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Chapter 1

Introduction

Physical phenomena occurring in high energy physics are analysed in terms of ‘parti-
cles’, arising as asymptotic configurations of elementary entities in scattering experi-
ments. These particles are characterized by certain specific intrinsic properties, which
are expressed by quantum numbers whose integration in the framework of a consist-
ent and complete theoretical description is an aim of quantum field theory. The usual
theoretical description of particles goes back to the famous analysis by Wigner of the
irreducible representations of the Poincaré grcuf).[He gives a complete classific-
ation of all these representations, which are labelled by two paranmatarsls. It

is assumed that a particle pertains to a specific representation of this group, in which
case the parametemsands are interpreted as its intrinsic mass and spin, respectively.
However, this approach to a theoretical description of mass and spin is not universally
applicable. There are quantum field theories in which particles coupled to particles
of zero rest mass cannot be described in terms of eigenstates of the mass operator. An
example is quantum electrodynamics where charged particles are inevitably accompan-
ied by soft photons. It is an open question, known as the infraparticle problgm [

how mass and spin of a particle are to be described in the framework of quantum field
theory. Moreover, standard collision theory does not work in these cases.

A closer analysis of quantum electrodynamics shows that the infraparticle problem
is connected with Gauss’ lav2§, 13]. An outline of the underlying mechanism, fol-
lowing arguments of Buchholz in.g], may be appropriate at this point. Due to Gauss’
law, the charge of a physical state can be determined by measuring the electromag-
netic field at asymptotic spacelike distances. These measurements do not interfere with
those performed within bounded regions; therefore, beiagnamber, the asymptotic
field configuration is a superselection rule of the theory. Its dependence on the state
of motion of the charged patrticle implies that there exists a multitude of superselec-
tion sectors and that the Lorentz symmetry is broken. Consequently, charged particles
cannot be described according to Wigner’s theory.

The present thesis proposes a hovel approach to the concept of particles, elaborating
some of the ideas of Buchholz’ which he introducedi¥][ In a model-independent
framework, especially without excluding massless states and without assuming asymp-
totic completeness of the theory, an approach of Araki and Hgag §cattering theory
is reconsidered. Chapt@rintroduces the concept of detectors to be used in this work



2 Introduction

and investigates the suitable topologies that the corresponding algebraic structures are
furnished with. A basic ingredient here is the interplay between locality and the spec-
trum condition. In Chapte3 we pass to the dual point of view and analyse the resulting
continuous functionals. Then, on physical grounds, a certain subclass is distinguished,
arising as asymptotic limits of certain functionals constructed from physical states of
bounded energy. These limits exhibit properties of singly localized systems (particles).
The limiting procedure to be presented here is able to directly reproduce charged sys-
tems, in contrast to the LSZ-theory where charge-carrying unobservable operators are
necessary.

The representations induced by these asymptotic functionals (the particle weights)
are highly reducible, so the obvious task is to work out a disintegration theory in terms
of irreducible representations (pure particle weights). This will be done in Chapters
and6. The approach of Chaptédrmakes use of the standard decomposition theory
for representations df*-algebras. To be able to apply this theory, the mathematical
structures under consideration have to be adapted to its needs. Great care is taking
to ensure that the resulting irreducible representations have all the properties allowing
for their interpretation as representatives of elementary particles. As demonstrated by
Buchholz [L7], it is then possible to classify the pure particle weights according to
their spin and mass even in the case of charged systems. This shows that the notion
of particle weights provides a promising approach to the aforementioned infraparticle
problem. In Chaptes a compactness criterion due to Fredenhagen and Hertel is used to
impose certain restrictions on the phase space of quantum field theory. The additional
information is used to demonstrate that the particle weight representations of Chapter
are locally normal. This implies that one does not lose essential information about the
physical systems in the course of the constructions needed to adapt the problem at hand
to the needs of spatial disintegration. Chajitesgain drawing on the mentioned com-
pactness criterion, presents the first steps in an alternative approach to disintegration:
Choquet theory. Chapt&rgives a brief summary.

Assumptions of Local Quantum Physics

We collect here the main structural postulates upon which Local Quantum Physics is
built in the abstract setting of the algebraic approach P], principally in order to fix
notation.

» The basis of the present investigations is a net
O — A(0) (1.1a)

of C*-algebras, which are indexed by the bounded regidis space-timeRS™ and
which areconcreten the sense that they all belong to the algebra of bounded operators
B(H) on a certain Hilbert spac&. The so-called quasi-local algel®&is theC*-
inductive limit of the net{.19 (cf. [11, Definition 2.63]):

o
2= J2(0). (1.1b)
O



» On theC*-algebra?l the symmetry transformations in the inhomogeneous Lorentz
group, the Poincaré grOLRi = LL x RS+1, are implemented via a strongly continuous
group of automorphisms:

PL 3> (AX) — O(px € AULL. (1.2)

» The net (.19 is subject to the following conditions:
e Isotony: For any two bounded regiofis and©, in RS+1

01 C 02 = A(01) CA(O2). (1.39)

e Locality: If the bounded region®1 and O, are spacelike separated, i. €,
belongs to the spacelike complement®f formally 01 C 05, then

A(01) CA(02)', (1.3b)

where the prime ini(.3b denotes the commutant 98 ().

e Relativistic Covariance: For arbitrary bounded regidh&nd arbitrary trans-
formations(A, x) € Pl there hold the relations

ANO+X) = a5 (A(0)). (1.3¢c)

» The subgrou®st?! of translations irPl is implemented ol by a strongly con-
tinuous unitary group, i. e., one which is continuous with respect to the strong-operator
topology. These unitaries can be expressed through the (unbounded) gerefators
nu=1,...,s+1, of space-time translations according to

U (x) = exp(iP¥xy), (1.4a)
and, by virtue of {.2), one has for any € RS!
ax(A) =U(X)AU(x)", Ael. (1.4b)
The joint spectrum of the generatd?®8, expressed by the pertinent spectral resolution
E(.) in terms of projections i”, is supposed to lie in the closed forward light cone
V,={peR*':p-p=p"p,>0}.
This assumption is known under the term ‘positive-energy representation.’

» Physical states are represented by normalized positive linear functionals on the
quasi-local algebral, which are normal, i. e., continuous with respect to theeak
topology thatX inherits from® (). The set of all physical statesis denoted bys;

it is in one-to-one correspondence to the entirety of all density matrices, the positive
trace-class operators 88 () with unit trace, via

W(A) =Tr(puA), Ae, (1.5a)

wherep,, denotes the unique operator of the above kind. The fact that a physical state
w possesses energy-momentum in the BoreAsefRSH! is expressed by the condition

w(E(A)) =Tr (E(A)puE(D)) = 1. (1.5b)

The corresponding subset®fs written§(A).
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At this point, for the sake of clarity, a few remarks concerning topological notions
seem advisable. The norm topology2is sometimes called the uniform topology and
leaves no room for a possible misunderstanding. The situation is more complicated in
case of the term ‘strong continuity:’

e An automorphism grouy§0(g ‘ge 9} C Aut®l on theC*-algebra®l, G a topological
group, is called strongly continuous if the mapping

Gogr—ag(A) e
is continuous for arbitrani € 2 with respect to the initial topology of the grogpand

with respect to the uniform topology &f.

e A unitary group{U(g) : g € G} C B(H), § again a topological group, is called
strongly continuous if the mapping

§39—U(g) € B(H)
is continuous with respect to the topology®fand with respect to the strong-operator
topology onB(K).

The term t-weak topology’ is used to denote the locally convex topology on the al-
gebra®B(H) that is defined through the family of seminorms

0]

Qonitn) “ B =FS A Qg (A) = D (@A)
n=1

where the sequencéen }ney and{Wn }nen Of vectors in the Hilbert spack are subject

to the condition$ ", ||@n||? < 0 and>_p_; ||wn||? < . This designation is synonym-
ous with ‘ultra-weak topology.” Mappings which are continuous with respect to this
topology are called normal.



Chapter 2

Localizing Operators and Spectral
Seminorms

The results presented in Chapt&rand3 have been worked out in close collaboration
with Detlev Buchholz, whose ideas, as set outlif]] constituted the foundation. Their
somewhat complicated presentation is the author’s responsibility. The particle concept
to be set forth in the sequel is motivated by the experimental situation encountered
in high energy physics where certain physical systems show up as ‘particles,” being
traced by specific measuring devices called ‘detectors.” The common characteristic of
these physical systems is that they are localized in the course of the measuring process.
Haag and Kastler stated in their fundamental articlg pn algebraic quantum field
theory that ‘... ultimately all physical processes are analyzed in terms of geometric
relations of unresolved phenomena, emphasizing localization as the very nature of all
measurements. To represent the experimental set-up in the framework of the algebraic
approach to local quantum physics elements of the quasi-local algebewve to be
singled out first that exhibit properties of particle detectors.

2.1 The Algebra of Detectors

As argued by Araki and Haag@] a particle detecto€ < 2l should be insensitive to the
vacuumQ: CQ = 0. In view of the actual experimental situation one can be more spe-
cific, noting that a minimal energy, depending on the detector used, has to be deposited
to produce a signal. In the present thesis we shall therefore work with a smaller class of
operators: the algebraic representatives corresponding to a particle counter are to anni-
hilate all physical states with bounded energy below a specific threshold, to be precise.
Now, on account of the Reeh—Schlieder-Theorem, this feature is incompatible with
locality since an algebra pertaining to a regidmvith non-void causal complemetit

does not contain any operator annihilating states of bounded energyl(ciZ]). As a
consequence, the operators which comply with the above annihilation property cannot
be strictly local; instead their localization has to be weakened. This is done in a way
that resembles the introduction of rapidly decreasing functiori®"orthe operators in
guestion are not contained in a local algebra, but they are almost local in the sense of
the following definition (‘quasilocal of infinite order’ is the designation usedji [
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Definition 2.1 (Almost Locality). Let Oy = {(x°,x) € RS : X% +|x| <r}, r >0,
denote the double cone (standard diamond) with b@sis {x € RS: |[x| <r}. An
operatorA € 2 is called almost local if there exists a rgt € A(0,) : r > 0} of local
operators such that

lim rK|A—A/]| =0 (2.1)
for anyk € Np. The set of almost local operators is-aubalgebra ofl denoted by2(s.

Remark.(i) Let A andB be almost local operators with approximating nets of local
operators{A; € A(O;) :1 > 0} and{B; € A(0y) : 1 > 0}, respectively. Then, sind@;
and O, + 2x are spacelike separated fok |x| so that the associated algebR&S),)
and2((O, 4+ 2x) commute, the following estimate holds for axyg R3\ {0}

[ Tozx(A), B] || < 2(|A— A [HIBIl+ |A— A1 1B =B l| + Al B~ By [l)  (2.2a)

The right-hand side of this inequality is bounded and falls off more rapidly than any
power of|x| %, therefore the continuous mappifi§ > x — || [ax(A),B] || turns out to
be integrable:

/R d]|ax(A) B] | < (2.2b)

(i) The approximating net of local operatdfé, € A(O;) : r > 0} for A € Ag can be
used to construct a second approximating{m§te 2(O,) : r > 0} with the additional
property||A;|| < ||A|| for anyr > 0, which at the same time is subject to the inequality
|A—A;|| < 2]|JA—A|| and thus satisfies conditiofi.() for almost locality. Estimates

of this kind will later on turn out to be important in solving the problem of existence of
uniform bounds for integrals of the forra.¢b), evaluated for sequences or even nets of
almost local operators. With approximating nets of local operators of this special kind
the estimateq.29 can be improved for arbitrar,B € 2 to yield

| Tox(A). B[| < 2 (A= A | [BIl + A [B—Byll), x€R\{0}.  (2.:2¢)

The feature of annihilating states of bounded energy below a certain threshold is
called vacuum annihilation property in the sequel and finds its rigorous mathematical
expression in the following definition.

Definition 2.2 (Vacuum Annihilation Property). An operatorA € 2 is said to have
the vacuum annihilation property if, in the sense of operator-valued distributions, the

mapping
R 5 x— ay(A) = U(X) AU(X)* € 2 (2.3)

has a Fourier transform with compact suppocontained in the complement of the for-
ward light coneV, . The collection of all vacuum annihilation operators is a subspace
of 2 denote®(znn.
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Remark. The support of the Fourier transform &f.§) is precisely the energy-momen-
tum transfer ofA, and the energy-threshold for the annihilation of states depends on the
distanced(",V, ) between™ andV. . Letlo be a closed subset &1 and let2l(I'o)
denote the set of all operatokss 21 having energy-momentum transfeg C IMo. Then

(o) is easily seen to be a uniformly closed subspac, afivariant under space-time
translations.

The construction of a subalgebtan 2 containing self-adjoint operators to be in-
terpreted as representatives of particle detectors is accomplished in three steps (Defini-
tions2.3-2.5), starting with a subspacg, C 2( consisting of operators which, in addi-
tion to the properties mentioned above, are infinitely often differentiable with respect
to the automorphism groufu s ) : (A, X) € Pl} (cf. Definition A.12in AppendixA).

Definition 2.3. The almost local vacuum annihilation operatbgse 21 which are in-
finitely often differentiable with respect to the gron{lp(mx) D (AX) € Pl} constitute a
subspac@ls N AannN D) (A) of 2. The intersection of this set with all the pre-images
of g under arbitrary products of partial derivatiod$ - - - 3% for anyN € N and any

1 <k < dp, dp the dimension OPT, is again a linear space denotgg. Explicitly,

£ consists of all almost local vacuum annihilation operators which are infinitely often
differentiable, havingimost localpartial derivatives of any order.

Remark. (i) The spacelq is stable under the action of the Poincaré group. This means
thata s x (£o0) = £o for any (A, x) € Pl. Due to the properties of Fourier transforma-
tion, aa x)(Lo) has energy-momentum transfer/A if Lo € £o(I") = LoNA(I); the
adjointLo* of this Ly belongs ta(—T).

(i) Furthermorely is invariant under differentiation: The partial derivatives are almost
local and infinitely often differentiable operators by definition, and, as uniform limits
of vacuum annihilation operators, they inherit the energy-momentum transfer of these
so that they belong t@5np, too.

A huge number of elements dfp can be constructed by regularizing almost local
operators with respect to rapidly decreasing functions on the Poincaré group. The semi-
direct product Lie grou;ﬁ’l = Ll x RS*1 is unimodular by {5, Proposition 11.29 and

Corollary] sinceLl is a simple thus semisimple Lie groupd Proposition 1.1.6]. So
let y be the Haar measure diﬂ andA € s, then the operator

AF) = /du(/\,x) F(A,X) 0 (ax) (A) (2.4)

belongs taCy(I) if the infinitely differentiable functiork is rapidly decreasing on the
subgroupRs! and compactly supported dr, i.e.F € 8o(P} ) = 8o(LL x RS1) in

the notation introduced in/], and has the additional property that the Fourier trans-
forms of the partial functionBa( . ) = F(A, . ) have common support in the compact

setl C LV, foranyAe L.
The following definition specifies a left ide&l of the algebraX.

Definition 2.4. Let £ denote the linear span of all operatbrs 2 of the formL = ALg
whereA € 2 andlLg € £o; i. €.

Siﬁlﬂo:spar{ALo:Ae A Lo € So}.
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Theng is a left ideal of, called the ‘left ideal of localizing operators.’

By their very construction, the elements ®fannihilate the vacuum and all states of
bounded energy below a certain threshold that depends on the minimadifhi;o¥ ., ),

i =1,...,N, with respect to all representatiohs= Zi'\':lAi Li € £, whereTl; is the
energy-momentum transfer bf. The algebra of operators whose self-adjoint elements
are to be interpreted as representatives of particle detectors is laid down in the next
definition.

Definition 2.5. Let € denote the linear span of all operat@« 21 which can be rep-
resented in the forr® = L1*L, with L1,L, € £;i.e.

¢=g'g=spalLi"Ly: Ly, Ly € £}
Then¢ is a*-subalgebra ofl, called the ‘algebra of detectors.’

Remark.The algebrae is smaller than that used by Araki and Haag i [It is not
closed in the uniform topology &4 and does not contain a unit.

2.2 Spectral Seminorms on the Algebra of Detectors

The analysis of physical states is performed by use of the algebra of detéctbrs

a statew of bounded energiE we expect to encounter a finite number of localization
centres, since the triggering of a detedE ¢ requires a minimal energy to be
deposited, the numbét of localization centres being equal to or less tlkaig. Now,
according to this heuristic picture, placing the cou@dor given timet at every point

x € R® and adding up the corresponding expectation valu(eas(tﬁx) (C)) should result

in the finite integral

desx |od(0tx)(C)) | < co. (2.5)
As a matter of fact, the operatdCsc € turn out to have the propert2 () as was shown
by Buchholz in [.5]. For the sake of completeness and to demonstrate how phase-space
properties of the theory (localization in space combined with energy-bounds) enter the
present investigation, we give an elaborate proof.

Proposition 2.6. Let E( . ) be the spectral resolution of the space-time translations
U(x), x€ RS, and let g € £o have energy-momentum transfein a convex subset
of CV,.. Then for any bounded Borel s&tC RS the net of operator-valued Bochner
integrals indexed by compaktC RS,

QU™ = @) [ axaullo'to) EO)
— / d*x E(A)oy(Lo*Lo)E(D),
K

is o-strongly convergent a§ RS and the limit QLO*LO) € B(H)™ satisfies the estim-
ate

<SN(A,T) [ d||[ox(Lo),Lo"] || (2.6)

< [
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for suitable NA,TIM) € N, depending o andl". Moreover the mapping
X +— E(A)ax(Lo*Lo)E(A)

is integrable with respect to the-weak topology o8 (H) and its integral coincides
with the operator ¢

Q(ALO*Lo) =o-weak [ d% E(A)ax(Lo*Lo)E(A).
RS

Proof. A being a bounded Borel set, the same is true of its cloAus® that, due to
compactness and convexity bf there exists a numbere N for which the relation
(A+T) NV, = 0is satisfied, wher€,, denotes the suif, = I +---+T with nterms.

The spectrum condition then entails:

E(A+Tn) =0. (2.7)

Note, that in the derivation of this result compactnes$ @$ needed to ensure that
the distance between andV, is positive; other shapes 6f are possible as long as
convexity and the conditiod(I",V,) > 0 are preserved, e.g. wedges(M,. For
arbitraryxi, ... ,xn € R® all the operatorsiy, (Lo), i = 1,...,n, belong toﬁ(r) whilst
their product[ [, ax, (Lo) is an element o®((I"), hence byZ2.7)

HuXi(LO) E(A) - E(Z+ rn) HuXi(LO) E(A) =0. (2-8)
i=1 i=1

Now, [15, Lemma 2.2] states that for aB/c B(H) and anyk € N

HPk/dsxax(B*B) PKH < (k—1) sup(/ d* || [ox(B), B] ¥| ) (2.9)

K w \JK-K

where P is the orthogonal projection onto the intersection of the kernelk-foid
products}"[:;1 ay, (B) for arbitraryys, ... .y € R%, K C R®%is compact and the supremum
extends over all unit vectord¥ € B_1H. According to £.8) E(A) < P, if we take

B =L, so that the following estimate, uniformk is a consequence dt.©) combined
with almost locality oflq (cf. (2.2b):

ot

- HE(A)/KdSXO(X(LO*LO) E(A)H <(n—-1) /RSdeH[aX(LQ),LO*H\.
(2.10)

The positive operator%Q(A':OK*'-o) K C RS compac} thus constitute an increasing net
which is bounded iMB(H)*. According to L1, Lemma 2.4.19] this net has a least
upper bound im3(H) ™, which is itsa-strong IimitQ(ALO Lo) and satisfies

<(n—=1) [ %] [ax(Lo),Lo*]||- (2.11)

H Q(ALO* LO)
RS

ForN(A,I') =n— 1 this is the desired estimate. ().
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Theo-weak topology of3(H) is induced by the positive normal functionals of the
spaceB(H);, so that integrability ok — E(A)oy(Lo*Lo)E(A) in theo-weak topology
is implied by integrability of the functions

x = |W(E(8)ax(Lo"Lo)E(A))| = W(E(A)ox(Lo"Lo)E())

for anyy € B(H);". Now, given any compact subgétof RS, there holds the estimate

/ds ‘lIJ A)ax(Lo*Lo)E ‘—/dSXl.p A)ay(Lo* Lo)E(A))

=y /KdeE(A)gX(LO*LO) (& > H‘UHH Lo Lo)

Lo Lo)

’

SI]jte’s

and, as a consequence of the Monotone Convergence Theatemh3.7], the func-
tions x — |W(E(A)ox(Lo*Lo)E(A))| indeed turn out to be integrable for amy e
B(H);. Thus the integral of the mapping— E(A)ax(Lo*Lo)E(A) with respect to
the o-weak topology exists (cfZ[, 11.6.2]) and, through an application of Lebesgue’s

Dominated Convergence Theoref®] 11.5.6], is seen to be the-weak limit of the
Lo Lo L0 LO

net of operatorQ ) which coincides with thes- -strong Ilmth ) established
above. Formally
QL = o-weak [ d* E(A)ax(Lo*Lo)E(A),
RS
which is the last of the above assertions. O

Proposition 2.7. Suppose thah C RSt is a bounded Borel set.

() LetLe £ be arbitrary, then the net of operators for comp#ct RS

QL) =E(n) / dSx o (L*L) E(A)
: K
= / d* E(A)ox(L*L)E(A),
K
converges-strongly to QL*L) € B(H)™ in the limitK ~ RS. Moreover the mapping
x— E(A)ax(L*L)E(A) is integrable with respect to the-weak topology ofB () and

satisfies

Q(AL*L) =o-weak [ dE(A)ay(L"L)E(A).
RS

(i) LetCe € be arbitrary, then the net of operators indexed by compact RS

Ak =E() /K d%x a1 (C) E(A

_ / dSx E(A)ax (C)E(A)
K
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is o-strongly convergent to@> € B(H) for K 7R3, In addition to this the mapping
X — E(A)oy(C)E(A) is integrable with respect to the-weak topology o5 () and
the integral is given by

Q(C) =o-weak [ d E(A)Gx(c) E (A) :
RS

Furthermore
sup{ d |@(E(8)ox(C)E(D))| : @ %(9—()*71} < oo, (2.12)
RS

Remark.Note, that relation4.12) is a sharpened version o2.6) which, based on
heuristic considerations, was the starting point of the present investigation.

Proof. (i) By patrtition of unity (cf. {0, Satz 8.1]), applied to elements 8§ which
have arbitrary energy-momentum transfeBin_, anyL € £ can be written as a finite
sumL = ern:]_Aij where theA; belong to2( and the operatoris; € £q have energy-
momentum transfer in compact and convex subSgtsf CV... Since

m
up [|A; ||2) > OLiL,

L*L < 2’“—1( s
1<

jsm j=1
we infer
Ly S
L*L —1 2 SR
Qak <2" ( sup [|Aj]| ) Qpk
1<j<m =t

so that by 2.10 the increasing ne{Q(A'j;L) KcC Rscompac} turns out to be bounded,

having a least upper bound ¥8(H)* that is itso-strong IimitQ(AL*L). Making again
use of the above order relation fofL one arrives at

W(E@ax(LLE®) <27 ( sup I4]7) 3 w(E@)ax(L L)E®)
sJsm j=1

for any Y € B(H); and anyx € RS, where the right-hand side of this relation is in-
tegrable as was shown in the proof of Propositibf Then the reasoning applied
there establishes the@weak integrability ofx — E(A)ay(L*L)E(A) together with the
relation

(L*L)

Qy ' =o0-weak [ dE(A)oy(L*L)E(A).
]RS

(i) ConsidelCy=L1*Ly € €with L1,L, € £. By polarization

3 3
I Ky oy Ky oy Nk (0% (K)
CO_ZKE_%' (Ly+iKLp)*(Ly +i Lz)_zgu LKLk,
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whereL® =L, +ikL, € £ fork=0,...,3, and according to (i)
QU E(0) [ dxan(Co) E®)
3 3
— } i—k S K* (k) . } g~ (L7
= 4k§_0| (E(A)/Kd x ay (LML )E(A)) = 4} o)y

k=0
converges-strongly to
3

.1 (L0
QY=Y Q™). (2.13)
k=0

Now, let @ be a normal functional of8(3H). By polar decomposition (cf5¢, The-
orem I11.4.2(i), Proposition 111.4.6]) there exist a partial isometryg B (H) and a pos-
itive normal functionalg| subject to the relatioft@||| = ||@||, such thatp( . ) = |@|( . V),
allowing for the following estimatex(e R*® arbitrary):

2|0(E(8)ax(Co)E(A))| = 2|0l (E(A)ax(L1*L2)E(A)V))|
zm B)ay(L1"L)ED)) /[0l (VE(B)ay(L2 L) E(B)V)
= AIgg( ol (E(B)ax(L1*L1)E(D)) +Ag) (V*E(A)Gx(Lz*Lz)E(A)V))1

where we made use of the fact thaf@b = infy.o(A~*a+ Ab) for anya,b > 0. Now,
from the first part of this Proposition we infer that it is possible to integrate the above
expression over all dRS to get for anyA > 0 the estimate

¢ |o(E(8)ax(Co)E()) | < Ao Q™

+ Nl || 4=

]RS
Note, that the normal functionalg and theo-weak integrals commute due ta€
Proposition 11.5.7 adapted to integrals in locally convex spaces]. Taking the infimum
with respect to\ one finally arrives at

0 9B (Co)E®) | < ol

HQ L2*L2)

(2.14)

RS
This relation is valid for any normal functional B (%)..,, so that theo-weak integ-
rability of x — E(A)ax(Co)E(A) is established, the relation

QL) = g-weak [ d* E(A)ay(Co)E(A) (2.15)
RS
being an immediate consequence (cf. the proof of Proposii®n Another fact im-
plied by inequality 2.14) is the estimate
x 1/2
sup{ d | @(E(A)ox(Co)E(A)) | : @€ B(H } HQ )
RS

1/2HQ(A|_2*L2)

(2.16)

Since anyC € ¢ is a linear combination of operators of the fo@y, the above rela-
tions (2.13 through @.16) are easily generalized to establish the second part of the
Proposition. O
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The preceding result suggests the introduction of topologies on the leftddead
on the*-algebrag, respectively, using specific seminorms indexed by bounded Borel
subsets\ of RS,

Definition 2.8. (a) The left idealf is equipped with a family of seminornug via

aa(L) = HQ(AL*L’HM, Les. (2.17a)

(b) The*-algebrag is furnished with seminormpa by assigning
pa(C) = sup{ d* |@(E(A)ox(C)E(A))| 1 @€ %(%)*,1}, Cec. (2.17b)
RS

(c) The completions of the locally convex (Hausdorff) spac€s¥,) and (€, %)
arising from topologization by these seminorms are denfed,) and (€,%,), re-
spectively. Accordingly, the complete locally convex subspace g@énerated by is
designated asCo, Tg).

(d) The completions of the locally convex spadel ) and (&, %)) arising from
topologization by all the seminorntg, and pa, respectively, together with the initial
uniform (norm) topology inherited from the quasi-local algetirare denote@&lg,fg)
and(mg,fl;).

Remark.(i) Let®B(3); denote the positive cone B(H)., then foranyL € £

qu(L)2 = sup{ dx W(E(A)ax (L'L)E(A)) : w e 93(}();1}, (2.17¢)

RS
a formulation that will frequently be used.

(i) The seminorm properties gh and pa are easily checked. To establish the subad-
ditivity of ga one has to observe that

aa (L1 +L2)? < ga(Le)? +A'r>"; A taa(Le)?+Aaa(L2)?] +aa(L2)?

= aa(L1)?+20a(L1) Ga(L2) + Ga(L2)? = (da(Le) + aa(L2))?,

where we made use of the fact thatL, + Lo*L1 <A 1L1*Li +ALy*L, for anyA >0
andL,Lo € £.

(i) The Hausdorff property of the locally convex spa¢€s?,) and (¢, %) can be
established using the fact that vectors corresponding to states of bounded energy con-
stitute a dense subspaceléf From the very definition of the seminormg and pa we

infer that the conditionga(L) =0 andpa(C) =0,L € £,C e &, imply LE(A) =0 and
E(A)CE(A) = 0 for any bounded Borel sé, since the integrands occurring id.{79

and @.178 vanish identically orRS, andB(H),"; as well asB(H).1 are separating

sets of functionals fof8(3H). By the density prbperty just mentioned, it then follows
thatL = 0 andC = 0, and the nets of seminorms turn out to separate the elements of
the left idealf and the"-algebrag, respectively.

(iv) The completion$g,T,) and(€,T,) as well as(%lg,fg) and(%l@TE) are again lo-

cally convex spaces with topologies defined by the unique extensions of the seminorms
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ga and pa and of the norn| . || to £, 2A¢ and¢, 2, respectively {4, Chapter Four,
§18,4.]. Therefore, in the sequel, we shall apply these seminorms to elements of the
completions without special mention. Depending on the relation between the under-
lying uniform structures as being finer or coarser, we infer #hatc £ and2l¢ C €.
Furthermore&l ¢ and2(s are uniformly closed subspaces of the quasi-local algéibra

2.3 Characteristics of the Spectral Seminorms

The investigations of the subsequent chapters very much depend on special properties
of the seminorms defined above, so these are collected in this section. Interesting in
their own right as they may be, we are, in the present context, not aiming at utmost
generality of statements, but have future applications in mind.

2.3.1 Basic Properties

Proposition 2.9. The families of seminormg @nd  on £ and¢, respectively, where
the symbolg\ denote bounded Borel sets, constitute nets with respect to the inclusion
relation. For anyA andA’ we have

ACKH = ga(L)

€L,
ACHN = pa(C) [

L
py(C), Cec

Proof. For thega-seminorms ong the assertion follows from the order relation for
operators iB3(H) ™. LetL belong to the left ideat, then

Q(AL*L) < Q(AI;L),
which by Definition2.8 has the consequence
it ol < o] ~awtLr

This relation extends by continuity of the seminorms to alfof

In case of thepa-topologies, note that for any Borel satthe functionalg=®),
defined throughg® @) (. ) = @(E(A) . E(A)), belongs tdB (). 1 if @ does. From this
we infer, since moreovek C A’ impliesE(A) = E(A)E(A) = E(A)E(A), that

{ [ o |o(E@)aCE®)|: e 93(%)*,1}
< { | ox|o(E@)axCE®))|: 9e B30, }
RS

for anyC € € and thus, byZ.17h, thatpa(C) < pa(C), a relation which by continuity
of the seminorms is likewise valid for any operator in the compledion O

The continuous extensions of the seminompsand pa to £ and &, respectively,
can be explicitly computed on the subspaigsand?(y of .



2.3 Characteristics of the Spectral Seminorms 15

Lemma 2.10. LetA denote an arbitrary bounded Borel subseiRst L.

(i) ForanyLe ¢ we have
1/2
qu(L) = sup{ dX w(E(A)ax(L'L)E(A)) : we %(9{):1} . (2.18a)
RS
(i) For any Ce 2 there holds the relation

pa(C) = sup{ d% |@(E()ox(C)E(A))] : o %(}c)*,l}. (2.18b)

RS

Proof. (i) Note, that we can define a linear subsp@ligeof 2 consisting of all those
operatord.” which fulfill

da(L')? = sup{ | dxw(E(d)ox(L"L)E(R)) : we B!, | <o
o

for any bounded Borel sét. On this space the mapping§ act as seminorms whose
restrictions to coincide withg (cf. the Remark following Definitior2.8). Now let

L € ¢ be arbitrary. Given a bounded Borel fetve can then find aequencq Ln}
in £ satisfying

neN

lim ga(L—L,) =0 and nIim||L—Ln|| =0

n—oo

The second equation implies

lim [[LE(4) - LaE(8)] =0,
so that Lebesgue’s Dominated Convergence Theorem can be applied to get for any
functionalw € %(J{):1 and any compadf C R*

/dsxw A)ay(L*L) = lim /dsxoo D)oy (Ln"Ln)E(D)).

n—oo

According to .179 each term in the sequence on the right-hand side is majorized by
the correspondinga(Ln)? and this sequence in turn convergesjidL)? by assump-
tion, so that in passing fror{ to RS and to the supremum over all € SB((H);:1 we

get

sup{ X W(E(B)ax(LL)E(A)) : w e B(H)* }<qA()
RS

This final estimate shows, by arbitrarinesd.of 2(¢ and the selected, that2(. is a
subspace d¥ly and, fromg, | £ = da, it eventually follows that for all these andA

qA(L):sup{ dX W(E(A)ax(L'L)E(A)) : we %(9{)*1}1/2.

RS
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(i) The proof of the second part follows the same lines of thought. We introduce the
subspacely C 2 consisting of operator§’ satisfying

PA(C') = sup{

for any bounded Borel sétand furnish it with the locally convex topology defined by
the seminorms),. An arbitraryC € 2 is, for givenA, approximated by aequence
{Cn}n - With respect to the norm and tipa-topology. As above one has

| o |0(E(8)ax(C)ED))|: pe %(5{)*71} <o

lim ||E(A)CE(A) — E(A)CAE(A)|| = 0

n—oo

and infers
sup{ d* |p(E(A)ax(C)E(D))| : @€ ‘B(J{)*,l} < pa(C).
RS

This establishes, by arbitraryness®t A andA, that2e C 2y, and the equation
P | € = pa implies that for thes€ andA

Pa(C) = sup{ d |@(E(8)ax (C)E(D)) | : o 93(3{)*.,1}. 0

RS

An immediate consequence of this result is the subsequent lemma, which in some way
reverts the arguments given in the concluding remark of the last section in order to
establish the Hausdorff property fo€, T,) and(<,%p).

Lemma 2.11. LetA be a bounded Borel set.

(i) ForL € ¢ with LE(A) = O there holds g(L) = 0.

(i) IfC € A¢ satisfies EA)CE(A) = 0one has p(C) = 0.

Next we deal with an implication of the fact, th@tis an ideal of the&C*-algebra!,
and clarify the relationship between the seminognand pa.

Lemma 2.12. LetA denote bounded Borel subsetsrst.
(i) Aeis aleftideal of the quasi-local algebfd and satisfies
da(AL) < [[Allaa(L) (2.19)

forany Le ¢ and Ae L.

(i) Letl, i =1,2, be operators il and Ac 2, then L*AL, belongs toe. If
in addition the operators jLhave energy-momentum transferfinC RS** and A; are
Borel subsets dRS*! containingA + I';, respectively, then

Pa(L1"Alz) < [[E(A1)AE(A2) ] da(L1) aa(La). (2.20)

Proof. (i) For anyL € 2¢ C 2 and arbitraryA € 2 the relationL*A*AL < ||AJ|2L*L
leads to the estimate

d* w(E(A)ay(L*A*AL)E(A)) < ||A||2/ d*x w(E(A)ay(L*'L)E(A))
Rs RS
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for anyw € B(H), and thus, byZ.189 and the notation of the proof of Lemn2al(
to

12
(AL) = sup{ | X(E@)ax(L AALE®D) s0e %(9{):1}

< A1 sup{ | dxw(E@)a(L'DE®) twe BE0!} = Ao

This shows thaAL belongs tdd ¢ and at the same time that the seminaggn(on 2y)
can be replaced bga to yield (2.19.

(i) Let@be anormal functional of8 () with ||¢@|| < 1. By polar decomposition there
exist a partial isometry and a positive normal function&p| with |||@||| < 1 such that

o .)=19(.V). Then

|0(E(8)ox(L1"AL2)E(A)) |
= |9l (E(B)ax(L1")E(A1)ax(A)E(A2)ax(L2)E(A)V)

< [E@2)ox(AE®B2) /0l (E@)ax(LyL)E®)) /|0 (V E@)a Lz L)EB)V)

for anyx € RS and the method used in the proof of Propositior can be applied to
get, in analogy t0o4.16),

sup{ [ ¢ |0(E(8)ax(Li"AL)E(A))] : @€ %(f}f)*,l}
< |[E(A1)AE(A2)[|ga(L1) da(L2),

where we made use 0P(183. According to the notation introduced in the proof of
Lemma2.10this result expressed in terms of the semingon 2y reads

pa(L1"ALz) < [E(A1)AE(A2) | aa(L1) a(L2),

from which we infer, as in the first part of the present proof, not only thaAL, is an
element ofl¢ but also thap), can be substituted by, to give @.20). O

The second part of the above lemma means that the pradtict, defined by two
operatord.1,L, € ¢, is continuous with respect to the locally convex spaces 4{¢f. [
Chapter Four, § 18, 3.(5)[Rlg, ) X (g, Tg) and (Ae, T).

Corollary 2.13. The sesquilinear mapping on the topological product of the locally
convex spacé?lg,ig) with itself, defined by

Ae xAg > (L1, L2) — L1"Lo € Ae,
is continuous with respect to the respective locally convex topologies.

In the special case of coincidence of both operathis= L, = L) it turns out that
pa(L*L) equals the square oi(L). Another result involving the operation of adjunc-
tion is the fact, that this mapping leaves theseminorms invariant.

Lemma 2.14. Let A denote the bounded Borel setdRf™L.
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(i) For any operator Le (¢ there hold the relations
Pa(L"L) = aa(L)%
(il) LetC be an element &f¢, then C lies in¢, too, and satisfies

Pa(C*) = pa(C).

Proof. (i) According to Lemm&.10 we have for any. € 2 ¢

qu(L)2 = sup{ dX W(E(A)ay(L'L)E(A)) : we 95(:%):1}

RS
< sup{ | [o(E@)ax(L'LEW))| g€ B(H0).1} = pa(L'L),

whereas the reverse inequality is a consequence of Letnh2aThis proves the asser-
tion.

(i) Note, thatB(J), 1 is invariant under the operation of taking adjoints defined by
P — * with P*(A) = P(A*), A e B(FH), for any linear functionalp on B (H). Thus

Pa(CT) =sup{ | d |@(E(8)o(CIE)| : 9€ B(30).1 |

- sup{ desx ¢ (E(8)ox(C)E(Q)) | : @€ %(3{)*,1} = pa(C)

for anyC € 2y (cf. the proof of Lemma.10), which is sufficient to establish both of
the assertions. O

The last statement of this subsection on basic properties of the spectral seminorms
establishes their invariance under translations insthel-dimensional configuration
space.

Lemma 2.15. The subspaced ¢ and 2l of the quasi-local algebr&l are invariant
under translations. In particular, leh be a bounded Borel set RSt! and let xe RS+1
be arbitrary, then

(i) da(ox(L)) =aa(l), LeAg
(i) pa(0x(C)) = pa(C), CeAe.

Proof. B (). 1 as well as its intersectio%(fH)*f1 with the positive con@ (H); are
invariant under the mapping — Q¥ defined byyV (. ) = (U . U*) for any unitary
operatoilJ € B(J) and any linear functionap on B ().

(i) Now, ay(L*L) = Uray(L*L)Us* for anyx = (t,x) € RS*L, This implies
W(E(A)ay(ax(L*L))E(A)) = o(WE(A)axy(L*L)E(A)UrY)
for anyy € R® and anyw € B(XH).,, henceforth
g d% w(E(A)ay (ox(L*L))E(A))

- RSdsyoo(UtE(A)ax+y(L*L)E(A)Ut*): RSdsyw(UtE(A)ay(L*L)E(A)Ut*).
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Therefore the introductory remark in combination with184 yields for anyL € 2 ¢:

q’A(O(X(L))2 = sup{ desy w(E(A)ay(ay(L*L))E(D)) :we %(3{):1}
- sup{ d%y w(UE(A)ay(L'L)E(B)U) : w e %(9{);1}
s
- sup{ desyw(E(A)O(y(L*L)E(A)) ‘e %(9{);;1} —h(L)?

which, as in the proof of Lemm2 12, establishes the assertions.
(i) The same argument applies to the seminpfmso that foIC € A¢

pa(ax(C)) = sup{ desy |o(E(A)ay(ax(C))E(D))|: @e %(3{)*,1}
_ sup{/RSdsy [O(UE(B)ay (CIEB)UC)| - @€ B(30).1)
— supf /R A |0(E@)oy(CE(®))| e B(3H).1} = paC). T

2.3.2 Continuity and Differentiability

The assumed strong continuity of the automorphism gl{m{ntx) t(AX) € Pl} acting
on theC*-algebra®( carries over to the locally convex spagegsT,) and(¢,<,); and
even the infinite differentiability ofA,x) — ax x (Lo) for Lo € £o is conserved in
passing from the uniform topology oty to that induced by the seminorms.

Proposition 2.16. (i) For fixed Le £ the mapping
ZLPL— £ (AX) = ZLAX) = agax (L)

is continuous with respect to the locally convex spaety).
(i) For given Ce ¢ the mapping

Zc:PL =€ (AX) = Zc(AX) =0y (C)

is continuous with respect to the locally convex spat&p).
(iii) Letidg, denote the identity mapping

idey 1 (Lo, [l - [1) = (£0,%q) Lo idgy(Lo) =Lo

on the spaceq , once endowed with the norm topology and once %ih Consider
furthermore the family(g, of infinitely often differentiable mappings:

XQO = {ELO . Lo S 20},
=i PL— Lo (AX) = ZL(AX) = d(ax(Lo).

Then the linear operataid ¢, is X ¢ -differentiable in the sense of Definitién16
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Remark. The last assertion means, due to the invarianc& gfunder differentiation

of arbitrary order, that all the mappings,, Lo € £o, are infinitely often differentiable

in the locally convex spacelo, Tq) and, as ig, and the operator of differentiaticn
commute, inherit the derivatives from the presupposed differentiability of the mappings
=, with respect to the uniform topology.

Proof. (i) Note, that continuity of the mappin@\,x) — o x (L) with respect to the
locally convex spaceg, %) is equivalent to its continuity with respect to each of the
topologizing seminormga.

Let the Borel subseh of RSt be arbitrary but fixed. We shall first consider the
special point(1,0) € Pl and restrict attention to an operatdre £ having energy-
momentum transfeF which, under transformations from a sufficiently small neigh-
bourhood\’ of the neutral elemeritl, 0), stays bounded in a compact and convex sub-
setl” of CV, . This means that all operatans x)(L') € Lo, (A,x) € N', have energy-
momentum transfer in the common $eand relation 2.6) of Proposition2.6 applies
to the differencesi(s (L") — L’ yielding

QA(G(/\,X)(L,) - L,)
- |E@) [ @y (@ (L) = L) (e (L)~ L) E@) |

<N(AT) /RSdSyH [ay(aan (L) L), (apax L) =) ] (2.21)

An estimate for the integrand on the right-hand side can be based on relatia (
requiring suitable approximating nets of local operatorsxary (L") —L'. GivenRy >
0 there exists a neighbourhodd’ of (1,x) such that\”O, C Oy for r > Ry, and if
{L{ eA(Or) :r >0} is an approximating net of local operators Erthenc s, (L;) €
2A(0y) for anyr > Ry and(A,x) € N”. Now

rkHO((/\,x)(L/) — (L) = L =Ly P 0 (2.22)

holds for anyk € N, so that the operatoms x) (Ly) — Ly € 2(Oz), r > Ro, constitute
the large radius part of approximating nets for eaclugf,) (L") — L', (A,x) € N”,
subject to the bound

[(@ax (L) L") = (apn (L) —Lo) | < L =Ly,

which is independent ofA,x) € N”. Then, according to the remark following Defini-
tion 2.1, there exist approximating nefs.’ (A, x); € A(0y) : r > 0} for the almost local
operatorsia ) (L") — L’ that fulfill the estimatedL’ (A, X) || < ||aax (L) — L[| and,
for r > Ro, ||(a(ax (L) —L') —L'(A,X)2|| < 2|’ —L;||, where in view of 2.22) the
second inequality amounts ff{ax x (L") —L') — L'(A,X)2 || < 2Ccr* for suitable
Ck > 0. Making use of relation.29 in the same remark we arrive at

[ {ay(aan (L) —L), (@ (L) —L) ]|
< 2[Joan (L) = L'|PX< (y) + 8[|t an (L) — L] |L' — L1y X> (¥)
<8|IL[1%X<(y) + 16||L'[| Cd¥lyl x> (y) (2.23)
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for anyy € RS, wherex. andy. denote the characteristic functions pertaining to the
compact ball of radius Ry in R® and its complement, respectively. The above relation
(2.23 holds for any(A,x) € N = N'NN”, and its right-hand side turns out to be an
integrable majorizing function for the mapping

Y= [y (@ (L) L), (@nxn (L) = L) ]

irrespective of(A\,x) € N, if k > s+ 2. Another consequence 02.23 is that the
function 2.24) converges pointwise to 0 d&° in the limit (A, x) — (1,0) due to strong
continuity of the automorphism grOL{px(M) D (NX) € Pl} Therefore we can apply
Lebesgue’s Dominated Convergence Theorem to the integral on the right-hand side of
(2.21), evaluated for any sequen¢én,xn) } ., € N approaching1,0) and infer

, (2.24)

neN

lim aa (A, x) (L) L) =0.

Since Pl as a topological space satisfies the first axiom of countability, this suffices
to establish continuity of the mappiri@\, x) — o x (L") in (1,0) with respect to the
ga-topology.

An arbitrary operatot € £ can be represented &s= ZiN:lAi Li wherel] € £o
comply with the above assumptions ldrand the operatord; belong to the quasi-local
algebradl for anyi = 1,...,N. According to Lemma&.12we have

0<aa(apay(L)—L)

N
< Z (QA(O((/\,x) (A) (aa (L) — L)) +aa((aay (A) —A) Lf))
i=1
N
<3 (Il (@ (L) = L) + floin g (A) — Al an(L) ).

i=1
where the right-hand side vanishes in the lifal x) — (1,0) due to the preceding
result and strong continuity of the grOl{m(M) D (NX) € PL} Thus the mapping
(A, X) = 0 x (L) turns out to be continuous if1,0) with respect tay, for arbitrary
L € £. The restriction to the specific poilL,0) € Pl is inessential in the last step
since for arbitrarf{/\’,xX'),(Ao,Xo) € Pl one has

Aa (A(nx) (L) = Angx) (L)) = Oa (O‘ (N X)(Moxo) * (@(ox0) (L)) = A o) (L)> ,

explicitly showing that continuity of A, x) — o(a x) (L) in (Ao, Xo) is equivalent to con-
tinuity of (A,X) — (a5 (cx(,\()’XO)(L)) in (1,0) with respect to any of the seminorms

da, Whereap, x,) (L) belongs toC.

(i) Continuity of a mapping with values in the locally convex sp&€et,) is equi-

valent to its continuity with respect to all seminormps. The problem at hand thus
reduces to the one already solved in the first part, if one takes into account the shape of
general elements a according to Definitior2.5and Corollary2.13

(iii) According to DefinitionA.16 we have to show that for any vacuum annihilation
operatorLg € £o the mappingA,x) — =1,(A,X) = 0(x x (Lo) is differentiable in the
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locally convex spacego, Tq) and has derivatives coinciding with those existing in the
uniform topology by assumption.

Let Lo € £o be given and consider the local chétt, ) around(Ag,%o) = ¢ *(to).
Due to the presupposed differentiability of the mapptgwith respect to the uniform
topology the corresponding residual tern{/Ap,Xo) with respect tqU, ) is given by

R[ZL,0¢0 1] (h) = O (A ) (LO) — O (Agx6) (L) — D=0 (Mo, X0)h, (2.25a)

using the notatior{An, Xy ) = @ 1(to + h’) for elements ofU, and satisfies the limit
condition

lim |h|~H|R[Z, 097" o] ()] =0, (2.25b)

To prove the assertion it has to be shown tHap%h stays true when the norm is
replaced by any of the seminorms. Now, according to the Mean Value Theorény,
we have for smalh

1
O (Apxy) (L) — (/\o.,xo)(l-o)—/o dd D=1, (Ash,Xsn)h,

where the integral is to be understood with respect to the norm topoldjy Thus the
residual termZ.259 can be re-written as

1
R[ZL,0¢ L to] (h) = / d9 (@(pELO(/\Sh,x%)—@szo(/\o,xo))h

—Z/ dd h' C'J(/\Sh’xﬁh) (honson) (8 (L)) —Gij (Ao, X0) @ <Ao,xo>(5j(L0)))1

i,j=1

where in the last equation?\(203) is used to represent the linear opera@y=,, in

terms of partial derivatives &, which can be expressed by means of analytic func-
tionsC;jj; on U and Poincaré transformed derivatil$Lo) of Lo (dp is the dimension

of the Poincaré group). As a consequence of the first statement of this proposition, the
integrand on the right-hand side is continuous with respect to all semirgprss that

the integral exists in the complete locally convex spa&ety). By [26, 11.6.2 and 5.4]

this leads to the following estimate for the residual term

Ih|~*aa (R[ZL, 09 to] ()

Z/ dd |‘2I| (/\Shvxﬂh) (/\sh,Xah)(aj(LO))_Cij(AO’XO)a(/\o,Xo) (6j(l-0)))
i,j=1

Zoﬂ‘sa} OIA(Cu (Ao X5n) @ gy x5n) (8 (Lo)) —Cij (0 X0) G ng.0) (5j(Lo)))1
i,j=1

where evidently the right-hand side vanishes in the Imit 0. Thus condition 4.1b)

for differentiability of mappings with values in a locally convex space is fulfilled, and

according to the counterpar?.¢59 of (A.18) the derivatives of, with respect to

both the uniform and locally convex topologies Sgcoincide. O



2.3 Characteristics of the Spectral Seminorms 23

2.3.3 Integrability

Having established Propositiah16on continuity of the mapping&\,x) — o x) (L)
and(A,x) — ax x (C) for givenL € £andC € ¢, it turns out to be possible to construct

new elements ofLo, Ty), (Q[p_,fg) and(%lg,fg) through integration with respect to the
Haar measure oﬁl.

Lemma 2.17. Let the function Fe Ll(Pl,du(/\,x)) have compact suppost
(i) Forany Ly € £o the operator

e (Lo) = [ dAX) FAX) a0 (Lo) (2.26)

belongs tagy, too.
(i) IfL € £andCe ¢, then

op(L) i/dp(/\,x) F(A,X)aax (L), (2.27a)
ag(C) ;/du(A,x) F(A,X)0(ax(C) (2.27b)

exist as integrals in the complete locally convex spéﬁ&sfg) and (QlQ,f‘;), respect-
ively, and for any bounded Borel séthere hold the estimates

aa(ar (L)) <[IFlla sup aa(aax(L)), (2.28a)
(Ax)eS

pa(ar(C)) <|[IF[lx sup pa(anx(C)). (2.28b)
(AX)ES

Proof. (i) By assumptior{A\,x) — |F(A,X)| [[a(ax(Lo)|| = |[F(A,X)|||Lol| [54, Corol-
lary 1.5.4] is an integrable majorizing function for the integrand 22¢), soag(Lo)
exists as a Bochner integral #. The same holds true for the integrals constructed
by use of an approximating n({LQr e A(Or) 1 r > O} for the almost local operator
Lo € £o:

of (Loyr) = /Sdu(/\,x) F(A,X)aax(Lor)-

Due to compactness &, these operators belong to the local algetﬂt@@r(s)) per-
taining to standard diamondsR#*! which have each asdimensional basis of radius
r(S) =a(S)r+b(S) wherea(S) andb(S) are suitable positive constants. Now,

ar(Lo) —ap(Lor) = /Sdu(/\,X) F (A, %) (0(ax (Lo) — a(ax (Loyr)),
so that we arrive at the estimai{g §) is the measure of the compact Sgt

r(S)¥]|ae (Lo) — e (Lo ) || < W(S)F[lx (a(S)r +b($)) (Lo — Loy |
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which holds for anyk € N. Due to almost locality of o, the right-hand side vanishes
in the limit of larger, so that the operataxg(Lo) itself turns out to be almost local:

og(Lo) € Ag with approximating ne{aF(LoJ) c Ql(Or(S)) > 0}.

LetI C CV, denote the energy-momentum transfer of the vacuum annihilation op-
eratorlLg, then, by the Fubini Theorem, 11.16.3], the following equation is valid for
anyg € L}(Rs™, dsy)

@y gy)ay(ar(Lo)) = [ dUAXFNY) [ ¢y aly)y s (o).

RS+L

In the special case sugp™ m(,\_rx)esﬂ(/\r), g the Fourier transform of), the inner
integrals on the right-hand side vanish for giyx) € S so that we infer

d*"ty g(y) ay(ar (Lo)) =0,
Rst+l
which shows that the energy-momentum transferg(fLy) is contained in the compact
subset J p s A" Of CV... Thereforeng (Lo) is indeed a vacuum annihilation operator
from Aann.
Finally, infinite differentiability with respect to the uniform topology of the mapping

(A, X) — EO(F(Lo) (A,x) = (A x) (GF (Lo))

has to be established. By assumptignis infinitely often differentiable with respect
to the Poincaré group, which implies that likewise all the operatgxs, (Lo) belong
to D(*)(2A) for any (A,X) € Pl. Their residual terms &L, 0) = @, *(0) with respect to
the canonical coordinatéslo, ¢o) of the first kind, as introduced irvf, Section 2.10],
can, using the notatioff\n , Xy ) = @ *(h’) for the transformations i, be expressed

by

R[EG(/\.x)(LO) © (Pc?l, 0] (h)
= A(Anx) (A (A% (Lo)) = A(ax) (Lo) = Dy =g (Lo) (1,0)D

1
:/0 ds (Q%EG(/\tx)(Lo)(AﬁhaXsh)_g%zdm_x)(Lo)(lvo))hv (229)

where the last equation stems from an application of the Mean Value Thergm
which holds true for smalh. By PropositionA.11 the termi)(pOEO,(Aﬁx)(Lo)(l, 0)h on
the second line is continuous [\, x), so that it is possible to multiply2(29 with
the functionF (A, x) and subsequently integrate over its compact supportaking
into account that each of the automorphismg, 4, is uniformly continuous, thus
commuting with Bochner integrals, this yields

/Sdu(/\,x) F(AX)R[Za,(L0) © % 0] (h)

= a(/\h,Xh) ((XF(L())) — G[:(Lo) —/Sdl.l(/\,X) F(/\,X) CDCPOEO((/\,X)(LO)(]" O)h, (230)



2.3 Characteristics of the Spectral Seminorms 25

which has the shape of a residual term¥g¢ () at(1,0). Now, the operator-norm of
D =any(Lo) (Ash,Xsn) can be estimated according #.17) by

1P a0 0) (Ao o) || < [|DawZ0 (1) [[NCAX)[[MF (Ash, x51)

.

which, due to continuity ofA,x) — N(A,x) andd — M®(Agpn,X9n) with respect to
the operator-norm topology, is majorized on the compactset0,1] by a constant
K(S). As a consequence of the last equationdr2f) we then get for any/A,x) € S
and smalh the bound

I AR Za 10 %50 ()] < 2K(S) AN

(2.31)

which is integrable oves by assumptlon; restricting furthermore attention to sequences
{hn}neN converging td), we see that the left-hand side @ §1) converges pointwise

to 0. With this information at hand it is possible to apply Lebesgue’s Dominated Con-
vergence Theoren?, 11.5.6] to the left-hand side o(30) to get

tm el [ AU YR Za 10 9% 0) () =0, (232)

which is sufficient to establish conditior\ (Lb) for differentiability of the mapping
Zar(Lo) @t(1,0). The linear operator defining the corresponding derivative is according
to the right-hand side o£(30 in connection with A.17) given by

Q%EGF(LO)(l,O)h = /SdU(/\,X) F(/\,X) @%EG(/\,X)(LO)(LO)h

:/du(/\,x) F(/\,x)a(,\jx)OQ%ELO(l,O)oN(/\,x)h

_Zh/du/\x Fii (A X) a(px (8 (Lo)) Z:hon:JI

i,j=1 i,j=1

whereF;ji (A, x) = F(A,x)Nji (A, x) are functions fronLl(Pl,dp(/\,x)) with compact
supportS. Sincefy is invariant under differentiation we conclude from the first two
paragraphs of the present proof and the above considerations that the partial derivatives

C(F Lo ZGF" 6J Lo

are again almost local vacuum annihilation operators which beloB§H¢2(). Thus by
induction, repeatedly using these metharis(Lo) is seen to be an element®f®) ()
with almost local derivatives of any order, i.@x(Lo) € £o.

(i) By Proposition2.16the mappingg/\,X) — 0(ax (L) and (A,X) — axx (C) are
continuous with respect to the uniform topology and all tihe and pa-topologies,
respectively, staying bounded on the compactSseThls implies their measurability
in the locally convex space@le, T, ) and (¢, ¥ ) together with the fact that their
product with the integrable functlohls majorlzed in each of the norm and seminorm
topologies by a multiple ofF|. As a consequence the igtegrals(L) andag (C) exist
in the complete locally convex spacg¥e,%,) and (e, %), respectively, andX 28
is an immediate upsho?§, 11.6.2 and 5.4]. O
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There exists a version of the second part of the above lemma for functid®¥ én
that are Lebesgue-integrable but no longer have to be compactly supported.

Lemma 2.18. Let Le £ and let ge L*(RS*?,d%"1x). Then

ag(L) i/ dS™x g(x) ax(L) (2.33)
Rs+1
is an operator in(A¢, T ) satisfying the estimates

da(0g(L)) < lgll1aa(L) (2.34)

for any bounded Borel séf. The energy-momentum transferogf(L) is contained in
suppdg, the support of the Fourier transforénof g.

Proof. By translation invariance of the norih. || as well as of the seminorntg
(cf. Lemmaz2.15 the (measurable) integrand on the right-hand sid@ &f3 is major-
ized by the functions — |g(x)|||L|| andx — |g(X)|ga(L) for any bounded Borel set
A. These are Lebesgue-integrable and therefig(&) exists as a unique element of
(Ql,g,i ), satisfying the claimed estimatez §4).

Next, we consider an arbitrary functitre L*(RS™*,d*"!x). By Fubini's Theorem
[26, 11.16.3] and translation invariance of Lebesgue measure

L eymmay(agL) = [ dyhyay( [ @ xamaL)
= / d*ty / d*"x h(y) 9(x) oxiy(L)
Rst+1 Rst+1

= ds“X( ds“yh(y)g<><—y))ax<L),

Rs+1
where the term in brackets on the right-hand side of the last equation is the convo-
lution producth* g of h andg. Its Fourier transfom‘n*g is given byh*g(p)
(2r)SD/2h(p)g(p) (cf. [39, Theorem VI.(21.41)]), so that this function vanishes if
h andg'have disjoint supports. Therefore sippsuppg™= 0 entails

/RS+l d*y h(y) ay (ag(L)) =0,

and this shows that the Fourier transformyof- ay(ag(L)) has support in supp ~
which henceforth contains the energy-momentum transfeag@f). O

RS+1

2.3.4 Decay Property

Eventually we are able to establish a property of rapid decay with respect to the semi-
normsga for commutators of elements @fwhich are almost local.

Lemma 2.19. Let L and L, belong to£g and let A,A; € 2 be almost local. Then for
any bounded Borel subsatof RS+1

R® 3 X — g ([ax(A1L1),AoL2])

decreases withx| — o faster than any power dk| 1.
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Proof. First we consider the special case of two eleméntandL;, in £y having
energy-momentum transfer in compact and convex subsedadl, of OV, , respect-
ively, with the additional property théitap = (MTa+Tp) —Taandlpa= (Fa+Tp) —Tp

lie in the complement o¥ ., too. According to the Lemmas14and2.12

A ([0x(La), Lo])* = pa ([ox(La); L] [ax(La); L))
< a(Lp) A (ox(La)* [ax(La),Lb] ) +da(La) Ga(Lo* [ax(La), Lb] ), (2.35)

and we are left with the task to investigate for largethe behaviour of the functions

0a (0x(La)* [ax(La), Lb] ) andaga (Lo [ax(La), Lb] ). Since the arguments of both terms
belong to£y, having energy-momentum transfer in the compact and convex subsets
ap andlp4 of CV,, we can applyZ.6) of Proposition2.6in connection with 2.173

to get the estimate (for the second term)

X*da (Lo [ox(La), Lo] )
<N@.Toa) |y i [ay (L [an Lo La] ). (Lo” [ox(La). L)) ]

Let {Lay € A(Oy) 11 >0} and {Lp, € A(Or) : r > 0} be approximating nets fdr,
andLy, respectively, satisfyingLa || < ||La|| and||Lyr|| < ||Lb||. Then the elements

Lbr" [C‘x(l—a,r)7 I—b,r] € A(Or +x) CSA(Or1 )

‘. (2.36)

constitute the large radius part of approximating nets for the almost local operators
Lp* [ax(La),Lb], X € RS, subject to the estimate

HLb* [Ux(l—a)7 Lb] —Lp” [ax(l-a,r), I—b.,r] H
< 4|LallLol[ILb — Los | +2|ILo)?llLa— Lar[ <C T (2.37)

for anyl € N with suitableC, > 0. Now, as suggested by the remark following Defin-
ition 2.1, there exist approximating nefd(a,b;x); € 2(Or) : 1 > 0}, x € RS, with
IL(a,b;X)r || < ||Lo* [ox(La), L] || and||Lp* [ax(La), L] — L(a,b;X)rx || < 2Ci 17", so
that, according to4.29), the integrand of4.36) is bounded by
] [t (Lo [t ) (L [t L)) ] |
< X4 Lo* [ax(La).Lo] [ |Lo” [ax(La), o] — L@ bix)p sy |
_ {81x|2k||LbHZH [ax(La). Lo] || < 2(x| +1),
8[Loll[x[?]| [arx(La), Lo] [|Ci (2 yl = X)) Iyl > 2(|x| +1),

which implies

(2.38)

X%an (Lo [ox(La). L))
<N Toa) [BlLal oo |* [ e

yI<2(]x/+1)

+8Gi [ Lo| [X[|[ax (La), L] | / oy (2 2y - X) | (2.39)

1y/>2(|x|+1)
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Evaluation of the integrals on the right-hand side yields (fors+ 2) polynomials of
degreesin [x|, so that, due to the decay propertiexef> || [ox(La), L] ||,
a uniform bound

X*aa (Lo [ox(La),Lp])° < M, x € RS, (2.40)

The same reasoning applies to the tepfoy (La)* [ax(La), L)), thus establishing the
asserted rapid decrease for the mapping oa([ax(La),Lb]), according to relation
(2.39.

In the general case of almost local elemehitd\,; € 20 andL1,L, € £9 one has, by
Lemma2.12

0 ([ox(Asla), AgLz])
< [1Aall]] [ox(Le), Ag] || aa(L2) + A || A2]l aa ([ox(La), La] )
+ || [ax(Ar), Ag] || IL2]l da(La) + | A2ll]| [ox (Ar), L] || da(La),

and rapid decay is an immediate consequence of almost locality for all terms but the
second one on the right-hand side of this inequality. Using suitable decompositions of
L1 andL; in terms of elements afy complying pairwise with the special properties
exploited in the previous paragraph, the remaining problem of decrease of the mapping
x — da([ax(L1),L2]) reduces to the case that has already been solved above, thus
completing the proof. O



Chapter 3

Particle Weights as Asymptotic
Plane Waves

Having analysed in great detail the nets of seminognsand pa, indexed by the
bounded Borel setA C RS, on £ and ¢, respectively, we now turn to the invest-
igation of the topological dual spaces:

Definition 3.1. (a) The linear functionals ol which are continuous with respect to
the seminornp, constitute a vector spaeg’, which is a normed space via

clla=sup{|c(C)|:Ce €, pa(C) <1}, ge€s.

(b) The topological duals of the locally convex spa¢gs,¥), (£,%q) and (<, %)
are denoted’y”, £* andc*, respectively.

Remark.Due to the net property (Propositich9 of the family of seminormsoa,

a linear functional belongs to the topological ddl of (€, %) if and only if it is
continuous with respect to one specific semingym A’ a bounded Borel subset of
RS+ [42, Proposition 1.2.8]. Hence

¢* =| J{¢s : ACR*"! abounded Borel st (3.1)

"

By continuous linear extensiori{, Chapter One, §5, 4.(4)], the functionals frath

are moreover in one-to-one correspondence with the elements of the topological dual
¢ of the complete locally convex spa¢e,T,). By the same argument, they are
furthermore embedded in the topological ddal of (th,fl;). We shall make use of
these properties without special mention.

3.1 General Properties

Before proceeding to extract certain elements finto be interpreted, on the grounds

of their specific properties, as representing asymptotic mixtures of particle-like quant-
ities, we are first going to collect a number of important properties commatl to
functionals from the topological dual @& whose proof does not depend on special
assumptions. First of all, continuity as established in Propos&ibfdirectly carries

over to functionals ire*.
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Lemma 3.2. Continuous linear functionals € €* have the following properties.

(i) The mapping! > (A,x) — ¢(L1*arx(L2)) is continuous for arbitrary but fixed
Li,Lo e £.
(i) The mappind. 3 (A,x) — ¢(a(ax(C)) is continuous for given & €.

Proof. Due to the assumed continuity Qfthe assertions follow from Propositi@nl6
in connection with Corollarg.13 O

Every positivefunctional ¢ on the*-algebra¢ = £* £ defines a non-negative ses-
quilinear form ong through

(])g:€xL—C (L1,L2)— (La|la)¢ =¢(L1"L2), (3.2a)
and thus induces a seminognon £ via
G L—R. L qe(l) = (LU (3.2b)

Denoting by, the null space ofl, one can construct the quotief¢ = £/91c, which
is a normed space through the definition

[ lle:£/9% =Ry [l [[[L]cllc = ae(L), (3.2¢)

where we used square brackets to designate the cosgf®in These concepts can
be applied to formulate, parallel to Propositiarig differentiability of the Poincaré
automorphisms with respect to continuous positive functional®.on

Lemma 3.3. Let¢ be a continuous positive functional on thalgebra¢, i.e.q¢c €.
Then the restriction of the canonical homomorphism

Q€= L/MNg L= Q(L) =L
to the subspacgy is X ¢,-differentiable in the sense of Definitidn16 where
x,go = {ELO ‘Lo € 20}

is the family of infinitely often differentiable mappings defined in Proposiiaf

Proof. Due to the assumed continuity of the functiogathere exists a bounded Borel
setA such that, according t@(2) in connection with Definitior8.1 and Lemma2.14,
for anyL € £ there holds the inequality

ILJcl1Z = ag(L)? = ¢(L"L) < [I¢llaPa(LL) = [I¢/laga(L)?.
Therefore the linear operator
Qe [ Lo (Lo, Tg) = (£/MNc ] - [lo)

turns out to be continuous, so that the assertion follows by an application of Corol-
lary A.15 from the result of Propositiof. 16 stating that the mappings

=i Pl = (£0,%q)  (AX) = ZL,(AX) = aax (Lo)

are differentiable for ani,g € £ (cf. the remark of that place). O
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The next lemmas are concerned with integrability properties of functi@qalé*,
parallel to those established in Subsectiod.3 The first one, Lemma.4, is an im-
mediate consequence of Lemnias7and2.18 whereas the second one, Lemfg
prepares the proof of a kind of Cluster Property positivefunctionals in¢*, formu-
lated in the subsequent Propositi®ms.

Lemma 3.4. Let¢e ¢, L1,L, € £and Ce €.
(i) LetFe Ll(Pl,dpt(/\,x)) have compact suppost then

¢(Lyar(Ly)) = / A, %) F(AX) ¢(L"any (L2), (3.3a)
<[ (0)) = [ dMAX) FIAX) G(ann(©)) (3.30)
and there hold the estimates
l¢(La*ar(L2))| < [IFll1llcllaga(Le) (Afggqu(G(/\,m(Lz)), (3.4a)
6(ar(C))| < HFHchIIA(Afxtjgs Pa(a(ax(C)) (3.4b)

for anyA such thatg € ¢,".
(i) For any function g= L*(R",d"1x)

¢(Li*ag(la)) = [ d*xg(0)¢(Lrax(La)), (3.5)

Rst+1

and a bound is given by
lq(Lr*ag(L2)) | < llgllaliglata(ly) aa(Lz) (3.6)
for any A satisfyingg € €a".
Proof. Lemmas2.17and2.18state that
ar (L) = [ dUAX) F(AX) a0 La)
ap(C) = /du(/\,x) F(A,X)aax(C),
aglle) = [ dxga(Ls)

exist in the complete locally convex spac(@&,fg) and(mg,fg), respectively. Now,

the functionalc, which lies in2(¢ according to the remark following Definitio®. 1,

is linear and continuous with respectde (C) € ¢ and, by Corollary?2.13 also with
respect to bottr (Lo),04(L2) € Ae. Therefore it commutes with the locally convex
integrals P6, Proposition 11.5.7 adapted to integrals in locally convex spaces], which
proves the assertion. The annexed estimates are a further simple application of the
results contained in Lemmasl7and2.18 O
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Lemma 3.5. Let I € £ and let Le £(I) = £nN2A(M), I C RS compact, i.e. L has
energy-momentum transfer in If ¢ € €** is a positive functional which belongs to
¢ andA’ denotes any bounded Borel set containing I, then

d* (L ox(L"L)L) < lgflata(L)?an (L')?. (3.7)
RS

Proof. LetK be an arbitrary compact subsetl®fand note that
/dex ay(L"L") e 2.
Thus, according to the construction®f
/dex L*ay(L"L')L = L*/dean(L’*L’) L

belongs to the algebra of counters and exists furthermore as an integral in the locally
convex spacé%lg,fg). Therefore the functiona € ¢ can be interchanged with the
integral 26, Proposition 11.5.7] to give

/dsxq(L*ax(L’*L’) L) :q(L*/dech(L’*L’) L).
K K
Application of Lemma2.12then leads to the estimate

Og/dsxc(L*ax(L’*L’) L) <i¢/la pA<L*/de0(X(L’*L’) L)
K K

= llglaan(L)?| Q'

’

< llclaca(L?|[E@) [ don( L) E@)

where we made use of the positivity gf The above inequality survives in the limit
K " RS and the convergence of the right-hand side to a finite real number establishes
the integrability of the function

R®3 x+— ¢(L o (L)L)

as a consequence of the Monotone Convergence ThedigmI2.7]. In view of
(2.179, one finally arrives at the asserted bound

dx oL ax(L" L)L) < liglaa(L?| Q| = Ielata(L?an (L) O
RS
After these preparations we are in a position to prove the announced Cluster Prop-

erty for positive functionals irc*.
Proposition 3.6 (Cluster Property). Let Lj and L| be elements ofp and let A € 2,
i = 1,2, be almost local operators, then the function

R®> X — ¢((L1"ArLh)ax(La*Aslh)) € C©
is an element of {(RS, dsx) for any¢ € ¢** and satisfies

d% |q((La"AdLy)ax(L2"AoL))) | < [IGlaMa (3.8)

RS

for any bounded Borel sétfor which¢ belongs tas", where the constant Mdepends
on A and the operators involved.
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Proof. First, we re-write the argumefit;*A;L})ox(L2*AoL%), commuting the operat-
orsAjL] anday(L2*Az), to get
(L1"ArL))ax(L2*AsLY)
=L [AlLll,O(x(Lz*Az)] ax(L5) +Li*ax(L2"A2) AL ox(L).  (3.9)
This implies
q((L*AsLy) o (L2*Aols)) |
< q(La* [AdL, ax(L2"Az)ax(Ls)) |+ |q(Li*ax(L2* A2)ArLyax(L5)) |, (3.10)

where the first term on the right-hand side is evidently integrableR¥etue to almost
locality of the operators encompassed by the commutator.¢Eo€," we have the
estimate

/Rs d®x |C(L1* [AlLll,GX(Lz*Az)] (XX(LIZ)) ‘

< lgllaga(L) aa(L3) /desx | [ALf, ax(L2*A)]||. (3.11)
The second term can be estimated by use of the Cauchy-Schwarz inequality applied to
the positive functionad;
2| (L1 ax(L2"Az)ArL 0 (L)) |
< 2¢(L1*ox(L2"AoAo™ L)L) 2 ¢ (o (Lp )Ly Ar*ArL o (L)) 72
= )l\f;l; (A_lC(Ll*Gx(Lz*AzAz*Lz)Ll) +A Q(ax(L/Z*)Lll*Al*AlLllax(LIZ))) . (3.12)

Integration of the first term on the right-hand side is possible according to the previous
Lemma3.5and gives

d* (La*ax(L2"AoAr"L2)L1) < [Iclla a(L1)?0n, (Ao L2)?, (3.13)
]RS
wherel; is any bounded Borel set containing the sur@nd the energy-momentum

transferl; of L;. Concerning the second term on the right 8f1(), we get, upon
commutingay (L5") anday(L5) to the interior,

¢(ax(Ly )Ly "Ar*ArLiax(Lb))
<o [ox(L5"), L JAT" AL o (L) ) | + QLY "o (Ls " )Ar " Ag [L7, ik (L5)] ) |
+1Al?o(Ls on(Lp LY)LY) |, (3.14)

where again use was made of the positivityofThe rapid decay of commutators of
almost local operators with respect to peseminorm established in Lemn2al9 of
Subsectior?.3.4can be combined with Lemnfa5to show integrability oveR*:

d® g (ax (L5 )Ly Ac* ALy ay(L5))
RS
< ||C||A||Al||2<QA(L,1)ZQA’1(L/2)2+ (L2l aa(L2) +[IL2] aa(Ly)) -

[ dxa([Lhax(1y)])), (3.15)
e
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which holds for any bounded Borel s&} O A+, wherel™] denotes the energy-
momentum transfer df}. By (3.14) and @3.15), the left-hand side of3 12 turns out
to be integrable, and a bound for this integral is proportiondlct. In connection
with (3.11) this establishes the assertion for a suitable consfarthat can be deduced
from relations 8.11), (3.12), (3.14 and @.15. O

The Cluster Property has been proved above under the fairly general assumption of
almost locality of the operators involved. If for givén,L, € £ the mapping

RS S XH— pA(Ll*ax(LZ))

happens to belong to the spaﬁe(RS, dsx) for the bounded Borel s&, (3.8) is obvi-
ously fulfilled in case that € €* belongs tax*. As an example consider almost local
operatord.j,L; € £ having energy-momentum transfiey and[ ,, respectively, such
that (A+T1+ Fz) NV, = 0. This impliesLjax(L5)E(A) = 0 for anyx € R® and, by
Lemmas2.11and2.12, pa (L} "ox(L5")Lj0x(L5)) = 0. An application of Lemma&.12

in connection with translation invariance @f (Lemma2.15 then yields for the coun-
tersC/ = L{"L{,i =1,2,

Pa(Cr ax(C3)) = pa (L1 Liax(Ly L))
= pa(L1" L1, ox(Ly)]ax (L)) < [|[Lh, ax(L2)] || aa(Ly) aa(Ly).

where, due to the assumed almost locality-pfandL5, the right-hand side is seen to
belong toL*(R®,d*x). The integrability of a mapping — pa(L1*ox(L2)), L1,L2 € £,
has another consequence concerning weakly convergen{tcr.letse J} of functionals
from €*, which are contained in bounded subset€Hfwith respect to the norr. ||a:

a kind of Dominated Convergence Theorem.

Lemma 3.7. Let Ly,L, € £ be such thax — pa(L1*ax(L2)) is integrable and consider
the weakly convergent nét; : 1 € J} in the D-ball of¢," with limit ¢. This means that
foranyCe €

lim ¢ (C) = ¢(C)

and foranyt € J
16 (C)| < D-pa(C), (3.16a)
1¢(C)| <D-pa(C), (3.16b)

the latter relation being implied by the former. Then

d* ¢(L1*ox(L2)) = IiTn d® ¢ (Li"ax(L2)). (3.17)
RS RS

Proof. Asimplied by Propositior2.16and Corollary2.13 x — L1 *0x(L2) is a continu-
ous mapping oriR® with respect to the-topology, hence it is uniformly continuous
on any compact sé€. This means that te > 0 there exist® > 0 such thai,x’ € K
and|x —x'| < dimply

€

pA(Ll*GX(Lz) — Ll*GXI(Lz)) < 6D—’K"



3.1 General Properties 35

where |K| denotes thes-dimensional volume oK. Consequently, under the above
assumption ox andx’, we infer from (3.16)

|G (Li"ax(L2)) — G (Li"aw(L2)) | = |6 (Li"ax(Lz) — Li"ox(L2)) | < %’
[6(Laax(L2)) — g(La"ax (L2)) | = [o(La"ax(L2) — Li"aw(L2))| < %

By compactness d, there exist finitely many elements, ... Xy € K such that the
0-balls around these points cover allbf moreover, since is the weak limit of the net
{G 11 €3}, we can findg € J such that - 1o implies

lg(Li*ay (L2)) — G (Li*ax (L2)) | < 6iK|

foranyi=1,...,N. Now, fort € Jandk € {1,...,N},
¢(L1"ax(L2)) — G (Liox(L2))|

< |q(Lrfax(L2)) —g(Li*ay (L2)) | + |g(Lr*ox (L2)) — G (Laox (L2)) |
+ ‘CI (Ll*axi (LZ)) -G (Ll*ax(LZ)) ‘,

and, selecting fox € K an appropriat&y in a distance less thay we can put the above
results together to get the estimate

l¢(Li"ax(L2)) — G (Li*ox(L2))| < %

which holds for any € K andi > 15. Thus weak (i. e. pointwise) convergence of the net

{ 11 € J} isindeed uniform convergence on compact subsels obipon integration
overK we arrive at

’/dex (C(LI*GX(LZ)) _CI(LI*GX(LZ)))‘

g/dsx
K

/desx pA(Ll*GX(Lz)) < 00,

o(Lr'on(L)) — 6 (Li'an(la)) | < 5. (3.18)

Now, by assumption

so that tce > O there exists a compact sub&gtsatisfying

s . &
CKEd X pa(L1*ox(L2)) < D

Then, as a consequence 8f{69 and (3.161, we get for any € J

/CK d | (Lifax(L2)) | < -, (3.19a)

/CK d* |q(L1"ax(L2))| < . (3.19b)

i, Nim
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Combining @.19 with (3.18) for the compact s, yields for1 > 1 (note, thaig only
depends om)

‘ N d* ¢(L1*ox(L2)) — y d® ¢ (Li"ax(L2)) ‘

</CKgde\C(Ll*o(x(Lz))\Jr/dex|c(|_1*o(x(|_2))_cl (L' on(L2))|

€ € ¢
d3 | g (L ok (L - +-+-==¢.
+/[JK€ }CI(l x( 2))}<4+2+4
By arbitrariness o€ this proves the possibility to interchange integration and the limit
with respect ta as asserted irB(17). O

The spectral support of not necessarily positive functiogasC* (considered as
distributions) depends, as expressed in the subsequent proposition, on the bounded
Borel setsA for which ¢ € €4". This property will prove to be of importance when it
comes to defining the energy-momentum of particle weights.

Proposition 3.8 (Spectral Property). Let Ly,L, € £ and¢ € €*. Then the support of
the Fourier transform of the distribution

RS 5 x> ¢(L1* (L)) € C

is contained in the shifted light cong. — q for some o= V... More specifically, q is
such that a bounded Borel sit satisfyingg € €4, is contained in g- V..

Proof. If a functiong belongs to the spade' (R™, d*"1x), then the operator

Og(L2) = /RS+l d*"x g(x) ox(L2)

lies in2¢, according to Lemma.18 and has energy-momentum transfer in syyghé
support of the Fourier transform gf If this happens to satisfy sugp= C(V, —A),
we inferag(L2)E(A) = 0 and henceforth, by Lemntall, ga(0g(L2)) = 0. Sincegis
assumed to belong ®y", Lemma3.4results in

‘ . d*1x g(X)C(Ll*ax(LZ))‘ = |¢(L1*ag(L2)) | < lIcllata(la) aa(ag(L2)),

which, according to the preceding considerations, entails
/ d*x g(x) g(L1*ax(L2)) = 0. (3.20)
Rs+1

Now, letg’ be an arbitrary function from*(RS**,d***x) with suppy C C(V, —q),
A Cq-V,,thensupg C C(V, —A), so that 8.20) is fulfilled for any function of this
kind, proving the assertion. O
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3.2 Asymptotic Functionals

Now we turn to functionals ir€* that carry additional properties, reflecting the fact

that the present investigation is concerned with the structure of the totality of physical
states at asymptotic times (scattering states). The temporal development of such a state
of bounded energyp € §(A), A a bounded Borel set, can be explored by considering

an integral of the following shape:

- dv h(V) OL)(CX(TJV) (C)), (3.21)
whereh denotes a bounded measurable function on the unit b&Fofvhere the ele-
mentsv represent velocities. Apart from this functiofd, 1) coincides with the integral
(2.5 encountered on pagsn the heuristic considerations of ChapkeiThe investiga-
tions carried through in that part (cf. Propositisim) imply that 3.21) takes on a finite
value for any counte€ € ¢ at any timet and, according to Lemm2 10, the integral
(3.21) even exists for alC € Asg.

The physical interpretation is as follows: Consider a functiafibounded support
V C R®\ {0} in velocity space, then the integraél.21) corresponds to summing up,
for given timet, the expectation values of measurement€ ah the statew, where
these measurements extend over the bounded sactibnf configuration space. For
growing T the distance of this portion from the origin increases together with its total
extension. More exactly, the measurements take place in a cone with apex at the point
0 of space-time, its direction is determined by the suppoht ahd for different times
T the counterC is set up in specific parts of that cone, their extension growing as
|T|® (compensating for the quantum mechanical spreading of wave packets) while their
distance from the origin increases proportionaltio If the physical stateo has, in
the limit of large (positive or negative) times, evolved into a configuration containing
a particle (incoming or outgoing) travelling with velocity € V, then a counte€y,
sensitive for that specific particle, is expected to asymptotically produce a stable signal
under the above experimental conditions.

The mathematical equivalent of this situation is the existence of limits of the above
integral at asymptotic times, evaluated for the cou@teand a functiorng with support
containingvp. Thus the problem has to be settled in which (topological) sense such
limits can be established, if they happen to exist at all. To tackle this assignment we
turn to a slightly modified version of3(21) in Definition 3.9, involving, for technical
reasons, a certain time average.

Definition 3.9. Let A be a bounded Borel subsetRf™, letw € $(A) denote a phys-
ical state of bounded energy andVet: h(v) be a bounded measurable function on the
unit ball of R®. Furthermore suppose that- T (t) is a continuous real-valued function,
approachingt+oe or —oo for asymptotic positive or negative times, respectively, not as
fast agt|. Then we define a nf{tph,t te ]R} of linear functionals or€ by setting

T ()
one(C) = T(1) /t et | i) oa (©)
(3.22)

[T N
=T(t) /t dt de X h(T™x) (0 (C)), Cec.
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Under the above assumptions the functiorgs turn out to be continuous with
respect to the seminorpp pertaining to the energy-momentum support of the physical
statew( . ) = w(E(A) . E(A)), i.e.pnt € €4". This can be seen as follows: First, note
that the operatond (1) implementing time translations commute wiiA), so that

W(E (D)0 x(C)E(L)) = w(U(T)E(D)ax(C)E(A)U(T)%),
which allows @3.22) to be re-written as
t+T(t)
one(C) = T() / dt [ dxh(tx)w(U (DE(B)axCE@U(T)). (3.23)
t RS

Now, all the functionalso(U (T) . U(1)*), T € R, belong toB (). 1, so that the abso-
lute value ofpn(C) can be estimated, making usepy as defined inZ.170. Abbre-
viating the interval oft-integration depending anasls, this gives

|Pns(C)] < sud dS h(t~1x) (U (T)E(A)ox(C)E(A)U (1))

TEh Rs

<|[hllo  sup d*%|@(E(8)ax(C)E(A)) | = [Ihl|=pa(C).  (3.24)
B(H). 1 JR®

The above inequality implies that the functionplg belong to the dual spac&” of
(€,%p). Moreover, the estimate3(24) is uniform int, so that the ne{pn; :t € R}

is even an equicontinuous subset6f The Theorem of Alaglu-Bourbaki [}1, The-

orem 8.5.2] then tells us, that this net is relatively compact with respect to the weak
topology, leading to the following fundamental result.

Theorem 3.10 (Existence of Limits).Under the assumptions of Definiti@® the net
{pm ‘te IR} C €a" possesses weak limit pointsdh at asymptotic times. This means

that there exist functionalsﬁz and om on ¢ together with corresponding subnets
{png 11 €3} and {pny, : K € K}, i.e.lim t, = 40 andlim, t, = —oo, such that for

arbitraryC e ¢
Phs,(C) — Gy (C), (3.25a)

Phs (C) — GI({Q)) (©). (3.25h)

The heuristic picture laid open above suggests, that in theories which are reasonable
from a physicist’s point of view the thph,t te R} actually converges, but as yet
we have not been able to give rigorously formulated conditions under which to prove
this conjecture. This question seems to be connected with the problem of asymptotic
completeness of quantum field theoretic models; one has to assure that in the limit of
large times multiple scattering does no longer withhold the measurement @s(G3
from growing stable. Another possibility is the disappearance of the limit functionals
om and cf]f(g on all of the algebra of counte®, a phenomenon that we anticipate
to encounter in theories without a particle interpretation (e. g. generalized free field).
The denomination of the asymptotic functionads i's chosen to reflect thesingular
nature: the values that the functionglg return for finite times when applied to the
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identity operatorl (which is not contained ir¥) are divergent a$|® at asymptotic
times.

The convergence problem as yet only partially solved in the sense of Th&€atgm
one can nevertheless establish a number of distinctive properties of the limit functionals
o (from now on we will skip sub- and superscripts not to overburden the notation), that
allow for their interpretation in terms of asymptotic configurations of particles. An
immediate first consequence of the above construction is the following proposition.

Proposition 3.11 (Positivity and Continuity of Limits). Suppose thak is a bounded
Borel subset oRS1, w € §(A) a physical state of bounded energy and b (RS, d°x)
a non-negative function. Then the limit functionaldor the net{pm te R} are
positive elements @y

|0(C)| < ||l Pa(C), Ce€; (3.26a)
0<0(C), Cee™. (3.26b)

Remark.Due to the continuity opnh: and o with respect to thepa-topology, these
functionals can be continuously extendeditas well as2l¢, wherepy, are explicitly
given on2l¢ by the formula 8.22 with C € ¢. It is then easily established, by use of
elementC’ from € lying in suitablepa-neighbourhoods dE, that the relations3(25
remain valid on this larger subspace of the quasi-local alggbra

The next result deals with the effect that space-time translations exert on these limit
functionals. A further assumption on the velocity implementatienL (RS, d%v) turns

out to be indispensible in their prodi:has to be continuous, approximating a constant
value in the limit|v] — oo, i.e. h— My, € Co(R®) for a suitable constarily; these
functions constitute a subspaceQyiR®) that will be denote®y ¢(R®) in the sequel.

Proposition 3.12 (Translation Invariance). LetA C RS! be a bounded Borel set, let
w € 8§(A) and he Coc(IR%). Then the limit functionals of {pny, : 1 € J} are invariant
under space-time translations:

a(ay(C)) =o(C) (3.27)
for any Ce 2¢ and any xe RS,

Proof. Taking into account the fact that the Lebesgue measurBSh is invariant
under translations, one can exprps,s(a(xoﬂx) (C)) for any finite timet and any given
x = (xX°,x) € RS by the following integral

tHxC+T (1)

(00,0 (©) =TO [t [ dyh((r=) Hy-x0) o(aay ©).

t+x0 RS

Next, we want to evaluatgn(C) — pny (00 (C)) | which, according to the respect-
ive limits of t-integration, can be split into a sum of three integrals to be estimated
separately:

tx0
T [ dr [ dynee(any ©)] < T Il pal)

t+T(t)
T [ [ YR (o (©)] < Tl pa(C);
t-Hx0+T(t) Rs
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bothpn:(C) andpnt (e« (C)) contribute to the third integral

x0T ()
T [ ay [~ (=) =) elagy ©)]

t+x0
< sup suplh(t™ty) —h((T—x°) (y—x))| pa(C)

T€l 0 YERS

where we used the abbreviatiino for the interval oft-integration. Setting (foft|
large enough)

z =72+ (1—xX0) 1 (Xz—x)

we finally arrive at the estimate

[P0 (C) = Pne (Ap0.0(C)) | < (2IT (M) [N+ sup suplh() — h(z)]) pa(C).

relt‘xo ZeRS

(3.28)

The net{z : T € R} approximateg uniformly on compact subsets Bf in the limit of
large|t|, i. . givene > 0 andR’ > O there exists a positive numbgfsuch thaft| > T’
implies|z— z| < € for anyz € RS with |zl < R. On the other hand, giveR’ > 0 there
existsT” > 0 such thatz| > R’ for any|z| > R’ and anyjt| > T”. Combining these
results with the special propertiestot Co ¢(IR®), i. €. uniform continuity on compact
balls inR® and approximate constancy at infinity, we infer that for lajgehe term
sugeRs|h(z) - h(zr)\ falls below any given positive bound. Therefore the right-hand
side of (.28 vanishes witht| — o since|T(t)| exceeds any positive value in this
limit.

Now, leto be the weak limit of the subndpn,, 11 € J}, i.e.

pni (©) — o(C),

then there holds for anyc J, anyC € ¢ and anyx € RS" the subsequent inequality

\o(ax(C ) pht, (Ax(C)) |+ |Phs (ax(C)) — png (C)| + | Pns (C) —a(C)|.

By the reasoning of the preceding paragraph and the above condition for subnet con-
vergence, all three terms on the right-hand side vanish with respect to the directed set
J, since in this limit]t,| — . As a result the intermediate term has to be equal to O,
thereby establishing translation invariancesof O

The last property that we are going to demonstrate in this section for those special
elements € ¢, 7, that arise as limits of nets of functlona[lsh t il € J} complements
the Cluster Property 6. It asserts, given certain specific operators ¢, the existence
of lower bounds for integrals of the functions— o (C*ax(C)).
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Proposition 3.13 (Existence of Lower Bounds)Let C € € be a counter which has
the property that the functior — pa(C*o(C)) is integrable (cf. Lemma&.7). Let
furthermoreo € ¢,* " be the limit of a net of functional@phati e J}, each defined by
(3.29), where the velocity function h is non-negative and belongstgR>). Under
these assumptions

lo(C)f’ < |h||m/Rs d* o (C*ax(C)). (3.29)

Proof. Consider the functiongdy; at finite timet. Applying to the absolute value of
its defining equation3.22 the Cauchy-Schwarz inequality with respect to the inner
product (t| large enough)

t+T(t)
(=T [ @ f@em

of square-integrable functiorfsandg depending on the time variabtec I, one gets
in the special case of

f()=1 and g(t)= [ d*h(T %) 0(aqx(C))
RS

the estimate
5 4 t+T(t) s 1 2
pua©)F = [T [ et [ axhre(a ©)]

t+T(t)
<T@)™? / dt ‘
t

Now, letK be a compact subset &F; then, by positivity of the functionab € §(4),
[11, Proposition 2.3.11(b)] together with the Fubini Theorei, [I1.16.3] leads for
arbltraryr eRto

‘oo(aT( /K dx h(flx)ax(c:))) ‘2
<ofar( [ d% | dynryhboe(c)a©))

which is preserved in the limK ~ R®, which exists on account of the assumed integ-
rability of the mapping< — pa (C*aX(C)). On commutingoo a; and the integrals one
arrives at

d h(t*x) w(ar (ax(C))) ‘2. (3.30)
RS

‘ d h(t*x) w(a (ax(C))) }2

RS

g/ d [ d% h(ty) h(t"x) w(a (ay(C*)ax(C))) < Hh\ﬁ,/ dx pa (C*ax(C))
e ° (3.31)

and the combination 08(3@ and @.31]) gives

T (t
@ <o [ e [ dx [ dyne i a(a(a,Ca©)
(3.32)
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We want to replace the terhft—!x) by the norm|h|| and, to do so, define the function
h, = (||h]|l.h—h?)¥2, which is a non-negative element@j(R®) as ish itself. Then
for anyzZ € RS there holds the equation

Ihllwh(2) = () h(Z) +h. (D . (Z) + 1. (2) (e (2) —h(Z)) +h(z) (h(2) - h(é))g;@

Next, consider for an arbitrary functigne Co ¢(R®) the following inequality, based on
an application of Fubini’s Theorem and the reasoningdi4),

T (1)
T e [ ax [ dyar (o) - gt ) eler(ay(C)ax(©)
t S RS

t4T(t)
\RSdeTar / A CICCR 9(#(x))) (A (C'ax(C)))|

< gl / d supsupla(2) — 9(z(x)) [ Pa(C'o(C)). (339
tel zeRS

where we made use of the coordinate transformatienx + y followed by the trans-

formationy ~~ z = 1~y and introduced the abbreviationgx) = 1"1x +z as well as

I; for the interval oft-integration. Similar to the proof of Propositidhl2 the ex-

pression sup. Sup,rs|9(2) —9(z(x))| is seen to vanish for all € R® in the limit of

large|t|, so that by Lebesgue’s Dominated Convergence Theorem the left-hand side of

(3.39) converges to 0. This reasoning in particular applies to the funchi@sswell as

h, and thus to the third and fourth term on the right of equati®3. On the other

hand, substitution oh by h, in the integral of 8.32 likewise gives a non-negative

result for all timest. Combining all these informations and specializing to a subnet

{t. e J} approximating+oco or —oo, one arrives at the following version a3.382),

valid for asymptotic times:

Iiﬁn\ph,tl(C)jz
4T ()
<limhfloT ()" /t dt /R x| dy h(t™y) w(ar (ay(C*)ax(C)))
44T ()
< HhHwIi[n/desxT(tl) / dr/ d% h(t™1y) w(0t(ry) (C*ax(C)))

= [|h]lfim /desx ohs (C*(C)).

Making use of Lemm&.7, this result can be expressed in terms of the functional
lim, pny, to yield

0(©)P < Hh||w/desx0(C*0(X(C)). 0

3.3 Particle Weights

The features of limit functionals € ¢4 * collected thus far, point to their interpretation
as representatives of mixtures of particle-like quantities with sharp energy-momentum:
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being translationally invariant according to Propositi®ri2 they appear as plane
waves, i. e. energy-momentum eigenstates, on the other hand they are singly localized
at all times by PropositioB3.6, thereby exhibiting properties of particle-like systems,
their energy-momentum spectrum being determined by PropoSitioiVe shall sum-
marize systems of the above kind under the conceptdicle weightsa term chosen

to reflect the connection to the notion of ‘weights’ or ‘extended positive functionals’ in
the theory ofC*-algebras, going back to Dixmie?4, Section 1.4.2] (cf. also/8s, Sec-

tion 5.1] and {17]). These designate functions on the positive clifeof aC*-algebra

20 which can attain infinite values, a property they share with the singular functionals
constructed in Theore@ 1Q it was seen to be of importance that their domaitioes

not comprise the elemeitof the quasi-local algebra, for the defining approximation
would then lead to the valug(1) = +co.

As already mentioned in Sectidhl, every positive functionab on € = £* ¢
defines a non-negative sesquilinear fornj . ) on £ x £ via

(L1|L2)o = o(L1"L2) (3.35)

for anyL,,L, € £, which induces a seminorog on £ and a norr| . || on the corres-
ponding quotient of2 by the null spacéi, of qq. Taking advantage of these construc-
tions, we shall depart from functionals and proceed to sesquilinear forms, a step which
is necessitated by the special demands of the subsequent analysis. The following defin-
ition consists of a résumé of the essence of our knowledge on asymptotic functionals
acquired in the above sequence of propositions.

Definition 3.14. A particle weight is a non-trivial, non-negative sesquilinear form on
£, written ( . | . ), which induces by3.2) on the idealf a seminormg, with null
spaceN, as well as a norn . || on the quotient /91, and which complies with the
following assumptions:

(i) foranyl,,L, € £ andA € 2 there holds the relation
(L1]ALz) = (A"L1|L2);
(ii) for givenL € £ the following mapping is continuous with respectg
SR =€ (AX) = ZUAX) = agax (L);
(iii) the restriction to the subspagg of the canonical homomorphism
Qw:L— £/My L— Qu(L) =[L]w

is X g,-differentiable in the sense of Definitich 16;

(iv) the sesquilinear form is invariant with respect to space-time translatieris+?,
i.e.

(ax(L1)|ox(L2)) = (La|L2), Lilz€ £,
and the(s+ 1)-dimensional Fourier transforms of the distributions

x— (Li|ax(L2))

have support in a shifted forward light covie — g, whereq e V...
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Remark. (i) Note, that we did not impose on | . ) any restrictions concerning con-
tinuity with respect to the-topology of £, for in general such conditions will get lost

in the disintegration of particle weights to be expounded in Chapt&he continuity
property, which actually depends on the topologyefis formulated in terms of the
seminormgqy, induced by the sesquilinear form under consideration. The constituent
properties of the above definition are preserved under the operations of addition and
of multiplication by positive numbers, so that the totality of particle weights supple-
mented by the trivial form proves to be a positive (proper convex) cone4&f5]),
denotedw, in the linear space of all sesquilinear forms@nThis ascertainment is the
foundation for the constructions of Chapéer

(i) One could be tempted to go the way back from a sesquilinear form of the above
type to a positive linear functional afy but this is by no means self-evident. It is only
possible under restrictive assumptions on the structure of the algetoranake the
definition of the associated functional unambiguous.

A completely equivalent characterization of particle weights can be given in terms
of representation§ty, Hy) of the quasi-local algebrd, obtained by means of a GNS-
construction (cf. {7, Theorem 3.2] and/[3, Proposition 5.1.3]).

Theorem 3.15. (I) To any particle weight . | . ) there corresponds a non-zero, non-
degenerate representati@m,y, Hy) of the quasi-local C-algebra2l with the following
properties:

(i) there exists a linear mapping ) from £ onto a dense subspace®f,

|.) L2 — Hw L— L),
such that the representatian, is given by
Tw(A)|L) = |AL), Aef, Leg;
(ii) the following mapping is continuous for giverelLL:
200 ) P = Hw (AX) = |ZLAX)) = |apag (L));

(iii) the restriction of the linear mapping. ) to £o with range in the subspace 6,
spanned by all vectorto), Lo € £o, is X g,-differentiable;

(iv) there exists a strongly continuous unitary representatien ¥,,(x) of space-time
translations xe RS™* on 7, defined by

Uw(X)|L) = |ax(L)), L€ g,

with spectrum in a displaced forward light code —q, ge V.

(1) Any representatiof,, Hy) which has the above characteristics defines a particle
weight through the scalar product dH,y.

Remark.By their very definition, the unitariedy,(x) implement the automorphism
group{ oy : x € R} C Aut( through

Un(X)T(AUw(X)* = T (0x(A)), A€, xe RS, (3.36)

in the representatioff-(y, Ti).
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Proof. Part (I): The proof of the various properties stated in the Theorem is readily
carried out, once the GNS-construction has been realized.
() Since a particle weight satisfies the Cauchy-Schwarz inequality its null space

Mw={N € £:(N|N) =0}

turns out to be a leftideal i8 (and hence if). The defining sesquilinear form endows
the quotient space df by 91, with a pre-Hilbert space structure; its completibiy,
contains by construction the range of the canonical homomorphism

| )i L£—L£/MNy L—|L)=]L]w
as a dense subspaaggand,, being left ideals iR, the definition
Tw(A)|L) = |AL), Ae%,
makes sense on the rangeg of) and can be extended to all #f,, due to the estimate
Imu(A)IL)|* = (ALIAL) = (LIA'AL) < [|AJR(LIL) = [|AJ2]]|L)]2, (3.37)

which is founded on the fact that the particle weight is a non-negative sesquilinear form
and the operatdfA||21— A*Ais positive. Sincé! is unital, this yields a non-zero, non-
degenerate representation of the quasi-local algebra on the HilbertKpace

(i) The norm onH,, induces a seminorm of via the linear mapping . ) and this
coincides withq,, as defined for particle weights. Therefore the asserted continuity
of the mapping(A\,x) — }a(A,X)(L)> is an immediate consequence of the respective
property in Definition3.14

(iii) By construction, the canonical homomorphising andQ,, coincide and further-
more|||L)|| = ||[L]w|lw, SO that the assumption &f¢,-differentiability is self-evident.

(iv) The existence of a strongly continuous unitary representation of space-time trans-
lations in (T, Hy) is a direct consequence of translation invariance of the particle
weight ( . | . ) and its continuity under Poincaré transformations with respegg,to
Stone’s Theorem (cf.¢f Chapter 6, §2] and3B, Theorem VIII.(33.8)]) connects

the spectrum of its generat®, = (PY) to the support of the Fourier transform of
x+— (L1|ax(L2)) in Definition 3.14by virtue of the relation

/ d*x g(x) (L1|ax(L2)) = / d*x g(x) (L1 |Uw(X)|L2)
Rst+1 Rs+1
= (2m)StY2(L|§(Py)|L2), (3.38)

which holds for anyy,L, € £ and anyg € L*(RS™,d*"x). To clarify this fact, note,
that the projection-valued measuEg( . ) corresponding t®y is regular, i.eEy(4")

is for any Borel sef\’ the strong limit of the ne{ E,,(I”’') : I’ C A’ compac}. For each
compactl” C C(V, — q) consider an infinitely often dlfferentlable functiap With
support inC(V, —q) that envelops the characteristic function Fofcf. [40, Satz 7.7]):

0 < Xr <§r. According to the assumption of Definiti@l4the left-hand side 0fy.39
vanishes for angr of the above kind, and this means that all the bounded operators
dr (Ryv) equal 0 not only on the dense subspace spanned by vélctpkse £, but on all
of Hy. Due to the fact thagr"majorizesyr, this in turn impliesyr (Ry) = Ew(lF) =0
and thus, by arbitrariness 6fC C(V, —q) in connection with regularity, the desired
relationE,(C(Vy —q)) =0
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Part (11): The reversion of the above arguments in order to establish that the scalar
product ortH,, possesses the characteristics of a particle weight is self-evident]

The following analogue of Lemmas.17 and 2.18 in terms of theqy,-topology
induced ong by a particle weight is of importance not only for the remaining results
of this chapter, but plays an important role in the constructions that underlie the theory
of disintegration to be expounded in Chapter

Lemma 3.16. LetLe £ and let( . | . ) be a particle weight.
() LetFe Ll(Pl,dp(/\,x)) have compact suppo®, then the Bochner integral

ae(L) = /dp(/\,x) F(AX)a0(L) (3.39a)

lies in the completion of with respect to the locally convex topology induced on it by
the initial norm|| . || and the g-seminorm defined by the particle weight. Moreover
|0(F(L)> is a vector in the corresponding Hilbert spa&, and can be written

ar(L)) = [ duAR) FAX)[ain0 (L) (3.39b)
satisfying the inequality

et @) < IIF 2 sup [[agax(L))]- (3.39¢)
(Ax)€eS

(i) For any function g= L*(RS1,d*"!x) the Bochner integral

ag(L) = dS™x g(x) ax(L) (3.40a)
Rst1
likewise lies in the completion of with respect to the locally convex topology men-
tioned above‘ag(L)> is a vector in the Hilbert spac#(,, subject to the relation

9s(L)) = /R d*"ix gx) fox(L)) = (2" V/2G(Ry) L), (3.40b)
so that
[agW) || < gl L)1) (3.40c)

Proof. (i) Due to continuity of the particle weight | . ) with respect to Poincaré trans-
formations as claimed in Definitiot 14 the integrand of3.399 can be estimated with
respect to the seminorgy, induced ong, which gives the Lebesgue-integrable function
(A, X) = [F(A,X)| - SURA xjes dw(A(ax) (L)). Therefore the integral in question indeed
exists in the completion of the locally convex spaceot only with respect to the norm
topology but also with respect to the seminogm Furthermore the corresponding
GNS-construction ofry, Hy) implies that|||L)|| coincides withgy (L) for anyL € £,

a relation which extends to the respective completions{c¢f.Chapter One, 85 4.(4)])
thus resulting ing.390. (3.399 is then an immediate consequence, again on grounds
of continuity under Poincaré transformations.
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(i) According to Definition3.14 the particle weight . | . ) is invariant under space-

time translations and so is the seminogp Therefore the integrand oB@409 is
majorized by the Lebesgue-integrable function> |g(X)|qw(L), so that the respect-

ive integral exists in the completion af. The first equation of3.400 arises from

the same arguments that were already applied above, whereas the second one is then
a consequence of Stone’s Theorem (8f3@). Again on the ground of translation
invariance, the estimat&.409 is an immediate conclusion fror3.¢40b). O

Having this preparatory result at our disposal, we are in the position to prove a statement
on spectral subspaces &y, that will be significant in the next chapter as well as for
the subsequent proof of the Cluster Property for particle weights.

Proposition 3.17 (Spectral Subspaces).et L be an element of(A') = £m§l(A’),
which means that k £ has energy-momentum transfer in the Borel suh$ef RS,
Then, in the representatiam,, Hy,) corresponding to the particle weight | . ), the
vector L) belongs to the spectral subspace which pertaind’tavith respect to the
intrinsic unitary representation x> Uy (x) of space-time translations:

L) = Ew(&)]L). (3.41)

Proof. The energy-momentum transfer of an operatar 2( can be stated in terms of
the support properties of the Fourier transform of the mappirgay(A) considered as
an operator-valued distribution (cf. the remark following Definitibg). For the oper-
atorL € £(4) this has the consequence thg{L) = 0 if g is any Lebesgue-integrable
function with supg™A’ = 0. In this case we have, by an application of Lemgnas,

/}RS+l d**x g(x) |0(X(L)> = ’cxg(L)> =0. (3.42)

Upon insertion of 8.42) into the formulation 8.38) of Stone’s Theorem, the reasoning
applied in the proof of Theore® 15yields the assertion. O

The particle weights enjoy a Cluster Property parallel to that established in Proposi-
tion 3.6for functionals in¢," *. This characteristic, shared by the asymptotic function-
als g, could have been included in Definitichl4, but it turns out, that it is already
enforced by the other features.

Proposition 3.18 (Cluster Property for Particle Weights). Let Lj and i be elements
of £o with energy-momentum transfer respectively|, and let A€ &, i = 1,2, be
almost local operators. Suppose furthermore that| . ) is a particle weight with
associated GNS-representatiomy, Hy ), then

R3 X +— <L1*A1L/1}GX(L2*A2LI2)> = <L1*A1LHUW(X)}L2*A2Ll2> eC
is a function in 2 (RS, d*x).

Proof. To establish this result we follow in the main the strategy of the proof of Pro-
position3.6. Applied to the problem at hand in terms (@ty, Hyw), this yields initially
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the estimate

\<L1*A1L’1\uw(x)|L2*A2L’2>\

< (L | ( [Ar "Ly, ax(L2"Ag) | ) Uw(X) | L5)| + \<L’l\m,(O(X(Lg*AZ)Al*Ll)UW(x)(LI)_’ié\)

for any x € RS. The first term on the right-hand side turns out to be majorized by

(| [Ac*Ly, ax(L2*A2) ] || [ILL) || II[L5) || in view of the fact that the particle weight is in-
variant under translations and that the representatjpis continuous. As the oper-
ators involved are almost local without exception, the norm of the commutator taking
part in this expression decreases rapidly, thus rendering it integrable. The second term
requires a closer inspection. One has

2| (LT (0 (L2"A2)Ac " L) Un(X) L) |
< 2|7t (0x (Ao L2)) (L) | |75 (Aa"La) Uw () [L5) |

< || (ax(A2*L2)) ||—/1>H2+ || 7o (@) (Ar*L1)) |LY) ?

, (3.44)

again by translation invariance of the particle weight in the last estimate. Now, a sub-
stitute of Lemma3.5 has to be sought for, which was applied in the proof of Propos-
ition 3.6 to get an estimate foi3(12), corresponding to the right-hand side Gf44).

Note, thatr,(A') has the same energy-momentum transfer with respect to the unitary
group{Uy(x) : x € RS1} as the operatok’ € 2 has regarding the underlying positive
energy representation, and that, according to Proposition |L}) = Ey(I'})|L}) and

IL5) = Ew(l5)|L5) belong to the spectral subspaces pertaining to the compadt’sets
andl}. As in addition the spectrum dUy(X) : x € RS} is restricted to a displaced
forward light cone, all of the arguments given in the proofs of Proposittohiand2.7

also apply to the representation,, H, ), so that e. g.

desx B (M) T (0x (L2" A2 Ao *L2) ) Ew(l})

is seen to exist in the-weak-topology o8B (Hy,). For this term we thus have

g d® || T (0x (A2 L2) ) Ew(T)[LY) HZ

= dsx< /1’Ew(rll)TRN(ax(LZ*AZAZ*LZ))Ew(rll)“-/1> <o, (3.49)
RS
The same holds true for the other expression on the right-hand side4dj, (which
shows thatx — | (L | (0x(L2*A2)Ar*L1)Uw(X)|L5)| is an integrable function, too.
Altogether, we have thus established the Cluster Property for particle weights[]

Remark.Note, that the above result is independent of the differentiability properties of
a particle weight (item (iii) in both Definitio8.14and Theoren3.15), since these did
not enter into its proof.

At this point a brief comment on the notation chosen seems appropriaté {f. [
We deliberately utilize the typographical token) introduced by Dirac3, § 23] for
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ket vectors describing improper momentum eigenstalep € RS. These act as distri-
butions on the space of momentum wave functions with values in the physical Hilbert
spaceXH, thereby presupposing a superposition principle to hold without limitations.
This assumption collapses in an infraparticle situation as described in the Introduction.
In contrast to this, theure particle weights, that will shortly have their appearance in
connection with elementary physical systems, are seen to be associated with sharp mo-
mentum and yet capable of describing infraparticles. Here the opetatofstake on

the role of the previously mentioned momentum space wave functions in that they loc-
alize the particle weight in order to produce a normalizable vétdon the pertaining
Hilbert spaceH,,. This in turn substantiates the terminology introduced in Defini-
tion 2.4. As they describe elementary physical systems, pure particle weights should
give rise to irreducible representations of the quasi-local algebra, thus motivating the
subsequent definition. It is supplemented by a certain specific regularity condition of
technical importance, which we anticipate to hold in physically relevant situations, and
by a notion of boundedness which is in particular shared by the positive asymptotic
functionalso, as shown in Lemma.2Q

Definition 3.19. A particle weight is said to be
(a) pure if the corresponding representatitm,, M) is irreducible;
(b) regular, if for any L € £ the following implication is valid:

(L'LILL) =0 = (L|L)=0;

(c) A-boundedif to any bounded Borel subsat of RS+ there exists another such set
A D A+ 4, such that the GNS-representatign,, H,,) of the particle weight and the
defining representation are connected by the inequality

1Bw(&)T(A)Ew(L)]| < - [[E(A)AED)| (3.46)

for any A € 2 with a suitable positive constaa(independent of the Borel sets). Evid-
ently, A ought to be a bounded Borel set as well.

Lemma 3.20. Any positive asymptotic functionalc ¢,*", constructed according to
Theorem3.10 under the assumptions of Propositi8rilL], gives rise to aA-bounded
particle weight( . | . ).

Proof. Let (1, Hy) denote the GNS-representation of the particle weighith asso-
ciated spectral measuBg( . ) for the generatoP; = (Pj) of the intrinsic space-time
translations. For the time being, suppose ti&ds anopenbounded Borel set iRt

Let furthermoreL be an arbitrary element af andA € 2[. We are interested in an
estimate of the terniL|E;(A') 15 (A)Es(4')|L)s. Note, that the spectral measure is reg-
ular, so thates(4') is the strong limit of the nefEq(I") : ' C A" compac}. As A’ is
assumed to be open, there exists for each compact shlsfed’ an infinitely often
differentiable functiorgr with suppgr € 4’ that fits between the corresponding char-
acteristic functions40, Satz 7.7]:xr < §r < Xa. Thus the respective operators are
subject to the relation

0< (Es(8) —6r (Ps))” < (Eo(&) —Eo(IN))?,
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from which we infer that for arbitrarl’ € £
0< [[(Eo(&) = 8r (Po))IL)||* < || (Bo (&) ~Eo(M)IL)[* 5 0. (347)

By density of all the vectori’) in Hg, it is thereby established that

Eq(4') = strong— rli/rg/ ar (Ps), (3.48)

which implies for the scalar product in to be considered here
(LIEs(A)T6(A)Es(A)|L)o = rIi/rg,<L|Qr(Po)Tro(A)Qr(F’o)\L>- (3.49)

Sincegr is the Fourier transform of a rapidly decreasing functipnwhich therefore
belongs to the spade (RS, dS"1x), Lemma3.16can be applied to yield for the right-
hand side of§.49

(L1Gr (Po) T (A)Gr (Po)|L) = (21~ Y (ag, (L) |6 (A)atg (L))o
= (2~ Vo (ag (L)*Adg (L)), (3.50)

where, following the remark pertaining to Propositidril, the ultimate expression is
based on the fact thaty (L)*Aag (L) € /¢ as a consequence of Lemmad8and
2.12in connection with Corollary.13 The approximating functionafs, for o in the
form (3.23 with a non-negative functioh € L*(IRS, d°x) allow, through an application
of [11, Proposition 2.3.11], for the following estimate of their integrand:
\h(r—lx) w( (T)E(A)ay (agr(L)*Aagr(L))E(A)U(T 9|
59U (E()a(ae (1) )EB)ax(AE Bty (ag () EAV (1))
<|E@ > B)[| h(rx) (U (1E(B)ax(ag (L) g (L)E@U(1)").

Here the spectral projectioris(A) pertaining to the Borel sek = A+ A', which is
both bounded and open, could be introduced, since, according to Leirir@athe
energy-momentum transfer af,. (L) is contained i\’ by construction. An immediate
consequence of the above relation is

[one (0 (L) Adtg (L)) | < [E@AED) | phe (0tgr (L) age (L)),
which extends to the limit functionai:
|0 (L)*Aag (L)| < [E@)AE(D)|| o(ag (L) 0 (L)) (3.51)
Insertion of this result into3.50 yields
|{(LIGr (Po)T6 (A)Gr (Po)|L)| < [E@B)AED)]| (LIGr (Po)?IL)  (3.52)
and in the limitf " A’, in compliance with§.49),

|{LIEo(&)T6(A)Es (&) |L)o| < [E(B)AED)]{LIEs(L)|L)s < [[E(B)AED)] <|—(!3Léc§)
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Passing to the supremum with respect td_adl £ such that||L)s|| < 1 (these constitute
a dense subset of the unit balldty), we get through an application ¢if, Satz 4.4]

IEo(A) 16 (A)Es(A)]| < 2- [E(R)AED)]. (3.54)

This establishes the defining conditiod.46 for A-boundedness witle = 2 in the
case of aropenbounded Borel set’. But this is not an essential restriction, since an
arbitrary bounded Borel sé is contained in the open s&f, n > 0, consisting of all
those pointsp € RS for which infyca|p— p'| < n. Sinced, is likewise a bounded
Borel set, we get

1Eo ()16 (A)Eo ()| < |[Eo(8) T (A)Es (D) || < 2- [[E(Bn)AE(Ay)|| (3.55)

as an immediate consequence ®5(), wherel, = A+A§]. This covers the general
case and thereby provasboundedness for the asymptotic functiomals ¢, . O
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Chapter 4

Disintegration of Particle Weights

dvelhe 8¢ xal mepl TV "EAevoiva Kepxudva tov Stamaialovta
tolc maplobiol xal tov Hrtndéta Siagdelpovta. ueta 8¢ talta
tov ovoualouevov Ipoxpolotny dnéxtelve, TOV olxobvta év
18 Aeyouévew Kopudahag tiic "Attixfic: oltog 8¢ toLg napldv-
tag 6doLnépouc RAvdyxaley énl Twog xhing dvanintewy, xol &y
UEY LoxpoTépwy T& Lrepéyovta uépn tol oduatog dnéxomnte,
WY 8’ éhattévewy Tolg modag Tpoéxpouey, dg’ obrep Ilpo-
xpolotng Gvoudodn.

AIOAOPOTY BIBAIOOGHKE IXTOPIKH IV, 59 (5) *

In Section Il of their treatment of collision cross sections for massive theories within
the framework of local quantum physics, Araki and Haag got to the following asymp-
totic relation which holds true for the count&shey had selected, for arbitrary vectors

@ and certain specific vectok representing outgoing particle configuratiofisThe-
orem 4]:

lim ([£°C(h,t)|W) = Zj [ Epris(p) (@l p ) W)he), (@)

where

[ij (p) = 8(pj |C(0) |pi),
vi = (P2 +mf)"Y?p.

The indices and j in the above formula denote the particle types including spin, and
summation runs over pairs of particles with equal mass= m;. The structure of

the right-hand side of this equation is based onahmiori knowledge of the particle
content of the theory they considered. Comparing this result with the concepts de-
veloped in the preceding chapter (cf. Theorgm0), one has an asymptotic functional
off) standing on the left-hand side of equatid@nlj that is decomposed with respect

to momentum eigenstatégi), hidden in the definition of jj. If we accept such an

*A german translation can be found on pdg®.
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interpretation of this theorem of Araki and Haag, it is possible to re-write it in the form
/ . .
o, C)=>" /du,j(p) (pi|c(O)|pi),
i

where all expressions occurring i#.{) apart froml; are absorbed into the measures

Hi.j. This presents the asymptotic functional as a mixture of linear forme¢ ¢mn
algebra which is part of that selected i#])[defined by Dirac kets representing im-
proper momentum eigenstates; thus we happen to meet exactly those constructs that
we already hinted at in the remarks concerning our notation that led to Defifitién

The aim of the present chapter is to establish a corresponding formula in the general
setting, i. e. without any previous knowledge of the particle content.

As indicated by 4.1), representations resulting from the construction of asymptotic
functionals as expounded in Chapgwill be highly reducible, whereas elementary
physical systems are expected to be connected with pure particle weights, giving rise
to irreducible representations of the quasi-la€&lalgebra?l. In view of the preced-
ing paragraph the obvious problem to be tackled now is to develop a theory for the
decomposition or rathetisintegrationof generic particle weights into pure ones. Two
approaches to this problem will be presented in this work:

(A) Decomposition of the GNS-representation pertaining to a particle weight into a
direct integral of representations (spatial disintegration):

)
(T Ho) = /X dv(E) (T, ).

(B) Barycentric decomposition of a given particle weight with respect to a Base
of the positive condV of all particle weights in the space of sesquilinear forms
on £ (Choquet theory):

(1= du@) (.| )¢

Bw

Although the technical problems to come to grips with in these two constructions are
quite different, we anticipate equivalence of their results: the separability assumptions
essential in the first one are substituted by compactness conditions in the second. So
evidently both of them require certain restrictions in the number of degrees of freedom,
which seem to be complementary in one way or another. While the partial results
achieved so far in connection with the barycentric decomposition will be discussed in
Chapter6, the spatial disintegration of the GNS-representation of a particle weight is
the subject we will elaborate on first.

4.1 Separable Reformulation of Local Quantum Physics and
its Associated Algebra of Detectors

The theory of spatial disintegration of representati¢nsi) of a C*-algebra2l is a
common theme of the pertinent textbooks (¢f4,[25, 54, 48, 11]), an indispensable
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presupposition being that of separability of the algelbas well as of the Hilbert space

I in their respective uniform topologies. Note, that in this way the statemenis of [
Section 4.4] are incorrect (cf. als@4, Corrigenda]). These separability assumptions
are too restrictive to be encountered in physically reasonable theories from the outset,
so first of all acountableversion of the fundamental assumptions of local quantum field
theory in terms of the neéd — 2(0) and of the symmetry grouBl has to be formu-

lated before one can benefit from the extensive theory made available in the literature.
This construction will be accomplished in a sequence of steps:

(1) With respect to its initial topology, the Poincaré grolab contains a numerable
dense subgroup that we signify BY. It is itself the semi-direct product of countable
dense subgroups of Lorentz transformatibhim LL and of space-time translation$

in RSTL: PC = S TC,

(2) Consider the standard diamonds wiltional radii, centred around the origin. Sub-
jecting these regions to all of the transformation®fryields a countable familR® of

open bounded regions, which is invariant with respect to the selected Poincaré trans-
formations and constitutes a covering®f"1. Note, that arbitrarily small regions
belong toR® in the sense, that any region in Minkowski space contains an element of
this numerable collection as a subset.

(3) As shown in Appendix3, any unitalC*-algebra of operators on a separable Hil-
bert spacéH contains a strongly dense (i. e. dense with respect to the strong-operator
topology), norm-separablg*-subalgebra, that includes the identity. Applied to the
local C*-algebras2(0O) of the defining positive-energy representation, this result has
the consequence that to each open bounded régionMinkowski space one can as-
sociate a norm-separable, uni@il-algebra2l,(0), that lies strongly dense #(0).

This means, that the algeb®a (0O) in turn contains a countablesubalgebra&l(¢(0O)

over the fieldQ +iQ, which is uniformly dense i, (O), strongly dense if(0O) and

can likewise be chosen to comprise the unit.

Let Ok, k € N, be a denumeration of the countable faniyof open bounded regions

in Minkowski space constructed above. We defitt¢Oy) as theC*-algebra (overC)
which is generated by the union of alj, ) (2°(0;)), where(A,x) € P® andO; € R°

run through all combinations for whichQ; + x C Ok. By construction this algebra is
norm-separable and satisfies

Qlc((‘)k) CA*(Ok) CA(Ok), (4.2a)

so that2*(Oy) turns out to be strongly dense2t(Oy).

The net of localC*-algebras{2*(0x) : k € N} fulfills the conditions of isotony, loc-
ality and covariance with respect & andP¢. Isotony is an immediate consequence
of the construction whereas locality follows from.23 in connection with locality of

the defining net — 2A(0). To establish covariance one has to observe that, given any
(A,x) € P¢, the algebran s ) (A°(Ok)) is generated by alfi(s ) (a (v x) (A°(0)))),
where (A, xX) € P¢ andO; € R° run through those combinations which satisfy the re-
lation A’O; + X C Ok. This can equivalently be expressed by saying that the algebra in
question is generated by ally ) (A°(0)), for which (A”,x") € P andO; € R° have

the property\”0; + X" € AOk+ x. In this formulationo s ) (2*(Ok)) turns out to be
equal to the algebrd®*(AOx + x). The somewhat intricate constructionf(Oy) is
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necessitated by the requisite to have the standard properties of a net of local algebras at
our disposition.

By construction, the countablealgebra?(® over Q +iQ, which is generated by the

union of all the algebra8(®(Ox), Ok € R¢, and thus invariant under transformations
from PC, lies uniformly dense in th€*-inductive limit2(* of the net9y — A*(0x), and

is, on account of4.2g, even strongly dense in the quasi-local algeditself. We thus

have the inclusions

ACC A C A, (4.2b)

with a norm-separabl€*-algebra?®, which lies strongly dense #® and containgI°
as a numerable uniformly dense subalgebra (QeriQ).

Into this restricted setting of Local Quantum Physics defined above, we now intro-
duce countable counterparts of the left ideal of localizing operatoos the algebra of
detectore and, most important of all, of the subspatgC £ of almost local vacuum
annihilation operators.

First of all note, that it is possible to seleatamerablesubspace ove +iQ in £,
which consists of almost local vacuum annihilation operators with energy-momentum
transfer in arbitrarily small regions. E.g. I€F,}neny be a countable cover &V,
constituted by compact and convex subsets of the complement of the forward light
cone, with the additional property that any bounded regiofVn contains one of
these compacta. Let, for instandes }icny be a dense sequencel¥, and associate
to eachp; the compact balls of rational radiusc Q that satisfyB,(p;) C OV, in
addition. The Lorentz groupl, being locally compact, can be covered by a countable
family of arbitrarily small compact set®dn}meny as well. Now, the spaceBr, and
De,, of test functions with support ifi, or else®y, (cf. [40, §12]) are separable as
subspaces of the respective Banach spaé¢gst?,ds"1x) andLP(R%,dt) (d =
2-15(s+ 1) is the dimension oltl), which in turn are separable due to an application of
[39, Theorem 1V.(13.20)] using elements of the numerable set of simple functions with
rational values on intervals with rational end points. Thus there exist dense sequences
g, andhk, in the space®r, andDg_, respectively. Consider the countable family of
operators inZg, which are defined through

igp (A1) = [ BN RS(N) 6409 (), 4.3)

for any Aj € 2° in the uniform topology ofd, and supplement this selection by all
orders of partial derivatives with respect to the canonical coordinates arfduéyd
(cf. AppendixA):

8" (Olng g, (A))) = 8 "'5i1(ahhq®g'n(Ai)) € Lo

for any M-tuple iy = (i1,...,im) with integer entries from the sét.,...,dp}, where

dp =d_ + (s+1). Upon application of all transformations froRf to these constructs,

we get a sequence of vacuum annihilation operators, comprising elements with energy-
momentum transfer in arbitrarily small regions, which generates a countable subspace
£5 over the fieldQ +iQ in £o, invariant under transformations froRf and under
arbitrary partial derivations. When this construct is to be used in connection with a
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given particle weight . | . ) that is non-negative by definition, it does not cause any
problems to supplement the set of operators defined.i8) by a countable number
of other elements frongy, on which the particle weight attains non-vanishing values.
In this way the imminent restriction df. | . ) to a subset of can be protected from
getting trivial.

The above selection of vacuum annihilation operators does not yet meet the re-
quirements for the disintegration. For it to be feasible we compactly regularize these
operators: Take aountableset of compactly supported test functiodfson Pl with
a supportSg = suppF which contains the unit1,0) of Pl. Then all the Bochner
integrals

ar(Lo) = S du(A,x) F (A, x)0(ax(Lo), Loe £6, (4.4)
E

are elements of th€*-algebral(® and of £y according to Lemma&.17 with energy-
momentum transfer contained i) ycs. A" givenLo € £o(I") (cf. the proof of the
guoted Lemma). The specific property of operators of typd) (n contrast to those
from £§ is, that their differentiability with respect to the Poincaré group can be ex-
pressed in terms of derivatives of the infinitely differentiable test fundtioh Ds_,

a feature that will be of great significance later on. By choosing the support of the
functionsF small enough, one can impose an energy-momentum transfer in arbitrarily
small regions on the operatons (Lg) as was the case for the elementsggfitself.
Furthermore, a particle weight that did not vanish on theC§es also non-zero when
restricted to all of the operators: (L) constructed in4.4). This fact is easily estab-
lished with relation 8.399 of Lemma3.16 and the continuity of the particle weight
under Poincaré transformations in mind. The numerable set of vacuum annihilation
operators that consists of those explicitly presented i) together with all their par-

tial derivations of arbitrary order (that share this specific style of construction) will be
denotedc§ in the sequel. It might happen that two of these elemenga@fre connec-

ted by a Poincaré transformation not yet include®fn For technical reasons, which
are motivated by the exigencies for the proof of the central Thedréwf this chapter,

we supplemenP® by all of the (countably many) transformations arising in this way
and consider henceforth the countable subglﬁcup CxT C PT generated by them.

The setSC is then invariant under the operation of taklng derlvatlves as well as under
all transformatlons from the numerable dense subgR)up

Here is a list of the countable substitutes for the algebraic concepts used thus far:

(I) We have defined an isotonous, local d&fecovariant net), — 2A°*(0y), Ok € RS,
which has2(®* asC*-inductive limit. This is a norm-separab@&-algebra (over the
field C) with unit 1, containing?(®, which is generated by the countable local algebras
A°(0k) C A*(Ok), as a likewise unital, numerable, uniformly derssubalgebra over
Q-+iQ. A itself lies strongly dense in the quasi-local algefirand, due to uniform
continuity of the mappingé\,x) — ax ) (A), A € &, it is invariant with respect to the
whole Poincaré group. In contrast to this, note, that the invariance properif fier
restricted taPC.

(1) £§5C £oNA* is a countable set of vacuum annihilation operators of the special
construction 4.4), which is invariant under transformations fromi and under the
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operation of taking partial derivations. Depending on a given particle weight, it can be
chosen in such a way, that the particle weight restrictegfteemains non-trivial.

(1) The image of£§ under all Poincaré transformations is denofed
£o= {0ax(Lo) 1 Lo € €5, (A,x) € PL}. (4.52)

(IV) ¢ C 2A*in turn denotes the numerable, unitahlgebra overQ +iQ which is
generated bR(®U £5. It is thus stable with respect & and uniformly dense if(°.

(V) The countable counterpatf of the left idealg in 2( is defined as the linear span
with respect to the field) 4 iQ of operators of the fornL = ALy with A € ¢ and
Lo € ,8_82

£°=AC £§ = spany,ig{ALo: Ac AC, Lo € £5}. (4.5b)

This constitutes a left ideal of the algel8, likewise invariant under transformations
from PC.

(VI) Finally, one can introduce the countableubalgebra&® C ¢ via

€= g% e =span) igf{Li"La: L1, Lo € £°}. (4.5¢)

4.2 RestrictedRg-Particle Weights

The subsequent developments in this chapter have to be founded on a mitigated version
for the concept of particle weights as it was introduced in Definiida: The reason

is that the sesquilinear forms occurring in the decomposition theory of Settato

not share all the desired properties. Therefore we insert the present section which deals
with the necessary restrictions that have to be imposed on the concepts of Chapter
The essential cuts are indicated by the work previously accomplished.

Definition 4.1 (Restricted.(?tC Particle Weights). Suppose that we are given a sex-

» 2 isanorm separab@*-subalgebra of the quasi-local alge@tawhich arises as
theC*-inductive limit of a countable net of local*-algebras.

» PCis a numerable dense subgroup of the Poincaré grBﬂ,Jpas a whole is imple-
mented irl by the strongly continuous group of automorphisms
{any  (AX) € PL} C Aut2l.

» R designates a countable set of almost local vacuum annihilation operatrs in
stable with respect to transformations fréth The image ofR§ under all Poincaré
transformations is denotegh:

fo = {Qn (Ko) : Ko € £, (A,X) € P} (4.6a)

» Together with the numerable uniformly dernissubalgebra ofl, which exists by
construction &5 generates a countablealgebra ovef) +iQ, denotedd® and like-
wise invariant undeP®.
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» A countable left ideal i2l° is then defined by
RS = ARG =spany o {AKo: Ac 2% Ko € RG}. (4.6b)

It is invariant under the automorphism gro{lg(,\jx) 1 (A\,x) € P} as well.
» Finally, (it K) is a non-zero, non-degenerate representation dtredgebral.

complies with the following list of features:
(i) There exists 4Q +iQ)-linear mapping . ) from &€ onto a dense subs@f® C KH:

|y RS — H K— |K), (4.7a)
such that the representatioracts on this space according to
(A)|K) = |AK), Aef® Ke&". (4.7b)

(i) The above linear mapping allows for an extension to any operat@s,isuch that
(in the notation of Theorer@.15

k() PL=F (A= [ZAX) = [apng(K)), K ef,  (4.8)

is a continuous mapping.

(i) There exists a strongly continuous unitary representationU (x) of space-time
translationsx € RS+ with spectral measura — E(A), supported by a displaced for-
ward light coné/, —q, g € V., which implements these transformations in the repres-
entation(rt, ) via

UMmAU ()" =T (A), Acd, xeRS™ (4.92)
On the subse{\K’) K e ﬁo} of X this unitary group acts according to
U)Ky = o, (K")), K'e R, (4.9b)
and there holds the relation
E@)K) =|K), Ke&@), (4.90)

wheref(A") denotes the set of operators frathU £o with energy-momentum transfer
in the Borel sef\ C RSt1,

Through ¢.99 we have explicitly installed into the definition of restrict&f-particle
weights the result of Propositidh17for generic particle weights. A spectral assump-
tion of this kind is of great importance since it constitutes the basis for the proof of the
Cluster Property of Propositidh 18 and the arguments presented there can be adopted
literally, on condition that the obvious substitutions are observed, to implement it in the
present reduced setting as well.

Property presented in PropositioB.18 with the reservation that the replacements
£o — K§ and2 — 2° have to be carried out.
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Remark. The rather intricate Definitiod.1 will find its justification in the subsequent
section, where it turns out, that the characteristics listed above are exactly those which
survive in the process of spatial disintegration—at least, it did regrettably not lie within
our reach to establish a more complete list of features to be preserved. Nevertheless,
it should be noted, that those characteristics motivating the interpretation of particle
weights as asymptotic plane waves are perpetuated (cf. the first paragraph of Sec-
tion 3.3).

Now, it does not come as a surprise that, with respect to the countable and separable
notions introduced in Sectiof 1, a particle weight of the general type gives rise to a
restrictedCg-particle weight.

Theorem 4.3. Let (1, Hyw) be the GNS-representation corresponding to a given parti-
cle weight( . | . ) according to Theoreri.15 Then(m®, H*,2*,a®, P¢, £5) is a restric-
teds_g-particle weight, where the individual entries (if not already fixed by Seetit)n

are defined as follows:

» H* designates the Hilbert subspaceldf,, which is the closed-linear span of the
assortment of vector§|L) € 3y, : L € £ =A° £5} and thus separable;

» 1 =T, | 21* denotes the restriction of the initial representation to the algeta
where the representatives have their limited domain as well as rang€®on

> {O‘f/\,x) =0y [A° D (AX) € P1} is the restriction of the initial automorphism
group to%A°®.

Proof. With the definitiong . )* =|.) | £ andU*(x) = Uy(X) | H*, x € RS*1 where
the latter obviously leaves invariafit® and is such that the corresponding spectral
measure turns out to He*(A) = Ey(A) [ H* for any Borel seth, all features of the
restricted€S-particle weight are readily checked on the grounds of Thed@draand
Proposition3.17. O

4.3 Spatial Disintegration of Particle Weights

We now get to the central result of this chapter: the construction of the spatial dis-
integration of a particle weight in terms of pure ones, or rather of the corresponding
restrictedC§-particle weight into a direct integral of pure representations, which again
are associated with restrictet§-particle weights. In Theorem.3 the representation

(1, 3H*) of the norm-separable*-algebra2(® on the separable Hilbert spagé was
derived from the given particle weight | . ). This places the method of spatial disin-
tegration expounded in the relevant literature at our disposal to apply it to the problem
at hand. In order to express in terms of an integral of irreducible representations, a
last preparatory step has to be takermaximal abelianvon Neumann algebrait in

the commutant oft® (*) has to be selected in view off, Theorem 8.5.2]. The choice

of such an algebra is restricted by our further objective to arrive at a disintegration in
terms of restrictedTg—particle weights, which means that one has to provide for the
possibility to establish the relations.g).

The unitary group{U°®(x) : x € R®"1} has generators with joint spectrum in a
displaced forward light cone. Through multiplication by suitably chosen exponential
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factors exyiqx) with fixedq € V; we can pass to another unitary group which likewise
implements the space-time translations but has spectrum contaiWed iFhis places

[9, Theorem IV.5] at our disposal, implying that one can find a strongly continuous
unitary group of this kind with elements belongingm®(2(*)”, the weak closure of

1 (2A*) (cf. [11, Corollary 2.4.15]). This result can again be tightened up by usie(f [
Theorem 3.3] in the sense that among all the unitary groups complying with the above
features there exists exactly one which is characterized by the further requirement that
the lower boundary of the joint spectrum of its generators be Lorentz invariant. It is
denoted as

{US(x) e (A°)" 1 x e RS} (4.10a)

At this point it turns out to be significant that tkE-algebra?(® has been constructed
in Sectiond.1by using local operators so that the reasoning givenihdpplies to the
present situation. Another unitary group can be defined through

{Ve(x) =US(})U*(x) " x e RS, (4.10b)

By their very construction, all the operatdrs(x), x € RS+, are elements aft® (A°*)’.
The maximal commutative von Neumann algefitahat we are going to work with in
the sequel is now selected in compliance with the condition

!

V() :xe R} Comc (n’(m') U{U* (%) xe ]RS“}> (4.11)

The main result to be acquired in the present chapter can then be summarized in the
subsequent theorem.

Theorem 4.4. Let( . | . ) be a generic particle weight with representatiam,, Hy) in-
ducing, by Theoren.3, the restrictedCS-particle weight(m®, H®, A, a®, PS, £5). With
respect to the representatigm®, H*) of the separable Galgebra2*® on the separ-
able Hilbert spaceH*®, we select a maximal abelian von Neumann algeBtasuch
that (4.17) is fulfilled. Then there exist a standard Borel spacea bounded positive
measurey on X, and a field of restrictedTg-particle weights

X3 & (T, He, A%, a®, P, LF), (4.12)
such that the following assertions hold true:

(i) The field¢ — (1¢,7(;), as part of (4.12), is a v-measurable field of irreducible
representations di(®.

(i) The non-zero representatigm®, H*) is unitarily equivalent to the direct integral
of this field of irreducible representations:

©®
(TI',ﬂ‘C')f:/X dv(§) (T, He), (4.13a)

and, when W denotes the unitary operator connecting both sidgs139, the vectors
in both spaces are linked up by the relation

W|L)'={\L>§:EGX}i/X dv() |L)e, Le £euL, (4.13b)

where| . ); denotes the linear mapping characteristic for the restric&gparticle
weight(1t, g, 2°, a°, PC,S_g), according to(4.79 in Definition4. 1
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(i) The von Neumann algebfa coincides with the algebra of those operators which
are diagonalisable with respect to the above disintegratiofm®fH*): any operator

T € M corresponds to an essentially bounded measurable complex-valued fungction g
according to

57
WTwW = [ av(e) or®) 1 (4.130)

wherels, & € X, are the unit operators of the algebré&(3;), respectively.

(iv) Let{Ug(x):x€ RS} C B(H;) denote the unitary group, which implements the
space-time translations in the restrict@—particle weight pertaining t@ € X accord-

ing to (4.99, and let E(A) € B(J;) designate the corresponding spectral measure
belonging to the Borel sét C RSt1. Then the fields of operators

& — Ug(X) and &~ E (D)

are measurable and satisfy for any x and any Borelstite following equations:
2]
WU* (x)W* :/ dv(&) Ug (x), (4.13d)
X
)
W E*(A)W* :/ dv(§) E¢ (D). (4.13e)
X

(v) There exists a canonical choice of a strongly continuous unitary group in each
Hilbert spacel(;

{Uf(x) € T (A%)" = B(Hg) : x e RS, (4.13f)

which is measurable with respect & implements the space-time translations in the
representatior(tg, H) and has generatorngNhose joint spectrum lies in the closed

forward light conéV. . It is defined by
UE(x) = expli pgx) Ug (x), xR, (4.13g)

where p is the unequivocal vector RSt that is to be interpreted as the sharp energy-
momentum corresponding to the respective particle weight.

Remark.The concepts occurring in the theory of direct integrals of Hilbert spaces
(standard Borel space, decomposable and diagonalisable operators, and the like) are
expounded in{, Chapter 3], 24, Part Il] and likewise $4, Section IV.8 and Appendix].

Proof. The presuppositions of this theorem meet the requirements for an application of
[25, Theorem 8.5.2]. This supplies us with

e a standard Borel spacé
e a bounded positive measuren X,

e aV-measurable field — (T, H;) onX consisting of irreducible representatioms
of theC~-algebra(® on the Hilbert space®(;,
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¢ and an isomorphism (a linear isomet/)from 3{* onto the direct integral of these
Hilbert spaces, such that

@
W3 — / AV (E) 7, (4.14a)
X
transformst® into the direct integral of the representatiogsaccording to
@
Wit (AW" = /_ dv(E) Te(A), Ae, (4.14b)
X

and the maximal abelian von Neumann algeBt@an be identified with the algebra of
diagonalisable operators via

WTW" = /x : dv() or(§)ls, Tem, (4.14c)

with an appropriate functiogr € L*(X,dv(§)).

At first sight, the different statements 6i-, Theorem 8.5.2] listed above seem to
cover almost all of the assertions of the present Theatelrbut one must not forget
that the disintegration is to be expressed in terms of a field of restrfgq:mnicle
weights. So we are left with the task to establish their defining properties in the repres-
entationg 1, H; ) supplied by the standard disintegration theory. In accomplishing this
assignment, one has to see to it that simultaneously relatiaglj is to be satisfied,
which means that one is faced with the following problem: In general the isomorphism
W connects a given vect& € H* not with a unique vector fieI(@ILIJE &€ X} but rather
with an equivalence class of such fields, characterized by the fact that its elements dif-
fer pairwise at most on-null sets. In contrast to this4 (13 associates the vector field
{|L)e : € € X} with |L)* for anyL € £°U £o, leaving no room for any ambiguity. In
particular, the algebraic relations prevailing in the 8&t/ £ which carry over td . )
have to be observed in defining each of the mappings which are characteristic of
a restrictedﬂ_g—particle weight. The contents of the theorem quoted above, important
as they are, can therefore only serve as the starting point for the constructions carried
out below, in the course of which again and againull sets have to be removed from
X to secure definiteness of the remaining components in the disintegration of a given
vector. In doing so, one has to be cautious not to apply this procedure uncountably
many times; for, otherwise, by accident the standard Borel sjaceé arising in the
end could happen to be itselfvanull set. Then, ifv denotes the restriction &fto this
set, one would have(X) = v(X) = 0, in contradiction to the disintegratiod.( 39 of
thenon-zerarepresentatiofir®, H*).

() As indicated above, our first task in view @f.{9 and @.7b) of Definition 4.1 will
be to establish the existence(@ + iQ)-linear mappings

[ gL -3 L L), (4.15a)

from £€ onto a dense subs@tg of each of the component Hilbert spaces supplied by
[25, Theorem 8.5.2] with the property

T (A)|L)g = |AL);, A€, Le £ (4.15b)
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Now, by relation ¢.149, there exists to each € £°¢ an equivalence class of vector
fields onX which corresponds to the elemeh® in H*. The assumedQ +iQ)-
linearity of the mapping . )* : £° — H* carries first of all over to these equivalence
classes, but, upon selection of a single representative from each class, it turns out that
every algebraic relation in question is fulfilled in all components of the representatives
involved, possibly apart from those pertaining to-aull set. So, if we pick out one
representative of the vectdr)® for everyL in the numerable se€® and designate it
as{|L)¢ : & € X}, all of the countably many relations that constit(@+ iQ)-linearity
are satisfied fov-almost all of the components of these representatives. They can thus
be taken to define the linear mappings of the forhi%g for all & in a Borel subset
X1 of X, which is left by the procedure of dismissing an appropfiateill set for each
algebraic relation to be satisfied.

The same reasoning can be applied to the disintegration of vectors of the form
|AL)® = 1 (A)|L)* with A € 2° andL € £°¢. Again with (4.130 in mind, the number
of relations ¢.150) to be satisfied is countable, so that in view of relatiéridh the
mere removal of an appropriaenull set fromX; leaves only those indicésbehind,
for which the mappings. ); indeed have the desired properéyi(5h.

In this way we have implemented by hand the first defining property of restricted
£8-particle weights in the representatioimg, }z ) for v-almost all indice<. The only
thing that remains to be done in this connection is to show {Haf; : L € £°} is a
dense subséltfg in Hg. But, according to{4, Section 1.1.6, Proposition 8], the fact

that the sel{|L>' ‘Le £°} is total inJH* by assumption implies that the corresponding
property holds fow-almost alk in the disintegration. Thus there exists a non-null Borel
setX, C X1, such that the corresponding mappirigse, & € X, have this property,
too. In this way all of the characteristics presented in the first item of Definitibn
are fulfilled for& € X, by the mappings4.159 constructed above, and additionally we
have

)

W= [ ) I, Legs (4.16)

(ii) Inthe next step, the mappings ); have to be extended to the <& of all Poin-

caré transforms of operators frog§ in such a way that the counterpart @f.§) in
Definition 4.1is continuous. In the present notation this is the mapping

PLS(AX) = oty (L) €He,  L'eLo (4.17)

At this point the special selection af§ as consisting of compactly regularized va-
cuum annihilation operators comes into play, and also the invariance of this set under
transformationgA, x) € P° will be of importance. Great care has to be taken in these
investigations based on the differentiability properties of the operators in question, that
not uncountably many conditions are imposed on the mappings since anew not
all of them will share the claimed extension property, but oniyaull subset ofX
shall get lost on the way.

To start with, note that the Poincaré grdab can be covered by a sequence of open
setsV; with compact closure§;, i € N, contained in corresponding open chétis @)
with the additional property that the seggCi) C R% are convex (e.g. consider the



4.3 Spatial Disintegration 65

translates of the canonical coordinatél, @) around(1,0) to all elements oP°¢ and

take suitable open subsets thereof). Select one of these compac@, sayl fix an
element_o € £8, which by assumption is given as a compactly supported regularization
of an element € £§:

Lo =ag(Lo) = < dU(A,X) F (A, X) 0(ax (Lo), (4.18a)

whereF is an infinitely often differentiable function olhl with compact suppor$e

in the Poincaré grouBL According to Lemm&.16the mapping . ) commutes with
this integral so that the vectdiro) in H,, takes on the shape

ILo) = i dp(A,X) F(A,X) |[o(ax (Lo))- (4.18b)

The same equation holds for the Poincaré transforms of the opégaasrwell, so that
invariance of the Haar measure Bb implies for any(Ao,Xo) € Ck the equations

A0 (£0)) = | dAX) FIAX) [aing 0000 (L))
N / dp(A,X) F (Ao, %0)~H(A,%)) [atiax (Lo))
(Mo %0)-Sk

_ /C AN ((Ro.30) M) [aia (Lo)). (4180

The derivatives of the mappin@\o,Xo) — |0(nx)(Lo)), the domain of(Ag,Xo) re-
stricted to the neighbourhoody in Ci, are thus explicitly seen to be expressible in
terms of derivatives of the functions

FM V=€ (Mo,Xo) = F" (Ao, x0) = F (Mo, X0) H(AX).

So, let(A1,x1) and(Az,x2) be a pair of Poincaré transformations lying in the common
neighbourhoody; then the following equation results from an application of the Mean
Value Theoremi.7 to theX ¢ -differentiable mapping. ) (cf. Theorem3.15):

~ A~

‘a(/\LXl) (LO) - a(/\z,Xz) (L0)>

1
= |ag 19 (Lo) — ag 1 (L0)) = /0 d9 |D(Z¢, o@D (t+8(s—1)(s—1))

:/1d8 dU(A,X) D(FM o g 1) (t+9(s—1))(s—1) [aax(Lo)), (4.18d)
0 Ck-Sk

wheres = @(/A1,X1) andt = @(A2,X%2) belong to the compact armbnvexset@(C).

Now, the vectora, x,)(Lo) — 0(n, %) (Lo)) defines a positive functional on the al-
gebra®B(Hy), and we want to show that this vector functional can be majorized by a
positive normal functional if3(H).. To establish this fact, note, that the integrals in
(4.189 exist in the uniform topology dH,,, so that they commute with every bounded
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linear operatoB € B(Hy). Hence

< (A1, X1 (LO) (/\2 X2 LO |B|a NA1,X1) (LO) (/\2,X2) (E0)>

/ d9 d9' (D (S, o @) (t+9 (s—1))(s—1)[B|D (S, 0 @ 1) (t+9(s—1))(s—1)).
[0,2]2
(4.193a)

This equation is invariant with respect to an exchang® aihdd’. In the case of a
positiveoperatorB the following relation holds for arbitrary vecto$ and® in Hy,:

(W[B|®) + (P[B|W) < (W[B|W) + (®|B|D),

which, applied to the integrand of.(L99 and to that resulting from an interchange of
9 and?’, yields

(A (A1) (L) = O (Ap0) (L0) [Bl0X(A, 1) (Lo) — Qg0 (Lo))

</0 49 (D(Z, 0@ H(t+9(5—1))(s—1)|B|D(Zg, o @) (t+3(s—1)(5—1))
(4.19b)

upon execution of a trivial integration ov@randd’, respectively. As in4.189 we can
pass to the following representation for the integrand on the right-hand sidel6f)

<©(E£Ooqgl)(ua(s—t))(s—t)|B}©(E£ ocgzl)(t+8(s—t))(s—t)>
:/ dp(/\,x)/ du(N, X)) D(FVX) o )(t+8(s-t))(s—t)~
Ck-Sk Ck-Sk

DFM oY) (t+9(s—1))(5— 1) (avx) (Lo) Blaan (Lo).  (4.190)

The derivatives which show up i@ (199 depend by construction continuously on the
parameters andt, 9 andd’ as well agA,x) and(/’,X), so that their absolute values,
taken on the compact domaipg C), [0, 1] andCy - Sk, respectively, are bounded by

D(F™ o) (t+9(s—1))(s—1t)| <D(F;Cy) [s—t] < o0

for all (A\,x) € Ck- Sk with a suitable non-negative constdntF; Cy). Hence the non-
negative matrix element irt(199 can be estimated by

<@(Ef_oo(nz )(t+9(s—1))(s—1)[B|D(Z¢, 0@ Ht+9(s—t))(s—1))
< D(F; Cy)? \S—t\z/cklstU(/\aX)/ksFdll(/\lyxl) | (ot ) (Lo) [Blaax (Lo)) |,
(4.19d)

which is independent df, so that insertion into4( 191 yields

<a(/\1,X1) (Lo) — A(A2.x2) (Lo) | Bla(/\l,xl) (Lo) — G(/\z,xz)(l:o)>
D(FiCk)Z\S—t\Z/ dIJ(/\,X)/ dU(A',X) [(a(a ) (Lo) |Blaax (Lo)) -

Ck-Sk Ck-Sk
(4.19€)
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Since the positive operat@can be written a€*C for suitableC € B (Hy,), the integ-
rand on the right-hand side allows for the following estimate, making use of the relation
between the geometric and the arithmetic mean of two non-negative numbers:

(e (Lo) [Blata (Lo)) | < [[Clarava (Lo | [[Clera (Lo)) |
< 271 (<a(/\/,x/) (LO) ‘ B‘a(/\’,x’) (L0)> + <G(/\,x) (LO) ‘ B‘G(/\,x)(LO») :

As a consequence of this inequality entered idtd 99, one integration ove€y - Sk
can be carried out on its right-hand side for each resulting term of the sum, so that
finally

(A (A1) (L) = O (Ap0) (L0) [B|0X (A, x0) (E0) — Ay (L))
D(F;Ck)ZS—tZH(Ck-SF)/ dp(A, %) (a(ax (Lo) [Bla(ax(Lo)), (4.191)

Ck-SF
where the last integral can be viewed as a positive normal functiortl(6£y) in the
variableB, as announced at the beginning of this paragraph.

Now, letM be a measurable subsefbthen, according to4. 149, it corresponds via
the associated characteristic functigiy to a projectionPy, in the selected maximal
abelian von Neumann algel®&. If P* in turn denotes the orthogonal projection from
Hw onto the Hilbert spacgé(®, we can defind®y, = P*P\P°® as a positive operator in
B (Hw), which is therefore subject tal (191). This relation can then be re-written for
B = Bm in terms of the restricte@§-particle weight(m*, 3¢*,2*, a®, P¢, £5):

. r *2 P
[IPm| e, ) (Lo) = @, x,) (Lo)) w0 (£0) = (g (L) 1P
D(Fick)zls—tzu(ck'SF)/c S dp(A,X) ((ax (Lo) d(ax(Lo)),
k*2OF
(4.20a)

where now the integral on the right-hand side defines a positive normal functional on
the von Neumann algebfat through

P*PwP®

¢[|:o;Ck](T)i/C S dp(A,X) (0(px (Lo) [P TP |a(nx(Lo)), T €M (4.20b)

Spemahzmg to Poincaré transformatioffs;, x1) and (A2, x) from the countable sub-
groupP’, the unique disintegration of the vectbn‘,\ %) (Lo) — alp,, x2)<L0)> occur-

ring on the left-hand side of}(209 is already explicitly given by4.153 for all & € X,
so that

~ ° @
Afp, ) (L0) = 0fn, 0 (Do) = - dv (&)

GZ/\LXl)(l:O) (/\27X2)(L0)>£' (4.20c)

On the other hand, the positive normal functiopély, Cx] € 91, of (4.201 is easily
seen by p4, Proposition 1V.8.34] in connection withl (149 to correspond to a unique
integrable field{ ¢ [Lo, Cy]s : & € X} of positive normal functionals on the von Neumann
algebrasC - 1¢ in the direct integral decomposition @ik. Explicitly,

[Lo; CuJ(T / dv(€) o (€) d[Lo, Cule (Le) (4.20d)
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for any T € 90t with an appropriate functiogr € L(X,dV(€)). The above relation
stays true, if we replack by X5, since both differ at most byanull set. So, in view
of relations ¢.200 through @.209, (4.209 can for any measurable subgét of X
corresponding to the orthogonal projectigg € 9t be expressed in terms of integrals
according to

/@@ o

2
/\1 X1 LO (/\2 Xz)(L )>EH

D(F;G?ls—{7u(Ce-Se) | d9(&) 0lLo. Ce(1e).  (4.20€)

Due to arbitrariness oM C Xo, we then infer, making use of elementary resEIts of
integration theory 35, Chapter V, viz. § 25, Theorem D], that foralmost allg € X,
there holds the estimate

(/\1X1)(|: )—ag /\2X2 > H
< | (A1, %) — @(A2,%2)| - D(F; Ci) - (Ck- Sk ) - §[Lo, Cule (Le),  (4.20f)

where we replaced the poingsandt from the spacd%dP of coordinates forPT by

their pre-imagegA1,x1) and (Az,x2) from VN P". The important thing to notice at
this point is that, apart from the factm A1, X1) — @(N2,%2) } the terms on the right-
hand side of 4£.201) hinge upon the operatcb}o (determining the functior as well

as its supporfg) and on the neighbourhodd with compact closuré€y containing
(A1,%X1),(A2,%2) € P°. Therefore this estimate also holds for any other pair of Lorentz
transformations ir\/kﬁﬁC with the same{EO,Vk)-dependent factor; of course, in each

of the resulting countably many relations one possibly loses a fuvtimeitl subset of

Xo. The reasoning leading up to this point can then be applied to any combination of
an operator in the numerable select@&fwith an open set from the countable cover of

PT to produce in each case a relation of the form20) for the respective Poincaré
transformatlons iP". Simultaneously, the domain of indic&sfor which all of these
inequalities are valid, shrinks to an appropriaeasurable non-null subsés of Xo.
Consider now an arbitrary elemeffip,Xp) € P!, which belongs to at least one of
the open set¥; from the covering of the Poincaré group already used above. By
density ofP° in P the transformatior{/A\g, x9) can be approximated by a sequence
{(An,xn)}neN CP° NVj. This is a Cauchy sequence in the initial topoIog;Pta o]
that relation ¢.207) implies that for eac € X3 the corresponding sequences

050 (L0))g ey € Her Lo € E5, (4.21a)

likewise have the Cauchy property with respect to the Hilbert space norms. Their limits
in each of the space(s, & € Xs, thus exist and are obviously independent of the

approximating sequence of Lorentz transformations fROmT herefore, we can write

ILo; (Mo, %)) Ah ) (£0))es (4.21b)

a result that holds for arbitraty € £8 as long a< is taken from the non-null sét.
According to p6, Definition 11.4.1], which lays down the notion of measurability for
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vector fields, the mapping
X:g > E — “:0; (/\Q,XO)>E c sz, (4.21C)

that arises as the pointwise limit of measurable vector field$is itself measurable
with respect to the restriction &fto this subset oK and turns out to be a representative
of the vectoraZAO’Xo)(I:o)Y € H* (cf. [24, Section 11.1.5, Proof of Proposition 5(ii)],
and note that we can neglect the null set missingjrmompared ).

The question now is, if the Iimitﬁ[o; (/\o,Xo)>E, constructed by the above method for

arbitrary operator§g € 2_8 and any transformatiofM\o, Xo) € P!, canunambiguously

be identified for al€ in X3 with vectors GZA07XO)(|:O)>E € Hg, which satisfy a relation

of the form @.13h. One of the situations, in which an inconsistency possibly arises, is
the appearance of two different representations for a single eldrhergo:

L' =afp, 0 (C1) = alh, 5, (L2), (4.21d)
wherelq,[, € £, and(A1,%1),(A2,%2) € PL In this case the pair of operators is con-
nected by the Poincaré transformatiohy, x;) 1(A2,%2), which belongs to the sub-
groupﬁC of Pl according to the constructions of Sectibri. Therefore

~ A~

Ll = GEA17X1)—1(/\2’X2) (LZ) y

which implies that

~ A~

az/\l.n,xl‘,n) (Ll) = az/\l.n;xl,n) (A1, x1) (A2, %2) (Lz)

for any sequencé (/\Ln,xl,n)}nGN c P’ approximating(A1,x;). But then the trans-
formations on the right-hand side of the last equation constitute another sequence in
P°, which in this case tends t@\2,x2) in the limit n — . As a consequence of the

independence of the limitgl (210 from the selected sequenceﬁﬁ, we could define
IL)e = |13 (A1, %) )g = |L25 (A2, %) ). (4.21e)

The only problem that is still left open with respect to an unequivocal definition of
vectors of the formL’)¢, L' € £o, occurs when the vacuum annihilation operdtbr
happens to be an element ©f, so that its components in the Hilbert spadéshave
already been fixed in the initial step. But, 8%is a numerable set, such a coincidence
will be encountered at most countably often, so that relationl( indeed turns out to

be the unique definition dt.’)¢ for all £ € X4, such that the relation

W|L)® = /_j dv(E) L), L €S, (4.21f)

is satisfied, where agaXy is av-measurable subset which differs froxg only by a
null set.

The Hg-vectors corresponding to elements@y that arise as Poincaré transforms
of L' = O‘Z/\o.xo)(l:o) € £o are defined according td 1), in particular by the relations
(4.21¢9 and @.21H. As a result, wheri/A1,x1) and(A2,x;) are closely neighbouring
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elements oPl so that their products witt\g, Xo) lie in the common open neighbour-
hood V, we get the following estimate, which is a direct consequence of the above
constructions inserted into relatioh.20f) and which holds for an§ € X4:

(/\1 X1) (L/)> /\2 Xz > H

< (Mo, %0) (A1, %1)) — @c((Ao, X0) (A2,%2)) | - D(F; C) - U(Ck'SF)'q)[tO,Ck]«E(lE)-)
4,22

This shows that the continuity property with respect to generic Poincaré transforma-
tions as expressed ir.@) of Definition 4.1 s fulfilled by all the extended mappings
| . )¢ introduced above for arbitraty € £o.

(iii) The last property of restricteﬁt—g-particle weights to be established is the existence
of unitary groups{Ug (x) : x € RS} in the representationgt, H;) which satisfy the
relations ¢.9). To construct them we first consider one elemeotthe countable space
£° together with a single space-time translatipm the numerable dense subgroup
TC¢ of RSt1, By assumption4.11), the von Neumann algebgt is contained in the
commutant of U*(x) : x € RS}, which means that for any measurable subdeof

X4 with associated orthogonal projectiBy € 9t there holds the equation

_ 2 ° 02
| @@ llos(w), ay<L>>

= U mPulL)"
Since this result is valid for arbitrary measurable ddtswe infer by [35, Chapter V,
§ 25, Theorem E] that for-almost all§, the vectors are subject to the relation

ag(L)yell = [I1L)gll- (4.23b)

A corresponding equation can be derived for any other of the countable number of
combinations of elements i&° andT¢, so that ¢.231) is true in all of these cases when

the domain of is restricted to th&-measurable subs&i, which again differs from

X4 only by a null set. OrXs we can then define for arbitragyc T¢ the mappings

y)IL* |

Mm|L)®

:/ dv(E) [||L) > 4.233)
M

Ue(y) 1 Hg =3 Ug(y)lb)g =

ay(L)) (4.23c)

which are indeed determined unambiguously according 3(. By the same rela-
tion they are norm-preserving and, moreover, turn out td(®e- iQ)-linear operators
on the countable spacgg; C 3.

We want to extend the definition given b§.239 in two respects: All space-time
translationsy € R*1 should be permissible, and all vectorsiof are to belong to the
domain of the resulting operators. Now, lebe an arbitrary element af°, i. e.

N
L=>) AL with A c2CandL € £, (4.24a)
i=1

and considek € R°*! approximated by the sequen¢g,}_ C T®. Then, by defin-
ition (4.239 in connection with property4(15h, the translates byx andx of the
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vectors|L); are for € Xs subject to the following relation:

N
= > (05,(A) — a5, (A) a5, (L) =05, (L))

(4.24b)

N
as (Li)) + D Te (05, (A)) (
i=1

Since X3 is a subset 05, we have relation4.20/) at our disposal; moreover, by
assumption, the group of automorphis{rms(,\yx) D (AX) € Pl} is strongly continuous.
As a result, the sequences

{log(W)ehien: LESE, (T (af, (A) by AETE, (4.24¢)

both have the Cauchy property and are thus convergent as well as bounded in the re-
spective norm topologies. Applied to the element§$andI° appearing in the repres-
entation ¢.249 of L € £° this has the consequence, that the right-hand sidé.a#()

can be made arbitrarily small for all paikd € N exceeding a certain number. The
terms on the left-hand side of this inequality thus turn out to be part of Cauchy se-
quences{UE(xk)|L>§}keN which converge in the Hilbert spacé&. Since a renewed
application of the above arguments shows that the arising limits are independent of
the approximating sequence Trf, the following relation unambiguously defines the
mappingdJ¢ (x) for arbitraryx € RS andL € £¢:

Ug(x)|L)g = Jim Ug(x)|L)g = lim o, (L)), (4.24d)

where T®3 x¢ o XE RSHL,
—00

Again these mappings act &9 +iQ)-linear operators on the spadlig and preserve

the Hilbert space norm. As a conseqguence they can, by the standard procedure used for
completions of uniform spaces, be continuously extended in a unique fashion to all of
the Hilbert space on condition that their countable domain constitutes a dense subset of
He; but this is the case @ is contained iX,. Changing the notation frotd to Ug

for these extensions, their definition on arbitrary vectdgsc 3(; then reads for any

x € RSt

Ug (x)Wg = lim Ug()|LY), (4.24¢)

[
where (¢ 3 |LV), — W eI,
and this definition is again independent of the selected sequence. Fbrag§ and
anyx € RS the vector field{Ug (X)|L)¢ : & € Xs}, which is the pointwise limit of a
sequence of measurable vector fieldsd2{d and hence itself measurabi&] Defin-
ition 11.4.1], corresponds t@;(L)}', the equivalent limit ifH* (where we neglect the



72 Disintegration of Particle Weights

difference betweeX andXs which is of measure 0):

WU (|L)* =

®
L))" = /Xs dv(&) Ug (X)L ). (4.241)

Having defined the family of mappingUg (x) : x € R} C B(3;) for & € Xs,
we now have to check that they obe4.9). First of all, note that, as an immediate
consequence of the way in which they were introduced, these mappin@s|eaear
and norm-preserving. Another property that is readily checked by use of the relations
(4.249 and @.249 in connection with the estimates arising from44h with L")
replacingL is the fact that for arbitrary,y € RS+?

U (X) - Ug (y) = Ug (x+Y). (4.25)

From this we infer that, adg (0) = 1¢, each operatddg (x) has the inversdg (—x) and
thus proves to be an isometric isomorphisnigf. Hence, in accordance with.£9),
the set{Ug (x) : x € RS} indeed turns out to be a unitary groupX{H;).

The strong continuity of this group is easily seen: Consider the opdratog® as
defined in ¢.249 and two sequenceS}ken, {Vi}ien in T¢ converging tox andy,
respectively. Then4(24h) stays valid if we replace the translatiorsby y; in each
case. In compliance witht(249 it is then possible to pass to the limit, which results
in the obvious estimate

IT0IL)e ~Ug(y)IL)e |
N

Z

i=1

O‘;/(Li)>.§H' (4.26a)

This explicit inequality shows that the right-hand side can be made arbitrarily small for
all yin an appropriate neighbourhoodxgffor the first term this is brought about by the
strong continuity of the automorphism grofpx ) : (A,X) € Pl} whereas for the
second term it is a consequence of relatiér2®. The defining condition for strong
continuity is therefore satisfied for vectors in the dense suH§e1f now an arbitrary
vectorW; € J(; is considered, we can expand the differetlgéx)W; — Us (y)Ws by
introducing the corresponding translates of any elerflgatc J{g and, making use of

the property of norm-preservation of the unitaries, arrive at

[|Ug (x)We — Ug () We | B B
< | We = ILe | + [[Ue () |L)e = Ue(y)|L)g || + || IL)g — We |- (4.26b)

The right-hand side of this inequality can again be made smaller than any given bound
by first choosing a suitable elemeht; € ng from a small neighbourhood &f; and

then, in dependence on this selected vedtor but irrelevant for the statement, se-
lecting an appropriate neighbourhood of translatipasoundx as implied by ¢.263.
Thereby we have established strong continuity of the unitary gfolgx) : x € RS},

Before considering the support of the spectral meaBg(fe ) associated with this

strongly continuous unitary group, we mention a result on the interchange of integra-
tions with respect to the Lebesgue measur®dft and the bounded positive measure
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Vv on Xs, which proves to be necessary as Fubini’'s Theorem does not apply to the situ-
ation in question. Ley be a continuous bounded function lif(RS™,d*™x), then
1
R 5 x— g(x) (L1|Ug(x)|L2), € C

is an integrable mapping for ary,L, € £¢ and& € Xs. Moreover, it is Riemann
integrable over any compac¢s+ 1)-dimensional intervaK, and this integral is the
limit of a Riemann sequence (ci 1, Kapitel XXIIl, Abschnitt 197 and Lebesguesches
Integrabilitatskriterium 199.3)):

/d5+1xg ) (La|Ug ()[L2), —hmZ|z | g(x) (La|Us (ki) |L2)e,  (4.27a)

where{Zﬂq) :m=1,...,n} denotes thé-th subdivision of, \Zﬂ?\ are the Lebesgue

measures of these sets, a«ﬁfﬂe Z|(']I']) are corresponding intermediate points. The sums
on the right-hand side of this equation turn out tovbmeasurable when their depend-
ence org is taken into account, and so is the limit on the left-hand side. Moreover this
property is preserved in passing to the litdit " RS2, so that

Xeo&m [ g0 (LfUs(o|Le)g € €
RS+
is V-measurable and, in addition, integrable since
[ao®)] [ & ixgm (Lalus9]La),
X5 Rstl
< [ @) [ @il Lel Lol
Xs Rstl

=H<JJ||1/X dv(&) [[ILo)ellliLa)ell < llgllallLa)*llIL2)®]l. (4.27b)

The counterpart of4.273 is valid in {*, too, and, ifM denotes a measurable subset
of X5 with associated orthogonal projecti®y € 9, this equation reads

/d5+1xg ) (L1|PmU* (x)|L2) = lim Z|z | g(Xir)) (La|PmU* (i) | L2)-
(4.27¢)
Then @.16) and @.2419) in connection with 4.149 imply

| o Z\z |90%) (La]Ug () L)

_ / av (€) / 0* 1 g(x) (La|Ug (9|La)y,  (4.270)
M K

where, in the second equation, use was made of Lebesgue’s Dominated Convergence
Theorem in view of the fact that the integrable function

X5 5 &= [lgllall[Lo)ellll|L2)ell € C

/KdS“x 9(x) (L1|PmU*(X)|L2) = lim

|—00
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majorizes both sides ofi(279. Relation ¢.279 again stays true in passing to the limit
K 7~ RSt

/ d*x g(x) (L1|PmU* (X)|L2) = / dv(E)/ d*x g(x) (La|Ug(x)|L2)e,
Rst+1 M Rst+1
(4.27€)

which is the announced result on the commutability of integrations in the present con-
text.

The support of the spectral measiitg( . ) associated with the generatd®g of
the unitary group{Ug(x) : x € R®*1} can now be investigated by use of the method
applied in the proof of the fourth item of the first part of Theorérhs Note, that the
complement of the closed Sét — q C R3™ can be covered by an increasing sequence
{FN}NGN of compact subsets (take e. g. the intersection of the compact ball of radius
N with the complement of the opéw1-neighbourhood 0¥, — ). To each of these
sets one can find an infinitely often differentiable functigrwith supportinC(V, —q)
that has the propertyQ xr, < gn. As before, letM be a measurable subsebaf with
associated orthogonal projectiByy € 91, then, by assumption on the spectral support
of the unitary group implementing space-time translations in the underlying particle
weight, we have

d¥x gn (X) (L1 |PmU* (X)|L2) = 0 (4.28a)
Rs+1
for anyN € N and any pair of vectorid ;) and|L,) with L;,L, € £°, and this, according
to (4.27¢, implies

/ dv(g) d*"x gn (%) (La|Ug (¥)|L2); = O (4.28b)
M RS+t

By arbitrariness oM in the last expression, we conclude once more tha@falimost
all ¢ e Xs

d*"x gu(x) (La|Ug (¥)|L2); = O. (4.28¢)
Rs+1

Eventually, if we want this equation to hold for any element of the countable set of
triples (gn, |L1), [L2)z ), @ non-null seKg C Xs is left, and ¢.289 stays valid for the
remainingé € X even if the special vectoitt1); and|Ly)¢ are replaced by arbitrary
ones. Stone’s Theorem then implies (&.39) thatgn(Ps) = 0 and therefore, by the
order relation inherent in the definition gf;,"we haveEg (M'n) = Xr\ (P:) = 0 for any

N € N. As the spectral measulg( . ) is regular, one can pass to the limhit— c and
thereby arrives at the desired result

E(C(V,—0q) =0, E&cXe (4.28d)

The defining_equation4(23c) in connection with 4.150 implies that for arbitrary
operatord\’ € 2(¢ andL € £° and for any translatior’ € T°¢ one can write

T (03 (A)) [L)g =

ot (AL ) = [0ty (K@ (L)) ) = U5 () A0 (L)),
:UE(X')T[E(A/)UE(—X'HUE:UE(X/)T[E(A/)UE(X/)*|L>Z. (4.29a)
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Since the vectorf_); € Jfg, L € £°, constitute a dense subsetdXf for § € X, C Xs
we infer from this equation that

T (ay (A)) =Ug (X) T (A)Ug (X)), (4.29b)

an equation that readily extends to all translatioms RS and, by uniform density of
¢ in 2A°, also to any operatdk in theC*-algebra(®:

T (a3 (A)) =Us ()T (A)Ug(x)", Ae®, xeRSHL (4.29¢)

This proves the counterpart 04.09. The action of the group{UE(x) X E RSH}

on {]L’>E Le 2_0} according to 4.9 is an immediate consequence of the defining
relations ¢.249 and @.249 in connection with 4.21¢ and the continuity property as
expressed by4(22). In the present setting we thus have

Ug(0IL)¢ =

a;(L’)>E, L’ € Lo. (4.30)

Now, letL be an arbitrary element & having energy-momentum transfar. Defined

as the support of the Fourier transform of an operator-valued distribution (cf. the Re-
mark following Definition2.2), I is a closed Borel set, so that the arguments given in
the preceding paragraph can again be applied wheplaced. ; andL, and the func-
tionsgy now correspond to an increasing sequence of compadt gethich constitute

a cover ofCI"_. As a result we arrive at the equivalent {489, so that

d* X gn(X) (LU (x)|L); =0 (4.31a)
Rs+1

holds forv-almost allé € Xg even if the indexN is allowed to run through all natural
numbers. As in the preceding paragraph we then conclude that for all of s

allN € N one has(L\g,\,(PE)\QE =0and henc<§§L\EE(r§\,)\L>E = 0. According to the
regularity of the spectral measugg( . ), passage to the limit with respecthbyields

the equatiorE; (Cr'L)|L); = 0. By countability, this last result is valid for arbitrary

L € £°if a V-measurable non-null s&; C X; is appropriately selected, from which

the indice<, are to be taken. The complementary statement thus constitutes a restricted
version of the counterpart ofi (90):

Ee(M)|L) =|L)s, Leg£°, EeXy (4.31b)

Now, letLo be an arbitrary element ch, then the energy-momentum transfer of its
Poincaré transform byA, x) € P€, i.e. of the operatoa(A’X)(Lo) € £5 C £° is given
by Al't,, so that, according ta(315),

Ee(Alg,)

afpx(L0))e = [afnx (Do) E€X7. (4.31c)
This result can be applied to investigate the case of a generic elementfoiffor
arbitrary(Ao,xo) € P! approximated by the sequenfl\n, %)}, C P° we have, by
virtue of the relevant parts ofi(21),

O(E/\o.,Xo)(I:O)>z = lim ‘GE/\n,xn)(l:O»zv

n—oo
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and Lebesgue’s Dominated Convergence Theorem in connection with Stone’s Theorem
yields for any functiorg € L*(R®",d*!x) and any indeX € X7

ds+1x g(X) <GZ/\07XQ) (l:()) ‘UE (X) ‘GZ/\(),X()) (to) >E

RSH
= lim o d**x g(x)(af ) ( (Lo)|Ue (%) (/\n,xn)(LO)>

(27-[)(s+1)/2r|1m0< A Xn |-o |g (/\n Xn)(L0)>E' (4.31d)

In the limit of largen one finds the energy-momentum transfaf ¢ of a7, )(Lo) in

a smalle-neighbourhood of\ol'; . Therefore, in view of4.319, the r|ght hand side
of (4.319 vanishes for alh exceedlng a certain bouMlif g is chosen in such a way
that supg C(AOFLO). The Fourier transform of the distribution

RS 5 X (af Thoso) ( (Lo) U (x)|a /\oXo)(LO)>E eC
is thus seen to be supported Ayl ¢ from which we infer

E /\OrLo |G (Mo, %o) L0)>E: GZ/\07XO)(£O)>51 EEY% (4.31e)

which is the equivalent of4(319 for arbitrary operators itg. Equations4.310 and
(4.319 are readily generalized, making use of the order structure of spectral projections
reflecting the inclusion relation of Borel subsetsisf. If £(A') denotes the set of
operators fronfcuil_g having energy-momentum transfer in the Borel&Sethen

Ee(&)|L)e =|L);, Le ), (4.31f)

and thus the counterpart 0f.0q is established for the remaining indicé$rom the
non-null subseX- of X.

The above construction has supplied us with a measurable sXibsét; of the
standard Borel spack, that was introduced at the outset, emerging from an applic-
ation of [25, Theorem 8.5.2].X is a non-null set, differing fronX only by av-null
set. Moreover it is itself a standard Borel space (cf. the definitior,iiSgction 3.3]),
and we shall denote the restriction of the measute it by v; v =V | X is again a
bounded positive measure. Moreover, and this has been the central aim of the previous
investigations, the field

X3 & (T, He, A%, 0°, PO, £5),

indeed consists ot_g—particle weights. What remains to be done now is a verification
of the properties listed ind(13.

(i) Arising as the restriction to a measurable subséX of a field of irreducible rep-
resentations, the family of representations

X3 & (T, Hg)

is obviouslyv-measurable and its components inherit the feature of irreducibility.
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(i) As X andX only differ by av-null set, one has

@D @
/_ AV (E) H; ~ / dv 3, 4.32)
X X

and the relations4(14) can be reformulated, using the right-hand side%8% and
an isomorphisnW, which is the composition iV with the isometry that implements
the above unitary equivalence. As an immediate consequenceldf) and @.14H
we then get the equivalence assertion®fig. Moreover, by 4.16 and ¢.211), the
operatolW connects the vector fieldgL); : & € X} with vectors|L)® for L € £5U £o
in the desired way as expressed4ni@3h.

(iii) (4.139 is the mere reformulation of}(149 in terms ofX andW.

(iv) According to the argument preceding 41, the mappingg — (L1|Ug(X)|L2)s,
with & restricted toX andL; as well ad_, taken from£C, are measurable for all vec-
tors|L1)s and|Lo) in the dense subsef$;, and this suffices, by?, Section 11.2.1,

Proposition 1], to establish measurability of the fiéld- Ug (x) for arbitraryx € RSHL,
Moreover, this is a bounded field of operators, so that it defines a bounded operator on
H* which is given by ¢.139 as an immediate consequence4P{@i), bearing in mind

that X andXs only differ by av-null set. The demonstration of.(L3§ on the other

hand is less straightforward. Assume first of all that the BoreAseiquestion is open.

Then we can make use of the regularity of spectral measures and construct, according to
[26, Definition 11.8.2], a sequence of compact subid‘tﬁ}NeN as well as of infinitely

often differentiable 1‘unction$g,\1},\lEN with support inA such that < xr, < Gn < Xa

and furthermore

<L}EE(A)\L>E = ’\IliLnOO(L\EE(FN)\L}E = NIiLnOO<L\gN(PE)\L>E, (4.333)
(LIE*(@)[L) = lim (L[E*(Tn)[L) = lim (L|an(P*)[L) (4.33b)
for anyL € £°. The discussion on pagesf.—with X replacingXs andv instead of

v—demonstrates, making use of Stone’s Theorem, that the sequence appearing on the
right-hand side consists efmeasurable functions @f so that we infer that its limit

X3 & (L|E;()|L); € C

is v-measurable, too. Another application of Stone’s Theorem in connection with
(4.27¢ in terms ofX then shows that

(2 Y2(L g (P*)

L) = /RmdSHX an(X) (L|U*(x)[L)

= / dU(E) [ X gn() (L[Ug(0|L), = (2m) 1/ / dv(€) (L|Gn(Py)|L)s,
X Rs+1 X
(4.33c)

and, as Lebesgue’s Dominated Convergence Theorem allows for the passage to the
limit function under the last integral, we get according4®@9 and @.330

(L

E*(A)|L) = /de(z) (LIEe(D)|L)s- (4.33d)



78 Disintegration of Particle Weights

This formula, as yet valid only for open Borel séisis readily generalized to closed
Borel sets and then, since by regularity the spectral measure of an arbitrary Borel set
is approximated by a sequence in terms of compact subsets of it, to any Borel set. By
polarization and the fact that the ket vectors with entries f@fnare dense iH* and

JHe, respectively, we first conclude witli4, Section 11.2.1, Proposition 1] that all the
fields& — Eg(A) are measurable for arbitrary Borel sétand then pass to the aspired
formula @.139 from (4.339.

(v) The unitary operatorg®(x), x € R", defined in 4.108 belong to the von Neu-
mann algebr&t, according to4.11), and are thus diagonalisable in the form

WV (x)W* = /X6 dv(&) exp(i pgx) 1¢. (4.34a)

According to the construction of these operators, we can re-express this result in terms
of the canonical unitary group of(103:

WU (X)W* = /@ dv(&) exp(i psx) Ug (x). (4.34b)
X
The definition
US(x) = explipex)Ug(x), x€R%™, EeX, (4.35)

then provides the asserted canonical choice of a strongly continuous unitary group on
each Hilbert spacgf(;. Its spectral properties are derived from those of the canonical
group{UC‘(x) IXE RS“} by the methods that have already been used repeatedly above.
Possibly a furthev-null subset oiX gets lost by this procedure.

This finishes the proof of the assertions of Theorerh O

Remark. Theoremé.4includes the existence of a spatial disintegration of the strongly
continuous unitary group implementing space-time translations in the representation
(r*,3H*) as well as of the spectral measure associated with it. The method used in the
demonstration of this fact can be generalized to other symmetry groups; however ob-
vious a problem of this kind may seem in the present context, it has, to our knowledge,
not been treated in the literature. Nevertheless, the disintegration of unbounded closed
operators in Hilbert spaces (the self-adjoint generators of strongly continuous unitary
groups being an example) is the topic éf] and also presented i p, Chapter 12].

At present we have no control over the range of energy-momgntehich enter
into the above disintegration theory. It still has to be investigated if, starting from a
physical state of bounded energy in the constructions of Ch8mad passing to the
asymptotic limit with respect to a functidrnthat has support on a small part of the velo-
city domain, the occurring momenta are correlated with those defined by the geometric
momenta involved in the limiting procedure. Even tachyonic states cannot be ruled out
to date. These problems might be tackled by introducing a certain property of ‘clos-
ability’ for particle weights, stating that, in case that a sequence of operdtpfs-n
approaches 0 in a suitable topology and at the same{qu)}neN is convergent, the
limit of the sequence of vectors likewise vanishes.



4.3 Spatial Disintegration 79

Moreover, the spatial disintegration presented above is subject to arbitrariness in
two respects. There exist different constructions of the type expounded in Sédtion
and therefore, according to Theorén3, one has to deal with a number of different re-
stricted £§-particle weights(m®, *,°, a*, P, £5) derived from the GNS-representa-
tion (T4, Hyw) pertaining to a given particle weight. As a result, the object to be dis-
integrated according to Theoreft¥ is by no means uniquely fixed. And even if one
has decided to select a system complying with the requirements of this theorem, there
still remains an ambiguity as to the choice of a maximal abelian von Neumann al-
gebra, with respect to which the disintegration is to be performed. The same problem
is encountered in the framework of Choquet disintegration theory in its present status
(cf. the end of Chaptes). There a suitable base in the positive cone of particle weights
has to be chosen with respect to which the disintegration is to be carried through.

But it should be stressed that these open questions only arise on the basis of the fact
that a disintegration of general particle weights into pure ones, representing elementary
systems, has successfully been constructed.
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Chapter 5

Phase Space Restrictions and Local
Normality

A number of criteria have been introduced into the analysis of generic quantum field
theories in order to dismiss those which are not reasonable form a physical point of view
in that they do not allow for an interpretation in terms of particles. These attempts can
be traced back to the year 1965 when Haag and Swieca proposed a compactness condi-
tion in [34], imposing an effective restriction to the size of phase space. Subsequently,
the notion of nuclearity has entered the stage, determining maximum values for the
number of local degrees of freedom for physical states of bounded energy (cf. the dis-
cussions of 20, 16, 31], and in addition 18] for a treatment of the interdependence of
these various concepts). In the present context we want to make use of the compactness
condition proposed by Fredenhagen and Hefig]l fo show that, under this physically
motivated presuppaosition, the arbitrariness in the choice of a sep&aligbalgebra

20 of the quasi-local algebrd in Chapter4 can be removed.

Compactness Criterion (Fredenhagen—Hertel).

A local quantum field theory, as introduced in Chaptegualifies the Fredenhagen—
Hertel Compactness Condition if the mappifigs which are defined for any bounded
Borel setA’ C RS and any bounded regiah of Minkowski space through

TV A0) = BH) A= TY(A) = E(Q)AEQ),

send bounded subsets %#fO) onto precompact subsets %(H) with respect to its
uniform topology. Precompactness is synonymous with totally boundedness and, in
the present situation, equivalent to relative compactnigshapter One, §4,5.].

To be able to demonstrate the main result of this chapter, Thebrgmve have
to fall back uponA-bounded particle weights as introduced in Definita9 This
restriction can be motivated on physical grounds, as opposed to mere technical needs,
since, according to Lemma 20, the asymptotic functionals idix"*, constructed by
use of physical states of bounded energy in Chaptagive rise to particle weights
of this special kind. The corresponding GNS-representatiotpsH,) then meet the
Fredenhagen—Hertel Compactness Condition if the underlying local quantum field the-
ory does, and the same holds true for the restrig@garticle weights which can be
derived from them as expounded in Chapter
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Proposition 5.1. Suppose that the given local quantum field theory satisfies the Com-
pactness Criterion of Fredenhagen and Hertel.

@) If (.| .)is aA-bounded particle weight o x £, then the associated GNS-
representation(tyy, Hy,) of the quasi-local algebr&! is subject to the compactness
condition as well.

(i) The restricted€S-particle weight(re, °,2*, a®, P¢, £5) derived from the above
GNS-representation by virtue of Theorén3 likewise inherits the compactness prop-
erty in question.

Proof. (i) A-boundedness of the particle weight | . ) means, according to Defin-
ition 3.19 that to any bounded Borel s&f C RSt there exist another such sat
containingA + A’ and an appropriate positive constanso that the estimate

[Ew(&) T (A)Ew(A)]| < - [[E(B)AE(D) (3.46)

holds for anyA € 21. Then a finite cover of,? (24 (0)) = E(A)2:(0)E(A) by sets of
diameter less than a givét> 0 (which exists on account of the hypothesis of precom-
pactness) induces a corresponding coveEgfA’) Ty (2 (0))Ew(4"), which is com-
posed of sets with a diameter smaller tizad as 3.46 shows. This establishes totally
boundedness of the set

Eu(&) o (2 (0)) En(&) € B(3a).

By arbitrariness o\’ as well as of the bounded regitn the representatiofty,, Hy) is
thus seen to satisfy the Compactness Criterion of Fredenhagen and Hertel in the sense
that the mappings

Tan S 2(0) = B(Hw) A Ton(A) = En(A) T (A)Ew(4)

are altogether precompact.

(i) According to the construction g@ft*, {*,2*, a®, PC,S_g) from (T4, Hw) explained

in the proof of Theorer.3, both of these representations are related by the inequality
[E*(A")Te (A)E® ()| < [[Bw(A)Tw(A)Ew(D) ], (5.1a)

which holds for anyA € 21°. ThenA-boundedness of the underlying particle weight
again implies the existence of a bounded BorebsetA + A’ such that

IE*(A)1e (A)E® ()] < c- [E(A)AED)]. (5.1b)

This relation replaces(46) in the proof of the first part, so that we conclude thatindeed
(r*,3H*) inherits the precompactness properties of the underlying quantum field theory
in the sense that all the sets

E* (&)7 (247 (OK))E* (&) € B(H*)

are totally bounded for any > 0 wheneveY is an arbitrary bounded Borel set and

Ok is one of the countably many localization regions fri®h Again that is sufficient

to establish the fact that the Fredenhagen—Hertel Compactness Condition is satisfied in
the restricted setting for Local Quantum Physics introduced in Seétion O
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Under the presupposition of the Compactness Criterion, a result corresponding to Pro-
position5.1 can be proved for the irreducible representations J¢) arising in the
spatial disintegration of the restricté!_@—particle weight(r®, H*,2°*, a°®, PC,S_g) by vir-

tue of Theoren?.4 if the domain of€ is further astricted to &-measurable non-null
subseiXg of X.

Proposition 5.2. Let (T, Hy) be the GNS-representation of the quasi-local algeltra
corresponding to tha-bounded particle weight. | . ), and let(T*, H*,2°*, a*, P, £§)
denote the restricted-particle weight associated with it according to Theorérf.
Under the hypothesis that the Compactness Criterion of Fredenhagen and Hertel is in
force in the underlying quantum field theowyalmost all of the irreducible represent-
ations (T, Jg ) occurring in the spatial disintegratio(#.139 of (1*, }(*) by course of
Theorem?.4 comply with this condition as well.

Proof. Select a dense sequen@ }ke in the norm-separable*-algebrak(® and con-
sider the countable set of compact b&ljsof radiusN in R*1. The corresponding op-
eratorsE® (M) (A)E®*(ITn) € B(H*) are decomposable according to Theorér

WE e (AOE M)W = [ () B (M) (AJE(T),  (5.23)

and [24, Section 11.2.3, Proposition 2] tells us that the respective norms are related in
compliance with the equation

IE* (M) T (A)E® (M) || = v-ess sup||Eg (Tn)Te (AEe ()l - & € X} (5.2b)

With regard to all possible combinations of operatérsind compact ballEy we thus
infer that there exists a measurable non-null suligetf X such that for alg € Xy and
all indicesk andN the estimate

[1Ee (T'n) Tl (Aw) Ee (M) | < 1E® (M) T8 (AE® (T | (5.3)

holds. Now, letA’ be an arbitrary bounded Borel set which is thus contained in a
compact balll'y, and note that, by continuity of the representatiogsand 1*, the
inequality 6.3) extends to arbitrary operatofsc 2°. Therefore

1B (A) T (A)E (A) | < 1B (Mo) T (A)E (Mo )| < [IE* (Mo )T (A)E* (Mo )1, (5.44)

and this implies, according t&(Lb), the existence of a bounded Borel 4D A + A/
such that

B¢ (A") e (A)Ee (&)]| < c- |[E(B)AE(D)]|. (5.4b)
The arguments given in the proof of Propositiord can then again be applied to the

present situation to show that fgre X the irreducible representatiofsg, H;) alto-
gether meet the requirements of the Fredenhagen—Hertel Compactness Condition.
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The central result of the present chapter is the perception that, under the above
assumptions on the structure of phase space, the representations of the qu&si-local
algebrasd and2(* which we have come across, i.@w, Hy) and (1, H*), respect-
ively, as well asv-almost all of the irreducible representatiofmg,{;) occurring in
the direct integral decomposition of the latter, are locally normal. The representations
of 2[* can thus be continuously extended to allin such a way that the formula
(4.133 describing the disintegration stays valid for the extended representations when
X is replaced by the non-null s&h occurring in Propositio.2.

Theorem 5.3 (Local Normality). Under the presumptions of Propositiér? the fol-
lowing assertions are valid:

(i) The GNS-representatiofm, Hy) of the quasi-local algebral is locally normal,
i.e. continuous with respect to the relatigeweak topologies of botR(0) C B(H)
and T, (2(0)) C B(Hy) for arbitrary bounded regiong).

(i) The representatiofm®, H*) of the quasi-local algebral® is locally normal (con-
tinuous with respect to the relative-weak topologies of botR(*(0x) C B(H) and
T (2*(0k)) C B(H*) for arbitrary bounded region®)y € R°). The same holds true
for the irreducible representation@t, }z) occurring in the spatial disintegration of
(T, 3*) when the indice§ are astricted toXp.

(iii) The representatiogr®, }*) as well as the irreducible onést, Hz) with & € Xo
allow for unique locally normal extensions to the whole of the original quasi-local
algebra®( designated T, }(*) and (T, }¢ ), respectively, which are related by

(T, H®) ~ EBdV(E) (T, He), (5.5)

Xo

where the representationis, }(z ) are again irreducible.

Proof. (i) LetA be a bounded Borel set and suppose thista normal functional on
B(H). Then the same applies to the functiopg( . ) =p(E(A) . E(A)), and therefore
the mapping

T A—B(H)  Ae Tx(A) = E(B)AE(D)

is continuous with respect to the relatigeweak topology ofl. Now, according to
the Compactness Conditiof [ 2A(0) = TK(9 maps the unit bal(;(0O) of the localC*-
algebraR((O) onto the relatively compact SE{A)2(; (O)E(A). The restriction ofI'Eo to
201(0) is now obviously continuous with respect to the relativereak topologies, but
this result can be tightened up in the following sense: The relativeeak topology,
being Hausdorff and coarser than the relative norm topology, and the relative uniform
topology itself coincide on the compact norm closureEgh)21;(O)E(A) due to a
conclusion of general topology!{, Chapter One, §3, 2.(6)]. Therefoﬂ'%D is still
continuous orl;1(O) when its image is furnished with the norm topology instead.
Now, suppose that’ is an arbitrary bounded Borel set andAed A+ A’ be another
bounded Borel set with the property that46) is satisfied. Then the linear mapping

E(B)AE(D) — Eu(l)Thu(A)En(d) (5.6)
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is well-defined and continuous with respect to the uniform topologies of both domain
and image. Therefore, as a consequence of the previous paragraph, we infer that the
composition of this map with the restriction ©f to 21 (0O) is continuous, whefl(;(0)

is endowed with thes-weak topology whereas the range carries the relative norm to-
pology. The resulting map is explicitly determined as the restrictiq (@) of

Tt 2A — B(Hw) A Ty (A) = Ew(A) o (A) Ew (D). (5.7)

If n denotes &-weakly continuous functional o8 (H,,), the same is true regarding
Na( - ) =nN(Ew(d) . Ex(&)) for any bounded Borel séf' C RS*%, and moreover,
due to strong continuity of the spectral measuyés the uniform limit of the net of
functionalsny for A’ RS™L. Given ac-weakly convergent neftA : 1 € J} C 21(0)
with limit A € 21(0), we conclude from the discussion in the preceding paragraph that

Na (Tw(A — A)) = n(Twa (A —A)) — 0. (5.8)

1ed

Therefore, by means of the estimate

[noTw(A —A)| < [N (Tu(A = A) =N (Tw(A = A))| + [N (Tw(A = A)|

<IN =naflf[T(A = A) ||+ Ny (Tw(A = A)) | < 2[|n=na || + [N (Tw(A —/?;)g)

it is easily seen that, upon selection of a suitable bounded Boral sete right-hand
side can be made smaller than any given bound forg with an appropriate indep.
This being true for ang-weakly continuous functiona on 5 (H,,) and arbitrary nets
{Al e J} in 241 (0) converging toA € 21 (0O) with respect to the-weak topology of
B(H), we have thus established that the restrictions of the representgtioreach of
the unit balls; (O) areo-weakly continuous. According te'p, Lemma 10.1.10] this
assertion extends to the entire lo€4talgebra?((O), so thatr, indeed turns out to be
locally normal.

(i) The arguments given above in the casatgfcan be transferred literally to the
representations® andrg, & € Xo, in view of the relationsq.10) and 6.40) established
in the proofs of Propositions.1and5.2, which substitute3.46) used in the first part.
The evident modifications to be applied include the restriction to local alget (&)
whereOy is a member of the countable famiRF.

(i) Complementary to the statements of the second gaitllemma 10.1.10] exhib-

its that the representatioms and T, & € Xo, allow for uniquec-weakly continuous
extensionst andTi; onto the weak closure®(O)” [11, Corollary 2.4.15] of the local
algebras, which, due to the Bicommutant Theorém Theorem 2.4.11], coincide with

the strong closures and thus, by the very constructidli*¢®y), Oy € R¢, expounded

in Section4.1, contain the corresponding lodal-algebrasl(Ok) of the underlying
quantum field theory. Now, due to the net structur®pi- 2((0y), the quasi-local*-
algebral is itsC*-inductive limit, i. e. the norm closure of thealgebrd o, < e 2(Ok).

As the representation® andTg, & € Xo, are altogether uniformly continuous on this
*-algebra {8, Theorem 1.5.7], they can in a unique way be continuously extended to
its completion2( [44, Chapter One, §5, 4.(4)], and these extensions, again deTibted
andTg, respectively, are easily seen to be compatible with the algebraic structure of
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2. (T*,H*) and (T, ;) are thus representations of this quasi-local algebra, evid-
ently irreducible in the case @&, and moreover locally normal, since, by construction,
they areo-weakly continuous when restricted to local algelRi&dy) pertaining to the
countable subclass of regiofig € R¢, and an arbitrary local algeb2&O) is contained
in at least one of these. The statement on uniqueness of the extensions is then an im-
mediate consequence of the fact that they are uniquely determined by the property of
beingo-weakly continuous on the loc&f*-algebrasi(Oy).

Regarding the disintegration of operataf$A) for arbitraryA € 2, note that any op-
eratorB € 2((Oy) is theo-weak limit of asequence By }nen in 27 (Ok) with r = ||B||.
For nets in2(? (Ok) this statement is a consequence of Kaplansky’s Density Theorem
[54, Theorem 11.4.8] in connection withbfl, Lemma 11.2.5] and the various relations
between the different locally convex topologies ). The specialization to se-
guences is justified bys[, Proposition 11.2.7] in view of the separability 6. The op-
eratord € £° define fundamental sequences of measurable vector {iélizb;s: ¢ e Xo}
(cf. [24, Section 11.1.3, Definition 1]) and, as the operatatéB,,) are decomposable,
all the functions

haiXo—C &~ hn(€) = (La|m(Bn)[L2),

are measurable for arbitraky,L, € £°. The same is valid for the pointwise limit of
this sequence’f;, 11.1.10]

h:Xo—C &~ h(&) = (Li|Te(B)|Lz);,

and that suffices, according té4, Section I1.2.1, Proposition 1], to demonstrate that
{T&(B) : € € Xo} is a measurable field of operators. As the sequgiTeéBy)},
convergew-weakly toTt (B) by assumption and since, moreovefXy) is finite and

the family of operatord T (Bn) : & € Xo} is bounded byj|B|| for anyn, we conclude

with Lebesgue’s Dominated Convergence Theorem applied to the decompositions of
T (By) with respect toXo (which differs fromX only by a null set), that

(Lafre 80 |2) = [ aviE) (Lafre(B| L)
— dv (&) <L1\T[§(B)\L2>E = (L1 (B)|L2). (5.10)

n—oo
0

If Wp denotes the isometry which implements the unitary equivalence

)
(e, 9¢%) ~ /XO dv(E) (T, 3z

and has all the properties of the operatdintroduced in Theorem.4, then, by density
of the set{|L)® : L € £°} in J(*, we infer from §.10) that

WoT? (B)W = /jdv(&)ﬁE(B). (5.11a)

This relation has been established under the presuppositioB ltteddngs to some local
C*-algebral((Ok). Now, it is possible to reapply the above reasoning in the case of an
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arbitrary elemenA of the quasi-local algebra, which can be approximated uniformly
by a sequencAn}nen from (Jp, cxe 2(Ok). In this way, £.119 is extended to all of
2 so that we end up with the final equation

V\/oﬁ'(A)W(j‘:/jdv(E)ﬁE(A), Acq, (5.11b)

demonstrating that indeed
g— @ —
(7, 3¢°) :/XO AV (E) (T, 7). 0

Theorem5.3 shows that, under the assumption of sensible phase space restric-
tions, no information on a physical system described by a normal state of bounded
energyw € §(A) gets lost in the entirety of constructions presented in Chagters
and4. These have led us from via an associated particle weight with representa-
tion (Tey, Hy) of the quasi-local algebr to the induced restricte8§-particle weight
(e, 3, 2% a®, PC,S_B), which comprises a representation?, H*) of the algebra(®
allowing for a disintegration in terms of irreducible representati{im@, He):&e Xo}.

Then, according to the preceding theorem, this disintegration is extendable in a unique
fashion to one in terms of locally normal representations of the original al@¢las
expressed by5(5). Now, due to the explicit construction in Theoreh3 of (1, H*)

from (1, Hw), the local normality of both of these representations implies that, actu-
ally, T coincides with the restriction af,, to the subspac&(® of H,,. Thus we arrive

at a partial reconstruction of the GNS-representatign Hy,), which only depends on

the initial choice of a subspace of the Hilbert spa€g. Moreover, by Theorerd.3,

this entails a spatial disintegration &fbounded particle weights. | . ) according to

the following reformulation of%.5):

D
(T, 5 = /XO dv(E) (T, ). (5.12)
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Chapter 6

Disintegration Revisited: Chogquet
Theory

The spatial disintegration as expounded in Chapserffered from a couple of awkward
drawbacks, which, in our belief, are inessential concomitants of this special approach
to a decomposition theory for particle weights and have no bearing on the physical
significance of the concept proper. It should be noted in this connection that, to be
able to apply the standard disintegration theory for representations made available in
the literature orC*-algebras, we had to fall back upon separable constructs and count-
able dense subsets thereof. As a consequence it had to be accepted, that a theory of
disintegration could only be formulated in terms of restricieparticle weights. But

these technical difficulties seem to be accidental, and the question obtrudes on us if it is
possible to carry through a disintegration, in the course of which no need arises to leave
the class of particle weights proper, which means that the disintegration can indeed be
formulated in terms opure particle weights. This is the topic of the present chapter,
presenting the partial results we were able to produce in this direction to date.

As already noted in the remark following Definitich14, the totality of particle
weights constitutes a positive proper convex cone when supplemented by the trivial
form. This observation opens the way to an application of another concept of disin-
tegration: the barycentric decomposition in the special form of a generalization of the
well-known Theorem of Krein—Milman/2, Theorem 1.4.3]. This approach, initiated
by Choquet and further developed by Bishop and de Leeu1], is especially well-
adapted to the study of convex sets in infinite-dimensional spaces. An introduction to
this theory can be found inl[ 50] and also in L1, Section 4.1.2] where it is applied
to get a decomposition of states on the quasi-l&cahlgebrall in terms of pure ones.

The mathematical structure in this case is easily accessible from the point of view of
Chogquet theory:

e The positive linear functionals ¢ constitute a positive convex colen its
topological dualt*.

e The guasi-local algebra contains a uhitwhich defines a base of this cone
when it is considered as a continuous linear functionaionthus introducing
a convex function which intersecks
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e This convex base & coincides with the set of states @nand thus turns out
to be compact with respect to the wédkpology [L1, Propositon 2.3.11 and
Theorem 2.3.15].

The situation is much more complicated when particle weights are considered. These
do constitute a positive cor in the space of sesquilinear forms on the left idealf
localizing operators; but one of the key features in the construction of an algebra of de-
tectors was the absence of a unit element, the existence of which would produce infinite
values of the asymptotic functionadsarising in ChapteB. The obvious questions to

be answered are:

e What is an appropriate (metrizable) topolo@yto be introduced oW to
render relevant subsets compact?

e How can a convex bad®,, be fitted into the con® in a physically meaning-
ful way and such that this base is compact with respect to the beforementioned
topology?

In our approach the class with respect to which the disintegration is to be performed
will be further restricted (cf. Definitios.6 below).

The answer to the first of the above problems which we are going to present in this
chapter is based on an effective control of the dislocalization of almost local operators
combined with the Fredenhagen—Hertel compactness condition. To be more specific, a
norm will be introduced on the spaék of almost local vacuum annihilation operat-
ors which in a way measures their deviation from being contained in a local algebra.
Making use of this norm on the s&b(I") of those operators with energy-momentum
transfer in a compact and convex suldsetf CV., it can be shown thaty(I") is small
in the ga-topology under the assumption of the Compactness Criterion of Fredenha-
gen and Hertel. By its very definition, the notion of almost locality as introduced in
Definition 2.1 imposes a condition of rapid decrease on the norm difference between
almost local operators and strictly local ones according to the growing extension of the
localization regions. This contrives to introduce the following norm£gn

Definition 6.1. Let mbe an arbitrary natural number, then the equation

QM(Lo) = su(?inf{rmHLo —Le|l:Lr €A(0r)}, Lo € Lo, (6.1)
r>

defines a norm on the vector spatg

Remark. The seminorm properties of the mappiQd' are self-evident, they even hold

for arbitrary almost local operators as arguments. To ibfee 0 from the condition
Q™(Lo) = 0 one has to restrict attention to vacuum annihilation operators. The latter
equation means that the operalgris contained in the norm closure of any local al-
gebra?(Or), r > 0. As these ar€*-algebras, hence uniformly closdd, itself turns

out to be a local operator, a property which can be reconciled with it being a vacuum
annihilation operator only fatg = O.

The information concerning the localization of the operaipe £9 embodied by the
value ofQM(Lo) is highly dependent on the norm whith carries as an element of the
C*-algebrall. Therefore we combine both topologies in the subsequent definition.



91

Definition 6.2. For any natural numbean a norm ongg is defined by
l[Lol[m = [ILol| + Q™(Lo), Lo € Lo. (6.2)

As announced above this topology is now to be related tgithgeminorms on the
subspaceo(I), wherel denotes a compact, convex subset of the complement of the
forward light cone. Although we have the inequaliBy{0 at our disposition, we want
to reformulate it here in order to make explicit the dependence of the integrand on its
right-hand side upon the bounded Borel&etnd upon the energy-momentum transfer
I". To this end one has to reapply the arguments given in the Appendixjof [

Proposition 6.3. LetA be a bounded Borel set alida compact and convex subset of
CV,. There exists a bounded Borel 9¥tA, ') C RS1, depending om\ andT™ only,
such that for any b€ £o(I") there holds the estimate

aa(Lo)2 < N'(A,T) RSde |E(A'(A,T)) [ax(Lo), Lo™ [ E(A(A,1)) || (6.3)

with a suitable constant A, ), which is again specified by the sétsndT .

Proof. In a first step it will be shown that, setting

QKi/KdSX(XX(LO*Lo)

for any compact subsét of RS, the following estimate is in force for arbitrary bounded
Borel sets\p:

|E(Do)QkE(Ao)]| < NN/K—?(SX |E(A") [ox(Lo), Lo*| E(A") ]| (6.4)

with a suitable constait” and an appropriate bounded Borel A&t If wy denotes a
state onB(H) which is induced by a vectd¥ € E(Ap)H we can immediately adopt
the inequalities of [5, p. 640] to get

w0y (Qk)? < ww(Qk - Q)

< W(QK)'SlE'Rp ’ ?(SXHLOU(—V)WWlH[Gx(Lo)J—o*] LoU(—y)¥||
yeRs JK—

+/ d wy (0x(Lo") Qk ax(Lo)). (6.5a)

K

The integrand of the second term on the right-hand side is subject to the relation
wy (0x(Lo") Qk 0x(Lo)) < [[E(Bo+T)QkE(Bo+T)]| - ww(0x(Lo'Lo))  (6.5b)

with Ag denoting the closure @,. Upon insertion into§.5g, removal of the resulting
common factory(Qk ) on both sides and passing to the supremum with respect to all
unit vectors¥ € E(Ap)H, we get

EBo)QcE(o)l < | o[ [ax(Lo).Lo'|EBo-+T) | + [EBo-+ M) QcEBo-+T)]|
(6.5¢)



92 Disintegration Revisited: Choquet Theory

where use is made of the fact that all the veclayl (—y)W belong to the subspace
E(Ao + )X for arbitraryy € RS andW € E(Ag)H. The preparatory estimaté.{) is
now established by complete induction onwhere this natural number is defined in
dependence on the ségandr through the conditiofido +n) NV, = 0 (cf. the proof
of Proposition2.6 on page9).

Forn= 1 we have, according to the spectrum conditiB(lo+I") = 0 so that 6.4)
is trivially fulfilled since its left-hand side vanishes. Now assume that the condition
(Do +Thi1) NV, = 0is valid, which, stated another way, means that the intersection
of (Ao +T) + p with the complement 0¥, is empty. AsAo+ I is a bounded Borel
set we can apply the induction hypothesistior. e. (6.4) with A replaced byhg+ T,
to infer that there exists a bounded Borel Agthich satisfies

IE(Bo+MQKE(Bo+T) || / d° || E(Ag) [ox(Lo), Lo*| E(AD) | (6.6a)
for an appropriate constaNf,. This estimate inserted int6.69 amounts to

[IE(B0)QkE(Ao)]|
K,?:XH [GX(Lo),Lo*]E(Ao—f—r ‘-I-N / dSXHE A// [GX(Lo) Lo* ]E(A N
(6.6b)

from which to conclude the validity of5(4) with suitable constaril” = Nj + 1 and
proper bounded Borel s&t' = AjU ((Ag+T) 4+ —T') is an obvious task.

Now, having established (4), we can specialize it thg = A and pass to the limit
K RS as in the proof of Propositiod.6, noting that

Qiy ™ =E(L)QkE()

and that, due to almost locality bf, the integral on the right-hand side can be extended
over all of RS. As aresult, in view of Definitior2.8, one arrives at the desired inequality
(6.3), where the formulation chosen makes explicit its dependendeanml. O

The formula 6.3) just established is to be applied in the sequel to produce an es-
timate of the seminornga(Lg) for operatorsLy € £o(I") with compact and convex
I C OV, in terms of the initial operator nori. || and of the normQ™( . ) introduced
in Definition 6.1 In order to get a manageable result we specialize to themasés.

Lemma 6.4. Let A be a bounded Borel set arida compact and convex subset of the
complement o¥ ;. Then there exists a bounded Borel A&tA,I"), depending oA
andTl, such that for any §. € £o(I") the estimate

da(Lo) < N'(8,7)Y2(a(s) |ILo|l> +b(s) | Lol| +c(5)) /2

Q%(Lo)"*|[E (" (,T)) LoE (" (1, 1)) ||

(6.7)

holds with suitable coefficients depending on the spatial dimension s.
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Proof. We have to calculate the integral on the right-hand sidé &) é@nd, to do so, it
is split into two parts according tx| > R or [x| < Rwith an abitrary radiu® which
is held fixed for the moment. For largel we use the estimate 29 for the integrand
and get in terms of the norQ:

|E(A"(A,T)) [ox(Lo), Lo*] E(A/(A,1)) ||
< | [ox(Lo), Lo*] || < 4lILoll lILo— (Lo)o-1 [l +2[[Lo — (Lo)o-1x 17
< 4]Lol| 22 |x|72Q%(Lo) + 22 x| *Q%(Lo)".  (6.8a)

Accordingly, the respective integral is subject to the inequality
/|| RdeHE(A’(A,r))[aX(Lo),LO*]E(A'(A,r))H
X|>

<272 Lo Q(Lo) |

[x|>R

A x| 254+ 2451 Q2(Lg) / d [x| . (6.8b)

[x|>R

The integrand for smalk| is evaluated observing the spectral projections arising on the
right-hand side of.3), which are abbreviated @& = A'(A, ") with closured'. This
leads to

E(A'(A,1)) [ax(Lo), Lo"|E(A'(A,1))]|

< ||E(A)ax(Lo)E(A —T)Lo*E(A) H+HE (A)Lo*E(&Y +T)ax(Lo)E(A)||

<|E@ U@ —T)LoE(A U@ — ) ||+ ||E(&' U@ +T))LoE(A U +1) ||?
<2||E(L"(A,1))LeE (" (A,1)) | (6.92)

whereA"(A,T) =AU (A+T)U (AU (A —T)) U (AU (A +T))—the inclusion ofAU

(A+T) into this definition being required at the very end of the present argumentation.
The corresponding integral satisfies the inequality

/|x|<RdSX |E(A'(A,T)) [ox(Lo), Lo*[E(A"(AT)) ||

<2|E(a"(,M)LE("(A,1)|? [ d% (6.9b)
XI<R

The integrals remaining in6(8b) and ©.9b are known from calculus (cf.2p, Sec-
tion 4.11]):

/ d5x|x|23:oo5/ drrsir =g RS, (6.10a)
[x|>R R
/ d5x|x|‘45:(os/ drrsir %= (35 1R, (6.10b)
X|>R R
R
/|<Rd5x:ws/0 drrst=s 1R, (6.10c)
X

where the factocys is defined via thé -function as

ws =21 (s/2) Ve (6.10d)
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Collecting the results fromg(8h), (6.9 and €.10 one gets for the complete in-
tegral

| dx[[E((@.D) [ax(Lo), L] @A, D)

< xR ((9) Q%(Lo) R+ b/(9) Lol Q=(Lo)R >
+c’(s)HE(A”(A,I’))LOE(A”(A,I’))H2> (6.11)

with suitables-dependent factors. So far the valueRolhas been left open. To get the
concise formula.7) we deliberately choose

R = ||E(A"(A,1))LoE (A"(A, 1)) || 2 Q%(Lo), (6.12)

so that 6.11) simplifies to

[ (@) o) o JE@(B.1)|

< @sRE||E(8(A,1))LoE (& (A,1)||*(&(9) Lol + b/ (8) [|Lo]| +€/(9)). (6.13)

Inserting the square root 0612 into this estimate and carrying the result over to
(6.3, we finally arrive at §6.7), wherews has been included in the definition of the
coefficients.

Note, that the above argument is independent of the occurren@é(ifo) = 0 or
|E(A"(A,T))LoE(A"(A,T))|| =0, for in this caseja(Lo) = 0, so that §.7) is trivially
fulfilled. This consequence is immediate from the norm propert@ &% As to the
second of the above conditions, it turns out to be important that we have included
AU (A+T) into the definition ofA”(A,I). Thence the named assumption implies
|E(A+T)LoE(A)|| = ||LoE(A)|| =0, andda(Lo) = O is a result of Lemma.11. [

Our next aim is to single out a convex subset in the class of all particle weights
which turns out to be compact in a suitably chosen topology. To this end it will be as-
sumed from now on that the underlying quantum field theory satisfies the Fredenhagen—
Hertel Compactness Criterion, under the assumption of which the following result can
be established.

Proposition 6.5. In a quantum field theory which satisfies the Fredenhagen—Hertel
Compactness Condition the subsequent mapping, defined for bounded Borel subsets
A and compact, convex subsétef R+,

S Lo(M) = B(H) Lo~ Si(Lo) = LoE(D),

sends balls iny(I") of finite radius with respect to the norfii. ||m, me N, onto
precompact subsets & () in its uniform topology.

Proof. Let £5(I") denote the closel-ball, R> 0, in £o(I") with respect td| . [[|m. By
Definition 6.2, the condition|||Lol|m < R, Lo € £o(I"), implies QM(Lo) < R, stating a
property of uniform approximation. This means that, gigen 0, there exists a radius
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ro, take e. gro = (2R/€)~™?2, such that to anig € £gr() we can find a local operator
(Lo)ro S Q[(Oro) W|th

ILo— (Lo)r,l| < €. (6.14a)

Again according to Definitiol.2, one also hafLo|| < R, so that the collection of local
operators just introduced belongs to the closed ball of reRlits in A(0Oy,). Now, the
Fredenhagen—Hertel Compactness Condition ensues that there exists a finite number of
operatordy, k=1,...,N(¢), in this ball such that anflL o), satisfies the condition

|E(A+T)((Lo)ro — LW ED)|| <€ (6.14b)

for at least on&. Combining this with §.143, we see that for anlo € £7:() there
exists a suitable operatbg € 2(0Oy,) with

|E(A+T)(Lo—L)E(D)]| < [ILo— (Lo)roll + [[EA+T) ((Lo)rs — Lk) E(A) || < 2e.
(6.14c)

It is an immediate consequence that finitely many elements ﬂ@}gﬁr) can be selec-
ted, serving as centres of-balls which cover the set

By arbitrariness of, we have thus established precompactness of the maghiiy
the sense of the Proposition. O

The results presented thus far have only laid down the groundwork for the topolo-
gical considerations concerning the set of particle weights proper. For the moment we
return here to the special continuity properties of the asymptotic functionals resulting
from the limiting procedure expounded in ChapteAccording to PropositioR.11in
connection with .20 of Lemma2.12 one has for ani;,L, € £ and anyA € 2:

0(L1*ALz) | < [|h]|||E(A+T1)AE(A+T2) || da(L1) da(L2). (6.15)

Specializing now to operato¥sfrom the unit ball of a locaC*-algebra and to vacuum
annihilation operators; andLy from the || . ||2s-unit balls of £o(I'1) and £o(I2),
respectively, with compact and convEy, we infer from ©.15 by use of Lemmd.4
in connection with Definitiors.2that there exist constan®$(A, 1) andC' (A, T'2) such
that

|o(L1*ALz) | < [[h]|=C'(A,F1) C'(A,T2) -
|[E@+T1)AEG+T)|| [LE (A" (A, T1))|| 1z

Y2 (6.16)

IL2E(A"(AT2)) ||

with appropriate bounded Borel sé¥$(A, M) andA”(A,T1), depending o and both

of the compact sefs; andl,. An inequality of type §6.16) can likewise be imposed on

the corresponding sesquilinear form, which opens up the way to distinguish a certain
subclass in the spacéeof all sesquilinear forms o x £.
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Definition 6.6. The setS® of all sesquilinear formg/( . | . ) on £ x £ which are char-
acterized by the existence of consta®t\,I'1), C'(A,'2) andC” such that the follow-
ing condition 6.17) holds for any operatoh € 2(1(0) as well as folL; € ES?l(Fl) and
Lo € £83%(T2) with compact and convel, is a subspace &

W(L1|AL)| <C"C'(A,T1) C'(A,T2)-

|[E@+T1)AEB+ )| [|LE @R (A1) 12,

1/2|

ILE(8"(8,72)) |2 (6.17)

Its intersection with the positive corl& of all particle weights according to Defini-
tion 3.14is again a positive proper convex cone, dendtgd which obviously com-
prises the particle weights induced by asymptotic functionals.

Due to 6.17), the spacéP can be furnished with various seminorm topologies.

Definition 6.7. For any combination of bounded regiofiswith compact and convex
1 andlM,, a seminormPr‘zr2 can be introduced o8 by

B0 (W(.|.)) = sup{ W (La|AL) | : A€ 1(0), L1 € £83(T1), Lo € sgfl(rz)}.
(6.18)

The convex subset iV, which is to be used from now on and will turn out to be
compact when furnished with a suitable topology, is introduced again in viedvbi)(

Definition 6.8. WY is the convex set of all particle weights W® which satisfy the
inequality

IW(L1|ALz)| <C'(A,F1) C'(A,T2)-

||[E@+T1)AEGB+ )| [|LLE Q" (AT 1/2

Y2 (6.19)

|L2E(A"(A,T2)) ||
for all bounded region®) and all compact and convdx andl,. The difference
between this condition and (L7) is that the onlyw-dependent consta@’ has been
omitted.

Remark.According to 6.16), all particle weights arising from asymptotic functionals
with ||h|| < 1 satisfy 6.19 and are thus contained WY,

Now, as a consequence of the Compactness Criterion of Fredenhagen and Hertel,
we know that there exist in each case finitely many operatog; () as well as in
£853(M), 1 = 1,2, serving as centres &fballs to cover the set§§3 (M)E(A"(A, 1))
andE(A+T1)41(O)E(A+T2). These operators can be used to span finite-dimensional
subspaces i8o(M1) andA(0)£Lo(I2). The corresponding space of sesquilinear forms
defined on these domains is again finite-dimensional, so that its unit ball with respect
to the reIativePr?rz-topology can be covered by a finite numbeiedsalls ( note that
bounded sets in finite-dimensional vector spaces are relatively compact). The restric-
tion of any elemenw of WP to the named subspaces &§(I'1) and24(0)Lo(I2) is
thus contained in one of these balls. This in turn means, that we can even select a fi-
nite number of elementék € W2, k= 1,...,N(2¢), such that any element 6?2 is
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contained in a 2-ball around at least one of these chosen forms with respect to the
aforementioned relativé’r‘f’rz-topology. But then it can be shown that the-Balls

with respect to theSPr r,-topology proper indeed cover all 0. To see this, le¥\k

be the element pertaining W € WP and letL, € £25()), 1 = 1,2, andA € 24(0) be
arbitrary. Then there exist operatarse £33 (I'y) andA6 € A1(O) which satisfy

(L —LDHE("(A,M))| <8, (6.20a)
[E@+T1)(A-A)EB+T2)|| < 8. (6.20b)

Now, making use of conditior5(19 on elements ofV/? in connection with §.20) as
well as of the defining property fokk , we get

W (L1|AL) Wk (L[AL) | < W(Li[AL) W (L3]AR)|
+ W (L3|APLS) — Wk (LE|ALY) | + [Wk (L3|ALY) — Wk (L1|ALy) |
<2(28Y?)+2¢. (6.21)

Since we are free to choodeappropriately small in dependence on a gigen 0, this

final relation shows, upon taking the supremum with respect to the operators appearing
on the left-hand side, that for eadhc WP there exists at least ol € W2 such that

79, (W—Wk) < 3ein accordance with our statement.

As in Chapter4 we want to pass at this point to countable familék, }c and
{I'' }1en of bounded regions in space-time and of compact and convex sub$afs .of
By Definition 6.7 any triple taken from these sequences defines a seminoSf.dn
this way SP can be topologized with a sequen®,}men of seminorms and thereby
becomes a locally convex (Hausdorff) space. This space is metrizable accordirig to [
Chapter Four, 818, 2.(2)] and its topology can moreover be derived from the increasing
sequence of seminorms

R¥(W) = max Zn(W), WeSP, keN. (6.22)
1<m<k

This countable system can then be used to define an (F)-rigtm.[163] onSP which
furnishes this space with the same topology. It is given by

1 KXW
W[l = Z > 1+Rk , WesP, (6.23)

and generates a translation-invariant mettit; Chapter Four, 8 18, 2.(3)]. Giverr 0
there exists, according t6.3, an indexM such that for anyV,W’ € SP

1 RKW-W)
Z

W —wW
MWWl = S R w

1 RKW-W) ,
<< +sz1+g(kw W < +sz MW —W'). (6.24)

A consequence of the preceding paragraph in combination with the defintia® (
is the fact thabV/? can be covered by a finite number of balls with a given arbitrarily
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small radius with respect to th¥-topologies. It is then an immediate conclusion from

the definitions involved that the sesquilinear functionals arising as limits with respect
to|| . |r of sequences iMVZ are again elements &. This convex subset thus turns

out to be closed. Since it has been seen above to be precompact, it is indeed compact
in the||| . ||r-topology.

Proposition 6.9. The convex sa/? in the class of all particle weights is compact with
respect to the metric derived from the (F)-nofm |||r.

The above work has laid the foundation for an application of Choquet's Thedrem [
Corollary 1.4.9] which tells us that any particle weight| . ) in the metrizable compact
convex seW? can be represented by a positive and normalized measure vanishing off
its extreme boundargeW?:

Clo= [ @) (6.25)

The above result represents the present status of the Choquet approach to a dis-
integration theory for particle weights. The problem to be tackled at this point is the
open question of how a base can be fitted into the a6favhich is completely con-
tained inW2. This would allow for a disintegration of a particle weight on this base in
terms of extremal points, defining extremal rays of the cdffeand representing pure
particle weights. On this foundation a complete theory in parallel to that developed
for states on &*-algebrall in [11, Sections 4.1 and 4.2] still awaits its completion.
The advantage of this approach in comparison to the spatial disintegration presented
in Chapter4 is that, apart from the somewhat intricate topological considerations, it is
more direct and the resulting pure particle weights are no longer subject to the restrict-
ive Definition4.1. On the other hand, the mathematical problems concerning convex
sets in infinite-dimensional spaces are far from being trivial. Therefore, a lot of work
remains to be done until eventually the particle content of a quantum field theory is
seen to be encoded in the geometrical structure (the set of extreme rays) of a positive
cone of particle weights.



Chapter 7

Summary and Outlook

The present work is based on the general point of view that the concept of ‘particles’ is
asymptotic in nature and simultaneously has to be founded by making appropriate use
of the notion of locality. This reflects our conviction that the long-standing problem
of ‘asymptotic completeness’ of quantum field theory, i. e., the question if a quantum
field theoretic model can be interpreted completely in terms of particles, has to be
tackled by the aid of further restrictions on the general structure, which essentially are
of a local character. The question is, what the local structure of a theory should be in
order that it governs scattering processes in such a way that asymptotically the physical
states appear to clot in terms of certain entities named particles. The compactness and
nuclearity conditions discussed ind] and the references therein are examples of this
kind of approach. We do not claim that they already give a complete answer, but believe
that they indicate the right direction.

In this thesis we have constructed asymptotic functionals on a certain algebra of
detectors giving rise to particle weights which can be interpreted as mixtures of parti-
cle states. A disintegration theory has been developed for restricted particle weights by
means of a highly technical procedure in Chaptehis constitutes the basis for the
definition of mass and spin even in the case of charged statksWe are convinced
that the technicalities involved can be dissolved by future research. In this connection
the analysis of concrete models may be helpful. Such investigations are already under
way. They concern the Schwinger model] and an application of our formalism to
guantum electrodynamic{]. It is expected that some insight may be gained with
respect to the open questions mentioned in the various chapters. E. g., the convergence
problem in connection with Theoref10 can perhaps be solved with additional in-
formation at hand, and the direct integral decomposition of Chajpteight get more
manageable, unfolding the connection between the intrinsic energy-momenta pertain-
ing to the irreducible representations and the geometrical energy-momenta (velocities)
that stem from the asymptotic functionals.

So far we have consideraihgleparticle weights. Another field of future research
is the inspection of coincidence arrangements of detectors &k im fthis respect, too,
the analysis of concrete models is helpful.

As indicated by Chaptes and in view of the partial results presented in Chapter
phase space restrictions seem to be a key ingredient in the general analysis, in particular
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of the Choquet approach to disintegration. This theory is still in its initial stage. But,
difficult as the mathematical problems concerning convex sets in infinite-dimensional
spaces are, it deserves further efforts. Presumably, both the spatial disintegration and
the Choquet decomposition will eventually turn out to be essentially equivalent, re-
vealing relations similar to those encountered in the disintegration theory of states on
C*-algebras 1, Chapter 4]. Further studies have to disclose the geometrical structure
of the positive cone of particle weights, as the particle content of a theory seems to be
encoded in this kind of information.



Appendix A

Concepts of Differentiability

Various notions of differentiability have to be used in this work and some of them take
on a somewhat unusual shape. So it seems right to collect in this appendix a number
of definitions and propositions, both to assign a precise meaning to the concepts proper
and to their consequences as well as to fix the notation.

A.1 Differentiation in Locally Convex Spaces

Definition A.1. Let X be a (real or complex) normed space and¥ebe a locally
convex space over the same field whose topology is defined by the f@mity\ € L}

of seminorms which separate the pointsf Suppose further that we are given an
open subsed of X.

(a) A mappingF : & — U is called differentiable at the pointe & if there exists
a continuous linear mapping : X — U such that for any vectolj in a certaino-
neighbourhood! C X the incremenE (r + h) — F(¢) allows for the linearized approx-
imation

Fr+h)—F() =Th+RF.(b), (A.1a)

whereR[F, 1] is a mapping ol to U subject to the condition
i')iTOthl’lqA(R[F,x](h)) =0 (A.1b)

for any seminorny, A € L. The linear operatofF occurring in @.14) is signified as
DF (r) and called the derivative &f aty.

(b) The mappind- : & — U is called differentiable if it is differentiable at apye &.

(c) The differentiable mapping : & — U is called continuously differentiable if the
mapping® > r — DF (r)h € BV, which exists by assumption, is continuous with respect
to the locally convex topology ¢ for any givenh € X.

Remark. The definition of the continuous linear operafF (r) requires uniqueness
of the corresponding in (A.13), but this is easily established. Assume the existence of
anothero-neighbourhood!’, a continuous linear operatdt : X — U and a mapping
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R[F,z] : & — U which, upon insertion intoA.18), represent the incremeR{r + h) —
F(r) such thaR[F,] fulfills a condition analogous toA(1b). Then

Th—T'h =RI[Fx](h) —RFxl(h), beUnil.

Lety € X, y # o, be arbitrary but fixed, then fax € C\ {0} small enough we infer
from the above equation due to the linearity of bdtand T’

o (Ty—T'y) = o (a*(R[F,x](ay) — RIF,zl(av)))
= [ln|| llay || 2o (R[F. 5] (o) — RIF.z)(am)),

where the right-hand side vanishes in the limit- O for any seminorna,, according
to (A.1b). This yieldsoy (Ty) = o, (T'y), valid also fory = o, and as a consequence
Ty =T’y for anyy € X since the seminorntp, separate the points .

An immediate consequence of the presumed continuity of the linear opetstds,
entering as derivatives the representati@rig) of the increment of atp, is the fact
that differentiability implies continuity.

Corollary A.2. Let X be a normed space and Igt be a locally convex space. If the
mapping F: & — U, & C X open, is differentiable at the pointe & then it is also
continuous irx.

The methods used in the standard theory of differentiable functions yield the follow-
ing propositions when applied to the concept laid open in Definifiohy the main
modification being the occurrence of seminomR®N Y in (A.1Db).

Proposition A.3 (Product Rule for Derivatives). Let X be a normed space ar® an
open subset cf.

(i) Suppose tha®s is a locally convex space and that the mappings®& — 2 and
f: ® — K, K the scalar field of bottX andJ, are differentiable at € &. Then their
product fF is differentiable at this point, too, and the derivative & given by

D(fF)(x)h=Df(x)bF(x) + f(x) OF (r)h, heX.

(ii) Let?) be anormed algebra and assume that the mappingé ) and G: & —
) are differentiable at € &. Then their product FG is differentiable gttoo, and the
derivative is

D(FG)(r)h =DF (1)h G(xr) +F(r) DG(x)h, bheX.

Proposition A.4 (Chain Rule for Derivatives). Let X and Q) be normed spaces and
let U be a locally convex space. Assume further that the mappingpG— 9) is
differentiable atr € &1 and that the mapping F &, — 9 is differentiable at Gr),
where®; and &, are open subsets &f and®), respectively, and @1) C &,. Then
the composition of F and G: FG: &1 — U, exists and is differentiable atwith a
derivative connected to those of F and G through

D(FoG)(r) =DG(F(r)) o DF ().
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The fundamental Mean Value Theorem which has to be formulated in the setting
of Definition A.1 is based on the following two lemmas. Their proof as well as that of
the theorem proper is an adaptation of the reasoning to be fourid,iikapitel XX,
Abschnitt 175].

LemmaA.5. Let F: [a,b] — U be a continuous mapping on the compact interval
[a,b] C R to the locally convex spac® and suppose that it is differentiable on the
interior of this set with®F (x) = 0 for any x< |a,b[. Then F is constant ofa, b).

Proof. Letsandt be arbitrary distinct points ifa, b[. We shall assumg< t and want
to show thaf (s) = F(t). Defineu = 2~1(t — s) and consider one of the seminorops
topologizingy. There are two possibilities:

o (F(u) —F(s)) = o (F(t) —F(u)), (A.2a)
o (F(t) —F(u)) > oy (F(u)—F(s)). (A.2b)
Depending on the actual situation we define an intessal; [ C [a,b], choosings; =,

t1 =uin case A.28) ands; = u, t; =t in case A.2b). Independent of this selection is
the estimate

i (F(t) —F(s)) < an(F(t) —F(w) +a (F(u) —F(s)) <20 (F(ta) - F(Sl)z- )
A.3

The same procedure can then be applied to the inté&su#d|[, to the resulting interval
|s2,t2[ and so on. In this way a sequence of intenjalst,[ is constructed, which is
decreasing with respect to the inclusion relatids; 1,th1[ C |sh,tn[. Furthermore
the lengths are explicitly known as— s, = 27 "(t — s) and the estimate’(3) can be

generalized to

o (F(t) —F(s) < 2" (F(tn) = F(sn)).- (A.4)

There exists exactly one poinp € |a,b[ belonging to all intervals of this sequence
and by assumptio®F (up) = 0, so that forh in a small 0-neighbourhood C R the
increment ofF atug is represented by

F(up+h) —F(up) = hR(h) (A.5a)
with a mappingR : U — U satisfying
LiLanA(R(h)) =0. (A.5b)

Hence, giverz > 0, there exist® € N such thaty, (R(Up — sn)) anda, (R(t, — ug)) are
majorized by(t —s)~1e for n > N. According to @.5a) this implies

ar (F(tn) —F(sn)) < o (F(ta) — F (Uo)) + 0 (F(sn) — F (o))
< [t — Uo| G (R(th — Uo)) + |Uo — Sn| o (R(Uo — Sn))

€ € € €
< tn—o)— + (Uo—S0) = = (lh—S1) i = o0

t—s t—s 20’

—_ =
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where we made use of the length formula for the intefsat,[. From (A.4) one then
infers

€
a(F(H)-F(9) <2'5 =

so that, by arbitrariness efandq, together with the separation property of the semi-

norms, we see thadt(t) = F(S) = vo € Y. This relation holds for ang, t € |a,b|

and extends by the supposed continuityFofo all of [a,b], establishing- = vy as

stated. O

Lemma A.6. Let F: [a,b] — U be a continuous mapping on the compact interval
[a,b] C R to the locally convex spac8 and define G [a, b] — T, U the completion of
3, through the integral

G(x)i/axd{) F(9), xe[abl.

Then the mapping G is differentiable for anye{a, b[ and the action of the derivative
DG(xp) as a linear operator orR is given by

DG(x)h=hF(x), heR. (A.6)

Proof. By [26, 11.6.2] G is a well-definedl-valued mapping on the compact interval
[a,b]. Forxo €]a,b[ andh € R satisfyingxy + h € [a,b] we have

Xo+h
G(xo+h)—G(xo):/ 49 F(9),
Xo

hence

Xo+h

G(Xo+h) — G(x0) — hF (o) :/XO d8 (F(8) —F(x0)) =p(h). (A.7a)

Now by assumption9 — o, (F(8) — F(xo)) is continuous on the compact interval
of integration for any of the defining seminormsof U, and, according to”5, 11.6.2
in connection 11.5.4], one has for amthe estimate

. 1 Xo+h B B
o (p(h) < | | 09 o0 (F9) ~F 00)| < avan (F9) — F ),
(A.7b)

where the right-hand side vanishes in the limit> 0. Thus Q.73) corresponds to the
representation/.1a) of Definition A.1 in terms of the incremen®(xp + h) — G(Xo)
with a residual ternp(h) satisfying @.1b). This proves differentiability oG on|a, b|
along with relation 4.6). O
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Theorem A.7 (Mean Value Theorem).Let X be a normed space arid be a locally
convex space. Let furthermore B — 2, ® C X open, be a continuously differentiable
mapping (in the sense of Definitidnl) and considetg € & andh € X small enough
so thatrg+9h € & for0 <9 < 1. Then

1
F(ro+h)—F(ro) = /0 49 OF (r0+95) b. (A8)

Proof. Givenyg € & andh € X as above we define two mappings andF, on the
compact interval0, 1] to U respectivelyl through

S+ F]_(S) = F(;o—FSf)), (A.9a)
s F(s) ;/0 d9 DF (ro+ 95)b. (A.9b)

From LemmaA.6 and Propositiom.4 we infer DF,(s) = DF (o + sh)h = DF(9)
for anys€]0,1[. This implies, according to Lemma5, that the mappindr, — F, is
constant on the intervél, 1] (Note, that~; as well ag are continuous.). Hence

1
F(z0) = F1(0) — F2(0) = Fa(1) —R(1) = F(xo+b) —/O dd DF (xo+9b)b,

which is just equationX.8) re-written. O

A.2 Differentiation on Analytic Manifolds

Being of a local nature, the concept of differentiability set out in Definitioh can be
generalized t@-valued mappings on analytic manifolds in the following way.

Definition A.8. LetM be a (real or complex) analytic manifold of dimenstand let
U be a locally convex space over the same field. Let furtherrfiér@) denote a local
chart onM, which means thap(U) € K¢, K =R orK = C.

(a) The mapping- : U — U is called differentiable (with respect tg atmg € U if

Fog!:@U) — U is differentiable atp(mg) in the sense of Definitior.1. The
derivative is denote®yF (mo) =D (Fo @) (¢(mp)).

(b) F: U — Y is called (continuously) differentiable i o ¢~ is (continuously) dif-
ferentiable in the sense of Definitighn1.

(c) The mappingrF : M — U is called (continuously) differentiable if to any €

M there exists a local chaftl, @) containingmy such thatF [ U is (continuously)
differentiable with respect t@.

(d) Let{g :i=1,...,d} be the canonical orthonormal basisiét. ThenF : U — Ry

is said to have continuous partial derivatives if there exkisbntinuous mappingE(:):

U — 9, such that the increment &fin directiong at anymg = (p‘l(to) € U allows for
the representation

Fog '(to+he) —F 0@ *(to) = hFy(mo) + R[F o @ %, to] () (A.10a)
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if h € Kis small enough, where the residual term satisfies
Limo|h|‘1qA (R[Fog@to](h)) =0 (A.10Db)

for any seminorngy, A € L.

(e) Higher derivatives of the mappirfg : U — U are defined recursively in terms of
partial derivatives of the mapping'%',, i=1,...,d, and, if they happen to exist, are
denotedrg for multi-indicesk = (ka,...,kq) € Nd in an obvious fashion (for given
let FX = F(L where all entries irk; apart fromk; = 1 vanish). F : U — U is called
N-fold (or infinitely often) continuously differentiable if the mappin5§ exist and
are continuous for anjk| =), ki <N (or |K| < «). These concepts apply equally to
mappingd- defined on all ofM.

Remark.If F is differentiable atnyg € U with respect to the local chaft(, ¢) it is also
differentiable with respect to any other local ch@rty) containingmg, and according
to PropositionA.4 one has

DyF (Mo) = DF (Mo) o (@o ™)’ (W(my)), (A.11)

where ((po qu)’ denotes the first derivative (Jacobi matrix) of the analytic function
eo~l:P(UNYV) — eUNV).

Strictly speaking, the definition of and notation for higher derivatives of a mapping
F : U — Y is justified only after the following two results are established.

Proposition A.9. F : U — 2 is continuously differentiable if and only if it has continu-
ous patrtial derivatives in all directiong, i = 1,...,d.

Proof. (i) If F is continuously differentiable the mappings
U > Mo — Fy(mo) = DgF (Mo)e (A.12)

are continuous for any furthermore A.108) and (@.10b) correspond for eadrexactly
to (A.18) and A.1b) of Definition A.1 settingh = he, so that the first part of the
statement is almost trivial.

(ii) Let all the partial derivatives d¥ exist as continuous mappin&é: U — 3, then,

for smallh = ", hje € K9, we have through an application of the Mean Value The-
ormA.7 for anymg = ¢ 1(tg) € U

F o(pfl(to + h) —Fo ¢7l(to)

_ Z{FO@1<t0+ihi e,-) _F Oq)l(to—i-i_zlhj ej)}
; =t i—1

d
i=1

IMe

hi F(;(nb)+zd:/old8 h; [F(},ocpl(toJrihj e +79 hie.) —E},(mo)] (A.13)
i=1 j=1



A.2 Differentiation on Analytic Manifolds 107

Due to continuity of the mapping'%, the second term on the right-hand side multiplied
with |h|~1 can be estimated by

]h\fqu <zd:/01da hi [F(Locpl(toJrihj e +3 hia> — F(L(nb)D
- d ' - i—1 '
< \h|1§|hiOgsaglqA<F$o¢1(to+§hj &+9ha) —Fy(m))
d ' i—1 '
< ;OrgaaglqA (F(;Jo (p*l(to + ,z_; hjej+9h; e,) - Fq',(rm)), (A.14)
where the last expression of the above inequality is seen to vanish in tha lim by

assumption. ThusA(13) in connection with A.14) establishes continuous differenti-
ability of the mappind= : U — U with

d
DeF (Mo)h =D " hiFy(mp), h e K" O
i=1

Proposition A.10. Assume that the mixed derivative;o%j = (F(;,)(jP and Fqii = (Fqi)i(p,
i,j €{1,...,d} of the mapping F U — U exist and are continuous dit. Then they
coincide:

Fg (mo) = F) (M), mp € .

Proof. For my = ¢ (to) € U and sufficiently smalh,k € K consider the following
expression which involves two incrementsfos ¢ 1:

Fo@ (to+hej+ke)—Fo@ (to+he) —Fog (to+ke)+Fo@(t).

By assumption on the existence and continuity of the mixed derivatives we can ap-
ply the Mean Value Theorem.7 twice to the above expression: One can consider the
increments with respect ® and apply the Mean Value Theorem to them first and after-
wards to the resulting integrand which takes on the form of an increment with respect
to ej, or one carries out the same procedure with the roles ahde; interchanged.
Upon division byhk # 0 this yields the integrals

1 1 .
/ dﬁ/ dd’ F(;)J o Y(to+9 he; +9'ke),
0 0

1 1 ,
_/ ds/ d9'F) 0@ *(to+ 9 he; +9'ke),
0 0

for anyh,k € K\ {0}. Specializing to sequencéhn }nen and{kq }nen in this set which
converge to O, it is a consequence of Lebesgue’s Dominated Convergence Theorem
(cf. [26, 11.5.6 and 11.6.2]) that fom — o the left-hand side converges &}’ (mo)

whereas the right-hand side approacﬁ§$mo) in the locally convex topology db.
Since this topology separates the elements ofve conclude that these limits coincide
and get the assertion by arbitrarinessrgfe U. O
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A.3 Differentiation on Automorphism Lie Groups

The concepts developed thus far can now be applied to the case where the underlying
analytic manifold is a (real or complex) Lie gro@pacting via a strongly continuous
group of automorphism@(g ‘g€ 9} C AutB on theC*-algebra®B. These auto-
morphismsg, when applied to a given elemeBic B, define &B-valued mapping on

g, for which statements can be proved that go beyond the above results. In doing so we
shall be concerned with the canonical coordingtés qu) of the first kind around the
neutral element of G where1 = cpgl(O) (cf. [55, Section 2.10]). Note also, that, for
giveng € G, the left and right translatiorig andry on G as well as their composition

ig = lgorg1 are analytic diffeomorphisms, so that their applicatiorifg, ¢v) yields

local charts around anda, respectively (cf.$5, Section 2.1]).

Proposition A.11. Let§ be a d-dimensional real or complex Lie group andXebe a
C*-algebra. For given B:= B define the mapping

Z:9—B g— =(9) =ay(B).

() =g is continuously differentiable o§ if and only if it is differentiable at € G.
(i) If =g is differentiable at € G, thenEag,(B) is differentiable for any ge G and the
mapping

§xU> (d,9) — De=a, 5 (9N
is jointly continuous in gand g for any local charfU, @) around g and any € K¢,

Proof. (i) To prove the non-trivial part, suppose tlget G is arbitrary but fixed. Then
(gUo, @), @y = @oolg-1, is alocal chart aroung with gy = I o@y*. According to the
definition of =g we have

EBo(pgleBolgo(palzagoEBo(pal

and, since the automorphisms are norm-preserving, the assumed differentiability of the
mapping=g o (pal atO carries over t&eg o (pal which by DefinitionA.8 means thaEg
is differentiable ag = ¢;*(0):

De,=8(9) = @(530%1) (0) = agoD(Zeo@?)(0) = agoDg,=a(1).

In view of (A.11) this relation can be re-written with respect to an arbitrary local chart
(U, @) on G containingg:

Dy=5(0) = Dg,=a(0) 0 (Go @ ) (¢(g)) = 0g0oDg=a(1)oM?g),  (A.15)

where the matrix elements M9(g) = (¢ o(p*l)’((p(g)) are analytic ing € U. Since
the automorphisms are norm-preserving and act stongly continuds ibtis evident
that application of the above operator to any vebtarK¢ yields a continuous mapping
onKY to 9B, thus establishing continuous differentiabilityf on G as stated.
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(i) Letd € G be arbitrary and consider the local chéod',Yy), Wy = @ o Myt
aroundg’ with inverseyi* = ry ogy*. Then

- 1 = T |
=ay(B) %" ==BOolg oy zzsowg,,

so that the assumed differentiablity®$ at1 and thus, according to the first partgat
with respect to the local chatlod', Yy ) implies differentiability oEag,(B) ati. Byan
application of A.15) we have

Dgp=ay () (1) = Dy, =8(d) = 0y 0D, =a(1) o N(g), (A.16)

where the matrix elements f(g') = (gyo wg‘/l)'(O) are analytic ing’. This in turn
can, again by use of\(15), be generalized to anye G lying in the local chartU, @):

©¢Eug/(B)(g) = Og 0@%5%/(8)(1) oM?(g) = agy 0D, =p(1) oN(d') oM ¥(g),
(A.17)

an expression which is obviously continuous in both variaglesdg when applied to
an arbitrary elemerit of K¢. O

Remark.Note, that in the case of differentiability &g the mappingy — D¢=g(9)

need not be continuous in the operator-norm topology of the Banach space of linear
operators ork¢ to 9B, since the automorphism grodmg : g € G} C Aut® is only
supposed to be strongly continuous.

Consider those operatoBse B for which the mappingsg is continuously differ-
entiable or§. According to Propositior\.11 this is equivalent to differentiability at
with respect to the canonical coordinateé&, @). Therefore one can define mappings
& corresponding to the partial derivatives® at1 (cf. (A.12)) by

3 (B) =Dy Ip(1)e, i=1,..,d.
Since=g depends linearly oB, it is easily seen that
3'(B1+By) =8 (By) +8'(By), (A.183)
O (AB1) =A0'(By), (A.18b)

for anyA € K andBy, By in 9B subject to PropositioA.11. Moreover,=g,g, = =g, =B,,
so that Propositior.3 yields

5'(B1B2) = &' (B1) B2+ B18 (By). (A.18c)

Equations A.183) through @.18¢) show that the mapping® act as derivations of the
C*-algebra® (cf. [24, Chapter 111.9] and {8, Section 8.6]). Their domains are certain
subalgebras which are invariant under transformations from the automorphism group
{ug ‘g€ 9}, since by A.16) for anyd € G and anyB € B with differentiable=g one

has

d
8 (ag(B)) = Dgy=a,(8)(1)8 = g (Dgr=a(1)N(g)a) = > N;i(¢)ag (8'(B)).
j=1
| (A.19)
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Let 1y denote theM-tuple (iy,...,im) with integer entries X ij < d, then the
corresponding products of derivatioBlg = & ... 3't act as linear operators on certain
subspaces dB which are again invariant with respect {ug ‘g€ 9} possibly the
trivial space{0} (note, that in general the derivations will not commute). Making use
of the concepts of differentiability introduced above together with the fact that left
and right translations act as analytic diffeomorphisms on the ggoltds a matter of
elementary considerations to establish the following connection between pratiucts
of the above kind and the partial derivatives of the mapgigdexed by multi-indices
K:

Zhe(@ = > Gl,(9)0g(3"(B)), (A.20a)
Im,M<K|

S"(B)= > D i(1)Z5g(1). (A.20b)
K,|K|<M

Here the real or complex functioﬁ},‘(‘i.M ande'ijK are analytic on the respective charts
(U, ) and(Uo, gn), containingg and1 respectively. Implicit in A.208) and (A.20b) is
the perception that the mappiag is N-fold (or infinitely often) continuously differ-
entiable if and only if the operatd belongs to the domain of ali'™ for M < N (or
anyM < o).

We formulate these results in the following definition and subsequent proposition.

Definition A.12. Let &', i = 1,...,d, denote the partial derivations pertaining to the
mappingss > g+— =g(g) = 0g(B) € B for certainB € B via

3'(B) = D¢ =p(1)E. (A.21)

For givenN € N the domain of arbitrar\N-fold productsé'™ of these derivations is
an invariant subspace & with respect to the automorphism gro{Jpg ‘g€ 9} and
denotedD™)(sB): the space oN-fold differentiable operators. The elements of the
spaceD ) (B) = Nyey DNV (W) in turn are called infinitely often differentiable with
respect tof ag : g € G}. Accordingly, the resulting operatod'(B) are designated as
the derivatives oB € B, if this element happens to lie in their domain.

Proposition A.13. For given Be 5 the mapping
=g:§— B g~ Zg(g) =0g(B)

is N-fold or infinitely often continuously differentiable if and only if the operator B
belongs taDN) (B) respectivelyD(*) (5).

A.4 Differentiable Linear Mappings

In this section a special notion of differentiability for linear mappings on a locally
convex spacé] is introduced, which is motivated by the following result that is valid
under the assumption of continuity.
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Proposition A.14. Let X be a (real or complex) normed spac& C X open, and le®s
and 20 be locally convex spaces over the same fi€l¢ R or K = C with topologies
defined by the familie$qy : A € L} and {q, : pe M} of seminorms separating the
points of¥ and2U, respectively. If E & — U is differentiable at the point € & and
Y9 — 2 is a continuous linear mapping then the composition

WYWoF: & —-W
is differentiable at, too, and its derivative is given by
D(WoF)(r) =WYoDF(p). (A.22)
If F is differentiable on all of® the same holds true fo¥ o F and (A.22) is valid for
anyr € &.

Proof. By assumption ot (relations A.13) and (A.1b)) in connection with linearity
of W, the increment oW o F aty allows for the representation

(WoF)(x+h) — (WoF)(x) = WoDF (1)h+ W(RIF,x|(h)), (A.23)

where
lim 1] ~*an (RIF,2](h)) =0

for any seminorng, A € L. But, due to continuity of¥, there exist to any seminorm
q{i on 2y a finite number of seminorn, on*Y, i = 1,...,N, and a positive constant
C, such that for any € U

A(W(v)) < Cumax oy (v),
and therefore

0< o] e (W(RIF.#](1))) < G max (1Io| e, (RIF,2](9) ) — 0.

1<i<N h—o

This is just the formulation of4.1b) for Wo F and thus proves, according t&.23),
differentiability of this mapping at together with A.22). The remainder of the asser-
tion is a trivial consequence. O

The above results can easily be generalizet4ealued mappings on an analytic man-
ifold M.

Corollary A.15. LetM be a (real or complex) analytic manifold of dimension d and
let and20 be locally convex spaces over the same field.:[t(F U is differentiable

at the point g € U, (U, @) a local chart onM, and¥ : U — 20 is a continuous linear
mapping then

YoF: U— 20
is differentiable at iy, and its derivative is given by
Do(WoF)(mg) =WoDeF (my). (A.24)

Accordingly,%Y o F is differentiable on all of\ in case that F is.
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PropositionA.14 motivates the following definition which does no longer depend
on the assumption of continuity.

Definition A.16. (a) Let X be a normed space afda family of differentiable map-
pings onX with values in a locally convex spaé8. A linear mapping¥ on U to
the locally convex spac®] is calledF-differentiable if and only ifWoF : X — 20 is
differentiable ori for anyF € J with

D(WoF)(r) =WoDF(r), reX.

(b) LetM be an analytic manifold and |&f, 25 andW be as above. Assume further-
more that¥ is a family of differentiableél-valued mappings oM. ThenW is called
F-differentiable if and only i o F : M — 20 is differentiable oM for anyF € ¥ and

Do(WoF)(mo) = WoDgF (mo)

for any chart(U, @) around the arbitrary element € M.



Appendix B

A Lemma on Norm-Separable
C*-Algebras

The following result is an adaptation ¢f, Lemma 14.1.17] to our needs.

Lemma B.1. Let2( be a unital C-subalgebra of3(3), where the Hilbert spacg( is
separable. There exists a norm-separabteaebra2’, containing the unit element
1, that lies strongly dense i#.

Proof. Let {(p”}neN be a dense sequence of non-zero vectofi$ Bnd lett = 21" de-
note the von Neumann algebra generate@byccording to von Neumann’s Density
TheoremMt coincides with the strong closuge™ of the algebr&!, which by assump-
tion acts non-degenerately 6 (cf. [24, Section 1.3.4], {1, Corollary 2.4.15]).

First we assume the existence of a separating vect®ifowrhich is thus cyclic for
oM’ [24, Section 1.1.4]. Then any normal functional @is of the formey, 4 | 9t with
P,y € H [54, Theorem V.3.15]. Choose operatdys, € 2; satisfying

Wy (Ajk) = [l g [ 9| —27F, (B.1)

which is possible due to Kaplansky’s Density Theoretf, [Theorem 2.3.3]. Le®(°
denote the norm-separalii¥-algebra generated by the unit elemértbgether with
all the operatorshjk, j,k € N, and select a normal functional g on 9t with the
properties||ox ¢ | A% = 0 and ||y g [ 9| > 0. Without loss of generality we can
assume|wy g | M|| = 1. To anye > 0 there exist vectorg;, ¢« from the dense sequence
in 3 rendering||@; — &|| and||@c — 8| small enough so that

(w0 — W q) [ M| <& (B.2)

Making use of B.1) we then get the estimate

&> [|(we.0 — gy ) [ M| > [|(00g,0 — W0 ) (Aj k)
= [y (A1) | > [loog, g T 9| =272,

which in connection withE.2) implies

loog g 1 90| < | (e 0 — . 00) T M| + [l I I < 26+27%
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By arbitraryness of we infer [|ox ¢ | 21| < 271 in contradiction to the assumption
that we ¢ | M be normalized. Thus g [ A = 0 implieswg g [ M =0, i.e. any
normal functional ortJt annihilatingQ(O annihilates)t as well. Now, since th€*-
algebra?l® acts non-degenerately &6, von Neumann’s Density Theorem tells us that
its strong ands-weak closures coincide witt®” = 207, and this in turn is equal to
the von Neumann algebeat; for the existence of an elemeAte 9t not contained

in A% would, by the Hahn-Banach-Theorem, implygaveakly continuous (normal)
functional that vanishes o but not onA € 91\ 2% in contradiction to the above
result.

Now suppose that there does not exist a separating vector for the von Neumann
algebrait = 2~. Then the sequence

(Ol ) 0= o

n=1

is such a vector for the von Neumann algefifa= (€p,,_, 1) (9m), wherel denotes
the identity representation @t in JH{. The result of the preceding paragraph thus
applies to the&€*-algebra?l = (@;"le) () of operators on the separable Hilbert space
H which is weakly dense ifDi: 21~ = 9. We infer that there exists a norm-separable
C*-subalgebra® of 2 including its unitl = (1)nen, Which is strongly dense ifl.
Now, | = @}, is a faithful representation &l on I and its inverse ! : 2 — 2

is a faithful representation &l on H which is continuous with respect to the strong
topologies of2l and2l. Therefore2® =1-1(2°) is a norm-separabl&*-subalgebra of
21, containing the unit elementand lying strongly dense i#f. O
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German translation of the quotation on page53

DioboRos: Griechische Weltgeschichte IV, 59 (5)

(nach der Ubersetzung von Otto Veh)

Theseus beseitigte auch bei Eleusis den Kerkyon, der die Passanten zum Ringkampf
veranlal3te und den, der unterlag, umbrachte. Sodann tétete er auch den Prokrustes,
wie er hiel3, der am sogenannten Korydallos in Attika hauste. Der nétigte die vor-
Uberziehenden Wanderer, sich auf ein Bett niederzulegen und war einer zu lang, dann
schlug er ihm die herausragenden Korperteile ab; denen aber, die kleiner waren, zog er
die FURe in die Lange, weshalb er den Namen Prokrustes erhielt.
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