Einfluss des $\alpha_1(I)$-Kollagens auf die Aktionspotentiale von frühen aus embryonalen Stammzellen differenzierten Kardiomyozyten
Dekan: Prof. Dr. med. C. Frömmel

I. Berichterstatter: Prof. Dr. med. L. S. Maier
II. Berichterstatter: Prof. Dr. med. W. H. Zimmermann
III. Berichterstatter: Prof. Dr. med. T. A. Crozier

Tag der mündlichen Prüfung: 06.07.2011
1 Einleitung ... 1

1.1 Frühe Kardiogenese .. 1

1.2 Aktionspotentiale ... 3

1.2.1 AP-Verlauf (Phasen).. 3

1.2.2 Verlaufsformen adulter APs.. 5

1.3 Stammzellen .. 7

1.3.1 Totipotenz und Pluripotenz .. 8

1.3.2 Gewinnung und Kultur von ESC 9

1.3.3 Gentechnische Veränderungen: Loss / Gain of Function 10

1.3.4 In-vitro-Differenzierung von ESC 11

1.3.4.1 Embryoidkörperchen/embryoid bodies....................... 11

1.3.4.2 ESC können sich zu einer Vielzahl spezialisierter Zelltypen differenzieren... 11

1.3.4.3 Äußere Einflussgrößen auf die Differenzierung von ESC ... 12

1.4 In-vitro-Differenzierung von ESC als Modell zur Untersuchung früher Prozesse der Kardiomyogenese... 13

1.4.1 Kardiomyozytäre Differenzierung von ESC 14

1.4.2 Elektrophysiologische Differenzierung von ESDC 16

1.5 Extrazellulärmatrix, Kollagene und Integrine................................. 20

1.5.1 Extrazellulärmatrix .. 20

1.5.2 Kollagene.. 21

1.5.3 Integrine... 25

1.6 Herzinsuffizienz .. 26

1.7 Mögliche therapeutische Anwendung von Stamm- und Vorläuferzellen... 28

1.8 Fragestellung .. 29

2 Material und Methoden.. 32

2.1 Zellkultur ... 32

2.1.1 Routinevorgänge in der Zellkultur 32

2.1.1.1 Einfrieren von Zellen („Kryokonservierung“)................. 32

2.1.1.2 Auftauen von Zellen .. 33
2.1.1.3 Hitzeinaktivierung des fetalen Kälberserums 33
2.1.2 Feeder-Layer (FL) .. 34
2.1.2.1 Gewinnung der murinen Fibroblasten für den Feeder-Layer 34
2.1.2.2 Kultivierung / Umsetzen von Feeder-Layer 35
2.1.2.3 Mitotische Inaktivierung des Feeder-Layers 35
2.1.3 Kultivierung undifferenzierter ESC 36
2.1.3.1 Kulturbedingungen der ESC, Beurteilung der Kultur 36
2.1.3.2 Passagieren der ESC („Umsetzen“) 37
2.1.3.3 Pre-Plating ... 37
2.1.4 Differenzierungsversuche ... 37
2.1.4.1 Hanging Drops ... 39
2.1.4.2 Hanging Drops in Suspension 39
2.1.4.3 Plattierung der EBs, weitere Kultivierung 40

2.2 Morphologische Auswertung ... 40

2.3 Spezielle Isolationstechnik .. 41

2.4 Patch-Clamp-Technik .. 43
2.4.1 Current Clamp ... 44
2.4.2 Kompensation von Störgrößen 44
2.4.3 Aufbau des Messstandes ... 45
2.4.4 Patch-Pipette ... 46
2.4.5 Pipettenlösung ... 46
2.4.6 Badlösung .. 47
2.4.7 Prinzipielles Vorgehen beim Patch Clamp 47
2.4.8 Modifiziertes Vorgehen beim Patch Clamp 48

2.5 Auswertung der Patch-Clamp-Registrierungen 49
2.5.1 Auswertung der APs ... 49
2.5.2 AP-Kenngrößen ... 49

2.6 Statistik .. 52

2.7 Verwendete Lösungen .. 53
2.7.1 Patch-Clamp-Lösungen ... 53
2.7.2 Zellkultur-Lösungen ... 54

2.8 Substanzen ... 56
3 Ergebnisse ... 58
3.1 Zur Art der Darstellung der Daten ... 58
3.2 Optimierung der Differenzierungsversuch-Ansätze.. 59
3.3 Morphologische Auswertung ... 60
3.4 Aktionspotentiale ... 62
 3.4.1 Umfang der Stichprobe ... 62
 3.4.2 AP-Morphologien .. 62
 3.4.2.1 Early-Pacemaker-APs .. 62
 3.4.2.2 Vorhof- und Ventrikel-ähnliche sowie weitere AP-Morphologien 66
 3.4.2.3 Subgruppe mit besonders rascher Depolarisation (Subgruppe V_{max}) 71
 3.4.3 AP-Zykluslänge .. 72
 3.4.4 Diastolische Depolarisationsrate (DDR) .. 75
 3.4.5 Ruhemembranpotential ... 78
 3.4.6 Depolarisation: AP-Amplitude .. 80
 3.4.7 Depolarisation: V_{max} .. 83
 3.4.8 Repolarisation: APD .. 85
4 Diskussion .. 89
 4.1 Vorbereitende Untersuchungen .. 90
 4.1.1 Optimierung der Kulturbedingungen .. 90
 4.1.2 Verfahren zur Patch-Clamp-Untersuchung von ESDC mit intakter ECM ... 91
 4.2 Der WT zeigt eine normale Differenzierung der ESDC, Mechanismen der Entwicklung .. 91
 4.2.1 Morphologische Auswertung ... 91
 4.2.2 Early-Pacemaker-APs treten während der Neubildung von ESDC auf ... 92
 4.2.3 Weitere Typen von AP-Morphologien im WT 93
 4.2.4 Entwicklung der AP-Kenngrößen im WT im Verlauf der Differenzierung .. 94
 4.2.4.1 Depolarisation: AP-Amplitude .. 94
4.2.4.2 Depolarisation: \(V_{\text{max}} \) .. 95
4.2.4.3 Repolarisation: APD .. 96
4.2.4.4 AP-Zykluslänge ... 97
4.2.4.5 DDR .. 97
4.3 Der KO zeigt eine veränderte Differenzierung der ESDC 98
 4.3.1 Diskussion der Vorbefunde ... 98
 4.3.2 Die Neubildung von ESDC ist im KO initial stark beschleunigt 100
 4.3.3 Die beschleunigte Bildung von ESDC erklärt die initial höhere
 AP-Amplitude, nicht aber die niedrigere AP-Frequenz im KO............. 100
 4.3.4 Herausbildung neuer Unterschiede im weiteren Verlauf der
 Differenzierung ... 102
 4.3.5 AP-Morphologien im KO ... 103
4.4 Zusammenfassung der Entwicklungen in WT und KO 104
4.5 Einordnung der Ergebnisse ... 106
 4.5.1 Vergleich mit Vorbefunden zum \(\alpha_1(I) \)-Kollagen-KO 106
 4.5.2 Weitere Befunde zu Kollagenen und ESDC 107
 4.5.3 Integreine als mögliche Vermittler der Effekte im KO 108
 4.5.3.1 Parallelen von \(\beta_1 \)-Integrin-KO und \(\alpha_1(I) \)-Kollagen-KO 109
 4.5.3.2 Mögliche Mechanismen, über welche Integreine ECM-
 Einflüsse auf die zelluläre Elektrophysiologie vermitteln 110
4.6 Physiologische und pathophysiologische Einordnung der
Ergebnisse .. 112
 4.6.1 Im Rahmen der Herzinsuffizienz ... 112
 4.6.2 Kollagen im Sinusknoten .. 113
4.7 Therapeutische Implikationen .. 114
5 Zusammenfassung .. 115
6 Anhang .. 116
 6.1 Abkürzungsverzeichnis .. 116
 6.2 Abbildungsverzeichnis .. 118
 6.3 Tabellenverzeichnis ... 119
<table>
<thead>
<tr>
<th>6.4</th>
<th>APD80 und APD90 tabellarisch</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>RT50, RT80 und RT90 tabellarisch</td>
<td>121</td>
</tr>
<tr>
<td>6.6</td>
<td>Ergebnisse Vorversuche Hanging Drops</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>Literaturverzeichnis</td>
<td>124</td>
</tr>
</tbody>
</table>
1 Einleitung

In der vorliegenden Arbeit wurde der Einfluss der α₁-Subkette des Typ-I-Kollagens auf die Aktionspotentiale (AP) von aus embryonalen Stammzellen differenzierten Kardiomyozyten untersucht.

1.1 Frühe Kardiogenese

In der Embryonalentwicklung bildet sich zunächst im Prozess der Gastrulation aus den pluripotenten Zellen des einschichtigen Embryo ein mehrschichtiger Embryo - die drei Keimblätter entstehen: Ektoderm, Mesoderm und Endoderm (mit später visceralem und parietalem Blatt), siehe Abb. 1-1. Im Zusammenspiel dieser Keimblätter miteinander bilden sich die Organe heraus. Die einzelnen Signalmechanismen und Faktoren, die diese Entwicklung steuern, sind noch weitgehend unbekannt, jedoch haben insbesondere auch Studien mit ESC zur beginnenden Aufklärung dieser Zusammenhänge beigetragen (RODDA et al. 2002).
folgt die S-förmige Biegung des Herzschlauches, wobei der Berührungspunkt am späteren Gefäßpol liegt (CHRISTOFFELS et al. 2000). (Abb. 1-2)

1.2 Aktionspotentiale

Aktionspotentiale (AP) sind kurzzeitige, charakteristisch verlaufende Veränderungen der Membranspannung elektrisch erregbarer Zellen abweichend von deren Ruhepotential. Klassischerweise werden sie durch Depolarisation der Zellmembran bis zu einem gewissen Schwellenwert ausgelöst. Danach folgen sie dem „alles oder nichts“-Gesetz, d.h. ihre Form bzw. ihr zeitlicher Ablauf ist prinziell von der Art des auslösenden Stimulus unabhängig.

1.2.1 AP-Verlauf (Phasen)

Grundsätzlich lässt sich der zeitliche Verlauf eines APs in eine kurze Depolarisationsphase gefolgt von einer länger dauernden Repolarisationsphase aufteilen. Der Verlauf eines APs mit seinen verschiedenen Phasen ist in Abb. 1-3 anhand eines typischen humanen ventrikulären APs prototypisch dargestellt.

Im Anschluss an ein AP werden die Ionengradienten zwischen Zytosol und Extrazellulärraum wiederhergestellt, im Wesentlichen durch die Na^+/K^+-ATPase, den Na^+/-Ca^{2+}-Austauscher und die Ca^{2+}-ATPase des Sarkoplasmatischen Retikulums.

1.2.2 Verlaufsformen adulter APs

Einleitung

1.3 **Stammzellen**

Unter der Bezeichnung „Stammzellen“ werden eine Vielzahl von Zellen subsumiert, denen gemein ist, dass sie
- (noch) undifferenziert sind (im Gegensatz zu den spezialisierten Zellen des adulten Organismus) und dass sie
- in vivo oder in vitro unter bestimmten Bedingungen proliferieren können, ohne dieses Merkmal zu verlieren (d.h. sie besitzen die Fähigkeit zur „Selbsterneuerung“, zur Herstellung identischer Kopien ihrer selbst).

1.3.1 Totipotenz und Pluripotenz

- Durch (Re-)Injektion der Zelle in die ICM einer Blastozyste. In dem sich daraufhin in einem Ammentier entwickelnden Embryo beteiligen sich die ESC an der normalen Embryogenese in allen Geweben, es ist eine sogenannte „Chimäre“ entstanden (BRADLEY et al. 1984).

- Durch Injektion von ESC in immunsupprimierte adulte Mäuse. Dort bilden sie dann Teratome, die unterschiedlichste Zelltypen enthalten, was die Fähigkeit der Zellen zeigt, sich in vivo zu unterschiedlichsten Zellen zu entwickeln (THOMSON et al. 1998).

Im Laufe der Embryonalentwicklung erlangen die Zellen schließlich die Zugehörigkeit zu einer bestimmten Zelllinie oder büssen ihre proliferativen Fähigkeiten ein. Man bezeichnet sie nun als Progenitorzellen (Vorläuferzellen).

1.3.2 Gewinnung und Kultur von ESC

Einleitung

1.3.3 Gentechnische Veränderungen: Loss / Gain of Function

Wichtigster Mechanismus, um gezielte Veränderungen an der Erbsubstanz vorzunehmen, ist die homologe Rekombination, durch welche sehr ähnliche, aber nicht identische DNA-Doppelstrang-Konstrukte (z.B. eine Missense-Mutation oder ein Stop-Codon im Falle des Loss of function, s.u.) in die DNA der ESC integriert werden können (THOMAS UND CAPECCHI 1987).

Durch "Gain of function" (dt.: Funktionsgewinn) kann die übermäßige Aktivität eines Gens, in aller Regel die Überexpression eines bestimmten Proteins,
erzielt werden. Auch auf diesem Wege lassen sich Rückschlüsse auf die Funktion dieses Proteins ziehen.

1.3.4 **In-vitro-Differenzierung von ESC**

Im Gegensatz zur permanenten Kultur, deren Ziel die Beibehaltung des undifferenzierten Zustands der ESC ist, wird in Differenzierungsversuchen das genaue Gegenteil, nämlich die Differenzierung und Spezialisierung der zuvor pluripotenten Zellen, angestrebt. Hierzu werden die ESC nun ohne Feeder-Layer in einem LIF-freien Medium kultiviert.

1.3.4.1 **Embryoidkörperchen/embryoid bodies**

1.3.4.2 **ESC können sich zu einer Vielzahl spezialisierter Zelltypen differenzieren**

Durch Manipulationen der Wachstumsbedingungen (siehe 1.3.4.3) konnte mittlerweile eine Vielzahl von terminal differenzierten Zelltypen in vitro aus mESC abgeleitet werden, u.a. Kardiomyozyten (WOBUS et al. 1991,
Einleitung

1.3.4.3 Äußere Einflussgrößen auf die Differenzierung von ESC

Einleitung

1.4 In-vitro-Differenzierung von ESC als Modell zur Untersuchung früher Prozesse der Kardiomyogenese

synthetisiert, nicht jedoch von den Kardiomymozyten selbst (EGHBALI et al. 1988, EGHBALI et al. 1989). Es würde also in solchen Kulturen nicht produziert.

1.4.1 Kardiomymozytäre Differenzierung von ESC

1.4.2 Elektrophysiologische Differenzierung von ESDC

In der Erforschung der Differenzierung der Elektrophysiologie der Kardiomyozyten werden vor allem folgende Fragestellungen untersucht (HESCHELER et al. 1997):

- Den Zusammenhang zwischen der Expression herzspezifischer Gene, der Herausbildung des kardialen Phänotyps und der funktionellen Expression verschiedener Typen von Ionenkanälen.
- Die Regulation und genetische Kontrolle der Expression von Ionenkanälen (z.B. durch Wachstumsfaktoren, Hormone, ECM).
- Die Entwicklung der Regulation von Ionenkanälen und morphologischen Korrelaten.

werden (KOLOSSOV et al. 1998). Weiterhin konnte festgestellt werden, dass in frühen ESDC weniger die spontane Membrandepolarisation bis zum Schwellenwert, sondern vielmehr intrazelluläre Ca\(^{2+}\)-Oszillationen der wesentliche Mechanismus der Rhythmogenese zu sein scheinen (VIATCHENKO-KARPINSKI et al. 1999, SASSE et al. 2007).

Ebenso wurden als „atrial like“ („Vorhof-ähnlich“, hohe \(V_{\text{max}}\), dreiecksförmige AP-Morphologie, eher schnellere Repolarisation) und „ventricle like“ („Ventrikel-ähnlich“, hohe \(V_{\text{max}}\), stärker ausgeprägte Plateau-Phase, eher langsamer Repolarisation) bezeichnete typische AP-Morphologien charakterisiert (MALTSEV et al. 1993, MALTSEV et al. 1994, WOBUS et al. 1997). Das zunehmende Auftreten dieser AP-Morphologien für späte Differenzierungsphasen (je nach Quelle „terminal differentiation phase“ ((7d+)9-18 Tage nach Plattierung der EBs; MALTSEV et al. 1994) oder...
Einleitung

Entsprechend wird von dieser Gruppe eine Klassifizierung der AP nach ihrer Ähnlichkeit zu adulten Phänotypen durch Fijnvandraat et al. abgelehnt. Anhand statistischer Cluster-Analyse teilen sie die von ihnen gemessenen APs in drei Gruppen ein, wobei die Übergänge der Gruppen ineinander auch hier wieder fließend sind (siehe Abb. 1-7):

- Zellen mit hoher V_{max} (=schnellem Aufstrich) und kurzer APD50 (=schneller Repolarisation bzw. kurze AP-Dauer) (Gruppe 1)
- Zellen mit geringer V_{max} und kurzer APD50 (Gruppe 2)
- Zellen mit geringer V_{max} und langer APD50 (Gruppe 3).
Abb. 1-7: Links: V_{max} zu APD50 der ESDC, Einteilung in die im Text beschriebenen Gruppen (1: hohe V_{max}, geringe APD; 2: geringe V_{max}, hohe APD; 3: geringe V_{max}, lange APD), zu beachten ist das Fehlen klarer Grenzen zwischen den Gruppen; zum Vergleich Mittelwerte aus embryonalen Kardiomyozyten (E12.5, OFT: Ausflusstrakt). Rechts: Repräsentative APs von 3d+7 (links, am ehesten Gruppe 3 (oben) und Gruppe 2 (unten) zuzuordnen und 3d+24 ESDC (am ehesten Gruppe 1 (oben) und Gruppe 2 (unten)) (aus: FINJNVANDRAAT et al. 2003b, S. 406 und S. 407)

Sie stellten dabei fest, dass auch diese diese Klassifizierung letztendlich vor allem die beobachtete Entwicklung der Zunahme der V_{max} und Verkürzung der APD im Verlauf der Differenzierung illustriert. Passend zum Anstieg der V_{max} während der Entwicklung wurde eine signifikante Zunahme des depolarisierenden Natriumstroms I_{Na} festgestellt, ähnlich wie dies auch die Gruppe um Hescheler zeigen konnte (MALTSEV et al. 1994). Zusammen mit ihren immunhistochemischen Daten und Genexpressionsstudien kommen Fijnvandraat et al. zu dem Schluß, dass von den differenzierten ESDC fast keine einen terminal differenzierten Phänotyp entwickelt hätten, sondern ihr Phänotyp vielmehr mit dem junger embryonaler (etwa E9) Kardiomyozyten vergleichbar sei. Im Mittel der elektrophysiologischen Werte gleiche er dabei am ehesten embryonalen (E12,5) Zellen des Ausflusstraktes.

Es konnten mittlerweile unterschiedliche Muster von Ionenströmen festgestellt werden, die zur Ausbildung unterschiedlicher AP-Charakteristika in ESDC führen. So war erwartungsgemäß der Tetrodotoxin-sensitive Na$^+$-Strom I_{Na} in schneller depolarisierenden Zellen besonders ausgeprägt, I_{r} in Zellen mit hoher Schrittmacheraktivität deutlich stärker (ABI-GERGES et al.}
Einleitung

1.5 Extrazellulärmatrix, Kollagene und Integrine

1.5.1 Extrazellulärmatrix

Nicht nur bei physiologischen Vorgängen, sondern auch bei pathophysiologischen, wie z.B. bei Herzinsuffizienz und -hypertrophie, spielt die ECM eine wichtige Rolle – so am offensichtlichsten beim fibrotischen Umbau von Organen, bei dem es zu einer unphysiologischen
Einleitung

1.5.2 Kollagene

Einleitung

Eine Untersuchung des Einflusses der Kollagen Typ-I-Funktion auf Prozesse der kardialen Differenzierung in vivo ist somit nicht möglich. Die in-vitro-Differenzierung embryonaler Stammzellen erlaubt jedoch in Umgehung der embryonalen Letalität dennoch die Untersuchung der kardiomyozytären Differenzierung. Die bislang einzige Untersuchung dieser Fragestellung stammt von Qing Ding (DING 2000), welche mithilfe dieser Technik die kardiale Differenzierung einer ES-Zelllinie mit homozygotem KO des \(\alpha_1(I) \)-Kollagens (RII -/-, „KO“) mit der des Wildtyps (RII +/+ , „WT“) in vitro verglich. Dabei stellte sie in der morphologischen Auswertung Hinweise auf eine initial beschleunigte/verstärkte kardiomyozytäre Differenzierung im KO fest sowie gleichzeitig verminderte spontane Kontraktsfrequenzen der Cluster von ESDC im KO zu den Zeitpunkten 5d+3 und 5d+4. Diese Unterschiede glichen sich bis zum Zeitpunkt 5d+8 aus. Eine kompensatorische Hochregulation von \(\alpha_2(I) \)-mRNA bestand nicht. Aus den Ergebnissen der Arbeit wurde die Schlussfolgerung gezogen, dass der Verlust des \(\alpha_1(I) \)-Kollagens ausschließlich die sehr frühe Phase der Differenzierung beeinflusse, im weiteren Verlauf aber rasch kompensiert werde. (DING 2000) In einer anderen Arbeit wurde in homozygoten Embryonen Kollagen \(\alpha_1(I) \)-defizienter Mov-13-Mäuse (s.o.) gezeigt, dass es...

1.5.3 Integrine

Aufgebaut sind Integrine als obligate Heterodimere aus α- und β-Untereinheiten, von denen 18(α) bzw. 8(β) Subtypen bekannt sind (HYNES 2002). Die nahe der Z-Scheibe lokalisierte β_1-Untereinheit erkennt Proteine der ECM, so v.a. auch Kollagene (TERRACIO et al. 1991, HYNES 2002). Sie kann mit mindestens 12 verschiedenen α-Untereinheiten binden und stellt damit die größte Unterfamilie der Integrine dar (GUAN et al. 2001).

Der Knockout des β_1-Integrins führt zum Tod des (murinen) Embryos am 5,5ten Tag (FÄSSLER et al. 1996b, FÄSSLER und MEYER 1995, CZYZ und
Einleitung

1.6 Herzinsuffizienz

Einleitung

Kreislaufinsuffizienz

Mangelversorgung der Organe / Endorgan-Schäden

Neuroendokrine Aktivierung

• Sympathikus
• RAAS
• Vasopressin
• Endothelin

• Tachykardie
• Vasokonstriktion
• Volumen- und Salzretention
• Zelluläres Remodelling
• ECM-Remodelling

Abb. 1-11: Circulus vitiosus der Herzinsuffizienz

Neben Hypertrophie der Kardiomyozyten sind auch deutliche Umbauvorgänge der ECM Bestandteil des kardialen Remodelings. So kommt es bei arterieller Hypertonie und chronischer Herzinsuffizienz zu verstärkter
Einleitung

1.7 Mögliche therapeutische Anwendung von Stamm- und Vorläuferzellen

Hoffnungen statt embryonaler auch mesenchymale oder hämatopoetische Stammzellen zum Gewebeersatz nutzen zu können (ORLIC et al. 2001, STRAUER et al. 2002, JANSSENS et al. 2006), scheinen sich hingegen nicht zu bestätigen und eine Transdifferenzierung hämatopoetischer Stammzellen

1.8 Fragestellung

Zwischen ECM und Zellen bestehen komplexe Wechselwirkungen. So beeinflusst die ECM via Zellrezeptoren die Genexpression, fungiert als Zytokin-Reservoir und dient der Signaltransduktion in Geweben. Die ECM hat dabei Einfluss auch auf Morphogenese, Zellfunktion, Proliferation,
Differenzierung, Adhäsion und Migrationsprozesse. Auch die kardiomyozytäre Differenzierung wird durch die ECM beeinflusst. Hauptbestandteil der ECM im Herzen ist Kollagen Typ I. Der Verlust des $\alpha_1(I)$-Kollagens ist *in vivo* embryonal letal. Durch Differenzierung von Kardiomyozyten aus $\alpha_1(I)$-Kollagen-defizienten ESC wird aber *in vitro* die Untersuchung seines Einflusses auf die Kardiomyogenese möglich. Aus der genannten Vorarbeit ist bekannt, dass der $\alpha_1(I)$-Kollagen-KO eine initial erhöhte kardiomyozytäre Differenzierungsrate zeigt, wobei die spontanen Kontraktionsfrequenzen der Cluster von ESDC im KO zunächst verringert sind. Dabei wurde angenommen, dass der Verlust des $\alpha_1(I)$-Kollagens nur die früheste Phase der Differenzierung beeinflusst und im Verlauf rasch kompensiert werde. Diese Annahme wurde als Arbeitshypothese für die vorliegende Untersuchung übernommen.

Es ist anzunehmen, dass die in der ganz frühen Differenzierung beobachteten Unterschiede der Spontanfrequenz der ESDC-Cluster zwischen KO und WT auf einen Einfluss des $\alpha_1(I)$-Kollagens auf die APs der Zellen zurückgehen. In der vorliegenden Arbeit soll deswegen der Einfluss des $\alpha_1(I)$-Kollagen-KO auf AP von ESDC in der frühen Phase der Differenzierung bis zum Zeitpunkt 5d+15 untersucht werden.

Daraus ergeben sich folgende konkrete Aufgabenstellungen:

1. Etablierung der zu verwendenden Zelllinien vor Ort, d.h. Optimierung der Kulturbedingungen der undifferenzierten Zellen und der Differenzierungsversuche, um eine möglichst optimale kardiomyozytäre Differenzierung der Zellen zu erlauben.

2. Etablierung eines Verfahrens zur Patch-Clamp-Registrierung der AP aus ESDC, bei welchem die ECM intakt bleibt. Die etablierten Verfahren beinhalten bisher noch einen enzymatischen Verdau der ECM – einschließlich des $\alpha_1(I)$-Kollagens.

3. Registrierung von AP aus Differenzierungsversuchen von WT und $\alpha_1(I)$-Kollagen-KO ESDC zu den Zeitpunkten 5d+4 (Isolation am Tag der ersten spontanen Kontraktionen), 5d+8 und 5d+15.
Die zu beantwortenden Fragestellungen lauten dabei:
- Entspricht die bislang noch nicht untersuchte elektrophysiologische Differenzierung der verwendeten WT-Zelllinie den in der Literatur beschriebenen typischen Differenzierungsprozessen von ESDC?
- Lässt sich die berichtete initial beschleunigte Differenzierung im KO in der morphologischen Auswertung reproduzieren?
- Sind auf zellulärer Ebene die im α₁(I)-Kollagen-KO auf der Ebene ganzer Cluster von ESDC beobachteten Unterschiede in der Spontanfrequenz der Kontraktionen zum Zeitpunkt 5d+3/4 ebenfalls sichtbar?
- Sind diese unterschiedlichen Kontraktionsfrequenzen der Cluster von ESDC durch Unterschiede in der spontanen diastolischen Depolarisation (Phase 4) der Zellen bedingt?
- Unterscheiden sich die eigentlichen APs (Phase 0-3) im KO von denen des WT hinsichtlich des Verlaufs der eigentlichen APs und der Ruhemembranpotentiale?
- Lassen sich eventuelle Unterschiede zwischen KO und WT dabei auf das isolierte Vorhandensein bestimmter Subgruppen von Zellen zurückführen – oder handelt es sich vielmehr um einen generellen Effekt auf alle ESDC im KO?
- Ergeben sich hieraus Hinweise auf ein potentielles arrhythmogenes Risiko hinsichtlich des therapeutischen Einsatzes von ESC/ESDC in einer durch Remodeling veränderten ECM des Herzens bzw. einer Infarktnarbe?
- Bestehen Einflüsse des Kollagens auf AP, welche bei Herzinsuffizienz (in Anbetracht der Aktivierung embryonaler Programme und Ströme in den Kardiomyozyten hierbei) relevant sein könnten?
2 Material und Methoden

2.1 Zellkultur

Alle Arbeiten zur Zellkultur wurden unter S1-Bedingungen an einer Sterilbank durchgeführt. Die Inkubation der Zellen erfolgte bei 37°C, 95% relative Luftfeuchtigkeit und Begasung mit 5% CO₂ im Brutschrank.

Verwendete Zelllinien
Verwendet wurden Clone der Zelllinie R1 (NAGY et al. 1993)
RII/-/- : Clone RII/803
RII+/+ : Clone RII/F4
(siehe DING 2000), freundliche Überlassung durch Prof. Dr. R. Fässler, Max-Planck-Institut für Biochemie / Martinsried.

Undifferenzierte ESC und Differenzierungsversuche wurden in Nunclon-beschichteten 60-mm-Zellkulturschalen (60-mm-Dish / Nunc GmbH, Langenselbold) kultiviert, welche zudem zuvor über Nacht bei 4°C mit 0,1% Gelatine beschichtet wurden, um eine ausreichende Adhäsion der Zellen zu ermöglichen. FL wurde auf Nunclon-beschichteten 100-mm-Zellkulturschalen (100-mm-Dish / Nunc GmbH, Langenselbold) ohne zusätzliche Gelatine-Beschichtung kultiviert.

2.1.1 Routinevorgänge in der Zellkultur

2.1.1.1 Einfrieren von Zellen („Kryokonservierung“)
Zum Einfrieren der Zellen werden Einfrierbehälter (Cryo 1°C Freezing Container (Cat.No. 5100-0001) / Nalgene bzw. Thermo Fisher Scientific, Roskilde, Dänemark) zur langsamen Herabkühlung der Einfrier-Röhrchen (Cryogenic Vial (Cat. No 5012), Naglene) verwendet. Der Einfrierbehälter wird bereits vor Benutzung auf 4°C heruntergekühlt.
Nach Absaugen des Mediums werden kultivierte FL-Zellen durch Trypsinierung für 1 min, ES-Zellen durch zweimaliges Waschen mit Trypsin/EDTA gelöst, anschließend mittels einer Glaspipette mit 2 ml PBS vorsichtig gelöst und bei 2500 U/min 5 min zentrifugiert. Nach Abnehmen des Überstandes werden sie in 1 ml Einfriermedium resuspendiert, in die Einfrier-Röhrchen überführt und im Einfrierbehälter bei -80°C eingefroren. Später können sie zur längerfristigen Aufbewahrung in Flüssigstickstoff gelagert werden. FL wird ausschließlich in der 1. Passage eingefroren, während ESC auch in deutlich höheren Passagen noch nutzbar sind (s.u.).

2.1.1.2 Auftauen von Zellen

Pro aufzutauendem Einfrier-Röhrchen wird ein 15 ml-Röhrchen (Red Cap / Sarstedt, Nümbrecht) mit 10 ml entsprechenden Mediums bei 4°C bereitgestellt. Die gefrorenen Zellen werden 3 min im 37°C Wasserbad aufgetaut, mit einer Glaspipette in das 15 ml-Rührchen überführt und 5 min bei 2500 U/min zentrifugiert. Der Überstand wird abgesaugt, die Zellen in 2 ml Medium resuspendiert und auf eine mit Medium bereitgestellte geeignete Zellkulturschale überführt. ESC sind in der Regel ab 2-3 Passagen nach dem Auftauen für Versuchsansätze nutzbar. FL wird nach Auftauen einmalig passagiert, bevor er zur ESC-Kultur genutzt wird.

2.1.1.3 Hitzeinaktivierung des fetalen Kälberserums

2.1.2 Feeder-Layer (FL)

2.1.2.1 Gewinnung der murinen Fibroblasten für den Feeder-Layer

2.1.2.2 Kultivierung / Umsetzen von Feeder-Layer
Kultivierter FL zeigt ein schnelles Wachstum und muss täglich, spätestens nach 48 h, passagiert werden (sogen. „Subkultivierung“, d.h. Umsetzen der Zellen auf eine oder mehrere neue Kulturschalen, dabei „Verdünnung“ der Zellpopulation). Je nach Wachstum der Zellen (optische Kontrolle der Form und Dichte unter dem Mikroskop) werden diese dabei im Verhältnis 1 : 2 bis 1 : 4 umgesetzt. Nach Absaugen des alten Mediums werden die Zellen für 45-60 s mit 5 ml 0,2%-Trypsinlösung trypsiniert, mittels einer Glaspipette mit FL-Medium abgespült und auf 100-mm-Zellkulturschalen verteilt (10 ml FL-Medium vorgelegt). FL wird nur bis zur IV. Passage genutzt.

2.1.2.3 Mitotische Inaktivierung des Feeder-Layers
Material und Methoden

2.1.3 Kultivierung undifferenzerter ESC

Auch wenn Stammzellen unbegrenzt teilungsfähig sind, ESC sich also unbegrenzt in undifferenziertem Zustand in Kultur halten lassen sollten, sinkt die Qualität der Zellen mit hoher Passagezahl, weswegen diese häufig auf 20-30 Passagen beschränkt wird. (KRAL 2006, ZANDSTRA et al. 2000).

2.1.3.1 Kulturbedingungen der ESC, Beurteilung der Kultur

Expansion der ESC-Kultur möglich. Sollte der Anteil an FL im Verhältnis zu den ESC zu groß sein, so kann während des Passagierens ein Pre-Plating (s.u.) erfolgen, um den FL-Anteil abzureichern.

2.1.3.2 Passagieren der ESC („Umsetzen“)

2.1.3.3 Pre-Plating

Im Pre-Plating kann der Anteil des bei jeder Passage mit den ESC umgesetzten FL abgereichert werden. Dies ist dann sinnvoll, wenn im Verhältnis zum FL wenig ES-Zellen vorhanden sind, also etwa bei Umsetz-Verhältnissen von 1 : 1 oder 1 : 2. Hierzu werden die Zellen wie beim normalen Passagieren von der Kulturschale gelöst. Jedoch werden sie nun nicht direkt auf FL plattiert, sondern in einem Zwischenschritt auf eine normale 60-mm-Zellkulturschale (d.h. nicht Gelatine-beschichtet, ohne FL) mit Medium gegeben. Hier verbleiben sie bis zu 30 min. Während dieser Zeit heften sich viele Fibroblasten bereits an, während die ESC erst gering adhären. Nun werden die ESC durch sehr vorsichtiges Spülen mit der Glaspipette wieder mobilisiert und können nun auf neuen FL plattiert werden.

2.1.4 Differenzierungsversuche

Für die Differenzierungsversuche werden die ESC in LIF-freiem Differenzierungsmedium kultiviert. Zur Bildung der EBs wird die Methode der Hanging Drops („hängende Tropfen“) angewandt, wobei die in Tropfen der Zellsuspension enthaltenen Zellen unter dem Deckel einer Kulturschale hängend, durch Gravitation aggregieren, proliferieren und so den EB bilden.
Material und Methoden

(WOBUS et al. 1991). Nach 2 Tagen werden die EBs aus den Tropfen gesammelt, weitere 3 Tage schwimmend kultiviert und anschließend (d.h. am 5. Tag, 5d) plattiert (siehe Abb. 2-2). In der Folge bildet sich um die EBs herum der Outgrowth, ein Auswuchs von Zellen, in welchem sich schließlich (etwa 3 Tage nach Plattierung, 5d+3) neben anderen Zelltypen Cluster spontan kontrahierender Kardiomyozyten bilden, zunächst nur vereinzelt, später in zunehmender Zahl und Größe.

Zum Ansetzen der Differenzierungsversuche werden ausschließlich morphologisch einwandfreie (s.o.) undifferenzierte ESC bis zur 45. Passage genutzt. Dabei wird darauf geachtet, dass der Anteil an (obgleich inaktivierten) FL-Fibroblasten in den zum Ansatz verwendeten ESC-Kulturen nicht zu hoch ist.
2.1.4.1 Hanging Drops

$$ESC/\text{ml} = \frac{\text{Mittelwert ESC pro Kammer}}{64} * 10^6$$

berechnet werden. Die hieraus pro 5 ml Ansatz-Lösung zuzugebende Menge berechnet sich somit vereinfacht nach

$$\text{Zugabemenge} = \frac{4800}{\text{Mittelwert ESC pro Kammer}} \mu l \text{ Zellsuspension pro 5 ml Ansatz.}$$

2.1.4.2 Hanging Drops in Suspension

Zum Aufnehmen der in den Hanging Drops gebildeten EBs werden die Hanging Drops mittels einer Glaspipette vorsichtig mit
Material und Methoden

Differenzierungs-Medium von ihren Deckeln abgespült und die EBs pro 100-mm-Deckel in jeweils eine *nicht-beschichtete* 60-mm-Zellkulturschale (Sarstedt, Nümbrecht) mit je 5 ml Differenzierungs-Medium überführt. Dabei müssen die Deckel wiederholt mit dem Medium gewaschen werden, um alle EBs zu sammeln. Die Inkubation erfolgt nun für weitere 3 Tage schwimmend in Suspension.

2.1.4.3 Plattierung der EBs, weitere Kultivierung

Nach 5 Tagen (5d, 2 Tage Hanging Drops + 3 Tage EBs in Suspension) werden die EBs zur weiteren Differenzierung auf Gelatine-beschichtete 60-mm-Zellkulturschalen sowie – zur morphologischen Auswertung (s.u.) – auf Gelatine-beschichtete „24-Well-Plates“ (Nunc GmbH, Langenselbold) plattiert und in Differenzierungs-Medium weiter inkubiert. Pro Differenzierungsversuch werden dabei mit Hilfe einer Pipette zwei 24-Well-Plates mit jeweils einem EB pro Well mittig zentriert bestückt. Die restlichen EBs werden zu je etwa 30 EBs auf die 60-mm-Zellkulturschalen verteilt. Nun erfolgt die weitere Inkubation, dabei kompletter Mediumwechsel alle 2 Tage. (Je 5 ml Differenzierungs-Medium pro Zellkulturschale bzw. 1 ml pro Well der 24-Well-Plates.)

2.2 Morphologische Auswertung

Die morphologische Auswertung erfolgt anhand der in die 24-Well-Plates plattierten EBs jeweils 2, 3, 4, 8 und 15 Tage nach Plattierung (5d+2, 5d+3, 5d+4, 5d+7, und 5d+14) der EBs. Der komplette Outgrowth jedes EBs wird unter dem DIC-Mikroskop systematisch durchgemustert und das Vorhandensein mindestens eines Clusters spontan kontrahierender
Kardiomyozyten als positiv gewertet. Sehr selten vorkommende nicht adhärierte EBs, d.h. frei schwimmende EBs ohne Outgrowth, werden aus der Wertung genommen. Diese Auswertung wird stichprobenartig (jeweils 1 von 2 24-Well-Plates) durch eine weitere Person kontrolliert.

2.3 **Spezielle Isolationstechnik**

Aufgrund der speziellen Fragestellung der vorliegenden Arbeit, nämlich der Untersuchung des α₁(I)-Kollagen-Einflusses, kommt ein enzymatischer Verdau der Zellen der hier untersuchten ESDC jedoch nicht infrage:

- Gegenstand der Vorliegenden Arbeit ist der Einfluss des α₁(I)-Kollagens auf die APs von ESDC. Nach enzymatischem Verdau der ECM ist eine Re-Synthese des Kollagens nach der Isolation durch die isolierten Kardiomyozyten nicht möglich, da Kollagen Typ I im embryonalen Herzen ausschließlich durch epitheliale Zellen (im fetalen, neonatalen und adulten Herzen ausschließlich durch
Fibroblasten) synthetisiert wird, nicht jedoch von den Kardiomyozyten selber (EGHBALI et al. 1988, EGHBALI et al. 1989). Nach Verdau der ECM könnte also just das in der vorliegenden Arbeit zu untersuchende α1(I)-Kollagen nicht wiederhergestellt werden.

- In embryonalen Kardiomyozyten kommt es infolge enzymatischen Verdaus zu Verlust der Tetrodotoxin-Sensitivität (Na⁺-Strom, siehe 1.2). Diese baut sich erst im Zuge der Protein-Resynthese der Zellen langsam wieder auf (SACHS et al. 1973).

Um eine Kontamination zu vermeiden, erfolgt die Isolati on der ESDC unter der Sterilbank. Ein mit 70% Ethanol gereinigtes Inversmikroskop (Axiovert 25 / Carl Zeiss AG, Oberkochen) wird dazu in die Sterilbank gebracht. Im Outgrowth der in 60-mm-Kulturschalen plattierten EBs werden Cluster spontan kontrahierender ESDC aufgesucht. Mithilfe eine Mikroskalpells werden die Ränder der sie bedeckenden Schicht epithelartiger Zellen durchtrennt, wonach sich diese vorsichtig abstreifen lässt. Mit dem Mikroskalpell wird das Cluster nun vorsichtig in Ausschnitte (im weiteren Text: „Aggregate“) von jeweils etwa 5-10 Zellen aufgeteilt, diese lassen sich durch vorsichtiges Saugen mit der Isolations-Pipette (s.u.) von der basalen Schicht lösen und aufnehmen. Aufgrund der recht geringen Adhärenz der
Material und Methoden

Kardiomyozyten untereinander ist eine Destruktion von ESDC durch diese Arbeitsschritte praktisch nicht zu beobachten. Es werden ausnahmslos alle Cluster einer Kulturschale isoliert. Die Aggregate werden mit der Isolationspipette (s.u.) in Gelatine-beschichtete 30-mm-Zellkulturschalen überführt und über Nacht bei 37°C in Differenzierungsmedium inkubiert. Anschließend besteht eine ausreichende Adhärenz der Aggregate am Boden der Schale, um die Patch-Clamp-Untersuchung unter Superfusion zu ermöglichen.

Zur Herstellung der Isolations-Pipetten wurden Pasteur-Pipetten aus Glas (Carl Roth GmbH / Karlsruhe) über dem Bunsenbrenner zu einer feinen Spitze ausgezogen und anschließend autoklaviert. Mittels eines autoklavierten Schlauchsystems mit zwischengeschaltetem steriles Filterstück können die gelösten ESDC-Aggregate hiermit vorsichtig aufgenommen und steril überführt werden.

2.4 Patch-Clamp-Technik

Material und Methoden

2.4.1 Current Clamp

Es gibt zwei verschiedene Messverfahren beim Patch Clamping: Spannungsklemme (Voltage Clamp) und Stromklemme (Current Clamp). Beim Voltage Clamp wird das Membranpotential der untersuchten Zelle geklemmt, d.h. auf bestimmte Werte festgelegt, und die dabei fließenden Ströme gemessen. Im Current Clamp hingegen ist die gezielte Injektion von Strömen und die Messung des über der Membran anfallenden Potentials möglich. In erregbaren aber nicht spontan aktiven Zellen wird zur Registrierung von APs ein Strom in die Zelle injiziert, durch welchen diese bis zum Schwellenwert depolarisiert werden. In spontan elektrisch aktiven Zellen, wie den ESDC, ist dies nicht notwendig. Vielmehr erlaubt die passive Messung und der Verzicht auf eine Strominjektion erst die Registrierung der diastolischen Spontandepolarisation und der spontanen AP-Zykluslänge.

2.4.2 Kompensation von Störgrößen

Eine korrekte Kompensation der kapazitiven Artefakte ist im Current-Clamp-Modus wichtig, da sich diese sonst Amplitude und Kinetik des AP-Verlaufs

2.4.3 Aufbau des Messstandes

Material und Methoden

2.4.4 Patch-Pipette

Die Patch-Pipetten werden aus dünnwandigen Borosilicat-Kapillaren (1,2 mm Außendurchmesser) mit eingeschmolzenem Filament gezogen (Hugo Sachs Elektronik / March-Hugstetten, Artikel Nr. 30-0052). Es zeigte sich, dass relativ hochohmigen (4,5-5 MΩ) Patch-Pipetten mit schlank zulaufender Geometrie („geringer Tamper“) am besten zur Untersuchung der ESDC geeignet sind. Zum Ziehen der Pipetten wurde der „DMZ Universal Puller“ (Zeitz Instrumente, München) verwendet. Anschließend erfolgte kurze Hitzepolitur der Pipettenspitzen unter optischer Kontrolle mittels einer Mikroforge (MF-90, Narishige Co. / Japan). Die Befüllung mit Pipettenlösung erfolgt unmittelbar vor Benutzung mithilfe einer Einfüllhilfe (Microfil / World Precision Instruments Inc. / Sarasota, USA) über einen Filter (0,2 µm Porengröße, Filtropur / Sarstedt AG, Nümbrecht).

Der für die Pipetten-Elektrode verwendete Silberdraht wird durch Eintauchen in eine Chlor-Bleichlauge über Nacht chloriert. Äuβere Elektroden bleiben in dieser Lösung aufbewahrt. Nach spätestens einer Woche werden sie durch gründliches Abschleifen gereinigt (oder komplett ersetzt) und erneut chloriert, um Oxidation vorzubeugen.

2.4.5 Pipettenlösung

Um die Konstanz der Zusammensetzung der Pipettenlösung während verschiedener Messtage zu gewährleisten, wurde während der gesamten Versuchsreihe mit einem einzelnen Ansatz der Pipettenlösung gearbeitet, welcher in Aliquots á 2 ml (Eppendorf-Cup) bei -20°C eingefroren wurde.
Diese wurden erst unmittelbar vor Verwendung aufgetaut und dann auf Eis gelagert, da die Lösung das bei Raumtemperatur instabile Adenosintriphosphat (ATP) enthält.

2.4.6 Badlösung

Die Badlösung wird jeden Tag neu aus Stammlösung angesetzt. Sie wird dazu jeweils gepaart für die Untersuchung von WT- und KO-Zellen des selben Differenzierungsalters aus der selben Stammlösung angesetzt.

2.4.7 Prinzipielles Vorgehen beim Patch Clamp

Wichtige Qualitätskriterien für einen „guten Patch“ der in die Auswertung mit eingeht sind, dass der Widerstand des initiale Seals mindestens 3 GΩ betragen muss und der Zugangswiderstand zur Zelle nach Ruptur der Zellmembran nicht höher als 25 MΩ sein darf und während der Messung im ursprünglichen Bereich bleiben muss.
2.4.8 Modifiziertes Vorgehen beim Patch Clamp

Es wurde aus o.g. Notwendigkeit ein zum enzymatischen Verdau alternatives Vorgehen zur weitgehenden „Reinigung“ der Zellmembran von ECM-Bestandteilen streng lokal im späteren Aufsetz-Bereich der Pipettenspitze entwickelt, was die Patch-Clamp-Untersuchung in Anwesenheit des die Zelle umgebenden Kollagens ermöglicht. Hierzu wurden zur Untersuchung anderer Gewebe bereits etablierte Techniken adaptiert:

Falls mittels der Mischtechnik keine ausreichende Säuberung der Zellmembran erzielt werden kann, wird zunächst mithilfe einer dafür gezogenen deutlich größerlumigen Reinigungspipette (~0,6 MΩ) entsprechend der Reinigungstechnik die Zielstelle durch vorsichtiges Absaugen der ECM-Strukturen grob gereinigt. Anschließend wird an dieser Stelle ein neuer Versuch mittels Mischtechnik unternommen.

2.5 Auswertung der Patch-Clamp-Registrierungen

2.5.1 Auswertung der APs

Die Rohdaten der registrierten AP werden aus der „Pulse“-Software exportiert, mittels „ABF-Utility“ (Synaptosoft Inc., Fort Lee, USA) konvertiert und in die „Clampfit“ Software (Clampfit 8 / Molecular Devices Corporation, Sunnyvale, USA) importiert. Hieraus erfolgt der Export eines APs (d.h. einer kompletten Sequenz von Beginn der Phase 4 bis zum Beginn der nächste Phase 4) in ein hierfür in MS-Excel (Microsoft Corp. / Redmond, USA) geschriebenes Auswertungs-Spreadsheet.

2.5.2 AP-Kenngrößen

Die zur Beschreibung von APs verwendeten Kenngrößen sollen die Charakteristika bzw. Phasen eines APs abbilden. Der Bezug der wichtigsten dieser Kenngrößen zum AP ist in Abb. 2-4 und Abb. 2-5 dargestellt.
Material und Methoden

Abb. 2-4: Bestimmung von AP-Kenngrößen (Phase 4 zur besseren Übersicht nur teilweise dargestellt)

MDP: Die maximale diastolische Polarisation; ESDC als spontan aktive Zellen haben kein stabiles Ruhemembranpotential, weswegen ihre MDP als vergleichbarer Wert herangezogen wird; gängig ist bei ESDC dennoch hierfür die Bezeichnung „resting membrane potential“ (Ruhemembranpotential). Die MDP wir im Spreadsheet als maximal erreichte negative Polarisation der Zelle bestimmt. \([\text{MDP}] = \text{mV}\)

Peak: Der positive Maximalwert des Membranpotentials im AP. \([\text{Peak}] = \text{mV}\)

Amplitude: Ergibt sich als Differenz zwischen Peak und MDP. \([\text{Amplitude}] = \text{mV}\)

V_{\text{max}}: Die *Depolarisationsgeschwindigkeit* während Phase 0 (Aufstrich) des APs ergibt sich als Membranpotentialänderung pro Zeit \((\frac{dV}{dt})\). Die maximal während des APs erreichte Depolarisationsgeschwindigkeit \((V_{\text{max}})\) ist also die Tangente der Aufstrichkurve an der Stelle ihrer maximalen Steigung. \(\frac{dV}{dt}\) ergibt sich als Quotient der Differenz der Membranpotentiale zweier aufeinanderfolgender Samples (Aufzeichnungszeitpunkte) durch deren zeitlichen Abstand, also

\[
\frac{dV}{dt} = \frac{V(t_{n+1}) - V(t_n)}{t_{n+1} - t_n}
\]

Dieses wird im Spreadsheet für jeden einzelnen Aufzeichnungszeitpunkt berechnet. \(V_{\text{max}}\) ist das positive Maximum der so für das AP bestimmten Werte (also \(\text{Max}(\frac{dV}{dt})\)).
APD50/80/90: Die Aktionspotential-Dauer ist die Zeit vom Beginn des APs bis einer gewissen (50/80/90%igen) Repolarisation. Bei Untersuchung stimulierter APs in nicht spontan aktiven Zellen ist der Beginn des APs klar durch den Stimulus definiert. Bei den hier untersuchten spontan aktiven ESDC ist dies nicht möglich. Hier wurde der Zeitpunkt der schnellsten Depolarisation (tVmax), welcher wie bereits erwähnt nur wenige Millisekunden nach dem Beginn der Aktivierung der Na⁺-Kanäle (also dem Überschreiten der Schwelle) liegt, als Beginn des APs definiert. Somit errechnet sich die APD bis zum Zeitpunkt einer gewissen Repolarisation (tRepol) hier nach

\[
APD = t_{Repol} - t_{Vmax} \text{ bzw. } APD = RT + (t_{peak} - t_{Vmax})
\]

APD50-90: Da die APD50 die beginnende (frühe Phase der) Repolarisation beschreibt, während die von AP-Beginn APD90 bis in die abschließend (späte) Phase der Repolarisation hinein gemessen wird, wird in der vorliegenden Arbeit zusätzlich die APD50-90, also die Zeit von 50% bis 90% Repolarisation, zur isolierten Messung der Dauer der abschließenden Repolarisationsphase herangezogen.

DDR: Die diastolische Depolarisationsrate gibt die Geschwindigkeit der diastolischen Depolarisation der Zelle in Phase 4 des APs an. Sie wird manuell bestimmt. Hierzu wird im AP ein repräsentativer Bereich der Phase 4 ausgewählt, welcher eine lineare Depolarisation zeigt (MALTSEV und LAKATTA 2008). Dieses wird in Abb. 2-5 veranschaulicht:

![Abb. 2-5: Bestimmung der diastolischen Depolarisationsrate (DDR) (modifiziert aus MALTSEV und LAKATTA 2008, S. 275)](image-url)
Die DDR ergibt sich dann als die Veränderung des Membranpotentials (V) zwischen Beginn \(t_1 \) und Ende \(t_2 \) dieses Intervalls dividiert durch dessen Dauer:

\[
DDR = \frac{V(t_1) - V(t_2)}{t_2 - t_1}, \quad [DDR] = \frac{mV}{s}
\]

RT50/80/90: Um eine eventuelle Verzerrung durch unterschiedlich schnelle Depolarisationen der Zellen (unterschiedliche Dauer der Phase 0 des APs, bedingt durch unterschiedlich hohe \(V_{\text{max}} \)) auszuschließen, wird neben der APD auch die \(RT \) bestimmt. Sie beschreibt die Zeit zwischen Erreichen des Peak-Wertes und einer gewissen Repolarisation. Für sie gilt entsprechend

\[
RT = t_{\text{Repol}} - t_{\text{Peak}}
\]

Zykluslänge: Sie beschreibt die zwischen zwei AP liegende Zeit, also die Dauer eines kompletten Zyklus aus MDP, spontaner Depolarisation, eigentlichem AP und erneuter Repolarisation zur MDP (Fijnvandraat et al. 2003b). Ihr Kehrwert entspricht damit der spontanen AP-Frequenz.

2.6 Statistik

Statistische Testung erfolgte mittels ungepaartem zweiseitigem T-Test bzw. Fisher Exact Test. Signifikanz wurde gegen einen Fehler von 5% erreicht (\(p < 0,05 \)). Der T-Test wurde in MS-Excel durchgeführt, Fisher Exact in GraphPad Prism 4 (GraphPad Software / La Jolla, USA) getestet.
2.7 Verwendete Lösungen

2.7.1 Patch-Clamp-Lösungen

Pipettenlösung (100 ml)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Mol. Gew. [g/mol]</th>
<th>Firma</th>
<th>Konz. [mM]</th>
<th>g/ 100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>74,6</td>
<td>Merck</td>
<td>20</td>
<td>0,149</td>
</tr>
<tr>
<td>K-Aspartat</td>
<td>171,2</td>
<td>Sigma</td>
<td>110</td>
<td>1,883</td>
</tr>
<tr>
<td>MgCl₂ x 6H₂O</td>
<td>203,3</td>
<td>Merck</td>
<td>6</td>
<td>0,122</td>
</tr>
<tr>
<td>Na₂ATP</td>
<td>551,1</td>
<td>Sigma</td>
<td>5</td>
<td>0,276</td>
</tr>
<tr>
<td>HEPES</td>
<td>238,3</td>
<td>Sigma</td>
<td>10</td>
<td>0,238</td>
</tr>
</tbody>
</table>

Aqua bidest ad 100 ml.

pH-Wert mit KOH auf 7,2 einstellen.

Lösung á 2 ml aliquotieren und einfrieren.

 Aufgetaute Lösung immer auf Eis lagern!

(Tab. 2-1)

10fach konzentrierte Stammlösung der Badlösung (glucosefrei)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Mol. Gew. [g/mol]</th>
<th>Firma</th>
<th>Konz. [mM]</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>58,4</td>
<td>Merck</td>
<td>1350</td>
<td>78,89</td>
</tr>
<tr>
<td>KCl</td>
<td>74,6</td>
<td>Merck</td>
<td>54</td>
<td>4,03</td>
</tr>
<tr>
<td>Na₂H₂PO₄ x H₂O</td>
<td>138,0</td>
<td>Merck</td>
<td>3,3</td>
<td>0,46</td>
</tr>
<tr>
<td>HEPES</td>
<td>238,3</td>
<td>Sigma</td>
<td>100</td>
<td>23,83</td>
</tr>
<tr>
<td>MgCl₂ x 6H₂O</td>
<td>203,3</td>
<td>Merck</td>
<td>10</td>
<td>2,03</td>
</tr>
</tbody>
</table>

Aqua bidest ad 1000 ml.

pH-Wert mit NaOH auf 7,4 einstellen.

Stammlösung im Kühlschrank aufbewahren.

(Tab. 2-2)
Material und Methoden

Badlösung

Für 500 ml Badlösung (1,8 mM Ca\(^{2+}\))

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stammlösung 10fach</td>
<td>50 ml</td>
</tr>
<tr>
<td>Glucose (wasserfrei)</td>
<td>0,9 g</td>
</tr>
<tr>
<td>CaCl(_2) 1 M (Sigma)</td>
<td>0,9 ml</td>
</tr>
<tr>
<td>Aqua bidest</td>
<td>ad 500 ml</td>
</tr>
</tbody>
</table>

Aqua bidest ad 500 ml.

pH 7,4 bei 35°C

(Tab. 2-3)

2.7.2 Zellkultur-Lösungen

Sofern nicht anders angegeben, werden alle Lösungen steril angesetzt, bei 4°C gelagert und bei Raumtemperatur verwendet. FCS wird dauerhaft bei -20°C gelagert, aufgetaut nach Hitzeinaktivierung bei 4°C.

Trypsin 0,2%

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin</td>
<td>2,2 g</td>
</tr>
<tr>
<td>PBS</td>
<td>100 ml</td>
</tr>
</tbody>
</table>

Mit Magnetrührer bei 250 upm rühren, bis vollständig gelöst. Anschließend steril abfiltrieren.

(Tab. 2-4)

Trypsin/EDTA

Gleiche Volumina von Trypsin 0,2% und EDTA 0,02%.

Mitomycin C (MMC) Stammlösung

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitomycin C</td>
<td>2 mg</td>
</tr>
<tr>
<td>PBS</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

Mit Magnetrührer 5 min bei 250 upm rühren. Anschließend steril abfiltrieren, zu je 630 µl aliquotieren und bei –20°C lagern.

(Tab. 2-5)
Material und Methoden

β-Mercapto-Ethanol (β-ME) Stammlösung

<table>
<thead>
<tr>
<th>β-Mercapto-Ethanol</th>
<th>7 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

Steril abfiltrieren. Wöchentlich neu ansetzen.

(Tab. 2-6)

MTG Stammlösung

MTG: α-Monothioglycerol 3-mercapto-1,2-propanediol

<table>
<thead>
<tr>
<th>MTG</th>
<th>13 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDM</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

Steril abfiltrieren. Wöchentlich neu ansetzen.

(Tab. 2-7)

Gelatine 0,1%

<table>
<thead>
<tr>
<th>Gelatine 1%</th>
<th>10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>90 ml</td>
</tr>
</tbody>
</table>

(Tab. 2-8)

Gelatine 1%

1% bovine Gelatine in Aqua bidest gelöst, autoklaviert.

FL-Medium

<table>
<thead>
<tr>
<th>DMEM</th>
<th>425 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS</td>
<td>75 ml</td>
</tr>
</tbody>
</table>

KEIN Zusatz von Antibiose.

(Tab. 2-9)

ESC-Medium

<table>
<thead>
<tr>
<th>DMEM</th>
<th>415 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAA</td>
<td>5 ml</td>
</tr>
<tr>
<td>B-ME Stammlösung</td>
<td>5 ml</td>
</tr>
<tr>
<td>FCS</td>
<td>75 ml</td>
</tr>
<tr>
<td>LIF</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

LIF-Konzentration damit 10^6 Einheiten/l

(Tab. 2-10)
Differenzierungs-Medium

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDM</td>
<td>395 ml</td>
</tr>
<tr>
<td>NEAA</td>
<td>5 ml</td>
</tr>
<tr>
<td>FCS</td>
<td>100 ml</td>
</tr>
<tr>
<td>MTG Stammlösung</td>
<td>1500 µl</td>
</tr>
</tbody>
</table>

(Tab. 2-11)

Einfrier-Medium

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM</td>
<td>18 ml</td>
</tr>
<tr>
<td>DMSO</td>
<td>2 ml</td>
</tr>
<tr>
<td>FCS</td>
<td>5 ml</td>
</tr>
</tbody>
</table>

(Tab. 2-12)

2.8 Substanzen

CaCl₂ Lösung 1 M: (Sigma-Aldrich Laborchemikalien GmbH / Seelze)

DMEM: Dulbecco's Modified Eagle Medium, “High Glucose Variante” (4,5 g/l D-Glucose) (Biochrom AG / Berlin)

DMSO: Dimethylsulfoxid (Sigma-Aldrich)

EDTA-Lösung 0,02%: Ethyldiamintetraacetat in PBS (SERVA Electrophoresis GmbH / Heidelberg)

FCS: Fetal Calf Serum / Fetales Kälberserum (Gibco über Invitrogen GmbH / Karlsruhe, Chargen-Nummer 40Q6220K)

Gelatine: bovine Gelatine (Fluka über Sigma-Aldrich)

IMDM: Iscove's modified DMEM (Biochrom)

LIF: Leukämie inhibierender Faktor (Chemicon über Millipore Corp. / Billerica, USA)

MMC: Mitomycin C (SERVA)

MTG: α-Monothioglycerol 3-mercapto-1,2-propandiol (Sigma-Aldrich)

NEAA: Nichtessentielle Aminosäuren / Non Essential Amino Acids (Gibco über Invitrogen)
PBS: Dulbecco’s phosphate buffered saline (Phosphat-gepufferte Kochsalzlösung, Ca²⁺- und Mg²⁺-frei, Biochrom)

Trypsin 1:250 Trockensubstanz: (Gibco über Invitrogen)

β-Mercapto-Ethanol (SERVA)
3 Ergebnisse

3.1 Zur Art der Darstellung der Daten

durch grundsätzlich höhere Messwerte bedingt sein, wie durch lediglich eine Subgruppe von Zellen mit stark erhöhten Werten bei ansonsten weitgehend identischen Messwerten in dieser Zelllinie.

In den Abbildungen bezeichnet ein Sternchen (*) einen zum jeweiligen Untersuchungszeitpunkt im KO signifikant gegenüber dem WT unterschiedlichen Wert, eine Raute (#) bezeichnet eine signifikante Veränderung gegenüber dem vorangegenden Beobachtungszeitpunkt innerhalb des selben Genotyps, ein Paragraphen-Zeichen ($) nach 5d+15 gegenüber 5d+4 signifikant unterschiedliche Werte.

3.2 Optimierung der Differenzierungsversuchsansätze

Vor Beginn der eigentlichen Untersuchungen wurde Vorversuche unternommen, in welchen die Bedingungen der Differenzierungsversuche hinsichtlich einer möglichst guten kardiomyozytären Differenzierung optimiert wurden. Angesichts der bereits angeführten Einflussgrößen auf die ESC-Kultur und die Differenzierung lassen sich diese nicht ohne weiteres von einem Labor auf das andere übertragen.

Um dabei eine möglichst gute Vergleichbarkeit zu den bereits von Ding mit den selben Zelllinien vorgenommenen Versuchen zu gewährleisten wurden Medien der bereits von Ding (DING 2000) erfolgreich mit diesen Zellen verwendeten Zusammensetzung (mit Ausnahme des in dieser Charge nicht mehr verfügbaren FCS) verwendet. Es verblieb somit die pro hängendem Tropfen angesetzte ES-Zellzahl als wesentliche zu optimierende Einflussgröße auf die Differenzierungsversuche. Je nach verwendeter Zelllinie und Umgebungsbedingungen sind deutlich unterschiedliche Zellzahlen pro Hanging Drop zur kardiomyozytären Differenzierung optimal; so finden sich in der Literatur eingesetzte Zellzahlen von 200-800 Zellen pro Tropfen.

Als Kriterium für eine normal funktionierende Differenzierung wurde in Anlehnung an den „Embryonic Stem Cell Test“ (SPIELMANN UND SCHOLZ 2002) die morphologische Auswertung der Versuche nach 5d+2, 5d+3, 5d+4 und 5d+7 verwendet. Hierzu wurden sowohl für WT, als auch für KO jeweils
3 Probeversuche aus der selben ESC-Kultur mit Ansätzen von 200, 300, 400, 600 und 800 Zellen pro Tropfen durchgeführt und zu den angegebenen Zeitpunkten morphologisch ausgewertet. Es zeigte sich, dass unter den hiesigen Bedingungen für den WT die Zellzahlen von 300 und 400 Zellen pro Tropfen die besten Ergebnisse lieferten (regelmäßig erste Kontraktionen nach 5d+3 mit leicht stärkerer kardiomyozytärer Differenzierung bei 300 Zellen pro Tropfen). Gleichzeitig zeigten sich bei 300 Zellen pro Tropfen die in der morphologischen Auswertung bereits bekannten Unterschiede zwischen WT und KO (höherer Anteil spontaner Kontraktionen des KO in der morphologischen Auswertung (DING 2000) deutlicher, als bei 400 Zellen pro Tropfen. (Siehe 6.4.) Vor diesem Hintergrund wurde für die durchzuführenden Versuche die Zahl von 300 ESC pro Tropfen gewählt.

3.3 Morphologische Auswertung

In der vorliegenden Untersuchung wurden frühe Prozesse der kardiomyozytären Differenzierung bis 5d + 15 untersucht. Hierzu wurde die morphologische Auswertung als semiquantitatives Maß für die Herausbildung von ESDC in n=6 Differenzierungsversuchen im WT und n=4 Differenzierungsversuchen im KO durchgeführt. Dies entspricht bei jeweils 40-48 EB pro Versuch damit insgesamt 257 EB im WT und 178 EB im KO. Dabei zeigt der WT, wie in Abb. 3-1 zu sehen ist, im Untersuchungsintervall einen normalen Verlauf dieses Differenzierungs-Parameters: Erste spontane Kontraktionen sind nach 5d+3 zu sehen, wobei zu diesem Zeitpunkt lediglich 4,47±1,98% der untersuchten WT-EBs Cluster kontrahierender ESDC enthielten. Innerhalb eines Tages, nach 5d+4, war dieser Anteil stark gestiegen auf nunmehr 37,46±7,90% (p=0,002 im Vergleich zum vorherigen Zeitpunkt). Bis 5d+8 kam es zu einer weiteren erheblichen Zunahme auf nunmehr 78,46±6,27% (p=0,002 zum vorherigen Zeitpunkt). Dies legt nahe, dass auch bis zu diesem Zeitpunkt noch in deutlichem Umfang eine Neubildung von ESDC stattgefunden hat. Im weiteren Verlauf ist nur noch eine geringe, im Vergleich zum vorherigen Zeitpunkt nicht mehr signifikante (p=0,618) Zunahme auf 82,38±4,31% nach 5d+15 zu beobachten.
Morphologische Auswertung: Anteil EB mit Clustern spontan kontrahierender ESDC

Abb. 3-1: Morphologische Auswertung
#: signifikant vs. WT, *: signifikant vs. vorhergehender Zeitpunkt

Im Gegensatz dazu zeigt der KO in der morphologischen Auswertung eine beschleunigte kardiomyozytäre Differenzierung im Sinne einer beschleunigten Bildung von spontan kontrahierenden ESDC-Clustern, wobei bereits nach 5d+3 mit 34,77±7,56% ein Wert erreicht ist, der signifikant höher (p<0,01) als der im WT ist und welchen der WT erst nach 5d+4 erreicht. Deutlicher noch werden die Unterschiede am nächsten Untersuchungszeitpunkt, nach 5d+4: Bis zu diesem nimmt der Anteil von EBs mit spontan kontrahierenden Zellen im KO noch einmal signifikant (p<0,01) zu und erreicht damit nach 5d+4 mit 78,35±5,51% bereits einen erneut im Vergleich zum WT signifikant (p<0,01) höheren Wert, welcher im WT erst nach 5d+8 erreicht wird. Im weiteren Verlauf kommt es im KO zu einer weiteren Zunahme des Wertes der morphologischen Auswertung auf 89,25±6,21% nach 5d+8. Diese Zunahme ist im KO aber bereits nicht mehr signifikant (p=0,909) – im Gegensatz zum WT, welcher in diesem Zeitraum noch eine signifikante Zunahme zeigt. Auch im weiteren Verlauf, bis 5d+15, kommt es zu keiner weiteren Zunahme mehr (p=0,989).
3.4 Aktionspotentiale

3.4.1 Umfang der Stichprobe

In beiden Zelllinien (WT und KO) wurden zu den 3 unterschiedlichen Differenzierungszeitpunkten 5d+4, 5d+8 und 5d+15 folgende Anzahlen von AP registriert:

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>WT</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5d+4</td>
<td>64</td>
<td>51</td>
</tr>
<tr>
<td>5d+8</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>5d+15</td>
<td>47</td>
<td>56</td>
</tr>
</tbody>
</table>

Tab. 3-1

Da sämtliche der im Folgenden dargestellten Parameter aus dieser Stichprobe von AP bestimmt wurden, wird darauf verzichtet, die Anzahl der ausgewerteten AP dort jeweils erneut zu nennen.

3.4.2 AP-Morphologien

Für ESDC wurden in der Literatur verschiedene prototypische AP-Morphologien charakterisiert. Die Problematik einer solchen Einteilung wurde bereits diskutiert (in 1.4.2).

Zwar zeigt sich auch in der vorliegenden Arbeit die in der Literatur beschriebene starke Heterogenität von AP-Morphologien, welche eine eindeutige Zuordnung eines APs zu diesen prototypischen Morphologien nur für einige APs zulässt (FIJNVANDRAAT et al. 2003b). Dennoch ließen sich in WT und KO AP identifizieren, welche allen beschriebenen Morphologien entsprechen.

3.4.2.1 Early-Pacemaker-APs

Praktisch ausschließlich im WT zu frühen Differenzierungszeitpunkten lässt sich eine Subgruppe von ESDC identifizieren, welche sich durch eine Kombination aus geringer AP-Amplitude bei geringer Ruhe-Membranpolarisation, langsamen Aufstrich und langsamer anschließender Repolarisation auszeichnet (Abb. 3-2) und damit der in der Literatur als
„Early Pacemaker“ beschriebene AP-Morphologie (siehe 1.4.2, S. 16) entspricht. Solche APs wurden als typisch für ganz besonders frühe Differenzierungsstadien von ESDC beschrieben.

Am deutlichsten von den APs der restlichen Zellen dieser Differenzierungszeitpunkte abgrenzen lassen sich die Early-Pacemaker-APs durch ihre besonders niedrige AP-Amplitude von unter 25 mV (vgl. Abb. 3-3 (S. 63)).
Aber auch hinsichtlich anderer AP-Charakteristika finden sich signifikante Unterschiede zu den restlichen WT-AP des jeweiligen Differenzierungszeitpunkts (im folgenden für den Zeitpunkt 5d+4 angegeben): Neben der im Vergleich zu den restlichen WT-Zellen dieses Differenzierungszeitpunktes signifikant geringen AP-Amplitude (im Mittel lediglich 18,73±1,04 mV vs. 70,41±15,62 mV, p<0,001) zeigen diese Zellen eine vergleichsweise geringere MDP (im Mittel -40,73±2,36 mV vs. -57,55±1,15 mV, p<0,001). Weiterhin zeigen sie einen besonders langsamen Aufstrich des APs (V_max 0,795±0,063 mV/ms vs. 7,699±0,920 mV/ms; p<0,001), ebenso ist die Repolarisation der Early-Pacemaker-Zellen deutlich langsamer (APD50: 253,3±30,8 ms vs. 124,8±7,7 ms; p<0,001). Sie entsprechen damit typischen Early-Pacemaker-AP nach o.g. Kriterien. Während sie weiterhin zwar eine deutlich niedrigere DDR zeigen (3,221±0,419 mV/s vs. 8,001±0,782 mV/s; p<0,01), geht dies aber nicht mit einer Verminderung der spontanen AP-Frequenz einher.
Ergebnisse

(Zykluslänge 2057,42 ms vs. 1978,96 ms; p=0,706). Ein typisches solches Early-Pacemaker-AP ist im Vergleich zu einem Nicht-Early-Pacemaker-AP des WT nach 5d+4 in Abb. 3-2 dargestellt.

Nach 5d+4 zeigen im WT 15 von 65 Zellen (also 23%) eine Early-Pacemaker-AP-Morphologie, während es im KO lediglich 1 von 51 Zellen (2%) ist (p<0,001, siehe Abb. 3-3 und Abb. 3-4).

Nach 5d+8 hat der Anteil der Early Pacemaker an den registrierten APs deutlich abgenommen. Im WT sind es nun noch 6 von 50 Zellen (d.h. 12%), während es im KO unverändert lediglich 1 von 51 Zellen (2%, p=0,060) ist. Nach 5d+15 ist im WT nunmehr kein AP der der Early-Pacemaker-Morphologie mehr zu finden im KO weiterhin lediglich eines (1,8% der Zellen). Generell ist festzustellen, dass im KO nur ein Bruchteil der im WT gefundenen, zu sehen ist. Dies korreliert damit, dass bereits nach 5d+3 der KO in der morphologischen Auswertung einen vergleichsweise hohen Wert zeigt, der bis 5d+4 dann im Vergleich zum WT nur noch relativ gering zunimmt (siehe Abb. 3-5). Es kommt also im KO bereits nach 5d+4 vermutlich zu keiner Neubildung von ESDC in hohem Umfang mehr. Im WT dagegen ist dieser Wert zum Zeitpunkt 5d+4 noch deutlich im Zunehmen begriffen, was dafür spricht, dass zu diesem Zeitpunkt noch in deutlichem Umfang ESDC neu gebildet werden.
Ergebnisse

Morphologische Auswertung: prozentuale Änderung gegenüber vorangegangenen Beobachtungszeitpunkt

Abb. 3-5: Zunahme der Häufigkeit von ESDC-Clustern im Vergleich zum jeweils vorangegangenen Untersuchungszeitpunkt

Wie noch ausführlicher dargestellt werden wird (siehe 3.4.6), ist dabei dieses immer seltener werdende Auftreten von Early-Pacemaker-APs im WT im Zuge der Differenzierung bzw. der nicht mehr neu erfolgenden Neubildung von ESDC-Clustern aufgrund der geringen AP-Amplitude der Early-Pacemaker-APs für die Zunahme der mittleren AP-Amplitude im Verlauf der Differenzierung im WT sowie für die nach 5d+4 im KO bereits höhere mittlere AP-Amplitude verantwortlich. Einziger weiterer Unterschied zwischen KO und WT zu diesem Zeitpunkt war die im KO verlängerte AP-Zykluslänge. Diese wiederum lässt sich jedoch nicht auf die Early-Pacemaker-Zellen zurückführen, da die mittlere Zykluslänge der Early Pacemaker und Nicht-Early-Pacemaker sich kaum unterscheidet (siehe 3.4.3).

3.4.2.2 Vorhof- und Ventrikel-ähnliche sowie weitere AP-Morphologien

Außer den Early-Pacemaker-APs lassen sich keine weiteren AP-Morphologien anhand einzelner Charakteristika klar abgrenzen, weswegen angesichts der bereits diskutierten Problematik solcher AP-Klassifizierungen auf die quantitative Auswertung weitere AP-Morphologien verzichtet wird.
Es finden sich aber in beiden Zelllinien einzelne APs mit für die verschiedenen AP-Prototypen typischer Morphologie. Entsprechend des Ziels der Arbeit, der Untersuchung der frühen Phase der Differenzierung, finden sich dabei nur relativ wenige den terminal differenzierten Morphologien entsprechende Zellen zu erwarten.

Vorhof-Myozyten-ähnliche und Ventrikel-ähnliche AP werden in der Literatur v.a. durch ihre höhere V_{max} von Schrittmacher-AP abgegrenzt. Untereinander wiederum werden sie v.a. anhand ihrer APD unterschieden.

Auch in den in der vorliegenden Arbeit registrierten AP finden sich bereits APs mit ventrikulärer Charakteristik, sowohl im WT, als auch im KO – bevorzugt, aber nicht nur, nach 5d+15 (siehe Abb. 3-6). Insbesondere Ventrikel-ähnliche APs finden sich auch zu früheren Differenzierungszeitpunkten. Das Vorhandensein einer typischen Plateauphase wie im adulten Myokard ist in der Literatur keine Voraussetzung zur Klassifizierung als Ventrikel-ähnlich, eine solche typische Plateauphase findet sich dennoch sowohl in einigen APs des WT, als auch des KO, während andere als Ventrikel-ähnlich zu klassifizierende APs sie nicht zeigen.

![Graphik](image)

Abb 3-6: Ventrikel-ähnliche APs aus WT- (links) und KO -ESDC nach 5d+15 (Phase 4 der APs zur besseren Darstellung nicht komplett abgebildet)

Vorhof-ähnliche APs unterscheiden sich von den Ventrikel-ähnlichen durch ihre schnelle Repolarisation (kurze APD) und eine „dreieckige“ Form. Auch Zellen mit einer typischen solchen Morphologie lassen sich in kleinen Zahlen in WT und KO finden, typische Vorhof-ähnliche APs sind in Abb. 3-7 gezeigt.
Ergebnisse

Abb 3-7: Vorhof-ähnliche APs aus WT- (links) und KO-ESDC nach 5d+15 (Phase 4 der APs zur besseren Darstellung nicht komplett abgebildet)

Im Rahmen der erwähnten Einschränkungen einer solchen Klassifizierung würden zum Zeitpunkt 5d+15 17% der WT-Zellen als Ventrikel-ähnlich und 8,5% als Vorhof-ähnlich klassifiziert, im KO 8,9% als Ventrikel-ähnlich und 16,1% als Vorhof-ähnlich. Dass relativ wenige der als typisch für die terminale Ausdifferenzierung beschriebenen APs (atrial-like und ventricle-like) festgestellt wurden (Abb. 3.8), bestätigt, dass das gewünschte Zeitsfenster der Untersuchung, die frühe Phase der kardiomyozytären Differenzierung, getroffen wurde.

Abb. 3.8: Häufigkeit der AP-Morphologien in WT (blau) und KO (rosa)

Wie bereits in der Literatur diskutiert (vgl. 1.4.2 (S. 16)), lässt sich die Mehrzahl der registrierten APs aber nicht einer der genannten Morphologien zuordnen, sondern entspricht vielmehr vielfältigen Zwischenstufen zwischen diesen, wie sie an einigen Beispielen von 5d+15-APs in Abb. 3-9 dargestellt sind.
Angesichts dieser Heterogenität der registrierten AP-Verläufe ist es damit nicht möglich, „repräsentative“ APs zu zeigen; die im Folgenden dargestellte quantitative Auswertung der AP-Charakteristika schließt entsprechend *alle* registrierten APs ein, auch die der hier beschriebenen Morphologien. Zur Veranschaulichung der hierbei nach 5d+15 in den Mittelwerten der AP-Charakteristika zwischen beiden Zelllinien bestehenden Unterschiede (siehe 3.4.3-3.4.8) zeigt Abb. 3-10 dennoch APs beider Zelllinien, deren Charakteristika in etwa diesen Mittelwerten entsprechen.
Ergebnisse

Abb. 3-10: Etwa den Mittelwerten nach 5d+15 entsprechende APs aus WT (blau) und KO (rosa)

Auch die im Folgenden noch dargestellten, mit Ausnahme der AP-Amplitude in beiden Zelllinien prinzipiell gleichsinnig verlaufenden, Veränderungen der AP-Charakteristika im Verlauf der Differenzierung zwischen 5d+4 und 5d+15 sind in Abb. 3-11 anhand von in etwa den Mittelwerten entsprechenden WT-APs aus 5d+4 und 5d+15 illustriert.

Abb. 3-11: Etwa den Mittelwerten entsprechende AP im WT nach 5d+4 und 5d+15
3.4.2.3 Subgruppe mit besonders rascher Depolarisation (Subgruppe \(V_{\text{max}} \))

Im KO lässt sich allerdings eine Subgruppe von APs mit einer im WT nicht vorkommenden Morphologie identifizieren. Am deutlichsten lassen sich diese hinsichtlich ihrer extrem schnellen Depolarisation mit einer \(V_{\text{max}} \) von über 60 mV/ms gegenüber den restlichen APs abgrenzen. (Siehe 3.4.7.) Innerhalb des KO nimmt der Anteil an dieser Gruppe im Verlauf der Differenzierung zu: Nur 1 der 8 Zellen aus dieser Subgruppe entstammt dem Differenzierungsgzeitpunkt 5d+8 (1,9% aller KO-APs dieses Zeitpunkts), während die restlichen 7 AP nach 5d+15 registriert wurden (12,5% aller KO-APs dieses Zeitpunkts). Im WT war zu keinem Zeitpunkt ein solches AP feststellbar. Ein typisches Beispiel eines solchen APs ist in Abb. 3-12 im Vergleich zu einem typischen WT-AP des Zeitpunkts 5d+15 abgebildet.

![Abb. 3-12: Beispiel eines APs der Subgruppe \(V_{\text{max}} \) im Vergleich zu einem typischen 5d+15 WT-AP](image)

Im Vergleich zu den restlichen KO-APs des Zeitpunkts 5d+15 zeigen die APs dieser Subgruppe eine mit 80,545±4,727 mV/ms signifikant schnellere Depolarisation (vs. 8,091±0,950 mV/ms, p<0,001). Auch ihre Repolarisation ist beschleunigt (APD80: 97,807±8,516 ms vs. 145,453±7,488 ms, p=0,022). Weiterhin zeigen sie eine deutlich höhere AP-Amplitude (96,228±2,081 mV vs. 72,284 mV, p<0,001) - wobei sich das Ruhemembranpotential knapp nicht signifikant unterscheidet (-61,438±1,166 mV vs. -56,045±1,008 mV, p=0,053). Die AP-Zykluslänge ist mit 764,393±170,799 ms vs.
1071,759±75,730 ms in dieser Subgruppe etwas, nicht jedoch signifikant (p=0,151) verkürzt bei ebenfalls etwas, aber wieder nicht signifikant, erhöhter DDR (23,548±7,000 mV/s vs. 15,074±1,598 mV/s, p=0,092).

Dabei lassen diese Zellen sich jedoch nur hinsichtlich der V_{max} deutlich von der restlichen Zellpopulation abgrenzen, während für andere Parameter teilweise Überlappung mit auch ansonsten festgestellten Messwerten besteht. Sie stellen dabei, wie in 3.4.3 noch ausführlicher dargestellt werden wird, quasi lediglich die Extremform der im KO insbesondere zum Zeitpunkt 5d+15 beschleunigten Depolarisation dar und sind jedoch nicht für die generell im KO nach 5d+8 und 5d+15 festzustellende höhere V_{max} verantwortlich.

3.4.3 AP-Zykluslänge

Im WT nimmt die AP-Zykluslänge im Verlauf der Differenzierung von 2007±87 ms nach 5d+5 relativ gleichmäßig über 1660±96 ms nach 5d+8 auf schließlich 1342±53 ms nach 5d+15 ab, wobei diese Veränderungen zwischen den einzelnen Zeitpunkten jeweils signifikant sind (5d+4 vs. 5d+8: p=0,009; 5d+8 vs. 5d+15: p=0,005). Dies ist in Abb. 3-13 dargestellt.

Der KO zeigt im Vergleich hierzu zum Zeitpunkt 5d+4 im Mittel signifikant längere AP-Intervalle (2307±100 ms; p=0,025) im Sinne einer niedrigeren
Ergebnisse

Frequenz der spontanen Kontraktionen. Die Zunahme der Spontanfrequenz, also die Abnahme der AP-Zykluslänge bis zum nächsten Untersuchungszeitpunkt ist im KO aber deutlich stärker als im WT, so dass diese KO-ESDC nach 5d+8 gegenüber dem WT mit 1431±70 ms nicht mehr verlängert ist – sie ist nunmehr sogar (wenn auch nicht signifikant) kürzer. Diese stärker ausgeprägte Abnahme der AP-Zykluslänge (bzw. Zunahme der spontanen AP-Frequenz) findet im KO schwächer ausgeprägt auch bis zum folgenden Untersuchungszeitpunkt statt, so dass die AP-Zykluslänge nach 5d+15 im KO mit 1033±70 ms gegenüber dem WT signifikant verkürzt ist (p<0.001). Diese Unterschiede zwischen KO und WT sind dabei nicht auf die Existenz einer isolierten Subgruppe von Zellen mit besonders langer AP-Zykluslänge im WT, oder mit kurzen AP-Zykluslängen im KO zurückzuführen, wie in Abb. 3-14 zu sehen ist. Dies trifft auch für die bereits dargestellten Early-Pacemaker-APs zu, da deren mittlere AP-Zykluslänge sich von der der Nicht-Early-Pacemaker kaum unterscheidet. Entsprechend ändert sich die mittlere AP-Zykluslänge durch Ausschluß der Early-Pacemaker-Zellen kaum und bleibt zwischen KO und WT signifikant unterschiedlich (Nicht-Early-Pacemaker nach 5d+4: WT 1991±105 ms vs. KO 2317±101 ms, p=0,028).
Vielmehr kommt es im WT im gesamten Verlauf der Differenzierung zu einer generellen Abnahme der Häufigkeit von ESDC mit APs langer Zykluslänge, also einer Abnahme von Zellen mit einer (noch) langsamen Spontanfrequenz, so dass die längste nach 5d+15 noch gemessene AP-Zykluslänge 2075 ms (entsprechend 29 Kontraktionen/min) betrug. Die Häufigkeit von APs mit eher kurzer AP-Zykluslänge nimmt dagegen, wie in Abb. 3-14 deutlich zu sehen ist, im WT zunächst (zwischen 5d+4 und 5d+8) zwar deutlich zu, bleibt danach (zwischen 5d+8 und 5d+15) aber unverändert.

Im KO findet diese Entwicklung deutlich schneller und stärker ausgeprägt statt. Zwar ist in ihm zum Zeitpunkt 5d+4 die Häufigkeit von APs mit langer Zykluslänge gegenüber dem WT deutlich noch erhöht (72,5% vs. 32,8% haben eine Zykluslänge >2075 ms, p<0,001). Zwischen 5d+4 und 5d+8 zeigt sich aber auch im KO eine deutliche Reduzierung der Häufigkeit von APs mit langer Zykluslänge, sogar deutlich stärker ausgeprägt als im WT, wodurch es
zur Angleichung der mittleren Zykluslänge zwischen KO und WT kommt. Hierbei ähnelt die Verteilung im KO nach 5d+8 bereits deutlich der im WT nach 5d+15. Nach 5d+15 zeigt sich im KO nunmehr ein im Vergleich zum WT deutlich anderes Bild: Es haben sich hier nicht nur einige Zellen mit einer deutlich höheren Spontanfrequenz herausgebildet als im WT (bis 204 Kontraktionen/min ≈ 290 ms Zykluslänge, im WT bis 105/min ≈ 570 ms Intervall), sondern es gibt im KO auch sehr viel mehr APs mit einer kurzen Zykluslänge, als im WT (64,3% vs. 25,5% haben eine Zykluslänge < 1037,5 ms, p<0,001).

3.4.4 Diastolische Depolarisationsrate (DDR)

Wie in Abb. 3-15. zu sehen ist, kommt es in beiden Zelllinien zu einer Zunahme der spontanen DDR in Phase 4 der APs im Verlauf der Differenzierung der Zellen. Sie nimmt im WT von im Mittel 6,873±0,667 mV/s nach 5d+4 über 8,433±0,830 mV/s nach 5d+8 auf schließlich 10,427±0,807 mV/s nach 5d+15 zu. Diese Zunahme ist dabei zwar über das gesamte Intervall (also 5d+4 vs. 5d+15) signifikant (p=0,001), nicht jedoch über die einzelnen Zeiträume (5d+4 vs. 5d+8: p=0,141; 5d+8 vs. 5d+15: p=0,089).
Nach 5d+4 zeigt der KO nicht nur im Mittel (6,580±0,649 mV/s) die gleiche DDR wie der WT (p=0,757), er zeigt auch, wie in Abb. 3-16 deutlich zu sehen ist, die gleiche Häufigkeitsverteilung der DDR-Werte wie der WT. Nach 5d+8 jedoch unterscheidet sich diese bereits zugunsten einer schnelleren DDR im KO, welche auch im Mittel mit 10,929±1,013 mV/s etwas (wenig auch nicht signifikant: p=0,061) höher als im WT ist. Dieser Trend setzt sich fort bis zum letzten Beobachtungszeitpunkt (5d+15), zu welchem der KO nunmehr eine mit 16,134±1,622 mV/s deutlich und signifikant (p=0,004) höhere DDR als der WT zeigt. Im Gegensatz zu den vorhergehenden Beobachtungszeitpunkten zeigen sich dabei im KO jedoch etliche APs mit einer sehr viel höheren DDR, als sie im WT überhaupt maximal erreicht wird, während nach 5d+8 nur ein einziges solches AP im KO festzustellen war. Es scheinen sich damit im KO zwischen 5d+8 und 5d+15 zunehmend Zellen mit unnormal schneller spontaner Depolarisation herauszubilden.
Wie Abb. 3-17 zeigt, besteht dabei zwar tendenziell ein Zusammenhang zwischen DDR und AP-Zykluslänge (Abnahme der Zykluslänge bei Zunahme der DDR). Es besteht jedoch insbesondere im Bereich der niedrigeren DDR und für den frühen Differenzierungszeitpunkt 5d+4 keine eindeutige Korrelation zwischen DDR und Zykluslänge.
3.4.5 Ruheemembranpotential

Aus dem WT differenzierte ESDC zeigen im Mittel eine im zeitlichen Verlauf sehr konstante MDP, dies ist in Abb. 3-18 dargestellt. Die MDP zeigt keinerlei signifikante Änderungen im zeitlichen Verlauf der Differenzierung und beträgt -53,32±1,27 mV nach 5d+4, nach 5d+8 beträgt sie praktisch unverändert -53,38±1,36 mV und nach 5d+15 schließlich -55,14±1,22 mV.

Abb. 3-17: AP-Zykluslänge zur DDR aufgetragen

Abb. 3-18: MDP im Verlauf der Differenzierung
Die im KO nach 5d+4 beobachtete mittlere MDP ist mit -56,75±1,53 mV minimal, aber nicht signifikant (p=0,086) negativer, als im WT. Im weiteren Verlauf der Differenzierung gleicht sich die MDP im KO der des WT weiter an, wobei sie weiterhin knapp negativer bleibt: Sie beträgt -54,49±1,34 mV nach 5d+8 und -56,72±0,92 mV nach 5d+15. Auch im KO sind dabei keine signifikanten Veränderungen der MDP zwischen den einzelnen Beobachtungszeitpunkten festzustellen.

Auch in der Häufigkeitsverteilung der einzelnen MDP zeigen sich keine klaren Unterschiede zwischen KO und WT, am ehesten noch eine etwas größere Häufigkeit von AP mit positiverer MDP im WT (siehe Abb. 3-19), wie sie sich auch in den Mittelwerten andeutet.
3.4.6 **Depolarisation: AP-Amplitude**

Die mittlere AP-Amplitude nimmt im WT von anfänglich 58,49±25,92 mV zum Zeitpunkt 5d+4 über 66,30±22,79 mV nach 5d+8 auf schließlich 72,28±16,83 mV nach 5d+15 zu (Abb. 3-20). Sie ist dabei zwar über den gesamten Verlauf zwischen Beginn und Ende des Beobachtungszeitraums (d.h. im Vergleich von 5d+4 vs. 5d+15) signifikant (p=0,001), nicht jedoch zwischen den einzelnen Beobachtungszeitpunkten (5d+4 vs. 5d+8: p=0,078 und 5d+8 vs. 5d+15: p=0,143).

![Aktionspotential-Amplitude (APA)](image)

Abb. 3-20: AP-Amplitude im Verlauf der Differenzierung

Im Vergleich dazu zeigte der KO bereits in der sehr frühen Phase der Differenzierung (5d+4) eine signifikant (p=0,008) höhere mittlere AP-Amplitude (68,52±19,02 mV) als der WT. Dieser Wert wird im WT erst nach dem Zeitpunkt 5d+8 erreicht. Die AP-Amplitude steigt im KO dann jedoch im zeitlichen Verlauf deutlich langsamer an als im WT, so dass eine Angleichung stattfindet und nach 5d+8 der KO zwar noch im Mittel zirka 6 mV höhere AP-Amplituden zeigt (72,21±22,46 mV), diese sich jedoch nicht mehr signifikant (p=0,190) von denen des WT unterscheiden. Nach 5d+15 haben sich die Unterschiede in den AP-Amplituden sogar noch weiter angeglichen (75,49±17,9 mV im KO). Selbst über den ganzen Beobachtungszeitraum nimmt die AP-Amplitude im KO damit nur gering zu,
so dass im Gegensatz zum WT der Anstieg von 5d+4 auf 5d+15 nicht signifikant ist (p=0,095).

Auffällig ist, dass sich deutlich eine Subgruppe von APs mit besonders geringer AP-Amplitude (<25 mV) abgrenzen lässt, welche fast ausschließlich im WT zu den Zeitpunkten 5d+4 und, seltener, 5d+8 vorkommen, wie aus Abb. 3-21 zu ersehen ist. Es handelt sich hierbei um APs mit der in 3.4.2.1 bereits dargestellten Early-acemaker-Morphologie.

Bemerkenswerterweise ist offensichtlich die Zunahme der mittleren AP-Amplitude im WT im Verlauf der Differenzierung alleine darauf zurückzuführen, dass diese niederamplitudigen Early-Pacemaker-APs im Verlauf der Differenzierung immer seltener Auftreten, wie Abb. 3-23 deutlich illustriert, in welchen die Early-Pacemaker-APs aus der Auswertung ausgeschlossen wurden: Im Verlauf der Differenzierung verändert sich die Amplitude der Nicht-Early-Pacemaker-APs praktisch nicht. Interessanterweise sind entsprechend auch die zwischen KO und WT
vorhandenen Unterschiede in der mittleren AP-Amplitude (bzw. deren Angleichen aneinander) beinahe ausschließlich darauf zurückzuführen, dass im WT diese besonders niederamplitudigen APs zunächst vorkommen (und im Verlauf der Differenzierung verschwinden), im KO jedoch praktisch nicht: Denn nach Ausschluss der Early-Pacemaker-APs aus der Auswertung unterscheiden sich die restlichen (Nicht-Early-Pacemaker-APs) von KO und T hinsichtlich der mittleren AP-Amplitude nicht mehr (WT 70,41±15,62 mV vs. KO 70,45±17,67 mV, p=0,915, siehe Abb. 3-22).

Auch hinsichtlich der Häufigkeitsverteilung der AP-Amplituden unterscheiden sich die Nicht-Early-Pacemaker-APs von KO und WT nicht, wie aus Abb. 3-23 ersichtlich wird.
Ergebnisse

3.4.7 Depolarisation: V_{max}

Sowohl die WT-ESDC nachvollzogen, als auch die des Kollagen $\alpha_1(I)$-KO, zeigen eine Zunahme der V_{max} im Verlauf der Differenzierung wie in Abb. 3-24 zu sehen ist.

Abb. 3-24: V_{max} im Verlauf der Differenzierung
Dabei ist die Zunahme der mittleren V_{max} im WT nur moderat (von 5,652±0,662 mV/ms nach 5d+4 auf 7,039±0,877 mV/ms nach 5d+8 auf schließlich 8,091±0,950 mV nach 5d+15), aber signifikant über dem gesamten Beobachtungszeitraum ($p=0,032$ für 5d+4 vs. 5d+15). Der KO hingegen zeigt eine davon abweichende starke Zunahme der V_{max} im Verlauf der Differenzierung. Dabei beträgt die V_{max} im KO nach 5d+4 bereits im Mittel 7,777±1,203 mV/ms, nimmt dann noch deutlich auf zunächst 12,056±1,925 mV/ms nach 5d+8 ($p=0,016$ vs. KO 5d+4) und 21,833±3,401 mV/ms nach 5d+15 ($p<0,001$ vs. KO 5d+8) zu. Zu diesen beiden Beobachtungszeitpunkten ist die V_{max} im KO damit im Vergleich zum WT signifikant ($p=0,021$ nach 5d+8 und $p<0,001$ nach 5d+15) erhöht.

Im WT erreicht die V_{max} maximal Werte bis 38 mV/ms erreicht (wobei es sich auch dabei nur um einen einzigen Einzelwert handelt und ansonsten regelmäßiger lediglich Werte bis 27 mV/ms erreicht werden), wie in Abb. 3-25 zu sehen ist.
Dagegen zeigt der KO nicht nur generelle häufiger APs mit besonders hoher V_{max}, sondern es gibt in ihm auch durchgehend AP mit höheren V_{max}-Spitzenwerte als im WT – und diese nehmen auch im Verlauf der Differenzierung noch stark zu, schließlich bis hin zu 96 mV/ms. Dabei lässt sich weiterhin, wie in Abb. 3-25 zu sehen ist, eine Subgruppe von APs mit extrem hoher V_{max} von über 60 mV/ms abgrenzen. Diese besteht ausschließlich aus KO-Zellen und von diesen fast aus nur solchen des späten Differenzierungszeitpunktes 5d+15 und wurde in 3.4.2.3 bereits ausführlicher dargestellt.

Die im KO höhere mittlere V_{max} ist jedoch nicht alleine auf das Vorhandensein dieser Subgruppe V_{max}-APs zurückzuführen. Vielmehr verstärken diese lediglich den ohnehin schon bestehenden Unterschied zum WT: Werden alle AP der Subgruppe V_{max} aus der Auswertung herausgelassen, so ist die Zunahme der mittleren V_{max} im KO zwischen 5d+8 und 5d+15 zwar deutlich abgeschwächt, sie bleibt aber zu diesen beiden Zeitpunkten im KO mit im Mittel 11,073±1,688 mV/ms (5d+8) bzw. 13,446±1,739 mV/ms (5d+15) weiterhin deutlich und signifikant höher, als im WT (p=0,038 bzw. p=0,009). Der grundsätzliche Unterschied der im KO schnelleren Depolarisation erstreckt sich also auch auf APs anderer Morphologie. Damit stellt diese Subgruppe von Zellen quasi lediglich die Extremform der im KO insbesondere zum Zeitpunkt 5d+15 generell beschleunigten Depolarisation dar.

3.4.8 Repolarisation: APD

Diese Entwicklung wird von der in der vorliegenden Untersuchung untersuchten WT-Zelllinie nachvollzogen, wie in Abb. 3-26 zu sehen ist. Dabei nimmt die APD50 von 155,1±11,5 ms nach 5d+4 auf 127,1±8,7 ms nach 5d+8 und schließlich 121,7±5,8 ms nach 5d+15 ab. Damit ist die Abnahme der APD50 über dem Beobachtungsintervall signifikant (5d+4 vs. 5d+15 p=0,022), wobei jeweils für die direkt aufeinander folgenden Messzeitpunkte von 5d+4 auf 5d+8 (p=0,067) und von 5d+8 auf 5d+15 (p=0,612) noch keine Signifikanz erreicht wird.
Auch in den Zellen des KOs wird diese Entwicklung vollzogen. Dabei zeigen diese zu den Zeitpunkten 5d+4 und 5d+8 eine leicht, jedoch nicht signifikant kürzere APD50 als der WT (5d+4: 135,8±8,7 ms, p=0,203 und 5d+8: 115,4±5,8 ms, p=0,264). Im Gegensatz zum WT nimmt die APD im KO jedoch auch zwischen 5d+8 und 5d+15 noch deutlich (und signifikant, p=0,016 KO 5d+8 vs. KO 5d+15), ab auf 89,5±4,8 ms und zeigt damit nach 5d+15 signifikant (p<0,001) kürzere APDs, als der WT. Es zeigt sich, dass die Verkürzung der APD50 im WT vorwiegend durch eine Abnehmende Häufigkeit von APs mit langer APD bedingt ist, während die Häufigkeit von APs kürzerer Dauer im Verlauf der Differenzierung im WT praktisch unverändert bleibt. Dies ist in Abb. 3-27 deutlich zu sehen.
Ergebnisse

Abb. 3-27: Häufigkeitsverteilungen der APD50 in WT und KO

Auch im KO geschieht die Verkürzung der mittleren APD50 zwischen 5d+4 und 5d+8 v.a. durch abnehmende Häufigkeit von APs mit längerer APD50, während im Bereich der kürzeren APDs keine Veränderung in der Häufigkeit festzustellen ist. In dieser Hinsicht gleicht die Entwicklung des KO bis 5d+8 der des WT. Interessanterweise zeigt sich im KO jedoch nach 5d+15 eine generelle (statt wie im WT und wie in der vorherigen Entwicklungsperiode auf längere APDs beschränkte) Verkürzung der APD50. Es erfolgt also zwischen 5d+8 und 5d+15 im KO quasi eine parallele Verschiebung des gesamten Spektrums der APD50 hin zu global kürzeren APDs. Hierdurch kommt es im KO nicht nur zwischen 5d+8 und 5d+15 zu einer sehr viel stärkeren weiteren Verkürzung der mittleren APD50, als im WT. Sondern auch der Mechanismus dieser Verkürzung in diesem Zeitraum unterscheidet sich von dem im WT und dem im KO in der vorhergehenden Differenzierungsperiode (5d+4 bis 5d+8).
APD80 und APD90
Auch für APD80 und APD90 wurden entsprechende Verläufe und Entwicklungen im Verlauf der Differenzierung festgestellt, wie für die APD50. Auf ihre ausführliche Darstellung wird hier deswegen verzichtet, die entsprechenden Werte finden sich tabellarisch im Anhang.

Frühe vs. spätere Phase der Repolarisation
Während die APD90 auch von der Dauer der frühen Phase der Repolarisation bis zu 50% abhängt, beschreibt die APD50-90 isoliert den Verlauf der späten Repolarisation. Tatsächlich besteht in beiden Zelllinien zu jedem untersuchten Zeitpunkt nur eine geringe Korrelation zwischen APD50 und APD50-90, wie in Abb. 3-28 dargestellt.

Die Geschwindigkeit der späteren Phase der Repolarisation (APD90-50) ist somit in beiden Zelllinien zu jedem Untersuchungszeitpunkt von dem der vorangegenden Phase (APD50) relativ unabhängig.
4 Diskussion

ESDC erscheinen als verheißungsvollste Quelle zum Gewebeersatz im Herzen, neuerdings werden sie auch zur Therapie als „biologischer Schrittmacher“ diskutiert. Die gezielte Differenzierung bestimmter Subtypen von Kardiomyozyten, beispielsweise von ventrikulären Zellen für erstere oder Zellen mit ausgeprägten physiologischen Schrittmachereigenschaften für letztere Anwendung, wäre dafür erstrebenswert.

Die Ergebnisse der vorliegenden Arbeit zeigen nun erstmalig, dass α₁(I)-Kollagen die elektrophysiologische Differenzierung von ESDC beeinflusst. Dies ist das erste Mal, dass ein solcher elektrophysiologischer Nachweis gezielt für ein einzelnes Substrat der ECM erbracht werden
könnte, nachdem bereits gezeigt werden konnte, dass die *generelle Komposition* der ECM in Form der künstlichen ECM Matrigel (DING 2000) bzw. der Verlust des wichtigsten zellulären Rezeptors der ECM, des β1-Integrins (FÄSSLER et al. 1996a), die AP von ESDC beeinflussen. Für diese Untersuchungen wurde zunächst das Vorgehen für die Differenzierungsversuche optimiert, um möglichst geeignet Bedingungen zur kardiomyozytären Differenzierung zu erreichen und eine von anderen Faktoren möglichst unbeeinflusste Entwicklung der Zellen zu gewährleisten. Weiterhin wurde eine alternative Technik zur Patch-Clamp-Untersuchung der ESDC entwickelt, welche diese auch ohne enzymatischen Verdau des Kollagens erlaubt. Im Folgenden soll nun nach einer kurzen Diskussion dieser vorbereitenden Untersuchungen zunächst diskutiert werden, wie weit die in der vorliegenden Arbeit beobachtete (zuvor noch nicht untersuchte) elektrophysiologische Differenzierung des WT mit aus der Literatur bekannten generellen Entwicklungsschritten übereinstimmt, um anschließend die hiervon abweichenden Entwicklungen der APs im KO zu diskutieren. Abschließend sollen diese Veränderungen im KO noch einmal in den Rahmen ihrer möglichen physiologischen und pathophysiologischen Implikationen und ihrer potentiellen therapeutischen Relevanz gestellt werden.

4.1 Vorbereitende Untersuchungen

4.1.1 Optimierung der Kulturbedingungen

Zur Optimierung der Kulturbedingungen wurde vor Beginn der eigentlichen Untersuchung in Anlehnung an den ESCT („Embryonic Stem Cell Test“, SPIELMANN UND SCHOLZ 2002) eine Versuchserie durchgeführt, in welcher sich zeigte, dass eine Anzahl von 300 ESC pro hängendem Tropfen nicht nur zur bestmöglichen kardiomyozytären Differenzierung führte, sondern gleichzeitig auch die Unterschiede in der Differenzierungsrate zwischen KO und WT am deutlichsten hervorbringt. Unter diesen optimierten Kulturbedingungen sind damit im Gegensatz zu Dings Untersuchung der selben Zelllinien (DING 2000) auch im WT bereits schon nach 5d+3 spontan kontrahierende Zellen sichtbar, so dass die
Diskussion

Die frühestmögliche Patch-Clamp-Untersuchung einen Tag später, also nach 5d+4 möglich wurde. Auch für den KO waren nach 5d+3 bereits in einem deutlich höheren Anteil von EB spontane Kontraktionen sichtbar, als in Dings Untersuchung der Zelllinien. In der vorliegenden Arbeit wurden somit mindestens ebenbürtige Differenzierungsbedingungen erreicht.

4.1.2 Verfahren zur Patch-Clamp-Untersuchung von ESDC mit intakter ECM

Das etablierte Prozedere zur Patch-Clamp-Untersuchung von ESDC beinhaltet einen enzymatischen Verdau der ECM. Für die vorliegende Arbeit war dieses Vorgehen nicht möglich, da dadurch die zu untersuchende Einflussgröße auf die APs (das α1(I)-Kollagen) entfernt würde. Es musste also eine Technik etabliert werden, welche die Patch-Clamp-Untersuchung der Zellen weitestgehend in ihrer physiologischen Umgebung, d.h. ohne enzymatischen Verdau der ECM, zulässt. Dieses gelang durch Entwicklung einer speziellen Isolationstechnik und Adaptation der zur Patch-Clamp-Untersuchung in intakten Hirnschnitten verwendeten „Reinigungs-“ und „Mischtechnik“.

4.2 Der WT zeigt eine normale Differenzierung der ESDC, Mechanismen der Entwicklung

Arbeitshypothese der vorliegenden Arbeit war, dass der Verlust der α1(I)-Kollagen-Funktion ausschließlich sehr frühe Prozesse der kardiomyozytären Differenzierung beeinflusse. Es wurden ESDC im Zeitraum zwischen 5d+4 (frühestmöglicher Zeitpunkt zur AP-Registrierung) und 5d+15 untersucht.

4.2.1 Morphologische Auswertung

Erste spontan kontrahierende ESDC waren im WT in geringem Umfang nach 5d+3 sichtbar, dieses entspricht der normalen Entwicklung (vgl. 1.4.1 (S. 14) und 1.5.2 (S. 21)). Der Anteil von EBs mit kontrahierenden ESDC nahm bereits bis 5d+4 stark zu und verdoppelte sich bis 5d+8 noch einmal, danach erfolgte bis 5d+15 keine weitere Zunahme (vgl. Abb 3-1 (S. 60)). Der

4.2.2 Early-Pacemaker-APs treten während der Neubildung von ESDC auf

Inwiefern ein klarer Zusammenhang zwischen Differenzierungsgzeitpunkt und dem Auftreten bestimmenter AP-Morphologien besteht, ist in der Literatur kontrovers; generell lassen sich wohl die meisten AP nicht eindeutig einem der prototypischen Morphologie-Subtypen zuordnen (siehe 1.4.2, S. 16). Im WT ließ sich deutlich eine Subgruppe von AP abgrenzen (Abb. 3-3), welche der in der Literatur als typisch für ganz früh differenzierte Zellen beschriebenen Early-Pacemaker-AP-Morphologie entsprachen (Abb. 3-2). Diese zeichneten sich durch ein geringer polarisiertes Ruhemembranpotential, geringe AP-Amplitude sowie langsame De- und Repolarisation aus. Aus der Literatur ist für solche APs bekannt, dass sie wesentlich Ca²⁺-abhängig sind – im Gegensatz zum steilen Na⁺-abhängigen

4.2.3 Weitere Typen von AP-Morphologien im WT

Es konnten APs aller in der Literatur prototypisch beschriebenen AP-Morphologien gefunden werden. Dabei zeigte sich, wie auch von FIJNVANDRAAT et al. 2003b, HE et al. 2003 und DOSS et al. 2007 beschrieben, eine starke Heterogenität der AP-Morphologien, welche eine Zuordnung eines APs zu einer dieser Klassen nicht immer eindeutig zuließ (siehe 3.4.2). Deutlich aufgrund ihrer AP-Parameter abgrenzen ließen sich dabei, wie oben diskutiert, lediglich die Early-Pacemaker-AP. In der dennoch durchgeführten Klassifikation zeigte der WT nach 5d+15 (Abb. 3.8) 17%
Diskussion

Ventrikel-ähnliche APs und 8,5% Vorhof-ähnliche APs. Dass somit zwar bereits einige, aber noch relativ wenige, der als typisch für die terminale Ausdifferenzierung beschriebenen APs (Ventrikel-ähnlich und Vorhof-ähnlich) festgestellt wurden, bestätigt, dass das gewünschte Zeitfenster der Untersuchung, die frühe Phase der kardiomyozytären Differenzierung, getroffen wurde. Dass erst in geringem Umfang eine terminale Differenzierung stattgefunden hat wird unterstützt von der Tatsache, dass zu diesem Zeitpunkt in der morphologischen Auswertung nicht nur noch kein Abfall stattgefunden hat (in der Untersuchung von Ding geschah dies in deutlicherem Umfang erst nach 5d+26 (DING 2000)), sondern in geringem Umfang noch neue weitere EBs erstmalig ESDC-Cluster zeigten – während es in der terminalen Differenzierung schließlich zu einem Sistieren der Spontanaktivität kommen würde.
Diese Entwicklungen in der qualitativen Auswertung haben natürlich ein Korrelat in der quantitativen Auswertung der AP-Kenngrößen, in die alle APs aufgenommen wurden, wie im Folgenden dargestellt wird.

4.2.4 Entwicklung der AP-Kenngrößen im WT im Verlauf der Differenzierung

4.2.4.1 Depolarisation: AP-Amplitude

In der Literatur wird eine Zunahme der mittleren AP-Amplitude im Verlauf der Differenzierung berichtet und die durch geringe Amplitude und langsamen

Auch in den in der vorliegenden Arbeit untersuchten WT-Zellen war eine signifikante Zunahme der mittleren AP-Amplitude im Beobachtungszeitraum (d.h. 5d+4 vs. 5d+15) festzustellen. Die deutlichste Zunahme findet dabei von 5d+4 auf 5d+8 statt und korreliert mit einer starken Abnahme der Häufigkeit von Early-Pacemaker-APs im WT, welche zunächst (nach 5d+4) noch beinahe ein Viertel aller ESDC ausmachten. Dabei zeigt die vorliegende Arbeit erstmalig quantitativ, dass die Zunahme der mittleren AP-Amplitude praktisch ausschließlich dadurch bedingt ist, dass der Anteil dieser extrem niederamplitudigen Early-Pacemaker-APs im Verlauf der Differenzierung abnimmt und damit vermutlich durch die relativ seltener werdende Neubildung von ESDC bedingt ist. Denn auch die Häufigkeitsverteilung der Amplituden der restlichen AP entspricht sich im WT dagegen zu allen Untersuchungszeitpunkten praktisch exakt.

Die mittlere MDP liegt dabei zu diesen Zeitpunkten in dem für sie in der Literatur beschriebenen (FIJNVANDRAAT et al. 2003b) Bereich und ändert sich im zeitlichen Verlauf nicht.

4.2.4.2 Depolarisation: V_{max}

Weiterhin ist für ESDC eine Zunahme der mittleren V_{max} im Verlauf der Differenzierung beschrieben worden, wobei gezeigt werden konnte, dass dies im Wesentlichen durch eine Zunahme des schnellen Na$^+$-Stroms (I_{Na}) verursacht ist (FIJNVANDRAAT et al. 2003b, WOBUS et al. 1997, MALTSEV et al. 1994). Obgleich in der frühen Differenzierung genauso APs mit hoher V_{max} wie in der späten Differenzierung solche mit geringer V_{max} festgestellt wurden, finden sich jedoch grundsätzlich zu Beginn der Differenzierung gehäuft APs mit geringer V_{max}, während es in der späteren Differenzierung der ESDC gehäuft solche mit hoher V_{max} sind (FIJNVANDRAAT et al. 2003b).

Diese Entwicklung war auch in den untersuchten WT-Zellen festzustellen. Im Gegensatz zur AP-Amplitude zeigte sich jedoch, dass die Zunahme der V_{max} im Verlauf der Differenzierung nicht alleine auf das Verschwinden der Early-
Diskussion

Pacemaker-APs zurückzuführen ist. Vielmehr scheint sie ein globaler, auch in fortgeschritten differenzierten Zellen noch stattfindender Prozess zu sein. Ein möglicher Grund hierfür wäre ein zunehmender Einbau von Na\textsubscript{v}-Kanälen in die Zellmembran der ESDC im Verlauf der Differenzierung. Und tatsächlich ist in der Literatur beschrieben, dass Na\textsubscript{v} in ganz frühen ESDC zunächst noch nicht oder kaum exprimiert werde. Der Aufstrich des APs sei in ihnen so v.a. durch I\textsubscript{CaL} bedingt und entsprechend deutlich langsamer als in reiferen Zellen mit funktionellem I\textsubscript{Na} (Maltsev et al. 1994). Mit Beginn des Auftretens von I\textsubscript{Na} nimmt die V\textsubscript{max} dann zu (FIJNVANDRAAT et al. 2003b).

4.2.4.3 Repolarisation: APD

4.2.4.4 AP-Zykluslänge

4.2.4.5 DDR

Im Gegensatz zu adulten Zellen ist \(l_f \) in ESDC zunächst nicht oder nur schwach ausgeprägt, nimmt dann allerdings im Verlauf der Differenzierung zu (MALTSEV et al. 1994, ABI-GERGES et al. 2000).

Diesem entsprechend zeigt auch die vorliegende Untersuchung eine kontinuierliche Zunahme der mittleren DDR der WT-ESDC im Verlauf der Differenzierung. Gerade zum frühen Zeitpunkt 5d+4 besteht jedoch keine klare Korrelation zwischen der DDR und der AP-Zykluslänge der untersuchten Zellen. Dieses ist vermutlich dadurch zu erklären, dass gerade in frühen ESDC die Rhythmogenese nicht in erster Linie durch spontane
Membrandepolarisation, sondern auch durch intrazelluläre Ca\(^{2+}\)-Oszillationen geschieht (VIATCHENKO-KARPINSKI et al. 1999).

4.3 Der KO zeigt eine veränderte Differenzierung der ESDC

4.3.1 Diskussion der Vorbefunde

Die bislang einzige Untersuchung der α\(_1\)(I)-Kollagen-KO ESC stammt von Qing Ding (DING 2000, siehe auch 1.5.2). Diese sah in der morphologischen Auswertung im KO initial, d.h. zum Zeitpunkt 5d+4, signifikant höhere Werte als im WT – im KO hatten sich zu diesem Zeitpunkt also in einem höheren Anteil der plattierten EBs bereits Cluster spontan kontrahierender ESDC gebildet. Nach 5d+8 hatte in ihrer Untersuchung der WT allerdings nunmehr ähnlich hohe Werte erreicht wie der KO – auch wenn dessen Werte durchgängig etwas höher blieben, als im WT. Weiterhin war in dieser Studie nach 5d+22 im KO ein verzögerter Abfall der morphologischen Auswertung festzustellen, d.h. der Rückgang (noch) spontan kontrahierender Cluster von ESDC war im KO gegenüber dem WT verlangsamt. In der Folge näherten sich aber erneut die Werte für KO und WT auf ähnlich niedriges Niveau an. (Siehe Abb. 4-1.) Dieser verzögerte Abfall in der morphologischen Auswertung könnte ebenso Zeichen einer beeinträchtigten terminalen Ausreifung der Zellen sein wie Zeichen einer generell vermehrten kardiomyozytären Differenzierung im KO.

![Abb. 4-1: Ergebnisse der morphologischen Auswertung von DING 2000](image)
Gleichzeitig konnte Ding in der ganz frühen Entwicklungsstufe von 5d+3 (Zeitpunkt des Einsetzens erster spontaner Kontraktionen) und 5d+4 im KO signifikant niedrigere (etwa 45/min vs. 60/min im WT) Kontraktionsfrequenzen auf der Ebene ganzer Cluster feststellen. Dieser Unterschied glich sich jedoch in der Folge schnell an und war zu späteren Zeitpunkten nicht mehr festzustellen, wie in Abb. 4-2 dargestellt ist.

![Diagramm](https://example.com/diagram.jpg)

Abb. 4-2: Kontraktionsfrequenzen der Cluster von ESDC (DING 2000)

Ebenso konnte sie, bei allerdings kleinen Stichproben (n=1-3), keine signifikanten Unterschiede der Expression von MLC-2v, ANF, β-MHC, α-MHC und VSM-MHC feststellen.

In den Clustern wurden zum Zeitpunkt 7d+18 im WT gut entwickelte und organisierte Myosin-Filamente festgestellt, während diese im KO nur schwach ausgebildet und irregulär organisiert waren, ebenso die sarkomerischen Strukturen. Ob diese Unterschiede im Myosin sich im Verlauf der Differenzierung noch ausgleichen, wurde nicht gezeigt. Eine kompensatorische Hochregulation von α2(I)-Kollagen wurde nicht festgestellt. Ding schloss hieraus, dass die kardiomyozytäre Differenzierung im KO initial beschleunigt sei und dabei zu den Zeitpunkten 5d+3 und 5d+4 gegenüber dem WT verminderte spontane Kontraktionsfrequenzen zeige, der Verlust der α1(I)-Kollagen-Funktion aber die kardiomyozytäre Differenzierung nur in der sehr frühen Phase beeinflusse und im weiteren Verlauf der Differenzierung kompensiert werde.
Hieraus ergab sich für die vorliegende Untersuchung die Arbeitshypothese, dass im KO die APs der ESDC zum Zeitpunkt 5d+4 gegenüber dem WT verändert seien, sich jedoch rasch im weiteren Verlauf der Differenzierung denen des WT angleichen würden.

4.3.2 **Die Neubildung von ESDC ist im KO initial stark beschleunigt**

Wie im WT sind auch im KO erste kontrahierende ESDC in der morphologischen Auswertung nach 5d+3 festgestellt worden. Dabei ist die Bildung von ESDC im KO offensichtlich initial stark beschleunigt und im Gegensatz zum WT wohl bereits nach 5d+4 weitgehend abgeschlossen: Bereits nach 5d+3 zeigen sich im KO in einem sehr viel höheren Anteil von EBs Cluster spontan kontrahierenden ESDC, als im WT (35% vs. 4%), und bereits am folgenden Tag (5d+4) ist im KO ein Anteil von EBs mit spontan kontrahierenden Zellen zu sehen, welcher im WT erst nach 5d+8 erreicht wurde. Es kommt dann im KO im weiteren Verlauf bis zum Zeitpunkt 5d+8 Gegensatz zum WT auch zu keiner weiteren signifikanten Zunahme dieses Anteils mehr. Gleichzeitig sind im KO bereits nach 5d+4 im KO fast keine (nur 2%) Early-Pacemaker-APs festzustellen, während sie im WT noch ein Viertel aller Zellen ausmachen und im WT auch nach 5d+8 noch in deutlichem Umfang festzustellen sind.

Zusammengenommen ergibt sich aus diesen Befunden der morphologischen Auswertung und den AP-Registrierungen, dass die Neubildung von ESDC im KO initial stark beschleunigt ist und – ganz im Gegensatz zum WT – bereits zum Zeitpunkt 5d+4 weitgehend abgeschlossen ist.

4.3.3 **Die beschleunigte Bildung von ESDC erklärt die initial höhere AP-Amplitude, nicht aber die niedrigere AP-Frequenz im KO**

Zum Zeitpunkt 5d+4 zeigt der KO signifikant längere AP-Zykluslängen, als der WT. Dieser Befund stimmt überein mit der von Ding zu diesem Zeitpunkt beobachteten signifikanten Erniedrigung der Kontraktionsfrequenz der Cluster von ESDC im KO. Dieses Phänomen betrifft dabei global alle KO-
APs zu diesem Differenzierungszeitpunkt und nicht nur isoliert eine Subpopulation von Zellen. Allerdings unterscheiden sich KO und WT dabei nicht hinsichtlich ihrer DDR. Dieses scheinbare Paradoxon von langsamerer Spontanfrequenz bei unveränderter Spontandepolarisation ist vermutlich dadurch zu erklären, dass zu diesem frühen Differenzierungszeitpunkt vorzugsweise noch nicht die spontane Membrandepolarisation, sondern intrazelluläre Ca^{2+}-Oszillationen der wesentliche Mechanismus der Rhythmogenese sind (s.o.). Dies ist ein Hinweis darauf, dass im KO ein Einfluss auf das zellulären Ca^{2+}-Handlungs erfolgen könnte (siehe 4.5.3 (S. 107)).

Der zweite Unterschied zwischen KO- und WT-ESDC zu diesem Zeitpunkt besteht in der im KO erhöhten AP-Amplitude. Wie in 3.4.2.1 dargestellt, zeigt sich dabei, dass diese Unterschiede sowohl im Mittelwert als auch in der Häufigkeitsverteilung der AP-Amplitude alleine darauf zurückzuführen sind, dass es zu diesem Zeitpunkt im WT (noch) eine erhebliche Zahl der niedrigamplitudigen Early-Pacemaker-APs gibt, während es im KO nur ganz wenig solche APs gibt. Wie bereits ausgeführt, ist deren Abwesenheit im KO vermutlich darauf zurückzuführen, dass in diesem nach 5d+4 die Neubildung von ESDC bereits weitgehend abgeschlossen ist. Es kann also angenommen werden, dass diese Unterschiede in der AP-Amplitude ausschließlich durch die initial beschleunigte Differenzierung der Kardiomyozyten aus den KO-ESC bedingt waren. Die im KO verlängerte AP-Zykluslänge jedoch ließ sich nicht hierauf zurückführen, zumal in beiden Zelllinien eine Verkürzung der AP-Zykluslänge im Verlauf der Differenzierung festzustellen war, so dass ein Differenzierungsvorsprung des KO zu diesem Zeitpunkt eher zum Gegenteil, nämlich einer gegenüber dem WT verkürzte AP-Zykluslänge hätte führen sollen.

Zusammenfassend erklärt die initial beschleunigte Differenzierung im KO die in diesem initial signifikant höhere AP-Amplitude. Sie erklärt aber nicht die Unterschiede in den Kontraktionsfrequenzen. Es muss also ein anderer, unmittelbarer Einfluss des α_{1(I)}-Kollagen Verlusts auf die AP-Zykluslänge angenommen werden. Dabei scheint dieser zumindest zu diesem frühen Zeitpunkt nicht in einer Beeinflussung der spontanen Membrandepolarisation
in der Phase 4 des APs zu bestehen, sondern möglicherweise in Einflüssen auf das zelluläre Ca\(^{2+}\)-Handling.

4.3.4 Herausbildung neuer Unterschiede im weiteren Verlauf der Differenzierung

Auch der KO zeigt generell die für die im Verlauf der Differenzierung von ESDC aus der Literatur zu erwartende Entwicklung der zunehmend schnellen De- und Repolarisation sowie der Zunahme der Spontanfrequenz. Dabei wurde nach der Arbeitshypothese erwartet, dass die eben diskutierten initialen Unterschiede zwischen den Zelllinien sich nunmehr im weiteren Verlauf der Differenzierung rasch angleichen würden. Bis zum nächsten Untersuchungszeitpunkt (5d+8) haben sich auch tatsächlich die AP-Amplituden durch den Rückgang der Early-Pacemaker-APs im WT zwischen KO und WT angeglichen und unterscheiden sich nicht mehr signifikant. Weiterhin kommt es im KO zwischen bis 5d+8 zu einer deutlich stärker ausgeprägten Abnahme der AP-Zykluslängen als im WT, so dass sich nach 5d+8 auch die Unterschiede in dieser Hinsicht ausgleichen. Allerdings ist die Veränderung (Zunahme) der \(V_{\text{max}} \) im KO deutlich stärker als im WT und so dass sich als neuer Unterschied zwischen den Zelllinien nunmehr eine im KO signifikant schnellere Depolarisation manifestiert. (Die \(V_{\text{max}} \) war bereits nach 5d+4 gegenüber dem WT etwas erhöht, zu diesem frühen Zeitpunkt jedoch noch nicht signifikant.) Hinsichtlich der sonstigen Parameter sind zu diesem Zeitpunkt keine signifikanten Unterschiede zwischen WT und KO festzustellen, obgleich die Zunahme der DDR im Zeitraum von 5d+4 auf 5d+8, ähnlich wie die Verkürzung der AP-Zykluslänge, im KO stärker ausfiel als im WT.

Interessanterweise setzen sich jedoch entgegen der Arbeitshypothese die sich bereit im Zeitraum zwischen 5d+4 und 5d+8 andeutenden unterschiedlichen Entwicklungen beider Zelllinien nun auch im Zeitraum bis 5d+15 weiter fort: Der KO zeigt nunmehr signifikant kürzere AP-Zykluslängen (d.h. Spontanfrequenzen). Dieses korrelierte mit einer nunmehr im KO signifikant erhöhten DDR. Da in späteren Differenzierungsstufen von ESDC intrazelluläre Ca\(^{2+}\)-Oszillationen wie bereits erörtert wohl weniger Bedeutung
für die Rhythmogenese haben, ist die im KO erhöhte DDR damit auch als Ursache der schnelleren Spontanaktivität anzunehmen. Während es zudem die APD sich im WT 5d+8 und 5d+15 nicht mehr deutlich änderte, nimmt diese im KO erneut eindeutig weiter ab, und ist nunmehr signifikant kürzer als im WT. Dies geschieht dabei durch eine Tendenz hin zu generell kürzeren APDs, während es im vorangehenden Zeitraum vorwiegend dadurch geschah, dass APs mit besonders langen APDs seltener wurden. Letzterer Effekt lässt sich durch eine Ausreifung besonders früher ESDC-Entwicklungsstufen erklären. Der nunmehr generelle Effekt auf die APD im KO bis hin zu 5d+15 spricht dagegen eher für einen direkteren Effekt auf die Repolarisation, statt wie zuvor für einen Entwicklungsvorsprung der KO-ESDC. Auch hinsichtlich der Depolarisation verstärken sich bis 5d+8 die zuvor nach 5d+8 bereits festgestellten Unterschiede zwischen KO und WT: Die V_{max} nimmt gegenüber dem WT noch weiter stark zu. Es zeigen sich dabei innerhalb des KO Zellen mit einer im WT nicht vorkommenden AP-Morphologie finden, welche sich durch ihre extrem hohe V_{max}, kurze APD und hohe Spontanfrequenz auszeichnet sich fast ausschließlich aus Zellen des Differenzierungsgesamtzeitpunkts 5d+15 rekrutiert. Diese stellt damit quasi die Extremform der zu diesem Zeitpunkt zwischen KO und WT bestehenden Unterschiede dar. Weiterhin kein Unterschiede mehr zeigen sich nach 5d+15 aber hinsichtlich der AP-Amplitude. Dieses ist offensichtlich dadurch bedingt, dass nunmehr im WT keine Early-Pacemaker-APs mehr festzustellen sind und es damit keinen Unterschied zwischen den Zelllinien in der Häufigkeit dieser niederamplitudigen APs gibt.

4.3.5 AP-Morphologien im KO
Es wurde bereits diskutiert, dass eine terminale Differenzierung der WT-ESDC innerhalb des Untersuchungs-Intervalls erst in geringem Umfang stattgefunden hat. Auch im KO finden sich nach 5d+15 erst wenige der als terminal differenziert bezeichneten APs. Während von diesen im WT jedoch etwa doppelt so viele Ventrikel-ähnlich sind, wie Vorhof-ähnlich (17% vs. 8,5%), ist im KO (mit 8,9% vs. 16,1%) das Verhältnis praktisch umgekehrt. Es ist jedoch davon auszugehen, dass im KO nicht die ventrikuläre Differenzierung an sich gestört ist, sondern dieses unterschiedliche
Verhältnis vielmehr durch generelle Veränderungen der AP-Morphologie in dieser Zelllinie entsteht: Zum einen ist nicht im KO nur die APD als der letztlich wesentlichste Unterschied zwischen Ventrikel-ähnlich und Vorhof-ähnlich betroffen, sondern auch die Depolarisationsgeschwindigkeit (in der es keinen Unterschied zwischen Ventrikel- und Vorhof-ähnlich geben sollte) ist im KO erhöht. Zudem zeigt der KO auch eine weiter zunehmende erhöhte Spontanfrequenz im Sinne verstärkter schneller Schrittmacheraktivität, was sich durch eine verstärkte atriale Differenzierung nicht erklären ließe. Vor allem aber sind insbesondere auch die Veränderungen der APD nicht auf eine isoliert eine Subpopulation von Zellen bezogen, sondern es zeigt sich im KO nach 5d+15 deutlich eine globale Verkürzung der APD. Somit ist eher von einem generellen Effekt auf die elektrophysiologischen Eigenschaften aller Zellen auszugehen, als von einem auf eine spezielle Zellart beschränkten Effekt.

Es zeigt sich im KO allerdings noch eine zunächst hinsichtlich ihrer extrem hohen V_{max} deutlich abgrenzbare Subgruppe von AP, wobei der Anteil dieser Subgruppe an den gesamten AP mit dem Differenzierungsalter zunimmt. Mit einer Kombination aus extrem schnellem Aufstrich, kurzer APD und hoher Spontanfrequenz bei nicht unterschiedlicher Ruhepolarisation und AP-Amplitude verbildlichte diese Subgruppe von APs gewissermaßen innerhalb des KO die zum Zeitpunkt 5d+15 zwischen KO und WT bestehenden Unterschiede, ohne dass diese auf sie zurückzuführen gewesen wären. Interessanterweise zeigte sie damit Ähnlichkeit mit dem im β_1-Integrin-Knockout beschriebenen (FÄSSLER et al. 1996a) Auftreten aberranter Schrittmacher-ähnlicher AP mit ebenfalls sehr schnellem Aufstrich, kurzer APD und hoher Frequenz. In den in der vorliegenden Arbeit untersuchten WT-ESDC sind vergleichbare APs nicht festzustellen.

4.4 Zusammenfassung der Entwicklungen in WT und KO

Zusammenfassend zeigt der WT eine normale, durch Zunahme der AP-Amplitude, zunehmend schnellere De- und Repolarisation sowie Zunahme der Spontanfrequenz charakterisierte Entwicklung.

Die vorliegende Arbeit zeigt damit am Beispiel des α1(I)-Kollagens erstmalig unmittelbar, dass die Zusammensetzung der Extrazellulärmatrix die elektrophysiologische Differenzierung von Kardiomyozyten beeinflussen kann.
Diskussion

4.5 Einordnung der Ergebnisse

4.5.1 Vergleich mit Vorbefunden zum α_{1}(I)-Kollagen-KO

In den Vorarbeiten von Ding war vermutet worden, dass lediglich initiale Unterschiede zwischen KO und WT bestünden, diese sich aber im Verlauf rasch angleichen würden. In der vorliegenden Arbeit dagegen zeigen sich dagegen im Verlauf der Differenzierung zunehmend Unterschiede zwischen den ESDC beider Zelllinien.

Hinsichtlich der scheinbar diskrepanten Befunde zur Spontanfrequenz der APs und der ganzer Cluster wurden bereits Erklärungen diskutiert. Zudem zeigten sich in der vorliegende Arbeit die Unterschiede der Differenzierung in der morphologischen Auswertung deutlicher, als diese in der Untersuchung von Ding zu sehen waren, so dass möglicherweise einfach auch in dieser Vorarbeit die Unterschiede zwischen KO und WT nicht so deutlich herauskamen, wie in der vorliegenden Arbeit. Weiterhin lassen sich entgegen ihrer Schlussfolgerung auch in Dings Ergebnissen durchaus Hinweise darauf finden, dass auch noch über 5d+7 hinaus Unterschiede zwischen KO und WT bestanden: So setzte in Dings Untersuchung der Abfall der Häufigkeit noch spontan kontrahierender Cluster in der morphologischen Auswertung (welcher im Zeitfenster der vorliegenden Arbeit nicht erfasst wurde) im KO später ein, als im WT. Dieses könnte auf eine gestörte terminale Ausreifung im KO hindeuten. Ebenso war in ihrer Arbeit das ANF zum Zeitpunkt 5d+16 im KO noch deutlich (wenn auch bei n=3 nicht signifikant) erhöht, wobei sich dieses im weiteren Verlauf wieder anglich. ANF wird im gesunden adulten Herzen fast ausschließlich in den chromaffinen Zellen der Vorhöfen exprimiert und wurde interessanterweise auch in ESDC als Marker für die Differenzierung von atrialen Zellen herangezogen (GUAN et al. 1999a, FÄSSLER et al. 1996a). Damit würde ein nach 5d+16 im KO erhöhtes ANF durchaus zu der in der vorliegenden Arbeit festgestellten Verkürzung der APD der KO-APs (d.h. schneller Repolarisation wie in atrialen Zellen) nach 5d+15 passen. Interessanterweise zeigt auch der im Folgenden (siehe 4.5.1.3) noch diskutierte β1-integrin-KO eine (allerdings permanente) Erhöhung des ANF, welcher Parallelen zu den in der vorliegenden Arbeit im

4.5.2 Weitere Befunde zu Kollagenen und ESDC
(BAHARVAND et al. 2005). (Der Mechanismus des Matrigel-Einflusses ist jedoch derzeit unbekannt.)

4.5.3 Integrine als mögliche Vermittler der Effekte im KO

Wie bereits in der Einleitung ausgeführt (1.5.3), sind Integrine die wichtigsten Oberflächenrezeptoren, über welche die ECM auf die Zellen einwirkt. Sie gelten dabei auch als vermutlicher Vermittler elektrophysiologischer Reaktionen auf mechanische Stimuli in Kardiomyozyten (VALENCIK et al. 2006). Wichtigster Bindungspartner der Integrine sind die Kollagene. Es erscheint daher plausibel, dass Integrine auch an der Vermittlung der im α1(I)-Kollagen-KO beobachteten Effekte zumindest beteiligt sind. Dafür spricht ebenfalls, dass im KO Sarkomere und Z-Banden disorganisiert sind (DING 2000) und β₁-Integrin nahe der Z-Scheibe lokalisiert ist und an Aktin-Filamenten ankert.
4.5.3.1 Parallelen von β_1-Integrin-KO und α_1(I)-Kollagen-KO

Wie der α_1(I)-Kollagen-KO, ist auch der β_1-Integrin-KO früh embryonal lethal, wobei auch hier die Differenzierung β_1-Integrin-defizienter ESC die Untersuchung des Einflusses auf die kardiomyozytäre Differenzierung erlaubte. Da Kollagen Typ I wichtigster Bindungspartner des β_1-Integrins ist, kann vermutet werden, dass der Verlust des α_1(I)-Kollagens zu vermindelter Stimulation des β_1-Integrins und damit zu zumindest teilweise ähnlichen bzw. abgeschwächten Effekten führt, wie der β_1-Integrin-KO.

Und tatsächlich zeigt der β_1-Integrin-KO-ESDC interessanterweise Veränderungen der AP-Morphologie (FÄSSLER et al. 1996a) ähnlich (aber stärker ausgeprägt) denen des in der vorliegenden Arbeit untersuchten α_1(I)-Kollagen-KO: In ihm ist ebenfalls die APD verkürzt und die AP-Zykluslänge vermindert. Und auch in diesem KO sind in 14-26 Tage alten Kulturen eine Subgruppe von Zellen mit sehr ähnlichen Eigenschaften (sehr schnelle Depolarisation, kurze APD, hohe Spontanfrequenzen) wie die in der vorliegenden Arbeit identifizierte Subgruppe V_{max}. Desweiteren tritt im β_1-Integrin-KO die Expression des L-Typ Ca^{2+}-Kanals, des ersten herzspezifischen Transkripts in ESDC, verfrüht auf – ein Hinweis auf eine auch im β_1-Integrin-KO initial beschleunigte kardiomyozytäre Differenzierung. Parallelen zeigen β_1-Integrin- und α_1(I)-Kollagen-KO weiterhin in der in beiden gestörten Sarkomer-Entwicklung. Im Gegensatz zum α_1(I)-Kollagen-KO jedoch zeigte sich in einer weiteren Untersuchung des β_1-Integrin-KO (GUAN et al. 2001) ein weitestgehendes Ausbleiben des Abfalls in der morphologischen Auswertung. Dieses ist vermutlich dadurch bedingt, dass sich im β_1-Integrin-KO lediglich passager (14d-24d) einige APs mit Ventrikel-ähnlicher oder Vorhof-ähnlicher Morphologie zeigten und auch zum spätesten Untersuchungszeitpunkt (37d) sämtliche isolierte Zellen starke Schrittmachereigenschaften zeigten (FÄSSLER et al. 1996a). Damit zeigt der β_1-Integrin-KO grundsätzlich schwerere Veränderungen in der AP-Morphologie als der α_1(I)-Kollagen-KO und in ihm ist im Gegensatz diesem die terminale Differenzierung der ESDC und die Genexpression im Verlauf schwerstens gestört. Bei vermutetem gleichem oder ähnlichem Wirkmechanismus ist dieser Unterschied dennoch aus zwei Gründen absolut plausibel: Zum einen ist im α_1(I)-Kollagen-KO die Organisation des Gesamt-

4.5.3.2 Mögliche Mechanismen, über welche Integrine ECM-Einflüsse auf die zelluläre Elektrophysiologie vermitteln

Wie erwähnt sind die adrenergen Modulationsmechanismen in ESDC nicht von Anfang an voll vorhanden, sondern entwickeln sich erst im späteren Verlauf der Differenzierung. So ist die \(\beta\)-adrenergen Modulation des L-Typ Stroms in sehr frühen ESDC nach 7d+2 noch nicht vorhanden, nach 7d+5 erst schwach und erst nach 7d+12 deutlich ausgeprägt (MALTSEV et al. 1999). Dies würde nun erklären, warum die in der vorliegenden Arbeit...
letztlich nach 5d+15 festgestellten Unterschiede zwischen den beiden Zelllinien sich erst im Verlauf der Differenzierung der Zellen entwickeln.

Auf diesen Wegen könnten die eben dargestellten Mechanismen also Integrin-vermittelt den in der vorliegenden Arbeit im α_1(I)-Kollagen-KO beobachteten Phänotyp hervorrufen. Integrine können jedoch, wie bereits erörtert, eine Vielzahl von Wirkungen auf Zellen ausüben, u.a. auf Genexpression und Differenzierung. Es ist also durchaus möglich, dass auch jenseits der eben diskutierten Signalwege Integrin-vermittelte Effekte eine Rolle für den Phänotyp spielen, beispielsweise durch Beeinflussung der Expression von Ionenkanälen.

4.6 Physiologische und pathophysiologische Einordnung der Ergebnisse

In der Physiologie und Pathophysiologie des Herzens lassen sich Beispiele finden, in denen möglicherweise eine Beeinflussung der physiologischen oder pathophysiologischen elektrophysiologischen Entwicklung der Kardiomyozyten durch das Kollagen der ECM stattfindet.

4.6.1 Im Rahmen der Herzinsuffizienz

Bei Herzinsuffizienz kommt es im Rahmen des Remodelings der ECM, zur Zunahme des Kollagen Typ-I-Anteils in der ECM. Die in der vorliegenden Arbeit gemachte Beobachtung der Verkürzung der APD bei Verlust des α_1(I)-Kollagens lässt vermuten, dass umgekehrt eine Vermehrung des Kollagens Typ I zu einer Verlängerung der APD führen kann. Und tatsächlich konnte bei Herzinsuffizienz eine Verlängerung der APD festgestellt werden (NEEF und MAIER 2007), wofür also unter anderem auch die Vermehrung des Kollagens eine Rolle spielen könnte. Funktionell durchaus sinnvoll wäre eine solche Induktion der Verlängerung der APD bei Fibrose insofern, als während der verlängerten Plateauphase es zu einem länger andauernden Ca^{2+}-Einstrom in die Zellen kommen würde (damit verstärkter Kontraktions-Stimulus) und eine längere Zeit für die vollständige Kontraktion zur

4.6.2 **Kollagen im Sinusknoten**

Im Sinusknoten, dem Areal des Herzens, in welchem physiologisch die Zellen mit der höchsten Automatizität sitzen, ist der Kollagen-Anteil in der ECM stark vermindert (James 1967, James 1977, Lu et al. 1993). Die vorliegende Arbeit zeigt, dass vermindertes Kollagen zu erhöhter Automatizität der differenzierten Zellen führt (verkürzter Zyklusverlauf, erhöhter DDR). Lokal vermindertes Kollagen könnte damit ein wichtiger Differenzierungsreiz zur Herausbildung der speziellen Schrittmacherzellen im Sinusknoten sein. Andererseits zeigen jedoch die α₁(I)-Kollagen defizienten ESDC ganz im Gegensatz zu APs des Sinusknotens einen besonders schnellen Aufstrich (hohe \(V_{max} \)) in Phase 0 des APs, so dass hier sicher noch weitere Faktoren eine Rolle spielen.

4.7 **Therapeutische Implikationen**

5 Zusammenfassung

In der vorliegenden Arbeit wurde deswegen der Einfluss des α_1(I)-Kollagen-KO auf die Aktionspotentiale (AP) und spontane Membrandepolarisation von frühen ESDC im Vergleich zum WT mittels Patch-Clamp untersucht. Hierfür wurde zunächst eine Technik etabliert, mit welcher diese Untersuchung auch ohne vorherigen Verdau des Kollagens möglich ist. Es zeigt sich im KO zu Beginn der Differenzierung eine höhere AP-Amplitude. Diese lässt sich durch ein im KO nur noch sehr seltenes Vorkommen früher Schrittmacher-APs erklären, vermutlich bedingt durch eine initial stark beschleunigte kardiomyozytäre Differenzierung im KO. Nicht erklärt werden hierdurch die im KO zunächst niedrigeren spontanen AP-Frequenzen der Zellen, so dass hier andere Mechanismen eine Rolle spielen müssen. Zwar gleichen sich wie erwartet diese Unterschiede zwischen KO und WT in den nächsten Tagen der ESDC-Differenzierung zunächst an. Überraschenderweise bilden sich jedoch im weiteren Verlauf neue Unterschiede zwischen KO und WT heraus: Der KO zeigt nun zunehmend höhere spontane AP-Frequenzen und schnellere spontane Membrandepolarisation sowie eine schnellere De- und Repolarisation der APs.

Es konnte damit erstmalig ein direkter Einfluss von ECM-Bestandteilen auf die elektrophysiologische Differenzierung bzw. Eigenschaften von Kardiomyozyten gezeigt werden. Dieser Einfluss des Kollagens auf die Elektrophysiologie der Zellen könnte physiologisch in der lokalen Spezialisierung von Kardiomyozyten in der Organentwicklung eine Rolle spielen und im pathophysiologischen Kontext dazu dienen, die vermehrte Steifigkeit des Gewebes bei Fibrose in der Kontraktion auszugleichen.
6 Anhang

6.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANF</td>
<td>Atrialer natriuretischen Faktor</td>
</tr>
<tr>
<td>AP</td>
<td>Aktionspotential</td>
</tr>
<tr>
<td>APD</td>
<td>Aktionspotentialdauer</td>
</tr>
<tr>
<td>C<sub>fast</sub></td>
<td>schnelle Komponente des kapazitiven Artefakts</td>
</tr>
<tr>
<td>C<sub>slow</sub></td>
<td>langsame Komponente des kapazitiven Artefakts</td>
</tr>
<tr>
<td>DD</td>
<td>Diastolische Depolarisation</td>
</tr>
<tr>
<td>DDR</td>
<td>Diastolische Depolarisationsrate</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>EB</td>
<td>„Embryoid Body“, Embryoidkörperchen</td>
</tr>
<tr>
<td>ECM</td>
<td>Extrazellulärmatrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>ESC</td>
<td>„Embryonic stem cells“, embryonale Stammzellen</td>
</tr>
<tr>
<td>ESDC</td>
<td>„Embryonic Stem cell Derived Cardiomyocytes“, aus embryonalen Stammzellen differenzierte Kardiomyozyten</td>
</tr>
<tr>
<td>FCS</td>
<td>„Fetal Calf Serum“, fetales Kälberserum</td>
</tr>
<tr>
<td>FL</td>
<td>„Feeder Layer“, ko-kultivierte Fibroblasten, welche die Stammzellen „ernähren“</td>
</tr>
<tr>
<td>HCN-Kanäle</td>
<td>„Hyperpolarization-Activated Cyclic Nucleotide gated“ – durch Hyperpolarisation aktiviert und durch zyklische Nukleotide gesteuerte Kationen-Kanäle</td>
</tr>
<tr>
<td>I<sub>CaL</sub></td>
<td>L-Typ-Calcium-Strom</td>
</tr>
<tr>
<td>I<sub>f</sub></td>
<td>Hyperpolarisations-aktivierter nichtselektiver Kationenstrom</td>
</tr>
<tr>
<td>I<sub>K</sub></td>
<td>Kalium-Strom</td>
</tr>
<tr>
<td>I<sub>K1</sub></td>
<td>Einwärts-gleichrichtender Kaliumstrom</td>
</tr>
<tr>
<td>IMC</td>
<td>„Inner Cell Mass“, innere Zellen der Blastozyste</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove’s modified DMEM</td>
</tr>
<tr>
<td>I<sub>Na</sub></td>
<td>Natrium-Strom</td>
</tr>
<tr>
<td>KO</td>
<td>Knockout</td>
</tr>
</tbody>
</table>
LIF: Leukämie inhibierender Faktor
MDP: Maximale diastolische Polarisation
mESC: Murine embryonale Stammzellen
MHC: „Myosin heavy chain“, Myosin-schwere-Kette
MLC: „Myosin Light Chain“, Myosin-leichte-Kette
MMC: Mitomycin C
MTG: α-Monothioglycerol 3-mercaptop-1,2-propandiol
Na⁺-Kanäle: spannungsabhängige Natrium-Kanäle
NEAA: „Non Essential Amino Acids“, nichtessentielle Aminosäuren
PBS: „Dulbecco’s Phosphate Buffered Saline“, Phosphat-gepufferte Kochsalzlösung
RA: „Retinoic Acid“, Retinsäure
rER: Rauhes endoplasmatisches Retikulum
\(t_{\text{Vmax}} \): Zeitpunkt der maximalen Depolarisationsgeschwindigkeit \((V_{\text{max}}) \)
VDCC: Voltage Dependent Calcium Channels – spannungsabhängige Calcium-Kanäle (L-Typ)
\(V_{\text{max}} \): Maximale Depolarisationsgeschwindigkeit
\(V_{\text{mem}} \): Membranpotential
VSM: „Vascular smooth muscle“, glatte Muskulatur der Gefäße
WT: Wildtyp
6.2 Abbildungsverzeichnis

Abb. 1.1: S. 2
Abb. 1.2: S. 3
Abb. 1.3: S. 4
Abb. 1.4: S. 7
Abb. 1.5: S. 9
Abb. 1.6: S. 16
Abb. 1.7: S. 19
Abb. 1.8: S. 21
Abb. 1.9: S. 22
Abb. 1.10: S. 24
Abb. 1.11: S. 27
Abb. 2.1: S. 36
Abb. 2.2: S. 38
Abb. 2.3: S. 44
Abb. 2.4: S. 50
Abb. 2.5: S. 51
Abb. 3.1: S. 60
Abb. 3.2: S. 62
Abb. 3.3: S. 63
Abb. 3.4: S. 64
Abb. 3.5: S. 65
Abb. 3.6: S. 66
Abb. 3.7: S. 67
Abb. 3.8: S. 67
Abb. 3.9: S. 68
Abb. 3.10: S. 69
Abb. 3.11: S. 69
Abb. 3.12: S. 70
Abb. 3.13: S. 71
Abb. 3.14: S. 73
Abb. 3.15: S. 75
Abb. 3.16: S. 76
Abb. 3.17: S. 77
Abb. 3.18: S. 77
Abb. 3.19: S. 78
Abb. 3.20: S. 79
Abb. 3.21: S. 80
Abb. 3.22: S. 81
Abb. 3.23: S. 82
Abb. 3.24: S. 82
Abb. 3.25: S. 83
Abb. 3.26: S. 85
Abb. 3.27: S. 86
Abb. 3.28: S. 87
Abb. 4.1: S. 97
Abb. 4.2: S. 98
Abb. 6.1: S. 122

6.3 Tabellenverzeichnis

Tab. 2.1: S. 53
Tab. 2.2: S. 53
Tab. 2.3: S. 53
Tab. 2.4: S. 54
Tab. 2.5: S. 54
Tab. 2.6: S. 54
Tab. 2.7: S. 54
Tab. 2.8: S. 55
Tab. 2.9: S. 55
Tab. 2.10: S. 55
Tab. 2.11: S. 55
Tab. 2.12: S. 55
Tab. 3.1: S. 61
Tab. 6.1: S. 119
Tab. 6.2: S. 120
Tab. 6.3: S. 121
6.4 APD80 und APD90 tabellarisch

<table>
<thead>
<tr>
<th>WT 5d+4</th>
<th>KO 5d+4</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD80 (ms)</td>
<td>APD90 (ms)</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>22,4</td>
</tr>
<tr>
<td>Standardfehler</td>
<td>1,6</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>64</td>
</tr>
<tr>
<td>T-Test vs.</td>
<td>0,167</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WT 5d+8</th>
<th>KO 5d+8</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD80 (ms)</td>
<td>APD90 (ms)</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>17,4</td>
</tr>
<tr>
<td>Standardfehler</td>
<td>1,2</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>50</td>
</tr>
<tr>
<td>T-Test vs.</td>
<td>0,639</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WT 5d+15</th>
<th>KO 5d+15</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD80 (ms)</td>
<td>APD90 (ms)</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>16,1</td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,8</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>47</td>
</tr>
<tr>
<td>T-Test vs.</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Tab. 6-1
6.5 RT50, RT80 und RT90 tabellarisch

WT 5d+4

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>RT50 (ms)</th>
<th>RT80 (ms)</th>
<th>RT90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,3</td>
<td>20,2</td>
<td>24,6</td>
<td></td>
</tr>
<tr>
<td>Standardfehler</td>
<td>1,0</td>
<td>1,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

KO 5d+4

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>RT50 (ms)</th>
<th>RT80 (ms)</th>
<th>RT90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,8</td>
<td>17,9</td>
<td>21,5</td>
<td></td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,8</td>
<td>1,2</td>
<td>1,5</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

T-Test vs. WT 5d+4 (p=) 0,273 0,228 0,203 n.s. n.s. n.s.

WT 5d+8

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>RT50 (ms)</th>
<th>RT80 (ms)</th>
<th>RT90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,3</td>
<td>15,0</td>
<td>17,8</td>
<td></td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,6</td>
<td>0,9</td>
<td>1,2</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

KO 5d+8

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>RT50 (ms)</th>
<th>RT80 (ms)</th>
<th>RT90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,0</td>
<td>15,2</td>
<td>18,1</td>
<td></td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,5</td>
<td>0,6</td>
<td>0,8</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>

T-Test vs. WT 5d+8 (p=) 0,689 0,863 0,833 n.s. n.s. n.s.

WT 5d+15

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>RT50 (ms)</th>
<th>RT80 (ms)</th>
<th>RT90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,6</td>
<td>16,6</td>
<td>19,7</td>
<td></td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
</tbody>
</table>

KO 5d+15

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>RT50 (ms)</th>
<th>RT80 (ms)</th>
<th>RT90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7</td>
<td>12,7</td>
<td>15,4</td>
<td></td>
</tr>
<tr>
<td>Standardfehler</td>
<td>0,4</td>
<td>0,6</td>
<td>0,8</td>
</tr>
<tr>
<td>Anzahl APs</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>

T-Test vs. WT 5d+15 (p=) 0,000 0,000 0,000 p<0,001 p<0,001 p<0,001

Tab 6-2
6.6 Ergebnisse Vorversuche Hanging Drops

200 Zellen pro Hanging Drop

<table>
<thead>
<tr>
<th>Zeiteinheit</th>
<th>Genotyp</th>
<th>Zeitpunkt</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>5d+2</td>
<td>0.00</td>
<td>0.00</td>
<td>1.43</td>
<td>0.72</td>
<td>16.50</td>
<td>5.14</td>
<td>43.76</td>
<td>13.27</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+3</td>
<td>0.00</td>
<td>0.00</td>
<td>10.68</td>
<td>2.24</td>
<td>38.45</td>
<td>8.50</td>
<td>57.24</td>
<td>7.90</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>5d+4</td>
<td>0.00</td>
<td>0.00</td>
<td>5.72</td>
<td>0.73</td>
<td>39.35</td>
<td>4.62</td>
<td>80.77</td>
<td>4.36</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+8</td>
<td>0.00</td>
<td>0.00</td>
<td>46.27</td>
<td>10.15</td>
<td>79.64</td>
<td>8.34</td>
<td>88.94</td>
<td>5.31</td>
<td></td>
</tr>
</tbody>
</table>

300 Zellen pro Hanging Drop

<table>
<thead>
<tr>
<th>Zeiteinheit</th>
<th>Genotyp</th>
<th>Zeitpunkt</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>5d+2</td>
<td>0.00</td>
<td>0.00</td>
<td>5.22</td>
<td>0.72</td>
<td>39.35</td>
<td>4.62</td>
<td>80.77</td>
<td>4.36</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+3</td>
<td>0.00</td>
<td>0.00</td>
<td>22.78</td>
<td>4.82</td>
<td>65.93</td>
<td>5.25</td>
<td>83.36</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>5d+4</td>
<td>0.00</td>
<td>0.00</td>
<td>33.57</td>
<td>4.82</td>
<td>65.93</td>
<td>5.25</td>
<td>83.36</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+8</td>
<td>0.00</td>
<td>0.00</td>
<td>33.57</td>
<td>4.82</td>
<td>65.93</td>
<td>5.25</td>
<td>83.36</td>
<td>4.42</td>
<td></td>
</tr>
</tbody>
</table>

400 Zellen pro Hanging Drop

<table>
<thead>
<tr>
<th>Zeiteinheit</th>
<th>Genotyp</th>
<th>Zeitpunkt</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>5d+2</td>
<td>0.00</td>
<td>0.00</td>
<td>2.85</td>
<td>0.70</td>
<td>30.79</td>
<td>5.40</td>
<td>74.34</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+3</td>
<td>0.00</td>
<td>0.00</td>
<td>33.57</td>
<td>4.82</td>
<td>65.93</td>
<td>5.25</td>
<td>83.36</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>5d+4</td>
<td>0.00</td>
<td>0.00</td>
<td>33.57</td>
<td>4.82</td>
<td>65.93</td>
<td>5.25</td>
<td>83.36</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+8</td>
<td>0.00</td>
<td>0.00</td>
<td>33.57</td>
<td>4.82</td>
<td>65.93</td>
<td>5.25</td>
<td>83.36</td>
<td>4.42</td>
<td></td>
</tr>
</tbody>
</table>

800 Zellen pro Hanging Drop

<table>
<thead>
<tr>
<th>Zeiteinheit</th>
<th>Genotyp</th>
<th>Zeitpunkt</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
<th>% EBs</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>5d+2</td>
<td>0.00</td>
<td>0.00</td>
<td>1.43</td>
<td>0.72</td>
<td>27.20</td>
<td>3.99</td>
<td>47.92</td>
<td>4.68</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+3</td>
<td>0.00</td>
<td>0.00</td>
<td>22.81</td>
<td>4.49</td>
<td>54.51</td>
<td>5.05</td>
<td>65.91</td>
<td>5.94</td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>5d+4</td>
<td>0.00</td>
<td>0.00</td>
<td>22.81</td>
<td>4.49</td>
<td>54.51</td>
<td>5.05</td>
<td>65.91</td>
<td>5.94</td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>5d+8</td>
<td>0.00</td>
<td>0.00</td>
<td>22.81</td>
<td>4.49</td>
<td>54.51</td>
<td>5.05</td>
<td>65.91</td>
<td>5.94</td>
<td></td>
</tr>
</tbody>
</table>

Tab 6-3: Ergebnisse der morphologischen Auswertung der Vorversuche mit verschiedenen Zellzahlen pro Hanging Drop
Vorversuche: Vergleich der morpholog. Auswertungen
Anteil EB mit Clustern spontan kontrahierender ESDC

Abb. 6-1: Zeitlicher Verlauf des Anteils von EB mit spontan kontrahierenden ESDC in der morphologischen Auswertung für die Differenzierungsversuche in WT (oben) und KO (unten)
7 Literaturverzeichnis

Hescheler J, Fleischmann BK (2002): Regulation of voltage-dependent Ca2+ channels in the early developing heart: role of beta1 integrins. Basic Res Cardiol 97, Supplement 1, 153-158

King MW (2005 (Abrufdatum)):

Löffler G: Basiswissen Biochemie mit Pathobiochemie. 3. Auflage; Springer-Verlag, Berlin 1999

Martin GR (1981): Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78, 7634–7638

Molleman A: Patch Clamping. John Wiley & Sons Ltd., Chichester 2003

Nerbonne JM, Kass RS (2005): Molecular physiology of cardiac repolarization. Physiol Rev 85, 1205-1253

hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10, 494-501

Piper HM: Herz; in: Lehrbuch Vorklinik, Teil C; Schmidt RF, Unsicker K, Kurtz A, Schartl M (Hrsg.); Deutscher Ärzte-Verlag / Köln 2003, 139-177

undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol Int 20, 579–587

Schmidt RF, Thews G (Hrsg.): Physiologie des Menschen. 27. Auflage; Springer-Verlag, Berlin 1997

Sigworth FJ (1986): The patch clamp is more useful than anyone had expected. Fed Proc 45, 2673-2677

Sperelakis N (1978): Cultured heart cell reaggregate model for studying cardiac toxicology. Environ Health Perspect 26, 243-267

Van der Rest M, Garrone R „Collagen family of proteins” (1991) FASEB J 5, 2814–2823

Wobus AM, Wallukat G, Hescheler J (1991): Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173-182

Verzeichnis von Publikationen, die sich auf die vorliegende Dissertationsschrift beziehen

Danksagungen

Mein besonderer Dank gilt meinem Betreuer und Doktorvater, Prof. Dr. med. Lars S. Maier, für freundliche Hilfe, praktische wie theoretische Unterstützung und Motivation. Das Vorbild seiner Begeisterung für das wissenschaftliche Arbeiten war es nicht zuletzt, was mich dazu motiviert hat, weiterhin wissenschaftlich tätig sein zu wollen. Auch im Verlauf der letzten Jahre war er für mich eine Quelle der Motivation und des profunden wissenschaftlichen und klinischen Verständnisses.

Ganz herzlich möchte ich mich auch bei Dr. med. Elisabeth M. Zeissberg (Harvard University, Boston/USA) bedanken für die Überlassung des Themas, das tatkräftige Anschieben der Untersuchungen, Rat in vielen praktischen und theoretischen Fragen sowie nicht zuletzt die geduldige Motivierung in schwierigen Zeiten.

Prof. Dr. rer. nat. Anna M. Wobus danke ich herzlich für die Überlassung der untersuchten Zelllinien sowie Dr. rer. nat. Qing Ding für die erste Untersuchung dieser Zellen, aus welcher sich erst der Anstoß für die vorliegende Arbeit ergab.

Weiterhin danken möchte ich Dr. rer. nat. Kaomei Guan-Schmidt, in deren gemeinsamem Labor ich freundlicherweise die Zellkulturen durchführen durfte.

Ebenfalls gilt mein tiefer Dank Dr. med. Eckard Picht, welcher mich in die Tiefen und Untiefen des Patch-Clampings eingeführt.

Nicht zuletzt möchte ich mich auch bei meinen Mit-Doktoranden im Stammzelllabor bedanken, ganz besonders bei Diana Lages (deren Aufzeichnungen zur Stammzellkultur Gold wert waren) und Frieder Wolf, sowie bei unseren TAs Susanne Burkhardt und Anke Cierpka für die freundliche Zusammenarbeit und gute Laune.

Abschließend möchte ich meinen Dank Prof. Dr. med. Gerd Hasenfuß aussprechen, der mich nicht nur in seiner Abteilung die Doktorarbeit machen ließ, sondern mir nun auch die Gelegenheit zu einer hochinteressanten klinischen Ausbildung sowie zur weiteren wissenschaftlichen Tätigkeit gibt.
Lebenslauf