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Abstract 
 

From a thermodynamic point of view there is no argument against the existence of 

CO2 hydrates in the Martian regolith close to the surface. It was postulated, that CO2 

hydrates may occur in the ice layers of the north and the south polar caps. On this basis, 

many suggestions linking decomposition of CO2 hydrates to morphological features like 

chaotic terrains, some outflow channels or gullies have been put forward. Another group 

of theories discusses the possibility that releases gases may have an environmental impact 

such as causing a climate change (greenhouse effect) or alter the isotopic ratios in the 

atmosphere. 

At present days and possibly also in the past p-T conditions the most likely formation 

reaction to take place between gaseous CO2 and water ice. Both components are available 

on the surface. Lately, also H2O has been found to be abundant in Martian regolith. 

However, the discussions in a large number of publications didn‟t reach a final 

conclusion, because of the lack of elementary knowledge about the formation and 

decomposition kinetics of this particular gas hydrates, yet. The investigations presented 

here provide the required information. 

To achieve a physicochemical basis for these ideas, a series of CO2 hydrate 

formation and decomposition experiments at Martian surface and sub-surface conditions 

were performed, using p-V-T methods as well as in-situ neutron diffraction at ILL 

Grenoble.  

The experiments indicate that the formation time is directly related to the accessible 

surface area of the ice grains as well as temperature and CO2-pressure. At p-T conditions 

close to the Martian poles CO2 hydrates are thermodynamically stable at the surface. 

Despite this fact the results show that at these low temperatures slow kinetics and 

nucleation difficulties prevent any significant formation of clathrates. However, there is 

still a fair chance to find CO2 hydrates deeper in the regolith at different latitudes (given a 

pressure sealing of the overburden layers e.g. by water ice). Higher temperatures and 

pressures create much more favorable conditions. Additionally, climate variations on 

longer time-scales provide a conceivable scenario for hydrate decomposition and perhaps 

formation cycles as long as suitable conditions can be created. Gases from dissociating 

clathrates might be able to affect isotopic ratios in the atmosphere. Larger releases could 

also potentially cause episodes of warmer climate. The experimental decomposition runs 

in a temperature interval from about 240 to 273 K, have firmly established a behavior, 

called “self-preservation” (or “anomalous preservation”), which may preserve CO2 

hydrates for geologically long time scales. Self-preservation is a complex micro-

structural process related to changes on the surface of decomposing hydrates. Small (up 

to 20μm) ice crystals formed upon decomposition create a layer, which due to annealing 

of ice defects and grain coarsening drastically slows down the out-diffusion of gas 

molecules and thus preventing decomposition. Below this temperature regime the “self-

preservation” also occurs in the narrow p-T range. The sealing is less effective and is 

governed by the microstructure of an ice film. The destruction of this fragile, 

mechanically or by reaching the ice melting temperature achieved state may lead to the 

rapid gas release from decomposing clathrates. Sudden increase of pore pressure in the 

regolith may trigger the formation of large geomorphologic features like chaotic terrains 

thus letting pressurized liquids escape to the surface. 
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Zusammenfassung 
 

Von einem thermodynamischen Gesichtspunkt aus gibt es kein Argument gegen die Existenz 

von CO2 Hydraten im Marsregolith nahe der Oberfläche. Es wurde bereits postuliert, dass CO2 

Hydrate in den Eisschichten des Nordens sowie den polaren Südkappen existieren könnten. Auf 

dieser Basis wurden Vorschläge, die Zerzetzung von CO2 Hydrat betreffend, in Verbindung mit 

morphologischen Eigenschaften, vorgebracht. Ein weiterer Ideenbereich behandelt den Einfluss 

den die Zersetung von CO2 Hydraten auf die Umwelt, hinsichtlich einer möglichen 

Klimaveränderung (Greenhouse-Effekt) oder der Modifizierung von Isotopenverhältnissen in der 

Atmosphäre, haben könnte. 

Heutzutage und wahrscheinlich auch in der Vergangenheit bestimm(t)en Druck und 

Temperatur, dass die wahrscheinlichste Bildungsreaktion für CO2 Hydrate zwischen gasartigem 

CO2 und Wassereis stattfindet. Beide Bestandteile sind an der Oberfläche des Mars verfügbar. 

Kürzlich wurde zudem entdeckt, dass auch Wasser (H2O) häufig im Marsregolith vorkommt. 

Jedoch führten bislang alle Diskussionen bezüglich dieser Möglichkeit zu keinem Ergebnis, da es 

an elementaren Kenntnissen der Bildungs- und Zerzetzungskinetik dieser besonderen Gashydrate 

mangelt. 

Um eine physikochemische Grundlage für diese Ideen zu schaffen, wurde eine Reihe von 

CO2 Hydrat Bildungs- und Zerzetzungsexperimenten sowohl unter Marsoberflächenbedingungen 

als auch unter unterirdischen Marsbedingungen mit p-V-T-Methoden und in-situ Neutronbeugung 

an der ILL Grenoble, durchgeführt. 

Die Experimente haben gezeigt, dass die Bildungsdauer der CO2 Hydrate direkt mit der 

zugänglichen Eiskornoberfläche, den herrschenden Temperaturen und dem CO2 Druck 

zusammenhängt. Unter p-T Bedingungen die an der Marsoberfläche nahe den Polen herrschen ist 

CO2 Hydrat thermodynamisch stabil. Trotz dieser Tatsache zeigen die Ergebnisse, dass bei sehr 

niedrigen Temperaturen die langsame Kinetik sowie Schwierigkeiten die Nukleation der Hydrate 

betreffend, jede signifikante Bildung von Klathraten verhindern. Dennoch bleibt eine gute Chance 

CO2 Hydrate tiefer im Regolith aufgrund vorliegender Druck-Versiegelung durch überliegende 

Schichten (z.B  Wassereis) zu finden. Höhere Temperaturen und höherer Druck schaffen 

günstigere Bedingungen für die Bildung von CO2 Hydraten. Zusätzlich stellen 

Klimaschwankungen ein denkbares Szenario für die Hydrat-Zersetzung und mögliche 

Bildungszyklen dar, sofern passende Stabilitätsbedingungen geschaffen werden können. Durch 

die Zersetzung von Gashydraten können Gase freigesetzt werden, die im Stande sind die 

Isotopenverhältnisse der Atmosphäre zu verändern. Die Freisetzung größerer Gasmengen könnte 

eine potentielle Ursache wärmerer Klimaepisoden darstellen. Die experimentellen 

Zersetzungsvorgänge, in einem Temperatubereich zwischen etwa 240 und 273 Kelvin begründen 

einen Prozess, welcher auch als "Selbsterhaltung" bezeichnet wird. Dieser ist in der Lage, CO2 

Hydrat über einen geologisch bedeutsamen Zeitraum stabil zu halten. Der Prozess der 

Selbsterhaltung, der besonders die Mikrostruktur von Hydraten betrifft, ist sehr kompliziert und 

steht in Verbindung mit Veränderungen auf der Oberfläche der sich zersetzenden Hydrate. Sehr 

kleine Gashydratkristalle (Durchmesser bis zu 20μm) erzeugen bei ihrer Zersetzung eine 

Schicht, die durch das Verheilen oder Ausheilen von Defekten im Eisgitter sowie 

Kornvergröberungsprozessen zu einer Ausbreitung der Gasmoleküle und somit zu einer 
drastischen Verlangsamung des Zersetzungsprozesses führt. Unterhalb dieses Temperaturregimes 

findet der "Selbsterhaltungsprozess" auch in einem sehr schmalen P-T-Bereich statt. Die 

Versiegelung ist hier weniger wirksam und wird durch die Mikrostruktur des Eisfilms geregelt. 

Die Zerstörung dieses mechanisch oder durch das Erreichen des Schmelzpunktes von Eis 

erlangten metastabilen Zustandes kann zu einer sehr schnellen Gasfreisetzung aufgrund der 

Zersetzung von Gashydraten führen. Die plötzliche Zunahme des Porendrucks im Regolith kann 

die Bildung von großen geomorphologischen Phenomenen, wie z.B. „chaotic terrains„ bewirken 

und so unter Druck stehende Fluide an die Oberfläche lassen. 
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Chapter 1 – Gas Hydrates 

The first part of this chapter is meant to give the reader an introduction to the history, 

physics, crystallography and chemistry of gas hydrates, which is indispensable for the full 

understanding of the experimental section and following conclusions. Briefly also two ice 

structures are reviewed. The second part of the chapter lives laboratory to present 

environments, favorable for gas hydrate formation and stability in nature on Earth and 

other possible places in the Solar system. 

 

1.1 General introduction 

1.1.1 History 

Gas hydrates have been known for more than 200 years, and as it is with many 

discoveries, they have been found actually by accident. Between XVIII and XIX century a 

number of different gases like oxygen or carbon and sulfur dioxide have been recognized. 

Right after it, scientists were probing them for their chemical and physical properties. In 

one of such experiments the English 

philosopher and naturalist Joseph Priestley 

presumably obtained the hydrate of sulfur 

dioxide (Makogon, 1997). Priestley, who was 

performing cold experiments with vitriolic acid 

air (SO2) and water, observed ice like material 

formed during the reaction. This information is 

dated on 1778 and was officially published in 

“Versuche und Beobachtungen über 

verschiedene Gattungen der Luft” between 

1778 and 1780. About 32 years later (1810), 

another British scientist, Sir Humphrey Davy 

formed chlorine hydrate by cooling an aqueous 

solution saturated with chlorine gas below 9ºC. 

Since Priestley's experiment was performed 

below freezing point of water (-8.3ºC) there is 

no unambiguous proof that the hydrate phase 

was really present. Therefore some authors 

(e.g. Sloan, 1998) suggest Davy as the 

 

Fig. 1) The discoverer of CO2 hydrates 

– the Polish scientist, Zygmunt 

Florenty Wróblewski. 
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discoverer of gas hydrates. Few years later his apprentice, Michael Faraday, successfully 

repeated the experiment in 1823. The trace of gas hydrate research leads also to Göttingen 

where Friedrich Wöhler, known also as a pioneer in high-pressure research, obtained 

hydrogen sulfide hydrate under elevated pressure in 1840. CO2 hydrates, which are the 

cornerstone of present PhD, have been discovered in 1882 by the Polish chemist and 

physicist, Zygmunt Florenty Wróblewski (Fig. 1) while studying carbonic acid. In the next 

years a series of new gas hydrates have been obtained e.g. CH4, C2H6, C2H4, N2O (Villard, 

1888), C3H8 (Villard, 1890), Ar (Villard, 1896), Kr (de Forcrand, 1925). Although gas 

hydrates, from their discovery, were treated more like interesting curiosity for about 150 

years, researchers were still investigating these systems using different gases or gas 

mixtures. In this short history review a large part of the thermodynamic considerations has 

been skipped to not distract the reader from the main story. The sudden interest in gas 

hydrates arose with the development of oil and gas industry in early XX century. The 

transportation of pressurized gas and oil on the long distances via pipelines was haunted by 

solid plugs in autumn and spring time. As the reader may easily guess, it was caused by gas 

hydrate growth from “wet” hydrocarbons. But yet, at that time water ice was pointed as the 

cause for the blockages. Finally in 1934, American chemist E. G. Hammerschmidt 

concluded that the p-T conditions in the pipelines were favorable for gas hydrate formation 

and they were to blame for the plugs. This small but remarkable discovery opened a new 

chapter in gas hydrate research related to industrial applications. That was the time when 

first investigations on methods of avoiding or inhibiting gas hydrate growth were 

undertaken. Academic research was directed more in to the chemistry and molecular 

structure problematic. Commonly used light polarization microscopy allowed 

distinguishing gas hydrated from water ice by lack of polarization effect; it points to cubic 

symmetry but without any further details. Prior to the first X-ray diffraction experiments 

on clathrates, Russian scientist B. A. Nikitin (1936-1940) suggested, for the first time, a 

cage like structure of gas hydrates for inert gases. Moreover, he stated that single species or 

complex gas hydrates are crystalline non-stoichiometric compounds made of hydrogen 

bonded water molecules that form cages filled by gas molecules. This very important 

theory has been confirmed by X-ray diffraction experiments of H. M. Powell in 1948 that 

introduced the term: Clathrate. One year later the German scientist von Stackelberg and his 

group (1949-1958), also by means of X-ray diffraction, established two cubic crystal 

structures (Structure I and II). Many years later, in 1987, a third, hexagonal structure 

(Structure H) was found (Ripmeester et al. 1987).  
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The section above, not without a reason, discussed exclusively the history of synthetic 

gas hydrates. Natural clathrates were not known for a long time. Although their existence 

was suggested, by Russian Prof. I. N. Strizhev, already in 1946, first cores containing gas 

hydrates (mostly methane hydrates) were extracted in 1967 during the exploratory drilling 

in permafrost of Yakutiya and Messoyakhia fields in western Siberia (Makogon, 1972). 

About one year after the Russians, the Americans found air hydrates in drilling cores 

extracted from 2164m at the Station Byrd in West Antarctica. Later on a series of new sites 

on the continental shelfs, in river deltas and permafrost of Russia and North America has 

been found. It is worth to notice that already at that time scientists started to consider gas 

hydrates as a constituent of icy bodies like comets (Delsemme and Miller, 1970), (Mendis 

and Ip, 1974), (Makogon, 1987), planetary rings (Pang et al. 1983) or other planets e.g. 

Mars (Milton, 1974). These pivotal hypotheses opened, for gas hydrates (also very exotic 

for Earth), a new field of research in planetology science (Chapter 2). Among them are 

CO2 hydrates in Martian environment, which are in the focus of this work.  

 

1.1.2 Crystal structure and chemical composition of gas hydrates 

Gas hydrates form large family of crystalline solids composed from two main 

components: a host lattice and guest molecules. Although theoretically a large number of 

different crystal lattices is possible (Jeffrey, 1984), (Dyadin et al. 1991), (Komarov et al. 

2005), up to now, only a few types of crystal structures have been recognized. The most 

common are: cubic structure I (sI) (Fig. 3), cubic structure II (sII) (Fig. 4) and hexagonal 

 

a) b) c) 

d) e) 

Fig. 2) Five types of cages commonly found in gas hydrates: a) Pentagonal dodecahedra 

(5
12

), b) Tetrakaidecahedon (5
12

6
2
), c) Hexakaidechedron (5

12
6

4
), d) Irregular 

Dodecahedron (4
3
5

6
6

3
), e)  Icosahedron (5

12
6

8
). 
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structure H (sH) (Fig. 5). The building blocks for these structures are polyhedrons made of 

hydrogen bonded water molecules. Commonly used description n
i
k

j
 (Jeffrey, 1984) of 

these cages use the number of edges (i,j…) for each face type (n,k…) e.g. 4
3
5

6
6

3
 describes 

irregular dodecahedron with twelve faces; 3-squares, 6-pentagons and 3-hexagons. The 

origin of this notification comes from earlier work (King, 1972) on water clusters where 

polyhedra with different structures are temporarily formed. As the reader may see later on 

in this section, the elements building cages are pentagons, squares and hexagons. The 

reason for it is fundamental for the formation and stability of cavities. The O-O-O angle 

between hydrogen bounded water molecules forming pentagons are 108º. The strains are 

very low as the opening angle is very close to the natural one in free water molecules 

(104.5º) or the tetragonal angle in ice Ih (109.5º). Larger strains exist within hexagons 

(120º) or squares (90º) and additional conditions for polyhedrons stabilization are required 

(Belosludov et al. 1991). Faces with even larger strains like heptagons (128.6º) or octagons 

(135º) are not stable in gas hydrate structures.     

In the following section the reader will find a detailed description of the five common 

cages (Makogon, 1997), (Sloan, 1998):   

Pentagonal dodecahedra (5
12

) (Fig. 2 a). This cavity, often referred to as a small cage, 

exists in both cubic structures (sI and sII) and the hexagonal one (sH). The cage is 

composed from twelve pentagonal faces, which makes it almost spherical. The average 

radius is of 3.95Å (sI) and 3.91Å (sII). The average radius in sH structure is assumed to be 

close to the one in sII. Low strains in such structures allow them to form naturally in 

supercooled water (Anglell, 1982) and possibly also in quasi-liquid layer on the ice 

surface. In 1959 Pauling suggested even that water might be composed of complexes of 5
12

 

cages with a water molecule as a guest.  

Tetrakaidecahedon (5
12

6
2
) (Fig. 2 b) is composed from two hexagonal faces separated 

by twelve pentagonal faces. The oblate shape makes it considerably non-spherical with 

large O-O-O angle variations. Effectively, fairly large strains require a guest molecule to 

stabilize the cavity.  In hydrate structure I, often referred as a large cage, plays main 

stabilization role (to many empty cages will collapse the structure).  Short lived 5
12

6
2 

cavities may be formed within a liquid film on ice surface but also here the stabilization by 

a guest molecule is necessary.  The average radius is of 4.33Å. 

Hexakaidehedron (5
12

6
4
) (Fig. 2 c) is the most spherical cage from the five. It is 

constructed from four hexagonal and twelve pentagonal faces so that no two hexagons 

share the same edge. In structure sII, as a large cage, plays main stabilization role 
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(similarly to 5
12

6
2 

cavities in sI). The size of the cage is sufficient to encase considerably 

large molecules like propane or iso-butane. 

Irregular Dodecahedron (4
3
5

6
6

3
) (Fig. 2 d) is rather unusual cage. Among all five 

common cages only this particular one has square faces. In combination with hexagonal 

faces internal strains are noticeably high. The average radius was calculated as 4.06Å. 

Irregular Icosahedron (5
12

6
8
) (Fig. 2 e) is also unique as exists only in structure sH. It 

is composed from two 6-elements pentagonal belts separated by 6-elements hexagonal belt. 

Hexagonal faces finish both ends. Such construction create indeed enormous cage capable 

of encasing such molecules like methylocyclohexane. Although the average radius has 

been estimated to about 5.17Å, the cage is highly non-spherical. Therefore the shape and 

the position of a guest molecule in the cavity start to play an important role. 

 

Three dimensional arrangements of selected cages create several crystallographic 

lattices. Although CO2 hydrates mainly crystallize in structure type I and it will be the main 

subject of the next section, other structures will be also introduced.  The reader should be 

aware that it would be merely a touch of this vast field of research. High pressure phases 

will be also included. Even if up to now there are no published high pressure data on CO2 

hydrates, it is possible that some of these structures may occur also in their case. 

Structure I (sI) belongs to the primitive cubic space group Pm3n with pentagonal 

dodecahedra placed in the center of symmetry (Fig. 2). Large cavities (5
12

6
2
) share 

hexagonal faces and the spaces between so created columns form small cavities (5
12

) (Fig. 

3). The unit cell contains 46 water molecules in two small (5
12

) and six large cages (5
12

6
2
). 

The average lattice parameter is of 12Å. X-

ray and neutron diffraction experiments on 

CH4 hydrate indicate that the lattice 

constant decreases slightly with the rising 

pressure up to several MPa. (Klapproth et 

al. 2003). The effect is negligible small, for 

CO2 hydrates discussed in this work as the 

pressure range is far too small. In this case, 

more interesting is how the lattice constant 

and the volume of cages change with 

temperature. Again neutron diffraction 

comes into hand. Cage volume 

 

Fig. 3) The arrangement of cages in cubic 

structure sI. Gray dashed line outlines the 

elementary unit. 
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measurements of several gas hydrates, among others CO2 hydrate, between 4 and 180K 

(Chakoumakos et al. 2003), shows strong correlation with the guest specie. CO2 fits 

relatively tightly (Fig. 6) into small (5
12

) cages, in comparison to methane, living very little 

room for volume reduction. The volume change for large cages is somewhat greater but 

still relatively small in comparison to other hydrates. Although most of the guest molecules 

enter into the small and large cages (CH4, CO2, H2S, Xe), a handful of large species can 

stabilize sI structure only by occupying large voids (C2H6, c-C3H6). The cage filling is non-

stoichiometric (also in other structures). Generally for all hydrates, excluding high pressure 

phases (Vos et al. 1993), (Hirai et al. 2002), (Loveday et al. 2003), (Alavi et al. 2006), N2 

(Kuhs et al. 1997), Ar (Itoh et al., 2001) and O2 hydrate (Chazallon and Kuhs, 2002) the 

average number of guest molecules in the voids do not exceed unity. It is accepted that the 

occupancy follow a Langmuir isotherm with increasing pressure; fugacity (van der Waals 

and Platteeuw, 1959). The degree of filling changes also with the type of the guest 

molecule. The neutron diffraction experiments (Klapproth et al. 2003) performed on 

synthetic CO2 hydrates show almost complete filling of (5
12

6
2
) cages over the wide 

pressure range. The percentage of occupied small cages oscillates around 55%. The 

average formula for CO2 clathrate is assumed to be close to: CO2 x 5.75H2O (Stern et al. 

2001). Due to the presence of guest molecules in the host lattice the total density of 

hydrates is greater than of water but in order to accommodate e.g. gas molecules the water 

framework must expand. For instance, when at 250K CO2 and water ice (1.02g/cm
3
) form 

clathrates (1.188g/cm
3
) the density of the empty hydrogen bond frame falls (0.89g/cm

3
) to 

make a room for carbon dioxide. The same effect is true for all clathrates. 

Structure II (sII) has a diamond type 

lattice and belongs to the cubic Fd3m 

space group.  Similarly to sI also contains 

small and large cavities.  By sharing 

pentagonal faces between small (5
12

) 

cages a new type of cages (5
12

6
4
) with 4 

hexagonal faces are created (Fig. 4). The 

ideal unit cell contains 136 water 

molecules shared by sixteen pentagonal 

dodecahedra (5
12

) and eight 

hexakaidechedrons. Two distinct groups 

of guest species crystallize in this 

 

Fig. 4) Three dimensional visualization of 

cubic structure sII. Gray dashed line outlines 

the elementary unit. 
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structure. Molecules from the first group with the diameter between 3.8Å (Ar) and 4.2Å 

(O2) occupy small and large cages. The second group includes large molecules, with 

diameter 6.1-6.5Å, entering only in large cavities (Fig. 6). Lately, a structure sII CO2 

hydrate has been formed in pure D2O CO2 system (Klapproth et al. 2003). Yet, the phase 

was metastable and after quick formation recrystallized into the stable structure sI. Similar 

behavior is observed for ethane hydrate (M. M. Murshed, private communication). 

Structure H (sH) was discovered 

relatively recently (Ripmeester et al. 

1987) and still is a subject of 

investigations (Tse, 1990), (Ohmura et 

al. 2005), (Okano and Yasuoka, 2006). 

In contrary to the previous two 

structures sH belongs to the primitive 

hexagonal P6/mmm space group. The 

unit cell is of moderate size (a = 

12.26Å, c = 10.17Å) and contains 36 

water molecules shared by one large 

cavity (5
12

6
8
), two medium size 

 

Fig. 5) 3D model of structure H formed by three 

different types of cages. Gray dotted line 

outlines the elementary unit. 
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Fig. 6) Guest’s molecular diameters to cavity diameters excluding (1.4Å water radii) for structure sI 

and sII (small cage - dots, large cage - diamonds). Ratio above 1 means that a guest molecule is too 

big to fit into a small cage (light blue) or large cage (yellow). X-axis at the bottom - guest diameters 

of the most common guest molecules (after Sloan, 1998).  
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(4
3
5

6
6

3
) and three small cages (5

12
) (Fig. 5). The large cavity can accommodate molecules 

of diameters between 7.1 and 9Å (Fig. 6). The complexity of this structure requires guest 

molecules of two sizes (e.g. n-butane and methane) to stabilize it at atmospheric pressure. 

High pressure phases are the subject of intense research for the last two decades driven 

by purely academic (Londono et al. 1992), (Larionov et al. 2005), planetologic (Kurnosov 

et al. 2006), (Machida et al. 2006) and industrial interest e.g. for hydrogen storage. At least 

six high pressure phases, including structure sH and sII, are recognized. Up to now, the 

best explored systems are of noble gases and methane, which are relatively easy to 

compress. As an example, initial compression of argon hydrate, which forms structure sII 

at ambient pressure, leads to the tetragonal structure sT at about 9kbar (Hirai et al. 2002). 

Although there are some indications for a transient structure sH between them (4.5-

7.2kbar) with at least four Ar molecules in big cages (Manakov et al 2001), the 

reproducibility of these results was found to be difficult. The tetragonal structure belongs 

to the P42/mnm space group and it is supposed to be made of 14-hedra (4
2
5

8
6

4
) with two 

argon atoms in each cage. Further increase of pressure, to about 20kbar, transforms 

structure sT into orthorhombic lattice also known from CH4 hydrate (Loveday et al. 

2001b). Due to the very strong similarities to ice Ih it is often named as a “filled ice” 

structure (Loveday et al. 2003). 

Molecules with the small diameter like hydrogen or helium were assumed (Sloan, 

1997) to not create common hydrate structures (sI, sII, sH) presented in this section. It was 

accepted that, the small size allows them only to enter in open channels of ices Ih and Ic, 

(Londono et al. 1992), (Dyadin et al.1999). Yet, high pressure experiments on such gas 

filled ices led to the discovery of two new types of gas hydrate structures resembling ice II 

and ice VII (Vos et al. 1993). Relatively recently also a structure sII hydrogen hydrate has 

been formed under moderate pressure of 20 MPa (Mao et al. 2002). 

 

1.1.3 Crystal structures of Ih and Ic water ice 

Before the reader will be introduced to the thermodynamic and kinetics of clathrates, 

especially at low temperatures relevant to this work, it is essential to clarify what 

crystalline structures of water one might expect upon formation and decomposition. Up to 

now, at least thirteen different crystalline structures have been established and the list is 

still not closed (Petrenko, and Whitworth, 1999). For our purpose only two of them will be 

discussed as the most relevant to the pT conditions expected to exist on Mars: Ih and Ic.      
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Ice Ih – is the most common 

form of water ice on Earth. In spite 

of its chemical simplicity, or in fact 

because of it, in the early work on 

the crystal structure, where X-rays 

were used only oxygen positions 

could be defined. Unfortunately 

this method is not very useful for 

precise mapping of hydrogen that 

has only one electron to scatter an 

incoming beam. In the middle of 

XX century neutron diffraction on 

D2O samples (Wollan et al. 1949) 

subsequently confirmed by single crystal neutron diffraction eight years later (Peterson and 

Levy, 1957) finally solved the structure. It turned out that ice Ih belongs to the hexagonal 

primitive group P63/mmc. Molecules localized in planes perpendicular to the [0001] axis 

are stacked together in the sequence ABABA (Fig. 7). The crystal structure is build up 

from tetrahedrons with oxygen in central position and other four connected through two 

covalently bounded hydrogen atoms two hydrogen bonds. In the ideal structure tetragonal 

O-O-O angle is 109.5º. The molecules are orientationally disordered which in turn 

translates into 2 possible positions for H along the O...O H-bond. Ih ice forms by water 

freezing or through cold deposition of water vapor. In the second case, the minimum 

temperature is somewhat unclear but commonly assumed to extend from 173K to 190K 

(Petrenko, and Whitworth, 1999). It can be formed also from other water ices by annealing 

or/and recrystallization above mentioned minimal temperature and appropriate pressure. 

 

Ice Ic – is a metastable form of ice that in many ways resembles previous hexagonal 

structure. Although the ideal structure is cubic (Fd3m), it is also constructed from 

tetrahedrons and has virtually identical hydrogen disorder. In contrary to hexagonal form, 

cubic ice has different stacking that is denoted as ABCABCA (Fig. 8). The quality or 

defectiveness of the crystal depends strongly on the way of its preparation e.g. (Kuhs et al. 

1987). This in turn, is responsible for a wide variation in Ic diffraction patterns and severe 

problems in a refinement. Ice Ic can be formed from in several ways: (1) from high 

pressure phases of ice (II-IX) by low-T pressure release, (2) by annealing of amorphous 

 

Fig. 7) Ice Ih crystal structure along [0001] axis with 

ABABA stacking. White solid line outlines the 

elementary unit.  

c 
b 

B 

A 
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ice, (3) cold deposition of water 

vapor, (4), hyperquenching of liquid 

water (Mayer and Hallbrucker, 

1987), (5) crystallization in confined 

porous spaces e.g. (Steytler et al. 

1983) or (6) decomposition of gas 

hydrates (Kuhs et al. 2004) (Chapter 

4). Lately it turned out also that 

cubic ice can be formed in clouds of 

upper Earth’s atmosphere (Murray et 

al. 2005), (Murray and Bertram, 

2007). In all cases very low 

temperatures are required (from 

about 130 to 190K) but thermodynamic boundaries are not sharp. Ice Ic that upon warming 

transforms into Ih cannot be recovered in backward process. 

 

1.1.4 Thermodynamic stability boundaries of CO2 hydrates 

The research on thermodynamics of these particular clathrates is divided in two distinct 

fields (Fig. 9). The first, relatively narrow one in the temperature scale is placed above 

liquid water point of water and pressure up to ~5MPa. The second one is greatly extended 

below melting point of water ice down to about 121K and 0.1mbar. For the last couple of 

decades, investigators were concentrating almost exclusively on exploration of CO2 

hydrate stability in the first p-T region (Fig. 10). In comparison to this, only a handful of 

publications (Miller and Smythe, 1970), (Falabella, 1975 after Sloan, 1998) is dedicated to 

the low temperature part. Recently, an extensive theoretical study on CO2 clathrate 

(Longhi, 2005) brought a series of small modifications to the CO2-H2O system. Although 

most of the changes have no mathematical description (A curve fitting of the phase 

boundaries), two new equations to calculate a higher and lower temperature part of CO2 (V) 

H H2O (S) - CO2 (V) H2O (S) boundary has been introduced. The division on two parts is 

meant to decrease an absolute deviation from the experimental points, which becomes 

apparent for extended temperature range. Indeed, the expression, for the interval 254-

271K, fits available data very well (deviation below 0.2%). Surprisingly, the equation for 

lower temperature part of the CO2 (V) H H2O (S) - CO2 (V) H2O (S) boundary shows great 

misfit in the order of 2000MPa (possibly a typo error). The same author has calculated,

 

Fig. 8) Cubic crystal structure of Ice Ic along c  axis 

with characteristic ABC stacking.  

B 

A 

C 
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CO2 (S) H H2O (S) boundary (Longhi, 2005). Gray dotted lines - calculated CO2 (V) H H2O (S) - CO2 (V) H2O (S) boundary for lower T (Sloan, 1998) and 

higher T (Longhi, 2005). Experimental points after (Sloan, 1998). Q1, Q2, Q3 – quadruple points. CP – critical point of CO2.        
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CO2 (S) H2O (S)-CO2 (S) H H2O 

(S) boundary (Fig. 8), that was 

previously unconstrained. It is 

interesting to note that an 

extrapolation of this data in lower 

pressures intersects the CO2 

solid/gas boundary in virtually the 

same place as CO2 (V) H H2O (S) 

- CO2 (V) H2O (S) curve. On this 

basis an existence of the new 

quadruple point (Q3) has been 

proposed but without detailed p-T 

coordinate. Although this is an 

interesting finding, one has to 

keep in mind that these are only 

theoretical predictions that are not 

confirmed by any experimental 

studies. 

  

 

 

 

1.1.5 Kinetics of gas hydrates 

The kinetics of the formation and decomposition of gas hydrates is extensively studied 

by a number of experimental techniques like NMR and IR spectroscopy, X-ray and neutron 

diffraction or gas consumption. In spite of greatly extended p-T stability field that creates a 

number of technical difficulties (e.g. thick pressure cells, seals, absorbing materials), they 

were successfully applied to study almost all stages of reaction except the nucleation. This 

still mysterious and elusive process is very difficult to investigate in experimental way. 

Nowadays, molecular dynamic (MD) calculations stepped forward to investigate this no 

man’s land. Unfortunately, very often, small box size, unrealistic boundary conditions or 

short time frame dramatically decrease the reliability of a simulation and one should be 

careful while dealing with such results. 
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Fig. 10) CO2 hydrate stability field (H) close to melting point of ice. Experimental points after 

(Sloan, 1998). Blue line – H2O melting curve. Gray solid line – CO2 liquefy curve. Gray dotted 

line – higher T part of H-CO2 (V) Ih boundary. 
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1.1.5.1 Nucleation and driving force 

The liquid water – ice phase transition boundary, crossing through the CO2 hydrate 

stability field, greatly influence the nucleation of gas hydrates. As the reader may already 

guess, two different states of water force a reaction to follow two different kinetic 

pathways. One is related to very low temperatures and almost vacuum and another one to 

liquid-liquid or liquid-gas mixtures at moderate pressure. The driving force, that governs 

the reaction, may be defined in different ways (Sloan, 1998). The most general definition 

of it is the change in molar Gibbs free energy.  In the thermodynamic equilibrium, it may 

be expressed as a super saturation, which is a difference between chemical potentials 

between phases in binary (Kashchiev and Firoozabadi, 2002a) or multi component systems 

(Anklam and Firoozabadi, 2004) that take part in the reaction. This term can be rewritten 

into a gas fugacity. For detailed mathematical description the reader may refer to 

mentioned papers or PhD thesis of A. Klapproth from 2002 (in German). For gas/solid 

interaction investigated in this work, it is related to the gas overpressure in the system as 

well as to temperature that is tightly related to the chemical potential. It is worthwhile to 

notice that the crystallization does not start immediately after reaching suitable conditions, 

even with high driving force. This delay in time is commonly called, an induction or 

incubation period (Kashchiev and Firoozabadi, 2003) and will be discussed later in 

Chapter 4. The stochastic nature of this process is influenced by a number of factors like: 

temperature, pressure, history of starting material, a presence of certain gases/chemical 

compounds or agitation of the system (Sloan, 1998), (Takeya et al. 2000), (Moudrakovski 

et al. 2001). The nucleation and growth is still a subject of research and a number of 

theories have been formulated to provide its physico-chemical description. Unfortunately, 

they are often in contradiction with each other or lacking a confirmation in experimental 

data. Following previous considerations, a division in two main groups is observed.  

The tendency to form short-lived (Miyazaki and Yasuoka, 2002) clusters in pure liquid 

water suggests that embryos might be formed in the bulk. At this basis the labile cluster 

hypothesis has been formulated (Sloan, 1998). A nucleus is to be formed by an association 

of local clusters formed due to spontaneous arrangement of water molecules in the first 

coordination shell around guest molecule that stabilize the cage. Molecular dynamic (MD) 

calculations on methane clathrates (Belosludov et al. 2002) suggest that at the first step the 

most stable, small cages (5
12

) are formed. Yet, short lifetime of such clusters and low 

solubility of guest molecules in water (excluding CO2 and H2S, whose solubility is 

considerably higher (Sloan, 1998) than e.g. hydrocarbons) create a significant barrier for so 
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interpreted nucleation.  A change of the nucleation place form the bulk of water to the 

liquid-liquid or liquid-gas interface (Kvamme, 2002) increases considerably a probability 

of nucleus formation as the guest solubility problem is greatly reduced. It is also in 

accordance to the experimental observations where a hydrate film usually starts to grow at 

the interface of two phases (Mori and Mochizuki, 1998), (Takeya et al. 2000). Also an 

extensive mathematical description, for the ideas mentioned above, can be found in the 

literature (Kashchiev and Firoozabadi, 2002b). Yet, modern MD calculations show that the 

labile clusters can be easily formed only in much diluted solutions (Radhakrishnan and 

Trout 2002). Additionally, a closer analysis indicates that polyhedra tend to disintegrate 

rather than cluster together as the free surface energy of the growing embryo increases 

rapidly with the size. Eventually, the formation of critical size nuclei becomes very 

difficult. To overcome this problem a new model, “the local structuring mechanism”, has 

been proposed (Radhakrishnan and Trout 2002), (Anderson et al. 2007). It explains the 

nucleation as a phenomenon caused by a certain arrangement of guest species. The authors 

claim that a thermal fluctuation can distribute a group of the gas molecules in configuration 

resembling the one known from clathrates. Water molecules in the surrounding would 

automatically adjust their positions to form cages. So created clusters would be temporal 

and only if the number of building units exceeds the critical value a nucleus will be 

stabilized. The critical size has been calculated to be between 9.6 and 14.5Å, which is 

considerably less than 32Å obtained with the classical nucleation theory (Larson and 

Garside, 1986 after Radhakrishnan and Trout, 2002). An independent MD simulation 

(Hirai et al. 1997) of an aquius solution with CO2 molecules held fixed at the positions 

comparable to those know from the crystalline structure sI, seems to confirm the 

assumptions of local structuring hypothesis. Similar conclusions came out of ab-initio 

calculations of the stability of (5
12

) and (5
12

6
2
) empty and argon filled buckyball water 

clusters (Chihaia et al. 2005).  

The nucleation below the melting point of water is relatively simpler, in comparison to 

the previous case, as it can occur only at the ice/gas or ice/liquid interface. Also direct 

estimations of the nucleation density and their localization are possible, as it will be shown 

in Chapter 4. Imperfections (cracks, impurities, lattice defects) at the surface are most 

likely places where the growth starts (Moudrakovski et al. 2001). The quasi liquid layer 

(QLL) closer to the melting point of ice might also promote the nucleation (Hwang et al., 

1990). An existence of this distorted layer on the ice surface has been found, with the help 

of NMR, as far as down to ~173K (Mizuno and Hanafusa, 1987), but already at about 
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223K the effect is negligibly small (Petrenko, and Whitworth, 1999). 

 

1.1.5.2 Formation 

As the hydrate formation above the freezing point of water is not a subject of this work 

and only a general picture will be presented. For further information, the reader may refer 

to a number of publications that deal with various scenarios in this p-T region e.g. (Lekvam 

and Ruoff, 1993), (Makogon, 1997), (Sloan, 1998). From the other side, formation below 

the melting point of ice, as a part of this thesis, will be more broadly discussed later on in 

this work (Chapter 4). Even though, before the reader reaches that point an elementary 

knowledge about the growth and its possible stages is necessary. 

An initial growth, above melting point of ice, is rapid that proceeds mostly along the 

interface (Fig. 11). The growth in volume is considerably slower than at the surface 

because gas/water molecules transport limitation. When the available contact surface is 

completely transformed the reaction changes to a largely diffusion limited one (Fig. 12). 

Even then, high mobility of molecules at this temperature range carries on the 

transformation at reasonably high rate. Also in low temperature formation, two general 

stages can be distinguished. After an induction period, a surface exposed to gas molecules 

is relatively rapidly transformed into hydrate. A significant slowdown is observed when the 

hydrate layer is thick enough to reduce gas/water molecules transport through the shell 

(Barrer and Ruzicka, 1962). In case of xenon hydrate, the critical thickness varies between 

20 and 100 unit cells, which assuming 12Å per unit cell, give 240-1200Å (Moudrakovski 

et al. 2001). The hydrate barrier changes the growth mechanism to diffusion limited one, 

which greatly affects the reaction rate. With temperature decrease, the already slow 

reaction is retarded even more. Mechanical grinding of the initial hydrate shell can be used 

to  restore  high   transformation   rate   (Barrer   and   Ruzicka,   1962)   but   reaching  full 

 

 

 

 

 

 

 

 

 

Fig.  11) Clathrate film developing on the water droplet. On closer inspection one can notice a 

characteristic dendritic like branching on the coating (Sloan, 1998). 
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transformation in reasonably short time requires crossing the melting point of ice in the 

later stages of the formation (Circone et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The formation of clathrates, like any other crystallization process, leads to an isotopic 

fractionation. Unfortunately, available information on this interesting process is very 

scarce. Presently the best explored is the ability of has hydrates to fractionate oxygen and 

deuterium from liquid water. Values for Δδ
18

O and ΔδD measured close to the freezing 

point of water (Davidson et al., 1983), (Maekwa, 2004) are very close to those found for 

water ice. This similarity is most likely caused by the large similarities between both 

structures in terms of bond length and O-O-O angle. Much less explored is the ability to 

fractionate gas guest molecules. In fact the only work on this issue known to me was 

publishes very recently analyses of natural methane and ethane clathrates from lake Baikal 

(Hachikubo et al. 2007) accompanied by a laboratory studies on synthetic methane 

hydrates (Kosaka et al. 2007). In the first case one could observe a small enrichment of 

Fig. 12) Simulated formation curve (Powder 4 - Chapter 4) for the transformation of water 

ice and gas into CO2 clathrate. 1) Initial fragment that do not show any reaction corresponds 

to a slow nucleation or incubation period. 2) The later lift off marks the moment where the 

nucleation limitation is overcome and clathrates beginning grow rapidly. 3) As the reaction 

proceeds gas/water diffusion starts to govern the formation. 4) Depletion of ice terminates 

the formation. 
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hydrates in lighter carbon (Δδ
13

C~ -57‰) if compared to gas dissolved in water (Δδ
13

C~ -

55‰). Slightly stronger effect was found for ethane (Hydrate = Δδ
13

C~ -28‰, Dissolved 

gas = Δδ
13

C~ -25‰). In laboratory formed clathrates the enrichment was very small (α~ -

0.0024). It should be noted that all these experimental work was performed at temperatures 

close to the freezing point of water and higher. 

 

1.1.5.3 Decomposition 

Above the freezing point of water, destabilized hydrates dissolve quickly to free gas 

and water e.g. (Rehder et al. 2004). Though, there is one exception where reaction may be 

abruptly halted just after short period of rapid decomposition close to 273K. Gas liberated 

from the cage structure absorb large amount of heat from the surrounding that is required 

to move molecules away from the collapsing crystal. This phenomenon, called the latent 

heat of reaction, very effectively lowers local temperature temporarily conserving 

clathrates in frozen water. In practice, thanks to it, not pressurized drilling cores containing 

gas hydrates may be excavated (Tulk et al. 1999).  

 Much more complicated processes governing the decomposition below melting point 

of ice will be discussed in details later on in this thesis (Chapter 4). Water molecules from 

destroyed cages crystallize at the surface forming a layer of ice crystals. After the end of 

previous section, the reader should be already aware of the difficulties caused by ice 

coating. This barrier can be overcome only by outward diffusive transport of gas molecules 

through imperfections in the ice shell. The total time necessary for complete transformation 

often exceeds days, weeks or even months. In extreme cases the decomposition may lead 

to, so called, “self preservation” e.g. (Stern et al. 2001), (Takeya et al, 2002), (Circone et 

al. 2003), (4.3.5) where gas hydrates virtually stop decomposing. 

 

1.1.5.4 Formation and decomposition in porous media 

Natural gas hydrates often occupy empty voids in sediments and fractured rocks where 

thermodynamic and kinetics properties substantially differ from the one known from bulk 

accumulations e.g. (Clennell et al. 2000), (Anderson et al. 2003). A large diversity of 

natural sediments makes simulation in laboratory very tedious and in some cases leads to 

unique results. Yet, within a broad array of publications discussing this complex issue, one 

can distinguish three main trends in research concentrated around: (1) pore size and 

distribution, (2) mineral composition of a host rock, (3) ions and organic compounds 

dissolved in water.    
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 A use of glass or porous silica beads 

with known pore size distribution provides 

information of inhibiting capillary 

pressure effect on small voids/channels 

(Handa and Stupin, 1992), (Smith et al. 

2002), (Uchida et al. 2002), (Anderson et 

al. 2003), (Llamedo et al. 2004), (Uchida 

et al. 2004), (Aladko et al. 2006). An 

analysis of existing data shows 

relationship between the reciprocal pore 

diameter and dissociation temperature 

/pressure (Fig. 13). The limitation of 

present predictive models oscillates 

around 3-6nm (Uchida, et al. 2002), 

(Llamedo et al. 2004) where bulk 

properties hold no longer. Along with 

porosity, another issue has been 

researched, namely position and 

development of gas hydrates in mineral 

framework (Tohidi et al, 2001), 

(Spangenberg et al. 2005), (Spangenberg 

and Kulenkampff, 2006), (Schicks et al. 2007). Preliminary visual observation of growing 

clathrates in glass porous media by (Tohidi et al, 2001) comes to the conclusion that 

natural hydrates of poorly dissolvable gases (e.g. methane) may have no cementing 

properties. Indeed, in contrast  to clay minerals,  silicates  like  quartz, a thin  layer of water   

 

 

 

 

 

 

 

 

 

Fig. 13) Dissociation curves of CO2 clathrates 

in porous silica with different mean pore 

diameter in comparison to bulk data. 

Experimental data in porous media after 

(Anderson et al. 2003). Theoretical prediction 

(solid line) after (Llamedo et al. 2004).   

Fig. 14) Cryo-SEM image of natural 

methane hydrate from Malik research 

well. Between hydrate (GH) and 

quartz grain (Q) there is a clearly 

visible layer of frozen water (W) 

(Techmer et al. 2002).    

GH 
W 

Q 
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film separates hydrates from pore walls (Fig. 14), thus hindering cementation process at 

low hydrate concentration. Nevertheless, a large concentration eventually leads to almost 

completely filled pore spaces and the cementation is unavoidable (Fig. 15). For more 

information the reader may go to the following publications: (Rempel and Buffett, 1997), 

(Xu and Ruppel, 1999), (Clennell et al. 2000), (Spangenberg and Kulenkampff, 2006). 

 

 

 

 

 

 

 

 

 

 

 

Much more complex effect on decomposition conditions is observed in sediments 

containing clay minerals (Cha et al. 1988), (Uchida et al. 2004), (Chuvilin et al, 2005), 

(Chuvilin et al, 2007), (Klapproth, et al. 2007). An influence of these fine phyllosilicates is 

studied with two major representatives: kaolinite (1:1) and montmorillonite (2:1). Both of 

the materials typically occur in form of tiny plate crystals (Meunier, 2005) that effectively 

shift pore size distribution to lower values and thus contributing to the inhibiting effect 

(Uchida et al. 2004). Kaolinite having only very weak swelling properties binds H2O 

molecules on the crystal surfaces that in turn might reduce available water for clathrate 

formation in closed systems (Fig. 16), (Chuvilin et al. 2007). Similar effect, in case of 

montmorillonite, is even more drastic. An unbalanced charge on molecular plates that 

attracts ions/water between the packets leads to an adsorption of even larger amount of 

water molecules; the expansion of interplate distance may be as big as 18.8Å (Meunier, 

2005). Yet, so preorganised water molecules might simultaneously promote hydrate 

nucleation even at the interplate faces. This phenomenon is expressed in reported shift of 

dissociation curve to higher temperatures (Cha et al. 1988), (Uchida et al. 2004). Yet, one 

should be aware that neither the nucleation promotion effect nor the temperature shift is 

firmly established as the mentioned results was found difficult to reproduce (Englezos and 

Hall, 1994), (Lee et al. 2002). 

Fig. 15) Micromodel of nucleation and growth of methane clathrate within glass mesopore 

network (Tohidi et al. 2001). A) Starting system with liquid water (L) and free methane bubbles 

(G). B) Initial hydrate growth (H). Some bubbles show hydrate film formed at the gas-water 

interface (X). C)  System after 2 days of reaction where pores are essentially filled with fine 

hydrate crystals. 
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The salinity influence on clathrate stability seems to be less complicated but still carries 

many open questions. Even if the inhibition effect is confirmed in a number of publications 

e.g. (Sloan, 1998), (Clennell et al. 2000), 

also regarding porous media (Fig. 17), 

(Østergaard et al. 2002), (Llamedo et al. 

2004), it is still not know how particular 

salts stimulate the inhibition. It is 

especially important for sediments 

containing considerable amount of clay 

swelling minerals that host very broad 

variety of exchangeable ions. Also it is   

not  clear   how  the   inhibiting   effect 

changes with an increasing concentration 

of salts in rest fluid during clathrate 

formation, which may be significant in no 

or weakly permeable sediments. 

 

1.2 Occurrence of gas hydrate 

Gas hydrates are formed on Earth and presumably also in other planetary bodies (e.g. 

comets, icy moons, planets) whenever suitable conditions are met. Terrestrial environments 

that favor clathrate crystallization are relatively easily accessible. The situation looks 

Fig. 16) CO2 consumption curves in simulated soil with 10% of H2O. 1)  pure sand sample, 2) 

sand with 7% of kaolinite, 3) sand with 7% of montmorillonite (Chuvilin et al. 2007). Both 

sediments containing clay minerals show lower gas consumption after 40h than pure sand 

sample possibly caused by decreased availability of water.  

 
Fig. 17) An influence of organic compounds (3.5% methanol) on dissociation curves of CO2 

clathrates in porous silica with different mean pore diameter in comparison to bulk data. 

Theoretical prediction (solid line) after (Llamedo et al. 2004). 
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differently for alien worlds in Solar System and beyond it. Nowadays, there is no direct or 

indirect method that would unquestionably determine existence of clathrate compounds 

anywhere outside Earth. This natural limitation drives authors to study extraterrestrial 

geological environments through laboratory simulations or by finding Earth analogs.  

 

1.2.1 Earth 

After the discovery of natural deposits of gas hydrates (see section 1.1), in over 40 years 

numerous sites in permafrost and continental margins have been successfully probed all 

around the world (Fig. 19). In these environments hydrates lie at different depths in a zone 

known as GHSZ (Gas Hydrate Stability Zone) (Sloan, 1998). Its position in vertical profile 

is controlled by lithostatic or hydrostatic pressure and temperature gradients. In Arctic 

Ocean, at depth ~300m and temperature close to 0°, GHSZ extends from the sea bottom to 

about 1100m into sediments. In permafrost this zone extends from 150 to 2000m below the 

surface (Buffett and Archer, 2004). The downward extension of GHSZ is often marked by, 

so called, BSR (Bottom Simulating Reflector) (Sloan, 1998) on seismic profiles, where 

clathrates border with sediments most likely filled with free gas and water (Fig. 18). The 

most common hosts for clathrates are permeable or semi permeable sediments. An 

overlying cover of poorly permeable layers additionally helps to saturate pore fluids in gas 

molecules. Depending on the host, hydrates may crystallize in various forms and shapes 

(Fig. 20). The most common are four types (Malone, 1985): (1) small quantities dispersed 

in sediments (Fig. 20A), (2) nodular agglomerations of few centimeter size separated by 

sediments (Fig. 20B), (3) Interlayer hydrates with sediments (Fig. 20C), (4) massive 

accumulations, even few meter thick (Fig. 20D). The chemical composition of natural 

 

Fig. 18) Seismic profile 

through the HGSZ zone with 

clearly visible (BSR) bottom 

simulating reflector 

(Kvenvolden, 1993 after 

Shipley et al, 1979).  
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Fig. 19) Global occurrence of natural gas hydrates. Black dots: clathrate of hydrocarbons (mostly methane hydrates) (Kvenvolden, 2000), (Koh and Sloan, 

2007). Red dot: known occurrence of CO2 hydrates (Sakai et al. 1990). Blue dots: locations of ice deep wells (below 900m) with air hydrates 

(Thorsteinsson, 1996). White fields point o a possible existence of gas hydrates in Russian permafrost region.  

 

Map source: USGS poster: A global Inventory of Natural Gas Hydrate Occurrence- Kvenvolden and Lorenson (2000).       



23 

 

clathrates varies from one place to another one but in almost all cases the dominating gas is 

methane. Aside from this main component, these natural hydrates contain also minor 

amounts of higher hydrocarbons (mostly: ethane, propane and butane), CO2 and H2S. The 

percentage of additional gases depends on the source; (1) bacterial metabolism and (2) 

thermogenic exhalations are the most common (Sloan, 1998). While gas hydrates of 

organic origin are almost pure methane clathrates rich in light isotope 
12

C (Table 1), the 

 

Fig. 20) Typical forms of clathrates within sediments. A) Dispersed crystals (laboratory grown 

clathrates in quartz sand), B) Nodular agglomeration, C) Layers of clathrates separated by 

sediment, D) Massive accumulation (approximately 10cm thick). Images: A) E.M Chuvilin, 

Moscow State University, Moscow, Russia. B-D) G. Bohrmann, Research Center Ocean 

Margins/Marum, Bremen, Germany. 

C D 

 Table 1) Characteristic 

samples from biogenic and 

thermogenic sources (Gulf 

of Mexico and Caspian 

Sea) with striking 

difference in isotopic and 

chemical composition 

(After Sloan, 1998).   

B A 
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non-organic are more diverse. Clathrates of other 

gases, like CO2, rarely exist as separate 

agglomerations. As the reader may see from the 

examples in Table 1 the average amount of CO2 in 

natural gas hydrates is very small. Similarly looks 

water saturation in this oxide.  Even if the p-T 

conditions are favorable, CO2 hydrates tend to 

dissolve than accumulate (Teng et al. 1997), 

(Rehder et al. 2004). Therefore CO2 hydrates, in 

general, are not stable on Earth and can be formed 

only in unusual geological context. Up to now, 

only one such place, associated with hydrothermal 

system of the Mid-Okinawa trough back arc basin (Fig. 19), has been identified (Sakai et 

al. 1990) where CO2 hydrates crystallize from CO2 saturated pore water thus cementing 

overlying sediments. In some places, fluids are able to penetrate this impermeable layer 

and reach seawater. At the water/fluid interface, around the vents a thin layer of hydrate is 

also formed (Fig. 21).  Although, this example may help to understand the formation of 

CO2 clathrates in local environment, one should be cautious in direct application to other 

geological settings. 

Apart from the occurrences discussed above, another kind of clathrate, namely air 

hydrate is worth mentioning. These compounds were recovered during deep drilling 

projects on Antarctica and the Greenland ice caps (Fig. 19). The transition zone (Fir. 22), 

where this particular hydrates are formed, extends from depth of about 800m to around 

1200m where air trapped in bubbles is completely consumed (Miller, 1969). Some drillings 

shows exception from this theoretical consideration where hydrates occur (but are not 

necessarily stable) above e.g. (Craig et al. 1994), (Narita et al. 1999) or below predicted 

 

Fig. 21) Graphical interpretation of 

the occurrence of CO2 hydrates in 

Mid-Okinawa hydrothermal system 

(Sakai et al. 1990). 

 

Fig. 22) Micrographs from three depths showing the transition from air bubble to air hydrate in the 

Dome F core (Ohno et al. 2004). 
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upper boundary e.g. (Kipfstuhl et al. 2001), (Lipenkov, 2000). Crystals have various shapes 

(e.g. spherical, graupel-like, rod-like, regular with well developed faces) with size do not 

exceeding 2mm (Narita et al. 1999), (Kipfstuhl et al. 2001). Air clathrates are not only a 

potential carriers of gases to the base of the ice cap but also a promising indicator of 

climate changes expressed in a number, mean size and crystal shape (Narita et al. 1999), 

(Lipenkov, 2000).         

Along with growing economic and 

scientific interest in natural gas hydrates, 

scientists became aware also of possible 

geohazards that are related to these 

materials. They are often referred as a 

source of underwater landslides (Kayen 

and Lee, 1991 after Kenvolden, 1993), 

(Hanumantha Rao et al. 2002), marine 

fluid vents (Mazurenko and Soloviev, 

2003), gas outbursts (Yakushev and 

Chuvilin, 2000) or even considerably 

large  craters  called  pockmarks  (Fig. 23)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23) Oblique view on one of the pockmark 

from Nyegga complex, off mid Norway with 

approximate depth of 9.5m (Hovland et al. 

2005). 

Fig. 24) Strikingly overlapping gas hydrate occurrence and landslide zone (Kvenvolden, 1993 

after Kayen and Lee, 1991). 
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e.g. (Kelly et al. 1994), (Vogt et al. 1994), (Hovland et al. 2005), (Ondréas et al. 2005), 

(Gay et al. 2006).  Indeed, any vertical shift of GHSZ causes decomposition, which may 

lead to the formation of previously mentioned structures. In marine settings, below the 

lower p-T boundary, sediments that may be saturated in gas-water mixture, behave 

similarly to water silt/sand mixture commonly called running ground. As a consequence 

slopes, rich in such material, are very susceptible to generate landslides (Fig. 24) triggered 

by e.g. seismic activity, turbidity flows or another landslides. Also an exploration of sea 

bottom containing gas hydrates is exposed to considerable hazard. Clathrates act as a seal 

to underlying sediments containing free gas and breaking this no permeable layer during a 

drilling may lead to gas blowups or uncontrollable leakages (Grauls, 2001). Gas hydrates 

trapped within permafrost are characterized by yet another unique property, already 

mentioned- self-preservation (Yakushev and Istomin, 1992), (Ershov and Yakushev, 1992), 

(4.3.5). This bizarre mechanism is capable of halting clathrate decomposition even if 

favorable p-T conditions for stabilization are long gone. So preserved gas hydrates are 

highly unstable, and can spontaneously decompose if this fragile state would have been 

destroyed. At the surface, it is expressed  as  natural gas releases or  dangerous  ejections of   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Fig. 25) Examples of 

cratered fields from the 

Barrens Sea bottom:  
 

A) A section of sea bottom 

with close to 1km size and 

about 15m deep craters 

(Solheim and Elverhoi 

1993). 
 

B) Craters reaching 700m 

in diameter and depth up 

to 50m (Bohrmann and 

Suess, GEOMAR, Kiel).  
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volatiles  during  exploration drillings after new oil/gas deposits (Yakushev and Chuvilin, 

2000). Possibly the most extreme example of destructive force related to decomposing 

hydrates can be found at the junction of two environments described above, namely 

flooded permafrost. Such bizarre geological settings have been created after last great 

glaciations in Pleistocene when global sea level raised for approximately 100m flooding 

lower placed old permafrost regions. Self-preserved hydrates trapped within ice layers that 

are in constant retreat (Rachold et al. 2007 EOS), with time, are exposed directly to 

seawater and thus causing violent decompositions. If free gaswwere trapped below the 

decomposing clathrate, such force would be increased even more. Releases in short time 

period, may be sufficient to form even hundred meters (Solheim and Elverhoi 1993) to a 

few kilometers (Prior et al. 1989) large craters (Fig. 25) on the sea bottom.  

Aside from these local geohazards, there is another, global, aspect related to hydrate 

decomposition. Variations of global sea level or/and water temperature are very likely to 

affect the global position of GHSZ in vertical profile (Kenvolden, 1993). Gas hydrates 

driven outside stability field would feed Earth’s atmosphere with methane and CO2; well 

known greenhouse gases. Yet, mentioned changes alone are not enough to have a 

significant impact on Earth’s climate. Very important is the time scale of a transition 

(Buffet and Archer, 2004). Slow decomposition would lead to dissolution and oxidation of 

methane to carbon dioxide and water in oceans and seas. Small volumes of free gas that 

would escape to the atmosphere are not able to have any significant impact on the climate. 

Fast changes, destabilizing large volumes of hydrates in geologically short period of time, 

are the ones that pose real threat to the climate. In a still controversial concept, known as 

“the clathrate gun hypothesis” (Kennett et al. 2003), rapid releases that occur through 

fracturing or slumping of continental margins are related to a number of global warming 

events in Earth’s past. Geologically recently, during the last ice age in Pleistocene some of 

the interglacials are associated to a series of large methane releases (Maslin et al. 2004). 

Also the end of this cold period, about 14ka ago, is sometimes linked to clathrate 

decomposition (Kenvolden, 1993). Going further in the past, active role of gas hydrates 

decomposition is suggested for the latest Paleocene warm period (Dickens et al. 1997), 

mass extinctions from Cretaceous-Tertiary boundary (Max et al. 1999) and possibly the 

greatest annihilation of life on Earth at Permian-Triassic boundary (Benton and Twitchett, 

2003).  
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1.2.2 Solar System 

The presence of clathrate hydrates in planetary systems is a subject of long debate but 

up to now no direct proof of their existence has been provided. From existing publications 

discussing this issue, two distinct groups emerge: (1) The first one is linked to the 

primordial material formed with the Solar system. (2) The second one considers an 

existence of gas hydrates in evolved, mature bodies (Chapter 2, 5). 

Successive cooling of the nebula during the accretion eventually pushed the 

temperature sufficiently down to bind water vapor and other volatiles in form of ices. Yet, 

presently observable differences in chemical and isotopic composition of volatiles in 

different parts of the Solar System cannot be explained by simple condensation and the 

form in which water and other volatiles occur have to be taken into consideration 

(Delsemme, 1983), (Notesco et al. 1999), (Notesco et al. 2002), (Iro et al. 2003), (Mousis 

and Alibert, 2006), (Alibert and Mousis, 2007). Among different hypothesis explaining 

mentioned inhomogeneity, a theory of clathrate formation from condensation (Lunine and 

Stevenson, 1985) has been postulated. Based on thermodynamic calculations and handful 

of experimental results, authors suggested that gas hydrates may be formed directly from 

condensing water and gas (e.g. CH4, CO, Ar, Kr, Xe) within temperatures as low as 60K. 

One has to be aware that available formation experiments by deposition at 82K (Barrer and 

Ruzicka, 1962) or from water ice at 90K (Delsemme and Wenger, 1970) were not even 

close to postulated minimal temperature. Such approach already at that time caused serious 

doubts (Lewis and Prinn, 1980), since the hydrate formation is an activated process and 

great kinetic barrier at so low temperatures is to be expected. In spite of this obvious 

limitations a number of authors still consider this theory as a plausible scenario of trapping 

gases at very low temperatures during accretion of the outer Solar System e.g. (Iro et al. 

2003), (Mousis and Alibert, 2006), (Alibert and Mousis, 2007). In course of time a theory 

of gas adsorption in amorphous ice has been postulated (Owen and Bar-Nun, 1995) that do 

not suffers from the very low temperature inhibition and can reasonably well reproduce 

binding properties of clathrates. Even if competitive in many ways to the gas hydrates 

condensation hypothesis, it does not completely neglect clathrate existence in 

extraterrestrial ices (Jenniskens et al, 1995). An annealing of amorphous ice in presence of 

sufficient amount of gas or mixture of gases at higher temperatures, about 130K 

(Richardson et al. 1985), (Blake et al. 1991), (Jenniskens et al, 1995) may eventually 

transform into gas hydrates, which makes this mechanism useful for larger icy moons or 

wandering bodies like comets. Even so, small planetismals orbiting at the frigid outskirts 
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of our Solar System would stay unaffected. Lately, even this process has been questioned 

(Notesco and Bar-Nun, 2000). 

More evolved bodies, like icy moons and planets create another group of possible 

locations for clathrate hydrates. A unique environment and chemical composition of 

volatiles in each case requires a new scenario for the formation process. Large icy moons 

belonging to the Saturian and Jovian systems may be a good example. Europa’s shell of 

substantial thickness and underlying deep ocean of liquid water as it is generally accepted  

e.g. (Kargel et al. 2000a) theoretically create suitable environment for clathrates formation 

of gases such as O2, SO2, CO2, CH4 (Crawford and Stevenson, 1988), (Prieto-Ballestros et 

al. 2005), (Hand et al. 2006). Although, the existence of these hydrates stay essentially as 

unconfirmed speculation, O2 deserves here for special attention. Molecular oxygen is 

formed during radiolysis of water in a proximity to the surface and essentially contributes 

to the moon’s thin atmosphere and Jovian plasma (Hand et al. 2006). Even though, in 

infrared spectra it is found to be in the solid form (Spencer and Calvin, 2002). It is 

particularly puzzling since the temperature of the first few meters into the icy regolith is 

too high (70-130K) for O2 ice to be stable. Although there are attempts to explain this fact 

by O2 mechanically trapped in ice (Johnson and Jesser, 1997), up to now the only plausible 

explanation might be found only in mixed clathrate cages (Hand et al. 2006). Next broadly 

discussed moon, in terms of clathrate occurrence, is Titan where within thick nitrogen 

dominated atmosphere, a considerable amount of methane has been detected during 

Voyager 1 flyby (Hanel et al. 1981) and lately firmly constrained by Cassini-Huygens 

mission (Niemann et al. 2005), (Waite et al. 2005). CH4 as highly susceptive to photolysis 

would not be able to survive longer than 10-100 million years e.g. (Atreya et al. 2006) 

without a replenishing mechanism. At this place several theories step forward but there are 

still controversies around them (see Atreya et al. 2006 for full review). Among others e.g. 

(Niemann et al. 2005), (Kress and McKay, 2004), (McKay and Smith, 2005), a source of 

methane were pointed in the accretion of the moon from planetismals containing methane 

clathrate (Alibert and Mousis, 2007). Yet, in light of present knowledge, it is rather 

doubtful scenario. Apart from the gas origin, the present (and dominating) view on the 

composition of Titan’s present crust and mantle also takes CH4 hydrates into consideration 

as a plausible reservoir harboring methane (Loveday et al. 2001a), (Loveday and Nelmes, 

2003), (Osegovic and Max, 2005), (Atreya et al. 2006), (Tobie et al. 2006). Along with 

studies of Titan, a new interest in another Saturn’s satellite arose, namely Enceladus. This 

small moon shows evidences of an active cryo-volcanism or venting system that feeds 
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Saturn’s E ring with icy material (Porco et al. 2006). The peculiarity of this phenomenon 

lays in its unknown source and mechanism. Aside from ideas involving boiling liquid 

water exposed to vacuum (Porco et al. 2006), a rapid decomposition of clathrate by sudden 

decompression (Kieffer et al. 2006) has been suggested. Presently, both warm and cold 

theories are extensively discussed (Kerr, 2006), (Huford et al. 2007), (Matson et al. 2007), 

(Nimmo et al. 2007), (Spencer and Grinspoon, 2007), but scarce data prevent form 

reaching the final conclusions. 
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Chapter 2 – Mars 
A proper understanding of the 

results coming from this work require 

from the reader some basic 

knowledge about the present and past 

Martian environment. Unfortunately, 

the popularity of the Red Planet in the 

modern planetary science is also its 

curse. A countless number of 

publications make a comprehensive 

review very difficult to write. From 

the point of view of this thesis, the 

most important is the history of 

Martian water and CO2. Yet those 

elements are tightly entangled with 

the rest of Martian environment 

through such variables like e.g. initial content of water and gases, accretion and out 

gassing, the lifetime of the global magnetic field or atmosphere striping (Fig. 26). 

Therefore, a broader introduction is indispensable. In the first part, the reader will find a 

short review of Mars exploration. Extended version this fascinating story one can find in a 

numerous books on Mars e.g. (Sheehan, 1996). Next subchapters present results from the 

past and present missions. The last part will contain a compilation of ideas and hypothesis 

concerning presence of gas hydrates on the Red Planet and their possible role in the 

environment.  

 

2.1 History of Mars exploration 
Mars is one of the planets that is known from ancient times thanks to its very high 

brightness (-2,9 magnitude) on the night sky, that is surpassed only by Venus, Moon and 

sometimes Jupiter. Its present name, after the Roman god of war, comes from hematite dust 

that gives it a characteristic reddish or bloody color well visible with naked eye. It is 

interesting to note that the idea of planet’s divine patron related to fire or war is much older 

than Roman civilization. In ancient Babylon, a name of the Red Planet was Nergal from 

their god of war, fire and destruction. It was probably adopted by Mediterranean 

 

Fig. 26) Schematic graph of dependences between 
various elements of the Martian realm (Jakosky and 
Phillips, 2001).   
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civilizations like Egyptian (Hr-Dšr – Horus the Red), Hebrew (Ma'adim – the one who 

blushes) or Greek (Ares) and later on brought to Rome and again renamed to Mars. It is not 

clear how strong relations were between ancient civilizations but a similar pattern can be 

observed all around the world (Hindu: Mangala/Bhauma/Angaraka- “one who is red in 

color”, Chinese, Japanese, Korean and Vietnamese: 火星 – “fire star”). Numerous 

observations of Mars’ passages were recorded through centuries in Europe (among others 

by Aristotle, Galileo), far east (e.g. in Babylon), India and East Asia. There are also hints 

that South American civilizations possessed considerable observational knowledge about 

Mars but a great deal of it has been lost forever during conquistas.  

A new era in observations has been opened by a development of first advanced optical 

devices, in the XIX century. In September 1877, during a perihelic opposition of Mars, the 

Italian astronomer Giovanni Schiaparelli constructed a first “detailed” maps of Martian 

surface (Fig. 27), within the limits of resolution. Several features introduced in 

Schiaparelli’s creation, survived till modern times (e.g. Tharsis, Elysium, Syrtis Major) 

giving a birth to present Martian nomenclature. Also in that time, a network of 

controversial canali, observed on Mars, ignited a vigorous discussion about the 

extraterrestrial life that goes on even now (see section 1.5). In course of time increasing 

Fig. 27) Giovanni Schiaparelli's map of Mars (1877-1886), with famous channels. Reproduction 
from "Flammarion, La Planhte Mars" 1888. North of the map points downward (Source: 
NASA). 
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resolution of ground based telescopes allowed for revision and considerable reconstruction 

of older Martian maps.  

The next great leap in our knowledge about Mars is dated on early 1960s with the first 

space exploration programs that were launched in the atmosphere of a space race between 

USA and Soviet Union (presently Russia).  An early politics of these two countries was 

based on multiple missions of twin probes lunched one after another one in a narrow time 

window. Therefore the reader should not be surprised by indeed enormous list of Martian 

space missions, found in the literature, surpassed only by Earth and Moon related 

programs. Yet, among 46 spacecrafts/landers sent to Mars (including two Phobos probes) 

only 19 reached the planet and conducted the planed tasks. This great discordance is often 

termed as a Martian curse or Martian Bermuda triangle. The first attempts were made by 

Russians with a series of six probes: Marsinik 1, 2 (Mars 1960A, Mars 1960B), Mars 1, 

Sputnik 22, 24 (Mars 1962A, Mars 1960B) and Zond 1964A. None of them ever reached 

Mars (to be precise only Mars 1 succeeded in leaving Earth’s orbit). Also the first 

Fig. 28)   Images of the Mars’ surface from the early missions: A) The very first close-up of 
Mars - Mariner 4, B) Promethei Sinus - Mariner 9, C) The north polar cap - Mariner 9, D) Flow 
features-Nirgal Vallis-Mariner 9 (Courtesy NASA/JPL-Caltech and NSSDC). 

A B 

C 

D 
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American attempt, Mariner 3, shared the same fate. In spite of this failure, in 1965 its twin 

spacecraft, Mariner 4, successfully passed the Red Planet in a close flyby and transmitted 

the first close-ups of Martian surface (Fig. 28 A). These images, although of a limited 

quality, confirmed what was suspected already for a long time; Mars was a cold and dry 

planet with water locked at the poles (Fig. 28 B, C,). Subsequent successful flybys in 1969 

(Mariner 6, 7) and later missions additionally grounded this image but also provided first 

evidences for past water or other liquid activity on Mars (Fig. 28 D). A next step, in the 

exploration, has been made by orbiters and first attempts to settle automated landers and 

rovers on the surface. The first probe successfully placed on the orbit around Mars 

belonged to USA (Mariner 9 in 1971). It arrived on Mars two weeks before a Russian 

probe, Mars 2 that carried also a lander module. An attempt to deploy the device ended 

with a crash that came into history as the first human made parts that touched the Martian 

surface. For the first truly successful landing one had to wait till famous Viking twin 

mission in 1976 that that provided first images of barren Martian desert covered with 

basaltic blocks (Fig. 29). Both landers were functional for extended period of time (Viking 

1 till 1982) providing priceless data on Martian weather. In spite of this obvious success 

Mars was deserted for nearly 13 years. A great impact on this pause had the collapse of 

Soviet Union in early 1990s that brought the space race to an abrupt end. A next successful 

mission (MGS-Mars Global Surveyor) arrived to Mars as late as in 1996 and was followed, 

a year later, by Mars Pathfinder, the first successful rover mission. Presently there are three 

orbiter missions operating over the planet (Mars Odyssey, Mars Express and MRO-Mars 

Reconnaissance Orbiter) and two rovers on the surface (Spirit and Opportunity). It is also 

worthwhile to mention that the newest lander mission (Phoenix Lander) was launched in 

4th of August of this year (2007) safely reach Mars, and already sends data.  

 

 

 

Fig. 29)   Rocky desert on Utopia Planitia landing site, northern plains – Viking 2 lander. 
(Courtesy NASA/JPL-Caltech). 
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2.2 Mars in numbers and figures 

 

 

 

 

 

 

 

 

 

 

 

 
 

Mars, the fourth planet in the Solar system, is often referred as very similar planet to 

Earth (see comparison in Table 2) (Read and Lewis, 2004). The distance from the Sun is on 

average close to 1.5AU but due to the considerably big eccentricity of Mars’ almost ideally 

circular orbit (Fig. 30) the real distance varies from 1.66AU (aphelion) to 1.38AU 

(peryhelion). As a consequence of the greater distance from the Sun, Martian orbital period 

takes 686.98 terrestrial days, which is nearly two times (1.88) longer than Earth needs to 

complete the orbit. Mars rotates around its axis with the period of 24h 40min (1sol), which 

Fig. 30)   Model of the inner Solar System (left) with well visible eccentricity of Mars’ orbit. 
Earth and Mars size comparison (right) (Courtesy NASA/JPL-Caltech). 

 

Table 2)   Similarities and differences between Earth and Mars (Read and Lewis, 2004). 

Earth Mars

Mean orbital radius (1011m) 1.5 2.28
Distance from Sun (AU) 0.98-1.02 1.38-1.67
Orbital eccentricity 0.017 0.093
Planetary obliquity 23.93° 25.19°

Rotaiton rate (10-5/s) 7.294 7.088
Solar day (s) 86.4 88.775
Year length (sol) 365.24 668.6
Year length (Earth days) 365.24 668.98

Equatorial radius (106m) 6.378 3.396

Surface gravity (m/s2) 9.81 3.72
Surface pressure (Pa) 101300 600 (variable)
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is close to 23h 56min long Earth day. The tilt of the axis is again similar, 25.19º against 

terrestrial 23.93º. As it will be also discussed later (see 2.5) this close agreement is 

coincidental. Martian obliquity (tilt) was changing in a very broad range between 10 and 

40º on a 105 year time scale reaching even 60º on a 107 year time scale. Projection of those 

changes, on the distant past, beyond ~10Myr is hindered by large uncertainties in orbital 

parameters. The tilt of Earth’s spin axis is greatly stabilized by a mass of Moon (Laskar 

and Robutel, 1993), (Touma and Wisdom, 1993). The same cannot be said for the Red 

Planet that is encircled by two small natural satellites: Phobos (11.1km mean radius) and  

Deimos (6.3km mean radius). Their non-spherical size and low density (~2.0 g/cm³) 

suggest that those bodies are in fact captured asteroids, most likely of carbonaceous 

chondrite composition. The planet’s average radius is close to 3400km, which is about 

twice less than our planet (Fig.30). With the smaller size, and the mean density of 3.934 

g/cm³ Martian gravity is about 38% of the terrestrial. Present atmosphere is composed 

almost entirely from CO2 with small amount of nitrogen and argon. The rest of gases do 

not exceed 1% (Table 3). An average atmospheric pressure at the surface is very low in 

comparison to Earth and varies around 6mbar (0.6kPa) (Read and Lewis, 2004). Such 

tenuous atmosphere cannot support elevated surface temperatures that extend from ~140K 

at the pools to ~295K in equatorial region. The average amount of atmospheric water vapor 

is very low but stays close to saturation. It is usually represented by a global layer of 

~10µm thickness (Read and Lewis, 2004), (Fouchet et al. 2007). Any liquid water exposed 

to the atmosphere would boil off or freeze as it is thermodynamically unstable e.g. 

(Haberele et al. 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3)   Composition of the Martian atmosphere (Williams, 2004), *(Formisano V, public 
information), ** (Formisano et al. 2004). 
 

Atmospheric constituents

CO2 95.32 % H2O 210 ppm

N2 2.7 % NO 100 ppm

Ar 1.6 % He 2.5 ppm
O2 0.13 % HDO 850 ppb

CO 0.08 % Kr 300 ppb
CH2O* 130 ppb

Xe 80 ppb
CH4** 10 ppb
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2.3 Mars’ surface and internal structure 
Present knowledge about the internal structure is based largely on remote sensing 

techniques, landers and meteorites (SNC): shergottites, nakhlites, and chassigny 

(commonly believed as fragments of Martian crust ejected during large impacts – e.g. 

Nyquist et al. 1979 , Jagoutz, 1991, Head et al. 2002). On this basis, it has been generally 

accepted that Mars, perhaps like other planets from the inner Solar System, have a 

differentiated interior where core, mantle and crust can be distinguished (Fig. 31). The 

segregation in layers gives a rise for thermally or/and chemically driven convection that 

eventually might lead to a global magnetic field generation (see 2.4). 

 

 

2.3.1 Core 

The mean density and moment of inertia that can be measured by probes from the 

orbit suggest large similarities to a scaled Earth model (Stevenson, 2001). Following this 

assumption, the core has been formed due to a gravitational differentiation of immiscible 

iron and silicates at the early stage of planet’s accretion. Based on 146Sm, 182Hf, 142Nd, 182W 

e.g. (Harper et al. 1995), (Lee and Halliday, 1997), (Kleine et al. 2004), (Foley et al. 2005), 

derived from SNC meteorites, the time for core-mantle separation was very short. The 

Fig. 31)   Model of Mars’ interior. A) Core, B) Mantle, C) Crust (Source: PSN National 
Science Center, Malaysia, www.psn.gov.my). 

A B C 
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presently accepted value is 10 - 12My years after the formation of the Solar System 

(Blichert-Toft et al. 1999), (Shih et al. 1999), (Kleine et al. 2004), but even a shorter period 

has been suggested (Yin et al. 2002), (Jacobsen, 2005). Heat needed for an extensive 

melting and possibly formation of magma ocean e.g. (Elkins-Tanton et al. 2005a), (Elkins-

Tanton et al. 2005b), (Médard and Grove, 2006), could have been provided through the 

kinetic energy of impacting bodies e.g. (Wetherill, 1990), (Agnor et al. 1999). An influence 

of decaying radioactive elements, like 26Al, seems to be insignificant at this early stage of 

evolution (Elkins-Tanton et al. 2005a). Recently refined moment of inertia (Sohl et al. 

2005) and tidal deformations data (Yoder et al. 2003) allow for the core radius estimation, 

with considerable precision, between 1520 and 1840km taking 3390km as a mean 

planetary radius (Stewart et al. 2007). Although, there are indications (Yoder et al. 2003) 

for a still relatively hot and at least partially molten core, it is still unclear if a solid inner 

core is developed. Evolutionary models propose several solutions e.g. (Stevenson, 2001), 

(Fei and Bertka, 2005), (Sohl et al. 2005), (Stewart et al. 2007) that are strongly correlated 

with core’s chemical composition. The most often invoked constituents in terrestrial 

planets are iron with small amount of nickel and some light element like sulfur or silicon 

(Gessmann et al. 2001), (Li and Agee, 2001), (Sohl et al. 2005), (Stewart et al. 2007). 

 
2.3.2 Mantle 

The mantle is even less understood. Additionally to a large variation in possible 

chemical composition (see review in Médard and Grove, 2006), difficulties arise also from 

the history of mantle formation. Possibly, the most widely accepted chemical composition 

model (Dreibus and Wänke, 1985), derived from SNC meteorites, seems to confirm a 

hypothesis of two distinct sources that took a part in terrestrial planets accretion 

(Ringwood, 1977), (Wänke, 1981). Proposed components are: A) chondrites with reduced 

chemical components (e.g. enstatite chondrites), B) volatile rich carbonaceous chondrites 

(Dreibus and Wänke, 1985). Quick, homogenous accretion from such elements would 

cause partial oxidation of more reduced components thus binding them before segregation 

could take a place. Fe, Cr and Mn enrichment in SNC meteorites seems to be in accordance 

with this scenario (Dreibus and Wänke, 1985). Moreover, high volatile content in 

component B would effectively support partial melting by lowering solidus temperature 

(Médard and Grove, 2006) that eventually lead to magma ocean formation and 

homogenization of upper 700-1500km of Mars  (Righter et al. 1998), (Elkins-Tanton et al. 

2005a), (Elkins-Tanton et al. 2005b). Even though, close analyses of SNC meteorites 
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suggest that some parts of the 

mantle could retained 

heterogeneous domains (Foley et 

al. 2005) that were later on magma 

sources for shergottites, nakhlites, 

and chassigny. Although present 

Martian mantle is “dry”, it cannot 

be excluded that at the early stage 

of evolution it contained 

appreciable amount of water 

(Médard and Grove, 2006) that 

supports thermal convection by 

decreasing melt’s viscosity. 

Presently, a minor amount of water 

(several ppm) from homogeneous 

accretion might be still bound in 

nominally anhydrous crystal 

phases (Médard and Grove, 2006). 

High pressure experimental studies 

on present Martian mantle 

compositional models, although 

based on different assumptions, 

yield similar mineralogical assemblages e.g. (Bertka and Fei, 1997). Upper Martian mantle 

is thought to be dominated by olivine, (ortho- and clino-) pyroxens and garnet (Fig. 32). At 

about 9GPa, orthopyroxene become unstable. Close to 13.5GPa, due to high Fe content, 

olivine transforms partially to ringwoodite marking the beginning of the Martian transition 

zone (in Earth’s upper mantle olivine transforms to wadsleyite and later to ringwoodite). A 

small increase in pressure, to 14GPa, causes transformation of olivine and ringwoodite into 

wadsleyite accompanied by clinopyroxene and high pressure garnet (majorite). From about 

15GPa, ringwoodite is formed in expense of wadsleyite and clinopyroxene. The last one is 

completely consumed at about 17GPa. In Martian condiitons, where pressure increases 

much slower with depth than in Earth’s mantle, the phase transitions between (Fe,Mg)SiO4 

polymorphs are likely to form diffusive boundaries. Close to the core/mantle boundary 

another transition that marks the beginning of the lower mantle is predicted. If the 

Fig. 32)   Mineralogical model of the Martian mantle. 
Ol - olivine, Sp (γ) – ringwoodite, β-phase – wadsleyite, 
Opx – orthopyroxene, Cpx – clinopyroxene, Gt - garnet, 
Maj – majorite, Mw – magnesiowüstite, Mg-Pv – 
magnesium perovskite (Bertka and Fey, 1997).   
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temperature is high enough and if current values for the core radius (Sohl et al. 2005) are 

close to the reality, an existence of the lower mantle becomes plausible. The assemblage of 

ringwoodite and partially majorite is replaced by magnesiowüstite, perovskite and 

majorite. 

 
2.3.3 Crust 

Unlike the core and mantle, Martian crust is much easier subject of investigation. 

Gravimetric and topographic data (Fig. 33 A) defines the maximum crustal thickness on 

not greater than 150km (Sohl et al. 2005) with the average value between 30 and 80km 

(McGovern et al. 2002), (Wieczorek and Zuber, 2004). These results are consistent with 

geochemical data retrieved from the SNC meteorites (Norman, 1999) and in-situ 

measurements (McLennan, 2001). Generally, younger surfaces overlay regions with 

thinner crust. Older surfaces match closely to the regions with thicker crust (Fig. 33 A, B). 

The lowest crustal thickness marks old, large impact basins (e.g. Hellas, Utopia, Isidis) 

(Fig. 33 A, C). A large volcanic province, Tharsis, with four large shield volcanoes 

(Olympus Mons, Arsia, Pavonis, Ascreaus) (see Appendix 1) marks another characteristic 

feature of the Martian surface where the thickest crust has been detected. The considerably 

large thickness on southern hemisphere rapidly decreases while moving to the northern 

hemisphere. The division is often referred as Martian dichotomy. Its origin is widely 

discussed (see review: Zuber, 2001, Solomon et al. 2005) but no conclusions have been 

reached yet. What is also intriguing, the dichotomy is not only in crustal thickness and age 

but also in hypsometry (Fig. 33 C) as well as in chemical composition. The bulk of crust is 

generally composed from basalts and possibly basaltic andesites. Old southern heavily 

cratered highlands are most likely composed from products of primitive magmas. Products 

of more evolved magma, andesitic rocks are suspected to build the relatively smooth 

younger northern plains. A presence of the basaltic andesites is still a subject of debate 

(Bandfield et al. 2000), (Wyatt and McSween, 2002), (Rogers and Christensen, 2003), 

(Chevrier and Mathé, 2007), (Karunatillake et al. 2007), since the formation process would 

have required an environment similar to the one in a terrestrial subduction zone. This 

analogy supports an idea of plate tectonics that perhaps was present at the early stage of 



41 
 

 

Fig. 33)   A) Martian crustal thickness, B) Approximate surface ages, C) Topography map with 
major regions marked (Solomon et al. 2005). More detailed shaded relief map in Appendix 1. 

A 

B 

C 
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Martian evolution (Sleep, 1994), (Fairén and Dohm, 2004), (Lenardic et al. 2004). This 

very much intriguing hypothesis neatly explains water transport into the mantle thus 

supporting partial melting and more evolved magmas generation. Plate tectonics is also a 

very effective interior cooling mechanism that stimulates mantle and core convection. 

Although such short activity cannot be completely rejected in the early Martian history e.g. 

(Nimmo and Stevenson, 2000), surface dating at least for southern hemisphere, based on a 

crater counting method (Hartmann and Neukum, 2001) seems to diminish its extent. 

Retrieved ages are close to a value obtained from ALH84001 meteorite that is considered 

as a fragment of an ancient crust (4-4,5Gyr –Nyquist et al. 2001, Weiss et al. 2002). 

Shergottites, that crystallized much later (0.15-1.3Gyr- Chen and Wasserburg 1986, 

Jagoutz, 1991), show only a little change in geochemical markers. This line of evidences 

suggests that the crustal recycling, if ever existed, was strongly limited. Presently Mars is 

assumed to be a single plate planet (Solomatov, 1995), (Grasset and Parmentier, 1998), 

(Spohn et al. 2001) covering a dry, low viscosity mantle where subduction is not possible. 

Although, rifting related magmatism is very unlikely in the stagnant lid convection regime, 

it does not mean that there was no volcanic activity on Mars in later periods. The most 

prominent example is, as already mentioned, Tharsis related volcanism. Although, a 

mechanism that lead to such a focused magmatism, remains a mystery, it is reasonable to 

assume its plume affinities even if present models cannot reproduce this feature (see 

review: Solomon et al. 2005). Recurring throughout the time a volcanic activity emplaced 

an old crust (Arkani-Hamed, 2004), (Johnson  and Phillips, 2005), with 20-30km thick lava 

layers covering about 25% of the total planet’s surface (Anderson et al. 2001).  

 The surface mineralogy, although dominated by olivine, pyroxenes and mafic 

feldspars, shows also products of alteration (Fig. 34). Initial determination by landers 

(Viking 1 and 2, Pathfinder) and orbital spectroscopy e.g. (TES-MGS, THEMIS-Mars 

Odyssey, OMEGA-Mars Express) has been significantly refined by the recent rover 

missions (Spirit, Opportunity) (see review: Chevrier and Mathé, 2007). In the investigated 

areas rovers found weathering products of mafic minerals (e.g. talc, iddingsite), clay 

minerals (e.g. nontronite, montmorillonite), sulfates (e.g. jarosite, gypsum, kiserite) and 

iron compounds (e.g. hematite, goethite). All those findings provide important clues for 

water activity and ancient climate reconstruction leading to the current state (see 2.5). 



43 
 

 

2.4 Magnetic field 
Presently, Mars do not possess an intrinsic global magnetic field (see review 

Connerney et al. 2004). Even though MGS detected and mapped (Fig. 35) a strong remnant 

magnetization of the crust (Acuña et al. 1998), (Acuña et al. 1999). Its extent coincides 

mostly with the old southern highlands. It is commonly believed that these magnetic 

anomalies have been formed through magnetization of iron bearing minerals like 

magnetite, hematite or pyrrhotite e.g. (Kletetschka et al. 2000), (Arkani-Hamed, 2005) 

Fig. 35)   Map of remnant crustal magnetism at an altitude of 400 ± 30km (Solomon et 
al. 2005).  
 

A 

B 

Fig. 34 A) TES-MGS albedo map, B) Surface mineralogy of Mars. Older terrains are richer in 
mafic minerals (blue/white) in contrary to younger units that show signs of aqueous alterations 
(green) (Modified after Clark and Hoefner, USGS, http://speclab.cr.usgs.gov). 
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when the core dynamo was still active e.g. (Arkani-Hamed, 2004). Large impact basins, 

young Tharsis volcanic province and almost whole northern plains (Fig. 35) are free from 

coherent magnetization. This observation requires that Martian dynamo ceased to operate 

before the mentioned features have been formed. A precise estimation of this particular 

moment is of key importance for Martian atmosphere evolution and thus volatile (e.g H2O 

and CO2) abundance calculations (see 2.5). Therefore, important questions are: how did the 

dynamo start to operate and how or when turned off? A magnetic field is generated by a 

convective flow of electric-conducting liquid metal in a core e.g. (Connerney et al. 2004). 

The convection can be initiated by a thermal or chemical contrast (Fig. 36). Either an 

initial core temperature must be higher than the one in the mantle or an inner core has to 

grow e.g. (Breuer and Spohn, 2003), (Breuer and Spohn, 2006). In order to support 

convection with a resulting magnetic field, mantle cooling must be efficient. Heat removal 

depends on: 1) planet’s tectonic regime (plate tectonic or stagnant lid), 2) size of the planet, 

3) amount of volatiles in the mantle, 4) thickness of the mantle. In light of present 

knowledge, Mars most likely possessed an early thermally driven dynamo. Due to 

increasing difficulties in heat removal through a dehydrated stiff mantle and stagnant lid, it 

ceased to operate after hundreds of millions of years. From that event the Red Planet 

remains in a transient stage to a chemically driven dynamo generation (Fig. 36). It is 

worthwhile to notice that either thermally or chemically based model allow for a short 

period of plate tectonic also inferred by other authors (see 2.3.3). Recent analyses of 

magnetic anomalies (Arkani-Hamed, 2001), (Arkani-Hamed and Boutin, 2004), (Hood et 

al. 2005) aside from revealing magnetic field reversals, allow establishing an approximate 

 

Fig. 36) Simplified evolutionary model of the Martian core with an early thermally driven 
dynamo (left) and theoretical future chemically driven on (right) in comparison to other 
terrestrial planets (Courtesy Doris Breuer). 
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position of ancient global magnetic pools. If one assumes that there was no significant 

plate movement and the magnetic dipole is roughly aligned with the planetary spin axis, 

similarly to Earth, Mercury, Jupiter or Saturn, localization of Martian ancient pools become 

feasible. The positions, although still imprecise, has been determined between present 

Mars’ spin axis and Olympus Mons (Hood et al. 2005). The shift to the present position is 

approximately 50-60 degrees. This result is in close agreement with paleopole estimations 

prior to Tharsis gravity anomaly formation (Melosh, 1980). 

 

2.5 Volatiles and Martian climate evolution 
The image of Mars underwent a significant change since the beginning of the era of 

space flights. Initial barren, cold desert world has been gradually replaced by geologically 

still active planet with an intriguing history shaped by impacts, lavas and liquids under a 

CO2 dominated atmosphere (Fig.37). Dating methods (crater counting and superimposition 

relations) implemented on the surface established three distinct epochs (Noachian, 

Hesperian and Amazonian) in the surface evolution (Hartmann and Neukum, 2001). In 

order to explain the observed features two contradictory evolutionary concepts have been 

proposed. The first one that is presently favored and proposes a warm young Mars where 

liquid water was and perhaps still is an active agent in the surface processes. This model 

4.6                 4.0                                        3.7                          1.0                                  0 
                         

Time (Gyr before present) 
 

Fig. 37) Evolutionary timeline for Mars with three main geological epochs. The youngest, 
glacial and fluvial features are not included (modified after Jakosky and Phillips, 2001).  
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here is referred as the “Blue Mars” hypothesis. The second one, known as the “White 

Mars” hypothesis, assumes cryogenic conditions on Mars from the accretion till now. In 

this scenario, the liquid that left clear marks on the surface is not water but liquid CO2 and 

gas supported density flows. Even if in light of present knowledge, this scenario is rather 

unlikely, it touches a several interesting points that are difficult to explain by the “Blue 

Mars” model. Although both evolutionary pathways include clathrates into discussion (see 

2.6), this subchapter will only introduce possible environments where those compounds 

could be formed and/or decompose.  

 
2.5.1 Blue Mars 

Numerous images of river networks from the southern highlands, massive outflow 

channels and other flow features have been interpreted as relicts of flowing water e.g. 

(Baker, 2001), (Masson et al. 2001), (Kargel, 2004). In several publications, authors 

discuss also an existence of long standing bodies of water or even an ocean e.g. (Lucchitta 

et al. 1986), (Parker et al. 1989), (Baker et al. 1991), (Carr, 2000), (Kargel, 2004).  

Such hypotheses demand a climate much different from the one observed now. With 

an initial solar heat flux ~ 20-30% weaker than now (Newman and Rood 1977), surface 

liquid water had to be stabilized by a thick and warming primordial atmosphere. The role 

of such efficient greenhouse gases like NH3, CH4 was most likely strongly limited by their 

short lifetime under the strong UV radiation (Pollack et al. 1987), (Kasting, 1991) from 

very young Sun. In such a situation the reader should not be surprised that most of the 

climate evolution models relay on CO2, water vapor and the radiative effect of clouds as 

warming agents (Pollack et al. 1987), (Kasting, 1991), (Haberle et al. 1994), (Pepin, 1994), 

(Carr, 1999), (Colaprete and Toon, 2003), (Manning et al. 2006). Other primordial 

components like H2, N2 and noble gases essentially do not participate in warming effect. 

Moreover, light gases like He or H2 were quickly lost through a thermal and hydrodynamic 

escape (Fig. 37). The limits of the atmospheric pressure vary strongly for different models 

but do not exceed 10bar (1MPa) e.g. (Haberle et al. 1994), (Manning et al. 2006). Under 

such an atmosphere, liquid water could be indeed stable at most of the surface. Dendritic 

river networks (Fig. 38) with characteristic V-shaped valleys from this period bear a close 

resemblance to those formed by runoff of water on Earth. Yet, a lower number of 

tributaries e.g. (Carr and Clow, 1981), (Cabrol and Grin, 2001) cast some doubts on the 

means of water supply that might be different from terrestrial analogs where precipitation 

is the most widespread mechanism. In Martian case the most often invoked are seepages of 
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water from underground sources replenished by the basal melting of the polar caps 

(Clifford, 1987) and/or juvenile water (Carr, 1983). Recent analysis of MGS laser altimetry 

(MOLA) data shows some evidences for smaller tributary valley systems that are barely 

recognizable on surface images (Kargel, 2004). This finding might add at least limited 

precipitation to the list of recharging mechanisms and thus shift Martian river pattern 

closer to the one we know from Earth. Such an extensive surface water system might have 

been connected to long standing bodies of water like lakes or even a sea e.g. (Lucchitta et 

al. 1986), (Parker et al. 1989), (Baker et al. 1991), (Parker et al, 1993),  (Carr, 2000), 

(Clifford and Parker, 2001). Up to now a numerous craters, valleys and depressions have 

been proposed to be standing water reservoirs (Cabrol and Grin, 1999). The greatest 

reservoirs of surface liquid water have been suggested to exist on the Northern Plains 

and/or Hellas Basin including the most extreme variant, so called Oceanus Borealis (Parker 

et al. 1989). Its existence is a subject of long standing discussion starting in the middle of 

80’s (see Kargel, 2004). Based on imagery of the planet, an interpretation of certain surface 

features as paleo shorelines (Fig. 39) e.g. (Lucchitta et al. 1986), (Parker et al. 1993), 

(Clifford and Parker, 2001) became a main proof for the globally extended water reservoir. 

Reexamination of the hypothetic coastline structures with MOLA data do not provide the 

Fig. 38) Fragment of Nanedi Valles (Xanthe Terra) most likely formed by a continuous flow of 
liquid. Observed meandering valleys are 0.8-0.5km deep with steep walls and flat floor. Scale bar - 
20km (Source: ESA/DLR/FU Berlin/G. Neukum). 

NNN   
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final answer but seem to negate the existence of certain shorelines (Malin and Edgett, 

1999) and show the inconsistency in the constant geopotential surface between the features 

(Head et al. 1998), (Head et al. 1999).   

 
Fig. 39) Fragment of “Arabia Shoreline” east of Cydonia Mensae (36.35°N, 9.14°W) with a 
number of ridges parallel to the dissected highlands. The difference between the lowest and 
highest terrace is about 300m (Clifford and Parker, 2001). 

The present pressure (~6mbar), which is much lower than in above assumptions, 

suggest that at some point of Martian history the Red Planet has been almost striped from 

its atmosphere thus reducing the greenhouse effect to barely ~5K (Pollack et al. 1987), 

(Hoffman, 2000a). The initial atmosphere has been strongly affected by a massive 

bombardment of dust and space debris through the Noachian period (Pavlov and Pavlov, 

1998), (Hartmann and Neukum, 2001), (Kring and Cohen, 2002). The kinetic energy of 

larger asteroids was sufficient to jettison a considerable amount of gas into space upon 

numerous impacts (Melosh and Vickery, 1989). Estimated atmospheric losses suggest that 

50-90% of the primordial atmosphere has been lost (Brain and Jakosky, 1998). Adsorptions 

in the regolith and formation of carbonates are other commonly proposed atmospheric 

sinks but in these cases CO2 at certain conditions (temperature/pressure dissolution) may 

be recycled back to the atmosphere e.g. (Kahn, 1985), (Carr, 1999), (Manning et al. 2006). 
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The erosive effect of the solar wind probably through the greatest part of Noachian was 

minimized by a protective global magnetic field. The precise moment of its shut down is 

no clear but most likely it has happened close to the end of Noachian (~3,8Gyr) (Fig. 37), 

before the formation of large impact basins that are free from remnant magnetization (see 

2.2.3). Not shielded atmosphere underwent gradual erosion through pick-up ions, thermal, 

non-thermal and hydrodynamic escape. Its effect is observed nowadays in the isotopic ratio 

of the atmospheric gases e.g. (Jakosky and Jones, 1997), (Jakosky and Phillips, 2001). The 

local heating upon impacts (Segura et al. 2002a), (Segura et al. 2002b), with a constant 

supply of gasses from volcanic sources (mostly Tharsis region) and space debris, was able 

at least to partially counterbalance the atmosphere striping, could not stop the cooling. 

Progressive thinning of the atmosphere lead to its final collapse along with CO2 ice polar 

caps formation e.g. (Haberle et al. 1994), (Yokohata et al. 2002), (Manning et al. 2006).  

At the dawn of Noachian era, geomorphologic records show a change from the wet 

and warm climate to the cold, ice dominated one e.g. (Jakosky and Phillips, 2001), 

(Masson et al. 2001), (Kargel, 2004) accompanied by a rapid decrease of the erosion rates 

(Fig. 37) e.g. (Carr, 1996), (Kargel, 2004) and thickening of so called cryosphere e.g. 

(Clifford and Parker, 2001). This transition begins two subsequent eras in Martian history: 

Hesperian and Amazonian. Throughout those two periods Martian climate went through 

multiple cycles of climate excursions controlled mainly by the orbital and spin axis 

parameters (eccentricity, longitude of perihelion, obliquity) (Fig. 40) e.g. (Toon et al, 

1980),   (Laskar et al, 2004),   (Armstrong, et al. 2004).   An   additional   positive  climatic  

Fig. 40) A model of recent changes in the orbital parameters and their impact on the water 
distribution across the planet. Arrows mark directions of water transport (Montmessin, 2006). 
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feedback (Fig, 41)  (Baker et al. 1991),  (Gulick, 1997),  (Baker, 2001)  from  the  recurring 

volcanism (Berman and Hartmann, 2002), (Márquez et al. 2004), (Neukum et al. 2004) 

cannot be ruled out but its influence was decreasing with time. Hesperian climate was not 

too distant from the one observed now but the activity of liquid water was still significant. 

In the freezing conditions still a 

number of crater lakes were 

present (Cabrol and Grin, 1999). 

River systems have been greatly 

reduced and restricted to active 

volcanic centers e.g. (Carr, 1996), 

(Gulick, 1997), (Fassett and 

Head, 2006), (Fassett and Head, 

2007) where accumulated 

ice/frost could undergo basal 

melting due to geothermal 

heating. Still such events 

produced only a fraction of total 

liquid water released to the 

Fig. 41) A model of cyclic short–duration warmer and wetter periods caused by increased 
volcanic activity accompanied by release of CO2 stored in the regolith. Catastrophic releases 
supplied liquid water to transient surface reservoirs (Baker, 2001). 

Fig. 42) Simplified cross-sections of two Martian outflow 
channels and Earth examples. Peak discharges are given 
in m2/s (Baker, 2001). 
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surface. Between the late Noachian and late Amazonian, with the peak activity in late 

Hesperian, Mars experienced a series of catastrophic releases of water on a scale often 

exceeding all known terrestrial analogs (Fig. 42) e.g. (Carr, 1996), (Clifford and Parker, 

2001), (Masson et al. 2001), (Kargel, 2004), (Rodriguez et al. 2005), (Coleman et al. 

2007). From the source regions, liquid water carved hundreds of kilometer long, tens of 

kilometer wide and up to a kilometer deep outflow channels that lead to the lower placed 

grounds like Hellas basin or the northern lowlands where eroded material have been 

deposited (Fig. 43G). Nearly all of those features are localized in close vicinity to the 

volcanic provinces in four main regions (Fig. 43) (Carr, 1996), (Clifford and Parker, 2001): 

Around the Chryse-Acidalia basin, Elysium Planitia, eastern part of Hellas Basin and 

southern margins of Amazonis Planitia. Fully-born channels start in impact craters (Fig. 

44A), alcove-like walls (Fig. 44B, C), collapsed edges of cliffs (Fig. 44D), chasmae (linear 

extension structures) (Fig. 44E) or in chaotic terrains (blocky dissected ground with 

considerable loss of volume) (Fig. 44D, F). This and other differences in channel structure 

cannot be explained by one universal scenario. Since the formation of channels requires a 

sudden release of very large amounts of water several sources have been suggested, among 

others breaches of the water from lakes, global or local pressurized underground reservoirs 

(Clifford, 1987), (Clifford and Parker, 2001), (Carr, 2002), (Coleman et al. 2007), (Russell 

and Head, 2007). The first mechanism is proposed for high placed channels like Ganges 

Chasma, or neighboring Elaver and Allegheny Valles. Water supply for such reservoirs 

might be found in the melting of permafrost  ice  through  geothermal  heating  or  rainfalls  

Fig. 43) Distribution of volcanoes (triangles) and outflow channels (circles) (After Carr, 1996).  
A-G– location of the images from Fig. 42. Background map - MOLA color shade relief and 
MDIM (Courtesy USGS Astrogeology Research Program, http://astrogeology.usgs.gov). 
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Fig. 44) Initial and terminal parts of outflow channels (Global localization: Fig. 41). A) 
Crater lake, Aurora Planum, B) Alcove like wall, Elysium Fossae, C) Alcove like wall, Dao 
and Niger Vallis, D) Collapsed edge of cliff/chaos, Arumatum Chaos, E) Chasma, Ophir 
Planum, F) Chaos, Aram Chaos. G) Kasei Valles outflow channel. Images – THEMIS daily 
IR and MOLA colored relief (JMars. Mars Space Flight Facility, Arizona State University, 
http://jmars.asu.edu). Dark strips – gaps in THEMIS data.  
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during short episodes of climate warming caused by gases released from volcanic centers 

(Baker et al. 1991), (Gulick, 1997), (Baker, 2001). The pressurized source model can be 

explained in several ways. Among the most often proposed are (see Baker, 2001; Clifford 

and Parker, 2001; Russell and Head, 2007): 1) Global scale thickening of the cryosphere 

that compress underlying water to some critical value at which it was able to breach the 

permafrost seal, 2) Localized or regional pressurization due to geothermal heating or 

cryosphere thickening, 3) Tectonic faulting. Large amount of water released upon each 

catastrophic event was sufficient to create persisting lakes or even a transient sea e.g. 

(Baker, 2001), (Clifford and Parker, 2001), (Carr and Head, 2003) that would not stay 

without an impact on the climate. 

The activity of rivers and outflow channels has diminished through Amazonian and 

eventually stopped completely closing the period in Mars history where larger amounts of 

liquid water were existing on the planet’s surface. Along with this process another class of 

surface activity started to gain in importance, namely permafrost and glacial processes. 

Although the cryosphere started to develop on global scale with the end of Noachian, 

presently observed features are relatively young or/and forming even now. According to 

the theoretical models e.g. (Leighton and Murray, 1966), (Clifford and Hillel, 1983), 

(Paige, 1992), (Mellon et al, 2004), (Schorghofer and Aharonson, 2005), (Schorghofer, 

2007) confirmed by orbital gamma rays, neutron spectroscopy data and surface 

observations e.g. (Feldman et al. 2002), (Mitrofanov et al. 2002), (Boyton et al. 2002), 

Fig. 45) Present distribution of water (hydrogen abundance) in the regolith up to 1m depth 
based on epithermal neutron count (Mars Odyssey). A-H localization of the images from Fig. 
44. Data imposed on the shade relief MOLA topography map (© Copyright 2006 Los Alamos 
National Security, LLC All rights reserved).   
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(Mangold, et al. 2004), at present obliquity ground ice table stays in dynamic equilibrium 

with the atmosphere from 40º-60º (with the emphasis placed on the higher value) towards 

higher latitudes (Fig. 45). Indeed, a numerous images showed at higher latitudes a 

characteristic smoothening or softening of the surface caused by ice mantling (Fig. 46A) 

formed through the precipitation or frost accumulation. The layer has an average thickness 

of several meters/tens of meters (Mustard et al. 2001), (Morgenstern et al. 2007) but those 

values may vary due to local topography and differences in albedo. Yet, even if the present 

climate does not allow for frost/snow accumulation at lower latitudes, a discontinued 

mantling has been also found as low as to 30º on both hemispheres e.g. (Carr, 1996), 

(Mustard et al. 2001), (Morgenstern et al. 2007). In those areas numerous thermocarst 

features: e.g. scalloped (Fig. 46B) and fretted terrains, knobby features (Fig. 46C), large 

fields of patterned ground (e.g. polygons) (Fig. 46B, D), filled craters (Fig. 46E) have been 

observed. Aside from a deposition of commonly observed ice-dust mantle, at numerous 

slopes the accumulation had to be intensive enough to drive ice filled debris in motion 

(Fig. 46F, G, H). Linear grooves and ridges on top of the flowing masses as well as lobate 

debris or circular crater aprons bear a close resemblance to terrestrial alpine, piedmont or 

rock glaciers e.g. (Luchitta, 1980), (Squyres, 1989), (Colaprete and Jakosky, 1998), 

(Masson et al. 2001), (Neukum et al. 2004), (Head et al. 2005), (Shean et al. 2007). 

Moreover, glacial and permafrost features, covered by dust and rocky mantle, have been 

found also at low to “tropical” latitudes (mostly at the flanks of volcanoes) (Fig. 45, 46H). 

Those phenomena can be readily explained by cycles of sublimation of water vapor from 

the polar regions and condensation at lower latitudes during the high obliquity excursions 

(Fig. 40) e.g. (Clifford, 1993), (Jakosky et al. 1995), (Jakosky and Phillips, 2001), 

(Mustard et al. 2001), (Laskar et al. 2002), (Levrard et al. 2004), (Forget et al. 2006) or/and 

climate warming upon the volcanic activity (Baker et al. 1991), (Gulick, 1997), (Baker, 

2001). Subsequent migration to lower obliquities would cause destabilization and 

sublimation of ice deposits. Theoretical models suggest that during ~100000 years long 

cycles, the maximum depth of the regolith that is affected by this process may reach up to a 

few meters e.g. (Mellon et al, 2004), (Jakosky et al. 2005) and strongly depend on the 

impurity content (e.g. dust, sand, rocks). Below this level one should expect much more 

stable ice trapped within the cryosphere that presently extends downward ~2.3-4.7km at 

the equator to ~6.5-13km at the poles (Clifford and Parker, 2001). Another line of 

evidences arguing for numerous climate changes is recorded in the one of the most 

intriguing    Martian    large   scale    features,    namely     polar      layered   deposits    e.g.    
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Fig. 46) A) Ice mantling over the crater, B) Scalloped terrain with polygons, C) Partially 
excavated knobby, hill-like features, D) Polygonal ground with excavated crater surrounded 
by scalloped features, E) Ice filled craters, F) “Hourglass glacier” (left). Flow lineation 
between the craters (right). G) Lobate apron in Hellas Planitia, H) Glacial-like features on the 
north-western flank of Arsia Moons. Images from MRO-HiRISE: A-D, F (right), G-H 
(NASA/JPL/University of Arizona). Images E-F (left): Elevation mode, HRSCView 
(HRSCview. Freie Universitaet Berlin and DLR Berlin, http://hrscview.fu-berlin.de/). Global 
localization: Fig. 43.         
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(Murray et al.1972),  (Cutt and Lewis, 1982), (Milkovich and Head, 2005), (Tanaka, 2005), 

(Levrard et al. 2007), (Plaut et al. 2007), (Seu et al. 2007). These complexes of bright and 

dark lamellas are most prominent for northern hemisphere where they are exposed within 

scarps and walls of the spiraling grooves and troughs (Fig. 47). It is commonly believed 

that brighter belts are enriched in water ice in contrary to more dusty darker units. 

Computer simulations suggest that the polar caps might be completely removed during the 

high obliquity periods if not protected from sublimation by a dust mantling e.g. (Jakosky et 

al. 1995), (Laskar et al. 2002). If so, recently observed layered deposits most likely reflect 

all obliquity changes since the last high obliquity period. An average thickness of one unit 

has been estimated on ~30m e.g. (Milkovich and Head, 2005) but also thinner layers are 

found (Fig. 47). This abundance of lamellas is too greater to be explained only by orbital 

forcing and other mechanisms had to be included as well (Fenton and Herkenhoff, 2000), 

(Levrard et al. 2007). Among others, water an exchange with sources at different latitudes 

and dust storms activities have been proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 47) A) Oblique view on the north polar cap - 
MGS-MOC wide angle image. B) Magnified area with 
troughs in the ice sheet – wide angle MOC camera. C) 
Narrow angle MOC image of layered deposits exposed 
within the through (modified after Milkovich and 
Head, 2005).      
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In polar regions, one can observe another periodic phenomenon but happening on 

much shorter scale, namely a condensation and sublimation of temporary dry ice caps e.g. 

(Thomas et al. 2000), (Smyth et al. 2001), (Mitrofanov et al. 2003).  Their thickness on 

usually do not exceed a few tens of meters with an average value of 1.5-2m (Smyth et al. 

2001). A higher insolation during warmer seasons the temporary dry ice sheet retreats 

toward higher latitudes but while at the northern polar caps it disappear completely, dry ice 

on the opposite cooler hemisphere is persistent during the whole year (Bibring et al, 2004) 

(see also 2.6.1). Interestingly, during the sublimation of solid CO2 one can observe a 

formation of numerous seasonal dark spots, fans and blotches that mark centers of radially 

branching “spiders” cutting into underlying layered polar deposits (Fig. 48A, B) (Kieffer, 

2000), (Piqueux et al., 2003), (Kieffer et al., 2006). An origin of those features has been 

proposed in a basal sublimation dry ice slab and ejection of pressurized CO2 with dust 

particles on its surface. The mechanism requires a considerably clean ice that could be 

penetrated by a solar radiation to the bottom. CO2 pressure would gradually rise until the 

overlaying ice would not be able to confine gathered gas (Fig. 48C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 48) Surface features attributed to 
pressurized CO2 ejections. A) Close-up on a 
con shaped dust fans deposits. B) Dusty spots 
overlying branching, up to 300m bright 
“spider” features. In the left upper corner of 
both images the reader will find a miniature of 
the surrounding terrain with a 1000m scale bar. 
C) Schematic representation of the spider 
formation and dust deposition via CO2 
depresurisaiton. A, B) Credits: NASA/JPL/ 
University of Arizona, C) (Piqueux et al., 
2003).   
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One could expect that in this ice dominated landscape controlled by quasi regular cycles 

of sublimation and deposition there is no place for liquid water close to the surface. Yet, high 

resolution images revealed a large number of gullies related most likely to the very recent 

activity of liquid water. Moreover, they are essentially identical to features observed in 

periglacial environments on Earth (Costard et al, 2001). Gullies have versatile appearance 

(Fig. 49) but most of these structures possess a complex morphology that can be divided on 

alcove (red arrow), channel (green arrow) and depositional apron (blue arrow) part that would 

require a considerable volume of liquid to be formed. Features start in alcoves seated in cliff 

faces, crater walls, dunes or knobby hills. From the base of incision emanate a single V-shape 

channel like conduit that may be from several tens of meters to a kilometer long   (Fig. 49 G).   

The   morphology   of    certain    channels   suggests   multistage  formation  (Fig. 49C, D ,H) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 49) A) Well developed gullies cutting through ice rich mantle (yellow dots) at the 
crater wall, B) Gully with very well developed sedimentary cone, C) Branched gullies 
with minimal alcoves and almost no aprons, D) Close-up on branched gully, E) Ice rich 
mantle (yellow dots) cut by immature gullies, F) Close-up on the gully with no channel, 
G) Swarm of crater wall gullies with branching and meandering long channels, H) Zoom 
in on one of the multistage channel. Images: MRO-HiRESE (NASA/JPL/University of 
Arizona). Global localization Fig. 47.   
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 Fig. 49) Continuation.  

NNN   

500 m 
GGG   

HHH   

NNN   

500 m 
EEE   FFF   



60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (Bridges and Lackner, 2006) and meandering character of the flow (Malin and Edgett, 

2000). Almost all conduits terminate in a sedimentary cone or prism. Detailed positioning 

and orientation measurements revealed yet another interesting information. Gullies are 

found almost exclusively between 45 and 72º latitude on both hemispheres Bridges and 

Lackner, 2006), mostly on pole facing slopes (see review Dickson et al. 2007). The   

paradox   of   flowing   water in   present   climate is  essentially  still unsolved  in spite of 

60° 

-60° 

30° 

-30° 

0° 

Fig. 50) Global distribution of gullies (Malin and Edgett, 2000), (Bridges and Lackner, 
2006). All identified gullies lay from 30° south and north toward higher latitudes. A-C, E, 
G - localisation of images from the Fig. 46. I – image from Fig. 48. Base map - MOLA 
color shade relief and MDIM (Courtesy USGS Astrogeology Research Program, 
http://astrogeology.usgs.gov).    
 

 

Fig. 51) Spectacular MGS-MOC images (left-2001, right-2005) proofing that gullies are 
forming even now. Unnamed crater in Terra Sirenum (Courtesy NASA/JPL-Caltech).      
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several theories describing more or less plausible mechanisms like granular flow (Treiman, 

2003), release of pressurized liquefier in shallow (Malin and Edgett, 2000t), (Mellon and 

Phillips, 2001), (Heldmann and Mellon, 2003) or deep reservoirs (Gaidos, 2001), 

geothermal melting (Hartmann, 2001), ice blanket melting, percolation and transport of 

non equilibrium water in porous media (Márquez et al. 2005), outflow of brines (Knauth 

and Burt, 2002) or accumulation and subsequent melting of surface snowpack (Fig. 49A, 

E, F) (Costard et al. 2002), (Christensen, 2003), (Balme et al. 2006), (Bridges and Lackner, 

2006), (Dickson et al. 2007). From this wide array of hypotheses the last one gained the 

greatest attention but also meet difficulties in explanation how certain gullies can be 

formed in the present climate without apparent ice mantling (Fig. 51). 

Although, the Blue Mars model describes the evolution of Mars in many ways 

unquestionably well, it also faces certain unexplained paradoxes. Most of them are 

concentrated around the early period where according to the theory Mars should be warm 

and considerably wet. A first problem appears already for the estimation of Martian initial 

CO2 reservoir. Fast accretion (see 2.3) would tend to release most of gases to the 

primordial atmosphere. Simple scaling of Earth and Venus inventories that oscillate around 

60-90 bars (6-8MPa) of CO2 suggests 10-30 bars for Mars (Pollack et al. 1987), (Hoffman, 

2000a). If such approach is correct then thermal instability would cause Martian 

atmosphere to condensate at the poles (Kasting, 1991) leaving a few bars of CO2 in 

equilibrium with dry ice. It was also claimed that even considerably thick CO2 atmosphere 

(up to ~5bar / 0.5MPa) might not be sufficient to provide greenhouse warming intense 

enough to compensate for the initially weaker Sun and stabilize liquid water at the surface. 

Models with thicker atmosphere that cross 5bar are most likely to introduce another 

potential liquid acting on the surface, namely liquid CO2 (Chapter 1, Fig. 10), (Hoffman, 

2000a), (Kargel, 2004). In order to avoid this scenario, essentially all publications 

considering this issue propose an extensive trapping of CO2 in carbonates that readily from 

in a warm and wet environment. At this point another paradox comes into play. Up to now 

the highest amount of carbonates detected on Mars do not exceed 5% (Christensen et al, 

2001), (Bandfield et al. 2003), (Christensen et al. 2004). This amount is far from the 

expected.  A remedy for this obvious drawback can be a burial of carbonates deep into the 

regolith while overlaying deposits were dissolved in acidic environment (Baker, 2001). 

Although, the final confirmation would require a deep drilling, the significant quantities of 

sulfates (Fig. 34) that have been found on the surface would at least partially support this 

explanation. The next significant issue of wet Mars is presence of olivine at the surface e.g. 
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(Hoefen et al. 2003). This mineral is highly unstable under wet climate and should 

transforms into secondary phases through e.g. serpentinisation. Much later in the Martian 

history, other issues arise with the catastrophic water releases where pure water-based 

theories meet serious difficulties in providing enough fluid in a short period of time. It is 

especially apparent for the formation chaotic terrains (Hoffman, 2000a).  In the discussion 

of this PhD (Chapter 5) a few additional problem will be shown.  

 

2.5.2 White Mars   

A number of inconsistencies in the “Blue Mars” model pushed some authors to search 

for different evolutionary pathways that could replicate present Martian surface features 

(Lambert and Chamberlain, 1978), (Hoffman, 2000a), (Hoffman, 2000b), (Hoffman, 

2001a) (Jöns, 2001), (Parsons, 2001), (Tanaka et al. 2001), (Hoffman, 2002), (Kargel, 

2004), (Rodriguez et al. 2006). The only reasonable alternative seems to be related to 

liquid CO2 appearing above 5.11bar (0.51Mpa) that may act under certain circumstances as 

liquid water. Moreover, some geomorphologic features can be better explained by 

decompression of CO2 than by water outflow. Yet, in this view Mars most likely should 

have a greater starting CO2 reservoir, 10-30bar (1-3MPa), than predicted by Blue Mars 

model and a climate that would have to be much colder. The reader should be aware that 

this approach met a serious resistance from followers of the warm Mars idea that do not 

hesitate to use doubtful arguments for criticism e.g. (Stewart and Nimmo, 2002), (see. 

5.1.2). The name, “White Mars” itself, has been used for a standalone theory (Hoffman, 

2000a) that represents the most extreme view among the hypotheses questioning warm 

Mars. For purpose of this thesis the “White Mars” concept will be extended to other 

publications that significantly diverge from the “Blue Mars” model in a similar spirit.  

At low temperature and elevated pressures CO2 may exist in liquid state, similarly to 

liquid ethane or methane on Titan, Saturn’s moon e.g. (Mitri et al, 2007), (Stofan et al. 

2007). If Martian initial surface temperatures, under a thick atmosphere, did not exceed the 

melting point of ice then indeed liquid CO2 might be considered as an alternative to water. 

In such case (Lambert and Chamberlain, 1978), (Hoffman, 2000a), (Hoffman, 2001b) CO2 

would exist in all three states within the regolith filing pore spaces similarly to water in the 

“Blue Mars” scenario (Fig. 52). Mirroring the water cycle, dry ice condensed at the poles 

at critical depths would undergo  basal  melting  introducing  liquid  CO2  into  the  regolith 

(Kurahashi-Nakamura and Tajika, 2006), (Longhi, 2006). Transported through the regolith  
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it could approach the surface at lower latitudes where the cryosphere should be the 

thinnest. Under suitable conditions liquid CO2 would flow out on the surface and act 

similarly to water. In case of warmer climate or thinner atmosphere this process would be 

replaced by a violent decompression upon the phase change with gaseous CO2 as a 

product. Following this idea an alternative mechanism for catastrophic outbursts and 

channel formation has been proposed (Fig. 53) (Hoffman, 2000a). Fracturing and slumping 

of CO2 rich permafrost up to the liquid CO2 depth would form a gas supported density flow 

(Hoffman, 2000a),           (Hoffman, 2001a),        (Hoffman, 2001c),       (Hoffman, 2001d),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 52) A comparison between pore filling in “Blue” and “White Mars” model in two time 
windows. Present Mars model (left) is based on 10K/m thermal gradient. Past Mars variant 
includes twice higher heat flux (Hoffman, 2000a).       
     

PRESENCE                                                       PAST 
     

Fig. 53) Catastrophic outburst mechanism driven by liquid and gaseous CO2. Initial 
slumping produces a lubricated density flow. Subsequent grinding of carried debris is 
meant to supply the cryoclastic cloud in CO2 (Hoffman, 2000a).       
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(Tanaka et al. 2001), (Hoffman and 

Tanaka, 2002), (Rodriguez et al. 2006) 

that might be compared to terrestrial 

pyroclastic flows or turbidities. A 

constant supply of lubricating gas that 

sustains the movement is provided 

through grinding of CO2 rich material 

carried within the cloud. Outbursts 

CO2 have been adopted also at much 

smaller, local scale as an explanation 

for recent gullies formation (Hoffman, 

2001e), (Musselwhite et al. 2001) 

even if the tenuous Martian 

atmosphere severely limits the 

stability of all CO2 phases except the 

volatile one. To overcome this 

difficulty authors proposed CO2 frost 

accumulation within the regolith just 

below poleward facing slopes, the 

most potential places for cold traps. 

Subsequent summer warming of 

deposited dry ice would lead to 

sublimation at the gas/solid contact 

and at greater lithostatic pressures to 

liquid CO2 formation. Eventually the dry ice barrier would be thinned enough to fail and 

release rapidly expanding liquid. According to a similar but more conservative model 

(Hoffman, 2002) gullies may be formed not by liquid but gaseous CO2 (Fig. 54). The 

mechanism of this process is similar to the one proposed for dark spots and fans (Fig. 48) 

observed in the south polar regions of Mars (Kieffer, 2000a), (Kieffer et al, 2006). Solar 

radiation that penetrates a thin CO2 snowpack may be absorbed by underlying rocks and 

due to a secondary radiation effect causes its thawing at the contact. CO2 gas under 

pressure may disrupt the surface layer triggering an avalanche. Mechanical grinding of 

destabilized material is meant to provide additional CO2 to lubricate a density supported 

Fig. 54) CO2 ice thaw model for gullies 
formation. A) Sun penetrates snowpack causing 
thawing at the base. CO2 destabilizes ice layer 
and generates an avalanche. The flow is 
supported by sublimating dry ice (Hoffman, 
2002).       
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flow.  

As the reader surely noticed, the “White Mars” scenario is rather a draft than a fully 

working hypothesis. Moreover a significant number of inconsistencies in the publications 

decreased its credibility as compared to the “Blue Mars” model. A choice of the early 

geothermal surface heat flow (20mW/m2) has been criticized as preferentially supporting 

the cold climate (Urquhart and Gulick, 2002). In comparison to 30mW/m2 form “Blue 

Mars” it is indeed less but this difference can be easily explained by different thermal 

conductivities for water and dry ice and other species stored in pore spaces (see 2.6). 

Among others solid CO2 is likely to produce much steeper vertical thermal gradient that 

would decrease the amount of heat delivered to the surface. Yet, the stability of the CO2 

inventory over the Martian history is probably the most often invoked issue of this concept. 

Noachian thick atmosphere can still support the “White Mars” scenario if the CO2 polar 

caps were partially compensating for the atmosphere striping and still supporting the basal 

melting. Any presence of large surface liquid reservoirs, lakes or seas was not discussed at 

all in frame of the “White Mars” model. At some point Martian atmospheric pressure had 

to drop below the stability limits of liquid CO2 (~5bar / 0.5MPa) that terminated any river 

like activity. Yet, none of the papers explicitly state when it might have happened and 

whether it is possibly linked to the Noachian/Hesperian boundary. Later on, potential CO2 

activity in the formation of chaos terrains and channels has been a subject of heavy 

criticism. Hypothetical Martian gas supported cryoclastic density flows may not posses any 

eroding properties that could allow for channels formation. Potential terrestrial analogs, 

pyroclastic flows or turbidities show that after violent blast or destabilization the mobilized 

masses tend to follow the preexisting depressions or channels with minor traces of erosion 

(Coleman, 2002). Moreover, the stability of dry ice and liquid CO2 from the past epoch 

under thin Hesperian and Amazonian atmosphere for geological timescales has been 

critical reviewed as impossible. The argumentation line was based on gas diffusion 

calculation through the porous regolith (Stewart and Nimmo, 2002), which strangely 

ignores any potential sealing effect of water ice, salts or clay minerals (Kargel, 2004). 

Effectively also an eventual accumulation of CO2 through magma outgassing has been 

described as improbable, as it was claimed, due to the imbalance between slow 

accumulation and an order of magnitude faster out diffusion. Another difficulty comes with 

the Martian early ocean. If such body of surface liquid ever existed it would require liquid 

water since the CO2 global budge might be too small. Gullies formation, one of the most 

controversial ideas within the “White Mars” scenario, also has not escaped from critical 
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comments. The accumulation mechanism of CO2 was found to be insufficient to reproduce 

the observed features. Moreover, there is also a discrepancy between the maximum depths 

at which seasonal temperature changes might be observed. An ultimate proof against this 

hypothesis has been found in the calculated escape velocity of decompressed liquid CO2 

that is about two times faster than estimated for Martian gullies  (Mangold et al. 2002), 

(Stewart and Nimmo, 2002). 
 

2.6 Clathrate on Mars 
Thermodynamic stability field of CO2 hydrates fits very well in present and perhaps 

also in the past Martian realm (Fig. 55) e.g. (Longhi, 2000), (Longhi, 2001), (Longhi, 

2006). Over the last several decades, hypotheses discussing the role of clathrates in 

different processes were strongly basing on this knowledge with little support from a work 

on kinetics. Certainly it is sufficient to start speculations but any time constrains or even 

feasibility of certain processes was impossible to determine. As a consequence a number of 

speculations appear supporting or negating clathrate existence or their possible impact on  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 55) CO2-H2O binary phase diagram relevant to Mars (Longhi, 2000). Blue lines – 
phase stability boundaries (see table for detailed description). Red lines – stability 
boundaries for pure CO2 and pure H2O systems. SL, SI, IW – invariant points. Phases 
present in the diagram: S – solid CO2, L – liquid CO2, I – H2O ice, W – liquid H2O, G – 
CO2 gas, H – CO2 Hydrate.  
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the environment. This thesis attempts to deliver missing information, which can be used to 

verify most of the hypotheses (see Chapter 5). Yet, before the reader will read the final 

discussion it is out most important to be familiarized with a present state of knowledge. I 

have deliberately separated any information about clathrates from the above discussion on 

the Blue and White Mars to underline the main differences between them but the reader 

should be aware that clathrates appear in both concepts. This is in fact where the scientific 

beauty of gas hydrates lays. They are independent from discussed evolutionary models. In 

principle these compounds can be formed under The Blue or White Mars paradigm but 

different p-T and availability of CO2 and H2O controls their abundance. As a natural 

consequence, the cold model richer in CO2 favors clathrates while the warm one reduces 

their occurrence to several places including polar caps, perhaps regolith and even 

atmosphere.  
 

2.6.1 Polar caps  

Martian polar caps are presently the biggest reservoirs of surface water ice e.g. 

(Kieffer et al 1976), (Smith et al. 1999), (Bibring et al, 2004), (Plaut et al. 2007), (Zuber et 

al. 2007). Due to differences in present illumination, the northern polar cap (NPC) is 

slightly warmer than the southern one (SPC) e.g. (Kargel and Lunine, 1998). The mean 

annual temperature on the northern ice sheet stays around 170K but go as high as 200K 

during summer time. Winter temperatures drops below the condensation temperature of dry 

ice. This allows for a formation of few meters to tens of meters high seasonal solid CO2 

cap (Thomas et al. 2000), (Smyth et al. 2001), (Mitrofanov et al. 2003). Southern polar cap 

also poses dry ice cover that shows seasonal shrinking and growth (Fig. 56) e.g. (Paige et 

al. 1990), (Bibring et al, 2004) but it is much more stable due to lower annual temperatures 

(mean ~150K) that do not exceed 160-170K. On closer inspection, one will find all 

necessary components to form CO2 clathrate on both caps. Moreover, the thermodynamic 

stability field of CO2 clathrates spans almost over whole depth of polar caps. These facts 

have been noticed already in early 60’s of XX century (Miller, 1961) and several years 

later confirmed by experimental work (Miller and Smythe, 1970). Even though, a direct 

proof of their existence was still missing at the time. Theoretically, temporary (NPC) or 

more permanent presence (SPC) of clathrates at the surface gave hope to detect them from 

the orbit. The most promising were places showing both CO2 and H2O signal localized at 

the edges of the dry ice south polar cap (Fig. 56A, B). Unfortunately, it turned out that 

spectroscopically   hydrates   are  very  difficult   to  distinguish  from  water  ice / dry ice   
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mixture and better optical constants for hydrate are needed (Smythe, 1975), (Landry and 

England, 1994), (Schmitt, 2000).  Not so long ago the hope was revived with the failure of 

Mars Polar Lander mission where eruption of CO2 clathrates was used as one of the 

explanations (Koster van Groos and Guggenheim, 2000). Yet, this idea could not defend 

itself (Kieffer, 2000b) and Martian gas hydrates still remain unconfirmed. Laboratory 

experiments (Chapter 4) and terrestrial analogs suggest several plausible pathways for 

clathrates formation (see review Kargel et al. 2000). Small quantities can be formed by 

direct precipitation from the atmosphere but this reaction type is limited strongly by an 

availability of water vapor (see review Fouchet et al. 2007). Transformation of water ice at 

the surface, especially at the northern cap, is restricted by temperature excursion outside 

the stability field. Much more suitable p-T conditions are likely to be found deeper in polar 

ice where CO2 gas or dry ice trapped in bubbles and inclusions are likely to react with 
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Fig. 56) Maps of CO2 and H2O 
distribution at the south pole of Mars 
(left) (Bibing et al, 2004). The 
enrichment in dry and water ice is scaled 
from dark blue (high concentration) to 
orange/red (absence of measured 
component). Water ice is exposed at the 
edges of overlying solid CO2 polar cap 
(see arrows on blow ups A and B). 
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water ice (Mellon, 1996). An analogy could be drawn from terrestrial air hydrates (1.2.1) 

but in the Martian case transformation can start just from a few meters below the surface of 

water ice. The efficiency of this process is rather low and only a small volume of clathrates 

might be produced (Kargel et al. 2000). To support more extensive transformation at 

greater depths, an efficient source of CO2 would be needed. It could be provided through a 

burial (Jakosky et al. 1995) and subsequent pressure melting of dry ice (Fig. 57A) e.g. 

(Kreslavsky and Head, 2002), (Hoffman, et al. 2002), (Longhi, 2006) or even basal melting 

of the thick dry ice cap (Fig. 57B) (Kurahashi-Nakamura and Tajika, 2006). While the first 

mechanism, related to obliquity variations, can be active over the Martian history, the last 

one is rather restricted to a collapse of the early thicker atmosphere. CO2 clathrate similarly 

to its terrestrial methane counterpart is likely to incorporate also another species into its 

structure. Most likely candidates are N2, CO, O2 and heavy noble gases: Xe, Kr, Ar. It is 

worthwhile to point out that during crystallization heavier gases are likely to be enriched 

but without altering their isotopic ratio (Musselwhite and Lunine, 1995), (Musselwhite and 

Swindle, 2001).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 57) Potential ways of CO2 clathrate formation through the pressure melting of: A) 
Buried dry ice (Longhi, 2006), B) Thick CO2 ice cap (Kurahashi-Nakamura and Tajika, 
2006). Dissociation of clathrates at the base, above melting point of ice, will supply liquid 
water and CO2 into the regolith.  
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The incorporation of clathrates in polar ices bears serious consequences for ice 

mechanics and thermal gradients within the caps due to their strong rheology and 

remarkably low thermal conductivity (Mellon, 1996), (Kargel, 1998), (Urquhart and 

Gulick, 2002). Since some of the properties are still not measured explicitly for CO2 

hydrates, some authors assumed that this value do not deviate much from other structure I 

clathrates e.g. (Mellon, 1996). Thermal conductivity has been found to be about 5 times 

lower than for water ice (~2.3 W/m K) and almost identical to dry ice (~0.5 W/m K). 

Adopting flow rates from methane clathrates, gas hydrates became the hardest among all 

ices building the Martian polar caps. Experiments on the rheology of CO2 clathrates 

(Durham et al. 2003a) show a 

considerably big difference in 

flow rates from those measured 

in CH4 clathrates (Fig. 58) Stern 

et al. 1996), (Durham et al. 

2003b). Even though, CO2 

hydrate is still about two orders 

of magnitude more viscous than 

pure water ice (Durham, 1998). 

CO2 ice, in comparison to water 

ice, is about ten times weaker 

e.g. (Durham, 1999). 

Interlayered CO2 hydrates with 

water ice and perhaps dry ice 

could well explain folding, 

boudinage or elastic flexural bulges commonly observed on the southern polar cap  (Kargel 

and Tanaka, 2002), (Brightwell et al. 2003). Each component of the layered sequence will 

behave according to its mechanical strength. The hardest, CO2 clathrates will tend to form 

boudins while other ices are likely to undergo plastic deformation. Even a small addition of 

clathrates to the polar ice is likely to reduce the flow rate and increase the temperature at 

the base of the ice sheet (Greve and Mahajan, 2004). In this way gas hydrates may actively 

control the maximum thickness of polar ices and thus basal melting (Mellon, 1996), 

(Kreslavsky and Head, 2002), (Longhi, 2004). Taking an average present Martian 

geothermal heat flux (~30mW/m2) and assuming that both polar caps do not undergo the 

basal melting, one could try to estimate the upper limit for gas hydrates locked in those ice 

Fig. 58) Rheologies CO2 hydrate in comparison to 
methane hydrate (sI) and mixed hydrate (sII) (Durham 
et al. 2003).     
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bodies. For the 4km thick northern polar ice this value has been calculated on 72% of the 

total volume. The southern ice sheet is about twice thinner and allowed to be constructed 

even from 100% of clathrates (Mellon, 1996). Even if the real values are lower from above 

predictions, the polar caps can be considered as a potential CO2 storage. The maximum 

CO2 content trapped in clathrates under favorable conditions may be as high as 112-

200mbar (Jakosky et al. 1995), (Mellon, 1996) but also lower values are proposed 

(Dobrovolskis and Ingersoll, 1975). 

 

2.6.2 The regolith  

Although first two subsurface radar sounders (Mars Express-MARSIS, MRO-

SHARAD) operating over the planet already delivered interesting information about a few 

regions (Picardi et al. 2005), (Plaut et al. 2007), (Seu et al. 2007), the structure of the 

Marian regolith is essentially one big unknown. Noachian heavy bombardment most likely 

turned a several kilometers of the upper crust in a fractured and porous mega-regolith. 

Theoretical porosity profiles through this layer show an exponential decay of free spaces to 

about 10-13km where hydraulic conductivity is almost completely halted (Clifford, 1993), 

(Clifford and Parker, 2001). Permeability above this depth stays as a subject of numerous 

presently unverifiable speculations. Depending on the model a globally interconnected 

network e.g. (Clifford, 1993), (Clifford and Parker, 2001) or limited regional conductivity 

(Dohm et al. 2001), (Chapman and Tanaka, 2002), (Kargel, 2004), (Russell and Head, 

2007) is invoked. The present knowledge about eventual pore filling and distribution is 

also very sparse. Aside from the already discussed ground water ice (see 2.5.1), also liquid 

water, dry ice and liquid CO2 are possible. Their occurrence is tightly correlated with 

poorly constrained p-T conditions in the regolith, confining pressures, thermal gradients 

and preferred evolutionary model. In such an unexplored environment a number of authors 

suspected clathrates to be formed e.g. (Milton, 1974), (Lambert and Chamberlain, 1978), 

(Hoffman, 2000a), (Longhi, 2000), (Longhi, 2001), (Longhi, 2006). As already shown 

(Fig. 55), the thermodynamic stability field of gas hydrates indeed allows for gas hydrate 

crystallization within the regolith but two crucial conditions must be met: 1) Water and gas 

must be provided, 2) An appropriate partial pressure of forming gas or gas mixture must be 

kept to stabilize the compound (Sloan, 1998). It is safe to assume that water ice and 

perhaps liquid water are abundant in the regolith. Both phases can be used as a substrate in 

the clathration process. Water ice closer to the surface may serve also as a tight seal that 

slows down out-diffusion to geological timescales. Efficient gas sources are more difficult 
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to define since they depend strongly on the poorly understood Martian history. Concerning 

this point literature discusses three possibilities: 1) Introduction of liquid CO2 through the 

basal melting (Jakosky et al. 1995), (Kurahashi-Nakamura and Tajika, 2006), 2) Magma 

degassing (Baker et al. 1991), (Baker et al, 2000), (Baker, 2001), (Max and Clifford, 2001), 

(Pellenbarg et al. 2003) and 3) Microbial activity (Max and Clifford, 2000a), (Max and 

Clifford, 2001), (Pellenbarg et al. 2003), (Krasnopolsky et al. 2004). The last two processes 

enable also other gases, like methane that could potentially form clathrate or be 

incorporated as trace components in CO2 hydrate. Gases that are likely to move buoyantly 

toward the surface will tend to concentrate at the bottom of such quasi-impermeable layers. 

Gradual thickening of the cryosphere could seal off some deposits forming lenses of gas 

hydrates distributed in water ice filled regolith (Pellenbarg et al. 2003). The highest 

concentration of these compounds should be expected in close proximity to possible gas 

sources. Although an estimation of the clathrate volume in the regolith seems to be 

impossible some authors still speculate that the amount of CO2 deposited in this way may 

significantly exceed the one from both polar caps (Baker et al, 1991), (Kargel and Lunine, 

1995), (Kargel, 2004). 

 

2.6.3 Environmental impact of clathrate decomposition 

As it was already discussed (see. 2.5.1) Mars even now is a considerably dynamic 

system where quasi-cyclic obliquity changes are very likely to cause a massive 

mobilization of ices. Rapid sublimation at high obliquity will at least partially excavate and 

destabilize polar deposits of clathrates thus releasing stored CO2 to the atmosphere. A 

similar effect might perhaps be achieved by periods of intensive volcanic activity (Baker, 

2001). An environmental effect of the degassing is difficult to assess, since exact volumes 

of stored CO2 are not known, but even several mbar (tens of kPa) may result in somewhat 

warmer climate (Jakosky et al. 1995). CO2 and other released gases (see 2.6.2) are likely to 

have isotopic signatures characteristic for Mars at the moment of deposition. If so, Martian 

atmosphere constantly enriched in heavier isotopes through various processes (see 2.5.1) 

will be partially overprinted by less evolved gases (Musslewhite and Swindle, 2001). What 

is very intriguing, at least one, or two such episodes might have been recorded in the 

Martian meteorites, Nakhalites and ALH84001. Although anomalous isotopic ratios might 

find also alternative explanations (see review Musslewhite and Swindle, 2001), they suffer 

from a number of inconsistencies that the clathrate related hypothesis seems to handle well.  

 Dissociation of clathrates stored in the regolith is more difficult to trigger as it requires 
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thermal or pressure disturbances able to act at greater depths. Terrestrial analogs suggest an 

increase in local geothermal activity, volcanism, tectonics or removal of overlaying 

deposits as most likely candidates e.g. (Baker et al, 2000), (Baker, 2001), (Max and 

Clifford, 2000b), (Max and Clifford, 2001), (Prieto-Ballesteros et al. 2006), (Rodriguez et 

al. 2006). Aside from those triggers also an increase in salinity has been suggested as a 

possible way to destabilize clathrates (Bodnar, 2001), (Madden et al. 2007). An 

accumulation of dissociation products may cause an instability of the affected area that 

after reaching some critical value will lead to outgassing. Depending on the geological 

situation, the scale of this process may vary from slow venting to catastrophic release. This 

idea was applied on Mars for the first time in 70’s of XX century (Milton, 1974) as an 

explanation for chaotic terrain formation. According to this hypothesis, sublimation of 

equatorial and low latitude ices at low obliquity periods was likely to destabilize buried 

clathrates. A decomposition of shallower deposits was suggested to led to catastrophic 

eruptions of gaseous CO2 and liquid water through the shattered overlaying frozen ground. 

Morphologic correlation  (Fig. 42) of those features with outflow channels suggest that 

very large volume of liquid has been released from disrupted regolith in a short period of 

time (Fig. 40). The amount of water obtained from decaying clathrates is far insufficient to 

explain the observed features alone e.g. (Max and Clifford, 2001). Additionally, 

decomposing hydrates cool down the environment (1.5.3), (Peale et al. 1975), which might 

reduce available water even more. This line of argumentation excludes the principal role of 

clathrates in explaining the outflow channels. Since another source of liquid is required, 

again two evolutionary models come into play. Extreme differences between them regulate 

the possible role of clathrates in catastrophic releases. The “White Mars” approach replaces 

liquid water with liquid and solid CO2 that drives violent decompression. At this point it is 

necessary to point out that, most of H2O in this model is bound in clathrate structure. Yet, 

the role of these compounds in this process is reduced essentially to an environmental seal 

(Lambert and Chamberlain, 1978), (Hoffman, 2000a) and possible support of long lasting 

cryoclastic flows due to slow dissociation kinetics (Hoffman, 2000a). The “Blue Mars” 

approach the issue from the other end. The liquid that formed outflow channels is assumed 

to be pressurized water that was stored under the cryosphere. In the global megaregolith of 

a limited permeability, decomposing clathrates might lead to a regional or local CO2 

saturation of water, liquefaction of weaker layers and catastrophic depressurization 

(Komatsu et al, 2000), (Rodriguez et al. 2006). In more conservative approach with the 

global pressure buildup under the cryosphere, gas hydrates would serve only as a medium 
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that disrupts the cryosphere. Detection of methane in the atmosphere e.g. (Formisano et al. 

2004) opened a discussion on a possible source of this unstable gas. Among others, 

dissociation of mixed CO2-CH4 clathrate deposits or enclaves with CH4 clathrates has been 

proposed e.g. (Pellenbarg et al. 2003), (Prieto-Ballstros et al, 2006), (Chastain and 

Chevrier, 2007), (McMenamin and McGill, 2007). Decomposition of clathrates has been 

also used as one of the explanation for so called pancake-domes in craters at sub polar 

latitudes (Cabrol et al. 1997). Yet, high resolution images gathered over the last few years 

attributed those features to dunes rejecting their hydrate related origin.  
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Chapter 3 – Methods and instrumentation 
In this chapter the reader will find information about equipment and techniques that 

were used to study CO2 clathrates. Since my thesis is a continuation of the work started by 

Georgi Genov, a number of basic definitions and elementary knowledge will not be 

discussed here in detail and the reader should refer to cited textbooks or two previous PhD 

theses (Genov, 2005), (Staykova, 2004). I will concentrate mostly on improvements and a 

comparison between different methods showing their weaker and stronger sides.  

 

3.1 Kinetics investigations 
In frame of this thesis two already proved methods were used to explore the kinetics of 

forming or decomposing hydrates: 1) In-situ time-resolved neutron diffraction, 2) pVT 

(pressure, volume, temperature) combined with ex-situ X-ray diffraction.  

  

3.1.1 X-rays and neutrons  

 During all formation as well as decomposition reactions presented in this thesis at 

each time step samples contain one or several crystalline phases that structurally differ 

from each other. This property can be explored with diffraction techniques that can 

efficiently and accurately detect and quantify crystalline phases also as a function of time. 

Basics of this phenomenon can be found in the previous PhD thesis (Genov, 2005) or 

numerous textbooks e.g. 

(Als-Nielsen and 

McMoorow, 2001). Photons 

and neutrons may scatter 

elastically, inelastically or be 

absorbed by an atom. For a 

standard diffraction and 

time-resolved kinetics 

studies the first listed type of 

interaction is used, while 

other contribute to unwanted 

effects like increased 

background or decreased 
Fig. 59) Scattering length (amplitude) for X-rays and neutrons 
as a function the Z number (After: Parrish, 1992). 
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penetration depth. Generally X-rays and neutrons may be treated as equivalent but in 

certain cases one of them is more suitable than the other one (3.1.4). This difference is 

caused, among others, by the way of interaction with atoms and energy carried by a beam, 

availability of diffractometers and accessibility of beam time.  

X-rays strongly interact with matter, scattering on electrons and its strength grows 

nearly linearly with the increasing Z number (atomic number) (Fig. 59). It also means that 

light elements (e.g. H, He, Li) will be underrepresented in a diffraction pattern in presence 

of heavier elements. Penetration depth increases for targets composed of elements with low 

Z number. Brilliance of  even a several hundreds of keV, obtained on synchrotron beam 

lines, also increases penetration 

power in comparison to weaker X-

rays generated by laboratory in-

house tubes of about 5-17keV. Both 

types of sources differ also in beam 

shape. The parallel beam of the 

synchrotron, as opposed to the in-

house X-ray tubes acting like point-

like sources, considerably improves 

the maximum achievable resolution 

(Fig. 60).  

In contrary to X-rays, neutrons interact with matter much weaker by scattering on 

nuclei. Since the core radius is much smaller than that of an atom, the penetration depth is 

usually considerably larger than that for photons. A probability of scattering on an atom is 

described by a neutron scattering cross section, which can be expressed as the area of a 

given nucleus as seen by the incident neutron. This parameter is unique for each isotope 

showing high dependence on a nuclear spin state and the structure of the nucleus. For this 

reason chemically identical isotopes of one element e.g. hydrogen and its heavier isotope, 

deuterium, may possess totally different neutron scattering cross sections. Moreover, 

within one isotope nucleons may be at different spin states which mean that the neutron 

scattering cross section is in fact a sum of coherent and incoherent component. The 

scattering power for different elements can be also defined using a scattering length (b) 

that is related to the total scattering cross section (σs) through the following expression: σs 

=4πb2 (see e.g.  Nielson, 1993). The scattering  length  is approximately on the  same order 

Fig. 60) Comparison of a quartz peak profile - FWHM 
(Full width at half maximum) for X-ray tube and 
synchrotron beam (After: Parrish, 1992).  
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of magnitude (Fig. 59) across the whole periodic table (with a few exceptions) that gives 

relatively even representation of light and heavy elements on a diffraction pattern. In 

certain cases neutron may be absorbed by the nucleus in a capture process. This probability 

is expressed by a neutron absorption cross section. For a several elements like cadmium or 

gadolinium it is exceedingly high (Table 4). 

 

3.1.2 In-situ time-resolved neutron powder diffraction 

For the clathrate formation and decomposition studies presented here neutron 

diffraction is nearly a perfect tool, among others due to: 1) Good penetration capabilities 

allowing for less complicated, thicker and cheaper cells that can withstand the required 

extreme conditions (see. 3.2), 2) Large beam cross section that allows for big samples and 

reduces the effect of grain statistics, 3) Strong interactions with deuterium atoms in 

clathrates and water ices (stronger than X-rays) giving much more complete structural 

information.  

The greatest downside of the neutron-based methods is usually relatively low intensity 

of an incident beam that translates in longer acquisition times. In order to utilize above 

advantages and minimize this issue the diffractometer must be placed close to an intense 

neutron source trading an increased background noise for higher flux. Only a few neutron 

powder   diffractometers   all  over  the  world  meet  all  the   above  conditions. One  such  

Table 4) Coherent (bc) and incoherent (bi) amplitudes, total scattering cross sections (σs) with 
coherent and incoherent element (σc, σi) and absorption cross sections (σa) for selected isotopes 
(first 6) and elements with their natural isotopic abundances (*). Neutron cross sections here 
are presented in [barn]s where one unit corresponds to 100fm.  Z-number of protons, A-
number of neutrons (After: Sears. 1992)  

 

 

Element Z A bc bi σc σi σs σa

H 1 1 -3.7406(11) 25.217(6) 1.7583(10) 79.90(4) 81.67(4) 0.3326(7)
2 6.71(4) 4.033(32) 5.592(7) 2.04(3) 7.63(3) 0.0000519(7)

C 6 12 6.6511(16) 0 5.559(3) 0 5.559(3) 0.00353(7)
O 8 16 5.803(4) 0 4.232(6) 0 4.232(6) 0.00016(1)
Al 13 27 3.449(5) 0.271(10) 1.495(4) 0.0092(7) 1.504(4) 0.231(3)

Mn 25 55 -3.72(2) 1.79(4) 1.75(2) 0.40(2) 2.15(3) 13.3(2)
Fe* 26 9.54(6) 11.44(14) 0.39(3) 11.83(14) 2.56(3)
Cu* 29 7.718(4) 7.486(8) 0.52(4) 8.01(4) 3.78(2)
Zn* 30 5.689(14) 4.067(20) 0.061(22) 4.128(10) 1.11(2)
Cd* 48 5.1(3) 3.3(4) 2.4(7) 5.7(6) 2520.(50)
Gd* 64 9.5(2) 34.5(5) 158.(4.) 192.(4.) 48890.(104.)
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instrument is D20 (Fig. 61). It is coupled to the fission reactor  neutron  source  at  Institute 

Laue Langevin (ILL) in Grenoble, France and has been successfully used by our group 

already for a number of years e.g. (Staykova, 2004),  (Genov, 2005).   This unique medium 

to high resolution 2-axis diffractometer operates at a thermal neutron beam line close to the 

58.3MW reactor that provides very high flux at the sample position (max 9.8 x 107 n cm-2 

s-2). A white beam is monochromatized on a phyrolitic graphite (002) monochromator that 

is the most suitable for the experiments presented here. The beam is vertically focused at 

the sample position, covering area of about 5 x 30mm.  The greatest advantage of this 

particular diffractometer is its unique position-sensitive one dimensional detector 

composed of 1536 micro-strip cells filled with 3He and CF4 that cover a very impressive 

range of 153.6° with 0.1° resolution. What is even more interesting is that this detector is 

capable of an ultra fast simultaneous readout from all cells with a dead time between two 

frames as short as 20ns. This in turn enables acquisition time as short as a few seconds per 

frame but trading counting statistics and low intensities of Bragg reflections. Typical time 

steps used for this thesis were 30, 60 and 300s depending on the reaction rate. Keeping a 

good signal-to-noise ratio in short 30-60s frames makes it possible to follow fast, initial 

reactions commonly found during the decomposition of gas hydrates at higher  

temperatures.  Utilizing   already  listed,   high  intensity,   resolution  and  sensitivity, 

Fig. 61) Schematic drawing of the D20 powder 
diffractometer in the high flux configuration (A). 
View on the position sensitive detector embaying 
the ”orange” cryostat. Source: ILL Yellow Book, 
(B). The installation is surrounded by a concrete 
anti-radiation wall.     
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 D20 is capable of detecting newly formed phases even if their fraction is below 1% 

(~0.5%). This provides very detailed information on the early stage of a reaction and helps 

to explore such ambiguous issues like the incubation period (1.1.5.2) by reducing an  

uncertainty  that comes from the instrument. The optimal resolution for D20 (Fig. 62) in 

the described configuration falls close to the 2θ region where the strongest ice and clathrate 

reflections appear. The resolution deteriorates rather quickly toward higher 2θ angles but 

reflections from that range are still useful for refinement. To improve the resolving power 

during the last campaign (see Chapter 4) a newly installed rocking oscillating collimator 

was used (ROC) (see Appendix 2). 

Low temperature control is 

Fig. 62) D20 resolution curve (in black) plotted over a data set taken at the 185K and 6mbar 
(0.6kPa). Sharp Bragg reflections from the CO2 clathrate and ice fall between 20 and 60 2θ. 
Towards higher angles peak broadening and intensities drop is observed. Strong reflections at 
~63 and 75 2θ come from Al-precipitates in the experimental cell (see: 3.2.1). 

 

 

Fig. 63) Decomposition of CO2 
hydrates at 200K 6mbar (0.6kPa) in 
the 3D accumulation LAMP plot. Ice 
Bragg reflections grow with time 
while clathrate peaks diminish almost 
entirely. The reaction can be also 
displayed in a top 2D projection, 
which is shown here on the blow up 
for two ice reflections. 
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provided by the so called “orange” cryostat that operates between 1.7 K and 300 K. PID 

loop temperature controller regulates heating elements and cooling with He gas flowing 

between the cryostat and a sample stick. Although the precision of this system usually does 

not deviate much from 0.1K, in certain cases (rapid cooling/warming), equilibration with a 

given target temperature may take 30min. Data acquired during one frame can be quickly 

accessed via the LAMP software (Large Array Manipulation Program) that offers basic 

display functions as well as processing and exporting tools. It also enables to plot collected 

histograms as a function of time (Fig. 63) to trace eventual changes in the sample. This 

particular option has proven to be priceless in very low temperature runs presented here in 

the thesis (4.2.3). Later on, raw data can be converted to .gsa format for further processing 

in the GSAS (General Structure Analysis System) package.   

Even if D20, in discussed configuration, is dedicated mostly to kinetics studies, it 

provides also limited structural information on investigated crystalline solids. Such 

parameters like thermal displacement factors and atomic positions, related to the higher 2θ 

angles, are beyond its reach but lattice constants or defectiveness of water ice can be 

successfully retrieved from lower 2θ angles. Cage fillings in clathrates also can be refined 

but some constrains must be applied (4.2.5).    

 

3.1.3 pVT and ex-situ X-ray diffraction 

Since clathrates upon formation consume a certain volume of gas it is possible to 

measure how fast it happens if the reaction volume is kept constant. Similar approach can 

be applied for decomposition reactions where gas release rate can be recorded. Yet closed 

systems have one serious flaw, namely non constant thermodynamic conditions over time. 

It means that e.g. even if upon formation clathrates will start to grow at desired pressure, 

the driving force expressed by reaction rate will diminish with time as gas is consumed 

until an equilibrium is achieved. Such style of reaction is not applicable for this thesis since 

all reactions are meant to be isobaric with a constant driving force.  A way to go around the 

problem has been found in, rapid refills/releases. The oscillations in a narrow window 

around a targeted pressure create quasi constant thermodynamic conditions over a long 

time periods. Due to specific construction of experimental setups (see 3.2.2), during an  

initial stabilization as well as each refill in formation reactions a sample may be exposed to 

warm gas. This negative influence can be greatly reduced (see 3.2.2) but at the initial stage 

some artifacts may still occur. Typical collected data in a raw form look more like a jigsaw  



81 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Fig. 64A)  than  a  curve  and  need  to  be  reworked.  Short  reactions  can  be   processed 

manualy but the same cannot be said about longer runs with multiple refill/release events. 

Such data are treated by software specially developed for this purpose by Georgi Genov. 

As a final result of pVT experiment one obtains the total accumulated or consumed 

pressure as a function of time (Fig. 64B). Individual data sets are valuable but very 

difficult to compare between each other due to differences in the initial volume of water 

and some way of normalization must be applied. The most suitable for this purpose is a 

hydrate fraction that can be easily determined by means of diffraction at the end of the 

experiment. For reasons discussed in the next section neutron diffraction cannot assist here 

and X-ray diffraction is used instead. Some preliminary analyses have been done on an in-

house Philips X-PERT PW 3040 diffractometer in the modified (fixed sample position) 

Bragg-Brentano geometry (Parrish, 1992). A sample in a flat holder is sealed within a 

beryllium head and evacuated at LN2 temperature. So obtained diffraction patterns suffer 

from a low resolution and low beam intensity that severely decrease the usefulness of the 

measured hydrate fraction below to 10% and extend the scanning time to several hours. 

Hard X-rays produced by synchrotron sources, successfully used by our group in the past 

e.g. (Staykova, 2004), offer much faster acquisition times (~90 seconds) and better 

resolution. Samples, kept at LN2 temperature, were measured on BW5 experimental beam 

line at DESY-HASYLAB in Hamburg, Germany. The setup is equipped with a beryllium 

head and vacuum system similar to those of the in-house diffractometer. The instrument 

works  in a  transmission  geometry  (Fig. 65).  The  X-ray  beam  is  monochromatised  on  

Fig. 64) Formation of CO2 hydrates from spherical ice with the pVT method. Target pressure 
was set on 5.3bar (0.53MPa). The reaction curve registers each refill with a sharp pressure rise 
(left graph). Accumulation curve is reconstructed by adding all increments. Here, it has been 
done with the automated procedure. 
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a SiGa or Silicon 111 crystal to about 100 keV (~0.124 Å) and collimated before reaching 

a sample. The spot size at this position is approximately 2.25mm2. A portion of X-rays that 

has been scattered on the investigated sample is recorded by a 2D MAR image plate 

located at the end of the setup. A part of the beam that passes unaffected through the 

sample is absorbed by a beam stopper before reaching the detector.  Data presented   here   

are   stored   with   1800 pixel vertical and horizontal resolution. The 2D images are 

processed in FIT2D software where after integration to 1D diffraction pattern can be 

exported to .gsa format and further refined with GSAS. 

3.1.4 In-situ neutron powder diffraction or pVT / ex-situ X-ray diffraction 

At first glance it might seem that both techniques, X-ray and neutron diffraction, give 

virtually the same output even though the way to obtain it differs very much. In reality, 

neutron diffraction and pVT method suffer from a number of shortcomings that effectively 

makes them complementary.  

D20 in many ways is unquestionably an excellent diffractometer valued not only in 

standard kinetic studies but also in investigations of magnetic proprieties of different 

materials or ultra fast, stroboscopic experiments. This versatility makes D20 much desired 

tool, which consequently reduces available beam time per research group to at most 3 days 

per 6 month. To benefit from such a short time as much as possible and to cover the region 

where pVT method may be susceptible to experimental errors, D20 was used here to 

investigate only a few, several hour’s long formation/decomposition processes at different 

p-T conditions. Some of the reactions can be completed even in so limited time frame but 

Fig. 65) BW5 experimental beam line at DORIS III storage ring, in Hamburg. To the left, a 
scheme of the installation. To the right, a view on an Euler cradle (1) equipped in the cold 
head (2) and the MAR image plate (3). 
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runs at low temperatures and in “self-preservation” region that require at least several 

weeks or months are beyond given beam time and only initial stages can be recorded. In-

house pVT method, which is accessible on demand, shows here its strength. Reactions may 

be carried out for even several months revealing the kinetics at later stages.  

pVT is a suitable and by many ways easy method and certainly the only available 

option for long runs but it is highly susceptible, like the other volumetric methods, to 

temperature fluctuations (see 3.2.2). For this reason air conditioned rooms are 

indispensable. Another issue comes with a tightness of experimental setups, which 

becomes an increasing problem for several weeks or months long runs. Certainly the 

normalization to the hydrate fraction is the way to go around this problem but it also gives 

rise to a new set of issues related to the X-ray diffraction on BW5. This synchrotron 

installation, although not occupied as much as D20, also offers a limited beam time. A 

single measurement takes only about 30-60s and, consequently, most of the time is 

consumed by sample changes. In some cases two samples had to be loaded into one 

aluminum vial (Fig. 66) for higher efficiency. In comparison to neutron diffraction, 

synchrotron radiation illuminates very small sample volume. Only a small number of 

crystals is exposed to the beam leading to insufficient grain statistics and uneven intensity 

or even gaps in the Debye-Scherrer rings. Fairly large grains that sometimes also appear 

may create very intense spots on 2D images increasing the overall signal from affected 

planes. The problem can be partially solved by rotation of a sample around the omega axis 

but later, some areas must be masked (4.2.3) before integration into the final 1D histogram. 

The BW5 image plate, although fast in read out, inherently covers much smaller 2θ range 

in comparison to D20. It is still sufficient for phase fraction extraction but certain 

parameters like lattice constants, structural or thermal displacement parameters must be 

provided by other means. 

Another difference between discussed techniques comes with a sample composition, 

or to be precise its isotopic characteristics. The pVT/X-ray technique accepts all samples 

but for neutron-based experiments it is strongly advised not to use isotopes with a high 

incoherent scattering length (Table 4) that is responsible for an elevated background noise 

(Staykova et al., 2003). For ices and clathrates this concerns the lightest form of hydrogen 

and therefore samples had to be deuterated. Although such substitution it is generally 

accepted it might not be necessarily identical in all aspects (e.g. cage filling in clathrates). 

Therefore, this matter requires further attention.  
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3.2 Custom build setups and experimental cells 
The overwhelming majority of gas hydrates is not stable at ambient conditions. This 

obvious inconvenience can be overcome in ex-situ experiments by freezing investigated 

samples at the liquid N2 temperature (3.1.3). In-situ reactions are much more demanding 

since usually elevated gas partial pressure and/or low temperatures are required. Such 

environment can be achieved with custom build systems. Usually the main difficulty in 

operating such experimental setups comes with their tightness and p-T regulation. For 

explosive/flammable gases like O2 or CH4 additional, costly safety measures are required. 

Adjustment to various analytical methods puts additional constrains. Neutron based 

techniques cause the activation of parts exposed to the beam and proper alloys must be 

used. Experimental cells placed in X-ray beam should interfere as little as possible with the 

incoming and scattered beam, which can be achieved by using very expensive, brittle 

and/or toxic materials like sapphire crystals or Be. These and other not mentioned 

restrictions calls for designated custom build systems specific for different materials, types 

of the experiments and applied analytical methods. In the past years a number of such 

setups have been constructed in our group e.g. (Staykova, 2004), (Genov, 2005), (Kuhs et 

al., 2005) mostly designed to work at elevated pressures required for clathrates of such 

gases like CH4, O2, N2 or Ne. The CO2 clathrates case especially at the conditions relevant 

to Mars demands more complex approach of low and higher pressure systems or both 

merged in one, complex setup. 

 

3.2.1 Experimental cells 

The working horses of this thesis, experimental cells, have been manufactured form 

high strength aluminum alloy (Table 5). The experimental volume is sealed off from the 

surrounding by a Bridgman seal (hardened steel piston pressing on polymer/teflon rings) 

(Fig. 66). Chamber size, cell wall thickness and total length varies from cell to cell to meet 

the requirements of the different analytical methods. 

 

 

 

 

 

Designaiton Si Fe Cu Mn Mg Cr Zn Ti Other
Al 7075 0.4 0.5 1.2 - 2 0.3 2.1 - 2.9 0.18 - 0.25 5.1 - 6.1 0.2 0.05

Table 5) Chemical composition of the aluminum alloy used for cells and sample holders. 
Values are given in mass%. Aluminum makes the composition to 100%. 
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Neutron diffraction experiments put considerably high demand on the size, chemical 

composition and purity of the alloy used for cells construction (Genov, 2005). The most 

suitable metals for containers in neutron science are those of relatively small neutron 

absorption cross section like aluminum or vanadium (Table 4) allowing even for thick 

walled experimental pressure cells. Although capturing process is greatly reduced for given 

elements some atoms will be activated. Small amounts of additives present in the alloy 

(Table 5) will also contribute to this effect therefore their amount should be kept as low as 

possible. Most of the activation products of the high purity Al-alloy used for our cells 

dissipate usually in a few days and long term storage is not required. The iron alloy parts of 

the Bridgman seal contain also such elements like Mn, Zn and Cu that causes more serious 

problem as the half-life of the activation products is considerably longer. In order to protect 

this vulnerable part from being exposed a 0.5mm thick Cd plating has been mounted 

around the bottom part of the cell to shade this sensitive part from the incident beam (Fig. 

66). Cadmium was chosen due to its extraordinarily large neutron absorption cross section, 

which makes it almost non transparent to the neutrons (Table 4). Aside from all above 

difficulties, the temperature control provided by the “orange cryostat” puts yet another very 

serious restriction. The overall cell size (cell + Bridgman) must be chosen so that it fits into 

a cryostat’s heat exchange volume. Unfortunately the last one may change from one 

experimental campaign to another and on-place adjustments are almost always needed. The 

trade-off in the cell size affects also 

the Bridgman seal dimensions and 

consequently  altered   its  ability  to  

Fig. 66) Experimental cells with 
Bridgman seals used in pVT (left 
most) and neutron diffraction 
(middle one with Cd plating) 
experiments. Aluminum vials (1) 
like the one form the right hand side 
were filled with a sample and 
inserted into the cells or mounted to 
the cold head on the BW5. For a few 
ex-situ X-ray diffraction 
experiments, some samples were 
transferred to smaller vials (2) and 
slipped into vials (1) with different 
samples.    
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Fig. 67) Fragment of a diffraction pattern (full pattern in the upper left corner) from an incomplete formation experiment at 193K and 360mbar (36kPa) (in 
black) plotted over a pattern taken without the sample (in blue). In a several areas aluminum peaks (black tick marks) and other background features alter the 
peak shape of overlaying Bragg reflections from ice (blue tick marks) and clathrates (red tick marks). Higher angle data, fom ~80 to 110 2θ are almost 
unaffected. Regions underlined with a thick black line were generally excluded from the refinement except a few cases where a background subtraction allowed 
treating the area between two aluminum peaks (thick black dotted line). hkl coordinates were given for identifiable reflections. Peaks marked with “?” come 
from unidentifiable phases.    
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hold targeted pressures at very low temperatures (<180K) where the Teflon seal slowly 

loses its elasticity. Another important factor concerning discussed experimental cells is 

their crystal structure and an orientation of crystals. The aluminum alloy and other cell 

components diffract a portion of the incident beam that is recorded along with clathrate and 

water ice reflections as a number of Bragg peaks and more diffused, broad features (Fig. 

67). A large volume of the cell exposed to neutrons makes its contribution significant 

enough to hinder the refinement process. Therefore 2-theta regions where the influence of 

the cell is the greatest must be excluded from the treatment. Unfortunately it turned out that 

at least for some cells, alloy crystals show signs of preferred orientation and their 

contribution may change from one experiment to another one if the cell is rotated. Due to 

this effect it is necessary to adjust restricted areas for each run.   

The pVT setups, as the least demanding, put virtually no constrains neither on the 

material used for construction nor the Bridgman sealing size. Larger aluminum cells 

equipped with a longer seal can be used. This small modification improves greatly the 

comfort of working, as well as the tightness of 

the system. The only limitation comes with the 

comparability to the cells in more constrained, 

neutron diffraction dedicated, system. This 

condition is met by keeping the sample volume 

constant in all above cells (Fig. 64).  

Since this thesis is focusing on the 

decomposition experiments, large volumes of 

high quality CO2 clathrates had to be produced 

beforehand. The use of small experimental cells 

was rather pointless due to their low efficiency. 

In such situation another type of cell had to be 

constructed (Fig. 68). Bridgman seal that serves 

well in previous designs for large reaction 

volume couldn’t be used. Instead the cell is 

sealed by eight screws pressing a rubber o-ring. 

This solution makes opening and closing time 

considerably longer but still do not alter the 

quality of the obtained clathrates.       

Fig. 68) Experimental cell used to 
produce large volumes of clathrates for 
decomposition runs. Hydrate cores for 
powders (4.2.1) were prepared in the 
insert A. Consolidated samples were 
formed directly in the aluminum vials 
(insert B). 
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3.2.2 High/low pressure systems 

High pressure setups used in this thesis is based on fully adjustable system of stainless 

steel tubing, connectors, fittings and manual valves provided by SITEC-Sieber Engineering 

AG. In a several cases semi-flexible high pressure cables were also used. Although all parts 

are designed to withstand severe pressure of at least a few kbars (a few hundreds of MPa), 

in all experiments and preparatory work the maximum CO2 pressure has not exceeded 

30bars (3MPa). Unfortunately sealant-free connections used here (Fig. 69A) are not very 

reliable under vacuum due to a high susceptibility to leaks.  

 

 

 

 

 

 

 

 

 

 

 

 

Low pressure setups have been constructed in ISO-K DN200 Pfeiffer Vacuum system 

of stainless steel/aluminum tubes, T- and crosspieces connected by flanges. Manual cut-off 

and precision valves were used to control the gas flow. The use of electro pneumatic valves 

was also attempted in one system. High tightness (vacuum down to 10-11bar/10-12MPa) 

may be achieved with silicon paste lubricated rubber o-rings inserted between the pieces 

and tightened by the flanges (Fig. 69B). A downside of this o-ring based system is its 

limited reliability at elevated pressures. For the pieces used in our experimental setups the 

maximum given gas pressure is about 2-2.5 bar (0.2-0.25MPa).  

 

The most basic and robust system operating under 25-30bar has been used to produce 

large volumes of CO2 clathrates (up to a several hundreds of cm3) used later on as a 

Fig. 69) Connections in high and low pressure systems. A) Conical, sealant free joint in the 
SITEC system tightened by a screw. B) Connection between the low pressure parts with a 
lubricated rubber o-ring in-between. Both metal pieces are held here in one half of a flange.  
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Fig. 70) Scheme of the experimental setup used to 
produce high quality H2O or D2O saturated CO2 
clathrates in large quantities. A) Gas inlet, B) Gas 
outlet/release valve, C) 400bar (40MPa) sensor, D) 
Large experimental cell, E) Semi flexible high 
pressure lines.  

starting material (Fig. 70). The setup is composed of SITEC high pressure parts, semi-

flexible high pressure cables and the large experimental cell attached to the modified 

experimental stick. Pressure is controlled on the 

ASHCROFT Pressure Reader connected to the 

400bar (40MPa) ASHCROFT KXD linear gauge. 

Desired reaction temperature is provided by 

NESLAB RTE 140 cold bath filled with glycol 

coolant. Typical operation temperature was kept 

between 268 and 278K but the min reachable 

temperature goes down to ~233K (depending on 

water concentration in the liquid).    

 

 

 

Neutron diffraction experiments in the range form a few mbar (Pa) to 2bar (0.2MPa) 

of CO2 pressure have been performed in a complex setup (Fig. 71) composed of two parts. 

The first one, experimental stick with the sample cell, is inserted into the “orange” 

cryostat. In order to avoid any 

unwanted CO2 ice condensation and 

eventual blockage, the stick is 

equipped with heating elements that 
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Fig. 71) Scheme of the low pressure 
experimental setup used in neutron 
diffraction studies. A) Gas inlet, B) Cut 
off valve, C) Release valve, D) Vacuum 
pump line, E) Pirani gauge, F) Fine 
dosing valve, G) 2bar (0.2MPa) Piezo 
gauge, H) Blind piece, I) PVC low 
pressure line, J) Small experimental cell 
with Cd shield (see Fig. 62).  
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shift the coldest spot to the reaction cell. Gas is transferred via a several meters long PVC 

line from the second part of the setup that stays behind a radiation barrier (Fig. 61B) where 

it can be safely operated. In frame of Pfeiffer Vacuum system tubes, a number of manual 

cut off valves and one Pfeiffer EVN 116 fine dosing valve provide good control on the 

pressure. Before each experiment the whole system was evacuated with a Pfeiffer Vacuum 

DUO 5 oil pump. At this stage pressure was controlled with a Pfeiffer Vacuum TPR 256 

Compact Pirani Gauge operating between 5x10-4 (5x10-8) and 1000mbar (0.1MPa). During 

each experiment another sensor has been used; Pfeiffer Vacuum APR 262 Piezo Gauge that 

shows linear change of pressure between 1 (1x10-4) and 2000mbar (0.2MPa). In the 

formation experiments gas was supplied from a bottle to the system at controlled rate. In 

decomposition runs the situation is simpler as requires only evacuation at controlled rate 

by the vacuum pump.     

The previously discussed setup was limited to 2bar (0.2MPa) of maximum pressure 

that excluded any reasonable experiments requiring clathrate stabilization and/or 

decomposition at higher T (above 230-240K). A new more sophisticated system merging 

low and high pressure parts overcome this limitation enabling higher pressure and 

temperature runs (Fig. 72). This approach, although not free from a  number of  issues  like  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 72) Scheme of the low/high pressure experimental setup used in neutron diffraction studies. 
A) Gas inlet, B) Release valve, C) Pirani gauge, D) Vacuum pomp line, E) Fine dosing valve, F) 
2bar (0.2MPa) Piezo gauge, G) 60bar (6MPa) Piezo gauge, H) Experimental cell with Cd shield 
on high and low pressure sticks.  
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tightness or difficult fine pressure tuning at high pressure, serves well  in neutron  

experiments  and setup works nearly identically to the previously described design. CO2 is 

supplied through allows for much greater flexibility than the earlier design. Low or high 

pressure sample stick is connected with the main system through the PVC or semi flexible 

pressure line depending on the experiment conditions. In low pressure 

formation/decomposition runs the high pressure part and semi flexible high pressure line 

into the already known section. Later on gas goes again through the high pressure part on 

the way to the stick with a sample. In decomposition runs there is virtually no difference 

between the systems. During experiments above 2bars (0.2MPa) the low pressure part is 

sealed off and pressure is controlled on RED LION pressure meter connected to 60bar 

(6MPa) ASHCROFT KXD linear gauge. In decomposition runs where stability of gas 

hydrates requires pressures higher than 2bars (0.2MPa) but target pressures are lower, both 

systems are applied. Prior to opening of the low pressure part, gas pressure must be quickly 

brought to 1bar (0.1MPa). Later on it may be safely evacuated to the required level with 

the vacuum pump. 

pVT experiments in the range form a few mbar (Pa) to 2bar (0.2MPa) have been 

performed in the semi-automated setup constructed in ISO-K DN200 Pfeiffer Vacuum 

system (Fig. 73). Initial 

pressure and evacuation/refill 

rate is controlled with the 

Pfeiffer EVN 116 fine dosing 

valve. The system of 
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Fig. 73) Scheme of the low 
pressure in-house pVT 
experimental setup. A) Gas 
inlet, B) Vacuum pomp line, 
C) Fine dosing valve, D) 
Adjustable volume rod 
insertion point, E) Electro 
pneumatic valve, F) Manual 
valve, G) Release valve 2bar, 
H) Pirani gauge, I) 
Thermocouple inlet, J) 
(0.2MPa) Piezo gauge, K) 
Tube filled with steel balls. 



92 

 

manual/SMC 110V-XLA-16G-M9 electro pneumatic cut off valves and adjustable volume 

element were meant to provide a good control on the setup at each automated 

evacuation/refill event. Volume between electro-pneumatic /manual valves and fine dosing 

valve can be adjusted by an aluminum rod inserted in to the setup. Opening and closure 

pressures of the electro pneumatic valves were set on a TPG 262 Pfeiffer Vacuum Dual 

Gauge reader. Signals between the valves and the reader are transmitted via a custom build 

relay box designed and manufactured by Georgi Genov. Before each experiment the setup 

was evacuated with the Pfeiffer Vacuum DUO 5 oil pump. Vacuum was controlled with the 

Pfeiffer Vacuum TPR 256 Compact Pirani Gauge connected to the first channel of the TPG 

262 Pfeiffer Vacuum Dual Gauge reader. Reaction volume is divided in two parts. The 

lower one, experimental cell attached to the stainless steel tube, is almost completely 

submerged in 99% ethanol that can be cooled down to 193K with a NESLAB ULT-80 cold 

bath. The tube right above the cell is filled with 1mm steel balls to improve cooling rate of 

the introduced warm CO2 that is crucial at the initial reaction stage. The other part lies 

above the cold bath at room temperature. Such design is very susceptible to temperature 

variations that appear mainly in summer time. Distortions caused by this effect, expressed 

as undulations in reaction curves, may be at least partially reduced with a High-Summer 

Correction introduced in the previous thesis (Genov, 2005). An EXTECH 421508 

thermometer with a K-type thermocouple read has been used to record changes in a 

background temperature that later on are applied to the correction. Pressure drop/rise is 

registered by 2bar (0.2MPa) Pfeiffer Vacuum APR 262 Piezo Gauge connected to the 

second channel in the TPG 262 Pfeiffer Vacuum Dual Gauge reader. Data from the 

thermometer and the reader can be stored on PC through RS 232 serial interface using 

Windmill 5 software.   

pVT experiments at higher temperatures that require more than 2bars (0.2MPa) of gas 

pressure for clathrate stabilization / decomposition were attempted in a setup constructed 

entirely from SITEC high pressure parts (Fig. 74). Like in the previous case, before each 

experiment the setup is evacuated. The vacuum build up is followed on the first channel of 

the TPG 262 Pfeiffer Vacuum Dual Gauge reader connected to the Pfeiffer Vacuum TPR 

256 Compact Pirani Gauge. Initial pressure is controlled on the RED LION reader 

connected to the 60bar (6MPa) ASHCROFT KXD linear gauge. For target pressures that 

are higher than 2bars (0.2MPa) the same sensor is used to follow reactions. A set of cut off 

valves allows for relatively good pressure regulation. If target pressure is placed below 
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2bars (0.2MPa) more precise Pfeiffer VacuumAPR 262 Piezo Gauge working on the 

second channel  of  the  TPG  262  Pfeiffer  Vacuum  Dual  Gauge  reader  can be used. The  

reaction volume is much smaller than in the low pressure pVT setup. Its greater part is 

submerged in the NESLAB 

ULT-80 cold bath filled with 

ethanol. The stainless steel 

tubing that stays at room 

temperature is covered with 

isolating foam.      

 

 

 

 

3.3 Scanning electron microscopy (SEM) 
Diffraction and pVT methods provide generalized information on what is happening 

in a bulk sample during the transformation. This averaging over a volume helps to avoid 

eventual heterogeneities that might exist on a small scale. It is certainly useful for reactions 

governed by a singe mechanism where reaction curves can be easily interpreted. Yet, if the 

situation is more complex, micro structural insight becomes indispensible to disentangle 

different processes that may act at the same time. Complicated kinetics that is frequently 

observed in the decomposition and formation reactions of the gas hydrates serves here as a 

good example. Scanning electron microscopy (SEM) that provides a frozen-in visualisation 

of investigated samples seems to be the best choice for providing missing data.  

 

3.3.1 Introduction to the electron microscopy 

Electrons travelling in vacuum move in a straight line like visible light but have 

Fig. 74) Scheme of the higher 
pressure in-house pVT 
experimental setup. A) Gas 
inlet, B) 60bar (6MPa) Piezo 
gauge, C) Pirani gauge, D) 
Vacuum pomp line, E) Release 
valve, F) 2bar (0.2MPa) Piezo 
gauge. 
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much shorter wavelengths offering much higher magnification, even on an angstrom scale. 

Due to their magnetic momentum it is possible to model a beam shape with electrostatic 

and magnetic fields similarly to visible light on traditional lenses. Electron microscopy that 

utilises above property is presently a routine method that encompasses a large family of 

different modifications based on two main concepts. Transmission electron microscopy 

(TEM) with its high resolution option (HR-TEM) is applied to very thin, less than 0.5µm, 

samples. Transmission microscopy usually requires considerably high acceleration voltage 

well exceeding 100kV. The other concept, scanning electron microscopy (SEM), is 

designed to study up to a several hundreds of nm thick upper layer of thick samples. 

Typical acceleration voltage in scanning microscopes stretches from  ~0.2 to 30-50kV.  

The electron beam can be generated in two main ways. The first one, thermionic 

electron gun, is based on a sharp-tipped, hot wire or a needle (most often tungsten, LaB6 or 

Ce6) combined with an electric potential to direct and accelerate extracted electrons. At a 

few thousands of degrees, where electron production is the highest, a lifetime of the 

filament is greatly reduced. In return one obtains stabile and low-noise beam. The second 

way, a cold field emission (FE) gun, is based on a quantum tunnelling phenomenon where 

electrons may lower their potential energy by moving away from atoms if very steep 

potential gradient is applied at the cathode surface. This can be achieved with a very large 

negative potential between electrodes. In this technique the filament is cold, which offers 

high brightness and low 

electron energy spread. 

Certain designs, like 

Schottky field emission 

gun, combine advantages 

both thermionic and field 

emission techniques 

allowing for high beam 

brightness but keeping low 

beam noise and high 

resistance to external 

vibrations at the same time. 

Since gas molecules can 

easily damage the cathode 

back scattered 
electrons (BSE) 

secondary 
electrons (SE) 

Auger 
electrons 

Incident electron beam 

transmited 
electrons 

diffracted 
electrons 

X-rays 

cathodoluminescence 

Fig. 75) Electron-sample interactions in the scanning and 
transmission microscopy. 



95 

 

and interfere with the beam, in all cases the source and guiding column must stay at ultra 

high vacuum (10-9mbar, 10-10 kPa). After extraction electrons are condensed at the 

negatively charged electrode and sent down toward a sample chamber. Under way, the 

beam is modelled by a set of electromagnetic and/or electrostatic lenses and focused at the 

sample.  

The beam may interact with the target in a several ways (Fig. 75). Electrons colliding 

with a specimen’s atom may be scattered 180° backward (BSE). Their production grows 

with the Z number, which is manifested on SEM images as a contrast if a difference 

between elements is high enough (Fig. 76A). For gas hydrates/water ice samples this effect 

is negligible small. Secondary electrons (SE) are ejected from the sample when incident 

electrons transfer some of their energy to lower electron shells (mostly K) while passing 

close to the atoms. Kinetic energy of liberated particles is very low ~5eV decreasing 

probing depth to a several, at most ~10nm. It makes them a perfect tool for studding 

surface microstructures (Fig. 76B). Imaging with the secondary electrons will be widely 

presented later in this thesis (Chapter 4). Emission of electrons from lower shells creates a 

vacancy that can be filled by a higher energy electron. This transition is accompanied with 

an emission of surplus energy in form of a photon. Its wavelength most often falls in the 

soft X-rays region. Energy emitted in this process is unique for each element and can be 

used to compositional characterisation with energy dispersive spectroscopy (EDS), or 

wavelength dispersive spectroscopy (WDS). Infrared, ultraviolet or visible light that can be 

also generated is used in a  cathodoluminescence  technique  (CL).  A  fraction  of  released 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 76) A SEM of images taken in different modes. (A) Trachite basalt thins section seen by 
backscattered electrons. Different mineral phases and metasomatic fronts are distinguishable due 
to the difference in Z-number. (B) A frozen-in image in secondary electrons of a breathing pore 
at a lower side of a leaf surrounded by wax nodes (© D. T. Heinrichs). 
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radiation  can  be  used  for  outer electrons to escape. Liberated particles, Auger electrons, 

that are also unique for each element, can be used in compositional characterisation of the 

outermost specimen’s layer up to 3µm deep. In TEM, electrons that pass through a thin 

sample may also undergo elastic and inelastic scattering or do not interact at all. While the 

first two phenomena can be used in studies of a local crystallography, the last one provides 

the sample thickness. 

High resolution of electron microscopes is achieved by rising acceleration voltage. 

Scanning microscopes can reach a few nm at ~30kV. Transmission types go even to 

smaller, sub nm scales at 200-300kV. Although the resolving power increases, the beam 

becomes more and more destructive (Fig, 77A).  It is well visible not only for fragile 

organic samples or gas hydrates but also in some cases also for some silicate minerals that 

are quickly etched by very fast HR-TEM electrons. Moreover, poorly conducting targets (R 

> 1010Ω) like polymers, water ice or clathrates become quickly charged at higher 

acceleration voltages. Static electric fields that are formed at the sample deflect secondary 

electrons, which may distort output images (Fig. 77B). This effect may be reduced or 

completely eliminated by conducting coatings of Au, Pt, Pd or C but simultaneously 

another set of difficulties may appear (e.g. uneven coverage producing misleading surface 

features). Uncoated fragile samples require special approach. At relatively low acceleration 

voltage (~2-5kV) and high vacuum one can use standard SEM if the microscope is 

equipped with a cryo stage. This technique can be successfully applied  for  gas  hydrates 

that  do not   decompose   at  LN2  temperature  even  if  stabilizing  gas  partial pressure  is   
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Fig. 77) Typical artifacts caused by an electron beam. (A) A surface of clathrate grain etched by 
a beam (first two letters), (B) Charging effect on an uncoated ice surface (arrows). 
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absent e.g.(Kuhs et al., 2000), (Kuhs et al., 2004), (Stern et al., 2004), (Bohrmann et al., 

2007). Dynamic experiments like formation or decomposition of gas hydrates under 

limited gas/vapour pressure are also achievable but demand already specially designed for 

this purpose E-SEM - Environmental or Extended vacuum Scanning Electron Microscope 

(depending on a vendor). In this technique secondary electrons that escape from the 

specimen produce a new generation of electrons by hitting in gas/water vapour molecules. 

This cascade process amplifies the signal that is finally gathered in an in-lens detector. The 

maximum resolution in cryo or environmental mode may reach, in optimal conditions, 

about 3-10nm at 1kV but usually this value is about an order of magnitude smaller.   

 

3.3.2 LEO 1530 Gemini and FEI Quanta 200 FEG 

 Images presented later on in this thesis (Chapter 4) were taken by two field 

emission scanning electron microscopes (FE- SEM), namely LEO 1530 Gemini and FEI 

Quanta 200 FEG equipped with Oxford Instruments EDX detectors and cryogenic systems 

including a preparation/transfer chamber and cryo stage, which allows for ex-situ 

investigations of gas hydrates. Both instruments utilize the ZrO/W (100) Schottky field 

emission guns which beside all advantages listed earlier, have additional zirconium oxide 

coating on the tungsten cathode that 

lowers ejection energy per electron. In 

LEO FE-SEM the beam is modeled 

by a set of Gemini electromagnetic 

and electrostatic lenses (Fig. 78). Its 

specific, non-crossover, construction 

greatly reduces stochastic interactions 

between electrons responsible for 

energy spread and consequently 

chromatic aberration. Additionally, a 

boosting element maintains electrons  

energy at  10kV  throughout  the 

column (Jakisch, 1996). Secondary 

electrons are gathered by an 

Everhardt-Thornley detector. Quanta 

Fig. 78) A cross section through a SEM column 
based on the Gemini concept. Source: Carl Zeiss 
promotion brochure.  
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200 utilises high resolution field-emission SEM column with 45° objective lens geometry 

that provides results comparable to the previously described design.  FEI SEM can also 

work under low vacuum 0.1-13mbar (10-130Pa) and in the E-SEM mode maintaining 

chamber pressure between 0.1 and 400mbar (10-4000Pa). Secondary electrons can be 

collected by three different detectors depending on the SEM mode. The classical 

Everhardt-Thornley detector is used only under high vacuum because of its distant position 

from the sample stage.  This configuration has been used here for ex-situ gas hydrate/ice 

investigations. At low vacuum and in the environmental mode SE have to be collected 

close to the beam spot by a large field detector (LFD) or in-lens gaseous secondary 

electron detector (GSED). Unfortunately, because of details in the commissioning none of 

the methods could be used in this thesis.  

 

3.4 Brunauer-Emmett-Teller method (BET) 
The reaction’s rate during the nucleation and growth of gas hydrates/ice is very 

closely dependent on the available gas/sample interface (Chapter 1.5.2). The surface area 

(SA) generally increases with decreasing particle size but complicated, irregular grain 

shapes make it difficult to quantify. Several techniques may be used for this purpose but 

most of them suffer from large error bars. Granular materials can be approximated with 

regular shapes but eventual porosity, cracks or other additional surfaces are not taken into 

account. Similar problem appear for flat plate like materials where the surface area is 

estimated under an optical or electron microscope (Dominé et al. 2001). Moreover, at 

higher magnifications statistical errors may appear. Since the correct value of the surface 

area is crucial for kinetic studies and later also to constrain theoretical models, another 

method is necessary. Experimentally this can be achieved with gas adsorption at LN2 

temperature, which in spite of some limitations can measure surface areas with 

considerably good precision and reproducibility.  

 

3.4.1 Principles of the BET 

Volumetric Brunauer-Emmett-Teller (BET) method (Brunauer et al., 1938) is based 

on a physisorption phenomenon of gas molecules on solid bodies where they form a multi-

layered film bounded by the Van der Vaals forces. Measurements are performed at LN2 

temperature where the Ideal Gas Law can be applied without corrections. The adsorbed 

coating stays in a dynamic equilibrium with the surrounding gas and its thickness changes 
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with the gas pressure. At saturation pressure the number of layers is assumed to be infinite. 

An enthalpy of the first layer is assumed to correspond to the adsorption (heat of 

adsorption) while for the following layers to the liquefaction (heat of liquefaction). If 

exposed to low pressure/ vacuum, the adsorbed coating undergoes a gradual desorption and 

eventually disappears since the binding forces are relatively weak.  

BET volumetric setups are divided in two known volumes. One serves as a gas 

reservoir (e.g. N2, CH4) here called initial volume and the other one, expansion volume, 

holds a specimen that is evacuated prior to an experiment. The sample is measured at LN2 

by opening of a valve between two volumes and registering pressure drop after the 

expansion. The first layer of molecules that is adsorbed at the surface corresponds to the 

searched SA. The process is repeated in a number of steps and new layers are formed until 

the saturation pressure for a given adsorbent is achieved. At the end of each experiment 

one obtains an adsorption isotherm that may be further analyzed.   

Assuming that each gas molecule in the first layer occupies an equal area and the 

surface is tightly covered, the total surface area can be calculated just from the number of 

gas molecules. In simple cases where only one layer can be adsorbed, the result can be 

directly deduced from a slope of the isotherm by applying the Langmuir theory: 

θ =
bp

1 + bp
       (1) 

θ represents here a fraction of the surface covered by adsorbed molecules, p stays for gas 

pressure, b is a constant assuming independence of the adsorption’s enthalpy on θ. Since   

θ = V/Vm , where V is the volume of adsorbed molecules and Vm the volume needed for 

the total coverage, one can transform the first equation into:    
p
V

=
p

Vm
+

b
Vm

      (2) 

The slope of the p/V as a function of pressure gives Vm, which can be used in the Ideal Gas 

Law to calculate the surface area of a measured sample: 

Nads =
pVm

kT
      (3) 

Here k is the Boltzman’s constant, Nads  a number of adsorbed gas molecules and T the 

temperature. Multiplying Nads  by the surface of a single gas molecule gives the total 

surface area.      

For clathrates and ices where more than one layer is adsorbed, Langmuir theory has 
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to be modified to account for this effect. It is done in the Brunauer-Emmett-Teller 

treatment (BET) that was shortly introduced at the beginning of this subchapter. Below, the 

reader will find the mathematical description of the whole procedure.  

 At the first step a number of moles of gas in the first volume are calculated. It will 

be later multiplied by the Avogadro number to get the number of adsorbed molecules Nads : 

n1
′ =

p1
′ VI

RTR
     (4) 

Here n1
′  is the number of moles of gas in the first increment, p1

′ the introduction pressure in 

the initial volume VI  . R is the ideal gas constant and TR  room temperature. To reduce the 

deviation from the Ideal Gas Law p1
′  must be kept small while VI  large. By opening the 

valve between the two volumes, pressure drops due to gas expansion and adsorption. The 

number of moles that remains in a gas phase n1 
′′ is calculated as follows: 

n1
′′ =

p1
′′ (VI + VER )

RTR
+

p1
′′ VEL

RTL
      (5) 

 p1
′′ is the pressure after the expansion. The sum VI + VER  corresponds to the initial volume 

and the expansion volume that stays at room temperature. VEL  is the expansion volume 

kept under LN2 temperature TL . Since the number of moles adsorbed at the first increment 

n1 ads  is a simple difference between n1
′  and n1

′′  then: 

n1 ads = (p1
′ − p1

′′ )
VI

RTR
− p1

′′ �
VER

RTR
+

VEL

RTL
�       (6) 

In the next increment one expands a portion of gas to the second part of the system that 

already contains a part of gas molecules from the first step. In such situation the number of 

adsorbed molecules after the second expansion is: 

n2 ads = n2
′ + n1EV

′′ − n2
′′        (7) 

The new expression n1EV
′′  describes a number of molecules that stayed in the second, 

expansion volume after the first increment. Following increments continue to build up the 

adsorbed film: 

nn ads = �(pi
′ − pi

′′ )
VI

RTR
+ (ph

′′ − pi
′′ ) �

VER

RTR
+

VEL

RTL
�

n

i=n

      (8) 

The equations presented above suffer from one serious misconception, namely two 

volumes at radically different temperatures are separated by a sharp boundary. Such 

situation in nature is highly unrealistic and a thermal gradient between them must be taken 

into consideration. For simplicity it will be described by a linear dependence that affects a 
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transition volume VET  distinguished from the VER . Introducing a correction into (8) one 

obtains: 

nn ads = �(pi
′ − pi

′′ )
VI

RTR
− (ph

′′ − pi
′′ ) �

VER

RTR
+

VET ln TR
TL

R(TR − TL) +
VEL

RTL
�

n

i=n

      (9) 

The total number of adsorbed molecule after each increment is obtained by multiplying (9) 

with the Avogadro number A as it was already mentioned before. So calculated Nads  and 

consequently SA are essentially unique for every sample even for the same material, which 

needlessly to say is experimentally very inconvenient. This issue is eliminated by defining 

the number of molecules per mass unit called a specific surface area (SSA). In the equation 

below Nads  is defined for a mass unit at each increment:    

Nn ads =

�∑ (pi
′ − pi

′′ ) VI
RTR

− (ph
′′ − pi

′′ ) �VER
RTR

+
VET ln TR

TL
R(TR − TL) + VEL

RTL
�n

i=1 � A

m
      (10) 

After retrieving the number of adsorbed molecules at each increment, a next step will be to 

calculate how many gas molecules belong to the first layer that corresponds to the searched 

SSA. It is done using BET transform Y that is defined as:   

Yi =
 pi

′′       

p0Nn ads �1 − pi
′′

p0
� 

         (11) 

 p0 corresponds here to the saturation vapor pressure of an adsorbent at LN2. Taking Y at 

each increment and plotting it against pi
′′ /p0 gives a BET transform isotherm that is used 

in a fitting procedure (Fig. 79). The isotherm is generally a curve with a linear part 

between 0.07-0.22 (Legagneux et al., 2002). 

Y = S 
p′′

p0
+ I          (12) 

S, which is a slope of the function and an interception point I are used later to calculate the 

number of gas molecules Nm  in the first layer: 

Nm =
 1   

(S + I) 
        (13) 

Finally the SSA is obtained as follows: 

SSA = Nm SAgas      (14) 

The Nm  value and consequently SSA are prone to a number of experimental and systematic 
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errors (see 3.4.2) and the credibility of the measurements must be checked by calculating 

the mean heat of adsorption ΔQ: 

ΔQgas = TLR ln
 (S + I)   

I 
   (15) 

The logarithm exponent in the equation (15) is often referred as a BET constant C.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 In-house BET setup 

Clathrates and ices are very difficult materials to study by BET. In order to protect 

hydrates from decomposition, samples must be kept at LN2 from the moment of loading 

through the evacuation to the final measurement. The same procedure should be applied to 

ices where the surface area may still evolve if temperature is too high (Legagneux et al., 

2002). Although commercial BET setups offer an easy way to measure SSA of a wide 

range of samples, the above condition is not met. For this reason, a custom build BET 

system has been constructed (Fig. 80) using high and low pressure parts described 

previously (3.2.2).   

 

Fig. 79) BET isotherm recorded for the ice spheres (4.1.1) fitted in its linear part between 0.07-
0.22. Slope of the trend line and the (S) intersection point with the Y axis (I) are used later in 
the SSA calculations. 
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An experimental cell is attached to the system by a screw connector with a gasket 

ring in between. Vacuum is achieved by a preliminary evacuation with the Pfeiffer Vacuum 

DUO 5 oil pump to 10-3mbar (10-4kPa) and later with a Pfeiffer Vacuum TMH 071P turbo 

molecular pomp to ~10-5mbar (10-6kPa) where it is left for ~30min. Vacuum build up is 

followed on a Pfeiffer Vacuum Compact Full Range Gauge connected to  the  first  channel 

of the TPG 262 pressure reader. For technical reasons discussed later the first set of sensors 

can be checked by the back-up pair. The initial and expansion volumes have been 

measured at room temperature with 10mbar (1kPa) of He gas that adsorb neither to the 

tubing nor to the eventual sample. Pressure drop has been recorded through the second 

channel of the TPG 262 with a Pfeiffer Vacuum Compact Capacitance Gauge operating in 

the range between 10-3 and 10mbar (10-4 -1kPa). This approach essentially does not yield 

searched volumes unless a third, known volume is introduced. This is done using two 

empty experimental cells where the first one is twice larger than the second one. The 

volume difference can be very easily calculated and inserted into the set of two Ideal Gas 

Law equations with two unknowns. Consequently searched volumes have been established 

Fig. 80) Scheme of the in-house BET setup. A) Oil vacuum pomp inlet, B) Turbo molecular 
pomp inlet, C) Compact full range gauge, D) Compact capacitance gauge, E) 10bar (1MPa) 
Piezo gauge, F) Pirani gauge, G) Release valve, H) Valve between two volumes, I) Heating 
band, J) Experimental cell submerged in the Dewar, K) He inlet, L) CH4 inlet. 

L → 

C 

K
 

← 

A 
↘ 

B ↗ 

D 

E 
F G 

↙ 

H 
↙ 

J 

I ← 

VI 

VE 

VD 

VS 

VT 

VEL 

VER 

VI   - Initial volume 
VE  - Expansion volume 
VER- Part of VE at room T 
VT  - Part of VE with thermal gradient 
VEL - Part of VE submerged in LN2 

VS  - Sample volume  
VD - Dead volume (VEL-VS) 



104 

 

on: VI = 202.52cm3 and VE = 194.54 / 258.16cm3 for the small and large cell respectively. 

A volume ratio of 1.04 for the system with the small cell and 0.78 with the large cell falls 

within the experimentally established frames for BET setups (0.5-2) (Legagneux et al., 

2002). During surface area measurements the expansion volume is divided according to the 

temperature regimes in three sections (3.4.1). That must be known for data treatment. 

Unfortunately the construction of the setup does not allow for separation of each volume 

and they had to be calculated from their geometry: VER  = 69.92cm3, VET  = 15.28cm3, VEL = 

109.34 / 172.96cm3 (Fig. 80).   

A sample loaded in the setup decreases the expansion volume, which has to be 

measured again by expanding ~10mbars (1kPa) of He gas. The procedure is repeated 3-4 

times to account for better statistics. A sample volume VS   (Fig. 80), calculated from the 

difference is subtracted from the previously calculated VEL  giving a new volume 

submerged in LN2. The result, a dead volume, VD  is inserted into (9). The system is again 

evacuated until a high vacuum in both volumes is established. At this point the valve 

between VI  and VE  is closed. The first volume is filled with a small portion of CH4 that 

serves here as an adsorbent. Consequently the valve between the volumes is reopened and 

the pressure drops due to the expansion and adsorption. The valve is closed again and 

another portion of gas is added to the initial volume. It was found to be sufficient to 

progress initially with a step of 0.3mbar (0.03kPa) until p′  reaches about 5mbar (0.5kPa). 

At this point the adsorption curve should be already in its non linear part and the step can 

be increased to 0.5-1mbar (0.05-0.1kPa). The procedure is repeated until the p′′  

approaches to the methane vapor saturation pressure p0 at LN2, which has been established 

on 12.94mbar (1.294kPa) (Legagneux et al., 2002). So obtained adsorption isotherm (Fig. 

79) may be further processed with the BET treatment. The final SSA is calculated form 

 Nm  multiplied by an area for a single CH4 molecule that was established on 19.17x10-20m2 

(Chaix et al.,1996). A precision of the measurement is controlled by a comparison of the 

experimentally calculated ΔQCH 4  to a published value of 2240±100 J/mol (Domine et al. 

2000). 

The principles and the construction of a BET setup are fairly simple but from the 

technical point of view it is one of the most troublesome and tedious method from all 

presented here. The construction of the system used here inherited all the vacuum issues 

discussed previously (3.2.2). Aside from a number of small leakages coming from 

connections the biggest problems were found with a proper sealing of the experimental cell 
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submerged in LN2. The initially used Teflon ring gaskets were letting nitrogen gas into the 

system on random occasions spoiling the results. The situation has been greatly improved 

with a change to pure copper rings but the cell must be sealed before the gasket becomes 

too hard due to cooling. Another issue comes with pressure measurements. The 

Capacitance Gauge used for measurements is calibrated with the Compact Full Range 

Gauge, which is prone to misleading readings if not serviced regularly. The second set of 

sensors helps to detect a problem but cannot supplement the faulty one since the range they 

cover is not the same. The final results may be also affected by a non constant room 

temperature or changes of a LN2 level in the Dewar during measurements. Although, both 

effects cannot be fully avoided, air conditioning with regular and frequent refills 

diminishes their impact to negligible levels. 

 

3.5 Excess fugacity – driving force 
A fugacity of CO2 or to be more precise its excess is one of the major components 

that influence observed reaction speed. Unfortunately derived fugacity/pressure ratios from 

a standard EOS equation (Angus et al., 1976) of CO2 gas are limited rather to higher 

temperatures starting from 220K (10K step) with rather large pressure steps (5kPa for 10-

100kPa, 50kPa for 100-1000kPa, 500kPa for 0.1-1MPa) (Fig. 81). To establish fugacity 

and finally driving force for the experiments emulating conditions relevant to Mars 

existing isobaric-isothermal data were fitted with a build-in Origin 6 Weibull2 function 

modified for this purpose. This approach proved to be quite reliable from almost vacuum 

conditions to about 2bars (0.2MPa). At the pressure of 6mbar (0.6kPa) the fugacity is 

assumed to be the same. A convenience of the fitting lays in its ability to plot 

fugacity/pressure ratios for intermediate pressure steps in a desired temperature region, but 

one has to keep in mind that calculated values below 220K are not confronted against 

experimental data and some divergence may occur. At higher pressures, the Weibull2 

function is not very reliable in the region of interest (240-270K) and in order to avoid 

fitting errors in 2-10bars (0.2-1MPa) pressure region, values were retrieved with help of 

tabulated data (Angus et al., 1976).  

The driving force used in this thesis has been empirically established in the previous 

studies at low pressures (Salamatin and Kuhs, 2002), (Staykova et al., 2003), (Genov et al., 

2004). It is defined as a natural logarithm of (f/fd) where f corresponds to the fugacity 

during the experiment and fd to the one at the stability boundary.  
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3.6 Clathrate formation - Powder 4 model 
“Powder 4” model presented below has been created in a group led by Prof. A. N. 

Salamatin1

                                                           
1 Department of Applied Mathematics, Kazan State University, Kazan 420008, Russia. 

 at the Kazan State University, Russia in cooperation with our department. It is 

still under development but can be already applied for mono dispersed spherical powders 

with a radius of a few μ (frost). Ice spheres with a larger diameter can be also treated only 

in the initial part maximally up to 30-40 wt% where the reaction rate starts to be strongly 

dependent on a sample’s geometry. The treatment of the later part of the diffusion 

controlled transformation as well as polydispersivity is not yet implemented. Mathematical 
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Fig. 81) Fugacity/ pressure ratio as a function of temperature (Angus et al., 1976). In the blow 
up chosen data are extended to lower temperatures through the fitting. Thick blue, 
orange and green curves (see arrows) are calculated for 0.6kPa, 6kPa and 170kPa, 
respectively.   
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description of the transformation process is a synergy of already published 

phenomenological models (Salamatin and Kuhs, 2002), (Staykova et al., 2003), (Genov et 

al., 2004) and Johnson-Mehl-Avrami-Kolmogorv-Ginstling-Brounshtein concept (Genov, 

2005). For details the reader may look into the previous PhD thesis (Genov, 2005) where 

both approaches were critically discussed.  

 

3.6.1 Theoretical background 

Powder 4 utilizes information on the nucleation and growth acquires during the latest 

interrupted runs (4.1.2). Previously considered case of the crack filling is still preserved if 

one feels a need to apply it. New data suggest that the initial surface coverage is in no 

longer limited by a nucleation rate but depends on a lateral growth of the clathrate film. 

Mathematically it is expressed with Johnson-Mehl-Avrami-Kolmogorv (JMAK) model that 

is modified for the spherical geometry. To account for observed heterogeneity of the 

nucleation (4.1.2) it is necessary to introduce a time dependent expression 𝑁𝑁0𝑡𝑡𝜎𝜎−1 defining 

nucleation rate constant 𝑁𝑁0 at a moment 𝜏𝜏 and a phenomenological exponent 𝜎𝜎 that ranges 

from 0 to 1 for instantaneous and uniform nucleation respectively. Consequently the 

nucleation rate 𝑁̇𝑁 per unit area of free ice surface is: 

𝑁̇𝑁 = 𝑁𝑁0𝜏𝜏𝜎𝜎−1 

For an infinite 2D nucleation domain a single nucleus will increase its radius 𝑙𝑙 from the 

moment of formation 𝜏𝜏 to a moment 𝑡𝑡 as follows: 

𝑙𝑙 = 2𝐺𝐺(𝑡𝑡 − 𝜏𝜏)
𝑚𝑚
2  

A new term 𝐺𝐺 stands here for a nuclei growth rate constant. Parameter 𝑚𝑚 is an empirical 

exponent that is related to a dimensionality of the growth varying between 1 and 3. Since 

in reality the growth seldom follows only one type (e.g. m=2 for 2D), it is allowed to use 

real numbers (e.g. m=2.3 for a mixed 2D/3D growth), (4.2.4). Modification introduced in 

Powder 4 limits above domain to the surface of a spherical particle: 

𝑆𝑆(𝑡𝑡 − 𝜏𝜏) = 4𝜋𝜋 min{𝑟𝑟𝑖𝑖0
2 , 𝐺𝐺2(𝑡𝑡 − 𝜏𝜏)𝑚𝑚 } 

The limitation of the nucleation domain causes the nucleation rate 𝑁̇𝑁 after a period of 𝑑𝑑𝑑𝑑 to 

be actually smaller since the available area of free ice decreases with time. In order to 

account for that, authors introduce a “phantom nuclei” 𝛼𝛼𝑆𝑆𝑁̇𝑁𝑑𝑑𝑑𝑑 which would have been 

created if the surface was free. This in turn leads to a fraction 𝐴𝐴𝑒𝑒𝑒𝑒  of the ice surface 𝑆𝑆 that 

would have been coated by fictitious nuclei at a time 𝑡𝑡: 
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𝐴𝐴𝑒𝑒𝑒𝑒 = � 𝑆𝑆(𝑡𝑡 − 𝜏𝜏)𝑁̇𝑁(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

0

= 4𝜋𝜋𝑁𝑁0 � min{𝑟𝑟𝑖𝑖0
2 , 𝐺𝐺2(𝑡𝑡 − 𝜏𝜏)𝑚𝑚 }

𝑡𝑡

0

𝜏𝜏𝜎𝜎−1𝑑𝑑𝑑𝑑 

By definition a differential of 𝐴𝐴𝑒𝑒𝑒𝑒  is:    

𝑑𝑑𝐴𝐴𝑒𝑒𝑒𝑒 =
𝑑𝑑𝛼𝛼𝑆𝑆

1 − 𝛼𝛼𝑆𝑆
≡ Ω𝑆𝑆𝑑𝑑𝑑𝑑 

A new terms 𝛼𝛼𝑆𝑆 and Ω𝑆𝑆 describe here a surface fraction coated by a new phase and rate of 

coating respectively. The rate of surface coating at a moment 𝜏𝜏 will be then: 

𝐴𝐴𝑒𝑒𝑒𝑒 = ln
1

1 − 𝛼𝛼𝑆𝑆
= � Ω𝑆𝑆

𝑡𝑡

0

(𝜏𝜏)𝑑𝑑𝑑𝑑 

The last part of the expression can be implemented into the exponent of the JMAK general 

equation as follows: 

𝛼𝛼𝑆𝑆 = 1 − 𝑒𝑒�− ∫ ΩS (τ)dτ𝑡𝑡
0 � 

Refined JMAK approach gives the following parameterization: 

� Ω𝑆𝑆(𝜏𝜏)𝑑𝑑𝑑𝑑 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜛𝜛𝑠𝑠 � �

𝜏𝜏
𝑡𝑡0

�
𝑚𝑚

(𝑡𝑡 − 𝜏𝜏)𝜎𝜎−1𝑑𝑑𝑑𝑑
𝑡𝑡

0

, 𝑡𝑡 < 𝑡𝑡0

𝜛𝜛𝑠𝑠 � �
𝜏𝜏
𝑡𝑡0

�
𝑚𝑚

(𝑡𝑡 − 𝜏𝜏)𝜎𝜎−1𝑑𝑑𝑑𝑑

𝑡𝑡0

0

+
𝜛𝜛𝑆𝑆

𝜎𝜎
(𝑡𝑡 − 𝑡𝑡0)𝜎𝜎 , 𝑡𝑡 > 𝑡𝑡0

�
𝑡𝑡

0

 

The rate of coating Ω𝑆𝑆 is here presented using a nucleation limited rate of hydrate 

formation 𝜛𝜛𝑠𝑠 = 4𝜋𝜋𝑟𝑟𝑖𝑖0
2 𝑁𝑁0 for two different regimes defined by a typical time of the sphere 

coverage 𝑡𝑡0 = �𝑟𝑟𝑖𝑖0
𝐺𝐺

�
2
𝑚𝑚 . The first case, 𝑡𝑡 < 𝑡𝑡0, discusses a variant of a predominant 

nucleation in cracks, which presently seems to be not a valid scenario. The other one 

considers mentioned earlier case of a reaction where the initial surface coverage is in no 

longer limited by the nucleation rate but depends on the lateral growth of the clathrate film. 

An expansion of the initial film into an ice particle generally follows a shrinking core 

concept introduced in previous phenomenological models e.g. (Salamatin and Kuhs, 2002). 

Knowing that clathrates have somewhat lower density (ignoring gas molecules in the 

structure) then a thickness of the initial hydrate film 𝑑𝑑0 can be written in the following 

form: 

𝑑𝑑0 = 𝛿𝛿0(1 + 𝐸𝐸) 

𝛿𝛿0 describes a thickness of the ice layer converted during the initial mantling process.  E is 
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a hydrate phase expansion coefficient defined as a ratio between the mole density of ice 𝜌𝜌𝑖𝑖  

and empty clathrate structure 𝜌𝜌𝑘𝑘𝑘𝑘  corrected for observed sub-μ porosity 𝜀𝜀ℎ  (see: 4.2.2): 

𝐸𝐸 =
𝜌𝜌𝑖𝑖

𝜌𝜌𝑘𝑘𝑘𝑘 (1 − 𝜀𝜀ℎ ) 

The ice core radius after the initial coating Δ(𝑡𝑡) will undergo gradual consumption during 

the formation process. Sharp clathrate/ice interface will move toward the cores’ center: 
𝑑𝑑Δ
𝑑𝑑𝑑𝑑

= −
𝜔𝜔𝑉𝑉

𝜌𝜌𝑖𝑖 𝑟𝑟𝑖𝑖0(1 + 𝑣𝑣0
2) , Δ ≥ 0 

A new parameter 𝜔𝜔𝑉𝑉  describes a number of ice moles transformed to clathrate in a unit of 
time and ice surface under the initial coating. Consequently ice radius is: 

Δ|𝑡𝑡=0 = 1 −
𝛿𝛿0

𝑟𝑟𝑖𝑖0(1 + 𝑣𝑣0
2) 

The decrease of the ice core’ radius in the period of time (t − τ) leads to a fraction of 
clathrates in this increment:  

𝑑𝑑𝑑𝑑 = [1 − Δ3(t − τ)]𝑑𝑑𝛼𝛼𝑆𝑆 

𝑑𝑑𝛼𝛼𝑆𝑆  defines here the fraction of a surface covered in the discussed time period. After 
integration over time one obtains the reaction degree 𝛼𝛼 in a time interval 𝑑𝑑𝑑𝑑: 

𝛼𝛼 = �[1 − Δ3(𝑡𝑡 − 𝜏𝜏)]𝑑𝑑𝛼𝛼𝑆𝑆(𝜏𝜏)
𝑡𝑡

0

 

The typical time for coating 𝑡𝑡0  and the rates of the surface coating 𝜔𝜔𝑉𝑉 as well as of the 
volume transformation 𝜔𝜔𝑉𝑉  are related to a driving force defined as a supersaturation of the 
system in gas ln 𝑓𝑓

𝑓𝑓𝑑𝑑
 using fugacities 𝑓𝑓for the reaction pressure and 𝑓𝑓𝑑𝑑  for decomposition 

pressure: 

𝑡𝑡0 = �
𝑘𝑘𝐺𝐺

𝑟𝑟𝑖𝑖0
ln

𝑓𝑓
𝑓𝑓𝑑𝑑

�
− 2

𝑚𝑚
  ,    𝜔𝜔𝑆𝑆 = 4𝜋𝜋𝑟𝑟𝑖𝑖0

2 𝑘𝑘𝑁𝑁 ln
𝑓𝑓
𝑓𝑓𝑑𝑑

  ,      𝜔𝜔𝑉𝑉 =
kRkD

kR + kD
ln

𝑓𝑓
𝑓𝑓𝑑𝑑

    

A set of new parameters: 𝑘𝑘𝐺𝐺 , 𝑘𝑘𝑁𝑁 , kR are empirical constants used to tune the model. The 

kD  permeation constant is related to the gas/water transport through the hydrate shell. 

Since this process is tightly related to the geometry and packing of ice it must be also 

included in the model. The description of starting spheres follows published consideration 

(Staykova et al,. 2003) on a random dense packing of monodispersed spheres. Generally 

each ice particle is represented as a truncated sphere of a radius 𝑟𝑟ℎ  initially equal to 𝑟𝑟𝑖𝑖0 that 

is surrounded by other particles. A number of contact, the coordination number 𝑍𝑍 can be 

expressed as a linear function of a relative hydrate shell radius 𝑅𝑅ℎ = 𝑟𝑟ℎ
𝑟𝑟𝑖𝑖0

: 
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𝑍𝑍 = 𝑍𝑍0 + 𝐶𝐶(𝑅𝑅ℎ − 1) 

𝑍𝑍0and 𝐶𝐶 are empirical values of the initial coordination number and the slope of the 

random density function respectively. For ice powders 𝑍𝑍0~ 7 and 𝐶𝐶 ~ 15.5. The specific 

surface of the starting material can be obtained experimentally (3.4) or through following 

equation:   

𝑆𝑆𝑖𝑖0 =
3

𝑟𝑟𝑖𝑖0𝜌𝜌𝑖𝑖 (1 + 𝑣𝑣0
2) 

 

During the formation ice core radius 𝑟𝑟𝑖𝑖0 decreases but the overall 𝑟𝑟ℎ  in fact increases due to 

lesser density of clathrates. The normalized volume of the transforming particle is related 

to the reaction degree 𝛼𝛼 through a relative radius of the ice-hydrate interface 𝑅𝑅𝑖𝑖 : 

𝑅𝑅ℎ
3 −

𝑍𝑍0

4
(𝑅𝑅ℎ − 1)2(2𝑅𝑅ℎ + 1) −

𝐶𝐶
16

(𝑅𝑅ℎ − 1)3(3𝑅𝑅ℎ + 1) = 1 + 𝐸𝐸(1 − 𝑅𝑅𝑖𝑖
3) 

The fraction of the hydrate surface 𝑠𝑠 in contact with gas is: 

𝑠𝑠 = 1 −
𝑍𝑍0

2
𝑅𝑅ℎ − 1

𝑅𝑅ℎ
−

𝐶𝐶
4

(𝑅𝑅ℎ − 1)2

𝑅𝑅ℎ
 

Growing spheres improve contacts with surrounding particles and form new ones 

decreasing the porosity 𝜀𝜀𝑚𝑚  and total surface area of empty voids 𝑆𝑆𝑚𝑚 : 

𝜀𝜀𝑚𝑚 = 𝜀𝜀𝑚𝑚0 − 𝛼𝛼(1 − 𝜀𝜀𝑚𝑚0)𝐸𝐸 ,            𝑆𝑆𝑚𝑚 = (1 − 𝛼𝛼𝑆𝑆 + 𝛼𝛼𝑆𝑆𝑅𝑅ℎ
2𝑠𝑠)𝑆𝑆𝑖𝑖0 

The normalized distance 𝑅𝑅 from the center of an ice particle to an averaged contact plane 

is: 

𝑅𝑅 = 𝑅𝑅ℎ �1 −
2(1 − 𝑠𝑠)

𝑍𝑍
� 

Finally the permeation constant kD is calculated as follows: 

𝑘𝑘𝐷𝐷 =
𝜌𝜌𝑖𝑖 𝐷𝐷
𝑟𝑟𝑖𝑖0

√𝑠𝑠𝑅𝑅ℎ 𝑅𝑅
Δ�√𝑠𝑠𝑅𝑅ℎ (𝑅𝑅 − Δ) + Δ(𝑅𝑅ℎ − 𝑅𝑅)�

 

𝐷𝐷 is the apparent gas/water mass transfer coefficient that changes with temperature. All 

four constants (𝑘𝑘𝐺𝐺 , 𝑘𝑘𝑁𝑁 , kR, 𝑘𝑘𝐷𝐷) are assumed to be Arrhenius-type functions of temperature: 

𝑘𝑘𝐽𝐽 = 𝑘𝑘𝑗𝑗
∗𝑒𝑒

�
𝑄𝑄𝐽𝐽
𝑅𝑅𝑔𝑔

� 1
𝑇𝑇∗

−1
𝑇𝑇��

 , 𝐽𝐽 = 𝐺𝐺, 𝑁𝑁, 𝑅𝑅, 𝐷𝐷 

Again 𝑘𝑘𝐽𝐽  and well as 𝑄𝑄𝐽𝐽 are constants at the reference temperature 𝑇𝑇∗ and the activation 

energy of the J-type step of the hydrate formation. The gas constant is denoted here as 𝑅𝑅𝑔𝑔 . 
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3.6.2 Formation from frost - “Frost” module 

Frost particles create a special case of the general model described above, since a 

major volume of a few μm size ice is transformed already at the initial coating stage. 

Limited reaction volume sets the maximum size of a single nucleus to the  4
3

𝜋𝜋𝑟𝑟𝑖𝑖0
3  and its 

evolution from the moment 𝜏𝜏 to 𝑡𝑡 can be written as: 

𝑉𝑉(𝑡𝑡 − 𝜏𝜏) =
4
3

𝜋𝜋 min{𝑟𝑟𝑖𝑖0
3 , 𝐺𝐺3(𝑡𝑡 − 𝜏𝜏)𝑚𝑚 } 

Defining the nucleation domain as a volume changes also the expression of the nucleation 

rate  𝑁̇𝑁: 

𝑁̇𝑁 = 3
𝑁𝑁0𝑡𝑡𝜎𝜎 −1

𝑟𝑟𝑖𝑖0
 

Consequently the general JMAK equation is also redefined: 

𝛼𝛼 = 1 − 𝑒𝑒�− ∫ ΩV (τ)dτ𝑡𝑡
0 � 

Similarly to the previous definition of  Ω𝑆𝑆 a new term  Ω𝑉𝑉  describes the rate of clathrate 

formation as a volume fraction of non reacted ice changed to hydrate in a time unit. 

Refined JMAK approach gives:  

� Ω𝑉𝑉(𝜏𝜏)𝑑𝑑𝑑𝑑 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜛𝜛𝑠𝑠 � �

𝜏𝜏
𝑡𝑡0

�
𝑚𝑚

(𝑡𝑡 − 𝜏𝜏)𝜎𝜎−1𝑑𝑑𝑑𝑑
𝑡𝑡

0

, 𝑡𝑡 < 𝑡𝑡0

𝜛𝜛𝑠𝑠 � �
𝜏𝜏
𝑡𝑡0

�
𝑚𝑚

(𝑡𝑡 − 𝜏𝜏)𝜎𝜎−1𝑑𝑑𝑑𝑑

𝑡𝑡0

0

+
𝜛𝜛𝑆𝑆

𝜎𝜎
(𝑡𝑡 − 𝑡𝑡0)𝜎𝜎 , 𝑡𝑡 > 𝑡𝑡0

�
𝑡𝑡

0

 

The only difference between the general theory in this case appear here in 𝑡𝑡0 = �𝑟𝑟𝑖𝑖0
𝐺𝐺

�
− 3

𝑚𝑚  

The driving force and activation energy is calculated as previously. 
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 Chapter 4 – CO2 hydrates: kinetics of formation 

and decomposition at Martian conditions 
In this chapter the reader will find a detailed description of each group of experiments 

performed in frame of this thesis. The focus is placed on a number of previously unknown 

or poorly investigated processes that affect an overall kinetics of growing or decomposing 

clathrates seen on the reaction curves. The influence of each of them will be assessed with 

the help of experimental techniques from chapter 3 and theoretical models.   

 

4.1 Excess fugacity 
The excess fugacity, as it was already shortly discussed (1.5.1), reflects a tendency of a 

system to change from less stable thermodynamic state to more preferable one. A driving 

force defined in this way in case of discussed clathrates may have a positive or negative 

sign (Fig. 82). Values greater than zero describe a situation where the system is 

supersaturated in gas molecules and hydrates are likely to form if water or water ice is 

available. The driving force may be increased by adding gas to the system thus accelerating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 82) Excess fugacity calculated for all successful runs presented in this thesis. Red dashed 
line divides decomposition and formation experiments (see Table 6, 8 for more details).  
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the transformation rate. Negative values of the excess fugacity indicate a lower chemical 

potential of CO2 in the gas phase than in clathrates; consequently leading to the 

decomposition. While a driving force of the formation process may be increased rather 

freely as long as the p-T conditions remain in the stability filed, negative excess fugacity 

reaches the limit at the theoretical perfect vacuum. An influence of the driving force or to 

be precise its size will be more broadly discussed in following subchapters.  

 

4.2 Formation 
The formation process for CO2 but also for CH4 hydrates, especially at higher 

temperatures, has been already well explored with the experimental techniques (see 1.5.2) 

and treated with a phenomenological model (Staykova et al., 2003), (Genov et al., 2004). 

Although the fitting procedure generally well covers data at the later, diffusion controlled 

stage, it usually deviates at the initial part of the reaction. This misfit was caused by a poor 

parameterization of this fragment and therefore an additional work was required. The issue 

will be assessed here in a series of short, interrupted runs that also may provide new 

information  on the  incubation period (1.5.1)  or  surface  tension.  In addition, two  more 

formation runs at low temperatures (~190K) were performed to check a reproducibility 

with   (Genov, 2005). The list of  all runs  can be  found in Table 6. The new  and  previous  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6) List of the formation runs performed in frame of this thesis (1-5). Fugacity f is given 
in brackets for each experimental pressure. The duration of 193K run is given in days. The 
runs with *  mark the interrupted runs. ** denotes estimated values. The runs 6-10 come from 
the preceding thesis (Genov, 2005) but also appear here. 

 

 

Nr.  T [K]
p (f)                      

[ kPa]
ln(f/fd) Starting ice Method

Duration 
[h]

Hydrate wt. 
frac. (sigmas)

SEM

1 190 36 (35.73) 0.69927 D2O frost Neutrons 32.72 0.68 (0.003) Yes

2 193 70 (69.07) 1.01463 H2O spheres pVT+ X-rays 42.94d 0.23 (0.003) Yes

3 193* 75 (73.93) 1.08267 H2O spheres pVT 0.25 0.007** Yes

4 193* 75 (73.93) 1.08267 H2O spheres pVT 0.56 0.01** Yes

5 193* 75 (73.93) 1.08267 H2O spheres pVT 1.49 0.03** Yes

7 185 25 (24.86) 0.69972 D2O frost Neutrons 25.29 0.26 Yes

8 190 36 (35.73) 0.69927 D2O frost Neutrons 21.78 0.27 Yes

9 195 50 (49.53) 0.81761 D2O frost Neutrons 15.1 0.80 Yes

10 203 80 (78.94) 0.63324 H2O spheres pVT+ X-rays 93.97d 0.44 Yes
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reaction curve at 190K along with older formation runs will be fitted with a current version 

of the phenomenological model (“Frost”) constrained with the data from the interrupted 

runs. At the end of this sub chapter the reader will find a first approximation on a degree of 

cage filling at low temperatures. 

 

4.2.1 Starting material and sample preparation 

Ice powders used for the formation experiments were prepared using two slightly 

modified methods presented in the previous thesis (Genov, 2005).  

Spherical material (Fig. 83A, B) of rather well defined lognormal distribution has been 

produced by spraying water into a  dewar filled  with  LN2.  The  average  diameter  of  the 

spheres obtained with this method was previously estimated with the help of SEM on 

~55µm  (Staykova, 2004).  Present  microscopy images are  in a  good  agreement with this    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 83) Two batches of sprayed ice spheres (A, B) prepared at different occasions. Some of 
the ice particles are cracked or spitted due to shock freezing. C) Polycrystalline ice sphere with 
well visible network of grain boundaries. D) Magnification of the ice sphere (C) showing 
filigree striation pattern. Images taken with FEI Quanta 200FEG. See also Appendix 3.  
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value. Moreover, they reveal a polycrystalline nature of the starting material (Fig. 83C, D). 

Ice crystals approximately 5-15μm in diameter are covered with a fine striation pattern 

(Fig. 83D) that depends on ice crystal orientation. Hydrogenated samples were prepared 

with demineralised H2O at ambient conditions. In such approach a buildup of frost 

condensate at a rim of the dewar is very difficult to avoid and some smaller, non spherical 

ice particles may fall into the LN2. Larger water droplets and some of the frost clumps are 

removed during sieving through 350µm mesh under LN2. In order to minimize an 

additional condensation at this final step, the procedure is performed in a cold room held at 

263K. Unlike in previous experiments e.g. (Staykova, 2004), (Genov, 2005) ice powders 

were placed later in a storage dewar without an annealing period. This in order to keep the 

quality of ice identical for different batches. Deuterated samples were prepared with a 

99.9% purity D2O delivered by SIGMA-ALDRICH GmbH. Spherical material has been 

produced in a sealed glow box under N2 saturated atmosphere, to avoid possible 

contamination (and dilution) with atmospheric water. The sieving, performed later, has 

been done in the same way as for hydrogenated spheres. BET specific surface area (SSA) 

measurements of the material produced by spraying yield ~0.05m2/g with 

ΔQCH4=2200J/mol (Appendix 4) that corresponds to monodispersed spheres with a radius 

close to 60µm.  

A second method was designed to produce  much  finer  starting  material than  in  the 

previous case. It is based on a water vapor deposition on a cold plate. Water is evaporated 

with a hot air  gun and blown on a rotating  copper plate that is submerged in LN2 to  about 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 84) A) Irregular frost particle produced by the cold deposition. High quality images are 
very difficult to obtain due to a strong charging effect on a rough surface.  B) Magnification 
on one of the frost clumps composed of quasi-spherical particles. Images taken with LEO 
1530 Gemini. 
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1/3 of its diameter. An accumulated frost is manually scratched down into the cooling 

liquid. The setup is mounted in a box that can be sealed if D2O is used. The efficiency of 

this method is very low and the ice material shows partial electrostatic charging. 

Agglomerates of the frost particles produced by the cold deposition are very irregular (Fig. 

84A). An average diameter of a single ice-building unit has been estimated on ~5-15µm 

(Fig. 84B). An average SSA for this material was found to be ~1.9m2 (ΔQCH4=2200J/mol), 

which is about two orders of magnitude higher than for sprayed material. Such surface 

corresponds to monodispersed spheres of 1.5µm radius. Poorly defined appearance is 

likely to cause difficulties during the data treatment with earlier theoretical models (Genov, 

2005), (Kuhs et al., 2006) and the new one where spherical particles are assumed. Powders 

that are stored for an extended period of time under LN2 must be dried before they can be 

loaded into aluminum vials (Fig. 66 [1]). It is especially crucial for frost that may easily 

shot out from the container upon warming.  Leaving the material for a several minutes in 

the cold room at 267K or dry ice has proven to be a good method to avoid such surprises. 

Dried powders are gently compacted in vials and after loading sealed in plastic containers 

(Fig. 66) that can be again cooled down in LN2. 

 

4.2.2 Nucleation and growth stage – interrupted runs 

The nucleation and initial growth of CO2 hydrates on the ice surface has been studied  
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Fig. 85) Reaction curves of all three interrupted runs at 193K in comparison to a few month 
long experiment. Some inconstancies in the overall shape are likely to be caused by the 
introduction of not completely cooled gas at the very initial stage of the reaction.  
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using combination of gas consumption experiments and FE-SEM imaging. Spherical ice 

was reacted in the in-house pVT low pressure system (Fig. 73) at a  constant  temperature 

of 193K and applied pressure close to 750mbar (75kPa) for ~15, 30 and 90 min. Before 

each experiment samples were evacuated for several minutes to remove atmospheric gases 

introduced upon loading. At the end of the runs samples were quickly recovered and 

quenched in LN2. The transformation degree was roughly estimated with the help of a 43-

days long reaction curve recorded at 193K and 700mbar (70kPa) (see 4.2.3). The 

reproducibility of  the  interrupted   runs  is  not  perfect as  shown  earlier (Fig. 85) but still     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 86) Nucleation sites of hydrates on ice spheres after 15 (A, B) and 30min. (C, D). 
formation. A) Top view on a nucleation center with well developed spreading fronts. Rough 
clathrate surface is carrying some resemblance to concentrically growing dendrites. 
Surrounding ice-like smooth surface do not possess characteristic striation pattern, B) 
Magnification of the clathrate surface reveals characteristic small sub-μm porosity. C) Oblique 
view on a clathrate crystallite that overgrows a fracture in the ice sphere. D) Ice particle 
covered by heterogeneously growing clathrates. Their size varies from 5 to 25μm. Between 
hydrates one can still observe icy smooth surface. Images A-C and D were taken with LEO 
1530 Gemini and FEI Quanta 200FEG, respectively. Additional images can be found in the 
Appendix 5. 
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the  general  trend is preserved (Fig. 85). 

SEM images of a sample reacted for 15 (~0.7 wt% of clathrates) (Fig. 86A, B) and 

30min (~1.3 wt% of clathrates) (Fig. 86C, D) reveal clearly distinguishable nucleation sites 

and spreading fronts of clathrates growing on the icy surface. Up to now, similar but not 

identical features were observed only on a water/liquid CF3CH2F interface during some 

earlier formation experiments (Sloan, 1998). Nucleation sites are relatively flat, which 

suggests preferential 2D growth along the surface. An average diameter of the features is 

estimated on 10-15μm, which is within the limit of previous studies (Circone et al. 2003). 

Close-ups of the clathrate surface reveal a sub-micron size porous structure very 

characteristic for this phase (Fig.86B). One should point out that observed microstructure 

is characteristic for growth at the high super saturation. Formation experiments close to the  
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Fig. 87) Promotion of the nucleation on surface defects in 15 (C) and 30min (A, B, C) long 
runs. A, B) Clathrates preferentially growing along cracks and (red arrows), C) Hydrate 
crystallites initiated on small ice particles attached to sphere’s surface during the preparation 
(yellow arrows). D) Uneven face of a broken sphere covered by patches of clathrates. Most of 
the crystallites are initiated on sharp edges or groves (green arrows). Images taken with LEO 
1530 Gemini. Other examples can be found in the Appendix 5. 
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stability boundary are likely to form better developed 3D clathrate crystals. “Pancake like” 

shape of individual crystallites is also frequently related to heterogeneous nucleation 

(Lasaga, 1997). This observation is in accordance with an uneven distribution and different 

maturity of the clathrate cover in the discussed samples (Fig86D, 87B). Moreover, surface 

imperfections like cracks (Fig. 87A, B), small ice particles electrostatically attached to ice 

spheres (Fig. 87C) or other surface imperfections (Fig. 87D) seem to promote nucleation 

for a number of nucleation sites. Clathrate   crystallites that tightly cover ice spheres form 

quite characteristic polygonal pattern resembling the one observed on a jackfruit (Fig. 88A, 

B). Assigning one center to one “jackfruit” area, the roughly estimated density of 

nucleation centers is about 4.9-8.8·103 nuclei/mm2. Free icy surfaces, more common after 

the 15min long formation, are usually very smooth what is not typical for starting spherical 

ice where the striation pattern would be expected (Fig. 85D). Moreover, the resistance to 

etching by the electron beam in those areas seems to be somewhat decreased. On the other 

hand, EDX analyses do not show any elevated values for carbon, which would be 

consistent with a reacted surface. After 30min. icy surfaces become rare as the clathrate 

cover is closing to completion but still characteristic structures from the shorter run are 

well visible. In a several places boundaries between individual centers start to disappear 

and the original “jackfruit patterns” becomes less apparent.  The surface in those areas is 

still undulated but the roughness is visibly decreased in comparison to the 15min long 

experiment.  After  seeing  the  reaction  curve  (Fig. 85)  it  is  not  very surprising  that the 

 

 

 

 

 

 

 

 

Fig. 88) Almost entirely A) and fully transformed B) surface of ice particles after 15min. long 
reaction. Clathrate crystallites form characteristic polygonal “jackfruit pattern” (A jackfruit 
skin in the right upper corner of A) image). Images taken with LEO 1530 Gemini. Other 
examples can be found in the Appendix 5.  
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microstructures after 15 and 30 min. do not differ much. Both samples lay on a steep part 

of the curve that in light of evidences presented above may be attributed to the surface 

coating process. Clearly visible alteration of observed features appear after a prolonged 

exposition to vacuum and the beam (Appendix 6). The surface becomes visibly coarser but 

clathrate crystallites are still recognizable. A considerable slow down of the reaction after 

approximately 90min suggest a transition to another formation regime. Indeed, the longest 

interrupted run that was stopped at the inflection point (~2.6 wt% of clathrates) seems to 

confirm this observation. The surface microstructure observed before is hardly 

recognizable. Ice spheres are coated by a continuous hydrate mantling (Fig. 89A, C, E) 

covered with a pattern of elevations and depressions that at the first glance might be 

mistaken with the water ice striation pattern (Fig. 89B). A careful analysis of those features 

reveals smoother and rounded edges that are untypical for ice (Fig. 89D, F). Additional 

evidences from EDX area scans, where a carbon signal is observed, confirm the presence 

of clathrates. Individual spheres become progressively cemented by hydrate necks at the 

contact points. Smaller fractures and cracks are partially or completely filled with sub-

micron porous clathrates and expanding mantle (Fig. 89C, D, F). Although this process has 

been already observed in the previous studies (Genov et al., 2004), (Staykova, 2004) for 

CO2 and CH4 clathrates, its interpretation was different from the one presented here. Crack 

filling was considered to be a primary process that begins the formation, since slightly 

smaller activation energy necessary to initiate the nucleation in cracks might promote 

crystallization. Although, it is also partially in agreement with the present observations for 

15 and 30min where some of the crystallites indeed grow on, in and out of the fractures 

(Fig. 87A, B), the overall picture that emerges from the present interrupted runs is 

somewhat opposite. The bridging and crack filling appears to be generally a consequence 

of the surface transformation and thickening of the clathrate coating. Apparently, the 

combination of volume expansion with the growth creates an effective mechanism for 

closing of the smaller cracks at least at the investigated p-T conditions. With this 

interpretation the crack filling stage (Genov et al., 2004) becomes essentially obsolete. The 

conclusions presented here shed also new light on the so called “incubation period”. This 

phenomenon is most often addressed as a period of a few hours/weeks after the beginning 

of the reactions below 200K where in spite of suitable p-T conditions the formation is not 

observed. It is still arguable though if this behavior is caused by an inhibition or it is just 

very   slow  start  of  reactions  that  follow  a  sigmoid-like  pattern.  The  interrupted  runs  
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Fig. 89) Surface microstructures after 90min. long formation experiment. A) Ice sphere 
covered by a continuous clathrate mantle that under higher magnification (B) looks very 
similar to the striation pattern. C) Sphere with a crack partially cemented by clathrates. D) A 
blow up of the previous image revealing a fine sub-micron pores of the hydrate crack filling. 
E) Another cracked ice sphere where clathrate mantling is expanding into the fracture (F) 
bridging it in a several places. Hydrate surface is bruised and undulated resembling somewhat 
structures observed in the shorter runs. Pictures taken with LEO 1530 Gemini. Other images 
from this experiment can be found in the   Appendix 7. 
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certainly cannot definitely solve this problem but they shift of the starting point closer to 

the beginning of the reaction suggest that at least in certain cases the second possibility 

may be correct. Though, it is necessary to point out that even if the nucleation and growth 

is initiated earlier it doesn’t overrule the the incubation period that might still exist in much 

reduced form. 

The interrupted runs presented here 

offer also an opportunity to measure two 

quite unique parameters that 

unfortunately could not be explored in 

frame of this thesis: wetting angle 

(surface tension) of clathrates on ice and 

a thickness of the initial hydrate coating 

formed at 190K. Whe first one is 

interesting from the clathrates thermodynamic point of view.  The second one, thickness, is 

more significant for this thesis since it is one of the free parameters in the models presented 

in Chapter 3.  

Clathrates crystallites that form pancakes or domes suggest that the growth is faster 

along the surface than in the inward direction (Fig. 90). If this interpretation is correct then 

one can safely assume that the maximum height of a single crystallite is more than half of 

the thickness of the initial clathrate coating. The surface tension between two phases can 

be derived from an angle created  by a slope of  clathrate  surface  with the ice interface. At  

 

 

 

 

 

 

 

 

Fig. 91) Flat ice surface exposed to CO2 for 15min. covered most likely by clathrate needles 
(A). Pancake like features observed on the spherical material are nowhere to be found. The 
coating was found to be very unstable and after about 2min. degraded entirely (B). Snapshots 
from FEI Quanta 200FEG.    

 

 

 

 

Fig. 90) Schematic cross section through a 
clathrate crystallite with the measurable 
thickness and wetting angle α. 
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the first glance a measurement of those parameters may seem to be quite simple but in the 

reality one has to face  a  number  of  pitfalls.  First  of  all,  the  SEM  microscopy  used  

here  cannot  be  of assistance since it doesn’t offer scaling in Z direction. This problem 

could be overcome with an atomic force microscopy (AFM) or confocal laser scanning 

microscopy (CLSM) that provide 3D images but investigated area becomes restricted to at 

most a few mm2. Moreover, ice surface should be relatively flat that is difficult to achieve 

with the powders used here. Preliminary attempts to reproduce observed features on a flat 

surface were unsuccessful (Fig. 91). Both microscopes are usually not equipped with an 

environmental conditions similar to those under SEM and hydrates cannot be measured 

directly. One of the ways to go around this problem is to use a replica method 

(Krokodylewski et al.,1994) widely used for fragile samples in the TEM microscopy. 

Sputtered coating can be thicker than typically used few nm since only a negative of the 

surface is required. Another, more direct way to approach the issue could be a combined 

FIB-cryo-SEM that allow for both in-situ cutting and visualization.  

 

4.2.3 Formation’s kinetics at low T 

Preparation of the starting material as well as experimental techniques are prone to 

experimental errors that may eventually cause irreproducibility of acquired data. Here the 

focus will be placed on the least well defined material (frost) and the reliability of the pVT 

method in a several months long reactions.  

Formation experiment testing D2O frost has been performed on D20 at 190K and 

360mbar (36kPa). During the 33h long experiment, individual diffraction patterns were 

taken in 5 minute-long steps. At the end the sample was recovered and preserved in LN2 for 

further investigations with the SEM. Raw data were imported to the GSAS Rietveld 

package and processed in a two phase refinement using an automated procedure described 

in details elsewhere (Staykova, 2004). Water ice Bragg reflections were fitted with a low 

temperature D2O Ih ice structural model (Appendix 8) using lattice constants for 190K 

(Röttger et al., 1994). CO2 hydrate structure inserted into GSAS originates from an early 

work on a high temperature model (Klapproth, 2002) that was adapted for low 

temperatures by refining CO2 occupancy factors in both cages (4.2.5) and scaling down 

thermal displacement parameters. The last correction is somewhat arbitrary but still within 

the reason. Unfortunately, D20 2θ range do not allow for an evaluation of those 

parameters. Missing information should be obtained from future experiments. Dimensions 
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of a clathrate lattice (D2O) were calculated from published third order polynomial function 

(Udachin et al. 2001). Both structural models can be found at the end of the thesis 

(Appendix 8). Results from the refinements are stored in a list file from where one can 

extract searched phase fraction of clathrates in each pattern and plot them against time. The 

transformation degree in the last pattern (Fig. 92) was ~36wt% (Table 6).  

 

 

 

 

 

 

 

 

 

 

  A close comparison between the new and old experiment at 190K shows a very 

similar trend but one can notice a small deviation in the initial transformation rates that 

later become even more apparent (Fig. 93). The new run initiates slightly earlier, continue 

at similar rate than the previous one and after about 16h the rate becomes lower. This slight 

difference can be caused by a number of factors where the sample handling or differences 

in the initial SSA are the 

most probable. The last one 

is of particular importance 

at lower temperatures 

where variations in the 

surface area may greatly 

affect observed kinetics. 

What is worth to notice is 

the fact that the initial 

transformation is not 

observed until a relatively 

rapid lift off after about 3h. 

This rather surprising 
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Fig. 92) The last pattern from the formation run at 190K and 360mbar (36kPa) (in black) fitted 

with GSAS (red line). Positions of reflections from both phases are showed in red (clathrate) 

and blue (ice) tick marks (see also Appendix 9).     
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Fig. 93) New (in black) experiment at 190K plotted together 

with the earlier run (in red). Initial points where 
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behavior, observed also in the previous experiment at these conditions and other runs at 

185K and 195K (4.1.4).  At first glance it might be attributed to the incubation period. If 

this is indeed an inhibition then clathrate reflections should not be observed in this part of 

the formation. Yet, a close inspection of the raw data in a 2-theta region between 42.5 and 

47.5 shows two of the strongest clathrate reflections (320, 321) slowly rising from the early 

minutes of the reaction (Fig. 94). Apparently the Rietveld refinement is somewhat less 

sensitive to the fraction that is well below 1% even if the diffractometer records the 

reaction.  

  

 

 

 

 

 

 

 

 

 

 

 

 

The reproducibility of long term experiments in the low temperature pVT setup (Fig. 

73) has been tested in a 23 days long run at 193K and pressure oscillating around 700mbar 

(70kPa). At the end of this period, the sample was recovered and quenched in LN2. The 

transformation degree was measured with hard X-rays at BW5 (3.1.3). The diffraction 2D 

image has been integrated to 1D pattern (Fig.94) and refined in GSAS. Ice peaks were 

fitted with a H2O structural model (Appendix 8) taking lattice constants at 77.2K from 

published data (Röttger et al., 1994). Hydrogenated CO2 clathrate model was constructed 

from an empty frame of sI CH4 hydrate that was filled with CO2 molecules. Atomic 

positions for gas in cages were taken from the D2O model. Lattice dimensions at 77.2K 

were taken from the literature (Sloan and Koh, 2008). Relatively short 2θ range (Fig. 95) 

leaves only zero, scaling factors, peak shape profiles and background function  to  be  

refined.  Other parameters were kept fixed. Retrieved hydrate  fraction was close to 26wt% 

Fig. 94) Accumulated LAMP plots of the formation run at 190K 360mbar (36kPa) in a 2-theta 
region between 42.5 and 47.5. Raw data clearly indicate the reaction already in the initial 
diffraction patterns. It is particularly visible on the strongest (321). 
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(Table 6).  The  new  data set  after  normalization  was plotted (Fig. 96) against the results 

from a 94 days long experiment at 203K and target pressure of 800mbar (80kPa) (Genov, 

2005).    

One of the first conclusions coming out from the comparison is a similar shape of both 

reaction curves at the later, diffusion controlled stage that seems to confirm a similar 

reliability of the low 

pressure pVT setup (Fig. 

73). Both runs slowly 

diverge with time, which 

is most likely caused by a 

somewhat decreased 

transformation rate 

expected at the lower 

temperature. If this is the 

case one should expect 

also similar differences at 

the initial stage. Indeed, 

after about 1.5h of 

seemingly identical 
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Fig. 95) 2D image from the MAR detector (to the left) integrated to 1D pattern and fitted in 

the GSAS (to the right. See also Appendix 9). Positions of reflections from both phases are 

marked by red (clathrate) and blue (ice) ticks. The misfit of the strongest ice peak is caused by 

an artifact from the integration of a spotty diffraction rings. 
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Fig. 96) Two long term pVT formation experiments at 193K 

(in red) and 203K (in black). The blow up of the first 35h in the 

right-bottom corner. 
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reaction (Fig. 96), the 193K curve bends as discussed previously (4.1.2) while the 203K 

run continues further at similar rate until a gradual deceleration after about 4h. Since the 

diffusion controlled stage steps in after a longer period of time it is reasonable to assume 

that the maximum thickness of the initial coating is increased in comparison to the lower 

temperature (see also the following subchapter). 

 

4.2.4 Modeling with Powder 4 -  Frost Module 

The frost data from the neutron diffraction experiments were analyzed with a new 

“Frost” module. As it was discussed earlier (3.6.2) this approach considers a special case of 

the general Powder 4 model where the diffusion limitation is neglected due to a very small 

particle size. Fitted curves (Fig. 97) are obtained using six parameters from which the grain 

radius, excess fugacity ln(f/fd), and nucleation exponent 𝑚 could be constrained with help 

of SEM and BET methods. The nucleation rate 𝑘𝑁  and grow rate 𝑘𝐺  constants were used 

for a fine tuning. The growth exponent 𝜎 was kept fixed all cases (Table 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 97) Low temperature formation experiments with frost as a starting material (Table 6). 

The curves (open circles) are fitted (solid lines) with the “Frost” model.  
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The fits are quite satisfactory if one keeps in mind that the “Frost”-model assumes a 

monodispersed distribution of spherical particles. Since the starting ice particles (Fig. 84) 

have more complicated morphology and distribution it is not surprising that some misfit is 

observed. This issue is particularly pronounced at the initial and terminal stage. Larger 

particles that transform more readily initially enhance the transformation speed. A 

deceleration close to the end implies that only the smallest ice particles where the 

nucleation issue is the strongest still support the reaction. A good example for such 

behavior can be found here in curves where the wt. fraction  𝛼𝛼 exceeds 0.6 (195K and 33h 

long 190K. The fitting parameters returned by the model can be found below (Table 7). 

 

 

 

 

 

 

 

 

 

Although the SEM images (Fig. 86, 87) support 2D type of growth (𝑚𝑚=2) the older 

experiment at190K could not be fitted with a correspondingly constrained parameter.  After   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7) Experimental conditions and kinetic parameters from the “Frost” model. The mean 
radius of the starting ice is 1.5μm. Grain nucleation constant 𝑘𝑘𝑆𝑆  and typical time of grain 
coating 𝑡𝑡0 have been deduced from the fitted curves. 

 

 

Fig. 98) Fitting curves for four different 𝑚𝑚 
plotted together with the 32.7h long 
formation run 190K and 360mbar (36kPa). 

 

Table 8) Kinetic parameters for the fitting 
curves presented on the Fig. 98. SD-standard 
deviation. 
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[1/hσ]
m

kN 

[1/hσm2]

kG 

[m/hm/3]
t0 SD

0.792 2 2.80 109 3.10 10-7 18.2 0.025

0.081 1.7 2.85 109 3.10 10-7 19.54 0.024

0.086 1.5 3.05 109 4.50 10-7 22.72 0.015

0.133 1.4 4.70 109 4.13 10-7 34.13 0.009

T [K] ln(f/fd)
Duration   

[h]
σ

kS/σ     

[1/hσ]
m

kN 

[1/hσm2]

kG 

[m/hm/3]
t0

195 0.81761 15.01 1 0.190 2 6.80 109 9.55 10- 7 3.5

190 0.69927 21.78 1 0.044 2 1.55 109 4.30 10- 7 11.3

190 0.69928 32.72 1 0.133 1.4 4.70 109 4.13 10- 7 34.13

185 0.69972 25.29 1 0.017 2 5.90 108 3.65 10- 7 12.4
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a series of attempts (Fig. 98), (Table 8) a satisfactory solution was  found for  𝑚𝑚=1.4 that 

represents a mixed dendritic/2D growth. This solution is not totally unreasonable but 

difficult to explain if confronted with other three fits. The reason for this result might be 

searched in a different particle size of the starting material, its thermal history or/and fairly 

short experimental curves that leave some degree of freedom during the fitting procedure. 

On the other hand the dimensionality of growth might indeed be better represented by 

values between 1 and 2. Unfortunately, no conclusive answer has been found yet.  

The discussion about the new modeling approach creates also a good opportunity to 

present some results from the Powder 4 used on data from the preceding thesis (Genov, 

2005). A large set of kinetic parameters kindly provided by A. Salamatin (Table 9), gives 

an additional insight on the diffusion limited stage that gains considerable importance for 

larger particles (> ~2μm). Moreover, it became possible to reexamine some earlier results 

concerning the nucleation rate exponent 𝜎𝜎 and the thickness of the initial clathrate film 𝑑𝑑0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters retrieved with help of the Powder 4 and Frost module follow 

Arrhenius behavior, which gives a possibility to extract activation energies for the  𝑄𝑄𝑘𝑘𝑆𝑆/𝜎𝜎 , 

nucleation 𝑄𝑄𝑘𝑘𝑁𝑁 , , growth 𝑄𝑄𝑘𝑘𝐺𝐺  (Fig. 99) and in case of the Powder 4 also the diffusive 

transport of gas and water molecules through the clathrate layer 𝑄𝑄𝐷𝐷. Interestingly, the first  

Table 9) Results from the fitting of the selected formation experiments (Genov, 2005) with 
the Powder 4 model. Datasets 1-4 and 5-13 come from the neutron diffraction and pVT runs, 
respectively. The growth exponent m = 2. 

 

 

No
T        

[K]
pd (fd) 
Mpa

ln(f/fd)
Duration   

[h]
σ

kS/σ     

[1/hσ]

kG       

[m/h]
t0       

[h]  

D      

[m2/h]

d0 

[μm]

1 272 20(19.7) 0.5558 18 1.0 1.6 - 0 1.4 10-11 7.8

2 263 10(9.3) 0.2699 18 0.5 1.54 0.002 0.074 3.7 10-12 6.7

3 253 10(9.1) 0.6190 23 0.62 1.25 - 0 1.8 10-12 3.6

4 230 3(2.9) 0.4441 26 0.34 0.78 0.0013 0.070 3.6 10-13 3.3

5 263 10(9.3) 0.2699 1128 0.49 1.24 0.00045 0.33 1.6 10-12 5.8

6 253 10(9.1) 0.6190 1128 0.64 0.70 - 0 7.0 10-13 3.3

7 233 5(4.9) 0.8473 1728 0.45 0.45 0.00028 0.09 2.5 10-13 3.0

8 223 1.95(1.9) 0.3950 240 0.7 0.73 - 0 7.2 10-14 2.5

9 218 1.95(1.88) 0.6413 288 0.8 0.66 - 0 7.2 10-14 2.0

10 213 1.5(1.47) 0.6729 185 0.79 0.54 - 0 5.1 10-14 1.6

11 203 0.89(0.88) 0.7161 2255 0.95 0.36 - 0 2.5 10-14 2.1

12 203 0.89(0.88) 0.7161 185 0.95 0.29 - 0 2.45 10-14 1.5

13 193 0.5(0.5) 0.8210 126 0.78 0.26 - 0 3.2 10-14 2.1
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process is apparently described by two values of 𝑄𝑄𝑘𝑘𝑆𝑆/𝜎𝜎 . The first one, 𝑸𝑸𝒌𝒌𝑺𝑺/𝝈𝝈= 9.44kJ/mol 

is related to the experiments from 272 to 190K where a pivotal point is located. Towards 

even lower temperatures, down to 185K the activation energy switches to 𝑸𝑸𝒌𝒌𝑺𝑺/𝝈𝝈 = 

72.24kJ/mol, which is almost identical to 𝑸𝑸𝒌𝒌𝑵𝑵= 73.53kJ/mol. This significant change may 

indicate increasing difficulties in the nucleation, which find some confirmation on SEM 

images (4.2.2), shape of reaction curves (Fig.97) and evolution of the nucleation rate 

exponent 𝜎𝜎 ⟹ 1 (Fig. 98). Interestingly,  𝑄𝑄𝑘𝑘𝑆𝑆/𝜎𝜎= 9.44kJ/mol found between 272 and 190K 

is similar to the one calculated in previous studies (𝑄𝑄𝑘𝑘𝑆𝑆 = 5.24kJ/mol) for 225-193K 

temperature region (Genov et al. 2004). An extraction of the activation energy for the 

growth process met serious shortcomings in a number of available data point across the 

whole temperature region and presented 𝑸𝑸𝒌𝒌𝑮𝑮  = 28.57kJ/mol was calculated only for the 

data from the “Frost” module. In spite of a poor statistics the result is still comparable to 

the 𝑄𝑄𝑟𝑟 = 34kJ/mol obtained from the multistage model (Genov, 2005). Even better 

Fig. 99) Arrhenius plots of the kinetic parameters (𝑘𝑘𝑁𝑁 ,𝑘𝑘𝐺𝐺 ,𝑘𝑘𝑆𝑆/𝜎𝜎,𝐷𝐷) from the Frost (red dots) 
and Powder 4 (black dots) modeling. For each trend line activation energy has been calculated.  
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agreement is achieved for the activation energy of the diffusion limited process 𝑸𝑸𝑫𝑫= 

33.56kJ/mol that is almost identical to the previous value 𝑄𝑄𝐷𝐷 = 36kJ/mol (Powder 2) 

(Genov, 2005).  Both values are somewhat larger than activation energy of 20kJ/mol and 

23.5kJ/mol acquired with JMAKGB (Genov, 2005) and in another independent study 

(Henning et al., 2000), respectively. This difference may originate in a less accurately 

defined diffusion limited stage incorporated into the other model, which might give some 

averaged value from all active processes (nucleation, growth and diffusion). Additionally 

to above parameters, the Powder 4 model delivers also valuable information on the 

character of the nucleation (instantaneous/uniform) and a maximum thickness of the initial 

clathrate film (Fig. 100). The first parameter show some scatter but still some trend toward 

more instantaneous nucleation at higher temperatures is visible. In the second case a trend 

line is much more apparent stretching from almost 8μm at 272K to ~2μm at about 210K. 

This observation provides an additional argument for a treatment of small 1.5μm frost 

particles with the “Frost” module that omits the diffusion limitation.   

 

 

 

 

 

 

 

 

 

 

Through the activation energies the modeling gains a predictive power that can expand 

our knowledge on reaction rates at conditions that are not achievable in a laboratory. This 

is particularly important  for  temperatures  below  180K  relevant  to  the  Martian  polar  

regions and/or larger ice particles where required reaction periods greatly exceed duration 

of a typical PhD studies, going very often into geological time scales (See Chapter 5).  

 

4.2.5 Cage occupancy 

A volume of CO2 stored in hydrates, which might be of interest in the Martian case 

(2.6), is among others dependent on the degree of cage filling. Experimental studies 
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Fig. 100) Temperature dependent evolution of the nucleation rate exponent 𝜎𝜎  and the 
thickness of an initial clathrate film 𝑑𝑑0 retrieved from the Powder 4 model. 
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concerning this parameter are essentially limited to higher temperatures. CO2 is 

particularly interesting here due to its radius that is similar to the one for cages already 

close to the melting point of ice (Fig. 6). In principle, as the lattice shrinks with decreasing 

temperatures the small cage occupancies may also decrease due to the tight fit of CO2 

molecule. A temperature effect for large cavities is speculative but it cannot be excluded 

that due to enhanced van der Vaals  interactions some small  volume expansion may occur.  

  

 

 

 

 

 

 

 

 

 

At temperatures of ~180-190K this effect should be already detectable if the argumentation 

above is correct. Free refinement of both cage occupancies in most of the cases was 

leading to unrealistically high values (Table 10) for one of the cavities and had to be fixed 

at the highest filling degree. The results for large cages show some scatter (Fig.101) but 

generally indicate high occupancies. Values for smaller cavities are much less consistent 

(Table 10). Older experiments at 190K and 195K do not vary much between each other 

showing occupancies close to 80%. The new run at 190K after the background subtraction 

pushes this value to 100%. The formation run at 185K in contrary to other results shows 

only about 30% of CO2 molecules in small cavities. Unfortunately, diagnostic reflections 

(200, 210, 221) for the cage filling are relatively weak in this case and at the hydrate 

fraction as low as 20% the influence of the background features from the cell is especially 

strong (Fig. 67). Information retrieved from this temperature should be taken with 

cautiousness until a higher quality data become available. Attempts to retrieve the 

occupancy fraction from the pVT experiment at 193K (4.2.3) were unsuccessful. 

Unfortunately, the diagnostic reflections on the BW5 were strongly affected by a 

structured background that increases toward the center of the MAR image plate. 

Fig. 101) Occupancy fractions for small (black) and large (red) cages from the runs at 185, 
190 and 195K.  The refinement of both cages (to the left) in certain cases returned values 
higher than one molecule per large cage. After fixing those values at one, the procedure was 
repeated (to the right).  
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4.3 Decomposition 
CO2 clathrates are stable at the Martian surface only in polar regions where 

temperature stays below 150K (Fig. 102). At lower  latitudes,  in contact with  atmospheric  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10) Cage occupancy for the low temperature formation experiments presented in the 
Fig. 101. The results from the simultaneous refinement of both types of cages are given for 
each temperature. Values in brackets come from the refinement of one cage type while the 
second one is kept fixed at full occupancy. 
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Fig. 102) H2O-CO2 phase diagram in relation to the Martian surface and upper regolith. The 
red dashed line marks the averaged surface conditions. The orange field shows the p-T region 
where volatile CO2 is in contact with ice or liquid water form CO2 clathrate hydrates. Gas 
hydrates are stable also at greater depths in contact with solid CO2 (dry ice) and liquid CO2. 
Dark and light green dashed lines show theoretical geoterms for selected latitudes (Kargel et 
al., 2000b) and temperatures (Steward and Nimmo, 2002). Black and red dots mark successful 
experiments that emulate decomposition at the surface and within the Martian regolith, 
respectively. 

 

 

 

 

T [K] Small Cage σSC Large Cage σLC Hyd.Fraction σfrac

185 0.32 0.141 0.96 0.042 0.258 0.011
190 1.09 (1) 0.082 0.95 (0.95) 0.018 0.269 (0.018) 0.004
190 0.78 (0.78) 0.059 (0.059) 1.05 (1) 0.016 0.363 0.004
195 0.80 (0.84) 0.031 (0.029) 1.14 (1) 0.007 0.815 0.001
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pressure clathrates will be destabilized. It must be clearly stated that gas hydrates most 

likely will decompose to water ice and free gas. Limited cases where liquid water is 

formed are not considered here for the reasons discussed previously (1.5.3). Most of the 

information presented below come from the neutron diffraction but for the same reason as 

in case of the formation runs additional in-house pVT experiments and interrupted runs 

were necessary to complete the picture (Table 11). The detailed studies of the 

decomposition kinetics reveal very complex behavior of reaction curves depending not 

only on targeted pT conditions but as well as on the duration of experiments and particle 

size of investigated powders. All above conditions eventually converge to one major 

parameter, namely the “quality” of ice cover formed from dissociating hydrates. This 

slightly enigmatic term encompasses crystallographic structure, stacking disorder, growth 

dimensionality and surface texture of ice. It is necessary to point out that all experiments 

were performed in a “clean” CO2-H2O system omitting the role of salts or other gases in 

the decomposition process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

Nr. T [K]
pd (f)                       
[ kPa]

ln(f/fd)
Starting 
powder

Method
Duration 

[h]
Hydrate wt. 

frac.
SEM

1 165ROC 0.6 (0.6) -1.349 D2O 250µm Neutrons 3.15 1 No**

2 167.7ROC 0.6 (0.6) -1.598 D2O 250µm Neutrons 8.42 0.94 Yes

3 170 0.6 (0.6) -1.805 D2O 250µm Neutrons 16.34 0.66 Yes

4 175ROC 0.6 (0.6) -2.235 D2O 250µm Neutrons 14.68 0.65 Yes

5 180 0.6 (0.6) -2.641 D2O 250µm Neutrons 12.18 0.85 Yes

6 185ROC 0.6 (0.6) -3.025 D2O 250µm Neutrons 9.57 0.71 No

7 190 0.6 (0.6) -3.387 D2O 250µm Neutrons 10.26 0.26 No

8 200 0.6 (0.6) -4.058 D2O 250µm Neutrons 4.15 0.02 No

9 200ROC 20 (19.93) -0.555 D2O 250µm Neutrons 1.77 0.21 No

10 210 0.6 (0.6) -4.664 D2O 250µm Neutrons 1.26 0.01 No

11 220 0.6 (0.6) -5.211 D2O 250µm Neutrons 0.80 0.02 No

11 220 6 (5.99) -2.909 D2O 250µm Neutrons 0.49 0.02 No

13 220* 6 (5.99) -2.909 H2O 250µm pVT 0.08 N/A Yes

14 220* 6 (5.99) -2.909 H2O 250µm pVT 0.17 N/A Yes

15 220 6 (5.99) -2.909 D2O 350µm Neutrons 0.35 0.02 No

16 220 20 (19.95) -1.707 D2O 250µm Neutrons 0.10 0.89 Yes

17 220 RE 20 (19.95) -1.707 D2O 250µm Neutrons 0.76 0.2 Yes

18 220* 20 (19.95) -1.707 H2O 250µm pVT 0.08 N/A No

19 220* 20 (19.95) -1.707 H2O 250µm pVT 0.17 N/A No

20 220 30 (29.88) -1.303 H2O 350µm pVT+ X-rays 72.32 N/A No

21 220 45 (44.73) -0.899 D2O 250µm Neutrons 0.32 0.87 Yes

22 220 45 (44.73) -0.899 H2O 350µm pVT 72.57 N/A No

23 220 60 (59.52) -0.613 D2O 250µm Neutrons 2.67 0.66 Yes
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4.3.1 Starting material and sample preparation 

Decomposition experiments were preformed on two types of samples: well defined 

powders (distribution 100μm broad- width at the base) and “consolidated samples” of 

Table 11) List of all decomposition experiments performed in frame of this thesis. * mark 
interrupted runs, ** denotes the sample that did not decompose at 165K and was later used in 
the 167.7K run. RE – repeated run, ROC- the rocking oscillating collimator was used during 
the experiment, d – day time scale, cons – consolidated sample. AF– Automatics failure. 
Electro pneumatic valves (Fig. 73) did not close the system leaving the sample exposed to 
vacuum.  

 

 

 

 

 

Nr. T [K]
pd (f)                       
[ kPa]

ln(f/fd)
Starting 
powder

Method
Duration 

[h]
Hydrate wt. 

frac.
SEM

24 220* 60 (59.52) -0.613 H2O 250µm pVT 0.10 N/A Yes

25 220* 60 (59.52) -0.613 H2O 250µm pVT 0.18 N/A No

26 220 60 (59.52) -0.613 H2O 350µm pVT+ X-rays 106.73 0.33 Yes

27 220 60 (59.52) -0.613 H2O 450µm pVT 27.7d AF No

28 220 60 (59.52) -0.613 H2O 750µm pVT 9.26d AF No

29 220 90 (88.93) -0.212 D2O 250µm Neutrons 1.75 0.1 Yes

30 220* 90 (88.93) -0.212 H2O 250µm pVT 0.04 N/A Yes

31 220* 90 (88.93) -0.212 H2O 250µm pVT 0.10 N/A Yes

32 220* 90 (88.93) -0.212 H2O 250µm pVT 0.17 N/A No

33 230 0.6 (0.6) -5.713 D2O 250µm Neutrons 0.18 0.02 No

34 230ROC 60 (59.58) -1.115 D2O 250µm Neutrons 1.76 0.5 No

35 230ROC 90 (89.06) -0.510 D2O 250µm Neutrons 1.22 0.78 Yes

36 230ROC* 90 (89.06) -0.510 D2O 250µm Neutrons 1.47 0.75 Yes

37 230ROC 170 (166.62) -0.086 D2O 250µm Neutrons 1.69 0.6 No

38 240 0.6 (0.6) -6.167 D2O 250µm Neutrons 0.15 0.03 No

39 240 0.6 (0.6) -6.167 Cons. pVT 23.19 N/A No

40 240ROC 170 (167.01) -0.538 D2O 250µm Neutrons 0.90 0.81 No

41 240 170 (167.01) -0.538 H2O 250µm pVT 48.39 N/A No

42 240ROC 270 (268.03) -0.085 D2O 250µm Neutrons 2.01 0.73 No

43 240 270 (268.03) -0.085 H2O 250µm pVT 161.65 N/A No

44 245 0.6 (0.6) -6.379 D2O 250µm Neutrons 0.97 0.1 Yes

45 250 0.6 (0.6) -6.582 D2O 250µm Neutrons 0.77 0.09 Yes

46 250 0.6 (0.6) -6.582 Cons. pVT 23.17 N/A No

47 250 0.6 (0.6) -6.582 Cons. pVT 499.27 N/A No

48 250 100 (99.09) -1.476 Cons. pVT+ X-rays 356.04 N/A Yes

49 250ROC 430 (427.42) -0.047 D2O 250µm Neutrons 1.62 0.69 No

50 250 430 (427.42) -0.047 H2O 250µm pVT 28.20 N/A No

51 250 430 (427.42) -0.047 H2O 250µm pVT 1.56 N/A No

52 260 0.6 (0.6) -6.967 D2O 250µm Neutrons 3.19 0.07 Yes

53 260 0.6 (0.6) -6.967 D2O 250µm Neutrons 3.55 0.13 Yes

54 260 100 (99.2) -1.851 D2O 250µm Neutrons 6.41 0.69 Yes

55 270 0.6 (0.6) -7.313 D2O 250µm Neutrons 1.97 0.5 Yes
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cylindrical shape. The first type of the material was meant to deliver information about the 

clathrate kinetics in a broad pressure and temperature frame including particle size 

dependence. The natural analog for such powders could be found in more dispersed natural 

deposits. The second one was closing laboratory experiments to massive clathrate 

occurrences also found in nature. Both types were prepared from hydrogenated or 

deuterated ice that was crushed and sieved through 350μm mesh before loading into the 

experimental setup (3.2.2). A small particle size of starting material proved to give almost 

100% transformation in a reasonably short period of time (about 2 weeks) even for large 

ice volume (up to ~158cm3). In order to avoid H2O contamination of D2O ice and 

consequently for deuterated clathrates the same precautions were taken as in case of 

formation runs (4.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 103) Overview of the starting clathrate powders. A) 250μm fraction, B) 350μm fraction 
with the characteristic remnants of a pore network from starting ice. Images A and B are 
mosaics of a several snapshots to widen the field of view. C) Close up on a 250μm particle 
with a fine detritus attached to the surface, D) Clathrate sub-μ porosity well visible at higher 
magnification (250μm) is also observed on other investigated particles. Images taken with 
LEO 1530 Gemini. 
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Powders were prepared from large clathrate cores by crushing in LN2. Grained 

material was sieved in a cold room under LN2 through a set of meshes with a step of 

100μm. For the experimental and preparatory convenience particles between 200 and 

300μm (referred as 250μm) have been chosen as a standard powder. To explore grain size 

influence on the kinetics also a few other sizes were used (350, 450 and 750μm), (Table 

11). SEM images of the powders show highly irregular particles as to be expected for 

crushed material (Fig. 103A, B). Porosity (diameter 20-50μm) partially visible in some 

particles (Fig.95B) is a remnant of a pore network in ice from the preparatory formation. 

The surface of individual grains is covered by small clathrate pieces (Fig. 103C) that are 

electrostaticaly charged during the sieving. This unavoidable bimodality in the particle size 

distribution unfortunately might influence decomposition rates at the initial stage. At 

higher magnifications one can clearly see, characteristic for clathrates, the sub- μm 

porosity (Fig. 103D). 

So called “consolidated samples” (Fig. 104) similarly to previous studies (Genov, 

2005) were prepared directly in aluminum vials (Fig. 68) and unfractured later used in 

decomposition experiments. Internal structure i.e. open and closed porosity, fracture 

system and finally effective a surface are of such cores is unfortunately poorly defined. 

 

 

 

 

 

 

 

 

 

4.3.2 Decomposition kinetics at Martian surface pressure 

CO2 hydrates are thermodynamically stable at the Martian surface essentially only in 

polar regions where temperature do not rises above ~150K (Fig.102). Towards warmer 

equatorial regions pressure of 6mbar (0.6kPa) is insufficiently low and clathrates become 

unstable in contact with the atmosphere. The kinetics of decomposition in this “unfriendly” 

region has been studied in a series of experiments spanning from 165 to 270K. A first look 

at all reaction curves (Fig. 105) reveals complicated kinetics across the  whole  temperature  

Fig. 104) Consolidated sample submerged in LN2. Even at this low magnification one can 
clearly see a network of small cracks across the consolidated core. 
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Fig. 105) Overview of the decomposition kinetics of CO2 hydrates at the constant pressure of 6mbar (0.6kPa) relevant to Martian surface. Orange 
and green colors mark two regions where anomalous dissociation is observed (see text). All listed experiments were performed on 250μm powders.  
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range. While there is a general trend of an increase of the decomposition speed when going 

from 165 to 270K (Fig. 105), one can clearly see a number of anomalous curves at both 

ends of the investigated temperature region. To show clearly such a complex situation both 

groups will be presented separately. Yet, as will be shown in following subchapters (4.3.3 

and 4.3.6) both phenomena have essentially the same origin. 

 

At the lower temperature end (Fig. 106) one can observe two interesting phenomena. 

The first one is a lack of decomposition at 165K in spite of staying outside the stability 

field for more than 3 hours. This rather surprising observation, which is also interesting in 

the Martian context, will be further analyzed in this sub-chapter 4.3.7. Since the reaction 

was not observed, the sample was brought back to the stability, heated up to 167.7K and 

destabilized again. This time clathrate weight fraction started to creep down. The second 

interesting, unexpected behavior of the reaction curves is observed between 170 and 180K 

where the decomposition at the lower temperature progresses generally faster than at the 

higher one. The run at 180K after a short period of rapid decomposition drastically slows 

down while the one at 170K dissociate at 

quasi constant rate. The experiment at 

175K shows a somewhat intermediate 

sigmoid like dissociation. Continuing 

from 180K towards higher temperatures 

the reactions accelerate as one could 

expect from the increasing driving force 

(Fig. 82). The shortest transformation 

period for the investigated powder 

samples was found at 220-230K but even 

then the refinement returns about 1-2% 

of remaining clathrates.  

 

 

 

 

 

 

Fig. 106) Decomposition experiments emulating Martian surface conditions at higher 
latitudes. The runs were performed on 250μm CO2 hydrate powders at the constant pressure of 
6mbar (0.6kPa). In this temperature region one can observe two interesting phenomena; Lack 
of decomposition for over three hours at 165K and a transition from one dissociation regime to 
another one at about 185K. 1) 165K, 2) 167.7K, 3) 170K, 4) 175K, 5) 180K, 6) 185K, 7) 
190K. 
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From about 240K the decomposition speed gradually decreases (Fig. 107). The 

strongest retardation is observed at 

270K where after two hours still 

about 50wt% of clathrates is 

present in the sample. This 

anomalous behavior is called the 

self-preservation that was already 

mentioned several times in 

Chapter 1. It will be discussed 

later more in detail (4.3.6), after 

presenting the whole line of 

observations that give an answer 

to its origin.  

 

 

 

 

 

 

Evolution of the clathrate weight fraction with time provides a very useful bulk 

description on the decomposition process but fails to explain any of the observed 

anomalies. Since decomposition is a gradual consumption of clathrate particles by growing 

ice shell it is justified to assume that observed anomalous phenomena are related to the 

coating. Indeed, SEM images taken at different temperatures and stages of transformation 

reveal interesting details on the ice coating that forms from dissociating clathrates.  

At the lowest decomposition temperature (167.7K) relatively well developed 3D ice 

crystals that grow at dissociating clathrates (Fig. 108A, B) indicate relatively sluggish 

transformation. It is in accordance with the small driving force in the system (Fig. 82) and 

observed decomposition speed (Fig. 106). At numerous places one can observe crystals 

with well visible faces (Fig. 108A-D) often marked with regular striation/kinks (Fig. 108C, 

D) that are a clear sign for defects in the crystal structure. The reaction was halted after 

reaching 6% of the transformation and the coating is far from being complete at this stage. 
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Fig. 107) Decomposition experiments on CO2 hydrate powders of 250μm size at a constant 
pressure of 6mbar (0.6kPa). This set of the runs mimics the Martian surface conditions at 
lower latitudes. From ~240K towards higher temperatures some self-preservation is observed. 
1) 190K, 2) 200K, 3) 210K, 4) 220K, 5) 230K, 6) 240K, 7) 245K, 8) 250K, 9) 260K, 10) 
270K. 
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More evolved situation is observed at slightly higher temperature (170K) where the 

sample contains 34wt% of ice (Fig. 109). Fully developed ice coating is composed of a 

numerous small crystals with a diameter of 4-6μm (Fig. 109A). Strikingly the coverage 

instead of being continuous contains a large number of pores between individual ice 

crystals. Cross sections through broken particles indicate their presence also across the 

whole ice layer (Fig. 109B, C). Unfortunately, SEM as a local and surface method cannot 

really tell if those voids form a network or percolate to the clathrate surface on a regular 

basis. Even if not, the presence of empty spaces in the ice shell is likely to reduce a length 

of potential diffusion pathways. The thickening coating should lead to a gradual slow down 

of the dissociation but with such microstructure the sealing is likely to be still weak. 

Particles where the ice coating was mechanically removed during the sample loading show  

Fig. 108) Ice surface coating forming at 167.7K 6mbar (0.6kPa) after 8.4h.  A-C) Clathrate 
surface (Red arrows-examples) between unevenly distributed, fairly well developed 3D ice 
crystals. At higher magnifications (C-left upper corner, D) One can clearly see multiple briter 
and darker striation (Green arrows) on the crystal faces (most likely parallel to c axis). 
Snapshots from FEI Quanta 200FEG. 
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a clear relief of inward growing ice crystals (Fig. 109D). 

Looking at the reaction curves one would expect some differences in the ice coating 

that develops at 175K. Indeed, microstructures observed at lower temperatures are hardly 

recognizable even if the transformation degree is almost the same (Table 11). The first 

observable difference is found in much greater dispersion of crystal sizes. On closer 

inspection one can also notice that the ice film is in fact composed of two characteristic 

populations where smaller poorly developed crystals with a diameter of 2-3μm embay 

larger (6-10μm) and better shaped ones (Fig. 110A). The existence of such bimodality and 

its arrangement is in accordance with a behavior of the decomposition curve at this 

temperature.  An initial considerably slow decomposition (Fig. 106) is associated to a slow  

Fig. 109) Clathrates decomposed at 170K 6mbar (0.6kPa) after 16.3h. A) Powder particle 
completely covered by small ice crystals. One can clearly see a large number of pores in the 
coating (Yellow arrows). B, C) Images of broken surfaces that cut through the ice mantle and 
underlying micro porous clathrates (Red arrows), D) Clathrate surface exposed by mechanical 
removal of the ice coating during the sample handling. An inward growth of individual ice 
crystals forms characteristic depressions. Pictures taken with LEO 1530 Gemini. 
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A B 

Fig. 110) Surface ice microstructure at 175K 6mbar (0.6kPa) after 14.7h. A) Fine, poorly 
developed generation of ice between larger better developed crystals. B) Ice crystals building 
the mantle show also signs of defects in the crystal network.  Magnified section of the image 
has been enhanced by tuning sharpness and contrast to emphasize striation at the crystal faces. 
Snapshots from FEI Quanta 200FEG. 
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C D 

Fig. 111) Ice coverage formed at 180K 6mbar (0.6kPa) after 12.2h. A, B) Small, well 
developed ice crystals cover clathrate particles. C, D) Clathrates (Red arrows) exposed on 
broken faces. On the image C one can see the decomposition propagating along the fracture or 
grain boundary (Blue arrow). All images were taken with LEO 1530 Gemini. 
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growth of larger  crystals  like  in   case  of  the   lower   temperature   runs.   Consequently, 

the later gradual acceleration is reflected in the second population that apparently has 

formed more rapidly in free spaces of already existing coating. It is worth noticing that also 

in case of this sample ice crystals show signs of defects (Fig. 110B). 

The experiment at 180K, which is already in a new decomposition regime, shows yet 

another surface microstructure. The sample was recovered at 15% of the transformation at 

which the coating is completed. Ice crystals that build it are fairly well developed reaching 

the diameter of ~3μm (Fig. 111A, B). Judging from the images of original and broken 

particles (Fig. 111C, D), the coverage is rather thin, quite coarse and with many voids. 

Exposed clathrate surface was observed only on broken faces. Since the reaction curve still 

indicates progressing dissociation, some way of gas out transport must be available. 

Unfortunately SEM imaging fails to identify the mechanism. 

Microscopy images from the temperature region where another anomalous 

decomposition appear show much different microstructures to those discussed above. Ice 

crystals that build the coating tend to be larger and flatter (Fig. 112, 113). The coverage is 

generally tight and visibly improves with rising temperature. Starting from 245K one can 

already notice characteristic dome like features covering powder particles (Fig. 112A). The 

average diameter of those ice crystals oscillates around 10μm. Interestingly in numerous 

places the surface is covered with a large number of 1-3μm voids. They are also observed 

on broken surfaces cutting through the particles. The micro porosity, characteristic for 

clathrates, has been found on a few places where the original ice coating was fractured 

upon the sample preparation. At slightly higher temperature (250K) voids that were 

previously observed in the smooth surfaces (Fig. 112B) are less frequent but broken 

powder particles reveal foam-like structure beneath the upper layer of ice (Fig. 112C). 

Again SEM images fail to determine if individual voids are connected in the form of a 

network. Clathrate-like micro porous spots and islands were found to be dispersed in the 

ice matrix (Fig. 112D). Experiments performed at higher temperatures (260-270K) (Fig. 

112E) show large similarities to the coating observed at 250K. Ice forms also a continuous 

mantle but a size of individual crystals visibly increases to ~40μm for the highest 

investigated temperature (Fig. 112F). The inner structure also evolves showing smaller 

number of voids and larger agglomerations of clathrates surrounded by ice (Fig. 112). The 

sample at 270K is the most extreme example where massive chunks of clathrates are 

located just below the thin ice surface layer (Fig. 113).  
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A B 

C D 

E F 

Fig. 112) Evolution of the ice coating during isobaric dissociation at 6mbar (0.6kPa) in the 
high temperature anomalous decomposition region. A) Former clathrate particle almost 
completely converted to ice at 245K after 1h. Smooth surface ice is covered with numerous 
pores (Yellow arrows). Broken surface created during the sample loading (Blue arrow) reveals 
also high abundance of voids within the particle, B) Ice coating at 250K after ~45min. and C) 
Crushed particle show similar foam-like internal structure like at 245K under the continuous 
ice film, D) Remaining clathrates form inclusions (Red arrows) in the ice matrix, E) 
Continuous surface ice mantle at 270K after ~2h, F) Ice crystals separated by well visible 
grain boundaries reach a diameter of 40μm. The images presented here were taken with LEO 
1530 Gemini. 
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4.3.3 Cubic and defective hexagonal ices formation 

SEM images presented in the previous subchapter provide an interesting correlation 

between the decomposition speed and microstructure of the ice coating but some 

observations still find no explanation. It is well visible for the low temperature anomaly 

where in spite of fully developed coatings the dissociation progresses quite rapidly. On the 

other end also unanswered remains how the thin ice film can retard decomposition so 

effectively. Even those questions remain, the presented observations suggest that the 

“quality” of the ice coverage plays principal role here.  

Closer analysis of the SEM images (Fig. 108, 110) suggest that ice crystals formed at 

A B 

C D 

B 

D 

Fig. 113) Ice mantle developed after ~2h long decomposition at 270K 6mbar (0.6kPa). A) 
Clathrate particle with fractured ice coating. In places where ice has been chipped off one can 
observe sub-μ porous clathrates (Red arrows), B) Magnification of the previous image, aside 
from better resolved clathrate patches, shows also an edge of ~3μm thick ice coating (Orange 
arrows), C) Broken clathrate particle that shows a sharp boundary between hydrates and ice, 
D) Fragment of the previous image zoomed on the broken face. Unlike on the other pictures, 
clathrate sub-μ porosity here is very poorly visible. Observed ice film is about 1μm thick. 
Images were taken with LEO 1530 Gemini. 
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lower temperature are contain a large number of planar faults perpendicular to the c axis 

(seen as the striation/kinks) most likely related to stacking faults (discussion of stacking 

faults: Petrenko and Whitworth, 1999). CO2 is likely to use these imperfections in the 

crystal network for a quick transportation making even thicker, complete coatings semi 

permeable to gas molecules (Kuhs et al., 2004). Additionally, the rather small crystals and 

coarse coating makes diffusion even easier. Interestingly, the presence of the stacking 

faults in the hexagonal ABABAB sequence (Fig. 7) gives a rise to another ordering, 

ABCABC, which is characteristic for cubic ice (Fig. 8). If this interpretation of the SEM 

images is correct then the product of the decomposition is in fact a mixture of two ice 

phases, cubic and hexagonal. A conclusive argument for such situation is provided by 

preliminary results from neutron diffraction on dissociating CO2 and CH4 clathrates (Kuhs 

et al., 2004). A robust and quick diagnostic tool for stacking faults in the bulk was found in 

a ratio of the integrated intensities of two Ih ice Bragg reflections, namely 100 and 002. An 

ideal value for the hexagonal structure, although temperature dependent, is close to 0.55. 

The presence of the cubic stacking is reflected in somewhat higher ratios due to a 111 

reflection from the cubic lattice that coincides with the 100 peak (Kuhs et al., 1987). As it 

was also shown, cubic stacking density quickly recovers to the hexagonal structure upon 

warming (Fig. 114), 

which is in accordance 

with the SEM images 

presented above. The 

experimental annealing 

shows that stacking 

faults are persistent 

until about 240K that 

coincides with the 

beginning of the high 

temperature kinetic 

anomaly. 

 

 

 

Fig. 114) Evolution of the I002/I100 intensity ratio during the annealing of cubic ice. Quick 
annealing into the hexagonal phase is recorded from 180 to 200K but some stacking faults still 
remain until ~240K is reached. The ideal Ih ice ratio is shown by the dashed red line (Kuhs et 
al., 2004).     
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This thesis makes another two steps forward in the above analysis by showing the 

evolution of the cubic stacking density with time for the investigated temperatures from 

167.7 to 250K and the first results from a modeling of the diffraction patterns developed by 

T. Hansen1

 

 

 

 in collaboration with our group (Hansen et al, 2008a), (Hansen et al, 2008b). 

The evolution of stacking fault density and the type of stacking during the 

decomposition of clathrates is a complex phenomenon where two processes compete 

between each other. In the first on, “fresh” cubic or highly defective hexagonal ice is 

constantly formed at the rate corresponding to the dissociation of clathrates. The second 

one, the annealing, is driven by a thermally activated mobility of water molecules that 

visibly increases upon warming (Fig. 114). The interplay between above processes is 

approximately displayed in the curves of the I002/I100 ratio  ported  against  time  (Fig. 115).   

 

 

 

 

 

 

 

 

 

 

 

                                                      
1 Institut Laue-Langevin, 6 rue Jules Horowitz 38000 Grenoble, France  
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Fig. 115) I002/I100  ratio for selected decomposition runs at 6mbar (0.6kPa) plotted as a function 
of time. Cubic sequences clearly accumulate between 167.7 and 170K. 175K run shows 
already an effect of the progressing annealing at the later stages. From 180K toward higher 
temperatures stackings formed in the initial rapid decomposition quickly recovers to the less 
defective ice. The highest temperature runs (210-250K) still indicate a presence of a minor 
cubic phase. Data scattering is caused by a fitting technique used to extract the peak intensities. 
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Starting from 167.7K the data show some scattering but the accumulation of the cubic 

component is clearly visible. The maximum ratio for this sample reaches about 1.6 when 

the annealing starts to counterbalance the further increase. Rapidly dissociating clathrates 

combined with a still slow annealing at the temperature just a few degrees higher (170K) 

deliver even more stacking faulty, cubic ice that shifts the I002/I100 intensity ratio as high as 

to 3.2. Interestingly, the next sample at 175K marks already the switching point where the 

mobility of water molecules starts to be high enough to effectively anneal the stacking 

faults on the laboratory time scale. This trend is even more pronounced at the reaction 

curves from 180 to 200K where the recrystallization clearly accelerates. Although a very 

rapid decomposition still produces a cubic component, the annealing quickly recovers most 

of the stacking faults to the thermodynamically favored hexagonal structure. It is worth 

mentioning that the switching point from where annealing start to dominate coincide with 

the change of the decomposition speed (Fig. 106) recorded on the reaction curves in this 

temperature range. Ice that is formed at about 210K generally should be defined as 

defective hexagonal since the observed ratio is almost from the very beginning just slightly 

greater that the ideal one. On closer inspection one can also notice that even for 245 and 

250K some small number of stacking faults is still present. Since these experiments were 

stopped shortly after the end of the decomposition it is justify to assume that the last 

portions of formed ice did not have enough time to fully recover. 

Aside from the approximate “cubicity” presented above, neutron diffraction offers also 

other interesting information like weight fractions of the crystal phases including both ices, 

particle size, averaged unit cell dimensions within the limits of a diffractometer and type 

cubic stacking sequences. Most of these additional parameters are not readily accessible 

through a standard Rietveld refinement due to its inability to deal with stacking faults. This 

problem has been solved by integrating a cubic/hexagonal stacking generator into a 

classical least squared refinement implemented in the programming package IGOR. In 

principles, the first module is used to generate a population of theoretical ice crystals by 

stacking hexagonal and cubic layers up to a given height. In the second step the program 

calculates diffraction patterns for each stacking sequence that are further refined to fit 

experimental patterns. For a more detailed description of this treatment the reader should 

refer to an introductory publication (Hansen et al., 2007) followed by two full papers 

(Hansen et al., 2008a), (Hansen et al., 2008b). The model was first tested for the case of 

cubic and stacking faulty hexagonal ices formed from different high pressure phases of ice 
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(1.3), but after some adjustments also clathrates could be treated. Unfortunately, up to now 

only a handful of available data (170 and 180K) have been analyzed. 

The treatment still requires some additional work but is already able to return a 

significant amount of information that until now has been beyond reach of any previous 

study. For  the  first  time  it  is  possible  to extract  precise  scaling  factors  for stacking   

faulty ice (Fig. 116A, B) formed upon decomposition of CO2 clathrates. The overall  shape 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 116) First results from the modeling of the stacking faulty ice formed upon CO2 clathrate 
decomposition. The first two plots show the scaling factor of ice reflections calculated for A) 
170K and B) 180K. The distribution of cubic/hexagonal layers as a function of time in the C) 
170K and D) 180K run expressed in probabilities of finding a cubic layer after two hexagonal 
(hh-k), two cubic (kk-k), hexagonal and cubic (hk-k) and cubic and hexagonal (kh-k) stacking.   
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of both presented curves for 170 and 180K is similar to those retrieved for clathrates in the 

standard refinement (Fig. 106) but a closer comparison must wait until the new data will be 

recalculated to weighted phase fractions. The new modeling offers also very unique insight 

in a distribution and evolution of cubic and hexagonal stacking sequence with time (Fig. 

116C, D). In both analyzed experiments the probability of finding packets of cubic layers 

decreases with time, which generally reflects the annealing also observed in the I002/I100 

ratio (Fig. 115). Interestingly, a change towards shorter sequences is more pronounced on 

the lower temperature decomposition run. It should be pointed out that through such 

arrangement more possible diffusion pathways are introduced into the ice coating. A 

similar difference may be found in the probability to find a cubic layer after larger 

hexagonal packets. The dissociation at 180K favors such a situation quite in contrast to the 

170K case where the sequence seems to be characterized by smaller cubic units. 

Unfortunately, due to the limited data quality and correlations between the parameters this 

picture is considerably blurred. Aside from the stacking distribution the model provides 

also very interesting information on the position of oxygen atoms in the layers reflected in 

the ratio of a and c of the elementary unit. As it can be seen below (Fig. 117A), for both 

experimental runs the a/c ratio evolves toward higher values approaching the ideal cubic 

value.  The  decomposition  at  170K  clearly  shows  initially  a larger deviation from ideal  
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Fig. 117) Second set of data retrieved from the modeling. A) Evolution of the c/a ratio at 170 
and 180K that clearly indicates a lower initial packing in formed ice and slow recovery with 
time. Blue dashed and solid lines mark the ideal packing for the cubic and hexagonal 
structures, respectively, B) First attempts to establish a change of the crystal size as a function 
of time. Unfortunately analyzed data have too low resolution for the smallest particles. The 
most credible fragments are marked by the dashed blue lines. 
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values than the 180K run but both of them eventually reach a similar plateau at about 

1.2249. Interestingly this value is closer to the packing found in the ideal cubic (1.22475) 

not hexagonal ice (1.2283 - recalculated for a trigonal unit cell, based on: Röttger et al. 

1994). This observation will be a subject of further investigations. The last information 

presented here, an evolution of the crystal size along the c axis (Fig. 117B) touches already 

the limits of our data that were taken not in the high resolution but high flux mode of D20 

(favorable for kinetic studies). In these settings crystals smaller than ~140Å are difficult to 

resolve, which is particularly well visible for the experiment at 170K. The upper limit on 

~260Å is set by the configuration of D20 (wavelength, take off angle, collimation). Even if 

the data are quite scattered, especially closer to the beginning of the runs, one can still see 

a trend for both experiments. The size increase is most pronounced for 180K, which is to 

be expected for a higher temperature experiment. 

 

4.3.4 Decomposition kinetics within Martian regolith pressure range 

Experiments from this group (Fig. 102 - red dots) explore the decomposition process 

at target pressures between the stability boundary and 6mbar (0.6kPa) found at the surface. 

Surprisingly, some of the early runs follow unexpected kinetics that leads the 

decomposition to an abrupt slow down. This previously unknown phenomenon was further 

explored in a broad p-T range with the help of SEM and diffraction methods.  

At higher decomposition pressures the driving force is visibly lower (Fig. 82), which 

should be also reflected in slower kinetics. As previously, aside from this p-T dependent 

parameter (4.3.3) the reactions are also strongly influenced by the interplay between the 

cubic ice formation and annealing. In order to show the role of the fugacity in the 

decomposition process it was necessary to find a temperature region where two other 

phenomena are balancing each other, thus decreasing their total impact on the reaction. The 

previously presented analysis suggests that the desired conditions may be found between 

210 and 230K where freshly formed cubic ice is quickly transformed into the stacking 

faulty hexagonal one (Fig. 115) but the annealing still do not cause any noticeable anomaly 

like observed above 240K (Fig. 107). Surprisingly, a series of the decomposition runs at 

220K did not show a regular deceleration of the decomposition as a function of increasing 

fugacity (Fig. 118). Instead, one can clearly observe anomalous curves at 450 and 600mbar 

(45 and 60kPa), that after a rapid dissociation abruptly slow down. The decomposition is 

still proceeding on but on much lower rate. The peak of the anomaly was found 
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close to 450mbar (45kPa) where after ~30min as much as 87wt% of clathrates remains 

(Table 11). After a closer look one can also notice a rather unusually slow initial 

transformation at 200mbar (20kPa) that is most likely related to the same effect but in 

decreased form. Later, the reaction follows a typical sigmoid like curve similarly to 

unaffected runs at 900, 60 and 6mbar (90, 6 and 0.6kPa). The kinetic anomaly observed at 

the intermediate pressures creates quite a serious problem since there is no known 

mechanism that could cause it. The annealing that shows its strength at higher temperatures 

here is still too slow and its speed is unrelated to the driving force. The cubic or stacking 

faulty ice formation would lead to the accumulation of defects mostly at lower 

decomposition pressures, which still do not explain why the anomaly is found at the 

intermediate pressures. The time resolved stacking fault density evolution for the 

experiments at 220K (Fig. 119) not only does not show any unusually high perfection of 

ices in the anomalous runs but in fact indicate elevated values of the I002/I100 ratio. It is 

particularly visible for the dissociation at 600mbar (60kPa) where the density of cubic 

stacking is the highest from all plotted runs. Interestingly the experiments at 60 and 6mbar 

(6 and 0.6kPa) that required the least time for the transformation show clearly the highest 

ice perfection. 

Fig. 118) Series of the decomposition experiments at 220K and pressure of: 1) 900mabr 
(90kPa), 2) 600mbar (60kPa), 3) 450mbar (45kPa), 4) 200mbar (20kPa), 5) 60mbar (6kPa) and 
6) 6mbar (0.6kPa). The anomalous decomposition can be seen on the curves from 2 to 4. The 
strongest retardation is recorded for 450mbar (45kPa). CO2 clathrates at 220K require 
~1120mbar (112kPa) of gas for stabilization. 
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Although the analysis presented above do not provide any firm connection between 

the ice coating and the origin of the kinetic anomaly, it is still reasonable to assume that 

this phenomenon is related to this layer. The quality of ice that was the key process in the 

previous case (4.3.3) here seems to 

be of secondary importance 

affecting dissociation rates at later 

stages. An identification of the 

mechanism that leads to this 

anomalous decomposition requires 

additional information on surface 

microstructures that may be 

provided by SEM images taken at 

various stages of the reaction. 

Samples were obtained in a number 

of very short interrupted runs for 

selected target pressures (Fig. 120) 

believed   to   be   characteristic  for  
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Fig. 119) I002/I100 ratio for six experimental runs at 220K (The color coding is identical the one 
used in the figure 109). Two experiments at the lowest target pressures indicate the highest ice 
perfection in contrary to the anomalous runs that show elevated stacking fault densities. The 
lowest quality is found at 600mbar (60kPa). 

Fig. 120) Close up on the initial fragment of the 
decomposition experiments at 220K from the figure 
109 (The numbering and color coding is kept identical 
to the original plot). The recovery point of the 
interrupted runs is marked by solid (analyzed under 
SEM) and open (not yet analyzed) large circles.  
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Fig. 121) SEM images (FEI Quanta 200FEG) from the sample recovered after 5 (A-D) and 
10min (E-F) long decomposition at 220K and 900mbar (90kPa). A) General view on clathrate 
grains covered by ice crystals. Smaller hydrate particles that were also found in the starting 
material (Fig. 103C) fully transform into ice (Violet arrows) that fill pore spaces and/or stick to 
larger grains, B) Between fairly well developed ice crystals one can observe sub-μ porosity 
characteristic for clathrates (Red arrows), along the clathrate/ice interface one can observed a 
shallow depression (Blue arrow), C-E) A number of ice crystals shows signs of planar defects 
frequently observed on prismatic planes as characteristic kinks perpendicular to the c axis 
(Green arrows), E) After 10 minutes long reaction some areas still remain partially covered but 
F) the full coating becomes more common. Additional images can be found in the Appendix 10. 
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the pressure regions above within and under the kinetic anomaly. Unfortunately, this 

method that proved to be very effective in case of the formation experiments (4.2.2) here 

meets considerable technical difficulties and probing very fast decomposition experiments 

was found to be very challenging. Consequently, the shortest feasible runs were restricted 

to about two minutes. Although some of the interrupted runs still should be analyzed under 

SEM (Fig. 120), the gathered information appears sufficient for solving the issue of the 

discussed kinetic anomaly. 

Images taken after 5 minutes long decomposition at 900mbar (90kPa) reveal a 

microstructure characteristic for the slow transformation (Fig. 121), which is in accordance 

with a shape of the recorded curve in this time period (Fig. 118). Ice crystals are well 

developed with frequently visible basal and prismatic planes (Fig. 121B-D). On close ups 

one can also notice some stacking faults appearing as striation/kinks perpendicular to the c 

axis (Fig. 121C-D). The average crystal size is about 5-10μm but also larger examples, up 

to 20μm are observed. The ice coverage is inhomogeneous and in a numerous places one 

can still observe an exposed clathrate surface with its characteristic sub-μ porosity (Fig. 

121B-D). The commonly observed depression on the ice/clathrate interface (Fig. 121B) 

suggests an inward growth. A sample decomposed five minutes longer show fairly similar 

development (Fig. 121E) but in some places the coverage seems to be complete (Fig. 

121F).  Individual crystals still have well distinguishable faces and their arrangement in the   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 122) Frozen-in visualization of the sample recovered at the end of the neutron diffraction 
experiment at 220K and 900mbar (90kPa). A) Slow recrystallization leads to a partial 
smoothening of the ice surface. The mantle is discontinued by multiple pores of different size, 
B) Broken surfaces reveal a foam like internal structure probably caused by the difference in 
the density between water ice and clathrate. At higher magnifications one can still find small 
patches of clathrates within the ice matrix and on fractured surfaces (Red arrows). Images 
taken with LEO 1530 Gemini. 
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cover does not create a continuous layer. The microstructure found in a sample recovered 

from an almost two hours long neutron experiment shows already quite advanced changes 

in the microstructure. Ice crystals at the surface are more rounded creating a smooth mantle 

discontinued by a large number of voids (Fig. 122A) that bears some resemblance to the 

one observed at higher temperatures e.g. (Fig. 112A). Another similarity is found in the 

foam like internal structure revealed on broken surfaces that cut through former clathrate 

particles (Fig. 122B). Small hydrate like inclusions with sub-μ porosity are found dispersed 

in the ice matrix and a few  places at  the  surface  where   the  coverage was  mechanically  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 123) Heterogeneous ice coating developed after 5min at 220K and 600mbar (60kPa). Fine 
clathrate detritus attached to the powder particles in all cases show nearly full surface 
transformation (Violet arrow) A) Ice crystallites cover only a small fragment of the hydrate 
particle (Red arrow) , B) At more advanced stage the coating is composed of ice crystals 
spreading across the hole surface. Near to the grain boundaries one can still see some remnants 
of clathrate surface between ice dendrites, C) Thickening ice film completely covers 
underlying clathrates but boundaries between individual crystals are still sharp, D) The final, 
fully developed coating retains traces of individual crystals but most of the fine details 
disappear in favor of a smooth, undulated surface. Images from FEI Quanta 200FEG. Other 
images from this experiment can be found in the Appendix 10. 
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removed during the sample handling. 

Samples decomposed in the anomalous region (600mbar/60kPa), as it is to be 

expected, are characterized by different surface microstructures than those shown 

previously. The ice coverage is strongly heterogeneous. Images taken after a 

decomposition period of approximately 5 minutes represent a full spectrum of possible 

coatings, from very initial, fragmentary to fully developed, continuous layers (Fig. 123). 

Already at this point one can safely assume that in the mature state surface ice is very 

likely to provide much better protection for unstable clathrates than in case of the 

decomposition   at  900mbar   (90kPa).  On  closer  inspection,  the  surface  microstructure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 124) Individual pancake like ice crystallites and their agglomerations found on clathrate 
surface (Red arrows) after 5min long decomposition at 220K and 600mbar (60kPa). A) Single 
ice crystallite with a well distinguishable central consolidated core and dendritically spreading 
fronts. At lower part of the image one can see also a triple junction between clathrate crystals 
(Pink arrow). B) Hydrate particle completely covered by a population of preferentially 2D ice 
crystallites, C) Two ice crystallites that indicate a mixed 3D/2D growth (central part from 
surrounded by a thin ice film), D) Magnification of the spreading front that reveals a complex 
dendritic development. Images from FEI Quanta 200FEG. 
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indicates a preferential fast, 2D growth, which is in agreement with a fast initial 

transformation shown in the neutron diffraction data (Fig. 120). Most of the observed 

crystallites have pancake or disk like shape (Fig. 124) where one can fairly easily 

distinguish centers from which ice grows in a dendritic manner. Some close-ups though 

suggest that some features are indeed single crystals (Fig. 124B, D). The typical size of the 

observed features is 15-20μm. Again, the sample recovered at the end of nearly 3 hours 

long neutron diffraction experiment reveals already advanced recrystallization of the ice 

layer (Fig. 125).  One can still see some similarities with the full coverage observed after 

5min (Fig. 123D) but ice crystals tend to be better developed in three dimensions (Fig. 

125A). In spite of the coarsening, the ice layer seems to be very tight at the surface and 

only a handful of small pores could be found. Other interesting information is provided by 

broken surfaces (Fig. 125B) that cut through the powder particles containing still about 

66wt% of clathrates. Remaining hydrates are clearly separated from the surrounding 

coating by a sharp interface. Ice layer has also characteristic foam like internal structure 

but it seem to be denser than in previous cases. Its thickness varies from one place to 

another hindering any reliable estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A surface ice coating that is forming under even greater driving force than previously 

is not causing any apparent hindrance for decomposition (Fig. 120). It is rather surprising 

since one could expect an even more rapid coating formation as in the anomalous region 

Fig. 125) Ice coating observed after nearly 3h of decomposition at 220K and 600mbar (60kPa). 
A) Partial coarsened surface ice is composed of a numerous idiomorphic small crystals with a 
diameter from 2 to 10μm. The layer is visually coarser than at the earlier stage (Fig. 123D), B) 
Surface of a broken particle that shows remaining clathrates (Red arrow) surrounded by an ice 
film with a characteristic foam like internal structure. Pictures taken with LEO 1530 Gemini. 
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due to the rising driving force. Clathrates decomposed in  two, 2 and 5 min. long runs 

performed at 220K and 60mbar (6kPa) surprisingly show yet another surface 

microstructure (Fig. 126). Clathrates dissociate rapidly along the grain boundaries cutting 

deeply into the powder particles (Fig. 126B). Since the transformation is also related to the 

volume decrease of ~ 13% (see also. 1.1.2, page: 6) gaps that are formed between decaying 

hydrate crystals are considerably broad (0.5-3μm). Remaining cores are gradually coated 

with an ice layer. Interestingly in spite of the formation of the ice shielding the reaction is 

not slowing down as it was observed in the anomalous region. This state is possibly a result 

of two parallel processes that support the dissociation. The first one, the leading process, 

exposes  new  clathrate  surfaces  to  the  surrounding  gas  as   the  decomposition  quickly   
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Fig. 126) Surface microstructure of clathrate powders decomposed at 220K and 60mbar 
(6kPa). Images from the sample recovered after 2min. (A, B) indicate that the dissociation 
preferentially progress along grain boundaries (examples - Orange arrows). Partially 
decomposed crystals still show only poorly developed ice film with a weak fabric of 
underlying sub-μ porosity. Slightly longer (5min) interrupted run (C, D) reveals more apparent 
ice coating surrounding remaining hydrate cores. Between those features one can observe a 
large number of pores. Images from FEI Quanta 200FEG. 
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progress inwards along the grain boundaries. The second one is related to the quality of the 

coating ice, its thickness and the size of remaining clathrate cores. Although the lowest 

density of cubic stacking (Fig. 119) for the runs from this pressure region (Fig. 120 curves 

5,6) works against the dissociation, multiple SEM images suggest that the ice film is 

considerably thin. Initially, its thickness is on the order of a few microns. With the average 

size of remaining clathrate cores on the order of 5-10μm (Fig. 126B) there is not much of 

an available material to improve the thickness. Since the annealing and grain boundary 

reduction mechanisms (e.g. grain coarsening, Ostwald ripening) are still too slow to make 

the thin coating an effective barrier, the decomposition will transform remaining hydrates 

in a short period of time. This interesting observation will be more broadly discussed in the 

next subchapter. The final microstructure of both 60 and 6mbar runs (6 and 0.6kPa) 

unfortunately was not investigated but it is justified assuming its close resemblance to the 

one observed for the 245K and 250K decomposition runs (Fig. 112A, C) taking a 

correction for the faster annealing at those temperatures. 

The interrupted runs clearly show how the decomposition speed and consequently the 

dimensionality of ice growth is important for the kinetic anomaly. The results suggest also 

that similar phenomena might be present in a wider temperature range. This intriguing 

possibility led to the second group of experiments at 200, 230, 240 and 250K that were 

attempting to localize the anomaly at higher and lower temperatures (Fig. 127). 

Decomposition target pressures were chosen with a guidance of the 220K series. At the 

lower temperature end (200K) the reaction was performed at 200mbar (20kPa), which lays 

close to the midpoint between the stability boundary at ~433mbar (43kPa) and 6mbar 

(0.6kPa) representing the Martian surface pressure. The reaction curve do not show any 

strong decomposition hindrance except the initial part resembles the situation from 220K 

200mbar (20kPa) run. Unfortunately, a limited beam time did not allow for further studies 

of this temperature region. At higher temperatures, the anomalous kinetics was localized at 

pressures not far from the stability boundary that repeats the pattern observed at 220K. A 

pressure range where it appears seems to be related to the changes in the driving force and 

influence of the competing processes, namely the annealing and cubic ice formation. The 

first of the two, is likely to have a positive impact on the preservation thus extending the 

pressure region where the anomalous kinetic may occur. The second one, by introducing 

additional diffusion pathways accelerates gas transport through ice shielding, which results 

in a narrower pressure window.  
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4.3.5 “Self-preservation” phenomenon 

Anomalous decomposition kinetics reported at sub zero temperatures over the last few 

decades led many authors to formulate more or less complex definitions of the self-

preservation effect giving various reasons for its existence e.g. (Davidson et al., 1986), 

(Handa, 1986), (Yakushev and Istomin, 1992), (Ershov and Yakushev, 1992), (Takeya et 

al., 2001), (Stern et al., 2001), (Stern et al., 2003), (Kuhs et al., 2004), (Takeya and 

Ripmeester, 2008). This lack of consistency could be searched among others in different 

clathrates preparation techniques, sample handling and experimental procedures. One 

should also note that most of the observations relay on analytical techniques that provide 

200K 230K 

240K 250K 

Fig. 127) Neutron diffraction decomposition runs at different target pressures for four selected 
temperatures.  
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only bulk information (DTA, volumetric/gas flow method, energy dispersive X-ray 

diffraction, neutron diffraction). Only a handful of studies combined with more detailed but 

localized cryo-SEM information (Stern et al., 2003), (Circone et al., 2003), (Kuhs et al., 

2004) could give some insight on the relation of surface microstructures to the 

decomposition speed.  

The preservation effect is generally considered to be restricted to the kinetic anomaly 

at temperatures between 240K and the melting point of ice at ambient pressure where 

clathrates decompose at much lower rates than expected from p-T conditions. The 

preservation phenomenon was found for clathrates of noble gases like krypton and xenon 

(Handa, 1986), methane and CO2. The most precisely studied CH4-H2O system (Stern et 

al., 2001), (Stern et al., 2003) show astonishingly complicated behavior of a preservation 

strength as a function of time (Fig. 128A). Synthetic clathrates used in these experiments 

showed a deviation from the expected transformation period even as great as a month. It is 

important to point out that in some of the experiments the dissociation rate was so low that 

they were interrupted before reaching full conversion. Moreover, there is good evidence 

that methane clathrates may stay in this metastable state for geological timescales trapped 

in  permafrost  (Yakushev  and  Istomin,  1992),  (Yakushev  and  Chuvilin,  2000). Similar  
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Fig. 128) Self-preservation phenomenon observed for A) methane (Stern et al., 2003) and CO2 
(right) clathrates at terrestrial and Martian conditions, respectively. Data points are taken at 
50% transformation as proposed in (Stern et al., 2001). Open circles mark the runs that never 
reached 50% of the transformation. For CO2 clathrates, the missing rates were calculated 
through a fitting of linear fragments of the reactions after 4h (177,7K, 180K) and 12h (175K) 
down to 50%. Exceptionally, the linear fit for the whole reaction was applied to 170K 
experiment. Red dashed line (A) - the stability boundary for the methane clathrates. Blue 
dashed line – melting point of water ice. 
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studies on CO2 clathrates showed also the anomalous kinetics between 240K and the 

melting point of water at ambient pressure but no apparent variation of its strength was 

reported (Circone et al., 2003). Unfortunately a diagram similar to this for the methane 

clathrates was not published. For comparison, the reader will find here a plot based on the 

experimental work performed in frame of this thesis that presents the preservation effect at 

much higher driving force relevant to the Martian surface pressure (Fig. 128B). Yet, it 

should be clearly spelled out that this way of visualization is arbitrary by considering only 

one pressure niveau and also to some extent meaningless since it adopts a linear gradient 

that does not reflect changes in the decomposition rate. Perhaps, a better representation of 

the anomalous kinetic could be made by taking local derivatives of decomposition curves 

and plotting them in a 3D graph against wt. fraction and temperature. Most of the 

researchers agree that the preservation effect must be caused by an ice layer building on 

dissociating hydrates (Davidson et al., 1986), (Yakushev and Istomin, 1992), (Takeya et al., 

2001). Although the ice layer buildup is a fact, its mechanical strength to withstand a 

considerable pressure difference between stabilized clathrates and surrounding gas was 

claim to be insufficient to cause the preservation effect (Stern et al., 2001), (Takeya et al., 

2002), (Stern et al., 2003). Following this line of argumentation the reason for the self-

preservation was searched in a change of clathrates physical chemistry (Stern et al., 2001). 

Yet, it should be clearly spelled out that the stability of the ice coating should not be 

considered in terms of a shear mechanical gas pressure but rather chemical activity at the 

ice/clathrate interface as shown in more recent studies (Kuhs et al., 2004). Moreover, they 

turned the attention on a “quality” of coating ice and for the first time qualitatively showed 

its relevance to the formation of the phenomenon (Fig. 114). The current thesis confirms 

this finding and additionally integrates it with the role of ice microstructures as it could be 

seen in the previous subchapters. The results coming from our experiments give a rise to a 

new definition of the self-preservation: 

 

• The phenomenon is caused by an ice shielding developed on clathrate particles 

• The dimensionality of ice growth and the nucleation density that are functions of a 

driving force controls the preservation effect at the initial decomposition stage 

• The defectiveness of ice that is a function of temperature and time controls the 

strength of the self preservation effect on a longer time scale. 
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• A chance for clathrates to enter into the anomalous decomposition regime falls with 

decreasing particle and crystal size reflected in an outer and inner surface. 

In practice, the phenomenon has two aspects, corresponding to high temperature 

(4.3.3) and intermediate pressure (4.3.4) anomaly. I propose to term both effects as a 

temperature and pressure dependent self-preservation, respectively. Both phenomena may 

exist in a pure form or act at the same time, thus amplifying the effect.  

The temperature dependent self-preservation (Fig. 129) observed in the experiment 

relevant to the Martian atmospheric pressure starts around 240K but the preservation is still 

very weak. Its strength gradually increases toward higher temperatures (Fig. 128) as the 

stacking faulty ice annealing rate accelerates (Fig. 115). The maximum preservation effect 

is achieved close to the melting point of ice, for 270K (Fig. 107), (Fig. 128B).  Available 

pathways for diffusion are restricted to a sluggish transport along crystal boundaries and 

even slower through the bulk. Assuming gas and self diffusion of water molecules to be 

similar one might expect about two orders of magnitude difference between both types of 

pathways (Mizuno and Hanafusa, 1987). In addition, the surface (boundary) diffusion may 

be gradually hindered by the progressing coarsening of ice crystals that accelerates toward 

higher temperatures (Fig. 112).  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 129) Schematic development of the temperature dependent self-preservation. Initially, 
rapidly formed ice contains a considerable amount of stacking faults that are rapidly annealed. 
This process is followed by the grain size increase due to the coarsening. 1) Gas hydrate, 2) 
Stacking faulty Ih ice, 3) Annealed Ih ice.  
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The pressure dependent self-preservation is present in a wide temperature range from 

~200 to 250K (Fig. 131) but one can assume that it also extends further toward the melting 

point of ice. This variant of the phenomenon is caused by the interplay between the 

A                    B                    C 

Fig. 130) Evolution of the surface microstructure at three pressure regimes (See also Fig. 131): 
A) above, B) within the self-preservation zone and C) below (See also Fig. 122). 1) Gas 
hydrates, 2a) 3D stacking faulty Ih ice crystals, 2b) 2D fast growing defective Ih ice, 2c) Quick 
decomposition along grain boundaries.  
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dimensionality of growing ice and decomposition speed that are related to the excess 

fugacity that drives the system (4.1). Another mechanism that might be also involved is a 

percolation of possible pathways for CO2 that at a certain decomposition speed could lead 

to an abrupt reduction of a permeability of ice coating. Unfortunately, the presently 

available data do not provide enough support to confirm this intriguing idea. Interestingly, 

the excess fugacity and thus also indirectly pressure region, at which this aspect of the self-

preservation occurs, is not constant in the investigated range but seems to spread towards 

higher temperatures (Fig. 131). This rough estimation should be revised in more detailed 

studies. At pressures above the anomalous zone ice do not form any substantial barrier for 

the decomposition due to the preferential 3D growth and poor packing of coating crystals 

(Fig. 130A). Within the self-preservation regime, fast 2D growth of stacking faulty 

hexagonal ice, quickly seals off unstable clathrates. The reaction is continued at much 

reduced rate through the diffusive transport (Fig. 130B). Attempts to test the effectiveness 

of this type of coating with the pVT method were unfortunately unsuccessful or still wait to 

be analysed. At higher driving force, below the anomalous zone, a complete ice coating 

layer is developed with a considerable difficulty due to the quickly progressing 

decomposition along grain boundaries. Ice that eventually covers clathrate particles is too 

thin and imperfect to create a considerable barrier for the diffusion. 

At intermediate pressures and higher temperatures though, it is very likely that 

pressure and temperature dependent variants coexist together thus improving the self-

preservation (Fig. 131). Such overlap might already, to some extent, affect the 

decomposition experiments at 240K/ 250K and higher target pressures (Fig. 127) but the 

limited duration of those runs is not sufficient to show both components at full strength. 

Intriguingly, such situation was most likely already recorded in the previous experiments 

on methane clathrates at 0.1Mpa (Stern et al., 2001) as the first dip at 248K (Fig. 128A) in 

the anomalous region. The increasing dissociation rate marks the moment where the 

pressure dependent mechanism is switched off. The second dip can be attributed to the 

pure temperature dependent phenomenon that requires higher temperatures to be effective 

on a short time scale. Although this speculative theory neatly explains the observed rates 

one should keep in mind that stacking faulty ice produced upon the decomposition of 

methane and CO2 hydrates is not entirely identical (Kuhs et al., 2004) and therefore some 

more systematic studies of both kinetic anomalies for various clathrates are required. 
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Fig. 131) Approximate position of two aspects of the self-preservation phenomenon on the 
phase diagram relevant to the Martian p-T conditions. Color gradient shows the transition from 
the cubic ice (Ic) to the well crystalline ice (Ih). Regions A-C corresponds to the 
microstructures presented on the Fig. 130.     

 

Fig. 132) Influence of the clathrate particle size on the decomposition process A) within and 
B) outside the self-preservation region. A) Decomposition experiments at 220K and 6mbar 
(0.6kPa) for three particle sizes: 1) consolidated core (Genov, 2005), 2) 250μm and 3) 350μm 
powders. B) CO2 hydrate dissociation curves taken at 260K and 6mbar (0.6kPa) for 1) a 
consolidated sample (Genov, 2005) and 2) 250μm powder. Smaller SSA material (1) clearly 
shows larger persistency in comparison to fine particles (2).  
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As it could be already seen on a multiple examples, the self-preservation is a process 

that transforms a part of the clathrates to form a layer of protective ice. In such a case the 

phenomenon will be also influenced by the particle and crystal size of the starting material. 

Although these factors were not the main subject of this thesis still some useful 

information were acquired, also in the Martian context.  

A handful of successful experimental runs with a different particle size of the starting 

material (powders and consolidated samples) performed in frame of this project show 

clearly that larger clathrate grains/pieces extend the transformation period (Fig. 132A) 

even if the favourable conditions for the anomaly are not met. The decomposition speed 

within the self-preservation region (Fig. 132B) clearly falls for larger particles, thus 

preserving a greater volume of hydrates outside their thermodynamic stability field. I also 

speculate that the size of individual crystal may similarly influence the decomposition 

kinetics. Some  indirect evidence for this  dependence may be found on  some of  the  SEM  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 133) Slice perpendicular to the sample from the x-ray density contrast tomography scan on 
a natural gas hydrate sample (GH) (mostly methane). Darker areas (GBN-grain boundary 
network) along grain boundaries correspond to progressing dissociation fronts. One can also 
clearly notice pores of different size in ice that surrounds clathrates. BP-boundary pores, GLP-
gas hydrate large pores, LP-large pores, (Mursched et al., 2008)     
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images (Fig. 126) that  suggest the decomposition  along crystal  boundaries.  Interestingly, 

separate studies on the clathrate decomposition with x-ray tomography (Fig. 133) seem to 

support this conclusion. Image slices through the clathrate particles show quite clearly a 

density difference along grain boundaries that can be attributed to progressing dissociation 

fronts. The size of this additional, inner surface used for the decomposition is controlled by 

a crystal size that most likely evolves with time. Fine crystalline clathrates (10-15μm 4.2.2) 

that used this thesis in this case would correspond to young deposits. More matured 

hydrates from natural deposits that had enough time for the recrystallization can reach even 

600μm (Klapp et al. 2007).  

The self-preservation is a fragile state that depends entirely on the sealing properties of 

the ice layer that can be melted or mechanically removed in natural geological processes. If 

it happens by crossing the melting point of ice, the dissociation is unavoidable. Since this 

process is endothermic, close to 237K some buffering may appear but eventually all 

clathrates will decompose. Below this temperature gas hydrates after a limited gas release 

will start to develop a new ice coating that in the favourable conditions may again hold the 

decomposition. If not, the remaining clathrates will undergo almost full transformation 

retaining about 1-2wt% of the intact compounds in form of inclusions dispersed in ice.  

The self-preservation phenomenon itself and the two scenarios of its destruction create 

very intriguing possibilities for evolution scenarios involving has hydrates especially those 

including episodes of  a resurfacing through gas or liquid water + gas releases (Chapter 5).   

4.3.6 Kinetic metastability 

A kinetic metastability is a known phenomenon for ices but for clathrates until now it 

was rather poorly explored and its possible applications not clearly spelled out. It can be 

defined as an absence of decomposition on a laboratory time scale that takes place at 

temperatures below ~160-170K. A good example of this phenomenon can be found in the 

experiment at 165K and 6mabr (0.6kPa) (Fig. 106) where CO2 clathrates in spite of being 

unstable did not dissociate for more than three hours. Similar but not identical behavior 

was observed in a very recent campaign designed to study cubic ice Ic formation from Ne 

hydrates with a temperature ramping technique at 1bar (0.1MPa) (Fig. 134). Although the 

isothermal time steps in this method are considerably shorter than in the constant pressure 

and temperature runs in presented in this thesis, one can still notice that at the initial stage, 

up to 158K the hydrate wt. fraction is close to one. It is particularly interesting since Ne 

hydrates (sII) at this temperature range require about a few hundreds of bars of pressure to 
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be stable. In spite of this enormous 

driving force the decomposition 

becomes visible only after crossing 

160K. Considerably smaller 

difference between the stability 

boundary and the target pressure in 

case of CO2 clathrates shifts this 

critical temperature toward higher 

values. Interestingly this temperature 

range is quite similar to the stability 

limits of various recovered high 

pressure forms of ice that similarly to 

Ne clathrates recrystallize into the 

cubic form (Arnold et al., 1968). In 

case of ices this transformation was 

attributed to an increased mobility of 

water molecules, linked in ice-like 

structures to orientation defects called Bjerrum L- and D-defects (Woolridge et al., 1987). 

Since those defects are also likely to exist in gas hydrates (Davidson, 1973), it may well be 

that the onset of clathrate decomposition is related to the onset of appreciable Bjerrum 

defect mobility on the time-scale of the experiment. Yet, unlike in pure ices, the hydrate 

structure is likely to restrict the rotation of water molecules into cages by gas molecules 

trapped inside. This stabilizing effect towards somewhat higher temperatures should be 

particularly visible for larger molecules like CO2, which is in accordance with the 

observations presented earlier.  

This phenomenon opens an interesting aspect of the persistence of clathrates at very 

low temperatures, which may be of interest not only for Mars but also for other planetary 

bodes (e.g. icy moons, comets) that fall within its temperature range. 
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Fig. 134) Temperature ramping decomposition 
experiment on Ne clathrates. Initial variations in the 
scaling factor are most likely an artifact from the 
refinement. The dissociation starts significantly 
after crossing 160K.    
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Chapter 5 – Possible role of clathrates on Mars 

and other planetary bodies  

The theoretical considerations and experimental knowledge from the introductory 

chapters along with the results coming from this project give a firm ground for a discussion 

about the possible existence and active role of clathrates in geological and environmental 

processes, thus enabling a revision of published hypotheses. The experimental work on the 

decomposition process opens also some new possibilities that will be also considered here.  

Although this thesis was generally dedicated to the hydrates of CO2 on Mars, the acquired 

information allow also expanding the discussion to other planetary bodies where different 

gas hydrates also are expected to exist.  

 

5.1 Clathrates on Mars 

As it could be seen in Chapter 2, essentially over the whole period of the modern 

space exploration of Mars, clathrates repeatedly appear in the various theories considering 

the surface geology, atmospheric gas composition and finally climate evolution. Until the 

detection of methane in the Martian atmosphere, the discussion about those compounds 

was related essentially only to CO2. Recently, a greater attention was placed on this new 

gas due to its biogenic affiliations. It is also worth noticing that even so, hydrates lately 

appear somewhat less frequently in the publications. One of the more apparent reasons that 

I could see for this situation may be perhaps a lack of additional data about gas compounds 

that did not allow for more critical assessment of their possible influence on the 

environment. The complicated, quite exotic physical-chemistry of gas hydrates certainly 

also does not add to their popularity. Finally, it is also hard not to notice that their strong 

presence in the “White Mars” scenario made them rather unpopular among the antagonist 

of this idea. 

 

5.1.1 Polar regions 

Polar caps from the beginning were considered as the most promising candidate for a 

place where clathrates could be found close or even at the surface (2.6.1). Following the 

thermodynamics of clathrates the abundance of major components, water ice in contact 

with gaseous or solid CO2 may indeed lead to the nucleation and growth of hydrates. From 
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the kinetic point of view though, this becomes less obvious. The experiments exploring this 

issue were concentrated around two potential analogs for a temporary and permanent polar 

water ice, frost and ice spheres. The chosen materials (1.5 and 60μm) have slightly 

different radius to the particles (2.5 and 100 μm) taken from the literature (Kieffer, 1990) 

but are close enough to be representative. Experimental work on the kinetics with the 

spherical material (Genov, 2005) was technically very difficult to follow on a longer time 

scale already at 193K. Even with the higher degree of transformation with frost, the lowest 

achievable temperature was 185K.  It is worth noticing that this is still far from those 

observed at the surface of both polar caps. Even though, it was possible to get some insight 

on the transformation time at lower temperatures by a modeling with a JMAKGB and 

multistage Powder 2 (Genov, 2005). Relaying only on the extrapolated diffusion 

coefficients (D = 2.68x10
-18

 m
2
/s and 8.45x10

-18
 m

2
/s) the half and total transformation 

time for ice spheres at 150K was estimated on 10 000 and 90 000 terrestrial years, 

respectively. Those preliminary results unfortunately do not include the nucleation and 

growth stage that is particularly  important  for  small  particles like  frost that do not  enter   
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Fig. 135) Prediction time lines for the half (Dashed lines) and full transformation (Solid lines) 

of frost (r=1.5μm) into CO2 clathrates. The notation “mid” and “max” refer to the driving force 

approximately in the middle of the CO2(V)- H- H2O(S) (Fig. 9),  stability field and on the 

solid/volatile CO2 boundary, respectively.  Parameters from “Frost” in Appendix 9. 
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into the diffusion controlled regime. The previous models assumed that the nucleation and 

growth stage is negligibly fast. Following this approach clathrates could quickly form if ice 

particles would be small enough. A general JMAK code in Powder 4 allows for a 

verification of this assumption. Down to ~195K the nucleation is indeed generally 

instantaneous. Towards even lower temperatures though, it becomes increasingly difficult. 

The change in the activation energy suggests that the nucleation is governed by a different 

process (Fig. 99) related to the mobility of water molecules that in this temperature region 

is decreased to such extent that the probability for embryos to exceed the critical size falls 

dramatically. Predicted time period needed for the half and full transformation for frost 

(Fig. 135) suggests that clathrates presently may not be formed in any significant quantities 

at the surface of polar ice. Although the transformation is still faster than in case of the 

spherical ice, gas hydrates still require a few thousands of terrestrial years for the full 

conversion. The negative impact of the annual and in particular diurnal temperature 

excursions is likely to be reduced by the kinetic meatastability effect below 165K (4.3.6). 

Larger temperature excursion will lead to the decomposition. 

The reader may notice that just a few degrees warmer environment speeds up the 

nucleation by at least an order of magnitude decreasing the importance of the time factor. 

Similar acceleration should be observed for diffusion controlled growth present for larger 

particles but unfortunately more precise timing is still not available. From our laboratory 

experience though I can roughly estimate that already at 180K the full transformation 

period enters in a terrestrial months - tens of years scale (depending on the size of ice 

particles). It is important to point out that with the temperature increase CO2 pressure 

higher than atmospheric must be maintained to carry on the formation (Fig. 135). In order 

to meet these conditions substrates for clathrates must be sealed off from the atmospheric 

influence. The literature offers here two solutions: solid/volatile CO2 burial e.g. (Jakosky et 

al. 1995), (Mellon, 1996), (Longhi, 2006) and basal melting of the temporary dry ice cap 

(Kurahashi-Nakamura and Tajika, 2006). This thesis is meant to check the viability of such 

mechanisms but their existence even in some limited form may be considered.  

The first process is somewhat similar to the one known from the Terrestrial polar caps 

where air bubbles transform at certain depth into air hydrate (2.1). In the Martian 

environment it is already possible just a few meters below the surface as already noted in a 

number of publications (2.6.1).  If the occurrence is close to the one known from the 

terrestrial caps then dispersed clathrate inclusions would occupy up to ~5 volume% of the 
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polar ice (S. Faria-personal communication) having only a minor influence on thermal 

gradients and mechanical properties of the caps. The burial of larger sheets of dry ice 

would deliver much greater volume of CO2 (Longhi, 2006).  This process presently seems 

to be rather limited judging on the ice flow that is too slow for buried larger quantities of 

solid CO2 (Greve and Mahajan, 2004). Clathrates formed around the dry ice in such 

circumstances may form more or less continuous layer that could have already a 

considerable impact on the flow mechanics and thermal conductivity. Still, any effort to 

calculate this influence remains very speculative until more detailed information will be 

available. Unfortunately, presently published radar sounding data do not take clathrates 

into considerations (Picardi et al. 2005), (Plaut et al. 2007), (Seu et al. 2007). Certainly a 

limiting factor of the burial mechanism is a finite source of CO2 during the formation. 

Consequently, the clathrate growth speed will gradually decelerate as gas is consumed until 

equilibrium is achieved. In this state gas hydrates may remain on geological timescales if 

tightly surrounded by ice as in case of the terrestrial analogs. 

The other mechanism is much more intriguing since it offers a quasi constant supply 

of CO2 to a potential formation zone placed deeper in the polar ice. Originally it was 

proposed for the atmospheric collapse at the end of the Noachian but I see also a way it 

could be adopted in present Mars. Presently such condition may exist at the base of 

temporary CO2 caps yet not through a pressure melting suggested in the original paper 

(Kurahashi-Nakamura and Tajika, 2006) but due to insolation (Piqueux et al., 2003), 

(Kieffer et al., 2006). Here I would like to turn the attention of the reader to the Martian 

“spiders” phenomenon (Fig. 48) and the proposed process of its creation. I speculate that 

the basal sublimation that causes the buildup of pressure under the dry ice slab creates a 

good mechanism to pump CO2 into the underlying layered polar deposits, mostly 

consisting of water ice. It is not difficult to notice that again suitable conditions for the 

formation are likely to be created. For natural pathways of such a transport I propose the 

layered interfaces of the polar deposits where gas molecules could be slowly transported in 

greater depths developing a clathrate layer under way. The efficiency of such a process 

remains speculative, since neither the excess fugacity nor the particle size/slab porosity is 

known. At lower latitudes of SPC and the whole NPC where the seasonal cap disappears 

completely during the spring and summer time one could expect also a gradual dissociation 

of gas hydrates eventually formed in this way. Areas with a persisting CO2 cover, thus 

maintaining elevated pressure or temperature below 165K would tend to accumulate 
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clathrates. 

Summarizing the discussion concerning a feasibility of the present formation of 

clathrates and potential mechanisms: 

 It is very unlikely to find any significant volumes of clathrates formed in the ice-gas 

interaction anywhere at the surface due to the nucleation issue. 

 Deeper in the ice caps and layered polar deposits clathrates formation is feasible but 

is limited by the accessibility of CO2 and slow formation kinetics. 

 Eventual gas hydrates are likely to be developed in form of dispersed crystals but 

continuous layers also cannot be excluded. 

 Potential present delivery mechanisms of CO2 into the polar ice are either of low 

efficiency (CO2 burial) or speculative and restricted mostly to the southern polar cap 

(slow diffusive migration from the sublimating base of surface dry ice). 

 Unstable clathrates below 165K are likely to not decompose on the scales of days, 

weeks due to the kinetic metastability phenomenon. 

 

The project leaves still a few open questions that existed already at its beginning or 

came out during the last two years. One of them is the still unexplored possibility of 

clathrate condensation in the atmosphere or at the polar caps. The experiments performed 

in this and preceding thesis consider only a formation from gaseous CO2 and Ih water ice. 

Another pending issue is an influence of cubic ice on the formation rates. Its presence 

already below 190K is generally not very surprising but up to now it was not considered in 

the Martian context. Since a chemical activity and vapor partial pressure at the surface of 

Ic ice is somewhat higher that in case of the regular Ih ice, I suspect that the transformation 

into clathrates may be increased. Similar acceleration might appear for heavily stacking 

faulty Ih ice where defect are likely to promote the nucleation at lower temperatures. 

 

5.1.2 Regolith 

A several kilometers thick regolith layer is another potential place where clathrates 

could be found. The thermodynamic stability boundary stretches at the depths from less 

than a meter at higher latitudes to about a kilometer at the equator assuming a lithostatic 

pressure build-up from the surface. For a regolith with open porosity those values should 

be increased accordingly (Longhi, 2006). Additionally, higher temperatures, especially at 

lower latitudes (Fig. 102) create very suitable conditions for the fast formation kinetics. 
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Yet, similarly to the polar regions at elevated temperatures one needs to supply CO2 at 

sufficiently high pressure into region rich in solid or liquid H2O. Those rather straight 

forward conditions caused a vigorous discussion several years ago that should be seen as a 

struggle between the Blue and White model (2.5) that approach the initial CO2 reservoir in 

different way. Consequently, as the effect of this polarized situation clathrates favored by 

the colder model were put in question along with liquid and solid CO2 related processes 

(Stewart and Nimmo, 2002), (2.6.2). In light of present knowledge also expanded by this 

project, I find it important to reopen the discussion. 

The main argument against widespread presence of clathrates was the lack of an 

efficient way to store of CO2 within the regolith (Stewart and Nimmo, 2002). The authors 

assumed breccias’ porosity to be globally connected and partially open in a vertical profile. 

An argument that was meant to support this speculation was found in an arbitrarily chosen 

permeability of the regolith compared to the one known from terrestrial firns. With this 

approach the removal of buried dry ice assumed as a representative CO2 source was 

geologically very quick. In my opinion, proposed diffusion coefficient of 10
-5

-10
-6

 m
2
/s 

(10
-2

-10
-3

m
2
/h) that may be true for partially open porosity most likely do not reflect the 

present and past situation due to the global presence of water ice in pore spaces e.g 

(Mitrofanov et al. 2002), (Boyton et al. 2002). Moreover, authors seem to also ignore the 

fact that the diffusion coefficient is temperature dependent and a direct application of the 

Terrestrial values may be wrong. Finally, I see no convincing argument supporting the 

discussed scenario as representative on a global scale. The lower limit for the transport 

through the water ice saturated regolith I propose on 10
-11

-10
-18

 m
2
/h (273-150K) as 

derived from the Powder 4 model (Tab. 9), (Appendix 9). The optimal value would be 

about two orders of magnitude greater due to diffusion along grain boundaries. Since the 

presence of the water ice rich regolith was already suspected at that time e.g. (Jakosky et 

al. 1995), (Clifford and Parker, 2001) I find it quite surprising that this likely scenario was 

not considered.  

With the new diffusion coefficients the retention of CO2 and also other gases like 

CH4, H2S or SO2 (2.6.2) e.g. 1) from the past epochs and in particular from 2) concentrated 

magmatic sources is no longer improbable. The present input of the first listed source is 

very speculative but it might be marginal since even such an impermeable ice layer is not 

able to completely halt the gas out transport over billions of years. The magmatic activity 

diminishing with time (2.5) will also decrease its contribution except more isolated still 
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active volcanic regions. Consequently, a potential global CO2 reservoir stored in the 

regolith over the past epochs is likely to undergo a gradual depletion but definitely not at 

the rate proposed in the literature (Stewart and Nimmo, 2002). Therefore, I see no 

argument against the existence of clathrates within and at the bottom of the thickening 

cryosphere (Fig. 136). Their distribution and abundance in the mineral and ice matrix still 

remains speculative but I find it justifiable to compare to the terrestrial occurrences of 

massive deposits, veins or lenses related to geothermal sources (2.1). Disseminated 

deposits (generally of biogenic origin) most often found on Earth are less likely for CO2 

clathrates. The highest concentration of gas hydrates should be expected in a close 

proximity to possible gas sources (e.g. vicinity of the volcanic provinces, sub polar regions 

in the past). Other potential places may be related to tectonic zones that would cut through 

the  permafrost  causing  buoyant  gas  to  diffuse  toward  the  surface.  At  such  condition  
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Fig. 136) Schematic representation of the possible clathrate occurrences in the present regolith. 

A) Dispersed lenses and bubbles trapped in the thickening cryosphere, B) Accumulation of 

clathrate veins, lenses and nodules close to gas sources, C) Impregnation of fractured, faulted 

zones. Dotted arrows mark an eventual transport of CO2 from the polar caps. Solid arrows 

illustrate CO2 rich fluids from magmatic sources.  

Clathrates 
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clathrates would tend to grow in fractures wherever ice or water would be available at the 

proper p-T conditions.  A small but still significant expansion upon growth is likely to 

cause a blockage similarly to the terrestrial pipelines clogging by gas hydrates. If this 

observation is correct then gas compounds could provide a good protection to the 

underlying gas reservoir. Possible larger accumulations of gas hydrates, like previously 

discussed (5.1.1), are likely to affect a regional/local thermal gradient. Recently, this effect 

has been also confirmed through numerical simulations (Kargel et al., 2007). In the 

regolith this effect gains a particular importance by moving the stability fields of liquids 

(H2O and eventually CO2) closer to the surface.  

Summary: 

 Regolith creates suitable conditions for geologically quick formation of gas hydrates. 

 Gas out diffusion to the atmosphere is effectively slowed down by the regolith filled 

with water ice. 

 The greatest concentrations of gas hydrates should be expected close to the potential 

gas sources and tectonically weakened zones. 

 Larger concentrations of gas hydrates are likely to cause significant divergence in 

local and/or regional gradients moving underlying liquid/-s closer to the surface. 

 

The reader may find above discussion rather general but I decided to keep the 

proposed scenarios as a flexible platform for a future discussion that would take into 

account the new diffusion coefficients. 

 

5.1.3 Environmental impact of the formation and decomposition of gas hydrates  

The existence of clathrates within the regolith and polar caps creates a wide range of 

new processes that could theoretically have a significant impact on the present and past 

Martian surface, atmosphere and even climate. Since most of the papers discussing such 

scenarios were relying almost exclusively on the thermodynamics (2.6) I find important to 

revise at least more controversial ideas where the formation and/or decomposition kinetics 

may have a significant impact.  

The first very intriguing and probably the most speculative in this discussion is the 

possible formation of gas hydrates in the early Mars. Such a process at certain conditions 

would create an enormous sink for atmospheric gases that should be also considered in the 
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construction of evolutionary models. The most obvious candidate for greenhouse gases on 

Mars is of course CO2 but even at high pressures it creates serious difficulties in 

maintaining the warm climate required for the “Blue Mars”. As it was discussed in the 

introductory part the (2.5.1) the maximum considered initial CO2 pressure in the warm 

model was set to 10bar (1MPa). At this point it is good to recall that liquid CO2 appears at 

the surface already after crossing 5.11bar (0.51MPa) making it available also in “thicker” 

models (Manning et al. 2006). “White Mars” goes further in pressures up to 30bar (3MPa), 

(2.5.2). Temperatures achieved with different approaches were depending also on other 

parameters (2.5.1) but generally for e.g. 1.5bar (0.15MPa) gave ~214K (Kasting, 1991) and 

for 5bar (0.5MPa), ~215K (Manning et al. 2006) and ~273K (Pollack et al. 1987), 

respectively. Keeping in mind that those are averaged values, after a quick look at one of 

the phase diagrams in this thesis (Fig. 55, 102, 131) it becomes obvious that in all cases the 

formation of clathrates is unavoidable somewhere at the planet’s surface and subsurface. 

The process is prolonged in time, especially for less permeable ice where the diffusion 

limitation will appear but it will continue as long as there is water ice available at suitable 

p-T conditions. Close to the melting point of ice the kinetic is fast enough to effectively 

transform 1mm ice particles in a few weeks. Without the nucleation problem, much finer 

frost will need barely a few hours. Even at temperatures as low as 240K the reaction will 

proceed at a time scale of months or years depending on the specific surface area of ice. 

Consequently, the atmosphere draining may weaken the greenhouse effect but the 

influence remains very speculative. In the “White Mars” the kinetics at low temperatures 

may hinder the formation process. The thickness of the hydrate layer and its position in the 

vertical profile is likely to be controlled by the thermal gradient and decreasing global 

pressure and temperature. Clathrates destabilized eventually will return CO2 back to the 

atmosphere on the time scale from days to months, as long as they are outside the self-

preservation region (Fig. 122). If they enter into the anomalous state, gas can be stored 

within the hydrate lattice for geological time scales. More recently, some elements of the 

discussed scenario were also considered in a detailed work on the thermodynamic of the 

H2O-CO2 system in the past and present Martian conditions (Longhi, 2000), (Longhi, 

2006). All the theoretical models known to me that were trying to quantitatively 

reconstruct the evolution of the Martian atmosphere and climate to satisfy the “Blue Mars” 

scenario were ignoring the scenario above (2.5.1). 
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Summary: 

 Gas hydrates are likely to be present in the early Mars regardless the evolutionary 

pathway.  

 Taking the “Blue Mars” scenario the formation is likely to be quick while in the 

“White Mars” it is sluggish. 

 A general abundance of clathrates is still speculative but clathrates should be 

considered as a conceivable global sink for large volumes of atmospheric gases. 

 The formation of clathrates should be also considered in terms of its possible 

influence on the climate and timing of the atmosphere collapse. 

 

The gradual atmosphere cooling and its final collapse to the poles somewhere between 

the Noachian and Hesperian marks the beginning of a new period for gas hydrates. The 

formation is likely to be restricted to the polar caps and regolith similarly to the present 

situation but pressures larger than 6mbar (0.6kPa) and a still active volcanism is likely to 

modify the picture (5.1.1), (5.1.2) presented earlier in favor of clathrates. The 

transformation at the surface will be controlled by the sublimation pressure. As an 

example, at an approximate atmospheric pressure of ~500mbar (50kPa) (Carr, 1999), CO2 

gas hydrates could grow in the regions where temperatures do not exceed ~205K. The 

kinetics of the formation slows down considerably with the falling temperature and driving 

force from years to thousands of years for larger ice particles and days to months for frost. 

Below ~195K nucleation difficulties will appear as discussed previously (5.1.1). This 

limiting factor will gain on the importance along with the progressing cooling due to the 

atmosphere striping. According to some scientists the sublimation and deposition cycles of 

dry and water ices controlled by the orbital parameters create a convincing mechanism of 

CO2 transfer into the regolith through the polar sheets and thus supporting clathrate 

formation within the caps (2.6.1). The diffusion constants of CO2 molecules through water 

ice (10
-9

-10
-10

 m
2
/s)  at 160K-180K (Kurahashi-Nakamura and Tajika, 2006) that were 

used to estimate the timescale of the percolation are about four orders of magnitude larger 

than those proposed in this thesis for the bulk. These values are still reasonable but then 

some limited porosity or cracks should be present in polar caps. Maintaining such 

pathways in a flowing ice might be difficult on a longer timescale. In another paper 

(Longhi, 2006) the percolation of volatile/liquid CO2 through water ice was meant to be 

supported by growing clathrates that were supposed to improve the gas transport through a 
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volume decrease of about 20%. This incorrect and rather surprising idea most likely 

originates in the misleadingly interpreted density of clathrate compounds. Certainly the 

hydrogen bonded structure filled with gas will be always denser than water ice but it does 

not reflect the true volume change (1.1.2). The expansion of clathrate lattice of about 13% 

in comparison to pure water ice is likely to clog possible diffusion pathways, thus 

decreasing the permeability. 

Summary: 

 The formation of clathrates after the atmospheric collapse is likely to be similar to 

the present situation (5.1.1-5.1.2).  

 Decreasing the availability of CO2 over the Martian history controls the abundance 

of clathrates. 

 Eventual warm periods are likely to accelerate the formation of clathrates and 

atmosphere draining with all its consequences. 

 

Clathrates stored in the polar caps and regolith may buffer a considerable amount of 

CO2 that during obliquity changes may be released to the atmosphere thus contributing to 

the temporary climate warming (2.6.3). I find the impact on the Martian climate and 

amount of gas involved in this process very speculative and additional data are 

indispensible to continue this discussion. By raising this issue I would like to turn the 

attention of the reader to another potential consequence that can be assessed with presently 

available data. The side effect of the periodic recycling of gas from decomposed clathrates 

may cause the alteration or even resetting of the isotopic ratios in the past Martian 

atmosphere (2.6.3). Clathrate incorporate all atmospheric gases according to their fugacity 

favoring heavier molecules that become enriched in the lattice. An influence of the 

formation process on the fractionation of isotopes exists but is very poorly investigated 

(1.1.5.2). Its effect for e.g. CO2, N2, Kr, Xe at the Martian p-T conditions is unknown. If a 

decomposed volume of gas hydrates is significant (Musslewhite and Swindle, 2001), then 

indeed atmospheric gases fractionated in various processes may be affected by atmospheric 

components preserved from past epochs. Although this project does not provide new 

information on this issue, I would like to quickly explore this idea with a newly developed 

CSMGem (Sloan and Koh, 2007) program that allows simulating compositions of mixed 

hydrates as a function of temperature. Unfortunately, as the package was created for oil 

industry  applications  thus  the  available  non  hydrocarbon  gas  feed  composition  has  a  
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Fig. 137) Occupancy fraction for three gas species: CO2, N2 and Xe in small (S) and large (L) 

cages of the theoretical mixed clathrates formed under in the present Martian atmosphere 

(CSMGem). The abundance of CO2 in small cages shows a high sensitivity to change in 

pressure. The solid black like shows the formation pressure that roughly go through the middle 

of the H2O(S)-H-CO2(V) (Fig. 9) stability field. Due to internal issues within CSMGem some 

excursions from middle values were unavoidable. Blue (L) and violet (S) points correspond to 

the experimental data for pure CO2 clathrates from Fig. 101 (right). 
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Fig. 129) Temperature dependent atmosphere fractionation by growing hydrates (CSMGem). 

Data were normalized to 280K. 
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limited choice. For this reason I had to limit the simulated Martian atmosphere to three 

gases: N2, Xe and CO2, where the first two were taken in their present abundance (Table 3) 

and CO2 was recalculated to give a sum of 100%. Plotted cage occupancy for the simulated 

gas hydrates already at the first sight reveal an interesting dependence of all gases on 

changing p-T conditions (Fig. 128). CO2 steadily substitutes N2 in large cages toward 

lower temperatures reaching almost full occupancy at 190K. This value is in a good 

agreement with the pure CO2 clathrates presented earlier (4.2.5). The abundance of 

nitrogen decreases also in smaller cavities but on the smaller rate. CO2 occupy here only 

about 60% of cages with a visibly decreasing trend from about 185K. Unfortunately, 

internal limitations of CSMGem do not allow for tracing it to even lower temperatures. 

Experimentally established occupancy of smaller cages (4.2.5) shows values about 20% 

greater. Xe enters preferentially into small cages but below 180K it also contributes to 

large cavities. Interestingly, this trace gas becomes progressively enriched in the clathrate 

lattice (Fig. 129) reaching three times higher concentration than in the gas phase at 170K. 

N2 shows the opposite trend but on smaller magnitude. On closer inspection one can also 

notice that CSMGem predicts a small depletion for CO2 below ~185K. Clearly clathrates 

formed at the lower temperature end are likely to the greatest impact on the atmospheric 

chemical and isotopic composition. Although their abundance is limited by the sluggish 

kinetics even a small volume e.g. of 10-20mbar (1-2kPa) may already significantly affect 

atmospheric trace gases. To obtain a similar effect with clathrates formed at higher 

temperatures obviously greater volume must be decomposed. 

With the above simulation I offer a quick guide for those scientists who evaluate 

volumes of CO2 and other two gases that may be stored in clathrates formed at different p-

T conditions. It becomes also possible to calculate the volume of hydrates subsequently 

released to the atmosphere. One should still keep in mind that more experimental 

evidences should be gathered to gain a confidence in these predictions. At this point is also 

worth mentioning that even if the mixed hydrates of a certain composition are 

thermodynamically preferred, there is always a risk that kinetic limitations like different 

diffusion rates of individual gases may change predicted occupancies. This issue is likely 

to be particularly pronounced at low temperatures and for large molecules like xenon. 

Although, some indirect evidences from terrestrial ice cores research support this idea, it 

remains still poorly investigated. 
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Summary: 

 Clathrates show a potential to be enriched in heavier gases and perhaps also isotopes.  

 Lower formation temperatures increase this effect. 

 If the volume of gas from dissociating clathrates is substantial then the isotopic and 

chemical composition of the atmosphere may be indeed affected. 

 The extend of this phenomenon would be related to the abundance of clathrates in 

the past epochs. 

The decomposition of clathrates related to the liberation of large volumes of gas may 

create another effect worth considering, namely the ability of reshaping the planetary 

surface. This possibility has been extensively discussed in the literature (2.6.3) but the 

kinetics of the dissociation was very poorly explored. The published ideas should now be 

confronted with the results coming from this thesis. Here I would like to emphasize a 

possible role of both aspects of the self-preservation phenomenon (4.3.5) that can strongly 

alter the reaction rates. Although, gas hydrates can be destabilized in the number of 

processes (2.6.3) only a few of them can cause high decomposition rates that could have a 

major influence on the surface features. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 130) Schematic representation of the sublimation and deposition cycles during high and 

low obliquity periods (General concept after Prieto-Ballesteros et al. 2006 expanded about the 

self-preservation phenomenon).  
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The obliquity cycles that are likely to control water sublimation and condensation 

between poles and equatorial regions certainly have a potential to destabilize clathrates 

trapped in the cryosphere. Slow expansion of the ice coverage at the surface and a possible 

thickening of the permafrost during high obliquity excursions may trap a certain volume of 

clathrates in form of e.g. lenses, layers and perhaps small inclusions (Fig. 130). During low 

obliquity periods sublimating ice may destabilize clathrates by the decompression and/or 

exposition to the atmosphere or causing dissociation at the rate corresponding to the local 

temperature. Shallow inclusions and smaller agglomerations are likely to be transformed 

into ice on a time scale from minutes/hours if exposed to the atmosphere. If some shielding 

is developed, the decomposition may take months/years depending on ice quality and 

sublimation rates. Larger bodies of clathrates destabilized deeper in the regolith below 

220K are likely to share the same fate due to the increasing defects of the coating ice. The 

decomposition in this case might be extended in time to tens of years. The influence of the 

prolonged dissociation on the surface will be rather small. The only visible effect could be 

perhaps caused by the volume reduction during the transformation from hydrates to ice 

effecting in a limited ground subsidence. The decompression above 220K may lead gas 

hydrates into the self-preservation regime if required decomposition pressure and 

temperature are reached. Above 240K the phenomenon will occur in the whole pressure 

range. The temperature region where the self-preservation may occur corresponds to the 

depths roughly from hundreds of meters to a few kilometers. Clathrates surrounded by the 

ice film will continue to dissociate but on geological timescales (thousands, tens of 

thousands of years). The timing given in this subchapter is based on the laboratory 

experience and information found in the literature. For better constraints a model woth 

predictive pover is needed.   

The fragile state of the self-preserved clathrates is an enrty point for the discussion 

about one of the most spectacular surface features on Mars, namely outflow channels and 

their source regions. The origin of those features has been broadly discussed in the large 

number of theories related to liquid CO2, water and finally clathrates (see: 2.5.1, 2.5.2, 

2.6.3). The common element of all of them is the formation through a catastrophic process. 

Interestingly, the decomposition of clathrates seems to repeatedly appear as a mechanism 

capable of disrupting an overlaying regolith e.g. (Clifford and Parker, 2001), (Rodriguez et 

al. 2005), Rodriguez et al. 2006). Yet, as the reader saw in the previous section, clathrates 

in  the  “normal  conditions”  (outside  the  self-preservation – Fig. 131) decompose slowly  
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Fig. 131) Schematic presentation of a chaotic terrain formation and water release triggered by a 

rapid dissociation of self-preserved clathrates.   

Self-preserved clathrates accumulated 

in the permafrost overlaying a water 

saturated regolith. Lower thermal 

conductivity of hydrates locally shifts 

up the ice/liquid water boundary.  

 

 

Hydrostatic pressure buildup (e.g. 

thickening cryosphere, magmatism) 

or/and impacts weaken the overlaying 

permafrost. The self-preservation state 

is destroyed and clathrates begin to 

rapidly dissociate.  

 

Pressurized liquids and gas quickly 

percolate to the surface through the 

shattered regolith. Undermined rocks 

start to collapse. 

 

 

Water in primary pathways begin to 

freeze but new connection to the 

surface are formed through the 

secondarily destabilized clathrates 

 

 

Depletion of semi stable clathrates 

and/or drop in the hydrostatic pressure 

ends the outflow. Affected region 

subsides due to the volume loss.  

cracks 

Hydrostatic pressure 

Self-preserved clathrates 

H2O   CO2 

Chaotic terrains 

Outflow 

channel 

H2O   
CO2 

Secondary 

dissociaiton 

Refreezing 



189 

 

releasing stored gas over extended periods of time. This dissociation style may at most 

cause some strain in the regolith that would dissipate. In order to cause a massive gas 

release in a short period of time one has to destroy the ice shielding of self-preserved 

clathrates (Fig. 131). This can be done in two ways: 1) by melting (magmatism, water  

flow) or  2) through a mechanical cracking below the freezing point of water (tectonic 

activity, impacts). In the first case the decomposition is likely to be the most violent if only 

sufficient amount of heat will be provided to sustain positive temperatures. It may be 

achieved by a direct contact of water with the clathrates like in case the terrestrial analogs 

(2.1). Massive deposits of rapidly decomposing clathrates may be capable of disrupting 

perhaps even a regolith of a few kilometer (Max and Clifford, 2001). In the second case a 

rapid gas release will last as long as the new barrier is not formed. I speculate that the 

overpressure created in this way may be still sufficient to fracture a regolith already 

strained by e.g. melting of clathrates, thickening cryosphere, magmatic heating. The 

destruction of the plug allows pressurized liquid/-s to rapidly percolate toward the surface 

and form outflow channels. A local warming caused by escaping fluids may trigger 

additional secondary rapid decompositions. The greatest potential for the long lasting flow 

have certainly water but an initial presence of considerable amount of CO2 gas or 

immiscible liquid CO2 is also plausible. In fact their presence would considerably improve 

the short range flow and eroding power. The outflow would cease by a gradually reforming 

ice plug. Interestingly, the scenarios involving clathrates do not require any significant 

cavern system that would be difficult to maintain in brecciaed regolith. The commonly 

observed subsidence may well be related to the missing or reduced volume after 

dissociated clathrates and removed water. 

Certainly with the scenario proposed above I have not explored all possible 

implications of the self-preservation. One can build similar hypotheses for more specific 

geological settings (e.g. destabilization of clathrates along faulted zones by a recurring 

tectonic activity, magmatic intrusions, melting by brines). The main aim of this section was 

to demonstrate that clathrates need to be in a special state before causing a massive, fast 

dissociation.  The self-preservation effect requires higher temperatures that are achievable 

at greater depths within the regolith. Also for this reason I find unlikely that smaller and 

shallower surface runoff features like gullies can be triggered by quickly decomposing 

clathrates. Neither temperatures nor pressures are sufficient to cause the anomalous state. 

A disruption of gas hydrates that perhaps remained from past epochs in the anomalous 
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state will decompose slowly as any other clathrates at these low temperatures. 

Another issue that one should consider is a repeatability of the formation-

decomposition process. If the conclusions from the previous subchapters are correct then 

the existence of such cycles, controlled by the expansion of the cryosphere and abundance 

of new deposits will diminish with time.  Low atmospheric pressure and decaying gas 

supply in the regolith is likely to decrease the probability the reformation of clathrates 

close to the surface and within the regolith to the specific occurrences (5.1.1, 5.1.2). The 

sluggish kinetics at low temperatures is another important factor that gained on importance 

with time. Finally, thickening cryosphere may shift newly formed deposits to even greater 

depths where if destabilized may have a minimal or no influence on the surface. 

 Interestingly, this diminishing role of clathrates creates a considerable problem for the 

hypotheses that suggest them as an eventual origin and storage of methane (2.6.3). From 

the most often evoked locations the polar caps in my opinion are the least possible. The 

formation of mixed clathrates close to the surface is not only very difficult from the kinetic 

point of view but also supply of methane. It should be noticed that a hypothetical reservoir 

from the past epochs enclosed in clathrates is likely to be depleted after some obliquity 

changes. The present atmospheric methane content is far too low to be considered as a 

viable addition to recently formed hydrates. The chemical fractionation observed for xenon 

(Fig. 129) here cannot be applied since CH4 is considerably lighter. Much more probable 

source may be searched within the regolith but again the availability of methane is a 

crucial factor. One could consider here an episodic or constant inorganic and/or biogenic 

production. The isotopic composition of atmospheric methane was not measured yet and 

for now both options are still viable (Assuming that the hypothetical life on Mars affects 

isotopic ratios in a similar way to observed on Earth). The first type of the occurrence 

would likely involve massive deposit concentrated around the source while the second one 

could form mostly disseminated and layered accumulation similarly to the terrestrial 

examples (2.1). The decomposition kinetics of both types of the deposits is likely to be 

much different due to the relative particle size (4.3.5). Taking again the obliquity 

excursions as the main destabilizing factor dispersed deposits would gradually release 

stored methane in the contact with atmospheric gases (Fig. 130) as suggested in the 

literature (Prieto-Ballesteros et al. 2006). Much more difficult is recharging or this 

mechanism that requires ice/water vapor and an appropriate partial pressure of methane. 

Presently I do not see any potential mechanism that could help here. Concentrated deposits 
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might avoid these difficulties through a supply of gas and water rich fluids. Some weak 

evidences from the global mapping of methane also support more localized sources 

(Formisano et al. 2004). Yet, one should keep in mind that if the decomposition conditions 

reach the self-preservation region, resupplying of the atmosphere is likely to be halted.    

Summary: 

 Quasi cyclic obliquity excursions, local heat sources tectonic activity and brines are 

capable of destabilizing clathrates.    

 At lower temperatures decomposition is governed by the slow kinetics and stacking 

faulty ice Ih or Ic. 

 Self-preserved clathrates create a potential source for triggering large scale 

resurfacing processes. 

 Mechanical removal of the ice protective layer below the freezing point of water will 

cause very rapid dissociation of preserved clathrates that will last as long as a new 

barrier is not formed. 

 Melting of the ice that shields metastable gas hydrates is likely to be the strongest 

trigger. 

 

5.2 Gas hydrates in the Solar System 

The kinetic investigation presented in this thesis to some extent can be also applied to 

other planetary bodies where clathrates are suspect to exist and undergo the 

formation/decomposition at temperatures well below the melting point of ice. In this 

context I find the kinetic metastability and self-preservation most interesting but also the 

information on the quality of ice formed through the dissociation of clathrates may provide 

an additional tool for constraining clathrate related hypotheses.  

A particularly good testing ground for above processes is a suggestion that 

decomposing clathrates of such gases like CO2, CH4 and N2 are responsible for the 

Enceladus’ jets (Kieffer et al. 2006), (2.2). As could be seen on the Fig. 131 each 

phenomenon, the ”quality” of water ice is prescribed to a certain temperature range 

characterized by different kinetics. The existence of jets already suggest that temperature 

inside the moon where a hypothetical clathrates reservoir might be is most likely above the 

kinetic metastability effect (<150-165K). Up to 240K the decomposition to vacuum 

unavoidably leads to the formation of cubic or stacking faulty ice that is incapable of 

creating any particular shielding effect. In addition, deformations caused by tidal forces 
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may mechanically remove formed ice. Consequently, if a hypothetical clathrate reservoir 

exists in this temperature range then one should expect a fairly weak but constant 

outgasing with periods of higher activity. The reservoir at even higher temperatures, above 

240K, is likely to be influenced by the self-preservation mechanism. A considerably better 

ice protection would impede the gas flux through the ”tiger strips”. A mechanical removal 

of the protective layer would trigger periods of very high activity.    

With this quick and robust kinetic test I wanted to demonstrate how with a very little 

effort one could try to constrain a presence of clathrates and their eventual role as an active 

element in dynamic processes even in such exotic places like Enceladus. This approach 

gives also some ideas about temperatures that cannot be accessed with direct methods. 

Certainly, one should also not forget that extraterrestrial environments may still hold some 

less understood mechanisms that can equally well explain observational data without any 

involvement of gas hydrates. 
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Summary of the project and outlook 
This thesis closes a six years long project that was targeting on the kinetics of growth 

and dissociation of CO2 hydrates at temperatures and pressures relevant to the Martian 

surface and upper crust. The main motivation for this work was almost complete lack of 

information on the formation and decomposition rates well under the melting point of ice 

and a considerable demand of such data from the planetary science community.  

The first part of the project was extensively exploring the formation kinetics in a solid 

H2O-volatile CO2 system with respect to various driving forces, temperatures and SSA of 

starting ice (Genov, 2005). The experimental work was supported by two clathrate growth 

models: phenomenological Powder 2 (Genov et al., 2004) and Avrami based JMAKGB 

that enabled first predictions on formation timescales at the conditions relevant to the 

Martian polar caps. The calculations were still based only on the diffusion controlled stage. 

The initial nucleation and growth stage remained poorly constrained. A preliminary work 

performed on the decomposition kinetics confirmed the existence of the self-preservation 

anomaly above 240K. Later, a link between a temperature driven recrystallization from Ic 

to Ih (often referred as a ice perfection or “quality” of ice) and this phenomenon has been 

found (Kuhs et al., 2004).  

The work presented in this thesis was carried on in the second part of the project. 

Missing information on the formation kinetics and crystal growth in the initial stage was 

successfully retrieved (Falenty et al., 2007) and introduced to the newest, Powder 4 

program with its “Frost” module. It became possible to calculate formation timescales for 

small particles (<2μm) where the diffusion limited stage do not appear. The modeling also 

indicated an increasing nucleation problem below 190K. Preliminary attempts were made 

to establish occupancies of small and large cavities in clathrates formed at low 

temperatures. The extensive studies on the decomposition process at the Martian surface 

and subsurface conditions confirmed the importance of the “quality” of ice through a 

qualitative and quantitative stacking fault analysis (Hansen et al., 2007), (Hansen et al., 

2008a), (Hansen et al., 2008b). A new variant of the self-preservation existing in a narrow 

p-T range below 240K has been discovered (Falenty and Kuhs, 2008). Its origin was linked 

to a surface microstructure of ice layer. At temperatures below 165K a kinetic metastability 

effect was found.  

The information gathered throughout the whole duration of this project provides a 
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solid ground for the evaluation of Martian processes involving the formation or 

decomposition kinetics below the melting point of ice. The results of this project can be 

also applied, within the limits, to other planetary bodies where clathrates may form or 

decompose.  

 

Definitely putting all observations to one consistent story was not a trivial task and 

still additional work need to be done: 

• In the next step of the modeling of formation a polydispersity of ice should be 

introduced to better match natural situation. 

• All formation experiments should be consistently fitted with the new Powder 4 model 

to refine obtained activation energies.  

• It is advisable to perform a few formation experiments from frost at temperatures 165-

185K to confirm the possible nucleation issue. 

• There is a need of more extensive work on the cage filling issue for CO2 and gas 

mixtures of the Martian composition. 

• Formation of clathrates through a condensation from the gas phase should be 

investigated. 

• Chemical fractionation of gases during the formation is a promising subject for further 

studies. 

• Modeling approach for the decomposition still lacking but now it is within reach. 

• Kinetic metastability requires more studies including, long experiments, different 

gases and gas mixtures.     
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Appendix 1 –  Maps of Mars 

Appendix 2 – ROC - A comparison between two diffraction patterns with and without a rocking 
oscillating collimator (ROC) 

Appendix 3 – SEM images – Spherical ice 

Appendix 4 – BET 

Appendix 5 – SEM images - Interrupted runs-Formation at 193K 750mbar (75kPa) 30min run 

Appendix 6 – Etching: Interrupted runs-Formation at 193K 750mbar (75kPa) 15min and 90min 
runs  

Appendix 7 – SEM images - Interrupted runs-Formation at 193K 750mbar (75kPa) 90min run 

Appendix 8 – Structural models 

Appendix 9 – Selected diffraction patterns with Retveld fits 

Appendix 10 – SEM images - Decomposition at 220K 600mbar (60kPa) 5min and 220K 900mbar 
(90kPa) 5-10min runs 

Appendix 11 – “Frost” fitting parameters 
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* The reader should be aware of a small difference in the lattice constant, zero shift and wavelength 
between both samples. Therefore corresponding reflections are slightly shifted. Ice fraction for both 
samples is also different. 
 

Appendix 2: Comparison* between two diffraction patterns with (185K 0.6kPa) and without (180K 

0.6kPa) the radial oscillating collimator.  

 

Full diffraction pattern (Intensity in a log scale to emphasize different background shapes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Close up on the high-resolution 2-theta region (Intensity in a linear scale) 
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Appendix 3: Spherical ice 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Images taken with: FEI Quanta 200FEG 
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Appendix 4: BET measurement – Spherical ice  

Large cell 

Sample mass= 32.6g 

 

 

Fitted fragment in yellow 

 

 

 

 

 

 

 

 

 

 

 

SSA recalculated to ΔQads=2200 J/mol gives: 0.063m2/g. 
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Appendix 4: BET measurement – Frost  

Small cell 

Sample mass= 4.47g 

 

 

 

 

 

 

 

Fitted fragment in yellow 

 

 

 

 

 

 

 

 

 

 

 

SSA recalculated to ΔQads=2200 J/mol gives: 1.89m2/g. 

 

 

 

 

 

 

No p' p" n' n" nr
nads Nads/refill Nads/acc p"/p0 Y

1 0.259 0.036 0.02165 0.010344 0.007333 0.011306 1.52E+17 1.52E+17 0.002782071 1.8316E-20

2 0.646 0.121 0.054042 0.034739 0.024625 0.026635 3.59E+17 5.11E+17 0.009343122 1.8451E-20

3 0.918 0.238 0.076796 0.068301 0.048416 0.033121 4.46E+17 9.57E+17 0.018369397 1.95465E-20

4 1.269 0.396 0.106126 0.113787 0.080659 0.040755 5.49E+17 1.51E+18 0.030602782 2.09561E-20

5 1.631 0.588 0.136443 0.168956 0.119767 0.048146 6.49E+17 2.16E+18 0.045440495 2.20892E-20

6 1.917 0.800 0.160335 0.229729 0.162846 0.050373 6.79E+17 2.83E+18 0.061785162 2.32396E-20

7 2.348 1.052 0.196424 0.302282 0.214276 0.056988 7.68E+17 3.60E+18 0.0812983 2.45713E-20

8 2.612 1.315 0.218509 0.377853 0.267845 0.054933 7.40E+17 4.34E+18 0.101622875 2.60549E-20

9 2.938 1.604 0.245781 0.460894 0.32671 0.052732 7.10E+17 5.05E+18 0.123956723 2.80082E-20

10 3.290 1.917 0.275219 0.550832 0.390464 0.051098 6.88E+17 5.74E+18 0.148145286 3.02958E-20

11 3.615 2.265 0.302416 0.650826 0.461346 0.042053 5.67E+17 6.31E+18 0.17503864 3.36421E-20

12 3.882 2.575 0.324777 0.739902 0.524488 0.046221 6.23E+17 6.93E+18 0.198995363 3.58508E-20
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Appendix 5: Interrupted runs-Formation at 193K 750mbar (75kPa) 30min run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images taken with:   A, D, E) FEI Quanta 200FEG 

 B, C, F-I) LEO 1530 Gemini 
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Appendix 5: Interrupted runs-Formation at 193K 750mbar (75kPa) 30min run. 
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Appendix 6: Interrupted runs-Formation at 193K 750mbar (75kPa) 15min run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images taken with:   LEO 1530 Gemini 

Etching: 
B) Start 
C) 2min 
D) 9min 
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Appendix 6: Interrupted runs-Formation at 193K 750mbar (75kPa) 90min run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Images taken with:   LEO 1530 Gemini 

Etching: 
A-B) Before and after 
C) 1min 
D) 2min 
E) 4min 
F) 6min 
 

A B 

C D 

E F 

 10μm 

 3μm 



Appendix 7: Interrupted runs-Formation at 193K 750mbar (75kPa) 90min run. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Images taken with: LEO 1530 Gemini 
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Appendix 8: Structural models: 

1) CO2 Hydrate (Model modified after Klaproth, 2002) 

 

 

 

 

 

 

 
Structure taken from the refinement of the decomposition run at 170K and 6mbar (0.6kPa)  

 

 

 

 

 

 

 

 

 

 

 

 

 

150-223K - Polynomial function (Udachin et al., 2001)  
 

𝑎𝑎 =  11.81945 − 9.08711 × 10−5T + 4.59676 × 10−6T2 − 8.35548 × 10−9T3 
 
223-270K- Simplified linear extension (lattice most likely expands non-linearly closer to the melting 

point of ice) 
 

𝑎𝑎 = 7.39472 × 10−4T + 11.77032 
 

 

150 200 250

11.88

11.92

11.96

a
 [
Α]

Temperature [K]

Latttice parameter 

* name type Mult Occupancy Uiso

1 O1 O 0.000000 0.308930 0.118200 24 1.0000 0.08620

2 O2 O 0.180430 0.180430 0.180430 16 1.0000 0.08620

3 O3 O 0.250000 0.000000 0.500000 6 1.0000 0.08620

4 D4 D 0.230320 0.230320 0.230320 16 0.4900 0.03660

5 D5 D 0.000000 0.434940 0.201600 24 0.4900 0.03660

6 D6 D 0.000000 0.377800 0.162900 24 0.4900 0.03660

7 D7 D 0.000000 0.318600 0.037630 24 0.4900 0.03660

8 D8 D 0.069120 0.263640 0.135500 48 0.4900 0.03660

9 D9 D 0.116760 0.228880 0.160700 48 0.4900 0.03660

10 O10 O 0.471000 0.909400 0.754500 48 0.2469 0.14247

11 C11 C 0.257400 0.500000 0.000000 12 0.4939 0.14247

12 C12 C 0.000000 0.000000 0.000000 2 0.5585 0.08130

13 O13 O 0.096600 0.000000 0.000000 12 0.1861 0.08130

fractional coordinates x,y,z

° 



Appendix 8: Structural models: 

2) Water ice (Model modified after Röttger et al., 1994) 

 

 

 

 

 
 

 

 
Experimental points (Röttger et al.,1994) 
Polynomial polynomial fits for a and c:  

𝑎𝑎𝐻𝐻2𝑂𝑂 = 4.5014− 1.3738 × 10−4T + 9.9854 × 10−7T2 − 7.27674 × 10−10T3 

𝑎𝑎𝐷𝐷2𝑂𝑂 = 4.4979− 5.5859 × 10−5T + 4.9645 × 10−7T2 − 4.58399 × 10−10T3 

 

𝑐𝑐𝐻𝐻2𝑂𝑂 = 7.30039 + 2.20731 × 10−4T − 6.3993 × 10−7T2 + 2.56758 × 10−9T3 

𝑐𝑐𝐻𝐻2𝑂𝑂 = 7.30466 + 1.80909 × 10−4T − 3.7561 × 10−7T2 + 2.30109 × 10−9T3 

 

 

 

 

 

 

 

* name type Mult Occupancy Uiso

1 O1 O 0.333300 0.666700 0.063600 4 1.0000 0.02500

2 D1 O 0.333300 0.666700 0.199300 4 0.5000 0.02500

3 D2 O 0.453200 0.906400 0.016400 12 0.5000 0.02500

fractional coordinates x,y,z
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Appendix 9: Examples of diffraction patterns and Rietveld fits- Formation from ice spheres.  
 
Formation from spheres at 193K 70kPa (X-ray diffraction) 
Tickmarks: blue- Ih ice, red- Gas hydrate 
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Formation from spheres at 223K 0.1MPa (X-ray diffraction) 
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Appendix 9: Examples of diffraction patterns and Rietveld fits – Formation from frost.  
 
Formation at 190K 36kPa AF (neutron diffraction, dataset: 366417) 
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Formation at 190K 36kPa GG (neutron diffraction, dataset: 276856) 
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Appendix 9: Examples of diffraction patterns and Rietveld fits - Cubic ice.  
 
Decomposition at 170K 0.6kPa after 16.34h (neutron diffraction, dataset: 317998),  GSAS 
Tickmarks: blue- Ih ice, red- Gas hydrate 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard Rietveld refinement with the Ih ice clearly does not fit to the experimental data. 
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Appendix 9: Examples of diffraction patterns and Rietveld- Cubic ice 

 

Decomposition at 170K 0.6kPa (neutron diffraction, dataset: 317998),  Ic ice modeling (Hansen et al., 

2008a), (Hansen et al., 2008b) 
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Appendix 9: Examples of diffraction patterns and Rietveld fits –defective ice at 220K  
 

Decomposition at 220K 60kPa after 31min (neutron diffraction, dataset: 319056) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Decomposition at 220K 0.6kPa after 10.5min (neutron diffraction, dataset: 317500) 
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Appendix 9: Examples of diffraction patterns and Rietveld fits – Ice annealing 
 
Decomposition at 240K 0.6kPa after 19 min (neutron diffraction, dataset: 318820) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decomposition at 240K 0.6kPa after 27min (neutron diffraction, dataset: 318868) 
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Appendix 9: Examples of diffraction patterns and Rietveld fits – temperature dependent Self-
preservation  

 

Decomposition at 270K 0.6kPa after 15s (neutron diffraction, dataset: 366862) 
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Appendix 10: Interrupted runs-Decomposition at 220K 600mbar (60kPa) 5min run. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Images taken with: FEI Quanta 200FEG 

 

 

 

 

 

A B 

C D 

E F 

 10μm  20μm 

 20μm 

 25μm 

 20μm 

 20μm 



Appendix 10: Interrupted runs-Decomposition at 220K 900mbar (90kPa) 5-10min run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Images taken with:   FEI Quanta 200FEG 
G-I) 5min decomposition run 
J-L) 10min decomposition run 
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Appendix 11: “Frost” fitting parameters 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formation curves generated by “Frost” module at three chosen temperatures and max fugacity 

(see Fig. 135).  

 

 

 

kN                  

[1/hm
2
]

kG        

[m/h
2/3

]

kS                   

[1/h]

195 7.79E+09 7.98E-07 0.2203

190 2.36E+09 5.02E-07 0.06673

185 6.72E+08 3.08E-07 0.019

180 1.78E+08 1.84E-07 0.005033

175 4.37E+07 1.07E-07 0.001236

170 9.89E+06 5.98E-08 0.0002796

165 2.04E+06 3.24E-08 5.77E-05

160 3.85E+05 1.69E-09 1.09E-05

155 64400 8.45E-09 1.82E-06

150 9610 4.04E-09 2.72E-07

Starting ice: 

R = 1.5μm 
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