are fond of
traveling through foreign lands.”
| replied, “Yes, | am.”

(Ibn Battuta, Voyage)
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Executive Summary

This dissertation aims at providing an overview of various econometric model classes
which are suitable for the analysis of price relationships. It discusses a number of
models which are suitable for the analysis of price relationships both in the vertical,
i.e., of markets along the processing chain, and the horizontal domain, i.e., of markets
of one commodity in space. However, the thesis focuses on the latter topic. It provides
an in-depth discussion of selected model classes and, in the appendices, three empirical
applications of selected models. The applications analyze structural changes in the
transmission of European calf prices and regime-dependent behavior of spatial maize
price relationships in Eastern Africa. Furthermore, the structure and determinants of
the transmission of maize prices in domestic as well as cross-border trade are assessed.

We are not aware of publications in agricultural economics in general and in price
transmission analysis in particular which compare various model classes in detail.
Hence, this dissertation is a contribution to the literature in three respects. First,
it provides an overview of recent developments of the methodology used to analyze
price relationships. It focuses on the intuition of four model classes and can thus help
to improve the link between econometric theory and the study of empirical questions
in applied research in agricultural economics. Second, it serves to relate, to compare
and to contrast these classes. Model selection approaches between several competing
classes of nonlinear models as well as between nonlinear and linear models based on
econometric testing are being developed in the literature. However, the theory is
very complicated and thus not many approaches are currently available. Therefore,
we believe that a well developed intuition of the fundamental mechanisms governing
such models can help the selection of an adequate model class based on the empirical
context and economic theory. Thereby, we take an applied point of view and focus
on the ideas behind the models, and potentially promising areas of application in
applied research. Third, the dissertation provides analyses of the impacts of changing
policy environments on the transmission of agricultural commodity prices within the
European Union as well as within the East African Community.

CHAPTER 1 briefly presents the background and a number of definitions of properties
which characterize the type of data this thesis is focused on, i.e., time series of eco-
nomic variables. It introduces autoregressive time series models which are particularly
useful for the modeling of cointegrated variables, and the relationships between them.
It then addresses the underlying idea, model structure, estimation, interpretation,
and applications of the traditional vector error-correction model. First, the potential
role of disequilibrium besides the usual lag-structure dynamics on the development of
economic variables along time is discussed. This idea is then formalized in an autore-
gressive model and illustrated by suitable graphs. The Frisch-Waugh-Lovell Theorem

XV



is presented in order to give the background of a particular version of the model, the
so-called R(educed)-form. This version is cleaned from autoregressive dynamics and,
thus, contains variables only quantifying the dynamics of the equilibrium restoring
forces. We present a number of graphs which provide a schematic summary of key
characteristics of the model. The estimation section first discusses various estimation
approaches of the long-run relationship and, second, elaborates Johansen’s reduced
rank regression in some detail. Afterwards, we define our understanding of core con-
cepts regarding the interpretation of cointegration models in the context of spatial
price analysis and refer to selected literature for applications. A discussion of differ-
ent forms of nonlinearities in price transmission follows. This serves to confine the
focus of this thesis which lies in nonlinearities in short-run price transmission. Such
nonlinearities are caused by nonconstant loading coefficients which quantify the speed
with which deviations from the equilibrium are adjusted. Parametric functions, most
often in the form of regime-dependent models, and nonparametric functions might be
suitable choices for modeling them. Moreover, the notion of the regime-generating
process is introduced. The chapter closes with a brief literature review of the econo-
metric theory of nonlinear vector error-correction models and of applications of the
latter modeling strategy via nonparametric functions.

CHAPTER 2 presents the four model classes in detail. The classes of the threshold
vector error-correction model, the Markov-switching vector error-correction model and
the semiparametric vector error-correction model belong to the family of cointegra-
tion models. The parity bounds model represents a class of the family of mixture
distribution models. The chapter follows the same structure as the presentation of
the vector error-correction model does by addressing the underlying idea, the formal
structure, estimation, interpretation, and applications of each class. It partly draws on
Appendix D and provides mostly additional thoughts instead of repeating the content
of this appendix. We take an applied view and focus on the intuition behind and the
interpretation of the model classes.

CHAPTER 3 provides a critical summary of the outlined models. It first discusses a
number of problems of the three presented classes of cointegration models. Afterwards,
it elaborates on properties of suitable regime-generating processes. This is followed
by a critical discussion of the parity bounds model. The chapter closes with a criti-
cal comparison of both model families highlighting the advantages and drawbacks of
each. Furthermore, similarities and differences between the thresholds and the parity
bounds models are addressed. The distributions of the underlying data which are im-
plied by selected versions of cointegration models are contrasted to the distributional
assumptions of the parity bounds model. CHAPTER 4 concludes the dissertation.

APPENDIX A studies spatial price transmission between European calf markets. It
focuses on the effects of the decoupling of agricultural support from production and of
movement restrictions, which resulted from the outbreak of the Blue Tongue disease in
central Europe. The 2003 reforms of the Common Agricultural Policy of the European
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Union allowed for discretionary implementation among member states. Discretion was
allowed with respect to the timing and the degree of decoupling of policy support. Dif-
ferences among member states were particularly apparent in the European beef and
veal sector. Using weekly data from 2003 to 2009, we assess the consequences of differ-
ent national implementation strategies of the reforms on price transmission for young
calves, which are intensively traded in the European Union. Time series properties are
analyzed by employing a range unit-root test and a multivariate cointegration model.
We find that the calf markets in Germany, France, the Netherlands and Spain are
integrated and tightly interrelated and can thus be considered to belong to a com-
mon market. This conclusion is supported by the estimated persistence profiles which
track the absorption of shocks by the system of prices. We also find strong statistical
support for the hypothesis that decoupling reduced calf price levels. Using counter-
factual scenarios, evidence of the effects of different policy choices on the price system
is obtained. Additionally, our results indicate that the outbreak of the Blue Tongue
disease induced a structural change in parts of the EU calf market.

APPENDIX B gives an overview of the Markov-switching vector autoregressive class of
non-linear time series models which can be used to analyze recurring discrete structural
breaks in time series. Most empirical applications of the model to date have focused
on the business cycle and financial markets, but we see potential for this model class
in agricultural economics, for example in price transmission analysis. We first provide
an overview of the model framework. We then present an illustrative application
to the analysis of spatial maize prices between Tanzania and Kenya. We employ a
Markov-switching vector autoregressive model to assess regimes in maize price margins
between each of four regions in Tanzania and Nairobi, the capital of Kenya. We
conjecture that temporarily implemented Tanzanian export bans might have caused
the alternating phases of high and low margins which characterize the data. However,
the available information on trade restrictions seems not to be complete. Moreover,
we lack information on the effectiveness of their implementation. We analyze monthly
prices from 2000 to the end of 2008. We identify five periods of increased margins
which last from four to seventeen months and partly correspond to the timings of
export restrictions reported by the literature. During these periods, the margins’
averages are more than doubled and their standard errors considerably reduced in
comparison to periods of low margins.

APPENDIX C analyzes factors which influence the magnitude of price transmission in
domestic and cross-border trade of East African maize markets. There is an extensive
literature on distance and border effects in trade, but little attention has been paid to
the impact of distance and borders on spatial price transmission. We analyze distance
and border effects in maize price transmission between Kenya, Tanzania and Uganda.
Using monthly data from January 2000 to October 2008, maize price transmission is
measured for 85 market pairs within and between these countries. The magnitude of
price transmission between market pairs is found to vary systematically with distance
and the presence or lack of a national border between a market pair. This analysis
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extends the border effects literature in three ways. First, price transmission rather
than trade flows or price variability is analyzed. Second, the impact of distance on
price transmission is shown to be nonlinear, and is modeled using a semi-parametric
partially linear regression model. Third, strong evidence is found that border effects
are heterogeneous; the Tanzanian border has a significant negative impact on price
transmission, while the Ugandan border has no effect. The results suggest that Tan-
zania is a relatively isolated and internally fragmented island within the East African
maize market. Price transmission between Nairobi and other markets is strong, which
confirms the role that Nairobi plays as a hub in East African trade in general and East
African maize markets in particular.

APPENDIX D compares two regime-dependent econometric models for price trans-
mission analysis, namely the threshold vector error-correction model and Markov-
switching vector error-correction model. We first provide a detailed characterization
of each of the models, which is followed by a comprehensive comparison. We find
that the assumptions regarding the nature of their regime-switching mechanisms are
fundamentally different, so that each model is suitable for a certain type of nonlin-
ear price transmission. Furthermore, we conduct a Monte Carlo experiment in order
to study the performance of the estimation techniques of both models for simulated
data. We find that both models are adequate for studying price transmission since
their characteristics match the underlying economic theory and hence allow for an easy
interpretation. Nevertheless, the results of the corresponding estimation techniques
do not reproduce the true parameters and are not robust against nuisance parameters.
The comparison is supplemented by a review of empirical studies of nonlinear price
transmission which focuses on the class of threshold vector error-correction models
which is the most popular nonlinear model in the analysis of price transmission to
date.
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1 Introduction

This chapter briefly addresses the economic background of this dissertation. It devel-
ops the underlying statistical concepts and confines the topic of the thesis from related
areas.

1.1 Motivation

Knowledge on the dynamics and interrelationships of commodity markets across space
(horizontal) and along the processing chain (vertical) is relevant in many circum-
stances. Fackler and Goodwin (2001) mention, for example, the definition of the size
of a market in space, antitrust regulation, or trade modeling. Both economic agents
and political decision makers can profit from insights into these questions either in
order to assess past actions and decisions or to derive guidelines for future action. Fur-
thermore, scientists and international organizations, such as the Worldbank or FAO,
share a particular interest in the analysis of markets for staple foods in developing
countries; see, e.g., Rapsomanikis et al. (2003) or Conforti (2004).

Analyses of this topic can have different focuses. Partly due to the fact that price
data of commodity trade represents the most easily available data in many cases,
considerable interest focuses on this type of data. An extensive literature focused on
horizontal and vertical price analyses exists, e.g., in agricultural economics research,
which is referred to in this dissertation as price transmission (PT) analysis. This
dissertation contributes to this line of research in which it focuses on spatial price
analysis. It discusses selected recent models in detail and thus provides an overview
of recent developments. In doing so, it takes an applied research point of view and
focuses on the intuition behind the models and their interpretation. Furthermore,
it includes three empirical analyses of price relationships in European calf and East
African maize markets. Therefore, it contributes to the literature by reviewing central
properties of several model classes and by studying the effects of differing and changing
policy environments on spatial price relationships. It discusses potential applications
of each model class in PT analysis and, sporadically, in general applied research in
agricultural economics. For selected models, a critique of the methodology is provided
and improvements are suggested.

Often, models in PT analysis implicitly assume that the mechanisms which generated
the observed data did not change during the period studied. However, this represents
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a strong assumption since it implies that the behavior of economic agents remains un-
affected by exogenous events. This dissertation focuses on models which do not make
this assumption. It deals with models accounting for nonlinearities in PT analysis
by allowing the underlying economic processes to vary in response to incentives or
exogenous events.

Prices of a homogeneous commodity on spatially separated markets might react to
each other due to the flow of information, e.g., on past price developments, or the
physical flow of commodities via trade. A notion closely connected to this issue is
spatial arbitrage understood as the exchange of commodities with the objective of
taking advantage of price differences (Shepherd, 1997). Furthermore, the movement,
i.e., the transaction of the commodity across space, is connected with a number of
costs. Transaction costs encompass all expenses which have to be covered to conduct
trade, for example, freight costs, duties, costs for insurance etc.; see, e.g., Barrett
(2001) for an in-depth discussion.

The empirical analysis of the interrelationships of prices of a homogeneous commodity
across space can be approached with a number of methodologies. Among recently de-
veloped methods are cointegration models and parity bounds models. Tastan (2003)
and Fackler and Tastan (2008) suggest estimation methods of indirect inference. Fur-
thermore, directed acyclic graphs may be used; see, e.g., Tastan (2003). Among these,
the first two methods are most popular in current research. Therefore, we focus on the
model families of cointegration and parity bounds models. The family of cointegration
models encompasses various model classes of which we discuss selected ones in this
dissertation. Approaches such as the seemingly unrelated error-correction model of
Thompson et al. (2002) or the smooth transition vector error-correction model (see,
e.g., Mainardi, 2001; Serra et al., 2008; or Ubilava and Holt, 2009) are not dealt with
here.

1.2 Definitions

This dissertation deals with multivariate time series models, that is, models for at
least two variables observed at the same points in time. The observations of period ¢
are summarized into a v-dimensional vector

Yy = (yltv"'yy’ut)/ (1].)

which is observed at time points t = 1,...,7T. In PT analysis, this is a vector of prices
either observed for a homogeneous commodity at different points in space (horizontal
PT) or for different levels of the processing chain (vertical PT). Such a multivariate
time series as an entity represents one realization of a stochastic process which is an
ordered series of random variables. The process will be referred to in the remainder of
this work as data generating process (DGP). In the following, we state the definitions
of several fundamental properties of processes relevant in the context of PT analysis.



1.2 Definitions

Definition 1 (Weak Stationarity). The stochastic process {y;} ,t =...,—2,—1,0,1,2,...
1s said to be weakly stationary if
Ely] = —oco < p < 0 Vt,
E[(yt_ﬂ)(?/t+h—ﬂ)]zzh<oo Vtandh20a1727

This property of time-invariant first and second moments is also termed covariance
stationarity. It means that the mean, variance and covariance of the process remain
constant over time.

Definition 2 (Strict Stationarity). The stochastic process {y;} ,t =...,—2,—1,0,1,2,...

is said to be strictly stationary if

F(yryy - syt) = F(Ytyths - - s Ytptn) for h=...,—2,-1,0,1,2,...

where F'(e) denotes the distribution function.

A stationary process according to Definition 1 is characterized by, among other prop-
erties, a constant mean and a constant variance which leads to a process that exhibits
pronounced mean reversion. That is, it shows a strong tendency to revert towards
its constant mean and to cross it frequently. It does not drift too far apart from this
value, in contrast to a nonstationary process, which may extensively and unpredictably
wander around (Figure 1.1). This property of a stationary process is central to the
interpretation of the models discussed in detail below.

An alternative perspective particularly useful in this context is available in the so-called
stochastic trends, which are the source for the nonstable behavior of nonstationary
processes (see, for example, Enders 2004, ch. 4.2; or Juselius 2008, ch. 2). A stochastic
trend is characterized by a nonconstant slope which is stochastically changing from
period to period. An example of a stochastic trend is contrasted to the constant slope
of a deterministic trend in Figure 1.2 below.

Definition 3 (Integration). A process y; is called integrated of order d, abbreviated
as y; ~ I(d), if Ay, = (1 — L)¢ y, is stationary, where Ly, = y,_1 denotes the lag or
backshift operator.

According to this definition, a stationary process is integrated of order zero which is
denoted as I(0). Processes with d > 1 are referred to as nonstationary processes.
One type of a nonstationary process is the unit root process which is defined as a
nonstationary process whose characteristic function has roots which equal unity.? In

1 We use the short-hand term stationarity to refer to the concept of weak stationarity because it
suffices for the following discussions.
2 Such roots may be real or complex. If all roots lie inside the unit circle, i.e., the absolute values of
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Figure 1.1: Nonstationary Process vs. Mean Reversion of a Stationary Process

this thesis, we only consider processes with at most one unit root, that is, (1) processes
for which Ay, = (1 — L) yo = vy — yi—1 ~ 1(0).

Definition 4 (Cointegration). An I(d) process y; is called cointegrated of orders (d,b),
that is y, ~ C1(d,b), with cointegrating vector k if k'y, is integrated of order d-b, that
is, K'yy ~ I(d —b) whereb=1,...,d; d=1,2,...;k # 0.

Since this thesis focuses on processes which are at most /(1), we mean, when using the
term cointegration, linear combinations of stochastic processes which are stationary

(1(0)).%

The stochastic trend perspective on cointegration has a very intuitive appeal. Vari-
ables can only be cointegrated if they possess at least one common stochastic trend.
The linear combinations via « lead to the cancellation of the common stochastic trends
between certain subsets of the multivariate processes so that the resulting combina-
tions are no longer driven by stochastic trends and are thus stationary. However,
the multivariate system as an entity will be driven by at least one stochastic trend if

ye ~ I1(1).

all real roots and the moduli of all complex roots are smaller than one, then the process is stationary
which means that it shows exponentially declining behavior. Complex roots yield cyclical behavior.
If a real root is lying on the unit circle, i.e., its absolute value equals unity, then the resulting process
is nonstationary. A modulus of one of a complex root yields seasonal nonstationary behavior. Both
cases are called a unit root. The number of unit roots of the process corresponds to the order of
integration d. Roots outside the unit circle correspond to explosive behavior (Juselius, 2008, p. 49
ff). We follow Johansen (1995, Assumption 1, p. 14) and exclude explosive and seasonal roots since
such processes are beyond the scope of this work.

3 We follow Liitkepohl and Kritzig (2004, p. 89) and allow for I(0) variables in cointegration
relationships.
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Figure 1.2: Stochastic vs. Deterministic Trend
The Basic Model

The basic model class considered here is the vector autoregressive model (VAR). In
general, the model has k lags:

ye = Iy + - + gy + €. (1.2)

It is said to be of order k, denoted as VAR(k).* The k presample values y_p.1,. - ., ¥o
are assumed to be fixed. The errors ¢; are assumed to be independent and identically
distributed (7id) with a multivariate normal distribution N,(0,Q). II; ,i = 1,...,k
denotes (v x v) coefficient matrices.

Although model (1.2) is apt to represent both stationary and nonstationary processes,
in most cases it is not the most convenient formulation due to a number of reasons.
It can be repara-metrized into the so-called wvector error-correction model (VECM)
which is identical to the VAR representation (Juselius, 2008, p. 60-61). The VECM
parametrization eases the multicollinearity problem of the VAR formulation. Most
importantly, it enables a more intuitive interpretation of the estimated parameters
because it is able to distinguish between long-run and short-run effects due to an
orthogonalization of the variables. Thus the VECM(k — 1) becomes

Ayt = Hyt—l + FlAyt—l + -+ Fk—lAyt—k—l—l + €t. (13)

The (v X v) matrix IT = —(I —II; — - - - — 1) contains the influence of the levels of the
variables of the previous period. The (v x v) matrices I'; = —(Il;1; + -+ II) ,i =

4 Model (1.2) can also be augmented by ®D;, where D; is a vector of m deterministic terms such
as a constant, a linear trend, seasonal or interventional dummies. However, we do not consider this
term here because the focus of this work lies not on the role of deterministic variables in this model.
The methods discussed later on are easily adapted for such terms. Detailed accounts can be found,
among others, in Johansen (1995) and Juselius (2008).
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1,...,k — 1 quantify the influences of lagged price changes Ay;_;,72 = 1,...,k and
are usually interpreted as short-run dynamics. Johansen (1995, Lemma 4.1, p. 47)
shows that the inverse characteristic polynomial of the process described in (1.3) can
be written as

A(z) = —IT+ (A + II)(1 — 2) + A"(2)(1 — 2)? (1.4)

where A*(z) is also a polynomial and A = [ — Zf;ll I';. The process is stationary
if A(z) has no roots with modulus < 1. Since the case of nonstationary variables
y; ~ I(1) is of particular interest for applied analysis, roots for z = 1 are allowed
for. For unit root processes, that is for the case z = 1, the polynomial (1.4) becomes
A(1) = —II. The characteristic polynomial is then calculated as

det(A(1)) = det(—II) = —det(IT) = 0.

Consequently, II is a singular matrix if y; is a unit-root process. That is, the matrix II
is not of full rank. Its rank r is smaller than v (rank(Il) = r < v) which is the number
of observed variables. The Granger Representation Theorem (Engle and Granger,
1987) states that in such a case the matrix IT can be factorized into

I =af (L.5)

for some o and 8 matrices of dimension (v x r).> That is, IT has to be of reduced rank
r so that (1.3) becomes

Ay = af'yor +T1Ay1 + -+ T Ayppyr + € (1.6)

This point can also be seen from a more intuitive perspective. We allow at most for 7(1)
processes. The first differences Ay, of such processes are then 7(0), which means that
the difference terms Ay, _; ,7 =0,...,k—1 on both sides are stationary. Only the term
af'y;_1 contains nonstationary variables. But since a stationary term on the left-hand
side of the equation can never equal the sum of a nonstationary and a stationary term
on the right-hand side, a’y;_1 has to be stationary as well, which implies that IT must
be of reduced rank. Furthermore, since an I(0) term premultiplied by some matrix
remains stationary (Liitkepohl and Kriitzig, 2004, p. 89), (o/a) 'd/aB'y;—1 = B'yi1
has to be stationary as well. Hence, 8'y,_1 is integrated of order zero while y; 1 is
integrated of order one which illustrates that 5y, 1 is a (r x 1) vector of r cointegration
relations as defined in Definition 4. That is, § quantifies the linear combinations of
the variables y which lead to the elimination of the stochastic trends common to the
respective sets of variables.® Hence, the matrix is called the cointegration matriz, and
r = rank(Il) the cointegration rank of the system. The matrix « is referred to as the
loading matriz.”

5 Neither matrix is unique, since for any nonsingular matrix B of dimension (r x r) it holds that
I =ap’ = aB(BB'71), ie., many linear transformations of them exist.

6 For the relationship between stochastic trends and cointegration relations, see footnote 10, p. 8.
7 The parameters of this matrix have to satisfy certain stability conditions with respect to sign and
magnitude to ensure that a stable relationship is indeed achieved. Johansen (1995, Theorem 4.2, p.
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1.3 Vector Error-Correction Model
1.3.1 Basic Idea

In their seminal paper, Engle and Granger (1987, p. 251) characterize the fundamental
idea of error-correction models as

“equilibrium relationships, where equilibrium is a stationary point charac-
terized by forces which tend to push the economy back toward equilibrium
whenever it moves away.”

for which Clive W.J. Granger received the 2003 Nobel prize in economics. The
complexity of economic systems leads to complicated interdependencies and mani-
fold sources of exogenous shocks potentially impacting the variables studied. Due to
the infinitively large set of possible combinations of magnitudes, timings, sources and
interactions of such shocks, economic equilibrium relationships which are established
theoretically can rarely - if at all - be observed in economic systems. What usually is
observed are temporary deviations from equilibria which Engle and Granger call equi-
librium errors. Hence, the behavior of economic variables along time which are tied
together by equilibria depends not only on the past movements of these variables but
also on the magnitude of disequilibrium and the economic forces which try to bring the
variables involved back to their equilibrium values. A crucial factor determining the
behavior of such variables would be omitted if the influence of the usually existing dis-
equilibrium on the variables were not regarded. Since economic equilibrium-restoring
forces try to correct the equilibrium errors, this phenomenon is termed error-correcting
behavior. Hence, the behavior of a set of economic variables, say prices, which are tied
to each other by at least one equilibrium relationship can be formulated as

current price movement = error — correction + n(past price movement) (1.7)

= g(past equilibrium errors) + n(past price movement)

where g(e) and n(e) are linear functions, typically coefficients which are multiplica-
tively connected with the respective variables, i.e., the o and I'; coefficients in (1.6).

Early versions of this model class were “formulated as the response of one variable,
the dependent variable, to shocks of another, the independent variable” (Engle and
Granger, 1987, p. 259). The vector version of the model, that is, the VECM, how-
ever, extends the approach to more than one equation with at least two variables and
allows for complex interdependencies between the variables by treating all of them

49 fI') provides the following condition which has to be checked in case the loading coefficients have
the wrong sign since their effect is not easily assessed. If o/, I'8, where &’a; =0,5'5, =0, is of full
rank then cointegration takes place for the respective 8 even though the variables themselves might
be explosive.



1 Introduction

as endogenous.® This includes the possibility of various equilibria between subsets of
them. The importance of the Granger Representation Theorem lies in proving the
equivalence of cointegration and error-correction. Hence cointegrated variables can be
seen as the results of economic equilibria and exhibit error-correction behavior. On
the other hand, variables which are generated according to a (vector) error-correction
process are cointegrated. Here, the parallel to the concept of equilibrium in economics
becomes apparent. An equilibrium defines a stable relationship according to which
economic agents act. Due to the complexity of the economic system, stochastic influ-
ences usually do not permit the attainment of the equilibrium in practice. Whenever
the economic system is not in equilibrium, incentives are created for economic agents
to react - with the result that the system tends back towards its equilibrium state.

One can imagine a number of areas in which the notion of economic equilibria and
the interdependencies of the variables tied to it are of interest. Examples are demo-
graphics, voting behavior, trade and price analysis as mentioned in Engle and Granger
(1987, p. 254): “The idea is simply that a proportion of the disequilibrium from one
period is corrected in the next period. For example, the change in price in one period
may depend upon the degree of excess demand in the previous period.” Hence, this
methodology seems suitable to the study of price dynamics and price interrelation-
ships, in particular for PT analysis.

1.3.2 Model Structure

The VECM is formulated as in (1.6) in the following way:

k—1
Apt = 6] ﬁ/pt—l + Zl FiApt—i +Et. (18)
Loading matrix 1=

Cointegrating relations
(Equilibrium errors)
N J Past price movement

. (Short-run dynamics)
Error-correction

(Adjustment speeds)

As mentioned above, I';,7 = 1,...,k—1, denote the parameters quantifying the short-
run dynamics, that is, the influences of past price changes Ap;_;,i =1,...,k— 1 on
current price changes.” [ denotes the cointegration vector, i.e., the weights which
lead to the cancellation of the stochastic trends among the sets of cointegrated vari-
ables.!'® Each linear combination via the columns of 3 yields the difference between

8 Of course, such a model can be augmented by variables which influence some of the endogenous
ones but are not influenced by them. This issue is beyond the scope of this work; see, e.g., Garratt
et al. (2006) and references therein.

9 The dimensions of the matrices and vectors involved correspond to the ones of equations (1.3) and
(1.6). Note that the constant may either be restricted to the cointegration space, that is, included in
the cointegration relations as in (1.8), i.e., p = (const,pi¢, ..., pyt)’, or may be modeled outside the
cointegration relations so that p; = (p1t, ..., put)’-

10 This points to the duality between stochastic trends and cointegration relationships. In a system
of v variables and r cointegration relationships, there are v — r remaining stochastic trends which do
not cancel and drive the system. These are also called common trends; see, e.g., Johansen (1995, ch.
3), Juselius (2008, ch. 5), and Enders (2004, ch. 6) for detailed discussions and illustrating graphs.
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each (hypothetical) equilibrium price and the respective observed price, i.e., the resid-
ual. Thus, the term f'p,_1 = ect;_; also quantifies the equilibrium errors of each
cointegration relationship for each time point ¢,t = 1,...,T. « denotes the so-called
loading matriz which contains the magnitudes and directions of the responses of Ap,
to the equilibrium errors 3'p;_;. It quantifies the rates or the relative speeds at which
the adjustments of the equilibrium errors occurs. Its elements typically have values
between —1 and 1.1

An example of a typical VECM of two variables is depicted in Figure 1.3. In the upper
left panel, the close co-movement of the two price series becomes apparent. Further-
more, the common stochastic trend which drives the cointegrated system, that is,
which causes the system to move upwards and downwards, is plotted as a dashed line.
In the upper right panel, the mean reversion behavior of the stationary equilibrium
error ect; can be seen. The green line indicates whether the model parameters are
constant or show regime-dependent behavior, which will be addressed in more detail
below. Clearly, the parameters of the VECM are constant. The lower two panels show

the densities of the generated prices and equilibrium errors.

Prices, ect, and common stochastic trend

T=300 Equilibrium errors and regimes

80 7 — ect — 67 | — ect Regimes|

25 — p* - - - Stochastic trend 4
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Note: The model is generated according to equations (1) and (2) in Balke and Fomby (1997, p. 629). The parameters
are set in order to obtain a reasonable model which potentially could be observed in practice, particularly regarding
the adjustment speeds «. The simulation uses the parameters a = —2, p = 0.4, 8 =1, and €, n: ~ NID(0,1)
(notation of Balke and Fomby). Hence, the resulting parameters of model (1.8) are a = (—0.20.2)T, 8= (1 —2)T,
and k = 1, i.e., no short-run autoregressive dynamics are existing (I'; = 0).

Figure 1.3: Example of a VECM

1 For the condition indicating the stability of the relationship, see footnote 7, p. 6.
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At this point, we introduce a related specification, i.e., a transformation of this model
which will be referred to several times in the remainder of this thesis. This specification
concentrates out, or “cleans,” the model from the influence of the short-run dynamics
['; which are usually not central for interpretation anyhow. Moreover, it is the key to
Johansen’s maximum likelihood approach (Johansen, 1988, 1991) and will turn out to

be useful in the dissertation later on.'? The theoretical basis of this transformation is
the Frisch-Waugh-Lovell Theorem (Frisch and Waugh, 1933; Lovell, 1963).

Theorem 1 (Frisch-Waugh-Lovell Theorem). Let y = X5 4+ u be a linear model
where X and (3 are of adequate size and can be partitioned into (X, Xo) and (3, B5),
respectively, so that

y = X101 + XoB2 + u. (1.9)

Furthermore, let My = I — X, (XlTXl)f1 X[ be the orthogonal projection matriz of
the partial model y = X151 + uy so that Myy = uy.

Then the OLS estimates of Po and of the residuals from equation (1.9) and from
My = My X505 + residuals (1.10)

are numerically identical.

Proof 1. See, e.g., Davidson and MacKinnon (2004, p. 68 f).

The transformed variables M;y and M; X, in (1.10) are the residuals of the partial
regressions of y onto X; and of X, onto Xj, respectively. Hence, they represent
transformed versions of y and X5, both of them “cleaned” from the partial influence
of X;. Consequently, the theorem states that the partial impact of X5 on y can be
estimated in two steps by regressing the residuals from each of the partial regressions
onto each other.

In the given context of the VECM, the principle of the Frisch-Waugh-Lovell Theo-
rem turns out to be extremely useful because model (1.8) can be transformed so that
the partial impact of the short-run dynamics, quantified by I';, can be concentrated
out, i.e., it disappears from the model. The resulting model is “cleaned” from any
autoregressive dynamics along time and only consists of “pure” error-correction be-
havior towards the cointegration relationships. In line with Juselius (2008, p. 149),
the transformed version (R-form) of the full model (1.8) (X-form!'?) is obtained by

12 Figure 1.3 plots such a specification since I'; = 0.
3R means reduced and X denotes the untransformed matrix of right-hand-side variables.

10
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first writing (1.8) in a more compact way as

Zot = Ap;
(vx1)
(th) =Pt
ux1
(1.11)
I = (', Ty, ..., Tk1)
(vx(k—1)v)
T = (AP AP g, AP y)'
(v(k—1)x1)
so that it becomes
Z()t = O{B/th + FZQt + €¢. (112)
where Zy, Zy, ' = (I'1,T9,...,['x_1) and Zy are matrices of dimensions (v x 1),

(v x1), (vxwvk—1)) and (v(k — 1) x 1), respectively. Based on theorem 1, the
following two auxiliary regressions can be set up:
Zot = B(/)ZQt + Ry

. 1.13
Zy = B1Zy + Ry, ( )

The matrices Bé and B{ are OLS estimates. Hence the residuals Ry, [ = {0,1} that
would be obtained by regressing Ap, and p;_1, respectively, on Ap; 1, Ap;_o, ..., Aps_p11
can be calculated as
Rot = Zow — By Zay
= Zor — MoaMsy' Zoy

1 « 1 & B
= Zoi ~ <f;ZOtZ§t> (igzztza) ot

N (1.14)
Ryt = Zot — By Za
= Zy — MioMy,' Zoy
1 1 B
=7y — <f ; thz§t> (? ; Zztzgt) Ty
The resulting concentrated model, i.e., the R-form of a VECM then becomes
Ro: = aff' Ry, + residuals (1.15)
so that (1.7) becomes
current ‘purged’ price movement = ‘purged’ error — correction (1.16)

= g(‘purged’ past equilibrium errors).  (1.17)

11
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The variables of the model are transformed according to Theorem 1 so that the I"
parameters disappear. That is, the remaining variables are “purged” from the impacts
of the autoregressive dynamics which mix in the X-form of the VECM with the equi-
librium adjustment so that Ap; is the result of both influences. These influences are
on the one hand the pulling forces towards the cointegration relationships and, on the
other hand, the inertia forces which link the current price movement to a stronger or
weaker extent to past movements. In the R-form in contrast, the left-hand side vari-
ables Ry; are only determined by the “purged” deviations from equilibrium g’ R;; and
their adjustment towards the long-run equilibrium. Hence, the R-form corresponds
to a VECM without any short-run dynamics I';, i.e., k —1 = 0. Theorem 1 proves
that the parameter estimates & and /3 are identical to the ones of the X-form in (1.8).
The regression (1.15) is for cointegrated variables for which 0 < rank(Il) = r < v,
also called a reduced rank regression (Anderson, 1951). It is not only the basis for
Johansen’s (1988; 1991) likelihood-ratio testing and maximum likelihood estimation

procedures but also for a number of model specification tests, e.g., as outlined in
Juselius (2008, ch. 9).

Figure 1.4 presents three graphs which provide a schematic summary of key charac-
teristics of the model. Hence, we call them characteristic graphs. They will be plotted
for each of the models discussed in this thesis for the sake of comparison. The left
panel presents a realization of the stochastic mechanism generating the regimes of
model parameters, which are in some model classes used to capture the nonlinearities
as explained below. It shows the number of the model’s regimes and a schmematic
depiction of the switching between them. In the case of the VECM, the parameters are
assumed to be constant which means that the model possesses one regime. The middle
panel plots an example of the adjustment speed « in dependence of the magnitude
of the (possibly lagged) deviation from equilibrium quantified by ect. It schemati-
cally shows the values of o depending on the regimes, i.e., their assumed behavior in
each regime and across the regimes. The right panel depicts the price response Ap;,
in dependence of the magnitude of equilibrium errors of the previous period ect; 1,
which results from the regimes of the adjustment behavior in the middle panel. That
is, it depicts the error-correction as a function of the past equilibrium errors without
regarding short-run dynamics (see equation (1.8), p. 8). For the VECM, there is one
possible response which is constant for any magnitude of ect depicted by the bold line
of constant slope.

1.3.3 Estimation

The estimation of the VECM is not straightforward for cointegrated variables. While
the estimates of the short-run dynamics I'; can be obtained via OLS (Liitkepohl and
Kratzig, 2004, p. 97) given values of the other two parameter matrices, the estimation
of the cointegrating matrix [ poses a particular challenge for which a number of
approaches have been developed. Gonzalo (1994) compares the following estimators

12
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Figure 1.4: Characteristic Graphs of the VECM

regarding their asymptotic distributions and finite sample properties:
1. Engle-Granger two-step OLS regression (Engle and Granger, 1987),
2. nonlinear least squares (Stock, 1987),
3. principal components (Stock and Watson, 1988),
4. canonical correlations (Bossaerts, 1988), and
5. Johansen’s (1988) maximum likelihood estimation.

Besides these, methods such as instrumental variables (Hansen and Phillips, 1990),
spectral regression (Phillips, 1991), a two-step (252) estimator (Liitkepohl and Kratzig,
2004, p. 103 f) and others have been suggested. Recent developments extend estima-
tion to Bayesian analysis, see, e.g., Strachan and Inder (2004). Gonzalo (1994) finds
that among the five estimators studied, Johansen’s maximum likelihood approach is
best in the sense that it is the only method which takes into account all prior knowl-
edge of unit roots, the multivariate character and the dynamics of the system. The
resulting estimates have desirable econometric properties and inference can be con-
ducted via usual y?-tests. The method outperforms the other four in finite samples,
i.e., with 100 and 300 observations per time series, respectively, and is found to be
robust to nonnormality.

For the Johansen approach, however, lag length selection plays a crucial role since the
estimates depend on the chosen number of lags. Simulation results of Gonzalo (1994,
p. 220 f) demonstrate that the method appears to be robust to overparametrization
which is the inclusion of a higher order of lags than in the true model. However, if
fewer lags than actually needed are included, the approach is outperformed by the
method of Engle and Granger (1987). We do not go into more detail for lag length
selection but refer instead to detailed accounts, e.g., in Johansen (1995, ch. 2.3.1),
Liitkepohl (2007, ch. 4) or Liitkepohl and Krétzig (2004, sec. 2.5.1 and 3.4.1).

13
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In the following, we briefly outline the steps of the Johansen approach because of its
desirable properties. The estimation proceeds stepwise. The formulae are subsequently
derived conditionally on parameters assumed to be known. First, the cointegration
matrix [ is estimated via a maximum likelihood approach based on a reduced rank
regression, then the loading matrix o can be estimated via OLS. Conditional on the
estimated matrix II, the short-run parameters I'; can be estimated via equationwise
OLS. The core of Johansen’s estimation method for the a and  parameters is the
reduced rank regression of (1.15):

ROt = Oéﬁ/th —+ €, t= 1, Ce ,T, €~ NU(O,Q> (118)

The assumption of multivariate normality appears to be crucial since it leads to the
equality of the maximum of the likelihood function of (1.18) to the determinant of the
covariance matrix of the model’s residuals as a function of fixed § and a:

L2213, a) = IQ(@ a)| + constant terms. (1.19)

max

Step V1: Estimation of the cointegration matrix 3

& can be expressed as a function of § solely. Hence, the covariance matrix can be
rewritten as a function of only the variables in (1.18) and /. Its determinant can be
factorized into the following terms:

|8'(S11 — 510500 So1) ]

9! ‘ = |0l - 1.20
28)| = 1500 Bh (1.20)
where S, = T71 Zthl RyR! . and I,m = {0,1}. The estimates of  are then deter-
mined as R R
B = argmin Q(ﬁ)’ (1.21)
B
resulting from the solution of the eigenvalue problem
\PSH - Sll + SlOS&]lSOﬂ = |>\511 - 5105&)1S01| = 0 (122)

where the ratio in (1.20) is “stripped off” the ’s. The resulting enumerator is sub-
tracted from the resulting denominator and Si; is factored out so that A = 1 — p.
Hence, the solution ,@ is the matrix of eigenvectors wy, ..., w, ordered according to
decreasing eigenvalues \; > ... > A\, > 0. The determinant of the covariance matrix
can thus be expressed as

‘Q(B)‘ = [Sool ﬁ(l —X)). (1.23)

The resulting eigenvectors w are not identified. Some normalization has to be carried
out for interpretation'?, for a detailed account on identification, see Johansen (1995,

14 The normalization is usually performed by dividing the eigenvector by of one of its elements.

14
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ch. 5) or Juselius (2008, ch. 12-15). The normalized eigenvectors are usually denoted
as 3, j = 1,...,v. The larger the estimated eigenvalue 5\]-, the more pronounced
the stationarity of the linear combination 3ip;. Hence the estimated eigenvalues may
be used to discriminate between stationary and nonstationary linear combinations.
This is the central idea of the Johansen trace test for the number of cointegration
relationships, i.e., for the rank r = rank(Il), among the v variables; see, e.g., Johansen
(1995, ch. 6) or Juselius (2008, ch. 8).

Step V2: Estimation of the loading matriz «

Equation (1.18) can be transformed into

Ry Ry,0 = af'Ry Ry, f

, (1.24)
So18 = afB Sup

so that the OLS estimator of «, where § is assumed to be given, is

a(B) = SuB(A'Sus) " (1.25)

Step V3: Estimation of the short-run dynamics T';

The short-run dynamics I'; can be estimated by equationwise OLS assumed that I1 =
af’ is known (Liitkepohl and Krétzig, 2004, ch. 3.3.2). Based on the notation in
(1.11) one obtains:

(vxT)
ZlT = (Z11,--+, Zir)
() (1.26)
Zy = (Zn,. .., Zor)
(o(k—1)xT)
E = (617 JET)
(kxT)
so that (1.12) can be compactly written as
Zo =112, +TZ, + E. (1.27)

The equationwise OLS estimator is then obtained via

EE =[(Zy—112)) — T2y [(Zo — 1Z)) — T Zy)
= (Zo —N2Zy)(Zy — N12,) — 2(Zy — WZ1) Z4T + T Zo Z4T
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and

OEE'
or

= —2(Zy— N2\ 2+ 212,75 = 0

so that the final estimator of I' becomes
U = (Zy — 112,) Z}( 2, Z}) 7L (1.28)

In practice, the parameters assumed to be known in each step are replaced by their
respective estimates from the step before.

1.3.4 Interpretation

Although the method is well established in many fields of research, the interpretation
of the estimated parameters in the context of PT analysis is not consistent throughout
the literature. Fackler and Goodwin (2001, p. 976) note that “the terminology is often
loosely applied, such that the same words may involve distinctly different concepts
in different studies”. Hence, we try to suggest a terminology which we believe might
contribute to improving the clarity of interpretation. We distinguish between the no-
tions of market integration (MI) and price transmission (PT) on the one hand and,
on the other hand, aim to provide a meaningful interpretation of the parameters of
the VECM. Based on the above thoughts, the mere existence of cointegration rela-
tionships among nonstationary prices already contains important information on their
relationships.

Fackler and Goodwin (2001, p. 978) define market integration as “a measure of the
expectation of the price transmission ratio”. Barrett (2001, p. 20) opts to “distinguish
between flow-based notions of integration and price-based notions of efficiency based
on economic concepts of equilibrium”. According to this definition, trade flows are
enough to provide evidence of MI since they demonstrate that the product is tradable.
Gonzalez-Rivera and Helfand (2001, p. 576) define integrated markets as “the set of
locations that share both the same commodity and the same long run information”.
Consequently, MI appears to be a dichotomous characteristic. However, on page 577,
they mention the “degree of integration between locations which belong to the same
market”. Hence, MI is understood rather as a continuous measure which contradicts
the dichotomous character mentioned before in the paper. Thus, for Gonzalez-Rivera
and Helfand (2001), MI appears to be both a dichotomous variable as well as a con-
tinuous variable.

Our understanding of MI comes closest to that of Gonzalez-Rivera and Helfand (2001)
since it encompasses two dimensions of the trading process: the flow of information
and a trade-flow-based measure in Barrett’s sense. We, however, clearly distinguish
between MI and PT. MI is thought of as a long-run characteristic and thus an ex-
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1.3 Vector Error-Correction Model

clusively dichotomous variable. PT, in contrast, is seen as having a long-run as well
as a short-run dimension, which corresponds to the differentiation between both time
horizons in the VECM.

We argue that the mere tradability condition does not suffice to ensure that markets
are integrated. For example, the setting in which national policy makers implement
prohibitive border protection measures to disconnect the domestic from the interna-
tional market. Domestic products are nevertheless exported to the world market by a
subsidized state trading agency can hardly be viewed as an integrated market although
it would be regarded as an integrated market based on the definition of Barrett (2001).

We define MI in the following way: a set of v markets is called integrated if they
are all connected by either direct or indirect trade flows and if they are driven by
one and only one common factor implying the existence of » = v — 1 cointegration
relationships in the system of prices, each of which consisting of a pair of prices. In
this sense, MI appears to be a dichotomous measure, that is, trade flows and v — 1
long-run relationships are either exhibited in v markets or not.

While MI is thus understood as an exclusive long-run concept, PT covers both long-run
and short-run dynamics. PT in the long run is quantified by the slope parameters of the
cointegration relationships. That is, we regard it as measured by the coefficients of the
prices of the cointegration relationship in the j* column of the cointegration matrix
3.1 Hence, we understand long-run PT as a gradual measure since the respective
coefficients can take continuous values. The closer they are to zero, the weaker the
PT is in the long run. In the special case in which these slope parameters can be
restricted to one, the long-run PT is said to be complete or perfect.'® This implies
that price shocks are fully transmitted between markets in the long run. The short-run
dimension of PT is quantified by the signs and magnitudes of the adjustment speeds.
The coefficients in the j** row of the loading matrix o quantify the magnitudes with
which each of the v prices reacts on the j** disequilibrium relationship from period
to period, i.e. the speeds at which a price shock is corrected by the prices. The sign
of the respective parameter signals the direction of the adjustment, and its absolute
magnitude usually lies between 0 and 1 and thus corresponds to the percentage of any
shock which is corrected by the prices in each period.!” Thus, PT in the short run is
a gradual measure. We regard this distinction as necessary since PT can be complete
in the long run albeit slow in the short run. Each of these characteristics describes
one aspect of interrelationships of markets in space (see, e.g., Appendix A, pp. 101).

151f logged data is used in the analysis, these slope parameters are often interpreted as long-run
PT elasticities. Different opinions exist in the literature regarding this interpretation; see Liitkepohl
(1994), Balcombe and Morrison (2002), Barrett and Li (2002) or Rapsomanikis et al. (2003), who are
critical of it, in contrast to Johansen (1995), who shows that this interpretation is valid under some
conditions.

16 Which coincides with the satisfaction of the so-called law of one price, see, e.g., (Fackler and
Goodwin, 2001, p. 977) for details.

17 For a condition which indicates the stability of the estimated model, see footnote 7, p. 6.
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Further insights into spatial interrelationships of prices can be gained from the ex-
amination of causality and measures which estimate the time path of the reaction of
prices. We do not go into detail here, but refer instead to the literature. Causality
can be assessed via concepts such as Granger causality or instantaneous causality (see,
e.g., Litkepohl and Kratzig, 2004, ch. 3.7 and references therein). Measures which
estimate the time path of price responses to a shock are:

e Impulse response functions (see, e.g., Liitkepohl and Krétzig, 2004, ch. 4 and
references therein),

e Generalized impulse response functions (see, e.g., Koop et al., 1996, and for
applications, e.g., Klasra, 2009, or Ubilava and Holt, 2009),

e Nonlinear impulse response functions (see, e.g., Potter, 1995), and

e Persistence profiles (see, e.g., Lee and Pesaran, 1993, and for applications, e.g.,
Garratt et al., 2006, Ben-Kaabia and Gil, 2007, or Appendix A, pp. 101).

Rapsomanikis et al. (2003) mention another methodological approach besides cointe-
gration, error-correction, and price paths, which they regard as a potentially insightful
means to evaluate another aspect of markets’ interrelationships in space. This ap-
proach is the asymmetric error-correction model (AECM). We do not go into more
detail at this stage, as it will be discussed in section 2.1. Here, we point out that
such the AECM is one possibility of modeling nonlinearities. Hence, their remark
might be reformulated in that it is important for the analyst to identify the source of
nonlinearities potentially existing in the data and choose the model which provides an
adequate description.

1.3.5 Applications

The VECM has been widely applied, for example, in the areas of macroeconomic
analysis, financial analysis, analysis of purchasing power parity and the law of one
price, and analysis of PT and MI in agricultural or energy markets. Therefore, we do
not elaborate on potential areas for applications of this model, but refer instead to
the literature. Examples of applications in PT analysis can, e.g., be found in Fackler
and Goodwin (2001) or Rapsomanikis et al. (2003). For rich accounts of examples of
applications in other areas of economics see, e.g., Enders (2004), Liitkepohl and Krétzig
(2004) or Juselius (2008) and the references therein. To our knowledge, only a limited
number of publications in agricultural economics exist which analyze a multi-variate
setting with more than two variables and more than one cointegration relationship.
Some of the few examples are Gonzalez-Rivera and Helfand (2001) or Appendix A,
pp. 101.
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1.4 Nonlinearities in Price Transmission

1.4 Nonlinearities in Price Transmission

In this section we state the focus of this dissertation and confine it from related topics
which are beyond its scope.

1.4.1 The VECM and Nonlinearities

The fundamental assumption of the VECM in (1.8) is the stability of the parameters of
the underlying DGP. That is, the elements of the cointegration matrix 3, of the loading
matrix «, and of the short-run parameter matrices I'; are assumed to be constant in
this model. This restriction implies, together with the traditional specification of the
VECM, the three assumptions as outlined in Escribano (2004, p. 77):

1. An unique long-run equilibrium,

2. Error-correction'® which takes place as a constant proportion of the previous
equilibrium error, and

3. Symmetric adjustment towards equilibrium.

We understand under nonlinearities the relaxation of the crucial assumption of pa-
rameter stability. Thus, nonlinearities can have various aspects. Either the long-run
equilibrium is no longer unique, or the elements of the loading matrix « are no longer
constant. Moreover, the short-run dynamics I'; might also not be constant. Based
on the discussion in subsection 1.3.4, pp. 16, nonlinearities can hence appear in the
context of PT analysis in the concepts as depicted in Table 1.1.

Aspect ‘ Time horizon Type of measure Source

Market integration | long-run dichotomous Nonconstant cointegration
Price transmission | long-run gradual Cointegration matrix 8

Price transmission | short-run gradual Loading matrix «

Short-run dynamics | short-run gradual Autoregressive parameters I';

Table 1.1: Aspects of Nonlinearities

Nonlinearities either can originate from one of the mentioned sources or from a com-
bination of several of them. Clearly, the second case is much more complicated. The
main challenge from an applied point of view is the identification of the source(s) of
nonlinearities in the data which will addressed occasionally in this thesis. A detailed
account of identification and testing strategies can be found, e.g., in Juselius (2008, ch.
9). Balcombe and Rapsomanikis (2008) suggest a Bayesian model selection approach.
A number of tests for nonlinearities and for model selection have been developed.
Nevertheless, considerable research remains to be done in this area.

18 As several other authors, Escribano calls the mechanism governed by a equilibrium-correction.
However, we stick to the usual terminology in agricultural price analysis, which is error-correction.
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Although essential for applied analysis, we do not deal with identification of and
testing for nonlinearities in detail here, but concentrate on the description of various
modeling strategies and suitable estimation approaches from an applied point of view.
That is, we are most interested in the question of which model class is adequate in
which circumstances. Furthermore, what are potentially useful applications of these
models to the analysis of empirical questions? Thereby, we restrict the focus of this
work to nonlinearities in short-run PT. That is, we relax the assumptions of constant
and symmetric adjustment speeds.

The focus of this thesis are nonlinearities in short-run PT which are caused by non-
linear error-correction, that is, by nonconstant o parameters. They are referred to in
this dissertation as nonlinearities in price transmission. To our knowledge, this model
type was first suggested by Escribano (1985, 1986) and Granger and Lee (1989). Al-
though the model is referred to in some literature as nonlinear error-correction (NEC)
model (Escribano and Mira, 2002; Escribano, 2004), we call it nonlinear vector error-
correction model (NVECM).'? Tt generalizes (1.7) in the way that g(e) is allowed to

be a nonlinear function of the past equilibrium errors:

current price movement = g(past equilibrium errors) + n(past price movement).
(1.29)

Nonlinear models differ in the specification of the function g which can be modeled in
differing ways. Fundamentally, two categories exist. The first consists of parametric
functions, often modeled in the form of regime-dependent models. The second alterna-

19 The reason for doing so is to avoid confusion. Escribano and Mira (2002) give a general definition
of the NEC model which is valid for multivariate models, that is, models of at least two variables and
at least one equation (i.e. for at least an ECM). They however, do not explicitly mention whether
the model is restricted to one cointegration relationship or applies to the general setting of at least
one relationship. Hence, they formulate the model in terms of vectors which justifies calling the
model class NVECM. Nevertheless, most theoretical results and all the model’s applications so far
are, to our knowledge, either obtained for models with one cointegration relationship (Escribano and
Mira, 2002) or “single equation NEC models” (Escribano, 2004). Error-correction models (ECM), in
contrast to vector ECMs, consist of only a single equation. Hence, we use the term NECM for models
consisting of only one equation (and consequently only one cointegration relationship), in accordance
with the general terminology of this thesis. The term NVECM, on the other hand, we use for models
with more than one equation and at least one cointegration relationship.

20 The NEC model as studied in various publications of Escribano still maintains that n(e) is a linear
function. However, several models, some of which will be treated in Chapter 2, also allow n(e) to
be nonlinear. That is, along with the adjustment speeds, some models also allow the autoregressive
parameters of the short-run dynamics to be nonconstant. However, usually only limited empirical
justification or econometric evidence is provided for doing so. The underlying stochastic mechanism
generating the nonlinearities in these parameters is in this case usually assumed to be identical
to the one of the adjustment speeds (due to the lack of adequate model specification and testing
techniques). The setting in which « and the T'; follow different stochastic mechanisms generating
nonlinearities seems of course possible from a purely statistical point of view. However, this would
yield a highly complex model with problems in the identification of the differing stochastic processes
and the estimation and interpretation of the model. Hence, we regard the former case since these the
focus of these models lies always on nonlinear error-correction but do not regard the latter case.
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tive uses nonparametric functions of the adjustment speeds a. Simple examples of the
first category are quadratic or cubic polynomials of the equilibrium error as, e.g., in
Escribano and Mira (2002). Regime-dependent models may either be used to approxi-
mate the true nonlinear stochastic process, usually via piecewise linearity, or a certain
type may be used if additional information on the regimes of the DGP is available. The
concept of regime-dependent models for the analysis of cointegrated time series was
popularized in the area of PT analysis by the publications of Balke and Fomby (1997)
and Goodwin and Piggott (2001). The current literature on nonlinearities in models
for cointegrated time series only started to emerge 5-10 years later (reviewed in the
following subsection). The usage of nonparametric functions has become somewhat
popular just recently. Examples are Escribano (2004) or Gaul (2008). Applications in
agricultural economics are Serra et al. (2006b) or Goodwin and Vavra (2009).

Regime-dependent models have been quite popular in applied research in the past ten
years or so. They are characterized by a number of discrete regimes between which
the time series modeled switch back and forth according to a certain mechanism.?!
This thesis characterizes a number of processes which are suitable to generate various
regimes. The DGP of a regime-dependent model may hence be seen to consist of two
levels:

1. The stochastic process which generates the regimes and the switching between
them, i.e., the regime-generating process (RGP)*?, and

2. The stochastic process which generates the observations within each regime.

The transition from one regime to another, i.e., the switching, means that at least
a subset of the model parameters takes different but constant values. Hence, an
alternative perspective on regime-dependent models appears to be interesting. A single
regime switch corresponds to a structural break in the dynamic behavior of the time
series analyzed since a structural break is nothing else than the change of some or all
of the model parameters to new constant values. If only one structural break occurs,
the initial set of parameters does not appear again. However, in a regime-dependent
model one structural break is followed by more structural breaks so that the model
parameters typically return at least one time to their initial values and also to some
or all other sets of model parameters (regimes). That is, a regime-dependent model
is characterized by recurring structural breaks leading to alternating regimes (sets of
constant model parameters) in contrast to a structural break model which typically
does not return to a set of parameters.

21 Consequently, they are also referred to as (regime) switching time series models. The nature of
the switching mechanism is prespecified by the researcher. The parameters governing the switching
process are often estimated from the data (discussed in detail below).

22 Some authors, such as Saikkonen (2008), call this model part transition function.
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This dissertation seeks to shed some light onto the common characteristics of and the
differences between the RGPs of

e The threshold vector error-correction model,

e The Markov-switching vector error-correction model,

e The semiparametric vector error-correction model, and
e The parity bounds model,

which will be elaborated in more detail in Chapter 2. We address shortcomings of these
models and suggest improvements. As mentioned above, this dissertation pursues an
applied perspective. It contributes to the literature by reviewing central properties
of several model classes. It discusses potential applications of those in PT analysis
and, sporadically, in general applied research in agricultural economics. For selected
models, a critique of the methodology is provided and improvements are suggested.
Additionally, we present a novel estimation method for a multivariate semiparametric
VECM which allows nonparametric modeling of g while the influence of the past price
movements n is retained to be a linear parametric function.

1.4.2 Literature Review

In this subsection, we briefly review the literature on nonlinear models for cointegrated
time series.?® We believe that this is useful since most of the econometric literature
is comparatively recent. Moreover, we regard it to be a sensible endeavor to give an
overview of the recent methodological developments, since most of them are not cited
in most of the literature of agricultural PT analysis.

As mentioned above, the first NECMs were developed by Escribano (1985, 1986). The
AECM was developed by Granger and Lee (1989). Theoretical advances have been
developed in Escribano and Pfann (1998), Escribano and Mira (2002) and Escribano
(2004). These articles also give a detailed account of the development of the literature
during the 1990s. Escribano and Pfann give some formal treatment of nonlinearities
in error-correction. They discuss several types of asymmetries in error-correction and
give graphical illustrations of these. They suggest rational polynomials as a means to
meet necessary stability conditions and illustrate the AECM, i.e., a single equation
model, with an example of dynamic labor demand. Escribano and Mira give a thor-
ough treatment of the underlying econometric theory and a representation theorem
for NVECMs with one linear cointegration relationship. Moreover, they extend the
model to depend on two lags of the equilibrium error and thus provide the link to the
smooth regression model of Granger and Terédsvirta (1993).

23 The literature of particular model classes is discussed later on in the respective sections of Chapter
2, pp. 25, and in Appendix D, pp. 161.
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Escribano (2004) gives a definition of nonlinear cointegration and develops a NECM
representation theorem which consists of one cointegration relationship and at least
two variables. He suggests a parametric and a semiparametric estimation method
where the latter is based on smoothing splines. A short section on tests for nonlinear
error-correction based on misspecification tests and on a model selection procedure is
provided, in which the semiparametric approach guides the selection of the appropriate
parametric nonlinear function. Furthermore, NECMs based on rational polynomials
are applied with various estimation techniques to British money demand. The speci-
fications used allow for an interval in which (almost) no error-correction takes place,
which is interpreted as manifold equilibria or a “continuum of equilibria,”?* also relax-
ing the assumption of the traditional VECM of a unique long-run equilibrium. Gaul
(2008) develops an innovative approach for the estimation of the threshold VECM and
for the estimation of a partially linear VECM. To our knowledge, it represents the first
developed estimation method of a NVECM which takes into account the multivariate
structure of price systems.

While the approximation of nonlinearities in the loading matrix via regime-dependent
models is widely applied in PT analysis and other fields, only a few recent publications
use nonparametric approaches to model nonlinearities in the adjustment speeds .
Baghli (2005) analyzes the exchange rate of the French Franc/ Deutsche Mark using
several types of NECMs such as a cubic polynomial and nonparametric smoothing
splines. He estimates nonparametrically, via the Nadaraya-Watson estimator, the
partial relationship between the equilibrium error and the change in the dependent
variable which is the exchange rate parity. Furthermore, he estimates a threshold ECM
and computes several descriptive statistics of generalized impulse response functions.
In PT analysis, Mancuso et al. (2003), Serra et al. (2006b), and Goodwin and Vavra
(2009), among others, assess the partial relationship between equilibrium errors and
price changes using the Nadaraya-Watson estimator to the analysis of EU pork and
US meat markets, respectively.

We briefly mention recent publications on nonlinearities other than in adjustment
speeds, and further connected topics. Nonlinearities in cointegration relationship(s)
are discussed in Gonzalo and Pitarakis (2006) or Karlsen et al. (2007). Bec and
Rahbek (2004), Saikkonen (2005) and Saikkonen (2008) investigate the stability of the
NVECM. Karlsen et al. (2007) elaborate on testing for the appropriate parametric
function. On p. 289, they characterize the current state of research in nonlinearities
in models for cointegrated time series as follows: “Nonlinear extensions have centered
on both nonlinear error-correction and nonlinear cointegration. It remains to explore
possible connections between these models.” Along with the issues of model selection
and testing, this is an important task for future research in this area.

24 This characteristic comes close to the threshold VECM to be discussed in section 2.1.
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2 Models in Detail

In this chapter, we aim at giving detailed accounts of the particular forms of the
underlying RGPs of selected models suitable for analyzing nonlinearities in short-run
PT, that is, nonlinearities in the loading parameters of a VECM.

2.1 Threshold Vector Error-Correction Model

This section outlines the most important aspects of regime-dependent time series mod-
els whose RGP is determined by the magnitude of a known variable. The threshold
vector error-correction model (TVECM) for cointegrated data and the threshold vec-
tor autoregressive model (TVARM) for stationary data belong to this model class.
This section draws heavily on parts of Appendix D, pp. 161. We therefore provide
a rather brief summary here and add some thoughts. The TVARM is not consid-
ered here because it represents a well established method which can be found in most
advanced textbooks on time series analysis.

2.1.1 Basic Idea

The intuition behind the class of threshold time series models is that time series
might show a qualitatively different dynamic behavior depending on the magnitude
of a certain variable which is called the threshold variable. The qualitative difference
is formalized by sets of different parameter values. An important property of this
class is that the threshold variable has to be known and quantified. Whenever the
threshold variable crosses a certain constant, which is called the threshold, the regime
switches. This has the consequence that some or all parameters of the model change
in comparison to the former regime. The model parameters are constant within each
regime, but are allowed to be different across the regimes. Appendix D, pp. 167,
provides a detailed account of the economic rationale behind this model class, which
we do not repeat here. Instead, we elaborate an alternative view on this class which
turns out to be useful for relating it to other nonlinear time series model classes. We
believe that this view facilitates the extension and adaption of the model class to a
number of contexts.

In most applications in PT analysis, the following typical specification of the TVECM
is used. It analyzes two price series sharing one long-run equilibrium, and regards
two thresholds. Since the focus usually lies on nonlinearities in PT (see Table 1.1, p.
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19), the equilibrium error lagged by one period is most often chosen as the threshold
variable. This specification is plausible from an economic point of view and consistent
with economic theory of trade in space as discussed in Appendix D. Whenever the
equilibrium error is larger than a certain threshold value and smaller than a second
one (marking the so-called band of no arbitrage), adjustment of disequilibrium, i.e.,
error-correction, is allowed to be different from outside of this band. Hence, the
thresholds which represent the basis of the typical specification can be thought of as
constants which discriminate between regimes. Each regime is associated with a set
of constant parameter values.

However, this traditional view on the model class may be misleading because it hides
the fundamental principle of the model class. The term “threshold” is too restrictive
for thinking about extensions and relationships to other model classes. In contrast to
the typical specification, the threshold needs neither to be a constant nor to take a
single value on the real line. The threshold can rather be thought of as a decision rule
which creates mutually exclusive subsets of the set of possible values of the threshold
variable, that is, it splits the sample into various regimes.! Each subset represents
one regime which is associated with one set of constant parameter values. The model
class is hence piecewise linear. The dynamic behavior of the (system of) time series
is different across the regimes but constant within each regime.? For the development
of the following thoughts, we call the variable inducing the regime switches indez in
order to distinguish it from the term “threshold” which is in the typical specification
reserved for a constant value on the real line.?

A decision rule is a general concept. It can consist of one or more constant real numbers
partitioning the domain of the index, but can also take much more complex forms.
Hence, the principle of the RGP of threshold time series models can be formulated in
general as:

index € subset j = set of parameter values j = regime j Vt (2.1)

where j is one of the possible subsets according to the decision rule. Theoretically, the
power set, as the set of all possible sets of the possible values of the index, represents
the largest collection of subsets for a given domain. However, not each element of the
power set is meaningful in the context of the TVECM as a nonlinear time series model.
The empty set is not meaningful because it means that the respective regime effectively

1 Therefore, the model class is also called sample splitting or segmented regression (Seo and Linton,
2007).

2 The middle panels of Figures 2.3 and 2.4, pp. 33, illustrate this characteristic.

3 We choose the term “index” following the literature on non- and semiparametric models where the
index is a variable which summarizes the effects of several variables (see, e.g., Hérdle et al., 2004, ch.
6). This terminology is also used in Seo and Linton (2007) who “allow the threshold variable to be
a linear combination of the regressors and/or other variables.” (p. 705) The consideration of more
than one known variable causing the regime switches represents itself a generalization of the typical
specification of the TVECM, and will be addressed below.
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does not exist. The set of all possible values is also not meaningful in this context. It
would mean that there is only one regime regardless of which value the index takes.
Hence, this would denote the VECM which is linear because it possesses only one set of
parameter values, i.e., the parameters are constant for the whole sample. The VECM,
described in Section 1.3, pp. 7, can thus be seen as a special case of the TVECM.
Decision rules are only meaningful for the TVECM if they partition the domain of the
index into mutually exclusive subsets. Otherwise, one observation would be classified
into more than one regime, that is, the respective observations would simultaneously
be generated by more than one parameter set.

The decision rule can be known or unknown. In the latter case, it can either be
set exogenously, i.e., imposed on the data, by the researcher or has to be inferred,
i.e., estimated, from the data. At this point, the relationship of the threshold model
class to dichotomous and dummy variables (sample splitting) becomes apparent. For
dichotomous variables, the set of possible values is {0,1}. Hence, only one decision
rule is possible which is known and only two meaningful subsets, {0} and {1}, exist.
The decision rule might be formulated in this case as: whenever the index takes
the value 0, one set of parameter values applies; and if it takes 1, the other set.
The term “regimes” is rarely used in this setting; however, the elementary principles
are identical. Consequently, the dichotomous variable case differs from the typical
TVECM described above in two respects. First, the index is not the magnitude of the
deviation from equilibrium lagged by one period, that is, a continuous variable, but
a dichotomous variable instead. Second, since the dichotomous index can only take
two possible values there is only one possibility of a meaningful decision rule. Hence,
the decision rule is known and does neither have to be set exogenously nor estimated
from the data.

Models using dummy variables are not necessarily identical to the ones based on an
intrinsically dichotomous variable since the dummy is created by the exogenous setting
of a decision rule.* In this case, the decision rule is determined by the researcher by
defining a particular rule to create the dummy variable, possibly derived from theory,
etc. Thle et al. (2010) provide an example of such a special type of a TVECM in the
context of PT. They use a dummy variable as index which discretizes the continuous
variable measuring trade flows between two locations. That is, the dummy variable
takes the value one at time t if trade flows occur and zero otherwise. In PT analysis,
an extensive literature of a model class exists which studies asymmetric PT. The so-
called asymmetric VECM (AVECM) is characterized by a popular and economically
very relevant decision rule.® It was introduced by von Cramon-Taubadel and Fahlbusch
(1994), von Cramon-Taubadel and Loy (1996), and von Cramon-Taubadel (1998) (see
also Table 2.1, p. 30). In this case, the decision rule consists of partitioning the

4 This exogenously determined rule yields the domain of a continuous index to be discretized into
two mutually exclusive subsets of values, i.e., a dummy.

5 Compare p. 18 where the AECM is mentioned. The difference between both models is that the
AVECM consists of more than one equation in contrast to the AECM.
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deviations from the long-run equilibrium into positive and negative equilibrium errors.
That is, the domain of the continuous equilibrium error is discretized according to the
sign of ect;. Since the threshold always equals zero for these models, we call it central
AVECM in contrast to the noncentral AVECM. The latter model also only possesses
one threshold which is, however, not restricted to equal zero. Hence, the class of
threshold time series models in general and the typical specification of the TVECM
in particular encompass these models as special cases as shown in Table 2.1.

2.1.2 Model Structure

In this and the following sections, we deal, if not otherwise explicitly mentioned, with
the TVECM in the typical specification as described above because this is the form of
the model mainly used in PT analysis up to now. The model can be formulated as

v+ aWect, 1+ Zf’;l Fgl)Apt_i +e if ecty_y < W
Apy=1{ 1@ +a@ecti_ 1+ SFITPAp i +e if 00 < ect,y <@  (22)
(

v® + aBect, 1+ Zi:ll F-g)Apt_i +e if 09 < ect,q

where 01 < ) and Ap, is a vector of two prices; the other variables and parameter
matrices have suitable dimensions as outlined in Sections 1.2 and 1.3. In applied
research, the equilibrium error ect is usually assumed to be lagged by one period, but
this may also be adapted depending on the context.

The regime switching mechanism of the RGP of the model class can be endogenous as
well as exogenous. In its typical specification (2.2), the equilibrium error, which is a
function of the price series regarded, is used as the threshold variable. As dealt with
in detail in Appendix D, p. 161, the switching is in this case endogenous because the
regime determination according to the magnitude of the equilibrium errors directly
depends on the time series studied. The threshold variable ect; = f'p; is a linear
combination of the prices p; analyzed. If, however, an index is used which is not a
function of the prices modeled on the left-hand side of (2.2)—for example, a function
of the price of another commodity or the world market price of crude oil instead—the
switching mechanism is exogenous.

In Table 2.1, a number of special cases are displayed which derive from the typical spec-
ification (2.2) under certain parameter restrictions. Among them are models with two
thresholds (TVECM versions), one thresholds (AVECM versions) and no thresholds
(VECM). It gives an indication of the flexibility of the model class and its relationships
to other nonlinear models in PT analysis. Several of these models are illustrated in
this dissertation. For further details, Table 2.1 refers to suitable literature.

Figure D.3, p. 173, displays a realization of a symmetric adjustment equilibrium
TVECM (EQ-TVECM) without autoregressive short-run dynamics together with the
threshold variable, the thresholds, and the resulting history of regimes. Its upper panel
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2.1 Threshold Vector Error-Correction Model

shows the evolution of regimes of the model in time. The number of regime switches
and the tendency of staying in one regime is mainly determined by properties of the
index, which can itself be regarded as a time series (middle panel of the figure). If
the index behaves in a nonstationary fashion, a very low number of regime switches
in a model like (2.2) can be expected. In other words, a low number of structural
breaks in the TVECM parameters is observed. The reason is that the index in this
case shows a strong tendency to drift away from its mean. Consequently, most of the
time it will be in the outer regimes and tend to stay there. In the case of a model
of two regimes, the index will tend to stay in one of them once it has switched to
it. Hence, the regimes will tend to be more stable, since they experience only a few
switches. A similar behavior can be expected if the index appears to be stationary but
shows several intervals of extreme values, as, for example, in Hassouneh et al. (2010).
However, if the index is stationary without extreme values, it stays close to its mean
because it shows pronounced mean reversion. Consequently, the RGP in this case is
characterized by frequent regime switches and comparatively short regime durations,
that is, the model experiences frequent structural breaks which lead to frequently
alternating regimes.

Figures 2.1 and 2.2 portray typical realizations of a Band-TVECM and an EQ-
TVECM, respectively. In the upper right panels it can be seen that a BAND-TVECM
switches more frequently to the outer regimes 1 and 3 and shows higher persistence
there, while the EQ-TVECM tends to stay in the middle regime and to switch back to
it almost immediately as also mentioned in Lo and Zivot (2001, p. 536). The reason for
these differences lies in the differing adjustment (error-correction) behaviors of both
models. While only the equilibrium errors that exceed the thresholds are corrected in
the Band-TVECM, their total magnitude is adjusted in the EQ-TVECM. This can
also be seen in the lower right panels of both figures where the equilibrium errors of
the Band-TVECM are markedly more spread out between between the thresholds in
the middle regime. Figures 2.3 and 2.4, p. 33, show the characteristic graphs of the
Band-TVECM and the EQ-TVECM, respectively. While no error-correction takes
place in the middle regime of the Band-TVECM, it may take place in the case of the
EQ-TVECM as illustrated in the right panel of both figures. The error-correction
of the EQ-TVECM in the middle regime is likely to be weaker than in the outside
regimes as indicated by a less steep slope in Figure 2.4 between the thresholds V) and
6. The middle panels of both figures illustrate the piecewise linearity of the models.
In each regime, the adjustment speed « takes a constant value which may, however,
differ across regimes. Consequently the error-correction as depicted in the right panel
is hence also constant in each regime (indicated by the constant slope). As shown in
the left panels of both figures, regime switches in subsequent periods may only occur
between neighboring regimes, that is, between 1 and 2, or 2 and 3, respectively, but
never directly from regime 1 to 3 or vice versa.

6 Since both depicted models are symmetric, o is equal in the two outer regimes. One may, of course,
also consider non-symmetric models which have in each regime a differnt adjustment speed.
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Model name ‘ Parameter restrictions For details, see, for example,

Band-TVECM v =a® =0 Balke and Fomby (1997), Lo and Zivot (2001)

Continuous Band-TVECM v = a® = 0, —vW/aM) = B Balke and Fomby (1997), Lo and Zivot (2001)
/0B = g2

EQ-TVECM v =@ =B = (e Balke and Fomby (1997), Lo and Zivot (2001)

Symmetric TVECM laW| = |a®], |0V] = |6 Balke and Fomby (1997), Lo and Zivot (2001)

Symmetric adjustment TVECM | |aM] = |a®)] Balke and Fomby (1997), Lo and Zivot (2001)

Symmetric thresholds TVECM |0V = 10| Meyer (2004)

(Central) AVECM 0 = 0@ =0, v =B =P Meyer and von Cramon-Taubadel (2004), Frey

and Manera (2007)
Noncentral AVECM 6 = 9@ 1) =B =0 Subervie (2008), Hassouneh et al. (2010)
VECM 6 = 92 =0, |aM] = [a®], D = Juselius (2008)

v® =0, TW =1® v

%

Note: For a more detailed classification of models for the analysis of asymmetric PT, and more examples of decision rules, see, e.g., Frey and Manera (2007, Table 5).
@ This model may have error-correction in the middle regime (a(?) # 0 as in Figure 2.4) or not (a(2) = 0).
b In the case that the two thresholds of (2.2) coincide, the middle regime does not exist, that is, all parameters with index (2) do not exist.

Table 2.1: Special Cases of the TVECM
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2.1 Threshold Vector Error-Correction Model

Extensions

The TVECM itself is a special case of the smooth transition VECM (STVECM)
developed by Terésvirta (1994).” The STVECM generalizes the TVECM in such
a way that the regimes change smoothly instead of by discrete shifts from one set
of parameter values to another. We do not discuss this model class here in detail;
applications in PT analysis can be found in Serra et al. (2008) or Ubilava and Holt
(2009).
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Note: This graph is based on identical innovations €; and 7; as the one in Figure 1.3, p. 9. For details, see Balke and
Fomby (1997, pp. 629). The resulting parameters of model (2.2) are a()) = a(®) = (=0.20.2)7, o = v(?) =,

B=(1 —2)T,6MW| =63 =3, and k=1, ie, IV =T =1 =0,
Figure 2.1: Example of a Continuous and Symmetric Band-TVECM

We see the most potential for extensions of the model class in the index and the
decision rules creating the regimes. For example, the assumption of constant thresh-
olds, interpreted as constant transaction costs, may be replaced by various modeling
strategies of time varying thresholds as, e.g., in Bekkerman et al. (2009). They re-
lax the assumption of constant thresholds by defining the index as a function of fuel
prices and seasonal components instead. They model seasonally varying thresholds
by using trigonometric functions. The price difference between two markets, that is,
a restricted cointegration relationship, is chosen to be the threshold variable. The

T For an overview see, e.g., van Dijk et al. (2002) and Terisvirta (2004). For further generalizations
see, e.g., Saikkonen (2008). Kristensen and Rahbek (2007) develop likelihood-based inference for this
model class.
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regimes are determined by the magnitude of this variable relative to the seasonally
varying thresholds.
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Fomby (1997, pp. 629). The resulting parameters of model (2.2) are a()) = o®) = (-0.20.2)7,

a® =M =@ =B =0,8=(1 —2)T,10W| =03 =3, and k = 1, i.e., TV =1 = r<3>
Figure 2.2: Example of a Symmetric EQ—TVECM

However, a range of variables and decision rules seem plausible for being regarded as
triggering regime switches in short-run PT. Hassouneh et al. (2010) study the impact
of public alertness on regimes of PT. They construct an index based on the intensity
of media reporting on BSE which might plausibly evoke regimes in short-run PT.
In other words, variables related to the flows of physical goods across space or to
information regarding producer or consumer decisions seem to be promising choices of
suitable indices. Moreover, variables affecting production or consumption other than
information are plausible. For each extension, the connection between the index and
the model parameters should be well established based on economic theory since a
high number of potential indices may potentially be used. The choice and justification
of an appropriate index/ threshold variable and a suitable decision rule remains the
task of the researcher.

Furthermore, the index may be generalized to be a function of more than one variable.
In a setting in which regimes are simultaneously determined by two or more economic
variables, this seems to be a promising option. The variables of the index may be
summarized in a linear combination. Alternatively, a two-dimensional decision rule
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2.1 Threshold Vector Error-Correction Model

Regimes

Figure 2.3: Characteristic Graphs of a Typical Sym. and Continuous Band-TVECM

might be plausible. Based on this rule, each individual variable of the index falls
into subsets of its own domain. One could also imagine that each subset j of the
index might not only be associated with a set of parameter values but also with a
particular functional relationship of them. That is, the functional form of the model
can be thought of as being regime-dependent. However, although these conceptual
extensions might be useful from an applied point of view, such analyses appear to
be very challenging since the econometric theory for estimation and inference of most
cases is not yet developed.®

Regimes
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Figure 2.4: Characteristic Graphs of a Typical Symmetric EQ-TVECM

2.1.3 Estimation

Various approaches have been suggested for estimation of the TVECM, as discussed in
detail in Appendix D, pp. 173, and Table D.1, p. 174. Several more approaches have
been developed recently. Seo (2007) and Seo and Linton (2007) develop the estimation
procedure and theory of a smoothed least squares estimator for the TVECM with two
regimes. The idea of their approach is to substitute the part of the estimation’s

8 The derivation of theory for simple models is already demanding, as discussed in detail in Seo and
Linton (2007); most results for these so far have been obtained under rather strong assumptions.
Hence, the analysis of more complex models poses even more challenges.
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objective function which indicates the regimes with a nonparametric expression in the
form of a kernel. The objective function thus contains a nonparametric component;
in other words, it becomes smoothed. Gaul (2008) suggests an estimation method for
a TVECM with three regimes and proves the consistency of the threshold estimators.
Furthermore, he develops a method for estimating the cointegration rank in each
regime and a supLM test for linearity. Kourtellos et al. (2009) develop a concentrated
least squares estimator for a two-regime TVECM for a specific setting. They assume
an error term in the index which is allowed to be correlated with the errors of the
equations in the two regimes.

2.1.4 Interpretation

Some or all of the parameters of the model may be allowed to be regime-dependent.
Their interpretation in each regime is identical to the linear VECM. The magnitudes
of the estimated thresholds, that is, their magnitudes relative to variables of the model
or further descriptive variables, may also be of interest. For a constrained version of
the typical TVECM, the estimated thresholds have the particular interpretation as
transaction costs as outlined in detail in Appendix D1, pp. 175.

Based on the estimation results, a time series or a history of the regimes and regime
switches can be constructed as, e.g., in the upper panel of Figure D.3, p. 173. The
frequency and timings of switches may provide interesting insights into the market(s)
studied. For example, the timings of the regime switches can be compared to known
events which occurred during the sample period. Furthermore, an impulse response
analysis might yield interesting insights into the market dynamics. A possible measure
is nonlinear impulse response functions as a special case of generalized impulse response
functions; see, e.g., Bekkerman et al. (2009). Alternatively, persistence profiles can be
estimated which might serve for calculating the periods needed to adjust half of any
equilibrium shock, the so-called half-lives, as, e.g., in Ben-Kaabia and Gil (2007).

2.1.5 Applications
The TVECM can be regarded as an established methodology in PT analysis. Both
its typical specification and special cases, as outlined in Table 2.1, are widely applied.

Table DI.5, pp. 200 in Appendix DI, gives a comprehensive overview of applications
of this model and its versions in PT analysis.
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2.2 Markov-Switching Vector Error-Correction Model

2.2 Markov-Switching Vector Error-Correction Model

This section outlines the most important aspects of regime-dependent time series mod-
els whose RGP is governed by a Markov chain. The Markov-switching vector error-
correction model (MSVECM) for cointegrated data and the Markov-switching vector
autoregressive model (MSVARM) for stationary data belong to this model class. This
section draws heavily on parts of Appendix D, pp. 161. We therefore provide a rather
brief summary here and add only a few thoughts. An application of the MSVARM
can be found in Appendix B, pp. 125.

2.2.1 Basic Idea

The concept of modeling the RGP of time series as a Markov chain was developed by
Hamilton (1989). The VECM version of the model was independently published by
several authors, e.g., Jackman (1995), for the analysis of presidential approval, Hall
et al. (1997) for the analysis of house prices, and Tillman (2004) for studying interest
rates. Krolzig (1996, 1997) develop a detailed treatment of MS time series models. The
model class is suitable for a particular form of nonlinearities characterized by Hamilton
(1989) as “discrete shifts in regime-episodes across which the dynamic behavior of the
series is markedly different.” Hamilton and Raj (2002b) mention that “normal behavior
of economies is occasionally disrupted by dramatic events that seem to produce quite
different dynamics for the variables that economists study.” Psaradakis et al. (2004a)
note that the MSVECM is “best suited to situations where the change in regime is
triggered by a sudden shock to the economy, situations which might not be adequately
described by models with smooth transitions or threshold effects.” Furthermore, van
Dijk et al. (2002, p. 28) note that MS models “are most useful when it is impossible to
identify a suitable switching or threshold or transition variable or when it is impossible
to assume that this variable is continuous.”

The intuition behind MS time series models is that the (system of) time series is
subject to alternating and recurring regimes which switch from one to another with
certain probabilities in subsequent periods. The regime changes (switches) occur in a
stochastic manner. Hence, the underlying RGP is assumed to yield a discrete number
of (often qualitative) regimes. The model class is particularly adequate to analyze
settings characterized by recurring discrete shifts between regimes if the variables
triggering them are not known or not measurable.

Hamilton (1994, ch. 22.4) emphasizes the strengths of this model class, which are
comprehensiveness and great flexibility. Furthermore, it can be used, in contrast to
other model classes, in bivariate as well as in multivariate settings. However, from an
empirical research point of view, its merit lies in the property that the factors inducing
the regime switches do not have to be specified. This means that the determinants
leading to the regime switches do not have to be observable and even may not be known
to the researcher a priori. In the light of the problem of data availability that the
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applied researcher is often faced with, such a property appears to be attractive. On the
other hand, this characteristic poses the challenge to the researcher to identify plausible
determinants which triggered the recurrent switches a posteriori. General driving
forces of trade and prices, and a number of further economic variables belong to these
determinants. In the context of PT analysis, regime-switching seems plausible, which
may not be determined by the magnitude of disequilibrium, but rather by exogenous
factors of the surrounding political or economic system, or by the “general state” of
the trading process. PT behavior might temporarily change in the sense that two or
three economic states alternate due to external factors such as general characteristics
of the political or economic system. Raj (2002) mentions national policy changes,
economic recessions, financial panics, and wars as potential determinants in the context
of business cycle analysis. Further “sources of abrupt change” such as government
actions in the form of the introduction or the elimination of legal regulations are
alluded to in Hamilton (1995). Chamley (1999) shows that a unique equilibrium
may exist in a world characterized by imperfect information showing episodes of high
and low economic activity. These episodes may, among other consequences, result
in regimes in disequilibrium adjustment and short-run dynamics of PT which are
randomly switching.

In this context, the criticism might be put forward that the incidences of objective
events such as changes in a country’s trade or agricultural policy, further trade-relevant
governmental actions, or wars are observable. Hence, the regimes can be deduced from
this and do not have to be estimated. Consequently, MS time series models would
neither be the most adequate choice for modeling nonlinearities nor would they be
necessary. Nevertheless, the usage of the MSVECM or MSVARM to model such con-
texts may be appropriate. The reason is that the behavior of economic agents, might
they be producers, traders, transporters, sellers, consumers, etc., does not necessarily
coincide with the incidence of objective events. We argue that it is mainly the eco-
nomic agents and their collective behavior in response to objective events rather than
the events themselves which generate the realizations of economic variables studied by
economists, e.g., price series.” An example is anticipated uncertainty about the near
future due to elections and the following expected (potentially fundamental) policy
changes. Furthermore, behavior of agents might change due to insecurity caused by
turmoil in politically unstable countries. Moreover, exceptional positive or negative
expectations about the near economic future such as forecasts of strong price rises or
pronounced price depressions, crop failures, etc. might be reasons.!’ Economic agents’
behavior changes not only due to the occurrence of objective events but already due
to subjective perceptions of and expectations towards objective events. For example,
agents’ behavior changes not only in consequence of armed conflicts, but already due
the fear of armed conflicts alone.

When the changed behavior of individual agents becomes collective action, that is,

9 For a recent account, see, e.g., Akerlof (2009).
10 For an example, see Agra Europe (2008, middle of page M/3): “Importers still panic buying...”.
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enough individuals change their behavior in the same or in a similar way, it becomes
manifest or is at least mirrored in observable variables created by this behavior, let it be
trade quantities, prices or further socio-economic variables. The class of MS time series
models uses such observed variables as a source of econometric information. Therefore,
it captures the agents’ changing behavior rather than the unobserved or unknown
incidents of objective events. We believe that this distinction is important because one
aspect may, but does not necessarily, coincide with the other. MS time series models
evaluate observed data in order to obtain evidence on regimes and the associated sets
of parameter values. Hence, they are apt to capture shifts in collectively perceived
subjective expectations and feelings towards more or less fundamental changes of the
socio-economic or political framework of a group of economic agents. The model class
provides indications about the timings and magnitude of changes in economic agents’
behavior in response to such exogenous changes. Obtaining measurements on variables
inducing the changes is a challenging task in this context; in most cases it will not
be feasible at all. The stochastic approach towards the regime switches is justified
by the collective action needed to impact economic variables. Because the collective
action is the sum of the behaviour of many individuals it can hardly be regarded as
deterministic or predictable.

The agents’ subjective perception of an objective event might lead to the phenomenon
that their behavior changes a considerable time before an event—maybe an announced
elementary policy change—starts, because of anticipated objections, fears, etc. On the
other hand, it can lead to inertia of agents’ behavior. A certain behavior may continue
considerable time after an event has finished or has been implemented due to broken
trust, subjective extrapolation of today’s difficult situation to tomorrow, pessimistic
perceptions of the near future, etc. The latter phenomenon can be observed in the
current global financial crisis, which was elicited by the collapse of the US housing
bubble in 2007. However, similar mechanisms are plausible to happen on all economic
scales. In the economic literature such phenomena are termed nonfundamentals, mar-
ket psychology, animal spirits, sunspots or self-fulfilling prophecies.!! Furthermore,
some time lag may lie between the formal announcement of governmental actions and
their effective implementation, for example, because the organization of the implemen-
tation lasts several weeks or months. In addition, actions implemented on a national
or regional level might not be published since the government has no interest in this, so
that the exact incidences of obvious events are not even known. Agricultural scandals,
as they occasionally occur in Europe and the Unites States, may result in temporary
changes of consumer demand which might lead to transitionally different transmission
of price signals. Further events such as crop failures, transient demand or supply, or
asymmetries of business cycles may temporarily impact trade and price dynamics.

" For a, brief literature review on this topic, see p. 178 in Appendix DI.
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2.2.2 Model Structure

As mentioned above, the class of MS time series models is suitable for both stationary
(MSVARM) and cointegrated variables (MSVECM). We briefly outline the structure
of the model class following Krolzig (1997). Its flexibility becomes apparent in its
three general formulations:

1. MSVARM of intercept form:

k
=% 4 Z HESt)pt—i + € (2.3)
i=1
2. MSVARM of mean adjusted form:
k
p =310 (py — pS9) + ¢ (2.4)
=1
3. MSVECM:
k-1
pe =) + a5 g, + Z FESt)pt—i +e (2.5)
i=1
WhﬂeQA«NTD(Ojﬂ&U.
The terms (%), Hgsﬁ), ngt) St) and %) denote dependence of the respective pa-

rameters on the regime Sj, Wthh is a realization of the specific RGP of the model
class, namely a Markov chain. The regime variable is allowed to be unobservable. For
a certain time t, it takes an integer value between 1 and the total number of regimes
M,ie., S; = s€{1,2,..., M}, where M is seldom larger than three in applications.
Hence, each regime-dependent variable is again regarded as piecewise constant, that
is, constant in each regime S, = s. For example, a5 = o) is piecewise constant in
the following way:
ol if S =1
ol = ¢ (2.6)

Oé(M) Zf St ==

Although all model parameters in specifications (2.3) to (2.5) except § might be condi-
tioned on regimes, in most cases in practice it suffices to regard only a subset of them
as regime-dependent. In the context of cointegrated variables and nonlinear PT, model
(2.5) is appropriate where «, and maybe also 3, are allowed to be regime-dependent.
Often, a switching intercept is not appropriate (v = 0). The I'; may also be assumed
to be regime dependent. However, the focus of modeling almost always lies on the
nonlinearities in PT (see Table 1.1, p. 19).
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Krolzig (1997, ch. 13) suggests the following classification of the model class:
o MS*(M)-VAR(k) for stationary variables
e MS(M)-VECM(k — 1) or MSCI(M, r)-VAR (k) for cointegrated variables

where M, k and r are defined as above. The placeholder * can be one or a combination
of the following specifications:

A for Markov-switching autoregressive parameters,

H  for Markov-switching residual covariance matrix,

I for Markov-switching intercept (equations (2.3) and (2.5)), and
M  for Markov-switching mean (equation (2.4)).

For example, a MSMH(2)-VAR(1) denotes a model with a Markov-switching mean
with two regimes, regime-dependent error covariances, and one autoregressive lag.'2
Note that a MSM-VAR and a MSI-VAR are in contrast to their linear counterparts, not
equivalent. They imply instead quite different behaviors of the estimated constants.
While constant, i.e., the mean of the variable, jumps immediately to its new level after
a regime switch in the first case, it approaches its new value smoothly in the latter
case, as depicted in Figure 2.5.

—— Time series - = Constant MSM-VAR ---- Constant MSI-VAR
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Figure 2.5: Estimated Constants of a MSM-VAR and a MSI-VAR Specification

The core of the RGP of this model class is a hidden Markov chain of M states as, e.g,
depicted in Figure D.4, p. 180. This RGP is thus also modeled as piecewise linear,
since each state is associated with a set of constant parameter values of the time series
model. Hence, the regime-dependent parameters are constant in each regime but are
allowed to change across regimes. The properties of the Markov chain determine the
regime switching. The chain is assumed to be ergodic, irreducible, and homogeneous.
The first characteristic means that a stationary distribution of regimes exists. The
second condition ensures that any regime can switch to any other regime, i.e., no

12T addition, exogenous variables may be considered in the model, whose coefficients may also
be allowed to be regime-dependent (Krolzig, 1997, section 10.1). In Krolzig’s terminology, such a
specification would be called MS*(M)-VARX (k).

39



2 Models in Detail

‘absorbing’ states are allowed for. This excludes cases in which the chain has two
states and only one regime switch occurs, so that it then stays infinitively long in
the second regime and never switches back. The third assumption states that the
transition probabilities are constant. More details are given in Appendix D, pp. 179.
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Figure 2.6: Characteristic Graphs of a Typical MSVECM

As discussed above, the regimes of the model class are assumed to be generated by
exogenous factors which impact production, trade and consumption. Hence, the RGP
is exogenous in the sense that the regimes do not depend on the price series. That
is, the adjustment speeds are, in contrast to the typical specification of the TVECM,
independent of the equilibrium error (see Figure 2.6). The price series are shaped
instead by exogenous regimes evoked by a changing trade policy, recession vs. boom,
the seasons of a year, etc. Furthermore, the so-called Markov property ensures that the
RGP is memoryless. That is, the switching to a new state at some point in time only
depends on the state of the chain in the previous period, not on periods more in the
past. Hence, the regime switching is independent of its history. Examples of typical
realizations of a MSVECM of two regimes are displayed in Figures 2.7, p. 41, and
D.5, p. 181, respectively. Figure D.5 indicates by the shaded areas how the behavior
of the time series is exogenously determined by the states of the Markov chain which
are displayed in its upper panel.

Extensions

A number of publications relax the assumption of homogeneity, i.e., transition proba-
bilities are no longer assumed to be constant, but instead allowed to depend on fun-
damentals of the economy, characteristics of the country, etc. Diebold et al. (1994),
Hamilton and Raj (2002a), Schaller and van Norden (2002), Camacho (2005) or Jerz-
manowski (2006) are examples. Pelagatti (2005, 2008) proposes a duration-dependent
MSVARM in which the transition probabilities depend on how long the Markov chain
has been in a particular state. Hall et al. (1997) suggest a MS time series model
whose RGP is endogenous in the sense that the transition probabilities depend on
the magnitude of disequilibrium. (Krolzig, 1997, ch. 10), Bhar and Hamori (2007),
and Kim (2004, 2009) allow for endogenous regime switching by letting the transitions
probabilities be a function of the time series analyzed.
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Figure 2.7: Example of a MSVECM

2.2.3 Estimation

Several methods are available for the estimation of this model class; most popular is the
Expectation-Maximization-Algorithm (EMA), of which Krolzig (1997) and Mizrach
and Watkins (2000) give detailed accounts. A verbal description of the EMA is pro-
vided in Appendix D, pp. 181, and Figure D.6, p. 182. Bayesian techniques to
estimate MS time series models are also suggested by some authors (Krolzig, 1997, ch.
8; Frei, 2008). For the MSVECM, a two-step procedure is adopted. First, the equilib-
rium errors are estimated via, say, the Johansen approach. They are then included in
the MSVARM as an exogenous variable; for details, see Krolzig (1996, 1997, ch. 13).

2.2.4 Interpretation

MS time series models are suitable for the identification and characterization of dis-
crete regime shifts when quantitative information of the variables causing them is not
available to the researcher. They provide estimates of the temporal occurrences and of
the magnitudes of regime switches. Besides globally constant and regime-dependent
parameters, probability statements on the regime incidences are estimated. These
statements consist of information on the RGP, the so-called transition probabilities,
and on the regime incidences, called the filtered probabilities and the smoothed proba-
bilities, respectively.
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The transition probabilities are the probabilities 75y = Pr(S;11 = §|S; = s) for
the switching of the Markov chain to state s’ in the subsequent period conditional
on the regime s in the current period, that is, the chances that the parameter set
of the (system of) time series will switch to regime s', given its current regime s.
Hence, the chances of staying in the current regime are also estimated. Based on these
estimates, the expected duration \* of regime s can be obtained via A\* = E[\|S; =
s| = 1_1%5 (Krolzig, 1997, subsection 11.3.4) where 455 denotes the estimated transition
probability of staying in regime s (see the transition matrix (D.15), p. 179). The
filtered probability of each of the M regimes quantifies the chances that an observation
belongs to the respective regime at time ¢ conditional on the data up to this time and
the estimated model parameters. The smoothed probabilities give the probabilities
for the occurrences of each of the M regimes at time ¢ conditional on the in total
available information, i.e., the entire sample at hand (see, for an example, Figure 3 in

Appendix B).

Each period can then be assigned to one of the M regimes. Possible criteria are
the assignment to the regime which has a smoothed probability of at least 0.5 in
this period, which, however, can lead to many unclassified time points in the case
of more than two regimes. Alternatively, it can be assigned to the most probable
regime, i.e., the regime with the largest smoothed probability. In this way, the regime
switches can be timed, and a history of the regimes for the sample at hand can be
constructed (see, for an example, Figure 4 in Appendix B). Based on this regime
history, several questions can be addressed. For example, regime-specific values of
descriptive variables, which were not regarded in the time series modeling, may be
calculated. Thus, the researcher can obtain evidence on the particular characteristics
of each regime, and on potential determinants which induced the identified regime
switches. Hence, conclusions on the extent of the behavioral change of economic agents
can be drawn. The coincidences of estimated regimes with known objective events,
as discussed above, might also be assessed. Furthermore, tests on the estimated time
series parameters can be conducted via a number of testing procedures as, e.g., outlined
in Krolzig (1997, ch. 7). Ehrmann et al. (2001) and Tillman (2003) suggest algorithms
for estimating impulse response functions for MS time series models.

2.2.5 Applications

Applications of the model are mainly found in business cycle and financial research;
see for a review, for example, Appendix B, pp. 125, or Appendix D, pp. 177. Recent
applications beyond the traditional fields are, for example, de Morais and Portugal
(2004), who assess structural changes in the Brazilian import demand. Jerzmanowski
(2006) analyzes the relationship between institutions and growth paths. Owyang et al.
(2007) analyze factors affecting employment growth regimes across US cities. Cologni
and Manera (2009) study the effects of oil shocks on output growth.
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In PT analysis, the model class is rarely applied. Only recently, the MSVECM was
used by Briimmer et al. (2009) to analyze vertical PT between wheat and flour in
Ukraine. Busse and Briimmer (2009a), Busse and Briimmer (2009b) and Busse and
Thle (2009) use the methodology for analyzing biofuel markets and their linkages to
vegetable oil and fuel markets. Appendix B, pp. 125, provides an analysis which uses
the MSVARM. The setting which the model is applied to represents a suitable example
for the discussion in subsection 2.2.1, p. 35. The approach is chosen to analyze the
potential effects of export bans on margins of maize prices between major production
and consumption regions in Eastern Africa. If repeatedly introduced export bans
were effective, trade flows would have been repeatedly altered. Consequently, average
margins should be markedly different in periods with and without export restrictions.
However, neither was the knowledge on ban incidences complete, nor was it clear
whether the enforcement of the bans was effective and varied over time. Thus, several
sources of uncertainty about possible regimes existed.

In the context of agricultural economics, changes in collective behavior of economic
agents may either be directly exogenously imposed, e.g., due to governmental deci-
sions, or resulting from responses to economy-wide or societal developments. More-
over, characteristics of agricultural production processes and complex interdependen-
cies in subsectors might be determinants. Examples for the first case are recurring
but unknown or unobservable policy regimes, such as temporarily implemented foreign
trade restrictions (see example in Appendix B, pp. 125). Examples for the second
case are different types of economic cycles in agriculture, such as cyclic development of
prices or livestock production, most famously the pork cycle. Investment, production
and growth cycles in agriculture or the development of industry-specific work-force
are further variables which seem suitable to be analyzed by MS time series models.
Such analyses would correspond to business cycle analysis in subsectors of economies
in which the RGP is approximated by two or three discrete regimes representing, e.g.,
expanding and contracting phases. Moreover, phases of structural change in agri-
culture during the last decades might be looked at. Economic agents’ response to
recurring phases of conflict or unrest might be an interesting topic to study. Finally,
the model class appears suitable for both horizontal as well as vertical PT analysis in
assessing price phases or regimes of disequilibrium adjustment. Analyses using this
model class might study uni- or multivariate time series which might be stationary
or cointegrated. Hence, quantities such as prices in levels or changes, price margins,
trade quantities, growth rates, or investment behavior can be assessed.
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2.3 Semiparametric Vector Error-Correction Model

This section outlines a flexible model class for analyzing nonlinearities in PT which
encompasses the classes of the linear VECM and the nonlinear TVECM as special
cases. It models the adjustment of the equilibrium errors flexibly via nonparametric
estimation. The autoregressive short-run parameters, however, are regarded as not
exhibiting nonlinearities. Thus, their impact is modeled linearly. Since one part of the
model is modeled nonparametrically while the rest of the model is kept parametrically,

it is called the semiparametric vector error-correction model (SPVECM).'3
2.3.1 Basic Idea

The SPVECM immediately reflects the considerations of Table 1.1, p. 19, regarding
nonlinearities in PT which is caused by nonconstant adjustment parameters in c.
Instead of trying to find an adequate parametric approximation of the nonlinearities,
the functional form of the adjustment is estimated from the data.

This model is applicable in a number of contexts since it does not requiere the choice
of a specific (parametric) RGP. Regime-dependent models such as the TVECM or the
MSVECM approximate nonlinearities by discrete regimes. The STVECM, which is
not discussed in this thesis, relaxes the discontinuous shifts between sets of parameter
values and allows for smooth transition between them. However, in each of these
model classes the researcher has to decide on certain parameters and/ or (parametric)
functional forms. That is, subjective choices have to be made at several decisive
modeling stages, for example, based on an intimate expert knowledge of the markets
to be analyzed or based on previous analysis or on the existing literature. In other
cases, the necessary detailed knowledge for model choice might not be available, or
even if it is, the subsequent choices might be inadequate.

The SPVECM allows for flexible modeling based on the data at hand without imposing
parametric restrictions on the form of nonlinearities as depicted in the characteristic
graphs in Figure 2.8. The approach enables the data to speak to the researcher about
whether it contains nonlinearities and of which form they are. Based on such explo-
rative information, the researcher might then make an informed guess on a suitable
parametric approximation. This fact can be seen by comparing the middle panels of,
e.g., Figures 2.8, p. 47, and 2.3 or 2.4, p. 33, respectively. While the EQ-TVECM
models a nonconstant adjustment speed « via various regimes in each of which « is
constant, the SPVECM models nonlinearities in one regime in which a many take any
smooth function. Consequently, the price response appears similar in both graphs.
However, it is modeled smoothly by the SPVECM, e.g., in contrast to the TVECM.

13 One could, of course, consider also a semiparametric vector autoregression or corresponding non-
parametric models, see, e.g., Tschernig (2004). We, however, focus on the SPVECM in this disserta-
tion.
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2.3.2 Model Structure

We first repeat the structure of the VECM (1.8), p. 8, in order to contrast it to the
SPVECM. The linear VECM can be formulated as

k—1
Ap; = corrVECM Z LiApi_; + € (2.7)
i=1
where corrVEFCM is the error-correction in case of the VECM, in particular:
@11 ... g
corr*M = afp = | B (2.8)
Ayl oo Oy

where « is a matrix of real constants. In case of the SPVECM, the error-correction is
no longer linear but consists of smooth functions instead, so that

mll(ﬁlpt—l) mlr(ﬁlptfl)

SPVECM _

corr (2.9)

mvl(B/Pt—l) mvr(ﬁ',ptfl)

Hence, equation (1.29), p. 20, can be rewritten to

current price movement = m(past equilibrium errors) + n(past price movement)

(2.10)
where m(e) only is assumed to be a smooth function which can take many flexible
forms (e.g. as in the middle panel of Figure 2.8). Since no parameters are estimated,
the functions my(6'pi—1), k = 1...,v; Il = 1...,r can only be plotted. Examples
can be found in Gaul (2008, Figure 3.1).} The model structure corresponds to the
so-called semiparametric partial linear model (PLM) as, e.g., outlined in Hérdle et al.
(2004, ch. 7).

2.3.3 Estimation

The estimation of the SPVECM is a straightforward application of the Speckman
estimator or profile likelihood approach for the estimation of PLMs. Gaul (2008,
sec. 3.3) gives a detailed account which we sketch briefly. For this purpose we adapt
equation (1.12), p. 11, in the following way:

Lot = m(ﬁ,th) +1I'Zs + &

(2.11)
Zoe =mlecty_q) + T'Zs + €.

14 He develops an estimation theory and applies the model to high-frequency German stock market
data. His estimates of the form of error-correction closely resemble a Band-TVECM.

46



2.3 Semiparametric Vector Error-Correction Model

Regimes
& Ap
1
1 e o o o o 1
1
" /\W_l ecty_1
. aSPVEOM — m(ectt_l)

Figure 2.8: Characteristic Graphs of a Typical SPVECM

The estimation proceeds in similar steps as outlined for the VECM in section 1.3.3,
pp- 12. The first step, i.e., the estimation of the cointegration matrix 3, is identical.
The next two steps are reordered and adapted according to the Speckman estimator
for PLMs. Hence, second, the estimate of the parametric part I' is obtained. In the
third step, the nonparametric part m is estimated.

Step SP1: Estimation of the cointegration matrix

Identical to step V1 of the estimation of the VECM, p. 14.

Step SP2: Estimation of the short-run dynamics I';

The model is cleaned from the potentially nonlinear impact of the equilibrium er-
rors ect,_;. By taking conditional expectations, the following concentrated model'® is
obtained:

th — E(Z0t|60tt_1) = F(ZQ — E(ZQ|€Ctt_1)) —f- €¢

. ! (2.12)
Zot = FZ2 + Et.

I could be estimated via OLS if Z%, = Zo, — E(Zo|ect,_1) and Zi = Zo — E(Zo|ect,_1)
were known. Gaul suggests to estimate the conditional means via nonparametric
regression based on the Nadaraya-Watson estimator in order to obtain a feasible esti-

mator of I":
(ecttl — ectjl)
ectt 1 h

(ectt_l — ectj_l)
f(ect;_1) h

15 Note that this is the same principle which leads to the R-form of a VECM, p. 11. Hence, this
model version might be called the RSP -form.

(ZOt]ectt 1

*ﬂ|}_.

(2.13)

(ZQ|GCtt 1

’ﬂ|,_.

i
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where w(e) is a smooth function. The quantity f (ect;_1) denotes the kernel estimator
of the density of the equilibrium errors f(ect;—1), where K (o) is a kernel function and
h is the so-called bandwidth which decides on the degree of smoothness:

T
A 1 ect;_1 —ectj_q
flect;_1) = T ]E:l K ( h ) : (2.14)

In order to avoid numerical problems, (2.12) is multiplied by f(ect,_;) which yields
the density weighted estimates:

flecti_1)Z5, =T f(ecti—1)Z5 + flecti—1)e;. (2.15)

In order to obtain the feasible OLS estimator of the short-run dynamics I', the quan-
tities in (2.15) are replaced by their estimates from (2.13) and (2.14) so that

2

=

(Zor = @(Zulects 1) (Z = w(Zalecty 1)) (f(ecti))

=
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where e/c\tt_l = B’ i = B’ p_1 are the estimated equilibrium errors and B is estimated

in step SP1.

Step SP3: Estimation of the nonparametric adjustments my(ect,_1) in o5TVECM

The result T' of step SP2 can be substituted for T into (2.11) so that it becomes:

Zoe = m(ect;_1) + 7y + uy
Z()t — fZQ = m(ectt_l) + Uy (217)
Zor = mlect,_1) +

This is again a nonparametric regression which can be estimated using the Nadaraya-
Watson estimator in the following way:

> Zu (25)
m(z) = = . (2.18)

I z—ect
5K ()
t=1
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2.3 Semiparametric Vector Error-Correction Model

Thus, a parametric estimate of the linear influences of the short-run dynamics I' and
nonparametric estimates of m(e) are obtained.

2.3.4 Interpretation

For the SPVECM, interpretation of the parameters is the same as for the VECM.
However, the aspects particular to this model are the plots of the estimated functions
m(e). Pointwise confidence intervals may be estimated as in Gaul (2008) who also
develops a nonparametric test for linearity. For model selection, which in this context is
the choice of the optimal bandwidth h, he uses four different criteria: cross validation,
Shibata’s Model Selector, Akaike’s Information Criterion, and the Final Prediction
Error.

2.3.5 Applications

To our knowledge, the SPVECM has not yet been applied except in Gaul (2008) and
Gaul and Theissen (2008). However, several studies in PT analysis have used similar
nonparametric approaches. Mancuso et al. (2003) analyze interest rates using a local
linear regression estimator without regarding short-run dynamics alternatively to a
threshold autoregressive model. Serra et al. (2006b) follow a similar methodological
approach to analyze European pork markets. Goodwin and Vavra (2009) apply a
Nadaraya-Watson estimator to a VECM which they assume not to have any short-run
dynamics.'6

We see one useful application of this approach in exploratory analysis in order to
identify the functional form of the nonlinearities prevalent in the data at hand. It
may guide the researcher in the choice of a suitable RGP for a given data set and
can, hence, provide valuable information on price dynamics. Furthermore, it might
shed light on the question of whether the my,;(ect;_1) are similar or whether possibly
differing functional forms appear. The approach allows for more than one cointegration
relationship. It thus can be seen as a multivariate extension of, e.g., the TVECM not
only in the sense that it flexibly estimates the functional form of the adjustment but
it also is capable of revealing the adjustment in multivariate analyses.

16 Further authors who apply similar approaches are, e.g., Escribano (2004) and Baghli (2005).
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2.4 Parity Bounds Model

This section outlines the most important aspects of the regime switching model class
for PT analysis which is usually known as the parity bounds model (PBM). The
model is described and contrasted to the aforementioned models based on cointegration
analysis. Although dealing with time series data, the model class remains silent on
how the regimes evolve in time, i.e., on the nature of the RGP, but rather focuses on
the results of this mechanism and classifies the data by a flexible mixture distribution
approach into various regimes.

2.4.1 Basic Idea

The model class was first proposed by Spiller and Huang (1986) consisting of two
regimes. The publication was a reaction to the article of Stigler and Sherwin (1985) of
the title The Extent of the Market, in which they proposed a simple parallel price move-
ment test. Sexton et al. (1991) extended the Spiller-Wood-approach to three regimes.
The methodology was then revived by Baulch (1994, 1997) extending the model to
the PBM. Most often, versions of Baulch’s specification with some modifications are
used, which we therefore focus on in the following.

The basic idea of this model class consists of the classification of a measure quantifying
the size of costs for spatial arbitrage, that is, the transaction costs, in relation to the
price differences between two markets into several regimes. Transaction costs are the
sum of a number of components associated with conducting trade, such as costs for
transport, insurance, financing, duties, or risks premia.!” Negassa and Myers (2007)
suggest the following definition of transaction costs 7' between markets A and B:

AP =6+ X, B+ e (2.19)

where X, contains the components of these costs, 5 the respective weights, and ¢ is a
constant. Both, # and ¢ are to be estimated and may differ across market pairs. The
difference of the price spread and the transaction costs between two markets, i.e., the
rents to spatial arbitrage, hence becomes:

R =pl —pft =7 (2.20)

Positive rents are the motivation for traders to engage in spatial arbitrage. The higher
they are, the more additional profit the arbitrageur will earn from the performed
transaction. They are thought of as a random variable that varies around zero. It
corresponds to the equilibrium errors of the time series models outlined above, since the
parity of price differences and transactions costs corresponds to long-run equilibrium
of the aforementioned models. The difference lies in the fact that transaction costs are

17For a detailed account of components of transaction costs, see, e.g., Barrett (2001). In case that
the model is applied to vertical price analysis, the processing costs and the price differences between
the processing stages have to be regarded.
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always estimated in time series models, while they are partly based on (some of their)
observed components in the context of the PBM. However, recent publications using
the PBM show a tendency to account more precisely for these costs. Padilla-Bernal
et al. (2003) and Moser et al. (2009) predict total transaction costs with a number of
explanatory variables, which are then used in the estimation of the model.

Transaction costs are the core element of the model class since they define when
parity prevails and when not. At the same time, they also make up the quantity
which is afflicted with the most uncertainty, since it is a highly complex conglomerate
of a large number of potential components on which reliable data is hardly available.
Based on economic theory and the available data, three or, alternatively, six regimes
are derived in which the rents may fall according to the state of the market. A certain
distribution is assumed for each regime which are, with associated weights, combined
into the likelihood function of the sample for estimation. The uncertainty in regime
classification is accounted for by calculating the so-called parity bounds, that is, the
90% or 95% confidence interval of the parity regime around the (estimated) transaction
costs.

2.4.2 Model Structure

Basically, three regimes are considered by the model, which are defined in terms of the
size of the rents to spatial arbitrage (RAB = 0, RAP > 0, RAB < 0), that is, the size
of the price differential between two markets relative to the transaction costs. The
rents to spatial arbitrage are decomposed into one or two error terms, depending on
the regime, in the following way:

VB if R'? =0 (Regime 1)
R = v 4 uB if RAB > 0 (Regime 2) (2.21)
VB —eBif RAP < () (Regime 3).

For each of the three error terms, a certain distribution is assumed as

VB ~ NID(0,0?)
uWBE NT(0,02) (2.22)

u

elB “ N (0,02)

where N1 (o) denotes the half-normal distribution. Hence, the error terms are assumed

to be distributed independently of each other, which is a strong assumption given the

usual autocorrelation structure of time series variables, such as prices and transaction

costs. Regime 1 has a normal distribution f!, and regimes 2 and 3 have distributions

f? and f3, respectively, which are mixtures of a standard normal and a half-normal
distribution.!8

18 The distribution function of such a composite density was derived by Weinstein (1964). Other
choices of distributions are, of course, also possible as, e.g., in Yang and Kant (2008). In the following,
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Hence, the distributions of the regimes are as follows:

il e
el ()] e
ﬁ%:&@+iﬁv4¢[G;%%%?]}_®<%%i%%%¥>] 22

where ¢(e) and ®(e) denote the standard normal density and distribution function,
respectively. o., o,, and o, are the standard deviations of the error terms e, u, and

v. Barrett and Li (2002) introduced ¢, which measures unobserved transaction costs
(see (2.19)).

The resulting distribution is therefore a mixture of one standard normal and two
mixture distributions

3
Fo(Rul0) = M fr 4 Mafo+ Xafs = D M (2.26)
=1

subject to the conditions on the weights
(2.27)

where [ = 1,2, 3 for a three-regime model. Examples of empirical mixture distributions
are shown in Figures 2.9 and 2.10 below. The likelihood of the sample of the basic
model is the product of the weighted average

L) =[] £ (2.28)

These joint probabilities can also be thought of as representing a decision rule for the
classification of observations into regimes. However, the dynamics and interdepen-
dencies which typically characterize price data are not regarded, and neither does the
model allow for the specification of the RGP (the stochastic process which induces the
regime switches and generates the regimes). Hence, the estimation of measures similar
to the adjustment speed of cointegration models is not possible (see Figure 2.11, p.

we drop the index AB which denotes the respective market pair because it is clear that the analysis
always focuses on pairs.
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Note: These examples are calculated for selected trade directions based on the model and the estimation results of
Barrett and Li (2002, Table 4). Baulch (1997) does not provide all estimated parameters so that the densities cannot
be reconstructed. The vertical dotted lines denote the parity bounds, that is, the 95% confidence interval around §
based on the estimated variance of the error term of regimes 1 and 2, respectively. These distributions are
unweighthed in the sense that they are not yet multiplied by the estimated weights A;.

Figure 2.9: Examples of Unweighted Estimated Mixture Distributions

56). In other words, it provides probabilistic statements on regime incidences and
frequencies but remains silent on the potentially underlying mechanism. Obviously,
this characteristic can be regarded as a strength of the model class, since the RGP
cannot be misspecified, and it thus leaves flexibility for the application of the model
to different settings.

Extensions

A currently vivid field of research is the extension of the model’s flexibility which
yielded several publications in the last decade. Barrett et al. (2000) and Barrett and
Li (2002) introduce six regimes which allow to distinguish between market efficiency
and market integration.!® Moreover, they account for unobserved transaction costs in
the model. Park et al. (2002) suggest considering time-dependent parameters. The
dependence is modeled as exogenously determined discrete shifts in parameters, which
correspond to policy regimes. Negassa and Myers (2007) generalize this approach by
estimating the end of the transition and allowing for a gradual change in parameters.

19 Their understanding of MI differs from the definition stated in Section 1.3.4, p. 16. They regard
it as tradability without considering the dimension of information flow, which, in our opinion, is not
identical to “price-based notions of efficiency” (Barrett, 2001).
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Figure 2.10: Examples of Weighted Estimated Mixture Distributions

2.4.3 Estimation

Estimation of the PBM is straightforward via maximum likelihood. The log-likelihood
In L(6) in (2.28) is maximized conditional on the above mentioned constraints, so that
the estimates 6 = (9, G, Gu, G, A1, Ao, A3) T are obtained. However, the model in its
current form is only capable of analyzing market pairs. Thus, it has to be estimated for
each meaningful combination of markets. Moreover, the estimation has to be carried
out for each trade direction separately since transaction costs, and thus rents to spatial
arbitrage, seem plausible to depend on the direction of trade flow, e.g., freight rates
or tariffs (Barrett and Li, 2002, p. 297). Hence, up to 2 (%) = (n%;), estimations have
to be carried out for n markets. Most studies opt for monthly data as the adequate
frequency to be considered.

2.4.4 Interpretation

The model provides probabilistic results similar to the ones of the MSVECM. The
PBM gives immediate estimates of regime probabilities, which are often interpreted as
frequencies of regime incidence. This seems to be a reasonable way of interpretation
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Figure 2.11: Characteristic Graphs of a Typical PBM

because it acknowledges the uncertainty connected with the regime assignment. From
these estimates, conclusions regarding the occurrences of various market conditions
can be drawn as, e.g., in Barrett and Li (2002). Furthermore, the probabilities of the
incidence of each regime can be calculated for each time period. Based on the esti-
mated standard error g, of regime 1, the parity bounds around the transaction costs
can be calculated as the 90% or 95% pointwise confidence band, and then plotted
against the price differences (right panel of Figure 2.11).2° The bounds reflect the fact
that the observed or predicted transactions costs which were used in the estimation
might contain a considerable level of uncertainty. The estimated parity bounds can be
seen to represent the range of transaction costs in which these costs equal price differ-
ences, that is, in which the rents to spatial arbitrage equal zero, with 95% probability.
Based on the estimates, a number of insightful summary measures can be calculated.
Barrett and Li (2002) suggest, for example, moving averages, empirical conditional dis-
tributions, and bootstrapped descriptive statistics of the expected percentage returns
to spatial arbitrage. Furthermore, distributions of particular market pairs and/or
market conditions can be reconstructed based on the estimated parameters; see, e.g.,
Figures 2.9 and 2.10.

Nevertheless, the direction-specific estimation leads to the problem that the estimates
0 for both trade directions might not be unique, which poses challenges for meaningful
interpretation. This means that the estimated distributions for both directions, which
serve as the classification rules, can differ. Consequently, the measurements of the
market conditions also may not be unique. Barrett and Li (2002) try to tackle this
issue by defining probability ranges for some conditions. The estimated ranges are
mostly very narrow, but cover up to 50 percentage points or more in other cases.
However, this characteristic complicates interpretation of the model to a considerable
extent.

20 However, it might be worthwhile to consider simultaneous confidence bands instead.

o6



2.4 Parity Bounds Model

2.4.5 Applications

The PBM is applied in agricultural price analysis much less frequently than cointe-
gration methods are. Most applications assess market conditions in space with the
exception of Yang and Kant (2008), who assess vertical relationships in the Canadian
wood pricing system. Baulch (1997) and Moser et al. (2009) study rice markets in
the Philippines and Madagascar, respectively. Barrett et al. (2000) and Barrett and
Li (2002) analyze pork and soybean meal markets of the Pacific Rim. Padilla-Bernal
et al. (2003) assess US-Mexican tomato trade. They predict transaction costs by al-
lowing for seasonal and regional effects in these costs. Tostao and Brorsen (2005)
examine regional maize markets in Mozambique, while Cirera and Channing (2008)
study the effects of changing infrastructure on these markets. Briimmer et al. (2004)
analyze regional wheat markets in Ukraine. Park et al. (2002) and Negassa and Myers
(2007) focus on the effects of changing policy on Chinese and Ethiopian grain markets,
respectively.
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3 Summary

We believe that each model has its particular merits and weaknesses. The point of
view we would like to follow here is expressed in the quote attributed to the great
statistician George E.P. Box:

Essentially, all models are wrong, but some are useful.

(Box and Draper, 1987, p. 424)

This rightly expresses our view that there are no “right” or “wrong” models. Instead,
there are more vs. less adequate models for answering a particular empirical question.
While Chapter 2 focuses on the intuition and the merits of each model class, we now
would like to provide a critical discussion. Although researchers tend to emphasize
the merits of a certain approach and to understate its weaknesses, we believe that it is
worth it to keep its weaknesses in mind as well in order to comprehensively assess the
research results. Thereby, we focus on selected issues which we consider most relevant
and elaborate on them in a bit more detail.! Among other issues, we reflect upon
the reconcilability of the two model families dealt with in this dissertation, which are
model classes based on cointegration analysis versus mixture distributions.

3.1 Cointegration Models

The statistical theory of the basic class of cointegration models, i.e., the VECM, is
well-established and undisputed. Scientists who considerably advanced this area are
Clive Gran-ger, the Copenhagen School of Economics with scientists such as Sgren
Johansen or Katarina Juselius, Pennti Saikkonen, Helmut Liitkepohl, and many oth-
ers. However, there are disputes which are focused on particular applications of the
econometric model class, e.g., the application of cointegration models to spatial and
vertical price analysis. In agricultural economics, publications critical of the appli-
cation of this model family to PT and MI analysis are, e.g., Barrett (1996), McNew
and Fackler (1997), Miljkovic (1999), Barrett et al. (2000), Miljkovic and Paul (2001),
Barrett and Li (2002), or Balcombe and Morrison (2002).2

1 We compare the models based on their the currently existing versions and the thoughts developed
in Chapter 2 and suggest some points for possible extensions. However, future developments, e.g.,
might bring the two model families closer together by improving the weaknesses of one in comparison
to the other.

2 However, since the VECM is not the focus of this thesis, we do not discuss these criticisms in
detail here but address problems of models for nonlinear PT. The interested reader is referred to the
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TVECM

Saikkonen (2008, p. 295 ) notes that “threshold error-correction models introduced
by Balke and Fomby (1997) have probably been the most popular nonlinear error-
correction models considered so far, and recently their smooth transition counterparts
have also attracted attention.”

For the TVECM class, it is usually assumed that, besides the adjustment speeds, the
autoregressive dynamics show nonlinearities as well, i.e., regime-dependent behavior.
In applied research, econometric approaches to obtain evidence on this question of
model specification are rarely employed. We believe that the distinction between the
X-form and the R-form of cointegration models is a powerful tool in this context.
Juselius (2008, ch. 9) points out the usefulness of a number of recursive tests for as-
sessing the stability of various parameters or parameter combinations. In the context
of nonlinear PT, they seem particularly useful since they can offer manifold indica-
tions on which of the parameters (see Table 1.1) are likely to exhibit nonlinearities.
Moreover, estimation of the model proceeds in two steps in most studies, in which the
long-run equilibrium relationship is usually estimated using the Engle-Granger OLS
method. However, the approach of Johansen (1988) which introduced the R-form has
been shown to be superior in most cases as discussed in subsection 1.3.3, pp. 12.

Furthermore, the decision between a Band- and an EQ-TVECM as the more appro-
priate model specification in a three-regime TVECM is mostly left to the subjective
choice of the researcher. A few publications, such as Mancuso et al. (2003) and Serra et
al. (2006a) suggest an approach to obtain evidence on this question. Gaul (2008, sec.
2.4, pp. 44), however, develops a test for the cointegration rank in each of the regimes.
Both methods are limited to TVECMs of only a single cointegration relationship which
is also the specification exclusively used in PT analysis up to now. The selection of
a particular specification of the many possibilities offered by the TVECM class could
be achieved via approaches such as the SPVECM. First, the nonlinear adjustment
can be flexibly estimated from the data. Plots of the nonparametric estimates can
then suggest a suitable specification of the TVECM, that is, whether two or three
regimes are most adequate, similarly as in, e.g., Escribano (2004, p. 94). Second, it
allows for more than one cointegration relationship and hence for dimensions of the
loading matrix « of more than one column. The TVECM in its current form only
allows for one cointegration relationship and is most frequently applied to bivariate
analyses. A model class such as the SPVECM allows for more than two variables to
be simultaneously regarded. On the other hand, the approach is limited by the curse
of dimensionality often found in the context of semi- or nonparametric estimation.
However, empirical analyses rarely study more than five or six markets.

mentioned publications.
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3.1 Cointegration Models

MSVECM

The MSVECM has a number of merits. For example, it is applicable to multivariate
settings analyzing more than two variables. Its central property is that the determi-
nants inducing regime switches are allowed to be latent. However, this poses challenges
regarding the interpretation of the estimated regimes to the researcher. The TVECM
requires the a priori specification of the variable(s) causing the regime-dependent be-
havior. In the case of the MSVECM, the task is left for a posterior: interpretation.
The model provides evidence on the number of regimes and timings of switches which
can be interpreted based on a sound knowledge of the market under study by connect-
ing it, e.g., to known market events. While information on the modeled RGP might
already permit interesting insights into market dynamics, the applied researcher is
typically interested in the characterization of the regimes and in finding a plausible
interpretation for the regime switches.

At this point, an interesting duality between the TVECM and MSVECM classes ap-
pears. While the variables suspected to cause regime switches have to be specified
a priori, that is, before decision rules and regime assignments are estimated condi-
tional on this choice in the case of the TVECM, regime incidences are estimated first
in the context of the MSVECM. Potential determinants which caused the switch-
ing can only be identified a posterior: in the latter case. This illustrates that both
model classes can lead to strongly differing results regarding regime incidences and
thus parameter estimates. The MSVECM identifies regimes based on the dominant
data-inherent switches. However, the regimes of the TVECM depend on the choice
of the index and its importance among the manifold determinants potentially causing
regime-dependence in the data.?

SPVECM

The core property of the SPVECM is nonparametric modeling of the disequilibrium
adjustment, which is the reason for the model’s flexibility. However, this feature might
also be a disadvantage in some contexts since only graphs can be produced from the
estimated smooth functions which, e.g., complicates testing considerably. While the
influence of the chosen kernel function K (e) is negligible, the choice of the bandwidth
h is crucial. It governs the smoothness of the estimate, but also its bias and variance.
A number of approaches have been developed in the last decade or so which enable
an optimal bandwidth choice. Although the model class allows for any multivariate
setting analyzing more than two price series connected by more than one cointegration
relationship, it is limited by the curse of dimensionality.

3 This consideration is based on the thought that empirical data might be subject to a number of
impacts causing regime-dependence, e.g., in short-run PT. Different sources of nonlinearities might
interfere with each other. Therefore, the questions comes up what is the dominant source among the
(potentially) manifold impacts. General statements on the composition of such influences can hardly
be made since it varies from case to case. The longer the time series analyzed are the more likely
such a problem seems.

61



3 Summary

The Regime-Generating Process

Balke and Fomby (1997, p. 632) remark that “cointegration is a global characteristic
of the time series while the threshold regimes are local characteristics”. Hence, the
equilibrium error may behave locally, i.e., inside the middle regime of the typical
specification of the TVECM, as unit root process, although the series globally appears
to be stationary. Consequently, we conjecture that any RGP might be suitable for the
cointegration family of nonlinear PT models that yields a globally stationary process.
In other words, we conjecture that a suitable RGP has to restrict the global variance
of the equilibrium error.

Examples of suitable RGPs which restrict the variance of the equilibrum error were
discussed in Chapter 2. Figures 3.1, 3.2, and 3.3 illustrate this property. They de-
pict the estimated mean and variance for 10000 simulations of a Band-TVECM, an
EQ-TVECM and a MSVECM, respectively. Even though in each of the TVECM
simulations, the time series has a unit root in the middle regime (i.e. locally), the
thresholds have the effect of stabilizing the variance of the model once the time series
has crossed them (globally). This is achieved by the fact that error-correction takes
place once the middle regime is left in either direction. The series are pulled back
either to the edges of the threshold band in the case of the Band-TVECM or to the
long-run equilibrium itself in the case of the EQ-TVECM.

Figures 3.1 and 3.2 demonstrate that the variance of a Band-TVECM is consider-
ably larger than the variance of a EQ-TVECM of identical parameters even if the
EQ-TVECM does not have adjustment in the middle regime. This illustrates that
equilibrium errors are more strongly adjusted by the EQ-TVECM than by the Band-
TVECM. Hence, it indicates that the global variance of a regime-dependent VECM
is likely to be a complex function of, e.g., the chosen RGP, the parameters of the
model, and the variance of the innovations. A number of other suitable RGPs could
be thought of.* However, certain RGPs of a TVECM or a MSVECM may not globally
restrict the variance. An example of an improper RGP is a unit root in one of the outer
regimes of a three-regime TVECM since this would leave the variance unbounded from
one direction.

4 For graphical representations of further examples, see, e.g., Escribano and Pfann (1998, Figure 2),
Escribano (2004, Figures 3-6), or Meyer (2004, Figure 1).
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Note: The estimated mean and variance are based on 10000 realizations of a MSVECM with identical parameters as
the one in Figure 2.1, p. 31. Only the innovations are repeatedly randomly generated. “Mean” and “variance” of
innovations refers to the innovations of the cointegration relationship ¢; ~ NID(0, 1) (see Figure 1.3, p. 9).

Figure 3.1: Mean and Variance of a Band-TVECM

3.2 Parity Bounds Models

The PBM implicitly models nonlinearities in short-run PT in the sense that the ob-
servations are classified into various regimes which correspond to differing market
conditions, that is, to differing behavior of economic agents in the short run. The
underlying regimes are derived from economic theory and are even able to distinguish
between market efficiency and market integration in some model versions.> However,
the approach, in its current form, only focuses on the results of economic agents’ ac-
tivities and does not enable econometric modeling of the process which might have led
to this result empirically observed. For example, Barrett and Li (2002, p. 297) note
that it is “ill-suited to answering questions about the speed or extent of convergence to
tradability or equilibrium.” On the other hand, this can be regarded as an advantage
since the researcher never can be sure about the true RGP, so that not specifying
it prevents from misspecification. However, an appropriately chosen RGP can offer
interesting additional insights into price relationships.

® Market integration is particularly defined in this context, see, e.g., Barrett and Li (2002).
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Note: The estimated mean and variance are based on 10000 realizations of a MSVECM with identical parameters as
the one in Figure 2.2, p. 32. Only the innovations are repeatedly randomly generated. “Mean” and “variance” of
innovations refers to the innovations of the cointegration relationship ¢; ~ NID(0, 1) (see Figure 1.3, p. 9).

Figure 3.2: Mean and Variance of an EQ-TVECM

Baulch (1997) notes, that the approach is inherently static, although various recent ex-
tensions have added some dynamic aspects. The researcher has to subjectively decide
for distributions which she considers adequate in the context at hand.® This criticism
is often brought forward as a major drawback of the model. Another assumption is
that the quantities modeled, usually the rents to spatial arbitrage, are thought of as
being independent draws from distributions which are identical over time. We, how-
ever, consider this latter assumption to be the more restrictive one because it implies
that the rents are independent of their past. In other words, economic agents are
assumed to discard all information of the past for their actions in the current period.
Furthermore, positive rents in one period can be randomly followed by positive, zero
or negative rents in the next period (as schematically displayed in the left panel of
Figure 2.11, p. 56). This means that net profits of a trader may randomly be followed
by net profits, zero profits or net losses in the next period. Such a strong assumption
of memoryless behavior is hardly compatible with the behavior of economic agents one
would expect, particularly from traders. We conjecture that besides the equilibrium-
restoring forces, e.g., of the exploitation of positive rents to spatial arbitrage, also the
“stickiness” of economic variables (autocorrelation) such as prices should be regarded.

6 We will briefly address the question of distributions in the following section.
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Note: The estimated mean and variance are based on 10000 realizations of a MSVECM with identical parameters as
the one in Figure 2.7, p. 41. Only the innovations are repeatedly randomly generated. “Mean” and “variance” of
innovations refers to the innovations of the cointegration relationship ¢; ~ NID(0, 1) (see Figure 1.3, p. 9).

Figure 3.3: Mean and Variance of a MSVECM

However, we are not aware of publications which analyze properties and dynamics of
rents to spatial arbitrage in the time domain in order to obtain empirical evidence on
such properties.

Another strong argument against the assumption of memoryless behavior is the durar-
ion of physical trade. Considerable time lags are occurring in agricultural trade since
several weeks usually pass between the first planning and collection of information
and the completion of the physical commodity movement. Incentives in one period, in
the form of positive rents to spatial arbitrage, will rarely trigger immediate response
of economic agents; neither is it likely that the arbitrage process will be finished in
the same period. The PBM literature is aware of this fact; that is why most authors
recommend the use of monthly data. Although this can be considered to be a reason-
able period for agents’ response, it still implies “memorylessness on a monthly basis,”
which might not hold for every product in every context. The underlying problem
is the appropriate frequency of the discretization of continuous time. That is, what
is the appropriate time interval for the economists’ flashlight to bring light into the
darkness of reality?” We note that for some variables such as GDP growth the inter-

7 That is, how frequently should she point her flashlight to economic variables in order to measure
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vals are much longer—one year or more—but their realizations are still not considered
to be independent of each other. This question remains unresolved for the PBM. Ap-
proaches such as the Frisch-Waugh-Lovell Theorem, p. 10, might provide one step
in this direction. It would allow the cleaning of the rents, at least from short-run
autoregressive dynamics, although the time dependence of economic incentives would
still not be addressed.

Last, the PBM is restricted to trade-flow driection specific analyses because it is based
on direction-specific transaction costs. Asymmetric costs of trade seem plausible in
most cases since, e.g., freight rates from urban to rural regions might differ from rates
from rural to urban regions, etc. This restriction means, first, that only bivariate pairs
can be studied and, second, that in the case of bidirectional trade between two markets,
one estimation for each direction has to be carried out. Hence, non-unique parameter
estimates are obtained as, e.g., in Barrett and Li (2002), which poses considerable
challenges to meaningful interpretation. It has severe consequences because the four
market conditions defined by the authors turn out to be trade-flow direction specific
instead. If they would apply for a system of at least two markets without being
direction-specific, the associated probabilities of all four conditions should add up to
one for this system. However, in the current form of the model they only add up for
each direction of trade. Barrett and Li try to translate the conditions estimated per
trade-flow direction into direction-independent conditions for a market pair. However,
the sums appear to be quite far from unity for a number of market pairs.® This
indicates that a measurement of the reasonably defined market conditions for market
pairs (market systems) is not as straightforward as it seems in the context of the PBM.

them?
8 See Barrett and Li (2002, Table 5). For example, the sums of the market conditions’ probabilities of
the pairs Canada-Taiwan and U.S.-Japan range between 0.95 and 1.21, and 0.64 and 1.48, respectively.
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3.3 Parity Bounds vs. Cointegration Models

In this section, we aim at comparing and contrasting both model families. While we
will elaborate on merits and disadvantages of both methods relative to each other, we
will try to demonstrate similarities and correspondences between them as well.

Both model families, although mainly applied to spatial price analysis, are also appli-
cable to studies of vertical price relationships along the processing chain. For exam-
ple, Yang and Kant (2008) study wood price in Ontario using a PBM. Ben-Kaabia
et al. (2005) and Ben-Kaabia and Gil (2007) analyze vertical price relationships in
Spanish poultry and lamb markets, respectively, by employing a TVECM. Briimmer
et al. (2009) assess price relationships between wheat and flour in Ukraine using a
MSVECM.

The fundamental difference between both families consists in the fact that cointe-
gration models focus on the time series dynamics of price data. They even allow
the distinction between long- and short-term interdependencies conditional on the
existence of a stationary linear combination of the price series considered, which is
interpreted as the long-run equilibrium. The PBM family, in its current form, is not
able to account for any autocorrelation in price series. It is even explicitly assumed
that the observations of the time series studied are realizations of independent and
identically distributed random variables. It focuses on the flexible modeling of the
results of such dynamic processes instead. Furthermore, there are indications that the
currently mostly used estimation approaches of the PBM as well as of the TVECM
and MSVECM classes encounter problems in some cases, see, e.g., Barrett and Li
(2002, p. 297) or Appendix DII, pp. 201.

Despite the fact that the PBM uses at least as much information as cointegration
models do, less information in terms of estimation results is obtained. Cointegration
methods often only use prices but retrieve information regarding three aspects: dy-
namics and interdependencies of price series in time; the RGP, i.e., the stochastic
model of the regime switching mechanism; and the regime classification. The PBM,
in contrast, uses prices, transaction costs, or a number of variables with which trans-
action costs are predicted, and in some specifications also trade flow information. It
therefore has much higher data requirements than the cointegration methods. On the
other hand, this model class evaluates only one of the three aspects which cointe-
gration methods provide, namely the classification of observations into regimes. The
evolution of prices over time, their dynamics and interdependencies, and the modeling
of the regime switching process are completely neglected by the PBM. However, it
has the advantage of avoiding misspecification since it does not address these issues.
Particularly in light of the existing rather vague model selection strategies for cointe-
gration methods, this might be regarded a strength of the approach. In the end, the
researcher has to balance her interests and subjectively decide which of the models is
most adequate for the problem and the data to be analyzed, based on her experience.
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The rents to spatial arbitrage as the difference between the price difference and trans-
action costs and the equilibrium errors of cointegration models correspond to each
other in some aspects but differ considerably in others. Transaction costs are esti-
mated in both model families, while the underlying information differs. Transaction
costs are implicitly estimated by the constant of the long-run relationship in case of
the VECM and the MSVECM or by the thresholds in case of the TVECM. Current
versions of the PBM predict transaction costs based on a number of explanatory vari-
ables or by extrapolation of a single or a few observations of transaction costs.” The
latter approach promises more reliable estimates of real equilibrium prices since more
information is used. On the other hand, it has the drawback that data requirements
are considerably higher. For cointegration analysis, price series are sufficient for model
input. To obtain sufficiently reliable predictions of transaction costs, a whole range of
explanatory variables has to be available, which is rarely the case. In some instances,
more data to be collected might also mean a considerably increased level of measure-
ment error and hence uncertainty because transaction costs are a complex quantity,
as discussed, e.g., in Barrett (2001), with a number of components which can hardly
be correctly observed. It is therefore questionable whether the degree of uncertainty
of the estimated transaction costs is significantly reduced by the PBM methodology.
From an applied point of view, the issues of data requirements and the availability of
reliable data can be key points for model choice and the performance of the analysis.
Hence, the considerably larger information requirements of the PBM might limit the
applicability of the model family to a large extent.!® Furthermore, the PBM uses
price differences and thus corresponds to a cointegration model which imposes the
restriction on the cointegration vector between two prices that f = (1 —1)T.11

In cointegration analysis, first a test for cointegration is conducted and then the equi-
librium errors are estimated, because they would be meaningless quantities otherwise.
However, the PBM methodology does not assess whether price series share a sta-

9 The amount of information used by the PBM is richer than in the case of cointegration models.
That is, it conducts in the terminology of Barrett (1996) a level IT or even, in the cases of Barrett and
Li (2002) and Padilla-Bernal et al. (2003), a level III analysis. One might even state that Moser et
al. (2009) conduct a level IV analysis since they use not only price, transaction cost, and trade flow
data, but also a range of further variables to predict transaction costs, and hence the information
content of this research is even richer.

10This can be seen, e.g., in the fact that the six-regime PBM introduced by Barrett et al. (2000) has
only been applied, to our knowledge, in two more publications, Barrett and Li (2002), and Padilla-
Bernal et al. (2003) over the past ten years. Recent analyses using the PBM only employ three-regime
models.

1 For the VECM and the MSVECM, this restriction would mean that the model’s constant repre-
sents the transaction costs. The constant is left unconstrained in this case. It thus represents the
model’s estimate of transaction costs between the markets if prices are in long-run equilibrium. If
untransformed (logged) data is used in the estimation, it represents hence a constant additive (mul-
tiplicative) margin. For a TVECM as in (2.2), however, particular restrictions depend on the version
of the model. Both, Lo and Zivot (2001) and Goodwin and Piggott (2001) also use price differences,
that is, a cointegration relationship for which the constant is restricted to zero and the two prices
have coefficients of 1 and -1, respectively.
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ble relationship (apart from possibly common driving forces), which is the stationary
cointegration relationship in the cointegration world. Consequently, price differences
of two markets which are neither directly nor indirectly linked by third markets might,
by chance, roughly equal the predicted transactions between them. The PBM would
in such a case conclude a high incidence of perfect integration because most observa-
tions would be classified into the binding arbitrage condition regime, that is, regime
1in (2.23), p. 53.

The understandings of the central notions such as MI differ considerably between the
proponents of the competing model families. A key point which is often claimed by
the proponents of the PBM!? is that the definition of the regimes is better anchored
in economic theory and thus more accurate in contrast to cointegration methods.
Another central point of critique connected with this issue is reflected in the statement
of Barrett et al. (2000): “The core reason is that conventional market integration tests
rely exclusively on price data, and so cannot shed light on the quantity-based concept
of market integration nor can they provide reliable inference on equilibrium conditions
that depend as well on transactions cost and trade flow data.”

We are not convinced by these arguments because cointegration methods can easily
be extended by regarding more information, for example on trade flows. A VECM
with slight modifications can yield a classification of observations into four regimes.
For example, Stephens et al. (2009) or Thle et al. (2010) estimate a VECM for periods
with and without trade. Such a model would be able to capture at least three of the
market conditions mentioned in the following Table 3.1.13 In this case, the index only
consists of a trade flow dummy variable. Observations can be classified according to
the values of the dummy and the sign of the estimated equilibrium error. If the index
additionally encompasses the equilibrium error, even parameter estimates for each of
the four regimes can be obtained. This model would be a version of a central AVECM
as outlined in Table 2.1, p. 30.

The extension of a TVECM to six regimes corresponding to the six regimes of Barrett
and Li’s PBM is straightforward. A continuous Band-TVECM of three regimes of the
typical form (2.2), p. 28, corresponds to a three-regime PBM. If the threshold variable
is generalized to an index which consists of the ect and a trade indicator variable, i.e.,
a dummy variable indicating trade flows, then regime classification corresponding to a
six-regime PBM is obtained. Such a model would have a more complex decision rule
consisting of two thresholds for classifying the equilibrium error and one threshold for
the trade flow indicator.**

12 Qee, e.g, Barrett et al. (2000), Barrett (2001), or Barrett and Li (2002).

13 The first condition of perfect integration means in such a model where of one threshold, i.e.,
61 = ()| that the ect would equal zero. Since this almost never happens in practice, this market
condition can rarely, if at all, be observed.

14 Compare also the discussion on pp. 26.
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It appears straightforward to translate the PBM terminology to the “cointegration
world” since the rents to spatial arbitrage and the equilibrium error are quantities
which correspond to each other. Therefore, we regard the differing economic interpre-
tation of central notions and the regimes of PBM models to not be an argument in
favor of the PBM methodology since it is not a unique property of this model family.
Other model families or model classes can be adapted accordingly to yield similar
results. Table 3.1 shows the correspondence of market conditions which result from
the six-regime versions of the discussed model classes.

Market condition® ‘ PBM? parameters TVECMP parameters

Perfect integration RAB =0 o) < ect, < 63

Imperfect integration alB =1; RAB £0 alP =1; ect; < Y or ect; > 02
Segmented equilibrium afB =0; RAP <0 afP =0;ect; < OV

Segmented disequilibrium | a\f = 0; RAZ >0 af'B = 0; ect, > 02

Note: af‘B denotes the trade flow indicator variable which takes the value 1 in period t if trade flows between
markets A and B were reported and 0 otherwise. The semicolon denotes that the conditions to its left and right have
to be fulfilled.

& The terminology and the version of the PBM are the ones in Barrett and Li (2002).

b The TVECM is continuous and of the Band version. The cointegration relationship is restricted, that is, the
constant is constrained to zero and the coefficients of the two prices to 1 and -1, respectively. The parameters
mentioned in the table correspond to the ones in (2.2), p. 28. However, the index and the decision rule differ here.
The index consists of both the trade indicator and the continuous equilibrium error ect. The decision rule is hence
the composite. It consists of two thresholds classifying the equilibrium error and one threshold with respect to the
trade flow indicator.

Table 3.1: Correspondence of PBM and Cointegration Terminology

The task remains to obtain consensus on the definition of the central concepts market
integration and price transmission, which cannot be treated here. However, we observe
that the PBM, since it neglects the dynamics of the price time series, does not offer
any information on PT either in the long or in the short run as defined in section
1.3.4, p. 16. Barrett and Li (2002) clearly state their understanding of MI as mere
tradability of a product for which trade flows represent a sufficient but not a necessary
condition. Tradability is also indicated by traders’ indifference on whether to trade or
not when the price differential equals transaction costs. However, Moser et al. (2009)
lack an explicit definition of market integration. Negassa and Myers (2007) explicitly
state that they assess spatial market efficiency.

Although both model families are capable of classifying the observations into regimes
and hence of providing estimates of regime frequencies, the natures of the regime
assignments differ. The TVECM creates mutually exclusive subsets which assign the
observations uniquely to one of the possible regimes. In the case of the PBM, this is not
straightforward. For each period, each of the regimes occurs with certain probability,
which is similar to the obtained evidence on regime incidences of the MSVECM where
the observations are assigned to the most probable regime in each period. Barrett
and Li (2002) provide informative summaries of the estimation results, which provide
insight into a number of aspects of interest. However, since the PBM has to be
estimated for each trade direction between two markets, the obtained probabilities for
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3.8 Parity Bounds vs. Cointegration Models

the above mentioned market conditions are, as discussed above, in general not unique
(Barrett and Li, 2002, see Tables 2 and 5), which complicates interpretation.

One argument in favor of the probabilistic nature of the PBM results is that the as-
signment of observations to regimes is inherently subject to uncertainty. One could
argue that such results better reflect the inherent uncertainty than (seemingly) unique
and deterministic assignments as, e.g., in case of the TVECM do. However, it may
facilitate interpretation in some contexts but may also complicate it in others. Cointe-
gration models might potentially be extended in such a direction, of which we sketch
here only the basic idea without addressing issues of estimation and inference in de-
tail. Model classes of one threshold, such as the central AVECM (see Table 2.1, p.
30), might be extended to estimate a confidence interval for the threshold instead of a
point estimate. Such an approach might be reasonable since neither prices nor trans-
action costs of and between two markets are unique. Each trader is likely to be faced
with at least slightly different buying and selling prices, and costs of trade. Hence,
exact point estimates obtained for the case that the equilibrium errors equal zero, that
is, of the long-run equilibrium relationship, pretend accuracy, but are only averages.
Probability bounds in the form of confidence statements regarding the location of the
threshold might be more adequate instead. This seems to be an interesting field of
future research since it would add some fuzziness to the sharp classification decisions
created by decision rules currently used by specifications of the TVECM. Hence, the
character of the current type of decision rules for the TVECM could be enriched by an
interesting approach. Another consequence would be that the correspondence between
some classes of cointegration models and the parity bounds approach would become
even stronger.

A Distribution View of Cointegration Models

Figures 3.1, 3.2, and 3.3 plot in the upper panel simulated realizations of selected
processes along time, which follow a Band-TVECM, an EQ-TVECM, and a MSVECM,
respectively. Figures 2.9 and 2.10 plot empirical distributions of the PBM. We suggest
a unifying perspective on both model families by looking at cointegration models
from the mixed distributions perspective of the PBM.!> We believe that the view on
cointegration models in terms of distributions might offer interesting insights into both
model families.On the following pages, Figures 3.4 until 3.8 plot the distributions of
simulated realizations of different specifications of the TVECM and the MSVECM.
They indicate interesting patterns which, in some cases, considerably differ from the
distributions assumed in the context of the PBM as plotted in Figure 2.10, p. 55, which
are mixtures of normal and half-normal distributions. The distributions resulting from
cointegration models are close to normal distributions for some cases, but also deviate
strongly for others.

15 Although cointegration models can be looked at from a PBM perspective, is the other way around
not possible because the PBM does not model any time dynamics.
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As illustrated in Figure 3.4, the distribution of realizations of a Band-TVECM with
weak equilibrium adjustment seems to be uniform in the middle regime (upper right
panel), while the two outer regimes seem to be two half-normally distributed (upper
left panel). A uniform distribution in the middle regime is plausible since the series
have a unit root within this regime. This implies that the realizations are equally likely
everywhere in this band because they do not have an attractor around which they occur
with higher probability. The half normal distributions in the outer regimes are less
plausible at first sight. Johansen (1995, Theorem A.11, p. 228) notes that the error-
correction behaviour corresponds to an exponential distribution. Thus, we suppose
that the distribution of the innovations ¢;, which is standard normal in the performed
simulations, dominates the distribution of the outer regimes if the adjustment towards
the edges of the band is weak. That is, it superposes the exponentail distribution
resulting from error-correction.Figure 3.5, in comparison, confirms the expectation
that the stronger the adjustment, the less frequent the realizations switch to the outer
regimes. Furthermore, the distributions in the regimes deviate more strongly from
uniform and normal, respectively, as illustrated in the upper right and the two lower
panels. In the outer as well as in the middle regime the kurtosis of the distributions
increases which can be seen in the two panels to the right. Stronger adjustment implies
that the process tends to return faster to the edges of the band and considerbaly
overshoots into the band as depicted in the upper left panel where the density is
decreasing from zero towards the thresholds. Hence, the variance of the process is
smaller (compare Figure 3.1, p. 63).

Figure 3.6, in comparison with Figure 3.5, illustrates the fact mentioned above that
an EQ-TVECM means stronger effective adjustment than a Band-TVECM with iden-
tical parameters. The reason is that deviations from the equilibrium are corrected
towards parity instead of towards the edges of the band, that is, the dotted thresholds
when they exceed the thresholds 8 and 6® 16 Consequently, the distributions of
the regimes deviate stronger from standard distributions than for the Band-TVECM.
Particularly, the outer regimes differ markedly from a normal distribution. These ef-
fects appear to be more pronounced the stronger the adjustment of the EQ-TVECM
is, as shown in Figure 3.7. These effects are similar to the ones observed in Figure 3.5
in comparison with Figure 3.4, but even more distinct due to the differing adjustment
mechanism. The increase in kurtosis is very strong. The realizations in the middle
regime no longer seem to be uniformly distributed (upper right panel). They are dis-
tributed around zero with the highest probability instead because they are also inside
the band attracted to a unique value which is the long-run equilibrium at zero.

16 Parity is represented by the long-run equilibrium which is identical with zero in this graph.
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Distribution of equilibrium errors
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dynamics. The resulting adjustment speeds are 'yil) = 'y§3) = —0.0333 and 'yén = 753) = 0.0333. The dotted lines in

the upper left panel are the symmetric thresholds.

Figure 3.4: Distribution of Band-TVECM Realizations (Weak Adjustment)

The MSVECM appears to be a mixture of distributions which are close to normal
distributions as Figure 3.8 illustrates. Although the distributions in each regime seem
very close to normal, the sum of both seems to deviate stronger from normal due
to a higher kurtosis. The question is whether a similar relationship holds for the
distributions in the MSVECM regimes as for the ones of the TVECM, that is, whether
the distribution of the innovations dominates the regimes’ distribution if its adjustment
is weak.
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Distribution of equilibrium errors
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Figure 3.5: Distribution of Band-TVECM Realizations (Strong Adjustment)

Consequently, both model families imply similar distributions for some cases. An
approximation of the unknown distributions by mixtures of normals seems appropriate
in such cases. However, the distributions implied by some cointegration models depend
on the nature of the underlying time series process, that is, its RGP and the strength
of the error-correction. Therefore, the distributions implied by the model families can
differ considerably for some settings. All simulations have been carried out for simple
models without autoregressive dynamics. Hence, the simulated models correspond to
the R-form mentioned in Section 1.3.2. We conjecture that these dynamics also play
a noticeable role in determining the resulting distributions of cointegration models
and, hence, may lead to complicated distributions. Nevertheless, it is not certain
whether the distributions assumed PBM context or implied by various versions of
cointegration models are appropriate for observed price data. Hence, future research
on the distributional characteristics of observed price data might shed some light on
this question.
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Distribution of equilibrium errors
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Figure 3.6: Distribution of EQ-TVECM Realizations (Weak Adjustment)
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Distribution of equilibrium errors

Rep=5000, T=500 Distribution inside thresholds

025~ 030 4 Kernel Uniform
density distribution
020 0.25
0.20
0.15 -
=y 2
2 2 0.15
I3 3
o o
0.10 +
0.10
005 7 0.05
0.00 0.00
T T T T T T T T T T T T
-10 -5 0 5 10 -3 -2 -1 0 1 2 3
N = 2500000 Bandwidth = 0.08051 N = 2307266 Bandwidth = 0.06877
Normal Q-Q plot outside thresholds Distribution outside thresholds
10000 out of N=192734 (pooled)
0.7 1 — Kernel density
34 —— Estimated normal
2 4
@
L
g
<3 2
[ 2
2 a
S
2]
24
34 &
00

Theoretical Quantiles N =192734 Bandwidth = 0.05311
Note: The parameters are identical to the ones used in Figure 3.6 except for p(l) = p(® = 0.1 implying a symmetric
EQ-TVECM with %1) = 753) = —0.3, 751) = 753) = 0.3, and 752) = 'yf) = 0. The dotted lines in the upper left panel
are the symmetric thresholds.

Figure 3.7: Distribution of EQ-TVECM Realizations (Strong Adjustment)
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Distribution of equilibrium errors
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Figure 3.8: Distribution of MSVECM Realizations (Strong vs. Weak Adjustment)
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4 Conclusion

Chapter 2 presents four model classes suitable for the analysis of nonlinear price trans-
mission, that is, price transmission which is characterized by nonconstant adjustment
towards equilibrium (error-correction). Three of these classes belong to the family of
cointegration models, while the parity bounds model is a mixture distribution model.
The cointegration approaches either model the nonlinearities by parametric piecewise
linear functions (so-called regime-dependent models for which model parameters are
constant, i.e., linear in each regime) or in a flexible nonparametric fashion. Regime-
dependent models assume a certain regime-generating process which characterizes each
model. The researcher has to make a choice for one process before model specification
and estimation. Cointegration approaches usually use, in contrast to the parity bounds
model class, only price time series data. However, they provide estimates on the time
series dynamics of the data, the stochastic model of the regime switching mechanism
and the regime classification of the observations. The class of parity bounds models
additionally relies on transaction cost and/or trade flow data and focuses on the results
of dynamic processes by only classifying the observations into regimes.

Some of the presented model classes contain a large number of potential sub-models
and specifications. However, all models of one class are characterized by a certain
mechanism modeling nonlinearities in price transmission. Threshold time series mod-
els require the variable(s) inducing the regime switches to be observed. In the case of
Markov-switching time series models, the determinants of the regime switching may
remain unspecified. Currently, regime-dependent cointegration models characterized
by discrete shifts in error-correction parameters are most frequently applied although
models which imply a smooth parameter change are increasingly implemented. Since
econometric techniques for testing nonlinear model classes against each other are very
challenging to develop, detailed knowledge of the underlying mechanisms inducing the
regime switching, as this thesis aims to provide, may facilitate model selection. Flex-
ible model classes such as the semiparametric vector error-correction model may play
an increasing role in future research, e.g., for the choice of the parametric approxi-
mation of nonlinearities. Each model class has its strengths and weaknesses. For the
applied researcher, the question which remains to be answered is how well the particu-
lar properties of data are accounted for by the chosen model. Moreover, how restrictive
are the assumptions underlying the chosen model with respect to the data at hand?
From a pragmatic point of view, the (limited) data availability might play a role in
model selection. Furthermore, some model classes promise interesting extensions so
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that they can be used to analyze novel aspects in price transmission analysis.

All of the discussed model classes are capable to provide a more adequate description
of reality. Nonconstant parameters either in the form of regime-dependence or smooth
changes may be caused by a number of (potentially interfering) impacts. From the
empirical analysis point of view, such impacts can hardly be distinguished from each
other. Similarly, the question concerning the dominant source of nonlinearities may
be difficult to answer. One means which might provide evidence on these issues is
careful analysis of the model’s residuals. Besides the development of the underlying
econometric theory in general, theoretical results are needed particularly with respect
to estimation and the twofold problem of model selection in this context, which consists
of the choice of a linear vs. a nonlinear model and the selection of the most adequate
specification among several competing nonlinear models.

A general problem within this area of research pertains to the availability of reliable
data. Sporadically, more than just price data is available. Data on transaction costs
and trade flows exist often on a highly aggregated scale which is too “coarse” both
in the space and time dimensions to be used in price transmission analysis. Interna-
tional organizations, such as the Worldbank or the FAO, have intensified their efforts
in recent years in gathering disaggregated data particularly for staple foods in devel-
oping countries. In consequence, the available information for economic analysis and
policy assessment has been growing considerably during the last two decades. Hence,
prospects regarding this issue seem promising.

An important aspect of future research is the analysis of determinants of market in-
tegration and linear and nonlinear price transmission. Appendix C, pp. 139, provides
an example of such an analysis. It assesses determinants of the transmission of maize
prices within and in-between the three largest member states of the East African
Community: Kenya, Tanzania, and Uganda. Besides econometrics, qualitative re-
search based on questionnaires etc. might play an important role in this context in
order to identify major determinants.

Furthermore, the explicit consideration of the spatial structure of markets might pro-
vide a promising field for future research. Although price transmission analysis uses
prices which are the result of economic interdependencies across space (determined
by the particular spatial structure among other influences), such information is not
explicitly used for analysis up to now. Given the general concern of data availability,
this kind of data might represent a source of information which can relatively easily
be obtained.

! For example, Mittelhammer (2009) argues for a broader methodological toolbox to be employed
in applied economics. Madi et al. (2009) or World Bank (2009) are examples of such qualitative
research.
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The 2003 reforms of the Common Agricultural Policy of the European Union allowed
for discretionary implementation among member states. Discretion was allowed with
respect to the timing and the degree of decoupling of policy support. Differences among
member states were particularly apparent in the European beef and veal sector. Using
weekly data from 2003 to 2009, we assess the consequences of different national
implementation strategies of the reforms on market integration for young calves, which
are intensively traded in the European Union. Time series properties are analyzed with
a range unit-root test after which a multivariate cointegration model is estimated. We
find that the calf markets in Germany, France, the Netherlands and Spain are integrated
and tightly interrelated as evidenced by both short and long-run price transmission. We
also find strong statistical support for the hypothesis that decoupling reduced calf price
levels. Additionally, we ascertain that the outbreak of the Blue Tongue disease induced
a structural change in parts of the EU calf market. Using counterfactual scenarios, we
provide an indication of the cost involved with granting member states such a high
degree of discretion in implementation. We conclude that the national markets studied
here belong to a common market.

Keywords

2003 CAP reform, calf market, decoupling, EU, market integration, price transmission.

1 Introduction

Reforming the European Union’s (EU) Common Agricultural Policy (CAP) has been an
ongoing process. The first major effort was the MacSharry reform of 1992. This was
followed by the Agenda 2000 and its mid-term review, which was eventually
repackaged into the fundamental Fischler reforms of 2003. A key element of the 2003
reforms was decoupling, which aimed to sever the link between direct payments and
production decisions. Unlike previous reforms, member states were allowed discretion
over the timing and degree of decoupling. While differential implementation decisions
were granted in almost all major European agricultural subsectors, they were most
strongly apparent in the beef and veal sector of the Union. Since payments were no
longer tied to the amount of slaughtered animals, decoupling impacted beef production
profitability as different production incentives were provided. This transmitted to the
calf markets in the form of a reduced willingness to pay for calves used in cattle or veal
production, thus affecting the quantities and prices of animals traded. As the
heterogeneity in the implementation of the reform can be expected to influence the
relationships of prices in space, important implications for market integration are likely.
In this paper, we seek to empirically explore how different policy choices impacted
spatial price relationships and the degree to which price changes are transmitted
between national calf markets in the long run. Furthermore, European cattle markets
were subject to restrictions on animal transports which resulted from battling the
outbreak of the Blue Tongue (BT) disease from 2006 onwards. Hence, we also regard
potential effects of such trade restrictions, which peaked in Central Europe in late
summer 2007.
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Within a multivariate cointegration framework, we use weekly price data from 2003 to
2009 to assess market interdependencies, market integration and price transmission
among the four national EU markets of France, Germany, the Netherlands and Spain.
While a large number of studies of market integration and price transmission have been
carried out on U.S. and international agricultural markets (e.g., Rapsomanikis et al.,
2003; Gonzalez-Rivera and Helfand, 2001), few have focused on intra-EU price
relations (Zanias, 1993; Gordon et al., 1993; and Serra et al., 2006 are among the
exceptions). We know of no recent investigation of the spatial price relationships
among EU calf markets. Given the unique treatment of the beef and veal sector in the
2003 reforms, we are presented with an ideal situation for the study of how the effects
of a changed policy environment impacted spatial price relationships. To our
knowledge, we are the first to empirically assess the impact of policy decoupling on
market integration.

The assessment of market integration represents an important means to study spatial
market networks. The main interest lies in the question of whether price shocks
emerged in one of the markets of the network are passed to the other markets so that
trade flows which counteract the initial shock are triggered. Furthermore, consequences
for consumers or producers are also of interest. If markets are not integrated, they do
not share the same information set, in the sense that they are not driven by one and only
one “pushing force” (Juselius, 2008, p. 88). In this case, price signals are not effectively
passed through. Even if markets are integrated, price signals may spread only very
slowly. Thus, since economic agents do not have complete information, welfare losses
can result from the inefficient allocation of resources. Lacking integration of markets or
weak transmission of price signals between them may be due to trade or domestic
policies, exchange rate rigidities, or transactions costs. If the causes of these
impairments are known, actions can be taken to improve the relationships of markets
across space. Hence, the results can aid in the design of regional policy or trade policy.
Moreover, evidence of well-functioning markets can help traders or policy makers in
their markets assessments. On the other hand, policy makers and economists have
strong interests in assessing the effects of certain policy measures in order to evaluate
whether the actions adopted led to the desired consequences.

The CAP reforms agreed upon in 2003 were largely driven by concerns to re-integrate
the common EU agricultural market into world markets. Additionally, national markets
in the EU might not be well integrated even 20 years after the (nominal) completion of
the common market. Hence, an empirical assessment of the degree of market
integration seems promising. Furthermore, the distortion of price signals due to coupled
support created a negative welfare impact in the past. Thus, the whole concept of
decoupling agricultural support from current prices and production quantities aimed at
reducing this impact. To gain a certain amount of freedom, member states negotiated
with the EU Commission in choosing the degree of decoupling. Thus, the degree of
decoupling in member states was somewhat different.

Market and price relationships can change due to major external shocks. In this context,
the BT disease, which was first detected in Northern latitudes in August 2006, greatly
impacted European cattle markets. The sample period studied covers the outbreak of the
disease which falls near its midpoint. Hence, the time series analyzed are likely to
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contain structural breaks. Under such circumstances, standard unit root and
cointegration tests are misleading. They inflate test statistics and suffer from
considerable losses of power (Aparicio et al., 2006, and Gregory and Hansen, 1996).
Consequently, we assess the time series data properties with a recently developed unit
root test which is robust to potential structural breaks. We further seek to identify and to
account for breaks in the cointegration relationships. The empirical results provide
evidence that BT caused a structural break.

In the upcoming sections, the sample data is described. The post-2003 EU policy
environment is also elaborated upon since some of the variables of the analysis are
constructed based on these policies. We go further to describe the methodology used to
assess market integration and price transmission. We also examine the EU slaughter
calf market with the outlined methodology and discuss the empirical findings in detail.
Finally we provide conclusions and policy implications.

2 The Data and Policy Environment

We use weekly post-2003 CAP reform data to investigate the dynamics and
interrelationships in four major EU live calf markets. The four markets are: Germany
(DE), France (FR), the Netherlands (NL) and Spain (ES) (Figure 1). This choice of
countries is mainly motivated by their role in the EU calf trade. In Table 1, the
Netherlands emerge as the largest importer of young calves in the EU. Spain is the
second largest importer. Germany is a large net exporter, with a majority of its trade
supplying the Netherlands. France ranks fourth in 2008 among the largest importers,
but appears to be the largest exporter in the EU.

Table 1: Trade in Calves for the Top Two Exporters and Importers, 2008 (‘000 Head-
count)

Germany France Spain The Netherlands
Imports 57 117 400 772
Exports 415 932 46 -

Source: ZMP (2009a, 2009b).

The sample includes prices of young male calves aged eight days to four weeks from
week 20 of 2003 to week 17 of 2009, i.e., 310 observations from May 15, 2003, to
April 30, 2009. The weekly prices are collected by each member state and transmitted
to the European Commission (European Commission, 2002). They are representative
averages from each country’s regions weighted by the relative importance of each breed
and quality. In Figure 1, two observations stick out. First, possible seasonal patterns in
the price series are discernible. Thus, seasonality must be considered in the model
specification. Secondly, the German price is somewhat above those of France and the
Netherlands for a large part of the sample period. This is mainly due to animal quality
(breed) differences. France, and in particular the Netherlands, are heavily inclined
towards less costly dairy calves. While we assume commodity homogeneity in the
analysis, we recognize that different breeds and animal types exist among countries.
The prices we use, however, are representative averages from each country’s regions
weighted by the relative importance of each breed. Animal numbers data suggest that

105



the mixture of animals in each country has remained relatively constant over the sample
period. Next, we describe the construction of the two important variables which are
designed to quantify the decoupling policies and the appearance of BT.

Policy variables

The 2003 reforms in the beef and veal market eliminated the link between headage and
payments; it was replaced with a single farm payment (SFP) which was based on
historical entitlements between 2000 and 2002. While the aim of the reform was
decoupling, individual member states had the option to either fully or partially decouple
payments. If the SFP was partially implemented, farmers could apply for various
slaughter premia: steers 150€ (two payments); bulls 210€, adult animals 80€ and calves
50€ per animal.

Figure 1: Weekly Calf Prices for Germany, France, the Netherlands and Spain
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Source: European Commission (2009a).

The number of animals, i.e. bulls, steers, adult animals and calves, receiving slaughter
premia each year, is reported by the European Commission (2009b). Using the values
of the headage premia reported above, total annual monetary payments are computed
for each country. Based on these numbers, we construct three policy indices pol,,, pol,,
and pol,, reflecting the degree of decoupling in Germany, France and the Netherlands,

respectively ' (Table 2). The variables are constructed for each year between 2005 and

! We use the P 0l variable for both French and Spanish policies since both countries adopted virtually the same policy. For 2008
and 2009, no expenditure figures were available. Thus, we were forced to find a pragmatic approach for extrapolation because some
variability in the policy variables is needed in order to avoid perfect multicollinearity. Animal numbers receiving premia are
extrapolated by drawing from a normal distribution with mean and standard deviation of the animal numbers of 2006 and 2007. We
are aware that the chosen approach is rough. However, it suffices to meet the targets of giving meaningful estimates and allows for
some variability in the animal numbers, which are known to closely resemble the numbers for the two previous years, but are not
identical.
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2009, relative to the average coupled payments in the base period 2002-2004. They are
calculated for country Z and year ¢ according to the formula
1-premia payed by Z int (1)

poly = : : .
average premia payed by Z in base period

such that the greater the index value (the closer to 100), the higher the degree of
decoupling, i.e., it can range from 0 (fully coupled) to 100 (fully decoupled).

Table 2: Policy Variables Quantifying the Degree of Decoupling

Year 2005 2006 2007 2008 2009
pol,,. 100 100 100 100 100
pol,, 7 77 78 78 77
poly, 2 24 24 24 25

Source: European Commission (2009b) and authors’ calculations.

The SFP was implemented in Germany in 2005, while France, Spain and the
Netherlands started one year later. Germany chose to fully decoupled payments in 2005
already. France and Spain partially decoupled in 2006 while the Netherlands decoupled
payments also in the same year, but to a much limited extent. Slaughter premia for
calves and adult animals partially remained in France, Spain and the Netherlands,
whereas in Germany they were included in the SFP. As noted earlier, these different
approaches are likely to yield different production incentives, since payments are
differently linked to the production of beef in different countries.

Economic theory suggests an inverse relationship between decoupling and market
prices. Beef production can be thought of as a function of a number of inputs, including
young calves. The demand for calves is given by the marginal value product of calves
in beef production. The headage premia is paid to the company delivering the cattle to
the slaughterhouse, i.e. in most cases the cattle fattener. Since the premia is clearly
coupled to production; the premia shifts the demand for calves, as an input, outward. If
the premia are reduced or eliminated, the derived factor demand curve for calves shifts
downward due to a reduction in the marginal value product of an additional calf.> If the
marginal cost of calf production does not change, the price of calves will fall. Thus, we
expect a negative effect of the decoupling in a country to be reflected in its equilibrium
price for calves.

Blue Tongue variable

Non-policy shocks can also impact market relationships. The animal disease BT was
first reported in August 2006 with near simultaneous outbreaks in the Netherlands,
Germany and France. BT is a seasonal non-contagious viral disease of ruminants
mainly transmitted by a midge species that can cause mouth ulcers and in some cases a
“blue tongue” in the animal (Conraths et al., 2009). It is prevalent in Sub-Saharan
Africa, but has also been observed for many decades in the Mediterranean region. With

2 The approximate portion between 2002and 2004 of the monetary value of the total headage premium going to young calves is in

Germany 2 percent, in FrancelO percent, in Spainl percent and in the Netherlands 20 percent. Source: European Commission
(2009b).
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global warming, the disease spread northward and was first detected in Central Europe,
specifically, the Southwest of the Netherlands in August 2006. It rapidly spread into the
neighboring countries and in 2007, to the UK. The disease occurs in various versions
(serotypes). Serotype 8 was the version of BT which first occurred in Central Europe.
Other serotypes spread in the following months.

Although the number of animals infected with BT serotype 8 in Central Europe
remained low in 2006, it became an important topic in the media. In August 2007 a
massive outbreak was recorded in Germany, France and the Netherlands (Conraths et
al., 2009). Subsequently, the number of cases in Germany and the Netherlands declined
due to the introduction of vaccination programs from 2008 onwards. Before January
2008, Spanish cattle were only infected with BT serotype 1; but later serotype 8 began
to spread from the Southwest of France to the Northeast of the country.

Although fatality rates due to the disease are low for cattle, it has important
consequences for the milk and cattle sectors. It reduces the fertility of cows, increases
abortions and reduces dairy milk yields by up to 50 percent. Due to its potentially
severe consequences for cattle, implications of the disease for calf prices are very
likely.

Table 3 shows the means and standard deviations of prices before and after the peak
outbreak of BT in August 2007. Both the means and standard deviations of prices were
considerably lower in the period after than before.

Table 3: Prices (€/ Head) Before and After the Peak Number of Reported Blue Tongue
Cases

Before August 2007 After August 2007
Mean ‘ Standard deviation Mean Standard deviation
DE 241 30 207 12
ES 223 21 152 14
FR 255 34 208 16
NL 167 40 127 18

Source: European Commission (2009a).

In an effort to control the spread of the disease across the Union, the EU adopted strict
control measures which included vaccinations and restrictions on the movement of
cattle, sheep and goats (European Commission, 2007). When a confirmed case is
identified, restriction and surveillance zones with radii 100 and 150 km, respectively,
are established (European Commission, 2000). Movement of animals out of the
restricted zones is not allowed. Additionally, national import restrictions were
occasionally issued by several member states, e.g., by France and Spain for German
exports. However, Germany was able to continue calf export to the Netherlands, the
most important destination of German calves. As both countries were subject to
restricted zones of the same serotype, no movement restrictions applied and neither side
issued national import restrictions.
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3 Methodology and Economic Background

According to Fackler and Goodwin (2001), a universally accepted definition remains
allusive. In order to avoid ambiguities, we thus elaborate on the notions of market
integration and price transmission. According to the Law of One Price (LOP), prices of
a homogenous commodity in one market can differ by at most the costs 7Y of moving
them from location X to location Y. This condition is also termed the spatial arbitrage
condition or the weak form of the LOP. If this relationship holds as an equality, then it

is referred to as the strong form of the LOP, i.e., it holds then
XY

Pl —pi =1i (2).

where p¥and p! denotes prices of a homogenous commodity in markets X and Y in
time 7. We investigate the existence of the strong form of the LOP; an equilibrium
condition where price differences among markets evolve over time toward the
transactions costs 7Y (Barrett, 2001). Since this notion is a long-run concept, prices
can deviate from equality in the short-run due to various sources of shocks. When such
a disequilibrium situation occurs, price signals will elicit the movement of products
between surplus and deficit markets, thus restoring the long-run equilibrium.

The economic notion of equilibrium can be empirically investigated in the framework
of cointegration analysis, where the cointegrating relationship is interpreted as the long-
run equilibria. The existence of such a relationship implies a stationary term which is
interpreted as the temporary and stochastic deviations from the equilibrium. The central
characteristic of such a stationary series is that it frequently crosses its mean value. This
property can also be interpreted as a long-run tendency towards the mean, i.e. the series
does not drift apart from its mean value due to its stationarity. Clearly, such behavior
closely corresponds to the economic understanding of equilibria, which is in itself a
long-run concept.

If prices are found to be cointegrated, the system can be written as a vector error-
correction model (VECM) as follows (Engel and Granger, 1987),

k k
Ap,=af p+Y TAp,  +&=Tp_+> TAp,_ +¢ 3)
i=1 i=1

where p; is a n-dimensional vector of prices of a homogenous product in # spatially
spread markets, and Ap; = p; — p;—1. The matrix f of dimension n X r contains the
coefficients of » linear combinations of the prices p;. These combinations are interpret-
ed as stationary long-run relationships between the prices. a denotes the n X r loading
matrix containing the rates at which the price differences Ap; react on the deviations
from the long-run equilibrium. These deviations, which are induced by short-term
shocks to the market system, are quantified by B'p,_,. The matrix a contains hence
relative shares at which the j th, j =1, ...,r disequilibrium is adjusted for by each of the

n prices in each period, i.e., the adjustment speeds. The n X n matrices I;contain the

short-run reactions of the price differences on past differences. &, denotes a Gaussian
white noise error term of appropriate dimension.
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Since calf trade among the four countries studied is likely to exhibit complex
interdependencies, we adopt a multivariate approach. By considering all price series
simultaneously in a single model, we overcome the omitted variable problem typical of
pair-wise cointegration studies that have excluded relevant price series and error-
correction terms.

As mentioned, a common shortcoming in the market integration literature is the
inconsistent usage of terminology. Fackler and Goodwin (2001, p. 978) refer to market
integration as “a measure of the expectation of the price transmission ratio”. However,
Barrett and Li (2002) define the concept as tradability of a commodity as either
established by trade flows or the indifference of agents to trade. Our understanding
comes closest to the definition of Gonzalez-Rivera and Helfand (2001, p. 576) who
define it as “the set of locations that share both the same commodity and the same long
run information”. While we see market integration as a dichotomous quantity, price
transmission is regarded as a gradual measure. The mere tradability condition does, in
our opinion, not suffice to ensure that markets are integrated. For example, the setting
in which a state trading agency uses prohibitive border protection measures to discon-
nect domestic from international markets, while still exporting domestic products, can
hardly be viewed as integrated markets.

The theoretical conceptualization we adopt lends itself to a cointegration interpretation.
A set of n markets is called integrated if all of them are connected by either direct or
indirect trade flows and if they are driven by one and only one common factor implying
the existence of » = n-1 cointegration relationships in a system consisting of two prices
each as also suggested in Fackler and Goodwin (2001). In this sense, market integration
appears to be a dichotomous measure, that is, either n-/ long-run relationships and trade
flows are exist among n markets or not.

While market integration is a unique long-run concept, price transmission is, in our
opinion, best viewed as having both a long- and a short-run dimension. Price
transmission in the long-run is quantified by the slope parameters of the prices in a
certain cointegration relationship j,j € {1,...,r}, i.e., by the jth column of the
cointegration matrix . When using logged data, these parameters can be interpreted as
long-run price transmission elasticities. Hence, long-run price transmission is a gradual
measure since the respective f coefficients can take continuous values around zero. The
closer the measure is to zero, the weaker the price transmission in the long-run. In the
special case in which these coefficients can be restricted to unity, the long-run price
transmission is said to be complete. This implies that the price transmission elasticity
does not statistically differ from one. Hence, a one percent change in one of the prices
leads to a change of the same magnitude in the other price. Accordingly, the long-run
aspect of price transmission is a gradual measure. The short-run dimension of price
transmission refers to the sizes of the parameters in the jth row of the loading matrix a.
They quantify the magnitudes to which each of the n prices reacts on the jth
disequilibrium relationship from period to period, i.e. the speed of adjustment of a price
shock. The sign of the respective parameters in o signals the direction of the adjustment
while their absolute magnitude usually lies between 0 and 1. Thus, price transmission in
the short-run is also a gradual measure. Price transmission in the long-run can be
complete, albeit slow in the short-run which illustrates that it is important to distinguish
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between these time horizons. Each of these characteristics describes one aspect of
interrelationships of markets in space.

Design of the model

Based on the above considerations and test results, the final specification of the
estimated VECM in (3) includes a number of variables. First, we augment the
cointegration space by several variables: a constant, a time trend and the three policy

variables pol,;, pol.,, and pol,. Secondly, we include k=2 lags (AIC) of the price

differences and a dummy variable for the year 2003 outside the cointegration space.
With respect to the latter, there was a dramatic fall in calf prices in all countries during
the first year of the sample period as a result of a number of exogenous events in the
year 2003. These events include the ten country EU enlargement in early 2004. Another
notable event was the response of calf prices to the peak in milk prices in 2002, which
encouraged milk production and thus increased calf numbers some time after.
Additionally, the Fischler reforms were not fully determined in early 2003. Seasonality
was also included outside the cointegration space as significant seasonal patterns are
suggested by Figure 1. Upon exploring this possibility, a likelihood-ratio test favored
the inclusion of 52 weekly dummies.

4 Empirical Results

Unit Root Tests

A major challenge to the analyst is dealing with potential structural breaks in the
univariate series and in the cointegration relationships. In our case, such a break may be
due to the occurrence of BT. Standard unit root tests do not yield reliable results in the
presence of breaks because their size and/or power are affected by the structural
changes. To provide valid inference on the time series properties of the data, we adopt a
recently published unit root test - the forward backward range unit root test (FB-RUR) -
developed by Aparicio et al. (2006). This nonparametric test offers an innovative
approach to unit root testing. It counts the number of range extensions, i.e. the number
of cumulative minima and maxima of the mean-adjusted time series. In contrast to a
unit-root series (I(1)), a stationary series (I(0)) is characterized by constant variance.
This property translates into the fact that the number of range extensions will be small
for a stationary series and large for a nonstationary series. The test statistic is small for
I(0) series and large for I(1) processes. The test statistic is robust to data problems such
as outliers or structural breaks. Whenever the test statistic is smaller than the critical
value, the null hypothesis of a unit root is rejected.

Table 2 shows that all series, except the Dutch series, have a unit root. Although the
Dutch series is found to be stationary, we regard it as nonstationary as recommended by
Juselius (2008, p. 20). She argues that the unit root property of economic variables is
very useful for the empirical analysis of long- and medium-run macroeconomic
relationships.
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Table 4: Results of the FB-RUR Test

Series DE ES FR NL

FB-RUR statistic 1.947 2.433 2.839 1.379%**

Source: Authors’ calculations.
Note: The critical values for the 5% and 1% significance level are 1.866 and 1.582, respectively. Three asterisks denote significance
at the 1% level.

Cointegration Tests

As mentioned above, also the cointegration relationships might be subject to structural
breaks in this case. In such circumstances, standard cointegration tests such as the
Johansen-trace-test or the ADF-test do not yield reliable results as the asymptotic
distribution or the power of the test statistics are affected. The challenge of performing
an adequate cointegration test under such circumstances is cumbersome since only few
theoretical results have been obtained on this up to now, to our knowledge. Gregory and
Hansen (1996) develop several tests which are valid in the presence of structural breaks
in the intercept and/or slope of the cointegration relationship. These tests however, are
only suitable for single cointegration relationships. The only tests applicable to a
multivariate setting are a modified version of the Johansen-trace-test (Johansen, 1995)
and the Saikkonen-Liitkepohl-test (Saikkonen and Liitkepohl, 2000). However, the
limiting distribution of the Johansen-trace-test depends not only on deterministic terms
in the cointegration relationship, but also on the number and the location of structural
breaks, and has thus to be simulated for each individual case. The Saikkonen-
Liitkepohl-test is shown to be independent of such nuisance parameters.

However, theoretical results have only been obtained for structural breaks in the
constant. To our knowledge, neither empirical tests nor theoretical results are currently
available on the behavior of multivariate cointegration test statistics in cases of breaks
in the slope coefficients of the cointegration relationships or for the inclusion of
exogenous variables in the cointegration space. Theoretical results on these two issues
might yield an assessment of a wide range of interesting questions from an applied
science point of view and are hence area for future research. Nevertheless, since we are
particularly interested in how the long-run equilibrium is affected by a changing policy
environment and an extensive outbreak of an animal disease, we adopt a pragmatic
approach to obtain empirical evidence on these two issues.

Since the Johansen-trace-test is sensitive to structural breaks and deterministic variables
in the cointegration relationship, we draw upon the Saikkonen-Liitkepohl-test since it is
robust at least to breaks in the constants of the cointegration space (for all countries).
Strong evidence for three cointegration relationships is found in the four-variate system.
Hence, all cointegration relationships are bivariate. We conclude therefore that the four
markets are integrated since we find n-1=3 cointegration relationships which means that
the 4-variate system is driven by only one stochastic trend.
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Table 5: Results of the Saikkonen-L Utkepohl-cointegration-test

HO rank(IT) <0 rank(IT) < 1 rank(IT) <2 rank(IT) <3
Test statistic 81.55 35.97 14.26 0.71
P-value <0.001 0.001 0.022 0.455

Source: Authors’ calculations.

Since we suspect that the intercept of the cointegration relationships might be subject to
structural breaks induced by the outbreak of BT, we test for this possibility. Due to the
absence of more appropriate test procedures on the evidence of structural breaks, we
use the Gregory-Hansen-test for the four-variate system with one cointegration
relationship.

Table 6 displays the three test statistics for a structural break in the cointegrating
relationship. We find significant structural breaks which fall on week 35 of 2007. This
date closely corresponds to the peak outbreak of BT serotype 8. This is, indeed, strong
evidence that the massive outbreak of BT impacted the long-run calf price relationships.

Thus, we add a shift dummy d,;,,,, which equals 1 for week 35/2007 up to the end of

the sample period, into the cointegration space of the multivariate VECM. The fully
specified VECM hence becomes

2
Apt:aﬂ(p't_l const trend pol,. pol., pol, d AUGO7)'+ZEApt_i+€t.
i=1

4)
Table 6: Results of the Structural Break Gregory-Hansen-test
ADF* statistic ~ 95% Critical value Observation Year Week
-5.29 -5.28 224 2007 35

Source: Authors’ calculations.

VECM Results

We first estimate the unrestricted multivariate VECM (4) by the Johansen procedure
(Johansen, 1995). We choose to normalize the bivariate cointegration relationships on
DE, ES and FR, respectively, because the Netherlands was by far the largest importer of
young calves among the four markets, as mentioned above. Hence, all long-run price
equilibria are expressed with respect to the Dutch price. Based on the theoretical
expectations and understanding of the beef and veal sector, we impose several over-
identifying restrictions on the unrestricted model. First, we test the strong form of the
LOP as formulated in (2). We find that the coefficients of the Dutch price can only be
restricted in its relationships with the Spanish and French prices, respectively (p-value
of the according Wald test 0.11). Furthermore, German decoupling policy should not
impact the ES-NL or the FR-NL relationships. However, the test for excluding the
German price from the ES-NL relationship jointly with the other hypotheses is strongly
rejected (p-value < 0.001). The expectation that French/Spanish policy should not play
a role in the DE-NL relation is confirmed by the joint test (Wald test p-value 0.133).
Lastly, we expect the BT outbreak in 2007 to not have an impact on the DE-NL
relationship since both countries were subject to restricted zones of the same serotype.
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Since no bilateral trade restrictions were issued, the movement of animals between both
countries was not affected. The Wald test of this exclusion restriction, together with the

not rejected hypotheses from before, yields a y°-statistic of 8.05 which is not

significant (p-value 0.153). Thus, we re-estimate the VECM with the restrictions
imposed via a Generalized Least Squares (GLS) estimation as outlined in Liitkepohl
and Kritzig (2004, pp. 103).

In addition, we impose restrictions on the adjustment and the short-run parameters.
Obviously, economic theory can hardly provide clear hypotheses about each of the 252
parameters. We thus choose a statistical approach to identify valid restrictions. Using a
sequential elimination of adjustment and short-run coefficients selected according to the
largest reduction of the Hannan-Quinn criterion, we identify a set of 28 exclusion
restrictions. The VECM is re-estimated with restrictions on the cointegration space, on
the adjustment and on the short-run parameters via a two-stage procedure. This
procedure uses the previous procedure for estimating the restricted cointegration
relationships. In the second stage, it uses an estimated GLS estimator as discussed in
Liitkepohl (2007, p. 197). A likelihood-ratio test indicates that these restrictions cannot
be rejected (p-value 0.246).

We follow the recommendation of Hendry and Juselius (2001, p. 104), and identify

several residuals as outliers by using identification criterion 4,1>336; We include the
eleven identified outliers as impulse or transitory dummies into the autoregressive part
of the VECM. Misspecification tests applied to the residuals of this model version
demonstrate that the chosen specification describes the data generating process
adequately (Table 7).

Table 7: P-values of Misspecification Tests

Series LM-test Jarque-Bera ARCH- Multivariate
test LM test ARCH-LM test

DE 0.4500 0.9440

ES 0.0008 0.2403

FR 0.1896 0.4319

NL 0.1005 0.9868

Multivariate test 0.1676 0.3935

Source: Authors’ calculations

5 Interpretation

Table 8 displays the final estimates of the cointegration relationships for the restricted
and outlier-corrected VECM. The coefficients of NL in the second column represent the
long-run price transmission elasticities. The LOP in its strong form is only found to
hold in the relationships between Spain and the Netherlands, and France and the
Netherlands, respectively. Thus, we conclude that price transmission in the long-run is
complete for these pairs. Only the price transmission elasticity of the German-Dutch
relationship cannot be restricted to one. However, it is reasonably close to 1.
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The magnitudes of the remaining coefficients are also plausible. The coefficients of the
policy variables denote the average change of the price in the first column in response
to increased decoupling. For example, an increase in decoupling in Germany by 10
percentage points is expected to result in a 0.7 percent decrease of the German calf
price. Thus, decoupling led in each of the countries to price decreases. However,
decoupling in the Netherlands had differing impacts on the calf prices in the various
countries.

The estimated coefficients of the BT dummy are of plausible magnitude. They suggest
that the massive outbreak of the disease in August 2007 as well as subsequent trade
restrictions, which were issued as a result of the disease, indeed impacted spatial price
relationships. These trade measures led to a near 14 percent drop in the Spanish price.
This finding is plausible because while France was infected by serotype 8, Spain, as
mentioned above, successfully curbed the spread for almost 1.5 years; the first case was
detected in Spain only in January 2008. The BT dummy however, is not statistically
significant in the French-Dutch relationship. Both countries suffered from the BT
serotype 8 outbreak and thus belonged (partially) to the same restricted zone.
Consequently, they were not subject to trade restrictions (European Commission, 2007).

Table 8: Cointegration Relationships of the Restricted VECM

NL Constant Trend pol,. pol., pol, dareny
DE 1.173 -0.932 0.002 -0.0007 - -0.006 -
(0.055) (0.307) (<0.001)  (<0.001) (0.003)
ES 1.000 0.349 0.002 -0.0022  -0.009 0.023 -0.135
) (0.082) (<0.001) (<0.001) (0.004)  (0.013)  (0.037)
FR 1.000 0.116 >-0.001 - -0.013 0.039 0.014
Q) (0.124) (<0.001) (0.004)  (0.013)  (0.036)

Source: Authors’ calculations.
Note: The prices in the first column are a function of the variables in the remaining columns with the reported coefficients.
Standard errors are given below in parentheses.

Table 9 displays the estimated adjustment coefficients of the restricted and outlier-
corrected VECM. These estimates give information on how the national prices reacted
to deviations from long-run price equilibria. The prices of each equilibrium show
adjustment of the expected sign and are significant and of reasonable magnitude. The
Dutch price appears to be weakly exogenous in the DE-NL and FR-NL relationships.
Interestingly, several prices which are not part of the respective cointegration
relationship show significant adjustment, e.g., the French price significantly responds to
deviations from the DE-NL long-run equilibrium. This underscores the adequacy of the
multivariate approach chosen; important variables would be omitted if the VECM
would have been estimated for price pairs separately.

French and Dutch calf prices respond the fastest, i.e., correction of 50% of a shock (half
live) taking place in approximately 5 to 6.5 weeks, while Spanish and particularly
German prices react much slower with half-lives of up to 11 weeks. The French price is
hence not only sensitive in the long-run to policy changes, but also shows a similar
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sensitivity regarding its reactions on deviations from the price equilibria in the short-
run. The general picture is that market prices quickly respond to disequilibria.
Adjustment speeds vary between 6% up to more than 13% of equilibrium errors which
means that at least half of a shock is adjusted within no more than 10 weeks (2.5
months). This finding shows that price transmission between the four calf markets is
not only high in the long-run, but also occurs at high rates in the short-run.

Table 9: Adjustment Coefficients of the Restricted VECM

Cointegration DE-NL ES-NL FR-NL
relationship
DE -0.077 [8.7] - 0.062 [10.8]
(0.018) (0.019)
ES 0.062 [10.8] -0.101 [6.5] -
(0.017) (0.020)
FR 0.102 [6.5] - -0.128 [5.1]
(0.021) (0.021)
- 0.134 [4.8] -
NL
(0.027)

Source: Authors’ calculations.

Note: Standard errors are given below the estimates in parentheses. Half-lives, defined as the time needed to correct c.p. 50% of any
disequilibrium, in weeks are given in brackets. Note that these are hypothetical values since short-run parameters are not considered
in the calculation.

Counterfactual Simulations

We conduct two counterfactual simulations which illustrate the effect of the decoupling
on the equilibrium prices of each cointegration relationship. We compare estimated
equilibrium prices based on the values of the observed policy variables at certain points
in time to the hypothetical levels of these policy variables. The two scenarios presented
are based on the 12-weekly Dutch average price before the respective date. Although
the equilibrium prices are calculated for the pair-wise cointegration relationships of the
restricted model, it has to be considered that the model coefficients were estimated in a
multivariate system. They therefore encompass both the effects of a country’s own
policy choices on its domestic price and the effects of the policy choices of the other
countries regarded in the system. Hence, a change in an equilibrium price cannot be
interpreted as the sole consequence of the country’s own decoupling choice, but the
choices of the other countries also play a role.

Scenario I evaluates the situation for January 1, 2005. It compares the actual setting
with a more conservative one by assuming that each of the four countries would have
decided for zero decoupling. However, Germany took the most liberal policy decision
and completely decoupled on this date even though this decision could have been
delayed until January 2007°. Table 10 clearly shows that an increased degree of
decoupling, which is equivalent to a decrease in coupled payments, had an expected
depressing effect on the equilibrium price in each country. The variables of the actual

3 The small actual policy variables in January 2005 of 7.5 percent in France and Spain and 1.6 percent in the Netherlands were due
to the slightly lower animal numbers which received payments.
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policy choices are larger than the assumed ones. However, the equilibrium prices (A),
based on the actual variables, are lower than the prices (B) in the hypothetical case of
zero liberalization. The French equilibrium price appears to be the least impacted by the
chosen decoupling policy. The German price would have been 8 percent higher without
decoupling. In contrast, the Spanish equilibrium price could have been expected to be
almost 30 percent higher if none of the countries would have decoupled.

Table 10: Scenario | - Fully Coupled Policies on January 1, 2005

Country DE FR ES NL
Observed price 200 246 196 145
€/head
Actual Policy variable 100 7.5 7.5 1.6
policy
Equilibrium price (A) 151 156 198 -
Scenario | Policy variable 0 0 0 0
Equilibrium price (B) 163 162 254 -
Ratio (B) to (A) 1.08 1.04 1.28 -

Source: Authors’ calculations.

Scenario II assesses the hypothetical scenario of the most protective choice of a
decoupling policy on January 1, 2007. This was the date of mandatory movement
toward decoupling for all countries. With the exception of the Netherlands, chosen
national policies were quite liberalized. However, we assume for this case that a
relatively high degree of coupled support remained. The hypthotical values of the
policy variables are set to 25 percent, roughly the observed situation in the Netherlands
at this point in time. In

Table 11, it is apparent that the effects in Scenario II are much stronger than two years
earlier in Scenario 1. Equilibrium prices would have been much higher if Germany,
France and Spain had opted for considerably more conservative policy choices®. Again,
effects of decoupling are least for the German calf price and strongest for the French
price.

4 At first glance, the hypothetical equilibrium prices for ES seem very high as does the margin between the German and Spanish
prices. We must emphasis that the equilibrium prices will never be observed in practice. As Table 12 in the appendix shows, the
estimated deviations from equilibrium, e.g. for ES-NL, lie between -0.43 and 0.73. Hence, observed prices might well have been
300€/head for example since 434€- e~%3=322€.
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Table 11: Scenario 11 - Most Protective Policy Choice by January 1, 2007

Country DE FR ES NL
Observed price 235 254 206 143
€/head

Actual policy | Policy variable 100 78 78 24
Equilibrium price (C) 164 144 227 -

Scenario 11 Policy variable 25 25 25 25
Equilibrium price (D) 171 304 434 -
Ratio (D) to (C) 1.04 2.12 1.91 -

Source: Authors’ calculations.
Dynamic Analysis

A common way to assess system dynamics is to examine impulse response functions.
However, impulse responses have been shown to have a number of weaknesses in a
multivariate system (Pesaran and Shin, 1996). The main drawback is that the estimated
functions are not unique. They depend on the ordering of the variables and the chosen
orthogonalization of shocks. Lee and Pesaran (1993) suggest an alternative measure.
They propose considering time paths which track the effect of a system-wide shock to
the cointegration relations. They call such system-wide impulse responses persistence
profiles. Persistence profiles are defined as “the scaled difference between the
conditional variances of the n-step and the (n-1)-step-ahead forecasts” (Pesaran and
Shin, 1996). Formally, scaled persistence profiles for multiple cointegration vectors are
defined as:

h,(n) = GH,(n)G =GB B,QB', /G . (5)

H (n) denotes the unscaled persistence profile of an n-step-ahead forecast of a unit-

shock to the multivariate system. It is calculated from estimated cointegration vector [3

where deterministic terms restricted to the cointegration space (constant, trend and
dummies) are not regarded. Hence, the profiles are independent of time. Furthermore,

the recursive sum of the estimated parameter matrices fi’n of the World representation
of the multivariate process is considered. Lastly, the estimated variance-covariance

matrix Q of the shocks of the World representation plays a role. The World
representation is approximated by the corresponding VAR form of the estimated

VECM. Hence, the B, matrices in (5) are functions of IT and ﬁ,i =1,2. The matrix G

denotes a suitable scaling matrix. The resulting time profiles are unique and
independent of the ordering of the variables and the orthogonalization of shocks. They
are functions of the forecast horizon », and converge eventually to zero for cointegrated
models; although the convergence can take a while (Garrat et al., 2006). Figure 2
displays the persistence profiles of the restricted VECM estimated above.

The time paths of the three cointegration relationships are very similar. After
overshooting in the first week after the system-wide shock, i.e. temporarily increased
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disequilibrium, the profiles converge rapidly to zero. Within four weeks, more than 50
percent of any shock is absorbed into each of the cointegration relationships. The
French and the Spanish relationships although overshooting the most, show the steepest
decline afterwards. After eight weeks, only 6 percent of the shock remains in the DE-
NL and FR-NL relationships, respectively. In the ES-NL relationship, more than 98%
of the shock is absorbed after eight weeks. This finding confirms the general picture of
the close interrelationships of the four European calf markets studied.

Figure 2: Persistence Profiles of the Restricted Model

Cointegration relationships
15 ---- DE-NL FR-NL —— ES-NL

Shock

Weeks after the shock

Source: Authors’ calculations.

6 Conclusions

Following the 2003 Fischler reforms of the EU’s Common Agricultural Policy,
decoupling of support payments from production was implemented differently by EU
member states. In the beef and veal sector, German policy makers opted for the most
liberal choice of full decoupling in January 2005 while Spain, France and the
Netherlands initiated partial decoupling a year later. Decoupling reduces slaughter
premia for cattle, which in turn, reduces the marginal value product of calves in beef
production. Hence, such a policy can be expected to lead to decreasing prices for calves
as the derived demand curve shifts downward. Since 2003 however, European cattle
markets were not only subject to changing policy, but also to a major animal health
crisis induced by the first outbreak of the Blue Tongue disease in Central Europe. In
August 2007, a large scale outbreak occurred, bringing strict restrictions on animal
movements for some states.

In this paper, we empirically explore how these external forces impacted the degree of
long-run price transmission between four major European calf markets. We analyze
interdependencies of calf markets by using weekly price data of young male calves of
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Germany, France, the Netherlands and Spain from 2003 to 2009. A recently developed
range unit-root test, which is, among other features, robust to structural breaks, and a
multivariate vector error-correction model are used for this end. We conceptually
differentiate between the notions of market integration and price transmission. The
former term is seen as a dichotomous measure while and the latter concept is a gradual
measure of both a long- and a short-run dimension. We find strong evidence for the
existence of three cointegration relationships among the four prices. Thus, the markets
can be regarded as integrated. Most of the estimated coefficients are of plausible sign
and magnitude. Price transmission in the long-run is found to be complete in two of the
three relationships. Long-run price transmission was significantly impacted by
decoupling policies. The outbreak of the Blue Tongue disease played a significant role
in the Spanish-Dutch long-run relationship. Price transmission in the short-run price is
found to be fast.

The estimation results are illustrated by two counterfactual scenarios which
demonstrate the price depressing effects of decoupling in comparison with hypothetical
scenarios of more conservative liberalization strategies. Both scenarios show that the
policy choices of decoupling indeed lowered the expected equilibrium prices in all
national markets studied.

Dynamic analysis of the analyzed system confirms the general picture of the
multivariate estimation. We compute persistence profiles, which show the reaction path
along time for each of the long equilibria, to absorb a system wide shock. The estimated
time paths underpin the findings of tightly interrelated prices of the spatially separated
markets. Within a period of less than four weeks, more than half of any shock is
absorbed into the system. We conclude that the four calf markets studied are closely
interconnected and find strong evidence that they belong to a common European
market.
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Appendix

Table 12: Descriptive Statistics of the Estimated Error-Correction Terms

DE-NL ES-NL FR-NL
Minimum -0.1419 -0.4334 -0.1317
Median 0.2490 -0.0029 0.2190
Maximum 1.1004 0.7324 0.7570

Source: Authors’ calculations.

Note: For calculating the observed magnitudes of relative price deviations from equilibrium, the value of the exponential function

of the estimated residuals has to be considered.
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Appendix B

MARKOV-SWITCHING ESTIMATION OF SPATIAL MAIZE PRICE TRANS-
MISSION PROCESSES BETWEEN TANZANIA AND KENYA

This article is a cooperation with Stephan von Cramon-Taubadel and Sergiy Zorya. It
has been published in the American Journal of Agricultural Economics 91 (Number 5
- Proceedings Issue, 2009): 1432-1439.

The article was presented in the invited paper session “New Econometrics Methods

for Structural Change Analysis of Agricultural and Food Markets” at the 2009 AAEA
& ACCI Joint Annual Meeting, Milwaukee, Wi, USA, July 26- 28, 2009.
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We discuss the Markov-switching vector autoregressive (MS-VAR) class of non-linear
time series models which can be used to analyze recurring discrete structural changes in
time series. Hamilton’s (1989) seminal Markov-switching (MS) model of the U.S.
business cycle triggered considerable interest in the MS approach in economics. Most
empirical applications to date have focused on the business cycle and financial markets,
but we see potential for MS-VAR models in agricultural economics for example in
price transmission analysis. In the following we first provide an overview of the MS-
VAR framework. We then present an illustrative application to maize price
transmission between Tanzania and Kenya. The article closes with a discussion of
strengths, weaknesses, and potential uses of the MS-VAR approach in price
transmission analysis.

A Brief Overview of MS-VAR Models

Following Krolzig (1997), the basic idea behind the MS-VAR class of models is that
the parameters of a VAR process are allowed to depend on an unobserved regime
variable s, € {1, ..., M}, representing M possible states of the world. In its most

general form, the MS-VAR is given by:
p

(1) Y, =0(s) + 2 A(s) Yoy +U;, U~ NID(O,2(s,)),
j=1

where y, = (V.- Yo)'» t=1,..., T is a K-dimensional time series vector, v(s,) and
A;(s,) are matrices of intercepts and autoregressive (AR) parameters of appropriate
dimension, and X(s,) is the variance-covariance matrix of a Gaussian zero-mean error
process u,. In (1) the terms v(s,), A;(s,), and X(s,) describe the dependence of the
respective parameters on the unobserved regime s,. The intercept in (1) for example
will be regime-dependent as follows:
v, if s, =1

(2) v(s,) =

vy If s, =M.
Hence, the non-linear data generating process in (1) can be described as piecewise
linear (i.e. as linear conditional on the regimes).

Depending on which parameters in (1) are allowed to be regime-dependent, different
sub-classes of the MS-VAR result. Krolzig (1997) proposes the terminology MSx(M)-
VAR(p) to distinguish between them, where M is the number of regimes, p the order of
the VAR, and x indicates which parameters are regime-dependent. Thus, a MSI(M)-
VAR(p) refers to a model in which the intercept is regime-dependent, while MSA(M)-
VAR(p) and MSH(M)-VAR(p) refer to regime-dependence in the AR terms A, (s,) and

the error covariance X(s,), respectively. These elements can be combined, so that the
“full-blown’ model in (1) can be considered a MSIAH(M)-VAR(p).
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A further sub-class of MS-VAR models which is not immediately apparent from (1) is
the MSM(M)-VAR(p) in equation (3):

@) Y- u(5) = XAV A ) +u, b ~NIDO,S)

where the second ‘M’ in MSM refers to ‘mean-adjusted.” MSM-models can also
include regime-dependent AR and error covariance parameters. MSM-VAR and MSI-
VAR models imply quite different time series behavior; while the mean of each time
series jumps in the MSM-VAR immediately to its new level after a regime change, it
approaches the new level smoothly in the MSI-VAR (Krolzig 1997).

Finally, the MS-VAR can be re-specified into vector error-correction form (MS-
VECM). In this specification the loading parameters can also be regime-dependent,
along with the intercept, AR, and error covariance parameters (Krolzig 1997). The great
variety of possible specifications points to one of the major advantages of the MS-VAR
model class, which is its flexibility in capturing different types of structural change in
time series.

To complete the MS-VAR, it is necessary to specify the process that governs the
evolution of the regimes s,. In MS-models s, is governed by a hidden Markov chain
with a discrete and finite number of regimes in discrete time. This Markov chain is
assumed to be ergodic and irreducible, meaning that a stationary distribution of regimes
exists, and any regime can be reached from any other regime (i.e. there is no
‘absorbing’ regime). The evolution of s, is assumed to be characterized by the

transition matrix:

P 0 P
4 p= :

Pmur " Pwum
where p; =Pr(s,,, = j|s, =i) is the probability of switching from regime i in time t to
regime j in t+1. As the evolution of s, is assumed to satisfy the Markov property
Pr(s., ISi:Siqs--s Yer Yegr---r) = Pr(s,; | S;) , whereby the probability of s, depends
only on s, and P, the resulting regime generating process is memoryless (i.e. the past
has no influence on the future except through the present). The Markov chain is
typically assumed to be homogenous (i.e. to have constant transition probabilities p; ).

MS-VAR models are most often estimated using the expectation maximization (EM)
algorithm. The EM algorithm uses an initial estimate of the model parameters to
estimate the probabilities of being in each of the M unobserved regimes s, (smoothed

probabilities). These probabilities are then used to update the estimated parameter
vector. These steps are repeated until a convergence criterion is satisfied. The EM
algorithm converges relatively quickly to the neighborhood of the mode of the
likelihood function and is robust to local maxima and singularities in this function;
however, once in the neighborhood of the mode, convergence can be slow (Mizrach and
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Watkins 1999). Recent publications (e.g. Frei 2008) explore the use of Bayesian
techniques to estimate MS-VAR models.

If the number of regimes (M) in a Markov-switching model is known, then the EM
algorithm produces consistent parameter estimates, and likelihood-ratio-tests can be
used to generate statistical inferences on these parameters. If the number of regimes is
not known, the problem of testing M vs. M+1 regimes arises. Since some model
parameters are not defined under the null, standard maximume-likelihood inference is
not possible. Several solutions to this problem are proposed in the literature, including
the use of complexity-penalized likelihood criteria (e.g. Smith, Naik, and Tsai 2006)
and tests based on quasi-likelihood ratios (Cho and White 2007), but model selection
remains a challenge in the MS-VAR framework.

Several extensions of the MS-VAR framework described above have been proposed.
Some authors (e.g. Jerzmanowski 2006) relax the assumption of constant transition
probabilities by allowing them to be functions of exogenous variables such as economic
fundamentals. Pelagatti (2008) proposes a duration dependent MS-VAR in which the
transition probabilities depend on how long the Markov chain has been in a particular
regime. Krolzig (1997) and Kim (2009) go a step further to allow for endogenous
regime switching by letting the transition probabilities be a function of vy, .

An Application to Maize Price Transmission between Tanzania and Kenya
Motivation in the Context of Price Transmission Analysis

The insight that price transmission is likely to be regime dependent, for example due to
shifts in transaction costs or trade flow interruptions and reversals, has led to the use of
a variety of non-linear modeling techniques. These include threshold VECM (Goodwin
and Piggott 2001), smooth transition regression (Mainardi 2001, Serra et al. 2008,
Ubilava and Holt 2009), and parity bounds models (Barrett and Li 2002).

An important characteristic of these approaches is that they assume that regime shifts
are triggered by observable variables, for example the magnitude of the error-correction
term in the threshold VECM. In some settings, however, regime shifts depend on
variables that are unobservable or not amenable to measurement. For example
Brimmer, von Cramon-Taubadel, and Zorya (2009) conjecture that price transmission
in the Ukrainian wheat/flour chain is affected by policy interventions that are not
always announced officially or enforced evenly over time. The behavior of actors in the
chain might change due to such interventions (or threats thereof), leading to changes in
price transmission. In such cases the MS-VAR framework might be able to generate
useful insights into the timing and nature of otherwise unobservable regime shifts.

Background and Data

To illustrate the use of MS-VAR models in price transmission analysis, we consider
maize market integration between Tanzania and Kenya. Maize is an important staple
food in these countries, and the Tanzanian government in particular intervenes on maize
markets in pursuit of improved food security. Interventions include the operation of
strategic grain reserves and restrictions on the movement of grain between regions
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within the country or on exports to neighboring countries (Aliguma et al. 2008). One of
the most visible and presumably most influential measures is the export ban (Temu,
Manyama, and Temu 2007). The government in Kenya also intervenes on maize
markets; a recent overview and analysis of these policies is provided by Jayne, Meyer,
and Nyoro (2008).

Figure 1 depicts the maize price margins between Nairobi (Nai) in Kenya and four
markets in Tanzania: Dar es Salaam (Dar), Arusha (Aru), Mbeya (Mbe), and Songea
(Son). The margins are calculated using five corresponding series of monthly wholesale
maize prices from January 2000 through September 2008 (105 observations) in US$/t
obtained from the Regional Agricultural Trade Intelligence Network of the Eastern
Africa Grain Council (RATIN 2008). The margins are much higher in some periods
than in others, which may be an indication of regime-dependent behavior. Figure 1 also

illustrates the periods over which export bans have been in place according to Temu,
Manyama, and Temu (2007).

Figure 1: Maize Price Margins and Tanzanian Export Bans

250 —

—— Nai-Dar - - Nai-Aru ---- Nai-Mbe --- Nai-Son @O Exportban

200 |
150 -
100 - |

50 o N

Price margin in US$#

0

-50 —

=100 —

2001 2002 2003 2004 2005 2006 2007 2008

Date

Source: RATIN (2008), and Temu, Manyama, and Temu (2007).

Export bans are expected to increase the Kenya-Tanzania price margin by decreasing
the supply in Kenya and increasing it in Tanzania, all other things being equal.
However, figure 1 shows that the correspondence between high price margins and
export bans is not one-to-one. For example margins were high in 2000, 2003, and the
first half of 2007, although no exports bans were reported. Against this background, we
estimate a MS-VAR using the price margins in figure 1 to assess their potential regime-
dependent behavior and the correspondence to periods of known export bans.

Model Selection and Estimation

First, we study the data for evidence of nonlinearities by analyzing the residuals of a
linear VAR of the four margins. The VAR rather than the VECM specification is
chosen because the null hypothesis of a unit root is rejected for all four margins by the
Augmented Dickey-Fuller test. We employ the Hannan-Quinn Criterion (HQ) and the
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Schwarz Criterion (SC) for model selection, both of which point to 1 lag. The residuals
of the resulting VAR(1) display autocorrelation and non-normality (table 1). Increasing
the lag order to 3 as indicated by the Akaike Information Criterion solves the first
problem but not the second. Since non-normal residuals can be a consequence of failure
to account for non-linearity such as regime-dependency (Lutkepohl and Kratzig 2004),
we analyze whether there is evidence of non-constant parameters in the VAR(1). A
bootstrapped Chow forecast test of the null hypothesis that all model parameters are
constant is rejected at the 5 percent level over almost the entire sample period. Since
figure 1 suggests that the margin levels shift over time, and this is what export bans are
expected to produce, we focus on the intercepts of the VAR(1). Figure 2 presents
recursive estimates of the intercept of the Nairobi-Arusha margin and suggests that it is
indeed subject to shifts at several points in time over the sample period. Results for the
other intercepts of the VAR(1) are similar.

Table 1: Residual Analysis of Linear VAR(1) and VAR(3) Models (p-Values)

Model Portmanteau  Breusch-Godfrey? Normality”

12 lags 5 lags Skewness  Kurtosis Joint
VAR(1) |0.472 0.001 <0.001 <0.001 <0.001
VAR(3) |0.576 0.207 <0.001 <0.001 <0.001

Source: Authors’ calculations
Breusch-Godfrey LM test for autocorrelation.
® Test for multivariate normality (Doornik and Hansen 1994).

Therefore, we next investigate whether a MS-VAR is able to provide an improved
representation of the maize price margins. Both the HQ and the SC favor a mean-
adjusting specification that includes regime-dependent heteroskedasticity (MSMH-
VAR). Considering two regimes to capture phases with and without interference in
trade such as export bans appears reasonable, but the possibility of three regimes is
explored as well. Hence, we estimate MSMH(2)-VAR(p) and MSMH(3)-VAR(p)
specifications using the MSVAR package for Ox (Krolzig 2004). Up to p=5 lags in the
autoregressive part are considered. The HQ identifies the MSMH(3)-VAR(1) as best,
while the SC favors the MSMH(2)-VAR(1) (Table 2).
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Figure 2: Recursive Estimates of the Intercept of the VAR(1) for the Nairobi-
Arusha Maize Price Margin
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The residuals of both models are non-normal and conditionally heteroskedastic.
Inspection of the residuals reveals four outliers according to the criterion | &, | > 3-3&5 ;

these outliers are common to both the two- and three-regime MSMH specifications and
occur in the Nairobi-Arusha margin in May and June 2006, in the Nairobi-Mbeya
margin in February 2008, and in the Nairobi-Songea margin in May 2008. Including
dummy variables for these observations eliminates non-normality and
heteroskedasticity (table 2). Furthermore, it reduces both the HQ and SC criteria and
leads both of them to favor the MSMH(2)-VAR(1) specification.

Table 2: Selection Criteria and Residual Tests (p-Values) for MSMH(2)-VAR(1)
and MSMH(3)-VAR(1) Specifications with and without Dummies for Outliers

MSMH(2)-VAR(1) MSMH(3)-VAR(1)

Without With Without With

dummies dummies dummies dummies
HQ 35.963 35.116 35.818 35.639
SC 36.658 36.054 36.786 36.639
Portmanteau 0.373 0.706 0.697 0.523
Heteroskedasticity® | 0.001 0.884 <0.001 0.952
Normality” <0.001 0.707 0.040 0.322

Source: Authors’ calculations.
& Test for multivariate conditional heteroskedasticity (Doornik and Hendry 1996).
® Test for multivariate normality (Doornik and Hansen 1994).
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Discussion

The preferred MSMH(2)-VAR(1) specification is parsimonious. It points to the
existence of two regimes distinguished from one another by different levels of mean
price margins between Kenya and Tanzania. These differences are large, with mean
margins in the *high’ regime more than double those in the ‘low’ regime and error
variances roughly 50 percent lower in the ‘high’ than in the ‘low’ regime (table 3). The
model distinguishes sharply between the ‘high” and ‘low’ regimes, producing smoothed
probabilities that are close to O or 1 over the entire sample period, and it divides the
sample period into a sequence of clearly distinct regime episodes (figure 3). The
transition probabilities indicate that both the *high” and the ‘low’ margin regimes are
highly persistent; the probability of remaining in *high’ from one period to the next is
92 percent, and the probability of remaining in ‘low’ is 89 percent.

Table 3: Regime Means and Standard Deviations from the Estimated MSMH(2)-
VAR(1)

Regime | Statistic | Nairobi — Dar Nairobi — Nairobi — Nairobi —
es Salaam Arusha Mbeya Songea
‘High' Mean 60.3 65.7 110.8 117.3
Std. error | 13.8 11.9 12.7 13.8
‘Low’ Mean 20.5 20.7 48.6 54.4
Std. error | 24.8 19.4 18.8 30.2

Source: Authors™ calculations.

Figure 4 compares the estimated ‘high’ margin episodes with known export bans,
according to the literature. While there is some overlap since 2004, the MS-VAR
identifies *high’ regime episodes in 2000-2001, 2003, and 2007 that do not correspond
to known export bans. Several explanations for this lack of correspondence can be
proposed. First, the information on the implementation of export bans in Temu,
Manyama, and Temu (2007) might be incomplete, especially for earlier years. Second,
exports might have been reduced or curtailed in some periods even in the absence of an
official export ban, for example by unofficial export restrictions or by restrictions on
movements of grain within Tanzania from production regions to regions that border on
Kenya. Third, changes in domestic supply and demand balances in Kenya and
Tanzania, both seasonally and from year to year, can be driving periods of high and low
margins along with interference in movements and trade of maize. For example
sustained high margins in 2007 despite the end of the export bans implemented in mid-
2006 could reflect continued high prices in Kenya following a severe drought in 2006
(FewsNet 2007). The results of the MS-VAR estimation presented here can guide future
efforts to collect data on these possible explanations, with a view towards improving
our understanding of the determinants of price transmission between Tanzania and
Kenya.

133



Figure 3: Smoothed Probabilities of the ‘high’ and ‘low’ Regimes, and Regime-
dependent Means of the Margins
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Outlook and Conclusions

We present Markov-switching vector autoregressive models as a tool for analyzing
recurring structural changes in time series. This model class is widely used in business
cycle and financial market analysis due to its considerable flexibility. We argue that it
can be a useful tool in agricultural economics, too, in cases in which regime-dependent
behavior is suspected, but the variables governing regime shifts are unobservable or
unknown. Even in settings in which such a variable is observable, contrasting the
results of other non-linear modeling techniques with MS models might produce useful
insights. For example while the presence or absence of trade flows is expected to
influence price transmission between two markets, there is sometimes reason to believe
that the available data on trade flows is flawed (e.g. due to smuggling). In this case
contrasting the results of models that use this trade data with the results of a MS-model
might be useful.

The empirical application to maize margins between Kenya and Tanzania presented
above illustrates the use of MS-VAR models in such a context. The estimated
MSMH(2)-VAR(1) identifies several high-margin episodes that correspond well with
known periods of Tanzanian export bans, but also several additional high-margin
episodes during which no export bans were known to have been in effect. The results of
the MS-VAR estimation presented here can guide future efforts to collect additional
data with a view towards improving our understanding of the determinants of price
transmission between Tanzania and Kenya.

An important advantage of the MS-VAR framework is its great flexibility in modeling
regime-dependent time series behavior. The associated danger is that of over-fitting,
especially since no generally valid model selection procedure in MS-VAR models has
been established. Hence, practitioners run the risk of estimating spurious regressions in
spurious regimes, producing results in sample that provide a misleading view of the
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underlying data generating process. Subject to these dangers, MS-VAR techniques can
be a very useful addition to the existing toolbox.

Figure 4: Episodes of the Estimated ‘high’ Margin Regime and Export Bans
According to the Literature
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Source: RATIN (2008), Temu, Manyama, and Temu (2007), and authors’ calculations.
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Appendix C

GRENZEFFEKTE IN DER MARKTINTEGRATION BEI MAIS IN OST-
AFRIKA: EINSICHTEN AUS EINEM SEMI-PARAMETRISCHEN
REGRESSIONSMODELL

This article is a cooperation with Joseph Amikuzuno, Stephan von Cramon-Taubadel
and Sergiy Zorya. It has been published in the Tagungsband GEWISOLA 2009 - 49.
Jahrestagung der Gesellschaft fiir Wirtschafts- und Sozialwissenschaften des Landbaus
e.V., Kiel, Germany.

[http://www.uni-kiel.de /gewisola2009 /beitrage/v4korrigiert.pdf]

The article was presented at the GEWISOLA 2009 - 49. Jahrestagung der Gesellschaft
fiir Wirtschafts- und Sozialwissenschaften des Landbaus e.V. “Agricultural and food

markets after the boom”, Christian-Albrechts-Universitat zu Kiel, Germany, Septem-
ber 30-October 2, 2009.

Furthermore, this research was presented under the title COUNTRY AND BORDER EF-
FECTS IN THE TRANSMISSION OF MAIZE PRICES IN EASTERN AFRICA: EVIDENCE
FROM A SEMI-PARAMETRIC REGRESSION MODEL as invited paper at the seminar “In-
complete Pass-Through in Marketing Channels: National and International Trends”,
Institut D’Economie Industrielle, Université Toulouse 1 Capitole, France, November
16-17.
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Zusammenfassung

Diese Arbeit analysiert Faktoren, die Einfluf} auf das Ausmald der inlandischen und der
grenzibergreifenden Integration der Maismarkte Kenias, Tansanias und Ugandas
ausiiben. Die Starke der Reaktion der Preise auf Abweichungen von ihren Langzeit-
gleichgewichtswerten als Mald der Marktintegration und die Determinanten dieser
Reaktion werden fur 85 Marktpaare von Januar 2000 bis Oktober 2008 untersucht. Zu
diesem Zweck wird ein semi-parametrisches partiell-lineares Regressionsmodell
genutzt. Dieses Modell ermdglicht es, den EinfluR der Marktentfernung, der sich als
nichtlinear herausstellt, adaquat zu modellieren. Die Ergebnisse der Untersuchung sind
kohdarent mit der 6konomischen Theorie und von politischem Interesse. Ein Grenzeffekt
wird identifiziert, der in dem Sinne heterogen ist, daR er nur flr die tansanische, jedoch
nicht fir die ugandische Grenze festgestellt werden kann. Der tansanische
Binnenhandel weif3t einen stark negativen Effekt auf, der sich jedoch statistisch nicht
vom Grenzeffekt des Landes unterscheidet. Weiterhin wird ein stark positiver Effekt fur
Nairobi gefunden, der im Einklang mit der GréRRe und wirtschaftlichen Bedeutung der
Stadt im ostafrikanischen Raum steht.

Schliisselworter

Grenzeffekt, Mais, Ostafrika, rdumliche Marktintegration, semi-parametrische Regres-
sion.

1 Einleitung

Mais stellt im subsaharischen Afrika das mit Abstand wichtigste Grundnahrungsmittel
dar. Eine solche Rolle hat er auch in Ostafrika inne (Awuor, 2007), wo er nach
FAOSTAT fiir Tansania und Kenia tber ein Drittel und fir Uganda mehr als 10% der
durchschnittlichen Kalorienaufnahme ausmacht, weshalb er in Anbau und Handel eine
ahnlich wichtige Rolle spielt. Die grofiten Produzenten der Region sind Tansania und
Kenia, wobei ersteres Uberwiegend selbstversorgend ist, letzteres mit Abstand den
groten regionalen Importeur darstellt. Kenias Maisnachfrage wird neben seinen
eigenen Anbaugebieten im zentralen Hochland vor allem durch Einfuhren aus
Ostuganda und Nordtansania gedeckt, wobei Uganda der groRte Nettoexporteur der
Region ist (fur eine eingehende Behandlung der Maishandelsfliisse siehe Awuor, 2007
oder MICHIGAN STATE UNIVERSITY, 2008). Nach der UN Comtrade Datenbank gehen im
Mittel etwa 60% der gesamten Maisausfuhren Ugandas und Tansanias nach Kenia, und
Mais gehort zu den funf wichtigsten Ausfuhrgitern in Ostafrika.

Obwohl alle drei Staaten zur Ostafrikanischen Gemeinschaft (East African Community,
EAC) gehdren, in deren Rahmen seit Januar 2005 eine Zollunion in Kraft ist, verfolgen
sie unterschiedliche Agrar- und Handelspolitiken, die nicht immer im Sinne der Union
sind. Kenia und Uganda besitzen im Gegensatz zu Tansania Uberwiegend liberalisierte
Markte. Nach WELTBANK (2008) wurden in allen drei Staaten produktions- und
handelsverzerrende MaRnahmen seit 1980 zuriickgefahren. Wahrend die ersten beiden
Lander ihren Fokus von Besteuerung des Agrarsektors hin zu einer verhaltenen
Unterstltzung veréndert haben, bleibt der Maismarkt in Tansania mit stark politisch
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beeinfluiten Preissignalen stark reguliert. Die politischen Entscheidungstrager in
Uganda scheinen das Potential des Landes, zur Kornkammer Ostafrikas zu werden und
damit auch erhebliche Ausfuhreinnahmen zu realisieren, erkannt zu haben. Daher hat
das Land kein Interesse an der Anwendung handelsverzerrender MaRnahmen hat. Die
Agrarpolitik Kenias ist eher auf verhaltene Preisstiitzung und —stabilisierung mittels des
National Cereals and Produce Board ausgerichtet, das nach stark zuriickgegangener
Bedeutung in den letzten 20 Jahren noch begrenzten Einflul auf die Preise ausibt.
Tansania verfolgt in erster Linie das Ziel der flachendeckenden Nahrungsmittelsicher-
heit, das mit einer Reihe restriktiver MalRnahmen von lokaler bis hin zu nationaler
Ebene, wie z.B. Exportverbote, zu erreichen versucht wird (siehe TEmu ET AL. 2007 fur
einen chronologischen Abrif3 der Handelspolitik fur Mais).

Das Ausmal’, mit dem Preissignale eines Gutes, und damit implizit Aussagen Uber
dessen Angebots- und Nachfragestruktur, zwischen Markten (bertragen werden,
ermoglicht Einsichten in den Grad der Marktintegration. Diese lait ihrerseits
Schluf3folgerungen hinsichtlich des Vermoégens der Mérkte zu, Preis- und dadurch
implizierte Wohlfahrtseffekte von Uberangebot und Knappheit abzufedern. Eine
zentrale Fragestellung besteht in dieser Hinsicht darin, ob die Markte durch ein
langfristiges Preisgleichgewicht miteinander verbunden sind und wie stark sie, falls
dieses vorhanden ist, auf Abweichungen davon, die durch abgebots- oder
nachfrageinduzierte Schocks ausgelést werden kénnen, reagieren. Das Ausmald dieser
Reaktion auf zwischenstaatlicher Ebene hangt von verschiedenen Faktoren ab, so z.B.
ob die rdumlichen Handelsfliisse nationale Grenzen Uberqueren oder ob bestimmte
Lander oder Grolistadte sich strukturell vom regionalen Durchschnitt unterscheiden.
Daher konzentriert sich diese Arbeit auf die Frage, ob Unterschiede im AusmaR der
Reaktion von Preisen auf Abweichungen von ihren Langzeitgleichgewichtswerten, d.h.,
nach der Definition von FACKLER und GoobwiN (2001: 978), in der Marktintegration
(M), festgestellt werden kdnnen.

Die methodische Analyse besteht aus zwei Schritten. Im ersten Schritt werden 85
Maismarktpaare untersucht, ob sie durch Langzeitgleichgewichte verbunden, d.h.
kointegriert sind. Falls dies der Fall ist, wird jeweils ein Vektorfehlerkorrekturmodell
(vector  error-correction  model, VECM) geschatzt. Die  ausgepragte
Nettoeinfuhrsituation Kenias und v.a. seiner Hauptstadt Nairobi 43t nicht nur die
Untersuchung des Binnenhandels, sondern auch des grenziiberschreitenden
Warenverkehrs zwischen Kenia und Tansania bzw. Kenia und Uganda interessant
erscheinen. Der Schwerpunkt der Arbeit liegt im zweiten Schritt auf der Analyse von
Faktoren, die das AusmaR der MI beeinflussen. Dies geschieht sowohl auf Grundlage
von parametrischen als auch semi-parametrischen Regressionsmodellen. Dabei
orientiert sich die Analyse an den einschlégigen Literaturen zu Gravitatsmodellen bzw.
Grenzeffekten, die seit den richtungweisenden Veroffentlichungen von McCALLUM
(1995) und ENGEL und RoGERS (1996) Handelsflisse bzw. Preisvolatilitat auf
Individual- und Grenzeffekte hin untersuchen, wie z.B. HELLIWELL (1996) , EVANS
(2003) oder HeLBLE (2007). OLPer und RAIMONDI (2008) untersuchen die Bedeutung
von Grenzeffekten flr den Handel mit Agrargutern.

Die Arbeit ist wie folgt gegliedert. Der nachste Abschnitt erklart kurz das zugrunde
liegende Modell und widmet sich ausfihrlich der Beziehung zwischen
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Transaktionskosten (TK) und der Starke der MI und der Rolle von Grenzeffekten als
Komponente der TK. Der nachfolgende Abschnitt diskutiert das Problem der
Verzerrung von Schatzern als Folge von Fehlspezifikation eines unbekannten
funktionalen Zusammenhanges und schldgt alternativ ein semi-parametrisches
Regressionsmodell vor, das auch spaterhin in der Analyse Anwendung findet. Danach
wird kurz auf die Daten eingegangen. In Abschnitt 5 werden die Schéatzergebnisse von
parametrischen und semi-parametrischen Modellen dargestellt und im Folgeabschnitt
ausfuhrlich interpretiert, bevor der siebte Abschnitt den Aufsatz schliel3t.

2 Preistransmission, Transaktionskosten und Grenzeffekte

Nachdem die Zeitreiheneigenschaften der Daten festgestellt wurden, wird mittels des
Johansen-Maximum-Likelihood-Schatzers ein VECM je Marktpaar geschétzt, wobei
das Hannan-Quinn-Kriterium zur Wahl der Ordnung k der zeitlichen
Verzogerungsterme benutzt wird. Ein VECM hat die folgende Form:

Ap? a’ k Apt. el
O ptB =| ", lect +XT, ptB" +
Ap, a i=1 AP, ; &,

wobei Apy; = P — Py 1 =0.1....k;1 ={A B} die (verzogerte) Preisanderung der

Markte A bzw. B darstellt. ! bezeichnet den Ladungs- oder Anpassungsparameter, der

das Ausmal der MI milt, also die Geschwindigkeit mit der die Preise pt' auf

kurzfristige Abweichungen von ihren Langzeitgleichgewichtswerten ptl U reagieren,

die mittels des Fehlerkorrektur-terms ectt:pt'—pt' U quantifiziert werden’.

Ij,i=1...,k sind Matrizen der Dimension (2x2), die die Koeffizienten der

Kursfristreaktion enthalten, und Stl ~1IN(0,57) sind WeiRes-Rauschen-Fehlerterme. Im
zweiten Schritt der Analyse werden, wie im Folgenden dargestellt, die geschatzten
Anpassungsgeschwindigkeiten &' eingehender untersucht.

Raumlicher Handel ist mit Kosten fir die Ausfiihrung der Transaktionen verbunden. In
der Literatur werden diese in der Regel in der Eisbergform angenommen, d.h. daB ein
Teil des Wertes des Gutes fiir die Kosten dessen Handels aufgebraucht wird
(,,abschmilzt“, vgl. z.B. ENGEL und RoGERS, 1996). Somit erzeugen die Kosten ein
Preisintervall, in dem Handel nicht profitabel ist (band of no-arbitrage). Demzufolge
reagieren Preise nur auf diejenigen Abweichungen vom Langzeitgleichgewicht, die die
jeweiligen TK fur Handel zwischen den beiden Markten A und B (die nicht
symmetrisch sein missen) Uberschreiten. Die Preisreaktion sinkt somit mit steigenden
TK.

Die Literatur zu Grenzeffekten postuliert in der Regel “transportation costs [...] should
depend positively on the distance between locations” (ENGEL und ROGERS, 1996).

! Je hoher o, desto hoher die MI, wenn z.B. ¢ =0,5, dann verandert sich der Preis p' um 50% des
absoluten Ausmafes des Schocks in der Folgeperiode, es wird also c.p. die Halfte eines Schocks in
einer Periode korrigiert.

143



Jedoch sind TK im Allgemeinen weder deckungsgleich mit den bloRen
Transportkosten, obwohl sie sicherlich einen Grofdteil derer ausmachen, noch missen
sie zwangslaufig mit der Entfernung ansteigen. Im rédumlichen Guterhandel fallen
diverse weitere Kosten im Rahmen der physischen Transaktion zwischen Markten
neben denen fur den Transport an. BARRETT (2001) diskutiert folgende Komponenten
von TK:

2 oPB = frAB L AB AR phB

wobei 7B die Stiick-TK zwischen Méarkten A und B und fr die Transportkosten per
Einheit darstellen. v beinhaltet variable Kosten, die fir Versicherung, Finanzierung,
VertragsschluB etc. anfallen, und z beinhaltet Durchschnittsstiickzdlle. SchlieBlich
steht@ fir nichtmelbare TK, wie z.B. Opportunitats- oder Suchkosten. Die Zerlegung
(2) erhebt keinen Anspruch auf Vollstandigkeit. Die dort angefiihrten TeilgréRRen
werden ihrerseits von verschiedenen Faktoren bestimmt. So werden zum Beispiel die
Transportkosten von der Entfernung, dem Zustand der Infrastruktur und der
transportierten Menge abhdngen, wobei auch die Effizienz des Netzwerkes des
Héndlers oder beauftragten Spediteurs (wie oft in Entwicklungslandern der Fall) eine
Rolle spielen kann. Dartiber hinaus betont HeLsLe (2007) die Bedeutung der
geschaftlichen Infrastruktur (business infrastructure), d.h. die Maoglichkeit flr
kurzfristige Geschaftsreisen wird als wesentlicher Faktor identifiziert, da sie den
Handel im Durchschnitt signifikant um ein Drittel erhoht.

Es soll an dieser Stelle betont werden, dal} diese Komponenten sich allerdings in ihren
Effekten auf die TK nicht zwangslaufig verstarken missen, sondern auch gegenlaufigen
Beziehungen, bis hin zur gegenseitigen Aufhebung, aufweisen kénnen. So muf? z.B. die
Beziehung der Hohe der TK zur Entfernung nicht proportional sein. Im Allgemeinen
werden TK mit der Entfernung zwar steigen, jedoch kdénnen sie flr entfernte, durch
gute Infrastruktur miteinander verbundene Mérkte (z.B. die Hauptstadt und die groRte
Hafenstadt eines Landes) geringer ausfallen als fir nahegelegene, die aber nur durch
unbefestigte Wege verbunden sind. In ahnlicher Form wird eine gut entwickelte
geschaftliche Infrastruktur zu geringeren TK zwischen entfernten Markten flhren als
fr nahegelegene, die diese nicht aufweisen.

Die Mehrzahl dieser Komponenten ist in der Praxis schwerlich mef3bar. Immerhin
kdonnen sie aber in Kategorien aufgeteilt werden, die fir jeden Markt einfach
festzustellen sind. Die Entfernung stellt die einzige Variable dar, die kontinuierlich und
aulRerdem einfach melbar ist. Da sie einen Grof3teil der Frachtkosten ausmacht, sollte
sich dies auch in den Daten widerspiegeln, d.h. ein signifikanter Entfernungseffekt
(distance effect) sollte nachweisbar sein. Im Falle grenziiberschreitenden Handels
konnen weitere Kosten auller denen fur die Fracht anfallen, wie z.B. Einfuhrzolle,
Ausfuhrsteuern, Kosten fiir die Beschaffung der notwendigen Einfuhrpapiere oder
wegen langer Wartezeiten. Diese konnen einen Grenzeffekt (border effect) hervorrufen,
d.h. also einen signifikanten Unterschied im Ausmald der MI zwischen inlandischem
und grenziberschreitendem Handel. Schliellich erscheint es plausibel, dal Kompo-
nenten der TK, wie z.B. die Qualitat der Infrastruktur, Besteuerung oder Subven-
tionierung von Treibstoff oder handelsrelevante Institutionen, landerspezifisch sein.
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Somit kann potentiell auch ein Landes-(Individual-)effekt eine relevante Komponente
von TK ausmachen.

TK koénnen demnach als eine Funktion der Entfernung und von Grenz- und
Landeseffekten modelliert werden. Letztere werden durch Platzhaltervariablen
modelliert, die den Wert 1 annehmen, wenn das Charakteristikum der Kategorie erfullt
ist und sonst 02 Im Speziellen werden Platzhaltervariablen firr einen allgemeinen
Grenzeffekt (Dg) beriicksichtigt, der aber aufgrund der oben beschriebenen heterogenen
Politikansétze in einem alternativen Modell in einen Effekt der kenianisch-tansanischen
Grenze (Dkr) und der kenianisch-ugandischen (Dky) Grenze unterschieden wird.
Weiterhin werden aus dem gleichen Grund Platzhalter fur Landeseffekte von Tansania
(Dran) und Uganda (Dyg) einbezogen, um mogliche Heterogenitat hinsichtlich der Ml
abbilden zu kénnen®. SchlieRlich findet auch ein Platzhalter fur Markpaare, einer deren
Markte Nairobi ist, Berlcksichtigung (Dnai), da es um die gréfite und wirtschaftlich
bedeutendste GroRstadt in Ostafrika handelt, und somit durchaus eine besondere Rolle
hinsichtlich der Maisnachfrage und des Handels spielen kann.

Da EinfluRfaktoren des AusmaRes der Preisreaktion auf Abweichungen vom
Langzeitgleichgewicht im Zentrum dieser Arbeit stehen, erscheint die Summe der
absoluten geschatzten Anpassungsgeschwindigkeiten pro Marktpaar
S/ =la”|+|a®| (die paarweise Anpassung) als die relevante Variable, deren

Determinanten im zweiten Schritt der Analyse untersucht werden®. Dies ist
gerechtfertigt, da das Ausmal} der MI von der Reaktion beider Preise auf
Abweichungen vom Gleichgewicht abhangt®. Somit ergibt sich die folgende Gleichung:

AB AB AB AB AB AB
() Sg =T1(d"")+fo+ DG +F2Dran +F3D0g + SaDnai
bzw. wird einer weiteren Spezifikation in heterogene Grenzeffekte unterschieden und
DéB durch D,’é%3 und D@B ersetzt.

Vor dem Hintergrund der stark handelsverzerrenden tansanischen Politik erscheint ein
Grenzeffekt hinsichtlich der paarweisen Anpassung flr denkbar, der demnach negativ
ausfallen sollte, was implizieren wirde, dal} trotz Zollunion noch erhebliche TK-
erhdhende Faktoren fiir diesen grenziberschreitenden Handel existieren. Weiterhin
wird signifikanter Einflul der Entfernung erwartet, wie es auch plausibel scheint,
aufgrund der Heterogenitét der drei Staaten Landeseffekte zu finden, wobei wiederum
Tansania eine besondere Rolle spielen kdnnte und mit einiger Sicherheit einen

2 Die Einbeziehung solcher Variablen mag auf den ersten Blick sehr grob erscheinen, jedoch ist diese
Herangehensweise die einzig praktikable vor dem Hintergrund des Problems der Identifizierung und
Quantifizierung der Komponenten der TK.

® Die Platzhalter fir die Grenzeffekte bzw. die Landeseffekte nehmen den Wert 1 an, wenn der Handel
zwischen den Mérkten des Paares die jeweilige Grenze uberschreitet bzw. innerhalb des jeweiligen
Landes stattfindet.

* Dieses MaR impliziert eine Preistransmissionselastizitat von 3, =1in ect, = p,* — B, — B, p;.

® In der Summe werden nur Koeffizienten beriicksichtigt, die signifikant zum 10% Niveau geschétzt
wurden.
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negativen Effekt (d.h. geringere MI) aufweisen wird. Auch erscheint eine Sonderrolle
Nairobis, begriindet durch seine herausragende Bedeutung in der EAC, denkbar.

3 Unbekannte Funktionsform und das partiell-lineare Regressionsmodell

In Gleichung (3) ist die paarweise Anpassung S/® unter anderem eine Funktion der

Entfernung d”Bzwischen zwei Markten. Jedoch kann die 6konomische Theorie keine
eindeutigen Hinweise auf die explizite Form dieser partiellen funktionalen Beziehung
geben auBer der allgemeinen Aussage, dass sie tendenziell mit der Entfernung
abnehmen sollte. Aus der Okonometrie ist bekannt, daB eine Fehlspezifikation einer
funktionalen Beziehung zu ernstzunehmenden Verzerrungen der Schatzer fuhrt.
Teilweise versucht die Literatur zu Grenzeffekten dieser Herausforderung in
begrenztem Umfang zu begegnen, indem alternative Funktionsformen geschéatzt
werden. ENGEL und RoOGERs (1996) sind sich dieses Problems bewuft, indem sie
anmerken: ,, The effect of distance may also be understated if the log-distance function
is not the appropriate one.” und sowohl eine logarithmische als auch eine quadratische
Spezifikation schatzen.

In dieser Arbeit wird ein davon abweichender Ansatz gewahlt, indem keine (potentiell
zu restriktive und damit wahrscheinlich unzutreffende) Annahme (ber die funktionale
Form gemacht wird. Der partielle Einfluf der Entfernung wird nicht in ein
»parametrisches Korsett”“ gezwéngt, sondern mittels einer semi-parametrischen Version
des Modells (3) geschétzt (HARDLE ET AL. 2004). Im Speziellen scheint ein partiell-
lineares Modell geeignet, das es erlaubt, den partiellen EinfluR der Entfernung, der im
gegebenen Kontext durchaus nichtlinear sein kdnnte, nichtparametrisch zu schétzen.
Dies vermeidet die Gefahr, eine falsche Funktionsform anzunehmen, jedoch erlaubt
gleichzeitig den linearen partiellen Einflul} der Platzhaltervariablen zu bericksichtigen.
Es wvereint die Vorzige der vollkommenen Flexibilitdt eines nichtlinearen
Regressionsmodells und der intuitiven Interpretierbarkeit einer simplen multivariaten
Regression. Somit wird folgende semi-parametrische Version von Modell (3) geschétzt:

@) s2%=m(d”®)+BDE® + B,Dfm + A0y + 4D -

die in einer zweiten Version wiederum in heterogene Grenzeffekte differenziert. Die
einzige Annahme Uber die funktionale Beziehung m(e) besteht darin, dal’ es sich um

eine glatte Funktion handelt, die auch die Konstante f; aus Modell (3) aufnimmt. Sie

wird ebenso wie die Koeffizienten der Platzhaltervariablen als partieller EinfluR der
Entfernung zwischen den beiden Mérkten eines Paares auf die paarweise Anpassung
des Paares interpretiert, jedoch mit dem Unterschied, daB ihre Form vollkommen
flexibel anhand der Daten ermittelt wird. Die Annahme der Glatte der funktionalen
Beziehung ist offensichtlich weit weniger einschrankend als die einer expliziten
parametrischen Spezifikation. Auf’erdem ermdglicht ein solcher let the data speak-
Ansatz neben Einsichten bezuglich der wahren, potentiell nichtlinearen Beziehung auch
O6konometrische Tests hinsichtlich der Approximierbarkeit der nichtparametrischen
durch parametrische Funktionen.
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4 Datengrundlage

Es wird ein umfangreicher Datensatz untersucht, der aus 16 Zeitreihen von
GroRhandelsmaispreisen in Kenia (Eldoret Nairobi, Nakuru, Mombasa), Tansania
(Aruscha, Daressalam, Iringa, Mbeya, Songea) und Uganda (lganga, Kampala, Kasese,
Lira, Mbale, Masaka, Masindi) besteht®. Er wurde aus mehreren Quellen
zusammengestellt,  welche das  Ostafrikanische ~ Handelsnetzwerk  Ratin
(www.ratin.net/), den Bericht der MICHIGAN STATE UNIVERSITY (2008), das tansanische
Industrie- und Handelsministerium (www.mitm.go.tz/) und InfoTradeUganda
(www.infotradeuganda.com/) umfassen. Die Entfernungen wurden in Google.maps
(http://maps.google.de/) als kiirzeste Entfernung im UberlandstraRennetz der Lander
ermittelt. Jede Zeitreihe umfalt 106 monatliche Beobachtungen von Januar 2000 bis
Oktober 2008. Fehlende Beobachtungen (59 von 1696, d.h. 3,5%) wurden mittels einer
Version des von KING ET AL. (2001) publizierten Algorithmus berechnet, indem 1000
Werte pro Datenpunkt erzeugt wurden, aus denen mithilfe des nichtparametrischen
Modusschétzers von Parzen der wahrscheinlichste Wert ermittelt wurde.

Alle Preise wurden in US$/t umgerechnet und in logarithmierter Form verwendet. Alle
Zeitreihen sind nach dem ADF-Test integriert in erster Ordnung (I1(1)), d.h. besitzen
eine Einheitswurzel zum 10 % Signifikanzniveau’. Unter allen méglichen
Kombinationen werden 85 bertcksichtigt, die s&mtliche inléandische Marktpaare in
Kenia (6), Tansania (10) und Uganda (21) sowie, aufgrund der in der Einflihrung
beschriebenen Handelsflisse, samtliche Kombinationen zwischen Kenia und Tansania
(20) bzw. Kenia und Uganda (28) umfassen.

Abbildung 1: Paarweise Anpassung vs. Entfernung
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Entfernung zwischen Marktpaaren (100 km)
Quelle: Eigene Darstellung.

® Fiir die geografische Verteilung dieser Markte siehe Abbildungen im Anhang.

" Aufgrund der formalen Einschrankungen kénnen weder die Ergebnisse dieser Tests noch die
Schétzergebnisse des VECM (1) hier ausfuhrlich wiedergegeben werden, sind aber auf Nachfrage von
den Autoren erhltlich.
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Fur die 77 Paare, die nach dem Johansen-Spur-Test kointegriert auf dem 10% Niveau
sind, wird jeweils das VECM (1) geschatzt. Drei Paare darunter weisen falsche
Vorzeichen der Anpassungsparameter auf, so dal’ sie als AusreilRer von der weiteren
Analyse ausgeschlossen werden. Somit werden 74 Marktpaare im zweiten Schritt der

Analyse verwendet (Abbildung 1), deren paarweise Anpassung S(ﬁB minimal 10,1%, im

Mittel 42,2% und maximal 85,7% betragt. Die Entfernung zwischen den Marktpaaren
betrdgt minimal 130 km, im Mittel 650 km und maximal 1770 km und geht in
Einheiten von 100 km in die Regression ein. 58% der Paare beinhalten eine
Grenzuberquerung, darunter 20% die kenianisch-tansanische und 38% die kenianisch-
ugandische. 8% der Paare befinden sich vollstandig in Tansania und 26% in Uganda.
19% der Paare beinhalten Nairobi.

5 Schiitzergebnisse

5.1 Parametrische Modelle
In Abschnitt 2 wurde eine Reihe von Variablen hergeleitet, die potentiell einen Einfluf3

auf die paarweise Anpassung SﬁB haben konnen, der zuerst mit verschiedenen

Spezifikationen des parametrischen Modells (3) untersucht wird. Jedoch ist es aus der
O6konomische Theorie nicht moglich, fir den Einzelfall die relevanten Variablen zu

bestimmen, die S(QB am besten erklaren. Die Variablenauswahl wird daher durch eine

statistische Modellauswahl auf Basis Akaikes Informationskriteriums (AIC) ergéanzt,
um diejenigen Variablen zu identifizieren, die Uber die groRte Erklarungskraft

hinsichtlich S(f‘B verfiigen. Dasjenige Modell gilt in diesem Sinne als das ,,beste, das

die Daten mit so wenigen wie mdglich, aber so vielen wie nétig, also nur den
aussagekraftigsten Variablen erklart. Das AIC wird allgemein berechnet als:

(5)  AIC =-2In(L)+2k

wobei L die MutmaBlichkeit (likelihood) des Modells und k die Anzahl der geschéatzten
Parameter benennt. Je besser die Daten durch das Modell erklart werden, umso hoher
wird L und umso geringer wird der erste Teilterm von (6). Da sich dies einfach durch
Erhohung der Anzahl erklarender Variablen erreichen laRt, sorgt der so genannte
Strafterm 2k fir einen Ausgleich, indem er Variablen mit geringem Erkl&rungsgehalt
»bestraft“ und das AIC dementsprechend erhéht. Daher ist das im statistischen Sinne
beste Modell dasjenige, das das kleinste AIC aufweist, wie in Abbildung 2 dargestellt.
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Abbildung 2: AIC fiir verschiedene Spezifikationen von (4)

650
640 N
630 1
620

= 610 —

S AT

A
Modell IV Maodell ll Modell I Modell |

Modellvarianten
Quelle: Eigene Darstellung.

Tabelle 1 gibt die Ergebnisse auf Basis des Kleinsten-Quadrat-Schéatzers, die
Signifikanzen und das AIC einiger ausgewahlter Modelle wieder. In Abbildung 1 18Rt
die gepunktete Linie eine funktionale Beziehung zwischen der Entfernung und

SO/?B vermuten, was durch die Schétzergebnisse von Modell | als signifikant negativer

Zusammenhang bestatigt wird. Modell Il zeigt, daB ein allgemeiner Grenzeffekt (Dg)
nicht existiert, aber ein Nairobieffekt (Dnai) signifikant positiv ist, was zu einem
besseren Modell fuhrt. Wenn jedoch, wie in Modell 111, der Effekt der kenianisch-
tansanischen Grenze (Dy;) und ein Landereffekt fir Tansania (Dr..) beriicksichtigt
werden, was das AIC um mehr als 40 Punkte reduziert (flir Uganda ist weder ein
Grenz- noch ein Landeseffekt signifikant), ist der partielle EinfluR der Entfernung nicht
mehr signifikant®, womit diese Variable iiberfliissig wird.

Abbildung 3: AIC fiir verschiedene Bandbreiten des semi-parametrischen Modells
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Quelle: Eigene Darstellung.

Die Koeffizienten des tansanischen Grenz- (Dyr) und Landereffektes (Dr.,) sind beide
signifikant negativ und von &hnlicher GroRe. Daher wird mittels eines Waldtests
gepruft, ob beide Koeffizienten statistisch voneinander abweichen, d.h. ob beide

® Eine lineare oder logarithmische Modellierung dieses partiellen Einflusses sind ebenso nicht signifikant.
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Variablen zu einem allgemeinen Tansaniaplatzhalter Dranai = Dyan +Dkr
zusammengefalit werden konnen. Die entsprechende Teststatistik ist mit einem Wert
von 1,4 (p-Wert 0,25) nicht signifikant®. Somit kann das Modell vereinfacht werden,
was sich im leicht verbesserten AIC von 586,9 widerspiegelt’®. Somit reprasentiert
Modell 1V das beste parametrische Modell.

Tabelle 1: Schiitzergebnisse fiir verschieden Spezifikationen von Modell (4)*

Variable
Modell | Kostante d d’ Dyr Dy, Dn,i Diyanan AIC
| 51,3*** -1,4%** 637,0
11 49,4%** -1,3** 16,9%** 629,6
111 42,2 ** 2,0 -0,2 -26,0%** 22 7*** 15,2%** 587,9
v 46,9%** 15,2%** -26,5%** 586,9

Quelle: Eigene Berechnung.
& Ein, zwei und drei Sternchen markieren Signifikanz zum 10%, 5% bzw. 1%-Niveau.

5.2 Semi-parametrische Modelle

Im besten parametrischen Modell 1V konnte kein signifikanter partieller Einflu der
Entfernung auf die paarweise Anpassung nachgewiesen werden. Diese Variable wird
im Folgenden auf moglichen nichtlinearen EinfluR untersucht. Es werden mittels des
Speckmanschatzers (HARDLE ET AL., 2004) die beiden partiell-linearen Modelle
52%=m(d"®)+ B Dfm + 4,DKF + DR (Modell V) bzw. s78=m(d*®)+ 1 Dfhan +72DRai
(Modell VI) geschétzt, die in ihrer Variablenauswahl den parametrischen Modellen |11

bzw. IV in Tabelle 1 entsprechen. Die Schatzung wird flr verschiedene Bandbreiten h,

die die Glatte des nichtparametrischen Teils m(d AB) bestimmen®*, zur Kontrolle der

Robustheit der Ergebnisse durchgefiihrt (Abbildung 4). Abbildung 3 verdeutlicht, dal}
das semi-parametrische Modell fiir die meisten Bandbreiten ein geringeres AIC als das
beste parametrische Modell (586,9) aufweist. Damit wird gezeigt, dal} eine Berlicksich-
tigung der Entfernung in Form eines nichtlinearen partiellen Einflusses das Modell
signifikant verbessert. Das AIC erscheint fir beide Modellvarianten recht stabil Gber
ein weites Spektrum von Bandbreiten, was darauf hinweist, dal} die Verbesserung der
Modellqualitat recht robust ist. Model VI weist ein geringeres AIC als Variante V auf.

Das Minimum liegt bei einer Bandbreite von 60% der Spannweite r(d”®), d.h. hoy=

8,6. Das entsprechende AIC ist mit einem Wert von 583,5 uber 3 Punkte geringer als
das von Modell VI, was auf eine beachtliche Verbesserung des Modells durch die

% Ein ahnlicher Test auf Parametergleichheit des Nairobi- und des allgemeinen Tansaniaplatzhalters wird
mit einer Teststatistik von 73,4 (p-Wert < 0,001) eindeutig abgelehnt.

10 Somit wird ersichtlich, daR eine Verbesserung des AIC &quivalent zu den Ergebnissen des Waldtests ist
und auf ein signifikant besseres Modell hinweist.

1 Als Bandbreiten werden die Dezile der Spannweite der Entfernung
r(d*B) = max(d”8)—min(d”B)=14.4 benutzt. Je hoher die Bandbreite, umso starker wird der

nichtparametrische Schatzer gegléattet.
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nichtparametrische Modellierung des partiellen Einflusses der Entfernung hinweist. Das
optimale semi-parametrische Modell ist demnach:

6) SSB=m(d"B)—24,9%*.DAB 115 2%xx.pAB | AB

Die Schéatzwerte des parametrischen Teils sind denen von Modell 1V sehr &dhnlich,
wobei ihre Schétzer frei von 0©konometrischer Verzerrung aufgrund falscher
Funktionsform sind. Ein signifikant negativer allgemeiner Tansaniaeffekt von etwa 25
Prozentpunkten und ein &hnlich signifikant starker, aber positiver Nairobieffekt von
etwa 15 Prozentpunkten werden identifiziert.

In Abbildung 4 ist der geschatzte nichtparametrische EinfluR m(d”8) fiir verschiedene

Bandbreiten dargestellt. Der partielle Einflul} der Entfernung bedeutet fiir nahegelegene
Markte eine mittlere paarweise Anpassung von etwa 47%, d.h. 47% der Abweichung
vom Langfristgleichgewicht wird vom Marktpaar unmittelbar in der Folgeperiode
korrigiert. Bis zu einer Entfernung von 500 bis 700 km steigt sie leicht auf 48% an und
fallt danach mit steigender Distanz. Jenseits von etwa 1000 km fallt sie mit konstanter
Veranderungsrate von einem Prozentpunkt pro 100 km zusatzlicher Entfernung®.
Somit zeigen Marktpaare, deren Markte 1500 km voneinander entfernt liegen, eine
mittlere paarweise Anpassung von nur noch 42%.

Abbildung 4: Geschiitzter nichtlinearer Einflufl der Entfernung auf die paarweise
Anpassung

209 -~ 50%
© 55%
— 60% (geringstes AIC)
65%
70%

m(d™™)

40 T T —
5 10 15

Entfermung d*® zwischen Marktpaaren (100 km)

Quelle: Eigene Darstellung.

12 Abbildung 4 im Anhang stellt die geschétzte nichtlineare Funktion fiir die optimale Bandbreite dar.
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In Abbildung 5 ist m(d”B) im Vergleich zu verschiedenen parametrisch modellierten

partiellen Einflussen abgebildet. Schon bei visueller Inspektion fallt auf, daR letztere
stark vom nichtlinearen Schatzer abweichen, was durch die Ergebnisse eines
modifizierten Bootstrap-Likelihood-Ratio-Tests (HARDLE ET AL., 2004) fir 1000
Wiederholungen und ho,=8,6 bestatigt wird. Die Nullhypothesen, dal die partielle

Beziehung zwischen d”® und sABlinear (m(d”8)=g,+5d"8), quadratisch
(m(dAB):ﬂ0+ﬂldAB+ﬁz(dAB)2) bzw. logarithmisch (m(dAB):,b’0+,Bllog(dAB)) ist, werden

jeweils mit, zum 1%-Niveau signifikanten, Teststatistiken von 29,3, 54 bzw. 76,5
zugunsten der Alternativhypothese eines nichtlinearen Einflusses abgelehnt. Damit
besteht starke ©konometrische Evidenz, dal eine parametrische Modellierung des
partiellen Einflusses fiir die hier analysierten Daten inadaquat ware, was konsistent mit
der Modellauswahl auf Basis des AIC ist.

Abbildung 5: Nichtparametrische vs. parametrische partielle Einfliisse

50 = nichtparametrisch

linear
- - —~ quadratisch
logarithmisch

m{d™)

40 T T T
5 10 15

Entfernung d"® zwischen Warktpaaren (100 km)
Quelle: Eigene Darstellung.

6 Diskussion der Schiitzergebnisse

Beide Modelle weisen einen signifikant negativen Effekt sowohl fiir tansanische
Inlandsmarkte als auch fir die tansanische Grenzquerung nach, was konsistent mit der
vom diesem Land verfolgten Agrar- und Handelspolitik, wie in der Einleitung
beschrieben, ist. Dieser Effekt verringert, c.p., die mittlere paarweise Anpassung um
etwa 25 Prozentpunkte und kann somit als aulRerordentlich starker Effekt angesehen
werden. Obwohl der Punktschatzer des isolierten kenianisch-tansanischen
Grenzeffektes, plausible Folge der haufig angewandten Ausfuhrverbote, absolut gréRRer
als der des isolierten tansanischen Landeseffektes, bedingt durch handelsverzerrende
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MaRnahmen auf lokaler und regionaler Ebene, ist, unterscheidet er sich statistisch nicht
von letzterem. Somit geht der tansanische Grenzeffekt in einem allgemeinen
Tansaniaeffekt auf, was zeigt, dafl sadmtliche Marktpaare, die mindestens einen
tansanischen Markt beinhalten, signifikant schwécher integriert sind. Dies impliziert auf
Basis der im zweiten Abschnitt entwickelten Gedanken, daR die TK im Land und an
dessen Grenzen signifikant héher sind als in bzw. zwischen Kenia und Uganda. Einen
wesentlichen Grund stellen mit Sicherheit die stark preis- und handelsverzerrenden
Malinahmen der tansanischen Regierung zur Sicherstellung flachendeckender
Nahrungsmittelsicherheit dar. Die Identifizierung weiterer tansaniaspezifischer
Faktoren liegt jenseits des Rahmens dieser Analyse, jedoch erscheint sie von
erheblichem Interesse, da sie zu politikorientierten Handlungsempfehlungen zur
Reduzierung bestehender TK fiihren konnte,.

Ein allgemeiner Grenzeffekt konnte nicht gefunden werden. Es wurde aber festgestellt,
dal? die Unterscheidung in einen kenianisch-tansanischen und kenianisch-ugandischen
Effekt notwendig ist, was vor dem Hintergrund der stark differierenden nationalen
Politiken als recht nahe liegend scheint. Wahrend die Querung ersterer Grenze die Ml
signifikant verringert, liegt kein Effekt im Falle letzterer vor. Das deutet darauf hin, daf3
ein Grenzeffekt nicht zwangslaufig als homogen fir ein Land aufgefa3t werden muf,
sondern es sich, wie hier aus der Sicht Kenias™, um einen heterogenen Effekt handeln
kann, der, unseres Wissens nach, in der Literatur zu Grenzeffekten noch nicht in dieser
Form berucksichtigt worden ist. Weitere Untersuchungen (ber die Griinde des
Auftretens solcher Heterogenitdt sind relevant von einem praktischen Standpunkt,
liegen aber jenseits des Rahmens dieses Aufsatzes.

Neben dem Tansaniaeffekt wird ein signifikant positiver Nairobieffekt in vergleichbarer
Starke nachgewiesen, d.h. die Integration von Nairobi mit anderen Markten ist im
Mittel um 15 Prozentpunkte hoher als fur Marktpaare ohne die Stadt. Die Lage des
Partnermarktes, ob in Kenia oder in einem der Nachbarlédnder, ist dabei nicht
ausschlaggebend. Dieses Ergebnis ist vor dem Hintergrund der GroRe und der wirt-
schaftlichen Rolle der Stadt im ostafrikanischen Raum und der recht liberalen Handels-
politik Kenias sehr plausibel. Da sie die Hauptstadt und die bei weitem groRte Stadt des
Landes darstellt, besitzt sie eine tberdurchschnittlich gute infrastrukturelle Anbindung
nicht nur an den Rest des Landes, sondern v.a. auch an die Nettoausfuhrregionen fir
Mais der Nachbarlander. Weiterhin dirfte die Attraktivitat der Stadt als Absatzmarkt
fir Grundnahrungsmittel aufgrund der Zahl und des Wohlstandes ihrer Bewohner einen
weiteren Faktor darstellen, wo wahrend es ganzen Jahres der Verkauf grélRerer Mengen,
ggf. auch zu héheren Preisen im Gegensatz zu kleineren Stadten erwartet werden kann.
Spediteure konnen haufigen Verkehr von Gltern und Personen zu und von der Stadt
erwarten, so dafl weniger Leerfahrten anfallen, was einerseits Kosten verringert und an-
dererseits den Wettbewerb erhéht, wodurch Skaleneffekte und spill-overs entstehen
konnen. Nicht zuletzt wird die erwéhnte geschaftliche Infrastruktur, wie von HELBLE
(2007) fur Europa nachgewiesen, im Falle Nairobis, v.a. wegen dessen wirtschaftlicher
Bedeutung und dem (berdurchschnittlichen Zustand der den Handel betreffenden
Infrastruktur eine erhebliche Rolle spielen. Es scheint plausibel, dal die Stadt mit

3 Die spezielle Relevanz solcher Heterogenitét des Effektes fiir Entwickungslénder scheint plausibel.
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weniger Mihe und Kosten erreicht werden kann als andere, die ebenso weit entfernt
von den Produzentenregionen liegen. Solche und andere Faktoren verringern die Kosten
raumlichen Handels im Falle Nairobis in einem Umfang, daR schon sehr geringe
Preisanreize mit sehr geringer Verzogerung beachtliche Handelsstrome ausldsen
kdnnen. Daher sind die entsprechenden Marktpaare durch Gberdurchschnittlich starke
paarweise Anpassung, d.h. iberdurchschnittliche MI, gekennzeichnet.

Im Kontext der soeben behandelten Komplexe eines Nairobi-, eines Landes- und eines
Grenzeffektes liegt eine weitere Erklarung nahe. Im Falle Nairobis, dem
Schwergewicht in der EAC, konnen auf Basis von Verwaltungseinheiten definierte
Grenzen wesentlich weniger ausschlaggebend sein als auf Basis von 6konomischen
Mérkten definierte. Obwohl z.B. Handel von einem Markt eines Nachbarlandes nach
Nairobi administrative Grenzen berschreiten muf, ist die paarweise Anpassung um 15
Prozentpunkte hoher als fir ein gleichentferntes Paar ohne Nairobi, gleichgiltig in
welchen Léndern, da das erste Marktpaar innerhalb einer ,,6konomischen Einheit” im
Gegensatz zum zweiten liegt. Diese Sichtweise wird durch den stark negativen
Landeseffekt Tansanias gestltzt. Das Land scheint aufgrund von auf lokaler und
regionaler Ebene angewandter handelsverzerrender Mallnahmen in mehrere 6kono-
mische Einheiten zersplittert zu sein, obwohl es eine administrative Einheit darstellt.

Sowohl das parametrische als auch das semi-parametrische Modell geben hinsichtlich
der partiellen Einfliisse der soeben behandelten kategorialen Variablen sehr ahnliche
Ergebnisse, doch unterscheiden sie sich stark im Hinblick auf die Rolle der Entfernung.
Im ersten Modell erscheint sie weder in linearer, quadratischer noch logarithmischer
Form signifikant. Im zweiten Modell verbessert sie, wenn in nichtlinearer Form
berticksichtigt, jedoch die Gilite des Modells erheblich. Wie sind diese scheinbar
widersprechenden Ergebnisse miteinander vereinbar? In Modell I, in dem Entfernung
als die einzig relevante Variable angenommen wird, hat sie einen signifikant negativen
EinfluR auf die paarweise Anpassung, jedoch ist eine solche Spezifikation weit entfernt
vom optimalen Modell, in dem Tansania einen stark negativen und Nairobi einen stark
positiven Effekt hat und die Entfernung insignifikant wird. Das erscheint plausibel,
wenn man die Information, die in den beiden Effekten beinhaltet ist, berlcksichtigt.
Beide Platzhaltervariablen beinhalten unter anderem einen gewissen Teil der
Information des partiellen Einflusses der Entfernung auf die paarweise Anpassung.
Aufgrund der zentralen Lage Nairobis in der Region sind die Entfernungen der
entsprechenden Marktpaare eher kurz, doch der allgemeine Tansaniaeffekt beinhaltet
eine Reihe von Marktpaaren, die mehr als 1000 km entfernt liegen (i.d.R. Paare
zwischen Sudtansania und Kenia). Der partielle Einflul} der Entfernung, der nichtlinear
ist (Abbildung 4 und Abbildung 5) erscheint im parametrischen Modell nicht
signifikant, da seine funktionale Form von den normalerweise in der Literatur zu
Grenzeffekten verwendeten Funktionsformen nur inadédquat angenéhert werden kann.
Ihr wahrer Einflul auf die paarweise Anpassung erscheint als leicht steigend von 47%
flr sehr nahegelegene Marktpaare auf 48% fir etwa die durchschnittliche Entfernung
aller Marktpaare (650 km) bis er ab etwa 1000 km um konstant einen Prozentpunkt je
100 km auf 42% bei 1500 km sinkt.
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7 Schlufibetrachtung

Dieser Aufsatz untersucht anhand von 85 Marktpaaren Preisdynamiken auf
Maismarkten in Kenia, Tansania und Uganda, den drei groiten Mitgliedslandern der
Ostafrikanischen Gemeinschaft. Obwohl sie sich in vielerlei Hinsicht ahneln und auch
raumlich nah zueinander liegen, unterscheiden sich doch ihre Politikstrategien und —
schwerpunkte hinsichtlich Agrarproduktion und —handel erheblich. Diese Arbeit zielt
auf die Identifizierung von Faktoren, die das AusmaR von Preisreaktionen auf
Abweichungen vom Langzeitgleichgewicht (die Marktintegration) beeinflussen, und
kommt zu politisch relevanten Ergebnissen.

Es werden ein parametrisches und ein semi-parametrisches partiell-lineares Modell
mittels einer Kombination einer theorie- und statistikbasierten Modellauswahl
identifiziert und geschatzt, wobei sich letzteres als das adaquatere herausstellt. Es
werden ein signifikant negativer Effekt der Preisreaktion fur Tansania, der einen
signifikanten Grenzeffekt beinhaltet, und ein signifikant positiver Effekt fir Nairobi in
beiden Modellen identifiziert. Jedoch stellt sich heraus, dal die Entfernung einen
nichtlinearen partiellen Einfluf ausibt. Dieser EinfluR weicht nachweislich signifikant
von den Ublichen parametrischen Modellierungen ab und kann daher nur durch das
semi-parametrische Modell adédquat abgebildet werden. Der Tansaniaeffekt ist
konsistent mit der Haltung der tansanischen Politik zum priméren Sektor und zum
Handel mit dessen Gitern sowohl im Inneren, MalRnahmen auf lokaler und regionaler
Ebene, wie Besteuerung des Maishandels oder so genannte commodity boards
widerspiegelnd, als auch an der Grenze zu Kenia, mal3geblich hervorgerufen v.a. durch
die haufig angewandten Ausfuhrverbote. Dies belegt, daR die tansanischen MalRnahmen
in dem Sinne, in dem sie angewendet wurden, erfolgreich waren. Es liegt jedoch
jenseits des Rahmens dieser Studie, die Rolle dieser Politikmalinahmen von der anderer
transaktionskosten-erhéhender Faktoren zu isolieren; da dies jedoch vom politischen
Standpunkt aus ein dulerst interessantes und relevantes Unterfangen waére, gibt es hier
noch reichlich Raum flr weitere Forschung. In @hnlicher Weise erscheint der identifi-
zierte Effekt fur Nairobi sehr plausibel im Lichte der Grofe und 6konomischen
Bedeutung der Stadt im ostafrikanischen Raum. Der heterogene Grenzeffekt weist
deutlich darauf hin, daf die Zollunion fur einen Teil der Mitglieder, Kenia und Uganda,
vollkommen umgesetzt wurde, wéhrend fur Tansania offensichtlich noch erhebliche
Anstrengungen zu unternehmen sind.

Die Ergebnisse der Untersuchung sind sehr Uberzeugend vor dem Hintergrund der
landesspezifischen Politikansédtze. Tansania weist im Inneren und an seinen Grenzen
eine wesentlich schwéchere Marktintegration als die restlichen Markte auf, was darauf
hinweist, daB in Teilen der Zollunion regional noch signifikant erhohte
Transaktionskosten existieren, da die tansanischen Politikmanahmen die gewinschten
Ziele erreichten. Die Ergebnisse sind 6konomisch und politisch von Bedeutung, da sie
interessante Einblicke in Ahnlichkeiten und Unterschiede in der Marktintegration von
ostafrikanischen Maismarkten ermdglichen.
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Anhang

Abbildung 6: Geschiitzter nichtlinearer partieller Einfluf} der Entfernung auf SO'? B vs. die Daten
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Abbildung 7: Karte von Kenia
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Abbildung 8: Karte von Tansania
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Appendix D

A COMPARISON OF THRESHOLD COINTEGRATION AND MARKOV-
SWITCHING VECTOR ERROR-CORRECTION MODELS IN PRICE TRANS-
MISSION ANALYSIS

This article is a cooperation with Stephan von Cramon-Taubadel. It has been pub-
lished in the proceedings of the NCCC-134 Conference on Applied Commodity Price
Analysis, Forecasting, and Market Risk Management. St. Louis, MO.

[http:/ /www.farmdoc.illinois.edu/ncccl34 /paperarchive.html]

A short version of this research has been published under the title NONLINEAR VEC-
TOR ERROR CORRECTION MODELS IN PRICE TRANSMISSION ANALYSIS: THRESH-
OLD MODELS VS. MARKOV-SWITCHING MODELS in the proceedings of the EAAE
2008 - XIIth Congress of the European Association of Agricultural Economists, Ghent,
Belgium.

The article was presented at NCCC-134 Conference on Applied Commodity Price
Analysis, Forecasting, and Market Risk Management St. Louis, Missouri, USA, April
21-22, 2008. The short version was presented as poster at EAAE 2008 - XIIth Congress
of the European Association of Agricultural Economists, Ghent, Belgium, August 26-
29.
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Abstract

We compare two regime-dependent econometric models for price transmission analy-
sis, namely the threshold vector error-correction model and Markov-switching vector
error-correction model. We first provide a detailed characterization of each of the
models, which is followed by a comprehensive comparison. We find that the assump-
tions regarding the nature of their regime-switching mechanisms are fundamentally
different, so that each model is suitable for a certain type of nonlinear price trans-
mission. Furthermore, we conduct a Monte Carlo experiment in order to study the
performance of the estimation techniques of both models for simulated data. We find
that both models are adequate for studying price transmission since their characteris-
tics match the underlying economic theory and hence allow for an easy interpretation.
Nevertheless, the results of the corresponding estimation techniques do not reproduce
the true parameters and are not robust against nuisance parameters. The comparison
is supplemented by a review of empirical studies of nonlinear price transmission, most
of which apply the threshold vector error-correction model.

Keywords
comparison, market integration, Markov-switching vector error correction model, non-
linear time series analysis, price transmission, threshold vector error correction model

1 Introduction

Economists have devoted considerable attention to testing the Law of One Price (LOP)
in a variety of settings, and agricultural economists in particular have generated an
extensive literature on the empirical analysis of price transmission (PT) along spatial
(prices for a homogeneous commodity at different locations - e.g. wheat in France and
Germany) and vertical (prices for a commodity at different stages of processing - e.g.
wheat-flour-bread) dimensions. Early studies focused on correlations or linear time
series analysis involving prices, but in recent years attention has increasingly turned
to the use of models that can capture the regime-dependent nature of relationships
between prices. In a spatial context, the key insight, derived from Takayama and
Judge (1971), is that prices will only co-move if spatial arbitrage conditions are bind-
ing (Baulch, 1994). If the difference between prices at two locations is greater than
the cost of trade between these locations, then arbitrage will drive the price difference
net of transaction costs to zero, and this equilibrating mechanism will lead to an ob-
servable relationship between the prices in question. If the difference between these
prices is less than the transaction costs, however, arbitrage will not take place and in
the simplest case the prices will move independently of one another. The result is a
two-regime model of PT that extends to three regimes if the possibility of trade rever-
sal is considered, and possibly more regimes if factors such as links to third markets
or equilibrating mechanisms other than physical trade are accounted for.
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The threshold vector error-correction model has been used extensively in PT analysis
(Goodwin and Piggott, 2001, etc.). Recently, Brimmer et al. (2009) proposed the use
of the Markov-switching vector error-correction model to study price transmission in
a vertical context between wheat and flour in Ukraine. So far no systematic attempt
has been made to compare and contrast these models as regards their theoretical
underpinnings and their performance and interpretation in the context of PT. In this
paper we carry out such a comparison, in order to provide some indication regarding
the common and differing features of both models. Both models allow for regime-
switching; does this characteristic imply that they may be used interchangeably and
lead to congruent results? We show that this is not the case, and that each approach
best suits particular analytical objectives in PT analysis. The comparison discusses
the most important aspects for the empirical application of both models in PT analysis
in detail in order to give some indication for the application of both models.

Section 2 outlines the relationship of both models to other time series models by
introducing the class of nonlinear time series models in general and the subclass of
threshold autoregressive models. These considerations are followed by a detailed char-
acterization of the threshold and the Markov-switching vector error-correction model,
respectively, by focusing on the basic idea, the model structure, the estimation and
the interpretation of each. Section 3 provides a conceptual comparison of the char-
acteristics of both models outlined before. It is supplemented by a simulation study
which assesses the performance of the estimation methods of each model. The last sec-
tion summarizes and draws conclusions. Appendix DI, pp. 197, provides a literature
review of applications of the threshold vector error-correction model to PT analysis.
Appendix DII, pp. 201, contains details on the simulation study.

2 Model Review

2.1 Classification of nonlinear time series models

Many model classes for nonlinear time series analysis were developed during the sec-
ond half of the seventies and the eighties of the past century.? Tong (1978) introduced
the class of so-called threshold models. Fairly general formulations of nonlinear mod-
els have been developed by Priestley (1980b) (the class of state-dependent models)
and Tjgstheim (1986) (the class of doubly stochastic models) which encompass a wide
range of classes of less general models, including threshold models among others. Tong
(1990) suggests a comprehensive classification of model classes for nonlinear time series
analysis (Figure D.1). Model classes characterized by a specific functional relationship
which do not contain other subclasses are called elementary model classes. On the next
higher level, groups of such elementary classes, which are called first-generation mod-

2 For a narrative about the “Birth of the Threshold Time Series Model” see Tong (2007).
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els, can be identified according to common properties. In turn, first generation models
can be generalized in various ways. The resulting meta-classes such as the above-
mentioned state-dependent and doubly stochastic models are called second-generation
models, which are very general in their specification and each of which includes various
first-generation models.> Among the first-generation models, a wide variety of model
classes has been developed. Classes such as bilinear (BL) models, threshold autore-
gressive (TAR) models? or autoregressive models with conditional heteroscedasticity
(ARCH) are examples. For the purpose of this paper, the class of TAR models is most
interesting. It subdivides into the three groups of piecewise polynomial, piecewise
linear and smooth autoregressive models depending on the functional relationship f
between the history { X, },ezp<: of the time series® { X, }icz and its value X, at time ¢:

Xt :f(g(t—lw"7Xt—k‘7€t—la"'7€t—k)+€t- (D1>

history of the time series

A general formulation of the threshold model might take the form

X, = AYIX, , + HW¢, + CVY) (D.2)
where Xy = (X, Xy—1, .. ., Xt,kH)T and J; denotes a random variable which takes one
of the integer values {1,2,...,l} at each time ¢. J; is an indicator variable signaling

the state (regime) in which the series {X;} is at time ¢. For a particular state J; = j,
the (k x k) non-random matrices A and HY) contain the autoregressive coefficients
and the coefficients that reflect heteroscedasticity, respectively. The (k x 1) vector C)
comprises the constants of the relationship. {e€;} denotes a sequence of identically and
independently distributed (iid) k-dimensional random vectors with zero mean and
existing covariance matrix. Thus, for each state J; = j the relationship is locally
linear® with a particular set of coefficients and/or a constant.

The determination of J; remains unspecified in (D.2). One might think of various ways
in which the states of {X;} are determined. This indicator variable is the key element of
the nonlinear character of the equation; as Tong (1983) puts it, “.J; indicates the mode
of the dynamic mechanism”. The realizations of J; at all time points ¢ form the series of
the states (regimes) {.J;} which is referred to as the regime-generating process (RGP)

3 However, Tong (1990), among others, questions their usefulness for practical analysis because of
the high degree of generalization.

4 TAR models are called nonlinear mean reversion (NMR) models in real exchange rate analysis;
compare, for example, Norman (2007) and O’Connel and Wei (2002). However, we will stick to the
former term throughout this paper.

> We use the abbreviated form {X;} for denoting a time series in this paper.

6 As Priestley (1980a) notes, the term local refers in this setting not to the proximity to a particular
point in time but to a certain region of the state space of the series. Furthermore, linear refers
to the constancy of parameters in such a region. Local linearity is thus the key property of TAR
models, namely that their parameters are not constant over the whole range of observations, but take
(constant) values depending on the current state/ the regime of the time series. Hence they are only
constant within each state and called state-dependent or regime-dependent parameters.
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Figure D.1: Classification of Nonlinear Models after Tong (1990)

of the time series. This generation mechanism of the regime process characterizes
elementary model classes within the class of piecewise linear TAR models. The state
of a threshold model can be generated by one of the following basic mechanisms :

Jy = f(Xi—p) (D.3a)
Ji = f(Yig) (D.3b)
Jir = f(Xiep, Yig) (D.3¢)

where t,p €,g e Nand t > p,t > q.

The first case refers to the endogenous determination of the regimes of {X;} by some
part of its history. Tong (1990) calls this the class of self-exciting threshold autore-
gression models (SETAR)” since the regimes of {X;} are completely generated by
the series itself. The second case denotes the exogenous determination by some other
series {Y;}, lagged by ¢ periods, that is independent of {X;}. One can think of a
number of ways of exogenous determination. The most obvious generation mechanism
is a second time series {Y;} which is known. Tong (1990) refers to this case as an open-
loop threshold autoregressive system (TARSO). If {Y;} itself follows a threshold model

7 The abbreviation may be complemented by the number of regimes and the lag length as
SETAR(l; k1, ko, . .., k;) where [ denotes the number of regimes and k; ,j = 1,2, ..., the lag-length
in the j** state as, for example, in Tong (1990), or only by the number of regimes SETAR(!) as, for
example, in Hansen (1999).
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and its regimes are exogenously determined by {X;}, the model is called a closed-loop
threshold autoregressive system (TARSC), i.e., each of the two series is determining
the states of the other one. Another possibility, among others, is the determination
of the states by a set of unknown (exogenous) variables which cannot be identified or
measured for some reason so that only quantify conditional probabilities of staying in
a state or switching to another can be quantified. Thus, the states of a series {X;}
might be generated by a Markov chain. The resulting model is called Markov-switching
autoregressive (MSAR)® which can easily be transformed into the Markov-switching
vector error-correction model (MSVECM). The third type of regime determination
can be thought of as a mixture of the two above-mentioned ones in which the states
of {X;} are determined by a combination of lagged values of the series itself and of
some exogenous series {Y;}. The case that the states of the second series {Y;} are
in turn determined by a combination some lag of itself and of {X;} can be called
simultaneous TARSC. If regressands of such a system are not expressed in levels but
in differences, the resulting piecewise linear TAR model with mixed regime determina-
tion is called a threshold vector error-correction model (TVECM). Hence, the TVECM
and the MSVECM both belong to the class of piecewise linear TAR models.

2.2 Detailed Characterization

The Threshold Principle

In a simple market setting it is often postulated that quantity demanded will equal zero
above a certain price, or that quantity supplied will equal zero below a certain price.
As a result, the functional relationship between quantity (supplied or demanded) and
price will be subject to different regimes depending on whether the price is above or
below certain values.

Such values are called thresholds. A threshold introduces nonlinearities into the func-
tional relationship and “specifies the operation modes of the system” (Tong, 1990).
The relationship between two or more variables might be locally linear?; however,
globally it exhibits nonlinear behavior because of the existence of one or more struc-
tural changes in the relationship.

Tong (1990) notes that “threshold is a generic concept” resulting from the general
property of saturation'®, i.e., the structural changes as found, for example, in the
mentioned quantity-price relationship. Tong defines the threshold principle as “the
local approximation over the states, i.e., the introduction of regimes via thresholds.”

8 A multidimensional version of this class can be seen in the Markov-switching vector autoregressive
(MSVAR) models which are discussed in depth in Krolzig (1997).

9 Compare footnote 6 on page 165 for a definition of local linearity.

10 Tong (1990) and Tong and Lim (1980) provide a large number of examples in various disciplines
of science.
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Such regime-dependent parameter stability of some time series is usually referred to
as threshold behavior. Balke and Fomby (1997, and references therein) list several
examples in which threshold behavior is found in economics, e.g. prices, inventories,
consumer durables or employment.

THRESHOLD VECTOR ERROR-CORRECTION MODELS
Basic Idea

Although Whittle (1954) was first to suggest a statistical model based on the threshold
idea, the class of threshold models was formally introduced by Tong in 1978. He and
many other researchers subsequently extended this area of research. Bhansali suggests
that, as early as 1980, “commodity price series |are| a possible class of economic time
series where applications of these models may be useful”. In the second half of the
1980s, cointegration theory was developed to deal with the analysis of non-stationary
time series.!! In 1997, Balke and Fomby published a paper on threshold cointegration
in which they united both developments. Their essential insight is the assumption
that the correction of deviations from the long-run equilibrium, i.e., the equilibrium
errors, might display threshold behavior. The TVECM has attracted much attention
in PT analysis, among other areas, since the publication of Balke and Fomby (1997).'2

The possible existence of nonlinear PT was first hypothesized by Heckscher (1916).3
In the context of international trade, he proposed a band of inaction in which small
deviations from the equilibrium price are not adjusted because transaction costs are
higher than potential earnings due to the price differential. These transaction costs
not only encompass transport costs, but also, for example, costs of searching, nego-
tiating, insurance and risk premia. Heckscher termed the boundaries of this neutral
band, in which prices are supposed to move freely, commodity points. In other words,
the transmission of price signals between markets depends on whether deviations from
the equilibrium price are inside the band of inaction or not, i.e., PT changes struc-
turally depending on the magnitude of the deviations. Hence, PT is likely to follow
threshold behavior. Such a regime-dependent nature of PT also results from the Enke-
Samuelson-Takayama-Judge spatial equilibrium model formulated in Takayama and
Judge (1971). This model implies that trade will only occur if the price spread of
some homogeneous commodity between two spatially separated markets is at least as
large as the transaction costs of trading between these two markets. Consequently,
PT depends on the magnitude of the price spread, i.e., it shows regime-dependent

1 Compare, for example, Engle and Granger (1987), Johansen (1995), Hendry and Juselius (2000)
or Hendry and Juselius (2001).

12 We provide a review of publications which study PT in commodity trade using mainly the TVECM
in the econometric analysis in Appendix DI, pp. 197.

13 This idea is based on the LOP as it was formulated by Marshall (1890, p. 325) who also mentioned
the role of transaction costs.
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behavior.

Figure D.2 depicts the threshold behavior of PT.!* It shows the quantity traded
trade!’ from market A to market B as a function of the price differential p? — p
between B and A. 7 denotes the price differential above which trade takes place.
Rational traders will only engage in trade if it is profitable, i.e., when they make a
net profit. Thus, 7 can be interpreted as the commodity point for trade from A to
B which is equivalent to the transaction costs involved in the trading process. Price
differentials below 7 will not trigger trade flows and are not adjusted. However, if the
price differential is greater than 7, trade, by shifting supply from A to B, will cause
pi* to rise and pP to fall. This mechanism reduces the price differential in a process
that will continue until it returns to 7. p? — p — 7 = 0 is therefore an equilibrium
relationship. If both p#t and pP are I(1), it will be a cointegrating relationship, with
an equilibrium error p? — p — 7 that is corrected by trade whenever it exceeds zero'?;
values of the error that are less than zero are not corrected.!® Hence, trade leads to
the many times studied price adjustment process. Consequently, the magnitude of PT
will differ depending on whether trade takes place or not, that is, PT shows regime-
dependent behavior. Thus, threshold models are both theoretically and intuitively
appropriate in general for the analysis of PT. Moreover, the regressands are usually
expressed in first differences, i.e., Ap/t = p/t —pA | and ApP = p? —pB |. The regimes
of each price series, directly corresponding to the regimes of PT, are determined by
the error-correction term, which is itself a function of both series. Thus, a simulta-
neous TARSC in the form of the TVECM is an appropriate model. Obstfeld and
Taylor (1997) provide the first publication which explicitly refers to the hypothesis of
Heckscher. O’Connel and Wei (1997) and Trenkler and Wolf (2003) derive this idea
from economic theory. Several theoretical models in the area of real exchange rate

analysis yield results in line with Heckscher’s hypothesis; see, for example, Dumas
(1992), Uppal (1993), Sercu et al. (1995), Coleman (1995, 2004).

14 A cointegration vector 3 = (1 — 1) is implicitly assumed here.

15 Hence, the price spread pP —pi! is directly proportional to the equilibrium error. Since, for example,
the price change in market B Ap? = pZ —pP | is a measure for trade from A to B, the error-correction
mechanism as depicted, for example, in Meyer (2004) corresponds to Figure D.2.

16 However, negative values of the error are bounded from below by a second threshold which measures
the transaction costs of trade in the opposite direction. This second threshold need not be of the
same magnitude as the first, as, for example, the costs of moving up- as opposed to downriver or
with and without backhauls might differ.
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Figure D.2: Transactions Costs and Regime-Dependent PT

Model Structure

The TVECM may generally be formulated as follows'":

Ap; = p + 98 p,_1 + CO(L)Ap; + € if 007 < BTp_y <609 (D.4)

k-1
= p) + aWect,_y + Z \Ilgj)Apt_i + € if V7Y < ect_y <Y (D.5)
i=1
k—1
= p,(‘]t) + OA(Jt)ectt_d + Z llfg‘]t)Apt_i + € (D.G)
i=1
where p; = (p{t4 ptB)T is the vector of prices in markets A and B, t =1,...,T denotes

the time index and j € {1,2,...,1,] + 1} the index of the regimes. u”) denotes the
regime-dependent mean where the superscript (j) signals the regime-dependency of
the parameter. ect,_q = 3 p;_q denotes the deviation from the long-run equilibrium,
i.e. the error-correction term lagged by d periods.®* B = (B4 BZ)T denotes the
cointegration vector of the prices p; and a¥) = (a® )"0 is called the loading
vector. It contains the regime-dependent parameters characterizing to what extent
the price changes Ap; react on deviations from the long-run equilibrium lagged by
d periods. These parameters are interpreted as the magnitudes of error-correction of
both prices which are equivalent to the speed (the rate) of price adjustment to the long-
run equilibrium and characterize the regime-dependent magnitudes of PT. CW (L)
denote lag polynomials of order k and, alternatively, the \IIZ(-j ) are (2 x 2) matrices
containing the autoregressive coefficients of each price difference (the coefficients for
short-run adjustment of deviations). The errors €; are (2 x 1) vectors of #id random
variables with mean zero and finite covariance matrix 3.

The values %) € R are ordered so that §© < ) < ... < 00 < 9U+D) where
00 = — o0, D = oo. They are called threshold parameters or, for short, thresh-

17For a derivation see, for example, Balke and Fomby (1997) or Lo and Zivot (2001).
18 Here it becomes obvious, that the threshold variable ect;_q4 is a linear combination of the price
series p; and thus a function of those.
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olds.*® We impose the assumption on the thresholds to be time-invariant since this
specification is almost exclusively used in applied research.?’ The variable determining
the relevant regime at time ¢ is called the threshold variable.?! It is assumed to be
stationary and to follow a continuous distribution. d € is called the delay parameter.
Alternatively, the model can be formulated using the indicator variable J; introduced
in (D.2). It takes the value j at time ¢ if 0U~Y < ect, 4 < V).

Obviously, the nonlinear TVECM is a generalization of the linear vector error-correction
model (VECM). Each threshold V) is only meaningful if

0<POY Y < ect,_q <OY) <1 (D.7)

That is, only if realizations of the threshold variable occur with a probability larger
than zero, i.e., are observable in each regime, the respective threshold exists.?? By
introducing dummy variables for each regime, the model can be formulated more

compactly in terms of a multivariate regression model similar to Hansen and Seo’s
(2002):

Ap, = AOTX, . dV 4. +A0TX, dV + ¢ (D.8)
l
= Z A(j)Tthldgj) + € (D9>
j=1
= AUTX, | + ¢ (D.10)

where AU) denotes a ((2k-+2) x 2) matrix of coefficients. The vector of the regressors
of (D.5) with (2k+2) elements is containedin X;,_; = (1 B8'p;.1 Api1...Apii)'.
Furthermore, dgj) = 11(9<]~,1> < ccty_g <O) denotes the dummy variable signaling the

J’s regime of the series at time ¢ where 1, is the indicator function. By expressing

the regimes of the price series in terms of the indicator variable J;, a special case of
(D.2) is obtained.

19 The thresholds #(®) and 8(+1) are usually not referred to as thresholds in the proper sense of the
term. Rather, they represent some kinds of natural boundaries since the threshold variable of any
meaningful model will take values between —oo and co. Hence, they also exist for each linear model
and are only introduced for the sake of the generality of (D.4) - (D.6). In general, if we speak of
thresholds we refer only to the inner ones, i.e., 01 0?2 . #)  Thus, in general, a TVECM of
s regimes has s — 1 effective, i.e., inner thresholds and vice versa. Thus, | denotes the number of
effective thresholds.

20 For models relaxing this restriction see, e.g., van Campenhout (2007), who models the threshold as
a linear function of time, and Park et al. (2007), who derive formulae for dynamic thresholds varying
on a daily basis.

2l Tn the case of the traditional TVECM, the threshold variable is always the deviation from the
long-run equilibrium ect;_g4.

221f the realizations of the threshold variable are likely to occur only in one regime, no effective
threshold exists and the TVECM in (D.5) simplifies to a linear VECM of the form Ap; = p +

aect; g+ YN U AP + €.
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In the analysis of PT, the thresholds are interpreted as the transaction costs for moving
a homogeneous commodity between any pair of markets which introduce the nonlinear
behavior into the PT process. The error-correction mechanism is usually assumed to
react immediately one period after some deviation from equilibrium, i.e., the delay
parameter is usually assumed to equal one and the error-correction term becomes
ect;_1. Furthermore, the number of regimes is restricted, often set to either two or
three, implying one or two thresholds respectively.?? In line with the above-mentioned
theoretical background, a TVECM(3) has much appeal since it accounts for trade in
both directions between two spatially separated markets.?*

Balke and Fomby (1997), as well as Lo and Zivot (2001), suggest certain restrictions
on the model which might be particularly suitable for applied analysis. The two prices
can, based on Heckscher’s supposition, be expected not to be cointegrated inside the
“band of inaction” spanned by the two transaction costs, implying that the price
differences Ap; move as random walks around zero. Consequently, no error-correction
takes place in regime j = 2 between the two thresholds, i.e., a(® = 0, and the regime-
dependent mean equals zero u® = 0. Depending on the center of attraction of the
error-correction mechanism, special cases of the model can be distinguished. If the
errors are corrected toward a band around the long-run equilibrium which is spanned
by the regime-specific means pu(!) and p®, the model is called a BAND-TVECM
as formulated in (D.11).25 However, if the errors are corrected toward the long-run
equilibrium itself, implying p = pu® = 0, the model is called an Equilibrium-
TVECM (EQ-TVECM). Moreover, the model is called continuous if p*) = —a®g§®)
and p® = —a®9@ . If both (effective) thresholds are of the same magnitude, i.e.,
if —9M = #® implying identical transaction costs in both directions of trade, the
model is called symmetric.

p + aWect, 1+ Z;:ll \Ilgl)Apt_i +e if 09 < ect; 4 <M
Ap; = Zf;l ‘I'z('Q)Apt—z‘ +e& if 0 < ety <0
1+ a®ect, 1+ Zf:_ll \IIZ(»?’)ApH- +e if 0 < ecty; < 6O,
(D.11)
Figure D.3 depicts a realization of an EQ-TVECM characterized by three regimes.
The regime J; depends exclusively on the magnitude of the first lag of the error-
correction term ect; 4. The price series p/ and p? are plotted in the bottom panel.
The variable causing regime switches is deviation from the long-run equilibrium, i.e.,

23In order to refer to the number of regimes, the name of the specified model is sometimes sup-
plemented by this number, for example a TVECM with [ thresholds has [ + 1 regimes and can be
denoted by TVECM(I + 1) or TVECM;4;.

24 A TVECM(2) where 1) = 0 is suitable for the study of asymmetric PT, see, e.g., Chen et al.
(2005).

25 Note that the inequality signs differ slightly here in comparison to the above models since in price
transmission analysis the edge of the band is considered to belong to the band since in this case the
price differential equals the transaction costs. Nonzero profits to be exploited for traders only emerge
in the case that the price differential is larger than the transaction costs.
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the error-correction term ect; which equals the difference between the prices at each
time t. It is separately plotted in the middle panel. If it is either smaller or larger
than the lower 1) or the upper threshold #®, J, takes the values j = 1 or j = 3,
respectively, and error-correction toward zero takes place. However, prices move inde-
pendently inside the band spanned by the two thresholds since a® = 0. Whenever
the threshold variable ect; crosses one of the thresholds, the regime switches after a
lag of d periods to the new regime as depicted in the middle and the upper panel of
Figure D.3.26 The parameters of most interest in applied analysis are the thresholds
69 the loading vectors a') and the cointegration vector 3.

it P pit0 pii4 0

Parameters: (@) = 0, o) = (0.05 —0.05)T,a® = (0.05 —0.05)T,6) = —1,6® =2,d=1,%) = 0and
B = (1 —1)T implying a long-run equilibrium price p;? = p*.

Figure D.3: Realization of a TVECM(3)

FEstimation

Several authors have developed estimation techniques for threshold models, either
in general or for the TVECM in particular. Tong (1978) recommends the Entropy
Maximization Principle based on the Akaike Information Criterion (AIC) for the es-
timation of a general TAR model. Tsay (1989), Chan (1993) and Hansen (2000)
propose approaches for threshold models with two regimes. Tsay (1998) shows that,
asymptotically, the estimates of this sequential conditional multivariate least squares
estimation are strongly consistent and that the estimated coefficients AY) in equation
(D.9) are independent of the thresholds #) and the delay parameter d and normally
distributed.

Balke and Fomby (1997) suggest conditional least squares estimation for TAR models
applicable to any number of thresholds and delay parameters. Obstfeld and Taylor
(1997, Appendix A) give a detailed description of their applied maximum likelihood

26 The rationale for such a lag is that markets need some time to react. Nevertheless, this time may
depend on the product traded, the market infrastructure and the socio-economic environment of the
market.
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estimation technique. Hansen (1999) presents an estimation technique for SETAR
models with two or more regimes based on sequential conditional least squares estima-
tion through concentration. Lo and Zivot (2001, Appendix A) suggest a combination
of the methods of Hansen (1999) and Tsay (1998) for estimating one threshold and the
delay parameter of a multivariate TVECM. Hansen and Seo (2002) propose a maxi-
mum likelihood estimation procedure for the TVECM for the bivariate case, i.e., with
two regimes, which allows for the simultaneous estimation of the cointegration vector
and the threshold, and provide a detailed description of the algorithm proposed.

Table D.1 summarizes estimation approaches of selected publications in chronological
order. It displays information on the underlying model such as the model class, the
number of estimated thresholds [, and potential restrictions on the delay parameter d.
Moreover, it mentions whether the estimation follows the maximum likelihood or the
least squares principle. The latter is referred to differently in the literature as sequen-
tial, iterative or conditional (multivariate) least squares.?” This is complemented by
information on the optimization method such as the considered optimization criterion,
i.e., the objective function, its parameters, and the type of the optimization. The RSS
criterion, in contrast to the log-determinant of the variance-covariance matrix, ignores
correlations across the regimes’ equations. Nevertheless, Serra and Goodwin (2002)
have shown that both criteria yield the same estimation results and might thus be
considered to be equivalently suitable.

Publication ‘ Model l d  Principle Crit. Par’s Optim.
Balke and Fomby (1997) SETAR any est. LS RSS 0,d Min
Obstfeld and Taylor (1997) | SETAR 1% 1 ML LR* 6 Max
Hansen (1999) SETAR  0-2 est. LS RSS  0,d Min
Lo and Zivot (2001) TVECM 1  est. LS RSS  6.d Min
Hansen and Seo (2002) TVECM 1 1 ML log|¥| 60,5 Min

Note: I denotes the number of thresholds (compare footnote 19, page 171), d the delay parameter, ML maximum
likelihood, LS least squares, RSS = trace(X) residual sum of squares, log|X| the log determinant of the

variance-covariance matrix of the residuals; 8 means threshold, est. estimated and § the cointegration vector.
Table D.1: Estimation Approaches of Selected Publications

The functions of the presented criteria will usually not be smooth.?® Hence, a grid
search algorithm in the form of SCLS is suitable for optimization. Its dimension
depends on the number of parameters of the optimization criterion.?! The challenge

2T We refer to the method as sequential conditional least squares (SCLS) throughout this paper.

28 Obstfeld and Taylor estimate a symmetric TVECM(3), meaning that in absolute terms, only one
symmetric threshold is to be estimated.

29 LR denotes the likelihood ratio between a SETAR(3,1,1,1) and an AR(1). The latter model might
also be called a SETAR (1,1); for the notation of SETAR models, see footnote 7, p. 166.

30 For examples of the shape of such criterion functions, see Hansen and Seo (2002, p. 298).

31 The higher the dimension, the higher the computational costs. Several authors have suggested
alternatives; see, for example, Hansen and Seo (2002), Lo and Zivot (2001), Hansen (1999), Bai and
Perron (1998), Bai (1997), or Dorsey and Mayer (1995).
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of estimation in this context, consists in the fact that the unknown parameters of the
model depend on each other. The coefficients matrices AY) in (D.9), in addition to the
variance-covariance matrix 3, depend among other things on the unknown thresholds
6\9): however, the former are a precondition for estimating the latter.

The basic idea of the grid search is very pragmatic. In order to break the “vicious
circle”, the parameters of the optimization criterion, i.e., the thresholds among others,
are pretended to be known and are set to some constants. Conditional to the combina-
tion of the chosen optimization parameters, the remaining model parameters (i.e., the
coefficients matrices A and the variance-covariance matrix X) and the optimization
criterion are computed. The computation is repeated for a number of combinations
of possible values of the optimization parameters, and the criterion is evaluated.3?

Candidate values of the optimization parameters are generated by an evenly spaced
grid across the empirical support of the threshold variable and potentially a reason-
able range of the criterion’s other parameters. The combination which optimizes the
criterion represents the final estimates of the optimization parameters. Conditionally
on these, the final estimates of the remaining model parameters are obtained. In case
of the maximum likelihood approach of Hansen and Seo (2002), this idea is called
concentrated or profile likelihood.

For practical computation, the constraint formulated in (D.7) has to be accounted for
in order to ensure a reasonable number of observations for the estimation of AW, It is
modified in the following way to ensure a minimal proportion of observations in each
regime,

T
7TQ<T]<1—Z'7TO <D12>

where T); denotes the number of observations in regime j, and [ the number of thresh-
olds of the model. The trimming parameter 7, is usually set to 0.05 or 0.1.

Interpretation

As sketched above, the TVECM specification, as long as the model is assumed or tested
to have two effective thresholds, has an immediate economic motivation, namely the
concept of commodity points suggested by Heckscher which corresponds to the transac-
tion costs in a Enke-Samuelson-Takayama-Judge spatial equilibrium. Price adjustment
as a consequence of trade only takes place if the price spread between two markets ex-
ceeds the “band of inaction”. The latter is delimited by the two estimated thresholds.
Prices move independently within this band and are not cointegrated.

The thresholds are interpreted as transaction costs which render trade costly and thus

32 Detailed accounts of the algorithm are given, for example, in Serra and Goodwin (2003) and Park
et al. (2007).
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inhibit it to a certain extent. Hence, the assumption that the thresholds are symmet-
ric around the equilibrium error may not be appropriate in every case, since economic
theory does not give indications for this assumption, and transaction costs are likely
to be direction-specific (e.g. backhaul). The transaction costs encompass many more
aspects than the expenses for transportation. They can be any costs with respect to
temporal and financial expenses connected with the search for information, financing
the trading process and legal duties (Shepherd, 1997). Barrett (2001) provides an
extensive discussion of the components of such costs. A large part consists, of course,
of freight rates. Additionally, variable costs associated with insurance, financing or
contracting are relevant. Exogenous costs such as underwriting fees or testing charges
might apply. Furthermore, average duties on the product and immeasurable trans-
action costs such as opportunity and search costs or risk premia might also play a
role.

Consequently, if the deviation ect; from the long-run equilibrium, as depicted in the
middle panel of Figure D.3, is less than the transaction costs 81 of trade from market
B to market A, it is corrected upward toward zero, i.e., the long-run equilibrium,
by trade into this direction. If it exceeds the transaction costs 6 of trade from
A to B, then it is corrected downward toward zero. Within the band spanned by
the two transaction costs there is no incentive for trade in either direction. Prices
move independently in this corridor, hence a® = 0, until the deviation from their
long-run equilibrium exceeds either of the transaction costs once more. At this point
trade becomes profitable and the deviation decreases in the following periods. In other
words, error-correction takes place.

To our knowledge, only very few papers opt for a broader interpretation of the esti-
mated thresholds that encompasses more than transaction costs. Trenkler and Wolf
(2003) suggest an extension of the interpretation of these parameters (which they call
cost parameter) to social, cultural and technical aspects. Moreover, they discuss the
potential impact of nominal fixed transaction costs on market integration when ag-
gregate price levels fluctuate. Obstfeld and Taylor (1997) note that the estimated
thresholds, which they call commodity points in line with Heckscher’s terminology,
may reflect more aspects than costs of transport and restrictions to trade. They refer
to this additional component as sunk costs of arbitrage. O’Connel and Wei (2002)
provide a comprehensive discussion of the importance of fixed and variable market
frictions for deviations from the LOP. They hypothesize that costs connected to the
change of preferences and technology, such as costs of labor migration or of entering
and exiting a market, may also be relevant. Coleman (1995, 2004) addresses this ar-
gument as well.
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MARKOV-SWITCHING VECTOR ERROR-CORRECTION MODELS

Basic Idea

The underlying concept of the MSVECM emerged in the area of the econometrics of
time-varying parameters. Goldfeld and Quandt (1973) developed a switching regres-
sion model characterized by parameter changes that are governed by a Markov chain.
Hamilton (1989) extended this approach to the analysis of time series. A nonlinear
VECM whose equilibrium errors follow a Markov process is suggested by several au-
thors. Furthermore, the model is extended to the cointegration framework. Jackman
(1995) proposes such a model for analyzing the determinants of presidential approval
in the United States. Krolzig (1996, 1997) develops the MSVECM as a special case of
the more general Markov-switching vector autoregression model, whereas Hall et al.
(1997) apply a MSVECM to the analysis of house prices in the United Kingdom.** Ap-
plications of the model are mainly found in business cycle and financial research, e.g.
Krolzig and Toro (2001), Francis and Owyang (2003), or Psaradakis et al. (2004a), the
latter suggesting further applications. Krolzig et al. (2002) analyze the British labor
market. In PT analysis, the model is much less frequently applied than the TVECM,;
Briimmer et al. (2009) propose it to analyze vertical price transmission between wheat
and flour in Ukraine.

As mentioned above, the MSVECM, as an elementary subclass of TAR models, is in
general suitable for the analysis of PT due to the threshold behavior of trade as de-
picted in Figure D.2. Hamilton (1989) characterizes the particular form of nonlineari-
ties that Markov-switching models are suitable for as “discrete shifts in regime-episodes
across which the dynamic behavior of the series is markedly different”. Hamilton (1994,
ch. 22.4) emphasizes the inherent appealing characteristics of comprehensiveness and
great flexibility of this model class. Hamilton and Raj (2002b) mention that “nor-
mal behavior of economies is occasionally disrupted by dramatic events that seem to
produce quite different dynamics for the variables that economists study”. Moreover,
Psaradakis et al. (2004a) note that the MSVECM is “best suited to situations where
the change in regime is triggered by a sudden shock to the economy, situations which
might not be adequately described by models with smooth transitions or threshold
effects”.

The MSVECM can be characterized as a TAR model with exogenous determination of
the states, that is, the regimes are not a function of the analyzed price series themselves
but of external determinants which, in contrast, do not have to be observed. Such
determinants might act as general driving forces of trade, prices and a number of

33 They suggest two specifications of the model with, first, constant transition probabilities and,
second, transition probabilities as functions of the equilibrium error. However, we focus in this paper
only on the former case which represents the simplest form of the MSVECM with time-invariant
transition probabilities. For extensions of this framework, see also, for example, Diebold et al. (1994),
Hamilton and Raj (2002a) or Camacho (2005).

177



further economic variables. In the context of PT, regime-switching seems plausible,
which may not exclusively be determined by the equilibrium error, but rather by the
“general state” of the trading process or even of the surrounding political or economic
system. Price transmission behavior is likely to change temporarily due to external
factors such as general characteristics of the political economic system. Raj (2002)
mentions national policy changes, economic recessions, financial panics or wars in the
context of business cycles. Further “sources of abrupt change” such as government
actions in the form of the introduction or elimination of legal regulations are alluded
to in Hamilton (1995). Chamley (1999) shows that a unique equilibrium may exist
in a world characterized by imperfect information showing episodes of high and low
economic activity which may, among others, result in differing equilibrium adjustment
and short-run dynamics of PT. Furthermore, he shows that switches between such
regimes occur randomly:.

For example, one could think of traders’ temporary insecurity about the future due
to elections or turmoil in politically unstable countries, or due to exceptional positive
or negative expectations about the near economic future, such as forecasts of strong
price rises.?* Hence, traders face, for such limited periods, quite differing conditions
ranging from increased uncertainty to the impossibility of trade and are likely to show,
as a consequence, temporarily differing behavior. Such periods are hardly measurable.
Agricultural scandals as they occasionally occur in Europe and the Unites States,
resulting in at least temporary changes of consumer demand, may lead to transition-
ally different transmission of price signals. Further events such as temporal or new
legal regulations, crop failures, or transient demand changes are likely to change the
“normal” trade dynamics in an abrupt manner.?> Trade and hence price adjustment
dynamics are furthermore subject to the asymmetries of the business cycle which were
first hypothesized by Keynes (1936).

The importance of a further factor is stressed in the business cycle literature. Eco-
nomic behavior and thus regime switches might by driven by extrinsic uncertainty in
the sense of “random phenomena that do not affect tastes, endowments, or production
possibilities” (Cass and Shell, 1983). This uncertainty is referred to in the literature as
nonfundamentals, market psychology, animal spirits, sunspots or self-fulfilling prophe-
cies. Several publications show that these phenomena are apt to create business cycle
fluctuations in the absence of shocks to fundamentals of the economy, see, for exam-
ple, Azariadis (1981), Cass and Shell (1983), Howitt and McAfee (1992), Jeanne and
Masson (2000) or Thomas (2004). Hamilton and Raj (2002b) see the cause of such po-
tential impact in the fact that “agents’ believe such nonfundamentals affect aggregate
economic activity”. Such phenomena are likely to cause regimes in trade processes and
also in PT, as well as random switches between them.3*

34 For an example, see Agra Europe (2008, middle of page M/3): “Importers still panic buying...”.
35 Martinez Peria (2002) aims at identifying speculative attacks on the European Monetary System
during the first half of the 1990s by modeling a tranquil versus a speculative regime.
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Model Structure

In general, the MSVECM is formulated identically to the TVECM in (D.6):

k—1
Apy = p) +a"B8Tp + Y T Ap,_ + € (D.13)

=1

The number of regimes is denoted with M so that J, = j € {1,2,..., M}. The model
can, of course, be written compactly, as in (D.10). Each regime-dependent variable
takes a certain value depending on the value of the indicator variable J; at time ¢, for
example o) = a9 if J, = j, ie.,

o if J =1
o) = ¢ (D.14)
a™) if J, =M.

The regimes j of the MSVECM (D.13) are thought of as determined by a probabilistic
process which has M states; they are assumed to be realizations of a latent M-state
Markov chain with discrete state space in discrete time. The regime-dependent pa-
rameters are constant in each state but are allowed to change across states. Hence,
each state of the underlying Markov chain directly corresponds to a regime of PT.
Furthermore, the chain determines the regime switching.

The key element of the model is the (M x M) transition matriz T' which contains the
transition probabilities 7y, for switching from state h to state j

711 M2 o MM
.. M

p— |7 (D.15)
TM1 VM2 o YMM

where 7v,; = Pr(Jiy1 = j|Jy = h). The Markov chain is assumed to be homogeneous,
that is, the transition probabilities are assumed to be time-invariant (compare footnote
33). Since switching from state h can only take place to one of the M states, the rows
of I' sum up to unity by construction, i.e., Tl = 1y where 1)y = (11... 1) is a

M

(1 x M) vector, which is equivalent to > ~,; = 1, h = 1,..., M. The state process
j=1

{J;} determined by the transition probabilities ,; can thus be modeled quite flexibly.

For example, the larger the probability on the diagonal of I" of some state is, the more

persistent the behavior of this state will appear and the less switches from this state

to others will occur on average.

Several assumptions on the properties of the Markov chain have to be made in order

179



to keep the model in a tractable complexity and to ensure desirable properties of the
time series and the regimes. The RGP is assumed to satisfy the Markov property:

Pr(JtJrl’Jt, thla ooy Pty Pt—1, - - ) = Pr(JHl‘Jt), (D16)

which is also referred to as a first-order or a memoryless process. This property states
that the probability of switching to a new state in ¢ + 1 solely depends on the state of
the preceding period ¢ or as Chung (1960) puts it, “the past should have no influence
on the future except through the present”. Neither states before J; nor any further
variables such as the observed price series contain additional information regarding the
regime switching. This assumption is not restrictive since each more complex model
can be reparametrized into a first-order model; see, for example, Hamilton (1994, ch.
22.4) or MacDonald and Zucchini (1997, ch. 1.3). Moreover, the Markov chain has to
be assumed to be ergodic and irreducible. The first condition is necessary to ensure
a stationary unconditional probability distribution of the regimes.*® The second one
is needed to ensure the stationarity of the resulting time series. It requires that the
ergodic probabilities of all states are larger than zero. Hence, it is assumed that any
state can be reached from any state, that is that there are no absorbing states.

Figure D.4 depicts the transition graph of a Markov chain of trade with M = 2
states. It displays the possibilities for switching between two subsequent periods and
the associated transition probabilities, i.e., it illustrates the information contained
in the transition matrix I'. In state j = 1, trade is not inhibited by, for example,

governmental measures; in state 7 = 2 it is. The realization of a MSVECM in Figure
j=1 M2 j=2

Y11 V22

Trade
inhibited

Trade not
inhibited

V21
Figure D.4: Transition Graph of a Two-State Markov Chain

D.5 is generated according to (D.13) and corresponds to the Markov chain in Figure
D.4. If, say, the Markov chain is at t = 0 in state Jy = 2, as depicted in the upper panel
of the figure, the loading parameters a(’?) take the values a®, i.e., the correction
of deviations from the long-run equilibrium in this period takes place with a high
magnitude of PT of +0.25. The switching to the state in the next time period ¢t = 1
solely depends on the previous state and the respective transition probabilities (Markov
property). For Jy = 2 the state J; of the following period is generated by a random
switch based on the probabilities 755 = 0.8 and v9; = 1 — 799 = 0.2. Following this
mechanism, the state in ¢ = 1 will be, say, J; = 2. PT in this period is in turn
characterized by the adjustment speeds a®. These adjustment speeds will prevail

36 The expected unconditional probabilities of the of being in any of the M states at arbitrary time
are called the ergodic probabilities of the chain. Hence, the empiric frequencies of the regimes
asymptotically equal the ergodic probabilities.
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until the Markov chain switches to state j = 1 at some time ¢ (the ninth time point
in the figure).

Ji
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Parameters: M =2, u(/t) =0, =1: o = (0.05 —0.05)7,j=2: a® = (025 —0.25)7,
711 = 722 = 0.8, \IIEJt) =0and B = (1 —1)T implying a long-run equilibrium price p{? = p{.

Figure D.5: Realization of a MSVECM(2)

FEstimation

In contrast to the estimation of the TVECM, one method is used for the estimation
of the MSVECM as well as for general Markov-switching models in practice.®” The
particular challenge for estimation is similar to the TVECM. The researcher encounters
uncertainty on two levels. First, the state process {.J;} depends on AW in (D.9). It
has to be estimated since it is unknown. Second, the model parameters AU) in turn
depend on the unknown states J; and are also to be estimated.3

Due to this two-fold uncertainty, the estimation consists of two steps, the expecta-
tion step and the maximization step. These steps are reiterated and the inference
about the states and the estimates is updated until some convergence criterion is
met. The procedure is called the Fzpectation-Mazimization algorithm (EMA) (Figure
D.6). A particular filter is used in its first step, called the Baum-Lindgren-Hamilton-
Kim (BLHK) filter.?® The EMA was introduced by Dempster, Laird, and Rubin in
1977. Hamilton (1990) proposes the usage of the BLHK filter in connection with the
EMA. Kim (1994) contributes an important improvement of the expectation step.
Krolzig (1997, ch. 6) provides a detailed account of the method, mentioning its ma-
jor advantages of computational simplicity and desirable convergence properties, and
discussing various extensions.The algorithm is initialized by assuming starting values
for the model parameters, the transition matrix and the probabilities of being in each
of the M regimes at ¢t = 1. The following expectation step draws inference about the

3T Krolzig (1997, ch. 8) outlines an alternative estimation method (multi-move Gibbs sampling),
which is based on Bayesian statistics. Mizrach and Watkins (2000) mention hill climbing. However,
they recommend the EMA because of its superior properties.

38 Hamilton (1990) mentions three problems of interest to the researcher: the inference about the un-
observed regimes of the sample; the conditional forecast; and the estimation of the model parameters,
including the transition matrix.

39 For more details, compare Krolzig (1997, ch. 5).
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Figure D.6: The Expectation-Maximization Algorithm

unobserved regimes. First, the observations are filtered with the BHLK filter which
yields the filtered probabilities. These are the probabilities that the observation at
time t has been generated by each of the M regimes conditional on the data up to ¢
and the estimated model parameters which are, in the case of the first iteration, the
initially assumed ones. Afterwards, the full sample smoothed probabilities are obtained
on the basis of the filtered probabilities by a backward recursion. They represent the
probabilities for each of the M regimes that it has occurred at time ¢ conditional on
the entire sample at hand. Equivalently, they may be interpreted as the probabilities
that the observation at time ¢ has been generated by regime j conditional on the entire
sample.

The maximization step computes the update of the maximum likelihood estimates of
all parameters, which include the transition probabilities, the vector error-correction
parameters, and the probabilities of being in each of the M regimes at t = 1, that is,
the initial state. The transition probabilities 7;; are updated as the ratio between the
summed probabilities of switches from h to 7 and of occurrences of regime h throughout
the sample. Both quantities are calculated on the basis of the smoothed probabilities
from the performed expectation step. The regime-dependent vector error-correction
parameters AU) are calculated via generalized least squares estimation in which the
observations are weighted by their smoothed probabilities. The second step finishes
with the update of the probabilities of being in each of the M regimes at ¢ = 1 which
are estimated by the smoothed probabilities for t = 1. The first iteration has thus been
completed. The second iteration starts with utilizing the updated parameters from
the previous one for the calculations in the expectation step where inference about the
states is updated again. The second iteration is then completed by the update of the
parameter estimates in the maximization step. The third iteration starts, and so on,
until some reasonable convergence criterion is met.

This algorithm works for the estimation of Markov-Switching models in general. For
the MSVECM in particular, Krolzig (1996) recommends a two-step estimation where
first the cointegration vector and the equilibrium errors are obtained. The equilibrium
error may then be treated as an exogenous regressor in the model, which becomes a
general MSVAR model. The EMA can then be applied to the latter as described above.
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Interpretation

In the case of the MSVECM, the inference on the regimes is of probabilistic nature.
Hamilton and Raj (2002b) note that there is a “growing consensus among economists
that regime changes might be more appropriately modeled as arising from a probability
process such as the Markov process”. The RGP is assumed to follow a latent Markov
chain. Hence, the researcher cannot say with certainty which regime has occurred at
some time t. The only measures allowing inference on this question are the smoothed
probabilities which lie between zero and one. The regime with the highest smoothed
probability for some time ¢ is most likely to occur.

The interpretation of the regimes is far from being obvious a priori. It is much less
straightforward than it is for the TVECM. The Markov-switching methodology is ca-
pable of identifying distinct regimes among the observations of the sample. However,
it relies exclusively on the sample by doing so. Hence, it is the researcher’s task
to make sense of the identified regimes since no immediate interpretation based on
economic theory is available as in, e.g., the case of Heckscher’s supposition for the
TVECM. The regimes have to be thoroughly analyzed and contrasted. Furthermore,
an instructive endeavor might be to hypothesize the number and timing of regimes, or
at least potential determinants, before performing the econometric analysis. By care-
fully analyzing potentially relevant events in the political and economic environment
during the sample period, insights into the dynamics of the markets under study may
be gained. The data analysis might then be used less as an exploratory but rather
as a confirmatory tool. Jackman (1995) discusses the danger of the ex post “labeling
of states”. He argues that a thorough interpretation of the estimates of each regime
is necessary for characterizing the detected states. Alternatively, one might try to
impose some structure on the Markov process or approach the issue from a Bayesian
point of view by incorporating prior knowledge.*’

The MSVECM allows, in a similar way that the TVECM does, not only for regimes
characterized by different speeds of error adjustment but also for periods where no
error-correction takes place, as, for example, in Psaradakis et al. (2004a). The lat-
ter case is particularly interesting. In contrast to the TVECM, such a regime is not
bounded; the longer the regime prevails, the farer the prices, which are not coin-
tegrated in this regime, may wander away from the equilibrium relationship. Such
random walk behavior leads to high deviations from equilibrium which are not cor-
rected despite their magnitude. Thus, such a regime might be interpreted as being
characterized by prohibitive transaction costs which do not allow for any trade al-
though deviations from equilibrium might become huge. Such a extreme regime of PT
might, for example, be caused by political intervention or other forms of prohibitive
trade barriers which either lead to immense costs of trade or do not allow for trade
at all. Consequently, the MSVECM may be seen as being able to detect temporarily
changing transaction costs where the change takes place in the form of discrete shifts.

40 He provides a comprehensive and detailed example of the first approach in his article.
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3 Comparison

3.1 Conceptual Comparison

The application of TAR models to PT analysis is appropriate in general due to the
regime-dependent behavior of PT as depicted in Figure D.2. The application of the
TVECM in particular, with Heckscher’s supposition and the spatial arbitrage models
of Takayama and Judge, has immediate economic justification; the MSVECM only
has justification to a limited extent, mainly due to the lack of attention it has at-
tracted as of yet in the field. Nevertheless, the application of the latter model in PT
analysis seems intuitively very reasonable, particularly in cases where “discrete shifts
in regime-episodes” (Hamilton, 1989) seem to be present in the data and the trade
process was “occasionally disrupted by dramatic events” (Hamilton and Raj, 2002b)
or “a sudden shock” (Psaradakis et al., 2004a).

Both models can be formulated in terms of (D.9) which represents a special case of
the general threshold model specification in (D.2). Although both approaches model
regime-dependent behavior of time series and belong to the group of piecewise linear
TAR models (Figure D.1), the philosophy regarding their underlying RGPs differs fun-
damentally. This leads to differing estimation methods and interpretation of results.

In case of the TVECM, the regime process {J;} is assumed to be exclusively generated
by the first lag of some linear combination of the two price series under investigation,
ie., J; = f(pi,,pP ). In the case of the MSVECM, it is assumed rather to be a
function of one or more exogenous variables y, z,... which might be thought of as
the “general state” of the system J; = f(ve, Ye—1,- -+, Yi—is 2ty Zt—1, - - - » Zt—r, - - -) Where
[, €. In contrast to the former model, the state process is allowed to be latent.
Consequently, no observations on the regime generating variable(s) are required; they
may even stay entirely unspecified. In this light, the assumption of the TVECM that
the equilibrium error ect, is the only variable determining the regimes seems restrictive.
However, if the time series to be analyzed emerged in a stable economic and political
environment in the absence of abrupt changes and other events which are likely to
influence trade, the TVECM is the more appropriate model. It implies that there are
at least two regimes in the data, even three regimes in the case of trade reversals,
and that the deviations from the long-run equilibrium ect, is the only variable causing
regime switching.

In the case of the existence of only one spatial equilibrium condition in the data or a
highly unstable political and/or economic environment, in which trade as one aspect of
the economy is embedded, regimes of PT are not likely to be (exclusively) determined
by the equilibrium error. Regime shifts due to exogenous factors may superimpose the
(weak) regimes created by spatial equilibrium conditions and dominate the RGP. Con-
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sequently, ect; does not represent the variable causing regime shifts. The MSVECM
would be more appropriate in such a case. Consequently, the assumption that the
equilibrium error represents the only variable causing nonlinear PT might not reflect
reality in some settings.

These diverging suppositions regarding the RGP entail differing inference concerning
the regime incidences. Whereas statements about the regime occurred at some time
t can be made with certainty for the TVECM, they can only be of probabilistic na-
ture in the case of the MSVECM. Allowing for non-deterministic statements regarding
the regime incidences turns out to be a reasonable and justified approach. Trade as
well as business cycles or presidential approval are highly complex processes gener-
ated by unknown dynamics which are likely to be of nonlinear character. Although
the methodology is capable of detecting evidence in the data at hand that some ob-
servations are likely to follow a different regime, the researcher can, of course, not
completely be sure about such a finding because the true RGP remains unknown.
This remaining uncertainty is acknowledged by considering probabilistic statements
regarding the occurrence of the regimes as the MSVECM does.

In the case of the TVECM, the statements about the occurrence of regimes are deter-
ministic in the sense that a certain regime j has or has not occurred at time ¢ with
certainty, i.e., the point estimates of ect; can uniquely be assigned to the [ regimes of
the model which is implicitly formulated in (D.9). The binary variable d"? takes the
value 1 if the regime j occurs at time ¢ or zero otherwise. Clearly, such a determin-
istic all-or-nothing statement is more restrictive than the corresponding probabilistic
statement of the MSVECM; however, on the other hand, it allows for an easier in-
terpretation. Whereas the Markov-switching approach acknowledges the uncertainty
concerning the unknown true DGP, the TVECM approach does not. It instead sug-
gests that whenever the estimated threshold variable falls into a certain interval, the
corresponding regime prevails with certainty. This implication is quite strong and
may, of course, not be true for all observations. This assignment may have occurred
occasionally by chance instead of being caused by the supposed underlying RGP.

Both models are capable of detecting regimes characterized by different rates of error-
correction as well as regimes in which no adjustment behavior takes place. Although
the TVECM does not explicitly model transaction costs, the threshold estimates are, at
least in the case of a TVECM(3) specification, usually interpreted as such. Moreover,
they are often assumed to be constant during the sample period. The MSVECM also
does not model transaction costs. Nevertheless, it might be understood as to allow the
transaction costs to shift during the sample period since an identified regime without
adjustment may potentially be caused by temporary prohibitive transaction costs.

The estimation of both models faces the same challenge. The parameters of the regime-
dependent VECM are unknown and depend on the regime process {.J;}. This process
itself is unknown because the quantities characterizing it, which are the thresholds
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and the transition probabilities, respectively, are unknown as well. Their estimates
in turn depend on the unknown vector error-correction parameters. The estimation
methods of SCLS and EMA, though variants of the maximum likelihood principle,
tackle this task in different ways. In the former case, a number of modifications are
easily implemented to estimate the model in dependence of various optimization pa-
rameters (Table D.1). The researcher determines candidate values of the optimization
parameters which typically form a regular spaced grid. Conditionally on these, an
optimization criterion is evaluated. The combination of parameters optimizing the
criterion is selected as the final estimates. The EMA, in contrast, iterates condition-
ally on one set of starting values until a convergence criterion is met. Inference on the
unobserved regimes is recursively drawn for all observations conditional on the param-
eter estimates of the previous iteration. Parameter estimates, in turn, are obtained
conditionally on the evidence on the regimes from the preceding step. In the case of
both methods, the number of regimes may either be justified theoretically, evaluated
by econometric tests, or determined by using a model selection criterion.*!

Differences between both methods concerning the interpretation have already been
addressed. Of course, regime frequencies and regime-dependent half-lives of the ad-
justment process may be calculated in both cases. Additionally, the expected dura-
tion of the regimes may be calculated for the MSVECM. The regime frequency is
estimated by the proportion of observations generated by the regime. In the case of
the MSVECM it is the proportion of observations which is likely to be generated by
the regime, wherein the meaning of the term “likely” has to be determined by the
researcher. The regime with the highest smoothed probability among all regimes for
some time t is considered to be the most likely. The half-life of an adjustment pro-
cess is the time which is required to correct half of the deviation from equilibrium of
a given shock (van Campenhout, 2007) and can easily be obtained.*> However, the
calculation of half-lives is more complicated for vector autoregressions of higher order,
as pointed out by Ben-Kaabia and Gil (2007). The expected duration A’ of regime j
can be calculated as M = E[\|J; = j] = 1_1%_j as outlined in Krolzig (1997, subsection
11.3.4). ~;; denotes the transition probability of staying in regime j as depicted in the
transition matrix I" (D.15).

Furthermore, it has been noted that the interpretation of the regimes of the TVECM

41Tn this paper, we address neither the issue of testing for nonlinearity nor that of impulse response
analysis, since it is beyond its scope. However, we will briefly discuss the issue of model selection
below.

42 The half-life x is the solution in z,,, = % based on a SETAR specification of the equilibrium
error process, as, for example, in Balke and Fomby (1997, equation (1)). As they have shown, the
SETAR and the TVECM specification are equivalent; the former represents a reparametrization of

the latter and vice versa. Hence, the half-life is calculated as k = 1n1£$53.)) based on the SETAR

specification. In the TVECM specification, p) is not estimated. It has thus to be replaced by
pU) =14+8Tal) =1+ a40) — BBaPU) where a) denotes the magnitude of PT of the j’s regime
of the price series of market A and 3 = (34 8Z)T = (1 85)T the cointegration vector between both
prices.
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is relatively straightforward. However, the results are occasionally interpreted in a
narrower or broader sense. In the case of the MSVECM, some effort has to be devoted
to carefully analyzing the identified regimes. The parameters and further descriptive
variables have to be interpreted and consulted in detail in order to receive insights
regarding the distinguishing characteristics and the nature of the regimes.

Distinct Regime Generating Processes: Exogenous vs. Endogenous Switching

As mentioned above, both models may be formulated in terms of the general specifi-
cation (D.10). Nevertheless, the RGPs differ fundamentally. A formulation in terms
of a common notation permits insights from one perspective regarding their similar-
ities and differences. In particular, the RGP of the TVECM can be reformulated by
using the notation of the MSVECM. The key distinction in the philosophies underly-
ing both approaches becomes apparent and can well be contrasted by using a unified
notation. In the following, we restrict the comparison to the simplest specification of
[+ 1= M = 2 regimes for each of the models.

The transition matrix of a MSVECM with M = 2 regimes has the following structure

= <711 712) _ ( 71 1—711) (D.17)

Y21 V22 I — 92 V22
because I'l; = 1,,. Thus, the corresponding Markov chain is characterized by only
two transition probabilities. It is assumed to be homogeneous, that is, the transition
probabilities are assumed to be constant. Moreover, for the transition probabilities it
is assumed to hold that 0 < v;; < 1 and 0 < 795 < 1 so that the chain is irreducible.

The process is assumed to satisfy the Markov property. Alternatively, the transition
matrix can be rewritten in terms of a set of conditional probabilities

Pr(J; =1]Ji-1 =1) Y11 (D.18)
Pr(Ji=1|J1=2) = 1— s (D.19)
Pr(J; =2|Ji.1=1) = 1— (D.20)
Pr(J; = 2|J;-1 = 2) Va2 (D.21)

A TVECM of | + 1 = 2 regimes possesses one (effective) threshold (). The RGP is
characterized as implicitly formulated in (D.6)

(D.22)

I = 1 if ect;q <OW
"7 )2 if ecty_q > oM,

As mentioned above, J; takes the values j with certainty. Depending on the size of the
threshold variable which is in this case the first lag of the error-correction term ect; 1,
the regime j prevails with a probability of 100% at time ¢. Hence, it becomes evident
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that the RGP may be formulated in terms of conditional probabilities which can be
summarized into a transition matrix. However, due to the mentioned certainty, these
probabilities take either of the values 0 or 1. They are conditional on the previous
state J;_1, however, they additionally depend on the treshold variable ect;_; of the
previous period. The corresponding transition probabilities are as follows

for ect;_ < 6\ for ecty_1 > 6\
Pr(J; = 1|Ji-1 = 1, ectyq) = wﬁ) =1 Pr(Jy=1|J;-1 =1, ect;_1) = ﬁ) =0 (D.23)

(D.26)

These probabilities can be summarized into the following transition matrix €2, which
depends on the threshold variable ect;_;

, m
10
0 — ‘”g) “’g) _ if ect,_ < OW
Wy Wyy 1 0

=0, = (D.27)
2 (2
QO — [« “iz) 01 if ect_y > 00,
2 @ -1
| Wy Way 0 1
This transition matrix €2 is equivalent to the usual specification of the RGP of a
TVECM, e.g., as formulated in (D.22). It highlights the similarities and the differences
of the TVECM in comparison to the transition matrix I' of the MSVECM. In the case
that the error-correction term is smaller than the threshold, it does not matter which
state the process was in during the preceding period t — 1 it takes the regime j = 1
in time ¢ with probability 1. This regime is either reached by staying in the regime 1,
o (1) S : (1)
which is expressed by wy;’, or by switching from regime 2 to one 1, expressed by ws,’.

In the case that the error-correction term is larger than the threshold, the process will
be in regime 2 at time ¢ with probability 1.

It becomes apparent that the transition matrix €2 is not constant over time because
the respective transition probabilities take values depending on the magnitude of the
error-correction term. Thus, the matrix symbol is augmented by the time index ¢ and
denoted as ;. Consequently, this RGP, in contrast to the MSVECM in (D.17), is
not homogeneous. Second, the transition probabilities are restricted to the values 0 or
1. In this sense, the switching is purely deterministic. It either occurs or it does not,
either way with certainty.

Third, the process does not satisfy the Markov property because Pr(J;|J;_1, ect;_1) #
Pr(J¢|Ji—1). It has been mentioned that the size of the error-correction term determines
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not only the regime but also the transition probabilities in £2;. Hence, it contains addi-
tional information for the switching of the regimes. In contrast, the entire information
relevant for switching is encompassed in the previous state in case of the MSVECM
as denoted in (D.18) to (D.21). Moreover, the transition probabilities in €2; do exclu-
sively depend on the threshold variable because a state j is reached at time t from
any preceding state with certainty, exclusively determined by the magnitude of the
threshold variable. This view corresponds to the usual interpretation of the TVECM
that the switching exclusively depends on the error-correction term. Hence, it holds
that Pr(J|Ji—1, ecti—1) = Pr(Ji|ect;—1) and (D.23) to (D.26) and the transition matrix

Q; simplify to
;o (wh wi) (10

where wy; = Pr(J; = jlect; 1 < oM and wy; = Pr(Jy = jlect; 1 > oWy 5 =1,2.
This formulation emphasizes the fact that the switching is exclusively governed by
the observed threshold variable in a deterministic way, whereas, in the case of the
MSVECM, the switching is governed by the unobserved previous state in a probabilis-
tic way as formulated in (D.17) to (D.21). Furthermore, in the case of the TVECM,
the threshold variable is a linear combination of the two price series under study.

Consequently, the regime switching of the TVECM, in contrast to the MSVECM, is
not exogenous. It has been shown that the probabilities w;m- ,h,j = 1,2 for switching
to regime j from time ¢ — 1 to time ¢ depend exclusively on the error-correction term
ect;_1. This threshold variable itself is a function of the observed price series {pi'}
and {pP} of markets A and B because it represents a linear combination of the first
lags of both series ect;_1 = B p;—1. Hence, the transition probabilities are also
a function of the two price series wj,; = f(ect;—1) = f (pft,,pE ;) and the switching
is thus endogenous. The switching of the MSVECM is exogenous since the variable
causing the switching remains unknown.

Model Selection

The characterization of either of the considered approaches has been motivated in
the previous sections by economic theory and heuristic evidence. To our knowledge,
no econometric tests exist which explicitly test nonlinear model classes against each
other. Mellows (1999) notes that this constitutes a common problem in nonlinear
time series analysis. Although a number of tests have been developed to check for
nonlinear behavior such as Hansen (1997), Hansen (1999) or Hansen and Seo (2002)
for TAR or Hansen (1992) for Markov-switching models, the determination of the
most appropriate model class for the data at hand remains an issue for future research.
Mellows (1999, ch. 5) suggests a classification method based on a idea of Tong’s (1990)
which uses parametric bootstrap and discriminant analysis. However, a simulation
study reveals that the more pronounced the specific nonlinearities of the underlying
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process are, the more likely a model class will be identified correctly by this approach.
Under weak nonlinearities, one quarter to more than half of the models are wrongly
classified as linear. However, diagnostic tests, as developed in Hamilton (1996) for
example, help to assess the adequacy of the chosen model.

Considerations of testing one model against another may not be of immediate interest
in the context of applied research in price transmission analysis since the application
of a certain model class has to go along with an appropriate interpretation of re-
sults. Qualitative reasoning of the appropriateness of the chosen model accompanied
by formal tests of nonlinearities in the time series and a thorough interpretation of
estimation results may instead be a recommendable approach to tackle this issue.

Besides the question of which nonlinear model to choose, the question of whether
nonlinear models are superior to linear time series models has to be addressed. It
has been discussed above that both models considered here possess much appeal from
an economic perspective. Clements and Krolzig (1998) assess the performance of two
nonlinear time series models in comparison with linear AR models in business cycle
analysis. They find that although both Markov-switching autoregressive and SETAR
models are well capable to model the particular features of the data, their performance
in forecasting is not superior to AR models. This question is not discussed for the
models considered in this paper. However, more complex models are in general more
capable to capture the distinctive features of the data. In contrast, their forecasting

performance does not necessarily increase due to their complexity. This general fact
should also hold for the TVECM and the MSVECM.

3.2 A Simulation Study

In addition to the conceptual comparison of the TVECM and the MSVECM, we are
interested in assessing the performance of the estimation methods under ideal circum-
stances. In particular, we apply the sequential conditional least squares (SCLS) and
the Expectation-Maximization-Algorithm (EMA) to simulated data which is gener-
ated by a TVECM and a MSVECM respectively.*> Problems of the SCLS estimation
have rarely been addressed in applied research. Lo and Zivot (2001) study the per-
formance of the method for data generated according to a TAR and a TVECM for
symmetric thresholds of 3, 5, and 10, and time series of 100, 250, and 500 observations,
respectively. They find “considerable uncertainty in the estimates [of the thresholds]
for moderate sample sizes” in the case of the unrestricted model. However, the esti-
mates of restricted TAR and TVECM models have a much smaller bias and also a
smaller variance. Furthermore, Trenkler and Wolf (2003) note that the estimates of

43 The Bayesian approaches of Luoma et al. (2004) and Balcombe et al. (2007) for estimating the
TVECM are not considered here. We focus on SCLS and EMA since they are the predominant
estimation methods in applied research in PT.
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the unrestricted TVECM are very unreliable.

With this simulation study we extend the work of Clements and Krolzig (1998), Lo
and Zivot (2001) and Psaradakis et al. (2004b). The first article assesses the forecast
performance of Markov-switching and TAR models relative to linear autoregressive
models in business cycle analysis via a simulation study. Lo and Zivot study the
performance of tests for threshold cointegration, threshold nonlinearity, and specifi-
cation tests; they evaluate the estimation of the TVECM by an extensive simulation
study. Psaradakis et al. (2004b) examine tests for cointegration, parameter instability,
neglected nonlinearity, Markov-switching, and a model selection procedure based on
data which follows Markov-switching error-correction.

We follow Lo and Zivot (2001) by generating data according the simple cointegration
model as outlined in Balke and Fomby (1997).%% Lo and Zivot generate data with
varying lengths of the time series and magnitudes of the true thresholds which they
assume to be symmetric. However, we adopt a more comprehensive setting by gen-
erating time series of length 150, 500 and 1500, respectively. We vary the thresholds
0U), the transition probabilities v,; and the error-correction parameters o). The
data is generated according to a TVECM and a MSVECM respectively. Each model
is assumed to have three regimes, one of which does not show error-correction. In the
following, we briefly present some results of the simulation study for T" = 500. Further
results may be obtained from the authors.

Case I: SCLS and TVECM Data

A very low share, namely only around 56% of all observations, are correctly identified
by this method. Hence, SCLS seems not to be able to identify the true regimes of
TVECM-data as generated by ((DII.2)) to a satisfying extent. The reason lies in the
very high and varying MSE as depicted for 6 in the following figure. The MSE is of
considerable magnitude and strongly depends on the true thresholds 8,0 as well
as on the nuisance parameters p(M, p® which govern the autoregressive process of the
ect, as formulated in (DIL.2). The bias is the smallest for [§¥)| = o2 . Hence, not only
the magnitude of the thresholds themselves but rather the ratio between the absolute
values of the thresholds and the variance of the innovations 14 in (DIL.2) seems also
to have influence on the MSE. Both the bias and the variance tend to increase with
decreasing a¥) and with increasing 7. This result is plausible since both, a small a¥)
and a large T', lead to more realizations of the data far away from the true thresholds
and thus tend to increase bias and variance.

44 For more details, see Appendix DII, pp. 201.
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Case II: SCLS and MSVECM Data

The following table shows the classification of true vs. estimated regime incidences as
percentages of all observations of the dataset. By summing up each of the columns,
the ergodic probabilities of the MSVECM-data may be obtained. The percentages on
the diagonal denote the correctly identified regimes, which sum up to only 40%. SCLS
performs even worse here than in case I. Hence, SCLS does not seem to be suitable to
detect the true regimes in the data which is simulated by a MSVECM-DGP.

| R1 true R2 true R3 true

R1 est | 0.339 0.076 0.041
R2 est | 0.216 0.039 0.018
R3 est | 0.214 0.039 0.019

True vs. Estimated Regime Incidences in Case I1
Case III: EMA and TVECM Data

The following table shows the classification of true vs. estimated regime incidences as

estimated by the EMA on TVECM-data. A share of only about 30% was correctly
identified, indicating that EMA does not perform well with data that follow a TVECM.

Case IV: EMA and MSVECM Data

The following figure provides some evidence on the performance of the EMA on data
that are generated by a MSVECM. The share of correctly identified regimes lies at
about 42%. Similarly to case I, the MSE of, say, the estimate of 71, i.e., the ergodic
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‘ R1 true R2 true R3 true

R1 est | 0.088 0.105 0.028
R2 est | 0.133 0.152 0.044
R3 est | 0.186 0.199 0.065

True vs. Estimated Regime Incidences in Case III

probability of the first regime, is heavily influenced by the true ergodic probabilities as
well as by the nuisance parameters pU). Nevertheless, a strange pattern appeared in
the estimation results. The bias for the first two regimes is very high in tendency and
decreases as the true ergodic probabilities approach % and increases with decreasing
o). The variance is small and increases slightly with increasing ). Both the bias
as well as the variance decrease with the increasing number of observations per time
serine

0.2

asnN

,/701 0.8

0.1

1\78\]3%(1) = f(7®, 7®)) vs. 1\//IS\E7}(1) = f(pW, p®)

Summary

This Monte Carlo analysis leads to rather pessimistic results regarding the performance
of the assessed estimation methods since only one third to one half of the regimes have
correctly been identified. Lo and Zivot (2001) have demonstrated that the estimates
of the thresholds are biased. We extended this evidence and demonstrated that the
estimates of the thresholds also seem heavily influenced by the true error-correction
parameters. The EMA did not yield satisfying results either. However, these results
cannot be generalized since they depend on the assumptions made beforehand, par-
ticularly the specification of the DGPs. In order to derive general statements, further
experiments have to be conducted.
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4 Conclusion

This paper compares two time series models which are relevant for PT analysis and al-
low for nonlinear adjustment of deviations from the long-run equilibrium. Both model
classes, the TVECM as well as the MSVECM, are characterized by parameters which
may take different values depending on the regime of the data. They are constant
within one regime but may differ across regimes. Such regime-dependent models allow
for the study of trade processes from a dynamic point of view in which the transmission
of price signals between markets changes temporarily. Such sophisticated models may
thus enhance the understanding of the interaction of markets. Although both models
seem at first glance very similar due to their common property of regime switching,
their underlying statistical concepts differ fundamentally. Consequently, each model
is suited for a particular type of nonlinearity.

The TVECM is characterized by endogenous switching. The variable causing regime
swit-ches is assumed to be fully determined by the prices under study. The restriction
of the switching mechanism to a particular relationship facilitates the interpretation
of the model, which matches economic theory very well. Such a constraint implies
two aspects. First, if the explicit information contained in the threshold variable is
correct, the model will yield more reliable results than more general ones. However,
if the opposite is the case, then it will be further away from the truth than general
models.

The MSVECM is more general with respect to the switching mechanism since it al-
lows for exogenous switching independent of the price series analyzed. Furthermore,
the determinants causing switching may even remain completely unspecified. Its key
element is a latent Markov chain modeling the transition of regimes between subse-
quent points in time. The higher flexibility of the model comes at the cost of limited
straightforward interpretability. Making sense of the identified regimes requires more
effort than in the case of the former model.

The two models reflect different aspects of the complex economic reality: spatial equi-
librium conditions in the one case and unobserved states of the system in the other.
If the price data to be analyzed were predominantly not subject to external impacts
such as changing political, economic or natural interferences, it can be assumed that
markets and trade processes were the main forces generating the data. A TVECM
would be the more appropriate model in such a case, since it explicitly draws on the
economic information contained in the prices. Nevertheless, a TVECM requires at
least two regimes in the data to be estimable. It requires, for example, changing spa-
tial equilibrium conditions. If, however, trade mainly took place in one direction or
external interferences dominated the markets during the time period studied, then a
MSVECM might be more suitable. Most often, the reality will lie in between these
two extreme cases. In such a case, the most appropriate model depends on the dom-
inating impact. The two models can be expected to yield differing results since each
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emphasizes a certain aspect of PT.

Although both models, from an economic perspective, seem capable of leading to inter-
esting insights into PT, the simulation study confirmed and extended evidence that the
empiric application and the applicability constitutes a drawback of these models. How-
ever, improving the estimation of such models is not the only area for future research.
Most often, the quantitative components of the theoretically postulated and economet-
rically estimated thresholds, i.e., the determinants causing nonlinear price adjustment,
receive little attention. Acquiring empirical evidence regarding their structure might
help to develop adapted models. As a consequence, the interpretation of the estimated
thresholds only in terms of transaction costs may turn out to be too narrow in some
cases. The magnitude of the time lag d of the TVECM is likely to depend on the
product traded, infrastructure, etc., so that by relaxing the assumption that prices
react to deviations from equilibrium within a time lag of only one period, insights into
the dynamic processes of trade might be extended.
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Appendix DI: Literature Review of Applications of the TVECM

Table DI.5 provides a review of studies of PT in commodity markets*® which are in
most cases applications of the TVECM. We focus in the review on the data, models

and estimation approaches used in the studies. It covers 35 publications of which 26 are
journal articles. Tables DI.2 to DI.4 summarize the reviewed publications according
to their publication type, research field and publication year.

Type Journal art. Confer. paper Working paper Dissertation MSc thesis
Number 26 4 3 1 1

Table DI.2: Publications per Type

Table DIL.5 lists the publications according to the initial letter of the first author’s
name. The first two columns give information on the type Ty of the article, where
j denotes “journal article”, ¢ “conference paper”, w “working paper”, d “dissertation”
and m “MSc thesis”, and the field of research Fi, where ae denotes “agricultural eco-
nomics”, eh “economic history”, ee “energy economics” and e “economics” in general.
The following four columns provide information on the analyzed data. They outline
the product(s) and the geographic region studied, their frequency Fr, where ¢ de-

notes “quarterly”, m “monthly”, b “bi-weekly”, w “weekly”, d “daily” and n.m. “not
mentioned”, and the length of the time series 7T in number of periods.
Type Agric. economics FEconomic history Economics Energy economics

Number 23 7 3 2
Table DI.3: Publications per Research Field

The next five columns of Table DI.5 summarize features of the estimated model(s).
The column Model classifies the model(s) used according to the discussion of equation
(D.11), p.172, Reg denotes the number of regimes in the model; Cont indicates whether
the model, if it has three regimes and is of the Band-type, is continuous. Sym indicates,
if the model has three regimes, whether the model is symmetric; and Adj states
whether the model allows for a nonzero adjustment coefficient in the middle regime,

i.e., whether a(® 0.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Num. 1 2 1 2 2 3 2 3 7 5 7

Table DI.4: Publications per Year

The last two columns provide information about the applied estimation method. FEst
outlines the (reference of) the estimation method applied where HS denotes the
method of Hansen and Seo (2002), B denotes “Bayesian estimation”, LZ, LS, PT,
OT, BF the method of Lo and Zivot (2001), “multivariate least squares”, Prakash and
Taylor (1997), Obstfeld and Taylor (1997) and Balke and Fomby (1997) respectively.
Par denotes the parameters used in the optimization as defined in (D.6).

45 Note that this literature review was prepared for a conference in April 2008. Consequently, it
reflects the current literature only until approximately January 2008.



S1ON IR\ AYPOWWIO,) Ul SATPN)S UOISSTWSURI], 9OLIJ JO MIIADY

uru Z'1 ou sok sok € dviL-pued | 09¢ M ARy FeUM | U0 (L00g) 0otI9Pa]
wu w'u sok soh soh ¢ VV.I-Pueqg | 0¥S1 ) nIoJ $9098)0 | or (5002) 12qOosH
(0002)
@0 o ILd ou ou sok ¢ INODHAL-PUueqg | 001T q oouRIL] 1ROUM | U° uossiog pue  seuily
(8661) moquo
wu w'u sok SoA SoA ¢ UV.L-pueg | 291 w  seurddiyg 201y | om -duren uea pue woOIS(]
aurjoses
- S - - B 4 NDH | G€4 M VSN o epunip | 99 (500z) "Te 10 WAy
(2002)
me‘'d  SH - - - 8 INDHAL | ¢9¢ M uredg qure | o® e 10 eIqeeM-udg
(¢002)
@mxdm 71 ou ou ou ¢ INDHAIL-Pueqg | ¥97 w uredg Aymog | o Te 19 RIQRRY-Uo¢
(£002)
@0 o 71 soA sok - ¢ WDAAL-OA | g9 M uredg queg | o® D Ppue eqeey-usg
VSN oZIeul
- q sok SoA ou ¢ INDHAJL-Pueg ‘nizeig ‘efos
- d oA sok - € INDIAL-OH | LCT w “eurjuagIy eI A | o® (L002) Te 30 aquiodreg
(L002)
me‘'d  SH - - - 4 INDHAL | S0T M AreSuny AN | 9% QM9  pue  sonyeqg
(9002)
()0 ngm SH S9A ou - ¢ UVAL-OA | #¥1 w "qUIRZOIN OZIRIN | oe RURNORIG pUe NUO[Y
9OLI
‘saojejod
mo‘'d  SH - - - 4 INDHAL | 0987 P nwg  ‘seojpewio, | oe (L00g) o1EN3Y
redq  91sq (py wAG o) 8oy PPOIN 7 I | UoI80Y npoid | 1 uornjenrqng




Sjo IR A}IPOTWMIO)) U SOIPMN)S UOISSTWISURI], 9011 JO MOIADY

(L661)

mh IO ou sok sok ¢ WOHAL-Pueg | 6T W PTIOM IdD | @ [ | todey, pue  ppEpIsqO
spue|
RENEEING

10 SH sok SoA ou ¢ NDHAL-Pueqg | 009 M ‘AureurIor) o | o [ (700g) 10401\

- ST ou sok sok ¢ WOHAL-PuUeq | ggF wu uTog ozt | oe [ (9002) Te % zn]

- g | sk /- ou /- sof Jjou ¢/g INDHAL | 69z  w puefury iod Joog | ow M (700g) "Te 30 ewony

@0 'mo 7T ou sok sok ¢ WOHAL-Pueqg | GIT W vsn o | o ! (100g) 10a17Z pue o]
AUI011029

@0 (f wu ou ou sok € WDHAL-Pueqg | 0061  w dTyuR[}Y eayM | o [ (900g) sxoer
AUI0U099

@0 (mp wu ou ou S0k ¢ WOHAL-PURT | 00T W OTYURYY ey | o [ (5002) sser

ueoq

@0 Mo dd T ou - € IWDHAL-OH | G792 P ysn -fos ‘wiop | oe [ (200g) T 30 UMpooy

(1002)

@0 o  dd W ou - ¢  WDAAL-OA | L68 M vsn joog | ov [ | 330881 pue uMpoon

(6661)

@0 Mo dd e ou - ¢ INDIAL-OA | 929 4 vsn q1og | e [ |30 pue umpoon

(0002)

@0 o dd soA ou - ¢  WDIAL-OF | €& W vsn wyng | yo [ | odrey pue umpoop)

(8661)

Qv% LO ou SoA Sok ¢ HVvi-puedq €9¢ w vISSIIY JeaU A\ o _. SollxlIf) pue UIMPOOD)

req 1S9 (py wAg o) 8oy E@oS: I g uoI13oy ponpord | 14 AL uoryenrqng




Publication ‘ Ty Fi ‘ Product Region Fr T Model Reg Cont Sym Adj Est  Par
O’Connel  and  Wei | j e | CPI USA q  42-68 | TAR 2 - - - nm. 60U d
(2002)
Park et al. (2007) j  ee | Natural Canada, d 1290 | Band-TVECM 3 no no yes LZ  6W 9@,
gas USA d
Pede and McKenzie | ¢ ae | Maize Benin W 162 | TVECM 2 - - - HS 8,60
(2005)
Sephton (2003) j ae | Corn, soy- USA d 2645 | TVECM 2 - - - Hs 8,60
bean
Serra  and Goodwin | j  ae | Dairy Spain m 78 EQ-TVECM 3 - no yes LS (ON/IC)
(2003)
Serra  and Goodwin | j ae | Eggs USA m 372 | TVECM 2/3 -/nm. -/nm. -/nm. | HS 1 /H0)
(2004) 6(2)
Serra et al. (2006a) j  ae | Pork Denmark, w 574 | EQ-TAR 3 - 1o yes BF 0 92
France,
Germany,
Spain
Serra et al. (2006Db) j ae | Eggs USA m 360 | EQ-TAR 3 - no yes nm. 0N 92
Trenkler and  Wolf | j eh | Wheat Poland m 190 | Band-TAR 3 yes yes no LZ n.m.
(2005) flour
Uchezuba (2005) m ae | Apples South m 148 | Band-TVECM 3 no no yes Lz oM e
Africa
van Campenhout (2007) | j  ae | Maize Tanzania W 626 | EQ-TAR 3 - yes no nm. 60 62

Table DI.5: Review of Price Transmission Studies in Commodity Markets



Appendix DII: Simulation Study

We perform a simulation study in order to assess the performance of the estimation
methods used almost exclusively in applied research, namely sequential conditional
least squares (SCLS) in the case of the TVECM and the Expectation-Maximization-
Algorithm (EMA) in the case of the MSVECM. We generate 1000 replications of
two prices p and p? per dataset, which follow a certain TVECM-specification and
MSVECM-specification respectively.

Each DGP is assumed to consist of [ + 1 = M = 3 regimes, in one of which no
error correction takes place, i.e. where the two prices are not cointegrated.*¢ Since
the equilibrium errors are corrected toward the long-run relationship itself and not
toward a band around it in the case of the MSVECM, we assume the error correction
process of the TVECM to be of equilibrium-type in order to ensure comparability
of the adjustment processes, that is, the equilibrium errors of the threshold model
are also assumed to be corrected toward the long-run relationship itself, which means
that we assume p) = 0 in (D.11), p. 172. Furthermore, we assume the short-run
dynamics \Ilz(j ) = 0 for the sake of simplicity. Hence, the DGP corresponds to the
simple nonlinear VECM as outlined in Balke and Fomby (1997, p. 629):

Ap; = al’

B Ap;4 B () ef
_(Apf = lapw) et (5)-

Each dataset is generated containing ¢t = 1,...,7T; T = 150,500,1500 time points
respectively.4” The lengths T' are based on the time series used in the studies of the
literature review in Table DI.5. The first two values of T" denote a short and a long
time series as typically used in empirical research. They roughly correspond to the first
(162 measurements) and the third quartile (564 measurements) of the lengths of the
time series of all studies except the five publications which use daily data. Very long
time series of T' = 1500 observations will typically rarely be available in PT analysis.
They correspond roughly to the mean length (1560 measurements) of the time series
of daily observations used in Escobal (2005), Park et al. (2007) and Agiiero (2007);
the datasets of Goodwin et al. (2002) and Sephton (2003) with 2645 daily observations
are not regarded since they are exceptionally long.

ect;_q + & (DIL.1)

In particular, we assume the parameter of the cointegration relationship and the com-

46In the case of the TVECM, it is the middle regime that does not show error correction, i.e.,
a® = 0; for the MSVECM, it is the first, i.e., () = 0.

47We actually generate T + 200 observations of each dataset and throw away the first 200 in order
to reduce the influence of the starting value.
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mon trend to § = —1 and ¢ = 1 respectively. We generate the equilibrium error
process {ect;} and the common stochastic trend {B;} according to

ect, = p(‘]’f) -ect;_1 +1, where ect; = pf +p p,fl and 1 i N(0,1) (DIL2)
By =DB; 1+ mn where B, = pP + ¢ pf and 7 w N(0,1) (DIL3)

The corresponding error correction parameters a) and the price series pf', p? in
(DII.1) may then be calculated based on the generated values of ect; and B; via the
identities

A Bt—ectt B ¢‘€Ctt—ﬁBt

by = —F/——7— by = —F——F—
¢—p ¢—p

giw 1= GB0 — 20 =p")

¢—p ¢—pB

We generate datasets for the four cases according to Table DII.1. In cases I and IV,
we are interested in the performance of the estimation methods depending on the true
parameters introducing nonlinearity, i.e., the thresholds and the transition matrix.*®
Hence, we focus on the estimation of the thresholds and the ergodic probabilities
depending on a set of varying true thresholds and ergodic probabilities incorporating
the error correction parameter as a nuisance parameter in order to study whether and
to what extent they influence the estimation results.*® The parameters varied in the
DGP of the TVECM are the thresholds 81, and the error correction parameters
p1, pB3) of the outer regimes. Regarding the DGP of the MSVECM, the ergodic
probabilities 72, 7 and the error correction parameters p(t, p are varied.*

48 Since the transition matrix of the MSVECM-DGP considered contains nine elements, we use the
three corresponding ergodic probabilities 77 = (7(1) 7(2) 7(3)T instead. These are, technically spoken,
the normalized eigenvector of the matrix associated with its unit eigenvalue (cf. Hamilton, 1994, pp.
681). The transition matrix and the ergodic probabilities are connected via I' = TAT ! (Hamilton,
1994, p. 730) where T is the M x M matrix of the eigenvectors and A the M x M diagonal matrix
of the eigenvalues of I'. Hence, by holding all elements of A constant and only plugging in varying
7 in the column of T associated with the unit eigenvalue, the corresponding transition matrices can
be obtained. The ergodic probabilities corresponding to an estimated transition matrix I' can be
obtained, in turn, by the eigenvalue decomposition of the latter and normalization of the respective
0.95 0.03 0.02
eigenvector. We obtained A and T from the eigenvalue decomposition of I' = | 0.15 0.8 0.05
0.2 0.1 0.7
since it implies ergodic probabilities of m = (0.769 0.154 0.077)T, i.e., it assigns quite distinct
unconditional probabilities to the three regimes.
49 Since we simulate according to (DI1.2) and (DII.3), we vary the autoregressive parameter pU) in
(DII.2) instead of a(?).
50 Note that a(® = 0, implying that p® = 1 in both cases and 7Y = 1 — (7@ 4+ 7). As
mentioned before, the ergodic probabilities denote the expected unconditional probabilities 7(7) of
the j =1,...,M; M = 3 regimes. The frequencies of the regimes generated by a MSVECM-DGP
should hence equal them asymptotically.

202



Table DII.1: Design of the Simulation Study

Estimation | DGP

TVECM MSVECM
SCLS | 1I
EMA 111 v

As criterion for measuring the performance of the estimation of the thresholds via
SCLS and the ergodic probabilities via EMA, we choose the mean squared error

" ~.72 o
MSE; = E(A — \)? = [Bias()\)] + 02()\). Hence, the MSE of SCLS is estimated

for A € {#M,0@} and the MSE of the EMA for A € {,71 7@ 23} We approx-
imate the functional relationship between the MSE and the varying true parameters

~ ~

of the DGPs by l\TSE\ = {Bias()\ + 02(\). The evaluation of

/\):| 2 —

MSE§CLS = f(9(1)7 9(2)7 p(1)7 p(3)) and MSES\EMA = f(ﬂ-(2)a 7T(3)7 p(1)7 p(3))

for grids of true parameters is first computationally very demanding and can hardly be
illustrated graphically due to its five dimensions. We thus reduce the number of dimen-

sions to three by evaluating the MSE function by holding its third and fourth param-

eters constant MSE{ = f(6®,0@|pM) p@®) MSE{ = f(z® x®]pM) o)) and
evaluating it by holding its first and second parameters constant (MSE{ = f(p), p®|6(1) ),
MSEY = f(pV, p®|x® 7)) respectively. Although we restrict the simulation on

these two subspaces, detailed insights into the behavior of the estimation methods can

still be expected.

In cases II and III it is not possible to estimate the bias by simulation because there
is no correspondence between the estimated thresholds and the ergodic probabilities,
which served for the artificial generation of the data, and vice versa. We therefore
try to assess for each observation whether its regime was correctly classified by the
estimation method. However, this kind of inference has two identification problems in
the case of the EMA. First, the method only allows probabilistic statements regard-
ing the regime incidences. The approach of considering the regime with the highest
smoothed probability at some time t as the one that most likely occurred may, of
course, randomly lead to incorrect identification. Second, Markov-switching models in
general suffer from the problem regime identification regarding the transition matrix.
This means that for repeated estimations, the numbering of the regimes may change
so that the first regime of the first estimation needs not to be identical to the first one
of the second estimation. One can try to identify the regimes by the magnitudes of
their estimated parameters; however, a considerable amount of uncertainty remains,
since the estimates vary randomly so that one can indeed obtain a wrong reordering.
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Case I

First, we generate TVECM datasets of the 16 combinations of /) = —0.5, —1, —2, —3
and #® = 0.5,1,2,3 so that

MSE;\A = f(MAp™M =0.9,p® = 0.9) (DII.4)

where
—-0.5,0.5 —-1,0.5 —-2,0.5 —-3,0.5

051 -1,1 -2,1 -3,1
05,2 -1,2 -2,2 —32
~05,3 -1,3 -2,3 —3,3

MA = (DIL5)

and the MSE is evaluated for each combination, i.e., for each element of M4 individ-
ually.

Second, we generate TVECM datasets of the 16 combinations of p(!) = 0.98,0.9,0.8,0.5
and p® =0.98,0.9,0.8,0.5 so that

B B
MSE? = f(MP)0") = —1,0®) =1) (DIL.6)

where

0.98,0.98 0.9,0.98 0.8,0.98 0.5,0.98
098,09 09,09 038,09 0.5,0.9
0.98,0.8 09,08 0.8,0.8 0.5,0.8
0.98,0.5 09,05 038,05 0.5,0.5

MB — (DIL7)

For T = 1500, we only generate 9 combinations of V) = —0.5, -1, -2, §®® =0.5,1,2
and p = 0.98,0.9,0.5, p® = 0.98,0.9,0.5, respectively, due to the high computa-
tional cost involved for such long time series.

Case 11

We generate one MSVECM dataset with

0.8 0.15 0.05
I'=1003 095 0.02]| and p™ =0.9, p® = 0.5.
01 02 0.7

Case IIT

We generate one TVECM dataset with #1) = —1 and #® = 1 and p = 0.9, p® =
0.5.

204



Case IV

First, we generate MSVECM datasets of the 16 combinations of 7(2) = %, %, %l, % and
8 = L 11 1so that
MSE{ = f(M°|p® =0.9,p® =05). (DIL.8)
where
0.08,0.08 0.17,0.08 0.25,0.08 0.33,0.08
0.08,0.17 0.17,0.17 0.25,0.17 0.33,0.17
C _ ) ) 9 )
M= = 0.08,0.25 0.17,0.25 0.25,0.25 0.33,0.25 (DIL9)
0.08,0.33 0.17,0.33 0.25,0.33 0.33,0.33
Second, we generated MSVECM datasets of the 16 combinations of
p? =0.98,0.9,0.8,0.5 and p® = 0.98,0.9,0.8,0.5
so that 1 1
MSE? = f(MP|x® = & 7 = ) (DIL.10)
where
0.98,0.98 0.9,0.98 0.8,0.98 0.5,0.98
0.98,0.9 0.9,09 08,09 0.50.9
D __ ) 9 ) )
M= 0.98,0.8 0.9,0.8 0.8,0.8 0.5,0.8 (DIL11)
0.98,0.5 0.9,0.5 0.8,0.5 0.5,0.5
For T = 1500, we only generate 9 combinations of 7? = L 1 170 = L 11 ang

p? =0.98,0.9,0.5, p® = 0.98,0.9,0.5, respectively, due to the high computational
cost involved for such long time series. We do not present all results in this paper.
Further results may be obtained from the authors.

205












Curriculum Vitae

1979

1998 — 2000
2001 — 2003
2003 - 2004
2004 - 2005
2005 - 2010

Born in Zschopau/Erzgebirge, German Democratic Republic

Studies of Agriculture (Grundstudium)
Martin-Luther-Universitat Halle-Wittenberg

B.Sc. in Agricultural Economics
Georg-August-Universitdt Gottingen

M.Sc. in Agricultural Economics
Georg-August-Universitdt Gottingen

Studies of Arabic language
Sana’a, Yemen, and Cairo, Egypt

Ph.D. in Agricultural Economics
Georg-August-Universitat Gottingen









	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Executive Summary
	1 Introduction
	1.1 Motivation
	1.2 Definitions
	1.3 Vector Error-Correction Model
	1.3.1 Basic Idea
	1.3.2 Model Structure
	1.3.3 Estimation
	1.3.4 Interpretation
	1.3.5 Applications

	1.4 Nonlinearities in Price Transmission
	1.4.1 The VECM and Nonlinearities
	1.4.2 Literature Review


	2 Models in Detail
	2.1 Threshold Vector Error-Correction Model
	2.1.1 Basic Idea
	2.1.2 Model Structure
	2.1.3 Estimation
	2.1.4 Interpretation
	2.1.5 Applications

	2.2 Markov-Switching Vector Error-Correction Model
	2.2.1 Basic Idea
	2.2.2 Model Structure
	2.2.3 Estimation
	2.2.4 Interpretation
	2.2.5 Applications

	2.3 Semiparametric Vector Error-Correction Model
	2.3.1 Basic Idea
	2.3.2 Model Structure
	2.3.3 Estimation
	2.3.4 Interpretation
	2.3.5 Applications

	2.4 Parity Bounds Model
	2.4.1 Basic Idea
	2.4.2 Model Structure
	2.4.3 Estimation
	2.4.4 Interpretation
	2.4.5 Applications


	3 Summary
	3.1 Cointegration Models
	3.2 Parity Bounds Models
	3.3 Parity Bounds vs. Cointegration Models

	4 Conclusion
	Bibliography
	Appendices
	Appendix A: Spatial Market Integration in the EU Beef and Veal Sector: Policy Decoupling and the Outbreak of Blue Tongue Disease
	Appendix B: Markov-Switching Estimation of Spatial Maize Price Transmission Processes between Tanzania and Kenya
	Appendix C: Grenzeffekte in der Marktintegration bei Mais in Ostafrika: Einsichten aus einem semi-parametrischen Regressionsmodell
	Appendix D: A Comparison of Threshold Cointegration and Markov-Switching Vector Error-Correction Models in Price Transmission Analysis
	Appendix DI: Literature Review of Applications of the TVECM
	Appendix DII: Simulation Study



