The Geomorphic Response of the Passive Continental Margin of Northern Namibia to Gondwana Break-Up and Global Scale Tectonics

Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

> vorgelegt von Matthias Johannes Raab aus Göttingen

> > Göttingen 2001

D7

Referent:	Prof. Dr. K. Weber
Korreferent:	Dr. R.W. Brown
Tag der mündlichen Prüfung:	21.06.2001

Contents

Ac	iv iv				
1	Introduction				
	1.1	Aim .		1	
	1.2	Purpos	se and Scope	1	
	1.3	Outlin	e of this Thesis	3	
2	Geo	logy, Ge	eomorphology and Tectonics	5	
	2.1	Introdu	uction	5	
	2.2	Geolog	gy	6	
		2.2.1	Overview	6	
		2.2.2	Origin of Major Lineaments	8	
		2.2.3	The Karoo Igneous Province	9	
		2.2.4	The Paraná-Etendeka Province	10	
		2.2.5	The Damaraland Igneous Province	11	
		2.2.6	Cretaceous Dyke Swarms	13	
		2.2.7	Gondwana Fragmentation	14	
		2.2.8	Offshore Basins	16	
		2.2.9	Post Break-Up Geology	17	
	2.3	Geomo	prphology	18	
		2.3.1	Quantifying Geomorphic Development	18	
		2.3.2	Morphology of the Margin	19	
		2.3.3	Evolution of High Elevated Margins	20	
	2.4	Tecton	iics	23	
3	Fiss	ion Tra	ck Thermochronology	25	
	3.1	Introdu	uction	25	
	3.2	Fission	1 Track Data	29	
		3.2.1	Track Formation	29	
		3.2.2	Track Annealing and the Effects of Temperature	31	
		3.2.3	Compositional Affects on Annealing	32	
	3.3	Conce	pts behind Age Determination	34	
		3.3.1	Methods	34	

		3.3.2 Age Equations	35	
		3.3.3 Error Calculation	39	
		3.3.4 Calculation of Uranium Content	40	
	3.4	Deriving Thermal Histories from Fission Track Data	41	
		3.4.1 Presentation of Fission Track Data	41	
		3.4.2 Vertical Profiles	43	
		3.4.3 Thermal Modelling	46	
4	Fiss	ion Track Results from Vertical Relief Profiles	48	
	4.1	Introduction	48	
	4.2	Thermal and Numerical Modelling	50	
	4.3	Calculation of Palaeogeothermal Gradient and Denudation	50	
	4.4	The Brandberg Profile	51	
		4.4.1 Fission Track Results	54	
		4.4.2 Discussion	56	
		4.4.3 Summary	61	
	4.5	The Okenyenya Profile	63	
		4.5.1 Fission Track Results	63	
		4.5.2 Discussion	64	
		4.5.3 Summary	68	
	4.6	The Windhoekgraben Profile	71	
		4.6.1 Fission Track Results	71	
		4.6.2 Discussion	71	
		4.6.3 Summary	75	
	4.7	Conclusions	77	
5	Late	e Cretaceous Reactivation of Major Shear Zones in		
	Nor	orthern Namibia 79		
	5.1	Introduction	79	
	5.2	Methodology	83	
	5.3	Previous Fission Track Work	83	
	5.4	Fission Track Results	84	
	5.5	Thermal Modelling	89	
	5.6	Constraining Reactivation and Denudation	89	
	5.7	Discussion	91	
	5.8	Conclusions	95	
6	Den	udation Chronology of Northern Namibia	100	
	6.1	Introduction	00	
	6.2	Previous Work in Low Temperature Thermochronology 1	101	
	6.3	Quantifying Long-Term Denudation	02	
	6.4	Denudation Chronology	03	
	6.5	Summary	16	

7	Concluding Statements and Ideas for Future Work	117				
Ap	pendix	120				
A	Applied Statistics					
	A.1 Introduction	120				
	A.2 The Chi-Square Test	120				
	A.3 Method of Least Squares	121				
	A.4 Weighted Mean	122				
B	B Sample Preparation and Experimental Conditions					
	B.1 Introduction	124				
	B.2 Sample Preparation	125				
	B.3 Experimental Conditions	126				
	B.3.1 Fission Track Dating	126				
	B.3.2 Track Length Measurements	127				
	B.3.3 Calibration	127				
	B.3.4 Microprobe Analysis	128				
С	Fission Track Data Files	131				
	C.1 Sample Localities and Descriptions	132				
	C.2 Analytical Results	135				
	C.3 Raw Data Files	141				
D	GMT-Scripts					
	D.1 Introduction	222				
	D.2 Contouring Fission Track Data	222				
	D.3 Generating Location Maps	223				
	D.4 Generating Age Dependent Location Map	224				
	D.5 Generating Maps for Animations	225				
E	Data-CD	235				
	E.1 Contents	235				
Re	erences	236				

Acknowledgments

Writing a PhD-thesis is a huge undertaking and a very long process. It takes years of research and experience, involving a lot of happy days with splendid ideas and research results, and many less happy days with disappointments and scientific and financial setbacks.

The path towards a PhD is a stony one, but luckily I was fortunate enough to have more people than I would ever have imagined to help, support and encourage me to reach the end of that path, and I would like to express my appreciation to all of them.

First of all, I would like to thank Prof. Klaus Weber, my supervisor, for his constant support and his understanding. Throughout this research and several field campaigns in Namibia he made countless helpful, inspiring suggestions and observations. It was he who initiated this project with a funding from the Deutsche Forschungsgemeinschaft (DFG), no. WE488-48/1, and succeeded to keep my fundings, and consequently this research, running.

Dr. Roderick Brown, my co-supervisor, supplied me with all the information, scripts and papers possible, and guided me through all the tasks of my fission track thesis. This enabled me to get a much better perspective on my own results. Without his input this thesis would have been only a fraction of what it is now. Over the previous two and a half years he has guided me, has provided profound advice, a car, fine dining and friendship.

Dr. Roderick Brown is a member of the Australian Fission Track Research Group. I was fortunate enough to meet members of the group in Harare/Zimbabwe in 1997. All the group members are wonderful people and their intellectual input and support were fundamental for my research. Their unique contributions, their positive and encouraging influence on me, and their thirst for knowledge have had a huge impact on my work.

Specifically, I thank Prof. Andrew Gleadow, the head of department at La Trobe University and, later at The University of Melbourne, for inviting me to Australia, and giving me the privilege to work with his group in Melbourne for more than two and a half years. He was immensely helpful and supportive, and through his invitation made it possible to continue, and ultimately carry out my research.

I am also grateful to Dr. Barry Kohn, the managing director of the Fission Track Research Group. He always took the time to listen to my problems and ideas, and found ways for me to support my family financially. I greatly benefited from his numerous suggestions for my thesis, and for my first publication.

Dr. Kerry Gallagher is to be thanked for modelling my data with Suntrax,

converting them into a useful format (GMT readable) for me. His speedy return of a revised manuscript of mine, which was important for this thesis, was also very much appreciated.

Dr. Hermione Cockburn's expertise and constructive comments on special topics in this thesis were of great help. Dr. Asaf Raza shared his knowledge of the most sophisticated way of fission track analysis and preparation with me, and provided many useful advice and strategies as well as friendly encouragement at all times. Dr. Paul O'Sullivan trained me to become a confident operator and gave me deep insight into the variability of counting. I would like to thank all three of them very much.

I am also grateful to Eva Wynn who thoroughly proofread this thesis. During the last years she has become a very important and close friend to my family and of me. It is a pleasure knowing her.

Furthermore I would like to thank David Belton, on the one hand, for his friendship and unending readiness to help; and, on the other, for great scientific discussions we engaged in. Special thanks, too, to Dr. Sara Vassolo and Ingo Bardenhagen for their friendship and support in Windhoek/Namibia during my fieldworks. We had a magnificent time, with interesting talks, good fun, good wine and good food.

Anja Böhm, Ulrich Hilken, Jeannette and Dr. Thomas Becker, who accompanied the Brandberg expedition in 1996; my "Hiwis" in Göttingen, Helge Knieriem, Markus Nörtemann, Christian Gross, Annett Büttner, Thomas Wink and Thomas Buchholtz, should all be mentioned, too. I thank them for their work and all the good and bad times we had together.

Also, I am grateful to the Deutscher Akademischer Austauschdienst (DAAD). Their scholarship, which was awarded to me for the period from September 1998 until February 2000, was crucial for a successful start of this project in Australia.

Finally, I am most grateful to my wife Claudia and my son Connor for their love. They were always with me in the most difficult and demanding time of my life.

Melbourne, Australia July 5, 2001 Matthias Raab

Chapter 1

Introduction

1.1 Aim

The overall aim of this thesis is to elucidate the low temperature thermotectonic evolution of the passive continental margin of northern Namibia, southwest Africa. The thesis seeks to provide detailed thermochronologic data to augment the currently available regional data coverage for this area, by utilising apatite fission track analysis. Apatite fission track analysis constitutes a powerful and unique tool for quantifying the cooling rates of rocks in the shallow crust (3 - 5 km) that occur in response to surface processes such as denudation and tectonic activity.

1.2 Purpose and Scope

Plate tectonics may successfully explain the primary topographic features of the Earth's surface such as mountain belts, the division between continents and oceans, and sedimentary basins at plate boundaries. But finding sufficient explanations for the more complex tectonic and geomorphic evolution of passive continental margins, including the feedback effects of surface processes such as denudation and sedimentation, still remains a problem. This is particularly true in regions like northern Namibia where the topography is highly variable, and the interaction with tectonics appears complex.

This insufficiency of explanation is mainly due to the fact that our understanding of how landscapes evolve over time is restricted; and the restriction in turn is caused by a lack of data of a certain kind - that is data which are sensitive to denudation of the upper few kilometers of the crust.

To a certain extent, the onshore geology of Namibia provides useful con-

straints on gross estimates of denudation and scarp retreat that have occurred since the break-up of the South Atlantic. For example, numerous kimberlite intrusions and associated alkaline pipes have been recognised inland of the continental margins in South Africa and Namibia. The preserved original crater infill that is to be found in some of these kimberlites, suggests that the net denudation since the Late Cretaceous to Early Tertiary has been relatively insignificant, i.e. in the order of less than 100 m (Janse 1975, Smith 1986, DeWit et al. 1992). In contrast, subvolcanic alkaline intrusions of the Damaraland Igneous Province closer to the continental edge imply large amounts of denudation in the order, in some areas, of approximately 2 km. For example, the Brandberg complex intruded into the crust approximately 132 Ma ago. Nowadays, it forms the highest mountain in Namibia (2573 m) as an isolated massif, rising 1.8 km above the surrounding plains. This indicates that at least 1.8 km of denudation has occurred locally since the Early Cretaceous.

Furthermore, geological information on rates of scarp retreat can be inferred from dated in situ fossilised bird eggs, such as those found in the Tsondab Sandstone Formation in central Namibia. Eggs of middle Miocene age (ca. 13 Ma), as well as younger eggs, were found between the Tsondab and Tsauchab rivers, approximately 20 km west of the base of the escarpment (Pickford et al. 1995, Senut and Pickford 1995). It is highly significant that these remnants of the Tsondab Sandstone Formation occur immediately seaward of the present escarpment in this region, because they imply an average escarpment retreat of less than 1.5 km over the past 13 Ma (Cockburn 1998, Gallagher and Brown 1999a). This rate is inconsistent with classical escarpment evolution models, and highlights the need for further information about landscape evolution in this area.

Estimates of present denudation rates can also be derived from various other sources, such as sediment yield data from large drainage basins (Summerfield and Hulton 1994). Existing estimates of long term rates and amounts of onshore denudation (based on calculations of marine sediment volumes (Rust and Summerfield 1990)) have a weak spatial resolution since the information is averaged over large and poorly constrained areas. These calculations are undoubtedly important as they provide first order estimates of denudation on a regional scale. Rust and Summerfield's (1990) approach indicates, for example, that the total volume of sediment within the Orange and Walvis Basin is equivalent to an average of 1.8 km of post-rift denudation over the total area of the Orange river. But the problem remains that both, the chronology and spatial distribution of onshore denudation are prone to be highly variable, depending as they do on a number of diverse factors, such as: post break-up tectonics; the pattern of drainage development; lithological heterogeneity; and long term climatic variations. In fact, many methods to quantify denudation are insensitive to these factors.

Rates and patterns of denudation provide a fundamental insight into the re-

sponse of landscapes to various tectonic processes, and provide a quantitative calibration of the evolution of the Earth's surface. Therefore it is of great importance to discriminate phases of accelerated denudation; and remains a fundamental task to improve on existing, but unsatisfactory, averages of erosion rates over several tens of million years.

Advances in low temperature thermochronology during the last 25 years have made it possible to apply techniques sensitive to temperatures below ~110°C. Since the development of apatite fission track analysis (~110°C) and U/Th-He (~70°C) dating, it has become possible to estimate the timing of cooling from temperatures found in the upper few kilometers of the Earth's crust over long periods of time. In fact, apatite fission track thermochronology is effective over time scales of millions, to hundreds of millions, of years. It can be applied directly to enhance understanding of long-term landscape evolution. Samples can be collected relatively easily from large areas of the crust that enable an insight into regional patterns of long term crustal cooling and denudation, and, compared with previous approaches offer a high spatial resolution (Gleadow and Brown 2000).

In order to estimate denudation rates, and to investigate the landscape evolution relating to the topic of this thesis, 195 samples were collected and processed. Apatite fission track thermochronology has been applied to 158 samples distributed over a large area in central and northern Namibia between 19°30'S and 23°55'S latitude and 14°15'E and 17°50'E longitude. The sampling strategy was to extend a preexisting dataset by Haack (1983) and Brown (1992) into areas without apatite fission track data, as well as to collect samples from vertical relief profiles. Vertical relief profiles were sampled across the Brandberg igneous complex, the Spitzkoppe, the Erongo crater, the Windhoekgraben, and the Spreetshoogte Pass. Only samples from the Brandberg, Windhoekgraben had sufficient apatite yields. Apatite mounts from the Okenyenya complex were provided by Roderick Brown. In total 158 apatite fission track analyses were performed, and the results are presented in this thesis.

1.3 Outline of this Thesis

The thesis has been divided into seven chapters: the first three chapters introduce the study, the methodology and approach, as well as the regional geological setting of Namibia. The power of vertical profile dating is demonstrated in Chapter Four, constraining the palaeogeothermal gradient for three different locations in the Late Cretaceous. Chapter Five elucidates in detail the application of fission track analysis to assessing crustal movements, and to constraining the timing and magnitude of tectonic reactivation. Parts of this chapter have been accepted for publication in Tectonophysics (Raab et al. in press). The sixth chapter reviews the denudation chronology derived from the apatite fission track data on a subcontinental scale. An introduction into previous thermochronological studies is also given here. The final chapter summarises the outcome of this research, and presents ideas for future work.

Five appendices conclude this thesis. Appendix One covers the statistical methods that were necessary for data calculations. The background to sample preparation and experimental conditions is given in the second appendix. A brief sample description, and the full analytical results of fission track dating, are listed in the third appendix. For generating maps and animations, the Generic Mapping Tool (GMT), version 3.3.4, was used (Wessel and Smith 1991). All major GMT-scripts are presented in Appendix Four. Animated movies and raw data files are on the CD-ROM attached to this thesis (Appendix E).

Chapter 2

Geology, Geomorphology and Tectonics

2.1 Introduction

This chapter reviews the main geological, geomorphological and tectonic events and features of the passive margin of northern Namibia that are relevant for understanding the low temperature thermochronology in this region. The history starts with the Pan-African Damara Orogeny in the Neoproterozoic, when peak metamorphism of the Damara Orogeny reset the geological clock in terms of the low temperature history. This "resetting" can be inferred by apatite fission track analysis. Consequently, apatite fission track ages older than the Cambrian are unlikely to be found in the study area.

For an overall understanding of low temperature thermochronology and landscape evolution in northern Namibia, the following events are of major importance: global scale tectonics; the reactivation of pre-existing shear zones; sedimentary coverage; denudation; and the development of offshore basins. These mechanisms are discussed in detail in the Geology section.

The geomorphology section presents ideas about the evolution of the distinctive morphology of the onshore component of passive margins. Passive continental margins arise from the process of extension, rifting and ocean basin formation that originate from the breaking apart of tectonic plates and the divergent motion of the lithospheric fragments. The primary results of this divergence are subsidence and the formation of basins, which are fairly well known and well researched features (Allen and Allen 1990). In contrast, other resulting features, such as escarpments that characterise passive margin topography in southern Africa and parts of South America, India, Australia and the Red Sea, remain problematic. Their evolution needs to be addressed in the context of surface processes and tectonics.

A brief summary of Phanerozoic crustal reactivation is given in the Tectonics section. This section also refers to continental deformation in response to changes in the spreading geometry of Central and South Atlantic Ocean basins, that are closely related to the onshore response of the field area.

2.2 Geology

2.2.1 Overview

The regional basement structure in northern Namibia is dominated by the northeast to southwest striking intracontinental branch of the Pan-African Damara mobile belt (Tankard et al. 1982). The Damara Orogen separates the Congo and Kalahari cratonic terranes, and is divided into several tectonostratigraphic zones. The main units are subdivided by lineaments forming deep, steeply dipping, ductile shear zones (Miller 1983, Daly 1986, Daly 1989). These regional lineaments form southwest to northeast striking boundaries, and can be traced at least 150 km offshore (Clemson et al. 1997, Clemson et al. 1999). They extend the Precambrian transcontinental Mwembeshi Shear Zone (MSZ) (Coward and Daly 1984), which continues then across the African sub-continent from northern Namibia through Botswana, Zambia and Malawi (Daly 1986, Daly 1989). An intracontinental extension, accompanied by strike-slip deformation and subsequent reactivation of steeply dipping Proterozoic crustal shear zones, has occurred within the region during multiple episodes in the Phanerozoic (Daly 1989, Daly et al. 1991).

Proterozoic and Phanerozoic metamorphosed rocks, as well as Mesozoic sedimentary and igneous rocks, characterise the region of the study area (Fig. 2.1). The Proterozoic cratonic rocks in the north are exposed as the Kamanjab Inlier. These occur within the overlying Neoproterozoic to Early Cambrian Damara rocks, which accumulated in a continental rift as a cover sequence over the southern margin of the Congo Craton. Peak metamorphism, as a consequence of cratonic collision, occurred in the Middle Cambrian to Lower Ordovician between 534 ± 7 Ma and 508 ± 2 Ma (Miller 1983). K-Ar cooling ages by Haack (1983) indicate temperatures of ca. 300° C at ca. 481 ± 25 Ma.

Deep erosion of the Pan-African Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (Coward and Daly 1984, Daly et al. 1991), as well as deposition of the Nama Group sediments and the Karoo megasequence, affected Namibia from Permo-Carboniferous times to Mid Jurassic times. Early Mesozoic tectonic reactivation of some of the regional lineaments is recorded by coarse clastic sediments deposited within northeast striking half-graben structures between the Otjohorongo

Figure 2.1: Simplified geological map of Namibia.

Thrust and the Omaruru Lineament-Waterberg Thrust (Hegenberger 1988).

Two episodes of continental flood basalt volcanism occurred in Namibia in the Mesozoic, interpreted as main episodes in a multiple stage history of disintegration of Gondwana (Storey 1995). The Early Jurassic Karoo lavas erupted rapidly over a vast asymmetric region of Gondwanaland at 183±1 Ma, ca. 50 Ma prior to continental rifting in the South Atlantic (Duncan et al. 1997). Early Cretaceous continental break-up, and initial sea-floor spreading in the South Atlantic, were accompanied by eruption of large amounts of continental flood basalts and extensive mafic dike swarms on both sides of the Atlantic Ocean. During the latter episode the Paraná-Etendeka flood basalts were erupted slightly before or contemporaneously with continental rifting in the Early Cretaceous over a short period of time at 132±1 Ma (Renne et al. 1992, Milner et al. 1995, Stewart et al. 1996, Turner et al. 1996). Approximately 26 Early Cretaceous alkaline intrusions (137-124 Ma) were preferentially emplaced along the Mesozoic half-graben structures and form the Damaraland Igneous Province (Watkins et al. 1994, Milner et al. 1995). In the northern Etendeka province in Namibia, the lava sequence is preserved within narrow, coast-parallel, fault-bounded half-grabens. In the same area, a conglomerate, consisting entirely of basaltic clasts derived from the west, was deposited within an active half-graben structure (Ward and Martin 1987). These half-graben structures clearly post-date the volcanism, and significant tectonism and erosion of the lava sequence is indicated at some time after ca. 124 Ma.

The morphology of the Atlantic margin is characterised by an interior highland region separated from a dissected coastal zone by a prominent erosional escarpment. The Great Escarpment is one of the most prominent geomorphological features in Namibia. It runs parallel to, and 200 km inboard of, the present coastline (Ollier 1985, Brown et al. 2000). The escarpment diminishes over a ca. 160 km wide zone, confined by the Autseib Fault-Otjohorongo Thrust and the Okahandja Lineament. Deep erosion associated with the period of reactivation has obliterated the escarpment within the Central Zone of the Damara Orogen, and the regional topography now rises gently from sea level towards the interior, forming a regional ramp of less than 1°.

Remnants of Permo-Carboniferous glaciogenic deposits indicate that parts of the present land surface in the north correspond with the Permo-Carboniferous land surface (Martin 1975).

2.2.2 Origin of Major Lineaments

The major tectonic boundaries within the Damara Belt in northern Namibia are formed by regional lineaments, with the most prominent being the Okahandja Lineament (OKL), the Omaruru Lineament (OML) and the Autseib Fault (AF). The Omaruru Lineament extends into the Waterberg Thrust (WT), while the Autseib Fault extends into the Otjohorongo Thrust (OT). The orientation of these lineaments reflects the regional structural trends that existed in the pre-Damara metamorphic basement. These structures form deep crustal ductile shear zones, and appear to have controlled the location of the rift basin into which the early Damara sediments were deposited (Tankard et al. 1982, Miller 1983, Martin and Eder 1983). They divide the Pan-African Damara Orogen into several tectonostratigraphic units, and are at least in part recognisable by aeromagnetic data (Corner 1983).

The Okahandja Lineament represents a zone of differential movement between the Central and Southern Zone of the Damara Orogen. During the last deformation event at 520 Ma, the Central Zone was downfolded under the Southern Zone. This fold is the present expression of the Okahandja Lineament (Downing and Cowards 1981).

The Omaruru Lineament-Waterberg Thrust divides the Central Zone of the Damara Orogen (Miller 1983); and periodic fault movement during the Mesozoic (Permian to Early Triassic) is supposed to have controlled subsidence and sediment supply of the Karoo strata in the Waterberg region (Johnson et al. 1996, Holzförster et al. 1999).

The Autseib Fault-Otjohorongo Thrust is formed by southward dipping reverse faults separating the northern Central Zone (Damara Belt) and the Northern Zone (Kaoko Belt) of the Damara Orogen. Late to post-Karoo rejuvenation of this fault was first reported by Miller (1980). The rejuvenated fault acted as an accommodation zone during Karoo rifting, and separated different styles of faulting, that were controlled by underlying Pan-African basement fabrics (Clemson et al. 1999).

While the Okahandja Lineament diminishes to the west under the Namib Sand Sea, the Omaruru Lineament and Autseib Fault can be traced for at least 150 km offshore (e.g. Clemson et al. 1997, Clemson et al. 1999). The Omaruru Lineament and Autseib Fault, as well as the adjacent basement fabrics, are generally steep dipping, and are known to have strongly influenced the rift geometry in this area (e.g. Clemson et al. 1999).

2.2.3 The Karoo Igneous Province

Early Jurassic eruption of voluminous basalts terminated the terrestrial Karoo Sequence (Permian to Triassic) in southern Africa within a relatively short period. The associated remnants of the thick volcanic succession of lava flows, and extensive dike and sill complexes of similar composition, are grouped together as the Karoo Igneous Province in southern Africa (Duncan et al. 1997). The Karoo basalts are of tholeiitic composition on the basis of major and trace elements (Marsh et al. 1997) but vary texturally as a function of cooling rate. The Karoo Igneous Province covers an elongated area, and reflects the relationship to the geometry and melting regime of the subduction zone operating along the Pacific margins of Gondwana.

The Karoo Igneous Province is one of the largest and best exposed of the large continental flood basalt provinces (Erlank 1984, Cox 1988). It comprises thick sequences of volcanic rocks preserved in erosional remnants, and a well developed subvolcanic plexus of dykes and sills scattered throughout southern Africa. Karoo igneous rocks have been emplaced in different tectonic settings, and with considerable differences in lithostratigraphic sequences, across the province. Because of its variety of settings, the temporal and spatial evolution of the entire Karoo magmatism has been difficult to correlate. Duncan et al. (1997) confined the majority of igneous activity with new 40 Ar/³⁹Ar data into a very narrow time frame of 3 Ma at 183±1 Ma. These ages match with other igneous provinces like the Ferrar province in Antarctica, indicating that the Karoo Igneous Province has been rapidly erupted over a vast, asymetric region of Gondwana, prior to continental rifting.

2.2.4 The Paraná-Etendeka Province

Basalts, rhyolite sheets and central intrusive complexes in northwestern Namibia that form the Etendeka Province were previously included in the Karoo Igneous Province but are now known to be of Early Cretaceous age (O'Connor and le Roex 1992, Renne et al. 1992), and hence coeval with volcanic activity of the Paraná flood basalt province of central eastern South America. The intrusion of the Paraná-Etendeka flood basalts occured slightly before, or contemporaneously with, continental rifting in the South Atlantic (Renne et al. 1992). Most of the magmatic activity occured over a short period of time, at 132 \pm 1 Ma (Renne et al. 1992, Turner et al. 1994, Milner et al. 1995, Renne et al. 1996a, Renne et al. 1996b, Stewart et al. 1996), based on laser spot ⁴⁰Ar/³⁹Ar analysis on feldspar. A late tholeiitic magmatic episode at 128-119 Ma is represented by coast parallel dykes, e.g. Ponta Grossa (NE dykes) and Santos-Rio de Janeiro dykes in Brazil, and Horingbaai dykes in Namibia (Erlank 1984, Renne et al. 1996a).

The Paraná-Etendeka Province is, with its large aerial extent in excess of ca. 2.5 million km², the estimated volume of ca. 1.5 million km³, and dominance of basaltic compositions, one of the largest continental igneous provinces. It is comparable to other major continental flood basalt provinces such as the Siberian, Deccan, and Karoo-Ferrar provinces (Erlank 1984, Peate 1997) as described in 2.2.3. The Etendeka Flood Basalt Province represents approximately 5% of the entire Paraná-Etendeka Province. The major part of the Etendeka Formation en-

compasses an area of ca. 78000 km² between Cape Cross and Cape Fria. Consisting of subaerially erupted tholeiitic lavas (51-59% SiO_2) interbedded with quartz latite units (66-69% SiO_2), the main Etendeka lava field interbeds with aeolian sandstones of the Etjo Formation up to 130 m above the volcanic succession (Milner et al. 1995, Jerram et al. 1999).

The aerial coverage of the Paraná-Etendeka Province may have been much larger than indicated above. Moreover, petrologic, geochemical, and geochronologic data presented by Marzoli et al. (1999) demonstrated the province's extent into the Kwanza basin in central western Angola. This indicates that the Paraná-Etendeka Province extends by ca. 400 km further to the North-East than previously recognised. Marzoli et al. (1999) also show that younger (± 125 Ma) coast-parallel dykes from Angola are coeval with those from much farther south in Brazil, perhaps weakening the case for northward-progressive opening of the south Atlantic.

Stratigraphic relations between the basal Etendeka flows, and the underlying Etjo Formation (equivalent to the Botucatu Formation in Brazil), provide evidence of the existence of a vast desert throughout the province at the time of the onset of flood volcanism (Jerram et al. 1999).

Using the anisotropy of magnetic susceptibility as an approximation for lava flow direction for stratigraphic sections in the southern Paraná Basin, Tamrat and Ernesto (1999) suggest that the flows were more likely to have been controlled by variable topography or other factors.

2.2.5 The Damaraland Igneous Province

Over twenty Early Cretaceous intrusions form the Damaraland Alkaline Igneous Province (DIP), and were emplaced as subvolcanic ring complexes into the shallower crust (Diehl 1990). All of the complexes are aligned along a northeasttrending, 130 km wide and 350 km long, zone which coincides with the northeasterly strike direction of the Pan-African Damara Orogen, and follows its inherited basement structures and lineament zones (Fig. 2.2). A number of Mesozoic, coast parallel, and north-south striking faults have been recognised by Diehl (1986), and are believed to have additionally contributed to the emplacement of the complexes controlled by the old major lineaments.

A wide span of isotopic ages was reported for the Mesozoic ring complexes and the Etendeka volcanic succession. The most robust ages determined by the Rb-Sr and ⁴⁰Ar/³⁹Ar methods point to a rapid eruption of the Etendeka Province, and an almost simultaneous emplacement of some of the ring complexes. Laser spot ⁴⁰Ar/³⁹Ar analysis on feldspar could bracket the Etendeka lavas in a very narrow time frame of 132 ± 1 Ma (Renne et al. 1992, Turner et al. 1994, Renne et al.

Figure 2.2: Map of northwestern Namibia showing the distribution of Etendeka volcanics and the Mesozoic ring complexes of the Damaraland Igneous Province (after Milner et al. 1995).

1996a, Renne et al. 1996b, Stewart et al. 1996). 40 Ar/ 39 Ar age determinations on metaluminous and peralkaline units of the Brandberg complex range from 132-130 Ma. This indicates the contemporaneous formation with flood basalts and associated felsic volcanism in the Paraná-Etendeka Province (Schmitt et al. 2000). Identical Rb-Sr isochron ages of 132±4 Ma were reported by Manton and Siedner (1967) for a suite of comendite rocks from the Paresis complex; and 132±2 Ma were reported by Allsop et al. (1984) for biotite-bearing gabbros from the Messum complex. K-Ar age determinations on mineral separates from the Okenyenya are observed by Watkins et al. (1994). This would restrict magmatic activity of the Okenyenya complex into a time interval of 133-128 Ma, with a mean of 130±2 Ma. The same interval of magmatic activity over 5 Ma is assumed for the Messum complex by Milner et al. (1995). Their Rb-Sr whole rock and 40 Ar/ 39 Ar dating produced ages for the Messum nepheline syenite of 127±1 Ma. Similar ages were obtained from the Okorusu complex (127±7 Ma). Ages pre-dating the eruption of the Etendeka volcanics were obtained from the Paresis complex with 137 \pm 1 Ma, and from the Cape Cross complex with 135 \pm 1 Ma.

The onset of igneous activity is believed to have started approximately 137-135 Ma ago with limited activity, and the emplacement of the Paresis $(137\pm1 \text{ Ma})$ and Cape Cross complex $(135\pm1 \text{ Ma})$. Voluminous eruptions of Etendeka flood basalts $(132\pm1 \text{ Ma})$ happened at the same time as the intrusion of the Brandberg. Magmatic activity along the Damaraland Ignous Province continued for approximately 10 Ma, and terminated after the onset of sea-floor spreading in this area (Milner et al. 1995). The Horingbaai dolerite intrusion appeared in response to, and contemporaneously with, the onset of sea-floor spreading at ca. 130-125 Ma (Erlank 1984, Renne et al. 1996b).

The basement geology of that area consists of Proterozoic rocks (2.1-1.7 Ga) which form the southernmost extent of the Congo Craton. The Proterozoic inliers are bound to the west and southeast, and are also partially overlain, by rocks of the Pan-African Damara Sequence (Miller 1983). The Damara Sequence itself is unconformably overlain by sediments of the Karoo Sequence, while Etendeka volcanics conformably overlay deposits of the Karoo sedimentary succession, and also often lie directly on pre-Karoo basement (Milner et al. 1995) (Fig. 2.2). Numerous basic dykes and sills intrude the basement, the Karoo sedimentary rocks and the overlying lavas.

2.2.6 Cretaceous Dyke Swarms

Regional dyke swarms are a dominant feature of the coastal geology of northern Namibia. Along the length of Namibia, numerous dolerite dykes penetrate the Damara basement in swarms trending mainly north to northeast. The dykes were erupted immediately prior to the splitting of Western Gondwana and the Southern Atlantic Ocean, and are associated with the initial continental rifting processes. Many dykes have acted as feeders to the extensive Etendeka flood basalts, which were subsequently erupted over much of this area. A set of north-northeast trending dyke swarms covering most of the western part of the Central Zone, are described by Lord et al. (1996), using Landsat imagery. Magnetotelluric profiling (Ritter et al. subm.) reveal a concentration of subsurface and mainly northeast striking mafic dykes, named Hentjies Bay-Outjo dyke swarms (HOD). The latter are restricted to the Central Damara Zone, but trend further northeast over 300 km inland and follow predominantly the tectonostratigraphic structures of the Damara Orogen. Hunter and Reid (1987) note that other mafic dyke swarms located elsewhere in southern Africa appear to have been controlled by pre-existing zones of crustal weakness. They noted for example the spatial coincidence of 1.9 Ga ultramafic dykes, Jurassic and younger kimberlite pipes; as well as a later dyke swarm all of which are to be found in the Transkei and in southern Namibia. They suggest that this swarm marks the site of a long-lived, deep-seated (sub-crustal) lineament.

Lord et al. (1996) state that the distribution of Mesozoic dykes in Namibia generally reflects that little control by the tectonic fabric was imposed during the Damara tectonothermal event; whereas Ritter et al. (subm.) clearly point to the influence of pre-existing basement structures as the main control factor for dyke emplacement. Striking with 30° - 40° northeast, the dykes are sub-parallel to the regional trend of foliation, faults and lineaments. However, the Central Damara Zone, confined within two prominent lineaments (Autseib Fault-Otjohorongo Thrust and Omaruru Lineament-Waterberg Thrust), is characterised by pre-Damara basement granitic gneisses which generally form flat-topped, elongated domes. These domes are separated by medium- to high-grade, predominantly metasedimentary, cover rocks. The elongate nature of domes and synclines imparts a very strong northeast trend to the regional structure of this part of the orogen.

K-Ar and Rb-Sr dates (Hunter and Reid 1987, Milner et al. 1995) show that the dominant dyke swarms were emplaced within two main periods in Early Jurassic (Karoo) and Early Cretaceous (Etendeka). The Etendeka volcanics erupted over a very short period of 2 Ma at 132 ± 1 (Duncan et al. 1997). The presence of dykes along the present coastline of South America indicates an initial phase in the continental rupture of Gondwana during the Early Cretaceous.

The contemporaneous eruption of mafic dyke swarms along the coastline of southwest Africa and the eastern coastline of South America is believed to have occurred as a response to the initial rifting processes which led to the fragmentation of western Gondwana. Regional domal uplift above newly established mantle plumes, and the associated crustal extension, led not only to the development of new, broadly coast parallel fractures, but also to the reactivation of pre-existing ones. These fractures acted as loci for the emplacement of the dolerite dykes, many of which acted as feeders to flood basalts that were subsequently poured out over a large area of the juxtaposed continents. This may suggest the presence of a large and prolonged mantle plume beneath the Paraná-Etendeka area. The dykes record an initial phase of Gondwanan rupture immediately before continental drift was established, and the separation of Africa and South America took place.

2.2.7 Gondwana Fragmentation

The break-up and dispersal of a supercontinent like Gondwana represents a radical change in the plate tectonic regime. Supercontinents are assembled as a consequence of plate movements, and they are likely to have significant effect on the thermal structure of the upper mantle, and on global climate. While the causes of break-up of supercontinents are still a matter of debate (Anderson 1982, Bott 1992, Wilson 1993), the break-up was a highly significant tectonic event in terms of landscape evolution at the macroscale, and created many new passive continental margins (Summerfield 1991). Several models have been proposed, including: lithospheric extension in response to subduction (Storey et al. 1992); and the dynamic response to the emplacement of deep-seated mantle plumes (Hill 1991, Storey and Kyle 1997). It has been argued that supercontinents will tend to fragment in response to the build-up of heat and resultant magmatism (Anderson 1982) and, alternatively, that the break-up of megacontinents requires the emplacement of a megaplume (Storey and Kyle 1997). Due to the low rate of heat loss through continents, both models imply a major role for mantle hotspots, which are linked to models for the generation of continental flood basalts (Turner et al. 1996). Current models for supercontinent break-up invoke the plate and boundary forces that drive plate motions or some active internal mantle processes (Sengor and Burke 1978).

The fragmentation of Gondwana began during the Late Triassic/Early Jurassic, and was associated with an increase in the rate of mantle convection to the south of the continent (Park and Jaroszewski 1994). The process of continental breakup was initiated by newly established mantle plumes. These produced an initial decrease in density of the lithosphere in their vicinity, which caused the domal uplift of brittle upper crust along the incipient South Atlantic. To accommodate the crustal stretching associated with doming, Gondwanan continental crust then began to rupture along a series of northward progressing rifts. These rifts then led out from plumes/hotspots located along the developing margin between South America and Africa. However, the rift propagation of the entire Atlantic Ocean follows the trend of pre-existing orogenic fabric of the plates, systematically reactivating ancient lithospheric structures. Rifting was not just related to the regions above the plume head; it began more or less simultaneously along segments which follow almost exactly the trend of Hercynian, Pan-African and Caledonian belts (Tommasi and Vauchez 2001). The linking of adjacent rifts led to the full development of the ridge-transform boundary, and to the start, between the late Jurassic and the Cretaceous, of the separation of the South American and African plates.

Continued heating above the plume led to further regional up-warping and lithospheric thinning along the newly formed divergent margin. This was associated with crustal dilation and the formation of tensional fractures, broadly parallel to the developing coastline. These newly formed discontinuities helped determine the location of regional sheeted dyke swarms, which were subsequently emplaced in the relatively weaker crust. The trend of many of these regional dyke swarms is related to the trajectories of the local stress field associated with the original divergent plate movements (Gudmundsson 1990).

Continental rifting between South America and Africa began in Namibia during the Late Jurassic about 150 Ma ago (Rift Stage I) (Nürnberg and Müller

1991, Light et al. 1992, Light et al. 1993). Rift Stage II has been bracketed into the Late Hauterivian - Barremian (130-120 Ma), coinciding with the initiation of seafloor spreading in the south, and slightly post-dating the beginning of the Paraná-Etendeka flood basalt volcanism (132 Ma) in the north (Turner et al. 1994, Milner et al. 1995, Renne et al. 1996b, Stewart et al. 1996). Rifting is supposed to have propagated from the Falkland-Agulhas fracture zone in the south to the Walvis Ridge-Rio Grande Rise in the north. The oldest magnetic anomaly (M4) has been dated back to 130±1 Ma and is identifiable on both sides of the South Atlantic. The oldest anomaly near the Walvis Ridge-Rio Grande Rise (M0) is supposed to be 5 Ma younger (125 Ma) (Wickens and McLachlan 1990, Nürnberg and Müller 1991). Rifting north of the Walvis Ridge-Rio Grande Rise began during the Late Jurassic to Early Cretaceous between Tithonian - Barremian (152-125 Ma) (Castro 1987, Chang et al. 92). Terrestrial sedimentation marked the initial phase of the developing marginal rift basins in the South Atlantic. The transition to marine depositonal environments is marked by a well developed 'drift-onset' unconformity shortly after break-up (Brown et al. 1995) at the end of the Hauterivian (130 Ma).

2.2.8 Offshore Basins

The offshore margin of southwest Africa consists of four major basins. These are from south to north the Orange, Lüderitz, Walvis and Namibe Basins. Sedimentary sequences in the main depocenters of these basins are generally less than 6 km thick, but can exceed 12 km in the northern Walvis Basin (Gerrard and Smith 1982, Rust and Summerfield 1990, Maslanyj et al. 1992).

According to Rust and Summerfield (1990), as well as Brown et al. (1995), the majority of sediment volumes within the Orange and Walvis Basins were deposited during the Late Cretaceous-Early Tertiary. Rust and Summerfield (1990) determined the offshore sediments to equate a depth of denudation of 1.8 km averaged over the Orange River catchment and other Atlantic draining catchments up to the Walvis Ridge. The total volume of sediments in the basins offshore Namibia (Orange, Lüderitz and Walvis Basin) clearly indicate that averaged amounts of at least 2 km of denudation occurred since their formation in the Middle Jurassic to Early Cretaceous (Section 1.2).

Intensive seismic exploration along the entire Namibian margin has provided excellent profiles across the sedimentary basins offshore Namibia. Results and interpretations have been published by several authors (e.g. Light et al. 1993, Maslanyj et al. 1992, Brown et al. 1995) in the past decade, but due to the lack of biostratigraphic data, interpretation is still an ongoing process. The only available information from offshore boreholes in Namibia is from the Kudu gasfield south of Lüderitz.

The burial history of Cretaceous sediments of the Kudu gasfield is based on the interpretation of biostratigraphy and vitrinite reflectance values from well data (Wickens and McLachlan 1990, Davies and van der Spuy 1992). The vitrinite reflectance values indicate sedimentary thicknesses of at least 3000 m for Late Cretaceous sediments (Early Cenomanium to Campanian).

The compaction corrected burial history reconstruction of Davies and van der Spuy (1992) shows that Lower Cretaceous deep marine sediments were deposited during Late Barremian to Early Aptian (\pm 115 Ma). Moderate sedimentation and burial rates remained until Turonian (90 Ma) in the Late Cretaceous. A total thickness of 2500 m was deposited with extremely high sedimentation rates from Turonian to Santonian (91-83 Ma). From the start of the Campanian (83 Ma), moderate sedimentation rates were twice interrupted by erosional events in Mid Campanian (\pm 78 Ma) and Miocene until Late Miocene.

The present palaeogeothermal gradient, derived from borehole temperatures, indicates a present gradient of 3.5° C/100 m, while the palaeogeothermal gradient across the Cretaceous and Tertiary section, derived from vitrinite reflectance values, indicates an average gradient of 3.8° C/100 m.

2.2.9 Post Break-Up Geology

Terrestrial sedimentation in Namibia after break-up was largely restricted to a 150 km wide zone during the Cenozoic. This region on the bedrock platform of the coastal plain is now occupied by the Namib Sand Sea in central Namibia (Ward 1987). The oldest unit, the Tsondab Sandstone Formation, has a preserved thickness of less than 300 m and is believed to have a maximum age of early Palaeocene (Ward 1987, Ward 1988). The Tsondab Sandstone Formation unconformably overlies an extensive erosional surface (Namib Unconformity Surface) which cuts into the predominantly Late Precambrian basement rocks (Ollier 1978, Ward 1987, Ward 1988). The chronology of the upper part of this sequence has been dated through the correlation of giant bird eggs with associated micromammals in East Africa, and appeared to span a period of 11 Ma from middle Miocene (ca. 13 Ma) to Pliocene (ca. 2 Ma) (Senut and Pickford 1995). Exposed remnants of the Tsondab Sandstone Formation preserved the escarpment to within 3-30 km of its base along the eastern edge of the present day sand sea borders (Ward 1987, Besler 1996).

Some denudation of the escarpment during the Miocene is implied by the accumulation of rounded clasts of basement rocks of the alluvial Karpfencliff Conglomerate Formation (Ward 1987). The fluvial character of this deposit is the earliest record of a well-developed, westerly directed, drainage system and indicates a change from arid to semi arid conditions (Ward 1987). A return to arid conditions occurred in the Late Miocene with the development of the Benguela Current, leading into the current climatic conditions of the Namib Desert regime (Siesser 1978, Siesser 1980) with the formation of the Soussus Sand Formation and main Namib Sand Sea south of the Kuiseb river (Ward 1987).

Numerous kimberlite intrusions and associated alkaline pipes have been recognised inland in South Africa and Namibia. In some localities in Namaqualand, the preserved crater facies sedimentary sequences imply only minimal net denudation in the order of less than 100 m since the Late Cretaceous (Smith 1986, DeWit et al. 1992).

2.3 Geomorphology

2.3.1 Quantifying Geomorphic Development

Constraining the geomorphic development of passive margins requires an understanding of the pattern and rate of denudation. Advances in monitoring long term denudation rates have resulted from new quantitative techniques in the past twenty years. K-Ar and ⁴⁰Ar/³⁹Ar dating of volcanic rocks, for example, led to significantly more age control in onshore landscape assemblages and sedimentary sequences. Identification of dated material at a certain distance away from a source rock or at a certain depth in a deposit can provide some estimates on rates of denudation. However, these techniques require datable material of significant age that can be closely correlated with landforms or denudation events. This is particularly difficult on landscapes dominated by denudation, such as passive margins. Analysis of offshore basins is another method which has successfully been used to determine long term denudation rates (e.g. Rust and Summerfield 1990, Pazzaglia and Gardner 2000). Uncertainties can be very high due to large basins and poorly constrained catchment areas for sediment supply. Subtle changes in drainage networks can have dramatic effects in sediment supply to offshore basins.

Since thermochronologic techniques, such as apatite fission track dating, are sensitive to low temperatures, they have provided new insights into the regional denudation history of landscapes in passive margin settings, such as the Transant-arctic Mountains (Gleadow and Fitzgerald 1987, Fitzgerald and Gleadow 1988), western Brazil (Harman et al. 1998) and southern Africa (Brown et al. 1990, Brown 1992, Gallagher and Brown 1997, Gallagher and Brown 1999b, Brown et al. 2000).

Cosmogenic isotope analysis of in situ produced cosmogenic isotopes, such as ¹⁰Be, ²⁶Al and ³⁶Cl, has been employed to calculate site-specific denudation rates, and is valid over time scales of 10⁴-10⁶ a (Biermann 1994, Cockburn et al. 1999, Fleming et al. 1999, Cockburn et al. 2000).

Combining these techniques carries great potential as a means of distinguishing between discrete phases of accelerated denudation that has occurred as a consequence of large scale tectonics from slow climatic controlled downwearing processes, which have shaped the present landscape.

2.3.2 Morphology of the Margin

Larger scale erosional escarpments are common features of rifted margins that have high elevation inland, such as southern Africa, eastern Brazil, western India and the Red Sea (Gilchrist and Summerfield 1994). These escarpments, which can be 1 km high, and up to several hundred kilometers from the coastline, separate a low elevation coastal area with typically low relief, from the inland higher elevation area. Ollier (1985) interpreted these escarpments to be genetically related to continental rifting. He suggested that they have retreated inland from the rifting hinge zone since continental break-up, when local base levels dropped considerably and/or margin flanks were uplifted. Geodynamic explanations for the tectonic rift flank-uplift include: differential stretching between crust and mantle (Royden and Keen 1980); lateral heat flow (Cochran 1983); dynamical effects due to secondary mantle convection (Buck 1986); magmatic underplating (White and McKenzie 1989); and flexural unloading of deep lithospheric necking. The last mechanism is favoured (Braun and Beaumont 1989) when flank uplifts at rifted margins persist for 100 Ma and more. That is longer than the time (ca. 60 Ma) required for the lithosphere to cool, contract and subside from a hot syn-rift state, suggesting that a non-thermal mechanism is required. The margin flank-uplift affects the morphology and general elevation of passive margins far inland, and may also initiate the formation of the large erosional escarpments observed on some margins.

The morphology of the passive margin of Namibia is characterised by a high elevation interior plateau with a mean elevation above 1 km and a major seaward facing escarpment (Great Escarpment), separating a variable dissected coastal plain from the interior over a width of approximately 150 km (Ollier 1985, Gilchrist et al. 1994, Brown et al. 2000). The Great Escarpment reaches elevations of up to 2350 m and can be roughly traced around the edge of the southern African plateau, from central Angola to the eastern edge of South Africa, where the Great Escarpment is particularly well developed in the Drakensberg region. However, considerable variations are notable along its length, reflecting variations in the tectonic history, in lithologies and in the drainage system. The escarpment region in the field area merges with the northeast-trending highland region of the Khomas Hochland. In the Central Damara zone, the escarpment is replaced by a gradual rise from the coast to the elevated interior over a zone of approximately 350 km. This zone is characterised by major lineaments, and superimposed on this regional morphology are the isolated massifs of the Damaraland Igneous Province. In northern Namibia the escarpment rises again and extends into central Angola, where it locally reaches elevations of over 2500 m (see Figure 5.4 and 6.2).

2.3.3 Evolution of High Elevated Margins

Current landscape evolution models for passive margins can be broadly divided into three different classes (Gallagher et al. 1998, Gallagher and Brown 1999a). All three conceptual models - the downwarp, scarp retreat and pinned divide model - are considered applicable to passive margins characterised by a welldefined escarpment separating a high elevated interior plateau from a low elevated coastal platform. The three different models predict various styles of denudation. The style of denudation will determine the cooling history of a margin; and this means that the models can predict a distinct spatial distribution of expected fission track ages (Figure 2.3d). Fission track thermochronology is therefore an excellent tool for testing the models by assessing the characteristic denudational histories they predict (Gallagher et al. 1998, Gallagher and Brown 1999a).

Quantitative surface process models have been developed to explain the denudation and morphological development of high elevated margins (Gilchrist et al. 1994, Tucker and Slingerland 1994, Kooi and Beaumont 1994). These surface process models produce very realistic landforms, but their usefulness is limited by the lack of empirical constraints on how escarpment systems respond to different conditions, such as tectonics, drainage divide, and lithological differences (van der Beek and Braun 1998). However, despite this, surface process models have been useful in highlighting the role of drainage divide location, leading to formulation of the pinned divide model (see below).

The downwarp models (King 1962, Ollier and Pain 1997) propose a broad monocline formed by long-wavelength downflexing of the newly formed land surface after continental rifting (Figure 2.3a). Moderate amounts of denudation are predicted to occur between the crest of the escarpment and the coast, with only minimal denudation occurring inland of the escarpment. Based on this model, remnants of the old land surface will be found along the coast and inland of the escarpment. Therefore, older apatite fission track ages (as old or older than the initial surface) will be observed along the coast and the margin interior. Apatite fission track ages observed inbetween the coast and the escarpment will therefore only be moderately reduced.

The downwarp models do not take into account the isostatic rebound of the lithosphere to denudational unloading. The isostatic rebound is taken into account by the scarp retreat models (Gilchrist and Summerfield 1990, Gilchrist et al. 1994, Tucker and Slingerland 1994) which suggest that an initial escarpment was

Figure 2.3: Schematic models for the evolution of high elevated passive margins with steep escarpments (after Gallagher et al. 1998). (a) Downwarp model, (b) scarp retreat model, (c) pinned divide model, (d) spatial distribution of expected fission track ages across the margin.

formed by differential vertical displacement across normal faults (Figure 2.3b). As a consequence of the newly formed high relief, maximum denudation rates are expected to occur immediately seaward of the escarpment. High rates of escarpment retreat in the order of approximately 1 km Ma⁻¹ are commonly assumed for retreat of the Great Escarpment in Namibia (King 1983, Selby 1993, Ollier and Pain 1997). These rates are based on the assumption of uniform retreat of an escarpment from the coast since the initiation of continental break-up, and are often used as a basic model component for passive margin evolution (Gilchrist and Summerfield 1990). Denudation rates decrease along the coastal region to moderate, and the interior is characterised by very low rates. This strong gradient in denudation rates will be reflected by a strong gradient in fission track ages. The oldest apparent ages are therefore expected in the continental interior, with a strong younging towards the coast.

The pinned divide model (Gilchrist et al. 1994, Kooi and Beaumont 1994) enhances the scarp retreat models, in that it takes a preexisting drainage divide into account (Figure 2.3d). It also incorporates a steep escarpment that formed during continental rifting into the initial margin topography. The position of the drainage divide is placed in the order of 100 km inland from the initial escarpment. A gentle slope towards the rift escarpment allows rapid stream incision draining seawards. Denudation rates remain uniform until a new escarpment position is

produced close to the initial location of the drainage divide. The pinned drainage divide model also allows significant denudation inland of the drainage divide if the base level of the inland drainage is lowered during the formation of the initial escarpment. The 'pinning' occurs so that the position of the initial drainage divide forms the maximum downwearing, or retreat boundary and is represented by the current position of the escarpment. This results in the assumption that the drainage divide started near its present position, and the initial escarpment - formed at the coast - would have been denuded by large scale downwearing of the coastal plain, and then reformed at the drainage divide.

While the pinned divide model produces a down-wearing of the landsurface compared with a retreat pattern of the scarp retreat models, the major differences between these models are the prediction of denudation, and its timing across the margin, as well as the amount of denudation occurring inland of the final position of the escarpment.

In Namibia, as for southern Africa as a whole, the scarp retreat model has dominated (King 1962, Gilchrist and Summerfield 1990). However, surface process modelling has suggested other possibilities (Gilchrist et al. 1994). Recent work has focussed on providing empirical denudation chronologies to distinguish between the models (Figure 2.3) as well as on much needed constraints for surface process models.

In addition to previous apatite fission track research (Section 6.2), in situ produced cosmogenic isotope analysis has been used on specific landscape elements in Namibia. Denudation rates calculated from concentrations of in situ cosmogenic ¹⁰Be and ²⁶Al on summits of granite bornhardts in the central Namib Desert imply average denudation rates of ± 5 m Ma⁻¹ (Cockburn et al. 1999, Cockburn et al. 2000). Cockburn et al. (1999) suggest this average denudation rate has characterised the rate of granite inselberg lowering in the central Namib Desert for at least the past $10^3 - 10^6$ a. Due to the persistence of arid climatic conditions throughout the Cenozoic in the central Namib Desert, the low mean denudation rates may have been valid for the past 10-12 Ma, and also possibly since the Early Tertiary (Cockburn et al. 1999). A low retreat rate in the order of 10 m Ma⁻¹ has also been determined at the Gamsberg on the Great Escarpment in central Namibia (Cockburn et al. 2000). These data were interpreted to be representative for at least 1 Ma and possibly for the entire Quarternary period. This rate is also assumed to be representative for the rest of the escarpment, given the overall similarity of lithology, climate and morphology at other locations as well as the consistent present day distance between the escarpment and the coast along its length (Cockburn 1998).

Considering all currently available low temperature thermochronological data for the Namibian margin (Brown 1992, Gallagher and Brown 1997, Gallagher et al. 1998, Cockburn et al. 1999, Gallagher and Brown 1999a, Gallagher and Brown 1999b, Cockburn et al. 2000, Brown et al. 2000), the validity of the scarp retreat model is highly problematic. The pinned divide model appears to be the most appropriate, although even here further constraints are required.

2.4 Tectonics

As previously stated, the regional basement structure in northern Namibia is controlled by the northeast to southwest strike of the intracontinental branch of the Pan-African Damara metamorphic belt (Tankard et al. 1982, Miller 1983). The alignment of the Damara Belt changes into the coast-parallel trends of the Gariep Belt in the south and the Kaoko Belt in the north. Permo-Triassic reactivation of the intracontinental Mwembeshi Shear Zone, extending from Zambia through northern Botswana into Namibia, is reported by Daly (1989) and Daly et al. (1991). Further reactivation of major basement structures during and after breakup has strongly influenced the pattern and location of offshore sedimentation (Fuller 1971, LePichon and Hayes 1971), as well as the Early Cretaceous synrift volcanism (Marsh 1973, Turner et al. 1994, Watkins et al. 1994, Milner et al. 1995), and has been discussed in detail by Brown (1992) and Brown et al. (2000).

Intensive seismic reflection studies along the Namibian margin have documented substantial cross-margin strike-slip structures associated with structural basement highs which are believed to have been active until the Late Cretaceous (Light et al. 1992). Fuller (1971) correlated major oceanic transform faults/fracture zones with some of these basement highs. Seismicity also revealed that seaward dipping reflectors and basaltic underplated layers are present along much of northern Namibia (Gladzenko et al. 1997, Bauer et al. subm.).

Neotectonic activity of the Mwembeshi Shear Zone has been documented by e.g. Reeves (1972) and interpreted as incipient rifting in the Kalahari. Displaced Cenozoic Sediments of the Kalahari Basin and their isopachs revealed an elongated depocenter located immediately north of the Mwembeshi Shear Zone (Thomas and Shaw 1990). This indicates tectonic activity at least until the Early Cenozoic (Brown et al. 2000).

The structural style of many of the newly formed South Atlantic Basins indicates that they were formed within continental-scale strike-slip zones. Especially West and Central African basins were deformed during a compressional-shear episode in the latest Cretaceous (Fairhead 1988, Unternehr et al. 1988, Fairhead and Brinks 1991, Nürnberg and Müller 1991). This period of Late Cretaceous intracontinental deformation has been related to major changes in the geometry and relative motions of the plates involved in the opening of the Central and South Atlantic Ocean basins (Fairhead and Brinks 1991, Janssen et al. 1995). Cande et al. (1988) and Royer et al. (1988) reported a significant increase in the number

Figure 2.4: Comparison of the number of fracture zones and the full spreading rate in the South Atlantic since chron C34 (after Cande et al. 1988).

of fracture zones, along with a simultaneous decrease in the spreading rate from 43 mm a⁻¹ to 28 mm a⁻¹ (Figure 2.4). This change affected the South Atlantic and the western Indian Ocean basins between magnetic anomalies C34 (83 Ma) and C31 (67 Ma). Because of the onset of asymmetry in spreading rates in the South Atlantic, other major changes in plate geometry and motion were recognised on ridge segment jumps south of the Rio Grande Rise (Cande et al. 1988). This resulted in different rift-velocities north of the Tristan da Cunha fracture zone and south of the Gough fracture zone between anomalies C34 (83 Ma) and C22 (50 Ma) (Figure 2.4).

Chapter 3

Fission Track Thermochronology

3.1 Introduction

As a temperature-sensitive thermochronological technique, apatite fission track analysis is a powerful tool for constraining the low temperature history of rocks over a range of 60 to 110°C. These temperatures, depending on the geothermal gradient, represent a burial depth of 3 to 5 km. Due to advances in understanding the temperature dependence of fission track annealing in apatite, and the interpretation of the information contained in fission track length distributions, the data provide detailed information of the low temperature thermal history of rocks below 110°C. Consequently, the method can reconstruct the cooling history of rocks as they approached the surface in response to erosion and tectonic processes.

Fission track analysis can be applied to a variety of geological problems; examples to date include studies of young orogenic belts (Hurford et al. 1989, Foster et al. 1994), rifted continental margins (Gleadow and Lovering 1978, Moore et al. 1986, Bohannon et al. 1989, Omar et al. 1989, Brown et al. 1990, Foster and Gleadow 1992a, Gallagher et al. 1994, Omar and Steckler 1995), continental extension zones (Gleadow and Fitzgerald 1987, Fitzgerald and Gleadow 1988, Foster et al. 1993, Foster and Gleadow 1996) and sedimentary basins (Gleadow et al. 1983, Green et al. 1989a). Of the three minerals (apatite, zircon and sphene) commonly used in fission track dating, only the kinetics of track annealing in apatite has been studied in greatest detail. As this study uses apatite fission track thermochronology exclusively, the theoretical background given in this thesis refers only to this particular mineral.

Fission track dating is a radiogenic method of age estimation based on the natural decay by spontaneous fission of the ²³⁸U isotope and the accumulation of the resulting damage trails (Figure 3.1). The major difference between fission track dating and other conventional isotopic dating methods (e.g. K-Ar dating)

Figure 3.1: Formation of fission tracks in apatite. (a) A polished and etched surface is cut through the mineral grain and reveals randomly orientated fission tracks. The number of tracks is proportional to the number of spontaneous fissions of 238 U. Confined fission tracks for length measurements are surface parallel and have been etched through a crossing track. (b - d) Ion spike model of track formation. The area of lattice damage is etched to reveal the fission tracks (modified from Noble 1997).

is that the daughter product is physical damage to the crystal lattice, rather than another (daughter) isotope. Moreover, it is important to note that fission tracks in apatite are progressively shortened with increasing temperature until they are completely annealed. By understanding the thermal annealing behaviour of fission tracks, it is possible to extract thermal history information rather than just a closure temperature, and thus to greatly enhance the value of the technique. Details of track formation and annealing are discussed in the following subsections.

The application of fission track analysis in a wide variety of fields was pioneered by the physicists Fleischer, Price and Walker in the early 1960s. Their fundamental research over 15 years at General Electric Company's Research Laboratories in New York State was motivated by the first transmission electron microscope observations of latent fission tracks in mica (Silk and Barnes 1959). Silk and Barnes originally observed fission fragment tracks in cloud chambers and photographic emulsions. They produced artificial tracks in muscovite by irradiating uranium-coated flakes in a reactor. The resulting fragment tracks were observed at high magnification under the electron microscope.

Price and Walker (1962a) showed that when irradiated material was abraded to expose fission tracks at the surface, the damage zone could be preferentially dis-

solved by mineral acids, leading initially to a very fine channel only 25 Å wide. Price and Walker (1962b) first discovered 'fossil' fission tracks in minerals, created by the spontaneous fission of dispersed uranium atoms. One year later Price and Walker (1963) went on to suggest that the density of these tracks could be used as a dating tool for geological materials up to a billion years old. Subsequently they discovered that these channels, or damage trails, could be enlarged by further chemical etching with hydrofluoric acid to yield a wide pit which is observable under the optical microscope. Gleadow et al. (1983) proved by showing that the distribution of the length of confined tracks in apatite, i.e. those tracks totally within the body of the crystal (Figure 3.1), could be used to reveal unique information on the thermal history of a sample in the range 20 to 110° C (for burial times of the order of ~10 Ma).

Since then, development of consistent sample preparation and calibration techniques have been made (Hurford 1990b, Hurford 1990a), and fission track dating in the mineral apatite has indeed become an unique method for constraining the timing of cooling, and the denudational history, of a sample of shallow levels of the Earth's crust over time-frames of 10^6 to 10^8 a.

Fission tracks are formed continuously throughout time, and therefore the final track length distribution contains the full detail of the temperature variation with time below 110°C. The sample's cooling history below 110°C could, at least in principle, be extracted from the confined track length distribution (Figure 3.2). Each track has experienced a different proportion of the total thermal history of the sample, and thus contains different information. The final distribution of track lengths and the measured apparent fission track age of a sample therefore represents an integrated record of its total thermal history over the temperature range within fission tracks are preserved (Brown et al. 1994b). To achieve an estimate of the true track length distribution, only horizontal confined tracks are measured. Confined tracks are those entirely below the surface (Laslett et al. 1982, Gleadow et al. 1986) and are easily to identify, as the total length is more or less in focus. The advantage of measuring horizontal confined tracks is that the full etchable length of the track is being measured (Figure 3.1 and 3.4).

An apatite fission track age must therefore be understood as an indication of both the time over which tracks have been retained, as well as the amount of shortening that has taken place during that time. Since the track length distribution is a function of the thermal history, the fission track age will represent an integrated measure of that thermal history. Only for samples with track length distributions with mean lengths in the range of 14-15 µm with standard deviations ≤ 1 µm will the fission track age be interpretable in terms of a specific event (Green 1988) e.g. subaerial eruptions or rapid cooling through the partial annealing zone (PAZ) (Figure 3.2). The fission track age of such samples then approximates the time of cooling through 110°C.

Figure 3.2: The fission track length distribution of a sample (shown in histograms a, b and c) is directly caused by the type of thermal history (a, b or c) it has undergone, since cooling below $\sim 110^{\circ}$ C. The area between 60 and 110° C is referred to as the partial annealing zone (PAZ), where most of the track shortening occurs (modified from Gleadow and Brown 2000).

In contrast, samples that remained at shallower crustal levels in the PAZ for a more protracted period, or underwent a more complex cooling history before exhumation, will retain large numbers of partially annealed tracks (Figure 3.2). The sample's fission track age will therefore be mixed, in other words will have partly reset with ages older than the time of cooling. The track length distribution will be dominated by the shortened tracks that formed and partially annealed before the given sample cooled below 60°C, and consequently the standard deviation will be larger (Figure 3.2b and c). Single grain ages may then show a broad spread, because some, but not all, grains may have been reset completely to zero age before cooling.

The actual degree of spread is strongly dependent on the spread in apatite composition present in that particular sample. Therefore it must be recognised that most fission track ages are reduced by thermal annealing, and we can consider a fission track age only as an "apparent" age. The apparent fission track age for complex cooling histories indicates only a minimum estimate of when the sample cooled below 110°C. It will be shown later in this study that the apparent age might differ by more than hundreds of million years from an initial cooling below 110°C, and for another very large time span before the sample finally cooled below 60°C due to complex cooling patterns. The fission track age data in this study have therefore been taken only to constrain temperature histories, and to estimate maximum palaeotemperatures experienced at a given time, in the temperature range detectable with apatite fission track analysis. The way thermal histories are derived is explained in Section 3.4.3.

3.2 Fission Track Data

3.2.1 Track Formation

The current model for the formation of fission tracks is the ion spike explosion model (Figure 3.1b-d) developed by Fleischer et al. (1975): A disordered crystal lattice with damage trails is left by expelled nuclei after fission decay of the uranium isotope ²³⁸U. The frequency of fission events is as low as about one for every $2 \times 10^{6} \alpha$ -particle decay events. In fission decay, the nucleus spontaneously splits into two nuclei with mass numbers of \sim 85 to 105 and \sim 130 to 150. Every fission event releases about 200 MeV of energy (Fleischer et al. 1975). The two nuclei are highly charged and so mutually repel each other as a result of Coulomb repulsion, and travel directly away from each other in a straight line. As they travel they dissipate their kinetic energy to the host crystal lattice. The highly charged particles recoil, and simultaneously interact with atoms in the lattice initially by electron stripping or ionisation. This leads to further deformation of the lattice as the ionised lattice atoms repel each other, leaving a damage trail or fission track. Limits of this model are discussed in Chadderton (1988). Newly formed tracks in apatite are about 16 ± 1 µm in length and 0.008 µm in diameter (Donelick et al. 1990).

The linear damage trails appear as randomly orientated tubes intersecting the polished surface of the host crystal after a standardised chemical etching treatment (Green et al. 1986). The disordered lattice damage in the track is chemically reactive, and may be widened by chemical etching to reveal a fission track, which is then readily observed under the optical microscope under high magnification (\sim 1250 x) (Figure 3.3a).

The ability to generate tracks depends on the mass of the ionising particle and the density of the medium. In muscovite, the lowest mass particle which can generate tracks by irradiation is about 30 atomic mass units (amu). Fission

Figure 3.3: *C*-axis parallel apatite grain with fission tracks. a) Grain showing randomly orientated fission tracks intersecting the exposed surface with etch pits and track tails under transmitted light, b) same grain under reflected light. Alignment parallel c-axis is given due to parallel, elongated etch pits, which is a critical selection criteria for datable apatites.

fragments, with masses of ca. 90 and 135 amu respectively, are well above this threshold, so that they always generate tracks. On the other hand, α - particles as

Figure 3.4: Apatite grain with three horizontal confined tracks (white arrows). Horizontal tracks are surface parallel and etchant has enlarged tracks through crack.

the major product of uranium decay, are so far below the critical mass that they cannot create tracks.

Price and Walker (1963) demonstrated that spontaneous fission of ²³⁸U was the only significant source of tracks in most natural minerals (Table 3.1). Induced fission of ²³⁵U by natural thermal neutrons can be ignored, as can cosmic rayinduced fission of uranium. The density of spontaneous fission tracks is a function of both the time over which the tracks are accumulated and the ²³⁸U concentration. Several uranium-bearing minerals have been assessed for their potential use in fission track dating, but most are unsuitable due to their low uranium concentrations. Minerals that are commonly used over a wide range of geological conditions are: apatite, zircon, sphene and natural glasses (Fleischer et al. 1975, Ravenhurst and Donelick 1992).

3.2.2 Track Annealing and the Effects of Temperature

Fission tracks are not stable. They shorten progressively and irreversibly with increasing temperature over geological time scales of 10^{6} - 10^{8} yrs. This recrystallisation process is referred to as annealing. Partial annealing reduces the lengths of individual tracks; total annealing erases all tracks completely.

At an early stage in the development of fission track dating, Fleischer et al.

	Relative abundance (compared to ²³⁸ U)	Total half-life (yrs)	Spontaneous fission half-life (yrs)				
²³² Th	4	1.40 x 10 ¹⁰	$1.0 \ge 10^{21}$				
²³⁴ U	5.44 x 10 ⁻⁵	2.46 x 10 ⁵	1.5 x 10 ¹⁶				
²³⁵ U	7.25 x 10 ⁻³	$7.04 \ge 10^8$	1.0 x 10 ¹⁹				
²³⁸ U	1	4.47 x 10 ⁹	8.2 x 10 ¹⁵				

Table 3.1: Abundances and half-lives of the four major naturally occurring nuclides which undergo spontaneous fission after Wagner and van den Haute, 1992. The relative abundances and the spontaneous fission half-life suggest that most fission occurring in nature is due to 238 U.

(1965) showed that of the various environmental parameters which could possibly affect the long term stability of fission tracks, temperature is by far the most dominant factor. Annealing experiments have shown that heating for ten times as long causes about the same increase in the degree of annealing as a temperature increase of 10°C (Green et al. 1986, Green et al. 1989b, Crowley et al. 1991).

Above temperatures of ~ 60° C the annealing rate increases significantly until all tracks are completely annealed at temperatures greater than ~ 110° C. Therefore temperature decreases the measured apparent fission track age systematically, with progressive thermal annealing, until all tracks are fully annealed, and the apparent age is reduced to zero (Figure 3.5). Reduction in age occurs as a consequence of a decrease in the mean track length, which causes a proportional reduction in the measured spontaneous track density (Section 3.3) (Laslett et al. 1982, Green 1988). The temperature range between 60° C and 110° C is generally referred to as the "partial annealing zone" (PAZ)(Gleadow and Fitzgerald 1987) (Figure 3.2). However, track shortening also occurs, albeit at very slow rates, at temperatures below 60° C (Green 1988, Donelick et al. 1990).

3.2.3 Compositional Affects on Annealing

The annealing behaviour of fission tracks in apatite $[Ca_5(PO_4)_3(F, Cl, OH)]$ is also sensitive to chemical composition, especially to the ratio of chlorine to fluorine. Chlorine-rich apatites are more resistant to track annealing than fluorinerich apatites at temperatures above ~60°C, to temperatures of ~110°C to 150°C at which all fission tracks in either type of grains are annealed (Gleadow and Duddy 1981, Green 1985, Green et al. 1986). For example, at temperatures between 90 and 120°C, individual grain ages show a distinctive spread with some ages near zero and others approaching the original source age (Figure 3.5). This property suggests that the closure temperature for individual grains within a sample may vary significantly in response to variations in chlorine content (Green et

Figure 3.5: Apparent apatite fission track ages decrease from their original value (X) to zero between 60 and 110° C, because fission tracks anneal and the track density reduces to zero over the same time interval. Circles represent an array of samples exposed to different temperatures.

al. 1986, Carlson 1990, Carlson and Donelick 1993). Therefore, the measured apparent fission track age of a sample decreases systematically with progressive thermal annealing. This occurs because a decrease in the mean track length causes a proportional reduction in the measured spontaneous track density (Laslett et al. 1982, Green 1988). Relatively little is known about the influence of OH, Mn and REE. In addition, the variation of track length with angle to the crystallographic c-axis becomes progressively more anisotropic (with increasing temperatures). As the mean track length approaches zero, the only tracks left are aligned parallel to the c-axis (Green et al. 1986).

Constraining the chemical composition of individual grains within samples is an important step before interpreting thermal histories. Compositional differences do not produce significant annealing differences for samples with rapid cooling histories where the affects of the partial annealing zone are reduced. However, samples with protracted or multi-stage cooling histories may display significant differences in age and length distributions (Green et al. 1986, O'Sullivan and Parrish 1995). Fission track studies of sedimentary rocks have documented large spreads of individual grain ages within samples (Green et al. 1986, Green et al. 1989a). In most cases the spread is attributed to varying grain compositions sourced from multiple terrains. In previous studies (Arne 1994, Fitzgerald 1994) of plutonic terrains it is generally assumed that apatites from the same intrusive body, and subsequently within each rock sample, have similar chemistry. Therefore, different terrain provenance cannot be considered for plutonic rocks. The significance of variations in apatite chemistry within plutonic rock samples is described in O'Sullivan and Parrish (1995). The study illustrates that significant variations in apatite composition can occur in plutonic rock samples, which result in differences in the annealing behaviour between individual grains. This variation in annealing behaviour between single apatite grains thus provides important information about the maximum temperatures experienced by a sample (Section 3.4).

Several experiments have been conducted to constrain the annealing characteristics of track lengths in apatite (Green et al. 1986, Green et al. 1989a, Green et al. 1989b, Laslett et al. 1987, Carlson 1990, Crowley et al. 1991). It is still a matter of debate which annealing algorithm is most appropriate, as it is difficult to assess the apatite chemistry and crystal structure of each individual grain quantitatively. The Laslett et al. (1987) algorithm has been applied in this thesis, since microprobe analysis of selected grains showed chlorine concentrations being consistently below Durango apatite (0.4 wt% chlorine); and this was the upper chlorine concentration for the Laslett et al. (1987) models.

3.3 Concepts behind Age Determination

3.3.1 Methods

The fission track method is not substantially different from the other isotopic dating methods that are based on the decay of a naturally radioactive parent to stable daughter atom. The main difference is that the parent/daughter ratio is measured by counting the areal densities of fission tracks revealed through chemical etching. The daughter isotopic abundance is determined through counting the number of ²³⁸U spontaneous tracks (N_s) formed in the mineral of interest. The parent isotopic concentration (the uranium concentration) is determined through counting the number of fission tracks produced from fission of ²³⁵U induced by thermal neutron irradiation (N_i). Since the natural ratio of ²³⁵U/²³⁸U is well established the ²³⁸U concentration can thereby be calculated (Section 3.3.4).

Two different laboratory procedures are in common use for determining fission track ages (Gleadow 1981, Wagner and van den Haute 1992). These are:

- 1. The external detector method
- 2. The population method

The population method is used only on samples with a relatively homogeneous concentration of uranium between grains, and where a bulk average age of all the grains in a sample is desired. This is applicable e.g. to volcanic glasses or young volcanics, where only a simple cooling history is expected.

The external detector method makes it possible to date grains individually. It is used for samples with strongly heterogeneous concentrations of uranium between grains, and where different grains have different ages, such as can be caused by partial resetting of apatite grains by annealing. In practice, the fission track ages for the external detector method are calculated by (1) determining a personal calibration factor, (2) evaluating the spontaneous to induced fission track ratio, and (3) measuring the received thermal neutron fluence. The present study uses the external detector method to determine the parent to daughter track ratio for individual crystals (Gleadow and Lovering 1977). External muscovite detectors are attached to the surface of the prepared mineral mount, containing spontaneous fission tracks (N_s) to record the fission of ²³⁵U induced by the bombardment of low energy neutrons (N_i) in the individual crystals. The ratio is then determined from the density of N_s to N_i.

3.3.2 Age Equations

The age of a sample (t) using the external detector method is calculated using the standard fission track age equation (Wagner and van den Haute 1992):

$$t = \frac{1}{\lambda_t} \ln \left[1 + \left(\frac{\lambda_t}{\lambda_f} \right) \left(g \frac{\rho_s}{\rho_i} \right) I \sigma \Phi \right]$$
(3.1)

where:

- ρ_s = the measured spontaneous track density (from natural fission of ²³⁸U), typically in units of $tracks \cdot cm^{-2}$.
- $\rho_i =$ the measured induced track density (from induced fission of ²³⁸U), typically in units of $tracks \cdot cm^{-2}$.
- λ_t = the total (alpha plus fission) decay constant of ²³⁸U (1.551 · 10⁻¹⁰ a⁻¹).
- λ_f = the spontaneous fission decay constant of ²³⁸U (taken as 8.46 · 10⁻¹⁷a⁻¹)(Hurford and Green 1982, Hurford 1990a, Wagner and van den Haute 1992).
- $I = \text{the } {}^{235}\text{U}/{}^{238}\text{U} \text{ isotopic ratio } (7.2527 \cdot 10^{-3}).$
- σ = the thermal neutron capture cross sectional area of ²³⁵U, a measure of how likely a thermal neutron in the reactor is to induce fission track of a ²³⁵U nucleus (584.25 · 10⁻²⁴cm² · neutron⁻¹).

- Φ = the thermal neutron dose received in the nuclear reactor (typically in units of *neutrons* · cm^{-1}).
- g = a geometry factor of 0.5 for the external detector method, which compensates for the fact that one-half of the U-bearing volume of the grain within one track range of the grain's internal surface has been removed by grinding and polishing of the internal surface before irradiation of the sample, so only 0.5 times as many induced tracks will form in the external detector.

and:

$$\rho_i = \frac{N_i}{A_i} \tag{3.2}$$

$$\rho_s = \frac{N_s}{A_s} \tag{3.3}$$

with:

- N_i = number of induced fission tracks (in external detector).
- N_s = number of spontaneous fission tracks (in crystal).

 $A = \text{total area counted } (cm^2).$

Because of problems with both, the exact determination of the spontaneous fission decay constant λ_f , and in measuring the thermal neutron dose Φ received in the reactor, there are practical difficulties in using equation 3.1 directly (Hurford and Green 1982, Hurford 1990a). Whilst track densities are readily determinable, and the constants λ_t , I and σ are precisely known, the determination of the spontaneous fission decay constant λ_f is nonetheless extremely difficult to quantify because of variations of the reaction rate of ²³⁵U with thermal neutron fluence (Green and Hurford 1984). Combining these two problematic parameters to define a calibration constant evaluated against geological material of known age leads to the zeta-calibration factor, where the fission decay constant λ_f , the ²³⁵U/²³⁸U isotopic ratio I and the ²³⁵U nuclear fission cross section σ are replaced by zeta (ζ) (Hurford and Green 1982, Hurford 1990a):

$$\zeta = \frac{\Phi \sigma I}{\lambda_f} \tag{3.4}$$

The neutron fluence is assessed by counting induced tracks in an uranium dosimeter glass, where the neutron-induced ²³⁵U fission events are recorded in a mica detector. The track density is then represented by ρ_d (in $\frac{tracks}{cm^2}$)(Hurford and Green 1982). Substituting ζ into equation 3.1 leads to:

$$t = \frac{1}{\lambda_t} \ln \left[1 + \lambda_t \zeta \left(g \frac{\rho_s}{\rho_i} \right) \rho_d \right]$$
(3.5)

where:

$$\rho_d = \frac{N}{A} \tag{3.6}$$

A standard sample of known age (t_{std})

$$t_{std} = \frac{1}{\lambda_t} \ln \left[1 + \lambda_t \zeta \left(g \frac{\rho_s}{\rho_i} \right) \rho_d \right]$$
(3.7)

has to be analysed to determine ζ empirically by rearranging equation 3.7:

$$\zeta = \frac{1}{\lambda_t} \left[\exp(t_{std} \lambda_t) - 1 \right] \left(\frac{\rho_i}{g\rho_s} \right) \left(\frac{1}{\rho_d} \right)$$
(3.8)

The individual, operator related ζ is determined on a number of standard samples (15-20) of known isotopic age. A weighted mean of these determinations is used in equation 3.5. Some variations of the observational counting process will also be absorbed by using the ζ -calibration.

The distribution of single grain ages is numerically assessed using the chisquare (χ^2) test (described in detail in Section A.2). If the χ^2 probability (P χ^2) is larger than 5%, the single grain ages determined are considered to represent a normal Poissonian distribution (Green 1981a). The pooled age will then be considered since it assumes that all grains are related to a single age and fit within a Poissonian distribution. The sum of track counts from all grains counted is used to calculate the ratio of ρ_s/ρ_i where:

$$\rho_{s} = \frac{\sum_{j=1}^{n} N_{sj}}{\sum_{j=1}^{n} A_{sj}}$$
(3.9)

$$\rho_{i} = \frac{\sum_{j=1}^{n} N_{ij}}{\sum_{j=1}^{n} A_{ij}}$$
(3.10)

will be substituted into equation 3.5.

The χ^2 test is considered to have failed if the $P\chi^2$ probability is smaller than 5%, since the range in single grain ages or the variation in ρ_s/ρ_i will be greater than expected for a Poissonian distribution. The assumption that is made in $P\chi^2$ values smaller than 5%, is that the grains belong to multiple age populations. The calculation of a mean age was introduced by Green (1981a), by thus calculating a mean of the ρ_s/ρ_i ratio from the individual crystal ratios:

$$\frac{\rho_s}{\rho_i} = \sum_{j=1}^n \frac{\left(\frac{\rho_s}{\rho_i}\right)_j}{n} \tag{3.11}$$

which is then substituted into equation 3.5. n is the number of grains.

Since the mean age depends only on the ratios N_s/N_i and not on how large or small the actual track counts are, Galbraith and Laslett (1993) introduced the concept of "central age" as a more accurate assessment for mixed ages with a χ^2 probability smaller than 5%. The central age is essentially the weighted mean of the log normal distribution of single grain ages. The central age and the standard deviation can be calculated after Galbraith and Laslett (1993) by iteration of the following algorithm estimating η as a weighted average of the variance y_j with weights w_j . σ is then estimated by equating $\sum_{j=1}^n w_j^2 (y_j - \eta)^2$ to its expected value: $\sum_{j=1}^n w_j$. The algorithm gives a precision for the central age estimate, but not for the age dispersion.

For j = 1, 2..., n let

$$m_j = N_{sj} + N_{ij} \tag{3.12}$$

$$y_j = \frac{N_{sj}}{m_j} \tag{3.13}$$

$$z_{j} = \log\left(\frac{N_{sj} + \frac{1}{2}}{N_{ij} + \frac{1}{2}}\right)$$
(3.14)

Set initial values of σ and η . For example: $\sigma = 0.6$ standard deviation of $\{z_1, z_2, \dots, z_n\}$,

$$\eta = \frac{\sum_{j=1}^{n} N_{sj}}{\sum_{j=1}^{n} m_j}$$
(3.15)

For $j = 1, 2, \ldots, n$ compute:

$$w_j = \frac{m_j}{\{\eta(1-\eta) + (m_j - 1)\eta^2(1-\eta)^2\sigma^2\}}$$
(3.16)

Compute new values of σ and η as:

$$\sigma = \sigma \left(\frac{\sum_{j=1}^{n} w_j^2 (y_i - \eta)^2}{\sum_{j=1}^{n} w_j} \right)^{\frac{1}{2}}$$
(3.17)

$$\eta = \frac{\sum_{j=1}^{n} w_j y_j}{\sum_{j=1}^{n} w_j}$$
(3.18)

Recalculate equations 3.16, 3.17 and 3.18 until σ and η do not change; this is usually achieved within 20 iterations. The final value of σ is the estimated age dispersion (variation). The final value for η is substituted into the age equation 3.5 given the relationship:

$$\frac{\eta}{(1-\eta)} = \frac{\rho_s}{\rho_i} \tag{3.19}$$

The central age t_c is then estimated from the age equation as:

$$t_c = \frac{1}{\lambda_t} \ln \left[1 + \frac{1}{2} \lambda_t \zeta \rho_d \frac{\eta}{1 - \eta} \right]$$
(3.20)

When the variation in the count population is consistent with a Poissonian distribution, then all three age estimations are essentially the same. Since the central age is more robust to outliers and non-Poissonian variations, it is the preferred sample age estimate (Gallagher et al. 1998).

3.3.3 Error Calculation

All measurements are inaccurate to some degree, depending as they do on several instrumental and operational uncertainties. As fission track dating is still a fully operator-controlled method, we therefore have as well to deal with the personal errors of the particular observer. Such errors can arise from many causes, as the operator's physical and mental conditions might vary during the observational process. These errors are due to the operator, and are often revealed by repeated observations. They are disordered in their incidence and variable in magnitude. To minimise the accidental or personal error in the behaviour of counting tracks with the microscope, the personal ζ calibration factor has been introduced and described in section 3.3. As mentioned earlier, the zeta factor absorbs some of the systematic errors introduced by the very process of observation itself.

Calculation of fission track errors for all three methods are shown below. The standard error (se) on the mean age t_m is given by:

$$se(t_m) = \left[\left(\sum_{j=1}^n t_j^2 - \frac{\sum_{j=1}^n t_j}{n} \right) \frac{1}{n(n-1)} \right]^{\frac{1}{2}}$$
(3.21)

 t_j is the single grain age for j number of grains.

Chapter 3

The standard error for the central age t_c is estimated as:

$$se(t_c) = t_c \left[\frac{1}{\eta^2 (1-\eta)^2 \sum_{j=1}^n w_j} + \frac{1}{N_d} + \left(\frac{se(\zeta)}{\zeta}\right)^2 \right]^{\frac{1}{2}}$$
(3.22)

If

$$\frac{\eta}{1-\eta} = \frac{\sum_{j=1}^{n} N_{sj}}{\sum_{j=1}^{n} N_{ij}}$$
(3.23)

then the central age t_c becomes the pooled age, and its standard error becomes:

$$se(t_p) = t_p \left[\frac{1}{\sum_{j=1}^n N_{sj}} + \frac{1}{\sum_{j=1}^n N_{ij}} + \frac{1}{N_d} + \left(\frac{se(\zeta)}{\zeta}\right)^2 \right]^{\frac{1}{2}}$$
(3.24)

with the standard error for the zeta value (ζ):

$$se(\zeta) = \zeta \left[\frac{1}{\sum_{j=1}^{n} N_{sj}} + \frac{1}{\sum_{j=1}^{n} N_{ij}} + \frac{1}{N_d} + \left(\frac{se(t_{std})}{t_{std}}\right)^2 \right]^{\frac{1}{2}}$$
(3.25)

The error on the mean age is determined using the standard error of single grain ages. To estimate the error on the pooled and central ages, and the zeta value, raw track counts are used. The error on the zeta value also includes the error of the age standard, which is calculated during independent dating of the standard.

3.3.4 Calculation of Uranium Content

Dating single grain ages requires the knowledge of the uranium concentration in each individual grain. This is obtained by referencing to a dosimeter glass (CN5) of known uranium content using the following equation:

$$U_{conc(u)} = \frac{\rho_i}{\rho_d} U_{conc(std)}$$
(3.26)

where:

 $U_{conc(u)}$ = unknown uranium concentration.

 $U_{conc(std)}$ = uranium concentration of dosimeter glass (CN5=12.5 ppm).

3.4 Deriving Thermal Histories from Fission Track Data

3.4.1 Presentation of Fission Track Data

After collection of all fission track information, the data can be displayed in various ways to show individual sample information (radial plots with individual grain ages, length distribution histograms). In order to visualise the fission track data, all measurements are presented in a graphical format (raw data are listed in this thesis in Appendix C).

Fission track age information is displayed in histograms and radial plots (Figure 3.6). Radial plots are constructed using the method of Galbraith (1990a). For a population of single grain ages, the radial plot is the most effective way to show the precision and spread around the central age. The age for a single crystal is found by extrapolating lines from the zero point to the age axis passing through the standard error of the sample (Figure 3.6c). The standard error is the same for all grains in a sample, and is indicated on the *y*-axis. The precision, or relative error, for each grain is indicated by the *x*-axis (Figure 3.6c). Grains that lie close to the *y*-axis are less precise (i.e. have a larger relative error) than those that lie to the right. The radial plot allows the visual recognition of distinct populations in a sample (O'Sullivan and Parrish 1995). The central age, χ^2 probability, and variation (from the pooled age in %), are all indicated on the right hand side of the radial plot. Confined track lengths data are plotted as histograms in 1µm intervals normalised to 100 tracks. The mean length, standard deviation, and number of tracks, are displayed on the right of the graph.

Regional trends can be observed when data are plotted, for example as age versus elevation, mean track length versus elevation, age versus mean track length and age versus standard deviation.

By assessing trends and relationships as shown it is possible to qualitatively extract the most important aspects of individual sample and regional thermal history information recorded in each sample.

Figure 3.6: Fission track data are commonly plotted as track length histograms (a) and in radial plots of single grain ages (b). Relative error and precision of individual grains can be assessed. Ages on the right of the graph are more precise than those to the left. The size of the arc indicates the error spread for that grain (modified after Noble 1997).

3.4.2 Vertical Profiles

In areas where crustal segments have been disrupted by faulting, the observed fission track profiles will show a different pattern due to the exposure of different crustal levels, since apparent ages form palaedepth markers which define an invisible fission track stratigraphy (Figure 3.7) (Gleadow 1990). Offsets in this stratigraphy can determine the relative uplift between different blocks. These discontinuities in the age patterns do not directly indicate the timing of the tectonic disruption. But, if not already determined by thermal modelling (Section 3.4.3), they do provide constraints on a maximum age for tectonic activity in that it must have occurred at, or after, the youngest apparent age in the disturbed sequence (Chapter 5). Notable examples of such offset fission track patterns have been observed in the Transantarctic Mountains (Gleadow and Fitzgerald 1987, Fitzgerald and Gleadow 1988), the East African Rift System (Foster and Gleadow 1996), the northeastern Brooke Range in Alaska (O'Sullivan et al. 1998) and southeastern Australia (Foster and Gleadow 1992b). The minimum offset to be visible in apparent fission track ages has been estimated to 300 m (Dumitru 2000).

A significant amount of thermal history information can be extracted if a suite of samples from a vertical profile is analysed. These profiles can be obtained from either deep boreholes or vertical relief profiles (Gleadow and Brown 2000).

The track length distribution in linear profiles forms a distinct concave-up curve (Figure 3.5 and 3.8), which indicates that each sample has experienced the same cooling history at slightly different times, at different temperatures (Naeser 1981, Brown et al. 1994b). The shape of the concave-up curves (Figure 3.8) implies very slow cooling rates (e.g. cratonic interiors), or slow heating, due to progressive burial in sedimentary basins (Gleadow and Brown 2000).

In tectonically stable regions with low denudation rates, the typical form of a vertical crustal profile is controlled primarily by the progressive increase of temperature with depth (Figure 3.8) (Brown et al. 1994b, Gleadow and Brown 2000). The resulting concave-up curves are interpreted as significant prolonged residence in the partial annealing zone. In this case the variation in apparent fission track age with elevation indicates progressive annealing due to increased temperatures. It is important to note that the gradient in these diagrams is not related in any way to cooling. Each individual sample in the profile has equilibrated at a slightly different temperature and will have a slightly different track length distribution. This indicates progressively greater degrees of track annealing (Gleadow and Brown 2000).

Typical examples of these concave-up partial annealing zone profiles are found in deep drillholes in sedimentary basins (Naeser 1981). They are also observed in epirogenetic uplifted zones such as the Transantarctic Mountains (Gleadow and Fitzgerald 1987, Fitzgerald and Gleadow 1988), and on basement relief as

Figure 3.7: Rocks in the upper crust preserve a certain fission track age systematic due to temperature forced track shortening and the subsequent apparent age reduction (a). A simple erosional model is shown in (b). If faulting has occurred (c) and the landscape was shaped in the same way as in b, different apatite fission track ages will be observed on either side of the fault line (d) (after Noble 1997).

found on the flanks of active rift systems (Foster and Gleadow 1992a, Foster and Gleadow 1996), in active mountain ranges (Fitzgerald et al. 1995) or on passive margins (Johnson and Gallagher 2000).

In the case of more complex cooling histories in which prolonged periods of low denudation are followed by phases of accelerated denudation, a more complex fission track age and mean track length profile will also be observed. The base of the existing partial annealing zone for samples exposed to temperatures below 110°C (concave-up apparent age profile from Figure 3.5) will be shifted upwards towards a new topographic surface as denudation proceeds (Brown et al. 1994b). Apatite samples which were exposed to higher temperatures above 110°C prior to the onset of accelerated denudation did not accumulate tracks. Thus, these samples have zero apatite fission track ages up to the onset of (accelerated) denudation. They will begin to accumulate tracks after the initiation of cooling, once they have cooled below temperatures of 110° C. This leads to the development of a new fission track age profile below the earlier (concave-up) profile (Figure 3.8). Most observed vertical profiles are made up of the concave-up curves and a linear relationship in the age elevation pattern (Gleadow and Brown 2000). This pattern is highly significant as it indicates a two stage cooling history. The upper partial annealing zone profile indicates a period of relative stability during which cooling rates were very low, followed by a period of accelerated cooling (Gleadow and Brown 2000).

The transition from the concave-up profile (preserved partial annealing zone, temperatures below 110°C) to the new lower profile (temperature above 110°C) is clearly marked by a break-in-slope. The break-in-slope marks the palaeoisotherm of 110°C prior to the initiation of rapid cooling. This too is highly significant in that the corresponding ages approximate the timing of the cooling event. Even though the lower part of the profile constrains the timing at which the accelerated cooling began, only limited temperature information can be extracted from these samples, because of the speed of their passage from the partial annealing zone into the field of track stability.

However maximum palaeotemperatures, prior to the onset of cooling, can be extracted from samples above the break-in-slope. Obtaining this information from vertical relief profiles is critical since it can be equated to the initial burial depth of the samples prior to cooling.

Because vertical relief profiles are collected across the geothermal gradient through which they have cooled, direct estimates of the palaeogeothermal gradient can be made, if the maximum palaeotemperature experienced at the time of onset of cooling is plotted versus the elevation from which the samples were collected. Information on the palaeogeothermal gradient is important to obtain for further quantification of the net amount of denudation that occurred since the onset of rapid cooling. It is also important to know whether significant changes in heat

Figure 3.8: Fission track age and mean track length profile as observed in deep drill holes and vertical relief profiles. The break-in-slope separates the preserved partial annealing zone (upper part, concave-up) from the lower region of the curve where samples were totally annealed prior to the rapid cooling event and approximates the time of cooling (after Brown et al. 1994).

flow may have occurred over the same period of time.

3.4.3 Thermal Modelling

Following the qualitative interpretations, the thermal histories can now be quantified by forward modelling, integrating all fission track parameters.

Forward modelling has been introduced by Gallagher (1995) using a genetic algorithm (GA). The GA has been applied to test and quantify possible thermal histories from the apparent fission track age, single grain age distribution, track length distribution and mean confined track length.

For all samples with unknown apatite chemistry, the Laslett et al. (1987) an-

nealing algorithm for Durango apatite (0,4% Cl) was used to obtain the thermal histories. All annealing algorithms incorporated in Monte Trax (Laslett et al. 1987, Carlson 1990, Crowley et al. 1991) do not fully predict the annealing of fission tracks in apatite, for this reason the Laslett et al. (1987) algorithm was chosen; also it is in common use in the literature, and provides a reasonable match with most common apatite compositions. In general however the Laslett et al. model will slightly overestimate the timing of thermal histories for samples with low or no chlorine concentrations, and the inverse for samples with higher chlorine contents.

The model estimates the temperature and the timing required to achieve an equivalent degree of annealing for the observed measurements in a particular sample. It is important to note that forward modelling does not give a unique answer, it simply provides a best match to the data. However, the process of modelling is normally assisted by constraints based on the initial observations largely to proof possible thermal histories incorporating all available information. This is done by user defined time-temperature points. To fit a thermal history which maximises the probability of containing the measured data, the "maximum likelihood" approach has been applied to constrain the t-T path (Gallagher 1995), and can be summarised as:

$$L = \sum_{j=1}^{N_c} (N_s^j ln[\theta] + N_i^j ln[1-\theta]) + \sum_{k=1}^{N_j} ln[P(l_k)]$$
(3.27)

with

$$\theta = \frac{\rho_s}{\rho_s + \rho_i}.\tag{3.28}$$

 N_s^j and N_i^j being the total number of spontaneous (s) and induced (i) tracks, with $j = 1, N_c$. $P(l_k)$ being the probability of the track length measurements. ρ_s and ρ_i are the predicted spontaneous and induced track densities. For the maximum likelihood approach we used individual track counts and unbinned track length distribution. This approach also allows to map confidence regions around the best solution. These confidence regions represent the 95% confidence intervals $(\pm 2\sigma)$, and were taken to obtain the time and temperature errors, with always the maximum x, y error considered (the direct search method normally shows asymmetric errors). The 95% confidence level is the percentage of those estimates providing intervals that actually would contain the true value of the population parameter being estimated.

Chapter 4

Fission Track Results from Vertical Relief Profiles

4.1 Introduction

Apatite fission track analysis can identify differential vertical movements of the crust by recording the cooling that results from the denudation that is caused by tectonic uplift, by local relief changes or by changing climate. This can be most tightly constrained and quantified if vertical relief profiles are available.

If a distinctive break-in-slope appears at a particular elevation on a graph of apparent fission track age plotted versus elevation, an excellent marker for the 110°C palaeoisotherm is found. This property of vertical fission track profiles is important for understanding the regional tectonics and geomorphic evolution of the study area, and is the focus of this chapter.

A break-in-slope marks the base of a fossil partial annealing zone (Section 3.4.2), provided the apparent apatite fission track ages decrease with increasing depth and temperature in relatively stable thermotectonic environments. This leads to a characteristic concave-up profile on the graph (Gleadow and Duddy 1981, Gleadow et al. 1983, Gleadow et al. 1986) (Section 3.2.2). The break-in-slope, in general, is reached at a paleodepth between 3 - 5 km (Figure 3.8), depending on the palaeogeothermal gradient, and the chemical composition of the apatites (Green et al. 1986, O'Sullivan and Parrish 1995).

The age of the break-in-slope in such a characteristic profile approximates the onset of a phase of significant rapid cooling (Fitzgerald and Gleadow 1990, Brown et al. 1994b). Because samples physically residing at temperatures below the break-in-slope (in excess of 110°C) do not retain any tracks, they therefore have zero age prior to the initiation of rapid cooling, and hence yield information

about the timing. The form of the new apparent age profile that develops below the break-in-slope (Figure 4.3) therefore depends on the rate and duration of the accelerated period of denudation. It will be linear, if a sufficient section is removed (otherwise a new concave-up partial annealing zone profile will be formed) (Brown et al. 1994b).

Because samples above the break-in-slope retain tracks that formed prior to cooling, they can provide information about the maximum palaeotemperature experienced prior to the phase of accelerated denudation (Figure 3.8).

Thus, the qualitative information which can be derived from such a profile is: general information about the position of the 110°C palaeoisotherm and additional information about the thermal history in terms of discriminating between phases of tectonic stability (segment showing a concave-up profile) from phases of accelerated cooling, resulting in a linear array of apparent apatite fission track age with depth/elevation.

Knowledge of the palaeogeothermal gradient is crucial for further quantification of the denudation history (i.e. converting palaeotemperature information into palaeodepth information). The magnitude and timing of denudation can be directly derived if modelling techniques are applied, and information about the palaeogeothermal gradient can be extracted.

When samples are collected from an undisrupted vertical relief profile, the resulting data can be modelled to produce an internally consistent thermal history. The palaeogeothermal gradient at the time just prior to the rapid cooling phase can be reconstructed by plotting the maximum palaeotemperature versus present elevation of the sample. The gradient of this slope displays the palaeogeothermal gradient at that particular time. The gradient of the slope between apparent fission track age, and elevation below the break-in-slope, provides a direct estimate of the denudation rate over this time interval.

In this chapter the results of three vertical profiles - Brandberg, Okenyenya, and Windhoekgraben - will be discussed. Samples collected from vertical profiles from Spitzkoppe, Erongo and Spreetshoogte Pass did not yield sufficient apatites. Apatite mounts from the Okenyenya profile were provided by Roderick Brown.

The samples discussed in this chapter were collected from vertical profiles covering approximately 300-1800 m of relief. The resulting data were modelled to produce an internally consistent thermal history, and to further quantify the amount of section removed.

4.2 Thermal and Numerical Modelling

Due to the fact that all vertical relief profiles discussed here are coherent crustal profiles, it is assumed that samples from deeper crustal levels were always hotter than the samples from shallower levels. Because all samples have experienced the same style of thermal history at slightly different times and temperatures, all data were modelled with a strong emphasis to find a common history which was compatible with all samples from the profile.

Two different modelling approaches were undertaken to obtain thermal histories consistent with the observed data. The first approach was to obtain timetemperature histories for each sample, using a genetic algorithm and a maximum likelihood function (Gallagher 1995), as described in Section 3.4.3. This approach calculates maximum palaeotemperatures at a certain time for each sample point (point temperatures). Raw track length and track counting data were entered in Contour Trax, an improved version of Monte Trax (Gallagher 1995). Errors on point temperatures are displayed at the $\pm 2\sigma$ level. The second approach was to obtain a fit to the form of the age and length profiles defined by all samples using Thermotrack (Brown et al. 1994a). Thermotrack calculates apatite fission track parameters, using a one dimensional finite-difference thermal model. The model profiles (e.g. Figure 4.3 and 4.9) for apatite fission track age, and mean track length against elevation, were obtained by forward modelling; and the fit was determined by trial and error. This numerical modelling approach allows the entire apatite fission track age and mean track length profiles to be modelled, as well as the associated thermal histories. The annealing algorithm of Laslett et al. (1987) was used in both approaches.

4.3 Calculation of Palaeogeothermal Gradient and Denudation

To determine the maximum palaeogeothermal gradient and amount of section removed from vertical relief profiles, maximum palaeotemperatures derived from apatite fission track data are plotted versus present sample elevation. Maximum palaeotemperatures are derived by thermal modelling of individual samples (Section 3.4.3). The slope of the fitted linear relationship between maximum palaeotemperatures, and present elevation, provides a direct estimate of the maximum palaeogeothermal gradient (G) at the time maximum palaeotemperatures were reached (e.g. Figure 4.5 and Section A.3).

If an estimate of the palaeogeothermal gradient can be made, the amount of removed section can be calculated by dividing the amount of cooling by the geothermal gradient, using the following equation:

$$D = \frac{(T - T_s)}{G} \tag{4.1}$$

where D is the denuded section [km], T is the modelled palaeotemperature $[^{\circ}C]$, T_s is the surface temperature $[^{\circ}C]$ and G the geothermal gradient $[\frac{^{\circ}C}{km}]$.

The amount of cooling experienced by a particular sample is estimated by subtracting the maximum palaeotemperature from the estimated palaeo-surface temperature at that time. The palaeo-surface temperature is the surface temperature at the time when the subsurface section started to cool from maximum temperatures. It is therefore important to know whether the region has experienced significant changes in climate, since cooling from maximum palaeotemperatures occurred (O'Sullivan and Brown 1998).

Estimates for quantifying denudation rates can be made if a phase of accelerated erosion exhumed the total apatite annealing zone. This results in a linear segment of the age elevation profile below the break-in-slope (Figure 3.8). The slope of this linear segment is a direct measure of the denudation rate:

$$R = \frac{\Delta E}{\Delta t} \tag{4.2}$$

where R is the denudation rate $\left[\frac{km}{m.y.}\right]$, ΔE is the difference in present elevation [km] and Δt denotes the time interval [m.y.].

It should be noted that the denudation rate calculated this way is independent of assumptions about the geothermal gradient, because it records cooling of rock mass as it moves vertically through the effective closure isotherm (Foster and Gleadow 1996). However, estimates of the amount of denudation are only valid if a known depth for the 110°C isotherm can be assumed. According to Harrison and Clarke (1979), Parish (1983), Brown and Summerfield (1997), and Moore and England (2001), isotherms are not effected significantly by denudation for denudation rates below 0.5-0.3 km/m.y..

4.4 The Brandberg Profile

The Brandberg igneous complex in northwestern Namibia, with its summit at 2573 m, is the highest mountain in Namibia. The isolated massif with a diameter of 25 km (areal extent of approximately 420 km^2) rises approximately 1800 m above the plains of the Namib Desert. The Brandberg complex represents an intra-plate anorogenic ring-complex. It belongs to the Damaraland Alkaline Igneous Province (Section 2.2.5) and was emplaced into late Precambrian granites

Figure 4.1: Simplified geological map of the Brandberg complex with fission track sampling sites (after Schmitt et al. 2000)

and metasedimentary rocks of the Damara sequence (Diehl 1990). Basically, the Brandberg igneous complex represents an exhumed granitic pluton with a very well constrained intrusion age of 132 ± 1 Ma (Watkins et al. 1994, Schmitt et al. 2000) (Section 2.2.5 and 2.3.2).

A number of subvolcanic, magmatic centers are exposed at the present level of erosion of the Brandberg. Detailed mapping by Diehl (1990) recognised eight cycles of magmatic/subvolcanic activity, expressed by different magmatic centers. Later studies by Schmitt et al. (2000) could not confirm this subdivision and they consider the Brandberg complex to consist of four essentially discrete and mappable intrusive units. However, alkali granite is by far the most abundant and characteristic rock type, with the vast majority of the massif formed by

Figure 4.2: Chlorine content of four selected Brandberg samples. All samples are fluorapatites with less than 0.1% chlorine.

biotite-hornblende granite. An early quartz monzonite body, the Amis peralkaline granite, and peripheral felsic dykes make up the rest of the complex (Fig. 4.1).

The sampling rationale was to collect a full vertical profile covering the largest possible elevation range in order to obtain the utmost information about the timing and magnitude of cooling and subsequently denudation.

The Brandberg is difficult to access and two field campaigns were necessary to obtain a full profile. Fifteen samples were taken over a regular interval of approximately 100 m, off the southern flank of the Brandberg, from the summit (2573 m) to the base of the Hongorob Gorge (720 m) (Figure 4.1). An early expedition in September 1996 had to be aborted at 1800 m altitude due to extreme climatic conditions. Rocks from the summit down to 2100 m were collected two years later by Klaus Weber on a helicopter flight provided by the German GeoForschungsZentrum Potsdam. Samples were collected from the main biotite-hornblende granite. Only the bottom sample belongs to the contact breccia, and was sampled for comparative purposes.

4.4.1 Fission Track Results

Separation of apatite from the Brandberg samples was very difficult due to fluorite bearing granites. Fluorite has almost the same physical properties, and is indistinguishable from apatite applying standard mineral separation procedures (Appendix B) and is abundant compared to apatite if present. Apatites were successfully separated from eleven of this samples. Analytical details are displayed in Table 4.1. 20 grains could be counted in five out of eleven samples, and only the lowest two samples had 100 measurable lengths. Due to the very small number of apatite grains in most samples, horizontal confined track length information is very limited, and inferences based on a small number of confined tracks have to be treated with caution.

The apatite fission track ages range from 98±9 Ma to 66±11 Ma and decrease systematically with decreasing elevation. The systematic pattern in age reduction produces an asymptotic decrease of age from 2570 m altitude (2-9-98-1, 98 Ma) down to 2260 m altitude (2-9-98-7, 81 Ma), and an almost linear decrease below 2260 m altitude (2-9-98-6, 79 Ma) down to the base at 720 m altitude (12-4-96-5, 69 Ma). The mean confined track length distribution varies from $15.1\pm0.4 \mu m$ to 12.2±1.1 µm (Table 4.1). A characteristic of the mean track length profile for the upper section is the pronounced increase in mean track length that occurs from 2570 m down to 2120 m altitude (Figure 4.3). The mean track length in this part of the profile increases systematically from 14.3 µm to 15.1 µm (2-9-98-1 to 2-9-98-7). The associated standard deviation decreases systematically from values of 1.89 (2-9-98-1) to 1.19 (2-9-98-6). This systematic pattern results if palaeotemperatures above approximately 95°C were reached. As a result of such high palaeotemperatures the lengths of earlier formed tracks are dramatically reduced (Brown et al. 1994b). But the track length measuring procedure is strongly biased against measuring severely shortened tracks below 10 µm (Laslett et al. 1982, Green 1988). This affects the mean track length distributions for these samples which become increasingly dominated by the long track length component. So, the resulting mean track length distribution begins to increase with a simultaneous decrease in standard deviation. As soon as maximum palaeotemperatures exceed 110°C, none of the earlier formed tracks are preserved.

Microprobe data of all grains from four selected samples (2-9-98-1, 2-9-98-6, 12-4-96-2, 12-4-96-4) along the profile gave chlorine concentrations all less than 0.1 wt% chlorine (Figure 4.2). This indicates very little compositional variation in chlorine content, and because all compositions are more F-rich than the standard Durango apatite (0.4 wt% chlorine), estimated temperatures are maximum temperatures. Thus, the temperature at the base of the partial annealing zone that formed prior to approximately 80 Ma did not exceed 110°C (Green et al. 1986).

Figure 4.3: Apparent fission track ages and mean track lengths across the full height of the exposed Brandberg igneous complex. Number of tracks in histograms is normalised to 100. The pronounced inflection (at approximately 2100 m) marks the break-in-slope at ca. 79 Ma. Errors are denoted at the $\pm 2\sigma$. The solid and dashed lines represent the shapes of the 1-D Thermotrack models for apparent fission track ages and mean track lengths.

4.4.2 Discussion

The vertical profile of the Brandberg exhibits the characteristic shape of the base of an exhumed partial and total annealing zone (Figure 4.3). The break-in-slope in the apparent apatite fission track age profile between 81 and 79 Ma marks the base of the partial annealing zone at 2260 m altitude, and this age approximates the timing of the initiation of a phase of rapid cooling. The mean track lengths for five samples below the break-in-slope (2-9-98-6, 11-4-96-1, 12-4-96-1, 12-4-96-2, 12-4-96-3) are based on less than 20 track measurements, and should therefore only be regarded as indicative at this stage.

The fact that all ages between 2260 m and 720 m altitude are nearly concordant (Figure 4.3) with a weighted mean of 69 ± 0.8 Ma, suggests that a phase of rapid cooling commenced at about that time.

The break-in-slope, and the change in apparent fission track ages from younger than 79 Ma below 2120 m to older than 79 Ma above 2120 m altitude, mark the depth of the transition from the apatite partial annealing zone to the total annealing zone for the Late Cretaceous (Figure 4.3). In this interpretation, samples, which are at present above 2120 m altitude, were within the partial annealing zone for a protracted period of time before Late Cretaceous cooling. Samples below this elevation did not retain fission tracks, and would have recorded zero apatite fission track ages prior to this time (Gleadow and Fitzgerald 1987, Brown et al. 1994b).

Due to the different record preserved in samples above and below the breakin-slope, estimates of the palaeogeothermal gradient could be derived by thermal modelling from either part separately. This is because samples below the breakin-slope were exposed to temperatures in excess of 110°C, and hence no tracks were accumulated at the time samples above the break-in-slope were exposed to temperatures close to and below 110°C. In the case of the lower part of the Brandberg profile (Figure 4.3), no attempts to model palaeotemperatures were made, due to the lack of confined tracks.

The three samples from the highest elevation provided sufficient numbers of track lengths (2-9-98-1, 2-9-98-8, 2-9-98-7). Thermal histories were tested for a phase of accelerated cooling sometime in the Late Cretaceous. Histories derived by thermal modelling are shown in Figure 4.4. A coherent thermal profile was obtained for all three data, with increasing maximum temperatures with decreasing elevation (Figure 4.5).

All samples reflect an onset of quick cooling in the Late Cretaceous at about 83 Ma. Maximum palaeotemperatures at this time increase from 96 ± 14 to $105\pm20^{\circ}C$ (Figure 4.4). These model palaeotemperatures were plotted against present elevation in Figure 4.5. The gradient of the linear least square regression represents the palaeogeothermal gradient at this time. Linear regression was performed

Figure 4.4: Thermal histories for the top three Brandberg samples. Error bars arise from the t-T-point where the thermal models suggest the onset of rapid cooling. These values were used to estimate the palaeogeothermal gradient in Figure 4.5. Errors are displayed as $\pm 2\sigma$ errors. Horizontal dashed lines at 60 and 110°C bracket the partial annealing zone. Dashed lines extending thermal histories above 60°C mark a possible continuation of the thermal history since apatite fission track analysis is least sensitive to these temperatures.

twice in order to handle the errors in two different ways. The value of the palaeogeothermal gradient is $27\pm6^{\circ}$ C/km only if the dispersion of individually derived palaeotemperatures are considered to calculate the standard errors. Least square regression, which takes the $\pm 1\sigma$ individual errors on the palaeotemperatures into

Figure 4.5: Palaeogeothermal gradient derived from thermal modelling for the top three Brandberg samples. Error bars are denoted as $\pm 2\sigma$ errors.

account, reduces the palaeogeothermal gradient to 25°C/km but significantly increases the error to $\pm 31^{\circ}$ C/km. This large error results from large 1σ errors, and the very narrow elevation interval from which the maximum palaeotemperatures were derived.

The error on the palaeogeothermal gradient could theoretically be minimised with more data. However, these data would be difficult to obtain. The three modelled samples are taken from the base of the partial annealing zone, which forms the highest elevation of the Brandberg. And, for reasons outlined above, the bottom part of the profile is not suitable for confident modelling.

Although the precision on the estimates of the gradient is low, it nevertheless provides a useful idea of what the Late Cretaceous gradient was. In fact, it appears that the Late Cretaceous palaeogeothermal gradient was not significantly elevated relative to the present day (22°C/km) (Ballard and Pollack 1987).

Using an estimate of the palaeogeothermal gradient of 26°C, the amount of denudation can now be calculated using Equation 4.1. An annual mean surface temperature of 18°C was assumed for the calculation. The removed section for the Brandberg summit is then estimated to be approximately 3 km. The preservation of the partial annealing zone is critical for gross estimates of the net amount of de-

nudation if the removed section exceeds approximately 4 km (assuming a gradient of ca. 26° C). This is because the difference in elevation to the remaining outcropping section, where palaeotemperatures were beyond 110° C (in this case from 2120 m altitude downwards), can be added to the denuded section where maximum palaeotemperatures could be derived by thermal modelling. Subsequently, the amount of removed section from the present regional landsurface at the base of the Brandberg is approximated to ca. 5 km, since the difference in elevation from summit to base is ca. 1850 m.

While the numerical modelling using Thermotrack requires some initial values for the geothermal gradient and the denudation rate, direct estimates of the denudation rate over time for the phase of accelerated denudation can be made by applying least square regression to the linear segment of near concordant ages below the break-in-slope of the profile (e.g. Brown et al. 1994b, Foster and Gleadow 1996). The least square regression from sample 2-9-98-7 to 12-4-96-5 estimates an apparent average denudation rate of 0.12 ± 0.01 km/m.y. over this particular time interval in the Late Cretaceous.

The numerical one-dimensional models for apparent fission track age and mean track length in Figure 4.3 were generated using Thermotrack (Brown et al. 1994a). Three episodes were postulated for the thermal history of the Brandberg samples: Assuming negligible denudation rates from 130 to 85 Ma; rapid denudation with average rates of 0.125 km/m.y. from 85 to 65 Ma (2.5 km) (see calculation above); followed by a phase of low denudation rates of 0.023 km/m.y. from 65 Ma to present (1.5 km). An initial geothermal gradient of 26°C (see calculation above) and the annealing model of Laslett et al. (1987) were used. The resulting model is shown in comparison with the observed data in Figure 4.3.

While the model prediction for the apparent fission track ages forms an almost perfect fit to the measured apparent fission track ages, the mean track lengths predicted below the break-in-slope (between 1 and 2 km altitude) are significantly longer than the observed data (Figure 4.3). This misfit may be attributed to the small amount of measured lengths for these samples. Nevertheless, the mean track length in three out of four data (11-4-96-1, 12-4-96-2, 12-4-96-3) plot within the 2σ error of the modelled curve. As soon as the number of measured confined track lengths reaches 100 tracks, as is the case with the two samples from the base of the Brandberg (12-4-96-4, 12-4-96-5), a perfect match with the model is obtained again.

Thermal histories displayed in Figure 4.6a represent the Thermotrack thermal history for the Brandberg profile, and reflect the simplest model that is able to predict the major features of the data. It is unreasonable to expect this model to satisfy all quantitative characteristics which have finally resulted from the "real" thermal history of the Brandberg. A limitation of these models is that the thermal effects of magmatic underplating, associated with rifting in the Early Cretaceous,

Figure 4.6: One-dimensional thermal histories for samples across the Brandberg. a) Dashed lines bracket the partial annealing zone between 60 and 110°C. b) Dashed line marks present mean land surface.

are not included. However, magmatic underplating and cooling is unlikely to have affected the cooling history in the Late Cretaceous (Brown et al. 1994a). Despite the limitation, the one-dimensional models are capable of providing predictive model results which fit well with the observed data.

4.4.3 Summary

Several qualitative assumptions can now be placed on the thermal history of the present outcropping Brandberg igneous complex. The maximum palaeotemperatures experienced by rocks above 2120 m altitude, after initial cooling from intrusion, were less than 110°C (Figure 4.3 and 4.4). Figure 4.4 displays the point thermal histories for the three samples from the present highest exposures derived by thermal modelling after Gallagher (1995). Samples below 2120 m (below the break-in-slope) (Figure 4.3) were exposed to temperatures in excess of 110°C prior to their exhumation in the Late Cretaceous.

Rocks exposed by erosion that are now at the surface of plains surrounding the Brandberg (currently at approximately 700 m altitude) were at significantly elevated temperatures at least until the Late Cretaceous. This implies that several kilometers of denudation must have occurred on a regional scale during the Late Mesozoic-Early Cenozoic.

The amount of denudation that can be estimated since the time revealed by the break-in-slope provides good constraints on the position of the 110°C palaeoisotherm, which is currently at an altitude of approximately 2100 m. Moreover, further quantitative constraints can be obtained by thermal and numerical models. These models were used to derive the simplest thermal history that could explain the quantitative and qualitative characteristics of the observed fission track results (Figure 4.3 and 4.6). The palaeogeothermal gradient was approximated by determination of point temperatures to ca. 26°C in the Late Cretaceous (Figure 4.5). Subsequently, the amount of removed section was estimated to be approximately 5 km from the present landsurface surrounding the Brandberg since the onset of rapid cooling in the Late Cretaceous.

The application of a combination of thermal and numerical modelling of fission track data has proved to be very useful in reconstructing thermal histories, as well as point temperatures and palaeogeothermal gradients, from the vertical relief Brandberg profile.

Chapter	4	
mapter	-	

	I											-	ĺ
Z		25	54	42	×	10	13	'	5	13	103	100	
Std-dev		1.89	1.27	1.05	1.19	1.76	2.76	,	2.45	1.92	1.47	1.72	
(und) TTM		14.3 ± 0.38	14.5 ± 0.17	14.8 ± 0.16	15.1 ± 0.42	13.1 ± 0.56	12.9 ± 0.77	·	12.2 ± 1.09	13.0 ± 0.53	13.4 ± 0.15	13.0 ± 0.17	
% Var		0	0	0	0	0	0	0	0	0	0.02	0.86	
Age (Ma)		98 ± 9	94 ± 9	$81{\pm}10$	79 ± 9	77±15	70 ± 10	68 ± 12	67±8	66 ± 11	68 ± 3	69 ± 4	
$\mathrm{P}\chi^2\%$		99.9	100	99.9	100	100	100	100	100	9.99	92.9	73	
ïŻ		361	348	238	245	94	206	136	295	121	2458	1321	
μ		0.58	0.67	0.68	0.61	0.52	0.49	0.61	0.59	0.5	2.25	1.91	
N_{S}		195	177	105	106	35	68	4	91	54	1100	584	
ρS		0.31	0.34	0.3	0.26	0.2	0.16	0.2	0.18	0.25	1.01	0.84	
PN		3087	3087	3087	3087	3355	3355	3355	3355	3015	3015	3015	letails
ρD		0.96	0.99	0.98	0.97	1.1	1.13	1.12	1.15	0.79	0.81	0.83	apter 3 for c
of crystals		20	20	15	13	8	13	6	20	8	20	20	s CN5. See Ch
Elev (m)		2573	2330	2260	2120	1800	1600	1475	1180	1050	720	720)±5 for NBS glas
long (E)		14°577'	14°571'	14°575'	14°574'	14°542'	14°532'	14°541'	14°529'	14°527'	14°517'	14°517'	ing a zeta of 379
lat (S)	Profile	21°15'	$21^{\circ}149'$	$21^{\circ}16'$	21°173'	$21^{\circ}168'$	$21^{\circ}191'$	21°185'	21°193'	21°195'	21°222'	21°222'	tes calculated us
Sample-No	Brandberg 1	2-9-98-1	2-9-98-8	2-9-98-7	2-9-98-6	11-4-96-1	12-4-96-1	11-4-96-2	12-4-96-2	12-4-96-3	12-4-96-4	12-4-96-5	Apatite central ag

Number

 Table 4.1: Apartite fission track results for vertical profiles taken from Brandberg igneous complex. Samples are listed according to elevation from top to bottom.

4.5 The Okenyenya Profile

The Okenyenya complex, only 70 km northeast of the Brandberg, is a much smaller complex, comprising approximately 20 km². It rises almost 1 km above the surrounding plains. The Okenyenya complex, like the Brandberg, belongs to the anorogenic intraplate ring-complexes of the Damaraland Igneous Province (Section 2.2.5). It contains a wide range of rock types, from silica-undersaturated alkaline varieties and tholeiitic gabbros, to silica-oversaturated syenites (Fig. 4.7) (Watkins et al. 1994). Watkins et al. (1994) bracketed magmatic activity into a time interval of 132 to 128 Ma (Section 2.2.5).

Being intruded in the Late Cretaceous into the Pan-African Damara Sequence (Figure 4.7), the Okenyenya complex forms the exposed and isolated remnants of several sequences of shallow intrusions. This profile was targeted, and nine samples were taken every 100 m, to derive a detailed cooling history and the palaeogeothermal gradient for the Okenyenya-region, as demonstrated in the previous section for the Brandberg.

Because of the similarities to the Brandberg of emplacement age, exposure, and denudation history, only a brief description of the analytical results will be given here. Modelling was performed in the same fashion as for the Brandberg.

4.5.1 Fission Track Results

Samples over the full range of the Okenyenya profile were taken by Roderick Brown and Ron Watkins in 1995. Apatites were successfully separated from samples taken over vertical intervals of approximately 100 m, from the summit at 1902 m down to the base at 980 m, covering a difference in elevation of 920 m.

The apatite fission track ages decrease from the summit with 103 ± 9 Ma systematically, and reach ages of 68 ± 9 Ma at the base. An asymptotic decrease in apparent apatite fission track age can be observed between 1902 m altitude (95N-8) and 1400 m altitude (95N-13). This pattern is less pronounced in comparison with the Brandberg profile, as is the commencing linear decrease of apparent fission track age with elevation for the lower part of the profile (95N-14 to 95N-16, 1310 to 980 m altitude).

The distribution of mean confined track lengths ranges from $14.1\pm0.18 \mu m$ (95N-12) to $12.7\pm0.34 \mu m$ (95N-15), and the associated standard deviation varies from 1.53 (95N-15) to 1.06 (95N-9). Analytical results are displayed in Table 4.2.

Chlorine concentrations of four selected samples across the profile, determined by microprobe analysis, reach values for all grains below 0.15 wt% chlorine. All grains have less chlorine than the standard Durango apatite, and esti-

Figure 4.7: Simplified geological map of the Okenyenya complex with fission track sampling sites (after Watkins et al. 1994).

mated palaeotemperatures can be considered as maximum temperatures.

4.5.2 Discussion

The exposed Okenyenya profile displays the lower part of an apatite partial annealing zone, and the transition into the total annealing zone, similar to the Brandberg profile. The pronounced inflection in the apparent apatite fission track age profile at 73 Ma places the break-in-slope at 1400 m altitude. The age of the break-inslope also approximates the timing of a phase of rapid cooling in the Late Cretaceous.

Figure 4.8: Chlorine content of four selected Okenyenya samples. All samples are fluorapatites with less than 0.2% chlorine.

The available track length information for samples 95N-13 to 95N-15 is limited to a maximum of twenty track lengths measurements. Consequently, these samples were not considered for thermal modelling.

Five samples above the break-in-slope (95N-8 to 95N-12) provide sufficient numbers of tracks, and thus were modelled with Contour Trax. Model-constraints were set to test for similar thermal histories to the Brandberg. The modelling results for all five samples are displayed in Figure 4.10.

The onset of a phase of accelerated denudation in the Late Cretaceous is consistent with the Brandberg results, and is reflected by all samples (Figure 4.10). They also show a consistent increase in maximum palaeotemperatures experienced, ranging from 94 ± 12 to $105\pm12^{\circ}$ C.

The palaeogeothermal gradient, obtained by applying linear least square regression, is $24\pm5^{\circ}$ C, if individual errors on palaeotemperatures are not considered. Performing linear least square regression with individual errors on palaeotemper-

Figure 4.9: Apparent fission track ages and mean track lengths across the full height of the exposed Okenyenya igneous complex. Number of tracks in histograms is normalised to 100. The pronounced inflection between samples 95N-13 (6) and 95N-14 (7) marks the break-in-slope at 73 Ma. Errors are denoted on the $\pm 2\sigma$ level. The solid and dashed lines represent the shapes of the 1-D Thermotrack models for apparent fission track ages and mean track lengths.

Figure 4.10: Thermal histories for the top five Okenyenya samples. Error bars are shown for the t-T-point where the thermal models suggest the onset of rapid cooling. These values were used to estimate the palaeogeothermal gradient in Figure 4.11. Errors are displayed as $\pm 2\sigma$ errors. Horizontal dashed lines at 60 and 110°C bracket the partial annealing zone. Dashed lines extending thermal histories above 60°C mark a possible continuation of the thermal history since apatite fission track analysis is least sensitive to these temperatures.

atures estimates a palaeogeothermal gradient of $23\pm34^{\circ}$ C (Figure 4.11). The error treatment is discussed in Section 4.4.2 for the Brandberg, and is also applicable to the Okenyenya gradient.

The amount of removed section was calculated using Equation 4.1, and an estimate of the palaeogeothermal gradient of 24°C was used, as well as 18°C for the mean annual surface temperature. The amount of section removed from the summit of the Okenyenya since the Late Cretaceous can be approximated to ca. 3 km, as observed for the Brandberg summit. Consequently, a removed section of approximately 4 km can be assumed for the present landsurface surrounding the Okenyenya complex.

Parameters for numerical modelling, to fit the observed data, were set to negligible denudation rates from 130 to 75 Ma, rapid denudation with average rates of 0.2 km/m.y. for the interval from 75 to 65 Ma (2 km), followed by low denudation rates of 0.015 m/m.y. from 65 Ma to present. Because thermal histories have similar input parameters to the Brandberg histories, Thermotrack histories are not explicitly shown for the Okenyenya profile.

Numerical models for the apparent fission track ages show a near perfect fit with the observed data (Figure 4.9). The measured mean track length values deviate from the model results, particularly where only small numbers of confined tracks could be measured (Figure 4.9). Nevertheless, the mean track length in nine out of eleven data plot within the $\pm 2\sigma$ error of the modelled curve.

4.5.3 Summary

The outcropping remnants of the Okenyenya igneous complex exhibit the lower part of an exhumed apatite partial annealing zone, and the transition into the total apatite annealing zone.

By analogy to the Brandberg profile, the 110°C palaeoisotherm is revealed by the break-in-slope, which is at a present elevation of approximately 1300 m.

The palaeogeothermal gradient was estimated by thermal modelling to be ca. 24°C/km in the Late Cretaceous.

The present landsurface surrounding the Okenyenya complex experienced denudation in the order of 4 km since the Late Cretaceous. Numerical modelling has shown that a discrete phase of accelerated denudation, beginning in the Late Cretaceous, is necessary to fit the observed data.

Figure 4.11: Palaeogeothermal gradient derived from thermal modelling for the top five Okenyenya samples. Error bars are denoted as $\pm 2\sigma$ errors.

31	1.53 1.52	12.7±0.34 13.3±0.27	0 0	66±10 68±9	87.3 99.8	219 274	1.67 1.26	60 76	0.46 0.35	4013 4013 ^{etails}	1.29 1.3 apter 3 for d	6 9 s CN5. See Chi	1200 980 ±5 for NBS glas	15°322' 15°293' ing a zeta of 379	nsi
20	1.53	12.7 ± 0.34	0	66 ± 10	87.3	219	1.67	60	0.46	4013	1.29	9	1200	15°322'	
17	1.15	13.6 ± 0.28	0.02	73 ± 11	56.1	182	1.12	56	0.35	4013	1.26	S	1310	15°322'	
1	0	13.1 ± 0	0	73 ± 10	96.6	237	0.95	74	0.3	4013	1.24	L	1400	15°323'	
51	1.3	14.1 ± 0.18	0	79 ± 16	81.6	94	2.94	32	1	4013	1.23	7	1510	15°323'	
23	1.25	13.3 ± 0.26	0.52	83 ± 6	83.9	677	2.05	246	0.74	4013	1.21	14	1600	15°323'	
82	1.35	13.5 ± 0.15	0.01	88 ± 5	86	1307	3.14	509	1.22	4013	1.2	16	1690	15°323'	
65	1.06	13.5 ± 0.13	0	104 ± 8	9.66	619	1.58	291	0.74	4013	1.18	16	1810	15°322'	
24	1.12	13.9 ± 0.23	0	103 ± 9	93.8	397	1.32	187	0.62	4013	1.17	8	1902	15°327'	
												crystals			
z	Std-dev	MTL (µm)	% Var	Age (Ma)	$\mathrm{P}\chi^2\%$	ïZ	ρI	$\mathbf{N}_{\mathbf{S}}$	ρS	ΡN	$\rho \mathrm{D}$	of	Elev (m)	long (E)	
												Number			

Table 4.2: Apatite fission track results for vertical profiles taken from Okenyenya igneous complex. Samples are listed according to elevation from top to bottom.

4.6 The Windhoekgraben Profile

The morphology of the Windhoekgraben reflects a northsouth striking graben structure through the Khomas Hochland from Windhoek to Okahandja. Peak elevations exceed 1950 m on both graben shoulders, while the ca. 15 km wide canyon has its lowest elevation along the main road B1 Windhoek-Okahandja, which decreases gently in elevation from 1800 m down to 1400 m. The Windhoekgraben diminishes towards the Okahandja Lineament.

An east-west striking transect was sampled across both graben shoulders ca. 50 km north of Windhoek. The study area belongs to the Pan-African Kuiseb Formation, consisting of monotonous sequences of schistose pelitic and psammitic meta-turbidites with intercalations of graphitic schists and calc-silicate rocks. Peak metamorphism reached amphibolite facies during the Damara orogeny, and K-Ar biotite cooling ages indicate temperatures of ca. 300°C at 481±25 Ma (Haack 1983).

4.6.1 **Fission Track Results**

Four samples have been analysed from the Windhoekgraben profile, covering a vertical range of 300 m in elevation. The samples were collected at vertical intervals of 100 m.

The apparent apatite fission track ages decrease systematically with decreasing elevation from 328 ± 19 Ma at the top down to 198 ± 20 Ma at the lowest point of the profile (Figure 4.12). The most notable feature in this particular profile is the significant age difference of ca. 100 Ma occurring between the lowest samples 21-10-97-4 and 21-10-97-5, from 297 ± 18 Ma to 198 ± 20 Ma.

The mean track length distributions show little variation over the profile, and have significantly shortened mean values. They vary from $11.0\pm0.24 \,\mu\text{m}$ (21-10-97-4) to $10.8\pm0.17 \,\mu\text{m}$ (21-10-97-2). Standard deviations range from 1.7 (21-10-97-2) to 2.0 (21-10-97-4).

4.6.2 Discussion

The shape of the apparent fission track age-elevation plot (Figure 4.12) is indicative of an exhumed part of an apatite partial annealing zone, with increased temperatures causing an exponential annealing of tracks and subsequently leading to an exponential reduction of the apparent apatite fission track age with depth. This is a characteristic feature of a profile, and occurs if samples are exposed to temperatures of approximately 95°C (Brown et al. 1994b).

Figure 4.12: Apparent fission track ages and mean track lengths across the eastern graben shoulder of the Windhoekgraben. Number of tracks in histograms is normalised to 100. Errors are denoted at the $\pm 2\sigma$ level.

Figure 4.13: Thermal histories for all samples across the Windhoekgraben profile. Error bars are shown for the t-T-point where the thermal models suggest the onset of rapid cooling. These values were used to estimate the palaeogeothermal gradient in Figure 4.14. Errors are displayed as $\pm 2\sigma$ errors. Horizontal dashed lines at 60 and 110°C bracket the partial annealing zone. Dashed lines extending thermal histories above 60°C mark a possible continuation of the thermal history since apatite fission track analysis is least sensitive to these temperatures.

Figure 4.14: Palaeogeothermal gradient derived from thermal modelling for all samples across the Windhoekgraben profile. Error bars are denoted as $\pm 2\sigma$ errors.

The generally old apparent fission track ages of these samples, and the very short mean track lengths, suggest that samples were exposed to elevated temperatures for a protracted period of time. The track length distribution (Figure 4.12 and 4.13) is indicative of the thermal history experienced. Although the mean track lengths are very short, the standard deviation is large and exceeds 1.7 in all samples. The ratio of annealed tracks to those that have experienced only a little annealing, provides crucial information about the timing of when samples passed through the partial annealing zone and reached the field of track stability; in other words, when they cooled to temperatures below 60°C, where only very little annealing occurs.

This information was further quantified by thermal modelling. Thermal histories were tested for a phase of rapid cooling in the Late Cretaceous. Thermal modelling results are shown in Figure 4.13.

A consistent increase in experienced maximum palaeotemperature, with decreasing elevation, was obtained for all samples (Figure 4.14). Moreover, all the samples display protracted periods of residual in the partial annealing zone (at moderate temperatures), and a phase of accelerated cooling in the Late Cretaceous. The modelled palaeotemperatures for the Late Cretaceous increase from 89±7 to 96±5°C (Figure 4.13).

The palaeogeothermal gradient was estimated to be $22\pm2^{\circ}$ C/km by linear regression, as shown in Figure 4.14. The error on the gradient increases to $22\pm25^{\circ}$ C/km, if individual errors on the palaeotemperatures are considered (see Section 4.4.2 for error disussion).

The resulting denudation for the Windhoekgraben profile, with a palaeogeothermal gradient of 22°C/km and 18°C for the mean annual surface temperature, can be inferred by using Equation 4.1. The thickness of the denuded section for the Windhoekgraben region can be estimated to 3-3.5 km (from top to bottom of the profile) since the Late Cretaceous.

4.6.3 Summary

The Kuiseb Schists, in the Khomas Hochland in the Windhoekgraben area north of Windhoek, represent a part of an exhumed fossil partial annealing zone. Qualitative inferences were made by interpreting the shape of the apparent apatite fission track age-elevation profile (Figure 4.12), and the individual track length distributions. Further quantitative information was extracted by thermal modelling. Derived point temperatures were used to estimate the palaeogeothermal gradient to 22°C/km in the Late Cretaceous.

The resulting denudation inferred for this area ranges in the order of 3 to 3.5 km since the Late Cretaceous.

Sample-No	lat (S)	long (E)	Elev (m)	Number of crystals	$ ho \mathrm{D}$	PN	ρS	Ns	ρI	Ni	$\mathrm{P}\chi^2\%$	Age (Ma)	% Var	MTL (µm)	Std-dev	z
Windhoekgr	aben Profil	e														
Windhoekgrau	ben East															
21-10-97-2	22°267'	17°07'	1897	16	1.08	3355	1.966	911	1.189	551	31.3	328 ± 19	7.95	10.8 ± 0.17	1.7	100
21-10-97-3	22°272'	$17^{\circ}073'$	1800	15	1.09	3355	1.567	339	1.022	221	97.9	309 ± 28	0	10.9 ± 0.4	2.46	38
21-10-97-4	22°278'	$17^{\circ}071$	1695	17	1.1	3355	1.93	714	1.327	491	54.4	297 ± 19	8.56	11 ± 0.24	7	72
21-10-97-5	22°288'	17°069'	1590	20	1.12	3355	0.403	199	0.423	209	6.66	198 ± 20	0	10.9 ± 0.28	1.83	42
Apatite central age	es calculated usi	ing a zeta of 37!	'9±5 for NBS glas	s CN5. See Ch	tpter 3 for d	etails										

 Table 4.3: Apatite fission track results for vertical profile taken from Windhoekgraben. Samples are listed according to elevation from top to bottom.

4.7 Conclusions

In order to obtain maximum information about the cooling pattern of three different regions of the study area, three vertical profiles from the Brandberg and Okenyenya igneous complexes, as well as the Windhoekgraben, have been analysed in detail.

The Brandberg and Okenyenya complexes are both key locations in northern Namibia. They form isolated massifs superimposed on the regional morphology, and exhibit vertical relief of 1800 m (Brandberg) and 900 m (Okenyenya) respectively. Both are anorogenic intra-plate complexes with well constrained intrusion ages in the Early Cretaceous (Section 2.2.5). The Windhoekgraben profile represents a key location for the Namibian highland.

The thermal histories, derived by different conceptual approaches, have been interpreted in terms of crustal cooling, discriminating between phases of tectonic stability and phases of accelerated denudation. Palaeotemperatures were determined by modelling and converted to equivalent depths to quantify denudation rates over the particular time interval of accelerated cooling. Qualitative interpretations were tested and further quantified by thermal and numerical modelling.

Estimations of the amount and rate of denudation from cooling histories require knowledge of the thermal gradient that prevailed in the geological environment from which the sample was obtained. This knowledge involves the presentday gradient as well as possible variations in the past.

Present-day geothermal gradients are normally obtained from surface heat flow measurements (e.g. Pollack et al. 1993). Extrapolating these gradients into the past introduces uncertainties. These uncertainties can be avoided if vertical apatite fission track profiles are available, and the gradients are estimated directly (Gleadow and Brown 2000).

Of the three analysed profiles the Brandberg profile is the most comprehensive in that the bottom of a fossil partial annealing zone is preserved as well as the transition into, and a substantial amount of the total apatite annealing zone is revealed (Figure 4.3). A palaeogeothermal gradient of approximately 26° C/km was determined to have prevailed in the Late Cretaceous. The amount of cooling experienced since the Late Cretaceous was then converted into ca. 5 km of denudation from the present landsurface surrounding the Brandberg via the palaeogeothermal gradient and the mean annual surface temperature. The position of the 110°C palaeoisotherm for the Brandberg is presently at an altitude of approximately 2100 m. The average denudation rate over this particular time interval (80 to 60 Ma) has been calculated to be 0.12 ± 0.01 km/m.y..

The Okenyenya profile is similar to the Brandberg profile with the lower part of a fossil partial annealing zone preserved. An estimated palaeogeothermal gradient of 24°C/km was determined for this profile and allows an estimated depth of denudation on the order of ca. 4 km for the base of the Okenyenya complex since the Late Cretaceous. The present position of the 110°C palaeoisotherm is at 1300 m altitude.

A palaeogeothermal gradient of 22°C/km could be derived for the Windhoekgraben profile. The amount of the removed section for the presently exposed profile ranges from 3-3.5 km.

Maximum palaeotemperatures for all samples analysed here were reached in the Late Cretaceous. A distinct phase of rapid cooling commenced during that time with average denudation rates of approximately 100 m/m.y..

It is highly significant that the palaeogeothermal gradients derived from all three different vertical profiles are similar. The similarity of the three independent estimates suggests that the values are accurate, even though the precision on each measurement is low. Furthermore, the fact that the estimated palaeogeothermal gradients are similar to the present-day mean gradient for the region (ca. 22°C/km), is consistent with the interpretation that the observed cooling was caused by denudation, rather than by any sub-surface thermal mechanism.

It is important to note that the interpretation of cooling patterns and the subsequent estimated amount of denudation do not necessarily imply that the amount of denudation is matched by the same amount of surface uplift. This is because apatite fission track analysis pertains to cooling-denudational events, whereas constraining surface uplift in absolute terms requires independent geological evidence (Brown 1991, Fitzgerald et al. 1995, Summerfield and Brown 1998, Gleadow and Brown 2000). The isostatic response to denudation as well as sedimentation or tectonic activity can indeed lead to an absolute change in surface elevation (uplift or subsidence). However, such a change in surface elevation has no effect on the temperatures of rocks at shallow crustal levels, since in the absence of denudation they remain at their crustal depth relative to the surface (Brown 1991, Gleadow and Brown 2000).

Chapter 5

Late Cretaceous Reactivation of Major Shear Zones in Northern Namibia

5.1 Introduction

Namibia's passive continental margin records a long history of tectonic activity since the Proterozoic. The orogenic belt, which was produced during the collision of the Congo and Kalahari Cratons in the Late Proterozoic, led to a zone of crustal weakness and became the preferred location for tectonism during the Phanerozoic. The Pan-African Damara mobile belt forms this intraplate boundary in Namibia, and its tectonostratigraphic zones are defined by ductile shear zones. The most prominent of these is described as the Omaruru Lineament-Waterberg Thrust.

The prominence of the continental margin escarpment is diminished in the area of the Central and Northern Zone of the Damara belt where the shear zones are located. This area has been targeted with a set of 66 outcrop samples over a 550 km long, 60 km broad, coast parallel transect from the top of the escarpment in the south, across the Damara sector to the Kamanjab Inlier in the north. Apatite fission track age and length data from all samples reveal a regionally consistent cooling event. Thermal histories derived by forward modelling bracket this phase of accelerated cooling in the Late Cretaceous. Maximum palaeotemperatures, immediately prior to the onset of cooling, range from ca. 120°C to ca. 60°C, with the maximum occurring directly south of the Omaruru Lineament. Because different palaeotemperatures indicate different burial depth at a given time, the amount of denudation can be estimated, and thus used to constrain vertical displacements of the continental crust. This cooling pattern is interpreted as the geomorphic response to reactivation of basement structures caused by a change in spreading

Figure 5.2: Contour-plot of all available fission track ages in northern Namibia. Cooling ages younger than 130 Ma (grey shaded area) occur coast-parallel, as well as in a well-defined northeast-southwest trend which is aligned with the regional tectonic fabric of the Damara mobile belt in this region, and coincides closely with the Central and Northern Zone.

geometry in the South Atlantic and South West Indian Oceans.

The Pan-African mobile belts in southern (Tankard et al. 1982, Porada 1989) and west central Africa typically follow the margins of the Kalahari and Congo cratons. These belts strongly influenced the subsequent morphotectonic evolution of the continent by imposing a regional structural framework across Africa. The reactivation of pre-existing structures within these belts has long been recognised to be an important factor in the subsequent geological evolution of these regions (Rosendahl 1987, Unternehr et al. 1988, Versfelt and Rosendahl 1989). It is well known that old lineaments respond sensitively to later tectonic activity (e.g. Donath 1961, Handin 1969), but it is much more difficult to resolve and quantify multiple, discrete phases of reactivation, particularly where the amplitude of reactivation is relatively subtle.

In order to constrain and quantify the tectonically driven reactivation and the subsequent denudation history of the major structural entities in northern Namibia, 66 apatite fission track samples were collected over a ca. 60 km-wide and 550 km-long coast-parallel transect across the Great Escarpment, the Okahandja Lineament (OKL), the Omaruru Lineament-Waterberg Thrust (OML-WT) and the Autseib Fault-Otjohorongo Thrust (AF-OT) to the Kamanjab Inlier (see Figure 5.1). The area covers the Central and Northern Zone of the Damara Orogen. The stratigraphic ages of the samples range from Proterozoic (Kamanjab Inlier) over Pan-African igneous and metasedimentary rocks, to Early Cretaceous igneous intrusive rocks.

By comparing the mean apparent apatite fission track age for the block with the regional age-elevation pattern, the relative vertical displacement between different tectonic blocks can be qualitatively assessed. For example, Foster and Gleadow (1992b) elucidated the existence and reactivation of important structures of the Kanmantoo Fold Belt and the Lachlan Fold Belt in southeastern Australia, on the basis of significant differences in the apparent apatite fission track age. Alternatively, relative vertical displacements can be estimated for any given time by comparing the modelled palaeotemperatures for the different blocks at that time. O'Sullivan et al. (1998) successfully applied forward modelling techniques to samples taken across structures along the Philip Smith Mountain front, Alaska, to reveal complex deformation sequences, where exposure is poor and the topography subdued. The latter approach has been applied in this thesis, and the result of this study shows that the area of the Damara Orogen experienced a kilometer-scale reactivation of an inherited basement structure along the Omaruru Lineament (Figure 5.1) with associated accelerated denudation during the Late Cretaceous.

5.2 Methodology

66 outcrop samples were taken of a variety of Proterozoic to Damara sedimentary and igneous rocks, and of Cretaceous igneous rocks. Apatite fission track thermochronology is a powerful tool over a temperature range from ambient surface temperatures up to about 110°C, the temperature that characterises the upper few kilometers of the Earth's crust. Denudation rates are most likely to control the cooling pattern of rocks at these relatively shallow depths for tectonically quiet settings (e.g. Gleadow and Brown 2000). A detailed overview of fission track thermochronology is provided in Chapter 3.

The track length distribution provides a direct record of the thermal history experienced, and together with the apparent fission track age, is used to derive the thermal history by forward modelling after Gallagher (1995) using the Laslett et al. (1987) model. It is important to note that an apatite fission track age will only record the time that a sample was last at a temperature of $\sim 110\pm10^{\circ}$ C if the mean track length exceeds 14 µm. Otherwise a more complex cooling history must be considered, and the data are best interpreted using one of the available fission track annealing models (e.g. Laslett et al. 1987).

5.3 Previous Fission Track Work

The first fission track studies in Namibia were presented by Haack (1983). As the potential of confined track length information was not known at that time, only apparent apatite cooling ages are available from this earliest work. Haack interpreted the young (<130 Ma) cooling ages north of the Okahandja Lineament as a very slow cooling of the Damara intrusives that were due to elevated heat production caused by the radioactive decay of U-enriched granites. However, these ages are not significantly different from the results from nearby samples that are presented in this thesis. Thus similar thermal histories for these samples can be assumed. Locations of Haack's samples are plotted as triangles in Figure 5.1, and calculated ages are contoured in Figure 5.2. A more comprehensive study was done by Brown (1992), integrating track length information and thermal modelling. These data have already been utilised to reveal a phase of accelerated denudation in the Late Cretaceous. that resulted from a change in plate kinematics in the South Atlantic (Brown 1992, Brown et al. 1997, Gallagher and Brown 1997, Gallagher and Brown 1999a, Gallagher and Brown 1999b, Brown et al. 2000). However, the raw data along the transect are reported here for the first time.

5.4 Fission Track Results

A total number of almost 200 apatite fission track ages are now available for northern Namibia (see Figure 5.1 and Figure 5.2). To show the regional trend of cooling ages, all available ages are contoured in Figure 5.2. The youngest apatite fission track ages occur within a ca. 150 km wide coastal zone, and generally decrease systematically inland, a common trend in passive margins (Gallagher and Brown 1997). However, this regional pattern is modified by a well defined northeastsouthwest trending zone of cooling ages younger than 130 Ma, which cross-cuts the regional pattern, and coincides closely with the intracontinental arm of the Damara mobile belt (Figure 5.2). Cooling ages pre-dating the continental breakup were therefore obtained only from samples from the interior region that are more than 150 km inland of the coast. Ages younger than the approximate time of break-up have been shaded grey on Figure 5.2 to show the two overlapping zones of young ages. The northeast-southwest trend is aligned with the Central and Northern Zones of the Damara Belt (Miller 1983). This area is comprised of the pre-existing crustal structures.

66 samples over an approximately 550 km-long, coast-parallel corridor have been chosen perpendicular to the major structures in this area. Samples were taken from at least 100 km inland of the current coastline. To avoid complexity with north-south striking fault zones further east, the profile has been kept relatively narrow at approximately 60 km. Locations of the transect and individual samples are shown in Figure 5.3. The projected sample locations are shown along the transect versus elevation to indicate the spatial variation within the sampling corridor in Figure 5.4. The change in local relief is more variable at the southeastern end of the profile, as this area comprises the Gamsberg, the third highest mountain in Namibia (2343 m); and furthermore it is here that the profile crosses the margin of the Great Escarpment. The relief becomes more subdued to the northeast. The minimum and maximum elevation were extracted from the 30 arc second digital elevation model provided by the US Geological Survey using GMT (Wessel and Smith 1991). Samples were taken from elevations from ca. 600 m to 2300 m above sea level. Old ages (pre break-up) occur predominantly above 1000 m, whereas ages younger than break-up occur between 600 m and 1500 m (Figure 5.5a).

The 66 apatite fission track ages from the profile range from 61 ± 5 Ma to 547 ± 95 Ma, and most of the fission track ages are significantly younger than the corresponding stratigraphic ages of the host rocks. The mean track length varies from $14.3\pm0.7 \mu m$ to highly annealed mean track lengths of $9.8\pm0.3 \mu m$, with a range of standard deviations between 0.8 and 3.7 μm . The fission track ages post-dating break-up at ca. 124 Ma are mainly associated with unimodal track length distributions (standard deviation 0.8-1.8 μm) and long mean track lengths from

Figure 5.3: Simplified geological map showing the 550 km long and 60 km wide transect. The locations of modelled samples shown in Figure 5.7 are plotted as stars.

Figure 5.4: Spatial variation of elevation within the 60 km wide sampling corridor. The dotted lines indicate the minimum and maximum elevation, the heavy curve the averaged elevation.

Figure 5.5: Relationship between the apatite fission track age with elevation (a) and mean track length (b). The shaded bands represent the approximate time of Damara metamorphism and break-up. Boomerang shaped pattern is indicated by dashed line in b.

Figure 5.6: Chlorine concentration of individual grains from samples 6-10-97-6 and 6-10-97-7 on both sides of the Omaruru Lineament.

12.5-14.4 μ m. This indicates that most of these samples have been subjected to temperatures in excess of 110°C since the South Atlantic opening. Shorter mean track lengths from ca. 9.8-12.5 μ m are associated with ages pre-dating break-up, and have broader track length distributions (standard deviations of 1.6-3.7 μ m). Figure 5.5 shows that effectively all apparent cooling ages post-date the Damara metamorphism at ca. 550 Ma.

The boomerang-shaped pattern of age, and mean track length, in Figure 5.5b, indicates that different samples cooled from different maximum palaeotemperatures (e.g. Gallagher and Brown, 1997). The progressive reduction of apparent apatite fission track age with decreasing elevation occurs because samples with older ages have experienced systematically lower maximum temperatures than samples with the younger apparent fission track ages prior to cooling. Therefore, older ages represent cooler rocks from shallower crustal levels, reflecting little annealing. Intermediate ages, with severely shortened tracks, represent rocks which cooled from deeper crustal levels. The tracks from samples with the youngest apparent fission track ages (to the left of the grey shaded 'break-up' band in Figure 5.5) were almost totally annealed prior to denudation and subsequent cooling in the Late Cretaceous. The majority of remaining tracks accumulated in these samples after the onset of cooling. The fission track ages of these younger samples (about 70 Ma) approximate the onset of accelerated denudation.

The track length distributions, and the single grain age distributions from representative samples, are shown in Figure 5.7. Radial plots show the single grain age distributions (Galbraith 1990a), with the % relative error as a measure of the precision of each grain age. Precision increases towards the right. Grains belonging to a single age population scatter within the $\pm 2\sigma$ age range shown on the y-axis. The five radial plots in Figure 5.7 show the variation in single grain ages for old (258 Ma, 24-9-97-9) and very young (61 Ma, 6-10-97-6) samples. While single grain ages in old samples scatter over a broad range in age (e.g. in sample 24-9-97-9 between 480 and 170 Ma), they are more confined in young samples, which were totally annealed and then rapidly cooled. Another way of measuring the spread in single grain ages is by applying the chi-square test. A chi-square probability of smaller than 5% suggests a spread of ages larger than expected from a single poissonian population (Galbraith 1981). Analytical results are represented in Table 5.1.

Because the annealing behaviour of fission tracks is sensitive to the ratio of chlorine to fluorine (Green et al. 1986), the chlorine content of both samples (6-10-97-6, 6-10-97-7) on either side of the Omaruru Lineament was determined by microprobe analysis. All grains had chlorine concentrations between 0.0 and 0.02 wt% Cl, indicating no evidence of significant compositional variation between the two samples across the shear zone (Figure 5.6).

5.5 Thermal Modelling

The maximum likelihood approach outlined in Gallagher (1995) has been applied to test and quantify possible thermal histories, using single grain age distributions and track length distributions. The annealing algorithm of Laslett et al. (1987) for Durango apatite (0.4 wt% Cl) has been used. To find a thermal history which maximises the probability of obtaining the measured data, the maximum likelihood approach has been applied to constrain the time-temperature path. For this approach the raw track length and track counting data has been utilised. This approach also allows the mapping of confidence regions around the best solution. These confidence regions were taken to derive the time and temperature errors as listed in Table 5.2, the maximum x,y error was always considered (the direct search method normally shows asymmetric errors).

5.6 Constraining Reactivation and Denudation

As mentioned earlier, samples with the youngest age, and the longest mean track length, provide some constraints on the time of initiation of cooling. Therefore, the thermal history models were run to test whether samples show a distinct cooling signal in the Late Cretaceous. 26 representative samples were chosen to present an equidistant distribution along the transect (Table 5.2). After significant differences in maximum palaeotemperatures became apparent, more samples in the vicinity of the major shear zones were modelled. In order to obtain the best fit thermal histories, five time-temperature bounding boxes were set. Because tracks are partly annealed to a different degree in all samples, the above samples were

Figure 5.7: Left column: Black lines are the thermal histories derived by forward modelling which best fit the observed data. The black squares show the time-temperature points which constrain the timing and the temperature of the onset of denudation. Dashed lines at 60 and 110°C approximate the partial annealing zone. Mid column: The binned horizontal confined track lengths distributions are shown in histograms, the model predictions as continuous lines. Right column: Single grain age distribution is shown in radial plots. Perimeter scale is in Ma. Precision increases towards the right.

modelled individually. In Figure 5.7, the thermal histories best fitting the data obtained with the full likelihood ratio test (Gallagher 1995) are shown. The results are listed in Table 5.2. In Figure 5.7, five models of those samples are presented to show the time-temperature constraints for temperatures greater than 60°C. The time-temperature points marking the initiation of denudation are shown as black squares, and labelled with their values and errors. As the method is less sensitive to temperatures below 60°C, the continuation of the model t-T path below this temperature is shown by a dashed line labelled with a question-mark.

The amount of removed section can be estimated by dividing the amount of cooling by the geothermal gradient (Equation 4.1). Because it is not known how heat flow might have varied over time, the average present geothermal gradient for this region of $22\left[\frac{{}^{\circ}C}{km}\right]$ is used (Ballard and Pollack 1987). There are no indicators for an increased heat flow in the Late Cretaceous (Chapter 4). Although the average value of the geothermal gradient appears to be appropriate, estimates for gradients of 30 and 50°C/km are also shown for comparison. A constant surface temperature of 20°C has been used. The values of denudation are listed in Table 5.2.

5.7 Discussion

Apparent apatite fission track ages are shown plotted against distance along the transect in Figure 5.8a. Owing to a strong relationship between apatite fission track age and elevation (Figure 5.5), ages are highly variable (< 100 Ma to > 500 Ma) in the southeast of the profile, as the local relief and sample elevation vary significantly in this sector. In contrast, only minor variations in age are observed within the vicinity of the shear zones, and the observed ages are generally less than ca. 100 Ma (between the Okahandja Lineament and the Autseib Fault (Figure 5.8a)).

Northwest of the Autseib Fault, approaching the Etendeka province and Kamanjab Inlier, apparent fission track ages appear to form two discrete groups, and are either about 110 Ma or older than \sim 290 Ma. It is likely that the younger ages from this area record cooling subsequent to heating associated with the Etendeka magmatic episode, as samples from this region were taken from the Etendeka basalts or closely underlying lithologies. Similarly, since the older ages were obtained from Proterozoic basement rocks, it is likely that they record partially reset 'mixed ages' after their reburial since the Carboniferous and subsequent exhumation in the Late Cretaceous.

Although the observed apatite fission track ages along the transect vary significantly between 62 to 549 Ma, the modelled thermal histories suggest that all samples experienced a common episode of accelerated cooling during the Late

Figure 5.8: Plots showing apparent apatite fission track ages (a), onset of denudation (b) and maximum palaeotemperatures (c) across the transect. Error bars are 2σ on the apparent fission track ages (a) and were graphically derived from thermal models for onset of denudation (b) and maximum palaeotemperature at onset of denudation (c).

Cretaceous. The onset of accelerated cooling for each of the modelled samples is shown plotted against sample distance along the transect in Figure 5.8b. Least squares linear regression of the onset of cooling versus distance along the transect produces a best fit line with minimal gradient (Figure 5.8b). This is consistent with all samples along the transect experiencing a discrete cooling event at ca. 70 Ma, and an indication of the timing of this event (69 ± 1 Ma) is given by the weighted mean age of cooling (Table 5.2).

A contrasting pattern is obtained if the estimated Late Cretaceous maximum palaeotemperatures is plotted with distance along the transect for each of the modelled samples (Figure 5.8c). Samples in the southeast sector of the transect have experienced similar palaeotemperatures of about 85°C. North of the Okahandja Lineament, palaeotemperatures increase gradually to a maximum of 120°C immediately southeast of the Omaruru Lineament. A significant, and apparently discontinuous, decrease in palaeotemperature occurs from southeast to northwest across the Omaruru Lineament, where the palaeotemperature drops steeply from 120°C to ca. 80°C (Figure 5.8c).

Between the Omaruru Lineament and the Autseib Fault, palaeotemperatures appear to decrease slightly towards the north, from around 80°C to 65°C, with a mean of ca. 76°C. A possible minor offset occurs at approximately 200 km from the northwest end of the transect, where the modelled palaeotemperatures appear to vary rapidly by ca 10°C. No significant variations in temperature are visible for the rest of the profile.

Consequently, the apparently discontinuous offset of almost 40°C in the estimated palaeotemperatures across the Omaruru Lineament can be interpreted as evidence for tectonic reactivation of that lineament during and/or since the Late Cretaceous. The difference in temperature can be used to estimate the net amount of vertical displacement across the Omaruru Lineament, and, using the present average gradient of 22°C /km (Ballard and Pollack 1987), an offset of 40°C indicates approximately 2 km of differential vertical movement (Figure 5.9).

The palaeotemperature estimates also provide constraints on the amount of denudation which accompanied the tectonic reactivation of this structural zone in the Late Cretaceous. The estimated pattern of denudation along the transect since the Late Cretaceous is shown in Figure 5.9 for three different palaeothermal gradients: 22, 30 and 50 °C /km. The amount of denudation ranges from a maximum of between 4.5 and 2 km, and a minimum of between 2 and less than 1 km, for the selected thermal gradients.

The interpretation that the Omaruru-Waterberg structural zone was tectonically reactivated at around 70 Ma is consistent with recent analysis of the offshore seismic stratigraphy within the Walvis Basin (Clemson et al. 1997). These studies demonstrated that the continental margin offshore of northern Namibia

Figure 5.9: *Estimated erosion since 70 Ma based on three geothermal gradients with 20, 30 and 50°C/km relative to the present day topography.*

is segmented along its length into discrete zones, with different rifting histories, by major structurally defined segment boundaries which are roughly orthogonal to the rift axis. The most important of these, the Cape Cross segment boundary (CCSB), is a complex zone approximately 80 km wide separating the Lüderitz Basin to the south from the Walvis Basin to the north, and accommodating an eastward offset (dextral) of the rift axis of around 50 km. The southern boundary of the CCSB is approximately co-linear with the offshore extrapolation of the Omaruru Lineament, as is the northern boundary with the extrapolation of the Autseib Lineament. Offshore extrapolation of these crustal lineaments to the southwest is also indicated by the apparent continuation of magnetic anomalies associated with these lineaments (Clemson et al. 1997).

Both the Omaruru and Autseib structures were reactivated during the Triassic, and possibly also during the Early Cretaceous (Hegenberger 1988, Clemson et al. 1997). However, the chronology of the seismic stratigraphy within the Walvis Basin is not well-constrained, as it is based on extrapolation of the chronology de-

termined from the Kudu wells within the Orange Basin more than 800 km to the south (Hoal 1990). Many of the seismic sequence boundaries pinch-out across the major basement arches/segment boundaries separating the Orange, Lüderitz and Walvis Basins (Maslanyj et al. 1992, Light et al. 1993), and the age of rifting and break-up youngs towards the north, with break-up occurring in the early Aptian along the Walvis Basin segment of the margin (Clemson et al. 1997). In light of the apatite fission track evidence for significant reactivation of the Omaruru structure within the onshore region during the late Cretaceous given here, it seems possible that the current offshore seismic sequence chronology within the Walvis Basin over estimates the age of reactivation; and that the major sequence boundaries are 10-20 Ma younger than the current seismic chronozones suggest. Alternatively, it is possible that the offshore segments of the Omaruru and Autseib structures remained inactive during the Late Cretaceous.

5.8 Conclusions

Although the measured apatite fission track ages across the Damara sector of the Namibian margin range between about 62 and 549 Ma, the apatite fission track data for all samples are consistent with a discrete period of accelerated cooling beginning at about 70 Ma. The variation of modelled Late Cretaceous palaeotemperatures along the study transect shows a distinct discontinuity across the Omaruru Lineament, with the maximum palaeotemperatures changing abruptly from approximately 120°C to 80°C, from south to north across the lineament. This temperature difference indicates a net vertical displacement of approximately 2 km for a thermal gradient of 22°C /km (the present average thermal gradient for this region).

A range of geological and geophysical observations have indicated that the major northeast-southwest oriented structures within the Damara mobile belt have been reactivated at various times in the Phanerozoic. However, the timing of the most recent of these episodes has been enigmatic, since there is no substantial stratigraphy younger than Early Cretaceous preserved within the onshore region of the Damara sector of the margin. The new apatite fission track data provide strong evidence that a major period of tectonic reactivation of the Omaruru Lineament-Waterberg Thrust occurred at approximately 70 Ma, and was expressed by about 2 km of net vertical displacement (south-side up).

This new evidence is consistent with the available onshore geological information, which suggests that a major period of reactivation occurred during the Early Cretaceous or later. The apatite fission track data presented here are not inconsistent with structural interpretations of the offshore seismic data (Clemson et al. 1997). However, it is possible that the current chronozones within the Walvis Basin may be over-estimating the age of the major sequence boundaries by 10-20 Ma; but resolution of this issue must await publication of new chronozone estimates based on wells drilled within the Walvis Basin sequences.

Ferty Instruction Num	1.C 9IC				,												
1 10^{16} 23^{73} 170 110^{81} 366 344 437 $2A^{21}$ 310 1 38^{943} 356 113^{46} 3137 3237 3236 3144 377 3266 336 310 110^{110} 38^{943} 2356 1136 3137 2337 2336 1126 3123 3337 2376 310^{11} 110^{110} 38^{110} 111^{110} 320^{110} 114^{111} 110^{111} 110^{111} 3275^{110} 110^{110} 3275^{110} 110^{110} 3275^{110} 110^{110} 110^{110} 327^{110} 110^{111} 110^{111} 110^{111} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 111^{111} 110^{111} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} 110^{110} <	-No	lat (S)	long (E)	Elev (m)	Number of	$ ho \mathrm{D}$	PN	ρS	$\mathbf{N}_{\mathbf{S}}$	ρI	ï	$\mathrm{P}\chi^2\%$	Age (Ma)	% Var	MTL (µm)	Std-dev	z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c	1 101 1			crystals	100.	1010				0.0	·	00 100				Ċ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$16^{\circ}16'$	23°37'	1790		1.087	3636	3.414	437	2.422	310	- 1	287±32	25.6	11.5 ± 0.17	1.44	02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$14^{\circ}18'$	$20^{\circ}25'$	590	13	1.28	3357	0.595	415	1.319	920	28	108 ± 7	8.5	12.5 ± 0.27	1.55	33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	$14^{\circ}08'$	19°49'	1400	ε	1.321	3357	2.773	284	6.396	655	46	107 ± 8	0	13.2 ± 0.36	1.14	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	14°17'	19°45'	1240	20	1.344	3357	4.01	2951	2.367	1742	81	417 ± 16	0.7	10.9 ± 0.15	1.5	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	14°39'	19°35'	1300	14	1.376	3357	1.426	480	0.903	304	91	399 ± 31	0	11.8 ± 0.25	1.48	35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51	15°45'	23°28'	740	23	1.135	3636	0.595	495	1.685	1402	4	76±5	17	11.1 ± 0.34	2.26	41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	15°46'	23°28'	810	20	1.095	3636	0.358	200	0.648	362	67	114 ± 10	5.2	12.6 ± 0.55	1.98	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	$15^{\circ}46'$	23°18'	880	24	1.102	3636	0.832	488	0.831	487	76	206 ± 14	0	12 ± 0.33	1.86	31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-1 ¹	15°51'	22°42'	1270	20	0.934	2983	1.308	1572	3.149	3785	0	74±3	13.4	12.5 ± 0.14	1.26	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-2 ¹	15°51'	22°25'	930	10	0.938	2983	0.53	228	1.09	469	72	86±7	0	12.8 ± 0.31	1.98	39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-1 ¹	15°31'	22°05'	920	20	0.942	2983	2.225	1571	5.591	3947	100	71±3	0	13.1 ± 0.11	1.18	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-2 ¹	15°33'	22°10'	1080	20	0.946	2983	0.826	354	22.07	889	100	71±5	0	13.1 ± 0.15	1.59	100
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7-3 ¹	15°35'	22°21'	970	24	0.949	2983	0.7	708	2.301	2054	40	62 ± 3	8.5	13.1 ± 0.15	1.23	56
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7-4 ¹	15°36'	22°22'	930	20	0.953	2983	0.435	447	1.237	1271	100	63 ± 4	0	13.4 ± 0.25	1.24	23
	7-5 ¹	15°37'	22°26'	780	20	0.957	2983	2.36	1361	4.845	2794	98	88 ± 4	0	13.4 ± 0.15	1.23	59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-81	15°35'	22°30'	630	20	1.146	3636	0.665	536	1.896	1528	40	76±4	7.8	13.4 ± 0.10	1.12	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-5 ¹	$15^{\circ}36'$	21°45'	1120	20	0.969	3403	2.092	1517	4.125	2991	98	92 ± 4	0	12.9 ± 0.15	1.64	100
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7-2 ¹	$15^{\circ}36'$	21°49'	1070	20	0.989	3403	1.026	814	2.602	2065	98	73 ± 4	0	12.9 ± 0.11	1.19	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-4 ¹	15°25'	21°58'	1250	20	1.008	3403	0.87	684	2.375	1868	66	70 ± 4	0	13.4 ± 0.12	1.37	51
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7-51	$15^{\circ}20'$	21°53'	1210	20	1.027	3403	3.79	1778	10.44	4900	0	72±3	12.1	13.1 ± 0.12	1.28	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-6 ¹	15°21'	21°51'	1210	17	1.046	3403	1.549	1066	5.135	3533	0	65±3	32.3	13.7 ± 0.10	1.01	100
29^1 15^228^* 21^941^* 1260 12 1.085 3403 2.445 1310 6.362 3408 65 79 ± 3 2.45 $14,3\pm0.14$ 1.83 66 $1-10^1$ 15^228^* $21^\circ 22^*$ $21^\circ 22^*$ $21^\circ 22^*$ $21^\circ 22^*$ $21^\circ 22^*$ $21^\circ 22^*$ 1142 3403 1.154 421 2.703 986 65 90 ± 6 0 $14,3\pm0.34$ 1 3 2.11^2^1 $15^\circ 32^\circ$ $21^\circ 22^*$ 1120 8 1.142 3403 2.318 505 7.204 1291 34 84 ± 5 0.2 13.3 ± 0.15 1101 10 $1-1^1$ $15^\circ 53^\circ$ $21^\circ 22^*$ 1160 10 1.162 3403 1.38 181 2.919 383 55 105 ± 10 0 13.3 ± 0.14 118 3 $1-1^1$ $15^\circ 53^\circ$ $21^\circ 22^*$ 1120 20 0.968 3355 1.733 2140 3.418 4222 27 92 ± 3 5.2 13.3 ± 0.14 1.38 100 1.2^* $15^\circ 45^\circ$ $21^\circ 19^\circ$ 1230 22 0.986 3355 1.162 3.222 2367 14 91 ± 4 8.6 $1.1.96$ 1.2 1.19 1.7^* $15^\circ 45^\circ$ $21^\circ 19^\circ$ $12^\circ 13^\circ$ 210° $12^\circ 13^\circ$ $21^\circ 13^\circ$ 120° $12^\circ 13^\circ$ 120° $120^\circ 14$ 1.24 82° 1.7^* $15^\circ 45^\circ$ 116° $21^\circ 21^\circ$ $21^\circ 21^\circ$ <t< td=""><td>7-71</td><td>15°25'</td><td>$21^{\circ}46'$</td><td>1190</td><td>6</td><td>1.066</td><td>3403</td><td>2.261</td><td>712</td><td>5.866</td><td>1847</td><td>94</td><td>77 ± 4</td><td>0</td><td>13.3 ± 0.20</td><td>1.19</td><td>34</td></t<>	7-71	15°25'	$21^{\circ}46'$	1190	6	1.066	3403	2.261	712	5.866	1847	94	77 ± 4	0	13.3 ± 0.20	1.19	34
-10^1 $15^{\circ}28'$ $21^{\circ}32'$ 1140 6 1.104 3403 1.154 421 2.703 986 65 90 ± 6 0 14.3 ± 0.34 1 3 -11^1 $15^{\circ}33'$ $21^{\circ}29'$ 1210 8 1.142 3403 2.818 505 7.204 1291 34 84 ± 5 0.2 13.3 ± 0.15 1.38 71 -1^1 $15^{\circ}53'$ $21^{\circ}29'$ 1210 8 1.142 3403 1.38 181 2.919 383 55 $102\pm13.260.16$ 0 14.3 ± 0.40 0.8 4 -2^1 $15^{\circ}45'$ $21^{\circ}28'$ 1150 5 1.181 3403 1.38 181 2.919 383 55 105 ± 10 0 13.3 ± 0.40 0.8 4 -2^1 $15^{\circ}45'$ $21^{\circ}07'$ 1120 20 0.968 3355 1.733 2140 3.418 4222 27 92 ± 3 5.2 13.3 ± 0.14 1.38 100 -2^1 $15^{\circ}44'$ $21^{\circ}14'$ $1210'$ 20 0.995 3355 1.162 3.227 2367 14 97 97 97 97 97 97 97 9124 1.24 82 $110'$ -1^1 $15^{\circ}40'$ $21^{\circ}10'$ $1200'$ 23355 1.125 574 2.182 1113 97 97 97 97 97 97 97 97 97 97 1.5 101 1.26 1.5 <td< td=""><td>-9¹</td><td>15°28'</td><td>$21^{\circ}41'$</td><td>1260</td><td>12</td><td>1.085</td><td>3403</td><td>2.445</td><td>1310</td><td>6.362</td><td>3408</td><td>65</td><td>79±3</td><td>2.45</td><td>14.3 ± 0.14</td><td>1.83</td><td>99</td></td<>	-9 ¹	15°28'	$21^{\circ}41'$	1260	12	1.085	3403	2.445	1310	6.362	3408	65	79±3	2.45	14.3 ± 0.14	1.83	99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-10 ¹	15°28'	21°32'	1140	9	1.104	3403	1.154	421	2.703	986	65	90 ± 06	0	14.3 ± 0.34	1	ю
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7-12 ¹	15°39'	21°29'	1210	8	1.142	3403	2.818	505	7.204	1291	34	84±5	0.2	13.3 ± 0.15	1.38	71
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-1 ¹	15°53'	$21^{\circ}27'$	1160	10	1.162	3403	2.948	349	5.735	679	63	112 ± 8	0.1	13.7 ± 0.31	1.01	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-2 ¹	15°48'	21°28'	1150	S	1.181	3403	1.38	181	2.919	383	55	105 ± 10	0	13.8 ± 0.40	0.8	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-3 ¹	15°45'	21°27'	1120	20	0.968	3355	1.733	2140	3.418	4222	27	92 ± 3	5.2	13.3 ± 0.14	1.38	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-4 ¹	15°49'	21°19'	1230	22	0.982	3355	1.582	1162	3.222	2367	14	91 ± 4	8.6	13.1 ± 0.15	1.19	62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>1-5</u> 1	15°44'	21°14'	1210	20	0.995	3355	1.125	574	2.182	1113	97	97±5	0	12.9 ± 0.14	1.24	82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-6 ¹	$15^{\circ}40'$	$21^{\circ}10^{\circ}$	1230	20	1.009	3355	1.498	1639	3.067	3357	15	93 ± 4	8.1	12.6 ± 0.15	1.5	101
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r-7 ¹	$15^{\circ}36'$	$21^{\circ}06'$	1240	20	1.022	3355	0.527	462	1.124	985	66	90 ± 6	0	13.6 ± 0.14	0.93	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-8 ¹	15°24'	21°13'	1080	20	1.036	3355	1.076	927	2.585	2227	42	$81{\pm}4$	2.8	13.2 ± 0.11	1.11	6
-3^1 16°35' 23°21' 1745 20 0.911 2983 0.659 313 0.244 116 100 450±50 0 11.7±0.15 1.33 67	7-9 ¹	15°13'	21°16'	1230	20	1.049	3355	0.759	596	1.61	1264	78	93±5	0.3	13.3 ± 0.15	0.95	40
	7-3 ¹	$16^{\circ}35'$	23°21'	1745	20	0.911	2983	0.659	313	0.244	116	100	450 ± 50	0	11.7 ± 0.15	1.33	67

				Number												
Sample-No	lat (S)	long (E)	Elev (m)	of	ρD	ΡN	ρS	$\mathbf{N}_{\mathbf{S}}$	ρI	Ni	$P\chi^2\%$	Age (Ma)	%Var	MTL (µm)	Std-dev	z
				crystals												
24-9-97-4 ¹	$16^{\circ}39'$	23°21'	1740	9	0.915	2983	1.63	145	0.495	44	6L	547±95	0	10.1 ± 1.04	3.49	11
$24-9-97-7^{1}$	$16^{\circ}43'$	23°31'	1650	7	0.918	2983	7.217	76	3.274	44	98	372 ± 68	0	10.8 ± 0.28	1.62	33
$24-9-97-8^{1}$	$16^{\circ}41'$	23°36'	1635	13	0.922	2983	1.756	491	1.123	314	100	267 ± 20	0	9.8 ± 0.27	2.66	94
$24-9-97-9^{1}$	$16^{\circ}41'$	23°41'	1630	20	0.926	2983	2.97	884	1.976	588	66	258 ± 15	0	11.1 ± 0.18	1.8	100
$28-4-96-1^{1}$	15°44'	21°29'	1190	4	1.023	3357	1.549	238	3.789	582	22	79 ± 6	0.5	13.6 ± 0.20	1.24	35
28-4-96-4 ¹	15°25'	21°21'	1050	20	1.087	3357	1.496	1637	2.993	3276	20	102 ± 4	7.6	13.2 ± 0.15	1.57	100
28-4-96-5 ¹	15°13'	$21^{\circ}16'$	066	20	1.119	3357	0.809	1036	1.816	2324	34	94 ± 4	3.6	13.2 ± 0.20	1.35	44
28-4-96-6 ¹	15°03'	21°13'	1130	20	1.151	3357	0.355	350	0.757	747	LL	101 ± 7	0.3	13.6 ± 0.21	0.94	19
$30-4-96-1^{1}$	14°54'	$21^{\circ}01'$	820	10	1.183	3357	1.744	308	3.312	585	98	117 ± 9	0	13.3 ± 0.33	1.58	23
$30-4-96-2^{1}$	14°59'	20°52'	760	20	1.216	3357	0.315	284	0.62	558	95	116 ± 9	0.2	12.7 ± 0.27	2.07	57
$30-4-96-3^{1}$	14°50'	$20^{\circ}44'$	970	21	1.248	3357	0.75	697	1.852	1721	0	$93\pm\!8$	30.7	13.4 ± 0.27	1.65	38
31-3-96-1 ¹	$16^{\circ}24'$	23°31'	1730	21	1.08	3636	1.53	897	0.935	548	89	326 ± 1	0.1	10.5 ± 0.25	2.59	100
8732-59 ²	$16^{\circ}10'$	21°58'	1350	20	1.172	5152	1.573	1702	3.644	3942	0	88 ± 5	17	11.2 ± 0.37	3.68	100
$8732-60^{2}$	15°38'	21°58'	006	19	1.172	5152	1.605	1508	4.605	4326	46	70 ± 2	б	13.8 ± 0.16	1.59	100
8732-61 ²	15°12'	22°02'	1070	19	1.172	5152	1.537	1521	4.608	4560	6	68 ± 3	11	14.4 ± 0.11	1.12	100
8732-76 ²	14°50'	21°04'	790	21	1.296	12343	1.103	1355	3.062	3761	4	81 ± 3	11	13 ± 0.18	1.86	105
8732-77 ²	$15^{\circ}00'$	20°57'	700	20	1.296	12343	1.373	2075	4.001	6046	ŝ	78±3	10	12.7 ± 0.17	1.92	130
8732-78 ²	15°03'	$20^{\circ}05'$	1180	20	1.295	5435	1.838	1272	0.922	638	LL	433±22	б	12.1 ± 0.21	1.75	69
8732-79 ²	15°28'	$20^{\circ}03'$	1250	15	1.295	5435	2.193	1294	1.144	675	6	417 ± 28	17	11.7 ± 0.22	1.74	60
$8832 - 107^2$	15°46'	23°28'	740	20	1.228	5540	0.253	422	0.599	666	94	90 ± 6	0	14.9 ± 0.29	1.03	13
$8832 - 108^{2}$	15°52'	23°23'	1000	9	1.196	3125	0.155	4	0.268	111	92	120 ± 19	0	ı	,	,
$8832 - 110^2$	$16^{\circ}17'$	23°14'	1450	20	1240	5540	0.516	593	0.516	593	18	215 ± 15	15	12 ± 0.25	2.48	66
8832-111 ²	$16^{\circ}18'$	23°15'	1650	20	1.252	5540	0.076	129	0.051	87	76	317 ± 44	0	13.5 ± 0.43	1.59	14
8832-114 ²	$16^{\circ}15'$	23°20'	2260	20	1.264	554	0.781	616	0.672	530	60	252 ± 16	0	12 ± 0.4	2.09	27
8832-116 ²	$16^{\circ}15'$	23°19'	2050	20	1.276	5540	0.644	523	0.715	581	95	198 ± 13	0	12.1 ± 0.21	2.07	100
8832-119 ²	$16^{\circ}18$	23°22'	1845	13	1.288	5540	0.348	268	0.711	547	0	129 ± 19	35	ı		'
$93-106^{3}$	15°22'	$19^{\circ}48'$	1240	20	1.171	6490	2.35	1176	1.437	719	0	329±27	29.3	11.9 ± 0.19	1.15	101
$93 - 107^3$	15°11'	19°43'	1190	20	1.171	6490	1.535	932	0.926	562	78	321 ± 18	0.4	12 ± 0.21	1.86	100
$93-108^{3}$	14°51'	19°37'	1220	20	1.171	6490	1.248	742	0.849	491	50	293 ± 18	5.6	12.5 ± 0.3	1.21	102
$93-110^{3}$	$14^{\circ}19'$	$19^{\circ}42'$	1190	20	1.171	6490	2.54	1218	1.576	756	16	311 ± 16	8.9	11.4 ± 0.25	1.84	103
PH-2 ²	23°50'	16°22'	1500	20	1.305	10780	1.971	2555	1.529	1982	47	288 ± 12	3	11.9 ± 0.19	1.78	92
¹ Apatite central a	ages calculated	using a zeta of .	379±5 for NBS g	ass CN5.												
² Apatite central a	ages calculated	using a zeta of .	350±5 for NBS g	ass SRM612.												
³ Apatite central a	ages calculated	using a zeta of .	339±5 for NBS g	ass SRM612.												

Table 5.1 continued from previous page

-			Denuded section [m]	Denuded section [m]	Denuded section [m]
Sample-No	Tmax[°C]	Onset [Ma]	at	at	at
			22°C/km	30°C/km	50°C/km
1-5-96-2	69±12	68±12	2200	1600	1000
1-5-96-1	72±15	61±15	2300	1700	1000
30-4-96-3	64±10	68 ± 8	2000	1500	900
28-4-96-6	67±6	70±11	2100	1600	900
7-10-97-9	65±8	74±10	2000	1500	900
7-10-97-7	65±11	77±18	2000	1500	900
7-10-97-8	74±9	80±17	2500	1800	1100
7-10-97-6	76±18	64±11	2500	1900	1100
28-4-96-4	77±8	72±12	2600	1900	1100
7-10-97-5	76±16	67±15	2500	1900	1100
7-10-97-4	77±13	69±12	2600	1900	1100
7-10-97-3	76±15	78±18	2500	1900	1100
7-10-97-1	75±6	69±9	2500	1800	1100
6-10-97-9	80±6	70±12	2700	2000	1200
6-10-97-7	84±10	62±15	2900	2100	1300
6-10-97-6	120±8	65±10	4500	3300	2000
6-10-97-5	112±8	77±8	4200	3100	1800
6-10-97-4	109±8	71±10	4000	3000	1800
8732-60	111±4	70±5	4100	3000	1800
4-10-97-3	107±3	66±4	4000	2900	1700
3-10-97-2	97±6	64±14	3500	2600	1500
3-10-97-1	88±3	69±6	3100	2300	1400
31-3-96-1	83±15	71±30	2900	2100	1300
1-4-96-3	83±6	70±10	2900	2100	1300
24-9-97-8	83±8	67±20	2900	2100	1300
24-9-97-9	85±15	76±20	3000	2200	1300

Table 5.2: Modelled palaeotemperatures at the time of onset of denudation and total amount of denudation for different palaeogeothermal gradients of 22°C/km, 30°C/km and 50°C/km.

Chapter 6

Denudation Chronology of Northern Namibia

6.1 Introduction

Significant advances in modelling apatite fission track data, to derive thermal history information, make it possible to reconstruct regional denudation patterns. These denudation patterns are based on extracted palaeotemperatures at particular times. Palaeotemperatures in turn can be plotted as maps on a regional scale (Gallagher and Brown 1999a, Gallagher and Brown 1999b, Brown et al. 2000). Palaeotemperatures can be equated to crustal depth, if information about the palaeogeothermal gradient or heat-flow data are available. This leads to estimates about the section removed, and regional denudation maps can be constructed based on this data. Moreover, estimates of palaeotopography can be made by loading the present-day topography with the estimated denudation.

This chapter is dedicated to using the thermal history information from apatite fission track data on a regional scale, and to introducing palaeotemperature, denudation, as well as palaeotopography maps to achieve and visualise quantitative information of the denudation chronology of the passive continental margin of northern Namibia.

Although a large data set of apatite fission track data is available for the southwest African margin (Haack 1983, Brown 1992), the coverage is still sparse over this large area. The modelled denudation chronology presented in this chapter aims to provide improved constraints on the pre-existing long-term chronologies from Gallagher and Brown (1999a), Gallagher and Brown (1999b), and Brown et al. (2000), for northern Namibia in particular. In contrast to the previous models, the new results were derived by incorporating the raw track length data, rather than just the mean track length values. This is an important difference, since the shape of the confined track length distribution allows a more sensitive interpretation of the observed data than the mean value on its own.

The extracted thermal history information was used to construct maps of palaeotemperature, denudation, and palaeotopography in time intervals of 1 m.y. since the Permian (300 Ma to present). The individual maps were combined into computer animations to view the cooling history from the perspective of palaeotemperature, denudation, and palaeotopography. Computer animated movies, as well as all maps (900), and the full dataset (model data), are on the CD attached to this thesis (Appendix E).

Denudation, and the spatial variation of denudation in particular, is a key issue for distinguishing between different passive margin evolution models. Three different geodynamic models considering the formation of long-term passive margin topography are discussed in Section 2.3.3. The process of denudation normally removes the record of palaeoelevation and the evidence for vertical motion onshore (Chapter 5). In order to understand long-term denudation and passive margin evolution, it is important to provide direct and quantitative estimates of what was being eroded at a particular time. This can be constrained on geological time-scales with apatite fission track analysis.

6.2 Previous Work in Low Temperature Thermochronology

An extensive regional fission track data set, by Brown (1992), for South Africa and Namibia has indicated substantial crustal cooling for the entire western margin of southern Africa (Brown et al. 1990, Brown 1992, Gallagher and Brown 1997, Gallagher and Brown 1999a, Gallagher and Brown 1999b, Brown et al. 2000). Brown (1992) also suggested that reactivation of pre-existing crustal structures in response to a change in the spreading geometry between South America and Africa implies a model of rapid denudational response to tectonic reactivation of major shear zones in Namibia.

The margin was subjected to low amounts of syn-rift denudation on the order of less than 1 km, but large amounts of post-rift dendudation on the order of 3 to 5 km have occurred since 118 Ma (Brown et al. 2000, Cockburn et al. 2000). The total depth of denudation since rifting is greatest for the coastal area, and decreases towards the continental interior, a common trend for passive margins (Brown 1992, Gallagher and Brown 1997). Fission track data also revealed that denudation is not uniform through time, and the majority of denudation had occurred prior to the beginning of the Tertiary. An accelerated phase of crustal cooling from ca. 80 to 60 Ma in the Late Cretaceous has been inferred for many
sites and the data have been broadly correlated with offshore seismic and borehole data from Rust and Summerfield (1990). The data are consistent with further stratigraphic evidence which implies low denudation rates for the Tertiary (Ward 1987). The fission track data also suggest that the timing and magnitude of denudation vary geographically, in particular along the strike of the margin.

6.3 Quantifying Long-Term Denudation

Utilising apatite fission track thermochronology for quantifying long-term denudation requires thermal modelling of the apatite fission track data by extracting the temperature history for every sample for any given time, since they provide information on timing and temperature respectively. The temperature information in turn needs to be converted into an equivalent depth as a function of time.

Extraction of thermal histories for large regional data sets is accomplished using forward modelling techniques after Gallagher (1995) (Section 3.4.3), where the palaeotemperature value for a particular time interval is estimated. Data from across a region can then be contoured and placed over the topography, enabling the creation of a contoured image of the predicted palaeotemperature for any given time in the past.

In order to convert the thermal history information extracted from apatite fission track data into estimates of denudation (Equation 4.1), some constraints on the palaeogeothermal gradient are required. This information can be obtained from a series of selected samples over a range of topographic elevations, as demonstrated for the Brandberg, Okenyenya and Windhoekgraben profile in Chapter 4.

The assessment of the palaeogeothermal gradient for three key locations in northern Namibia (Chapter 4) has shown that the geothermal gradient in the Late Cretaceous was not different to the present-day geothermal gradient (Pollack et al. 1993). Although it is not known how heat-flow might have varied over time, it appears to be highly unlikely that the geothermal gradient was significantly elevated after continental break-up. Brown et al. (1994a) and Gallagher et al. (1994) have demonstrated that the increased heat-flow during rifting does not significantly effect the rift-flanks and the shallow crustal levels less than ca. 10 km of depth.

Present-day heat-flow data, as well as the three palaeogeothermal gradients (26, 24 and 22°C/km), suggest that the variation in thermal gradients for Namibia is relatively restricted to values between 20 and 30°C/km (Pollack et al. 1993, Gallagher and Brown 1999a) (Chapter 4).

Based on this data, it was assumed for the models that the heat-flow was constant over time. To allow the model some spatial variation in heat-flow, the present-day heat-flow data from Pollack et al. (1993) were used.

If heat-flow data are used for the conversion of palaeotemperatures into denudation, then values for the thermal conductivity of the eroded section need to be assumed, since the geothermal gradient represents the ratio of heat-flow (Q) and thermal conductivity (k). The equivalent amount of denudation (Z) is then given as:

$$Z = \frac{k}{Q}(T - T_s) \tag{6.1}$$

where T is the modelled palaeotemperature [°C], and T_s is the surface temperature [°C] (Gallagher and Brown 1999a, Gallagher and Brown 1999b). For the models presented here a constant thermal conductivity of 2.2 Wm⁻¹K⁻¹ was assumed for the eroded material and a surface temperature of 20°C.

As shown in Chapter 4, calculated rates for phases of accelerated denudation after continual break-up were on the order of 100-200 m/m.y.. Consequently it can be assumed that advective heat transfer due to fast exhumation was not significant, and is unlikely to have affected the palaeogeothermal gradient.

The thermal histories for rocks analysed are therefore primarily controlled by their vertical displacement relative to the surface along a near steady-state geotherm. Hence denudation can be considered as the major controlling process, and the rate of cooling is determined by the rate of denudation (Gallagher et al. 1994, Brown et al. 1994a, Brown and Summerfield 1997, Gallagher et al. 1998).

The bulk-modelling of all data was performed by Kerry Gallagher, University College, London. Further data processing and map generation was done using GMT (Wessel and Smith 1991), and GMT-scripts developed by Roderick Brown (Appendix D.5).

6.4 Denudation Chronology

Due to the sparse data coverage in some places, an additional data set of 158 samples has been analysed (Figure 6.2). One of the most striking features of the fission track data in Namibia is that fission track ages within 200 km of the present-day coast are consistently young (50 to 80 Ma), and far younger than the time of break-up (Haack 1983, Brown 1992, Brown et al. 1994b, Gallagher and Brown 1997, Gallagher and Brown 1999a, Gallagher and Brown 1999b, Brown et al. 2000) (Figure 6.3).

Figure 6.1 shows the association of samples with long mean track lengths and unimodal track length distributions, in comparison with old ages and more annealed length distributions. Because all fission track ages are younger than the stratigraphic age of the host rock, it can be inferred that these samples have all

Figure 6.1: Relationship between the apparent apatite fission track age and the mean track length. The shaded bands represent the Damara metamorphism and the approximate time of continental break-up.

been exposed to increased temperatures in the past, in particular that the youngest samples have experienced temperatures in excess of 110°C.

Another characteristic fission track age pattern for the study area is the age distribution defining a distinct northeast trending corridor of apparent apatite fission track ages younger than 100 Ma. The alignment of this corridor coincides with the regional structural trend of the Northern and Central Zone of the Pan-African Damara Orogen. This area has been investigated in detail, and the results are described in Chapter 5. The structural architecture is described in Section 2.2.2. The reactivation of major structures in this area caused differential vertical movements of the crust, resulting in a relative offset of at least 2 km in the Late Cretaceous (Chapter 5).

Figure 6.2: Sample location map of all available fission track ages. Dark green circles are sample locations for samples processed for this thesis. Light green triangles indicate samples from Haack (1983). Light green squares mark sample locations from Brown (1992).

Figure 6.3: Sample location map of all available fission track ages. Circles are indicative of the apatite fission track age: circle radius increases with increasing age. Note the well-defined northeast to southwest trending intracontinental zone of younger apparent apatite fission track ages (higher maximum palaeotemperatures), which is aligned with the regional tectonic fabric of the Damara mobile belt in this region, and coincides closely with the Central and Northern Zone (Miller 1983).

Figure 6.4: Sample location map of all fission track data considered for thermal modelling in this thesis.

Temperature Evolution

The evolving temperature history of samples from the study area since the Early Cretaceous is shown in Figure 6.5 and 6.6. The temperature values for any particular area reflect the amount of cooling which is required to cool the rocks to surface temperatures since the time indicated.

Samples considered for modelling are exclusively from this study. This is largely because no track length information is available from Haack's study 1983. The data set of Brown (1992) has only mean track length values available at this stage, and this particular modelling approach was designed deliberately to incorporate individual track length information, rather than just a mean value. The temperature evolution based on Brown's data for the southwestern margin of Africa as a whole has been published by Gallagher and Brown (1999a), Gallagher and Brown (1999b), and Brown et al. (2000).

Merging the modelled data sets from Brown and data from this study presented difficulties due to the slightly different input parameters. A combined and consistent temperature evolution model of all available fission track data, with track length information, must await further reseach.

A location map with all samples incorporated into the bulk-modelling is shown in Figure 6.4.

The interpolation radius was generously set to 3° for samples without neighbours. Consequently edge-effects increase significantly in interpolated areas without samples. This is particularly obvious in the northwestern and southeastern part of the study area (Kaoko-Veld and Highland respectively), where samples from Brown add improved constraints for these regions (compare with contoured fission track data map in Figure 5.2).

Although the temperature evolution has been extracted since the Permian (300 Ma, see Movies in Appendix E), only the evolution since initial rifting is discussed here.

The regional modelling suggests that samples within 100 km of the coast and in the area of the Northern and Central Damara Zone were at temperatures in excess of 110°C during the Late Creataceous. Samples from the cratonic interiors and the highlands respectively, were exposed to lower temperatures in the Early Cretaceous (Figure 6.5, 130 Ma). Little cooling occurred in the period between 130 and 90 Ma. The cooling history from the Late Cretaceous to the Early Tertiary (90 to 50 Ma, Figure 6.5 and 6.6) is dominated by more dramatic cooling for the coastal region and the Northern and Central Damara Zone. The majority of samples cooled in this period from temperatures in excess of 110°C to temperatures below 70°C. Samples in the region underwent only subdued cooling from the Middle Tertiary to present (Figure 6.6, Appendix E).

Denudation History

The palaeotemperature information has been converted into equivalent amounts of denudation by using Equation 6.1, and the present-day heat-flow data. Because the amount of denudation is derived directly from the palaeotemperature data, the pattern of denudation is slightly different from the cooling histories shown in Figure 6.5 and 6.6. This is because the heat-flow varies spatially across the area. Lower heat-flow results in higher estimates of the amount of denudation, and the inverse for higher heat-flow values.

The resulting maps of the denudational history are shown in Figure 6.7 and 6.8 respectively. It is important to note that thermal modelling data can only determine cooling for a particular sample below 110° C.

Palaeotopography

The palaeotopography maps shown in Figure 6.9 and 6.10 were calculated using a simple thin elastic plate model of the lithosphere with an effective elastic thickness of 25 km. The palaeotopography for each time slice was calculated by backstacking the eroded section (as indicated in Figure 6.7 and 6.8) onto the present topography (Brown 1991), and allowing for isostasy.

It is important to note that the resulting palaeotopography does not include any transient changes in topography that have since dissipated (such as that caused by thermal boyancy along the early rifted margin). Nonetheless the reconstructed palaeotopography does provide some broad constraints of the style of past land-scapes within the study area.

Palaeotemperature (°C)

Figure 6.5: *Reconstructed palaeotemperature maps for 130, 110, 90 and 80 Ma, based on the temperature history models derived from the apatite fission track data of this thesis.*

Palaeotemperature (°C)

Figure 6.6: *Reconstructed palaeotemperature maps for 70, 60, 50 and 40 Ma, based on the temperature history models derived from the apatite fission track data of this thesis.*

Denudation (km)

Figure 6.7: *Reconstructed denudation maps for 130, 110, 90 and 80 Ma, derived from the palaeotemperature maps, using the present-day heat-flow data of Namibia (Pollack et al. 1993).*

Denudation (km)

Figure 6.8: *Reconstructed denudation maps for 70, 60, 50 and 40 Ma, derived from the palaeotemperature maps, using the present-day heat-flow data of Namibia (Pollack et al. 1993).*

Palaeotopography (Te=25 km)

Figure 6.9: Reconstructed denudation maps for 130, 110, 90 and 80 Ma, calculated by loading the present-day topography with the estimated denudation, and adjusting for isostasy assuming Te=25 km.

Palaeotopography (Te=25 km)

Figure 6.10: Reconstructed denudation maps for 70, 60, 50 and 40 Ma, calculated by loading the present-day topography with the estimated denudation, and adjusting for isostasy assuming Te=25 km.

6.5 Summary

Denudation plays an important role in the evolution of the onshore regions of passive margins. Furthermore it represents a primary means of providing sediments to basins. Also, the structural history onshore, often manifested as discrete periods of locally enhanced denudation (Chapter 5), is likely to be reflected to a variable degree in the offshore basin (Clemson et al. 1997, Clemson et al. 1999). Consequently, denudation chronologies are of major importance for hydrocarbon exploration strategies. The record of this process, revealed by low temperature thermochronology data, has clearly shown that levels of denudation vary widely within and between different margins (Gallagher and Brown 1997). As shown above, apatite fission track analysis is an ideal methodology for determining the pattern of denudation through time across the onshore region of passive margins. These estimates can then be used to reconstruct the history of the onshore margin through time using thermal modelling techniques and transferring thermal history information into a denudational record (Gallagher and Brown 1997, Gallagher and Brown 1999a, Gallagher and Brown 1999b, Brown et al. 2000).

Because the youngest fission track ages in no way coincide with the timing of rifting or break-up, the reflection of the complex interaction between the generation of topography and the associated geomorphic response, later tectonic reactivation of major structures, and their influence on local denudation, can be inferred directly from apatite fission track data (Chapter 5).

Although these figures are extremely useful in visualising the overall trends in large regional data sets, they can only show the general trend of the data, and are not intended to replace the careful interpretation of samples on a local scale, such as discussed in Chapter 4 and 5. Nevertheless, the results from bulk-modelling clearly show typical passive margin signature (Gallagher and Brown 1997) for northern Namibia. They also demonstrate the complexity of denudation where reactivated structures are superimposed over the regional geomorphology.

These histories are best viewed using the animations provided in Appendix E.

Chapter 7

Concluding Statements and Ideas for Future Work

Apatite fission track thermochronology data provide an independent and direct constraint on the spatial and temporal variations of denudation in onshore regions. The method allows the identification of major eroding source areas over time. With this information, a record of the cooling history can be established, potentially identifying offsets across major structures, as well as important periods of accelerated denudation and their distribution along the continental margin. Moreover, if vertical relief profiles are available, a palaeogeothermal gradient can be reconstructed.

This thesis has successfully contributed to understanding of the low temperature thermotectonic evolution of the passive margin of northern Namibia using apatite fission track thermochronology. The study presents a detailed regional examination with a new set of 158 apatite fission track ages which reveal temperature and denudation evolution since continental break-up. Samples were selected to analyse the cooling pattern of the crust in one- (Chapter 4), two- (Chapter 5), and three-dimensional space (Chapter 6).

In order to obtain site specific information about the cooling history in particular regions, three vertical relief profiles have been analysed. The thermal histories extracted from these profiles allowed the calculation of denudation rates, the net amount of denudation which occurred locally, and the determination of palaeogeothermal gradients (Chapter 4). The significance of this chapter is that palaeogeothermal gradients could successfully be revealed ($22-26^{\circ}C/km$), and hence eliminates uncertainties in extrapolating present-day gradients into the past. This information is very important in that it provides a highly needed and so far unknown input parameter for the calculation of denudation. The net amount of denudation calculated for the Central Damara Zone is 4 to 5 kilometers, since the Late Cretaceous, for the Okenyenya and Brandberg complex respectively. Denudation affecting the Highland in the Windhoekgraben area could also be tightly constrained to be on the order of 3.5 kilometers.

A key finding in applying apatite fission track analysis along a 550 km long transect across the major structures in northern Namibia was the determination of timing and magnitude of a vertical offset across the Omaruru Lineament-Waterberg Thrust (Chapter 5). The net vertical displacement of the crust could be calculated to be on the order of at least 2 kilometers. A particularly valuable outcome of this reseach was applying thermal modelling techniques to confidently quantify the uniform effect of a phase of accelerated denudation in the Late Cretaceous over the transect.

Advanced modelling procedures proved to be ideally suited to reveal the large scale trends, rates, and patterns of denudation in three-dimensions across northern Namibia (Chapter 6). The modelling results have not only shown the typical signature expected for passive margins, but they also revealed the complexity of denudation in the Central Damara Zone, where deep seated shear zones dominate the regional basement structure. Animations provide an optimum way of viewing the overall temperature and denudation evolution over time (Appendix E).

The information and ideas formulated and presented in this thesis represent a significant advance in our understanding of passive margin evolution of northern Namibia. They highlight the importance of considering the impact of pre-existing structures on the architecture and magnitude of denudation events.

Overall, the thesis highlights a number of opportunities for further research relating to both the specific study of northern Namibia and to the broader topic of linking tectonics with low temperature thermochronology.

Independent geological evidence suggests crustal reactivation post-dating rifting in northernmost Namibia particularly in the Kaokoveld area. However, the timing and magnitude of this is at present unknown. Research in this area is important because it may reveal structural control on the widely observed coast parallel cooling pattern at least in this area. Other areas that would benefit from the approach adopted in this thesis include southern Angola where the margin development is largely unconstrained.

Apatite fission track analysis is undoubtedly a useful tool for identifying large scale crustal offsets, but lower magnitude structural signatures may require greater resolution. U-Th/He apatite thermochronometry can provide complementary information on cooling histories below approximately 70°C. Therefore it should be possible to reveal more subtle crustal offsets in northern Namibia as for example expected for the Autseib Fault (Section 2.2.2) by using a combined U-Th/He and apatite fission track approach.

For a fully comprehensive understanding of the thermotectonic and geomorphic evolution of passive margins it appears to be appropriate to combine the use of fission track analysis as demonstrated here with complementary techniques such as U-Th/He thermochronometry and cosmogenic isotope analysis. These techniques would help support the fission track results by providing site specific and shorter term information on denudation. This combination would lead to an improved conceptual model of margin development based on the insights into the complex interplay of tectonics and topography provided by fission track analysis.

Appendix A

Applied Statistics

A.1 Introduction

The interpretation of fission track data is based on the statistical assessment of several different random samples, as there are, for example, the spontaneous and induced track densities, single grain ages, the track length distribution, the weighted mean of all zeta calibrations, the calculation of gradients (slopes of a regression line) as well as the estimates of timing and magnitude of cooling. The precision of these measurements has been calculated, and the assumption of a common true value has been tested, by standard methods, such as the χ^2 test. This section reviews the applied statistics and error assessment used in this thesis. Further statistical reviews are given by (Galbraith 1981, Green 1981a, Galbraith 1985, Galbraith 1990b, Galbraith 1990c, Galbraith 1990a, Galbraith and Laslett 1993).

A.2 The Chi-Square Test

To test the presence of multiple populations in single grain ages, it is important that some measure of the dispersion of count data is given. For the external detector method the chi-square (χ^2) test detects the presence of uncertainty, additional to that allowed by Poisson variation in track counts (Galbraith 1981, Hurford 1990a). The chi-square distribution represents a random variable that is the sum of the squares of several independent normal random variables. This means that using the chi-square distribution to represent the sampling distribution for s^2 (sample variance) is theoretically valid only when the individual sample observations are taken from a normally distributed population. The chi-square serves as an approximation to the true sampling distribution, even when the population is not normal. The sampling distribution of sample variance s^2 is simplest to obtain by transforming the random variable into the chi-square statistic:

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}}$$
(A.1)

The chi-square distribution is specified by the number of degrees of freedom (df). When it is applied to making probability statements about s^2 , df = n - 1. There are only n - 1 degrees of freedom because in addition to the *n* observed *X*'s, \overline{X} is used in calculating s^2 , and 1 degree of freedom is lost in specifying the level for \overline{X} . σ^2 is the population variance. The chi-square test densities are positively skewed, with upper tails extending indefinitely, but the degree of skewness becomes less pronounced as the degrees of freedom increase (Laplin 1990).

The equation used to test the distribution of single grain ages with the chisquare test is given by Green (1981a):

$$\chi^{2} = \sum_{j=1}^{n} \frac{(N_{sj} - \bar{N}_{sj})^{2}}{\bar{N}_{sj}} + \sum_{j=1}^{n} \frac{(N_{ij} - \bar{N}_{ij})^{2}}{\bar{N}_{ij}}$$
(A.2)

where:

$$\bar{N}_{sj} = \frac{N_s}{N_s + N_i} (N_{sj} + N_{ij})$$
 (A.3)

$$\bar{N}_{ij} = \frac{N_i}{N_s + N_i} (N_{sj} + N_{ij})$$
 (A.4)

with N_{sj} and N_{ij} are the total number of tracks N_j of the *j*th crystal and denote the measurements in crystals containing spontaneous and induced tracks respectively.

A.3 Method of Least Squares

To achieve a best curve fit with a line through a set of n data points, the method of least squares normally applies. The principle of the least squares may be expressed as: the most probable value of any observed quantity is such that the sum of the squares of the deviations of the observations from this value is least (Topping 1972). If a model is assumed of the form of y = a + bx with numbering the values y_i and x_i from i = 1 to n, there will:

$$y_i = a + bx_i + e \tag{A.5}$$

where e denotes random errors. The random errors are assumed to be independent and normally distributed with mean zero and constant variance σ^2 . The parameters a and b are (usually) estimated by the method of least squares, such that the sum of the squared deviations from the line is as small as possible. That is, given if:

$$\sum_{i=1}^{n} (y_i - a - bx_i)^2$$
 (A.6)

is a minimum. This gives:

$$a = y - bx \tag{A.7}$$

and:

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$
(A.8)

It is also necessary to estimate the variance, given as:

$$\sigma^{2} = \frac{\sum (y_{i} - a - bx_{i})^{2}}{n - 2}.$$
 (A.9)

A.4 Weighted Mean

Because observations occur with frequencies f_1, f_2, \ldots, f_n respectively, the most probable value of a measured quantity is the weighted mean of the observations:

$$(f_1x_1 + f_2x_2 + \ldots + f_nx_n)/(f_1 + f_2 + \ldots + f_n)$$
 (A.10)

In such an expression f_s is known as the weight of the observation x. If:

$$\bar{x}_{w} = \frac{\sum_{s=1}^{n} f_{s} x_{s}}{\sum_{s=1}^{n} f_{s}}$$
(A.11)

is written, then \bar{x}_w is the weighted mean of the observations with each value weighted according to the frequency of its occurrence.

In the above derivation the weight equals the frequency of occurrence of the observation, but in other cases the weight is attributed by the accuracy of the observation. Thus, each observation x_j can be given a weight proportional to the reciprocal of the square of the standard error α of the individual measurements:

$$\bar{x}_{w} = \frac{\sum_{j=1}^{j} x_{j} / \alpha_{j}^{2}}{\sum_{j=1}^{j} 1 / \alpha_{j}^{2}}$$
(A.12)

The standard error α of the weighted mean itself is given as:

$$\alpha = \frac{\sigma}{\sqrt{n}} \tag{A.13}$$

with the variance σ^2 :

$$\sigma^2 = \sum_{s=1}^n (x_s - \bar{x})^2 / (n-1)$$
 (A.14)

and subsequently the standard deviation σ as:

$$\sigma = \left[\frac{\sum (x_s - \bar{x})^2}{(n-1)}\right]^{\frac{1}{2}}$$
(A.15)

Appendix B

Sample Preparation and Experimental Conditions

B.1 Introduction

All samples were collected from the study area in central and northern Namibia. Core samples were selected to maximise apatite yields where possible. A global positioning system (GPS) was used in conjunction with geological (1:250000) and topographic (1:250000 and 1:50000) maps. Sample elevations were determined using a barometric altimeter with an estimated error of ± 50 m. Samples were prepared for apatite fission track dating, using conventional mineral separation and preparation techniques (Green 1985, Green et al. 1986, Ravenhurst and Donelick 1992).

To obtain individual apatite grain ages the external detector method (Gleadow and Lovering 1977) was used. Twenty crystals and one hundred horizontal confined track lengths were dated and measured per sample when possible. Samples were send to the Australian HIFAR reactor for neutron irradiation. An automated stage system was used in conjunction with a Zeiss Axiotron microscope at 1250x magnification to determine track densities and measure horizontal confined track length. Chlorine concentration of apatite grains was determined using a JEOL JXA-5A microprobe. Thermal history modelling was accomplished using the approach described by Gallagher (1995). The entire process from mineral separation, data analysis, modelling and interpretation was carried out with the Fission Track Research Group at La Trobe University, Bundoora, Australia (1998 - 1999) and The University of Melbourne, Australia (1999 - 2001).

B.2 Sample Preparation

Rock samples of ca. 5 kg were chosen from predominantly granitic rocks since they normally yield abundant apatite of reasonable uranium concentration. After applying jawcrusher and discmill, a Wilfley mineral separation table was used to remove the very fine fraction of dust and clay to obtain a pre-selection of heavy minerals and to reduce the amount of material used in following separation procedures. Samples were dried usually over night in an oven at ca. 54°C. Magnetic and heavy liquid techniques were used to finally concentrate apatites in the 63-250 µm size range. If necessary, separates were further purified in a centrifuge using sodium polytungstate at 3,0 g/cm³. Apatite yields were highly variable from very few grains to in excess of 10 g, whereas less than 50 mg of apatite were required for the mounting procedure (Fig. B.1).

Apatite grains were mounted on a glass slide in a drop of epoxy (PetropoxyTM). A very fine film of epoxy was spread over a marked area of about $1 \cdot 1,5$ cm before a small fraction of apatite grains (~ 10 mg) were poured over the epoxy. To enable the grains to be in an optimal distribution and separated from each other, they were distributed evenly by using a binocular and a clean needle. After curing a few minutes over a hotplate (120° C), a thicker layer of epoxy was spread on top of the previous, hardened layer, so that a greater area was covered. For curing completely the samples were left for another ~ 15 minutes on the hotplate.

To expose a maximum area of internal apatite crystal surfaces from a maximum number of grains, the mounted slides were ground gradually and polished in water. For grinding, 600 and 1200 grade silicon carbide papers were used. The slides were polished with 1,0 µm and with 0,3 µm alumina powder for ~2 minutes. The polished mounts were then etched in 5M HNO_3 for 20 s at 20°C, rinsed in water to stop etching and washed, first in water plus detergent, and then with alcohol. Each mount was examined after etching to ensure suitability for fission track dating and confined track length measurements. The apatite mounts were cut and ground down to $1 \cdot 1,5$ cm rectangles. Low uranium muscovite external detectors (Brazilian Ruby Clear muscovite precut to $0,4 \cdot 1,4$ mm) were attached in close contact to apatite mounts using plastic shrink wrap. To monitor induced fission of ²³⁵U during irradiation, muscovite detectors were also attached to standard glasses of known uranium content. This is necessary to calculate ρD , uranium concentration of grains, and a possible flux gradient within each can during irradiation.

Samples (10 - 15) were packed into aluminum irradiation cans with two CN5 standard glasses (12,5 ppm U) at the top and bottom of the pile. Neutron irradiations were carried out in the well-thermalised X7 position of the Hi Flux Australian Reactor (HIFAR) at Lucas Heights, New South Wales, Australia. A nominal neutron fluence of $1,6 \cdot 10^{16}$ n/cm² was requested for each can.

After irradiation, samples were given two to three months time to 'cool down'

in order to reach acceptable radiation levels. Before unwrapping, pin pricks were placed through muscovite detector and mount, to enable later stage alignment and identification of adjacent tracks in print. Muscovite sheets (from mount and standard glasses) were etched, using 40% hydrofloric acid (HF) for 20 minutes at room temperature (23° C). Both samples and muscovite detectors were mounted on a 2,5 · 7,5 cm glass microscope slide, using PetropoxyTM. Standard glass muscovite external detectors were etched and mounted accordingly (Fig. B.2).

B.3 Experimental Conditions

B.3.1 Fission Track Dating

Spontaneous and induced fission tracks were counted using a Zeiss Axiotron optical microscope at 1250 x magnification with dry lenses. The microscope was equipped with a computer controlled automated stage system. The FT-StageTM system matches grains with their prints on the external detector. All fission tracks were counted under the same conditions, using 100 x dry objectives, an optovar set at 1.25 x and 10 x oculars, giving a total magnification of 1250 x. The Zeiss Axiotron microscope had transmitted and reflected light capabilities. The accuracy of the FT-Stage system to move from grain to print was approximately $\pm 5\mu$ m. Manual adjustments were made when necessary.

After aligning the slide, the mount was scanned for countable grains. Before counting a grain, the quality was reassessed in observing the grain in transmitted and reflected light, to ensure that the grain's surface was oriented parallel to the crystallographic c-axis, and free of dislocations. Parallelity to c-axis is indicated by sharp polishing scratches and parallel track etch pits. Grains were counted in order of occurrence of good quality grains during scanning, to avoid an operator-caused bias in the random selection of countable grains. If possible, twenty grains were dated, and identical areas were counted on the grain and its print. This was monitored with a 10 x 10 grid of 1 mm squares fitted to one eye piece of the microscope. Spontaneous tracks were counted in transmitted light; reflected light was only used to aid in track identification. In the case of very high induced track densities in mica, etch pits were counted under reflected light, and if in doubt transmitted light was used to aid identification.

Standard glass external detectors were counted under the same conditions to determine ρD for an irradiation package. Twentyfive fields of the full 10 · 10 grid were counted across each standard glass external detector. Flux gradients were assumed to be linear, and ρD values were calculated for each mount.

Ages were calculated with MacTrack and represented by the central age with percentage variation. MacTrack output files with raw track counts (N_s and N_i),

 ρD , ρ_s and ρ_i values, individual grain ages and summary plots, are shown in Appendix C.

B.3.2 Track Length Measurements

Horizontal confined track lengths were measured following the recommendations by Laslett et al. (1982), the most important being that only horizontal confined tracks are to be measured. Such tracks can easily be identified by the strong reflection obtained from them when viewed in reflected light, or by the constancy of focus along their lengths, using a high power objective in transmitted light. Therefore, all measured confined track lengths for this thesis were taken exclusively from grains parallel c-axis. This is of great importance because of the anisotropy of the annealing process in apatite, whereby tracks oriented parallel to the c-axis are more resistant to annealing, and are therefore longer than tracks perpendicular to c-axis (Laslett et al. 1984, Green 1981b).

Track lengths were measured by recording the position of each end of a confined track using a mouse with LED attachment, based on a Zeiss drawing tube attached to the microscope and a CalCompTM DrawingBoardTM connected with the FT-Stage system. Magnification for length measurements was the same for track counting.

In each sample the length of at least 100 confined tracks were measured wherever possible. No distinction has been drawn between tracks-in-track (TINT) and tracks-in-crack (TINC) (Laslett et al. 1982).

B.3.3 Calibration

Microscope calibration was carried out by counting the number of lines on an accurately ruled diffraction grating for the $10 \cdot 10$ eye grid.

Track length calibration was accomplished by measuring unannealed Fish Canyon, Durango, Mount Dromedary apatites, and test samples from different operators of known length distribution. A personal correction parameter was obtained by repeatedly measuring the distance of 20 μ m on the accurately ruled diffraction grating.

The personal zeta (ζ) calibration factor was established by counting age standards and substituting ρ_s , ρ_i and ρD into equation 3.8. As age standards served (in Ma): Fish Canyon Tuff (27.8±0.1), Durango (31.4±0.5) and Mount Dromedary (98.7±0.6). The weighted mean of 378.8±5.5 was calculated for 22 zeta determinations on standards. Prior to calculation of zeta, numerous apatite samples and standard glass micas were counted to perfect track recognition and grain selection techniques. After completion of zeta calibration, numerous real samples from different operators were counted for final training.

B.3.4 Microprobe Analysis

Microprobe analyses were done by Geotrack International, Vic., Australia, to determine the weight percent chlorine of apatite. Analyses were carried out on selected samples on grains of known fission track age. All grains considered for fission track dating were probed if a sample was chosen. Microprobe results are quoted as weight percent chlorine.

Figure B.1: Flow chart of apatite separation after Tingate 1990 and Noble 1997.

Figure B.2: Flow chart of mounting procedure for apatite fission track dating (after Noble 1997).

Appendix C

Fission Track Data Files

Samples in this appendix are arranged in two different ways: Data in Table C.1 are listed in order of sampling date (sample number equals sampling date plus order of samples taken). Irradiation code, localities (in decimal latitude longitude values), description of samples plus stratigraphic units and stratigraphic age are also listed in Table C.1.

Section C.3 contains the fission track raw data for each sample, single grain ages, statistics and summary plots as described in Section 3.4.1. Samples are ordered according to their irradiation code.

C.1 Sample Localities and Descriptions

Sample-No	Irrad-code	latitude	longitude	Sample description	Stratigraphic age
22-9-94-7 ¹	MU024-01			Apatite crystals	(?)
95N-8 ²	LU 436-03	20°838'	15°327'	Oligoclase, Okenyenya	Cretaceous
95N-9 ²	LU 436-04	20°838'	15°322'	Oligoclase, Okenyenya	Cretaceous
95N-10 ²	LU 436-05	20°84'	15°323'	Oligoclase, Okenyenya	Cretaceous
95N-11 ²	LU 436-06	20°84'	15°323'	Nepheline syenite, Okenyenya	Cretaceous
95N-12 ²	LU 436-07	20°843'	15°323'	Evolved gabbro? Okenyenya	Cretaceous
95N-13 ²	LU 436-08	20°843'	15°323'	Nepheline syenite, Okenyenya	Cretaceous
95N-14 ²	LU 436-09	20°847'	15°322'	Syenite, Okenyenya	Cretaceous
95N-15 ²	LU 436-10	20°847'	15°322'	Coarsed grained gabbro, Okenyenya	Cretaceous
95N-16 ²	LU 436-11	20°863'	15°293'	Fayalite syenite (ring dyke), Okenyenya	Cretaceous
31-3-96-1	LU 570-01	23°523'	16°415'	Dacitic gneiss	Proterozoic
1-4-96-3	LU 570-02	23°632'	16°283'	Pixteel granite	Proterozoic
3-4-96-2	MU024-03	23°482'	15°76'	Quartzite Gaub-Valley-Formation	Proterozoic
3-4-96-3	LU 570-03	23°476'	15°772'	Quartzite Gaub-Valley-Formation	Proterozoic
3-4-96-4	MU024-04	23°422'	15°825'	Rostock orthogneiss	Proterozoic
3-4-96-5	LU 570-04	23°302'	15°781'	Quartzite Kuiseb-Schists	Proterozoic
3-4-96-6	MU024-05	23°304'	15°774'	Quartzite Kuiseb-Schists	Proterozoic
3-4-96-7	MU024-06	23°302'	15°763'	Quartzite mica-rich	Proterozoic
3-4-96-8	MU024-07	23°31'	15°505'	Quartzite mica-rich	Proterozoic
5-4-96-1	MU024-08	22°811'	14°893'	Pegmatite	Cretaceous (?)
5-4-96-2	LU 570-05	22°724'	14°957'	Orthogneiss pre-Damara basements	Proterozoic
5-4-96-3	LU 570-06	22°712'	14°961'	Abbabis-Gneiss	Proterozoic
5-4-96-4	LU 570-07	22°667'	15°086'	Pegmatite	Cretaceous (?)
5-4-96-5	LU 570-08	22°619'	15°356'	Salem-Granite	ProtCamb.
5-4-96-6	LU 570-09	22°379'	15°494'	Etusis-Sandstone	Proterozoic
5-4-96-7	MU024-09	22°44'	15°622'	Salem-Granite	ProtCamb.
5-4-96-8	LU 570-10	22°514'	15°593'	Salem-Granite	ProtCamb.
7-4-96-1	LU 570-11	22°82'	15°167'	Salem-Granite	ProtCamb.
7-4-96-2	LU 570-12	22°728'	15°399'	Salem-Granite	ProtCamb.
7-4-96-3	LU 570-13	22°744'	15°357'	Salem-Granite	ProtCamb.
7-4-96-43	LU 570-14			Salem-Granite	ProtCamb.
7-4-96-5	MU024-10	23°146	15°517	Donkerhoek-Granite	Proterozoic
7-4-96-6	LU 570-15	23°111	15°305	Donkerhoek-Granite	Proterozoic
/-4-96-/	MU024-11	23°057	14°99	Salem-Granite	ProtCamb.
11-4-96-1	MU024-12	21°185	14°542'	Brandberg-Granite	Cretaceous
11-4-96-2	MU024-13	21°185	14°541	Brandberg-Granite	Cretaceous
12-4-96-1	MU024-14	21°191°	14°532°	Brandberg-Granite	Cretaceous
12-4-96-2	MU024-15	21°195	14°529	Brandberg-Granite	Cretaceous
12-4-90-5	MU025-01	21 195	14 327	Brandberg Granite	Cretaceous
12-4-90-4	MU025-02 MU025-03	21 222	$14 \ 517$ $14^{\circ}517^{\circ}$	Brandberg Granite	Cretaceous
12-4-90-5	MU025-03	21 222	14 517	Brandberg Granite	Cretaceous
13 4 96 6	LU 575 10	21 233	14 311	Svenite	Cretaceous
22-4-96-2	MU025-06	21 4 55 23°662'	14°200	Gneiss	Proterozoic
26-4-96-1	MU025-07	20°68'	16°794'	Granite	Proterozoic
26-4-96-2	LU 571-01	20°529'	16°699'	Granite	Proterozoic
26-4-96-4	LU 571-02	20°976'	16°129'	Granite	Proterozoic
27-4-96-1	MU025-08	21°687'	15°552'	Intermediate igneous rock	Cretaceous
28-4-96-1	LU 571-03/04	21°491'	15°749'	Egls granodiorite, syntectonic	Proterozoic
28-4-96-2	MU025-09	21°448'	15°885'	Granite	Proterozoic
28-4-96-3	MU025-10	21°535'	15°484'	Granite	Proterozoic
28-4-96-4	LU 571-05	21°36'	15°423'	Granite	Proterozoic
28-4-96-5	LU 571-06	21°277'	15°225'	Granite	Proterozoic

 Table C.1: Sample locations and descriptions

Table C.1 continued on next page

Appendix C

Sample-No	Irrad-code	latitude	longitude	Sample description	Stratigraphic age
28-4-96-6	LU 571-07	21°227'	15°056'	Granite	Proterozoic
30-4-96-1	LU 571-08	21°029'	14°902'	Granite	Proterozoic
30-4-96-2	LU 571-09	20°877'	14°984'	Granite	Proterozoic
30-4-96-3	LU 571-10	20°738'	14°845'	Granite	Proterozoic
1-5-96-1	LU 571-11	20°418'	14°312'	Granite	Proterozoic
1-5-96-2	LU 571-12	19°833'	14°144'	Basalt	Cretaceous
1-5-96-3	LU 571-13	19°759'	14°284'	Granite	Proterozoic
1-5-96-4	LU 571-14	19°595'	14°652'	Granite	Proterozoic
5-5-96-1	MU025-11	21°897'	16°434'	Granite	Proterozoic
5-5-96-2	LU 571-15	21°934'	16°685'	Granite	Proterozoic
11-8-97-1 ¹	LU 572-01	22°639'	16°729'		
17-9-96-9	LU 575-09	22°196'	14°896'	Granite	Proterozoic
20-9-97-1	MU025-12	22°434'	17°597'	Basement gneiss, Seeisinlier	Proterozoic
20-9-97-2	MU025-13	22°337'	17°552'	Basement gneiss, Seeisinlier	Proterozoic
20-9-97-3	MU025-14	22°341'	17°496'	Basement gneiss, Seeisinlier	Proterozoic
21-9-97-1	MU025-15	22°624'	17°377'	Basement gneiss, Rietfonteininlier	Proterozoic
21-9-97-2	MU026-01	22°679'	17°415'	Basement gneiss, Rietfonteininlier	Proterozoic
21-9-97-3	MU026-02	22°756'	17°443'	Basement gneiss, Rietfonteininlier	Proterozoic
24-9-97-1	LU 572-02	23°441'	16°56'	Granite	Proterozoic
24-9-97-3	LU 572-03	23°361'	16°597'	Basement rhyolite	Proterozoic
24-9-97-4	LU 572-04	23°354'	16°658'	Basement mylonite	Proterozoic
24-9-97-6	MU026-03	23°482'	16°691'	Basement tuff	Proterozoic
24-9-97-7	LU 572-05	23°529'	16°73'	Basement gneiss	Proterozoic
24-9-97-8	LU 572-06	23°608'	16°686'	Basement granite	Proterozoic
24-9-97-9	LU 572-07	23°696'	16°699'	Basement granite	Proterozoic
24-9-97-10	MU026-04	23°775'	16°636'	Basement pyroclast	Proterozoic
24-9-97-11	MU026-05	23°855'	16°512'	Basement Quartzite	Proterozoic
24-9-97-12	MU026-06	23°858'	16°457'	Basement pyroclast	Proterozoic
25-9-97-1	MU026-07	23°598'	16°405'	Basement pyroclast	Proterozoic
25-9-97-2	MU026-08	23°614'	16°361'	Basement granite	Proterozoic
25-9-97-3	MU026-09	23°648'	16°302'	Basement granite	Proterozoic
25-9-97-5	MU026-10	23°767'	16°293'	Basement granite	Proterozoic
25-9-97-6	MU026-11	23°794'	16°324'	Pegmatite	(?)
25-9-97-8	MU026-12	23°941'	16°192'	Basement granite	Proterozoic
25-9-97-9	MU026-13	23°479'	16°769'	Biotite schist, Kuiseb Formation	Proterozoic
25-9-97-10	MU026-14	23°255'	15°826'	Rostock Granite	Proterozoic
25-9-97-12	MU026-15	23°343'	16°013'	Sandstone	Proterozoic
26-9-97-3	MU027-01	23°364'	16°893'	Sandstone	Proterozoic
26-9-97-6	MU027-02	22°985'	17°126'	Quarzite	Proterozoic
28-9-97-1A	MU027-03	22°47'	17°079'	Biotite quarzite, Kuiseb Formation	Proterozoic
28-9-97-2	LU 572-08	22°436'	17°106'	Biotite quarzite schist, Kuiseb Formation	Proterozoic
2-10-97-1	MU027-04	23°025'	16°487'	Hartelust-Rhyolite	Proterozoic
2-10-97-2	LU 575-08	22°6/5	16°046′	Quartzite Kuiseb Formation	Proterozoic
3-10-97-1	LU 572-09	22°701	15°855'	Donkerhoek granite	Cambrian
3-10-97-2	LU 572-10	22°418	15°854'	Pegmatite	Cretaceous (?)
4-10-97-1	LU 572-11	22°088	15°523°	Salem monzogranite	Proterozoic
4-10-97-2	LU 572-12	22°181	15°551°	Metavolcanic rock	Proterozoic
4-10-97-3	LU 572-13	22°354 22°375	15°599'	Kubas-Granite	Cambrian
4-10-97-4	LU 572-14	$22^{\circ}3/3$	15°607	Solom Cronite	Cambrian Drot Comb
4-10-97-3	LU 372-13	22°44 21°799,	15 05	Granite	Cretaceous
3-10-97-3 5 10 07 4	LU 3/3-11	21 /88 210700,	15 027	Granite	Cretaceous
5 10 07 5	LU 575-02	21 /00 21º76'	15 027	Damara granita, post testonia	Combrian
5-10-97-5 6-10-07-2	LU 573-05	21 /0 21°821,	15 007 15°604'	NaSAs granite, syntectonic	Proterozoio
6-10-97-2	LU 573-04	21 031	15 004	Falp granite postfectoric	Cambrian
6 10 07 5	LU 573-05	21 903 21°006,	15 424	Degrap granne, positectonic Degraptite	Cretaceous (2)
6-10-97-5	LU 573-00	21 000	15 343	Faln granite nostfectoric	Cambrian
6-10-97-7	LU 573-08	21°035 21°775'	15°432'	Eglp granite, postectonic	Cambrian
0 10 77-7	LC 575-00	21 113	15 452	251 pranto, postectome	Cumoriali

Table C.1 continued from previous page

Table C.1 continued on next page

Appendix C

Sample-No	Irrad-code	latitude	longitude	Sample description	Stratigraphic age
6-10-97-8	MU027-05	21°769'	15°435'	Eglp granite, posttectonic	Cambrian
6-10-97-9	LU 573-09	21°694'	15°471'	Eglp granite, posttectonic	Cambrian
6-10-97-10	LU 573-10/11	21°535'	15°473'	KgEGg granite	Cretaceous
6-10-97-12	LU 573-12	21°496'	15°662'	Egls granite, syntectonic	Proterozoic
7-10-97-1	LU 573-13	21°451'	15°892'	KgEGg granite	Cretaceous
7-10-97-2	LU 573-14	21°469'	15°802'	Volcanic rock	Cretaceous (?)
7-10-97-3	LU 574-01	21°463'	15°765'	Egls, syntectonic granite	Proterozoic
7-10-97-4	LU 574-02	21°323'	15°819'	Egls, syntectonic granite	Proterozoic
7-10-97-5	LU 574-03	21°249'	15°742'	OgSAS, late tectonic granite	Ordovician
7-10-97-6	LU 574-04	21°172'	15°68'	OgSAS, late tectonic granite	Ordovician
7-10-97-7	LU 574-05	21°107'	15°604'	OgSAS, late tectonic granite	Ordovician
7-10-97-8	LU 574-06	21°223'	15°407'	Ogl, late-posttectonic granite	Ordovician
7-10-97-9	LU 574-07	21°277'	15°226'	OgTSgd, posttectonic Granodiorite	Ordovician
7-10-97-10	MU027-06	21°24'	15°086'	OgSAs, posttectonic granite	Ordovician
8-10-97-2	MU027-07	21°315'	14°558'	Pegmatite	Cretaceous
9-10-97-3	MU027-08	20°916'	15°463'	Granite	Proterozoic
9-10-97-4	MU027-09	20°983'	15°49'	Rhyolite, Karoo-Sequence	Jurassic
10-10-97-2	MU027-10	20°542'	14°462'	Damara granite	Proterozoic
10-10-97-3	MU027-11	20°631'	14°568'	Damara granite	Proterozoic
10-10-97-4	MU027-12	20°59'	14°638'	Damara granite	Proterozoic
11-10-97-1	MU027-13	19°917'	14°95'	Feldspar Augengneiss, Kamaniab Inlier	Proterozoic
11-10-97-2	MU027-14	19°785'	14°844'	Feldspar Augengneiss, Kamanjab Inlier	Proterozoic
11-10-97-3	MU027-15	19°616'	14°85'	Meta volcanic rock. Kamaniab Inlier	Proterozoic
11-10-97-4	MU028-01	19°687'	15°092'	Gneiss, Kamaniab Inlier	Proterozoic
11-10-97-5	MU028-02	19°796'	15°333'	Gneiss, Kamaniab Inlier	Proterozoic
17-10-97-1	MU028-03	21°759'	16°873'	Salem-Granite	Prot -Camb
17-10-97-2	MU028-04	20°514'	16°886'	Quartzite	Proterozoic
17-10-97-3	MU028-05	20°512'	16°985'	Granite	Proterozoic
18-10-97-4	MU028-06	21°755'	16°165'	Granite	Proterozoic
21-10-97-1	LU 574-08	22°338'	17°053'	Biotite schist, Kuiseb Formation	Proterozoic
21-10-97-2	LU 574-09	22°267'	17°07'	Biotite schist, Kuiseb Formation	Proterozoic
21-10-97-3	LU 574-10	22°272'	17°073'	Biotite schist, Kuiseb Formation	Proterozoic
21-10-97-4	LU 574-11	22°278'	17°071'	Biotite schist, Kuiseb Formation	Proterozoic
21-10-97-5	LU 574-12	22°288'	17°069'	Biotite schist, Kuiseb Formation	Proterozoic
21-10-97-6	LU 575-01	22°358'	16°936'	Quartz-biotite schist. Kuiseb Formation	Proterozoic
21-10-97-7	LU 575-02	22°357'	16°937'	Biotite schist, Kuiseb Formation	Proterozoic
21-10-97-8	LU 575-03	22°351'	16°95'	Quartz-biotite schist, Kuiseb Formation	Proterozoic
22-10-97-1	LU 575-04	22°709'	17°061'	Auas Quartzite	Proterozoic
22-10-97-2	LU 575-05	22°707'	17°057'	Auas Quartzite	Proterozoic
22-10-97-3	LU 575-06	22°702'	17°061'	Greenschist	Proterozoic
22-10-97-4	LU 575-07	22°691'	17°063'	Blueschist	Proterozoic
2-9-98-1	MU028-07	21°15'	14°577'	Brandberg-Granite	Cretaceous
2-9-98-6	MU028-08	21°173'	14°574'	Brandberg-Granite	Cretaceous
2-9-98-7	MU028-09	21°16'	14°575'	Brandberg-Granite	Cretaceous
2-9-98-8	MU028-10	21°149'	14°571'	Brandberg-Granite	Cretaceous
3-9-98-1	MU028-11	21°105'	14°584'	$O_{\text{uartz norite}}(2)$	Cretaceous
14-9-98-6	MU028-12	21°514'	16°573'	Salem-Granite	ProtCamb.

Table C.1 continued from previous page

¹ Samples provided by Prof. K. Weber, Georg-August-Universität Göttingen, Germany. No further information available
 ² Apatite mounts supplied by Dr. R. Brown, The University of Melbourne, Australia
 ³ No GPS reception

C.2 Analytical Results

This section contains a tabular summary of the analytical apatite fission track results. Samples are ordered according to their sample code.

δ Ns ρ I Ni P_{s}^{2} % Age (Ma) %Var MTL (µm) Std-dev N 414 437 2.422 310 1.3 287±32 26.6 11.5±0.17 1.44 70 955 415 1.319 920 27.5 108±7 8.54 1.5.0.17 1.44 70 713 2845 0.56 55.5 4.6 107±8 0 1.13,2±0.36 1.14 10 713 2951 0.560 245 910 94±9 0 14.5±0.17 1.48 70 253 105 0.660 245 100 94±9 0 14.5±0.17 1.24 37 311 105 0.569 245 310 1.99 99 11.4 417±15 10 314 105 0.569 245 100 194±10 0 14.5±0.17 1.24 70 325 0.51 244 112.156 310	M. 1.
p_1 NI $p_X^{m_0}$ p_{SC} (MJ) b_{VAT} MIL (µm) Suddev N 355 415 1.319 920 27.5 108±7 8.54 12.5±0.27 1.55 33 395 415 1.319 920 27.5 108±7 8.54 12.5±0.27 1.55 33 314 197 2.422 310 1.3 287±32 26.6 11.5±0.17 1.44 70 299 106 0.609 245 100 79±9 0 13.2.6.0.3 1.14 10 201 2991 981±10 0 199±15 0 14.8±0.16 1.05 42 205 0.677 238 100 199±15 0 12.4±0.37 1.25 1.9 207 532 8.791 274 100 190±15 0 1.24 1.9 205 66 1.25 348 100 190±15 0 1.25±0.27 1.25	4
414 437 2.422 310 1.3 287 ± 32 566 11.5 ± 0.17 1.44 70 595 415 1.319 920 27.5 108 ± 7 8.54 12.5 ± 0.27 1.55 33 713 2846 655 46 107 ± 8 0 $13.20.53$ 314 109 199 8 399 ± 90 0 $11.8+0.25$ 1.48 355 295 0509 245 100 79 ± 9 0 14.3 ± 0.16 105 427 100 199 ± 15 0 14.3 ± 0.17 127 100 299 105 0.677 348 100 90 ± 15 0 12.5 ± 0.17 127 127 100 205 0.677 348 100 90 ± 141 00 12.4 ± 0.16 105 127 127 127 127 127 127 127 127 127 127 127 <td< th=""><th>pN Uq</th></td<>	pN Uq
95 415 1.319 920 27.5 108 ± 7 8.54 1.5 ± 0.27 1.55 33 773 284 6.35 46 107 ± 8 0 11.3 ± 0.25 1.5 100 216 480 0.903 304 90.5 $392+30$ 0 11.8 ± 0.25 1.48 10 214 105 0.53 361 90.9 $392+30$ 0 11.8 ± 0.25 1.48 10 203 105 0.577 334 100 $994+9$ 0 15.1 ± 0.42 1.18 10 205 0.677 348 100 $994+9$ 0 14.8 ± 0.16 1.05 42 311 100 990 ± 15 0 99 ± 140 0 12.45 ± 0.47 188 16 375 411 1.77 0.57 114 ± 10 5.19 100 1007 ± 0.55 128 100 374 114 ± 10	1.087 3636 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.28 3357 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.321 3357 2
426 480 0.903 304 90.5 399 ± 30 0 11 ± 40.25 148 35 233 106 0.609 245 100 79 ± 9 0 14 ± 340.16 1.08 25 234 177 0.677 238 99.9 81 ± 10 0 14 ± 340.16 1.05 42 341 177 0.677 238 99.9 81 ± 10 0 14 ± 540.17 1.28 100 351 6.61 2.768 124 24 90 ± 14 0.2 14 ± 540.17 1.88 100 352 6.1 2.768 124 24 90 ± 14 0.2 14 ± 540.17 1.88 10 353 200 0.648 362 67.2 11 4 ± 10 5.19 126 ± 61.75 198 13 354 66 0.755 142 987 30 12.5 ± 60.34 14 14 354 66 0.755 133 10	1.344 3357 4
314195 0.58 36199.9 98 ± 9 0 $14,3\pm0.38$ 1.89 25 229106 0.609 245 100 79 ± 9 0 $15,1\pm0.42$ 1.19 8341177 0.677 238100 94 ± 9 0 $15,1\pm0.42$ 1.19 8375 4001 170 067 338100 94 ± 9 0 $14,5\pm0.17$ 1.27 54370532 87791 274100 375 ± 29 0 $10,7\pm0.25$ 2.78 100 36261 2.768 124 24 90 ± 14 0.2 $14,5\pm0.47$ 1.88 16 358200 0.648 362 67.2 114 ± 10 5.19 1.26 ± 0.31 1.16 10 371542 1008 375 ± 20 00 $10,7\pm0.25$ $12,6\pm0.31$ 1.16 10 371542 1008 375 ± 0.18 174 91 174 91 381 166 0.755 142 98.7 001 $12,6\pm0.31$ 1.16 10 382 56 1.752 139 96.9 99.1 101 $12,60.35$ 1.34 14 308 1572 3.149 3785 01 $12,6\pm0.32$ 1.34 14 308 1572 3.149 3785 01 $12,6\pm0.32$ 1.34 14 308 1572 3.149 3787 91.3 141 25 25 25 331 166 <td>1.376 3357 1</td>	1.376 3357 1
263106 0.609 245100 79 ± 9 015.1\pm0.421.198299105 0.677 23899.9 81 ± 10 0 14.8 ± 0.16 1.05424574011.126310100190\pm 150 14.8 ± 0.16 1.05427075328.791274100 375 ± 29 0 1.7 ± 0.67 3481007075328.791274100 375 ± 29 0 1.7 ± 0.25 1.298135166 0.755 14298.796.7 214 ± 100 375 ± 20.31 1.1610353548 0.831 48796.7 206 ± 14 0.01 12 ± 6.23 1.1610351542 1086 805 99.6 126 ± 7 0 13.5 ± 0.18 1.161035356 0.773 268 99.7 118 ± 12 0 12.5 ± 0.33 1.161037556 0.773 268 99.7 118 ± 12 0 12.5 ± 0.33 1.161037556 0.773 268 99.7 118 ± 12 0 12.5 ± 0.13 1.16103831572 3149 3785 0.91 12.8 ± 0.32 1.34 143831572 3149 96.9 99 ± 13 0.04 12.8 ± 0.32 1.98 103831572 3149 378 0.755 12.7 ± 0.22 198 198 1088 1088 1088 </td <td>0.963 3087 0</td>	0.963 3087 0
299105 0.677 23899.9 81 ± 10 0 14.8 ± 0.16 1.05 42 457 401 1.126 310100 190 ± 15 0 14.5 ± 0.17 1.27 54 457 401 1.126 310100 190 ± 15 0 12.1 ± 0.18 1.78 100 707 532 8.791 274 100 375 ± 29 0 10.7 ± 0.25 2.52 100 358 200 0.648 8.124 2.4 90 ± 14 0.2 14.5 ± 0.47 1.88 16 358 200 0.648 8.05 99.6 17.4 91 14 ± 10 5.19 12.6 ± 0.51 1.96 71 351 66 0.755 14.2 98.7 96.7 206 ± 14 0.01 12.2 ± 0.31 1.16 91 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.18 174 91 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.18 1.74 91 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.18 1.74 91 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.18 1.74 91 731 1456 0.723 248 99.7 118 ± 12 0 13.5 ± 0.18 1.74 91 735 512 519 1093 71 ± 3 90.7 118 ± 12 0.91 <td< td=""><td>0.971 3087 0</td></td<>	0.971 3087 0
341177 0.67 348100 94 ± 9 0 14.5 ± 0.17 1.27 545774011.126310100 190 ± 15 0 10.7 ± 0.25 2.52 10036261 2.768 124100 375 ± 29 0 10.7 ± 0.25 2.52 10035261 2.768 12424 90 ± 14 0.2 14.5 ± 0.47 1.88 1635366 0.755 142 98.7 86 ± 13 0 12.6 ± 0.53 1.98 1335366 0.755 142 99.7 118 ± 12 0 12.5 ± 0.33 1.16 91 373543 1272 99.7 118 ± 12 0 12.5 ± 0.13 1.16 91 373546 1.752 139 96.9 89 ± 13 0 12.5 ± 0.18 1.65 82 37356 677 1.438 1272 99.7 118 ± 12 0.9 13.5 ± 0.18 1.66 373 232 1.09 96.9 89 ± 13 0 12.5 ± 0.14 12.6 78 308 1572 3149 3785 0.4 74 ± 3 13.4 12.6 ± 0.33 1.98 308 1572 3149 3785 0.4 71 ± 3 12.6 ± 0.16 1.26 78 55 551 5591 99.9 71 ± 3 12.4 22.6 12.8 ± 0.16 1.26 78 56 577 3149 3782 10947 99.7 71 ± 3 12.6 ± 0.14 <td>0.979 3087 (</td>	0.979 3087 (
457 401 1.126 310 100 190±15 0 12.1±0.18 1.78 100 707 532 8.791 274 100 375 ± 29 0 10.7 ± 0.25 2.52 100 362 61 2.768 124 24 90 ± 14 0.2 $11.56-31$ 11.8 16 351 66 0.755 142 98.7 86 ± 13 0 12.6 ± 0.31 11.6 10 331 542 103 86 ± 1 0.0 12.6 ± 0.31 11.6 10 331 542 103 86 ± 1 0.0 12.5 ± 0.31 11.6 21 332 66 1.752 139 96.9 99.413 0 13.5 ± 0.36 1.74 91 745 66 1.752 139 96.9 92.414 12.6 ± 0.31 1.74 12.6 ± 0.31 1.16 10 745 0.725 114812 $0.$	0.987 3087 (
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.786 2578 1
362 61 2.768 124 24 90 ± 14 0.2 145 ± 0.47 1.88 16 358 200 0.648 362 67.2 114 ± 10 5.19 12.6 ± 0.55 19.8 13 351 66 0.755 142 98.7 86 ± 13 0 12.6 ± 0.31 1.16 10 833 487 96.7 206 ± 14 0.01 12.2 ± 0.31 116 10 731 542 1088 995 99.6 126 ± 7 0 13.5 ± 0.18 174 91 731 542 1.748 177 0 13.7 ± 0.18 165 31 743 147 1233 $0.96.9$ 99.413 0 13.7 ± 0.18 126 78 308 1572 3149 378 0.4 13.4 12.5 ± 0.14 126 78 50 174 ± 3 13.4 12.5 ± 0.14 12.6	1.051 3287 1
338 200 0.648 362 67.2 114 ± 10 5.19 12.6 ± 0.55 1.98 13 331 66 0.755 142 98.7 86 ± 13 0 12.6 ± 0.31 11.6 10 832 488 0.831 487 96.7 206 ± 14 0.01 12 ± 0.33 186 31 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.31 116 91 765 677 1.438 1272 951 104 ± 5 0 13.7 ± 0.18 1.74 91 745 66 1.752 139 96.9 $99+13$ 0 13.7 ± 0.18 1.65 82 308 1572 3149 74 ± 3 13.4 $12.540.32$ 1.98 12.4 318 1572 3149 71 ± 3 0 13.5 ± 0.32 1.98 100 325 1571 5591	0.968 3355 1
351 66 0.755 142 98.7 86 ± 13 0 12.6 ± 0.31 1.16 10 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.18 1.74 91 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.38 1.74 91 765 677 1.438 1272 95.1 104 ± 5 0 13.7 ± 0.18 1.65 82 765 677 1.438 1272 95.1 104 ± 5 0 13.7 ± 0.18 1.65 82 745 66 1.752 139 96.9 89 ± 13 0 13.7 ± 0.18 1.65 82 533 238 10.4 74 ± 3 13.4 12.5 ± 0.14 12.6 78 533 238 1.19 $74+3$ 13.4 12.5 ± 0.14 12.26 78 545 559 114.6 12.8 ± 0.26	1.095 3636 0
832 488 0.831 487 96.7 206 ± 14 0.01 12 ± 0.33 1.86 31 731 542 1.086 805 99.6 126 ± 7 0 13.5 ± 0.18 174 91 755 677 1.438 1272 95.1 104 ± 5 0 13.7 ± 0.18 1.65 82 832 66 1.752 139 96.9 89 ± 13 0 13.7 ± 0.18 1.65 82 308 1572 3.149 3785 0.4 74 ± 3 13.4 12.5 ± 0.14 114 308 1572 3.149 3785 0.4 74 ± 3 13.4 12.56 78 553 1571 5.91 90.7 74 ± 3 13.4 12.56 78 256 354 71 ± 3 0 13.1 ± 0.12 11.8 100 256 354 0 13.1 ± 0.16 12.3 100 <	0.983 3355 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.102 3636 0
448 166 0.723 268 99.7 118\pm12 0 12.9\pm0.22 1.93 74 765 677 1.438 1272 95.1 104±5 0 13.7\pm0.18 1.65 82 832 66 1.752 139 96.9 89±13 0 13.7\pm0.18 1.65 82 55 577 3.149 3785 0.4 74±3 13.4 12.5±0.14 1.26 78 55 55 1571 5.591 3947 997 71±3 0 13.1±0.16 1.26 78 225 1571 5.591 3947 997 71±3 0 13.1±0.16 1.23 100 826 354 2.301 2054 399 662±3 8.46 13.1±0.16 1.23 56 73 738 2.312 2054 399 977 13.5±0.16 1.23 55 354 1361 1.1.237 1.184 0 1	0.998 3355 0.
765 677 1.438 1272 95.1 104 ± 5 0 13.7 ± 0.18 1.65 82 832 66 1.752 139 969 89\pm13 0 13.5 ± 0.36 1.34 14 308 1572 3.149 3785 0.4 74 ± 3 13.4 12.5 ± 0.14 1.26 78 55 571 3.149 3785 0.4 74 ± 3 13.4 12.5 ± 0.14 12.6 78 55 55171 5.591 3947 99.7 71 ± 3 0 13.1 ± 0.16 1.26 78 225 1571 5.591 3947 99.7 71 ± 3 0 13.1 ± 0.16 1.26 78 256 354 2.301 2054 39.9 62 ± 3 8.46 13.1 ± 0.16 1.23 56 736 1.361 1.237 1238 234 0 13.5 ± 0.16 1.24 55 56 <td>1.013 3355 0</td>	1.013 3355 0
832 66 1.752 139 969 89 ± 13 0 13.5 ± 0.36 1.34 126 78 308 1572 3.149 3785 0.4 74 ± 3 13.4 12.5 ± 0.14 1.26 78 53 228 1.09 469 71.9 86 ± 7 0.04 12.8 ± 0.32 1.98 39 225 1571 5.591 3947 99.7 71 ± 3 0 13.1 ± 0.16 1.26 78 225 5571 5591 3947 99.7 71 ± 3 0 13.1 ± 0.16 1.26 78 217 708 2.301 2054 39.9 62 ± 3 8.46 13.1 ± 0.16 1.23 56 447 1.237 1271 99.9 63 ± 4 0.01 13.8 ± 0.11 107 107 56 5156 5244 60.01 13.8 ± 0.16 1.23 59 56	1.042 3355 0
308 1572 3.149 3785 0.4 74 ± 3 13.4 12.5 ± 0.14 12.6 78 5.3 228 1.09 469 71.9 86 ± 7 0.04 12.8 ± 0.32 1.98 39 2255 1571 5.591 3947 99.7 71 ± 5 0 13.1 ± 0.12 1.18 100 826 354 22.07 889 99.9 71 ± 5 0 13.1 ± 0.16 1.23 56 435 447 1.237 12074 39.9 62 ± 3 8.46 13.1 ± 0.16 1.23 56 435 1361 12.237 1271 99.9 65 ± 44 0.01 13.8 ± 0.16 1.23 59 56 1361 1.237 1274 9234 68 ± 44 0.01 13.8 ± 0.11 107 100 517 1.628 1458 9334 68 ± 44 0.01 13.8 ± 0.11 107	0.994 3087 0
53 228 1.09 469 71.9 86 ± 7 0.04 12.8 ± 0.32 1.98 39 225 1571 5.591 3947 99.7 71 ± 3 0 13.1 ± 0.12 1.18 100 826 354 22.07 889 99.9 71 ± 5 0 13.1 ± 0.16 1.59 100 77 708 2.301 2054 39.9 62 ± 3 8.46 13.1 ± 0.16 1.23 56 435 447 1.237 1271 99.9 65 ± 4 0.01 13.3 ± 40.16 1.23 59 56 1361 4.845 2794 97.7 88 ± 4 0.01 13.3 ± 40.11 107 100 564 506 14.48 93.44 101 ± 4 108 13.3 ± 40.11 107 107 950 1179 6.209 2444 33.4 101 ± 4 108 13.3 ± 40.11 107 100 950 1192 13.34 101 ± 4 100 <	0.934 2983 1
225 1571 5.591 3947 99.7 71 ± 3 0 13.1 ± 0.12 1.18 100 826 354 22.07 889 99.9 71 ± 5 0 13.1 ± 0.16 1.59 100 875 374 22.07 889 99.9 71 ± 5 0 13.1 ± 0.16 1.23 56 435 447 1.237 1271 99.9 65 ± 4 0.01 13.3 ± 0.16 1.23 56 356 1361 4.845 2794 97.7 88 ± 4 0.01 13.3 ± 0.16 1.07 100 564 550 2444 33.4 101 ± 4 1.08 13.3 ± 0.11 1.07 100 9564 550 2444 33.4 101 ± 4 1.08 13.3 ± 0.11 1.07 100 9506 1179 6.209 2444 33.4 101 ± 4 1.08 13.3 ± 0.11 1.07 100 9506 1137 256 9244 6.9 13.7 ± 0.12 <	0.938 2983 (
826 334 22.07 889 99.9 71 ± 5 0 13.1 ± 0.16 1.59 100 77 708 2.301 2054 39.9 62 ± 3 8.46 13.1 ± 0.16 1.23 56 435 447 1.237 1271 99.9 63 ± 4 0 13.5 ± 0.26 1.24 23 56 1361 4.845 2794 97.7 88 ± 4 0.01 13.3 ± 0.16 1.23 59 564 505 1.628 1478 93.34 101 ± 4 108 13.3 ± 0.11 107 100 955 1179 6.209 2444 33.34 101 ± 4 1.08 13.3 ± 0.11 107 100 951 179 6.209 2444 33.34 101 ± 4 1.08 13.3 ± 0.11 103 100 951 1351 2.954 31410 87.8 $92\pm 3.0.07$ 13.3 ± 0.12 103	0.942 2983 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.946 2983 0.
435 447 1.237 1271 99.9 653 ± 4 0 13.5\pm0.26 1.24 23 36 1361 4.845 2774 97.7 88 ± 4 0 13.4\pm0.16 1.23 59 564 505 1.628 1458 93.4 68 ± 4 0.01 13.8\pm0.11 1.07 100 995 1179 6.209 2444 33.4 101\pm4 1.08 13.3\pm0.1 1.07 100 238 615 2.839 1410 87.8 92\pm5 0.07 13.5\pm0.16 1.34 75 271 1351 2.954 3140 95 91\pm3 0.07 13.5\pm0.16 1.34 75 271 1351 2.954 3140 95 91\pm3 0.07 13.9\pm0.1 1.03 100 914 1016 2.111 2347 256 92\pm4 6.9 13.7\pm0.12 0.9 50 913 104 0.445 240 8.9 101±16 31 14±0.21 1.08 26 913 10.4 <td>0.949 2983 (</td>	0.949 2983 (
.36 1361 4.845 2794 97.7 88±4 0 13.4\pm0.16 1.23 59 564 505 1.628 1458 93.4 68±4 0.01 13.8\pm0.11 1.07 100 995 1179 6.209 2444 33.4 101±4 1.08 13.3\pm0.1 1.03 100 238 615 2.839 1410 87.8 92±5 0.07 13.5±0.16 1.34 75 271 1351 2.954 3140 95 91±3 0.07 13.9±0.1 1.03 100 914 1016 2.111 2347 25.6 92±4 6.9 13.7±0.12 0.9 50 913 104 0.445 240 8.9 101±16 31 14±0.21 1.08 26 923 1773 9.133 5255 52.4 67±2 1.17 14±0.15 1.52 100	0.953 2983 0.
564 505 1.628 1458 93.4 68 ± 4 0.01 13.8\pm0.11 1.07 100 995 1179 6.209 2444 33.4 101\pm4 1.08 13.3\pm0.1 1.03 100 238 615 2.839 1410 87.8 92\pm5 0.07 13.5\pm0.16 1.34 75 271 1351 2.954 3140 95 91\pm3 0.07 13.5\pm0.16 1.34 75 271 1351 2.954 3140 95 91\pm3 0.07 13.9\pm0.1 1.03 100 914 1016 2.111 2347 25.6 92\pm4 6.9 13.7\pm0.12 0.9 50 193 104 0.445 240 8.9 101\pm16 31 14\pm0.21 1.08 26 082 1773 9.133 5255 52.4 67\pm2 1.17 14,2±0.15 1.52 100	0.957 2983 2
995 1179 6.209 2444 33.4 101 ± 4 1.08 13.3 ± 0.1 1.03 100 238 615 2.839 1410 87.8 92 ± 5 0.07 13.5 ± 0.16 1.34 75 271 1351 2.954 3140 95 91 ± 3 0.07 13.9 ± 0.1 1.03 100 914 1016 2.111 2347 25.6 92 ± 4 6.9 13.7 ± 0.12 0.9 50 913 104 0.445 240 8.9 101 ± 16 31 14 ± 0.21 1.08 26 082 1773 9.133 5255 52.4 67 ± 2 1.17 $14\pm2.0.15$ 1.52 100	1.042 3355 0.
238 615 2.839 1410 87.8 92 ± 5 0.07 13.5 ± 0.16 1.34 75 271 1351 2.954 3140 95 91 ± 3 0.07 13.9 ± 0.1 1.03 100 914 1016 2.111 2347 25.6 92 ± 4 6.9 13.7 ± 0.12 0.9 50 913 104 0.445 240 8.9 101 ± 16 31 14 ± 0.21 1.08 26 082 1773 9.133 5255 52.4 67 ± 2 1.17 $14,2\pm0.15$ 1.52 100	1.109 3636 2.
271 1351 2.954 3140 95 91 ± 3 0.07 13.9 ± 0.1 1.03 100 914 1016 2.111 2347 25.6 92 ± 4 6.9 13.7 ± 0.12 0.9 50 193 104 0.445 240 8.9 101 ± 16 31 14 ± 0.21 1.08 26 082 1773 9.133 5255 52.4 67 ± 2 1.17 14.2 ± 0.15 1.52 100	1.117 3636 1.
914 1016 2.111 2347 25.6 92 ± 4 6.9 13.7 ± 0.12 0.9 50 193 104 0.445 240 8.9 101 ± 16 31 14 ± 0.21 1.08 26 082 1773 9.133 5255 52.4 67 ± 2 1.17 14.2 ± 0.15 1.52 100	1.124 3636 1.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.131 3636 0.
082 1773 9.133 5255 52.4 67±2 1.17 14.2±0.15 1.52 100	1.139 3636 0
	1.057 3355 3

	z		100	100	100	ı	1	100	100	51	100	100	34	27	99	ŝ	71	78	100	100	,	100	100	100	10	4	100	62	82	101	42	90	40	50	11	32	12	t page
	Std-dev		1.12	1.09	2.19		0	1.64	1.19	1.37	1.28	1.01	1.19	1.04	1.83	1	1.38	1.3	1.01	1.37		1.72	1.37	1.24	1.01	0.8	1.38	1.19	1.24	1.5	0.93	1.11	0.95	1.35	1.01	1.4	0.52	ued on nex
	MTL (µm)		13.4 ± 0.11	13.7 ± 0.11	11.4 ± 0.22		13.7 ± 0	12.9 ± 0.16	12.9 ± 0.12	13.5 ± 0.13	13.1 ± 0.13	13.7 ± 0.1	13.3 ± 0.2	14.2 ± 0.2	14.3 ± 0.14	14.3 ± 0.34	13.3 ± 0.16	13.7 ± 0.15	13.1 ± 0.1	13.3 ± 0.14	ı	13.8 ± 0.17	13.4 ± 0.14	14 ± 0.12	13.7 ± 0.32	13.8 ± 0.4	13.3 ± 0.14	13.1 ± 0.15	12.9 ± 0.14	12.6 ± 0.15	13.6 ± 0.14	13.2 ± 0.12	13.3 ± 0.15	14.2 ± 0.19	15.3 ± 0.3	14.1 ± 0.25	14.6 ± 0.15	ble C.2 contin
	%Var		7.8	10.4	0.85	0	0	0	0	0	12.1	32.3	0	0	2.45	0.01	0.15	0.01	16.6	1.38	0	7.49	8.3	0	0.05	0.04	5.21	8.62	0.01	8.07	0	2.75	0.27	0.68	0.17	1.36	0	Ta
	Age (Ma)		76 ± 4	62 ± 3	110 ± 6	90 ± 19	130 ± 35	92 ± 3	73±3	70 ± 3	72±3	65 ± 3	77 ± 4	56 ± 3	79 ± 3	90 ± 5	84 ± 5	75±4	81 ± 4	84 ± 3	$88{\pm}10$	80 ± 3	89 ± 4	76 ± 4	112 ± 8	105 ± 10	92±3	91 ± 4	97 ± 5	93 ± 4	90 ± 5	81 ± 4	93±5	56 ± 3	58 ± 4	76 ± 4	71 ± 10	
	${ m P}\chi^2\%$		40.2	4.2	53.9	100	100	<i>T.T</i>	98.2	98.8	0.4	0	93.8	7.66	64.8	65.4	34.2	92.2	0	61.9	83.8	6.3	19.8	7.76	63.2	54.8	26.8	14.1	90.6	15.2	99.4	42.1	78.4	87.8	62.4	58	98.9	
	Ni		1528	3072	1149	74	33	2991	2065	1868	4900	3533	1847	1540	3408	986	1291	1611	3959	5091	283	3544	2928	1424	679	383	4222	2367	1113	3357	985	2227	1264	1597	856	1245	155	
	ρI		1.896	4.767	5.424	3.854	1.289	4.125	2.602	2.375	10.44	5.135	5.866	4.901	6.362	2.703	7.204	1.339	5.875	8.184	0.614	4.626	6.084	1.209	5.735	2.919	3.418	3.222	2.182	3.067	1.124	2.585	1.61	2.695	7.556	4.654	0.719	
	$\mathbf{N}_{\mathbf{S}}$		536	1014	476	32	24	1517	814	684	1778	1066	712	580	1310	421	505	553	1436	1945	113	1402	1170	529	349	181	2140	1162	574	1639	462	927	596	599	328	623	72	
	ρS		0.665	1.573	2.247	1.667	0.938	2.092	1.026	0.87	3.79	1.549	2.261	1.846	2.445	1.154	2.818	0.46	2.131	3.127	0.245	1.83	2.431	0.449	2.948	1.38	1.733	1.582	1.125	1.498	0.527	1.076	0.759	1.011	2.895	2.329	0.334	
	PN		3636	3015	3357	3287	3403	3403	3403	3403	3403	3403	3403	2578	3403	3403	3403	3636	3636	3636	3636	3355	3636	3355	3403	3403	3355	3355	3355	3355	3355	3355	3355	2578	2578	2578	2578	
	D		1.146	0.995	1.408	1.103	0.95	0.969	0.989	1.008	1.027	1.046	1.066	0.791	1.085	1.104	1.142	1.153	1.161	1.168	1.175	1.072	1.183	1.086	1.162	1.181	0.968	0.982	0.995	1.009	1.022	1.036	1.049	0.795	0.799	0.804	0.808	
	Number of	crystals	20	20	9	1	1	20	20	20	20	17	6	20	12	9	8	20	20	20	8	20	20	20	10	5	20	22	20	20	20	20	20	20	8	14	7	
	Elev (m)		630	1470	1550	1290	1180	1120	1070	1250	1210	1210	1190	1170	1260	1140	1210	490	470	490	700	1000	750	500	1160	1150	1120	1230	1210	1230	1240	1080	1230	1030	680	1150	1200	
	long (E)		15°593'	16°434'	$16^{\circ}685$	$15^{\circ}627$	$15^{\circ}627$	$15^{\circ}607$	$15^{\circ}604'$	15°424'	15°343'	15°361'	15°432'	15°435'	15°471'	15°473'	15°662'	$15^{\circ}167$	15°399'	15°357'		15°517'	15°305'	14°99'	15°892'	$15^{\circ}802'$	15°765'	$15^{\circ}819'$	15°742'	15°68'	$15^{\circ}604'$	15°407'	15°226'	15°086'	14°558'	15°463'	15°49'	
	lat (S)		22°514'	$21^{\circ}897'$	21°934'	21°788°	21°788°	21°760°	21°831'	21°983'	21°886'	21°855'	21°775'	21°769°	21°694'	21°535'	21°496'	$22^{\circ}82'$	22°728'	22°744'		23°146°	23°111'	23°057'	21°451'	21°469'	21°463'	21°323'	21°249'	21°172'	$21^{\circ}107$	21°223'	21°277'	21°24'	21°315'	$20^{\circ}916'$	20°983'	
Table C.2	Sample-No		5-4-96-8	5-5-96-1	5-5-96-2	5-10-97-3	5-10-97-4	5-10-97-5	6-10-97-2	6-10-97-4	6-10-97-5	6-10-97-6	6-10-97-7	6-10-97-8	6-10-97-9	6-10-97-10	6-10-97-12	7-4-96-1	7-4-96-2	7-4-96-3	7-4-96-4	7-4-96-5	7-4-96-6	7-4-96-7	7-10-97-1	7-10-97-2	7-10-97-3	7-10-97-4	7-10-97-5	7-10-97-6	7-10-97-7	7-10-97-8	7-10-97-9	7-10-97-10	8-10-97-2	9-10-97-3	9-10-97-4	
	Z	100	9	100	10		ε	37	50	33	88	65	13	5	13	103	100	51	100	21	100	8	85	13	100	100	20	100	100	28	51	31	100	100	38	72	xt page	
-----------	----------------------	------------------	------------------	------------------	-----------------	-----------------	-----------------	-----------------	-----------------	------------------	---------------	----------------	---------------	----------------	-------------	---------------	-------------	---------------	--------------	------------------	-----------------	------------------	-----------------	------------------	------------------	------------------	---------------	---------------	------------------	---------------	---------------	---------------	-----------------	-----------------	-----------------	------------------	----------------	
	Std-dev	1.24	1.96	1.49	1.76		1.51	1.55	1.69	2.09	1.27	1.53	2.76	2.45	1.92	1.47	1.72	1.76	1.61	1.56	1.36	1.24	2.1	2.07	1.77	1.26	1.37	1.79	1.78	1.7	1.53	1.92	1.92	1.7	2.46	2	ined on nex	
	MTL (µm)	14 ± 0.12	14.7 ± 0.8	13.7 ± 0.15	13.1 ± 0.56	·	14.5 ± 0.87	12.9 ± 0.25	12.2 ± 0.24	12.2 ± 0.36	12.9 ± 0.14	11.8 ± 0.19	12.9 ± 0.77	12.2 ± 1.09	13 ± 0.53	13.4 ± 0.15	13 ± 0.17	14.1 ± 0.25	14 ± 0.16	13.3 ± 0.34	14 ± 0.14	13.4 ± 0.13	12.7 ± 0.23	14 ± 0.58	13.7 ± 0.18	14.3 ± 0.13	12.2 ± 0.31	12.8 ± 0.18	12.3 ± 0.18	12.7 ± 0.32	12.4 ± 0.21	13.2 ± 0.23	10.7 ± 0.19	10.8 ± 0.17	10.9 ± 0.4	11 ± 0.24	ble C.2 contin	
	%Var	6.67	0	0.89	0	0	0	0.18	6.26	1.32	0.01	0	0	0	0	0.02	0.86	1.83	1.33	0.03	4.9	2.15	4.88	0	12.9	7.26	7.54	0	1.78	0	11.1	0.1	8.05	7.95	0	8.56	Ta	
	Age (Ma)	67±3	56 ± 6	67±3	77 ± 15	68 ± 12	$6\pm LL$	195 ± 13	502 ± 35	312 ± 24	282 ± 20	264 ± 38	$70{\pm}10$	$67\pm\!8$	66 ± 11	68±3	69 ± 4	62 ± 5	66±3	72 ± 6	62 ± 3	103 ± 4	280 ± 18	59±3	65 ± 3	63 ± 3	404 ± 37	288 ± 22	301 ± 22	372±53	242 ± 15	214 ± 13	363 ± 18	328 ± 19	309 ± 28	297 ± 19		
	$\mathrm{P}\chi^2\%$	8.5	70.7	85.6	100	100	99.8	86.7	50.3	67.6	<i>T.</i> 70	69.69	100	100	99.9	92.9	73	77.8	59.7	98.1	41	48.3	42.9	99.3	0.2	6.9	10.6	98.2	68	100	7.4	92	63.7	31.3	97.9	54.4		
	Ni	2505	348	1730	94	136	265	437	387	281	360	80	206	295	121	2458	1321	702	1828	689	2429	2110	458	1635	4645	3658	191	308	347	77	565	496	754	551	221	491		
	ρΙ	2.988	3.295	2.761	0.523	0.611	2.288	1.363	0.78	0.613	0.708	1.953	0.494	0.594	0.5	2.253	1.908	1.53	1.554	0.989	3.407	2.198	1.221	1.67	4.881	8.005	0.501	0.769	0.679	0.132	0.871	0.97	1.396	1.189	1.022	1.327		
	N_{S}	1098	127	750	35	44	120	552	582	568	599	123	68	91	54	1100	584	272	739	243	802	1081	742	547	1657	1273	414	462	533	145	919	694	1400	911	339	714		
	ρS	1.31	1.203	1.197	0.195	0.198	1.036	1.722	1.173	1.24	1.177	3.003	0.163	0.183	0.245	1.008	0.843	0.593	0.628	0.348	1.125	1.126	1.978	5.586	1.741	2.786	1.085	1.153	1.044	0.248	1.416	1.357	2.592	1.966	1.567	1.93		
	Nd	2578	2578	2578	3355	3355	2983	2578	2578	2578	3087	3087	3355	3355	3015	3015	3015	3015	3015	3287	3087	3287	3087	3078	3087	3087	3015	3015	3015	3015	3165	3165	3355	3355	3355	3355		
	ρD	0.813	0.817	0.821	1.101	1.116	0.903	0.826	0.83	0.835	0.916	0.924	1.131	1.145	0.786	0.807	0.828	0.849	0.87	1.086	1.002	1.068	0.932	0.94	0.947	0.955	1.016	1.037	1.058	1.079	0.793	0.819	1.063	1.076	1.09	1.103		
Number	of crystals	20	4	20	×	6	7	20	20	20	20	ю	13	20	8	20	20	12	20	20	20	20	20	9	20	20	16	20	20	20	20	20	20	16	15	17		
	Elev (m)	650	820	860	1800	1475		1000	1150	1210	1220	1220	1600	1180	1050	720	720	680	620	430	1530	650	1500	1640	1530	1290	1670	1710	1740	1860	1860	1780	1440	1897	1800	1695		
	long (E)	$14^{\circ}462'$	$14^{\circ}568'$	$14^{\circ}638'$	$15^{\circ}042$	$14^{\circ}541$	$16^{\circ}729$	$14^{\circ}95'$	$14^{\circ}844$	$14^{\circ}85'$	15°092'	15°333'	14°532'	14°529'	14°527'	14°517'	14°517'	14°511'	14°458'	$14^{\circ}206'$	$16^{\circ}573$	$14^{\circ}896'$	$16^{\circ}873$	$16^{\circ}886'$	$16^{\circ}985$	$16^{\circ}165'$	17°597'	17°552'	$17^{\circ}496'$	17°377'	17°415'	17°443'	$17^{\circ}053$	$17^{\circ}07'$	$17^{\circ}073$	$17^{\circ}071'$		
	lat (S)	20°542'	$20^{\circ}631$	20°590'	$20^{\circ}068$	21°185'	22°639'	19°917'	19°785'	$19^{\circ}616'$	19°687'	19°796'	21°191'	21°193'	21°195'	21°222'	21°222'	21°233'	21°273'	21°435'	21°514'	22°196'	21°759°	$20^{\circ}514'$	$20^{\circ}512'$	21°755'	22°434'	22°337'	22°341'	22°624'	22°679'	22°756'	22°338'	22°267'	22°272'	22°278'		
Table C.2	Sample-No	10-10-97-2	10-10-97-3	10-10-97-4	11-4-96-1	11-4-96-2	11-8-97-1	11-10-97-1	11-10-97-2	11-10-97-3	11-10-97-4	11-10-97-5	12-4-96-1	12-4-96-2	12-4-96-3	12-4-96-4	12-4-96-5	13-4-96-1	13-4-96-2	13-4-96-6	14-9-98-6	17-9-96-9	17-10-97-1	17-10-97-2	17-10-97-3	18-10-97-4	20-9-97-1	20-9-97-2	20-9-97-3	21-9-97-1	21-9-97-2	21-9-97-3	21-10-97-1	21-10-97-2	21-10-97-3	21-10-97-4		

) Elev (m)	Number of ρD Nd $_{\mu}$	pS N	[م sN	ïz	$P\chi^2\%$	Age (Ma)	%Var	MTL (µm)	Std-dev
crystals					2				
, 1590 20 1.117 3355	د ا	0.403 1	99 0.42	23 209	6.00	198 ± 20	0	10.9 ± 0.28	1.83
, 1800 20 0.931 3287	-	1.529 7	34 0.9	59 465	1.2	274 ± 24	25.2	10.4 ± 0.18	1.84
, 1700 9 0.948 3287	ز	0.699 7	76 0.47	78 52	83.6	257±47	0.01	10 ± 0.7	2.8
1550 14 0.965 3287	د	0.848 3	16 0.6	53 247	83.3	230 ± 20	0.05	11.1 ± 0.31	1.93
1640 5 0.891 301	5 1.	1.367 2	58 0.7	42 140	48.9	304±33	3.35	12.3 ± 0.2	1.8
, 1000 2 0.939 335	5 U.	0.301 2	27 0.30	58 33	89.5	144 ± 37	0	10.3 ± 0.5	1.94
, 2330 3 0.983 32	78 U.	0.927 3	35 0.4	5 17	85.9	372 ± 110	0	11 ± 0.46	2.43
, 2140 2 1 328	87 1.	1.679 7	72 1.1	43 49	62.2	273 ± 51	0	13.4 ± 0.47	2.58
, 2050 20 1.017 328	87 υ.	0.651 2	96 0.40	33 183	96.4	304 ± 29	0.04	11.5 ± 0.31	2.64
, 1920 7 1.034 32	87 U.	0.502 7	70 0.3:	37 47	100	285±54	0	11 ± 0.46	2.41
, 1745 20 0.911 298	33 U.	0.659 3	13 0.2	44 116	100	450 ± 50	0	11.7 ± 0.16	1.33
, 1740 6 0.915 298	33	1.63 1.	45 0.49	95 44	78.8	547±95	0	10.1 ± 1.05	3.49
, 1665 2 0.846 316	55 J.	3.594 5	92 3.10	54 81	25.6	180 ± 28	0.06	113 ± 0.16	1.46
1650 2 0.918 298	33 /.	7.217 9	97 3.2'	74 44	98.2	372±68	0	10.8 ± 0.28	1.62
, 1635 13 0.922 298	33 1.	1.756 4	91 1.1	23 314	100	267 ± 20	0	9.8 ± 0.27	2.66
, 1630 20 0.926 298	33 4	2.97 8	84 1.9'	76 588	99.4	258 ± 15	0	11.1 ± 0.18	1.8
, 1590 20 0.872 310	55 4.	2.871 7	11 2.2	57 559	88.8	207 ± 12	0.84	12.9 ± 0.16	1.35
, 1620 17 0.899 31	6 5 J.	3.983 5	99 2.4	-6 370	99.1	270 ± 19	0	13 ± 0.21	1.13
, 1680 4 0.925 316	15 e.	2.734 7	77 1.49	91 42	97.8	313 ± 60	0	12.1 ± 0.26	1.06
, 1805 3 0.952 31	65 4.	2.455 1	10 1.2	5 56	96	345±57	0	13.2 ± 0.34	1.56
, 1795 4 0.978 3	165 v.	0.658 5	56 0.3:	52 30	98.7	$340{\pm}77$	0	12.4 ± 0.98	1.38
, 1770 6 1.005 3	3165 u.	0.957 1.	44 0.59	92 89	91.1	301 ± 41	0	12.8 ± 0.24	1.27
, 1735 6 1.031 3	165 i.	1.963 1.	47 1.3'	76 103	97.1	273 ± 35	0	12.9 ± 0.19	1.61
, 1715 1 1.058 3	165 4.	2.438 3	39 1.6	88 27	100	283 ± 71	0	12.4 ± 0.28	1.36
, 1275 12 1.084 3	165 1.	1.922 5	72 2.0	9 622	35.4	187 ± 12	7.93	12.4 ± 0.38	1.96
, 1880 5 1.111 3	165 i.	1.771 8	85 1.20	38 58	59.6	301 ± 52	101	12.3 ± 0.23	1.85
, 1030 10 1.137 3	165 u.	0.512 1	12 0.93	37 205	92.2	1.17 ± 14	0	13.5 ± 0.4	1.82
, 1620 20 0.912 30)15 ı.	1.772 15	572 5.1'	78 4593	6	59 ± 2	8.48	13.7 ± 0.19	1.85
, 1550 13 0.959 33	57 U.	0.776 2	82 1.3	86 504	98.7	101 ± 8	0	13.7 ± 0.24	0.69
, 1540 15 0.991 33	57 U.	0.869 5	65 1.43	87 967	89.7	109 ± 6	0.03	14.1 ± 0.13	1.08
, 1550 2 1.773 257	78	1.19 3	32 1.0	42 28	91.4	373±97	0	12.5 ± 0.26	1.66
, 1680 20 0.777 25	78 1.	1.186 6	24 0.4:	52 238	94.8	375 ± 30	0.03	13.4 ± 0.14	1.44
, 1570 20 0.933 3	015 1.	1.003 4	00 2.5	38 1012	99.3	70 ± 4	0	14.3 ± 0.28	1.65
, 1190 4 1.023 3	357 1.	1.549 2	38 3.7	89 582	22.4	79 ± 6	0.49	13.7 ± 0.21	1.24
, 1200 5 0.953 30	15	0.9	01 2.4	8 554	11.1	65+6	11.2	13.7 ± 0.19	1.23
	2					200		<	

Table C.2

	z		9	100	44	19	21	29	23	57	38	100	82	23	51	1	17	20	31	24	65	
	Std-dev		0.35	1.57	1.35	0.94	1.8	1.65	1.58	2.07	1.65	2.59	1.35	1.25	1.3	0	1.15	1.53	1.52	1.12	1.06	
	MTL (µm)		12.8 ± 0.14	13.2 ± 0.16	13.2 ± 0.2	13.6 ± 0.22	11.6 ± 0.39	12.4 ± 0.31	13.3 ± 0.33	12.7 ± 0.27	13.4 ± 0.27	10.5 ± 0.26	13.5 ± 0.15	13.3 ± 0.26	14.1 ± 0.18	13.1 ± 0	13.6 ± 0.28	12.7 ± 0.34	13.3 ± 0.27	13.9 ± 0.23	13.5 ± 0.13	
	% Var		0	7.56	3.61	0.25	0	1.56	0	0.23	30.1	0.06	0.01	0.52	0	0	0.02	0	0	0	0	
	Age (Ma)		64±7	102 ± 4	94 ± 4	101 ± 7	352±37	320 ± 28	117 ± 9	116 ± 9	93 ± 8	326 ± 19	88 ± 5	83±6	79 ± 16	73 ± 10	73 ± 11	66 ± 10	68 ± 9	104 ± 9	105 ± 8	
	$P\chi^2\%$		100	19.9	34.2	77.1	9.99	75.8	97.6	95.3	0	88.5	86	83.9	81.6	96.6	56.1	87.3	99.8	93.8	9.99	
	ïŻ		342	3276	2324	747	137	205	585	558	1721	548	1307	677	94	237	182	219	274	397	619	
	ρI		10.91	2.993	1.816	0.757	0.363	0.645	3.312	0.62	1.852	0.935	3.137	2.046	2.938	0.952	1.124	1.669	1.255	1.323	1.58	
	N_{S}		120	1637	1036	350	281	454	308	284	697	897	509	246	32	74	56	60	76	187	291	
	ρS		3.827	1.496	0.809	0.355	0.744	1.427	1.744	0.315	0.75	1.53	1.222	0.744	1	0.297	0.346	0.457	0.348	0.623	0.743	
	ΡN		3015	3357	3357	3357	2983	2578	3357	3357	3357	3636	4013	4013	4013	4013	4013	4013	4013	4013	4013	
	$\rho \mathrm{D}$		0.974	1.087	1.119	1.151	0.93	0.782	1.183	1.216	1.248	1.08	1.199	1.213	1.228	1.243	1.257	1.287	1.301	1.169	1.184	
Number	of	crystals	1	20	20	20	19	17	10	20	21	21	16	14	61	7	5	9	6	8	16	CN5.
	Elev (m)		1190	1050	066	1130	1780	1610	820	760	970	1730	1690	1600	1510	1400	1310	1200	980	1902	1810	±5 for NBS glass
	long (E)		15°484'	15°423'	15°225'	15°056'	17°106'	17°079'	14°902'	14°984'	14°845'	$16^{\circ}415'$	15°323'	15°323'	15°323'	15°323'	15°322'	15°322'	15°293'	15°327'	15°322'	ig a zeta of 379.
	lat (S)		21°535'	$21^{\circ}360$	21°277'	21°227'	22°436'	22°470'	$21^{\circ}029$	$20^{\circ}877$	20°738°	23°523'	$20^{\circ}840^{\circ}$	$20^{\circ}840^{\circ}$	20°843'	20°843'	$20^{\circ}847$	$20^{\circ}847$	$20^{\circ}863$	$20^{\circ}838'$	20°838'	es calculated usin
	Sample-No		28-4-96-3	28-4-96-4	28-4-96-5	28-4-96-6	28-9-97-2	28-9-97-1A	30-4-96-1	30-4-96-2	30-4-96-3	31-3-96-1	95N-10	95N-11	95N-12	95N-13	95N-14	95N-15	95N-16	95N-8	95N-9	Apatite central age

 Table C.2: Apartite fission track results for the entire dataset

Table C.2

C.3 Raw Data Files

Raw data are ordered according to their irradiation code:

HB016 LU 570 LU 571 LU 572 LU 573 LU 574 LU 575 MU 024 MU 025 MU 026 MU 027 MU 028 LU 436

No. Ni Ni Na RATIO Uppun RHO FILAGE(Ma) 1 20 13 60 1538 30 5385E+05 3737E+05 3773-1051 2 2 2 2 3 50 1375E+06 3137-1151 2 1 3 53 530E+05 3387E+05 3373E+05 3373E+05 3373E+06 3373E+06 3373E+06 3373E+06 3373E+06 3373E+06 3373E+06 3332-1151 389 252 210 2312E+06 303 <e-05< td=""> 338E+05 3073-1151 389 232 210 2301E+06 333E+06 333E+06 333E+06 333E+06 338<-215 333 333E+06 338E+05 358E+05 358E+05 358E+05 358E+05 3</e-05<>	No. Ns							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 20	13	60	1.538	3.9	5.208E+05	3.385E+05	307.3-109.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 21	20	54	1.050	6.7	6.076E+05	5.787E+05	211.3—66.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	49	1.000	3.3	2.870E+05	2.870E+05	201.4 - 95.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	39	25	1.821	28.2	4.438E+06	2.438E+06	362.0-72.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= 8	- 03	49	1/5.1	0.7	5.508E+05	2.232E+05	8.1 CI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 F	48	6 0 7	1 542	217	2 891E+06	1 875E+06	307.9-57.5
9 7 4 50 1.50 1.4 2.188E+05 1.230E+05 348.4–218.5 10 120 74 50 1.802 2.68 3.570E+05 3.90E+05 3.958E-015 2.33.748.3 12 15 7 45 2.143 2.8 5.00E+05 5.90E+05 3.958E-06 2.33.748.3 13 20 2 30 0.1261 6.9 7.552E+05 7.812E+04 90.66-9457 15 75 58 25 1.203 4.20 0.09 1.562E+05 7.812E+04 90.66-9457 17 42 20 70 2.100 5.2 9.375E+05 3.454E+05 4159-113.3 18 7 7 12 2.143 2.05 1.905 9.375E+05 2.922-657 19 28 1.737 1.23 1.942E+06 2.915E+06 2.944-6.63 19 28 1.737 1.23 1.942E+06 3.915E+06 349.4-6.73 20 2 9 2 8 2.444 5.8 1.228E+06 5.922-6.67 20 2 9 2 8 2.444 5.8 1.228E+06 5.921E+05 346.6-03 21 9 28 1.737 1.23 1.942E+06 9.348E+05 3416-104.3 20 2 9 2 8 2.444 5.8 1.228E+06 5.022E+05 348.6-03 20 2 9 2 8 2.444 5.8 1.228E+06 5.022E+05 348.6-03 21 9 28 1.737 1.23 1.942E+06 9.348E+05 348.6-03 21 0 2 8 1.737 1.23 1.942E+06 9.348E+05 348.6-03 21 0 2 8 0.808 21 1.232 4.008 21 1.530E+06 9.348E+05 348.6-03 21 0.801E+06 9.348E+05 348.6-03 21 0.801E+06 9.348E+05 348.6-03 21 0.801E+06 9.348E+05 30.816.6 4.458 21 1.810E+069 21 0.801E+06 9.348E+05 348.6-03 21 1.810E+069 21 2.24 1.93.Ma 21 2.34 1.93.Ma 21 2.34 1.93.Ma 21 2.34 1.83.Ma 21 2.34 1.93.Ma 21 2.34 1.93.Ma 21 2.34 1.83.Ma 21 2.34 1.93.Ma 21 2.35 1.008 21 2.34 1.93.Ma 21 2.34 1.34 1.34 1.34.Ma 21 2.34 1.34 1.34.Ma 21 2.34 1	8 58	23	28	2.522	14.9	3.237E+06	1.283E+06	496.2-122.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	4	50	1.750	1.4	2.188E+05	1.250E+05	348.4-218.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 120	74	50	1.622	26.8	3.750E+06	2.312E+06	323.5 48.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 46	25	100	1.840	4.5	7.188E+05	3.906E+05	365.8-91.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 15	2	45	2.143	2.8	5.208E+05	2.431E+05	424.1—194.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 29	23	60	1.261	6.9	7.552E+05	5.990E+05	252.9-70.8
15 75 58 25 1.203 42.0 6.88E+06 355E+06 29265.7 17 42 20 70 2.100 5.2 9.375E+05 3.464E+05 3415194.3 18 7 12 2.143 215 20.1 155 4.06 2946-62.3 19 28 1.737 12.3 1.942E+06 5.022E+05 34565.7 20 22 9 28 2.444 5.8 1.228E+06 5.022E+05 345.890.9 21 33 19 28 1.737 12.3 1.942E+06 5.022E+05 345.890.9 287 548 1.208E+06 5.022E+05 345.805.9 287 548 1.208E+06 5.022E+05 345.805.9 287 548 1.208E+06 9.348E+05 345.805.9 288 2.444 5.8 1.238E+06 9.348E+05 345.805.9 287 548 1.208 1.530E+06 9.348E+05 345.805.9 288 2.444 5.8 1.238E+06 5.022E+05 345.805.9 200 22 9 28 2.444 5.8 1.238E+06 5.022E+05 345.805.9 201 501 501 502 502 503 51.5 0.008 201 501 502 502 503 51.9 1.5 0.008 201 501 502 502 503 51.9 1.5 0.008 201 502 502 503 503 51.5 0.008 201 502 502 503 503 503 503 505 505 505 505 505 505	14		40	2.000	0.9	1.562E+05	7.812E+04	396.6—343.6
$ \begin{bmatrix} 5 & 53 & 32 & 1474 & 275 & 3.500E+06 & 2345E+06 & 2946-62.3 \\ 18 & 15 & 7 & 12 & 2.143 & 10.5 & 9.953E+06 & 9.115E+05 & 4241-194.3 \\ 20 & 7 & 9 & 28 & 1.737 & 12.3 & 1.842E+06 & 1.060E+06 & 3458-99.9 \\ 21 & 33 & 19 & 28 & 1.737 & 12.3 & 1.842E+06 & 1.060E+06 & 3458-99.9 \\ 21 & 33 & 19 & 28 & 1.737 & 12.3 & 1.842E+06 & 1.060E+06 & 3458-99.9 \\ 21 & 33 & 19 & 28 & 1.737 & 12.3 & 1.842E+06 & 1.060E+06 & 3458-99.9 \\ 21 & 33 & 19 & 28 & 1.737 & 12.3 & 1.842E+06 & 1.060E+06 & 3458-99.9 \\ 21 & 33 & 19 & 28 & 1.737 & 12.3 & 1.842E+06 & 1.060E+06 & 3458-99.9 \\ 21 & 21 & 21 & 21 & 21 & 21 & 21 & 21$	15 75	58	25	1.293	42.0	4.688E+06	3.625E+06	259.2 45.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 56	38	25	1.474	27.5	3.500E+06	2.375E+06	294.6—62.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 42	20	70	2.100	5.2	9.375E+05	4.464E+05	415.9—113.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 15	2	12	2.143	10.5	1.953E+06	9.115E+05	424.1—194.3
20 22 9 28 2.444 5.8 1.238F:06 5.022E:05 481.6-9008 21 33 19 28 1.737 1.2.3 1.842E:06 1.060E:06 9.54899.9 897 548 10.8 1.530E:06 9.348E:05 345.8-99.9 Area of basic unit = 6.4E.07 cm-2 CHI SQUARED = 6.41574 WTH 20 DEGREES OF FREEDOM CRI squared) = 88.5 % CORRELATION COEFICIENT = 0.969 VARIANCE OF SQR(N) = 4.190669 VARIANCE OF SQR(N) = 4.190669 NS/Ni = 1.637 \pm 0.089 NS/Ni = 0.06% NS/Ni = 0.06% NS/Ni = 0.06% NS/Ni = 0.06% NS/Ni = 0.06% NS/Ni = 0.05% NS/Ni = 0.05% NS/Ni = 0.089	19 79	45	28	1.756	29.1	4.408E+06	2.511E+06	349.5-65.7
21 33 19 28 1.737 1.23 1.842E+06 1.060E+06 345.8-999 897 548 10.8 1.530E+06 9.348E+05 345.8-999 Vera of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.415574 WITH 20 DEGREES OF FREEDOM Peri SQUARED = 6.415574 WITH 20 DEGREES OF FREEDOM Peri SQUARED = 6.415574 WITH 20 DEGREES OF FREEDOM Peri SQUARED = 6.41574 with 20 DEGREES OF FREEDOM Peri SQUARED = 6.41574 with 20 DEGREES OF FREEDOM Peri SQUARED = 6.41574 with 20 DEGREES OF FREEDOM Peri SQUARED = 6.416677 VALIANCE OF SQR(N) = 4.190669 NaNi = 1.657 ± 0.089 MEAN RATTO = 1.722 ± 0.089 MEAN RATTO = 1.722 ± 0.089 Pouled Age = 326.4 ± 19.1 Ma Comm Age = 326.4 ± 18.0 Ma Comm Age = 326.4 ± 19.1 Ma Comm Age = 326.4 ± 18.0 Ma Comm Age = 3	20 22	6	28	2.444	5.8	1.228E+06	5.022E+05	481.6 - 190.8
897 548 108 1.530E+06 9.348E+05 Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.41574 WTH 20 DEGREES OF FREEDOM PCHI SQUARED = 6.40547 VARIANCE OF SQR(N) = 4.19069 VARIANCE OF SQR(N) = 4.19069 NS/N = 1.637 ± 0.089 NS/N = 1.632 ± 0.089 NS/N = 1.080E+06m ² 2. ND = 3666 1.1-2-607 1.1	21 33	19	28	1.737	12.3	1.842E+06	1.060E+06	345.8-99.9
Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.41574 WTH 20 DEGREES OF FRREEDOM For squared = 8.4 Reis squared = 8.4 CORRELATION COEFFICIENT = 0.969 VARIANCE OF SQR(N) = 4.190669 NAMIA = 1.637 ± 0.089 NEAN RATTO = 1.722 ± 0.089 NEAN RATTO = 1.722 ± 0.089 NEAN RATTO = 1.722 ± 0.089 Pouled Age = 326.4 \pm 19.1 Ma MEAN RATTO = 1.722 ± 0.089 Pouled Age = 326.4 \pm 19.1 Ma Common Age = 326.4 \pm 19.1 Ma Reis and Age = 326.4 \pm 19.1 Ma MEAN RATTO = 1.722 ± 0.089 Pouled Age = 326.4 \pm 19.1 Ma Reis and Age = 326.4 \pm 18.5 Ma Reis a	897	548			10.8	1.530E+06	9.348E+05	
CHI SQUARED = 6.415574 WITH 20 DEGREES OF FREEDOM Peini squared) = 88.5 % CORRELATION COEFFICIENT = 0.969 VARIANCE OF SQR(N) = 6.40647 VARIANCE OF SQR(N) = 6.40647 VARIANCE OF SQR(N) = 4.190669 Newli = 16.57 ± 0.089 MEAN RATTO = 1.722 ± 0.089 MEAN RATTO = 1.722 ± 0.089 MEAN RATTO = 1.722 ± 0.089 Pouled Age = 326.4 \pm 19.1 Ma Comma Age = 326.4 \pm 10.1 M	Area of bas	iic unit =	6.4E-07	, cm-2				
CHI SQUARED = 6.41574 WITH 20 DEGREES OF FREEDOM CHI SQUARED = 6.41574 WITH 20 DEGREES OF FREEDOM Point squared) = 88.5% CORRENTION COEFFICIENT = 0.999 VARIANCE OF SQR(N) = 6.46647 VARIANCE OF SQR(N) = 6.46647 VARIANCE OF SQR(N) = 6.466647 VARIANCE OF SQR(N) = 6.46647 VARIANCE OF SQR(N) = 6.46647 VARIA								
Ns/Ni = 1.637 ± 0.089 MEAN RATIO = 1.722 ± 0.089 Pooled Age = 326.4 ± 19.1 Ma Wann Age = 326.4 ± 19.1 Ma Control Age = 326.4 ± 19.3 Ma \mathcal{C} and \mathcal{A} are a 256.4 ± 19.3 Ma \mathcal{C} and \mathcal{A} are a 256.4 ± 18.5 Ma \mathcal{C} are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+00cm-2; ND = 3636 are a calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 3.080E+00cm-2; ND = 3.080E+00cm-2;		CHI SQ P(chi sq CORRE VARIAI VARIAI	UAREI luared) = lLATIO NCE OF NCE OF	D = 6.4155 = 88.5 % N COEFFIC F SQR(Ns) = ₹ SQR(Ni) =	74 WITH 2(21ENT = 0.9 = 6.469647 = 4.190669) DEGREES C	DF FREEDOM	
Pooled Age = 326.4 ± 191. Ma Mean Age = 326.4 ± 191. Ma Mean Age = 342.9 ± 19.3 Ma % Variation = 0.06% % Variation = 0.06% % Nariation = 0.06%		Ns/Ni = MEAN	1.637 : RATIO	± 0.089 = 1.722 ±	0.089			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$								
Ages calculated using a zeta of 378.8 ± 5.5 for CN 5 glass 12.5 ppm RHO D = 1.080E+06cm-2; ND = 3636 a1-3-08-1 a1-3-08-1 a0 a1-3-08-1 a0 a0 a0 a0 a1-3-08-1 a0 a0 a0 a1-3-08-1 a1-3-08-1 a0 a0 a0 a0 a1-3-08-1 a0 a0 a0 a1-3-08-1 a0 a1-3-08-1 a0 a1-3-08-1 a1-3-08-1 a0 a1-3-08-1 a1-3-08-1 a0		Pooled . Mean A <u>Central</u> % Variat	Age = 3. ge = 3. <u>Age = 3</u> tion = (26.4 ± 19.1 42.9 ± 19.3 26.4 ± 18. 0.06%	Ma Ma 5 Ma			
		Ages ca RHO D	lculated = 1.08(Using a zet 0E+06cm-2	a of 378.8± ; ND=30	5.5 for CN 5 g 536	glass 12.5 ppm	
		31-	-3-96-1					
	L L			40	L	31-3-96-1 ML: 10.49		1
	82004		_	30 20	-	Std Dev = 2.59 N= 100	ų. Į	
			4	۲ ۲			- 2 -	

IRRADIATION HB 016 COUNTED BY: M. RAAB 12/05/99 3-4-96-2 Apatite

F.T.AGE(Ma) 61.5±15.3 43.7±15.2 74.9±10.6 67.2±23.3 57.5±13.0 76.6±20.6 92.259.3±97.0 10.10±20.8 92.2±24.0 62.2±16.1 71.3±31.1 66.5±14.5 84.3±25.8 99.5±45.6 47.6 ± 37.2 109.8±23.3 79.1±29.3 60.3±20.6 777.7±22.7 83.1±21.4 83.9±17.3 65.8±26.6 56.2±9.3 CHI SQUARED = 17,41714 WITH 22 DEGREES OF FREEDOM P(chi squared) = 4.0 % CORRELATOR COEFFICIENT = 0.908 VARIANCE OF SQR(N) = 2.718213 VARIANCE OF SQR(N) = 7.851645 2.812E+05 1.125E+06 3.078E+06 6.055E+06 2.300E+06 4.836E+05 2.474E+06 6.641E+05 2.951E+06 3.203E+05 3.711E+06 9.375E+05 9.673E+05 9.673E+05 4.219E+05 6.094E+05 1.403E+06 2.812E+06 2.625E+06 .406E+06 1.685E+06 259E+06 .656E+05 .115E+05 RHOi 7,344E+05 6,257E+04 6,257E+04 9,375E+05 1,552E+05 1,552E+05 1,552E+05 1,552E+05 5,952E+05 5,952E+05 5,952E+05 5,952E+05 1,48E+05 8,681E+05 8,681E+05 8,681E+05 8,681E+05 8,681E+05 8,681E+05 8,681E+05 1,146E+05 1,146E+05 1,146E+05 1,146E+05 1,146E+05 1,146E+05 1,146E+05 1,146E+05 1,146E+05 1,147E+05 1,147E+ 5.950E+05 RHOs U(ppm) $\begin{array}{c} 3.1\\ 3.5.9\\ 3.5.9\\ 3.3.9\\ 3.3.9\\ 3.3.9\\ 3.3.9\\ 3.3.9\\ 3.3.9\\ 3.3.5\\ 3.2.5\\ 3.3.5\\ 3.2.5\\ 3.3.5\\ 3.2.5\\ 3.2.5\\ 3.3.5\\ 3.2.5\\ 3.3.$ 18.6 30.8 RATIO $\begin{array}{c} 0.288\\ 0.204\\ 0.350\\ 0.3514\\ 0.269\\ 0.269\\ 0.258\\ 0.2548\\ 0.358\\ 0.314\\ 0.333\\ 0.311\\ 0.333\\$ 0.263 0.222 0.515 Area of basic unit = 6.4E-07 cm-2 Na 42 15 100 00 20 8 8 8 8 2 6 8 S ï 39 54 84 84 1402 s 33 57 495 9 No. 0 2 13

Ns/Ni = 0.353 ± 0.018 MEAN RATIO = 0.383 ± 0.042

Pooled Age = 75.5 ± 4.3 Ma Mean Age = 81.8 ± 9.3 Ma *Central Age* = 76.1 ± 5.2 Ma % Variation = 17.01%

Ages calculated using a zeta of 378.8 \pm 5.5 for CN 5 glass 12.5 ppm RHO D= 1.135E+06cm-2; ND= 3635

	3-4-9(i-3 Apa	tite							
	IRRA	DIATIC	N LUS	0-03	0	OUNTED B	Y: M. RAAB	27/05/99		
Aa)	No.	$N_{\rm S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
63	-	13	14	16	0.929	13.9	1.270E+06	1.367E+06	189.8–73.2	
5	61	ς γ	41	50	0.750	13	9.375E+04	1.250E+05	153.7-117.4	
5	т. т.	0 g	- 9	5 5	0.857	2.1	1.736E+05	2.025E+05	175.4-97.6	
	4 4	ξ, c	× °	4 5	0.012	58.5 1 0	2.339E+U0	3.//0E+00	1.33.0-28.7	
10	n ve	n –	04	4 6	0.250	v. 1 v. 1	3 12 5E+04	1.500E+05	51 6-57 7	
16	5	. 16	52	51	0.596	39.2	2.307E+06	3.869E+06	122.5-27.9	
4.9	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	Ξ	100	0.636	1.7	1.094E+05	1.719E+05	130.6-63.2	
18.4	6	14	22	21	0.636	16.6	1.042E+06	1.637E+06	130.6-44.8	
8.8	10	-	14	15	0.071	14.8	1.042E+05	1.458E+06	14.8-15.3	
52.5	= :	10	16	28	0.625	0.6	5.580E+05	8.929E+05	128.3-51.8	
	12	57	51	42	0.529	19.2	1.004E+06	1.897E+06	108.9-26.0	
	CI 1	0 -	2 °	0 2 2	0.600	0 0 - 0	0120E+05	2.208E+05	1.02-2-03.7	
	<u>t v</u>	- 6	10	62	1.000	1.2	4.464E+04	4.464E+04	204.1-204.2	
	16	12	4	40	0.273	17.4	4.688E+05	1.719E+06	56.3-18.4	
	17	10	20	50	0.500	6.3	3.125E+05	6.250E+05	102.9–39.9	
	18	2	Ξ	100	0.455	1.7	7.812E+04	1.719E+05	93.6-50.5	
	19	4	×	60	0.500	2.1	1.042E+05	2.083E+05	102.9 - 63.0	
	20	S	2	45	0.714	2.5	1.736E+05	2.431E+05	146.5-85.8	
1		200	362			9:9	3.580E+05	6.479E+05		
	Areao	fbasicuı	nit=6.4E	-07cm-	2					
			CHISQU (chisqu CORREI /ARIAN /ARIAN	ARED ared) = ATIOI CEOF	= 7.888368 67.2% vCOEFFIC SQR(Ns) = SQR(Ni) =	$\begin{array}{l} \text{3 WITH 19} \\ \text{IENT} = 0.9 \\ 2.261901 \\ 3.761547 \end{array}$	DEGREES OI 28	FREEDOM		
		22	Vs/Ni = (/IEANR).552 – ATIO =	0.049	.050				
		H Z U &	ooledA deanAg <u>CentralA</u> 6 Variati	ge = 11 c = 120 ge = 11 on = 5.7	3.6 - 10.3N .1 - 10.5M 1 <u>3.5 - 10.3</u> 1 19%	1a a <i>Ma</i>				
		< H	Ages cal tHOD =	ulated 1.095F	using a zet 3+06cm-2;	a of 378.8 – ND = 36	5.5 for CN5 gla 36	tss 12.5 ppm		
ر : 460' ر : 400:			3-4-	96-3				3-4-96-3	د 210'	
- 270					20, 30, 20,		LU 570-03 ML: 12:59 Std Dev = '1,98' N= '13'		••••••••••••••••••••••••••••••••••••••	
F 200'	9 % %	I]	_	ž ž			• -	•	
130			100.]	ц. В.	01., .5.	15 . 20	. 115 % reit	11 - 15	
	I	SSION	TRACK	GE (Mi	(e	KACh LENGI	(m crons)	Precisi	or 1/sigma)	

 $\begin{array}{c} 202.7-65.\\ 219.3-62.\\ 207.8-70.\\ 307.8-70.\\ 307.8-71.\\ 310.6-54.\\ 1138.2-29.\\ 1138.2-29.\\ 362.2-98.\\ 416.7-10.\\ 362.2-98.\\ 458.4-15.\\ 458.4-15.\\ \end{array}$ F.T.AGE(N CHI SQUARED = 11.24181 WITH 10 DEGREES OF FREEDOM P(chi squared) = 1.3 % CORREL-10K COEFENT = 0.680 VARIANCE OF SQR(NS) = 1.67442 VARIANCE OF SQR(NS) = 1.67442 Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.087E+06cm-2; ND = 3636 1.188E+06 3.125E+06 2.500E+06 2.578E+06 5.533E+06 5.833E+06 5.833E+06 5.833E+06 5.833E+06 1.71267E+06 1.3367E+06 1.3367E+06 1-4-96-3 3.414E+06 2.422E+06 RHOi COUNTED BY: M. RAAB 27/05/99 1.188E+06 3.385E+06 3.328E+06 3.359E+06 5.534E+06 5.534E+06 5.534E+06 6.094E+06 6.094E+06 3.125E+06 3.125E+06 ML: 11.53 ML: 11.53 d Dev = '1. RHOs 5 '10' TRACK LENGTH (r U(ppm) 13.7 35.9 28.7 41.2 67.1 19.2 19.2 19.8 19.8 19.8 15.6 27.8 Pooled Age = 283.9 - 22.0 Ma Mean Age = 308.8 - 31.2 Ma *Central Age = 287.4 - 31.6 Ma* % Variation = 25.63% Ns/Ni = 1.410 - 0.105 MEAN RATIO = 1.537 - 0.152 RATIO 1.000 1.083 1.531 1.531 1.545 1.545 0.679 0.679 1.500 1.500 1.500 1.810 1.810 2.091 1.810 2.038 Area of basic unit = 6.4E-07 cm-2 * * 100 * 200 * 300 * 400 * FISSION TRACKAGE (Ma) 1-4-96-3 **IRRADIATION LU570-02** Na ï 437 310 1-4-96-3 Apatite $\mathbf{N}_{\mathbf{S}}$ 33 33 33 33 33 38 38 6 2 6 \$ 5 6 8 11 10 11 No.

Appendix C

	Oi F.T.AGE(Ma)	+06 70.4-17.0	+06 101 7-25.8	+06 73.0-14.0	+05 56.5-17.6	+06 72.4–12.7	+06 56.9–15.5	+06 103.2-23.0	+06 80.1-13.6 5.51-1.08	+06 82.1-13.4	+06 70.0–15.0	+06 58.5-12.5	+05 63.1–16.9	87-77/5 c0+	+00 / 0.4-17.5 +06 61.1-13.4	+06 95.4-20.0	+06 79.1–15.7	+06 80.3–18.2	+06		MOd					bþm	. 105	-96-1 ••• ••••		% relative error	.41' .14' .10' .20' .30' Precision (1'higma)
01/06/99	RHG	1.109E	8.12DE	1.719E	9.766E	2.062E	1.451E	1.230E	2.031E	2.188E	1.406E	1.625E	9.688E	2.969E	1.500E	1.172E	1.500E	1.141E	1.339E		OF FREEI					glass 12.5		- ²	ہے۔ ہ		Ļ
3Y: M. RAAB	RHOs	3.594E+05	2.909E+05 5 134E+05	5.781E+05	2.539E+05	6.875E+05	3.795E+05	5.859E+05	2.909E+05	8.281E+05	4.531E+05	4.375E+05	2.812E+05	7.812E+04	4.219E+05	5.156E+05	5.469E+05	4.219E+05	4.596E+05		9 DEGREES	926				-5.5 for CN 5 1636		LU 570-11 ML: 13.72 Std Dev = '13	.g z		∵15'`20' H(microns)
COUNTED I	U(ppm)	12.0	8.8 11.9	18.6	10.6	22.4	15.7	13.3	10.7 22.0	23.7	15.2	17.6	10.5	5.2	16.3	12.7	16.3	12.4	14.5		378 WITH 1	TCIENT = 0. () = 1.377348 () = 3.273386	- 0.015) Ma 5 Ma	2 140	eta of 378.8 - 2; ND = 3		Ŀ	 2 0	د د	5 '10' TRACK LEN GT
	RATIO	0.324	0.469	0.336	0.260	0.333	0.262	0.476	0.369	0.379	0.322	0.269	0.290	0.263	0.281	0.440	0.365	0.370		7 cm-2	0 = 5.521	= 92.2 % N COEFI F SQR(Ns F SQR(Ni F SQR(Ni	- 0.017 = 0.341 -	74.1 - 3.0	/ 4.2 - 3. 0.01%	l using a z 3E+06cm-			." z .		· 150
570-11	Na	100	001 P	100	80	100	20	08	88	100	100	100	100	001	001	100	100	100		6.4E-07	QUAREI	ellared) = ELATIO NNCE OI	= 0.343 I RATIO	Age =	t Age = ation = (alculated 1.15	-4-96-1		_	7	100' KAGE (N
patite ION LU	Ni	17	64	110	50	132	65	3 3	co [130	140	90	104	62	91 15	96	75	96	73	1611	ic unit =	CHI SO	CORR VARIA VARIA	Ns/Ni = MEAN	Pooled Mean /	% Vari	Ages c. RHO I	7.			<u>(</u>	50' .
<u>96-1</u> A ADIAT	$N_{\rm S}$	23	<u>9</u> 6	37	13	4	17	<u>9</u>	5 8	53	29	28	18	n k	3 5	i 89	35	27	553	t of basi											
<u>7-4-</u> IRR.	No.	- (7 6	4	5	9	L 0	x	۲ 10	=	12	13	4 :	0 7	1 1	18	19	20	ļ	Area								<u></u>	₩ ₩ ₩	100.4	1 0 -
	(a)											_					~	~										115:	- 80. - 65°	. 20.	

5-4-96-	<u>8</u> Ap	atite							
IRRAD	IATIC	SN LUS	70-10	0	OUNTED B	IY: M. RAAB	01/06/99		
No.	Ns	N	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
-	12	31	48	0.387	11.0	3.906E+05	1.009E+06	83.5-28.4	
2	27	78	80	0.346	16.6	5.273E+05	1.523E+06	74.7-16.8	
ю	20	62	80	0.323	13.2	3.906E+05	1.211E+06	69.6-18.0	
4	24	81	50	0.296	27.6	7.500E+05	2.531E+06	64.0-14.9	
5	12	44	49	0.273	15.3	3.827E+05	1.403E+06	58.9-19.2	
9	9	19	36	0.316	9.0	2.604E+05	8.247E+05	68.2-32.0	
2	2	197	100	0.325	33.6	1.000E+06	3.078E+06	70.1-10.2	
× 0	22	89	65	0.353	16.6	5.357E+05	1.518E+06	76.2-18.2	
9 5	¥ 5	148	100	0.2.00	7.62	50.43212.C	2.312E+06	C.6-1.64	
2 =	1 07	70 176	8 9	0.380	215	7.656F±05	1.010E+00 1 969E+06	00.4-22.0 83 9-14 7	
: 2	5 5	6	9	0.545	6.9	3 17 5F+05	5 729E+05	117 3 42 2	
1 22	1 82	160	20	0.362	54.5	1.812E+06	5.000E+06	78.2-12.1	
4	8	92	02	0.522	22.4	1.071E+06	2.054E+06	112.3-20.1	
15	20	62	20	0.323	15.1	4.464E+05	1.384E+06	69.6-18.0	
16	20	37	30	0.541	21.0	1.042E+06	1.927E+06	116.3-32.4	
17	15	32	30	0.469	18.2	7.812E+05	1.667E+06	100.9-31.7	
18	17	68	80	0.250	14.5	3.320E+05	1.328E+06	54.0-14.7	
19	6	31	60	0.290	8.8	2.344E+05	8.073E+05	62.7-23.8	
20	53	131	36	0.405	62.0	2.300E+06	5.686E+06	87.2-14.3	
	536	1528			20.7	6.652E+05	1.896E+06		
Area of	f hasic	unit = (5.4E-07	, cm-2					
io non /				7.11.2					
		CHI SQ	UAREI	0 = 9.93591	I MITH 1	9 DEGREES	OF FREEDOM		
	_ 0	P(chi squ CORRE	uared) = LATIO]	= 40.2 % N COEFFIC	CIENT = 0.5	930			
		VARIAL	ICE O	F SQR(Ns)	= 2.746907				
	-	VARIAL	NCE OI	F SQR(N1) =	= 7.916292				
	~ ^	Ns/Ni =	0.351	- 0.018	100.0				
	-				170.0				
	_ 4 0	Pooled ⊭ Mean Ag Central	Age = 7 ge = 7 Age = 7	⁵ 5.7 - 4.1 N ⁸ 2 - 4.8 N 75.8 - 4.3	Ma Ma Ma				
	<u>.</u>	% Variat	ion = 1	7.80%					
	Ţ	Ages cal RHO D :	culated = 1.146	using a zet: 5E+06cm-2;	a of 378.8 - ; ND = 3	5.5 for CN 5 636	glass 12.5 ppm		
		5-4-	-96-8						

::. ::::

9 20 20

TRACK LEN

(Ma)

5-4-96-8

LU 570-10 ML: 13.4.4 Vd Dev = '1.12' N= '900'

	7-4-9	6-3 Ap	atite							
	IRRA	DIATIC	ON LUS	70-13	0	OUNTED F	3Y: M. RAAB (12/06/99		
3E(Ma)	No.	Ns	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
-18.5	-	109	297	50	0.367	99.3	3.406E+06	9.281E+06	80.7-9.2	
-8.2	61 6	114	296	50	0.385	0.02 70.2	3.562E+06	9.250E+06	84.6-9.5	
-19.0	04	123	280	9	0.439	0.87	3.203E+06	7.292E+06	96.5-10.6	
-7.5	ъ.	28	67	09	0.418	18.7	7.292E+05	1.745E+06	91.8-20.8	
-15.6	9	69	193	2	0.358	50.4	1.685E+06	4.712E+06	78.6-11.2	
-14.6	C 0	58	69	50	0.406	23.1	8.750E+05	2.156E+06	89.2-20.1	
-10.2	00	135	355	8 8	0.380	123.7	4.395E+06	1.156E+07	83.6–8.6	
-9.8	10	61	267	8	0.341	55.8	1.777E+06	5.215E+06	75.0-9.2	
-8.4	Ξ	72	219	52	0.329	146.5	4.500E+06	1.369E+07	72.3-10.0	
-13.2	12	16	255	30	0.357	142.1	4.740E+06	1.328E+07	78.5-9.7	
-9.9 -13.4	51 14	7117	006	001	0302.0	97.0	3.29/E+06	8.6/2E+06 9.062E+06	86.4–9.7	
-12.9	15	99	170	8 8	0.388	113.7	4.125E+06	1.062E+07	85.3-12.5	
-7.6	16	59	185	28	0.319	110.5	3.292E+06	1.032E+07	70.2-10.6	
-12.0	17	146	358	20	0.408	119.7	4.562E+06	1.119E+07	0.6-9.68	
-12.5	18	65	151	16	0.430	157.8	6.348E+06	1.475E+07	94.5-14.2	
-1/.1 -8.6	20	48	200	ถ ห	0.315	102.3	2.750E+06 3.938E+06	9.262E+06 1.250E+07	69.3-10.1 69.3-10.1	
	ļ	1045	5001			976	3 1276±06	8 18/E-06		
		£	1000			2	00171710	001710100		
	Area	of basic	unit =	6.4E-07	cm-2					
			CHI SQ P(chi sq CORRE VARIAJ VARIAJ	UAREI uared) = LATIO NCE OI NCE OI	0 = 8.2819 = 61.9 % N COEFFI = SQR(Ns)	42 WITH 1 CIENT = 0. = 6.615658 = 14.63492	(9 DEGREES (DF FREEDOM		
			Ns/Ni = MEAN	0.382 - RATIO	- 0.010 = 0.377 -	0.010				
			Pooled / Mean A <i>Central</i> % Varia	Age = 8 ge = 8 Age = 3 tion = 1	4.0 - 2.9 3.0 - 2.8 33.9 - 2.7 38%	Ma Ma Ma				
			Ages ca RHO D	lculated = 1.168	using a zet 3E+06cm-2	a of 378.8 - ; ND = 3	- 5.5 for CN 5 g 8636	lass 12.5 ppm		
				4-96-3				7-4-96-3		
120°° 120° 9005 1005 1005 1005 1005 1005 1005 1005	<u>ון ון ו</u> היא אימיסייק מיסייק היא אימיסייק מיסייק		\square		4 z		LU 570-13 ML: 13.28 8td Dow = '1. N = '100'			
۶ ۲	₩ <u>+</u> 0		مر ۱	A ⊧ ₽	1 ^{50.}	5. *10	· 15' 20'	21	% relative error 7	
. 40	-		TKAC	AGE	/a)			A 10 0	30 40 50 60	

F.T.AG 37.6 6.055E+06 5.594E+06 6.328E+06 5.719E+06 7.812E+06 4.188E+06 8.562E+06 CHI SQUARED = 24.19153 WITH 19 DEGREES OF FREEDOM P(chi squared) = 0.0 % CORRELATON COEFICIENT = 0.826 VARIANCE OF SQR(Nb) = 2.349539 VARIANCE OF SQR(Ni) = 7.94264 8.516E+06 6.948E+06 2.656E+06 1.150E+07 .165E+06 969E+06 323E+06 5.380E+06 5.875E+06 5 094F+06 635E+06 438E+06 328E+06 RHOi COUNTED BY: M. RAAB 02/06/99 3.828E+06 2.4828E+06 1.771E+06 7.552E+05 4.384E+06 2.461E+06 2.375E+06 1.836E+06 2.219E+06 3.125E+06 2.219E+06 2.688E+06 1.094E+06 2.760E+06 2.131E+06 594E+06 2.170E+06 .953E+06 .250E+06 RHOs .458E+06 906E U(ppm) 43.9 58.3 58.3 58.3 58.3 58.4 61.0 61.0 61.0 61.0 557.9 560.5 560.5 560.5 560.5 81.9 81.9 56.2 Ns/Ni = 0.363 - 0.011 MEAN RATIO = 0.376 - 0.020 Pooled Age = 79.3 - 3.0 Ma Mean Age = 82.1 - 4.7 Ma *Central Age = 80.5 - 4.2 Ma* % Variation = 16.58% RATIO $\begin{array}{c} 0.364\\ 0.299\\ 0.420\\ 0.420\\ 0.368\\ 0.296\\ 0.450\\ 0.278\\ 0.284\\ 0.284\\ 0.284\\ 0.278\\ 0.284\\ 0.278\\ 0.290\\ 0.314\\ 0.530\\ 0.50\\ 0$ 0.633 0.321).315 Area of basic unit = 6.4E-07 cm-2 **IRRADIATION LU570-12** Na ïŻ 12 99 6 155 179 324 183 183 175 175 134 274 3959 28 T. 4 5 8 65 7-4-96-2 Apatite 1436 z 93 56 24 8 113 115 116 119 20 20 No. 2 12

Ages calculated using a zeta of 378.8-5.5 for CN 5 glass 11.1 ppm RHO D = 1.161E+06cm-2; ND = 3636

7-4-96-2

U 570-12 AL: 13.11

7-4-96-2

.40. .20.

- 0.0 - 0.0 - 4.0 0

IRACK LEN GTH

RACKAGE (Ma)

	7-4-9	<u>6-6</u> Ap	utite							
	IRRA	DIATIC	SUL LUS	70-15	0	OUNTED B	Y: M. RAAB (12/06/99		
F.T.AGE(Ma)	No.	$N_{\rm S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
73.8–27.0	- (54	221	56	0.244	65.2 74.0	1.507E+06	6.166E+06	54.5-8.4	
92.1-24.0 130.5-41.3	4 m	38	112	7 8	0.339	66.0 66.0	2.121E+06	6.250E+06	02.0-0.9 75.6-14.3	
63.3-25.4	4	29	67	24	0.433	46.1	1.888E+06	4.362E+06	96.3-21.5	
68.9–21.1	vo v	8 2	5 2	50	0.466	60.3	2.656E+06	5.703E+06	103.5-21.6	
102.5-34.5	0 -	2 2	101	36.9	0.337	46.3	1.476E+06	J.066E+00 4.384E+06	75.0-15.0	
90.7-27.0	- o o	72	181	35	0.398	85.4	3.214E+06	8.080E+06	88.5-12.5	
	6	47	112	30	0.420	61.6	2.448E+06	5.833E+06	93.3–16.4	
	9 =	30	80	8 5 8	0.450	47.2	2.009E+06	4.464E+06	100.0-20.2	
	1 2	S 5	5 S	7 8	0.416	0.64 7.67	2.441E+00 2.065E+06	4.000E+00 4 967E+06	0.027.011 0.0 518.0	
	13	5) 11 0	55	0.464	72.6	3.188E+06	6.875E+06	103.1-17.6	
	14	78	198	50	0.394	65.4	2.438E+06	6.188E+06	87.7-11.9	
	15	34	91	25	0.374	60.1	2.125E+06	5.688E+06	83.2-16.8	
	16	68	161	48	0.466	65.7	2.897E+06	6.217E+06	103.6-13.5	
	17	62 90	179	40	0.441	73.9	3.086E+06 2 500E -06	6.992E+06 5 000E - 06	98.1-13.4 02.0 11.5	
	01 01	64	151	90	0.311	00.0 7 7	2.200E+00 1 836F±06	5 898F+06	C111-0-76	
	20	ê 6	138	25	0.500	1.16	4.312E+06	8.625E+06	111.1–16.6	
		1170	2928			64.3	2.431E+06	6.084E+06		
	Area	of basic	unit =	5.4E-07	r cm-2					
		01077	CHI SQI (chi sqi CORRE VARIAN VARIAN	UAREI Lared) : LATIO VCE OJ VCE OJ	D = 11.979 = 19.8 % N COEFFI ₹ SQR(Ns)	56 WITH 1 CIENT = 0.5 = 2.515567 = 6.931666	9 DEGREES C	DF FREEDOM		
		22	Vs/Ni = MEAN I	0.400 RATIO	-0.014 = 0.409 -	0.015				
			Pooled A Mean Ag Central . % Variat	vge = 8 ge = 9 Age = 9 ion = 8	8.9 – 3.61 0.9 – 3.91 89.2 – 3.8 3.30%	Ma Vla Ma				
			Ages cal RHO D	culated = 1.18	using a zet 3E+06cm-2	a of 378.8 – ; ND = 3	5.5 for CN 5 g 636	dass 12.5 ppm		
			7-4	-96-6				7-4-96-6		
••• ••• 65.55	بر 4 م م بر		٣		5 0 0 0		7-4-88 - 6 Mill: 1-3-36 Std Dev = '1.37' N = '100'	• بىلىر * * *		· · · · · · ·
11 kon er co 11 - 34 21 - 16 18	╷╷╺ ┙	SE ON			a) 120,	* 10 .	15 ^{° °} 20 [°]		*relative error *relative error * * * * * * * * * * * * * * * * * * *	

and the second sec	IRRADIATION LU570-15 COUNTED BY: M. RAAB 02/06/99	No. Ns Ni Na RATIO U(ppm) RHOs RHOi	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 11.97956 WITH 19 DEGREES OF FREEDOM Chi SQUARED = 11.97956 WITH 19 DEGREES OF FREEDOM CORRELATION COEFFICIENT = 0.914 VARIANCE OF SQR(N3) = 2.515567 VARIANCE OF SQR(N3) = 6.931666	$N_{S}N_{I} = 0.400 - 0.014$ MEAN RATIO = 0.409 - 0.015	Pooled Age = 88.9 – 3.6 Ma Mean Age = 90.9 – 3.9 Ma <i>Central Age</i> = 89.2 – 3.6 Ma % Variation = 8.30%	Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.183E+06cm-2; ND = 3636	7-1-4-96-6 7- 6 ⁻ 6 ⁻ 7-4-96-6 7-4-96-6 7-4-96-6		. 0. 50. 100. 15.0 '5' 10' 15.20' - 2 FISSION TRACKAGE (Ma) TRACKLENGTH (microns) 0. 10' 10' 10' 10' 10' 10' 10' 10' 10' 10'
		F.T.AGE(Ma)	73.8-27.0 73.8-27.0 130.5-41.3 63.3-25.4 63.3-25.4 63.3-27.1 93.0-27.8 90.7-27.0 90.7-27.0						ō.	••••••••••••••••••••••••••••••••••••••	. 33' . 24' 12' . 16'
	2/06/99	RHOi	4.688E-05 4.2100E-05 4.2100E-05 6.250E+05 5.331E+05 5.331E+05 8.730E+05 6.094E+05 6.094E+05	0.141E+U5	FREEDOM			lass 12.5 ppm	7-4-96-4	ب ابا ب	
	3Y: M. RAAB (RHOs	1.562E+05 3.3125E+05 3.3125E+05 1.786E+05 1.786E+05 2.500E+05 4.062E+05 2.500E+05 2.50	CU+37 C4-7	DEGREES OI			-5.5 for CN 5 g 636			
	COUNTED B	U(ppm)	8, 8, 0 8, 8, 0 8, 6, 6, 6 9, 6, 6, 6 8, 7, 6 8, 7, 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9 8,	C.0	71 WITH 7 CIENT = 0.0 = .2743029 = .4732404	0.035	Ma Ma Ma	ta of 378.8-			
	0	RATIO	0.333 0.547 0.548 0.548 0.286 0.286 0.410 0.410 0.410		07 cm-2 ED = 1.7357 = 83.8 % ON COEFFI OF SQR(Ns) DF SQR(Ns)	9 - 0.044 0 = 0.404 -	$88.3 - 10.0 \\89.4 - 7.9 \\88.3 - 9.9 \\0.00\%$	sd using a zet 75E+06cm-2		A	·150° 1a)
	U570-14	i Na	001 100 100 100 100 100 100 100 100 100	~	= 6.4E-(SQUARE squared) RELATI(IANCE (IANCE C	i = 0.395 N RATIC	d Age = 1 Age = <u>al Age =</u> riation =	calculate D = 1.1'	7-4-96-4	4	· 100*
ammde	LION L	N S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87	sic unit CHI 5 P(chi CORI VARI VARI	Ns/Ni MEA	Poole Mean <u>Centr</u> % Var	Ages RHO		Ŕ	· 50' N TRAC

Area of basic unit = 6.4E-07 cm-2

113 283

Appendix C

 $N_{\rm S}$

No.

IRRADIATION LU570-14

7-4-96-4 Apatite

10 20 16

2

8 114 8 116 8 113 114 8

8 4 6 2

26-4-9	64 Ap	atite						
IRRAJ	DIATIO	N LUS	71-02	C	OUNTED B	Y: M. RAAB 0	06/00/66	
No.	Ns	ïZ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	30	50	60	0.600	16.4	7.812E+05	1.302E+06	111.6-25.9
6	26	35	80	0.743	8.6	5.078E+05	6.836E+05	137.9–35.8
n 1	55	4	000	0.500	13.8	5.469E+05	1.094E+06	93.2-25.0
4 v) y	70	00	0.615	C 07	1.130E+00 5 000E+05	1.025E+00 8 125E+05	114 5-36 5
n ve	β	47	99	0.537	291	6.975F±05	0.12JLT00 1 311E+06	99 1-24 6
5	14	74	50	0.595	29.2	1.375E+06	2.312E+06	110.6–21.2
œ	93	162	100	0.574	31.9	1.453E+06	2.531E+06	106.9 - 14.1
6	18	25	50	0.720	6.6	5.625E+05	7.812E+05	133.7-41.5
10	20	30	60	0.667	6.6	5.208E+05	7.812E+05	123.9-35.9
Ξ	89	138	50	0.493	54.4	2.125E+06	4.312E+06	91.8-13.8
12	23	49	70	0.469	13.8	5.134E+05	1.094E+06	87.5-22.2
13	49	70	100	0.700	13.8	7.656E+05	1.094E+06	130.1-24.4
14	40	85	100	0.471	16.8	6.250E+05	1.328E+06	87.7-16.9
15	55	82	80	0.671	20.2	1.074E+06	1.602E+06	124.7-21.9
	565	196			18.8	8.689E+05	1.487E+06	
Area o	of basic t	anit = 6	6.4E-07	cm-2				
		HI SQU (chi squ ORREI ARIAN ARIAN	JARED Lared) = LATION ICE OF	= 3.92695 : 89.7 % V COEFFIC ? SQR(Ns) = SQR(Ni) =	3 WITH 14 CIENT = 0.9 = 2.624481 = 5.182909	DEGREES OI 66	FREEDOM	
	ZZ	ls/Ni = IEAN R	0.584 - XATIO :	- 0.031 = 0.604 - 0	0.025			
	r 2 0 %	ooled A Iean Ag <i>entral</i> /	ge = 10 ge = 11 ge = 1 age = 1 age = 1)8.7 - 6.3 2.4 - 5.2 08.7 - 6.1 .03%	Ma Ma Ma			
	A R	.ges cal HO D =	culated = 9.910	using a zet: E+05cm-2;	a of 378.8 ND = 33	5.5 for CN 5 g 157	dass 12.5 ppm	
		26 -4	4-96-4				26-4-96-4	
۲۲۲ ۱۰۰۰ ۱۰				.40 [*]	_	26-49 6-4 ML: 14.1 Std Dev = '1.06' N= '75'	+2 T	Ľ
n 4 % % +		N	$ \rightarrow $.00. .70.			ب ا بار ب	ٽين •.
	-05. 50.7	100.	150.1	= 500.		5' '20' (microns)	14. 16.	elative err or 13 20 30
E	SSICN	KALN	AGE (M	(e			Pre cisi	on (1/sigma)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	s	Ni Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
2 3.9 75 80 0.520 2.72 1.1994-06 1062-311 7 5 10 0.67 0.0472 7.72 1.116E+06 2.346E+06 1062-311 7 31 91 00 0.607 7.70 1.422E+06 2.346E+06 1022-16.7 5 103 199 100 0.507 7.70 1.422E+06 2.346E+06 1021-14.3 8 8 7 123 70 0.440 3.351E+06 7.011-14.3 8 8 7 123 70 0.441 7.73 8.073E+05 7.351E+06 1021-14.3 10 145 34 100 0.412 56.4 2.351E+06 1021-14.3 11 3 202 100 0.412 56.4 2.351E+06 114.2-137 11 3 202 100 0.412 56.4 2.351E+06 114.2-137 11 3 202 100 0.432 56.1 1.133E+06 2.351E+06 114.2-137 12 113 202 100 0.432 36.3 1.766E+06 114.2-137 13 5 4113 90 0.478 2.511 1.133E+06 2.179E+06 98148 16 68 2.70 100 0.433 3.15 66.4 00 114.2-137 16 68 2.70 100 0.633 3.43 1.350E+06 114.2-137 18 7 37 10 0.478 3.20 1.338E+06 102.1-166 16 16 2.70 100 0.633 3.43 1.566E+06 114.2-137 18 7 37 10 0.478 3.20 1.338E+06 102.1-166 16 16 2.771 1.00 0.573 3.48 2.255E+06 2.298E+06 102.1-66 16 16 2.771 1.00 0.573 3.48 2.265E+06 102.1-68 17 95 0.00 0.647 3.1566E+06 102.1-68 17 95 0.00 0.647 3.1566E+06 102.1-66 16 16 2.07 100 0.607 3.156E+06 102.1-66 16 16 2.07 100 0.607 3.235E+06 102.1-66 16 16 2.07 100 0.503 3.43 1.550PM 16 16 16 2.295E+06 102.1-60 16 16 16 2.295E+06 102.1-60 16 16 16 0 3.238E+06 102.1-60 16 16 16 3.237 1.55 PPM Poled Age = 102.1 - 39 Ma Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma % Wintion = 7.56% Poled Age = 102.2 - 41 Ma Poled Age = 102.2 - 41 Ma Poled Age = 102.2 - 41 Ma Poled Age = 102.5 - 41 Ma Poled Age = 102.2 - 41 Ma Poled Age = 102.5 - 41 Ma Poled Age = 102.6 - 3188 -5.5 for CN 5 glus 12.5 PPM Poled Age = 102.1 - 39 Ma Poled	_	1 12	53 100	0.464	27.5	1.109E+06	2.391E+06	94.8-13.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~ ~	66 7	75 50	0.520	27.0	1.219E+06	2.344E+06	106.2-21.1 80.0 0.5
5 91 150 100 0607 270 1422E406 2344E406 1237-167 7 131 92 100 057 236 1469E406 3084E406 1022-131 7 131 93 100 0420 333 1674E406 1032-144 8 75 153 70 0490 0428 364 2331E406 038-146 10 146 334 100 0422 938 264 2331E406 934E465 11 153 101 100 0422 938 363 1736E406 1142-137 13 54 113 90 0438 365 11333E406 2351E406 935-166 14 58 110 00 0423 353 1566E406 1142-137 15 51 100 00 042 353 1566E406 1142-137 16 57 139 00 0438 361 1333E406 227-166 16 68 270 100 052 343 2550 1047E406 227-130 18 85 78 100 0438 320 1047E406 227-130 18 85 78 100 0438 320 1047E406 227-130 16 103 270 100 053 343 1506E406 2293E406 102-166 1637 326 31 1332E406 2293E406 102-166 1637 327 344 1490E 103 3234E406 1025-130 1637 327 344 1490E406 2293E406 1025-130 1637 327 31 1441E406 2293E406 1025-130 1637 327 31 1441E406 2293E406 1025-130 1637 327 31 1441E406 2293E406 1036-126 1637 327 320 100 0590 477 30 1637 327 00 0039 77 3 1441E406 2293E406 1036-126 1637 326 44-07 cm-2 1637 327 00 0017 1637 324 11490E71677 0019 1637 324 11490E 2993E406 1036-126 1637 324 11490E 2993E406 1637 324 11490E 2993E406 1637 324 11490E 2993E406 1637 324 11490E 2093 0017 1637 327 1141E406 2.993E406 1637 324 11470E 0580(N)= 7.095639 NaVIANCE 0580(N)= 7.095639 NaVIACO 0015 NaVIACO 0015 NAVIAC	, 4 ,	4 = t 0	02 90	0.472	272	1.020 ± 0.06 ± 0.06	2.366E+06	96.4-16.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1 10	50 100	0.607	27.0	1.422E+06	2.344E+06	123.7-16.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 I(33	98 100	0.520	35.6	1.609E+06	3.094E+06	106.2-13.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- x		91 53 70 70	0.341	212	8.073E+05 1.674E+06	2.3/0E+06 3 415E+06	69.8-14.6 100 1-14 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	11	29 50	0.628	46.4	2.531E+06	4.031E+06	128.0-18.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 1	16 3:	54 100	0.412	63.6	2.281E+06	5.531E+06	84.4-8.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= :		10 100	0.482	19.8	8.281E+05	1.719E+06	98.4-16.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2	5 F 5 F	13 100	966.0 874.0	30.5 40.6	1./00E+00	3.156E+06 3.531E±06	114.2-15.7 07.6-16.3
15 67 139 100 0482 250 1047E406 2.172E406 98.5-148 16 088 270 100 0623 48.5 2.055E406 126.8-12.8 18 85 178 100 0.6478 48.5 2.551E406 126.8-12.8 18 85 178 100 0.6478 48.5 1.523E406 126.8-12.6 16 16 16 16 05 1.523E406 125.9-22.9 20 045 737 30 0.003 77.5 1641E406 3.2981E406 103.6-12.6 16 17 37 376 314 1496E406 2.993E406 125.9-22.9 20 16 7 376 314 1496E406 2.993E406 125.9-22.9 20 16 7 376 314 1496E406 2.993E406 125.6-12.6 16 7 376 316 119.9505 WTH 19 DEGREES OF FREEDOM PCH SQUARED = 11.9505 WTH 19 DEGREES OF FREEDOM PCH SQUARED = 11.9505 WTH 19 DEGREES OF FREEDOM PCH SQUARED = 11.9505 WTH 19 DEGREES OF FREEDOM PCH SQUARED = 10.9505 WTH 19 DEGREES OF FREEDOM PCH SQUARED = 0.930 - 0.017 PCH SQUARED = 0.930 - 0.017 POIDE OF SQR(N) = 7.095639 NeVNI = 0.500 - 0.015 MeANTO = 0.500 - 0.017 Poided Age = 102.1 - 3.9 Ma Mean Age = 102.2 - 4.1 Ma % Waition = 7.56% Ages calculated using acta of 378.8 -5.5 for CN 5 glass 12.5 ppm Rue age acta and age = 102.8 - 4.1 Ma % Waition = 7.56% Part ACT = 0.03 - 0.017 POIDE Age = 102.8 - 4.1 Ma % Waition = 7.56% Part ACT = 0.919 POIDE Age = 102.8 - 4.1 Ma % Waition = 7.56% Part ACT = 0.918 PART = 0.918	14		16 80	0.500	26.1	1.133E+0.6	2.266E+06	102.1-16.6
16 168 270 100 0.623 455 2.625F406 1268-128 17 96 191 100 0.503 34.3 1500E406 2.984E406 1027-130 18 85 18 100 0.478 32.0 1328E406 2.984E406 1027-130 19 47 78 80 0.603 775 9.180E406 2.293E406 1025-229 20 105 207 100 0.507 37.2 1.641E406 3.234E406 102.6-12.6 1637 3276 34.4 1.496E406 2.993E406 103.6-12.6 1637 3276 34.4 1.496E406 2.993E406 103.6-12.6 1637 3276 3.234E09 19.9 VARIANCE 0F SQR(N) = 7.095639 VARIANCE 0F SQR(N) = 7.095639 NaYIA = 0.0017 Pooled Age = 102.1 - 3.9 Ma CORRELATION COFFFICIENT = 0.919 VARIANCE 0F SQR(N) = 7.095639 NaYIA = 0.0017 Pooled Age = 102.1 - 3.9 Ma Wariation = 7.56% Ages calculated using a zeta of 378.8 -5.5 for CN 5 glass 12.5 ppm RHO D = 1.087E+06cm-2; ND = 3357 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 28.4.964 29.900 20.017 20.0 0.017 20.0 0.0	15	57 1.	39 100	0.482	25.0	1.047E+06	2.172E+06	98.5-14.8
17 96 191 100 0.503 34.3 1.500:406 2.984E-06 1027-13.0 18 85 178 100 0.478 32.0 1328E406 2.934E-06 07.6-13.0 19 8.5 178 0.003 37.2 1.641E406 2.935E406 07.6-13.0 1637 3276 3.4.4 1.496E406 2.993E406 103.6-12.6 1637 3276 3.4.4 1.496E406 2.993E406 103.6-12.6 1637 3276 3.4.4 1.496E406 2.993E406 103.6-12.6 1637 3205 WTH 19 DEGREES OF FREEDOM Perin squared) = 19.9% VR1ANCE OF SQR(NS) = 3.6.7676 VR1ANCE OF SQR(NS) = 3.6.919 VR1ANCE OF SQR(NS) = 7.095639 Ns/Ni = 0.500 - 0.017 Pooled Age = 102.1 - 3.9 Ma Mean Age = 102.8 - 4.1 Ma Contraindec = 102.8 - 4.1 Ma Contr	16 16	58 2	70 100	0.622	48.5	2.625E+06	4.219E+06	126.8-12.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 5	96 19	91 100	0.503	34.3	1.500E+06	2.984E+06	102.7 - 13.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	35 1	78 100	0.478	32.0	1.328E+06	2.781E+06	97.6–13.0
$\frac{20}{1637} \frac{100}{3.20} \frac{2.01}{100} \frac{10.00}{0.3.54} \frac{1.0416\pm00}{3.44} \frac{1.0416\pm00}{1.496\pm06} \frac{2.993\pm06}{3.932\pm06}$ $\frac{1637}{3276} \frac{3.44}{3.44} \frac{1.496\pm06}{1.49505} \frac{2.993\pm06}{2.993\pm06}$ $\frac{1637}{1001} \frac{10.9}{100} \frac{10.3}{3.37676} \frac{1.0416\pm00}{3.37676} \frac{2.993\pm06}{3.37676}$ $\frac{10.01}{1001} \frac{1.05}{2.093} \frac{3.337676}{2.0919}$ $\frac{10.01}{1001} \frac{1.05}{2.001} \frac{1.0919}{2.0011}$ $\frac{10.01}{1001} \frac{1.05}{2.000} \frac{1.00}{2.0011} \frac{1.05}{2.0010}$ $\frac{10.01}{1001} \frac{1.05}{2.001} \frac{1.00}{2.0011} \frac{1.05}{2.0010} \frac{1.05}{2.0011} \frac{1.05}{2.0010}$ $\frac{10.01}{1001} \frac{1.05}{2.0010} \frac{1.00}{2.0011} \frac{1.05}{2.0000} \frac{1.05}{2.0011} \frac{1.05}{2.0000} \frac{1.05}{2.0011} \frac{1.05}{2.0000} \frac{1.05}{2.0000} \frac{1.05}{2.0011} \frac{1.05}{2.0000} \frac{1.05}{2.0000} \frac{1.05}{2.00000} \frac{1.05}{2.00000} \frac{1.05}{2.000000} \frac{1.05}{2.0000000000} \frac{1.05}{2.000000000000000000000000000000000000$	19		78 80	0.603	17.5	9.180E+05	1.523E+06	122.9-22.9
1637 3276 34.4 1496E406 2.993E406 trea of basic unit = 6.4E-07 cm-2 CHI SQUARED = 11.95905 WITH 19 DEGREES OF FREEDOM Perin square() = 19.9% CORRELATION COEFFICENT = 0.919 VARIANCE OF SQR(N3) = 3.035676 VARIANCE OF SQR(N3) = 3.0357676 VARIANCE OF SQR(N3) = 3.03577 VARIANCE OF SQR(N3) = 3.0357676 VARIANCE OF SQR(N3) = 3.03577 VARIANCE OF SQR(N3) = 7.56% VARIANCE OF SQR(N3) = 3.03788 - 5.5577 VARIANCE OF SQR(N3) = 7.56% VARIANCE OF S	N 07	5	01 100	/ 00.0	7/6	1.041E+U0	0.424E+U0	0.21-0.001
CHI SQUARED = 11.95905 WITH 19 DEGREES OF FREEDOM P(chi squared) = 19.9% CRIRELATOS OCBFT(ENT = 0.919 VARIANCE OF SQR(NI) = 7.095639 VARIANCE OF SQR(NI) = 7.095639 Ns/NI = 0.500 - 0.015 MEAN RATTO = 0.503 - 0.017 Pooled Age = 102.1 - 3.9 Ma MEAN RATTO = 0.503 - 0.017 Pooled Age = 102.2 - 4.0 Ma & Watation = 7.56% Age = 102.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7.56% Mean Age = 10.2 - 4.0 Ma & Watation = 7	vrea of b	asic uni	it = 6.4E-0	17 cm-2				
CORREIATION COEFFICIENT = 0.919 VARIANCE OF SQR(N) = 7.095639 VARIANCE OF SQR(N) = 7.095639 NS/Fi = 0.500 - 0.015 NS/Fi = 0.500 - 0.015 MEAN RATIO = 0.033 - 0.017 Pooled Age = 10.2.1 - 3.9 Ma GamaAge = 10.2.1 - 3.9 Ma GamaAge = 10.2.2 - 4.1 Ma % Variation = 7.56% Ages calculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RPO D = 1.087E+06cm-2; ND = 3357 28-4.96.4 200 - 1.087E+06cm-2; ND = 3357 28-4.96.4 200 - 1.087E+06cm-2; ND = 3357 28-4.96.4 200 - 200		CHI P(ch	I SQUARE hi squared)	ID = 11.959(= 19.9 %	51 HLIM 20) DEGREES (JF FREEDOM	
NeVNi = 0.500 - 0.015 MEAN RATTO = 0.503 - 0.017 Pooled Age = 102.1 - 3.9 Ma Ream Age = 102.2 - 4.0 Ma Gaina Age = 102.2 - 4.0 Ma % Variation = 7.56% Age scalculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RPO D = 1.087E+06cm-2; ND = 3357 28 - 90 - 4 28 - 90 - 4 20 - 90 - 4		COL	RRELATIC RIANCE C RIANCE C	DN COEFFI DF SQR(Ns) DF SQR(Ni) =	CIENT = 0.9 = 3.637676 = 7.095639	61		
Pooled Age = 102.1 - 3.9 Ma Ream Age = 102.8 - 4.1 Ma Control Age = 102.8 - 4.1 Ma C Variation = 7.56% % Variation = 7.56% Age calculated using zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D= 1.087E+06cm-2; ND = 3357 28 - 496-4 29 - 496-4 20 - 400 20		Ns/1 ME.	Ni = 0.500 AN RATIC	0 = 0.015 0 = 0.503 - 0.503	0.017			
Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.087E+06cm-2; ND = 3357 28.4-96-4 28.4-96-4 28.4-96-4 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20		Poo Mea V V	led Age = an Age = <i>tral Age</i> = /ariation =	102.1 – 3.9 102.8 – 4.1 102.2 – 4.0 7.56%	Ma Ma Ma			
28-4-96-4 28-4-96-4 20 10 10 10 10 10 10 10 10 10 1		Age RH(es calculate O D = 1.08	d using a zet 37E+06cm-2	a of 378.8 – : ND = 3:	5.5 for CN 5 g 357	lass 12.5 ppm	
			28-4-96-4	_			28-4-96-4	
	<u>Ц</u>		Г	.30	<u> </u>	28-49 6-4 ML: 13.23 Std Dev = '1.57 N = '100'	L L	۔ ۔ ،
	ن م به زر	$\overline{}$	7			: :	•••	
			4	י 1	7	₋₋┥		L-7

	28-4-9	6-6 Ap	atite							
	IRRA	DIATIO	N LUS	11-07	0	OUNTED B	Y: M. RAAB (17/06/99		
LAGE(Ma)	No.	$N_{\rm S}$	ïN	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
93.4-12.5	-	14	16	100	0.875	2.7	2.188E+05	2.500E+05	188.0-68.9	
98.8–16.4 70 s 12 7	61 6	- 81	9 ç	05 08	0.700	3.4	2.188E+05 3.516E±05	3.125E+05 6.250E±05	150.8-74.4	
87.9–16.1	9.4	52	12	66	0.391	22.2	7.972E+05	2.041E+06	84.6-20.0	
99.1-15.0	5	19	36	80	0.528	7.6	3.711E+05	7.031E+05	114.0-32.4	
29.1–20.7	o t	2 2	61 2	20	0.526	6.4	3.125E+05	5.938E+05	113.7-44.5	
81.1-11.8		4 9	¥ 5	¥ 5	0.412	10.7	4.051E+05	9.838E+05	89.1-28.4 88.6.24.0	
83.9-13.1	00	01	1 3	001	0.396	8.1	2.969E+05	7.500E+05	85.7-23.3	
80.3-15.6	10	12	43	100	0.279	7.3	1.875E+05	6.719E+05	60.6-19.8	
87.7-14.9	11	19	30	100	0.633	5.1	2.969E+05	4.688E+05	136.6-40.2	
91.6-21.2	12	15	22	100	0.288	8.8	2.344E+05	8.125E+05	62.6-18.4	
01.8-14.4 77 £ 10.0	13	01 0	88	8	0.500	4.2	1.953E+05	3.906E+05	108.1-41.9	
1.00-19.9 16.7_20.7	15	30	2 2	64	0 566	18.0	0.4345F+05	1 656F±06	120.0-40.2	
14.2-19.1	16	5 5	51	88	0.421	12.1	4.688E+05	1.113E+06	91.1-22.3	
14.3-23.5	17	27	55	100	0.491	9.3	4.219E+05	8.594E+05	106.1-25.1	
77.0-12.0	18	16	34	70	0.471	8.2	3.571E+05	7.589E+05	101.8-30.9	
95.5-14.6	19	19	6 8	100	0.475	6.8	2.969E+05	6.250E+05	102.7-28.7	
0.12-6.62	07	c	R	R	000.0	0.4	CUHAU64.2	CU+3668.C	108.1-34.3	
		350	747			8.2	3.547E+05	7.569E+05		
	Area o	of basic 1	unit = 0	6.4E-07	cm-2					
		C	IOS IE.	TAPED	7 1041	1 HTTW CT	o necenes o	DE ED EFLOW		
			Chi squ (chi squ ORREI ARIAN	ATTON ATTON CE OF	= /.1041 77.1 % I COEFFI SQR(Ns) SOR(Ni)	CIENT = 0.7 = $.5029971$ = 1.64528	785	JF FREEDOM		
		22	Is/Ni = IEAN F	0.469 – LATIO =	- 0.030 = 0.503 -	0.031				
		62 0 8	ooled A Iean Ag <i>entral</i> / Variati	ge = 10 ge = 10 hge = 1 lon = 0	1.3 - 7.0 8.7 - 7.1 91.3 - 6.8	Ma Ma ? Ma				
		< ⊻	ges cal HO D =	culated =	using a zet E+06cm-2	a of 378.8 – ; ND = 3	-5.5 for CN 5 g 357	tlass 12.5 ppm		
			28-	4-96-6				28-4-96-6		
••••••••••••••••••••••••••••••••••••••	<u>ما ما م</u>				2, 30 40		284-96-6 ML: 13.57 8td Dev = '.94' N = '19'	•	• • • • • • • • • • • • • • • • • • •	·
••••••	4 % %	X	╡	Б	.20	<u></u>		LI ⊳ ∾	06. 	
112' 112' 12'	, ,		100'	Ä,	- ^{300.}	10. 10. 15 10	15' '20' 1(microns)	×.	relative error ∶21 [°] ∵12° 16° - 20°	
grav (and				1	1			Precisi	ion (1/sigmu)	

28-4-96	IRRADI	No.		5	m 4	t v	9	7	×	6 1	0 E	12	13	14	15	16	17	18	19	20		Area of				
		F.T.AGE(Ma)	93.4-12.5	98.8-16.4	70.8-12.7	99.1–15.0	129.1-20.7	81.1-11.8	69.4-15.2	83.9-13.1 00.2 15.6	87 7-14 9	91.6-21.2	101.8-14.4	77.6–19.9	116.7-20.7	114.2–19.1	114.3–23.5	77.0-12.0	95.5-14.6	125.5-21.6						
	66/90/11	RHOi	2.922E+06	1.797E+06	1.953E+06	2.188E+06	1.625E+06	2.719E+06	1.328E+06	2.312E+06	1 875F+06	9.688E+05	2.453E+06	8.906E+05	1.406E+06	1.609E+06	1.062E+06	2.438E+06	2.203E+06	1.438E+06	1.816E+06		DF FREEDOM			jass 11.1 ppm
	Y: M. RAAB (RHOs	1.297E+06	8.438E+05	6.562E+05	0.13E+0.0	1.000E+06	1.047E+06	4.375E+05	9.219E+05	7.812E+05	4.219E+05	1.188E+06	3.281E+05	7.812E+05	8.750E+05	5.781E+05	8.906E+05	1.000E+06	8.594E+05	8.094E+05) DEGREES C			5.5 for CN 5 g 357
	COUNTED B	U(ppm)	29.0	17.8	19.4	21.7	16.1	27.0	13.2	22.9	18.6	9.6	24.3	8.8	13.9	16.0	10.5	24.2	21.9	14.3	18.0		78 WITH 19 CIENT = 0.8 = 1.438756 = 3.003225	0.019	Ma Ma Ma	la of 378.8 - ; ND = 35
	0	RATIO	0.444	0.470	0.336	0.471	0.615	0.385	0.329	0.399	0.417	0.435	0.484	0.368	0.556	0.544	0.544	0.365	0.454	0.598		7 cm-2	 D = 10.452 = 34.2 % N COEFFI F SQR(Ns) F SQR(Ni) 	- 0.017 = 0.451 -	3.8 - 4.1 4.8 - 4.5 93.8 - 3.9 3.61%	l using a zel 9E+06cm-2
	571-06	Na	100	100	100	8 8	100	100	100	001	81	8	100	100	100	100	100	100	100	100		6.4E-07	UAREI luared) = LATIO NCE OI NCE OI	0.446 - RATIO	Age = 9 ge = 9 Age = 1 tion = 3	lculated = 1.119
patite	ON LU:	N	187	115	125	61	104	174	85	148	120	62	157	57	90	103	68	156	141	92	2324	: unit =	CHI SQ P(chi sq CORRE VARIAI VARIAI	Ns/Ni = MEAN	Pooled <i>i</i> Mean A <i>Central</i> % Varia	Ages ca RHO D
<u>96-5</u> A;	DIATIC	Ns	83	54	44	f 99	3	67	58	56	6	5 5	76	21	50	56	37	57	2 :	55	1036	of basic				
28-4-	IRRA	No.	-	0	m ≠	t vo	9	٢	× i	6 [2 =	12	13	14	15	16	17	18	19	20		Area				

30-4-96-1 Apatite	30-4-96-2 A patite
IRRADIATION LU571-08 COUNTED BY: M. RAAB 08/06/99	IRRADIATION LU571-09 COUNTED BY: M. RAAB 09/06/99
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
1 27 51 16 0.529 52.5 2.637E+06 4.80E+06 117.5-28.1 2 20 43 30 0.465 2.37 1.04E=06 2.340E+06 13.14-25.2 3 6 6.5 45.4 45.6 2.200E+06 1.125E+06 13.11-25.2 4 17 28 24 0.065 47.1 2.00E+06 1.32E+06 13.11-25.2 5 53 114 40 0.465 47.1 2.00E+06 4.35E+06 103.3-17.3 6 55 47.4 2.68E=06 4.375E+06 138.2-34.0 138.2-34.0 7 35 76 25 0.461 50.2 2.188E+06 4.307E+06 130.0-24.21.0 8 17 29 20 0.588 25.3 1.38E+06 2.306E+06 12.1.26.9 9 217 29 20.588 23.9 1.055E+06 2.005E+06 12.0.2-4.1.0 10 27 53 40 0.509 21.9 1.055E+06 2.070E+06 113.1-26.9 10 27 53 40 0.509 21.9 1.055E+06 2.070E+06 113.1-26.9 10 27 53 40 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
308 383 35.0 I./44E+U6 3.3I2E+U6	20HH1/8L.0 C0HH4CL.C 4.0 8CC 482
Area of basic unit = 6.4E-07 cm-2	Area of basic unit = 6.4 E-07 cm-2
CHI SQUARED = 1.331.25 WITH 9 DEGREES OF FREEDOM P(chi squared) = 97.6 % CORRELATION COEFFICIENT = 0.955 VARIANCE OF SQR(Ns) = 1.45443 VARIANCE OF SQR(Ns) = 3.101.624	CHI SQUARED = 4.903 WTH 19 DEGREES OF FREEDOM P(chi squared) = 93.3% CORRELATION COEFFICIENT = 0.784 VARIANCE OF SQR(Ns) = .5331311 VARIANCE OF SQR(Ns) = .533131
Ns/Ni = 0.526 - 0.037 MEAN RATIO = 0.536 - 0.019	Ns/Ni = 0.509 - 0.037 MEAN RATIO = 0.518 - 0.023
Pooled Age = 116 9 – 8.6 Ma Mean Age = 119 0 – 5.0 Ma <i>Central Age = 116 9 – 8.5 Ma</i> % Variation = 0.00%	Pooled Age = 116.2 – 8.9 Ma Mean Age = 118.3 – 5.8 Ma <i>Central Age</i> = 116.2 – 8.7 Ma % Variation = 0.23%
Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.183B-06cm-2; ND = 3357	Ages calculated using a zeta of $378.8 - 5.5$ for CN 5 glass 12.5 ppm RHO D = 1.216E+06em-2; ND = 3357
30-4-96-1 0.1 20-4-96-1 0.1 20-4-1 0.	304-96-2

30.4.96.3 Apatite	1-5-96-1 Apatite
IRRADIATION LU571-10 COUNTED BY: M. RAAB 09/06/99	IRRADIATION LU571-11 COUNTED BY: M. RAAB 09/06/99
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
1 17 116 60 0.147 30.3 4.427E+05 3.021E+06 34.5-9.0	1 29 50 40 0.580 19.1 1.133E+06 1.953E+06 139.1-32.6
2 22 48 49 0.458 15.3 7.015E+05 1.531E+06 107.4-27.8	2 25 41 50 0.610 12.5 7.812E+05 1.281E+06 146.2-37.2
5 9 28 42 0.321 10.4 5.348E+U3 1.042E+U6 7.3-24.0 A 10 50 35 0.380 313 1.1995.06 3.135E.06 80.3.241	5 24 08 100 0.553 10.4 5.750E+U5 1.002E+U6 85.0-20.5 A A5 02 100 0.540 107 7.031E-05 1.002E+U6 1201.243
	C+7-1001 00041/C211 C-0411001 1/21 24010 001 00 C+ + +
6 17 30 28 0.567 16.8 9.487E+05 1.674E+06 132.6-40.4	6 43 91 100 0.473 13.9 6.719E+05 1.422E+06 113.5-21.2
7 22 83 100 0.265 13.0 3.438E+05 1.297E+06 62.4-15.0	7 23 53 100 0.434 8.1 3.594E+05 8.281E+05 104.4-26.2
8 30 81 100 0.370 12.7 4.688E+05 1.266E+06 87.0-18.7	8 18 47 100 0.383 7.2 2.812E+05 7.344E+05 92.2-25.6
9 78 93 40 0.839 36.4 3.047E+06 3.633E+06 195.3–30.3	9 25 66 100 0.379 10.1 3.906E+05 1.031E+06 91.2-21.5
10 37 71 100 0.321 11.1 3.761E+03 1.102E+00 122.0-24.3 11 12 31 60 0.387 8.1 3.125E+05 8.073E+05 90.9-31.0	10 34 /4 30 0.437 22.0 1.0025400 2.3125400 110.4-23.0 11 59 110 100 0.536 16.8 9.2195405 1.7195406 128.7-21.0
12 28 37 42 0.757 13.8 1.042E+06 1.376E+06 176.4-44.4	12 30 85 100 0.353 13.0 4.688E+05 1.328E+06 85.0-18.2
13 11 50 60 0.220 13.0 2.865E+05 1.302E+06 51.8-17.3	13 30 49 50 0.612 15.0 9.375E+05 1.531E+06 146.7–34.2
14 125 266 100 0.470 41.6 1.953E+06 4.156E+06 110.1–12.2	
C71-20 00-172 C712-172 C72 01210-00 02-07-172 02-07-072 02-07-072 02-07-072 02-07-072 02-07-072 02-07-072 02-07	
10 2/ 10/ 100 0.200 1.2.6 2.761E+05 1.7.02E+06 00.0-10.0 17 29 65 100 0.446 10.2 4.531E+05 1.016E+06 10.46-23.5	
18 12 32 56 0.375 8.9 3.348E+05 8.929E+05 88.0-29.9	
19 35 96 70 0.365 21.5 7.812E+05 2.143E+06 85.6-17.0	
20 46 105 100 0.438 16.4 7.188E+05 1.641E+06 102.7-18.3	
21 54 147 100 0.367 23.0 8.438E+05 2.297E+06 86.2–13.9	
697 1721 18.5 7.500E+05 1.852E+06	415 920 12.9 5.949E+05 1.319E+06
Area of basic unit = $6.4E-07$ cm-2	Area of basic unit = $6.4E-07$ cm-2
CHI SQUARED = 32.29432 WITH 20 DEGREES OF FREEDOM P(chi squared) = 0.0% CORRELATION COEFIFICIENT = 0.861 VARIANCE OF SQR(N5) = 3.802966 VARIANCE OF SQR(N5) = 7.22869	CHI SQUARED = 7.206118 WITH 12 DEGREES OF FREEDOM P(ni squared) = 27.5 % CORRELATION COEFFICIENT = 0.740 VARIANCE OF SQR(Ns) = .839642 VARIANCE OF SQR(Ns) = 1.774223
$N_{S}/N_{1} = 0.405 - 0.018$ MEAN RATIO = 0.413 - 0.035	$N_{\rm S}/N_{\rm i} = 0.451 - 0.027$ MEAN RATIO = 0.462 - 0.030
Develop A no $-05.0 - 4.8$ Ma	Develoy A no 108 4 - 6 9 Ma
Protect Age = $35.0-4.5$ Ma Mean Age = $95.4-7.9$ Ma % Variation = 30.07%	roueu Age – 10,5 wa Rean Age = 111.0 – 7.6 Ma & Variation = 8.54%
Ages calculated using a zeta of $378.8 - 5.5$ for CN 5 glass 12.5 ppm RHO D = 1.248E+06cm-2; ND = 3357	Ages calculated using a zeta of $378.8 - 5.5$ for CN 5 glass 12.5 ppm RHO D = 1.280E+06cm-2; ND = 3357
30-4-96-3 30-4-06-3	1-5-96-1 1-5-08-1
0. 101	0. 10. 10. 10. 20. 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1

No. Ns Ni Na RATIO U(ppm) RH0s RH0i FTACGGMa 1 67 42 50 1558 112 2398-780 2 63 38 50 1558 112 2395 122 2094E+06 1312E+06 393-780 2 73 95 20 1558 112 2382 1996E+06 1318E+06 393-723 5 130 67 90 13718 035 2453 1996E+06 100E+06 4759-724 5 130 67 90 1322 20391E+06 200E1+06 4759-724 5 130 70 90 1552 952 3422E+06 200E1+06 4759-764 7 219 122 100 1559 923 390EE+06 2394-64 10 211 46 100 1434 202 3390EE+06 2394-64 11 202 11 46 100 1435 212 3297E+06 2394-64 12 212 131 50 1618 38.1 6.625E+06 4094E+06 393-453 13 28 8 40 1793 52.1 3306E+06 4945-65 13 238 8 40 1773 165 3031E+06 3348E+06 4945-596 14 253 11 20 01 1732 163 3031E+06 1436-596 13 212 131 50 1618 38.1 6.625E+06 4945-66 393-453 13 28 8 0 01 1732 163 3031E+06 1436-596 14 255 213 128 50 1688 33.1 0945-456 12 212 131 50 1618 38.1 6.625E+06 4945-66 4945-66 13 2001 1732 163 3031E+06 1756-106 4415-596 14 255 213 200 1732 163 3031E+06 1756-106 4415-596 14 255 21-02 201 12 22 11 21 00 1732 163 3031E+06 1436-596 12 20 173 128 50 13035 448 868E+06 44045-66 335-2938 2951 1742 22.0 4101E+06 2367E+06 445-107 Area of busic unit = 64E-07 cm-2 Area of busic	IKKAL								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	$\mathbf{N}_{\mathbf{S}}$	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
2 7 3 3 4 90 1638 110 1969-606 1188E-06 4783-845 2 7 1 100 1718 103 1965-606 4753-563 5 130 67 50 1301 160 2022-663 7 219 122 100 1659 192 3, 402E-06 2, 204E-06 473-97-246 7 219 123 100 1659 192 3, 402E-06 2, 202E+06 491-460 8 125 73 3 6 1, 094 E-06 2, 318E-06 493-653 9 125 73 3 6 1, 093 295 5, 532E-06 2, 014E-06 393-653 1 2 212 131 50 1, 144 20 3, 205E-06 4, 094 E-06 393-653 1 2 212 131 50 1, 168 381 6, 652E+06 4, 094 E-06 393-453 1 2 212 131 50 1, 168 381 6, 652E+06 4, 094 E-06 393-453 1 2 212 131 50 1, 1732 163 3, 032E+06 4, 094 E+06 393-453 1 2 212 131 50 1, 1732 163 3, 032E+06 4, 094 E+06 4, 94 5-59 1 2 212 131 50 1, 1732 163 3, 032E+06 4, 0494 +06 394 5-55 1 2 213 158 8 40 1, 732 163 3, 032E+06 4, 4166 394 5-55 1 2 212 131 50 1, 1732 163 3, 032E+06 4, 1618 383 165 2 213 128 50 2, 071 133 5, 032E+06 4, 100E+06 2, 058, 833 3 1 7 94 12 100 1, 732 163 3, 031E+06 1, 759E+06 4, 2107 2, 107 2 213 128 50 1, 232 3, 2031E+06 1, 175E+06 394 5-55 1 7 94 12 100 1, 732 163 3, 031E+06 1, 739E+06 44167 596 1 7 94 12 100 1, 732 163 3, 031E+06 1, 739E+06 44167 596 2 357 -398 2 91 1742 2, 220 4,010E+06 2, 367E+06 4,000E+06 335, 2-398 2 91 1742 2, 220 4,010E+06 2, 367E+06 4,000E+06 335, 2-398 2 91 1742 2, 220 4,010E+06 2, 367E+06 4,000E+06 335, 2-398 2 91 1742 2, 220 4,010E+06 2, 367E+06 4,000E+06 335, 2-398 2 91 1742 2, 173 - 0.041 1 Poled Age = 4174 - 157 Ma	_	67	42	50	1.595	12.2	2.094E+06	1.312E+06	393.8-78.0
$\frac{4}{5} \begin{array}{cccccccccccccccccccccccccccccccccccc$	n n	63 79	8 q	2 X	1.612	28.5	1.969E+06 4.938E+06	1.188E+06 3.062E+06	408.8-84.5 397.9-72.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	122	71	100	1.718	10.3	1.906E+06	1.109E+06	423.2-63.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	130	67	20	1.940	19.5	4.062E+06	2.094E+06	475.9-72.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 r	15/	85	8	77571	707	4.281E+06	2.812E+06	8.16-5.0/5
9 124 73 36 1609 295 5.382E406 3168E406 418.5-625 10 211 146 100 1.443 212 3.297E406 378.5-945 12 212 131 50 1.618 381 6.525E406 4.094E406 393.4-639 13 58 88 40 1.795 50 2.016 33.468E406 499.4-557 15 278 154 50 1.805 4.48 8.688E406 499.4-557 15 278 154 50 1.805 4.48 8.688E406 499.4-557 17 194 112 100 1.732 163 3.031E406 1.756E406 493.4-595 17 12 100 1.732 163 3.031E406 1.756E406 493.4-595 17 12 100 1.732 163 3.031E406 1.756E406 493.4-575 18 28 30 40 1.933 20.1 4.006E406 493.4-595 17 2 220 4.010E406 2.367E406 426.5-51.5 18 28 30 40 1.933 20.1 4.000E406 335.2-398 20 173 128 50 1.332 37.2 4.000E406 2.367E406 426.5-51.5 18 28 30 40 1.933 10.9 2.56E-061 4.000E406 335.2-398 20 173 128 50 1.332 37.2 163 3.031E406 1.7750E406 474.3-1072 4 can of basic unit = 6.4E-07 cm-2 25 1.742 2.2.0 4.010E+06 2.367E+06 435.2-398 25 1.742 2.2.0 4.010E+06 2.367E+06 435.2-398 26 17 3128 50 1.332 37.2 10.01 Rein agreed = 81.43 27 CH18QLARED = 6.73233 WITH 19 DEGREES OF FREEDOM Rein squared = 81.43 28 NeWis = 1.694 - 0.061 MENN RATIO = 1.713 - 0.041 Poled Age = 471.4 - 157 Ma 6. Wariation = 0.70% Arean Age = 421.9 - 139 Ma Canter Age = 421.4 - 157 Ma Age an	- 00	125	202	202	1.786	20.3	3.906E+06	2.188E+06	439.2-66.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	124	73	36	1.699	29.5	5.382E+06	3.168E+06	418.5-62.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	211	146	100	1.445	21.2	3.297E+06	2.281E+06	357.8-39.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= :	102	75 75	66 8	1.594	19.0	3.253E+06	2.041E+06	393.4-63.4
$\frac{1}{12} \sum_{i=0}^{2.5} \sum_{i=0}^{1.0} \sum_{i=0}^{1.0.0} \sum_{i=0}^{3.0.0} \sum_{i=0}$	21 6	212	131 88	8 4	1.618	38.I 32.0	6.625E+06 6.177E+06	4.094E+06 3.438E+06	399.3-45.3 441.6-50.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	255	125	f i⁄s	2.040	36.3	7 969E+06	3 906E+06	499.4-55.7
16 116 56 60 2071 13.6 3.021E+06 1458E+06 506.8-83.3 17 194 112 100 1.730E+06 435.5-11.5 18 88 90 40 1.730E+06 43.5-11.5 19 128 76 50 1.684 22.1 4.000E+06 2.351E+06 41.3-106.8 20 173 128 50 1.332 37.2 5.406E+06 4.000E+06 335.2-39.8 20 173 128 50 1.332 37.2 5.406E+06 2.367E+06 Area of basic unit = 6.4E-07 cm.2 2051 1742 2.2.0 4.010E+06 2.367E+06 Area of basic unit = 6.43-3733 WTH 19 DEGREES OF FREEDOM CHISQUARED = 6.732333 WTH 19 DEGREES OF FREEDOM CORELATION COEFFICIENT = 0.957 VARIANCE OF SQR(N) = 4.307168 Ns/Ni = 1.694 - 0.051 MEAN RATIO = 1.714 - 0.041 Pooled Age = 471.4 - 15.7 Ma Mean Age = 421.9 - 13.9 Ma Mean Age =	15	278	154	205	1.805	44.8	8.688E+06	4.812E+06	443.9-45.7
$ \begin{bmatrix} 17 & 94 & 112 & 100 & 1732 & 16.3 & 3.031E-06 & 1750E+06 & 4343-1072 \\ 18 & 58 & 30 & 40 & 1.933 & 10.9 & 2266E+06 & 4343-1072 \\ 19 & 28 & 76 & 50 & 1.332 & 372 & 5406E+06 & 2.357E+06 & 4343-1072 \\ 2951 & 1742 & 22.0 & 4.010E+06 & 2.367E+06 & 335.2-3938 \\ 2951 & 1742 & 22.0 & 4.010E+06 & 2.367E+06 & 335.2-3938 \\ 4rea of basic unit = 6.4E-07 cm-2 & 20.0 & 4.010E+06 & 2.367E+06 & 335.2-3938 \\ 4rea of basic unit = 6.4E-07 cm-2 & 22.0 & 4.010E+06 & 2.367E+06 & 335.2-3938 \\ 4rea of basic unit = 6.4E-07 cm-2 & 22.0 & 4.010E+06 & 2.367E+06 & 335.2-3938 \\ 4rea of basic unit = 6.4E-07 cm-2 & 22.0 & 4.010E+06 & 2.367E+06 & 335.2-3938 \\ 4rea of basic unit = 6.4E-07 cm-2 & 2008(w) = 4.307168 & 7008(w) = 6.93383 & 7008(w) = 6.9338 & 7008(w) = 6.938 & 7008(w) = 6.9338 & 7008(w) = 7.908 & 7008(w) = 7.908 & 7008(w) = 7.908 & 7088 & 7088(w) = 7.908 & 7088(w) = 7.908$	16	116	56	09	2.071	13.6	3.021E+06	1.458E+06	506.8-83.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	194	112	100	1.732	16.3	3.031E+06	1.750E+06	426.5-51.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	58	30	40	1.933	10.9	2.266E+06	1.172E+06	474.3-107.2
$20 \ 173 \ 126 \ 30 \ 1.32 \ 30.1.$	19	128	76	202	1.684	22.1	4.000E+06	2.375E+06	415.1-60.8
2951 1742 22.0 4.010E+0.6 2.367E+0.6 2.467E+0.6 Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.72333 WITH 19 DEGREES OF FREEDOM P(ris squared) = 81.4% CORRELATION COEFFICENT = 0.957 VARIANCE OF SQR(N) = 4.307168 Ns/Ni = 1.694 - 0.051 Ns/Ni = 1.713 - 0.041 Pooled Age = 417.4 - 15.7 Ma Gain and a contradiction of a contradicticion of a contradiction of a contradiction	07	1/3	178	2	1.352	3/2	5.406E+06	4.000E+06	335-2-39.8
CHISQUARED = 6.73233 WITH 19 DEGREES OF FREEDOM P(clin squared) = 81.4 % CORRELATION COEFTCENT = 0.957 VARIANCE OF SQR(N) = 4.307168 VARIANCE OF SQR(N) = 4.307168 Ns/Ni = 1.694 - 0.051 MEAN RATTO = 1.713 - 0.041 Pooled Age = 417.4 - 157 Ma Mean Age = 421.9 - 130 Ma Central Are = 412.4 - 157 Ma Wandon = 0.70% Second Lande Lander and a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RPO D = 1.344E-06cm ² , ND = 3357 1-5-06.3	Area of	f basic	unit =	6.4E-07	, cm-2	2			
CircH SQUARE B1 = 673233 WITH 19 DEGREES OF FREEDOM PCH SQUARE B1 = 673233 WITH 19 DEGREES OF FREEDOM PCH SQUARE OF SQR(N) = 4.307168 VARIANCE OF SQR(N) = 4.307168 NSNI = 1.694 - 0.051 NSNI = 1.694 - 0.061 MSNN = 1.694 - 0.061 MSNN = 1.694 - 0.061 MSNN = 1.694 - 0.061 MSNN = 1.713 - 0.041 Pooled Age = 4174 - 157 Ma Gentral Age = 421.9 - 13.9 Ma Quaritom = 0.70% Ages calculated using a zeta of 378.8 -5.5 for CN 5 glass 12.5 ppm Res a 221.9 - 13.9 Ma Quaritom = 0.70% (-5.96-3)									
Ns/Ni = 1.694 - 0.051 MEAN RATTO = 1.713 - 0.041 Pooled Age = 417 4 - 157 Ma Ream Age = 421.9 - 13.0 Ma <i>Quantian</i> = 0.70% Sy Variation = 0.70% Sy Variation = 0.70% Sy Variation = 0.70% Sy Variation = 0.70% $\frac{1}{3}$, $\frac{1}{3}$, $$			CHI SQ P(chi sq CORRE VARIAN VARIAN	UAREI uared) = LATIO VCE OI VCE OI	D = 6.7323 = 81.4 % N COEFFI F SQR(Ns) F SQR(Ni)	33 WITH 1 CIENT = 0. = 6.933683 = 4.307168	9 DEGREES (957	OF FREEDOM	
Pooled Age = 417 4 - 15.7 Ma Mean Age = 421.9 - 13.0 Ma <i>Contrad Ace = 421.9 - 13.0 Ma</i> <i>So</i> Wardinon = 0.70% <i>So</i> Wardinon = 0.70% <i>So</i> Wardinon = 0.70% <i>So</i> Wardinon = 0.70%		_ 1	Ns/Ni = MEAN I	1.694 - RATIO	-0.051 = 1.713 -	0.041			
Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.344E+06cm-2; ND = 3357 1-5-96-3 1-5-96-3 10^{-1} 1			Pooled <i>i</i> Mean A _i Central . % Variat	Age = 4 ge = 4 age = 4 age = 4 age = 4 age = 4	17.4 - 15.7 21.9 - 13.9 117.4 - 14 .	' Ma Ma 5 Ma			
1-5-96-3 10 10 10 10 10 10 10 10 10 10			Ages cal RHO D	culated = 1.34	l using a zet 4E+06cm-2	a of 378.8 - ; ND = 3	-5.5 for CN 5 g 357	glass 12.5 ppm	
			1-5	-96-3				1-5-96-3	
					, 40 6	• •	16-96-3 ML 10.9 Std Dev = '1.5'		
			4	4	, 50, 0 , 70, 0 , 70, 0		2	• •	·····
	, ÷ ;		J	£]	ŀ	,0F. 2.		× .	6 relative error - 10

F.T.AGE(Ma) 144.9–38.2 105.5–9.0 100.2–17.0 CHI SQUARED = .7762772 WITH 2 DEGREES OF FREEDOM P(chi squared) = 46.0 % CORRELATION COEFICIENT = 0.999 VARIANCE 07 SQR(Ns) = 25.90389 VARIANCE 07 SQR(Ni) = 66.94275 Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.312E+06cm-2; ND = 3357 $\,$ 2.031E+06 7.703E+06 6.406E+06 1-5-96-2 2.773E+06 6.396E+06 RHOi COUNTED BY: M. RAAB 09/06/99 ؠؠؠؠ 1.198E+06 3.297E+06 2.604E+06 15-86-2 Mi: 1321 MI Dev = '1.14' RHOs 5 10 15 15 20 U(ppm) 19.4 73.4 61.0 60.9 Ns/Ni = 0.434 - 0.031 MEAN RATIO = 0.475 - 0.058 Pooled Age = 106.9 - 8.0 Ma Mean Age = 116.9 - 14.5 Ma *Central Age* = 106.9 - 7.8 Ma % Variation = 0.00% . 40' . 20' . 20' . 10' RATIO 0.590 0.428 0.406 Area of basic unit = 6.4E-07 cm-2 **FRACKAGE (Ma)** Na 30 100 30 **IRRADIATION LU571-12** 1-5-96-2 ïŻ 39 493 123 284 655 1-5-96-2 Apatite 23 211 50 $\mathbf{N}_{\mathbf{S}}$

No. - 0 0

5-5-9	<u>6-2</u> Ap	atite						
IRRA	DIATIC	SN LUS	71-15		COUNTED B	Y: M. RAAB I	11/06/99	
No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	86	227	80	0.379	39.4	1.680E+06	4.434E+06	100.2-12.9
0	49	120	99	0.408	27.7	1.276E+06	3.125E+06	108.0-18.5
С	28	67	25	0.418	37.2	1.750E+06	4.188E+06	110.5-25.0
4	29	70	16	0.414	60.7	2.832E+06	6.836E+06	109.5-24.3
ŝ	181	464	100	0.390	64.4	2.828E+06	7.250E+06	103.2 - 9.3
9	103	201	50	0.512	55.8	3.219E+06	6.281E+06	135.2-16.7
	476	1149			48.2	2.247E+06	5.424E+06	
	476	1149			48.2	2.247E+06	5.424E+06	
Area	of basic	: unit =	6.4E-07	7 cm-2				
		CHI SQ P(chi sq	UAREI uared) =	D = 2.034 = 53.9 %	975 WITH 5	DEGREES O	F FREEDOM	
		CORRE VARIAI VARIAI	NCE O	F SQR(NS F SQR(NS F SQR(NI)	ICIENT = 0.9) = 10.01382) = 25.48385	385		
		Ns/Ni = MEAN]	0.414 RATIO	- 0.023 = 0.420 -	0.019			

RRDIATION LU571-14 COUNTED BY: M. RAAB 11/06/99 60. Ns Ni Na RATIO U(ppm) RHOs RHOI FT. 1 23 23 11/30 11/5 11/50269-06 20 2 41 34 42 1206 11/5 11/50269-06 20 2 41 24 2 50 11/5 11/50269-06 1429E-06 440 2 5 13 8 72 16/5 11/3 2 7427E-05 521 7 19 9 40 2111 3 2 7427E-06 20 2 2 41 2 50 15/5 16/5 9 7 7 19 9 40 2111 3 2 7427E-06 20 2 2 42 50 15/5 16/3 7 9 1438E-06 410 7 19 9 40 2111 3 2 7427E-06 30 11 2 27 20 25 16/3 7 9 1438E-06 30 11 2 27 18 40 10/57E-06 20 12 27 18 40 10/57E-06 20 13 2 6 42 50 15/5 11/3026-06 20 13 2 6 9 2 5 2778 8 10 13 2 6 19 2 5 15/5 11/3026-06 30 13 2 0 30 4 82 11/3026-06 30 14 2 0 0 10/57E-06 30 15 2 9 25 2778 8 10 10 27 18 40 10/57E-06 10/57E-06 30 11 2 57 9 25 1.548 11.9 2.000E+06 1.312E+06 30 11 2 57 9 25 1.548 10.8 10 480 304 82 11.562E+06 9.030E+05 30 480 304 82 1.566473 480 304 82 1.566473 480 304 82 1.566473 VARIANCE 0F SQ(N) = 1.566473 Nation = 6.4E-07 cm-2 CRHSL/TION COEFFICIENT = 0.938 VARIANCE 0F SQ(N) = 1.566473 Nation = 6.00% Nation = 6.00% Podel Age = 398.9 - 30.4 Nation = 0.00% Podel Age = 398.9 - 30.6 1.5567 00 5 glass 12.5 ppm HO = 1.376E+066m22; ND = 3357 1.508473 NG 00 82 612 20 Mm Podel Age = 398.9 - 30.6 NG 00 82 612 20 Mm Podel Age = 298.9 - 30.6 NG 00 82 612 20 Mm Podel Age = 298.9 - 30.6 NG 00 82 612 20 Mm Podel Age = 298.9 - 30.6 NG 00 82 612 6100 Podel Age = 298.9 - 30.6 NG 00 82 612 6100 Podel Age = 298.9 - 30.6 NG 00 82 612 6100 Podel Age = 298.9 - 30.6 NG 00 82 612 6100 Podel Age = 298.9 - 30.6 NG 00 82 612 6100 Podel Age = 298.9 - 30.6 NG 00 83 612 6100 Podel Age = 298.9 - 30.6 NG 00 83 65 612 6100 Podel Age = 298.9 - 30.6 NG 00 83 612 6100 Podel Age = 298.9 - 30.6 NG 00 83 612 6100 Podel Age = 298.9 - 30.6 NG 00 83 612 6100 Podel Age = 298.9 - 30.6 Podel Age = 298.9 -			ON LU5	71-14	0	OUNTED B	Y: M. RAAB I	1/06/99	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RRA	DIATI(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$N_{\rm S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	32	28	35	1.143	11.4	1.429E+06	1.250E+06	291.2-75.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	41	34	42	1.206	11.5	1.525E+06	1.265E+06	306.8-71.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝ	2	12	30	2.000	5.7	1.250E+06	6.250E+05	501.2-177.6
$\sum_{i=1}^{3} \sum_{i=1}^{3} \sum_{i=1}^{2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2} \sum_{i=1}^{1,0,2,2,1,0,0} \sum_{i=1}^{1,0,0,1,0,0} \sum_{i=1}^{1,0,0,1,0,0} \sum_{i=1}^{1,0,0,1,0,0,0} \sum_{i=1}^{1,0,0,1,0,0,0} \sum_{i=1}^{1,0,0,1,0,0,0} \sum_{i=1}^{1,0,0,1,0,0,0} \sum_{i=1}^{1,0,0,0,0,0,0,0,0,0,0} \sum_{i=1}^{1,0,0,0,0,0,0,0,0,0,0,0,0,0} \sum_{i=1}^{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \sum_{i=1}^{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	4,	56	32	35	1.750	13.0	2.500E+06	1.429E+06	440.7–98.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	<u>5</u>	x ţ	22	1.625	0.1	2.821E+05	1.736E+05	410.2-184.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	8 <u>0</u>	2 0	C7 (7	11.04/	1.6	1./201E+06	3.51.6E+06	1.821-0.014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 00	3 8	4	25	1.643	2.C	1.438E+06	8.750E+05	414.5-140.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	2	42	50	1.524	11.9	2.000E+06	1.312E+06	385.4-77.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	27	18	40	1.500	6.4	1.055E+06	7.031E+05	379.5-115.8
$2 25 9 25 2.778 5,1 15.622+06 5.625E+05 6.06 \\ 3 2.031E+06 3.91 \\ 480 3.04 8.2 1.362E+06 9.038E+06 3.91 \\ 480 3.04 8.2 1.426E+06 9.038E+06 3.91 \\ 480 3.04 8.2 1.426E+06 9.038E+06 3.91 \\ 480 3.04 8.2 1.426E+06 9.038E+06 3.91 \\ CH1SQUAEDE = 3.4718 WTH 13 DEGREES OF FREEDOM Fich squared) = 9.05 % \\ CRRREATION COFFICIENT = 0.938 \\ VARIANCE OF SQR(N) = 1.596473 \\ NsNi = 1579 - 0.116 \\ MEAN RATIO = 1.692 - 0.110 \\ Pooled Age = 389.9 - 0.016 \\ MEAN RAINO = 1.692 - 0.110 \\ Pooled Age = 398.9 - 0.016 \\ Mean Age = 426.6 - 2.94 Aaa \\ Mean Age = 426$	_	37	20	32	1.850	8.9	1.807E+06	9.766E+05	465.0-129.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	25	6	25	2.778	5.1	1.562E+06	5.625E+05	686.1-267.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝ	65	42	50	1.548	11.9	2.031E+06	1.312E+06	391.2-78.0
480 304 8.2 1.426E+06 9.030E+05 ea of basic unit = 6.4E-07 cm-2 CHI SQUARED = 3.4718 WITH 13 DEGREES OF FREEDOM P(chi squared) = 90.5 % CORRELATION COEFFICIENT = 0.938 VARIANCE OF SQR(Ns) = 1.596473 Ns/Ni = 1.599-0.116 NS/Ni = 1.599-0.116 MEAN RATIO = 1.692-0.110 Poled Age = 388.9-0.016 MEAN RATIO = 1.692-0.110 Poled Age = 388.9-0.016 Mean Age = 388.9-0.016 Mean Age = 388.9-0.010 Poled Age = 388.9-0.0106 Mean Age = 426.6-29.4 Ma Corrend Age = 388.9-0.0106 Mean Age = 40.0006 Mean Age = 40.0006 Mean Age = 40.0006 Mean Age = 40.0006 Mean Age = 388.9-0.0106 Mean Age = 388.9-0.00	4	26	19	25	1.368	10.8	1.625E+06	1.188E+06	347.1–105.1
ea of basic unit = 6.4E-07 cm-2 CHI SQURRED = 3.4718 WTH 13 DEGREES OF FREEDOM P(chi squared) = 90.5 % CORRELATION COFFICIENT = 0.938 VARIANCE OF SQR(Ns) = 1.816019 VARIANCE OF SQR(Ns) = 1.816019 VARIANCE OF SQR(Ns) = 1.896473 Ns/Ni = 1.599-0.116 NS/Ni = 1.599-0.116 MEAN RATIO = 1.622-0.110 Poled Age = 388.9 - 30.6 Ma Mean Age = 426.6 - 29.4 Ma Committee = 388.9 - 30.0 Ma Wean Age = 426.6 - 29.4 Ma Committee = 388.9 - 30.0 Ma Mean Age = 426.6 - 29.4 Ma Committee = 388.9 - 30.0 Ma Mean Age = 426.6 - 29.4 Ma Committee = 388.9 - 30.0 Ma Mean Age = 426.6 - 29.4 Ma Committee = 388.9 - 30.0 Ma Mean Age = 426.6 - 29.4 Ma Committee = 388.9 - 30.0 Ma Weat Age = 388.0 - 30.0 Ma Weat Age = 33.0		480	304			8.2	1.426E+06	9.030E+05	
N=N I = 1.579-0.116 MEAN RATIO = 1.692 - 0.110 Pooled Age = 398.9 - 30.6 Ma Man Age = 426.6 - 29.4 Ma Counted Age = 398.9 - 30.0 Ma % Variation = 0.00% % Variation = 0.00% Ages calculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 1.376.406cm-2; ND = 3337 + 1-5-86.4 1-5-86.4			CHI SQ P(chi sq CORRE VARIAN VARIAN	UAREI uared) = LATIO VCE OF VCE OF	D = 3.4718 = 90.5 % N COEFFI ₹ SQR(NS) ₹ SQR(NI)	WITH 13] CIENT = 0.5 = 1.816019 = 1.596473	DEGREES OF 938	FREEDOM	
Pooled Age = 398.9 - 30.6 Ma Rean Age = 426.6 - 29.4 Ma Contrad Ace = 398.9 - 30.0 Ma % Variation = 0.00% Ages calculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 1.376E-06cm-2; ND = 3337 1-5-96 4 1-5-96 4			Ns/Ni = MEAN I	1.579 . RATIO	- 0.116 = 1.692 -	0.110			
Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.376E+06cm-2; ND = 3357 $1 \cdot 5 \cdot 16$ 4 $1 \cdot 5 \cdot 16$ 4			Pooled <i>∤</i> Mean A¦ <i>Central</i> , % Variat	Age = 3° ge = 4; Age = 3 fion = 0	98.9 - 30.6 26.6 - 29.4 198.9 - 30. (. Ма . Ма <i>0 Ма</i>			
		. –	Ages cal RHO D	lculated = 1.376	using a zet 5E+06cm-2	a of 378.8 - ; ND = 3	5.5 for CN 5 g 357	dass 12.5 ppm	
			1-5	-964			9 . 9 .		
		1						•	يسب : •
		J		Ź	A]		

Raw Data Files 156

%, relative error '21' 8' '20' 30' 40' 50' Peecision (1/sigma)

TRACK LENGTH (micro

(Ma)

FI SSION TRACKAGE

. 145. 1300

بىلىر ب

. 50, 30, 40,

0 0 7 0 0 7 0 0 0 7 0

5-5-96-2

5-5-96-2

5-5-96-2 ML: 1136 Btd Dev = 211 N= 1100

Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.408E+106cm-2; ND = 3357

Pooled Age = 109.5 - 6.5 Ma Mean Age = 111.1 - 5.7 Ma *Central Age* = 109.6 - 6.3 Ma % Variation = 0.85%

Appendix	С
----------	---

IRRADIATION LU572-01 COUNTEI No. Ns Ni Na RATIO U(ppn 1 7 17 27 0.410 13.5 2 2 5 8 0.400 13.5 4 21 49 36 0.420 29.4 6 13 28 0.429 29.4 6 13 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 0 18 25 0.500 15.6 7 120 265 31.7 Area of basic unit 6.4E-07 cm-2 21.7 7 245 VallaNCE OF SQRNS) 9.436 7 0.45 0.433 0.430 7 0.45 0.433 0.430 7 0.45 0.447) BY: M. RAAB I											
No. Ni Ni RATIO U(ppn 1 1 2 5 8 0.410 13.5 2 15 42 0.410 13.5 5 29.4 3 6 14 26 15 0.429 29.4 7 37.5 5 14 26 15 0.439 28.3 37.5 6 14 26 15 0.538 37.5 37.5 7 9 18 25 0.500 15.6 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 CH1 SQUARED = .2551459 WTTP 20.618 9.4360 NSN is 0.455 VARIANCE OF SQRNi) = 9.4360 NTTP Poiled Age = 7710 0.650 3.60 3.63 Ns/Ni = 0.453 0.050 19.8 3.60 Poiled Age = 770 8.70 3.60 3.63 NSNI 0.450 3.94		1/06/99		IRR≜	DIATIC	SUL UUS	72-03	0	COUNTED	BY: M. RAAB	11/06/99	
1 7 17 27 0.412 13.5 2 2 5 8 0.400 7.7 3 6 13 5 0.432 104.3 5 6 13 5 0.432 104.3 6 13 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 0.410 120 265 31.7 Area of basic unit 6.4E-07 cm-2 31.7 Preatof basic unit 6.4E-07 cm-2 31.7 Preatof basic unit 6.4E-07 cm-2 34.5 VARIANCE OF SQRNSI, 0.93 9.43 VARIANCE OF SQRNSI, 9.4345 VARIANCE OF SQRNSI, 9.4345 Ne/Ni 0.453 0.450 0.050 Ne/Ni 0.453 <td< th=""><th>1) KHOS</th><th>RHOi</th><th>F.T.AGE(Ma)</th><th>No.</th><th>$N_{\rm S}$</th><th>ï</th><th>Na</th><th>RATIO</th><th>U(ppm)</th><th>RHOs</th><th>RHOi</th><th>F.T.AGE(Ma)</th></td<>	1) KHOS	RHOi	F.T.AGE(Ma)	No.	$N_{\rm S}$	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 2 1 2 1 1 3 6 15 4 2 1 5 1 4 26 15 0 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 9 18 25 0.500 15.6 7 120 265 31.7 Area of basic unit = 6.4E-07 cm-2 CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 NTH Policiquirupul = 93.8% CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 NTH Policiquirupul = 94.8 7 120 265 0.150 Ns/Ni = 0.453 - 0.050 NTH Policiquirupul = 0.447 - 0.020 Policid Age = 77.0 - 8.0Ma Mean Age = 77.0 - 8.0Ma Commod Age = 77.0 - 3.0Ma Commod	4 05 11 - 05	0.0700.02	210 0 21 5	-	01	¢	c		~ ~ ~	1 1705-02	2 100E - 02	0 000 0002
3 6 15 42 0.400 77 5 14 26 135 38 0.429 29,43 6 14 26 15 0.538 37,55 37,55 7 9 18 25 0.500 15,66 16,67 7 9 18 25 0.500 15,66 31,7 15.0 265 3 31,7 31,7 Area of basic unit = 6,4E,07 m-2 120 265 251,49 WTH PRIABLELTON COEFFICIENT = URIANCE OF SQR(N) = 9,4360 CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9,4360 Ns/Ni 9,4360 Ns/Ni MEAN RATIO 0.450 0.450 9,447 0.020 Ns/Ni 0.455 0.500 9,4360 Ns/Ma Picold Age 770 8,447 0.020 Poido Mean Age 760 3,480 Ns/Ni 9,4360	3.906E+05	9.766E+05	68.0-57.0	- 2	2 50	0 0	30	2.500	0 CI	2.604E+05	1.042E+05	417.5-349.5
4 21 49 36 0.429 294 5 61 135 28 0.432 104.3 6 13 5 0.500 15.6 7 9 18 25 0.500 15.6 Ana 18 25 0.500 15.6 120 265 31.7 Area of basic unit = 6.4E-07 cm-2 CH1 SQUARED = .2551459 WITH Point quarted basic 9.8% VARIANCE OF SQR(N/s) = 4.3425 VARIANCE OF SQR(N/s) = 4.3426 NARIANCE OF SQR(N/s) = 9.4360 NARIANCE OF SQR(N/s) = 9.4360 Nean Age 770 - 87 Ma Mean Age 770 - 80 Ma Point Age 770 - 86 Ma Mean Age 770 - 30 Ma	2.232E+05	5.580E+05	68.0-32.9	ŝ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ŝ	30	2.667	1.9	4.167E+05	1.562E+05	444.4-301.1
 5 61 135 28 0.452 104.3 7 9 18 25 0.500 15.6 7 120 265 31.7 Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = .2551459 WTTH Peningaured D 99.8% CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 Ns:Ni = 0.453 0.050 Ns:Ni = 0.447 - 0.020 MEAN RATIO = 0.447 - 0.020 Poted Age = 770 - 8.7 Ma Mean Age = 770 - 8.7 Ma 	9.115E+05	2.127E+06	72.9–19.1	4	13	5	30	2.600	3.2	6.771E+05	2.604E+05	433.7-228.4
6 14 26 15 0.538 37.5 7 9 18 25 0.500 15.6 120 265 31.7 31.7 Area of basic unit = 6.4E.07 cm-2 CHI SQUARED = .2551459 WITH Poin squared = .998 % CORRELATION CGEFICIENT = 9.4360 VARIANCE OF SQR(N) = 9.4360 NS/Ni = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 Poind Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Caunal Age = 76.0 - 3.0	3.404E+06	7.533E+06	76.8-12.0	5	14	×	36	1.750	4.2	6.076E+05	3.472E+05	295.1-131.0
7 9 18 25 0.500 15.6 120 265 31.7 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 CH1 SQUARED = .2551459 WTH 97.9 VARIANCE OF SQR(NS) = 4.3425 VARIANCE OF SQR(NS) = 4.3425 VARIANCE OF SQR(NS) = 9.4360 Naria and a 2.33 Naria 0.447 - 0.020 MEAN RATIO 0.447 - 0.020 Pool Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Mean Age = 77.0 - 8.6 Ma Comma Age = 77.0 - 8.6 Ma	1.458E+06	2.708E+06	91.4-30.4	9	6	4	70	2.250	1.1	2.009E+05	8.929E+04	377.0-226.7
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 CH1 SQUARED = .2551459 WTH Pisquared = 99.8 % 51.4325 CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 54.3425 VARIANCE OF SQR(N) = 9.4360 NASINI = 0.447 - 0.020 MEAN RATIO = 0.447 - 0.020 MEAN RATIO = 0.447 - 0.020 Poold Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Mean Age = 77.0 - 8.6 Ma Counted Age = 77.0 - 8.6 Ma	5.625E+05	1.125E+06	85.0-34.7	7	Ξ	4	50	2.750	1.5	3.438E+05	1.250E+05	457.8-267.5
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 51.7 Area of basic unit = 6.4E-07 cm-2 51.7 CH1 SQUARED = .2551459 WITH 51.8 Point Squared = 99.8 % 51.4325 CORRELATION COEFFICIENT = 9.4360 51.4325 VARIANCE OF SQR(N) = 9.4360 51.4325 VARIANCE OF SQR(N) = 9.4360 9.4360 MEAN RATIO = 0.447 - 0.020 MEAN RATIO = 0.447 - 0.020 Poind Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Mean Age = 77.0 - 8.6 Ma Mean Age = 77.0 - 8.6 Ma				8	∞	ŝ	70	2.667	0.8	1.786E+05	6.696E+04	444.4-301.1
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 5.45.9 WTH Area of pasic unit = 6.4E-07 cm-2 5.51.45.9 WTH CHI SQUARED = .255.145.9 WTH 5.61.5.9 WTH CHI SQUARED = .255.145.9 WTH 5.61.5.9 WTH CHI SQUARED = .255.145.9 WTH 5.61.5.9 WTH CHI SQUARED = .255.145.9 WTH 2.61.5.9 WTH CHI SQUARED = .255.145.9 WTH 2.61.5.9 WTH VARIANCE OF SQR(NS) = 9.3450 2.43.5.0 MTH VARIANCE OF SQR(NS) = 9.4360 2.43.5.0 MTH MEAN RATIO = 0.447 - 0.020 MEAN ARTO = 0.447 - 0.020 Pool Age = 77.08.7 Ma Mean Age = 77.08.7 Ma Mean Age = 77.08.6 Ma Counta Age = 77.08.6 Ma				6	50	2	40	2.857	33	7.812E+05	2.734E+05	475.0-208.9
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 Area of basic unit = 6.4E-07 cm-2 51.7 CHI SQUARED = .2551459 WTH 90.8 % CORRELATION COEFFICIENT = 99.8 % 51.445 VARIANCE OF SQR(N) = 9.4360 51.435 VARIANCE OF SQR(N) = 9.4360 9.4360 NeNI = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 Poold Age = T70 - 8.7 Ma Mean Age = 770 - 8.7 Ma Mean Age = 770 - 3.9 Ma Central Age = 770 - 3.0 Ma				10	21	6	54	2.333	3.2	6.076E+05	2.604E+05	390.5-155.9
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 51.7 CHI SOUARED = .2551459 WITH P(ah squared) = 99.8% 51.4325 CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 51.4325 VARIANCE OF SQR(N) = 9.4360 51.4325 VARIANCE OF SQR(N) = 9.4360 61.447 - 0.020 Ns/Ni = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 Pooled Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Central Age = 77.0 - 8.6 Ma Central Age = 77.0 - 8.6 Ma				= :	21	۰ o	54	2.833	4.8	1.107E+06	3.906E+05	471.2-224.0
 120 265 31.7 Area of basic unit = 6.4E.407 cm-2 CHI SQUARED = .2551459 WITH CHI SQUARED = .2551459 WITH Registrando = .2581459 WITH CORRELATION COEFFICIENT = VARIANCE OF SQR(NS) = 9.4360 VARIANCE OF SQR(NS) = 9.4370 VARIANCE OF SQR(NS) =				12	m t	4	36	3.250	2.1	5.642E+05	1.736E+05	537.7-307.7
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 Area of basic unit = 6.4E-07 cm-2 51.7 CHI SQUARED = .2551459 WTH 90.8 % CORRELTON COEFFICIENT = 99.8 % 51.445 CORRELTON COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 9.4360 NsNI = 0.455 - 0.050 NsNI = 0.457 - 0.020 NEAN RATIO 0.447 - 0.020 MEAN Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Contral Age = 77.0 - 3.9 Ma				3 2	è,	<u></u>	}	0+0-7	7 7	1.443E+00	0.1000 1 000 1 05	0.001-0.074
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 31.7 CHI SOUARED = .2551459 WITH Ploit squared = 99.8 % 23450 CORRELATION COEFFICIENT = VARIANCE OF SORIN) = 9.4360 9.4360 Ns/Ni = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 MEAN Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Mean Age = 77.0 - 8.6 Ma Contrad Age = 77.0 - 3.9 Ma				14	° 2	1 4	+ C V	3 000	0.1	3.750E±05	1.250E±05	1.004-0.164
120 265 31.7 Area of basic unti = 6.4E-07 cm-2 31.7 CHI SQUARED = .2551459 WTT- 51.6 Printing anarob = 9.9 % 51.3 CORRELATION COEFFICIENT = 9.8% CORRELATION COEFFICIENT = 9.4360 VARIANCE OF SQRIN) = 9.4360 9.4360 VARIANCE OF SQRIN) = 9.4360 NSNI = 0.457 - 0.020 NSNI = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 Pooled Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Contrad Age = 77.0 - 8.6 Ma Contrad Age = 77.0 - 3.9 Ma				14	1 0	• •	6 F C	V112 C	2 2	1 237F±06	A 557E+05	122 1-200 2
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = .2551459 WTTF CHI SQUARED = .2551459 WTTF P(ai squared) = 99.8 % CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 ARIANCE OF SQR(N) = 9.4360 VARIANCE OF SQR(N) = 9.4360 Ns/Ni = 0.455 - 0.050 Ns/Ni = 0.455 - 0.050 Nis/Ni = 0.447 - 0.020 Poold Age = 77.0 - 8.7 Ma Mean Age = 77.08.6 Ma Countal Age = 77.08.6 Ma Countal Age = 77.08.6 Ma				01	5 5	- 1	17	2 1 4 2	0.0	1 6275-06	201011/0012	2.002-1.2042
120 265 31.7 Area of basic unit = 6.4E-07 cm-2 2551459 WITH CHI SQUARED = 2551459 WITH P(nis quared) = 99.8 % P(chi squared) = 99.8 % 531.343 P(chi squared) = 99.8 % 543.60 VARIANCE OF SQR(N) = 9.4360 843.60 VARIANCE OF SQR(N) = 9.4360 943.60 NsNi = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 Poold Age = 77.0 - 8.7 Ma Poold Age = 77.0 - 8.6 Ma Poold Age = 77.0 - 8.6 Ma Caurad Age = 77.0 - 8.6 Ma				18	77	- 01	17	3.750	0 0	1.03/E+00	5.208E±05	537 7_217 8
120 265 31.7 Area of basic unti = 6.4E-07 cm-2 CHI SQUARED = .2551459 WITH CHI SQUARED = .2551459 WITH POINTIANCE OF SQRND = .2450 PRIATION COEFFICIENT = VARIANCE OF SQRND = 9.4360 VARIANCE OF SQRND = 9.4360 VARIANCE OF SQRND = 9.4360 NSNIE 0.447 - 0.020 NSNIE 0.452 - 0.050 MEAN RATIO = 0.447 - 0.020 Pointed Age = 77.0 - 8.7 Ma Mean Age = 776.0 - 3.9 Ma Contract Age = 776.0 - 3.9 Ma Contract Age = 770.0 - 3.9 Ma				01	07 [o v	t 0	3 400	50%	8 854F+05	2.604F+05	561 5-285 9
120 265 31.7 Area of basic unti = 6.4E.47 cm-2 CHI SQUARED = .2551459 WITH CHI SQUARED = .2551459 WITH Point squared = .294.8% Point squared = .294.8% Point squared = .2436 VARIANCE OF SQR(N) = 9.4360 VARIANCE OF SQR(N) = 9.4360 VARIANCE OF SQR(N) = 9.4360 NSNI = 0.457 - 0.020 NSNI = 0.457 - 0.020 MEAN RATIO = 0.447 - 0.020 Pooled Age = 770 - 8.7 Ma Mean Age = 7708.7 Ma Mean Age = 7708.7 Ma Mean Age = 7708.6 Ma				20	52	, 1	50	2.083	4.6	7.812E+05	3.750E+05	349.8-123.1
vea of basic unit = 6.4E-07 cm-2 CHI SQUARED = 2351459 WITH CHI SQUARED = 2351459 WITH P(chi squared) = 9.8 % CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 VARIANCE OF SQR(N) = 9.4360 NS/N1 = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 POIde Age = 770 - 8.7 Ma Mean Age = 76.0 - 3.9 Ma Central Age = 770 - 8.6 Ma	1.036E+06	2.288E+06			313	116			3.0	6.591E+05	2.443E+05	
Present uses unit = 04-001 UNED = .2551459 WITH CHI SQUARED = .2551459 WITH P(chi squared) = 9.8 % CORRELATION COEFFICIENT = VARIANCE OF SQR(N) = 9.4360 VARIANCE OF SQR(N) = 9.4360 VARIANCE OF SQR(N) = 9.4360 NS/NI = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 MEAN RATIO = 0.447 - 0.020 Pooled Age = 770 - 8.7 Ma Mean Age = 76.0 - 3.9 Ma Central Age = 770 - 8.6 Ma				Area	of basic	unit = 6	5.4E-07	cm-2				
CHI SQUARED = .2551459 WITH P(n): squared) = 928 % CORRELATION COEFFICIENT = VARIANCE OF SQR(NS) = 4.3425 VARIANCE OF SQR(NS) = 9.4360 NS/NI = 0.453 - 0.050 NS/NI = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 POIde dge = 77.0 - 8.7 Ma Mean Age = 76.0 - 3.9 Ma Central Age = 77.0 - 8.6 Ma												
Ns/Ni = 0.453 - 0.050 MEAN RATIO = 0.447 - 0.020 Pooled Age = 77.0 - 8.7 Ma Mean Age = 77.0 - 8.6 Ma Central Age = 77.0 - 8.6 Ma	 6 DEGREES OF 0.998 84 12 	FREEDOM			01077	CHI SQ 2(chi sqi CORRE, 7ARIAN 7ARIAN	JARED lared) = LATION ICE OF ICE OF	= 1.3068 100.0 % V COEFFI SQR(Ns) SQR(Ni)	49 WITH CIENT = (= .964048 = .388188	19 DEGREES (DF FREEDOM	
Pooled Age = 77.0 - 8.7 Ma Mean Age = 76.0 - 3.9 Ma Central Age = 77.0 - 8.6 Ma					~~	Vs/Ni = /IEAN I	2.698 – 2.610 =	0.293 - 2.761 -	0.096			
Pooled Age = 77.0 – 8.7 Ma Mean Age = 76.0 – 3.9 Ma <i>Central Age = 77.0 – 8.6 Ma</i>												
% Variation = 0.00%						Pooled / Mean Aş <u>Central</u> / 6 Variat	ge = 44 ge = 45 ge = 4.5 ge = 4.5 ge = 0.4 ge = 0.4	9.5 - 50.0 9.7 - 19.3 49.5 - 49 . 00%) Ma 1 Ma 6 Ma			
Ages calculated using a zeta of 378. RHO D = 9.030E+05cm-2; ND	8 – 5.5 for CN 5 g = 2983	lass 12.5 ppm			1	Ages cal tHO D :	culated = 9.110	using a ze E+05cm-2	ia of 378.8 ; ND =	– 5.5 for CN 5. 2983	glass 11.1 ppm	
							6-20-0					
	11-8-97-1 ML: 14.15 8td Dev = '1, 51' N = '0'	11-8-97-1	100 . 80	ימי מיׂמיׂ			0 0	* * 40 30	<u> </u>	24-9-97-3 ML: 11.66 Sed Dev = '1.33 N = '67'	24-9-97-3	
	10. '15' '20'	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -		4 % % 6 %	100*20	11.1		÷ ۶.	÷ ا	. +15. '20'		elative error
FISSION TRACK AGE (Ma) TRACKLEN	GTH (microns)	0	. 20 30. (m/d/m/d/m/)	Ľ	N S	TRACK.	AGE (Ma	?	IRACK LENG	TH (microns)	0 .4' '	er :12' :16' n(14-kig.ma)

24-9-97-7 Apatite	IRRADIATION LU572-05 COUNTED BY: M. RAAB 15/06/99	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	1 20 9 9 2.222 21.3 3.472E+06 1.562E+06 375.2-150.9 2 77 35 12 2.200 62.1 1.003E+07 4.557E+06 371.6-76.2	97 44 44.6 7.217E+06 3.274E+06	Area of basic unit = $6.4E-07$ cm-2	CHI SQUARED = 2.491942E-04 WITH 1 DEGREES OF FREEDOM P(chi squared) = 98.2 % CORRELATION COEFFICIENT = 1.000 VARIANCE OF SQR(Ni) = 4.251722 VARIANCE OF SQR(Ni) = 4.251762	N&N = 2.205 - 0.401 MEAN RATIO = 2.211 - 0.011	Pooled Age = 372.3 - 68.2 Ma Mean Age = 373.4 - 8.9 Ma <i>Central Age</i> = 372.3 - 68.0 Ma % Variation = 0.00%	Ages calculated using a zeta of $378.8 - 5.5$ for CN 5 glass 12.5 ppm RHO D = 9.180E+05cm-2; ND = 2983	24.9-97.7 24.9-97.7 20 20 20 20 20 20 20 20 20 20
		F.T.AGE(Ma)	500.0-204.5 26.4-185.9 419.5-2-28.3 501.0-288.5 500.0-288.9 873.8-425.9							9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
	5/06/99	RHOi F.T.AGE(Ma)	8.333E+05 500-204.5 3.125E+05 296.4-185.9 2.200E+05 419.3-248.3 1.1237E+06 567.2-148.5 1.786E+05 567.2-148.5 3.306E+05 873.8-425.9	4.946E+05		7 FREEDOM			dass 12.5 ppm	$24-9-97-4$ $= \begin{bmatrix} 24-9-97-4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
	Y: M. RAAB 15/06/99	RHOs RHOi F.T.AGE(Ma)	2.500E+06 8.333E+05 5000-204.5 5.469E+05 3.125E+05 296.4-185.9 6.520E+05 2.500E+05 419.3-248.3 4.232E+06 1.237E+106 567.2-148.5 5.357E+05 1.786E+05 5010-288.9 2.109E+06 3.906E+05 873.8-425.9	1.630E+06 4.946E+05		DEGREES OF FREEDOM			5.5 for CN 5 glass 12.5 ppm 983	24-9-07-44 0. W. Yan Yi, W. Yan
	COUNTED BY: M. RAAB 15/06/99	U(ppm) RHOs RHOi F.T.AGE(Ma)	11.4 2.500E+06 8.333E+05 500.0-204.5 4.3 5.469E+05 3.125E+05 296.4-185.9 3.4 6.520E+05 2.300E+06 3.1257E+05 16.9 4.232E+06 1.237F+106 567.2-48.5 2.4 5.357E+06 1.237F+06 567.2-48.5 5.3 2.109E+06 3.006-288.9 56.3	6.8 1.630E+06 4.946E+05		842 WITH 5 DEGREES OF FREEDOM FCLENT = 0.964 = 3.920715) = 8706306	0.502	0 Ma 4 Ma 17 Ma	tu of <i>37</i> 8.8 – 5.5 for CN 5 glass 12.5 ppm 2; ND = 2983	0 3487.4 24-9-97.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	COUNTED BY: M. RAAB 15/06/99	RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	3.000 11.4 2.500E+06 8.333E+05 500.0-204.5 1.750 4.3 5.469E+05 3.125E+05 206.4-185.9 2.500 3.4 6.520E+05 2.050E+05 419.3-248.3 3.21 16.9 4.332E+06 1.237E+06 567.2-148.5 3.001 2.4 5.372E+05 1.737E+06 567.2-148.5 3.000 5.3 2.109E+06 1.377E+06 567.2-148.5 3.000 5.3 2.109E+06 3.900E+05 873.8-425.9	6.8 1.630E+06 4.946E+05	07 cm-2	2D = 1.211842 WITH 5 DEGREES OF FREEDOM 1= 78.8 % DN COEFFICIENT = 0.964 FS eQR(N) = 8.320715 FF SQR(N) = 8706306	5 - 0.567 D = 3.178 - 0.502	547.2 - 95.0 Ma 528.6 - 84.4 Ma 547.2 - 94.7 Ma 0.00%	d using a zeta of 373.8 – 5.5 for CN 5 glass 12.5 ppm 30E+05cm-2; ND = 2983	40 30 10 10 10 10 10 10 10 10 10 1
	J572-04 COUNTED BY: M. RAAB 15/06/99	Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	15 3.000 11.4 2.500E+06 8.333E+05 5000-204.5 20 27.50 4.3 5.469E+05 3.125E+05 296.4-185.9 25.50 3.4 3.125E+05 296.4-185.9 25.50 3.4 3.125E+05 3.125E+05 3.125E+05 3.125E+05 3.125E+05 3.127E+06 3.127E+06 3.127E+05 3.127E+05 3.127E+05 3.127E+05 3.127E+05 3.000-288.9 3.000 2.4 3.271E+05 3.000-288.9 3.000E+05 3.006E+05 3.306E+05 3.78-425.9 3.2106+05 3.306E+05 3.78-425.9 3.2106+05 3.306E+05 3.78-425.9 3.206E+05 3.78-425.9 3.206E+05 3.78-425.9 3.206E+05 3.78-425.9 3.206E+05 3.78-425.9 3.2109-281.0 3.206E+05 3.78-425.9 3.206E+05 3.78-425.9 3.206E+05 3.206E+05 <td>6.8 1.630E+06 4.946E+05</td> <td>: 6.4E-07 cm-2</td> <td>QUARED = 1.2.11842 WITH 5 DEGREES OF FREEDOM quared) = 78.8 % ELANTON COEFFICIENT = 0.964 AVCE 05 RO8(Ns) = 3.920715 AVCE 0F SQR(Ns) = .8706306</td> <td>= 3.295 - 0.567 V RATIO = 3.178 - 0.502</td> <td>I Age = 547.2 - 95.0 Ma Age = 578.6 - 84.4 Ma <i>u Age = 547.2 - 94.7 Ma</i> iation = 0.00%</td> <td>alculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm $2=9.150 {\rm E}{\rm +05 cm}{\rm -2}$: ND = 2983</td> <td>4-9-37-4 4-9-37-4 1-0 10 10 10 10 10 10 10 10 10 1</td>	6.8 1.630E+06 4.946E+05	: 6.4E-07 cm-2	QUARED = 1.2.11842 WITH 5 DEGREES OF FREEDOM quared) = 78.8 % ELANTON COEFFICIENT = 0.964 AVCE 05 RO8(Ns) = 3.920715 AVCE 0F SQR(Ns) = .8706306	= 3.295 - 0.567 V RATIO = 3.178 - 0.502	I Age = 547.2 - 95.0 Ma Age = 578.6 - 84.4 Ma <i>u Age = 547.2 - 94.7 Ma</i> iation = 0.00%	alculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm $2=9.150 {\rm E}{\rm +05 cm}{\rm -2}$: ND = 2983	4-9-37-4 4-9-37-4 1-0 10 10 10 10 10 10 10 10 10 1
Apaite	TION LU572-04 COUNTED BY: M. RAAB 15/06/99	i Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	I 8 15 3.000 11.4 2.500E+06 8.333E+05 50.0-204.5 7 4 20 1.750 4.3 5.469E+05 3.125E+05 296.4-185.9 7 4 25 2.500 3.4 6.200E+05 3.105E+05 2.96.4-185.9 7 4 25 2.500 3.4 6.200E+05 2.300E+05 4.93-248.3 1 9 24 3.421 16.9 4.322E+06 1.237F+106 567.248.5 1 9 24 3.3.00 2.4 5.37E+05 50.00-288.9 1 9 24 3.3 2.019E+06 3.906E+05 90.00-288.9 2 20 5.400 5.3 2.109E+06 3.906E+05 873.8-425.9	5 44 6.8 1.630E+06 4.946E+05	sic unit = 6.4E-07 cm-2	CHI SQUARED = 1.211842 WITH 5 DEGREES OF FREEDOM P(chi squared) = 78.8 % CORRELATION COEFFICIENT = 0.964 NARIANCE OF SQR(Ni) =970715 VARIANCE OF SQR(Ni) =8706306	NsNi = 3.295–0.567 MEAN RATIO = 3.178–0.502	Pooled Age = 547.2 - 95.0 Ma Mean Age = 528.6 - 94.4 Ma Central Age = 547.2 - 94.7 Ma % Variation = 0.00%	Ages calculated using a zeta of $378.8-5.5$ for CN 5 glass 12.5 ppm RHO D = 9.150E+05cm-2; ND = 2983	24-9-97-4 24-9-97-4 24-9-97-4 0 24-9-97-4 24-9-97-4 0 24-9-97-4 24-9-97-4 0 24-9-97-4 0 24-97-4 0 2

Ξ	
ਙ	
õ	
₹	
4	
-	
÷	
÷	
•	
-	

IRRADL	ATION L	JU572-(90	COUNTEL) BY: M. RAAF	3 16/06/99		IRRADI	IATION	LU572-0	-	COUNTED H	3Y: M. RAAB	17/06/99		
No.	Ns N	7	Ja RAJ	TIO U(ppm	1) RHOs	RHOi	F.T.AGE(Ma)	No. N	N. S.	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	ĺ
-	1 10	C 1	1 01	00	A 688F105	3 175F±05	756.8.88.8	1 2(L (30	7 857	4.0	1 042E±06	3 646F±05	187 6-217 7	1
- 7	74 4	59	36 1.6	44 26.5	3.212E+06	1.953E+06	281.0-53.5	2 2	- 26	16	1.462	51.4	5.566E+06	3.809E+06	251.4-52.6	
	9 60	22	50 1.7	58 26.3	3.406E+06	1.938E+06	299.9-48.2	3 1	19 87	25	1.368	73.4	7.438E+06	5.438E+06	235.5-33.7	
4 '	47 3	4	1.3	82 40.0	4.080E+06	2.951E+06	237.0-53.6	4 -	- ·	12	1.429	12.3	1.302E+06	9.115E+05	245.8-121.3	
ŝ	- 1 6 - 6	0.0	22 C	97. 00	8.3/1E+05	5.580E+05	256.8-105.0	άč ο ν	22	<u>0</u> 5	1.882	23.9	3.333E+06	1.7/1E+06	322.0-96.9	
0 ٢	14 o	2 v 7 c	1.1 02	0.1c /0	5.205E+00 4.688F+05	2.344E+00	204.0-20.0	0 1 9	2 6	2 %	777-1	0.16	2.803E+U0	2.344E+00 2.065E+06	210.9-01.2 223 6-49 2	
- 00	29 1	, 6 , 6	36 1.5	26 11.2	1.259E+06	8.247E+05	261.2-77.3	8	. 4	32	1.714	27.7	3.516E+06	2.051E+06	293.9-57.5	
6	16 1	1 4	1.4	55 5.8	6.250E+05	4.297E+05	249.1–97.7	9 6	5 41	20	1.610	43.2	5.156E+06	3.203E+06	276.3-55.3	
10	15 1		50 1.3	64 4.7	4.688E+05	3.438E+05	233.8-93.0	10 3(21	18	1.429	24.6	2.604E+06	1.823E+06	245.8-70.2	
= :	33 2	1	(4 1.5	71 31.8	3.683E+06	2.344E+06	268.7-75.3	11 6:	64	6	1.512	22.7	2.539E+06	1.680E+06	259.8-51.4	
21 2	- 3 23	Ωr Ωr	25 1.5	0.6 19.7	3.312E+06	2.188E+06	259.2-56.8	12 6	с н 20 б	5 8	1.667	39.2	4.836E+06	2.902E+06	285.9-58.3	
CI	1 67	-	50 I./	0.01 0.0	7.2005-00	00+3076.1	271.2-07.2	,4 CI 12 AI		9 6	1821	2.42 2.65	2.011E+00 3.984E+06	2 188F±06	311 8-73 7	
								15 46	18	32	1.353	22.4	2.246E+06	1.660E+06	233.0-53.0	
								16 2:	3 16	18	1.438	18.7	1.997E+06	1.389E+06	247.3-80.7	
								17 5:	8	24	1.262	36.9	3.451E+06	2.734E+06	217.6-45.2	
								18 12	8	32	1.500	5.3	5.859E+05	3.906E+05	257.8-117.8	
								19 25	SE :	54	1.611	15.8	1.888E+06	1.172E+06	276.5-83.2	
								20 19	=	18	1.727	12.9	1.649E+06	9.549E+05	296.0-112.4	
4	91 31	4		15.2	1.756E+06	1.123E+06		ŝ	34 58	88		26.7	2.970E+06	1.976E+06		
Area of b	asic unit	t = 6.4E	3-07 cm-:	2				Area of	basic un	it = 6.4E	-07 cm-2					
	CHI P(chi COR VAR VAR	SQUA i square RRELAT TANCE	RED = ed) = 100. TION CO 3 OF SQF 3 OF SQR	904171 WITE 0 % 6FFICIENT = 1(Ns) = 4.4492 1(Ni) = 2.5914(1 12 DEGREE 0.990 19 59	S OF FREEDOM			CH CO CO CO CO	I SQUAR hi squarec RRELAT RIANCE RIANCE RIANCE	ED = 3.498 () = 99.4 % () COEFT OF SQR(N) OF SQR(N)	463 WITH 1 TCIENT = $0.$ = 3.749701 = 2.856995	9 DEGREES (OF FREEDOM		
	Ns/N MEA	4i = 1.5 AN RAI	564 - 0.1 TO = 1.5	13 45 - 0.040					Ns' ME	Ni = 1.50 AN RATI	3 - 0.080 0 = 1.576	- 0.079				
	Poole Mear % Va	ed Age n Age <u>'ral Age</u> ıriation	$= 267.4 - = 264.3 - = 264.3 - = 267.4 \cdot = 0.00\%$	- 20.3 Ma - 9.2 Ma - 19.9 Ma					S Me S	oled Age = an Age = <i>itral Age</i> - Variation =	: 258.4 - 15 : 270.7 - 15 = 258.4 - 1	.0 Ma .0 Ma 4.5 Ma				
	Ages RHO	s calcul:) D = 9	ated using .220E+05	g a zeta of 378. 5cm-2; ND :	8 – 5.5 for CN : = 2983	5 glass 12.5 ppm			Ag RH	es calcula O D = 9.2	ed using a z 260E+05cm	eta of 378.8- 2; ND = 2	- 5.5 for CN 5 { 2983	glass 12.5 ppm		
		24-9-9	7-8			24-9-07-8				24-9-97	6			0-70-0-26		
۵۴۵۵46 ۲	5				24-9-97-8 ML: 9.63 8td Dev = '2 N= '94 '	₽ • • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••••••••••••••••	ة 4° ما ما م	_		, y z Y	۳ بـبـب و و و	24-9-97-9 ML: 11.08 Std Dev = '1.8' N= ' 900'	• • •		. 485° . 375° . 320°
			100200.		0. 15. 20	-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	L 230 [°]	0.1 N C		Į Į		,	.12, .30,		rolativo e rror 14	265
FISS	ON TRA	CKAGE	E (Ma)	TRACK LEN	GTH (microns)	0 - 10' Precisio	· 20' · 30' n (1/sigma)	E	SION TR	ACK AGE	(Ma)	TRACK LENGT	H (microns)	0 '10' Precis	. 20' 30' sion (1/sig ma)	

			3-10-9	7-1 Apat	ite							
COUNTED BY: M. RAAB 17	7/06/99		IRRAI	NOITAION	LU572	60-	8	UNTED B	Y: M. RAAB I	8/06/99		
U(ppm) RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	ï	Na R	ATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
2.0 2.441E+05	1.465E+05	287.1–209.8	- (79	500	00	0.395	41.8	1.234E+06	3.125E+06	69.5-9.4	
0.0 1.760E+05 0.8 1.562E+05	4.404E+04 6.250E+04	000./-/4/./ 426.0-356.5	4 (*	c 1	<u></u>	38	0.408	40.0 135.9	4.149E+06	5.051E+00 1.016E+07	71.9-7.1	
49.0 8.507E+06	3.646E+06	398.4-104.3	4	68	280	20	0.318	83.6	1.987E+06	6.250E+06	56.0-6.9	
19.3 3.375E+06	1.438E+06	400.8-100.2	ν N	73	129	8	0.566	27.0	1.141E+06	2.016E+06	99.3-14.7	
0.5 1.380E+05	8.681E+04 3.472E+04	C.0C2-0.024	10	x 5	2 2	25	0.470	32.0	1.812E+06	3.812E+06	C.51-0.58	
4.2 5.625E+05	3.125E+05	309.5-172.8	~ ∞	541	6.6	38	0.415	27.2	8.438E+05	2.031E+06	73.1-12.0	
1.3 3.906E+05	9.766E+04	668.7-747.7	6	73	146	8	0.500	30.5	1.141E+06	2.281E+06	87.8-12.8	
6.6 1.465E+06	4.883E+05	507.9-262.5	10	6	506	8	0.437	43.1	1.406E+06	3.219E+06	76.8-9.9	
1.8 3.385E+05 10.5 1.406E+06	1.302E+05	442.4-233.1 200.5 122 2	= 2	96	86] ¥	88	0.485	41.4 20.2	1.500E+06	3.094E+06	85.2-10.8	
11.9 1.250E+06	8.854E+05	244.0-77.6	13 1	6 69	282	38	0.295	58.1	1.281E+06	4.344E+06	52.0-6.6	
18.9 2.812E+06	1.406E+06	343.0-140.3	14	74	192	00	0.385	40.1	1.156E+06	3.000E+06	67.8-9.4	
17.5 1.997E+06	1.302E+06	264.6-88.0	15	70	E	8	0.395	37.0	1.094E+06	2.766E+06	69.6-10.0	
5.6 8.333E+05 7.0 0.115E.05	4.167E+05	343.0–210.2 201 1 133 6	16	6 5	120	88	0.613	31.4	1.438E+06 7 244E :05	2.344E+06	107.6-14.5	
0.6 7.812E+04	4.688E+04	287.1–209.8	18	÷ 6	528	88	0.434	C+7 7.74	1.547E+06	3.562E+06	76.4–9.4	
1.8 2.604E+05	1.302E+05	343.0–297.2	19 20	59	202	88	0.292 0.422	42.2 33.7	9.219E+05 1.062E+06	3.156E+06 2.516E+06	51.5-7.7 74.3-10.9	
4.9 7.442E+05	3.628E+05			1572 3'	785			42.1	1.308E+06	3.149E+06		
			Area of	f basic ur	nit = 6.4	4E-07 ci	m-2					
2012 WITH 18 DEGREES OF	7 FR FFDOM			Ę	U SOLL	ARED =	19 83015	WITH 10	9 DEGREES O	F FRFFDOM		
017 WITH 10 DEDRIVER	INCOMP.			J M	in squa	red) = (.12.0.01	1 1111 4 6		I. I. INFEEDOM		
FICIENT = 0.957 s) = 2.672215 i) = 1.482978				S & S	RIANC	ATION O TE OF S	OOEFFIC QR(Ns) = QR(Ni) =	IENT = 0.8 1.443995 4.741982	813			
- 0.191				M	/Ni = 0 EAN R#	.415 - 0 NTIO = 0	0.428 - 0	.018				
.5 Ma .0 Ma 7.2 Ma				S Z S	oled Ag san Age <i>ntral</i> Ag Variatio	e = 73.1 = 75.3 e = 73.3 n = 13.3	- 2.8 M - 3.7 M 8 - 3.4 M 9%	la la				
eta of 378.8–5.5 for CN 5 gl: -2; ND=2983	ass 12.5 ppm			Ag RF	es calcu IO D =	llated usi 9.340E+	ing a zeta +05cm-2;	of 378.8 – ND = 2	5.5 for CN 5 g 983	lass 12.5 ppm		
	28-9-97-2				3-10-	97-1				3-10-97-1		
269-07-2 40 [°] F Mat 11-1-1-1-1- 30 [°] Bat 50-4 [°] -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	• • پـــا	670. 580 - 460	<u>ا ا ا ا ا ا</u> ۲۰ ۵٬۵۰٬۵۰٬۵۰٬۵۰٬	P			.40 30 20	_ 	3-10-97-1 ML: 12-49 8-61 Dev = '1.26 N= '76 '	<mark>ب ا ب</mark>		س من من ح
10. 		at two err or	 2 N ← 6			Å	.10	-]	- 2	• 8 [-50"	
'5' '10' '15' '20' TRACK LENGTH (miαrons)	- 18.9' 0 - 14 18' Precisi	. 22. .1216 dom (1/sigma)	.0., EI	SSI ON TF	ACK A	011 3E (Ma)	20. 14	5 '10' VACK LENGT	`15° `20' H(microns)	0 10' 20 Precis	. 16 9. 30' . 40' . 50' (on (1/sigma)	

IRRADIATION LU572-08 28-9-97-2 Apatite

2.44 IE 1.786E-1.786E-1.562E-1.562E-1.355E-1.355E-1.335E-1.335E-1.455E-1.335E-1.455E-1.335E-1.455E-1.335E-1.455E-1.335E-1.335E-1.335E-1.335E-1.250E-1.150E-1.250E-1.150E-1.250E-1.150E-1.150E-1.150E-1.250E-1.150E-1.150E-1.250E-1.150E RH U(ppm) RATIO $\begin{array}{c} 1.800\\ 3.000\\ 2.600\\ 1.412\\ 1.412\\ 1.412\\ 2.000\\ 1.750\\ 1.750\\ 1.667\\ 2.000\\ 2.000\\ 0.00\\$ 348 1.000 1.667 4.000 2.500 2.333 Na 16 32 36 16 30 с сі ïź ŝ sz v 4 33 4 113 113 114 115 113 113 113 No. 2 12

Area of basic unit = 6.4E-07 cm-2

281 137

CHI SQUARED = 2.578012 WITH 18 DEGRE P(chi squared) = 99.9 % DORRLATION COEFICIENT = 0.957 VARIANCE OF SQR(NB) = 2.672215 VARIANCE OF SQR(NB) = 1.482978

Ns/Ni = 2.051 - 0.214 MEAN RATIO = 2.364 - 0.191

Pooled Age = 351.5 - 37.5 Ma Mean Age = 403.4 - 34.0 Ma *Central Age = 351.5 - 37.2 Ma* % Variation = 0.00%

Ages calculated using a zeta of 378.8 - 5.5 for C RHO D = 9.300E+05cm-2; ND = 2983

4 0[.] 6. ŝ

F.T.AGE(Ma)	64.8–10.4 72.9–10.7 58.6–8.1 76.5–8.3 71.2–9.6	78.6-15.1 73.6-11.1 73.6-11.8 69.3-10.3 708.7.1 72.2-12.5 71.3-7.1 76.0-9.3	69.2–9.5 62.7–8.1 75.2–11.0 75.2–11.4 78.8–12.4 73.9–11.5 62.1–8.0	

COUNTED BY: M. RAAB 19/06/99

IRRADIATION LU572-11

No.

Ś

9 01

4-10-97-1 Apatite

No.	$\mathbf{N}_{\mathbf{S}}$	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.
-	54	148	42	0.365	73.1	2.009E+06	5.506E+06	64
6	67	163	30	0.411	112.7	3.490E+06	8.490E+06	72
ю	71	215	50	0.330	89.2	2.219E+06	6.719E+06	58
4	129	299	60	0.431	103.3	3.359E+06	7.786E+06	76
5	79	197	36	0.401	113.5	3.429E+06	8.550E+06	71
9	40	6	50	0.444	37.3	1.250E+06	2.812E+06	78
7	60	149	36	0.403	85.8	2.604E+06	6.467E+06	71
×	56	135	60	0.415	46.7	1.458E+06	3.516E+06	73
6	64	164	50	0.390	68.0	2.000E+06	5.125E+06	66
10	148	371	100	0.399	76.9	2.312E+06	5.797E+06	70
Ξ	48	118	99	0.407	40.8	1.250E+06	3.073E+06	72
12	152	378	70	0.402	112.0	3.393E+06	8.438E+06	17
13	66	231	70	0.429	68.4	2.210E+06	5.156E+06	76
14	76	195	70	0.390	57.8	1.696E+06	4.353E+06	66
15	84	238	100	0.353	49.3	1.312E+06	3.719E+06	62
16	76	186	60	0.409	64.3	1.979E+06	4.844E+06	72
17	64	151	50	0.424	62.6	2.000E+06	4.719E+06	75
18	60	135	24	0.444	116.6	3.906E+06	8.789E+06	78
19	60	14	35	0.417	85.3	2.679E+06	6.429E+06	73
20	84	240	50	0.350	99.5	2.625E+06	7.500E+06	62
	1571	3947			74.2	2.225E+06	5.591E+06	
Area o	of basic	unit =	6.4E-07	cm-2				
	-	CHI SQ	UAREI	0 = 3.2009	08 WITH 1	9 DEGREES (DF FREEDOM	
		P(chi sqi	nared) =	= 99.7 %		000		
		VARIAN VARIAN VARIAN		SOR(Ni)	= 2.652883 = 6.931846	00		
		Ns/Ni = MEAN I	0.398 - RATIO	- 0.012 = 0.401 -	0.007			

Raw Data Files 161

* 85⁻⁰⁰¹⁰⁴¹⁻⁷¹⁻²¹⁴ - 75⁻ 42¹⁰ % - 65⁻

.

440.0070.046

8 × 9 5 4

4-10-97-1 <u>....</u>

Ages calculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 9.420E+05cm-2; ND = 2983

Pooled Age = 70.6 - 2.7 Ma Mean Age = 71.1 - 2.1 Ma *Central Age* = 70.6 - 2.5 Ma % Variation = 0.00%

%, relative e rror 1 8' 0 10' 20' 30' 40' Presidon (1 Algma)

'10' '15' '2
 TRACK LENGTH (micro

1. 20. 40. 60. 80.1 FISSION TRACKAGE (Ma)

4-10-97-4 Apatite		4-10-97-5	Apati	e							
IRRADIATION LU572-14 COUNTED BY: M. RAAB 21/06/99		IRRADI/	VOIT	LU572	-15	0	UNTED B	Y: M. RAAB 2	1/06/99		
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T	F.T.AGE(Ma)	No. 1	4s	ïź	Na R	ATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
1 23 53 25 0.434 43.4 1.438E+06 3.312E+06 7	77.9–19.5	-	22	45	16	0.489	57.4	2.148E+06	4.395E+06	88.0-23.0	
2 27 70 49 0.386 29.3 8.610E+05 2.232E+06 6 2 80 260 50 0.342 106.6 2701E-06 8.135E-06 5	69.2-15.8	c1 e	212	35	88	0.442	32.3	1.094E+06	2.474E+06	79.6-14.9	
4 22 55 42 0.400 26.8 8.185E+05 2.046E+06 7	71.8-18.2	04	1 22	6	2 22	0.504	94.0	3.627E+06	7.199E+06	90.7-14.0	
5 5 12 50 0.417 4.9 1.562E+05 3.750E+05 7	74.8-39.8	ŝ	13	12	4	0.424	87.8	2.852E+06	6.719E+06	76.5-10.8	
6 13 41 100 0.317 8.4 2.031E+05 6.406E+05 5	57.0-18.2	9	96 2	80	50	0.462	84.9	3.000E+06	6.500E+06	83.1-10.4	
7 8 20 49 0.400 8.4 2.551E+05 6.378E+05 7	71.8–30.1	- 0	5.2	85	ଚ୍ଚ ଚ	0.600	64.6 22.0	2.969E+06	4.948E+06	107.8-18.2	
0 27 121 100 0.306 24.8 5.781E+05 1891E+06 5	09.1–17.1 55 0–10 4	• = • •	5 C	7 2	Q 6	0.522	7.70	3.312E+06	4./00E+00 6 344E+06	70.9-17.2 94.0-11.5	
10 18 62 100 0.290 12.7 2.812E+05 9.688E+05 5	52.2-14.0	1 0	20	8 8	33	0.418	66.3 66.3	2.124E+06	5.078E+06	75.4-9.8	
11 15 45 100 0.333 9.2 2.344E+05 7.031E+05 5	59.9–17.9	81	30 3	83	8	0.470	78.2	2.812E+06	5.984E+06	84.6-7.9	
12 9 21 100 0.429 4.3 1.406E+05 3.281E+05 7	76.9-30.7	21	1 22	16	8.3	0.474	78.9	2.865E+06	6.042E+06	85.4-14.1	
13 34 112 70 0.304 32.8 7.589E+05 2.500E+06 5 14 12 22 100 0.204 6.9 2.021E+05 5.154E+06 5	24.6-10.8 70.7 23.2	<u>n</u> z		2 2	3 8	0.496	1.17	2.723E+06	5.491E+06 5.000E+06	89.3-14.1	
7 12 12 25 100 0.343 7.2 1.875F±05 5.469F±05 6	2.02-1.01 61.6-20.7	<u>t 1</u>	2	R 22	8.6	0.519	13.9	2.021E+00	5 656F±06	93 5-12 1	
16 14 32 70 0.438 9.4 3.125E+05 7.143E+05 7	78.5-25.2	16	- 12	123	38	0.447	62.8	2.148E+06	4.805E+06	80.5-13.2	
17 21 70 100 0.300 14.3 3.281E+05 1.094E+06 5	53.9-13.5	17	33 1	2	50	0.505	75.1	2.906E+06	5.750E+06	91.0–11.8	
18 9 22 100 0.409 4.5 1.406E+05 3.438E+05 7 10 20 110 100 0.255 22 5 6.004E-05 1.710E-05	73.4-29.1	8 0	- 6	58	30	0.533	72.8	2.969E+06	5.573E+06	95.8-15.9	
20 17 39 100 0.436 8.0 2.656E405 6.094E4-05 7	78.2–22.8	20	1	1	R 8	0.500	2.9 2.9	J.094E+05	0.512E+00 2.188E+05	90.0-41.7	
447 1271 16.2 4.352E+05 1.237E+06		130	51 27	94			63.3	2.360E+06	4.845E+06		
Area of basic unit = $6.4E-07$ cm-2		Area of b	asic uni	t = 6.4	E-07 c	m-2					
CHI SOUARED = 2.596129 WITH 19 DEGREES OF FREEDOM P(chi squared) = 99.9 % P(chi squared) = 99.9 % P(chi squared) = 2.55578 VARIANCE OF SQR(Ni) = 8.472669 VARIANCE OF SQR(Ni) = 8.472669			CHI P(cl VAI VAI VAI	I SQUA ii squai RRELA RIANC UANC	RED = ed) = 9 TION (E OF S E OF S	4.372759 7.7 % 20EFFICI QR(Ns) = QR(Ni) =	WITH 19 ENT = 0.9 5.810155 12.3882	DEGREES C 86	DF FREEDOM		
Ns/Ni= 0.352 - 0.019 MEAN RATTO = 0.371 - 0.011			Ns/] ME	Ni = 0. AN RA	487 – (TIO =	0.16 0.493 - 0.0	012				
Pooled Age = 63.2 – 3.8 Ma Mean Age = 66.5 – 2.6 Ma <i>Central Age = 63.2 – 3.1 Ma</i> % Variation = 0.00%			Poo Mei V V	led Age ın Age tral Ag	= 87.5 = 88.5 e = 87. 1 = 0.00	r - 3.5 Ma r - 3.0 Ma 7 - 3.3 M 9%	a a B				
Ages calculated using a zeta of $378.8-5.5$ for CN 5 glass 12.5 ppm RHO D = 9.530E405cm-2; ND = 2983			Age RHi	s calcu D D =	lated us 9.570E-	ing a zeta c +05cm-2;	of 378.8 – ND = 29	5.5 for CN 5 g 183	lass 12.5 ppm		
4-10-97-4 4-10-57-4				4-10-	37-5				4-10-97-5	đ	,
		∞ K ∞ 0 4 % N 7 0.			X		······································	ML: 13.38 8: 41 DW = ' 1, 23 N = ' 59' ' 1, 23 N = ' 59' ' 1, 23 15' ' 20'	2 2 44 % rob	, 1100 	
0. 20 40 60 60 100 × 20 10 10 120 10 10 10 10 10 10 10 10 10 10 10 10 10	· 30° · 40°	FISSI	ON TR	ACKAG	E (Ma)	TRA	VCKLENGTH	(microns)	0 10'20' Precisio	· 30' · 40' · 50' n (1/kigma)	

Appendix C

No. Ns Ni Na RATIO U(ppm) RHOs RHOi FT.AGEIMA No. Ns Ni Na RATIO U(ppm) RHOs RHOi FT.AGEIMA 1 00 218 70 0.457 45.6 17709-66 35812-46 88.7-145 2 55 111 5 90 0.457 45.6 17709-66 59821-46 88.7-145 2 55 111 5 90 0.568 47.7 1.966E-406 3.481E-406 38.7-145 2 88 125 248 70 0.509 62.2 2.455E-406 3.821E-406 93105 2 88 125 248 70 0.420 0.500 95.7 2.255E-406 3.932-105 2 10 2.16 70 0.500 62.0 420 0.5012 66.116 2 11 23 71 13 5 0.255 54.0 11641E-406 3.932E-406 33115 2 11 2 20 0.200 95.7 54.4 2.266E-406 3.3.170E-406 93105 2 11 2 2 2.000 1.0501 35.4 2.266E-406 3.1.1-34 1 103 165 60 0.201 35.4 2.266E-406 3.1.1-34 1 103 165 00 0.500 95.7 2.3.251E+406 9.3.1.234 1 103 165 00 0.500 95.7 2.3.251E+406 9.3.1.234 1 103 165 00 0.501 35.4 2.266E-406 3.1.1-34 1 1317 2.991 3.51 2.2092E-406 4.277E-406 9.359-2.566 1 1517 2.991 3.51 2.002E-406 4.125E-406 1 1517 2.991 3.51 2.002E-406 4.125E-406 1 1517 2.991 3.51 2.002E-406 4.125E-406 1 1517 2.991 4.128E-406 9.917-80 2 474E-400 1.1 Polet Age = 924 - 3.0.Ma 2 400 16 105 1.6008.406 2 474E-400 1.1 Polet Age = 924 - 3.0.Ma 2 400 16 105 1.255 for CN 5 glas 12.5 ppm 4 9.0 16 0.514 - 0.011 1 Polet Age = 924 - 3.0.Ma 2 400 16 9.90E-405e-42.3.0.Ma 2 400 16 9.90E-405e-42.3.0.Ma 2 400 16 9.90E-405e-42.3.0.Ma 2 400 16 10 9.90E-405e-52.0.0016 2 474 4.0001 2 440 4.125 4.001	IRRADI	ATIO	N LUC.	22-21					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
2 5 113 50 0.487 456 1719E-06 3.531E-06 887-147 2 6 110 50 0.468 47-147 1970E-06 3.63E-466 887-147 2 8 147 20 0.568 47-12 7.768E-06 3.92E-06 938-161 7 8 108 40 0.537 544 2.266E-06 4.219E-06 938-161 7 8 108 40 0.537 544 2.266E-06 4.219E-06 938-161 7 8 108 40 0.537 544 2.266E-06 4.219E-06 938-161 7 8 108 60 0.360 444 179E-05 3.94E+06 938-105 8 9 72 2.455E+06 3.90E+06 3.66-116 11 2 21 10 2.501 6.00 2.90 16.96E+06 3.97E+06 938-105 12 11 2.2 100 0.500 444 179E-05 3.94E+06 93.0-104 12 18 2.2 100 0.500 444 179E-05 3.94E+06 93.0-104 13 8 150 0.500 444 1799E-05 3.94E+06 93.0-104 14 103 8 17, 23 142 25 0.514 1145 4.552E+06 93.75-137 14 20 26 00 0.500 774 1145 4.552E+06 93.75-137 15 142 25 0.514 1145 4.552E+06 93.75-137 15 142 26 00 0.507 754 1145 4.552E+06 93.27-137 15 73 142 25 0.514 1145 4.552E+06 93.27-137 16 73 142 26 01 0.500 774 109 8-275 17 73 142 25 0.514 1145 4.552E+06 93.27-137 18 48 96 25 0.400 98-275 15 72 91 256 01 9.504 15 73 142 25 0.514 1145 4.552E+06 93.27-137 18 48 96 25 0.400 98-275 15 72 91 256 01 9.504 15 73 142 25 0.514 1145 4.552E+06 93.27-137 18 48 96 25 0.400 98-275 19 18 96 6.000E+06 1136-146 10 11 20 20 38 24 0.256 319 1.302E+06 4.125E+06 93.7-137 18 48 96 5.304 20 413 54-130 20 21 33 2002 174 10 01 20 20 38 73 4.5528 06 100 93.2-233 20 21 4.001 20 20 38 73 4.5528 06 100 93.2-233 20 21 4.001 20 20 38 73 4.5528 06 100 5.598 20 21 4.500 20 21 4.500 20 21 4.500 20 21 4.500 20 21 4.500 20 21 4.500 20 22 20 20 20 20 21 4.500 20 22 20 20 20 21 4.500 20 20 20 20 21 4.500 20 20 20 21 4.500 20 20 20 20 2	-	00	218	70	0.459	62.8	2.232E+06	4.866E+06	83.6-10.3
3 63 111 50 0.568 447 1960E-06 53469E-06 1033-145 5 83 147 30 0.578 943 772 2.768E-06 1053-145 5 10 216 70 0.509 22 2.548E-06 923-105 7 868E-06 933-105 7 80 40 0.579 543 2.258E+06 933-105 8 125 244 72 0.519 683 2.2718E+06 528E+06 933-105 8 125 244 72 0.519 683 2.238E+06 335-105 11 38 71 35 0.533 409 1.641E+06 350-106 11 38 71 35 0.533 409 1.641E+06 350-106 11 38 71 35 0.533 409 1.641E+06 350-106 11 38 71 35 0.530 597 2.312E+06 1136-145 13 148 296 100 0.500 597 2.312E+06 1136-145 13 148 296 100 0.500 397 2.312E+06 1136-145 13 148 296 100 0.500 397 2.312E+06 1136-145 13 148 296 100 0.500 397 2.312E+06 1136-145 13 142 25 0.051 1145 4 1562E+06 1038-125 13 142 25 0.051 1145 54 1562E+06 1038-224 13 142 25 0.0603 254 1148E+06 136-145 13 12 291 33 24 0.526 319 1302E+06 2.4498 15 12 291 3302E+06 2.24498 15 12 291 3302E+06 2.944-96 15 17 291 33.02E+06 2.944-96 15 17 291 33.02E+06 2.944-96 15 17 291 33.02E+06 2.944-96 15 17 291 3302E+06 2.944-96 16 10 136-145 15 17 291 3302E+06 2.944-96 16 10 136-145 16 10 136-145 17 19 20 11 56 16 10 10 10 16 16 10 10 16 10 19 16 10 10 17 145 17 291 3302E+06 2.441E+06 17 145 2 10 10 1 16 10 11 16 2.15 pm 17 10 2 9.690E+05 3.0 m 18 10 2 9.560E+03 18 0 0 2 9.55 10 10 13 78.55 10 10 5 glas 12.5 pm 18 00 16 48 2 9.54 - 3.0 m 19 10 2 9.690E+05 m 10 10 1 10 10 10 10 10 10 10 10 10 10 10	0	55	113	50	0.487	45.6	1.719E+06	3.531E+06	88.7-14.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	63	111	50	0.568	44.7	1.969E+06	3.469E+06	103.3-16.5
$\int_{1}^{2} \frac{13}{100} \frac{147}{100} = 0.537 + 34.4 + 275 + 66.6 + 165.6 + 165.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 161.1 + 65.2 + 160.1 + 25.2 + 161.1 + 25.2 + 161.1 + 25.2 + 25.$	4	24	268	20	0.463	77.2	2.768E+06	5.982E+06	84.4–9.4
$\int_{1}^{2} \frac{10}{10} \left(\frac{10}{10} - \frac{10}$	ŝ	82	147	86	0.578	8.86	4.427E+06	7.656E+06	105.3-14.5
$ \int_{1}^{2} 2^{2} 0 + \frac{1}{2} \int_{1}^{2} 0 +$	- 	01	017	5 5	202.0	770	00+300+700	4.021E+00	1.11-0.26
$\int_{1}^{9} \frac{1}{10} \int_{1}^{2} \frac{2.8}{10} \int_{1}^{2} \frac{1}{10} \int_{1}^{2}$	- 0	00	100	₽ F	100.0	t; t; 0;	2,120,004	5 205E - 00	1.01-0./6
$\int_{1}^{2} \int_{1}^{2} \int_{1$	~ ~ ~	5	547 247	77	0.12	60 G	2./13E+06	5.295E+06	5.3-10.5 2 0 10 2 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ہ م	52	150	8 8	0.420	6.60 7 0 2	1 641E+06	3 00/E+06	76.6 11.6
$\int_{1}^{1} \int_{1}^{2} \int_{1$	2 =	6 8	07 F	8 %	0.420	40.6	1.041E+00	3.170E±06	97 5-19 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	3 =	22	8 001	0.500	4.4	1.719E+05	3.438E+05	91.1-33.7
14 103 165 60 0.624 55.4 2.682E+06 4.297E+06 113.6145 15 440 276 100 0.307 55.6 2.188E+06 0.4.232E+06 03.8-224-9.85 16 38 60 0.007 77.4 1.188E+06 0.308-240 18 48 96 2.5 0.510 1145 45.605 03.1-16.0 18 48 96 2.5 0.500 1.300 E+06 0.317-116.0 19 18 39 4.2 0.420 11.16.2 11 16.2 11.16.2 11.16.2 03.1-16.0 11.16.2 03 2.1-16.0 Area of basic unit = 6.4E-07 cm-2 CH 100LARED = 4.30162 WTH 19 DEGREES OF FREEDOM Foli square0 = 97.7% CH 20LARED = 4.30162 WTH 19 DEGREES OF FREEDOM Foli square0 = 97.7% CARRELATORE 0 F SQR(N) = 13.76223 NsNi = 0.507 - 0.016 MEAN RATIO = 0.514 - 0.011 Pooled Age = 92.4 - 3.6 Ma Wein Age = 92.4 - 3.6 Ma	13	48	296	100	0.500	59.7	2.312E+06	4.625E+06	91.1–9.4
$\begin{bmatrix} 15 & 140 & 276 & 100 & 0.507 & 55.6 & 2.18BE+06 & 313EB+06 & 92.49.8 \\ 16 & 38 & 45 & 25 & 0.501 & 77.4 & 3.00BE+06 & 190BE+06 & 190B-257 \\ 18 & 48 & 96 & 25 & 0.500 & 77.4 & 5.00BE+06 & 93.7-13.7 \\ 19 & 38 & 24 & 0.362 & 13.9 & 1.302B+06 & 91.7-162 \\ 1517 & 291 & 332 & 2.092E+06 & 4.125E+06 & 93.7-23.1 \\ 20 & 20 & 38 & 24 & 0.252 & 13.9 & 1.302BE+06 & 4.125E+06 & 93.2-261 \\ 1517 & 291 & 332 & 2.092E+06 & 4.125E+06 & 93.2-261 \\ 3127 & 291 & 3522 & 2.092E+06 & 4.125E+06 & 93.2-261 \\ 20 & 1830 & 180 & 180 & 13.762.3 \\ 20 & 20 & 38 & 24 & 0.256 & 93.4 & 14.19 & DEGREES OF FREEDOM \\ Felt sourced) = 97.9 & 700 & 13.762.3 \\ 20 & 20 & 20 & 300 & 13.762.3 & 2.092E+06 & 4.125E+06 & 93.2-261 \\ 20 & 20 & 20 & 300 & 566.2094 & 2.471E+06 & 93.2-261 & 5.056.9 \\ 20 & 20 & 20 & 2.471E+06 & 93.2-200 & 13.762.3 & 2.092E+06 & 4.125E+06 & 93.2-261 & 5.056.9 \\ 20 & 20 & 20 & 2.471E+06 & 93.2-200 & 13.762.3 & 2.092E+06 & 4.125E+06 & 93.2-261 & 5.056.9 \\ 20 & 20 & 20 & 20 & 30.8 & 56.50.94 & 2.041 & 19 & DEGREES OF FREEDOM \\ Feit sourced = 9.24 - 3.6 Ma & 2.041 & 2.001 & 2.001 & 2.001 & 5.000 & 0.001 & 0.001 & 0.000 & 0.000 & 0.001 & 0.000 & 0$	4	03	165	99	0.624	55.4	2.682E+06	4.297E+06	113.6-14.5
$\begin{bmatrix} 6 & 38 & 65 & 50 & 0.603 & 254 & 11.88E+06 & 1969E+06 & 109.8-227 \\ 17 & 73 & 142 & 55 & 0.514 & 14.45 & 456E+06 & 93.7-137 \\ 18 & 88 & 92 & 0.402 & 18.7 & 6.698E+06 & 93.7-137 \\ 20 & 38 & 24 & 0.226 & 319 & 1302E+06 & 9.41-166 \\ 5.001E+06 & 0.41E+06 & 9.42-241 \\ 1517 & 291 & 53.2 & 2.092E+06 & 4.125E+06 \\ Area of basic unit = 6.4E+07 cm-2 \\ TH SQUARED = 4.391692 WTH 19 DEGREES OF FREEDOM CHISKIPACE OF SQR(N) = 13.76233 \\ 1517 & 291 & 53.2 & 2.092E+06 & 4.125E+06 \\ Area of basic unit = 6.4E+07 cm-2 \\ CHI SQUARED = 4.391692 WTH 19 DEGREES OF FREEDOM CHISKIPACE OF SQR(N) = 13.76233 \\ Nami = 6.907 - 0.016 \\ Nami = 0.907 - 0.011 \\ Poind Age = 9.34 - 3.0 Ma \\ Wound Age = 9.36 - 3.0 Ma \\ Wound Age = 9.36 - 3.0 Ma \\ Wound Age = 9.36 - 3.0 Ma \\ Wound Mare = 0.00\% \\ Woun$	15	40	276	100	0.507	55.6	2.188E+06	4.312E+06	92.4-9.8
17 73 142 25 0.514 1145 4560E+06 937-137 138 48 96 2.5 0.500 77.4 3.000E+06 0.001E+06 93.1-16.2 19 13.00E+06 0.001E+06 91.1-16.2 15.1 2991 2.2 0.3 2.4 0.526 31.9 1.300E+06 2.474E+06 95.9-266 15.1 27.2 2092E+06 4.125E+06 95.9-266 15.1 27.8 2.2 2.092E+06 4.125E+06 95.9-266 15.1 27.8 2.2 2.092E+06 4.125E+06 95.9 2.2 2.092E+06 4.125E+06 95.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	16	38	63	50	0.603	25.4	1.188E+06	1.969E+06	109.8-22.7
$\begin{bmatrix} 18 & 48 & 96 & 25 & 0.400 & 774 & 3.000E+06 & 6.000E+06 & 911-162 \\ \hline 1817 & 291 & 33 & 24 & 0.256 & 139 & 1.502E+06 & 912-241 \\ 20 & 20 & 38 & 24 & 0.256 & 139 & 1.502E+06 & 4.125E+06 & 932-241 \\ \hline Area of basic unit = 6.4E-07 cm-2 & 732 & 2.092E+06 & 4.125E+06 & 932-241 \\ Area of basic unit = 6.4E-07 cm-2 & 738 & 25.02E+06 & 4.125E+06 & 932-241 \\ \hline Area of basic unit = 6.4E-07 cm-2 & 738 & 75.02E+06 & 4.125E+06 & 932-241 \\ \hline Area of basic unit = 6.4E-07 cm-2 & 738 & 75.02E+06 & 4.125E+06 & 932-241 \\ \hline Area of basic unit = 6.4E-07 cm-2 & 738 & 75.02E+06 & 4.125E+06 & 953-266 & 942-241 \\ \hline Area of basic unit = 6.4E-07 cm-2 & 738 & 75.02E+06 & 4.125E+06 & 953-266 & 944 & 788 & 7$	17	73	142	25	0.514	114.5	4.562E+06	8.875E+06	93.7-13.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	48	96	25	0.500	77.4	3.000E+06	6.000E+06	91.1–16.2
20 20 38 24 0.256 31.9 1.302.406 2.474E-06 959-266 1517 2991 53.2 2.092E+06 4.125E+06 9559-266 Area of basic unit = 6.4E-07 cm-2 CH1 SQUARED = 4.391692 WTTH 19 DEGREES OF FREEDOM Fchi squared) = 97.7% CORRELATOR COEFFECT = 0.994 VARIANCE OF SQR(N) = 13.76223 NoNi = 0.507 - 0.016 MEAN RATIO = 0.514 - 0.011 Pooled Age = 9.2.4 - 3.6 Ma Mean Age = 9.2.4 - 3.6 Ma	19	20	39	4	0.462	18.7	6.696E+05	1.451E+06	84.2-24.1
1517 2901 53.2 2.092E+06 4.125E+06 Area of basic unit = 6.4E-07 cm-2 CHISQUARED = 4.391692 WITH 19 DEGREES OF FREEDOM CHISQUARED = 4.391692 WITH 19 DEGREES OF FREEDOM CHISQUARED = 97.96 CORRELATION COEFFICIENT = 0.984 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 6.662644 VARIANCE OF SQR(N) = 13.76223 NSNI = 0.977 - 0.011 Pooled Age = 92.4 - 3.6 Ma MEAN RATIO = 0.514 - 0.011 Pooled Age = 92.4 - 3.6 Ma Mean Age = 92.4 - 3.6 Ma Mean Age = 92.4 - 3.6 Ma Mean Age = 92.4 - 3.6 Ma Sorter Age = 92.4 - 3.6 Ma Mean Age = 92.6 - 3.0 Ma Control Age = 92.6 - 3.0 Ma Control Age = 92.6 - 3.0 Ma Sorter Age = 93.6 - 3.0 Ma Control Age = 92.6 - 3.0 Ma Sorter Age = 93.6 - 3.0 Ma Control Age = 92.6 - 3.0 Ma Sorter Age = 93.6 - 3.0 Ma Control Age = 92.6 - 3.0 Ma Sorter Age = 92.6 - 3.0 Ma Control Age = 92.6 - 3.0 Ma Sorter Age = 92.6 - 3.0 Ma Control Age = 92.6 - 0.0 Ma Sorter Age = 92.6 - 3.0 Ma Control Age = 92.6 - 0.0 Ma Sorter Age = 92.6 - 3.0 Ma Control Age = 92.6 - 0.0 Ma Sorter Age =	20	20	38	24	0.526	31.9	1.302E+06	2.474E+06	95.9–26.6
Area of basic unit = 6.4E-07 cm-2 CH2UARED = 97.7% CH2UARED = 97.7% CORRELATOR OF SOR(N) = 0.304 VARIANCE OF SOR(N) = 0.304 VARIANCE OF SOR(N) = 13.76223 NSNI = 0.507 - 0.016 MEAN RATIO = 0.514 - 0.011 Pooled Age = 92.4 - 3.6 Ma Wean Age = 92	15	112	1667			53.2	2.092E+06	4.125E+06	
CHI SQUARED = 4.391692 WITH 19 DEGREES OF FREEDOM Rehi squared) = 97.7% CRIARLATOR COEFTCENT = 0.984 VARIANCE OF SQR(N) = 6.65294 VARIANCE OF SQR(N) = 6.65294 VARIANCE OF SQR(N) = 6.65294 VARIANCE OF SQR(N) = 13.7622 NaNi = 0.507 - 0.016 MEAN RATIO = 0.514 - 0.011 Pooled Age = 92.4 - 3.6 Ma Mean Age = 92.4 - 3.6 Ma M	Area of 1	basic t	mit = 6	6.4E-07	, cm-2				
Ns/Ni = 0.507 - 0.016 MEAN RATIO = 0.514 - 0.011 Pooled Age = 92.4 - 3.6 Ma Wean Age = 92.4 - 3.6 Ma Wean Age = 92.4 - 3.6 Ma % Writiator = 0.00% % Variation = 0.00% % Second Lapse a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 9.690E+056m-2; ND = 3403 P-10-97-5 -10^{-10}		04022	HI SQU (chi squ ORREI ARIAN ARIAN	UAREL Lared) = LATIO VCE OF ICE OF	D = 4.3916 = 97.7 % N COEFF F SQR(Ns) F SQR(Ni)	592 WITH 1 10 10 11 11 11 11 13 10 12 13 13 12 13 13 13 13 13 13 13 13 13 13 14 14 14 15 14 14 14 15 14 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	9 DEGREES (984	OF FREEDOM	
Pooled Age = 92.4 - 3.6 Ma Weam Age = 92.4 - 3.6 Ma <i>Control Age</i> = 93.6 - 3.0 Ma <i>Control Age</i> = 93.6 - 3.0 Ma % Writiator = 0.00% Ages calculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 9.600E+056m-2: ND = 3403 B-10-97-5 -10^{-10} $-10^{$		ΖŽ	[s/Ni = IEAN F	0.507 - 2ATIO :	-0.016 = 0.514 -	0.011			
Ages calculated using a zeta of 378.8–5.5 for CN 5 glass 12.5 ppm RHO D = 9.690E+05cm-2; ND = 3403 = -10-97-5 = -10-97-5		⊈ ≥ O %	ooled A Iean Ag <i>entral</i>	ge = 9 ge = 9 Age = 1 ion = 0	2.4 - 3.6 3.6 - 3.0 92.4 - 3.3 0.00%	Ma Ma 1 Ma			
5-10-97-5 5-10-97-5 		A R	.ges cal HO D =	culated = 9.690	using a ze)E+05cm-2	ta of 378.8- 2; ND = 3-	-5.5 for CN 5 403	glass 12.5 ppm	
6-10-97-5 6-10-97-5 6-10-97-5 10 10 10 10 10 10 10 10 10 10									
			5-1	0-97-5				5-10-97-5	
	1 <u>.</u> *				4	Ŀ 0	5-10-97-5 ML: 12.93		
			~		. т	- 	Std Dev = ' 1.6. N= '100'	••••••••••••••••••••••••••••••••••••••	••••
	4 % S				. N			•	::
V: 0 50 100 150 200 5 10 15 20 33 34 35 34 40 15 30 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35	ц 	7	5	لر	-			% re	alative error
		. 20.	.100.	. 150	. 200.	TEACY I ENCT	.15' '20'	. 32.	. 8.

5-10-97-4 Apatite

IRRADIATION LU573-02 COUNTED BY: M. RAAB 23/06/99

F.T.AGE(Ma) 129.5-34.9 1.289E+06 RHOi 9.375E+05 RHOs U(ppm) 17.0 RATIO 0.727 Na 40 ïŻ 33 24 $\mathbf{N}_{\mathbf{S}}^{\mathbf{N}}$ No. _

24 33 17.0 9.375E+05 1.289E+06

Area of basic unit = 6.4E-07 cm-2

CHI SQUARED = 0 WITH 0 DEGREES OF FREEDOM Pichi squared) = 100.0,6 CORRELATION COEFICIENT = 1.000 VARIANCE OF SQR(Ni) = 0 VARIANCE OF SQR(Ni) = 0

Ns/Ni= 0.727 - 0.195 MEAN RATIO= 0.727 - 0.000 Pooled Age = 129.5 - 34.9 Ma Mean Age = 129.5 - 2.9 Ma *Central Age =* 129.5 - 34.9 Ma % Variation = 0.00% Ages calculated using a zeta of 3788-5.5 for CN 5 glass 12.5 ppm RHO D = 9.500E+05cm-2; ND = 3403

. 160[.]

			200						
	IRRA	DIATIC	N LU5'	73-05	0	OUNTED B	Y: M. RAAB 2	4/06/99	
a)	No.	$N_{\rm S}$	N	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1	-	~	14	20	0.571	3.9	1.786E+05	3.125E+05	108.2-48.0
	61 (57	154	88	0.370	49.7	1.484E+06	4.010E+06	70.3-11.0
	04	4 4	16	8 9	100.0	4.02 4.3	9 375F+04	2.106E+00 3.438E+05	51 9-23 9
	t vo	15	18	202	0.500	11.6	4.688E+05	9.375E+05	94.8-30.0
	9	12	24	09	0.500	7.8	3.125E+05	6.250E+05	94.8-33.6
	L	67	163	45	0.411	70.2	2.326E+06	5.660E+06	78.0-11.5
	×	28	171	56	0.339	59.2	1.618E+06	4.771E+06	64.4-9.9
	9 01	81 0	8 8 8	£1 \$	0.375	37.2	1.125E+06	3.000E+06	73.0.10.2
	2 =	5 6	4 75	ę 6	0.406	L'11	5.804E+05	1.429E+06	77.1–18.0
	12	16	4	100	0.364	8.5	2.500E+05	6.875E+05	69.1-20.2
	13	LL	243	80	0.317	58.9	1.504E+06	4.746E+06	60.2-8.0
	14	25	82	40	0.305	39.7	9.766E+05	3.203E+06	57.9-13.3
	15	21	207	40	0.343	100.3	2.773E+06	8.086E+06	65.2-9.1
	0 1	0.5	208	8	0.361	40.5 2 2	1.172E+06	3.250E+06	68.5-9.4
	18	10	4 ×	5 6	0.500	0.0	2.079E+05	4 018F±05	94.8-33.0 94 8-38 7
	61	55	151	6 6	0.364	73.1	2.148E+06	5.898E+06	69.2-11.0
	20	14	38	25	0.368	29.5	8.750E+05	2.375E+06	70.0-21.9
I		684	1868			29.4	8.696E+05	2.375E+06	
	Area o	of basic	unit = 6	5.4E-07	cm-2				
		01077	CHI SQI P(chi squ CORREI VARIAN	JARED lared) = LATION ICE OF	= 3.9563 98.8 % I COEFFI SQR(Ns)	73 WITH 19 CIENT = 0.5 = 4.837097	9 DEGREES C	DF FREEDOM	
		-	VAKIAD			86184.01 =			
		22	Ns/Ni = MEAN F	0.366 - LATIO =	- 0.016 = 0.397 -	0.017			
		H 2	Pooled A Mean Ag	.ge = 69 5e = 75	9.5 - 3.5 5.3 - 3.7	Ma Ma			
		U of	C <i>entral</i> 2 % Variati	4 <i>2e = 6</i> ion = 0.	<u>9.5 - 3.3</u> .00%	Ma			
			Ages cal RHO D =	culated = 1.008	using a zet E+06cm-2	a of 378.8- ; ND = 34	5.5 for CN 5 g 403	lass 12.5 ppm	
			6-1	0-97-4				. 10.01.0	
°.	۲ <u>.</u> ۴				.40	Ľ	6-10-97-4 ML: 13.45	4-76-01-9	L.110
80. 80. 60. 60.	ີ່ ທີ່ ທີ່ ຈໍ ທີ່ ທີ່ ອີ ທີ່ ອີ		4		52 30 52 30		2 4 5 4 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	، من الم نابنا	
L · 50·	н і і і і	$\overline{\}$	7	ļ	, ₹	, - -		*	L° 50° relative error
	., E	s: on	0 11 TRACK	00. AGE (M	150°	10, .20, LENGTI	*15' *20' Н(microns)	.43'	.11 [.] .20 .30 .40 [.] ision (1/sigma)

6-10-97-2	Apatite							6-10-9	7.4 Ap	atite				
IRRADIA	TION LU	573-04	0	COUNTED B	Y: M. RAAB 2	4/06/99		IRRAI	DIATIO	N LU57	'3-05	ö	DUNTED B	Y: M. RAA
No. N	s Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	N	Na	RATIO	U(ppm)	RHOs
1	7 61	50	0.443	24.1	8.438E+05	1.906E+06	82.4-19.1	-	×	14	0Ľ	0.571	3.9	1.786E+0
3	5 69	56	0.522	24.3	1.004E+0.6	1.925E+06	97.0-20.1	7	57	154	09	0.370	49.7	1.484E+0
с, С,	6 84	70	0.429	23.7	8.036E+05	1.875E+06	79.8-16.0	ω.	64,	Ξ	8	0.387	26.9	8.398E+0
4 v 4 č	60I /	080	0.431	20.9	9.180E+05	2.129E+06	80.3-14.1	4 4	0 1	22	8	0.273	5.4 <u>1</u>	9.373E+0
0 ° 0 Y	5 50 50	000	0.467	0.40 20.5	7 500F±05	2.088E+U0	/1.5-14./	n v	<u>c</u> c	0 K	8 9	0.500	0.11	3 175F±0
9	1 160	6 <u>0</u>	0.381	31.6	9.531E+05	2.500E+06	71.0-10.8	~	19	163	8 4	0.411	70.2	2.326E+0
8 4	5 113	60	0.407	37.2	1.198E+06	2.943E+06	75.8-13.4	×	58	171	56	0.339	59.2	1.618E+0
9 4	5 128	50	0.359	50.6	1.438E+06	4.000E+06	67.0-11.6	6	18	48	25	0.375	37.2	1.125E+0
10	3 106	56	0.406	37.4	1.200E+06	2.958E+06	75.5-13.8	10	20	22	48	0.385	21.0	6.510E+0
= 5 4 4	0 110	09	0.364	36.2	1.042E+06	2.865E+06	67.8-12.6	= 5	26	4 2	P 99	0.406	17.7	5.804E+0
7 5	100	00	0.454	0.00	0.770E+U5	2.422E+00	6.11-0./0	12	01	ŧ ć	8	0.204	0.0	1 504E+0
14	7 118	90	0 398	38.8	1 224E+06	3.073E+06	74.2-12.9	14	50	f 8	84	0.305	2.95	9 766E+0
15	86 8	60	0.286	32.3	7.292E+05	2.552E+06	53.3-11.5	15	12	207	6	0.343	100.3	2.773E+0
16 5	4 129	45	0.419	56.6	1.875E+06	4.479E+06	77.9–12.8	16	75	208	100	0.361	40.3	1.172E+0
17 4	1 113	63	0.363	35.4	1.017E+06	2.803E+06	67.6-12.4	17	12	24	70	0.500	6.6	2.679E+0
18 3	8 92	70	0.413	26.0	8.482E+05	2.054E+06	76.9–14.9	18	6	18	70	0.500	5.0	2.009E+0
19 2	9 70	30	0.414	46.1	1.510E+06	3.646E+06	77.1–17.1	19	55	151	40	0.364	73.1	2.148E+0
20 4	4 135	70	0.326	38.1	9.821E+05	3.013E+06	60.8-10.6	20	14	38	25	0.368	29.5	8.750E+0
81.	4 2065			32.9	1.026E+06	2.602E+06			684	1868			29.4	8.696E+0
Area of ba	sic unit =	6.4E-07	cm-2					Area o	of basic	unit = 6	.4E-07	cm-2		
	CHI S(P(chi sc CORRI VARIA VARIA	DUAREI puared) = ELATIO NCE OF NCE OF	D = 4.2045 = 98.2 % N COEFFI F SQR(Ns) 7 SQR(Ni)	65 WITH 1 CIENT = 0.5 = .5696282 = 1.900847	9 DEGREES C 892	DF FREEDOM			O E O 7 7	CHI SQU (chi squ CORREL /ARIAN /ARIAN	JARED ared) = ATION CE OF CE OF	= 3.95637 98.8 % I COEFFIC SQR(Ns) = SQR(Ni) =	3 WITH 19 MENT = 0.9 = 4.837097	DEGREE
	Ns/Ni = MEAN	0.394 - RATIO	- 0.016 = 0.401 -	0.012					44	√s/Ni = ∕IEAN R	0.366 – ATIO =	0.016 = 0.397 - (0.017	
	Pooled Mean A <u>Central</u> % Varia	Age = 7 Age = 7 Age = 3 Ation = 0	3.4 - 3.5 j 4.7 - 2.7 j 73.4 - 3.3 1.00%	Ma Ma Ma					HZ G6	ooled A Aean Ag <i>Central A</i> & Variati	ge = 69 e = 75 ge = 6 on = 0.	0.5 - 3.5 N 0.3 - 3.7 N 0.5 - 3.3 I 0.0%	1a 1a Ma	
	Ages ci RHO D	alculated = 9.890	using a zet)E+05cm-2	a of 378.8 - ; ND = 3	-5.5 for CN 5 g 403	lass 12.5 ppm			A R	Ages calc tHO D =	ulated 1 1.008	using a zeta E+06cm-2;	t of 378.8 - ND = 34	5.5 for CN 103
	9	10-97-2				6-10-97-2				6- 1	0-97-4			
», », 4, 51, 61, 4, %	É		. 20 10 10 10		6-10-97-2 ML: 12-91 Std Dev = '1-19 N = '100'		• • • • • • • • • • • • • • • • • • •	אַיאָימיסייאָס		Ę		40, 20, 30, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		6-10-67-

₫ Apatite ATION LU573-07 COUNTED BY: M. RAAB 28/06/99	s Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	0 187 56 0.374 62.4 1.953E+06 5.218E+06 73.7-10.5	210 50 0.357 78.4 2.344E+06 6.562E+06 70.4-9.6	0 70 50 0.414 26.1 9.062E+05 2.188E+06 81.6-18.1	0 179 50 0.330 66.8 1.844E+06 5.594E+06 65.0-9.9	2 104 70 0.269 27.7 6.250E+05 2.321E+06 53.1-11.4	281 100 0.288 52.5 1.266E+06 4.391E+06 56.9-7.3 70 40 0.314 23.7 5.856E.05 3.734E.06 43.3 13.1	5 107 50 0.336 40.0 1.125E+06 3.344E+06 66.3-12.0	0 603 100 0.315 112.6 2.969E+06 9.422E+06 62.1–5.4	1 138 30 0.420 85.9 3.021E+06 7.187E+06 82.7-13.1	2 378 49 0.349 144.0 4.209E+06 1.205E+07 68.8-7.1	260 100 0.315 48.5 1.281E+06 4.062E+06 62.2-8.0	331 60 0.027 103.0 2.344E+05 8.620E+06 5.4-1.8	0 26 60 0.357 17.4 5.208E+05 1.458E+06 70.4-18.4 0 134 60 0.462 41.7 1.615E-06 2.400E-06 01.0.141	2 124 00 0.403 41./ 1.012E400 5.490E400 91.0-14.1 0 157 100 0.331 -20.3 8.125E405 2.453E406 65.3_10.5	2 268 50 0.254 100.1 2.125E+06 8.375E+06 50.1-6.9	066 3533 61.4 1.549E+06 5.135E+06	basic unit = 6.4E-07 cm-2	CHI SQUARED = 53.1708 WITH 16 DEGREES OF FREEDOM P(chi squared) = 0.0% P(chi squared) = 0.0% CARRELATION COEFFICIENT = 0.835 VARIANCE OF SQR(Ns) = 7.32128 VARIANCE OF SQR(Ni) = 20.17932	Ns/Ni = 0.302 - 0.011 MEAN RATIO = 0.319 - 0.024	Pooled Age = 59.5 - 2.5 Ma	Mean Age = 62.8 - 4.9 Ma Central Age = 60.9 - 5.4 Ma % Variation = 32.26%	Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.046E+06cm-2; ND = 3403	6-10-97-6	$\begin{bmatrix} 0.0 \\ 0.$	
Apatite TION LU	ï	187	210	62	179	5	182	107	603	138	378	260	331	20	151	268	5 3533	sic unit =	CHI S P(chi CORE VARL	Ns/Ni MEAl	Pooled	Mean Centra % Var	Ages (RHO]	Ű	4	ľ

6-10-97-5 Apatite

No.

2 12 4 15 114 117 118 119 20

100° 90° 80° 70° 60° F.T.AGE(Ma) 62.9–5.9 73.7–13.8 53.9–5.0 98.2–13.1 60.6–7.3 80.4–10.3 83.7–10.0 77.9-8.8 77.5-10.7 78.2-10.1 78.6-9.4 79.3-9.8 5.8-11.7 82.8-13.6 Ξ 55.3-16. 50.4-6.0 53.3-7.9 65.1-8.8 75.0-8.7 • CHI SQUARED = 19.72343 WITH 19 DEGREES OF FREEDOM P(chi squared) = 0.4 % CORRELATOR COEFENT = 0.923 VARIANCE OF SQR(Nb) = 3.847393 VARIANCE OF SQR(Ni) = 14.2869 6-10-97-5 8.203E+06 4.781E+06 7.875E+06 8.844E+06 8.844E+06 1.200E+07 1.681E+07 1.681E+07 1.381E+07 1.384E+07 1.365E+07 1.326E+07 1.326E+07 1.326E+07 1.3382E+07 1.33822E+07 1. Ages calculated using a zeta of ~378.8-5.5~ for CN 5 glass 12.5 ppm RHO D = 1.027E+06cm-2; ND = 3403 .128E+07 356E+07 ę 1.044E+07 RHOi COUNTED BY: M. RAAB 25/06/99 يب 2.938E+06 4.408E+06 4.408E+06 1.875E+06 3.3375E+06 3.3575E+06 3.652E+06 5.500E+06 5.500E+06 5.517E+06 5.51 3.790E+06 .646E+05 6-10-97-5 RHOs U(ppm) 15.5 137.3 165.0 99.8 58.2 95.8 95.8 95.8 1111.1 127.1 Ns/Ni = 0.363 - 0.010 MEAN RATIO = 0.377 - 0.014 Pooled Age = 70.2 - 2.5 Ma Mean Age = 72.8 - 3.2 Ma *Central Age* = 71.7 - 3.1 Ma % Variation = 12.11% . 40 RATIO 0.3270.3250.3360.2780.5090.5130.4160.4130.4130.4130.4330.4160.4330.41050.40.429 0.403 0.286 0.260 0.325 0.392 .401 0.432 381 Area of basic unit = 6.4E-07 cm-2 6-10-97-5 **IRRADIATION LU573-06** Na 2020 20 20 ī 171 297 214 215 215 215 234 234 49 4900 361 186 105 126 283 22 22 33 68 87 96 1778 $\mathbf{N}_{\mathbf{S}}$ 89 104 4 94 58 1 2 60 88 58 93 107 8

TRACK LENGTH

TRACKAGE (Ma)

FI SSION

6-10-9	A 41	patite							
IRRA	DIATIC	ON LU5	73-09	0	OUNTED B	Y: M. RAAB 2	28/06/99		
No.	$N_{\rm s}$	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
-	147	324	70	0.454	83.3	3.281E+06	7.232E+06	92.6–9.4	
0	30	58	25	0.517	41.8	1.875E+06	3.625E+06	105.4-23.8	
ω ₹	112	291	100	0.385	52.4	1.750E+06	4.547E+06	78.6-8.9	
4 v	000	0C1 77	99	0.403	4.66 30.9	3.123E+00 1 079E+06	0.023E+U0 2 679E+06	82 7-18 2	
9	25	1 8	100	0.400	10.8	3.750E+05	9.375E+05	81.7-19.8	
٢	70	180	50	0.389	64.8	2.188E+06	5.625E+06	79.4-11.3	
× c	258	729	8	0.354	131.2	4.031E+06	1.139E+07	72.3-5.5	
10 م	277	791	88	0.350	142.4	4.328E+06	5.639E+00 1.236E+07	71.6-5.2	
11	36 176	86 432	100	0.419 0.407	61.9 77.8	2.250E+06 2.750E+06	5.375E+06 6.750E+06	85.5–17.1 83.2–7.7	
	1310	3408			73.3	2.445E+06	6.362E+06		
Area c	of basic	unit =	6.4E-07	, cm-2					
		CHI SQ P(chi sqi CORRE	UAREI Juared) = ILATIO) = 4.3572 = 64.8 % N COEFFIG	38 WITH 11 SIENT = 0.9	I DEGREES (93	DF FREEDOM		
		VARIAÌ VARIAÌ	NCE OI	F SQR(Ns) = F SQR(Ni) =	= 17.2772 = 50.62569				
		Ns/Ni = MEAN I	0.384 - RATIO	- 0.012 = 0.404 - 1	0.013				
		Pooled ∕ Mean Aı <i>Central</i> . % Variat	Age = 7 ge = 8 Age = 3 tion = 2	8.5 - 3.1 l 2.5 - 3.3 l 2.45%	Ma Ma <u>Ma</u>				
	. 1	Ages cal RHO D	lculated = 1.085	using a zet: 5E+06cm-2;	a of 378.8 – ; ND = 34	5.5 for CN 5 { 403	glass 12.5 ppm		
		6-1	6-76-01				6-10-97-9		
°, 4, 0; 0, 4, %				20, 30, 50		LU ML: 14.26 Std Dev = '1.83 N = '66 '	• 1	• • • • • • • • • • • • •	° ````
₩ - 0, [±]	s: on		AGE (M	a) T	TACK LENGTH	-15* *20* I(microns)	. 22' % rv . 22' 0 . 10' 20' 3	lative error 5 60 1 40 - 5 0 - 60 1 - 40 - 5 0 - 60 4 0 1 (1/signa)	

6-10-97-7 Apatite IRRADIA

Y: M. R	RH
OUNTED B	U(ppm)
0	RATIO
73-08	Na
N LUS	Ņ
IATIO	$N_{\rm s}$

No.

0.403 0.428 0.367 0.393 0.389 0.389 0.389 0.366 0.318 0.318

40 50 80 60 50 50 50

201 257 150 150 435 78 78 78 112 85 85 85 192

81 55 55 171 171 24 41 27 27 72

s

r 8 6

cm-2	
6.4E-07	
basic unit =	
Area of	

712 1847

CHI SQUARED = 1469618 WITH 8 DEGREES OF FREEDOM P(chi squared) = 93.8 % CORRELATION COEFICIENT = 0.997 VARIANCE OF SQR(Ns) = 7.909885 VARIANCE OF SQR(Ni) = 16.76437

Ns/Ni = 0.385 - 0.017 MEAN RATIO = 0.372 - 0.013

Pooled Age = 77.4 - 3.8 Ma Mean Age = 74.6 - 3.1 Ma *Central Age = 77.4 - 3.7 Ma* % Variation = 0.00%

Ages calculated using a zeta of ~378.8-5.5~ for CN 5 glass 12.5 ppm RHO D = 1.066E+06cm-2; ND = 3403

			6-10-97-12 Apatite
COUNTED BY: M. RAAB 28/06	66/9		IRRADIATION LU573-12 COUNTED BY: M. RAAB 29/0699
U(ppm) RHOs	RHOi	F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOS RHOi F.T.AGE(Ma)
30.7 1.188E+06 2.7	734E+06	91.0-12.7	1 66 196 42 0.337 79.8 2.455E+06 7.292E+06 72.4-10.4
28.6 1.312E+06 2	547E+06	107.8-14.7	2 25 55 12 0.455 78.4 3.255E+06 7.161E+06 97.6-23.6
26.8 9.844E+05 2.	391E+06	86.3-13.1	3 131 328 70 0.399 80.1 2.924E+06 7.321E+06 85.8-9.1
25.2 8.281E+05 2.3	250E+06	77.2-12.5	4 54 102 28 0.529 62.3 3.013E+06 5.692E+06 113.5-19.3
39.3 1.362E+06 3.	504E+06	81.5-12.4	5 18 70 20 0.257 59.9 1.406E+06 5.469E+06 55.4-14.7
34.0 1.312E+06 3.0	031E+06	90.7-12.0	6 52 143 28 0.364 87.3 2.902E+06 7.980E+06 78.2-12.8
			7 59 138 30 0.428 78.7 3.073E+06 7.187E+06 91.8-14.4 8 100 259 50 0.386 88.6 3.125E+06 8.094E+06 83.0-99
30.3 1.154E+06 2.	703E+06		505 1291 78.9 2.818E+06 7.204E+06
			Area of basic unit = 6.4E-07 cm-2
9794 WITH 5 DEGREES OF FR	REDOM		CHI SQUARED = 3.948555 WITH 7 DEGREES OF FREEDOM
FICIENT = 0.820 s) = .614093 i) = .4713013			CORRELATION COEFFICENT = 0.976 CORRELATION COEFFICENT = 0.976 VARIANCE OF SQR(Ni) = 13.65529 VARIANCE OF SQR(Ni) = 13.65529
- 0.021			Ns/Ni = 0.391 - 0.021 MEAN RATIO = 0.394 - 0.029
6 Ma 8 Ma 4 Ma			Pooled Age = 84.1 - 4.8 Ma Mean Age = 84.7 - 6.5 Ma <i>Central Age</i> = 84.1 - 4.6 Ma % Variation = 0.15%
eeta of 378.8 – 5.5 for CN 5 glass -2; ND = 3403	: 12.5 ppm		Ages calculated using a zeta of $378.8 - 5.5$ for CN 5 glass 12.5 ppm RHO D = 1.142E+06cm-2; ND = 3403
	6-10-97-10		6-10-97-12 6-10-47-12
40° 6 6-10-37-10 Mi: 14.28 Std Dev = '1' +1	Ĭ		8. (************************************
20° + 21° -	يىلىر	• • • • • • • • • • • • • • • • • • •	
10' -		% relative error	
'5''10''15''20' TRACK LENGTH(mi crons)	. 10.	20, 30, 20, 20, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	⁰ . 0 [.] 50 [.] 100 [.] 150 [.] 17. 10 [.] 15 [.] 10 [.] 15 [.] 10 [.] 15 [.] 10

97-10 Apatite	DIATION LU573-10
6-10-97-1	IRRADI

F.T.AGE(Ma)	91.0-12.7	107.8-14.7	86.3-13.1	77.2-12.5	81.5-12.4	90.7-12.0
RHOi	2.734E+06	2.547E+06	2.391E+06	2.250E+06	3.504E+06	3.031E+06
RHOs	1.188E+06	1.312E+06	9.844E+05	8.281E+05	1.362E+06	1.312E+06
U(ppm)	30.7	28.6	26.8	25.2	39.3	34.0
RATIO	0.434	0.515	0.412	0.368	0.389	0.433
Na	100	100	100	100	70	100
ï	175	163	153	14	157	194
$\mathbf{N}_{\mathbf{S}}$	76	28	63	53	61	\$
No.	1	0	ŝ	4	5	9

1.154E+ 30.3 421 986

Area of basic unit = 6.4E-07 cm-2

CHI SQUARED = 1.649794 WITH 5 DEGREE P(chi squared) = 65.4 % CORFACIATION COEFFICIENT = 0.820 VARIANCE OF SQR(Ns) = .614093 VARIANCE OF SQR(Ns) = .4713013

Ns/Ni = 0.427 - 0.025 MEAN RATIO = 0.425 - 0.021

Pooled Age = 89.5 - 5.6 Ma Mean Age = 89.1 - 4.8 Ma *Central Age = 89.5 - 5.4 Ma* % Variation = 0.01%

Ages calculated using a zeta of 378.8 - 5.5 for CN RHO D = 1.114E+06cm-2; ND = 3403

			7-10-97-2 Apatite				
BY: M. RAAB 29/06/99			IRRADIATION LU573-14 CC	OUNTED BY	: M. RAAB 2	66/90/6	
RHOs RHO	i I	FT.AGE(Ma)	No. Ns Ni Na RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
3.490F.+06 6.667E+i	-06	114.2-17.4	1 36 60 50 0.600	19.8	1.125E+06	1.875E+06	132.8-28.2
2 51 7E+06 4 601E+	, e	7 77 7	2 59 140 50 0.421	46.3	1 844E+06	4 375E+06	93.6-14.7
1.979E+06 6.562E+v	99. - 92	66.0-17.3	3 10 24 25 0.417	15.9	6.250E+05	1.500E+06	92.5-34.9
2.083E+06 4.271E+4	-0e	106.5-29.1	4 54 123 50 0.439	40.7	1.688E+06	3.844E+06	97.5-16.1
1.910E+06 4.427E+	-06	94.2-24.1	5 22 36 30 0.611	19.8	1.146E+06	1.875E+06	135.3-36.7
4.492E+06 7.227E+	-06	135.4-25.6					
2.686E+06 5.273E+	-06	111.1-18.6					
3.021E+06 4.583E+	-06	143.4-34.5					
2.637E+06 4.785E+	-06	120.1-28.9					
11002LT 007LT00	5	0.02-0.211					
2.948E+06 5.735E+	-06		181 383	30.9	1.380E+06	2.919E+06	
			Area of basic unit = $6.4E-07$ cm-2				
9 DEGREES OF FREEDC	MC		CHI SOUARED = 1.52838	WITH 4 D	EGREES OF	FREEDOM	
).931 5 9			P(chi squared) = 54.8 % CORRELATION COEFFIC VARIANCE OF SQR(NS) = VARIANCE OF SQR(NS) =	CIENT = 0.97 = 3.540615 9.35656	L1		
			Ns/Ni = 0.473 - 0.043 MEAN RATIO = 0.498 - 0	0.044			
			Pooled Age = $104.8 - 9.7$ M Mean Age = $110.4 - 10.1$ M Carrier Age = $104.9 - 9.6$ % Wainton = 0.04%	Ma Ma Ma			
-5.5 for CN 5 glass 12.5 p 3403	mqq		Ages calculated using a zeta RHO D = 1.181E+06cm-2;	t of 378.8 - 5 ND = 34	5.5 for CN 5 g 03	glass 12.5 ppm	
7-10-5	97-1	ð	7-10-97-2	-		7-10-07-2	
ML: 13.72 Std Dev = '1.01' N = '10' o F	.!.	• • • • • • •			7-10-97-2 ML: 13.84 Std Dev = '. 6 N= '4'	- - <u>-</u>	• • • • • • •
	•					•	•

7-10-97-1 Apatite

OUNTED B	U(ppm)
0	RATIO
73-13	Na
N LU5	Ni
DIATIC	Ns
IRRA	No.

	cm-2
	6.4E-07
619	unit =
349	basic
	Area of

61.7

49.5 70.6 45.9 47.6 77.7 56.7 56.7 56.7 51.5 51.5 114.3

0.523 0.547 0.547 0.302 0.488 0.488 0.481 0.622 0.659 0.551 0.551 0.551

30 115 115 116 116 116 116 128 53 63 63 63 74 108 44 49 68

67 29 20 22 23 23 23 23

8 6 0I 90

CHI SQUARED = 3.52432 WITH 9 D P(chi squared) = 63.5 % P(chi squared) = 63.2 % CORRELATION COEFICIENT = 0.93 VARIANCE OF SQR(NI) = 1.672885 VARIANCE OF SQR(NI) = 2.634949

Ns/Ni = 0.514 - 0.034 MEAN RATIO = 0.515 - 0.031

Pooled Age = 112.1 - 7.8 Ma Mean Age = 112.3 - 7.3 Ma *Central Age = 112.1 - 7.6 Ma* % Variation = 0.05%

Ages calculated using a zeta of 378.8 - RHO D = 1.162E+06cm-2; ND = 3

Appendix C

CK LENG

FISSION TRACKAGE

			-							
	IRRA	DIATI(SUL LUS	74-04	0	OUNTED B	Y: M. RAAB (13/07/99		
	No.	$_{\rm Ns}$	Ņ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
	-	53	117	200	0.453	11.3	4.141E+05	9.141E+05	86.0-14.4	
	7	52	III	50	0.468	43.0	1.625E+06	3.469E+06	88.9–15.1	
	. ч	88	198	20	0.444	76.7	2.750E+06	6.188E+06	84.4-11.0	
	4 v	77	205	0 q	0.400	00 C	0.8/3E+05 4.453E+06	1./19E+00 8 008F+06	/0.0-19.2	
	9	43	68	100	0.483	17.2	6.719E+05	1.391E+06	91.7-17.2	
	7	51	95	100	0.537	18.4	7.969E+05	1.484E+06	101.8-17.8	
	×	171	339	60	0.504	109.4	4.453E+06	8.828E+06	95.7–9.2	
	6	148	343	6	0.431	73.8	2.569E+06	5.955E+06	81.9–8.3	
	2 :	148	343	88	0.431	73.8	2.569E+06	5.955E+06	81.9-8.3	
	= 2	211	147	88	0.716	0.17	00+30667	0.2/0E+00 2 164E+06	C.UI-0.U2	
	13	25	201	200	0.446	5.4	1.953E+05	4.375E+05	84.8-20.5	
	14	15	3	100	0.652	4.5	2.344E+05	3.594E+05	123.4-41.1	
	15	43	116	100	0.371	22.5	6.719E+05	1.812E+06	70.5-12.7	
	16	192	409	100	0.469	79.2	3.000E+06	6.391E+06	89.1-8.0	
	17	68	129	25	0.527	6.66	4.250E+06	8.062E+06	100.0 - 15.1	
	18	135	224	02,	0.603	61.9	3.013E+06	5.000E+06	114.2-12.7	
	20 20	2020	69 X	100 45	0.377	21 I	3.125E+05 6 944E+05	8.281E+05 1 701E+06	71.7-18.9	
ĺ	24	2	ŕ	P	001-0	1.14	00171-00	001710111	0.07-0.11	
		1639	3357			38.0	1.498E+06	3.067E+06		
	Area o	of basic	: unit =	6.4E-07	cm-2					
			CHI SQ P(chi sqi CORREI	UARED uared) = I_ATION)= 12.635 : 15.2 % л СОРНЕТ	61 WITH 19) DEGREES (JF FREEDOM		
			VARIA	ACE OF	sQR(Ns)	= 10.26729 = 20.11234				
			Ns/Ni = MEAN I	0.488 - RATIO :	- 0.015 = 0.488 -	0.020				
			Pooled /	Age = 9	2.6 - 3.51	Ma				
			Mean A Central % Variat	$\frac{1}{2}e = 5$ $\frac{1}{2}e = 5$ $\frac{1}{2}e = 5$	2.0 - 4.5 2.7 - 3.8 .07%	Ma				
			Ages cal RHO D :	culated = 1.009	using a zet E+06cm-2	a of 378.8 - ; ND = 3:	5.5 for CN 5 g 355	glass 12.5 ppm		
			7-1	0-97-6						
F: 145°	.8 ₽.2				.40	L	7-10-97-6 ML: 12.57	7-10-97-6	r.130	
- 100 85			Æ	,	. 30 20		std Dev = '1.5' N = '101'	• • •	••••••••••••••••••••••••••••••••••••••	
	× - 3			A	÷ ۲			2%	L· 70'	
	., E	s: ON	TRACK	100° AGE (M	-150 ⁻ 1	5° 10°	*15**20* 1 (microns)	- 32' 0 - 10' - 20' Precis	.8. ∵30' 40' 50' lon (1/sigma)	

7-10-97-6 Anatite 110.7–35.0 101.3–34.8 97.1–23.1 82.6–25.7 82.6–25.7 82.6–25.7 82.6–25.7 82.6–25.7 85.6–21.8 87.0–18.4 101.3–25.5 101.3–25.5 93.5–22.1 93.5–22.1 93.5–22.1 95.5–21.1 127.7–19.5 141.4–40.1 127.7–19.2 127.7–19.2 127.7–19.2 127.7–19.2 127.7–20.2 101.1–24.1 127.7–23.5 141.4–40.1 127.7–23.5 144.4–0.1 127.7–23.5 144.4–0.1 127.7–23.5 144.4–0.1 127.7–23.5 144.4–0.1 127.7–23.5 144.4–0.1 127.7–23.5 144.4–1.5 127.7–23.5 144.4–1.5 127.7–23.5 144.4–1.5 127.7–23.5 144.4–1.5 127.7–23.5 144.4–1.5 127.7–23.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–24.5 144.4–1.5 127.7–1.5 144.4–1.5 127.4–1.5 144.4–1.5 127.4–1.5 144.4–1.5 F.T.AGE(Ma CHI SQUARED = 47700823 WITH 19 DECREES OF FREEDOM P(chi squared) = 96.6 % CORRELATION COEFTCIENT = 0.943 VARIANCE OF SQR(NS) = 1.247054 VARIANCE OF SQR(Ni) = 3.151817 Ages calculated using a zeta of ~378.8-5.5~ for CN 5 glass 12.5 ppm RHO D = $9.950E{+}05cm{-}2;$ ND = 33552.01093E+06 2.0183E+06 2.0183E+06 2.053E+06 2.0556E+06 2.0566E+06 2.0173E+06 2.0173E+06 2.0173E+06 2.011E+06 2.001E+06 2.001E+ 2.182E+06 RHOi COUNTED BY: M. RAAB 03/07/99 1.2508406 1.2508406 1.5528406 1.1728406 1.1728406 1.1728406 1.2892406 1.2892406 1.2892406 1.1468406 1.1468406 1.1468406 1.1468406 1.250840000000000000000000 1.125E+06 RHOs U(ppm) 27.4 Ns/Ni = 0.516 - 0.026 MEAN RATIO = 0.537 - 0.020 Pooled Age = 96.5 - 5.4 Ma Mean Age = 100.3 - 4.4 Ma *Central Age = 96.5 - 5.2 Ma* % Variation = 0.01% RATIO 0.5930.5420.5420.54190.5140.5140.5140.5370.5370.5370.5370.5500.5760.5640.5560.5Area of basic unit = 6.4E-07 cm-2 Na **IRRADIATION LU574-03** 12 30 20 36 6 64 8 ï 48 85 29 4 37 78 113 59 1113 7-10-97-5 Apatite 45

45 the second se 574

8228

114 115 117 117 119 20 20

s <u>8</u>

No.

61 22

2 2 13 7-10-97-5

7-10-97-5

RACK LENGTH

(Ma)

RACK AGE

. NO ISS I:

° 4 ° 6 ′ 4 ∞

		7-10-97	-8 Ap	atite							
66/L0/		IRRAD	IATIO	N LU57	90-1	ŏ	DUNTED B	Y: M. RAAB 0	5/07/99		
RHOI F.I	L.AGE(Ma)	No.	$N_{\rm S}$	Ņ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
1.000E+06 8	84.1-27.0	-	44	83	50	0.530	31.3	1.375E+06	2.594E+06	103.2-19.4	
7.812E+05 { 1.625E+06 5	84.6–30.7 88 7–22 0	c1 (r	43 74	137 45	99 % 9	0.314	43.0 24.2	1.120E+0.6 1.071E+0.6	3.568E+06 2 009E+06	61.3 - 10.8 103 8 - 76 3	
1.348E+06	91.9–19.6	9 4	181	94	9	0.439	19.3	7.031E+05	1.602E+06	85.6-24.3	
1.224E+06 5	90.0-23.3	5	24	34	30	0.706	21.4	1.250E+0.6	1.771E+06	137.0–36.7	
7.972E+05 11	15.1–37.7	9	39	87	56	0.448	29.3	1.088E+06	2.427E+06	87.4-17.0	
1.116E+06 8 6.250E+05 6	84.6-21.7 36 1-34 0	- 8	49 63	130	8 9	0.377	35.0 28.3	1.094E+06 9.844E+05	2.902E+06 2.344E+06	73.5-12.4 81 0-17 4	
1.518E+06 10	07.3–21.9	. 6	31	73	205	0.425	27.5	9.688E+05	2.281E+06	82.8-17.8	
1.667E+06 5	99.0-21.3	10	54	180	100	0.300	33.9	8.438E+05	2.812E+06	58.6-9.2	
7.500E+05 t	54.2-26.2	= :	30	13	88	0.411	22.9	7.812E+05	1.901E+06	80.1-17.5	
8.333E+05 9.062E+05	2.67–1.94 79.6–19.4	1 12	30	59	35 2	0.436	31.8	1.138E+06 1.339E+06	2.612E+06 2.634E+06	85.0-14.4 99.0-22.3	
1.562E+06	71.5-16.5	14	52	126	2	0.413	33.9	1.161E+06	2.812E+06	80.5-13.4	
1.161E+06	77.7-20.2	15	84	181	100	0.464	34.1	1.312E+06	2.828E+06	90.4-12.1	
9.375E+05 (54.2–16.6	16	48	140	23	0.343	37.7	1.071E+06	3.125E+06	66.9-11.3	
1. 289E+05 II	7.2–30.8 1 2 0 0	18	64 8 8	130	89	0.4/1	0.07	1.000E+06	2.122E+06	91.7-14.0	
0.450E+00 IV	97.2-18.3	19	ور ور	t (3	R 8	0.374	30.7	9.531E+05	2.547E+06	73.0-11.1	
1.339E+06 10	02.4-22.5	20	80	198	001	0.404	37.3	1.250E+06	3.094E+06	78.8-10.6	
1.124E+06			927	2227			31.2	1.076E+06	2.585E+06		
		Area of	basic t	mit = 6.	4E-07	cm-2					
⁷ FREEDOM				HI SQU (chi squi ORREL ARIAN(ARIAN(ARED red) = ATION DE OF DE OF	= 9.78553 42.1 % COEFFIC SQR(Ns) = SQR(Ni) =	5 WITH 19 XENT = 0.9 = 1.784048	9 DEGREES C 922	IF FREEDOM		
			ΖŻ	s/Ni = (IEAN R.	.416 - ATIO =	0.016 0.441 - (0.020				
			£ ≥ O %	ooled Ag lean Age <i>entral A</i> Variatic	e = 81 = 86 e = 8 1 n = 2.3	2 - 3.7 N 0 - 4.4 N 2 - 3.5 A	la la				
ass 12.5 ppm			A N	ges calc HO D =	ılated u 1.036F	sing a zeta 3+06cm-2;	t of 378.8 - ND = 3	5.5 for CN 5 g 355	lass 12.5 ppm		
7-10-97-7	ō	i		7-10	97-8			7 -1 0-97-8	7-10-97-8		~
، مەرب مەرب		ö,4,0,0,4,∞		\neq		. 40 20		ML: 13.2 8td Dev = '1, 11' N = ' 90'	••• •••	100 100 100 100 100 100 100 100	- in
% milat * 35 * 0 * 10* Precision (1/s)	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1					1 20. 10.		-15' '20' 1(microns)	, 22, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	relative error 12° 20° 30° 11/sigma)	

IRRADIATION LU574-05 7-10-97-7 Apatite

COUNTED BY: M. RAAB 05/07/99

1.000E+06 7.812-405 7.812-405 1.235-405 1.235-405 1.235-446 1.235-44-06 1.235-44-06 1.255-44-06 1.1216E+06 1.1216E+06 1.161E+06 1.552E+05 9.052E+05 9.3532E+05 9.3552E+05 9.3552E+05552E+0552E+0552E+0 RHOi 4,375E405 3,428E405 3,428E405 6,443E405 6,443E405 4,7282E405 4,7383E405 4,7183E405 4,7183E405 4,7183E405 8,849E405 3,770E405 3,770E405 3,770E405 4,4888405 4,4888405 4,4888405 4,4888405 4,418E405 4,421E405 3,770E405 3,770E405 4,4388405 4,431E405 4,432E405 4 RHOs U(ppm) RATIO 0.4400.5590.5590.5160.5160.5160.5160.5160.3330.3330.5390.5370.5330.5330.440 0.462 0.478 0.460 0.600 1438 Na 50 70 70 70 80 70 70 70 20 30 6 30 20 30 8 ï 60 54 85 60 32 60 s No. c 2 13 114 115 116 118 119 20

Area of basic unit = 6.4E-07 cm-2

5.273E+05

13.8

985

462

CHI SQUARED = 3,54425 WTH 19 DEGREES OF FREEDOM P(chi squared) = 99.4 % CORRELATION COEFIENT = 0.920 VARIANCE OF SQR(NS) = 1,808584 VARIANCE OF SQR(NS) = 1,808584

Ns/Ni = 0.469 - 0.026 MEAN RATIO = 0.470 - 0.017

Pooled Age = 90.2 - 5.5 Ma Mean Age = 90.2 - 3.8 Ma *Central Age = 90.2 - 5.3 Ma* % Variation = 0.00%

Ages calculated using a zeta of ~378.8-5.5~ for CN 5 glass 12.5 ppm RHO D = $1.022E{+}06cm{-}2;$ ND = 3355

No. Ns Ni Na RATIO U(ppm) RHOs RHOI FLAGE(Ma) No. Ns Ni Na RATIO U(ppm) RHOs RHOI FLAGE(Ma) 1 31 15 20 2385 1139 2422E+06 1007E+06 396-11634 5 128 62 3 35 2000 121 2095E+06 1007E+06 396-11634 5 128 62 31 20 73 505E+05 237E+06 463-1-454 5 128 62 31 20 2331 2.77 5405E+06 306-1164 6 6 291-104 41 1 2 0 21 3 01 2.11 2.055E+06 2101-904 1 2 0 21 3 01 2.11 2.055E+06 2101-904 1 3 11 2 25 2.571 001 2.11 3.571E+06 306-1164 1 3 11 2 25 2.571 2.007 2.11 3.571E+05 306-1064 1 3 2 12 20 2.256 4.13 2.1569 1.001E+06 299.4-966 1 3 3 1 12 25 2.571 3.017E+05 2.002-104 1 3 3 1 12 25 2.571 3.017E+06 2.014-04 1 3 3 1 2 25 2.007 3.035 6.63 2.004-104 1 3 3 1 2 25 2.007 3.035 6.64 1 400 754 1.012-104 1 400 754 1.002-104 1 400 754 1.012-104 1 400 754 1.012-105 1 400 1.05 1 400 1	<u>21-10-9</u> IRRADI	<u>7-1</u> af	atite N LU57	74-08	0	OUNTED B	Y: M. RAAB (06/07/99	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Ns	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
2 79 52 30 1.519 318 4.115E+06 208.5538 7 70 41 20 2.000 928 1.660E+06 8.301E+05 306-1164 7 70 41 20 1.077 377 5.035E+06 42.8.650 7 70 41 20 1.077 377 5.035E+06 328.6.50 8 301E+05 3305-106 7 70 41 20 1.077 377 5.035E+06 328.6.50 9 203 142 25 1.200 0.21 357E+05 4.105E+05 345.8.188 9 203 142 25 1.200 1044 1.266E+07 8.875E+06 401.8-186 11 40 2 18 7.155 4.49 9.2556 4.49 9.244-9.06 12 357E+06 1.000E+06 420.4-9.94 13 31 22 25 1.201 1043 1.266E+06 401.6-677 13 31 22 25 2.573 3.307E+06 1.000E+05 201-904 13 31 22 25 2.573 3.307E+06 1.000E+05 201-904 13 31 22 25 2.573 3.307E+06 1.000E+05 201-904 13 31 22 2.5 2.573 3.307E+06 1.000E+05 401.6-677 13 31 22 2.5 2.573 3.307E+06 1.000E+05 403.6-677 13 31 22 2.5 2.573 3.307E+06 1.000E+05 403.6-677 14 77 12 54 50 2.074 193 3.500E+06 404.6-677 15 27 100 754 10.3 2.3586 4.01 1.033 2.536E+06 404.6-677 16 7 32 2.8 2.094 2.10 3.379E+06 1.688E+06 404.6-677 17 112 54 50 2.074 193 3.500E+06 1.000E+06 403.8.65 140 754 1.141E+06 6.52E+05 9.08-64 7 404.6-677 140 754 1.141E+06 6.52E+05 9.08-64 7 404.6-677 140 754 1.141E+06 6.52E+05 9.08-64 7 403.5385 9.500F+06 1.738E+06 1.386E+06 403.6-677 140 754 1.141E+06 6.52E+05 9.08-64 7 404.8470C 6F 5020N 9 9.23666 7 42 2.395 0.078 7 400 404 897 7 400 404 898 7 400 406 437 8 400 404 897 8 400 404 898 7 400 404 807 8 400 408 803 7 400 408 808 7 400 408 803 7 400 408	-	31	13	20	2.385	11.9	2.422E+06	1.016E+06	463.1-153.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	79	22	30	1.519	31.8	4.115E+06	2.708E+06	298.8–53.8 200 6 100 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4	34	3 11	9 6	2.000	9.8	1.660E+06	8.301E+05	390.6-116.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1	28	62	24	2.065	47.5	8.333E+06	4.036E+06	402.8-63.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	29	: E	8	2.231	2.7	5.035E+05	2.257E+05	434.2-145.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0	16	4 °	88	2 000	31.7	5.469E+06 2.571E+05	3.203E+06 1.7%6E+05	334.9-66.3 200 6 160 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	۰ ه ه	03	0	ξ	1 430	104.4	1 269E±07	8 875F±06	281.6-31.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	18	2 00	18	2.250	4.9	9.375E+05	4.167E+05	437.8-186.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	40	21	80	1.905	4.8	7.812E+05	4.102E+05	372.5-100.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	69	32	50	2.156	11.8	2.156E+06	1.000E+06	420.1–90.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	31	12	25	2.583	8.8	1.938E+06	7.500E+05	500.2-170.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	78	55	6	1.418	25.3	3.047E+06	2.148E+06	279.4-49.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	36	4 3	22	2.571	10.3	2.250E+06	8.750E+05	498.0-157.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	91	1	5 2	20	2.087	38.2	6.781E+06	3.250E+06	407.0-49.4
$\frac{19}{20} \frac{73}{67} \frac{2}{32} \frac{20}{20} \frac{1.33}{1.38} \frac{3}{7.7} \frac{1.141}{1.141} + 106 \frac{4.0214205}{4.083-86.2} \frac{409.8-664}{4083-86.2} \frac{408.3-88.2}{408.3-88.2} \\ \frac{1400}{73} \frac{73}{22} \frac{2}{20} \frac{1.396}{2.10} \frac{1.396}{1.786E+0.6} \frac{408.3-86.2}{408.3-88.2} \frac{100}{1.786E+0.6} \frac{1.396}{408.3-88.2} \frac{100}{1.786E+0.6} \frac{1.396}{1.286} \frac{1.396}{408.3-88.2} \frac{100}{1.786E+0.6} \frac{1.396}{408.3-88.2} \frac{100}{1.786E+0.6} \frac{1.396}{408.3-88.2} \frac{100}{1.286} \frac{1.396}{1.280} \frac{1.38}{1.280} \frac{1.38}{1.20} \frac{1.38}{1.20} \frac{1.38}{1.20} \frac{1.38}{1.20} \frac{1.38}{$	1 2	12	¥ 0	2 6	2:0/4	8.91 0.2	3.200E+06	1.088E+U0	404.0-07.7
20 67 32 28 2.094 2.0 3.39E+06 1.396E+06 408.3-88.2 Area of basic unit = 6.4E-07 cm-2 Area of basic unit = 6.4E-07 cm-2 Area of basic unit = 6.4E-07 cm-2 CHI SOURRED 8.1348.6 WTH 19 DEGREES OF FREEDOM CHI SOURRED 37 % CHI SOURRED 6.237819 Next IANCE OF SOR(N) = 6.237810 Next IANCE OF SOR(N) = 0.037840 Next IANCE OF SOR(N) = 0.037840 Next IANCE OF SOR(N) = 0.03840 Next IANCE OF SOR(N) = 0.037840 Next IANCE OF SOR(N) = 0.03840 Next IANCE OF SOR(N) = 0	0 0	5 F	5 v	88	00007	0.0	1.79/E+00	C0+31C0.1	240 8-065 A
Area of basic unit = 6.4E-07 cm-2 Area of basic unit = 6.4E-07 cm-2 CHI SOUARED = 8.13436 WTH 19 DEGREES OF FREEDOM CHI SOUARED = 8.13436 WTH 19 DEGREES OF FREEDOM Rein squaredo = 6.37% CORRELATION COEFFICENT = 0.964 VARIANCE OF SOR(N) = 6.237819 Ns/Ni = 1.857 - 0.084 Ns/Ni = 1.857 - 0.084 Ns/Ni = 1.857 - 0.078 Ns/Ni = 1.857 - 0.078 Ns/Ni = 1.857 - 0.078 Ns/Ni = 1.857 - 0.078 Poled Age = 36.6 - 18.3 Ma Mean Age = 397.9 - 17.7 Ma % Winition = 8.05% Ages calculated using a zeta of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 1.063E+0.6cm-2, ND = 3355 21-10-97-1 21-10-97-	20	67	32 4	78 78	2.094	21.0	3.739E+06	1.786E+06	408.3-88.2
Area of basic unit = 6.4E-07 cm-2 CHI SQUARD = 8.15436 WTH 19 DEGREES OF FREEDOM FCHI SQUARD = 8.15436 WTH 19 DEGREES OF FREEDOM FCHI SQUARD = 6.679 WAIANCE OF SQR(N) = 6.237819 WAIANCE OF SQR(N) = 6.237819 Walance OF SQR(N) = 2.038-0.078 Pooled Age = 366.8 - 19.6 Ma Mem Age = 397.9 - 17.7 Ma Wem Age = 307.9 -	14	00	754			16.4	2.592E+06	1.396E+06	
CHI SQUARED = 8.15435 WITH 19 DEGREES OF FREEDOM Richi squared) = 63.7 % CORLATION COEFTENT = 0.964 VARIANCE OF SQR(N) = 9.237819 VARIANCE OF SQR(N) = 6.237819 NSNi = 1.857 - 0.084 WARIANCE OF SQR(N) = 6.237819 NSNi = 1.857 - 0.084 Weind Age = 3364 - 1137 Ma Med Age = 3364 - 1137 Ma Med Age = 3544 - 1137 Ma Med Age = 3544 - 1137 Ma Med Age = 3548 - 1137 Ma Med Age = 3558 - 1137 Ma Med Age = 3558 - 1137 Ma Med Age = 307.9 - 1177 Ma Med Age = 305 - 000 Ma Med Age = 300 Ma Med Age = 305 - 000 Ma Med Age =	Area of l	basic u	mit = 6	6.4E-07	cm-2				
vikitavice of sork(w) = 9.23056 vikitavice of sork(w) = 9.23056 vikitavice of sork(w) = 9.23056 vikitavice of sork(w) = 6.237819 New Marker = 2.038 - 0.078 Mem Age = 397.9 - 177 Ma Mem Age = 37.9 - 177 Ma		0 X C	HI SQU chi squ ORREI	JARED lared) =) = 8.1548. : 63.7 % V COEFFIG	36 WITH 19) DEGREES (DF FREEDOM	
Ns/Ni = 1.857 - 0.0084 MEAN RATIO = 2.038 - 0.078 Pooled Age = 363.4 - 18.3 Ma Mean Age = 397.9 - 17.7 Ma General Age = 397.9 - 17.7 Ma 96 Writion = 8.05% 96 Writion = 8.05% 97 Pooled Age = 367.8 - 55 for CN 5 glass 12.5 ppm RHO = 1.063E+066m-2, ND = 3355 21-10-97-1 21-1		222	ARIAN	ICE OF	SQR(Ns) SQR(Ni)	= 9.235056 = 6.237819	t		
Pooled Age = 363.4 - 18.3 Ma Wean Age = 397.9 - 17.7 Ma Control Ace = 366.8 - 19.6 Ma % Variation = 8.05% % Variation = 8.05% Ages calculated using a zera of 378.8 - 5.5 for CN 5 glass 12.5 ppm R100 = 1.063E+06cm-2. ND = 3355 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-1 21-10-97-		zΣ	s/Ni = IEAN R	1.857 - tatio :	- 0.084 = 2.038 -	0.078			
Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.063E+06cm-2. ND = 3355 21-10-97-1 21-10-97-1 30^{-100}		∡ Σ Ü ೫	ooled A lean Ag <i>entral i</i> Variati	ge = 36 (e = 39 (e = 3) (on = 8)	3.4 - 18.3 7.9 - 17.7 66.8 - 19. 1	. Ma Ma 6 Ma			
21-10-37-1 21-10-37-1 21-10-37-1 21-10-37-1 21-10-37-1 21-10-37-1 21-10-37-1 20 20 20 20 20 20 20 20 20 20		A.N	ges calc HO D =	culated = 1.063	using a zet E+06cm-2	a of 378.8 – ; ND = 35	5.5 for CN 5 { 355	glass 12.5 ppm	
			21-1	10-97-1					
	.0 × 0 €			-	. 30 30		21-10-97-1 ML: 10.73 Std Dev = '1.92 N = '100'		•
0. 100 200 300 400 500 500 100 TRACK ENVIRONMENTERON 0. 100 200 300 400 500 500 100 TRACK ENVIRONMENTERON 0. 100 200 300 100 100 100 100 100 100 100 100 1	.4 % %		╶╪	#	.50 .10			÷ ,	· · ·
	10:00 10:00	0. 200	- 300° 4	00_5 00	/រុទ្ធ័ ដ	5. 10.	15 '20' (microns)	2 %	dative error 11: 0 : 30 : 40

7-10-9	1-9 A	patite						
IRRAI	DIATIC	SULLUS	74-07	Ö	OUNTED B	Y: M. RAAB (66/L0/90	
No.	$N_{\rm S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	23	60	10	0.383	14.2	5.134E+05	1.339E+06	75.7-18.6
0	16	30	100	0.533	5.0	2.500E+05	4.688E+05	105.1 - 32.6
ς,	=	23	30	0.478	12.7	5.729E+05	1.198E+06	94.3-34.6
4 1	48	78	50	0.564	25.8	1.375E+06	2.438E+06	111.1–21.1
n v	3 8	20 150	000	0.306.0	4.7 27 0	5.900E+05	3 105H±06	78 2-11 8
0 1-	3 23	19	24	0.684	13.1	8.464E+05	J.237E+06	134.5-48.5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	49	93	80	0.527	19.2	9.570E+05	1.816E+06	103.8-18.5
6	45	92	100	0.489	15.2	7.031E+05	1.438E+06	96.5-17.7
2 =	S) K	82	0,00	0.354	17.6	9.062E+05 5 990E+05	2.562E+06 1 667E+06	71 0-17 3
12	3 6	5	809	0.521	19.6	9.635E+05	1.849E+06	102.7-21.0
131	16	21	30	0.762	11.6	8.333E+05	1.094E+06	149.6-49.8
14	18	47	48	0.383	16.2	5.859E+05	1.530E+06	75.6-21.0
15	18	86 7 87	40	0.529	14.1	7.031E+05	1.328E+06	104.3 - 30.5
9 5	έç ζ	0.0	00	480.0	1.61	201-201/101/	1.420E+00	0.12-0.01
18	\$ 6	0 111	6 G	0.450	18.4	7.812E+05	1 734E+06	94.7-25.0 88 9-15 3
61	50	69	35	0.377	32.6	1.161E+06	3.080E+06	74.4-17.2
20	32	52	60	0.615	14.3	8.333E+05	1.354E+06	121.1–27.3
	596	1264			17.0	7.590E+05	1.610E+06	
Area o	of basic	: unit = 0	6.4E-07	, cm-2				
	-	CHI SOL	UAREI	0 = 6.99783	51 HLIM 8	) DEGREES (	OF FREEDOM	
		P(chi sqi CORREI VARIAN	LATIO	= 78.4 % N COEFFIC F SOR(Ne) -	CIENT = 0.9 - 1 694583	137		
		VARIAN		F SQR(Ni) =	- 1.074.002			
		Ns/Ni = MEAN F	0.472 - RATIO	- 0.023 = 0.499 - 1	0.024			
		Pooled A Mean A _E <i>Central</i> 4 % Variati	ge = 5 ge = 5 Age = 0 ion = 0	8.0 – 5.1 N 8.4 – 5.3 N <b>93.0 – 4.9</b>	Ла Ла <b>Ма</b>			
		Ages cal RHO D =	culated = 1.049	using a zeta )E+06cm-2;	a of 378.8 - ND = 3	5.5 for CN 5 g 355	glass 11.1 ppm	
		7-1	0-97-9				7-40-07-0	
∞ × ∞ × ∞ × ∞ ×			,	. 40 . 30 . 20 . 10		7.40-97-9 ML: 13.25 Std Dev "		1130. 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 1115: 11

[

"5 '10' '15' ' "RACK LENGTH(mic
0.     Ni     Na     RATIO     Uppm)     RHOi     FTAGE(Ma)       1     18     15     20     120     134     1406E-06     1172E+06     243.15.52       2     24     12     12     2000     17.9     31.25E+06     156.25.13     359.94.65       5     7     4     45     1.5701     1.6     24.118.95     156.768       5     44     28     20     1.571     25.1     34.88E+06     316.5-768       6     9     25     1.419     2.348E+06     316.5-768       8     16     9     25     1.419     2.348E+06     316.5-768       8     16     9     25     1.419     2.348E+06     316.5-768       9     5     6     1.000     45     5.2.348E+06     316.5-768       11     12     28     26     316.5-768     316.5-768       12     12     12     1.465     27     2.442E+06     218.64       11     12     28     26     201.07     27     2.442E+06       12     1465     27     2.434E+06     1.595E+06     218.655E+06       12     12     12     2604E+06     1.2052E+06     218.655E+06	KKADI	ALIUN LU	01-4/01	)				
$\begin{bmatrix} 1 & 18 & 15 & 20 & 1200 & 134 & 1406E+06 & 1172E+06 & 2431-852 \\ 2 & 24 & 12 & 12 & 2000 & 179 & 3132E+06 & 15022+06 & 316,5-268 \\ 4 & 5 & 2 & 30 & 2500 & 12 & 2.004E+05 & 10422+06 & 316,5-768 \\ 5 & 44 & 28 & 20 & 1.871 & 2.9 & 25 & 1441 & 208 & 3.05E+06 & 316,5-768 \\ 5 & 44 & 28 & 5 & 20 & 1.070 & 6 & 3 & 2.50E+06 & 3125+06 & 3221-183.8 \\ 7 & 8 & 5 & 20 & 1.007 & 6 & 3 & 2.50E+06 & 3125+06 & 285,5-90.2 \\ 11 & 2 & 5 & 15 & 2.00 & 107 & 9 & 3 & 2.50E+06 & 1812E+06 & 285,5-90.2 \\ 12 & 2 & 5 & 15 & 2.00 & 107 & 9 & 3 & 2.50E+06 & 1812E+06 & 285,5-90.2 \\ 12 & 2 & 5 & 15 & 2.000 & 6.0 & 1270E+06 & 2.182E+06 & 285,5-90.2 \\ 12 & 2 & 19 & 12 & 1.467 & 1030E+06 & 2.378E+06 & 235,5-60.2 \\ 13 & 27 & 19 & 27 & 19 & 2.3012E+06 & 2.378E+06 & 235,2-109.7 \\ 12 & 2 & 15 & 1.667 & 179 & 2.604E+06 & 1.022E+06 & 335,2-109.7 \\ 13 & 27 & 19 & 27 & 19 & 2.3012E+06 & 1.022E+06 & 335,2-109.7 \\ 14 & 27 & 19 & 27 & 19 & 2.34761 & 0 & 2304E+06 & 2335,2-109.7 \\ 12 & 2 & 15 & 1.667 & 179 & 2.604E+06 & 1.022E+06 & 335,2-109.7 \\ 13 & 27 & 19 & 27 & 12 & 1.21 & 34,652,06 & 2335,2-109.7 \\ 14 & 20 & 32 & 214,66 & 2304,166 & 1.022E+06 &$	Io. 1	Vs Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	18 15	20	1.200	13.4	1.406E+06	1.172E+06	243.1-85.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	24 12	12	2.000	17.9	3.125E+06	1.562E+06	400.2-141.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e	7 4	45	1.750	1.6	2.431E+05	1.389E+05	351.5-220.5
$\sum_{i=1}^{2} \frac{3}{45} \sum_{i=1}^{2} \frac{1}{1001} \frac{1}{2} \sum_{i=1}^{2} \frac{3}{3} \frac{3}{3} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \sum_{i=0}^{2} \frac{1}{6} \frac{1}{3} \frac{3}{3} \sum_{i=0}^{2} \frac{1}{6} \frac{1}{3} \frac{3}{3} \sum_{i=0}^{2} \frac{1}{6} \frac{1}{3} \frac{3}{3} \sum_{i=0}^{2} \frac{1}{6} \frac{3}{3} \sum_{i=0}^{2} \frac{1}{2} \frac{3}{2} \sum_{i=0}^{2} \frac{1}{2} \frac{1}{2} \sum_{i=0}^{2} \frac{1}{2} \sum_{i=0}^{2} \frac{1}{2} \frac{1}{2} \sum_{i=0}^{2} \frac{1}{2} \frac{1}{2} \sum_{i=0}^{2} \frac{1}{2} \sum_{i=0}^$	4 '	5 2	30	2.500	1.2	2.604E+05	1.042E+05	496.5-415.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	, v v	7 7 7 7 8	07.	1/2.1	1.67	3.438E+06	2.188E+06	510.2-7015 2613 2017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	n w	000	1.600	4.4 7 4 5	6.250E±05	3 906F+05	322 1-183 8
9 41 29 25 1414 208 2.562E+06 1812E+06 2855.696 10 15 6 16 2.300 6.7 1.4655+06 8.309E+05 8.1254+05 965-590. 11 2 5 15 2.400 6.0 1.270 9.5 8.1254+06 2852.602 14 27 19 12 1.421 28.4 3.5162+06 2.373E+06 2952.602 15 25 15 15 1.667 17.9 2.604E+06 1.022E+06 335.2-109.7 339 221 11.7 1.567E+06 1.022E+06 335.2-109.7 and the second basic unit = 6.4E-07 cm-2 CH SQUARED = 2.720455 WTH 14 DEGREES OF FREEDOM Foldi squared = 9.9 % CORRELATION CORPENCIENT = 0.971 VARIANCE OF SQUARED = 2.720455 WTH 14 DEGREES OF FREEDOM Foldi squared = 5.45-07 cm-2 CH SQUARED = 2.720455 WTH 14 DEGREES OF FREEDOM Provide the second	- 00	16 9	25	1.778	6.4	1.000E+06	5.625E+05	356.9-148.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	41 29	25	1.414	20.8	2.562E+06	1.812E+06	285.5-69.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	15 6	16	2.500	6.7	1.465E+06	5.859E+05	496.5-240.1
$ \begin{bmatrix} 12 & 12 & 5 & 15 & 2.400 & 6.0 & 1.250E+06 & 5.08E+06 & 4774-54.3 \\ 12 & 27 & 1463 & 272 & 3.472E+06 & 2.4742+06 & 355.2-109.7 \\ 13 & 27 & 19 & 12 & 1.2.1 & 2.4 & 3.51E+06 & 1.022E+06 & 335.2-109.7 \\ 339 & 221 & 11.7 & 1.567E+06 & 1.022E+06 & 335.2-109.7 \\ 11.7 & 1.567E+06 & 1.022E+06 & 335.2-109.7 \\ 12.8 & 11.7 & 1.567E+06 & 1.022E+06 & 335.2-109.7 \\ 13.9 & 221 & 11.7 & 1.567E+06 & 1.022E+06 & 335.2-109.7 \\ 13.9 & 221 & 11.7 & 1.567E+06 & 1.022E+06 & 335.2-109.7 \\ 14.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.8 & 10.$	Ξ	28 26	50	1.077	9.3	8.750E+05	8.125E+05	218.6-59.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	12 5	15	2.400	6.0	1.250E+06	5.208E+05	477.4-254.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	50 41	27	1.463	27.2	3.472E+06	2.373E+06	295.2-60.2
15 25 15 15 16 1.667 17.9 2.604E+06 1.562E+06 335.2-109.7 339 221 11.7 1.567E+06 1.022E+06 335.2-109.7 area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 2.720455 WITH 14 DEGREES OF FREEDOM PC in squared D = 979 % CORRENTIONCE OF SQR(N3) = 2.47071 VARIANCE OF SQR(N3) = 2.547071 VARIANCE OF SQR(N3) = 2.547071 NaVia = 1.54 - 0.133 MEAN RATIO = 1.743 - 0.114 Pooled Age = 309.1 - 27.6 Ma Mean Age = 309.1 - 27.6 Ma Wenn Age = 309.1 - 27.6 Ma Wenn Age = 309.1 - 27.6 Ma Wenn Age = 309.1 - 22.7 6 Ma Wenn Age = 309.1 - 22.0 Ma Wenn Age = 309.1 - 22.6 Ma Wenn Age = 300.1 - 22.6	14	27 19	12	1.421	28.4	3.516E+06	2.474E+06	286.9-86.2
339       221       11.7       1.567E+06       1.022E+06         area of basic unit = 6.4E-07 cm-2       CHI SQU ARED = 2.720455 WITH 14 DEGREES OF FREEDOM       CHI SQU ARED = 2.720455         CHI SQU ARED = 2.720455 WITH 14 DEGREES OF FREEDOM       CORPETICIENT = 0.971       VALIANCE OF SQR(N) = 2.24761         VARIANCE OF SQR(N) = 2.24761       VARIANCE OF SQR(N) = 2.24761       NAMIANCE OF SQR(N) = 2.24761         NAMI = 1.534 - 0.133       MEAN RATIO = 1.743 - 0.114       Pooled Age = 3001 - 2.12. Ma         NaNi = 1.534 - 0.133       MEAN RATIO = 1.743 - 0.114       Pooled Age = 3001 - 2.2.1. Ma         Pooled Age = 3001 - 2.2.1. Ma       Mean Mean Mage = 3001 - 2.2.1. Ma       Mean Variation = 0.00%.         Ages calculated using a zet of 3788 - 5.5 for CN 5 glass 12.5 ppm       R10.0 = 1.000E-0.00%.       21-10.0 7.3         Ages calculated using a zet of 3788 - 5.5 for CN 5 glass 12.5 ppm       R10.0 1 = 1.000E-0.00%.       21-10.0 7.3         Ages calculated using a zet of 3788 - 5.5 for CN 5 glass 12.5 ppm       R10.0 2.3.10.0 7.3       21-10.0 7.3         R10.0 1 1.000E-0.000%.       21-10.0 7.3       21-10.0 7.3       21-10.0 7.3         Ages calculated using a zet of 3788 - 5.5 for CN 5 glass 12.5 ppm       21-10.0 7.3       21-10.0 7.3         21-10.0 7.3       21-10.0 7.3       21-10.0 7.3       21-10.0 7.3       21-10.0 7.3         21-10.0 7.3 <td< td=""><td>15</td><td>25 15</td><td>15</td><td>1.667</td><td>17.9</td><td>2.604E+06</td><td>1.562E+06</td><td>335.2-109.7</td></td<>	15	25 15	15	1.667	17.9	2.604E+06	1.562E+06	335.2-109.7
rea of basic unit = 6.4E-07 cm-2 CH sQUARED = 2.720455 WTH 14 DEGREES OF FREEDOM P(ch sQUARED = 2.720455 WTH 14 DEGREES OF FREEDOM P(ch sQUARED = 2.720456 VARIANCE OF SQR(s) = 2.247671 VARIANCE OF SQR(s) = 2.247671 VARIANCE OF SQR(s) = 2.247671 New 1 = 1.534 - 0.113 New 1 = 1.534 - 0.133 MEAN RATTO = 1.743 - 0.114 Pooled Age = 300.1 - 242.6 Ma Quant Age = 300.1 - 242.8 Ma Quant Age = 300.1 - 24.2 Ma Quant Age = 30.0 - 24.2 Ma Quant Age = 20.0 - 24.2	33	39 221			11.7	1.567E+06	1.022E+06	
CHISQUARED 2.720455 WITH 14 DEGREES OF FREEDOM P(n) Requered = 97.9% CORRELATION COEFFICIENT = 0.971 VARIANCE OF SQR(h) = 2.547671 VARIANCE OF SQR(h) = 2.547671 Ns/N = 1.534 - 0.133 MEAN FOR 0 = 1.743 - 0.114 Pooled Age = 300.1 - 27.6 Ma Mean Age = 350.1 - 24.2 Ma Quanta Age = 300.1 - 24.2 Ma Quanta Age = 30.0 - 24.2 Ma Quanta Age = 20.0 - 24.2	rea of b	asic unit =	: 6.4E-07	7 cm-2				
Ns/Ni = 1.534 - 0.133 MEAN RATIO = 1.743 - 0.114 Pooled Age = 39.01 - 27.6 Ma Reference = 350.1 - 27.6 Ma Wariation = 0.00% % Variation = 0.00% % Variation = 0.00% as each large target of 378.8 - 5.5 for CN 5 glass 12.5 ppm RHO D = 1.090E406cm-2; ND = 3355 21 - 10 - 373 21 - 10 - 307 20 - 307 - 400 - 500 - 50 21 - 10 - 200 - 307 - 400 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 50		CHI S ¹ P(chi s CORR VARI# VARI#	QUAREI quared) : ELATIO ANCE OI ANCE OI	D = 2.7204: = 97.9 % N COEFFIC F SQR(Ns) = F SQR(Ni) =	55 WITH 14 CIENT = 0.5 = 2.544246 = 2.247671	4 DEGREES C	DF FREEDOM	
Pooled Age = 309.1 - 27.6 Ma Mean Age = 350.1 - 27.6 Ma Mean Age = 350.1 - 27.3 Ma % Variatione = 0.00% Ages calculated using a zeta of 3788 - 5.5 for CN 5 glass 12.5 ppm RHO D = 1.090E406cm-2; ND = 3355 21-10-97-3 21-10-97-3 $0^{-100-200-200-20}$		Ns/Ni : MEAN	= 1.534 · V RATIO	-0.133 = 1.743 - 0	0.114			
Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.090E+06cm-2; ND = 3355 $21 \cdot 10 \cdot 97 \cdot 3$ $21 \cdot 10 \cdot 97 \cdot 3$ $22 \cdot 10 \cdot 97 \cdot 3$		Pooled Mean / <b>Centra</b> % Vari	Age = 3  Age = 3. dAge = 3 dation = 0	09.1 - 27.6 50.1 - 24.2 <b>309.1 - 27.</b> 3	Ma Ma ? <b>Ma</b>			
21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-3 21-10-37-37-37-37-37-37-37-37-37-37-37-37-37-		Ages c RHO L	alculated: 0 = 1.090	l using a zet: 0E+06cm-2;	a of 378.8 - ND = 35	5.5 for CN 5 g 355	dass 12.5 ppm	
		2	1-10-97-3				21-10-97-3	
	× د م م م ۲ م	=		.20, 30, 40		21-90-97-3 Mil: 10.93 Std Dav = '2.46' N = '36'		
			<b>J</b>	лё		15' '20'	. 26. %rei	itve error 200



COUNTED BY: M. RAAB 06/07/99

Ni Na	RA	VIIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
30 48 2.033 22 70 1.727	033 127		11.3	1.986E+06 8.482E+05	9.766E+05 4.911E+05	401.6-90.0
38 40 2.000	00		17.2	2.969E+06	1.484E+06	395.2-79.0
66 40 1.939	939		30.0	5.000E+06	2.578E+06	383.6-58.8
13 50 2.077	<i>LTC</i>		4.7	8.438E+05	4.062E+05	409.9-138.7
17 35 1.882	882		8.8	1.429E+06	7.589E+05	372.6-112.2
53 40 1.208	208		24.1	2.500E+06	2.070E+06	241.5-45.2
50 60 1.300	300		15.1	1.693E+06	1.302E+06	259.6-49.2
38 30 1.500	500		23.0	2.969E+06	1.979E+06	298.7-62.9
32 25 1.969	969		23.2	3.938E+06	2.000E+06	389.2-84.9
34 60 0.971	176		10.3	8.594E+05	8.854E+05	194.8-47.8
44 70 1.273	273		11.4	1.250E+06	9.821E+05	254.3-51.5
20 25 1.550	550		14.5	1.938E+06	1.250E+06	308.4-88.7
47 50 1.872	872		17.1	2.750E+06	1.469E+06	370.7-67.5
29 21 2.069	969		25.1	4.464E+06	2.158E+06	408.4-92.8
18 60 1.778	778		5.4	8.333E+05	4.688E+05	352.5-104.2
551			13.8	1.966E+06	1.189E+06	

Area of basic unit = 6.4E-07 cm-2

CHI SQUARED = 8,547208 WITH 15 DEGREES OF FREEDOM Petisiquane) = 31.3% CORRELATION COEFFICIENT = 0.857 VARIANCE OF SQR(Ns) = 2,728654 VARIANCE OF SQR(Ns) = 2,728654 VARIANCE OF SQR(Ns) = 1,637443 NS/Ni = 1,653 - 0.089 MEAN RATIO = 1,697 - 0.088

Pooled Age = 328.4 - 19.2 Ma Mean Age = 336.8 - 19.0 Ma *Cuntral Age* = 337.8 - 19.8 *Ma* % Variation = 7.95% Aves chiculated inter a zeria of 378.8 – 5.5

Ages calculated using a zeta of 378.8 – 5.5 for CN 5 glass 12.5 ppm RHO D = 1.076E+06cm-2; ND = 3355



0.         Ns         Ni         Na         RATIO         U(ppm)         RHOs           1         8         15         30         0.533         8.7         1417E+0           2         9         9         18         1.000         8.7         7.812E+0           4         13         8         0.533         8.7         7.812E+0         50         3.244E-0           5         9         7         24         1.286         5.1         5.89E+0         5.89E+0           7         10         8         5         0.053         5.4         3.46E+0         1.800E+0         3.244E+0         1.800E+0         3.244E+0         1.800E+0         3.246E+0         1.300E+0         1.300E+0         1.300E+0         1.300E+0         1.300E+0         1.300E+0         1.300E+0         1.300E+0         1.562E+0         1.562	RHOi 55 7.8128+05 55 7.8128+05 55 7.8128+05 55 5.4969+05 55 5.4969+05 56 4.45618+05 55 5.7729+05 55 5.7729+05 55 5.00018+05 56 1.52001+05 55 1.52018+05 55 1.52018+05 55 1.52718+05 55 3.67718+05 55 3.67718+05 55 4.46418+05 56 4.46418+0556 4.46418+0556 4.46418+0556 4.46418+0556 4.46418+0500000000000000000000000000000000000	F.T.AGE(Ma)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 7.812E+05 5 7.812E+05 5 7.812E+05 5 4.464E+05 5 4.464E+05 5 4.5772E+05 5 3.7729E+05 5 3.7729E+05 5 1.250E+05 5 1.250B+05 5 1.2509E+05 5 3.677E+05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
2     9     9     18     1.200     8.7     7.812E-0       5     7     20     1.236     6.1     7.631E-0       6     7     11     30     0.656     6.4     5.646E-0       7     10     8     36     1.236     5.1     5.646E-0       9     1     30     0.656     6.4     5.375E-0     3.244E-0       9     14     16     50     0.875     5.6     4.375E-0       9     14     16     50     0.875     5.6     4.375E-0       2     10     12     70     0.835     5.6     4.375E-0       2     10     12     70     0.833     3.0     2.232E+0       2     10     12     70     0.833     5.6     4.375E-0       2     10     12     70     0.833     5.6     4.375E-0       2     10     9     1.110     5.2     5.655E+0     5.556E+0       3     10     9     30     1.111     5.2     5.655E+0       6     13     5.6     1.167     3.3     3.706+0       7     6     2.84     1.116     5.2     5.0852F+0       9     1	5 7.8124-05 5 7.8124-05 5 4.464E+05 5 4.557E+05 5 4.557E+05 5 4.752E+05 5 3.472E+05 5 1.2500E+05 5 1.2500E+05 5 1.2500E+05 5 4.464E+05 5 3.677E+05 5 3.677E+05 5 3.677E+05 5 4.1677E+05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111.9-49.0
4     13     18     65     0.722     5.0     5.224400       5     7     24     1286     5.1     5.8656-0     3.9     43660-0       7     10     8     36     1.250     5.0     5.30     5.324400       9     7     24     1.250     5.1     5.8656-0     3.9     4.3758-0       9     14     16     50     0.875     5.6     1.3660-0       2     11     20     0.633     5.6     4.3758-0       2     12     70     0.833     3.0     2.2328-0       2     13     3     0.1120     3.3     3.665-0       3     30     110     5.2     5.6     5.4388-0       5     16     50     0.338     5.6     5.4378-0       7     10     9     30     1.111     5.2     5.6558-0       7     10     9     30     1.121     5.2     5.6558-0       7     10     9     30     1.121     5.2     5.6558-0       7     16     28     1.257     5.6     6.1388-0       7     10     9     30     1.127     5.6       8     11     9     28	5 44645-05 5 44645-05 5 455724-05 5 3.77294-05 5 3.4721-40 5 1.28004-05 5 1.25004-05 5 1.25004-05 5 4.4641-05 5 4.4641-05 5 3.62774-40 5 3.62774-40 5 3.62774-40 5 4.1677+05	208.2-98.2 266.4-134.4
<ul> <li>7 24 1286 51 589E-0</li> <li>7 10 8 36 1200 5.1 5866E-0</li> <li>8 4 15 5 0 0.875 5.6 1.300E-0</li> <li>8 5 42 0.057 5.6 1.300E-0</li> <li>9 4 5 0 0.875 5.0 1.4 1562E-0</li> <li>1 7 8 28 0.875 5.0 1.4 1.562E-0</li> <li>1 3 0 1.25 0 0.837 5.0 3.90E-0</li> <li>1 3 1 1 2 0 0.817 5.0 3.90E-0</li> <li>1 3 2 0 0.125 4.7 1.562E-0</li> <li>1 3 3 0 1.125 4.7 1.562E-0</li> <li>1 3 3 0 1.125 4.7 4.688E-0</li> <li>1 9 2 8 1.222 5.6 6.138E-0</li> <li>1 9 2 9 1.110 5.2 5.232E-0</li> <li>1 9 200 1.01 8 4.2 0.1Ma</li> <li>1 9 200 7.6 5.6252-0</li> <li>1 9 209 7.6050</li> <li>VARIANCE 0 79.0R13 = 2.66927</li> <li>VARIANCE 0 79.0R13 = 2.66927</li> <li>VARIANCE 0 79.0R13 = 2.66927</li> <li>VARIANCE 0 79.0R14 19 DEGREE</li> <li>Pooled Age 198.4 2.01.Ma</li> <li>Mean Age 210.8 11.5.Ma</li> <li>Gonda Age 210.8 -11.5.Ma</li> <li>Gonda Age 210.8 -11.5.Ma</li> <li>Gonda Age 20.094</li> <li>Mean Age 20.095</li> <li>Age scaled as 20.058</li> <li>Age scaled as 20.058<td>5 4.557E+05 5 5.729E+05 5 5.729E+05 5 5.2472E+05 5 5.000E+05 5 5.000E+05 5 5.000E+05 5 4.464E+05 5 5 2.679E+05 5 3.627E+05 5 5 3.627E+05 5 5 4.167E+05</td><td>151.0-55.1</td></li></ul>	5 4.557E+05 5 5.729E+05 5 5.729E+05 5 5.2472E+05 5 5.000E+05 5 5.000E+05 5 5.000E+05 5 4.464E+05 5 5 2.679E+05 5 3.627E+05 5 5 3.627E+05 5 5 4.167E+05	151.0-55.1
6     7     11     30     0.356     6.4     3.466-0       8     5     5     42     1.000     2.1     1.866-0       9     14     16     50     1.875     5.6     4.375-0       1     7     8     28     0.1250     5.4     3.375-0       1     7     8     28     0.875     5.6     4.306-0       2     10     2     8     0.1125     4.7     4.688-0       3     13     56     10.033     5.6     4.688-0       2     10     9     8     0.1111     5.2     5.238-0       3     13     15     5     0.0900     7.0     5.6528-0       7     10     9     30     1.111     5.2     5.088-0       7     10     9     30     1.111     5.2     5.088-0       7     14     6     25     1.167     4.2     4.3756-0       9     8     1.100     8     4.2     1.3756-0       9     1     9     28     1.250     3.3       19     209     30     1.123     4.7     4.0286-0       19     209     10     8     4.2	55 7.729E+05 55 3.472E+05 55 1.860E+05 55 1.860E+05 55 1.250E+05 55 1.250E+05 55 2.679E+05 55 3.627E+05 55 3.627E+05 55 3.627E+05 55 3.672F+05	266.4-134.4
7     10     8     36     1.200     5.9     4.300-10       9     14     16     50     0.875     5.6     4.3756-0       2     10     12     70     0.833     3.0     2.3228-0       2     10     12     70     0.833     3.0     2.3228-0       3     3     3     3     3.0     2.3228-0       4     9     8     0     1.125     5.6     4.3758-0       5     15     16     50     0.903     5.6     4.3758-0       7     9     30     1.111     5.2     5.0888-0       7     10     9     30     1.111     5.2     5.56       6     33     3.7206-0     3.3     3.7206-0       7     10     9     30     1.111     5.2       8     1     9     23     1.120     3.3       9     209     1.250     3.3     3.7206-0       9     209     1.1250     3.3     3.7206-0       9     209     1.1250     3.3     3.7206-0       9     209     209     4.7     4.0286-7       9     209     209     4.7     4.0286-7 <t< td=""><td>5.472±405           55.12600±405           55.12600±405           55.1.2500±405           56.1.2500±405           56.2.679±405           55.2.679±405           55.3.6271±405           56.3.6271±405           56.3.6271±405           56.3.6271±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±4165           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           57.77±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57</td><td>133.2-64.5</td></t<>	5.472±405           55.12600±405           55.12600±405           55.1.2500±405           56.1.2500±405           56.2.679±405           55.2.679±405           55.3.6271±405           56.3.6271±405           56.3.6271±405           56.3.6271±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±4165           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           56.5.6000±405           57.77±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57.6000±405           57	133.2-64.5
9     14     16     50     0.875     5.6     4.375000       1     7     8     20     0.875     5.6     4.375000       2     10     12     70     0.833     5.6     4.375000       2     10     12     70     0.833     5.6     4.375000       3     3     0     1.120     4.7     1.552500       5     15     16     50     0.933     5.6     4.375500       5     15     16     50     0.933     5.6     4.588800       7     0     9     30     1.111     5.2     5.055100       8     20     50     0.900     7.0     5.208500       9     11     5.2     5.6     6.138800       9     11     5.2     5.6     6.138800       9     11     5.2     5.6     6.138800       9     11     5.2     5.6     6.138800       9     10     11     5.2     5.5     5.6       9     20     1.116     5.2     5.08640       9     20     1.1257     3.3     3.720640       9     20     20     4.7     4.028640       19     <	5 5.00002405 5 5.00002405 5 1.250E+05 5 4.464E+05 5 3.627E+05 5 3.627E+05 5 4.167E+05 5 4.167E+05	259.2-123.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55         1.250E+05           55         4.464E+05           55         2.679E+05           55         3.627E+05           56         4.167E+05           56         5.00001.05	182.5-66.9
1     7     8     28     0.875     5.0     3.06E-0       3     13     56     1.000     4.1     3.627E+0       4     9     8     30     1.125     4.7     4.688E-0       6     18     20     0.333     3.0     2.222E+0       7     10     9     8     1.111     5.2     5.08E+0       7     10     9     30     1.111     5.2     5.08E+0       7     10     9     30     1.111     5.2     5.08E+0       7     10     9     30     1.111     5.2     5.08E+0       9     7     6     25     1.167     4.2     4.375E+0       9     7     6     25     1.167     4.2     4.375E+0       9     7     6     25     1.167     4.7     4.028E+0       199     209     7     4.7     4.028E+0       190     10     8     42     1.250<	5         4.464E+05           55         2.679E+05           55         3.627E+05           55         4.167E+05           56         6.0000-05	259.2-174.0
2 10 12 70 0.933 3.0 2.2324.0 4 9 8 30 1.125 4.7 4.688E+0 5 18 16 50 0.9938 5.6 5.6558E+0 7 10 9 30 1.111 5.2 5.0528E+0 7 10 9 28 1.122 5.6 6.138E+0 9 7 6 25 1.167 4.2 4.3754.0 199 209 4.7 4.028E+0 199 209 4.7 4.028E+0 199 209 4.7 4.028E+0 199 209 4.7 6.25 CHI SQUARD 2.77364 WTH 19 DEGREES P(chi squared) = 99.9 % CCHI SQUARD 2.77364 WTH 19 DEGREES P(chi squared) = 99.9 % CORPEICIENT = 0.830 VARIANCE OF SQR(N) = 4.672765 Ns/Ni = 0.952 - 0.094 MEAN RATIO = 1.013 - 0.050 Pooled Age = 198.4 - 20.1 Ma CORMIN a = 2.68927 Ns/Ni = 0.952 - 0.094 MEAN RATIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 10.8 - 11.5 Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma Man AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma CORMIN AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma Man AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma Man AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma Man AFTIO = 1.013 - 0.050 Pooled Age = 198.4 - 19.Ma Man AFTIO = 1.013 - 0.050 POOLE POOLE PO	5         2.679E+05           5         3.627E+05           5         4.167E+05           5         5.000E+05	182.5-94.5
3     19     15     30     1.100     4.1     5.6.2.1.5.0       5     15     16     50     0.938     5.6     4.688E-0       7     10     9     30     1.111     5.2     5.208E-0       8     11     9     28     1.222     5.6     6.138E-0       8     11     5     25     1.111     5.2     5.208E-0       8     11     5     25     1.167     4.3     4.37       9     10     1     8     4.2     1.506     3.3     3.702E-0       9     209     4.7     4.028E-0     4.37     4.028E-0       19     209     209     4.7     4.028E-0       19     209     209     4.7     4.028E-0       19     209     209     4.7     4.028E-0       19     209     209     4.77     4.028E-0       19     208     2.0827     2.88927     2.8927       VARIANCE OF SQR(N)     4.67263     3.3     4.67263       Ns/Ni = 0.952 - 0.094     VARIANCE OF SQR(N)     4.67263       Ns/Ni = 0.952 - 0.094     MEAN RATIO = 1.013 - 0.050     VARIANCE OF SQR(N)       10     1.013 - 0.050     VARIANCE OF SQR(N)     2.68927<	5.02/1E+05 5 4.167E+05 5 50005 55	173.9-74.6
<ul> <li>5 15 16 50 0.918 5.6 4.688E-0</li> <li>7 0 9 30 1.10</li> <li>7 0 9 30 1.11</li> <li>5 23 1.107</li> <li>4 2 2.5 2.308E-0</li> <li>8 1.22</li> <li>8 2.0 1.107</li> <li>4 2 3.375E-0</li> <li>9 209</li> <li>7 6 23</li> <li>1.107</li> <li>4 2 4.27</li> <li>4.77</li> <li>4.028E-0</li> <li>ea of basic unit = 6.4E-07 cm-2</li> <li>cCRRELATION COEFFICIENT = 0.830</li> <li>voltasic unit = 6.4E-07 cm-2</li> <li>cCRRELATION COEFFICIENT = 0.830</li> <li>variable = 9.9 %</li> <li>variable = 9.84 - 201 Ma</li> <li>Mean Age = 198.4 - 201 Ma</li> <li>Mean Age = 198.4 - 201 Ma</li> <li>General Age = 198.4 - 201 Ma</li></ul>		2.18-2.802
<ul> <li>6 18 20 50 000 70 50 505500</li> <li>7 10 9 28 1.127 5.5 5088-0</li> <li>9 7 6 25 1.167 4.2 4.3758-0</li> <li>0 10 8 42 1.290 3.3 3.7208-0</li> <li>199 209 4.7 4.0288-0</li> <li>199 209 4.7 4.0288-0</li> <li>199 209 4.7 4.0288-0</li> <li>199 209 50 4.7 - 4.0288-0</li> <li>190 209 209 4.7 4.0288-0</li> <li>190 209 209 4.7 4.0288-0</li> <li>191 2010 ARED = 2.77364 WITH 19 DEGREES</li> <li>Pedai squared) = 99.9%</li> <li>CHI SQUARED = 9.99%</li> <li>CORRELATION COEPFICIENT = 0.830</li> <li>VARIANCE OF SQR(N) = 4.672763</li> <li>Ns/Ni = 0.952 - 0.094</li> <li>MEAN RATIO = 1.013 - 0.050</li> <li>Pooled Age = 198.4 - 10.1 Ma</li> <li>Mean Age = 198.4 - 10.1 Ma</li> <li>Mean Age = 198.4 - 19.0 Ma</li> <li>Mean Age = 10.8 - 11.5 Ma</li> <li>Guend Age = 198.4 - 10.1 Ma</li> <li>Mean Age = 10.06-19.5 Ma</li> <li>Mean Age = 10.08-11.5 Ma</li> <li>Station = 0.00%</li> <li>Ages calculated using a zeno f 378.8 - 5.5 for CN</li> <li>RHO D = 1.117E+06cm-2; ND = 3355</li> <li>21-10-37-5</li> </ul>		1953-703
7 10 9 30 1111 5.2 5.208E40 8 11 9 28 1122 5.6 6.138E40 9 7 6 2.5 1.167 4.2 4.37540 199 209 4.7 4.028E40 rea of basic unit = 6.4E-07 cm-2 rea of basic unit = 6.4E-07 cm-2 rea of basic unit = 6.4E-07 cm-2 Red in squared = 9.9 % CORRENS = 9.0 % A.RIANCE OF SQR(NS) = 2.68927 VARIANCE OF SQR(NS) = 2.69927 VARIANCE OF SQR(NS) = 2.699	5 6.250E+05	187.6-61.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4.688E+05	230.9-106.2
9     7     6     25     11.07     4.2     4.375E+0       0     10     8     4.2     1.250     3.3     3.720E+0       ea of basic unit = 6.4E-07      4.7     4.028E+0       ea of basic unit = 6.4E-07      4.7     4.028E+0       CHI SQUARED = 2.77364     WTH 19     DEGREES       Picti squared) = 99.9%     CORRELATION COEFFICIENT = 0.830       VARIANCE OF SQR(N) = 4.672763       Ns/Ni = 0.952 - 0.094       MEAN RATIO = 1.013 - 0.050       Pooled Age = 198.4 - 20.1 Ma       MEAN RATIO = 1.013 - 0.050       Pooled Age = 198.4 - 19.3 Ma       CumindAge = 198.4 - 19.3 Ma       Gamma Age = 20.0%       Mean Age = 20.0%       Mean Age = 20.0%       Ages calculated using a zeta of 378.8 - 5.5 for CN       RHO D = 1.117E+06cm-2;       NB = 1.117E+06cm-2;       Ages calculated using a zeta of 378.8 - 5.5 for CN	5.022E+05	253.5-114.1
0         10         8         42         1.250         5.3         5.10E+0           199         209         209         4.7         4.028E+0           ea of basic unit = 6.4E-07 cm-2         4.7         4.028E+0           CHI SQUARED = 2.77364 WITH 19 DEGREES         PGGREES           P(chi squared) = 99.9%         5.9.5%         4.7         4.028E+0           P(chi squared) = 99.9%         2.68076,19         0.830         0.051F+0.161E+T         0.830           VARIANCE OF SQR(N) = 4.672763         Ns/Ni = 0.952 - 0.094         MEAN RATIO = 1.013 - 0.050         Pooled Age = 198.4 - 20.1 Ma           MEAN RATIO = 1.013 - 0.050         Pooled Age = 198.4 - 10.3 Ma         2.69076         Ma           Mean Age = 210.8 - 11.5 Ma         Mean Age = 210.8 - 11.5 Ma         3.68 calculated using a zeta of 378.8 - 5.5 for CN           RHO D = 1.117E+06cm-2; ND = 3355         21-10-97-5         21-10-97-5         21-10-97-5	05 3.750E+05	242.2-134.9
199         209         4.7         4.028E+0           ea of basic unit = 6.4E-07 cm-2         4.7         4.028E+0           CH SQUARED = 2.77364 WITH 19 DEGREES         P(dis iquared) = 99.%         5.000           P(dis iquared) = 99.9%         2.68927         3.30           VARIANCE OF SQR(Ns) = 2.68927         VARIANCE OF SQR(Ns) = 4.672763         3.80           Ns/Ni = 0.952 - 0.094         MEAN RATIO = 1.013 - 0.050         9.66         9.66           Pooled Age = 198.4 - 20.1 Ma         MEAN RATIO = 1.013 - 0.050         9.66         9.66           Pooled Age = 198.4 - 20.1 Ma         Man Action = 0.00%         9.67         9.66         9.66           Pooled Age = 198.4 - 19.9 Ma         Carried Age = 10.00%         9.66         9.66         9.67         8.67         60 CN           RHO D = 1.117E+06cm-2; ND = 3355         21+0-97-5         21+0-97-5         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400         9.400	05 2.976E+05	259.2-123.1
CHI SQUARED = 2.77364 WITH 19 DEGREES P(di squared) = 99.9% CORRISATION COEFFICIENT = 0.830 VARIANCE OF SQR(NS) = 2.689627 VARIANCE OF SQR(NS) = 4.672763 Ns/Ni = 0.952 - 0.094 MEAN RATIO = 1.013 - 0.050 Pooled Age = 198.4 - 20.1 Ma Mean Age = 210.8 - 11.5 Ma Qued Age = 198.4 - 19.9 Ma Gernita Age = 210.8 - 11.5 Ma Gernita Age = 210.8	C0+30c7.4 C	
CHI SOLARED = 77364 WITH 19 DEGREES P(dis squared) = 99.9 % CORRELATION COEFFICIENT = 0.830 VARIANCE OF SQR(Ns) = 4672763 NSAIANCE OF SQR(NSAIANCE OF SQR(NS) = 4672763 NSAIANCE OF SQR(NSAIANCE OF SQR(NS) = 4677763 NSAIANCE OF SQR(NSAIANCE OF SQR(NSAIANCE OF SQR(NS) = 4677763 NSAIANCE OF SQR(NSAIANCE O		
Ns/Ni = 0.952 - 0.094 MEAN RATIO = 1.013 - 0.050 Pooled Age = 198.4 - 20.1 Ma Mean Age = 210.8 - 11.5 Ma Control Age = 10.0 - 10.9 Ma % Variation = 0.00% Ages calculated using a zeta of 378.8 - 5.5 for CN RHO D = 1.117E+06cm-2; ND = 3355 21-10-97-5 Marc D = 1.117E+06cm-2; ND = 3355	S OF FREEDOM	
Pooled Age = 198.4 - 20.1 Ma Mean Age = 210.8 - 11.5 Ma <i>Contral Age</i> = 210.8 - 11.5 Ma % Variation = 0.00% % Variation = 0.00% Ages calculated using a zena of 378.8 - 5.5 for CN RHO D = 1.117E+06cm-2; ND = 3355 21-10-97-5 21-10-97-5		
Ages calculated using a zeta of 378.8 – 5.5 for CN RHO D = 1.117E+06cm-2; ND = 3355 21-10-37-5 'ar' = 'ar'		
21-10-97-5 21-0-17-5 7 01- 10-18-5	I 5 glass 12.5 ppm	
21-10-27-5 *40' = ML 10-3	21-10-97-5	
	•• 	2. 
		110 <b>ل</b> 110 ال

21-10-	<u>97-4</u> A	patite						
IRRAI	DIATIC	N LUS	74-11	U	OUNTED B	Y: M. RAAB (	66/L0/L	
No.	Ns	ïZ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
- 1	16	52	25	1.750	36.8	5.688E+06	3.250E+06	355.6-62.3
c1 (1	4 4	~ x	4 4	2.000	5.2	9.115E+05 4 836E±05	4.557E+05 2 976E+05	404.8 - 187.6 330.8 - 148.9
) <del>4</del>	1 =	000	12	1.375	5.7	6.875E+05	5.000E+05	281.0-130.7
5	59	4	21	1.405	35.4	4.390E+06	3.125E+06	287.0-58.3
9	42	22	36	1.909	10.8	1.823E+06	9.549E+05	387.0-102.2
L 0	41	۲ S	28 28	1.323	19.6	2.288E+06	1.730E+06	270.5-64.7
0 0	36	3 6	88	1.125	9.4 8.1	9.036E+05	7.143E+05	230.8-56.3
10	34	23	6	1.478	10.2	1.328E+06	8.984E+05	301.7-81.7
Π	102	94	25	1.085	66.6	6.375E+06	5.875E+06	222.8-32.2
212	51	8	5	1.417	26.6	3.320E+06	2.344E+06	289.4-63.3
2 2	5 6	<u></u>	<del>9</del> 2	1 0 3 8	1.61	1.680E+06	1.328E+06	258.9-59.7
1 21	35	18	ζ0	1.944	35.4	6.076E+06	3.125E+06	393.9-114.6
16	30	16	70	1.875	4.0	6.696E+05	3.571E+05	380.3-118.0
17	52	25	52	2.080	17.7	3.250E+06	1.562E+06	420.5-102.8
	714	491			15.0	1.930E+06	1.327E+06	
Area of	f basic	unit = 6	4E-07	, cm-2				
o nore	Alena I			1 112				
	0 1 0 7 7	CHI SQU (chi squ CORREI /ARIAN /ARIAN	JAREI lared) : LATIO ICE OI ICE OI	0 = 7.3662 ² = 54.4 % N COEFFIG F SQR(Ns) = F SQR(Ni) =	<pre>16 WITH 10 CIENT = 0.5 = 3.351337 = 3.070732</pre>	5 DEGREES C	DF FREEDOM	
	44	√s/Ni = ∕IEAN R	1.454 . EATIO	- 0.085 = 1.569 - 1	0.083			
		ooled A dean Ag <u>Central</u> ( Variati	ge = 2 e = 3 1ge = 2 1ge = 2 1ge = 2	96.8 - 18.6 19.6 - 18.5 <b>29.1 - 19.</b> 6 3.56%	Ma Ma 6 Ma			
	Η	Ages calı RHO D =	culated = 1.10	l using a zeti 3E+06cm-2;	a of 378.8 - ND = 3	5.5 for CN 5 g 355	glass 12.5 ppm	
		21-1	10-97-4	_			21-10-97-4	
	100-20		QE (M	= = = = = = = = = = = = = =		21-0-07-1 814 Dw =: 7 814 Dw =: 7 8.4 Dw =: 72 15 * 20' (mi crons)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 

21-10-97-6	Apatite							21-10	A <u>7-7</u>	patite						
IRRADIAT	ION LU.	575-01	C	DUNTED B	Y: M. RAAB (	08/07/99		IRR	ADIATIO	N LUS'	75-02	cc	UNTED BY	í: M. RAAB I	2/07/99	
No. Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	$N_{\rm S}$	Ņ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 61	6	30	6.778	6.3	3.177E+06	4.688E+05	1096.4-392.3	-	3	5	20	0.600	4.6	2.344E+05	3.906E+05	106.8-78.1
2 61	26	15	2.346	36.4	6.354E+06	2.708E+06	401.0-94.4	00	νΩt	ŝ	15	1.000	6.1	5.208E+05	5.208E+05	177.1-112.1
0 F	4 5	07	DC/ 7	4 Y	0.394E+03	3.750F±05	2.672-6.704	с <i>4</i>	- 4	0 (1	9 ç	2 000	C 7 C	4 688F±05	0 344F±05	200.1-114.0 340 5-247 2
5 48	345	20	1.412	14.3	1.500E+06	1.062E+06	244.3-55.0	F VO	30	16	96	1.875	32.5	5.208E+06	2.778E+06	328.2-101.9
6 23	17	100	1.353	3.6	3.594E+05	2.656E+05	234.3-75.1	9	٢	ю	16	2.333	3.4	6.836E+05	2.930E+05	405.9–280.2
7 15 0	17	12	1.118	29.7	2.474E+06	2.214E+06	194.1-65.0	L 0	<i>ლ</i> ი	4 (	51	0.750	3.5	2.232E+05	2.976E+05	133.3-101.8
0 0 0 0	с с с	CC 81	1.001	0.12 0.12	2.902E+06	1.302E+00	519.4-07.4 150.0-48.1	~ o	o 5	10	<del>ت</del> م	1 500	1.1	1 567E+06	5.4/2E+U5 1.042E+06	203.9-240.9 263.0-120.6
10 39	21	30	1.857	14.7	2.031E+06	1.994E+06	319.4-86.8	r	71	0	71	0007-1	7.71	004577001	0017740'T	0.021-6.002
11 55	38	40	1.447	19.9	2.148E+06	1.484E+06	250.3-53.1									
12 13	6 6	30	1.444	63	6.771E+05	4.688E+05	249.8-108.5									
13 33	57	000	1.110	0.6	1.031E+06	C)-188E+U5	248.2-01.0 104.1 65.0									
15 20	14	40 70	1.429	1.7	7.812E+05	5 469E+05	247.1-86.3									
16 13	~	25	1.625	6.7	8.125E+05	5.000E+05	280.4-126.1									
17 52	46	25	1.130	38.6	3.250E+06	2.875E+06	196.3-40.0									
18 15	8	30	1.875	5.6	7.812E+05	4.167E+05	322.4-141.3									
19 112	83	50	1.349	34.8	3.500E+06	2.594E+06	233.7-34.3									
16 07	17	00	1.4/0	0.0	0.043000.6	CU+370C.0	+·71-7·CC7		25	5			22	20122102	4 770E-05	ĺ
734	465			13.0	1.529E+06	9.688E+05			0/	70			0.0	CU+3C06.0	4.1/JE+U0	
Area of bas	ic unit =	6.4E-07	cm-2					Area	of basic	unit = 0	5.4E-07	cm-2				
										100111			0 11111			
	CHI SC P(chi sc CORRI VARIA	DUAREL puared) = 3LATION NCE OF	0 = 17.7370 1.2 % N COEFFIC SQR(Ns) =	8 WITH 19 TENT = 0.8 = 3.742053	9 DEGREES ( 860	DF FREEDOM				.HI SQU (chi squ ORREI /ARIAN /ARIAN	LAREL LATIO LATIO ICE OF	0 = 2.114660 = 83.6 % N COEFFIC 7 SQR(Ns) = 7 SQR(Ni) =	s with 8 ENT = 0.9 1.423457 .5898681	DEGREES OF	FREEDOM	
	VARIA	NCE OF	SQR(NI) =	2.733283												
	Ns/Ni = MEAN	= 1.578 - RATIO :	- 0.094 = 1.831 - (	.278					44	4s/Ni = AEAN F	1.462 - RATIO	- 0.263 = 1.414 - 0	.196			
	Pooled.	Age = 27	12.5 - 17.3	Ma					ц <i>с</i>	ooled A	ge = 25	57.2 - 46.7 I	Ma Ma			
	Mean / Central % Varia	Age = $3i$ Age = 2 ution = $25$	15.1 - 48.4 74.1 - 23.9 5.19%	Ma <b>Ma</b>					4 🔾 🗠	central Age	4ge = 2 ion = 0	<u>57.2 - 46.5</u> .01%	Ma			
	Ages c: RHO D	alculated = 9.310	using a zeta )E+05cm-2;	of 378.8 - ND = 3	.5.5 for CN 51 287	glass 12.5 ppm			~ #	Ages cal tHO D :	culated = 9.480	using a zeta E+05cm-2;	of 378.8-5 ND = 32	5.5 for CN 5 g 87	glass 11.1 ppm	
	21	-10 -97-6								21-	10-97-7				21-10-97-7	i
∎ ₩ 9 √ 8			.40	L	21-10-97-6 ML: 10.37 Std Dev = '1.84'	21-10-97-6	. 1100 th . 720	الللل اف`م`∞				.40 30	ш	21-10-97-7 ML: 9.98 Std Dev = '2.8' N = '16'	Ļ	. 450° 1.340°
4.e			.30, 20, 20,			*2 F	• • •	υ,4 ω				,50. v			يىپ پىپ	• • • • • • • • • • • • • • • • • • •
	Å	-	.10	j		ن من ب ب	• •	<u>1 A</u>		ŧ	#	÷ ۱		님	2 *	L 100'
0: IN ISSIO	500' TRACK	10 0( . 10 0(	⊭ I:∵≅	*5' *10' *	15' * 20' (microns)	. 52	14. 20. 1(1/signm.)	lo "	100.1	FRACK	0°' 400' AGE (M	*500* a) TF	5 °10 '1	(microns)	Pre cisio	29' 8' 12' 16' on (1/sig.ma)



	F.T.AGE(Ma)	337.7-133.4	295.8-143.2	257.5-102.4	189.8-81.0	390.7-143.5	313.3-161.9	374.2-205.1	328.6-206.1	269.5-132.9	142.9-54.7 200 1 121 2	C.ICI-1.00C	328.6-145.8	203.1-75.6	282.6-149.1	343.8-174.7	351.4-154.1	374.2-162.2	374.2-162.2	356.0-139.3										· · · · · · · · · · · · · · · · · · ·
4/05/00	RHOi	4.340E+05	3.906E+05	6.366E+05	4.297E+05	3.438E+05	3.906E+05	3.906E+05	3.125E+05	3.646E+05	5.000E+05	A 557E+05	4.167E+05	4.375E+05	2.344E+05	3.472E+05	5.000E+05	3.125E+05	5.000E+05	3.906E+05	4.027E+05		FREEDOM				glass		2 2-10-97 -3	<mark>ң е</mark>
Y: M. RAAB 2	RHOs	7.812E+05	6.138E+05	8.681E+05	4.297E+05	7.188E+05	6.510E+05	7.812E+05	5.469E+05	5.208E+05	3.750E+05	C0+31 C0.7	0.702E+05	4.688E+05	3.516E+05	6.366E+05	9.375E+05	6.250E+05	1.000E+06	7.422E+05	6.514E+05		DEGREES OI				5.5 for Other $g$ ND = 3287			LU 575-06 ML= 11.47 SD= 2.64 N= 74
OUNTED B	U(ppm)	5.3	4.8	7.8	5.3	4.2	4.8	4.8	3.8	4.5	6.1	7.4 V	5.1	5.4	2.9	4.3	6.1	3.8	6.1	4.8	4.9		2 WITH 19 CIENT = 0.0 = .4999711		0.085	- 29.4 Ma Ma IMa	a of 378.8 – ;			20, 0; 50, 0; 50, 0;
0	RATIO	1.800	1.571	1.364	1.000	2.091	1.667	2.000	1.750	1.429	0.750	0001	1.750	1.071	1.500	1.833	1.875	2.000	2.000	1.900		cm-2	= 4.7512 = 96.4 % N COEFFIG 7 SQR(Ns)	(111) 112 0	- 0.152 = 1.668 -	3 = 304.3 - 13.5 - 17.5 <b>04.3 - 29.</b> 1.04%	using a zet 7E+06cm-2			i izi
75-06	Na	36	28	27	40	50	24	20	50	8	20	00 84	9 6 6	50	40	27	25	40	25	40		6.4E-07	JAREL JAREL ared) = LATIOI CE OF	5	1.617 - EATIO	ge AG e = 3] <u>age = 3</u> on = 0	culated = 1.017	10-97-3		
N LUSS	ïZ	10	٢	11	Ξ	Π	9	2	4	-	2 I P	3 2	± ∝	14	9	9	×	×	×	10	183	anit = 6	HI SQI (chi squ ORREI ARIAN		s/Ni = IEAN F	ooled A Iean Ag <i>entral</i> / Variati	ges cal HO D =	22-		
IOITAIO	Ns	18	Ξ	15	Ξ	23	10	10	2	2 9	2 5	56	17	15	6	Ξ	15	16	16	19	296	f basic ı	04022	•	ΖŻ	£ ≥ 0 %	< ⊼			
IRRAL	No.	-	6	ю	4	5	9	7	×	6	2 3	= 2	1 0	14	15	16	17	18	19	20		Area of							ļ	

. 250 10. 22-10-97-3 Apatite ÷



-3

* 5* * 10* * 15* * 20* TRACKLENGTH (micron

100' 200' 300' 400' 50 FIS SION TRACK AGE (Ma)

IRRADIATION LU575-08 COUNTED No. Ns Ni Na RATIO U(ppm) No. Ns Ni Na RATIO U(ppm) 1 41 21 21 1932 18.6 1 42 21 55 35 2.400 2.7 3 12 5 5 35 1.680 13.3 5 4 22 25 1.630 13.3 6 19 8 18 2.235 8.3 6 19 8 18 2.235 8.3 8 106 56 24 1.893 43.4 11 35 19 30 1.842 11.8 12 18 8 30 2.2350 3.5 13 3 2 0 2.333 2.8 14 13 5 9 2.600 10.3 13 7 3 2.0 2.333 2.8 14 13 5 9 2.600 10.3 15 23 12 14 1917 15.9 Area of basic unit = 6.4E-07 cm-2 Area of basic unit = 6.4E-07 cm-2 A	RV. M RAAR	26/05/00	
No. Ns Ni Na RATIO U(ppm) 1 1 41 21 21 1952 18.6 2 43 24 64 1792 7.0 2 43 25 55 1733 25 15.80 4 5 25 35 16.80 133 5 42 25 35 16.80 133 5 42 25 35 16.80 133 5 42 25 35 16.80 133 7 7 3 20 2333 2.8 9 18 8 2375 8.5 10 55 30 30 1833 18.6 11 35 19 30 1833 18.6 12 18 8 30 2.250 51.1 13 7 3 20 2.333 2.8 14 197 70 2.412 4.5 15 41 770 2.412 4.5 16 23 12 14 1917 15.9 532 274 10.5 532 274 10.5 532 274 10.5 541 17 70 2.412 4.5 55 41 17 70 2.412 4.5 55 41 17 70 2.412 4.5 16 23 12 14 1917 15.9 532 274 10.5 542 4.1397 4.6 541 7.70 2.412 4.5 55 41 17 70 2.412 4.5 56 23 12 14 1917 15.9 57 74 70 2.412 4.5 6 23 12 14 1917 15.9 56 23 12 14 1917 15.9 57 70 2.412 4.5 6 23 12 14 1917 15.9 58 8 8 0.00 10 3 58 8 8 0.00 10 3 59 4.157418 7 9 2.600 0.074 Polot squared = 100.0% CORRELATION COEFFICIENT = 0 VARIANCE OF SQR(Ns) = 2.61629 NoVII = 19.42 - 0.074 Polot squared = 100.0% CORRELATION COEFFICIENT = 0 7.0 2412 4.5 16 23 15 1.5 6 23 12 14 1917 15.9 5 16 23 15 15.000 0.074 5 16 20 0.058 5 16			
$\begin{bmatrix} 1 & 41 & 21 & 21 & 1952 & 186 \\ 3 & 24 & 25 & 35 & 1680 & 13.3 \\ 4 & 52 & 30 & 25 & 1533 & 223 \\ 6 & 19 & 8 & 133 & 223 \\ 6 & 19 & 8 & 1233 & 223 \\ 7 & 7 & 3 & 20 & 2333 & 234 \\ 11 & 35 & 90 & 30 & 1823 & 18.6 \\ 11 & 35 & 90 & 30 & 1823 & 11.8 \\ 12 & 18 & 8 & 30 & 2250 & 5.0 \\ 12 & 18 & 8 & 30 & 2250 & 5.0 \\ 12 & 18 & 8 & 30 & 2250 & 5.0 \\ 12 & 18 & 8 & 30 & 2250 & 5.0 \\ 13 & 7 & 3 & 20 & 2333 & 2.8 \\ 14 & 13 & 7 & 3 & 20 & 2333 & 2.8 \\ 15 & 41 & 17 & 70 & 2412 & 45 \\ 15 & 41 & 17 & 70 & 2412 & 45 \\ 15 & 41 & 17 & 70 & 2412 & 45 \\ 15 & 41 & 17 & 70 & 2412 & 45 \\ 16 & 23 & 12 & 14 & 1917 & 155 \\ 15 & 41 & 17 & 70 & 2412 & 45 \\ 16 & 23 & 12 & 14 & 1917 & 155 \\ 15 & 41 & 17 & 70 & 2412 & 45 \\ 16 & 010 & 000 & 003 \\ 000 & 000 & 003 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 000 & 004 \\ 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\ 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 & $	) RHOs	RHOi	F.T.AGE(Ma)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.051E+06	1.562E+06	377.4-101.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.050E+06 5 357E±05	5.859E+05 2 232E+05	347.1-88.8 460 9-245 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.250E+06	1.875E+06	336.1-77.4
7 19 8 18 2.333 2.8 8 106 56 24 1.893 3.5 10 58 20 2.333 2.8 11 35 19 30 1.842 11.8 11 35 19 30 1.842 11.8 12 35 19 30 1.842 11.8 13 7 3 2.0 2.333 2.8 14 13 5 9 2.600 10.3 14 13 5 9 2.600 10.3 15 2 14 1.917 15.9 552 274 10.5 16 23 12 14 1.917 15.9 553 274 0.05 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 1	1.875E+06	1.116E+06	326.0-82.7
7 7 7 3 20 2.8 9 18 56 42 1893 3.5 9 18 56 42 1893 3.5 11 35 9 30 1842 11.8 12 18 8 30 2.250 5.0 13 7 3 20 2.333 2.8 14 13 5 9 2.600 10.3 15 41 17 70 2.412 4.5 16 23 12 14 1.917 15.9 532 274 10.0% CHI SQUARED = 1.223121 WTH CHI SQUARED = 1.223121 WTH SQUARED = 1.0219 CHI SQUARED = 1.223121 WTH CHI SQUARED = 1.0219 CHI SQUARED = 1.0219 CHI SQUARED = 1.0219 CHI SQUARED = 1.0219 CHI SQUARED = 1.0516-0.074 SVARANCE OF SQRVN = 2.574-2.2240 SVARANCE OF SQRVN = 2.574-2.2240 CHI SQUARED = 1.0516-0.079 CHI SQUARED = 1.	1.649E+06	6.944E+05	456.2-192.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.469E+05	2.344E+05	448.5-309.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.901E+06	3.646E+06	366.2–61.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.696E+05	2.976E+05	433.0-184.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.865E+06	1.562E+06	355.0-81.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3755+06	9.896E+05	356.6-102.0 423.0_194.3
The set of	201-3016.6	2 244E+05	7105 2 007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.409E+05	20+3445.2	1.606-0.044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 157F±05	3 795F±05	453.0-134.0
532 274 10.5 area of basic unit = 6.4E.07 cm-2 CHI SQUARED = 1.23121 WTH Pedia squared = 1000 % CORRELATTON COEFFICIENT = 0 VARIANCE OF SQR(Ns) = 2.61629 VARIANCE OF SQR(Ns) = 2.61629 VARIANCE OF SQR(Ns) = 2.61629 NaNi = 1.942 - 0.144 MEAN RATIO = 2.100 - 0.074 Pooled Age REE = 375.4 - 292 Ma Mean Age = 405.0 - 10.9 Ma Control Age a 455.0 - 10.9 Ma Scana Age = 405.0 - 10.9 Ma Scana Age = 405.0 - 10.9 Ma % Pooled Age AGE = 375.4 - 292 Ma % Pooled Age AGE = 375.4 - 292 Ma % Pooled Age Age CGE = 375.4 - 292 Ma % Pooled Age AGE = 375.4 - 292 Ma % Pooled Age AGE = 375.4 - 292 Ma % % Pooled Age AGE = 375.4 - 292 Ma % % Pooled Age AGE = 375.4 - 292 Ma % % % % % % % % % % % % %	2.567E+06	1.339E+06	370.7-132.3
rea of basic unit = 6.4E-07 cm-2 CHI SQUARED = 1123121 WITH PChi squared = 1000 % CORRELATION COEFFICIENT = 0 VARIANCE OF SQR(NI) = 2.61629 VARIANCE OF SQR(NI) = 2.61629 Ns/Ni = 1.942 - 0.144 MEAN RATIO = 2.100 - 0.074 Pooled Age AGE = 375.4 - 29.2 Ma MEAN RATIO = 2.000% Pooled Age AGE = 375.4 - 29.2 Ma Mean Age = 405.0 - 16.9 Ma Gurnel Age = 375.4 - 29.2 Ma Mean Age = 405.0 - 16.9 Ma Suration = 0.00% Ages calculated using a zeta of 378.8 RHO D = 1.051E-0.06%	1.707E+06	8.791E+05	
Ns/Ni = $1.942 - 0.144$ MEAN RATTO = $2.100 - 0.074$ Pooled Age AGE = $375.4 - 29.2$ Ma Mean Mge = $405.0 - 16.9$ Ma <i>Gentral Age</i> = $375.4 - 29.2$ Ma Main Age = $400.96$ % Variation = $0.00\%$ Ages calculated using a zeta of 378.8. RHO D = $1.05$ IE-06cm-2; a sto <i>sr</i> = $325.4 - 28.7$ Ma - $326.4 - 28.7$	15 DEGREES ( 0.992 8 5	DF FREEDOM	
Pooled Age AGE = 375.4 - 29.2 Ma Mean Age = 4050 - 16.9 Ma Central Ace = 375.4 - 28.2 Ma % Variation = 0.00% Ages calculated using a zeta of 378.8 RHO D = 1.051E+06cm-2; 2 = 1.051E+			
Ages calculated using a zeta of 378.8. RHOD = 1.051E+06cm-2; $2 \cdot 10 \cdot 17 \cdot 10^{-1}$			
2 - 10 - 17 - 2 - 10 - 10 - 2 - 10	- 5.5 for Other ND = 3287	glass	
		2 -10-9 7-2	
	LU 575-08 ML= '10.69' SD= '25' N='25'		· · ·
. 0' 100' 200' 300' 400' 500' 600' 65' 1 158 SIGN TRACK АСЕ (Ма) то ли 1 EN	برج ح <u>ح</u>	ء بر پورا	
	10° * 15° * 20° 34 GTH (mi crons)	0 . 10'	. D



<b>17-9-36-9</b> Apatite	13-4-96-6 Apaite	
IRRADIATION LU575-09 COUNTED BY: M. RAAB 26/05/00	IRRADIATION LU575-10 COUNTED BY: M. RAAB 26/05/00	
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE	jE(Ma) No. Ns Ni Na RATIO U(ppm) RHOs RHC	lOi F.T.AGE(Ma)
1 21 111 100 0.450 20.3 7.020E.05 1.724E.05 02.3.1		113
2 22 20 50 1.100 7.3 6.875E+05 6.250E+05 218.8-6	-67.8 2 2 2 5 5 0.346 8.3 2.511E+05 7.254E+	3+05 70.8-27.4
3 32 51 80 0.627 11.7 6.250E+05 9.961E+05 125.7-2	-28.5 3 12 33 70 0.364 8.5 2.679E+05 7.366E+	3+05 74.4-25.1
4 87 160 80 0.544 36.6 1.699E+06 3.125E+06 109.1-1	-14.7 4 13 34 60 0.382 10.2 3.385E+05 8.854E+	3+05 78.2-25.6
5 24 43 40 0.558 197 9.575E+05 1.680E+06 111.9-22 6 58 102 60 0.560 3.1.1 1.510E+06 2.656E+06 114.0.1	-28.6 5 8 30 60 0.26/ 9.0 2.083E+05 7.812E+ 18.0 6 12 30 40 0.400 11.0 3.827E+05 0.566E-	54.05 54.6-21.8 24.05 81.8 28.0
7 15 32 60 0.460 9.8 3.906F±05 8.333F±05 941_7	-10.5 0 15 0.0 15 0.0 10 0.00 11 0.00 11 0.0 0.00 11 0.0 0.0	100 01:0-20:0
8 17 33 50 0.515 12.1 5.312E+05 1.031E+06 103.4-3	-30.9 8 12 30 50 0.400 10.8 3.750E+05 9.375E+	3+05 81.8-28.0
9 24 54 100 0.444 9.9 3.750E+05 8.438E+05 89.3-2	-22.0 9 8 14 50 0.571 5.0 2.500E+05 4.375E+	3+05 116.5-51.7
10 26 57 100 0.456 10.4 4.062E+05 8.906E+05 91.6-2	-21.8 10 13 29 70 0.448 7.4 2.902E+05 6.473E+	3+05 91.6-30.6
11 69 140 100 0.493 25.6 1.078E+06 2.188E+06 98.9–1	-14.7 11 4 12 30 0.333 7.2 2.083E+05 6.250E+	3+05 68.2-39.4
12 86 208 80 0.413 47.5 1.680E+06 4.062E+06 83.1-1	-10.8 12 27 55 40 0.491 24.7 1.055E+06 2.148E+	3+06 100.2-23.7
15 158 2/3 100 0.5/9 49.9 2.409E+06 4.200E+06 110.0-1 14 71 142 50 0.500 510 2.310E-06 4.200E+06 100.4 1	-11.9 1 1 20 0.535 10.2 5.1225+03 3.334E4 14.0 1.13 1 1 20 0.135 10.2 5.1225+03 3.334E4	5-102 / 77.0 0 12 1 22 0
14 /1 142 30 0.500 31.9 2.219E+00 4.438E+00 100.4-1 15 19 27 50 0.557 0.0 5.52E1.05 0.428E.05 133.5.4	-11-00.0 0.0-13-0.1 2 0.1 2 0.1 1 41 0.12 2 1.0 2.1-12-0 0.0-4-12-4 0.12-0 0.0-4-12-4 0.12-0 0.0-4-12-4 0.12-0 0.0-4-12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 0.12-0 000-00-00-00-00-00-00-00-00-00-00-00-	
T 1 10 10 10 0.000 0.00 10 10 10 10 10 10 10 10 10 10 10 10 1	-40.0 11 20-217 20-20 10 12 10 10 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	271-177 105 07-37.4
10 40 117 17 169 50 0.456 61.8 2.406F.406 5.281F.406 91.5-17	HADOLIO DOTALGALIC 0.7 014-00 0C 12 01 01 01 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0-41 0 0	+05 53 9-19 2
18 60 127 100 0.472 23.2 9.375E+05 1.984E+06 94.9-1	-15.0 18 13 41 49 0.317 15.0 4.145E+05 1.307E+	3+06 64.9-20.7
19 103 171 100 0.602 31.3 1.609E+06 2.672E+06 120.7-1	-15.3 19 5 16 30 0.312 9.6 2.604E+05 8.333E+	3+05 64.0-32.8
20 37 78 50 0.474 28.5 1.156E+06 2.438E+06 95.2-1 ⁻	-19.1 20 11 32 60 0.344 9.6 2.865E+05 8.333E ₄	3+05 70.3-24.6
1081 2110 25.7 1.126E+06 2.198E+06	243 689 11.4 3.483E+05 9.877E+	3+05
Area of basic unit = $6.4E-07$ cm-2	Area of basic unit = $6.4E-07$ cm-2	
CHI SQUARED = 9.299988 WITH 19 DEGREES OF FREEDOM P(chi squared) = 48.3 % CORRELATION COEFFICIENT = 0.968 VARIANCE OF SQRN9 = 5.552304 VARIANCE OF SQRN9 = 11.59608	CHI SQUARED = 4.246 WITH 19 DEGREES OF FREEDOM P(chi squared) = 98.1 % CORREATION COEFFICIENT = 0.918 VARIANCE OF SQR(NS) =8064326 VARIANCE OF SQR(NI) = 2.691403	-
Ns/Ni = 0.512 - 0.019 MEAN RATIO = 0.540 - 0.033	Ns/Ni= 0.353 - 0.026 MEAN RATIO = 0.369 - 0.018	
Pooled Age AGE = 102.8 - 4.5 Ma Mean Age = 108.4 - 7.1 Ma <i>Countal Age = 102.8</i> % Variation = 2.15%	Pooled Age AGE = 72.1 - 5.6 Ma Mean Age = 75.4 - 4.1 Ma Central Age = 72.1 - 5.5Ma % Variation = 0.03%	
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 1.068E+06cm-2; ND = 3287	Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = $1.086E+06cm-2$ ; ND = $3287$	
17-9-96-9	13-4-96-6 	:
FIS SION TRACK AGE (Ma) C. 5' - 10' - 15' - 20' 0' - 10' - 20' 3' 4' FIS SION TRACK LEN GTH (microns) 0' - 10' - 20' 3' 4' 8' - 10' - 20' 3' 4' 8' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3' - 20' 3'	• 6. 5. 10. 15. 20. 1	Precision (V signal)



## 5-10-97-3 Apatite

	F.T.AGE(Ma)	89.7–19.1									نْتْن •
/02/00	RHOi	3.854E+06	3.854E+06		WO			ass	5-10-07-3	<b>لــــ</b>	
: M. RAAB 27	RHOs	1.667E+06	1.667E+06		ES OF FREED			1.5 for Other gl ID = 3287			
UNTED BY	U(ppm)	43.7	43.7		$\begin{array}{l} 0  \text{DEGRE} \\ \text{IENT} = 1.00 \\ 0 \\ 0 \end{array}$	000	9.1 Ma a <b>Ia</b>	of 378.8–5 N			
со	RATIO	0.432		cm-2	= 0 WITH 100.0 % I COEFFICI SQR(Ns) = SQR(Ni) =	0.091 : 0.432 - 0.	[= 89.7 - 1 1.7 - 2.0 M 9.7 - 19.1M 00%	using a zeta E+06cm-2;			
H	Na	30		tE-07	ARED red) = ATION E OF E OF	.432 – ATIO =	e AGE = 85 <u>e = 8</u> n = 0.	lated 1 1.103	67-3		
N LU575	Ni	74	74	unit = 6.4	CHI SQU/ (chi squa CORREL/ /ARIANC /ARIANC	√s/Ni = 0 ∕IEAN RA	ooled Ag dean Age <u>Central Ag</u> 6 Variatio	Ages calcu tHO D =	5-10-8		$\langle$
IATIO	Ns	32	32	basic	04022	44	≞ <b>∠ U</b> ∛	< 12			
IRRAD	No.	-		Area of							<b>.</b>

<b>26-3-96-3</b> Apatite	<u>3-4-96-2</u> Apatite
IRRADIATION MU024-02 COUNTED BY: M. RAAB 08/10/00	IRRADIATION MU024-03 COUNTED BY: M. RAAB 09/10/00
. No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1         22         56         40         0.393         28.2         8.594E+05         71.6-18.1           2         39         68         30         0.574         45.7         2.031E+06         3.542E+06         104.3-21.1
2205 4834 60.1 2.091E+06 4.583E+06	61 124 35.7 1.362E+06 2.768E+06
Area of basic unit = $64E-07$ cm-2	Area of basic unit = $6.4$ E-07 cm-2
CHI SQUARED = 14.89188 WITH 19 DEGREES OF FREEDOM Cchi squared) = 2.7 % CORRELATION COEFICIENT = 0.941 VARIANCE OF SQR(NS) = 4.233963 VARIANCE OF SQR(NI) = 10.38402	CHI SQUARED = .6935673 WITH 1 DEGREES OF FREEDOM P(ni squared) = 23.9 % CORRELATION COEFFICIENT = 1.000 VARIANCE OF SQQR(Ni) = 1.208366 VARIANCE OF SQQR(Ni) = .2910156
Ns/Ni = 0.456 - 0.012 MEAN RATHO = 0.466 - 0.016	$N_{S}/N_{1} = 0.492 - 0.077$ MEAN RATIO = 0.433 - 0.090
Pooled Age AGE = 81.9 - 2.8 Ma Mean Age = 83.7 - 3.4 Ma <i>Central Age</i> = 82.2 - 3.0Ma % Variation = 7.81%	Pooled Age AGE = 89, 6 – 14.2 Ma Mean Age = 88,0 – 16.6 Ma <i>Central Age</i> = 89 <i>36 – 14.1Ma</i> % Variation = 0.20%
Ages calculated using a zeta of 378.8 $-5.5$ for Other glass RHO D = 9.540E+05cm-2; ND = 3355	Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 9.68005+05cm-2; ND = $3355$
3153663 	10. 10. 10. 10. 10. 10. 10. 10.

			Ì								
COUNTED BY: M. RAAB 09/10/00	10/00		IRR	ITAIU	on MU(	124-05	Ŭ	DUNTED B	Ý: M. RAAB 3(	0/10/00	
Ns Ni Na RATIO U(ppm) RHOs RH	RHOi	F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
7 17 32 0.412 10.6 3.418E+05 8.301E	8.301E+05	76.2-34.3	-	31	49	100	0.633	9.6	4.844E+05	7.656E+05	118.5-27.3
7 13 25 0.538 10.3 4.375E+05 8.125E	8.125E+05	99.5-46.7	2	24	47	100	0.511	9.2	3.750E+05	7.344E+05	95.8-24.1
7 21 50 0.333 8.3 2.188E+05 6.562E	6.562E+05	61.8-27.0		42	58	2	0.724	17.7	1.025E+06	1.416E+06	135.4–27.6
11 19 28 0.579 13.5 6.138E+05 1.060E	1.060E+06	106.9-40.6	4	53	69	50	0.768	27.0	1.656E+06	2.156E+06	143.6–26.4
4 9 21 0.444 8.5 2.976E+05 6.696E	6.696E+05	82.2-49.4	5	50	68	50	0.735	26.6	1.562E+06	2.125E+06	137.5-25.8
8 13 20 0.615 12.9 6.250E+05 1.016E	1.016E+06	113.6-51.1	9	65	109	100	0.596	21.3	1.016E+06	1.703E+06	111.7-17.7
7 20 42 0.350 9.5 2.604E+05 7.440E	7.440E+05	64.8-28.5	7	9	10	100	0.600	2.0	9.375E+04	1.562E+05	112.4–58.1
7 15 28 0.467 10.6 3.906E+05 8.371E	8.371E+05	86.3–39.6	8	7	12	6	0.583	3.7	1.709E+05	2.930E+05	109.3-52.1
4 9 28 0.444 6.4 2.232E+05 5.022E	5.022E+05	82.2-49.4	6	6	12	20	0.750	4.7	2.812E+05	3.750E+05	140.2–61.9
4 6 20 0.667 6.0 3.125E+05 4.688E	4.688E+05	122.9–79.4	10	36	54	20	0.667	21.1	1.125E+06	1.688E+06	124.8–27.0
			= :	8'	31	20	0.645	12.1	6.250E+05	9.688E+05	120.8–34.8
			71	10	91	08	0.70	12.4	4.5/3E+U5	0.430E405	151.0-04.0
			C1 14	3 5	30	89	0767	11.7	0.034E+05 7 188E+05	9 375F±05	143 3-39 8
			51	3 =	2° 1	8 <b>%</b>	0.733	10.5	6 138E+05	8 371E+05	137 1-54 5
			16	5	35	8	0.686	11.4	6.250E+05	9.115E+05	128.3–34.1
			17	15	16	25	0.938	12.5	9.375E+05	1.000E+06	174.8 - 63.0
			18	51	93	20	0.548	36.4	1.594E+06	2.906E+06	102.8-18.1
			20	14 20	28 18	32 33	0.714 0.778	0.11	6.250E+05 6.836E+05	8.750E+05 8.789E+05	133.6–39.2 145.4–51.9
66 142 9.6 3.508E+05 7.547E	7.547E+05			542	805			13.6	7.313E+05	1.086E+06	
sic unit = $6.4E-07$ cm-2			Area	of basic	c unit = 4	5.4E-07	cm-2				
CHI SQUARED = 1.117001 WITH 9 DEGREES OF FREED Poin squared) = 98.7 % CORRELATION COEFFICIENT = 0.738 VARIANCE OF SQR(NS) = .1796646 VARIANCE OF SQR(NS) = .5088145	REEDOM				CHI SQ P(chi sq CORRE VARIAN VARIAN	UARED uared) = LATION VCE OF VCE OF	= 3.26801 99.6 % I COEFFIC SQR(Ns) = SQR(Ni) =	5 WITH 19 IENT = 0.9 = 2.91904 = 4.800922	DEGREES OI	F FREEDOM	
Ns/Ni = 0.465 - 0.069 MFAN RATIO = 0.485 - 0.035					Ns/Ni = MFAN I	0.673 – 2 ATIO =	0.037	023			
Pooled Age AGE = 86.0 – 13.0 Ma Menn Age = 89.7 – 6.8 Ma % Variation = 0.00%					Pooled <i>⊦</i> Mean A _i <u>Central</u> . % Variat	$\operatorname{vge} \operatorname{AGE}$ $\operatorname{ge} = 13$ $\operatorname{de} = L$ $\operatorname{ion} = 0$ .	:= 126.0 - 0.1 - 5.2 h <b>26.0 - 7.3</b> 00%	7.6 Ma Aa <b>Ma</b>			
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = $9.830E+05cm-2$ ; ND = $3355$	SS				Ages cal RHO D	culated = 9,980	tsing a zeta E+05cm-2;	of 378.8-	5.5 for Other g VD = 3355	lass	
3-4-96-4	3 4 -96 -4		ŝ		4-6	-96-6				3 -4-96 -6	
	• • • • •	•••• •••• ••••	2 2 2 6 6 7 6 6 7 7 7 7				, ^N , 40	<u> </u>	M U0 24- 05 ML = '13-33' SD = '174 ' N = '91 '	•• •• •• ••	.011. .110. .111. .120. .120. .120. .120. .120. .120. .120.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	relative error 3 8 1 M Sensi	⊔ <b>⊥</b> ∎ ⊚ ≀÷ °	FISSIO	L HACK AN	E (Ma)	: /l.ª	TRACK LENG	*15* * 20*	% refe	va error 20

Area of basic unit = 6.4E-07 cm-2

66 142

**IRRADIATION MU024-04** <u>3-4-96-4</u> Apatite

 $\mathbf{N}_{\mathbf{S}}^{\mathbf{S}}$ 

No.

0.0

5 6 9 8 9 10

0' 25' 50' 75' 100" 125 150 FISSION TRACK AGE (Ma)

Л

		1																		I							145 - 1 130 - 1 15 - 100 - 85 - 10
	F.T.AGE(Ma)	106 8-27 2	142.0-46.8	109.3-20.9	133.9–35.6	92.6-22.1	100.2-11.9	88.4-22.3	117.3-32.5	118.0-25.4	1.62-6.19	96.2-16.0	73.2-18.4	106.3-20.1	96.7-19.3	91.5-14.0	117.3-42.9	117.3–38.4	125.6-31.1								····
/10/00	RHOi	6 875F±05	5.729E+05	1.203E+06	1.094E+06	8.594E+05	3.391E+06	1.138E+06	1.302E+06	1.510E+06	1.458E+06 1 234E+06	2.917E+06	1.024E+06	1.266E+06	1.203E+06	3.345E+06	6.250E+05	1.085E+06	1.312E+06	1.438E+06		FREEDOM			lass		
Y: M. RAAB 31	RHOs	3 750F±05	4.167E+05	6.719E+05	7.500E+05	4.062E+05	1.734E+06	5.134E+05	7.812E+05	9.115E+05	7.188E+05 8 438E+05	1.432E+06	3.819E+05	6.875E+05	5.938E+05	1.562E+06	3.750E+05	6.510E+05	8.438E+05	7.654E+05		DEGREES OF 79			5.5 for Other g ND = 3355		M. U0 24-07 73.57 - 13.7 80.81 - 13.2 80.81 - 10.2 8.2.8
UNTED BY	U(ppm)	6.8	6.9	14.4	13.1	10.3	40.7	13.7	15.6	18.1	14.8	35.0	12.3	15.2	14.4	40.1	7.5	13.0	15.7	17.3		WITH 18 ENT = 0.9 2.956468 6.444654	021	5.5 Ma la <b>fa</b>	of 378.8-		
CC	RATIO	0 545	0.727	0.558	0.686	0.473	0.512	0.451	0.600	0.603	0.500	0.491	0.373	0.543	0.494	0.467	0.600	0.600	0.643		cm-2	= 4.66733 95.1 % COEFFICI SQR(Ns) = SQR(Ni) =	0.025 0.555 - 0.00	= 104.2 - 8.7 - 4.8 N <b>4.2 - 5.3</b> N 00%	tsing a zeta 3+06cm-2;		
4-07	Na	100	60	100	50	100	100	70	4	88	0 0 0	99	6	100	100	\$	50	88	20		4E-07	ARED ared) = ATION CE OF CE OF	.532 - ATIO =	ge AGE = 108 <i>ge = 10</i> on = 0.0	ulated u 1.042I	6-8	A
I MU02	Ni	44	22	11	35	55	217	51	35	28	04 F	112	59	81	77	137	20	22	42	1272	nit = 6.	HI SQU chi squi DRREL ARIAN	/Ni= ( EAN R	oled Ag ean Age <i>ntral A</i> Variatio	ges calc HO D =	3-4-9	( :
IATION	$N_{\rm S}$	74	16	43	24	26	II	53	21	33	3 2	55	52	4	38	2	12	15	77	677	basic u	S S S S S S	sΝ	8 ŭ 3 %	Ag RF		
IRRAD	No.	-	. 0	I m	4	2	9	2	×	6 9	2 =	12	13	14	15	16	17	18	19		Area of						

3-4-96-7	Apat	ite						
IRRADI	ATIO	N MU02	4-06	CO	UNTED BY	: M. RAAB 31	/10/00	
No.	Ns	Ņ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
- 6	19 14	32	20	0.594 0.824	8.8 6.6	4.241E+05 4.375E+05	7.143E+05 5.312E+05	112.9–32.8 156.1–56.4
i m	×	17	36	0.471	9.1	3.472E+05	7.378E+05	89.7-38.5
4 v	<u>6</u> 4	19	42 7	0.684	8.1	4.514E+05 8 020E+04	6.597E+05	130.0-46.9
9	12	20	35	0.750	11.0	6.696E+05	8.929E+05	142.3-48.7
7	б	4	25	0.750	3.1	1.875E+05	2.500E+05	142.3-108.7
<b>%</b>	∞ ç	45	68	0.571	3.9	1.786E+05	3.125E+05	108.7-48.2
9 01	2 0	16 24	8 s	0.500	15.4	6.250E+05 7 812E±05	1.250E+06 1 389E±06	95.2–33.7 107.0–44.7
2 =	2	3 5	52 19	0.710	23.9	1.375E+06	1.938E+06	134.7-37.7
12	23	4	99	0.523	14.1	5.990E+05	1.146E+06	99.5-25.7
13	16	23	45	0.696	9.9	5.556E+05	7.986E+05	132.1–43.1
	166	268			8.9	4.480E+05	7.232E+05	
Area of l	basic u	mit = 6.4	4E-07	cm-2				
	Ū∡ČŽŽ	HI SQU, chi squa ORREL/ ARIANC ARIANC	ARED : red) = ATION E OF S	= 1.394627 99.7 % COEFFICI SQR(Ns) = SQR(Ni) =	WITH 12 ENT = 0.93 .8996315 1.493746	DEGREES OF	7 FREEDOM	
	ΖΣ	s/Ni = 0 EAN R/	.619 - ATIO =	0.061 0.631 - 0.0	031			
	% <b>ٽ</b> Σ ک	ooled Ag ean Age entral As Variatio	e AGE = 120 <u>ee = 11</u> : n = 0.0	= 117.8 - 1 1.0 - 6.4 M 7.8 - 11.8N	.1.9 Ма а <b>Га</b>			
	A II	ges calcı HO D =	ılated u 1.013E	sing a zeta ( 1+06cm-2;	of 378.8-5 N	.5 for Other gl ID = 3355	ass	
		3-4-9	6-7				3 -4 -96-7	
ан с. с. с. с. с. с. с. с. с. с. с. с. с.	2: NOIS 2: 05 2: 0 2: 0 2: 0 2: 0 2: 0 2: 0 2: 0 2: 0		(Wa)	°, °, °, °, °, °, °, °, °, °, °, °, °, °		MU024-06 ML-12.87 NL-12.87 NL-12.87 NL-12.87 NL-12.67 H (m cross)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 180. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190. 190.

3-4-96-8 Apatite

			5-4-9	<u>5-7</u> Apa	tite						
: M. RAAB 19/	11/00		IRRA	DIATIO	N MU02	4-09	CC	OUNTED BY	(: M. RAAB 23	/11/00	
RHOs	RHOi	F.T.AGE(Ma)	No.	$N_{S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
3.438E+05	8.594E+05	78.5-19.9	-	106	333	50	0.318	123.1	3.312E+06	1.041E+07	63.4-7.2
3.906E+05	1.031E+06	74.3-17.5	2	114	384	50	0.297	141.9	3.562E+06	1.200E+07	59.2-6.4
3.906E+05	1.047E+06	73.2-17.2	ς, γ	178	528	100	0.337	97.6	2.781E+06	8.250E+06	67.1-6.0
4.219E+05	1.1/2E+06	6.51-1.07	4 v	162	554	25	0.305	197.5	5.062E+06	1.669E+0/	0.2-1-00
1.200E+06	4.900E+06	00.1-7.3	n v	0.150	200	с <u>с</u>	0.347	0.CUI	3.123E+06 4.688E+06	8.929E+06	69.7–9.8
4 062E+05	1.188E+06	67.2-15.3	0 1-	34	151	2 6	162.0	0.001	2.750E+06	9 438E+06	58 1-10 0
5.729E+05	1.927E+06	58.4-14.2	- 00	8	200	20	0.400	73.9	2.500E+06	6.250E+06	79.6-10.7
4.219E+05	1.453E+06	57.0-12.5	6	66	224	48	0.442	86.2	3.223E+06	7.292E+06	87.9-10.8
6.250E+05	1.094E+06	111.8-35.1	10	77	191	36	0.403	98.0	3.342E+06	8.290E+06	80.2-11.0
3.594E+05	1.125E+06	62.7–15.1	П	40	134	25	0.298	99.0	2.500E+06	8.375E+06	59.5-10.8
8.750E+05	2.406E+06	71.4-11.3	12	109	374	20	0.291	138.2	3.406E+06	1.169E+07	58.1-6.5
0.094E+05 4 531E+05	1 4695-06	/0.1-14.9 60.6 12.0	C1 1	00	107	Р қ	0.000	71.0	2.300E+06	6.000E+06	1.1-1.60
3.781F±05	$1.405\pm00$	64 4-16 3	<u>t '</u>	001	304	39	0.359	112.3	2.406F±06	9 500F+06	714-81
1.084E+06	2.934E+06	72.5-14.6	16	8	250	205	0.344	92.4	2.688E+06	7.812E+06	68.5-8.7
			17	27	65	6	0.415	30.0	1.055E+06	2.539E+06	82.6-19.0
			18	87	245	40	0.355	113.2	3.398E+06	9.570E+06	70.7–9.0
			19	76	219	50	0.347	80.9	2.375E+06	6.844E+06	69.1–9.3
			20	40	124	25	0.323	91.6	2.500E+06	7.750E+06	64.3-11.8
5.640E+05	1.628E+06			1773	5255			108.0	3.082E+06	9.133E+06	
			Area	of basic	unit = 6.	4E-07	cm-2				
DEGREES OF 6	FREEDOM			04022	THI SQU (chi squi ORREL ARIANO ARIANO ARIANO	ARED = ured) = . ATION CE OF S	= 8.98886 52.4 % COEFFIC SQR(Ns) = SQR(Ni) =	WITH 19   IENT = 0.97 5.001214 17.07651	DEGREES OF	FREEDOM	
				44	Is/Ni = 0 IEAN R.	.337 - ATIO =	0.009 0.346 - 0	1010			
					ooled Ag Jean Age Jentral A Suriatio	ce AGE = 69. <u>ge = 67</u> n = 1.1	= 67.2 - 0 - 2.6 M <b>7</b> %	2.4 Ma la <u>fa</u>			
.5 for Other gla D = 3355	ISS			₹ H	vges calc tHO D =	ulated u 1.057E	sing a zeta 1+06cm-2;	of 378.8-5 N	5.5 for Other gl VD = 3355	ass	
					5-4-9	6-7					
	5-4-96-1		L.S							5 -4 -96 -7	3
M U02 4- 08 80-1 4 2 7 80-1 4 2 7 N=-1 00' N=-1 00' 1 00' 1 (10' 10')	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 1911- 19		THE SEC. 7	G. 100-125	<b>1</b> 150" 175" Ma)	°, ¹ , ² , ³ , ⁴ , ³ , ⁴ , ³ , ⁴ , ⁴ , ³ , ⁴	<b>F</b>	M U024- 09 NL= 14.8 NL= 14.8 NL= 16.2 16.7 16.7 16.7 20.		
								INVLA LENSE	H (Mictoria)	Precisio.	n (1/aigma)

**IRRADIATION MU024-08** 5-4-96-1 Apatite

No.

COUNTED BY: U(ppm) 10.3 12.4 12.6 14.1 58.9 13.5 13.5 13.5 13.5 13.1 17.4 13.1 13.5 13.5 13.5 13.2 13.2 13.2 13.2 13.2 13.2 RATIO 0.400  $\begin{array}{c} 0.342\\ 0.297\\ 0.290\\ 0.571\\ 0.319\\ 0.364\\ 0.309\\ 0.328\\ 0.370\\ 0.370\end{array}$ 0.360 0.306 373 0.472 Na 100 100 50 100 <u> 8</u> ï  $\mathbf{N}_{\mathbf{S}}$ 

19.5 Area of basic unit = 6.4E-07 cm-2 505 1458

CHI SQUARED = 3.861788 WTH 15 DE P(chi squared) = 93.4 % P(chi squared) = 93.4 % CORRELATION COEFICIENT = 0.986 VARIANCE OF SQR(N) = 7.843996 VARIANCE OF SQR(N) = 7.843986

Ns/Ni = 0.346 - 0.018 MEAN RATIO = 0.367 - 0.018

Pooled Age AGE = 68.0 - 3.8 Ma Mean Age = 72.1 - 3.9 Ma *Central Age = 68.0 - 3.7Ma* % Variation = 0.01%

Ages calculated using a zeta of 378.8 – 5.5 RHO D = 1.042E+06cm-2; ND



7-4-96-5 Apatite	7.4.967 Apatite
IRRADIATION MU024-10 COUNTED BY: M. RAAB 24/11/00	IRRADIATION MU024-11 COUNTED BY: M. RAAB 24/11/00
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
1 141 307 100 0.459 55.9 2.203E+06 4.797E+06 92.6-9.6	1 27 81 100 0.333 14.6 4.219E+05 1.266E+06 68.2-15.2
2 34 94 25 0.362 68.5 2.125E+06 5.875E+06 73.0-14.7	2 15 49 100 0.306 8.8 2.344E+05 7.656E+05 62.7-18.5
- 3 - 33 197 70 0.447 - 31.3 1.304時中00 4.397時中00 - 90.1−11.7 オ - 44 - 60 - 60 - 64 - 37.3 - 1.146年406 - 3.347時年406 - 08.6−18.3	2 2 2 2 100 0.506 17.1 2.4024-00 1.404-0-40 7.5.10 1 1 45 100 0.311 2.1 3.4024-05 7.0318-405 7.5.7.105
5 11 20 00 0120 11501 11501 00 0120 00 0120 5 60 181 50 0331 510 11501 00 556569-00 759-010	5 10 61 100 0.311 11.0 2.069E+05 0.531E+05 5.32-16.8
6 34 119 49 0.286 44.2 1.084E+06 3.795E+06 57.8-11.3	6 18 57 100 0.316 10.3 2.812E+05 8.90EE+05 64.6-17.5
7 39 100 50 0.390 36.4 1.219E+06 3.125E+06 78.7-15.0	7 23 52 100 0.442 9.4 3.594E+05 8.125E+05 90.3–22.7
8 67 162 50 0.414 59.0 2.094E+06 5.062E+06 83.4-12.3	8 17 54 100 0.315 9.7 2.656E+05 8.438E+05 64.4-18.0
9 32 128 35 0.250 66.6 1.429E+06 5.714E+06 50.6-10.1	9 22 64 70 0.344 16.4 4.911E+05 1.429E+06 70.3-17.5 10 50 143 70 0.406 267 1.05EE.06 0.00120
10 44 91 52 0.464 51.8 2.1495±400 4.4451±400 97.4=16.0 11 53 153 50 0.346 55.8 1.6566±406 4.7811±06 70.0=113	10 38 143 70 0.400 30.1 1.2932E+00 3.2152.15.00 82.915.0 11 44 103 60 0.431 30.6 11.148E+06 3.656E+06 82.1-16.0
11 23 123 20 0.246 55.9 2.455E+06 5.050E+06 98.0-12.9	12 12 27 80 0.444 6.1 2.344E+05 5.273E+05 90.8-31.6
13 120 257 60 0.467 78.0 3.125E+06 6.693E+06 94.1-10.6	13 40 93 60 0.430 27.9 1.042E+06 2.422E+06 87.9-16.7
14 69 161 80 0.429 36.7 1.348E+06 3.145E+06 86.4-12.6	14 32 96 100 0.333 17.3 5.000E+05 1.500E+06 68.2–14.0
15 78 213 70 0.366 55.4 1.741E+06 4.754E+06 73.9–9.9	15 20 61 100 0.328 11.0 3.125E+05 9.531E+05 67.1-17.4
16 99 273 60 0.363 82.9 2.578E+06 7.109E+06 73.2-8.7	16 38 81 100 0.469 14.6 5.93814-05 1.26614-06 95.8-19.0 17 26 60 000 0.473 100 0.475 06 0.2581-05
1/ 02 142 20 0.426 22.6 1.2300E400 4.231E400 00.2312 12 18 49 134 50 0.366 48.8 1.531E406 4.188E406 73.8-12.4	1/ 20 00 100 0.433 10.0 4.0254-00 7.2724-0 00.204 18 28 74 100 0.378 133 4.375F+05 1156F+06 774-173
19 115 358 100 0.321 65.2 1.797E+06 5.594E+06 64.9–7.1	19 20 75 100 0.267 13.5 3.125E+05 1.172E+06 54.6-13.8
20 77 200 100 0.385 36.4 1.203E+06 3.125E+06 77.7–10.6	20 21 54 100 0.389 9.7 3.281E+05 8.438E+05 79.5-20.5
1402 3544 53.9 1.830E+06 4.626E+06	529 1424 13.9 4.492E+05 1.209E+06
Area of basic unit = $6.4E-07$ cm-2	Area of basic unit = $6.4E-07$ cm-2
CHI SQUARED = 12.6271 WITH 19 DEGREES OF FREEDOM P(chi guardol = 6.3%) CORRELATION COEFFICIENT = 0.923 VARIANCE OF SQR(Ns) = 7.328662 VARIANCE OF SQR(Ni) = 7.328662	CHI SQUARED = 4.35527 WTH 19 DEGREES OF FREEDOM P(chi squared) = 9.7.7 % CORRELATION COEFFICIENT = 0.941 VARIANCE OF SQR(Ns) = 1.149147 VARIANCE OF SQR(Ni) = 2.223986
Ns/Ni = 0.396 - 0.012 MEAN RATIO = 0.396 - 0.015	Ns/Ni = 0.371 - 0.019 MEAN RATTO = 0.368 - 0.013
Pooled Age AGE = 79.8 – 3.1 Ma Mean Age = 79.9 – 3.5 Ma Central Age = 79.9 – 3.5 Ma & Variation = 7.49%	Pooled Age AGE = 76.0 - 4.2 Ma Mean Age = 75.2 - 3.2 Ma <i>Central Age</i> = 76.0 - 4.1 <i>Ma</i> % Variation = 0.00%
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 1.072E+06cm-2; ND = $3355$	Ages calculated using a zeta of 378.8 – 5.5 for Other glass RHO D = 1.086E+06cm-2; ND = 3355
7-4-90-5 7-4-90-5	7-4-96-7
TRACK LENGTH (mi crons) 0 '10' '20' '20' '40' TRACK LENGTH (mi crons) 0 '10' '10' '10' '10'	TPACK LENGTH (mildrons) 0 10 120 00 00000000000000000000000000

Raw Data Files 186

No.	$N_{\rm S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma
-	5	16	50	0.312	5.6	1.562E+05	5.000E+05	65.7-33.7
6	7	27	32	0.259	14.8	3.418E+05	1.318E+06	54.6-23.2
m	9	18	35	0.333	9.0	2.679E+05	8.036E+05	70.1–33.1
4	ю	8	40	0.375	3.5	1.172E+05	3.125E+05	78.8-53.4
ŝ	7	20	4	0.350	8.8	2.734E+05	7.812E+05	73.6-32.3
9	4	10	25	0.400	7.0	2.500E+05	6.250E+05	84.0-49.7
2	e	10	48	0.300	3.6	9.766E+04	3.255E+05	63.1-41.6
×	5	16	50	0.312	5.6	1.562E+05	5.000E+05	65.7-33.7
6	4	Ξ	28	0.364	6.9	2.232E+05	6.138E+05	76.4-44.6
	44	136			6.8	1.976E+05	6.106E+05	
Area o	f basic u	nit = 6.	4E-07	cm-2				
	020	HI SQU chi squa	ARED ured) =	= .274516 100.0 %	WITH 8 D	EGREES OF F	REEDOM	
	533	ARIAN	CE OF	SQR(Ns) = SQR(Ni) = SQR(Ni) =	.1223149 .5830383	8		
	ΫW	s/Ni= ( EAN R.	.324 - ATIO =	0.056 : 0.334 - 0	.014			
	8 2 3 %	oled Ag ean Age <i>mtral A</i> Variatio	ce AGE = 70 = 60	:= 68.0 - 1 1.2 - 3.4 M <u>8.0 - 11.9</u> M 00%	П.9 Ма а <b>1</b> а			
	A <u>5</u> RI	ges calc HO D =	ulated u 1.116F	asing a zeta 3+06cm-2;	of 378.8-5	5.5 for Other g VD = 3355	lass	
		11-4	-96-2				11-4-96-2	
∟_ ∞ ⊦							*2	ι.
 	٦						• · ·	
<u>י א</u> ייי		Ŧ	ŕ	-			Ļ	árel álve eror
	25 . 50 . 75	100*125	1 50 1 75					. 16



	F.T.AGE(Ma)	74.0-38.6	69.1-79.8	69.1-35.7	82.9-49.1	77.7-52.7	79.0-32.9	82.9-69.4	80.6-35.9		
/11/00	RHOi	5.208E+05	3.906E+05	4.783E+05	3.125E+05	8.333E+05	5.469E+05	4.340E+05	8.036E+05	5.227E+05	
: M. RAAB 25	RHOs	1.860E+05	1.302E+05	1.594E+05	1.250E+05	3.125E+05	2.083E+05	1.736E+05	3.125E+05	1.946E + 05	
UNTED BY	U(ppm)	5.9	4.4	5.4	3.5	9.5	6.2	4.9	9.1	5.9	
CC	RATIO	0.357	0.333	0.333	0.400	0.375	0.381	0.400	0.389		
4-12	Na	42	12	49	50	15	99	18	35		
MU02	ïZ	14	ŝ	15	10	×	21	ŝ	18	94	
DIATION	Ns	5	-	2	4	ŝ	×	6	7	35	
IRRAI	No.	-	0	ŝ	4	ŝ	9	٢	×		

Area of basic unit = 6.4E-07 cm-2

CHI SQUARED = 4.812623E-02 WITH 7 DEGREES OF FREEDOM P(chi squared) = 100.0 % DORRELATION COEFFICHENT = 0.992 VARIANCE OF SQR(N) = .3755161 VARIANCE OF SQR(N) = .9841003 Ns/Ni = 0.372 - 0.074

Ns/Ni = 0.372 - 0.074 MEAN RATIO = 0.371 - 0.010 Pooled Age AGE = 77.2 - 15.4 M

Pooled Age AGE = 77.2 - 15.4 Ma Mean Age = 76.9 - 2.6 Ma *CentralAge* **= 77.2 - 15.3 Ma** % Variation = 0.00%

Ages calculated using a zeta of 378.8 - 5.5 for Other glass RHO D = 1.101E+06cm-2; ND = 3355



12-4-96-1 Apatite							12-4-5	6-2 Apa	tite						
IRRADIATION MU024	4-14	COUNT	ED BY: N	4. RAAB 27/	11/00		IRRA	DIATIO	1 MU024	F-15	COL	JNTED BY	: M. RAAB 27,	/11/00	
No. Ns Ni	Na F	ATIO U(F	(udd	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 8 24	09	0.333 6	2 6.9	2.083E+05	6.250E+05	70.5-28.8	-	1	4	16	0.250	4.3	9.766E+04	3.906E+05	54.0-60.4
2 5 16	42	0.312 6	5.6	1.860E+05	5.952E+05	66.1-33.9	2	9	19	35	0.316	9.3	2.679E+05	8.482E+05	68.1-31.9
3 6 22	40	0.273 5	5.0	2.344E+05	8.594E+05	57.7-26.6	.0	ŝ	Ξ	20	0.273	9.4	2.344E+05	8.594E+05	58.9-38.4
4 4 13	40	0.308 5	5.6	1.562E+05	5.078E+05	65.1–37.2	4	ŝ	10	40	0.300	4.3	1.172E+05	3.906E+05	64.7-42.6
5 5 13	99	0.385 3	5.7	1.302E+05	3.385E+05	81.3-42.8	5	0	9	20	0.333	5.1	1.562E+05	4.688E+05	71.9-58.7
6 3	100	0.333	9	4.688E+04	1.406E+05	70.5-47.0	9	0	9	52	0.333	4.1	1.250E+05	3.750E+05	71.9-58.7
7 2 4	21	0.500		I.488E+05	2.976E+05	105.4-91.3	L	9	21	40	0.286	0.6	2.344E+05	8.203E+05	61.7-28.6
8 4 12	40	0.333	22	I.562E+05	4.688E+05	70.5-40.7	×	0	2	16	0.286	7.5	1.953E+05	6.836E+05	61.7-49.5
9 5 18	<del>8</del>	0.278 6	2	1.628E+05	5.859E+05	58.8-29.7	6	m e	<b>x</b> 0	5 58 1 58	0.375	4.9	1.674E+05	4.464E+05	80.8-54.7
0 1 0 1	28	0.400	20	20-30/8/1	4.088E+U5	6.07-2.02 2.02 2.02	9 :	14	21	<u>9</u>	7770	0.1	5.125E+04	1.400E+US	C./2-0.24
11 4 12	2 2	245 0245	<i>v</i>	2.U03E+U3	0.230E+05	1.04-C.01	11	n v	<u>c</u> 7	70	0.333	0.0	2.441E+05	2 667E-105	272-611
13 6 19 <i>2</i> 7	3 8	0.316		1 562E+05	4 948F+05	66.8-31.3	1 1	<i>.</i>	10	ξ	0300	0.4 V	1 875F+05	6.250E+05	64 7-47 6
	8	2	2				14	) oc	28	102	0.286	6.8	1.786E+05	6.250E+05	61.7-24.8
							15	ŝ	10	15	0.300	11.4	3.125E+05	1.042E+06	64.7-42.6
							16	10	35	50	0.286	11.9	3.125E+05	1.094E+06	61.7-22.2
							17	9	18	30	0.333	10.2	3.125E+05	9.375E+05	71.9–33.9
							18	6	28	60	0.321	8.0	2.344E+05	7.292E+05	69.3-26.6
							19	9	8 1	6	0.333	7.7	2.344E+05	7.031E+05	71.9-33.9
							07	D	1	R	ccc.0	Ø.C	CU+3C/8.1	C0+3716.6	7.06-1.0/
68 206		<i>a</i> ,	5.5	l.632E+05	4.944E+05			16	295			6.5	1.832E+05	5.940E+05	
Area of basic unit = $6.4$ .	E-07 cn	-2					Area	of basic u	nit = 6.4	E-07 ci	n-2				
CHI SQUA P(chi squar CORRELA VARIANCI VARIANCI	kRED = red) = 10 kTION C E OF SC E OF SC	4082737 WI ).0 % OEFFICIENT (R(Ns) = .203 (R(Ni) = .761	TH 12 D '= 0.956 406 6374	EGREES OF	FREEDOM			DZŎŹŻ	HI SQUA chi squat DRRELA NRIANC NRIANC	kRED = ed) = 1( dTION C E OF S E OF S		WITH 19 ENT = 0.98 .3598757 1.126878	DEGREES OF	FREEDOM	
$N_{S}/N_{I} = 0.2$	.330 - 0. TTO - 0	346 347 0.016						ΖŻ	Ni = 0.	308 – 0 TTO – 1	037	30			
		010.0 - 240						IN			n.u - ouc.u	00			
Pooled Age Mean Age <u>Central Ag</u> % Variation	e AGE = = 72.4 <u>e = 69.8</u> 1 = 0.00%	69.8 - 9.9 M - 3.8 Ma <u>- <b>9.8Ma</b></u> 6	Įa					% <b>لک ⊠</b> %	oled Age ean Age <u>mtral Ag</u> Variation	e AGE = = 66.4 <u>e = 66.</u> 1 1 = 0.00	66.6 - 8. - 2.3 Ma 5 - 8.1Ma	.1 Ma			
Ages calcul RHO D =	lated usir 1.131E+(	ig a zeta of 3. 06cm-2;	76 – 5 for ND	Other glass = 3355				Ϋ́Α	ges calcu HO D =	lated usi 1.145E+	ng a zeta o 06cm-2;	f 378.8 – 5 N	.5 for Other gl ID = 3355	ass	
12-4-9-	6-1				1.0.0.0.				12-4-9	6-2				12-496-2	
	ta) _ 176" 201	40. - 40. - 50. - 10. - 10. 10. - 10. -	5 - 16 - 15 X LENGTH (	M U024 -14 M U024 -14 No 12.86 No 12.0 No 12.0		011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 011- 01- 0	LIIIIII 6 K 6 6 4 6 6 7 5 6		-10%.1%%.	a)" 175 ²	80°. - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10° - 10°		M.U24-15 Ma= 12.25 SD= 2.45 Na= 7.25 Na= 7.26 Na= 7.26 Na= 7.26 Na= 7.20 Na= 7.20 Na		130 100 100 100 100 100 100 100

<u>12-4-96-3</u> Aparite	12-4-96-4 Apat	ite					
IRRADIATION MU025-01 COUNTED BY: M. RAAB 27/11/00	IRRADIATION	MU025-02	CO	UNTED BY:	M. RAAB 28/	/11/00	
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns	Ni Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1         4         7         28         0.571         6.2         2.3232E+05         3.906E+05         84.5-53.0           2         9         18         50         0.500         89         2.812E+05         5.655E+05         74.0-30.3           3         8         2.34         17.9         3.906E+05         1.123E+06         51.6-21.2           4         2         4         3         0.500         3.3         1.042E+05         2.083E+05         74.0-64.1           5         4         8         40         0.500         3.3         1.042E+05         2.083E+05         74.0-64.1           6         16         36         2.3         1.042E+05         2.033E+06         74.0-64.1	1 32 2 28 3 76 5 61 6 164	70 25 54 100 190 100 206 100 144 50 354 100	0.457 0.519 0.400 0.345 0.424 0.463	67.8 13.1 46.0 69.7 85.7	2.000E+06 4.375E+05 1.188E+06 1.109E+06 1.906E+06 2.562E+06	4.375E+06 8.438E+05 2.969E+06 3.219E+06 4.500E+06 5.531E+06	69.5–14.9 78.8–18.4 60.8–8.4 52.5–7.3 64.4–10.0 70.4–6.9
7 7 16 56 0.44 2.8 7.1 1.953E-105 1.758E-105 648-29.4 8 4 9 80 0.444 2.8 7.812E-104 1.758E+05 65.8-39.6	7 7 88 8 8 337 9 8 337 11 1 2 3 1 4 4 1 5 4 4 1 6 4 5 1 7 7 8 1 7 7 8 1 7 7 8 1 7 7 7 8 1 7 7 7 8 1 7 7 7 7 8 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	73         103         500           79         103         100           79         100         73           88         100         88           105         57         100           70         100         73           70         100         73           70         100         74           70         100         74           71         57         100           71         70         90           71         70         90           70         90         100           90         100         90	$\begin{array}{c} 0.456\\ 0.456\\ 0.256\\ 0.409\\ 0.5286\\ 0.474\\ 0.5237\\ 0.537\\ 0.517\\ 0.517\\ 0.570\\ 0.478\\ 0.570\\ 0.478\\ 0.478\\ 0.570\\ 0.478\end{array}$	57.1 24.9 1.7 1.7 1.7 1.6 1.6 1.4.2 1.4.2 3.1.6 31.6 31.6 31.6 21.1 21.1 21.1 21.1 21.2 21.8	5.781E+05 5.781E+05 5.625E+05 5.625E+05 5.625E+05 5.625E+05 5.781E+05 4.219E+05 4.219E+05 6.719E+05 6.719E+05 6.719E+05 6.719E+05	3.0881-00 3.0881-00 3.0881-06 1.094E+05 1.094E+06 1.094E+06 3.281E+06 3.281E+06 3.281E+06 3.281E+06 1.359E+06 6.562E+06 1.500E+06 1.500E+06 1.406E+06	74, -12, -24, -12, -14, -12, -16, -14, -12, -16, -14, -12, -14, -14, -14, -14, -14, -14, -14, -14
54 121 8.7 2.453E+05 5.496E+05 Area of basic unit = 6.4E-07 cm-2	1100 Area of basic ur	2458 iit = 6.4E-07	cm-2	34.9	1.008E+06	2.253E+06	
CHI SQUARED = .329229 WITH 7 DEGREES OF FREEDOM P(chi squared) = 99.9 % CORRELATION COEFFICIENT = 0.978 VARIANCE OF SQR(NI) = .6509269 VARIANCE OF SQR(NI) = 1.732206	A X C C C	II SQUARED hi squared) = )RRELATION RIANCE OF RIANCE OF	= 5.426326 92.9 % V COEFFICI SQR(Ns) = SQR(Ni) =	WITH 19 L ENT = 0.988 7.105031 16.44016	DEGREES OF	7 FREEDOM	
Ns/Ni = 0.446 - 0.073 MEAN RATIO = 0.468 - 0.023	Ns	/Ni= 0.448 - EAN RATIO :	0.016 0.453 - 0.	016			
Pooled Age ACE = 66.1 - 10.9 Ma Mean Age = 69.3 - 3.8 Ma <i>Central Age</i> = 66.1 - 10.9 Ma % Variation = 0.00%	£ ¥ <b>3</b> ⊗	oled Age AGF an Age = 6 <i>ntral Age = 6</i> Variation = 0	s = 68.0 - 2 3.8 - 2.9 Mi 8.0 - 2.8M .02%	9 Ma			
Ages calculated using a zeta of 378.8 – 5.5 for Other glass RHO D = 7.860E+05cm-2; ND = 3015	Ag RF	es calculated $IO D = 8.070$	using a zeta ( E+05cm-2;	of 378.8–5.5 ND	5 for Other gla 0 = 3015	ass	
total transformation (mana) and (		12-4-96-4	3.2°		M.1025-02 85-113/1 N 103 N 103 13-12 13-12 13-12 (mi cons)	Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Performance Perfo	

<b>1-96-5</b> Apatite ADIATION M	5 1U025-03	~	COUNTED B	Y: M. RAAB 28	8/11/00		<u>13-4-</u> IRRA	<u>96-1</u> Apa DIATION	tite I MU02:	5-04	CO	UNTED BY	ć: M. RAAB 29	00/11/6	
$N_{\rm S}$	z	a RATI	(udd)N C	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	ž	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
L CI	18 5( 20 2(	0 0.385	3.5	2.188E+05 9.375F±05	5.625E+05 1 562E+06	60.7-27.1 03 4-34 2	- (	8 8	32 44	100	0.250	12.3	2.083E+05 2.812E+05	8.333E+05 6.875E+05	40.1–15.9 65.4–18.4
12	30	8 0.567	39.3	1.476E+06	2.604E+06	88.3-26.9	1 ლ	ŝ	13	64	0.385	7.1	1.860E+05	4.836E+05	61.6-32.4
52	48 5(	0 0.458	3 22.6	6.875E+05	1.500E+06	71.5-18.5	4	14	36	50	0.389	16.6	4.375E+05	1.125E+06	62.2-19.7
32 78 78	26 17 26	0 0.571	26.4	1.000E+06	1.750E+06 2 545E+06	89.0-19.8	in v	19 5	198	100 25	0.460	45.5 60 0	1.422E+06	3.094E+06 4.750E+06	73.5-9.5
- s	- 22 32	4 0.514	244	1.1776+06	2 270F±06	80.2.23.3		9 E	54	36	10,277	15.4	2 007E±05	1.049E±06	44.3-13.0
1 1	20	0.700	9.4	4.375E+05	6.250E+05	108.9–38.0	~ ∞	<u>3</u> ∞	29	2 05	0.276	13.3	2.500E+05	9.062E+05	44.2-17.7
22	39 51	0 0.564	1 18.4	6.875E+05	1.219E+06	87.9-23.5	6	13	28	50	0.464	12.9	4.062E+05	8.750E+05	74.2-25.0
36	69 8(	0 0.522	20.3	7.031E+05	1.348E+06	81.3-16.8	10	41	123	70	0.333	40.4	9.152E+05	2.746E+06	53.4-9.7
23	50 100	0 0.460	11.8	3.594E+05	7.812E+05	71.7-18.2	11	14	46	70	0.304	15.1	3.125E+05	1.027E+06	48.8-14.9
31 1	07 51	0 0.290	50.5	9.688E+05	3.344E+06	45.3-9.3	12	14	30	30	0.467	23.0	7.292E+05	1.562E+06	74.6-24.2
40	95 5(	0 0.421	44.8	1.250E+06	2.969E+06	65.7-12.5									
15	35 100	0 0.429	8.3	2.344E+05	5.469E+05	66.9–20.7									
41 1	12 5(	0 0.360	52.8	1.281E+06	3.500E+06	57.2-10.5									
45	03 51	0 0.437	48.6	1.406E + 06	3.219E+06	68.2-12.3									
21	≪ 1 00	0 0.48	35.7	1.138E+06	2.366E+06	75.0-12.9									
= ; ;	202	10 0.54	1.67 (	1.062E+06	2.244E+06	84.1-18.0 54.0 10.4									
30	5 P	0 0.415	44.3	1.219E+06	2.938E+06	64.7-12.4									
584 13	21		28.8	8.433E+05	1.908E+06			272	702			22.5	5.927E+05	1.530E+06	
basic unit	= 6.4E-(	)7 cm-2					Area	of basic ui	nit = 6.4	Е-07 с	m-2				
CHI : P(chi COR) VARI	SQUARE squared) RELATIC IANCE C	ED = 7.441 )= 73.0 % DN COEF1 DF SQR(Ni DF SQR(Ni	797 WITH 1: FICIENT = 0.5 () = 1.637551 () = 5.235474	9 DEGREES O	F FREEDOM			02035	HI SQU/ chi squa ARIANC ARIANC	ARED = red) = MTION - TE OF S E OF S	: 3.627209 77.8 % COEFFICI QR(Ns) = QR(Ni) =	WITH 11 ENT = 0.9 4.038082 8.350519	DEGREES O 81	F FREEDOM	
Ns/N MEA	i = 0.442 N RATIC	2 - 0.022 ) = 0.475 -	- 0.022					ΫW	s/Ni= 0 EAN R∕	.387 – ( VTIO =	0.371 - 0.	023			
Poole Mear. <u>Centr</u> Vai	ed Age A( 1 Age = <i>al Age</i> = riation =	GE = 69.0 74.0 - 3.1 <b>69.0 - 3</b> . 0.86%	– 3.8 Ma 8 Ma <u>7Ma</u>					& <mark>С</mark> Ў З	oled Ag ean Age <u>ntral A</u> g Variati ol	e AGE = = 59.5 <u>re = 62.</u> n = 1.8	= 62.0 - 2 3 - 3.9 Mi <u>0 - 4.6M</u> 3%	4.7 Ma a <u>a</u>			
Ages RHO	calculate D= 8.28	ed using a z 80E+05cm	eta of 378.8 - -2;	5.5 for Other g ND = $3015$	lass			A£ RF	ges calcu HO D =	lated us 8.490E	ing a zeta +05cm-2;	of 378.8-:	5.5 for Other g VD = 3015	lass	
	12-4-96-5				12-4-96-5				13-4-	96-1				13-4-06-1	
Fis Sou TA C	0-125-150- X AGE (Ma)	- - - - - - - - - - - - - - - - - - -	. 40' - 30' - 20' - 10' - 10' TRACK LENO'	M U02 5- 03 ML= 1-3.22 NL= 1-3.23		(10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)		Lin South	100-120 (100-120)	 - 150° 175 *	² ² ³ ² ³ ² ⁴ ² ⁵		MU25-04 805-1484 805-1484 805-1484 805-1484 805-1484 805-1484 814-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-1484 148-14844 148-14844 148-14844 148-14844 148-14844 148-14844 148-148		• • • • • • • • • • • • • • • • • • •

<u>13-4-66-2</u> Apaite	22-4-96-2 Apatite
IRRADIATION MU025-05 COUNTED BY: M. RAAB 29/11/00	IRRADIATION MU025-06 COUNTED BY: M. RAAB 30/11/00
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
210 00 201 1 201 201 0 00 0 0 0 0 0 0 0	1 50 77 100 7185 5.0 0.00000 1 2587.027
2 31 56 48 0554 250 0000000 10000000 0000000 0000000	2 20 14 10 2100 210 21 20 2100 2000 2 20 14 10 210 21 21 21010 2 2000-2011
3 35 80 80 0.438 22.4 6.836F405 1.562F406 717-14.6	3 14 5 25 2 800 4.4 8 750F+05 3 125F+05 456.0-337.8
4 21 52 60 0.404 19.5 5.469E+05 1.354E+06 66.2-17.2	4 58 28 70 2.071 8.8 1.295E+06 6.250E+05 340.4–78.7
5 45 99 100 0.455 22.2 7.031E+05 1.547E+06 74.5-13.5	5 98 66 50 1.485 28.9 3.062E+06 2.062E+06 245.8-39.6
6 29 96 100 0.302 21.6 4.531E+05 1.500E+06 49.6-10.6	
7 44 114 100 0.386 25.6 6.875E+05 1.781E+06 63.3-11.3	
8 41 102 100 0.402 22.9 6.406E+05 1.594E+06 65.9-12.3	
9 63 118 100 0.534 26.5 9.844E+05 1.844E+06 87.4-13.8 10 54 122 100 0.400 20.0 0.425E.05 2.025E.05 227.100	
10 34 133 100 0.400 23.3 0.43055403 2.0765540 00.0-10.3 11 34 63 100 0.387 13.9 3.7505405 9.6885405 63.5-15.3	
12 26 90 100 0.289 20.2 4.062E+05 1.406E+06 47.4-10.6	
13 34 91 100 0.374 20.4 5.312E+05 1.422E+06 61.3-12.4	
14 27 63 100 0.429 14.1 4.219E+05 9.844E+05 70.2-16.2	
15 42 80 100 0.525 18.0 6.562E+05 1.250E+06 85.9–16.5	
16 40 100 100 0.400 22.4 6.250E+05 1.562E+06 65.6-12.4	
17 43 125 100 0.344 28.1 6.719E+05 1.953E+06 56.4-10.1	
18 43 131 100 0.328 29.4 6.719E+05 2.047E+06 53.9-9.5 10 28 84 100 0.323 18.0 4.375E±05 1.312E±06 5.47±12.0	
20 42 103 100 0.408 23.1 6.562E+05 1.609E+06 66.8-12.3	
739 1828 22.3 6.282E+05 1.554E+06	258 140 10.4 1.367E+06 7.415E+05
Area of basic unit = $6.4E-07$ cm-2	Area of basic unit = $6.4E-07$ cm-2
CHI SQUARED = 8,448462 WITH 19 DEGREES OF FREEDOM P(citi squared) = 59.7 % CRRELATION COEFICENT = 0.789 VARIANCE OF SQR(Ns) = 1,929064 VARIANCE OF SQR(Ni) = 1,929064	CHI SQUARED = 1.714063 WITH 4 DEGREES OF FREEDOM P(chi squared) = 48.9 % CORRELATION COEFFICIENT 0.976 VARIANCE 0F SQR(Ns) = 5.59776 VARIANCE OF SQR(Ns) = 4.768024
Ns/Ni = 0.404 - 0.018	Ns/Ni = 1,843 - 0,193
MEAN RATIO = 0.412 - 0.018	MEAN RATIO = $2.123 - 0.209$
Pooled Age AGE = $66.3 - 3.3$ Ma Mean Age = $67.6 - 3.3$ Ma <i>Central Age</i> = $66.3 - 3.1$ Ma % Variations = $13.3$ %	Pooled Age AGE = 303.7 - 32.7 Ma Mean Age = 348.6 - 35.3 Ma <i>Central Age = 304.4 - 32.9 Ma</i> % Variation = 3.23%
$\Delta$ rest coloritated using a zero of 378.8 – 5.5 for Other class	Anne calculated using a zeta of 378.8 – 5.5. for Other alass
Ages determined using a zeta of $J(0,0) = J(1, 10)$ out gives RHO D = 8.700E+05cm-2; ND = 3015	Also curvation tang a zero $(1, 2)$ cos $-3.5$ for outsigness RHO D = 8.910E+05cm+2; ND = 3015
13-4-96-2 13-4-96-2	21-4-96-2 21-4-06-2

<u>26-4-96-1</u> Apatite	27-4-96-1 Apatite
IRRADIATION MU025-07 COUNTED BY: M. RAAB 01/12/00	IRRADIATION MU025-08 COUNTED BY: M. RAAB 01/12/00
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(M	Ma) No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
1 84 299 100 0.281 64.0 1.312E+06 4.672E+06 48.3-6.1	1 31 86 50 0.360 36.0 9.688E+05 2.688E+06 63.4-13.4
2 66 169 50 0.391 72.4 2.062E+06 5.281E+06 67.1-9.9	2 $24$ $62$ $30$ $0.387$ $43.3$ $1.250E+06$ $3.229E+06$ $68.0-16.4$
3 34 77 50 0.442 33.0 1.062E+06 2.406E+06 75.8-15.7	3 6 13 18 0.462 15.1 5.208E+05 1.128E+06 81.0-40.0
4 57 201 50 0.284 86.1 1.781E+06 6.281E+06 48.8-7.4	4 15 26 16 0.577 34.0 1.465E+06 2.539E+06 1012–32.9
5 113 354 100 0.319 75.8 1.766E+06 5.531E+06 54.9-6.1	5 20 46 25 0.435 38.5 1.2501+06 2.5504-06 76.4-20.5
0 110 70/ 100 0.434 57.2 1.817E+00 4.1/2E+00 74.0-8.3	0 / 21 30 0.535 14/1 3.040E-H0 1.044E-H0 38(2-25)0 7 30 00 75 7337 731 14/1 3.040E-H0 28(2-25)0
0.0-C.UC 00.1202.0.0 1.1.1202.0.1.1.1202.0.0 1.1.1 1.2.1 0.0.2.0.2.0.1.0 1.2.1 0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	8 8 33 70 0.527 7.5 1.527 0.527 1.5212-00 2.500-1.527 1.502-1.52 8 8 33 70 0.527 1.527 1.5212-00 2.5012-0.52
9 30 60 25 0.500 51.4 1.875E+06 3.750E+06 85.8-193	9  40  97  35  0.17  5.0  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.17  0.1
10 101 269 100 0.375 57.6 1.578E+06 4.203E+06 64.5-7.7	10 20 52 25 0.385 43.5 1.2501+06 3.250E+06 67.6-17.9
11 107 301 100 0.355 64.5 1.672E+06 4.703E+06 61.1-7.0	11 8 21 21 0.381 20.9 5.952E+05 1.562E+06 67.0–27.9
12 55 135 60 0.407 48.2 1.432E+06 3.516E+06 70.0–11.3	12 37 87 40 0.425 45.5 1.445E+06 3.398E+06 74.7-14.8
13 33 58 36 0.569 34.5 1.432E+06 2.517E+06 97.5-21.4	13 24 77 50 0.312 32.2 7.500E+05 2.406E+06 54.8-12.9
14 133 405 100 0.328 86.7 2.078E+06 6.328E+06 56.5-5.8	14 5 12 80 0.417 3.1 9.766E+04 2.344E+05 73.2-39.0
15 52 154 50 0.338 66.0 1.625E+06 4.812E+06 58.1-9.4 is 180 544 100 0.331 1155 3817E-05 9507E-05 550.51	15 12 29 10 $0.414$ $60.7$ $1.8751\pm06$ $4.5311\pm406$ $72.7-25.0$
10 100 044 100 0.307 110 2.01225400 0.3002540 30.967 17 100 320 100 0.307 711 1.5045406 5.1985406 5.9.64	10 13 24 24 0.440 2.3.3 0.40405110 1.0.7.20.3 17 50 118 50 0.124 1555E.05 3.588E.055
1/ 102 552 100 0.507 71.1 1.574E+00 5.166E+06 5.27-0.1 18 92 254 70 0.362 77.7 2.054E+06 5.670E+06 62.3-7.7	17 20 116 20 0.1424 424 1.250E+06 3.500E+06 878-204
19 35 101 25 0.347 86.5 2.188E+06 6.312E+06 59.6-11.8	19 14 40 25 0.330 33.5 8.750E+05 2.500E+06 61.6-19.2
20 57 143 50 0.399 61.2 1.781E+06 4.469E+06 68.5-10.8	20 9 19 24 0.474 16.6 5.859E+05 1.237E+06 83.2–33.7
1572 4593 71.0 1.772E+06 5.178E+06	400 1012 34.0 1.003E+06 2.538E+06
Area of basic unit = $6.4E-07$ cm-2	Area of basic unit = $6.4E.07$ cm-2
CHI SQUARED = 15.52638 WITH 19 DEGREES OF FREEDOM P(chi squared) = 2.0 % CORRELATION COEFFICIENT = 0.961 VADIANTE OF CONDAL = 4 sectors	CHI SQUARED = 3.612681 WITH 19 DEGREES OF FREEDOM P(chi squared) = 99.3 % CORRELATION COFFICIENT = 0.967 VADANACC DES COMMAL = 1.077005
VARIANCE OF SQR(NS) = 4.854922 VARIANCE OF SQR(NI) = 18.50704	VARIANCE OF SOR(NS) = 19/7/905 VARIANCE OF SOR(Ni) = 5.052663
Ns/Ni = 0.342 = 0.010 MEAN RATIO = 0.366 - 0.017	$N_{S}/N_{1} = 0.395 - 0.023$ MEAN RATIO = 0.403 - 0.016
Pooled Age AGE = $58.8 - 2.2$ Ma Mean Age = $62.9 - 3.3$ Ma <i>Control Age</i> = $52.4 - 2.4Ma$ % Variation = $8.48\%$	Pooled Age AGE = $69.5 - 4.4$ Ma Mean Age = $70.9 - 3.3$ Ma <i>Centred Age</i> = $80.5 - 4.3$ Ma % Variation = 0.00%
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = $9.120E+0$ cm-2; ND = $3015$	Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = $9.330\text{E}$ +05cm+2; ND = $3015$
20-4-96-1 20-4-96-1	27-4-96-1 27-4-96-1
	And

				28-4-9	<u>6-3</u> Apa	tite						
COUNTED BY:	M. RAAB 02	//12/00		IRRAI	DIATIO	N MU02:	5-10	9	UNTED B	Y: M. RAAB 02	2/12/00	
(mqq)U O	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	Ņ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
7 31.6 4 27.9 3 31.4 6 32.3 9 46.1	9.062E+05 8.398E+05 7.972E+05 6.055E+05 1.719E+06	2.406E+06 2.129E+06 2.392E+06 2.461E+06 3.516E+06	67.6-10.5 70.8-12.9 59.9-13.9 44.3-8.9 87.6-16.3	-	120	342	49	0.351	140.0	3.827E+06	1.091E+07	64.4-7.0
32.5	8.999E+05	2.480E+06			120	342			140.0	3.827E+06	1.091E+07	
				Area c	of basic u	nit = 6.4	НЕ-07 с	m-2				
9549 WITH 4 D FICIENT = 0.689 (s) = 1.032898 (i) = 2.142944	EGREES OF	FREEDOM			04033	HI SQU/ chi squai ORREL/ ARIANC ARIANC	ARED = red) = 1 ATION E OF S E OF S	= 0 WITH 00.0 % COEFFIC QR(Ns) =	$\begin{array}{c} 0 \text{ DEGRE} \\ \text{IENT} = 1.0 \\ 0 \\ 0 \end{array}$	IES OF FREED 00	MO	
- 0.040					ΖΣ	s/Ni = 0 EAN RA	351 - ( VTIO =	0.351 - 0	000			
2 – 5.6 Ma .3 Ma 6.4Ma					⊼ ∑ <b>Ŭ</b> %	ooled Age ean Age <u>eartal Ag</u> Variatio	e AGE = = 64. <u>e = 64</u> . n = 0.0	= 64.4 4 - 1.5 M <u>4 - 7.0M</u> 0%	7.0 Ma a <u>a</u>			
zeta of 378.8 – 5. 1-2; NI	5 for Other gl ) = 3015	lass			A.N	ges calcu HO D =	lated us 9.740E	ing a zeta +05cm-2;	of 378.8-	5.5 for Other g $VD = 3015$	lass	
. 40' . 30' . 20' . 10' . 5' . 10' . 1	M.1025-09 M.1025-09 M.11237 N.11237 N.11237 N.11237 N.11237 S.1207											

## **IRRADIATION MU025-09** 28-4-96-2 Apatite

RHOi	2.406E+06	2.129E+06	2.392E+06	2.461E+06	3.516E+06	2.480E+06
RHOs	9.062E+05	8.398E+05	7.972E+05	6.055E+05	1.719E+06	8.999E+05
U(ppm)	31.6	27.9	31.4	32.3	46.1	325
RATIO	0.377	0.394	0.333	0.246	0.489	
Na	100	80	49	80	40	
Ni	154	109	75	126	6	554
$N_{S}$	58	43	25	31	4	201
No.	-	6	ŝ	4	5	

Area of basic unit = 6.4E-07 cm-2

CHI SQUARED = 3.429549 WITH 4 DEGR P(di) squared) = 11.1 % CORRELATION COEFFICIENT = 0.689 VARIANCE OF SQR(N) = 2.142944 VARIANCE OF SQR(N) = 2.142944

Ns/Ni = 0.363 - 0.030 MEAN RATIO = 0.368 - 0.040

Pooled Age AGE = 65.2 - 5.6 Ma Mean Age = 66.1 - 7.3 Ma *Central Age = 65.2 - 6.4Ma* % Variation = 11.20%

Ages calculated using a zeta of 378.8 - 5.5RHO D = 9.530E+05cm-2; ND



o. Ns	ïN	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 25	4	50	6.250	1.5	7.812E+05	1.250E+05	1102.8-594.4
7 18	- 6	23	2.571	5.4 9.0	1.125E+06	4.375E+05	476.7-212.7 258.0.02.5
8	35	8 8	2.429	13.5	2.656E+06	1.094E+06	451.2-91.2
5 12	18	30	0.667	11.5	6.250E+05	9.375E+05	127.0-47.4
5 10	9	40	1.667	2.9	3.906E+05	2.344E+05	313.0-161.8
7 5	0	52	2.500	1.5	3.125E+05	1.250E+05	464.0-388.3
8	10	20	2.200	3.8	6.875E+05	3.125E+05	410.0-156.7
85.0	50	96	1.900	9.6	1.484E+06	7.812E+05	5.00-0.001 t
0 10	<b>~</b> •	95	375.0	7.0	1.1235+00	C0+3000.C	C.0/1-0.614
280	01	9 <b>6</b>	2,800		8 750F+05	3 125E+05	517 5-191 0
27	: =	52	2.455	200	1.688E+06	6.875E+05	455.8-163.4
4	21	40	1.952	10.1	1.602E+06	8.203E+05	365.2-98.4
5 7	3	18	2.333	3.2	6.076E+05	2.604E+05	434.1-299.7
6 15	5	28	3.000	3.4	8.371E+05	2.790E+05	552.9-285.8
414	161			6.2	1.085E+06	5.007E+05	
414	191 2 - žimi	10 U	, 1	6.2	1.085E+06	5.007E+05	
ea of basic	nnit = 0.	4E-0/	cm-2				
	CHI SQU P(chi squ: CORREL VARIANG VARIANG	ARED ared) = ATION CE OF CE OF	= 8.95687i 10.6 % I COEFFIC SQR(Ns) = SQR(Ni) =	5 WITH 15 IENT = 0.85 3.008791 1.559696	DEGREES OI 91	FREEDOM	
	Ns/Ni = 1 MEAN R	2.168 – ATIO =	0.190 - 2.454 - 0.	.286			
	Pooled A _{ Mean Age <i>Central A</i> % Variation	ge AGE = 45. <i>ge = 41</i> . on = 7.	t = 404.2 5.7 - 54.2 1 <u>33.8 - 37.31</u> 54%	36.6 Ma Vla <u>Ma</u>			
	Ages calc RHO D =	ulated 1 1.016	using a zeta E+06cm-2;	of 378.8-:	5.5 for Other gl VD = 3015	ass	
1	20-9-	97-1			_	20-9-97-1	
۲ 			÷ °₂ ° ÷		M U025-12 ML = 12.24 SD = 1.37 N = 20	<b>.</b>	• • • • • • • • • • • • • • • • • • •
1	Ī	Í		1			1

No. Ns Ni Na KATIO U(ppm) RHOs RHOI FT.AGGEM 1 56 75 40 0.480 568 1444 1078E406 2930E+06 898-183 2 188 455 100 0.380 972 2.938E+06 7734E+06 5734E+06 558-91 6 6 226 100 0.308 660 1568E+06 5.520E+06 558-91 6 6 20 128 0.323 1044 2.058E+06 558-125 1 2 3 2 122 30 0.338 756 1122-63 2 4 3 2 0.023 1044 2.058E+06 558-152 1 2 3 2 117 30 0.308 756 1132E+06 558-152 1 2 3 112 3 1122 3.12E+06 8584E+06 573-241 2 4 5 122 30 0.318 756 1122-63 2 4 5 122 30 0.318 756 1122-75 2 5 1 122 30 0.318 756 1122-75 2 5 1 122 30 0.318 756 1122-75 2 5 1 122 30 0.318 756 1122-75 2 6 128 100 0.313 2.12 2 6 148 00 0.313 2.12 2 7 122 5312+06 512-106 2 7 122-105 2 7 122 5312+06 512-106 2 100E+06 5812+06 73-212-11 2 9 108 100 0.313 2.12 2 138E+06 512-126 2 100E+06 5812+06 73-212-11 2 0 2 128 100 0.313 2.12 2 138E+06 512-126 2 100E+06 5812+06 73-212-11 2 0 2 128 100 0.313 2.12 2 138E+06 512-126 2 100E+06 5812+06 73-212-11 2 1014 307 2 6 128 100 0.313 2.12 2 138E+06 512-126 2 100E+06 5812+06 73-212-12 2 138E+06 512-27 Ma CRH1 squared fast unit = 64E-07 cm-2 2 CRH2 squared fast unit = 64E-07 cm-2 2 CRH3 squared 2 5000 2 014 307 2 2 128 100 0.203 2.51 40.00E+06 382-84 2 000E+06 382-96 2 000E+06 5050(N) = 15.3560 2 010E+06 738 -5.050 2 0114 307 2 014 307 2 010 2 01	IRRA	DIATIO	N MU02	25-11	CC				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Ns	N	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
2 18 45 100 0.380 972 2.9388.466 71345.466 713-6.5 5 70 168 50 0.291 919 2.1258.466 713124.466 713-6.6 5 70 168 50 0.291 919 2.1258.466 5.5208.466 5.538.91 5 70 168 50 0.293 1044 2.367 7.3124.46 5.538.91 6 6 5 0.023 1044 2.367 7.3124.46 5.526.73 9 45 138 25 0.232 1043 2.37124.46 5.526.73 9 45 138 25 0.233 111.2 3.1258.46 5.7212.16 13 5 122 30 0.318 756 11.224.66 77.5-26.7 14 8 6.0048.466 77.5-26.7 15 5 1 122 30 0.318 756 11.224.66 5.328.441 15 5 1 122 30 0.318 756 11.223 5.128.466 5.324.44 16 70 0.238 756 11.22 3.3128.466 5.328.441 15 5 6 148 50 0.338 756 11.22 3.3128.466 5.328.441 15 5 6 148 50 0.333 11.02 3.128.466 5.342.4466 5.3.443 16 22 282 50 0.333 11.02 3.128.466 5.342.4466 5.3.443 18 9 9 48 2.5 0.333 11.02 3.1388.466 5.128.466 5.3.433 10 4 307 2.318 0.0333 2.5.1 4.058.466 5.342.446 2.0008.466 70 0.333 2.5.1 4.058.466 5.3.433 10 14 307 2.3038 WTH 19 DEGREES OF FREEDOM 7.014 307 2.3008.466 70 0.332 2.5.1 2.681.466 5.3.443 10 14 307 2.3008.466 5.0.201 2.0008.466 5.323.43 10 14 307 2.3008.466 5.128.466 5.324.43 7.014 307 2.3008.466 5.128.466 5.3.433 10 14 307 2.3008.466 5.0.201 2.0008.466 5.232.416 5.0.275 2.0008.466 5.0.231 2.3.066 2.0008.466 5.5.128.466 5.9.3.441 2.0008.916 5.6.503 2.0008.466 5.5.128.466 5.9.3.443 2.0008.916 5.6.503 2.0008.466 5.5.128.466 5.0.275 2.0008.466 5.6.207 cm ² 2.0008.466 5.6.207 cm ² 3.0008.466 5.6.20 - 2.708 3.0008.466 5.6.20 - 2.708	-	36	75	40	0.480	36.8	1.406E+06	2.930E+06	89.8-18.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	010	188	495	100	0.380	97.2 44.4	2.938E+06	7.734E+06 3.531E+06	71.2-6.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	04	89	234	202	0.291	91.9	2.125E+06	7.312E+06	54.5-7.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	50	168	50	0.298	66.0	1.562E+06	5.250E+06	55.8-9.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	οr	69	266	93 X	0.252	104.4	2.094E+06	8.312E+06	47.3-6.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~ ~	9 2	29 29	9 2	0.414	23.7	2.500E+00 7.812E+05	9.938E+00 1.888E+06	47.2-8.4 77.5-26.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	55	138	52	0.326	108.4	2.812E+06	8.625E+06	61.2-10.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	36	102	18	0.353	111.2	3.125E+06	8.854E+06	66.2-12.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= 2	¥ %	25 2	52 6	0.405	66.0 76.6	2.125E+06	5.250E+06	75.8-15.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	51	122	8 93	0.418	47.9	1.594E+06	3.812E+06	78.3-13.2
15 64 148 50 0432 58.1 2.000E+06 810-12.3 17 29 282 50 0326 110.7 2.878E+06 810-12.75 18 19 45 25 0.324 64.4 1.8125+06 61.2-75 19 24 25 25 0.324 64.4 1.8125+06 51.2376+06 61.2-12.7 20 26 128 100 0.203 25.1 4.062E+05 2.000E+06 38.2-8.3 1014 3072 5312E+106 4.767E+06 33.2-8.3 1014 3072 5312E+106 4.767E+06 33.2-8.3 1014 3072 5399 1.573E+06 4.767E+06 33.2-8.3 1014 3072 5390 WTH 19 DEGREES OF FREEDOM Pedi squared) = 4.2 % VRIANCE OF SQR(N) = 15.35561 NaNi = 0.330 - 0.016 NaNi = 0.330 - 0.016 NaNi = 0.330 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma MEAN RATIO = 0.341 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma % Windom = 10.37% Ages calculated using a zeta of 378.8 - 5.5 for Other glass RHO D = 9.950E+05cm-2; ND = 3015 0.5 RHO D = 9.950E+05cm-2; ND = 3015	14	18	2	6	0.281	17.9	4.018E+05	1.429E+06	52.8-14.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	2	148	20	0.432	58.1	2.000E+06	4.625E+06	81.0-12.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	88	282	20	0.326	110.7	2.875E+06	8.812E+06	61.2-7.5
$\frac{19}{20} \frac{34}{20} \frac{108}{100} \frac{100}{0.203} \frac{3121}{21.2} \frac{5,3124,00}{3124,00} \frac{16,8824,06}{38,2.8,3} \frac{591-11.7}{3124,00} \frac{12,3324,00}{16,8824,06} \frac{591-11.7}{38,2.8,3} \frac{1014}{3072} \frac{3072}{200} \frac{32,10}{200} \frac{1,37326,06}{4,7676+06} \frac{4,7676+06}{38,2.8,3} \frac{38,2.8,3}{3124,00} \frac{1014}{10,000} \frac{3072}{10,000} \frac{32,000}{2033} \frac{31,21}{21,00} \frac{1,37326,06}{13,0000} \frac{4,7676+06}{38,2.8,3} \frac{38,2.8,3}{32,000} \frac{31,3124,00}{10,000} \frac{1,3326,00}{10,000} \frac{31,3326,00}{10,000} \frac{31,3236,00}{10,000} \frac{31,3236,00}{10,000} \frac{31,3326,00}{10,000} \frac{31,300}{10,000} \frac{31,300}{10$	18	67 01	7 54	9 %	400.0	04.4 35.3	1.012E+00	2.123E+00	7 10-1 07
20 $26$ $128$ $100$ $0203$ $25.1$ $4062E+06$ $38.2-8.3$ Area of basic unit = 6.4E-07 cm-2 Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 13.78905 WTH 19 DEGREES OF FREEDOM CHI SQUARED = 13.78905 WTH 19 DEGREES OF FREEDOM CORRELATION COEFFICIENT = 0.961 VARIANCE OF SQR(N) = 15.35561 NS/Ni = 0.330 - 0.016 NS/Ni = 0.330 - 0.016 NS/Ni = 0.330 - 0.016 NS/Ni = 0.330 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma Canrol Age AGE = 61.9 - 2.7 Ma Sec calculated using a reate of 378.8 - 5.5 for Other glass RHO D = 9.950E+05cm-2; ND = 301.5 Ages calculated using a reate of 378.8 - 5.5 for Other glass RHO D = 9.950E+05cm-2; ND = 301.5 Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 for Other glass Ages calculated using a reate of 378.8 - 5.5 fo	6	2 2	108	1001	0.315	2.1.2	5.312E+00	1.688E+06	59.1-11.7
$1014  3072 \qquad 59.9  1.573E+06  4.767E+06$ Area of basis unit = 6.4E-07 cm-2 CHI SQUARED = 13.78905 WTH 19 DEGREES OF FREEDOM CHI SQUARED = 13.78905 WTH 19 DEGREES OF FREEDOM CHI SQUARED = 13.78905 WTH 19 DEGREES OF FREEDOM CORRELATION COEFFICIENT = 0.961 VARIANCE OF SQR(N) = 15.35561 NS/Ni = 0.330 - 0.015 NS/Ni = 0.330 - 0.016 NS/Ni = 0.341 - 0.0	20	26	128	100	0.203	25.1	4.062E+05	2.000E+06	38.2-8.3
Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 13.7805 WTH 19 DEGREES OF FREEDOM P(chi squared) = 4.2 % CORRELATION COEFFICIENT = 0.961 VARIANCE OF SQR(N) = 15.35561 VARIANCE OF SQR(N) = 15.35561 NaNi = 0.330 - 0.012 MEAN RATIO = 0.341 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma MEAN RATIO = 0.341 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma MEAN RATIO = 0.341 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma Wantage = 63.9 - 3.4 Ma <i>Control Age E = 61.9 - 2.7 Ma</i> % Vuriation = 10.37% MEAN D = 9.950E+05cm-2; ND = 3015 a.5.6n1 a.5.6n1 a.5.6n1 a.5.6n1 a.5.6n2 a.5.6n2 b.600 a.5.6n1 a.5.6n1 a.5.6n2 a.5.6n2 b.600 a.5.6n1 a.5.6n2 a.5.6n2 b.600 a.5.6n2 b.600 a.5.6n2 b.600 a.5.6n2 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600 b.600		1014	3072			59.9	1.573E+06	4.767E+06	
CHI SQUARED = 13.78905 WTH 19 DEGREES OF FREEDOM P(d)i squared) = 4.2 % CORRELATION COEFFICIENT = 0.961 VARIANCE OF SQR(N) = 15.35561 VARIANCE OF SQR(N) = 15.35561 Ns/Ni = 0.330 - 0.012 MEAN RATIO = 0.341 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma Mean Age = 6.39 - 3.4 Ma Correct Age = 6.19 - 2.7 Ma Pooled Age AGE = 61.9 - 2.7 Ma Mean Age = 6.39 - 3.4 Ma Correct Age = 6.19 - 2.7 Ma Mean Age = 6.39 - 3.4 Ma Correct Age = 6.19 - 2.7 Ma Mean Age = 6.39 - 3.4 Ma General Age = 6.39 - 3.4 Ma $\frac{Correct Age = 6.19 - 2.7 Ma}{Mean Age = 6.39 - 3.4 Ma}$ Mean Age = 0.39 - 3.0 Ma % Variation = 10.37% Ages calculated using a zeta of 378.8 - 5.5 for Other glass RHO D = 9.950E+05cm-2; $s \cdot s \cdot$	Area c	of basic	unit = $6$ .	.4E-07	cm-2				
Ns/Ni = 0.330 - 0.012 MEAN RATIO = 0.341 - 0.016 Pooled Age AGE = 61.9 - 2.7 Ma Nean Age = 61.9 - 2.7 Ma Nean Age = 61.9 - 2.7 Ma % Variation = 10.37% % Variation = 10.3			HI SQU (chi squi ORREL /ARIAN( /ARIAN(	(ARED ared) = ATION CE OF CE OF	= 13.7890: 4.2 % ( COEFFIC SQR(Ns) = SQR(Ni) =	5 WITH 19 IENT = 0.90 : 5.053309 15.35561	DEGREES OI	F FREEDOM	
Pooled Age AGE = 61.9 – 2.7 Ma Mean Age = 63.9 – 34. Ma <i>Contract acts</i> = 63.9 – 34. Ma <i>Contract acts</i> = 63.9 – 34. Ma <i>Contract acts</i> = 63.9 – 34. Ma <i>Wathing acts</i> = 63.9 – 34. Ma <i>Wathing acts</i> = 63.9 – 34. Ma <i>RHO D</i> = 9.950E+05cm-2; <i>RHO D</i> = 9.950E+05cm-2; <i>RHO D</i> = 9.950E+05cm-2; <i>Particle acts</i> = 0.378 – 5.5 for Other glass <i>Particle acts</i> = 0.378 – 3015 <i>Particle acts</i> = 0.378 – 3015 <i>Particle acts</i> = 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157 – 0.157		22	Vs/Ni = ( AEAN R.	0.330 – ATIO =	0.012 0.341 - 0	.016			
Ages calculated using a zet of 378 8 – 5.5 for Other glass RHO D = 9.950E+05cm-2; ND = 3015 a.s.eat1 a.s.eat1 a.s.eat1 a.s.eat1 a.s.eat1 a.s.eat1 a.s.eat1 a.s.eat1			ooled Aş Aean Age <u>Central A</u> 6 Variatic	ge AGE e = 63 ge = 61 on = 10.	(= 61.9 - (.9 - 3.4 M <b>1.8 - 3.0M</b> .37%	2.7 Ma la <u>a</u>			
		₹ N	vges calc tHO D =	ulated t 9.950E	asing a zeta 3+05cm-2;	of 378.8-2 N	5.5 for Other gl VD = 3015	lass	
			5-5-	96-1				5-5-96-1	
	2 7 8 6 8 4 6 6 7 9				* * 40 * * 40 * 30		MU025-11 ML= 13.68 SD= 1.09 N= 100	ĻĻĻĻų Ņ	•
	••••••••••••••••••••••••••••••••••••••			5.150-176		<b>آ</b>		.31 ⁻ 31 -	n erra

			20-9-5	<del>7.3</del> Ap:	atite						
Y: M. RAAB 03	3/12/00		IRRAL	DIATIO!	N MU02	5-14	сc	UNTED BY	Y: M. RAAB 04	/12/00	
RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1.438E+06	1.062E+06	260.4-83.5	-	20	12	21	1.667	10.5	1.488E+06	8.929E+05	325.6-119.1
7.812E+05	7.500E+05	201.4-57.7	2	47	16	50	2.938	5.9	1.469E+06	5.000E+05	563.3-163.6
1.414E+06	1.042E+06	261.2-92.2	ω.	53	16	33	1.526	11.0	1.416E+06	9.277E+05	298.8-88.5
2.062E+06	1.688E+06	235.7-61.4	4 4	8 5	17	87	2.059	6.3	1.094E+06	5.312E+05	399.9–118.6
1.100E+00	0.230E+03 6 185E+05	322 6-93 7	с ч С	14	0 5	9 <del>9</del>	000.0	7.8	4.163E+05 9 375E+05	6.641E+05	276 9–88 0
8.203E+05	5.469E+05	288.1-99.6	5	38	33	64	1.152	12.4	1.212E+06	1.052E+06	226.7-54.2
2.240E+06	1.719E+06	251.0-58.4	8	29	19	24	1.526	14.6	1.888E+06	1.237E+06	298.8-88.5
2.578E+06	1.172E+06	418.2-130.6	6	16	14	40	1.143	6.5	6.250E+05	5.469E+05	225.0-82.5
7.031E+05	3.516E+05	381.3-155.9	10	52	13	<del>6</del> :	2.077	6.0	1.055E+06	5.078E+05	403.3-136.5
1.125E+06	7.500E+05	288.1-107.6	= :	88	6	<del>6</del> 4	2.222	4.2	7.812E+05	3.516E+05	430.6-173.1
1.625E+06	8./50E+05 1.062E±06	354.8-11 /.9 282 6-80 1	12	9 8	2 2	<del>6</del> 6	1.444 1.333	2 2 2 2 2	1.016E+06 6.250E±05	7.051E+05 4.688E+05	283.1-87.1 261 8-89 6
1.198E+06	7.812E+05	294.3-97.9	14	3 ¥	j «	S 6	1.875	4.6	7.324E+05	3.906E+05	365.2-160.1
6.250E+05	2.500E+05	473.2-280.2	15	15	15	8	1.000	6.6	8.371E+05	8.371E+05	197.3-72.2
1.519E+06	1.042E+06	280.2-74.6	16	47	32	50	1.469	11.8	1.469E+06	1.000E+06	287.8-66.3
7.812E+05	4.557E+05	328.2-156.3	17	35	25	40	1.400	11.5	1.367E+06	9.766E+05	274.6-72.2
4.688E+05	2.083E+05	427.4-257.0	18	18	17	40	1.059	7.8	7.031E+05	6.641E+05	208.8-70.8
1.562E+06 5.804E+05	7.812E+05 5.134E+05	381.3 - 190.9 218.3 - 62.7	19 20	3 20	14 29	6 %	1.429 1.276	6.5 14.9	7.812E+05 1.606E+06	5.469E+05 1.259E+06	280.1–97.8 250.7–62.5
1 1538-06	7 6895-05			533	247			08	1 0445±06	6 70/E+05	
				2	5			2			
			Area c	of basic t	mit = 6.4	4E-07 (	cm-2				
DEGREES OF	FREEDOM			U	'NDS IH	ARED =	= 7.830773	8 WITH 19	DEGREES OF	FREEDOM	
07				⊈ U > >	Chi squa ORREL. ARIANC ARIANC	red) = ATION JE OF S E OF S	68.0 % COEFFIC  SQR(Ns) = SOR(Ni) =	IENT = $0.7^{2}$ .9386404 .7922379	48		
				ZΣ	s/Ni= 1 EAN R/	.536 - ATIO =	0.106 1.650 - 0.	.126			
				£ ≥ Ŭ %	ooled Ag lean Age <i>entral A</i> 3 Variatio	e AGE = 322 <u>e = 30</u> n = 1.7	= 300.7 - :: :5 - 25.7 N <u>9.7 - 21.5</u> / 8%	21.9 Ма Иа <b>Иа</b>			
5.5 for Other g ND = $3015$	lass			A A	ges calcı HO D =	ilated u 1.058E	sing a zeta +06cm-2;	of 378.8-:	5.5 for Other gl VD = 3015	ass	
	20-9-97-2				20-9-	97-3				20-9-97-3	
ML025-13 ML= 12.8 : 8D= 17.95 N= -100	<b>*</b> • ^{\$}		, , , , , , , , , , , , , , , , , , ,		4	7	9 8 9 9 9 8 8 9 8		MU025-14 MU025-14 SDF 1273 T SDF 1273 T SDF 100°	•• پ پ پ	
* 15* * 20* TH (microns)	0 .4' .8' Predeten	.91		FIS SION	RACK AGE	(Wa)		5° 10° TRACK LENGI	*15**20* FH (microns)	0 .4 .8' Predsion	1.2 16 (1.1 Mgmma)

20-9-97-2 Apatite

COUNTED BY **IRRADIATION MU025-13** 

RATIO Na

ï

 $\mathbf{N}_{\mathbf{S}}$ 

No.

0 6 4 %

5 2 4 5 2

ន ន ភ \$2 \$2 \$2 9

2 7 2

8 X 6 33 33 4

U(ppm)

9.3

 $\begin{array}{c} 22200\\ 22000\\ 1.857\\ 1.471\\ 1.471\\ 1.533\\ 2.500\\ 1.714\\ 1.714\\ 1.714\\ 1.713\end{array}$ 

12 32 12 23 

9 73

9 26 462 Area of basic unit = 6.4E-07 cm-2

308

CHI SQUARED = 4.22054 WTH 19 DE P(chi squared) = 98.2 % CORRELATION COEFFICIENT = 0.907 VARIANCE OF SQR(Ns) = 921777 VARIANCE OF SQR(Ns) = 1077588

Ns/Ni = 1.500 - 0.110 MEAN RATIO = 1.649 - 0.089

Pooled Age AGE = 288, 1 – 22,2 Ma Mean Age = 316,0 – 18,5 Ma *Central Age = 288,1 – 21,8Ma* % Variation = 0,00%

Ages calculated using a zeta of 378.8 – RHO D = 1.037E+06cm-2;



'n 'n

Appendix C	

21-9-97-1	Apatite							21-9-	<del>97-2</del> Ap	atite						
IRRADIAT	ION MU	025-15	ŭ	OUNTED B	Y: M. RAAB 05	(/12/00		IRRA	DIATIO	N MU02	6-01	CO	UNTED BY	ć: M. RAAB 06	5/12/00	
No. N	s. Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	5 3	100	1.667	0.5	7.812E+04	4.688E+04	330.4-241.4	-	41	27	25	1.519	26.6	2.562E+06	1.688E+06	224.1-55.8
2	3	56	1.667	1.0	1.395E+05	8.371E+04	330.4-241.4	7	48	13	70	3.692	4.6	1.071E+06	2.902E+05	532.0-166.8
- ( -	о -	8 2	2.000	1.1	1.875E+05	9.3/5E+04	394.5-2/9.1	ю. «	88	77	25	1.364	1.1.2	2.344E+06	1./19E+06	201.6-56.8
+ u	+ c	88	0020	C.1	CU+3666.1	1.12605.05	C./17-C.04C	t u	99	112	38	2001	54.2	1.120E+00	201436/0.0	47701-471/C
ر. م	10	9 G	1 429	5 C	3.125E±05	2 188F+05	284.2-140.2	n ve	8 2		3 K	1.857	14.6	8 125E+00	3.456E+00 4 375E+05	273 1-128 2
7 11		52	1.833	4.4	6.875E+05	3.750E+05	362.5-184.2	5	3 8	24	5	1.375	24.6	2.148E+06	1.562E+06	203.3-54.7
00	4	70	1.750	1.0	1.562E+05	8.929E+04	346.5-217.3	~ ~~	33	28	30	1.179	23.0	1.719E+06	1.458E+06	174.6-45.0
9 I(	4	50	2.500	1.5	3.125E+05	1.250E+05	489.5-289.8	6	116	76	50	1.526	37.4	3.625E+06	2.375E+06	225.3-33.6
10	-	88	4.000	0.7	2.500E+05	6.250E+04	766.3-856.9	2 :	88	52	8 8	1.200	12.3	9.375E+05	7.812E+05	177.8-48.3
1 2	+ :-	9 8	2 500	. <del>.</del>	2.730E+05	1.116E+05	0.140-0.480 489 5-409 7	1 5	9 6	77	0,00	c/ 7.1	1.1	0.220E+05	4.688F+05	2.84.0-64.2
13		5	3.000	0.8	1.953E+05	6.510E+04	583.1-673.4	13	34	29	52	1.517	28.6	2.750E+06	1.812E+06	223.9-53.8
14	5 2	36	3.000	1.0	2.604E+05	8.681E+04	583.1-476.3	14	43	18	25	2.389	17.7	2.688E+06	1.125E+06	349.2–98.4
15	с ;	15	1.667	3.6	5.208E+05	3.125E+05	330.4-241.4	15	Ξ	73	100	1.521	18.0	1.734E+06	1.141E+06	224.4-34.2
10	۲ وا د	8	1.474	9.6	1.215E+06	8.247E+05	293.0-87.4 204 £ 270 1	10	57	4	100	1.714	ы с 4 г	3.750E+05	2.188E+05	252.5-85.1
18	0 4	6 84 84	1.750	1.1	2.279E+05	9.575E+04 1.302E+05	346.5-217.3	18	91 91	6	<u>8</u> 9	1.778	1.0	5.409E+05	2.544E+05	2.61.6–109.2
16	. 61	4	3.500	0.9	2.734E+05	7.812E+04	675.3-541.7	19	26	53	50	2.565	11.3	1.844E+06	7.188E+05	374.2-92.4
20	1	100	2.000	0.4	6.250E+04	3.125E+04	394.5-341.8	20	61	44	60	1.386	18.1	1.589E+06	1.146E+06	204.9-40.8
14	17 77			1.5	2.484E+05	1.319E+05			919	565			13.7	1.416E + 06	8.706E+05	
Area of bas	ic unit =	6.4E-07	cm-2					Area	of basic 1	unit = 6.	4E-07 c	m-2				
	CHI SÇ P(chi sq CORRE VARIA] VARIA]	UARED puared) = sLATION NCE OF NCE OF	= 1.60183 100.0 % I COEFFIC SQR(Ns) = SQR(Ni) =	4 WITH 19 JENT = 0.9 : .5768135 5275361	) DEGREES O	FREEDOM			040>>	THI SQU (chi squa ORREL ARIANO ARIANO	ARED = ured) = ATION CE OF S CE OF S	. 12.14467 7.4 % COEFFICI QR(Ns) = QR(Ni) =	WITH 19 ENT = 0.95 3.463633 2.805847	DEGREES OI 26	F FREEDOM	
	Ns/Ni = MEAN	: 1.883 – RATIO =	- 0.266 - 2.199 - 0	251.0					22	Is/Ni = 1 IEAN R.	627 - 1 ATIO =	).087 1.795 - 0.	141			
	Pooled Mean A <u>Central</u> % Varia	Age AGI .ge $= 43$ . <i>Age</i> $= 3$ . tion $= 0$ .	3 = 372.1 - 2.5 - 32.5 72.1 - 52.9 00%	53.2 Ma Ma <u>Ma</u>					4 2 0 8	ooled Ag Iean Age Ientral A Variatio	ce AGE = = 264. <u>ee = 241</u> n = 11.0	= 239.8 - 1 1 - 21.6 N .7 - 15.2M 18%	4.0 Ma Ia <i>Ia</i>			
	Ages ca RHO D	lculated = 1.074	using a zeta E+06cm-2;	of 378.8-:	5.5 for Other g $ND = 3015$	ass			< ⊻	vges calc tHO D =	nlated us 7.930E	ing a zeta c +05cm-2;	of 378.8-2	5.5 for Other gl VD = 3165	lass	
	21	-9-97-1				21-24-2-1										
لے ء د						Ļ	P. 500.	i		21-9-	97-2				21-9-97-2	- 2 200.
о с с с с с с с с с с с с с с с с с с с		iE (Ma) 700	÷ ^ج ج في الم		Mb = 12 66 Mb = 12 66	2. 2 Succession of the second						20,		MU026-01 ML - 12.2 ML - 12.2 ML - 12.2 ML - 12.2 ML - 12.2 ML - 20		
													TRACK LENGT	H (microns)	0 To	2.0

21-9-97-3 Apa	utite							24-9-9	<del>77-6</del> Ap.	atite						
IRRADIATIO	N MU02	6-02	CO	UNTED BY	ć: M. RAAB 06	5/12/00		IRRAI	DIATIO	N MU02	6-03	COL	INTED BY:	: M. RAAB 06	/12/00	
No. Ns	ī	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 15 2 51 3 4 5 5 5 5 5 7 5 6 5 23 6 7 23 6 7 23 7 23 11 12 11 12 11 12 12 12 12 12 12 12 12	2 2 2 3 3 3 3 4 2 ⁸ 3 3 3 5 2 5 2 6 7 3 3 2 2 5 2 3 3 5 2 5 2 5 2 5 2 5 2 5 2	2	1.154 1.962 1.962 1.353 1.333 1.333 1.333 1.333 1.338 1.338 1.338 1.338 1.338 1.338 1.345 1.345 1.356 1.351 1.351 1.355 1.356 1.355 1.355 1.355 1.356 1.357 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.258 1.258 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.257 1.256 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.2577 1.2577 1.2577 1.2577 1.25777 1.25777 1.257777 1.25777777777777777777777777777777777777	12.4 24.8 24.8 5.1 8.2 8.2 8.2 13.6 13.7 7.6 13.7 7.6 13.7 15.3 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9	9.375E+05 3.188E+06 3.188E+06 4.464E+05 8.984E+05 8.984E+05 8.984E+05 1.259E+06 1.6125+06 1.1258+06 1.1258+06 1.1258+06 1.156E+06 1.156E+06 1.1997E+06 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1972E+05 1.1	8.125E+05 1.625E+06 1.625E+05 3.348E+05 5.7422E+05 5.7422E+05 9.549E+05 9.549E+05 1.2492E+05 1.2329E+06 1.000E+06 1.3282+06 1.3282+06 1.3282+06 1.3282+06 1.3282+06 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.3382E+05 5.33825555555555555555555555555555	176.5-67.0 236.3-72.0 236.3-72.0 136.1-7.5 231.3-7.5 231.3-7.7 231.3-7.7 231.3-7.7 231.3-7.7 231.3-7.7 231.3-7.7 201.3-7.7 201.3-7.7 201.3-7.7 201.3-2.6 190.2-2.6 190.2-2.6 116.1-36.2 116.9-42.9 186.1-36.2 186.1-36.2 186.1-36.2 186.1-36.2 186.1-36.2 190.2-36.7 186.1-36.2 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190.2-36.7 190	- 0	56 36	25 25	15 23	1.000	51.7 38.5 5	3.50E+06 3.750E+06	3.500E+06 2.604E+06	158.3-30.1 2.26.7-59.2
694	496			14.8	1.357E+06	9.700E+05			92	81			46.8	3.594E+06	3.164E+06	
Area of basic u	mit = 6.	4E-07 c	m-2					Area o	λf basic ι	nit = 6.	4E-07 ci	m-2				
5∡0≯≯	HI SQU. (chi squa ORREL. ARIANC ARIANC	ARED = ared) = 9 ATION ( CE OF S CE OF S	: 5.552516 22.0 % COEFFICI QR(Ns) = QR(Ni) =	WITH 19 ENT = 0.96 2.284912 2.058229	DEGREES OI	F FREEDOM			0 4 0 > 2	HI SQU. (chi squa ORREL. ARIANC ARIANC	ARED = ured) = 2 ATION ( SE OF S SE OF S	6446986 25.6 % COEFFICII QR(Ns) = QR(Ni) =	WITH 1 E INT = 1.00 1.100113 1.083435	DEGREES OF	FREEDOM	
žΨ	s/Ni = 1 EAN R/	1.399 – ( ATIO =	).082 1.478 - 0.	075					ZΣ	s/Ni = 1 IEAN R/	.136 – ( ATIO =	0.173 1.220 - 0.2	20			
% <u>C</u> X	ooled Ag lean Age <u>entral As</u> Variatio	ge AGE = = 225. <b>ge = 213</b> m = 0.10	= 213.5 - 3 3 - 12.6 N 5 - 13.1A	13.5 Ma 4a <u>4a</u>					⊈ Z OI %	ooled Ag lean Age <u>entral A</u> 1 Variatio	ge AGE = = 192. <u>ge = 179</u> n = 0.06	= 179.5 - 2 6 - 35.0 M <u>5 - 27.5M</u> 5%	7.7 Ма а <u>a</u>			
A: RI	ges calcı HO D =	ulated us 8.190E⊣	ing a zeta +05cm-2;	of 378.8-5 N	5.5 for Other g ID = 3165	lass			A N	ges calcı HO D =	ılated us 8.460E⊣	sing a zeta o +05cm-2;	f 378.8–5. NI	5 for Other gl D = 3165	ass	
	21-9-	-97-3				21-9-97-3									8 32 2-1 58	
		(Ma)			MU026-02 ML-13-16 NL-31-3-13 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-31-3-12 NL-3		2000 	<u> </u>	Fis Sion 7	Trice Rase (		<b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>		MU026-03 ML= 13.00 Star 14.6 N= 32.4 N= 32.6 Is - 20 Is - 20 Is - 20 I (microns)	2 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 000 - 00 - 000 - 000 - - 000 - 0 - 000 - - 0 -

				24-9-9	7-11 Ap	atite						
COUNTED F	3Y: M. RAAB 0.	7/12/00		IRRAI	<b>JATIO</b>	MU026	-05	CO	UNTED BY	2: M. RAAB 08	/12/00	
O U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	$N_{\rm S}$	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
4 26.9	1.771E+06	1.875E+06	154.1-52.2	-	29	17	9	1.706	61.6	7.552E+06	4.427E+06	284.1-87.0
4 50.4	5.990E+06	3.516E+06	275.4-67.1	2	18	7	4	2.571	38.0	7.031E+06	2.734E+06	423.6-188.9
8 49.3	3.500E+06	3.438E+06	166.0–31.7	33	21	Ξ	18	1.909	13.3	1.823E+06	9.549E+05	317.1–118.3
0.6.0	8.125E+05	6.250E+05	211.2-89.0	4 -	<del>6</del> 8	22	54	1.818	19.9	2.604E+06	1.432E+06	302.4-80.6
0 41.8	3.646E+06 4.688E+06	2.917E+06	203.2-51.7	n 4	22	12	0 2	1 800	181	5.208E+06 2.34/E+06	3.125E+06 1 307E+06	2////-101.6 200.4 06.7
5 154	1.562E+06	1.074E+0.0	235 9-92 5		9	6	19	1 875	1.01	5 859E+06	3 125E+06	311 6-68 6
5 28.6	2.865E+06	1.997E+06	232.7-63.4	- 00	33	46	21	1.413	47.6	4.836E+06	3.423E+06	236.2-45.8
5 92.4	6.543E+06	6.445E+06	165.5-29.0	6	25	14	16	1.786	19.0	2.441E+06	1.367E+06	297.1–99.4
0 14.9	1.458E+06	1.042E+06	227.2–94.2	10	30	20	15	1.500	29.0	3.125E+06	2.083E+06	250.5-72.5
0 46.6	4.062E+06	3.250E+06	203.2-38.1	= :	32	16	2	2.000	29.0	4.167E+06	2.083E+06	331.8-101.9
20.0	2.539E+06 0.125E.05	1.855E+06 7 500E - 05	222.1-6/.2	12	4 6	97 6	<u>ء</u> م	1.275	07.8 24 0	8.160E+06 2.429E+06	4.514E+06	300./-/3.8
11.0	0.123E+03 1 476E+06	7.812E+05	304 6-125 8	C1 1	36	+7	2 9	1 529	36.9	4.062E+06	2.500E+00	255 3-79 8
8 26.1	2.257E+06	1.823E+06	201.3-59.2	15	12	4	6	1.714	33.8	4.167E+06	2.431E+06	285.5-96.2
0 26.1	2.734E+06	1.823E+06	243.1-84.1	16	58	45	20	1.289	48.9	4.531E+06	3.516E+06	215.8-43.2
0 39.2	4.922E+06	2.734E+06	290.6-61.6	17	4	32	16	1.375	43.5	4.297E+06	3.125E+06	230.0–53.7
9 52.3 0 25.8	3.750E+06 2.695E+06	3.646E+06 1.797E+06	167.7 - 40.0 243.1 - 46.6									
0 21.5	1.875E+06	1.500E+06	203.2-55.8									
32.4	2.871E+06	2.257E+06			599	370			34.2	3.983E+06	2.460E+06	
				Area o	f basic u	nit = 6.4	E-07 ci	n-2				
9012 WITH 1	9 DEGREES O	F FREEDOM			IJ	AUQ IH	RED =	2.835346	WITH 16	DEGREES OF	FREEDOM	
FICIENT = $0.$	923				చర≯	chi squai DRRELA ARIANC	e = (ba TION ( E OF S	9.1 % COEFFICI OR(Ns) =	ENT = 0.95 1.409683	20		
i) = 2.463189					Ň	ARIANC	E OF S	QR(Ni) =	1.330727			
- 0.060					žΫ	s/Ni= 1. EAN RA	619 – 0 TIO =	.107 1.714 - 0.	074			
7 – 12.6 Ma					Po	oled Age	AGE =	269.9 - 1	8.9 Ma			
0.9 Ma 12.3Ma					۶ <mark>ک</mark> ۶	ean Age <u>entral Ag</u> Variation	= 285.4 e = 269.1 1 = 0.001	4 - 14.0 N <u>9 - 18.5N</u> )%	1a 1a			
zeta of 378.8 - 1-2;	5.5 for Other $g$ ND = 3165	lass			RI	ges calcu HO D =	lated us 8.990E⊣	ing a zeta e 05cm-2;	of 378.8 – 5 N	5.5 for Other gl ID = 3165	ass	
		24-9-97-10				24-9-9	7-11				24-9-97-11	
*40* <b>[</b>	M U026-04 ML= '12.93' SD= '1.35'	•• [	• • • • • • • • • • • • • • • • • • •	<b>∟ ↓ ↓</b> is k is				- 40	_	MUD26-05 ML 73.01	- 7	F 360
- 30' - 20'	N=.e1.		- 210' - 180' - 180'	<b>       </b> io ie io in	``	4		. 30 . 20		28 N	, , ,	••••••••••••••••••••••••••••••••••••••
.10.		% rel .42	lative error - - 177			-	A		-		5 % .0	klatifike e mor 19
TRACK LEN	r 15' 20' 3TH (microns)	0 10	- 2.0' (signa)		12 SION T	KACK ÄGE (1	) G	2	• 5• • 10• • TRACK LENGT	15* * 20* H (microns)	0 . 10 . Precision (	. 2 C

**IRRADIATION MU026-04** 24-9-97-10 Apatite

T.AGE(M	1 57 7	1-27-1	0-31.7	2 - 89.0	2-51.7	7-37.3	9-92.5	7-63.4	5-29.0	2-94.2	2-38.1	1-67.2	5-70.8	6-125.8	3-59.2	1-84.1	6-61.6	7-40.0	1 - 46.6	2-55.8
Ξ.	157	375	166.	211.	203.	177.	235.	232.	165.	227.	203.	222.	176.	304.	201.	243.	290.	167.	243.	203.
RHOi	1 8756±06	3 516F±06	3.438E+06	6.250E+05	2.917E+06	4.297E+06	1.074E+06	1.997E+06	6.445E+06	1.042E+06	3.250E+06	1.855E+06	7.500E+05	7.812E+05	1.823E+06	1.823E+06	2.734E+06	3.646E+06	1.797E+06	1.500E+06
RHOs	1 7715-06	5 990F ±06	3.500E+06	8.125E+05	3.646E+06	4.688E+06	1.562E+06	2.865E+06	6.543E+06	1.458E+06	4.062E+06	2.539E+06	8.125E+05	1.476E+06	2.257E+06	2.734E+06	4.922E+06	3.750E+06	2.695E+06	1.875E+06
U(ppm)	760	50.4	49.3	9.0	41.8	61.6	15.4	28.6	92.4	14.9	46.6	26.6	10.8	11.2	26.1	26.1	39.2	52.3	25.8	21.5
RATIO	0.044	1704	1.018	1.300	1.250	1.091	1.455	1.435	1.015	1.400	1.250	1.368	1.083	1.889	1.238	1.500	1.800	1.029	1.500	1.250
Na	15	3 2	3	25	15	16	16	18	16	15	25	16	25	18	18	12	20	15	4	25
ïŻ	19	5	32	10	28	4	Π	23	99	10	52	19	12	6	21	14	35	35	46	24
Ns	17	46	56	13	35	48	16	33	67	14	65	26	13	17	26	21	63	36	69	30
No.	-	• •	1 ლ	4	ŝ	9	٢	×	6	10	Ξ	12	13	14	15	16	17	18	19	20

Area of basic unit = 6.4E-07 cm-2

711 559

CHI SQUARED = 5.969012 WITH 19 DJ P(chi squared) = 88.8% P(chi squared) = 88.8% CORRELATION COEFFICIENT = 0.923 VARIANCE OF SQR(NS) = 2.463189 VARIANCE OF SQR(NS) = 2.463189

Ns/Ni = 1.272 - 0.072 MEAN RATIO = 1.326 - 0.060

Pooled Age AGE = 206.7 - 12.6 Ma Mean Age = 215.4 - 10.9 Ma *Central Age = 206.7 - 12.3 Ma* % Variation = 0.84%

Ages calculated using a zeta of 378.8-. RHO D= 8.720E+05cm-2;

24-9-97-10





₩ × 4 ΰø

0 m 4

No.



IRRADIATION MU026408       COUNTED BY: M. RAAB 21/02/01         No.       Ns       Ni       Na       RATIO       U(ppin)       RHO:       RHO:       F.T.AGE         No.       Ns       Ni       Na       RATIO       U(ppin)       RHO:       RHO:       F.T.AGE         1       12       7       48       1.714       2.9       5.006E+05       312.8E-145         2       13       6       30       2.178       6.3       9.5128E+05       32.8E-148         3       16       8       25       1.875       6.3       9.375E+05       312.8E-145         Area of basic unit = 6.4E-07 <cm2< td="">       5.000E+05       31.3.128E-146       31.3.128-149       31.3.149         Area of basic unit = 6.4E-07<cm2< td="">       CHI SQUARED = 6.8560F=02       WTH 3 DEGREES OF FREEDOM       9.375E+05       32.40-155         Area of basic unit = 6.4E-07<cm2< td="">       CHI SQUARED = 6.8602.02       WTH 3 DEGREES OF FREEDOM       0.00E+05       341.3-149         Variatione = 1.867 - 0.422       9.87       9.90       9.9174E-02       VARIANCE OF SQRN) = .0561231         Ns/Ni = 1.867 - 0.422       NS/Ni = 1.887 - 0.100       Doild Age AGE = 39.98 - 77.3 Ma       Variation = 0.006       Variation = 0.006         Solid Age AGE = 39.98 - 77.3 Ma<th>25-9-9</th><th>7-2 Apa</th><th>tite</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></cm2<></cm2<></cm2<>	25-9-9	7-2 Apa	tite							
No. Ns Ni Na RATIO U(ppm) RHOs RHOI FTAGE No. Ns Ni Na RATIO U(ppm) RHOs RHOI FTAGE $\frac{1}{2}$ 13 6 30 2.167 2.9 300E465 2.279E465 3128-1446 $\frac{1}{3}$ 16 9 30 1.1718 5.9 8.333E465 5.000E405 3213-140, Area of basic unit = 6.4E-07 cm-2 56 30 4.5 6.579E405 3.524E405 31.3-140, For the init of the ininit of the init	IRRAJ	<b>10ITOI</b>	N MU02	6-08	CC	UNTED BY	: M. RAAB 21	/02/01		
$\frac{1}{2} \frac{1}{15} \frac{7}{9} \frac{48}{25} \frac{1.714}{1.2875} \frac{2.9}{6.3} \frac{3.906E+05}{2.279E+05} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-105} \frac{312.8E-145}{312.8E-1405} \frac{312.8E-145}{323.8E-121.8E} $	No.	Ns	ïz	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	12	7	48	1.714	2.9	3.906E+05	2.279E+05	312.8-148.9	
3 16 9 30 1.778 5.9 8.333E+05 3.668E+05 3.24E+05 5.000E+05 341.3-149. 56 30 4.5 6.579E+05 3.524E+05 3.1875 6.3 9.375E+05 3.000E+05 341.3-149. Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.862569E-02 WITH 3 DEGREES OF FREEDOM P(shi squared) = 9.87% CARRELATION COEFFICIENT= 0.849 VARIANCE OF SQR(Ns) = 0.561231 Ns/Ni = 1.867 - 0.422 MEAN RATIO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 198 Ma Control Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 100 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 108 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 108 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 198 Ma General Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 108 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 108 Ma Mean Age = 34.	0	13	9	30	2.167	4.0	6.771E+05	3.125E+05	392.8-194.1	
4 15 8 25 1875 6.3 9.375E405 5.000E405 341.3-140. 56 30 4.5 6.579E405 5.000E405 341.3-140. Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.862569E-02 WITH 3 DEGREES OF FREEDOM PCHI SqUARED = 8.862569E-02 WITH 3 DEGREES OF FREEDOM PCHI SqUARED = 8.87% Walking a state of 3785.5 for Other glass Mean Age = 342.8 - 19.8 Ma Wean Age = 3	ŝ	16	6	30	1.778	5.9	8.333E+05	4.688E+05	324.0-135.2	
56 30 4.5 $\frac{1}{5.5}$ $\frac{1}{5$	4	15	×	25	1.875	6.3	9.375E+05	5.000E+05	341.3–149.6	
56 30 4.5 6.579E+05 3.524E+05 Area of basic unit = 6.4E-07 cm-2 CHI SQUARED = 6.862569E-02 WTH 3 DEGREES OF FREEDOM F(elii squared) = 837 %. CORRELATION COEFFICIENT = 0.849 VARIANCE OF SQR(s) = 5.980174E-02 VARIANCE OF SQR(s) = 5.980174E-02 VARIANCE OF SQR(s) = 5.980174E-02 VARIANCE OF SQR(s) = 5.980174E-02 MEAN RATIO = 1.882 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma Worki = 1.867 - 0.422 MEAN RATIO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma We are age = 342.8 - 19.8 Ma General Area = 339.8 - 77.3 Ma We are age = 342.8 - 19.8 Ma We are age = 342.8 - 10.0 Ma We are age = 342.8 - 19.8 Ma We are age = 342.8										
Area of basic unit = 6.4E-07 cm-2 CH SQUARED = 6.862569E-02 WTH 3 DEGREES OF FREEDOM P(eii squared) = 957% CORRELATION COEFFICIENT = 0.849 VARIANCE OF SQRNs) = 0.580174E-02 VARIANCE OF SQRNs) = 0.580174E-02 VARIANCE OF SQRNs) = 0.580174E-02 VARIANCE OF SQRNs) = 0.580174E-02 VARIANCE OF SQRNs) = 0.580174E-02 MEAN RATIO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 19.8 Ma Control Age AGE = 339.8 - 77.3 Ma We un Age = 342.8 - 19.8 Ma Control Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 19.8 Ma Control Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 242.8 - 19.8 Ma Control Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 342.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 34.8 - 10.0 Pooled Age AGE = 333.8 - 5.5 for Other glass Mean Age = 34.8 - 10.0 Pooled Age		56	30			4.5	6.579E+05	3.524E+05		
CHI SQUARED = 6.862569E-02 WITH 3 DEGREES OF FREEDOM P(chi squared) = 98.7%. CORRELATEOR COEFFICIENT = 0.849 VARIANCE OF SQR(Ns) = 0.849 VARIANCE OF SQR(Ns) = 0.861231 Ns/Ni = 1.867 - 0.422 MEAN RATTO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma MEAN RATTO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma Waition = 0.00% Waition = 0.00% Mean Age = 332.8 - 198 Ma Quantum of 0.00% Mean Age = 333.8 - 5.5 for Other glass Mean Age = 333.8 - 7.7 Ma Mean Age = 33.8 - 7.7	Area o	f basic u	mit = 6.	4E-07	cm-2					
P(disi quarted) = 95.7% P(disi quarted) = 95.7% VARIANCE OF SQR(NS) = 5.80174E-02 VARIANCE OF SQR(NS) = 5.80174E-02 VARIANCE OF SQR(NS) = 0.561231 NS/NI = 1.867 - 0.422 MEAN RATTO = 1.883 - 0.100 Pouled Age CAEE = 339.8 - 77.3 Ma Reaching a 2 - 0.100 Pouled Age CAEE = 339.8 - 77.3 Ma Reaching a 2 - 0.100 Pouled Age = 342.8 - 19.8 Ma Guined Age = 342.8 - 19.8 Ma Warning a 2 - 0.000 % Variation = 0.000 % Variation = 0.000 % Pouled Age = 0.000 % Variation = 0.000 % Pouled Age = 0.000 % Variation = 0.000 % Varia		CI	'I SQU	ARED	= 6.862569	e-02 WITH	I 3 DEGREES	OF FREEDOM		
VARIANCE OF SQR(Ni) = .0561231 Ns/Ni = 1.867 - 0.422 MEAN RATIO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 19.8 Ma Grain Age = 342.8 - 19.8 Ma Mean Age = 342.8 - 19.8 Ma Grain Age = 342.8 - 19.8 Ma Mean Age = 34.9 Ma Mean Age = 34.		₹ŭ≯	chi squa DRREL. ARIANC	red)= ATION CE OF (	98.7 % COEFFICI SQR(Ns) =	IENT = 0.84 5.980174E-	9 02			
Ns/Ni = 1.867 - 0.422 MEAN RATIO = 1.883 - 0.100 Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 19.8 Ma Grean Age = 342.8 - 19.8 Ma Mean Age = 342.8 - 19.8 Ma Mean Age = 342.8 - 100 Mean Age = 342.8 - 19.8 Ma Mean Age = 34.8 - 19.8 Ma Mean Age = 34.8 - 19.8 Ma Mean Age = 34.9 Ma Mean Age = 34.0 Ma Mean Age = 34		٨	ARIANC	CE OF.	SQR(Ni) =	.0561231				
Pooled Age AGE = 339.8 - 77.3 Ma Mean Age = 342.8 - 19.8 Ma Generative = 339.8 - 77.1 Ma % Variance = 0.00% Ages calculated using a zeta of 378.4 - 5.5 for Other glass Reg as a calculated using a zeta of 378.8 - 5.5 for Other glass Pages and a zeta of 378.8 - 5.5 for Other glass Pages and a zeta of 378.8 - 5.5 for Other glass Pages and pages of 378.8 - 5.5 for Other glass Pages and Pages and Pages of 378.8 - 5.5 for Other glass Pages and Pages of 378.8 - 5.5 for Other glass Pages and Pages of 378.8 - 5.5 for Other glass Pages and Pages of 378.8 - 5.5 for Other glass Pages of 378.8 - 5.5 for Othe		žΣ	s/Ni = 1 EAN R/	- 7867 - ATIO =	0.422 1.883 - 0.	.100				
Mean Age = 342.8 - 19.8 Ma <i>Central Acc</i> = 339.8 - 77.1 Ma % Variation = 0.00% Ages calculated using a zeta of 378.4 - 5.5 for Other glass RHO D = 9.870E+05cm-2; 25-9572 25-9572 25-9572 $\frac{1}{2}$		Po	oled Ag	e AGE	= 339.8 - `	77.3 Ma				
Ages calculated using a zera of 378.8 – 5.5 for Other glass RHO D = 9.870E+05cm-2; ND = 3165 25-0-97.2 $2-9-97.2$ 2-9-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 - 90-97.2 -		% <mark>ک</mark> ک	ean Age <u>entral A</u> y Variatio	= 342 ge = 33 n = 0.0	2.8 - 19.8 N 9.8 - 77.11 00%	vla Ma				
26-0-97.2 26-0-97.2 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72 26-0-72		A _i RI	ges calcı HO D =	ulated u 9.870E	ising a zeta 3+05cm-2;	of 378.8-5 N	i.5 for Other gl ID = 3165	ass		
			25-9-	97-2		-	=	25.0072		
	а Т				- 40	L	M U0 26 -08			
	1 I I 10 in ie				.0 . v		ML= 12.39 SD= 1.38 N= 2	•	•••	
	in in i-	ł	H		-10, 50					
	ו וויי	HI NOIS SH	SACK AGE	. 400 . Ma)	]នំ	*5* *10* * TRACK LENGT	15 ^{° +} 20 [°] H (microns)	0 2 4 0	%, as lative error • .a 40' • .a 10' * .a 10'	









		28-9-9	7-1A A	patite						
/12/00		IRRAI	OIATIO	N MU02	7-03	СС	UNTED B'	Y: M. RAAB 16	5/12/00	
RHOi	F.T.AGE(Ma)	No.	Ns	N	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
3.125E+05	259.6-102.6	-	15	9	25	2.500	6.0	9.375E+05	3.750E+05	360.0-174.1
5.208E+05	315.9-120.7	2	14	6	20	1.556	11.2	1.094E+06	7.031E+05	226.4–96.9
5.625E+05	350.1-138.8	ω.	16	= '	83	1.455	9.8	8.929E+05	6.138E+05	211.9-83.2
5.625E+05	326.8-92.7	4 4	61 5	- 1	<u>5</u>	2.714	11.7	1.979E+06	7.292E+05	390.0-172.7
1.128E+06 2.083E+05	45/.0-140.1 495 5-199 0	n v	5 8	- 51	89	1.867	7.0	1.750E+06 8 750E+05	5.900E+05 4.688E+05	024.7-201.8 2707-869
4.948E+05	477.6-125.3	5	3 2	5	512	3.143	8	0.730E+06	5.208E+05	449.5-195.3
3.125E+05	481.9-245.4	~ ~~	4	30	4	1.400	17.8	1.562E+06	1.116E+06	204.1-49.0
4.062E+05	521.7-163.6	6	14	5	12	2.800	10.4	1.823E+06	6.510E+05	401.9-209.6
8.438E+05	324.2-75.4	10	26	12	25	2.167	12.0	1.625E+06	7.500E+05	313.2-109.6
4.167E+05	401.2-117.2	= :	37	17	33	2.176	17.0	2.312E+06	1.062E+06	314.6–92.5
7.500E+05	438.5-146.1	12	5 7	x <u>-</u>	5 5	3.000	6.9 6.9	1.562E+06	5.208E+05	429.7-175.7
4.575E+U5	221.2-11.9 250 6 83 8	C1	4 5	4 V	40	2 167	0.0	0.929E+05 5 078E+05	2.206E+05	249.0-64.0 313 2-154 8
5 208E+05	287 8-133 4	1 21	i K	o v	<u></u>	3 000	1.0	4 688F+05	1 562E+05	4297-222.1
3.646E+05	347.8-156.4	16	62	25	20	2.480	31.2	4.844E+06	1.953E+06	357.2-85.1
1.719E+05	389.4-137.6	17	52	21	30	2.476	17.5	2.708E+06	1.094E+06	356.7–92.6
3.750E+05 3.906E+05 4.464E+05	357.8-173.1 371.7-138.6 529.5-211.1									
4.524E+05			454	205			10.3	1.427E+06	6.445E+05	
		Area o	f basic u	nit = 6.4	E-07	:m-2				
7 FREEDOM			02033	HI SQU/ chi squa ORREL/ ARIANC ARIANC	ARED = red) = VTION E OF S E OF S	= 5.897332 75.8 % COEFFICI \$QR(Ns) = \$QR(Ni) =	ENT = 0.8 (ENT = 0.8 1.631567 .9867678	b DEGREES OI 48	F FREEDOM	
			žΣ	s/Ni= 2 EAN R#	215 - XTIO =	0.186 2.414 - 0.	184			
			2 Z Q %	ooled Ag ean Age <u>eantral Ag</u> Variatio	e AGE = 348 <u>e = 32</u> ( n = 1.5	= 319.9 - 1 .0 - 27.8 N .0 - 27.7N 6%	28.0 Ма Ла <u>Иа</u>			
ass			R A	ges calcu HO D =	lated u 7.820E	sing a zeta +05cm-2;	of 378.8– 1	5.5 for Other g ND = 2578	lass	
26-9-97-6				28-9-9	A1-71				28-9-97-1 A	
• <b>?</b> . 	.000. .000. .000.	LLL	6			• • • • • • • • • • • • • • • • • • •		M U027-03 ML= 12.44 SD= 165 N= 29	••• •	
	elaive error 2.1	<b>}</b> ;		É	力	÷ : i h			а П 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	•
0 .4 8 Precision (	*12. *14, *20. (144.genes)	-	Hs sion #	Ack Age (	8 (*)	0	5. 10 TRACK LENG	15 · 20	14 19 19 19 19 19 19 19 19 19 19 19 19 19	12 16 20

26-9-9	7-6 Apa	utite						
IRRAI	<b>JIATIO</b>	N MU02	7-02	20	UNTED BY	ć: M. RAAB 16	6/12/00	
No.	Ns	Ņ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	18	10	50	1.800	5.0	5.625E+05	3.125E+05	259.6-102.6
00	88	01	8 8	2.200	8.4	1.146E+06	5.208E+05	315.9-120.7
04	14	<u>ع</u> ہ	0.0	2.278	0.6 0.6	1.281E+06	5.625E+05	326.8-92.7
. 10	40	13	18	3.077	18.2	3.472E+06	1.128E+06	437.6-140.1
9	28	8	09	3.500	3.4	7.292E+05	2.083E+05	495.5-199.0
L 0	22	19	99	3.368	8.0	1.667E+06	4.948E+05	477.6-125.3
00	48	0 <u>m</u>	9.6	3.692	0.0	1.500E+06	5.123E+05 4.062E+05	401.9-243.4 521.7-163.6
10	61	27	20	2.259	13.6	1.906E + 06	8.438E+05	324.2-75.4
= :	45	16	99	2.812	6.7	1.172E+06	4.167E+05	401.2-117.2
12	5	12	28	3.083	12.1	2.312E+06 6.875E+05	7.500E+05 4 375E+05	438.5-146.1
0 4 1	12	12	8 X	1/21	15.1	0.6/JE+00 1.688E+06	9.375E+05	259.6-83.8
15	1	5	5	2.000	8.4	1.042E+06	5.208E+05	287.8-133.4
16	17	٢	30	2.429	5.9	8.854E+05	3.646E+05	347.8-156.4
17	8	= '	100	2.727	2.8	4.688E+05	1.719E+05	389.4-137.6
18	15	9 0	52 Q	2.500	6.0	9.375E+05	3.750E+05	357.8-173.1
20	8 8	o 80	P 8	3.750	0.5 7.2	1.010E+00 1.674E+06	5.900E+05 4.464E+05	529.5-211.1
	624	238			7.3	1.186E+06	4.524E+05	
			10 DV					
Area o	f basic u	mit = 6.	4E-07	cm-2				
	01	III SQU	ARED	= 5.09066	8 WITH 19	DEGREES OF	FREEDOM	
	τÖ β	Chi squa ORRELA	ured)= ATION TOTO	94.8 % I COEFFIC SOB(NE) =	IENT = 0.8	43		
	~ ~	ARIANC	5 E	SQR(Ni) =	5273365			
	ΖΨ	s/Ni = 2 EAN R/	622 – ATIO =	0.200 : 2.665 - 0	.146			
	% <mark>ک</mark> ک ک	ooled Ag ean Age entral Aj Variatio	ge AGE = 38 ge = 37 n = 0.	1= 374.7 - 0.7 - 22.91 <b>74.7 - 29.51</b> 03%	30.0 Ma Ma <u>Ma</u>			
	Ā	oes calci	ulated 1	nsing a zeta	of 378.8 - •	5 5 for Other of	356	
	2	HO D =	7.770	E+05cm-2;		D = 2578	6611	
		26-9-	97-6				26-9-97-6	
<b>ل</b> ه				* 40	L	MUD27-02		89 . I
<b>1</b>	Υ,		⊣	5 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		We 140 100	• <b>;:</b>	. 250 C
<b>_</b> .	Fill sion"	300' 40'	0 50 0'	: /] [§]	- 20 10.	15 20	**************************************	iaiweeror 21 12 16 20
					TRACK LENGI	(H (microns)	Prediction (	1 M (mm)

00/7					Č		V. M. DAAD 14	5/12/00	
	IRRA	DIATIO	N MU027	ŝ	ว				
RHOi F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
7.812E+05 205.1-85.1	-	28	61	20	0.459	75.3	2.188E+06	4.766E+06	68.4-15.7
1.758E+06 139.1–47.2	610	57	143	83	0.399	110.3	2.783E+06	6.982E+06	59.4-9.4
L354E+06 202.9-74.0	×0 ≁	<del></del>	121	38	0.372	5.0 S	2.812E+06	7.562E+06	20.2-0.8
1.042E+00 126.5-22.1 1.042E+06 176.2-75.6	t v.	9 Ŧ	113	g K	0380	0.20 111 6	2 750E±06	7.067E±06	58 1-10 4
L116E+06 248.2-70.2	9	15	27	3 8	0.556	37.0	2.7J0E+06 1.302E+06	2.344E+06	82.7-26.7
3.203E+05 140.2-44.0	L	29	78	16	0.372	120.4	2.832E+06	7.617E+06	55.5-12.1
1.693E+06 180.7–67.6	8	Ξ	28	12	0.393	57.6	1.432E+06	3.646E+06	58.6-20.9
1.693E+06 169.5-64.4	6	17	42	30	0.405	34.6	8.854E+05	2.188E+06	60.4-17.4
1.562E+06 171.4–67.6	10	26	87	8	0.299	107.4	2.031E+06	6.797E+06	44.6 - 10.0
L.172E+06 195.5-74.8	= 2	2 2	61	2 2	0.328	62.8	1.302E+06	3.971E+06	48.9-12.7
1.042E+U0 104.0-45.5 1.042E+06 229.8-78.8	12	15	50 177	19	0.407	78.4	1.302E+06 1 992E+06	4.088E+U0 4 961E+06	49./-10.0 59.9-10.0
0.375E+05 243.5-102.8	14	50	64	2	0.312	105.4	2.083E+06	6.667E+06	46.6-12.0
3.750E+05 229.8-78.8	15	43	131	4	0.328	80.9	1.680E+06	5.117E+06	49.0-8.7
9.115E+05 198.9-70.2	16	10	29	32	0.345	22.4	4.883E+05	1.416E+06	51.5-18.9
9.549E+05 199.9–79.5	17	52	68	20	0.324	84.0	1.719E+06	5.312E+06	48.3-11.9
1.465E+06 185.9-64.4	18	48	108	88	0.389	95.2	2.344E+06	6.027E+06	58.0-10.6
9./00E+U5 1/0.2-4/.9 3.333E+05 192.5-64.0	20	8 4	04 31	12 50	0.452	63.8	2.031E+06 1.823E+06	5.000E+06 4.036E+06	67.3–21.7
L.126E+06		580	1540			77.4	1.846E+06	4.901E+06	
	Area	of basic ı	init = 6.4	E-07 c	m-2				
REEDOM		OFONN	HI SQUA (chi squar ORRELA ARIANC ARIANC	LRED = be (be TION E OF S	09.7 % 09.7 % COEFFIC QR(Ns) = QR(Ni) =	7 WITH 19 IENT = 0.9 1.959489 5.319233	DEGREES OI 74	F FREEDOM	
		ΖŻ	s/Ni= 0. IEAN RA	377 – TIO =	0.383 - 0	.013			
		£ ≥ 01 %	ooled Age lean Age <i>entral Ag</i> Variatior	AGE = = 57. e = 56 1 = 0.0	= 56.2 - 1 - 2.4 M <b>2 - 3.0M</b> 0%	3.1 Ma a <u>a</u>			
		A R	ges calcu HO D =	lated u: 7.910E	ing a zeta +05cm-2;	of 378.8-	5.5 for Other g ND = 2578	lass	
2-10-97-1			6-10-9	7-8				6-10-97-8	
		20: 20: 30: -0			° 1 2 3 9 9 • • ² • •		MU027-05 Min 1, 22 Min 2, 7, 64 Min 2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		

2-10-9	7-1 Ap	atite						
IRRAL	DIATIO	N MU02	7-04	CC	UNTED B'	Y: M. RAAB 16	6/12/00	
No.	Ns	ïZ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	14	10	20	1.400	12.4	1.094E+06	7.812E+05	205.1-85.1
6	17	18	16	0.944	28.0	1.660E+06	1.758E+06	139.1–47.2
e	18	13	15	1.385	21.5	1.875E+06	1.354E+06	202.9-74.0
4	8	25	30	1.360	20.7	1.771E+06	1.302E+06	199.3-52.7
2	12	10	15	1.200	16.6	1.250E+06	1.042E+06	176.2-75.6
9	34	20	28	1.700	17.7	1.897E+06	1.116E+06	248.2-70.2
7	20	21	40	0.952	13.0	7.812E+05	8.203E+05	140.2 - 44.0
×	16	13	12	1.231	26.9	2.083E+06	1.693E+06	180.7-67.6
6	15	13	12	1.154	26.9	1.953E+06	1.693E+06	169.5-64.4
10	14	12	12	1.167	24.8	1.823E+06	1.562E+06	171.4-67.6
=	16	12	16	1.333	18.6	1.562E+06	1.172E+06	195.5-74.8
12	28	25	25	1.120	24.8	1.750E+06	1.562E+06	164.6-45.5
13	52	14	21	1.571	16.6	1.637E+06	1.042E+06	229.8-78.8
14	15	6	15	1.667	14.9	1.562E+06	9.375E+05	243.5-102.8
15	22	14	25	1.571	13.9	1.375E+06	8.750E+05	229.8-78.8
16	19	14	24	1.357	14.5	1.237E+06	9.115E+05	198.9-70.2
17	15	Π	18	1.364	15.2	1.302E+06	9.549E+05	199.9-79.5
18	19	15	16	1.267	23.3	1.855E+06	1.465E+06	185.9-64.4
19	30	25	40	1.200	15.5	1.172E+06	9.766E+05	176.2-47.9
20	21	16	30	1.312	13.3	1.094E+06	8.333E+05	192.5-64.0
	401	310			17.9	1.457E+06	1.126E+06	
Arao of	f basio 1	- tin	1E-07	6 mg				
Area o.	f basic i	unit = 6.	4E-07	cm-2				
	U	HI SOU	ARED	$= 2.25750^{4}$	4 WITH 19	DEGREES OF	FREEDOM	
	ч 0 ;	(chi sque ORREL	ATION	100.0 % COEFFIC	IENT = 0.8	57		
	> >	ARIAN	5 E	SQR(Ni) = SQR(Ni) =	.3949023			
	ΖŻ	s/Ni = 1 IEAN R	1.294 – ATIO =	0.098 1.313 - 0	.046			
	⊾ ≥ 0 %	ooled Ag Iean Age entral A	ge AGE = 19. <i>ge = 18</i> n = 0.0	:= 189.7 - 2.5 - 8.3 N <b>9.7 - 14.8</b> 30%	15.1 Ma 1a <u>Ma</u>			
	•				0.000			
	4 N	ges calc HO D =	ulated 1 7.860	asing a zeta 3+05cm-2;	of 378.8 1	5.5 for Other gl VD = 2578	ass	



7-10-97-10 Apatite							8-10-9	<u>7-2</u> Apat	iite						
IRRADIATION MI	U027-06	C	OUNTED BY	ć: M. RAAB 18	/12/00		IRRAI	DIATION	1 MU02	7-07	COUN	TED BY:	M. RAAB 18	/12/00	
No. Ns N	4i Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	ïN	Na R	ATIO U(	(udd)	RHOs	RHOi	F.T.AGE(Ma)
1 27 5	7 30	0.474	46.7	1.406E+06	2.969E+06	70.9-16.7		56	157	30	0.357 12	6.7	2.917E+06	8.177E+06	53.8-8.5
0 0 0 7	202	0.471	0.01 14.7	4.630E+05 4.688E+05	9.375E+05	74.8-37.5	54 m	8 4	128	ci (2	1360 10 1344 11	5.9 5.9	3. /201E+06 2.546E+06	1.042E+07 7.407E+06	51.8-9.1
4 11 2	2 16	0.500	33.8	1.074E+06	2.148E+06	74.8-27.7	4	51	159	30	.321 12	9.6	2.656E+06	8.281E+06	48.4-7.9
5 43 10	40	0.413	63.9 27 °	1.680E+06	4.062E+06	62.0-11.3	s v	22	111	54	01 001	3.1	3.385E+06	7.227E+06	70.5-12.0
4 6 38 7 6	9 P 0 30	0.422	73.7	1.979E+06	4.688E+06	63.3-12.3	0 1	8 8	02	50	0.500 8	5.6	2.734E+06	5.469E+06	75.2-15.7
8 8	6 15	0.500	26.2	8.333E+05	1.667E+06	74.8-32.5	× ∞	24	61	15	.393 9	9.4	2.500E+06	6.354E+06	59.3-14.4
9 41 7	8 70	0.526	27.4	9.152E+05	1.741E+06	78.7-15.3									
10 10 10 4 11 28 7.	30	0.373	61.4	J.458E+06	3.906E+06	56.0-12.5									
12 33 8	7 60	0.379	35.6	8.594E+05	2.266E+06	56.9-11.7									
13 29 7	⁹ 50	0.367	38.8	9.062E+05	2.469E+06	55.0-12.0									
4 IS 18 4	4 9 2 9	0.409	43.2 20 0	1.125E+06 7 500E -05	2.750E+06	61.3-17.2 45 6 10 7									
16 56 18	00 02	0.299	20.0 65.6	1.250E+06	2.409E+00 4.174E+06	42.0-10.7									
17 60 19.	4 100	0.309	47.7	9.375E+05	3.031E+06	46.4-6.9									
18 9 2 19 67 17	9 25 25 100	0.310	28.5 47 3	5.625E+05 1.047E+06	1.812E+06 2 688E+06	46.6-17.8 58.4-8.5									
20 66 19	0 100	0.347	46.7	1.031E+06	2.969E+06	52.1-7.6									
599 159	4		42.4	1.011E+06	2.695E+06			328	856		11	8.2	2.895E+06	7.556E+06	
Area of basic unit =	: 6.4E-07	7 cm-2					Area o	f basic ui	nit = 6.∠	iE-07 cm	5				
CHI S P(chi s CORR VARI/ VARI/	QUAREJ squared) : ELATIO ANCE O ANCE O	D = 6.08725 = 87.8 % N COEFFIC F SQR(NS) : F SQR(NI) =	58 WITH 19 21ENT = 0.97 = 3.560039 = 11.59737	DEGREES OF 70	FREEDOM			52025	HI SQU/ chi squa DRREL/ ARIANC	ARED = 2 ed) = 62. ATION CC TE OF SQ TE OF SQ TE OF SQ	2.649186 W 4 % DEFFICIEN R(Ns) = .84 R(Ni) = 3.51	ITH 7 DI T= 0.903 43298 80087	EGREES OF	FREEDOM	
Ns/Ni MEAN	= 0.375 4 RATIO	-0.018 = 0.405 - 0	0.016					Ν̈́Ν	/Ni= 0 EAN R#	.383 - 0.0 ATIO = 0.	125 396 - 0.022				
Poolec Mean . <u>Centra</u> % Vari	$1 \operatorname{Age} AG$ $\operatorname{Age} = ($ $\frac{1}{Age} =$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	E= 56.2 - 50.8 - 2.8 N 56.2 - 2.9N ).68%	3.0 Ma Ma <u>Ma</u>					Տ <u>Ծ</u> Ջ	oled Ag ean Age <i>ntral Ag</i> Variatio	e AGE = = 59.7 - <u>re = 57.7</u> n = 0.17%	57.7 - 4.0 l - 3.7 Ma - <b>3.9Ma</b>	Ma			
Ages ( RHO I	calculated D = 7.95	l using a zet: 0E+05cm-2;	a of 378.8-5 : N	5.5 for Other gl VD = 2578	ass			Ag RF	ges calcu IO D =	llated usin 7.990E+0	g a zeta of 3 5cm-2;	378.8 – 5.5 NE	5 for Other gl D = 2578	ass	
F	-10-97-10				01-10-01-1				8-10-5	97-2				8-10-97-2	
ст. 19-19-19-19-19-19-19-19-19-19-19-19-19-1		т. е. р. <del>.</del> Д.	0 0 0 	MU027-06 80-1157 90-1157 90-1157 90-1157 90-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-1157 91-10	2		<u> </u>	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			7 5 2 3 40 .		MU027-07 Nu.= 15.20 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1101 Nu.= 1201 Nu.= 1101 Nu.= 1000 Nu.= 1		radius array (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

5 io



No.

 9 12 13

10-10-97-2	Apatite							10-10	<u>97-3</u> AF	vatite						
IRRADIAT	ON MU02	27-10	CC	UNTED BY	Y: M. RAAB IS	9/12/00		IRRA	DIATIO	N MU02	11-23	COI	UNTED BY	(: M. RAAB 19	9/12/00	
No. Ns	N	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	N	Na R	ATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 113 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	213 190 111 128 128 96 109 148 148 148 148 148 148 148 148 1219 1219 1219 85	$\begin{array}{c} 100\\ 68\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70\\ 70$	0.531 0.484 0.324 0.328 0.361 0.407 0.488 0.488 0.488 0.446 0.575 0.413 0.376 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750 0.375000000000000	51.2 76.1 76.1 33.8 15.5 54.7 55.4 33.6 9 31.1 33.4 4 36.4 35.4 36.4 35.4 36.4 35.4 43.9 36.4 40.8	1.766E+06 2.396E+06 8.036E+06 8.036E+06 1.125E+06 1.445E+06 1.445E+06 1.172E+06 1.302E+06 1.302E+06 1.302E+06 2.617E+06 2.617E+06 2.375E+05 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E+06 3.375E	3.328E+06 3.328E+06 2.478E+06 2.478E+06 2.478E+06 3.555E+06 3.555E+06 5.273E+06 5.273E+06 2.370E+06 2.370E+06 2.370E+06 2.370E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E+06 2.372E	81,2-9,7 74,1-9,6 43,2-8,2 43,2-8,2 43,2-8,2 62,3-1,1,9 74,7-11,9 74,7-11,9 74,7-11,9 74,7-11,9 63,2-9,9 68,3-10,2 63,2-9,9 63,2-9,8 63,2-10,0 61,6-7,9 61,6-7,9 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 88,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-16,0 81,2-	- 0 m 4	33 53 33	94 44 86 86	2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.383 0.455 0.315 0.372 0.372	149.8 35.1 29.4 29.4	3.750E+06 1.2192E+06 1.2192E+05 7.143E+05 7.143E+05	9.792E+06 2.292E+06 1.920E+06 1.920E+06	590-11.7 700-189 78.5-9.0 57.3-12.0
18 46 19 67 20 57	98 144 110	100 50	$0.469 \\ 0.465 \\ 0.518$	33.6 34.6 52.9	1.027E+06 1.047E+06 1.781E+06	2.188E+06 2.250E+06 3.438E+06	71.9–13.0 71.2–10.7 79.3–13.1									
1098 Area of basi	2505 5 unit = 6.	4E-07 c	-1-2	45.9	1.310E+06	2.988E+06		Area o	127 f basic u	348 nit = 6.	4E-07 cm-	ċ	50.4	1.203E+06	3.295E+06	
	CHI SQU P(chi squi CORREL VARIAN	(ARED = ared) = ATION - CE OF S CE OF S	= 11.64316 8.5 % COEFFICI SQR(Ns) = SQR(Ni) =	ENT = 0.96 3.302529	DEGREES O	FREEDOM			o∡ŏ≯≯	HI SQU chi squi DRREL. ARIANC ARIANC	ARED = . ned) = 70. ATION C( JE OF SQI JE OF SQI	6960695 7 % DEFFICII R(Ns) = R(Ni) = 1	WITH 3 1 ENT = 0.97 6170578 3.528117	DEGREES OF 72	FREEDOM	
	Ns/Ni = ( MEAN R.	0.438 - ( ATIO =	0.016 0.436 - 0.	018					žΣ	s/Ni= ( EAN R.	0.365 - 0.0 ATIO = 0.0	)38 381 - 0.0	129			
	Pooled A _t Mean Age <i>Central A</i> % Variatic	ge AGE = e = 66.1 ge = 67. on = 6.7,	= 67.1 - 8 - 3.2 M <u>0 - 3.0M</u> 6%	2.9 Ма а <u>а</u>					⊼ ⊠ <b>0</b> %	ooled Ag ean Age <u>ean Ag</u> Variatio	ge AGE = $ge = 58.7$ $ge = 56.2$ $m = 0.00%$	56.2 - 6 - 4.7 Ma - 5.9Ma	.0 Ma			
	Ages calc RHO D =	ulated us 8.130E	sing a zeta +05cm-2;	of 378.8-5 N	5.5 for Other g VD = 2578	glass			RIA	ges calci HO D =	ulated usin 8.170E+0	g a zeta o 5cm-2;	f 378.8 – 5 N	5.5 for Other g $ID = 2578$	lass	
l	10-1	0-97-2				10-10-97-2		L io		10-1	0-97-3				10-10-97-3	
о К Ю Ю И И И К Р. 			۲. • • • • •	с. 10. т. 5. 10. т. К.К. LENGT	MUD77-10 Multiple Numi 1201 Numi 1201 Nu		A Constraint of the second sec	······································	P = 20 = 20			. 40° . 30° . 20° . 10°		ML027-11 ML= 14.67 NL= 14.67 NL= 14.67 NL= 19.67 NL= 6 NL= 6 NL= 20 ⁵ H (microns)		

10-10-9	7-4 Apa	itite							11-10	1- <u></u>	atite						
IRRAD.	IATION	MU027	7-12	CO	UNTED BY	Y: M. RAAB 19	9/12/00		IRRA	DIATIO	N MU02	7-13	S	UNTED BY	ć: M. RAAB 19	9/12/00	
No.	Ns	ï	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	N	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	63	168	60	0 375	66.6	1 641F+06	4 375F+06	58.0-8.7	-	"	18	25	1 222	17.0	1 375F+06	1 125E+06	188 4-60 1
0	6	75	36	0.427	49.6	1 3.89E+06	3.255E+06	660-140	6	22	24	52	1.042	227	1 562E+06	1 500E+06	160.9-46.2
1 (*	5	157	205	0.427	74.7	2.094E+06	4.906E+06	66.0-9.8	1 (*	12	22	52	1.545	20.8	2.12.5E+06	1.375E+06	237 4-65.2
4	14	38	50	0.368	18.1	4.375E+05	1.188E+06	57.0-17.9	4	28	14	25	2.000	13.2	1.750E+06	8.750E+05	305.5 - 100.3
ŝ	21	4	30	0.477	34.9	1.094E+06	2.292E+06	73.8–19.7	5	Ξ	6	15	1.222	14.2	1.146E+06	9.375E+05	188.4-84.8
9	36	102	50	0.353	48.5	1.125E+06	3.188E+06	54.6-10.7	9	20	12	16	1.667	17.7	1.953E+06	1.172E+06	255.6-93.5
7	59	106	50	0.557	50.4	1.844E+06	3.312E+06	86.0-14.1	7	33	29	25	1.138	27.4	2.062E+06	1.812E+06	175.6-44.9
×	54	128	40	0.422	76.1	2.109E+06	5.000E+06	65.3-10.7	8	34	36	25	0.944	34.0	2.125E+06	2.250E+06	146.1-35.1
6	45	52	32	0.489	68.4	2.197E+06	4.492E+06	75.6-13.9	6	26	31	25	0.839	29.3	1.625E+06	1.938E+06	129.9–34.7
10	51	102	60	0.500	40.4	1.328E+06	2.656E+06	77.3–13.4	10	23	14	25	1.643	13.2	1.438E+06	8.750E+05	252.0-85.7
11	6	19	40	0.474	11.3	3.516E+05	7.422E+05	73.2-29.7	П	21	13	21	1.615	14.6	1.562E+06	9.673E+05	247.9-87.7
12	70	207	40	0.338	123.1	2.734E+06	8.086E+06	52.4-7.4	12	18	13	25	1.385	12.3	1.125E+06	8.125E+05	213.1-77.7
13	33	79	40	0.418	47.0	1.289E+06	3.086E+06	64.6-13.5	13	33	27	25	1.222	25.5	2.062E+06	1.688E+06	188.4-49.1
14	26	56	40	0.464	33.3	1.016E+06	2.188E+06	71.8-17.1	14	24	24	24	1.000	23.6	1.562E+06	1.562E+06	154.6-44.8
15	15	25	30	0.600	19.8	7.812E+05	1.302E+06	92.6-30.3	15	25	18	40	1.389	10.6	9.766E+05	7.031E+05	213.7-66.3
16	27	47	20	0.574	22.4	8.438E+05	1.469E+06	88.7-21.5	16	27	22	40	1.227	13.0	1.055E+06	8.594E+05	189.2-54.5
17	37	85	100	0.435	20.2	5.781E+05	1.328E+06	67.3-13.4	17	47	44	20	1.068	52.0	3.672E+06	3.438E+06	165.0-34.8
81	4	66	100	0.414	23.6	6.406E+05	1.547E+06	64.1-12.0	18	39	24	25	1.625	22.7	2.438E+06	1.500E+06	249.3-65.0
19	28	53	56	0.528	22.5	7.812E+05	1.479E+06	81.6-19.2	19	30	17	25	1.765	16.1	1.875E+06	1.062E+06	270.3-82.3
20	121	8	25	0.458	45.7	1.375E+06	3.000E+06	70.9–18.3	20	32	26	52	1.231	24.6	2.000E+06	1.625E+06	189.7-50.3
	750 1	1730			42.0	1.197E+06	2.761E+06			552	437			20.6	1.722E+06	1.363E+06	
Area of	basic un	it = 6.4.	E-07 ci	n-2					Area	of basic t	mit = 6.	4E-07 c	m-2				
	CH CO CO VAI	I SQUA hi squar RRELA RIANCI RIANCI	RED = 8. ed) = 8. TION C E OF S( E OF S(	6.328873 5.6 % 50EFFICI 2R(Ns) = 2R(Ni) =	8 WITH 19 TENT = 0.95 2.376773 7.015978	DEGREES OI	F FREEDOM			02022	HI SQU chi squa ORREL ARIANC ARIANC	ARED = red) = 8 ATION TE OF S TE OF S	: 6.211337 86.7 % COEFFICI QR(Ns) = QR(Ni) =	7 WITH 19 IENT = 0.8 .6050029 .8587871	DEGREES OI	F FREEDOM	
	Ns/ MF	Ni = 0.4	434 – 0 TIO = 0	.019 .455 - 01	016					ΖZ	s/Ni= 1 FAN R7	.263 – ( MTIO =	0.081 1 339 - 0	069			
	Poc Me <u>Cen</u>	oled Age an Age <i>utral Ag</i> /ariation	e AGE = 70.4 = 70.4 e = 67.1 1 = 0.89	67.1 - 3 - 3.0 M <u>t - 3.2M</u>	3.4 Ma a <u>a</u>					⊼ Z Ú %	ooled Ag ean Age entral A ₁ Variatio	e AGE = = 206. <u>e = 194</u> n = 0.1	= 194.6 - 2 - 11.8 N <b>1.6 - 13.0</b> 8%	13.3 Ма Иа <u>Иа</u>			
	Ag( RH	es calcul O D = 8	lated usi 8.210E+	ing a zeta 05cm-2;	of 378.8-5 N	5.5 for Other gl $VD = 2578$	lass			AA	ges calcı HO D =	llated us 8.260E	sing a zeta +05cm-2;	of 378.8-:	5.5 for Other gl VD = 2578	lass	
		10-10-	97.4				10-10-37-4				11-10	-97-1				11-10-97-1	
₽ ₽÷				.40	L	M U027-12		100					. 40	L	MU027-13		- 350. 7
		$\Box($	A	. 300 . 500 . 10,	<u></u>	M	** • • • • • • • • • • • • • • • • •		<b></b>	, Y	4				NIE - 1.29 NIE - 1.55 NIE - 1.55	, o ,	
.0	PISSION TR.	ACK AGE (9	Ma) 10.0' - 1	20.	* 5* * 10* TRACK LENG	*15**20* TH (microns)	0 10 20	- 0E	, <b>0</b> ,	FISSION T	RAC K AGE	300. Wa	400'	5 - 10	- 15' - 20' FH (microns)	0 .4	12 16 20

**IRRADIATION MU027-12** 10-10-97-4 Apatite

Appendix C

Preckion (1/6gma)
					11-10-97-3 Apatite							
CO	UNTED BY	Y: M. RAAB 27	7/02/01		IRRADIATION MUC	027-15	CO	UNTED BY	: M. RAAB 27,	/05/01		
0	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No. Ns Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
	6.0	1.120E+06	8.854E+05	424.1–97.9	1 34 10	25	3.400	9.4	2.125E+06	6.250E+05	516.5-186.2	
	1.2	4.688E+05 1.935E+06	3.125E+05 1.637E+06	500.0-263.8 397.1-115.5	2 3/ 16 3 31 21	4 5	2.312	12.6 12.3	2.409E+06 1.211E+06	1.042E+06 8.203E+05	355.7-106.8 229.3-65.1	
	7.1	1.875E+06	1.042E+06	595.5-166.7	4 11 5	30	2.200	3.9	5.729E+05	2.604E+05	338.9-183.0	
~~	10.2	2.158E+06 9.688E+05	1.488E+06 8.438E+05	483.9–141.2 386 2–102 1	5 26 12 6 14 6	5 51	2.167 2.333	4.0 9.4	5.804E+05 1 458E+06	2.679E+05 6 250E+05	333.9–116.8 358 8–175 3	
	7.5	1.000E+06	1.094E+06	309.4-76.0	7 16 15	30	1.067	11.7	8.333E+05	7.812E+05	166.5-60.0	
_	3.2	1.172E+06	4.688E+05	813.0-278.4	8 24 18	70	1.333	6.0	5.357E+05	4.018E+05	207.5-64.9	
~ ~	7.3	2.051E+06 3.038E+05	1.074E+06 1.302E+05	629.9-234.9 761.9-526.1	9 28 20 10 5 2	18	2.500	26.0	2.431E+06 4.883E+05	1.736E+06 1.953E+05	217.7-64.0 383.7-321.2	
	7.1	1.458E+06	1.042E+06	467.8-137.4	11 30 9	32	3.333	6.6	1.465E+06	4.395E+05	506.7-193.0	
	3.3	1.562E+06	4.883E+05	1023.4-371.6	12 9 3	24	3.000	2.9	5.859E+05	1.953E+05	457.8-305.4	
	0.0 7 5 5	1.23/E+00 8.984E+05	6.641E+05	452.7-145.2	13 13 0 14 29 12	6 8	2.417	0.4 8.0	0.090E+05 1.295E+06	2.357E+05	371.3-127.8	
~	4.9	1.188E + 06	7.188E+05	548.6-145.6	15 58 24	4	2.417	14.0	2.266E+06	9.375E+05	371.3-90.6	
_ ~	4.0	1.004E+06	5.804E+05	573.6-142.0	16 32 15 17 74 42	20	2.133	7.0	1.000E+06	4.688E+05	328.9-103.2	
	6.3 8.3	1.120E+00 1.375E+06	1.219E+06	379.6-84.0	1/ /4 4/2 18 21 7	5 2	3.000	6.8	1.367E+06	1.025E+00 4.557E+05	457.8-200.1	
~ ~	5.0 3.4	1.458E+06 1.000E+06	7.292E+05 5.000E+05	658.4–305.2 658.4–202.2	19 21 8 20 53 30	32 42	2.625 1.7 <i>6</i> 7	5.8 16.7	1.025E+06 1.972E+06	3.906E+05 1.116E+06	402.3–167.4 273.5–62.8	
	5.3	1.173E+06	7.802E+05		568 281			9.2	1.240E+06	6.132E+05		
					Area of basic unit $= 0$	6.4E-07	cm-2					
7232	WITH 19	DEGREES OF	F FREEDOM		CHI SQ	UARED	= 7.858535	WITH 19	DEGREES OF	FREEDOM		
FICI s) = i) =	ENT = 0.8 1.321074 1.469834	14			P(chi sqi CORRE VARIAN VARIAN	uared) = LATION NCE OF NCE OF	o/.0 % COEFFICI SQR(Ns) = SQR(Ni) =	ENT = 0.90 2.450844 1.618342	15			
- 0.	121				Ns/Ni = MEAN I	2.021 – RATIO =	0.147 2.257 - 0.	145				
2 - 3 2.4 N 5.2N	55.1 Ma Ia <u>fa</u>				Pooled A Mean Ag <u>Central</u>	Age AGE ge = 347 <b>Age = 31</b>	= 312.0 - 2 1.4 - 23.9 N <b>2.0 - 23.6</b> M	4.0 Ma la <u>Ia</u>				
of of	2 370 0	S S for Othor of			% Variat	I ON = 1	12%0 cinc o roto o	2700	i S. Bon Other al.			
eta (	- 2/2/2 IO	SD = 2578	lass		Ages cal RHO D	= 8.350E	sing a zeta c 3+05cm-2;	2 - 8.8/2 I	D = 2578	ass		
			11-10-97-2		÷	-10-97-3				11-10-97-3		
. 30 .	<u> </u>	M U027-14 ML= 12.24 SD=1.69 N= 50	• • •			_	. 40° . 30°		M U02 7-15 ML= '12 22' SD='2.09 ' N= '33 '	ĻĻĻ		
· 20			-2 L	•			· 20'			- -	**************************************	
	5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	- 15 ⁻ 20 ⁻ TH (microns)	63	.22.	0. 100 200 300 40	400 - 500 - 1	l ș	• 5° • 10' • TRACK LENGT	15 * 20* H (microns)	.94.	. 9 .	
			L'INC BODIE	Vsigma)						the second	bur figure	

IRRADIATION MU027-14 11-10-97-2 Apatite

1.1208-406 1.9358-405 1.9358-406 1.8758-406 1.8758-406 9.6888-405 1.100081-406 1.100081-406 1.100081-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.23758-406 1.10048-406 1.12028-406 1.12028-406 1.12028-406 1.12028-406 1.12028-406 1.123758-406 1.12028-406 1.123758-406 1.12028-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.123758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-406 1.124758-4 RHOs U(ppm)  $\begin{array}{c} 6.0\\ 11.2\\ 1.2.2\\ 1.2.2\\ 1.2.2\\ 1.2.2\\ 1.2.2\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3\\ 2.2.3$ RATIO  $\begin{array}{c} 3.200\\ 1.583\\ 1.353\\ 1.652\\ 1.731\\ 1.731\\ 1.738\\ 1.128\\ 1.128\\ 2.000\\ 2.000\\ 2.000\end{array}$ 450 148 500 606 265 500 182 800 914 333 400 Na 88 20 10 9 9 9 ïŹ 885 5  $\sim$ 4 4 8  $\mathbf{x}_{\mathbf{s}}$ 88 <del>5</del> 45 4 8 19 33 No. 8 6 0 Ξ

Area of basic unit = 6.4E-07 cm-2

387

582

CHI SQUARED = 9.147232 WTH 19 DEGREES OF P(chi squared) = 50.3 % CORRELATION COEFTCIENT = 0.814 VARIANCE OF SQR(NS) = 1.21074 VARIANCE OF SQR(NS) = 1.469834

Ns/Ni = 1.504 - 0.099 MEAN RATIO = 1.682 - 0.121

Pooled Age AGE = 501.2 – 35.1 Ma Mean Age = 558.1 – 42.4 Ma *Central Age = 502.3 – 35.2 Ma* % Variation = 6.26%

Ages calculated using a zeta of 378.8 - 5.5 for Other glt RHO D = 1.830E+06cm-2; ND = 2578

11-10-97-2



Raw Data Files 210

<b>11-10-27-4</b> Aprite	<b>11-10-27-5</b> Apatite
IRRADIATION MU028-01 COUNTED BY: M. RAAB 28/02/01	IRRADIATION MU028-02 COUNTED BY: M. RAAB 28/02/01
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1         45         34         30         1.324         24.0         2.34E+06         1.77E+06         2276-52.0           2         57         34         25         1.676         28.7         3.56E+06         2.15E+06         2869-65.5           3         21         12         9         1.750         28.2         3.64E+06         2.083E+06         299.2-108.5           3         21         12         9         1.750         28.2         3.64E+06         2.083E+06         299.2-108.5
599 360 9.7 1.177E+06 7.075E+05	123 80 26.4 3.003E+06 1.953E+06
Area of basic unit = $6.4E-07$ cm-2	Area of basic unit = $6.4E.407$ cm-2
CHI SQUARED = 4.397039 WITH 19 DEGREES OF FREEDOM P(chi squared) = 97.7 % CORRELATION COEFICIENT = 0.857 VARIANCE OF SQRNS) = 6.506308 VARIANCE OF SQRNS) = 7.142077	CHI SQUARED = .3617333 WITH 2 DEGREES OF FREEDOM P(chi squared) = 66.6 % CORRELATION COEFICENT = 0.945 VARIANCE 0F SQR(Ns) = 2.33543 VARIANCE OF SQR(Ns) = 1.867329
Ns/Ni = 1.664 - 0.111 MEAN RATIO = 1.756 - 0.079	Ns/Ni= 1,538 - 0.221 MEAN RATTO = 1,583 - 0.132
Pooled Age AGE = 282, 4 - 19,9 Ma Mean Age = 297,7 - 15,0 Ma <b>Central Age = 282,4 - 19,5 Ma</b> % Variation = 0.01%	Pooled Age ACE = 263.6 - 38.4 Ma Mean Age = 271.3 - 23.4 Ma <i>Central Age</i> = 263.6 - 38.2Ma % Variation = 0.00%
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 9.160E+05cm-2; ND = 3078	Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 9,240E+05cm-2; ND = 3078
+/401-11 	11-10-97-5 11-10-07-5 11-10-07-5
(unor in the second sec	ACC - Control (Control (Contro

Appendix C

17-10-97-1 Apatite	<b>17-10-97-2</b> Aprilie
IRRADIATION MU028-03 COUNTED BY: M. RAAB 13/12/00	IRRADIATION MU028-04 COUNTED BY: M. RAAB 13/12/00
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi E.TAGE(Ma)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
742 458 16.4 1.978E+06 1.221E+06	547 1635 222.0 5.586E+06 1.670E+07
Area of basic unit = $6.4$ E-07 cm-2	Area of basic unit = $6.4E-07$ cm-2
CHI SQUARED = 9.720984 WITH 19 DEGREES OF FREEDOM P(ah: squared) = 42.9 % CORRELATION COEFICIENT = 0.902 VARIANCE OF SQR(NS) = 2.245462 VARIANCE OF SQR(NI) = 2.345462	CHI SQUARED = .2339989 WITH 5 DEGREES OF FREEDOM Rois squared) = 99 3 % CORRELATION COEFICIENT = 0.94 VARIANCE OF SQR(Ns) = 2.145767 VARIANCE OF SQR(Ns) = 6.07268
Ns/Ni = 1.620 - 0.096 MEAN RATIO = 1.885 - 0.137	Ns/Ni= 0.335 - 0.017 MEAN RATIO = 0.334 - 0.005
Pooled Age AGE = 279.8 - 17.8 Ma Mean Age = 324.5 - 24.8 Ma <b>Central Age = 280.4 - 17.8 Ma</b> % Variation = 4.88%	Pooled Age AGE = 59.3 – 3.2 Ma Mean Age = 59.2 – 1.6 Ma <i>Central Age</i> = <u>59.3 – 3.1 Ma</u> % Variation = 0.00%
Ages calculated using a zeta of 378.8 – 5.5 for Other glass RHO D = 9.320E+05cm-2; ND = 3087	Ages calculated using a zeta of 378.8 – 5.5 for Other glass RHO D = 9.400E+05cm-2; ND = 3087
17-10-17-1 17-10-17-1 10-10-17-1 10-10-17-1 10-10-17-1 10-10-17-1 10-10-17-1 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-10-17 10-	1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172 1.1.0.172



io io io in in in



2-9-98-6 Apatite

2-9-98-1 Apatite

No.

 $\begin{array}{c} 11\\12\\11\\16\\11\\18\\11\\19\\20\\20\\20\\\end{array}$ 







3-9-98-1 Apatite

**IRRADIATION MU028-11** 

F.T./	77.1-	116.6-0	79.2-	97.5-	108.1 - 108.1 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 100.	83.8-
RHOi	2.125E+06	6.944E+05	4.514E+06	9.983E+05	1.484E+06	2.832E+06
RHOs	8.750E+05	4.340E+05	1.910E+06	5.208E+05	8.594E+05	1.270E+06
U(ppm)	26.7	8.7	56.8	12.6	18.7	35.6
RATIO	0.412	0.625	0.423	0.522	0.579	0.448
Na	25	18	6	36	20	16
ïZ	34	×	26	23	19	29
Ns	14	2	11	12	Ξ	13
No.	-	6	ę	4	S	9



P(chi squared) = 96.9 % CORRELATION COEFFICIENT = 0.947 VARIANCE OF SQR(Ns) = .2890961 VARIANCE OF SQR(Ni) = 1.106888

Ns/Ni = 0.475 - 0.071 MEAN RATIO = 0.501 - 0.036

Pooled Age AGE = 88.8 - 13.4 Ma Mean Age = 93.7 - 7.1 Ma *Central Age* = 88.8 - 13.4 Ma % Variation = 0.00%



÷.,

<u>95N-8</u> Apartic	<u>95N-9</u> Apartie
IRRADIATION LU436-03 COUNTED BY: M. RAAB 22/02/01	IRRADIATION LU436-04 COUNTED BY: M. RAAB 23/02/01
No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
1 34 75 70 0.453 17.0 7.580E405 1.674E406 99.6-20.7	1 14 25 30 0.560 137 7.202F+05 1.302F+06 124.4-41.6
2 22 36 49 0.611 12.3 7.015E+05 1.148E+06 133.9–36.4	2 10 21 18 0.476 19.2 8.681E+05 1.823E+06 105.9-40.8
3 11 24 30 0.458 13.4 5.729E+05 1.250E+06 100.7–36.7	3 8 21 16 0.381 21.6 7.812E+05 2.051E+06 84.9–35.3
4 45 95 100 0.474 15.9 7.031E+05 1.484E+06 104.0-19.0	4 9 17 24 0.529 11.7 5.859E+05 1.107E+06 117.6-48.6
5 31 64 100 0.484 10.7 4.844E+05 1.000E+06 106.4-23.4	5 11 25 30 0.440 13.7 5.729E+05 1.302E+06 97.9-35.5
6 12 21 30 0.571 11.7 6.250E+05 1.094E+06 125.3-45.4	6 17 32 28 0.531 18.9 9.487E+05 1.786E+06 118.0-35.5
7 15 34 50 0.441 11.4 4.688E+05 1.062E+06 96.9–30.1	7 27 52 50 0.519 17.2 8.438E+05 1.625E+06 115.4-27.5
8 17 48 40 0.354 20.0 6.641E+05 1.875E+06 77.9-22.1	8 23 54 48 0.426 18.6 7.487E+05 1.758E+06 94.8–23.7
	9 30 69 70 0.435 16.3 6.696E+05 1.540E+06 96.8–21.3
	10 24 64 56 0.375 18.9 0.690E+05 1.786E+06 83.5-20.1
	11 53 67 70 U.522 15.8 7.812E+U5 1.490E+U6 116.1–24.5 12 16 27 25 0.422 17.4 7.142E-05 1.550E-06 06.2.29.0
	12 10 37 33 0.432 17.4 7.1432400 7.022400 70.2-20.3 13 24 47 48 0.511 16.2 7.812E+05 1.530E+06 113.5-28.6
	14 11 27 21 0.407 21.2 8.185E+05 2.009E+06 90.7–32.5
	15 17 35 40 0.486 14.4 6.641E+05 1.367E+06 108.0-32.0
	16 15 26 28 0.577 15.3 8.371E+05 1.451E+06 128.1-41.6
187 397 14.1 6.230E+05 1.323E+06	291 619 16.7 7.430E+05 1.580E+06
Area of hasic unit = $6.4$ F- $07$ cm-2	A rea of basic unit = $6.4$ F-07 cm-2
CHI SQUARED = 1.173205 WITH 7 DEGREES OF FREEDOM P(chi squared) = 93.8 % CORRELATION COEFICIENT = 0.969 VARIANCE OF SQR(NS) = 1.503272 VARIANCE OF SQR(NS) = 3.386117	CHI SQUARED = 1.594038 WITH 15 DEGREES OF FREEDOM Pichi squared) = 9.9 % CORRELATION COEFFICIENT = 0.952 VARIANCE OF SQR(N5) = 1.944141 VARIANCE OF SQR(N1) = 1.944141
N×Ni = 0.471 - 0.042 MEAN RATIO = 0.481 - 0.028	Ns/Ni = 0.470 - 0.033 MEAN RATICI = 0.476 - 0.016
Pooled Age AGE = 103.5 - 9.4 Ma Neun Age = 105.6 - 6.6 Ma <i>Canad</i> Age = 103.5 - 9.3 Ma % Variation = 0.00%	Pooled Age AGE = $104.6 - 7.8$ Ma Doubled Age AGE = $104.6 - 7.8$ Ma Central Age = $104.6 - 7.6$ Ma % Variation 0.00%
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 1.169E+06cm-2; ND = 4013	Ages calculated using a zeta of 378.8 – 5.5 for Other glass RHO D = 1.184E+06cm-2; ND = 4013
95N8 1956	95N-9 94M-9
Alt	(HODE) HALL (HODE)

95N-10 Apatite					95N-1	<u>I</u> Apatit	0						
IRRADIATION LU436-05	COUNTED B	ć: M. RAAB 23	/02/01		IRRAI	OIATION	I LU436	06	COL	NTED BY	: M. RAAB 23	/02/01	
No. Ns Ni Na RAI	TO U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1 37 75 75 040	19.0	2 2 1 7 E 1 0 K	7 60 PT	111 1 33 4	-	o	27	12	0.333	267	1 1775-06	3 5160-06	761 30 3
2 67 166 40 0.4	04 67.6	2.617E+06	6.484E+06	91.0-13.3	- 7	16	53	202	0.302	17.1	5.000E+05	1.656E+06	69.0-19.7
3 26 45 30 0.5	78 24.4	1.354E+06	2.344E+06	129.9–32.1		27	65	50	0.415	20.9	8.438E+05	2.031E+06	94.7–21.8
4 27 86 40 0.3 5 25 75 40 0.3	14 35.0 13 30.5	1.055E+06 9.766E±05	3.359E+06 2 930E+06	70.9-15.7	4 v	8 7	59 27	8 8	0.305	27.1 23.8	8.036E+05 8.750E±05	2.634E+06 2 312E+06	69.7–18.8 86 3–77 2
6 39 91 40 0.4	37.1	1.523E+06	3.555E+06	96.6-18.6	0 0	i v	11	3 2	0.294	11.4	3.255E+05	1.107E+06	67.2-34.2
7 53 142 70 0.3	73 33.0	1.183E+06	3.170E+06	84.2-13.7	7	33	103	32	0.320	51.8	1.611E+06	5.029E+06	73.2-14.7
8 18 47 40 0.3.	83 19.1	7.031E+05	1.836E+06	86.4-24.0	×	2	13	18	0.538	11.6	6.076E+05	1.128E+06	122.5-57.5
9 25 72 40 0.3 10 36 95 47 03	47 29.3 79 36.8	9.766E+05 1 339E+06	2.812E+06 3 534E+06	78.4-18.3	9 01	5 <u>5</u>	66 8 8 8	00 9 90	0.258	17.7	3.750E+05 6 771E+05	1.453E+06 1 719E+06	59.0-13.6 89.9-29.5
11 22 43 50 05	14.0	6.875E+05	1.344E+06	115.2–30.3	2 II	3 2	74	20 F	0.459	23.8	1.062E+06	2.312E+06	104.7-21.8
12 28 86 60 0.3.	26 23.3	7.292E+05	2.240E+06	73.5-16.1	12	16	37	25	0.432	23.8	1.000E+06	2.312E+06	98.6-29.6
13 11 35 30 0.3 14 22 60 24 0.3	14 19.0	5.729E+05	1.823E+06	71.0-24.6	13	с 1	46	20	0.500	14.8 201	7.188E+05	1.438E+06	113.9-29.2 70.0 25.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 21.2 83.9	7.292E+05 3.516E+06	2.031E+06 8.047E+06	81.0-17.9 88.5-17.7	ţ	-	2	2	00000	1.04	00±700000	001700/T	1.00-0.01
500 1307	7.7.2	1 222F±06	3 137F±06			246	222			110	7 435F±05	2 046F±06	
1061 000		00177771	00171010			P				1.1.7	00100010	001701017	
Area of basic unit = $6.4E-07$ cm-2					Area o	f basic u	nit = 6.4	E-07 cn	1-2				
CHI SQUARED = 4.6 P(chi squared) = 86.0 5 CORRELATION COEI VARIANCE OF SQR0	55749 WITH 15 6 FFICIENT = 0.9 4s) = 1.431793	DEGREES OF 41	FREEDOM			0202;	HI SQUA chi squar DRRELA ARIANC	RED = ed) = 8: TION C	4.032481 8.9 % OEFFICIE DR(Ns) = 1	WITH 13 NT = $0.90$ .331111	DEGREES OF 0	FREEDOM	
VARIANCE UF SUR	VI) = 3.46665					22	IKIANC	ECTS	2K(NI) = 4	.034621			
Ns/Ni = 0.389 - 0.020 MEAN RATIO = 0.394	- 0.019					žΣ	/Ni= 0. EAN RA	363 - 0 TIO = 0	.027 1.377 - 0.0	22			
Pooled Age AGE = 87. Mean Age = 88.9 - 4 <i>Central Age = 87.8 - </i> % Variation = 0.01%	8 – 5.0 Ma 1.8 Ma <b>4.8Ma</b>					7 Z Z Q %	oled Age ean Age <i>ntral Ag</i> Variatior	AGE = = 86.1 <u>e = 82.5</u> = 0.52	82.9 - 6. - 5.4 Ma - 6.3Ma %	4 Ma			
Ages calculated using a RHO D = 1.199E+06c1	zeta of 378.8-: n-2; N	5.5 for Other gla VD = 4013	ass			R A	ges calcu HO D =	ated usi I.213E+	ng a zeta oi 06cm-2;	: 378.8 – 5 N	.5 for Other gl D = 4013	ass	
95N-10							95N-1					11-102.0	
Ľ			9 SN- 10	2001. -	Ц .8							L1-200 g	
	. 40° . 30° . 20° . 10° . 10° 	LU 436-05 NL=135 NL=135 NL=135 NL=135 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=62 NL=6									ML 436-06 ML 436-06 806-135 N=235 H (nicons)		· · · · · · · · · · · · · · · · · · ·

<u>95N-12</u> Apatite	95N-13 Apatite
IRRADIATION LU436-07 COUNTED BY: M. RAAB 27/02/01	IRRADIATION LU436-08 COUNTED BY: M. RAAB 27/02/01
No. Ns Ni Na RATIO U(ppm) RHOs RHOi E.T.AGE(Ma)	No. Ns Ni Na RATIO U(ppm) RHOs RHOi F.T.AGE(Ma)
1 19 58 30 0.328 30.7 9.896E-405 3.021E+06 75.7-20.1 2 13 36 20 0.361 28.6 1.016E+406 2.812E+46 83.4-27.1	1         14         57         100         0.246         9.0         2.188E+05         8.906E+05         57.6-17.2           2         5         20         49         0.230         6.4         1.94E+05         6.578E+05         57.6-17.2           3         7         22         50         0.318         6.4         1.94E+05         6.575E+05         74.5-32.4           4         11         22         50         0.379         9.1         3.438E+05         6.575E+05         74.5-32.4           5         9         28         0.379         9.1         3.438E+05         0.602E+05         87.5-28.9           6         14         22         0.0339         12.1         11.0         3516E+06         17.2-28.9           6         14         39         50         0.3339         12.2         4.0-26.2           7         14         42         0.3339         12.2         4.375E+06         17.209E+06         84.0-26.2           7         14         42         0.3339         12.2         4.375E+06         78.0-24.1
32 94 29.9 1.000E+06 2.938E+06	74 237 9.6 2.972E+05 9.520E+05
Area of basic unit = $6.4$ E-07 cm-2	Area of basic unit = $6.4E-07$ cm-2
CHI SQUARED = 2.720024E-02 WITH 1 DEGREES OF FREEDOM P(chi squared) = 81.6 % CORRELATION COEFFICIENT = 1.000 VARIANCE OF SQRINS) = 2.83768 VARIANCE OF SQRINS) = 1.303359	CHI SQUARED = .7026141 WITH 6 DEGREES OF FREEDOM P(chi squared) = 96.6 % CORRELATION COEFFICIENT = 0.872 VARIANCE OF SQR(Ns) =3616765 VARIANCE OF SQR(Ni) = 1.185806
N×Ni = 0.340 - 0.070 MEAN RATIO = 0.344 - 0.017	Ns/Ni= 0.312 - 0.042 MEAN RATIO = 0.315 - 0.019
Pooled Age AGE = 78.7 - 16.2 Ma Mean Age = 79.6 - 4.2 Ma Central Age = 78.7 - 16.2 Ma % Variation = 0.00%	Pooled Age AGE = 73.1 - 9.9 Ma Mean Age = 73.8 - 4.8 Ma <i>Central Age</i> = 73.1 - 9.8 Ma % Variation = 0.00%
Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 1.228E+06cm-2; ND = 4013	Ages calculated using a zeta of $378.8 - 5.5$ for Other glass RHO D = 1.243E+06cm-2; ND = 4013
Bhri3 Profile State Sta	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10

95N-14 A	patite							95N-1	<u>5</u> Apati	e						
IRRADIAJ	ION LU ²	436-09	CC	VUNTED BY	ć: M. RAAB 27/	/02/01		IRRAI	DIATIO	N LU436	Π-	COL	NTED BY:	M. RAAB 27,	/02/01	
No. N	ls Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	No.	Ns	ïŻ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	8 33	50	0.242	10.3	2.500E+05	1.031E+06	57.5-22.7	-	~	26	30	0.308	13.2	4.167E+05	1.354E+06	74.6-30.2
0 v	0 24	51	0.417	17.8	7.440E+05	1.786E+06	98.4-37.1	00	15	63	20	0.238	19.1	4.688E+05	1.969E+06	57.8-16.6
04	1 29 26	5 8	0.462	12.6	2.455E+U5 5.859E+U5	1.004E+06	C.61-6./C	0 A	° =	€ 6	96	0.367	13.0	2.122E+05	1.302E+00	40.0-10.0 88 8-31 3
- Y	5 54	80	0.278	10.5	2.930E+05	1.055E+06	65.8–19.3	r vo vo	Ξ Γ	3 88 63	8 8 8	0.289 0.318	19.2	5.729E+05	1.979E+06	70.2-24.1
5	6 182			11.2	3.458E+05	1.124E+06			60	219			16.2	4.573E+05	1.669E+06	
1.7		5	c							-	Ş	c				
Area of Da.	sic unit =	0.4E-U/	cm-2					Area o	T Dasic t	9.0 = 1101	E-U/ CI	7-u				
	CHI SC P(chi sc CORRE VARIA VARIA	DUARED Juared) = 3LATION NCE OF NCE OF	= 1.49151: 56.1 % V COEFFIC SQR(Ns) = SQR(Ni) =	5 WITH 4 IENT = 0.62 .1481724 1.100281	DEGREES OF 1 22	FREEDOM			OFORR	HI SQU ⁴ (chi squai ORREL ^A ARIANC ARIANC	RED = 8 ed) = 8 TION C E OF S E OF S	.9103318 7.3 % COEFFICIE 2R(Ns) = 2R(Ni) = 1	WITH 5 L NT = 0.84 2075874 .333939	DEGREES OF I	FREEDOM	
	Ns/Ni = MEAN	= 0.308 - RATIO =	- 0.047 = 0.329 - 0	.046					ΖZ	s/Ni = 0. EAN RA	274 - 0 TIO = (	.040 ).287 - 0.0	24			
	Pooled . Mean A <u>Central</u> % Varia	Age AGF $ge = T_1$ Age = 7 tion = 0.	3 = 72.8 - 1.0 N 7.8 - 11.0 N <b>2.8 - 11.2N</b> 02%	11.2 Ma Aa <b>1a</b>					≗ZÜ%	ooled Ag lean Age <u>entral Ag</u> Variation	e AGE = = 69.5 <b>e = 66.</b> 1 = 0.00	66.4 - 9. - 6.1 Ma <u>t - 9.7Ma</u> %	8 Ma			
	Ages ca RHO D	ilculated = 1.257	using a zeta E+06cm-2;	of 378.8 – 2 N	5.5 for Other gli VD = 4013	ass			AA	ges calcu HO D =	lated usi 1.287E+	ng a zeta of 06cm-2;	378.8 - 5. ND = 401	5 for Other gli 3	ass	
	95	N-14				PT-N30										
			³ ³ ³ Ω		LU 436-09 ML 436-09 ML 436-09 ML 436-09 ML 436-09 HL 45-20 H (ni cons)			ц.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			"	, , , , , , , , , , , , , , , , , , , ,	ст	LU 436-11 ML 12.65 Stor 1.53 NL 20 Stor 1.53 Stor 1.53 (record)		2.8 

RRADI Vo.	ATION	N LU436	6-12	00	UNTED B)	ć: M. RAAB 27	//02/01	
No.								
-	SN	ïZ	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
-	8	29	50	0.276	8.7	2.500E+05	9.062E+05	67.6-27.0
0	18	56	50	0.321	16.8	5.625E+05	1.750E+06	78.7-21.4
ŝ	12	49	49	0.245	15.0	3.827E+05	1.562E+06	60.1-19.4
4	6	37	50	0.243	1.11	2.812E+05	1.156E+06	59.7-22.2
2	9	26	25	0.231	15.6	3.750E+05	1.625E+06	56.6-25.7
9	ŝ	10	25	0.300	6.0	1.875E+05	6.250E+05	73.5-48.4
7	9	17	32	0.353	8.0	2.930E+05	8.301E+05	86.4-41.1
~ ~	× ×	52	35	0.296	11.6	3.571E+05	1.205E+06	72.6-29.3
6	9	33	52	0.261	13.8	3.750E+05	1.438E+06	64.0-29.4
	76	274			12.1	3.482E+05	1.255E+06	
rea of l	oasic u	nit= 6.	4E-07	cm-2				
	02288	HI SQU chi squa DRREL. ARIANC	ARED ared) = ATION CE OF CE OF	= .5272375 99.8 %   COEFFICI SQR(Ns) = SQR(Ni) =	ENT = 0.9: 5082922 1.811672	DEGREES OF 54	FREEDOM	
	SN IN	(Ni = 0) EAN R ₂	0.277 – ATIO =	0.036 0.281 - 0.	013			
	SZ S	oled Ag ean Age <i>mtral A</i> y Variatio	ge AGE = 68 <u>ge = 6</u> 8 m = 0.0	= 68.0 .8 - 3.6 M <b>8.0 - 8.9M</b> 00%	8.9 Ма а <u>а</u>			
	Ag RF	ges calct HO D =	ulated 1 1.301F	asing a zeta 3+06cm-2;	of 378.8 – : ND = 40	5.5 for Other gl 13	lass	
		-N36	16				9 SN-16	
		ACCK AGE (				UU 436-12 MU 7132' No. 1122' No. 1122' No. 122' No. 122' 15' 20'		

## **Appendix D**

## **GMT-Scripts**

#### **D.1** Introduction

This appendix lists all applied Generic Mapping Tool (GMT) - scripts used for map constructions. GMT (version 3.3.4 used) is a software applied to generate maps and animations on Unix platforms (Wessel and Smith 1991). Scripts listed here were initially programmed by Roderick Brown and altered to different degrees by Matthias Raab.

#### **D.2** Contouring Fission Track Data

The following script contours the fission track ages as displayed in Figure 5.2.

```
#!/bin/bash
# Contouring of all fission track ages in Namibia
pscoast -R13/18/-24.5/-18.5 -JD15.5/-22/-23/-19/10c -B60ma -W0.5p -N1 -Di
-P -K >>agecont.ps
blockmean ~/GMT/txt_files/ftdata_namibia_2001.xyz -R -I3m >>
allftdata3x3.xyz
surface allftdata3x3.xyz -R -I3m -Gallftdata3x3.grd
grdcontour allftdata3x3.grd -R -JD -Cage.cont -A100 -G5c -W0.8p -O -K
>>agecont.ps
echo plotting sample locations ...
psxy ~/GMT/txt_files/ftdata_namibia_2001.txt -R -JD -O -H2 -Sc0.2c -G0
>>agecont.ps
```

#### **D.3** Generating Location Maps

Sample locations from different operators are plotted in various symbols on coloured topography (Figure 6.2), using the following script:

```
#!/bin/bash
# plots sample locations from different operators in navigation map
cpt=/home/mraab/GMT/cpt_files/
grdfile=/home/mraab/GMT/grd_files/nnamibia2m.grd
grdfileint=/home/mraab/GMT/grd_files/s_africa2m_int.grd
txtdir=/home/mraab/GMT/txt_files/
txtfile=$1
area=$3
projection=$4
outfile=$2
if [ $# -eq 4 ]
then
echo drawing image ...
grdview $grdfile $area $projection -I$grdfileint -C$cpt/namtopo.cpt
-Qi150 -K>$outfile
#mask ocean areas
pscoast $area $projection -Di -W1p -N1 -Lf13:00/-25/-25/100k -S255 -B1a
-O -K >>$outfile
#plot topography scale
echo plotting topography scale ...
psscale -C$cpt/namtopo.cpt -D1.5/5/3/0.5 -O -K >>$outfile
#plot data points
echo plotting brown.txt data points ...
psxy brown.txt $area $projection -Ss0.3c -G250 -L -W0.3 -O -K >>$outfile
echo plotting haack.txt data points ...
psxy ~/GMT/tectono_files/haack.txt $area $projection -St0.3c -G253 -H1 -L
-W0.3 -O -K >>$outfile
echo plotting $txtfile data points ...
psxy $txtdir/$txtfile $area $projection -Sc0.35c -G255 -L -W0.3 -O >>$outfile
echo finished
else
echoman Check argument list...
echo "usage: movlocmap <data.txt> <*.ps> <-Rw/e/s/n> <-J[options]>"
fi
```

#### **D.4** Generating Age Dependent Location Map

A coloured topographic map will be drawn with the fission track ages as agedependent circles (Figure 6.3), if invoking the following script:

```
#!/bin/sh
# Plotting sample locations in age dependent circles (different sizes)
cpt=/home/mraab/GMT/cpt_files/
grdfile=/home/mraab/GMT/grd_files/nnamibia2m.grd
grdfileint=/home/mraab/GMT/grd_files/s_africa2m_int.grd
txtdir=/home/mraab/GMT/txt_files/
txtfile=$1
area=$3
projection=$4
outfile=$2
contrs=$5
if [ $# -eq 5 ]
then
echo drawing image ...
grdview $grdfile $area $projection -I$grdfileint -C$cpt/namtopo.cpt -Qi150 -K
>>$outfile
#mask ocean areas
pscoast $area $projection -Di -W1p -N1 -Lf13:00/-25/-25/100k -S255 -B60ma -O -K
>>$outfile
echo contouring ...
grdcontour $grdfile $area $projection -C$cpt/$contrs -W1 -Q10 -L100/3000 -K -O
>>$outfile
#plot topography scale
echo plotting topography scale ...
psscale -C$cpt/namtopo.cpt -D1.5/5/3/0.5 -O -K >>$outfile
#plot data points
echo plotting data points ...
psxy $txtdir/$txtfile $area $projection -H1 -Sc -G255 -L -W0.5 -O >>$outfile
echo finished
else
echo Check argument list...
echo "usage: dotmap <data.xysz> <*.ps> <-Rw/e/s/n> <-J[options]> <contours>"
fi
```

#### **D.5** Generating Maps for Animations

This ultimative script produces all the palaeotemperature maps, converts them into denudation maps, and reconstructs the palaeotopography. Details and parameters are to be found in the script. Alteration from the original script were only done to provide platform compatibility and adjustments to make it applicable to northern Namibia.

```
#!/bin/sh
#----
#
# omni2000mr: script for doing all the graphics business using GMT and
                the output from suntrax and XNN.
#
                Input files are the GA_XXX.dat files from XNN
#
#
#----- Roderick Brown 20/1/00
GAdir=$1  # path to directory of GA_XXX.dat files
t=$2  # start time (Ma)
nx=$3  # x grid dimension for fft
     # (NOTE: must be larger than actual gridsize)
ny=$4
           # y grid dimension for fft
      # (NOTE: must be larger than actual gridsize)
view_az=180  # view azimuth for 3D perspective views
view_el=90  # view elevation for 3D perspective views
#slat=$3  # input -1 if south latitudes are positive, else 1
#rmppm=$4  # set to 1 to keep *.ppm and *.ps files
#cmap=$5
gridsize=$5
                # Set to 1 to leave latitude sign unchanged
slat=1
      #[ -1 if south latitudes are positive]
rmppm=1  # Set to 1 to remove ppm files
cmap=1  # Set to 1 to use colour map from reference ppm file
      #[default uses frame cmap]
               # Set to 1 to remove PostScript files
rmps=-1
                # set to -1 to use frame palette
#cmap=1
if [ "$#" -eq 5 ]
then
# Flags to draw maps 0=no 1=yes
ptop=1
denm=1
crate=-1
drate=-1
ptem=1
# set GhostScript options
  options="-sDEVICE=ppm - -q -dNODISPLAY -dBATCH -dNOPAUSE"
# grdfile area
area2=-R12/20/-26/-17
# map area
area=-R12/20/-26/-17
projection=-JM15
headr=0
yshift=0  # Shift pscoast for 3D plots
```

```
# Control parameters for surface interpolation
dx=$gridsize
coarsedx=5m # grid spacing for FFT grid (make multiple of dx)
             # width of gaussian filter in km for sampling onto coarsedx
fdx=30
climit=1
tension=0.025
#t=0
k=2.2
                # thermal conductivity of eroded material
                # time interval over which to estimate rates, uses 2*dt
dt=2
dpi=72
zscale=0.00025 # scale in cm/unit for vertical exageration
smooth=1
                # smooth factor for contours
radius=3
                # radius in arc minutes/degrees for data mask
sunshade1=0
                # first azimuth for illumination
sunshade2=270 # second azimuth for illumination
clean=1
                # remove *.ppm and *.ps files (ie. only keep *.pict files)
               # mean density of eroded material
rhoc=2800
rhom=3330
               # mean mantle density
rhof=0
                # density of fill (air)
#nx=201
               # Extra space for grdfft in x direction
#(add about 4 degrees each side)
               # Extra space for grdfft in y direction
#ny=201
#(add about 4 degrees each side)
dflag=2
               # grdfilter -D option grid(x,y) in degrees filter
#width in km
zmin=0
zmax=3000
                # min/max values for 3D perspective scale
# Set names of image file directories
ptempdir="Palaeotemp"
ptopodir="Palaeotopo"
denuddir="Denudation"
Eratedir="dE rates'
Tratedir="dT_rates"
# Make directories to hold PICT image files
mkdir $ptempdir $ptopodir $denuddir $Eratedir $Tratedir
# The topography grids must be node registered
topogrd=/home/mraab/GMT/grd_files/nnamibia2m.grd
# topogrid must have the same dimensions as grdfile and map area !!
# use grdcut to get the appropriate grid
topoint=/home/mraab/GMT/grd files/s africa2m int.grd
Qdata=/home/mraab/GMT/globalQ.txt
cmapdir=/home/mraab/GMT/cmaps
echo "making heatflow grid ... "
cat data \mid awk '{if(NR > 1) print $1,$2,$3}' \mid blockmean $area2 $dx
-V | surface -GQ.grd -C$climit -T$tension $dx $area2 -V
heatflowgrd=Q.grd
# Set pointers to file directories
dir=/home/mraab/GMT/
cptdir=$dir/cpt_files
txtdir=$dir/txt_files
grddir=$dir/grd_files
scripts=$dir/scripts
# Set *.cpt files for colour drapes
tempcpt=$cptdir/palaeotemp.cpt
topocpt=$cptdir/oztopo.cpt
denucpt=$cptdir/denukm.cpt
cratescpt=$cptdir/crates.cpt
```

```
dratescpt=$cptdir/drates.cpt
#-----
                              .....
# Begin main loop through times
t='expr $t - 1'
while [ "$t" -le 299 ]
do
t=`expr $t + 1`
# This gets the times for the cooling rate stuff
if [ "$t" -lt "$dt" ]
then
 tyoung=0
 ddt='expr $t + $dt'
else
 tyoung='expr $t - $dt'
 ddt='expr $dt + $dt'
fi
tail='expr 300 - $t'
if [ "$tail" -lt "$dt" ]
then
 told=300
 ddt='expr $tail + $dt'
else
 told=`expr $t + $dt`
 ddt='expr $dt + $dt'
fi
if [ "$told" -lt 10 ]
then
time2="00"$told
else
  if [ "$told" -lt 100 ]
  then
    time2="0"$told
  else
    time2=$told
  fi
fi
if [ "$tyoung" -lt 10 ]
then
time1="00"$tyoung
else
  if [ "$tyoung" -lt 100 ]
  then
    time1="0"$tyoung
  else
    time1=$tyoung
  fi
fi
# Open text files and create temporary cooling rate file for time t
  fyoung="GA_"$time1".dat"
 fold="GA "$time2".dat"
 cat $GAdir/$fyoung | awk '{if(NR > h) print $1,$2*sign,$3}' h=$headr
  sign=$slat > tmp1
 cat GAdir/fold \mid awk ' \{if(NR > h) print $3\}' h=$headr \mid paste
tmp1 - >tmp2
 cat tmp2 | awk '{print $1,$2,(($4-$3)/delt),$4,$3,delt}'
```

```
delt=$ddt >rates.tmp
  rm tmp1 tmp2
  echo "Minimum and maximum cooling rates"
  minmax rates.tmp
# Make cooling rate grid
cat rates.tmp | awk '{print $1,$2,$3 }' | blockmean $area2 $dx -V |
surface -GTrates.grd -C$climit -T$tension $dx $area2 -V
rm rates.tmp
# Sort out suffix for reverse ordering of output files
  ord='expr 300 - $t'
# Time string for filenames
if [ "$t" -lt 10 ]
then
time="00"$t
else
   if [ "$t" -lt 100 ]
   then
    time="0"$t
   else
     time=$t
   fi
fi
# Suffix for PICT file ordering
if [ "$ord" -lt 10 ]
then
order="00"$ord
else
   if [ "$ord" -lt 100 ]
   then
     order="0"$ord
   else
     order=$ord
   fi
fi
echo "Time $time Ma..."
# Set up file names for images
file="GA_"$time".dat"
                          # Current file to work on
tstamp=$time" Ma"
                           # Marks images with actual time in Ma
# PostScript file names
ptempps="ptemp_"$time".ps"
ptopops="ptopo_"$time".ps"
denudps="denud_"$time".ps"
Erateps="Erate_"$time".ps"
Trateps="Trate "$time".ps"
# ppm file names
ptempppm="ptemp_"$time".ppm"
ptopoppm="ptopo_"$time".ppm"
denudppm="denud_"$time".ppm"
Erateppm="Erate"$time".ppm"
Trateppm="Trate_"$time".ppm"
# Macintosh PICT file names
ptemppict="ptemp_"$time".pict"
ptopopict="ptopo_"$time".pict"
denudpict="denud "$time".pict"
```

```
Eratepict="Erate_"$time".pict"
Tratepict="Trate_"$time".pict"
# Set some map style bits...
borderticks=-B60ma
# Position and size of scale bar in cm from origin
placescale="1.1/3.5/6/0.9"
placestamp="17.0 -18.5 36 0 0 1"
                                        #"112.0 -15.0 36 0 0 1"
         # -I option for rivers, borders etc.
extras=
coastres=i # Resolution for coastline (c,l,i,h,f)
coastpen=2 # Pen style for coastline
echo gridding $file ...
cat $GAdir/$file | awk '{if(NR>h) print $1,$2*sign,$3 }'h=$headr
sign=$slat | blockmean $area2 $dx -V | surface -Gtemperature.grd
-C$climit -T$tension $dx $area2 -V
if [ "$ptem" -eq 1 ]
then
echo "PALAEOTEMPERATURE MAP"
title="Palaeotemperature (\312C)"
psbasemap $area $projection -B:."$title":WESN -K >$ptempps
echo generating topography raster image for $ptempps...
grdview $topogrd -I$topoint $area $projection -Jz$zscale -C$topocpt
-Qi$dpi -O -K >topography.ps
cat topography.ps >>$ptempps
echo setting clip path...
cat $GAdir/$file | awk '{if(NR>h) print $1,$2*sign,$3 }' h=$headr
sign=$slat | psmask $area $projection $dx -S$radius -O
-K -V >>$ptempps
echo generating palaeotemperature raster image for $ptempps ...
grdview $topogrd -Gtemperature.grd -I$topoint $area $projection
-Jz$zscale -C$tempcpt -Qi$dpi -O -K >>$ptempps
psmask -C -O -K >> $ptempps
echo drawing coast...
pscoast $area $projection $extras $borderticks -D$coastres -W$coastpen
-S255 -C255 -O -K >>$ptempps
pstext $projection $area -0 -K <<END>>$ptempps
$placestamp $tstamp
END
psscale -C$tempcpt -D$placescale -O >>$ptempps
# Convert PostScript file to Macintosh PICT
 cat $ptempps | gs -sOutputFile=$ptempppm $options
if [ "$cmap" -eq -1 ]
then
 ppmquant 256 $ptempppm | ppmtopict > $ptemppict
else
# Provide a *.ppm file to use as a colourmap
 ppmquant -map $cmapdir/ptempcmap.ppm $ptempppm | ppmtopict > $ptemppict
fi
 mv $ptemppict $ptempdir
```

```
if [ "$rmppm" -eq 1 ]
then
 rm $ptempppm
fi
if [ "$rmps" -eq 1 ]
then
 rm $ptempps
fi
fi
if [ "$crate" -eq 1 ]
then
echo "COOLING RATES MAP"
title="Cooling Rate (\312C/Ma)"
psbasemap $area $projection -B:."$title":WESN -K>$Trateps
echo generating topography raster image for $Trateps...
cat topography.ps >>$Trateps
echo setting clip path..
cat $GAdir/$file | awk '{if(NR>h) print $1,$2*sign,$3 }' h=$headr
  sign=$slat | psmask $projection $dx -S$radius $area -O -K -V >>$Trateps
echo generating cooling rate raster image for $ptempps ...
grdview $topogrd -GTrates.grd -I$topoint $area $projection -Jz$zscale
-C$cratescpt -Qi$dpi -W1p -S$smooth -O -K>>$Trateps
psmask -C -O -K -V>>$Trateps
echo drawing coast ...
pscoast $area $projection $extras $borderticks -D$coastres -W$coastpen
-S255 -C255 -O -K >>$Trateps
pstext $projection $area -0 -K <<END>>$Trateps
$placestamp $tstamp
END
psscale -C$cratescpt -D$placescale -O >>$Trateps
# Convert PostScript file to Macintosh PICT
 cat $Trateps | gs -sOutputFile=$Trateppm $options
if [ "$cmap" -eq -1 ]
then
 ppmquant 256 $Trateppm | ppmtopict > $Tratepict
else
 ppmquant -map $cmapdir/Tratecmap.ppm $Trateppm | ppmtopict > $Tratepict
fi
 mv $Tratepict $Tratedir
if [ "$rmppm" -eq 1 ]
then
 rm $Trateppm
fi
if [ "$rmps" -eq 1 ]
then
 rm $Trateps
```

```
fi
fi
# Do the erosion rate stuff
echo "Making denudation rate grid..." # units in m/Ma
grdmath Trates.grd $heatflowgrd DIV $k MUL 1000 MUL = Erates.grd
if [ "$drate" -eq 1 ]
then
echo "DENUDATION RATE MAP"
title="Denudation Rate (m/Ma)"
psbasemap $area $projection -B:."$title":WESN -K>$Erateps
echo "generating topography raster image for $Erateps..."
cat topography.ps >>$Erateps
echo setting clip path...
cat $GAdir/$file | awk '{if(NR>h) print $1,$2*sign,$3 }' h=$headr
sign=$slat | psmask $projection $dx -S$radius $area -0
-K -V >>$Erateps
echo generating denudation rate raster image for $ptempps ...
grdview $topogrd -GErates.grd -I$topoint $area $projection -Jz$zscale
-C$dratescpt -Qi$dpi -W1p -S$smooth -O -K>>$Erateps
psmask -C -O -K -V>>$Erateps
echo drawing coast...
pscoast $area $projection $extras $borderticks -D$coastres -W$coastpen
-S255 -C255 -O -K >>$Erateps
pstext $projection $area -O -K <<END>>$Erateps
$placestamp $tstamp
END
psscale -C$dratescpt -D$placescale -O >>$Erateps
# Convert PostScript file to Macintosh PICT
 cat $Erateps | gs -sOutputFile=$Erateppm $options
if [ "$cmap" -eq -1 ]
then
 ppmquant 256 $Erateppm | ppmtopict > $Eratepict
else
 ppmquant -map $cmapdir/Eratecmap.ppm $Erateppm | ppmtopict > $Eratepict
fi
 mv $Eratepict $Eratedir
if [ "$rmppm" -eq 1 ]
then
 rm $Erateppm
fi
if [ "$rmps" -eq 1 ]
then
 rm $Erateps
fi
fi
```

```
# Do the topography stuff now
grdmath temperature.grd 20 SUB $heatflowgrd DIV $k MUL 1000
MUL = denudation.grd
# Subsample grid to speed up FFT calculation
#grdfilter denudation.grd -Gcoarse.grd -D4 -Fg$fdx -I$coarsedx -V
if [ "$ptop" -eq 1 ]
then
echo "PALAEOTOPOGRAPHY MAP"
Tethick=25
Tem=25000
# Do FFT to get flexural rebound and get palaeotopography
grdfft denudation.grd -M -N$nx/$ny -T$Tem/$rhoc/$rhom/1030/$rhof
-V -Grebound.grd
# Resample onto working grid spacing for palaeotopography calculation
#grdsample rebound.grd $dx -Gisostasy.grd -L -V
grdmath denudation.grd rebound.grd ADD $topogrd ADD = _ptopogrd
# Do sun shading for new palaeotopography
grdgradient _ptopogrd -A$sunshade1/$sunshade2 -Ne0.6 -G_pintgrd -V
title="Palaeotopography (Te=$Tethick km)"
psbasemap $area $projection -E$view az/$view el
-B:."$title":WESN -K >$ptopops
echo "generating palaeotopography image for $ptopops Te=$Tethick..."
grdview_ptopogrd -I_pintgrd $area $projection -E$view_az/$view_el
-Jz$zscale -C$topocpt -Qi$dpi -O -K >>$ptopops
#echo drawing coast...
pscoast $area $projection -E$view az/$view el $extras $borderticks
-D$coastres -W$coastpen -S255 -C255 -O -K >>$ptopops
pstext $area $projection -K -O <<END>>$ptopops
$placestamp $tstamp
END
psscale -C$topocpt -D$placescale -L -O >>$ptopops
echo "PostScript done."
# Convert PostScript file to Macintosh PICT
# cat $ptopops | gs -sOutputFile=- $options > $ptopoppm
cat $ptopops | gs -sOutputFile=$ptopoppm $options
if [ "$cmap" -eq -1 ]
then
 ppmquant 256 $ptopoppm | ppmtopict > $ptopopict
else
 ppmquant -map $cmapdir/ptopocmap.ppm $ptopoppm | ppmtopict > $ptopopict
fi
 mv $ptopopict $ptopodir
if [ "$rmppm" -eq 1 ]
then
  rm $ptopoppm
fi
```

```
if [ "$rmps" -eq 1 ]
then
 rm $ptopops
fi
rm isostasy.grd rebound.grd _ptopogrd _pintgrd
fi
rm coarse.grd
#rm _tmp*
#-----
                                 # Do the denudation amount stuff
if [ "$denm" -eq 1 ]
then
echo "DENUDATION MAP"
title="Denudation (km)"
psbasemap $area $projection -B:."$title":WESN -K>$denudps
echo generating topography raster image for $denudps...
cat topography.ps >>$denudps
echo setting clip path..
cat $GAdir/$file | awk '{if(NR>h) print $1,$2*sign,$3 }' h=$headr
sign=$slat | psmask $area $projection $dx -S$radius
-O -K -V >>$denudps
echo generating denudation raster image for denudps ... \# units in km
grdview $topogrd -Gdenudation.grd=0/0.001/0 -I$topoint $area $projection
-Jz$zscale -C$denucpt -Qi$dpi -O -K>>$denudps
psmask -C -O -K -V>>$denudps
echo drawing coast ...
pscoast $area $projection -E$view_az/$view_el $extras $borderticks
-D$coastres -W$coastpen -S255 -C255 -O -K >>$denudps
pstext $projection $area -O -K <<END>>$denudps
$placestamp $tstamp
END
psscale -C$denucpt -D$placescale -O >>$denudps
# Convert PostScript file to Macintosh PICT
 cat $denudps | gs -sOutputFile=$denudppm $options
if [ "$cmap" -eq -1 ]
then
 ppmquant 256 $denudppm | ppmtopict > $denudpict
else
ppmquant -map $cmapdir/denudcmap.ppm $denudppm | ppmtopict >
   $denudpict
fi
 mv $denudpict $denuddir
if [ "$rmppm" -eq 1 ]
then
 rm $denudppm
fi
```

```
if [ "$rmps" -eq 1 ]
then
 rm $denudps
fi
fi
#-----
# Provide a *.ppm file to use as a colourmap
#
  ppmquant -map tempcmap.ppm $ptempppm | ppmtopict > $ptemppict
  ppmquant -map topocmap.ppm $ptopoppm ppmtopict > $ptopopict
#
# ppmquant -map denucmap.ppm $denudppm | ppmtopict > $denudpict
# ppmquant -map Eratcmap.ppm $Erateppm | ppmtopict > $Eratepict
# ppmquant -map Tratcmap.ppm $Trateppm | ppmtopict > $Tratepict
# Remove temporary *.grd files for timestep just completed
rm denudation.grd temperature.grd Erates.grd Trates.grd
done
echo "OK...you can go home now!"
else
```

echo "Usage: omni2000mr <Path to GA_XXX.dat> <start> <fft NX>

fi

<fft NY> <-Idx>"

# **Appendix E**

# **Data-CD**

#### **E.1** Contents

The CD-ROM attached to this thesis has the following contents:

Movies contains Thermal History Models (Chapter 6) as Quick-Time¹ movies for:

Palaeotemperature (ptempsc.mov) Denudation (densc.mov) Palaeotopography (ptoposc.moc)

**Fission-Track-Analyses** contains all raw-data files (track counts and lenghts measurements) for all fission track analyses performed at The University of Melbourne for this thesis.

¹Quick-Time can be downloaded from: http://www.apple.com/quicktime/ for Apple-Macintosh and IBM-compatible computers

### References

- Allen, P. A. and Allen, J. R. (1990). *Basin Analysis, Principles and Applications*, Blackwell Scientific, Oxford.
- Allsop, H. L., Bristow, J. W., Logan, C. T., Eales, H. V. and Erlank, A. J. (1984).
  Rb-Sr geochronology of three Karoo-related intrusive complexes, *in* A. J. Erlank (ed.), *Petrogenesis of the Volcanic Rocks of the Karoo Sequence*, Vol. 13, Special Publication Geological Society South Africa, pp. 281–287.
- Anderson, D. (1982). Hotspots, polar wander, Mesozoic convection, and the geoid, *Nature* 297: 391–393.
- Arne, D. C. (1994). Phanerozoic exhumation history of northern Prince Charles Mountains (East Antarctica), *Antarctic Science* 6: 69–84.
- Ballard, S. and Pollack, H. N. (1987). Terrestrial Heat Flow in Botswana and Namibia, *Journal of Geophysical Research* **92**(B7): 6291–6300.
- Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Jockat, W., Schulze, A., Trumbull, R. B. and Weber, K. (subm.). Deep structure of the Namibian continental margin as derived from integrated geophysical studies - the MAMBA experiment, *Journal of Geophysical Research*.
- Besler, H. (1996). The Tsondab Sandstone in Namibia and its significance for the Namib Erg, *South African Journal of Geology* **99**: 77–87.
- Biermann, P. (1994). Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: a review from the geomorphic perspective, *Journal of Geophysical Research* **99**: 13885–13896.
- Bohannon, R. G., Naeser, C. W., Schmidt, D. L. and Zimmermann, R. A. (1989). The timing of uplift, volcanism and rifting peripheral to the Red Sea: A case for passive rifting, *Journal of Geophysical Research* 94: 1683–1701.
- Bott, M. H. (1992). The stress regime associated with continental break-up, *in* B. C. Storey, T. Alabaster and R. J. Pankhurst (eds), *Magmatism and the*

*Causes of Continental Break-up*, Vol. 68, Geological Society Special Publications, pp. 125–136.

- Braun, J. and Beaumont, C. (1989). A physical explanation of the relation between rift flank uplifts and the breakup unconformity at rifted continental margins, *Geology* **17**: 760–764.
- Brown, L. F., Benson, J. M., Brink, G. J., Doherty, S., Jollands, A., Jungslager, E. H. A., Keenen, J. H. G., Muntingh, A. and van Wyk, N. J. S. (1995). Sequence stratigraphy in offshore South African divergent basins, *An atlas* on exploration for Cretaceous lowstand traps, Vol. 41 of Studies in Geology, Soekor (Pty) Ltd., p. 184 pp.
- Brown, R. W. (1991). Backstacking apatite fission track stratigraphy: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories, *Geology* **19**: 74–77.
- Brown, R. W. (1992). A fission track thermochronology study of the tectonic and geomorphic development of the sub-aerial continental margins of southern Africa., PhD thesis, La Trobe University, Bundoora, Australia.
- Brown, R. W. and Summerfield, M. A. (1997). Some uncertainties in the derivation of rates of denudation from thermochronologic data, *Earth Surface Processes and Landforms* 22: 239–248.
- Brown, R. W., Gallagher, K. and Duane, M. (1994a). A quantitative assessment of the effects of magmatism on the thermal history of the Karoo sedimentary sequence, *Journal of African Earth Sciences* **18**: 227–243.
- Brown, R. W., Gallagher, K. and Gleadow, A. J. W. (1997). Plate kinematics of the South Atlantic and Indian Ocean basins and intracontinental tectonics of Southern Africa, *Chapman Conference on The History and Dynamics of Global Plate Motions*, American Geophysical Union, Marshall, California, p. 13.
- Brown, R. W., Gallagher, K. and Gleadow, A. J. W. (2000). Morphotectonic evolution of the South Atlantic margins of Africa and South America, *in* M. A. Summerfield (ed.), *Geomorphology and Global Tectonics*, John Wiley and Sons Ltd., Chichester, pp. 255–281.
- Brown, R. W., Rust, D. J., Summerfield, M. A., Gleadow, A. J. W. and Wit, M. C. J. D. (1990). An early Cretaceous phase of accelerated erosion on the southwestern margin of Africa: Evidence from apatite fission track analysis and the offshore sedimentary record, *Nuclear Tracks and Radiation Measurements* 17: 339–351.

- Brown, R. W., Summerfield, M. A. and Gleadow, A. J. W. (1994b). Apatite fission track analysis: Its potential for the estimation of denudation rates and implications for models of long-term landscape development, *in* M. J. Kirkby (ed.), *Process Models and Theoretical Geomorphology*, Wiley, Chichester, pp. 23–53.
- Buck, W. R. (1986). Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders, *Earth and Planetary Science Letters* **77**: 362–372.
- Cande, S. C., LaBreque, J. L. and Haxby, W. F. (1988). Plate kinematics of the South Atlantic: Chron 34 to present, *Journal of Geophysical Research* 93: 13479–13492.
- Carlson, W. D. (1990). Mechanism and kinetics of apatite fission-track annealing, *American Mineralogist* **75**: 1120–1139.
- Carlson, W. D. and Donelick, R. A. (1993). Compositional dependence of apatite fission track annealing rates, *EOS Transactions American Geophysical Union* 74: 168.
- Castro, A. C. M. (1987). The northeastern Brazil and Gabon basins: a double rifting system associated with multiple crustal detachment surfaces, *Tectonics* **6**: 727–738.
- Chadderton, L. T. (1988). On the anatomy of a fission fragment track, *Nuclear Tracks and Radiation Measurements* **15**: 11–29.
- Chang, H. K., Kowsmann, R. O., Figueiredo, A. M. F. and Bender, A. A. (92). Tectonics and stratigraphy of the East Brazil Rift system: an overview, *Tectonophysics* 213: 97–138.
- Clemson, J., Cartwright, J. and Booth, J. (1997). Structural segmentation and the influence of basement structure on the Namibian passive margin, *Journal of the Geological Society of London* **154**: 477–482.
- Clemson, J., Cartwright, J. and Swart, R. (1999). The Namib Rift: a rift system of possible Karoo age, offshore Namibia, *in* N. R. Cameron, R. H. Bate and V. S. Clure (eds), *The Oil and Gas Habitats of the South Atlantic*, Vol. 153, Geological Society Special Publications, pp. 381–402.
- Cochran, J. R. (1983). Effect of finite rifting times on the development of sedimentary basins, *Earth and Planetary Science Letters* **66**: 289–302.
- Cockburn, H. A. P. (1998). Landscape Evolution in Namibia and Antarctica: Quantifying Denudation Rates Using In-Situ Cosmogenic Isotope Analysis, Phd thesis, The University of Edinburgh, Scotland, United Kingdom.

- Cockburn, H. A. P., Brown, R. W., Summerfield, M. A. and Seidl, M. A. (2000). Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach, *Earth and Planetary Science Letters* **179**: 429–435.
- Cockburn, H. A. P., Seidl, M. A. and Summerfield, M. A. (1999). Quantifying denudation rates on inselbergs in the central Namib Desert using in situproduced cosmogenic ¹⁰Be and ²⁶Al, *Geology* **27**: 399–402.
- Corner, B. (1983). An interpretation of the aeromagnetic data covering the western portion of the Damara Orogen in South West Africa/Namibia, *in* R. M. Miller (ed.), *Evolution of the Damara Orogen*, Vol. 11 of *Special Publications Geological Society of South Africa*, Geological Society of South Africa, pp. 339–354.
- Coward, M. P. and Daly, M. C. (1984). Crustal lineaments and shear zones in Africa: Their relationships to plate movements, *Precambrian Research* 24: 27–45.
- Cox, K. G. (1988). The Karoo Province, *in* J. D. Macdougall (ed.), *Continental Flood Basalts*, Kluwer Academics, Norwell, Massachusetts, pp. 239–271.
- Crowley, K. D., Cameron, M. and Schaefer, R. L. (1991). Experimental studies of annealing of etched fission tracks in fluorapatite, *Geochimica Cosmochimica Acta* **55**: 1449–1465.
- Daly, M. C. (1986). Crustal shear zones and thrust belts: their geometry and continuity in Central Africa, *Philosophical Transactions Royal Society London* A 317: 111–128.
- Daly, M. C. (1989). Rift basin evolution in Africa: the influence of reactivated steep basement shear zones, *in* G. D. W. M. A. Cooper (ed.), *Inversion tectonics*, Vol. 44, Geological Society Special Publications, pp. 309–334.
- Daly, M. C., Lawrence, S. R., Kimun'a, D. and Binga, M. (1991). Late Palaeozoic deformation in central Africa: a result of distant collision?, *Nature* 350: 605– 607.
- Davies, C. P. N. and van der Spuy, D. (1992). The Kudu wells: Results of a biomarker study related to burial history modelling, *Communications of the Geological Survey of Namibia* 8: 45–56.
- DeWit, M. C. J., Ward, J. D. and Spaffiari, R. (1992). A reappraisal of the Kangnas dinosaur site, Bushmanland, South Africa, *South African Journal of Science* 88: 504–507.

- Diehl, M. (1986). Prelimanary report on the Cape Cross-Uis pegmatite field, *Communications of the Geological Survey of Namibia* **2**: 39–45.
- Diehl, M. (1990). Geology, Mineralogy, Geochemistry and Hydrothermal Alsteration of the Brandberg Alkaline Complex, Namibia, *Memoirs Geological Survey of Namibia* **10**: 1–55.
- Donath, F. A. (1961). Experimental study of shear failure in anisotropic rocks, *Geological Society of America Bulletin* **72**: 985–989.
- Donelick, R. A., Roden, M. K., Mooers, J. D., Carpenter, B. S. and Miller, D. S. (1990). Etchable length reduction of induced fission tracks in apatite at room temperature (~23°C): Crystallographic orientation effects and "initial" mean lengths, *Nuclear Tracks and Radiation Measurements* 17: 261–265.
- Downing, K. N. and Cowards, M. P. (1981). The Okahandja Lineament and its Significance for Damaran Tectonics in Namibia, *Geologische Rundschau* **70**: 972–1000.
- Dumitru, T. A. (2000). Fission-Track Geochronology, Quartenary Geochronology: Methods and Applications, American Geophysical Union, pp. 131–155.
- Duncan, R., Hooper, P., Rehacek, J., March, J. and Duncan, A. (1997). The timing and duration of the Karoo igneous event, southern Gondwana, *Journal of Geophysical Research* **102**: 18127–18138.
- Erlank, A. J. (1984). *Petrogenesis of the Volcanic Rocks of the Karoo Sequence*, Vol. 13, Special Publication Geological Society South Africa.
- Fairhead, J. D. (1988). Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: The role of the West and Central African rift system, *Tectonophysics* 155: 181–191.
- Fairhead, J. D. and Brinks, R. M. (1991). Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system, *Tectonophysics* **187**: 191–203.
- Fitzgerald, P. G. (1994). Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, *Tectonics* 13: 818– 836.
- Fitzgerald, P. G. and Gleadow, A. J. W. (1988). Fission track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica, *Chemical Geology (Isotope Geoscience Section)* **73**: 169– 198.

- Fitzgerald, P. G. and Gleadow, A. J. W. (1990). New approaches in fission track geochronology as a tectonic tool: Examples from the Transantarctic Mountains, *Nuclear Tracks and Radiation Measurements* **17**: 351–357.
- Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F. and Stump, E. (1995). Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters, *Journal of Geophysical Research* **100**: 20175–20191.
- Fleischer, R. L., Price, P. B. and Walker, R. M. (1965). Effects of temperature, pressure and ionisation of the formation and stability of fission tracks in minerals and glasses, *Journal of Geophysical Research* 70: 1497–1582.
- Fleischer, R. L., Price, P. B. and Walker, R. M. (1975). *Nuclear Tracks in Solids*, University of California Press, Berkeley.
- Fleming, A., Summerfield, M. A., Stone, J. O., Fifield, L. K. and Cresswell, R. G. (1999). Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic ³⁶Cl: initial results, *Journal of the Geological Society, London* **156**: 209–212.
- Foster, D. A. and Gleadow, A. J. W. (1992a). Reactivated tectonic boundaries and implications for the reconstruction of southeastern Australia and northeastern Victoria Land, Antarctica, *Geology* **20**: 267–270.
- Foster, D. A. and Gleadow, A. J. W. (1992b). Reactivated tectonic boundaries and implications for the reconstruction of southeastern Australia and northern Victoria Land, Antarctica, *Geology* **20**: 267–270.
- Foster, D. A. and Gleadow, A. J. W. (1996). Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa, *Tectonics* **15**: 258–271.
- Foster, D. A., Gleadow, A. J. W. and Mortimer, G. (1994). Rapid Pliocene exhumation in the Karakoram, revealed by fission-track thermochronology of the K2 gneiss, *Geology* 22: 19–22.
- Foster, D. A., Gleadow, A. J. W., Reynolds, S. J. and Fitzgerald, P. G. (1993). The denudation of metamorphic core complexes and the reconstruction of the Transition Zone, west central Arizona: constraints from apatite fission track thermochronology, *Journal of Geophysical Research* 98: 2167–2185.
- Fuller, A. O. (1971). South Atlantic fracture zones and lines of old weakness in Southern Africa, *Nature* 231: 84–85.
- Galbraith, G. F. (1990a). The radial plot: graphical assessment of spread in ages, *Nuclear Tracks and Radiation Measurements* **17**: 207–214.

- Galbraith, R. F. (1981). On statistical models for fission track counts, *Mathematical Geology* **13**: 471–488.
- Galbraith, R. F. (1985). Some remarks on statistical estimation in fission-track dating, *Nuclear Tracks and Radiation Measurements* **10**: 361–363.
- Galbraith, R. F. (1990b). Apatite fission track analysis: geological thermal history analysis based on a three-dimensional random process of linear radiation damage, *Philosophical Transactions Royal Society London A* **332**: 419–438.
- Galbraith, R. F. (1990c). Estimating the component ages in a finite mixture, *Nuclear Tracks and Radiation Measurements* **17**: 197–206.
- Galbraith, R. F. and Laslett, G. M. (1993). Statistical models for mixed fission track ages, *Nuclear Tracks and Radiation Measurements* **21**: 459–470.
- Gallagher, K. (1995). Evolving temperature histories from apatite fission-track data, *Earth and Planetary Science Letters* **136**: 421–435.
- Gallagher, K. and Brown, R. W. (1997). The onshore record of passive margin evolution, *Journal of the Geological Society, London* **154**: 451–457.
- Gallagher, K. and Brown, R. W. (1999a). Denudation and uplift at passive margins: the record on the Atlantic Margin of southern Africa, *Philosophical Transactions Royal Society London A* 357: 835–859.
- Gallagher, K. and Brown, R. W. (1999b). The Mesozoic denudation history of the Atlantic margins of southern Africa and southeast Brazil and the relationship to offshore sedimentation, *in* N. R. Cameron, R. H. Bate and V. S. Clure (eds), *The Oil and Gas Habitats of the South Atlantic*, Vol. 153, Geological Society Special Publications, pp. 41–53.
- Gallagher, K., Brown, R. W. and Johnson, C. (1998). Fission track analysis and its application to geological problems, *Annual reviews of Earth Planetary Sciences* **26**: 519–572.
- Gallagher, K., Hawkesworth, C. J. and Mantovani, M. S. M. (1994). The denudational history of the onshore continental margin of SE Brazil from fission track data, *Journal of Geophysical Research* **99**: 18117–18145.
- Gerrard, I. and Smith, G. C. (1982). Post Palaeozoic succession and structure of the southwestern African continental margin, *American Association of Petroleum Geology Memoires* **34**: 49–74.
- Gilchrist, A. R., Kooi, H. and Beaumont, C. (1994). Post Gondwana geomorphic evolution of southwestern Africa: Implications for the controls on landscape development from observations and numerical experiments, *Journal of Geophysical Research* 99: 12211–12228.

- Gilchrist, A. R. and Summerfield, M. A. (1990). Differential denudation and flexural isostasy in formation of rifted margin upwards, *Nature* **246**: 739–742.
- Gilchrist, A. R. and Summerfield, M. A. (1994). Tectonic Models of Passive Margin Evolution and their Implications for Theories of Long-term Landscape Development, *in* M. J. Kirkby (ed.), *Process Models and Theoretical Geomorphology*, Wiley, Chichester, pp. 55–84.
- Gladzenko, T. P., Hinz, K., Eldholm, O., Meyer, H., Neben, S. and Skogseid, J. (1997). South Atlantic volcanic margins, *Journal of the Geological Society, London* **154**: 465–470.
- Gleadow, A. J. W. and Brown, R. W. (2000). Fission-track thermochronology and the long-term denudational response to tectonics, *in* M. A. Summerfield (ed.), *Geomorphology and Global Tectonics*, John Wiley and Sons Ltd., Chichester, pp. 57–75.
- Gleadow, A. J. W. (1981). Fission track dating methods: what are the real alternatives?, *Nuclear Tracks and Radiation Measurements* **5**: 3–14.
- Gleadow, A. J. W. (1990). Fission track thermochronology reconstructing the thermal and tectonic evolution of the crust, *Proceedings of the Pacific Rim Congress*, Vol. III, pp. 15–21.
- Gleadow, A. J. W. and Duddy, I. R. (1981). A natural long term annealing experiment for apatite, *Nuclear Tracks and Radiation Measurements* **5**: 169–174.
- Gleadow, A. J. W. and Fitzgerald, P. G. (1987). Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, Southern Victoria Land, *Earth* and Planetary Science Letters 82: 1–14.
- Gleadow, A. J. W. and Lovering, J. F. (1977). Geometry factor for external detectors in fission track dating, *Nuclear Track Detection* **1**: 99–106.
- Gleadow, A. J. W. and Lovering, J. F. (1978). Fission track geochronology of King Island, Bass Strait, Australia: Relationship to continental rifting, *Earth* and Planetary Science Letters 37: 429–437.
- Gleadow, A. J. W., Duddy, I. R. and Lovering, J. F. (1983). Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential, *Journal Australian Petrology Engeneering Association* **23**: 93–102.
- Gleadow, A. J. W., Duddy, I. R., Green, P. F. and Lovering, J. F. (1986). Confined fission track length in apatite: a diagnostic tool for thermal history analysis, *Contributions to Mineralogy and Petrology* 94: 405–415.

- Green, P. F. (1981a). A new look at statistics in fission track dating, *Nuclear Tracks and Radiation Measurements* **5**: 77–86.
- Green, P. F. (1981b). "Track-in-Track" length measurements in annealed apatites, *Nuclear Tracks and Radiation Measurements* **5**: 121–128.
- Green, P. F. (1985). Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene, *Chemical Geology (Isotope Geoscience Section)* **58**: 1–22.
- Green, P. F. (1988). The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration, *Earth and Planetary Science Letters* **89**: 335–352.
- Green, P. F. and Hurford, A. J. (1984). Thermal neutron dosimetry for fission track dating, *Nuclear Tracks and Radiation Measurements* **9**: 231–241.
- Green, P. F., Duddy, I. R., Gleadow, A. J. W. and Lovering, J. F. (1989a). Apatite Fission-Track Analysis as a Palaeotemperature Indicator for Hydrocarbon Exploration, in N. D. Naeser (ed.), *Thermal History of Sedimentary Basins -Methods and Case Histories*, Springer, New York, pp. 181–195.
- Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R. and Laslett, G. M. (1986). Thermal annealing of fission tracks in apatite 1. A Qualitative Description, *Chemical Geology (Isotope Geoscience Section)* 59: 237–253.
- Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. and Lovering, J. F. (1989b). Thermal annealing of fission tracks in apatite 4. Qualitative modelling techniques and extension to geological timescales, *Chemical Geology (Isotope Geoscience Section)* **79**: 155–182.
- Gudmundsson, A. (1990). Dyke emplacement at divergent plate boundaries, in A. J. Parker, P. C. Rickwood and D. H. Tucker (eds), *Mafic Dykes and Emplacement Mechanisms*, Rotterdam: Balkena, pp. 47–48.
- Haack, U. (1983). Reconstruction of the cooling history of the Damara Orogen by correlation of radiometric ages with geography and altitude, *in* H. Martin and F. W. Eder (eds), *Intracontinental fold belts*, Springer Verlag, Berlin, pp. 837–884.
- Handin, J. (1969). On the Coulomb-Mohr failure criterion, *Journal of Geophysical Research* **74**: 5343–5348.

- Harman, R., Gallagher, K., Brown, R., Raza, A. and Bizzi, L. (1998). Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during Late Cretaceous, *Journal of Geophysical Research* 103: 27,091–27,105.
- Harrison, T. M. and Clarke, G. K. C. (1979). A model of thermal effects of igneous intrusion and uplift as applied to Quotton pluton, British Columbia, *Canadian Journal of Earth Sciences* 16: 411–420.
- Hegenberger, W. (1988). Karoo Sediments of the Erongo Mountains, their environmental setting and correlation, *Communications of the Geological Survey of Namibia* **4**: 51.
- Hill, R. I. (1991). Starting plumes and continental break-up, *Earth and Planetary Science Letters* **67**: 398–416.
- Hoal, B. G. (1990). The Kudu offshore drilling project, *Communications of the Geological Survey of Namibia* **6**: 1–73.
- Holzförster, F., Stollhofen, H. and Stanistreet, I. G. (1999). Lithostratigraphy and depositional environments in the Waterberg-Erongo area, central Namibia, and correlation with the main Karoo Basin, South Africa, *Journal of African Earth Sciences* 29: 105–123.
- Hunter, D. R. and Reid, D. L. (1987). Mafic dyke swarms in southern Africa, in H. C. Halls and W. F. Fahrig (eds), *Mafic dyke swarms*, Vol. 34 of *Geological Association Canada Special Paper*, Montreal: Pierre Des Marais Inc., pp. 445–456.
- Hurford, A. J. (1990a). International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting, *Nuclear Tracks and Radiation Measurements* 17: 233–236.
- Hurford, A. J. (1990b). Standardization of fission track dating calibration; recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology, *Chemical Geology (Isotope Geoscience Section)* 80: 171–178.
- Hurford, A. J. and Green, P. F. (1982). A users' guide to fission track dating calibration, *Earth and Planetary Science Letters* **59**: 343–354.
- Hurford, A. J., Flisch, M. and Jaeger, E. (1989). Unravelling the thermo-tectonic evolution of the Alps: a contribution from fission track analysis and mica dating, *Geological Society Special Publications* **45**: 369–398.
- Janse, A. J. A. (1975). Kimberlites and related rocks from the Nama plateau of south-west Africa, *Physics and Chemistry of the Earth* **9**: 81–94.
- Janssen, M. E., Stephenson, R. A. and Cloetingh, S. (1995). Temporal and spatial correlations between changes in plate motions and the evolutions of rifted basins in Africa, *Geological Society of America Bulletin* **107**: 1317–1332.
- Jerram, D., Mountney, N., Holzförster, F. and Stollhofen, H. (1999). Internal stratigraphic relationships in the Etendeka group in the Huab Basin, NW Namibia: understanding the onset of flood volcanism, *Journal of Geodynamics* **28**: 393–418.
- Johnson, C. and Gallagher, K. (2000). A preliminary Mesozoic and Cenozoic denudation history of the North East Greenland onshore margin, *Global and Planetary Change* **24**: 261–274.
- Johnson, M. R., van Vuuren, W. F., Hegenberger, W. F., Key, R. and Shoko, U. (1996). Stratigraphy of the Karoo Supergroup in southern Africa: an overview, *Journal of African Earth Sciences* **23**: 3–16.
- King, L. C. (1962). *The Morphology of the Earth*, 2nd edn, Oliver & Boyd, Edinburgh.
- King, L. C. (1983). Wandering Continents and Spreading Sea Floors on an Expanding Earth, Wiley, Chichester.
- Kooi, H. and Beaumont, C. (1994). Escarpment evolution on high-elevated rifted margins: insights derived from a surface process model that combines diffusion, advection, and reactivation, *Journal of Geophysical Research* 99: 12191–12209.
- Laplin, L. L. (1990). *Probability and statistics for modern engineering*, 2nd edn, Duxbury Press, California.
- Laslett, G. M., Gleadow, A. J. W. and Duddy, I. R. (1984). The relationship between fission track length and density in apatite, *Nuclear Tracks and Ra-diation Measurements* **9**: 29–38.
- Laslett, G. M., Green, P. F., Duddy, I. R. and Gleadow, A. J. W. (1987). Thermal annealing of fission track in apatite 2. A quantitative analysis, *Chemical Geology* 65: 1–13.
- Laslett, G. M., Kendall, W. S., Gleadow, A. J. W. and Duddy, I. R. (1982). BIAS in measurement in fission track length distribution, *Nuclear Tracks and Radiation Measurements* 6: 79–85.

- LePichon, X. and Hayes, D. E. (1971). Marginal offsets, fracture zones and early opening of the South Atlantic, *Journal of Geophysical Research* **76**: 6283–6293.
- Light, M. P. R., Maslanyj, M. P. and Banks, N. L. (1992). New geophysical evidence for extensional tectonics on the divergent margin offshore Namibia, *in* B. C. Storey, T. Alabaster and R. J. Pankhurst (eds), *Magmatism and the Causes of Continental Break-Up*, Vol. 71, Geological Society Special Publications, pp. 163–191.
- Light, M. P. R., Maslanyj, M. P., Greenwood, R. J. and Banks, N. L. (1993). Seismic sequence stratigraphy and tectonics offshore Namibia, *in* G. D. Williams and A. Dobb (eds), *Tectonics and Seismic Sequence Stratigraphy*, Vol. 71, Geological Society Special Publications, pp. 163–191.
- Lord, J., Oliver, G. and Soulsby, J. (1996). Landsat MSS imagery of a Lower Cretaceous regional dyke swarm, Damaraland, Namibia: a precursor to the splitting of Western Gondwana, *International Journal of Remote Sensing* 17: 2945–2954.
- Manton, W. I. and Siedner, G. (1967). Age of the Paresis Complex, South West Africa, *Nature* **216**: 1197–1198.
- Marsh, J. S. (1973). Relationship between transform directions and alkaline igneous rock lineaments in Africa and South America, *Earth and Planetary Science Letters* 18: 317–323.
- Marsh, J. S., Hooper, P. R., Rehacek, J., Duncan, R. and Duncan, A. (1997). Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations within the Karoo Igneous Province, *in* J. J. Mahoney and M. Coffin (eds), *Large Igneous Provinces*, Geophysical Monograph Series, AGU, Washington D.C.
- Martin, H. (1975). Structural and palaeogeographical evidence for an Upper Palaeozoic sea between South Africa and South America, *IUGS 3rd Gond*wana Symposium, Canberra, pp. 37–51.
- Martin, H. and Eder, F. W. (1983). Intracontinental Fold Belts, Springer, Berlin.
- Marzoli, A., Melluso, L., Morra, V., Renne, P. R., Sgrosso, I., D'Antonio, M., Morais, L. D., Morais, E. A. A. and Ricci, G. (1999). Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paraná-Etendeka continental flood basalt province, *Journal of Geodynamics* 28: 341–356.

- Maslanyj, M. P., Light, M. P. R., Greenwood, R. J. and Banks, N. L. (1992). Extension tectonics offshore Namibia and evidence for passive rifting in the South Atlantic, *Marine and Petroleum Geology* 9: 590–601.
- Miller, R. M. (1980). Geology of a portion of central Damaraland, South West Africa/Namibia, *Memoirs geological Survey South Africa, South West Africa Series* **6**: 78 pp.
- Miller, R. M. (1983). *Evolution of the Damara Orogen*, Vol. 11, Geological Society South Africa Special Publications.
- Milner, S. C., le Roex, A. P. and O'Connor, J. M. (1995). Age of Mesozoic igneous rocks in northwestern Namibia, and their relationship to continental breakup, *Journal of the Geological Society of London* 152: 97–104.
- Moore, M. A. and England, P. C. (2001). On the inference of denudation rates from cooling ages of minerals, *Earth and Planetary Science Letters* **185**: 265–284.
- Moore, M. E., Gleadow, A. J. W. and Lovering, J. F. (1986). Thermal evolution of rifted continental margins: new evidence from fission tracks in basement apatites from southeastern Australia, *Earth and Planetary Science Letters* 78: 255–270.
- Naeser, C. W. (1981). The fading of fission tracks in the geologic environment - data from deep drill holes, *Nuclear Tracks and Radiation Measurements* 5: 248–250.
- Nürnberg, D. and Müller, D. R. (1991). The tectonic evolution of the South Atlantic from Late Jurassic to present, *Tectonophysics* **191**: 27–53.
- O'Connor, J. M. and le Roex, A. P. (1992). South Atlantic hot spot-plume systems, 1, Distribution of volcanism in space and time, *Earth and Planetary Science Letters* **113**: 343–364.
- Ollier, C. D. (1978). Inselbergs of the Namib Desert: processes and history, *Zeitschrift für Geomorphologie, Supplement Band* **31**: 161–176.
- Ollier, C. D. (1985). Morphotectonics of continental margins with great escarpments, *in* M. Morisawa and J. T. Hack (eds), *Tectonic Geomorphology*, Allen and Unwin, Boston, pp. 3–25.
- Ollier, C. D. and Pain, C. F. (1997). Equating the basal unconformity with the palaeoplain: a model for passive margins, *Geomorphology* **19**: 1–15.
- Omar, G. I. and Steckler, M. S. (1995). Fission track evidence for the initial rifting of the Red Sea, *Science* **270**: 1341–1344.

- Omar, G. I., Steckler, M. S., Buck, W. R. and Kohn, B. P. (1989). Fission-track analysis of basement apatites at the western margin of the Gulf of Suez rift, Egypt: Evidence for synchroneity of uplift and subsidence, *Earth and Planetary Science Letters* 94: 316–328.
- O'Sullivan, P. B. and Brown, R. W. (1998). Effects on surface cooling on apatite fission track data: evidence for Miocene climatic change, North Slope, Alaska, *in* P. van den Haute and F. de Corte (eds), *Advances in Fission-Track Geochronology*, Kluwer Academic Publishers, pp. 255–267.
- O'Sullivan, P. B. and Parrish, R. R. (1995). The importance of apatite composition and single-grain ages when interpreting fission track data from plutonic rocks: a case study from the Coast Ranges, British Columbia, *Earth and Planetary Science Letters* **132**: 213–224.
- O'Sullivan, P. B., Wallace, W. K. and Murphy, J. M. (1998). Fission-track evidence for apparent out-of-sequence Cenozoic deformation along the Philip Smith Mountain front, northeastern Brooks Range, Alaska, *Earth and Planetary Science Letters* 164: 435–449.
- Parish, R. R. (1983). Cenozoic thermal evolution and tectonics of the coast mountains of British Columbia, 1, Fission track dating, apparent uplift rates and patterns of uplift, *Tectonics* 2: 601–632.
- Park, R. G. and Jaroszewski, W. (1994). Craton tectonics, stress and seismicity, in P. L. Hankock (ed.), *Continental Deformation*, Oxford: Pergamon Press, pp. 200–222.
- Pazzaglia, F. J. and Gardner, T. W. (2000). Late Cenozoic landscape evolution of the US Atlantic passive margin; insights into a North American Great Escarpment, *in* M. A. Summerfield (ed.), *Geomorphology and Global Tectonics*, John Wiley and Sons Ltd., Chichester, pp. 283–302.
- Peate, D. W. (1997). The Paraná-Etendeka Province, *in* J. J. Mahoney and M. Coffin (eds), *Large Igneous Provinces*, Geophysical Monograph Series, AGU, Washington D.C., pp. 217–245.
- Pickford, M., Senut, B. and Dauphin, Y. (1995). Biostratigraphy of the Tsondab Sandstone (Namibia) based on gigantic avian eggshells, *Geobios* 18: 85–98.
- Pollack, H. N., Hurta, S. J. and Johnson, J. R. (1993). Heat flow from the Earth's interior: analysis of the global data set, *Review Geophysics* **31**: 267–280.
- Porada, H. (1989). Pan-African Rifting and Orogenesis in southern to equitorial Africa and eastern Brazil, *Precambrian Research* **44**: 103–136.

- Price, P. B. and Walker, R. M. (1962a). Chemical etching of charged particle tracks in solids, J. Appl. Phys. 33: 3407–3412.
- Price, P. B. and Walker, R. M. (1962b). Observation of fossil particle tracks in natural micas, *Nature* **196**: 732–734.
- Price, P. B. and Walker, R. M. (1963). Fossil tracks of charged particles in mica and the age of minerals, *Journal of Geophysical Research* **68**: 4847–4862.
- Raab, M. J., Brown, R. W., Gallagher, K., Carter, A. and Weber, K. (in press). Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis, *Tectonophysics*.
- Ravenhurst, C. E. and Donelick, R. A. (1992). Fission track thermochronology, in I. M. Zentill and P. H. Reynolds (eds), Short Course Handbook on Low Temperature Thermochronology, Mineral Association of Canada, p. 256.
- Reeves, C. V. (1972). Rifting in the Kalahari?, Nature 237: 95–96.
- Renne, P. R., Deckart, K., Ernesto, M., Féraud, G. and Piccirillo, E. M. (1996a). Age of the Ponta Grossa dyke swarm (Brazil) and implications to Paraná flood volcanism, *Earth and Planetary Science Letters* 144: 199–211.
- Renne, P. R., Ernesto, M., I. G. Pacca, R. S. C., Glen, J. M., Prevot, M. and Perrin, M. (1992). The age of Paraná flood vocanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary, *Science* 258: 975–979.
- Renne, P. R., Glen, J., Milner, S. M. and Duncan, A. R. (1996b). Age of the Etendeka flood volcanism and asociated intrusions in southwestern Africa, *Geology* 24: 659–662.
- Ritter, O., Bauer, K., Vietor, T., Trumbull, R., Emmermann, R., Haak, V., Ryberg, T., Schulze, A., Wackerle, R. and Weber, K. (subm.). Cretaceuos tectonic and igneous reworking of continental crust at the Namibian passive margin, *Geology*.
- Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East Africa, *Annual Reviews of Earth and Planetary Sciences* **15**: 445–503.
- Royden, L. and Keen, C. E. (1980). Rifting processes and thermal evolution of continental lithosphere, *Earth and Planetary Science Letters* **51**: 343–361.
- Royer, J. Y., Patriat, P., Bergh, H. W. and Scotese, C. R. (1988). Evolution of the Southwest Indian Ridge from the Late Cretaceous (anomaly C34) to the Middle Eocene (anomaly 20), *Tectonophysics* 155: 235–260.

- Rust, D. J. and Summerfield, M. A. (1990). Isopach and borehole data as indicators of rifted margin evolution in southwestern Africa, *Marine and Petroleum Geology* 7: 277–287.
- Schmitt, A. K., Emmermann, R., Trumbull, R. B., Bühn, B. and Henjes-Kunst, F. (2000). Petrogenesis and ⁴⁰Ar-³⁹Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites, *Journal of Petrology* **41**: 1207–1239.
- Selby, M. J. (1993). *Hillslope Materials and Processes*, 2nd edn, Oxford University Press, Oxford.
- Sengor, A. M. C. and Burke, K. (1978). Relative timing of rifting and volcanism on Earth and its tectonic implications, *Geophysical Research Letters* 5: 419– 421.
- Senut, B. and Pickford, M. (1995). Fossil eggs and Cenozoic continental biostratigraphy of Namibia, *Palaeontologica Africana* **32**: 33–37.
- Siesser, W. G. (1978). Aridification of the Namib Desert: Evidence from oceanic cores, in E. M. V. Z. Bakker (ed.), Antarctic glacial history and world palaeoenvironments, Balkena, pp. 105–112.
- Siesser, W. G. (1980). Late Miocene origin of the Benguela upwelling system off northern Namibia, *Science* **208**: 283–285.
- Silk, E. C. H. and Barnes, R. S. (1959). Examination of fission fragments tracks with an electron microscope, *Phil. Mag.* **4**: 970–972.
- Smith, R. M. H. (1986). Sedimentation and palaeoenvironments of Late Cretaceous crater-lake deposits in Bushmanland, South Africa, *Sedimentology* 33: 369–386.
- Stewart, K. S., Turner, S., Kelly, S., Hawkesworth, C. J., Kirstein, L. and Mantovani, M. S. M. (1996). 3D ⁴⁰Ar-³⁹Ar geochronology in the Paraná flood basalt province, *Earth and Planetary Science Letters* 143: 95–110.
- Storey, B. C. (1995). The role of mantle plumes in continental breakup: case histories from Gondwanaland, *Nature* **377**: 301–308.
- Storey, B. C., Alabaster, T., Hole, M. J., Pankhurst, R. J. and Wever, H. E. (1992). Role of subduction-plate boundary forces during the initial stages of Gondwana break-up: evidence from the proto-Pacific margin of Antarctica, *in* B. C. Storey, T. Alabaster and R. J. Pankhurst (eds), *Magmatism and the Causes of Continental Break-up*, Vol. 68, Geological Society Special Publications, pp. 149–164.

Storey, B. C. and Kyle, P. R. (1997). An active mantle mechanism for Gondwana break-up, *South African Journal of Geology* 100: 283–290.

Summerfield, M. A. (1991). Global Geomorphology, Longman, London.

- Summerfield, M. A. and Brown, R. W. (1998). Geomorphic factors in the interpretation of thermochronologic data, *in* P. van den Haute and F. de Corte (eds), *Advances in Fission-Track Geochronology*, Kluwer, Dordrecht, pp. 269– 284.
- Summerfield, M. A. and Hulton, N. J. (1994). Natural controls of fluvial denudation rates in major world drainage basins, *Journal of Geophysical Research* 99: 13871–13884.
- Tamrat, E. and Ernesto, M. (1999). Magnetic fabric and rock-magnetic character of the Mesozoic flood basalts of the Paraná Basin, Brazil, *Journal of Geodynamics* 28: 419–437.
- Tankard, A. J., Jackson, M. P., amd D. K. Hobday, K. A. E., Hunter, D. R. and Minter, W. E. L. (1982). *Crustal Evolution of Southern Africa: 3.8 Billion Years of Earth History*, Springer, New York.
- Thomas, D. S. G. and Shaw, P. A. (1990). The deposition and development of the Kalahari Group sediments, Central Southern Africa, *Journal of African Earth Sciences* **10**: 187–197.
- Tingate, P. R. (1990). Apatite fission track studies from the Amadeus Basin, Central Australia, PhD thesis, The University of Melbourne.
- Tommasi, A. and Vauchez, A. (2001). Continental rift parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle, *Earth and Planetary Science Letters* **185**: 199–201.
- Topping, J. (1972). *Errors of Observation and Their Treatment*, Chapman and Hall, Science Paperbacks.
- Tucker, G. E. and Slingerland, R. L. (1994). Erosion dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study, *Journal of Geophysical Research* 99: 12229–12243.
- Turner, S., Hawkesworth, C., Gallagher, K., Stewart, K., Peate, D. and Mantovani, M. (1996). Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: Assessment of a conductive heating model and application to the Parana, *Journal of Geophysical Research* 101: 11503– 11518.

- Turner, S., Regelous, M., Kelley, S., Hawkesworth, C. J. and Mantovani, M. S. M. (1994). Magmatism and continental break-up in the South Atlantic: high precision ⁴⁰Ar/³⁹Ar geochronology, *Earth and Planetary Science Letters* 121: 333–348.
- Unternehr, P., Curie, D., Oliviet, J. L., Goslin, J. and Beuzart, P. (1988). South Atlantic fits and intraplate boundaries in Africa and South America, *Tectonophysics* **155**: 169–179.
- van der Beek, P. and Braun, J. (1998). Numerical modelling of landscape evolution on geological time-scales: a parameter analysis and comparison with the south-eastern highlands of Australia, *Basin Research* **10**: 49–68.
- Versfelt, J. W. and Rosendahl, B. R. (1989). Relationships between pre-rift structure and rift architecture in Lakes Tanganyika and Malawi, East Africa, *Nature* 337: 354–357.
- Wagner, G. and van den Haute, P. (1992). *Fission-Track Dating*, Vol. 6 of *Solid Earth Library*, Kluwer Academic Publishers.
- Ward, J. D. (1987). The Cenozoic succession in the Kuiseb Valley, Central Namib Desert, *Geological Survey of South West Africa/Namibia, Memoir* **9**: 1–124.
- Ward, J. D. (1988). Geology of the Tsondab Sandstone Formation, *Journal of Sedimentary Geology* 55: 143–162.
- Ward, J. D. and Martin, H. (1987). A terrestrial conglomerate of Cretaceous age. A new record from the Skeleton Coast, Namib Desert, *Communications of the Geological Survey of Namibia* 3: 57–58.
- Watkins, R. T., McDougall, I. and le Roex, A. P. (1994). K-Ar ages of the Brandberg and Okenenya igneous complexes, north-western Namibia, *Geologi-sche Rundschau* 83: 348–356.
- Wessel, P. and Smith, W. H. F. (1991). Free software helps to map and display data, *EOS* **72**: 441–446.
- White, R. and McKenzie, D. (1989). Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts, *Journal of Geophysical Research* 94: 7685–7729.
- Wickens, H. D. V. and McLachlan, I. R. (1990). The stratigraphy and sedimentology of the reservoir interval of the Kudu 9A-2 and 9A-3 boreholes., *Communications of the Geological Survey of Namibia* 6: 9–22.
- Wilson, M. (1993). Plate-moving mechanisms: constraints and controversies, *Journal of the Geological Society of London* **5**: 923–926.

## Lebenslauf

Ich wurde am 25 Mai 1967 als Sohn von Christine Raab (geborene Hubrecht) und Erhard Raab in Göttingen geboren. Von 1973 bis 1977 besuchte ich die Grundschule Bonifatiusschule I in Göttingen. Von 1977 bis 1984 besuchte ich das Hainberg-Gymnasium und von 1984 bis 1987 das Fachgymnasium Wirtschaft in Göttingen, welches ich im Mai 1987 mit der allgemeinen Hochschulreife (Abitur) verliess. Im Oktober 1991 wechselte ich vom Studium der Chemie in den Fachbereich Geowissenschaften an der Georg-August-Universität zu Göttingen, und erreichte den Diplomabschluss im November 1995. Im April 1996 nahm ich den Promotionsstudiengang im Fachbereich Geowissenschaften an der Georg-August-Universität zu Göttingen auf.

Im September 1997 heiratete ich Claudia Annette Raab, geborene Löber. Im Juli 1998 wurde mir ein HSP III - Stipendium des DAAD für Australien verliehen. Seit September 1998 füre ich meine Fachstudien an der La Trobe University und der University of Melbourne, Australien, fort. Im Juli 1999 wurde unser Sohn Connor Liam Raab in Melbourne, Australien, geboren.