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4Preface

II. PREFACE

“Understanding life through the studying of the human mind”

Nobody can solve the question ‘Why’ but everybody has answered it. The solution

implies the understanding of life.

The conception of life starts when Philosophy, using reason as argument,opens the

initial path by which knowledge walks. Science places the problem in an objective system

and succeeds in explaining reality. The fabric of the world is taken down to the smallest

pieces and so it is mainly understood by Physics. However, comprehension of life still

remains unchanged. Life is enclosed in a vault, where observation is hard and

complicated. Medicine aims at understanding human life. It states that the biological

processes that sustain life are subordinated to the mental functions and, consequently,

research should be redirected to the understanding of mind. Mind and self-consciousness

arises from the tangled arrangement of the about 1012 neurons that conforms the human

brain. Neurons are grouped in numerous networks, which build circuits of increasing

complexity and function so that information can be efficiently processed. Understanding

how neurons communicate is only the first step in order to understand mind. This thesis

project sought to understand the function of one of the main proteins involved in

neuronal transmission, SNAP-25, but the aim was to bring the own contribution to the

understanding of life.
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IV. SUMMARY

The neuronal SNARE complex, consisting of SNAP-25, synaptobrevin and

syntaxin, is required for presynaptic exocytosis of neurotransmitter-filled vesicles during

synaptic transmission. However, the SNARE complex undertakes neuronal

developmental roles as well. SNAP-25 has been involved in vesicular fusion during axonal

outgrowth, synaptic formation and trafficking of glutamate receptors. Its expression is

developmentally regulated by alternative splicing from SNAP-25a to SNAP-25b. In

GABAergic neurons, SNAP-25 seems to be replaced by SNAP-23, a ubiquitous SNAP-25

homologue, after synaptogenesis. Deletion of SNAP-25 compromises neuronal survival in

culture, impeding detailed functional studies. Here, I overcame this difficulty by

reintroducing SNAP-25a, SNAP-25b or SNAP-23 using the long-term expression

lentiviral system in culture neurons from Snap25 null mice and I was able to dissect the

main functions of SNAP-25. I found that that SNAP-25 deficient cultured neurons

presented impaired arborization and severe reduction in viability as well as complete

arrest of evoked release and reduction in the amplitude and frequency of the spontaneous

events. Expression of the SNAP-25 homologues restored neuronal survival, arborization

and the properties of spontaneous release. In addition, it rescued evoked release, in both

glutamatergic and GABAergic neurons, although SNAP-23 was found to support

exclusively asynchronous release. SNAP-25b was superior to SNAP-25a in vesicle

priming, which would produce larger releasable pools after synaptic maturation. My

results revealed SNAP-25 as key component for neuronal survival and outgrowth,

regulation of the synchronous and asynchronous release and spontaneous activity and

demonstrate a hierarchical ability of the SNAP-25 homologues to support neuronal

function.
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V. INTRODUCTION

A. Overview

Neurons communicate with one another through specialized contact zones called

synapses. At the synapse, the action potential (AP) that arrives from the soma along the

axon is converted into a chemical signal at the presynaptic terminal, when presynaptic

membrane depolarizations induce the following sequence of events (Zigmond, 1999;

Kandel, 2000). First, voltage-gated calcium (Ca2+) channels open at elevated membrane

potentials, and as a consequence, Ca2+ flows into the cell due to a large concentration

gradient with a low intracellular Ca2+ concentration ([Ca2+]i). After entering the cell,

Ca2+ binds to Ca2+ sensors attached to synaptic vesicles. This in turn induces a lowering of

the energy barrier for vesicles to fuse with the cell membrane, and therefore, the

probability of vesicle fusion is increased markedly. When fusion occurs,

neurotransmitters stored within the vesicles are released into the extracellular space, and

then diffuse across the synaptic cleft to the postsynaptic neuron. Having arrived at the

postsynaptic cell, the neurotransmitter molecules bind to specific receptors, and thus

exert certain effects on the postsynaptic neuron. In the case of excitatory ionotropic

receptors, neurotransmitter molecules will open pores that allow for cation flux into the

cell, so that the postsynaptic membrane potential will depolarize. In this way, the

chemical signal is again converted into an electrical signal, and the AP, generated in the

postsynaptic cell by temporal and spatial summation, can travel through the neuron to

arrive finally at the next synaptic connection.

B. Synapses are highly dynamic connections

Every neuron receives synapses from numerous other neurons and each of these

synaptic contacts contributes differently to the final response. The generation of the

action potential is the result of the spatial and temporal integration of small changes in the

post-synaptic membrane potential, which are mainly caused by the opening of post-

synaptic receptors upon activation by the neurotransmitter released at the presynaptic

terminal. The contribution of each synapse to the final response, known as synaptic



9Introduction

strength, is not a static property of each contact, but it can be modulated to adapt to the

physiological requirements (Bliss and Collingridge, 1993).

Synaptic plasticity is the general process by which synaptic strength is modified. It

enables the storage and use of vast amounts of information in the form of learnt behaviors

and conscious memories, therefore, representing the basis of information storage in the

brain. Phenomena of synaptic plasticity can regulate synaptic strength either

presynaptically, by altering the release of neurotransmitter, or post-synaptically, by

changing the receptor availability. However, synaptic contacts are not static structures.

New synapses are constantly formed and retracted, depending on the need of the

connection (Luscher et al., 2000), adjusting continuously the connections between

neurons and the develop of new networks.

Post-synaptic receptors are well-known to participate in the synaptic plasticity. For

example, glutamate receptors are required for the induction of some forms of plasticity

like long-term potentiation and long-term depression. Similarly, GABA (-aminobutyric

acid) receptors, as well as many metabotropic receptors, are involved in the modulation

of the synaptic strength (Collingridge et al., 2004). Moreover, the receptor population is

highly dynamic and hardly constant. These receptors are rapidly mobilized from and to

the post-synaptic membrane so that its number can be carefully modified. Post-synaptic

receptors are constantly inserted into and removed from the plasma membrane by

exocytosis and endocytosis, respectively, and they can, in addition, diffuse laterally within

the membrane (Malinow and Malenka, 2002; Roberto, 2003; Collingridge et al., 2004;

Pérez-Otaño and Ehlers, 2005). In this way, the post-synaptic response can be modulated

by altering the number and composition of receptors available to respond to released

neurotransmitter.

Changes in the release of neurotransmitter can modify, presynaptically, synaptic

strength. Neurotransmitter release is a tight regulated process since it represents the

outcome of the neuron. Neurotransmission is an extent topic of research in neuroscience,

with more than half a century in its back. Synaptic transmission was firstly examined in

the bullfrog neuromuscular junction (Fatt and Katz, 1952; Del Castillo and Katz, 1954;

Dodge and Rahamimoff, 1967; Katz, 1969) establishing the basis of the quantal and
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calcium hypotheses. According to this generally accepted view, neurotransmitter is

released in quantal units, which correspond to synaptic vesicles. The fusion of these

vesicles is a probabilistic event that depends on the intracellular calcium concentration,

[Ca2+]i. The arrival of an action potential to the presynaptic membrane produces an

increase in [Ca2+]i and, thus, in vesicular fusion and neurotransmitter release. The ratio

between the number of vesicles released and the total number of vesicles ready to be

released (readily releasable pool, RRP) is called release probability, Rp. The release of

neurotransmitter can be modified, for example, by altering the release probability. In

most of the cases, an increase of the release probability is due to an increase in [Ca2+]i.

Since vesicle fusion is a calcium dependent process, this increase will elevate the number

of vesicles released and the final amount of neurotransmitter that arrives to the post-

synaptic receptors. Additionally, the recruitment of a major number of vesicles in the

RRP will also increase the overall vesicular fusion and the final neurotransmitter

concentration (Zucker and Regehr, 2002).

C. Synaptic vesicle exocytosis is disclosed by the SNARE

hypothesis

The comprehension of how the release of neurotransmitter can be modified

requires the understanding of the processes that mediate vesicle fusion. However, not

until recently the underlying physiological and molecular mechanisms were described. It

was originally proposed that specific integral proteins in the vesicle membrane (vesicle-

SNAREs, or v-SNAREs) bind to specific receptor proteins in the target membrane (target

membrane or t-SNAREs) (Sollner et al., 1993). The SNARE family members contains a

conserved stretch of 60-70 amino acids, referred to as the SNARE motif (Terrian and

White, 1997; Weimbs et al., 1998). Four SNARE motifs assemble spontaneously into a

thermostable, sodium dodecyl sulfate and protease resistant coiled-coil bundle, called the

SNARE complex (Fasshauer et al., 1998; Sutton et al., 1998; Antonin et al., 2002). The

center of the complex contains 16 highly conserved layers of interacting amino acid side

chains. The amino acids in central ionic layer (denominated as ‘layer 0’) contain three

glutamine residues (‘Q’) and one arginine residue (‘R’) (Fasshauer et al., 1998) and Figure

1B). Up to now, more than 30 SNARE proteins have been identified in humans, falling
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into four subfamilies: Qa-, Qb-, Qc- and R-SNAREs. Thus, all analyzed SNARE

complexes that contain three or four SNARE proteins have a QaQbQcR composition

(Fasshauer et al., 1998; Bock et al., 2001). The association of these four motifs is

supposed to approach the two membranes together and promote, in this way, fusion

(Figure 1).

The exocytosis of synaptic vesicles is dependent on three SNARE proteins: one v-

Figure 1
SNAREs in synaptic vesicle exocytosis
(A) Synaptic vesicles are recruited from the reserve pool that corresponds to vesicles attached to
the actin cytoskeleton via synapsin. These vesicles then translocate to the vicinity of the plasma
membrane. They undergo priming through an unknown mechanism in which Munc18 and Munc13,
two syntaxin-binding proteins, could participate. This step could lead to the formation of a complex
between synaptobrevin and SNAP-25. Formation of loose SNARE complexes between synaptobrevin,
SNAP-25 and syntaxin 1 reduces the distance between the synaptic vesicle and the plasma
membrane. At this point, the synaptic vesicle would be docked to the plasma membrane. Entry of
calcium could trigger a conformational change in synaptotagmin 1 that would allow further zippering
of the SNARE complex into a tight state, which would lead to lipid bilayer fusion. Modified from
(Galli and Haucke, 2001). (B) a, Backbone ribbon drawing of the synaptic fusion complex b-c,
Organization of the synaptic fusion complex. C traces (grey), local helical axes for SNAREs, the
superhelical axis (black), and layers (0, red; -1, +1 and +2, blue; all others black) are shown
for one of the three complexes in the asymmetric unit. Layers are indicated by virtual bonds
between corresponding C positions (Sutton et al., 1998) (C) Hypothetical model of the synaptic
fusion complex as it joins two membranes, and location of neurotoxin-mediated cleavage sites
(Sutton et al., 1998).
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SNARE, synaptobrevin 2/vesicle associated membrane protein 2 (VAMP-2) (Trimble et

al., 1988; Baumert et al., 1989) and two t-SNAREs, syntaxin 1 (Bennett et al., 1992) and

synaptosome-associated protein of 25 kDa or SNAP-25 (Oyler et al., 1989). The

association of this SNARE complex with synaptic transmission came from studies with

neurotoxins that selectively cleave SNAREs, potently inhibiting exocytosis (Blasi et al.,

1993b; Blasi et al., 1993a; Niemann et al., 1994). It is known that tetanus toxin (TeNT),

botulinum neurotoxin (BoNT) B and BoNT/D cleaves synaptobrevin, BoNT/A,

BoNT/E cleaves SNAP-25 and BoNT/C1 cleaves both SNAP-25 and syntaxin (Niemann

et al., 1994; Rossetto et al., 2001), see Table 1 and Figure 1C). These three SNARE

proteins, synaptobrevin 2, syntaxin 1 and SNAP-25, are sometimes considered the

“minimal fusion machinery” since they are sufficient to fuse liposomes incorporating the

purified proteins (Weber et al., 1998) as well as plasma membrane of living cells (Hu et

al., 2003). However, for this fusion to be fast enough to allow neurotransmitter release,

it requires the presence of a preformed syntaxin/SNAP-25 acceptor complex (Pobbati et

al., 2006).

Synaptobrevin 2 is a 13-kDa vesicle protein that acts as R-SNARE. It has a central

SNARE motif, a C-terminal transmembrane region and a proline-rich N-terminus

(Trimble et al., 1988; Elferink et al., 1989). Syntaxin is a 35-kDa plasma membrane

protein engaged as Qa-SNARE. It consists of a C-terminal transmembrane domain, a

central SNARE motif and a N-terminal Habc-domain (Bennett et al., 1992), for binding to

regulatory proteins. SNAP-25 is a Qbc-SNARE and contributes with two of the four -

helices to the neuronal SNARE complex. The SNARE motifs are present at the N- and C-

termini and separated by a central linker domain containing four cysteins (Sutton et al.,

1998). SNAP-25 is efficiently targeted to the plasma membrane due to the palmitoylation

of these cysteins (Hess et al., 1992a; Bark and Wilson, 1994).

The function of the neuronal SNARE complex was originally proposed to be the

docking of synaptic vesicles at the active zone (Sollner et al., 1993). However, after

neurotoxin treatment, this docking was normal whereas fusion was blocked (Schiavo et

al., 2000), suggesting, instead, a downstream role for SNAREs. Later studies indicated

that SNAREs are closely involved in the last steps of exocytosis (Xu et al., 1998; Xu et
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al., 1999; Sørensen et al., 2003; Borisovska et al., 2005; Sakaba et al., 2005). The

‘zippering’ hypothesis proposes that the neuronal SNARE complex is partly assembled

from distal to proximal end in a priming state and then progressively ‘zips up’ for vesicle

fusion (Hanson et al., 1997; Xu et al., 1999; Sørensen et al., 2006). The energy liberated

during the assembling of the complex can, then, overcome the energy barrier for

membrane fusion (Chen and Scheller, 2001; Rizo and Sudhof, 2002). Therefore, vesicles

primed by means of the SNARE proteins require less energy for undergoing fusion. These

are, consequently, the first vesicles to be released with the action potential.

According to a ‘three vesicle model’, synaptic vesicles can be separated into three

groups according to the kinetics of release (Rizzoli and Betz, 2005). The first pool

represents those vesicles that are immediately available on stimulation, conforming the

readily-releasable pool (RRP) (Rosenmund and Stevens, 1996). The second pool, which is

called ‘recycling pool’, is constituted by those vesicles that maintain release on moderate

(physiological) stimulation. Finally, the third pool (reserve pool) is thought to be a depot of

synaptic vesicles, from which release is only triggered during intense stimulation (Harata

et al., 2001; de Lange et al., 2003). In a linear model, these three pools would represent

different stages of vesicular fusion competence. From the depot pool, vesicles would need

first to position next to the plasma membrane in the active zone and later to prime by

means of the SNARE proteins (Voets et al., 1999).

However, at several CNS synapses, two kinetically distinct components of release

have been observed, a fast and a slow one (Goda and Stevens, 1994; Murthy et al., 1997;

Sakaba and Neher, 2001b, 2001a). The mechanisms that underlie the slow component

remain unclear but those involved in the fast release are known in more detail. It has been

proposed that fast-releasing vesicles are located nearby release-triggering calcium

channels. The fast, transient calcium influx caused by opening of the voltage-gated

calcium channels triggered by the action potential would cause, thus, the synchronous

fusion of primed synaptic vesicles. The slow vesicles would be distant from these

channels, sensing, as consequence, attenuated residual calcium wave (Meinrenken et al.,

2003; Trommershauser et al., 2003; Schneggenburger and Neher, 2005). However, an

alternative model proposes that fast and slow components differ in the way that they are

coupled to the calcium signal. Shortly after its isolation, synaptotagmin-1 was found to be
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able to bind calcium (Brose et al., 1992). Later, it was shown that knock-out neurons for

synaptotagmin-1 presented a selectively loss of the fast component of release, which led

to consider synaptotagmin-1 as the calcium sensor responsible for this component (Goda

and Stevens, 1994). Synaptotagmin-1 is a vesicular protein of 65 kDa that contains two

C2-domains able to bind Ca2+, SNAP-25 and SNARE complexes, and phospholipids

(Gerona et al., 2000; Littleton et al., 2001; Sudhof, 2002). During priming, the synaptic

vesicle is forced to be close to the plasma membrane. Synaptotagmin-1 is, at this point,

associated to the SNARE complex. The binding of calcium to syntaptotagmin-1 partially

insert the C2-domains into the plasma membrane phospholipids, causing a mechanical

perturbation in the membrane and promoting fusion (Sudhof, 2004), Figure 1A). Apart

from synaptotagmin-1, some other isoforms, from an extended family of 16 members,

are able to bind calcium to at least one of the two C2 domains, showing higher affinity

than synaptotagmin-1. These isoforms have been proposed to participate in the triggering

of the slow, asynchronous, component of release, by sensing the residual calcium

following the action potential (Hagler and Goda, 2001; Sudhof, 2002).

D. Neurons dispose SNAREs for constitutive vesicle fusion

Fusion of vesicles with the plasmalemma is essential not only for neurotransmitter

release but also for many neuron-specific functions; for example, membrane expansion

that supportsaxonal elongation as well as morphological and functional changes in mature

synapses. This fact raises the question of whether common membrane fusion machineries

are present in all these processes. Since the SNARE-mediated fusion of vesicles is

considered as a universal mechanism for all type of eukaryotic membrane fusion events

(Jahn and Sudhof, 1999), it could be licit to consider similar apparatus for many other

processes requiringvesicle fusion.

Several studies have focused attention on the expression of SNARE proteins in the

growth cone, which is responsible for axon guidance and elongation (Jessell and Kandel,

1993). The transition of the growth cone into a fully functional presynaptic terminal after

reaching and recognizing its target cell is accompanied by the development of the

complete SNARE machinery for synaptic transmission. One feature that distinguishes the

growth cone from the synapse is its lack of synaptic vesicles. Instead, so-called "growth
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cone vesicles" are present, which are thought to participate in the elongation of the axon

by incorporation of their membranes within the growth cone itself (Futerman and

Banker, 1996). Thus, studying the transition of the growth cone into a mature synapse

has helped to elucidate which SNARE proteins participate in the different phases of this

process. SNARE proteins are present in both growth cones and synaptic terminals, but

several regulatory elements within synaptic terminals are missing from growth cones

(Igarashi et al., 1997). This suggests that the SNARE mechanism operating during this

stage may be sufficient for axonal growth, but not for regulated exocytosis; this

regulatory system appears and becomes functional during synaptogenesis (Igarashi et al.,

1996; Igarashi et al., 1997).

Several lines of evidence showed that SNAP-25, syntaxin and synaptobrevin are

present in developing neurons and they are involved in neurite outgrowth, both in the

central and peripheral nervous system (Osen-Sand et al., 1993; Miya et al., 1996; Shirasu

et al., 2000). Axonal growth was found to be inhibited by SNAP-25 antisense

oligonucleotides, both in vivo and in vitro (Osen-Sand et al., 1993). Similar results were

obtained by treating neurons with botulinum neurotoxins, which specifically cleave

SNAP-25 (Osen-Sand et al., 1996). Further experiments, in which SNAP-25 proteins

were overexpressed in staurosporin-differentiated pheochromocytoma (PC12) cells,

showed that SNAP-25 promotes the number of neurite per cell (Shirasu et al., 2000) and

the neurite length (Zhou et al., 2000). However, not all SNAREs are involved in axonal

growth. The cleavage of synaptobrevin by tetanus toxin impairs neurotransmission, but

appears to have no effect on axonal growth (Osen-Sand et al., 1996). After the isolation

of a tetanus-toxin-resistant synaptobrevin, synaptobrevin 7 or TI-VAMP (Galli et al.,

1998), this was proposed as the substitute of tetanus-toxin-sensitive synaptobrevins in

neurite outgrowth, since it was shown to be required for vesicular transport, mediating

neurite outgrowth in PC12 cells (Martinez-Arca et al., 2000). Similarly, when over-

expression of syntaxin-1 appeared not to affect neurite extension in PC12 cells (Shirasu et

al., 2000; Zhou et al., 2000; Darios and Davletov, 2006), other family members were

immediatelyproposed as substitutes. Syntaxin-3 was found to be present in growth cones

and involved in axonal outgrowth (Darios and Davletov, 2006). Furthermore, syntaxin-

13, an isoform implicated in endosomal trafficking, was reported to enhanced neurite
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outgrowth when over-expressed in PC12 cells, while having no effect on secretion

(Hirling et al., 2000). Although there are very few experiments performed in neurons to

confirm these findings, it seems clear that SNAP-25 and some homologues of

synaptobrevin and syntaxin are implicated in neurite outgrowth. However, the role of

each individualform of these SNARE proteins has not yet been precisely defined.

As a consequence of these findings, a SNARE-mediated mechanism should be also

considered in the membrane-carrying vesicle fusion processes involved in the budding of

new processes and the morphological changes that occur during learning and memory.

Furthermore, vesicle fusion is also required for many long-lasting adaptations in the

potency of synaptic transmission, i.e. experience-dependent plasticity. The best-

characterized forms of such synaptic plasticity are long-term potentiation (LTP) and long-

term depression (LTD), observed at excitatory synapses in the CA1 region of the

hippocampus. It is now well accepted that the trafficking of AMPA receptors to and away

from the post-synaptic plasma membrane plays an essential role in the post-synaptic forms

of LTP and LTD, respectively. This could be due to various processes such as the slowing

VAMP TI-VAMP Syntaxin SNAP-25 SNAP-23 SNAP-29 SNAP-47
BoNT/A     *  

BoNT/B or TeNT  !     
BoNT/C1       
BoNT/D       
BoNT/E     *  

Table 1
Effect of the different botulinum toxins in SNARE proteins
*Botulinum toxins can presumably cleave only murine but not human SNAP-23

Receptor Trafficking

synaptic fusion neurite outgrowth 7nAchR AMPAR NMDAR mGluR1

R-SNARE VAMP-2 (TI-VAMP) BoNT/D TeNT
BoNT/B

Qab-SNARE SNAP-25 SNAP-25 BoNT/C SNAP-25 SNAP-25

Qc-SNARE syntaxin 1 syntaxin 3/13 BoNT/C

Table 2
Involvement of SNARE proteins in different vesicle fusion processes involved in neuronal function
Summary of the conclusions obtained from studies showing SNARE participitation in neuronal processes
(see in text). When known, the molecular candidate is shown. Otherwise, impairment of the process by
action of botulinum toxins is shown with the name of the corresponding neurotoxin. SNAP-25 has been
involved in most of these processes.
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down of endocytosis, redistribution of the receptors from extrasynaptic to synaptic

plasma-membrane regions, and exocytosis of AMPA-receptor-rich vesicles. From all of

them, the last process seems to be the most important. The fusion of vesicles containing

the GluR1 subunit of the AMPA receptor is a process driven by calcium, in which

synaptotagmin could be involved (Maher et al., 2005), and modulated by calmodulin-

dependent protein kinase-II (Maletic-Savatic et al., 1998). Interestingly, this process is

blocked by the clostridial toxins BoNT/B and TeNT, which cleave synaptobrevin

(Luscher et al., 1999; Lu et al., 2001). In fact, other receptors seem to be controlled by a

SNARE mechanism. The deliveryof new NMDA receptors by potentiation is inhibited by

BoNT/A as well as by a dominant-negative SNAP-25 mutant (Lan et al., 2001b; Lan et

al., 2001a). Furthermore, treatment with either BoNT/C1 or BoNT/D prevents the

recruitment of nicotinic receptors (7-nAChR) in chick ciliary ganglion neurons (Liu et

al., 2005). All these recent findings indicate that a SNARE-mediated mechanism, similar

to the one involved in neurotransmitter release, serves in the post-synaptic receptor

trafficking involved in synaptic plasticity.

When all these experiments from the last 10 years are considered together, it

appears that the SNARE machinery involved in neurite extension and synaptic plasticity is

similar to that involved in neurotransmitter release in neurons and neuroendocrine cells

(Table 2). It also seems that, although different SNARE proteins associate in each

complex, only SNAP-25 appears to have constant presence in all of them. SNAP-25 is a

member of a very small family, when comparing to synaptobrevin or syntaxin, and it is

highly conserved during evolution (Figure 2). This stability in SNAP-25 structure may

indicate that SNAP-25 is precisely calibrated for neuronal function and difficult to be

substituted.

E. SNAP-25 is a main character in the brain theater

SNAP-25 has a restricted expression pattern, being most abundant in neuronal and

neuroendocrine cells (Bark et al., 1995; Boschert et al., 1996). Developmental studies

noted a shift in localization from cell bodies to cell extensions and presynaptic terminals

when developing axons approach their target (Oyler et al., 1991; Bark et al., 1995). A

similar developmental regulation was found in the chick retina and in the spinal cord,
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where this was shown to coincide with synaptogenesis (Catsicas et al., 1991). In addition,

the relative levels of the two SNAP-25 isoforms, ‘a’ and ‘b’, undergo major changes

during brain embryogenesis. SNAP-25a was found to be the major isoform expressed

early during brain development while SNAP-25b predominates in the adult nervous

system of the rat (Bark et al., 1995; Boschert et al., 1996). However, this switch in the

expression does not happen in neuronal-related cells such neuroendocrine cells (Bark et

al., 1995; Grant et al., 1999). Interestingly, the developmental profile of SNAP-25

differs from data on other SNARE proteins. Thus, in the developing brain, syntaxin-1 is

strongly expressed up to 4 postnatal weeks and then decreases, while synaptobrevin was

found to be present at a low level before birth, to increase after birth and then to decrease

gradually with aging (Shimohama et al., 1998). Both the large increase in SNAP-25

expression and the switch between the two isoforms occur during the period when

synapses form, thus suggesting that SNAP-25a is likely to participate at earlier stage,

during neurite expansion, whereas SNAP-25b is more relevant later, when release of

neurotransmitter from synaptic vesicles becomes important. Supporting an hypothetical

function of SNAP-25a in membrane remodeling, it has been also shown that certain

regions of the adult brain, which are known for their plasticity (synaptic remodeling,

sprouting, etc.), continue to express this isoform in adults, e.g. olfactory bulb and the

hippocampus (Boschert et al., 1996). The two isoforms, produced by the alternative

Figure 2
Phylogen
Sequence
Center f
Madison,
etic tree for SNAP-25
s corresponding to the SNAP-25 homologue in each specie were obtained from the National
or Biotechnology Information (NCBI) and aligned using MegAlign software (DNAstar Inc.,
WI, USA).

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome&itool=toolbar
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splicing of the exon 5, differ in only 9 amino acids of the N-terminal region of the first

SNARE domain and the linker between both domains (Bark, 1993). The reason of this

differential splicing is still not well know. It is interesting to notice, in this respect, that

duplicate exon 5 sequences have been found in vertebrates from zebrafish to human, but

not in Drosophila (Risinger et al., 1997), which would suggest that alternative splicing

contributes to increased functional plasticity and organization of higher-ordered neural

systems. From the analysis of the structural differences between the isoforms, it has been

proposed that the position of one of the four cysteine residues in the linker domain could

target the two isoforms to different sites on the plasma membrane (Bark and Wilson,

1994). The functional differences between both isoforms have been examined recently in

chromaffin cells, showing that the size of the readily-releasable pool of large-dense core

vesicles was increased when SNAP-25b replaced SNAP-25a (Sørensen et al., 2003). In

fact, only two amino acid substitution in the SNARE domain could account for the

difference (Nagy et al., 2005). In neurons, analysis of a knock-in mouse in which the

splicing mechanism was impaired led to the conclusion that SNAP-25a, rather than

SNAP-25b, could contribute to short-term plasticity involved in strengthening selective

synaptic contacts during activity-dependent synapse elimination(Bark et al., 2004).

Although all these studies offer important hints about the properties of each

isoform, there are still important questions to solve about neuronal function of SNAP-25.

It has shown that a certain amount of release persists even when SNAP-25 is missing.

Ablation of the SNAP-25 gene in mice resulted in perinatal lethality. The SNAP-25 null

embryos were morphological abnormal but the major brain structures were unchanged

(Washbourne et al., 2002). Stimulus-driven release was absent in cortical brain slices and

in chromaffin cells but, even so, remaining spontaneous activity was detected

(Washbourne et al., 2002; Sørensen et al., 2003) . In fact, such an alternative exocytic

pathway has been proposed to constitute the main source of neurotransmission in

inhibitory, GABAergic, neurons. It was reported that SNAP-25 is expressed in inhibitory

neurons during the early stages of neuronal development and then it decreases by the

time that synapses are mature (Verderio et al., 2004; Frassoni et al., 2005). The most

important candidate to substitute SNAP-25 is SNAP-23. SNAP-23/syndet is a ubiquitous

expressed homologue, which shares 59% identity on the amino acid level with SNAP-25
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(Ravichandran et al., 1996; Wang et al., 1997). It is found in glial cells (Hepp et al.,

1999) and in glutamatergic and GABAergic hippocampal rat neurons as well (Verderio et

al., 2004). Similarly to SNAP-25, it is targeted to the plasma membrane by

palmitoylation of five cysteine residues (Wang et al., 1997) and it forms a SNARE

complex with synaptobrevin 2 and several syntaxin isoforms (Ravichandran et al., 1996).

It has been implicated in both constitutive and regulated exocytosis in non-neuronal cells

(Leung et al., 1998; Rea et al., 1998; Vaidyanathan et al., 2001). In chromaffin cells, this

homologue can partially substitute SNAP-25 function (Sørensen et al., 2003), in

agreement with an alternative SNAP-23 pathway. Although there is still some

controversy at this respect, the rodent SNAP-23, not the human, though, seems to be

cleaved by BoNT/A and BoNT/E, albeit with reduced efficiency (Vaidyanathan et al.,

1999). Although SNAP-23, for these reasons, seems to be the best candidate for an

alternative release mechanism, the other two members of the SNAP-25 family, SNAP-29

and SNAP-47, could be also involved. SNAP-29 is a ubiquitous SNARE that shares 17%

identity to SNAP-25 (Steegmaier et al., 1998) and is BoNT/A and –E resistant (Holt et

al., 2006). It has been mainly involved in intra-Golgi trafficking steps (Hohenstein and

Roche, 2001) although it has been also detected in synapses (Su et al., 2001), possibly

modulating neurotransmission (Pan et al., 2005), which supports the possible implication

of SNAP-29 in synaptic vesicle fusion. SNAP-47 is a still not well characterized novel

homologue,ubiquitously expressed and BoNT/A and –E resistant(Holt et al., 2006).

The multifunctional action of SNAP-25 in neurons seems to be important, in

addition, for some neuropsychiatric disorders. For example, mice hemizygous for the

deletion coloboma (Cm/+), which encompasses the Snap25 gene, were reported to

exhibit significant behavioral deviations, including hyperactivity, maternal neglect of

offspring and delayed developmental milestones (Hess et al., 1992b; Heyser et al., 1995).

These symptoms are similar to those characteristic of the attention deficit-hyperactivity

disorder (ADHD), which is believed to affect about 7% of school-aged children

(American Psychiatric Association, 1995), and, therefore, Cm/+ mice were proposed as a

model for the disease (Wilson, 2000). Apart from this, reduced SNAP-25 function has

been associated to other abnormalities of behavioral development, cognition and

neurotransmission, such as schizophrenia (Young et al., 1998; Fatemi et al., 2001;
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Thompson et al., 2003), emphasizing the importance of SNAP-25 in the global brain

function.

F. Aim of the work

The comprehension of the function of SNAP-25 has presented several difficulties up

to now. SNAP-25 has been implied in functions that extend to the release of

neurotransmitter. However, mostly due to the better general comprehension of this

process, the study of SNAP-25 has been for long focused in calcium-triggered exocytosis.

The rest of the functions, such as neurite outgrowth or receptor trafficking, did not

receive extensive examination. The complete understanding of how SNAP-25 is used by

the neuron requires a global study in which as many possible actions are taking into

consideration. Most of the actual systems used for studying SNAP-25 are over-simplified

models, e.g. PC-12 cells or chromaffin cells. These models are very potent because

experimental conditions are under tight control; making results in these experiments are

very solid and precise. However, since SNAP-25 performs most of its actions in neurons,

where conditions might be very different from those in the models, the conclusions

obtained in such models cannot be generalized. Studies in neurons are still insufficient.

The analysis of SNAP-25 in neurons has been basically based in the inactivation of SNAP-

25 by using botulinum toxins (Williamson and Neale, 1998; Grosse et al., 1999; Lan et

al., 2001b; Verderio et al., 2004; Sakaba et al., 2005). However the potency by which

these toxins act significantly differs depending on its serotype and its incorporation by the

neuron (Purkiss et al., 2001), which has caused conflicting findings. Other advanced

approaches used, instead, antisense oligonucleotides (Osen-Sand et al., 1993) or small

interference RNAs (Sieburth et al., 2005) with successful results. However, all these

techniques fail in producing the complete and exhaustive removal of SNAP-25 from the

neuron, confusing the conclusions. The development of a Snap25 knock-out mouse line

has considerably expanded the possibilities, since it provides a genetically clean

background in which SNAP-25 can be studied (Washbourne et al., 2002). However, this

approach has an additional impediment in the fact that neither can these animals survive

after birth nor can neurons survive in culture (Washbourne et al., 2002). This drawback

has irremissibly limited the availabletechniques to exclusively those capable of examining
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the embryonic brain or immature neurons.

This doctoral thesis was initially intended to procure a technique to examine

Snap25 null neurons in primary cultures and reintroduce SNAP-25 into them, as a way of

understanding the importance of SNAP-25 in the neuronal function. The initial goal of

this doctoral thesis constituted, for that reason, the establishment of a method that would

allow the rescue of SNAP-25 deficient neurons in culture. This technique finally resulted

on the long-term expression of SNAP-25 by means of the lentivirus system (Naldini et

al., 1996a; Naldini et al., 1996b; Blomer et al., 1997). When this new methodological

approach was finally established, it enabled us to study the role of SNAP-25 in neuronal

survival, arborization and neurotransmitter release by examining the differences among

the two splice-variants, SNAP-25a and SNAP-25b, and the closest homologue, SNAP-23.

The final outcome demonstratedthe complexity and polyvalenceof SNAP-25 in neurons.

My findings made evident that SNAP-25 is crucial for synaptic vesicle exocytosis as well

as for neuronal survival and neurite outgrowth. Supplementary to this, I observed a

possible post-synaptic effect, consistent with down-regulation of AMPA receptors. The

thesis firmly demonstrates, furthermore, that the synchronous release is exclusively

driven by the SNAP-25 isoforms, excluding SNAP-23 for this process, not only in

glutamatergic neurons and but in GABAergic ones as well, which refutes some previous

experiments. I showed that, SNAP-23 is, in fact, able to produce release although

asynchronously, which would resemble a lack of interaction with synaptotagmin-I. The

probably reason for the alternative splicing of SNAP-25 appeared to be the different

regulation of the priming of synaptic vesicles, since SNAP-25a supported a smaller readily

releasable pool than SNAP-25b. This would suggest that the promotion of the expression

of SNAP-25b over SNAP-25a, which occurs by the time that mature contacts are formed,

provides a more efficient synaptic transmission by enhancing the priming properties of

neurotransmitter release. Such a switch in the expression would be, in that case,

important for the processing of the large amount of information received from the

moment of birth.
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VI. EXPERIMENTAL PROCEDURES

A. Experimental Approach

The participation of SNAP-25 in different processes in the neuron, such as synaptic

transmission and arborization, makes necessary the use of specific experimental

techniques for each of them. In this doctoral work, I used a combinationof morphometric

and functional methods to analyze the role of SNAP-25 in neuronal function. I performed

the experiments in primary neuronal cultures, from hippocampus and from striatum, to

investigate possible differences in excitatory and inhibitory neurons. As a prerequisite for

that, I established a system that allowed us to induce an exogenous protein expression so

that differences among the main SNAP-25 family members could be determined. This

fact was essential since the expression of SNAP-25 was found to be critical for survival of

neurons in culture. Several methods were tried but the lentivirus system, based on the

ability of HIV-1 to integrate into the host genome (Naldini et al., 1996a; Naldini et al.,

1996b), appeared to be the most convenient method to induce the expression of the

different homologues and produce rescue. This system, which infects both dividing and

non-dividing cells, produced a steady, long-term expression of the homologues in the

neurons, allowing the recovery of survival and the development of mature neurons in

cultures.

The use of cultures makes available an extended number of genetic manipulations,

such the study of mutations that are lethal in mice or the expression of exogenous

proteins or its mutants. But also, it provides availability to a wide range of techniques,

which are important for the detailed examination of neuronal properties. By growing a

constant number of cells on the plates, it is possible to compare differences in survival

among different conditions. Morphological differences can be identified in neurons

growing in cultures by the labeling with antibodies against specific proteins of interest or

the expression of reporter genes by genetic transfer. The use of a high-resolution

detection system in cultures, like confocal microscopy, is indispensable for visualizing

small structures such as narrow branches and synapses. Furthermore, staining of lipid

membranes by styryl dyes, which allows the staining of lipid membranes, is useful for
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examining the functionality of the synapses and the recycling of vesicles. The combination

of these techniques makes possible an accurate and complete examination of the neuronal

properties.

However, for understanding utilization of SNAP-25 by the neuron, it is important

not only the analysis of neuronal populations but isolated neurons as well. The use of

autaptic cultures allows growing the neuron on an isolated micro-island formed by

astrocytes. The neuron is excluded from other neurons by a space without astrocytes and

forced to expand within the island, establishing synaptic contacts with itself. These

autaptic contacts are completely functional and share similar properties to conventional

synaptic connections in brain (Bekkers and Stevens, 1991; Clements, 1992). This kind of

preparation offers many of the advantages and possibilities of brain slices and exocytotic

model cells. It is possible to use electrophysiological approaches to investigate release

kinetics, pharmacological properties, plasticity changes, spontaneous events, etc. The

main electrophysiological tool is the patch-clamp technique (Neher and Sakmann, 1976;

Hamill et al., 1981). This method allows the measurement of cell ionic current with an

extraordinarily favorable signal-to-noise ratio. Its application to autaptic neurons permits

the measurementfrom thousand of synapses, all of them sharing the same propertiessince

they proceed from the same neuron, with a single electrode (Figure 5). This fact presents

a great advantage over other preparations like brain slices, for example. Unfortunately,

this preparation is limited in the production of long-term plasticity as well as in the

control of some presynaptic mechanisms, which are possible in other kind of systems.

Despite these limitations, the system has been proved powerful during this doctoral

work, providing interestingresults.

B. Miscellaneous methods used for cloning

To understand the function of the thousand of genes involved in the variety of brain

functions, it is essential to be able to introduce and express DNA in neurons. Over the

past two decades, the number of gene transfer methods developed has largely expanded

and countless studies have taken advantage from this technique. However, there is still

not a perfect technique that covers every application. The recombinant based viral

techniques offers high-efficiency of transfection since they benefit from the innate ability
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of virus for infecting host cells and express their genome. However, the non-viral

methods are generally easier to use, less toxic, and not limited in the size of the plasmid

that they deliver. In this doctoral work, I used both alternatives in order to find a method

that allowed the rescue of Snap25 null neurons.

For a gene being expressed in a neuron, it is necessary this gene to be incorporated

into the cell by means of a vector. For that, DNA coding the gene (so-called insert) and

the vector has to be cleaved by compatible restriction enzymes so that they can be ligated

together. In some cases, it is necessary to include some new restriction sites to create

compatible sites. This can be done by using PCR to amplify a fragment containing those

sites. To obtain enough genetic material for the transfection, the ligated DNA vector

needs to be amplified. For that, the vector is transformed into competent bacterial cells,

which will duplicate the exogenous vector together with its own genomic vector. DNA is

extracted from the bacteria and purified, usually obtaining ~1-2 µg/µl of product.

Cloning was performed according to standard protocols (Sambrook and Russell,

2001). Enzymes for DNA manipulations were obtained from New England Biolabs

(Beverly, MA, USA). Unless indicated otherwise, all other reagents were purchased from

Sigma (Deisenhofen, Germany).

The methods used for the cloning of the constructs will be explained in this section.

The non-viral approaches utilized will be described in the next section and the lentiviral

system in the followingone.

1. Restriction Digests

Restriction digestion is the process of cleaving double stranded DNA molecules

into discrete fragments with restriction endonucleases, which recognize specific

sequences in the DNA molecule. Companies also deliver 10x concentrated buffer along

with the enzymes for optimal reaction conditions. For digestion, 1µg of plasmid DNA is

incubated with the restriction mixture for at least 1.5 to 2 hours and the enzyme specific

temperature.
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2. Amplification by Polymerase Chain Reaction (PCR)

PCR is a rapid procedure for in vitro enzymatic amplification of a specific segment

of DNA (Saiki et al., 1988). The required materials include: the segment of double-

stranded DNA to be amplified, two single stranded oligonucleotide primers flanking it

(added in vast excess compared to the DNA to be amplified), high fidelity Pfu-

polymerase, deoxyribonucleosides (dNTPs), buffer and salt. Taq-Polymerase is used for

PCR for genotypingmice.

The reaction mixture for cloning is as follows (for genotyping, see Genotyping

PCR):

PCR with Pfu-Polymerase:
100 ng diluted Template DNA
0.2 µl 5´ Oligo-nucleotide (5pmol)
0.2 µl 3´-Oligo-nucleotide (5pmol)
2 µl dNTP-Mix (2.5mM each)
5 µl 10x Polymerase-Puffer
1 µl Pfu-Polymerase
Final volume to 50μl with H2O

The PCR product to be used for cloning reactions is purified with the QIAquick PCR

Purification Kit from Qiagen.

3. Agarose Gel Electrophoresis

Agarose gel electrophoresis is used to separate, identify and purify negatively

charged DNA based on their size. In agarose gel electrophoresis, the DNA is forced to

move through a sieve of molecular proportions that is made of agarose. The positions of

the bands are made visible and can be photographed in UV-light with ethidium bromide

(254 or 314nm). Usually 0.7 to 2% gels are used. The agarose is dissolved by heating in

100ml of the TAE-buffer (per liter, 4.84 g Tris Base, 1.14 ml Acetic Acid, 2 ml 0.5M

EDTA pH 8.0) , and 0.5µg/ml Ethidium Bromide is added after cooling to approx.

50°C, then poured into the gel chamber. DNA is then separated at constant voltage (80-

120V) in the buffer.

4. Isolation of DNA-Fragments from Agarose Gels

The product QIAquick PCR purification Kit from the Qiagen firm was used. The
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protocol, outlined in the QIAquick Spin Handbook for purifying PCR fragments is

provided by the producers.

5. Dephosphorylation of the 5´end with Alkaline Phosphatase

Alkaline phosphatases catalyze the hydrolysis of 5´-phosphate residue from DNA,

RNA and ribo- and deoxyribonucleoside triphosphates. The digested vector is treated

with alkaline phosphatase before ligation with the desired insert to prevent autoligation of

the vector. The dephosphorylation protocol is provided by the producer.

6. Ligation

DNA ligases catalyze the formation of phosphodiester bonds between juxtaposed

5´phosphate and a 3´-hydroxyl terminus in duplex DNA. T4 ligase, which uses ATP as a

source of energy, can ligate both sticky and blunt ends.

For that, 20-100ng digested vector DNA and approximately double or triple the

amount of “insert” DNA are mixed, in a final volume of 20µl, together with 2µl of 10x

T4 ligation buffer and 1µl T4 ligase. Incubate at 16°C for 4-16 hours.

7. Competent bacteria production

50 ml LB-Medium was transfected with a single colony of the bacterial strain and

incubated while shaking at 37°C until an OD600 of 0.5 to 0.7 is reached. The cells were

centrifuged for 10 minutes at 4200 x gmax, 4°C, and then washed in ice cold 15% glycin

TFBI solution containing (in mM; sodium acetate, 300; MnCl2, 50; NaCl, 100, CaCl2,

10). Cells were centrifugated again, resuspended in ice cold 15% glycin TFBII (in mM,

MOPS, 10; NaCl, 10, CaCl2, 75), aliquoted and flash frozen in liquid Nitrogen and

stored at –80°C.

8. DNA extraction from bacteria

DNA extraction and purification was made according to the QIAGEN’s and

protocols. Depending on the quantity and purity of the DNA we wish to obtain, two

basic protocols are available. QIAGEN’s miniprep is faster although little DNA material is

obtained. It is mainly used for screening and verification. When DNA will be used for
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transfection or sequencing, QIAGEN’s maxiprep is preferred since it obtains a larger

amount of clean DNA.

9. Determination of DNA Concentration

Due to their physical and chemical properties, DNA molecules in solution can

absorb UV-light and this absorption can be measured by a spectrophotometer

(GeneQuant RNA/DNA Calculator from Pharmacia, Uppsala). The relationship exists

between the optical density (OD) and the DNA concentration is known (1 OD260 = 50

mg/ml DNA), so that the higher the concentration, the greater the optical density at

260nm.

C. Non-viral Transfection methods

1. Description of the construct for non-viral transfection

The cytomegalovirus promoter of the original pEGFP-N1 vector (Clontech, Palo

Alto, CA, USA) was removed using AseI and Eco47III restriction enzymes and replaced by

a neuron-specific human synapsin-I gene promoter, obtained from an adeno-associated

virus vector from S. Kügler, University of Göttingen, Germany (Kugler et al., 2001)

using PstI and EcoRI restriction sites. This vector was named pSynEGFP. DNA fragments

encoding for SNAP-25a, SNAP-25b and SNAP-23 were cleaved from Semliki forest virus

vectors, pSFV1 (Sørensen et al., 2003) using BssHII and AgeI restriction sites and inserted

between the BamHI/AgeI sites of pSynEGFP. Constructs were verified by sequencing and

transformedin DH5compentent bacteria for amplification.

2. Calcium phosphate transfection in neurons

Neurons were transfected by a previously described calcium phosphate transfection

procedure (Wienisch and Klingauf, 2006), based on protocols developed by Threadgill,

Dudek and collaborators (Xia et al., 1996; Threadgill et al., 1997) and optimized

according to the cell culture conditions. At 4-6 days in vitro the neuronal growth medium

was removed, saved and replaced with serum-free Neurobasal A Medium (NBA,

Invitrogen, Carlsbad, California, USA) 30 min prior to transfection. A calcium
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phosphate/DNA precipitate was formed at room temperature and in darkness for 15–20

min in a 100 µl water solution comprising of 5–30 µg/ml plasmid DNA and 5 µl of 2.5M

CaCl2 stock solution and 50 µl of a buffered saline consisting of 50 mM BES (N,N-bis[2-

hydroxyethyl]-2-aminoethanesulfonic acid), 280 mM NaCl and 1.5 mM Na2HPO4·2H2O

at pH 7.00. The precipitate was added drop-wise to 900 µl NBA while gently vortexing.

500 µl of the diluted calcium phosphate/DNA precipitate solution were added to the

cells in each well. Following 5-30 min incubation at 37°C and 5% CO2, during which the

appearance of a fine sandy precipitate covering the cells was observed, the cultures were

washed in Hank´s Balanced Salt Solution (HBSS, Gibco) and returned to the original

conditioned culture media. The transfection efficiency was typically between 5% and

20%, and there was no apparent toxicity to the cells. The product of a transfected gene

coding for green fluorescence protein (eGFP) could be detected by epi-fluorescent

microscopy as early as 6 hours post-transfection and expression was stable for at least two

weeks. In all cases, the DNA was prepared with Qiagen (Hilden, Germany) endotoxin-

free maxi-prep plasmid DNA purificationkits.

3. Magnetic assisted transfection (MAT)

Magnetic assisted transfection is based in the use of magnetic particles, MAT-A,

(IBA GmbH, Göttingen, Germany) that are able to associate to plasmid DNA,

oligonucleotides or siRNA. Exploiting magnetic force the plasmid is then rapidly drawn

towards and delivered into the target cells leading to transfection.

1µl of MAT-A was initially mixed with 1 µg of plasmid in 200 µl of Neurobasal A

and incubated for 30 minutes at room temperature. Mix at different dilutions (ranging

from 1:1 to 1:8) was added to conventional hippocampal neuronal cultures at day in vitro

1, incubating for 20 minutes at 37°C over a magnetic plate (IBA GmbH). The day after,

medium containingmagnetic associates was replaced by fresh NeurobasalA medium.

D. Lentivirus

1. Overview

The retroviral vectors have been considered a potentially ideal system due to their
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ability to integrate into the genome of target cells, allowing for long-term gene

expression, the nonexistent immunological response and the large cloning capacity (up to

10Kb). However, retroviral vectors have a major drawback in that they fail to infect non-

mitotic cells (Roe et al., 1993; Lewis and Emerman, 1994), which contravenes an

efficient use, for example, in neurons. This disadvantage could be overcome by the

discovery that human immunodeficiency virus-type 1 (HIV-1) can infect both mitotic and

non-mitotic cells (Bukrinsky et al., 1992; Bukrinsky and Haffar, 1999), leading to the

development of a new class of retroviral vectors suitable for neuronal studies. Since these

vectors presented a slow and persistent rate of infection, they were termed lentiviral

vectors, with ‘lenti’ being the Latin term for slow. Most of the experimental vectors are

based on HIV-1 because, among all the different lentiviruses described, this is the best

understood.

2. The lentiviral cycle

Lentiviruses are enveloped viruses of the retrovirus family. The viral particle

contains two copies of the viral RNA genome, which contains three essential genes: gag,

pol and env. Gag encodes for the core proteins capsid, matrix and nucleocapsid. Pol codes

for the viral enzymes protease, reverse transcriptase and integrase. The env gene encodes

for the envelope proteins, which mediate virus entry. In addition, another six proteins are

present (tat, rev, vif, vpr, nef and vpu). Tat and rev mediate, respectively, transactivation of

viral transcription and nuclear export of unspliced viral RNA.

The lentiviral life cycle (Figure 3 and Figure 4; for review, (Trono, 2002) is known

in detail mainly from studies of HIV-1. After binding to its receptor, the viral capsid

containing the RNA genome enters the cell through membrane fusion. The viral RNA

genome is subsequently reverse transcribed into linear double-stranded DNA by the

virion reverse transcriptase in the cytoplasm. Reverse transcription involves two jumps of

the transcriptase enzyme from the 5’ end to the 3’ end of the viral template, causing a

duplication of the sequences located at the ends of the viral RNA, which therefore are

termed long terminal repeats (LTRs). The proviral DNA is heavily associated with viral

proteins like nucleocapsid, reverse transcriptase and integrase forming the preintegration

complex, and translocates to the nucleus where the viral enzyme integrase mediates
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integration of the provirus into the host cell genome. The DNA intermediate stage uses

its own cis-acting elements to control the host transcriptional machinery. These elements

are situated within the proviral LTRs. Other additional proteins, like tat, serve as

activators of RNA transcription. Host cell transcription factors initiate transcription from

Figure 3
Life cycle of lentiviral vectors
(A) Binding of viral particle to surface receptor of target cell via envelope glycoprotein. (B) Fusion
of the viral envelope with target cell membrane. (C) Uncoating of viral capsid, Viral RNA is reverse
transcribed to form double stranded proviral DNA, which is translocated into nucleus and integrated into
target cell genome. (D) Production of viral transcripts followed by translation of cis-acting regulatory
factors. (E) Assembly of new viral particles and budding from cell membrane of target cell (F)
Mature viral particle capable of infecting other cells.
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the LTR, and new viral particles are formed at the plasma membrane. The LTRs are

divided in to the U3, R, and U5 regions. The R region is defined as the transcription start

site in the 5’ LTR. The U3 region is found upstream to that and contains the majority of

the cis-acting elements that regulates transcriptional initiation by the cellular RNA

polymerase II. In addition, the immediate 5’ end of the U3 region contains the so-called

att site, which is necessary for integration. The retroviral RNAs are subject to the same

processing events as cellular RNAs: cap addition at the 5’ end, cleavage and

polyadenylation of the 3’ end, and splicing. This process is regulated by the viral proteins.

For example, rev promotes the efficient transport of unspliced RNAs that contain rev

response elements (RRE) from the nucleus to the cytoplasm. The gag-pol and gag

precursors assemble together with two copies of viral RNA to form the viral particle.

Finally, env glycoproteins are incorporated into the viral membrane during the budding

process. In a newly formed virion, gag and gag-pol precursors are subjected to processing

by the viral enzyme protease, which results in maturationof the virion.

3. Lentiviral vectors

In the generation of the initial lentiviral vectors, the transgene of interest was

replacing the env gene, which was provided in trans in a separate vector (Page et al., 1990;

Landau et al., 1991). In a first improvement, all the dispensable protein-encoding

sequences were separated as well. The essential cis-acting sequences, required for

encapsidation of the vector RNA, such as the packaging signal sequences (), and the vital

sequences necessary for reverse transcription and integration, the LTRs, the transfer

RNA-primer binding site, the rev response elements (RRE) and the polypurine tract

(PPT) had to be present in the vector construct with the transgene (Parolin et al., 1994).

This system originally resulted in low viral tires and was limited to the transductionof the

natural target cells of HIV-1, mediated by env. However, replacement of the U3 region in

the 5’ LTR with the immediate early region of the human cytomegalovirus (CMV)

enhancer-promoter resulted in a massive increase in viral titers and reduced the sequence

homology between the vector and packaging construct by deleting tat (Kim et al., 1998).

In addition, the substitution of the viral env protein by the G protein of the vesicular

stomatitis virus (VSV-G) enormously broadened the host range of the virus and
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permitted, in addition, the concentration of particles by ultracentrifugation (Burns et al.,

1993; Bartz and Vodicka, 1997). The separation of the viral genome onto three separate

constructs, encoding the vector construct, the packaging vector and the VSV-G protein,

made expression dependent on the presence of the trans-acting proteins and reduced the

Figure 4
Lentivirus design

In the lentiviral vector, the viral genes gag, pol, and env have been replaced by promotor and transgene
sequences and flanked by the viral LTRs. Packaging of the viral RNA genome is ensured by the presence
of the packaging signal (), comprised of the 5’ untranslated region and the 5’ sequence of the gag
open reading frame. In addition, the vector contains two additional cis-acting sequences, the RRE, which is
essential for nuclear export of unspliced viral RNA in the presence of rev, and the cPPT, which supports
nuclear import of the proviral DNA in the transduced cell. The 3’ LTR contains a large deletion in the U3
region (depicted as U3)to prevent transcription from the LTR. The lentiviral packaging system consists of
three constructs encoding for gag/pol, VSV-G, and efficient nuclear export similar to the vector construct.
Transgenes were designed according to three different strategies:

I) eGFP is fused to the N-terminal of the SNAP-25 homologue.
II) An internal ribosomal entry site (IRES) is placed between SNAP-25 homologues and eGFP, so

that both proteins are produced separately.
III) eGFP expression is driven by a neuron-specific promoter, synapsin-I (pSyn) to exclude

expression in the astrocytic layer.
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homology between the sequences. The matrix protein and vpr, which are involved in the

nuclear importation, were shown to be provided by the packaging cells and they could be

removed. Other proteins, such vpu, vif and nef, were also unnecessary. In addition, viral

titers were improved by the introduction of a central copy of the PPT (cPPT), which

enhanced nuclear import, and other cis-acting transcriptional regulatory elements, such as

the WPRE, which enhanced transgene expression in the target cells (Hu and Temin,

1990; Naldini et al., 1996a; Naldini et al., 1996b; Dull et al., 1998). Thus, this third

generation of vectors was expressing structural and regulatory proteins but no longer

contained sequences for tat and for rev, which was delivered on a separate construct.

Furthermore, since the U3 region of the 5’ LTR of the provirus is derived from the U3

region of the 3’ end of the vector RNA, deletions of the promoter/enhancer sequences of

the U3 region of the 3’ LTR are carried over to the 5’ LTR during reverse transcription,

producing the self-inactivation of the vector. By using these self-inactivating vectors

(SIN), a possible unwanted expression of genes proximal to the site of integration was

prevented, which increased the biosafety of the system (Swain and Coffin, 1989, , 1992;

Miyoshi et al., 1998; Zufferey et al., 1998; Follenzi et al., 2000).

4. Production of the Lentiviral constructs

The lentivirus plasmid corresponding to the murine SNAP-25 isoforms and SNAP-

23 were generated from the inserts of pSFV1 vectors (described in (Sørensen et al.,

2003) and cloned into the multiple cloning site of the pRRLsin.cPPT.CMV.WPRE

(referred as pRRL from now) lentiviral transfer vector (Follenzi et al., 2000; Follenzi et

al., 2002). Expression of SNAP-25 homologues was under the control of a

cytomegalovirus (CMV) promoter. Three different constructs were cloned for each

homologue (Figure 4). In the first one, full-length eGFP was fused to the N-terminal of

SNAP-25 homologue through a 24-amino acid linker. To avoid a possible interfere of the

eGFP molecule in the SNAP-25 function, an internal ribosomal entry site (IRES) was

interposed, in a second construct, between the homologue and the downstream eGFP. In

a third construct, expression of eGFP was driven by a synapin-I promoter in order to

produce neuron-specific expression of the reporter gene, whereas expression of the

SNAP-25 homologues was still under control of the CMV promoter.
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(1)eGFP fusion construct

DNA fragments encoding for SNAP-25a, SNAP-25b and SNAP-23 were cleaved

from semliki forest virus vectors, pSFV1 (Sørensen et al., 2003) using BamHI and BssHII.

eGFP fragment was obtained from a pEGFP-N1 vector using the NheI and BamHI

restriction sites. Both fragments were ligated and inserted between the XbaI and MluI

restrictionsites of the pRRL lentivirus vector.

(2)IRES-eGFP construct

Fragments containing the SNAP-25 homologues followed by the IRES sequence

and eGFP were cleaved from semliki forest virus vectors (Sørensen et al., 2003) using

BamHI and XhoI and inserted in between the BamHI/SalI sites of the pRRL vector.

(3)Synapsin promoter construct

A fragment containing synapsin-I promoter together with eGFP was obtained from

the pSynEGFP-N1 vector (see Non-viral Transfection methods) by PCR using the

primers detailed below (see Primers used), so that new restriction sites were added (NheI

upstream and MscI downstream). The pSyn-eGFP fragment was afterwards inserted into

the pRRL backbone. The SNAP-25 homologue genes were obtained by PCR, adding new

SpeI and AgeI restriction sites up- and downstream (see Primers used), respectively. In

addition, an SV40 origin for replication expressing the SV40 T-antigen was cloned by

PCR, adding new AgeI and MluI restriction sites up- and downstream, respectively (see

Primers used). Finally, both SNAP-25 and SV40 fragments were inserted separately into

the lentivirus vector containingsynapsin-I promoter.

(4)Primers used

Cloning of the Synapsin promoter construct required the addition of new

restriction sites in the respective fragments so they could be inserted in the pRRL vector.

This was made by PCR amplification, designing the following primers so that they

included the necessary restrictionsites (highlighted in italic in the below sequences).

(a) pSyn-eGFP

Forward: TAT GCT AGC ATT AGA GGG CCC TGC GTA TGA GTG
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Reverse: GCA TGG CCA TTA CTT ATG CAG CTC GTC CAT GCC

(b) SNAP-25a

Forward: TAT ACT AGT ATG GCC GAA AGA CGC AGA CAT GCG

Reverse: GCA ACC GGT TTA ACC ACT TCC CAG CAT CTT TGT T

(c) SNAP-25b

Forward: TAT ACT AGT ATG GCC GAG GAC GCA GAC ATG

Reverse: GCA ACC GGT TTA ACC ACT TCC CAG CAT CTT TGT T

(D) SNAP-23

Forward: TAT ACT AGT ATG GAT AAC CTG TCC CCA GAG G

Reverse: GCA ACC GGT TTA ACT ATC AAT GAG TTT CTT TGC

(e) SV40

Forward: TAT ACC GGT TAA TCA GCC ATA CCA CAT TTG TAG AGG

Reverse: GCA ACG CGT GTT AAG ATA CAT TGA TGA GTT TGG A

(5)Sequencing

Constructs were verified by sequencing (SEQLAB GmbH, Göttingen, Germany)

using the following primers:

pRRL forward: AGT GAA CCG TCA GAT CGC CTG GAG

psyn-mid forward: AAC AGG ATG CGG CGA GGC GCG TGC

psyn-mid reverse: GGG CGA AGG CAC TGT CCG CGG TGC

p156RRL-IDM reverse: CGT AAA AGG AGC AAC ATA GTT AAG

5. Transformation of plasmids in Stbl2/Stbl3 bacteria

Lentivirus constructs were heat-transformed in Stbl2 or Stbl3 competent bacteria

for amplifications. For that, a 30 second heat shock at 30°C was applied at a mix

containing 1 µg of plasmid DNA and 50 µl of competent bacteria. After resting on ice,

bacteria were incubated with 250 µl of S.O.C. medium (Invitrogen) for 45 minutes to
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recover from shock and finally plated on LB plates and incubated overnight at 30°C.

6. Production of Lentiviral particles

The production of functional lentiviral particles is performed by cotransfection of a

packaging cell line with four different vectors as described above (Figure 4). As gag and

pol proteins are not assembled accordingly in murine cells, this procedure is performed in

human cell line (Mariani et al., 2001).Many common laboratory human cell lines, e.g.

HeLa, may be successfully transfected and produce large amount viral protein but,

however, secrete few viral particles (Haselhorst et al., 1998). For this reason, the cell line

of choice is normally based on 293 cells, a human embryonic kidney cell line. The stable

expression of the SV40 large T antigen of the 293T cell line variant allows the replication

of plasmids containing the SV40 origin of replication, which is present on the transfer

vector used. Viral particles are secreted into the culture medium, from which they are

collected. Secretion of viral particles is maximal 24h following transfection and decreases

two-fold in the second 24h period. Low viral titers may be dealt with by altering culture

conditions, e.g. decreasing the temperature to 32°C as well as using low serum

concentration, since VSV-G pseudotyped particles inactivate upon contact with serum

(DePolo et al., 2000).

a) 293FT cell culture

To re-culture deep frozen cells, the cells were removed from the liquid nitrogen

tank transported on dry ice and thawed by gentle shaking in a 37°C water-bath. All cell

culture work was done under the sterile hood. The thawed cells were then transferred to

a 75cm2-flask and the culture grown in a steam saturated, 37°C, 5% CO2 incubator. The

culture medium was: D-MEM containing 10% fetal calf serum (FCS), 1%

Penicilin/Streptomicin and 500µg/ml G418 antibiotic (Geneticin®, Invitrogen). When

the cells grew to a confluent layer in the dish, they were split after first washing with D-

PBS, then adding 0.25% Trypsin. When the cells detached from the flask they were

diluted 1:10 with medium and transferred to another cell culture container. For

transfection experiments, the cell density was calculated through microscopy using a

haematocytometer and plated according to each protocol.



38Experimental Procedures

b) 293FT cell freezing

Some determined culture cells can be frozen for storage with minor damage. This

method allows the long-term preservation of the cell line for later use. To this end, cells

are deattached from the culture dish with 0.25% Trypsin and, next, centrifuged at 1200

r.p.m. for 2 minutes to remove the medium. Then, cells are resuspended in sterile

DMSO (Invitrogen) and aliquoted (~3·106 cells/ml). Freezing is done progressively,

initially at -20°C for several hours, then at -80°C over night and finally in liquid nitrogen.

c) Transfection

The lentiviral plasmids were transfected into 293FT according to two different

protocols in order to determine which gave the highest efficiency.

(1)Calcium Phosphate transfection in 293FT cells

The day before transfection, 293FT were plated at a density of ~10.000 cells/cm2

on poly-D-lysine coated tissue dishes in D-MEM medium containing 10% fetal calf serum

(FCS, Gibco-BRL GmBH, Eggenstein-Leopoldshafen, Germany), so that cells attain 90-

95% confluence. On the day of transfection, 10 µg of the lentivirus plasmid was mixed

with 3.5 µg pMD.G2 (packaging vector) and with 6.5 µg pCMVARP2 (envelop vector)

and combined with 0.25 M CaCl2 in 10mM Tris solution (pH 7.00). The mix was added

drop-wise to 2xHBS buffered saline solution while gently vortexing and incubating for 30

minutes to produce a calcium phosphate/DNA precitate, which was, then, added to the

culture dishes. After over-night incubation, medium was replaced by fresh 10% FCS D-

MEM medium. The medium from the culture dishes was collected after 48-72 hours and

centrifugated for 2 minutes at 2000 r.p.m. to remove cellular detritus and later filtered

through a sterile, 0.45µm low protein binding filter. To enhance viral tittering, lentivirus

was harvested by ultracentrifugation (2 hours at 30.000 r.p.m.) and resuspended in 200

µl of D-MEM.

(2)Lipofectamine transfection

Plasmids were transfected into 293FT by a modified procedure based on the

standard ViraPowerTM Lentiviral Expression System from Invitrogen (Carlsbad, CA,

USA). This method consists on the use of an optimized mix of the three packaging
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plasmids (pLP1, pLP2, and pLP/VSVG) denominated ViraPowerTM Packaging Mix.

Briefly, the day before transfection, 293FT cells were plated on 10 cm tissue culture

dishes at a density of ~20.000 cells/cm2 such that they will be 90-95% confluent on the

next day. At the day of transfection, the culture medium was removed and replaced with

5 ml of OptiMEM® I medium containing 10% FCS. Then 3 µg of the expression plasmid

was mixed with 9 µg of the ViraPowerTM Packaging Mix in 1.5 ml of OptiMEM® I

without serum. This mix was added to a separated tube containing 36 µl of

LipofectamineTM 2000 in 1.5 ml of OptiMEM® I without serum. After 20 minutes of

incubation, the solution was added dropwise to the culture plate. The next day, the

medium was replaced by 11 ml I-MEM (Sigma) containing 2% FCS, 1%

penicillin/streptomycin, 1% non-essential amino acids and 1% GlutamayTM-I. 24 hours

later, lentivirus was harvested under security level 2 conditions and concentrated using a

centrifugal filter device (100K NMWL; Amicon Ultra-15, Millipore, USA). Final volume

was adjusted to 2 ml with TBS (10 mM Tris-HCl, 150 mM NaCl, pH 7.4) and 30-60 µl

of purified virus was added to neuronal cultures at day in vitro 1.

E. Hippocampal cultures

1. Glass coverslip preparation

Glass coverslips were sterilized first with 1N HCl and then with 1N NaOH and

extensively washed with distilled H2O. Clean coverslips were coated with 0.15% agarose

(Type II-A, Sigma, Steinheim, Germany), a substrate upon which cells fails to attach, and

afterwards covered by a solution containing 0.5% Collagen (Type I, rat-tail, BD

Bioscience, San José, CA , USA) and 10µM Poly-L-Lysin (Sigma) in 10 mM acetic acid.

For autaptic cultures, a rubber stamp with protruding pins was applied on the top of the

agarose cover to form small 200 µM diameter microdots. In the substrate forming

microdot, astroglial as well as neuronal processes grow within the borders of the coated

island but cannot reach outside because of the agarose (Figure 5).

2. Astrocytic supporting cultures

Astrocytic supporting cultures were prepared from normal wild-type (NMRI)
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mice. After excision of hippocampus (see Neuronal SNAP-25 knock-out mice

preparation), the rest of the hemisphere was collected and digested for 45-60 minutes in

Dulbecco’s modified Eagle’s medium (D-MEM; Gibco, Grand Island, NY, USA)

containing 20-25 units/ml papain (Worthington Biochemical Corp., Lakewood, NJ,

USA), supplemented with 200 mg/l L-cystein, CaCl2 1mM, EDTA

(ethyldiaminetetraacetic acid) 20 mM, and equilibrated with bubbling 5%/95% CO2/O2

for 20 minutes. Papain activity was afterwards inactivated by incubation for 10 minutes in

a D-MEM-based solution containing 2.5 g/l trypsin inhibitor (Sigma, St. Louis, MO,

USA) and supplemented with 10% heat-inactivated fetal calf serum (Invitrogen) and 2.5

g/l bovine serum albumin (Sigma). Inactivating medium was carefully removed and

replaced by pre-warmed D-MEM medium for astrocyte culture, containing 10% fetal calf

serum (FCS), 1% penicillin/streptomycin and 1% MITO+ Serum Extender

(Collaborative Biomedical Products, Bedford, MA, USA). Digested tissues were

homogenized with a pipette and plated on 75-cm2 flask in 10 ml astrocytic medium, and

allowed to grow for approximately one week at 5% CO2, 95% humidity, and 37°C until

reaching confluence. At this point, the medium was substituted by 10 ml trypsin/EDTA

(Biochrom Co.) and incubating for 10 minutes at 37%. The culture flask was vigorously

vortexed and buoyant cells, which are mainly comprised of microglia, were discarded to

enrich the astroglial population. De-attached astrocytes were then resuspended and

transferred to a 15ml Falcon’s tube and centrifuged at 1.600 r.p.m. for 5 minutes. The

supernatant was poured off and the pellet was resuspended in 10 ml astrocytic medium.

Cells were examined under microscope and counted using a haemacytometer. Astrocytes

were plated on previously collagen-coated coverslips (see Glass coverslip preparation) at

10 cells/mm2, for autaptic cultures, and 35 cells/mm2, for conventional cultures and

grew at 5% CO2, 95% humidity, and 37°C. When 80-90% confluence was obtained,

growing was stopped by addition of 0.04 mM 5-Fluoro-2’-deoxyuridine (FUDR, Sigma).

3. Neuronal SNAP-25 knock-out mice preparation

The SNAP-25 null mouse line was generated by M. C. Wilson (Washbourne et al.,

2002). Homozygous mutant animals die at birth as a consequence of respiratory failure so

embryos were obtained at embryonic day (E) 18 by caesarian section of the mother.
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Mutant embryos were readily distinguished by their characteristic tucked position,

smaller size and external blotchy appearance and failed to exhibit either spontaneous

movement or sensorimotor reflexes in response to mechanical stimuli. The genotype was

confirmed by genomicDNA extraction followed by PCR.

Neuronal cultures were prepared from littermates -/- and control (+/+; +/-)

animals as following. Brain was dissected from skin and skull and bathed in cold Hank’s

balanced solution (HBSS, Sigma), buffered with 7mM HEPES (Gibco-Invitrogen,

Karlsruhe, Germany). Under binocular preparation microscope, meninges were removed

and both brain hemispheres were pulled apart from the diencephalon. The hippocampi

appeared as an antero-posterior oriented half-moon structure, dorsally convex, on the

inner side of the hemisphere. Striatum was recognized as a rounded body, on the

anterior-ventral part of the brain, between the cortex and the foremost extreme of the

hippocampus. Tissues were excised with a scalpel and collected in HBSS-HEPES. To

avoid cellular damage caused by mechanical tractions between cells during trituration,

mass intercellular connections were enzymatically digested by incubating into 0.25%

trypsinated HBSS at 37°C for 20-40 minutes. After washing in HBSS-HEPES, the tissue

was triturated using fire-polished Pasteur glass pipettes. The quality of the dissociated

neurons was controlled by microscope and healthy cells were counted using a

haemacytometer. Neurons were plated on a layer of astrocytes prepared as detailed above

Figure 5
Schematic diagram (left) and example (right) of autaptic neuron.
On top of astroglial island, a single neuron was grown to form all of synapses with its own dendrites.
This model synaptic system is ideally suited to determine quantitatively the most important parameters
underlying synaptic transmission. Using only one electrode, this system allows to measure evoked release
and spontaneous release as well as the action of a wide range of drugs and substances from thousand
of synapses at once.



42Experimental Procedures

(see Astrocytic supporting cultures), at 1 cell/mm2 for autaptic cultures and at 15

cells/mm2 for conventional cultures, containing Neurobasal medium (Invitrogen)

supplemented for neuronal survival with 2% B-27 (Invitrogen), 1.8% HEPES, 0.5 mM

glutamax (Invitrogen), 100 µg/ml Penicilin/Streptomicine (Invitrogen), 25 µM ß-

mercaptoethanol and 100 mM Insulin (Heeroma et al., 2004). Neurons were growing for

10-14 days at 5% CO2, 95% humidity, and 37°C.

4. Quantifying survival

For quantification of neuronal survival, conventional cultures at equal density (~15

cells/cm2) were prepared. At 10-14 DIV, cultures were examined using a Eclipse TS100

microscope (Nikon, Melville, NY, USA), with a 10x 1.2NA objective. At least 10

different pictures from random fields were taken using a CCD camera (DS-5Mc, Nikon).

Only those neurons exhibiting healthy features were manually selected and counted.

F. Genotyping

1. Genomic DNA purification

The template DNA was obtained from the tail biopsy from embryos and extracted

using a standard phenol/chloroform protocol. Tissues were incubated at 55°C, with 600

µl SNET buffers (20 mM Tris-HCl (pH 8.0), 5 mM Na2 EDTA (pH 8.0), 400 mM NaCl

and 1% sodium dodecyl sulfate (SDS)) for lysis of cells, along with 0.17 mg/ml

Proteinase K (Roche Diagnostics, Mannheim, Germany), which breaks down

polypeptides for better dissolution in phenol. Cell lysates were mixed with the same

volume of a 1:1 mixture of phenol and chloroform (USB chemicals, Cleveland, USA).

These organic solvents precipitate proteins but leave nucleic acid in the aqueous phase.

After 15 min of centrifugation at 13.000 rpm, protein molecules are left as a white

coagulated mass at the interface between the aqueous and organic phases. The upper

aqueous phase containing nucleic acids was transferred into a clean tube. The DNA in the

aqueous phase was precipitated with 0.6 volume of isopropanol and pellets were washed

twice with 70% ethanol, and then dried out in a speed vacuum drier (Eppendorf,

Hamburg, Germany). Purified DNA was resuspended in 300 µl Tris-EDTA (10 mM
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Tris-HCl, 1 mM Na2-EDTA; TE) buffer (pH 8.0) before PCR was performed.

2. Genotyping PCR

Two separate polymerase chain reactions (PCRs), one for wild-type and other for

mutant, were designed for detecting the genotype. The reactions were performed

according to Table 3 using a T-gradient®thermal cycler (Biometra, Göttingen,

Germany). The amplified fragments were isolated by means of electrophoresis at 120 -

200 V in a 1.8% agarose gel in Tris-Borate-EDTA buffer (TBE: 100 mM Tris-Cl (pH

8.0), 1 mM Na2EDTA, 90 mM borate). Ethidiumbromide (EtBr) was added in the gel

and the PCR products were visualized under UV light. All chemicals used for gel

electrophoresis were purchased from Life Technologies (Carlsbad, CA, USA), Gibco

BRL (Grand Island, NY, USA), Roche (Indianapolis, IN, USA), Invitrogen (Grand Island,

NY, USA) or Sigma (Steinheim,Germany).

- Wild-type reaction

Forward (SNAP25 Ex. 5A1) CGA AGA AGG CAT GAA CCA TAT CAA C

Reverse (SNAP25 Ex. 5C1) GCC CGC AGA ATT TTC CTA GTT CCG

- SNAP-25 KO reaction:

This reaction includes a forward primer in the end of the neo gene and a reverse

primer in the intron between exon 5a/5b and 6 in SNAP-25. This reaction is

therefore specific for a neo insertion in the SNAP-25 (SNAP-25 KO).

Forward (B1for): GCC GCT CCC GAT TCG CAG CG

Reverse (B1 rev): ACT ATC TGA GAC ACT GAA ATG TCC
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G. FM staining

1. Overview

For the understanding of synaptic function, it is important to visualize the processes

occurring at the synapse. However, as we gain detailed structural information, we lose

detailed information about functional aspects, and viceversa. For example, the time

resolution of conventional light microscopic techniques allows fine dynamic measurement

in a multitude of systems, however the optical resolution limit of conventional light

microscopic is only slightly larger the diameter of hippocampal boutons, which limits the

resolvable details to the whole-synapse level. To overcome this problem, specific markers

can be used to detect events related to synaptic function using these techniques.

Lichtman and colleagues first described the activity-dependent uptake and release

of sulforhodamine and other fluorescent dyes in reptilian preparations (Lichtman et al.,

1985). However, the development of styryl dyes that stain synaptic vesicles in an activity-

dependent manner made possible the visualization of synaptic function in a variety of

preparations (Betz et al., 1996; Cochilla et al., 1999). Styryl dyes are molecules

consisting of a hydrophilic head group with a double positively charge pyridinium residue

and a lipophilic tail group of variable length (Figure 6B). Whereas the lipophilic part can

Per 25 µl reaction
10xPCR Buffer 2.5µl
dNTPs 5 nmol
Primer forward 12.5 pmol
Primer reverse 12.5 pmol
RedTaq polymerase 1 µl
DNA template 100 ng

Table 3
Genotyping PCR reactions

WT reaction
5A1/5C1

94°C 10:00

30
cycles

94°C
60°C
72°C

01:00
01:00
01:00

72°C 07:00
Temperature mm:ss

SNAP-25 KO reaction
B1for/B1rev

94°C 10:00

34 cycles
94°C
62°C
72°C

01:00
00:30
01:00

72°C 05:00
Temperature mm:ss
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easily penetrate in the bilipid layer, the positively charged headgroup prevents the dye

from passively diffuse across the membrane.This structure permits the molecule to insert

A

B

C

Figure 6
Use of FM dyes in the detection of vesicle recycling.

(A) Experimental procedure to selectively stain and destain synaptic vesicles. Insertion of the FM dyes
(red) into the plasma membrane (brown) causes a fluorescent increase of the dye. (left panel)
Protocol for loading the dye (right panel) Destaining of a successfully stained vesicle. Modified from
(Ryan et al., 1993) (B) Chemical structure of the red fluorescent N-(3-trimethyl-ammoniumpropyl)-4-
(6-(4-(diethylamino)phenyl)hexatrienyl) pyridinium dibromide (FM 5-95)(C)Automated detection of
functional boutons by a wavelet-generated mask. (left panel) Image of axonal arborizations during
electrical stimulation. (right panel) Corresponding wavelet mask identifying active synapses as black
spots.
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reversibly into the outer leaflet of exposed membranes. In addition, the presence of the

dye in the membrane produces a dramatic increase in quantum yield (about 350 times),

which allows the imaging of stained membranes while the dye is present in the external

solution. In this study, the red-shifted styryl dye FM5-95 (Molecular Probes) was used to

stain synaptic vesicles since its far-red emission does not interfere with the imaging of the

green fluorescence of the reporter gene, eGFP. FM5-95 can be internalized by

endocytosis and then, after washing off non-internalized dye, released by subsequent

rounds of exocytosis (Figure 6A). Uptake of the dye reflects endocytosis, while the extent

of exocytosis is reflected by the loss of fluorescence from labeled vesicles during

departitioning from the vesicle’s luminal membrane into the extracellular solution.

2. Epifluorescence FM 5-95

Coverslips from conventional hippocampal cultures of 10-14 days in vitro were

mounted in a perfusion chamber on a movable stage of an inverted microscope (Axiovert

135 TV; Zeiss, Oberkochen, Germany). Cells were perfused at room temperature in

standard extracellular solution (in mM: NaCl, 140; KCl, 2.4; HEPES, 10; glucose, 10;

CaCl2, 4; MgCl2, 4; 300 mOsm, pH 7.3). To prevent recurrent activity, 10 µM 6-cyano-

7-nitroquinoxaline-2,3-dione (CNQX) and 50 µM D,L-2-amino-5-phosphonovaleric acid

(APV) were added to the medium. Synaptic boutons were labeled by electric field

stimulation (1 ms current pulses of 40 mA and alternating polarity delivered by platinum

electrodes spaced ~15 mm) in saline containing 10 µM FM 5-95, following by additional

60 seconds of dye exposure to ensure complete labeling of all recycling vesicles.

Individual boutons were imaged after 10 minutes perfusion with dye-free external

solution. Destaining of hippocampal terminals was achieved by three electrical trains of

400 electrical stimulations at 10 Hz using the same stimulation as for loading. Images

were taken using a cooled slow-scan CCD camera (PCO SensiCam, Kelheim, Germany)

on an Axiovert 135 TV inverted microscope with a 63x 1.2 numerical aperture water-

immersion objective (both Zeiss, Oberkochen,Germany) and a modified filter set (DCLP

495, BP 525/50 for eGFP and DCLP 565, LP 620 for FM 5-95). FM 5-95 was excited at

475 nm by repetitive Xe-arc lamp illumination (Polychrom II; T.I.L.L. Photonics,

Germany).
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To avoid the bias introduced by manual selection of functional boutons, an

automated detection algorithm was used (Bergsman et al., 2006), kindly provided by M.

Wienisch. The average image from the baseline sequence was subjected to an à-trous

wavelet transformation with the level k=4 and detection level ld=1.0 (Olivo-Marin,

2002), resulting in a segmented mask image (Figure 6C). Spots on mask images, each

representing putative functional boutons, were identified, and only masks with areas

between 4 and 20 pixels were accepted for calculating single bouton fluorescence

transients. Time courses of all automatically identified spots were visually inspected for

correspondence to individualbouton destaining.

H. Immunocytochemistry

1. Immunostaining

Immunostaining is a technique used to reveal a specific protein on the cell. A

primary antibody is used to recognize a specific epitope on the protein of interest.

Unspecific binding is inhibited additionally by the use of blocking solution containing

either protein or detergent blocking agents. To detect the antigen-antibody binding

reaction, a fluorescence-labeled secondary antibody is used, which binds to the first

unlabelledantibody (indirect staining method).

Hippocampal neuronal cultures were fixed for 1h at room temperature in PBS

containing 4% paraformaldehyde. They were washed twice in PBS, incubated for 10

minutes with 50 mM NH4Cl in PBS to block free aldehyde groups, and washed again.

Cultures were incubated for 1h with primary antibodies raised against SNAP-25 (rabbit

polyclonal; recognizing both SNAP-25a and b) and synaptophysin (mouse monoclonal;

Synaptic Systems, Göttingen, Germany, kindly gift of Prof. Dr. R. Jahn) diluted 1:400

and 1:200, respectively, in PBS containing 1% BSA fraction V (PBS-BSA). They were

washed four times 10 min with PBS and then incubated for 1h with secondary antibodies

diluted 1:1000 in PBS-BSA (Alexa 546-coupled goat-anti-rabbit and Alexa 647-coupled

goat-anti-mouse, Molecular Probes, Eugene, OR). Cultures were finally washed four

times in PBS and kept at 4°C overnight for the posterior analysis in a confocal

microscope.
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2. Confocal scanning microscopy principles

The study of the morphological characteristics of the neurons requires the

visualization of hippocampal boutons and other neuronal structures that are at the optical

resolution limit of the standard fluorescence microscopy. Due to the wave property of

light, the image formed by a point light at the focal plane in a conventional microscope, is

not a single point but it is distributed in an Airy pattern in a possible area of the image

plane. The width at half amplitude of the first lobe of the Airy pattern is defined as the full

width at half-maximum (FWHM) and it is often used as an estimate of the resolution

power of the lens

0.51
lateralFWHM NA 

Equation 1

with being the wavelength in free space and NA, the numerical aperture of the

lens.

Confocal scanning microscopy increases resolution by producing the optical

sectioning of the sample. This effect is achieved by placing a small pinhole in front of the

detector, in a plane conjugated to the focal plane. Regions of the sample that are not in

focus will appear defocused, and light rays originating in these regions will be projected

off-center onto the ”pinhole” wall, thus being filtered out. Only in-focus light can pass

through the pinhole. The pinhole in a confocal microscope makes possible to influence

the optical performance of the microscope. At large pinhole sizes (greater than the

diameter of the central lobe of the Airy pattern), the lateral and axial in-focus resolutions

are not much different from a standard microscope, although the remaining out-of-focus

fluorescence is still blocked by the pinhole. At infinitely small pinhole sizes, the axial

resolution is critically dependent on the pinhole size. According to Equation 2 and 3, the

optical lateral resolution scales with the first order of NA whereas the axial resolution

scales with the second order, as calculated by

Equation 2 Equation 3

2 2
0.64

emaxialFWHM
n n NA

 
 

0.37
emlateralFWHM NA  
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where em is the fluorescence emission wavelength and n is the refractive index of

the medium. However, the resolution advantage is often compromised by the

vulnerability to noise due to its reduced detecting volume and general weaker signal.

3. Data acquisition and analysis

Immunofluorescence images were taken with a confocal microscope (LSM 410

controlled by LSM 3.98 software attached to an Axiovert 135TV, Zeiss, Oberkochen,

Germany). Argon lasers were used for exciting at 488 nm and at 543 nm and a helium-

neon laser for 633 nm excitation. Emission wavelength was filtered at 510nm, 570 nm

and 665 nm, respectively. Images were taken using a 63X oil immersion (1.4 NA)

objective at 1024 X 1024 pixels. Contrast and brightness were adjusted to standard values

for sections intended to quantify SNAP-25/SNAP-23 expression. Images were imported

into IgorPro (WaveMetrics Inc.) and analyzed with custom-written IgorPro-functions.

Figure 7
Quantification of neuronal outgrowth
(A) (left panel) Example of hybrid median
filtered maximal projection of a confocal stack.
Inner black circle represents the area considered
for analysis. (right panel) Mask imaged
generated from the left picture obtained by
detecting the changes over threshold on the first
derivative of the fluorescence intensity. (B)
Example of a plot showing number of branches
detected as a function of distance to the soma
(blue dots). Considering that each branch
divides into two daughter branches, data can
be reduced to single steps involved in the
expansion(red trace).

A

B
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The number of neuronal branches was calculated from the number of eGFP-positive

processes that crossed a circumference centered in the soma from a hybrid median

filtered maximal projection of a confocal stack. Crosses were distinguished by detecting

changes over threshold on the first derivative of the fluorescence intensity level (Figure

7). The number of synapses was calculated from synaptophysin-positive individualregions

using same procedure as for FM detection(Figure 6C).
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I. Electrophysiology

1. Overview

Neuronal function derives mainly from the electrical properties of its membrane.

The impermeable lipid bilayer is an insulator element that separate two different ionic

solutions, however, it is permeated by the presence of ionic channels, producing a

potential difference. According to Goldman-Hodgkin-Katz’s equation, this potential is

Figure 8
Basis for electrophysiological measurements
(A) In electrical experiments, the membrane acts like an equivalent circuit with two branches, in which
specific ionic channels are represented as conductive elements (green) and the cell membrane, as
capacitors (red). The driving force of the circuit is provided by the equilibrium potential of the ionic
population. Modified from (Hille, 2001) (B) Example signals observed during sealing and break-in. The
top voltage traces (red) show the test pulse applied. The resulting current traces are shown below
(blue). (left column) During sealing, from top to bottom, the pipette is initially in the water bath. The
amplitude of the current proportional too the pipette resistance according to Ohm’s law. When the pipette
touches the membrane of the cell, the current amplitude decreases. After applying suction, the current
signal virtually disappers, indicating the formation of the ‘giga-seal’. (right column, from top to bottom)
During cell-attached configuration, capacitive transients are visible and they should be compensated.
Subsequently, a pulse of suction breaks the membrane and produces an increase in the current
amplitude. Finally, transients corresponding to the cell are cancelled and series resistance corrected.
Modified from (Rudy and Iverson, 1992).
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controlled by the change in membrane permeability through the opening and closure of

ionic channels. The whole membrane-channels system of the neuron can be reduced to an

equivalent electrical circuit, in which channels would act as conductive elements and

membrane as a capacitor that accumulates charges (Figure 8A). This mathematical model

allows the calculation of the passive electrical properties of the system as if it was an

electrical circuit.

The ionic movement can be transformed to a flow of electrons using an electrode.

The most common electrode type used is a silver/silver chloride (Ag/AgCl) electrode,

consisting on a silver wire, coated with silver chloride. When a chloride ion (Cl-)

combines with a silver atom (Ag) produces the formation of silver chloride (AgCl),

liberating an electron (e-) from the oxidation of Ag. This reaction is reversible so that the

flow of an electron to the electrode AgCl pellet produces free Cl- ions that become

hydrated and enter in the solution. Two electrodes are needed, therefore, to close the

circuit; one producing the Cl- ions and other accepting them and generating the electron

outflow. With the development of electrophysiological measurements, in special the

patch-clamp technique (Neher and Sakmann, 1976), one of these electrodes, the

measuring electrode, could be approached to close contact with the cell surface. This

allowed, for first time, the measurement of minuscule single channel currents but made

also possible the access to the intracellular compartment of small neurons. This technique

encloses the measuring electrode within a small glass pipette, which contains similar ionic

concentration as the intracellular one. Using a sequence of heatings and mechanical pulls,

it is possible to break the glass pipette in such a way that the tip of the pipette is as small as

1 µm. As the pipette holding the electrode is advanced toward the cell in the external

bath, the electrical resistance of the tip aperture can be monitored by applying a small

voltage step to the pipette (Figure 8B). When the pipette touches the cell surface, there is

an increase in resistance. Applicationof suction in the interior of the pipette brings a small

patch of membrane into the pipette, raising the resistance until virtually no current can

pass between the pipette and the electrode. In this situation, called “giga-seal” due to the

resistance over than 1 G, a brief strong suction pulse provokes the rupture of the patch

of membrane trapped inside the pipette, resulting in continuity between the pipette and

the cytoplasm. This step is observed by a sudden increase in capacitative current in
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response to a test voltage step. According to the equivalent circuit, if the access resistance

is negligible comparing to the membrane resistance, the membrane potential corresponds

in this situation to the potential between both electrodes supplied by the measuring

system. In this situation, called whole cell voltage clamp, current is proportional to

membrane conductance and can be measured therefore in a low background noise.

However, in most of the cases, there is a potential drop across the micropipette due to a

non-zero resistance and it needs to be corrected using a signal proportional to the

measured current.

2. Experimental condition

Autaptic cells between 10 to 14 days in vitro were used for experiments. The

patch-pipette solution included (in mM): K-Gluconate, 135; HEPES, 10, EGTA, 1;

MgCl2, 4.6; Na+-ATP, 4; creatine phosphate,15; phosphocreatine kinase, 50 U∙ml-1; 300

mOsm, pH 7.3. The standard extracellular medium consisted of (in mM) NaCl, 140;

KCl, 2.4; HEPES, 10; glucose, 10; CaCl2, 4; MgCl2, 4; 300 mOsm, pH 7.3. Cells were

whole-cell voltage-clamped at -70 mV with an EPC-9 amplifier (HEKA, Germany) under

control of Pulse 8.70 program (HEKA, Germany). Currents were low-pass filtered at

2.87 kHz and stored at either 10 or 20 kHz. The series resistance was compensated 75%.

Only cells with series resistances below 15 Mwere analyzed. The patch-pipettes were

made of borosilicate glass and pulled using a multi-step puller (P-87, Sutter Instr.,

Novato, CA, USA). The pipette tip diameter was kept at around 2 µm; the resistance

ranged from 2.5 to 3.5 M. Solutions were applied using a fast-flow system that provides

reliable and precise solution exchanges with time constants of approximately 20-30 ms

(Rosenmundet al., 1995).

3. Stimulation Protocols and Electrophysiological parameters

a) Evoked response

Neurons were somatically voltage-clamped in the whole cell patch clamp

configuration at a holding membrane potential of –70 mV. The cells were depolarized to

0 mV for 2 ms to evoke action potentials, leading to an immediate Na+ inward current

followed by K+ outward current. Depolarization of membrane and subsequent action
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potential propagation induces Ca2+ influx in the presynaptic terminal which triggers a

cascade of events evoking neurotransmitter release which can be detected as a post-

synaptic inward transient of quantal events normally with a 2-3 ms synaptic delay (EPSC

in case of excitatory cells; Figure 9A). As standard procedure, excitatory and inhibitory

post-synaptic currents (EPSCs and IPSCs, respectively) were recorded every 10 seconds

to monitor the quality of voltage clamping and evaluate non-specific changes in EPSC

amplitude such as the influence of time-dependent run-down, leaky seals, etc. The height

of the peak was measured for EPSC amplitude. The postsynaptic response over a second

was integrated,yielding the charge, and fitted to a double exponentialfunction as follows:
Figure 9
Measuring protocols in autaptic cultures
(A) Example of an EPSC evoked after a single stimulation. ESPC amplitude is measured as the peak
amplitude after baseline substraction (grey). Charge is calculated by integrating the EPSC over time
(red). (B) Example of a trace evoked by 500 mM sucrose application for 3.5 seconds. Readily
releasable pool is estimated by measuring the charge of the transient component (red) (C) Example
trace of 100 stimulations at 40Hz. The EPSC amplitude for each stimulation is calculated from the peak to
the baseline of actual stimulus (inset) (D) Example of recording of spontaneuos release. Single fusion
events (red asteriks) are detected using an automated detection algorithm.
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with A0 and A1 being the charge of the synchronous and asynchronous component,

correspondingly, and t0 and t1, the time constant of the kinetics for synchronous and

asynchronous release, respectively.

b) Determining the size of readily releasable pool and vesicular release

probability

As a manner of determining the total charge of readily releasable pool, the charge

induced by hypertonic solution was measured as described in (Rosenmund and Stevens,

1996). 500 mM sucrose was extracellularly applied for more than 3 s using the fast flow

application system. This application induces a calcium-independent release of vesicles,

here denominated ‘sucrose pool’, which leads to a transient followed by a steady state

inward current (Figure 9B). Since the transient part consists of a burst-like release of all

fusion-competent, primed vesicles, the integral of the transient component, after

subtraction of steady state component, approximates the total charge of the readily-

releasable pool (Figure 9B). The sustained component induced by sucrose application is

believed to represent the release of vesicles that have just been primed into the readily-

releasable pool (Reim et al., 2001).

To determine the vesicular release probability, 500 mM sucrose were applied for

3.5 sec, 3 sec after evoking the action potential. The vesicular release probability was

calculated as the charge released by an action potential divided by total charge of the

readily releasable pool.

c) High frequency train stimulation

To explore the different short-term properties at different inter-pulse intervals,

10Hz, 40Hz or 50Hz train were applied. The peak amplitude of each EPSC during the

train was measured as shown in Figure 9C. The readily releasable pool and the

replenishment rate were calculated from the linear fit to the sustained phase in the

cumulative trace from the evoked amplitudes measured during 40Hz stimulation, as

described in Differential control of the releasable vesicle pools by SNAP-25a and SNAP-
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25band Figure 15.

d) Spontaneous release

Recording of miniature EPSC (mEPSC) was performed at -70 mV for at least 60

seconds (Figure 9D) in the presence of 200 nM tetradotoxin (TTX) to completely block

the possibility of undesired action potentials. Spontaneous events were detected using an

event detection algorithm (Clements and Bekkers, 1997) on 2 kHz digitally filtered

traces, kindly provided by H. Taschenberger. A standard mEPSC template with variable

amplitude is first defined for this algorithmaccording to the next equation:.

 
0 00

() 1 1DecayFast DecaySlowrise

t t t tt t

Template t e FractionFast e FractionFast e 
      

  
    

      

Equation 5

with rise being the time constant of the rising phase of the template; DecayFast and

DecaySlow being the time constant of the fast and slow falling phase of the template,

respectively; FractionFast being the ratio between the fast and slow falling phase of the

template; and t0 being the onset of the template. The detection criterion is calculated

from the template scaling factor (scale) and from the goodness-of-fit (SSE, sum of squares

error) between the scaled template and the data. The standard error (StdError) is derived

between the data points and fitted template:

1;

1

scalecriterion StdErrorStdError SSE
N

 



Equation 6

where N is the number of points in the template. When the template is aligned

with and accurately fitted to a synaptic event in the data, the numerator, scale,

approximates the peak amplitude of the event and the denominator approximates the

noise standard deviation. Thus, the detection criterion is related to the signal-to-noise

ration for the detected events. Only events which criterion was greater than 3.5 times

were accepted, since this value allows the detection of most of the events with a low

false-positive rate (Clements and Bekkers, 1997). After computer detection, events were

individually verified before they were consideredmEPSC. The mean mEPSC of a cell was
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calculated by averaging all detected events.

J. Analysis program

The only available analysis program for neuronal studies, Axograph 4 (Axon

Instruments, Union City, CA), is arduous and wearisome when mass analysis is required.

Furthermore, the variety of data collected in this study required a program with high

degree of flexibility. For that reason, a completely new set of procedures, called

Neurignacio, had to be developed from scratch. For this purpose, IgorPro 5.0.3

(WaveMetrics, Inc.) was preferred since it offers a wide range of built-in operations and

function that facilitates the programming work. The latest revision, Neurignacio 0.1b,

comprised more than 150 functions in about 6000 lines of code and covered the analysis

of electrophysiological recordings as well as FM and confocal images, allowing for batch-

processing of the data. Due to time restriction, this version, although completely

functional,was not totally optimized.

K. Statistics

Results are shown as mean±S.E.M, with n referring to the number of cells from

each group. Since a significant between-preparation variability was found in the

electrophysiological parameters examined, significance was tested by two-way ANOVA,

where the genetic background (knock-out or wildtype) and the expressed isoforms were

defined as a fixed factor, and the culture used defined as an orthogonal ‘random’ factor.

In the case of more than one level of the fixed factor, appropriatepost-tests were used.
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VII. RESULTS

A. Long term expression of SNAP-25 homologues recovers

survival of Snap25 null neurons

The only study on function of SNAP-25 in hippocampal cultures used a Semliki

Forest Virus (SFV) vector to over-express the chick homologue into rat neurons,

resulting in an impairment of neurotransmission (Owe-Larsson et al., 1999). This work,

which main purpose was the test of SFV as a tool for the study synaptic transmission, did

not consider whether the effect observed was independent from the isoform used. In

order to investigate this question, I reproduced that experiment, over-expressing each

SNAP-25 isoform in wild-type mouse hippocampal. The result showed a reduction in the

excitatory post-synaptic current (EPSC) by over-expression of SNAP-25a (SNAP-25a

SFV-overexpression: 2.55±0.96 nA, n=11; control: 9.04±1.96 nA, n=10, p<0.001;

Mann-Whitney U-test) or SNAP-25b (SNAP-25b SFV-overexpression: 2.33±0.88 nA,

n=21; control: 4.95±0.790 nA, n=27, p<0.001). The precise mechanism underlying

this inhibition is unknown yet. As explanation, it has been suggested that the supra-

physiological levels of SNAP-25 after SFV overexpression would cause an overload of the

palmitoylation machinery, leading to a collapse of the exocytic machinery. This side-

effect, generated by an excess of protein, has hitherto prevented mutagenetic analysis of

SNAP-25 in neurons. For this reason, among others, it has been for long proposed that

the appropriate strategy should consist on the use of a genetically clean background, such

the one offered by the Snap25 null mouse (Washbourneet al., 2002).

Since Snap25-/- homozygous mice die perinatally, hippocampi were obtained from

embryos at E18 fetal stage. Cultures from -/- mutants (knock-out, KO) and control

mice, heterozygous and wild-type embryos, were prepared from the same litter and

studied in parallel. In agreement with previous observations when characterizing the

mutant mouse (Washbourne et al., 2002), most -/- neurons died after several days in

culture. The survival was only 1.3±0.7% (n=5, p<0.001 Student’s t-test, Figure 10B,

left panel), when compared to the cultures from control neurons (set equal to 100%

survival), by the time that neurons have already established mature connections (after 10-
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14 days in vitro, DIV). Wild-type and heterozygous neurons, on the other hand, survived

normally for the whole duration of the culture. The few null neurons that survived

seemed to present severe developing disturbances, such smaller body and defective

arborization. Previous results showed that degeneration of the neurons was progressive

after 5-7 DIV and it was not prevented neither by promotion of synaptic activity with 25

µM glutamate or 0.25 µM AMPA nor by prolongation of depolarized state using 25 mM

KCl (Washbourneet al., 2002).

The decreased viability of the SNAP-25 knock-out neurons recommended the use

of a stable lasting expression system for rescue, which would enable neurons to develop

properly and which on-set of the expression is fast enough to reach a sufficient level of

SNAP-25 before neurons start to die. To produce such a long and steady early expression

of SNAP-25, a new long-term transfection approach had to be adopted. Table 4 shows

the summary of the methods available and the success of the transfection in different

cellular systems. The classical approach consists on the coprecipitation of a plasmid DNA

containing a transfer gene with calcium phosphate so that it can be incorporated into the

neuron (Kohrmann et al., 1999). This method produced an adequate expression level of

the reporter gene, eGFP, in hippocampal neurons; however, the transfection efficiency

(~5-20%) was too reduced for an efficient use in autaptic cultures. Other chemical

methods, such lipofectamin transfection, may cause citotoxicity (Washbourne and

McAllister, 2002), which would have been impossible to differentiate from the SNAP-25

intrinsic effect on survival, and were not considered. A novel magnetic-assisted

transfection method has been recently developed. In this system, DNA is associated to

Table 4
Comparison of gene transfer methods in different cell systems

HumanEmbrionic
Kidney cells

Chromaffin cells Hippocampal
neurons culture

Lentivirus   
Adeno-associated virus   

Adenovirus   
Calcium Phosphate  ? 

Magnetic Assisted Transfection   

 Transfection was succesful Transfection was unsuccesful
 Success was previously reported ? No information
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magnetic nanoparticles which, then, by application of a magnetic, can be incorporated

into the cell leading to the expression of the transgene (Bertram, 2006). However, my

attempts in different cell systems did not produce a successful transfection. To increase

the transfection efficiency, viral methods had to be adopted instead. Although different

viruses have been successfully tried for the delivery of plasmid DNA into neurons

(Hermening et al., 2006); and Table 4), the lentivirus system appeared to be the most

suitable for my purposes. This system relies on a replication-incompetent HIV-1-based

virus to produce a stable, long-term expression of the gene of interest in either dividing

or non-dividing mammalian cells (Naldini et al., 1996a; Naldini et al., 1996b; Blomer et

al., 1997); and see above, Lentivirus, for an overview). The main advantages that this

system offered over others were high-infection rate, moderate expression levels and

simplicity of use.

Constructs from the splice-variants SNAP-25a and SNAP-25b were cloned using

three different strategies to exclude a possible negative effect of eGFP in the SNARE

complex formation (see Figure 4). I also wanted to differentiate the effect of the SNAP-

25 isoforms from the one of SNAP-23, a homologue that supports constitutive secretion

and might substituteSNAP-25 in GABAergic neurons (Verderio et al., 2004) and, thus, it

was cloned in the same way. Results obtained by the alternative constructs were

indistinguishable. In addition, vectors expressing only eGFP, with either promoter, were

also produced as control.

Neurons were infected with these constructs during the first day in vitro and

examined 10-14 days later. The working infection rate was estimated to be 90-100%.

Using this system, the survival of knock-out neurons in culture raised to approximately

normal levels. The culture cell density increased to 83±12.7% (n=6) of the control value

by expression of SNAP-25b. A similar survival was observed by SNAP-23 over-

expression (87.3±3.3%, n=5) and approximately equal values happened when SNAP-

25a was used (65.9±5.0, n=7), Figure 10B, left panel. These results show that SNAP-25

function is critical for neuronal viability and it cannot be substituted by endogenous

expression of the other homologues. However, over-expression of SNAP-23 overcomes

the absence of SNAP-25 and it succeeds in the recovery of the survival.
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Figure 10
Elimination of SNAP-25 leads to impaired neuronal survival and outgrowth
(A) Double staining for SNAP-25 or SNAP-23 and synaptophysin as a synaptic marker of primary cultured
hippocampal neurons infected with recombinant lentiviruses. A synapsin-promotor was used to restrict eGFP
expression to neurons and enable morphologycal analysis. This revealed inferior outgrowth/branching in
Snap25-/- neurons compared to control (+/+; +/-). Nevertheless, neurons lacking SNAP-25 still formed
synaptophysin-positive synapses. Expression of SNAP-25a, SNAP-25b or SNAP-23 in Snap25 null neurons
recovered the morphology. (B) (left panel) The number of cells (mean±SEM) remaining after 10-14 days
in culture. Survival of null neurons was dramatically reduced, but rescued by SNAP-25a, SNAP-25b or
SNAP-23 expression. (right panel) The number of branches (mean±SEM) as a function of the distance to
the soma was significantly depressed in Snap25 null neurons (p<0.001, Student’s t-test) compared to
control neurons or null neurons rescued with SNAP-25a, SNAP-25b or SNAP-23

B. SNAP-25 has an active role in neuronal morphogenesis

The expression of each homologue in the rescued neurons was verified by

immunostaining with a specific antibody against SNAP-25 (which recognized both

isoforms) or SNAP-23. Expression level was determined from a confocal section of the

soma, with identical scanning conditions in all the cases, and compared to wild-type

neurons. Such measurements confirmed that the levels of SNAP-25 and SNAP-23 in null

neurons reached by lentiviral expression were similar to those in control neurons (data

not shown).

The function of SNAP-25 in neurite outgrowth was assessed by examining the

morphometric differences observed between the knock-out and the rescued cultures.

Two parameters were analyzed: the extension of the neurite tree and the number of

synapses. To avoid the expression of the reporter gene in the underlying astrocytic layer,

I designed a lentivirus in which eGFP expressionwas driven by a synapsin-I promoter (see

Figure 4). The extension of the neurite outgrowth was calculated as the number of

branches that crossed a circumference centered in the soma in a confocal projection

image. In control neurons, I counted 38.2±5.1 branches (n=13) in a 50 µm radius

circumference (Figure 10A and B, right panel). However, only 18.5±3.4 branches were

detected in surviving Snap25-/- neurons (n=8, p<0.001 Student’s t-test). This finding

demonstrates the involvement of SNAP-25 in final neuronal arborization. When I next

compared neurons rescued with the different homologues, I found that arborization was

completely restored by all of them. The number of branches at 50 µm was 36.3±3.8

(n=7) in SNAP-25b rescued neurons, 38.2±5.1 (n=6) in SNAP-25a rescued and

37.5±7.8 (n=6) in SNAP-23 rescued (Figure 10A and B, right panel).
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In addition, I observed that the number of branches detected with this method

increased with the distance (Figure 10B, right panel), which would correspond to the

expansion of the dendritic tree. If we consider that each branch dichotomizes into two

daughter branches, we could reduce the trace obtained by plotting the number of

branches over distance to the single steps involved in the expansion and, therefore, being

able to calculate the number of segments and bifurcations that shape the tree (Figure 7B).

As expected, the total number of branches within 50 µm was significantly reduced in the

Snap25-/- neurons (183±41 branches, p<0.001 Student’s t-test) comparing to control

neurons (529±76 branches). Recovery was produced by each homologues and

indistinguishable among them (509±102 branches for SNAP-25a, 470±66 for SNAP-25b

and 464±112 branches for SNAP-23). The number of bifurcations in the neurite tree

estimated here was also different between the null neurons (22±3 divisions, p<0.001

Student’s t-test) and the rest of the groups (42±4 divisions for control neurons, 43±6 for

SNAP-25a rescue, 42±4 divisions for SNAP-25b rescue, and 39±7 divisions for SNAP-

23 rescue).

Additionally, I used an antibody against a synaptic-specific protein, in this case,

synaptophysin, to estimate the number of synapses (Figure 10A, right column). I detected

390±44 (n=20) synaptophysin-positive synapses in control neurons but only 217±27 in

Snap25 null neurons (n=16, p<0.002, Student’s t-test). The expression of any of the

SNAP-25 increased the number of synapses to control values. 536±93 (n=10)

synaptophysin-positive synapses were detected when rescued with SNAP-25b, 607±152

(n=8) synapses with SNAP-25a and 443±78 (n=9) with SNAP-23. No significant

differences amongst them were found. At this point, it is important to notice that the

number of synapses in knock-out neurons was decreased in a parallel way as the total

number of branches, which would suggest that SNAP-25 is, in fact, not required for

synaptic formationbut for neuronal morphogenesis.
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C. Synaptic vesicles are functionally incompetent for

stimulation-dependent recycling in absence of SNAP-25

I continued by investigating whether synapses retained functionality in the Snap25

null neurons and following rescue. For that, I assayed stimulation-induced uptake of FM

5-95 as a measure of exo-endocytosis function in the cultured neurons (Cochilla et al.,

1999); see FM staining). Following a train of 400 action potentials, staining was absent in

Figure 11
Stimulus-dependent recycling of synaptic vesicles requires a SNAP-25 homologue.
(A-E) Examples of control hippocampal neurons (A), Snap25 null neurons (B) and null neurons rescued
with SNAP-25a (C), SNAP-25b (D) and SNAP-23 (E) stained with 400 action potentials (APs).
Staining was not possible in the absence of SNAP-25, indicating a lack of synaptic vesicle recycling. Scale
bar is 10 µm. (F) The intensity of FM5-95 staining by 40 AP and 400 AP loading. The background
intensity following full destaining was substracted. (G) Destaining (mean±SEM) of synaptic boutons under
strong electrical stimulation (3 pulses of 400 AP at 10Hz) after loading with 400 AP. Color-coding as
above. The destaining kinetics was indistinguishable among groups.
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cultured Snap25 null neurons (Figure 11B), indicating that the synaptophysin-positive

synapses that I had been detected previously were lacking vesicle recycling, in agreement

with recent data (Tafoya et al., 2006). In contrast, staining was successful in rescued

neurons (Figure 11C-E). Since styryl dyes specifically stains functional synaptic vesicles,

the intensity of the staining will be determined by the number of vesicles that undergo

exo-endocytosis during the stimulation. For this reason, by varying the strength in the

stimulation during loading of the dye, we can investigate differences in the recycling pools

mobilized. Using a train of 400 action potentials at 20 Hz, I observed similar levels of

staining intensity for the rescue with each homologue. However, it is interesting to notice

that the intensity of the loading for SNAP-25a (147.0±56.8 a.u., N=3) and SNAP-23

(158.0 a.u.±36.1, N=4) was 30-35% reduced when comparing to control (237.9

a.u.±59.5, N=5) and SNAP-25b rescued neurons (222.4 a.u.±68.8, N=5), Figure 11F.

Comparable result was obtained when 40 action potentials, which are believed to

produce the release of the readily releasable pool, were used for staining. Although the

staining intensity reached similar values in all the cases, the loading mediated by SNAP-

25b (93.64±20.52 a.u., N=7) or control neurons (117.77±18.73 a.u., N=7) was still

slightly higher than the one by SNAP-25a (79.80±18.63 a.u., N=8) and SNAP-23

(72.86±27.98 a.u., N=5), Figure 11F. This tendency would suggest that vesicle fusion

mediated by SNAP-25a and SNAP-23 is less efficient. The destaining of the synaptic

boutons by three trains of 400 action potentials at 10 Hz was complete for each

homologue and no differenceswere found in the kinetics (Figure 11G).

D. Synchronous release of vesicles is mediated by SNAP-25

In order to analyze in detail synaptic transmission mediated by the SNAP-25

homologues, I proceed to examine, by whole-cell patch-clamp, autaptic neurons

expressing each of them. Since this present work represented the one of the first attempts

of using the lentiviral system in this preparation, I began by assuring that lentivirus

infection is innocuous to neurons. Synaptic amplitudes were relatively constant for each

neuron but differed between neurons, presumably because they reflect a variable number

of simultaneous synaptic inputs. In spite of this, the observed excitatory post-synaptic

current (EPSC) was indistinguishable in uninfected wild-type neurons (2.99±0.46 nA,
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n=40) an eGFP-expressing wild-type neurons (3.10±0.31, n=30, p=1.00 2 way

ANOVA), indicating that lentivirus is not intrinsically harming neuronal function and,

therefore, it can be used on my purpose. For the following considerations, I assumed that

uninfected ad eGFP-expressing wild-type neurons were interchangeable and they

together were considered the control group (3.04±0.31 nA, n=70). In addition, no

differences were found between heterozygous and homozygous wild-type neurons (data

not shown).

I observed a reduction in the EPSC amplitude by over-expression of SNAP-25a and

SNAP-25b in wild-type neurons using the SFV. For that reason, I next wanted to

examined the effect that lentivirus over-expression has in wild-type neurons. Responses

evoked using the SNAP-25 isoforms as well as SNAP-23 consisted of a fast EPSC,

identical to the one of control neurons. However, in all the cases, the EPSC amplitude

was slightly reduced when comparing to control neurons (2.45±0.28 nA, n=35 for

SNAP-25a; 2.30±0.37 nA, n=28 for SNAP-25b; and 2.34±0.44 nA, n=33 for SNAP-

23), Figure 12A and B. Although these differences were not significant, they would warn

about the delicate equilibrium of SNAP-25 in the exocytic machinery, as concluded from

first experiments using SFV (Owe-Larsson et al., 1999). For this reason, I proceed to

work only in the knock-out background.

In agreement with the results obtained by FM staining, none of the 35 Snap25 null

neurons or the 41 null neurons expressing only eGFP examined displayed any detectable

EPSC (roughly estimated as 0.019±0.003 nA and 0.024±0.004 nA respectively, Figure

12A and B). However they were able to generate normal action potentials when activated

in current-clamp mode (data not shown), indicating that these neurons were alive

although incapable of evoking a response. Since no differences was found between these

two groups, they were considered as the null group (0.022±0.002, n=76, p<0.0001;

compared to control neurons) for negative comparison.

The expression of SNAP-25 recovered synaptic transmission in knock-out neurons.

However, significant differences were found between both splice-variants. Evoked

responses of neurons rescued with SNAP-25b were similar to those of control neurons

(2.88±0.30 nA, n=53) but, interestingly, those EPSCs driven by SNAP-25a reached only
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65-70% of this value. (1.94±0.22, n=43; p<0.02 two-way ANOVA compared to

wildtype, or p<0.01 when compared to SNAP-25b rescue, Figure 12A and B).

Strikingly, Snap25-/- neurons expressing SNAP-23 produced a slower and

attenuated EPSC, which missed the fast component of release and presented additionally

Figure 12
Synchronous release of vesicles is produced by SNAP-25 but not SNAP-23
(A) Autaptic EPScs in neurons expressing SNAP-25a, SNAP-25b or SNAP-23 compared to eGFP-
expressing and uninfected neurons. Control (+/+; +/-) neurons are shown in black and Snap25-/-
neurons in grey. No evoked responsed were found in the absence of SNAP-25. Strikingly, Snap25-/-
neurons expressing SNAP-23 produced evoked responses lacking teh fast synchronous component. (B)
Mean±SEM EPSC amplitudes for the groups described above. SNAP-25a rescue led to smaller EPSC
amplitudes than SNAP-25b rescue or control. (C) (left panel) Integrated EPSCs for control and rescued
neurons. SNAP-23 rescued neurons presented slower release of vesicles. (right) Summary table containing
mean±SEM values for a two-exponential fit to the EPSC 1 second integral for control and rescued neurons.
Time constants for the fast (t1) and slow (t2) components as well as the fractional contribution of the
fast component were significantly reduced in SNAP-23 rescued cells when comparing to the rest of the
groups (p<0.001, Student’s t-test)

50 ms
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abundant asynchronous release for about 1 second after stimulation (Figure 12A). This

was an astonishing result since over-expression of SNAP-23 in wild-type neurons did not

change the characteristics of transmitter release.

This unusual evoked response presented an amplitude calculated of 0.198±0.046

nA (n=52; p<0.001 compared to SNAP-25b rescue, two-way ANOVA). When I

analyzed the kinetics of neurotransmitter release by integrating EPSCs over one second, I

observed that the charge liberated by SNAP-23 rescue (19.5±4.1 pC, p<0.05, two-way

ANOVA comparing to SNAP-25b rescue) was only 50-55% of the one of control

neurons (34.8±4.6 pC) and SNAP-25b rescue (37.4±4.2 pC), whereas SNAP-25a

rescued neurons displayed an intermediate phenotype (29.6±4.6 pC). The charge

transfer could be described by a sum of two exponential functions, showing the kinetics

of release (fig. 3C). The contribution of the fast component to the total release was

remarkably reduced in SNAP-23 rescue null neurons (34.5±4.0%) when compared to

the rest of the groups (see table in Figure 12C). The time constant corresponding to the

first component of release was found to be 6-fold slower in the neurons rescued by

SNAP-23 (43.9±6.1 ms; p<0.001; two-way ANOVA) than in control neurons or in each

of the SNAP-25 rescue (see table in Figure 12C) and also the time constant for the slow,

asynchronous component of release was slower for SNAP-23 (281.4±27.6 ms,

p<0.001; two-way ANOVA) than that for the rest of the groups (see table in Figure

12C).

E. GABAergic neurons use SNAP-25 but not SNAP-23 for

synaptic transmission

Very remarkable was the absence of inhibitory post-synaptic currents (IPSCs) in

any of the 76 neurons examined in the null group, even though they represented 11.9%

of the responses in wild-type hippocampal neurons. Immunofluorescence and neurotoxin

data led to the suggestion the GABAergic neurons preferentially use SNAP-23, rather

than SNAP-25, for synaptic release (Verderio et al., 2004; Frassoni et al., 2005).

However, a recent study carried out in parallel with ours demonstrated SNAP-25

immunofluorescence in GABAergic neurons and the absence of transmission in Snap25-/-

neurons. In addition, I found, in SNAP-25 knock-out hippocampal neurons rescued with
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SNAP-25a and SNAP-25b, a similar ratio of GABAergic responses (7.8% and 6.7%,

respectively) as in control wild-type neurons (11.9%). In order to find a definitive

answer, I examined SNAP-25/SNAP-23 rescue in striatal cultures, where GABAergic

neurons are more abundant. I found that survival of Snap25 null neurons was as reduced

as in hippocampal cultures (1.7±0.5% of control values, n=3, p<0.001 Student’s t-test)

and increased when SNAP-25a (72.3±8.2%, n=3), SNAP-25b (77.4±9.6%, n=3) or

SNAP-23 (75.2±8.5%, n=3) were expressed. IPSCs were missing in all the Snap25 null

neurons examined (n=14). However typical GABAergic evoked responses were present

Figure 13
SNAP-25 is essential for fast release in GABAergic neurons.
(A) Example traces of typical GABAergic responses in striatal neurons from control (+/+; +/-), Snap25
null neurons and null neurons rescued with SNAP-25a, SNAP-25b and SNAP-23. No inhibitory post-
synaptic currents (IPSC) were found in null, suggesting that inhibitory neurons need SNAP-25 for synaptic
transmission. Null neurons rescued by SNAP-25a or SNAP-25b evoked normal IPSCs. However, responses
in SNAP-23 rescue neurons were smaller and the fast component was abolished, mimicking the situation in
glutamatergic neurons. (B) Exampled of Snap25 null neuron rescued with SNAP-25b showing (left panel)
reversal of the IPSC after changing teh holding potential from -100 mV (black) to -20 mV (red) in 10
mV steps; and (right panel) blockage by the GABAA antagonist, bicuculine. (C) (left panel) Mean±SEM
values of the IPSC amplitudes. (right panel) Example of the integrated charge released by the IPSC for
each of the groups. The kinetics of evoked release for SNAP-23 rescue neurons was slower than for the
rest of the groups.
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when striatum -/- neurons were rescued with SNAP-25a (n=11) or SNAP-25b (n=14),

with no significant differences in the IPSC amplitude (Figure 13A and C). Post-synaptic

responses showing a reversal potential that followed the Nernst potential for chloride and

was susceptible to blockage by 20µM of the GABAA receptor antagonist bicucullinewere

considered GABAergic (Figure 13B). On the other hand, responses blocked by 7µM of

CNQX were considered glutamatergic. In addition, GABAergic responses were found in

striatum knock-out neurons expressing SNAP-23 (n=9). However, these responses

lacked the fast component of release (Figure 13B), similarly as observed in glutamatergic

rescue. These data show that neuronal survival in GABAergic neurons as well as normal

synchronized GABAergic transmissionis strictlySNAP-25 dependent.

F. Differential control of the releasable vesicle pools by

SNAP-25a and SNAP-25b

The differences observed in the evoked responses among the homologues in the

hippocampal cultures could be initially attributed, since the number of synapses was

similar, to changes in the release probability, Rp, or in the readily releasable pool (RRP),

according to the following relation:

pEPSC R RRP quantal size  
Equation 7

The applicationof a solution made hypertonic by the addition of 500 mM sucrose is

supposed to release all those vesicles that are already primed (Rosenmund and Stevens,

1996), designated here as ‘sucrose pool’. With this method, I provoked a small but

detectable current in the Snap25 null neurons. Integrating over time I estimated the

sucrose pool in 34.8±6.2 pC (n=39, Figure 14A) in this case. This indicates the existence

of a small ,SNAP-25-independent, reluctant vesicle pool, which can be elicited by sucrose

application but not at all by Ca2+-dependent stimulation. This pool could possibly

provide vesicles for spontaneous events in the null neurons (see below). Responses

elicited by sucrose in the SNAP-25a rescue group (287.2±54.7 pC, n=27) were 20-30%

smaller than those in the SNAP-25b rescue group (441.0±69.1 pC, n=31), though this

was not statically significant (p=0.16, Student’s t-test, Figure 14B). Similar tendency

towards a reduction was observed in SNAP-23 rescued neurons (246.5±68.7 pC, n=39;
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p>0.05). The release probability for the sucrose pool, calculated by dividing the charge

released in one EPSC during one second over the sucrose pool of the same neuron, was

similar in presence of SNAP-25a (0.11±0.02, n=22) or SNAP-25b (0.13±0.01, n=22).

Interestingly, the release probability was very similar in SNAP-23 rescue group

(0.12±0.03), which indicates that the fraction of the sucrose pool released in the

presence of SNAP-23, although highly asynchronous, is similar to the one release in the

presence of SNAP-25.

Recent experiments suggest that the size of the pool of vesicles released by sucrose

differs from the one released by stimulation trains in glutamatergic neurons(Moulder and

Mennerick, 2005). To complement the results, therefore, I used a stimulation train to

determine the readily releasable pool size by evoked release (RRPer), as previously

described (Schneggenburger et al., 1999; Otsu et al., 2004). The cumulative EPSC

amplitude was plotted versus time and a linear fit to a steady-state phase was extrapolated

to zero time in order to determine the RRPer size in absence of refilling. In addition,

assuming that the release is much faster than the priming process, then, the slope of the

Figure 14
Sucrose pool is recovered by expression of any of the SNAP-25 homologues
(A) Example traces of 500 mM sucrose application in control hippocampal neurons (+/+; +/-), Snap25
null neurons (-/-) and after rescue with SNAP-25a, SNAP-25b and SNAP-23. A small vesicle pool was
released by sucrose in knock-out neurons as well. (B) Mean±SEM values of the ‘sucrose pool’ for each
of the groups described above.
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fitted line would indicate the replenishment rate. Such stimulation trains also allow

examining the short-term properties of rescued neurons. This is important since a higher

degree of facilitationwas seen in hippocampal slices derived from a transgenic mouse with

a higher SNAP-25a/b ratio (Bark et al., 2004).

The stimulation by 100 action potentials at 40Hz caused evoked no release in the

Snap25 null neurons (Figure 15A and C). In knock-out neurons rescued with SNAP-23,

the stimulation protocol produced a large facilitation of the charge released (Figure 15A

and B), mainly due to an increase in the asynchronous component. In the rest of the

conditions, repetitive stimulation produced a rapid decrease of the EPSC amplitude until

a final steady current. The amplitudes during the train followed a double exponential

time course of comparable decay (data not shown). Similar values of RRPer for control

neurons and Snap25 null neurons rescued with SNAP-25b were estimated using this

method (14.04±2.13nA, n=45 and 15.12±2.22nA, n=35, respectively). However, the

pool size estimated for the rescue with SNAP-25a (6.15±1.35 nA, n=24, p<0.001, two-

way ANOVA, Tukey-Kramer test) was 55-60% reduced (Figure 15B). The

replenishment rate was also significantly reduced in SNAP-25a rescue (1.92±0.37 nA/s,

p<0.01, for SNAP-25a, two-way ANOVA, Tukey-Kramer test) when compared to

SNAP-25b rescue (3.21±0.43 nA/s) and control neurons (3.63±0.49 nA/s).

Additionally, the release probability, calculated as the ratio between the first stimulus in

the train and RRPer, was similar between neurons rescued by the SNAP-25 isoforms

(0.29±0.03, for SNAP-25a; and 0.24±0.03, for SNAP-25b) and control neurons

(0.23±0.03). The release probabilityestimated by depletion of the readily releasable pool

with high-frequency action potentials differed from the one estimated using sucrose pulse,

indicating that the ‘sucrose pool’ is greater than the RRPer, as previously reported

(Moulder and Mennerick, 2005). The significant decrease in RRPer, considering them

together with the tendency to a decrease in the sucrose pool size (Figure 14), the decrease

in the intensity of FM5-95-stained boutons (Figure 11) and the equal number of

synaptophysin-positive synapses demonstratethat priming under SNAP-25a and SNAP-23

action is slower than under SNAP-25b.
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These results, likewise, indicate that priming, rather than release-probability, is
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These results, likewise, indicate that priming, rather than release-probability, is decreased

in SNAP-25a. Release probability has a high relevance for short-term properties of

neurotransmission. A neuron will preferentially exhibit depression when the release

probability is high and facilitationwhen is low. Experimentsmeasuring hippocampal slices

from a knock-in mouse in which the developmental switch from SNAP-25a to SNAP-25b

was partly interrupted presented a higher degree of facilitation than normal wild-type

(Bark et al., 2004). For this reason, I also examined the pair-pulse behavior at 40Hz in the

Snap25 null autaptic cultures when rescued with each isoform. The pair-pulse ratio,

defined as the ration between the amplitude of the second EPSC and the first one in a

train, was very similar among the SNAP-25 rescued neurons (0.85±0.08, n=22, for

SNAP-25a; and 0.86±0.05, n=34, for SNAP-25b). Around two thirds of the cells

showed paired-pulse depression (PPD), with no differences observed between both

groups (0.70±0.05, n=16, for SNAP-25a; 0.72±0.04, n=24, for SNAP-25b). Pair-pulse

facilitation (PPF) mediated by SNAP-25a (1.26±0.15, n=6) was also very similar to

SNAP-25b (1.20±0.05, n=10). In contrast, pair-pulse ratio in SNAP-23 rescue neurons

showed significantly higher values (1.11±0.10, two-way ANOVA comparing to SNAP-

25b). Results were qualitatively equivalent when stimulation frequencies of 10Hz and

50Hz were used (data not shown). All these data indicates that the main consequence of

the developmental change from SNAP-25a to SNAP-25b expression is the increase of the

readily-releasable pool by the time that synaptic maturationis necessary.

Figure 15
High frequency stimulation (100@40Hz) reveals differences between SNAP-25a, SNAP-25b and
SNAP-23
(A) Example traces of high-frequency train stimulation (100 action potentials at 40Hz) of
snap25 null neurons (grey), SNAP-25b rescued neurons (red) and SNAP-23 (yellow).
Stimulation artifacts have been removed. (B) (left panel) Mean±SEM of amplitudes from baseline
to peak during high-frequency stimulation, which approximates to the charge released during
stimulation (right panel) Mean±SEM of normalized peak amplitudes from left panel (C) (left
panel) Mean±SEM values of EPSC amplitudes during high-frequency stimulation (right panel)
Mean±SEM values of normalized amplitudes from left panel. Only SNAP-25a and SNAP-25b are
displayed. Kinetics of depression did not show significant differences between both. (C) (left
panel) Example cumulative trace of the EPSC amplitudes during the 40Hz train stimulation (red).
The steady component was fitted with a straight line (blue) and back-extrapolated to 0-seconds
to calculated the readiliy releasable pool (RRPer) (right panel) Mean±SEM of the RRPer values
calculated as shown in the upper panel. RRPer was significantly smaller when SNAP-25a was
used for rescuing null neurons instead of SNAP-25b.
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G. Spontaneous release in the presence and absence of

SNAP-25 homologues

The reduction of the readily-releasable pool observed in null neurons rescued with

SNAP-25a can also be explained by a reduction of the vesicular quantal size (Equation 7).

Therefore, I examined the spontaneous release and miniature single events in the

hippocampal cultures. Miniature EPSCs (mEPSC) were detected in -/- neurons

(Washbourne et al., 2002), whose source could be the small sucrose pool previously

measured. Spontaneous activity without involvement of a conventional SNARE complex

has been already described (Schoch et al., 2001) and it could imply an independent

mechanism for spontaneous release (Sara et al., 2005). However, I found, surprisingly,

that the size of the events in the Snap25 null neurons (10.4±1.0 pA and 54.2±5.6 fC,

Figure 16
Smaller and fewer spontaneous events in the Snap25 null neurons are rescued by SNAP-25 and
SNAP-23.
(A) Example averaged mEPSC from single cells. Events were indistinguishable in shape; however
they were smaller in Snap25 null neurons. (B) Mean±SEM values of the mEPSC amplitudes. The
mEPSC size was significantly reduced in Snap25 null neurons. (C) Summary table with the
corresponding mean±SEM values of peak amplitudes and charge of the mEPSC and frequency. The
mEPSC rate was rescued by SNAP-25b and seemed slightly higher for SNAP-25a and SNAP-23.
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n=11, p<0.001, two-way ANOVA) was 50% smaller than in the control neurons

(21.5±1.7 pA and 107.3±7.0 fC, n=23), fig. 6. The frequency was also lower in null

neurons (0.63±0.20 Hz, p<0.02, two-way ANOVA) than in control neurons

(1.76±0.30 Hz), which can probably be explained by the reduced arborization and

synaptic contacts in the Snap25-/- neurons (Figure 16). The reintroduction of the SNAP-

25 homologues in the knock-out neurons led to a fully recovery of the mEPSC size and

frequency (17.6±1.8 pA, 2.69±0.63 Hz, n=19, for SNAP-25a; 20.4±1.3 pA,

1.80±0.34 Hz, n=25, for SNAP-25b; and 22.2±1.7 pA, n=23, for SNAP-23). The

mEPSC frequency appeared to be higher in the case of SNAP-25a and SNAP-23 than in

SNAP-25b, however this was not quite significant (p=0.0827,two-way ANOVA). There

are several possible explanations for the reduction in mEPSC size: first, the synaptic

vesicles might be smaller in absence of SNAP-25; second, the glutamate content might be

lower; and third, the number of post-synaptic receptors might be decreased or not

correctly clustered to the postsynaptic density, so the same concentration of

neurotransmitter produces a lower depolarization. The results cannot distinguish among

these possibilities. However, since SNAP-25 have been already implicated in the

trafficking of glutamate receptors (Lan et al., 2001b; Lan et al., 2001a; Washbourne et

al., 2004), a post-synaptic effect of SNAP-25 seems to be the best hypothesis to explain

the reduction in the quantal size.
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VIII. DISCUSSION

Neuronal communication fundamentally depends on two factors: the number of

synaptic contacts and the strength of each contact. For a neuron to expand and establish

new contacts, it needs the fusion of membrane containing vesicles at the growth cone.

Similarly, neurons use vesicular fusion to produce the release the neurotransmitter and

regulate the number of post-synaptic receptors. Over the last years, a common SNARE

mechanism has been proposed to mediate these vesicular fusion processes. It seems likely

that different sets of SNARE proteins participate in each of these processes. However,

only SNAP-25 appears to be involved in each of them. Different studies implicated

SNAP-25 in the priming of synaptic vesicles as well as in neurite outgrowth and, recently,

in trafficking of NMDA receptors (see SNAP-25 is a main character in the brain theater,

page 17). Despite the evident importance of SNAP-25 in neuronal function, studies of

this aspect are insufficient and incomplete. Except a few exceptions, most of the studies

have been performed in PC12 cells rather than in neurons and they covered only a

particular fusion process. One of the major drawbacks for a complete analysis of SNAP-

25 in neurons has been the lack of viability of Snap25 null neurons in primary cultures,

which has considerably limited the study. These difficulties have made impossible to

ascribe SNAP-25 isoforms to different neuronal functions.

This doctoral work confronts this gap in knowledge by producing long-term

expression of SNAP-25 in culture null neurons, offering, as a result, new insights into

how SNAP-25 is used by the neuron. Using a knock-out and rescue approach, I was able

to analyze the function of SNAP-25 in survival, neurite outgrowth and synaptic

transmission. With my results, SNAP-25 appears then as a multivalent protein, essential

for neuronal function. I demonstrate that SNAP-25 participates in the control of

arborization, through a mechanism that is vital for the neuron. I showed that the closest

homologue, SNAP-23, can substitute SNAP-25 in neurite outgrowth and survival and

that, in addition, can support synaptic vesicle release. However, this release lacks

synchronization, in both glutamatergic and GABAergic neurons, producing inefficient

synaptic transmission. I demonstrate that alternative splicing of SNAP-25 is used to
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enhance the priming properties of the synaptic vesicles through the raise in SNAP-25b

expression levels. In addition, I observe a decrease in the quantal content in absence of

SNAP-25, suggesting,thus, a post-synaptic function of SNAP-25.

A. Neuronal survival and maintenance of arborization is

dependent of SNAP-25 action

Generally speaking, absence of presynaptic proteins has little consequences in

mouse and neuron development, as shown in the case of, for example, synaptotagmin I

(Geppert et al., 1994), complexin 1 (Reim et al., 2001), basson (Altrock et al., 2003)

and RIMknock-out (Schoch et al., 2002). In some other cases, the absence is

occasionally fatal for the mutant mouse, although neuronal development is not

compromised. For instance, ablation of synaptobrevin-2, the vesicular SNARE partner of

SNAP-25, caused mutant mice to die after birth. Resembling SNAP-25 knock-out

neurons, no evoked responses could be measured but a certain spontaneous activity

persisted. However neuronal cultures preserved viability and arborization in this case

(Schoch et al., 2001). Similarly, double ablation of Munc13-1 and Munc13-2, which are

priming factors for exocytosis (Ashery et al., 2000; Rosenmund et al., 2002), produced

death of mutant mice upon birth. However, althoughthere was no detectable evidence of

synaptic activity or vesicle fusion, neurons grew and expanded normally in cultures

(Varoqueaux et al., 2002). It is well known that there exist an extensive selective

pressure on those cells that are not able to establish coherent connections during a critical

stage in development (Herrmann and Shatz, 1995). This led to suppose that lack of

synaptic activity could cause reduction in the survival. However, these experiments

demonstrated that neuronal survival and outgrowth in vitro is unrelated to fusion of

synaptic vesicles.

Nonetheless, it seems that both processes are critically dependent on SNAP-25.

The absence of SNAP-25 in culture neurons reduced the survival probability of the cell.

The reason for this fact is unknown. Previous studies showed that brain development

proceeds normally in Snap25-/- embryos, with no loss in cell density (Washbourne et al.,

2002). This would indicate the presence of some undetermined factor that would prevent
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cell degeneration in the brain. The co-culture of Snap25 null neurons with astrocytes

from wild-type NMRI mice, which would presumably provide neurotrophic or other

factors, did not avoid the degeneration in my study. Furthermore, promotion of synaptic

activity, using glutamate agonists or producing a persistent depolarized state with high

potassium, can not prevent decrease of viability in Snap25 null cultured neurons, as

previously shown (Washbourneet al., 2002). Interestingly, these findings are comparable

to those obtained from Munc18-1 knock-out neurons. Munc18-1 is a SM-protein that

binds, preferably, Qa-SNAREs such as syntaxin-1 and prevents the formation of SNARE

complexes (Dulubova et al., 1999; Misura et al., 2000; Yang et al., 2002). Ablation of

Munc18-1 abolished synaptic activity, similarly as Munc13-1/2. But interestingly, as in

the case of SNAP-25, neurons cultured from munc18-1 knock-out mice developed

normally for several days in vitro but they degenerated and died afterwards (Heeroma et

al., 2004). The reduced viability of Snap25 and munc18-1 null neurons indicates that,

although survival is independent on synaptic activity, the role of specific pre-synaptic

proteins is necessary for its maintenance. In this way, the fact that Snap25-/- neurons

exhibited a 50% decrease in arborization may suggest a relation between neurite

outgrowth and survival. The reduction of neuronal branching observed in absence of

SNAP-25 agrees, as well, with previous studies, which shown a participation of SNAP-25

on neuronal branching (Igarashi et al., 1996; Osen-Sand et al., 1996; Grosse et al.,

1999). It is known, furthermore, that neurite outgrowth shares similar molecular

machinery to synaptic vesicle exocytosis (Martinez-Arca et al., 2001). It is interesting to

note that SNAP-25 as well as Munc18-1 can interact with syntaxin 1, which participates

in the fusion of synaptic vesicles, but also with syntaxin 3 and, at least for SNAP-25,

syntaxin 13 (Hata and Sudhof, 1995; Morgans et al., 1996; Hirling et al., 2000), possible

players in the fusion of growth cone vesicles (see Neurons dispose SNAREs for

constitutive vesicle fusion). Therefore, an attractive hypothesis to explain the reduced

survival in Snap25 and Munc18-1 null neurons could be the contribution of both proteins

in a complex involved in the membrane transport implicated in arborization. The

relatively conserved branching and survival of neurons in embryonic brain and in young

cultures (within few days in vitro) may suggest that arborization proceeds in two different

stages. In an initial stage, neuron would start massive sprouting and extension so it can
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reach soon other neurons. Later, this process would be substituted by a local, more

controlled, expansion, probably aimed at the fine-tuning of connections.The mechanisms

involved in each phase are undisclosed, although, according to above discussed, SNAP-25

and Munc18-1 may participate by forming a complex that would mediate vesicle fusion

during the second stage. In this way, the malfunction of this ‘blossoming’ SNARE

complex would produce a deficit membrane cycling at this period, which would cause

neurites to retract, leading to apoptosis.

B. Presence of spontaneous release in Snap25 null neurons

reveals more about SNAP-25 functions

Absence of SNAP-25 completely abolished evoked Ca2+-dependent release

although it did not eliminate spontaneous release. Indeed, the decrease in the mEPSC

frequency detected was approximately similar to the decrease in synaptophysin-positive

synapses counted. Furthermore, the number of synapses labeled was reduced in the same

proportion as the number of branches, when comparing to control neurons. This fact

brings two remarkable conclusions. First of all, it indicates that although SNAP-25 is

involved in neurite outgrowth, it has not relevant role in synaptogenesis per se, since the

number of synapses per branch was not altered. Secondly, it suggests that spontaneous

release can proceed normally without SNAP-25. Classical studies evidenced that all

synapses manifest spontaneous release in absence of action potential (Katz, 1969) and this

is required for signaling leading to maturation and stability of neuronal networks

(McKinney et al., 1999; Verhage et al., 2000). This release is possibly due to a low

probabilityfusion of single vesicles, which source is supposed to be identical as the one for

evoked release (Del Castillo and Katz, 1954; Murthy and Stevens, 1999). My results

indicate, however, differences between the processes governing spontaneous and evoked

release. Whereas Ca2+-triggered fusion of synaptic vesicles is completely absent in

neurons lacking SNAP-25, spontaneous fusion seems normal. This would suggest that the

mechanism for spontaneous release differs from that for evoked release. Recent

experiments supports that both kind of release are sustained by different pool of vesicles

(Sara et al., 2005; Deak et al., 2006). Interestingly, neurons lacking synaptobrevin-2

present a 10-fold reduction of the frequency of mEPSC (Schoch et al., 2001), which
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would imply that this protein participates in both types of fusion. From my results, it

seems that SNAP-25 is mostly involved in triggered but not in spontaneous fusion. This

indicates that rather other SNAP-25 homologue, probably SNAP-29 or SNAP-47,

contributesto spontaneousfusion. However, SNAP-29 expression in Snap25 null neurons

might be insufficient for evoked release although still some vesicle recycling could be

present (work in progress). Yet, another possibility would be that a different set of Qb-,

Qc-SNAREs is used in spontaneous release.

In addition, the presence of spontaneous release in Snap25-/- neurons revealed a

reduction in mEPSC size. My study cannot discern the possible reason for that. Up to

now, deletion of any of the proteins involved in synaptic vesicle exocytosis did not affect

the quantal size. This would indicate that SNAP-25 has a singular function in the

regulation of the quantal size. It would be interesting to know whether Munc18-1 shares

this property with SNAP-25. However, since these neurons do not present spontaneous

release, the determination of quantal size in Munc18-1-/- neurons has been impossible. It is

known, interestingly, that SNAP-25 is involved in the trafficking of glutamate receptors

(Lan et al., 2001b; Lan et al., 2001a). Therefore, SNAP-25 could act, hypothetically,

through the priming and fusion of vesicles transporting the receptors to the membrane of

the dendritic spines. This action would probablybe possible by the formation of a SNARE

complex specific for this fusion. Alternative explanations to the involvement of SNAP-25

in the regulation of quantal size include the decrease in the synaptic vesicle size or

neurotransmitter content. However, until further experiment can corroborate any of

these, or other, hypotheses, the mechanism by which SNAP-25 is acting is still

speculative.

C. SNAP-25 action is common to glutamatergic and

GABAergic neurons

The presence of spontaneous release in the Snap25-/- neurons led to the suggestion

that other homologues might be responsible for some of the functions attributed to

SNAP-25. Such a SNAP-25 independent mechanism of release was proposed in inhibitory

neurons recently when (Verderio et al., 2004) observed increased resistance to BoNT/A

and BoNT/E in those neurons. Later, (Frassoni et al., 2005) reported a gradual decrease
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in SNAP-25 specific staining at later developmental stages in GABAergic neurons. The

use of SNAP-25 for these neurons was then proposed to be uniquely the initial step of

outgrowth and synaptic consolidation. (Verderio et al., 2004) showed, in addition, that

inhibitory neurons, despite lacking SNAP-25, were SNAP-23 immunopositive.

Therefore, SNAP-23 was proposed as substitute for the function of SNAP-25 in

GABAergic transmitterrelease.

Our results demonstrate, on the contrary, that both glutamatergic and GABAergic

transmission is abolished in absence of SNAP-25. Furthermore, as presented in this

doctoral work, the endogenous expression level of SNAP-23 is not able to compensate

for the lack of SNAP-25 in the null neurons. Thus, Snap25 null neurons present reduced

survival, defective neurite outgrowth and void of evoked release. Identical result was

obtained in striatal null neurons, which are predominately GABAergic, indicating that

those neurons require SNAP-25 as well. A parallel work with ours has recently reported

a co-localization of SNAP-25 and the GABAergic specific marker, VGAT, as well as a lack

of release in Snap25 null GABAergic neurons (Tafoya et al., 2006), which supports my

findings. In addition, I showed that rescue of GABAergic Snap25-/- neurons is complete

only when the SNAP-25 splice-variants are used, which is a definitive proof for a universal

SNAP-25 mechanism in both kind of neurons. There are many possibilities to explain the

discrepancy observed between Snap25-/- and treatment with BoNT. As discussed in

(Tafoya et al., 2006), a possibly lower susceptibility of GABAergic neurons surface to the

binding and incorporation of the neurotoxins could explain the disagreement. (Verderio et

al., 2004) also reported that, after exposure to KCl, GABAergic neurons presented an

increased intra-cellular calcium concentration when compared to glutamatergic neurons.

Since BoNT/A treatment can be overcome with high calcium concentrations (Capogna et

al., 1997; Trudeau et al., 1998; Sakaba et al., 2005), the higher calcium increase in

GABAergic neurons after KCl stimulation could, therefore, cancel the effect of the

neurotoxins. In the same study, (Verderio et al., 2004) observed a decrease in calcium

responsiveness to depolarizing stimuli when SNAP-25b was over-expressed in wild-type

neurons, which would alternatively explain the reduction in EPSC amplitude by SNAP-

25a or SNAP-25b over-expression in control neurons observed in my work. However,

they also reported that over-expression of SNAP-23 does not modify the calcium
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responsiveness after KCl exposure.However, in the view of my results, neurons seem to

use preferentially SNAP-25 over SNAP-23, even when that one is over-expressed and,

thus, the possible effect of SNAP-23 in calcium responsiveness could have been covered

by the endogenous SNAP-25 expression. It would be then interesting to clarify whether

SNAP-23 is involved in the regulationof calcium dynamics.

D. SNAP-25 and synaptotagmin homologues are coupled in

synchronous and asynchronous release

The expression of SNAP-23 produced the recovery of Ca2+-trigger responses in

Snap25-/- neurons, indicating that this homologue is able to couple exocytosis to a

calcium-sensor for release, as previously observed for SNAP-25 (Sørensen et al., 2002).

However, SNAP-23 was incompetent in producing synchronized release. It is generally

accepted that synaptotagmin-I synchronizes synaptic vesicle fusion by acting as calcium-

sensor for fast release (Fernandez-Chacon et al., 2001; Nishiki and Augustine, 2004). In

fact, the phenotype of null neurons rescued by SNAP-23 surprisingly resembled that of

synaptotagmin-I knock-out neurons (Geppert et al., 1994; Nishiki and Augustine, 2004;

Maximov and Sudhof, 2005). It is interestingto notice that whereas other members of the

family, such as synaptotagmin-III and synaptotagmin-VII, can bind to both homologues,

synaptotagmin-I binds only to SNAP-25 but not to SNAP-23 (Chieregatti et al., 2004).

Thus, when SNAP-23 is expressed in Snap25 null neurons, it would fail in the binding

with synaptotagmin-I and therefore release could not be synchronized, similarly as for

synaptotagmin-I knock-out neurons. Yet, since SNAP-23 can bind to some other

synaptotagmin members, calcium-triggered exocytosis is still possible. This finding,

furthermore, supports the idea that binding to SNAP-25 couples synaptotagmin-I to

release. The putative binding sites of this interactionhave been ascribed to the C-terminal

(Zhang et al., 2002) and the N-terminal of the SNARE-domain (Rickman et al., 2006),

which, remarkably, are highly conserved in SNAP-23. Therefore, the possible molecular

basis of this binding remains undetermined. As well as this, it is also not clear what

possible synaptotagmin would couple to SNAP-23 dependent exocytosis. Synaptotagmin-

III and synaptotagmin-VII are intrinsically slower calcium-sensors than synaptotagmin-I,

which agrees with a role in asynchronous release (Hui et al., 2005). They are relatively



84Discussion

abundant synaptotagmins, possibly localized to the synaptic plasma membrane instead to

the vesicle (Butz et al., 1999; Sugita et al., 2001).

Synaptotagmin-VII (syt7) is a highly probable candidate since it was found to

function as a plasma membrane calcium-sensor (Sugita et al., 2001). In addition it was

involved in calcium-dependent lysosomal exocytosis for reparation of the plasma

membrane in fibroblasts (Martinez et al., 2000; Reddy et al., 2001), insulin-containing

vesicle exocytosis in pancreatic-cells (Gao et al., 2000) and secretion in PC12 cells by

over-expression(Fukuda et al., 2004; Bhalla et al., 2005). The over-expression of SNAP-

23 in Snap25/Syt7 double knock-out neurons still produced an asynchronous evoked

response. However, the kinetics of this response were even more slower to those from

Snap25-/- neurons over-expressing SNAP-23. Although these data are still preliminary,

they suggest that synaptotagmin-VII triggers at least one part of the asynchronous release

(Figure 17).

Figure 17
Synaptotagmin-VII partially drives SNAP-23 exocytosis
(Upper panel) Example traces of autaptic EPSCs caused by SNAP-23 over-expression in Snap25
knock-out (yellow trace) and in Snap25/Syt7 double-knockout neurons (red trace). (Lower panel)
Example traces of integrated EPSCs for SNAP-25 over-expression in Snap25 knock-out neurons (red
trace) and for SNAP-23 over-expression in Snap25 knock-out (yellow trace) and in Snap25/Syt7
double-knockout neurons (red trace). EPSCs caused by SNAP-25b over-expression in double-
knockout and Snap25 knock-out neurons was comparable (data not shown)
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E. The alternative splicing in SNAP-25 provides supports

enhanced neurotransmission in adult synapses

The alternative expression of SNAP-25 isoforms during development and between

neurons and neuroendocrine cells would suggest that the isoforms might be involved in

differential developmental and functional roles. The regulated expression of the two

splice-variants might provide a molecular framework for differential use of the fusion

machinery during specific stages of neuronal maturation. Similarly, differential isoform

expression in adult synapses may reflect their capacity to undergo structural plasticity.

According to this view (Bark et al., 1995; Boschert et al., 1996), SNAP-25a is likely to

participate in axonal outgrowth by directing regulated fusion of ‘construction’ vesicles

that supply general membrane components needed for elongation throughout the neurite,

as well as for plasmalemma expansion at growth cones. On the other hand, the

predominance of SNAP-25b in adult nervous system would likely indicate that this

isoform is most important for release of classical neurotransmitters from synaptic vesicles.

With this doctoral work, it has been finally possible to study the alternative

expression of SNAP-25 variants in Snap25 null neurons, permitting the study of the

morphological and functional properties of each splice-variant in isolation. The

performance of both isoforms in developmental aspect was found, however, analogous.

No major differences between them were found in neuronal survival, neurite outgrowth

and synaptogenesis. By generating a mutation that perturbs alternative splicing, limiting

the expression of SNAP-25b in mice, (Bark et al., 2004) reported no neuroanatomical

differences in these animals, suggesting that brain development and morphogenesis were

not greatly impaired. My findings show that, although neuronal development in vitro is

markedly dependent on SNAP-25, it is presumably splice-variant unspecific. As discussed

above, the loss in plasma membrane-carrying vesicles at the growth sites would lead to

developmental deficits in cultures. The recovery of exocytosis by reintroduction of

SNAP-25 or SNAP-23 would repair the loss. In this work, I noticed identical kinetics of

destaining after FM loading, which would indicate that the exocytotic capabilities of these

isoforms were identical. In a developing neuron, constitutive vesicle fusion occurs slowly

in comparison to neurotransmitter release. It seems then reasonable to assume that
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outgrowth is not necessary affected by the rapidity of the fusion.

Therefore, the alternative splicing of SNAP-25 would rather provide a refinement

of the exocytic machinery towards different modes of transmitter release during

development. My results support this hypothesis. I found a decrease in the EPSC size

mediated by SNAP-25a when compared to SNAP-25b. Detailed analysis of the pool of

vesicles stainable by FM dyes, sucrose pool and readily-releasable pool evoked by action

potentials showed a consistent decrease, although moderate, in the priming process.

These results are, moreover, comparable to those obtained by the analysis of SNAP-25

function in chromaffin cells, which constitute one of the most potent models for the

accurate study of calcium-triggered exocytosis(Sørensen et al., 2003; Nagy et al., 2005).

SNAP-25 expression switches from ‘a’ to ‘b’ isoform after birth and SNAP-25b isoform

becomes the predominant species within the first seven days. Interestingly, the most

dramatic increase in SNAP-25b expression is observed between 3 and 8 weeks after birth,

a period when many final cortical synapses attain their mature morphology (Bark et al.,

1995). The alternative splicing would necessary, therefore, to provide a more efficient

neurotransmission by enhanced priming properties, which would be essential for

processing the large amount of information received from now on.
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IX. OUTLOOK AND PERSPECTIVES

A. Limitations and improvements of the method

1. Use of Lentivirus over other systems

This work represents the first time that the role of SNAP-25 in neuronal function is

studied extensively. This was possible thanks to the use of a knock-out and rescue

approach, which consists on the long-term expression of the different SNAP-25

homologues in Snap25-/- neurons. The use of the lentiviral system was fundamental for

this purpose. Expression mediated by this virus was permanent and started early enough

to supply sufficient SNAP-25 to the neuron and prevent death. Furthermore, the

expression level seemed to be adequate to produce rescue without affecting synaptic

transmission, which occurs with Semliki Forest Virus. These characteristics of the

lentiviral system confer certain advantage over other systems, like, for example, adeno-

associated viruses (AAV). The AAV type 2 is a non-enveloped, non pathogenic virus of

the parvovirus family, containing a linear, single-stranded DNA genome. AAV requires

coinfection with a helper virus for productive replication; otherwise the AAV genome

integrates into the host cell genome to establish latent infection (Bueler, 1999).

Recombinant AAV particles have been successfully used for gene transfer into culture

neurons, allowing for long-term transgene expression. However the onset of expression

after AAV infection is late (Ehrengruber et al., 2001), which would represent a handicap

when rescuing survival of Snap25 null neurons.

On the other hand, the adenovirus system is a system that produces a fast onset in

expression, within few days. This virus is a non-enveloped, double stranded DNA virus,

which, upon infection, persists in the nucleus as a linear, extrachromosomal molecule

producing a long-term sustained expression (Kugler et al., 2001). This technique

represents an advantage over the lentivirus system since it produces earlier expression.

For the cases where a fast expression of the protein is essential, like, for example, when

examining the initial axonal sprouting, this method should constitute an alternative.

However, the adenovirus expression is generally higher than the lentivirus one, which
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would represent a problem to consider, since overload of SNAP-25 impairs the

exocytotic machinery.

2. The study of SNAP-25 is continued in the brain

The analysis of the SNAP-25 function in adult brain is not possible because of the

perinatal death of Snap25-/- mice. Therefore, the possibilities for study SNAP-25 are

limited to exclusively the use of neuronal cultures. This doctoral thesis successfully uses

this alternative to gain further knowledge on SNAP-25. Studies on primary cultures

present a wide range of advantages, such as the great accessibility for genetical and

pharmacological manipulations as well as the enormous variety of analytical tools.

However, this is an in vitro system and, therefore, it does not reproduce faithfully what is

happening in the brain. For example, the reduction in survival of Snap25-/- neurons in

culture does not correspond with in vivo observations (Washbourne et al., 2002). The

reason for that could probably be the existence of compensatory mechanisms in the brain

that counteract the decrease in viability of these neurons and that are not present in

cultures. Furthermore, some of the mechanisms that enhance facilitation in brain neurons

expressing SNAP-25a are missing in cultures. Moreover, alternative splicing of SNAP-25

starts to be prominent after birth. In this doctoral work, I observe differences between

SNAP-25a and SNAP-25b in the regulation of the readily releasable pool. I also

demonstrate that, after 10-14 days in culture, neurons are mostly expressing SNAP-25b,

since the level of neurotransmission in SNAP-25b rescued null neurons matches the one

of wild-type neurons.However, some of the mechanisms that occur in adult brain could

still have strong influence in SNAP-25 and they could be unseen by the in vitro system.

For the study of the function of SNAP-25 in the brain, the ideal approach would be

the construction of a SNAP-25 conditional mouse. This genetic manipulation consists on

the alteration of a gene function under the activity of regulatory proteins, such as the

tetracycline transactivator (tTA) or Cre recombinase that either alter gene transcription

or inactivate genes by making deletions. The condition can be created in a defined

population of cells and at defined points in time, making the modification spatially and

temporally restricted (Nagy, 2000; Mills, 2001); for review, (Lewandoski, 2001). By this,

SNAP-25 could be selectively inactivated in one region of the brain, such as the



89Outlook and perspectives

hippocampus, without affecting the expression in the rest of the body. This would

propitiate the analysis of SNAP-25 at later stages in maturation and in the adult animal.

Furthermore, and since SNAP-25 has been linked to psychiatrical diseases, such as the

attention deficit hyperactivity disorder (Barr et al., 2000; Wilson, 2000), a conditional

SNAP-25 mouse would allow to investigate the function of SNAP-25 in behavior or

learning and memory.

However, since the production of a conditional mouse is difficult and problematic,

a possible alternative approach consists on the use of organotypic hippocampal slice

cultures (Stoppini et al., 1991; Bahr, 1995). This technique offers a preparation that

mimics very closely the situation in vivo since cultured slices retain their morphology and

much of their local connections. They are also able to mature physiologically during

culturing in a way comparable to what takes place in vivo (Muller et al., 1993). In this

way, slice cultures could be prepared from E18 embryonic brains and preserved for

several weeks. In addition, since this preparation offers possibility for viral transfection

(Ehrengruber et al., 2001), this would allow the introduction of the different SNAP-25

homologues in the same way as presented in this study. However, the preparation of

hippocampal slice cultures from small brain is still very challenging.

B. Continuation Projects

1. Functional analysis of SNAP-25 structure

a) SNAP-25/SNAP-23 chimeras

During this doctoral work, I show that SNAP-25 is involved in several processes in

the neuron, like arborization, survival and synaptic transmission. I observed, in addition,

that the closest SNAP-25 homologue, SNAP-23, shares the same functions as SNAP-25,

with the only exception of synchronization of release. This would indicate that SNAP-25

contains in its structure a part that is able to regulate synchronous release but that is

missing in SNAP-23. The side-by-side comparison of the structures of SNAP-25 and

SNAP-23 can, probably, bring some new clues about which part of the molecule is

participating in synchronizing the release and how it does. By using the appropriate

cloning techniques (described in Miscellaneous methods used for cloning), it is possible to
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design SNAP-25/SNAP-23 chimeras by combining different parts of each homologues.

These chimeras can be introduced into Snap25-/- neurons and analyze its effect. In this

way, the region corresponding to the structure that mediates synchronous release could

be, then, dissected.

b) SNAP-25 point mutations

As I presented in this thesis, I found no significant differences in the pair-pulse ratio

between SNAP-25a and SNAP-25b rescued neurons. However, (Bark et al., 2004)

proposed that SNAP-25a enhances facilitation of synaptic transmissionin brain slices. This

discrepancy would mean that the facilitation mechanism that is present in the brain is

missing in cultures. This facilitation would contribute to the selective strengthening of

synaptic contacts in the central nervous system during activity-dependent synapse

elimination (Lichtman et al., 1985). In a simplified model for short-term plasticity, the

amplitude of each EPSC in a train of action potentials depends on the size of the vesicle

pool available for release, RRP. This pool is replenished according to a steady

‘replenishment rate’. In addition, the release probability, Rp, is not constant, since it

mainly depends on the residual intracellular calcium concentration (Zucker and Regehr,

2002):
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Equation 8
Simplify model for short-term plasticity

According to this model, facilitation (EPSC1/EPSC0) can be enlarged, mainly, by a

decrease in Rpbasal or by an increase in the calcium-dependency of Rp. I present in this

doctoral thesis that substitution of SNAP-25 by SNAP-23 has severe consequences in the

fast triggering of release mediated by synaptotagmin-I, although no significant differences

in the release probability exist between SNAP-25a and SNAP-25b rescued neurons. (Bark
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et al., 2004) proposed that the mechanism by which SNAP-25a enhances facilitation in

brain slices is an improved calcium affinity of the exocytotic machinery. Previous studies

have suggested that SNAP-25 can modify the calcium-exocytosis coupling, which would

possibly modify the release probability.For example, experiments using botulinumtoxins

have suggested a relation between SNAP-25 and the calcium signal (Chen et al., 1999;

Gerona et al., 2000). The structure revealed by X-ray crystallography showed several

divalent cation-binding sites on the SNARE domain(Sutton et al., 1998). (Verderio et al.,

2004) observed a modulation of calcium dynamics by SNAP-25. In addition,

overexpression of a mutant SNAP-25 bearing a double residue substitution

(E170A/Q177A) decreases the calcium cooperativity of secretion in chromaffin cells

(Sørensen et al., 2002). These experiments indicate that SNAP-25 is involved in the

transductionof the calcium signal by a very precise mechanism.

The functional analysis of the structure of SNAP-25 would help to understand how

SNAP-25 is involved in calcium dynamics. This can be done by the introduction of

specific point mutations in SNAP-25 and the expression in the Snap25 null mouse. This

approach could be used on the study of other functions of SNAP-25 as well. For example,

a mutation in the layer 5 of SNAP-25, which absolutely abolishes secretion in chromaffin

cells (Sørensen et al., 2006), produced a reduction in the survival of both wild-type and

Snap25-/- null neurons (preliminaryresults).

2. Mechanisms of spontaneous and synchronous release

The presence of spontaneous release in Snap25-/- neurons raised the question

whether other SNAP-25 homologues could drive this release. From all the possible

candidates, SNAP-29 seems to be the most likely since it is present at the synapses,

regulating synaptic transmission to some extent (Su et al., 2001; Pan et al., 2005). Using

the knock-out and rescue approach, it is possible to express SNAP-29 in Snap25 null

neurons and examine neuronal function under these conditions. SNAP-47, although it

seems to participate in endosomal transport (Holt et al., 2006), could be also involved in

spontaneous release and it should be examined in parallel.

This doctoral thesis describes how the rescue of SNAP-23 in Snap25 null is very

similar to the phenotype observed in absence of synaptotagmin-I. I concluded that this



92Outlook and perspectives

could be due to a lack of binding between SNAP-23 and synaptotagmin-I. However, the

mechanisms by which SNAP-23 produces this effect are obscure. As discussed above,

other members of the synaptotagmin family could trigger the SNAP-23 release.

Therefore, it would be interesting to examine the function of SNAP-23 in absence of

synaptotagmins. This could be possible by disrupting the binding site between SNAP-23

and synaptotagmin members using point-mutations or by deleting synaptotagmins using

knock-out mice. For example, the expression of SNAP-23 into SNAP-25/synaptotagmin-

VII double knock-out neurons caused slower kinetics in the evoked release than its

expression in SNAP-25 knock-out neurons (Figure 17).

3. Modulation of quantal size by SNAP-25

In this study, I detect a reduction in the mEPSC size in absence of SNAP-25,

compatible with a decrease in the AMPA receptor trafficking. This kind of trafficking has

been involved in several mechanisms of long-term plasticity (Malinow and Malenka,

2002). Production of long-term properties in hippocampal cultures is difficult and it has

not been possible until recently, using very specific protocols (Carroll et al., 1999; Lu et

al., 2001). Interestingly, these studies observed that long-term depression and

potentiation depends on the exo- and endocytosis of AMPA receptors, respectively.

Therefore, it seems important to examine whether SNAP-25 is involved in AMPA

receptor trafficking. In the same way, since it is likely that other receptors share a

common SNAP-25-dependent trafficking mechanism, like NMDA receptors (Lan et al.,

2001b; Lan et al., 2001a), the study should be extended to other families of receptors.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome&itool=toolbar
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