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J. Hausen, D. R. Heath-Brown, J. Heinloth, M. Joyce, E. Peyre, and P.
Salberger. I am grateful for their suggestions and advice.

Parts of this work were done while visiting the University of Oxford
(March 2004), Rice University (February 2005), the CRM at Université de
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Introduction

The topic of this thesis is the geometry and arithmetic of Del Pezzo
surfaces. Prime examples are cubic surfaces, which were already studied
by Cayley, Schläfli, Steiner, Clebsch, and Cremona in the 19th century.
Many books and articles followed, for example by Segre [Seg42] and Manin
[Man86].

On the geometric side, our main goal is to understand the geometry of
universal torsors over Del Pezzo surfaces. On the arithmetic side, we apply
universal torsors to questions about rational points on Del Pezzo surfaces
over number fields. We are concerned with the number of rational points of
bounded height in the context of Manin’s conjecture [FMT89].

More precisely, a smooth cubic surface S in three-dimensional projective
space P3 over the field Q of rational numbers is defined by the vanishing of
a non-singular cubic form f ∈ Z[x0, x1, x2, x3]. Its rational points are

S(Q) := {x = (x0 : x1 : x2 : x3) ∈ P3(Q) | f(x) = 0}.

If S(Q) 6= ∅, then S(Q) is dense with respect to the Zariski topology, i.e.,
there is no finite set of curves on S containing all rational points.

One natural approach to understand S(Q) is to ask how many rational
points of bounded height there are on S. Here, the height of a point x ∈ S(Q),
represented by coprime integral coordinates x0, x1, x2, x3, is

H(x) := max{|x0|, |x1|, |x2|, |x3|}.

The number of rational points on S whose height is bounded by a positive
number B is

NS,H(B) := #{x ∈ S(Q) | H(x) ≤ B}.

As it is difficult to determine the exact number NS,H(B), our question is:
How does NS,H(B) behave asymptotically as B tends to infinity?

It is classically known that S contains 27 lines defined over the algebraic
closure of Q. If a line ` ⊂ S is rational, i.e., defined over Q, the number
of rational points on ` bounded by B behaves asymptotically as a non-zero
constant multiple of B2. The behavior of NS,H(B) is dominated by the
rational points lying on rational lines, so we modify our question as follows:

Question. Let U be the complement of the lines on a smooth cubic
surface S. How does

NU,H(B) := #{x ∈ U(Q) | H(x) ≤ B}

behave asymptotically, as B →∞?

1



2 INTRODUCTION

The answer to this question depends on the geometry of S. Suppose that
S is split , i.e., all 27 lines on S are defined over Q. Then Manin’s conjectural
answer is:

Conjecture. There is a positive constant c such that

NU,H(B) ∼ c ·B · (logB)6,

as B →∞.

This conjecture is open for smooth cubic surfaces. Analogous state-
ments have been proved for some smooth Del Pezzo surfaces of degrees ≥ 5
([BT98], [Bre02]).

An approach which is expected to lead to a proof of Manin’s conjecture
for Del Pezzo surfaces is the use of universal torsors. For the projective
plane, this method is used as follows: In order to estimate the number of
rational points x ∈ P2(Q) whose height H(x) is bounded by B, we observe
that these points are in bijection to the integral points

y = (y0, y1, y2) ∈ A3(Z) \ {(0, 0, 0)}

which satisfy the coprimality condition

gcd(y0, y1, y2) = 1

and the height condition

max{|y0|, |y1|, |y2|} ≤ B,

up to identification of y and −y. The number of these points y can be
estimated using standard methods of analytic number theory.

There is a similar bijection between rational points of bounded height
on a cubic surface S and integral points on a certain affine variety TS , which
is called the universal torsor (see Chapter 2 for the definition), subject to
certain coprimality and height conditions.

We can establish such a bijection in two ways. On the one hand, this
can be done by elementary transformations of the form f defining S such as
introducing new variables which are common divisors of previous coordinates
(see Chapter 9 for an example). This way of passing to the universal torsor
has been used in the proof of Manin’s conjecture for some Del Pezzo surfaces
of other degrees, e.g., [BB04]. We will see that these transformations are
motivated by the geometric structure of S.

On the other hand, we can compute universal torsors via Cox rings. The
Picard group Pic(S) of isomorphy classes of line bundles on S is an abelian
group which is free of rank 7 if S is a split cubic surface. Effective line
bundles have global sections, and the global sections of all isomorphy classes
of line bundles on S can be given the structure of a ring, resulting in the
Cox ring Cox(S) (see Chapter 2). Its generators and relations correspond to
the coordinates and equations defining an affine variety A(S) which contains
the universal torsor TS as an open subset.

Batyrev and Popov [BP04] have determined the Cox ring of smooth
Del Pezzo surfaces of degree ≥ 3. In the case of smooth cubic surfaces, this
realizes the universal torsor as an open subset of a 9-dimensional variety,
defined by 81 equations in 27-dimensional affine space (see Section 3.3).
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However, estimating the number of points on the universal torsor seems to
be very hard in this case.

Schläfli [Sch63] and Cayley [Cay69] classified singular cubic surfaces.
For the cubic surface

S1 : x1x
2
2 + x2x

2
0 + x3

3 = 0

with a singularity whose type is denoted as E6, Hassett and Tschinkel
[HT04] have calculated the Cox ring. It is a polynomial ring in 10 variables
with one relation, resulting in a universal torsor which is a hypersurface in
10-dimensional affine space. One of our main results is (see Theorem 9.1):

Theorem. Manin’s conjecture holds for the E6 cubic surface S1.

Joint work with de la Bretèche and Browning resulting in a more precise
asymptotic formula for this surface will appear in [BBD05].

This thesis is organized in two parts. Part 1 is concerned with Cox rings
and universal torsors of smooth Del Pezzo surfaces and of generalized Del
Pezzo surfaces, i.e., minimal desingularizations of singular ones. We work
over algebraically closed fields of characteristic 0. In Chapter 1, we give
an exposition of the structure and classification of smooth, singular, and
generalized Del Pezzo surfaces. In Chapter 2, we recall the definition of
universal torsors and Cox rings and collect some preliminary results on the
generators and relations in the Cox ring of Del Pezzo surfaces.

Our main results concerning universal torsors and Cox rings of general-
ized Del Pezzo surfaces are:

(1) We calculate the Cox ring of smooth cubic Del Pezzo surfaces ex-
plicitly, using results of Batyrev and Popov [BP04] on the relations
up to radical in Cox(S) for smooth Del Pezzo surfaces of degree ≥ 3.
We extend these results to surfaces of degree 2 and 1 (Theorem 3.2).

(2) We find all generalized Del Pezzo surfaces of degree ≥ 3 whose
universal torsor can be realized as a hypersurface in affine space, or
equivalently, where the ideal of relations defining the Cox ring has
only one generator (Theorem 5.1). We determine the Cox ring in
these cases.

(3) We give a method to determine generators and the ideal of relations
(up to radical) of the Cox ring of any generalized Del Pezzo surface
of degree ≥ 2 (Theorem 6.2 and Section 6.3).

Skorobogatov [Sko93] and Salberger observed that the universal torsor
of a quintic Del Pezzo surface is an open subset of a Grassmannian.

Furthermore, for a smooth cubic surface S, the 27 coordinates of the
affine space containing the universal torsor correspond to the lines on S.
Their classes in the Picard group can be identified with the weights of a 27-
dimensional representation of the linear algebraic group associated to the
root system E6.

Batyrev conjectured that this is reflected geometrically by an embedding
of the universal torsor of S in a certain homogeneous space associated to
this representation, similar to the Grassmannian in the quintic case. A
corresponding result was proved by Popov [Pop01] in degree 4.
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(4) We prove Batyrev’s conjecture that universal torsors of smooth Del
Pezzo surfaces of degree 3 or 2 can be embedded naturally in the
affine cone over a homogeneous space associated to certain linear
algebraic groups (Theorem 4.1).

In Part 2, we apply our results of Part 1 to Manin’s conjecture for
certain Del Pezzo surfaces. In Chapter 7, we give a detailed introduction to
the usage of torsors towards Manin’s conjecture for Del Pezzo surfaces.

Our main results concerning Manin’s conjecture are:
(5) We give a formula for a certain factor of the leading constant, as

proposed by Peyre [Pey95], in Manin’s conjecture for smooth and
singular Del Pezzo surfaces S. It is the volume of a polyhedron
related to the cone of effective divisor classes on S. Our formula
allows to compute this constant directly from the degree and the
types of singularities on S (Theorem 8.3 and Theorem 8.5).

(6) We prove Manin’s conjecture for a cubic surface with a singularity
of type E6 (Theorem 9.1).

(7) We prove Manin’s conjecture for a split quartic surface with a sin-
gularity of type D4 (Theorem 10.1).



Part 1

Universal torsors of Del Pezzo
surfaces





CHAPTER 1

Del Pezzo surfaces

1.1. Introduction

This chapter gives an exposition of the structure and classification of
smooth and singular Del Pezzo surfaces. For smooth Del Pezzo surfaces,
a standard reference is [Man86], while [DP80] and [AN04] are modern
accounts of the structure and classification of singular Del Pezzo surfaces.

Schläfli [Sch63] and Cayley [Cay69] classified singular cubic surfaces
in the 1860’s. Timms [Tim28] and Du Val [DV34] analyzed them more
systematically.

The basic objects of our studies are surfaces. For our purposes, these
are projective varieties of dimension 2 over a field K. In this chapter, we
assume that the ground field K has characteristic zero and is algebraically
closed. For basic notions of algebraic geometry, we refer to Hartshorne’s
book [Har77].

We are mainly interested in the following geometric invariants of a
smooth surface S:

Picard group: A prime divisor is an irreducible curve on S. The
free abelian group generated by the prime divisors is the divisor
group Div(S). Its elements are called divisors; non-negative linear
combinations of prime divisors are effective divisors. Considering
divisors up to linear equivalence (cf. [Har77, Section II.6]) leads
to the Picard group Pic(S) of divisor classes as a quotient of the
divisor group.

Divisor classes correspond to line bundles, or invertible sheafs,
on S; see [Har77, Section II.6] for details. We will freely go back
and forth between these points of view; we will not distinguish
between divisors and their classes whenever this cannot cause con-
fusion.

Intersection form: For smooth prime divisors which intersect trans-
versally, the intersection number is simply the number of intersec-
tion points. This can be extended to a bilinear form on Div(S)
and induces the intersection form (·, ·) on Pic(S) (cf. [Har77, Sec-
tion V.1]). Let (D,D) be the self intersetion number of a divisor
(class) D.

Canonical class: The canonical class KS of a smooth surface S, as
defined in [Har77, Section II.8], is the second exterior power of
the sheaf of differentials on S. Its negative −KS is the anticanon-
ical class. If S is a singular normal (see [Har77, Exercise 3.17])
surface with rational double points (see [Art66]), we define its

7



8 1. DEL PEZZO SURFACES

anticanonical class −KS such that its pull-back under a minimal
desingularization f : S̃ → S is −KeS .

Ampleness: A divisor class L ∈ Pic(S) is very ample if it defines
an embedding of S in projective space (see [Har77, Section II.5]),
while L′ ∈ Pic(S) is ample if a positive multiple of L′ is very ample.

Blow-ups: The blow-up of a point on a surface replaces this point
in a particular way by a divisor which has self intersection number
−1 and which is isomorphic to the projective line P1 (cf. [Har77,
Section I.4]).

In this chapter, we study the following classes of surfaces:
• A smooth Del Pezzo surface is a smooth surface whose anticanonical

class is ample.
• A singular Del Pezzo surface is a singular normal surface whose sin-

gularities are rational double points and whose anticanonical class
is ample.

• A generalized Del Pezzo surface is either a smooth Del Pezzo surface
or the minimal desingularization of a singular Del Pezzo surface.

The degree of a generalized Del Pezzo surface S is the self intersection
number of its anticanonical class. Generalized Del Pezzo surfaces of degree
9− r ≤ 7 can be obtained by a sequence of r blow-ups of P2.

This chapter is structured as follows: In Section 1.2, we study how
blow-ups affect basic invariants of surfaces such as the Picard group with its
intersection form and the anticanonical class. Section 1.3 is concerned with
smooth Del Pezzo surfaces and their prime divisors with self intersection
number −1, which we call (−1)-curves. In Section 1.4, we describe how
certain Weyl groups and root systems are connected to the configuration of
(−1)-curves on smooth Del Pezzo surfaces.

Section 1.5 is concerned with singular and generalized Del Pezzo surfaces.
The desingularization of singularities of singular Del Pezzo surfaces gives
rise to prime divisors with self intersection number −2, which we call (−2)-
curves. In Section 1.6, we show how the (−2)-curves of a generalized Del
Pezzo surface can be interpreted as the roots of root systems in the Picard
group of a smooth Del Pezzo surface of the same degree, and how the (−1)-
curves of these Del Pezzo surfaces are related. This allows the classification
of singular Del Pezzo surfaces. In Section 1.7, we explain how to recover
configurations of blown-up points from the configuration of (−1)- and (−2)-
curves on generalized Del Pezzo surfaces. In Section 1.8, we determine which
generalized Del Pezzo surfaces are toric varieties [Ful93].

1.2. Blow-ups of smooth surfaces

A classical construction in algebraic geometry is the blow-up of a point
on a surface.

Lemma 1.1. Suppose S is a smooth surface. Let π : S′ → S be the
blow-up of p ∈ S.

• The preimage E := π−1(p) is isomorphic to P1.
• The map π is a birational morphism which is an isomorphism be-

tween S′ \ E and S \ {p}.
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• The blow-up increases the rank of the Picard group by one:

Pic(S′) ∼= Pic(S)⊕ Z.

Here, E = (0, 1).
• Let −KS be the anticanonical class on S. Then −KS′ = (−KS ,−1)

is the anticanonical class on S′.

In this context, we have the following terminology.
• The curve E ⊂ S′ is called the exceptional divisor of the blow-up
π : S′ → S.

• For a prime divisor D on S, the strict (or proper) transform of D
D̂ is the prime divisor which is the closure of π−1(D \ {p}).

• Let α be the multiplicity of p ∈ S on the prime divisor D. The
total transform D′ of D is D′ := D̂ + αE.

The canonical map π∗ : Pic(S) ↪→ Pic(S′) maps L ∈ Pic(S) to L′ = (L, 0).
If L is the class of a divisor D, then L′ is the class of the total transform D′

of D. The class of the strict transform D̂ of D is (L,−α).
Whenever we use the same symbol for a divisor on a surface S and its

blow-up S′, it shall denote on S′ the strict transform of the divisor on S,
unless specified differently.

Lemma 1.2. Let π : S′ → S be the blow-up of p ∈ S. Using the isomor-
phism Pic(S′) ∼= Pic(S)⊕ Z as above, we have:

• The self intersection number of the exceptional divisor E is −1, and
E does not intersect the total transforms of divisors on S.

• Let L1 = (M1, α1) and L2 = (M2, α2), where Li ∈ Pic(S′), Mi ∈
Pic(S), αi ∈ Z. Then the intersection form on Pic(S′) is

(L1, L2) = (M1,M2)− α1 · α2.

• In particular, if the multiplicity of p on D is α, then (D̂, D̂) =
(D,D)− α2, where D̂ is the strict transform of D.

A prime divisor D with self intersection number (D,D) = n is called
(n)-curve. A negative curve is an (n)-curve with n < 0. By Lemma 1.2,
blowing up points creates negative curves. They have the following property.

Lemma 1.3. Let E be an effective divisor with negative self intersection
number. Then the space of global sections of the corresponding line bundle
O(E) has dimension dimH0(S,O(E)) = 1.

Proof. Since E is effective, O(E) has global sections.
Suppose dimH0(S,O(E)) ≥ 2. Then we can find two linearly indepen-

dent sections s1, s2. As (E,E) is the number of intersection points of the
effective divisors corresponding to s1 and s2, it must be non-negative. �

Therefore, the effective divisor corresponding to a divisor class with neg-
ative self intersection number is unique.

Remark 1.4. As explained in [HT04, Section 3], the Picard group is
partially ordered : For L,L′ ∈ Pic(S), we have L � L′ if L′−L is an effective
divisor class. If furthermore L 6= L′, we write L ≺ L′.
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Example 1.5. Consider the projective plane P2 over K. Its Picard group
Pic(P2) is isomorphic to Z, where we identify the class of a line in P2 with
1 ∈ Z. We write OP2(k) for the element of Pic(P2) corresponding to k ∈ Z.
The anticanonical class −KP2 ∈ Pic(P2) is OP2(3). The intersection number
of OP2(a) and OP2(b) is a · b.

We are mainly interested in blow-ups of P2 in r points.

Definition 1.6. For 1 ≤ r ≤ 8, the blow-up π : S̃r → P2 of P2 in
p1, . . . , pr with exceptional divisors E1, . . . , Er is given as follows:

Let S̃0 := P2, and for 1 ≤ i ≤ r, let

πi : S̃i → S̃i−1

be the blow-up of a point pi ∈ S̃i−1, with exceptional divisor E′
i on S̃i. Then

π := π1 ◦ · · · ◦ πr : S̃r → P2,

and Ei is the strict transform of E′
i under πi+1, . . . , πr.

Lemma 1.7. A standard basis of Pic(S̃r) ∼= Zr+1 is given by l0, . . . , lr,
where l0 := π∗(OP2(1)) and, for i ∈ {1, . . . , r},

li := (πi+1 ◦ · · · ◦ πr)∗(E′
i)

is the total transform of the exceptional divisor E′
i on S̃i. The intersection

form is given by

(l0, l0) = 1, (l1, l1) = · · · = (lr, lr) = −1, (li, lj) = 0 if i 6= j.

It is non-degenerate. In terms of this basis,

−KeSr
= 3l0 − (l1 + · · ·+ lr)

is the anticanonical class.

For an effective divisor D on S̃j , we say that D passes through pk (with
k > j) if the strict transform of D on S̃k−1 (respectively D itself if k = j+1)
contains pk.

Note that Er = lr, but for i < r, the classes Ei and li (i.e., the strict
and the total transform of the i-th exceptional divisor E′

i on S̃i) differ if E′
i

passes through one of pi+1, . . . , pr.

Consider the following convex cones [Zie95] in

Pic(S̃r)R := Pic(S̃r)⊗Z R ∼= Rr+1.

Definition 1.8. The effective cone Λeff(S̃r) is the closed convex cone
in Pic(S̃r)R generated by the classes of effective divisors.

The nef cone Λ∨eff(S̃r) is the closed convex cone generated by numerically
effective, or nef divisor classes, i.e., divisor classes which have non-negative
intersection number with all classes of effective divisors.

The nef cone is the dual of the effective cone with respect to the inter-
section form. By Kleiman’s criterion [Kle66], a divisor class is ample if and
only if it is in the interior of the nef cone.
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1.3. Smooth Del Pezzo surfaces

In this section, we describe basic properties of smooth Del Pezzo surfaces.

Definition 1.9. A smooth Del Pezzo surface is a smooth surface whose
anticanonical class is ample.

For 1 ≤ r ≤ 8, distinct points p1, . . . , pr in P2 are in general position if
• there is no line in P2 containing three of them,
• if r ≥ 6, no conic in P2 contains six of them,
• if r = 8, no cubic curve in P2 containing all eight points has a

singularity in one of them.

Lemma 1.10. In the situation of Definition 1.6, the points p1, . . . , pr

are in general position if and only if every prime divisor D on S̃r has self
intersection number (D,D) ≥ −1.

Proof. Consider how the self intersection numbers of prime divisors in
P2 behave under blow-ups (Lemma 1.2). See also [DP80, Section II.3]. �

Theorem 1.11. A surface S is a smooth Del Pezzo surface if and only
if S = P2, or S = P1 × P1, or S is the blow-up Sr of P2 in r ≤ 8 points in
general position. The degree is nine for P2, eight for P1 × P1, and 9− r for
Sr.

Proof. See [Man86, Theorem 24.4]. �

Remark 1.12. In the notation of Definition 1.6 and Lemma 1.7, the
strict and total transforms Ei and li of E′

i coincide if p1, . . . , pr are in general
position. In this case, we usually use the notation Si := S̃i and H := l0, so
the standard basis is given by H,E1, . . . , Er.

If D ∈ Pic(S) is an effective divisor on a Del Pezzo surface S, then
(−KS , D) > 0. By Lemma 1.10, the only negative curves on S are (−1)-
curves. By [Man86, Theorem 24.3], we have (D,−KS) = 1 and D ∼= P1

exactly when D is a (−1)-curve. The proof uses the adjunction formula
[Har77, Proposition V.1.5].

Remark 1.13. For r ≤ 6, the anticanonical class −KSr is φ∗r(OP9−r(1))
for the anticanonical embedding

φr : Sr ↪→ P9−r.

The (−1)-curves on Sr are mapped exactly to the lines on φr(Sr) ⊂ P9−r.
The image φ6(S6) of degree 3 in P3 is given by a non-singular cubic form,

while φ5(S5) of degree 4 in P4 is the intersection of two quadrics.

There are no (−1)-curves on the Del Pezzo surfaces P2 and P1 × P1.

Lemma 1.14. Let Sr be the blow-up of p1, . . . , pr ∈ P2 in general position.
The (−1)-curves on Sr are the exceptional divisor E1, . . . , Er of the blow-up
and the strict transforms of the following curves in P2:

• If r ≥ 2, the lines in P2 through two of the blown-up points.
• If r ≥ 5, the conics through five of the blown-up points.
• If r ≥ 7, the cubics through seven blown-up points, one of them a

double point of the cubic.
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• If r = 8, the quartics through the eight points pi, three of them
double points.

• If r = 8, the quintics through the eight points, six of them double
points.

• If r = 8, the sextics through the eight points, seven of them double
and the eighth a triple point of the sextic.

The number Nr of (−1)-curves on Sr can be found in Table 1.1.

Proof. See [Man86, Theorem 26.2]. �

r 1 2 3 4 5 6 7 8
Nr 1 3 6 10 16 27 56 240

Table 1.1. The number of (−1)-curves on Sr.

The class D ∈ Pic(Sr) of the strict transform of a curve D′ in P2 of
degree d which has multiplicity λi in pi for i ∈ {1, . . . , r} is

D = dH −
r∑

i=1

λiEi.

Lemma 1.15. For 2 ≤ r ≤ 8, let Sr be a smooth Del Pezzo surface of
degree 9− r. The (−1)-curves on Sr generate the effective cone Λeff(Sr).

Proof. See [BP04, Corollary 3.3]. �

Remark 1.16. For 2 ≤ r ≤ 7, the semigroup of effective divisor classes
in Pic(Sr) is generated by the (−1)-curves, i.e., every effective divisor class
is a non-negative linear combination of the (−1)-curves. However, for r = 8,
this is only true for every effective divisor class besides the anticanonical
class −KS8 ([BP04, Corollary 3.3]).

Remark 1.17. By [Har77, Example II.7.1.1], the automorphisms of P2

are given by the action of elements of PGL3(K) = GL3(K)/K∗ of invertible
3× 3-matrices over K up to non-zero multiple. For every set of four points
in general position in P2, we can find a unique element of PGL3(K) which
maps them to four arbitrarily chosen points in general position. Hence, for
r ≥ 4 points p1, . . . , pr in general position, we may assume that

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1).

Furthermore, the requirements for points in general position show that the
remaining points must have non-zero coordinates.

This also shows that smooth Del Pezzo surfaces of degree ≥ 5 are unique
up to isomorphism, while in degree 9−r ≤ 4, we have a (2·(r−4))-parameter
family of isomorphy classes of smooth Del Pezzo surfaces.

1.4. Weyl groups and root systems

The configuration of 27 lines on a smooth cubic surface is preserved
under the action of the Weyl group associated to the root system E6. Similar
symmetries are associated to smooth Del Pezzo surfaces in other degrees.
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Recall the definition of root systems and Weyl groups, for example from
[Bro89]. Consider Rs with a non-degenerate bilinear form (·, ·). ForD ∈ Rs,
let

D=k := {D′ ∈ Rs | (D′, D) = k}
denote the hyperplane of elements of Rs whose pairing with D is k. Then

D≥k := {D′ ∈ Rs | (D′, D) ≥ k}

is the closed positive halfspace defined by D=k, while D>k := D≥k \D=k is
the open positive halfspace. Similarly, D≤k (resp. D<k) defines the closed
(resp. open) negative halfspace.

A finite set Φ ⊂ Rs is a root system if it is invariant under the reflections
sα on α=0 for any α ∈ Φ, defined as

sα(x) := x− 2(x, α)
(α, α)

· α.

The elements of Φ are called roots. The rank of Φ is the dimension of the
subspace of Rs which is generated by Φ.

For some D ∈ Rs such that D=0 ∩ Φ = ∅, let Φ+ = Φ ∩D>0 be the set
of positive roots in Φ. For any α ∈ Φ, we have either α ∈ Φ+ or −α ∈ Φ+.
Furthermore, we can find a minimal system ∆ of positive roots such that
any α ∈ Φ+ is a non-negative linear combination of elements of ∆. The
elements of ∆ are called simple roots. A root system Φ is represented by
the Dynkin diagram of its simple roots (see Remark 1.18).

The reflections sα for α ∈ Φ generate the finite Weyl group W which
acts on Rs. It acts transitively on Φ, and it is already generated by all sα

for α ∈ ∆.
The hyperplanes α=0 for α ∈ Φ+ divide Rs into chambers (cf. [Bro89,

Section I.4B]). The (closed) fundamental chamber is

C0 := {x ∈ Rs | (x, α) ≥ 0 for all α ∈ ∆} =
⋂

α∈∆

α≥0.

All other (closed) chambers have the form Cw := w(C0) for some w ∈ W .
The set of chambers is in bijection to the set of elements of W . The space
Rs is the union of all chambers, and the dimension of the intersection of two
chambers is smaller than s.

Let Sr be a smooth Del Pezzo surface which is the blow-up of P2 in r
points in general position. For 3 ≤ r ≤ 8 and i ∈ {1, . . . , r}, let

αi :=


Ei − Ei+1, i ≤ 2,
H − E1 − E2 − E3, i = 3,
Ei−1 − Ei, i ≥ 4,

using the basis of Pic(Sr) of Remark 1.12.
Then α1, . . . , αr have self intersection number −2. They are the simple

roots ∆r of a root system Φr of rank r in Pic(Sr)R. The roots of Φr are
E − E′ for any pair of distinct non-intersecting (−1)-curves E, E′.

For r = 2, there are exactly two roots E1 −E2 and E2 −E1, giving rise
to the root system Φ2. For r = 1, there is no root system.
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Remark 1.18. We denote Dynkin diagram as follows. The symbols An,
Dn, and En are associated to the following diagrams:

An (n ≥ 1) : GFED@ABCβ1 . . . GFED@ABCβn

Dn (n ≥ 4) : GFED@ABCβ1

GFED@ABCβ2
GFED@ABCβ3 . . . GFED@ABCβn

En (6 ≤ n ≤ 8) : GFED@ABCβ3

GFED@ABCβ1
GFED@ABCβ2

GFED@ABCβ4 . . . GFED@ABCβn

They contain n vertices corresponding to n simple roots β1, . . . , βn of an
irreducible root system of rank n. The intersection number of two distinct
simple roots is the number of edges between the corresponding vertices; the
self intersection number of a root is −2.

If a root system is the orthogonal sum of irreducible root systems, we
denote its type as a sum of the symbols corresponding to its irreducible
components.

See Table 1.2 for the types of Φr.

r 2 3 4 5 6 7 8
Φr A1 A2 + A1 A4 D5 E6 E7 E8

Table 1.2. Root systems associated to Sr.

For each root α ∈ Φr, the reflection sα is given by

sα(x) = x+ (x, α) · α,
since (α, α) = −2. These reflections generate a Weyl group Wr. The inter-
section form is invariant under the action of Wr. Therefore, Wr acts on the
set of (−1)-curves on Sr. The anticanonical class −KSr is invariant under
this action.

Lemma 1.19. The Weyl group Wr acts transitively on the following sets:
• The set of (−1)-curves on Sr, if r ≥ 3.
• The set Φr of roots of Sr, if r ≥ 2.
• The set of s-element sets of (−1)-curves which are pairwise non-

intersecting, if r ≥ 2 and s 6= r − 1.
• The set of pairs of (−1)-curves which have intersection number 1,

if r ≥ 2.

Proof. For the first three statements, see [DP80, II, Theorem 2 and
Proposition 4]. The last statement follows from [FM02, Lemma 5.3] for
r ≥ 4 (see also [BP04, Remark 4.7]). For r ∈ {2, 3}, we can check it
directly. �



1.5. SINGULAR DEL PEZZO SURFACES 15

1.5. Singular Del Pezzo surfaces

We study blow-ups of P2 as in Definition 1.6 in the following configura-
tions of points:

Definition 1.20. The points p1, . . . , pr are in almost general position if
and only if:

• No line in P2 passes through four of the points p1, . . . , pr.
• No conic in P2 passes through seven of the points.
• None of the exceptional divisors E′

1, . . . , E
′
r passes through two of

the points.

Lemma 1.21. The points p1, . . . , pr are in almost general position if and
only if the following equivalent conditions hold:

• For i ∈ {1, . . . , r}, the point pi does not lie on a (−2)-curve of S̃i−1.
• Every prime divisor D on S̃r satisfies (D,D) ≥ −2.

Proof. For the first condition, see [DP80, Theorem III.1], which also
lists further equivalent conditions. The second follows from Lemma 1.2. �

Definition 1.22. A singular Del Pezzo surface is a singular normal
surface S whose singularities are rational double points, and whose anti-
canonical class −KS is ample.

A generalized Del Pezzo surface is either a smooth Del Pezzo surface or
the minimal desingularization of a singular Del Pezzo surface.

Note that every generalized Del Pezzo surface is smooth. However, the
term “smooth Del Pezzo surface” as introduced in Definition 1.9 refers to
generalized Del Pezzo surfaces which do not contain (−2)-curves, i.e., which
are not minimal desingularizations of singular Del Pezzo surfaces.

Rational double points (see [Art66] and [CT88, Proposition 0.1]) are
singularities which can be resolved by a finite sequence of blow-ups of sin-
gular points, giving a minimal desingularization f : S̃ → S, with smooth S̃
and −KeS = f∗(−KS). The blow-ups produce exceptional divisors which are
(−2)-curves on S̃. The exceptional divisors are the simple roots of a root
system in Pic(S̃)R with associated Dynkin diagram as in Remark 1.18. We
label the singularities using the symbols of their Dynkin diagrams (e.g., we
say that “S has a singularity of type A1”). On singular Del Pezzo surfaces,
singularities of types An (1 ≤ n ≤ 8), Dn (4 ≤ n ≤ 8), and En (6 ≤ n ≤ 8)
occur.

Definition 1.23. For two singular Del Pezzo surfaces of the same de-
gree, we say that they have the same singularity type if and only if the
number and types of their singularities coincide. It is denoted using the
names of the corresponding Dynkin diagrams.

The singularity type of a generalized Del Pezzo surface which is not
a smooth Del Pezzo surface is the singularity type of the corresponding
singular one.

For example, the singularity type of a Del Pezzo surface with two sin-
gularities of type A1, one singularity of type A3, and no other singularity is
denoted as 2A1 + A3.
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Example 1.24. The Hirzebruch surface F2 := P(OP1 ⊕ OP1(−2)) is a
generalized Del Pezzo surface of degree 8 whose singularity type is A1. For
more details, see [Ful93, Section 1.1].

Theorem 1.25. Every generalized Del Pezzo surface is either P2, or
P1 × P1, or the Hirzebruch surface F2, or the blow-up π : S̃r → P2 in r ≤ 8
points p1, . . . , pr in almost general position.

Proof. See [AN04]. �

If D ∈ Pic(S) is an effective divisor on a generalized Del Pezzo surface
S, then (−KS , D) ≥ 0. A negative curve D fulfills D ∼= P1 and is either a
(−1)-curve with (−KS , D) = 1, or a (−2)-curve with (−KS , D) = 0 by the
adjunction formula. Furthermore, if (−KS , D) = 0 for a prime divisor D,
then D is a (−2)-curve.

Let S̃r be the blow-up of P2 in r points in almost general position. The
(−2)-curves on S̃r are the strict transforms of:

• the exceptional divisors E′
1, . . . , E

′
r which pass through one of the

points p1, . . . , pr,
• if r ≥ 3, the lines in P2 which pass through three of p1, . . . , pr,
• if r ≥ 6, the conics in P2 which pass through six of these points,
• if r = 8, the cubics in P2 which pass through seven of these points,

with a singularity in the eighth.
We will see in Proposition 8.11 that the effective cone of every generalized

Del Pezzo surface of degree ≤ 7 is generated by its negative curves.

Remark 1.26. For r ≤ 6, the anticanonical class −KSr of a singular Del
Pezzo surface Sr is φ∗r(OP9−r(1)) for the anticanonical embedding

φr : Sr ↪→ P9−r.

Let f : S̃r → Sr be the minimal desingularization. Since −KeSr
= f∗(−KSr),

the morphism
φr ◦ f : S̃r → P9−r

contracts exactly the (−2)-curves on S̃r to the singularities of Sr and maps
the (−1)-curves to the lines on the image of φr.

The image φ6(S6) of a singular cubic surface in P3 is given by a singular
cubic form, while φ5(S5) of degree 4 in P4 is the intersection of two quadrics.

An important invariant of a generalized Del Pezzo surface is its extended
Dynkin diagram, i.e., the configuration of the negative curves: We have
a vertex for each negative curve, and the number of edges between two
vertices is the intersection number of the corresponding negative curves. In
our diagrams, we mark the (−2)-curves using circles.

Example 1.27. By the classification of singular cubic surfaces [BW79],
there is a unique cubic surface S6 with a singularity of type E6. Its anti-
canonical embedding φ6(S6) ⊂ P3 is given by the vanishing of

f(x) = x1x
2
2 + x2x

2
0 + x3

3.

It has one line {x2 = x3 = 0} containing the singularity (0 : 1 : 0 : 0). Its
minimal desingularization S̃6 contains six (−2)-curves E1, . . . , E6, and the
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transform of the line is a (−1)-curve E7. The configuration of E1, . . . , E6 is
described by the Dynkin diagram E6, but for the extended Dynkin diagram,
we also need to know how E7 intersects the (−2)-curves .

By calculating the desingularization of S6 explicitly, we see that the
extended Dynkin diagram is as follows:

GFED@ABCE6

GFED@ABCE1
GFED@ABCE2

GFED@ABCE3
GFED@ABCE4

GFED@ABCE5 E7

Definition 1.28. We say that two generalized Del Pezzo surfaces have
the same type if and only if their degrees coincide and their extended Dynkin
diagrams are isomorphic. Two singular Del Pezzo surfaces have the same
type if and only if their minimal desingularizations have the same type.

See Remark 1.34 for a discussion how type and singularity type of Del
Pezzo surfaces are related and how we denote the type.

1.6. Classification of singular Del Pezzo surfaces

We describe how to obtain extended Dynkin diagrams of all generalized
Del Pezzo surfaces. We will use the results of this section in Chapter 5,
Chapter 6, and especially Chapter 8.

Example 1.29. In degree 3, consider the following extended Dynkin
diagrams:

• The E6-diagram as in Example 1.27.
• A diagram of type A5 + A1:

E6

GFED@ABCE8 E7
GFED@ABCE1

GFED@ABCE2
GFED@ABCE3

GFED@ABCE4
GFED@ABCE5

• A diagram of type 3A2:

GFED@ABCE1
GFED@ABCE2 E3

GFED@ABCE4
GFED@ABCE5

E9
GFED@ABCE8

GFED@ABCE8 E6

|||||||||

We will see how the extended Dynkin diagram of every generalized cubic
Del Pezzo surface can be obtained from one of these three diagrams.

In general, we proceed as follows (see [AN04] for proofs): Choose one
of the extended Dynkin diagrams Γ of [AN04, Table 3] whose number N
is between 4 and 10. They correspond to degrees 11−N from 7 to 1, with
more than one diagram to choose from for degrees 4 to 1. Let r := N − 2.

For example, for N = 8, i.e., degree 3 and r = 6, we have the three
diagrams of Example 1.29 to choose from.

The diagram Γ describes the classes of some elements of Zr+1 together
with their intersection numbers: Each of the n vertices in Γ corresponds to
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a basis element ei of a lattice M :=
⊕n

i=1 Zei with a bilinear form, where
(ei, ei) = −2 if ei corresponds to a (−2)-curve in Γ (represented by a black
vertex in [AN04, Table 3], respectively marked by a circle in our notation),
or (ei, ei) = −1 if ei corresponds to a (−1)-curve in Γ (represented by a
transparent vertex, respectively without a circle), and (ei, ej) is the number
of edges between the corresponding vertices for i 6= j. This intersection form
on M has rank r+1. Let K be the kernel of this form. Let Ei be the image
of ei in M/K ∼= Zr+1. The induced form (·, ·) on Zr+1 is a non-degenerate
bilinear form, and the intersection behavior of E1, . . . , En is described by Γ.

The Ei with (Ei, Ei) = −2 form the simple roots ∆0 of a root system
Φ0 in Rr+1, generating a Weyl group W0. Let E0 be the set of Ei with self
intersection number −1.

Consider the orbit E of E0 ⊂ Zr+1 underW0: We can find an isomorphism
Zr+1 ∼= Pic(Sr) such that E is the set of (−1)-curves of Sr, and Φ0 is a root
system in Pic(Sr)R.

Remark 1.30. Note that W0 is equal to the Weyl group Wr associated
to the root system Φr listed in Table 1.2 only if we choose the first diagram
in the list for N = r + 2 in [AN04, Table 3].

To construct the extended Dynkin diagram Γ(S̃) of the minimal desin-
gularization S̃ of a singular Del Pezzo surface S, choose a subset ∆ of ∆0.
These are the simple roots of a root system Φ ⊂ Φ0, with positive roots
Φ+ ⊂ Φ+

0 . The reflections sα on the hyperplanes α=0 for the simple roots
α ∈ ∆ generate a Weyl group W ⊂ W0, with corresponding fundamental
chamber C0.

Theorem 1.31. For every choice of Γ from [AN04, Table 3] with N ∈
{4, . . . , 10} (with corresponding simple roots ∆0 and (−1)-curves E), and
every choice of ∆ ⊂ ∆0 (giving a root system Φ with fundamental chamber
C0), there is a generalized Del Pezzo surface S̃ of degree 11−N whose (−2)-
curves are ∆ and whose (−1)-curves are E ∩ C0.

The extended Dynkin diagram of every generalized Del Pezzo surface of
degree ≤ 7 is obtained this way.

Proof. See [AN04]. �

Example 1.32. Consider the diagram of type A5 +A1 of Example 1.29
corresponding to r = 6. This gives the following 8× 8 intersection matrix :

E1 E2 E3 E4 E5 E6 E7 E8

E1 −2 1 0 0 0 0 1 0
E2 1 −2 1 0 0 0 0 0
E3 0 1 −2 1 0 0 0 0
E4 0 0 1 −2 1 1 0 0
E5 0 0 0 1 −2 0 0 0
E6 0 0 0 1 0 −1 0 0
E7 1 0 0 0 0 0 −1 1
E8 0 0 0 0 0 0 1 −2

We check that the rank of the intersection matrix is r + 1 = 7, and that
the 7× 7 submatrix A of the first seven rows and columns has determinant
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with absolute value 1. Consequently, we can perform our computations in
the basis E1, . . . , E7, and E8 can be expressed in terms of this basis using
the intersection numbers between E8 and E1, . . . , E7: As E8 intersects only
E7, we have E8 = A−1 · (0, 0, 0, 0, 0, 0, 1) = (−1, 0, 1, 2, 1, 2,−2).

The elements E1, . . . , E5, E8 ∈ Z7 are the simple roots ∆0 of a root
system Φ0 of type A5 + A1. The reflections sEi on E=0

i for i ∈ {1, . . . , 5, 8}
generate a Weyl group W0. The orbit E of E0 = {E6, E7} under W0 has
N6 = 27 elements. We can identify Z7 with Pic(S6) together with the
intersection forms such that E is the set of (−1)-curves of a smooth cubic
surface S6, and Φ0 is a root system in Pic(S6). However, it is not the
standard root system Φ6 of type E6 associated to this configuration of 27
(−1)-curves.

The Dynkin diagrams of various generalized Del Pezzo surfaces can be
constructed by choosing subsets ∆ of ∆0, for example:

• Let ∆ := ∆0. The (−1)-curves in the closed fundamental chamber
C0 corresponding to ∆0 are exactly E0 = {E6, E7}. The extended
Dynkin diagram of a generalized Del Pezzo surface S̃ of type A5 +
A1 is exactly the diagram Γ that we started with.

• Let ∆ := ∅. Then C0 is Pic(S6)R, and we obtain the diagram of a
smooth cubic surface S6 containing 27 (−1)-curves.

• Let ∆ := {E1, E2, E4, E5}. In this case, the (−2)-curves ∆ have
the configuration 2A1, while E ∩ C0 consists of exactly seven (−1)-
curves. The extended Dynkin diagram Γ(S̃) of the corresponding
generalized Del Pezzo surface of type 2A2 is:

E6 E7

CC
CC

CC
CC

GFED@ABCE5

{{{{{{{{{

BB
BB

BB
BB

B E8 E3
GFED@ABCE11

GFED@ABCE10

CC
CC

CC
CC

E9 E4

||||||||| GFED@ABCE1

E2

nnnnnnnnnnnnnnnn

Here, we use the symbols E1, . . . , E11 for the eleven negative curves
in a way which is not related to the previous usage of E1, . . . , E8.

We can check that the possible choices of ∆ ⊂ ∆0, where ∆0 is extracted
from one of the three diagrams of Example 1.29, lead to exactly 21 non-
isomorphic extended Dynkin diagrams. They correspond to the smooth
cubic type and minimal desingularizations of 20 singular cubic types with
rational double points which were already found by Schläfli and Cayley.

Example 1.33. Consider the first diagram Γ of N = 7 of [AN04, Ta-
ble 3] corresponding to quartic Del Pezzo surfaces:



20 1. DEL PEZZO SURFACES

GFED@ABCE5

GFED@ABCE1
GFED@ABCE2

GFED@ABCE3
GFED@ABCE4 E6

As before, we calculate the extended Dynkin diagrams for different
choices of (−2)-curves ∆ ⊂ ∆0 := {E1, . . . , E5}. The results can be found
in Table 1.3.

∆ singularity type #{(−1)-curves}
{E1, E2, E3} A3 5
{E3, E4, E5} A3 4
{E1, E3} 2A1 9
{E4, E5} 2A1 8

Table 1.3. Quartic Del Pezzo surfaces

This shows that there are pairs of Del Pezzo surfaces of the same de-
gree with the same singularity type which have different extended Dynkin
diagrams. By [BW79] and [CT88], the only other examples of this phe-
nomenon in degree ≥ 3 are surfaces in degree 6 of singularity type A1 with
four or five lines.

Remark 1.34. Example 1.33 shows that two Del Pezzo surfaces may
have different types, but the same singularity type.

However, if the type of a singular Del Pezzo surface is determined by
its singularity type, we will use the same notation for both (e.g., “a singular
cubic Del Pezzo surface of type E6”). In the three cases of Example 1.33, we
will resolve the ambiguity by mentioning additionally the number of lines in
the anticanonical embedding (e.g., “a singular quartic Del Pezzo surface of
type A3 with five lines”).

1.7. Contracting (−1)-curves

Let S be a generalized Del Pezzo surface. By Theorem 1.25, the surface
S is P2, P1 × P1, F2, or the blow-up of P2 in r points in almost general
position. In the latter case, how can we derive a configuration of points
p1, . . . , pr in almost general position such that the blow-up π : S̃r → P2 in
p1, . . . , pr has a given extended Dynkin diagram Γ(S̃r)?

This question is interesting as we may have produced Γ(S̃r) using the
procedure described in Section 1.6, which does not involve information on
the position of the blown-up points.

Lemma 1.35. Let S̃r be the blow-up of P2 in r points in almost general
position, and let Er be a (−1)-curve on S̃r. Let πr : S̃r → S̃r−1 be the
contraction of Er to a point pr ∈ S̃r−1. Then S̃r is the blow-up of S̃r−1 in
pr, and S̃r−1 is a generalized Del Pezzo surface.
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Proof. As S̃r is a blow-up of a smooth surface, there is at least one
(−1)-curve on S̃r. By Castelnuovo’s criterion [Har77, Theorem V.5.7], the
contraction of a (−1)-curve E on S̃r to a point pr results in a smooth surface
S̃r−1 such that S̃r is the blow-up of S̃r−1 in pr. By [DP80, Section III.9],
S̃r−1 is a generalized Del Pezzo surface. (Note that the Hirzebruch sur-
face F2 was missed in [DP80, Section III.9], as mentioned after [CT88,
Proposition 0.4].) �

In this situation, we can extract the intersection numbers (including self
intersection numbers) of the projections of the negative curves on S̃r under
πr. The only change is that the projections of curves which intersect Er

on S̃r intersect pairwise on S̃r−1 and have a higher self intersection number
(Lemma 1.2). Every negative curve on S̃r−1 is the projection of a negative
curve on S̃r. This allows us to derive the extended Dynkin diagram of S̃r−1.
Furthermore, we learn which projections of the negative curves pass through
pr, giving some information on the position of the blown-up point.

The degree of S̃r−1 is 9− (r − 1). If this is ≤ 7, i.e., r ≥ 3, then S̃r−1 is
the blow-up of P2 in r− 1 points in almost general position. Therefore, any
choice of (−1)-curve E is suitable for a construction of S̃r as the blow-up of
P2 in r points in almost general position.

On the other hand, if r = 2, then Γ(S̃2) is one of the following two
diagrams:

• Γ(S̃2,1) of a smooth Del Pezzo surface S2 = S̃2,1 of degree 7:

E1 E2 E3

• Γ(S̃2,2) of a Del Pezzo surface S̃2,2 of degree 7 and type A1:

GFED@ABCE1 E2 E3

Here, we must be careful with our choice of (−1)-curve, as in degree 8, only a
smooth Del Pezzo surface S1 containing one (−1)-curve is the blow-up of P2.
We must avoid P1 × P1 (containing no negative curves) and the Hirzebruch
surface F2 (containing one (−2)-curve).

The correct choice is to contract E1 or E3 in case of Γ(S̃2,1) (contract-
ing E2 gives P1 × P1), and E2 in case of Γ(S̃2,2) (E1 is a (−2)-curve, and
contracting E3 gives F2) to obtain S1.

For r = 1, there is exactly one (−1)-curve on S1, which we contract to
obtain π = π1 ◦ · · · ◦ πr : S̃r → P2.

If a negative curve E on S̃r is not contracted at any stage of this process,
then π(E) is a curve in P2 whose self intersection number is the square of
its degree. Furthermore, we know the relative configuration of all π(E) and
the positions of the blown-up points pi relative to them. Of course, some of
the blown-up points may lie on exceptional divisors of previous blow-ups.

Example 1.36. Consider the extended Dynkin diagram of the cubic
surface S̃6 of type 2A2 as constructed in Example 1.32 with negative curves
E1, . . . , E11. For i from 6 down to 1, the contraction

πi : S̃i → S̃i−1
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maps the (−1)-curve Ei to the point pi ∈ S̃i−1, and the transform on S̃i−1

of a curve Ej on S̃i is also called Ej . We end up with S̃0 = P2. Let
π := π1 ◦ · · · ◦ π6. In more detail, this works as follows:

• Contracting E6 on S̃6 results in S̃5. The (−2)-curve E5 on S̃6 turns
into a (−1)-curve on S̃5 and intersects E7, . . . , E10. The curve E7

on S̃5 has self intersection number 0.
• Contracting E5 on S̃5 gives S̃4 on which E7, . . . , E10 intersect in

one point.
• Contracting Ei on S̃i for i = 4, 3, 2, 1 results in S̃0 = P2 contain-

ing the curves E7, . . . , E11. Their self intersection numbers have
changed to 1, so they are lines in P2. While E7, . . . , E10 intersect
in one point p ∈ P2, they are intersected by E11 away from p.

Reversing this process, the blown-up points p1, . . . , p6 are as follows:
p1 = E10 ∩ E11, p2 = E1 ∩ E10, p3 = E8 ∩ E11,

p4 = E9 ∩ E11, p5 = E7 ∩ E8 ∩ E9 ∩ E10, p6 = E5 ∩ E7.

In terms of the standard basis (Lemma 1.7), E1, . . . , E11 are:
E1 = l1 − l2, E2 = l2, E3 = l3, E4 = l4, E5 = l5 − l6,

E6 = l6, E7 = l0 − l5 − l6, E8 = l0 − l3 − l5, E9 = l0 − l4 − l5,

E10 = l0 − l1 − l2 − l5, E11 = l0 − l1 − l3 − l4.

The surface S̃6 is determined by the position of the lines E7, . . . , E11

in P2. Using automorphisms of P2 as in Remark 1.17, we may assume
that p = (1 : 0 : 0) in P2 = {(x0 : x1 : x2)}, while E11 = {x0 = 0}.
Furthermore, we may assume that three of the four intersection points of
E11 with E7, . . . , E10 are at certain positions, while the choice of the fourth
results in a one-parameter family of generalized Del Pezzo surfaces of type
2A2:

E7 = {x1 = 0}, E8 = {x2 = 0},
E9 = {x1 − x2 = 0}, E10 = {x1 − αx2 = 0}.

(1.1)

The parameter α can take any value in K \ {0, 1}. In Section 6.6, we will
return to this family of surfaces.

This example shows that there may be an infinite family of isomorphy
classes of cubic Del Pezzo surfaces of the same type. In other cases of
degree 3, the number of isomorphy classes of a given type is finite:

• Type E6: Exactly one isomorphy class of cubic surfaces exists (see
Example 1.27).

• Type D4: Exactly two isomorphy classes exist (see [HT04, Re-
mark 4.1]).

For singular cubic Del Pezzo surfaces, this and the number of parameters in
each infinite family can be found in [BW79].

1.8. Toric Del Pezzo surfaces

For an introduction to toric varieties, see [Ful93]. Toric surfaces are
equivariant compactifications of a 2-dimensional torus T , for example P2,
P1 × P1, and the Hirzebruch surface F2.
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A toric surface contains divisors which are invariant under the action
of T . The T -invariant prime divisors intersect exactly in points which are
fixed under T . In case of P2, the T -invariant prime divisors are three lines
forming a triangle.

The blow-up of a toric variety is again toric if and only if we blow up a
point which is fixed under the action of T , i.e., an intersection point of two
T -invariant prime divisors D1, D2. The exceptional divisor E of the blow-up
is T -invariant. Fixed points on E are exactly the intersection points of E
with D1 and D2.

To construct toric generalised Del Pezzo surfaces other than P1 × P1

and F2, we blow up P2 in this way. Note that the only negative curves
are exceptional divisors and possibly the strict transforms of the three T -
invariant lines on P2, i.e., a subset of all T -invariant prime divisors.

If we include all T -invariant prime divisors in the extended Dynkin di-
agram, it has the shape of a “circle”. We denote it as a vector of self inter-
section numbers. Two entries are next two each other (where we consider
the first and last entry as “next to each other”) if the corresponding prime
divisors intersect. See Table 1.4 for the extended Dynkin diagrams of all
toric generalized Del Pezzo surfaces.

This result allows us to identify non-toric Del Pezzo surfaces from their
extended Dynkin diagrams: Whenever a negative curve intersects more than
two other negative curves, the surface cannot be toric.

degree type extended Dynkin diagram
9 P2 (1, 1, 1)
8 smooth S1 (1, 0,−1, 0)

P1 × P1 (0, 0, 0, 0)
F2 (−2, 0, 2, 0)

7 smooth S2 (0,−1,−1,−1, 0)
A1 (1, 0,−2,−1,−1)

6 smooth S3 (−1,−1,−1,−1,−1,−1)
A1 (4 lines) (0,−1,−1,−2,−1,−1)

2A1 (0,−2,−1,−2,−1, 0)
A2 + A1 (1, 0,−2,−2,−1,−2)

5 2A1 (−1,−1,−1,−1,−2,−1,−2)
A2 + A1 (0,−1,−1,−2,−2,−1,−2)

4 4A1 (−1,−2,−1,−2,−1,−2,−1,−2)
A2 + 2A1 (−2,−1,−2,−1,−1,−2,−1,−2)
A3 + 2A1 (0,−2,−1,−2,−2,−2,−1,−2)

3 3A2 (−2,−2,−1,−2,−2,−1,−2,−2,−1)

Table 1.4. Toric Del Pezzo surfaces.





CHAPTER 2

Universal torsors and Cox rings

2.1. Introduction

Universal torsors were introduced by Colliot-Thélène and Sansuc in con-
nection with their studies of the Hasse principle for Del Pezzo surfaces of
degrees 3 and 4 [CTS80], [CTS87]. We will see in Part 2 how they can be
applied to Manin’s conjecture.

Over an algebraically closed field K of characteristic 0, a universal torsor
of a generalized Del Pezzo surface Sr of degree 9−r is constructed as follows:
Let L0, . . . ,Lr be invertible sheaves whose classes form a basis of Pic(Sr).
Let L◦i be the sheaf obtained by removing the zero section from Li. Then
the bundle

TSr := L◦0 ×Sr · · · ×Sr L◦r
over Sr is a universal torsor (see Lemma 2.3).

The Cox ring, or homogeneous coordinate ring, of Sr is the space

Cox(Sr) =
⊕

(ν0,...,νr)∈Zr+1

H0(Sr,L⊗ν0
0 ⊗ · · · ⊗ L⊗νr

r )

whose ring structure is induced by the multiplication of global sections. We
will see that TSr is an open subset of A(Sr) := Spec(Cox(Sr)).

This section has the following structure: In Section 2.2, we discuss uni-
versal torsors over non-closed fields. In Section 2.3, we give basic properties
of Cox rings. In Section 2.4, we collect some preliminary results on genera-
tors of a Cox ring as a K-algebra and relations between these generators.

The following Chapters 3, 5, and 6 are concerned with the explicit deter-
mination of generators and relations in Cox rings of generalized Del Pezzo
surfaces.

2.2. Universal torsors

Over a field K of characteristic 0 with algebraic closure K, let S be a
smooth projective surface, with geometric Picard group Pic(SK) ∼= Zr+1,
where SK := S ×Spec K Spec K.

Let T be an algebraic torus, i.e., a linear algebraic group such that TK
is isomorphic to Gs

m for some s ∈ Z>0. Let T be a variety with a faithfully
flat morphism π : T → S and an action of T on T . As explained in [Pey98,
Section 3.3], T is called a T -torsor over S if and only if the natural map
T ×Spec K T → T ×S T is an isomorphism.

The T -torsors over S up to isomorphism are classified by the étale co-
homology group H1

ét(S, T ).

25
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Proposition 2.1. For every p ∈ S(K), there is a T -torsor πp : Tp → S
(unique up to isomorphism) such that p ∈ πp(Tp(K)).

If K is a number field, S(K) is the union of πpi(Tpi(K)) for a finite set
of points p1, . . . , pn ∈ S(K).

Proof. We construct πp : Tp → S as follows (see [CTS80, Section II]):
We have a map

S(K)×H1
ét(S, T ) → H1(K, T )

(p, [T ]) 7→ [T (p)],
where T (p) := T ×S Spec K(p) is a K-form of T , with [T (p)] = 0 in the
Galois cohomology group

H1(K, T ) = H1(Gal(K/K), T (K))

if and only if p ∈ π(T (K)). Using the map φ : H1(K, T ) → H1
ét(S, T ), we

can construct a torsor πp : Tp → S of the class [T ] − φ([T (p)]) ∈ H1
ét(S, T )

such that p ∈ πp(Tp).
See [CTS80, Proposition 2] for the second statement. �

The Picard group Pic(SK) and the group of characters

X∗(T ) := Hom(TK,Gm)

of the torus T are free Z-modules with an action of Gal(K/K). By [CTS87,
Section 2.2], there is a map

ρ : H1
ét(S, T ) → HomGal(K/K)(X

∗(T ),Pic(SK)),

defined by ρ([T ])(χ) := χ∗(T ) for any χ ∈ X∗(T ). Here, HomGal(K/K)(·, ·)
denotes the homomorphisms of free Z-modules which are compatible with
the Gal(K/K)-action.

The torus TNS(S) := Hom(Pic(S),Gm) is called the Néron-Severi torus
of S. If the ground field K is algebraically closed, it is isomorphic to Gr+1

m

after the choice of a basis of Pic(S). The group of characters X∗(TNS(S)) is
canonically isomorphic to Pic(SK).

Definition 2.2. A universal torsor TS over S as above is a TNS(S)-
torsor such that ρ([TS ]) = idPic(SK).

Lemma 2.3. Let K be an algebraically closed field of characteristic 0.
Let L0, . . . ,Lr be a basis of Pic(S). The bundle

T := L◦0 ×S · · · ×S L◦r
is a universal torsor over S.

Proof. The isomorphism φ : Pic(SK) → X∗(TNS(S)) gives a basis
χ0, . . . , χr of X∗(TNS(S)), with χi := φ(Li). By definition, ρ([T ])(χi) for
the character χi ∈ X∗(TNS(S)) is the class of (χi)∗(T ) in Pic(SK), which is
Li as required. �

Over an algebraically closed field of characteristic 0, TS as defined in
Lemma 2.3 does not depend on the chosen basis of Pic(S) by [Pey04, Propo-
sition 8]. In fact, every universal torsor is isomorphic to it.

Over non-closed fields K, the existence of a K-rational point p on S
implies the existence of a universal torsor π : TS → S, defined over K
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(Proposition 2.1). In this case, TS becomes isomorphic over K to T as in
Lemma 2.3. If S(K) = ∅, a universal torsor does not necessarily exist over K.

2.3. Cox rings

The following construction is due to [HK00], generalizing the homoge-
neous coordinate ring of toric varieties in [Cox95].

As before, let L0, . . . ,Lr be a basis of Pic(S) ∼= Zr+1 for a smooth
projective surface S over an algebraically closed field K. Let H0(S,L) be
the K-vector space of global sections of L ∈ Pic(S), which we also denote
by H0(L).

For ν = (ν0, . . . , νr) ∈ Zr+1, let

Lν := L⊗ν0
0 ⊗ · · · ⊗ L⊗νr

r .

For ν,µ ∈ Zr+1, the multiplication of sections defines a map

H0(Lν)×H0(Lµ) → H0(Lν+µ).

Definition 2.4. For S and L0, . . . ,Lr as above, the Cox ring , or homo-
geneous coordinate ring , of S is defined as

Cox(S) :=
⊕

ν∈Zr+1

H0(Lν),

where the multiplication of sections

H0(Lν)×H0(Lµ) → H0(Lν+µ)

induces the multiplication in Cox(S).

For any algebra A with a Pic(S)-grading, we will denote the part of
degree O(D) for a divisor D by AD or AO(D). We have a Pic(S)-grading on
Cox(S) as follows:

Cox(S)D = Cox(S)O(D) = H0(O(D)).

If Lν � Lµ in the partial ordering of Pic(S), multiplication by a non-zero
global section of Lµ−ν induces an inclusion

Cox(S)Lν ↪→ Cox(S)Lµ .

As remarked in [HK00, Section 2], the Cox ring of S is unique up to
isomorphism. However, we cannot simply define it without the choice of
a basis of Pic(S) since the multiplication would be defined only up to a
constant.

2.4. Generators and relations

Let S be a generalized Del Pezzo surface over an algebraically closed field
K of characteristic 0. A line bundle L ∈ Pic(S) has global sections if and
only if L is the class of an effective divisor. Therefore, the Pic(S)-degrees in
which Cox(S) is non-zero lie in the effective cone Λeff(S) (Definition 1.8).

Lemma 2.5. The ring Cox(S) is a finitely generated K-algebra. Let N
be the minimal number of generators of Cox(S).

• We can find a system of N generators which are homogeneous with
respect to the Pic(S)-grading.
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• Up to permutation, the Pic(S)-degrees of a minimal system of ho-
mogeneous generators are unique.

• Given any set of homogeneous generators, we can find a subset of
N elements which is a generating system.

Proof. The Cox ring is finitely generated by [HK00, Corollary 2.16
and Proposition 2.9]. Note that we will also prove this in Theorem 6.2 if the
degree of S is ≥ 2. Since K is algebraically closed, Cox(S) is by definition the
direct sum of its homogeneous components. Hence, we can find a minimal
system of generators containing only homogeneous elements.

We use the partial order on the effective divisor classes. Any homoge-
neous expression involving an element of degree L′ ∈ Pic(S) has degree L
with L′ � L. Consequently, Cox(S)L is generated by elements of degree
L′ � L.

Let C be the subalgebra of Cox(S) generated by all elements of degree
L′ ≺ L. For a system of homogeneous generators of Cox(S), the generators
of degree L′ ≺ L generate exactly C since generators of degree L′′ 6≺ L
cannot affect the degrees L′ ≺ L. Therefore, we have at least

nL := dim(Cox(S)L)− dim(CL)

generators of degree L.
Therefore, any system of homogeneous generators must contain at least

nL elements of degree L. If there are more than that for some L, we can
remove an appropriate number of generators of degree L since we are simply
looking for a basis in the vector space Cox(S)L. �

Remark 2.6. Once any set of generators is known, we can find a minimal
generating set: First, we replace each generator by its homogeneous parts.
Then we go through the degrees L of these homogeneous generators in their
partial ordering and check for each L whether we may remove some of the
generators, as explained in the proof of Lemma 2.5.

We will see in the following chapters how to determine systems of gen-
erators.

Lemma 2.7. If E is a negative curve on S, then every homogeneous
system of generators of Cox(S) contains a section of degree E.

The number of generators of Cox(S) must be at least the number of
negative curves.

Proof. By Lemma 1.3, the space H0(O(E)) is one-dimensional.
If a non-zero global section s of O(E) can be expressed in terms of

homogeneous sections of other degrees, then O(E) must be a non-trivial
non-negative linear combination of other effective divisor classes. This would
allow us to construct a section which is linearly independent of s. �

However, the example of the E6 cubic surface [HT04, Section 3] shows
that the Cox ring of a generalized Del Pezzo surface S can have other gener-
ators besides sections of negative curves. In view of Lemma 1.15 and Propo-
sition 8.11, the following result shows that the degrees of these generators
lie in the nef cone if the degree of S is ≤ 7.
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Lemma 2.8. Suppose α ∈ H0(A) an element of a miminal system of
homogeneous generators of Cox(S). Then A is a negative curve, or (A,E) ≥
0 for all negative curves E on S.

Proof. Suppose α ∈ H0(A), and (A,Ei) < 0 for some negative curves
Ei with i ∈ {1, . . . , s}. Then E1, . . . , Es are fixed components of A, with
multiplicities e1, . . . , es. We can write A = B+

∑s
i=1 eiEi, where (B,E) ≥ 0

for all negative curves E. Multiplication by ηe1
1 · · · ηes

s gives an isomorphism

H0(B) → H0(A),

where ηi is a non-zero section ofH0(Ei). Therefore, we have α = β·ηe1
1 · · · ηes

s

for some β ∈ H0(B). �

Let
A(S) := Spec(Cox(S)),

which is of finite type by Lemma 2.5. Having determined a finite set of
homogeneous generators ξ1, . . . , ξN , i.e., Cox(S) = K[ξ1, . . . , ξN ]/I for an
ideal I of relations, we can regard A(S) as embedded in affine space

AN = Spec(K[ξ1, . . . , ξN ]).

If a minimal system of homogeneous expressions generating I has n elements,
we say that Cox(S) has N generators and n relations.

Lemma 2.9. The variety A(S) is irreducible.

Proof. We must show that Cox(S) is an integral domain. Since S is
irreducible, this follows from [EKW04, Corollary 1.2]. �

Proposition 2.10. The universal torsor TS is an open subset of A(S).

Proof. See [HK00, Corollary 2.16 and Proposition 2.9]. �

Remark 2.11. The Néron-Severi torus TNS(S) acts on A(S): The action
of TNS(S) on each coordinate ξi of AN = Spec(K[ξ1, . . . , ξN ]) is given by the
character χi corresponding to the degree of ξi in Pic(S) ∼= X∗(TNS(S)). As
the ideal I of relations in Cox(S), which defines A(S) as a subvariety of AN ,
is generated by polynomials in K[ξ1, . . . , ξN ] which are homogeneous with
respect to the Pic(S)-grading, the action of TNS(S) on AN induces an action
on A(S). By the constructions of [HK00], this action extends the natural
action of TNS(S) on TS ⊂ A(S).

By the next lemma, there is no relation between generators of the Cox
ring in case of toric Del Pezzo surfaces (Section 1.8). The degrees in Pic(S)
of the generators can be extracted from the extended Dynkin diagrams in
Table 1.4.

Lemma 2.12. A generalized Del Pezzo surface S is toric if and only if
its Cox ring is a polynomial ring.

In this case, generators of Cox(S) are sections corresponding to prime
divisors which are invariant under the action of the open torus in S.

Proof. This follows from [Cox95]. See [HK00, Corollary 2.10]. �

Distinguishing between the following three types of Cox rings and uni-
versal torsors will be important in Chapter 5:
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Lemma 2.13. Let S be a generalized Del Pezzo surface of degree 9 − r,
with universal torsor TS. Let N be the minimal number of generators of
Cox(S) ∼= K[ξ1, . . . , ξN ]/I, where I is the ideal of relations between these
generators.

• It is an open subset of affine space if and only if N = r + 3, and I
is trivial.

• It is an open subset of a hypersurface if and only if N = r+ 4, and
I has one generator.

• It has codimension ≥ 2 in AN if and only if N ≥ r + 5, and I has
at least two independent generators.

Proof. For the dimension of the universal torsor, we have

dim(TS) = dim(S) + dim(TNS(S)) = r + 3.

As the universal torsor is an open subset of A(S) by Proposition 2.10, Cox(S)
is a free polynomial ring with r+3 generators, or it has r+4 generators whose
ideal of relations is generated by one equation, or at least r + 5 generators
and at least two independent relations. �



CHAPTER 3

Cox rings of smooth Del Pezzo surfaces

3.1. Introduction

We determine the Cox ring (Definition 2.4) of smooth Del Pezzo surfaces
Sr (cf. Section 1.3) whose degree 9 − r is at most 5. The results appeared
in [Der06b].

The structure of the Cox ring of smooth Del Pezzo surfaces of degree
≥ 6 is known from Lemma 2.12 since these surfaces are toric (see Table 1.4).

For r ∈ {3, . . . , 7}, Cox(Sr) is generated by non-zero sections of the Nr

(−1)-curves ([BP04, Theorem 3.2]), see Table 3.1 for the values of Nr. For
r = 8, we must add two independent sections of H0(S8,−KS8). Let Rr be
the free polynomial ring whose variables correspond to these generators of
Cox(Sr). We want to determine relations between these generators.

Definition 3.1. For n ≥ 1, a divisor class D is called an (n)-ruling
if D = D1 + D2 for two (−1)-curves D1, D2 whose intersection number
(D1, D2) is n. A (1)-ruling is also called a ruling .

By Lemma 3.3, each (n)-ruling defines quadratic relations between gen-
erators of Cox(Sr). Relations coming from (1)-rulings generate an ideal
Ir ⊂ Rr. For r ∈ {4, 5, 6}, Cox(Sr) = Rr/ rad(Ir) by [BP04, Theorem 4.9].
We extend this result to r ∈ {7, 8} as follows:

Theorem 3.2. For r ∈ {4, . . . , 8}, we have Cox(Sr) = Rr/ rad(Jr),
where

• for r ∈ {4, 5, 6}, Jr := Ir;
• the ideal J7 is generated by the 504 quadratic relations coming from

the 126 rulings, and 25 quadratic relations coming from the (2)-
ruling −KS7;

• the ideal J8 is generated by the 10800 quadratic relations coming
from the 2160 rulings, 6480 quadratic relations coming from 240
(2)-rulings, and 119 quadratic relations coming from the (3)-ruling
−2KS8.

After explaining some results on the relations in the Cox ring of smooth
Del Pezzo surfaces in Section 3.2, we will discuss the cases r ∈ {6, 7, 8}
separately.

3.2. Relations in the Cox ring

Let r ≥ 3. Recall the information from Section 1.3 on the (−1)-curves
of Sr, whose number is Nr as in Table 3.1. By Section 1.4, the Weyl group
Wr associated to the root system Φr as in Table 1.2 acts on Pic(Sr).

31
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For r ≤ 6, the relations in the Cox ring are induced by rulings, and
these relations also play an important role for r ∈ {7, 8}. More precisely,
by the discussion following [BP04, Remark 4.7], each ruling is represented
in r − 1 different ways as the sum of two (−1)-curves, giving r − 3 linearly
independent quadratic relations in Cox(Sr). Therefore, if each of the Nr

(−1)-curves intersects nr (−1)-curves with intersection number 1, we have
N ′

r = (Nr · nr)/2 pairs, the number of rulings is N ′′
r = N ′

r/(r − 1), and
the number of quadratic relations coming from rulings is N ′′

r · (r − 3) (see
Table 3.1).

r 3 4 5 6 7 8
Nr 6 10 16 27 56 240
nr 2 3 5 10 27 126
N ′′

r 3 5 10 27 126 2160
relations 0 5 20 81 504 10800

Table 3.1. The number of relations coming from rulings.

Now we describe how to obtain explicit equations for Cox(Sr) and how
to prove Theorem 3.2. We isolate the steps that must be carried out for each
of the degrees 3, 2, and 1 and complete the proofs in the following sections.

Choice of coordinates. Choose coordinates for p1, . . . , pr ∈ P2. By
Remark 1.17, we may assume that the first four points are

(3.1) p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1),

and we can write pj = (1 : αj : βj) for j ∈ {5, . . . , r}.
Curves in P2. As explained in the introduction, Cox(Sr) is generated

by sections of the (−1)-curves for r ≤ 7. For a (−1)-curve D, we denote the
corresponding section by ξ(D), and for a generating section ξ, letD(ξ) be the
corresponding divisor. For r = 8, we need two further generators: linearly
independent sections κ1, κ2 of −KS8 . Let K1 := D(κ1), K2 := D(κ2) be the
corresponding divisors in the divisor class −KS8 .

LetDr be the set of divisors corresponding to sections generating Cox(Sr)
(including K1,K2 if r = 8).

We need an explicit description of the image of each generator D of
Cox(Sr) under the projection π : Sr → P2. According to Lemma 1.14, π(D)
can be a curve, determined by a form fD of degree d ∈ {1, . . . , 6}, or a point
(if D = Ei). If π(D) is a point, the convention to choose fD as a non-zero
constant will be useful later.

For r = 8, we have the following situation: The image of Ki is a cubic
through the eight points p1, . . . , p8. The choice of two linearly independent
sections κ1, κ2 corresponds to the choice of two independent cubic forms
fK1 , fK2 vanishing in the eight points. Every cubic through these points has
the form a1fK1+a2fK2 where (a1, a2) 6= (0, 0), and the cubic does not change
if we replace (a1, a2) be a non-zero multiple. This gives a one-dimensional
projective space of cubics through the eight points.
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LetX1, . . . , Xn be the monomials of degree d in three variables x0, x1, x2.
For D ∈ Dr, we can write

fD =
n∑

i=1

ai ·Xi

for suitable coefficients ai, which we can calculate in the following way: If
pj lies on π(D), this gives a linear condition on the coefficients ai by substi-
tuting the coordinates of pj for x0, x1, x2. If pj is a double point of π(D), all
partial derivatives of fD must vanish at this point, giving three more linear
conditions. If pj is a triple point, we get six more linear conditions from the
second derivatives. With p1, . . . , pr in general position, we check that these
conditions determine fD uniquely up to a non-zero constant.

Relations corresponding to (n)-rulings. Suppose that an (n)-ruling
D can be written as Dj + D′

j for k different pairs Dj , D
′
j ∈ Dr where j ∈

{1, . . . , k}. Then the products

fD1 · fD′
1
, . . . , fDk

· fD′
k

are k homogeneous forms of the same degree d, and they span a vector space
of dimension n + 1 in the space of homogeneous polynomials of degree d.
Consequently, there are k − (n + 1) independent relations between them,
which we write as

k∑
j=1

aj,i · fDj · fD′
j

= 0 for i ∈ {1, . . . , k − (n+ 1)}.

for suitable constants aj,i. They give an explicit description of the quadratic
relations coming from D:

Lemma 3.3. In this situation, the (n)-ruling D gives the following k −
(n+ 1) quadratic relations in Cox(Sr):

FD,i :=
k∑

j=1

aj,i · ξ(Dj) · ξ(D′
j) = 0 for i ∈ {1, . . . , k − (n+ 1)}.

We will describe the (n)-rulings in more detail in the subsequent sections.
Let Jr be the ideal in Rr which is generated by the (n)-rulings (where

n = 1 for r ≤ 6, n ∈ {1, 2} for r = 7, and n ∈ {1, 2, 3} for r = 8).
The proof of Theorem 3.2. For r ∈ {4, 5, 6}, this is [BP04, Theo-

rem 4.9]. For r ∈ {7, 8}, we use a refinement of its proof.
Let Zr = Spec(Rr/ rad(Jr)) ⊂ Spec(Rr). We want to prove that Zr

equals A(Sr) ⊂ Spec(Rr), where A(Sr) := Spec(Cox(Sr)). Obviously, 0 ∈
Spec(Rr) is contained in both Zr and A(Sr). Its complement Spec(Rr)\{0}
is covered by the open sets

UD := {ξ(D) 6= 0}, where D ∈ Dr.

In the case r = 8, we will show that it suffices to consider the sets UD for
D ∈ D8 \ {K1,K2}.

We want to show

Zr ∩ UD
∼= Zr−1 × (A1 \ {0}).
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Note that we can identify the (−1)-curves Dr−1 of Sr−1 with the subset D′
r

of Dr containing the (−1)-curves which do not intersect D. We define

ψ : Zr ∩ UD → Zr−1 × (A1 \ {0})
(ξ(D′) | D′ ∈ Dr) 7→ ((ξ(D′) | D′ ∈ Dr−1), ξ(D)) .

For r ∈ {7, 8}, we will prove:

Lemma 3.4. Every ξ(D′′) for D′′ ∈ Dr intersecting D is determined by

ξ(D) and {ξ(D′) | D′ ∈ Dr with (D′, D) = 0},
provided that ξ(D) 6= 0 and using the relations generating Jr.

By the proof of [BP04, Proposition 4.4],

A(Sr) ∩ UD
∼= A(Sr−1)× (A1 \ {0}).

By induction, Zr−1 = A(Sr−1). Therefore, Zr ∩ UD = A(Sr) ∩ UD for
every (−1)-curve D, which implies Zr = A(Sr), completing the proof of
Theorem 3.2 once Lemma 3.4 is proved.

3.3. Degree 3

We consider the case r = 6, i.e., smooth cubic surfaces. By Lemma 1.14,
the set D6 of (−1)-curves on S6 consists of the following 27 divisors:

• exceptional divisors E1, . . . , E6, preimages of p1, . . . , p6 ∈ P2,
• strict transforms mi,j = H − Ei − Ej of the 15 lines m′

i,j through
the points pi, pj (i 6= j ∈ {1, . . . , 6}), and

• strict transforms Qk = 2H − (E1 + · · ·+E6) +Ek of the six conics
Q′

k through all of the blown-up points except pk.
With respect to the anticanonical embedding S6 ↪→ P3, the (−1)-curves are
the 27 lines (Remark 1.26).

Together with information from Section 3.2, it is straightforward to de-
rive:

Lemma 3.5. The extended Dynkin diagram of (−1)-curves has the fol-
lowing structure:

(1) It has 27 vertices corresponding to the 27 lines Ei,mi,j , Qi. Each
of them has self-intersection number −1.

(2) Every line intersects exactly 10 other lines: Ei intersects mi,j and
Qj (for j 6= i); mi,j intersects Ei, Ej , Qi, Qj and mk,l (for {i, j} ∩
{k, l} = ∅); Qi intersects mi,j and Ej (for j 6= i). Correspondingly,
there are 135 edges in the Dynkin diagram.

(3) There are 45 triangles, i.e., triples of lines which intersect pairwise:
30 triples Ei,mi,j , Qj and 15 triples of the form mi1,j1 ,mi2,j2 ,mi3,j3

where {i1, j1, i2, j2, i3, j3} = {1, . . . , 6}. This corresponds to 45 tri-
angles in the Dynkin diagram, where each edge is contained in ex-
actly one of the triangles, and each vertex belongs to exactly five
triangles.

Lemma 3.6. The 27 rulings of S6 are given by −KS6 −D for D ∈ D6.
Two (−1)-curves D′, D′′ fulfill D′+D′′ = −KS6−D if and only if D,D′, D′′

form a triangle in the sense of Lemma 3.5(3). There are five such pairs for
any given D.
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Proof. We can check directly that D +D′ +D′′ = −KS6 if D,D′, D′′

form a triangle. Therefore, −KS6 − D is a ruling. As any D is contained
in exactly five triangles, this ruling can be expressed in five corresponding
ways as D′ +D′′.

On the other hand, by Table 3.1, the total number of rulings is 27, and
each ruling can be expressed in exactly five ways as the sum of two (−1)-
curves. �

Let D be one of the 27 lines of S6, and consider the projection ψD :
S6 → P1 from D. Then

ψ∗D(OP2(1)) = −KS6 −D =


H − Ei, D = Qi,

2H − (E1 + · · ·+ E6) + Ei + Ej , D = mi,j ,

3H − (E1 + · · ·+ E6)− Ei, D = Ei.

These are exactly the rulings.
A generating set of Cox(S6) is given by section ηi, µi,j , λi corresponding

to the 27 lines Ei,mi,j , Qi, respectively. We order them in the following way:

η1, . . . , η6, µ1,2, . . . , µ1,6, µ2,3, . . . , µ2,6, µ3,4, . . . , µ5,6, λ1, . . . , λ6.

Let
R6 := K[ηi, µi,j , λi].

The quadratic monomials in H0(S6,−KS6−D) corresponding to the five
ways to express −KS6 −D as the sum of the (−1)-curves are

• µi,jηj if D = Qi

• ηiλj , ηjλi, µk1,k2µk3,k4 if D = µi,j ({i, j, k1, . . . , k4} = {1, . . . , 6})
• µi,jλj if D = Ei

In order to calculate the 81 relations in J6 explicitly as described in
Lemma 3.3, we use the coordinates of (3.1) for p1, . . . , p4, and

p5 = (1 : a : b), p6 = (1 : c : d).

We write

E := (b− 1)(c− 1)− (a− 1)(d− 1) and F := bc− ad

for simplicity. The three relations corresponding to a line D are denoted by
F−KS6

−D,1, F−KS6
−D,2, F−KS6

−D,3.

F−KS6
−Q1,1 = −η2µ1,2 − η3µ1,3 + η4µ1,4

F−KS6
−Q1,2 = −aη2µ1,2 − bη3µ1,3 + η5µ1,5

F−KS6
−Q1,2 = −cη2µ1,2 − dη3µ1,3 + η6µ1,6

F−KS6
−Q2,1 = η1µ1,2 − η3µ2,3 + η4µ2,4

F−KS6
−Q2,2 = η1µ1,2 − bη3µ2,3 + η5µ2,5

F−KS6
−Q2,3 = η1µ1,2 − dη3µ2,3 + η6µ2,6

F−KS6
−Q3,1 = η1µ1,3 + η2µ2,3 + η4µ3,4

F−KS6
−Q3,2 = η1µ1,3 + aη2µ2,3 + η5µ3,5

F−KS6
−Q3,3 = η1µ1,3 + cη2µ2,3 + η6µ3,6
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F−KS6
−Q4,1 = η1µ1,4 + η2µ2,4 + η3µ3,4

F−KS6
−Q4,2 = (1− b)η1µ1,4 + (a− b)η2µ2,4 + η5µ4,5

F−KS6
−Q4,3 = (1− d)η1µ1,4 + (c− d)η2µ2,4 + η6µ4,6

F−KS6
−Q5,1 = 1/bη1µ1,5 + a/bη2µ2,5 + η3µ3,5

F−KS6
−Q5,2 = (1− b)/bη1µ1,5 + (a− b)/bη2µ2,5 + η4µ4,5

F−KS6
−Q5,3 = (b− d)/bη1µ1,5 + F/bη2µ2,5 + η6µ5,6

F−KS6
−Q6,1 = 1/dη1µ1,6 + c/dη2µ2,6 + η3µ3,6

F−KS6
−Q6,2 = (1− d)/dη1µ1,6 + (c− d)/dη2µ2,6 + η4µ4,6

F−KS6
−Q6,3 = (b− d)/dη1µ1,6 + F/dη2µ2,6 + η5µ5,6

F−KS6
−m1,2,1 = µ4,5µ3,6 − µ3,5µ4,6 + µ3,4µ5,6

F−KS6
−m1,2,2 = (b− d)µ3,5µ4,6 + (d− 1)µ3,4µ5,6 + η2λ1

F−KS6
−m1,2,3 = Fµ3,5µ4,6 + a(d− c)µ3,4µ5,6 + η1λ2

F−KS6
−m1,3,1 = µ4,5µ2,6 − µ2,5µ4,6 + µ2,4µ5,6

F−KS6
−m1,3,2 = (c− a)µ2,5µ4,6 + (1− c)µ2,4µ5,6 + η3λ1

F−KS6
−m1,3,3 = −Fµ2,5µ4,6 + b(c− d)µ2,4µ5,6 + η1λ3

F−KS6
−m2,3,1 = µ4,5µ1,6 − µ1,5µ4,6 + µ1,4µ5,6

F−KS6
−m2,3,2 = (a− c)µ1,5µ4,6 + a(c− 1)µ1,4µ5,6 + η3λ2

F−KS6
−m2,3,3 = (b− d)µ1,5µ4,6 + b(d− 1)µ1,4µ5,6 + η2λ3

F−KS6
−m1,4,1 = µ3,5µ2,6 − µ2,5µ3,6 + µ2,3µ5,6

F−KS6
−m1,4,2 = −Eµ2,5µ3,6 + (b− 1)(c− 1)µ2,3µ5,6 + η4λ1

F−KS6
−m1,4,3 = −Fµ2,5µ3,6 + bcµ2,3µ5,6 + η1λ4

F−KS6
−m2,4,1 = µ3,5µ1,6 − µ1,5µ3,6 + µ1,3µ5,6

F−KS6
−m2,4,2 = Eµ1,5µ3,6 + (a− b)(c− 1)µ1,3µ5,6 + η4λ2

F−KS6
−m2,4,3 = (b− d)µ1,5µ3,6 − bµ1,3µ5,6 + η2λ4

F−KS6
−m3,4,1 = µ2,5µ1,6 − µ1,5µ2,6 + µ1,2µ5,6

F−KS6
−m3,4,2 = −Eµ1,5µ2,6 + (a− b)(1− d)µ1,2µ5,6 + η4λ3

F−KS6
−m3,4,3 = (c− a)µ1,5µ2,6 + aµ1,2µ5,6 + η3λ4
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F−KS6
−m1,5,1 = µ3,4µ2,6 − µ2,4µ3,6 + µ2,3µ4,6

F−KS6
−m1,5,2 = −Eµ2,4µ3,6 + (a− c)(1− b)µ2,3µ4,6 + η5λ1

F−KS6
−m1,5,3 = (d− c)µ2,4µ3,6 + cµ2,3µ4,6 + η1λ5

F−KS6
−m2,5,1 = µ3,4µ1,6 − µ1,4µ3,6 + µ1,3µ4,6

F−KS6
−m2,5,2 = aEµ1,4µ3,6 + (a− b)(c− a)µ1,3µ4,6 + η5λ2

F−KS6
−m2,5,3 = (1− d)µ1,4µ3,6 − µ1,3µ4,6 + η2λ5

F−KS6
−m3,5,1 = µ2,4µ1,6 − µ1,4µ2,6 + µ1,2µ4,6

F−KS6
−m3,5,2 = −bEµ1,4µ2,6 + (a− b)(b− d)µ1,2µ4,6 + η5λ3

F−KS6
−m3,5,3 = (c− 1)µ1,4µ2,6 + µ1,2µ4,6 + η3λ5

F−KS6
−m4,5,1 = µ2,3µ1,6 − µ1,3µ2,6 + µ1,2µ3,6

F−KS6
−m4,5,2 = b(c− a)µ1,3µ2,6 + a(b− d)µ1,2µ3,6 + η5λ4

F−KS6
−m4,5,3 = (c− 1)µ1,3µ2,6 + (1− d)µ1,2µ3,6 + η4λ5

F−KS6
−m1,6,1 = µ3,4µ2,5 − µ2,4µ3,5 + µ2,3µ4,5

F−KS6
−m1,6,2 = −Eµ2,4µ3,5 + (a− c)(1− d)µ2,3µ4,5 + η6λ1

F−KS6
−m1,6,3 = (b− a)µ2,4µ3,5 + aµ2,3µ4,5 + η1λ6

F−KS6
−m2,6,1 = µ3,4µ1,5 − µ1,4µ3,5 + µ1,3µ4,5

F−KS6
−m2,6,2 = cEµ1,4µ3,5 + (a− c)(d− c)µ1,3µ4,5 + η6λ2

F−KS6
−m2,6,3 = (1− b)µ1,4µ3,5 − µ1,3µ4,5 + η2λ6

F−KS6
−m3,6,1 = µ2,4µ1,5 − µ1,4µ2,5 + µ1,2µ4,5

F−KS6
−m3,6,2 = −dEµ1,4µ2,5 + (d− b)(d− c)µ1,2µ4,5 + η6λ3

F−KS6
−m3,6,3 = (a− 1)µ1,4µ2,5 + µ1,2µ4,5 + η3λ6

F−KS6
−m4,6,1 = µ2,3µ1,5 − µ1,3µ2,5 + µ1,2µ3,5

F−KS6
−m4,6,2 = d(c− a)µ1,3µ2,5 + c(b− d)µ1,2µ3,5 + η6λ4

F−KS6
−m4,6,3 = (a− 1)µ1,3µ2,5 + (1− b)µ1,2µ3,5 + η4λ6

F−KS6
−m5,6,1 = µ2,3µ1,4 − µ1,3µ2,4 + µ1,2µ3,4

F−KS6
−m5,6,2 = d(c− 1)µ1,3µ2,4 + c(1− d)µ1,2µ3,4 + η6λ5

F−KS6
−m5,6,3 = b(a− 1)µ1,3µ2,4 + a(1− b)µ1,2µ3,4 + η5λ6
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F−KS6
−E1,1 = (d− b)/Eµ1,2λ2 + (c− a)/Eµ1,3λ3 + µ1,4λ4

F−KS6
−E1,2 = (d− 1)/Eµ1,2λ2 + (c− 1)/Eµ1,3λ3 + µ1,5λ5

F−KS6
−E1,3 = (b− 1)/Eµ1,2λ2 + (a− 1)/Eµ1,3λ3 + µ1,6λ6

F−KS6
−E2,1 = F/Eµ1,2λ1 + (c− a)/Eµ2,3λ3 + µ2,4λ4

F−KS6
−E2,2 = (c− d)/Eµ1,2λ1 + (c− 1)/Eµ2,3λ3 + µ2,5λ5

F−KS6
−E2,3 = (a− b)/Eµ1,2λ1 + (a− 1)/Eµ2,3λ3 + µ2,6λ6

F−KS6
−E3,1 = F/Eµ1,3λ1 + (b− d)/Eµ2,3λ2 + µ3,4λ4

F−KS6
−E3,2 = (c− d)/Eµ1,3λ1 + (1− d)/Eµ2,3λ2 + µ3,5λ5

F−KS6
−E3,3 = (a− b)/Eµ1,3λ1 + (1− b)/Eµ2,3λ2 + µ3,6λ6

F−KS6
−E4,1 = F/(a− c)µ1,4λ1 + (b− d)/(a− c)µ2,4λ2 + µ3,4λ3

F−KS6
−E4,2 = c/(a− c)µ1,4λ1 + 1/(a− c)µ2,4λ2 + µ4,5λ5

F−KS6
−E4,3 = a/(a− c)µ1,4λ1 + 1/(a− c)µ2,4λ2 + µ4,6λ6

F−KS6
−E5,1 = (d− c)/(c− 1)µ1,5λ1 + (d− 1)/(c− 1)µ2,5λ2 + µ3,5λ3

F−KS6
−E5,2 = −c/(c− 1)µ1,5λ1 − 1/(c− 1)µ2,5λ2 + µ4,5λ4

F−KS6
−E5,3 = −1/(c− 1)µ1,5λ1 − 1/(c− 1)µ2,5λ2 + µ5,6λ6

F−KS6
−E6,1 = (b− a)/(a− 1)µ1,6λ1 + (b− 1)/(a− 1)µ2,6λ2 + µ3,6λ3

F−KS6
−E6,2 = −a/(a− 1)µ1,6λ1 − 1/(a− 1)µ2,6λ2 + µ4,6λ4

F−KS6
−E6,3 = −1/(a− 1)µ1,6λ1 − 1/(a− 1)µ2,6λ2 + µ5,6λ5

3.4. Degree 2

Let S7 be a smooth Del Pezzo surface of degree d = 2, i.e., the blow-up
of P2 in r = 7 points. The set D7 contains 56 (−1)-curves which are the
strict transforms of the following curves in P2:

• blow-ups E1, . . . , E7 of p1, . . . , p7;
• 21 lines m′

i,j through pi, pj , where

mi,j = H − Ei − Ej ;

• 21 conics Q′
i,j through five of the seven points, missing pi, pj , where

Qi,j = 2H − (E1 + · · ·+ E7) + Ei + Ej ;

• 7 singular cubics C ′
i through all seven points, where pi is a double

point, and

Ci = 3H − (E1 + · · ·+ E7)− Ei.

The Cox ring Cox(S7) is generated by the sections ηi, µi,j , νi,j , λi cor-
responding to the 56 (−1)-curves Ei,mi,j , Qi,j , Ci, respectively. They are
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ordered as

η1, . . . , η7, µ1,2, . . . , µ1,7, µ2,3, . . . , µ6,7, ν1,2, . . . , ν1,7, ν2,3, . . . , ν6,7, λ1, . . . , λ7.

Let
R7 := K[ηi, µi,j , νi,j , λi]

be the polynomial ring in 56 generators.
Consider the ideal I7 ⊂ R7 generated by the quadratic relations corre-

sponding to rulings. In view of Lemma 3.3, we need to know the six different
ways to write each of the 126 rulings as a sum of two (−1)-curves in order
to describe I7 explicitly. Here, we do not write the resulting 504 relations
down because of the length of this list.

Lemma 3.7. Each of the 126 rulings can be written in six ways as a sum
of two (−1)-curves:

(1) For the seven rulings H − Ei:

{Ej +mi,j | j 6= i}.
(2) For the 35 rulings 2H − (E1 + · · ·+ E7) + Ei + Ej + Ek:

{Ei +Qj,k, Ej +Qi,k, Ek +Qi,j ,ml1,l2 +ml3,l4 | {i, j, k, l1, l2, l3, l4} = {1, . . . , 7}}

(3) For the 42 rulings 3H − (E1 + · · ·+ E7) + Ei − Ej:

{Ei + Cj , Qi,k +mj,k | k 6= i, j}.
(4) For the 35 rulings 4H − (E1 + · · ·+ E7)− Ei − Ej − Ek:

{Ci +mj,k, Cj +mi,k, Ck +mi,j , Ql1,l2 +Ql3,l4 | {i, j, k, l1, l2, l3, l4} = {1, . . . , 7}}

(5) For the seven rulings 5H − 2(E1 + · · ·+ E7) + Ei:

{Cj +Qi,j | j 6= i}.

However, we have more quadratic relations in Cox(S7): Note that the
point q, with η1 = λ1 = 1 and other coordinates zero, satisfies the 504
relations. Indeed, (E1, C1) = 2, but all quadratic monomials which occur in
the relations correspond to pairs of divisors whose intersection number is 1.
Hence, all these monomials and all the relations vanish in q. On the other
hand, we check that the 504× 56 Jacobian matrix has rank 54 in this point,
which means that q is contained in a component of the variety defined by
I7 which has dimension 2. As A(S7) is irreducible of dimension 10, we must
find other relations to exclude such components.

As E1 + C1 = −KS7 , we look for more relations in degree −KS7 of
Cox(S7): We check that in this degree, we have exactly 28 monomials:

{ηiλi | 1 ≤ i ≤ 7} ∪ {µj,kνj,k | 1 ≤ j < k ≤ 7},
corresponding to −KS7 = Ei +Ci = mj,k +Qj,k. As dimH0(S7,−KS7) = 3,
and as none of the relations coming from rulings induces a relation in this
degree, we obtain 25 independent relations. Note that −KS7 is the unique
(2)-ruling of S7.

We can calculate the relations explicitly as they correspond to the rela-
tions between the polynomials fEi · fCi and fmi,j · fQi,j , which are homoge-
neous of degree 3, as described in Lemma 3.3.

Let J7 be the ideal generated by these 529 relations.
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Proof of Lemma 3.4. In order to show that Cox(S7) is described by
rad(J7), we must prove Lemma 3.4 in the case r = 7.

For any D ∈ D7, consider a coordinate ξ(D′) where (D,D′) = 1. This is
determined by the ruling D + D′. Indeed, this ruling induces a relation of
the form

ξ(D)ξ(D′) =
∑

aiξ(Di)ξ(D′
i),

where Di +D′
i = D +D′. Therefore,

(D,Di +D′
i) = (D,D +D′) = (D,D) + (D,D′) = −1 + 1 = 0,

which implies (D,Di) = (D,D′
i) = 0 since the only (−1)-curve intersecting

D negatively is D itself. Since ξ(D) 6= 0, the only unknown variable ξ(D′)
is determined by this relation.

Furthermore, there is exactly one coordinate ξ(D′′) where (D,D′′) = 2.
The unique (2)-ruling D +D′′ = −KS7 induces a relation of the form

ξ(D)ξ(D′′) =
∑

aiξ(Di)ξ(D′
i),

where ξ(D′′) is the only unknown variable.

3.5. Degree 1

In this section, we consider blow-ups of P2 in r = 8 points in general
position, i.e., smooth Del Pezzo surfaces S8 of degree 1.

The set D8 contains the strict transforms of the following 242 curves:
• Blow-ups E1, . . . , E8 of p1, . . . , p8;
• 28 lines m′

i,j through pi, pj :

mi,j = H − Ei − Ej ;

• 56 conics Q′
i,j,k through 5 points, missing pi, pj , pk:

Qi,j,k = 2H − (E1 + · · ·+ E8) + Ei + Ej + Ek;

• 56 cubics C ′
i,j through 7 points missing pj , where pi is a double

point:

Ci,j = 3H − (E1 + · · ·+ E8)− Ei + Ej ;

• 56 quartics V ′
i,j,k through all points, where pi, pj , pk are double

points:

Vi,j,k = 4H − (E1 + · · ·+ E8)− (Ei + Ej + Ek);

• 28 quintics F ′
i,j through all points, where pi, pj are simple points

and the other six are double points:

Fi,j = 5H − 2(E1 + · · ·+ E8) + Ei + Ej ;

• 8 sextics T ′i , where pi a triple point and the other seven points are
double points:

Ti = 6H − 2(E1 + · · ·+ E8)− Ei;

• two independent cubics K ′
1,K

′
2 through the eight points:

[K1] = [K2] = −KS8 = 3− (E1 + · · ·+ E8).
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The Cox ring of S8 is generated by the 242 sections

ηi, µi,j , νi,j,k, λi,j , φi,j,k, ψi,j , σi, κi

of Ei, mi,j , Qi,j,k, Ci,j , Vi,j,k, Fi,j , Ti,Ki, respectively.

Lemma 3.8. Each of the 2160 rulings can be expressed in the following
seven ways as a sum of two (−1)-curves:

• 8 rulings of the form H − Ei:

{Ej +mi,j | j 6= i}.

•
(
8
4

)
= 70 rulings of the form 2H − (Ei + Ej + Ek + El):{

mi,j +mk,l,mi,k +mj,l,

mi,l +mj,k, Ea +Qb,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
.

• 8 ·
(
7
2

)
= 168 rulings of the form 3H−(E1+ · · ·+E8)−Ei +Ej +Ek:

{Ej + Ci,k, Ek + Ci,j ,mi,l +Qj,k,l | l /∈ {i, j, k}}.

• 8 ·
(
7
3

)
= 280 rulings 4H − (E1 + · · ·+ E8) + Ei − (Ej + Ek + El):{

Ei + Vj,k,l, Qi,a,b +Qi,c,d,

Cj,i +mk,l, Ck,i +mj,l, Cl,i +mj,k

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
,

and 8 rulings of the form 4H − (E1 + · · ·+ E8)− 2Ei:

{mi,j + Ci,j | j 6= i}.
• 8 · 7 = 56 rulings of the form 5H − 2(E1 + · · ·+ E8) + 2Ei + Ej:

{Ei + Fi,j , Ck,i +Qi,j,k | k /∈ {i, j}},

and 8 ·
(
7
3

)
= 280 rulings 5H−(E1+ · · ·+E8)−2Ei−(Ej +Ek +El):{

mi,j + Vi,k,l,mi,k + Vi,j,l,

mi,l + Vi,j,k, Ci,a +Qb,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
.

•
(
8
2

)
·
(
6
2

)
= 420 rulings 6H − 2(E1 + · · ·+E8)− (Ei +Ej)+Ek +El:

{mi,j + Fk,l, Vi,j,m +Qk,l,m, Ci,k + Cj,l, Ci,l + Cj,k | m /∈ {i, j, k, l}}.
• 8 · 7 = 56 rulings of the form 7H − 2(E1 + · · ·+ E8)− 2Ei − Ej:

{mi,j + Ti, Ci,k + Vi,j,k | k /∈ {i, j}},

and 8 ·
(
7
3

)
= 280 rulings 7H−3(E1 + · · ·+E8)+2Ei +Ej +Ek +El:{

Fi,j +Qi,k,l, Fi,k +Qi,j,l,

Fi,l +Qi,j,k, Ca,i + Vb,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
.

• 8 ·
(
7
3

)
= 280 rulings 8H − 3(E1 + · · ·+ E8)− Ei + Ej + Ek + El:{

Ci,j + Fk,l, Ci,k + Fj,l, Ci,l + Fj,k,

Ti +Qj,k,l, Vi,a,b + Vi,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
,

and 8 rulings of the form 8H − 3(E1 + · · ·+ E8) + 2Ei:

{Fi,j + Cj,i | j 6= i}.
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• 8·
(
7
2

)
= 168 rulings of the form 9H−3(E1+· · ·+E8)+Ei−(Ej+Ek):

{Sj + Ck,i, Sk + Cj,i, Fi,l + Vj,k,l | l /∈ {i, j, k}}.

•
(
8
4

)
= 70 rulings of the form 10H−4(E1+· · ·+E8)+Ei+Ej+Ek+El:

{Fi,j +Fk,l, Fi,k +Fj,l, Fi,l +Fj,k, Sa+Vb,c,d | {a, b, c, d, i, j, k, l} = {1, . . . , 8}}.
• 8 rulings of the form 11H − 4(E1 + · · ·+ E8) + Ei:

{Sj + Fi,j | j 6= i}.
There is no way to write a ruling as the sum of −KS8 and (−1)-curves.

Proof. Because of the Weyl group symmetry, we need to prove the last
statement only in one case, say H − E1. In this case, it is obvious.

By Table 3.1, there can be no other rulings, and each ruling can be
expressed in no further ways as the sum of two (−1)-curves. �

With this information, Lemma 3.3 allows us to determine the 10800
relations coming from rulings explicitly.

We can find more quadratic relations in the degrees corresponding to
(2)-rulings: Because of the Weyl group symmetry, it is enough to consider
the (2)-ruling D := E2 +C2,1. This can also be written as Ej +Cj,1 for any
j 6= 1 and as mi,j + Q1,i,j for any i, j 6= 1, giving 28 section in H0(S8, D).
As D = −KS8 + E1, we get two further section η1κ1, η1κ2. As the previous
quadratic relations do not induce relations in this degree of Cox(S8), and
because we calculate dimH0(S8, D) = 3 for this nef degree, we obtain 27
relations, which can be calculated explicitly as before.

Every (−1)-curve has intersection number 2 with exactly 56 other curves
(e.g. (E1, D) = 2 if and only if D ∈ {C1,i, V1,i,j , Fi,j , Ti} for i, j 6= 1), so it
occurs in exactly 56 (2)-rulings. On the other hand, as every (2)-ruling can
be written in 28 ways as the sum of two (−1)-curves, the total number of
(2)-rulings is 240·56

2·28 = 240. Therefore, we obtain another 6480 relations from
the (2)-rulings. To determine them explicitly, we need the following more
detailed information:

Lemma 3.9. Each of the 240 (2)-rulings can be written as a sum of two
(−1)-curves in the following 28 ways:

• 8 (2)-rulings of the form

−KS8 + Ei = 3H − (E1 + · · ·+ E8) + Ei :

{Ej + Cj,i,mj,k +Qi,j,k | j, k 6= i}.
•
(
8
2

)
= 28 (2)-rulings of the form

−KS8 +mi,j = 4H − (E1 + · · ·+ E8)− (Ei + Ej) :{
Ek + Vi,j,k,mi,k + Cj,k,

mj,k + Ci,k, Qa,b,c +Qd,e,f

∣∣∣∣∣ k /∈ {i, j},{i, j, a, b, c, d, e, f} = {1, . . . , 8}

}
.

•
(
8
3

)
= 56 (2)-rulings of the form

−KS8 +Qi,j,k = 5H − 2(E1 + · · ·+ E8) + Ei + Ej + Ek :{
Ei + Fj,k, Ej + Fi,k, Ek + Fi,j ,ma,b + Vc,d,e,

Qi,j,l + Cl,k, Qi,k,l + Cl,j , Qj,k,l + Cl,i

∣∣∣∣∣ {i, j, k, a, b, c, d, e}= {1, . . . , 8}, l /∈ {i, j, k}

}
.
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• 8 · 7 = 56 (2)-rulings of the form

−KS8 + Ci,j = 6H − 2(E1 + · · ·+ E8)− Ei + Ej :

{Ej + Ti,mi,k + Fj,k, Qj,k,l + Vi,k,l, Ci,k + Ck,j | k, l /∈ {i, j}}.
•
(
8
3

)
= 56 (2)-rulings of the form

−KS8 + Vi,j,k = 7H − 2(E1 + · · ·+ E8)− (Ei + Ej + Ek) :{
Ti +mj,k, Sj +mi,k, Sk +mi,j , Fa,b +Qc,d,e,

Vi,j,l + Ck,l, Vi,k,l + Cj,l, Vj,k,l + Ci,l

∣∣∣∣∣ {i, j, k, a, b, c, d, e}
= {1, . . . , 8}, l /∈ {i, j, k}

}
.

•
(
8
2

)
= 28 (2)-rulings of the form

−KS8 + Fi,j = 8H − 3(E1 + · · ·+ E8) + Ei + Ej :{
Sk +Qi,j,k, Fi,k + Ck,j ,

Fj,k + Ck,i, Va,b,c + Vd,e,f

∣∣∣∣∣ k /∈ {i, j},{i, j, a, b, c, d, e, f} = {1, . . . , 8}

}
.

• 8 (2)-rulings of the form

−KS8 + Ti = 9H − 3(E1 + · · ·+ E8)− Ei :

{Sj + Ci,j , Fj,k + Vi,j,k | j, k 6= i}.

Furthermore, the 242 generators give the 123 quadratic monomials

ηiσi, µi,jψi,j , νi,j,kφi,j,k, λi,jλj,i, κ2
1, κ1κ2, κ

2
2

in the 4-dimensional subspace H0(S8,−2KS8) of Cox(S8). Note that −2KS8

is the unique (3)-ruling. As the relations coming from rulings and (2)-rulings
do not induce relations in H0(S8,−2KS8), we obtain another 119 relations.
Their equations can be calculated in the same way as before.

Lemma 3.10. There are exactly 17399 independent quadratic relations
in Cox(S8).

Proof. The relations in Cox(S8) are generated by relations which are
homogeneous with respect to the Pic(S8)-grading. A quadratic relation in-
volving a term ξ(D1)ξ(D2) has degree D = D1 +D2. The relations of degree
D1 +D2 depend on the intersection number n = (D1, D2):

• If n = 1, then D is a (1)-ruling. As described above, we have
exactly 10800 corresponding relations.

• If n = 2, then D is a (2)-ruling. We have described the 6480
resulting relations.

• If n = 3, then D = −2KS8 , which results in exactly 119 quadratic
relations.

• If n = 0, then D = D1 +D2 is not nef since (D,D1) = −1. How-
ever, by results of [HT04, Section 3], the relations in Cox(S8) are
generated by relations in nef degrees.

• If n = −1, then D1 = D2, and (D,D1) = −2, so D is not nef,
giving no generating relations as before.

There are no other quadratic relations involving κi because the 240 degrees
−KS8 + D1 for some (−1)-curve D1 are exactly the (2)-rulings, and the
degree −2KS8 has also been considered. �
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Let J8 be the ideal generated by these 17399 quadratic relations in

R8 = K[ηi, µi,j , νi,j,k, λi,j , φi,j,k, ψi,j , σi, κi].

Proof of Lemma 3.4. Let D ∈ D8 \ {K1,K2} be any (−1)-curve. We
call a variable ξ(D′) for a (−1)-curve D′ ∈ D8 an (n)-variable if (D,D′) = n.

As for r = 7 in the previous section, we show that the rulings determine
the (1)-variables in terms of the (0)-variables and ξ(D) 6= 0.

For the two variables κi = ξ(Ki) corresponding to −KS8 , we use the (2)-
ruling −KS8 +D: As (D,−KS8 +D) = 0, we have (D,Di) = (D,D′

i) = 0
for any other possibility to write −KS8 +D as the sum of two (−1)-curves
Di, D

′
i. Since (−KS8 + D,−KS8) = 2, by [BP04, Proposition 3.4], the

quadratic monomials ξ(Di)ξ(D′
i) span H0(S8,−KS8 +D), so this (2)-ruling

induces relations of the form

κiξ(D) =
∑

aiξ(Di)ξ(D′
i).

Therefore, κ1, κ2 are determined by ξ(D) and the (0)-variables.
Any (2)-coordinate ξ(D′) is determined by the (2)-ruling D + D′: As

(D,D+D′) = 1, we have (D,Di) = 0 and (D,D′
i) = 1 for every other possi-

bility to write D+D′ as the sum of two (−1)-curves Di, D
′
i. Furthermore, if

D+D′ = −KS8 +D′′, then (D,D′′) = 0. Hence, the relations corresponding
to this (2)-ruling determine ξ(D′) in terms of the (0)- and (1)-variables and
κ1, κ2, ξ(D).

Finally, there is a unique (3)-coordinate D′, where D +D′ = −2KS8 is
the (3)-ruling. As all other variables are known at this point, the relations
corresponding to −2KS8 containing the term ξ(D)ξ(D′) determine ξ(D′).

Consider a point in UKj , i.e., with κj 6= 0. As above, by [BP04, Propo-
sition 3.4], H0(S8,−2KS8) is spanned by the monomials ξ(Di)ξ(D′

i) for (3)-
rulings Di, D

′
i. Therefore, we have relations of the form

κ2
j =

∑
aiξ(Di)ξ(D′

i),

which shows that ξ(Di) 6= 0 for some i. This proves that Z8 \ {0} is covered
by the sets UD for D ∈ D8 \ {K1,K2}.



CHAPTER 4

Universal torsors and homogeneous spaces

4.1. Introduction

In this chapter, we continue our investigations of universal torsors over
smooth Del Pezzo surfaces over an algebraically closed field K of character-
istic 0. The results first appeared in [Der06d].

The blow-up of P2 in r points in general position is a smooth Del Pezzo
surface Sr of degree 9 − r; we will assume that r ∈ {3, . . . , 7}. The Picard
group Pic(Sr) is a lattice with the non-degenerate intersection form (·, ·).
As explained in Section 1.4, Pic(Sr) contains a canonical root system Φr,
which carries the action of the associated Weyl group Wr, see Table 4.1.

r 3 4 5 6 7
Φr A2 + A1 A4 D5 E6 E7

Nr 6 10 16 27 56

Table 4.1. The root systems associated to Del Pezzo surfaces.

It was a general expectation that the Weyl group symmetry on Pic(Sr)
should be a reflection of a geometric link between Del Pezzo surfaces and
algebraic groups. Here we show that universal torsors of smooth Del Pezzo
surfaces of degree 2 and 3 admit an embedding into a certain flag variety for
the corresponding algebraic group. The degree 5 case goes back to Salberger
(talk at the Borel seminar Bern, June 1993) following Mumford [MS72],
and independently Skorobogatov [Sko93]. The degree 4 case was treated in
the thesis of Popov [Pop01, Chapter 6]. The existence of such an embed-
ding in general was conjectured by Batyrev in his lecture at the conference
Diophantine geometry (Universität Göttingen, June 2004). Skorobogatov
announced related work in progress (joint with Serganova) at the conference
Cohomological approaches to rational points (MSRI, March 2006).

By [BP04, Section 2], the simple roots of Φr−1 (with Φ2 = A2) can
be identified with a subset Ir of the simple roots of Φr whose complement
consists of exactly one simple root αr, with associated fundamental weight
$r. The Weyl group Wr acts on the weight lattice of the linear algebraic
group Gr associated to Φr. The fundamental representation %r of Gr with
highest weight $r has dimension Nr as listed in Table 4.1; the weights of %r

can be identified with classes of (−1)-curves E ⊂ Sr.
Let Pr be the maximal parabolic subgroup corresponding to Ir, and let

Hr be the affine cone over Gr/Pr. It is well-known that Hr is given by qua-
dratic equations in affine space ANr . For r = 6, the equations are all partial

45
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derivatives of a certain cubic form on the 27-dimensional representation %6

of G6. For r = 7, equations can be found in [Fre53]. In both cases, the
equations were already known to E. Cartan in the 19th century.

The universal torsor TSr over Sr (Definition 2.2) is a TNS(Sr)-bundle
over Sr, where TNS(Sr) is the Néron-Severi torus of Sr (Section 2.2).

The Cox ring (Definition 2.4) of Sr is naturally graded by Pic(Sr). It is
generated by Nr sections ξ(E) corresponding to the (−1)-curves E on Sr.
The ideal of relations (up to radical) in Cox(Sr) is generated by certain qua-
dratic relations which are homogeneous with respect to the Pic(Sr)-grading
(see Chapter 3 for more details). Let A(Sr) := Spec(Cox(Sr)) ⊂ ANr be the
corresponding affine variety. The universal torsor TSr is an open subset of
A(Sr) (cf. [HK00]).

We have seen that both A(Sr) and Hr can be viewed as embedded into
ANr , with a natural identification of the coordinates. For the embedding of
A(Sr), we have some freedom: As the generators of Cox(Sr) are canonical
only up to a non-zero constant, we can choose a rescaling factor for each of
the Nr coordinates, giving a Nr-parameter family of embeddings of A(Sr)
into affine space. The task is to find a rescaling such that A(Sr) is embedded
into Hr.

More precisely, we start with an arbitrary embedding

A(Sr) ⊂ Ar := Spec(K[ξ(E) | E is a (−1)-curve on Sr]) ∼= ANr ,

and view

Hr ⊂ A′
r := Spec(K[ξ′(E) | E is a (−1)-curve on Sr]) ∼= ANr

as embedded into a different affine space. An isomorphism φr : Ar → A′
r

such that
φ∗r(ξ

′(E)) = ξ′′(E) · ξ(E)

for each of the Nr coordinates, with ξ′′(E) ∈ K∗ := K\{0}, is called a rescal-
ing , and the factors ξ′′(E) are (a system of) rescaling factors. A rescaling
φr which embeds A(Sr) into Hr is called a good rescaling .

Our main result is:

Theorem 4.1. Let Sr be a smooth Del Pezzo surface of degree 9− r and
A(Sr) the affine variety described above. Let Hr be the affine cone over the
flag variety Gr/Pr associated to the root system Φr as in Table 4.1.

For r ∈ {6, 7}, there exists a (Nr−2 +2)-parameter family of good rescal-
ings φr which embed A(Sr) into Hr.

Remark 4.2. The rescaling factors are naturally graded by Pic(Sr) ∼=
Zr+1, and we will see in Section 4.3 that the conditions for good rescaling
are homogeneous with respect to this grading. Therefore, for each good
rescaling φr, there is a (r + 1)-parameter family of good rescalings which
differ from φr only by the action of TNS(Sr) ∼= Gr+1

m . Similarly, TNS(Sr) acts
on A(Sr) (Remark 2.11), and it is easy to see that the image of A(Sr) in
Hr is the same for all good rescalings in the same (r+ 1)-parameter family.
Consequently, the (Nr−2 + 2)-parameter family of good rescalings gives rise
to a (Nr−2 − r + 1)-parameter family of images of A(Sr) in Hr.
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For r = 5, we have Nr−2− r+1 = 2, and by [Pop01, Section 6.3], there
is a two-parameter family of images of A(S5) under good rescalings in H5.

In Section 4.2, we recall the classical equations for the homogeneous
spaces Gr/Pr and give a simplified description on a certain Zariski open
subset; this will help to find good rescalings. In Section 4.3, we derive
conditions on the rescaling factors in terms of the description of Cox(Sr)
and Gr/Pr. In Section 4.4 and Section 4.5, we determine good rescalings in
degree 3 and 2, finishing the proof of Theorem 4.1.

4.2. Homogeneous spaces

In this section, we examine the equations defining the affine cone Hr ⊂
A′

r over Gr/Pr for r ∈ {6, 7}. For the Nr coordinates ξ′(E) of A′
r, we also

use the names η′i, µ
′
i,j , λ

′
i, and furthermore ν ′i,j in the case r = 7.

These coordinates are in obvious correspondence to the coordinates of
Ar, for which we use the names ηi, µi,j , λi (see Section 3.3), and furthermore
νi,j in the case r = 7 (see Section 3.4) as for the generators of Cox(Sr).

In particular, we show that Hr is a complete intersection on the open
subset Ur of A′

r where the coordinates η′1, . . . , η
′
r are non-zero.

We will see that Hr is defined by quadratic relations which are homo-
geneous with respect to the Pic(Sr)-grading. For each (1)-ruling D, we
have exactly one relation pD of degree D, and furthermore in the case
r = 7, we have eight relations p(1)

−KS7
, . . . , p

(8)
−KS7

where we use the con-

vention p−KS7
:= p

(1)
−KS7

. For any possibility to write D as the sum of two
(−1)-curves E, E′, the relation pD has a term ξ′(E)ξ′(E′) with a non-zero
coefficient.

Definition 4.3. For a (−1)-curve E, let UE be the open subset of A′
r

where ξ′(E) is non-zero. Let N (E)k be the set of (−1)-curves E′ with
(E,E′) = k, and let Ξ′(E)k be the set of the corresponding ξ′(E′). Let
N (E)>k and Ξ′(E)>k be defined similarly, but with the condition (E,E′) >
k.

Let Ur ⊂ A′
r be the intersection of UE1 , . . . , UEr .

Note that N (E)0 has exactly Nr−1 elements because we can identify
its elements with the (−1)-curves on Sr−1. Since the only (−1)-curve in-
tersecting E negatively is E itself, the number of elements of N (E)>0 is
Nr −Nr−1 − 1.

Proposition 4.4. Let

Ψr : Hr ∩ Ur → Ur−1 × (A1 \ {0})
be the projection to the coordinates ξ′(E) ∈ Ξ′(E1)0 and η′1. The map Ψr is
an isomorphism. The dimension of Hr is Nr−1 + 1.

Proof. IfD = E1+E is a (1)-ruling, then (E1, D) = 0, and all variables
occurring in pD besides η′1 and ξ′(E) are elements of Ξ′(E1)0. For η′1 6= 0,
the relation pD expresses ξ′(E) in terms of η′1 and Ξ′(E1)0.

For a (2)-ruling D = E1 + E, we have (E1, D) = 1, so the relation pD

expresses ξ′(E) in terms of η′1 and monomials ξ′(E′
i)ξ

′(E′′
i ) where ξ(E′

i) ∈
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Ξ′(E1)0 and ξ′(E′′
i ) ∈ Ξ′(E1)1. Using the expressions for the elements of

Ξ′(E1)1 of the first step, this shows that we can express the coordinates
Ξ′(E1)>0 in terms of η′1 and Ξ′(E1)0 by using the Nr − Nr−1 − 1 relations
gE1+E for E ∈ N (E)>0. This allows us to construct a map

Ψ′
r : Ur−1 × (A1 \ {0}) → A′

r.

It remains to show that the image of Ψ′
r is in Hr, i.e., that the resulting

point also satisfies the remaining equations which define Hr. This is done
in Lemma 4.6 and Lemma 4.7 below. �

Remark 4.5. Proposition 4.4 is also true if we enlarge Ur to UE1 and
Ur−1 to A′

r−1. However, the proofs of Lemma 4.6 and Lemma 4.7 are slightly
simplified by restricting to Ur.

First, we consider the case r = 6. It is known [Pop01, Section 2.2.2]
that H6 ⊂ A6 is given by the 27 partial derivatives of

F (M1,M2,M3) := detM1 + detM2 + detM3 − tr(M1M2M3),

where

M1 :=

η′1 λ′1 µ′2,3

η′2 λ′2 µ′1,3

η′3 λ′3 µ′1,2

 , M2 :=

 λ′4 λ′5 λ′6
η′4 η′5 η′6
µ′5,6 µ′4,6 µ′4,5

 ,

and

M3 :=

µ′1,4 µ′2,4 µ′3,4

µ′1,5 µ′2,5 µ′3,5

µ′1,6 µ′2,6 µ′3,6

 .

Note that the terms of tr(M1M2M3) are M
(i,j)
1 M

(j,k)
2 M

(k,i)
3 for i, j, k ∈

{1, 2, 3} (where M (b,c)
a is the entry (b, c) of the matrix Ma), so the num-

ber of terms of F is 3 · 6 + 33 = 45. Each is a product of three variables
ξ′(E), ξ′(E′), ξ′(E′′) such that the corresponding (−1)-curves E, E′, E′′ on
S6 form a triangle, and their divisor classes add up to −KS6 . The coefficient
is +1 in the nine cases

η′1µ
′
1,2λ

′
2, η′2µ

′
2,3λ

′
3, η′3µ

′
1,3λ

′
1,

η′4µ
′
4,6λ

′
6, η′5µ

′
4,5λ

′
4, η′6µ

′
5,6λ

′
5,

µ′1,4µ
′
2,5µ

′
3,6, µ′1,5µ

′
2,6µ

′
3,4, µ′1,6µ

′
2,4µ

′
3,5

and −1 in the remaining 36 cases. (Of course, there is some choice here, for
example by permuting the indices 1, . . . , 6, but it is not as simple as choosing
any 9 of the 45 terms to have the coefficient +1. See [Lur01, Section 5] for
more details.)

The derivative with respect to ξ′(E) contains five terms ±ξ′(E′)ξ′(E′′)
corresponding to the five ways to write the (1)-ruling D := −KS6 − E
as the sum of two intersecting (−1)-curves E′, E′′. We will denote it by
pD = p−KS6

−E .

Lemma 4.6. For η′1 6= 0 and any values of

Ξ′(E1)0 = {η′2, . . . , η′6, µ′2,3, . . . , µ
′
5,6, λ

′
1}

with non-zero η′2, . . . , η
′
6, the equations pE1+E for

E ∈ N (E1)1 = {m1,2, . . . ,m1,6, Q2, . . . , Q6}
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define a point of H6.

Proof. As TNS(S6) acts on H6 and {E1, . . . , E6} is a subset of a basis
of Pic(S6), we may assume that η′1 = · · · = η′6 = 1. Then for i ∈ {2, . . . , 6},
the equation pE1+m1,i allows us to express µ′1,i in terms of the remaining
µ′i,j :

µ′1,2 = µ′2,3 + µ′2,4 + µ′2,5 + µ′2,6, µ′1,3 = µ′2,3 − µ′3,4 − µ′3,5 − µ′3,6,

µ′1,4 = −µ′2,4 − µ′3,4 + µ′4,5 − µ′4,6, µ′1,5 = −µ′2,5 − µ′3,5 − µ′4,5 + µ′5,6

µ′1,6 = −µ′2,6 − µ′3,6 + µ′4,6 − µ′5,6

Furthermore, for i ∈ {2, . . . , 6}, we can use pE1+Qi in order to express λ′i in
terms of λ′1 and µ′j,k:

λ′2 = µ′3,4µ
′
5,6 + µ′3,5µ

′
4,6 + µ′3,6µ

′
4,5 + λ′1

λ′3 = −µ′2,4µ
′
5,6 − µ′2,5µ

′
4,6 − µ′2,6µ

′
4,5 + λ′1

λ′4 = −µ′2,3µ
′
5,6 + µ′2,5µ

′
3,6 − µ′2,6µ

′
3,5 − λ′1

λ′5 = −µ′2,3µ
′
4,6 − µ′2,4µ

′
3,6 + µ′2,6µ

′
3,4 − λ′1

λ′6 = −µ′2,3µ
′
4,5 + µ′2,4µ

′
3,5 − µ′2,5µ

′
3,4 − λ′1

By substituting and expanding, we check that the remaining 17 relations
are fulfilled. Therefore, the resulting point lies in H6. �

Next, we obtain similar results in the case r = 7. The N7 = 56 coordi-
nates ξ′(E) in A′

r are η′i, µ
′
j,k, ν

′
j,k, λ

′
i for i, j, k ∈ {1, . . . , 7} and j < k. The

equations for H7 are described in [Fre53] in terms of 56 coordinates xij , yij

(i < j ∈ {1, . . . , 8}). They correspond to our generators as follows:

η′i = xi8, µ′k,l = ykl, ν ′k,l = xkl, λ′i = yi8.

For the (1)-rulings D (see Lemma 3.7), the relations pD are uijkl and
vi
j as below. In the first column of Table 4.2, we list a symbol D(n)

I as-
signed to the (1)-ruling in the second column, and the third column gives
the corresponding relation.

symbol (1)-ruling D = D
(n)
I relation pD

D
(1)
i H − Ei v8

i

D
(2)
i,j,k 2H − (E1 + · · ·+ E7) + Ei + Ej + Ek uijk8

D
(3)
i,j 3H − (E1 + · · ·+ E7) + Ei − Ej vi

j

D
(4)
i,j,k,l 4H − 2(E1 + · · ·+ E7) + Ei + Ej + Ek + El uijkl

D
(5)
i 5H − 2(E1 + · · ·+ E7) + Ei vi

8

Table 4.2. Rulings and relations defining G7/P7.

Let

uijkl = xijxkl − xikxjl + xilxjk + σ · (yabycd − yacybd + yadybc),
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where i < j < k < l and a < b < c < d, with (i, j, k, l, a, b, c, d) a permutation
of (1, . . . , 8), and σ its sign. For i 6= j

vi
j =

∑
k∈({1,...,8}\{i,j})

xikykj ,

where xba = −xab and yba = −yab if b > a.
For the (2)-ruling −KS7 , we have the following eight equations with 28

terms:

p
(i)
−KS7

:= vi
i := −3

4

∑
j∈({1,...,8}\{i})

xijyij +
1
4

∑
j<k∈({1,...,8}\{i})

xjkyjk

Lemma 4.7. For η′1, . . . , η
′
7 6= 0, the 28 coordinates

η′i (i ∈ {1, . . . , 7}), µ′j,k (j < k ∈ {2, . . . , 7}), ν ′1,l (l ∈ {2, . . . , 7})

in Ξ′(E1)0 and the 28 equations pD for

D ∈ {D(1)
2 , . . . , D

(1)
7 , D

(2)
1,2,3, . . . , D

(2)
1,6,7, D

(3)
1,2, . . . , D

(3)
1,7,−KS7}

define

µ′1,i (i ∈ {2, . . . , 7}), ν ′j,k (j < k ∈ {2, . . . , 7}), λ′l (l ∈ {1, . . . , 7}),
resulting in a point on H7.

Furthermore, we may replace p−KS7
by pD for D = D

(3)
2,1.

Proof. As above, we may assume that η′1 = · · · = η′7 = 1 because of the
action of TNS(S7). For the 27 (−1)-curves E ∈ N (E1)1, the equation pE1+E

defines ξ′(E) directly in terms of the 28 variables in Ξ′(E1)0; we do not list
the expressions here. By substituting these results, we use v1

1 in order to
express λ′1 in terms of these variables:

λ′1 =− µ′2,3µ
′
4,5µ

′
6,7 + µ′2,3µ

′
4,6µ

′
5,7 − µ′2,3µ

′
4,7µ

′
5,6 + µ′2,4µ

′
3,5µ

′
6,7 − µ′2,4µ

′
3,6µ

′
5,7

+ µ′2,4µ
′
3,7µ

′
5,6 − µ′2,5µ

′
3,4µ

′
6,7 + µ′2,5µ

′
3,6µ

′
4,7 − µ′2,5µ

′
3,7µ

′
4,6 + µ′2,6µ

′
3,4µ

′
5,7

− µ′2,6µ
′
3,5µ

′
4,7 + µ′2,6µ

′
3,7µ

′
4,5 − µ′2,7µ

′
3,4µ

′
5,6 + µ′2,7µ

′
3,5µ

′
4,6 − µ′2,7µ

′
3,6µ

′
4,5

− µ′2,3λ
′
2 + µ′2,3λ

′
3 − µ′2,4λ

′
2 + µ′2,4λ

′
4 − µ′2,5λ

′
2 + µ′2,5λ

′
5

− µ′2,6λ
′
2 + µ′2,6λ

′
6 − µ′2,7λ

′
2 + µ′2,7λ

′
7 − µ′3,4λ

′
3 + µ′3,4λ

′
4

− µ′3,5λ
′
3 + µ′3,5λ

′
5 − µ′3,6λ

′
3 + µ′3,6λ

′
6 − µ′3,7λ

′
3 + µ′3,7λ

′
7

− µ′4,5λ
′
4 + µ′4,5λ

′
5 − µ′4,6λ

′
4 + µ′4,6λ

′
6 − µ′4,7λ

′
4 + µ′4,7λ

′
7

− µ′5,6λ
′
5 + µ′5,6λ

′
6 − µ′5,7λ

′
5 + µ′5,7λ

′
7 − µ′6,7λ

′
6 + µ′6,7λ

′
7

We check directly by substituting and expanding that the remaining equa-
tions defining H7 are fulfilled.

As v2
1 contains the term η′2λ

′
1, and η′2 6= 0, we may replace v1

1 by v2
1. �

4.3. Rescalings

Let r ∈ {6, 7}. We use the notation of Chapter 3. We follow the strategy
of the case r = 5 [Pop01, Section 6.3] in order to describe conditions for
good rescalings explicitly in terms of the rescaling factors. However, we use
the results of the previous section to simplify this as follows:
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Let
M6 := {E1 + E | E ∈ N (E1)1}

and let
M7 := {E1 + E | E ∈ N (E1)1} ∪ {D(3)

2,1}.

Let H̃r ⊂ A′
r be the variety defined by the equations gD for D ∈Mr.

By Proposition 4.4, Lemma 4.6, and Lemma 4.7, Hr ∩ Ur = H̃r ∩ Ur.

Remark 4.8. Because of N (E1)2 = {C1}, it could be considered more
natural to use −KS7 = E1+C1 instead of D(3)

2,1 = E2+C1 in the definition of
M7. However, we choose to avoid the (2)-ruling −KS7 for technical reasons.

Lemma 4.9. A rescaling φr : Ar → A′
r is good if and only if it embeds

A(Sr) into H̃r.

Proof. As Hr ⊂ H̃r, a good rescaling φr satisfies φr(A(Sr)) ⊂ H̃r.
Conversely, we have

φr(A(Sr)) ∩ Ur ⊂ H̃r ∩ Ur = Hr ∩ Ur

by Lemma 4.6 and Lemma 4.7. Taking the closure and using that Hr

is closed and that A(Sr) is irreducible by Lemma 2.9, we conclude that
φr(A(Sr)) ⊂ Hr, so the rescaling is good. �

As in Theorem 3.2, let Jr be the ideal defining A(Sr) in Ar.
In terms of the coordinate rings K[Ar] and K[A′

r] and in view of the
previous lemma, a rescaling φr is good if, for all D ∈ Mr, the ideal Jr ⊂
rad(Jr) contains φ∗r(pD), where pD is the equation definingHr corresponding
to the (1)-ruling D.

As K[Ar] and K[A′
r] are both graded by Pic(Sr) and φ∗r respects this

grading, we need rescaling factors such that φ∗r(pD) of degree D ∈ Mr is
a linear combination of the equations FD,1, . . . , FD,r−3 ∈ Jr. For concrete
calculations in the next sections, we describe this more explicitly:

Let D ∈ Mr be a (1)-ruling, which can be written in r − 1 ways as the
sum of two (−1)-curves E′

i, E
′′
i . For i ∈ {1, . . . , r − 1}, let

ξi := ξ(E′
i)ξ(E

′′
i ), ξ′i := ξ′(E′

i)ξ
′(E′′

i ), ξ′′i := ξ′′(E′
i)ξ

′′(E′′
i ).

Then pD has the form

(4.1) pD =
r−1∑
i=1

εiξ
′
i

with εi ∈ {±1}.
As ξi vanishes exactly on E′

i∪E′′
i , the 2-dimensional space H0(Sr,O(D))

is generated by any two ξi, ξi′ . Hence, all other r − 3 elements ξj are linear
combinations of ξi, ξi′ , with non-vanishing coefficients. This gives r − 3
relations of degree D in Cox(Sr). Rearranging ξ1, . . . , ξr−1 such that the
two elements ξi, ξi′ of our choice have the indices r − 2 and r − 1, we can
write them as

(4.2) FD,j = ξj + αjξr−2 + βjξr−1,

for j ∈ {1, . . . , r − 3}, where αj , βj ∈ K∗.
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Suppose that φ∗r(pD) is a linear combination of the FD,j with factors λj :

φ∗r(pD)−
r−3∑
j=1

λjFD,j = 0.

Since φ∗r(ξ
′(E)) = ξ′′(E) · ξ(E), we have φ∗r(ξ

′
i) = ξ′′i · ξi for the monomials

of degree 2. Then the above equation is equivalent to the vanishing of

r−3∑
i=1

(εiξ′′i −λi)ξi+

εr−2ξ
′′
r−2 −

r−3∑
j=1

λjαj

 ξr−2+

εr−1ξ
′′
r−1 −

r−3∑
j=1

λjβj

 ξr−1.

For i ∈ {1, . . . , r − 3}, we see by considering the coefficients of ξi that
we must choose λi = εiξ

′′
i . With this, consideration of the coefficients of

ξr−2 and ξr−1 results in the following conditions gD,1, gD,2 on the rescaling
factors ξ′′j , which are homogeneous of degree D ∈ Pic(Sr):

gD,1 := εr−2ξ
′′
r−2 −

r−3∑
j=1

εjαjξ
′′
j = 0, gD,2 := εr−1ξ

′′
r−1 −

r−3∑
j=1

εjβjξ
′′
j = 0.

Note that our choice of ξr−2 and ξr−1 in the definition of FD,j as discussed
before (4.2) is reflected here in the sense that gD,1 and gD,2 express the
corresponding ξ′′r−2 and ξ′′r−1 as linear combinations of ξ′′1 , . . . , ξ

′′
r−3 with non-

zero coefficients.
This information can be summarized as follows:

Lemma 4.10. For r ∈ {6, 7}, a rescaling is good if and only if the
rescaling factors ξ′′(E) fulfill the equations gD,1 and gD,2 for each (1)-ruling
D ∈Mr.

As described above precisely, the non-zero coefficients εi are taken from
the equations pD (4.1) defining Hr, and the non-zero αj, βj are taken from
the equations FD,j (4.2) defining A(Sr).

Let Ξ′′(E)k (resp. Ξ′′(E)>k) be the set of all ξ′′(E′) for E′ ∈ N (E)k

(resp. E′ ∈ N (E)>k). Let

Ξ′′i,j := Ξ′′(E1)i ∩ Ξ′′(E2)j .

We claim that we may express the rescaling factors Ξ′′(E1)>0 ∪Ξ′′(E2)>0 in
terms of the other Nr−2 + 2 rescaling factors {η′′1 , η′′2} ∪ Ξ′′0,0.

We will prove this for r ∈ {6, 7} as follows: The 2 · (Nr − Nr−1 − 1)
equations gD,i are homogeneous of degree D with respect to the Pic(Sr)-
grading of the variables ξ′′(E), and we are interested only in the solutions
where all ξ′′(E) are non-zero. Because of the action of TNS(Sr) on the
rescaling factors and as E1, . . . , Er are part of a basis of Pic(Sr), we may
assume η′′1 = · · · = η′′r = 1.

Consider a (1)-ruling D = E1 + E such that (E2, E) = 0. Then

D = E′
1 + E′′

1 = · · · = E′
r−3 + E′′

r−3 = E1 + E = E2 + E′

are the r − 1 possibilities to write D as the sum of two intersecting (−1)-
curves. Here, E′

i, E
′′
i ∈ N (E1)0 ∩ N (E2)0. As in the discussion before

Lemma 4.10, we may set up the equations FD,j such that gD,1 and gD,2

express ξ′′(E) and ξ′′(E′) directly as a linear combination of ξ′′(E′
i)ξ

′′(E′′
i ).
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This expresses all ξ(E) ∈ Ξ′′1,0 and all ξ′′(E′) ∈ Ξ′′0,1 in terms of variables in
Ξ′′0,0.

For a (1)-ruling D = E1 + E such that (E2, E) = 1, we have

D = E′
1 + E′′

1 = · · · = E′
r−2 + E′′

r−2 = E1 + E,

where we may assume (E2, E
′
i) = 0 and (E2, E

′′
i ) = 1. Since (E1, E

′
i) =

(E1, E
′′
i ) = 0, we have ξ′′(E′

i) ∈ Ξ′′0,0 and ξ′′(E′′
i ) ∈ Ξ′′0,1. Using the previous

findings to express ξ′′(E′′
i ) in terms of variables Ξ′′0,0, the equation gD,1 results

in a condition on the variables Ξ′′0,0, while gD,2 expresses ξ′′(E) ∈ Ξ′′1,1 in
terms of these variables.

In the case r = 7, the equation gD,2 for D = E1 + C2 expresses λ′′2 ∈
Ξ′′1,2 in terms of variables in Ξ′′0,1, and gD,1 gives a further condition on
these variables. Furthermore, gD,2 for the (1)-ruling D = E2 +C1 expresses
λ′′1 ∈ Ξ′′2,1 in terms of Ξ′′1,0, while gD,1 gives a further condition on them.
Substituting the expressions for Ξ′′0,1 respectively Ξ′′1,0 in terms of Ξ′′0,0, we
get expressions for λ′′2 and λ′′1, while the gD,1 result in further condition on
Ξ′′0,0.

We summarize this in the following lemma. For its proof, it remains to
show in the following sections that the expressions for Ξ′′(E1)>0 ∪Ξ′′(E2)>0

are non-zero, and that the further conditions vanish.

Lemma 4.11. We can write the Nr−Nr−2−2 rescaling factors in the set
Ξ′′(E1)>0∪Ξ′′(E2)>0 as non-zero expressions in terms of Nr−2 +2 rescaling
factors Ξ′′0,0 ∪ {ξ′′(E1), ξ′′(E2)}. With this, the Nr − 2Nr−1 + Nr−2 further
conditions on the rescaling factors are trivial.

For an open subset of theNr−2+2 parameters {η′′1 , η′′2}∪Ξ′′0,0, all rescaling
factors are non-zero, so we obtain good rescalings, which proves Theorem 4.1
once the proof of Lemma 4.11 is completed.

4.4. Degree 3

In this section, we prove Lemma 4.11 for r = 6 by solving the system
of equations on the rescaling factors of Lemma 4.10: For each (1)-ruling
D ∈ M6, we determine the coefficients of the equation pD defining H6 as
in (4.1), and find the coefficients αj , βj of FD,j defining A(S6) as in (4.2) in
the list in Section 3.3. This allows us to write down the 20 equations gD,i

on the rescaling factors ξ′′(E) explicitly. Let

γ1 := ad− bc, γ2 := (a− 1)(d− 1)− (b− 1)(c− 1)

for simplicity.

gE1+m1,2,1 = −η′′3µ′′2,3 − η′′4µ
′′
2,4 − bη′′5µ

′′
2,5 − dη′′6µ

′′
2,6,

gE1+m1,2,2 = η′′1µ
′′
1,2 + η′′4µ

′′
2,4 + η′′5µ

′′
2,5 + η′′6µ

′′
2,6,

gE1+m1,3,1 = −η′′1µ′′1,3 + η′′4µ
′′
3,4 + η′′5µ

′′
3,5 + η′′6µ

′′
3,6,

gE1+m1,3,2 = η′′2µ
′′
2,3 + η′′4µ

′′
3,4 + aη′′5µ

′′
3,5 + cη′′6µ

′′
3,6,

gE1+m1,4,1 = −η′′1µ′′1,4 + η′′3µ
′′
3,4 + (b− 1)η′′5µ

′′
4,5 + (1− d)η′′6µ

′′
4,6,

gE1+m1,4,2 = −η′′2µ′′2,4 + η′′3µ
′′
3,4 + (b− a)η′′5µ

′′
4,5 + (c− d)η′′6µ

′′
4,6,
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gE1+m1,5,1 = −η′′2µ′′2,5 + a/bη′′3µ
′′
3,5 + (a− b)/bη′′4µ

′′
4,5 + γ1/bη

′′
6µ

′′
5,6,

gE1+m1,5,2 = −η′′1µ′′1,5 + 1/bη′′3µ
′′
3,5 + (1− b)/bη′′4µ

′′
4,5 + (d− b)/bη′′6µ

′′
5,6,

gE1+m1,6,1 = −η′′1µ′′1,6 + 1/dη′′3µ
′′
3,6 + (d− 1)/dη′′4µ

′′
4,6 + (b− d)/dη′′5µ

′′
5,6,

gE1+m1,6,2 = −η′′2µ′′2,6 + c/dη′′3µ
′′
3,6 + (d− c)/dη′′4µ

′′
4,6 − γ1/dη

′′
5µ

′′
5,6,

gE1+Q2,1 = a(c− d)η′′1λ
′′
2 + (d− 1)η′′2λ

′′
1 − µ′′3,4µ

′′
5,6 + µ′′3,6µ

′′
4,5,

gE1+Q2,2 = γ1η
′′
1λ

′′
2 + (b− d)η′′2λ

′′
1 − µ′′3,5µ

′′
4,6 − µ′′3,6µ

′′
4,5,

gE1+Q3,1 = b(c− d)η′′1λ
′′
3 + (c− 1)η′′3λ

′′
1 − µ′′2,4µ

′′
5,6 + µ′′2,6µ

′′
4,5,

gE1+Q3,2 = γ1η
′′
1λ

′′
3 + (a− c)η′′3λ

′′
1 − µ′′2,5µ

′′
4,6 − µ′′2,6µ

′′
4,5,

gE1+Q4,1 = bcη′′1λ
′′
4 + (bc− b− c+ 1)η′′4λ

′′
1 − µ′′2,3µ

′′
5,6 + µ′′2,6µ

′′
3,5,

gE1+Q4,2 = (ad− bc)η′′1λ
′′
4 + γ2η

′′
4λ

′′
1 + µ′′2,5µ

′′
3,6 − µ′′2,6µ

′′
3,5,

gE1+Q5,1 = (d− c)η′′1λ
′′
5 + γ2η

′′
5λ

′′
1 − µ′′2,4µ

′′
3,6 + µ′′2,6µ

′′
3,4,

gE1+Q5,2 = cη′′1λ
′′
5 + (a− c)(1− b)η′′5λ

′′
1 − µ′′2,3µ

′′
4,6 − µ′′2,6µ

′′
3,4,

gE1+Q6,1 = (b− a)η′′1λ
′′
6 + γ2η

′′
6λ

′′
1 + µ′′2,4µ

′′
3,5 − µ′′2,5µ

′′
3,4,

gE1+Q6,2 = aη′′1λ
′′
6 + (c− a)(d− 1)η′′6λ

′′
1 − µ′′2,3µ

′′
4,5 + µ′′2,5µ

′′
3,4.

As explained in the previous section, we may assume η′′1 = · · · = η′′6 = 1.
Recall the discussion before the definition (4.2) of FD,j and Lemma 4.10.

If we had chosen ξ4 = ηiλ1 and ξ5 = η1λi when writing down the equations
FE1+Qi,j in Section 3.3, then the resulting gE1+Qi,2 would give λ′′i directly
as a quadratic expression in terms of µ′′j,k. Furthermore, each of the five
gE1+Qi,1 would express λ′′1 as a quadratic equation in µ′′j,k. Of course, we
get the same result by solving the equivalent system of equations gE1+Qi,j

as listed above.
The equations gE1+m1,i,j for i ∈ {3, . . . , 6} and gE1+Q2,j allow us to

express the variables µ′′1,i, λ
′′
2 in Ξ′′1,0 and µ′′2,i, λ

′′
1 in Ξ′′0,1 in terms of the

six variables µ′′3,4, . . . , µ
′′
5,6 ∈ Ξ′′0,0. (As we have set the remaining elements

η′′3 , . . . , η
′′
6 of Ξ′′0,0 to the value 1, they do not occur in these expressions.)

With γ3 := d(a− c)(1− b)− c(b− d)(1− a), we obtain:

µ′′1,3 =µ′′3,4 + µ′′3,5 + µ′′3,6,

µ′′2,3 =− µ′′3,4 − aµ′′3,5 − cµ′′3,6,

µ′′1,4 =µ′′3,4 + (b− 1)µ′′4,5 + (1− d)µ′′4,6,

µ′′2,4 =µ′′3,4 + (b− a)µ′′4,5 + (c− d)µ′′4,6,

µ′′1,5 =1/bµ′′3,5 + (1− b)/bµ′′4,5 + (d− b)/bµ′′5,6,

µ′′2,5 =a/bµ′′3,5 + (a− b)/bµ′′4,5 + γ1/bµ
′′
5,6,

µ′′1,6 =1/dµ′′3,6 + (d− 1)/dµ′′4,6 + (b− d)/dµ′′5,6,

µ′′2,6 =c/dµ′′3,6 + (d− c)/dµ′′4,6 − γ1/dµ
′′
5,6,

λ′′1 =− γ1/γ3µ
′′
3,4µ

′′
5,6 − a(d− c)/γ3µ

′′
3,5µ

′′
4,6 − c(b− a)/γ3µ

′′
3,6µ

′′
4,5,

λ′′2 =(b− d)/γ3µ
′′
3,4µ

′′
5,6 + (1− d)/γ3µ

′′
3,5µ

′′
4,6 + (1− b)/γ3µ

′′
3,6µ

′′
4,5.

We consider the remaining equations gE1+E,i for E ∈ {m1,2, Q3, . . . , Q6}.
We can use gE1+E,2 and substitution of our previous results in order to
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express ξ′′(E) ∈ Ξ′′1,1 in terms of Ξ′′0,0:

µ′′1,2 =µ′′3,4 − a/bµ′′3,5 − c/dµ′′3,6 + (a− b)(b− 1)/bµ′′4,5

+ (d− c)(d− 1)/dµ′′4,6 + (b− d)γ1/(bd)µ′′5,6,

λ′′3 =(a− c)/γ3µ
′′
3,4µ

′′
5,6 + a(1− c)/(bγ3)µ′′3,5µ

′′
4,6 + c(1− a)/(dγ3)µ′′3,6µ

′′
4,5

+ 1/(bd)µ′′4,5µ
′′
4,6 − 1/dµ′′4,5µ

′′
5,6 + 1/bµ′′4,6µ

′′
5,6,

λ′′4 =γ2/γ3µ
′′
3,4µ

′′
5,6 − 1/(bd)µ′′3,5µ

′′
3,6 + (1− d)(c− d)(a− 1)/(dγ3)µ′′3,5µ

′′
4,6

− 1/dµ′′3,5µ
′′
5,6 + (1− c)(b− 1)(a− b)/(bγ3)µ′′3,6µ

′′
4,5 − 1/bµ′′3,6µ

′′
5,6,

λ′′5 =1/dµ′′3,4µ
′′
3,6 − 1/dµ′′3,4µ

′′
4,6 + (b− d)(1− a)γ1/(dγ3)µ′′3,4µ

′′
5,6

+ aγ2/γ3µ
′′
3,5µ

′′
4,6 + (b− 1)(a− b)(a− c)/γ3µ

′′
3,6µ

′′
4,5 − µ′′3,6µ

′′
4,6,

λ′′6 =− 1/bµ′′3,4µ
′′
3,5 − 1/bµ′′3,4µ

′′
4,5 + (1− c)(b− d)γ1/(bγ3)µ′′3,4µ

′′
5,6

− µ′′3,5µ
′′
4,5 + (d− 1)(c− d)(a− c)/γ3µ

′′
3,5µ

′′
4,6 + cγ2/γ3µ

′′
3,6µ

′′
4,5

Finally, we check by substituting and expanding that the five further condi-
tions gE1+E,1 are trivial.

Using the restrictions on a, b, c, d imposed by the fact that p1, . . . , p6 are
in general position (e.g., a must be different from b and c, and all are neither
0 nor 1), we see that µ′′1,2, . . . , µ

′′
2,6, λ

′′
1, . . . , λ

′′
6 are non-zero polynomials in

µ′′3,4, . . . , µ
′′
5,6. Therefore, for an open subset of the N4 + 2 = 12 parameters

η′′1 , . . . , η
′′
6 , µ

′′
3,4, . . . , µ

′′
5,6, all rescaling factors are non-zero, resulting in good

rescalings.

4.5. Degree 2

For the proof of Lemma 4.11 for r = 7, we proceed as in the case r = 6
and assume η′′1 = · · · = η′′7 = 1.

Let D := D
(1)
i ∈ M7 for i ∈ {3, . . . , 7}. We can arrange FD,1, . . . FD,4

in such a way that gD,1 and gD,2 express µ′′1,i and µ′′2,i in terms of µ′′i,j for
j ∈ {3, . . . , 7} \ {i} (see the discussion before Lemma 4.10). Similarly, for
i ∈ {3, . . . , 7} and D := D

(2)
1,2,i ∈ M7, we can arrange gD,1 and gD,2 such

that they express ν ′′1,i and ν ′′2,i linearly in ν ′′1,2 and of degree 2 in µ′′3,4, . . . , µ
′′
6,7.

This expresses all variables in Ξ′′0,1 ∪ Ξ′′1,0 in terms of Ξ′′0,0.

Substituting this into an appropriately arranged gD,2 for D := D
(1)
2 ∈

M7 gives µ′′1,2 ∈ Ξ′′1,1 in terms of µ′′3,4, . . . , µ
′′
6,7, and we check that gD,1

becomes trivial.
Now, let D := D

(2)
1,i,j ∈ M7 for i < j ∈ {3, . . . , 7}. We arrange gD,1

and gD,2 such that they express ν ′′1,i respectively ν ′′i,j in terms of ν ′′1,j and
expressions of degree 2 in µ′′k,l. Using our previous findings, the first ex-
pression turns out trivial, and the second one gives ν ′′i,j ∈ Ξ′′1,1 in terms of
ν ′′1,2, µ

′′
3,4, . . . , µ

′′
6,7 ∈ Ξ′′0,0.

Finally, let D ∈ {D(3)
1,2, . . . , D

(3)
1,7, D

(3)
2,1} ⊂ M7. We arrange gD,1 and gD,2

such that the first one is an expression in µ′′j,k and ν ′′j,k which becomes trivial.
The second one expresses λ′′i in terms of µ′′j,k and ν ′′j,k, and we substitute again
our previous results.
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This completes the proof of Lemma 4.11 and thus Theorem 4.1. In
total, we obtain good rescalings for an open subset of a system N5 + 2 = 18
parameters

η′′1 , . . . , η
′′
7 , µ′′3,4, . . . , µ

′′
6,7, ν ′′1,2.

Since it is straightforward to determine the exact expressions for the re-
maining 38 rescaling factors in terms of these parameters, and since the
expressions are rather long, we choose not to list them here.

Remark 4.12. In principle, it would be possible to consider the condi-
tions gD,i for all (1)-rulings without reducing to the subset Mr as we did
in Section 4.2. While this is doable in degree 3 with some software help
(Magma), especially the expressions corresponding to the (1)-ruling D(5)

i in
degree 2 seem to be out of reach for direct computations. Furthermore, we
would have to embed the relations vi

i corresponding to the (2)-ruling −KS7 ,
which causes further complications.

Remark 4.13. For r ∈ {5, 6, 7}, there is a (Nr−2 − r + 1)-parameter
family of images of A(Sr) under good embeddings in Hr by Remark 4.2.
The dimension of A(Sr) is r+3, and there is a (2 · (r−4))-parameter family
of smooth Del Pezzo surfaces Sr of degree 9 − r. The dimension of Hr is
Nr−1 + 1.

In fact, [Pop01, Section 6.3] shows that the closure of the union of all
these images for all Del Pezzo surfaces of degree 4 equals H5.

For r = 6, by comparing the dimensions and numbers of parameters, a
similar result seems possible. However, for r = 7, we have

(Nr−2 − r + 1) + (r + 3) + 2 · (r − 4) = 26,

while H7 has dimension Nr−1 + 1 = 28. Consequently, the closure of the
union of the corresponding images, over all Del Pezzo surfaces of degree 2,
under all good embeddings cannot be H7 for dimension reasons.



CHAPTER 5

Universal torsors which are hypersurfaces

5.1. Introduction

The universal torsor of a generalized Del Pezzo surface S has one of the
following three types (Lemma 2.13):

• The universal torsor can be presentable as a Zariski open subset
of affine space. By Lemma 2.12 and Proposition 2.10, this is true
exactly when S is toric.

• The universal torsor can be a Zariski open subset of a hypersurface
in affine space.

• In other cases, the universal torsor is more complicated: It can be
an open subset of an affine variety that has codimension ≥ 2 in
affine space.

We focus on universal torsors of the second type. A first example, the
universal torsor over a cubic surface of type E6, has been worked out by
Hassett and Tschinkel [HT04].

Universal torsors are closely connected to the Cox rings of Del Pezzo
surfaces (Chapter 2). By Lemma 2.13, the question which of the three cases
above a universal torsor belongs to is equivalent to the question whether the
Cox ring with a minimal set of homogeneous generators (cf. Lemma 2.5) is a
polynomial ring without relations, with one relation up to scalar multiples,
or with more relations.

In this chapter, we determine for all types of generalized Del Pezzo sur-
faces of degree ≥ 3 what kind of Cox ring they have (cf. Table 5.1). Our
results were first made available as [Der06c].

degree toric one relation more than one relation
9 P2 – –
8 2 smooth, 1 singular – –
7 1 smooth, 1 singular – –
6 1 smooth, 3 singular 2 singular –
5 2 singular 4 singular 1 smooth
4 3 singular 7 singular 1 smooth, 5 singular
3 1 singular 7 singular 1 smooth, 12 singular

Table 5.1. Relations in Cox rings of Del Pezzo surfaces

Theorem 5.1. The Cox rings of generalized Del Pezzo surfaces whose
degree is at least 3 have the following properties:

• In degree at least 7, all generalized Del Pezzo surfaces are toric.

57
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• In degree 6, two types A1 (with three lines), A2 have a Cox ring
with 7 generators and one relation. The smooth and three types A1

(with four lines), 2A1, A2 + A1 are toric.
• In degree 5, four types A1, A2, A3, A4 have a Cox ring with 8

generators and one relation. The smooth surface has a Cox ring
with more generators and relations, and two types 2A1, A2 + A1

are toric.
• In degree 4, seven types 3A1, A2+A1, A3 (with five lines), A3+A1,

A4, D4, D5 have a Cox ring with 9 generators and one relation.
The smooth surface and five types A1, 2A1 (with eight or nine
lines), A2, A3 (with four lines) have a Cox ring with more gener-
ators and relations, and three types 4A1, A2 + 2A1, A3 + 2A1 are
toric.

• In degree 3, seven types D4, A3 + 2A1, 2A2 + A1, A4 + A1, D5,
A5 + A1, E6 have a Cox ring with 10 generators and one relation.
The smooth surface and 12 types A1, 2A1, A2, 3A1, A2 +A1, A3,
4A1, A2 +2A1, A3 +A1, 2A2, A4, A5 have a Cox ring with more
generators and relations, and the type 3A2 is toric.

In Section 5.2, we describe the steps which must be taken to calculate
the Cox ring of each generalized Del Pezzo surface S explicitly in case there
is exactly one relation in Cox(S).

In Sections 5.3, 5.4, 5.5, and 5.6, we check for every type of degree
≥ 3 which of the three cases it belongs to. For each type with exactly
one relation, we calculate the Cox ring, and we list the data which is most
important for its calculation and applications: We give a “nice”model which
is defined over Q, its singularities, its lines (which are defined over Q),
generators of the Picard group, the effective cone, generators of the Cox
ring, the extended Dynkin diagram, and the map from the universal torsor
to the Del Pezzo surface.

5.2. Strategy of the proofs

In this section, we give an overview of the method of Hassett and Tschin-
kel [HT04] to calculate the Cox ring of generalized Del Pezzo surfaces in
cases where the Cox ring has exactly one relation.

By Lemma 2.7, the Cox ring has one generating section for every negative
curve. In some cases, the Cox ring is generated by these sections, but this
is not always true. In that case, we look for extra generators in nef degrees
(Lemma 2.8). When we find enough generators, we have a relation which
can be calculated explicitly once we know details about the anticanonical
embedding.

In more detail, we perform the following steps: Let S be a smooth or
singular Del Pezzo surface of degree 9 − r ≥ 3, given by the vanishing of
some homogeneous polynomials for its anticanonical embedding into P9−r.
Let S̃ be its minimal desingularization. We apply this method only in the
cases where the Cox ring will turn out to have exactly r+ 4 generators and
one relation. In the other cases, it would fail.

Find the extended Dynkin diagram of the negative curves. For
this, first we search for the lines on S, by looking at the equations of the
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anticanonical embedding of S (Remark 1.26). Using the classifications of
[BW79] for degree 3 and [CT88] for degrees ≥ 4, we know when we are
done. Then we determine the singularities, resolve them by blow-ups, and
keep track of the intersection behavior of the exceptional divisors with the
transforms of the lines. This must be done explicitly for degree 3, and
the results can be found in [CT88] for degrees ≥ 4. The information is
summarized in an extended Dynkin diagram of negative curves. Note that
the diagrams can also be constructed from the information given in [AN04,
Table 3], as explained in Section 1.4.

Determine a basis of the Picard group. We need a Z-basis for
Pic(S̃) ∼= Zr+1: We test for different (r+ 1)-element subsets of the negative
curves whether their intersection matrix has determinant ±1. Once we have
found such a subset, we call its elements E1, . . . , Er+1, and the remaining
negative curves are called Er+2, . . . , Et. By considering their intersection
with the basis, we determine Er+2, . . . , Et in terms of this basis. Using the
adjunction formula, we calculate the anticanonical class −KeS , which is nef
since it describes the anticanonical embedding of S.

Determine the effective cone and its dual, the nef cone. In every
case, we want to show that the effective cone is generated by the negative
curves E1, . . . , Et. Arguing as in [HT04, Proposition 3.5], we only need
to check that the cone generated by E1, . . . , Et contains its dual, which is
generated by some divisors A1, . . . , Au. This can be done by an explicit
calculation using the basis we found in the previous step. It turns out to be
true in every case. We will show this result in general in Proposition 8.11.
Therefore, A1, . . . , Au generate the nef cone. By Lemma 2.7, a generating
set of Cox(S̃) must contain a non-zero section ηi ∈ H0(Ei) for every i ∈
{1, . . . , t}.

Find generating sections in degrees of generators of the nef
cone. To every Ai, we can associate a map from S̃ to projective space. By
looking at these maps carefully, we can find extra generators αi ∈ H0(Ai) of
the Cox ring. We obtain generators η1, . . . , ηt, α1, . . . , αs, where t+s = r+4,
which fulfill a certain relation. Assuming that this is a generating set with
one relation, we check that this gives exactly the right number of independent
sections in each H0(Ai), where dimH0(Ai) = χ(Ai) can be calculated using
Riemann-Roch and Kawamata-Viehweg as in [HT04, Corollary 1.10].

Determine φ∗(xi) for the anticanonical embedding. Especially by
considering projections from the singularities and lines on the one hand, and
maps to P2 corresponding to the fact that S is a blow-up of P2 in r points
on the other hand, and by considering the corresponding transformations of
the extended Dynkin diagrams, we find out which projections

ψi : x 7→ (xj1 : · · · : xjn)

are given by Ai, and what ψ∗i (xjl
) ∈ H0(Ai) is. Finally, we combine this

information in order to get φ∗(xi) ∈ H0(−KeS) for

φ : S̃ → S ↪→ P9−r.

Using the equations defining S, we derive a relation R from this. Note that
even though S might be defined by more than one equation, this gives only
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one relation in the cases we consider. We obtain a map

% : K[η1, . . . , ηt, α1, . . . , αs]/(R) → Cox(S̃).

Prove injectivity of %. The argument is the same as in [HT04, The-
orem 3.8]. We must check that −KeS is in the inner of the effective cone.

Prove surjectivity of %. We follow the proof of [HT04, Propo-
sition 3.9]. We need to check that the generators of the effective cone
A1, . . . , Au are contained in the moving cone corresponding to the r + 4
divisors E1, . . . , Et, A1, . . . , As (cf. [HT04, Lemma 3.11]). Furthermore, we
check that

t∑
i=1

Ei +
s∑

j=1

Ai = deg(R) +A

for some nef divisor A (cf. [HT04, Proposition 3.12]).

Remark 5.2. For many Del Pezzo surfaces S, the number of negative
curves on its minimal desingularization S̃ is at least r + 5, so Lemma 2.7
and Lemma 2.13 imply that Cox(S̃) has at least two relations.

On the other hand, in many cases where the number of negative curves
on S̃ is at most r + 4, the surfaces turn out to be toric or to have exactly
one relation in Cox(S̃).

However, S̃ may have r + 4 or fewer negative curves, but two or more
relations (see Proposition 5.6 for type viii of degree 4, and Proposition 5.7
for types xi and xvi of degree 3). In these cases, more work must be done
to see that the number of relations is actually at least two.

In the next sections, we go through all types of Del Pezzo surfaces of
degrees ≥ 3 whose Cox rings have exactly one relation, and list the following
information for one example of each type:

• Equations for the anticanonical embedding are given. We choose
“nice” equations in the sense that they are defined over Z, all the
coefficients are ±1, and the singularities and lines have“nice” forms.
For applications, it can be useful to know these equations.

• The equations of the singularities and lines on the anticanonical
embedding are given, as we need their names Ei later. Furthermore,
they are needed in applications.

• The ordering of the Ei is chosen in such a way that E1, . . . , Er+1

are a Z-basis of Pic(S̃). We list the other Ei and −KeS in terms of
this basis, as this is needed for further calculations.

• We list generators and the relation of Cox(S̃). Here, ηi is always a
non-zero section of H0(Ei), which is unique up to a scalar factor.
For each extra generator αi, we give the degree in terms of our
basis of Pic(S̃), specify which projection ψi : x 7→ (xj1 : · · · : xjn) it
defines, and what αi = ψ∗i (xjl

) and the corresponding divisor Ai is.
We also describe the image of Ai under the projection ψ : S̃ → S.
We give the equation and the degree of the relation.

• We give the extended Dynkin diagram of the negative curves as in
Example 1.27, and we also include the divisors A1, . . . , As (where
an edge means in this chapter that the intersection number is ≥ 1).
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This diagram is probably the most important piece of information,
as it is independent of the actual equations of the surface, and most
other information is obtained from this diagram in some way.

• For the anticanonical embedding φ, we list all φ∗(xi) ∈ H0(−KeS).
Here, we use the notation

η(a1,...,ar+1) := ηa1
1 · · · ηar+1

r+1 .

5.3. Degree ≥ 6

Proposition 5.3. All generalized Del Pezzo surfaces of degree ≥ 7 are
toric.

Proof. These types are listed in [CT88, Proposition 8.1]. By Table 1.4,
they are toric. �

type singularities number of lines type
0 − 6 toric
i A1 4 toric
ii A1 3 1 relation
iii 2A1 2 toric
iv A2 2 1 relation
v A2 + A1 1 toric

Table 5.2. Del Pezzo surfaces of degree 6

Proposition 5.4. Let S be a generalized Del Pezzo surface of degree 6,
which has one of the types of Table 5.2.

• Types 0, i, iii, v are toric.
• Types ii and iv have Cox rings with seven generators and one re-

lation.

Proof. The classification of singular Del Pezzo surfaces of degree 6 can
be found in [CT88, Proposition 8.3]. Table 1.4 lists the toric types. The
Cox rings of the remaining types are calculated in the rest of this section. �

Type ii (A1). It has the following properties:
• It is the intersection of nine quadrics in P6:

x2
0 − x1x3 = x4x0 − x2x3 = x2x0 − x1x4 = x5x0 − x2x4

=x5x1 − x2
2 = x5x3 − x2

4 = x2
0 + x0x3 + x6x4

=x0x1 + x2
0 + x6x2 = x0x2 + x0x4 + x6x5.

• Its singularity (0 : 0 : 0 : 0 : 0 : 0 : 1) gives the exceptional
divisor E1, and its lines are E2 = {x0 = x1 = x2 = x4 = x5 = 0},
E3 = {x0 = x2 = x3 = x4 = x5 = 0}, and E4 = {x2 = x4 = x5 =
x0 + x1 = x0 + x3 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E4, with −KeS = (3, 2, 2, 2).
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• The Cox ring is

Cox(S̃) = K[η1, . . . , η4, α1, α2, α3]/(η2α1 + η3α2 + η4α3),

where the degree of the relation is (1, 1, 1, 1), and deg(α1) = A1 =
(1, 0, 1, 1) = ψ∗({(0 : 0 : 0 : a2 : ab : b2 : 0)}), deg(α2) = A2 =
(1, 1, 0, 1) = ψ∗({(0 : a2 : ab : 0 : 0 : b2 : 0) | x1x5 − x2

2 = 0}), and
deg(α3) = A3 = (1, 1, 1, 0) = ψ∗({(a2 : −a2 : ab : −a2 : −ab : −b2 :
0)}), where ψ is the projection S̃ → S.

• The extended Dynkin diagram is:

A1

AA
AA

AA
AA

E2

BB
BB

BB
BB

A2 E3
GFED@ABCE1

A3

}}}}}}}}
E4

||||||||

Here, the divisors A1, A2, A3 meet in (0 : 0 : 0 : 0 : 0 : 1 : 0).
• The anticanonical embedding is given by

(φ∗(xi)) = (η(1,1,1,0)α1α2, η
(1,2,0,0)α2

1, η
(2,2,1,1)α1, η

(1,0,2,0)α2
2,

η(2,1,2,1)α2, η
(3,2,2,2), α1α2α3),

and furthermore, φ∗(−x0 − x1) = η(1,1,0,1)α1α3, φ∗(−x0 − x3) =
η(1,0,1,1)α2α3, φ∗(−x2 − x4) = η(2,1,1,2)α3, and φ∗(2x0 + x1 + x3) =
η(1,0,0,2)α2

3.

Type iv (A2). This surface has the following properties:
• It is the intersection of the following nine quadrics in P6:

x0x5 − x3x4 = x0x6 − x1x4 = x0x6 − x2x3 = x3x6 − x1x5

=x4x6 − x2x5 = x1x6 + x2
3 + x3x4 = x2x6 + x3x4 + x2

4

=x2
6 + x3x5 + x4x5 = x1x2 + x0x3 + x0x4 = 0.

• Its singularity (1 : 0 : 0 : 0 : 0 : 0 : 0) gives the exceptional divisors
E1, E2, and its lines are E3 = {x2 = x3 = x4 = x5 = x6 = 0} and
E4 = {x1 = x3 = x4 = x5 = x6 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E4, with −KeS = (4, 2, 3, 3).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η4, α1, α2, α3]/(η2α
2
1 + η3α2 + η4α3),

where the relation is of degree (2, 1, 2, 2), and deg(α1) = A1 =
(1, 0, 1, 1) = ψ∗({(a2 : 0 : 0 : ab : −ab : b2 : 0)}) gives the projection
ψ1 : x 7→ (x5 : x6) with α1 = φ∗(x6), deg(α2) = A2 = (2, 1, 1, 2) =
ψ∗({(0 : 0 : a3 : −a2b : b3 : −ab2)}) gives the projection ψ2 : x 7→
(x3 : x5 : x6) with α2 = ψ∗2(x3), and deg(α3) = A3 = (2, 1, 2, 1) =
ψ∗({(0 : a3 : 0 : −a2b : 0 : b3 : −ab2)}) gives the projection
ψ3 : x 7→ (x4 : x5 : x6) with α3 = ψ∗3(x4).
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• The extended Dynkin diagram is:

A2

AA
AA

AA
AA

E3

CC
CC

CC
CC

C

A1
GFED@ABCE2

GFED@ABCE1

A3

}}}}}}}}
E4

{{{{{{{{{

Here, A1, A2, A3 meet in (0 : 0 : 0 : 0 : 0 : 1 : 0).
• The anticanonical embedding is given by

(φ∗(xi)) = (α2α3, η
(1,1,1,0)α1α2, η

(1,1,0,1)α1α3,

η(2,1,2,1)α2, η
(2,1,1,2)α3, η

(4,2,3,3), η(3,2,2,2)α1),

and furthermore, φ∗(−x1 − x2) = η(1,2,0,0)α3
1 and φ∗(−x3 − x4) =

η(2,2,1,1)α2
1.

5.4. Degree 5

By [CT88, Proposition 8.4], Table 5.3 lists all types of Del Pezzo surfaces
of degree 5.

type singularities number of lines type
0 − 10 ≥ 2 relations
i A1 7 1 relation
ii 2A1 5 toric
iii A2 4 1 relation
iv A2 + A1 3 toric
v A3 2 1 relation
vi A4 1 1 relation

Table 5.3. Del Pezzo surfaces of degree 5

Proposition 5.5. The generalized Del Pezzo surfaces of degree 5 of
Table 5.3 can be divided into the following groups:

• Type 0 has a Cox ring with 10 generators and five relations.
• Types ii and iv are toric.
• Types i, iii, v, vi have a Cox ring with 9 generators and one relation.

Proof. Type 0 has 10 negative curves. By Lemma 2.7, Cox(S̃) has
at least 10 generators. By Lemma 2.13, this implies that there is more
than one relation in Cox(S̃). More information on this surface can be found
in [Sko93], [Has04, Section 2.2], [Bre02]. The toric types are listed in
Table 1.4.

For the other types, we calculate the Cox ring in what follows, and we
see that each of them has exactly one relation. �

Type i (A1). The surface of type i has the properties:
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• It is the intersection of the following five quadrics in P5:

x0x4 − x1x2 = x0x5 − x1x3 = x2x5 − x3x4

=x1x2 + x1x3 + x2x3 = x1x4 + x1x5 + x2x5 = 0.

• The singularity in p = (1 : 0 : 0 : 0 : 0 : 0) gives an exceptional
divisor E1, the seven lines on S are E2 = {x1 = x2 = x4 = x5 = 0},
E3 = {x1 = x3 = x4 = x5 = 0}, E4 = {x2 = x3 = x4 = x5 = 0},
E5 = {x0 = x1 = x2 = x3 = 0}, E6 = {x0 = x1 = x2 = x4 = 0},
E7 = {x0 = x1 = x3 = x5 = 0}, E8 = {x0 = x2 = x3 = x4 + x5 =
0}.

• E1, . . . , E5 are a basis of Pic(S̃), with E6 = (1, 0, 1, 1,−1), E7 =
(1, 1, 0, 1,−1), E8 = (1, 1, 1, 0,−1), −KeS = (3, 2, 2, 2,−1).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η8]/(η2η6 + η3η7 + η4η8),

and the relation is of degree (1, 1, 1, 1,−1).
• The extended Dynkin diagram is:

E2 E6

@@
@@

@@
@@

GFED@ABCE1

||||||||

BB
BB

BB
BB

E3 E7 E5

E4 E8

~~~~~~~~

• The anticanonical embedding S → P5 is given by

(φ∗(xi)) = (η(0,0,0,0,2)η6η7η8, η
(1,1,1,0,1)η6η7, η

(1,1,0,1,1)η6η8,

η(1,0,1,1,1)η7η8, η
(2,2,1,1,0)η6, η

(2,1,2,1,0)η7).

We have φ∗(−x4 − x5) = η(2,1,1,2,0)η8, φ∗(−x1 − x2) = η(1,2,0,0,1)η2
6,

φ∗(−x1 − x3) = η(1,0,2,0,1)η2
7, φ

∗(−x2 − x3) = η(1,0,0,2,1)η2
8.

Type iii (A2). The surface of type iii has the properties:

• It is the intersection of the following five quadrics in P5:

x0x2 − x1x5 = x0x2 − x3x4 = x0x3 + x2
1 + x1x4

=x0x5 + x1x4 + x2
4 = x3x5 + x1x2 + x2x4 = 0.

• The singularity in p = (0 : 0 : 1 : 0 : 0 : 0) gives the exceptional
divisors E1, E2, and the lines are E3 = {x0 = x1 = x3 = x4 = 0},
E4 = {x0 = x1 = x4 = x5 = 0}, E5 = {x0 = x3 = x5 = x1 + x4 =
0}, and E6 = {x2 = x3 = x5 = x1 + x4 = 0}.

• A basis of Pic(S̃) is E1, . . . , E5, with E6 = (1, 0, 1, 1,−1) and
−KeS = (3, 2, 2, 2, 1).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η6, α1, α2]/(η2η
2
5η6 + η3α1 + η4α2),
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where deg(α1) = A1 = (1, 1, 0, 1, 1) = ψ∗({(a2 : 0 : ab : 0 : 0 :
−b2)}), deg(α2) = A2 = (1, 1, 1, 0, 1) = ψ∗({(a2 : ab : 0 : −b2 : 0 :
0)}), and the degree of the relation is (1, 1, 1, 1, 1).

• The extended Dynkin diagram is:

A1

AA
AA

AA
AA

E3

CC
CC

CC
CC

C

E6 E5
GFED@ABCE2

GFED@ABCE1

A2

~~~~~~~~
E4

{{{{{{{{{

Here, A1, A2, E6 meet in (1 : 0 : 0 : 0 : 0 : 0).
• The anticanonical embedding φ : S → P5 is given by

(φ∗(xi)) = (η(3,2,2,2,1), η(2,1,2,1,0)α1, η6α1α2,

η(1,1,1,0,1)η6α1, η
(2,1,1,2,0)α2, η

(1,1,0,1,1)η6α2),

and furthermore, φ∗(−x1 − x4) = η(2,2,1,1,2)η6 and φ∗(−x3 − x5) =
η(1,2,0,0,3)η2

6.

Type v (A3). The surface of type v has the following properties:
• It is the intersection of the following five quadrics in P5:

x0x2 − x2
1 = x0x3 − x1x4 = x2x4 − x1x3

=x2x4 + x2
4 + x0x5 = x2x3 + x3x4 + x1x5 = 0.

• The singularity is in p = (0 : 0 : 0 : 0 : 0 : 1), giving three
exceptional divisors E1, E2, E3. The lines E4 = {x0 = x1 = x2 =
x4 = 0} and E5 = {x0 = x1 = x3 = x4 = 0} intersect in p.

• A basis of Pic(S̃) is E1, . . . , E5, with −KeS = (2, 4, 3, 2, 3).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η5, α1, α2, α3]/(η1α
2
1 + η3η

2
4α2 + η5α3),

where deg(α1) = A1 = (0, 1, 1, 1, 1) = ψ∗({(a2 : 0 : 0 : 0 : ab :
−b2)}), deg(α2) = A2 = (1, 2, 1, 0, 2) = ψ∗({(a2 : ab : b2 : 0 : 0 :
0)}), deg(α3) = A3 = (1, 2, 2, 2, 1) = ψ∗({(a3 : a2b : ab2 : −b3 :
−ab2 : 0)}), and the degree of the relation is (1, 2, 2, 2, 2).

• The extended Dynkin diagram is:

A1

��
��

��
��

GFED@ABCE1

BB
BB

BB
BB

B

A2

??
??

??
??

A3 E5
GFED@ABCE2

E4
GFED@ABCE3

|||||||||

Here, A1, A2, A3 meet in (1 : 0 : 0 : 0 : 0 : 0).
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• The anticanonical embedding φ : S → P5 is given by

(φ∗(xi)) = (η(2,4,3,2,3), η(2,3,2,1,2)α1, η
(2,2,1,0,1)α2

1,

η(1,1,1,1,0)α1α2, η
(1,2,2,2,1)α2, α2α3),

and furthermore, φ∗(−x2 − x4) = η(1,2,1,0,2)α3.

Type vi (A4). The surface of type vi has the following properties:
• It is given by the intersection of the following five quadrics in P5:

x0x2 − x2
1 = x0x3 − x1x4 = x2x4 − x1x3

=x1x2 + x2
4 + x0x5 = x2

2 + x3x4 + x1x5 = 0.

• The singularity is p = (0 : 0 : 0 : 0 : 0 : 1), giving four exceptional
divisors E1, . . . , E4 in Pic(S̃), and the line is E5 = {x0 = x1 = x2 =
x4 = 0}.

• A basis of Pic(S̃) is E1, . . . , E5, with −KeS = (2, 4, 6, 3, 5).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η5, α1, α2, α3]/(η2
1η2α

3
1 + η4α

2
2 + η5α3),

where deg(α1) = A1 = (0, 1, 2, 1, 2) = ψ∗({(a2 : 0 : 0 : 0 : ab :
−b2)}), deg(α2) = A2 = (1, 2, 3, 1, 3) = ψ∗({(a3 : a2b : ab2 : 0 : 0 :
−b3)}), deg(α3) = A3 = (2, 4, 6, 3, 5) = −KeS = ψ∗({(a5 : −a3b2 :
ab4 : −b5 : a2b3 : 0)}). The degree of the relation is (2, 4, 6, 3, 6).

• The extended Dynkin diagram is:

A2

~~
~~

~~
~~

~
GFED@ABCE4

BB
BB

BB
BB

B

A1

@@
@@

@@
@@

@ A3 E5
GFED@ABCE3

GFED@ABCE1
GFED@ABCE2

|||||||||

Here, A1, A2, A3 meet in (1 : 0 : 0 : 0 : 0 : 0).
• The anticanonical embedding φ : S → P5 is given by

(φ∗(xi)) = (η(2,4,6,3,5), η(2,3,4,2,3)α1, η
(2,2,2,1,1)α2

1,

η(1,1,1,1,0)α1α2, η
(1,2,3,2,2)α2, α3).

5.5. Degree 4

By Remark 1.13 and Remark 1.26, quartic Del Pezzo surfaces are certain
intersections of two conics in P4. The extended Dynkin diagrams of their
lines and exceptional divisors can be found in [CT88, Proposition 6.1].

Proposition 5.6. The 16 types of generalized Del Pezzo surfaces of
degree 4 of Table 5.4 can be divided into the following three groups:

• Types ix, x, xiv are toric.
• The Cox rings of types v, vi, vii, xi, xii, xiii, xv have 9 generators

and one relation.
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type singularities number of lines type
0 − 16 ≥ 2 relations
i A1 12 ≥ 2 relations
ii 2A1 9 ≥ 2 relations
iii 2A1 8 ≥ 2 relations
iv A2 8 ≥ 2 relations
v 3A1 6 1 relation
vi A2 + A1 6 1 relation
vii A3 5 1 relation
viii A3 4 ≥ 2 relations
ix 4A1 4 toric
x A2 + 2A1 4 toric
xi A3 + A1 3 1 relation
xii A4 3 1 relation
xiii D4 2 1 relation
xiv A3 + 2A1 2 toric
xv D5 1 1 relation

Table 5.4. Del Pezzo surfaces of degree 4

• The Cox rings of types 0, i, ii, iii, iv, viii have at least 10 generators
and at least two independent relations.

Proof. The toric types ix, x, xiv are identified using Table 1.4. For
types 0, i, ii, iii, iv, the number of negative curves is greater than r+ 4 = 9,
so Cox(S̃) has more than 9 generators by Lemma 2.7. Therefore, there must
be more than one relation.

For type viii, this is not as obvious because it has only 7 negative curves.
We can derive the following information from the extended Dynkin diagram
of negative curves given in [CT88, Proposition 6.1]:

• The singularity gives the exceptional divisors E1, E2, E3, and they
intersect the four lines E4, . . . , E7 in the following way:

E6
GFED@ABCE1

GFED@ABCE2
GFED@ABCE3

BB
BB

BB
BB

E4

E7

||||||||
E5

• A basis of Pic(S̃) is E1, . . . , E6, with E7 = (−1, 0, 1, 1, 1,−1) and
−KeS = (1, 2, 3, 2, 2, 0).

• Four of the ten generators of the nef cone are B1 = (1, 1, 1, 0, 1, 1),
B2 = (1, 1, 1, 1, 0, 1), B3 = (0, 1, 2, 1, 2,−1), B4 = (0, 1, 2, 2, 1,−1),
and dim(H0(Bi)) = χ(Bi) = 2 for i ∈ {1, . . . , 4}.

The subring generated by non-zero sections ηj ∈ H0(Ej) for j ∈ {1, . . . , 7}
does not contain two linearly independent sections in any of these degrees
Bi.

Consider a minimal set of generators of Cox(S̃). By Lemma 2.8 and
since E1, . . . , E7 generate Λeff(S̃), it has the form η1, . . . , η7, α1, . . . , αs with
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all Al := deg(αl) nef. For all i ∈ {1, . . . , 4}, it contains two linearly inde-
pendent sections of degree Bl, so it contain a section βl which is a scalar
multiple of ηe1

1 · · · ηe7
7 α

a1
1 · · ·αas

s where ej , al ≥ 0 and not all al are zero. Con-
sidering their degrees, this means that

∑s
l=1 alAl = Bi −

∑7
j=1 ejEj , and

this degree is nef. However, we calculate directly that the intersection of the
nef cone with the negative of the effective cone translated by Bi contains
only (0, 0, 0, 0, 0, 0) and Bi. Consequently, Bi = An for some n ∈ {1, . . . , s},
and all ej , al are zero except an = 1. As this is true for all i ∈ {1, . . . , 4},
the Cox ring must have at least 11 generators.

For the other types, the total number of negative curves is at most
r + 3 = 9 by the extended Dynkin diagrams of [CT88], and they are not
toric. In the following, we calculate their Cox rings, which will show that
they have exactly 9 generators and one relation. �

Type v (3A1). Type v, which has been considered in [Bro05], has the
following properties:

• It is given by the the following quadrics in P4:

x0x1 − x2
2 = x1x2 + x2

2 + x3x4 = 0.

• Its three singularities p1 = (1 : 0 : 0 : 0 : 0), p2 = (0 : 0 : 0 :
1 : 0), p3 = (0 : 0 : 0 : 0 : 1) give exceptional divisors E1, E2, E3,
respectively. The six lines are E4 = {x0 = x2 = x3 = 0}, E5 =
{x0 = x2 = x4 = 0}, E6 = {x1 = x2 = x3 = 0}, E7 = {x1 = x2 =
x4 = 0}, E8 = {x0 + x2 = x1 + x2 = x3 = 0}, E9 = {x0 + x2 =
x1 + x2 = x4 = 0}

• A basis of Pic(S̃) is E1, . . . , E6, with

E7 = (−1, 0, 0, 1, 1,−1), E8 = (−1, 1,−1, 1, 2,−2), E9 = (1,−1, 1, 0,−1, 2),

and −KeS = (0, 1, 1, 2, 2, 0).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η9]/(η4η5 + η1η6η7 + η8η9),

where the relation is of degree (0, 0, 0, 1, 1, 0).
• The extended Dynkin diagram is:

E6
GFED@ABCE1 E7

@@
@@

@@
@@

@

GFED@ABCE3

CC
CC

CC
CC

C E8 E9
GFED@ABCE2

E4 E5

||||||||

• The anticanonical embedding is given by

(φ∗(xi)) = (η(0,1,1,2,2,0), η(2,1,1,0,0,2)η2
7, η

(1,1,1,1,1,1)η7,

η(1,0,2,1,0,2)η8, η
(1,2,0,0,1,0)η2

7η9),

and furthermore, φ∗(−x0 − x2) = η(0,1,1,1,1,0)η8η9, φ∗(−x1 − x2) =
η(1,1,1,0,0,1)η7η8η9, φ∗((x0 + x2) + (x1 + x2)) = η(0,1,1,0,0,0)η2

8η
2
9.
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Type vi (A2 + A1). Type vi has the following properties:
• It is given by the the following quadrics in P4:

x0x1 − x2x3 = x1x2 + x2x4 + x3x4 = 0.

• Its singularity p1 = (1 : 0 : 0 : 0 : 0) gives the exceptional divisors
E1, E2, and p2 = (0 : 0 : 0 : 0 : 1) gives E3. The six lines are E4 =
{x0 = x2 = x3 = 0}, E5 = {x0 = x2 = x4 = 0}, E6 = {x1 = x3 =
x4 = 0}, E7 = {x1 = x2 = x4 = 0}, E8 = {x0 = x3 = x1 + x4 = 0},
E9 = {x1 = x2 = x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E6, with E7 = (−1,−2, 1, 2, 1,−2),
E8 = (−1,−2, 1, 2, 2,−3), E9 = (−1,−1, 0, 1, 1,−1), and −KeS =
(−1,−2, 2, 4, 3,−3).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η9]/(η5η7 + η1η3η
2
9 + η6η8),

where the relation is of degree (−1,−2, 1, 2, 2,−2).
• The extended Dynkin diagram is:

GFED@ABCE1 E9
GFED@ABCE3

@@
@@

@@
@@

@

GFED@ABCE2

BB
BB

BB
BB

E6 E8 E4

E7 E5

||||||||

• The anticanonical embedding is given by

(φ∗(xi)) = (η(0,0,1,2,1,0)η8, η
(2,2,1,0,0,1)η7η

2
9, η

(1,1,1,1,1,0)η7η9,

η(1,1,1,1,0,1)η8η9, η
(1,2,0,0,1,1)η2

7),

and furthermore, φ∗(−x1 − x4) = η(1,2,0,0,0,2)η7η8 and φ∗(−x2 −
x3) = η(2,1,2,1,0,0)η3

9

Type vii (A3). Type vii has the following properties:
• It is given by the the following quadrics in P4:

x0x1 − x2x3 = x2x4 + x0x3 + x1x3 = 0.

• Its singularity (0 : 0 : 0 : 0 : 1) gives the exceptional divisors
E1, E2, E3, and the five lines are E4 = {x1 = x2 = x3 = 0},
E5 = {x0 = x1 = x2 = 0}, E6 = {x0 = x2 = x3 = 0}, E7 = {x1 =
x3 = x4 = 0}, E8 = {x0 = x3 = x4 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E6, with E7 = (0, 1, 1,−1, 1, 1),
E8 = (1, 1, 0, 1, 1,−1), and −KeS = (2, 3, 2, 1, 2, 1).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η8, α]/(η5α+ η1η
2
4η7 + η3η

2
6η8),

where the relation is of degree (1, 1, 1, 1, 1, 1), and deg(α) = A =
(1, 1, 1, 1, 0, 1) = ψ∗({(ab : −ab : b2 : a2 : 0)}) gives the projection
ψ1 : x 7→ (x3 : x4) with α = ψ∗1(x4).
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• The extended Dynkin diagram is:

E7

??
??

??
??

? E4
GFED@ABCE1

BB
BB

BB
BB

B

A E5
GFED@ABCE2

E8

���������
E6

GFED@ABCE3

|||||||||

Here, A,E7, E8 meet in (0 : 0 : 1 : 0 : 0).
• The anticanonical embedding is given by

(φ∗(xi)) = (η(2,2,1,2,1,0)η7, η
(1,2,2,0,1,2)η8, η

(2,3,2,1,2,1), η(1,1,1,1,0,1)η7η8, η7η8α),

and furthermore, φ∗(−x0 − x1) = η(1,2,1,0,2,0)α

Type xi (A3 + A1). Type xi has the following properties:
• It is given by the the following quadrics in P4:

x0x3 − x2x4 = x0x1 + x1x3 + x2
2 = 0.

• The singularity p1 = (0 : 1 : 0 : 0 : 0) gives an exceptional divisor
E1, and p2 = (0 : 0 : 0 : 0 : 1) gives E2, E3, E4. The three lines
are E5 = {x0 = x2 = x3 = 0}, E6 = {x0 = x1 = x2 = 0},
E7 = {x1 = x2 = x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E6, with E7 = (1,−1, 0, 1, 2,−1) and
−KeS = (2, 1, 2, 3, 4, 0).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η7, α1, α2]/(η6α2 + η7α1 + η1η3η
2
4η

3
5),

where the relation is of degree (1, 0, 1, 2, 3, 0), deg(α1) = A1 =
(0, 1, 1, 1, 1, 1) = ψ∗({(a2 : −b2 : ab : 0 : 0)}) gives the projec-
tion ψ1 : x 7→ (x2 : x3) with α1 = ψ∗1(x3), and deg(α2) = A2 =
(1, 0, 1, 2, 3,−1) = ψ∗({(0 : a2 : ab : −b2 : 0)}) gives the projection
ψ2 : x 7→ (x0 : x2) with α2 = ψ∗2(x0).

• The extended Dynkin diagram is:

A1

BB
BB

BB
BB

E7

CC
CC

CC
CC

C

GFED@ABCE1 E5
GFED@ABCE4

GFED@ABCE3
GFED@ABCE2

A2

||||||||
E6

{{{{{{{{{

Here, A1, A2, E1 meet in one point.
• The anticanonical embedding is given by

(φ∗(xi)) = (η(1,1,1,1,1,1)α2, η
(0,3,2,1,0,2)η2

7, η
(1,2,2,2,2,1)η7,

η(1,1,1,1,1,0)η7α1, η
(1,0,0,0,0,0)α1α2),

and furthermore, φ∗(−x0 − x3) = η(2,1,2,3,4,0).
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Type xii (A4). Type xii has the following properties:
• It is given by the the following quadrics in P4:

x0x1 − x2x3 = x0x4 + x1x2 + x2
3 = 0.

• The singularity p = (0 : 0 : 0 : 0 : 1) gives the exceptional divisors
E1, . . . , E4, and the three lines are E5 = {x0 = x2 = x3 = 0},
E6 = {x0 = x1 = x3 = 0}, and E7 = {x1 = x3 = x4 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E6, with E7 = (1, 2, 1, 0, 2,−1),
and −KeS = (2, 4, 3, 2, 3, 1).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η7, α1, α2]/(η5α1 + η1α
2
2 + η3η

2
4η

3
6η7),

where the degree of the relation is (1, 2, 2, 2, 2, 2), and deg(α1) =
A1 = (1, 2, 2, 2, 1, 2) = ψ∗({(−b3 : a3 : −ab2 : a2b : 0)}) gives the
projection ψ1 from E7, with α1 = ψ∗1(x4), and deg(α2) = A2 =
(0, 1, 1, 1, 1, 1) = ψ∗({(a2 : 0 : 0 : −ab : b2)}) gives the projection
ψ2 : x 7→ (x1 : x3) with α2 = ψ∗2(x1).

• The extended Dynkin diagram is:

A1

AA
AA

AA
AA

E5

CC
CC

CC
CC

C

E7 E6
GFED@ABCE4

GFED@ABCE3
GFED@ABCE2

||
||

||
||

|

A2

�������� GFED@ABCE1

Here, A1, A2, E7 meet in (1 : 0 : 0 : 0 : 0).
• The anticanonical embedding is given by

(φ∗(xi)) = (η(2,4,3,2,3,1), η(1,1,1,1,0,1)η7α2, η
(2,3,2,1,2,0)α2, η

(1,2,2,2,1,2)η7, η7α1).

Type xiii (D4). Type xiii, which is considered in more detail in Chapter 10
(see [BB05] for a form whose lines are not defined over Q), has the following
properties:

• It is given by the the following quadrics in P4:

x0x3 − x1x4 = x0x1 + x1x3 + x2
2 = 0.

• The singularity p = (0 : 0 : 0 : 0 : 1) gives four exceptional divisor
E1, . . . , E4, and its lines are E5 = {x0 = x1 = x2 = 0} and E6 =
{x1 = x2 = x3 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E6, and −KeS = (4, 2, 3, 3, 2, 2).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η6, α1, α2, α3]/(η3η
2
5α2 + η4η

2
6α3 + η2α

2
1),

where the degree of the relation is (2, 1, 2, 2, 2, 2), deg(α1) = A1 =
(1, 0, 1, 1, 1, 1) = ψ∗({(ab : b2 : 0 : −ab : −a2)}) gives the pro-
jection ψ1 : x 7→ (x1 : x2) with α1 = ψ∗1(x2), deg(α2) = A2 =
(2, 1, 1, 2, 0, 2) = ψ∗({(0 : a2 : ab : −b2 : 0)}) gives the projec-
tion ψ2 : x 7→ (x0 : x1) with α2 = ψ∗2(x0), and deg(α3) = A3 =
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(2, 1, 2, 1, 2, 0) = ψ∗({(a2 : −b2 : ab : 0 : 0)}) gives the projection
ψ3 : x 7→ (x1 : x3) with α3 = ψ∗3(x3).

• The extended Dynkin diagram is:

A2

??
??

??
??

E5
GFED@ABCE3

BB
BB

BB
BB

B

A1
GFED@ABCE2

GFED@ABCE1

A3

��������
E6

GFED@ABCE4

|||||||||

Here, A1, A2, A3 intersect in (0 : 1 : 0 : 0 : 0).
• The anticanonical embedding is given by

(φ∗(xi)) = (η(2,1,2,1,2,0)α2, η
(4,2,3,3,2,2), η(3,2,2,2,1,1)α1, η

(2,1,1,2,0,2)α3, α2α3).

Furthermore, φ∗(−x0 − x3) = η(2,2,1,1,0,0)α2
1.

Type xv (D5). Type xv, which has already been considered in [BB04],
has the following properties:

• It is given by the the following quadrics in P4:

x0x1 − x2
2 = x2

3 + x0x4 + x1x2 = 0

• The singularity p = (0 : 0 : 0 : 0 : 1) gives five exceptional divisor
E1, . . . , E5, and its line is E6 = {x0 = x2 = x3 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E6, and −KeS = (6, 5, 3, 4, 2, 4).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η6, α1, α2, α3]/(η3α
2
1 + η2η

2
6α3 + η4η

2
5α

3
2),

where the degree of the relation is (6, 6, 3, 4, 2, 6), and deg(α1) =
A1 = (3, 3, 1, 2, 1, 3) = ψ∗({(a3 : ab2 : a2b : 0 : −a3)}) gives
the projection ψ1 from E6 with α1 = ψ∗1(x3), deg(α2) = A2 =
(2, 2, 1, 1, 0, 2) = ψ∗({(a2 : 0 : 0 : ab : −b2)}) gives the projec-
tion ψ2 : x 7→ (x0 : x2) with α2 = ψ∗2(x2), and deg(α3) = A3 =
−KeS = ψ∗({(−a4 : −b4 : a2b2 : ab3 : 0)}) gives the anticanonical
embedding φ with α3 = φ∗(x4).

• The extended Dynkin diagram is:

A2

@@
@@

@@
@@

@
GFED@ABCE5

GFED@ABCE4

BB
BB

BB
BB

B

A1
GFED@ABCE3

GFED@ABCE1

A3

~~~~~~~~~
E6

GFED@ABCE2

|||||||||

where A1, A2, A3 intersect in (1 : 0 : 0 : 0 : 0).
• For the anticanonical embedding,

(φ∗(xi)) = (η(6,5,3,4,2,4), η(2,1,1,2,2,0)α2
2, η

(4,3,2,3,2,2)α2, η
(3,2,2,2,1,1)α1, α3).
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5.6. Degree 3

The classification of cubic Del Pezzo surfaces is classical and goes back
to Schläfli [Sch63]. Together with their number of lines, the list in Table 5.5
can be found in [BW79].

type singularities number of lines type
0 − 27 ≥ 2 relations
i A1 21 ≥ 2 relations
ii 2A1 16 ≥ 2 relations
iii A2 15 ≥ 2 relations
iv 3A1 12 ≥ 2 relations
v A2 + A1 11 ≥ 2 relations
vi A3 10 ≥ 2 relations
vii 4A1 9 ≥ 2 relations
viii A2 + 2A1 8 ≥ 2 relations
ix A3 + A1 7 ≥ 2 relations
x 2A2 7 ≥ 2 relations
xi A4 6 ≥ 2 relations
xii D4 6 1 relation
xiii A3 + 2A1 5 1 relation
xiv 2A2 + A1 5 1 relation
xv A4 + A1 4 1 relation
xvi A5 3 ≥ 2 relations
xvii D5 3 1 relation
xviii 3A2 3 toric
xix A5 + A1 2 1 relation
xx E6 1 1 relation

Table 5.5. Del Pezzo surfaces of degree 3

Proposition 5.7. The cubic Del Pezzo surfaces of Table 5.5 belong to
the following groups:

• Type xviii is toric.
• The Cox rings of types xii, xiii, xiv, xv, xvii, xix, xx have 10 gen-

erators and one relation.
• The Cox rings of types 0, i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, xvi have

at least 11 generators and at least two independent relations.

Proof. By Table 1.4, type xviii is the only toric cubic Del Pezzo sur-
face. It has been studied extensively, for example in [Bre98], [Fou98],
[HBM99].

Using Lemma 2.7 and Lemma 2.13, and since the number of negative
curves is at least 11, types 0 to x must have more than one relation. For
types xi, xvi, this is not as obvious because the number of negative curves
is 10 and 8, respectively.

For type xi, the negative curves give 10 necessary generators of the Cox
ring. The extended Dynkin diagram of the exceptional divisors E1, . . . , E4
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and the six lines E5, . . . , E10 is:

E5
GFED@ABCE2

GFED@ABCE3
GFED@ABCE4

GFED@ABCE1

|||||||||
E9 E7

|||||||||
E8

E6

{{{{{{{{
E10

{{{{{{{{

A basis of Pic(S̃) is given by E1, . . . , E7, and in terms of this basis,

E8 = (1, 1, 0,−1, 1, 1,−1), E9 = (1, 2, 1, 0, 2, 0,−1),

E10 = (0, 1, 1, 1, 1,−1, 1), −KeS = (2, 3, 2, 1, 2, 1, 0).

The divisors E1, . . . , E10 generate the effective cone. We check that A =
(1, 1, 1, 1, 0, 1, 1) is nef. Therefore, we calculate dimH0(A) = χ(A) = 2
by Riemann-Roch. However, the subring generated by non-zero sections of
H0(Ei) does not give two linearly independent sections in H0(A). Hence,
Cox(S̃) must have more than 10 generators.

For type xvi, we have the following information:
• The singularity gives the exceptional divisors E1, . . . , E5, and there

are three lines E6, E7, E8.
• The extended Dynkin diagram of negative curves is:

GFED@ABCE1
GFED@ABCE2

GFED@ABCE3
GFED@ABCE4

GFED@ABCE5 E6

E7 E8

• A basis of Pic(S̃) is E1, . . . , E7, with E8 = (1, 2, 1, 0,−1,−1, 2) and
−KeS = (2, 4, 3, 2, 1, 0, 3).

• Three of the 13 generators of the nef cone are B1 = (0, 1, 1, 1, 1, 1),
B2 = (1, 3, 2, 1, 0,−1, 3), B3 = (1, 2, 2, 2, 2, 2, 1), with

dim(H0(B1)) = dim(H0(B2)) = 2, dim(H0(B3)) = 3.

As for type viii of degree 4, we check that a minimal system of generators
of Cox(S̃) can be assumed to contain η1, . . . , η8 with non-zero ηj ∈ H0(Ej),
and β1, β2 of degree B1, B2, respectively. However, it is not hard to check
that the subring of Cox(S̃) generated by η1, . . . , η8, β1, β2 contains only two
linearly independent sections in degree B3. Therefore, Cox(S̃) must have
more than 10 generators.

For each type whose Cox ring has exactly 10 generators, the calculations
follow below. �

Remark 5.8. By [BW79], some types of cubic surfaces do not have a
single normal form, but a family with one or more parameters. More pre-
cisely, this happens exactly for the types 0, i, ii, iii, iv, v, vi, x. Furthermore,
by [BW79, Lemma 4], the D4 cubic surface (type xii) is the only surface
which has more than one normal form, but not a family. The two different
surfaces with a D4 singularity are also discussed in [HT04, Remark 4.1].
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Type xii (D4). As mentioned above, type xii has two different forms:
• The first is given by

x0(x1 + x2 + x3)2 − x1x2x3 = 0,

the second by

x0(x1 + x2 + x3)2 + x1x2(x1 + x2) = 0.

• The singularity is p = (1 : 0 : 0 : 0), giving four exceptional divisors
E1, . . . , E4. In the first form, the six lines are E5 = {x1 = x2 +
x3 = 0}, E6 = {x2 = x1 + x3 = 0}, E7 = {x3 = x1 + x2 = 0},
E8 = {x0 = x1 = 0}, E9 = {x0 = x2 = 0}, E10 = {x0 = x3 = 0}.
In the second form, E10 is replaced by {x0 = x1 + x2 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E7, with

E8 = (1, 0, 1, 1,−1, 1, 1), E9 = (1, 1, 0, 1, 1,−1, 1),

E10 = (1, 1, 1, 0, 1, 1,−1), −KeS = (3, 2, 2, 2, 1, 1, 1).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η10]/(η2η
2
5η8 + η3η

2
6η9 + η4η

2
7η10 −A · η1η2η3η4η5η6η7),

where the constant A is 1 for the first form and 0 for the second
form, and the degree of the relation is (1, 1, 1, 1, 1, 1, 1).

• The extended Dynkin diagram is:

GFED@ABCE2 E5 E8

}}
}}

}}
}}

GFED@ABCE1
GFED@ABCE2 E6 E9

AA
AA

AA
AA

GFED@ABCE4 E7 E10

The lines E8, E9, E10 meet in one point only in case of the second
form.

• For the first form, the anticanonical embedding φ : S → P3 is given
by

(φ∗(xi)) = (η8η9η10, η
(2,2,1,1,2,0,0)η8, η

(2,1,2,1,0,2,0)η9, η
(2,1,1,2,0,0,2)η10),

and furthermore, φ∗(x1 +x2 +x3) = η(3,2,2,2,1,1,1). The second form
differs from this as follows: φ∗(−x1 − x2) = η(2,1,1,2,0,0,2)η10, and
φ∗(x3) = η(3,2,2,2,1,1,1) + η(2,1,1,2,0,0,2)η10.

Type xiii (A3 + 2A1). Type xiii has the following properties:
• It is given by the following cubic in P3:

x2
3(x1 + x2) + x0x1x2 = 0.

• The singularities in p1 = (0 : 1 : 0 : 0) and p2 = (0 : 0 : 1 : 0)
give exceptional divisors E1, E10, respectively, and the singularity
in p3 = (1 : 0 : 0 : 0) gives E2, E3, E4. The five lines are given by
E5 = {x0 = x3 = 0}, E6 = {x1 = x3 = 0}, E7 = {x2 = x3 = 0},
E8 = {x1 = x2 = 0}, E9 = {x0 = x1 + x2 = 0}.
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• A basis of the Pic(S̃) is E1, . . . , E7, and E8 = (1, 0,−1,−1, 1,−1, 1),
E9 = (0, 1, 1, 1,−1, 1, 1), E10 = (1, 1, 0,−1, 0,−2, 2), and −KeS =
(2, 2, 1, 0, 1,−1, 3).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η10]/(η4η
2
6η10 + η1η2η

2
7 + η8η9),

where the relation is of degree (1, 1, 0, 0, 0, 0, 2).
• The extended Dynkin diagram is:

GFED@ABCE2 E7
GFED@ABCE1

BB
BB

BB
BB

B

GFED@ABCE3 E8 E9 E5

GFED@ABCE4 E6
GFED@ABCE10

|||||||||

• For the anticanonical embedding,

(φ∗(xi)) = (η(1,0,0,0,2,0,0)η9η10, η
(0,1,2,2,0,2,0)η8η10,

η(1,2,2,1,0,0,2)η8, η
(1,1,1,1,1,1,1)η10),

and furthermore, φ∗(−x1 − x2) = η(0,1,2,1,0,0,0)η2
8η9.

Type xiv (2A2 + A1). Type xiv has the following properties:
• Its equation is

x2
3(x1 + x3) + x0x1x2 = 0.

• The singularity (0 : 1 : 0 : 0) gives an exceptional divisor E1, and
(1 : 0 : 0 : 0) gives E2, E3, and (0 : 0 : 1 : 0) gives E4, E5. The lines
are E6 = {x0 = x3 = 0}, E7 = {x1 = x3 = 0}, E8 = {x2 = x3 = 0},
E9 = {x0 = x1 + x3 = 0}, E10 = {x2 = x1 + x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E7, and E8 = (−1, 0, 1, 0, 1,−1, 2), E9 =
(−1, 1, 2,−1, 1,−2, 3), E10 = (1,−1,−1, 1, 0, 2,−1), and −KeS =
(0, 1, 2, 1, 2, 0, 3).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η10]/(η3η5η
2
7 + η1η6η8 + η9η10),

where the relation is of degree (0, 0, 1, 0, 1, 0, 2).
• The extended Dynkin diagram is:

E8
GFED@ABCE1 E6

BB
BB

BB
BB

B

GFED@ABCE2

|||||||||

CC
CC

CC
CC

C
GFED@ABCE3 E7

GFED@ABCE5
GFED@ABCE4

E10 E9

{{{{{{{{{
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• For the anticanonical embedding,

(φ∗(xi)) = (η(1,0,0,2,1,2,0)η9, η
(0,1,2,1,2,0,3), η(1,2,1,0,0,0,0)η2

8η10, η
(1,1,1,1,1,1,1)η8),

and furthermore, φ∗(−x1 − x3) = η(0,1,1,1,1,0,1)η9η10.

Type xv (A4 + A1). Type xv has the following properties:
• Its equation is

x2x
2
3 + x2

1x3 + x0x1x2 = 0.

• The singularity (0 : 0 : 1 : 0) gives an exceptional divisor E9, and
(1 : 0 : 0 : 0) gives E1, . . . , E4. The lines are E5 = {x0 = x3 = 0},
E6 = {x1 = x3 = 0}, E7 = {x1 = x2 = 0}, E8 = {x2 = x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E7, and E8 = (0, 1, 1, 1,−1, 1, 1), E9 =
(1, 2, 1, 0,−1,−1, 2), and −KeS = (2, 4, 3, 2,−1, 1, 3).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η9, α]/(η1η5η
2
8 + η3η

2
4η

3
6η9 + η7α),

where the relation is of degree (1, 2, 2, 2,−1, 2, 2), and deg(α) =
A = (1, 2, 2, 2,−1, 2, 1) = ψ∗({(0 : ab : a2 : −b2)}) describes the
projection ψ1 from E5, with α = ψ∗1(x0).

• The extended Dynkin diagram is:

GFED@ABCE9

@@
@@

@@
@@

@ E6
GFED@ABCE4

GFED@ABCE3

BB
BB

BB
BB

B

E5 E8
GFED@ABCE1

GFED@ABCE2

A

||||||||
E7

{{{{{{{{{

Here, A,E5, E9 meet in one point.
• The anticanonical embedding is given by

(φ∗(xi)) = (η5η9α, η
(1,2,2,2,0,2,1)η9, η

(2,3,2,1,0,0,2)η8, η
(1,1,1,1,1,1,0)η8η9).

Type xvii (D5). Type xvii has the following properties:
• Its equation is

x3x
2
0 + x0x

2
2 + x2

1x2 = 0.

• The singularity (0 : 0 : 0 : 1) gives exceptional divisors E1, . . . , E5.
The lines are E6 = {x0 = x1 = 0}, E7 = {x0 = x2 = 0}, and
E8 = {x2 = x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E7, with E8 = (2, 2, 1, 1, 0, 2,−1) and
−KeS = (4, 3, 2, 3, 2, 2, 1).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η8, α1, α2]/(η2η
2
6α2 + η4η

2
5η

3
7η8 + η3α

2
1),

where the relation has degree (2, 2, 1, 2, 2, 2, 2), and deg(α1) = A1 =
(1, 1, 0, 1, 1, 1, 1) = ψ∗({(a2 : 0 : ab : −b2)}) describes a projection
ψ1 from E6 with α1 = ψ∗1(x1), deg(α2) = A2 = (2, 1, 1, 2, 2, 0, 2) =
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ψ∗({(a2 : ab : −b2 : 0)}) describes the projection ψ2 from E8 with
α2 = ψ∗2(x3).

• The extended Dynkin diagram is:

A2

??
??

??
??

E6
GFED@ABCE2

BB
BB

BB
BB

B

E8 E7
GFED@ABCE5

GFED@ABCE4
GFED@ABCE1

A1

�������� GFED@ABCE3

|||||||||

Here, A1, A2, E8 meet in (1 : 0 : 0 : 0).
• The anticanonical embedding is given by

(φ∗(xi)) = (η(4,3,2,3,2,2,1), η(3,2,2,2,1,1,0)α1, η
(2,1,1,2,2,0,2)η8, η8α2).

Type xix (A5 + A1). Type xix has the following properties:
• Its equation is

x3
1 + x2x

2
3 + x0x1x2 = 0.

• The singularity (0 : 0 : 1 : 0) gives an exceptional divisor E8, and
(1 : 0 : 0 : 0) gives E1, . . . , E5. The lines are E6 = {x1 = x2 = 0}
and E7 = {x1 = x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E7, with E8 = (−1, 0, 1, 2, 1, 2,−2) and
−KeS = (1, 2, 3, 4, 2, 3, 0).

• The Cox ring is

Cox(S̃) = K[η1, . . . , η8, α1, α2]/(η3
1η

2
2η3η

4
7η8 + η5α

2
1 + η6α2),

where the relation is of degree (2, 2, 2, 2, 1, 2, 2), and deg(α1) =
A1 = (1, 1, 1, 1, 0, 1, 1) = ψ∗({(a2 : ab : −b2 : 0)}) (which describes
the projection ψ1 from E7, with α1 = ψ∗1(x3)), and deg(α2) = A2 =
(2, 2, 2, 2, 1, 1, 2) = ψ∗({(0 : ab2 : −a3 : b3)}) (which describes the
projection ψ2 from (0 : 0 : 1 : 0), with α2 = ψ∗2(x0)).

• The Dynkin diagram is:

A1

@@
@@

@@
@@

@
GFED@ABCE5

BB
BB

BB
BB

B

GFED@ABCE8 E7
GFED@ABCE1

GFED@ABCE2
GFED@ABCE3

GFED@ABCE4

A2

||||||||
E6

{{{{{{{{{

• The anticanonical embedding is given by

(φ∗(xi)) = (η8α2, η
(2,2,2,2,1,1,2)η8, η

(1,2,3,4,2,3,0), η(1,1,1,1,1,0,1)η8α1).

Type xx (E6). Type xx has been considered in [HT04, Section 3]. Its
properties are:
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• The equation is

x1x
2
2 + x2x

2
0 + x3

3 = 0.

• The singularity (0 : 1 : 0 : 0) gives exceptional divisors E1, . . . , E6,
and there is a unique line E7 = {x2 = x3 = 0}.

• A basis of Pic(S̃) is E1, . . . , E7, with −KeS = (2, 3, 4, 4, 5, 6, 3).
• The Cox ring is

Cox(S̃) = K[η1, . . . , η7, α1, α2, α3]/(η2
4η5η

3
7α3 + η2α

2
2 + η2

1η3α
3
1),

where the relation is of degree (2, 3, 4, 6, 6, 6, 6), and deg(α1) =
A1 = (0, 1, 1, 2, 2, 2, 2) = ψ∗({(ab : a2 : −b2 : 0)}) describes a
projection ψ1 from E7 with α1 = ψ∗1(x3), and deg(α2) = A2 =
(1, 1, 2, 3, 3, 3, 3) = ψ∗({(0 : −a3 : b3 : ab2)}) describes the projec-
tion ψ2 from the singularity with α2 = ψ∗2(x0), and deg(α3) = A3 =
(2, 3, 4, 4, 5, 6, 3) = −KeS = ψ∗({(a3 : 0 : −b3 : a2b)}) describes the
anticanonical embedding φ with α3 = φ∗(x1).

• The extended Dynkin diagram is:

A3

??
??

??
??

E7
GFED@ABCE4

GFED@ABCE5

BB
BB

BB
BB

B

A1
GFED@ABCE1

GFED@ABCE3
GFED@ABCE6

A2

�������� GFED@ABCE2

|||||||||

Here, A1, A2, A3 meet in (0 : 0 : 1 : 0).
• The anticanonical embedding φ is given by

(φ∗(xi)) = (η(1,2,2,1,2,3,0)α2, α3, η
(2,3,4,4,5,6,3), η(2,2,3,2,3,4,1)α1).





CHAPTER 6

Cox rings of generalized Del Pezzo surfaces

6.1. Introduction

Let S̃r be the blow-up of P2 in r ≤ 8 points in almost general position
over an algebraically closed field K, i.e., a generalized Del Pezzo surface of
degree 9− r (Section 1.5). We restrict ourselves to the case r ≤ 7.

If S̃r is a smooth Del Pezzo surface, the Cox ring is known explicitly
(see Chapter 3). For generalized Del Pezzo surfaces, the Cox ring can be
determined for toric S̃r by results of Cox (see Lemma 2.12), and in cases with
exactly one relation in the Cox ring by a method of Hassett and Tschinkel
(see Chapter 5).

The purpose of this chapter is to show how generators and relations (up
to radical) of Cox(S̃r) can be determined explicitly for any generalized Del
Pezzo surface, in particular including Cox rings with more than one relation.

Compared to the case of non-toric smooth Del Pezzo surfaces, this prob-
lem has several complications:

• While there is only one type of smooth Del Pezzo surfaces in each
degree, there are, for example, 20 more types of generalized cubic
Del Pezzo surface.

• In the smooth case, every generator of the Cox ring corresponds to a
negative curve. For generalized Del Pezzo surfaces, extra generators
can occur (see Chapter 5 for examples).

• The Weyl group symmetry of the configuration of (−1)-curves on
smooth Del Pezzo surfaces (Section 1.4) can be used when deter-
mining the Cox ring. The configuration of negative curves (includ-
ing (−2)-curves) on generalized Del Pezzo surfaces is usually less
symmetric.

However, we will refine arguments of [BP04] in Section 6.2 to describe
generators of Cox(S̃r). Every generator corresponds to a negative curve on
S̃r, or has degree −KeSr

, or is the pull-back of a generator of Cox(S̃r−1),

where S̃r−1 is obtained by the contraction of a (−1)-curve on S̃r.
Having determined Nr generators of Cox(S̃r), we may think of Cox(S̃r)

in terms of the affine variety A(S̃r) = Spec(Cox(S̃r)) embedded in ANr .
Determining the ideal of relations in Cox(S̃r) up to radical is equivalent to
finding equations defining A(S̃r).

The ideas of [HT04] help to find certain relations in Cox(S̃r) even when
there is more than one relation. However, the proof of [HT04] that the
single relation defines Cox(S̃r) does not generalize to a situation where more
relations occur.

81
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Instead, we proceed as follows. Let E be a (−1)-curve on S̃r. Let UE be
the open subset of AN where the coordinate corresponding to E does not
vanish. By Lemma 1.35, contracting E results in a generalized Del Pezzo
surface S̃r−1. We will see that

A(S̃r) ∩ UE
∼= A(S̃r−1)× (A1 \ {0}).

This will allow us to determine A(S̃r) ∩ UE recursively, and since A(S̃r)
is irreducible, we obtain the ideal of relations up to radical by taking the
closure. See Section 6.3 for more details.

In a series of examples of quartic and cubic Del Pezzo surfaces, we will
see that the methods to determine the generators and relations in Cox(S̃r),
as described in Sections 6.2 and 6.3, can be made explicit in practice. As our
approach relates Cox(S̃r) to the case r − 1, we apply the results for degree
5 (where the Cox ring of every singular surface has at most one relation) of
Section 5.4 and degree 4 of Section 5.5 whenever the surface S̃r−1 obtained
from S̃r by contracting a (−1)-curve has a Cox ring with exactly one relation.

In the examples, we use notation from previous chapters, in particular
Chapter 5.

6.2. Generators

In this section, we show how to determine generators of Cox(S̃r), where
S̃r is the minimal desingularization of a singular Del Pezzo surface Sr of
degree 9− r ≥ 2.

Lemma 6.1. For 2 ≤ r ≤ 7, let S̃r be a generalized Del Pezzo surface of
degree 9 − r. Let D ∈ Pic(S̃r) such that (D,E) ≥ 0 for all negative curves
E on S̃r. Then the linear system |D| has no base points.

Proof. We use induction on r, starting with the case r = 2. The
surface S̃2 of degree 7 can be a smooth Del Pezzo surface or a generalized
Del Pezzo surface of type A1 which is obtained from P2 by blowing up one
point and another point on the exceptional divisor of the first blow-up. The
smooth case is covered by [BP04, Proposition 2.3]. In the second case,
we have (in terms of the standard basis as in Lemma 1.7) the (−2)-curve
E1 = l1 − l2 and the (−1)-curves E2 = l2 and E3 = l0 − l1 − l2. The
negative curves E1, E2, E3 are also a basis of Pic(S̃2). The dual basis
with respect to the intersection form consists of l0 − l1 (defining a conic
bundle fibration S̃2 → P1), 2l0 − l1 − l2 (defining a morphism S̃2 → P3),
and l0 (defining S̃2 → P2), so the corresponding linear systems have no base
points. A general D is a non-negative integral linear combination of these
three elements, and, therefore, |D| also has no base points.

For r ≥ 3, if there is a (−1)-curve E ⊂ S̃r with (D,E) = 0, then
we consider the map πE : S̃r → S̃r−1 which contracts E, where S̃r−1 is a
generalized Del Pezzo surface of degree 9−(r−1). We haveO(D) = π∗EO(D′)
for some invertible sheaf O(D′) on S̃r−1. As the negative curves of S̃r−1 are
images of negative curves of S̃r under πE , the divisor D′ is nef. By induction
on r, the linear system |D′| has no base points. Consequently, |D| = |π∗ED′|
has no base points.
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If there is no (−1)-curve E ⊂ S̃r with (D,E) = 0, then let m > 0 be the
minimal number (D,E) for all (−1)-curves E. Since (E,−KeSr

) = 1 for all
(−1)-curves and (E,−KeSr

) = 0 for all (−2)-curves, D′ := D −m · (−KeSr
)

is nef, and (D′, E) = 0 for some (−1)-curve E. As discussed before, |D′|
has no base points. Since r ≤ 7, the system | −KeSr

| is also base point free.
Therefore, |D| has no base points. �

For r = 2, the Del Pezzo surfaces S2 of degree 7 are toric. Hence,
generators of Cox(S̃2) are known (Lemma 2.12). For larger r, they can be
determined recursively as follows. Suppose that we can find a finite set
of generators of Cox(S̃r−1) for any generalized Del Pezzo surface of degree
9− (r − 1).

For every (−1)-curve E on S̃r, let πE : S̃r → S̃r−1 be the contraction of E
resulting in a generalized Del Pezzo surface S̃r−1, and choose a homogeneous
system of generators of Cox(S̃r−1).

An element of Cox(S̃r) is called a distinguished section if it is one of the
following:

• A section ξ(E) corresponding to a negative curve E on S̃r (cf.
Lemma 1.3).

• A global section of −KeSr
.

• A section π∗E(α), where πE : S̃r → S̃r−1 is as above, and the section
α is an element of the chosen homogeneous system of generators of
Cox(S̃r−1) which does not vanish in πE(E) and does not correspond
to a negative curve on S̃r−1.

Theorem 6.2. For 3 ≤ r ≤ 7, the Cox ring Cox(S̃r) is generated by
a finite set of distinguished sections which can be determined explicitly, in-
cluding at most two global sections of −KeSr

.

Proof. Let k(D) be the number of fixed components of D which are
(−2)-curves of S̃r. If k(D) > 0 and the (−2)-curve E is a fixed component
of D, then k(D − E) = k(D) − 1. If k(D) = 0, then (D,E) ≥ 0 for any
(−2)-curve E since E is the only prime divisor which intersects E negatively.

For each effective divisor D on S̃r, we want to show that H0(S̃r,O(D))
is generated by the distinguished sections. We use induction over deg(D) :=
(D,−KeSr

). Note that D is not effective if deg(D) < 0. In each degree, we
use a second induction over k(D).

(1) If there exists a negative curve E with (D,E) < 0, then E is a fixed
component of D. The sequence

H0(S̃r,O(D − E)) → H0(S̃r,O(D)) → H0(E,O(D)|E)

is exact, where the first map is multiplication with ξ(E). Since
H0(E,O(D)|E) = 0, the claim follows from the induction assump-
tion for D − E, where k(D − E) < k(D) if E is a (−2)-curve, and
deg(D − E) < deg(D) if E is a (−1)-curve.

(2) If there exists a (−1)-curve E with (D,E) = 0, consider the map
πE : S̃r → S̃r−1 contracting E. Then O(D) ∼= π∗EO(D′), and

π∗E : H0(S̃r−1,O(D′)) → H0(S̃r,O(D))
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is an isomorphism. We must show that, for any element α of the
chosen set of generators of Cox(S̃r−1), the section π∗E(α) is a com-
bination of the distinguished sections of S̃r.

Indeed, let A be the divisor corresponding to α, let j be the
multiplicity of πE(E) on A, and let Â be the strict transform of A,
with corresponding section α̂. Then π∗E(A) = Â+ jE, and

π∗E(α) = c · ξ(E) · α̂ for some c ∈ K∗.

If j > 0, then deg(Â) = deg(A)−j < deg(A), so α̂ is a combination
of the distinguished sections by induction over the degree. If j = 0
and A is a negative curve on S̃r−1, then π∗E(A) is a negative curve
on S̃r, so π∗E(α) is a distinguished section. Otherwise, π∗E(α) is a
distinguished section by definition.

(3) If D = −KeSr
(or equivalently, (D,E) = 1 for all (−1)-curves E and

(D,E′) = 0 for all (−2)-curves E′), then O(D)|E is isomorphic to
OE(1) for any (−1)-curve E. We have the exact sequence

0 → H0(S̃r,O(D − E)) → H0(S̃r,O(D)) → H0(E,O(D)|E).

Since deg(D − E) < deg(D), H0(S̃r,O(D − E)) is generated by
distinguished sections by induction over the degree. Furthermore,
dimH0(E,O(D)|E) = 2. Therefore, we must include at most two
sections of H0(S̃r,O(D)) in the set of distinguished sections.

(4) If (D,E) ≥ 1 for all (−1)-curves E and (D,E′) ≥ 0 for all (−2)-
curves E′, but D 6= −KeSr

, let m be the minimum of (D,E) for
all (−1)-curves E. Let E0 be a (−1)-curve with (D,E0) = m. Let
D′′ := D −m · (−KeSr

). Consider the sequence

0 → H0(S̃r,O(D − E0)) → H0(S̃r,O(D)) → H0(E0,O(D)|E0),

where the first map is multiplication by the distinguished section
ξ(E0). By induction over the degree, H0(S̃r,O(D − E0)) is gener-
ated by distinguished sections. Therefore, it is enough show that
H0(S̃r,O(D)) contains elements generated by distinguished sec-
tions that map to generators of H0(E0,O(D)|E0). Since (D′′, E0) =
0, the space H0(S̃r,O(D′′)) is generated by distinguished sections
by case (2) and contains a section s which can be chosen such that
its support does not contain E0 by Lemma 6.1. Multiplication by
s gives a homomorphism

H0(S̃,O(m · (−KeSr
))) → H0(S̃r,O(D))

which restricts to an isomorphism

H0(E0,O(m · (−KeSr
))|E0) ∼= H0(E0,O(D)|E0)

since (D′′, E0) = 0 implies that s is non-zero on E0. Therefore, it
remains to show that

H0(E0,O(m · (−KeSr
))|E0) ∼= H0(E0,OE0(m))

can be obtained by the restriction of elements of H0(S̃r,O(m ·
(−KeSr

))) that are generated by distinguished sections. For m = 1,
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this has been proved in case (3). For m > 1, this follows from the
fact that H0(E0,OE0(m)) is generated by products of m elements
of H0(E0,OE0(1)).

As the number of negative curves on S̃r is finite, the finiteness of the set of
distinguished sections follows by induction on r, where for r = 2, the toric
surfaces S̃2 have a finite set of generators of Cox(S̃2) by Lemma 2.12. �

Remark 6.3. Generators of Cox(S̃r) which do not correspond to nega-
tive curves on S̃r will be called extra generators. As the following observa-
tions show, we do not expect to obtain many extra generators as π∗E(α) via
πE : S̃r → S̃r−1 from generators of Cox(S̃r−1).

• As the self intersection number decreases when a point is blown up
(Lemma 1.2), extra generators of Cox(S̃r) can correspond only to
extra generators of Cox(S̃r−1).

• Two contractions πE : S̃r → S̃r−1 and πE′ : S̃r → S̃′r−1 of (−1)-
curves E and E′ can lead to extra generators π∗E(α) and π∗E′(α′).
However, one of them or both might be unnecessary for a minimal
system of generators.

Example 6.4. Starting with a surface S̃2 of type A1, four blow-ups lead
to a cubic surface S̃6 of type E6:

r 2 3 4 5 6
Sr A1 A1 + A2 A4 D5 E6

Generators of the Cox rings of each S̃r were already determined in Chap-
ter 5 (we also use notation from that chapter), but we show how they are
interpreted in view of Theorem 6.2.

• The surface S̃2 of type A1 has a Cox ring which is generated by
sections of the divisors η1, η2, η3, α1, α2 corresponding to the cyclic
Dynkin diagram (−2,−1,−1, 1, 0) of S̃2 (Table 1.4).

• The surface S̃3 is obtained from S̃2 by blowing up the intersection of
the (−1)-curves, giving a toric variety with cyclic Dynkin diagram
(−2,−2,−1,−2, 1, 0). By Theorem 6.2, the distinguished sections
which generate Cox(S̃3) are sections η1, . . . , η4 of the four negative
curves and the transforms of the sections α1, α2 of the (1)- and
(0)-divisor of S̃2 which we also call α1, α2 for simplicity. We check
that we do not need to add further sections of H0(S̃3,−KeS3

).

• The surface S̃4 is obtained from S̃3 by blowing up a point on the
(−1)-curve. This gives generators η1, . . . , η5 corresponding to the
negative curves, and transforms of α1, α2 of S̃3. By case (3) of
the proof, we must consider the restriction of H0(S̃4,−KeS4

) to the
(−1)-curve E5: The generators ηi, αi induce the sections

(η(2,4,6,3,5), η(2,3,4,2,3)α1, η
(2,2,2,1,1)α2

1, η
(1,1,1,1,0)α1α2, η

(1,2,3,2,2)α2).

Among these, only η(1,1,1,1,0)α1α2 is non-zero after restriction to
E5. Hence, a section α3 ∈ H0(S̃4,−KeS4

) completes the generating
set.
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• Blowing up the intersection of the (−1)-curve of S̃4 and the divisor
corresponding to α3 gives S̃5. The distinguished sections include
η1, . . . , η6 corresponding to the negative curves and α1, α2 as trans-
forms of the generators in the previous case. We do not need the
transform of α3 since α3 vanishes in the blown-up point. Only
η(2,1,1,2,2,0)α2

2 restricts to a non-zero element of H0(E6,−KeS6
|E6),

so we need to add another section of −KeS6
which we call α3 again.

• Blowing up the intersection of the (−1)-curve and the divisor corre-
sponding to α3 on S̃5 gives S̃6. As before, the distinguished sections
are η1, . . . , η7 corresponding to the negative curves, α1, α2 as trans-
forms of the extra generators of Cox(S̃5) which do not vanish in the
blown-up point, and a section α3 of −KeS6

.

6.3. Relations

Let S̃r be a generalized Del Pezzo surface of degree 9−r. In this section,
we show how to determine the relations in Cox(S̃r) up to radical.

For r ≤ 2, S̃r is toric, so there are no relations in Cox(S̃r). For r ≥ 3,
let πE : S̃r → S̃r−1 be the contraction of a (−1)-curve E on S̃r, where S̃r−1

is a generalized Del Pezzo surface of degree 9 − (r − 1). Let A(S̃r) be the
affine variety Spec(Cox(S̃r)).

Lemma 6.5. Let UE be the open subset {ξ(E) 6= 0} of A(S̃r). Then

A(S̃r) ∩ UE
∼= A(S̃r−1)× (A1 \ {0}).

Proof. Using the fact Pic(S̃r) = π∗E(Pic(S̃r−1))⊕Z ·E, the proof is the
same as the proof of [BP04, Proposition 4.4]. �

Having found generators ξ1, . . . , ξNr of Cox(S̃r), we are interested in the
ideal defining A(S̃r) in ANr = SpecRr, where Rr = K[ξ1, . . . , ξNr ] is a free
polynomial ring.

Suppose that we have found certain relations between ξ1, . . . , ξNr which
generate an ideal Jr. Let Zr := Spec(Rr/ rad(Jr)) ⊂ ANr . We want to check
whether we have found all relations: While A(S̃r) ⊂ Zr is clear, we need to
check whether A(S̃r) = Zr. This can be done by the following method:

• Suppose that we have determined Jr−1 such that

A(S̃r−1) ∼= Spec(Rr−1/ rad(Jr−1)),

where S̃r−1 is the generalized Del Pezzo surface obtained by con-
traction of the (−1)-curve E on S̃r. First, we check that Zr ∩UE

∼=
A(S̃r−1)×(A1\{0}). For this, we must show that that ξ(E) and the
generators of Cox(S̃r) which correspond to generators of Cox(S̃r−1),
together with the relations in Jr, determine all other generators of
Cox(S̃r). Furthermore, we must show that Jr induces the relations
in Cox(S̃r−1). Together with Lemma 6.5, this will prove

Zr ∩ UE
∼= A(S̃r) ∩ UE .
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• As A(S̃r) is irreducible by Lemma 2.9 and closed in ANr , we can
calculate the closure of Zr ∩ UE in ANr . If this coincides with Zr,
then we are done, since in this case

Zr = Zr ∩ UE = A(S̃r) ∩ UE = A(S̃r).

• Carrying out the first step of checking Zr ∩ UE = A(S̃r) ∩ UE for
all (−1)-curves E instead of just one, the second step of show-
ing Zr = Zr ∩ U can be done with U = UE replaced by U =⋃

(−1)-curves E UE . In practice, this can be considerably simpler.

We illustrate this in a quartic and a cubic case. The types are numbered
as in Tables 5.4 and 6.2 respectively Tables 5.5 and 6.3.

Example 6.6 (Quartic type ii (2A1 with nine lines)). We use Theo-
rem 6.2 to show that the generators of Cox(S̃5) correspond to the negative
curves E1, . . . , E11 as in the following extended Dynkin diagram:

E4 E8 E6

22
22

22
22

22
22

22
22

E9

QQQQQQQQQQQQQQQQQ E10

GFED@ABCE1


















PPPPPPPPPPPPPPPP E5

mmmmmmmmmmmmmmmm
E11 E7

GFED@ABCE2

E3

mmmmmmmmmmmmmmmmm

We claim that the relations are:

R1 = η1η2η
2
3 + η8η11 + η9η10

R2 = η1η3η4 + η6η10 + η7η11

R3 = η1η3η5 + η6η8 + η7η9

R4 = η2η3η6 + η4η9 + η5η11

R5 = η2η3η7 + η4η8 + η5η10

Ei type of S4 other variables generation relations
E3 0 : − − R1, R2, R3, R4, R5

E4 i : A1 η8 : R5, η9 : R4 R2

E5 i : A1 η10 : R5, η11 : R4 R3

E6 i : A1 η8 : R3, η10 : R2 R4

E7 i : A1 η9 : R3, η11 : R2 R5

E8 ii : 2A1 η4 : R5, η6 : R3, η11 : R1 −
E9 ii : 2A1 η4 : R4, η7 : R3, η10 : R1 −
E10 ii : 2A1 η5 : R5, η6 : R2, η9 : R1 −
E11 ii : 2A1 η5 : R4, η7 : R2, η8 : R1 −

Table 6.1. Quartic type ii (2A1)
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Depending on the choice of the (−1)-curve Ei (i ∈ {3, . . . , 11}), we ob-
tain a quintic Del Pezzo surface S4: In Table 6.1, we list the variables ηj

which do not correspond to negative curves on S̃4, together with the rela-
tion Rk which determines ηj , in the column “other variables”. The column
“generating relations” lists the relations which generate the ideal J4 defining
Cox(S̃4). The remaining relations Rk turn out to be trivial or dependent on
the generating relations in Cox(S̃4).

This shows that Z5 ∩ U = A(S̃5) ∩ U , where U is the complement of

V = {(η1, . . . , η11) ∈ A11 | η3 = · · · = η11 = 0}.

In particular, with

U ′ = {(η1, . . . , η11) ∈ A11 | η11 6= 0, η3 = · · · = η10 = 0} ⊂ U,

we have A(S̃5) ∩ U ′ = Z5 ∩ U ′ = U ′. As V ⊂ U ′, and A(S̃5) and Z5 are
closed, we have A(S̃5) ∩ V = Z5 ∩ V = V . We conclude A(S̃5) = Z5.

Example 6.7 (Cayley’s cubic surface – type vii (4A1)). The four (−2)-
curves are E1, . . . , E4. Six (−1)-curves Ei,j intersect Ei and Ej . Three (−1)-
curves E(i,j),(k,l) intersect each other and Ei,j and Ek,l, where {i, j, k, l} =
{1, 2, 3, 4}. The corresponding generators of Cox(S̃6) are

ηi, ηi,j , η(i,j),(k,l) = −η(k,l),(i,j).

Six relations have the form

Ri,j = ηiηi,kηi,l + ηjηj,kηj,l − ηk,lη(i,j),(k,l),

and three have the form

R(i,j),(k,l) = η2
i,jηiηj − η2

k,lηkηl + η(i,k),(j,l)η(i,l),(j,k).

These nine relations define Z6 and were already described in [HB03] and
[DT06, Example 14].

Contracting Ei,j results in a quartic surface S5 of type ii (2A1) as in the
previous example. The variable η(i,j),(k,l), which does not correspond to a
generator of Cox(S̃5), is determined on UEi,j by Rk,l, while the five relations
in Cox(S̃5) are given by R(i,j),(k,l), Ri,k, Ri,l, Rj,k, Rj,l.

Contracting E(i,j),(k,l) gives a quartic surface S5 of type ix (4A1). The
variables ηi,j , ηk,l, η(i,k),(j,l), η(i,l),(j,k), which do not correspond to generators
of Cox(S̃5) are determined on UE(i,j),(k,l)

by Ri,j , Rk,l, R(i,l),(j,k), R(i,k),(j,l),
respectively. As S5 is toric, Cox(S̃5) has no relations. The other relations
in Cox(S̃6) turn out trivial in Cox(S̃5).

Therefore, Z6 ∩ U = A(S̃6) ∩ U , where U is the complement of

V = {ηi,j = η(i,j),(k,l) = 0 for all i, j, k, l}.

In particular, we can check that A(S̃6) ∩ U ′ = Z6 ∩ U ′ = U ′ where U ′ ⊂ U

is defined as V except that η(1,2),(3,4) 6= 0. As V ⊂ U ′, we have A(S̃6)∩ V =
Z6 ∩ V = V . Therefore, A(S̃6) = Z6.
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Remark 6.8. In addition to the relations in Jr that we identify in the
first step of the process (corresponding to the relations in Jr−1 on the one
hand, and determining the “other variables” on the other hand), we might
need further relations in Jr in order to describe A(S̃r) on the complement
of
⋃

(−1)-curves E UE .
For example, this happens for the quartic type viii (A3), as we will see

in the following section.

6.4. Degree 4

type singularities lines extra gen. gen. relations
0 − 16 − 16 20
i A1 12 − 13 10
ii 2A1 9 − 11 5
iii 2A1 8 − 10 2
iv A2 8 − 10 2
v 3A1 6 − 9 1
vi A2 + A1 6 − 9 1
vii A3 5 1 9 1
viii A3 4 4 11 5
ix 4A1 4 − 8 −
x A2 + 2A1 4 − 8 −
xi A3 + A1 3 2 9 1
xii A4 3 2 9 1
xiii D4 2 3 9 1
xiv A3 + 2A1 2 1 8 −
xv D5 1 3 9 1

Table 6.2. Del Pezzo surfaces of degree 4

Complete results for generalized Del Pezzo surfaces whose degree is at
least 5 can be found in Chapter 5. For smooth Del Pezzo surfaces, see
[BP04] and Chapter 3.

In degree 4, Section 5.5 lists all relevant information in the case of Del
Pezzo surfaces whose universal torsor is an open subset of affine space or of
an affine hypersurface, or equivalently, whose Cox ring has 8 or 9 generators.
This includes exactly 10 of the 15 different types. We will describe generators
and relations for the remaining five types here. We give similar information
as in Chapter 5, using mostly the same notation and conventions.

For S̃5 of types i to iv, we can check that Cox(S̃5) is generated by sections
corresponding to negative curves. Their extended Dynkin diagrams can be
found in [CT88, Proposition 6.1].

Type i (A1).
• The extended Dynkin diagram consists of one (−2)-curve E0 and

twelve (−1)-curves Ei, Ei,1, Ei,2 for i ∈ {1, . . . , 4}: Ei intersects E0,
Ei,1, Ei,2, while Ei,k intersects Ei and Ej,l for j ∈ {1, . . . , 4} \ {i}
and l 6= k.
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• A basis of Pic(S̃) is given by E0, . . . , E4, E1,1, with

E2,1 = (0, 1,−1, 0, 0, 1), E3,1 = (0, 1, 0,−1, 0, 1), E4,1 = (0, 1, 0, 0,−1, 1),

E1,2 = (1,−1, 1, 1, 1,−1), E2,2 = (1, 0, 0, 1, 1,−1), E3,2 = (1, 0, 1, 0, 1,−1),

E4,2 = (1, 0, 1, 1, 0,−1),

and −KeS5
= (2, 1, 1, 1, 1, 0).

• For i 6= j ∈ {1, . . . , 4}, there is one relation between

η0ηiηj , ηk,1ηl,2, ηl,1ηk,2,

where {i, j, k, l} = {1, . . . , 4}. For i ∈ {1, 2}, there are two relations
between

η1η1,i, η2η2,i, η3η3,i, η4η4,i.

This gives 10 relations in total.
• 23 monomial sections of −KeS are: η2

0η1η2η3η4, six section of the
form ηi,1ηj,1ηk,2ηl,2, twelve section of the form η0ηiηjηi,1ηj,2, four
section of the form η0η

2
i ηi,1ηi,2

Type ii (2A1 with 9 lines).

• See Example 6.6.

Type iii (2A1 with 8 lines).

• Its equation is:

x0x1 − x2
2 = x0x2 + x1x2 + x3x4 = 0

• Singularities: (0 : 0 : 0 : 1 : 0) giving E1, and (0 : 0 : 0 : 0 : 1) giving
E2; Lines: E3 = {x0 = x2 = x3 = 0}, E4 = {x0 − x1 = x0 + x2 =
x4 = 0}, E5 = {x0−x1 = x0−x2 = x4 = 0}, E6 = {x1 = x2 = x4 =
0}, E7 = {x1 = x2 = x3 = 0}, E8 = {x0 − x1 = x0 + x2 = x3 = 0},
E9 = {x0 − x1 = x0 − x2 = x3 = 0}, E10 = {x0 = x2 = x4 = 0}.

• A basis of Pic(S̃) is given by E1, . . . , E6, with

E7 = (−1, 1,−1, 1, 1, 0), E8 = (−1, 1,−1, 1, 0, 1),

E9 = (−1, 1,−1, 0, 1, 1), E10 = (−1, 1,−2, 1, 1, 1),

and −KeS5
= (−1, 3,−2, 2, 2, 2).

• Dynkin diagram:
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• The anticanonical map φ is given by

(φ∗(xi)) = (η(1,1,2,0,0,0)η2
10, η

(1,1,0,0,0,2)η2
7, η

(1,1,1,0,0,1)η7η10,

η(2,0,1,0,0,0)η7η8η9, η
(0,2,0,1,1,1)η10),

and furthermore, φ∗(x0 − x1) = η(1,1,0,1,1,0)η8η9, φ∗(x0 − x2) =
η(1,1,1,1,0,0)η9η10, φ∗(x0 + x2) = η(1,1,1,0,1,0)η8η10, φ∗(x1 + x2) =
η(1,1,0,0,1,1)η7η8, φ∗(x2− x1) = η(1,1,0,1,0,1)η7η9, φ∗(x0 + x1 + 2x2) =
η(1,1,0,0,2,0)η2

8, φ
∗(x0 + x1 − 2x2) = η(1,1,0,2,0,0)η2

9.
• Let Z5 be the affine variety defined by

R1 = η3η10 + η6η7 − η5η8

R2 = η3η10 − η6η7 − η4η9

Contracting any line results in a quintic Del Pezzo surface of type
i (A1). We see easily that A(S̃5) = Z5 not only when restricted to
the complement of V = {η3 = · · · = η10 = 0}, but also on V .

Type iv (A2).
• Its equation is:

x1x2 − x3x4 = x0(x1 + x2 + x3 + x4)− x3x4 = 0

• Singularities: (1 : 0 : 0 : 0 : 1) giving E1, E2; Lines: E3 = {x0 =
x1 = x3 = 0}, E4 = {x0 = x2 = x4 = 0}, E5 = {X = x2 = x3 = 0},
E6 = {X = x1 = x4 = 0}, E7 = {X = x2 = x4 = 0}, E8 = {X =
x1 = x3 = 0}, E9 = {x0 = x1 = x4 = 0}, E10 = {x0 = x2 = x3 =
0}, where X := x1 + x2 + x3 + x4.

• A basis of Pic(S̃) is E1, . . . , E6, with E7 = (0, 1, 0,−1, 1, 1), E8 =
(0, 1,−1, 0, 1, 1), E9 = (1, 2,−1,−1, 2, 1), E10 = (1, 2,−1,−1, 1, 2),
and −KeS5

= (2, 4,−1,−1, 3, 3).
• Dynkin diagram:

E7 E4

11
11

11
11

11
11

11
11

E10 E5

BB
BB

BB
BB

GFED@ABCE1

||||||||

BB
BB

BB
BB

GFED@ABCE2

E8 E3


















E9 E6

||||||||

• The anticanonical map φ is given by

(φ∗(xi)) = (η(0,0,1,1,0,0)η9η10, η
(1,1,0,1,0,1)η7η9, η

(1,1,1,0,1,0)η8η10,

η(1,1,1,0,0,1)η8η9, η
(1,1,0,1,1,0)η7η10),

and φ∗(x1 + x3) = η(1,2,0,0,1,2)η9, φ∗(x1 + x4) = η(2,1,0,1,0,0)η2
7η8,

φ∗(x2+x3) = η(2,1,1,0,0,0)η7η
2
8, φ

∗(x2+x4) = η(1,2,0,0,2,1)η10, φ∗(x1+
x2 + x3 + x4) = η(2,2,0,0,1,1)η7η8.

• Contracting one of E5, E6, E7, E8, we get a quintic surface of type
i (A1). For one of E3, E4, E9, E10, we obtain a quintic surface of
type iii (A2).
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• Let Z5 be the affine variety defined by

R1 = η6η9 + η5η10 − η1η7η8,

R2 = η4η7 + η3η8 − η2η5η6.

On the complement U of V = {η3 = · · · = η10 = 0}, we have
A(S̃5) = Z5. For U ′ = {η3 6= 0, η4 = · · · = η10 = 0} ⊂ U , we have
A(S̃5) ∩ U ′ = Z5 ∩ U ′ = U ′. Therefore, A(S̃5) ∩ V = V , which
coincides with Z5 ∩ V , and we obtain A(S̃5) = Z5.

Type viii (A3).

• When we contract any of the four (−1)-curves S̃5, we obtain the
minimal desingularization S̃4 of a quintic Del Pezzo surface S4 of
type iii (A2), where Cox(S̃4) has two extra generators α1, α2. In
total, we obtain four extra generators of Cox(S̃5).

• Its equation is:

x0x1 − x2
2 = (x0 + x1 + x3)x3 − x2x4 = 0

• Singularities: (0 : 0 : 0 : 0 : 1) giving E1, E2, E3; Lines: E4 = {x0 =
x2 = x3 = 0}, E5 = {x1 = x2 = x3 = 0}, E6 = {x0 = x2 =
x1 + x3 = 0}, E7 = {x1 = x2 = x0 + x3 = 0}

• A basis of Pic(S̃) is E1, . . . , E6, with E7 = (−1, 0, 1,−1, 1, 1), and
−KeS5

= (1, 2, 3, 0, 2, 2).
• Dynkin diagram:

E4

AA
AA

AA
AA

UUUUUUUUUUUUUUUUUUUUUUUU A1

PPPPPPPPPPPPPPPP

UUUUUUUUUUUUUUUUUUUUUUUU A2 E6

BB
BB

BB
BB

GFED@ABCE1

||||||||

UUUUUUUUUUUUUUUUUUUUUUUU E7

~~~~~~~~

iiiiiiiiiiiiiiiiiiiiiiii
A4

nnnnnnnnnnnnnnnn

iiiiiiiiiiiiiiiiiiiiiiii
A3 E5

GFED@ABCE3

GFED@ABCE2

iiiiiiiiiiiiiiiiiiiiiiii

• The anticanonical map φ is given by

(φ∗(xi)) = (η(1,2,3,0,2,2), η(3,2,1,2,0,0)η2
7, η

(2,2,2,1,1,1)η7, η
(1,1,1,0,1,0)η7α1, α1α4),

and furthermore, φ∗(x1 + x3) = η(1,1,1,0,0,1)η7α2, φ∗(x0 + x3) =
η(1,1,1,1,1,0)α3, φ∗(x0+x1+x3) = η(1,1,1,1,0,1)α4, φ∗(x2+x4) = α2α3.

• Relations: Let V5 ⊂ A11 be the affine variety defined by the five
relations

R1 = η2
1η2η

2
4η7 + η5α1 − η6α2,

R2 = η2η
2
3η

2
5η6 + η7α2 − η4α4,

R3 = η2η
2
3η5η

2
6 + η7α1 − η4α3,

R4 = η2
1η2η4η

2
7 + η5α3 − η6α4,

R5 = η2
1η

2
2η

2
3η4η5η6η7 + α1α4 − α2α3.

Note that R1, . . . , R4 correspond to the relation in Cox(S̃4) when
contracting E4, . . . , E7, respectively. Therefore, Cox(S̃5) is given by
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R1, . . . , R4 on U , the complement of V = {η4 = η5 = η6 = η7 = 0}.
As expected, R5 follows from R1, . . . , R4 on U .

However, when restricted to V , the relations R1, . . . , R4 are
trivial, while R5 is α1α4 − α2α3 = 0. As A(S̃5) is closed and
irreducible, and R5 holds on U , it must also hold on V , so A(S̃5) ⊂
Z5. This shows that we need the extra relation R5 in order to
describe the closure of Z5 ∩ U .

With U ′ = {η4 6= 0, η5 = η6 = η7 = 0} ⊂ U , we have

A(S̃5) ∩ U ′ = Z5 ∩ U ′ = {η4 6= 0, α3 = α4 = η5 = η6 = η7 = 0}.

Taking the closure, we conclude that A(S̃5)∩V must contain {α3 =
α4 = η4 = · · · = η7 = 0}. Replacing η4 by η5, η6 or η7 in the
definition of U ′, we see that A(S̃5)∩V must contain all points of V
where one of α1, α4 and one of α2, α3 vanishes. This is equivalent to
the condition α1α4−α2α3 = 0, which is R5 restricted to V . Hence,
no further relations are necessary to describe A(S̃5), so A(S̃5) = Z5.

6.5. Degree 3

In Section 5.6, the Cox ring of cubic surfaces is determined in every case
where it has at most one relation. In this section, we determine generators
of the Cox ring of singular cubic Del Pezzo surfaces in the remaining twelve
of 20 cases.

type singularities lines extra generators generators
0 − 27 − 27
i A1 21 − 22
ii 2A1 16 − 18
iii A2 15 − 17
iv 3A1 12 − 15
v A2 + A1 11 − 14
vi A3 10 − 13
vii 4A1 9 − 13
viii A2 + 2A1 8 − 12
ix A3 + A1 7 − 11
x 2A2 7 − 11
xi A4 6 2 12
xii D4 6 − 10
xiii A3 + 2A1 5 − 10
xiv 2A2 + A1 5 − 10
xv A4 + A1 4 1 10
xvi A5 3 4 12
xvii D5 3 2 10
xviii 3A2 3 − 9
xix A5 + A1 2 2 10
xx E6 1 3 10

Table 6.3. Del Pezzo surfaces of degree 3
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For types i to x, i.e., generalized Del Pezzo surfaces S̃6 whose types are
A1, 2A1, A2, 3A1, A1 +A2, A3, 4A1, A2 +2A1, A3 +A1 or 2A2, we check
that the Cox ring is generated by non-zero global sections of the negative
curves on S̃6.

The remaining two cases xi and xvi with singularities of type A4 and
A5, respectively, are more interesting. We give more details in these cases.

In several cases, the easiest way to describe the extended Dynkin diagram
is to explain how the diagram of a quartic Del Pezzo surface (see Section 6.4)
must be modified in order to obtain the cubic surface.

Type i (A1).
• The (−2)-curve E0 intersects the (−1)-curves E1, . . . , E6. There

are 15 further (−1)-curves Ei,j (i 6= j ∈ {1, . . . , 6}) which intersect
Ei, Ej and six curves Ek,l, where {i, j} ∩ {k, l} = ∅.

Type ii (2A1).
• Blowing up the intersection of two (−1)-curves E1, E2 on a smooth

quartic Del Pezzo surface S5 results in the following Dynkin dia-
gram of S̃6:

On S5, for i ∈ {1, 2}, the (−2)-curve Ei intersects four (−1)-
curves Ei,1, . . . , Ei,4. There are six further (−1)-curves E′

1, . . . , E
′
6.

Each (−1)-curve intersects four others.
In order to obtain the Dynkin diagram of S̃6, we change E1, E2

into (−2)-curves and remove the edge between them. Two new
(−1)-curves E3, E4 are added, which intersect E1, E2, E4 respec-
tively E′

1, . . . , E
′
6, E3.

Type iii (A2).
• The Dynkin diagram of eight of the 17 negative curves is:

GFED@ABCE1

zz
zz

zz
zz

z

DD
DD

DD
DD

D
GFED@ABCE2

zz
zz

zz
zz

z

DD
DD

DD
DD

D

E1,1 E1,2 E1,3 E2,1 E2,2 E2,3

Furthermore, the nine (−1)-curves E′
i,j (where i, j ∈ {1, 2, 3}) in-

tersect E1,i, E2,j and the four curves E′
i′,j′ , where i 6= i′ and j 6= j′.

Type iv (3A1).
• Blowing up the intersection of E1,1 and E2,2 on the quartic type i

(A1) surface gives the following Dynkin diagram: We turn E1,1 and
E2,2 into (−2)-curves and remove the edge between them. Two new
(−1)-curves E,E′ are added, intersecting E1,1, E2,2, E

′ respectively
E1,2, E2,1, E3, E4, E (the (−1) curves which do not intersect E1,1 or
E2,2).

Type v (A1 + A2).
• Blowing up the intersection of E1 and E1,1 on the quartic type i

(A1) surface gives the following Dynkin diagram: We turn E1 to
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E1,1 into (−2)-curves and remove the edge between them. A new
(−1)-curve E intersects E1 and E1,1.

Type vi (A3).

• The extended Dynkin diagram is the following modification of the
diagram of quartic type ii (2A1 with 9 lines), corresponding to
the blow-up of a point on E3: The (−1)-curve E3 is changed to a
(−2)-curve. Two new (−1)-curves E and E′ are added, where E
intersects E3, E

′, and E′ intersects E8, E9, E10, E11, E.

Type vii (4A1).

• See Example 6.7.

Type viii (A2 + 2A1).

• Dynkin diagram:

GFED@ABCE2

QQQQQQQQQQQQQQQQ GFED@ABCE1

BB
BB

BB
BB

E7

||||||||

11
11

11
11

11
11

11
1 E9

mmmmmmmmmmmmmmmmm
E5 E12 E8

E10 E6

GFED@ABCE4 E11
GFED@ABCE3


















Type ix (A3 + A1).

• Dynkin diagram:

GFED@ABCE4 E8

@@
@@

@@
@@

@

E9 E6

00
00

00
00

00
00

00
00

GFED@ABCE1

E5

����������������

AA
AA

AA
AA

E10 E7
GFED@ABCE2

E11
GFED@ABCE3

Type x (2A2).

• See Section 6.6.

Type xi (A4).
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• Dynkin diagram:

E5
GFED@ABCE2

GFED@ABCE3
GFED@ABCE4

GFED@ABCE1

|||||||||
E9 E7

|||||||||
E8

E6

{{{{{{{{
E10

{{{{{{{{

• We claim that Cox(S̃6) is generated by η1, . . . , η10 and α1, α2, where
A1 := deg(α1) intersects E5, E7, E9, A2 and twice E10, while A2 :=
deg(α2) intersects E5, E8, E10, A1 and twice E9. This is checked by
considering the Cox(S̃5) for the various quartic contractions S̃5 of
the (−1)-curves on S̃6:

(−1)-curve type of S5 extra curves on S̃5 corresp. curves on S̃6

E5 vi : A2 + A1 − −
E6 viii : A3 A1, A2, A3, A4 A1, E10, A2, E9

E7 vii : A3 A A2

E8 vii : A3 A A1

E9 xii : A4 A1, A2 A2, E6

E10 xii : A4 A1, A2 A1, E6

Type xvi (A5).
• Dynkin diagram:

GFED@ABCE1
GFED@ABCE2

GFED@ABCE3
GFED@ABCE4

GFED@ABCE5 E6

E7 E8

• Contracting E6 gives a quartic surface S̃5 with a singularity of type
A4. We have two extra generators α1, α2 of degree A1, A2 which
intersect E7 and twice E8 respectively E1 and E8. Contracting E8

gives the same type of quartic surface. Here, the extra generators
intersect E7 and twice E6 respectively E1 and E6. This shows that
we need four extra generators α1, . . . , α4 such that the correspond-
ing divisors A1, . . . , A4 intersect one of E1, E7 and one of E6, E8.

Contracting E7 gives a quartic surface with singularities A3 +
A1. Its Cox ring also has two extra generators, but the induced
sections of S̃6 are two of α1, . . . , α4 as above.

• Therefore, Cox(S̃6) is generated by these 12 elements. By consider-
ing the sections in degrees Ai, we see that it is a minimal generating
set (cf. Lemma 2.5).

6.6. Families of Del Pezzo surfaces

In this section we compute the Cox ring of a family of Del Pezzo sur-
faces. By Example 1.36, there is a one-parameter family of singular Del



6.6. FAMILIES OF DEL PEZZO SURFACES 97

Pezzo surfaces S of type 2A2. Its extended Dynkin diagram is given in
Example 1.32.

We have dim(H0(l0 − l5)) = 2, but

l0 − l5 = E4 + E6 + 2E7 = E1 + E11 = E2 + E8 = E3 + E9.

Hence, there are two relations between

η4η6η
2
7, η1η11, η2η8, η3η9,

where ηi is a non-zero element of H0(Ei). To determine the relation between
these sections, note that

η4η5η6η
2
7, η1η5η11, η2η5η8, η3η5η9 ∈ H0(S̃6, l0)

are π∗(s7), . . . , π∗(s10) under the map π : S6 → P2, with si ∈ H0(P2,OP2(1))
is a section vanishing in Ei for i ∈ {7, . . . , 10}. By our choice of E7, . . . , E10

in P2 as in (1.1), depending on the parameter α, two relations between
s7, . . . , s10 are

s9 + s8 − s7 = 0 and s10 + αs8 − s7 = 0.

This gives rise to two relations in H0(S̃6, l0), which results in relations in
H0(S̃6, l0 − l5) after dividing by η5:

R1(ηi) := η2η8 +η1η11−η4η6η
2
7 = 0, R2(ηi) := η3η9 +αη1η11−η4η6η

2
7 = 0.

Note that the contraction of the (−1)-curve E7 on S̃6 results in a gen-
eralized quartic Del Pezzo surface S̃5 of type 2A1 (with 8 lines), while the
contraction of any other (−1)-curve gives S̃5 of type A2 + A1. As before,
we can check by comparing the generators η1, . . . , η11 and the relations R1,
R2 with the results in these two quartic types that we have

Cox(S̃6) = K[η1, . . . , η11]/(R1(ηi), R2(ηi)).

Our method of determining the Cox ring shows that the following prop-
erties are invariant in families of isomorphy classes S̃ of the same type:

• By definition, the extended Dynkin diagram and the Picard group.
• The numbers and degrees of the generators of Cox(S̃) in Pic(S̃)

(see Lemma 2.5).
• The numbers and degrees of the relations in Pic(S̃).

However, the exact form of the relations depends on the choice of isomorphy
class in the family. As the monomials occurring in a relation are determined
by the degrees of the relation and the generators, only the coefficients vary.

See also Section 5.6 for the two isomorphy classes of type D4 in degree 3.





Part 2

Rational points on Del Pezzo
surfaces





CHAPTER 7

Manin’s conjecture

7.1. Introduction

Let f ∈ Z[x0, . . . , xn] be a non-singular form of degree d. By the circle
method,

N(f,B) := #{x ∈ Zn+1/± | max
j

(|xj |) ≤ B} ∼ c ·Bn+1−d

(where x ∈ Zn+1/± means that we identify x with −x = (−x0, . . . ,−xn))
with c ∈ R>0, provided that n > 2d · (d − 1), and f(x) = 0 has solutions
over all completions of Q (see [Bir62]). Let X = Xf ⊂ Pn be the smooth
hypersurface over Q, given by f(x) = 0. It follows that

(7.1) NX,H−KX
(B) := #{x ∈ X(Q) | H−KX

(x) ≤ B} ∼ C ·B,

as B → ∞. Here X(Q) is the set of rational points on X, represented by
primitive vectors x ∈ (Zn+1

prim \ 0)/± (i.e., x = (x0, . . . , xn) is identified with
−x, and there is no prime dividing all coordinates x0, . . . , xn), and

(7.2) H−KX
(x) := max

j
(|xj |)n+1−d, for x = (x0, . . . , xn) ∈ (Zn+1

prim \ 0)/±

is the anticanonical height of a primitive representative.
The main goal of Manin’s program on the distribution of rational points

of bounded height (see [FMT89] and [BM90]) is an extension of the asymp-
totic formula (7.1) to Fano varieties which are not necessarily isomorphic to
hypersurfaces in projective space. A Fano variety is a projective variety
whose anticanonical class is ample.

It became apparent that, in general, to obtain a geometric interpreta-
tion of asymptotic results, it may be necessary to restrict to appropriate
Zariski open subsets U of X. Otherwise, the number of rational points on
a Zariski closed subset of lower dimension may dominate the total number
of rational points; e.g., this phenomenon occurs for smooth and for singular
cubic surfaces where the number of rational points on rational lines on such
a surface dominates the total number of rational points. Hence, we count
rational points on the complement of these lines. It is often necessary to
consider rational points in finite extensions of the rationals: while X(Q)
might be empty, X(k) could still contain infinitely many points for some
number field k.

We are concerned with Del Pezzo surfaces, cf. Chapter 1 for their basic
properties. Smooth Del Pezzo surfaces are birational to P2, provided the
ground field is algebraically closed. Besides P1 × P1, they are blow-ups of
P2 in at most eight points in general position.

101
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Of special interest are irreducible curves for which the self intersection
number is negative, which are called negative curves (Definition 1.20). Arith-
metically, rational points tend to accumulate on negative curves where they
are easy to count. Our main focus is to count rational points on the com-
plement of the negative curves.

For smooth Del Pezzo surfaces of degree ≥ 3, the negative curves are
exactly the lines (in the anticanonical embedding, see Remark 1.13), having
self intersection number −1.

Singular Del Pezzo surfaces are obtained as described in Section 1.5. We
blow up P2 in points in almost general position (see Definition 1.20; e.g.,
three points on a line). This results in a generalized Del Pezzo surface, i.e.,
a smooth surface S̃ containing negative curves with self intersection number
−2 (called (−2)-curves). Contracting the (−2)-curves gives a singular Del
Pezzo surface S whose singularities are rational double points and whose
minimal desingularization is S̃.

For number fields, we say that a Del Pezzo surface is split if all of the
negative curves are defined over that ground field, in which case the surface
is birational to P2. There do exist non-split Del Pezzo surfaces which are bi-
rational to P2 over that ground field; however, the generic Del Pezzo surface
is non-split and is not birational to P2 over the ground field.

From here, we work over Q. Manin’s conjecture in the special case of
smooth or singular Del Pezzo surfaces Srof degree 9−r ≥ 3 can be formulated
as follows. Consider Sr as a subvariety of P9−r using the anticanonical
embedding (Remark 1.13 and Remark 1.26). For the height function on
P9−r(Q), we always use

H(x) := max(|x0|, . . . , |x9−r|),
with x ∈ P9−r(Q) represented by integral coprime coordinates x0, . . . , x9−r.
For an open subset U of S, let

NU,H(B) := #{x ∈ S(Q) | H(x) ≤ B}.
Conjecture 7.1. Let S be a smooth or singular Del Pezzo surface over

Q. Then there exists a subset U ⊂ S which is dense and open in the Zariski
topology such that

(7.3) NU,H(B) ∼ cS,H ·B(logB)t−1,

as B → ∞, where t is the rank of the Picard group over Q of the minimal
desingularization S̃ of S.

The constant cS,H has been defined by Peyre [Pey95]; see Section 7.2
for more details. It should be non-zero if S(Q) 6= ∅. It is analogous to the
singular series and the singular integral that you meet in the classical circle
method. Note that a line defined over Q on a Del Pezzo surface of degree
≥ 3 contributes ∼ c · B2 rational points to the counting function (for some
positive constant c). Thus it is expected that U is the complement to all
lines defined over Q (i.e., the negative curves).

Table 7.1 gives an overview of current results towards Conjecture 7.1
for Del Pezzo surfaces. In Column 4 (“type of result”), “asymptotic” means
that the analog of (7.3) is established, including the predicted value of the
constant; “bounds”means that only upper and lower bounds of the expected
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order of magnitude B(logB)t are known. As explained in Definition 1.28,
the type of a surface is usually denoted by the Dynkin diagram associated
to its singularities.

degree singularities (non-)split type of result reference
≥ 6 – split asymptotic [BT98]
5 – split asymptotic [Bre02]
5 – non-split asymptotic [BF04]
4 D5 split asymptotic [CLT02], [BB04]
4 D4 non-split asymptotic [BB05]
4 D4 split asymptotic Chapter 10
4 3A1 split bounds [Bro05]
4 2A1 non-split asymptotic de la Bretèche,

Browning, Peyre
3 3A2 split asymptotic [BT98], [Bre98], . . .
3 4A1 split bounds [HB03]
3 D4 split bounds [Bro04]
3 E6 split asymptotic Chapter 9, [BBD05]

Table 7.1. Results for Del Pezzo surfaces

The paper [BT98] contains a proof of Manin’s conjecture for toric Fano
varieties. This includes all smooth Del Pezzo surfaces of degree ≥ 6 and
the 3A2 cubic surface. A list of all types of toric Del Pezzo surfaces can be
found in Table 1.4.

Figure 7.1 shows all points of height ≤ 50 on the Cayley cubic surface
(Example 6.7), which has four singularities of type A1 and was considered
in [HB03].

The proofs of Manin’s conjecture proceed either via the height zeta func-
tion

ZU,H(s) :=
∑

x∈U(Q)

H−KX
(x)−s,

whose analytic properties are related to the asymptotic (7.3) by Tauberian
theorems (see Section 7.3), or via the lifting of the counting problem to
the universal torsor – an auxiliary variety parameterizing rational points.
Experience shows that counting points on the universal torsor is often eas-
ier. The torsor approach was developed by Colliot-Thélène and Sansuc in
the context of the Brauer-Manin obstruction [CTS87] and was applied to
Manin’s conjecture by Peyre [Pey98] and Salberger [Sal98].

In the simplest case of hypersurfaces X = Xf ⊂ Pn over Q, with n ≥ 4,
this is exactly the passage from rational vectors x = (x0, . . . , xn), modulo
the diagonal action of Q∗, to primitive lattice points (Zn+1

prim \0)/±. Geomet-
rically, we have

An+1 \ {0} Gm−−−−→ Pn and TX
Gm−−−−→ X.

Here, TX is the hypersurface in An+1 \ {0} defined by the form f . The 1-
dimensional torus Gm is interpreted as the Néron-Severi torus TNS(X) (see
Section 2) since Pic(X) has rank 1. Rational points on the base surface X
are lifted to integral points on the torsor, modulo the action of the group
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Figure 7.1. Points of height ≤ 50 on the Cayley cubic sur-
face x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0.

of units TNS(X)(Z) = {±1}. The height inequality H(x) ≤ B for x on the
base X translates into the usual height inequality on the torsor (7.2). In
this case, it is possible to count the points on the torsor using the classical
circle method.

For hypersurfaces in P3, or more generally for complete intersection sur-
faces, the Picard group may have higher rank. See Section 2.2 for the defi-
nition of universal torsors TS of generalized Del Pezzo surfaces S as TNS(S)-
bundles over S. For example, for split smooth cubic surfaces the rank is
7, so that the dimension of the corresponding universal torsor TS is 9; for
quartic Del Pezzo surfaces these are 6 and 8, respectively.

In order to prove Manin’s conjecture (Conjecture 7.1) for Del Pezzo
surfaces, rational points on S are lifted to certain integral points on TS ,
modulo the action of TNS(S)(Z) = (±1)t, where t is the rank of Pic(S).
The height inequality on S translates into appropriate inequalities on TS .
This explains the interest in the geometry of torsors, and especially, in their
equations. As we have seen in Part 1, the explicit determination of these
equations is an interesting algebro-geometric problem.

Estimating the number of integral points subject to height inequalities
on the universal torsor seems to be easiest for toric Del Pezzo surfaces since
their universal torsors are open subsets of affine space. This was used in
Salberger’s proof of Manin’s conjecture [Sal98] for all split toric varieties
over Q.

The easiest non-toric cases are singular Del Pezzo surfaces whose uni-
versal torsors are open subsets of hypersurfaces. A first example, a quartic
Del Pezzo surface of type D5, was treated by de la Bretèche and Browning
[BB04], while Chapter 9 gives a proof for the E6 cubic surface. A more
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detailed analysis of this surface, which gives a much improved error term
in the asymptotic, can be found in a separate paper (joint with R. de la
Bretèche and T. D. Browning [BBD05], see also Section 7.3).

While in principle, a similar approach seems possible for the other sur-
faces whose universal torsors are hypersurfaces, it does not seem to be easy
to count the points on the universal torsor using methods of analytic number
theory. The first step of passing to the universal torsor can be done using
the detailed information on the Cox ring given in Chapter 5 for all singular
Del Pezzo surfaces of degree ≥ 3 which have such a universal torsor. One
example which can be treated is a split quartic Del Pezzo surface of type
D4, see Chapter 10.

However, new difficulties seem to arise in the estimation of error terms
in many other cases. Apparently, it is easier for Del Pezzo surfaces of higher
degree. In each degree, the easiest cases seem to be the ones with the“worst”
singularities, e.g., D5 in degree 4 and E6 in degree 3. Therefore, the next
challenge would be to prove Manin’s conjecture for a singular Del Pezzo
surface of degree 2, or for other singular cubic surfaces.

7.2. Peyre’s constant

In this section, we explain the leading constant cS,H appearing in Con-
jecture 7.1 for a smooth Del Pezzo surface S defined over a number field K.
It was suggested by Peyre [Pey95], Batyrev and Tschinkel [BT95] and is
defined as the product

cS,H := α(S) · β(S) · ωH(S)

of the following three constants.
The first factor α(S) is related to a certain volume in the effective cone

Λeff(S) in the Picard group Pic(S). Note that the ground field is not neces-
sarily algebraically closed, so the rank of Pic(S) could be lower than r + 1
if S is a Del Pezzo surface of degree 9− r. For its precise definition and its
calculation in the case of split Del Pezzo surfaces, see Chapter 8 below.

The second factor β(S) is defined as the order of the Galois cohomology
group

H1(K,Pic(S)) := H1(Gal(K/K),Pic(S)K).

It first appeared in [BT95] and [BT98, Section 1]. We have β(S) = 1 for
split Del Pezzo surfaces.

For singular Del Pezzo surfaces, we must replace α(S) and β(S) by α(S̃)
and β(S̃) for the minimal desingularization S̃ of S.

Example 7.2. Consider a singular quartic Del Pezzo surface S with two
conjugate singularities which are not joined by a line on S. Such a surface is
called Iskovskih surface (cf. [CT88, Section 7]). Its type is 2A1 (with eight
lines). In yet unpublished work of de la Bretèche, Browning, and Peyre,
Manin’s conjecture is proved for an Iskovskih surface S with β(S) > 1.

The third factor ωH(S) does not only depend on the surface S, but also
on the height function H. If the ground field is K = Q, it is defined as the
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product

ωH(S) = lim
s→1

((s− 1)rkPic(S)L(s,Pic(S)))ω∞(S)
∏
p

ωp(S)
Lp(1,Pic(S))

.

Here, ω∞(S) is the “density of points over R” and can be calculated by
[Pey95, Section 5.1] as follows using the Leray form if S is a complete
intersection: Suppose the anticanonical embedding of S is given by m forms
f1, . . . , fm ∈ Z[x0, . . . , xN ] in PN such that the matrix

M(x) :=
(
∂fi

∂xj
(x)
)

1≤i≤m,N−m+1≤j≤N

is invertible. Then

ω∞(S) =
∫
|x0|,...,|xN |≤1

M(x)−1dx0 . . .dxN−m.

For each prime p, the constant ωp(S) is the “p-adic density” of points
on S. It can be calculated using the Leray measure [Pey95, Lemma 5.4.6].
For complete intersections S in projective space PN , defined by m forms
f1, . . . , fm ∈ Z[x0, . . . , xN ], [PT01a, Proposition 3.1] gives the following
possibility of its explicit calculation:

ωp(S) = lim
n→∞

#{x ∈ (Z/pnZ)N+1 | (f1(x), . . . , fm(x)) = 0 ∈ (Z/pnZ)m}
pn·(dim S+1)

.

By Remark 1.13 and Remark 1.26, this includes the smooth and singular
cubic and quartic Del Pezzo surfaces Sr, where m = 1, N = 3 in the cubic
case, and m = 2, N = 4 in the quartic case. See [BB04] for an example of
its calculation.

For the definition of the L-functions occuring in the definition of ωH(S),
see [Pey95, Section 2.2]. In the split case, we have

lim
s→1

((s− 1)rkPic(S)L(s,Pic(S)) = lim
s→1

((s− 1)r+1ζ(s)r+1) = 1

and
Lp(1,Pic(S))−1 = (1− 1/p)r+1.

For a singular Del Pezzo surface S with minimal desingularization S̃, we
calculate ωH(S̃), where the anticanonical image of S̃ coincides with the
anticanonical embedding of S.

7.3. Height zeta functions

Let S be a smooth or singular Del Pezzo surface whose minimal desingu-
larization is the generalized Del Pezzo surface S̃ (with S̃ = S in the smooth
case). For simplicity, we assume that S is split over Q, with height function
H : S(Q) → R. Let U be the complement of the lines on S.

Definition 7.3. The height zeta function ZU,H of S is defined for all
s ∈ C with real part <e(s) > 1 as

ZU,H(s) :=
∑

x∈U(Q)

1
H(x)s

.
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Conjecture 7.1 is related to properties of the height zeta function in the
following way by Tauberian theorems:

• If
NU,H(B) ∼ cS,H ·B(logB)t−1,

then ZU,H(s) should have a pole of order t at s = 1 with residue
(t− 1)! · cS,H .

• If we can prove Conjecture 7.1 with an error term of order B1−δ

for some δ > 0, i.e., if

NU,H(B) = cS,H ·BQ(logB) +O(B1−δ),

where Q is a monic polynomial of degree r−1, then ZU,H(s) should
have a meromorphic continuation to the halfplane

{s ∈ C | <e(s) > 1− δ}.
Our proofs of Manin’s conjecture for a cubic surface of type E6 in Chap-

ter 9 and a quartic surface of type D4 in Chapter 10 give error terms of order
O(B(logB)2) respectively O(B(logB)3). This does not yield information on
the properties of ZU,H(s) for <e(s) < 1.

However, in joint work with de la Bretèche and Browning [BBD05], we
prove the following result:

Theorem 7.4. Let S be the cubic surface of type E6 as in (9.1), and let
U be the complement of the unique line on S. Then

NU,H(B) = cS,H ·BQ(logB) +Oε(B10/11+ε),

where Q is a monic polynomial of degree 6, and cS,H is the constant predicted
by Peyre.

Proof. [BBD05, Theorem 1]. �

In fact, we prove a stronger statement than a meromorphic continuation
of ZU,H(s) to <e(s) > 10/11:

Theorem 7.5. For S and U as in Theorem 7.4, (s− 1)7 ·ZU,H(s) has a
holomorphic continuation to the halfplane <e(s) > 9/10.

Proof. [BBD05, Theorem 2]. �





CHAPTER 8

On a constant arising in Manin’s conjecture

8.1. Introduction

For 1 ≤ r ≤ 8, let Sr be a smooth Del Pezzo surface of degree 9− r (see
Section 1.3). Suppose that Sr is split over Q.

An important object associated to Sr is the effective cone Λeff(Sr) (see
Definition 1.8), i.e., the closed convex cone in

Pic(Sr)R := Pic(Sr)⊗Z R

which is generated by the classes of effective divisors. For r ≥ 2, Λeff(Sr) is
generated by the classes of the (−1)-curves by Lemma 1.15. As always, we
identify Pic(Sr)R and its dual using the intersection form.

This chapter, whose results first appeared in [Der06a], is concerned with
the constant α(Sr) appearing in the leading constant of Manin’s conjecture,
cf. Section 7.2. Its definition is due to Peyre [Pey95, Definition 2.4]; see
[PT01b, Section 6] for more details.

Definition 8.1. Let Λeff(Sr) be the effective cone, Λ∨eff(Sr) its dual, and
−KSr the anticanonical class on Sr. Then we define

α(Sr) := Vol(Pr),

where
Pr := {x ∈ Λ∨eff(Sr) | (−KSr , x) = 1},

and the Lebesgue measure on the hyperplane

{x ∈ Pic(Sr)R | (−KSr , x) = 1}
is defined by the r-form dx such that dx ∧ dω = dy, where dy is the form
corresponding to the natural Lebesgue measure on Pic(Sr)R and dω is the
linear form defined by −KSr on Pic(Sr)R.

For small r, the calculation of α(Sr) can be carried out directly by hand
(see [Bre02, Section 1.3] for the case r = 4). For larger r, especially r = 8,
a direct calculation seems to be currently impossible even with the help
of software like Polymake [GJ00]. In this case, the cone Λeff(S8) has 240
generators, while Λ∨eff(S8) has 19440 generators. A direct calculation of
α(S8) would require a triangulation of Λ∨eff(S8), which seems to be out of
reach for today’s software and hardware.

Therefore, we need a more detailed knowledge of Λ∨eff(Sr). See Sec-
tion 1.4 for details on the action of the Weyl group Wr on Pic(Sr). Our
main result which will allow us to compute α(Sr) recursively is:

Theorem 8.2. For r ≥ 3, the nef cone Λ∨eff(Sr) has Nr faces, where Nr

is the number of (−1)-curves on Sr. Each face is isomorphic to Λ∨eff(Sr−1).

109
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The Weyl group Wr acts transitively on the faces and fixes −KSr in the
interior of Λ∨eff(Sr).

This observation is a crucial step in the proof of the following recursive
formula for α(Sr); see Table 8.1 for the values of α(Sr) and Nr.

Theorem 8.3. Let Sr be a split smooth Del Pezzo surface of degree 9−r.
We have α(S2) = 1/24 and

α(Sr) =
Nr · α(Sr−1)
r · (9− r)

for 3 ≤ r ≤ 8. Furthermore, α(S1) = 1/6, α(P1×P1) = 1/4, and α(P2) = 1.

r 2 3 4 5 6 7 8
Nr 3 6 10 16 27 56 240
α(Sr) 1/24 1/72 1/144 1/180 1/120 1/30 1

Table 8.1. Smooth Del Pezzo surfaces

Next, we consider split singular Del Pezzo surfaces S′r (see Section 1.5)
with minimal desingularizations S̃′r of degree 9−r. The definition of α(S̃′r) is
almost the same as for smooth Del Pezzo surfaces: we must consider −KeSr

,

Λeff(S̃′r) and Λ∨eff(S̃′r) in Pic(S̃′r) of rank r+1. We will see in Proposition 8.11
that Λeff(S̃′r) is generated by the negative curves, including (−2)-curves, in
this case.

As explained in Section 1.4, negative curves on S̃′r are related to the (−1)-
curves on a smooth Del Pezzo surface Sr of the same degree and certain root
systems in Pic(Sr)R.

More precisely, recall that, for r ≥ 2, we can identify Pic(S̃′r) and Pic(Sr)
together with the intersection form and the anticanonical classes −KeS′

r
and

−KSr . Then the (−2)-curves of S̃′r are the simple roots ∆ of a root system
Φ in Pic(Sr)R, and the (−1)-curves of S̃′r are the (−1)-curves of Sr which
lie in the fundamental chamber C0 of Φ.

The root system Φ is the direct sum of the irreducible root systems
associated to the singularities of S′r. Let W be the Weyl group associated
to Φ, generated by the reflections sE associated to the (−2)-curves E. The
space Pic(Sr)R is the union of chambers Cw := w(C0) for all w ∈ W , where
the intersection of two chambers has lower dimension.

This description of the negative curves on S̃′r in terms of (−1)-curves on
the smooth Del Pezzo surface Sr of the same degree and the action of the
Weyl group W leads us to the following result on the structure of the nef
cone Λ∨eff(S̃′r) of S̃′r:

Theorem 8.4. For r ≥ 2, we have

Λ∨eff(S̃′r) = Λ∨eff(Sr) ∩ C0.

Every w ∈W maps Λ∨eff(S̃′r) isomorphically to Λ∨eff(Sr) ∩ Cw.

It leads to the following result:
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Theorem 8.5. For 2 ≤ r ≤ 8, let S′r be a split singular Del Pezzo
surface of degree 9 − r with minimal desingularization S̃′r, and let Sr be a
split smooth Del Pezzo surface of the same degree. Let Φ be the root system
describing the singularities of S′r. Let #W be the order of the Weyl group
W associated to Φ. Then

α(S̃′r) = α(Sr)/#W,

where the values of α(Sr) can be found in Table 8.1. Furthermore, for the
Hirzebruch surface F2, we have α(F2) = 1/8.

If S′r has exactly one singularity, the root system is irreducible. The
number #W of elements of the corresponding Weyl group can be found in
Table 8.2. For more than one singularity, we must multiply the numbers
corresponding to each of them.

Φ An Dn E6 E7 E8

#W (n+ 1)! 2n−1 · n! 51840 2903040 696729600

Table 8.2. Weyl groups

For examples of the calculation of α(Sr) for non-split Del Pezzo surfaces,
see [Pey95], [PT01b, Section 6], [BF04], and [BB05].

8.2. Smooth Del Pezzo surfaces

Let Sr be the blow-up of P2 in 2 ≤ r ≤ 8 points in general position.
By Lemma 1.15, the effective cone Λeff(Sr) is generated by the (−1)-curves,
whose number is Nr as listed in Table 8.1.

Lemma 8.6. Let E be a (−1)-curve on Sr for r ≥ 3. If D ∈ Pic(Sr)
fulfills (D,E) = 0 and (D,E′) ≥ 0 for all (−1)-curves E′ such that (E,E′) =
0, then D is nef.

Proof. As the (−1)-curves generate the effective cone (Lemma 1.15),
we must show that (D,E′) ≥ 0 also holds for all (−1)-curves, regardless of
the value of (E,E′).

If (E,E′) < 0, then E′ = E, and (D,E) = 0. If (E,E′) = 0, then
(D,E′) ≥ 0 by assumption.

We proceed by induction on (E,E′). If (E,E′) = n ≥ 1, then E+E′ is an
(n)-ruling as in Definition 3.1. (Note that n = 2 occurs only for r ∈ {7, 8},
and n = 3 only for r = 8; furthermore, n ≥ 4 is impossible.)

Any (n)-ruling can be written in at least two ways as the sum of two
negative curves (see Section 3.2 for n = 1, and Section 3.4 and Section 3.5
for n ∈ {2, 3}), say E + E′ = E1 + E2, where E /∈ {E1, E2}. Then and

(E,E1) + (E,E2) = (E,E′) + (E,E) = n− 1,

where (E,E1) and (E,E2) are both non-negative. Therefore, the induction
hypothesis holds for E1, E2, and

(D,E′) = (D,E + E′) = (D,E1 + E2) = (D,E1) + (D,E2) ≥ 0

completes the induction. �
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Proof of Theorem 8.2. By definition, Λ∨eff(Sr) is the intersection of the
closed halfspaces E≥0 (see Section 1.4) for all generators E of Λeff(Sr), which
are exactly the (−1)-curves by Lemma 1.15. By [FM02, Lemma 5.3], Wr

acts transitively on the (−1)-curves. This symmetry implies that each (−1)-
curve E defines a proper face FE := Λeff(Sr) ∩ E=0, and that Wr acts
transitively on the faces FE .

Consider Sr as the blow-up of Sr−1 in one point, resulting in the excep-
tional divisor Er. Then

Pic(Sr) = Pic(Sr−1)⊕ Z · Er

is an orthogonal sum.
We claim that FEr = Λeff(Sr−1), where we regard Λeff(Sr−1) ⊂ Pic(Sr−1)

as embedded into Pic(Sr).
Indeed, if D ∈ Λeff(Sr−1), then (D,Er) = 0, and (D,E) ≥ 0 for all (−1)-

curves E of Sr−1, which are exactly the (−1)-curves of Sr with (E,Er) = 0.
By Lemma 8.6, we have (D,E) ≥ 0 for all (−1)-curves of Sr.

On the other hand, if D ∈ E=0
r , then D ∈ Pic(Sr−1). If D ∈ Λeff(Sr),

then (D,E) ≥ 0 for all (−1)-curves of Sr, which includes the (−1)-curves of
Sr−1, proving the other direction.

The root system corresponding to Wr is

Φr = {D ∈ Pic(Sr) | (D,D) = −2, (D,−KSr) = 0}.
Since Wr is generated by the reflections E 7→ E + (D,E) ·D corresponding
to the roots D ∈ Φr, the anticanonical class −KSr is fixed under Wr. This
completes the proof of Theorem 8.2.

Proof of Theorem 8.3. The polytope Pr is the intersection of the Nr

half-spaces E≥0 (where E runs through the (−1)-curves of Sr) in the r-
dimensional space −K=0

Sr
.

Note that (−KSr ,−KSr) = 9 − r. Consequently, Q := 1
9−r (−KSr) ∈

−K=1
Sr

, and since (−KSr , E) = 1 for any (−1)-curve E, the point Q is in the
interior of Pr.

Consider the convex hull PE of Q and of the face Pr ∩ E=0 of Pr corre-
sponding to E. Then Pr is the union of the PE for all (−1)-curves E, and
since their intersections are lower-dimensional,

Vol(Pr) =
∑
E

Vol(PE).

As the intersection form and −KSr are invariant under Wr, the Weyl
group Wr acts on −K=1

Sr
and, therefore, on Pr. As in Theorem 8.2, it

permutes the faces of Pr transitively. As Q is fixed under Wr and the volume
is invariant under Wr, we have Vol(Pr) = Nr · Vol(PE) for any (−1)-curve
E.

As in the proof of Theorem 8.2, we consider Sr as the blow-up of Sr−1 in
one point, resulting in the exceptional divisor Er, with the orthogonal sum

Pic(Sr) = Pic(Sr−1)⊕ Z · Er.

We claim that Pr ∩ E=0
r = Pr−1. In view of Theorem 8.2, it remains to

prove that (D,−KSr−1) = 1 is equivalent to (D,−KSr) = 1 on E=0
r . This

follows directly from −KSr = −KSr−1 − Er.
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Therefore, PEr is a cone over the (r − 1)-dimensional polytope Pr−1 in
the r-dimensional space −K=1

Sr
. A cone of height 1 over Pr−1 has volume

Vol(Pr−1)/r. As Er is orthonormal to Pic(Sr−1), and (−KSr , Er) = 1, the
distance of Q to Pr−1 is 1/(9− r). Hence,

Vol(PEr) =
Vol(Pr−1)
r · (9− r)

.

Together with α(Sr−1) = Vol(Pr−1) and Vol(P ) = Nr · Vol(PEr), this
completes the proof of the recursive formula.

For r = 2, we have Λeff = 〈E1, E2,H−E1−E2〉 and −KS2 = 3H−E1−
E2. Consequently, α(S2) is the volume of

{(a0, a1, a2) ∈ R3 | 3a0 − a1 − a2 = 1, a1 ≥ 0, a2 ≥ 0, a0 − a1 − a2 ≥ 0}
={(a0, a1) ∈ R2 | a1 ≥ 0, 3a0 − a1 − 1 ≥ 0,−2a0 + 1 ≥ 0}
=convex hull of (1/3, 0), (1/2, 0), (1/2, 1/2),

which is a rectangular triangle whose legs have length 1/6 and 1/2. Hence,
α(S2) = 1/24, while α(S1) = 1/6, α(P1×P1) = 1/4, and α(P2) = 1 can also
be calculated directly, which completes the proof of Theorem 8.3.

Remark 8.7. By the proof of [Pey95, Lemme 9.4.2], α(S1) = 1/6, and
by the proof of [Pey95, Lemme 10.4.2],

α(S2) = 1/3 ·Vol{(x1, x2) ∈ R2
>0 | x1 + x2 ≤ 1/2},

which is clearly 1/24 and, therefore, agrees with our result. Note that the
recursion formula does not hold for r = 2:

α(S2) =
1
24

6= N2 · α(S1)
2 · (9− 2)

=
1
28
.

The value α(S4) = 1/(6 · 4!) was previously calculated in [Bre02, Sec-
tion 1.3].

8.3. Singular Del Pezzo surfaces

We prove Theorem 8.4 and Theorem 8.5. For r ≥ 2, let S′ := S̃′r be a
generalized Del Pezzo surface of degree 9− r, and let S := Sr be a smooth
Del Pezzo surface of the same degree. Identify Pic(S) and Pic(S′) together
with the intersection form as in the introduction.

Lemma 8.8. Let L be a (−1)-curve on S. Then there is a (−1)-curve
L0 on S′ and w ∈W such that L = w(L0).

Proof. The (−2)-curves form a system ∆ of simple roots in Pic(S)R.
By the theory of root systems, the fundamental chamber C0 is a fundamental
domain for the action of W , so we can find a w ∈ W and x ∈ C0 such that
L = w(x). As W acts on the (−1)-curves on S, we conclude that x is a
(−1)-curve on S′. �

Lemma 8.9. Let L = w(L0) as in Lemma 8.8. Then there are positive
roots E1, . . . , Ek which fulfill the following conditions: We have w = wk, and
(Li−1, Ei) ≥ 0 for i ∈ {1, . . . , k}, where wi := sEi◦· · ·◦sE1 and Li := wi(L0).
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Proof. Consider a minimal gallery C0, C1, . . . , Ck from C0 to Ck := w(C0)
(cf. [Bro89, Section II.1]). Here, k is the length of w, and for i ∈ {1, . . . , k},
there is a root Ei such that Ci = sEi(Ci−1), and E=0

i is the wall between
Ci−1 and Ci. As sEi = s−Ei , we may assume that E1, . . . , Ek are positive
roots. We have Ci = wi(C0) and w = wk.

For x ∈ C0, we have (wi−1(x), Ei) ≥ 0 and (wi(x), Ei) ≤ 0, while for
all roots E 6= ±Ei, the numbers (wi−1(x), E) and (wi(x), E) have the same
sign (or are both zero).

As L0 ∈ C0 and Li = wi(L0), we have (Li−1, Ei) ≥ 0. �

Let C be the convex cone in Pic(S′) ∼= Pic(S) generated by the negative
curves on S′, and let C∨ be its dual with respect to the intersection form.
Recall from Lemma 1.15 that Λeff(S) is generated by the (−1)-curves on S
since r ≥ 2.

Lemma 8.10. Let x be in C∨. Then x ∈ Λ∨eff(S).

Proof. Let x ∈ C∨, i.e., (x,E) ≥ 0 for all negative curves E on S′. We
must show that (x, L) ≥ 0 for all (−1)-curves L on S.

Let L be a (−1)-curve on S, and w, k, wi, Li, Ei as in Lemma 8.9. We
use induction on the length k of w. If k = 0, then L = L0 is a (−1)-curve
on S′, so (x, L) ≥ 0 by assumption.

If k > 0, then L = sEk
(Lk−1). Then

(x, L) = (x, sEk
(Lk−1)) = (x, Lk−1 + (Lk−1, Ek) · Ek)

= (x, Lk−1) + (Lk−1, Ek) · (x,Ek).

As Lk−1 = wk−1(L0) for wk−1 := sEk−1
◦ · · · ◦ sE1 which has length k − 1,

we have (x, Lk−1) ≥ 0 by induction. Since the positive root Ek is a non-
negative linear combination of the simple roots, which are exactly the (−2)-
curves on S′, we have (x,Ek) ≥ 0. Furthermore, (Lk−1, Ek) ≥ 0 because of
Lemma 8.9. �

Proposition 8.11. The effective cone Λeff(S′) is generated by the neg-
ative curves on S′.

Proof. It is easy to check for each r ∈ {2, . . . , 8} that Λ∨eff(S) is con-
tained in Λeff(S), which is generated by the negative curves on S.

By Lemma 8.10, we have C∨ ⊂ Λ∨eff(S). Taking duals again, which
reverses the inclusion, we conclude Λeff(S) ⊂ C. Together, we have

C∨ ⊂ Λ∨eff(S) ⊂ Λeff(S) ⊂ C.

Every prime divisor on S′ is either a negative curve or has non-negative
intersection number with all negative curves on S′. Therefore, it is either
contained in C or in C∨ ⊂ C. Hence, C = Λeff(S′). �

Proof of Theorem 8.4. We claim that Λ∨eff(S′) = Λ∨eff(S) ∩ C0. On the
one hand, every x ∈ Λ∨eff(S′) is in C0 by definition, and x ∈ Λ∨eff(S) by
Lemma 8.10. On the other hand, if x ∈ C0, then (x,E) ≥ 0 for all (−2)-
curves on S′, and since the (−1)-curves on S′ are a subset of the (−1)-curves
on S (according to the identifications of the Picard groups that we have
made), the condition x ∈ Λ∨eff(S) implies (x, L) ≥ 0 for all (−1)-curves on
S′, so x ∈ Λ∨eff(S) ∩ C0 implies x ∈ Λ∨eff(S′).
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As W acts on the (−1)-curves on S, any w ∈ W maps Λ∨eff(S) ∩ C0

isomorphically to Λ∨eff(S) ∩ w(C0). This completes the proof.

Proof of Theorem 8.5. If x ∈ −K=1
S , then for any (−2)-curve E on S′,

(sE(x),−KS) = (x+ (x,E) · E,−KS) = (x,−KS) + (x,E) · (E,−KS) = 1

since (E,−KS) = 0. Therefore, every w ∈ W maps −K=1
S ⊂ Pic(S)R

isomorphically to itself.
Together with Theorem 8.4, this shows that Λ∨eff(S) ∩ (−K=1

S ) is the
union of the sets

Vw := Λ∨eff(S) ∩ Cw ∩ (−K=1
S )

for all w ∈ W , where the intersection of any two of these sets has lower
dimension. Each Vw is the isomorphic image of V0 := Λ∨eff(S′) ∩ (−K=1

S )
under w ∈W , and this isomorphism respects the measure on −K=1

S . Hence,
the volume of each Vw is the volume of V0. As the anticanonical class
−KS on S is identified with the anticanonical class −KS′ on S′ under our
identification of the Picard groups, we have α(S̃′) = Vol(V0), and as Vol(S)∩
(−K=1

S ) = α(S), this shows #W · α(S̃′) = α(S).
We calculate α(F2) = 1/8 for the Hirzebruch surface F2 directly, com-

pleting the proof of Theorem 8.5.





CHAPTER 9

Manin’s conjecture for a singular cubic surface

9.1. Introduction

We prove Manin’s conjecture (Conjecture 7.1) in the case of a cubic
surface with a singularity of type E6 (see Example 1.27):

(9.1) S = {x = (x0 : x1 : x2 : x3) ∈ P3 | f(x) = x1x
2
2 + x2x

2
0 + x3

3 = 0}

In Figure 9.1, we see points of height ≤ 1000 on S.

Figure 9.1. Points of height ≤ 1000 on the E6 singular
cubic surface S with x0, x2 > 0.

Theorem 9.1. Let S be the cubic surface as above with a singularity
of type E6 and let H be the anticanonical height. Let U := S \ `, where
` = {x2 = x3 = 0} is the unique line on S.

Then
NU,H(B) = cS,HBQ(logB) +O(B(logB)2),

where Q is a monic polynomial of degree 6, and the leading constant cS,H is
the one conjectured by Peyre [Pey95].

The invariants appearing in Manin’s conjecture and Peyre’s constant
cS,H are calculated in Section 9.2.

117
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The proof follows the strategy of de la Bretèche and Browning [BB04]
and uses the universal torsor. For our particular surface, the universal torsor
has been calculated by Hassett and Tschinkel using the Cox ring; the torsor
is a hypersurface in the 10-dimensional affine space [HT04]. In addition
to the equation defining the torsor we need to derive certain coprimality
conditions between the coordinates. In Section 9.3 we compute the torsor
and determine these conditions following the more direct approach of Heath-
Brown, Browning and de la Bretèche [HB03], [Bro04], [BB04].

The next step is to count the number of integral points on the univer-
sal torsor and satisfying the coprimality conditions and subject to certain
bounds, given by lifting the height function to the torsor. For three of the
ten variables on the torsor, this summation is done in Section 9.5 by ele-
mentary methods from analytic number theory. The summation over the
last seven variables, completing the proof of Theorem 9.1, is carried out in
Section 9.6.

The results of this chapter first appeared in [Der05]. Section 7.3 dis-
cusses joint work with de la Bretèche and Browning which proves a version
of Theorem 9.1 with an improved error term, to appear in [BBD05].

9.2. Manin’s conjecture

In this section, we calculate the invariants appearing in Manin’s conjec-
ture and its refinement by Peyre. We use the notation from [Pey95].

Lemma 9.2. Manin’s conjecture predicts in case of S as defined in (9.1):

NU,H(B) ∼ cS,HB(logB)6,

where cS,H = α(S̃)β(S̃)ωH(S̃) with

α(S̃) :=
1

6!
∏

i λi
=

1
6! · 2 · 3 · 4 · 3 · 4 · 5 · 6

=
1

6220800
,

β(S̃) := 1,

ωH(S̃) := ω∞ · ω0,

and

λ = (λ1, λ2, λ3, λ`, λ4, λ5, λ6) := (2, 3, 4, 3, 4, 5, 6),

ω∞ := 6
∫ ∫ ∫

{(t,u,v)∈R3| |tv3|≤1, |t2+u3|≤1, 0≤v≤1, |uv4|≤1}
1dtdudv,

ω0 :=
∏
p

(
1− 1

p

)7(
1 +

7
p

+
1
p2

)
.

Proof. By Theorem 8.5, α(S̃) = α′/#W , where α′ = 1/120 is the
constant associated to smooth split cubic surfaces, and #W = 51840 is the
order of the Weyl group W associated to the root system E6.

The surface S is split over Q, so that

β(S̃) = #H1(Q,Pic(S̃)) = 1.
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By definition,

ωH(S̃) = lim
s→1

((s− 1)rkPic(eS)L(s,Pic(S̃)))ω∞(S̃)
∏
p

ωp(S̃)

Lp(1,Pic(S̃))
,

where, in our case,

lim
s→1

((s− 1)rkPic(eS)L(s,Pic(S̃))) = lim
s→1

((s− 1)7ζ(s)7) = 1

and
Lp(1,Pic(S̃))−1 = (1− 1/p)7.

We use Peyre’s method [Pey95] to compute ω∞(S̃) and parameterize
the points by writing x1 as a function of x0, x2, x3. Since x = −x in P3, we
may assume x2 ≥ 0. Since d

dx1
f = x2

2, the Leray form ωL(S̃) is given by
x−2

2 dx0dx3dx2, and we obtain ω∞(S̃) from∫ ∫ ∫
{|x0|≤1, |x−2

2 (x2x2
0+x3

3)|≤1, 0≤x2≤1, |x3|≤1}
x−2

2 dx0dx3dx2,

using the transformations

x0 = tx
1/2
2 , x3 = ux

2/3
2 , x2 = v6.

The calculation of

ωp(S̃) = 1 +
7
p

+
1
p2

is done as in [BB04, Lemma 1], and we omit it here. �

9.3. The universal torsor

The universal torsor

TeS = Spec(Q[ξ1, ξ2, ξ3, ξ`, ξ4, ξ5, ξ6, τ1, τ2, τ`]/(T (ξi, τi)))

is given by the equation

(9.2) T (ξi, τi) = τ`ξ
3
` ξ

2
4ξ5 + τ2

2 ξ2 + τ3
1 ξ

2
1ξ3 = 0

and the map Ψ : TeS → S = Spec(Q[x0, . . . , x3]/(f(x))) defined by

Ψ∗(x0) = ξ(1,2,2,0,1,2,3)τ2

Ψ∗(x1) = τ`

Ψ∗(x2) = ξ(2,3,4,3,4,5,6)

Ψ∗(x3) = ξ(2,2,3,1,2,3,4)τ1

(9.3)

where we use the notation ξ(n1,n2,n3,n`,n4,n5,n6) := ξn1
1 ξn2

2 ξn3
3 ξn`

` ξn4
4 ξn5

5 ξn6
6 .

Note that Ψ∗(x2) = ξλ with λ ∈ Z7 as in Lemma 9.2.
We establish a bijection between rational points on the surface S and

integral points on the torsor TeS which are subject to certain coprimality
conditions. More precisely, the coprimality conditions can be summarized in
the following table, where a “−” means that the two variables are coprime,
and a “×” that they may have common factors. For a variable combined
with itself, “−” means that each prime occurs at most once (which can be
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expressed using the Möbius function µ as |µ(·)| = 1), and “×” means that it
may occur more often.

ξ1 ξ2 ξ3 ξ` ξ4 ξ5 ξ6 τ1 τ2 τ`
ξ1 × − × − − − × × − −
ξ2 − − − − − − × − × −
ξ3 × − − − − − × − − −
ξ` − − − × × × × − − ×
ξ4 − − − × − − × − − −
ξ5 − − − × − − × − − −
ξ6 × × × × × × × − × −
τ1 × − − − − − − × × ×
τ2 − × − − − − × × × ×
τ` − − − × − − − × × ×

We will refer to the

(9.4) coprimality conditions between ξ1, . . . , ξ6 as given in the table.

Because of the torsor equation T , we can write the coprimality conditions
for τi equivalently as

(9.5) gcd(τ1, ξ2ξ3ξ`ξ4ξ5ξ6) = 1

and

(9.6) gcd(τ2, ξ1ξ3) = 1, gcd(τ`, ξ4ξ5ξ6) = 1.

Proposition 9.3. The map Ψ induces a bijection between

T1 := {(ξi, τi) ∈ TeS(Z) | (9.4), (9.5), (9.6) hold, ξi > 0}

and U(Q) ⊂ S(Q).

The proof splits into two parts. First, we establish a similar bijection
with slightly different coprimality conditions:

Lemma 9.4. Let T2 be set of all (ξi, τi) ∈ TeS(Z) such that ξi > 0 and the
coprimality conditions described by the table hold, except that the conditions

(9.7) gcd(ξ3, τ1) = 1 and gcd(ξ6, τ1) = 1

in the table are replaced by

(9.8) |µ(ξ1)| = 1 and gcd(ξ1, ξ3) = 1.

Then the map Ψ induces a bijection between T2 and U(Q) ⊂ S(Q).

Proof. Using the method of [BB04], we show that the coprimality
conditions lead to a bijection. We go through a series of coprimality con-
siderations and replace the original variables by products of new ones which
fulfill certain conditions. When doing this, the new variables will be uniquely
determined.

Since x = −x, and x2 = 0 is equivalent to x ∈ `, we can write each
x ∈ U(Q) uniquely such that xi ∈ Z, x2 > 0, and gcd(xi) = 1.

• Note that x2|x3
3. Write x2 = y1y

2
2y

3
3 with yi ∈ Z>0, where each

triple occurrence of a prime factor of x3 is put in y3 and each
double occurrence in y2, so that y1, y2, y3 are unique if we assume
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|µ(y1y2)| = 1. Then x3 = y1y2y3z must hold for a suitable z ∈ Z.
Substituting into f and dividing by y1y

2
2y

3
3 gives

f1(x0, x1, y1, y2, y3, z) = x1y1y
2
2y

3
3 + x2

0 + y2
1y2z

3 = 0.

• Now y1y2|x2
0, and since |µ(y1y2)| = 1, we have y1y2|x0. Write

x0 = y1y2w, where w ∈ Z. Substituting and dividing by y1y2, we
obtain

f2(x1, y1, y2, y3, z, w) = x1y2y
3
3 + w2y1y2 + y1z

3 = 0.

• Since y2|y1z
3 and |µ(y1y2)| = 1, we must have y2|z. Write z = y2z

′,
where z′ ∈ Z, and obtain, after dividing by y2, the relation

f3(x1, y1, y2, y3, w, z
′) = x1y

3
3 + w2y1 + y1y

2
2z
′3 = 0.

• Since y1 divides our original variables x0, x2, x3, it must be coprime
to x1. Together with |µ(y1)| = 1, the fact y1|x1y

3
3 implies y1|y3.

Write y3 = y1y
′
3, where y′3 ∈ Z>0, and obtain

f4(x1, y1, y2, w, z
′, y′3) = x1y

2
1y

′3
3 + w2 + y2

2z
′3 = 0.

• Let a = gcd(y′3, z
′) ∈ Z>0 and write y′3 = ay′′3 , where y′′3 ∈ Z>0, and

z′ = az′′, where z′′ ∈ Z. This gives

f5(x1, y1, y2, w, z
′′, y′′3 , a) = x1y

2
1y

′′3
3 a3 + w2 + y2

2z
′′3a3 = 0.

• Now a3|w2. Writing a = ξ26ξ2, where ξ2, ξ6 ∈ Z>0 with |µ(ξ2)| = 1,
gives w = w′ξ36ξ

2
2 , where w′ ∈ Z, leading to the equation

f6(x1, y1, y2, z
′′, y′′3 , w

′, ξ2, ξ6) = x1y
2
1y

′′3
3 + w′2ξ2 + y2

2z
′′3 = 0.

• Let ξ5 = gcd(y′′3 , w
′) ∈ Z>0 and write y′′3 = ξ`ξ5, where ξ` ∈ Z>0,

and w′ = w′′ξ5, with w′′ ∈ Z. Then

f7(x1, y1, y2, z
′′, w′′, ξ2, ξ`, ξ5, ξ6) = x1y

2
1ξ`

3ξ35 + w′′2ξ2ξ
2
5 + y2

2z
′′3 = 0.

• Since gcd(y′′3 , z
′′) = 1, also gcd(ξ`ξ5, z′′) = 1. Therefore, ξ25 |y2

2,
which means ξ5|y2, and we write y2 = ξ1ξ5, with ξ1 ∈ Z>0. We
obtain

f8(x1, y1, z
′′, w′′, ξ1, ξ2, ξ`, ξ5, ξ6) = x1y

2
1ξ`

3ξ5 + w′′2ξ2 + ξ21z
′′3 = 0.

• Let ξ3 = gcd(w′′, y1) ∈ Z>0. Since |µ(y1y2)| = 1, gcd(ξ1, ξ3) = 1.
Hence, ξ3|z′′3 and even ξ3|z′′. Write w′′ = τ2ξ3, where τ2 ∈ Z,
y1 = ξ4ξ3, where ξ4 ∈ Z>0, and z′′ = τ1ξ3, where τ1 ∈ Z. Replacing
x1 = τ`, where τ` ∈ Z, we get

f9(ξ1, ξ2, ξ3, ξ`, ξ4, ξ5, ξ6, τ1, τ2, τ`) = τ`ξ`
3ξ24ξ5 + τ2

2 ξ2 + τ3
1 ξ

2
1ξ3 = 0.

This is the torsor equation T (ξi, τi) as in (9.2).
The substitutions lead to x0, . . . , x3 in terms of ξi, τi as in (9.3). Con-

versely, it is easy to check that each (ξi, τi) satisfying T is mapped by Ψ to
a point x ∈ S(Q). Note that ξi ∈ Z>0 and τi ∈ Z. Furthermore, the copri-
mality conditions we introduced impose the following conditions on ξi, τi:

|µ(y1y2)| = |µ(ξ1ξ3ξ4ξ5)| = 1, |µ(ξ2)| = 1, gcd(τ2, ξ4) = 1,

gcd(y′′3 , z
′′) = gcd(ξ`ξ5, τ1ξ3) = 1, gcd(ξ`, w′′) = gcd(ξ`, τ2ξ3) = 1.

The condition gcd(xi) = 1 is equivalent to gcd(τ`, ξ1ξ2ξ3ξ4ξ5ξ6) = 1.
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We obtain gcd(ξ2, ξ3) = 1 in the following manner: If p|ξ2, ξ3 for some
prime p, then p|τ`ξ3` ξ24ξ5 by the torsor equation T . On the other hand, a
divisor of ξ3 cannot divide any of the factors by the coprimality conditions
we found. Similarly, we conclude

gcd(ξ3, τ2) = gcd(ξ1, τ2) = gcd(ξ2, ξ5) = gcd(ξ5, τ2) = 1.

Finally, if a prime p divides two of ξ2, ξ4, τ1, we see using T that p must
divide all of them. Since |µ(ξ2)| = 1 and p2|τ`ξ3` ξ24ξ5 + τ3

1 ξ
2
1ξ3, we conclude

p|τ2 which is impossible since gcd(τ2, ξ4) = 1. Therefore, ξ2, ξ4, τ1 must be
pairwise coprime. In the same way we derive that no two of ξ1, ξ2, ξ` have a
common factor.

It is easy to check that we cannot derive any other coprimality condition
because we could construct a solution to T violating it.

Note that the conditions on (ξi, τi) are exactly the ones given in the
definition of T2. Since in every step the newly introduced variables are
uniquely determined, we have established a bijection between U(Q) and
T2. �

The second step towards the proof of Proposition 9.3 is:

Lemma 9.5. There is a bijection between T1 and T2.

Proof. Given a point (ξ′i, τ
′
j) ∈ T2 violating (9.7), we could replace a

common prime factor p of ξ′3, ξ
′
6 and τ ′1 by powers of p as factors of ξ′1 and

possibly ξ′3 such that (9.7) holds. This way, we obtain a point (ξi, τj) ∈ T1.
This should be done in a way such that Ψ maps (ξi, τj) and (ξ′i, τ

′
j) to the

same point x ∈ U(Q), and such that we have an inverse map, taking care of
the conditions (9.8).

Let (ξi, τj) ∈ T1 and (ξ′i, τ
′
j) ∈ T2. Decompose the coordinates into their

prime factors: Let

ξi =
∏
p

pnip , τj = ±
∏
p

pmjp and ξ′i =
∏
p

pn′ip , τ ′j = ±
∏
p

pm′
jp ,

where i ∈ {1, 2, 3, `, 4, 5, 6} and j ∈ {1, 2, `}. Note that (9.7) translates to
(nip,mjp) fulfilling n3p = n6p = 0 or m1p = 0, and that (9.8) means that
(n′ip,m

′
jp) must fulfill n′1p + n′3p ≤ 1. Furthermore, n3p, n

′
3p ∈ {0, 1} always

holds.
Define the map

Φ′ : T2 → T1

(ξ′i, τ
′
i) 7→ (ξi, τj),

where nip := n′ip for i ∈ {2, `, 4, 5} and mjp := m′
jp for j ∈ {2, `}, and

the values of n1p, n3p, n6p,m1p depend on the size of n′6p compared to m′
1p,

whether m′
1p is even or odd, and whether n′3p is 0 or 1:

• If m′
1p = 2k + 1, n′6p ≥ k + 1, n′3p = 0, then

(n1p, n3p, n6p,m1p) := (n′1p + 3k + 1, 1, n′6p − k − 1,m′
1p − 2k − 1);

• if m′
1p = 2k+ 1, n′6p ≥ k+ 1, n′3p = 1 or n′6p = k,m′

1p > 2k, n′3p = 1,
then

(n1p, n3p, n6p,m1p) := (n′1p + 3k + 2, 0, n′6p − k,m′
1p − 2k − 1);



9.4. CONGRUENCES 123

• otherwise, with n′6p = k,m′
1p > 2k, n′3p = 0 or m′

1p = 2k, n′6p ≥ k:

(n1p, n3p, n6p,m1p) := (n′1p + 3k, n′3p, n
′
6p − k,m′

1p − 2k).

Conversely, define
Φ : T1 → T2

(ξi, τi) 7→ (ξ′i, τ
′
j),

where n′ip := nip for i ∈ {2, `, 4, 5} and m′
jp := mjp for j ∈ {2, `}, and the

values of n′1p, n
′
3p, n

′
6p,m

′
1p depend on n1p modulo 3 and whether n3p is 0 or

1:
• If n1p ∈ {3k + 1, 3k + 2} and n3p = 1, then

(n′1p, n
′
3p, n

′
6p,m

′
1p) := (n1p − 3k − 1, 0, n6p + k + 1,m1p + 2k + 1);

• if n1p = 3k + 2 and n3p = 0, then

(n′1p, n
′
3p, n

′
6p,m

′
1p) := (n1p − 3k − 2, 1, n6p + k,m1p + 2k + 1);

• otherwise, with n1p ∈ {3k, 3k + 1}:

(n′1p, n
′
3p, n

′
6p,m

′
1p) := (n1p − 3k, n3p, n6p + k,m1p + 2k).

It is not difficult to check that Φ and Φ′ are well-defined, that (ξi, τj) ∈ TeS(Z)
and (ξ′i, τ

′
j) ∈ TeS(Z) correspond to the same point x ∈ U(Q) under the map

Ψ, and that Φ and Φ′ are inverse to each other. �

Together, Lemma 9.4 and Lemma 9.5 prove Proposition 9.3.

9.4. Congruences

We use the following results from [BB04, Chapter 3] on the number of
solutions of linear and quadratic congruences.

Let η(a; q) be the number of positive integers n ≤ q such that n2 ≡
a (mod q). Then by [BB04, Equation 3.1], we have for any q ∈ Z>0

(9.9) η(a; q) ≤ 2ω(q),

where ω(q) is the number of distinct prime factors of q. Let ϑ be an arith-
metic function such that

∞∑
d=1

|(ϑ ∗ µ)(d)| <∞,

where ϑ ∗ µ is the usual Dirichlet convolution.

Lemma 9.6. Let a, q ∈ Z such that q > 0 and gcd(a, q) = 1. For t ≥ 0,∑
n≤t

n≡a (mod q)

ϑ(n) =
t

q

∞∑
d=1

gcd(d,q)=1

(ϑ ∗ µ)(d) +O

( ∞∑
d=1

|(ϑ ∗ µ)(d)|

)
.

Proof. This is the case κ = 0 of [BB04, Lemma 2]. �

Let ψ(t) = {t} − 1/2 where {t} is the fractional part of t ∈ R. Let
ψ̃(t) = ψ(t) + 1 for t ∈ Z and ψ̃(t) = ψ(t) otherwise.
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Lemma 9.7. Let a, q ∈ Z, where q > 0 and gcd(a, q) = 1. Let b1, b2 ∈ R
with b1 ≤ b2. Then

#{n | b1 ≤ n ≤ b2, n ≡ a (mod q)} =
b2 − b1
q

+ r(b1, b2; a, q),

where

r(b1, b2; a, q) = ψ̃

(
b1 − a

q

)
− ψ

(
b2 − a

q

)
.

Proof. This is a slight generalization of [BB04, Lemma 3]. �

Lemma 9.8. Let ε > 0 and t ≥ 0. Let a, q ∈ Z such that q > 0 and
gcd(a, q) = 1. Then∑

0≤%<q
gcd(%,q)=1

ψ

(
t− a%2

q

)
�εq

1/2+ε and
∑

0≤%<q
gcd(%,q)=1

ψ̃

(
t− a%2

q

)
�εq

1/2+ε.

Proof. For ψ, this is [BB04, Lemma 5].
Note that if t ≡ a%2

i (mod q) for i ∈ {1, 2}, then %1 ≡ ±%2 (mod q), which
implies that there are at most two different values for % with 0 ≤ % < q such
that (t − a%2)/q is integral. Consequently, the sum for ψ̃ differs from the
one for ψ at most by 2. �

9.5. Summations

Note that τ` is determined uniquely by T and the other variables, once
a certain congruence is fulfilled. Therefore, our strategy is first to compute
the number of possible τ2 depending on τ1, ξi such that there exists a unique
τ` satisfying T . By summing over τ1, the number of possible τi is then
computed depending on ξi. The summation over the variables ξi is finally
handled using the height zeta function.

Let

X1 = (Bξ(−2,0,−1,3,2,1,0))1/3, X2 = (Bξ(0,−1,0,3,2,1,0))1/2,

and
X0 = (B−1ξ(2,3,4,3,4,5,6))1/6.

Then the height conditions |xi| ≤ B lift to

(9.10)
∣∣∣∣( τ2
X2

)
X3

0

∣∣∣∣ ≤ 1,

∣∣∣∣∣
(
τ2
X2

)2

+
(
τ1
X1

)3
∣∣∣∣∣ ≤ 1,

and

(9.11) |X0| ≤ 1,

and

(9.12)
∣∣∣∣( τ1
X1

)
X4

0

∣∣∣∣ ≤ 1,

respectively.
Using Proposition 9.3, we can now relate the counting of rational points

of bounded height on U ⊂ S to a count on the torsor.
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Lemma 9.9. We have

NU,H(B) = #

{
(ξi, τi) ∈ TeS(Z)

∣∣∣∣∣ (9.4), (9.5), (9.6),

(9.10), (9.11), (9.12) hold, ξi > 0

}
.

Summation over τ2 and τ`. Let ξi, τ1 satisfy the coprimality conditions
(9.4), (9.5) and the height conditions (9.11) and (9.12). Let N = N(ξi, τ1)
be the number of pairs (τ2, τ`) such that (9.6), (9.10) and the torsor equation
T are fulfilled. Then a Möbius inversion gives

N =
∑

k`|ξ4ξ5ξ6

µ(k`)Nk`
,

where Nk`
has the same definition as N except that gcd(τ`, ξ4ξ5ξ6) = 1 is

removed, and T is replaced by

Tk`
(ξi, τi, k`) = k`τ`ξ

3
` ξ

2
4ξ5 + τ2

2 ξ2 + τ3
1 ξ

2
1ξ3 = 0.

Note that τ2 together with Tk`
defines τ` uniquely once a certain congruence

is fulfilled. Therefore,

Nk`
= #

{
τ2

∣∣∣∣∣ gcd(τ2, ξ1ξ3) = 1, (9.10) holds,

−τ2
2 ξ2 ≡ τ3

1 ξ
2
1ξ3 (mod k`ξ

3
` ξ

2
4ξ5)

}
.

Note that

gcd(τ3
1 ξ

2
1ξ3, k`ξ

3
` ξ

2
4ξ5) = gcd(τ3

1 ξ
2
1ξ3, ξ4ξ5ξ6, τ

2
2 ξ2) = gcd(τ1, ξ6, τ2

2 ξ2) = 1

and

gcd(ξ2, k`ξ
3
` ξ

2
4ξ5) = gcd(ξ2, k`) = gcd(ξ2, ξ4ξ5ξ6, τ3

1 ξ
2
1ξ3) = 1.

Hence, it is enough to sum over all k`|ξ4ξ5ξ6 with gcd(k`, τ1ξ1ξ2ξ3) = 1,
and since k`|ξ4ξ5ξ6 implies gcd(k`, τ1) = 1, we reduce to gcd(k`, ξ1ξ2ξ3) = 1.

This implies that there is a unique integer % satisfying 0 < % ≤ k`ξ
3
` ξ

2
4ξ5

and gcd(%, k`ξ
3
` ξ

2
4ξ5) = 1 such that

τ2 ≡ %τ1ξ1 (mod k`ξ
3
` ξ

2
4ξ5) and −%2ξ2 ≡ τ1ξ3 (mod k`ξ

3
` ξ

2
4ξ5).

We have

N =
∑

k`|ξ4ξ5ξ6
gcd(k`,ξ1ξ2ξ3)=1

µ(k`)
∑

0<%≤k`ξ
3
` ξ2

4ξ5
−%2ξ2≡τ1ξ3 (mod k`ξ

3
` ξ2

4ξ5)

gcd(%,k`ξ
3
` ξ2

4ξ5)=1

Nk`
(%)

where

Nk`
(%) = #

{
τ2

∣∣∣∣∣ gcd(τ2, ξ1ξ3) = 1, (9.10) holds,

τ2 ≡ %τ1ξ1 (mod k`ξ
3
` ξ

2
4ξ5)

}
.

We also know that gcd(%τ1ξ1, k`ξ
3
` ξ

2
4ξ5) = 1. Now we can apply Lemma 9.6

to the characteristic function

χ(n) =

{
1, if gcd(n, ξ1ξ3) = 1,
0, else.
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Since
∞∑

d=1
gcd(d,k`ξ

3
` ξ2

4ξ5)=1

(χ ∗ µ)(d)
d

=
∏

p|ξ1ξ3
p-k`ξ

3
` ξ2

4ξ5

(
1− 1

p

)
=
∏

p|ξ1ξ3

(
1− 1

p

)
= φ∗(ξ1ξ3),

where we use gcd(ξ1ξ3, k`ξ
3
` ξ

2
4ξ5) = 1 and the notation φ∗(n) := φ(n)/n as

in [BB04, Equation 5.10], we conclude

Nk`
(%) =

φ∗(ξ1ξ3)X2

k`ξ
3
` ξ

2
4ξ5

g1(τ1/X1, X0) +O(2ω(ξ1ξ3)),

where X2g1(τ1/X1, X0) gives the total length of the intervals in which τ2
must lie by (9.10), with

(9.13) g1(u, v) =
∫
{t∈R| |tv3|≤1, |t2+u3|≤1}

1dt.

By equation (9.9), the number of integers % with 0 < % ≤ k`ξ
3
` ξ

2
4ξ5 such

that gcd(%, k`ξ
3
` ξ

2
4ξ5) = 1 and −%2ξ2 ≡ τ1ξ3 (mod k`ξ

3
` ξ

2
4ξ5) is at most

η(ξ2ξ3τ1; k`ξ
3
` ξ

2
4ξ5) ≤ 2ω(k`ξ

3
` ξ2

4ξ5) ≤ 2ω(ξ`ξ4ξ5ξ6).

This gives as the first step towards the proof of Theorem 9.1:

Lemma 9.10.

N =
X2

ξ3` ξ
2
4ξ5

g1(τ1/X1, X0)Σ(ξi, τ1) +O(2ω(ξ1ξ3)+ω(ξ`ξ4ξ5ξ6)+ω(ξ4ξ5ξ6)),

where

Σ(ξi, τ1) = φ∗(ξ1ξ3)
∑

k`|ξ4ξ5ξ6
gcd(k`,ξ1ξ2ξ3)=1

µ(k`)
k`

∑
0<%≤k`ξ

3
` ξ2

4ξ5
−%2ξ2≡τ1ξ3 (mod k`ξ

3
` ξ2

4ξ5)

gcd(%,k`ξ
3
` ξ2

4ξ5)=1

1.

Now we show that the error term suffices for Theorem 9.1: We sum it
over all the ξi, τ1 which satisfy the height conditions (9.11) and (9.12); we
can ignore the coprimality conditions (9.4), (9.5), (9.6). We obtain:∑

ξi

∑
τ1

2ω(ξ1ξ3)+ω(ξ`ξ4ξ5ξ6)+ω(ξ4ξ5ξ6)

�
∑
ξi

2ω(ξ1ξ3)+ω(ξ`ξ4ξ5ξ6)+ω(ξ4ξ5ξ6)X1

X4
0

=
∑
ξi

2ω(ξ1ξ3)+ω(ξ`ξ4ξ5ξ6)+ω(ξ4ξ5ξ6) B

ξ(2,2,3,1,2,3,4)

�B(logB)2
∑

ξi,i6=`

2ω(ξ1ξ3)+ω(ξ4ξ5ξ6)+ω(ξ4ξ5ξ6)

ξ(2,2,3,0,2,3,4)

�B(logB)2.

For ξ`, we have used the estimate∑
n≤x

2ω(n) � x(log x)
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together with partial summation.
Therefore, we only need to consider the main term when summing over

τ1, ξi in order to prove Theorem 9.1.

Summation over τ1. For fixed ξ1, . . . , ξ6 satisfying (9.4) and (9.11), we
sum over all τ1 satisfying the coprimality condition (9.5) and the height
condition (9.12). Let

N ′ = N ′(ξi) =
X2

ξ3` ξ
2
4ξ5

∑
τ1, (9.12) holds

gcd(τ1,ξ2ξ3ξ`ξ4ξ5ξ6)=1

g1(τ1/X1, X0)Σ(ξi, τ1).

First, we find an asymptotic formula for

N (b1, b2) = φ∗(ξ1ξ3)
∑

k`|ξ4ξ5ξ6
gcd(k`,ξ1ξ2ξ3)=1

µ(k`)
k`

∑
0<%≤k`ξ

3
` ξ2

4ξ5
gcd(%,k`ξ

3
` ξ2

4ξ5)=1

N ′
k`

(%, b1, b2),

where

N ′
k`

(%, b1, b2) = #

{
τ1 ∈ [b1, b2]

∣∣∣∣ gcd(τ1, ξ2ξ3ξ`ξ4ξ5ξ6) = 1,

−%2ξ2 ≡ τ1ξ3 (mod k`ξ
3
` ξ

2
4ξ5)

}
.

We have gcd(%2ξ2, k`ξ
3
` ξ

2
4ξ5) = 1. Hence, we can replace the condi-

tion gcd(τ1, ξ2ξ3ξ`ξ4ξ5ξ6) = 1 by gcd(τ1, ξ2ξ3ξ6) = 1 in the definition of
N ′

k`
(%, b1, b2) and perform another Möbius inversion to obtain

N (b1, b2) =φ∗(ξ1ξ3)
∑

k`|ξ4ξ5ξ6
gcd(k`,ξ1ξ2ξ3)=1

µ(k`)
k`

∑
k1|ξ2ξ3ξ6

gcd(k1,k`ξ
3
` ξ2

4ξ5)=1

µ(k1)

∑
0<%≤k`ξ

3
` ξ2

4ξ5
gcd(%,k`ξ

3
` ξ2

4ξ5)=1

N ′
k`,k1

(%, b1, b2),

where

N ′
k`,k1

(%, b1, b2) = #{τ1 ∈ [b1/k1, b2/k1] | −%2ξ2 ≡ k1τ1ξ3 (mod k`ξ
3
` ξ

2
4ξ5)}.

Note that we must only sum over the k1 with gcd(k1, k`ξ
3
` ξ

2
4ξ5) because of

gcd(%2ξ2, k`ξ
3
` ξ

2
4ξ5) = 1.

Let a = a(ξi, k1, k`) be the unique integer such that 0 < a ≤ k`ξ
3
` ξ

2
4ξ5

and
−ξ2 ≡ k1aξ3 (mod k`ξ

3
` ξ

2
4ξ5).

Then −%2ξ2 ≡ k1τ1ξ3 (mod k`ξ
3
` ξ

2
4ξ5) if and only if τ1 ≡ a%2 (mod k`ξ

3
` ξ

2
4ξ5).

Since gcd(ξ2, k`ξ
3
` ξ

2
4ξ5) = 1, we have gcd(a, k`ξ

3
` ξ

2
4ξ5) = 1. By Lemma 9.7,

we conclude

N ′
k`,k1

(%, b1, b2) =
b2 − b1

k1k`ξ
3
` ξ

2
4ξ5

+ r(b1/k1, b2/k1, a%
2, k`ξ

3
` ξ

2
4ξ5)

where, by definition of r,

r(b1/k1, b2/k1, a%
2, k`ξ

3
` ξ

2
4ξ5) = ψ̃

(
b1/k1 − a%2

k`ξ
3
` ξ

2
4ξ5

)
− ψ

(
b2/k1 − a%2

k`ξ
3
` ξ

2
4ξ5

)
.
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Let

ϑ = ϑ(ξi) =

{
φ∗(ξ1ξ3)φ∗(ξ2ξ3ξ`ξ4ξ5ξ6)

φ∗(ξ4ξ5ξ6)
φ∗(gcd(ξ4ξ5ξ6,ξ1ξ2ξ3)) , (9.4) holds,

0, otherwise.

Then for any b1 < b2, we have

N (b1, b2) = ϑ(ξ) · (b2 − b1) +R(b1, b2)

where

R(b1, b2) =φ∗(ξ1ξ3)
∑

k`|ξ4ξ5ξ6
gcd(τ`,ξ4ξ5ξ6)=1

µ(k`)
k`

∑
k1|ξ2ξ3ξ6

gcd(k1,k`ξ
3
` ξ2

4ξ5)=1

µ(k1)

∑
0<%≤k`ξ

3
` ξ2

4ξ5
gcd(%,k`ξ

3
` ξ2

4ξ5)=1

r(b1/k1, b2/k1, a%
2, k`ξ

3
` ξ

2
4ξ5).

By partial summation, we obtain

N ′(ξi) =
ϑ(ξi)X1X2

ξ3` ξ
2
4ξ5

g2(X0) +R′(ξi)

with

(9.14) g2(v) =
∫
{u∈R| |uv4|≤1}

g1(u, v)du

and

R′(ξi) =
−X2

ξ3` ξ
2
4ξ5

∫ X−4
0

−X−4
0

(D1g1)(u,X0)R(−X1/X
4
0 , X1u)du

where D1g1 is the derivation of g1 with respect to the first variable.

Lemma 9.11. For any ξi as in (9.4), (9.11), we have

N ′(ξi) =
ϑ(ξi)X1X2

ξ3` ξ
2
4ξ5

g2(X0) +R′(ξi)

where the error term R′(ξi) satisfies∑
ξi, (9.4), (9.11) holds

R′(ξi) = O(B logB).

Proof. By Lemma 9.8, we have

R(b1, b2)�εφ
∗(ξ1ξ3)

∑
k`|ξ4ξ5ξ6

gcd(τ`,ξ4ξ5ξ6)=1

|µ(k`)|
k`

∑
k1|ξ2ξ3ξ6

gcd(k1,k`ξ
3
` ξ2

4ξ5)=1

|µ(k1)|(k`ξ
3
` ξ

2
4ξ5)

1/2+ε

≤
∑

k`|ξ4ξ5ξ6
gcd(τ`,ξ4ξ5ξ6)=1

|µ(k`)|
∑

k1|ξ2ξ3ξ6
gcd(k1,k`ξ

3
` ξ2

4ξ5)=1

|µ(k1)|(ξ3` ξ24ξ5)1/2+ε

≤ 2ω(ξ4ξ5ξ6)+ω(ξ2ξ3ξ6)(ξ3` ξ
2
4ξ5)

1/2+ε.
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Therefore,

R′(ξi)�ε
X2

ξ3` ξ
2
4ξ5

∫ X−4
0

−X−4
0

(D1g1)(u,X0)2ω(ξ4ξ5ξ6)+ω(ξ2ξ3ξ6)(ξ3` ξ
2
4ξ5)

1/2+εdu

� X2

(ξ3` ξ
2
4ξ5)1/2−ε

2ω(ξ4ξ5ξ6)+ω(ξ2ξ3ξ6).

Summing this over all ξi ≤ B, we get, using (9.11),∑
ξi≤B

(9.4), (9.11) hold

R′(ξi)�ε

∑
ξi≤B

X2

X3
0 (ξ3` ξ

2
4ξ5)1/2−ε

2ω(ξ4ξ5ξ6)+ω(ξ2ξ3ξ6)

=
∑
ξi≤B

B

ξ(1,2,2,3/2−3ε,2−2ε,5/2−ε,3)
2ω(ξ4ξ5ξ6)+ω(ξ2ξ3ξ6)

�
∑

ξi,i6=1

B logB
ξ(0,2,2,3/2−3ε,2−2ε,5/2−ε,3)

2ω(ξ4ξ5ξ6)+ω(ξ2ξ3ξ6)

� B logB.

�

Summation over ξi. Define

∆(n) = B−5/6
∑

ξi,ξ(2,3,4,3,4,5,6)=n

ϑ(ξi)X1X2

ξ3` ξ
2
4ξ5

.

We sum N ′(ξi) in Lemma 9.11 over the seven variables ξi such that the
coprimality conditions (9.4) and the height condition (9.11) hold. Note that
the definition of ϑ(ξi) ensures that the main term of N ′(ξi) is zero if (9.4)
is not satisfied. In view of Lemma 9.9, this implies:

Lemma 9.12. We have

NU,H(B) = B5/6
∑
n≤B

∆(n)g2((n/B)1/6) +O(B(logB)2).

9.6. Completion of the proof

Our argument is similar to [BB04]. We need to estimate

M(t) :=
∑
n≤t

∆(n)

for t > 1. Therefore, we consider the Dirichlet series F (s) :=
∑∞

n=1 ∆(n)n−s.
Observing

X1X2

ξ3` ξ
2
4ξ5

=
B5/6(ξ(2,3,4,3,4,5,6))1/6

ξ(1,1,1,1,1,1,1)
,

we get

F (s+ 1/6) =
∑
ξi

ϑ(ξi)
ξ2s+1
1 ξ3s+1

2 ξ4s+1
3 ξ3s+1

` ξ4s+1
4 ξ5s+1

5 ξ6s+1
6

,
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and writing F (s + 1/6) =
∏

p Fp(s + 1/6) as a product of local factors, we
obtain:

Fp(s+ 1/6) =1 +
(1− 1/p)2

(pλ6s+1 − 1)

(
pλ1s+1

pλ1s+1 − 1
+

pλ1s+1pλ6s+1

pλ3s+1(pλ1s+1 − 1)

+
pλ6s+1

(1− 1/p)pλ2s+1
+

1
pλ`s+1 − 1

+
pλ`s+1pλ6s+1

pλ4s+1(pλ`s+1 − 1)

+
pλ`s+1pλ6s+1

pλ5s+1(pλ`s+1 − 1)

)
+

1− 1/p
pλ1s+1 − 1

+
1− 1/p
pλ`s+1 − 1

for any prime p.
Since 1/pλis+1 = Oε(1/p1/2+ε) for s ∈ H := {s ∈ C | <e(s) ≥ −1/12+ ε}

and i ∈ {1, 2, 3, `, 4, 5, 6}, we have

Fp(s+ 1/6) = 1 +
∑

i

1
pλis+1

+Oε

(
1

p1+ε

)
for s ∈ H, and defining

E(s) :=
∏

i

ζ(λis+ 1) = ζ(2s+ 1)ζ(3s+ 1)2ζ(4s+ 1)2ζ(5s+ 1)ζ(6s+ 1),

we have
1

Ep(s)
= 1−

∑
i

1
pλis+1

+Oε

(
1

p1+ε

)
for s ∈ H. Define

G(s) := F (s+ 1/6)/E(s)
for <e(s) > 0. Then G has a holomorphic and bounded continuation to H.
Note that

G(0) =
∏
p

(
1− 1

p

)7(
1 +

7
p

+
1
p2

)
,

and that for s→ 0, we have

E(s) =
1∏
i λi

s−7 +O(s−6).

Consequently, the residue of F (s)ts/s at s = 1/6 is

Res(t) =
6G(0)t1/6Q1(log t)

6! ·
∏

i λi

for some monic polynomial Q1 of degree 6.

Lemma 9.13. M(t) = ω0α(S̃) · 6t1/6Q1(log t) +Oε(t1/6−1/24+ε).

Proof. Integrating Perron’s formula for M(t) over t, we have∫ t

0
M(u)du =

1
2πi

∫ 1/6+ε+i∞

1/6+ε−i∞
F (s)

ts+1

s(s+ 1)
ds

for t > 1 and ε > 0.
We apply Cauchy’s residue theorem to the rectangle with vertices

1/12 + ε− iT, 1/12 + ε+ iT, 1/6 + ε+ iT, 1/6 + ε− iT,

for some T > 1, where ε > 0 is sufficiently small.
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By the convexity bound

ζ(1 + σ + iτ)�ε|τ |−σ/3+ε

for any σ ∈ [−1/2, 0), we have

(9.15) F (1/6 + σ + iτ) � E(σ + iτ)�ε|τ |−9σ+ε

for any σ ∈ [−1/12 + ε, 0), using (
∑

i λi)/3 = 9 and that G(σ + iτ) is
bounded.

For the ray going down from 1/6 + ε− iT , we get∣∣∣∣∣
∫ 1/6+ε−iT

1/6+ε−i∞

F (s)ts+1

s(s+ 1)
ds

∣∣∣∣∣ ≤
∫ T

−∞

|F (1/6 + ε+ iσ)||t7/6+ε+iσ|
|(1/6 + ε+ iσ)(7/6 + ε+ iσ)

dσ

� t7/6+ε

∫ T

−∞

1
|σ|2

dσ

� t7/6+εT−1

where we use that F (s) is bounded for <e(s) ≥ 1/6 + ε. Integrating from
1/6 + ε+ iT to 1/6 + ε+ i∞ gives the same result.

For the lower edge, we estimate∣∣∣∣∣
∫ 1/6+ε−iT

1/12+ε−iT

F (s)ts+1

s(s+ 1)
ds

∣∣∣∣∣ ≤
∫ ε

−1/12+ε

|F (1/6 + σ − iT )||t7/6+σ−iT |
|(1/6 + σ − iT )(7/6 + σ − iT )|

dσ

�ε
T 9/12+εt7/6+ε

T 2
,

because (9.15) gives a bound for −1/12+ε ≤ σ ≤ −ε, F (s) being continuous
gives a bound in an ε-neighborhood of 1/6 − iT , and the length of the
integration interval is 1/12. For the upper edge, we obtain the same bound.

For the edge on the left, we have∣∣∣∣∣
∫ 1/12+ε+iT

1/12+ε−iT

F (s)ts+1

s(s+ 1)
ds

∣∣∣∣∣ ≤
∫ T

−T

|F (1/12 + ε+ iσ)||t13/12+ε+iσ|
|(1/12 + ε+ iσ)(13/12 + ε+ iσ)

dσ

�ε

∫ T

−T

|σ|9/12+εt13/12+ε

(1 + |σ|)2
dσ

� t13/12+ε

since the integral over σ is bounded independently of T , and using (9.15)
again.

Taking T = t, we have proved∫ t

0
M(u)du =

∫ t

0
Res(u)du+Oε(t13/12+ε).

But now
1
H

∫ t

t−H
M(u)du ≤M(t) ≤ 1

H

∫ t+H

t
M(u)du,

and for H ≤ t/3, both integrals are equal to

Res(t) +Oε(Ht−5/6(log t)6 +H−1t13/12+ε).
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The proof of the Lemma is completed by choosing H = t23/24 and noting
that ω0 = G(0) and α(S̃) = (6!

∏
i λi)−1 by the definitions of ω0 and α(S̃)

in Lemma 9.2. �

By partial summation we conclude∑
n≤B

∆(n)g2((n/B)1/6)

= ω0α(S̃) · 6
∫ B

0
g2(u1/6/B1/6)

d
du

(u1/6Q1(log u))du+Oε(B1/6−1/24+ε)

= B1/6ω0α(S̃) · 6
∫ 1

0
g2(v)Q2(logB + 6 log v)dv +Oε(B1/6−1/24+ε)

for some monic polynomial Q2 of degree 6. Considering definitions (9.13)
and (9.14), note that

ω∞ = 6
∫
{v∈R|0≤v≤1}

g2(v)dv.

Together with Lemma 9.12, this completes the proof of Theorem 9.1.



CHAPTER 10

Manin’s conjecture for a singular quartic surface

10.1. Introduction

In this chapter, we illustrate the torsor approach to asymptotics of ra-
tional points in the case of a particular singular surface S ⊂ P4 of degree 4
given by:

(10.1) x0x3 − x1x4 = x0x1 + x1x3 + x2
2 = 0.

This is a split Del Pezzo surface, with a singularity of type D4. The results
first appeared in [DT06],

Theorem 10.1. The number of Q-rational points of anticanonical height
bounded by B on the complement U of the Q-rational lines on S (10.1)
satisfies

NU,H(B) = cS,H ·B ·Q(logB) +O(B(logB)3) as B →∞,

where Q is a monic polynomial of degree 5, and

cS,H =
1

34560
· ω∞ ·

∏
p

(1− 1/p)6(1 + 6/p+ 1/p2)

is the constant predicted by Peyre (Section 7.2), with p running through all
primes and

ω∞ = 3
∫ ∫ ∫

{(t,u,v)∈R3| 0≤v≤1, |tv2|,|v2u|,|v(tv+u2)|,|t(tv+u2)|≤1}
1dtdudv.

In [BB05], Manin’s conjecture is proved for a non-split surface with a
singularity of the same type. However, these results do not follow from each
other.

In Section 10.2, we collect some facts about the geometric structure of
S. In Section 10.3, we calculate the expected value of cS,H and show that
Theorem 10.1 agrees with Manin’s conjecture.

In our case, the universal torsor is an affine hypersurface. In Section 10.4,
we calculate its equation, stressing the relation with the geometry of S. We
make explicit the coprimality and the height conditions. The method is
more systematic than the derivation of the torsor equations in Chapter 9,
[BB04], and [BBD05], and should generalize to more complicated cases,
e.g., other split Del Pezzo surfaces.

Note that our method gives coprimality conditions which are different
from the ones in Chapter 9, [BB04], and [BBD05], but which are in a
certain sense more natural: they are related to the set of points on TeS which
are stable with respect to the action of the Néron-Severi torus (in the sense
of geometric invariant theory, cf. [Dol03] and [HK00]). Our conditions

133
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involve only coprimality of certain pairs of variables, while the other method
produces a mix of square-free variables and coprimalities.

In Section 10.5, we estimate the number of integral points on the univer-
sal torsor by iterating summations over the torsor variables and using results
of elementary analytic number theory. Finally we arrive at Lemma 10.9,
which is very similar in appearance to [BB04, Lemma 10] and Lemma 9.12.
In Section 10.6 we use familiar methods of height zeta functions to derive
the exact asymptotic. We isolate the expected constant cS,H and finish the
proof of Theorem 10.1.

10.2. Geometric background

In this section, we collect some geometric facts concerning the surface
S. We show that Manin’s conjecture for S is not a special case of available
more general results for Del Pezzo surfaces.

Lemma 10.2. The surface S has the following properties:
(1) It has exactly one singularity of type D4 at q = (0 : 0 : 0 : 0 : 1).
(2) S contains exactly two lines:

E5 = {x0 = x1 = x2 = 0} and E6 = {x1 = x2 = x3 = 0},
which intersect in q.

(3) The projection from the line E5 is a birational map

φ : S 99K P2

x 7→ (x0 : x2 : x1)

which is defined outside E5. It restricts to an isomorphism between

U = S \ (E5 ∪ E6) = {x ∈ S | x1 6= 0

and
A2 ∼= {(t : u : v) | v 6= 0} ⊂ P2,

whose inverse is the restriction of

ψ : P2 99K S,
(t : u : v) 7→ (tv2 : v3 : v2u : −v(tv + u2) : −t(tv + u2))

Similar results hold for the projection from E6.
(4) The process of resolving the singularity q gives four exceptional divi-

sor E1, . . . , E4 and produces the minimal desingularization S̃, which
is also the blow-up of P2 in five points.

Proof. Direct computations. �

It will be important to know the details of the sequence of five blow-ups
of P2 giving S̃ as in Lemma 10.2(4):

In order to describe the points in P2, we need the lines

E3 = {v = 0}, A1 = {u = 0}, A2 = {t = 0}
and the curve A3 = {tv + u2 = 0}.

Lemma 10.3. The following five blow-ups of P2 result in S̃:
• Blow up the intersection of E3, A1, A3, giving E2.
• Blow up the intersection of E2, E3, A3, giving E1.
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• Blow up the intersection of E1 and A3, giving E4.
• Blow up the intersection of E4 and A3, giving E6.
• Blow up the intersection of E3 and A2, giving E5.

Here, the ordering of the first four blow-ups is fixed, and the fifth blow-up
can be done at any time.

The Dynkin diagram in Figure 10.1 describes the final configuration of
divisors E1, . . . , E6, A1, A2, A3. Here, A1, A2, A3 intersect at one point.

A2

BB
BB

BB
BB

E5 E3

BB
BB

BB
BB

A1 E2 E1

A3

||||||||
E6 E4

||||||||

Figure 10.1. Extended Dynkin diagram

The quartic Del Pezzo surface with a singularity of type D4 is not toric
(cf. Table 1.4), and Manin’s conjecture does not follow from the results of
[BT98]. The D5 example of [BB04] is an equivariant compactification of
G2

a (i.e., S has a Zariski open subset isomorphic to A2, and the obvious
action of G2

a on this open subset extends to S), and thus a special case of
[CLT02].

Lemma 10.4. The quartic Del Pezzo surface with a singularity of type
D4 is a compactification of A2, but not an equivariant compactification of
G2

a.

Proof. We follow the strategy of [HT04, Remark 3.3].
Consider the maps φ, ψ as in Lemma 10.2(3). As ψ restricts to an

isomorphism between A2 and the open set U ⊂ S, the surface S is a com-
pactification of A2.

If S were an equivariant compactification of G2
a, then the projection φ

from E5 would be a G2
a-equivariant map, giving a G2

a-action on P2. The line
{v = 0} would be invariant under this action. The only such action is the
standard translation

τ : P2 → P2,
(t : u : v) 7→ (t+ αv : u+ βv : v).

However, this action does not leave the linear series

(tv2 : v3 : v2u : −v(tv + u2) : −t(tv + u2))

invariant, which can be seen after calculating

t(tv + u2) 7→(t+ αv)((t+ αv)v + (u+ βv)2)

=t(tv + u2) + 2βtuv + (β2 + α)tv2 + αv(tv + u2)

+ 2αβv2u+ (αβ2 + α2)v3,

since the term tuv does not appear in the original linear series. �
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10.3. Manin’s conjecture

The following lemma shows that our result agrees with the prediction of
Manin’s conjecture.

Lemma 10.5. Let S be the surface (10.1). Manin’s conjecture for S
states that the number of rational points of height ≤ B outside the two lines
is given by

NU,H(B) ∼ cS,H ·B(logB)5,

where cS,H = α(S̃) · β(S̃) · ωH(S̃) with

α(S̃) = (5! · 4 · 2 · 3 · 3 · 2 · 2)−1 = (34560)−1

β(S̃) = 1

ωH(S̃) = ω∞ ·
∏
p

(1− 1/p)6(1 + 6/p+ 1/p2)

and

ω∞ = 3
∫ ∫ ∫

{(t,u,v)∈R3| 0≤v≤1, |tv2|,|v2u|,|v(tv+u2)|,|t(tv+u2)|≤1}
1dtdudv.

Proof. Since S is split over Q, we have rk(Pic(S̃)) = 6, so the expected
exponent of logB is 5. Further, β(S̃) = 1. The computation of cS,H is done
on the desingularization S̃. The constant α(S̃) can be calculated as α′/#W
by Theorem 8.5, where α′ = 1/180 is the constant associated to smooth split
quartic surfaces (see Theorem 8.3), and #W = 192 is the order of the Weyl
group associated to the root system D4. The constant ωH(S̃) is computed
as in [BB04, Lemma 1] and Lemma 9.2. �

10.4. The universal torsor

By Section 7.1, the problem of counting rational points of bounded height
on the surface S translates into a counting problem for certain integral points
on the universal torsor, subject to coprimality and height inequalities. In
the first part of this section, we describe these conditions in detail. They are
obtained by a process of introducing new variables which are the greatest
common divisors of other variables. Geometrically, this corresponds to the
realization of S̃ as a blow-up of P2 in five points.

In the second part, we prove our claims.

The universal torsor TeS of S is an open subset of the hypersurface in
A9 = Spec Z[η1, . . . , η6, α1, α2, α3] defined by the equation

(10.2) T (η,α) = α2
1η2 + α2η3η

2
5 + α3η4η

2
6 = 0.

The projection Ψ : TeS → S is defined by
(10.3)

(Ψ∗(xi)) = (η(2,1,2,1,2,0)α2, η
(4,2,3,3,2,2), η(3,2,2,2,1,1)α1, η

(2,1,1,2,0,2)α3, α2α3),

where we use the notation η(n1,n2,n3,n4,n5,n6) = ηn1
1 ηn2

2 ηn3
3 ηn4

4 ηn5
5 ηn6

6 .
The coprimality conditions can be derived from the extended Dynkin

diagram (see Figure 10.1). Two variables are allowed to have a common
factor if and only if the corresponding divisors (Ei for ηi and Ai for αi)
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intersect (i.e., are connected by an edge in the diagram). Furthermore,
gcd(α1, α2, α3) > 1 is allowed (corresponding to the fact that A1, A2, A3

intersect in one point).
We will show below that there is a bijection between rational points

on U ⊂ S and integral points on an open subset of TeS , subject to these
coprimality conditions.

We will later refer to

coprimalities between η1, . . . , η6 as in Figure 10.1,(10.4)

gcd(α1, η1η3η4η5η6) = 1,(10.5)

gcd(α2, η1η2η3η4η6) = 1,(10.6)

gcd(α3, η1η2η3η4η5) = 1.(10.7)

To count the number of x ∈ S(Q) such that H(x) ≤ B, we must lift this
condition to the universal torsor, i.e., H(Ψ(η,α)) ≤ B. This is the same as

|η(2,1,2,1,2,0)α2| ≤ B, . . . , |α2α3| ≤ B,

using the five monomials occurring in (10.3). These have no common factors,
provided the coprimality conditions are fulfilled (direct verification).

It will be useful to write the height conditions as follows. Let

X0 =

(
η(4,2,3,3,2,2)

B

)1/3

and
X1 = (Bη(−1,−2,0,0,1,1))1/3, X2 = (Bη(2,1,0,3,−2,4))1/3.

Then

|X3
0 | ≤ 1(10.8)

|X2
0 (α1/X1)| ≤ 1(10.9)

|X2
0 (α2/X2)| ≤ 1, |X0(X0(α2/X2) + (α1/X1)2)| ≤ 1,

|(α2/X2)(X0(α2/X2) + (α1/X1)2)| ≤ 1
(10.10)

are equivalent to the five height conditions. Here we have used the torsor
equation to eliminate α3 because in our counting argument we will also use
that α3 is determined by the other variables.

We now prove the above claims.

Lemma 10.6. The map Ψ gives a bijection between the set of points x of
U(Q) such that H(x) ≤ B and the set

T1 :=

{
(η,α) ∈ Z6

>0 × Z3

∣∣∣∣∣
equation (10.2),

coprimality (10.4), (10.5), (10.6), (10.7),

inequalities (10.8), (10.9), (10.7) hold

}

Proof. The map ψ of Lemma 10.2(3) induces a bijection

ψ0 : (η3, α1, α2) 7→ (η2
3α2, η

3
3, η

2
3α1, η3α3, α2α3),

where α3 := −(η3α2 + α2
1), i.e.,

T0 := α2
1 + η3α2 + α3 = 0,
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between

{(η3, α1, α2) ∈ Z>0 × Z2 | gcd(η3, α1, α2) = 1} and U(Q) ⊂ S(Q).

The height function on U(Q) is given by

H(ψ0(η3, α1, α2)) =
max(|η2

3α2|, |η3
3|, |η2

3α1|, |η3α3|, |α2α3|)
gcd(η2

3α2, η3
3, η

2
3α1, η3α3, α2α3)

.

The derivation of the torsor equation from the map ψ0 together with the
coprimality conditions and the lifted height function is parallel to the blow-
up process described in Lemma 10.3. More precisely, each line E3, A1, A2

in P2 corresponds to a coordinate function η3, α1, α2 vanishing in one of the
lines; the blow-up of the intersection of two divisors gives an exceptional
divisor Ei, corresponding to the introduction of a new variable ηi as the
greatest common divisor of two old variables. Two divisors are disjoint if
and only if the corresponding variables are coprime. This is summarized in
Table 10.1.

Variables, Equations Geometry
variables divisors
initial variables coordinate lines
η3, α1, α2 E3, A1, A2

taking gcd of two variables blowing up intersection of divisors
new gcd-variable exceptional divisor
η2, η1, η4, η6, η5 E2, E1, E4, E6, E5

extra variable extra curve
α3 A3

starting relation starting description
α3 = −(η3α2 + α2

1) A3 = {η3α2 + α2
1 = 0}

final relation torsor equation
α3η4η

2
6 = −(α2η3η

2
5 + α2

1η2) α2
1η2 + α2η3η

2
5 + α3η4η

2
6 = 0

Table 10.1. Dictionary between gcd-process and blow-ups

This plan will now be implemented in five steps; at each step, the map

ψi : Zi+1
>0 × Z3 → U(Q)

gives a bijection between the following two sets:
• The set of all (ηj , α1, α2, α3) ∈ Zi+1

>0 × Z3 satisfying certain co-
primality conditions (described by the extended Dynkin diagram
corresponding to the i-th blow-up of Lemma 10.3), an equation Ti,
and

H(ψi(ηj , αj)) =
maxk(|ψi(ηj , αj)k|)

gcd(ψi(ηj , αj)k)
≤ B.

• The set of all x ∈ U(Q) with H(x) ≤ B.
The steps are as follows:

(1) Let η2 := gcd(η3, α1) ∈ Z>0. Then

η3 = η2η
′
3, α1 = η2α

′
1, with gcd(η′3, α

′
1) = 1.
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Since η2 | α3, we can write α3 = η2α
′
3. Then α′3 = −(η′3α2 + η2α

′2
1 ).

After renaming the variables, we have

T1 = η2α
2
1 + η3α2 + α3 = 0

and

ψ1 : (η2, η3, α1, α2, α3) 7→ (η2η
2
3α2 : η2

2η
3
3 : η2

2η
2
3α1 : η2η3α3 : α2α3).

Here, we have eliminated the common factor η2 which occurred in
all five components of the image. Below, we repeat the correspond-
ing transformation at each step.

(2) Let η1 := gcd(η2, η3) ∈ Z>0. Then

η2 = η1η
′
2, η3 = η1η

′
3, with gcd(η′2, η

′
3) = 1.

As η1 | α3, we write α3 = η1α
′
3, and we obtain:

T2 = η2α
2
1 + η3α2 + α3 = 0

and

ψ2 : (η1, η2, η3, α1, α2, α3) 7→
(η2

1η2η
2
3α2 : η4

1η
2
2η

3
3 : η3

1η
2
2η

2
3α1 : η2

1η2η3α3 : α2α3).

(3) Let η4 := gcd(η1, α3) ∈ Z>0. Then

η1 = η4η
′
1, α3 = η4α

′
3, with gcd(η′1, α

′
3) = 1.

We get after removing ′ again:

T3 = η2α
2
1 + η3α2 + η4α3 = 0

and

ψ3 : (η1, η2, η3, η4, α1, α2, α3) 7→
(η2

1η2η
2
3η4α2 : η4

1η
2
2η

3
3η

3
4 : η3

1η
2
2η

2
3η

2
4α1 : η2

1η2η3η
2
4α3 : α2α3).

(4) Let η6 := gcd(η4, α3) ∈ Z>0. Then

η4 = η6η
′
4, α3 = η6α

′
3, with gcd(η′4, α

′
3) = 1.

We obtain

T4 = η2α
2
1 + η3α2 + η4η

2
6α3 = 0

and

ψ4 : (η1, η2, η3, η4, η6, α1, α2, α3) 7→
(η2

1η2η
2
3η4α2 : η4

1η
2
2η

3
3η

3
4η

2
6 : η3

1η
2
2η

2
3η

2
4η6α1 : η2

1η2η3η
2
4η

2
6α3 : α2α3).

(5) The final step is η5 := gcd(η3, α2) ∈ Z>0, we could have done it
earlier (just as the blow-up of the intersection of E3, A2 in Lemma
(10.3)). Then

η3 = η5η
′
3, α2 = η5α

′
2, with gcd(η′3, α

′
2) = 1.

We get
T5 = η2α

2
1 + η3η5α2 + η4η

2
6α3 = 0
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and

ψ5 : (η1, η2, η3, η4, η5, η6, α1, α2, α3) 7→
(η2

1η2η
2
3η4η

2
5α2 : η4

1η
2
2η

3
3η

3
4η

2
5η

2
6 : η3

1η
2
2η

2
3η

2
4η5η6α1 : η2

1η2η3η
2
4η

2
6α3 : α2α3).

We observe that at each stage the coprimality conditions correspond to inter-
section properties of the respective divisors. The final result is summarized
in Figure 10.1, which encodes data from (10.4), (10.5), (10.6), (10.7).

Note that ψ5 is Ψ from (10.3). As mentioned above, gcd(ψ5(ηj , αj)k)
(over all five components of the image) is trivial by the coprimality conditions
of Figure 10.1. Therefore, H(ψ5(η,α)) ≤ B is equivalent to (10.8), (10.9),
(10.10).

Finally, T5 is the torsor equation T (10.2). �

10.5. Summations

In the first step, we estimate the number of (α1, α2, α3) ∈ Z3 which fulfill
the torsor equation T (10.2) and the height and coprimality conditions. For
fixed (α1, α2), the torsor equation T has a solution α3 if and only if the
congruence

α2
1η2 + α2η3η

2
5 ≡ 0 (mod η4η

2
6)

holds and the conditions on the height and coprimalities are fulfilled.
We have already written the height conditions so that they do not de-

pend on α3. For the coprimality, we must ensure that (10.6) and (10.7) are
fulfilled.

As gcd(η3η
2
5, η4η

2
6) = 1, we can find the multiplicative inverse c1 of η3η

2
5

modulo η4η
2
6, so that

(10.11) c1η3η
2
5 = 1 + c2η4η

2
6

for a suitable c2. Choosing

α2 = c3η4η
2
6 − c1α

2
1η2,(10.12)

α3 = c2α
2
1η2 − c3η3η

2
5(10.13)

gives a solution of (10.2) for any c3 ∈ Z.
Without the coprimality conditions, the number of pairs (α2, α3) satis-

fying T and (10.10) would differ at most by O(1) from 1/η4η
2
6 of the length

of the interval described by (10.10). However, the coprimality conditions
(10.6) and (10.7) impose further restrictions on the choice of c3. A slight
complication arises from the fact that because of T , some of the conditions
are fulfilled automatically once η, α1 satisfy (10.4) and (10.5).

Conditions (10.4) imply that the possibilities for a prime p to divide
more than one of the ηi are very limited. We distinguish twelve cases, listed
in Column 2 of Table 10.2.

In Columns 4 and 5, we have denoted the relevant information for the
divisibility of α2, α3 by primes p which are divisors of the ηi in Column 2,
but of no other ηj :

• “allowed” means that αi may be divisible by p.
• “automatically” means that the conditions on the ηi and the other
αj imply that p - αi. These two cases do not impose conditions on
c3 modulo p.
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case p | . . . p | α1 p | α2 p | α3

0 − allowed allowed allowed
i η1 restriction restriction restriction
ii η2 allowed restriction automatically
iii η3 restriction restriction automatically
iv η4 restriction automatically restriction
v η5 restriction allowed automatically
vi η6 restriction automatically allowed
vii η1, η2 restriction restriction automatically
viii η1, η3 restriction restriction automatically
ix η1, η4 restriction automatically restriction
x η3, η5 restriction restriction automatically
xi η4, η6 restriction automatically restriction

Table 10.2. Coprimality conditions

• “restriction” means that c3 is not allowed to be in a certain congru-
ence class modulo p in order to fulfill the condition that p must not
divide αi.

The information in the table is derived as follows:

• If p | η3, then p - c2 from (10.11), and p - α1η2 because of (10.4),
(10.5), so by (10.13), p - α3 independently of the choice of c3. Since
p - η4η

2
6, we see from (10.12) that p | α2 for one in p subsequent

choices of c3 which we must therefore exclude. This explains cases
iii and viii.

• In case vii, the same is true for α2. More precisely, we see that we
must exclude c3 ≡ 0 (mod p). By (10.13), p - c3 implies that p - α3,
so we do not need another condition on c3.

• In case i, we see that p | α2 for one in p subsequent choices of c3,
and the same holds for α3. However, in this case, p cannot divide
α2, α3 for the same choice of c3, as we can see by considering T :
since p - α2

1η2, it is impossible that p | α2, α3. Consequently, we
must exclude two out of p subsequent choices of p in order to fulfill
p - α2, α3.

• In the other cases, the arguments are similar.

The number of (α2, α3) ∈ Z2 subject to T , (10.6), (10.7), (10.10) equals
the number of c3 such that α2, α3 as in (10.12), (10.13) satisfy these condi-
tions. This can be estimated as 1/η4η

2
6 of the length of the interval described

by (10.10), multiplied by a product of local factors whose values can be read
off from Columns 2, 4, 5 of Table 10.2: the divisibility properties of ηi by p
determine whether zero, one or two out of p subsequent values of c3 have to
be excluded. Different primes can be considered separately, and we define

ϑ1,p :=


1− 2/p, case i,
1− 1/p, cases ii, . . . , iv, vi, . . . , xi,
1, cases 0, v.
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Let
ϑ1(η) =

∏
p

ϑ1,p

be the product of these local factors, and

(10.14) g1(u, v) =
∫
{t∈R| |tv2|,|t(tv+u2)|,|v(tv+u2)|≤1}

1dt.

Let ω(n) denote the number of primes dividing n.

Lemma 10.7. For fixed (η, α1) ∈ Z6
>0 × Z as in (10.4), (10.5), (10.8),

(10.9), the number of (α2, α3) ∈ Z2 satisfying T , (10.6), (10.7), (10.10) is

N1(η, α1) =
ϑ1(η)X2

η4η2
6

g1(α1/X1, X0) +O(2ω(η1η2η3η4η6)).

The sum of error terms for all possible values of (η, α1) is � B(logB)3.

Proof. The number of c3 such that the resulting α2, α3 satisfy (10.10)
differs from X2

η4η2
6
g1(α1/X1, X0) by at most O(1).

Each ϑ1,p 6= 1 corresponds to a congruence condition on c3 imposed
by one of the cases i, . . . , iv, vi, . . . , xi. For each congruence condition, the
actual ratio of allowed c3 can differ at most by O(1) from the ϑ1,p. The total
number of these primes p is

ω(η1η2η3η4η6) � 2ω(η1η2η3η4η6),

which is independent of η5 since any prime dividing only η5 contributes a
trivial factor (see case v).

Using the estimate (10.9) for α1 in the first step and ignoring (10.4)
(10.5), which can only increase the error term, we obtain:∑

η

∑
α1

2ω(η1η2η3η4η6) ≤
∑
η

B · 2ω(η1η2η3η4η6)

η(3,2,2,2,1,1)
� B(logB)3.

Here, we use 2ω(n)�εn
ε for the summations over η1, η2, η3, η4. For η6, we

employ ∑
n≤x

2ω(n) � x(log x)

together with partial summation, contributing a factor (logB)2, while the
summation over η5 gives another factor logB. �

Next, we sum over all α1 subject to the coprimality condition (10.5) and
the height condition (10.9). Let

(10.15) g2(v) =
∫
{u∈R| |v2u|≤1}

g1(u, v)du.

Similar to our discussion for α2, α3, the number of possible values for α1 as
in (10.9), while ignoring (10.5) for the moment, is X1g2(X0) +O(1).

None of the coprimality conditions are fulfilled automatically, and only
common factors with η2 are allowed (see Column 3 of Table 10.2). Therefore,
each prime factor of η1η3η4η5η6 reduces the number of allowed α1 by a factor
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of ϑ2,p = 1− 1/p with an error of at most O(1). For all other primes p, let
ϑ2,p = 1, and let

ϑ2(η) =
∏
p

ϑ2,p and ϑ(η) =

{
ϑ1(η) · ϑ2(η), (10.4) holds
0, otherwise.

Lemma 10.8. For fixed η ∈ Z6
>0 as in (10.4), (10.8), the sum of N1(η, α1)

over all α1 ∈ Z satisfying (10.5), (10.9) is

N2(η) :=
ϑ(η)X1X2

η4η2
6

g2(X0) +R2(η),

where the sum of error terms R2(η) over all possible η is � B logB.

Proof. Let

N (b1, b2) = ϑ1(η) ·#{α1 ∈ [b1, b2] | gcd(α1, η1η3η4η5η6) = 1}.
Using Möbius inversion, this is estimated as

N (b1, b2) = ϑ1(η) · ϑ2(η) · (b2 − b1) +R(b1, b2)

with R(b1, b2) = O(2ω(η1η3η4η5η6)). By partial summation,

N2(η) =
ϑ(η)X1X2

η4η2
6

g2(X0) +R2(η)

with

R2(η) =
−X2

η4η2
6

∫
{u| |X2

0u|≤1}
(D1g1)(u,X0)R(−X1/X

2
0 , X1u)du

where D1g1 is the partial derivative of g1 with respect to the first variable.
Using the above bound for R(b1, b2), we obtain:

R2(η) � X2

η4η2
6

2ω(η1η3η4η5η6).

Summing this over all η as in (10.8) while ignoring (10.4) which can only
enlarge the sum, we obtain∑

η

R2(η) �
∑
η

X2 · 2ω(η1η3η4η5η6)

η4η2
6X

2
0

=
∑
η

B · 2ω(η1η3η4η5η6)

η(2,1,2,2,2,2)
� B logB.

In the first step, we use X0 ≤ 1. �

Let

∆(n) = B−2/3
∑

ηi,η(4,2,3,3,2,2)=n

ϑ(η)X1X2

η4η2
6

=
∑

ηi,η(4,2,3,3,2,2)=n

ϑ(η)(η(4,2,3,3,2,2))1/3

η(1,1,1,1,1,1)
.

In view of Lemma 10.6, the number of rational points of bounded height
on U can be estimated by summing the result of Lemma 10.8 over all suitable
η. The error term is the combination of the error terms in Lemmas 10.7 and
10.8.

Lemma 10.9. We have

NU,H(B) = B2/3
∑
n≤B

∆(n)g2((n/B)1/3) +O(B(logB)3).
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10.6. Completion of the proof

We need an estimate for

M(t) :=
∑
n≤t

∆(n).

Consider the Dirichlet series F (s) :=
∑∞

n=1 ∆(n)n−s. Using

F (s+ 1/3) =
∑
η

ϑ(η)
η4s+1
1 η2s+1

2 η3s+1
3 η3s+1

4 η2s+1
5 η2s+1

6

,

we write F (s + 1/3) =
∏

p Fp(s + 1/3) as its Euler product. To obtain
Fp(s+1/3) for a prime p, we need to restrict this sum to the terms in which
all ηi are powers of p. Note that ϑ(η) is non-zero if and only if the divisibility
of ηi by p falls into one of the twelve cases described in Table 10.2. The value
of ϑ(η) only depends on these cases.

Writing Fp(s+ 1/3) =
∑11

i=0 Fp,i(s+ 1/3), we have for example:

Fp,0(s+ 1/3) = 1,

Fp,1(s+ 1/3) =
∞∑

j=1

(1− 1/p)(1− 2/p)
pj(4s+1)

=
(1− 1/p)(1− 2/p)

p4s+1 − 1
,

Fp,7(s+ 1/3) =
∞∑

j,k=1

(1− 1/p)2

pj(4s+1)pk(2s+1)
=

(1− 1/p)2

(p4s+1 − 1)(p2s+1 − 1)
.

The other cases are similar, giving

Fp(s+ 1/3) =1 +
1− 1/p
p4s+1 − 1

(
(1− 2/p) +

1− 1/p
p2s+1 − 1

+ 2
1− 1/p
p3s+1 − 1

)
+

1− 1/p
p2s+1 − 1

+ 2
(1− 1/p)2

p3s+1 − 1
+ 2

1− 1/p
p2s+1 − 1

+ 2
(1− 1/p)2

(p2s+1 − 1)2
.

Defining

E(s) := ζ(4s+ 1)ζ(3s+ 1)2ζ(2s+ 1)3 and G(s) := F (s+ 1/3)/E(s),

we see as in Section 9.6 that the residue of F (s)ts/s at s = 1/3 is

Res(t) =
3G(0)t1/3Q1(log t)
5! · 4 · 2 · 3 · 3 · 2 · 2

for a monic Q1 ∈ R[x] of degree 5. By Lemma 10.5, α(S) = 1
5!·4·2·3·3·2·2 . By

a Tauberian argument as in Lemma 9.13:

Lemma 10.10. M(t) = Res(t) +O(t1/3−δ) for some δ > 0.

By partial summation,∑
n≤B

∆(n)g2((n/B)1/3) = α(S)G(0)B1/3Q(logB) · 3
∫ 1

0
g2(v)dv +O(B

1
3
−δ)

for a monic polynomial Q of degree 5. We identify ωH(S) from

G(0) =
∏
p

(
1− 1

p

)6(
1 +

6
p

+
1
p2

)
, and ω∞ = 3

∫ 1

0
g2(v)dv.

Together with Lemma 10.9, this completes the proof of Theorem 10.1.
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bornée (Paris, 1996).

[Pey04] E. Peyre. Counting points on varieties using universal torsors. In Arithmetic
of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), volume 226 of
Progr. Math., pages 61–81. Birkhäuser Boston, Boston, MA, 2004.
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[Sch63] L. Schläfli. On the distribution of surfaces of the thrid order into species, in
reference to the absence or presence of singular points, and the relaity of their
lines. Philos. Trans. Roy. Soc. London, 153:193–241, 1863.

[Seg42] B. Segre. The non-singular cubic surfaces. Clarendon, Oxford, 1942.
[Sko93] A. N. Skorobogatov. On a theorem of Enriques-Swinnerton-Dyer. Ann. Fac.

Sci. Toulouse Math. (6), 2(3):429–440, 1993.
[Tim28] G. Timms. The nodal cubic surfaces and the surfaces from which they are

derived by projection. Proc. Roy. Soc. London Ser. A, 119:213–248, 1928.
[Zie95] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 1995.





Index

algebraic group, 45
anticanonical class, 7, 9, 10, 59, 83, 109
automorphism of P2, 12, 22

base point, 82
blow-up, 8, 10, 15, 20, 59

canonical class, 7
Castelnuovo, 21
chamber, 13, 110

fundamental, 13, 18, 110, 113
character, 26
circle method, 102, 104
cohomology group, 25, 105
complete intersection, 47, 106
cone

affine, 45
convex, 10
effective, 10, 12, 16, 27, 59, 105, 109,

114
nef, 10, 59, 109

contraction, 20, 83
coprimality condition, 2, 119, 136
Cox ring, 2, 27, 31, 46, 57, 81

generator, 27, 31, 35, 38, 58, 82, 89,
93

relation, 29, 31, 33, 35, 43, 58, 86, 89
cubic surface, 73

Cayley’s, 88
E6, 16, 28, 107, 117
singular, 3, 7, 16, 19, 21, 93
smooth, 1, 11, 19, 34, 53

curve
(−1)-, 11, 18, 31, 34, 38, 40
(−2)-, 16
negative, 28, 58, 102

degree, 8
Del Pezzo surface

degree 1, 40
degree 2, 38, 55
degree 3, see also cubic surface
degree 4, see also quartic surface
degree 5, 63
degree 6, 61

generalized, 15, 17, 57, 81, 102, 113
singular, 15, 102, 113
smooth, 2, 8, 11, 15, 31, 45, 101, 111
toric, 29

density, 106
Dirichlet series, 129, 144
distinguished section, 83
divisor, 7

effective, 7, 27
exceptional, 9, 15, 134
prime, 7

divisor group, 7
Dynkin diagram, 13, 15

extended, 16–18, 34, 59, 89, 94, 136

embedding, 45
anticanonical, 11, 16, 34, 59

error term, 107, 118

family
embedding, 46, 56
generalized, 22, 96
smooth, 12

Fano variety, 101
flag variety, 45

global section, 27
grading, 27
Grassmannian, 3

halfspace, 13
height, 1, 101, 117, 133
height inequality, 2, 104, 124, 137
height zeta function, 103, 106
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