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1  Introduction

Soil degradation and concomitant decline in soil fertility and quality is often emphasized as

constraint to crop productivity in tropical Africa (Moorman and Greenland, 1980; Edwards

et al., 1990; Okali,1992; Babalola and Opara-Nadi, 1993; Vlek, 1993; Ley et al., 1993;

Kayombo and Lal, 1993; Hoffman and Carroll, 1995). Soil degradative processes are

interrelated and constitute physical, chemical and biological mechanisms (Lal et al., 1990;

Theng, 1991; Lal, 1993; Hoffman et al., 1995; Halvorson et al., 1995) where the processes

leading to destructive land use may be gradual (Vlek, 1993). In managing degraded

tropical soils for improved productivity much emphasis was placed on enhancing soil

physical and chemical fertility whereas less is known of the associated changes in soil

microbiological and soil biochemical properties and how such changes influence plant

productivity and sustainability of a system (Swift and Sanchez, 1984; Eswaran et al., 1993;

Doran and Parkin, 1994; Pankhurst and Lynch, 1995; Jordan et al., 1995; Kennedy and

Smith, 1995; Yakovchenko et al., 1996).

Primary soil degradative processes in Alfisols in Nigeria were often equated with physical

and chemical soil properties and have been used as indicators of soil degradation

(Wilkinson and Aina, 1976; Juo and Lal, 1977; Aweto 1981; Lal et al., 1990; Laflen et al.,

1990; Hulugalle and Maurya, 1991; Hulugalle, 1992; Mbagwu, 1992; Nwosu et al., 1995).

However, even after optimizing the soil chemical and physical properties, expected high

crop yields were not obtained on many soils in West-Africa, as direct correlations between

soil organic matter and nutrient status with crop yield were not always evident (Jones and

Wild, 1975; Babalola and Opara-Nadi, 1993). Moreover, quantitative studies that linked

productivity with soil conditions could only roughly predict crop yields under various

cropping conditions (Roder et al., 1995 a; Kleinman et al., 1995; Buol, 1995; Hoffman and

Carroll, 1995; Yakovchenko et al., 1996).

Intercropping woody species with field crops is thought to contribute to the sustainability

of land use intensification by offering an effective means of enhancing soil conditions and

reducing the degradative effects of cropping (Kang et al., 1990; Kang, 1993; Kleinman et

al., 1995; Palm, 1995).

Improved fallow management systems were developed to prevent soil from degradation or

to restore degraded soils. The proposed sustainable management systems include (1) alley

cropping or hedgerow intercropping systems as defined by ICRAF as an agroforestry

system in which food or forage crops are grown in the „alleys“ between hedgerows of trees

or shrubs (AFNETA, 1992, pp. 8-9); (2) herbaceous in situ mulch systems (live mulch) in
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which food crops are planted directly in low growing cover crops (Akobundu, 1980;

Mulongoy and Akobundu, 1990, 1992).

Low growing leguminous cover crops that are grown simultaneously with field crops are

thought to protect the soil surface from incoming radiation, precipitation and wind. They

are also thought to sustain acceptable yields  by restoring soil nitrogen pools and

enhancing soil organic matter levels without deterioration of the environment (Akobundu,

1980; Mulongoy and Akobundu, 1990, 1992; Kleinman et al., 1995).

Application of plant residues, particularly by N2-fixing woody leguminous species and

nutrient recovery from layers below the rooting depth of the food crops as well as

prevention of nutrient leaching by hedgerows is considered favorable to soil fertility

improvement and  sustaining crop productivity of the system. However, the restorative

capability and the soil improvement potentials of planted fallows or alley cropping systems

were more pronounced on high than on low base status soils. Moreover, studies revealed

that the establishment of some fast growing trees may cause depletion of soil fertility and

productivity (Lundgren, 1983 as cited by Lal 1989; Wilson et al., 1986; Kang and Wilson,

1987; Kang et al., 1990; Kang, 1993; Haggar et al., 1991; Hulugalle, 1992; Kühne, 1993;

Palm, 1995; Juo et al., 1995; Juo and Manu, 1996).

Objectives

The present study was undertaken to link soil microbiological and soil biochemical

parameters with soil quality conditions and crop productivity and to identify those

parameters or processes that are affected most by long-term management. Degradation is

defined by land-use history and is reflected in the soil quality status and the productive

potential. A degradation index is used to discriminate between three selected sites varying

in time and intensity of land use based on the continuously cropped controls of long-term

experiments. Various improved fallow management systems are evaluated for their

potential as low-input continuous crop production systems by comparing them to sole

cropping.
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2 State of the Art

2.1 Soil quality indicators

Soil is a dynamic, natural resource critical to the sustainability of any terrestrial ecosystem.

It is an important component of the earth’s biosphere for the production of food and fiber

and the maintenance of environmental quality (Doran et al., 1996; Halvorson et al., 1996).

The quality of soil is rather dynamic and can affect the sustainability and productivity of

land use. It is the end product of soil degradative or conserving processes and is controlled

by chemical, physical, and biological components of a soil and their interactions (Kennedy

and Papendick, 1995; Elliott et al., 1996). Consequently, the manner in which soils are

managed has a tremendous impact on productivity and sustainability (Scholes et al., 1994).

The concept of soil quality changed consistently with an increase of the understanding of

soils and soil quality concerns (Warkentin, 1995). The quality of soils was mainly defined

(Larson and Pierce, 1991, pp. 176) by the soil’s function as “the capacity of a soil to

function within its ecosystem boundaries and interact positively with the environment

external to that ecosystem. Under this definition, soil quality is a key factor in the four

sustainability objectives as described by Lourance (1990), namely agronomic

sustainability, ecological sustainability, microeconomic sustainability and macroeconomic

sustainability”. A minimum data set (MDS) was proposed to measuring soil quality and its

changes due to current soil management practices by a selection of key indicators such as

soil texture, organic matter, pH, nutrient status, bulk density, electrical conductivity and

rooting depth (Larson and Pierce, 1991).

This definition was conceptualized more qualitatively by combining different resources

which impact on the sustainability by Doran and Parkin (1994, pp. 7) as “the capacity of a

soil to function within ecosystem boundaries to sustain biological productivity, maintain

environmental quality, and promote plant and animal health”. It was postulated that basic

soil quality indicators should reflect (1) ecosystem processes and relate to process oriented

modeling, (2) integrate soil physical, chemical, and biological properties and processes, (3)

be accessible to many users and applicable to field conditions, (4) be sensitive to variations

in management and climate and (5) where possible, be components of existing soil data

bases (Doran and Parkin, 1994, pp. 9). Based on these propositions a list of basic soil

properties that should be indicative of soil quality was established and included in the

MDS by Larson and Pierce (1991), and expanded with a few biological aspects of soil

quality, namely microbial biomass C and N, and soil respiration by Doran and Parkin

(1994).
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The identification of biological indicators of soil quality was reported as critically

important by several authors (Doran and Parkin, 1994; Elliott et al., 1996) because soil

quality is strongly influenced by microbiological mediated processes (nutrient cycling,

nutrient capacity, aggregate stability), whereby the key is to identifying those components

that rapidly respond to changes in soil quality (Scholes et al., 1994; Elliott et al., 1996).

Indicators, however, will vary according to the location, and the level of sophistication at

which measurements are likely to be made. Wylie (1994) and Smyth and Dumanski (1995)

concluded therefore, that it is not possible to develop a single short list which is suitable for

all purposes. Syers et al. (1995) also emphasized the range of likely indicators rather than

the use of a single indicator. Within the Framework for Evaluation of Sustainable Land

Management (FESLM) initiated by an International Working Group (IWG; Smyth and

Dumanski, 1995) evaluations to assessing the sustainability of current and alternative land-

use systems are based on changes in indicators of productivity over time rather than land

suitability classes. Within this context, the terms “indicators” and “thresholds” have been

defined (Smyth and Dumanski, 1995) as: (1) indicators are “attributes that measure or

reflect environmental status or conditions of sustainability”, whereas (2) thresholds are

“levels of indicators beyond which a system undergoes significant change, that is, points at

which stimuli provoke significant response”. In terms of sustainable land management, the

threshold value may be considered as the level of a specific indicator beyond which the

particular system of land management is no longer sustainable (Syers et al., 1995).

However, according to Syers et al. (1995) our understanding of likely thresholds is not well

developed, except for a limited number of environmental indicators such as soil acidity,

and nutrient status of P and K for a given soil type or some biophysical indicators such as

bulk density. It simply would be expecting too much for a single threshold value to

represent the boundary or cut-off between sustainable and unsustainable. Consequently, a

range of threshold values and temporal trends for particular indicators is required (Syers et

al., 1995).

2.2 Biological significance of the soil microbial biomass

The microbial biomass in soil is made up of bacteria, fungi, actinomycetes, algae, protozoa

and some nematodes, and is estimated to contribute about ¼ of the total biomass on earth

(Roper and Gupta, 1995; Pankhurst et al., 1995). The microbial biomass contributes to the

maintenance of soil fertility and soil quality in both natural and managed terrestrial

ecosystems in that it controls major key functions in soil (Turco et al., 1994; Elliott et al.,
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1996). The microbial biomass is part of the soil organic matter (SOM). Soil organic matter

plays a major role in terrestrial ecosystem development and functioning. In both

undisturbed and cultivated systems, potential productivity is directly related to the SOM

concentration and turnover (Smith et al., 1993). Soil organic matter is a complex mixture

of living, dead, and decomposing material, and inorganic compounds (Smith et al., 1993).

The living component makes up about 4 % of the total soil organic C and has been

subdivided into three components, (1) plant roots (5-10 %), (2) macroorganisms or fauna

(15-30 %), and (3) microorganisms (60-80 %). The non-living component of the total

SOM has traditionally been broken down into macroorganic matter or light fraction (plant

residues in varying stages of decomposition), and humus including non-humic

(carbohydrates, lipids, organic acids, pigments, and proteins) and humic substances (fulvic

acid, humic acid, and humin) (Theng et al., 1989). However, no sharp boundary exists

between these fractions in terms of physical-chemical properties. Moreover it is difficult to

relate this fractionation scheme to dynamic processes (Theng et al., 1989). However, a

number of models have been proposed to describe SOM-dynamics. In soil-crop models,

e.g. CENTURY for tropical ecosystems, SOM was separated into conceptual pools with

distinct turnover times: (1) the active (0.14 yr.), slow  (5 yr.) and passive (150 yr.) fractions

(Parton et al., 1994). The living soil organic matter pool, or the soil microbial biomass is

considered to be a part of the active SOM. The quality and quantity of the organic matter

of soils normally changes at slow rates which are difficult to detect in the short term

because of the large pool-size of organic matter and the spatial variability of soils.

However, the soil microbial biomass as active fraction of the organic matter responds

much more rapidly than soil organic matter as a whole to changes in management, climate

etc. For that reason, soil microbial biomass and the ratio between microbial biomass and

SOM has been proposed as an indicator of the state and changes of total soil organic matter

(Dick, 1992; Powlson, 1994; Pankhurst and Lynch, 1995; Pankhurst et al., 1995). Under

temperate conditions Powlson et al. (1987) could demonstrate in long-term straw amended

field experiments over 18 yrs. that the relative increases in biomass-C (37-45 %) and

biomass-N (46-50 %) were much greater than those in total soil organic C  (5 %) or N (10

%). Hence, the authors considered the changes in the microbial biomass as early indication

for changes in SOM (Powlson et al., 1987). Similar results were reported by Saffigna et al.

(1989) for an sub-tropical Australian Vertisol cropped with sorghum under different tillage

and residue management practices. The combination of residue retention and zero tillage

caused a relatively larger increase (31 %) in the microbial biomass than in the total soil
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organic matter (15 %). The application of farmyard manure (15-90 t ha-1 year-1) under sub-

tropical and semi-arid conditions in India was also found to increase the microbial biomass

without appreciably increasing soil organic C levels (Goyal et al., 1993).

Soil microorganisms are continually changing and adapting to changes in the environment.

This dynamic nature makes them a sensitive indicator to assess changes and to predict

long-term effects of changes in soil resulting from management practices (Kennedy and

Papendick, 1995; Kennedy and Smith, 1995).

Soil microorganisms also contribute to the maintenance of soil quality in that they control

many key processes in soils. They are involved in the decomposition and accumulation of

SOM, nearly all mineral nutrient transformations in soils related to plant nutrition and soil

fertility (Apsimon et al., 1990 as cited by Roper and Gupta, 1995; Pankhurst et al., 1995;

Kennedy and Papendick, 1995).

Soil microbial biomass also serves as a source and sink for mineral nutrients and organic

substrates in the short term, and as a catalyst to convert plant nutrients from stable organic

forms to available mineral forms over longer periods (McGill et al., 1986). Anderson and

Domsch (1980) reported that the microbial biomass  of soils contain substantial quantities

of both C and plant nutrients, whereby the nutrients temporarily held in the biomass largely

contribute to the pool of available plant nutrients in soils. The microbial biomass content in

agricultural soils under temperate conditions in Germany ranged from 0.27 to 4.8 % of the

total soil C and the average quantities of N, P, K and Ca were about 108, 83, 70 and 11

kg/ha, respectively (Anderson and Domsch, 1980).

Furthermore, microbes contribute to the formation of the soils structure in that they help to

aggregate the soil by polysaccharide production (Kennedy and Papendick, 1995;

Anderson, 1991). Soil organic matter consists of 25 % of carbohydrates with

polysaccharides (about  40 %) as the main fraction. The polysaccharides are predominantly

of microbial origin and are very important to forming stable micro-aggregates in the soil

with clay minerals, multivalent cations and humic substances because they are not readily

decomposed as compared to plant polysaccharides (Anderson, 1991).

Finally, the microbial biomass is releasing and containing enzymes which are responsible

for nutrient cycling (Saffigna et al., 1989; Srivastava and Singh, 1991, Carter, 1991; Ocio

et al., 1991).

The size and activity of the microbial biomass is regulated by the soil organic matter

quantity and quality and has been related to climatic conditions (Insam, 1990), soil

moisture content (Van Veen et al., 1985; Doran et al., 1990; Van Gestel et al., 1996), soil
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temperature (Joergensen et al., 1990), soil pH (Jenkinson and Powlson, 1976; Roper and

Gupta, 1995), soil structure and texture (Ladd, 1992; Jocteur-Monrozier et al., 1992) and to

soil and crop management practices (Aoyama and Nozawa, 1990; Ocio et al., 1991; Ritz et

al., 1992; Mueller et al., 1992; Amato and Ladd, 1992; Srivastava and Lal, 1994).

2.3 Cmic/Corg ratio

The ratio of microbial biomass-C to soil-C (% Cmic/Corg) is the microbial-C content per unit

soil carbon (Anderson and Domsch, 1989; Sparling, 1992). The ratio has been proved to be

a sensitive indicator of quantitative changes in soil organic matter due to changing

management conditions and climate (Anderson and Domsch, 1989; Insam et al., 1989).

Cmic/Corg was found to be higher in crop rotations than in monocropping soils of 26 long-

term experiments (134 plots) under temperate conditions in Central Europe, and was

attributed to the two management systems applied (Anderson and Domsch, 1989). Mean

Cmic/Corg was 2.3 % and 2.9 % under permanent monoculture and continuous crop

rotations, respectively. Soils that exhibit a ratio higher or lower than these proposed

equilibrium values would therefore be accumulating or loosing C, respectively (Anderson

and Domsch, 1989). However, to establish whether the Cmic/Corg ratio of a soil is in

equilibrium, thus whether a soil has achieved equilibrium in organic matter status, it will be

necessary to establish a baseline or reference values for each soil and a set of conditions to

which the tested soil can be compared (Sparling, 1992). For a range of soils in New

Zealand it appeared that these values were not readily transferable, particularly for soils

that differed widely in organic matter content and mineralogy (Sparling, 1992).

In long-term experimental sites under temperate conditions in Alabama, USA 78 % of the

variability of the Cmic/Corg ratio could be explained by the climatic conditions

(precipitation/evaporation quotient) (Insam et al., 1991). Thus, the ratio was smallest under

a balanced precipitation and evaporation regime (P/E = 1) and higher in drier (P/E < 1) or

more humid climates (P/E > 1) (Insam et al., 1989). However, the P/E-quotient as

suggested by Insam et al.(1989) to predict equilibrium levels of Cmic/Corg did not give

useful results when applied to a range of New Zealand soils (Sparling, 1992). Under New

Zealand conditions factors other than climate seemed to contribute to the relationship

between Cmic and Corg (Sparling, 1992).

One problem associated with the Cmic/Corg ratio is that both components have a common

origin, and are not independent of each other. Also, changes in organic carbon will impact

more on the ratio than changes in microbial biomass since the former is quantitatively
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much more abundant.

2.4 Biological significance of soil enzymes

2.4.1 Activity and stability of soil enzymes

Enzyme activity in the soil environment is considered important to contributing to the

overall soil microbial activity and to soil quality (Jordan et al., 1995). The total enzymatic

activity of soils is made up of enzymes that are associated with metabolically active or non

proliferating cells (biontic enzymes), and those that are attached to dead cells and plant

debris or being immobilized on the soil clay and humic colloids (abiontic enzymes;

Skujins, 1976; Burns, 1982; Dick et al., 1988). Enzymes in the soil solution are generally

short-lived because they are readily inactivated by physical adsorption, denaturation or

degradation (Sarkar and Burns, 1984).

Enzyme activities are an important index of the biological activity of a soil because they

are involved in the dynamics of soil nutrient cycling and energy transfer. Enzymatic

processes are closely associated with soil fertility as they mediate the conversion of

unavailable forms of nutrients to forms that are readily assimilable by plants and microbial

biomass (Sarathchandra et al., 1984; Sarkar et al., 1989; Dick et al., 1988; Dick, 1992;

Martens et al., 1992; Sinsabaugh, 1994).

Soil enzymes participate in the decomposition and synthesis of organic substances and are

important for the formation of recalcitrant organic molecules (Galstian,  1974; Martens et

al., 1992).

Enzymatic activity of soils reflect the intensity and direction of biochemical processes in

the soil matrix. Hence, the activity indicates the biological capacity of a soil to carry out

the biochemical processes which are important to maintaining the soil fertility (Galstian,

1974; Dkhar and Mishra, 1983; Burns, 1986; Garcia et al., 1994) as soil fertility depends

not only on nutrient status and availability but also on the turnover of N, P and other

nutrients (Lopez-Hernandez, 1989).

From inversely proportional relationships between P-availability and phosphatase activity

and N-availability and N-acquiring enzyme activities, Sinsabaugh (1994) concluded that

measurements of specific enzyme activities can be used as indicators of relative nutrient

limitation.

As enzymes do not react readily to environmental changes like the soil microbial biomass,

their activity is a more stable indicator of biological processes (Galstian, 1974). Those

enzymes in the soil that are associated with humic substances and to a lesser extent with
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clay particulates are protected against thermal denaturation, proteolysis, dehydration or

decomposition and are part of a persistent extracellular enzyme pool that is independent of

the existing microbiota (Burns, 1982; Sarkar and Burns, 1984; Miller and Dick, 1995). The

humic-enzyme fractions retain the original properties of the enzymes (Busto and Perez-

Mateos, 1995) as stable enzyme-organic matter complexes were found to allow diffusion

of substrates to the active enzyme site (Burns, 1982). Therefore, soil can be considered as a

sink and source of indigenous and persistent enzymatic capacity which is independent of

current or recent microbial and plant activity (Galstian, 1974; Burns, 1986; Lähdesmäki

and Piispanen, 1992; Busto and Perez-Mateos, 1995). Moreover, the enzymatic activity of

a soil is conditioned by land use history since enzymes are produced by living organisms

and plants which contribute to the biological soil formation.

The activity and stability of enzymes in soil is regulated by pH (Frankenberger and

Johanson, 1983; Trasar-Cepeda and Gil-Sotres, 1987; Dick et al., 1988), microbial biomass

(Saffigna et al., 1989; Häussling and Marschner, 1989; Srivastava and Singh, 1991; Carter,

1991), vegetation (Juma and Tabatabai, 1978; Harrison, 1983; Perucci et al., 1984; Helal et

al., 1987; Tarafdar et al., 1987), soil and crop management practices ( Perucci and

Scarponi, 1985; Beck, 1990; Martens et al., 1992; Kandeler and Eder, 1993), soil organic

matter (Juma and Tabatabai, 1978; Chhonkar and Tarafdar, 1984; Sparling et al., 1986),

clay minerals (Makboul and Ottow, 1979; Huang et al., 1995) and to the soil moisture

content (Harrison, 1983; West et al., 1988 a,b).

2.4.2 Acid and alkaline phosphomonoesterase

Orthophosphoric monoester phosphohydrolases (acid and alkaline phosphatases)

particularly catalyze the hydrolysis of P-ester bonds binding P to C (C-O-P ester bonds) in

organic matter. Inorganic P is released from organically bound P (leaf litter, dead root

systems and other organic debris) without concomitant release of C (Harrison, 1983;

Clarholm, 1993). Barrett-Lennard et al. (1993) reported that soil phosphatases may also

mediate the hydrolysis of P-esters leaked from plant roots. Phosphatases are concentrated

in the surface layer and rhizosphere where most of the fresh and less humified organic

matter is prevailing (Trasar-Cepeda and Gil-Sotres, 1987; Rojo et al., 1990; Asmar et al.,

1995). Acid phosphatase is mainly produced by plants but also soil microorganisms release

acid phosphatases. Acid phosphatase was detected in rhizodermal and root cap cells, in soil

fungi and bacteria, in mucilage covering roots, and in microbial membranes in soil (Fraser

et al., 1991). The production of acid phosphatase by fungal hyphae, however, is discussed
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controversially in the literature. Häussling and Marschner (1989) and Tarafdar and

Marschner (1994) found a positive correlation of phosphatase and mycelial hyphae length,

whereas others reported no difference in activity between soils with or without fungal

mycelium (Joner et al., 1995). Alkaline phosphatase is produced by soil microorganisms

and soil fauna (Chhonkar and Tarafdar, 1984; Nakas et al., 1987) whereas higher plants are

devoid of alkaline phosphatase (Tarafdar and Claassen, 1988; Juma et al., 1988). The

optimal pH for acid and alkaline phosphatase activity was reported as pH 6-6.6 (Nakas et

al., 1987) and pH 9-11 (Tabatabai and Bremner, 1969), respectively.

2.4.3 ß-Glucosidase

ß-Glucosidase belongs to a group of enzymes that catalyze the hydrolytic conversion of

cellulose to glucose. Cellulose is quantitatively the most important organic compound and

its mineralization and degradation in soil is a major process within the carbon cycle

(Sinsabaugh et al., 1991). Plant biomass, for example, consist of 40-70 % of cellulose

which is constantly replenished by photosynthesis (Enari and Markkanen, 1977; Enari,

1983). The microbial decomposition of cellulose is a complex process mediated

sequentially by at least three types of enzymes (Enari and Markkanen, 1977; Enari, 1983;

Hayano and Tubaki, 1985; Busto and Perez-Mateos, 1995). The (1) endo-ß-1,4-glucanases

catalyze the hydrolysis of ß-1,4 -bonds within the cellulose molecule. At the free endings

within the chain (2) further hydrolysis by exo-ß-1,4 glucanase releases cellobiose

(disaccharide) that is finally decomposed by (3) ß-1,4-glucosidase to yield glucose.

However, the complete decomposition of cellulose to glucose is only mediated in the

presence of ß-glucosidase which catalyses the limiting step in the degradation of cellulose

materials by removing cellobiose. Cellobiose, in turn, suppresses exo-ß-glucanases by end-

product inhibition (Enari and Markkanen, 1977). Electron microscopic observations of the

enzymatic hydrolysis of cellulose confirmed this hypothesis (White and Brown, 1981 as

cited by Enari, 1983). Hence, ß-glucosidase activity is considered an indicator for biomass

turnover (Garcia et al., 1994; Gander et al., 1994) as it is the driving force in the

decomposition of carbohydrates in soils (Deng and Tabatabai, 1996). The primary

producers of ß-glucosidase are mucoraceous fungi such as Actinomucor sp. and Mortirella

sp. (Hayano and Tubaki, 1985), whereas bacteria do not produce exo-ß-1,4-glucanases and

extracellular ß-glucosidase (Enari, 1983). ß-Glucosidase is concentrated in organic debris

of the soil surface and in the fine soil fraction (< 2 mm) where fungal hyphae prevail

(Hayano and Tubaki, 1985; Eivazi and Tabatabai, 1990; Foster, 1994 as cited by Miller
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and Dick, 1995). Busto and Perez-Mateos (1995) could demonstrate that ß-glucosidase is

extracellular and stabilized in soil by associations with humic materials. The optimal pH of

ß-glucosidase activity was reported to be pH 6.0 (Eivazi and Tabatabai, 1988).

2.4.4 Protease

The hydrolysis of proteins (proteolysis) is an important step in the organic nitrogen cycle

(ammonification and nitrification) of soils (Skujins, 1976; Ladd and Butler, 1972; Hayano,

1993) and is essential to maintaining soil fertility (Loll and Bollag, 1983; Takeuchi and

Hayano, 1994). Proteases decompose proteins into smaller membrane-permeable peptides

(oligopeptides) and amino acids which microorganisms can assimilate and metabolize to

ammonia and carbondioxide (Loll and Bollag, 1983; Hayano, 1996). The main

mineralization processes of biomass-N involve amino acid formation from protein and

ammonification from amino acids (Hayano, 1996). Most of the N present in unfertilized

soils is organic in nature and represents an important nutrient reservoir. Protein-N is the

major form of soil organic nitrogen and often makes up 1/3 of total soil N (Loll and Bollag,

1983). This is of particular importance in many areas of the tropics where plant residues,

household wastes and manure are often the only nutrient sources available (Ruthenberg,

1976; Palm and Sanchez, 1991). Thus, soil proteases are considered to reflect the

proteolytic potential of a soil and hence, to indicate protein degradation capacity (Loll and

Bollag, 1983; Kuprevich and Shcherbakova, 1971). Most proteases are extracellular since

a direct uptake of proteins does not occur as such (Loll and Bollag, 1983; Law, 1980).

Proteases constitute a heterogeneous mixture of enzymes with different molecular weights,

structures and substrate specificities (Ward, 1983). Therefore, the characteristics of

proteolytic enzymes are difficult to analyze (Ladd, 1972; Loll and Bollag, 1983; Law,

1983; Hayano, 1996). According to Sinsabaugh (1994) relationships between organic N

content and extracellular enzyme activities are complex and diffuse as N is associated with

nucleic acids, polysaccharides, proteins and humic complexes, whereby each of these N-

pools is accessed by discrete enzyme systems. Based on the type of action and catalytic

mechanism, proteases are classified according to the system of Hartley (1960 as cited by

Law, 1980) into acid protease, serine or alkaline protease, thiol protease and

metalloproteases. The origin of proteases in soil and their contribution by animal, plant and

microbiological sources is discussed controversially in the literature. Badalucco et al.

(1996) found highest protease activity in the root hairzone of wheat plants and concluded

therefore a contribution of root-hair-enzymes to the overall protease activity at the soil-
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root-interface (Badalucco et al., 1996). Similar results were reported by Nannipieri et al.

(1983), stating that the addition of ryegrass resulted in higher protease activity due to the

addition of exogenous enzymes with the ryegrass as compared to glucose amended soils.

Based on observations by Rempe et al. (1965) and Hayano et al. (1983) that aseptically

grown plants released invertase and peroxidase but not proteases and that tomato plants

exhibited much lower protease activity per root dry weight as compared to phosphatase

and ß-glucosidase, respectively, Hayano (1996) concluded that the contribution of

proteases derived directly from plants is probably negligible or much less significant than

that of other soil enzymes. Law (1980) stressed that extracellular proteolytic enzymes

derive from various bacteria, although it is not always clear whether the enzymes described

are truly extracellular or are released by lysing cells. And Glenn (1976 as cited by Law,

1980) suggested that only gram-positive bacteria produce truly extracellular enzymes.

These findings are supported by Hayano (1996). Selective inhibition of bacteria and

actinomycetes revealed that the soil contained no fungal protease (Hayano, 1996).

Watanabe and Hayano (1994 a,b), Watanabe et al., (1994) and Hayano et al. (1990 as cited

by Watanabe and Hayano, 1996) reported Bacillus sp. (gram-positive) as the numerically

dominant proteolytic bacteria derived from paddy fields and both Andosols and gray

lowland soils that were cultivated to sweet potato and a rice-wheat rotation or remained as

uncultivated grassland in Japan, regardless of substrate specificity. Depending upon the

soil, the optimal pH is reported as 6.8-8.8 (Ladd, 1972).

2.5 Limitations of bioassays

One constraint in using biological assays for soil quality indication is the lack of standard

methodology. Considerable variation exists among assay procedures used by various

researchers, making actual activity comparisons between sites difficult. It was thus

emphasized that if bioassays are to be used as soil quality indicators, soil sample

pretreatment, assay procedures and units of measurement must be standardized (Dick,

1994).

Soil enzymes are studied indirectly by measuring the activity via assays since it is difficult

to extract enzymes from soils (Dick, 1992). In vitro assays, however, measure a potential

activity under defined but artificial conditions rather than an activity under natural

conditions of substrate supply. The incubation conditions used ensure near optimal rates of

catalytic substrate conversion, thus making it difficult to relate the activities to those

occurring in soils (Suttner, 1990; Nannipieri, 1994). Another constraint was related to the
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inaccuracy of methods to discriminating between intracellular and extracellular activities of

soil enzymes (Nannipieri, 1994). Nonetheless, studying soil enzyme activities is considered

to provide insight into biochemical processes in soils, and is believed to be sensitive as a

biological index (Frankenberger and Johanson, 1983; Dick, 1992; Garcia et al., 1994).
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3  Materials and Methods

3.1 Study sites

The experimental sites were located at the research farm of the International Institute of

Tropical Agriculture (IITA; 7o 30`N, 3o 54`E, 213 m.a.s.l.) at Ibadan in the forest-savanna

transition zone of south-western Nigeria. The area has a bimodal distribution of rainfall and

receives on average 1250 mm of rain, with two peaks in rainfall distribution that occur in

June and September and a period of lower precipitation in August (Figure 1).
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Figure 1. Climatic diagrams at IITA for 1993 (top) and 1994 (bottom)

(source: modified from Vielhauer and Hauser, 1995).

The dry season lasts from November to March. The annual rainfall is highly erratic and

single rainfall intensities are high. The bimodal character of rainfall distribution enables

two distinct growing seasons, the first season from late April to late August and the second

shorter season from September to November. The length of the growing period is 211-270
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days. The mean annual temperature is 26.2 oC and ranges from an average minimum of

21.3 oC to an average maximum of 31.2 oC.

The vegetation of the area consists of secondary forest and natural regrowth in various

stages of succession. Arable crops constitute mainly maize (Zea mays) and cassava

(Manihot esculenta Crantz) in intercropping but also egusi melon (Citrullus lanatus ssp.

mucopermus), okra (Abelmoschus esculentus), yam (Dioscorea rotundata) and cowpea

(Vigna unguiculata ssp. unguiculata) are found in mixtures with cassava and maize.

The landscape is undulating, dominant slopes are between 3 and 10 %. The soils at IITA

are heterogeneous with changes occurring at distances of a few meters.

The soil at the experimental site is a well-drained Alfisol (oxic Paleustalf: USDA

classification) and belongs to the Egbeda-Iwo soil series (Moormann et al., 1975). These

upland soils are derived from strongly weathered gneiss’s of the pre-Cambrian basement

complex (Harpstead 1974; Moormann et al. 1975). The shallow surface horizons are

underlain by a pronounced quartz gravel layer 20 to 40 cm below the surface, varying in

thickness (up to 60 cm) and in percentage of coarse fragments and stone size with the

gravel concentrations ranging from 40 % to 80 % (Wilson et al., 1982). The transition into

the bedrock is a heavy clay layer underlined by Saprolite.

The gravel content of the surface soils varies between 1-25 % depending upon the degree

of erosion of the profiles (Moormann et al., 1975). They are medium to light textured at the

surface and have a low percentage of silt. The pore size distribution is discontinuous and a

low structural stability with respect to raindrop impact results in surface sealing followed

by runoff losses and erosion. Bulk density values are low to moderately low. The water

holding capacity above the gravel horizon is generally low (1.2 mm/cm) on average

whereas higher water holding capacities exist in the layers below the gravel horizon.

The soils are slightly acidic and contain only small amounts of exchangeable aluminum.

They have a high base saturation (> 80 %), with Ca and Mg as dominant exchangeable

cations. The effective CEC at the surface is generally low (6.2 cmol+/kg soil) by temperate

region standards but higher than for more strongly weathered soils of the tropics

(Harpstead, 1974). Quartz, kaolinite and Fe-oxides are the predominant soil minerals in the

topsoil. Therefore, the CEC of soil organic matter is important to  retain nutrients for

plants and microorganisms (Moormann et al., 1975).
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3.2 Land use history of the study sites

3.2.1  Westbank 3

LEGEND C6 C8

Main plot treatment 
A = Natural regrowth
B = Pueraria live mulch C7 C2 C1 C9
C = Leucaena alley cropping

Subplot treatment
1 = Continuous cropping C4 C10 C3 C5
2,3 = 1 yr cropping/1 yr fallow
4,5,6 = 1 yr cropping/2 yr fallow
7,8,9,10 = 1 yr cropping/3 yr fallow

A4 A10 B5 B9

12 m

= sampled in 1993
and 1994

A2 A7 B6 B7

20 m

A6 A3 B1 B4

A9 A8 B10 B2

leucaena hedgerow

A5 A1 B8 B3

Block 1

A3 A9 B10 B6 C10 C2

A8 A6 B1 B5 C7 C5

A2 A5 B9 B8 C4 C1

A7 A10 B7 B2 C3 C9

A1 A4 B4 B3 C6 C8

Block 2

Figure 2. Field layout of Westbank 3 (modified from Vielhauer and Hauser, 1995).
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The site was established in June 1989. A 25 year old secondary rainforest was cleared

manually by using the traditional method of underbrushing, slashing and burning of the

dried litter. Oil palms (Elaeis guineensis) and iroko trees (Telfairia occidentalis) were left

in the plots and were only thinned in areas of high density. As depicted in Figure 2, the

design is a split plot with four replications. Three fallow management systems - natural

regrowth of the spontaneous vegetation, alley cropping with leucaena (Leucaena

leucocephala [Lam. ] de Wit), a N2-fixing woody legume and pueraria (Pueraria

phaseoloides), a N2-fixing legume as herbaceous cover crop - were assigned to the main

plots. Each fallow management system was operated at four different cropping intensities:

(1) continuous cropping (1:1), (2) 1 year cropping, 1 year of fallow (1:2), (3) 1 year

cropping, 2 years of fallow (1:3) and (4) 1 year cropping, 3 years of fallow (1:4) as

subplots. Each subplot in the experimental treatment measures 12 by 20 meters.

Leucaena (cv. K 636 in replicate 1, cv. K 28 in replicate 2-4) was seeded at a rate of 3

kg/ha using 4 m interhedgerow spacing. Each alley cropping plot consisted of 4 leucaena

hedgerows, whereby the 1st and 4th hedgerow were border rows (see Figure 2). Pueraria

was planted at a seeding rate of 15 kg/ha. All systems were intercropped with high yielding

maize (cv. TZSRW) at a population density of 40,000 plants/ha and cassava (cv. TMS

30572, maturity period 12 months) with 10,000 plants/ha. In the alley cropped system the

space occupied by the hedgerows was compensated for by reducing the crop interrow

distance from 1 m to 0.80 m (5 rows) for both crops in order to maintain the crop

population densities (Vielhauer and Hauser, 1995). The interrow distance of maize and

cassava in the pueraria and natural regrowth plots was 1 m. Maize and cassava interrow

spacing was 25 cm and 100 cm, respectively. The crops were planted late April or in May

depending on the onset of rains. Maize was harvested in August, while cassava was

growing on the field around the year and harvested after 12 months of growth.

The plots were managed with minimum tillage, maize and cassava were hand-planted, no

fertilizer or pesticides were used, weed control was done by hand weeding and the litter

left on the field.

Leucaena was cut back (pruned) 3 to 5 times each year between March and October. The

first pruning was done before planting maize and cassava, three times during the first

growing season and a last time in October. Leaves and smaller branches remained in the

plots as mulch, big branches were removed from the system. Pueraria was cut back at

regular intervals to prevent it from climbing and suppressing the crops.
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Before crops were planted each year the fallow vegetation in all treatments was slashed

and the dried plant residue burnt (IITA/RCMD, 1989; Vielhauer and Hauser, 1995).

Soil and plant sampling was done in the first two replicates of the continuously cropped

plots (1:1) as well as in the treatments with a 1 year cropping, 2 years of  fallow period

(1:3) cycle. Adjacent undisturbed secondary forest served as reference plots.

3.2.2   D 2

In April 1986, 4 fallow management systems (Figure 3) were established on about 1 year

old grass fallow, formerly cropped and used by breeders of IITA (Van der Meersch,

personal communication): (1) alley cropping with leucaena (Leucaena leucocephala

[Lam.] de Wit (cv. K 8)), (2) alley cropping with senna (Senna siamea [Lam.] Irwin &

Barneby) , a non-fixing leguminous tree, (3) mucuna (Mucuna pruriens var. utilis) as

herbaceous cover crop, planted every second year, and (4) continuous cropping of maize

and cowpea as the control treatment.

Table 1. Soil chemical and physical
characteristics at  D 2 in April 1986.

                                             Depth
characteristics 0-5 cm 5-10 cm
C org(%) 1.23 0.73
Ntot (%) 0.14 0.08
Bray-I P (mg kg-1) 33 28
Ca(1) 2.7 1.7
Mg(1) 0.75 0.43
Mn(1) 0.025 0.036
K(1) 0.44 0.26
Na(1) 0.08 0.06
ECEC(1) 4.03 2.7
Acidity(2) 0.03 0.20
pH 5.7 5.3
Base saturation (%) 99 93
Bulk dens. (Mg m-3) 1.32 1.42
Texture (%)
sand 81 80
clay 9 9
silt 10 11
(1) = cmol+ kg-1 soil
(2) = KCl exchangeable acidity (cmol+ kg -1 soil)
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At the beginning of the experiment, the surface layers at D 2 were less than 10 cm deep

and the stone line cropped out at some spots in the field. Also high gravel contents were

measured at some parts of the area (Van der Meersch, 1992). The chemical and physical

soil properties at the beginning of the field trial in 1986 are summarized in Table 1

(compiled from Van der Meersch, 1992, pp. 28).

Except for 1990 and 1992 when only single maize was grown in the first season, each

fallow system was sequentially planted to maize (cv. TZSR-W, Tropical Zea Streak

Resistant White) in the first season and cowpea (Vigna unguiculata L. Walp. ssp.

unguiculata) in the second season. Continuous cropping of maize and cowpea served as

control. In 1988 the plots were split into two subplots during the second season, and were

either cropped to early maturing maize (cv. DMR-ESR-W, maturity period 100 days) or

cowpea as a single modification from the common cropping pattern (Van der Meersch,

1992). Each treatment was operated at two management levels, without and with fertilizer

application, as displayed in Figure 3. The field layout was a s factorial (4 x 2) randomized

complete block design with five replications, each plot size measuring 10 by 18 meters.

The plots received N (120 kg N ha-1 as urea), P (90 kg P ha-1 as single superphosphate) and

potassium (30 kg K ha-1 as muriate of potash; Van der Meersch, 1992). Senna and leucaena

plots consisted of 5 hedgerows and 4 alleys of 10 m length using 4.5 m interhedgerow

spacing. The planting distance of leucaena and senna within the rows was 25 and 50 cm,

yielding 8,900 and 4,450 plants per hectare, respectively. Leucaena seeds were inoculated

with the rhizobium strain IRc 1050 prior to planting (Van der Meersch, 1992). The crops

were grown within each alley at a spacing of 75 cm between each row  and to the

hedgerows trees. Maize and cowpea within row spacing was 25 cm, achieving 45,000

plants/ha in the senna and leucaena and 55,000 plants/ha in the control and mucuna

treatments, respectively. Mucuna was seeded at a distance of 25 by 100 cm (Van der

Meersch, 1992).

The plots were managed with minimum tillage, weeding was done several times during the

cropping season by hand hoeing. Removal of the weedy fallow vegetation that developed

during the dry season and seedbed preparation of maize and cowpea was done by spraying

of paraquat (Van der Meersch, 1992; Vanlauwe, personal communication).
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18 m;      sampled in 1993, 1994

10 m

hedgerow in leucaena and senna alley cropping plots

Mucuna Leuc Mucuna Ctrl Senna Leuc Senna Ctrl Rep 5
+NPK -NPK -NPK -NPK -NPK +NPK +NPK +NPK

Senna Leuc Ctrl Leuc Senna Ctrl Mucuna Mucuna Rep 4
-NPK +NPK +NPK -NPK +NPK -NPK -NPK +NPK

Senna Ctrl Leuc Senna Leuc Mucuna Ctrl Mucuna Rep 3
+NPK -NPK +NPK -NPK -NPK +NPK +NPK -NPK

Leuc Mucuna Senna Ctrl Ctrl Senna Leuc Mucuna Rep 2
+NPK +NPK -NPK +NPK -NPK +NPK -NPK -NPK

Leuc Ctrl Ctrl Senna Senna Leuc Mucuna Mucuna Rep 1
-NPK +NPK -NPK +NPK -NPK +NPK -NPK +NPK

1
2

3

4
5

1 m

1.5 m

leucaena  and
senna plots

Figure 3. Field layout of the experimental site at D 2 (modified from Van der Meersch,

1992).

One year after establishment, the hedgerow trees were pruned the first time in 1987 and the

leaves and twigs were applied to the plots as mulch. Between 1988 and 1990, the trees

were pruned and mulched three times a year, once before planting the first season crop, the

second time 7 to 8 weeks later during the first season and a last time before planting the

second season crop (Van der Meersch, 1992). From 1990 onwards, leucaena and senna

were pruned 3 to 5 times during the cropping period and leaves and smaller branches were

left on the plots as mulch. Bigger branches were removed. The trees were normally pruned
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before planting the first crop, once or twice during the first growing season, before planting

the second season crop and a last time during the second growing season (Vanlauwe,

1996).

In 1994 the plots were split into four subplots, each plot size measuring 5 x 4.5 m (Figure

4). The subplots consisted of 3 hedgerows and 2 interrows, and 2 hedgerows were used as

border rows of the experiment. Four differing fertilizer treatments were applied, (1)

without fertilizer, (2) with NPK, (3) with PK and (4) with N. Phosphorus  was applied as

single superphosphate at a rate of 30 kg P/ha, N was applied as urea at 60 kg N/ha and K at

30 kg K/ha as muriate of potash (Vanlauwe, 1996).

= sampled in 1994

Senna Control Leucaena

PK 0 N 0 NPK 0

PK 0 NPK 0

Rep 2
N NPK K NPK N PK

N NPK N PK

Leucaena Senna Control

0 PK 0 N PK N

0 PK 0 N
Rep 1

NPK N PK NPK 0 NPK

NPK N PK NPK

hedgerow in leucaena and senna alley cropping plots

18 m

10 m

5 m

4.5 m

9 m

5 m

Figure 4. Field layout of D 2 showing subplots with differing fertilizer management of the

1st and 2nd replication in 1994.



Materials and Methods 22

In 1993 and 1994 soil sampling was done in the unfertilized control, leucaena and senna

treatments of the first two replicates. These treatments were unfertilized since 1986. In

1994, additional sampling was done in the fertilized subplots (Figure 4).

3.2.3  Westbank 1

The experimental site was established in 1979 on a 15 years old secondary rainforest,

formerly managed under shifting cultivation. Between November 1978 and March 1979

the area was cleared mechanically with a tree pusher/root rake combination system

traveling through the soil to a depth of 50 cm to remove tree roots, stumps and debris.

Trees and underbrush material were burnt in situ and unburned trees removed (Couper et

al., 1981). An intensive mechanized cropping thereafter for a period of ten years resulted in

considerable soil disturbance, followed by an exposure of the subsoil at some spots and

high spatial soil variability (Lal, 1981; Couper et al., 1981; Lal and Couper, 1990; Lal,

1992).

In April 1979 the plots were intercropped with maize and cassava. The within row spacing

of maize was 25 cm and of cassava 100 cm,  the between row spacing was 75 cm. From

1980 to 1982 the plots were sequentially grown to maize in the first season and cowpea in

the second season. The crops were sown mechanically 25 cm apart in 75 cm rows and

conventionally tilled by disc harrowing.

Maize was fertilized with 400 kg/ha of 15/15/15 NPK-fertilizer at sowing; 4 weeks later a

top dressing of 45 kg N/ha as calcium ammonium nitrate was applied. No fertilizer was

given to cowpea. Graded contour banks were formed to control erosion.

In 1982 mucuna as herbaceous fallow species was planted in the second season to restrict

erosion and restore soil fertility (Lal and Couper, 1990; Lal, 1992). Between 1983 and

1986 maize and cowpea were cropped sequentially again. Fertilizer applications

corresponded to earlier rates.

Since 1983 the plots were managed by no-tillage. Seedbed preparation and weed control

was done by spraying 2,5 l/ha of paraquat and atrazine at a rate of 2,5 kg/ha. Due to

accelerated soil erosion problems and low yields, the experimental site was under mucuna

fallow again in 1987 and 1988 (Couper et al., 1981; Lal and Couper, 1990; Lal, 1992).

In 1989 woody and herbaceous fallow species were introduced in order to investigate their

potential to biologically restoring a severely degraded Alfisol (Hulugalle, 1989, 1992). The

sampled fallow species comprised pueraria, leucaena, senna and natural regrowth of the
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spontaneous vegetation (Figure 5). Pueraria was planted in rows spaced at intervals of 25

by 75 cm, leucaena and senna were planted in hedges using 4 m interhedgerow spacing.

Pre-planting land preparation was by hand hoeing to a depth of 5 cm. Continuous

intercropping of maize and cassava on those plots that have been cropped since 1979

served as control. The within row spacing of maize and cassava was 25 cm by 100 cm,

respectively, the between row spacing 75 cm.  The plot size was 24 by 12 meters.

After establishment, fertilizer was applied once in 1989 to each fallow treatment at a rate of

400 kg/ha of 15/15/15 NPK. Between 1989 and 1992 400 kg/ha of 15/15/15 NPK was

amended to the control treatments only at planting each year. The plots were managed with

a minimum tillage system. Weeding was done at five-week intervals during the rainy

season by slashing with cutlasses. Seedbed preparation was done with hand hoes

(Hulugalle, 1989, 1992).

In March 1993 one third of each fallow plot (8 by 12 meters) was manually cleared and

burnt as displayed in Figure 5. Cassava plant debris of the continuous cropping control was

burnt as well before replanting in May 1993. Potential nutrient input of selected fallow

species was estimated with  330, 10, 160, 260, 50 kg/ha as N, P, K, Ca, Mg from senna,

respectively, 110, 3, 60, 60, 20 kg/ha from leucaena, 230, 6, 80, 180, 30 kg/ha from

pueraria and 170, 5, 60, 150, 30 kg/ha from natural regrowth, respectively (Salako, 1993;

personal communication). The remaining two third of the plots were left fallow. Maize and

cassava was intercropped for two consecutive years in 1993 and 1994.

Plots were maintained by minimum tillage, weeding was done with hand hoes. No fertilizer

was applied. In 1993 cassava cuttings, treated with Aldrin-dust, were replanted again two

to three weeks after the first planting because of damage by ants and termites (Salako,

1993; personal communication).

Leucaena and senna hedgerows were not burnt completely and removed from the plots

after clearance in March 1993. Unburned hedgerow stumps of about one meter height were

left in the plots. Stimulated by the onset of the rainy season the stumps coppiced.

Consequently, in 1993 a hedgerow effect was still existent. To counteract this unwanted

effect the „hedgerows“ were slashed thoroughly in 1994 and the stumps were poisoned

with diesel to prevent coppice shoot regrowth.

In 1993 and 1994 soil sampling was done in the cropped and fallow treatments of replicate

one and two.
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12m

cropped 8 m

24 m
fallow = bold framed boxes were sampled in 1993 and 1994

Rep. 1

Cajanus cajan Panicum

maximum

Pueraria
 phaseoloides

Mucuna pruriens Natural
Maize/

Cassava

Centrosema 
pubescens

Senna  siamea Acacia difficilis Brachiaria lata Lablab
purpureus

Acacia
leptocarpa

Psophocarpus
palustris

Leucaena

leucocephala
Stylosanthes

hamata
Acacia

auriculaeformis

Natural Macroptilium
atropurpureum

Rep. 2

Panicum
maximum

Natural
fallow

Leucaena
leucocephala

Mucuna pruriens
var.utilis

Natural
fallow II

Pueraria
phaseoloides

Senna siamea Maize/Cassava Acacia
leptocarpa

Cajanus cajan Lablab

purpureus
Brachiaria lata

Acacia
difficilis

Acacia
auriculaeformis

Psophocarpus
palustris

Centrosema
pubescens

Macroptilium
atropurpureum

Stylosanthes
hamata

var.utilis fallow

fallow II

Figure 5. Field layout of Westbank 1 (replicate 1 and 2) in 1993 and 1994.
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3.2.4 Screening of the study sites

Land use history impacts on the productivity and susceptibility to degradation of a soil.

The extent and severity of soil degradation will depend on the cultivation systems and

management intensities that were imposed (Theng, 1991; Kleinman et al., 1995).

In this study the primary cause of degradation was assessed by the length of the cropping

period and the management intensity that was applied over time by screening continuous

cropping controls of long-term management trial (Table 2).

Except for 1987 and 1988, Westbank 1 was continuously cropped for 14 years prior to the

onset of soil sampling in 1993 to either maize and cowpea in sequence or maize and

cassava intercropping. In contrast, Westbank 3 was intercropped to maize and cassava only

since 1989.

Table 2. Land use history at Westbank 1, D 2 and Westbank 3 as reflected by time of
continuous cropping and management .

year
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

cropping
pattern

WB 1 M+Cs M-C M-C Mu M-C M-C M-C M-C M-C Mu M+Cs M+Cs M+Cs M+Cs M+Cs M+Cs

D 2 M-C M-C M-C M-C M M-C M M-C M-C

WB 3 M+Cs M+Cs M+Cs M+Cs M+Cs M+Cs
fertilizer

WB 1(1) - + + + + + + + + - + + + + - -
D 2 - - - - - - - - -

WB 3 - - - - - - - - -
tillage

WB 1(2) + + + + + - - - - - - - - - - -
D 2 - - - - - - - - -

WB 3 - - - - - - - - -
pruning

D 2 - + + + + + + + +
WB 3 - + + + + +

M+Cs = maize and cassava intercropping
M-C = maize and cowpea sequential cropping
Mu = mucuna fallow
M-Mu = maize in the 1st season and mucuna fallow in the 2nd season
M = maize in the 1st season only
(1) = fertilizer application at a rate of 400 kg/ha of 15/15/15 NPK-fertilizer at sowing; 4 weeks later a top 
       dressing of 45 kg/ha as calcium ammonium nitrate to maize crops
(2) = conventional tillage, disc harrowing

Between 1980 and 1986 D 2 was part of an experimental area used by breeders   
(maize, cassava, cowpea and soybean) with diverse tillage (ploughing and disc harrowing) and fertilizer  
managements. In 1986, D 2 was split into two plots. At one site the improved fallow management trials 
were stablished in 1986.  However, the recorded management schedules of the site do not allow a 
conclusive allocation of the land use history to D 2 (Van der Meersch, pers.com.; Vanlauwe, pers.com.).

The land use practices applied at the study sites are multiple cropping systems that aim at

intensifying land use in time and space dimensions by growing two or more crops on the
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same field per year. The chronological sequence of the management systems is

demonstrated in Figure 6. The prevailing land use practices in south-western Nigeria are

maize-cassava-intercropping systems, whereas sequential cropping of maize and cowpea is

less important in this area (Heide et al., 1985).

Under sequential cropping managements as practiced at D 2 two or more crops are grown

in sequence on the same field per year (Andrews and Kassam, 1976). As depicted in Figure

6 crop intensification is only in the time dimension, since the two crops do not overlap and

the second crop is being sown only after the harvest of the first. Cowpea is planted in the

shorter second season between September and October when lower rainfall prevails. This

short duration crop can escape possible drought at the end of the season (Härdter, 1989;

Kayombo and Lal, 1993).

In intercropping systems (WB 3, WB 1), however, crop intensification is in both, space and

time dimensions (Andrews and Kassam, 1976). Maize is cropped in the first season and

harvested before cassava develops full canopy, whereas cassava with its slow initial growth

and a growing period of  9 to 18 months to maturity is in the field throughout the year.

The management intensity of each system differs primarily in the rate to which soil

resources are used in time and space. While row intercropping, as practiced at Westbank 3

and Westbank 1, is one of the more extreme means of intensifying land use because inter-

and intra-component exploitation of soil resources is high (Oelsligle et al., 1976),

sequential cropping is the less intensive form of multiple cropping. As depicted in Figure

6, the soil under intercropping of maize and cassava is covered with a crop almost year

round, whereas sequential cropping of maize and cowpea allows a less intensive resource

use, including a fallow period from December to late March.

month
site M J J A S O N D J F M A

WB 1, WB 3 Maize
Cassava

D 2 Maize
Cowpea

Fallow

Figure 6. Cropping calendar at the different field trials during 1993 and 1994.
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Intercropping of maize and cassava may lead to more rapid mining of natural soil fertility

because both crops require large amounts of nutrients (Beets, 1982). Maize plants require

high amounts of N for a good yield, but also P and K are essential (Adediran and Banjako,

1995). Although cassava can grow in a wide variety of soil conditions, the cassava crop

can rapidly impoverish the soil under good soil fertility conditions (IITA, 1990; Olasantan

et al., 1996). Nutrient removals of unfertilized maize/cassava intercropping at IITA,

Nigeria was reported as 82, 12, 89, 32 and 13 kg N, P, K, Ca and Mg per hectare per year,

respectively (Olasantan et al., 1996). However, part of the nutrients taken up by maize

during the early stages of the growing season will be recycled to the soil by decomposition

of maize stover after the grain harvest.

In contrast, sequential cropping of maize and cowpea is presumed to be advantageous to

maintaining soil fertility as the system retains nitrogen fertility (Eaglesham et al., 1981;

Beets, 1982). Although cowpea plants need adequate quantities of N from soil as well, the

main contribution to the productivity of this system may be expected from a beneficial

crop rotation effect. The N2 fixing ability of cowpea with subsequent N and also P transfer

to the succeeding crop by decomposition of the plant residues may contribute to a better

utilization of soil nitrogen (Härdter, 1989). The fallow vegetation growing from December

to late March may also sustain the system by restoring nutrient supply of the soil.

 Besides influencing the soil fertility status, the management system may also influence the

erodibility of the soil. The rate of growth and the extent of canopy cover, especially under

high rainfall conditions, regulates the degree to which the soil surface is exposed to

raindrop impact, wind and sunlight, and hence runoff and erosion (Lal, 1990). Canopy

cover can be increased by intercropping  (Reddy, 1987). Monocropped cassava, for

example, takes 63 days to provide a 50 % ground cover, as compared to only 50 days for

cassava/maize intercropping (Reddy, 1987). Olasantan et al. (1996) reported that

intercropping of maize and cassava at IITA, Nigeria resulted in better interception of light,

improved moisture content in the top 10 cm, reduced soil temperature, and enhanced

earthworm activity. However, intercropping of cassava with maize delayed bulking of

storage roots and significantly reduced tuber yield as compared to sole cropping (Olasantan

et al., 1996; Kühne, 1993). Monocropping of field crops as practiced at D 2, on the other

hand, may be prone to erosion by sediment loss during intense rainfalls during early stages

of plant development.

Based on the length of the cropping period and the management intensities applied (Table

2) Westbank 1 is presumed as the most degraded site. D 2 is ranked as intermediate in the
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degree of degradation between Westbank 3 and Westbank 1, although the management

system at D 2 is less intense and more conservatory in nature as the intercropping systems

at WB 3 and WB 1.

However, between 1980 and 1986  D 2 had been cropped and used by breeders of IITA.

Data on soil physical and chemical characteristics of the site prior to the experimental

implementation in April 1986 (Table 1) show that the soil had a low nutrient status. Based

on the proposition by Juo (in: IITA, 1983 cited by Van der Meersch, 1992, pp. 113)

degraded soils at IITA’s experimental farm are existent when the pH is less than 5, organic

carbon less than 1 % and exchangeable Mg less than 0.5 cmol+/kg soil. Surface soil

properties in the 0 to 15 cm layer under secondary forest with pH values of 6 to 6.6,

organic carbon of 1.5 to 2.3 % and exchangeable Mg of 0.9 to 1.8 cmol+/kg were taken as

reference (Van der Meersch, 1992). Van der Meersch (1992) accordingly concluded that

the soil was at a low fertility level when the trial started in 1986 and continued to degrade

further upon cropping. In 1990, organic carbon, pH and exchangeable Mg in the 0 to 5 cm

layer reached concentrations between 1.05 and 1.21 %, 4.9 and 5.2 and 0.44 and 0.6

cmol+/kg, respectively (Van der Meersch, 1992, pp. 165-166) and were, thus, in the

proposed magnitude of degraded soils at IITA. Similar results were obtained for WB 1. At

the onset of the experimental trial in 1979, total organic carbon, pH and exchangeable Mg

in the 0-10 cm layer was 1.56 %, 6.7 and 1.7 cmol+ kg-1, respectively and declined to 1.15

%, 5.6 and 0.62-0.72 cmol+ kg-1, respectively in 1991 (Lal, 1992).

In summary, according to the land use history the state of degradation is ranked in the

order WB 1 > D 2 > WB 3.

3.3 Soil sampling

3.3.1 Number of soil cores

In preliminary tests (data not shown) the number of single core samples to be taken from

the plots in order to account for soil spatial variability were evaluated.  To that end, plots

were chosen from the least degraded Westbank 3 (plot size 20 by 12 meter) and the most

severely affected Westbank 1 (plot size 12 by 8 meter). The treatments at WB 3 included

leucaena, pueraria and natural regrowth and at WB 1 leucaena and senna alley cropping. In

the alley cropped plots 20 core samples were taken along the hedgerow from 0-10 cm

depth. In both the natural regrowth and pueraria plots 25 samples were selected at random.
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Each sample was analyzed separately for ß-glucosidase activity as it was found to fluctuate

highly within short distances.

Based on suggestions by Petersen and Calvin (1986) the number of samples needed were

estimated by n = ta2 s2/D2, with n = number of samples, ta = quantile of student’s t

distribution with (n-1) degrees of freedom at the α = 0.05 probability level, s2 = variance of

mean and D = desired precision (5 % deviation of mean). The results obtained revealed

that 215, 245, 164, 93 and 70 single core samples had to be taken from leucaena at WB 1,

senna at WB 1, leucaena at WB 3, natural regrowth at WB 3 and pueraria at WB 3,

respectively. This, however, is not practicable in routine field work.

Similar results were reported by Roder et al. (1995 b) and Pushparajah (1989) cited by

Roder et al. (1995 b). The authors assessed the short range soil variability in slash-and-

burn systems of northern Laos and concluded from their results that the number of sub-

samples (n = ta2 s2/D2) required to document changes in available P and K would be

unrealistically high  (> 300).  In order to detect differences of 10 % with a confidence level

of 95 % Roder et al. (1995 b) limited the number of sub-samples for 200 m2 to 15 for pH,

N and P total  and to 20 for organic carbon.

However, the main emphasis in our research work was focused on potential changes of soil

processes over time rather than short-term variability within plots. Thus, sampling was

intensified over time by taking soil samples every 6 weeks.

3.3.2 Sampling procedure and sample preparation

Between April 1993 and October 1994 soil cores were taken at random every six weeks

from the 0 to 5 and 5 to 10 cm depth. We limited the number of subsamples to 15-25 single

soil cores due to capacity restrictions (Table 3). The topsoil was considered only, since

mulching systems with minimum tillage are likely to affect only the top layers. Total soil

organic carbon, nutrients and microbial biomass were reported to decline rapidly below 10

cm at IITA, Nigeria (Vanlauwe, 1996).

Soil sampling in the leucaena alley cropping treatment at WB 3 was done along the 2nd and

3rd hedgerow and in the interrow (2 m away from the hedges) between the 2nd and 3rd

hedge (see Figure 2). In the leucaena and senna alley cropping treatments at D 2 soil

samples were taken along the 3rd hedgerow and in the alleys (2.25 m away from the

hedgerows) between both the 2nd and 3rd and 3rd and 4th hedgerow (see Figure 3). Soils in

the control, pueraria and natural regrowth treatments were sampled from the whole plot.
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The random soil cores were taken with a 4 cm ∅ soil auger, bulked and homogeneously

mixed in a plastic bucket and subsampled for temporary storage in sealed plastic bags.

Table 3. Number of random core samples
from 0-5 cm and 5-10 cm depth every 6
weeks between April 1993 and October 1994.

Study site
Management
systems

Westbank
3

D 2 Westban
k 1

Control 25 25 20

Leucaena

 along hedge 18 18 15

          along

interrow

18 18 15

Senna

along hedge 18 15

along interrow 18 15

Nat. regrowth 25 20

Pueraria 25 20

Bulk density measurements were made with undisturbed soil cores. Subsamples for the

determination of gravimetric soil moisture content, pH, texture, exchangeable cations,

available phosphorus and sequential fractionation of phosphorus were air dried, ground

and sieved to pass a 2 mm sieve; subsamples for organic carbon and total nitrogen

determination were sieved to pass a 0.5 mm sieve after air-drying.

The soils for enzyme analysis were kept field moist, passed through a 2 mm sieve and

stored frozen until analysis. Microbial biomass carbon was determined 1 to 4 days after

sampling on field moist and unsieved subsamples.

3.4 Soil analysis

Chemical and physical analysis of the soils were done according to the procedures of the

Analytical Service Lab of IITA (1979). The gravimetric water content was determined by

oven-drying 10 g soil at 105 oC for 24 hours and calculated as the ratio of mass of water to

the soil dry mass. Particle size distribution was analyzed with the hydrometer method using
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sodium hexametaphosphate as a dispersing agent. The soil bulk density was measured with

the core method. Soil pH was determined in a 1:2.5 ratio of 10 g soil and 25 ml of 0.01 M

CaCl2 solution. The soil water was allowed to equilibrate for 1 h and the pH values were

measured with a Beckman glass electrode pH meter.

Organic carbon in soil was analyzed by the dichromate oxidation method of Walkley and

Black (1954) as cited by IITA (1979) on 1g soil samples, total N by the Kjeldahl digestion

and the N content in the digest analysed colorimetrically on the Technicon Model II

Autoanalyzer. Available phosphorus was analysed by the Bray No 1 method of Bray and

Kurtz (1945, as cited by IITA, 1979). The exchangeable bases Ca, Mg, K , Na as well as

Mn were extracted with 1 N ammonium acetate (pH 7) and the cation exchange capacity

(CEC) calculated as the sum of exchangeable cations (IITA, 1979).

Phosphorus was fractionated by a sequential extraction according to Hedley et al. (1982)

with modifications by Tiessen and Moir (1993). The procedure used is a chemical

extraction of decreasingly available phosphorus forms due to stronger adsorption and

affinity to soil components. The method aimed at quantifying labile Pi (resin Pi and

NaHCO3-Pi), Fe + Al associated Pi, Ca-associated Pi, as well as labile and more stable

forms of Porg in subsequent steps. Thus, the differentiation of these fractions should reflect

their bioavailability. The fractions extracted by this procedure correspond to the following

hypothetical soil P-pools:

- resin membrane-Pi: freely exchangeable, adsorbed on surfaces of more crystalline P-

compounds, sesquioxides or carbonates,

- NaHCO3-Pinorg  and organic : labile inorganic and organic P sorbed on soil minerals, plant

available,

- NaOH-Pinorg : non-occluded phosphorus, associated with amorphous and some crystalline

Al and Fe phosphates,

-NaOH-Porganic : labile organic phosphorus of the fulvic acid fraction, used as indicator of P-

status and fertility of soils,

- NaOH sonicated Pi and Porg: occluded inorganic P and protected and recalcitrant Porg,

- HCl-Pi: calcium associated Pi (apatites),

- residual P,

(Tiessen et al., 1992, 1994; Beck and Sanchez, 1994; Paniagua et al., 1995).

The following P-fractions were analysed sequentially on 0.5 g soil samples with slight

modification: (1) NaHCO3-Pinorg, by shaking the soil with 30 ml 0.5 M NaHCO3  adjusted to

pH 8.5 end-over-end for 16 hr at 25 oC, followed by 5 min centrifugation at 10000 r.p.m.
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and subsequent filtration of the supernatant through a 0.45 µm millipore filter (cellulose

acetate filter, Sartorius AG No. 11106-47-N, Germany), (2) NaHCO3-Ptotal by digesting 5

ml of the supernatant with acidified potassium persulfate in the autoclave for 60 min

(Environmental Protection Agency, 1971), (3) NaOH-Pinorg, by adding 30 ml of 0.1 M

NaOH to the soil of step (1) and re-shaking as above. (4) NaOH-Ptotal by digesting 5 ml for

90 min as in step (2).

The organic P-content in the NaHCO3 and NaOH extracts was calculated as the difference

between total P and inorganic P in the respective extraction steps. Orthophosphate P in all

extracts and digests were determined colorimetrically by the molybdate-ascorbic acid

method (Murphy and Riley, 1962, as cited by Olsen and Sommers, 1982) at 712 nm on a

spectrophotometer. The spectrophotometer was fitted with a 5 cm and a 1 cm cuvette for

the bicarbonate and the NaOH-fraction, respectively.

Labile inorganic phosphorus was immediately extracted with bicarbonate (0.5 M NaHCO3),

the resin membrane procedure as first step to extract the most labile Pi was left out and was

done as a modification from the original methods (Hedley et al., 1982; Tiessen and Moir,

1993).  This procedure was applied in accordance to Magid and Nielsen (1992) who

reported that a pooling of resin-Pi and bicarbonate-Pi  by immediate extraction with 0.5 M

NaHCO3 was sensible without interfering with the sequential extraction procedure.

3.5 Enzyme analysis

The Enzyme Commission (EC) numbers and enzyme names are according the

recommendations by the Nomenclature Committee of the International Union of

Biochemistry (International Union of Biochemistry and Molecular Biology on the

Nomenclature and Classification of Enzymes, 1992).

3.5.1 Acid and alkaline phosphatase

[Orthophosphoric monoester phosphohydrolase; Enzyme Commission Number: 3.1.3.2

and 3.1.3.1; 1992]

Acid and alkaline phosphatase activity in the soil was measured according to Tabatabai

and Bremner (1969) with slight modifications. The release of p-nitrophenol from a p-

nitrophenylphosphate solution (disodium-p-nitrophenylphosphate hexahydrate; Fluka No.

71768, Fluka, 1997/98) added to the soil was determined colorimetrically at 400 nm 1 hour
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after incubation at 37 oC. Results of activity are expressed as micrograms p-nitrophenol

released over 1 hour by 1 g soil and are averages of triplicate assays.

Toluene was not included in the procedure because it may increase the observed activities

of both, acid and alkaline phosphatase (Tabatabai, 1982). The application  of toluene as

biocide for microorganisms during subsequent incubation is also questionable because it

can be used as a source of C by most soil microorganisms (Kaplan and Hartenstein, 1979).

Modified from the original method to assaying alkaline phosphatase activity was the

application of the modified universal buffer (MUB) of pH 9 rather than pH 11 due to the

inaccuracy of the Beckman glass electrode pH meter above pH 9 (Pleysier, 1993; personal

communication). However, the optimal activity was not affected since the pH-optimum lies

between pH 9 and 11 (Eivazi and Tabatabai, 1977).

3.5.2 ß-Glucosidase

[ß-Glucosidase, Enzyme Commission Number: 3.2.1.21; 1992]

ß-Glucosidase was analyzed according to Eivazi and Tabatabai (1988). The method is

based on the colorimetric determination of p-nitrophenol released by ß-glucosidase after

the soil is incubated with buffered (pH 6.0) p-nitrophenyl-ß-D-glucoside (Fluka No. 49291,

Fluka 1997/98) solution for 1 h at 37 oC. Toluene was not included in the procedure, and

was modified from the original method. The extracted p-nitrophenol is measured at 400 nm

on a spectrophotometer. Results reported are averages of triplicate assays, expressed on a

oven dry basis (drying at 105 oC for 24 h). The results of activity are expressed as

micrograms p-nitrophenol released over 1 hour by 1 g soil.

3.5.3 Protease

[Protease, Enzyme Commission Number: 3.4; 1992]

Protease activity of the soil was determined according to Ladd and Butler (1972). Tyrosine

released from a submitted sodium caseinate (Sigma No. C 8654; Sigma, 1997) solution

buffered at pH 8.1 by soil proteases after incubation for 2 hours at 50 oC was measured

colorimetrically at 700 nm. Results of activity are expressed as micrograms tyrosine

released per 2 hours and per 1 g soil.
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3.6 Microbial biomass carbon

Microbial biomass carbon was determined by the chloroform-fumigation-extraction

method for biomass ninhydrin-N after pre-extraction of roots (Mueller et al., 1992). Pre-

extraction of the unsieved soil samples is favored in the presence of living roots. The

fumigation of soil with chloroform will destruct the cell walls of both, the microbial

biomass and the fresh roots, which in turn results in the unwanted extraction of the root

cellular content. Sieving and subsequent preincubation for 10 days as alternative to

removing roots is unsuitable (Mueller et al., 1992). Pre-extraction was conducted by

shaking triplicate soil samples for 20 min with 0.05 M K2SO4 and subsequent passing

through a 2 mm sieve. Roots on the sieve were washed free of soil with additional 0.05 M

K2SO4 and the soil suspension centrifuged for 15 min at 500 g. The supernatant then was

decanted and three drops of liquid chloroform were added to the soils to be fumigated.

After pre-extraction, the non-fumigated control samples were immediately extracted

according to Brookes et al. (1985 a, b) and Vance et al. (1987). The samples to be

fumigated were placed in a desiccator and fumigated under vacuum for 24 hours at 25 oC

in the dark. After allowing the chloroform to dissipate, the released microbial compounds

were then extracted with 0.5 M K2S04 and the  α-amino nitrogen containing molecules

(amino acids, peptides, proteins; 30 %) as well as  ammonium (70 %) were determined

colorimetrically at 570 nm in the presence of ninhydrin according to Joergensen and

Brookes (1990).

Biomass carbon was calculated by multiplying the ninhydrin-reactive N with 20.6.

Ninhydrin-reactive nitrogen (Nnin) was calculated by using l-leucine standards as the

difference between Nnin extracted from fumigated soils and Nnin extracted from non-

fumigated soils.

3.7 Plant sampling and analysis

Maize grain and stover were subsampled at final harvest in 1994, dried and analyzed for

nutrients.

Leucaena and senna prunings (leaves, twigs and smaller branches) were sampled from

each pruning at Westbank 3 and D 2, dried and weighed for dry matter determination.

Subsamples were analyzed for nutrients.
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Plant analysis

Part of the plant material was finely ground and analyzed using the standard methods of

IITA (1979).

Determination of total N was done by the micro-Kjeldahl method and the N content in the

digest analyzed colorimetrically on the Technicon Model II Autoanalyzer. For K, P, Ca

and Mg, concentrations the plant material was digested with perchloric acid. The P content

of the digest was analyzed colorimetrically with the Vanado-Molybdate method. Calcium

and Mg were determined with atomic absorption spectrometry, K with flame photometry.

3.8 Statistical analysis

Statistical analysis was performed on soil chemical and microbiological parameters by

nested (hierarchical) analysis of variance using the General Linear Model procedure of the

Systat Program (Systat, 1992). Measurements over time were not considered as repeated

measurements because composite soil cores taken within each plot differed at each

sampling date. As a result, measurements over time were not treated as fixed but as random

effects, and time was nested as subsample within treatments. Thus, 3 sites, 12 treatments

and 5 sampling dates during the 1st and 2nd cropping season (April-October) in 1993 and

1994 were combined in the nested analysis of variance. For the dry season 3 sampling

dates were nested as subsamples within treatments.

If the overall F-test was significant, planned but nonorthogonal contrasts were applied to

the soil chemical and microbiological data. To evaluate which treatments were different

from others the Bonferoni adjustment was carried out by dividing α through the number of

planned comparisons as the new α-striking significance level, where α’’ = α/k with k =

number of planned contrasts (Sokal and Rohlf, 1995, pp.241). The number of the planned

comparisons used here were 11, and the new significance level, thus, considered was α/11

= 0.0045. The planned contrasts or comparisons applied were (1) control versus control at

different sites, (2) at WB 3: control versus leucaena, control versus pueraria, and control

versus natural regrowth, (3) at  D 2: control versus leucaena and senna, and (4) at WB 1:

control versus senna, control versus leucaena, control versus pueraria, and control versus

natural regrowth.

If not stated differently, data on soil chemical and microbiological properties are the mean

of 5 sampling dates of both the 1st and 2nd cropping period (April-October) and the mean of

three sampling dates during the dry season (November 1993-March 1994). Data on natural
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regrowth at Westbank 3, as exception, are presented only for the 1st cropping period and

the dry season. Thereafter a period of bush fallowing for 2 consecutive years commenced

in succession after the one year’s cropping period in 1994.

A two-factorial ANOVA with treatment and time was applied to maize grain yield data. No

significant interactions were obtained between treatment and time, thus yield in 1993 and

1994 was averaged over time.

Cassava tuber yield, nutrient concentration and nutrient uptake were statistically analyzed

by one factorial ANOVA using treatments as levels of one factor.

Pearson’s product-moment correlation coefficient r was used to describe the degree of the

linear association between two variables. The significance of the simple linear correlation

was expressed with *** at P ≤ 0.001, with ** at P ≤ 0.01 and with * at P ≤ 0.05. The

correlation analysis was based on the coefficient r of 5 sampling dates of both the 1st and

2nd cropping period (April-October) in 1993 and 1994 (n = 24).

Principal component analysis (PCA) as multivariate procedure was used to analyze 17 soil

chemical, physical and microbiological variables of 24 plots differing in land use and

degree of degradation, and 2 undisturbed secondary forest sites. PCA was performed on

mean seasonal values of the 2nd cropping season lasting from April-October 1994 at 0-5 cm

and 5-10 cm depth, due to the largest available data set. The data were standardized to a

mean of zero and a variance of one. Before factoring a correlation matrix was computed.

Principal component analysis is intended to reduce the number of variables to a smaller

number of underlying factors called principal components (PCs). Hence, PCA creates a

minimum number of new variables, which are linear combinations of the original ones

such that the new variables contain most or all of the information (Reyment and Jöreskog,

1993). The PCs are extracted by applying the principal or main axis method (Überla,

1977). This procedure maximizes the total variance of the data set on the 1st PC (square

sum of the component loadings have a maximum), the remaining variance of the data set

on the 2nd PC and so on. The number of PCs considered in PCA is according to their

Eigenvalue and should be greater than one (Kaiser-criterium; Überla, 1977). The

Eigenvalue indicates the contribution of each PC to explaining the total variance of the

data set. The principal components are made up of a discrete set of variables. The

correlations of the original variables with the PC is expressed by the component loadings,

and range from +1 to -1. The Varimax-rotation was applied to achieve a simple structure

among component loadings and PCs. By means of Varimax-rotation the component

loadings of the PCs are either large or small. According by the convention component
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loadings >  0.5 are only considered for interpretation of the principal components

(Backhaus et al., 1996). Component scores were computed for each plot in order to show

the variation among plots. They are displayed in a coordinate system to visualize how the

plots are described by the 1st and 2nd PC. Negative factor scores indicate that the plot is

below average with respect to a principal component, whereas zero and positive values

show the average and above average expression of a plot, respectively.
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4 Results and Discussion

4.1 Characterization of the study sites and their degree of degradation

4.1.1 Crop performance of maize and cassava

Data in Table 4 illustrate the yield of maize and cassava for two consecutive growing

seasons in 1993 and 1994. The yields (mean of two replications) fluctuated highly between

the two cropping seasons and more so for cassava than for maize.

Table 4. Maize grain and stover (kg DM ha-1) and cassava
fresh tuber and biomass (t DM ha-1) yield under continuous
cropping in 1993 and 1994 at Westbank 3, D 2 and Westbank
1.

Westbank 3 D 2 Westbank 1

Maize grain

1993 1202 1604 400

1994 1134 2374 200

Mean 1168 1989 300

LSD 647.8

Maize stover

1993 1323 2628 700

1994 1509 2901(1) 331

Mean 1416 2764 515.5

LSD 927.6

Cassava tuber

1993 6.8 5.2

1994 8.2 3.7

1995 n.a. 10.3(2)

Mean 7.5 4.45

LSD 10

(1) = stover was estimated by harvest index of 45 %;
(2) = not included in statistical analysis;
n.a. = not available;
data on maize and cassava yields for WB 1 and WB 3 were received
from RCMD, IITA and for D 2 from Vanlauwe, personal
communication.
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The average yield for the improved cassava variety TMS 30572 in Nigeria is reported as

11-12 t/ha, the potential yield as 20-25 t/ha (IITA, 1990; Lawani and Babaleye, 1992).

Obiagwu (1995) and Hulugalle et al. (1990) cited yields for unfertilized cassava between

5.6 and 15.7 t/ha, in accordance with our results obtained in 1993 and 1994.

The differences in cassava yields were not statistically significant between the sites. At

Westbank 1, the yields fluctuated highly between the cropping seasons. In 1994 cassava

tuber yielded only 3.7 t/ha compared to 5.2 t/ha in 1993. The poor performance of cassava

at Westbank 1 in 1994 may be attributed to losses by rodent attacks. Moreover, cassava

treated with Aldrin-dust had to be replanted three weeks after the first planting because of

damage by ants and termites (Salako, personal communication). Except for 1994, cassava

at Westbank 1 generally performed fairly good as compared to the non-degraded Westbank

3 site and even reached yields of 10.3 t/ha in 1995.

Similar results for Alfisols in Nigeria varying in their degree of degradation after topsoil

removal were reported by Lal (1987).

The fairly good performance of cassava at the most degraded Westbank 1 site may be

related to the ability of the plant to grow in soils that are acid and too impoverished to

support other staple crops (IITA, 1990; Edwards and Kang, 1978). Also, cassava plants are

more tolerant to high levels of aluminum and manganese, and low levels of calcium and

potassium than many other species (Reddy, 1987). Cassava is a drought resistant crop and

able to tolerate long periods of water shortage (Connor et al., 1981). Moreover, the strong

mycorrhizal infection under field conditions (Sanders, 1973, as cited by Kang et al., 1980;

Howeler et al., 1987) and an extensive mycorrhizal hyphae-root system up to 2 m deep

may enable the plant to sustain productivity by utilizing nutrients and water less accessible

to other crops (IITA,1990; Kang et al., 1980; Ezumah, 1983, as cited by Kayombo and Lal,

1993; Connor et al., 1981).

In comparison, maize is less tolerant to acid soils (Aldrich et al., 1975, as cited by Duque-

Vargas et al., 1994; Kang and Osiname, 1979) and requires a high soil fertility status in the

surface layers (Agboola, 1979, pp. 88-89) due to the shallow rooting pattern of the vast

majority of maize roots (Kayombo and Lal, 1993; IITA, 1976, as cited by Mueller-Harvey

et al., 1985; Hauser, 1990). The average yield at Westbank 3 is below and at D 2 in the

range of the reported average yields in Nigeria (1.5-2 t/ha), but much below the potential

yield of 3.5-10 t/ha (Lawani and Babaleye, 1992, pp. 29). In contrast, at Westbank 1 maize

did not yield more than 400 kg/ha when continuously cropped to maize. This drastic

reduction in maize yield is due to the exhaustive crop management for more than 14 years.
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Comparable trends were obtained by Lal (1987,1995) on an Alfisol in Nigeria by artificial

topsoil removal. The average maize yield of 1.2 t/ha was reduced to 0.7 and 0.2 t/ha upon

10 and 20 cm topsoil removal, respectively. As depicted in Table 4, the performance of

maize at the D 2 site was the highest as compared to the least degraded Westbank 3 and the

most degraded Westbank 1. The average grain yield (mean of two replications and two

cropping seasons) under continuous cropping decreased in the order D 2 > WB 3 > WB 1

and was 1989 kg DM/ha, 1168 kg DM/ha and 300 kg DM/ha, respectively. The better

performance of maize at D 2 may be attributed to benefits from cowpea, cropped in the

second season. Effective cowpea-rhizobium symbiosis can fix up to 200 kg N/ha within 10

weeks of establishment (Schroder, 1992, as cited by Obiagwu, 1995) and supply 80 to 90

% of the host plant N-requirement (Mulongoy, 1985). Both, maize-cowpea intercropping at

IITA, Ibadan and sequential cropping of maize and cowpea in southern Nigeria revealed

that under low soil N-fertility status inclusion of cowpea gave significant benefits to the

associated or succeeding maize crop (Eaglesham et al., 1981; Heide et al., 1985). Nitrogen

fixed by cowpea became available to maize which was grown after senescence of the

legume and the decomposition of its residues (Heide et al., 1985). The likelihood of yield

improvement and efficient nutrient use by maize rotated with cowpea was also supported

by Härdter (1989, 1991) and Horst and Härdter (1994) for Alfisols in the northern Guinea

Savanna of Ghana. The beneficial effect was explained by N-transfer from cowpea to

maize via mineralization of plant residues with high N content and less removal of

inorganic N of the legumes from the soil compared to the cereals. Yields of maize in

rotation with cowpea were stable at about 2.5 t/ha throughout 4 years, when no N was

applied (Härdter, 1989).

A shortage in supply of phosphorus for the high-yielding maize may have influenced the

yield potential at Westbank 3 and Westbank 1. Kang and Osiname (1979) found a good

correlation between extractable Bray-I phosphorus and maize grain yield at IITA, Nigeria.

A critical soil phosphorus test level for maize production on the Egbeda soils was

estimated at about 14 µg P g-1 soil (Kang and Osiname, 1979). Adeoye and Agboola

(1985) established a critical range for optimum maize production in south-western Nigeria

at 10 to 16 µg P/g soil. Only D 2 sustained available Bray-I phosphorus equal to or above

this critical range. In comparison, Westbank 3 and Westbank 1 maintained a constant level

of 7 µg P/g in the 0 to 5 cm layer and 3.6 µg P/g in the 5 to 10 cm layer. Vanlauwe (1996)

reported that P-additions (30 kg P ha-1 as SSP) at D 2, IITA in 1995 did not improve  maize

yield.
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4.1.2 Nutrient uptake by maize grain

Nutrient uptake in the aboveground dry matter (stalks and grain) of the control treatments

at Westbank 3, D 2 and Westbank 1 is presented in Table 5.

Table 5. Nutrient uptake (kg ha-1) in total dry matter (t ha-1) of
maize plants under continuous cropping at harvest 1994.

dry matter N P K Ca Mg
t ha-1 kg ha-1

Westbank 3 2.6 37.3 30.5 30 10(2) 10.5

D 2 5.3 53 13.3 56.3 38.3 30.2

Westbank 1 0.5 4.3 0.8 4.8 3 2.3

LSD 2.3 30.8 19.3 23.7 n.d. 12.5

n.d. = not determined;
(1)  = total dry matter production of the above ground plant material

including stalks and grain;
(2) = only stover; data were received from RCMD, IITA.

Generally, differences in total dry matter production (above ground plant material

including stalks and grains of maize) corresponded to differences in grain yield (Table 4).

The lowest nutrient uptake was found at WB 1 with a low dry matter production of 0.5 t/ha

and concomitant low uptake of N, P, K, Ca and Mg. Nitrogen-uptake at D 2 and WB 3 was

53 kg and 37.3 kg/ha, respectively. However, no significant difference between the sites

were found and was related to the high inter-plot variability (see Table 1 of the Appendix).

Potassium uptake was significantly higher at D 2 as compared to WB 3. However, P-

uptake of maize plants did not reflect the differences in the dry matter production. Despite

a higher dry matter production at  D 2 and higher available inorganic Bray-I P in soil

(Table 9) compared to Westbank 3, phosphorus uptake at WB 3 was superior to D 2,

although not statistically confirmed due probably to high inter-plot variability at WB 3 (see

Table 2 of the Appendix). The results on N-uptake at D 2 are consistent with data reported

by Härdter (1989) and Jonsson et al. (1996). Härdter (1989) elaborated that N-uptake of

maize was higher after rotation with cowpea due to better N-nutrition of maize in the crop

rotation systems as compared to monocropped maize. A more favored N-supply of the soil

was attributed to the incorporation of cowpea residues with a high N-content. But also

Jonsson et al. (1996) found a strong correlation between maize biomass production and N-

uptake in Tanzania.
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4.1.3 Soil physical characteristics

As depicted in Table 6, mean bulk densities (Mg m-3, 0-5 cm depth) were 1.26, 1.37 and

1.33 at Westbank 3, D 2 and Westbank 1, respectively and were not significantly different

from each other.

Table 6. Soil texture and bulk density
under continuous cropping in the 0-10 cm
layer, 1993.

Texture (%)

site bulk
density

(Mg m-3)(1,2)
san

d
silt clay

Westbank 3 1.26 82.0 9.0 9.0

D 2 1.37 81.0 10.

5

8.5

Westbank 1 1.33 73.5 9.0 17.5

SE 0.06 4.1 1.2 3.7

(1)  = bulk density of the top 5 cm;
(2)  = SE was only determined for WB 1 and
WB 3, since mean bulk density of  total D 2
was only available by Van der Meersch, 1992.

The mean content of sand, silt and clay (Table 6) were about 81 %, 9.5 % and 9.5 %,

respectively  at both Westbank 3 and D 2 and 73.5 %, 9 % and 17.5 %, respectively, at

Westbank 1. No significant differences were found between the sites. Average contents in

the 0-10 cm layer under secondary forest at Westbank 1 before clearing in 1978 were

reported as 72.8 %, 10.4% and 16.8 %  as sand, silt and clay, respectively (Lal and

Couper,1990; Lal, 1992) and are in accordance with the current texture.

The mean gravel contents of the sites were estimated based on results from soil surveys

and degradation studies at IITA and surrounding areas (Harpstead, 1974; Moorman et al.,

1975; Wilkinson and Aina, 1976; Lal, 1992). Lal (1992, pp. 112,113) reported that the size

and content of the gravel under the forest cover in 1978 prior to forest clearing varied

considerably. Thus, the gravel content in the surface horizon (0-20 cm) ranged from 1.0-25

%, whereas in the sub-soil often as much as 50 % gravel by weight was observed.

Vanlauwe (personal communication) reported the percentage of stones > 4 mm at D 2 in

the top 5 cm and 5-15 cm layer as 0.3-11 % and as 0.2-20 %, respectively. Accordingly,

the gravel contents (> 2 mm) at 0-10 cm depth was taken as 15 %. Based on land use
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history and local experts, the gravel content at Westbank 3 and WB 1 was estimated as 5 %

and 30 %, respectively.

4.1.4 Soil chemical characteristics

4.1.4.1 Soil nutrients and pH

Data on soil chemical properties are the mean of 5 sampling dates of both the 1st and 2nd

cropping period (April-October) and the mean of three sampling dates during the dry

season (November 1993-March 1994). Average concentrations at 0-5 cm and 5-10 cm

depth of organic carbon, total nitrogen and pH of the continuing cropping control plots as

affected by land use are summarized in Table 7, available cations and manganese are

presented in

Table 8.

Table 7. Average soil organic carbon (t ha-1), total nitrogen (kg ha-1) and pH characteristics,
corrected for bulk density and gravel content of the control treatments at 0-5 cm and 5-10
cm depth in 1993 and 1994.

 Corg (t ha-1) total N (kg ha -1) pH (CaCl2)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 19.3 17.5 16.8 1707 1381 1358 6.6 6.9 6.7

Westbank 3 8.8 8.2 9.3 732 713 856 6.8 7.0 6.9

D 2 5.4 6.4 6.1 479 563 537 6.0 5.8 6.0

Westbank 1 4.1 5.0 4.6 408 471 479 5.7 5.7 5.5

LSD 1.6 2.3 2.2 176 123 202 0.36 0.5 0.5

5-10 cm

sec. Forest 13.5 11.9 11.8 1319 907 1178 6.5 5.7 6.8

Westbank 3 5.2 5.1 5.2 511 513 484 6.7 6.8 6.8

D 2 4.0 4.5 4.9 394 446 438 5.6 5.4 5.5

Westbank 1 3.9 4.0 4.6 411 378 446 5.2 5.3 5.4

LSD 1.3 1.2 2.0 117 122 170 0.3 0.5 0.5

LSD (excluding forest) at  α = 0.05

Land clearing and prolonged cultivation resulted in a progressive decline in mean soil pH

by about one unit from 6.8 under forested conditions to pH 6 and 5.7 at D 2 and Westbank



Results and Discussion
Characterization of the study sites and their degree of degradation

44

1, respectively. The decline in pH was somewhat stronger at 5-10 cm depth. In

comparison, 4 to 5 years of continuous cropping to maize and cassava caused no decrease

in pH at Westbank 3 as compared to secondary forest. The pH at WB 3 was significantly

higher compared to WB 1 and D 2, whereas the latter were not significantly different from

each other.

The chemical fertility of the soils at 0-5 cm and 5-10 cm depth decreased with time of

cropping and was influenced by land use history. Compared to secondary forest, the

average total loss of organic C in the 0-5 cm layer after 14, 10 and 4 years of continuous

cropping were 76 %, 68 % and 50 % at WB 1, D 2 and Westbank 3, respectively. Similar

trends were obtained at 5-10 cm depth, but the levels were generally lower. At both depths,

organic carbon was significantly higher at WB 3 compared to both D 2 and WB 1 which

were not significantly different from each other. Comparable results were reported by Lal

(1989), showing that organic carbon declined by about 70 % from initially 2.37 % to 0.73

% in the 0-5 cm layer after continuous cropping for five years. Mulongoy et al. (1993) and

Juo and Fox (1977) concluded also that cultivation of food crops reduced the level of total

soil organic carbon even if crop residues were retained in the field. A more drastic decline

in C, N, P and S content was achieved when crop residues were removed (Mueller-Harvey

et al., 1985).

The data on soil N followed similar trends to those of organic carbon. Total average

nitrogen declined in the 0-5 cm layer by 68 %, 65 % and 45 % under continuous cropping

at Westbank 1, D 2 and Westbank 3, respectively. These findings are consistent with

previous results obtained at IITA, Nigeria (Lal, 1989). Total N declined by 75 % five years

after continuous cropping under both no-tillage and plow-till.

Exchangeable basic cations (cmol+ kg) and Mn represent the nutrient status of the sites in

October 1993, and are illustrated in Table 8. Data corrected for bulk density and gravel

content (kg ha-1) are summarized in Table 3 of the Appendix.

Calcium was the dominant exchangeable basic cation at all sites. The depletion of

exchangeable cations in the 0-5 cm layer was highest under continuously cropped soils at

Westbank 1, as this site has been cultivated and impoverished the most. WB 3 had

significantly higher calcium concentrations in the 0-5 cm layer as compared to D 2 and

WB 1. No significant differences at 0-5 cm depth for Mg and K were found between the

cropped sites. Exchangeable manganese was only prevalent at the degraded sites at WB 1

and D 2,  where prolonged cultivation and soil erosion took place and pH values had fallen
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below 6. At both depths, higher exchangeable manganese was obtained at D 2 than at

Westbank 1, but the trend was not statistically significant.

Table 8. Average soil nutrient status (cmol+ kg-

1) of the control treatments at 0-5 cm and 5-10
cm depth in October 1993.

Ca Mg K Mn
Site/depth cmol+ kg-1

0-5 cm

sec. Forest 12.15 2.33 0.85 0.000

Westbank

3

5.94 0.66 0.21 0.000

D 2 1.75 0.48 0.23 0.008

Westbank

1

1.30 0.39 0.17 0.007

LSD 1.87 0.43 0.15 ns

5-10 cm

sec. Forest 6.36 1.46 0.53 0.000

Westbank

3

3.74 0.46 0.12 0.000

D 2 0.88 0.21 0.32 0.059

Westbank

1

1.37 0.32 0.10 0.004

LSD 2.06 0.27 0.21 ns

LSD (excluding forest) at α = 0.05;
ns = non-significant

In the 5-10 cm layer, potassium was significantly higher at D 2 compared to Westbank 3

and Westbank 1. The higher K concentrations at D 2 may be attributed to former fertilizer

applications when the plots were used for crop breeding under high fertilizer applications.

The differences in exchangeable basic cations among the sites were likely related to the

soil organic matter contents, as the sites with the lowest content of organic carbon also had

the least exchangeable basic cations. This is reflected in the high correlations of Ca and Mg

with organic carbon,  having a correlation coefficient of  r = 0.78 and 0.54 (P ≤ 0.01) at 0-5

cm depth, respectively, and r = 0.75 and 0.74 at 5-10 cm depth (P ≤ 0.01), respectively.

Soil organic matter is the major determinant of nutrient availability on these low-activity

clay soils (Moorman et al., 1975). The nutrient status of the sites, however, is in agreement
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with findings by Juo and Lal (1977) and Lal (1989) for soils of south-western Nigeria.

Critical values of 0.15-0.20 cmol+ kg-1 of exchangeable K in surface soils with sandy to

loamy texture were reported by Juo (1985) below which cassava (can survive and produce

under a wide range of adverse soil and climatic conditions) responds significantly to K-

application. Accordingly, at WB 3 and WB 1 exchangeable K in the 5-10 cm depth and

both 0-5 cm and 5-10 cm depth, respectively, was below this critical range (Table 8). For

Mg Lombin and Fayemi (1976) proposed sufficiency levels between 0.2 and 0.42 cmol+

kg-1, and established a critical Mg:K ratio of 2 or less to reliably predict the plant-available

Mg-status of these soils. At 5-10 cm depth D2 and WB 1 exhibited exchangeable Mg-

concentrations below this sufficiency level, whereas only D 2 in the 5-10 cm layer had a

Mg:K ratio of 0.66 (Table 8) which was below the critical value of 2. Lombin and Fayemi

further reported that the Mg-uptake by maize fell sharply below a Mg:K ratio of 2, and

suggested that K probably may have suppressed Mg-uptake. This may also hold true for D

2 where heavy fertilization with K likely has induced Mg-deficiency.

The changes in the composition of the exchange complex and the appearance of

exchangeable Mn as a function of soil pH and degradation was demonstrated for

Egbeda soils (oxic Paleustalf) in south-western Nigeria by Stumpe and Vlek (1991). Thus,

Ca and Mg disappeared from the exchange complex at pH 4.2 and 5, respectively, whereas

exchangeable Mn increased between pH 6.5 and 5.0.

4.1.4.2 Bray-I phosphorus

Bray-I phosphorus did not follow the trends of organic carbon and total nitrogen as is

shown in Table 9. Mean values of available Bray-I phosphorus under continuous cropping

ranged from 3.6 to 30.7 µg P/g soil at 0-5 cm and from 2.2 to 27.3 µg P/g at 5-10 cm

depth.

Continuous cultivation for 4 and 14 years caused a decline in the 0-5 cm layer by 84 % to

4.8 µg/g on average and by 80 % to 5.8 µg/g on average at the non-degraded Westbank 3

and the most degraded Westbank 1, respectively. However, both sites did not differ

significantly in available Bray-I phosphorus. Compared to secondary forest, available

phosphorus at D 2 decreased by only 10 % and reached 26.6 µg/g in the 0-5 cm layer, 10

years after continuous cropping of maize and cowpea in sequence. Bray-I phosphorus

concentrations similar to our data were reported by Adepetu and Corey (1976), Kang and

Osiname (1979) and Lal (1989) for soils of south-western Nigeria. Lal (1989) for example
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determined average available Bray-I phosphorus contents at IITA of 7 to 30 ppm in the top

5 cm and of 4 to 20 ppm at 5-10 cm depth. Similar to our results for WB 3 and WB 1,

consecutive cropping of maize for four seasons at IITA, Nigeria resulted in a decline of

Bray-I phosphorus by 63 % from initially 7.5 ppm to 2.8 ppm (Kang and Osiname, 1979).

Table 9. Available Bray-I phosphorus (µg g-1 and kg ha-1) under
continuous cropping controls at 0-5 cm and 5-10 cm depth in 1993 and
1994.

Bray-I P (µµg g-1) Bray-I P (kg ha -1)

site/depth 1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm

sec. Forest 25.7 30.7 29.2 14.3 15.5 16.6

Westbank 3 5.0 3.6 5.4 3.0 2.1 3.1

D 2 24.2 25.8 29.5 12.8 14.3 15.1

Westbank 1 5.9 5.1 6 3.0 2.4 2.8

LSD 3.3 6.2 8.4 1.7 3.4 3.9

5-10 cm

sec. Forest 27.3 22.1 26.1 17 12.6 14.8

Westbank 3 2.9 2.2 4.2 1.7 1.3 2.4

D 2 16.3 17.7 14.8 9.0 9.8 8.4

Westbank 1 4.4 2.9 4.6 2.0 1.4 2.3

LSD 1.8 6.2 4.7 0.9 2.4 2.6

LSD (excluding forest) at α = 0.05

The significant higher available Bray-I phosphorus content at D 2 as compared to WB 3

and WB 1 should be attributed to fertilizer applications by breeders prior to the

implemented improved fallow managements in 1986. The sustained residual effect of

inorganic phosphorus applied to Alfisols in south-western Nigeria is mentioned by several

authors. It is thought to be caused by the low P-sorption capacity of these soils with

concomitant low standard P-requirements (= the amount of P sorbed by soil to attain the

standard concentration of 0.2 ppm P in solution after 6 days) of about 32 µg P/g soil

(derived from acid rocks) on average (Juo and Fox, 1977; Kang and Osiname, 1979; Lal,

1989; Osodeke et al., 1993). Even low rates of fertilization of 26 kg P/ha led to a

substantial build-up of available P and the residual effect of the applied P was still

observed after 4 cropping cycles (Kang and Osiname, 1979). The authors concluded for
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the Egbeda soil series at IITA, Nigeria that adequate levels of Bray-I P above 14 ppm for 5

high yielding maize crops (cultivar TZAxTZB), which were cleared from bush fallow and

supplemented with 120, 50 and 4 kg ha-1 N, K and Zn-fertilizer, respectively, could be

maintained by applications of 52 to 104 kg P/ha.

In contrast, fertilization of 60 kg P ha-1 as SSP between 1979 and 1986 and from 1989 until

1992, respectively, at the most degraded Westbank 1 site did not lead to a substantial

build-up of available inorganic P as determined by the Bray-I extraction method, possibly

due to  higher P-sorption at WB 1. According to Juo and Fox (1977) the standard P-

requirement of these soils increase due to increasing sesquioxide and clay contents with

depth. Moreover, high erosion rates at WB 1 (Lal, 1992) may have stripped of partially the

lighter textured top soil and exposed the more clayey subsoil (Juo and Fox, 1977).

But also differences in resource quality, i.e. differences in the chemical compositions and

amounts of reactive and stable groups of the soil organic matter-clay-complex that are

active in ion exchange may have caused the low available inorganic P at WB 1. Probably,

not as much inorganic P (Bray-I P) was held in readily exchangeable forms at WB 1 as

compared to D 2, where more favorable organic complexes are thought to be existent.

The prevailing surface adsorption of P to monomeric or polymeric Al/Fe hydroxy ions

below pH 6 (Lindsay et al., 1989) may also contribute to less available inorganic

phosphorus at WB 1. Since 1986, the pH at the site was between pH 5.3 and 5.7 (Lal,

1992). However, also D 2 had pH values ranging from pH 4.9 to 5.7 from 1986 until 1990

(Van der Meersch, 1992), and reached average values of pH 6 in 1993 and 1994.

4.1.4.3 NaHCO3 and NaOH-extractable inorganic and organic phosphorus pools

Data on NaHCO3 and NaOH-extractable inorganic and organic phosphorus pools are the

mean of 3 sampling dates (January, May and August) of 1994 and are presented in Table

10.

After land clearing and prolonged cultivation the labile Pi-fraction (NaHCO3-extractable)

followed similar trends to those of Bray-I extractable phosphorus. Generally, the decline of

available phosphorus was more pronounced at Westbank 3 and Westbank 1 as compared to

D 2 and reached lower average total amounts in the 5-10 cm layer. At both depths, D 2 had

significantly higher NaHCO3-extractable inorganic P-contents as compared to both WB 1

and WB 3. Labile organic phosphorus (NaHCO3-extractable, plant available) under

continuous cropping declined by 50-65 % at 0-5 cm depth compared to secondary forest.
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At both depths, NaHCO3-organic phosphorus (µg g-1) at the non-degraded WB 3 site was

significantly lower as compared to the degraded Westbank 1 and D 2 sites. However, after

correcting the data for bulk density and gravel content (kg ha-1) no significant differences

were found in the top 5 cm, whereas at 5-10 cm depth D 2 had significantly higher

NaHCO3-Porg than both WB 3 and WB1 which, in turn, were not significantly different

from each other.

Table 10. NaHCO3 (1) and NaOH-extractable inorganic and organic phosphorus pools (µg
g-1 and kg ha-1) under continuous cropping controls at 0-5 cm and 5-10 cm depth in 1994.

NaHCO3-
Pi

NaOH-
Pi

NaHCO3-
Porg

NaOH-
Porg

NaHCO3-
Pi

NaOH-
Pi

NaHCO3-
Porg

NaOH-
Porg

site/depth µµg g-1 kg ha-1

0-5 cm

sec. Forest 19.9 22.4 24.3 62.9 9.3 11.9 11.1 38.9

Westbank 3 13.2 14.0 8.3 46.1 6.3 7.6 4.6 26.3

D 2 28.1 41.6 11.4 70.2 13.2 23.0 6.2 38.8

Westbank 1 9.1 30.5 11.8 62.5 3.9 14.5 5.5 29.7

LSD 10.7 15.9 2.5 19.5 5.9 8.7 ns 10.3

P contrasts(2)

WB 3 vs. WB 1 0.033

5-10 cm

sec. Forest 33.9 49.6 9.2 77.9 19.3 28.3 5.3 44.4

Westbank 3 3.7 9.2 6.1 45.8 2.1 5.2 3.5 23.8

D 2 17.6 37.3 11.7 71.5 9.7 20.6 6.5 39.5

Westbank 1 7.9 21.2 10.0 50.0 3.5 10.3 4.6 24.3

LSD 5.5 12.3 3.1 24.1 2.9 6.6 1.6 12.9

LSD (excluding forest) at α = 0.05
ns = not significant
(1)  = includes resin extractable P
(2)  = α striking significance level of planned contrasts is α/11 = 0.0045.

Organic phosphorus (NaOH-extractable) has been used as an indicator of the P-status and

fertility of soils. This pool is thought to represent overall changes in soil organic matter and

organic phosphorus levels by functioning as an active reservoir and source and sink of P

when the soil is stressed by cultivation and net P-export (Stewart and Tiessen, 1987;

Tiessen et al., 1992, 1994; Magid and Nielsen, 1992; Beck and Sanchez, 1994; Paniagua et

al., 1995).



Results and Discussion
Characterization of the study sites and their degree of degradation

50

Land clearing and continuous cultivation for 14, 10 and 4 years reduced organic

phosphorus (µg g-1) in the 0-5 cm layer most at the least degraded Westbank 3 site by 30 %

from initially 62.9 µg/g under forested conditions to 46.1 µg/g. This effect was less clearly

visible in the 5-10 cm layer. Organic phosphorus data corrected for bulk density and gravel

content (kg ha-1) showed for the top 5 cm that D 2 was significantly higher than WB 3 but

did not differ significantly from WB 1. WB 3 and WB 1 were not significantly different

from each other. In the 5-10 cm layer D 2 had significantly higher NaOH-extractable

organic phosphorus as compared to both WB 3 and WB 1, which were not significantly

different from each other. Since WB 3 never was fertilized, plant and microbiota available

labile inorganic P (NaHCO3 and NaOH-extractable organic phosphorus) was most likely

dependent on the mineralization of the organic P-pools. Other studies in south-western

Nigeria confirmed a mineralization of total organic phosphorus (fractionated according to

Chang and Jackson, 1957 as cited by Adepetu and Corey, 1977) by 25 % in the 0-15 cm

layer during two consecutive cropping seasons of about 8.5 months total duration from

initially 142 ppm to 106 ppm (Adepetu and Corey, 1976, 1977). The likelihood of organic

P-mineralization as plant available source is also supported by Omotoso (1971). In

comparison, fertilization of inorganic phosphorus at Westbank 1 and D 2 at a rate of 60

kg/ha and 90 kg/ha per year until 1992 and 1986, respectively, may have contributed to

increasing short- and long term P-fertility with subsequent maintenance of the organic P-

pool. Fertilization until 1986 at D 2 built up to the organic P-pool, and NaHCO3-Pi and

NaOH-Pi, whereas at WB 1 its fertilizer P was largely recovered in the NaOH-Pi and

NaOH-Porg fraction. Moreover, the NaHCO3-Pi-pool is depleted since 1992 with the

redistribution by the NaOH-Pi pool prevented. Tiessen et al. (1992) obtained similar results

in Brazil. Organic phosphorus (NaOH-extractable) in soils cropped to sorghum and millet

for 12 consecutive years was not significantly depleted as compared to the native

vegetation because of Pi-fertilization.

4.1.5 Microbial biomass

4.1.5.1 Microbial biomass carbon

Average soil microbial biomass content (µg g-1 and kg ha-1) of the continuous cropping

control treatments as affected by land use at 0-5 cm and 5-10 cm depth is depicted in Table

11. Mean extractable biomass under continuous cropping ranged from 58 µg g-1 to 147 µg

g-1 in the 0-5 cm layer and from 39 to 86 µg g-1 in the 5-10 cm layer.
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Land clearing and prolonged cultivation resulted in a progressive decline in mean

microbial biomass. Compared to secondary forest, the total loss of the biomass (µg g-1) in

the 0-5 cm layer after 14, 10 and 4 years of continuous cropping was 50 %, 70 % and 75 %

at Westbank 3, D 2 and Westbank 1, respectively, and correspond to the total loss of

organic C (see Table 7). Similar trends were obtained in the 5-10 cm layer, but the

microbial biomass was generally lower.

Table 11. Average soil microbial biomass carbon (µg C g-1 soil and kg C ha-1

soil) under continuous cropping controls at 0-5 cm and 5-10 cm depth in 1993
and 1994.

Microbial biomass
µµg g-1 kg ha-1

Site/depth 1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 291 234 359 166 134 206

Westbank 3 145 115 147 83 65 84

D 2 93 61 61 51 44 34

Westbank 1 72 58 58 34 28 28

LSD 61 73.5 48.5

P contrasts(1)

WB 3 vs. D 2 0.008

5-10 cm

sec. Forest 141 122 186 81 70 106

Westbank 3 80 86 75 46 49 43

D 2 47 71 39 26 39 18

Westbank 1 51 52 41 25 25 19

LSD 32 ns 29

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned contrasts is α/11 = 0.0045.

At both depths, during the 1st and 2nd cropping season, microbial biomass was significantly

higher at the least degraded WB 3 site compared to both D 2 and WB 1. During the dry

season from November till March, no statistically significant difference (α = 0.05) between

WB 3, D 2 and WB 1 was obtained. Trends at 0-5 cm depth, however, indicate that the

biomass was higher under the least degraded WB 3 as compared to D 2 (P= 0.109) and
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WB 1 (P=0.093). D 2 and Westbank 1, continuously cropped to maize and cowpea in

sequence and maize/cassava intercropping since 10 and 14 years, respectively, did not

differ significantly from each other throughout the research period.

Similar microbial biomass contents were reported by Fugger (1997) for Ghana at 0-30 cm

depth (chloroform-fumigation-extraction method) and Ayanaba et al. (1976; chloroform-

fumigation-incubation method) for Nigeria at 0-15 cm depth. The likelihood of microbial

biomass decline after deforestation and land cultivation was also reported by Ayanaba et

al. (1976) for 13 soils at IITA, Ibadan, Nigeria. Microbial biomass (chloroform-

fumigation-incubation method) decreased by 37 % from initially 480 µg g-1 under forested

conditions to about 270-340 µg g-1 under bush regrowth, by 50 % to 180-300 µg g-1 under

maize with stover returned, by 70 % to 60-230 µg g-1 under maize with stover removed and

by 65 % to 170 µg g-1 under maize/cassava intercropping with stover returned. Clearing of

a 20 year old secondary forest in Costa Rica also resulted in rapid changes of the microbial

biomass content (chloroform-fumigation-extraction method; Henrot and Robertson, 1994).

Under bare soil conditions 50 % of the biomass declined within the first 6 months.

The seasonal course of the microbial biomass between April 1993 and October 1994 at 0-5

cm depth is displayed in Figure 7.

Temporal fluctuations of the microbial biomass is reported to be controlled by variations in

organic matter input, quality of organic substrates, moisture conditions, temperature, crop

growth and phenology, fertilization and soil texture (Santruckova, 1992; Ritz et al., 1992;

Raghubanshi, 1991; Jocteur-Monrozier et al., 1992; Ladd, 1992).

The seasonal fluctuation of the microbial biomass was more pronounced in the 5-10 cm

layer (data not shown) as compared to the top 5 cm (Figure 7). During the dry season the

microbial biomass decreased at all sites and most at D 2, due probably to the sparse weedy

vegetation that developed and covered the soil after the harvest of cowpea in November.

At both WB 3 and WB 1 sites soil cover provided by growing cassava plants reduced soil

heating by solar radiation. However, a significant correlation of microbial biomass and

gravimetric soil moisture content during our research period was only obtained for the 2nd

cropping season in 1994 at 0-5 cm depth (r = 0.79, P ≤ 0.001). It appeared that the

microbial biomass increased with maize crop growth and easily available organic

substrates with root slash at the end of the growing season, and decreased after maize

harvest.
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Figure 7. Seasonal course of the microbial biomass under continuous cropping at WB 3, D

2 and WB 1 in the 0-5 cm layer.

According to investigations by Mazzarino et al. (1993) and Srivastava and Lal (1994) in

Costa Rica and India, respectively, the microbial biomass was highest during stages of

rapid crop growth and lowest at the end of the cropping period. This was related to an

increased availability of root derived organic substrates in the early cropping season and

mortality of the plants at the end of the cropping season. The impact of soil moisture on

microbial biomass content is discussed controversially in the literature. Several authors

concluded that the soil moisture content controlled the short-term biomass dynamics

(Bottner, 1985; Sparling et al., 1985; Van Gestel et al., 1996) with soil moisture and soil

moisture changes accounting for 46-90 % of the variability in microbial biomass (McGill

et al., 1986). Others (Kaiser et al., 1995; Mazzarino et al., 1993) found no obvious relation

between microbial biomass and soil moisture content under temperate conditions and in the

humid tropics of Costa Rica, respectively.
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4.1.5.2 Cmic/Corg ratio

The Cmic/Corg ratio was calculated on a weight/weight basis to correct for differences in

bulk density and gravel content and is expressed as percentage. The data for the two rainy

seasons and the dry season in between are given in Table 12, and range from 0.37 to 1.22

%. The Cmic/Corg ratio under forest cover and at WB 3 was rather stable over seasons but

declined at D 2 and WB 1, the more degraded sites.

Table 12. Cmic/Corg ratio (%) under continuous
cropping at 0-5 cm and 5-10 cm depth in 1993 and
1994.

site/depth 1st

season
dry

season
2nd

season
0-5 cm

sec. Forest 0.85 0.76 1.22

WB 3 0.93 0.79 0.90

D 2 0.94 0.69 0.55

WB 1 0.83 0.55 0.60

LSD 1.07 ns 0.77

P contrasts(1)

WB 3 vs. D 2 0.003

WB 3 vs. WB 1 0.004

5-10 cm

sec. Forest 0.6 0.58 0.89

WB 3 0.87 0.95 0.81

D 2 0.64 0.87 0.37

WB 1 0.62 0.62 0.41

LSD 0.76 ns 0.76

P contrasts(1)

WB 3 vs. D 2 0.009

WB 3 vs. WB 1 0.005

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned contrasts
is α/11 = 0.0045.
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The percentage of organic C tied up in the microbial biomass under a 25 year old

secondary forest was not consistently higher as compared to the control treatments at WB

3, D 2 and WB 1, which were continuously cropped since 4, 10, and 14 years, respectively.

This is in contrast with results obtained for both temperate and tropical forest cover

(Anderson and Domsch, 1989; Basu and Behera, 1993).  Anderson and Domsch (1989)

suggested that a higher microbial C content per unit of soil organic carbon under forest

may be due to a more diversified organic substrate production and higher input. However,

in tropical Alfisols at IITA, Nigeria soil textural conditions appeared to have a more

striking impact on the Cmic/Corg ratio than substrate quality alone.

The poorly structured Alfisols do not protect the soil microbial biomass enough, resulting

in high turnover rates and limited incorporation of C and N into the biomass. Sparling

(1992) reported also that the ratio was greatly influenced by texture and mineralogy of

soils in New Zealand due to the larger amount of non-microbial C in the Corg fractions of

clay soils. However, the quantity and quality of organic matter applied also affected the

ratio. Thus, under native forest the ratio was 1.36 % as compared to 1.63 % and 1.55 %

under unimproved and fertilizer amended pastures, respectively, due to increased organic

matter input at the latter sites.

No consistent trend on the impact of long-term management on the Cmic/Corg ratio under

continuous cropping control treatments was obtained as compared to either Cmic (Table 11)

or Corg (Table 7) alone. At both depths the Cmic/Corg ratio at WB 3 was only significantly

higher during the 2nd cropping season as compared to both D 2 and WB 1. The temporal

changes in the ratio were not entirely reflected by quantitative changes of the soil organic

matter content. Total soil organic matter (Table 7) in 1994 was similar to or slightly higher

than in 1993 (spatial variability) whereas microbial biomass (Table 11) decreased slightly.

However, small changes in soil microbial biomass content are superimposed by

concomitant small changes of total soil organic carbon due to the proportional higher

quantity of the latter fraction. Thus, under the prevailing conditions it is rather questionable

whether the Cmic/Corg ratio as sole parameter can reflect changes of the soil organic matter

status.
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4.1.6 Acid and alkaline phosphatase

4.1.6.1 Acid phosphatase

The average acid phosphatase activity (µg g-1) of the continuous cropping controls

treatments at 0-5 cm and 5-10 cm depth in 1993 and 1994 is summarized in Table 13.

Table 13. Average acid phosphatase activity
(µg p-nitrophenol g-1 soil h-1) under
continuous cropping at 0-5 cm and 5-10 cm
depth in 1993 and 1994.

Acid phosphatase  activity
(µµg p-nitrophenol g -1 h-1)

Site/depth
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 450 676 618

Westbank 3 195 313 192

D 2 312 285 275

Westbank 1 291 351 273

LSD ns ns 118

P contrasts(1)

WB 3 vs. D 2 0.01

WB 3 vs. WB

1

0.012

5-10 cm

sec. Forest 370 520 450

Westbank 3 139 277 179

D 2 196 252 196

Westbank 1 247 412 232

LSD 134 104 ns

P contrasts(1)

WB 3 vs. WB

1

0.000

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned
contrasts is α/11 = 0.0045.



Results and Discussion
Characterization of the study sites and their degree of degradation

57

It ranges from 139 to 412 µg p-nitrophenol g-1 h-1 and are according the results reported for

Alfisols and Ultisols in Nigeria by Mulongoy and Bedoret (1989).  Acid phosphatase

activity in the top 5 cm was only significantly lower at the least degraded WB 3 site as

compared to both D 2 and WB 1 during the 2nd cropping season. No statistical difference

was obtained between D 2 and WB 1. In the 5-10 cm layer this trend was not followed:

Westbank 3 had a significantly lower acid phosphatase activity during the 1st cropping

season and the dry season as compared to WB 1, whereas WB 3 and D 2 were not different

from each other. The results obtained did not reflect a close correlation between

phosphatase activity and both available P at the sites and P-uptake by the crops.

Phosphorus uptake at harvest 1994 was 30.5, 13.3, and 0.8 kg ha-1at WB 3, D 2, and WB

1, respectively. However, the correlation (r = -0.37) between phosphorus taken up by

maize plants at harvest 1994 and phosphatase activity was non-significant at both depths.

Moreover, available soil phosphorus contents under the continuous cropping control

treatments (Table 9 and 10) were highest at D 2 and comparable in both WB 1 and WB 3.

However, acid phosphatase activity at 0-5 cm depth was lowest at WB 3 as compared to

both D 2 and WB 1 during the 2nd season. In the 5-10 cm depth the activity did not differ

between D 2 and WB 3, and was highest at WB 1. As discussed in more detail later

(Chapter 4.3.3) no significant correlation between the inorganic and organic P-pools and

acid phosphatase was obtained at the sites. Phosphatases are considered as inducible

enzymes, as their production is regulated by end-product inhibition (Juma and Tabatabai,

1978; Margesin and Schinner, 1994).

The activity of acid phosphatases, thus increases under P-deficient conditions as a

widespread adaptive mechanism of plants to compensate for P-deficiency (Skujins, 1976;

Nakas et al., 1987; Häussling and Marschner. 1989; Tadano et al., 1993). Since

phosphatases are adaptive enzymes, the intensity of their exudation by plant roots is, to

some extent, influenced by the P-demand of plants, and hence their P-status (Silberbush et

al., 1981 as cited by Tarafdar and Jungk, 1987). Similar to our results Clarholm (1993)

reported low needle-P content in Norway spruce trees in Sweden despite enhanced

phosphatase activity. She concluded therefore, that the enzymes activity were reduced due

to lacking appropriate organic substrate.

Apparently, despite lower inorganic and organic phosphorus pools at WB 3 than at D 2,

both sites exhibited similar acid phosphatase activity. This may be attributed to more easily

accessible phosphorus-soil organic matter complexes as compared to WB 1, where adverse



Results and Discussion
Characterization of the study sites and their degree of degradation

58

resource conditions prevail. Thus, the plants at the latter sites released high amounts of

acid phosphatases in order to satisfy the P-demand.

The seasonal course of acid phosphatase activity under continuous cropping in the 5-10 cm

layer is displayed in Figure 8.
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Figure 8. Seasonal course of acid phosphatase activity under continuous cropping at WB

3, D 2, and WB 1 in the 5-10 cm layer

Acid phosphatase activity fluctuated highly throughout the sampling period which could

not be attributed to temporal variations in gravimetric soil moisture content and microbial

biomass as both parameters were not correlated with the enzymes activity. The likelihood

of non-significant impacts of seasonal variations in microbial biomass and soil moisture

contents on enzyme activity was also reported by Dkhar and Mishra (1983) and Rastin et

al. (1988). Since acid phosphatase is mainly produced by plant roots an increase and

decrease in activity is probably related to both crop growth and total root surface area

(Tarafdar and Jungk, 1987). During the dry season acid phosphatase activity was highest at

WB 1 and lowest at D 2 and was attributed to crop growth and P-demand of the plants: D 2
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was only sparsely covered by weedy vegetation whereas cassava plants at WB 1 and WB 3

might have produced surplus acid phosphatase in order to compensate for higher P-

requirements.

4.1.6.2 Alkaline phosphatase

The activities of alkaline phosphatase at 0-5 cm and 5-10 cm depth are shown in Table 14,

and range from 102 to 365 µg p-nitrophenol g-1 h-1 in the top 5 cm and from 55 to 293 µg

p-nitrophenol g-1 h-1 at 5-10 cm depth. They are according to the results (20-360 µg g-1, 0-

15 cm depth, after Tabatabai and Bremner, 1969) reported by Mulongoy and Bedoret

(1989) for Nigeria.

Table 14. Average alkaline phosphatase
activity (µg p-nitrophenol g-1 soil h-1) under
continuous cropping at 0-5 cm and 5-10 cm
depth in 1993 and 1994.

Alkaline phosphatase activity
(µµg p-nitrophenol g -1 h-1)

Site/depth
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 740 631 611

Westbank 3 341 365 242

D 2 139 135 127

Westbank 1 104 122 102

LSD 158 70 114

5-10 cm

sec. Forest 522 508 399

Westbank 3 250 293 178

D 2 55 77 59

Westbank 1 139 136 120

LSD 108 66 84

P contrasts

D 2 vs. WB 1 0.016

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned
contrasts is α/11 = 0.0045.
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Alkaline phosphatase activity, generally, was higher in the top 5 cm at WB 3 and D 2 as

compared to 5-10 cm depth, whereas no pronounced difference in activity with soil depth

was obtained at the most degraded Westbank 1 site.

Deforestation and prolonged cultivation resulted in a marked decline of alkaline

phosphatase activity by 54 %, 82 %, and 86 % at WB 3, D 2, and WB 1, respectively, and

was more pronounced than the decline in microbial biomass carbon (Table 11). At both

depths alkaline phosphatase activity was significantly higher at the least degraded WB 3

site than at D 2 and WB 1. In the top 5 cm no significant difference in alkaline phosphatase

activity was found between D 2 and WB 1. In the 5-10 cm layer, however, alkaline

phosphatase activity was significantly higher at WB 1 as compared to D2 during the 1st

cropping season, although the α striking significance level after Bonferoni adjustment was

not reached (Table 14). No significant difference (α = 0.05) was obtained for the 2nd

season, whereas during the dry season D 2 was significantly lower at P = 0.100 as

compared to WB 1.

Since alkaline phosphatase activity is only produced by soil microorganisms and soil fauna

(Chhonkar and Tarafdar, 1984; Nakas et al., 1987) the differences in the rate of

phosphorous recycling from organic matter at WB 3, D 2, and WB 1 can be related to the

quantity and activity of the microbial biomass at the differently degraded sites. Compared

to microbial biomass carbon (Table 11) alkaline phosphatase activity appeared a more

sensitive parameter to characterize the sites and their degree of degradation as shown by

the constancy to reveal highly significant differences between sites.

The seasonal course of alkaline phosphatase activity at 0-5 cm depth is depicted in Figure

9.

Temporal fluctuations in potential activity were less pronounced as compared to microbial

biomass (Figure 7) due to stabilization by humic substances. As already mentioned in

Chapter 2.3 the activity of soil enzymes may remain rather stable despite the influence of

environmental changes as compared to microbial biomass. No decline in activity was

found during the dry season, confirming a protection of the enzyme by the SOM-pool. The

seasonal course of the enzymes potential activity was somewhat related to the gravimetric

moisture content during the 1st season (r = 0.6, P ≤ 0.001) and 2nd season in 1994 (r = 0.68,

P ≤ 0.001) at 0-5 cm depth. For the 1st and 2nd cropping season a high positive correlation

coefficient of 0.87 (P ≤ 0.001) and 0.93 (P ≤ 0.001), respectively, was found between

alkaline phosphatase activity and microbial biomass at 0-5 cm depth, and will be discussed

in more detail in Chapter 4.3.3.
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Figure 9. Seasonal course of alkaline phosphatase activity under continuous cropping at

WB 3, D 2, and WB 1 in the top 5 cm.

4.1.7 ß-Glucosidase

The seasonal average activity of ß-glucosidase at 0-5 cm and 5-10 cm depth in 1993 and

1994 is summarized in Table 15. The average activity of ß-glucosidase (according to the

method of Eivazi and Tabatabai, 1988) for Alfisols and Ultisols in Nigeria is reported as

20-309 µg g-1 in the 0-15 cm layer (Mulongoy et al., 1989), or as 10-17 µg g-1 for Alfisols

in northern Ghana at 0-30 cm depth (Fugger, 1997). Our results obtained in 1993 and 1994

are in agreement with these published data.

Deforestation and continuous cultivation for 4, 10, and 14 years resulted in a decline of ß-

glucosidase activity by 70 %, 72 % and 80 % in the 0-5 cm layer at WB 3, D 2, and WB 1,

respectively. In comparison, total loss of organic carbon was 50 %, 70 %, and 75 % at WB

3, D 2, and WB 1, respectively, as compared to secondary forest (Table 7).
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Table 15. Average ß-glucosidase activity
(µg p-nitrophenol g-1 soil h-1) under
continuous cropping at 0-5 cm and 5-10 cm
depth in 1993 and 1994.

ß-Glucosidase activity
  (µµg p-nitrophenol g -1h -1)

Site/depth
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 169 181 180

Westbank 3 50 59 47

D 2 47 49 44

Westbank 1 36 30 31

LSD 43 29 36

5-10 cm

sec. Forest 49 55 62

Westbank 3 21 20 19

D 2 15 13 16

Westbank 1 22 12 22

LSD 23 12 14

LSD (excluding forest) at α = 0.05

Contrary to the results obtained for total soil organic carbon (Table 7) and microbial

biomass (Table 11) no significant differences in ß-glucosidase activity was achieved at

both depths and throughout the sampling period. WB 3 was only significantly higher in the

top 5 cm during the dry season as compared to WB 1. Generally, potential ß-glucosidase

activity in the 5-10 cm layer was much smaller than the activity at 0-5 cm depth. Similar to

our data a more pronounced decrease of ß-glucosidase activity was reported for a legume-

vegetable rotation and a traditional vegetable rotation with winter fallow at Oregon, USA.

After 2 years ß-glucosidase activity declined by 50 % as compared to organic carbon

which declined by 6.5 % and 11.9 %, respectively (Miller and Dick, 1995). Friedel et al.

(1996) reported that the impact of tillage management was larger on ß-glucosidase activity

than on organic carbon under temperate agricultural conditions in Germany. However,

Garcia et al. (1994) reported for degraded soils in south-eastern Spain that ß-glucosidase

activities were lower at the most degraded soils, and was attributed to both reduced organic

matter mineralization and reduced activity of the carbon cycle (Garcia et al., 1994).
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Although a significant positive correlation coefficient of 0.81*** and 0.9*** in the top 5

cm and 0.6*** and 0.83*** at 5-10 cm depth in 1993 and 1994 was obtained between ß-

glucosidase and organic carbon, respectively, the activity of the enzyme is primarily

dependent upon available cellulosic substrates. Despite great differences in dry matter

production of 2.6 t/ha, 5.3 t/ha and 0.5 t/ha at WB 3, D 2, and WB 1, respectively, it

appears that no marked differences of available cellulytic substrates by the residues  were

existent under continuous intercropping of maize and cassava at both WB 3 and WB 1 and

the maize and cowpea sequence at D 2.

The seasonal course of the ß-glucosidase activity between April 1993 and October 1994 at

0-5 cm depth is depicted in Figure 10.
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Figure 10. Seasonal course of ß-glucosidase activity under continuous cropping at WB 3,

D 2 and WB 1 at 0-5 cm depth.

During the dry period ß-glucosidase activity increased at both WB 3 and WB 1, whereas at

D 2 a marked decline in activity towards the end of the dry season was found. This was

attributed to a reduced plant cover at D 2, and is discussed in more detail for microbial

biomass in Chapter 4.1.5.1. The higher activity at WB 3 and WB 1 during the dry season is
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due probably to an increase in the ratio of fungal biomass to bacterial biomass (Shields et

al., 1973). Since fungal spores and mycelial fragments survive under very low soil

moisture conditions, decomposition of dead roots and cassava litter commenced upon

decrease in soil moisture (Ross et al., 1984; Griffin, 1969).

The temporal fluctuation of ß-glucosidase activity was not controlled by the gravimetric

soil moisture content as the relation was non-significant (data not shown). Similar results

were reported by Eivazi and Tabatabai (1990) and Rastin et al. (1988) that ß-glucosidase

was significantly increased upon air-drying of soils in Iowa, USA, while no correlation was

found in a beech forest in Germany, respectively. The seasonal activity of ß-glucosidase is

related to organic carbon and microbial biomass and is controlled by the availability of the

residues added.

4.1.8 Protease

Average seasonal protease activities at 0-5 cm and 5-10 cm depth are depicted in Table 16.

Protease activities ranged from 15 to 179 µg tyrosine g-1 2 h-1 in the top 5 cm, and from 21

µg to 152 µg g-1 2 h-1 in the 5-10 cm layer. Similar to our results Fugger (1997) reported

mean protease activities of 20-74 µg g-1 2 h-1  at 0-30 cm depth for Alfisols in northern

Ghana.

No consistent trend in protease activity as related to site degradation was obtained. In the

top 5 cm protease activity decreased in the order WB 3 = D 2 > WB 1 only during the 1st

season, whereas no significant differences were found for the dry season and the 2nd

season. At 5-10 cm depth, WB 3 had significant higher protease activity during both the 1st

and the dry season. D 2 and WB 1 were not significantly different from each other. The

results obtained for protease activity at 5-10 cm depth are according to the total soil

nitrogen, decreasing in the order WB 3 > D 2 = WB 1.
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Table 16. Average protease activity (µg
tyrosine g-1 soil 2 h-1) under continuous
cropping at 0-5 cm and 5-10 cm depth in
1993 and 1994.

Protease activity
  (µµg tyrosine g-1 2 h -1)

Site/depth
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 325 202 230

Westbank 3 179 82 94

D 2 127 39 87

Westbank 1 55 15 131

LSD 92 ns ns

P contrasts(1)

D 2 vs. WB 1 0.014

5-10 cm

sec. Forest 195 132 150

Westbank 3 152 75 66

D 2 29 41 28

Westbank 1 36 21 145

LSD 58 54 ns

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned
contrasts is α/11 = 0.0045.

The seasonal course of mean protease activity under continuous cropping at WB 3, D 2

and WB 1 in the 5-10 cm layer is displayed in Figure 11.

Protease activity fluctuated highly during the cropping seasons. A pronounced decline in

activity was observed during the dry season. Similar results were reported by Loll and

Bollag (1983) and Watanabe and Hayano (1996) confirming that low soil moisture

contents restrict proteolysis. However, no significant correlation of gravimetric soil

moisture content and protease activity could be established for 1993 and 1994. Microbial

biomass, total N, and organic carbon correlated with protease activity with differing

correlation coefficients in 1993 and 1994. Thus, the correlation coefficient between

microbial biomass, total N, and organic carbon with protease in 1993 was 0.85***,

0.76***, and 0.77*** and in 1994 was 0.59***, 0.5***, and 0.45**, respectively.
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Figure 11. Seasonal course of protease activity under continuous cropping at WB 3, D 2,

and WB 1 in the 5-10 cm layer.

4.1.9 Summary

The productivity of maize decreased in the order D 2 > WB 3 > WB 1. No difference in the

measured soil physical properties (bulk density, particle size distribution) were obtained

among the sites. Soil chemical conditions (pH, Corg, total N, exchangeable basic cations)

decreased in the order WB 3 > D 2 = WB 1. Inorganic phosphorus (Bray-I and NaHCO3-

extractable) was significantly higher at D 2, compared to both WB 3 and WB 1, which

were not different from each other. Organic phosphorus (NaHCO3 and NaOH-extractable)

in the 0-5 cm layer was highest at D 2 and WB 1 as compared to WB 3, whereas in the 5-

10 cm layer D 2 was significant higher as compared to WB 3 and WB 1. Soil microbial

biomass behaved similar to total SOM and decreased in the order WB 3 > D 2 = WB 1 at

both depths. Alkaline phosphatase at 0-5 cm depth decreased in the order WB 3 > WB 1 =

D 2 and at 5-10 cm depth in the order WB 3 > WB 1 > D 2 during the 1st season and in the

order WB 3 > WB 1 = D 2 during the dry and the 2nd season. Acid phosphatase was not
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significantly different in the top 5 cm, whereas at 5-10 cm depth acid phosphatase activity

increased in the order WB 1 = D 2 > WB 3 during the 1st season, and WB 1 > D 2 = WB 3

during the dry season. No significant differences were found for the 2nd season. ß-

Glucosidase activity was not different among the sites. Protease activity was not

significantly different at 0-5 cm depth except WB 3 = D 2 > WB 1 during the 1st season. At

5-10 cm depth the activity decreased in the order WB 3 > D 2 = WB 1 during both the 1st

and dry season. No significant differences were found for the 2nd season.

In summary, WB 3 was characterized by medium maize productivity, high amounts of soil

organic matter related properties, low phosphorus status and acid phosphatase activity,

high microbial biomass, alkaline phosphatase and protease activity. D 2 was characterized

by high maize productivity, low values of soil organic matter related properties, high

phosphorus status, low microbial biomass as well as low alkaline phosphatase and protease

activity. Characteristic for Westbank 1 was low maize productivity, low amounts of soil

organic matter related properties, low inorganic phosphorus status and high organic

phosphorus content at 0-5 cm depth, high acid phosphatase activity, low microbial biomass

and alkaline phosphatase activity as well as low protease activity in 1993.

Differences between the degraded D 2 and Westbank 1 sites as reflected in maize

productivity were largely due to inorganic Bray-I phosphorus at both depths and organic

phosphorus at 5-10 cm depth. Differences in relation to soil microbiological properties

were due to alkaline phosphatase activity at 5-10 cm depth. Acid phosphatase activity

differed only during the dry season at 5-10 cm depth, and protease activity at 0-5 cm depth

during the 1st season.
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4.2 Effects of improved fallow management systems on site degradation

The management of the improved fallow systems at each site is depicted in Table 17.

Table 17. Improved fallow managements at Westbank 1, D 2, and Westbank 3

year
cropping
pattern 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

WB 1

Ctrl M+Cs M-C M-C Mu M-C M-C M-C M-C M-C Mu M+Cs M+Cs M+Cs M+Cs M+Cs M+Cs

Leucaena M+Cs M-C M-C Mu M-C M-C M-C M-C M-C Mu Leuc Leuc Leuc Leuc M+Cs M+Cs
Senna M+Cs M-C M-C Mu M-C M-C M-C M-C M-C Mu Senna Senna Senna Senna M+Cs M+Cs

Pueraria M+Cs M-C M-C Mu M-C M-C M-C M-C M-C Mu Puer Puer Puer Puer M+Cs M+Cs
Nat.regrowth M+Cs M-C M-C Mu M-C M-C M-C M-C M-C Mu Bush Bush Bush Bush M+Cs M+Cs

D 2
Ctrl M-C M-C M-C M-C M M-C M M-C M-C

Leucaena
M-C
 +

Leuc

M-C
 +

Leuc

M-C
 +

Leuc

M-C
 +

Leuc

M
 +

Leuc

M-C
 +

Leuc

M
 +

Leuc

M-C
 +

Leuc

M-C
 +

Leuc

Senna
M-C
 +

Senn

M-C
 +

Senn

M-C
 +

Senn

M-C
 +

Senn

M
 +

Senn

M-C
 +

Senn

M
 +

Senn

M-C
 +

Senn

M-C
 +

Senn
WB 3

Ctrl M+Cs M+Cs M+Cs M+Cs M+Cs M+Cs

Leucaena
M+Cs

 +
Leuc

M+Cs
 +

Leuc

M+Cs
 +

Leuc

M+Cs
 +

Leuc

M+Cs
 +

Leuc

M+Cs
 +

Leuc

Pueraria
M+Cs

 +
Puer

M+Cs
 +

Puer

M+Cs
 +

Puer

M+Cs
 +

Puer

M+Cs
 +

Puer

M+Cs
 +

Puer

Nat.regrowth
M+Cs

 +
Bush

M+Cs
 +

Bush

M+Cs
 +

Bush

M+Cs
 +

Bush

M+Cs
 +

Bush

M+Cs
 +

Bush
M+Cs = maize and cassava intercropping
M-C = maize and cowpea sequential cropping
Mu = mucuna fallow
M-Mu = maize in the 1st season and mucuna fallow in the 2nd season
M = maize in the 1st season only

Between 1980 and 1986 D 2 was part of an experimental area used by breeders   
(maize, cassava, cowpea and soybean) with diverse tillage (ploughing and disc harrowing) and fertilizer  
managements. In 1986, D 2 was split into two subplots. At one site the improved fallow management trials 
were stablished in 1986.  However, the recorded management schedules of the site do not allow a 
conclusive allocation of the land use history to D 2 (Van der Meersch, pers.com.; Vanlauwe, pers.com.).

At Westbank 3 and D 2 hedgerow intercropping and live mulching were practiced since

1989 and 1986, respectively. At Westbank 1, however, leucaena, senna, pueraria and

natural regrowth plants were managed as fallows between 1989 and 1993, slashed and

burnt with subsequent cropping to maize and cassava in 1993 and 1994.
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4.2.1 Crop performance of maize and cassava

In order to obtain significant yield differences at α = 0.05, design measures such as

blocking, splitting, repeated sub-sampling are used to increase the precision of the mean

estimates. Furthermore the number of replications is more than two. However, as already

discussed in Chapter 3.3.1 the main emphasis of our research was focused on potential

changes in soil processes over time.

Table 18. Maize grain and stover (kg DM ha-1) and cassava tuber (t DM ha-1)
yield under traditional and improved fallow management systems in 1993 and
1994 at Westbank 3, D 2, and Westbank 1 (2 field replicates).

Maize grain Maize stover Cassava
tuber(3)

Management 1993 1994 Mean 1993 1994 Mean 1993 1994

Westbank 3

Ctrl 1202 1134 1168 1323 1509 1416 6.8 8.2

Leucaena 1595 979 1286 1711 1455 1583 5 4.8

Pueraria 1368 1355 1361 1519 1272 1395 2.6 9

Nat. regrowth(2) 3990 fallow 4848 fallow ⊗ 15

D 2

Ctrl 1604 2374 1989 2628 2901(1) 2674

Leucaena 2305 1322 1813 1134 1615(1) 1374

Senna 2066 1944 2004 1783 2376(1) 2080

Westbank 1

Ctrl 400 200 300 700 331 516 5.2 3.7

Leucaena 995 637 816 550 964 757 n.a. 5.3

Senna 750 2165 1457 900 1283 1092 n.a. 8.7

Pueraria 450 436 442 800 1098 949 n.a. 14

Nat. regrowth 650 997 823 950 1495 1222 n.a. 10.2

LSD (α = 0.05) 647.8 10

Data presented on maize and cassava for WB 1 and WB 3 were received by RCMD,
IITA, and for D 2 by Vanlauwe, personal communication;
 (1) = stover was estimated by harvest index of 45 % (Vanlauwe, personal
communication);
(2) = not included in Anova;  see Chapter 3.8;
(3) = statistical analysis for 1994;
⊗ = cassava was planted in 1993 after 2 years of fallowing and harvested 12 months
later in April 1994;
n.a. = not available, data were not submitted by RCMD/IITA.



Results and Discussion
Effects of improved fallow management systems on site degradation

70

Overall results of the long-term trials were not made available by RCMD/IITA (Resource

and Crop Management Division, IITA) so that they cannot be compared with the results

presented here. Due to high inter-plot and seasonal variability of cassava tuber yields no

significant differences between treatments was obtained at the 5 % level except for

pueraria at Westbank 1 which yielded significantly higher cassava tubers than continuous

cropping (Table 18). At Westbank 3 natural regrowth (2:1 year rotation of natural regrowth

and maize/cassava intercropping, respectively), leucaena, and pueraria were not

significantly different from the control. Also the introduction of planted fallows with

leucaena, senna and natural regrowth for four years at WB 1 did not significantly increase

cassava tuber yield as compared to continuous cropping. Cassava at WB 1 had to be

replanted in 1993 because of damage by ants and termites, while during the cropping

period losses occurred by rodent attacks (Salako, personal communication). Thus, higher

cassava yields might have been expected in 1994 under more regular conditions.

Nonetheless, cassava performed fairly well at the severely degraded Westbank 1, and is

discussed in more detail in Chapter 4.1.1.

The performance of maize at the degraded D 2 site was generally superior to that at the

most degraded Westbank 1 and the least degraded Westbank 3 (Table 18), although not

always statistically significant at the 5 % level. The introduction of pueraria or leucaena at

WB 3 and leucaena or senna at D 2 did not improve maize yield significantly over

continuous cropping control maize yield. Moreover, total dry matter under leucaena (2.9 t

ha-1) was significantly lower than under continuous cropping (5.3 t ha-1; Table 20). At the

most degraded Westbank 1 site the introduction of planted fallow with senna yielded

significant more maize grain than in the continuous cropping control. Leucaena and natural

regrowth yielded significantly more maize only at P = 0.113 and P = 0.108, respectively,

than the control. The improved fallows may contribute to an organic matter build-up due to

addition of leaf biomass which subsequently releases nutrients (Mittal et al., 1992).

Pueraria fallowing for 4 years, however, had no positive impact on maize productivity

which is in agreement with results reported by Luna-Orea et al. (1996) for typic and aquic

Dystropept soils in the Bolivian Amazon. More than 50 % of the nutrients in the pueraria

residue from 12 month fallow were released within 4 weeks after slashing the cover crops.

Thus, the nutrients were potentially available at 6 weeks prior to peak nutrient demand by

the succeeding crops (Luna-Orea et al., 1996).

The impact of improved fallow managements to improving maize yield as compared to

sole cropping is discussed controversially in the literature. Kühne (1993) reported for
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ferrali-haplic Acrisols („Terre de barre non degradé“) in southern Benin reduced maize

yields when compared to cropping without leucaena hedges due to competition by roots for

water and nutrients. These results are not consistent with data reported by Van der Meersch

(1992) for Alfisols at D 2, IITA. She found that maize yields in maize/leucaena alley

cropping decreased by 11 % from initially 2270 kg/ha in 1986 to 2033 kg/ha in 1990,

whereas both alley cropping with senna and the sole cropping control treatment decreased

by 40 % from 2890 kg maize/ha in 1986 to 1754 kg/ha in 1990 and by 70 % from 2389

kg/ha in 1986 to 733 kg/ha in 1990, respectively. The maize grain production in 1990 did

not differ in either alley cropping system but was significantly higher than in the

monocropping system. Leucaena alley cropping was more stable and maintained maize

yields of about 2 t/ha after five years continuous cropping (Van der Meersch, 1992). Tian

et al. (1993) stressed that maize grain yield was higher with leucaena prunings

supplemented with 45 kg N/ha at IITA, Nigeria, and concluded that the combined addition

of plant residue and fertilizer-N were important to improving crop production. Similar

results were reported for leucaena alley cropping with maize and cowpea planted in

sequence on an Entisol (loamy sand Apomu soil) in southern Nigeria (Kang et al., 1985).

Although leucaena contributed about 110 kg N ha-1 year-1 between 1981 and 1983 on

average, supplementary rates of fertilizer-N were still needed for obtaining high maize

yields (Kang et al., 1985).

Further discussion on the impact of different management systems and the soil’s fertility

status on maize grain yields is given in Chapter 4.1.1.

4.2.2 Nutrient uptake by maize grain

Table 20 presents the nutrient uptake in the total dry matter at harvest 1994 as affected by

fallow managements and cropping sites.

The introduction of planted fallows with leucaena, senna and pueraria and natural regrowth

for four years at the most degraded WB 1 did not significantly increase N, P and K-uptake

as compared to continuous cropping except for N-uptake under senna at P = 0.098. At this

degraded site increased amounts of residue returns by the planted fallows for 4 years

should have improved nutrient availability and uptake by maize crops as is indicated by

trends (Table 20). However, due to high inter-plot variability no significant differences

could be obtained. The  single values for nutrient uptake of N and P in stover and grain at

either replicate is given in Table 1 and 2 of the Appendix, respectively.
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At the least degraded WB 3 site no significant difference in maize N- and K-uptake as

compared to sole cropping was found. Phosphorus uptake of maize plants were higher (P =

0.09) under continuous cropping as compared to both pueraria and leucaena. The reduced

P-uptake in the maize crop may be caused by competition by the companion hedgerow

trees and the herbaceous in situ cover for phosphorus.

Table 20. Nutrient uptake (kg ha-1) in total dry matter (t ha-1)(1) of maize
plants at harvest 1994 as affected by cropping sites and fallow
management systems.

Management
system

dry
matter N P K Ca Mg
t ha-1 kg ha-1

Westbank 3

Ctrl 2.6 37.3 30.5 30.0 10.0(2) 10.5

Leucaena 2.4 32.5 14.7 27.2 10.5(2) 10.6

Pueraria 2.1 35.7 18.1 30.2 8.8(2) 11.0

D 2

Ctrl 5.3 53.0 13.3 56.3 38.3 30.2

Leucaena 2.9 32.2 6.5 35.2 12.9 13.0

Senna 4.3 37.7 8.0 47.7 26.7 16.4

Westbank 1

Ctrl 0.5 4.3 0.8 4.8 3.0 2.3

Leucaena 1.6 14.8 2.3 19.0 10.9 6.6

Senna 3.4 32.1 9.1 24.7 9.0 11.7

Pueraria 1.5 12.5 2.1 16.6 8.1 6.9

Nat. regrowth 2.5 25.5 4.6 20.9 13.9 13.3

LSD 2.3 ns ns 23.7 12 12.5

Data on nutrient uptake at WB 1 and WB 3 were received from RCMD, IITA
and for D 2 from Vanlauwe (personal communication);
(1) = total dry matter production of the above ground plant material including
stalks and grain;
(2) = only stover; data were received from RCMD, IITA.

At D 2 the nutrient uptake of N and K by the maize plants was lower under the alley

cropping systems than under sole cropping, which indicated lower available N and K than

under non-mulched sole cropping. Thus, N-uptake by maize of both leucaena and senna

alley cropping systems were significantly reduced (P = 0.079) due probably to competition
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by roots of crops and trees for nutrients and water, and is reflected in the significant lower

total DM of leucaena as compared to the control treatments (Table 20). Potassium uptake

by maize was only significantly reduced in the leucaena treatment (P = 0.075) Phosphorus

uptake under sole cropping was not significantly different from the alley cropping

treatments.

The impact of alley cropping systems on maize N-uptake is discussed controversially in the

literature. Jonsson et al. (1996) reported that a transfer of fixed N of leucaena to maize in

Tanzania was not indicated as determined by the 15N-natural abundance method. Van der

Meersch (1992), however, concluded that alley cropping with leucaena and senna

significantly increased maize N-uptake at D 2. No differences were found between

leucaena and senna, a fast and a slow decomposing material, respectively (Van der

Meersch, 1992).

The results obtained for crop P-uptake under improved fallow management systems at WB

3 and D 2 are supported by results presented by Palm (1995), who concluded that

phosphorus was not provided in sufficient quantities to meet the demand of intercropped

maize as well as leucaena and senna plants. However, these findings contradict to those

reported by Hands et al. (1995) and Haggar et al. (1991). Hands et al. (1995) found no

differences in maize and bean P-uptake between an unfertilized sole cropping control and

alley cropping systems with gliricidia and erythrina on a nutrient depleted Ultisol at Costa

Rica. Haggar et al. (1991) reported that crop P-uptake in the field was 50-60 % higher in

the alley crops than in the unmulched sole crops on volcanically derived soils in Costa

Rica due to a more efficient use of P and higher P-cycling rate within the system. The

author further suggested that an increase of organic matter input to the soil by the prunings

may block the adsorption of P by soil minerals due to organic anions competing for P-

adsorption. Therefore, the buffering capacity of the soil is reduced, thus resulting in

decreased adsorption of native soil phosphate. However, this may not hold true for the

prevailing conditions at IITA, Nigeria where sustained residual effects of inorganic

phosphorus fertilization was observed due to the low P-sorption capacity of these Alfisols

(compare with Chapter 4.1.4.2). Consequently, competition by roots of arable crops and

trees for nutrients may have caused a reduced nutrient uptake for intercropped maize.

4.2.3 Soil physical properties

Mean bulk densities (0-5 cm depth) of the improved fallow management systems at WB 3,

WB 1, and D 2 ranged from 1.14 Mg m-3 to 1.38 Mg m-3 and are presented in Table 21.
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No significant differences in mean bulk density were obtained between treatments and

sites.

The mean percentage sand, silt and clay content under the improved fallow management

systems were about 80 %, 10 % and 10 %, respectively, at Westbank 3 and D 2. Westbank

1 had lower sand (non-significant) and higher clay contents (significant at P = 0.08), and

was in accordance to the site’s texture under secondary forest before clearing in 1978

(compare with Chapter 4.1.3).

Table 21. Soil physical characteristics under improved
fallow management systems in the 0-10 cm layer, 1993.

bulk
density

texture %

Management Mg m-3 (1,2) sand silt clay
sec. Forest n.d. 81.0 10.0 9.0

Westbank 3

Ctrl 1.26 82.0 9.0 9.0

Leucaena 1.18 82.0 9.0 9.0

Pueraria 1.20 80.0 10.5 9.5

Nat. regrowth 1.14 78.5 10.5 11.0

D 2

Ctrl 1.37 81.0 10.5 8.5

Leucaena 1.37 81.5 9.25 9.25

Senna 1.37 79.0 11.5 9.5

Westbank 1

Ctrl 1.33 73.5 9.0 17.5

Leucaena 1.36 66.0 9.0 25.0

Senna 1.38 68.5 11.0 20.5

Pueraria 1.35 75.0 8.0 17.0

Nat. regrowth 1.34 71.5 7.5 21.0

SE 0.06 4.1 1.2 3.7

SE = Standard error of the mean;
n.d. = not determined;
data on bulk density at Westbank 3 and Westbank 1 were
received by Salako (personal communication) and at D 2 by
Van der Meersch (1992);
(1)  = bulk density of the top 5 cm;
(2) = SE was only determined for WB 1 and WB 3, since
mean bulk density of  total D 2 was only available by Van
der Meersch, 1992.
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4.2.4 Soil chemical characteristics

4.2.4.1 Soil nutrients and pH

Average concentrations of organic carbon, total nitrogen and pH in the 0-5 cm and 5-10

cm layer under improved fallow management at Westbank 3, D 2, and Westbank 1 are

depicted in Table 22 and Table 4 of the Appendix, respectively.

The pH under the improved fallow managements were highest at Westbank 3 compared to

the degraded Westbank 1 and D 2 sites and this is attributed to the shorter cropping period

of the former site.

Table 22. Average soil organic carbon (t ha-1), total nitrogen (kg ha-1) and pH values under
improved fallow management systems at 0-5 cm depth in 1993 and 1994.

org. C (t ha-1) total N (kg ha -1) pH (CaCl2)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season

0-5 cm

sec. Forest 19.3 17.4 16.8 1707 1381 1358 6.6 6.9 6.7

Westbank 3

Ctrl 8.8 8.2 9.3 732 713 856 6.8 7.0 6.9

Leucaena 9.6 10.7 10.9 969 924 999 6.6 6.8 6.8

Pueraria 12.6 11.6 12.5 1023 1069 1060 6.7 7.1 6.9

Nat. regrowth 11.1 10.0 fallow 937 902 fallow 6.8 7.1 fallow

D 2

Ctrl 5.4 6.4 6.1 479 563 537 6.0 5.8 6.0

Leucaena 6.3 7.4 7.3 580 671 663 6.1 5.7 5.6

Senna 7.0 7.0 8.1 574 638 656 6.3 6.1 6.3

Westbank 1

Ctrl 4.1 5.0 4.6 408 471 479 5.7 5.7 5.5

Leucaena 9.8 6.8 7.9 842 681 796 6.1 6.0 6.2

Senna 9.4 8.3 9.7 753 679 804 6.6 6.5 6.7

Pueraria 7.2 6.6 8.0 643 560 715 5.7 5.6 5.7

Nat. regrowth 7.4 5.6 7.6 628 530 690 6.1 5.8 6.0

LSD 1.55 2.2 2.1 176 123 202 0.36 0.53 0.51

LSD (excluding forest) at α = 0.05
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The soil pH in improved fallow managements at both the non-degraded WB 3 site and the

degraded D 2 site were not significantly different compared to the continuous cropping

controls. Mulongoy et al. (1993), however, reported significant lower soil pH values under

leucaena hedgerow intercropping than in sole cropping in Nigeria. He suggested that the

decomposition of the applied prunings may have some acidifying effect on soils. At WB 1,

however, the introduction of planted fallows with leucaena, senna, and natural regrowth for

4 years significantly increased soil pH in comparison to the control treatments and this was

most pronounced for senna fallowing between 1989 and 1993. Pueraria was not

significantly different from the continuously cropped controls. Particularly at this degraded

site, these relatively small increases in pH may alleviate Mn toxicity.

At WB 3 the mean soil organic carbon content was significantly higher under pueraria

throughout the sampling period whereas the 2:1 year rotation of natural regrowth and

maize/cassava intercropping was only significant higher than the continuous cropping

controls during the 1st season. Leucaena was not significantly different from the continuous

cropping controls. Similar results were obtained at D 2, where the introduction of leucaena

hedgerow intercropping did not maintain significantly higher amounts of total organic

carbon than the continuous cropping control. Senna alley cropping, however, had

significantly higher total soil organic matter contents during the 1st and 2nd season as

compared to the control. Only at the most degraded Westbank 1 site the introduction of

planted fallows with leucaena, senna, pueraria, and natural regrowth significantly increased

soil organic carbon as compared to the continuous cropping control. These findings are in

accordance with the results obtained by Kang et al. (1981), Kang and Doguma (1985),

Wade and Sanchez (1983), and Lal (1989), who all found that higher C and N levels were

sustained by continuous additions of leucaena prunings and pueraria mulch than on plots

receiving no prunings. The results obtained at D 2 are partly consistent with those reported

by Van der Meersch (1992).  She found that despite repeated applications of organic

material by either prunings of leucaena and senna, soil organic carbon did not increase as

compared to the control treatments and was lower than the bush regrowth of the same age.

Despite the introduction of improved fallow managements, the soil organic carbon content

in the 0-5 cm layer at the degraded WB 1 and D 2 sites was 50-65 % and 52-67 % lower,

respectively, as compared to secondary forest. The decline was more pronounced under the

senna and leucaena alley cropping systems at D 2 as compared to the more severely

degraded Westbank 1. At the least degraded Westbank 3 site, organic carbon decreased by
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35-50 % under the improved fallow management systems in the 0-5 cm layer, 4 years after

forest clearing.

The data on soil nitrogen followed similar trends to those of organic carbon. Under

secondary forest the mean N content was 1.4 t/ha in the 0-5 cm layer and declined most

(55 %) under leucaena alley cropping at D 2 and least (25 %) under pueraria at WB 3.

Similar results were found by Lal (1989) at IITA, who reported total N decline of 75 %

five years after continuous cropping under no-tillage, plow-tillage, and contour hedgerows

with leucaena and gliricidia from initially 0.28 % to 0.07 % in the 0-5 cm layer. The

introduction of leguminous or non-leguminous trees in simultaneously cropped fields

(agro-silviculture) failed to significantly restore soil organic matter and total N at various

sites in southern Nigeria (Mulongoy et al., 1993), in accordance with the results obtained

by us in 1993 and 1994. Compared to the continuous cropping control treatments only at

WB 3 and WB 1 significant differences in total soil nitrogen were found by the

introduction of improved fallow management systems. At D 2 no significant treatment

effects were obtained. This is in accordance to results reported by Van der Meersch (1992),

who found that at D 2 none of the alley cropping systems with leucaena and senna restored

soil N fertility to the same extent as a 4 year old bush fallow. The author  concluded that

organic N applied with senna prunings could not sufficiently compensate for the N taken

up by the companion maize crop or for N losses from the system. Thus, the recycling

capacity of the senna trees was not high enough to maintaining soil organic nitrogen.

Although leucaena did not sustain soil N as well as a 4 year old bush fallow, the

application of leucaena pruning material was suggested to replace fertilizer-N because total

N and organic C were sustained at the same level in both, fertilized and unfertilized

leucaena alley cropping systems at D 2 (Van der Meersch, 1992). Gaiser (1992) reported

that the efficiency of leucaena leaves to increase the amount of organic N in the soil was

less than with maize stover. The amount of soil N in the light organic matter fraction had

been increased significantly but not the amount of N in the heavy fraction.

Data on exchangeable basic cations (cmol+ kg-1 and kg ha-1), and Mn are summarized in

Table 23 and Table 5 of the Appendix. They represent the nutrient status of these sites in

October 1993.

Similar to the continuous cropping control treatments the predominant exchangeable basic

cation at all sites was Ca. The introduction of improved fallow managements at WB 3 and

D 2 did not sustain higher exchangeable soil nutrient concentrations than the controls.

These findings contradict the results reported by Van der Meersch (1992) for D 2 at IITA,
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who found increased exchangeable basic cation levels in alley cropping systems with

leucaena and senna. The author further suggested a high nutrient “pumping” capacity of

senna for Ca and of leucaena for Ca, K, and Mg.

At the most degraded Westbank 1 site, however, significantly higher concentrations of Ca

and Mg were obtained after leucaena, senna, and natural regrowth fallowing for four years,

whereas pueraria was not different from the continuous cropping control. Potassium was

significantly higher only in the senna and leucaena systems.

Table 23. Average soil nutrient status (cmol+ kg -1 and kg ha-1) under
improved fallow management systems at 0-5 cm depth in 1993.

Ca Mg K Mn Ca Mg K
Management cmol+ kg-1 kg ha-1

0-5 cm

sec. Forest 12.2 2.33 0.85 0.000 1385 159 188

Westbank 3

Ctrl 5.94 0.66 0.21 0.000 677 45 47

Leucaena 5.24 0.73 0.26 0.000 597 50 57

Pueraria 6.78 1.00 0.27 0.000 772 68 61

Nat. regrowth 6.87 0.90 0.26 0.000 782 62 58

D 2

Ctrl 1.75 0.48 0.23 0.008 193 32 50

Leucaena 1.48 0.35 0.30 0.020 163 23 65

Senna 3.00 0.55 0.37 0.008 332 37 80

Westbank 1

Ctrl 1.30 0.39 0.17 0.007 124 22 32

Leucaena 5.57 1.64 0.46 0.001 531 94 86

Senna 7.3 1.29 0.67 0.000 695 74 124

Pueraria 2.71 0.72 0.15 0.003 258 41 28

Nat. regrowth 3.30 1.02 0.24 0.003 314 58 45

LSD 1.87 0.43 0.15 ns 134 19 22

LSD (excluding forest) at α = 0.05

Trends, however, reveal a higher nutrient status 4 years after fallowing with pueraria and

natural regrowth compared to the control treatments. Investigations by Kang et al. (1981),

Wilson et al. (1982), Lal (1989), and Hulugalle et al. (1990) confirmed an increase of
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exchangeable cations by alley cropping treatments compared to a no-tree control due to

nutrient “pumping” from deeper layers. Wade and Sanchez (1983) reported similar results

for acid Ultisols in Peru, where pueraria cover maintained nutrient concentrations similar

to an unmulched but fertilized treatment.

The proposed critical Mg:K ratio of 2 or less beyond which Mg-uptake by maize fell

sharply (Lombin and Fayemi, 1976) was reached under leucaena and senna alley cropping

in the 0-5 cm and 5-10 cm layer at D 2 (Table 23 and Table 5 of the Appendix), for senna

fallowing at WB 1 (both depths), and for leucaena and natural regrowth at 5-10 cm depth.

Similar to the continuous cropping control at D 2 (Table 8) K may likely have suppressed

Mg-uptake.

Exchangeable manganese was only found at both the degraded Westbank 1 and D 2 sites

(Table 17 and Table 4 of the Appendix).

4.2.4.2 Bray-I phosphorus

Data on available Bray-I phosphorus (µg g-1) under improved fallow management systems

in the 0-5 cm and 5-10 cm layer, corrected for bulk density and gravel content (kg ha-1) are

shown in Table 24 and Table 6 of the Appendix, respectively.

The introduction of improved fallow management systems at the sites did not cause any

clear trend. At both WB 3 and WB 1 they generally did not sustain significantly higher

Bray-I inorganic phosphorus contents than in the control treatments. As an exception, the

2:1 year rotation of natural regrowth and maize/cassava intercropping at the non-degraded

WB 3 was significantly higher during the 1st cropping season as compared to continuous

cropping. The introduction of senna fallow for four years at Westbank 1 also led to

significant higher available Bray-I phosphorus contents during the 1st cropping season at 0-

5 cm depth. The likelihood of enhanced phosphorus availability at sites with improved

residue managements is discussed by several authors. One of the mechanisms advanced to

explain the increased P-availability when the soil is amended with organic residues is the

prevention of P-adsorption by soil minerals due to released organic anions competing for

P-adsorption sites (Singh and Jones, 1976; Iyamuremye and Dick, 1996). Investigations by

Sharif et al. (1974) showed that inorganic P could be used more efficiently in soil that had

received animal manure. The authors further hypothesized that organic matter may

increase the availability of inorganic P by suppressing the conversion of inorganic P to less

soluble compounds.
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Table 24. Available Bray-I phosphorus (µg g-1 and kg ha-1) under
improved fallow management systems at 0-5 cm depth in 1993 and
1994.

Bray-I P (µµg g-1) Bray-I P (kg ha -1)

site/depth 1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm

sec. Forest 25.7 30.7 29.2 14.3 15.5 16.6

Westbank 3

Ctrl 5.0 3.6 5.4 3.0 2.1 3.1

Leucaena 6.3 3.9 8.6 3.7 2.2 4.9

Pueraria 5.8 4.3 8.6 3.5 2.5 4.9

Nat. regrowth 9.6 5.6 fallow 5.9 3.2 fallow

D 2

Ctrl 24.2 25.8 29.5 12.8 14.3 15.1

Leucaena 11.6 17.2 20.9 5.6 9.5 11.5

Senna 19.9 18.8 29.1 10.4 10.4 14.8

Westbank 1

Ctrl 5.9 5.1 6.0 3.0 2.4 2.8

Leucaena 7.6 3.1 4.6 3.8 1.5 2.2

Senna 17.7 8.9 11.3 7.7 4.3 5.3

Pueraria 7.8 5.1 8.0 4.0 2.4 3.6

Nat. regrowth 8.3 3.3 5.5 3.8 1.5 2.6

LSD 3.3 6.2 8.4 1.7 3.4 3.9

LSD (excluding forest) at α = 0.05

Singh and Jones (1976) concluded that organic materials with high phosphorus

concentrations may increase the amount of P in soil solution due probably to a higher

contribution of mineralized P. The likelihood of differences in the availability of

phosphorus is also supported by Le Mare et al. (1987). No differences in Bray-I P were

found on a dark-red latosol in Brazil between green manured and unmanured treatments.

However, amendments with pueraria increased the proportion of added P that was

exchanging between soil particles and solution. The authors assumed that the adsorbed

phosphorus was more labile under green manured than under unmulched sole cropping due

to a change of the phosphorus kinetics in the soil (Le Mare et al., 1987).

Generally, inorganic Bray-I extractable phosphorus at D 2 was significantly higher than at

the Westbank 1 and Westbank 3 sites (Chapter 4.1.4.2). The introduction of improved
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fallow management systems at D 2, however, did not lead to higher inorganic Bray-I

phosphorus concentrations when compared to the continuous cropping control. In fact,

both alley cropping systems with leucaena and senna had significantly lower inorganic

Bray-I phosphorus than the continuous cropping control. This is in accordance to results

reported by Van der Meersch (1992) and Haggar et al. (1991) for D 2 and at CATIE, Costa

Rica, respectively. Both authors concluded that the hedgerow trees competed with the

crops for phosphorus in unfertilized systems. Moreover, Haggar et al. (1991) reported that

alley cropping for seven years maintained P-levels in the soil that were lower compared to

other treatments and assumed that there was a net removal of phosphorus from the soil by

the hedgerow-trees.

4.2.4.3 NaHCO3- and NaOH-extractable inorganic and organic phosphorus pools

Data on NaHCO3- and NaOH-extractable inorganic and organic phosphorus pools are the

mean of 3 sampling dates at 0-5 cm and 5-10 cm depth (January, May and August) in 1994

and are summarized in Table 25 and Table 7 of the Appendix, respectively.

At Westbank 3 no significant differences were obtained between the improved fallow

managements and continuous cropping. At D 2, however, the introduction of leucaena and

senna alley cropping led to a significant reduction of extractable NaHCO3-Pi, which is

discussed for Bray-I-P in Chapter 4.2.4.2. At the most degraded WB 1 site only senna

fallowing for four years significantly increased NaHCO3-Pi compared to continuous

cropping, whereas leucaena, pueraria, and natural regrowth fallowing was not significantly

different from the control. The introduction of improved fallow management systems at all

sites had no impact on the NaHCO3-extractable organic phosphorus pool as compared to

the controls. This is in agreement with results reported by Tiessen et al. (1991, 1992) for

semi-arid northeastern Brazil and northern Ghana. Similar results were obtained for the

NaOH-extractable organic P-pool. The introduction of woody and herbaceous legumes at

WB 3 and D 2 was not significantly different from continuous cropping. These results are

consistent with investigations by Paniagua et al. (1995) and Beck and Sanchez (1994). A

decline of NaOH-organic phosphorus was found under non-fertilized but mulched plots

when compared to fertilized treatments (Paniagua et al., 1995). Beck and Sanchez (1994)

postulated that the incorporation of erythrina and gliricidia prunings in alley cropping

systems on a typic Paleudult in Costa Rica had no effect on the organic phosphorus pools.

Both authors concluded that inorganic phosphorus fertilization rather than organic
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additions regulated the size and distribution of organic phosphorus accumulation.

However, in our experiment planted senna fallow at Westbank 1 for four years resulted in

significantly higher organic P when compared to continuous cropping, thus implying a

contribution of P from the prunings to the soil organic phosphorus pool.

Table 25. NaHCO3 (1) and NaOH -extractable inorganic and organic phosphorus pools (µg
g-1 and kg ha-1) under improved fallow management systems at 0-5 cm depth in 1994.

NaHCO3-
Pi

NaOH-
Pi

NaHCO3-
Porg

NaOH-
Porg

NaHCO3-
Pi

NaOH-
Pi

NaHCO3-
Porg

NaOH-
Porg

site/depth µµg g-1 kg ha-1

0-5 cm

sec. Forest 19.9 22.4 24.3 62.9 9.3 11.9 11.1 38.9

Westbank 3

Ctrl 13.2 14.0 8.3 46.1 6.3 7.6 4.6 26.3

Leucaena 8.5 22.5 9.3 44.8 4.8 12.1 5.3 25.6

Pueraria 8.9 14.7 7.7 37.0 4.8 8.4 4.3 21.1

D 2

Ctrl 28.1 41.6 11.4 70.2 13.2 23.0 6.2 38.8

Leucaena 15.3 37.1 11.7 60.7 8.1 20.5 6.2 33.5

Senna 19.2 41.3 9.3 63.1 9.6 22.8 5.3 34.9

Westbank 1

Ctrl 9.1 30.5 11.8 62.5 3.9 14.5 5.5 29.7

Leucaena 8.8 21.8 10.5 68.3 4.2 10.5 5.0 32.5

Senna 18.6 46.3 9.3 87.2 8.8 22.3 4.4 41.5

Pueraria 9.0 26.3 9.9 57.9 4.2 12.4 4.7 26.8

Nat. regrowth 8.1 21.7 9.7 54.4 3.7 10.8 4.5 27.5

LSD 10.7 16 2.5 19.5 5.9 8.7 ns 10.3

P contrasts(2)

D 2:
Ctrl vs. Senna

0.007

WB 1:
 Ctrl vs.
Senna

0.006

LSD (excluding forest) at α = 0.05;
(1)  = includes resin extractable P;
(2)  = α striking significance level of planned contrasts is α/11 = 0.0045.
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In general, Westbank 3 tended to sustain smaller mean organic phosphorus pools as

compared to the degraded sites at D 2 and Westbank 1, irrespective of cropping system

(which is in accordance with the data obtained for the continuous cropping control).

4.2.5 Microbial biomass under improved fallow managements

4.2.5.1 Microbial biomass carbon

The effect of improved fallow management systems at WB 3, D 2, and WB 1 on soil

microbial biomass (µg g-1) is illustrated in Table 26. Microbial biomass (kg ha-1) corrected

for bulk density and gravel content is depicted in Table 8 of the Appendix.

At Westbank 3, mean microbial biomass under pueraria was significantly higher at both

depths than in the continuous cropping except during the dry season at 5-10 cm depth. The

introduction of leucaena hedgerow intercropping and the 2:1 year rotation of natural

regrowth and maize/cassava intercropping were not significantly different from the

continuous cropping control. The beneficial impact of pueraria on microbial biomass was

also consistent with results reported by Mulongoy and Bedoret (1989) for an Ultisol in

southern Nigeria.

Pueraria at Westbank 3 developed both a thick leaf canopy and a dense rooting down to 50

cm soil depth (Vielhauer and Hauser, 1995). The annual dry matter production of pueraria

was reported as 1.5-9.5 t ha-1 year-1 with a maximum rate of dry matter accumulation at 12-

18 months after planting (Mulongoy and Akobundu, 1992; Vesterager et al., 1995; Luna-

Orea et al., 1996). The litter of pueraria probably returned organic material and nutrients to

the soil to favorably contribute to microbial biomass growth. The dense rooting pattern

added to this effect by high production of root exudates and root litter.

At D 2 the introduction of leucaena alley cropping did not significantly improve the

microbial biomass which is in accordance with the results obtained for organic carbon

(Table 23). Senna maintained significantly higher soil microbial biomass in the top 5 cm at

both cropping seasons, whereas at 5-10 cm depth only significantly higher microbial

biomass was sustained during the 2nd cropping season. No difference with the continuous

cropping control was obtained for the dry season. Microbial biomass levels of the

secondary forest were not maintained under the improved fallow managements at

Westbank 3 and D 2. The smallest decrease (34 %) was found after 4 years under pueraria

at WB 3 and the largest decrease by 75 % after 10 years under leucaena at D 2.
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Table 26. Average soil microbial biomass carbon (µg C g-1 soil) under
improved fallow management systems at 0-5 cm and 5-10 cm depth in
1993 and 1994.

Microbial biomass (µµg g-1)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm 5-10 cm

sec. Forest 291 234 359 141 122 186

Westbank 3

Ctrl 145 115 147 80 86 75

Leucaena 158 154 192 78 74 91

Pueraria 220 207 238 126 120 140

Nat. regrowth 153 169 fallow 102 87 fallow

D 2

Ctrl 93 61 61 47 71 39

Leucaena 137 108 83 68 73 38

Senna 169 102 129 74 101 78

Westbank 1

Ctrl 72 58 58 51 52 41

Leucaena 137 111 122 76 92 48

Senna 165 109 144 78 81 63

Pueraria 101 63 83 57 84 52

Nat. regrowth 102 73 103 57 54 60

LSD 60.9 73.5 48.5 32.3 ns 29

LSD (excluding forest) at α = 0.05

The effect of long-term organic residue additions on microbial biomass to 4 annual maize-

bean rotations in the humic tropics of Costa Rica was studied by Mazzarino et al. (1993).

Two alley cropping systems with erythrina and gliricidia pruning mulch resulted in

significantly higher microbial biomass than in the no tree controls (Mazzarino et al., 1993).

However, the increase in microbial biomass was only 20 % after 9 years of pruning

addition. Mazzarino et al. (1993) concluded that the differences between alley cropped (62

µg g-1) and control treatments (50 µg g-1) were rather small considering that in the alley

cropping 3-6 times higher cumulative additions of organic C were applied than in the no-

tree controls.
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Similar results were reported by Sakamoto and Oba (1991) for various soils in Japan. The

increase of microbial biomass did not remain constant under continuous application of

organic material. The increase of microbial biomass (ATP-content, direct microscopy

method) was higher in fields with short term application of organic material (4 years) as

compared to long-term application for 10-12 years. This was attributed to an increased

demand of maintenance energy of the microbial cells, and an increased inhibitory effect of

toxic substances contained in the organic amendments.

According to Suttner (1990) microbial activities in soil increase with increasing amounts of

total SOM. However, if adequate organic carbon is available in the soil the microbial

biomass is not dependent upon freshly amended organic additions and subsequent

decomposition. Soils that are deficient in total SOM, organic substrates are mineralized

much faster because the C-content is the limiting factor for microbial growth. Thus, Suttner

(1990) concluded from straw amended trials under temperate conditions in Germany that

the decomposition after 1 year was dependent on total SOM present in soil rather than new

organic additions.

At the most degraded Westbank 1 site improved fallows for 4 years significantly increased

microbial biomass under both leucaena and senna in the 0-5 cm layer during the 1st and 2nd

cropping season. No statistically significant differences could be found for the dry season

sampling. Organic carbon contents, however, were significantly improved by all treatments

(Table 22). At 5-10 cm depth, improved fallow did not significantly enhance microbial

biomass over  the continuously cropped control treatments. Pueraria and natural regrowth

fallowing for 4 years did not lead to significantly higher microbial biomass compared to

continuous cropping, probably since direct organic amendments by either root or leaf litter

stopped after slashing and burning in 1993. The lower level of microbial biomass

following pueraria and natural regrowth fallow was attributed to the reduced input of plant

residues and hence organic carbon by maize and cassava crops. Thus, the nutrient poor site

and the unfavorable physical and chemical residue quality did not allow for higher

microbial biomass levels. Leucaena and senna hedgerows were not burnt completely and

removed from the plots after clearance in 1993. The hedges still coppiced and could

contribute organic substrates to the microbial biomass by decaying below and aboveground

plant biomass.

The seasonal course of the microbial biomass at WB 3, D 2, and WB 1 in the top 5 cm is

displayed in Figure 12.



Results and Discussion
Effects of improved fallow management systems on site degradation

86

Seasonal fluctuations due to environmental conditions are already discussed in more detail

in Chapter 4.1.5.1. As depicted in Figure 12, highest levels of microbial biomass were

consistently found under pueraria and senna at Westbank 3 and, D 2 and Westbank 1,

respectively. Control treatments had lowest levels of biomass. During the dry season the

microbial biomass tended to converge at a reduced level in all treatments. Our results

obtained at WB 3 (top) and D 2 (middle) showed an higher increase of biomass under

improved fallow managements as the season went on than under the control, which might

be attributed to the supply of nutrients and organic carbon by pruning application. Van der

Meersch (1992), however,  reported a decrease in soil microbial biomass during the first

60-70 days of maize growth at D 2. She inferred  that the application of organic substrates

by prunings could not compensate for the competition by roots and microbial biomass for

nutrients during early maize growth. At WB 3 and D 2 seasonal patterns under improved

fallow managements and continuously cropping controls were similar in all treatments and

support findings by Mazzarino et al. (1993) for 2 alley cropping treatments with erythrina

and gliricidia and 2 no-tree controls in Costa Rica. Seasonal pattern were similar in all

treatments. There was no apparent effect of the addition of prunings in the short term.

Both Mazzarino et al. (1993) and McGill et al. (1986) suggested that the effects of organic

residues on the active soil organic matter are cumulative and become more pronounced

after long-term applications. At the most degraded WB 1 site less pronounced seasonal

dynamics in microbial biomass was obtained for senna fallowing for 4 years prior to

cropping in 1993. The microbial biomass under continuous cropping and pueraria

remained rather stable and at a minimum level due to poor substrate availability.
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Figure 12. Seasonal course of microbial biomass (µg g-1) at WB 3 (top), D 2 (middle), and
WB 1 (bottom) in the 0-5 cm layer (“pruning” applies only for leucaena at Westbank 3 and
for senna and leucaena at D 2; “pruning WB 3” means that none was applied to D 2 at that
time).
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4.2.5.2 Cmic/Corg ratio (%)

The proportion of soil organic carbon tied up in the microbial biomass (% Cmic/Corg ratio) at

0-5 cm and 5-10 cm depth is summarized in Table 27.

There was no significant effect of improved fallow managements on the Cmic/Corg ratio at

the 5 % level for the least degraded WB 3 site.

Table 27. Cmic/Corg ratio (%) under improved fallow management
systems at 0-5 cm and 5-10 cm depth in 1993 and 1994.

Cmic/Corg (%)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm 5-10 cm

sec. Forest 0.85 0.76 1.22 0.6 0.58 0.89

Westbank 3

Ctrl 0.93 0.79 0.9 0.87 0.95 0.81

Leucaena 0.93 0.82 1.00 0.93 0.71 0.8

Pueraria 0.99 1.01 1.08 1.03 0.87 1.01

Nat. regrowth 0.78 0.96 fallow 1.15 0.77 fallow

D 2

Ctrl 0.94 0.69 0.55 0.64 0.87 0.37

Leucaena 1.21 0.81 0.63 0.91 0.9 0.37

Senna 1.33 0.8 0.88 0.8 1.37 0.73

Westbank 1

Ctrl 0.83 0.55 0.6 0.62 0.62 0.41

Leucaena 0.66 0.77 0.73 0.69 1.12 0.44

Senna 1.00 0.67 0.73 0.53 0.85 0.49

Pueraria 0.66 0.45 0.49 0.58 1.01 0.45

Nat. regrowth 0.65 0.61 0.64 0.58 0.62 0.37

LSD 1.07 ns 0.77 0.76 ns 0.76

P contrasts(1)

D 2:
Ctrl vs. Leuc

0.003

D 2:
Ctrl vs.
Senna

0.003

LSD (excluding forest) at α = 0.05;
ns = not significant at 5 % level;
(1) = α striking significance level of planned contrasts is α/11 = 0.0045.
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The Cmic/Corg ratio under leucaena and senna alley cropping at D 2 was only significantly

higher during the 1st cropping season at 0-5 cm depth than under the control. Cmic/Corg

ratios at D 2 were higher in 1993 than in 1994 irrespective of fallow management.  WB 1,

generally, had the lowest Cmic/Corg ratios of the three sites when compared to secondary

forest and was particularly so for pueraria and natural regrowth. The low Cmic/Corg ratio

could be due to low plant biomass input and subsequent dependence of the soil microbial

biomass on more stable organic complexes in order to meet their C and N demand.

Changes in the ratio at WB 1 reflected the time course of the microbial biomass (Table 26)

more closely than that of total SOM (Table 22). Total SOM was 2-4 t/ha higher in the plots

that were planted to improved fallows for four years than in the continuously cropped

plots.

Similar trends were obtained by Fugger (1997) for calopogonium and pueraria covers in

northern Ghana, showing that the seasonal course of the Cmic/Corg ratio was identical with

that of the microbial biomass.

Following the addition of organic amendments, however, small quantitative changes of soil

microbial biomass are superimposed by concomitant small changes of soil organic carbon

due to the proportional higher quantity of the latter fraction, and will result in a lower

Cmic/Corg ratio. This problem was also stressed by Sakamoto and Oba (1991). They reported

for tropical gray lowland soils (dystric Fluvisols), light-colored Andosols (ochric

Andosols) and humic Andosols in Japan that the Cmic/Corg ratio was lower in a field with

high total C-contents than in a field with low total C-contents, while the opposite was true

for biomass-C.

Also under a range of pasture sites in New Zealand the soils showed a marked decline in

the Cmic/Corg ratio from 1.7 % to 0.29 % upon increase of organic carbon from 5.7 % to

30.4 %, whereas the microbial biomass (substrate-induced-respiration) showed no

consistent trend (Sparling, 1992). The author suggested that stabilized C in the organic

carbon fraction can greatly influence the Cmic/Corg ratio, even in soils with similar

mineralogy, vegetation, and climate.

Suttner (1990) reported for agricultural, pasture, and nature reserve soils under temperate

conditions in Germany that the Cmic/Corg ratio did not conclusively reflect the C-status of

the soils. Whether soils are accumulating or loosing total SOM are likely to be established

only from long-term developments of microbial biomass and related activities, rather than

single ratios (Suttner, 1990).
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4.2.6 Acid and alkaline phosphatase

4.2.6.1 Acid phosphatase

The average activity of acid phosphatase as affected by improved fallow management

treatments is given in Table 28, the seasonal course at Westbank 3, D 2, and Westbank 1 is

displayed in Figure 13.

Table 28. Average acid phosphatase activity (µg p-nitrophenol g-1 soil h-

1) under improved fallow management systems at 0-5 cm and 5-10 cm
depth in 1993 and 1994.

Acid phosphatase activity
(µµg p-nitrophenol g -1 h-1)

Site/depth
1st

seaso
n

dry
season

2nd

season
1st

season
dry

season
2nd

season

0-5 cm 5-10 cm

sec. Forest 450 676 618 370 520 450

Westbank 3

Ctrl 195 313 192 139 276 179

Leucaena 243 407 367 173 240 220

Pueraria 316 448 401 240 348 247

Nat. regrowth 208 352 fallow 134 218 fallow

D 2

Ctrl 312 285 275 196 252 196

Leucaena 378 425 311 298 380 220

Senna 353 421 308 258 336 218

Westbank 1

Ctrl 291 351 273 247 412 232

Leucaena 398 453 324 343 394 280

Senna 272 395 282 299 370 268

Pueraria 391 356 346 256 303 236

Nat. regrowth 351 367 351 306 395 294

LSD ns ns 118 134 104 ns

P contrasts(1)

WB 3: Ctrl vs. Puer 0.000
D 2: Ctrl vs. Leuc 0.000

D 2: Ctrl vs. Senna 0.007
WB 1: Ctrl vs. Leuc 0.000
LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned contrasts is α/11 = 0.0045.
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At Westbank 3 pueraria had significantly higher acid phosphatase activities during the 2nd

cropping season at 0-5 cm depth and during the 1st season at 5-10 cm depth. This seems to

indicate a higher P- demand of pueraria plants combined with crops, than for the crop

alone. Leucaena alley cropping exhibited a significantly higher acid phosphatase activity

only during the 2nd season sampling at 0-5 cm depth. The 2:1 year rotation of natural

regrowth and maize/cassava intercropping was not statistically different from the control.

At D 2 no significant differences between either alley cropping treatment and sole cropping

was found in the top 5 cm. At 5-10 depth leucaena and senna alley cropping were

significantly higher in acid phosphatase activity during both the 1st and the dry season.

At the most degraded WB 1 site senna and natural regrowth fallowing for 4 years prior to

cropping did not significantly increase acid phosphatase activity compared to continuous

cropping. Leucaena soil samples were significantly higher in activity only during the 1st

season at 0-5 cm depth, while acid phosphatase activity in the pueraria soil samples were

significantly lower than in the control during the dry season at 5-10 cm depth.

Similar to the continuous cropping controls, the results obtained did not reveal any relation

between the P-availability at the sites and the impact of management on phosphatase

activity. This aspect is discussed in more detail in Chapter 4.1.6.1.
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Fig. 13. Seasonal course of acid phosphatase activity (µg p-nitrophenol g-1 h-1) at WB 3
(top), D 2 (middle), and WB 1 (bottom) in the 0-5 cm layer (“pruning” applies only for
leucaena at Westbank 3 and for senna and leucaena at D 2; “pruning WB 3” means that
none was applied to D 2 at that time).
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4.2.6.2 Alkaline phosphatase

The average activity of alkaline phosphatase as affected by improved fallow management

systems at the different cropping sites is summarized in Table 29, the seasonal course is

displayed in Figure 14.

Table 29. Average alkaline phosphatase activity (µg p-nitrophenol g-1

soil h-1) under improved fallow management systems at 0-5 cm and 5-10
cm depth in 1993 and 1994.

Alkaline phosphatase activity
 (µµg p-nitrophenol g -1 h-1)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm 5-10 cm

sec. Forest 740 631 611 522 508 399

Westbank 3

Ctrl 341 365 242 250 293 178

Leucaena 394 422 333 258 258 183

Pueraria 541 555 428 349 400 225

Nat. regrowth 437 448 fallow 249 276 fallow

D 2

Ctrl 139 135 127 55 77 59

Leucaena 219 173 156 128 120 52

Senna 270 191 190 149 116 112

Westbank 1

Ctrl 104 122 102 139 136 120

Leucaena 324 210 254 173 167 149

Senna 316 271 268 212 200 222

Pueraria 178 122 132 111 105 75

Nat. regrowth 222 149 152 150 161 148

LSD 157 70 114 108 66 84

contrasts

WB 3: Ctrl vs. Puer 0.003
D 2: Ctrl vs. Senna 0.012 0.01

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned contrasts is α/11 = 0.0045.
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Except for the  5-10 cm layer during the 2nd cropping season, the introduction of pueraria at

WB 3 significantly increased alkaline phosphatase activity at both depths compared to the

continuous cropping controls. This is consistent with the results obtained for microbial

biomass (Table 26). Mulongoy and Bedoret (1989) also found higher alkaline phosphatase

activity (65 µg g-1) under pueraria cover in an Ultisol in southern Nigeria  than under

leucaena, treculia (27 µg g-1) and secondary forest (20 µg g-1) at IITA, Nigeria, although

the activities were lower than our results obtained in 1993 and 1994. No statistically

significant difference in activity at 0-5 cm and 5-10 cm depth was observed between the

control and leucaena. The activity of alkaline phosphatase under the 2:1 year rotation of

natural regrowth and maize/cassava intercropping was only significantly higher during the

dry season at 0-5 cm depth than under continuous cropping. No significant difference was

found at 5-10 cm depth.

Alkaline phosphatase activity under leucaena alley cropping at D 2 was not statistically

different from continuous cropping. Senna alley cropping supported a statistically higher

alkaline phosphatase activity during the 1st cropping season at both depths, and is similar to

the results obtained for microbial biomass.

The introduction of planted fallows with leucaena, senna, pueraria, and natural regrowth at

the most degraded Westbank 1 site for 4 years consistently and significantly increased

alkaline phosphatase activity in the 0-5 cm layer under both leucaena and senna. At 5-10

cm depth alkaline phosphatase activity was only significantly improved with senna

fallowing during the 1st and 2nd cropping season. No significant difference was obtained for

the dry season. Similar to microbial biomass, alkaline phosphatase activity under pueraria

and natural regrowth fallowed for 4 years was not different from continuous cropping. This

was attributed to lower microbial biomass due to reduced plant biomass input.

As depicted in Figure 14, alkaline phosphatase activity did not fluctuate highly and

remained rather stable at high activities in comparison with microbial biomass (Figure 12).
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Figure 14. Seasonal course of alkaline phosphatase activity (µg p-nitrophenol g-1 h-1) at
WB 3 (top), D 2 (middle), and WB 1 (bottom) in the 0-5 cm layer (“pruning” applies only
for leucaena at Westbank 3 and for senna and leucaena at D 2; “pruning WB 3” means that
none was applied to D 2 at that time).
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The impact of organic residue management on alkaline phosphatase activity is discussed

controversially in the literature. It was found that cropping systems with higher C-inputs

(manure and pea vine) promoted enzyme activity due to enhanced protection of abiontic

enzymes (= not associated with viable cells) in the humic complexes of these soils (Dick et

al., 1988; Dick, 1994). Increased alkaline phosphatase activity due to long-term

applications of manure and pea vine in northwestern USA by 190 % over  the control

treatments were attributed to greater biological activity and consequently higher enzyme

activities accumulated in the soil matrix (Dick et al., 1988). Martens et al. (1992) reported

that repeated additions of organic residues (pea vine, 2.4 t ha-1) only increased enzyme

activity for the first two additions. The third and fourth addition failed to increase enzyme

activity any further due probably to a balance between promoter and feedback mechanisms

that favor a constant level of enzyme activity upon regular organic additions (Martens et

al., 1992).

4.2.7 ß-Glucosidase

The impact of improved fallow managements on ß-glucosidase activity at WB 3, D 2, and

WB 1 in the 0-5 cm and 5-10 cm layer is illustrated in Table 30, the seasonal course in the

0-5 cm layer is depicted in Figure 15.

The introduction of pueraria live mulch at WB 3 significantly increased the activity of ß-

glucosidase throughout the research period at both depths as compared to continuous

cropping control. This is in line with the results obtained for organic carbon and microbial

biomass under simultaneous cropping of pueraria with maize/cassava. Pueraria improved

organic carbon (Table 22) and microbial biomass (Table 26) most, as compared to the

other treatments and sites. Pueraria at WB 3 developed a thick leaf canopy and dense

rooting zone up to 50 cm deep. Thus, accumulation of easily decomposable litter on and

beneath the soil surface may have stimulated microbial biomass activity and, hence,

enzyme synthesis. Leucaena alley cropping significantly increased ß-glucosidase activity

in the top 5 cm during the dry season and 2nd season. The 2:1 year rotation of natural

regrowth and maize/cassava intercropping only significantly improved ß-glucosidase in the

dry season at 0-5 cm depth (Table 30; Figure 15).

Senna alley cropping at D 2 significantly increased ß-glucosidase activity throughout the

sampling period at both depths as compared to the continuous cropping control. Alley

cropping with leucaena also significantly improved the activity of ß-glucosidase during the
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1st and the dry season as compared to sole cropping. However, no difference in activity

was found during the 2nd cropping period at both 0-5 cm and 5-10 cm depth.

Table 30. Average ß-glucosidase activity (µg p-nitrophenol g-1 soil h-1)
under improved fallow management systems at 0-5 cm and 5-10 cm depth
in 1993 and 1994.

ß-glucosidase
 (µµg p-nitrophenol g -1 h-1)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm 5-10 cm

sec. Forest 169 181 180 49 55 62

Westbank 3

Ctrl 50 59 47 21 20 19

Leucaena 70 105 79 23 27 20

Pueraria 101 116 120 41 52 44

Nat. regrowth 56 87 fallow 20 23 fallow

D 2

Ctrl 47 49 44 15 13 16

Leucaena 83 82 62 42 26 13

Senna 97 81 76 44 27 23

Westbank 1

Ctrl 36 30 31 22 12 22

Leucaena 85 74 68 35 23 28

Senna 95 83 65 47 38 28

Pueraria 43 38 36 19 17 30

Nat. regrowth 66 37 41 21 17 21

LSD 43 28 42 24 13 15

P contrasts (1)

WB 3: Ctrl-vs. Puer 0.000
WB 3: Ctrl vs. Leuc 0.008

D 2: Ctrl vs. Leuc 0.006
D 2: Ctrl vs. Senna 0.008 0.008

WB 1: Ctrl vs. Leuc 0.003
WB 1: Ctrl vs.

Senna
0.005

LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned contrasts is α/11 = 0.0045.
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The introduction of planted fallows with leucaena, senna, pueraria, and natural regrowth at

the most degraded WB 1 site only significantly improved ß-glucosidase activity with

leucaena and senna fallowing. In the top 5 cm leucaena and senna significantly enhanced

ß-glucosidase activity throughout the research period. In the 5-10 cm layer this trend was

not as consistent as in the top 5 cm. Leucaena was not significantly different from

continuous cropping, while senna had significantly higher activities during both the 1st and

the dry season. Pueraria and natural regrowth were not significantly different from

continuous cropping in ß-glucosidase levels.

Similar to our results for pueraria at WB 3 the application of both red clover as green

manure in rotational cropping systems at Oregon, USA (Miller and Dick, 1995) and pea

vine residue treatments (2.24 t ha-1 year-1; Dick et al., 1988) was also found to significantly

enhance ß-glucosidase activity as compared to mineral fertilizer treatments. Due to a more

favorable environment the enzymes of the soil matrix could accumulate by forming stable

complexes with soil organic matter, whereas improved conditions for the soil biota by the

organic matter applied may have stimulated enzyme production (Miller and Dick, 1995;

Dick et al., 1988).

At all three sites, ß-glucosidase activity did not decline during the dry season (Figure 15)

and is discussed in more detail in Chapter 4.1.7.
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Figure 15. Seasonal course of ß-glucosidase activity (µg p-nitrophenol g-1 h-1) at WB 3
(top), D 2 (middle), and WB 1 (bottom) in the 0-5 cm layer (“pruning” applies only for
leucaena at Westbank 3 and for senna and leucaena at D 2; “pruning WB 3” means that
none was applied to D 2 at that time).
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The consistent positive effect of senna alley cropping and senna fallowing on ß-

glucosidase activity at D 2 and WB 1, respectively, was due probably to the high litter

residue quality provided by planted fallow litter or prunings from its hedgerows in alley

cropping systems. The cellulose and hemicellulose content of leucaena and senna leaves

were reported as 10.3 % and 5.6 %, and as 18 % and 21.6 %, respectively (Tian et al.,

1992), thus indicating a higher supply of readily available carbohydrates by senna. This

might explain the greater effect of senna on ß-glucosidase levels. However, the chemical

composition of the litter input may also influence ß-glucosidase activity and the

decomposition of carbohydrates. Polyphenols such as tannins were reported to inhibit ß-

glucosidase activity by blocking cellulase access or by direct inhibition of cellulolytic

enzymes (Benoit and Starkey, 1968; Swain, 1979 as cited by Tian et al., 1992). The

polyphenol content of leucaena and senna leaves was reported as 4.9 % and 1.5 %,

respectively (Tian et al., 1992). The lignin and N-content of the residue material appeared

to influence ß-glucosidase activity in experiments reported by Roper et al. (1995). They

suggested that the growth of cellulolytic bacteria and fungi was impeded by the lignin

content of the residue substrates. Thus, plant material with a higher lignin content tended to

decompose more slowly. For leucaena lignin levels were reported as 7.1 % at IITA,

Nigeria (Tian et al., 1992) or as 16.2 % in Kenya (leaves and twigs; Jama and Nair, 1996),

whereas senna contained 6.5 % IITA, Nigeria (Tian et al., 1992) or 16.7 % in Kenya

(leaves and twigs; Jama and Nair, 1996). Since the lignin content of leucaena and senna

leaves do not differ markedly, it appeared not to impact on the decomposition of

carbohydrates by ß-glucosidase.

4.2.8 Protease

Average protease activity as affected by improved fallow management systems in the 0-5

cm layer and 5-10 cm layer is given in Table 31, the seasonal course at 0-5 cm depth is

displayed in Figure 16.

At Westbank 3 only pueraria significantly increased protease activity as compared to

continuous cropping. Significantly higher protease activities were obtained for the 1st and

2nd cropping season at 0-5 cm depth, and during the dry season at 5-10 cm depth. Leucaena

alley cropping and the 2:1 year rotation of natural regrowth and maize/cassava

intercropping were not significantly different from continuous cropping.
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Although total N under pueraria and leucaena were significantly higher throughout the

sampling period in comparison to the control, the protease activity appears not controlled

solely by the total amount of organic C and N present at the sites. Tateno (1988) concluded

that protease activity in natural soils was not limited by total but by available substrate

concentrations, as proteins are bound to SOM or adsorbed to clay minerals, which, in turn

reduced their rate of mineralization by 80 to 90 % (Verma et al., 1975).

Table 31. Average protease activity (µg tyrosine g-1 soil 2 h-1) under
improved fallow management systems at 0-5 cm and 5-10 cm depth in
1993 and 1994.

Protease activity
 (µµg tyrosine g-1 2 h-1)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm 5-10 cm

sec. Forest 325 202 230 195 132 150

Westbank 3

Ctrl 179 82 94 152 75 66

Leucaena 207 116 142 112 102 75

Pueraria 283 115 154 189 129 93

Nat. regrowth 204 130 fallow 133 78 fallow

D 2

Ctrl 127 39 87 29 41 28

Leucaena 193 98 77 50 46 27

Senna 191 84 124 77 59 57

Westbank 1

Ctrl 55 15 131 36 21 145

Leucaena 243 68 194 70 24 100

Senna 199 86 171 106 72 106

Pueraria 119 63 174 40 16 100

Nat. regrowth 149 44 151 94 14 119

LSD 92 ns ns 58 54 ns

P contrasts(1)

D 2:
Ctrl vs.

Leuc+Senna

0.004

 LSD (excluding forest) at α = 0.05
(1) = α striking significance level of planned contrasts is α/11 = 0.0045.
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Generally, non-structural proteins such as casein which was used as substrate in our assay

is degraded by most bacterial proteases. However, the rate of mineralization is dependent

upon the specificity of the enzymes present in soil to decompose specific substrates (Law,

1980).At D 2, leucaena and senna alley cropping significantly enhanced protease activity

only during the 1st cropping season at 0-5 cm depth. At the most degraded Westbank 1

site, pueraria fallowing for 4 years did not significantly improve protease activity over the

continuous cropping control. Leucaena significantly improved the activity during the 1st

cropping season at 0-5 cm depth, whereas natural regrowth and senna had significantly

higher protease activity during the 1st season at both depths. The higher activity of protease

was attributed to higher available substrates following slashing and burning of the litter in

March 1993.

The impact of improved fallow management on protease activity as compared to

continuous cropping (Figure 16) may not be simply due to the higher N yields of

leguminous plants. Although N yields between 30 and 300 kg ha-1 year-1 and between 130

and 270 kg ha-1 year-1 were reported for N-fixing pueraria and leucaena, respectively

(Mulongoy and Akobundu, 1992), the importance of the quality of organic additions to N-

dynamics in managed ecosystems as stressed by Palm and Sanchez (1991) should be

considered as major control factor of protease activity. It was reported that net

mineralization was not correlated to the N - and lignin-content in the leaf material but was

found to be negatively correlated to the polyphenolic content or the polyphenolic-to-N

ratio (Palm and Sanchez, 1991). Low N -release rates from materials with a high

polyphenolic content was attributed to the formation of stable polymers between

polyphenolics and amino-groups (Palm and Sanchez, 1991). Similar results were reported

by Sivapalan et al. (1985) who concluded that polyphenols form stable complexes with

leaf protein and have an adverse impact on N-release. This is due probably to the formation

of complex structures with N-containing groups or by acting as tanning agents, thus

preventing protein from rapid decay. The polyphenol content of pueraria grown in

Colombia and Bolivia was reported as 0.26 % to 0.39 % and 1.39 % to 4 %, respectively

(Thomas and Asakawa, 1993; Luna-Orea et al., 1996).

Senna at IITA, Nigeria was found to contain 1.5 % (Tian et al., 1992) and 2.7 % in

Tanzania (Jonsson, 1996), whereas the polyphenolics content in leucaena was reported as

4.9 % at IITA, Nigeria (Tian et al., 1992) and as 5.4 % in Tanzania (Jonsson, 1996).
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Fig. 16. Seasonal course of protease activity (µg tyrosine g-1 2h-1) at Westbank 3 (top), D 2
(middle), and Westbank 1 (bottom) in the 0-5 cm layer (“pruning” applies only for
leucaena at Westbank 3 and for senna and leucaena at D 2; “pruning WB 3” means that
none was applied to D 2 at that time).
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Lehmann et al. (1996) concluded also that polyphenols seemed to regulate mass loss and

N- and Ca-release of mulch from alley cropped tree legumes in the subhumid savanna of

central Togo.

4.2.9 .Summary

At the least degraded Westbank 3 soils under pueraria and leucaena management were not

different from continuous cropping in terms of maize productivity, soil physical conditions,

pH, exchangeable basic cations, and available inorganic and organic phosphorus contents.

Organic carbon and total nitrogen contents of the soils were significantly higher under

pueraria, while leucaena soils only had significantly higher total N but not total C-contents.

Microbial biomass, alkaline phosphatase activity, ß-glucosidase, and protease activity were

highest under pueraria. Acid phosphatase activity was only significantly higher than in

continuous cropping during the 2nd season at 0-5 cm depth and during the 1st season at 5-10

cm depth. Leucaena alley cropping only improved ß-glucosidase during the dry and the 2nd

season at 0-5 cm depth, whereas acid phosphatase activity  was significantly higher only

during the 2nd season at 0-5 cm depth. Microbial biomass, alkaline phosphatase activity and

protease under leucaena were not different from continuous cropping but microbial

biomass during the 2nd season at 5-10 cm depth. Thus, leucaena is considered less effective

in improving soil conditions at WB 3 as compared to pueraria since only total N of the soil

chemical properties and both ß-glucosidase and acid phosphatase of the microbiological

properties were maintained at a higher level as compared to continuous cropping.

At D 2, leucaena alley cropping generally was not different in both crop productivity and

soil chemical properties as compared to the control. Moreover, inorganic phosphorus

content was reduced. With respect to soil microbiological properties, protease activity was

only significantly higher during the 1st season at 0-5 cm depth, whereas ß-glucosidase was

significantly higher during the 1st and the dry season in comparison to the control. The

microbial biomass content was not different from continuous cropping. Senna performed

slightly better compared to leucaena. Organic carbon, microbial biomass, alkaline

phosphatase, and protease during the 1st season, and ß-glucosidase activity during the 1st

(both depths) and 2nd (0-5 cm) season were improved. Crop productivity was not different

from sole cropping, although Bray-I inorganic phosphorus was significantly lower

compared to the control treatments.

At the most degraded Westbank 1 site, the postulated advantage of planted fallow species

to biologically restoring a degraded Alfisol was not always confirmed. Of the different
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fallow species investigated pueraria and natural regrowth performed poorest and only

improved total C and N (and pH under natural regrowth) when compared to continuous

cropping. Protease activity was only significantly improved during the 1st season at 0-5 cm

depth. Leucaena fallowing for 4 years significantly enhanced maize yield at P = 10 %, total

C, N, pH, and available cations. Microbial biomass, alkaline phosphatase, and ß-

glucosidase activity were significantly increased in the top 5 cm, whereas protease activity

was only increased during the 1st season at 0-5 cm depth. Most successful for improving

soil productivity and fertility was the introduction of the senna fallow. Maize grain, pH,

total C and N, available cations, Bray-I phosphorus (1st season in the top 5 cm), NaOH-

extractable organic phosphorus as well as microbial biomass (0-5 cm), alkaline

phosphatase, ß-glucosidase, and protease (1st season) were improved significantly over the

continuous cropping controls.
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4.3 Analysis of soil processes

4.3.1 Uptake of nutrients and soil nutrient status

Decreasing productivity of soils under long-term cultivation is often ascribed to declining

nutrient availability in the soil. Thus, quantities of nutrients in the soil surface layer were

compared to the uptake of nutrients by maize plants at harvest 1994. Comparison of

nutrients in the 0-10 cm surface layer with nutrient uptake was reported to be sensitive

indicator since about 80 % of the maize root mass at IITA, Nigeria was found in the

surface layer under zero-tillage conditions (IITA, 1976 as cited by Mueller-Harvey et al.,

1985).

Uptake of N, P, K, Ca and Mg (Table 5+20) of maize plants at harvest in 1994 was not

correlated with total N (Table 7+22), inorganic P (Table 9, 10, 24, 25) and available

cations (Table 3 of the Appendix and Table 23) in soil. Both dry matter production of

maize (grain and stalks) and inorganic phosphorus (Bray-I and NaHCO3-extractable) were

higher at D 2 than at WB 3 but P-uptake at WB 3 (30.5 kg/ha) was superior to D 2 (13.3

kg/ha) although not significantly so. N-uptake of maize plants at D 2 (53 kg/ha) tended to

be higher than at WB 3 (37.3 kg/ha) whereas total N in soils was significantly higher at the

least degraded Westbank 3 site than at D 2. These findings contradict the results obtained

by Kang and Osiname (1979). These authors postulated a positive correlation of Bray-I

phosphorus and maize yield on the Egbeda soils at IITA, that were cleared from bush

fallow, cropped to 5 high yielding maize crops and supplemented with N, P, K, Zn-

fertilizer. However, results reported by Jonsson et al. (1996) and Jones and Stockinger

(1976) support our data for N and cations in 1994. A positive impact of leucaena mulch on

maize biomass production and N-uptake in Tanzania was not reflected in the total soil N-

status as it did not represent the very small fraction of N available to plants (Jonsson et al.,

1996). Similar results for the amounts of cations in soil and those taken up by cotton-

sorghum-groundnuts cropped in rotation at Samaru, northern Nigeria are reported by Jones

and Stockinger (1976). Correlation coefficients suggested that index-leaf contents of Ca

and Mg were unrelated to the absolute amounts of exchangeable cations present, but rather

to the proportions of those cations relative to exchangeable potassium. Jones and

Stockinger (1976) concluded that the relative activities of cations in the soil solutions were

controlled mainly by the ratios of the cations on the exchange complex.

The uptake of phosphorus by maize plants at harvest in 1994 was slightly negatively

correlated with NaHCO3-Porg (r= - 0.52, P ≤ 0.001) and NaOH-Porg (r= - 0.47, r ≤ 0.005) at
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both depths, indicating that the soil organic phosphorus pools contributed to the P-nutrition

of maize plants.

4.3.2 Relationship of crop and soil productivity

Data on soil chemical (kg ha-1) and microbiological properties (µg g-1) that were used for

correlation are the mean of 5 sampling dates of both the 1st and 2nd cropping period (April-

October) in 1993 and 1994.

In 1993 a weak positive correlation (r = 0.43, P = 0.035) between maize yield and pH at

0-5 cm depth was obtained. The 5-10 cm layer pH (r = 0.48, P = 0.016), clay (r = -0.42, P

= 0.043), moisture (r = - 0.44, P = 0.032), microbial biomass content (r = 0.43, P = 0.034),

and acid phosphatase activity (r = -0.44, P = 0.03) were weakly correlated with maize

yield. In 1994, a significant correlation was only found between pH value of soil (r = 0.51,

P = 0.012) and maize yield at both depths. The minor interrelationship of yield with

chemical and microbiological properties under the prevailing conditions indicated that

maize productivity was primarily controlled by other factors. Several authors, however,

reported strong positive correlations between crop yield and acid phosphatase activity,

whereas results obtained for microbial biomass content and crop productivity are discussed

controversially in the literature. For instance, acid phosphatase activity was found to be

significantly and positively correlated with herbage yield of both fertilized and unfertilized

ryegrass and clover pastures in New Zealand (Speir and Cowling, 1991). Similar results

were reported by Dick et al. (1988) for long-term (55 years) residue and fertilizer

management trials in north-western USA, confirming a significant relation with crop grain

yield (averaged over 6 years).

Insam et al. (1991) reported significant positive correlations between soybean yields from

long-term experimental sites in Alabama, USA that were obtained one year prior to

sampling and both microbial biomass carbon (substrate-induced-respiration; r = 0.77, P <

0.01) and the Cmic/Corg ratio (r = 0.71; P < 0.01) of the current year. The authors suggested

that higher crop yields increased the C-input to the soil followed by subsequent higher soil

microbial biomass and increased Cmic/Corg ratios (Insam et al., 1991). In the present study,

however, significant yield differences under continuous cropping controls in the order D 2

> WB 3 > WB 1 (Table 4) were not followed by the microbial biomass content, declining

in the order WB 3 > D 2 = WB 1 (Table 11). Moreover, no significant differences in the

Cmic/Corg ratio (Table 12) was found despite significant yield differences. This suggests that
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under the prevailing conditions at IITA, Nigeria factors other than crop yield appeared to

contribute to the microbial biomass content and the relationship between microbial

biomass and organic carbon.

Srivastava and Lal (1994) reported a positive correlation of rice and lentil yield, and total

above and below-ground biomass with soil microbial biomass content at r = 0.83*, 0.88**

and 0.76*, respectively, under tropical dryland farming in India. Hence, the authors

concluded that the microbial biomass may contribute to grain production by providing N

and P   to the crops. Investigations by McGill et al. (1986) on long-term (50 years)

management trials with wheat fallow or wheat-oats-barley-forage-forage rotations under

temperate conditions in Canada revealed that only microbial biomass carbon content of

soils (determined in 1982) and total crop yield (averaged over 1977-1981) were highly

significant correlated (r = 0.8, P ≥ 0.01). When biomass-C was correlated with the crop

yield of the last year only, the correlation was non-significant (r  =  0.28).

No correlation of C, N, Ca, Mg, K-contents, inorganic and organic soil phosphorus,

alkaline phosphatase, ß-glucosidase, and protease activities with crop productivity was

found. These findings are supported by several authors. Both the P-status and the size and

distribution of the soil organic P-pools in alley cropped trials at CATIE, Costa Rica were

not correlated with maize yields (Paniagua et al., 1995). Roder et al. (1995 a) found that

soil fertility parameters such as available Bray-II-P, extractable K, pH, and CEC did not

show any relationship with crop yield under slash-and-burn systems in Laos. Omotoso

(1971) reported that available inorganic P was not significantly related to the yields of

cacao plants in southern Nigeria. Although high yields are generally associated with high

organic matter content under low external input management (Babalola and Opara-Nadi,

1993), our data showed that maize yield was not related to organic carbon. Changes in total

soil carbon content are not necessarily correlated to changes in soil productivity. This was

attributed to the importance of distinct fractions of organic carbon in the maintenance of

soil fertility and productivity (Palm et al., 1996) rather than the total soil organic carbon

content per se. The lack of correlation of alkaline phosphatase and ß-glucosidase with crop

productivity (averaged over 6 years) was also reported by Dick et al. (1988) for long-term

residue management trials in north-western USA.
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4.3.3 Soil microbiological and soil chemical properties

The relation of microbial biomass with soil chemical and enzymatic properties is presented

in Table 32.

Table 32. Correlation coefficients of microbial biomass with
selected soil chemical and physical parameters, and enzyme
activities in 1993 and 1994 at 0-5 cm and 5-10 cm depth;
(n = 24).

Microbial biomass(1)

1993 1994

parameters(1) 0-5 cm 5-10 cm 0-5 cm 5-10 cm

Corg 0.81*** 0.68*** 0.85*** 0.58***

Ntot 0.78*** 0.78*** 0.84*** 0.69***

acid phosphatase -0.14 -0.15 0.22 0.04

alkaline

phosphatase

0.87*** 0.81*** 0.93*** 0.66***

ß-glucosidase 0.76*** 0.49* 0.85*** 0.65***

protease 0.78*** 0.85*** 0.33 0.14

Bray-I P -0.01 -0.32 -0.25 -0.25

NaHCO3-Pi n.d. n.d. -0.20 -0.32

NaHCO3-Porg n.d. n.d. -0.39 -0.48*

NaOH-Pi n.d. n.d. -0.41* -0.45*

NaOH-Porg n.d. n.d. -0.38 -0.44*

Ca 0.66*** 0.78*** 0.75*** 0.73***

Mg 0.37 0.52** 0.41* 0.42*

K 0.25 -0.02 0.16 -0.17

pH 0.72*** 0.7*** 0.83*** 0.73***

clay -0.11 -0.21 -0.02 -0.28

moisture 0.30 -0.07 0.79*** 0.11

(1) = dimensions used were: microbial biomass (µg g-1), soil enzymes
(µg g-1), soil chemical parameters (kg ha-1), soil physical parameters
(%);
significance level was:  *** at P ≤ 0.001; ** at P ≤ 0.01;
* at P ≤ 0.05;
n.d. = not determined.
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Total soil organic carbon and nitrogen, pH, Ca, alkaline phosphatase, and ß-glucosidase

constitute soil parameters which are mainly  involved in the SOM-dynamics, and were

significantly related to microbial biomass during both cropping seasons in the 0-5 cm and

5-10 cm layer. Protease at both depths was only significantly related to microbial biomass

in 1993. No correlations were obtained between microbial biomass and inorganic

phosphorus, K, clay and acid phosphatase activity. A very weak correlation was found

with organic phosphorus (NaHCO3 and NaOH-extractable) and Mg. The relation of

microbial biomass with the gravimetric soil moisture content was already discussed in

Chapter 4.1.5.1 and 4.2.5.1.

 A strong relation between microbial biomass and soil organic carbon might be expected

since both are part of the SOM-pool. Many soil microbial activities are dependent upon

carbon as a substrate as most microbial populations are heterotrophic. Similar results were

reported by Goyal et al. (1993), who showed that under long-term residue management

trials at Hisar, India, soil microbial biomass was positively correlated with soil organic

carbon (r = 0.89, P < 0.01). The authors concluded therefore, that organic carbon is an

important factor in the development of soil microbial biomass-C (Goyal et al., 1993).

Mazzarino et al. (1993) reported a lack of the correlation between water soluble- C and

microbial biomass under alley cropping systems in Costa Rica, due probably to the diverse

class of compounds that contribute to water soluble-C, not all of them being readily

utilized by microbial biomass.

Similar to our results no correlation of microbial biomass from 3 long-term management

trials in Alabama, USA (2 sorghum-soybean rotations and 1 cotton-maize-rye-soybean-rye

rotation) with inorganic P (Mehlich-1-procedure) and exchangeable K was found (Insam et

al., 1991). Since organic carbon is usually the limiting factor for the microbial biomass in

agricultural soils, the impact of mineral fertilization and nutrient availability other than

organic carbon was considered to be indirect (Insam et al., 1991).

The relationships of acid phosphatase with major soil chemical parameters and microbial

biomass are listed in Table 33.

The correlation of total soil organic carbon, total nitrogen, and microbial biomass with acid

phosphatase was non-significant,  implying that the enzyme was not associated with total

SOM-pools and microbial biomass. The findings for total C and N contradict the results

reported by several authors (Lopez-Hernandez et al., 1989; Sparling et al., 1986; Dick et

al., 1988; Deng and Tabatabai, 1997).
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Table 33. Correlation coefficients of acid phosphatase with
selected soil chemical and physical parameters, and
microbial biomass in 1993 and 1994 at 0-5 cm and 5-10 cm
depth;
(n = 24).

Acid phosphatase(1)

1993 1994

parameters(1) 0-5 cm 5-10 cm 0-5 cm 5-10 cm

Corg -0.24 0.15 0.06 0.19

Ntot -0.22 0.09 0.05 0.26

microbial

biomass

-0.14 -0.15 0.22 0.04

Bray-I P 0.20 -0.08 0.00 -0.28

NaHCO3-Pi n.d. n.d. -0.06 -0.13

NaHCO3-Porg n.d. n.d. 0.12 0.07

NaOH-Pi n.d. n.d. 0.09 0.06

NaOH-Porg n.d. n.d. 0.02 0.20

pH -0.69*** -0.46* -0.16 -0.15

clay 0.24 0.49* 0.27 0.65***

moisture 0.09 0.68*** 0.03 0.41*

(1) = dimensions used were: microbial biomass (µg g-1), soil
enzymes (µg g-1), soil chemical parameters (kg ha-1), and soil
physical parameters (%);
significance level was:  *** at P ≤ 0.001; ** at P ≤ 0.01;
* at P ≤ 0.05;
n.d. = not determined.

The relation of acid phosphatase activity and microbial biomass is discussed

controversially in the literature. Thus, the activity of acid phosphatases was found by

Skujins (1976) to be independent of microbial counts in the soil, whereas Sparling et al.

(1986) reported that phosphatase activity of moist soil was significantly correlated with

SIR-biomass (substrate-induced-respiration method) but not with ATP-biomass (ATP

method). Chhonkar and Tarafdar (1984), Häussling and Marschner (1989), and Rastin et

al. (1988), on the other hand, found significant positive correlations between microbial

biomass and acid phosphatase activity under various conditions.
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No correlation between the phosphorus status of the sites and acid phosphatase activity

was found (see also Chapter 4.1.6.1). The lacking relation between inorganic and organic

phosphorus pools and acid phosphatase activity is supported by results of Adams (1992)

for eucalyptus forest soils in Australia and Speir and Cowling (1991) for both fertilized and

unfertilized ryegrass and clover pastures in New Zealand. According to Barrett-Lennard et

al. (1993), labile forms of organic phosphorus (monoesters) exist only in minute amounts

in the soil so that phosphomonoesterases are of minor importance in improving plant

utilization by decomposing more complex forms of organic phosphorus. In a P-enriched

allophanic soil in Chile, Bishop et al. (1994) found that about 93 % of the organic P-

fractions were in the inositol form with the esters being associated with iron and humic

acid to form high molecular weight complexes. Using 31P-NMR- (nuclear magnetic

resonance) spectra of the soil extracts incubated with phosphomonoesterases and phytases,

they could demonstrate that the predominant enzyme involved in the hydrolytic conversion

of these complex associations were phytases.

The pH-value as well as clay and moisture contents showed no consistent relation to acid

phosphatase activity. The pH was only significantly negatively correlated with acid

phosphatase activity in 1993, similar to results obtained by Juma and Tabatabai (1978) and

Dick et al. (1988). The absence of a relation (r = 0.2) between acid phosphatase and pH

was reported by Deng and Tabatabai (1997) for different tillage and residue management

trials in the USA. Margesin and Schinner (1994) stated that soil pH was not correlated with

the optimum pH for phosphomonoesterases under temperate conditions in Austria. The

lack of a correlation between acid phosphatase and soil pH was attributed to an adaptation

of the enzyme to the prevailing soil conditions. The optimal pH-range of acid phosphatase

activity was found to vary considerably between soils. Thus, the pH-optimum in acid,

organic soils in Spain was about 5 (Trasar-Cepeda and Gil-Sotres, 1987) whereas under

eucalyptus forests in Australia little variation in activity of acid phosphatase activity was

observed over a range from pH 4 to 8 (Adams, 1992).

Table 34 presents the relation of alkaline phosphatase activity with major soil chemical

parameters and microbial biomass during the cropping seasons of 1993 and 1994 at 0-5 cm

and 5-10 cm depth.

A strong positive correlation of alkaline phosphatase activity with total soil organic carbon,

total nitrogen, pH, Ca and microbial biomass carbon was found in 1993 and 1994. Since

alkaline phosphatase is only produced by soil microbial biomass and soil fauna which are



Results and Discussion
Analysis of soil processes

113

involved in the organic matter dynamics in soils, a strong relation of the enzyme with C-

related parameters might be expected.

Table 34. Correlation coefficients of alkaline phosphatase
with selected soil chemical and physical parameters, and
microbial biomass in 1993 and 1994 at 0-5 cm and 5-10 cm
depth;
(n = 24).

Alkaline phosphatase(1)

1993 1994

parameters(1) 0-5 cm 5-10 cm 0-5 cm 5-10 cm

Corg 0.94*** 0.62*** 0.83*** 0.57**

Ntot 0.93*** 0.74*** 0.83*** 0.73***

microbial

biomass

0.87*** 0.81*** 0.93*** 0.66***

Bray-I P -0.17 -0.42* -0.26 -0.5**

NaHCO3-Pi n.d. n.d. -0.14 -0.42*

NaHCO3-Porg n.d. n.d. -0.46* -0.58**

NaOH-Pi n.d. n.d. -0.32 -0.39

NaOH-Porg n.d. n.d. -0.31 -0.20

Ca 0.75*** 0.87*** 0.77*** 0.87***

pH 0.72*** 0.7*** 0.83*** 0.73***

clay 0.01 -0.04 0.06 0.27

moisture 0.31 -0.15 0.68*** -0.21

(1) = dimensions used were: microbial biomass (µg g-1), soil
enzymes
(µg g-1), soil chemical parameters (kg ha-1), and soil physical
parameters (%);
significance level was:  *** at P ≤ 0.001; ** at P ≤ 0.01;
* at P ≤ 0.05;
n.d. = not determined.

The significant relationship with organic carbon also highlights the importance of

microbial biomass in contributing to the soil phosphatase pool as most of the biomass is

heterotrophic. Similar results with respect to the relation between alkaline phosphatase and

total soil organic carbon and nitrogen were confirmed by several authors (Harrison, 1983;

Dick et al., 1988; Deng and Tabatabai, 1997). A strong correlation of alkaline phosphatase
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with microbial biomass is reported in the literature (Chhonkar and Tarafdar, 1984; Dick et

al., 1988; Mulongoy and Bedoret, 1989).

A relation of alkaline phosphatase activity with NaOH-extractable organic phosphorus

pool was non-existent. A weak negative correlation was found with inorganic Bray-I P and

NaHCO3-Pi at 5-10 cm depth. Labile organic phosphorus (NaHCO3-extractable) was also

weakly negative correlated with alkaline phosphatase in 1994, suggesting that alkaline

phosphatase may be involved in labile organic and inorganic phosphorus turnover. In pot

experiments strong correlations between both soluble extracellular phosphatase and

alkaline phosphatase with NaHCO3-Porg could be demonstrated (Asmar et al., 1995; Joner

et al., 1995). However, similar to acid phosphatase a lack of a relation with inorganic and

organic phosphorus pools under field conditions was reported for alkaline phosphatase by

Adams (1992) and Speir and Cowling (1991).

The positive relation between alkaline phosphatase and Ca and pH was consistent with the

correlations obtained for microbial biomass (Table 32), implying that synthesis and release

of the enzyme by soil microorganisms is pH-dependent. Similar results were reported by

Dick et al. (1988) and Deng and Tabatabai (1997).

No major effect of clay and gravimetric soil moisture content on alkaline phosphatase

activity was found. This is discussed for soil moisture in more detail in Chapter 4.1.6.2 and

4.2.6.2.

Correlation coefficients of ß-glucosidase activity with selected soil chemical properties and

microbial biomass are shown in Table 35.

ß-Glucosidase activity was significantly and positively correlated with organic carbon and

microbial biomass, due probably to the involvement of the enzyme in the mineralization

and cycling of carbohydrates in soils. However, the correlation with total soil organic

carbon was not consistently high, due probably to the involvement of ß-glucosidase in the

hydrolytic conversion of cellulose as one fraction of SOM rather than of total organic

carbon. The importance of ß-glucosidase-organic carbon interrelations was emphasized by

several authors (Dick et al., 1988; Eivazi and Tabatabai, 1990; Miller and Dick, 1995;

Deng and Tabatabai, 1996). Positive significant correlations of ß-glucosidase with

microbial biomass are reported in the literature (Rastin et al., 1988; Mulongoy and

Bedoret, 1989).

No consistent correlation of ß-glucosidase with total nitrogen and pH-values were found.

ß-Glucosidase is not directly involved in the N-cycle and is primarily produced by fungi
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which, in turn, can tolerate acid soil conditions better than bacteria and actinomycetes

(Roper and Gupta, 1995). Both Rastin et al. (1988) and Dick et al. (1988) obtained similar

results, while Eivazi and Tabatabai (1990) reported significantly negative correlations of ß-

glucosidase with pH. No correlation was found between clay content and soil moisture

(except 1994 at 0-5 cm depth) with ß-glucosidase activity.

Table 35. Correlation coefficients of ß-glucosidase with
microbial biomass and related soil chemical properties in
1993 and 1994 at 0-5 cm and 5-10 cm depth; (n = 24).

ß-glucosidase (1)

1993 1994

parameters(1) 0-5 cm 5-10 cm 0-5 cm 5-10 cm

Corg 0.51** 0.6*** 0.76*** 0.48*

Ntot 0.48* 0.48* 0.73*** 0.55**

microbial biomass 0.76*** 0.49* 0.85*** 0.65***

pH 0.34 0.29 0.58** 0.33

clay 0.05 0.05 -0.11 0.26

moisture 0.37 0.25 0.64** 0.36

(1) = dimensions used were: microbial biomass (µg g-1), soil
enzymes (µg g-1), soil chemical parameters (kg ha-1), and soil
physical parameters (%);
significance level was:  *** at P ≤ 0.001; ** at P ≤ 0.01;
* at P ≤ 0.05;
n.d. = not determined.

Table 36 summarizes the relation of protease activity with soil chemical conditions and

microbial biomass in 1993 and 1994 at 0-5 cm and 5-10 cm depth.

No consistent relation of protease with microbial biomass and related soil chemical

properties was obtained for both cropping periods. Organic carbon, total nitrogen,

microbial biomass, and pH were significantly correlated with protease activity only during

the 1st cropping season at 0-5 cm and 5-10 cm depth, whereas no correlation was obtained

in 1994. Clay content, was positively correlated with protease activity in 1994 but not in

1993, while only a weak correlation was found between gravimetric soil moisture content

and protease activity during the 2nd cropping season at 0-5 cm depth. The inconsistent

relationship between total N and protease activity may be attributed to the complex nature

of soil nitrogen with the different fractions being mineralized by discrete proteases.
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Proteases constitute a heterogeneous mixture of enzymes with different substrate

specificities (Ward, 1983), whereby the contribution of various proteases from microbial

biomass are numerous and not yet fully understood (Law, 1980). Bonmati et al. (1991), for

instance, reported a weak correlation coefficient of r = 0.49 (P < 0.01) between protease

and total soil N in soils from a 5 year old grass-legume pasture in Italy, after air-drying and

storing the soil samples at room temperature for 1 year prior to analysis. Enzyme activities

observed after this prolonged storing period were considered to be mainly due to protected

and stabilized enzymes by clay minerals and humic molecules (Bonmati et al., 1991).

Table 36. Correlation coefficients of protease with
microbial biomass and selected soil chemical and physical
properties in 1993 and 1994 at 0-5 cm and 5-10 cm depth;
(n = 24).

Protease(1)

1993 1994

parameters(1) 0-5 cm 5-10 cm 0-5 cm 5-10 cm

Corg 0.8*** 0.67*** 0.25 0.19

Ntot 0.74*** 0.74*** 0.31 0.36

microbial

biomass

0.78*** 0.85*** 0.33 0.14

pH 0.64** 0.77*** 0.19 0.14

clay 0.00 -0.25 0.66*** 0.73***

moisture 0.27 -0.14 0.40* 0.38

(1) = dimensions used were: microbial biomass (µg g-1), soil
enzymes (µg g-1), soil chemical parameters (kg ha-1), and soil
physical parameters (%);
significance level was:  *** at P ≤ 0.001; ** at P ≤ 0.01;
* at P ≤ 0.05;
n.d. = not determined.

Several authors, however, found a strong correlation of soil organic matter and total

nitrogen with proteases (Loll and Bollag, 1983; Fraser et al., 1994). The correlation of

protease activity with soil microbial biomass is discussed controversially in the literature.

While Asmar et al. (1992) and Badalucco et al. (1996) revealed positive correlations

between microbial biomass and protease activity, Sarathchandra et al. (1984) did not find a

significant relation of protease with both, biomass-C and -phosphorus.
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In 1994, protease activity was more affected by the clay content than by any other soil

chemical and microbiological parameter. This was reflected in the non-significant

correlation coefficients of the latter parameters. The significant positive correlation of

protease with clay in 1994 may be attributed to the presence of cofactors of protease

activity such as divalent metal ions that are part of bacterial extracellular proteases. These

enzymes require Zn2+ in order to function or Ca2+ for stability (Law, 1980). Accordingly,

proteases may be adsorbed on negatively charged clay minerals by cation exchange.

4.4 Synopsis

So far, soil biochemical and microbiological parameters were analyzed either

independently or by linear correlation of two variables. Some parameters showed high

variations within the sites and treatments, while others did not vary significantly between

treatments. Thus, monocausal evaluations of parameters and treatments were often

dissatisfying to assess a causal context of the variables and treatments within the data set,

and to identify those parameters that play the most significant role in the explanation of the

variance. The analysis of the principal components (PCA) is often performed to eliminate

multicolinearity and to reduce the number of variables in a data set to make the data

analysis more efficient (Momen et al., 1996).

By applying the PCA-method of factor analysis to the chemical and microbiological

characteristics of the plots, a set of highly intercorrelated variables was replaced with a set

of uncorrelated principal components or factors. Seventeen soil chemical, physical and

microbiological parameters of the 12 long-term management treatments (each plot

replicated twice) at the three sites differing in land use and degree of degradation, and 2

undisturbed secondary forest plots were included in the PCA in order to identify those

variables that play a significant role in explaining the variance of the data. The data

represented the average values of the 2nd cropping season (April-October) in 1994. Maize

grain yield was not considered in the analysis as it was not significantly correlated (>  0.5

) with either principal component or factor (data not shown). This does not mean that

grain yield is not important to evaluate the productivity of long-term management trials,

but in the multivariate context with other parameters grain yield did not contribute to

reasonably group plots.

By analysis of principal component method 3 principal components (PCs) were extracted

from 17 original soil chemical, physical, and microbiological parameters. As is illustrated
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in Table 37 they explained 81.3 % of the total variance, thus confirming that further

analysis can be made on 3 PCs without loosing too much information.

A 4th principal component was extracted with an Eigenvalue slightly above 1 (1.12) but

explaining only 6.5 % of the total variance. The principal component did not improve

grouping the plots and was excluded from the PCA.

Table 37. Eigenvalues and percentage of the
total variance (%) explained by Varimax-
rotated principal components.

Eigenvalue Variance

%

cumulative

PC 1 8.5 47.3 47.3

PC 2 3.2 20.0 67.3

PC 3 2.1 14.0 81.3

As depicted in Table 38, the high loadings of the 1st principal component (47.3 % of total

variance) included variables that characterize the microbiological activity of soils as related

to the C-cycle (microbial biomass, alkaline phosphatase, ß-glucosidase) and variables

indicative of the SOM-related nutrient supply (total N, organic carbon, Ca, Mg, K, pH).

Therefore, the 1st PC was interpreted and named “SOM-related nutrient dynamics” (SOM-

ND).

The highest loadings of the 1st PC were provided by microbial biomass (Cmic), alkaline

phosphatase, total N, ß-glucosidase, and organic C, but also Ca, Mg, and pH had fairly

high correlations with the principal component. This implies that these parameters were the

major contributors for explaining most of the variance of the data or resource base.

Alkaline phosphatase and ß-glucosidase were also strongly correlated with microbial

biomass, thus showing the potential of these enzymes as indicators of metabolic activity of

microbial biomass in the long-term management trials at IITA, Nigeria. Acid phosphatase,

K, and protease were not strongly correlated with the 1st PC and are considered less

important to explaining this principal component. Moreover, protease but also Mg were not

clearly associated with the 1st PC but were correlated with the 3rd principal component.

The 2nd principal component (20 % of total variance) was described by inorganic and

organic phosphorus pools with NaHCO3-Pi and NaOH-Porg having highest loadings on the

PC. The collective term ascribed to the 2nd principal component was “phosphorus
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dynamics”. The 3rd PC (14 % of total variance) was characterized by clay, protease and Mg

and was summarized as “clay component”. As already discussed earlier in Chapter 4.3.3 a

strong correlation between clay and protease was obtained in 1994 possibly due to binding

of protease to clay by cation exchange.

Since the PCs are not correlated but linearly independent of each other per definition, an

increase of SOM-related properties thus does not implicitly increase phosphorus dynamics

and vice versa.

Table 38. Principal components (PC) and
component loadings extracted from 17
original soil chemical, physical, and
microbiological parameters during the 2nd

cropping season in 1994 at 0-5 cm depth.

Principal component
Variables 1 2 3
Cmic 0.981 -0.009 0.024

alk.

phosphatase

0.971 -0.001 0.060

total N 0.936 -0.048 -0.014

ß-glucosidase 0.931 0.277 -0.046

Corg 0.931 0.146 -0.075

Ca 0.877 0.042 0.343

Mg 0.733 0.181 0.582

pH 0.733 -0.331 -0.071

acid

phosphatase

0.676 0.346 0.221

K 0.617 0.454 0.444

protease 0.565 0.050 0.717

NaHCO3-Pi -0.015 0.816 -0.143

NaOH-Porg -0.038 0.816 0.447

Bray-I P 0.302 0.786 -0.451

NaOH-Pi -0.469 0.679 0.200

NaHCO3-Porg 0.441 0.645 0.017

clay -0.130 -0.074 0.820
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Similar to our results Sarathchandra et al. (1984) could demonstrate that 2 PCs were

sufficient to summarize the relationship among 13 microbiological and biochemical

characteristics of 21 pasture topsoils in New Zealand. The 1st PC was represented by

biomass-C and -P, organic C, phosphatase, total N, N-mineralization, and CO2-production,

whereas the 2nd PC was made up of arylsulfatase, mineral N-flush, urease, and nitrification

index. Protease and pH was not strongly associated with either principal component.

The XY-ordination of the first two principal components (67 % of the total variance) is

displayed in Figure 17. The 3rd principal component was not considered, as the

characteristic feature was mainly given by the clay content. Thus, the 3rd PC did only

contribute to group the plots according to their clay content (for more detail see Chapter

4.1.3 and 4.2.3).

WB 3

WB 3

WB 1
D 2

WB 1

D 2

“P
ho

sp
ho

ru
s 

dy
na

m
cs

”

“SOM-ND”

Legend

1a,b = WB 3 Control

2a,b = WB 3 Pueraria

3a,b = WB 3 Leucaena

4a,b = WB 3 Nat. regrowth

5a,b = D 2 Control

6a,b = D 2 Leucaena

7a,b = D 2  Senna

8a,b = WB 1 Control

9a,b = WB 1 Pueraria

10a,b = WB 1 Leucaena

11a,b = WB 1 Senna

12a,b = WB 1 Nat. regrowth

F = Forest

a,b = Rep1, 2
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Figure 17. Factor scores of the plots and their assignment to the 1st and 2nd principal

components at 0-5 cm depth.
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As a result of the PCA-method of factor analysis the plots were grouped in entities that

were consistent with the land use and degree of degradation (Figure 17). The factor scores

more clearly reflected the differences between the plots than any of the individual

variables.

Figure 17 shows that in terms of degradation (SOM-ND) WB 1 and D 2 are similar.

However, due to fertilization the P-factor is better at D 2. The least degraded Westbank 3

site was characterized by above average (positive values) soil microbiological activities as

indicated by “SOM-related nutrient dynamics” scores. The “phosphorus-dynamics” scores

of the site were below average (negative values). The plots within WB 3 spread along both

principal component axis, thus indicating cropping system dependent soil productivity at

this site. Plots 1a,b (control) and 3b (leucaena) showed lowest “SOM-ND” scores, whereas

2a (pueraria) had the highest factor scores with respect to the 1st PC. The leucaena

treatment (3b) at WB 3 approached the conditions found at the more degraded WB 1 site.

Westbank 1, in comparison, was very homogeneous except for plot 11a (senna), indicating

no major variability in soil fertility due to cropping system at the most degraded site. The

1st PC was below average (negative values), the P-dynamics at the site (2nd PC) ranged

from average to below average factor scores. Plot 11a (senna, 1st replication) as an

exception was characterized by positive scores on the “phosphorus dynamics” PC and

average scores on the “SOM-ND” principal component, and was next to the D 2 site.

Apparently, senna  seems to favorably restoring P and SOM-related nutrient dynamics in a

degraded Alfisol.

The plots at D 2 were homogeneously distributed with respect to the “SOM-ND” principal

component and fairly scattered along the “phosphorus-dynamics” PC. The site could be

described by positive phosphorus dynamic scores (above average) but similar to WB 1 in

below average “SOM-ND” scores (negative values). An exception was plot 6b (leucaena,

2nd replication) with negative “P -dynamics” and “SOM-ND” scores. This plot was closer

associated with WB 1 group than with D 2, indicating that leucaena treatment at a

degraded Alfisol may not sustain P and SOM related nutrient dynamics.

For the 5-10 cm depth, 3 principal components were extracted from 17 original soil

chemical, physical, and microbiological parameters. As is illustrated in Table 39 the 3 PCs

explained 87.5 % of the total variance.

As compared to 0-5 cm depth (Table 37) the 2nd PC gained importance in contributing to

the total variance of the data set by explaining 29 % rather than 20 %.
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The composition of the 1st PC and the component loadings are depicted in Table 40. The

highest component loading was provided by alkaline phosphatase. Calcium and Mg were

more closely correlated with the 1st PC whereas ß-glucosidase was less correlated than for

the 0-5 cm depth. Potassium was not assigned to the 1st PC but to the 2nd, whereas

NaHCO3-Porg was included in the 1st and 2nd PC, and was slightly negatively correlated

with the 1st principal component. However, similar to the top 5 cm the 1st PC was described

by variables that characterize the microbiological activity of soils (alkaline phosphatase,

Cmic, ß-glucosidase) and parameters indicative of the SOM-related nutrient supply (Ca, N,

Mg, Corg, pH). The interpretative term of the 1st PC was again “SOM-ND”, and the most

dominant parameters to explaining the total variance of the data were consistent with those

for the top 5 cm.

Table 39. Eigenvalues and percentage of total
variance (%) explained by Varimax-rotated
principal components.

Eigenvalu

e

Variance

%

cumulativ

e

PC 1 9.2 45.3 45.3

PC 2 3.7 29.1 74.4

PC 3 2.0 13.1 87.5

Acid phosphatase, protease, and NaHCO3-Porg showed only a modest correlation with the

1st PC. Both protease and NaHCO3-Porg were closely associated with the 3rd and 2nd PC,

respectively. The negative correlation of NaHCO3-Porg implied that an increase of “SOM-

ND” is followed by a decrease in the labile organic phosphorus pool.

The 2nd PC was described by inorganic and organic phosphorus pools and was consistent

with that for the 0-5 cm layer. Highest component loadings were provided by inorganic

and organic NaOH-extractable phosphorus. The 2nd PC was named again “phosphorus-

dynamics”. Organic carbon and potassium were also contributions to the 2nd PC, however,

with poor component loadings, and were not considered to contribute much to this

principal component. Unlike the situation with the 0-5 cm depth, the 3rd PC was only

characterized by clay and protease, magnesium was not included. Clay gained importance

as compared to the top 5 cm and was closely correlated with the 3rd PC.
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Table 40. Principal components (PC) and
component loadings extracted from 17
original soil chemical, physical, and
microbiological parameters during the 2nd

cropping season in 1994 at 5-10 cm depth.

Principal component
Variables 1 2 3
alk.

phosphatase

0.948 0.125 0.209

Ca 0.938 0.021 0.065

Cmic 0.933 0.128 -0.174

total N 0.870 0.410 0.072

Mg 0.863 0.304 0.331

ß-glucosidase 0.831 0.319 0.209

Corg 0.819 0.501 0.040

pH 0.779 -0.400 -0.257

acid

phosphatase

0.651 0.474 0.417

protease 0.582 -0.023 0.712

NaHCO3-Porg -0.530 0.734 -0.021

NaOH-Pi 0.213 0.947 -0.001

NaOH-Porg 0.034 0.882 0.216

Bray-I P 0.309 0.844 -0.308

NaHCO3-Pi 0.476 0.827 -0.078

K 0.396 0.550 0.443

clay -0.112 -0.077 0.945

The XY-plot of the first two principal components (74.4 % of the total variance) is

displayed in Figure 18.



Results and Discussion
Analysis of soil processes

124

Legend
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4a,b = WB 3 Nat. regrowth

5a,5 = D 2 Control

6a,b = D 2 Leucaena

7a,b = D 2 Senna
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10a,b = WB 1 Leucaena

11a,b = WB 1 Senna

12a,b = WB 1 Nat. regrowth

F = Forest

a,b = Rep 1,2

“Som-ND”

“P
ho

sp
ho

ru
s-

dy
na

m
ic

s” D 2

Wb 1

D 2

WB 3

WB 3

WB 1

degrading

Figure 18. Factor scores of the plots and their assignment to the 1st and 2nd principal

components at 5-10 cm depth.

Contrary to the 0-5 cm depth, the sites were more homogeneously distributed along the 1st

and 2nd PC, and were more clearly separated from each other. Westbank 3 could be

described by positive microbiological activities and “SOM-ND” (above average) and

negative (below average) “phosphorus-dynamic” scores. Similar to the top 5 cm plot 2a

(pueraria) had highest factor scores with respect to SOM-related activities (“SOM-ND”).

Plot 1b (control) and 3b (leucaena) had the poorest SOM-ND scores. Westbank 1 and D 2

were characterized by negative “SOM-ND”. The “phosphorus-dynamic” PC was above

average reflecting years of P-fertilization. Exceptions were 8b (control) and 11a (senna) of

WB 1. The former plot had negative scores on “SOM-ND” and “P-dynamics” PC and was

closely associated with plot 3b (leucaena, Westbank 3). The senna (11a) plot was

characterized by positive scores for “SOM-ND” and “P-dynamics” principal components

(above average) and was similar to the top 5 cm. D 2 with positive factor scores with

respect to “P-dynamic” PC and negatively  “SOM-ND” PC (below average) had two
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exceptional plots: 6b (leucaena) and 7b (senna). The “P-dynamic” scores at these plots

were only slightly above average, and were strongly associated with the Westbank 1 site.
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5 Conclusions

Soil quality or soil health has emerged as the central concept for examining and integrating

relationships and functions among various biological, chemical, and physical parameters of

soils which are important in the context of sustainable land use and management (Doran

and Parkin, 1994; Karlen et al., 1997). Identifying appropriate quantitative criteria and

methods for assessing soil quality is a primary requirement to advance the concept,  as was

discussed recently in the Soil Science Society of America (SSSA) Ad Hoc Committee on

Soil Quality (Karlen et al., 1997). Varying perceptions of soil quality in relation to

agricultural production are existent. As a result, soil quality or soil health have been related

to crop productivity, to the quality of feed and food produced or to species diversity of a

habitat (Karlen et al., 1997). Indicators appropriate to assessing soil quality should (1)

reflect major processes or controlling factors which would affect sustainability at the sites,

(2) be measurable against some definable standard, (3) be sensitive enough to detect

differences in time and space, and (4) reflect cause-effect relations (Karlen et al., 1997;

Smyth and Dumanski, 1995). A minimum data set was already proposed and basic soil

chemical and physical properties determined (Larson and Pierce, 1991; Doran and Parkin,

1994). However, only a few biological aspects of soil quality were included so far, making

the identification of biological indicators of soil quality as critically important (Doran and

Parkin, 1994; Brown et al., 1994; Elliott et al., 1996).

Therefore, the main emphasis of our research was focused on identifying soil

microbiological parameters as candidate indicators for quality of soils at various stages of

degradation and under contrasting resource management systems. Of the soil

microbiological parameters analyzed, microbial biomass, alkaline phosphatase, and ß-

glucosidase activity were the most sensitive and consistent indicators to (1) reflect major

soil degradation processes, (2) reflect cause-effect relationships, and therefore (3) to

discriminate between contrasting resource management systems.

By means of PCA it could be demonstrated that SOM-related nutrient dynamics was the

major contributor to explaining the total variance (> 80 %) of the resource base under the

prevailing experimental conditions. Microbial biomass, ß-glucosidase, and alkaline

phosphatase activities are parameters that are strongly associated with SOM and its

turnover in soil. Highest loadings with the major  PC were provided by microbial biomass

and alkaline phosphatase, but also ß-glucosidase had loadings above 0.8.

Contrasting soil and crop management systems (alley cropping, live mulch, planted fallow,

controls in long-term experiments) at three sites differing in degree of soil degradation
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could be assessed adequately by these indicators. Of the soil enzymes measured, ß-

glucosidase activity was a sensitive indicator of the effect of improved fallow

managements (alley cropping, live mulch, planted fallow) on site degradation. The enzyme

was more sensitive in indicating changes as compared to total organic carbon. Alkaline

phosphatase was more sensitive than microbial biomass in characterizing the sites and their

degree of degradation as well as the effects of improved fallow managements on site

degradation. The temporal fluctuations  in the activity were much less pronounced than for

microbial biomass, which fluctuated highly. Since both enzymes had strong correlations

with microbial biomass, they indicate the metabolic activity of microbial biomass under

different long-term management systems. Moreover, the activity of both enzymes was

comparatively easy to measure.

Acid phosphatase and protease activity showed inconsistent responses across a range of

soil management practices and had only poor associations with major ecological soil

processes. This was more so for acid phosphatase than for protease. Thus, both acid

phosphatase and protease were not considered sensitive indicators for soil quality

evaluations under the prevailing conditions of long-term management trials at IITA,

Nigeria.

Time and depth of soil sampling for microbial biomass content should be restricted to the

cropping period and the 0-5 cm depth, as the most pronounced differences occurred in the

top layer due to more favorable environmental conditions (substrate availability, moisture

regime). In fact, most of the treatments were centered on the management of soil surface

conditions. Both, alkaline phosphatase and ß-glucosidase measurements are not necessarily

restricted to any particular season as the activity remained rather stable throughout the

year. Samples should be collected from the top 5 cm, as soil microbiological activities

were concentrated in the topsoil due to SOM-return and no-tillage managements. However,

before application of these parameters to other soil surface studies, short-range variability

has to be checked for this location in order to develop an appropriate sampling strategy.

As pointed out by Karlen et al. (1997) appropriate indicators should be measurable against

some definable local standard. Difficulties related to the establishment of threshold values

were already discussed by Syers et al. (1995) and the International Working Group for

conceptualizing the Framework for Evaluation of Sustainable Land Management (Smyth

and Dumanski, 1995). It simply would be expecting too much for a single threshold value

to represent the boundary or cut-off between sustainable and unsustainable, which is more

gradual than clear-cut. Therefore, they proposed a range of threshold values and trends for
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particular indicators rather than single threshold values. For the long-term management

sites at IITA, Nigeria, varying in the degree of degradation and time of land use, the lowest

limit or baseline for the microbiological indicators proposed could be derived from

continuous cropping control treatments of these experiments. They are bottom standards

and already non-sustainable. As a matter of fact, definable standards or a range of

thresholds need to include upper-range  standards as well. Comparison of agricultural land

management practices with undisturbed secondary forests as single upper-range standard is

not considered suitable, as crop management systems can not have the closed nutrient

cycles of undisturbed forests. Hence, appropriate upper-range standards for non-degraded

sites could be derived from pueraria in situ live mulch at WB 3 site, and for degraded sites

from senna at WB 1. Pueraria, thus, worked on WB 3, the non degraded site but not on

WB 1, the severely degraded site, suggesting that pueraria is a maintenance crop. In

contrast, senna worked on the degraded sites and more so on WB 1 than on D 2. Senna

alley cropping at D 2 performed fairly well compared to leucaena and sole cropping.

Parameters related to SOM-dynamics, including soil microbiological activity,  were

sustained, but not crop productivity and fertility. At WB 1, however, senna was most

successful for improving soil productivity and fertility. Soil microbiological activity as

well as crop productivity and chemical fertility was increased most over continuous

cropping. Apparently, senna may work as a restoration crop.
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6 Summary

Soil quality or soil health has emerged as the central concept for examining and integrating

relationships and functions among various biological, chemical and physical parameters of

soils which are important in the context of sustainable land use and management.

Identifying appropriate quantitative criteria and methods for assessing soil quality is a

primary requirement to advance the concept. A minimum data set was already proposed

and basic soil chemical and physical properties determined. However, only a few

biological aspects of soil quality were included so far, making the identification of

biological indicators of soil quality as critically important.

The present study was undertaken to link soil microbiological and soil biochemical

parameters with soil quality conditions and crop productivity and to identify those

parameters or processes that were affected most by long-term management. Degradation

was defined by land-use history and was reflected in the soil quality status and the

productive potential. A degradation index was used to discriminate between three selected

sites varying in time and intensity of land use based on the continuously cropped controls

of long-term experiments. Various improved fallow management systems were evaluated

for their potential as low-input continuous crop production systems by comparing them to

sole cropping.

The experimental sites were located at the research farm of the International Institute of

Tropical Agriculture (IITA) in south-western Nigeria. Three sites varying in degree of

degradation and land use history were examined. The non-degraded Westbank 3 site (1)

was established in 1989 and cleared from secondary forest. Three fallow management

systems with maize/cassava intercropping - natural regrowth of the spontaneous

vegetation, alley cropping with leucaena [Leucaena leucocephala (Lam.) de Wit], and

pueraria in situ (“live”) mulch (Pueraria phaseoloides) were introduced. The degraded D 2

site (2) was used by breeders between 1980 and 1985, and since 1986 cropped to two alley

cropping managements with maize/cowpea sequential cropping - leucaena and senna

[Senna siamea (Lam.) Irwin&Barneby]. The most severely degraded Westbank 1 site (3)

was established in 1979 and was used under intensive mechanized cropping for a period of

10 years. Between 1989 and 1993 woody and herbaceous fallow species were planted to

biologically restoring a severely degraded Alfisol. In 1993 one third of the plots were

cleared and cropped to maize/cassava intercropping. The fallow species investigated
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comprised pueraria, leucaena, senna and natural regrowth of the spontaneous vegetation.

Continuous cropping at all sites was used as control.

Between April 1993 and October 1994 composite soil samples were taken at random every

6 weeks from the 0-5 cm and 5-10 cm depth. In the leucaena and senna alley cropping

treatments sampling was done along the hedgerows and in the interrow space. They were

analyzed for bulk density, particle size distribution, gravimetric soil moisture content, pH,

exchangeable basic cations, inorganic and organic phosphorus pools, total organic carbon

and total nitrogen, microbial biomass carbon, acid and alkaline phosphatase, ß-glucosidase,

and protease activity.

The characterization of the study sites and their degree of degradation was assessed by

analyzing continuous cropping controls. It showed for (1) WB 3: medium maize

productivity, high levels of soil organic matter related properties, low phosphorus status

and acid phosphatase activity, high microbial biomass content, alkaline phosphatase and

protease activity; (2) D 2 was characterized by high maize productivity, low levels of soil

organic matter related properties, high phosphorus status, low microbial biomass content as

well as low alkaline phosphatase and protease activity. Characteristic for (3) Westbank 1

was low maize productivity, low levels of soil organic matter related properties, low

inorganic phosphorus status and high organic phosphorus content at 0-5 cm depth, high

acid phosphatase activity, low microbial biomass content and alkaline phosphatase activity

as well as low protease activity.

Differences between the degraded D 2 and Westbank 1 sites as reflected in maize

productivity were largely due to inorganic Bray-I phosphorus at both depths and organic

phosphorus at 5-10 cm depth. Differences in relation to soil microbiological properties

were largely due to alkaline phosphatase activity.

The effects of improved fallow management systems on site degradation were as follows:

(1) at Westbank 3 leucaena was considered less effective in improving soil conditions than

pueraria, as only total N of the soil chemical properties and both ß-glucosidase and acid

phosphatase (1994 in the top layer) activities of the microbiological properties were

maintained at a higher level as compared to continuous cropping. Pueraria maintained

consistently and significantly highest values of the soil chemical and microbiological

properties, except for maize productivity, pH, exchangeable basic cations, and inorganic

phosphorus; (2) at D 2 leucaena alley cropping generally was not different in crop

productivity, soil chemical as well as soil microbiological properties over sole cropping.

Senna performed slightly better compared to leucaena. Organic carbon and microbial
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biomass content, alkaline phosphatase and protease during the 1st season, and ß-

glucosidase activity during the 1st (both depths) and 2nd (0-5 cm) season were improved,

crop productivity was not different from sole cropping; (3) at the most degraded Westbank

1 site, pueraria and natural regrowth performed poorest and only improved total C and N

(and pH under natural regrowth) when compared to continuous cropping. Leucaena

fallowing for 4 years significantly enhanced maize yield at P = 10 %, total C, N, pH, and

exchangeable basic cations. Microbial biomass content, alkaline phosphatase, and ß-

glucosidase activity were significantly increased in the top 5 cm, whereas protease activity

was only increased during the 1st season at 0-5 cm depth. Most successful for improving

soil productivity and fertility was the introduction of the senna fallow. Maize grain, pH,

total C and N, exchangeable basic cations, Bray-I phosphorus (1st season), NaOH-

extractable organic phosphorus as well as microbial biomass content (0-5 cm), alkaline

phosphatase, ß-glucosidase, and protease activity (1st season and dry season at 5-10 cm

depth) were improved significantly over the continuous cropping controls.

Indicators appropriate to assessing soil quality should (1) reflect major processes or

controlling factors which would affect sustainability at the sites, (2) be measurable against

some definable standard, (3) be sensitive enough to detect differences in time and space,

and (4) reflect cause-effect relations. Of the soil microbiological parameters analyzed,

microbial biomass content, alkaline phosphatase, and ß-glucosidase activity were the most

sensitive and consistent indicators to meet these requirements. By means of PCA it could

be demonstrated that SOM-related nutrient dynamics was the major contributor to

explaining the total variance (> 80 %) of the resource base under the prevailing

experimental conditions. Microbial biomass, ß-glucosidase and alkaline phosphatase

activities are parameters that are strongly associated with SOM and its turnover in soil.

Highest loadings with the major  PC were provided by microbial biomass and alkaline

phosphatase, but also ß-glucosidase had loadings above 0.8. The 2nd PC could be

interpreted as “phosphorus dynamics”. By plotting the factor scores against both PCs, the

differentiation of the sites and treatment effects could be improved.

Contrasting soil and crop management systems (alley cropping, live mulch, planted fallow,

controls in long-term experiments) at three sites differing in degree of soil degradation

could be assessed adequately by these indicators. Of the soil enzymes measured, ß-

glucosidase activity was a sensitive indicator of the effect of improved fallow

managements (alley cropping, live mulch, planted fallow) on site degradation. The

bioassay of this enzyme was more sensitive in indicating changes as compared to total
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organic carbon. Alkaline phosphatase was more sensitive than microbial biomass in

characterizing the sites and their degree of degradation as well as the effects of improved

fallow managements on site degradation. The temporal fluctuations  in the activity were

much less pronounced than for microbial biomass, which fluctuated highly. Since both

enzymes had strong correlations with microbial biomass, they indicate the metabolic

activity of microbial biomass under different long-term management systems. Moreover,

the activity of both enzymes was comparatively easy to measure.

Acid phosphatase and protease activity showed inconsistent responses across a range of

soil management practices and had only poor associations with major ecological soil

processes. This was more so for acid phosphatase than for protease. Thus, both acid

phosphatase and protease were not considered sensitive indicators for soil quality

evaluations under the prevailing conditions of long-term management trials at IITA,

Nigeria.

Depth of soil sampling for microbial biomass content as well as for alkaline phosphatase

and ß-glucosidase activity should be restricted to 0-5 cm depth, as the most pronounced

differences occurred in the top layer due to more favorable environmental conditions

(substrate availability, moisture regime) under these no-tillage managements. Time of

sampling for microbial biomass should be restricted to the wet season, whereas either

enzyme is not necessarily restricted to any particular season.

Appropriate indicators should be measurable against some definable local standard.

Therefore, a range of threshold values was proposed as the boundary or cut-off between

sustainable and unsustainable is more gradual than clear-cut. The lowest limit or baseline

for the proposed microbiological indicators could be derived from continuous cropping

control treatments of these long-term experiments. Comparison of agricultural land

management practices with undisturbed secondary forests as single upper-range standard is

not considered suitable, as crop management systems can not have the closed nutrient

cycles of undisturbed forests. Hence, appropriate upper-range standards for non-degraded

sites could be derived from pueraria in situ live mulch at WB 3 site, and for degraded sites

from senna at WB 1. Pueraria, thus, worked on WB 3, the non degraded site but not on

WB 1, the severely degraded site, suggesting that pueraria is a maintenance crop. In

contrast, senna worked on the degraded sites and more so on WB 1 than on D 2.

Apparently, senna may work as a restoration crop.
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7 Zusammenfassung

Der Begriff Bodenqualität ist zu einem zentralen Konzept erhoben worden, welches die

Untersuchung und Integrierung der Wechselbeziehungen und Funktionen von biologischen

und physikalischen Bodeneigenschaften im Rahmen des nachhaltigen Landbaus bzw. -

managements umfaßt. Zur Umsetzung dieses Konzeptes müssen geeignete quantitative

Kriterien und Methoden zur Abschätzung der Qualität eines Bodens entwickelt und

eingeführt werden. Ein sogenanntes „Minimum Data Set“ wurde bereits aufgestellt und

grundlegende bodenchemische und physikalische Parameter aufgenommen. Jedoch sind

bisher nur wenige biologische Aspekte der Bodenqualität in dieses Konzept integriert

worden, so daß die Identifikation der noch unbekannten biologischen Indikatoren von

größter Bedeutung ist.

Ziel der vorliegenden Arbeit war es, mikrobiologische und biochemische Bodenparameter

auf deren Eignung als Indikatoren für Bodenqualität und -produktivität zu prüfen.

Weiterhin sollten solche Bioparameter identifiziert werden, die durch langjähriges

Management beeinflußt wurden. Die Degradation eines Bodens wurde anhand der

Nutzungsgeschichte und deren Auswirkung auf die Bodenqualität und -fruchtbarkeit

definiert. Ein mittels Kontrollen von langjährigen Experimenten aufgestellter

Degradationsindex wurde eingesetzt, um drei selektierte Standorte, die sich hinsichtlich der

Dauer und Intensität des Landbaus unterscheiden, zu evaluieren. Verbesserte

Brachemanagementsysteme wurden auf ihr Potential als „low-input“-Anbausysteme im

Vergleich zu Flächen ohne Brachemanagement untersucht.

Die Versuchsflächen befanden sich auf der Versuchsfarm des „International Institute of

Tropical Agriculture“ (IITA) in Südwestnigeria. Wie schon erwähnt wurden drei Standorte

untersucht, die sich hinsichtlich ihrer Bodendegradierung und Landnutzungsgeschichte

unterschieden. Die nicht degradierte Westbank 3-Fläche (1) wurde 1989 nach Abholzung

von Sekundärwald in Kultur genommen. Drei simultane Brachemanagementsysteme mit

Mais/Maniok-Mischanbau wurden berücksichtigt - natürlicher Aufwuchs der

Sekundärvegetation, „Alley cropping“ mit Leucaena [Leucaena leucocephala (Lam.) de

Wit] und Pueraria als Bodenbedecker (Pueraria phaseoloides). Der degradierte D 2-

Standort (2) wurde von 1980 bis 1985 für Züchtungsversuche benutzt und ist seit 1986

unter Nutzung zweier „Alley cropping“-Systeme — Leucaena und Senna [Senna siamea

(Lam). Irwin&Barneby] mit Mais/Vigna (Vigna unguiculata ssp. unguiculata) in Rotation.
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Der am stärksten degradierte Westbank 1-Standort (3) wurde 1979 in Kultur genommen

und war für 10 Jahre unter intensiver und maschineller Nutzung. Von 1989 bis 1993

wurden Baum- und Krautbrachesysteme eingeführt, um ihre Fähigkeit zur biologischen

Verbesserung von degradierten Alfisolen zu untersuchen. Im Jahr 1993 wurde ein Drittel

der Flächen gerodet und mit Mais/Maniok-Mischanbau kultiviert. Die untersuchten

Brachesysteme waren Pueraria, Leucaena, Senna und natürlicher Aufwuchs der spontanen

Vegetation. Der permanente Anbau ohne verbessertes Brachemanagement wurde auf allen

Flächen als Kontrollvariante verwendet.

Von April 1993 bis Oktober 1994 wurden alle 6 Wochen randomisierte Bodenproben der

Tiefen 0-5 cm und 5-10 cm gezogen. Die Beprobung der „Alley cropping“-Flächen mit

Leucaena und Senna auf D 2 und WB 1 erfolgte entlang der Heckenreihen und in der Mitte

zwischen zwei Heckenreihen („interrow“). Die Bodenproben wurden auf

Trockenraumdichte, Textur, gravimetrische Feuchte, pH, austauschbare basische Kationen,

verschiedene anorganische und organische Phosphorfraktionen, Gesamtkohlenstoff- und

stickstoff, mikrobielle Biomasse, saure und alkalische Phosphatase-, ß-Glucosidase- und

Proteaseaktivität untersucht.

Die Charakterisierung der Standorte und ihre Degradationseinstufung wurde anhand der

Kontrollvariante (permanenter Anbau) vorgenommen. Es zeigte sich für (1) WB 3:

moderater Maisertrag, hoher Gehalt an bodenorganischer Substanz, geringer Boden-P-

Status und niedrige Aktivität der sauren Phosphatase, hoher Gehalt an mikrobieller

Biomasse als auch hohe alkalische Phosphatase- und Proteaseaktivität; (2) D 2 war

charakterisiert durch hohen Maisertrag, geringen Gehalt an bodenorganischer Substanz,

hohen Phosphorgehalt, geringe mikrobielle Biomasse und niedrige alkalische Phosphatase-

und Proteaseaktivität. Charakteristisch für (3) WB 1 war der geringe Maisertrag, geringer

Gehalt an bodenorganischer Substanz, geringer anorganischer Phosphorgehalt, hoher

organischer Phosphorgehalt in 0-5 cm Tiefe, hohe saure Phosphataseaktivität, geringe

mikrobielle Biomasse und niedrige alkalische Phosphatase- und Proteaseaktivität. Die

Unterschiede im Maisertrag zwischen den beiden degradierten Standorten D2 und WB 1

wurden hauptsächlich durch den anorganischen Phosphorgehalt (Bray-I) in beiden

untersuchten Bodentiefen und den organischen Phosphorgehalt in 5-10 cm Tiefe

verursacht. Unterschiede bezüglich der mikrobiologischen Bodeneigenschaften wurden vor

allem durch die Aktivität der alkalischen Phosphatase hervorgerufen.
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Der Einfluß der unterschiedlichen Landnutzungssysteme mit verbessertem

Brachemanagement auf die Bodendegradierung der jeweiligen drei Standorte war wie

folgt: (1) auf WB 3 war Leucaena für die Verbesserung der Bodenbedingungen weniger

effektiv als Pueraria. Von den chemischen Bodeneigenschaften wurde nur der Gehalt an

Gesamtstickstoff und von den mikrobiologischen Eigenschaften die Aktivität der ß-

Glucosidase und saure Phosphatase (1994 in den obersten 5 cm) im Vergleich zum

permanenten Mischanbau von Mais und Maniok nachhaltig verbessert. Außer bei den

Parametern Maisertrag, pH, austauschbare basische Kationen und anorganischer Phosphor

wirkte sich Pueraria am nachhaltigsten bei den restlichen gemessenen chemischen und

mikrobiologischen Bodenparameter aus; (2) Leucaena- „Alley cropping“ am Standort  D 2

unterschied sich nicht bezüglich des Maisertrages und der chemischen und

mikrobiologischen Bodeneigenschaften von der permanenten Rotation mit Mais und

Vigna. Senna war vergleichsweise effizienter als Leucaena, da der Gesamtkohlenstoff, die

mikrobielle Biomasse, die alkalische Phosphatase- und Proteaseaktivität während der

ersten Anbausaison und die ß-Glucosidaseaktivität sowohl während der ersten (in beiden

Bodentiefen) als auch während der zweiten Anbausaison (oberste 5 cm) erhöht wurden,

wohingegen sich der Maisertrag nicht von der Kontrolle unterschied; (3) auf dem am

stärksten degradierten Westbank 1-Standort brachten Pueraria und der natürliche

Aufwuchs der Sekundärvegetation keine Verbesserung gegenüber der Kontrolle. Von den

gemessenen Parametern erhöhten sie gegenüber der Kontrolle lediglich den

Gesamtkohlenstoff- und stickstoffgehalt, ebenfalls den pH unter dem natürlichen

Aufwuchs. Die für 4 Jahre mit Leucaena bepflanzte Behandlung wies hingegen eine

signifikante Erhöhung des Maisertrages (P = 10 %), des Gesamtgehaltes an C und N, des

pH-Wertes und des Gehaltes an austauschbaren basischen Kationen auf. Die mikrobielle

Biomasse sowie die alkalische Phosphatase- bzw. ß-Glucosidaseaktivität wurden in den

obersten 5 cm erhöht, während die Proteaseaktivität nur während der ersten Anbausaison

in 0-5 cm Tiefe gesteigert worden ist. Der größte Erfolg hinsichtlich der Verbesserung der

Bodenproduktivität- und fruchtbarkeit wurde durch die gepflanzte Sennabrache erzielt.

Hierbei wurden die Parameter Maisertrag, pH, Gesamtkohlenstoff- und stickstoff,

austauschbare basische Kationen, anorganischer Phosphor (Bray-I, erste Anbausaison),

organischer Phosphor (NaOH-extrahierbar), mikrobielle Biomasse (0-5 cm) und alkalische

Phosphatase-, ß-Glucosidase- und Proteaseaktivität (erste Anbausaison und Trockenzeit in

5-10 cm Tiefe) im Vergleich zur Kontrolle signifikant erhöht.
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Geeignete Bodenqualitätsindikatoren sollten: 1.) auf dem jeweiligen Standort die

vorrangigen Einflußgrößen einer nachhaltigen Bewirtschaftung widerspiegeln, 2.) meßbar

gegenüber einer definierbaren Bezugsgröße sein, 3.) zwischen zeitlichen und räumlichen

Unterschieden differenzieren können und 4.) die Ursache/Wirkungs-Wechselbeziehungen

reflektieren. Diese Voraussetzungen für Bodenqualitätsindikatoren erfüllten von den

untersuchten mikrobiologischen Parametern sowohl die mikrobielle Biomasse als auch die

alkalische Phosphatase- und ß-Glucosidaseaktivität, die sich als besonders sensitiv bzw.

geeignet erwiesen. Anhand einer Hauptkomponentenanalyse konnte gezeigt werden, daß

unter den gegebenen Bedingungen hauptsächlich (1. Faktor)  die von der organischen

Substanz im Boden abhängige Nährstoffdynamik  über 80 % der Gesamtvarianz innerhalb

des Datensatzes erklären konnte. Die Parameter mikrobielle Biomasse, ß-Glucosidase- und

alkalische Phosphataseaktivität sind mit der Dynamik der organischen Substanz im Boden

eng verbunden. Weiterhin waren die mikrobielle Biomasse und die alkalische

Phosphataseaktivität am stärksten mit dem ersten Hauptfaktor korreliert; aber auch die ß-

Glucosidaseaktivität hatte eine Faktorladung über 0.8. Der zweite Faktor wurde als die

Phosphor-Dynamik interpretiert. Durch Auftragen von sogenannten Faktorwerten gegen

beide Hauptkomponenten in einem Koordinatensystem wurde die Differenzierung

zwischen den Flächen und Behandlungen erleichtert. Die verschiedenen

Landnutzungssysteme („Alley cropping“, Pueraria als Bodenbedecker, bepflanzte Brache

und permanenter Anbau [Kontrolle] aus Langzeitversuchen), der drei Standorten mit

unterschiedlichem Degradierungsgrad konnten durch diese Indikatoren differenziert bzw.

beurteilt werden. Von den untersuchten Bodenenzymen war die ß-Glucosidaseaktivität ein

sensibler Indikator, um den Einfluß verbesserter Brachesysteme („Alley cropping“,

Pueraria als Bodenbedecker und bepflanzte Brache auf die Degradierung einer Fläche

abzuschätzen. Darüber hinaus war die Bestimmung der ß-Glucosidaseaktivität sensibler als

die Bestimmung vom Gesamtkohlenstoff, um Unterschiede zwischen den Behandlungen

aufzuzeigen. Die Aktivitätsbestimmung der alkalischen Phosphatase war hingegen

sensibler als die Messung der mikrobiellen Biomasse, um sowohl die Standorte zu

charakterisieren und ihren Degradierungsgrad zu bestimmen als auch  den Einfluß

verbesserter Brachesysteme auf die Degradierung eines Bodens zu beurteilen. Die

Schwankungen in der Aktivität über die Zeit waren nicht so ausgeprägt wie die stark

variierende mikrobielle Biomasse. Da beide Enzyme mit der mikrobiellen Biomasse eng

korrelierten, spiegeln sie die metabolische Aktivität der mikrobiellen Biomasse in
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unterschiedlichen Langzeitsystemen wider. Darüber hinaus war die Aktivität der Enzyme

vergleichsweise einfach zu bestimmen.

Sowohl die saure Phosphatase- als auch die Proteaseaktivität zeigten keinen eindeutigen

Verlauf in den verschiedenen Landnutzungssystemen und waren auch nur schwach mit den

Nährstoffkreisläufen des Bodens korreliert. Dies zeigte sich stärker für die saure

Phosphatase als für die Protease. Folglich wurden beide Enzyme unter den gegebenen

Bedingungen am IITA, Nigeria als weniger geeignete und sensible Indikatoren betrachtet,

um die Qualität eines Bodens abzuschätzen.

Die Tiefe der Probenahme für die Bestimmung der mikrobiellen Biomasse und der

alkalischen Phosphatase- und ß-Glucosidaseaktivität sollte auf die obersten 5 cm

beschränkt werden, da durch die günstigeren Bedingungen (Substratverfügbarkeit,

Feuchtegehalt des Bodens) in den Behandlungen mit Minimalbodenbearbeitung die

stärksten Unterschiede in der obersten Bodenschicht auftreten. Der Zeitpunkt der

Probenahme für die mikrobielle Biomasse sollte während der Regenzeit erfolgen,

wohingegen die Probenahme für beide Enzyme zeitlich nicht begrenzt ist.

Geeignete Indikatoren sollten hinsichtlich lokal definierbarer Meßgrößen oder Standards

bestimmbar sein. Demzufolge wurden obere und untere Grenzwerte vorgeschlagen, da der

Übergang von nachhaltig zu nicht nachhaltig graduell und nicht abrupt verläuft.

Der untere Grenzwert („baseline“) für die vorgeschlagenen mikrobiellen Indikatoren kann

von den Kontrollflächen (permanenter Anbau) der Langzeitversuche abgeleitet werden.

Ein Vergleich von landwirtschaftlich genutzten Flächen mit ungestörtem Sekundärwald als

oberer Richtwert ist nicht geeignet, da ackerbauliche Nutzungssysteme nicht so

geschlossene Nährstoffkreisläufe aufweisen, wie sie in ungestörten Sekundärwäldern

vorkommen. Deshalb können obere Richt- oder Grenzwerte für nicht degradierte Flächen

von der Pueraria-Behandlung (Bodenbedecker) der Westbank 3-Fläche abgeleitet werden,

wohingegen als oberer Richtwert für degradierte Flächen die Senna-Brache auf Westbank

1 geeignet ist. Da Pueraria sich positiv auf dem nicht degradierten Westbank 3-Standort

aber nicht auf dem stark degradierten Westbank 1-Standort auswirkte, kann als

Schlußfolgerung gesagt werden, daß Pueraria eine Nachhaltigkeitskultur („maintenance

crop“) ist. Demgegenüber steht Senna, die auf den degradierten Standorten zur

Verbesserung beitrug, wobei die Auswirkungen stärker auf WB 1 als auf D 2 waren.

Demzufolge ist Senna eine Restaurationskultur („restoration crop“).
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9 Appendix

Table 1. Nutrient uptake (kg ha-1) of N in total dry matter(1)

of maize plants at harvest 1994 as affected by cropping sites
and fallow management systems - single values for stover
and grain in rep 1 and 2.

Nitrogen
stover grain

Management
system rep 1 rep 2 rep 1 rep 2
Westbank 3

Ctrl 16.6 20.3 20.1 17.7

Leucaena 17.5 16.7 21.8 8.9

Pueraria 17.2 14.8 23.8 15.6

D 2

Ctrl 31.6 0.3 50.3 23.6

Leucaena 6.7 11.4 20.1 26.3

Senna 12.1 19.4 22.0 n.a.

Westbank 1

Ctrl 1.0 2.5 1.5 3.4

Leucaena 2.9 9.4 5.9 11.2

Senna n.a. 5.1 24.6 29.4

Pueraria 2.6 10.8 6.6 4.8

Nat. regrowth 7.4 17.0 16.6 10.0

n.a. = not available;
(1) = total dry matter production of the aboveground plant
material including stalks and grain;
data for WB3 and WB 1 were received from RCMD, IITA and
for D 2 from Vanlauwe (personal communication).



Appendix 165

Table 2. Nutrient uptake (kg ha-1) of P in total dry matter(1)

of maize plants at harvest 1994 as affected by cropping sites
and fallow management systems - single values for stover
and grain in rep 1 and 2.

Phosphorus
stover grain

Management
system rep 1 rep 2 rep 1 rep 2
Westbank 3

Ctrl 0.4 0.8 12.0 47.8

Leucaena 0.5 0.6 20.5 7.8

Pueraria 0.6 0.7 22.8 12.3

D 2

Ctrl 6.1 5.3 13.4 6.7

Leucaena n.a. 3.6 4.5 6.1

Senna 3.3 4.1 4.5 n.a.

Westbank 1

Ctrl 0.2 0.2 0.4 0.8

Leucaena 0.3 0.5 1.1 2.6

Senna n.a. 0.3 8.9 8.6

Pueraria 0.2 1.1 1.7 1.1

Nat. regrowth 0.7 1.9 4.5 2.1

n.a. = not available;
(1)  = total dry matter production of the aboveground plant

material including stalks and grain;
data for WB3 and WB 1 were received from RCMD, IITA and
for D 2 from Vanlauwe (personal communication).
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Table 3. Average soil nutrient status (kg ha-1) of
the control treatments at 0-5 cm and 5-10 cm
depth in October 1993.

Ca Mg K Mn

Site/depth kg ha-1

0-5 cm

sec. Forest 1385 159 188 0.000

Westbank 3 677 45 47 0.000

D 2 193 32 50 0.008

Westbank 1 124 22 32 0.007

5-10 cm

sec. Forest 725 100 117 0.000

Westbank 3 426 31 27 0.000

D 2 97 14 68 0.059

Westbank 1 130 18 19 0.004
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Table 4. Average soil organic carbon (t ha-1), total nitrogen (kg ha-1), and pH (CaCl2)
characteristics under improved fallow management systems at 5-10 cm depth in 1993 and
1994.

Corg (t ha-1) total N (kg ha-1) pH (CaCl2)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season

5-10 cm

sec. Forest 13.5 11.9 11.8 1319 907 1178 6.5 6.7 6.7

Westbank 3

Ctrl 5.2 5.1 5.2 511 513 484 6.7 6.8 6.8

Leucaena 4.7 5.9 6.4 438 560 609 6.5 6.8 6.7

Pueraria 6.9 7.8 7.9 647 717 717 6.8 6.9 6.9

Nat.

regrowth

5.1 6.4 fallow 537 522 fallow 6.7 7.0 fallow

D 2

Ctrl 4.0 4.5 4.9 394 446 438 5.6 5.4 5.5

Leucaena 4.1 4.5 4.9 421 452 481 5.9 5.5 5.3

Senna 5.1 4.1 4.9 411 429 431 5.9 6.0 5.9

Westbank 1

Ctrl 3.9 4.0 4.6 411 378 446 5.2 5.3 5.3

Leucaena 5.2 3.9 5.2 505 461 492 5.9 5.7 5.8

Senna 7.6 6.5 7.3 598 623 613 6.1 6.3 6.3

Pueraria 4.6 3.9 5.4 443 403 485 5.2 5.1 5.4

Nat.

regrowth

4.6 4.1 6.0 458 415 564 5.3 5.0 5.6

LSD 1.3 1.2 2.0 117 122 169 0.3 0.5 0.5

LSD (excluding forest) at  α = 0.05
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Table 5. Average soil nutrient status (cmol+ kg -1 soil and kg ha-1) under
improved fallow management systems at 5-10 cm depth in 1993.

Ca Mg K Mn Ca Mg K

Management cmol+ kg-1 kg ha-1

0-5 cm

sec. Forest 6.36 1.46 0.53 0.000 725 100 117

Westbank 3

Ctrl 3.74 0.46 0.12 0.000 426 31 27

Leucaena 2.76 0.55 0.23 0.000 314 37 52

Pueraria 4.24 0.60 0.19 0.000 484 41 41

Nat. regrowth 2.89 0.52 0.21 0.000 330 36 47

D 2

Ctrl 0.88 0.21 0.32 0.059 97 14 68

Leucaena 1.04 0.27 0.23 0.020 114 18 50

Senna 1.34 0.23 0.28 0.004 148 15 59

Westbank 1

Ctrl 1.37 0.32 0.1 0.004 130 18 19

Leucaena 2.36 0.73 0.43 0.000 224 42 79

Senna 4.34 0.91 0.64 0.000 413 52 118

Pueraria 1.03 0.34 0.12 0.01 98 19 22

Nat. regrowth 1.67 0.59 0.31 0.000 159 33 58

LSD 2.06 0.27 0.206 ns
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Table 6. Available Bray-I phosphorus (µg g-1 and kg ha-1) under
improved fallow management systems at 5-10 cm depth.

Bray-I P (µµg g-1) Bray-I P (kg ha-1)

site/depth 1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
5-10 cm

sec. Forest 27.3 22.1 26.1 17 12.6 14.8

Westbank 3

Ctrl 2.9 2.2 4.2 1.7 1.3 2.4

Leucaena 3.3 2.8 5.3 2.1 1.5 3.0

Pueraria 3.5 3.1 4.6 2.2 1.7 2.6

Nat.

regrowth

3.4 1.9 fallow 2.1 1.1 fallow

D 2

Ctrl 16.3 17.7 14.8 9.0 9.8 8.4

Leucaena 6.6 14.1 16.9 3.3 7.8 9.3

Senna 12.7 12.6 20.1 6.6 6.9 11.6

Westbank 1

Ctrl 4.4 2.9 4.6 2.0 1.4 2.3

Leucaena 2.0 1.2 3.1 1.0 0.6 1.3

Senna 5.7 2.6 4.5 2.3 1.2 2.2

Pueraria 3.5 3.3 4.7 1.7 1.6 2.2

Nat.

regrowth

3.1 2.4 4.4 1.3 1.2 2.1

LSD 1.8 6.2 4.7 0.96 2.4 2.6

LSD (excluding forest) at α = 0.05
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Table 7. Inorganic and organic NaHCO3 and NaOH-extractable phosphorus pools (µg g-1

and kg ha-1) under improved fallow management systems at 5-10 cm depth.

NaHCO3-
Pi

NaOH-
Pi

NaHCO3

-Porg

NaOH-
Porg

NaHCO3

-Pi

NaOH-
Pi

NaHCO3

-Porg

NaOH-
Porg

site/depth µµg g-1 kg ha-1

5-10 cm

sec. Forest 33.9 49.6 9.2 77.9 19.3 28.3 5.3 44.4

Westbank 3

Ctrl 3.7 9.2 6.1 45.8 2.1 5.2 3.5 23.8

Leucaena 6.1 10.2 8.0 51.0 3.1 5.3 4.3 28.4

Pueraria 6.6 14.5 8.3 45.6 3.7 7.6 4.7 26.0

Nat.

regrowth

7.1 10.9 7.4 41.7 3.5 5.8 4.2 23.5

D 2

Ctrl 17.6 37.3 11.7 71.5 9.7 20.6 6.5 39.5

Leucaena 10.6 39.4 11.1 74.0 5.9 21.8 6.1 41.0

Senna 18.7 44.4 12.3 64.5 9.5 24.5 6.6 35.5

Westbank 1

Ctrl 7.9 21.2 10.0 50.0 3.5 10.3 4.6 24.3

Leucaena 6.5 18.4 9.0 61.3 3.1 8.8 4.3 29.2

Senna 10.1 30.4 8.8 83.2 4.8 15.9 4.4 39.6

Pueraria 7.9 20.8 10.1 63.1 3.7 9.8 4.8 30.0

Nat.

regrowth

6.3 18.2 9.1 50.1 2.7 8.9 4.2 25.1

LSD 5.5 12.3 3.1 24.1 2.9 6.6 1.6 12.9

LSD (excluding forest) at α = 0.05
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Table 8. Average soil microbial biomass carbon (kg ha-1) under improved
fallow management systems at 0-5 cm and 5-10 cm depth in 1993 and
1994.

Microbial biomass (kg ha-1)

Site/depth
1st

season
dry

season
2nd

season
1st

season
dry

season
2nd

season
0-5 cm 5-10 cm

sec. Forest 165 133 205 80 69 106

Westbank 3

Ctrl 82 65 83 45 49 42

Leucaena 90 88 109 44 42

Pueraria 125 135 71 68 80

Nat.

regrowth

87 96 100 58 49 48

D 2

Ctrl 51 44 33 25 39 18

Leucaena 75 59 45 37 40 18

Senna 93 56 71 41 56 36

Westbank 1

Ctrl 34 27 27 24 25 19

Leucaena 65 53 58 36 44 23

Senna 93 56 71 41 56 36

Pueraria 48 30 39 27 39 24

Nat.

regrowth

48 34 49 27 25 22
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