Histomorphometrische Untersuchungen der Knochenstruktur
am ovarektomierten Göttinger Minischwein
zur Etablierung eines Großtiermodells
zur Simulation der postmenopausalen Osteoporose

INAUGURAL – DISSERTATION

zur Erlangung des Doktorgrades
der Medizinischen Fakultät
der Georg-August-Universität zu Göttingen

vorgelegt von
Dr. med. dent. Felix Bartels
aus
Hildesheim

Göttingen 2010
Dekan: Prof. Dr. med. C. Frömmel

I. Berichterstatter: Prof. Dr. med. Dr. med. dent. F.-J. Kramer

II. Berichterstatter/in: Priv.-Doz. Dr. med. Dana Seidlová-Wuttke

Tag der mündlichen Prüfung: 8. November 2010
Inhaltsverzeichnis

1 Einleitung und Zielsetzung ... 1
2 Literaturübersicht ... 3
 2.1 Osteoporose .. 3
 2.1.1 Definition ... 3
 2.1.2 Einteilung nach der Ätiologie ... 4
 2.1.2.1 Postmenopausale (Typ I-) Osteoporose 5
 2.1.3 Epidemiologie und Bedeutung ... 8
 2.2 Tiermodelle in der Osteoporoseforschung 9
 2.2.1 Definition, Bedeutung und Anforderungen 9
 2.2.2 Osteoporoseinduktion durch Ovarektomie 11
 2.2.3 Kleintiermodelle ... 12
 2.2.3.1 Ratten ... 12
 2.2.4 Großtiermodelle ... 14
 2.2.4.1 Primaten ... 14
 2.2.4.2 Schafe ... 15
 2.2.4.3 Schweine ... 16
3 Material und Methode ... 19
 3.1 Versuchsplanung .. 19
 3.2 Versuchstiere ... 21
 3.2.1 Herkunft und Haltung ... 21
 3.2.2 Gruppeneinteilung ... 22
 3.2.3 Operation ... 22
 3.2.4 Versuchsabschluss ... 23
 3.3 Geräte und Reagenzien .. 24
 3.3.1 Geräte und Instrumente ... 24
 3.3.2 Chemikalien und Reagenzien .. 25
 3.4 Aufbereitung des Knochenmaterials .. 25
 3.4.1 Fragmentierung, Fixierung und Einbettung 25
 3.4.2 Herstellung der Trenn-Dünnschliff-Präparate 26
 3.4.3 Histologische Färbung der Präparate 26
<table>
<thead>
<tr>
<th>3.5</th>
<th>Histomorphometrie ... 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>Definition der Regions-of-Interest 27</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Technik und Prinzip der Histomorphometrie 29</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Evaluation des Knochenvolumens ... 31</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Evaluation der Trabekelzahl und -dicke sowie des Trabekelabstands ... 32</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Node-Strut-Analysis .. 33</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Evaluation des Trabecular-Bone-Pattern-factor 38</td>
</tr>
<tr>
<td>3.6</td>
<td>Statistische Auswertung .. 39</td>
</tr>
<tr>
<td>4</td>
<td>Ergebnisse ... 41</td>
</tr>
<tr>
<td>4.1</td>
<td>Histomorphometrie der Wirbel .. 41</td>
</tr>
<tr>
<td>4.2</td>
<td>Histomorphometrie der Tibiaknochen ... 51</td>
</tr>
<tr>
<td>4.3</td>
<td>Histomorphometrie der Femurknochen ... 60</td>
</tr>
<tr>
<td>5</td>
<td>Diskussion .. 69</td>
</tr>
<tr>
<td>5.1</td>
<td>Diskussion der Ergebnisse .. 69</td>
</tr>
<tr>
<td>5.2</td>
<td>Diskussion der Methode .. 74</td>
</tr>
<tr>
<td>5.3</td>
<td>Diskussion des Tiermodells .. 76</td>
</tr>
<tr>
<td>5.4</td>
<td>Ausblick in die Zukunft ... 78</td>
</tr>
<tr>
<td>5.5</td>
<td>Schlussfolgerungen .. 78</td>
</tr>
<tr>
<td>6</td>
<td>Zusammenfassung .. 80</td>
</tr>
<tr>
<td>7</td>
<td>Literaturverzeichnis ... 81</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Ar</td>
<td>Bone-Area, Trabekelfläche</td>
</tr>
<tr>
<td>B.Pm</td>
<td>Bone-Perimeter, Trabekelumfang</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone-Mineral-Density, Knochendichte</td>
</tr>
<tr>
<td>BMU</td>
<td>Basic-Multicellular-Unit</td>
</tr>
<tr>
<td>BV/TV</td>
<td>Bone-Volume/Tissue Volume, Trabekelvolumen</td>
</tr>
<tr>
<td>CD</td>
<td>Connective-Density</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual X-Ray Absorptiometry</td>
</tr>
<tr>
<td>FE</td>
<td>Free-End, frei endende Trabekel</td>
</tr>
<tr>
<td>I.E.</td>
<td>Internationale Einheiten</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like-Growth-Factor</td>
</tr>
<tr>
<td>Il</td>
<td>Interleukin</td>
</tr>
<tr>
<td>i.v.</td>
<td>Intravenös</td>
</tr>
<tr>
<td>KG</td>
<td>Kontrollgruppe, Körpergewicht</td>
</tr>
<tr>
<td>Ma.Ar</td>
<td>Marrow-Area, Markfläche</td>
</tr>
<tr>
<td>μCT</td>
<td>Mikro-Computertomographie</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnet-Resonanz-Tomographie</td>
</tr>
<tr>
<td>MTPD</td>
<td>Mean-Trabecular-Plate-Density, Trabekelzahl</td>
</tr>
<tr>
<td>MTPS</td>
<td>Mean-Trabecular-Plate-Separation, Trabekelabstand</td>
</tr>
<tr>
<td>MTPT</td>
<td>Mean-Trabecular-Plate-Thickness, Trabekeldicke</td>
</tr>
<tr>
<td>Nd</td>
<td>Node, Trabekelknotenpunkt</td>
</tr>
<tr>
<td>NIH-CDP</td>
<td>National Institute of Health-Consensus Development Panel</td>
</tr>
<tr>
<td>N.Nd</td>
<td>Numer-of-Nodes, Zahl der Trabekelknotenpunkte</td>
</tr>
<tr>
<td>No.No</td>
<td>Node-to-Node-Strut, Verbindungsstrecke zwischen zwei Nodes</td>
</tr>
<tr>
<td>No.Tm</td>
<td>Node-to-Terminus-Strut, Verbindungsstrecke zwischen Node und Terminus</td>
</tr>
<tr>
<td>No/Tm</td>
<td>NF-Ratio: N.No/N.Tm</td>
</tr>
<tr>
<td>N.Tm</td>
<td>Number-of-Termini, Zahl der frei endenden Trabekeln</td>
</tr>
<tr>
<td>OPG</td>
<td>Osteoprotegerin</td>
</tr>
<tr>
<td>Ovx</td>
<td>Ovarektomie</td>
</tr>
<tr>
<td>PBM</td>
<td>Peak-Bone-Mass</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathormon</td>
</tr>
<tr>
<td>R</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>RANK</td>
<td>Receptor Activator of Nuclear Factor κB</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor Activator of Nuclear Factor κB-Ligand</td>
</tr>
<tr>
<td>ROI</td>
<td>Region-of-Interest</td>
</tr>
<tr>
<td>SMI</td>
<td>Structure-Model-Index</td>
</tr>
<tr>
<td>T.Ar</td>
<td>Tissue-Area, Rahmenfläche eines Gewebes</td>
</tr>
<tr>
<td>Tb.N</td>
<td>Trabecular-Number, Trabekelzahl</td>
</tr>
<tr>
<td>TBPf</td>
<td>Trabecular-Bone-Pattern-factor</td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>Trabecular-Separation, Trabekelabstand</td>
</tr>
<tr>
<td>Tb.Th</td>
<td>Trabecular-Thickness, Trabekeldicke</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming-Growth-Factor</td>
</tr>
<tr>
<td>Tm</td>
<td>Terminus, frei endende Trabekel</td>
</tr>
<tr>
<td>Tm.Tm</td>
<td>Terminus-to-Terminus-Strut, Verbindungsstrecke zwischen zwei Termini</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor-Necrosis-Factor</td>
</tr>
<tr>
<td>TSL</td>
<td>Total-Strut-Length</td>
</tr>
<tr>
<td>VG</td>
<td>Versuchsgruppe</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
1 Einleitung und Zielsetzung

Tiermodelle bieten sich zur Erforschung der postmenopausalen Osteoporose aus mehreren Gründen an. Da es sich um eine langsam fortschreitende Erkrankung handelt, dauert die Sammlung entsprechender Daten am menschlichen Objekt sehr lange und die Studienpopulation ist aufgrund von Migration oder Ableben kaum zu erhalten. Darüber hinaus bieten Tiermodelle die Möglichkeit, den Einfluss von menschlichen Lifestylefaktoren auszuschalten oder experimentelle Therapien zu untersuchen (Turner AS 2001).

Schweine erscheinen für die Erforschung der Osteoporose sehr vielversprechend. So ist z. B. der Östruszyklus der Schweine dem Menstruationszyklus der Frau sehr ähnlich, und Schweine gehören zu den wenigen Tieren, bei denen es infolge ausgeprägter Osteopenie zu Spontanfrakturen kommen kann (Spencer 1979). Daneben gleicht die Physiologie des

Ziel der vorliegenden Arbeit soll es daher sein, durch Ovarektomie an Göttinger Minischweinen eine postmenopausale Osteoporose zu simulieren sowie im Anschluss die sich ergebenden Änderungen des Trabekelvolumens und der Mikrostruktur an Lendenwirbeln, Femur- und Tibiaknochen histomorphometrisch zu untersuchen.
2 Literaturübersicht

2.1 Osteoporose

2.1.1 Definition

In dieser Definition bleibt offen, ab welchem Grad der Verminderung der Knochendichte von Osteoporose zu sprechen ist. Eine Arbeitsgruppe der WHO (1994) hat daher für die praktische Diagnostik eine Richtlinie vorgeschlagen, nach der eine Osteoporose dann vorliegt, wenn der mittels Dual X-Ray Absorptiometry (DXA) gemessene T-Wert um mehr als 2,5 Standardabweichungen erniedrigt ist. Der T-Wert gibt an, um wie viele Standardabweichungen die individuelle Knochenmineraldichte (Bone-Mineral-Density,

<table>
<thead>
<tr>
<th>Klinisches Stadium</th>
<th>Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalbefund</td>
<td>T-Wert: $\geq -1,0$ Standardabweichungen Keine Fraktur(en)</td>
</tr>
<tr>
<td>Osteopenie</td>
<td>T-Wert: $< -1,0$ und $> -2,5$ Standardabweichungen Keine Fraktur(en)</td>
</tr>
<tr>
<td>Osteoporose</td>
<td>T-Wert: $\leq -2,5$ Standardabweichungen Keine Fraktur(en)</td>
</tr>
<tr>
<td>Schwere Osteoporose (klinisch manifeste Osteoporose)</td>
<td>T-Wert: $\leq -2,5$ Standardabweichungen Fraktur(en)</td>
</tr>
</tbody>
</table>

Tabelle 1: WHO-Definition der Osteoporose (World Health Organization 1994).

2.1.2 Einteilung nach der Ätiologie

Bei der primären Osteoporose handelt es sich um einen Knochenverlust, der nicht mit chronischen Grunderkrankungen zusammenhängt, sondern mit einem Östrogenmangel und Alterungsprozessen vergesellschaftet ist (RIGGS und MELTON 1986, GAMBACCIANI und CIAPONI 2000). Zu den primären Osteoporoseformen werden die

- idiopathische Osteoporose
- postmenopausale (Typ I-) Osteoporose
- Involution- (senile, Alters-, Typ II-) Osteoporose
geistellt (BARTL R und BARTL C 2004).

- Genetische Störungen
- Hypogonadismus
- Endokrine Störungen
- Gastrointestinale Erkrankungen
- Hämatologische Störungen
- Bindegewebskrankungen
- Fehlernährung
- Arzneimittel
- Andere chronische Erkrankungen wie kongestive Herzinsuffizienz, Nierenerkrankungen und Alkoholismus.

2.1.2.1 Postmenopausale (Typ I-) Osteoporose

Im Alter von 45-50 Jahren lässt bei Frauen die Ovarialfunktion nach, was mit einem absinkenden Östrogenspiegel einhergeht. Der postmenopausale Östrogenmangel bewirkt eine Reduktion der Knochenmasse von bis zu 2 % bei kortikalem und bis zu 9 % bei spongäsem Knochen pro Jahr, was sich in 30 bis 40 Jahren zu einem Gesamtknochenverlust von 35 % bei kortikalem und 50 % bei trabekulärem Knochen aufsummieren kann (ROSENBERG 2010).

Dass Knochenzellen Östrogenrezeptoren aufweisen, ist heute unumstritten. Sowohl in periostalen Zellen als auch in Osteoblasten, Osteozyten und Osteoklasten konnten

Obwohl der Großteil des Knochenverlusts infolge Östrogenmangels primär durch die verstärkte Knochenresorption zustande kommt, ist verminderte Knochenbildung ebenfalls ein mitwirkender Faktor beim Knochenverlust (CHOW et al. 1992, QU et al. 1998). Östrogen beeinflusst an Osteoblasten die Expression zahlreicher Gene, die für Enzyme, Zytokine und Wachstumsfaktoren, Knochenmatrixproteine, Hormonrezeptoren sowie Transkriptionsfaktoren kodieren (SPELSBERG et al. 1999). Neben der bereits erwähnten Hemmung der pro-resorptiven Faktoren IL-1, IL-6 und TNF-α wird durch Östrogen z. B. die Expression von Kollagen Typ-I gesteigert (ERNST et al. 1989), so dass Östrogenmangel zur reduzierten Bildung von extrazellulärer Matrix führt (LERNER 2006).

Daneben hemmt Östrogen die Apoptose von Osteoblasten (MANOLAGAS 2000), und die bei Östrogenmangel erniedrigte Expression von TGF-β führt zu herabgesetzter Osteoblastenproliferation und Differenzierung (OURSLER et al. 1991a).

Osteoblasten und Knochenmarkstromazellen sind wichtig für die Regulation der Osteoklastenbildung, da sie u. a. Osteoprotegerin (OPG) exprimieren (LERNER 2006).
Östrogen erhöht die OPG-Expression in Osteoblasten (HOFBAUER et al. 1999). Sezerniertes OPG bindet und neutralisiert RANKL, so dass die Osteoklastogenese gehemmt und die Lebensdauer von Osteoklasten vermindert wird (BOYLE et al. 2003) (Abbildung 2).

Die Knochenfestigkeit wird von Materialeigenschaften wie Knochenmasse, Knochenmineralgehalt oder Größe, Form und Mikrostruktur der Knochen bestimmt.

AMLING et al. (1994) fanden bei Personen mit postmenopausaler Osteoporose eine Verminderung des Trabekelvolumens sowie der Mikrostruktur über die gesamte Wirbelsäule. Zusätzlich korrelierte das Trabekelvolumen mit Mikrostrukturparametern.

2.1.3 Epidemiologie und Bedeutung

Bedeutung erlangt die Osteoporose durch ihre hohe Prävalenz, die erheblichen Kosten für das Gesundheitssystem und die starke Beeinträchtigung der Lebensqualität der Betroffenen (RINGE 1995). Da die Lebenserwartung in den westlichen Industrienationen beständig steigt, erhöht sich auch die Zahl der Menschen, die an altersbedingten chronischen Krankheiten leiden.

Von den insgesamt 5 Mio. postmenopausalen Frauen in Deutschland leiden 2 Mio. unter den Folgen von Wirbelkörperfrakturen (HÄUSSLER et al. 2006). 90 % aller

2.2 **Tiermodelle in der Osteoporoseforschung**

2.2.1 **Definition, Bedeutung und Anforderungen**

Nach KALU (1991) ist ein Tiermodell zur Untersuchung des postmenopausalen Knochenverlusts definiert als ein lebendes Tier, an dem spontaner oder induzierter Knochenverlust untersucht werden kann und an dem die Charakteristika des Knochenverlustes sowie seiner Folgezustände dem Knochenabbau bei postmenopausalen Frauen in einem oder mehreren Gesichtspunkten ähneln. Auch wenn ein Tiermodell die menschlichen Bedingungen nicht exakt nachbildet, so kann es dennoch dazu dienen, einige Aspekte des Knochenverlustes zu studieren.

Bei der Betrachtung von Tiermodellen für Untersuchungen zur Osteoporose muss berücksichtigt werden, wann bei dem Tiermodell die PBM erreicht wird und ob es anschließend zu alters- oder östrogenabhängigem Knochenverlust kommt. Es ist wichtig zu wissen, ob der Knochenverlust kortikalen und spongösen Knochen gleichermaßen betrifft und ob er wie beim Menschen zu erhöhter Fragilität sowie Spontanfrakturen führen kann. Auch die Frage nach Begleiteffekten der Ovarektomie wie gesteigerter Appetit, die die
Ergebnisse verfälschen könnten, sollte in die Betrachtung eingeschlossen werden (TURNER AS 2001).
Kein Tiermodell kann alle diese Anforderungen erfüllen. Vor Beginn einer Studie muss daher genau abgewogen werden, welches Tiermodell für die Beantwortung der entsprechenden Fragestellung am besten geeignet erscheint. Die Verwendung eines einzelnen Tiermodells kann in der Regel keinen zu verallgemeinernden Erkenntniszuwachs liefern (TURNER AS 2001).

2.2.2 Osteoporoseinduktion durch Ovarektomie

Im Gegensatz zum Menschen fehlt den meisten Säugetieren mit Ausnahme einiger Primaten ein physiologisches Sistieren der Ovarialfunktion, die der menschlichen Menopause entspricht. Sie weisen lebenslange Östruszyklen auf oder werden erst kurz vor dem Lebensende azyklisch (SONE et al. 2007). In einem solchen Fall kann durch Ovarektomie (OVX) ein Ende des Östruszyklus herbeigeführt werden, so dass ein Zustand erreicht wird, welcher der Postmenopause der Frau ähnelt (REINWALD und BURR 2008).

Die Postmenopause bei der Frau zeichnet sich in erster Linie durch Osteoporose und kardiovaskuläre Erkrankungen, aber auch durch „hot flashes“, urogenitale Probleme, Schlafstörungen oder Beeinträchtigung der kognitiven Funktionen aus (BELLINO 2000). Während sich die Menopause bei der Frau langsam einstellt, führt eine chirurgische OVX zu einem abrupten Abfall des Hormonspiegels.

Die FDA empfiehlt Tiermodelle mit OVX zur Untersuchung von Knochenverlust (THOMPSON et al. 1995).
2.2.3 Kleintiermodelle

In der Osteoporoseforschung finden verschiedene Kleintiermodelle wie z.B. Ratten, Mäuse oder Hasen Verwendung (BELLINO 2000).

2.2.3.1 Ratten

DEMPSTER et al. (1995) untersuchten die strukturellen Veränderungen der Spongiosa an ovarektomierten Ratten im zeitlichen Verlauf. Die histomorphometrische Analyse von Tibia und Femur zeigte einen rapiden Knochenverlust in den ersten 40 Tagen, der sich in
der Folgezeit jedoch verlangsamt. Die Trabekelzahl sowie einige Konnektivitätsparameter des trabekulären Netzwerkes nahmen ebenfalls ab, wohingegen die Diskonnektivitätsparameter anstiegen. Die Trabekeldicke blieb hingegen auf Höhe des Ausgangswertes.

Abschließend bleibt festzuhalten, dass Ratten unter Berücksichtigung der beschriebenen Einschränkungen ein exzellentes Tiermodell für die Forschung am Knochen sind (BELLINO 2000) und derzeit den „Goldstandard“ als Tiermodell in der Osteoporoseforschung darstellen (CASTANEDA et al. 2008).

2.2.4 Großtiermodelle

2.2.4.1 Primaten

Viele der Nachteile, die sich bei Verwendung von Primaten als Versuchstiere ergeben, liegen darin begründet, dass sie in der Regel nicht aus Züchtungen stammen, sondern zu Versuchszwecken in freier Wildbahn eingefangen wurden. So sind die Tiere meist ausgesprochen aggressiv, was den Umgang mit ihnen deutlich erschwert. Weiterhin ist das genaue Alter der Tiere dann nicht bekannt und kann unter Zuhilfenahme des Zahnstatus etc. nur geschätzt werden (MILLER et al. 1986). Ein erhebliches Gefahrenpotential liegt in

MILLER et al. (1986) untersuchten die Änderungen des Knochenvolumens der Lendenwirbel an ovarektomierten Javaneraffen histomorphometrisch. Das Knochenvolumen war 22 Monate nach OVX im Vergleich zur Kontrollgruppe signifikant erniedrigt.

2.2.4.2 Schafe

2.2.4.3 Schweine

Die in der medizinischen Forschung am weitesten verbreiteten Minipig-Züchtungen sind das Yucatan-Mini- und Micropig, das Göttinger-, Sinclair- (Hormel) und das Hanford-Minipig (REINWALD und BURR 2008). Das von HARING et al. (1963) entwickelte...

Wie beim Menschen spricht auch bei Schweinen OVX-abhängiger Knochenverlust auf Therapiemaßnahmen wie z. B. mit Bisphosphonaten an (BELLINO 2000, BORAH et al. 2002).

<table>
<thead>
<tr>
<th></th>
<th>Maus</th>
<th>Ratte</th>
<th>Kaninchen</th>
<th>Hund</th>
<th>Schwein</th>
<th>Schaf</th>
<th>Primat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter bei „Peak-Bone-Mass“</td>
<td>4-6 Mo.</td>
<td>8-10 Mo.</td>
<td>8-10 Mo.</td>
<td>2-3 J.</td>
<td>2,5-3 J.</td>
<td>3,5 J.</td>
<td>9-11 J.</td>
</tr>
<tr>
<td>Verfügbarkeit geeigneter Tiere</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Kaufpreis</td>
<td>$8</td>
<td>$12-$14</td>
<td>$80</td>
<td>$250</td>
<td>$200-$500</td>
<td>$165</td>
<td>$3500</td>
</tr>
<tr>
<td>Haltungskosten pro Tag</td>
<td>$0,35</td>
<td>$0,30-$0,50</td>
<td>$1</td>
<td>$4</td>
<td>$4</td>
<td>$4</td>
<td>$5,50</td>
</tr>
</tbody>
</table>

Tabelle 2: Vergleich forschungsassoziierter Eigenschaften bei verschiedenen Labortierarten (BELLINO 2000, S. 21).
3 Material und Methode

3.1 Versuchsplanung

Ziel dieser Untersuchung war es, die Veränderungen der Knochenstruktur, die sich an Göttingen Minischweinen aufgrund von Ovarektomie ergeben, histomorphometrisch zu untersuchen.

Zu diesem Zweck wurden 10 Göttingen Minischweine in zwei experimentelle Gruppen eingeteilt. Um eine osteoporotische Stoffwechselsituation zu erzeugen, wurden die Tiere der Versuchsgruppe (n=5) zu Studienbeginn ovarientomiert sowie einer kalzium- und phosphatarmen Diät ausgesetzt. Die Kontrollgruppe (n=5) hingegen wurde einer ovarerhaltenden Sham-Operation unterzogen sowie mit Normdiät ernährt. Schließlich wurden die Minipigs nach acht Monaten euthanasiert, und es erfolgte die Entnahme der 5. Lendenwirbel sowie der rechten Tibia- und Femurknochen (Abbildung 3).

Auf diese Weise war eine vergleichende Aussage über die Knochenqualität der einzelnen Versuchstiere der Versuchs- und der Kontrollgruppe möglich.
Material und Methode

Operation und Aufzucht der Göttinger-Minischweine

Kontrollgruppe (n=5):
- Ovarektomie
- kalzium- und phosphatarme Diät

Versuchsgruppe (n=5):
- Sham-Operation
- Normdiät

Euthanasie und Knochenentnahme

Euthanasie der Tiere nach 9 Monaten und Entnahme der 5. Lendenwirbel sowie der rechten Tibia- und Femurknochen

Histologische Aufbereitung

Fragmentierung, Fixierung und Einbettung der entnommenen Knochen, Herstellung histologischer Präparate nach der Trenn-Dünnschlifftechnik, Anfärbung

Histomorphometrische Auswertung

Analyse von zwei Schnitten pro Knochen hinsichtlich:
- Trabekelvolumen
- Trabekelzahl, -dicke und -abstand
- Node-Strut-Analysis
- Trabecular-Bone-Pattern-factor

Statistische Auswertung

- Darstellung der Ergebnisse als Box-Plot
- Wilcoxon-Mann-Whitney-Test (MWU-Test)

Abbildung 3: Abfolge der Arbeitsschritte in der vorliegenden Studie.
3.2 Versuchstiere

3.2.1 Herkunft und Haltung

Wasser stand für die Tiere zur freien Verfügung, wohingegen die Futtermenge auf 500 g täglich begrenzt war. Da Soja eine östrogenartige Wirkung besitzt (MESSINA 2002, SONG et al. 2007), wurde Futtermittel ohne Sojazusatz verwendet (Fa. Altromin, Lage).

Die genaue Zusammensetzung des Futtermittels hing von der Gruppenzuteilung ab und ist Tabelle 3 zu entnehmen.

Die Genehmigung für die Tierversuche wurde vom Niedersächsischen Landesamt für Verbraucherschutz und Lebensmittelsicherheit gegeben (Az 33.42502-04-041/07).

<table>
<thead>
<tr>
<th>Kontrollgruppe</th>
<th>Versuchsgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohprotein</td>
<td>17,54 %</td>
</tr>
<tr>
<td>Rohfett</td>
<td>4,01 %</td>
</tr>
<tr>
<td>- Vitamin D3</td>
<td>1000 I.E./kg</td>
</tr>
<tr>
<td>Rohfaser</td>
<td>10,04 %</td>
</tr>
<tr>
<td>Rohasche</td>
<td>7,21 %</td>
</tr>
<tr>
<td>Feuchtigkeit</td>
<td>8,93 %</td>
</tr>
<tr>
<td>Disaccharide</td>
<td>3,3 %</td>
</tr>
<tr>
<td>Polysaccharide</td>
<td>31,51 %</td>
</tr>
<tr>
<td>Kalzium</td>
<td>0,96 %</td>
</tr>
<tr>
<td>Phosphat</td>
<td>0,71 %</td>
</tr>
<tr>
<td>Umsetzbare Energie</td>
<td>2383,16 kcal/kg</td>
</tr>
</tbody>
</table>

Tabelle 3: Auszug aus der Futtermittelanalyse.
3.2.2 Gruppeneinteilung

Vor Versuchsbeginn wurden die 10 weiblichen Göttinger Minischweine nach dem Zufallsprinzip in zwei Gruppen einteilt. Die eine Gruppe stellte die Versuchsgruppe dar, die andere Gruppe diente der Kontrolle.

Bei den Tieren der Versuchsgruppe wurde eine bilaterale Ovarektomie (OVX) durchgeführt und sie wurden mit einer kalzium- und phosphatarmen Diät ernährt (Tabelle 3). Bei der Diät wurde darauf geachtet, dass das Kalzium- und Phosphatverhältnis bestehen blieb und eine zu niedrige Konzentration, die zu ernsthaften Erkrankungen führen könnte, vermieden wurde. Die Kontrollgruppe hingegen wurde einer ovarerhaltenden Sham-Operation unterzogen sowie mit Futtermittel, das einen normalen Kalzium- und Phosphatgehalt aufwies, verpflegt.

Das Durchschnittsalter der Versuchsgruppe betrug zu Beginn der Studie 4,06 ± 0,72 Jahre gegenüber 3,25 ± 0,86 Jahre in der Kontrollgruppe. Das Durchschnittsgewicht der Versuchsgruppe lag bei 67,8 ± 6,76 kg, während die Kontrollgruppe ein mittleres Gewicht von 63,0 ± 11,6 kg aufwies.

3.2.3 Operation

Die Narkose für die Operationen wurde durch einen Tierarzt mit Erfahrungen auf dem Gebiet der Großtieranästhesie durchgeführt und überwacht. Nach Narkoseeinleitung durch intramuskuläre Injektion von 300-320 mg Azaperon (Stresnil, Janssen, Beerse/Belgien) im Stall wurde den Tieren ein Ohrvenen-Katheter gelegt. Im OP erhielten sie über den Katheter 230-375 mg Thiopental-Natrium (Trapanal, Altana Pharma, Konstanz), wurden intubiert und mit einem Gemisch aus Sauerstoff und Lachgas im Verhältnis von 1:4 beatmet. Die Narkose wurde zum einen durch eine kontinuierliche Ketamininfusion i.v. (2,5-5 mg/kg/KG/h; Ketamin 10 % verdünnt mit physiologischer Kochsalzlösung ad 50 ml) und zum anderen durch Piritramid (75-100 μg/kg/KG/h; 1 Ampulle = 15 mg Piritramid) (Dipidolor, Janssen-Cilag, Wien/Österreich), welches mit Sterofundin B/G5 (B. Braun, Melsungen) ad 50 ml verdünnt wurde, aufrecht erhalten. Wenn während der Operation am Ovar Schwierigkeiten durch hohen Muskeltonus entstanden, wurde bei Bedarf zusätzlich das Muskelrelaxans Diazepam i.v. infundiert.

Abbildung 4: Entfernung der Ovarien mittels Thermokoagulation.

3.2.4 Versuchsabschluss

Nach 8 Monaten Studiendauer wurden die Tiere durch eine Überdosis an Narkosemittel (Stresnil, Janssen, Beerse/Belgien) euthanasiert. Den Tieren wurden die 5. Lendenwirbel sowie die rechten Tibia- und Femurknochen entnommen und sorgfältig von Weichgewebe einschließlich dem Periost freipräpariert. Während der Präparation wurden die Knochen mit physiologischer Kochsalzlösung (B.Braun, Melsungen) feucht gehalten.
3.3 **Geräte und Reagenzien**

3.3.1 **Geräte und Instrumente**

Für die histologische Aufbereitung:
- Bandsäge „Exakt-Trennsystem“ (Exakt-Apparatebau, Norderstedt)
- Tellerschleifgerät „Exakt-Schleifsystem“ (Exakt-Apparatebau, Norderstedt)
- Kleingefrierschrank „GS801“ mit NTC-Temperaturregler (Elektronik-Bau, Groß Lüdershagen)
- Schleif- und Poliermaschine „Struers RotoPol-35“ (Struers GmbH, Willich)
- Schleifscheiben bis P1200 (Struers GmbH, Willich)
- Siliziumcarbid-Schleifscheibe „WS Flex 18C“, Körnungen zwischen P80 und P1200 (Hermes Abrasives LTD, Virginia Beach, USA)
- Siliziumcarbid-Schleifscheibe P4000 (Struers GmbH, Willich)
- Plexiglas-Objektträger 45 x 55 x 2 mm (Patho-Service GmbH, Hamburg)
- Wärmeschrank (Memmert GmbH & Co. KG, Schwabach)

Für die Histomorphometrie:
- Fotomikroskop „Axioskop 2 plus“ (Carl Zeiss AG, Göttingen)
- Digitalkamera „Axiocam MRC 5“ (Carl Zeiss AG, Göttingen)
- Histomorphometrie-Software „Axiovision Release 4.6.3 Sp1“ (Carl Zeiss AG, Göttingen)
3.3.2 Chemikalien und Reagenzien

Für die histologische Aufbereitung:

- Alizarinrot S (Merck, Darmstadt)
- Ethanol (Merck, Darmstadt)
- Aqua dest. (Centramed, Koblenz)
- Di-Natriumhydrogenphosphat-Dihydrat (Merck, Darmstadt)
- Formaldehyd 37 %/ca. 1 % Methanol (CMV Chemie-Vertrieb, Hannover)
- Löfflers Methyleneblaulösung 1.01287.0500 (Merck, Darmstadt)
- Natriumdihydrogenphosphat-Monohydrat (Merck, Darmstadt)
- Salzsäure (Merck, Darmstadt)
- Sofortklebstoff „Loctite 420“ (Henkel Loctite, München)
- Kunststoff „Technovit 9100 NEU“ (Heraeus Kulzer, Wehrheim)

Herstellung der Alizarinrot-Färbelösung:

- 0,5 g Alizarinrot S
- 45 ml aqua bidest.
- Ggf. mit 0,1 % HCl auf Sollwert-pH von 6-6,3 titrieren

3.4 Aufbereitung des Knochenmaterials

3.4.1 Fragmentierung, Fixierung und Einbettung

Unmittelbar nach der Entnahme aus dem Versuchstier wurden die Lendenwirbel sowie die rechten Tibia- und Femurknochen in handliche Fragmente zerlegt. So wurden bei den Wirbeln die Dorn- und Querfortsätze entfernt und bei den langen Röhrenknochen wurden nur jeweils die proximalen Drittel weiterverarbeitet.

Im direkten Anschluss wurden die zugesägten Knochenfragmente zur Gewebefixierung für ca. 10 Wochen in phosphatgepufferter neutraler 4 %iger Formalinlösung gelagert. Es folgte die Wässerung der Knochenstücke mit aqua dest., um das überschüssige Formalin auszuwaschen.

Vor dem Einbettvorgang wurden die Präparate zur Dehydration in eine aufsteigende Alkoholreihe eingebracht (50 %-, 70 %-, 90 %-, 96 %- und 2 x 100 %iger Alkohol für je
Material und Methode

3.4.2 Herstellung der Trenn-Dünnschliff-Präparate

Es folgte das Planschleifen der Schnittflächen aller Knochenhälften in mehreren Stufen bis zu einer abschließenden Körnung von 1200. Anschließend wurde auf die nun planen Knochenoberflächen ein Objektträger geklebt und in 300 μm Entfernung mittels einer Bandsäge wieder vom Knochenfragment abgetrennt. Dadurch resultiert eine ca. 300 μm messende Knochenschicht, die fest mit dem Objektträger verbunden ist. Es folgte nun das Dünnschleifen dieser Knochenschicht von 300 μm auf ca. 20 μm in mehreren Schritten, das von einem Polierschritt mit der Körnung 4000 abgeschlossen wurde.

Pro Knochenhälfte wurde ein Trenn-Dünnschliff-Präparat hergestellt und wie nachfolgend beschrieben histologisch angefärbt.

3.4.3 Histologische Färbung der Präparate

Raumtemperatur für 3-4 Stunden.

3.5 Histomorphometrie

3.5.1 Definition der Regions-of-Interest

Pro Knochen wurden zwei Dünnschlfpräparate histomorphometrisch ausgewertet. An den Präparaten der verschiedenen Knochen wurden mehrere Regions-of-Interest (ROI) definiert, die stets die Maße 5 x 5 mm aufwiesen (Abbildungen 5 bis 7).
Die in der Frontalebene geschnittenen Wirbelpräparate wurden anhand der Bodenplatte ausgerichtet, indem zwischen den beiden kaudalsten Abschnitten der konkaven Bodenplatte eine Verbindungslinie gezogen wurde. Eine dazu parallele Linie wurde nun auch am höchsten Punkt der Konvexität der Deckplatte konstruiert. Zu diesen beiden Linien wurden jeweils Parallelen in 5 und 10 mm Abstand gezeichnet, so dass insgesamt sechs parallele Linien resultierten. Es folgte nun das Konstruieren einer hierzu senkrechten Linie, die in diesem Fall die Mediansagittal-Ebene repräsentierte. Auch hier wurden in 5 und 10 mm Abstand zu beiden Seiten zwei weitere Parallellinien eingezeichnet. Auf diese Weise entstanden acht ROI-Felder, von denen vier 5 mm unterhalb der Deckplatte und vier 5 mm oberhalb der Bodenplatte lagen (Abbildung 5).
Die acht ROI-Felder an den gefärbten Trenn-Dünnschliff-Präparaten der Wirbel.

Bei den in der Frontalebene des Schenkelhalses geschnittenen Femurpräparaten war das Vorgehen ähnlich. Die Ausrichtung erfolgte in diesem Fall an einer Verbindungslinie, die konstruiert wurde, indem vom höchsten Punkt des Trochanter major eine Tangente an den Femurkopf gezogen wurde. Vier weitere parallele Linien wurden in 5 mm Abstand konstruiert. Eine Senkrechte zu diesen Linien wurde nun an dem Berührungs punkt der vom Trochanter ausgehenden Tangente am Femurkopf gezeichnet. Durch Konstruieren weiterer Parallellinien zu dieser Tangente im Abstand von 5 mm wurden insgesamt neun ROI-Fenster konstruiert, wobei vier im Femurkopf, vier in der Schenkelhalsregion und eines im Trochanter major lagen (Abbildung 6).

Die neun ROI-Felder an den gefärbten Trenn-Dünnschliff-Präparaten der Femurknochen.
Der in der Sagittalebene geschnittene Tibiaknochen wurde an einer Linie ausgerichtet, die vom höchsten Punkt der Area intercondylaris anterior zum höchsten Punkt der Eminentia intercondylaris posterior verlief. Vier dazu parallele Linien wurden nun in 5, 10, 15 und 20 mm Abstand gezeichnet, so dass insgesamt fünf parallele Linien resultierten. Es folgte nun die Konstruktion einer hierzu senkrechten Linie, welche der Area intercondylaris anterior ventral anlag. Nun wurden in 5, 10 und 15 mm Abstand weitere Parallellinien nach dorsal eingezeichnet, so dass insgesamt zehn ROI-Felder entstanden (Abbildung 7).

Abbildung 7: Die zehn ROI-Felder an den gefärbten Trenn-Dünnschliff-Präparaten der Tibiaknochen.

3.5.2 Technik und Prinzip der Histomorphometrie

Die Auswertung der Dünnschliffpräparate erfolgte mittels Histomorphometrie. Das Prinzip der Histomorphometrie liegt darin, dass ein vom Mikroskop vergrößertes Bild von einer Digitalkamera erfasst und an einen Personalcomputer weitergegeben wird. Mit einer Histomorphometrie-Software können anschließend verschiedenartige Messungen an den Bildern vorgenommen werden. Zur computergestützten Quantifizierung von Bildinhalten wurde im Rahmen dieser Untersuchung eine 5fache Vergrößerung gewählt. In der Mitte jeder ROI wurde je ein digitales Farbbild (Farbtiefe 48 Bit RGB) aufgenommen (Abbildung 8). Die Digitalbilder hatten eine Auflösung zwischen 2572 x 1924 Pixel und 2586 x 1936 Pixel, was bei einer Pixelgröße von ca. 1,08 x 1,08 μm zu einer Rahmenfläche zwischen ca. 5739527 μm² und 5834127 μm² führte.

Das Binärbild war die Grundlage für alle nachfolgenden Bearbeitungsoperationen. Durch das Binärbild war die Software u. a. in der Lage, Knochenfläche und –umfang oder die Gesamtfläche des Bildausschnitts zu bestimmen, so dass weiterführende Berechnungen angestellt werden konnten (siehe Abschnitt 3.5.3 und 3.5.4).

3.5.3 Evaluation des Knochenvolumens

In jeder ROI wurde ein Digitalbild erstellt und mit der Histomorphometrie-Software anschließend in ein Binärbild umgewandelt. An diesem Binärbild wurde die weiße Fläche (Knochen) gemessen. Das (1) Trabekelvolumen (Total-Bone-Volume, TBV, BV/TV) wurde berechnet, indem die Gesamtfläche aller weißen Pixel (Knochenfläche, Bone Area, B.Ar) bestimmt und

Abbildung 8: Digitales Farbbild einer ROI als Eingabebild für das in Abbildung 9 dargestellte Binärbild. Färbung nach SMITH und KARAGIANES (1974) (Originalvergrößerung 5X).

Abbildung 9: Binärbild des Farbbildes aus Abbildung 8. Knochengewebe stellt sich weiß und Nichtknochengewebe schwarz dar.
durch die Rahmenfläche (Tissue-Area, T.Ar) dividiert wurde. Wenn die zweidimensionale Knochenfläche in Prozent der Rahmenfläche angegeben wird, dann ist der entsprechende Prozentwert gleich dem Wert, der sich bei Betrachtung im dreidimensionalen Raum ergibt (PARFITT 1983).

Es gilt also:

\[
(1) \quad \frac{BV}{TV} = 100 \times \frac{B.Ar}{T.Ar} \quad \text{(DALLE CARBONARE et al. 2005)}.
\]

3.5.4 Evaluation der Trabekelzahl und -dicke sowie des Trabekelabstands

Zur Berechnung der (2) Trabekeldicke (Trabecular-Thickness, Tb.Th, Mean-Trabecular-Plate-Thickness, MTPT), (3) der Trabekelzahl (Trabecular-Number, Tb.N, Mean-Trabecular-Plate-Density, MTPD) und (4) des Trabekelabstandes (Trabecular-Separation, Tb.Sp, Mean-Trabecular-Plate-Separation, MTPS) wurde mit der Histomorphometrie-Software an den Binärbildern die Gesamtfläche aller weißen Pixel (Knochenfläche, Bone-Area, B.Ar), die Gesamtfläche aller schwarzen Pixel (Markfläche, Marrow-Area, M.Ar), die Rahmenfläche (Tissue-Area, T.Ar) und der Umfang der Trabekeln (Bone-Perimeter, B.Pm) gemessen.

Die Berechnung dieser Parameter erfolgte nach den von PARFITT et al. (1983) angegebenen Formeln:

\[
(2) \quad Tb.Th = \frac{2000}{1,199} \times \frac{B.Ar}{B.Pm}
\]

\[
(3) \quad Tb.N = \frac{1,199}{2} \times \frac{B.Pm}{T.Ar}
\]

\[
(4) \quad Tb.Sp = \frac{2000}{1,199} \times \frac{Ma.Ar}{B.Pm}.
\]

3.5.5 Node-Strut-Analysis

Abbildung 11: Verdünntes Binärbild. Bei dem Binärbild aus Abbildung 9 wurden die randständigen Pixel so lange entfernt, bis eine nur ein Pixel breite Linie resultierte.

Abbildung 12: Ergebnisbild der Addition des Binärbildes aus Abbildung 9 und des verdünnten Binärbildes aus Abbildung 11.
Abbildung 13: Schematische Darstellung eines Zentralpixels (Z) mit seinen acht Nachbarpixeln (1-8). Da sich im Binärbild Knochenpixel weiß und Nichtknochenpixel schwarz darstellen, handelt sich in diesem Fall um eine vierfache Trabekelkreuzung. Obwohl der Zentralpixel ein Knochenpixel ist, wurde er in dieser Abbildung zur besonderen Kennzeichnung rot dargestellt.

Die absolute Anzahl an Nodes und Termini in einem Präparat wird im Allgemeinen auf die zugrunde liegende Rahmenfläche (T.Ar) bezogen und als Number-of-Nodes (N.No) bzw. Number-of-Termini (N.Tm) bezeichnet. Der Quotient aus N.No und N.Tm wird als Node-to-Free-End-Ratio (N/F-Ratio, No/Tm) bezeichnet. Die N/F-Ratio ist eine Möglichkeit, den Vernetzungsgrad des trabekulären Netzwerkes auszudrücken: Je höher die N/F-Ratio desto größer die Konnektivität (COMPSTON et al. 1995).

Eine hohe No.Tm und Tm.Tm sprechen für einen niedrigen trabekulären Vernetzungsgrad (COMPSTON et al. 1995).

3.5.6 Evaluation des Trabecular-Bone-Pattern-factor

Der Trabecular-Bone-Pattern-factor (TBpf) wurde von HAHN et al. (1992) beschrieben. Der TBpf ist ein Index, der die Konnektivität von Trabekeln in einem zweidimensionalen Schnitt beschreibt. Er beruht auf der Annahme, dass Trabekelnetzwerke anhand ihres

\[
(5) \text{TBpf} = \frac{(P_1 - P_2)}{(A_1 - A_2)}
\]

\(P_1\) stellt den Umfang vor und \(P_2\) den Umfang nach der Dilatation dar. Entsprechend ist \(A_1\) die Knochenfläche vor und \(A_2\) die Fläche nach durchgeführter Dilatation (HAHN et al. 1992).

Bei gut vernetztem Knochen nimmt der TBpf kleine Werte an, wohingegen ein wenig vernetzter Knochen mit vielen isolierten Trabekeln einen großen TBpf aufweist (HAHN et al. 1992, CHAPPARD et al. 1999).

3.6 Statistische Auswertung

Pro Versuchstier wurden zwei Schliffpräparate ausgewertet, wobei - wie oben beschrieben - an jedem Präparat mehrere ROI untersucht wurden. Die Messwerte der ROI wurden addiert und anschließend für die Berechnung der verschiedenen Parameter verwendet. Die dabei entstehenden Messwerte wurden anschließend der statistischen Auswertung zugeführt.

Die statistische Auswertung erfolgte mit der Statistik-Software „Statistika“ (Software Package 9, StatSoft, Tulsa, USA).

Abbildung 19: Einfluss der Dilatation auf konvexe (oben) und konkave (unten) Strukturen. Bei konvexer Oberfläche steigt der Umfang nach der Dilatation an, während er bei konkaven Strukturen abnimmt. Die Knochenfläche hingegen steigt nach Dilatation immer an, d. h. sie nimmt sowohl bei konvexen als auch konkaven Strukturen zu (Knochengerne weiβ, Markraum schwarz) (HAHN et al. 1992, S. 328).
4 Ergebnisse

4.1 Histomorphometrie der Wirbel

Die Ergebnisse der untersuchten Parameter sind in den Abbildungen 20 bis 35 dargestellt. Das Trabekelvolumen (BV/TV) in den 5. Lendenwirbelkörpern war nach 8 Monaten Studiendauer in der Kontrollgruppe (KG) (Abbildung 20) signifikant größer als in der Versuchsgruppe (VG) (p=0,012) (Abbildung 21). Der Medianwert bei ovarektomierten Minischweinen betrug 26,78 % gegenüber 34,04 % in der scheinoperierten Kontrollgruppe. In der Versuchsgruppe belief sich der Maximal- und Minimalwert auf 28,06 % und 25,81 %, in der Kontrollgruppe hingegen auf 38,08 % und 32,8 % (Abbildung 22).

Bei der Trabekeldicke (Tb.Th) war der Unterschied zwischen den beiden Gruppen ebenfalls signifikant (p=0,012). Während der Median in der Kontrollgruppe bei 129,04 μm lag, erreichte er in der Versuchsgruppe 94,66 μm. Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe 113,08 μm bzw. 83,54 μm, während sie in der Kontrollgruppe bei 134 μm bzw. 123,29 μm lagen (Abbildung 23).

Bei der Trabekelabstand (Tb.Sp) ergab sich nach OVX ein Medianwert von 268,04 μm gegenüber 244,96 μm in der Kontrollgruppe (p=0,095). In der Versuchsgruppe beliefen sich der Maximal- und der Minimalwert auf 292,44 μm und 240,94 μm, in der Kontrollgruppe hingegen auf 264,94 μm und 210,69 μm (Abbildung 24).

Bei der Trabekelzahl (Tb.N) stand ein Medianwert von 2,76/mm in der Versuchsgruppe einem Medianwert von 2,69/mm in der Kontrollgruppe gegenüber (p=1). Der Maximal- und Minimalwert betrugen in der Versuchsgruppe 3,08/mm bzw. 2,48/mm, während sie in der Kontrollgruppe bei 2,95/mm bzw. 2,54/mm lagen (Abbildung 25).

Die Bestimmung des Trabecular-Bone-Pattern-factor (TBPf) offenbarte einen Medianwert von -0,33/mm nach OVX, während er sich in der Kontrollgruppe auf -0,81/mm belief (p=0,095). Die Maximalwerte betrugen -0,5/mm (KG) bzw. 0,14/mm (VG), die Minimalwerte lagen bei -0,92/mm (VG) bzw. -1,31/mm (KG) (Abbildung 26).

Der Median der N/F-Ratio (No/Tm) sank von 3,64 bei intakten Schweinen auf 2,95 bei OVX-Tieren (p=0,144). In der Versuchsgruppe belief sich der Maximal- und der Minimalwert auf 3,81 und 1,67, in der Kontrollgruppe hingegen auf 5,45 und 2,93 (Abbildung 27).

Während der Median der Trabekelknotenpunkte (Number-of-Nodes, N.No) in der Versuchsgruppe bei 2,2/mm² lag, ergab sich in der Kontrollgruppe ein Wert von 2,59/mm².
(p=0,403). Der Maximal- und der Minimalwert beliefen sich in der Versuchsgruppe auf 3,52/mm² bzw. 1,77/mm², in der Kontrollgruppe dagegen auf 3,35/mm² bzw. 2,12/mm² (Abbildung 28).

Bei der Anzahl an frei endenden Trabekeln (Number-of-Termi, N.Tm) betrug der Median in der Versuchsgruppe 0,94/mm² und in der Kontrollgruppe 0,78/mm² (p=0,296). Als Maximal- bzw. Minimalwert wurden in der Versuchsgruppe 1,35/mm² bzw. 0,52/mm² und in der Kontrollgruppe 0,88/mm² bzw. 0,43/mm² erreicht (Abbildung 29).

Die Analyse der Node-to-Node-Struts (No.No) zeigte in der Versuchsgruppe einen Medianwert von 1043,12 μm/mm² und 1243,81 μm/mm² in der Kontrollgruppe (Abbildung 30), was einen Anteil von 85,69 % (VG) bzw. 92,48 % (KG) an der Total-Strut-Length (TSL) ausmachte (Abbildung 31). Die Unterschiede waren mit p=0,144 und p=0,095 in beiden Fällen nicht signifikant. Die Maximalwerte in der Versuchsgruppe lagen bei 1477,36 μm/mm² und 90,34 %, während sie sich in der Kontrollgruppe auf 1619 μm/mm² und 94,93 % beliefen. Die Minimalwerte betrugen in der Versuchsgruppe 887,12 μm/mm² und 76,01 %, wohingegen sie in der Kontrollgruppe bei 1078,68 μm/mm² und 87,23 % lagen.

In der Versuchsgruppe betrug der Medianwert der Node-to-Terminus-Struts (No.Tm) 182,95 μm/mm² gegenüber 98,58 μm/mm² in der Kontrollgruppe (Abbildung 32). Der Anteil von No.Tm an der TSL wies Medianwerte von 13,65 % (VG) und 7,52 % (KG) auf (Abbildung 33). Die Unterschiede zwischen den Gruppen waren sowohl bei No.Tm [μm/mm²] (p=0,144) als auch bei No.Tm [%] (p=0,095) nicht signifikant. Die Maximalwerte in der Versuchsgruppe erreichten 305,17 μm/mm² und 22,12 %, während sie sich in der Kontrollgruppe auf 192,15 μm/mm² und 12,65 % beliefen. Die Minimalwerte betrugen in der Versuchsgruppe 100,75 μm/mm² und 9,03 %, bei den intakten Schweinen hingegen 72,45 μm/mm² und 4,78 %.

Bei den Terminus-to-Terminus-Struts (Tm.Tm) wurde in der Versuchsgruppe mit 8,12 μm/mm² ein signifikant größerer Medianwert erreicht als in der Kontrollgruppe mit 1,93 μm/mm² (p=0,037) (Abbildung 34), was einen Anteil 0,66 % bzw. 0,12 % an der TSL ausmachte (p=0,037) (Abbildung 35). Die Versuchsgruppe wies Maximalwerte von 25,79 μm/mm² und 1,87 % auf, während in der Kontrollgruppe maximale Werte von 4,42 μm/mm² und 0,29 % erreicht wurden. Die Minimalwerte lagen in der Versuchsgruppe bei 1,98 μm/mm² und 0,2 % auf. Ein Tier aus der Kontrollgruppe verfügte über keinerlei Tm.Tm-Struts.
Abbildung 20: Binärbild aus der ROI eines Schweinewirbels der Kontrollgruppe. Knochen ist weiß, Markraum hingegen schwarz dargestellt (BV/TV 39,99 %, Tb.Th 136,24 \(\mu \text{m} \), Tb.Sp 204,42 \(\mu \text{m} \), Tb.N 2,93/mm, N/F-Ratio 21) (Originalvergrößerung 5X).

Abbildung 21: Binärbild aus der ROI eines Schweinewirbels der Versuchsgruppe (BV/TV 15,72 %, Tb.Th 72,74 \(\mu \text{m} \), Tb.Sp 389,83 \(\mu \text{m} \), Tb.N 2,16/mm, N/F-Ratio 0,89) (Originalvergrößerung 5X).
Abbildung 22: Box-Plot für das Trabekelvolumen (BV/TV) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,012).

Abbildung 23: Box-Plot für die Trabekeldicke (Tb.Th) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,012).
Abbildung 24: Box-Plot für den Trabekelabstand (Tb.Sp) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).

Abbildung 25: Box-Plot für die Trabekelzahl (Tb.N) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=1).
Abbildung 26: Box-Plot für den Trabecular-Bone-Pattern-factor (TBPf) der Wirbel in der O VX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).

Abbildung 27: Box-Plot für die N/F-Ratio (No/Tm) der Wirbel in der O VX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).
Abbildung 28: Box-Plot für die Anzahl an Trabekelknotenpunkten (N.No) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,403).

Abbildung 29: Box-Plot für die Anzahl an frei endenden Trabekeln (N.Tm) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,296).
Abbildung 30: Box-Plot für die Länge der Node-to-Node-Verbindungen (No.No [μm/mm²]) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).

Abbildung 31: Box-Plot für die Node-to-Node-Verbindungen (No.No [%]) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).
Abbildung 32: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (No.Tm [μm/mm²]) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).

Abbildung 33: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (No.Tm [%]) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).
Abbildung 34: Box-Plot für die Länge der Terminus-to-Terminus-Verbindungen (Tm.Tm [μm/mm²]) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,037).

Abbildung 35: Box-Plot für die Länge der Terminus-to-Terminus-Verbindungen (Tm.Tm [%]) der Wirbel in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,037).
4.2 **Histomorphometrie der Tibiaknochen**

Die Auswertungsergebnisse der Tibiaknochen sind den Abbildungen 36 bis 49 zu entnehmen. Mit Ausnahme des Trabekelvolumens bestanden keine signifikanten Unterschiede zwischen der Kontroll- und der Versuchsgruppe.

Der Medianwert des BV/TV erreichte in der Versuchsgruppe 28,24 % und in der Kontrollgruppe 32,13 %, wobei der Unterschied signifikant war (p=0,037). Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe 30,55 % bzw. 22,22 %, wohingegen in der Kontrollgruppe 38,6 % bzw. 28,73 % erreicht wurden (Abbildung 36).

Bei der Tb.Th belief sich der Medianwert in der Kontrollgruppe auf 112,63 μm und auf 106,21 μm in der Versuchsgruppe (p=0,296). Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe 125,4 μm bzw. 79,24 μm, in der Kontrollgruppe hingegen 128,74 μm bzw. 105,92 μm (Abbildung 37).

Bei der Tb.Sp ergab sich nach OVX ein Medianwert von 277,73 μm gegenüber 241,77 μm in der Kontrollgruppe (p=0,144). Der Maximal- und der Minimalwert lagen in der Versuchsgruppe bei 293,19 μm und 255,93 μm, in der Kontrollgruppe hingegen bei 300,43 μm bzw. 204,47 μm (Abbildung 38).

Während der Median der Tb.N in der Kontrollgruppe bei 2,86/mm lag, betrug er in der Versuchsgruppe 2,79/mm (p=0,144). Der Maximal- und der Minimalwert beliefen sich in der Versuchsgruppe auf 2,8/mm bzw. 2,44/mm und in der Kontrollgruppe auf 3,12/mm bzw. 2,39/mm (Abbildung 39).

Nach OVX wies der TBPf einen Medianwert von 0,28/mm auf, während er in der Kontrollgruppe bei -0,44/mm lag (p=0,095). Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe 0,57/mm bzw. -0,34/mm und in der Kontrollgruppe 0,04/mm bzw. -1,24/mm (Abbildung 40).

Der Median der N/F-Ratio sank von 2,45 bei intakten Schweinen auf 1,46 bei OVX-Tieren (p=0,095). In der Versuchsgruppe lagen der Maximal- und der Minimalwert bei 2,58 bzw. 1,31, während in der Kontrollgruppe Werte von 3,44 bzw. 2,11 erreicht wurden (Abbildung 41).

Bei der N.No belief sich der Medianwert in der Versuchsgruppe auf 2,47/mm² und auf 3,09/mm² in der Kontrollgruppe (p=0,296). Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe 3,17/mm² bzw. 1,98/mm² und in der Kontrollgruppe 4,12/mm² bzw. 1,84/mm² (Abbildung 42).
Bei der N.Tm betrug der Median in der Versuchsgruppe 1,67/\text{mm}^2 und in der Kontrollgruppe 1,26/\text{mm}^2 (p=0,144). Als Maximal- bzw. Minimalwert wurden in der Versuchsgruppe 2,07/\text{mm}^2 bzw. 0,81/\text{mm}^2 und in der Kontrollgruppe 1,39/\text{mm}^2 bzw. 0,96/\text{mm}^2 erreicht (Abbildung 43).

Die No.No zeigte in der Versuchsgruppe einen Medianwert von 1001,75 \text{μm/mm}^2 und 1355,82 \text{μm/mm}^2 in der Kontrollgruppe (p=0,144) (Abbildung 44), was einen Anteil von 72,04 % (VG) bzw. 82,42 % (KG) an der Total-Strut-Length (TSL) ausmachte (p=0,095) (Abbildung 45). Die Maximalwerte in der Versuchsgruppe lagen bei 1347,49 \text{μm/mm}^2 und 84,71 %, während sie sich in der Kontrollgruppe auf 1735,64 \text{μm/mm}^2 und 86,66 % beliefen. Die Minimalwerte betrugen in der Versuchsgruppe 746,62 \text{μm/mm}^2 und 65,91 %, wohingegen sie in der Kontrollgruppe bei 832,97 \text{μm/mm}^2 und 75,41 % lagen.

In der Versuchsgruppe betrug der Medianwert der No.Tm 308,86 \text{μm/mm}^2 gegenüber 253,18 \text{μm/mm}^2 in der Kontrollgruppe (p=0,296) (Abbildung 46). Der Anteil von No.Tm an der TSL wies einen Median von 21,68 % (VG) und 17,1 % (KG) auf (p=0,144) (Abbildung 47). Als Maximalwerte wurden in der Versuchsgruppe 333,47 \text{μm/mm}^2 und 29,82 % erreicht, während sie sich in der Kontrollgruppe auf 309,14 \text{μm/mm}^2 und 21,25 % beliefen. Die Minimalwerte betrugen in der Versuchsgruppe 170,59 \text{μm/mm}^2 und 14,43 %, bei den intakten Schweinen hingegen 227,25 \text{μm/mm}^2 und 12,64 %.

Bei der Tm.Tm wurde in der Versuchsgruppe mit 31,41 \text{μm/mm}^2 ein größerer Medianwert erreicht als in der Kontrollgruppe mit 22,02 \text{μm/mm}^2 (p=0,210) (Abbildung 48), was einen Anteil von 2,49 % bzw. 1,16 % an der TSL ausmachte (p=0,144) (Abbildung 49). Die Versuchsgruppe wies Maximalwerte von 105,36 \text{μm/mm}^2 und 7,36 % auf, während in der Kontrollgruppe maximale Werte von 31,52 \text{μm/mm}^2 und 3,34 % erreicht wurden. Die Minimalwerte lagen in der Versuchsgruppe bei 10,11 \text{μm/mm}^2 und 0,85 % auf, während sie sich in der Kontrollgruppe auf 7,91 \text{μm/mm}^2 bzw. 0,48 % beliefen.
Ergebnisse

Trabekelvolumen (Tibia)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham-OP</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>OVX</td>
<td>22</td>
<td>40</td>
</tr>
</tbody>
</table>

 Median
25%-75%

Abbildung 36: Box-Plot für das Trabekelvolumen (BV/TV) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,037).

Trabekeldicke (Tibia)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham-OP</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>OVX</td>
<td>110</td>
<td>130</td>
</tr>
</tbody>
</table>

 T
μm

Abbildung 37: Box-Plot für die Trabekeldicke (Tb.Th) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,296).
Ergebnisse Seite 54

Trabekelabstand (Tibia)

Abbildung 38: Box-Plot für den Trabekelabstand (Tb.Sp) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).

Trabekelzahl (Tibia)

Abbildung 39: Box-Plot für die Trabekelzahl (Tb.N) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).
Trabecular-Bone-Pattern-factor (Tibia)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Median</th>
<th>25%-75%</th>
<th>Min- Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVX Sham-OP</td>
<td>-1,4</td>
<td>-1,2</td>
<td>-1,0</td>
</tr>
<tr>
<td></td>
<td>-0,8</td>
<td>-0,6</td>
<td>-0,4</td>
</tr>
<tr>
<td></td>
<td>-0,2</td>
<td>0,0</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>0,4</td>
<td>0,6</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>1,2</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
<td>1,8</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>2,4</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
<td>3,0</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>3,4</td>
<td>3,6</td>
<td>3,8</td>
</tr>
</tbody>
</table>

Abbildung 40: Box-Plot für den Trabecular-Bone-Pattern-factor (TBPF) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).

N/F-Ratio (Tibia)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Median</th>
<th>25%-75%</th>
<th>Min- Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVX Sham-OP</td>
<td>1,0</td>
<td>1,2</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
<td>1,8</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>2,4</td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td>2,8</td>
<td>3,0</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>3,4</td>
<td>3,6</td>
<td>3,8</td>
</tr>
<tr>
<td></td>
<td>3,6</td>
<td>3,8</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Abbildung 41: Box-Plot für die N/F-Ratio (No/Tm) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).
Abbildung 42: Box-Plot für die Anzahl an Trabekelknotenpunkten (N.No) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,296).

Abbildung 43: Box-Plot für die Anzahl an frei endenden Trabekeln (N.Tm) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).
Abbildung 44: Box-Plot für die Länge der Node-to-Node-Verbindungen (No.No [μm/mm²]) der Tibiaknochen in der OVX- \((n=5)\) und der Kontrollgruppe \((n=5)\) \((p=0,144)\).

Abbildung 45: Box-Plot für die Länge Node-to-Node-Verbindungen (No.No [%]) der Tibiaknochen in der OVX- \((n=5)\) und der Kontrollgruppe \((n=5)\) \((p=0,095)\).
Abbildung 46: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (No.Tm [μm/mm²]) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,296).

Abbildung 47: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (N.Tm [%]) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).
Abbildung 48: Box-Plot für die Länge der Terminus-to-Terminus-Verbindungen (Tm.Tm [\(\mu m/mm^2\)]) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,210).

Abbildung 49: Box-Plot für die Länge der Terminus-to-Terminus-Verbindungen (Tm.Tm [%]) der Tibiaknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,144).
4.3 **Histomorphometrie der Femurknochen**

In den Abbildungen 50 bis 63 sind die Ergebnisse der untersuchten Parameter dargestellt. Das BV/TV der Femurknochen war in der Versuchsgruppe signifikant geringer als in der Kontrollgruppe \((p=0,032)\). Der Medianwert bei ovarektomierten Minischweinen betrug 36,21 % gegenüber 41,29 % in der Kontrollgruppe. In der Versuchsgruppe beliefen sich der Maximal- und der Minimalwert auf 40,59 % bzw. 34,67 %, in der Kontrollgruppe hingegen auf 45,85 % bzw. 38,1 % (Abbildung 50).

Während der Median der Tb.Th in der Kontrollgruppe bei 156,27 µm lag, erreichte er in der Versuchsgruppe lediglich 130,93 µm \((p=0,310)\). Der Maximal- und Minimalwert betrugen in der Versuchsgruppe 165,36 µm bzw. 112,7 µm, wohingegen die Werte in der Kontrollgruppe bei 165,28 µm bzw. 129,68 µm lagen (Abbildung 51).

Bei der Tb.Sp ergab sich nach OVX ein Medianwert von 229,18 µm gegenüber 196,48 µm in der Kontrollgruppe, wobei der Unterschied signifikant war \((p=0,032)\). Der Maximal- bzw. der Minimalwert erreichten in der Versuchsgruppe 249,15 µm bzw. 212,35 µm und in der Kontrollgruppe 225,55 µm bzw. 194,64 µm (Abbildung 52).

Bei der Tb.N stand ein Medianwert von 2,78/mm in der Versuchsgruppe einem Medianwert von 2,79/mm in der Kontrollgruppe gegenüber \((p=0,690)\). In der Versuchsgruppe beliefen sich der Maximal- und Minimalwert auf 3,08/mm und 2,46/mm, in der Kontrollgruppe hingegen auf 3,07/mm und 2,64/mm (Abbildung 53).

Der TBPf war nach OVX mit einem Medianwert von -0,96/mm signifikant größer als in der Kontrollgruppe \((p=0,032)\), wo er bei -1,35/mm lag. Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe -0,46/mm bzw. -1,17/mm und -1/mm bzw. -1,58/mm in der Kontrollgruppe (Abbildung 54).

Der Median der N/F-Ratio sank von 4,58 bei intakten Schweinen auf 3,97 bei OVX-Tieren \((p=0,095)\). Der Maximal- und der Minimalwert betrugen in der Versuchsgruppe 4,44 bzw. 2,36, wohingegen die Werte in der Kontrollgruppe bei 5,13 bzw. 4,11 lagen (Abbildung 55).

Bei der N.No stand ein Medianwert von 3,25/mm² in der Versuchsgruppe einem Medianwert von 3,44/mm² in der Kontrollgruppe gegenüber \((p=0,310)\). In der Versuchsgruppe beliefen sich der Maximal- bzw. der Minimalwert auf 3,46/mm² bzw. 2,44/mm², in der Kontrollgruppe hingegen auf 3,97/mm² bzw. 3,02/mm² (Abbildung 56).

Bei der N.Tm betrug der Median in der Versuchsgruppe 0,95/mm² und in der Kontrollgruppe 0,75/mm² \((p=0,151)\). In der Versuchsgruppe betrugen der Maximal- und
Minimalwert 1,23/mm2 bzw. 0,57/mm2, in der Kontrollgruppe hingegen 0,83/mm2 bzw. 0,68/mm2 (Abbildung 57).

Die Analyse der No.No zeigte in der Versuchsgruppe einen Medianwert von 1518,72 μm/mm2 und 1642,3 μm/mm2 in der Kontrollgruppe (Abbildung 58), was einen Anteil von 88,25 % (VG) bzw. 90,63 % (KG) an der Total-Strut-Length (TSL) ausmachte (Abbildung 59). Während sich bei No.No [%] signifikante Unterschiede ergaben (p=0,016), waren die Ergebnisse bei No.No [μm/mm2] nicht signifikant (p=0,222). Als Maximalwerte wurden in der Versuchsgruppe 1585,73 μm/mm2 bzw. 89,02 % und in der Kontrollgruppe 3084,08 μm/mm2 bzw. 93,61 % erreicht. Die Minimalwerte betrugen in der Versuchsgruppe 1091,46 μm/mm2 bzw. 78,36 % sowie 1453,52 μm/mm2 bzw. 88,99 % in der Kontrollgruppe.

In der Versuchsgruppe betrug der Medianwert der No.Tm 198,38 μm/mm2 gegenüber 164,65 μm/mm2 in der Kontrollgruppe (Abbildung 60). Der Anteil von No.Tm an der TSL wies Werte von 11,13 % (VG) und 9,02 % (KG) auf (Abbildung 61). Die Unterschiede zwischen den Gruppen waren bei No.Tm [%] signifikant (p=0,008), bei No.Tm [μm/mm2] hingegen nicht (p=0,151). Die Maximalwerte in der Versuchsgruppe lagen bei 301,67 μm/mm2 und 21,64 %, während sie sich in der Kontrollgruppe auf 190,76 μm/mm2 bzw. 10,01 % beliefen. Die Minimalwerte betrugen in der Versuchsgruppe 155,16 μm/mm2 bzw. 10,21 % und bei den intakten Schweinen 139,57 μm/mm2 bzw. 6,29 %.

Bei der Tm.Tm wurde in der Versuchsgruppe mit 11,98 μm/mm2 ein größerer Medianwert erreicht als in der Kontrollgruppe mit 4,79 μm/mm2 (p=0,548) (Abbildung 62), was einen Anteil 0,77 % bzw. 0,1 % an der TSL ausmachte (p=0,421) (Abbildung 63). Die Maximalwerte beliefen sich in der Versuchsgruppe auf 24,64 μm/mm2 bzw. 1,36 % und in der Kontrollgruppe auf 15,63 μm/mm2 bzw. 1 %. Sowohl in der Versuchs- als auch in der Kontrollgruppe gab es Tiere, die keine Tm.Tm-Struts aufwiesen.
Ergebnisse Seite 62

Abbildung 50: Box-Plot für das Trabekelvolumen (BV/TV) der Femurknochen in der OVX-(n=5) und der Kontrollgruppe (n=5) (p=0,032).

Abbildung 51: Box-Plot für die Trabekeldicke (Tb.Th) der Femurknochen in der OVX-(n=5) und der Kontrollgruppe (n=5) (p=0,310).
Trabekelabstand (Femur)

Abbildung 52: Box-Plot für den Trabekelabstand (Tb.Sp) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,032).

Trabekelzahl (Femur)

Abbildung 53: Box-Plot für die Trabekelzahl (Tb.N) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,690).
Trabecular-Bone-Pattern-factor (Femur)

Abbildung 54: Box-Plot für den Trabecular-Bone-Pattern-factor (TBPf) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,032).

N/F-Ratio (Femur)

Abbildung 55: Box-Plot für die N/F-Ratio (No/Tm) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,095).
Abbildung 56: Box-Plot für die Anzahl an Trabekelknotenpunkten (N.No) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,310).

Abbildung 57: Box-Plot für die Anzahl an frei endenden Trabekeln (N.Tm) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,151).
Abbildung 58: Box-Plot für die Länge der Node-to-Node-Verbindungen (No.No [\(\mu m/mm^2\)]) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,222).

Abbildung 59: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (No.No [%]) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,016).
Abbildung 60: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (No.Tm [μm/mm²]) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,151).

Abbildung 61: Box-Plot für die Länge der Node-to-Terminus-Verbindungen (No.Tm [%]) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,008).
Abbildung 62: Box-Plot für die Länge der Terminus-to-Terminus-Verbindungen (Tm.Tm [μm/mm²]) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,548).

Abbildung 63: Box-Plot für die Länge der Terminus-to-Terminus-Verbindungen (Tm.Tm [%]) der Femurknochen in der OVX- (n=5) und der Kontrollgruppe (n=5) (p=0,421).
5 Diskussion

5.1 Diskussion der Ergebnisse

Ziel dieser Untersuchung war es daher, den Einfluss des postmenopausalen Östrogenmangels auf das Trabekelvolumen und die Mikrostruktur spongösen Knochens am Göttinger Minischwein histomorphometrisch zu untersuchen.

Trabekelvolumen (BV/TV): Das Trabekelvolumen (BV/TV) in den 5. Lendewirbelkörpern sowie in den Tibia- und Femurknochen war nach 8 Monaten Studiendauer in der ovarektomierten Versuchsgruppe signifikant geringer (p<0,05) als in der scheinoperierten Kontrollgruppe. Die Ergebnisse stehen damit im Einklang zu den Untersuchungen von MOSEKILDE et al. (1993a), die zeigten, dass eine Ovarektomie (OVX) an Sinclair-Minipigs zu einer signifikanten Abnahme des trabekulären Knochenvolumens führt, wobei die Ergebnisse bei kalziumarmer Diät (0,75 %) am deutlichsten ausgeprägt waren. SCHOLZ-AHRENS et al. (1996) hingegen konnten nach OVX von nulli- und multiparen Sauen keine signifikanten Unterschiede im Knochenvolumen an Lendewirbeln, Becken- und Tibiaknochen feststellen. Sie führten das Ausbleiben der Osteoporose auf den mit 1,5 % hohen Kalziumgehalt der Nahrung
zurück, zumal MOSEKILDE et al. (1993b) die Abhängigkeit der Osteoporosemanifestation vom Kalziumgehalt der Nahrung zeigen konnten.

Die Veränderungen der Mikrostrukturparameter zwischen der Versuchs- und der Kontrollgruppe waren in dieser Studie nur teilweise signifikant. Zwar war die Trabekeldicke in den Femur-, Tibia- und Wirbelknochen der Kontrollgruppe größer als nach OVX, trotzdem aber war der Unterschied nur bei den Lendenwirbeln signifikant ($p<0,05$). Ähnlich verhielt es sich mit dem Trabekelabstand, der in der Versuchsgruppe stets größer war, aber nur im Femur einen signifikanten Unterschied ($p<0,05$) offerierte. Die Trabekelzahl zeigte in keinem Fall signifikante Differenzen zwischen den beiden Gruppen.

MOSEKILDE et al. (1993a) fanden an Minipigs nach OVX und kalziumarmer Diät eine signifikante Abnahme der Trabekelzahl sowie einen Anstieg des mittleren Trabekelabstandes an Lendenwirbelkörpern.

DEMSTER et al. (1995) konnten an ovarektomierten Ratten ebenfalls eine deutliche Abnahme der Trabekelzahl sowie eine Zunahme des Trabekelabstandes nachweisen, wohingegen sich die Trabekeldicke nicht änderte. In einer Studie von ABE et al. (1999) nahm die Trabekeldicke und die Trabekelzahl an Ratten 8 Wochen nach OVX im Vergleich zur Kontrollgruppe signifikant ab.

Node-Strut-Analysis: Die N/F-Ratio (No/Tm) ist der Quotient aus N.Nd und N.Tm. Sie bietet die Möglichkeit, den Vernetzungsgrad des trabekulären Netzwerkes auszudrücken. Je höher die N/F-Ratio desto größer die Konnektivität. Eine hohe No.No spricht ebenfalls für einen hohen trabekulären Vernetzungsgrad, wohingegen hohe No.Tm und Tm.Tm einen niedrigen trabekulären Vernetzungsgrad anzeigen (COMPSTON et al. 1995).

In der vorliegenden Studie war die N/F-Ratio der intakten Tiere an den drei untersuchten Knochenlokalisationen größer als bei den ovariektomierten Minischweinen, allerdings waren die Unterschiede nicht signifikant. Die N.No war in der Kontrollgruppe größer, während die N.Tm in der Versuchsgruppe die höheren Werte erreichte. Signifikante Unterschiede waren allerdings auch hier nicht nachzuweisen.

Sowohl in den Lendenwirbeln als auch in den Femur- und Tibiaknochen überstiegen die Werte der No.No in der Kontrollgruppe die Werte der Versuchsgruppe, während an den ovariektomierten Tieren die No.Tm und die Tm.Tm größer waren als bei intakten Minipigs. Mit Ausnahme der Tm.Tm in den Wirbeln sowie die No.No [%] und die No.Tm in den Femurknochen waren die Unterschiede zwischen beiden Gruppen nicht signifikant.

DEMPSTER et al. (1995) bestimmte No/Tm, N.No, N.Tm, No.No, No.Tm, Tm.Tm an den rechten Tibiaknochen von ovariektomierten und intakten Ratten. Sie fanden eine signifikante Abnahme der N.No sowie der No.No in der ovariektomierten Versuchsgruppe. In einer Studie von ABE et al. (1999) nahm die No/Tm, N.No, No.No an Rattentibiae 4 Wochen nach OVX im Vergleich zur Kontrollgruppe signifikant ab, während sich die N.Tm, Tm.Tm signifikant vergrößerten.

CHAVASSIEUX et al. (2001) beobachteten 6 Monate nach OVX keine signifikante Veränderung von No/Tm, N.Nd, N. Tm, No.No, No.Tm, Tm.Tm in Beckenkammbiopsien von Schafen.

OLEKSIK et al. (2000) fanden in Beckenkammbiopsien von Patientinnen mit postmenopausaler Osteoporose und Wirbelfrakturen einen signifikanten Anstieg von No.Tm und eine signifikante Abnahme der N/F-Ratio im Vergleich zu osteoporotischen Frauen ohne Frakturen. Die Werte für N.No, No.No und Tm.Tm verringerten sich ebenfalls, während N.Tm und No.Tm zunahmen. Diese Änderungen waren allerdings nicht signifikant.

No. Tm war bei Osteoporose erhöht, allerdings war der Unterschied zur Kontrollgruppe nicht signifikant.

TBPf: In gut vernetztem Knochen nimmt der TBPf kleine Werte an, wohingegen ein wenig vernetzter Knochen mit vielen isolierten Trabekeln einen großen TBPf aufweist (HAHN et al. 1992, CHAPPARD et al. 1999). In der vorliegenden Untersuchung war der TBPf nach OVX in den Femurknochen signifikant (p<0,05) erhöht. Obwohl der TBPf in den Wirbel- und Tibiaknochen nach OVX ebenfalls erhöhte Werte aufwies, war der Unterschied hier nicht signifikant.

SCHOLZ-AHRENS et al. (1996) konnten an ovarektomierten Sauen keinen Unterschied des TBPf im Vergleich zur Kontrollgruppe feststellen.

Bei Frauen nimmt der TBPf nach der Menopause signifikant zu (HAHN et al. 1992). AMLING et al. (1994) fanden bei Frauen mit postmenopausal Osteoporose eine Erhöhung des TBPf über die gesamte Wirbelsäule. Zusätzlich korrelierte das Trabekelvolumen in der Versuchs- (r=0,81) und Kontrollgruppe (r=0,76) signifikant mit dem TBPf (p<0,001).

Obwohl der Großteil des Knochenverlusts infolge Östrogenmangels primär durch die verstärkte Knochenresorption zustande kommt, ist verminderte Knochenbildung ebenfalls
ein mitwirkender Faktor beim Knochenverlust (CHOW et al. 1992, QU et al. 1998).
Östrogen beeinflusst an Osteoblasten die Expression zahlreicher Gene, die für Enzyme,
Zytokine und Wachstumsfaktoren, Knochenmatrixproteine, Hormonrezeptoren sowie
Transkriptionsfaktoren kodieren (SPELSBERG et al. 1999). Neben der Hemmung von pro-
resortiven Zytokinen wird durch Östrogen beispielsweise auch die Expression von
Kollagen Typ-I gesteigert (ERNST et al. 1989), so dass Östrogenmangel zur reduzierten
Bildung von extrazellulärer Matrix führt (LERNER 2006). Zusätzlich hemmt Östrogen die
Apoptose von Osteoblasten (MANOLAGAS 2000) und steigert die
Osteoblastenproliferation sowie -differenzierung (OURSLER et al. 1991a).

5.2 Diskussion der Methode

Durch Verwendung verschiedener Techniken zur histologischen Aufbereitung und
Färbung ist es heute möglich, nahezu jede Gewebestruktur sichtbar zu machen. Die
Herstellung von Dünnenschliffpräparaten nach DONATH und BREUNER (1982) ermöglicht
z. B. die Darstellung von nicht dekalzifiziertem Knochen in optisch guter Qualität. Durch
die Färbung nach SMITH und KARAGIANES (1974) können verschiedene
Gewebestrukturen differenziert werden.

Zur quantitativen Analyse von Gewebehistologien dient die Histomorphometrie. Das
Prinzip der Histomorphometrie liegt darin, dass ein vom Mikroskop vergrößertes Bild von
einer Digitalkamera erfasst und an einen Personalcomputer weitergegeben wird. Mit einer
Histomorphometrie-Software können anschließend quantitative Messungen an den Bildern
vorgenommen werden.

Die Histomorphometrie stellt derzeit den Goldstandard der Knochengewebsuntersuchung
dar (CARLSON et al. 2009). Ein Vorteil der digitalisierten Histomorphometrie liegt darin,
dass die Kamera bereits das durch das Mikroskop vergrößerte Bild aufnimmt und somit im
Rahmen der Bildübertragung zum Monitor nur noch die letzte Stufe der Vergrößerung
leisten muss. Dadurch können auch kleine Strukturen stark vergrößert dargestellt und
präzise ausgewertet werden. Die Auflösung der Histomorphometrie ist deutlich größer als
die von Densitometrie, Magnetresonanztomographie (MRT) oder Röntgentechniken wie
z. B. die Mikro-Computertomographie (μCT) (CARLSON et al. 2009).

Durch Histomorphometrie werden statische Informationen über die Knochenstruktur
gewonnen, die von zweidimensionalen Gewebepräparaten stammen. Durch stereologische

Ein neuartiges Verfahren, das die genannten Probleme umgeht und eine dreidimensionale Darstellung von Geweben ermöglicht, ist die \(\mu \)CT. Bei der \(\mu \)CT handelt es sich um ein hochauflösendes, auf Röntgenstrahlung basierendes Bildgebungsverfahren, das eine schnelle Strukturanalyse ermöglicht, ohne das Knochenpräparat durch histologische Aufbereitung zu zerstören (MÜLLER et al. 1998).

Es gibt mehrere Studien, die die Korrelation zwischen Histomorphometrie und \(\mu \)CT untersucht haben. THOMSEN et al. (2005) verglichen die Ergebnisse von Knochenstrukturanalysen miteinander, die mit konventioneller Histomorphometrie und \(\mu \)CT an Tibiaknochen durchgeführt wurden. Sie fanden hochsignifikante Korrelationen (p<0,01) für das Knochenvolumen (r=0,95) und die „Connective-Density“ (CD) (r=0,95), einen Parameter, der den Vernetzungsgrad des Trabekelwerks anzeigt. Weiterhin ergab sich eine hochsignifikante Korrelation (r=0,95) zwischen dem „Structure-Model-Index“ (SMI) des \(\mu \)CT und dem histomorphometrisch ermittelten TBpf (r=0,95). Der SMI zeigt an, ob das Trabekelwerk eher plattenartig oder eher stabartig aufgebaut ist (HILDEBRAND und RÜEGSEGGER 1997).

Im Rahmen der BIOMED I-Studie haben MÜLLER et al. (1998) die Korrelationen von Histomorphometrie und \(\mu \)CT bei der Knochenstrukturanalyse von Beckenkammiobiopsien
untersucht. Es zeigten sich hochsignifikante Korrelationen (p<0,0001) zwischen den
beiden Methoden für das Knochenvolumen (r=0,93), die Trabekeldicke (r=0,84) und den
Trabekelabstand (r=0,91). Die arithmetischen Mittelwerte der Knochenstrukturparameter
wurden bei Verwendung des μCT allerdings größer gemessen als bei Bestimmung durch
Histomorphometrie, wobei die durchschnittliche prozentuale Differenz bei 2,5 % (BV/TV),
6,8 % (Tb.Th) und 2,2 % (Tb.Sp) lag. Diese Tendenz wird durch eine Untersuchung von
CHAPPARD et al. (2005) bestätigt, in welcher die Trabekeldicke bei Bestimmung mit
μCT um fast 50 % größer war, als wenn sie konventionell mit Histomorphometrie erfasst
wurde.
Am μCT ist weiterhin problematisch, dass die Messergebnisse von Aufnahmeparametern
wie der Auflösung (MÜLLER et al. 1996, KIM et al. 2004) oder auch dem Osteoidgehalt
des Knochens abhängen (CHAPPARD et al. 2005). Da es sich um ein relativ neues
Verfahren handelt, sind Ablauf und Anwendung von Knochenstrukturuntersuchungen mit
μCT bisher nicht ausreichend standardisiert (MÜLLER et al. 1998).
Aufgrund der Vor- und Nachteile der beiden Verfahren sollten Histomorphometrie und
μCT als sich ergänzende Techniken angesehen werden. Da mit Histomorphometrie nahezu
die Gewebestruktur darstell- und quantifizierbar ist, kann die μCT die Histologie nicht
ersetzen, andererseits ist eine dreidimensionale Darstellung mit histologischen Methoden
nicht möglich.

5.3 Diskussion des Tiermodells

In der vorliegenden Studie wurden 10 weibliche Göttinger Minischweine verwendet. Diese
vergleichsweise geringe Anzahl an Versuchstieren erklärt sich aus der Tatsache, dass es
sich um eine Pilotstudie handelt. Um Selektionsbias zu vermeiden, wurden die Tiere durch
Randomisierung auf die Versuchs- und die Kontrollgruppe verteilt.
Das Durchschnittsgewicht der Versuchsgruppe lag bei 67,8 ± 6,76 kg, während die
Kontrollgruppe ein mittleres Gewicht von 63,0 ± 11,6 kg aufwies. Das Durchschnittsalter
der Versuchsgruppe betrug zu Beginn der Studie 4,06 ± 0,72 Jahre gegenüber 3,25 ± 0,86
Jahre in der Kontrollgruppe. Da Schweine ihre PBM mit 2,5-3 Jahren erreichen
(BOUCHARD et al. 1995), ist davon auszugehen, dass alle Tiere zu Studienbeginn ihre
PBM bereits erreicht hatten und das Knochenwachstum abgeschlossen war. Die
Verwendung von ausgewachsenen Tieren ist in der Osteoporoseforschung obligat, um
Fehler durch Wachstumsprozesse und Knochenbildung zu vermeiden (REINWALD und BURR 2008).
Eine Studie von SCHOLZ-AHRENS et al. (1996) zeigt, dass eine alleinige OVX nicht zu Veränderungen in der Mikrostruktur von Knochen führt. Daher wurde die Versuchsgruppe zusätzlich zur OVX einer Diät mit reduziertem Kalzium- (0,16 %) und Phosphatgehalt (0,59 %) ausgesetzt, während das Futtermittel der Kontrollgruppe normale Mengen an Kalzium (0,96 %) und Phosphat (0,71 %) aufwies. In einer Studie von MOSEKILDE et al. (1993b) trat bei ovarrektomierten Schweinen eine Osteopenie ein, wenn eine Diät mit geringem Kalziumgehalt (0,75 % gegenüber 0,9 %) verabreicht wurde. Da Soja eine östrogenartige Wirkung besitzt (MESSINA 2002, SONG et al. 2007), wurde beim Futtermittel auf einen Sojazusatz verzichtet.
Die Versuchsdauer betrug ab OVX der Tiere 234 bis 238 Tage. Eine vergleichbare Studie an Sinclair S-1 Minipigs dauerte ab dem Zeitpunkt der OVX 6 Monate an, wobei der OVX eine 6-monatige Diät mit reduziertem Kalziumgehalt vorausging (MOSEKILDE et al. 1993b). SCHOLZ-AHRENS et al. (1996) untersuchten die Knochenstrukturänderungen an Sauen 12 und 20 Monate nach OVX.
5.4 **Ausblick in die Zukunft**

Weil es sich bei der vorliegenden Untersuchung um eine Pilotstudie handelt, wurde nur eine geringe Anzahl von Tieren untersucht. Es war daher sehr schwierig, signifikante Daten zu erzeugen. In der Zukunft sollte daher ein größeres Kollektiv zur Verfügung stehen.

Das μCT ist ein neuartiges Verfahren, das die Möglichkeit bietet, Knochengerewe dreidimensional darzustellen. In nachfolgenden Untersuchungen sollte dieses Verfahren ergänzend zur Histomorphometrie angewendet werden, wobei die tomographische Untersuchung der Histomorphometrie vorangestellt sein muss, da es sich bei der Histomorphometrie um ein destruktives Verfahren handelt.

5.5 **Schlussfolgerungen**

Ziel dieser Untersuchung sollte es sein, den Einfluss des postmenopausalen Östrogenmangels auf die trabekuläre Mikrostruktur an Göttinger Minischweinen histomorphometrisch zu untersuchen. Unter den Rahmenbedingungen der vorliegenden Studie konnten folgende Schlussfolgerungen gezogen werden:

1. Ovarektomie führt an Göttinger Minischweinen zu einer signifikanten Reduktion des Trabekelvolumens an Lendenwirbelkörpern sowie an Tibia- und Femurknochen.
2. Ovarektomie führt an Göttinger Minischweinen zu teilweise signifikanten Änderungen der Konnektivitäts- und Diskonnektivitätsparameter des trabekulären Netzwerkes an Lendenwirbelkörpern sowie an Tibia- und Femurknochen. Es lässt sich deutlich die Tendenz erkennen, dass OVX die Konnektivitätsparameter erniedrigt und die Diskonnektivitätsparameter erhöht:

a. Verringerung der Trabekelbreite (Tb.Th) und der Trabekelanzahl (Tb.N), Erhöhung des Trabekelabstands (Tb.Sp) nach OVX.

b. Verringerung der Anzahl an Trabekelkreuzungen (N.No) sowie Erhöhung der Anzahl an frei endenden Trabekeln (N.Tm) nach OVX, woraus ein Absinken der N/F-Ratio resultiert.

c. Verkürzung der Node-to-Node-Strut-Länge (No.No), Erhöhung der Node-to-Terminus-Strut-Länge (No.Tm) sowie der Terminus-to-Terminus-Strut-Länge (Tm.Tm) nach OVX.

d. Erhöhung des Trabecular-Bone-Pattern-factor (TBPf) nach OVX.

Somit führt Ovarektomie von Göttinger Minischweinen zu Knochenveränderungen, die denen der postmenopausalen Osteoporose beim Menschen sehr ähnlich sind.
6 Zusammenfassung

Fragestellung: Göttinger Minischweine scheinen aufgrund zahlreicher Vorteile wie z. B. dem Vorkommen von osteoporotischen Frakturen, der Ähnlichkeit des Östruszyklus zum menschlichen Menstruationszyklus oder der Möglichkeit der orthotopen Implantatinsertion als Großtiermodell für die postmenopausale Osteoporose gut geeignet zu sein. Ziel dieser Untersuchung war es, die Knochenstrukturveränderungen, die sich an Göttinger Minischweinen aufgrund von Ovarektomie ergeben, histomorphometrisch zu untersuchen, um die grundsätzliche Eignung als Großtiermodell zur Simulation der postmenopausalen Osteoporose festzustellen.

Methode: 10 Göttinger Minischweine wurden randomisiert auf zwei Gruppen verteilt. Um eine osteoporotische Stoffwechsellage zu erzeugen, wurden die Tiere der Versuchsgruppe (n=5) ovarektomiert und kalziumarm ernährt, während die Kontrollgruppe (n=5) scheinoperiert und mit Standarddiät ernährt wurde. Nach 8 Monaten erfolgte die Euthanasie der Tiere und die Entnahme der 5. Lendenwirbelkörper sowie der proximalen Anteile der rechten Tibia- und Femurknochen. Nach Herstellung von Dünnenschliffpräparaten und Färbung nach SMITH und KARAGIANES (1974) erfolgte die histomorphometrische Untersuchung anhand folgender Parameter: Trabekelvolumen (BV/TV), Trabekeldicke (Tb.Th), Trabekelzahl (Tb.N), Trabekelabstand (Tb.Sp), Trabecular-Bone-Pattern-factor (TBPf), Anzahl an Trabekelknotenpunkten (N.Nd), Anzahl an frei endenden Trabekeln (N.Tm) und N/F-Ratio (No/Tm). Zusätzlich wurde die Gesamtverbindungslänge zwischen Knotenpunkten (No.No), zwischen Knotenpunkt und frei endenden Trabekeln (No.Tm) sowie zwischen frei endenden Trabekeln (Tm.Tm) bestimmt.

Ergebnisse: An allen drei Knochenlokalisationen kam es nach Ovarektomie (OVX) zu einer signifikanten Reduktion des Trabekelvolumens im Vergleich zur Kontrollgruppe, während die Konnektivitäts- und Diskonnektivitätsparameter des trabekulären Netzwerkes nur vereinzelt signifikante Unterschiede zeigten. Dennoch ließ sich nach OVX deutlich die Tendenz der Zunahme von Diskonnektivitätsparametern und der Abnahme von Konnektivitätsparametern erkennen.

Schlussfolgerung: OVX führt an Göttinger Minischweinen zu Knochenveränderungen, die denen der postmenopausalen Osteoporose beim Menschen sehr ähnlich sind.
7 Literaturverzeichnis

Bartl R, Bartl C: Osteoporose: Prävention, Diagnostik, Therapie. 3.Auflage; Thieme Verlag, Stuttgart 2008

Carpenter AM (1979): Stereology. Definition and historic background. J Histochem Cytochem 27, 1535

Ernst M, Heath JK, Rodan GA (1989): Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor- I, and parathyroid hormone stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125, 825-833

Gallagher JC (1990): The pathogenesis of osteoporosis. Bone Miner 9, 215-227

Hayashi T, Yamamuro T, Okumurah H, Kasai R, Tada K (1989): Effect of (Asu1, 7)-eel calcitonin on the prevention of osteoporosis induced by combination of immobilization and ovariectomy in the rat. Bone 10, 25-8

Jee WSS, Mori S, Li XJ, Chan S (1990): Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 11, 253-266

Klein RF, Foroud T: Human animal studies of the genetics of osteoporosis; in: Osteoporosis – pathophysiology and clinical management; hrsg. v. Orwoll ES, Bliziotes M; Humana Press, Totowa 2003, 1-31

Recker RR (1993): Architecture and vertebral fracture. Calcif Tissue Int 53 (Suppl. 1), S139-S142

Ringe JD: Osteoporose: Postmenopausale Osteoporose, senile Osteoporose, sekundäre Osteoporose, Osteoporose des Mannes. Thieme Verlag, Stuttgart 1995

Ringe JD: Osteoporose Dialog. Thieme Verlag, Stuttgart 2000

Shen V, Dempster DW, Birchman R, Xu R, Lindsay R (1993): Loss of cancellous bone mass and connectivity in ovariectomized rats can be restored by combined treatment with PTH and estradiol. J Clin Invest 91, 2479-2487

Danksagung

Ich möchte mich recht herzlich bei allen Personen bedanken, die mich bei der Anfertigung dieser Arbeit unterstützt haben.

Dabei richtet sich mein besonderer Dank an:

Herrn Prof. Dr. med. Dr. med. dent. Franz-Josef Kramer für die freundliche Überlassung des Dissertationsthemas und die gute Betreuung.

Frau Vera Stock für die gute Zusammenarbeit und die fachkundige Unterstützung.

Herrn Dr. rer. nat. Hans Joachim Rolf, Frau Antje Ahrbecker und Frau Christina Schäfer für die praktische Unterstützung.

Herrn Dr. rer. nat. Frank Konietschke aus der Abteilung für Medizinische Statistik für die kompetente Beratung.